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Nonlinear Symbolic Transformations for Simplifying
Optimization Problems*

Elvira Antaltt and Tibor Csendes!

Abstract

The theory of nonlinear optimization traditionally studies numeric com-
putations. However, increasing attention is being paid to involve computer
algebra into mathematical programming. One can identify two possibilities
of applying symbolic techniques in this field. Computer algebra can help the
modeling phase by producing alternate mathematical models via symbolic
transformations. The present paper concentrates on this direction. On the
other hand, modern nonlinear solvers use more and more information about
the structure of the problem through the optimization process leading to hy-
brid symbolic-numeric nonlinear solvers.

This paper presents a new implementation of a symbolic simplification al-
gorithm for unconstrained nonlinear optimization problems. The program can
automatically recognize helpful transformations of the mathematical model
and detect implicit redundancy in the objective function.

We report computational results obtained for standard global optimization
test problems and for other artificially constructed instances. Our results
show that a heuristic (multistart) numerical solver takes advantage of the
automatically produced transformations.

New theoretical results will also be presented, which help the underlying
method to achieve more complicated transformations.

Keywords: nonlinear optimization, reformulation, Mathematica

1 Introduction

Application of symbolic techniques to rewrite or solve optimization problems are
a promising and emerging field of mathematical programming. Symbolic prepro-
cessing of linear programming problems [11] is the classic example, this kind of
transformation was implemented in the AMPL processor about twenty years ago
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as an automatic “presolving” mechanism [7, 8]. A more recent example is the assis-
tance of (mixed-) integer nonlinear programming solvers, as in the Reformulation-
Optimization Software Engine of Liberti et al. [10]. In this field, the relaxation of
some constraints or increasing the dimension of the problem could be reasonable
to achieve feasibility.

However, as the work of Csendes and Rapcsék [5, 14] shows, it is also possible to
produce equivalent models of an unconstrained nonlinear optimization problem via
symbolic transformations automatically, while bijective transformations between
the optima of the models are constructed. This method is capable of eliminating
redundant variables or simplifying the problem in other ways.

The present paper is organized as follows. Section 2 summarizes briefly the
results of Csendes and Rapcsdk [5, 14] and presents a new, proper Mathemat-
ica implementation of their method together with a comparison with the earlier
reported Maple prototype [2]. Section 3 presents computational results to show
that the automatically produced transformations can help a traditional heuristic
numeric solver, namely Global [4], to reduce computation times and function eval-
uations. Section 4 extends the theory of the mentioned method in two directions:
describes parallel substitutions and introduces constraints into the model.

2 The Simplifier Method
2.1 Theoretical Background

We concentrate on unconstrained nonlinear optimization problems of the form

Iin - f(z), (1)
where f(z) : R® — R is a smooth function given by a formula, i.e. a symbolic
expression. “Expression” denotes a well-formed, finite combination of symbols
(constants, variables, operators, function names and brackets), usually realized in
computer algebra systems with a list (for example, a nested list of pointers in
Mathematica [20]), or a directed acyclic graph [15]. In the subsequent description,
vectors are denoted by boldface letters, sets by capital letters, and functions by
small letters. The meaning of z; depends on context: it denotes the i** element of
a vector z or an ordered set Z. We will use the function notation v(z) to represent a
v expression, which can contain any variable z;, any real constant, and any function
name.

The simplifier method aims to recognize, whether (1) could be transformed into
an equivalent formulation, which is better in the following senses: the new formu-
lation has fewer arithmetic operations to execute during evaluation, the dimension
of the problem is less, or it is simpler to solve for another reason. Equivalent means
here, that a bijective transformation can be given between the optima of the original
and those of the transformed problem.

Csendes and Rapcsék [5] showed that an objective function g(y) is equivalent
to f(z) in (1), if we get g(y) by the following transformation:
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e apply a substitution in f(x):
yi=h(z), 1<i<n,

where h(x) is a smooth function with a range R, and h(x) is strictly monotonic
as a function of at least one variable z;,

e rename the remaining variables:

and
e omit the variables y; without presence in the evolving objective function.

The term appropriate substitution will refer to an y; = h(x) substitution, where

o h(zx) satisfies the criteria being smooth, monotonic in at least one variable
x;, and its range is equal to R,

e h(z) covers (characterizes all occurrences of) at least one variable z;, that is,
xz; could be removed totally from the optimization problem by substituting
h(z) by y;, and

e y; = h(z) is not a simple renaming, that is, h(z) £ z;, i =1,...,n

After applying a transformation with an appropriate substitution y; = h(x), y
has at most the same dimension as . Redundant variables can be eliminated, if
h(x) covers two or more variables. In other words, we have the possibility to recog-
nize whether the model can be formalized with a smaller set of variables. However,
these are sufficient, but not necessary conditions for simplifier transformations.

For example, consider f(z1,z2) = (z1 + 22)%. It is equivalent to minimize
g(y1) = y2, and the optimal values of the original variables z1 and z» can be set
by the symbolic equation y; = 1 + z2, which is an appropriate substitution. In
- fact, we can handle an infinite number of global optimum points in this way, which
is impossible for any numerical solver.

One of the main goals of the simplifier method is to find appropriate substitu-
tions which would eliminate variables. Csendes and Rapcsak [5] with their Assertion
2 suggest to compute the partial derivatives 8f(x)/0z;, factorize them, and search
for appropriate substitutions in the factors.

Assertion 2 [5]. If the variables x; and x; appear everywhere in the expression of
a smooth function f(x) in a term h(x), then the partial derivatives 8f(x)/0z; and
Of(x)/0x; can be factorized in the forms (8h(x)/dz;) p(x) and (Oh(x)/dz;) q(x),
respectively, and p(xz) = g(x).

If 8f(x)/0x; cannot be factorized, then any appropriate substitution that is
monotonic as a function of z; is linear as a function of z;.
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For illustrative purposes, let us consider the following problem:

in 30 - 1+az) 420 -
;Iélﬁg 0-(5z, +e }+20- z3,

s.t. In(5z; 4 ' ¥*2) + 23 > 5.

This example can be a tiny part of a process synthesis problem. Automatic model
generator tools in the field of process synthesis produce several types of multiplicity
and redundancy [6]. Among other redundancies, it is possible for some variables
denoting chemical elements to appear exclusively in the chemical formula of a given
material. In our example, z; and z, appear everywhere in the term h(z) = 5z, +
el*®2. For the sake of simplicity, the constraint can be reformulated by adding a
penalty term [9] to the objective, so we need to minimize

f(x) =30 (521 +€'T™*) + 20 - 23 + o (In(5z1 + ' 72) + 23 — 5 — x4)2 ,

where 3, %, z3 are real variables based on physical parameters, o is a penalty con-
stant and x4 is a slack variable. Due to Assertion 2, df(x)/dz1 can be transformed
into the form (8h(x)/0z1) - p(x), similarly 8f(x)/0z2 = (Bh(x)/Oz2) - g(x), while
p(x) = g(x). In our example dh(z)/0z; =5, Oh(x)/Oz2 = el7*2, and

(7521 + 15€1*%2 + o (In(5z1 + €' +%2) + 3 — 5 — z4))

2
p(@) = o(2) = P

Based on the above result, we created a computer program to produce equiva-
lent transformations automatically for the simplification of unconstrained nonlinear
optimization problems. The naive implementation would realize the following steps:

1. Compute the gradient of the objective function.
2. Factorize the partial derivatives.
3. Collect appropriate substitutions which contain z;, into a list [;:

a) Initialize I; to be the empty set.

b) If the factorization was successful for 0f(x)/dz;, then extend [; with the
respective integrals of the factors.

¢) Extend l; with the subexpressions of f(x) that are linear in z;.

d) Drop the elements of {; which do not fulfill the conditions of an appro-
priate substitution (the elements of /; need to be monotonic in z;).

4. Create a list S by applying all proper combinations of the appropriate sub-
stitutions from L = |Jl;, i =1,...,nto f(x).

5. Choose the least complex element of S to be the simplified objective function.

6. Solve the problem with the simplified objective function (if possible).
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7. Give the solution of the original problem by executing inverse transformations.

Most of the required steps of the algorithm (partial differentiation, factorization,
symbolic integration and substitution) are realized in modern computer algebra
systems as reliable symbolic computation methods. On the other hand, our first
implementation in Maple showed that even one of the market-leader computer
algebra systems has serious deficiency to our requirements in point of substitution
capability and interval arithmetic with infinite intervals [2].

Actually, the exact range calculation for a nonlinear function has the same com-
plexity as computing the global minimum and maximum. However, naive interval
inclusion can be applied to verify whether the range of a subexpression is equal to R.
Naive interval inclusion is exact for a single use expression (SUE, an expression that
contains any variable at most once), but it might produce overestimation for more
complex expressions [12]. The possible overestimation can lead to false-positive
answers in the range calculation. In other words, L can contain some substitutions
with a range which is not equal to R. It means that an additional verification for
the range of the produced non-SUE substitutions would be required. On the other
hand, most of the substitutions produced in our tests were SUEs. As an alternative,
real quantifier elimination [17, 19] would be an applicable symbolic technique for
range calculation.

Naive interval inclusion can also be used for the monotonicity test. A real
function f : R® — R is monotone if any &,y € R" such that & < y satisfy
f(x) € f(y). Let us use the product order here: (z1,...,Z5) < (Y1,...-,yn) if
z; <y, t = 1,...,n. In the discussed application we need to test whether a
function h;(x) is strictly monotonic as a function of a variable z;. Therefore we
compute, whether the naive interval inclusion of the partial derivative dh;(x)/dz;
contains zero. This approach fits the mathematical definition of monotonicity and
is expressive, as a strictly monotone function has a single region of attraction. Un-
fortunately, overestimation of the naive interval inclusion for non-SUEs can produce
false-negative answers in the monotonicity test, so even some monotonic substitu-
tions can be dropped.

Step 3 and Step 4 can be combined to speed up the process and also to ensure
that a proper substitution set is applied to f(z). We call a well ordered set H of
appropriate substitutions proper if all the formulas h;(x) € H can be substituted
by new variables at the same time in a function f(z). That is, the expressions
Vh;(x) € H do not overlap in the computation tree of f{x). Without this property,
not all substitutions y; = hy(x), h;(x) € H could be applied. For example, in
f(z) = (z1 + z2 + 73)?, the substitutions y; = z; + x3 and y2 = 3 + z3 would
be also appropriate, but H = {x; + 22,22 + =3} is not a proper substitution set
because z; + z3 and z2 + z3 both refer to the same occurrence of z;. In fact, we
prefer to choose the most complex h(z) formula to eliminate a variable, so in this
example, the substitution y3 = z; + x2 + z3 should be accepted. At this point, and
in Step 5, an easily applicable complexity definition for expressions is needed. In
our implementation, an expression is said to be more complex than an other one if
its representation (a list of pointers in Mathematica) is longer.
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2.2 Implementation in Mathematica

Compared to our first implementation in the computer algebra system Maple [2],
the new platform Mathematica has several advantages. First of all, the substitution
procedures are much better, since the Mathematica programming language is based
on term-rewriting. In other words, the capabilities of the basic substitution routine
of Mathematica can be extended with regular expression based term-rewriting rules.
We have written a specialized substitution routine in about 50 program lines. A
dozen (delayed) rules are introduced, and we have combined four different ways
for evaluating them, using the expanded, simplified, and also the factorized form
of the formula. It is probably the most important part of the program, as simple
refinements could have substantial influence on the result quality of the whole
simplification process.

Mathematica has also better interval arithmetic implementation: this was cru-
cial for quick and reliable range calculation on the expressions to be substituted.
Naive interval inclusion for the enclosure of the ranges have been reahzed with the
standard range arithmetic of Mathematica.

Furthermore, our new program supports the enumeration of all poss1b1e sub-
stitutions in Step 3, and it still keeps up in running time with the simpler Maple
version, which has used simple heuristics to choose one possible substitution. The
reasons for that are the application of adequate programming techniques, and some
nice properties of the Mathematica system, such as automatic parallelization on list
operations. However, a further study on an efficient substitution selection strategy
would be welcome.

Let us mention that Mathematica tends to include more and more expert tools
to ensure the possibility of writing efficient program code. For example, it has pro-
vided utilities to exploit the parallel computing abilities of the graphics processing
unit (GPU) using CUDA or OpenCL technology since 2010.

Demonstration of the presented algorithm and our newest program codes will
be available at the following homepage:

http://www.inf .u-szeged.hu/~csendes/symbsimp/

2.3 Improvements Compared to the Maple Version

Some simple examples follow to demonstrate the advantages of our new Mathemat-
ica program compared to the Maple version.

These examples were generated by us and were the problematic ones out of
our self-made collection in the test phase of the Maple implementation, so it was
obvious to use them to test the new program. See Table 1 for the Maple-based
results and Table 2 for the results obtained by the Mathematica version. For the
test cases not discussed, the two implementations gave the same output.

Remark, that the renaming convention of Csendes and Rapcsdk [5] is slightly
modified in the following tables. Simple renaming (y; := z;) is not applied in the
hope that more elaborated substitutions are emphasized in this way.


http://www.inf.u-szeged.hu/-csendes/symbsimp/
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Table 1: Results of some synthetic tests solved by our old, Maple based implemen-

tation
1D Function f Function g Substitutions Problem  Result
type type

Sin2 2z3 2y Y1 = T3 3
-sin(2zy + z2) -sin(2z1 + z2)

Expl esrtTe eyt Yy =T, + T A 1

Exp2 2e¥1+22 2 Yy = e¥rte A 3

Sql x372 none none D 2

Sq2 (z122 + 23)2 y2 Y1 = T1To+ 23 A 1

SqCosl  (z1z2 +z3)2  y2 — cos(y1) Y1 = T122, A 1,3
— cos(z1Z2) Ys = Y1 + T3

SqExp2 (z) + z2)? Y2 + 2elew Y1 =T + Tg A 1
+2€1621 +x2

SqExp3  (z1 + z2)? none none A 2
+2eltT1tw2

Table 2: Results of some synthetic tests solved by our new, Mathematica based

implementation
ID Function f Function ¢ Substitutions Problem  Result
: type type
Sin2 2z3 2z3sin(y;) Y1 = 211 + 2o A 1
. sin(2:c1 + $2)
Expl es1tee eyt Y1 =T + T2 A 1
Exp2 2eT1te2 2eY1 Y1 = T1 + To A 1
Sql z372 none none D 2
Sq2 (z172 + 73)2 y? Y1 = T1Z2+2T3 A 1
SqCosl  (z1Z2 + 73)? y? —cos(z1T2) Y1 = T1T2+T3 A 1
— cos(z112)
SqExp2  (z1 + 22)? yi + 2ettyr Y1 =T1 + T2 A 1
+2elem1te2
SqExp3  (z; + 12)2 y? 4 2eltw Y1 = T1 + T A 1

+261+11+12
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We apply again the evaluation codes from [2], which describe the quality of the
results and the nature of the problem. These codes appear in the “Problem type”
and “Result type” columns of Tables 1 and 2. The letters characterize the actual
problem: '
(A). Simplifying transformations are possible according to the presented theory.

(B). Simplifying transformations could be possible by extension of the presented
theory.

(C). Some helpful transformations could be possible by extension of the presented
theory, but they do not necessarily simplify the problem (e.g., since they
increase dimensionality).

(D). We do not expect any helpful transformation.

The results are described by the second indicator: our program produced
1. proper substitutions,

2. no substitutions, or

3. incorrect substitutions.

As we had discussed earlier [2], Maple provides incorrect interval arithmetic, so we
needed to use heuristics in the Maple implementation for range calculation. Also
the algebraic substitution capabilities of Maple are weak. Almost all mistakes of
the early implementation originated from these two reasons.

Code “2” is also used when only constant multipliers are eliminated.

In short, A1 means that proper substitution is possible and it has been found by
the algorithm, while D2 means that as far as we know, no substitution is possible,
and this was the conclusion of the program as well. The unsuccessful cases are
those denoted by other codes. ’

The differences between the obtained results are explained next. For the Sin2
test problem, a proper simplification was obtained by the new implementation,
while the old one conveyed a more complex, but non-monotonic substitution.

In Ezp2, e*11%2 does not have a range equal to R, but the heuristic range
calculation method used in Maple recognized it as an appropriate substitution.
The range calculation subroutine in Mathematica proved to be better in this case.

In Sq1, the Maple implementation was not able to recognize the subexpression
z1Z2 in the expression :v%:v%, but was able to recognize ziz2 + z3 in its square
in S¢2. Since the second is not a multiplication type expression but a sum, it is
represented in a different way. In Mathematica, regular expressions can be used to
produce good substitutions, and our specialized substitution routine worked well
for this problem. On the other hand, z1x> is not monotone as a function of z; or
x5 for the whole search interval (supposed to be R), so it cannot be chosen as an
appropriate substitution.

Also for the SqCos! test problem, the new, Mathematica-based method applied
a routine to check whether the substitution expression is monotone, so y; = z1z2
was eliminated from the substitution list.
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In the cases SgExp2-3, also the weakness of the expression matching capability

of Maple can be observed, as it was not able to recognize x1 + x5 in el*1+%2_ only
in ele®1#e2,

2.4 Computational Test Results on Global Optimization
Problems

Standard and frequently used global optimization test problems were used to study
the capabilities and limitations of the symbolic simplification algorithm. The test
set was extended in comparison to our earlier paper [2]. The description and even
various implementations of the examined problems can be found in several resources
and omnline collections. For example, the compact mathematical formulation and
known optima of all of the mentioned problems can be found in Appendix A at
Pal {13]. Our computational results are summarized in Table 3.

ID Dim. New variables Substitutions FProblem Result Tra.r?sform.
type type time
BR 2 y = [z1,31] y1 =x2 . A 1 0.1092
—6 + (5/m)x1
—0.129185z2
Easom 2 y==z none D 2 0.1404
G5 5 y=a none D 2 2.7456
G7 7 y==x none D 2 36.5821
GP 2 y==x none D 2 0.4212
H3 3 y=x none D 2 16.3488
H6 6 Stopped Stopped. D 2 1800 <
L1 1 y==z none D 2 0.0312
L2 1 y=cx none D 2 0.6552
L3 2 y==z none D 2 2.3088
L5 2 y==x none D 2 15.3348
-L8 3 y=[v1,¥2,¥3] wi= A 1 13.1820
(w1 —1)/4,
Y2 =
(z2 - 1)/47
y3 = (z3—1)/4
L9 4 y= Y1 = A 1 174.7047
[y1:y2:y3:y4] (iEl - 1)/47
Y2 =
(zz —1)/4,
Y3 =
(1‘3 - 1)/4:
ya = (za—1)/4
L10 5 Stopped. Stopped. A 1 1800 <
L11 8 Stopped. Stopped. A 1 1800 <
L12 10 Stopped. Stopped. A 2 1800 <
L13 2 y=x none D 2 0.4992
L14 3 y==x none D 2 0.7800
L15 4 y= none D 2 1.0296
L16 5 y=x none D 2 2.0904
L18 7 y== none D 2 32.1517
Sch21
(Beale) 2 y=x none C 2 0.1248

Sch214
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(Powell) 4 y==x none D 2 0.0936

Sch218

(Matyas) 2 y=x none D 2 0.0156

Sch227 2 y==x none D 2 0.0624

Sch25

(Booth) 2 y==x none C 2 0.0312

Sch31l 3 y=zx none D 2 0.0468

Sch3l 5 y==x none D 2 0.0936

Sch32 2 v = [y1, 92} y1 =71 — 13, A 1 0.0468
y2 =z2 —1

Sch32 3 y=x none D 2 0.0312

Sch37 5 y==x none D 2 0.0936

Sch37 10 y==x none D 2 0.2808

SHCB 2 y==x none D 2 0.0156

THCB 2 y==x none D 2 0.0156

Rastrigin 2 y= none C 2 0.0936

RB 2 y = [y1,y2] Y1 = Z% -2, A 1 0.0440
y2=1-—m

RB5 5 y = [z1, 72, = :cg -5 A 1 0.3080

z3,Z4,%1)

S5 4 y=x none D 2 225.5018

S7 4 y=a none D 2 1,010.2431

S10 4 Stopped. Stopped. D 2 1800 <

R4 2 y==x none C 2 0.2964

R5 3 y=[z1,%2,92] v =3+z3, A 1 13.8216
yz = (7/4)y1

R6 5 y = [£1, 72, y1 =3+ 25, A 2 995.6883

z3,Z4,Y2) y2 = (m/4y1
R7 7 Stopped. Stopped. A 2 1800 <
R8 9 Stopped. Stopped. A 2 1800 <

Table 3: Results for the standard global optimization test functions

In the common cases, most of our new results are identical to what we have
.obtained with the earlier, Maple-based implementation. The two differences are
reported here. For the Schwefel-227 test problem, the Maple version gave the
substitution y; = x? + z3 — 2z,. This expression characterizes all occurrences of
Zo, but it is not monotonic in any variable, so the Mathematica version had not
suggested it for substitution. For Schwefel-32 (n=2), Mathematica found a good
substitution, while Maple did not.

All transformations were performed with Mathematica 9.0 under time con-
straints. In those cases, in which the complete simplifier program had not stopped
in 1800 seconds, the message “Stopped.” was written to the New variables and
Substitutions columns and “1800 <” to the Transformation time column of Ta-
ble 3. The numerical tests ran on a computer with an Intel i5-3470 processor, 8
GB RAM and 64-bit operating system.

Most of the running time was used by the symbolic formula transformations of
the extended substitution routine. In the problematic cases, usually symbolic fac-
torization consumed 1800 seconds. While every transformation in Table 2 finished
in less than 0.2 seconds, the running time for the standard test cases vary more.
24 of 45 test cases ran in one second, further 10 analysis required less than one
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minute, but 7 test cases would require more than a half hour to finish.

Altogether, 45 well-known global optimization test problems were examined,
and our Mathematica program offered equivalent transformations for 8 cases. In
other words, our method suggested some simplification for 18% of this extended
standard global optimization test set. The next section presents numerical results
to demonstrate that these transformations could be useful for a global optimization
solver.

3 On the Advantages of the Transformations

This section presents numerical test results to verify the usefulness of the trans-
formations of Tables 2 and 3. We compare the results of a numerical global opti-
mization solver for the minimization of the original and the transformed problem
forms, for every cases of Tables 2 and 3 where our algorithm produced an equiv-
alent transformation. The numerical indicators, as reached global optima values,
running times, and function evaluation numbers are presented in Tables 4, 5, and 6.
Boldface denotes the better options of related numbers.

Table 4: Optimal function values found by Global

Original problem Transformed problem
ID Fbest Fmean . Fvar Fbest Fmean Fvar
Expl 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
Exp2 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
Sq2 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

SqCosl | —1.0000 —-0.7671 0.1899 | —1.0000 -0.9922 0.0700
SqExp2 3.0000 3.0000 0.0000 3.0000 3.0000  0.0000
SqExp3 3.0000 3.0000 0.0000 3.0000 3.0000  0.0000
CosExp | —2.0000 -1.6166 0.4397 | —2.0000 —1.5896 0.2781

BR 0.3979 0.3979 0.0000 0.3979 0.3979  0.0000
L8 0.0000 2.1386 5.6861 0.0000 2.2651  6.8558
L9 0.0000 2.4410 8.7591 0.0000  2.3897 10.1134
RB 0.0000 19.7318 1094.1167 0.0000 0.0000 0.0000
RB5 0.0000 1.8510 3.8703 0.0000 1.8400 3.8677
R5 0.0000 1.9017 26.3097 | '0.0000 0.0000 0.0000
R6 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

Sch3.2 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
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Table 5: Number of function evaluations of Global

Original problem Transformed problem
1D NumEvalmean NumEvalvar | NumEvalmean NumEvalvar
Expl 87 2,280 51 188
Exp2 102 2,489 55 327
Sq2 478 57,927 52 38
SqCosl 1467 463, 242 1,131 279,915
SqExp2 155 4,903 61 142
SqExp3 151 5, 282 61 142
CosExp 1,110 1,805,418 631 154,691
BR 136 1,504 115 769
L8 785 266, 138 797 242,593
L9 2,606 1,838,627 2,371 1,343,151
RB 749 71,762 127 976
RB5 3,162 693,878 2,634 709, 652
R5 1,908 1, 644, 365 2,957 581,382
R6 6,001 223,269 6,069 269, 551
Sch3.2 119 1,290 59 121

Table 6: Running times of Global (seconds)

Original problem | Transformed problem
1D Tmean Tvar | Tmean Tvar
Expl 0.0289 0.0004 | 0.0113 0.0000
Exp2 0.0346 0.0005 | 0.0124 0.0000
Sq2 0.0919 0.0029 | 0.0072 0.0000
SqCosl 0.1822  0.0083 | 0.1406 0.0047
SqExp2 | 0.0270  0.0002 { 0.0088 0.0000
SqExp3 | 0.0264 0.0002 | 0.0088 0.0000
CosExp | 0.2139 0.0429 | 0.1623 0.0134
BR 0.0241 0.0001 | 0.0195 0.0000
L8 0.0992 0.0046 | 0.0990 0.0040
L9 0.2771  0.0220 | 0.2445 0.0150
RB 0.0857 0.0009 | 0.0241 0.0001
RB5 0.2705 0.0050 | 0.2089 0.0045
R5 0.2407 0.0286 | 0.4567 0.0159
R6 0.7830 0.0136 | 0.7785 0.0047
Sch3.2 0.0187 0.0001 | 0.0116 0.0000
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We performed 100 independent runs for every test cases, with the Matlab im-
plementation of a general multi-start solver with a quasi-Newton type local search
method, Global with the BFGS local search [4]. The tests were run on the same
computer, which was described in Subsection 2.4, with 64-bit MATLAB R2011b.
The parameters of Global were set to the defaults.

The solver needs an initial search interval for every variable, so we set the
[—100, 100] interval as initial box of every variable in our self-made test cases (Ta-
ble 2), and the usual boxes for the standard problems (see for example Appendix
A in [13]). In the transformed cases, the bounds were transformed appropriately.

Table 4 shows the optimal function values reached by Global with the above
mentioned parameters. Fbest denotes the minimal optimum value, Fmean is the
mean of the reached optimum values in average of the 100 runs, and Fuvar denotes
the variance of the reached minimum values. The real global optimum values were
reached in every independent run for both of the original and the transformed forms
in 8 of 15 cases. In the cases RB and RS, only the transformed form helped the
solver to reach the minimum value in all 100 runs. Totally in 5 of 15 cases, the
transformed form was easier to solve with Global, the two forms were equivalently
difficult to solve in 8 cases, but in 2 cases the original form was slightly more
favorable.

Let us compare the number of function evaluations required by the solver in a
run (Table 5). NumFuvalmean refers to the mean of the number of function evalu-
ations, and NumFuvalvar refers to the variance of the same indicator. The trans-
formed problem needed fewer function evaluations in 12 of 15 cases, and in some
cases it outperformed the original form very well. For example, Global needs only
17% of the original function evaluations for finding the optimum of the Rosenbrock
problem in the transformed form, 80% of the original with the transformed Branin,
and 11% of the original function evaluations with the transformed Sq2 problem.
The original form of L8 and R6 was slightly better for the solver in terms of func-
tion evaluations, and at L8 also in founding minimum values. The original form
of R5 needed fewer function evaluations, but did not enable the solver to find the
global optima in every run, while the transformed form did.

Regarding running times (Table 6), the transformed problem form allows Global
to run a bit quicker than on the original problem form in almost every case. The
average relative improvement in the running times of the whole test set is 31.5%.
However, this indicator is better for our self-made problems (56.9%) and worse for
the standard problems (9.3%).

We can conclude that the equivalent transformations of Table 2 and Table 3,
which seem to be very simple, have a big influence on the performance of a tradi-
tional global optimization solver.
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4 Theoretical Extension

We generalize the theoretical results of the papers of Csendes and Rapcsék [5,
14] to allow parallel substitutions and to cover constrained nonlinear optimization
problems.

Let us start with an example for parallel substitutions. Consider the following
objective function:

f(:cl,a;g,xg) = (Zl + 29 + $3)2 + (1‘1 -2z — 31’3)2.

It is equivalent to minimize g(y;,y2) = y? +¥2, which is a two-dimensional problem
against the original three-dimensional one. Neither y; = 1 + z2 + 3 nor ¥y, =
1 — 2x9 — 3z3 is appropriate in the earlier meaning, as they are smooth and
monotonic in every variable, but none of the variables are covered by y; or ye.
However, y; together with y, characterizes all occurrences of x;,z2, and x3, and
H = {z1+4z2+x3,21—222—323} is a proper set of substitutions, resulting dimension
reduction of the aforementioned problem. The theoretical extension aims to handle
this kind of parallel substitutions.

The original nonlinear optimization problem that will be simplified automati-
cally now can include constraints, too:

min  f(x)
ci(x) =0 (2)
cj(z) <0,

where f(z), ci(x),cj(x) : R* — R are smooth real functions, given by a formula,
andi=1,...,p; and j=p; +1,...,p; are integer indexes.
The transformed constrained optimization problem will be

min - g(y)
di(y) =0 : 3
d;j(y) <0,

where g(y) : R™ — R is the transformed form of f(x), and di(y),d;(y) : R™ - R
are again smooth real functions, the transformations of the constraints ¢;(x), ¢;(x),
i=1,...,;ppand j=p1+1,...,p2.

Denote by X the set of variable symbols in the objective function f(z) and in
the constraint functions cx(x), k = 1,...,ps. Y will be the set of variable symbols in
the transformed functions g(y), and dx(y), k = 1,...,p2. Remark, that dimension
increase is not allowed for the transformation steps, so m < n and |Y| < [X|. At
the beginning of the algorithm, ¥ := X.

Denote the set of the expressions on the left-hand side of the original constraints
by C:

C:={ck(z):R*" >R, k=1,...,p}.
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Denote by F the expression set of all subexpressions (all well-formed expressions
that are part of the original expressions) of f(x) and ¢x(x) € C.

The crucial part of our algorithm is the transformation step. If an H C F
expression set covers a V' C X variable set (that is, none of v € V happens out of
H in the original expression of f(zx) or ex(x) € C), and |H| < |V, then apply every
substitutions, related to H, to f(x) and C as follows. Substitute a new variable y; in
place of h;(x) for all h;(x) € H in f(z) and also in every cx(z) € C. Furthermore,
let us update the variable set of the transformed problem: Y := (Y Uy;) \ V.

This will be referred to as a transformation step (corresponding to H). The
special case |H| = |[V| =1, p1 = p2 = 0 belongs to the algorithm given by Csendes
and Rapcsék [5] for the unconstrained case.

Further on, the notation y := H(xz) will be used as an abbreviation for the
following: y; := hi(x), i=1,...,|H].

The following assertion is a straightforward generalization of Assertionl in [5].

Assertion 1. If a variable x; appears in exactly one term, namely in h(z), ev-
erywhere in the expressions of the smooth functions f(x) and cp(x), k= 1,...,ps,
then the partial derivatives of these functions related to x; all can be written in the
form (Oh(x)/0x;)p(x), where p(x) is continuously differentiable.

Recall, that an ordered set H of substitutions is called proper, if all expressions
h;(x) € H are such that they can be substituted by new variables at the same time.
Ordering is required only for univocal indexing of the substitutions.

Theorem 1. If H is proper and all hi(x) € H ezpressions are smooth and strictly
monotonic as a function of every variable v € V. C X, the cardinality of H 1is
less than or equal to the cardinality of V, and the domain of hi(x) is equal to R
for all hi(x) € H, then the transformation step corresponding to H simplifies the
original problem in such o way that every local minimizer (mazimizer) point =* of
the original problem is transformed to a local minimizer (mazimizer) point y* of
the transformed problem.

Proof. Consider first the sets of feasibility for the two problems. ‘The substitution
equations ensure that if a point & was feasible for the problem (2), then it remains
feasible after the transformations for the new, simplified problem (3). The same is
true for infeasible points.

Denote now a local minimizer point of f(z) by @*, and let y* := H(z*) be the
transformed form of *. As each h;(z) € H is strictly monotonic in at least one
variable, all points from the a = N(x*,d) neighborhood of z* will be transformed
into a b= N(y*, ) neighborhood of y*, and Vz; ¢ a : y; ¢ b. Both the objective
functions f(x) and ¢g(y), and the old and transformed constraint functions have the
same value before and after the transformation. This fact ensures that each local
minimizer point &* will be transformed into a local minimizer point y* of g(y).
The same is true for local maximizer points, by similar reasoning.

Additionally, |H| < |V, so the construction of the transformation step ensures
that the application of every substitution of H eliminates at least as many z;



730 Elvira Antal and Tibor Csendes

variables from the optimization model as the number of the new variables in every
iteration. O

In contrast to Theorem 1, which gives sufficient conditions to have such a sim-
plification transformation that will bring local minimizer points of the old problem
to local minimizer points of the new one, the following theorem provides sufficient
conditions to have a one-to-one mapping of the minimizer points.

Theorem 2. If H is proper, and all h;(z) € H expressions are smooth, strictly
monotonic as a function of every variable ve V C X, the cardinality of H is less
than or equal to the cardinality of V., and the domain and range of h;(x) are equal to
R for all hy(z) € H, then the transformation step corresponding to H simplifies the
original problem in such a way that every local minimizer (mazimizer) point y* of
the transformed problem can be transformed back to a local minimizer (mazimizer)
point £* of the original problem.

Proof. Since the substitution equations preserve the values of the constraint func-
tions, each point y of the feasible set of the transformed problem (3) must be
mapped from a feasible point = of the original problem (2): y = H(x). The same
holds for infeasible points.

Denote a local minimizer point of (3) by y*. Now, since the ranges of the
transformation functions in H are equal to R, every local minimizer point y* of the
transformed problem (3) is necessarily a result of a transformation: let * be the
back-transformed point: y* = H(xz*). Consider a neighborhood N(y*,d) of y*,
where every feasible point y has a greater or equal function value: g(y) > g(y*),
and those feasible points x of (2), for which H(x) = y € N(y*,§). The latter set
may be infinite if the simplification transformation decreases the dimensionality of
the optimization problem. Anyway, there is a suitable neighborhood N{z*,§’) of
z* inside this set, for which the relation f(z) > f(x*) holds for all z € N(z*,¢’)
that satisfies the constraints of (2). In other words, * is a local minimum point of
(2).

The argument for local maximizers is similar. ]

Corollary 1 is an immediate consequence of Theorem 1:

Corollary 1. If H is proper, all the h;(x) € H ezpressions are smooth and invert-
ible as a function of every variable v € V C X, and the cardinality of H is less than
or equal to the cardinality of V, then the transformation step corresponding to H
simplifies the original problem in such a way that every local optimum point x* of
the original problem is transformed to a local optimum point y* of the transformed
problem.

5 Summary

This paper examines the possibility and ability of implementing equivalent trans-
formations for nonlinear optimization problems as an automatic presolving phase
of numerical global optimization methods.
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An extensive computational test has been completed on standard global op-
timization test problems and on other often used global optimization test func-
tions together with some custom made problems designed especially to test the
capabilities of symbolic simplification algorithms. Maple and Mathematica based
implementations were compared.

The test results show that most of the simplifiable cases were recognized by our
new, Mathematica-based algorithm, and the substitutions were correct. Tests with
a numerical solver, namely Global, were performed to check the usefulness of the
produced transformations. The results show that the produced substitutions can
improve the performance of this multi-start solver.

We have presented some new theoretical results on automatic symbolic transfor-
mations to simplify constrained nonlinear optimization problems. However, further
investigations would be necessary to build an efficient branch and bound strategy
into the algorithm at Step 3-4 to realize good running times for the described
parallel substitutions.

As a natural extension of the present application, symbolic reformulations are
promising for speeding up interval methods of global optimization. The overesti-
mation sizes for interval arithmetic {1] based inclusion functions were investigated
in optimization models [18]. Symbolic transformations seem to be appropriate for
a proper reformulation. Obvious improvement possibilities in this field are the
use of the square function instead of the usual multiplication (where it is suitable),
the transformation along the subdistributivity law, and finding SUE forms. In fact,
such transformations usually are performed by the default expression simplification
mechanism [16] of an ordinary computer algebra system. The domain of calcula-
tion has an important role in this presolve approach, since important features of
functions such as monotonicity change substantially within the domain where a
function is defined.
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Abstract

In this paper we consider the structure and topology of a layered-security
model in which the containers and their nestings are given in the form of a
rooted tree T. A cyber-security model is an ordered three-tuple M = (T, C, P)
where C and P are multisets of penetration costs for the containers and target-
acquisition values for the prizes that are located within the containers, respec-
tively, both of the same cardinality as the set of the non-root vertices of T
The problem that we study is to assign the penetration costs to the edges
and the target-acquisition values to the vertices of the tree T in such a way
that minimizes the total prize that an attacker can acquire given a limited
budget. The attacker breaks into containers starting at the root of 7" and once
a vertex has been broken into, its children can be broken into by paying the
associated penetration costs. The attacker must deduct the corresponding
penetration cost from the budget, as each new container is broken into. For a
given assignment of costs and target values we obtain a security system. We
show that in general it is not possible to develop an optimal security system
for a given cyber-security model M. We define P- and C-models where the
penetration costs and prizes, respectively, all have unit value. We show that
if T is a rooted tree such that any P- or C-model M = (T,C, P) has an
optimal security system, then T is one of the following types: (i) a rooted
path, (ii) a rooted star, (iii) a rooted 3-caterpillar, or (iv) a rooted 4-spider.
Conversely, if T is one of these four types of trees, then we show that any P-
or C-model M = (T, C, P) does have an optimal security system. Finally, we
study a duality between P- and C-models that allows us to translate results
for P-models into corresponding results for C-models and vice versa. The re-
sults obtained give us some mathematical insights into how layered-security
defenses should be organized.
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1 Introduction

According to [6], the global cyber-security market cost in 2017 is expected to top
120 billion US dollars. This site also reports that there are 18 victims of a cyber
crime every single second! Other sources report similarly alarming and worsening
statistics. There is agreement that the number of cyber attacks is increasing rapidly,
and the consequences of such attacks are greater than ever on economics, national
security, and personal data. Threats come from nation states with advanced cyber
warfare commands, nation states having less technical capabilities but intent on
doing harm, ideologically motivated groups of hackers or extremists, profit-seeking
criminals, and others. As a result, quite a bit of work has been done where cyber-
security systems, or more generally layered computer systems, are modeled as a
fixed weighted trees. For example, in [1, 3, 4, 8, 10, 12] the authors consider finding
weight-constrained, mazrimum-density subtrees and similar structures given a fixed
weighting of a tree as part of the input. In these cases weights are specified on both
vertices and edges. There has also been some research on network fortification and
problems related to that topic. For example, in [13] stochastic linear programming
games are studied and it is demonstrated how these can, among other things,
model certain network fortifications. In [14] the problem of network interdiction is
studied — how to minimize the maximum amount of flow an adversary/enemy can
push through a given network from a source s to a sink t. There each edge/arc is
provided with a fixed integer capacity and an integer resource (required to delete
the edge/arc). This is a variation of the classical Max-Flow-Min-Cut Theorem.
Although interesting in their own way, neither of these papers or related papers
that we have found in the literature address directly what we study in this paper.
To build secure systems requires first principles of security. “In other words, we
need a science of cyber-security that puts the construction of secure systems onto a
firm foundation by giving developers a body of laws for predicting the consequences
of design and implementation choices” [11]. To this end, Schneider called for more
models and abstractions to study cyber security [11]. This paper is a step in that
direction. We hope that others will build on this work to develop even better and
more realistic models, overcome the shortcomings of our model, as well as develop
additional foundational results. ‘

Building on the work done in [3], in this paper we study a layered-security
model and strategies for assigning penetration costs and target-acquisition values
SO as to minimize the amount of damage an attacker can do to a system. That is,
we examine security systems. The approach we take here is to assign weights to
the vertices and edges of a tree in order to build a cyber defense that minimizes the
amount of prize an attacker can accumulate given a limited budget. To the best
of our knowledge this approach is new in that the usual approach is to consider a
particular weighted tree as input. In [3] the following question was posed: Can one
mathematically prove that the intuition of storing high-value targets deeper in the
system and having higher penetration costs on the outer-most layers of the system
results in the best or at least good security? In this paper we answer this question
and obtain more general and specific results. We define three types of security
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systems: improved, good, and optimal. We show that not all cyber-security models
admit optimal security systems, but prove that paths and stars do. We define and
study P- and C-models where all penetration costs, or all prizes, are set to one,
respectively. We classify the types of trees that have optimal security systems for
both P- and C-models. We then discuss a duality between P- and C-models, which
provides a dictionary to translate results for P-models into corresponding results
for C-models, and vice versa.

The outline of this article is as follows. In Section 2 we present the rationale
for our layered-security model. In Section 3 we define the framework for security
systems and present the definitions of improved, good, and optimal security sys-
tems, and state some related observations and examples. In Section 4 we explore
optimal security systems and prove that they do not always exist, but they exist
if and only if the underlying tree T of the given security system is either a path
rooted at a leaf, or a star rooted at its center vertex. In Section 5 we define P- and
C-models and show that any cyber-security model M = (T, C, P) is equivalent to
both a P-model M’ and a C-model M”. We further show that if T' is a rooted tree
such that any P- or C-model M has an optimal security system, then T is one of the -
following four types: (i) a rooted path, (ii) a rooted star, (iii) a rooted 3-caterpillar,
or (iv) a rooted 4-spider. In Section 6 we prove that if T is one of the four types
of rooted trees mentioned above, then any P-model does indeed have an optimal
security system. In Section 7 we define a duality between equivalence classes of
P-models and equivalence classes of C-models that serves as a dictionary allowing
us to obtain equivalent results for C-models from those of the P-models that were
obtained in Section 6. In particular, we obtain Theorem 7.2 that completely classi-
fies which P- and which C-models have optimal security systems. Conclusions and
open problems are discussed in Section 8.

2 Rationale for Our Layered-Security Model

In defining our layered-security model to study defensive cyber security, we need to
strike a balance between simplicity and utility. If the model is too simple, it will not
be useful to provide insight into real situations; if the model is too complex, it will
be too cumbersome to apply, and we may get bogged down in too many details. The
model described in this paper is a step toward gaining a better understanding of a
broad range of security systems in a graph-theoretical setting for a layered-security
model.

Many systems contain layered security or what is commonly referred to as
defense-in-depth, where valuable assets are hidden behind many different layers
or secured in numerous ways. For example, a host-based defense might layer secu-
rity by using tools such as signature-based vendor anti-virus software, host-based
systems security, host-based intrusion-prevention systems, host-based firewalls, en-
cryption, and restriction policies, whereas a network-based defense might provide
defense-in-depth by using items such as web proxies, intrusion-prevention systems,
firewalls, router-access control lists, encryption, and filters [9]. To break into such
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a system and steal a valuable asset requires that several levels of security be pen-
etrated, and, of course, there is an associated cost to break into each level, for
example, money spent, time used, or the punishment served for getting caught.

Our model focuses on the layered aspect of security and is intended to capture
the notion that there is a cost associated with penetrating each additional level
of a system and that attackers have finite resources to utilize in a cyber attack.
Defenders have the ability to secure targets using defense mechanisms of various
strengths and to secure targets in desired locations and levels. We assume that
the structure where targets will be stored, that is, the container nestings; is given
as part of the input in the form of a rooted tree. In this way we can study all
possible structures at a single time, as they can be captured in the definition of
our problems. This methodology is as opposed to having the defender actually
construct a separate defense structure for each input.

For any specific instance of a problem, a defender of a system will obviously
consider the exact details of that system and design a layered-security approach
to fit one’s actual system. Similarly, a traveling salesman will be concerned about
constructing a tour of his particular cities, not a tour of any arbitrary set of cities
with any arbitrary set of costs between pairs of cities. Nevertheless, researchers
have found it extremely helpful to consider a general framework in which to study
the TRAVELING SALESMAN PROBLEM. And, in studying the general problem,
insights have been gained into all instances of the problem. Thus, we believe it
is worthwhile to consider having a fixed structure as part of our input, and this
approach is not significantly different from that used in complexity theory to study
problems (5, 7].

In this paper we focus on a static defense. We pose as an open problem the
question of how to create a defense and an attack strategy if the defender is allowed
to move targets around dynamically or redistribute a portion of a prize. We also
consider the total prize as the sum of the individual values of the targets collected
although one could imagine using other or more complex functions of the target
values to quantify the damage done by an attacker. Our defensive posture is formed
by assigning to the edges and wvertices of the rooted tree in question the input-
provided penetration costs and target-acquisition values, respectively. We formalize
the model, the notion of a security system, and the concept of a system attack in
the next section.

3 Cyber-Security Model and Security Systems

Let N = {1,2,3,...}, @ be the rational numbers, and Q, be the non-negative
rational numbers.

Definition 3.1. A cyber-security model (CSM) M is given by a three-tuple M =
(T,C, P), where T is a directed tree rooted at v having n € N non-root vertices, C
s a multiset of penetration costs ¢1,...,¢, € Q4, and P is a multiset of target-
acquisition-values (or prizes for short) p1,...,pn € Q4.
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Remark. As mentioned right after Observation5.1, strictly speaking, we could
have stated the above definition using the set N of natural numbers instead of non-
negative rationals Q4 for possible penetrations costs and prizes. We do, however,
prefer the most general definition we can discuss.

Throughout V(T) = {r,ui,...,u,}, where r is the designated root that indi-
cates the start of a system attack, and E(T) = {ey, ..., e,} denotes the set of edges
of T, where our labeling is such that u; is always the head of the edge e;. The
prize at the root is set to 0. The penetration costs model the expense for breaking
through a layer of security, and the target-acquisition-values model the amount of
prize one acquires for breaking through a given layer and exposing a target. The
penetration costs will be weights that are assigned to edges in the tree, and the
target-acquisition-values, or the prizes, are weights that will be assigned to vertices
in the tree.

Sometimes we do not distinguish a target from its acquisition value or prize,
nor a container, which is a layer of security, from its penetration cost. Note that
one can think of each edge in the rooted tree as another container, and as one
goes down a path in the tree, as penetrating additional layers of security. We can
assume that the number of containers and targets is the same. Since if we have
a container housing another container (and nothing else}, we can just look at this
“double” container as a single container of penetration cost equal to the sum of the
two nested ones. Also, if a container includes many prizes, we can just lump them
all into a single prize, which is the sum of them all.

Recall that in a rooted tree T, each non-root vertex u € V(T') has exactly one
parent, and that we assume the edges of T are directed naturally away from the
root r in such a way that each non-root vertex has an in-degree of one. The root
is located at level 0 of the tree. Level 1 of the tree consists of the children of the
root, and, in general, level i of the tree consists of the children of those vertices at
level ¢ — 1 for ¢ > 1. We next present some key definitions about a CSM that will
allow us to study questions about security systems.

Definition 3.2. A security system (SS) with respect to a cyber-security model
M = (T,C, P) is given by two bijections ¢ : E(T) — C andp : V(T)\ {r} = P.
We denote the security system by (T, c,p).

A system attack (SA) in a security system (T, c,p) is given by a subtree T of T
that contains the root r of T.

e The cost of a system attack T with respect to a security system (T,c,p) is

defined by
cst(7,¢,p) = Z c(e).
e€E(T)

o The prize of a system attack T with respect to a security system (T,c,p) is

defined by
pr(r,e,p) = D pu).
ueV(r)
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e For a given budget B € Q4 the mazimum prize pr*(B,c,p) with respect to
B is defined by

pr*(B,¢,p) ==
max{pr(r, c,p) : for all system attacks T C T, where cst(r,c,p) < B}.

A system attack T whose prize is a mazimum with respect to a given budget
is called an optimal attack.

The bijection ¢ in Definition 3.2 specifies how difficult it is to break into the
various containers, and the bijection p specifies the prize associated with a given
container. Note that for any SS (T, ¢, p) we have cst(r,¢,p) =0 < B € Q4. When
T = ({r}, ), then pr*(B,¢,p) = 0 for any B € Q1. When two bijections are given
specifying a SS, we call the resulting weighted tree a configuration of the CSM. Any
configuration represents a defensive posture and hence the name security system.
Note that the CSM can be used to model any general security system and not just
cyber-security systems. We are interested in configurations that make it difficult
for an attacker to accumulate a large prize. It is natural to ask if a given defensive
stance can be improved. Next we introduce the notion of an improved security
system that will help us to address this question.

Definition 3.3. Given a CSM M = (T,C,P) and a SS (T,¢,p), an improved
security system (improved SS) with respect to (T, ¢,p) is a SS (T,c/,p’) such that
for any budget B € Q4 we have pr*(B,c,p) < pr*(B,¢,p), and there exists some
budget B’ € Q4 such that pr*(B’,c',p’) < pr*(B’,c,p).

Definition 3.3 captures the idea of a better placement of prizes and/or penetra-
tion costs so that an attacker cannot do as much damage. That is, in an improved
SS one can never acquire a larger overall maximum prize with respect to any bud-
get B; and furthermore, there must be at least one particular budget where the
attacker actually does worse. Notice that there can be an improved SS (T, ¢, p’),
where for some budget B € Q,, there is a SA 7 whose cost is less than or equal to
B for both SSs such that pr(7,¢’,p’) > pr(r,¢,p). In this case an attacker obtains
a larger prize in the improved SS; and, of course, this situation is undesirable and
means a weaker defense against this specific attack. We, however, are interested
in improved SSs with respect to a given budget rather than a particular SA. Since
we have exactly n penetration costs and n prizes to assign, it is difficult to imagine
an improved SS for all but the most-restricted trees in which all SAs would be
improved in the sense just described. Next, we formalize the notion of an optimal
security system.

Definition 3.4. Let M = (T, C, P) be a given CSM. (i) For a budget B € Qy, a
SS (T,c,p) is optimal w.r.t. B if there is no other SS (T,c,p") for M such that
pr*(B,c,p’) < pr*(B,¢,p). (ii) (T, c,p) is optimal if it is optimal w.r.t. any budget
BeQ,.

Notice that an optimal SS is not necessarily the best possible. We could define
a critically optimal security system to be one where for every single SA the SS was
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at least as good as all others and for at least one better. And, in a different context,
these SSs might be interesting. However, in light of Theorem 4.1 in the following
section, which shows that even an optimal SS may not exist for a given CSM, we do
not pursue critically optimal SSs further in this paper. By Definitions 3.3 and 3.4
we clearly have the following.

Observation 3.1. A S5 (T,¢,p) for a CSM M = (T, C, P) is optimal if and only
if no improved SS for (T, c,p) exists.

We next introduce the concept of two closely-related configurations of a CSM,
and this notion will give us a way to relate SSs.

Definition 3.5. Given a CSM M = (T, C, P}, the two configurations (T, c,p), and
(T,c,p') are said to be neighbors if

1. there ezists an edge (u,v) € E(T) such that

p(v) = pu)
p'(w) = p()
p'(w) = p(w), otherwise, or

2. there ezist two edges (u,v), (v,w) € E(T) such that

((w,v)) = c((v,w))
d((v,w)) = c((v,v))
d((z,y)) = c(z,y)), otherwise.

The notion of neighboring configurations will be useful in developing algorithms
for finding good security systems, which we define next.

Definition 3.6. A good security system (good SS) is a SS (T, ¢,p) such that no
neighboring configuration results in an improved security system.

Given a SS (T,c¢,p) for a CSM M, a natural question to pose is whether a
local change to the SS can be made in order to strengthen the SS, that is, make
the resulting SS improved. In a practical setting one may not be able to redo the
security of an entire system, but instead may be able to make local changes.

Suppose (u,v) € E(T) where p{u) > p(v), and let p’ be the prize assignment
obtained from p by swapping the prizes on v and v, that is p'(u) = p(v), p'(v) =
p(u), and p'(w) = p(w) otherwise. If now 7 is any SA, then pr(7,¢,p') = pr(r, ¢, p) if
either both u,v € V(1) or neither v nor v are vertices of 7, or pr(r, ¢,p’) < pr(r, ¢, p)
if u € V(r) and v € V(7). In either case pr(7,¢,p’) < pr(r,¢,p) and therefore we
have for any budget B that

pr*(B,c,p') < pr*(B, ¢, p). (1)

Similarly, if (u,v), (v,w) € E(T) where ¢((u,v)) < ¢((v,w)), let ¢ be the cost

assignment obtained from ¢ by swapping the costs on the incident edges (u,v) and
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(v, w) and leave all the other edge-costs unchanged, that is ¢/((u,v)) = ¢((v, w)),
d((v,w)) = c((u,v)) and (e) = c(e) otherwise. If 7 is a SA, then clearly we
always have pr(r,c,p) = pr(r,¢,p). Also, if either both (u,v), (v,w) € E(7) or
neither (u,v) nor (v, w) are edges in 7, then cst(r, ¢/, p) = cst(r, ¢, p), and if (u,v) €
E(7) and (v,w) € E(7), then cst(r,c,p) > cst(r,¢,p). In either case we have
cst{r,c’,p) > cst(r,c,p). Hence, if B is any budget, then by mere definition we
have that

pr*(B,d,p) < pr*(B, ¢, p). (2)
By (1) and (2) we have the following proposition.

Proposition 3.1. Let M = (T,C, P) be a CSM. A SS given by (T, c,p) is a good
SS if for all (u,v),(v,w) € E we have c((u,v)) > c((v,w)) and for all non-root
vertices u,v € V(T') with (u,v) € E(T) we have p(u) < p(v).

Note that Proposition 3.1 says that on any root to leaf path in T" the penetration
costs occur in decreasing order and the prizes occur in increasing order.

From any configuration resulting from a SS (T ¢, p) for a CSM, Proposition 3.1
gives a natural O(n?) algorithm for computing a good SS by repeatedly moving to
improved neighboring configurations until no more such neighboring configurations
exist. We can do better than this method by first sorting the values in C and P
using O(nlogn) time, and then conducting a breath-first search of T in O(n) time.
We can then use the breath-first search level numbers to define bijections ¢ and p
that meet the conditions of a good SS. We summarize in the following.

Observation 3.2. Given a CSM M = (T,C, P), there is an O(nlogn) algorithm
for computing a good SS for M.

If we could eliminate the sorting step, we would have a more efficient algorithm
for obtaining a good SS, or if we restricted ourselves to inputs that could be sorted
in O(n) time. Also, notice that a good SS has the heap property, if we ignore the
root. However, in our case we cannot “choose” the shape of the heap, but we must
use the structure that is given to us as part of our input.

Suppose that our SS (T,¢,p) for M satisfies a strict inequality p(u) > p(v)
for some (u,v) € E(T), or that ¢((u,v)) < c¢((v,w)) for some incident edges
(u,v), (v,w) € E(T). A natural question is whether the prize and cost assign-
ments p’ and ¢’ as in (1) and (2) will result in an improved SS as in Definition 3.3.
In Example 3.1 we will see that that is not the case.

CONVENTION: Let T,(£) denote the rooted tree whose underlying graph is a
path on 2¢ + 1 vertices V(Tp(€)) = {r,u1,...,u2¢} and directed edges

E(T(0)) = {(r,w1), (1, u2), (u1, uz), (u2,us), . . ., (u2e—3, u2e—1), (uge—~2, u2¢)}

rooted at its center vertex. We label the edges by the same index as their heads:
e1 = (r,u1), e2 = (r,u2),-.., €2e—1 = (U2e-3,u2¢-1), and ez¢ = (uge—2,u2e), see
Figure 1.

Example 3.1.
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Let (Tp(3), c,p) be a 8S for a CSM M where

0(61,62,63,64,65,66) = (17151:17172)7
p(u17u27u3au4au5)u6) = (10)2a 10737 10740)7

where the penetration costs and the prizes have been simultaneously assigned in
the obvious way. We see that for any budget B € Q, we have

10| B] for 0 < B < 4,
pr*(B,c,p)=¢ 10|B]+5 ford<B<T,
75 for 7 < B.

If now p’(u1,us,us,uq,us,us) = (10,3,10,2,10,40) is the prize assignment ob-
tained from p by swapping the prizes on the neighboring vertices us and u4, and
c(e1, e2,€3,e4,65,65) = (1,1,1,2,1,1) be the edge-cost assignment obtained from
¢ be swapping the costs of the incident edges e4 and eg, then

pr*(B,c,p’) = pr*(B,d,p) = pr*(B,¢,p),

for any non-negative budget B € Q., showing that locally swapping either prize as-
signments on adjacent vertices, or edge-costs on incident edges, does not necessarily
improve the SS.

In Theorem 4.1 in Section 4, we show that there are CSMs for which no optimal
SS exists. In such cases obtaining a locally optimal SS, as defined in Definition 3.6,
may provide us with a reasonable defensive posture.

4 Optimal Security Systems

One of the most natural and important questions to consider for a given CSM M is
whether an optimal SS exists and if it does, what it would look like. Unfortunately,
Theorem 4.1 shows that there are small and simple CSMs for which no optimal
SS exists. Still we would like to know for what CSMs optimal SSs do exist, and,
if possible, have a way to find these optimal SSs efficiently. Corollary 4.1 and
Theorem 4.2 show that optimal SSs exist for CSMs M = (7, C, P) when T is a
path or a star, respectively. These theorems also yield O(nlogn) algorithms for
producing optimal SSs in these cases. But, these results are not satisfying, as they
are limited. In Sections 5, 6, and 7 we study P- and C-models and completely
characterize the types of trees that have optimal SSs.

We begin with a lemma showing that all optimal SSs must have the highest
penetration costs assigned to the edges involving the root and level-one vertices.

Lemma 4.1. Let M = (T, C, P) be a CSM, where T rooted at r contains at least
one non-root verter. Let V4 C T(V) denote the level-one vertices of T, and let Cr,
be the multiset of the largest {Vi| values in C. If an optimal (T,c,p) SS for M,
exists, then c(e) € Cr, for e € {(r,v) |v € V1 }.
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Proof. Suppose we have an optimal SS (T, ¢, p) that does not meet the conditions
of the lemma. Let ¢; ¢ Cp be the smallest penetration cost assigned by ¢ to an
edge between the root r and a vertex v, € V;, that is, ¢((r,vs)) = ¢5s < ¢((r,v)) for
all v € Vi — {v,}. Let es = (r,v5) and let ¢ be an edge not between the root and
a level-one vertex where c(e;) € Cr. We know that such an edge exists because
(T, ¢, p) does not meet the conditions of the lemma. To show that (T, ¢, p) cannot be
an optimal S8, we define a SS (T, ¢/, p) by letting ¢/(es) = c(er), /(&) = c(es), and
c(e) = c(e) otherwise. Notice that for the budget B = c,, we have pr*(B,¢,p) =
p(vs) > 0 =pr*(B,c,p). This fact contradicts that (T,c¢,p) is an optimal SS. O

If an optimal SS exists, Lemma 4.1 tells us something about its form. In the
next theorem we show that there are CSMs for which no optimal SS exists.

Theorem 4.1. There is a CSM M = (T,C, P) for which no optimal security
system ezists.

Proof. Consider M = (T,{1,2,3},{1,2,3}), Where T is the tree given by V(T') =
{r,u1,u2,u3} and E(T) = {e1, ez, e3} where e; = (r,u1), e2 = (r,u2), and e3 =
(u1,us). By Lemma 4.1 we know that an optimal SS (T, ¢,p) has ¢(e3) = 1, and
we can further assume that p(usz) = 3. By considering the budget of B = 2, we
can also assume the prize of the head of the edge of cost 2 to by 1. Therefore, we
have only two possible optimal SSs for M: (T, ¢, p) with c(e1, e2,e3) = (3,2,1) and
p(u1, uz,u3) = (2,1,3), or (T, ¢, p') with /(e1, e2,e3) = (2,3,1) and p’ (u1, uz,uz) =
(1,2,3), see Figure 2. Since pr*(3,¢,p) = 2 and pr*(3,c,p’) = 4, we see that
(T, ¢, p") is not optimal, and since pr*(4, ¢,p) = 5 and pr*(4,¢’,p’) = 4, we see that
(T, c,p) is not optimal either. Hence, no optimal SS for M exists. O

Although Theorem 4.1 showed that there are CSMs for which no optimal SS
exists, we are interested in finding out for which trees T optimal SSs do exist. We
should point out that the values of the weights in C and P also play an important
role in whether or not an optimal SS exists for a given tree. In the next theorem
we show that an optimal SS exists for CSMs in which the tree in the model is a
path; and this result is independent of the values of the weights in C and P.

Consider a CSM M = (T,C, M) where T is a path rooted at a leaf, so

V(T) = {uo,u1,..-,un}, E(T)={e1,..-,en}, (3)

where up = 7 and e; = (ui_1,u;), for each i € {1,...,n}. For a SS (T,¢,p) for M,
then for convenience let p; = p(u;) and ¢; = ¢(e;) for each i. If we have p; < p;4q
and ¢; > ¢4 for each ¢ € {1,...,n — 1} (so the prizes are ordered increasingly
and the edge-costs decreasingly as we go down the path from the root), then by
Proposition 3.1 the SS (T, ¢,p) is a good SS as in Definition 3.6. But, we can say
slightly more here when T is a path, in terms of obtaining an improved SS as in
Definition 3.3.

Lemma 4.2. Let M = (T,C, M) be a CSM where T is a path with its vertices and
edges labeled as in (3).
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Figure 1: T,(3) is a path on seven vertices rooted at its center.

(T’ G p) (T7 clapl)

Figure 2: Only two possible SSs for M = (T, {1, 2,3}, {1,2,3}).
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(i) If (T, ¢c,p) is a SS for M and there is an ¢ with p; > piy1 and ¢ip1 > 0, then
the SS (T, ¢,p’) where p’' is obtained by swapping the prizes on u; and u;41 s an
improved SS.

(it) If (T,c,p) is a SS for M and there is an ¢ with ¢; < c¢iy1, then the SS

(T,c',p) where ¢’ is obtained by swapping the edges costs on e; and e;y1 is an
improved SS.
Proof. By Proposition 3.1 we only need to show (i) there is a budget B’ such
that pr*(B’,c,p') < pr*(B’,c,p) and (ii) a budget B” such that pr*(B”,c,p) <
pr*(B”,c,p). For each j let 7; = Tley,...,e;] be the rooted sub-path of T that
contains the first j edges of T

For B’ =¢; + - -+ + ¢; we clearly have

pI‘*(BI,C, p,) = pr(Tiacapl)
= p1+-F+Ppi-1 + P
p1+---+Di
= pr(T’ia C,p)
= pr(B’,¢cp),

A

showing that (T, ¢,p’) is an improved SS for M.
Likewise, we have
pI‘* (B/a clap) = PT(Ti—-l, Cl7p)
= p+--tpia
P+t
= pr(T’h c, p)
= pr*(B';¢c,p),

showing that (T, ¢, p) is also an improved SS for M. 0

A\

Given any SS (T, ¢, p) for M asin Lemma 4.2 when T is a rooted path, by bubble
sorting the prizes and the edge costs increasingly and decreasingly respectively, as
we go down the path T from the root, we obtain by Lemma 4.2 a SS (T, ¢/, p’) such
that for any budget B we have pr*(B,c’,p’) < pr*(B,c,p). We therefore have the
following corollary.

Corollary 4.1. If M = (T,C,M) is a CSM where T is a rooted path with its
vertices and edges labeled as in (3), then there is an optimal SS for M, and it is
given by assigning the penetration costs to the edges and the prizes to the vertices
in a decreasing order and increasing order respectively from the root.

We now show that an optimal SS exists for M = (T,C, P) when T is a star.
Let T be a star with root r and non-root vertices w1, ...,n, and edges e; = (r,u;)
for i = 1,...,n. Suppose the costs and prizes are given by C = {¢3,...,¢,} and
P = {p1,...,pn}. When considering an arbitrary security system (T, c,p) where
c(u;) = ¢; and p(e;) = p; for each i, we can without loss of generality assume the
edge-costs to be in an increasing order ¢; <--- < ¢p.
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Lemma 4.3. Suppose T is a star and (T,c,p) is a SS as above. If p’ is another
prize assignment obtained from p by swapping the prizes p; and p; where i < j and
pi < pj, then for any budget B we have pr*(B,c,p) < pr*(B,c,p’).

Proof. Let B be a given budget and 7 C T an optimal attack with respect to p, so
pr(r,¢,p) = pr*(B,c,p). We consider the following cases.

CAske ONE: If both of u; and u; are in 7, or neither of them are, then we haef
pr*(B,¢,p) = pr(r,¢,p) = pr(r,¢,p') < pr*(B,c,p').

Case two: If u; € V(7) and u; ¢ V(7), then pr*(B,c,p) = pr(r,¢,p) <
pr(Ta c, p) —Di +p] = pI‘(T, c, pl) S pI‘*(B, c, pl)

Case THREE: If u; € V(1) and u; € V(r), then 7/ = (7 — u;) U u; is a rooted
subtree of T with ¢(7’) = ¢(7) — ¢; + ¢; < B and is therefore within the budget B.
Hence: pr*(B7 C,p) = pI‘(’T, C,p) = pr(TI’ &) pl) < pr*(B,c,p’).

Therefore, in all cases we have pr*(p, ¢, B) < pr*(p/, ¢, B). O

Since any permutation is a composition of transpositions, we have the following
theorem as a corollary.

Theorem 4.2. Let M = (T,C, P) be a CSM where T is a star Tooted at its center
vertex. Then there is an optimal SS for M, and it is given by assigning the prizes
to the vertices in the same increasing order as the costs are assigned increasingly
to the corresponding edges.

For rooted trees on n non-root vertices, Corollary 4.1 and Theorem 4.2 give rise
to natural sorting-based O(nlogn) algorithms for computing optimal SSs. Notice
that in an optimal SS in a general tree, the smallest prize overall must be assigned
to a level-one vertex u which has the largest penetration cost assigned to its corre-
sponding edge, (7, u), to the root. And, furthermore, we cannot say more than this
statement for arbitrary trees as the next assignment of a prize will depend on the
relative values of the penetration costs, prizes, and structure of the tree. In view
of the fact that optimal SSs do not exist, except for paths and stars as we will see
shortly in Observation 5.1, we turn our attention to restricted CSMs and classify
them with respect to optimal SSs.

5 Specific Security Systems, P-Models,
and C-Models

In this section we extend CSMs to include penetration costs and prizes of value
zero. For a CSM M = (T, C, P) with no optimal SS and a rooted super-tree T" of
which T is a rooted subtree, we can always assign the prize of zero to the nodes in
V(T \V(T) and likewise the penetration cost of zero to the edges in E(T1)\ E(T),
thereby obtaining a CSM M' = (T1,CT,Et) that also has no optimal SS. Note
that if T is the rooted tree in the proof of Theorem 4.1, then the only rooted trees
that do not have T as a rooted subtrees are paths rooted at one of their leaves or
stars rooted at their center vertices. Hence, by the example provided in the proof
of Theorem 4.1, we have the following observation.
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Observation 5.1. If T is a rooted tree, such that for any multisets C and P of
penetration costs and prizes, respectively, the CSM M = (T,C, P) has an optimal
SS, then T is either a path rooted at one of its leaves, or a star rooted at its center
vertez.

In light of Observation 5.1, we seek some natural restrictions on our CSM M
that will guarantee it having an optimal SS. Since both the penetration costs and
the prizes of M = (T, C, P) take values in Q. we can, by an appropriate scaling,
obtain an equivalent CSM where both the costs and prizes take values in NU {0},
that is, we may assume c(e) € NU {0} and p(u) € NU {0} for every e € E(T) and
u € V(T), respectively.

First, we consider the restriction on a CSM M = (T,C, P) where C consists
of a single penetration-cost value, that is, C = {1,1,...,1} consists of n copies
of the unit penetration cost one. From a realistic point of view, this assumption
seems to be reasonable; many computer networks consist of computers with similar
password/encryption security systems on each computer (that is, the penetration
cost is the same for all of the computers), whereas the computers might store data
of vastly distinct values (that is, the prizes are distinct).

CoONVENTION: In what follows, it will be convenient to denote the multiset
containing n (or an arbitrary number of) copies of 1 by I. In a similar way, we
will denote by 1 the map that maps each element of the appropriate domain to 1.
As the domain of 1 should be self-evident each time, there should be no ambiguity
about it each time.

Definition 5.1. A P-model is « CSM M = (T,I,P) where T has n non-root
vertices and where I is constant, consisting of n copies of the unit penetration cost.

Consider a SS (T, ¢,p) of a CSM M = (T, C, P). We can obtain an equivalent
SS (1V,1,p') of a P-model M’ = (T',I,P') in the following way: for each edge
e = (u,v) € E(T) with penetration cost ¢(e¢) = k € N and prizes p(u),p(v) € N of
its head and tail, respectively, replace the 1-path (u,e,v) with a directed path of
new vertices and edges (u, e1,u1, €2, Us, . . ., Uk—1, €k, v) Of length k. We extend the
penetration cost and prize functions by addmg zero-prize vertices Where needed,
that is, 1(f) = 1 for each f € E(T”), and we let

P’ (uv) = p(u), p'(v) =pv), and p'(w) = p'(u2) = --- = p'(ux_1) = 0.

In this way we obtain a SS (7”,c,p’) of a P-model M’ = (T",I, P’). We view the
vertices V(T') of positive prize as a subset of V(T”) (namely, those vertices of T”
with positive prize).!

Recall that T is a rooted contraction of T if T is obtained from T" by a sequence
of simple contractions of edges, and where any vertex contracted into the root
remains the root. This means precisely that T is a rooted minor of T’ [2, p. 54].

1Note that there are some redundant definitions on the prizes of the vertices when considering
incident edges, but the assignments do agree, as they have the same prize values as in T
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Proposition 5.1. Any SS (T,¢,p) of a CSM M = (T, C, P) is equivalent to a SS
(T",1,p) of a P-model M' = (T, 1, P') where (i) T is rooted minor of T’, and (ii)
p'(v) = p(u) for each uw € V(T) C V(T'), and p'(u) = 0, otherwise.

Proof. (Sketch) Given a budget B € Q, clearly any optimal attack 7 on a SS
(T, c,p) with pr(r, ¢, p) = pr*(B, c,p) has an equivalent attack 7’ on a SS (7", 1,p’)
of the same cost cst(7/,1,p’) = cst(7, ¢, p) and hence within the budget B, where 7/
is the smallest subtree of T' that contains all of the vertices of 7. By construction,
we also have that pr(v’,1,p") = pr(r,¢,p) = pr*(B,c,p) since all of the vertices
from 7 are in 7’ and have the same prize there, and the other vertices in 7/ have
prize zero. This shows that pr*(B,¢,p) < pr*(B,1,p).

Conversely, an optimal attack 7/ on (T7,1,p') with pr(+/,1,p') = pr*(B,1,p’)
yields an attack 7 on (T, ¢, p) by letting 7 be the subtree of T induced by the vertices
V() NV(T). In this way pr(r,c,p) = pr(7’,1,p') and cst(r,¢,p) < cst(r,1,p),
since some of the vertices of 7 might have zero prize, as they are not in . By
definition of pr*(-) we have that pr*(B,1,p’) < pr*(B,¢,p). Hence, the SS (T, ¢, p)
and (77,1,p') are equivalent. O

Secondly, and dually, we can restrict our attention to-the case where the multiset
of prizes P consists of a single unit prize value, so P =T = {1,1,...,1} consists of
n copies of the unit prize.

Definition 5.2. A C-model is a CSM M = (T,C,I), where T has n non-root
vertices and where I is constant, consisting of n copies of the unit prize.

As before, consider a SS (T, ¢,p) of a CSM M = (T,C,P). We can obtain
an equivalent SS (7”,c”,1) of a C-model M” = (T”,C",I) in the following way:
for each edge e = (u,v) € E(T) with penetration cost c(e) = k € N and prizes
p(u),p(v) € N of its head and tail, respectively, replace the 1-path (u,e,v) with a
directed path of new vertices and edges (u, e, u1, €1, U, ..., Ug—1,€x—1,v) of length
k. We extend the penetration cost and prize functions by adding zero-cost edges
where needed, that is, 1{w) = 1 for every w € V(T"), and we let

’(e) =c(e) and c"(e) =c"(ez) = -+ = "(ex—1) = 0.

In this way we obtain a SS (T",c”,1) of a C-model M" = (T",C",I), where the
multiset of prizes consists of a single unit prize value (ZueV(T)\ ) p(u) copies
of it). We also view the edges E(T) of positive penetration cost as a subset of
E(T") (namely, those edges of 7" with positive penetration cost). We also have
the following proposition that is dual to Proposition 5.1.

Proposition 5.2. Any SS (T,¢,p) of a CSM M = (T, C, P) is equivalent to a SS
(T",c",1) of a C-model M" = (T",C",I), where (i) T is rooted minor of T, and
(ii) ¢ (e) = c(e) for each e € E(T) C E(T"), and c”’(e) = 0, otherwise.

Proof. (Sketch) Suppose we are given a budget B € Q4 and an optimal attack 7 on
a SS (T, c, p) with pr(r, ¢,p) = pr*(B, ¢,p). Here (T",c”, 1) has an equivalent attack
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7/, where 7" is the largest subtree of T that contains all of the edges of 7 and no
other edges of T. Note that cst(r”,c”,1) = cst(r,¢,p) since all of the additional
edges of 7" that are not in V(7) have zero penetration cost, and so 7 is within the
budget B. Also, by construction we have pr(t”,¢”,1) = pr{r,c,p) = pr*(B, ¢, p)-
This result shows that pr*(B,c,p) < pr*(B,c”,1).

Conversely, consider an optimal attack 7/ on (T”,c"”,1) with pr(r”,c’,1) =
pr*(B,c”’,1). By the optimality of 7"/, every leaf of 7 is a tail of an edge of T, since
otherwise we can append that edge (of zero penetration cost), and thereby obtain
an attack with a prize strictly more than pr(7”,¢”, 1), a contradiction. The edges
E(r")N E(T) induce a subtree 7 of T of the same cost cst(7, ¢, p) = cst(v”, ", 1);
and moreover, 7" is, by its optimality, the largest subtree of 7" that contains
exactly all of the edges of 7, and so pr(7, ¢,p) = pr(7”,¢”,1) = pr*(B,c”,1). This
result shows that pr*(B,c”,1) < pr*(B,¢,p). This proves that the SS (T, ¢, p) and
(T",c",1) are equivalent. O

We now present some examples of both P- and C-models that will play a pivotal
role in our discussion to come.

Definition 5.3. Let T'(2) denote the rooted tree given as follows:

V(T(2) = {r,ui,u2,us, usgus},
E(T(2)) {(T7 ’U,1), (Ta u2)’ (u17u3)7 (u2’u4)’ (u2’ u5)}

Note that T(2) has all of its non-root vertices on two non-zero levels. Similarly, let
T(3) denote the rooted tree given as follows:

V(T3) = {r,ui,u2,u3us},
E(T(3)) = {(’I‘,ul),(T,u2),(u2,U3),(U3,'u,4)}.

Note that T(3) has oll of its vertices on three non-zero levels.

CONVENTION: For convenience we label the edges of both T(2) and T'(3) with
the same index as their heads (see Figures 3 and 4):

T(Q) e = (T,Ul), €2 = (T, Uz), €3 = (u17u3); €4 = (uz,u4), €5 = (uz,’us)-

T(3) e = (7', u1)7 €2 = (Tj u2)a €3 = (u17u3): €4 = (U3,U4).

Example 5.1.

Consider a P-model (with ¢ = 1) on the rooted tree T'(2), where the prize values
are given by P = {0,1,2,2,3}.

Prize Assignment (A): Consider the case where the prizes have been simultane-
ously assigned to the non-root vertices of 7°(2) by p{uy, ug, us, us, us) := (0,1, 3,2,2)
in the obvious way. We will use a similar shorthand notation later for the bijection
c. In this case we see that for budgets of B = 2,3, we have pr*(2,1,p) = 3 and
pr*(3,1,p) = 5, respectively.



The Structure and Topology of Rooted Weighted Trees ... 751

T(2)

Figure 3: T'(2) has all of its non-root vertices on two non-zero levels.

Figure 4: T(3) has all of its non-root vertices on three non-zero levels.
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Prize Assignment (B): Consider now the case where the prizes have been si-
multaneously assigned to the non-root vertices of T(2) by p'(ui,u2,us, us, us) :=
(1,0,3,2,2). In this case we see that for the same budgets of B = 2,3 as in (A),
we have pr*(2,1,p’) = 4 and pr*(3,1,p’) =4, respectively.

From these assignments we see that for budget B = 2, the SS in (A) is better
than the one in (B), and for B = 3, the SSin (B) is better than the one in (A).

Example 5.2.

Consider a P-model on the rooted tree T'(3), where the prize values are given by
P ={0,0,1,1}.

Prize Assignment (A): Consider the case where the prizes have been simulta-
neously assigned to the non-root vertices of T'(3) by p(u1,ug, us,us) :== (0,0,1,1).
In this case we see that for budgets of B = 1,3, we have pr*(1,1,p) = 0 and
pr*(3,1,p) = 2, respectively.

Prize Assignment (B): Consider now the case where the prizes have been simul-
taneously assigned to the non-root vertices of T'(3) by p’(u1, us, us, u4) := (1,0,0, 1).
In this case we see that for the same budgets of B = 1,3 as in {(A), we have
pr*(1,1,p") =1 and pr*(3,1,p’) = 1, respectively.

From these assignments we see that for budget B = 1, the SS in (A) is better
than the one in (B), and for B = 3, the SSin (B) is better than the one in (A).

Considering the budget B = 1 for the P-model in Example 5.1, we see that in
order for a prize assignment to be optimal we must have the prizes of ©; and us
to be 0 and 1. Considering further B = 2 we see that an optimal prize assignment
in this case must be p or p’ as in Example 5.1, or p” where p'' (u1, uz, u3, 4, us) :=
(1,0,2,3,2). Since pr*(B,1,p") = pr*(B,1,p) for any B, we see that the P-model
in Example 5.1 has no optimal SS. As the P-model in Example 5.2 can be analysed
in the same way, we have the following observation.

Observation 5.2. For general prize values P, neither of the P-models M =
(T'(2),1,P) nor M = (T(3),I,P) have optimal SSs.

We will now consider the dual cases of the C-models.

Example 5.3.

Consider a C-model (with p = 1) on the rooted tree T'(2), where the penetration
costs are given by C = {0, 1,1,2,3}. '

Cost Assignment (A): Consider the case where the penetration costs have been
simultaneously assigned to the edges of T(2) by c(e1, ez, €3,e4,€5) := (3,2,0,1,1).
In this case we see that for budgets of B = 2,4, we have pr*(2,¢,1) = 1 and
pr*(4,c,1) = 3, respectively.

Cost Assignment (B): Consider now the case where the penetration costs have
been assigned to the edges of T(2) by ¢'(e1, e2,€3,€4,€5) := (2,3,0,1,1). In this
case we see that for the same budgets of B = 2,4 as in (A), we have pr*(2,¢/,1) = 2
and pr*(4,c,1) = 2, respectively.
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From these assignments we see that for budget B = 2, the SS in (A) is better
than the one in (B), and for B = 4, the SS in (B) is better than the one in (A).

Example 5.4.

Consider now a C-model on the rooted tree T(3), where the penetration costs are
given by C = {0,0,1,1}.

Cost Assignment (A): Consider the case where the penetration costs have been
simultaneously assigned to the edges of T'(3) by c(e1, ea,€3,€4) := (1,1,0,0). In this
case we see that for budgets of B = 0,1, we have pr*(0,¢,1) = 0 and pr*(1,¢,1) = 3,
respectively.

Cost Assignment (B): Consider now the case where the penetration costs have
been assigned to the edges of T'(3) by ¢/(e1, €2, e3,e4) := (0,1,1,0). In this case we
see that for the same budgets of B = 0,1 as in (A), we have pr*(0,¢/,1) = 1 and
pr*(1,c',1) = 2, respectively.

From these assignments we see that for budget B = 0, the SS in (A) is better
than the one in (B), and for B =1, the SS in (B) is better than the one in (A}.

In a similar way as we obtained Observation 5.2, we see from the previous two
examples the following.

Observation 5.3. For general penetration costs C, neither of the C-models M =
(T(2),C,I) nor M = (T(3),C,I) have optimal SSs.

Remark 5.1. (i) Note that in Examples 5.1 and 5.3 involving the rooted tree T'(2),
we have that the prize assignments to the non-root vertices and cost assignments

to the corresponding edges sum up to a constant vector for both assignments (A)
and (B):

(A) : pluy,uz, us, us,us) + cler, ez, €3, €4, €5)
=(0,1,3,2,2) + (3,2,0,1,1) = (3,3,3,3,3),
(B) @ P'(wa,uz,u3,us,us) + (€1, €2, €3, €4, €5)

= (17 07 3’ 2’ 2) + (27 3) O) 17 1) = (3, 37 37 37 3)7
and similarly for the rooted tree T'(3):

(4) : p(uy,uq,usz,ug) + cler, ez, e3,e4) = (0,0,1,1) + (1,1,0,0) = (1,1,1,1),
(B) : p'(u1,us2,u3,ug) +c'(e1,e2,€3,€4) = (1,0,0,1) + (0,1,1,0) = (1,1,1,1).

This duality is not a coincidence and will discussed in more detail in Section 7. (ii)
Although special cases of Theorems 6.1, 6.2, 7.3 and 7.4, it is an easy combinatorial
exercise to see that both a C- or P-model M = (T, C, P), where T is a proper rooted
subtree of either T'(2) or T'(3) does indeed have an optimal SS, and so T(2) and
T'(3) are the smallest rooted trees, in either model, with no optimal SS. This point
will also be discussed and stated explicitly in Sections 6 and 7.
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Consider now a given rooted tree T and another rooted tree T containing T
as a rooted subtree, so T C T'. Assume that the P-model M = (T, I, P) has no
optimal SS. Extend M to a P-model on T't by adding a zero prize for each vertex in
V(TYH\V(T), so Pt = PUZ, where Z is the multiset consisting of |V (T1)| — |V (T)|
copies of 0. In this case we have the following.

Observation 5.4. If M = (T,I,P) is a P-model with no optimal SS, and Tt
contains T as a rooted subtree, then the P-model Mt = (Tt 1, PT) has no optimal
SS. v

Proof. (Sketch) For any budget consisting of B = m edges and a SS (T, 1, p), there
is a rooted subtree 7 of T' with m edges such that pr(r,1,p) = pr*(m,1,p). Let
1 and p' be the obvious extensions of 1 and p to T, by letting 1(e) = 1 for all
e € E(T') and pf(u) = 0 for any u € V(T') \ V(T). If 7/ is a rooted subtree of
Tt with m edges, then 7/ N T is a rooted subtree of both T and T on m or fewer
edges. Since any vertex of V(7') \ V(T) has zero prize, we have

pr(7’,1,p") = pr(+' N T,1,p") = pr(+' N T, 1,p) < pr*(m, 1,p),

with equality for 7/ = 7 since 7 C T C T'. Hence, pr*(m,1,p!) = pr*(m, 1,p),
and we conclude that if M = (T, I, P) has no optimal SS, then neither does Mt =
(Tt,1, PH). O

Dually, assume that we have a C-model M = (T, C, I) that has no optimal SS,
and similarly, let T be a rooted subtree containing T as a rooted subtree. Extend
M to a C-model on T by adding penetration costs of co? for each edge of T that
is not in T, so CT = C UY, where Y is the multiset consisting of |E(T")| — |E(T)|
copies of 0o. '

Observation 5.5. If M = (T,C,I) is a C-model with no optimal SS, and T
contains T as a rooted subtree, then the C-model Mt = (TT,C*,I) has no optimal
SS.

Proof. (Sketch) The proof is similar to the-one for Observation 5.4. For any budget
B € Q4 and a SS (T, ¢,1) of M, there is a rooted subtree 7 of T' with m edges such
that pr(r,c, 1) = pr*(B,c,1). Let ¢! and 1 be the obvious extensions of ¢ and 1 to
T, by letting c'(e) = oo for all e € E(Tt)\ E(T). If 7’ is a rooted subtree of T'f
within the attacker’s budget of B < oo, then every edge of 7’ must be in T, and so
7/ C T C T'. Since c! agrees with ¢ on the edges of T' we have

pr(7’,c',1) = pr(r’,¢,1) < pr*(B, ¢, 1),

with equality for 7/ = 7. Hence, pr*(B, cf,1) = pr*(B, ¢, 1), and we conclude that
if M = (T, C,I) has no SS, then neither does MT = (T1,CT, I). O

By Observations 5.2, 5.3, 5.4, and 5.5 we have the following corollary.

2Where here we can choose oo to be the number of edges of T plus one, that is, a large number
exceeding any sensible attack budget.
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Corollary 5.1. If T is a rooted tree such that any P- or C-model M = (T, C, P)
has an optimal SS, then T contains neither T'(2) nor T(3) as rooted subtrees.

Let T be a rooted tree such that any CSM M = (T, C, P) has an optimal SS.
Assume further that T is not a path rooted at one of its two leaves. If T has at
least three non-zero levels (we consider the root r to be the unique level-0 vertex),
then T" must contain T'(3) as a rooted subtree and hence, by Corollary 5.1, there
is a CSM M = (T, C, P) with no optimal SS, contradicting our assumption on 7'
Consequently, T has at most two non-zero levels.

If T has at most two non-zero levels, and it has two leaves of distance four apart
(with the root r being midways between them), then neither parent of the leaves
is of degree three or more, because then T has T'(2) as a rooted subtree. And, so
again, by Corollary 5.1, there is a CSM M = (T, C, P) with no optimal SS. This
observation again contradicts our assumption on 7. As a result, either (i) 7 has a
diameter of three and is obtained by attaching an arbitrary number of leaves to the
end vertices of a single edge and then rooting it at one of the end-vertices of the
edge, or (ii) T has diameter of four and each level-one vertex has degree at most
- two.

Recall that a caterpillar tree is a tree where each vertex is within distance one
of a central path, and that a spider tree is a tree with one vertex of degree at least
three and all other vertices of degree at most two.

Definition 5.4. A rooted path is a path rooted at one of its two leaves.

A rooted star is a star rooted at its unique center vertez.

A 3-caterpillar is a caterpillar tree of diameter three.

A rooted 3-caterpillar is a 3-caterpillar rooted at one of its two center vertices.

A 4-spider is a spider tree of diameter four with its unique center verter of
degree at least three.

A rooted 4-spider is a 4-spider rooted at its unique center vertez.

By Corollary 5.1 and the discussion just before Definition 5.4, we therefore have
the following main theorem of this section.

Theorem 5.1. If T is a rooted tree such that any P- or C-model M = (T,C, P)
has an optimal SS, then T is one of the following types: (i) a rooted path, (ii) a
rooted star, (iii) a rooted 3-caterpillar, or (iv) o rooted 4-spider.

It remains to be seen whether or not a rooted 3-caterpillar or a rooted 4-spider
T is such that any P- or C-model M = (T, C, P) has an optimal SS. This item will
be the main topic of the next two sections. '

6 P-models with Optimal Security Systems

In this section we prove that if T" is one of the four types of rooted trees mentioned
in Theorem 5.1, then any P-model M = (T, I, P) indeed has an optimal SS. The
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C-models will be discussed in Section 7. We already have that any P-model M =
(T, 1, P) (in fact, any CSM M = (T, C, P)), where T is a rooted path or a rooted
star, does have an optimal SS, so it suffices to consider rooted 3-caterpillars and
rooted 4-spiders. :

Let T be a rooted 3-caterpillar on vertices {r,u,...,u,} with edges given by

E(T) = {(T7 u1)7 LR (T’ uk)’ (uliuk-f-l)a cees (ul,un)}a (4)

where 2 < k < n — 1. As before, we label the edges by the index of their heads,
so e; = (r,u;) for i € {1,...,k} and e; = (uy,w;) for i € {k+1,...,n}. Our first
result is the following.

Theorem 6.1. Let M = (T,1, P) be a P-model where T is a rooted 3-caterpillar
and P = {p1,...,pn} ts a multiset of possible prizes indezxed increasingly py < p2 <
-+ < pp. Then the SS (T,1,p), where p(u;) = p; for each i € {1,...,n} is an
optimal SS for M.

Proof. Let B =m € {0,1,...,n} be the attacker’s budget, that is the number of
edges an adversary can afford to penetrate. We want to show that pr*(m,1,p) <
pr*(m,1,p') for any prize assignment p’ to the vertices of the rooted 3-caterpillar
T.

Let 7 € T be a rooted subtree of T on m edges with pr(r,1,p) = pr*(m, 1, p).
There are two cases we need to consider.

FIRST CASE: e; € E(r). Since all the leaves are connected to one of the end-
vertices of e; = (r,u;), the remaining m — 1 edges of 7 must be incident to the
m — 1 maximum prize vertices, and so pr*(m,1,p) = pr(7,1,p) = pp+Dn_1+---+
Pr—ms2+p1. If P’ is another prize assignment to the vertices of T, then p’(u1) = p.,
where ¢ € {1,...,n}. Therefore, pr*(m,1,p') > pr(+',1,p’), where 7’ is a rooted
subtree of T that contains e; and contains all the remaining m —1 maximum prizes,
and so

pr(7,1,p') = Pn+ Pl + -+ Pn—mal %fce {n—m+1,...,n},
T p’n+pn—1+"'+pn—m+2+pc 1f0¢{n_m+l,...,n}.

In either case we have pr(7/,1,p) > pp +Pn-1 + " Pn—m+2 + P1 = pr*(m,1,p),
and so pr*(m,1,p") > pr*{m, 1, p) in this case.

SECOND CASE: e; € E(7). For this case to be possible we must have m < k—1,
since otherwise e; must be in 7. Secondly, we must have that 7 contains all the
maximum prize vertices on level one and so pr*(m,1,p) = pr(7,1,p) = pr + Pr—1+
-+ Dk—m+1- In particular, we must have

Pkt+Pe-1+  +Pk—mtl 2 Pn+Pn-1+ -+ Pn—ms+2 + D1,

since a tree containing e; does not have a greater total prize than 7. If p’ is another
prize assignment to the vertices of T, then let {¢1, ..., £;} be the indices of the prizes
assigned to vertices on level one by p’, that is, {pe,,...,pe. } = {P'(w1),...,0 (ux)}
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as multisets. If now 7' is the rooted subtree of 7" with m edges containing the m
vertices with the largest prizes, then, since pg, > p; for each i € {1,...,k}, we have

\Y)

pr(7’,1,p)
Do D, + 0t Pl

pr*(m,1,p’)

2> Pt D1+ +DPr—mi
= pr*(m,1,p),
in this case as well. This completes the proof that the SS (7', p) is optimal. O
Now, let T be a rooted 4-spider on vertices {r,uy,...,u,} with edges given by

E(T) = {(T7 ul): sy (Ta uk)a (Ul,uk+1), (u2a uk+2)7 ceey (un—k,un)}a (5)

where n/2 < k < n — 2. As before, the edges are labeled by the index of their
heads: e; = (r,u;) for i € {1,...,k} and e; = (uj—g,u;) fori € {k+1,...,n}. Our
second result is the following. '

Theorem 6.2. Let M = (T,1,P) be a P-model, where T is a rooted 4-spider
and P = {p1,...,pn} is a multiset of possible prizes indezed increasingly p1 <
p2 < -+ < p,. Then the SS (T,1,p), where p(u;) = p; for i € {1,...,k} and
D(u;) = Pnyr+1—i fori € {k+1,...,n} is an optimal SS for M.

Before we prove Theorem 6.2, we need a few lemmas that will come in handy
for the proof.

Lemma 6.1. Let T be a 4-spider presented as in (5) and m € N. Let p be a prize
assignment on V(T') such that p; = p(u;) < p(u;) = p;, where u; is on level one
and u; is a leaf of T. If p’ is the prize assignment obtained from p by swapping the
prizes of u; and u;, then pr*(m,1,p) < pr*(m,1,p’).

Proof. If j = k + 1, so u; is the unique child of u;, then the lemma holds by (1).
Hence, we can assume that u; is not a child of u;. Let 7 C T be a max-prize rooted
subtree on m edges, so pr(r,1,p) = pr*(m,1,p). We now consider the following
cases.

If either both u; and u; are vertices of T, or neither of them are, then clearly
pr*(m, 1,p) = pr(r, 1,p) = pr(r, 1,p') < pr*(m, 1,p’).

If u; € V(1) and u; ¢ V(7), then

pr*(m: lap) = pr(Ta lap) < pI‘(’T, lap) —Di +p] = pI'(T, 1ap,) < pr*(m) ]-ap)

If u; ¢ V(7) and u; € V(7), then, since u; is on level one and u; is a leaf of
7, we have that 7/ = (7 — u;) Uu; is also a rooted subtree of T on m vertices
and pr*(m,1,p) = pr(r,1,p) = pr(7’,1,p') < pr*(m,1,p’), which completes our
proof. O
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Let M = (T, I, P) be a P-model where T is a rooted 4-spider, P = {p1,...,Pn},
and p’ be an arbitrary prize assignment on V(7). Since every vertex of T on
level two is automatically a leaf, we can, by repeated use of Lemma 6.1, obtain a
prize assignment with smaller max-prize with respect to any m that has its n — k
largest prizes on its level-two vertices, and hence has its k smallest prizes on the
level-one vertices uy,...,ux of T. By further use of the same Lemma 6.1 when
considering these level-one vertices of T, we can obtain a prize assignment p that
has its smallest prizes on the non-leaf vertices on level one and yet with smaller
max-prize, so pr*(m,1,p) < pr*(m,1,p’) for any m. Note that our p satisfies

p({uh ce - ’un-—k}) = {pla s ’pn—k}’ p({uk-i-la e ’un}) = {pk-}-l: .- :pn}'

As the level-one vertices of T can be assumed to be ordered by their prizes, we
summarize in the following.

Corollary 6.1. From any prize assignmentp’ we can by repeated use of Lemma 6.1
obtain a prize assignment p on our 4-spider T, presented as in (5), such that

p(u;) =p; for alli € {1,...,k}, and p(w;) = pr(s) for allie {k+1,...,n},

where 7 is a permutation of {k +1,...,n}, and with pr*(m,1,p) < pr*(m,1,p’)
for any m € N.

Our next lemma provides our final tool in proving Theorem 6.2.

Lemma 6.2. Let T be a 4-spider presented as in (5) and m € N. Let p be a prize
assignment on V(T) such that for some i,j € {1,...,n — k} with i < j, we have
p(u;) < p(uj) and p(uirx) = p(ujsx). If p' is a prize assignment where the prizes
on Uik and ujyr have been swapped, then pr*(m,1,p) < pr*(m,1,p").

Proof. Let 7 C T be a max-prize rooted subtree on m edges with respect to p, so
pr(r,1,p) = pr*(m,1,p). We now consider the following cases.

If either both u;4r and ujyr are vertices of 7, or neither of them are, then
clearly pr*(m,1,p) = pr(r,1,p) = pr(r,1,p) < pr*(m, 1,p’).

If uipr € V(1) and ujii € V(7), then

pr*(m,1,p) = pr(r, 1,1))
< pr(7,1,p) — p(ujt+k) + p(Uivk)
= pr(r, l,p)
< pr*(m,1,p).

If uiyr € V(1) and uji i & V(7), then we consider two (sub-)cases. If u; € V(7),
then since u; is a leaf in 7, we have that 7/ = (T —u;4x)Uu;4« is also a rooted subtree
of T on m vertices and pr*(m,1,p) = pr(r,1,p) = pr(v’,1,p’) < pr*(m,1,p’). If
u; & V(7), then 7" = (7 — {us, uitr}) U {u;,u;j+x} is also a rooted subtree of T' on
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m vertices, and

pr'(m,1,p) = pr(r,1,p)
< pr(r,1,p) — p(us) — p(ujer) + p(u;) + p(uivk)
= pr(7”,1,p)
S pr*(m’l’p/)7
which completes the proof. O

Proof of Theorem 6.2. Let T be a 4-spider, p a prize assignment as given in Theo-
rem 6.2, and m € N. Let p’ be an arbitrary prize assignment of the vertices of T'.
By Corollary 6.1 we can obtain a prize assignment p” such that

p’(u;) =pi foralli € {1,...,k}, and p"(u;) = pr(y) foralli € {k+1,...,n},

where 7 is a permutation of {k + 1,...,n}, and with pr*(m,1,p"”) < pr*(m, 1,p)
for any m € N. By Lemma 6.2 we can obtain a prize assignment p on V(T)
from p” simply by ordering the prizes on the level-two leaves in a decreasing order,
thereby obtaining the very prize assignment p from Theorem 6.2 that satisfies
pr*(m,1,p) < pr*(m,1,p") for any m € N. This proves that for any m € N we
have pr*(m,1,p) < pr*(m,1,p"”) < pr*(m,1,p’), and since p’ was an arbitrary
prize assignment, the proof is complete. O

As a further observation, we can describe the optimal SAs on the P-model
M = (T,1, P), where T is a rooted 4-spider with the vertices and edges labeled as
in (5), as follows.

Observation 6.1. Let T be a 4-spider, p a prize assignment as tn Theorem 6.2,
andm € N. Then there is a max-prize rooted subtree T C T on m edges with respect
to p, so pr(r,1,p) = pr*(m,1,p), with the following property:

1. If n < 2k — 1, then all the leaves of T are leaves in T, and hence in the set
{un—k-i-la ERR aun}-

2. If n = 2k, then 7 has at most one leaf on level one, in which case it can
assumed to be uy.

Proof. Suppose T has two leaves u;,u; € {u1,...,Un—g}. In this case 7/ = (7 —
u;j)Uug4i is also a rooted subtree of T on m edges and has pr(7’,1,p) > pr(7,1,p).
Hence, we can assume 7 to have at most one leaf from {uy,...,un—x}

Suppose T has one leaf u; € {uj,...,un—r}. We now consider the two cases;
k>n—kandk=n-k.

FIRST CASE: k > n —k or n < 2k — 1. If 7 has another additional leaf u; €

{¥n—k+1,---,nk}, then, as above, 7/ = (7 — u;) Uugy; has pr(7’,1,p) > pr(r,1,p).
Otherwise, 7 has no leaves from {un—g+1, ..., } # 0. In this case 7/ = (7—u;)Uuy
is a rooted subtree of T' on m edges with pr(7”,1,p) > pr(r,1,p). Hence, we can
assume that 7 has no leaves from {ui,...,uUn—k}, which proves or claim in this

case.
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SECOND CASE: k = n—k or n = 2k. In this case 7 has the unique level-one leaf
u;. If i < k, then ux has a unique child uo, in 7, and so 7/ = (7 — ugx) U ugy; has
the unique level-one leaf uy and pr(7’,1,p) > pr(r,1,p). Hence, we can assume
that 7 has its unique level-one leaf uy. d

Remark. Note that in the case n < 2k — 1 in the proof of Observation 6.1, all the
level-one leaves of 7 can be assumed to be from {up—g41,...,ux}. If we have £ of
them, then they can further be assumed to be ux_g4+1,. .., ug.

7 Duality between P- and C-Models

In this section we state and use a duality between the P- and C-models, which then
can be used to obtain similar results for C-models that we obtained for P-models in
the previous section. In particular, we will demonstrate that if T is one of the four
types of rooted trees mentioned in Theorem 5.1, then any C-model M = (T,C,I)
indeed has an optimal SS, as we proved was the case for the P-model. As with
the P-model, we already have that any C-model M = (T, C,I) (in fact, any CSM
M = (T,C, P)), where T is a rooted path or a rooted star, does have an optimal
SS.

As mentioned in Remark 5.1 right after Observation 5.3, we now explicitly
examine an example of a rooted proper subtree T,(2) of T°(2), for which any P-
or C-model M = (T,(2),C, P) has an optimal security system. For the next two
examples, and just as in the convention right before Example 3.1, let T,,(2) denote
the rooted tree, whose underlying graph is a path, on five vertices V(T,(2)) =
{r,u1,uz2,us,us} and edges E(Tp(2)) = {(r,u1), (r,u2), (u1,us), (uz, us)} rooted at
its center vertex. We continue the convention of labeling the edges by the same
index as their heads: e; = (r,u1), ez = (r,uz), es = (u1,u3), and eq = (u2, uq), see
Figure 5.

(2

Figure 5: The underlying graph of T,(2) is a path on five vertices.
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Example 7.1.

Consider a P-model (with ¢ = 1) on the rooted tree T,(2) where the prize values
P = {p1,p2,p3, P4} are general real positive values ordered increasingly p; < ps <
p3 < psa. By Theorem 6.2 an optimal SS for our CSM M = (T,(2), I, P) is obtained
by assigning the prizes as p(u1,us,us, us) := (p1,P2,p4,p3). We can explicitly
obtain the max-prize subtree for each given budgets B € R that yields the following:

0 for B < 1,

D2 fOI‘lSB<2,
pr*(B,1,p) = ¢ max(p1 +pa,p2z +p3) for2<B <3,

P1+ D2+ Pa for 3 < B < 4,

P +p2+Dp3+Dpa for 4 < B.

Example 7.2.

Consider a C-model (with p = 1) on the rooted tree T,(2) where the penetration
cost values C = {¢1, ¢2, 3,4} are general real positive values ordered decreasingly
€1 > ¢ > ¢3 > c¢y. It is now an easy combinatorial exercise to verify directly
that an optimal SS for our CSM M = (7,(2),C, I) can be obtained by assigning
penetration costs as ¢(ui, U2, us, uq) := (€1, C2, €4, €3), in the same (index-)order as
for the P-model in Example 7.1. We explicitly obtain the max-prize subtree for
each given budget B € R that yields the following:

0 for B < ¢y,
1 for ¢ £ B < min(e; + ¢4, ¢ + c3),
pr*(B,c,1) =< 2 for min(c; +c4,c2+¢3) < B < ¢y + ¢z + ¢y,
3 forci+cotceg <B<cp+cey+ces+ey,
4 forep+co+ces+cey <B.
Let K be a sufficiently large cost number (any real number > max(cy,...,cq4) +1

will do), and write each edge-cost of the form ¢; = K — ¢.. In this way pr*(B,c, 1)
will take the following form

0 for B< K —d,

for K — ¢4, < B < 2K — max(c] + ¢}, ch + ¢4),

for 2K — max(c} + ¢y, ¢ch+¢4) < B < 3K — (] + b+ c}),
for 3K — (¢} + ¢ +¢}) < B<4K — (¢} + ¢ + 5 + ¢y,
for 4K — (¢} + ¢4 + 4+ ¢) < B.

pr’(B,¢1) =

> W

From the above we see the evident resemblance to the expression for pr*(B, 1, p) of
the P-model in Example 7.1. This is a glimpse of a duality between the P-models
and the C-models that we will now describe.

CONVENTION: In what follows, it will be convenient to view the cost and prize
assignments ¢ and p not as functions as in Definition 3.2, but rather as vectors
é = (c1,--.,¢n) and p = (p1,...,pn) in the n-dimensional Euclidean space R™,
which can be obtained by a fixed labeling of the n non-root vertices u1,...,u, and
a corresponding labeling of the edges e, ..., e,, with our usual convention that for
each i the vertex u; is the head of e;, and by letting ¢; := ¢(e;) and p; := p(u;).
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For a given n € N, let B(R"™) denote the group of all bijections R® — R™ with
respect to compositions of maps. For a € Q, and b € Q the affine map a : R™ — R"
given by a(Z) = ai + bl, where 1 = (1,...,1) € R™, is bijective with an inverse
a~!(Z) = 1% — 21 of the same type. Further, if o/(Z) = a’Z + ¥'1 is another such
map, then the composition (@’ o a)(%) = a’aZ + (a’b+b')1 is also a bijection of this
very type. Since the identity map of R®” hasa =1 € Q4 and b = 0 € Q, we have
the following.

Observation 7.1. Ifn € N then G, = {a € B(R™) : (%) = aZ+bl, for some a €
Q4+ and b € Q} is a subgroup of B(R™).

By letting G,, act on the set R™ in the natural way, (a,Z) — a(Z), then the
group orbits G, (Z) = {a(Z) : @ € G,} yield a partition of R” into corresponding
equivalence classes R" = |J; g~ Gn(). By intersecting with Q7 we obtain the
following equivalence classes that we seek.

Definition 7.1. For each Z € Q% let [Z] denote the equivalence class of & with
respect to the partition of R™ into the G, orbits: [Z] = G,(Z) N Q7.

We now justify the above equivalence of vectors of Q7. The following observa-
tion is obtained directly from Definition 3.2.

Observation 7.2. Let T be a rooted tree on n labeled non-root vertices and edges,
T a rooted subtree of T, and o € G, given by oZ) = aZ + bl. If¢,p € Q} are a
cost and prize vector, respectively, then we have

pr(7,é, a(p)) = apr(7,ép) + |E(T)|b,

cst(r,a(é),p) = acst(r,é,p)+ |E(T)|b.

IfJC{l,...,n} and ¥, : R® — R is given by Z — >, ; z;, then we clearly
have .

(@) < Zy(a(y)) & T4(2) < Zs(9), (6)
and hence the following corollary.

Corollary 7.1. Let T' be a rooted tree on n labeled non-root vertices and edges,
B € Q4 a budget, and o € G,, given by a(Z) = aZ + bl.
(i) If p € Q% is a prize vector, then we have

pr*(B,1,a(p)) = apr*(B,1,5) + b| B]. (M
Further, both maz prizes in (7) are attained at the same rooted subtree T of T where

|E(r)| = | B].
(ii) If € € Q% is a cost vector, then we have

pr*(aB + bm, a(é),1) =m & pr*(B,&,1) = m,

and further, both maz prizes are attained ot the same rooted subtree T of T within
the budget; that is, |[E(7)] = m and cst(7,¢,1) < B.
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Remark. (i) That both max prizes are attained at the same rooted subtree 7 in
(i) in Corollary 7.1 simply means that

pr(r, 1,a(p)) = pr*(B,1,a(p)) © pr(r, 1,p) = pr*(B,1,5),

which is a direct consequence of Observation 7.2 and (7). (ii) Also, for a rooted
subtree T with |E(7)| = m and cst(r,¢,1) < B, then by Observation 7.2 we also
have cst(7, a(é),1) < aB + bm, and

pr(7,é 1) = m = pr*(B, 1) & pr(r, a(é),1) = m = pr*(aB + bm, a(é), 1).
We can, in fact, say a tad more than Corollary 7.1 for C-models M = (T',C, I).

Definition 7.2. Let M = (T,C, I) be a C-model. For a given cost vector ¢ € Q7
let B, (&) denote the smallest cost B € Q. with pr*(B,é 1) = m.

Note that 5
pr*(B,¢,1) =m & Bp,(8) < B < Bn+1(8).

We also have the following useful lemma.
Lemma 7.1. If a € G, is given by a(z) = ai+bl, then Bim(a(é)) = aBp () +bm.

Proof. By definition of B,,(¢) we have pr*(B,,(¢),é,1) = m, and hence by Corol-
lary 7.1 pr*(aB,, (&) + bm, a(é), 1) = m as well. Suppose that pr*(B’, a(é), 1) = m,
where B’ < aB,,(¢) + bm. If now B’ = aB” + bm, then B” < B,,(&) and we have
again by Corollary 7.1 that pr*(B”,é,1) = m. This contradicts the definition of
B,.(¢). Hence, By, (a(é) = aBpy(E) + bm. O

Proposition 7.1. For m € {0,1,...,n} and a cost vectors ¢ and ¢ we have
B (€) 2 Bm(€) if and only if for every budget B with pr*(B,¢, 1) = m we have
pr*(B, & 1) < pr*(B,&,1).

Proof. Suppose By, (¢) > Bn(&), and let B be a budget with pr*(B,& 1) = m.
By definition we then have B > B, (¢) and hence B > B,,(&) and therefore
pr*(B,&,1) > m = pr*(B, §,1).

Conversely, if for every budget B with pr*(B, ¢, 1) m we have pr*(B,
pr*(B, &, 1), then, in particular for B = B,,(é) we have m = pr*(Bn(é),

&1)
! &1)
pr*(Bm(E), &,1), and hence, by definition, B,,(¢') < By, ().

OINIA

CONVENTION: For a vector & = (zy,...,2,) € Q} let {Z} denote its underlying
multiset. So if (T, ¢, p) is an SS for a CSM M = (T, C, P), then we necessarily have
C = {¢} and P = {{} as multisets. Also, we have {1} = I as the multiset containing
n copies of 1.

Suppose pr*(B,1,5) < pr*(B,1,#) for all 7 with {5’} = {}. Then by Corol-
lary 7.1 we get for any o € G,, with a(Z) = ai + bl, that

pI‘*(B, iaa(ﬁ)) = apr*(B, i’ﬁ) + bI.BJ < apr*(B, i’ﬁl) + bI.BJ = pr*(Ba i,a(f)')),

and so we have the following.
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Proposition 7.2. The SS (T, 1,5) is optimal for the P-model M = (T, I, {p}) with
respect to the budget B € Q4 if and only if the SS (T,1,a(p)) is optimal for the
P-model M = (T, I,{c(p)}) with respect to B.

In a similar way, we have by Proposition 7.1 that pr*(B, ¢,1) = m < pr*(B, &, 1)
whenever B, () < B < Bp41(€) and {&'} = {¢} if and only if B,,(¢) > B, (?),
which by Lemma 7.1 holds if and only if

B (a(€)) = aBp(€) + bm = aB(&') + bm = By, (a(d)).

In other words, pr*(B,é,1) < pr*(B,&,1) when B,,() < B < B,+1(é) holds if
and only if pr*(B’, a(é),1) < pr*(B’, a(&'),1) when By (a(é)) £ B’ < Bumy1(a(?)).
Since this holds for every a € G, which is a group with each element having an
inverse, then we have the following.

Proposition 7.3. The SS (T, &, 1) is optimal for the C-model M = (T, {¢},I) with
respect to B € [By(€), Bm+1(6)[NQ+ if and only if the SS (T, a(¢), 1) is optimal for
the C-model M' = (T, {a(é)},I) with respect to B’ € [B(a(€)), Bm+1(a(€))[NQ4 -

Combining Propositions 7.2 and 7.3, we have the following summarizing corol-
lary.

Corollary 7.2. Let a € G,.

The 88 (T,1,p) is optimal for the P-model M = (T,1,{5}) if and only if the
SS (T, 1,a(p)) is optimal for the P-model M’ = (T, I, {c(p)}).

The SS (T, ¢,1) is optimal for the C-model M = (T, {&},I) if and only if the SS
(T, a(é),1) is optimal for the C-model M’ = (T, {a(p)}, I).

Corollary 7.2 shows that optimality of security systems of both C- and P-models
is Gp-invariant when applied to the prize and cost vector, respectively.

Recall the equivalence class (%] = G,(Z)N Q7% from Definition 7.1. We can now
define induced equivalence classes of SS of both C- and P-models. By Corollary 7.2
the following definition is valid (that is, the terms are all well defined).

Definition 7.3. For a C-model M = (T,C,I) and a SS (T, & 1) of M, we let
(T, & 1) :={(T,%,1) : % € [¢}.

We say that [(T,é,1)] is optimal if one (T,%,1) € [(T,&,1)] 1is optimal for its
corresponding M = (T, {2}, I), since then each element in [(T, ¢, 1)] is also optimal.
Likewise, for a P-model M = (T,1, P) and a SS (T,1,%) of M, we let

(T, 1,9)] = {(T.1,9) : § € [7]}-

We say that [(T,1,p)] is optimal if one (T,1,%) € [(T,1, P)| is optimal for its
corresponding M = (T, 1,{§}), since then each element in [(T,1,7)] is also optimal.

With the setup just presented we now can define the dual of both vector classes
and SS classes for C- and P-models in the following.
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Definition 7.4. For a vector Z and [Z] = Go(Z) N Q7% as in Definition 7.1, then
[Z]* := [—7] is the dual vector class of [Z].

For a C-model M = (T,C,I) and a SS (T,& 1) of M, then [(T,&1)]* :=
[(T,1, —¢&)] is the corresponding dual P-model security system class (dual P-model
SS class) of the C-model class (T, &,1)].

Likewise, for a P-model M = (T,1,P) and a SS (T,1,5) of M, then the class
(T,1,p)]* := [(T, —p,1)] is the corresponding dual C-model security system class
(dual C-model SS class) of the P-model class {(T, 1, p)].

Note that the double-dual yields the original class in each case: [Z]** = [-&]* =
(Z], and

(T, e DI = [(T,1, -9 = (T, 1)), (T.1,9)" =T, -5,1)" = [(T,1,5)]

For a P-model M = (T,I, P) and a SS P-model class [(T, 1, )] we can always
assume the prize vector p is such p; € [0,1] N Q4 for each i, since a(Z) = aZ is
indeed an element of G,, for any a > 0. In this way ¢=1—p € ([0,1] N Q)" isa
legitimate cost vector, and we have [p]* = [1—p] and [(T,1,p)]* = [(T,1~5,1)]. I
what follows, we will call such a prize vector scaled. The following is easy to show

Claim 7.1. For a scaled prize vector p with p; € [0,1] NQ for each i, and a rooted
subtree 7 of T with |E(7)| = m, then pr(r,1,p) + cst(r,1 —p,1) =m

Let § be a scaled prize vector and assume B is a budget with pr (B 1-5, 1)
Then there is a rooted subtree 7 of 7' on m edges such that cst(r,1 — 5,1) < B
and hence there is such a 7 of smallest cost. Hence, we may assume 7 is 1ndeed
such a rooted subtree of smallest cost. By Claim 7.1 applied to 1 — p, which is also
scaled, we then have pr(r,1,5) = m—cst(r,1—7, )w1th the smallest cst(r, 1—5,1)
among rooted subtrees 7 on m edges, and hence pr(r, 1,$) is maximum among all
rooted subtrees 7 on m edges, and so pr(r, 1,5) = pr*(m, 1,p). Hence,

B > cst(r,1 - p,1) = m — pr(r,1,5) = m — pr*(m,1,5).
Since cst(7, 1 -5, 1) is the smallest cost among all rooted subtrees on m edges, then
B' = cst(r,1 - $,1) = m — pr*(m, 1, p)

is indeed the smallest cost with pr*(B’,1 — $,1) = m. By Definition 7.2 we then
have the following,.

Lemma 7.2. For m € {0,1,...,n} and a scaled (prize) vector p, we have
Bn(1-p) =m—pr*(m,1,p).
As a direct consequence of Lemma 7.2, we then have

Corollary 7.3. For any m € {0,1,...,n} and scaled vectors p and p', we have

B(1-p)> B.(1-7p) e pr*(m,1,p) < pr*(m,1,7).
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We can now prove one of the main results in this section.

Theorem 7.1. Let M = (T,I, P) be a P-model, (T,1,5) a SS for M where p is
scaled, and m € {0,1,...,n}. Then pr*(m; 1,p) < pr*(m 1,7') for any p' with
{p'} = P if and only zf pr*(B,1-p,1) < pr*(B 1-7',1) for any budget B with
pr*(B,1 —$,1) =m and for any § with {§'} =

Proof. By Corollary 7.3 we have that pr*(m, 1,p) < pr*(m 1,7') for any § with
{p'} = P if and only if B,,(1 - 5) > Bn(1 - p') for any p’ with {§'} = P which,
by Proposition 7.1, holds if and only if pr*(B,1 — §,1) < pr*(B,1 - #,1) for all
budgets B with pr*(B 1—p,1) =m and for all 5 with {§'} = P. O

Note that by Theorem 7.1 we have that pr*(B,1,p) < pr*(B, 1,7') for any
budget B and any p’ with {p'} = {p} if and only if pr*(B,1 — 5,1) < pr*(B,1 —
7’,1) for any budget B and any 7’ with {5’} = {p}. Hence, by Corollary 7.2
and Theorem 7.1 we therefore have the main conclusion of this section in light of
Definition 7.3.

Corollary 7.4. For a rooted tree T and a prize vector p € Q7, then [(T,1,p)] is
an optimal P-model SS class if and only if the dual C-model SS class |(T,1,p))* =
(T, —p,1)] is optimal.
In particular, if p is scaled, then the SS (T 1,p) is optimal for the P-model
= (T,I,{p}) if and only if the SS (T, 1 - p,1) is optimal for the C-model M =
(T {i-5),D).

Consequently, by Corollary 4.1, Theorems 4.2, 5.1, 6.1 and 6.2 and Corollary 7.4,
we have the following summarizing result.

Theorem 7.2. For a rooted tree T on n non-root vertices the following are equiv-
alent:

1. Any P-model M = (T, I, P) has an optimal SS.
2. Any C-model M = (T, C, I) has an optimal SS.

3. T is one of the following types: (i) a rooted path, (ii) a rooted star, (iii) a
rooted 3-caterpillar, or (iv) a rooted {-spider.

Note that by (6) we have, in particular, that each a € G,, preserves the order
of the entries of each Z € Q7, so each & € [p] has the same order of its entries as p
does. But clearly, the dual operation on [Z]* = [—Z] is order reversing, that is, we
have that z; < z; for any & € [p] if and only if y; > y; for any § € [—p] = [p]*. Since
the optimal assignments of prizes from a given multiset P are given in Theorems 6.1
and 6.2, we then have by Corollary 7.4 the following theorems for C-models as well.

Theorem 7.3. Let M = (T,C, I) be a C-model where T is a rooted 3-caterpillar as
in (4) and C = {c1,...,cn} is a multiset of possible edge-costs indexed decreasingly
€1 >¢2 > - > cn. Then the SS (T,c, 1), where c(e;) = ¢; for eachi € {1,...,n}
is an optimal SS for M.
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Theorem 7.4. Let M = (T,C,I) be a P-model, where T is a rooted 4-spider as
in (5) and C = {c1,...,cn} s a multiset of possible edge-costs indexed decreasingly
€1 > c2 2> - > cn. Then the SS (T,c, 1), where c(e;) = ¢; fori € {1,...,k} and
c(e;) = cpikr1—: fori € {k+1,...,n} is an optimal SS for M.

8 Summary and Conclusions

This paper defined a cyber-security model to explore defensive security systems.
The results obtained mathematically support the intuition that it is best to place
stronger defenses in the outer layers and more-valuable prizes in the deeper layers.
We defined three types of SSs: improved, good, and optimal. We showed that it is
not always possible to find an optimal SS for a given CSM, but demonstrated for
rooted paths and stars that optimal SSs do exist. The results mathematically show
that a path produces the best cyber-security, however, burying something n levels
deep for large n may prevent the friendly side from accessing the “information”
effectively. The results show, in general, that trees having greater depth provide
more security in this setting.

We showed that any CSM is equivalent to a CSM where either all the edge
penetration costs are unit priced (a P-model) or where all the vertices have a unit
prize (C-model), by allowing larger underlying rooted trees. We then characterised
for which trees a P-model has an optimal SSs, and we also did that for the C-

- models. We noted that the P- and C-models have optimal SSs for exactly the same
types of rooted trees. This was then explained by obtaining a duality between the
P- and C-models in the penultimate section of the paper.

We gave an O(nlogn) algorithm for producing a good SS that was based on
sorting. It is not clear how strong such a good SS is, as there may be many such
good SSs, and some may be better than others. It would be interesting to come up
with a comparison metric to rank various good SSs. We must continue to explore
models of cyber-security systems to develop the foundations needed to combat the
ongoing and increasing number of cyber attacks. This work is but one step in that
direction. '

We conclude the paper with a number of questions.

1. Can we find an efficient algorithm to develop optimal SSs in the cases where
all penetration costs or all targets are from a finite set of possible values?
Say, if we have two possible penetrations costs or three? Similarly for prizes?

2. In a two-player version of the model, what would be the best strategy for a
defender who is allowed to reposition a prize or a portion of a prize after each
move by an attacker? And, what would the complexity of this problem be?

3. Are there on-line variants of the model that are interesting to study? For
example, a version where the topology of the tree changes dynamically or
where only a partial description is known to the attacker.
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4. Could a dynamic programming approach be used to obtain a SS that is some-
how quantifiably better than a good SS or allow us to pick the “best” good
887

5. Is there a more useful definition of neighboring configuration that could lead
to an efficient algorithm for producing better SSs, for example, perhaps a
definition where sibling vertices or edges can have their prizes or penetration
costs swapped, respectively?
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Adapting Dynamic Time Warping to the Speech of
the Hearing Impaired*

Laszlé Czap! and Attila K. Vargal

Abstract

One service provided by our application 'Speech Assistant System’ assist-
ing the teaching of the hearing impaired to speak is the automatic assessment
of words and sentences in the course of practice and feedback to the per-
son. Individual speech sounds can only be correctly evaluated if they are
compared with the appropriate reference speech sounds. This requires seg-
menting the speech to be examined. The methods currently known do not
give sufficiently correct results for the speech of the hearing impaired, which
is often so distorted and halting so that it prevents understanding. The pa-
per presents a reference generation method suitable for segmenting distorted
speech, a modification of dynamic time warping and its comparison with tra-
ditional methods. The procedure presented has been successfully used for the
automatic assessment of the pronunciation of the hearing impaired.

Keywords: dynamic time warping, speech quality assessment, acoustic-
phonetic features, distorted speech, speech of hard of hearing children

1 Introduction

The project 'Basic and Applied Research for the Internet-Based Speech. Develop-
ment of the Hearing Impaired and for the Objective Measurement of Progress’
served the purpose of creating a new aid for the deaf and the hard of hearing in
learning to speak, called the Speech Assistant System. The foundation of the re-
search is represented by the ’talking head’ developed at the University of Miskolc
and the audio-visual transcoder developed at the University of Debrecen. The ob-
jective of the project is to create a complex system which provides the audio-visual
representation of the speech process, by the visual representation of the sound
images of speech on the one hand, and of the articulation on the other, set in a
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training framework system. The 3D head model with its transparent face can vi-
sualise the tongue motion better than a natural speaker. In addition, the system
includes a number of functions (visualisation of prosody, automatic assessment and
implementation of the knowledge-based system) that facilitate individual practice
not only on the computer, but also on a mobile device. The module of the technol-
ogy developed performing the audio-visual transcoding is language independent, so
the talking head and the automatic assessment can be adapted to other languages
besides Hungarian.

Automatic assessment provides feedback to the hearing impaired, who can use
the Speech Assistant System on their own. The assessment of the speech produced
during practice shows not only progress achieved in utterance, but also serves as
input to the knowledge-based system, which assists in designating the next word
to be practiced based on teacher experience [1].

The methods developed for automatic speech quality assessment include speech
segmentation in explicit or implicit form. Speech tempo changes from speaker to
speaker, from articulation to articulation. These non-linear extensions and short-
enings do not necessarily count as faulty pronunciation. The hearing impaired
usually speak more slowly than the average speech tempo. For the assessment
of the pronunciation of the individual speech sounds, the time segments of the
reference pattern and of the actual pronunciation have to be matched. The ref-
erence and the actual waveforms can be made to have identical lengths by linear
stretching and/or linear shrinking. This, however, does not ensure a time paral-
lel of the individual speech sounds, for the pronunciation rhythm may differ from
the reference. If certain speech sounds are pronounced longer and others are pro-
nounced shorter, in linear time warping it will not be the speech sound segments
that matched with which it should be similar, therefore the comparison will produce
false results. The articulation of certain speech sounds differing in time from their
ordinary articulation is particularly characteristic of the speech of the hearing im-
paired. Therefore, for the purpose of comparing the reference and the speech being
examined, non-linear time-warping that is needed, procedures and algorithms de-
veloped in computer-based speech processing are available for this purpose. These
methods work well for high-quality speech and pronunciation acceptable in everyday
communication. However, they produce poor results for distorted speech sounds
and unusually drawling and halting speech. The paper discusses our segmentation
method suitable for low-quality speech that pairs the test and artificially generated
reference shape.

2 Non-linear time warping

We can speak of an ideal time comparison if two samples are aligned along the
individual speech sounds. This generally accepted method is used in computer-
based speech recognition [15).

The hidden Markov model (HMM), by virtue of its characteristics, is suitable
for handling the time structure in speech recognition, for the states belonging to the
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speech sounds pronounced longer simply return into themselves repeatedly. Maier
and others [9} [10] have successfully applied the method with adults whose larynx’
had been removed due to throat cancer and with children born with a cleft lip and
palate. In these patients a close relation can be achieved between the subjective and
automatic assessments. This was used as a basis for developing PEAKS (Program
for Evaluation and Analysis of all Kinds of Speech Disorders), a recording and
analysing system for the automatic or manual assessment of utterance disorders
and speech impediments.

Typical, easy-to detect utterance disorders are associated with the different
disorders. For the speech disorders, the researchers had training models available
in sufficient quantities, so it was possible to develop the statistical model necessary
for automatic assessment. However, the mispronunciations of the hearing impaired
cannot be typified [7]. Our general-purpose speech recognition device based on the
HTK Speech Recognition Toolkit [6], which is adapted to 3,600 words and 1,800
sentences recorded with the voices of 60 school children (12-14 year-old primary
school children from three special institutions for the teaching of the deaf and
hard-of-hearing) proved to be unsuitable for automatic assessment.

Dynamic time warping (Dynamic Time Warping, DTW) was used in the early
era of speech recognition for the comparison of the patterns to be recognised and the
reference samples. The procedure examines optimum time alignment as the search
for the path with minimum length or weight in a given graph. Let us suppose
that the x words to be examined consist of k pieces of segments and the data
characterising the i-th (i = 1,2, ..., k) segment are summed up in vector z; . Next
these elementary vectors are collected into a matrix in the classification algorithm.
Thus the incoming word is characterised by the vector series z;, x2, ..., . Let
the vector series y1, ¥, - - -, ¥, characterise in a similar way the vocabulary element
y, with which the incoming word is to be compared. The objective is to produce a
vector series Z1,2,.. ., (length r) from the vector series 1, zo, .. ., zx by repeating
some and omitting others, for which the 'distance’

D= Zd(wi, Yi) (1)

takes its minimum. Here d(z,y) is an arbitrary given distance function. In produc-
ing the vector series z12,.. » , secondary conditions are set, of which the following
is a possible version:

e any vector z; can only be repeated once (thus we can at most double, but
not triple the number of vectors);

o if z; is omitted, its neighbours (z;-; and z;+1) cannot be omitted, thus two
neighbouring segments cannot be omitted;

e the order of segments cannot be reversed [4].

The characteristic vectors used as the inputs to the algorithm are provided by
feature extraction of speech. The result of segmentation was examined on the basis
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of feature extraction by means of the usual procedures:
e MFCC: Mel-Frequency Cepstral Coefficients [2],
e PLP: Perceptual Linear Prediction [3],
e MEL band energy: logarithmic energy [13].

In our experiment the references were provided by recorded speech samples of
university students of liberal arts participating in competitions of proper pronun-
ciation and school children with proper pronunciation in the same age group as
the hearing impaired involved in the experiment. These references were regarded
as standard recorded speech samples. The recorded speech samples of the hearing-
impaired children were provided by the speech sound database recorded for the
purpose of creating the assessment scale.

The database includes 2,421 words (some words occur several times, but with
different speakers, therefore their time structures are also different), which were
assessed by 13 teachers and 23 students. Every teacher assessed only the recorded
speech samples of the pupils of a school different from his own so as to avoid bias
resulting from recognising the speaker. The assessors could listen to a recorded
speech sample several times and could make comments on the samples. The results
were recorded via an Internet application. In the case of the teachers, the basis of
the assessment was given by a five-grade scale set worked out by them.

Interpretation of the scale:

o Unintelligible (1): articulation is completely distorted; the vowels and conso-
nants are unrecognisable; the reproduction of the syllable number is not ad-
equate or discernible; breathing and management of breath is faulty; tempo
and rhythm are incorrect; the utterance is unmelodious, non-dynamic or too
tense.

e Difficult to understand (2): grave distortions, omission of speech sounds,
speech sound replacement; only some of the vowels can be discerned; distor-
tions due to insufficient breathing, e.g. too breathy or choked; characterised
by irregular, disturbing tonality, rhythm and tempo.

e Moderately intelligible (3): the articulation of vowels is correct, the number
of syllables is appropriate; serious speech defects may occur, e.g. dyslalia
(the speech impediment in which certain vowels are incompletely formed),
nasality, head voice, prosodic inadequacies.

o Easy to understand (4): slight speech defects; slight prosodic inadequacies.

o Understandable at the same level as the speech of the hearing (5): at most
1-2 speech sound defects may occur.
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The 23 students had to score the recorded speech samples on a scale of 1-5 on the
basis of everyday usage. Three hundred words were chosen out of the 2,421 words
for the detailed segmentation analyses. The stock of words chosen is sufficiently
varied not only according to the lengths of the words, but also from the aspect
of the occurrence of speech sound juncture features, which is characteristic also of
the complete word database. The stock of words of the recorded speech samples
was prepared by teachers of the hearing impaired, taking the active vocabulary of
the individual students carefully into consideration. The 300 words were manually
segmented by a speech processing expert, providing the basis for the comparison.

Comparing the result of the segmentation time warped to correctly articulated
reference speech with the time data given by the expert provided values that could
not be used for poor quality speech. Often completely different results were ob-
tained for the standard reference samples originating from the various subjects
articulating the given word.

The cause of the failure was attributed to the deficiencies in dynamic time warp-
ing. The application of dynamic time warping for the purpose of speech recognition
was neglected because the comparison has to be performed for every conceivable vo-
cabulary element, which is extremely time-consuming. In addition, more advanced
decision-making methods compare the speech section to be recognised not with the
voice of a given speaker, but compare the element to be recognised with the data of
a population of speakers using statistical learning methods. Our solution integrates
a statistical model into the input data, and eliminates the speaker dependence of
the reference sample by a new method of reference generation.

It was supposed that the characteristics obtained for the individual speech
sounds by statistical methods would provide more reliable results. A neural network
was trained on the basis of the BABEL speech sound database.

The BABEL database consists of three different parts: recorded speech samples
of numbers of isolated and connected words, CVC (consonant-vowel-consonant)
syllables, and continuously read speech. Both the sentences read and the number
series were planned so as to provide a good coverage of the speech sound combi-
nations in the Hungarian language. Some of the speech samples in the continuous
part are in whispers. Part of the database is segmented into phonemes and labelled.
The database includes the voices of a total of 30 male and 30 female speakers as
well as 2,000 sentences and 14,000 connected number series.

3 Dynamic time warping input data

We attempted to derive the essence of speech sounds by means of the output activity
of neural networks. Neural networks were trained in acoustics-phonetics classifica-
tion, then using their outputs, new neural networks were trained to differentiate
within the class. In the course of training the correct outputs were given a value
1 in their own time frame, and the others were given the value 0. The goodness
of classification was checked on testing patterns not included in the training and
amounting to a quarter of the complete speech sound material. In the course of
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testing, in order to obtain the goodness criterion for each speech sound, the sum of
the activities of their own outputs was divided by the sum of the activities of the
other outputs, calculated for all the testing time segments.

G;= ZONN/Z Onn, (2)
VR VF

where

G; — goodness of neural network for feature of speech sound or class of speech
sounds (),

Opnn — neural network outputs,
VR — correct output activity for all of its own time frames,
VF — incorrect output activity for all the other time frames.

The neural network whose goodness factor was the maximum for all speech
sounds was kept, so we had five neural networks for acoustic-phonetic classification
and four neural networks for grouping within the class. For orthography transcrip-
tion we will use SAMPA symbols. The classes formed by the neural networks are
as follows:

e pause;

vowels (a, a:, E, e:, i, 0, 2, u, y);

semi-vowels (m, n, J, r, I, j);

fricatives (f, s, S, h, v, 2, Z);
o plosives (p, t, ts, tS, t), k, b, d, d’, g).

The speech sounds belonging to the outputs of the neural network dedicated
to the classes are listed in parentheses. We tried to perform the acoustic-phonetic
classification by using only a single neural network, but we got weaker results
than when using neural networks dedicated to individual classes (Figure 1). For
dynamic time warping, these outputs were directly used as a feature vector of the
word analysed. Among the speech feature extraction methods examined (MFCC,
PLP, MEL subband energy), PLP showed the highest goodness factors, thus the
outputs of neural networks trained by PLP speech feature extraction were used as
the inputs of dynamic time warping. Training was performed with several options.
The setting providing the maximum of the goodness factor is: to the 12 PLP
data and logarithmic energy of the actual 40ms frame were added the average of
two frames of the preceding 80 ms section and the average of two frames of the
subsequent 80 ms. The feature 3 x 13 describes the 40ms segment in the middle
of the 200 ms interval. Training of the 5 neural networks meant for phonetic
classification was performed with these parameters.
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4 i = e
4. Feed-Forward Neural Network (view) o B ®

Hidden 1 Hidden 2 Output

Figure 1: Model of the neural network determining the acoustic speech sound class

In addition to the 39 PLP features, neural networks trained to recognize speech
sounds within the phonetic classes were also given the outputs of the five classifying
neural networks as input. Figure 2 shows the structure of the neural network used
for sorting vowels.

4 Pattem Recognition Neural Network {view) =8 =

Hidden 1 Hidden 2 Output

Figure 2: Neural network model of the acoustic speech sound class of vowels

Segmentation was also performed with the neural networks trained with the
shorter PLP time frames; the smallest errors were obtained with the above setup.
The relevant toolboxes of the program package MATLAB were used for the calcu-
lations [11].

4 Reference generation

Using a concrete recorded speech sample as reference, the failure of segmentation
discussed above was attributed to individual differences. On the basis of a statis-
tics model, a neural network trained with a great number of speakers is better at
reflecting the similarities to the individual speech sounds.

In developing the reference shape, the chosen input data had to be accom-
modated. Since in this task the objective is not recognition of the word but the
alignment of the recorded speech sample, the phonetic transcription of the word
was at our disposal. For the purpose of reference generation, the output belonging
to the given speech sound and output of the class including the speech sound are
made active in the allocated time interval. The timing of the individual speech
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sounds can be determined starting out from the average time length of the speech
sounds [12]. The speech of hearing-impaired children is slower than the average
speech tempo. According to our measurements, the time length of the fastest
speech was one and a half times the average, therefore in reference generation one
and a half times the average time lengths of speech sounds were used, thus a few
speech sounds pronounced shorter also fall in the range allowed. Calculating with
the above auxiliary conditions of dynamic time warping, the length of individual
speech sounds may vary between 3/4 of and three times the average speech sound
time length after time warping. Figure 3 shows the created reference features of
the word hiiséges [hy:Se:gES| (meaning ’faithful’). The horizontal axis shows the
time index of the frames, and the vertical axis shows (from bottom to top) the
acoustic-phonetic features starting with the pause then the outputs classifying
vowels, semi-vowels, fricatives and plosives, and above them the individual outputs
of the speech sound classes in the above order.

40

35+ R A - 4

30, .......... .

20 E

151

101

output activity of the neural network

35
number of time frame

Figure 3: Features created in the reference generation of the word [hy:Se:gES]

In case of good quality speech, the outputs of the neural networks show signif-
icant activity. The word 'hiiséges’ can be clearly understood and is of a quality
accepted in everyday communication (Figure 4).

On the other hand, the output levels decrease visibly and several outputs show
activity simultaneously as Figure 5 shows the output activities belonging to the
word ’valami’ [vOlOmi] (meaning ’something’) pronounced with a distortion mak-
ing it unintelligible. The outputs of a neural network are not faultless and among
the speech sound samples to be segmented there are also speech samples distorted
to unintelligibility.
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Figure 4: Significant activity of the actual outputs
in aligning the clearly understandable word [hy:Se:gES]

40 T T T T T

301

251 1

201

151

101

output activity of the neural network

0 5 10 15 20 25 30
number of time frame

Figure 5: Weak activity of the actual outputs
in aligning the word [vOlOmi| with a distorted pronunciation
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Therefore not simply the activity of the relevant output is used as input, but the
activities of the outputs belonging to the same acoustic-phonetic class are summed
and weighted with the similarity measurement between the speech sounds.

On the basis of the speech sound database BABEL and using PLP speech feature
extraction, the average of the coefficients belonging to the total occurrence of the
individual speech sounds was determined. A 40 ms segment was marked from the
center of each speech sound having a stationary phase (vowels, semi-vowels and
fricatives) and the last 40 ms (burst) for plosives. Then Euclidean distances were
formed between the averages of Hungarian speech sounds [3]. By reversing the
normalised distance, similarity measurements were formed between the individual
speech sounds:

H(i,j) = 1- D(i,j)/ Dmax; 3)

where H(%,j) is the similarity of the i-th and j-th speech sounds, D(i,j) is the
distance of the averages of the PLP coeflicients of the i-th and j-th speech sounds
and D,,q. is the maximum of these distances.

Summation of the similarity measurements for an acoustic-phonetic class is as
follows:

S@) =Y H(i,j) * NN(j), (4)

j30

where O designates the speech sounds belonging to its own class and NN (j) is the
j-th output of the neural network.

Without transferring output activities to the similar phones, in case of misclas-
sification or highly distorted speech the right neural network output would not get
any activity, causing false pause frames in the time interval of the phone. This
time shift would risk the right segmentation of neighbouring phones as well. The
artificially created reference pattern and the cumulated neural network outputs of
speech examined form the basis of dynamic time warping.

The following figures show the similarity measurements of speech sounds be-
longing to the classes of the neural network compared to each other (Figures 6-9).
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Figure 7: Similarity measurements of semi-vowels
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5 Modifying the DTW algorithm

Tested by the classical rules of dynamic time warping and using the outputs of the
neural network as feature vector, time warping produced much better results than
when recorded words were used as reference.

During testing, however, it was found that in the speech samples of hearing-
impaired children pauses of several tenths of a second frequently occurred between
speech sounds. In order to treat this problem, the secondary conditions of the
dynamic time warping algorithm were modified:

e an optional pause was inserted after each speech sound in producing the
reference;

e the pause can be repeated number of times.

According to the rules set out above, a time interval can be lengthened to a
maximum of twice its original length. However, in the speech samples of hearing-
impaired children there were often speech sounds pronounced longer than that.

Therefore:

e double reiteration of a time frame can also be allowed, thus a time interval
can be lengthened to three times its original length. In the following, this will
be referred to as adapted dynamic time warping (ADTW).

Figure 10 shows the segmentation results of the haltingly pronounced word
lazmérd’ [la:zme:r2:], (meaning ’clinical thermometer’) and the hardly intelligible
word ’valami’ [vOlOmi], (meaning ’something’) as examples.
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19 20 1S
g & g
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= 180 kS

|l a zm e r 2

time frames of the reference word time frames of the reference word
Figure 10: Dynamic time warping of
the words [la:zme:r2:] and [vOlOmi] using the ADTW method

The horizontal axis shows the reference segments and the vertical axis shows
the segments of the speech sample examined. In the reference the vertical bands
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of the size of one time frame indicate the pauses inserted. The shading of the
points of the matrix is proportional to the similarity measurement. Darker bands
mean greater similarity. The horizontal line appears in the time frames matched.
On the horizontal axis of the word ’ldzméré’ [la:zme:r2:], time frame 16 shows
the insertion of a pause of considerable length. The word ’valami’ [vOlOmi] even
with an extremely distorted articulation can be successfully segmented with the
procedure proposed.

The recorded speech samples can be heard at the following links:

http://mazsola.iit.uni-miskolc.hu/~avarga/hangmintak/huseges.wav
http://mazsola.iit.uni-miskolc.hu/~avarga/hangmintak/lazmero.wav
http://mazsola.iit.uni-miskolc.hu/~avarga/hangmintak/valami.wav

6 Evaluation

In evaluating the modified algorithm, expert segmentation was regarded as the
reference. In expert segmentation, the segment boundaries were determined on the
basis of a combination of the time function, the spectrogram and the speech sound
played from the segment boundary (or to the segment boundary). The comparison
was performed using two other segmentation procedures:

1. DTW algorithm based on acoustic-phonetic features, optimised for good-
quality speech without being adapted to hearing-impaired speech samples.

The objective of the time warping method based on acoustic-phonetic (AF)
speech sound classes is to compare prosody (the combination of melody, pro-
nunciation speed, rhythm, stress, speech sound intensity and tonality), which
can be applied to several languages. It is a time warping method which
aligns the two samples strictly along the speech sounds and performs scaling
only within them. In this method the novelty is represented by the execu-
tion method of the computer segmentation, for which general acoustic speech
sound classes were used, which determined language-independent articulation
configurations [8]. Applicability to several languages followed from that. In
the present case the developers supposed that the difference between the ac-
tual and the reference sample is minimal (the speaker is cooperative). Three
differences were taken into account: insertion, omission and different pronun-
ciation. The AF segmentation procedure was not adapted to poor-quality
speech.

2. HMM-based speech recognition with PLP feature extraction, with the pauses
between the speech sounds and their repetition of optional times included in
the grammar rules and forced alignment segmentation.
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Table 1: Proportions of correct segmentation for
different speech feature extraction methods

Speech feature extraction methods
Tolerance (ms)

MFCC PLP MEL
<= 10 0.31 0.48 0.38
<= 20 0.61 0.72 0.60
<=30 0.78 0.84 0.73
<= 40 0.86 0.90 0.82
<= 50 0.90 0.93 0.88
<= 60 0.93 0.94 0.91
<= 170 0.95 0.95 0.93
<= 80 0.95 0.95 0.93
<= 90 0.96 0.95 0.94
<= 100 0.96 0.96 0.94

The recordings of the 24 male and 24 female speakers of the BABEL speech
sound database provided the training samples, and recordings of 6 male and 6
female speakers provided the testing samples. A 10 ms time frame was chosen and
the previously used speech feature extraction procedures were examined as feature
vectors from a segmentation aspect:

e MFCC: 12 coefficients and log energy give the 13 components,
e PLP: 12 coefficients and log energy,

¢ MEL: logarithmic band energy dividing the 125 Hz — 8 kHz frequency domain
into 30 part bands on the basis of the mel-scale.

On the basis of the results (Table 1), PLP speech feature extraction was chosen
here and will be referred to as HMM in the following. Since the ultimate objective
of the method to be developed is automatic assessment, in speech feature extraction
the centre of phones is searched for, thus the stationary phase if there is one will
characterise the given speech sound [14]. Therefore a segmentation error is regarded
as serious or less serious depending on its sign. If the segmenter puts the beginning
of a speech sound further forward of the real limit, the error is in the incorrect
direction, for the erroneous limit lies outside of the interval of the desired speech
sound. Again the error is more serious if the end of the speech sound is put farther
back of the real limit. The error is not so serious if the limit is placed farther back
of the real beginning or further forward of the real ending within the speech sound -
examined (Figure 11).
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Figure 11: Segmentation error by error direction

The following tables (Table 2-5) sum up the results of the segmentations per-
formed by the different procedures concerning the 3,694 speech sounds included in
the 300 words.

Table 2: Results of the acoustic-phonetic (AF) segmentation procedure

AF segmentation procedure

Tolérance (ms) Initial Final
Incorrect Correct | Correct Incorrect

0 1785 62 1782 65

20 1747 100 1795 52

40 1667 180 1801 416

60 1500 347 1805 42

80 1340 507 1811 36

100 1187 660 1812 35

200 692 1155 1825 22

Table 3: Results of the HMM segmentation procedure

HMM segmentation procedure

Initial Final
Tolerance (ms)

Incorrect Correct | Correct Incorrect
0 1327 528 1569 286
20 620 1235 1669 186
40 296 1559 1734 121
60 190 1665 1761 94
80 142 1713 1780 75
100 122 1733 1792 63
200 66 1789 1824 31
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Table 4: Results of the ADTW segmentation procedure

ADTW segmentation procedure

Tolerance (ms) Initial Final
Incorrect Correct | Correct Incorrect
0 137 1718 1717 138
20 97 1758 1753 102
40 80 1775 1776 79
60 64 1791 1791 64
80 54 1801 1803 52
100 46 1809 1815 40
200 25 1830 1838 17

Table 5: Number of errors outside of the time interval of
the speech sound from the shifts in the correct direction in the tables above

. Initial Final
Segmentation Procedure Shifted | Shifted
AF segmentation procedure 15 1258

HMM segmentation procedure 135 42
ADTW segmentation procedure 39 77

The results show that ’incorrect direction’ errors definitely lying outside of the
time interval of the speech sound are a magnitude smaller for the proposed ADTW
segmentation than for the AF procedure not adapted to poor quality speech or for
the HMM procedure. ’Correct direction’ errors, exceeding the time length of the
speech sounds are also the fewest also with the ADTW method.

The AF segmentation considered the speech sounds shorter than their real
length: placing the beginning of a speech sound is shown in the column of er-
rors in the incorrect direction of Table 3, placing the end of a speech sound more
forward is located in the field outside of the domain of Table 5. In HMM segmen-
tation mainly the accuracy of marking the limits at the beginning of speech sounds
lags behind the results of the ADTW procedure.

ADTW segmentation is utilized in automatic speech assessment. Speech sam-
ples of hearing impaired children were evaluated by the 36 assessors. The average
scores served as a reference. The scores of the automatic assessment were closer
to the averages than that of 28 subjects out of the 36 ones, while one teacher and
seven students reached scores closer to the averages [13].
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7 Summary

Adaptation of dynamic time-warping has been presented with the objective of a
more efficient segmentation of the voices of hearing-impaired children. Pauses in-
serted between the speech sounds which can be repeated arbitrarily are able to
handle the long pauses of halting speech. Time frames that can be repeated twice
— that can be included a maximum of three times — make it possible to follow
extremely slow speech. The acoustic-phonetic features used as inputs of the algo-
rithm are able to create perceptible activity at the outputs of the neural networks,
thus a statistical model is incorporated into the input data. The proposed method
of reference generation does not require the recording of reference speech samples,
thus eliminating the speaker-dependence of the reference sample.
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