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Parameter estimation for the subcritical Heston 
model based on discrete time observations 

M Á T Y Á S B A R C Z Y , G Y U L A P A P a n d T A M Á S T . S Z A B Ó 

Abstract. W e study asymptotic properties of some (essentially conditional least 
squares) parameter estimators for the subcritical Heston model based on dis-
crete time observations derived f rom conditional least squares estimators of 
some modified parameters. 

1. Introduction 

The Heston model has been extensively used in financial mathematics since one can 
well-fit them to real financial data set, and they are well-tractable from the point 
of view of computability as well. Hence parameter estimation for the Heston model 
is an important task. 

In this paper we study the Heston model 

where a > 0, b, a, /3 £ R, a\ > 0, o2 > 0, g G (—1,1), and (Wt,Bt)t^o IS a 
2-dimensional standard Wiener process, see Heston [7]. We investigate only the 
so-called subcritical case, i.e., when b > 0, see Definition 2.3, and we introduce 
some parameter estimator of (a, 6, a,/3) based on discrete time observations and 
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t> 0, (1.1) 
dXt = ( a - ßYt) dt + a2VYt{gdWt + dBt), 
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derived from conditional least squares estimators (CLSEs) of some modified pa-
rameters starting the process (Y, X ) from some known non-random initial value 
(yo^o) € (0,oo) x R. We do not estimate the parameters <J\, a2 and g, since these 
parameters could—in principle, at least—be determined (rather than estimated) 
using an arbitrarily short continuous time observation (Xt)t€[o,T] of X, where T > 0, 
see, e.g., Barczy and Pap [1, Remark 2.6]. In Overbeck and Ryden [15, Theorems 3.2 
and 3.3] one can find a strongly consistent and asymptotically normal estimator of 
c 1 based on discrete time observations for the process Y, and for another estimator 
of <7x, see Dokuchaev [5]. Eventually, it turns out that for the calculation of the 
estimator of (a, b, a, /3), one does not need to know the values of the parameters 
<7i,cr2 and g. For interpretations of Y and X in financial mathematics, see, e.g., 
Hurn et al. [8, Section 4], 

CLS estimation has been considered for the Cox-Ingersoll-Ross (CIR) model, 
which satisfies the first equation of (1.1). For the CIR model, Overbeck and Ryden 
[15] derived the CLSEs and gave their asymptotic properties, however, they did 
not investigate the conditions of their existence. Specifically, Theorems 3.1 and 3.3 
in Overbeck and Ryden [15] correspond to our Theorem 3.4, but they estimate 
the volatility coefficient ay as well, which we assume to be known. Li and Ma [14] 
extended the investigation to so-called stable CIR processes driven by an a-stable 
process instead of a Brownian motion. For a more complete overview of parameter 
estimation for the Heston model see, e.g., the introduction in Barczy and Pap [1], 

It would be possible to calculate the discretized version of the maximum 
likelihood estimators derived in Barczy and Pap [1] using the same procedure as 
in Ben Alaya and Kebaier [3, Section 4] valid for discrete time observations of 
high frequency. However, this would be basically different from the present line of 
investigation, therefore we will not discuss it further. 

The organization of the paper is the following. In Section 2 we recall some 
important results about the existence of a unique strong solution to (1.1), and study 
its asymptotic properties. In the subcritical case, i.e., when b > 0, we invoke a result 
due to Cox et al. [4] on the unique existence of a stationary distribution, and we 
slightly improve a result due to Li and Ma [14] and Jin et al. [10, Corollary 2.7] and 
[11, Corollaries 5.9 and 6.4] on the ergodicity of the CIR process (Yt)tj> 0, see Theorem 
2.4. We also recall some convergence results for square-integrable martingales. In 
Section 3 we introduce the CLSE of a transformed parameter vector based on 
discrete time observations, and derive the asymptotic properties of the estimates -
namely, strong consistency and asymptotic normality, see Theorem 3.2. Thereafter, 
we apply these results together with the so-called delta method to obtain the same 
asymptotic properties of the estimators for the original parameters, see Theorem 
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3.4. The point of the parameter transformation is to reduce the minimization in 
the CLS method to a linear problem, because our objective function depends on 
the original parameters through complicated functions. The covariance matrices of 
the limit normal distributions in Theorems 3.2 and 3.4 depend on the unknown 
parameters a, b and /?, as well (but somewhat surprisingly not on a). They also 
depend on the volatility parameters oi, a? and p, but, again, we will assume these 
to be known. Since the considered estimators of a, b and (3 are proved to be strongly 
consistent, using random normalization, one may derive counterparts of Theorems 
3.2 and 3.4 in a way that the limit distributions are four-dimensional standard 
normal distributions (having the identity matrix 14 as covariance matrices). 

2. Preliminaries 

Let N, Z+, R, R+, R++, and R__ denote the sets of positive integers, non-negative in-
tegers, real numbers, non-negative real numbers, positive real numbers, and negative 
real numbers, respectively. For x,y £ R, we will use the notation xAy := min(x,y). 
By ||x|| and ||A||, we denote the Euclidean norm of a vector x £ and the induced 
matrix norm of a matrix A £ R d x d , respectively. By Id £ Rd x d , we denote the 
d x d unit matrix. The Borel er-algebra on R is denoted by B(R). Let (fi, T, P) be 
a probability space equipped with the augmented filtration (Jrt)teR+ corresponding 
to (Wt, Bt)teR+ and a given initial value (r?0, Co) being independent of (Wt, Bt)ter+ 

such that P(r/o £ R+) = 1, constructed as in Karatzas and Shreve [12, Section 
5.2], Note that (P"t)ter+ satisfies the usual conditions, i.e., the filtration (J-t)teu+ 

is right-continuous and Eo contains all the P-null sets in T. 
The next proposition is about the existence and uniqueness of a strong solution 

of the SDE (1.1), see, e.g., Barczy and Pap [1, Proposition 2.1]. 

Proposition 2.1. Let (r/o, Co) be a random vector independent of (Wt,Bt)teR+ s(d-
isfying P(ry0 £ R+) = 1. Then for all a £ R + + , b,a,P £ R, 01,(72 € R++; and 
g £ (—1,1), there is a (pathwise) unique strong solution (Ft,Xt)t6K+ of the SDE 
(1.1) such that P((y0 l^o) = (lo,Co)) = 1 and P{Yt £ R+ for all t £ R+) = 1. Fur-
ther, for all s,t £ R'+ with s ^t, 

(Yt = e -W- ' lY . + afst du + o j J* e ' » ^ v ^ d W « , 
\xt = Xs + J*(a - /3YU) du + o2 /; ^d(0Wu + 

Next we present a result about the first moment of (Ft,Xt)t6R+. For a proof, 
see, e.g., Barczy and Pap [1, Proposition 2.2] together with (2.1) and Proposition 
3.2.10 in Karatzas and Shreve [12]. 
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Proposition 2.2. Let (Yt,Xt)t6R+ be the unique strong solution of the SDE (1.1) 
satisfying P(F0 £ ®+) = 1 and. E(Y0) < oo, E(|X0|) < oo. Then for all s,t € R+ 
with s ^t, we have 

E(Yt | J 8 ) = e - b ( t - 5 ) Y s + a J e - b ( t ~ u ) du, (2.2) 

E(X t | E s ) = X s + J (a - (3E(YU \ T,)) du (2.3) 

= X3 + a(t - s ) - pYs J e - 6 ( u - s ) du - a/3 £ ( £ e~>>(u-v) d w ) d u > 

and hence 

e~bt 0" 
-J3f*e~budu 1 

Consequently, if b E R++, then 

"E(F) ' 
MM. 

E(Y0) 
E(A0). + 

ifb = 0, then 

lim E(Ft) = - , 
t-HX> b 

lim i _ 1 E ( F ) = a, 
t—y oo 

fp e~bu du 
- / 3 / o ( / o U e - 6 " d u ) 

lim r 1 E ( X t ) = a - ^ , 
t—yoo o 

0 
du t 

a 
a 

if be R , then 

lim ebtE(Yt) = E(Y0) - T, 
t—y oo 0 

lim t~2 E(X t ) 
t—ycx> 

:0a, 

13. lim e E(X t ) = £ E(F0) 
t—foo o 

0a 
V' 

Based on the asymptotic behavior of the expectations (E(Yt), E(J0)) as t —> oo, 
we introduce a classification of the Heston model given by the SDE (1.1). 

Definition 2.3. Let (F>A"t)t€R+ be the unique strong solution of the SDE (1.1) 
satisfying P(Lo £ K+) = 1- We call (Yt,Xt)teR+ subcritical, critical or supercritical 
if b £ R++, b = 0 or b £ R , respectively. 

In the sequel - 4 and will denote convergence in probability, in 
distribution and almost surely, respectively. 

The following result states the existence of a unique stationary distribution 
and the ergodicity for the process (F)teR+ given by the first equation in (1.1) in 
the subcritical case, see, e.g., Cox et al. [4, Equation (20)], Li and Ma [14, Theorem 
2.6], Theorem 3.1 with a = 2 and Theorem 4.1 in Barczy et al. [2], or Jin et 
al. [11, Corollaries 5.9 and 6.4]. Only (2.7) of the following Theorem 2.4 can be 
considered as a slight improvement of the existing results. 
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Theorem 2.4. Let a,b,o% € R++. Let (Yt)teR+ the unique strong solution of the 
first equation of the SDE (1.1) satisfying P(F0 € R+) = 1. Then £ 

(i) YT —> Yoo as t oo, and the distribution of Y^ is given by 

/ a2 \ -2a/a? 

E ( e - A y » ) = ( I + ^ A ) , A € R+, (2.4) 

i.e., Yoo has Gamma distribution with parameters 2a/of and 2b/of, hence 

E(no) - I n r l ) = E ( y » ) = ( 2 a + ^ a + g ? ) a ; (2.5) 

(ii) supposing that the random initial value Yo has the same distribution as Yoo, 
the process (Yt)teR+ ts strictly stationary; 

(iii) for all Borel measurable functions f : R —> R such that E(|/(Y"oo)|) < oo, we 
have 

as T - t oo, (2.6) 

as n 0 0 . (2.7) 

Proof. Based on the references given before the theorem, we only need to show (2.7). 
By Corollary 2.7 in Jin et al. [10], the tail er-lield flteR+ s ^ t) of (Yt)tem+ is 
trivial for any initial distribution, i.e., the tail cr-field in question consists of events 
having probability 0 or 1 for any initial distribution on R + . But since the tail 
cr-field of (lt)teR+ is richer than that of (Y,)iez+, the tail cr-field of (Y/)iez+ is also 
trivial for any initial distribution. 

Denoting the distribution of Yo and Y'oo by v and g, respectively, let us in-
troduce the distribution ?] := (g + v)/2. Let us introduce the following processes: 
(Zt)teR+, which is the pathwise unique strong solution of the first equation in (1.1) 
with initial condition Zo = Co, where Co has the distribution g; and (Ut)teR+, which 
is the pathwise unique strong solution of the same SDE with initial condition 
UQ = £o, where Co has the distribution 77. 

We use Birkhoff's ergodic theorem (see, e.g., Theorem 8.4.1 in Dudley [6]) 
in the usual setting: the probability space is (R z + , S(RZ + ) , £((2Tj) iez+)), where 
£((Zi)igz+) denotes the distribution of (^¿)igz+, and the measure-preserving trans-
formation T is the shift operator, i.e., T((xj ) j6z+ ) : = (^¿+i)iez+ for (xi) i ez+ € R z + 

(the measure preservability follows from (ii)). All invariant sets of T are included 
in the tail cr-field of the coordinate mappings xt, i € Z + , on R z + , since for any 
invariant set A we have A £ o(7r0,7rj,...), but as Tk(A) = A for all k G N, it is also 

i j i f(Ys)ds^E(f(Yoo)) 

fj2f(Yi)^E(f(Y00)) 
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true that A 6 o-(irk,Trk+i,...) for all k 6 N. This implies that T is ergodic, since 
the tail 0-field is trivial. Hence we can apply the ergodic theorem for the function 

g : Rz+ R, g((xi)ieZ+) := f(xo), ( X i ) i e Z + £ R z+, 

where / is given in (iii), to obtain 

1 f 
- £ f(xj) / f(x0) p(dx0) as n f e o o 
n i=o 

for almost every (xi)ieZ+ £ R z + with respect to the measure C((Zi)i€Z+), and 
consequently 

2 n—1 
- £ / ( ^ ) ^ E ( / (no ) ) as n f e o o , (2.8) 
" . „ i = 0 

because, clearly, the distribution of Y,x does not depend on the initial distribution. 
We introduce the following event, which is clearly a tail event of (Z x ) i e z + and has 
probability 1 by (2.8): 

- n — 1 

Cz := {co E n : ~ Y M M ) E ( / ( F o ) ) as n o o } . 
i=0 

The events Cy and Cu are defined in a similar way and are clearly tail events of 
(F)«€Z+ and (Ui)i&+, respectively. Clearly, 

/•OO 

2 P (Cu) = 2 / P(Cu \U0=x) dV(x) 
Jo 
/•oo />00 

= / | H0 = x) d/i(x) + / PiCc/1 Ho = x) du(x) 
Jo Jo 

/•oo /»oo 
^ / P(Cc/1 Ho = x) d/i(x) = / P(CZ I Zo = x) d/x(x) = P(CZ ) - 1. 

Jo Jo 

Here we used that P(Cu \UQ = x) — P(Cz \Z0 = x) FI-a.e. x £ R + , since the 
conditional probabilities on both sides depend only on the transition probability 
kernel of the CIR process given by the first SDE of (1.1) irrespective of the initial 
distribution. Further, we note that P(Cu \ UQ = x) is defined uniquely only 77-a.e. 
x € R+, but, by the definition of g, this means both g-a.e. x £ R + , and v-a.e. 
x £ R+, and similarly P(Cz \ ZO = x) is defined g-a.e. x £ R + , so our equalities 
are valid. Thus, we have P(Cu) ^ 5• But since Cu is a tail event of (H/)/ez+ , its 
probability must be either 0 or 1 (since the tail 0-field is trivial), hence P(Cu) = 1-
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Hence 
/»OO /»OO 

2 = / F(CV \U0=x) dg(x) + / F(CV \ U0 = x) du(x) < /z([0, oo)) + i/([0, oo)) = 2, 
Jo Jo 

yielding that 
/»OO /»OO 

/ F(Cu \U0 = x) dg(x) = / F{CV \ U0 = x) du(x) = 1, 
Jo Jo 

and the second equality is exactly (2.7) after we note that, by the same argument 
as above, 

/»OO /»oo 
/ F{Cu \U0=x) du(x) = / F(CY\Yo = x)du(x) = F(CY). 

Jo Jo 

With this our proof is complete. 

In what follows we recall some limit theorems for (local) martingales.. We 
will use these limit theorems later on for studying the asymptotic behaviour of 
(conditional) least squares estimators for (a,b,a,fi). 

First, we recall a strong law of large numbers for discrete time square-integrable 
martingales. 

Theorem 2.5. (Shiryaev [16, Chapter VII, Section 5, Theorem 4]) 
Let (fi,F, (Fra)neN,IP') be a filtered probability space. Let (M„)„€h be a square-
integrable martingale with respect to the filtration (Fn ) „gN such that F(MQ = 0) = 1 
and P ( l im n _ > 0 0 (M) n = oo) = 1, where ( ( M ) n ) n 6 n denotes the predictable quadratic 
variation process of M. Then 

M N a.s. n ^ ——— —» 0 as n -A oo. 
( M ) n 

Next, we recall a martingale central limit theorem in discrete time. 

Theorem 2.6. (Jacod and Shiryaev [9, Chapter VIII, Theorem 3.33]) 
Let {(Mntk,Jrn,k) '• k = 0 , 1 , . . . , fcn}neN be a sequence of d-dimensional square-
integrable martingales with Mn,o = 0 such that there exists some symmetric, positive 
semi-definite non-random matrix D 6 Rdxd such that 

kn 

^ E ( ( M „ , t - M „ , w ) ( M „ , t - M „ i k _ i ) T | F + i ) ^ as n o o , 
k=l 

and for all e G R + + , 

kn 

£E(||M„,fc-Mn , i t_i||2l {||Aini f c_Mn fc_1||^} |Fn,fc_i) 0 as n -> oo. (2.9) 
k=1 
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Then 
k„ 
£ ( M n , f c - M n i f c _i ) = Mn , f c„ -4 Nd(0, D) as n oo, 
fc=i 

where J\fd(0, D) denotes a d-dimensional normal distribution with mean vector 0 
and covariance matrix D. 

In all the remaining sections, we will consider the subcritical Heston model (1.1) 
with a non-random initial value (y0, x0) £ K+ x l . Note that the augmented filtration 
(Jrt)t€R+ corresponding to (Wt,Bt)teu+ and the initial value (yo,x0) £ M+ x M, in 
fact, does not depend on (yo,xo)-

3. C L S E based on discrete time observations 

Using (2.2) and (2.3), by an easy calculation, for all i £ N, 

E ([£1+) 
- / 3 / 0 V b " d u 1 

F - i 
Xi-1 

+ Jo1 e _ b " d u 0 
~ftfo (Jo e~bv du)du 1 

a 
a 

(3.1) 

Using that a(X\, Yx,..., A ^ , F - i ) C £ N, by the tower rule for conditional 
expectations, we have 

= E ( E ( | J i _ 1 ) | < T ( A - 1 , y l l . . . , X i _ i , F _ 1 ) ) 

+ e 0 
r1 -0 f 0 e~bu du 1 

F - i 
Xi~ i 

fo e_f>" du 
-0fo(foue-bpdv)du 1 

a 
a 

i £ N, 

and hence a CLSE of (a, b, a, 0) based on discrete time observations (F , A/),G{-li n j 
could be obtained by solving the extremum problem 

n 
argmin £ [(F - ¿ F - i - c)2 + (Xt - X^ - 7 - ¿ F - i ) 2 ] , (3.2) 

( a , 6 , a , / 3 ) 6 R 4 
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where 

d : = d(b) := e~b, c := c(a, b) := a [ e~bu du, 

Jo 

8:=5(b,/3):=-P J e~bu du, 7 : = 7 ( 0 , 6 , 0 , 78) : = a - a/3 J^ ( j f e~bv dvjdu. 

(3.3) 
First, we determine the CLSE of (c, d, 7 ,8) by minimizing the sum on the right-hand 
side of (3.2) with respect to (c, d, 7 ,5) € R4. 

We get 
FTCLSE 
°n 
JGLSE 
a

n 
FTCLSE 
in 

¿ C L S E 

n E"=i yi-i 
En y V^n y2 

i=1 £7-1 i—1. 

Er=r Yi 
E"=i YiYi-1 

— x0 
(3.4) 

provided that n Y?_, > ( 1 7 — 1 ) , where ® denotes the Kronecker product 
of matrices. Indeed, with the notation 

/ ( c , d , 7 , i ) := £ [(Yi-dYi-i-cf + iXi-Xi^-y-SYi-i)2], (c,d,j,8) e R 4 , 

we have 
¿ = 1 

^ (c, d, 7, -5) = - 2 - - c), 
i=1 

^ ( c , d , 7 , d ) = ^ ¿ I W K - d y ^ i - c ) , 
i=l 

^ ( C , d, 7,5) - - 2 £ ( X i - X7-1 - 7 - ¿ ^ 1 ) , 
i=l 

|£(c, d, 7,5) = - 2 £ Yi-^Xi - Xi-1 - 7 -
i=l 

Hence the system of equations consisting of the first-order partial derivates of / 
being equal to 0 takes the form 

~c E"=i T 
n E?=1 Ti-i ' d E"=1 Ti-iTi 

v v2 1 J » - i Z>i=1 i—1. J 7 An ~ âO 
8. 
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This implies (3.4), since the 4 x 4-matrix consisting of the second-order partial 
derivatives of / having the form 

2 / 2 ' 
n £?= 1 Yi-i 

En v vn v2 
»= 1 Zoi=l 7— 1 

is positive definite provided that Y k > (51™=i k - i ) 2 - In fact, it turned 
out that for the calculation of the CLSE of (c, d, 7 , (5), one does not need to know 
the values of the parameters <TI , a2 and g. 

The next lemma assures the unique existence of the CLSE of (c, d, 7 , 5) based 
on discrete time observations. 

Lemma 3.1. If a e K++, 6 £ R, ax £ R++, and Y0 = y0 £ R+, then for all n ^ 2, 
n € N, we have 

r(n±Y?_1>(±Yt.l)2)=l1 
7=1 7 = 1 

and hence, supposing also that a,fi £ R, a2 £ R++, g € ( — 1,1), there exists a 
unique CLSE «LSE«LSB,7kSE, ?nLSE) of(c,d,j,5) which has the form given 
in (3.4). 

Proof. By an easy calculation, 

" X X i - ( i > - i ) 2 =n±(Yi_1 > 0, 
7=1 7=1 7=1 j = 1 

and equality holds if and only if 

1 " 
Yi_x = -J^Yj-x, i=l,...,n <=> Y0 = Y1 = - - - = Y n _ 1 . 

713=1 
Then, for all n ^ 2, 

P(Y0 = Yx = • • • = Yn_i) ^ P(Y0 = Yx) = P(Yi = y0) = 0, 

since the law of Yi is absolutely continuous, see, e.g., Cox et al. [4, formula 18]. m 

Note that Lemma 3.1 is valid for all b £ R, i.e., not only for the subcritical 
Heston model. 

Next, we describe the asymptotic behaviour of the CLSE of (c,d,j,6). 
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Theorem 3.2. If a,be R + + , a / e l , <71,02 £ K++, e £ ( - 1 , 1 ) and, (Y 0 . *o ) = 
(jto,x0) £ K++xR, then the CLSE (cSLSE,^LSE,7^LSE,^LSE) o/M,7,i) given 
in (3.4) is strongly consistent and asymptotically normal, i.e., 

tCLSE jCLSE c;CLSE JCLSE \ a.s /TGLSE JULSE -Vcn 1 "n 1 I-, n ' 

and 

y/n 

•pCLSE _ " 

d£LSE - d 
^CLSE — 
In I 
¿CLSE _ S 

'-1) -M (c, d, 7, <5) as n —F 00, 

Af4(0,E) as n—y 00, 

with some explicitly given symmetric, positive definite matrix E e 
(3.14). 

Proof. By (3.4), we get 

P2x2 given in 

pCLSE 
¿CLSE 

1 
Y - l Y E 

¿=1 
n r 1 

[ ¿ j V i i ^ H 
[ ¿ J V ^ J ^ ) ^ 
isnm 

lint 
(3.5) 

l 
Ym ! 

(Yt-c-dYt-!) 

I 
Y - i 

where et := Y - c - d Y - i , » € N, provided that 71^=1 y 7- i > ( £ " = l Y - i f - By 
(3.1) and (3.3), E (Y 17i_i) = d Y - i + c, i € N, and hence (£i)f6N is a sequence of 
martingale differences with respect to the filtration (J})iez+ - By (2.1), we have 

Yi = e~bYi-i + a f du + <71 f e~b{i-u) y/YudWu 
Ji-l Ji-1 

= dYi-i + c + ox f e-h^y/YxdWu, ie N, 
Ji-l 

hence, by Proposition 3.2.10 in Karatzas and Shreve [12] and (2.2), we have 

= <t2e(( e - ^ - f o ^ d W « ) 2 ! Ei-x) =a21J^e-2b^E(Yu\Ei-l)du 
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= a¡ f e - ^ - ^ e - ^ - ^ F - i d u + a? f e " 2 * ' — ^ dv d u 
Ji-1 Jt-1 Ji-1 

= 0 2 F - i [ e-fc(2-"> du + a\a f / " e ^ 2 " 0 - " ) du du = : C i F - i + C 2 . 
Jo Jo Jo 

Now we apply Theorem 2.5 to the square-integrable martingale := 
¥Yi=i£i> n E N, which has predictable quadratic variation process = 
£r= i E ( £ f I 1) = Ci £ ?= i + n 6 N, see, e.g., Shiryaev [16, Chapter 
VII, Section 1, formula (15)]. By (2.5) and (2.7), 

<M<c>)n a.s 
n 

C i E ( y o o ) + C 2 as n-+oo , 

and since C\,C2 E R++, (MH))„ Afy oo as n fe oo. Hence, by Theorem 2.5, 

1 + M<C) ( M & ) N . . . . 0 • (Ci EÍFo) + C2) = 0 as n - t o o . (3.6) 

Similarly, 

E (F - i £ Í I 1) = T2_! E(e2 | F U ) = C i Y h + C ^ , i € N, 

and, by essentially the same reasoning as before, - Y4i=i ——> 0 as n —>• oo. 
By (2.5) and (2.7), 

C-t\1 If1 lY1 
1 n + u . j ) 

1 ¿ E ¡ L i 
L v. i V " V 2 

Ln G - l n * » - ! . 

1 E ( F j 
E ( F o ) E ( y ¿ ) . 

- 1 (3.7) 

2 
as n ->• oo, where we used that E(V¿) - (E(T00))2 = £ K++, and consequently, 
the limit is indeed non-singular. Thus, by (3.5), (c£LSE, d^LSE) (c, d) as n o o . 
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Further, by (3.4), 

-CLSE-I 
¿CLSEj 

« [ © « J nm (Xi-Xi-!)) 

1 T V 
Ti-i. J <5 

T 

+ 

(Xi - - 7 - SYi-i) 

(3.8) 

M S m nt i 
Yi-1 

where := Xi-Xi-1-+-8Yi^ui e N, provided that n Y?-i > ( E ^ i T - i ) 2 -
By (3.1) and (3.3), E(A7 | J)_i) = X¿_i + + 7, i G N, and hence (yi)i6N is a 
sequence of martingale differences with respect to the filtration (J7i)iez+- By (2.1) 
and (2.2), with the notation Wt := gWt + y/l - e2Bt, t G R+, we compute 

X, — Xi-1 

= / ( a - ¡3Yu)du + o2 / y/YudWu = a - ¡3 Yudu + o2 / y/Yud Wu 
Ji-1 Ji-1 Ji-1 Ji-1 

= <x-pf* ( e - 6 ( u " ( i _ 1 ) ) F i - 1 + aj\-h^u-v) dv + ^JYv d W w ) d u + 

+ o2 [ y/YudWu 
Ji-1 

— a — fiYi-i j f * e - 6 < u - i + 1 > d u - a 0 j f ( j T e " 6 ( u - w ) d w ) d u -

— f3o\ J * ( j T e - b ( u - v ) y / Y v d W v y u + o 2 £ y /YudW u 

= a - PYi-! J\~bv dv - a/3 J^ ( jT e - ^ d u j d u -

e~Ku-v)\/YvdWvyu + cj2 J* ^/YudWu 

4 ¿ Y U + 7 - p * ! J * ( j T e - ^ A / n d W . J d u + <r2 j f 
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Pi- + 

+ o\ E 

- 2fia1cr2 E 

- 2fia\(j2 E Pi-1 

and consequently, 

HriiUi-i) 

= /32<J2E £ e-b(u-v)y/YvdWvdu) 

( [ i x V ^ d ^ l - k - i ] -

( 1 1 f b ^ V Y ^ W v d u ) ( g [ V Y u * W u ) \pi-i]~ 

Ui J^ f biU~V)^dWpdu){ £ dBu) 

We use Equation (3.2.23) from Karatzas and Shreve [12] to the first, second and 
third terms, and Proposition 3.2.17 from Karatzas and Shreve [12] to the fourth 
term (together with the independence of W and B): 

= P2 ( T iJ i J . ^ ( / V ^ ^ ^ r e - H v - w ) V Y ^ d W w |.F_i)dudu 

Ji-l 

e - ^ - ^ v ^ d W w £ x/K/dWw | b _ i ) d u - 0 
pi pi puAv pi 

= fi2a2 / / e-b^u+v-2faE(Yw\E i_x)dwdudv + a2 E(Y„ | J )_ i ) du 
Ji-l Ji-l Ji-l Ji-l 

- 2fiaxa2g [ f e-b{u~v) E(F„ | J=i_x)du du. 
Ji-l Ji-l 

Using again (2.2), we get 

F(y2\ Ti-i) 
pi pi pu/\v 

= fi2a2Y^x / / - ( i -1 ) )dmdudu+ 
Ji-l Ji-l Ji-l 
pi pi pu An pw 

+ afi2(j2x / / / / e- i ,("+ , ;-u ,-2>dzdmdi;du+ ' 
Ji-l Ji-l Ji-l Ji-l 

+ t 2 Y _ 1 f e-«*^-1» du+ 
Ji-l 
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+ aaI f [U e-b^dvdu-20a1a2gYi_1 f £ e ^ " " ^ 1 » d u d u -
Ji-l Ji-l Ji-l Ji-l 

-2a0a1a2e f / " / " dtu du du 
Ji-l Ji-l Ji-l 

¡•1 /• 1 fU /\v' 
= {ji2o\ J J J e-b(-u'+v'-w,)dw'dv'du'-

-2/3(T1<T2Q£ £ e~bu' dv' du' + £~bu' du^Yi-!® 

mu'f\v' i-w' 

/ e-bh+v'-™'-hdz>dw>dv>dui+ 
Jo 

+ 0*1 f 1 f e-^'-hdv'du' -2a0Gia2e [ £ £ e ^ " ' " ^ dw' dt>' du' 

Jo Jo Jo Jo Jo 

—: C3F-1 + C4. 
Now we apply Theorem 2.5 to the square-integrable martingale := 
£ n = i 5 i , n E N, which has predictable quadratic variation process (M<-1i)rl = 

£ ? = i I ^"i-i) = Co L I U Ti-1 + C4n, n € N. By (2.7), 

( M ( 7 ) ) " C 3 E(Fo) + C 4 as n —> 00. (3.9) 
n 

Note that C3 ^ 0 and C4 > 0, since E(g\ | F0 ) = C3y0 + C4 ^ 0 for all ¡ / 0 e ® + . 
By setting y0 = 0, we can see that C4 ^ 0, and then, by taking the limit y0 ^ 00 
on the right-hand side of the inequality C3 ^ Vo > 0, we get C3 ^ 0 as 
well. Note also that (M™)N " o o a s n + oo provided that C3 + C4 > 0. If 
C3 = 0 and C4 = 0, then E(r?? |F_i ) = 0, i £ N, and consequently E(gf) = 0, 
i £ N, and, since £(7?/) = 0, i £ N, we have P(^ = 0) = 1, i £ N, implying that 
P ( £ r = i Vi = 0) = 1 and P ( £ Y i F - H f c = 0) = 1, n € N, i.e., in this case, by (3.8), 
(7nL S EYnL S E ) = (7,5), TI £ N, almost surely. If C3 + C4 > 0, then, by Theorem 
2.5, 

- Y v i = / ( M ( 7 ) ) " ^ 0 • ( C 3 E ( F o ) + C 4 ) = 0 as n 00. (3.10) 
n M " ) „ n 

Similarly, 

E(FYY I = F-i E(4 I Ti-r) = C3Yh + C4Yh, i £ N , 

and, by essentially the same reasoning as before, ^ £™=i F - i b t 0 as n 00 
(in the case C3 + C 4 > 0). Using (3.7) and (3.8), we have (7£L S EY£L S E ) ^ (7.«) 
as n —7 00. 
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Since the intersection of two events having probability 1 is an event having 
probability 1, we get (c%LSE, % L S E n £ L S E ^ ( c , d , 7 ) i ) as n + oo, as 
desired. 

Next, we turn to prove that the CLSE of (c, d, 7,8) is asymptotically normal. 
First, using (3.5) and (3.8), we can write 

yjn 

C?L S E - c 
JGLSE "n 
^CLSE _ — 
In I 

JCLSE _ G 

= \ll n "E 
i=l 

1 1 
Xi-1. Xi-1. 

T \ -IN 
n -1 /2 E 

¿=1 

1 

.Vi. *y 
Yi-i. 

(3.11) 
provided that n E " = i Yl2_1 > (E?=i 7 - i ) 2 - By (3.7), the first factor converges 
almost surely to 

r r 1 E(YOO)1 
/ 2 ® l E ( Y 0 0 ) E(Y )̂J as n 00. 

For the second factor, we are going to apply the martingale central limit theorem 
(see Theorem 2.6) with the following choices: d = 4, kn = n, n £ N, Fntk = Xk, 
n G N, k G (1 , . . . ,n} , and 

k 
M„,i = n 5 Y 

i=l 

V 6d 1 

Jh. Xi-1. 
n G N, fc £ { 1 , . . . , n } . 

Then, applying the identities (A4 <g> A2)T = Aj <® A J and ( A j <g> A2)(A3 <g> A4) 
(A1A3)® (A 2 A 4 ) , 

E ( ( M n , f c - M n i W ) ( M n , t - M „ , f c _ ! ) T | T ^ - x ) 

MfeWElx n 

= - E 
n 

~ £k 1 
.Vk. Xfe-i. ) 

kT w 1 1 
T 

\ 
.Vk\ J® I Xk-i. 7k-1 . ) 

n \ n \ L%J •Lfc-i) ® ( 
1 

n £ N, fc G { 1 , . . . , n } . 

Since E(e2 17)t_1) = CiYfe_i + C2 , fc £ N, and E(t/2 | Fk_{) = C3Yk-x + C4 , fc 6 N, 
it remains to calculate 

E(e f e% | Tk-i) 

= E ( ( Y - c - dYk-4)(Xk - Xk-x - 7 - 8Yk-4) | JFfc_i) 
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/ rk 

= E(o1 e - 6 ( f c - s ) x / n d Wsx 
J k — 1 

x f - M r r e-b^^YPdWvdu + o2 [k 
V Jk-lJk-1 Jk-1 71 7 

= -po2 [ k E( [ k e ~ b ^ ^ s d W s fU e'b(-u-^y/YPdWv F f c _ i ) d a + 
Jk-1 ^Jk-1 Jk-1 7 

, n k e-b^y/YsdWs f k ^/YudWuyk-i). 
Jk~1 vk~1 

+ <7i<r2E| 

Again, by Equation (3.2.23) and Proposition 3.2.17 from Karatzas and Shreve [12], 
we have 

E(ekVk\Fk-1) = -Po21 [" f e - b ( f e + " - 2 u >E(YjJ- f c _ 1 )d i ;du+ 
Jk-1 Jk-1 

rk 

Jk-1 

Using (2.2), by an easy calculation, 

E(£fc?7fc I Jck-i) 

= - 0 o 2 [ k I" (e~b<-v-k+»Yk-1+a f e~b^ds)dvdu+ 
Jk-1 Jk-1 ^ dfe-1 7 

+ VKJ2Q [ k e-b^{e-b^-k+^Yk-1+a f d s )du 
«/fe — 1 J k— 1 

= ( ' ^ l ! J o e ' b { u , ~ v , + i ) d v ' d u ' + < T x a 2 y e ~ b ) Y k - x + 

-apo2 f 1 [ U f e-b(u'-v'-s'+V ds' dv' du'+ 
Jo Jo Jo 

+ a0!02g [ [ e-b(1-s,) ds'dv' 
Jo Jo 

= : C 5 y f e - i + C 6 , k e N. 

Hence, by (2.5) and (2.7), 
71 

£ E ((Mn, fe - Mn , f c_i)(Mn , f c - Mn , f c_i)T | J„, f c_i) 

i n 

i £ n. 

fc=l 

fc=l 

UiFfc_i + C2 C$Yk-i + CQ 
C$Yk-1 + Co C3Yk-\ + C4 

1 Tk- i 
LTk-1 Y2_ J 
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_ f. SN Ci Ce 
C 5 C 3 k=1 

Yk-i Y I-1 
V2 V3 

1 n 

+ - T , 
71 f -x fc=l 

C 2 CE 

Ce C4 

CX CB TE(Yoo) E(Y^)- _L C2 CQ 

CE C 3 E(Y^) E(Y ' ) . T 
CQ C4 

1 n - i 
7 * - i Y2_ J 

1 E(Yoo) 

=: D as n —>• 00, 

where the 4 x 4 limit matrix D is necessarily symmetric and positive semi-definite 
(indeed, the limit of positive semi-definite matrices is positive semi-definite). 

Next, we check the Lindeberg condition (2.9). Since 

x\\ 
IMI k lMI^ } < — x G £ G H-+> 

and ||a:||4 = (x\ + x\ + x2 + x2)2 ^ 4(x4 + x2 + x| + x4), xi,x2,x3,x4 G R, it is 
enough to check that 

£ ¿ ( E ( £ 4 I + YU E ( 4 | + E(R)K \ TK-X) + YK_X E(V4 | F f c _ 0 ) 
fc=i 

= ^ £ E ( ( l + Y f e 4 _ 1 ) ( 4 + ^ ) l k - i ) ^ 0 as n - > o o . 
n ti 

Instead of convergence in probability, we show convergence in LL, i.e., we check that 

¿ ¿ E ( ( l +YUi)(et + vt))^0 as n 00. k=1 

Clearly, it is enough to show that 

supE((l + Yfc
4_i)(4 + 4))<<*>-

fceN 
By the Cauchy-Schwarz inequality, 

E((1 + Y 4 _ i ) ( 4 + 4)) ^ ^/E((i + Y 4 _ i ) 2 ) E ( ( 4 + 4 ) 2 ) 

^^Edl + Y^Eiel + vl) 

for all k G N. Since, by Proposition 3 in Ben Alaya and Kebaier [3], 

sup E(YtK) <00, K G R+, 
teK+ 

(3.12) 
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it remains to check that supfc6N E(e8 +77®) < 00. Since, by the power mean inequality, 

E(£l)^E(\Yk-dYk-1-c\8)^E((Yk+dYk-1+c)8)^37E(Ypd8Yt1+c8), keN, 

using (3.12), we have sup fc€NE(e8) < 00. Using (2.1) and again the power mean 
inequality, we have 

E (q8) = E((Xk - X k -x - 7 - SYk-if) 

= E((a-P [ Yu du + o2Q f y/Yud Wu+ 
J k— 1 J k — 1 

+ J* ^PVudBu-q- SYk-i)8) 

< 67 E ( a 8 + P8( Yudn) +a8g8( VYudWu) + 
»//c—1 J k—1 

+ a8(l-Q2)4( [ k x /YldB U ) S + S8Y8_1+18), ke N. 
J k—1 

By Jensen's inequality and (3.12), 

supE (Y [ Yu du ) 8 ) < supE ( [ Y®du) = sup / E(Y?)du 
fceN ^Wk-1 ' ' fceN KJk-1 ' kenJk-i 

< ( sup E(Y 8 ) ) (sup f l du ) = sup E(Yt8) < 
YeR+ J^keNJk-i ' teR+ 

By the SDE (1.1) and the power mean inequality, 

( ( £ VYU*WU)8) ^ E ((Yk - Yk-x - a - 6 £ Y u du) " ) 

< E (Vfc8 + Yk_x + a8 + ^(J^ Y u du) 8 ) , k € 

(3.13) 

E 

and hence, by (3.13), 
rk - 8x 47 

supE ( ( [ v / i ; d W u ) 8 ) ^ ^ (2 sup E (Y 8 ) +a8 + b8 sup E ( Y 8 ) ) 
fceN WJk-1 ' ' <Y v teR+ teR+ ' 

< 00. 

Further, using that the conditional distribution of \/YudBu given (YJuejo.fc 
is normal with mean 0 and variance fjf_1 Yu du for all k £ N, we have 
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and consequently 

E ( ( j f = 105E ( ( f F u d n ) 4 ) , k e N. 

Hence, similarly to (3.13), we have 

supE (Y [ ^ d B « ) 8 ) ^ 105 sup E(Y4) < oo, 
fceN WJk-i 7 7 teR+ 

which yields that supfc€NE(r7®) < oo. All in all, by the martingale central limit 
theorem (see Theorem 2.6), 

fc=l 
/Oj 

l 
Jlk. T f c - 1 . 

•Af4{0,D) as n -A oo. 

Consequently, by (3.11) and Slutsky's lemma, 

y/n 

'FTCLSE _ . 

JCLSE "n 
FTCLSE 
In I 

- d 

¿ C L S E _ ^ 

( l 2 
1 E(Foo) 

E(Foo) E(Y 2 ) j 
1 EiYooJlN-lN 

E(Too) E(Yl)\) J 

as n —> oo, where the covariance matrix of the limit distribution takes the form 

(l2 ( 

- ( 
1 E(Yoo) 

E(Yoo) E ( 0 _ 

~C\ c5 
C 3 

1 E(Foo) 
E(Yoo) E(Y^) 

/ [ 1 E(yoo)lpE^Too) E(Y£) 
U E i y « , ) E ( Y 2 ) J [ E ( * £ ) E ( Y £ ) 

E(Too)l ^ 

+ 

x M e o L ) E ( y ^ ) J 

( I S S i ® ( IEIY 

+ 
, - i 

E(Yoo)j 1 E(yoo) 
E i n » ) E(Y£)J [E(yoo) E ( Y £ ) . Co Ci 

' « M ™ s s f > 
^ ( Y o o ) E ( y ^ ) 

[ E ( Y 2 ) E ( y 3 ) J 

)) 

'Ci C 5 

Co C3 ( E ( y 
E(yoo) 

E(Yoo) E ( Y 2 ) . 

, - 1 
1 E(Too)l 

LE(yoo) E ( y ^ ) J r 
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+ C*2 Ce 
Ce C4 

( E ( y < 2 ) - ( E ( y o o ) ) 2 ) 2 

/ [ E ^ ) - E ( y 0 0 ) 
- E i F o ) 

1 E ( F o ) 
E ( F o ) E(Y*)\ 

C i Cb 

c5 c3 

E ( F o ) E ( y ^ ) 
E ( y 2 ) E ( Y D 

1 E(yoo)" 
LE(yoo) E ( y 2 ) . 

i E(yoo)' 
E(YX) E(Yfoy 

- 1 

1 
E ( y ^ ) 

L -E (yoo ) 
•E(yoo)' 

I + 

+ 1 c 2 Ce " E (Yl) - E ( y o o ) " 

- (EYoo ) ) 2 C 6 CA. 09 - E ( y o o ) 1 

1 'Ci c5 /Ch 
(E(yoo) ) 2 ) 2 A c3 

09 

+ 

- E(Yao)((E(Yl))2 - E(yoo) E ( y ® ) ) ( E ( y £ ) ) 2 - EiYoo) E ( y ^ ) 
( E ( y ^ ) ) 2 - E ( y 0 C ) E ( y ^ ) E ( y ^ ) - 2 E ( y 0 0 ) E ( y ^ ) + (E(yX 3 ) )3J 

E ( y 2 ) - E ( y o o ) 
L - E ( y o c ) I 

1 c2 Ce (CX 

(E(yoo))2 C6 Ci. 09 

'Ci c5 

cb c3 

g(2g-f<r2) 2g+<y, 

2a+cr( 26(g+g?) 
„„2 

C2 Ce 
Ce C4 

2g+g? 

2b 

2b 

2b 
aa'i 

:= E. (3-14) 

Indeed, by (2.5), an easy calculation shows that 

( E ( y o o ) E ( y ^ ) - ( E ( Y ^ ) ) 2 ) E(Koo) = ^ ( 2 a + 0 2 ) , 
a 3 a? 

a 2 0 2 
E ( y o c ) E ( y ^ ) - ( E ( y ^ ) ) 2 = - ^ ( 2 a + 0 2 ) , 

E ( y ® ) - 2 E ( y o c ) E ( y ^ ) + ( E ^ ) ) 3 = ^ ( a + 4 ) , 

E ( y £ ) - (E (yoo ) ) 2 = 
aa{ 
W' 

Finally, we show that E is positive definite. To show this, it is enough to check that 
(i) the matrix [ ] is positive definite, 

(ii) the matrices 

C2 Ce 
Ce C4 

a(2a+a-x) 
6<r2 

2a+<rx 
^t 

2fc(g+g?) 
and 

2g+g? 

2b 

2b 

2b; 

aa 

are positive semi-definite. 
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Indeed, the sum of a positive definite and a positive semi-definite square matrix is 
positive definite, the Kronecker product of positive semi-definite matrices is positive 
semi-definite and the Kronecker product of positive definite matrices is positive 
definite (as a consequence of the fact that the eigenvalues of the Kronecker product 
of two square matrices are the product of the eigenvalues of the two square matrices 
in question including multiplicities). The positive semi-definiteness of the matrices 

a(2a+<7
2

) 

6(7
 2 

2a+<r? 

2 a+a? 

2f>(a+o-f) 
„ „ 2 

and 
2a+a? 

2b 

2b 

2b-

aa 

readily follows, since °(2°+'tI ) > Q, 2 a + ° l > Q, and the determinant of the matrices TJJ 
in question are 2 a + f i > o and 
matrices 

26 > 0, respectively. Next, we prove that the 

Cs 

C5 

c3 
and C2 

C4 

c4 
C6 

are positive semi-definite. Since P(Yo = Vo) = T we have E(e2 | To) = Cxyo + C2, 
E(rjf | T0) = Ceyo + C4, and E(e1?/i | To) = C5y0 + Co P-almost surely, hence 

E(e2)E(r,2) - (E(elVl))2 

= (CXC3 - C2)y2 + (CXC4 + C2C3 - 2C5C6)y0 + C2C4 - C2. 

Clearly, by Cauchy-Schwarz's inequality, 

E ( £ 2 ) E ( 7 ? 2 ) - ( E M 1 ) } 2 ^ 0 , 

hence, by setting an arbitrary initial value Yo = yo € R+, we obtain CXC3 — C2 ^ 0 
and C2C4 - ^ 0. Thus, both matrices § ] and ] are positive semi-
definite, since Ci > 0 and C2 > 0. Now we turn to check that ] is positive 
definite. Since C\ > 0, this is equivalent to showing that C1C3 — C\ > 0. Recalling 
the definition of the constants, we have 

Cx 
e — 1 

v! Av' 
Jo 

C3 = fi2a\ f1 f f
 e

-b(u'+v>-
w
>)

 d y / d v
,
 d u

> _ 

Jo Jo Jo nu' pi 

e~bu' dv' dv! + / e~bu'du' 
Jo 

= b~3 (2e_i>/32<T2(sinhi) — b) + 26/3Qaxa2{(l + b)e~b - 1) + 62ct|(1 - e~b)) , 
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C5 = -ßa2 f1 [U e - ^ ' - ^ W d u ' + a^ge-
Jo Jo 

= b'2trie"6 ( - e - f c M ( l + (b~ l )e b ) + ga2b2), 

thus we have 

C1C3 — C2 

= b~~4e~2bo2(2b(2 + b2)Pgaxa2 + 2(p2a^ - 2b/3ga1a2 + b2al) cosh b-

— (2 + b2)P2a2 — b2(2 + b2g2)a2). 

Consequently, using that cosh b = Tpy. > 1 + T and ^hat 

ß2al - 2bßgala2 + b2a22 = (ßax - bga2)2 + fc2(l - g2)aj > 0 , 

we have 

C1C3 — c f 

> f r V 2 6 ^ ( A b p g a x a 2 + 2b3Pgaxa2 + 2/32a\ + b2p2a\ - Abpgaxa2-

- 2b3Pgcr1o2 + 2b2al + 64ct^ - 2/32a\ - b2p2a2x - 2b2a\ - b4g2aj) 

= b-4e-2bo2(b4(l-g2)o%)>0. 

With this our proof is finished. 

So far we have obtained the limit distribution of the CLSE of the transformed 
parameters (c, d, 7, <5). A natural estimator of (a, b, a, 0) can be obtained from (3.2) 
using relation (3.3) detailed as follows. Calculating the integrals in (3.3) in the 
subcritical case, let us introduce the function g: R2 + x l 2 - > R + + x (0,1) x R2, 

ab - 1 ( l — e - 6 ) ~c 
e~~b d 

a — aßb~2(e~b — 1 + 6) 7 
—ßb~(l — e_ f >) .<3. 

g(a, b, a, ß) := 

Note that g is bijective having inverse 

(a,b,a,ß) G M-+ (3-15) 

g 1(c,d,7,<3) = 

r 1 'a 
— logd b 

a 

ß. 

(c, d, 7 , <5) G R-f+ x (0,1) x R 2 . (3.16) 



336 M . B A R C Z Y , G . P A P and T . T . S Z A B Ô 

Indeed, for all (c, d, 7 , 6) e R + + x (0,1) x R2, we have 

a = 7 + aßb-2(e~b - 1 + 6) = 7 + ( - c ) -

. d — 1 — log d 

log d l Q g d)-2{d_1_ lQg d) 

d 1 — d 

= 7 — cd-
(1 -d)2 

Under the conditions of Theorem 3.2 the CLSE (c£LSE, d£LSE, 7 ^ L S E « L S E ) of 
(c, d, 7 ,8) is strongly consistent, hence (c£LSE, d^L S E ,7°L S E ,d^L S E ) in the subcrit-
ical case falls into the set R + + x (0,1) x R2 for sufficiently large n € N with 
probability one. Hence, in the subcritical case, one can introduce a natural estima-
tor of (a,b,a,/3) based on discrete time observations (17, by applying 
the inverse of g to the CLSE of (c,d, 7,8), i.e., 

(an,bn,an,ßn) := ,d! 

for sufficiently large n G N with probability one. 

-1/-CLSE JCLSE ftCLSE jrCLSE rULSEN 1 °n / (3.17) 

Remark 3.3. We would like to stress the point that the estimator of (a, b, a, /?) 
introduced in (3.17) exists only for sufficiently large n G N with probability of 1. 
However, as all our results are asymptotic, this will not cause a problem. From the 
considerations before this remark, we obtain 

( i n , bn, Ocn, ßn) 
n 

argmin V [(Y, - dY^ - c)2 + (Xt - X,^ - 7 - ¿17_i)2] 
(a,6,o,/3)€R|+xR2 i = 1 

(3.18) 

for sufficiently large n G N with probability one. We call attention to the fact 
that (an,bn,an, ßn) does not necessarily provide a CLSE of (a,b,a,ß), since in 
(3.18) one takes the infimum only on the set R+ + x R2 instead of R4. Formula 
(3.18) serves as a motivation for calling (an,bn,an, ßn) essentially conditional least 
squares estimator in the Abstract. 

Theorem 3.4. Under the conditions of Theorem 3.2 the sequence (an,bn, an,ßn), 
n G N, is strongly consistent and asymptotically normal, i.e., 

(dn,bn,an,ßn) (a,b,a,ß) as n 00, 

and 

y/n 

an - a 
bn~b 
an - a 

ßn~ß 

• A74 (0, J E J T ) as n 00, 
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where E £ 2x2 is a symmetric, positive definite matrix given in (3.14) and 

J := 

' log d 
1—d 
0 

X log d+l—d 
0 (1 -d)2 

logd-l+d-
c (1 -d) 2 

_ 1 
d 

„ r 2 log d-d+d-
C 0 (1 — d)3 

A logd-l+d~' 
0 (1 — d) 2 

0 
0 

logd+l-d 
C (1 — d)2 

log d 
1 — d 

with c, d and 5 given in (3.3). 

Proof. The strong consistency of (an, bn, an,0n), n £ N, follows from the strong 
consistency of the CLSE of (c,d,g,5) proved in Theorem 3.2 using also that the 
inverse function g~x given in (3.16) is continuous on R + + x (0,1) x R2. For the 
second part of the theorem we use Theorem 3.2, and the so-called delta method 
(see, e.g., Theorem 11.2.14 in Lehmann and Romano [13]). Indeed, one can extend 
the function g"1 to be defined on R4 not only on R + + x (0,1) x R2 (e.g., let it 
be zero on the complement of R++ x (0,1) x R2), (an, bn, an, 0n) takes the form 
given in (3.17) with this extension of g~l as well, and the Jacobian of at 
(c, d, 7, S) £ R++ x (0,1) x R2 is clearly J. 

Acknowledgments. We are undoubtedly grateful to the referee for pointing out 
mistakes in the proof of Theorem 3.2, and also for his/her several valuable comments 
that have led to an improvement of the manuscript. 
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