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Nonlinear Symbolic Transformations for Simplifying 
Optimization Problems* 

Elvira AntaN and Tibor Csencles1" 

A b s t r a c t 

T h e theory of nonlinear optimization tradit ionally studies numeric com-
puta t ions . However, increasing a t tent ion is being paid to involve computer 
algebra into mathematical programming. One can identify two possibilities 
of applying symbolic techniques in this field. Computer algebra can help the 
modeling phase by producing a l ternate mathemat ica l models via symbolic 
t ransformations. The present paper concentrates on this direction. On the 
other hand, modern nonlinear solvers use more and more information abou t 
the s t ruc ture of the problem through the optimizat ion process leading t o hy-
brid symbolic-numeric nonlinear solvers. 

Th is paper presents a new implementat ion of a symbolic simplification al-
gor i thm for unconstrained nonlinear opt imizat ion problems. The program can 
automatical ly recognize helpful t ransformat ions of the mathemat ical model 
and detect implicit redundancy in the objective function. 

We report computat ional results obta ined for s tandard global optimization 
test problems and for other artificially constructed instances. Our results 
show tha t a heuristic (mult is tart) numerical solver takes advantage of the 
automatical ly produced t ransformations. 

New theoretical results will also be presented, which help the underlying 
me thod to achieve more complicated t ransformat ions . 

K e y w o r d s : nonlinear optimization, reformulation, Mathemat ica 

1 Introduction 
Application of symbolic techniques to rewrite or solve optimization problems are 
a promising and emerging field of mathematical programming. Symbolic prepro-
cessing of linear programming problems [11] is the classic example, this kind of 
transformation was implemented in the AMPL processor about twenty years ago 

"This work was partially supported by the Grant TÁMOP-4.2.2.A-11/1/KONV-2012-0073. 
tUniversity of Szeged, Institute of Informatics, H-6720 Szeged, Árpád tér 2, Hungary, El-mail: 

antaleQinf.u-szeged.hu, csendesflinf.u-szeged.hu 
t Kecskemét College, Faculty of Mechanical Engineering and Automation, Hungary 
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as an automatic "presolving" mechanism [7, 8]. A more recent example is the assis-
tance of (mixed-) integer nonlinear programming solvers, as in the Reformulation-
Optimization Software Engine of Liberti et al. [10]. In this field, the relaxation of 
some constraints or increasing the dimension of the problem could be reasonable 
to achieve feasibility. 

However, as the work of Csendes and Rapcsak [5, 14] shows, it is also possible to 
produce equivalent models of an unconstrained nonlinear optimization problem via 
symbolic transformations automatically, while bijective transformations between 
the optima of the models are constructed. This method is capable of eliminating 
redundant variables or simplifying the problem in other ways. 

The present paper is organized as follows. Section 2 summarizes briefly the 
results of Csendes and Rapcsak [5, 14] and presents a new, proper Mathemat-
ica implementation of their method together with a comparison with the earlier 
reported Maple prototype [2]. Section 3 presents computational results to show 
that the automatically produced transformations can help a traditional heuristic 
numeric solver, namely Global [4], to reduce computation times and function eval-
uations. Section 4 extends the theory of the mentioned method in two directions: 
describes parallel substitutions and introduces constraints into the model. 

2 The Simplifier Method 
2.1 Theoretical Background 
We concentrate on unconstrained nonlinear optimization problems of the form 

mm f(x), (1) 

where / ( x ) : 1R™ R is a smooth function given by a formula, i.e. a symbolic 
expression. "Expression" denotes a well-formed, finite combination of symbols 
(constants, variables, operators, function names and brackets), usually realized in 
computer algebra systems with a list (for example, a nested list of pointers in 
Mathematica [20]), or a directed acyclic graph [15]. In the subsequent description, 
vectors are denoted by boldface letters, sets by capital letters, and functions by 
small letters. The meaning of Zi depends on context: it denotes the ith element of 
a vector z or an ordered set Z. We will use the function notation v(z) to represent a 
v expression, which can contain any variable Zi, any real constant, and any function 
name. 

The simplifier method aims to recognize, whether (1) could be transformed into 
an equivalent formulation, which is better in the following senses: the new formu-
lation has fewer arithmetic operations to execute during evaluation, the dimension 
of the problem is less, or it is simpler to solve for another reason. Equivalent means 
here, that a bijective transformation can be given between the optima of the original 
and those of the transformed problem. 

Csendes and Rapcsak [5] showed that an objective function g{y) is equivalent 
to f ( x ) in (1), if we get g(y) by the following transformation: 



Nonlinear Symbolic Transformations for Simplifying Optimization Problems 717 

• apply a substitution in f(x): 

Di := h{x) , 1 < i < n, 

where h(x) is a smooth function with a range R, and h(x) is strictly monotonic 
as a function of at least one variable Xi, 

• rename the remaining variables: 

Vj :=xj i j = 1, • • •, i - 1, f + 1, • • •, n, 

and 

• omit the variables t/j without presence in the evolving objective function. 

The term appropriate substitution will refer to an y, = h(x) substitution, where 

• h(x) satisfies the criteria being smooth, monotonic in at least one variable 
Xi, and its range is equal to R, 

• h(x) covers (characterizes all occurrences of) at least one variable x,, that is, 
Xi could be removed totally from the optimization problem by substituting 
h(x) by yi, and 

• yi = h(x) is not a simple renaming, that is, h(x) ^ Xi, i — 1,... ,n. 

After applying a transformation with an appropriate substitution yi = h(x), y 
has at most the same dimension as x. Redundant variables can be eliminated, if 
h(x) covers two or more variables. In other words, we have the possibility to recog-
nize whether the model can be formalized with a smaller set of variables. However, 
these are sufficient, but not necessary conditions for simplifier transformations. 

For example, consider f(x\,£2) = {x\ -I- X2)2. It is equivalent to minimize 
<7(3/1) = y\, and the optimal values of the original variables x\ and X2 can be set 
by the symbolic equation y\ = x\ + x^, which is an appropriate substitution. In 
fact, we can handle an infinite number of global optimum points in this way, which 
is impossible for any numerical solver. 

One of the main goals of the simplifier method is to find appropriate substitu-
tions which would eliminate variables. Csendes and Rapcsak [5] with their Assertion 
2 suggest to compute the partial derivatives df(x)/dxi, factorize them, and search 
for appropriate substitutions in the factors. 

Assertion 2 [5]. If the variables Xi and Xj appear everywhere in the expression of 
a smooth function f ( x ) in a term h(x), then the partial derivatives df(x)/dxi and 
df(x)/dxj can be factorized in the forms (dh(x)/dxi)p(x) and (dh(x)/dxj) q(x), 
respectively, andp{x) = q(x). 

If df(x)/dxi cannot be factorized, then any appropriate substitution that is 
monotonic as a function of aq is linear as a function of Xi. 
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For illustrative purposes, let us consider the following problem: 

min 30 • (5x! + e1+x2) + 20 • x3 , 
x6R3 

s.t. ln(5xi + e1+X2) + x3 > 5. 

This example can be a tiny part of a process synthesis problem. Automatic model 
generator tools in the field of process synthesis produce several types of multiplicity 
and redundancy [6]. Among other redundancies, it is possible for some variables 
denoting chemical elements to appear exclusively in the chemical formula of a given 
material. In our example, x\ and X2 appear everywhere in the term h{x) = 5xi + 
gi+x2 p o r j-pe gapg 0f simplicity, the constraint can be reformulated by adding a 
penalty term [9] to the objective, so we need to minimize 

fix) = 30 • (5H + e1+X2) + 20 • x3 + a (ln(5®i + e1 + X 2) + x 3 - 5 - x 4 ) 2 , 

where Xi, X2, x3 are real variables based on physical parameters, <J is a penalty con-
stant and X4 is a slack variable. Due to Assertion 2, df(x)/dxi can be transformed 
into the form ( d h ( x ) / d x i ) -p(x), similarly df(x)/dx2 = (dh(x)/dx2) • q(x), while 
p(x) = q(x). In our example dh(x)/dx 1 = 5, dh(x)/dx2 = e1 + X 2 , and 

Based on the above result, we created a computer program to produce equiva-
lent transformations automatically for the simplification of unconstrained nonlinear 
optimization problems. The naive implementation would realize the following steps: 

1. Compute the gradient of the objective function. 

2. Factorize the partial derivatives. 

3. Collect appropriate substitutions which contain Xi, into a list 

a) Initialize k to be the empty set. 
b) If the factorization was successful for df(x)/dxi, then extend k with the 

respective integrals of the factors. 
c) Extend U with the subexpressions of f ( x ) that are linear in Xj. 
d) Drop the elements of k which do not fulfill the conditions of an appro-

priate substitution (the elements of k need to be monotonic in x»). 

4. Create a list S by applying all proper combinations of the appropriate sub-
stitutions from L = | J U, i = 1 , . . . , n to f(x). 

5. Choose the least complex element of 5 to be the simplified objective function. 

p(x) = q(x) = 
2 (75xi + 15el+X2 + a (ln(5xi + e1 + X 2) + x 3 - 5 - x 4 ) ) 

5xi + e1 + X 2 

6. Solve the problem with the simplified objective function (if possible). 
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7. Give the solution of the original problem by executing inverse transformations. 

Most of the required steps of the algorithm (partial differentiation, factorization, 
symbolic integration and substitution) are realized in modern computer algebra 
systems as reliable symbolic computation methods. On the other hand, our first 
implementation in Maple showed that even one of the market-leader computer 
algebra systems has serious deficiency to our requirements in point of substitution 
capability and interval arithmetic with infinite intervals [2]. 

Actually, the exact range calculation for a nonlinear function has the same com-
plexity as computing the global minimum and maximum. However, naive interval 
inclusion can be applied to verify whether the range of a subexpression is equal to R. 
Naive interval inclusion is exact for a single use expression (SUE, an expression that 
contains any variable at most once), but it might produce overestimation for more 
complex expressions [12]. The possible overestimation can lead to false-positive 
answers in the range calculation. In other words, L can contain some substitutions 
with a range which is not equal to R. It means that an additional verification for 
the range of the produced non-SUE substitutions would be required. On the other 
hand, most of the substitutions produced in our tests were SUEs. As an alternative, 
real quantifier elimination [17, 19] would be an applicable symbolic technique for 
range calculation. 

Naive interval inclusion can also be used for the monotonicity test. A real 
function / : R n —> R is monotone if any x,y 6 R™ such that x < y satisfy 
f ( x ) < f{y)- Let us use the product order here: ( x i , . . . , x n ) < (yi, •. • ,yn) if 
Xi < yi, i = 1,... ,n. In the discussed application we need to test whether a 
function hi(x) is strictly monotonic as a function of a variable x«. Therefore we 
compute, whether the naive interval inclusion of the partial derivative dhi(x)/dxi 
contains zero. This approach fits the mathematical definition of monotonicity and 
is expressive, as a strictly monotone function has a single region of attraction. Un-
fortunately, overestimation of the naive interval inclusion for non-SUEs can produce 
false-negative answers in the monotonicity test, so even some monotonic substitu-
tions can be dropped. 

Step 3 and Step 4 can be combined to speed up the process and also to ensure 
that a proper substitution set is applied to f{x). We call a well ordered set H of 
appropriate substitutions proper if all the formulas hi{x) € H can be substituted 
by new variables at the same time in a function f(x). That is, the expressions 
Vhj(x) € H do not overlap in the computation tree of f(x). Without this property, 
not all substitutions y^ = hi(x), hi(x) e H could be applied. For example, in 
f ( x ) = (xi + x2 + x3)2, the substitutions yi = x\ + X2 and y2 = x2 + x3 would 
be also appropriate, but H = {xi + x2,x2 + x3} is not a proper substitution set 
because x3 + x2 and x2 + x3 both refer to the same occurrence of x2. In fact, we 
prefer to choose the most complex h(x) formula to eliminate a variable, so in this 
example, the substitution y3 = xi+x2 + x3 should be accepted. At this point, and 
in Step 5, an easily applicable complexity definition for expressions is needed. In 
our implementation, an expression is said to be more complex than an other one if 
its representation (a list of pointers in Mathematica) is longer. 
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2.2 Implementation in Mathematica 
Compared to our first implementation in the computer algebra system Maple [2], 
the new platform Mathematica has several advantages. First of all, the substitution 
procedures are much better, since the Mathematica programming language is based 
on term-rewriting. In other words, the capabilities of the basic substitution routine 
of Mathematica can be extended with regular expression based term-rewriting rules. 
We have written a specialized substitution routine in about 50 program lines. A 
dozen (delayed) rules are introduced, and we have combined four different ways 
for evaluating them, using the expanded, simplified, and also the factorized form 
of the formula. It is probably the most important part of the program, as simple 
refinements could have substantial influence on the result quality of the whole 
simplification process. 

Mathematica has also better interval arithmetic implementation: this was cru-
cial for quick and reliable range calculation on the expressions to be substituted. 
Naive interval inclusion for the enclosure of the ranges have been realized with the 
standard range arithmetic of Mathematica. 

Furthermore, our new program supports the enumeration of all possible sub-
stitutions in Step 3, and it still keeps up in running time with the simpler Maple 
version, which has used simple heuristics to choose one possible substitution. The 
reasons for that are the application of adequate programming techniques, and some 
nice properties of the Mathematica system, such as automatic parallelization on list 
operations. However, a further study on an efficient substitution selection strategy 
would be welcome. 

Let us mention that Mathematica tends to include more and more expert tools 
to ensure the possibility of writing efficient program code. For example, it has pro-
vided utilities to exploit the parallel computing abilities of the graphics processing 
unit (GPU) using CUDA or OpenCL technology since 2010. 

Demonstration of the presented algorithm and our newest program codes will 
be available at the following homepage: 

h t tp : / /www.inf .u-szeged.hu/-csendes/symbsimp/ 

2.3 Improvements Compared to the Maple Version 
Some simple examples follow to demonstrate the advantages of our new Mathemat-
ica program compared to the Maple version. 

These examples were generated by us and were the problematic ones out of 
our self-made collection in the test phase of the Maple implementation, so it was 
obvious to use them to test the new program. See Table 1 for the Maple-based 
results and Table 2 for the results obtained by the Mathematica version. For the 
test cases not discussed, the two implementations gave the same output. 

Remark, that the renaming convention of Csendes and Rapcsak [5] is slightly 
modified in the following tables. Simple renaming (yj := Xj) is not applied in the 
hope that more elaborated substitutions are emphasized in this way. 

http://www.inf.u-szeged.hu/-csendes/symbsimp/
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Table 1: Results of some synthetic tests solved by our old, Maple based implemen-
tation 

ID Function / Function g Substitutions Problem Result 
type type 

Sin2 

Expl 
Exp2 
Sql 
Sq2 

SqCosl 

SqExp2 

SqExp3 

2x3 
•sin(2xi + x2) 

2eXl+X2 

2 2 xlx2 
(xix2 + X3)2 

(xix2 + X3)2 

— COS (x 1X2) 
(xi +X2)2 

+ 2 e l e x i + x 2 

(Xi + X2)2 

-y2e1+Xl+X2 

2yi 

ey 1 
2yi 
none 
v\ 
vl - cos(yi) 

y\ + 2e1eVl 

none 

Vi = x3 
• sin(2xi + X2) 
yi=x 1 + x2 
Vl = e

xl+x2 
none 
2/1 = X1X2 + X3 
2/1 = xix2 , 
2/3=2/1+ x3 
2/1 = xi + x2 

none 

A 
A 
D 
A 
A 

1 
3 
2 
1 

1,3 

Table 2: Results of some synthetic tests solved by our new, Mathematica based 
implementation 

Function / Substitutions Problem Result ID Function / Function g Substitutions type type 
Sin2 2X3 2x3 sin(yi) 2/1 = 2X! + x2 A 1 

• sin(2xi + x2) 
Expl £XI+X2 eyi 2/1 = xi + x2 A 1 

Exp2 2GXL+X2 2eyi 2/1 = xi + x2 A 1 

Sql x\x2 none none D 
Sq2 (xix2 + X 3 ) 2 y\ 2/1 = X1X2 + X3 A 1 

SqCosl (xix2 + X3)2 y\ - cos(xix2) 2/1 = X1X2 + X3 A 1 

— COS(XIX2) 

SqExp2 (X! + X 2 ) 2 1ft + 2e1+Vl 
2/1 = Xl + x2 A 1 

+2e1eXl+X2 

SqExp3 (xi+x2)2 2/i + 2el+Vl 2/1 = xi + x2 A 1 

+2e1 + X l + X 2 
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We apply again the evaluation codes from [2], which describe the quality of the 
results and the nature of the problem. These codes appear in the "Problem type" 
and "Result type" columns of Tables 1 and 2. The letters characterize the actual 
problem: 
(A). Simplifying transformations are possible according to the presented theory. 

(B). Simplifying transformations could be possible by extension of the presented 
theory. 

(C). Some helpful transformations could be possible by extension of the presented 
theory, but they do not necessarily simplify the problem (e.g., since they 
increase dimensionality). 

(D). We do not expect any helpful transformation. 
The results are described by the second indicator: our program produced 

1. proper substitutions, 

2. no substitutions, or 

3. incorrect substitutions. 
As we had discussed earlier [2], Maple provides incorrect interval arithmetic, so we 
needed to use heuristics in the Maple implementation for range calculation. Also 
the algebraic substitution capabilities of Maple are weak. Almost all mistakes of 
the early implementation originated from these two reasons. 

Code "2" is also used when only constant multipliers are eliminated. 
In short, A1 means that proper substitution is possible and it has been found by 

the algorithm, while D2 means that as far as we know, no substitution is possible, 
and this was the conclusion of the program as well. The unsuccessful cases are 
those denoted by other codes. 

The differences between the obtained results are explained next. For the Sin2 
test problem, a proper simplification was obtained by the new implementation, 
while the old one conveyed a more complex, but non-monotonic substitution. 

In Exp2, eXl+X2 does not have a range equal to R, but the heuristic range 
calculation method used in Maple recognized it as an appropriate substitution. 
The range calculation subroutine in Mathematica proved to be better in this case. 

In Sql, the Maple implementation was not able to recognize the subexpression 
x\x2 in the expression x\x\, but was able to recognize x\x2 + £3 in its square 
in Sq2. Since the second is not a multiplication type expression but a sum, it is 
represented in a different way. In Mathematica, regular expressions can be used to 
produce good substitutions, and our specialized substitution routine worked well 
for this problem. On the other hand, X1X2 is not monotone as a function of X\ or 
x2 for the whole search interval (supposed to be R), so it cannot be chosen as an 
appropriate substitution. 

Also for the SqCosl test problem, the new, Mathematica-based method applied 
a routine to check whether the substitution expression is monotone, so 3/1 = x \ x 2 
was eliminated from the substitution list. 
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In the cases SqExp2-3, also the weakness of the expression matching capability 
of Maple can be observed, as it was not able to recognize x\ + x2 in e 1 + l 1 +X2, only 
in e1exi+x2. 

2.4 Computational Test Results on Global Optimization 
Problems 

Standard and frequently used global optimization test problems were used to study 
the capabilities and limitations of the symbolic simplification algorithm. The test 
set was extended in comparison to our earlier paper [2]. The description and even 
various implementations of the examined problems can be found in several resources 
and online collections. For example, the compact mathematical formulation and 
known optima of all of the mentioned problems can be found in Appendix A at 
Pal [13]. Our computational results are summarized in Table 3. 

ID Dim. New variables Substitutions Problem 
type 

Result 
type 

Transform, 
time 

BR 2 y = [zi,3/i] 2/1 = x2 A 1 0.1092 
- 6 + (5/tr)xi 
-0.129185x? 

Easom 2 y = x none D 2 0.1404 
G5 5 y = x none D 2 2.7456 
G7 7 y = x none D 2 36.5821 
GP 2 y = x none D 2 0.4212 
H3 3 y = x none D 2 16.3488 
H6 6 Stopped. Stopped. D 2 1800 < 
LI 1 y = x none D 2 0.0312 
L2 1 y = x none D 2 0.6552 
L3 2 y = x none D 2 2.3088 
L5 2 y = x none D 2 15.3348 
L8 3 y = [2/l,!/2,2/3] 2/1 = A 1 13.1820 

(xi - l ) / 4 , 
2/2 = 
(*2 - l ) / 4 , 
2/3 = ( x 3 - l ) / 4 

L9 4 y = 2/1 = A 1 174.7047 
[2/1,2/2,2/3,2/4] (*l - l ) / 4 , 

2/2 = 
(x2 - l ) / 4 , 
2/3 = 
(x3 - l ) / 4 , 
2/4 = ( X 4 - 1 ) / 4 

L10 5 Stopped. Stopped. A 1 1800 < 
L l l 8 Stopped. Stopped. A 1 1800 < 
L12 10 Stopped. Stopped. A 2 1800 < 
L13 2 y = x none D 2 0.4992 
L14 3 y = x none D 2 0.7800 
L15 4 y = x none D 2 1.0296 
L16 5 y = x none D 2 2.0904 
L18 7 y = x none D 2 32.1517 
Sch21 
(Beale) 2 y = x none C 2 0.1248 
Sch214 
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(Powell) 4 y = X none D 2 0.0936 
Sch218 
(Matyas) 2 y = x none D 2 0.0156 
Sch227 2 y = x none D 2 0.0624 
Sch25 
(Booth) 2 y = X none C 2 0.0312 
Sch31 3 y = x none D 2 0.0468 
Sch31 5 y = X none D 2 0.0936 
Sch32 2 y = [j/i, 1/2] 2/1 = xi — x | , 

2/2 = X2 - 1 
A 1 0.0468 

Sch32 3 y = x none D 2 0.0312 
Sch37 5 y = x none D 2 0.0936 
Sch37 10 y = x none D 2 0.2808 
SHCB 2 y = x none D 2 0.0156 
THCB 2 y = X none D 2 0.0156 
Rastrigin 2 y = X none C 2 0.0936 
RB 2 y = [2/1,1/2] 2/1 = xf - x 2 , 

2/2 = 1 — xi 
A 1 0.0440 

RB5 5 y = [xi ,x 2 , 
X3,X4,2/l] 

2/1 = ~ xs A 1 0.3080 

S5 4 y = x none D 2 225.5018 
S7 4 y = x none D 2 1,010.2431 
S10 4 Stopped. Stopped. D 2 1800 < 
R4 2 y = x none C 2 0.2964 
R5 3 y = [xi, X2.2/2] 2 / 1 = 3 + x3, 

2/2 = (T/4)2/I 
A 1 13.8216 

R6 5 y = [xi ,x2 , 
x3, X4,2/2] 

2 / 1 = 3 + xs, 
2/2 = (1/4)2/1 

A 2 995.6883 

R7 7 Stopped. Stopped. A 2 1800 < 
R8 9 Stopped. Stopped. A 2 1800 < 

Table 3: Results for the standard global optimization test functions 

In the common cases, most of our new results are identical to what we have 
obtained with the earlier, Maple-based implementation. The two differences are 
reported here. For the Schwefel-227 test problem, the Maple version gave the 
substitution yi = xf + ~ 2xi. This expression characterizes all occurrences of 
X2, but it is not monotonic in any variable, so the Mathematica version had not 
suggested it for substitution. For Schwefel-32 (n=2), Mathematica found a good 
substitution, while Maple did not. 

All transformations were performed with Mathematica 9.0 under time con-
straints. In those cases, in which the complete simplifier program had not stopped 
in 1800 seconds, the message "Stopped." was written to the New variables and 
Substitutions columns and "1800 <" to the Transformation time column of Ta-
ble 3. The numerical tests ran on a computer with an Intel i5-3470 processor, 8 
GB RAM and 64-bit operating system. 

Most of the running time was used by the symbolic formula transformations of 
the extended substitution routine. In the problematic cases, usually symbolic fac-
torization consumed 1800 seconds. While every transformation in Table 2 finished 
in less than 0.2 seconds, the running time for the standard test cases vaxy more. 
24 of 45 test cases ran in one second, further 10 analysis required less than one 
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minute, but 7 test cases would require more than a half hour to finish. 

Altogether, 45 well-known global optimization test problems were examined, 
and our Mathematica program offered equivalent transformations for 8 cases. In 
other words, our method suggested some simplification for 18% of this extended 
standard global optimization test set. The next section presents numerical results 
to demonstrate that these transformations could be useful for a global optimization 
solver. 

3 On the Advantages of the Transformations 

This section presents numerical test results to verify the usefulness of the trans-
formations of Tables 2 and 3. We compare the results of a numerical global opti-
mization solver for the minimization of the original and the transformed problem 
forms, for every cases of Tables 2 and 3 where our algorithm produced an equiv-
alent transformation. The numerical indicators, as reached global optima values, 
running times, and function evaluation numbers are presented in Tables 4, 5, and 6. 
Boldface denotes the better options of related numbers. 

Table 4: Optimal function values found by Global 
Original problem Transformed problem 

ID Fbest Fmean Fvar Fbest Fmean Fvar 
Expl 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Exp2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Sq2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
SqCosl -1.0000 -0.7671 0.1899 -1.0000 -0.9922 0.0700 
SqExp2 3.0000 3.0000 0.0000 3.0000 3.0000 0.0000 
SqExp3 3.0000 3.0000 0.0000 3.0000 3.0000 0.0000 
CosExp -2.0000 -1.6166 0.4397 -2.0000 -1.5896 0.2781 
BR 0.3979 0.3979 0.0000 0.3979 0.3979 0.0000 
L8 0.0000 2.1386 5.6861 0.0000 2.2651 6.8558 
L9 0.0000 2.4410 8.7591 0.0000 2.3897 10.1134 
RB 0.0000 19.7318 1094.1167 0.0000 0.0000 0.0000 
RB5 0.0000 1.8510 3.8703 0.0000 1.8400 3.8677 
R5 0.0000 1.9017 26.3097 0.0000 0.0000 0.0000 
R6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Sch3.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 



726 Elvira Antal and Tibor Csendes 

Table 5: Number of function evaluations of Global 
Original problem Transformed problem 

ID NumEvalmean NumEvalvar NumEvalmean NumEvalvar 
Expl 87 2,280 51 188 
Exp2 102 2,489 55 327 
Sq2 478 57,927 52 38 
SqCosl 1467 463,242 1,131 279,915 
SqExp2 155 4,903 61 142 
SqExp3 151 5,282 61 142 
CosExp 1,110 1,805,418 631 154,691 
BR 136 1,504 115 769 
L8 785 266,138 797 242,593 
L9 2,606 1,838,627 2,371 1,343,151 
RB 749 71,762 127 976 
RB5 3,162 693,878 2,634 709,652 
R5 1,908 1,644,365 2,957 581,382 
R6 6,001 223,269 6,069 269,551 
Sch3.2 119 1,290 59 121 

Table 6: Running times of Global (seconds) 
Original problem Transformed problem 

ID Tmean Tvar Tmean Tvar 
Expl 0.0289 0.0004 0.0113 0.0000 
Exp2 0.0346 0.0005 0.0124 0.0000 
Sq2 0.0919 0.0029 0.0072 0.0000 
SqCosl 0.1822 0.0083 0.1406 0.0047 
SqExp2 0.0270 0.0002 0.0088 0.0000 
SqExp3 0.0264 0.0002 0.0088 0.0000 
CosExp 0.2139 0.0429 0.1623 0.0134 
BR 0.0241 0.0001 0.0195 0.0000 
L8 0.0992 0.0046 0.0990 0.0040 
L9 0.2771 0.0220 0.2445 0.0150 
RB 0.0857 0.0009 0.0241 0.0001 
RB5 0.2705 0.0050 0.2089 0.0045 
R5 0.2407 0.0286 0.4567 0.0159 
R6 0.7830 0.0136 0.7785 0.0047 
Sch3.2 0.0187 0.0001 0.0116 0.0000 
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We performed 100 independent runs for every test cases, with the Matlab im-
plementation of a general multi-start solver with a quasi-Newton type local search 
method, Global with the BFGS local search [4]. The tests were run on the same 
computer, which was described in Subsection 2.4, with 64-bit MATLAB R2011b. 
The parameters of Global were set to the defaults. 

The solver needs an initial search interval for every variable, so we set the 
[—100,100] interval as initial box of every variable in our self-made test cases (Ta-
ble 2), and the usual boxes for the standard problems (see for example Appendix 
A in [13]). In the transformed cases, the bounds were transformed appropriately. 

Table 4 shows the optimal function values reached by Global with the above 
mentioned parameters. Fbest denotes the minimal optimum value, Fmean is the 
mean of the reached optimum values in average of the 100 runs, and Fvar denotes 
the variance of the reached minimum values. The real global optimum values were 
reached in every independent run for both of the original and the transformed forms 
in 8 of 15 cases. In the cases RB and R5, only the transformed form helped the 
solver to reach the minimum value in all 100 runs. Totally in 5 of 15 cases, the 
transformed form was easier to solve with Global, the two forms were equivalently 
difficult to solve in 8 cases, but in 2 cases the original form was slightly more 
favorable. 

Let us compare the number of function evaluations required by the solver in a 
run (Table 5). NumEvalmean refers to the mean of the number of function evalu-
ations, and NumEvalvar refers to the variance of the same indicator. The trans-
formed problem needed fewer function evaluations in 12 of 15 cases, and in some 
cases it outperformed the original form very well. For example, Global needs only 
17% of the original function evaluations for finding the optimum of the Rosenbrock 
problem in the transformed form, 80% of the original with the transformed Branin, 
and 11% of the original function evaluations with the transformed Sq2 problem. 
The original form of L8 and R6 was slightly better for the solver in terms of func-
tion evaluations, and at L8 also in founding minimum values. The original form 
of R5 needed fewer function evaluations, but did not enable the solver to find the 
global optima in every run, while the transformed form did. 

Regarding running times (Table 6), the transformed problem form allows Global 
to run a bit quicker than on the original problem form in almost every case. The 
average relative improvement in the running times of the whole test set is 31.5%. 
However, this indicator is better for our self-made problems (56.9%) and worse for 
the standard problems (9.3%). 

We can conclude that the equivalent transformations of Table 2 and Table 3, 
which seem to be very simple, have a big influence on the performance of a tradi-
tional global optimization solver. 
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4 Theoretical Extension 
We generalize the theoretical results of the papers of Csendes and Rapcsak [5, 
14] to allow parallel substitutions and to cover constrained nonlinear optimization 
problems. 

Let us start with an example for parallel substitutions. Consider the following 
objective function: 

f(xi,x2, x3) = {x\ +x2 + x3)2 + (xi - 2X2 - 3x3)2 . 

It is equivalent to minimize g{yi,y2) = y2 +y2, which is a two-dimensional problem 
against the original three-dimensional one. Neither y3 = x3 + x2 + x3 nor y2 = 
XI — 2x2 — 3X3 is appropriate in the earlier meaning, as they are smooth and 
monotonic in every variable, but none of the variables are covered by y\ or y2. 
However, y\ together with y2 characterizes all occurrences of x i ,x2, and x3 , and 
H = {x i+x2+x 3 , x\ — 2x2—3X3} is a proper set of substitutions, resulting dimension 
reduction of the aforementioned problem. The theoretical extension aims to handle 
this kind of parallel substitutions. 

The original nonlinear optimization problem that will be simplified automati-
cally now can include constraints, too: 

/ ( * ) 
= 0 (2) 

<0 , 

where f(x),Ci(x),Cj(x) : R n —» R are smooth real functions, given by a formula, 
and i = 1 , . . . ,pi and j — p3 + 1 , . . . ,p2 are integer indexes. 

The transformed constrained optimization problem will be 

9(y) 

= 0 (3) 
<0 , 

where g(y) : R m —> R is the transformed form of f ( x ) , and di(y), dj(y) : R m R 
are again smooth real functions, the transformations of the constraints cfyx), Cj(x), 
i = l,...,pi and j =pi + l,...,p2. 

Denote by X the set of variable symbols in the objective function f{x) and in 
the constraint functions Ck(x), k = 1 , . . . ,p2. Y will be the set of variable symbols in 
the transformed functions g(y), and dk(y), k = 1,... ,p2. Remark, that dimension 
increase is not allowed for the transformation steps, so m < n and |Y| < |W|. At 
the beginning of the algorithm, Y := X. 

Denote the set of the expressions on the left-hand side of the original constraints 
b y C : 

C := {ck(x) : R n —> K , k = 1,... ,p2}. 

mm 
xeR™ 
Ci(x) 
CJ(X) 

mm 
ye Rm 

di(y) 
dj(y) 
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Denote by F the expression set of all subexpressions (all well-formed expressions 
that are part of the original expressions) of f ( x ) and CK(x) £ C. 

The crucial part of our algorithm is the transformation step. If an H c F 
expression set covers aV Q X variable set (that is, none of v £ V happens out of 
H in the original expression of f{x) or Ck(x) £ C), and \H\ < |Vj, then apply every 
substitutions, related to H, to f ( x ) and C as follows. Substitute a new variable y, in 
place of hi(x) for all hi(x) £ H in f ( x ) and also in every Q,(X) £ C. Furthermore, 
let us update the variable set of the transformed problem: Y := (Y U y f ) \ V. 

This will be referred to as a transformation step (corresponding to H). The 
special case \H\ — |F | = 1, pi = p2 = 0 belongs to the algorithm given by Csendes 
and Rapcsak [5] for the unconstrained case. 

Further on, the notation y := H(x) will be used as an abbreviation for the 
following: yi := hi(x), i = 1 , . . . , \H\. 

The following assertion is a straightforward generalization of Assertion 1 in [5]. 

Assertion 1. If a variable Xi appears in exactly one term, namely in h{x), ev-
erywhere in the expressions of the smooth functions f ( x ) and CK(x), k = 1,... ,p2, 
then the partial derivatives of these functions related to Xi all can be written in the 
form (dh(x)/dxi)p(x), where p(x) is continuously differentiable. 

Recall, that an ordered set H of substitutions is called proper, if all expressions 
hi (x) £ H are such that they can be substituted by new variables at the same time. 
Ordering is required only for univocal indexing of the substitutions. 

Theorem 1. If H is proper and all hi(x) £ H expressions are smooth and strictly 
monotonic as a function of every variable v £ V C X, the cardinality of H is 
less than or equal to the cardinality ofV, and the domain of hi(x) is equal to R 
for all hi(x) £ H, then the transformation step corresponding to H simplifies the 
original problem in such a way that every local minimizer (maximizer) point x* of 
the original problem is transformed to a local minimizer (maximizer) point y* of 
the transformed problem. 

Proof. Consider first the sets of feasibility for the two problems. The substitution 
equations ensure that if a point x was feasible for the problem (2), then it remains 
feasible after the transformations for the new, simplified problem (3). The same is 
true for infeasible points. 

Denote now a local minimizer point of f ( x ) by cc*, and let y* := H(x*) be the 
transformed form of x*. As each hi(x) £ H is strictly monotonic in at least one 
variable, all points from the a = N(x*,S) neighborhood of x* will be transformed 
into a b = N(y*,e) neighborhood of y*, and \/xj ^ a : y.j £ b. Both the objective 
functions f ( x ) and g(y), and the old and transformed constraint functions have the 
same value before and after the transformation. This fact ensures that each local 
minimizer point x* will be transformed into a local minimizer point y* of g(y). 
The same is true for local maximizer points, by similar reasoning. 

Additionally, |I i | < |Vj, so the construction of the transformation step ensures 
that the application of every substitution of H eliminates at least as many Xi 
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variables from the optimization model as the number of the new variables in every 

In contrast to Theorem 1, which gives sufficient conditions to have such a sim-
plification transformation that will bring local minimizer points of the old problem 
to local minimizer points of the new one, the following theorem provides sufficient 
conditions to have a one-to-one mapping of the minimizer points. 

Theorem 2. If H is proper, and all hfyx) 6 H expressions are smooth, strictly 
monotonic as a function of every variable v G V C X, the cardinality of H is less 
than or equal to the cardinality ofV, and the domain and range ofhi(x) are equal to 
R for all hi(x) G H, then the transformation step corresponding to H simplifies the 
original problem in such a way that every local minimizer (maximizer) point y* of 
the transformed problem can be transformed back to a local minimizer (maximizer) 
point x* of the original problem. 

Proof. Since the substitution equations preserve the values of the constraint func-
tions, each point y of the feasible set of the transformed problem (3) must be 
mapped from a feasible point x of the original problem (2): y = H(x). The same 
holds for infeasible points. 

Denote a local minimizer point of (3) by y*. Now, since the ranges of the 
transformation functions in H are equal to R, every local minimizer point y* of the 
transformed problem (3) is necessarily a result of a transformation: let x* be the 
back-transformed point: y* = H{x*). Consider a neighborhood N(y*,5) of y*, 
where every feasible point y has a greater or equal function value: g(y) > g{y*), 
and those feasible points x of (2), for which H(x) = y 6 N(y*,S). The latter set 
may be infinite if the simplification transformation decreases the dimensionality of 
the optimization problem. Anyway, there is a suitable neighborhood N(x*,6') of 
x* inside this set, for which the relation f(x) > f(x*) holds for all x 6 N(x*,S') 
that satisfies the constraints of (2). In other words, x* is a local minimum point of 

Corollary 1 is an immediate consequence of Theorem 1: 

Corollary 1. If H is proper, all the hi(x) 6 H expressions are smooth and invert-
ible as a function of every variable v £ V C X, and the cardinality of H is less than 
or equal to the cardinality of V, then the transformation step corresponding to H 
simplifies the original problem in such a way that every local optimum point x* of 
the original problem is transformed to a local optimum point y* of the transformed 
problem. 

iteration. • 

(2). 
The argument for local maximizers is similar. • 

5 Summary 
This paper examines the possibility and ability of implementing equivalent trans-
formations for nonlinear optimization problems as an automatic presolving phase 
of numerical global optimization methods. 
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An extensive computational test has been completed on standard global op-
timization test problems and on other often used global optimization test func-
tions together with some custom made problems designed especially to test the 
capabilities of symbolic simplification algorithms. Maple and Mathematica based 
implementations were compared. 

The test results show that most of the simplifiable cases were recognized by our 
new, Mathematica-based algorithm, and the substitutions were correct. Tests with 
a numerical solver, namely Global, were performed to check the usefulness of the 
produced transformations. The results show that the produced substitutions can 
improve the performance of this multi-start solver. 

We have presented some new theoretical results on automatic symbolic transfor-
mations to simplify constrained nonlinear optimization problems. However, further 
investigations would be necessary to build an efficient branch and bound strategy 
into the algorithm at Step 3-4 to realize good running times for the described 
parallel substitutions. 

As a natural extension of the present application, symbolic reformulations are 
promising for speeding up interval methods of global optimization. The overesti-
mation sizes for interval arithmetic [1] based inclusion functions were investigated 
in optimization models [18]. Symbolic transformations seem to be appropriate for 
a proper reformulation. Obvious improvement possibilities in this field are the 
use of the square function instead of the usual multiplication (where it is suitable), 
the transformation along the subdistributivity law, and finding SUE forms. In fact, 
such transformations usually are performed by the default expression simplification 
mechanism [16] of an ordinary computer algebra system. The domain of calcula-
tion has an important role in this presolve approach, since important features of 
functions such as monotonicity change substantially within the domain where a 
function is defined. 
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The Structure of Rooted Weighted Trees Modeling 
Layered Cyber-security Systems 

Geir Agnarsson* Raymond Greenlaw! and Sanpawat Kantabutra* 

A b s t r a c t 

In this paper we consider the s t ructure and topology of a layered-security 
model in which the containers and their nestings are given in the form of a 
rooted tree T. A cyber-security model is an ordered three-tuple M = (T, C, P) 
where C and P are multisets of penetration costs for the containers and target-
acquisition values for the prizes t ha t are located within the containers, respec-
tively, both of t he same cardinali ty as the set of the non-root vertices of T . 
T h e problem tha t we s tudy is to assign the penetra t ion costs to the edges 
and the target-acquisit ion values to the vertices of the t ree T in such a way 
t h a t minimizes the to ta l prize t h a t an at tacker can acquire given a limited 
budget. T h e at tacker breaks into containers s tar t ing at the root of T and once 
a vertex has been broken into, its children can be broken into by paying the 
associated penetra t ion costs. T h e at tacker must deduct t he corresponding 
penetra t ion cost f rom the budget , as each new container is broken into. For a 
given assignment of costs and target values we obtain a security system. We 
show tha t in general it is not possible to develop an opt imal security system 
for a given cyber-security model M. We define P- and C-models where the 
penet ra t ion costs and prizes, respectively, all have unit value. We show tha t 
if T is a rooted tree such t h a t any P- or C-model M = (T, C, P) has an 
opt imal security system, then T is one of the following types: (i) a rooted 
pa th , (ii) a rooted s tar , (iii) a rooted 3-caterpillar, or (iv) a rooted 4-spider. 
Conversely, if T is one of these four types of trees, then we show tha t any P-
or C-model M = (T, C, P) does have an opt imal security system. Finally, we 
s tudy a duality between P - and C-models t ha t allows us to t ransla te results 
for P-models into corresponding results for C-models and vice versa. T h e re-
sults obtained give us some mathemat ica l insights into how layered-security 
defenses should be organized. 
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1 Introduction 
According to [6], the global cyber-security market cost in 2017 is expected to top 
120 billion US dollars. This site also reports that there are 18 victims of a cyber 
crime every single second! Other sources report similarly alarming and worsening 
statistics. There is agreement that the number of cyber attacks is increasing rapidly, 
and the consequences of such attacks are greater than ever on economics, national 
security, and personal data. Threats come from nation states with advanced cyber 
warfare commands, nation states having less technical capabilities but intent on 
doing harm, ideologically motivated groups of hackers or extremists, profit-seeking 
criminals, and others. As a result, quite a bit of work has been done where cyber-
security systems, or more generally layered computer systems, are modeled as a 
fixed weighted trees. For example, in [1, 3, 4, 8, 10, 12] the authors consider finding 
weight-constrained, maximum-density subtrees and similar structures given a fixed 
weighting of a tree as part of the input. In these cases weights are specified on both 
vertices and edges. There has also been some research on network fortification and 
problems related to that topic. For example, in [13] stochastic linear programming 
games are studied and it is demonstrated how these can, among other things, 
model certain network fortifications. In [14] the problem of network interdiction is 
studied - how to minimize the maximum amount of flow an adversary/enemy can 
push through a given network from a source s to a sink t. There each edge/arc is 
provided with a fixed integer capacity and an integer resource (required to delete 
the edge/arc). This is a variation of the classical Max-Flow-Min-Cut Theorem. 
Although interesting in their own way, neither of these papers or related papers 
that we have found in the literature address directly what we study in this paper. 
To build secure systems requires first principles of security. "In other words, we 
need a science of cyber-security that puts the construction of secure systems onto a 
firm foundation by giving developers a body of laws for predicting the consequences 
of design and implementation choices" [11]. To this end, Schneider called for more 
models and abstractions to study cyber security [11], This paper is a step in that 
direction. We hope that others will build on this work to develop even better and 
more realistic models, overcome the shortcomings of our model, as well as develop 
additional foundational results. 

Building on the work done in [3], in this paper we study a layered-security 
model and strategies for assigning penetration costs and target-acquisition values 
so as to minimize the amount of damage an attacker can do to a system. That is, 
we examine security systems. The approach we take here is to assign weights to 
the vertices and edges of a tree in order to build a cyber defense that minimizes the 
amount of prize an attacker can accumulate given a limited budget. To the best 
of our knowledge this approach is new in that the usual approach is to consider a 
particular weighted tree as input. In [3] the following question was posed: Can one 
mathematically prove that the intuition of storing high-value targets deeper in the 
system and having higher penetration costs on the outer-most layers of the system 
results in the best or at least good security? In this paper we answer this question 
and obtain more general and specific results. We define three types of security 



The Structure and Topology of Rooted Weighted Trees . 737 

systems: improved, good, and optimal. We show that not all cyber-security models 
admit optimal security systems, but prove that paths and stars do. We define and 
study P- and C-models where all penetration costs, or all prizes, are set to one, 
respectively. We classify the types of trees that have optimal security systems for 
both P- and C-models. We then discuss a duality between P- and C-models, which 
provides a dictionary to translate results for P-models into corresponding results 
for C-models, and vice versa. 

The outline of this article is as follows. In Section 2 we present the rationale 
for our layered-security model. In Section 3 we define the framework for security 
systems and present the definitions of improved, good, and optimal security sys-
tems, and state some related observations and examples. In Section 4 we explore 
optimal security systems and prove that they do not always exist, but they exist 
if and only if the underlying tree T of the given security system is either a path 
rooted at a leaf, or a star rooted at its center vertex. In Section 5 we define P- and 
C-models and show that any cyber-security model M = IT, C, P) is equivalent to 
both a P-model M' and a C-model M". We further show that if T is a rooted tree 
such that any P- or C-model M has an optimal security system, then T is one of the 
following four types: (i) a rooted path, (ii) a rooted star, (iii) a rooted 3-caterpillar, 
or (iv) a rooted 4-spider. In Section 6 we prove that if T is one of the four types 
of rooted trees mentioned above, then any P-model does indeed have an optimal 
security system. In Section 7 we define a duality between equivalence classes of 
P-models and equivalence classes of C-models that serves as a dictionary allowing 
us to obtain equivalent results for C-models from those of the P-models that were 
obtained in Section 6. In particular, we obtain Theorem 7.2 that completely classi-
fies which P- and which C-models have optimal security systems. Conclusions and 
open problems are discussed in Section 8. 

2 Rationale for Our Layered-Security Model 
In defining our layered-security model to study defensive cyber security, we need to 
strike a balance between simplicity and utility. If the model is too simple, it will not 
be useful to provide insight into real situations; if the model is too complex, it will 
be too cumbersome to apply, and we may get bogged down in too many details. The 
model described in this paper is a step toward gaining a better understanding of a 
broad range of security systems in a graph-theoretical setting for a layered-security 
model. 

Many systems contain layered security or what is commonly referred to as 
defense-in-depth, where valuable assets are hidden behind many different layers 
or secured in numerous ways. For example, a host-based defense might layer secu-
rity by using tools such as signature-based vendor anti-virus software, host-based 
systems security, host-based intrusion-prevention systems, host-based firewalls, en-
cryption, and restriction policies, whereas a network-based defense might provide 
defense-in-depth by using items such as web proxies, intrusion-prevention systems, 
firewalls, router-access control lists, encryption, and filters [9]. To break into such 
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a system and steal a valuable asset requires that several levels of security be pen-
etrated, and, of course, there is an associated cost to break into each level, for 
example, money spent, time used, or the punishment served for getting caught. 

Our model focuses on the layered aspect of security and is intended to capture 
the notion that there is a cost associated with penetrating each additional level 
of a system and that attackers have finite resources to utilize in a cyber attack. 
Defenders have the ability to secure targets using defense mechanisms of various 
strengths and to secure targets in desired locations and levels. We assume that 
the structure where targets will be stored, that is, the container nestings; is given 
as part of the input in the form of a rooted tree. In this way we can study all 
possible structures at a single time, as they can be captured in the definition of 
our problems. This methodology is as opposed to having the defender actually 
construct a separate defense structure for each input. 

For any specific instance of a problem, a defender of a system will obviously 
consider the exact details of that system and design a layered-security approach 
to fit one's actual system. Similarly, a traveling salesman will be concerned about 
constructing a tour of his particular cities, not a tour of any arbitrary set of cities 
with any arbitrary set of costs between pairs of cities. Nevertheless, researchers 
have found it extremely helpful to consider a general framework in which to study 
the TRAVELING SALESMAN PROBLEM . And, in studying the general problem, 
insights have been gained into all instances of the problem. Thus, we believe it 
is worthwhile to consider having a fixed structure as part of our input, and this 
approach is not significantly different from that used in complexity theory to study 
problems [5, 7]. 

In this paper we focus on a static defense. We pose as an open problem the 
question of how to create a defense and an attack strategy if the defender is allowed 
to move targets around dynamically or redistribute a portion of a prize. We also 
consider the total prize as the sum of the individual values of the targets collected 
although one could imagine using other or more complex functions of the target 
values to quantify the damage done by an attacker. Our defensive posture is formed 
by assigning to the edges and vertices of the rooted tree in question the input-
provided penetration costs and target-acquisition values, respectively. We formalize 
the model, the notion of a security system, and the concept of a system attack in 
the next section. 

3 Cyber-Security Model and Security Systems 
Let N = {1,2,3,. . .}, Q be the rational numbers, and Q + be the non-negative 
rational numbers. 

Definition 3.1. A cyber-security model (CSM) M is given by a three-tuple M = 
(T,C,P), where T is a directed tree rooted at r having n G N non-root vertices, C 
is a multiset of penetration costs c\,..., Cn G Q+, and P is a multiset of target-
acquisition-values (or prizes for short) pi,..., pn G Q+. 
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Remark. As mentioned right after Observations. 1, strictly speaking, we could 
have stated the above definition using the set N of natural numbers instead of non-
negative rationals Q+ for possible penetrations costs and prizes. We do, however, 
prefer the most general definition we can discuss. 

Throughout V(T) = {r, ui,.... url}, where r is the designated root that indi-
cates the start of a system attack, and E{T) = {e i , . . . , e„} denotes the set of edges 
of T, where our labeling is such that Ui is always the head of the edge e,. The 
prize at the root is set to 0. The penetration costs model the expense for breaking 
through a layer of security, and the target-acquisition-values model the amount of 
prize one acquires for breaking through a given layer and exposing a target. The 
penetration costs will be weights that are assigned to edges in the tree, and the 
target-acquisition-values, or the prizes, are weights that will be assigned to vertices 
in the tree. 

Sometimes we do not distinguish a target from its acquisition value or prize, 
nor a container, which is a layer of security, from its penetration cost. Note that 
one can think of each edge in the rooted tree as another container, and as one 
goes down a path in the tree, as penetrating additional layers of security. We can 
assume that the number of containers and targets is the same. Since if we have 
a container housing another container (and nothing else), we can just look at this 
"double" container as a single container of penetration cost equal to the sum of the 
two nested ones. Also, if a container includes many prizes, we can just lump them 
all into a single prize, which is the sum of them all. 

Recall that in a rooted tree T, each non-root vertex u e V(T) has exactly one 
parent, and that we assume the edges of T are directed naturally away from the 
root r in such a way that each non-root vertex has an in-degree of one. The root 
is located at level 0 of the tree. Level 1 of the tree consists of the children of the 
root, and, in general, level i of the tree consists of the children of those vertices at 
level i — 1 for i > 1. We next present some key definitions about a CSM that will 
allow us to study questions about security systems. 

Definition 3.2. A security system (SS) with respect to a cyber-security model 
M = (T, C, P) is given by two bisections c : E{T) C and p : V(T) \ {r} P. 
We denote the security system by (T, c,p). 

A system attack (SA) in a security system (T, c, p) is given by a subtree r of T 
that contains the root r of T. 

• The cost of a system attack r with respect to a security system (T,c,p) is 
defined by 

es t ( r , c ,p )= c(e). 
e€E(r) 

• The prize of a system attack r with respect to a security system (T, c, p) is 
defined by 

p r ( r , c , p ) = Y^ P(u)-
u €V(T) 
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• For a given budget B £ Q+ the maximum prize p r*(B,c ,p) with respect to 
B is defined by 

pr*{B,c,p) := 
max{pr(r, c,p) : for all system attacks T C T , where es t(r ,c ,p) < B). 

A system attack r whose prize is a maximum with respect to a given budget 
is called an optimal attack. 

The bijection c in Definition 3.2 specifies how difficult it is to break into the 
various containers, and the bijection p specifies the prize associated with a given 
container. Note that for any SS (T, c,p) we have cst(r, c,p) = 0 < B £ <Q>+. When 
T = ({r}, 0) , then pr*(B. c,p) = 0 for any B £ <Q>+. When two bijections are given 
specifying a SS, we call the resulting weighted tree a configuration of the CSM. Any 
configuration represents a defensive posture and hence the name security system. 
Note that the CSM can be used to model any general security system and not just 
cyber-security systems. We are interested in configurations that make it difficult 
for an attacker to accumulate a large prize. It is natural to ask if a given defensive 
stance can be improved. Next we introduce the notion of an improved security 
system that will help us to address this question. 

Definition 3.3. Given a CSM M = (T,C,P) and a SS (T,c,p), an improved 
security system (improved SS) with respect to (T, c,p) is a SS (T,d,p') such that 
for any budget B £ Q+ we have pr*(B,c ' ,p ' ) < p r*(B,c ,p) , and there exists some 
budget B' £ Q+ such that pr*(B' ,c ' ,p ' ) < pr*(B' ,c ,p) . 

Definition 3.3 captures the idea of a better placement of prizes and/or penetra-
tion costs so that an attacker cannot do as much damage. That is, in an improved 
SS one can never acquire a larger overall maximum prize with respect to any bud-
get B\ and furthermore, there must be at least one particular budget where the 
attacker actually does worse. Notice that there can be an improved SS ( T , c ' , p ' ) , 
where for some budget B £ Q+, there is a SA r whose cost is less than or equal to 
B for both SSs such that pr(r, c',p') > pr(r, c.p). In this case an attacker obtains 
a larger prize in the improved SS; and, of course, this situation is undesirable and 
means a weaker defense against this specific attack. We, however, are interested 
in improved SSs with respect to a given budget rather than a particular SA. Since 
we have exactly n penetration costs and n prizes to assign, it is difficult to imagine 
an improved SS for all but the most-restricted trees in which all SAs would be 
improved in the sense just described. Next, we formalize the notion of an optimal 
security system. 

Definition 3.4. Let M = (T,C,P) be a given CSM. (i) For a budget B £ Q+, a 
SS (T,c,p) is optimal w.r.t. B if there is no other SS (T,c',p') for M such that 
pr *(B,d ,p') < pr*(B, c,p). (ii) (T,c,p) is optimal if it is optimal w.r.t. any budget 
B £ Q+. 

Notice that an optimal SS is not necessarily the best possible. We could define 
a critically optimal security system to be one where for every single SA the SS was 
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at least as good as all others and for at least one better. And, in a different context, 
these SSs might be interesting. However, in light of Theorem 4.1 in the following 
section, which shows that even an optimal SS may not exist for a given CSM, we do 
not pursue critically optimal SSs further in this paper. By Definitions 3.3 and 3.4 
we clearly have the following. 

Observation 3.1. A SS (T, c,p) for a CSM M ~ (T, C, P) is optimal if and only 
if no improved SS for (T,c,p) exists. 

We next introduce the concept of two closely-related configurations of a CSM, 
and this notion will give us a way to relate SSs. 

Definition 3.5. Given a CSM M = (T, C, P), the two configurations (T, c, p), and 
('T,c',p') are said to be neighbors if 

1. there exists an edge (u,v) G E{T) such that 

p'( v) = p(u) 
p'(u) = p(v) 
p'(w) = p(w), otherwise, or 

2. there exist two edges (u,v), (v,w) € E(T) such that 

c'((u,v)) = c((v,w)) 
c'((v,w)) = c((u,v)) 
c'((x,y)) = c((x,y)), otherwise. 

The notion of neighboring configurations will be useful in developing algorithms 
for finding good security systems, which we define next. 

Definition 3.6. A good security system (good SS) is a SS (T,c,p) such that no 
neighboring configuration results in an improved security system. 

Given a SS (T, c, p) for a CSM M, a natural question to pose is whether a 
local change to the SS can be made in order to strengthen the SS, that is, make 
the resulting SS improved. In a practical setting one may not be able to redo the 
security of an entire system, but instead may be able to make local changes. 

Suppose (u, v) G E(T) where p(u) > p(v), and let p' be the prize assignment 
obtained from p by swapping the prizes on u and v, that is p'(u) = p(v), p'(v) = 
p(u), and p'(vj) = p(w) otherwise. If now r is any SA, then pr(r, c,p') = pr(r, c,p) if 
either both u, v G V(T) or neither u nor v are vertices of r , or pr(r, c,p') < pr(r, c,p) 
if u G V(T) and v (F V(T). In either case pr(r, c,P') < pr(r, c,P) and therefore we 
have for any budget B that 

pv*(B,c,p')<pC(B,c,p). (1) 

Similarly, if (u,v), (v,w) G E(T) where c((u, v)) < c((v,w)), let d be the cost 
assignment obtained from c by swapping the costs on the incident edges (u, v) and 
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(v,w) and leave all the other edge-costs unchanged, that is d((u,v)) = c((v, w)), 
d((v,w)) = c{{u,v)) and c'(e) = c(e) otherwise. If r is a SA, then clearly we 
always have pr(r, d,p) = pr(r, c,p). Also, if either both (it, v), (v, w) £ E(R) or 
neither {u, v) nor (v, w) are edges in r , then cst(r, d,p) = cst(r, c,p), and if (it. v) £ 
E(T) and (v,w) G E(T), then cst(r, d, p) > cst(r, c, p). In either case we have 
cst(r, d,p) > cst(r, c,p). Hence, if B is any budget, then by mere definition we 
have that 

pr*(B,d,p) <pr*(£?,c,p). (2) 

By (1) and (2) we have the following proposition. 
Proposition 3.1. Let M = (T, C,P) be a CSM. A SS given by (T,c,p) is a good 
SS if for all (u,v),(v,w) £ E we have c((u,v)) > c((v,w)) and for all non-root 
vertices u,v £ V(T) with (u,v) £ E(T) we have p(u) < p(v). 

Note that Proposition 3.1 says that on any root to leaf path in T the penetration 
costs occur in decreasing order and the prizes occur in increasing order. 

From any configuration resulting from aSS (T,c,p) for a CSM, Proposition 3.1 
gives a natural 0(n2) algorithm for computing a good SS by repeatedly moving to 
improved neighboring configurations until no more such neighboring configurations 
exist. We can do better than this method by first sorting the values in C and P 
using 0(n log n) time, and then conducting a breath-first search of T in 0{n) time. 
We can then use the breath-first search level numbers to define bijections c and p 
that meet the conditions of a good SS. We summarize in the following. 

Observation 3.2. Given a CSM M = (T,C,P), there is an O(nlogn) algorithm 
for computing a good SS for M. 

If we could eliminate the sorting step, we would have a more efficient algorithm 
for obtaining a good SS, or if we restricted ourselves to inputs that could be sorted 
in 0(n) time. Also, notice that a good SS has the heap property, if we ignore the 
root. However, in our case we cannot "choose" the shape of the heap, but we must 
use the structure that is given to us as part of our input. 

Suppose that our SS (T, c, p) for M satisfies a strict inequality p{u) > p(v) 
for some (u,v) £ E(T), or that c((u, vj) < c((v,w)) for some incident edges 
(u,v),(v,w) £ E(T). A natural question is whether the prize and cost assign-
ments p' and d as in (1) and (2) will result in an improved SS as in Definition 3.3. 
In Example 3.1 we will see that that is not the case. 

CONVENTION: Let Tp(£) denote the rooted tree whose underlying graph is a 
path on 2£ + 1 vertices V(TP(£)) = {r, m,..., u2e} and directed edges 

E{TP{£)) = {(r,ui), (r, u2), (ui,u3), (u2,u4),..., (u2e-3,u2e-i), (u2e-2,u2e)} 

rooted at its center vertex. We label the edges by the same index as their heads: 
ei = (r,wi), e2 = (r,u2),. . . , e2*-i = {u2l-3, u2£_i), and e2t - {u2e^2,u2f), see 
Figure 1. 

Example 3.1. 
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Let (Tp(3), c,p) be a SS for a CSM M where 

c(e i,e2,e3,e4,e5,e6) := (1,1,1,1,1,2), 
p(ui,u2,u3,u4,u5,u6) := (10,2,10,3,10,40), 

where the penetration costs and the prizes have been simultaneously assigned in 
the obvious way. We see that for any budget B G Q+ we have 

If now p'(ui ,u2 ,u3 ,u4,u5,ue) = (10,3,10,2,10,40) is the prize assignment ob-
tained from p by swapping the prizes on the neighboring vertices u2 and u4, and 
c'(ei,e2 , e3, e4, e3, ee) = (1,1,1,2,1,1) be the edge-cost assignment obtained from 
c be swapping the costs of the incident edges e4 and eg, then 

for any non-negative budget B G Q+, showing that locally swapping either prize as-
signments on adjacent vertices, or edge-costs on incident edges, does not necessarily 
improve the SS. 

In Theorem 4.1 in Section 4, we show that there are CSMs for which no optimal 
SS exists. In such cases obtaining a locally optimal SS, as defined in Definition 3.6, 
may provide us with a reasonable defensive posture. 

4 Optimal Security Systems 
One of the most natural and important questions to consider for a given CSM M is 
whether an optimal SS exists and if it does, what it would look like. Unfortunately, 
Theorem 4.1 shows that there are small and simple CSMs for which no optimal 
SS exists. Still we would like to know for what CSMs optimal SSs do exist, and, 
if possible, have a way to find these optimal SSs efficiently. Corollary 4.1 and 
Theorem 4.2 show that optimal SSs exist for CSMs M = (T,C,P) when T is a 
path or a star, respectively. These theorems also yield 0 ( n log n) algorithms for 
producing optimal SSs in these cases. But, these results are not satisfying, as they 
are limited. In Sections 5, 6, and 7 we study P- and C-models and completely 
characterize the types of trees that have optimal SSs. 

We begin with a lemma showing that all optimal SSs must have the highest 
penetration costs assigned to the edges involving the root and level-one vertices. 

Lemma 4.1. Let M = (T,C,P) be a CSM, where T rooted at r contains at least 
one non-root vertex. Let Vj C T(V) denote the level-one vertices ofT, and let CL 
be the multiset of the largest |Vi| values in C. If an optimal (T,c,p) SS for M, 
exists, then c(e) G CL for e G {(r, v) \ v G Vj}. 

pr *{B,c,p') = pr *(B,c',p) = pr *{B,c,p) 
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Proof. Suppose we have an optimal SS (T , c, p) that does not meet the conditions 
of the lemma. Let cs ^ CL be the smallest penetration cost assigned by c to an 
edge between the root r and a vertex vs £ Vj, that is, c((r,vs)) = cs < c((r,v)) for 
all v £ Vi — {us}. Let es = (r,vs) and let e\ be an edge not between the root and 
a level-one vertex where c(e{) £ CL- We know that such an edge exists because 
(T, c, p) does not meet the conditions of the lemma. To show that (T, c, p) cannot be 
an optimal SS, we define a SS (T,c ' ,p) by letting d(e3) = c(e;), c'(ej) = c(es), and 
d(e) = c(e) otherwise. Notice that for the budget B = cs, we have pr*(B,c ,p) = 
p{vs) > 0 = pr*{B,c' ,p). This fact contradicts that (T,c ,p ) is an optimal SS. • 

If an optimal SS exists, Lemma 4.1 tells us something about its form. In the 
next theorem we show that there are CSMs for which no optimal SS exists. 

Theorem 4.1. There is a CSM M — (T,C,P) for which no optimal security 
system exists. 

Proof. Consider M = (T, {1,2,3), {1,2,3}), Where T is the tree given by V(T) = 
{r,«i,U2,u3} and E(T) = {ei ,e2 ,e3} where ei = (r ,ni) , e2 = (r,u2), and e3 = 
(ui,u3). By Lemma 4.1 we know that an optimal SS (T,c ,p ) has c(e3) = 1, and 
we can further assume that p(u3) = 3 . By considering the budget of B = 2, we 
can also assume the prize of the head of the edge of cost 2 to by 1. Therefore, we 
have only two possible optimal SSs for M: (T, c,p) with c(ei, e2, e3) = (3, 2,1) and 
p{ui,u2,u3) = (2,1,3), or (T,c ' ,p ' ) with c'(ei, e2, e3) = (2,3,1) andp'(u1:u2,u3) = 
(1,2,3), see Figure 2. Since pr*(3, c,p) = 2 and pr*(3,c',p') = 4, we see that 
(T, c',p') is not optimal, and since pr*(4, c,p) = 5 and pr*(4, c',p') = 4, we see that 
(T, c, p) is not optimal either. Hence, no optimal SS for M exists. • 

Although Theorem 4.1 showed that there are CSMs for which no optimal SS 
exists, we are interested in finding out for which trees T optimal SSs do exist. We 
should point out that the values of the weights in C and P also play an important 
role in whether or not an optimal SS exists for a given tree. In the next theorem 
we show that an optimal SS exists for CSMs in which the tree in the model is a 
path, and this result is independent of the values of the weights in C and P. 

Consider a CSM M = (T, C, M) where T is a path rooted at a leaf, so 

V(T) = {u0,Ul,...,un}, E{T) = { e i , . . . , e n } , (3) 

where u3 = r and e* = (uj_i ,uj) , for each i £ {1 , . . . ,n}. For a SS (T,c ,p ) for M, 
then for convenience let Pi = p{uf) and c, = c(ei) for each i. If we have Pi < Pi+i 
and Ci > Ci+i for each i £ {1 , . . . ,n — 1} (so the prizes are ordered increasingly 
and the edge-costs decreasingly as we go down the path from the root), then by 
Proposition 3.1 the SS (T,c,p) is a good SS as in Definition 3.6. But, we can say 
slightly more here when T is a path, in terms of obtaining an improved SS as in 
Definition 3.3. 

Lemma 4.2. Let M = (T, C, M) be a CSM where T is a path with its vertices and 
edges labeled as in (3). 
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Figure 1: Tp(3) is a path on seven vertices rooted at its center. 

(T,c,p) (T,c',p') 

Figure 2: Only two possible SSs for M = (T, {1,2,3}, {1,2,3}). 
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(i) If (T, c, p) is a SS for M and there is an i with pi > Pi+i and Cj+i > 0, then 
the SS (T,c,p') where p' is obtained by swapping the prizes on Ui and Mi+i is an 
improved SS. 

(ii) If (T,c,p) is a SS for M and there is an i with Ci < Q+I , then the SS 
(T, c',p) where d is obtained by swapping the edges costs on ej and a+i is an 
improved SS. 
Proof. By Proposition 3.1 we only need to show (i) there is a budget B' such 
that pr*(B' ,c ,p ' ) < pr*(B' ,c ,p) and (ii) a budget B" such that p r * ( B " , d , p ) < 
pr *{B",c,p). For each j let Tj = T[e i , . . . , e j ] be the rooted sub-path of T that 
contains the first j edges of T. 

For B' = c\ + fi Ci we clearly have 

pr *(B',c,p') = pr (n,c,p') 
= pi + \-Pi-i+pi+i 
< pi + b Pi 
= pr(r,, c, p) 
= pr *(B',c,p), 

showing that (T,c,p ' ) is an improved SS for M. 
Likewise, we have 

pr*(B',c',p) = pr(Ti_i,c',p) 
= pi + \-Pi-i 
< pi -b b Pi 
= pr {Ti,c,p) 
= pr *(B',c,p), 

showing that (T,c',p) is also an improved SS for M. • 

Given any SS (T, c,p) for M as in Lemma 4.2 when T is a rooted path, by bubble 
sorting the prizes and the edge costs increasingly and decreasingly respectively, as 
we go down the path T from the root, we obtain by Lemma 4.2 a SS (T, c',p') such 
that for any budget B we have pr*(B, c',p') < pr*(B,c ,p) . We therefore have the 
following corollary. 

Corollary 4.1. If M = (T,C,M) is a CSM where T is a rooted path with its 
vertices and edges labeled as in (3), then there is an optimal SS for M, and it is 
given by assigning the penetration costs to the edges and the prizes to the vertices 
in a decreasing order and increasing order respectively from the root. 

We now show that an optimal SS exists for M = (T,C,P) when T is a star. 
Let T be a star with root r and non-root vertices ui,... ,nn and edges e* = ( r , u f ) 
for i = 1 , . . . , n. Suppose the costs and prizes are given by C = {c i , . . . , Cn} and 
P = {pi, • • •,Pn\- When considering an arbitrary security system (T ,c ,p) where 
c(ztj) = Ci and p(ei) = p, for each i, we can without loss of generality assume the 
edge-costs to be in an increasing order ci < • • • < c„. 
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Lemma 4.3. Suppose T is a star and (T,c,p) is a SS as above. If p' is another 
prize assignment obtained firom p by swapping the prizes Pi and pj where i < j and 
Pi <Pj, then for any budget B we have pr*(B,c,p) < pr*(B,c,p ') . 

Proof. Let B be a given budget and r C T an optimal attack with respect to p, so 
pr(r, c,p) = pr*{B,c,p). We consider the following cases. 

C A S E ONE: If both of Ui and Uj are in T, or neither of them are, then we haef 
pr*{B,c,p) = pr(r, c,p) = pr(r,c,p') < pr*(B,c,p')-

C A S E TWO: If Ui 6 V(T ) and Uj ^ V(T) , then pr*{B,c,p] = pr(R, c,p) < 
pr (r ,c ,p) -pi+pj = pr(r ,c,p') < pr*(B,c,p ' ) . 

C A S E THREE: If ut 0 V ( R ) and uj G V(T) , then R' = (R - Uj) U Ui is a rooted 
subtree of T with c(r') = c(r) — Cj + Ci < B and is therefore within the budget B. 
Hence, pr*(B,c,p) = pr(r,c,p) = pr[r ' ,c ,p ' ) < pr*(B,c,p ') . 

Therefore, in all cases we have pr*(p, c, B) < pr*{p', c, B). • 

Since any permutation is a composition of transpositions, we have the following 
theorem as a corollary. 

Theorem 4.2. Let M = (T, C, P) be a CSM where T is a star rooted at its center 
vertex. Then there is an optimal SS for M, and it is given by assigning the prizes 
to the vertices in the same increasing order as the costs are assigned increasingly 
to the corresponding edges. 

For rooted trees on n non-root vertices, Corollary 4.1 and Theorem 4.2 give rise 
to natural sorting-based O(nlogn) algorithms for computing optimal SSs. Notice 
that in an optimal SS in a general tree, the smallest prize overall must be assigned 
to a level-one vertex u which has the largest penetration cost assigned to its corre-
sponding edge, (r,u), to the root. And, furthermore, we cannot say more than this 
statement for arbitrary trees as the next assignment of a prize will depend on the 
relative values of the penetration costs, prizes, and structure of the tree. In view 
of the fact that optimal SSs do not exist, except for paths and stars as we will see 
shortly in Observation 5.1, we turn our attention to restricted CSMs and classify 
them with respect to optimal SSs. 

5 Specific Security Systems, P-Models, 
and C-Models 

In this section we extend CSMs to include penetration costs and prizes of value 
zero. For a CSM M = (T, C, P) with no optimal SS and a rooted super-tree T* of 
which T is a rooted subtree, we can always assign the prize of zero to the nodes in 
V(T^)\V(T) and likewise the penetration cost of zero to the edges in E{T*)\E(T), 
thereby obtaining a CSM Aft = ( T f C f E ^ ) that also has no optimal SS. Note 
that if T is the rooted tree in the proof of Theorem 4.1, then the only rooted trees 
that do not have T as a rooted subtrees are paths rooted at one of their leaves or 
stars rooted at their center vertices. Hence, by the example provided in the proof 
of Theorem 4.1, we have the following observation. 
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Observation 5.1. If T is a rooted tree, such that for any multisets C and P of 
penetration costs and prizes, respectively, the CSM M = (T, C, P) has an optimal 
SS, then T is either a path rooted at one of its leaves, or a star rooted at its center 
vertex. 

In light of Observation 5.1, we seek some natural restrictions on our CSM M 
that will guarantee it having an optimal SS. Since both the penetration costs and 
the prizes of M = (T, C, P) take values in Q + we can, by an appropriate scaling, 
obtain an equivalent CSM where both the costs and prizes take values in N U {0}, 
that is, we may assume c(e) G N U {0} and p(u) G N U {0} for every e G E(T) and 
u G V(T), respectively. 

First, we consider the restriction on a CSM M = (T, C, P) where C consists 
of a single penetration-cost value, that is, C = {1 ,1 , . . . , 1} consists of n copies 
of the unit penetration cost one. From a realistic point of view, this assumption 
seems to be reasonable; many computer networks consist of computers with similar 
password/encryption security systems on each computer (that is, the penetration 
cost is the same for all of the computers), whereas the computers might store data 
of vastly distinct values (that is, the prizes are distinct). 

CONVENTION: In what follows, it will be convenient to denote the multiset 
containing n (or an arbitrary number of) copies of 1 by I. In a similar way, we 
will denote by 1 the map that maps each element of the appropriate domain to 1. 
As the domain of 1 should be self-evident each time, there should be no ambiguity 
about it each time. 

Definition 5.1. A P-model is a CSM M = (T,I,P) where T has n non-root 
vertices and where I is constant, consisting ofn copies of the unit penetration cost. 

Consider a SS (T, c,p) of a CSM M = (T, C, P). We can obtain an equivalent 
SS (T", l,p') of a P-model M' = ( T ' , I , P ' ) in the following way: for each edge 
e = (u, v) G E(T) with penetration cost c(e) = k G N and prizes p(u),p(v) G N of 
its head and tail, respectively, replace the 1-path (u, e, v) with a directed path of 
new vertices and edges (u, e\, u4, e2, u2, • • •, i , e*,, v) of length k. We extend the 
penetration cost and prize functions by adding zero-prize vertices where needed, 
that is, 1 ( f ) = 1 for each / G E(T'), and we let 

p'(u) = p(u), p'(v) = p(v), and p'(ui) = p'(u2) = • • • = p'(wfc-i) = 0. 

In this way we obtain a SS (T' ,c ' ,p ' ) of a P-model M' = ( T ' , I , P ' ) . We view the 
vertices V(T) of positive prize as a subset of V(T') (namely, those vertices of T" 
with positive prize).1 

Recall that T is a rooted contraction of T' if T is obtained from T' by a sequence 
of simple contractions of edges, and where any vertex contracted into the root 
remains the root. This means precisely that T is a rooted minor of T' [2, p. 54]. 

1 Note that there are some redundant definitions on the prizes of the vertices when considering 
incident edges, but the assignments do agree, as they have the same prize values as in T. 
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Proposit ion 5.1. Any SS (T, c,p) of a CSM M = (T, C, P) is equivalent to a SS 
(T', 1 ,p') of a P-model M' = (T\ I, P') where (i) T is rooted minor ofT', and (ii) 
p'{u) = p(u) for each u E V{T) C V(T'), andp'(u) = 0, otherwise. 

Proof. (Sketch) Given a budget B E Q+, clearly any optimal attack r on a SS 
(T,c,p) with pr(r. c,p) = pr*(B,c ,p) has an equivalent attack r ' on a SS (T', 1, p') 
of the same cost cst(-r', l , p ' ) = cst(r, c,p) and hence within the budget B, where r ' 
is the smallest subtree of T" that contains all of the vertices of T. By construction, 
we also have that p r ( r ' , l , p ' ) = pr(r, c,p) = pr*(B, c.p) since all of the vertices 
from r are in T' and have the same prize there, and the other vertices in r ' have 
prize zero. This shows that pr*(B, c,p) < pr*(B, l ,p ')-

Conversely, an optimal attack r ' on (T ' , l , p ' ) with p r ( r ' , l , p ' ) = pr*(B, l ,p ' ) 
yields an attack r on (T, c, p) by letting r be the subtree of T induced by the vertices 
V(T') n V(T). In this way pr(r,c,p) = pr(r ' ,L ,p ') and cst(r, c,p) < cst(r ' , L,p'), 
since some of the vertices of T' might have zero prize, as they are not in r . By 
definition of pr*(-) we have that pr*(B, l , p ' ) < pr*(B, c,p). Hence, the SS (T, c,p) 
and (T ' , l , p ' ) are equivalent. • 

Secondly, and dually, we can restrict our attention to the case where the multiset 
of prizes P consists of a single unit prize value, s o P = / = { l , l , . . . , l } consists of 
n copies of the unit prize. 

Definit ion 5.2. A C-model is a CSM M = (T,C,I), where T has n non-root 
vertices and where I is constant, consisting of n copies of the unit prize. 

As before, consider a SS (T,c,p) of a CSM M = ( T , C , P ) . We can obtain 
an equivalent SS (T",c", 1) of a C-model M" = (T",C",I) in the following way: 
for each edge e = (u,v) E E(T) with penetration cost c(e) = k E N and prizes 
p(u),p(v) E N of its head and tail, respectively, replace the 1-path (u,e,v) with a 
directed path of new vertices and edges (u, e, U\, e\,u2, • • •, Uk-i,ek-i,v) of length 
k. We extend the penetration cost and prize functions by adding zero-cost edges 
where needed, that is, l(iu) = 1 for every w E V(T"), and we let 

c"(e) = c(e) and c"(ei) = c"(e2) = • • • = c"(e*_i) = 0. 

In this way we obtain a SS (T",c", 1) of a C-model M" = (T",C",I), where the 
multiset of prizes consists of a single unit prize value {J2uev(T)\{r} P(u) c°pies 
of it). We also view the edges E(T) of positive penetration cost as a subset of 
E(T") (namely, those edges of T" with positive penetration cost). We also have 
the following proposition that is dual to Proposition 5.1. 

Proposit ion 5.2. Any SS (T, c,p) of a CSM M = (T, C, P) is equivalent to a SS 
(T", c", 1) of a C-model M" = (T", C", I), where (i) T is rooted minor ofT", and 
(ii) c"(e) = c(e) for each e E E(T) C E(T"), and c"(e) = 0, otherwise. 

Proof. (Sketch) Suppose we are given a budget B E Q+ and an optimal attack r on 
a SS (T, c,p) with pr(T, c,p) = pr*(B, c.p). Here (T", c", 1) has an equivalent attack 
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T", where T" is the largest subtree of T" that contains all of the edges of r and no 
other edges of T. Note that est(t",c", 1) = cst(r, c,p) since all of the additional 
edges of r " that are not in V(r) have zero penetration cost, and so T" is within the 
budget B. Also, by construction we have pr(r",c", 1) = pr(r, c,p) = pr*{B,c ,p) . 
This result shows that pr*(B,c ,p) < pr*(B,c", 1). 

Conversely, consider an optimal attack T" on (T" , c" , l ) with p r ( r " , c " , l ) = 
pr*(B, c", 1). By the optimality of r " , every leaf of r " is a tail of an edge of T, since 
otherwise we can append that edge (of zero penetration cost), and thereby obtain 
an attack with a prize strictly more than pr(r", c", 1), a contradiction. The edges 
E{T") D E(T) induce a subtree r of T of the same cost cst(r, c,p) = cst(r", c", 1); 
and moreover, r " is, by its optimality, the largest subtree of T" that contains 
exactly all of the edges of r , and so pr(r, c.p) = pr(r", c", 1) = pr*(B, c", 1). This 
result shows that pr*(B, c", 1) < pr*(B, c, p). This proves that the SS (T, c,p) and 
(T", c", 1) are equivalent. • 

We now present some examples of both P- and C-models that will play a pivotal 
role in our discussion to come. 

Definition 5.3. Let T(2) denote the rooted tree given as follows: 

V(T( 2)) = {r,ux,u2,u3,u4,u5}, 
E(T( 2)) = {(r,u i),(r,u2),(ui,u3),(u2,u4),(u2,u5)}. 

Note that T(2) has all of its non-root vertices on two non-zero levels. Similarly, let 
T{3) denote the rooted tree given as follows: 

V(T(3)) = {r,u1:u2,u3,u4}, 
E(T(3)) = {(r,«!),^,^),^,^), (u3,u4)}. 

Note that T(3) has all of its vertices on three non-zero levels. 

CONVENTION: For convenience we label the edges of both T(2) and T(3) with 
the same index as their heads (see Figures 3 and 4): 

T(2) : ei = (r,ui) , e2 = (r,u2) , e3 = (ui,u3), e4 = {u2,u4), e5 = (u2,u5). 
T(3) : ei = (r,ui), e2 = (r,u2) , e3 = ( u i , u 3 ) , e4 = (u3,u4). 

Example 5.1. 
Consider a P-model (with c = 1) on the rooted tree T(2), where the prize values 
are given by P = {0,1,2,2,3}. 

Prize Assignment (A): Consider the case where the prizes have been simultane-
ously assigned to the non-root vertices of T(2) by p(ui,u2,u3,u4,u5) := (0,1,3,2,2) 
in the obvious way. We will use a similar shorthand notation later for the bijection 
c. In this case we see that for budgets of B = 2,3, we have pr*(2, l,p) = 3 and 
pr*(3, l ,p ) = 5, respectively. 
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T( 2) 

Figure 3: T(2) has all of its non-root vertices on two non-zero levels. 

Figure 4: T(3) has all of its non-root vertices on three non-zero levels. 
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Prize Assignment (B): Consider now the case where the prizes have been si-
multaneously assigned to the non-root vertices of T(2) by p' (u\,u2,u3, u4,u§) := 
(1,0,3,2,2). In this case we see that for the same budgets of B = 2,3 as in (A), 
we have pr*(2, l ,p ' ) = 4 and pr*(3, l ,p ' ) = 4, respectively. 

From these assignments we see that for budget B = 2, the SS in (A) is better 
than the one in (B), and for B = 3, the SS in (B) is better than the one in (A). 

Example 5.2. 
Consider a P-model on the rooted tree T(3), where the prize values are given by 
P = {0,0,1,1}. 

Prize Assignment (A): Consider the case where the prizes have been simulta-
neously assigned to the non-root vertices of T(3) by p(u\,u2,u3,u4) '•= (0,0,1,1). 
In this case we see that for budgets of B = 1,3, we have pr*( l , l ,p ) = 0 and 
pr*(3, l ,p ) = 2, respectively. 

Prize Assignment (B): Consider now the case where the prizes have been simul-
taneously assigned to the non-root vertices of T(3) hy p'(u\,u2, u3, u4) '•= (1,0,0,1). 
In this case we see that for the same budgets of B = 1,3 as in (A), we have 
pr*(1, l , p ' ) = 1 and pr*(3, l ,p ' ) = 1, respectively. 

From these assignments we see that for budget B = 1, the SS in (A) is better 
than the one in (B), and for B = 3, the SS in (B) is better than the one in (A). 

Considering the budget B = 1 for the P-model in Example 5.1, we see that in 
order for a prize assignment to be optimal we must have the prizes of U\ and u2 
to be 0 and 1. Considering further B = 2 we see that an optimal prize assignment 
in this case must be p or p' as in Example 5.1, or p" where p"(u\,u2,u3, u4, := 
(1,0,2,3,2). Since pr*(B, l ,p" ) = pr*(B, l,p) for any B, we see that the P-model 
in Example 5.1 has no optimal SS. As the P-model in Example 5.2 can be analysed 
in the same way, we have the following observation. 

Observation 5.2. For general prize values P, neither of the P-models M = 
(T(2),I,P) nor M = (T(3) , / ,P) have optimal SSs. 

We will now consider the dual cases of the C-models. 

Example 5.3. 
Consider a C-model (with p = 1) on the rooted tree T(2), where the penetration 
costs are given by C = {0,1,1,2,3}. 

Cost Assignment (A): Consider the case where the penetration costs have been 
simultaneously assigned to the edges of T(2) by c(e1; e2, e3, e4, e5) (3,2,0,1,1). 
In this case we see that for budgets of B = 2,4, we have pr*(2,c, 1) = 1 and 
pr*(4, c, 1) = 3, respectively. 

Cost Assignment (B): Consider now the case where the penetration costs have 
been assigned to the edges of T(2) by c'(e\,e2,e3,e4,e$) := (2,3,0,1,1). In this 
case we see that for the same budgets of B = 2,4 as in (A), we have pr*(2, d, 1) = 2 
and pr*(4, d , 1) = 2, respectively. 



The Structure and Topology of Rooted Weighted Trees . 753 

From these assignments we see that for budget B = 2, the SS in (A) is better 
than the one in (B), and for B = 4, the SS in (B) is better than the one in (A). 

Example 5.4. 
Consider now a C-model on the rooted tree T(3), where the penetration costs are 
given by C = {0,0,1,1}. 

Cost Assignment (A): Consider the case where the penetration costs have been 
simultaneously assigned to the edges of T(3) by c(ei,e2, e3, e4) :— (1,1,0,0). In this 
case we see that for budgets of B = 0,1, we have pr* (0. c, 1) = 0 and pr*(l, c, 1) = 3, 
respectively. 

Cost Assignment (B): Consider now the case where the penetration costs have 
been assigned to the edges of T(3) by c'(ei, e2, e3, e4) := (0,1,1,0). In this case we 
see that for the same budgets of B = 0,1 as in (A), we have pr*(0, d, 1) = 1 and 
pr*(l, c', 1) = 2 , respectively. 

From these assignments we see that for budget B = 0, the SS in (A) is better 
than the one in (B), and for B = 1, the SS in (B) is better than the one in (A). 

In a similar way as we obtained Observation 5.2, we see from the previous two 
examples the following. 

Observation 5.3. For general penetration costs C, neither of the C-models M = 
(T(2), C,I) nor M = (T(3),C,/) have optimal SSs. 

Remark 5.1. (i) Note that in Examples 5.1 and 5.3 involving the rooted tree T(2), 
we have that the prize assignments to the non-root vertices and cost assignments 
to the corresponding edges sum up to a constant vector for both assignments (A) 
and (B): 

(A) : p(u1,u2,u3,u4,u5) + c(ei,e2 ,e3 ,e4,e5) 
= (0,1,3,2,2) + (3,2,0,1,1) = (3,3,3,3,3), 

(B) : p'(ui,u2,u3,u4,u5) + c'(e1,e2,e3,e4,e5) 
= (1,0,3,2,2) + (2,3,0,1,1) = (3,3,3,3,3), 

and similarly for the rooted tree T(3): 

(A) : p(u1,u2,u3,u4) + c(e1,e2,e3,e4) = (0,0,1,1) + (1,1,0,0) = (1,1,1,1), 
(B) : p'(u1,u2,u3,u4) + c'(e1,e2,e3,e4) = (1,0,0,1) + (0,1,1,0) = (1,1,1,1). 

This duality is not a coincidence and will discussed in more detail in Section 7. (ii) 
Although special cases of Theorems 6.1, 6.2, 7.3 and 7.4, it is an easy combinatorial 
exercise to see that both a C- or P-model M = (T, C, P), where T is a proper rooted 
subtree of either T(2) or T(3) does indeed have an optimal SS, and so T(2) and 
T(3) are the smallest rooted trees, in either model, with no optimal SS. This point 
will also be discussed and stated explicitly in Sections 6 and 7. 
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Consider now a given rooted tree T and another rooted tree T* containing T 
as a rooted subtree, so T C pt. Assume that the P-model M = ( T , I , P ) has no 
optimal SS. Extend M to a P-model on Tt by adding a zero prize for each vertex in 
V(pt) \ V(T), so Pt = PUZ, where Z is the multiset consisting of | V ( p t ) | - \ V ( T ) \ 
copies of 0. In this case we have the following. 

Observation 5.4. If M = (T , I, P ) is a P-model with no optimal SS, and P t 
contains T as a rooted subtree, then the P-model Mt = (p t , / , Pfy /ias no optimal 
SS. 

Proof. (Sketch) For any budget consisting of B = m edges and a SS (T, l , p ) , there 
is a rooted subtree r of T with m edges such that pr(r, l , p ) = pr*(m, l , p ) . Let 
1 and pt be the obvious extensions of 1 and p to p t , by letting 1(e) = 1 for all 
e € P(Pt) and p f(u) = 0 for any u G V(P) \ V(T). If r ' is a rooted subtree of 
p t with m edges, then r ' f l T is a rooted subtree of both P and p t on m or fewer 
edges. Since any vertex of V(r') \ V(T) has zero prize, we have 

pr(r ' , l , p t ) = pr(r ' n P, 1 ,pt) = pr(r ' n P, l , p ) < pr*(m, l ,p ) , 

with equality for r ' = T since r C P C pt. Hence, pr*(m, l ,pt ) = pr*(m, l , p ) , 
and we conclude that if M = (P, I, P) has no optimal SS, then neither does Aft = 
( p t , / , p t ) . • 

Dually, assume that we have a C-model M = (P, C, I ) that has no optimal SS, 
and similarly, let p t be a rooted subtree containing P as a rooted subtree. Extend 
M to a C-model on p t by adding penetration costs of oo2 for each edge of p t that 
is not in P, so C t = C U Y, where Y is the multiset consisting of | P ( P f ) | - | P (P ) | 
copies of oo. 

Observation 5.5. If M — (T,C,I) is a C-model with no optimal SS, and Pt 
contains T as a rooted subtree, then the C-model Mt = (pt, G't, I) has no optimal 
SS. 

Proof. (Sketch) The proof is similar to the one for Observation 5.4. For any budget 
B € Q+ and a SS (P, c, 1) of M, there is a rooted subtree r of P with m edges such 
that pr(r, c, 1) = pr*(B, c, 1). Let P and 1 be the obvious extensions of c and 1 to 
P t , by letting ct(e) = oo for all e G E(Tf) \ E(T). If r ' is a rooted subtree of P t 
within the attacker's budget of B < oo, then every edge of r ' must be in P , and so 
T' C P C p t . Since ct agrees with c on the edges of P we have 

pr(r ' , ct, 1) = P r ( r ' , c, 1) < pr*(B, c, 1), 

with equality for r ' = r . Hence, pr*(H, ct, 1) = pr*(H, c, 1), and we conclude that 
if M = (P, C, I) has no SS, then neither does Aft = (p t , Ct , / ) . • 

By Observations 5.2, 5.3, 5.4, and 5.5 we have the following corollary. 
2Where here we can choose oo to be the number of edges of T plus one, that is, a large number 

exceeding any sensible attack budget. 
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Corollary 5.1. If T is a rooted tree such that any P- or C-model M = (T,C,P) 
has an optimal SS, then T contains neither T{2) nor T(3) as rooted subtrees. 

Let T be a rooted tree such that any CSM M — (T, C, P) has an optimal SS. 
Assume further that T is not a path rooted at one of its two leaves. If T has at 
least three non-zero levels (we consider the root r to be the unique level-0 vertex), 
then T must contain T(3) as a rooted subtree and hence, by Corollary 5.1, there 
is a CSM M = ( T , C , P ) with no optimal SS, contradicting our assumption on T. 
Consequently, T has at most two non-zero levels. 

If T has at most two non-zero levels, and it has two leaves of distance four apart 
(with the root r being midways between them), then neither parent of the leaves 
is of degree three or more, because then T has T(2) as a rooted subtree. And, so 
again, by Corollary 5.1, there is a CSM M = (T,C,P) with no optimal SS. This 
observation again contradicts our assumption on T. As a result, either (i) T has a 
diameter of three and is obtained by attaching an arbitrary number of leaves to the 
end vertices of a single edge and then rooting it at one of the end-vertices of the 
edge, or (ii) T has diameter of four and each level-one vertex has degree at most 
two. 

Recall that a caterpillar tree is a tree where each vertex is within distance one 
of a central path, and that a spider tree is a tree with one vertex of degree at least 
three and all other vertices of degree at most two. 

Definition 5.4. A rooted path is a path rooted at one of its two leaves. 
A rooted star is a star rooted at its unique center vertex. 
A 3-caterpillar is a caterpillar tree of diameter three. 
A rooted 3-caterpillar is a 3-caterpillar rooted at one of its two center vertices. 
A 4-spider is a spider tree of diameter four with its unique center vertex of 
degree at least three. 
A rooted 4-spider is a 4-spider rooted at its unique center vertex. 

By Corollary 5.1 and the discussion just before Definition 5.4, we therefore have 
the following main theorem of this section. 

Theorem 5.1. If T is a rooted tree such that any P- or C-model M = (T,C,P) 
has an optimal SS, then T is one of the following types: (i) a rooted path, (ii) a 
rooted star, (Hi) a rooted 3-caterpillar, or (iv) a rooted 4-spider. 

It remains to be seen whether or not a rooted 3-caterpillar or a rooted 4-spider 
T is such that any P- or C-model M = (T, C, P) has an optimal SS. This item will 
be the main topic of the next two sections. 

6 P-models with Optimal Security Systems 
In this section we prove that if T is one of the four types of rooted trees mentioned 
in Theorem 5.1, then any P-model M = ( T , I , P ) indeed has an optimal SS. The 
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C-models will be discussed in Section 7. We already have that any P-model M = 
(T, I, P) (in fact, any CSM M = {T, C,P)), where T is a rooted path or a rooted 
star, does have an optimal SS, so it suffices to consider rooted 3-caterpillars and 
rooted 4-spiders. 

Let T be a rooted 3-caterpillar on vertices (r, u i , . . . , un} with edges given by 

where 2 < k < n — 1. As before, we label the edges by the index of their heads, 
so et — (r,Ui) for i £ {1 , . . . , k} and e, = {u\, Ui) for i £ {fc + 1 , . . . , n}. Our first 
result is the following. 

Theorem 6.1. Let M = (T,I,P) be a P-model where T is a rooted 3-caterpillar 
and P = (pi,... ,pn} is a multiset of possible prizes indexed increasingly p\ < p2 < 
• • • < Pn• Then the SS (T, l , p ) , where p{uf) = pi for each i £ {1 , . . . , n } is an 
optimal SS for M. 

Proof. Let B = m £ ( 0 , 1 , . . . , n} be the attacker's budget, that is the number of 
edges an adversary can afford to penetrate. We want to show that pr*(m, l , p ) < 
pr*(m, l ,p ' ) for any prize assignment p' to the vertices of the rooted 3-caterpillar 
T. 

Let r C T be a rooted subtree of T on m edges with pr(r , l , p ) = pr*(m, l , p ) . 
There are two cases we need to consider. 

FIRST CASE: EI £ E{T). Since all the leaves are connected to one of the end-
vertices of e\ = (r, ui), the remaining m - 1 edges of T must be incident to the 
m— 1 maximum prize vertices, and so pr*(m, l , p ) = pr(r , l , p ) = pn +pn-I H b 
p n _ T O + 2+pi . I fp ' is another prize assignment to the vertices of T, t h e n p ' ( u \ ) = p c , 
where c £ { 1 , . . . , n}. Therefore, pr*(m, L,p') > pr( r ' , L ,p'), where T' is a rooted 
subtree of T that contains e\ and contains all the remaining m— 1 maximum prizes, 
and so 

In either case we have prfy', l , p ' ) > pn + pn-i H Pn-m+2 + Pi = pr*(m, l , p ) , 
and so pr*(m, l , p ' ) > pr*(m, l , p ) in this case. 

SECOND CASE: ei E(T). For this case to be possible we must have M < k — 1, 
since otherwise e\ must be in r . Secondly, we must have that r contains all the 
maximum prize vertices on level one and so pr*(m, l , p ) = pr(r , l , p ) = pk +Pk-1 + 

1- pk-m+i- In particular, we must have 

E(T) = {(r,ui),...,(r,ufc),(ui,ufc+i),...,(ui,un)} (4) 

pr(r',l,p') = | P„ + pn-1 + " • " + Pn-m+1 U C £ {n - m + 1, . . . , n}, 
pn + pn-1 H + Pn-m+2 + Pc if C {n - m + 1, . . . , n}. 

Pk +Pk-1 H hPfc-m+1 > Pn+Pn-1 H 1" Pn-m+2 + Pi, 

since a tree containing e\ does not have a greater total prize than r . If p' is another 
prize assignment to the vertices of T, then let { f y , . . . , ¿k} be the indices of the prizes 
assigned to vertices on level one by p', that is, {pe1,.. • ,Pek} = {p'(u 1), • • •,p'(ufc)} 
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as multisets. If now T' is the rooted subtree of T with M edges containing the M 
vertices with the largest prizes, then, since pp, > pi for each i E {1 , . . . , k}, we have 

pr*(m,l ,p ' ) > p r ( r ' , l , p ' ) 

= Pek+Pek^1 + \-Pek-m+1 

> Pk + Pk-1 H 1" Pk-m+l 
= pr*(m, l ,p ) , 

in this case as well. This completes the proof that the SS (T,p) is optimal. • 

Now, let T be a rooted 4-spider on vertices {r, u\,..., un} with edges given by 

E(T) = {(r, u j ) , . . . , (r, uk), (tii, tifc+i), (u2, uk+2), (un-k,««)}, (5) 

where n/2 < k < n — 2. As before, the edges are labeled by the index of their 
heads: e, = (r, Ui) for i E (1,. . . . , fc} and ê  = (ui~k, Uj) for i E {k + 1 , . . . , n) . Our 
second result is the following. 

Theorem 6.2. Let M = (T,I,P) be a P-model, where T is a rooted 4-spider 
and P = {p i , . . . ,Pn \ is a multiset of possible prizes indexed increasingly p\ < 
Pi < ••• < Pn• Then the SS (T, l ,p) , where p{ui) = pi fori E { l , . . . , f c } and 
p(ui) = pn+k+i-i for ! 6 { H l , . . . , t i } is an optimal SS for M. 

Before we prove Theorem 6.2, we need a few lemmas that will come in handy 
for the proof. 

Lemma 6.1. Let T be a 4-spider presented as in (5) and m E N. Let p be a prize 
assignment on V(T) such that Pi = p(ui) < p(uj) = pj, where Ui is on level one 
and Uj is a leaf ofT. If p' is the prize assignment obtained fromp by swapping the 
prizes of Ui and Uj, then pr*(m, 1 ,p) < pr*(m, 1 ,p'). 

Proof. If j = k + i, so Uj is the unique child of Ui, then the lemma holds by (1). 
Hence, we can assume that Uj is not a child of u,. Let t CT be a max-prize rooted 
subtree on m edges, so pr(r, l , p ) = pr*(m, l ,p ) . We now consider the following 
cases. 

If either both Ui and Uj are vertices of r , or neither of them are, then clearly 
pr*(m, l ,p ) = pr(r, l , p ) = pr(r, 1 ,p') < pr*(m, l ,p ' ) . 

If Ui E V ( t ) and Uj 0 V(r) , then 

pr*(m, l , p ) = pr(r, l , p ) < pr(T, l ,p) - pi +pj = p r ( r , l , p ' ) < pr*(m,l ,p) . 

If Ui £ V ( t ) and Uj E U(r) , then, since Ui is on level one and Uj is a leaf of 
r , we have that r ' = (r — Uj) U Ui is also a rooted subtree of T on m vertices 
and pr*(m, l , p ) = pr(T, l , p ) = p r ( r ' , l , p ' ) < pr*(m, l ,p ' ) , which completes our 
proof. • 
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Let M = (T, I, P) be a P-model where T is a rooted 4-spider, P = {p i , . . . ,pn}, 
and p' be an arbitrary prize assignment on V(T). Since every vertex of T on 
level two is automatically a leaf, we can, by repeated use of Lemma 6.1, obtain a 
prize assignment with smaller max-prize with respect to any m that has its n — k 
largest prizes on its level-two vertices, and hence has its k smallest prizes on the 
level-one vertices u\,... ,Uk of T. By further use of the same Lemma 6.1 when 
considering these level-one vertices of T, we can obtain a prize assignment p that 
has its smallest prizes on the non-leaf vertices on level one and yet with smaller 
max-prize, so pr*(m, l , p ) < pr*(m, l ,p ' ) for any m. Note that our p satisfies 

p({ii i , . . . ,un_ f c}) = {pi , . . . ,pn-k}, p{{uk+i, • • • ,u n}) = {p f c + i , . . . , p n } . 

As the level-one vertices of T can be assumed to be ordered by their prizes, we 
summarize in the following. 

Corollary 6.1. From any prize assignment p' we can by repeated use of Lemma 6.1 
obtain a prize assignment p on our 4-spider T, presented as in (5), such that 

p(ui) = pi for alii € {1 , . . . , k}, and p(«,) = Pn(i) for alii & {k + 1 , . . . , n}, 

where TT is a permutation of {k + 1 , . . . , n}, and with pr*(m, l , p ) < pr*(m, l , p ' ) 
for any m £ N. 

Our next lemma provides our final tool in proving Theorem 6.2. 

Lemma 6.2. Let T be a 4-spider presented as in (5) and m £ N. Let p be a prize 
assignment on V(T) such that for some i,j £ {1,... ,n — k} with i < j, we have 
P(UI) < P{uJ) and p(ui+k) > p(uj+k). If p' is a prize assignment where the prizes 
on Ui+k and u3+k have been swapped, then pr*(m, l , p ) < pr*(m, l ,p ' ) . 

Proof. Let r C T be a max-prize rooted subtree on m edges with respect to p, so 
pr(T, l ,p ) = pr*(m, l ,p) . We now consider the following cases. 

If either both Ui+k and u3+k are vertices of T, or neither of them are, then 
clearly pr*(m, l ,p) = pr(r, l ,p ) = pr(r, l ,p ' ) < pr*(m, l ,p ' ) . 

If ui+k & V(t) and u3+k € V(r), t hen 

pr*(m,l ,p) = pr(r, l ,p) 
< p r ( r , l , p ) - p(uj+k) + P(ui+k) 
= pr( r , l ,p ' ) 
< pr*(m,l,p') . 

If UI+K £ V(T) and U3+K V(R), t hen we consider two (sub-)cases. If UJ £ V(T), 
then since u3 is a leaf in r , we have that r ' = (T—Ui+k)f>Uj+k is also a rooted subtree 
of T on m vertices and pr*(m, l ,p) = pr(r, l , p ) = pr(r ' , l , p ' ) < pr*(m, l , p ' ) . If 
UJ V(T), then T" = (r — {iq, Ui+fc}) U {UJ,UJ+K} is also a rooted subtree of T on 
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m vertices, and 

pr*(m,l ,p) = pr(r, l ,p ) 
< pr(T, 1 ,p) - p(ui) - p(uj+k) + p(uj) + p(ui+k) 
= pr(T",l ,p ') 
< pr*(m, l,p')> 

which completes the proof. • 

Proof of Theorem 6.2. Let T be a 4-spider, p a prize assignment as given in Theo-
rem 6.2, and m £ N. Let p' be an arbitrary prize assignment of the vertices of T. 
By Corollary 6.1 we can obtain a prize assignment p" such that 

p"(ui) = pi for alH £ {1 , . . . , k), and p"(ui) = pn(i) for alH £ {k + 1 , . . . , n), 

where 7r is a permutation of {k + 1 , . . . , n}, and with pr*(m, l ,p") < pr*(m, 1 ,p') 
for any m G N. By Lemma 6.2 we can obtain a prize assignment p on V(T) 
from p" simply by ordering the prizes on the level-two leaves in a decreasing order, 
thereby obtaining the very prize assignment p from Theorem 6.2 that satisfies 
pr*(m, l,p) < pr*(m, l ,p") for any m G N. This proves that for any TO G N we 
have pr*(m, l,p) < pr*(m, l ,p" ) < pr*(m, l ,p ' ) , and since p' was an arbitrary 
prize assignment, the proof is complete. • 

As a further observation, we can describe the optimal SAs on the P-model 
M = ( T , I , P ) , where T is a rooted 4-spider with the vertices and edges labeled as 
in (5), as follows. 

Observation 6.1. Let T be a 4-spider, p a prize assignment as in Theorem 6.2, 
and TO £ N. Then there is a max-prize rooted subtree r C T on TO edges with respect 
to p, so pr(r, l ,p ) = pr*(m, l ,p) , with the following property: 

1. If n < 2k — 1, then all the leaves of r are leaves in T, and hence in the set 
{Un-k+l, • • •, un}-

2. If n = 2k, then r has at most one leaf on level one, in which case it can 
assumed to be uk. 

Proof. Suppose r has two leaves Ui,Uj G {u\,... ,un-k}. In this case r ' = (T — 
Uj) Uufc+i is also a rooted subtree of T on TO edges and has pr(r ' , l ,p ) > pr(r, l ,p) . 
Hence, we can assume r to have at most one leaf from {ui , . . . ,un-k}. 

Suppose t has one leaf Ui G {iii , . . . ,un-k}. We now consider the two cases; 
k > n — k and k = n — k. 

FIRST CASE: A; > n — k or N < 2k — 1. If r has another additional leaf Uj G 

{un-k+1,... ,nk), then, as above, r ' = ( r - u j ) u u k + i has pr(r', l ,p ) > pr ( r , l ,p ) . 
Otherwise, r has no leaves from {un-k+1,..., nk} ^ 0. In this case r " = (r—Ui)Uuk 
is a rooted subtree of T on m edges with pr(r", l ,p) > pr(r, l ,p) . Hence, we can 
assume that r has no leaves from {u4,... ,un-k}, which proves or claim in this 
case. 
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SECOND CASE: k = n — k or n = 2k. In this case r has the unique level-one leaf 
Ui. If i < k, then uk has a unique child u2k in r , and so r ' = (r — u2k) U uk+i has 
the unique level-one leaf uk and pr(r ' , 1, p) > pr(T, l ,p ) . Hence, we can assume 
that r has its unique level-one leaf uk. • 

Remark. Note that in the case n < 2k — 1 in the proof of Observation 6.1, all the 
level-one leaves of r can be assumed to be from {un-k+1,... ,uk}. If we have I of 
them, then they can further be assumed to be uk-e+i,..., uk. 

7 Duality between P- and C-Models 
In this section we state and use a duality between the P- and C-models, which then 
can be used to obtain similar results for C-models that we obtained for P-models in 
the previous section. In particular, we will demonstrate that if T is one of the four 
types of rooted trees mentioned in Theorem 5.1, then any C-model M = (T, C, I) 
indeed has an optimal SS, as we proved was the case for the P-model. As with 
the P-model, we already have that any C-model M = (T, C, I ) (in fact, any CSM 
M = (T, C, P)), where T is a rooted path or a rooted star, does have an optimal 
SS. 

As mentioned in Remark 5.1 right after Observation 5.3, we now explicitly 
examine an example of a rooted proper subtree Tp(2) of T(2), for which any P-
or C-model M = (Tp(2). C, P) has an optimal security system. For the next two 
examples, and just as in the convention right before Example 3.1, let Tp(2) denote 
the rooted tree, whose underlying graph is a path, on five vertices V(TP(2)) = 
{r,u1,u2,u3,u4} and edges E(TP(2)) = {(r,ui), (r,u2), (ui ,u3) , (u2,u4)} rooted at 
its center vertex. We continue the convention of labeling the edges by the same 
index as their heads: e4 = (r,rti), e2 = (r,u2), e3 = (ui ,u3) , and e4 = (u2,u4), see 
Figure 5. 

TP{ 2) 

Figure 5: The underlying graph of Tp(2) is a path on five vertices. 
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Example 7.1. 
Consider a P-model (with c = 1) on the rooted tree Tp(2) where the prize values 
P = {Pi, P2, Pa, P4 } are general real positive values ordered increasingly pi < p2 < 
P3 < Pi- By Theorem 6.2 an optimal SS for our CSM M = (Tp(2), I, P) is obtained 
by assigning the prizes as p(ui,u2,u3,u4) := (pi,P2,P4,Ps)- We can explicitly 
obtain the max-prize subtree for each given budgets B s l that yields the following: 

p r* (B , l ) P ) = 

0 
P2 
m a x ( p i + P 4 , P 2 + P 3 ) 
Pi + P2 + P4 
Pi + P2 + P3 + Pi 

for B < 1, 
for 1 < B < 2, 
for 2 < B < 3, 
for 3 < B < 4, 
for 4 < B. 

Example 7.2. 
Consider a C-model (with p = 1) on the rooted tree Tp(2) where the penetration 
cost values C = {ci, c2, c3, c4} are general real positive values ordered decreasingly 
ci > c2 > c3 > c4. It is now an easy combinatorial exercise to verify directly 
that an optimal SS for our CSM M = (TP(2),C, I) can be obtained by assigning 
penetration costs as c(ui,u2,u3,u4) := (ci,c2,c4,c3), in the same (index-)order as 
for the P-model in Example 7.1. We explicitly obtain the max-prize subtree for 
each given budget B £ R that yields the following: 

pr*(B,c , l ) 

0 for B < c2, 
1 for c2 < B < min(ci + C4, c2 + c3), 
2 for min(ci + C4, c2 + c3) < B < c4 + c2 + c4, 
3 for ci + c2 + C4 < B < ci + c2 + c3 + C4, 
4 for ci + c2 + c3 + c4 < B. 

Let K be a sufficiently large cost number (any real number > max(c i , . . . , C4) + 1 
will do), and write each edge-cost of the form Cj = K — c(. In this way pr*(B, c, i ) 
will take the following form 

P r*(B, c, 1) = 

for B <K - c'2, 
for K - d2 < B < 2K - max(c'1 + d4,4 + d3), 
for 2K - max(c'1 -I- d4, c2 + c'3) < B < 3K — (ci + d2 + c'4), 
for 3K - (ci + d2 + c'4) < B < 4K - (ci + d2 + d3 + d4), 
for 4K - (ci +c'2 + c'3 + d4) < B. 

Prom the above we see the evident resemblance to the expression for pr*(B, 1, p) of 
the P-model in Example 7.1. This is a glimpse of a duality between the P-models 
and the C-models that we will now describe. 

CONVENTION: In what follows, it will be convenient to view the cost and prize 
assignments c and p not as functions as in Definition 3.2, but rather as vectors 
c = ( c i , . . . , Cn) and p = (p i , . . . ,pn) in the n-dimensional Euclidean space R n , 
which can be obtained by a fixed labeling of the n non-root vertices u4,..., un and 
a corresponding labeling of the edges e4,... ,en, with our usual convention that for 
each i the vertex u, is the head of e,, and by letting a := c(ej) and Pi :— p(ttj). 
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For a given n 6 N, let Z3(Rn) denote the group of all bijections R n ->• R n with 
respect to compositions of maps. For a G Q+ and b G Q the affine map a : R n —> K™ 
given by a(x) = ax + 61, where 1 = (1 , . . . , 1) G R n , is bijective with an inverse 
a _ 1 ( x ) = ^x — M of the same type. Further, if a'(x) = a'x + b'l is another such 
map, then the composition (a ' o a)(x) = a'ax + (a'b + 6')1 is also a bijection of this 
very type. Since the identity map of R71 has a = 1 G Q+ and 6 = 0 G Q, we have 
the following. 

Observation 7.1. I f n G N then Gn = {a G S(Rn) : a(x) = ax + bl, for some a G 
<Q>+ and b G Q} is a subgroup of B(K"). 

By letting Gn act on the set R™ in the natural way, (a, x) a(x), then the 
group orbits Gn(x) = (o(x) : a G Gn} yield a partition of R" into corresponding 
equivalence classes R n = UseR" Gn(x). By intersecting with Q™ we obtain the 
following equivalence classes that we seek. 

Definition 7.1. For each x G Q" let [x] denote the equivalence class of x with 
respect to the partition of Rn into the Gn orbits: [x] = Gn(x) n Q " . 

We now justify the above equivalence of vectors of Q™. The following observa-
tion is obtained directly from Definition 3.2. 

Observation 7.2. Let T be a rooted tree on n labeled non-root vertices and edges, 
T a rooted subtree ofT, and a G Gn given by a(x) = ax + 61. If c,p G Q" are a 
cost and prize vector, respectively, then we have 

pr(r, c, a(p)) = apx{r,c,p) + \E(r)\b, 
cst(r, a(c),p) = acst(r, c,p) + \E(r)\b. 

If J C {1, . . . ,n} and E j : Rn —> R is given by i H *l2iej xn then we clearly 
have 

E j (a (x ) ) < E 7 (a(p) ) ^ E j ( x ) < Ej{y), (6) 

and hence the following corollary. 
Corollary 7.1. Let T be a rooted tree on n labeled non-root vertices and edges, 
B G <Q>+ a budget, and a G Gn given by a(x) = ax + 61. 

(i) If p G Q" is a prize vector, then we have 

pr *(B, 1, a(p)) = ap:*(B, 1 ,p) + 6[BJ. (7) 

Further, both max prizes in (7) are attained at the same rooted subtree T of T where 
\E(t)\ = [B\. 

(ii) If c G Q" is a cost vector, then we have 

pr*(aB + bm, Q(C), 1) p r*(B, c, 1) = m, 

and further, both max prizes are attained at the same rooted subtree T of T within 
the budget; that is, |E(t)| = m and est(r,c, 1) < B. 
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Remark, (i) That both max prizes are attained at the same rooted subtree r in 
(i) in Corollary 7.1 simply means that 

P r( r i L a(p)) = Pr*(B, 1, Oi(p)) pr(r, l ,p) = pr*(B, l ,p), 

which is a direct consequence of Observation 7.2 and (7). (ii) Also, for a rooted 
subtree r with |B(r) | = m and cst(T, c, 1) < B, then by Observation 7.2 we also 
have cst(r, a(c), 1) < aB + bm, and 

pr(r, c, 1) = m = pr*(B, c, I) pr(r, a(c), I) = m = pr*(aB + bm, a(c), 1). 

We can, in fact, say a tad more than Corollary 7.1 for C-models M = (T, C, I). 

Definition 7.2. Let M = (T,C,I) be a C-model. For a given cost vector c £ Q™ 
let Bm(c) denote the smallest cost B E (Q>+ with pr*{B,c, 1) = m. 

Note that 
pr*(B,c, l ) = m » Bm(c) < B < Bm+1{c). 

We also have the following useful lemma. 

Lemma 7.1. If a E Gn is given by a(x) = ax + 61, then Bm(a(c)) = aBm(c) + bm. 

Proof. By definition of Bm(c) we have pr*(Bm(c), c, I) = m, and hence by Corol-
lary 7.1 pr* (aBm (c) + bm, a(c), 1) = m as well. Suppose that pr*(B', a(c), I) = m, 
where B' < aBm(c) + bm. If now B' = aB" + bm, then B" < Bm(c) and we have 
again by Corollary 7.1 that pr*(B",c, 1) = to. This contradicts the definition of 
Bm{c). Hence, Bm(a(c) = aBm(c) -I- bm. • 

Proposition 7.1. For m E {0 ,1 , . . . ,n} and a cost vectors c and c' we have 
Bm{c) > Bm(c') if and only if for every budget B with pr*{B,c, 1) = TO we have 
pr*(B,c , l ) < p r * ( B , c ' , l ) . 

Proof. Suppose Bm(c) > Bm(c'), and let B be a budget with pr*(B,c, 1) = to. 
By definition we then have B > Bm(c) and hence B > Bm{c!) and therefore 
pr*(B, c', 1) > to = pr*(B,c, 1). 

Conversely, if for every budget B with pr*(B, c, 1) = to we have pr*(B, c, 1) < 
pr*(B, c',1), then, in particular for B = Bm(c) we have TO = pr*(Bm(c), c, 1) < 
pr*(Bm(c), c', 1), and hence, by definition, Bm(c') < Bm(c). • 

CONVENTION: For a vector x = ( x i , . . . , x n ) E Q™ let {x} denote its underlying 
multiset. So if (T, c,p) is an SS for a CSM M = (T, C, P), then we necessarily have 
C = {£} and P = {p} as multisets. Also, we have {1} = I as the multiset containing 
n copies of 1. 

Suppose pr*(B,l ,p) < pr*(B,l ,p ' ) for all p' with {p'} = {p}. Then by Corol-
lary 7.1 we get for any a E Gn with a(x) = ax + 61, that 

pr*(B, 1, a(p)) - apr*(B, 1 ,p) + b[B\ < apr*(B, l ,p ' ) + 6{BJ = pr*(B, 1, a(p')), 

and so we have the following. 
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Proposition 7.2. The SS (T, 1 ,p) is optimal for the P-model M = (T,I, {p}) with 
respect to the budget B £ Q+ if and only if the SS (T, l ,a (p)) is optimal for the 
P-model M — (T, I, (a(p)}) with respect to B. 

In asimilar way, we have by Proposition 7.1 that pr*(B, c, 1) = m < pr*(B, cf, 1) 
whenever Bm(e) < B < Bm+i(c) and {c'} = {c} if and only if Bm(c) > Bm(d), 
which by Lemma 7.1 holds if and only if 

Bm(a(c)) = aBm(c) + bm> aBm(c') + bm = Bm(a(c')). 

In other words, pr*(7?,c, I) < pr*(B, c', 1) when Bm(c) < B < Brn+\(c) holds if 
and only if pr*(B', a(c), I) < pr*(ß', q(c'), 1) when Bm(a(c)) < B' < B m + 1 ( a (c ) ) . 
Since this holds for every a € Gn, which is a group with each element having an 
inverse, then we have the following. 

Proposition 7.3. The SS (T, c, 1) is optimal for the C-model M = (T, {c}, I ) with 
respecttoBG [Brn(c), R m + i (c ) [nQ + if and only if the SS (T,a(c), 1) is optimal for 
the C-model M' = (T, {a(c)),I) with respect to B' £ [ßm(a(c)),ßra+i(a(c))[flQ+. 

Combining Propositions 7.2 and 7.3, we have the following summarizing corol-
lary. 

Corollary 7.2. Let a £ Gn-
The SS (T, 1 ,p) is optimal for the P-model M = ( T , I , {p}) if and only if the 

SS (T, 1, a(p)) is optimal for the P-model M' = (T, I, (a(p)}). 
The SS (T, c, 1) is optimal for the C-model M = (T, {c}, I) if and only if the SS 

(T, a(c), 1) is optimal for the C-model M' = (T, {a(p)}, I). 

Corollary 7.2 shows that optimality of security systems of both C- and P-models 
is G„-invariant when applied to the prize and cost vector, respectively. 

Recall the equivalence class [x] = G n ( x ) n Q " from Definition 7.1. We can now 
define induced equivalence classes of SS of both C- and P-models. By Corollary 7.2 
the following definition is valid (that is, the terms are all well defined). 

Definition 7.3. For a C-model M = (T, C, I) and a SS (T, c, 1) of M, we let 

[(T.c.1)] : = { ( T , i , i ) : x £ [c]}. 

We say that [(T, c, 1)] is optimal if one (T, x, 1) £ [(T, c, 1)] is optimal for its 
corresponding M = (T, {x}, I), since then each element in [(T,c, 1)] is also optimal. 

Likewise, for a P-model M = (T, 7, P) and a SS (T, l,p) of M, we let 

[ ( T , i , p ) ] : = { ( T , i , p ) : p € [ p ] } . 

We say that [(T, I,p)] is optimal if one (T,l,y) £ [(T, l,p)] is optimal for its 
corresponding M = (T, 7, {y}), since then each element in [(T, I,p)] is also optimal. 

With the setup just presented we now can define the dual of both vector classes 
and SS classes for C- and P-models in the following. 
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Definition 7.4. For a vector x and [£] = Gn(x) fl Q" as in Definition 7.1, then 
[:x]* := [—¿c] is the dual vector class of [x\. 

For a C-model M = (T,C,I) and a SS (T, c, 1) of M, then [(T,c,l)]* := 
[(T, 1, —c)] is the corresponding dual P-model security system class (dual P-model 
SS class) of the C-model class [(T, c, 1)]. 

Likewise, for a P-model M = (T,I,P) and a SS (T. 1, p) of M, then the class 
[(T, 1, p)]* := [(T, —p, 1)] is the corresponding dual C-model security system class 
(dual C-model SS class) of the P-model class [(T, l,p)]. 

Note that the double-dual yields the original class in each case: [i]** = [—i]* = 
[i], and 

[(T,c , i ) ]" = [(T, 1, —c)]* = [(T,c,i)], [(T,l,p)]** = [(T,-p,l)]* = [(T.l.p)]. 

For a P-model M = ( T , I , P ) and a SS P-model class [(T, l,p)] we can always 
assume the prize vector p is such p, G [0,1] n Q+ for each i, since a(x) = ax is 
indeed an element of Gn for any a > 0. In this way c = 1 — p € ([0,1] fl Q+)n is a 
legitimate cost vector, and we have [p]* = [1 — p] and [(T, l,p)]* = [(T, 1 — p, 1)]. In 
what follows, we will call such a prize vector scaled. The following is easy to show. 

Claim 7.1. For a scaled prize vector p with pi G [0,1] f lQ+ for each i, and a rooted 
subtree T of T with |E(t)| = m, then pr(r, l ,p) + cst(r, 1 — p, 1) = m. 

Let p be a scaled prize vector and assume B is a budget with pr*(£?, 1— p, 1) = to. 
Then there is a rooted subtree T of T on TO edges such that est(r, 1 — p, 1) < B, 
and hence there is such a r of smallest cost. Hence, we may assume r is indeed 
such a rooted subtree of smallest cost. By Claim 7.1 applied to 1 — p, which is also 
scaled, we then have pr(r, l ,p) = to —cst(r, 1—p, 1) with the smallest cst(r, 1— p, 1) 
among rooted subtrees r on TO edges, and hence pr(r, l ,p) is maximum among all 
rooted subtrees r on TO edges, and so pr(r, l ,p) = pr*(m, l ,p). Hence, 

B > cstfy, 1 - p, 1) = to — pr(r, l ,p) = to — pr*(m, l,p). 

Since cst(r, 1 — p, 1) is the smallest cost among all rooted subtrees on TO edges, then 

B' = cstfy, 1 — p, I) = to - pr*(m, I,p) 

is indeed the smallest cost with pr*(B', 1 — p, 1) = to. By Definition 7.2 we then 
have the following. 

Lemma 7.2. For tog (0 ,1 , . . . ,n} and a scaled (prize) vector p, we have 

Bm( 1 - p) = to - pr*(TO, l,p). 

As a direct consequence of Lemma 7.2, we then have 

Corollary 7.3. For any to G (0 ,1 , . . . , n} and scaled vectors p and p', we have 

Bm{ 1 - p ) > Bm{ 1 - p ' ) ^ pr*(m, l ,p) < pr*(TO, l ,p') . 
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We can now prove one of the main results in this section. 

Theorem 7.1. Let M = (T,I, P) be a P-model, (T, 1 ,p) a SS for M where p is 
scaled, and m G {0 ,1 , . . . ,n} . Then pr*(m,l,p) < pr*(ra, l ,p ' ) for any p' with 
{p' | = P if and only if pr*(B, 1 - p, 1) < pr*(B, 1 — p', 1) for any budget B with 
pr*(B, 1 — p, 1) = m and for any p' with {p'| = P. 

Proof. By Corollary 7.3 we have that pr*(m, l ,p) < pr*(m, l ,p ' ) for any p' with 
{p'} = P if and only if B m ( l - p) > B m ( l - p') for any p' with {p'} = P which, 
by Proposition 7.1, holds if and only if pr*(B, I - p, 1) < pr*(B, 1 - p', 1) for all 
budgets B with pr*(B, 1 — p, 1) =m and for all p' with {p'} = P. • 

Note that by Theorem 7.1 we have that pr*(B, l ,p) < pr*(B, l ,p ' ) for any 
budget B and any p' with {p'} = {p}, if and only if pr*(B, 1 — p, 1) < pr*(B, 1 — 
p', 1) for any budget B and any p' with {p'j = {p}. Hence, by Corollary 7.2 
and Theorem 7.1 we therefore have the main conclusion of this section in light of 
Definition 7.3. 

Corollary 7.4. For a rooted tree T and a prize vector p G Q", then [(T, l,p)] is 
an optimal P-model SS class if and only if the dual C-model SS class [(T, l,p)]* = 
[(T, —p, 1)] is optimal. 

In particular, if p is scaled, then the SS (T, l,p) is optimal for the P-model 
M = (T, I, {p}) if and only if the SS (T, 1 - p, 1) is optimal for the C-model M = 
( r , { i - p } , / ) . 

Consequently, by Corollary 4.1, Theorems 4.2, 5.1, 6.1 and 6.2 and Corollary 7.4, 
we have the following summarizing result. 

Theorem 7.2. For a rooted tree T on n non-root vertices the following are equiv-
alent: 

1. Any P-model M = (T, I, P) has an optimal SS. 

2. Any C-model M = (T, C, I) has an optimal SS. 

3. T is one of the following types: (i) a rooted path, (ii) a rooted star, (Hi) a 
rooted 3-caterpillar, or (iv) a rooted 4-spider. 

Note that by (6) we have, in particular, that each a G Gn preserves the order 
of the entries of each x G Q™, so each x G [p] has the same order of its entries as p 
does. But clearly, the dual operation on [i]* = [—x] is order reversing, that is, we 
have that Xi < x3 for any x G [p] if and only if yi > y3 for any y G [—p] = [p]*. Since 
the optimal assignments of prizes from a given multiset P are given in Theorems 6.1 
and 6.2, we then have by Corollary 7.4 the following theorems for C-models as well. 

Theorem 7.3. Let M = (T, C, I) be a C-model where T is a rooted 3-caterpillar as 
in (4) and C = {ci,..., Cn} is a multiset of possible edge-costs indexed decreasingly 
Ci > c2 > • • • > Cn. Then the SS (T,c, 1), where c(ei) = d for each i G { 1 , . . . , n } 
is an optimal SS for M. 
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Theorem 7.4. Let M = (T, C, I) be a P-model, where T is a rooted 4-spider as 
in (5) and C = {ci,..., cn} is a multiset of possible edge-costs indexed decreasingly 
ci > c2 > • • • > Cn. Then the SS (T, c, 1), where c(et) = Ci for i e {1 , . . . , k} and 
c(ei) = Cn+h+i-i for i £ {k + 1,... ,n} is an optimal SS for M. 

8 Summary and Conclusions 
This paper defined a cyber-security model to explore defensive security systems. 
The results obtained mathematically support the intuition that it is best to place 
stronger defenses in the outer layers and more-valuable prizes in the deeper layers. 
We defined three types of SSs: improved, good, and optimal. We showed that it is 
not always possible to find an optimal SS for a given CSM, but demonstrated for 
rooted paths and stars that optimal SSs do exist. The results mathematically show 
that a path produces the best cyber-security, however, burying something n levels 
deep for large n may prevent the friendly side from accessing the "information" 
effectively. The results show, in general, that trees having greater depth provide 
more security in this setting. 

We showed that any CSM is equivalent to a CSM where either all the edge 
penetration costs are unit priced (a P-model) or where all the vertices have a unit 
prize (C-model), by allowing larger underlying rooted trees. We then characterised 
for which trees a P-model has an optimal SSs, and we also did that for the C-
models. We noted that the P- and C-models have optimal SSs for exactly the same 
types of rooted trees. This was then explained by obtaining a duality between the 
P- and C-models in the penultimate section of the paper. 

We gave an 0(n log n) algorithm for producing a good SS that was based on 
sorting. It is not clear how strong such a good SS is, as there may be many such 
good SSs, and some may be better than others. It would be interesting to come up 
with a comparison metric to rank various good SSs. We must continue to explore 
models of cyber-security systems to develop the foundations needed to combat the 
ongoing and increasing number of cyber attacks. This work is but one step in that 
direction. 

We conclude the paper with a number of questions. 

1. Can we find an efficient algorithm to develop optimal SSs in the cases where 
all penetration costs or all targets are from a finite set of possible values? 
Say, if we have two possible penetrations costs or three? Similarly for prizes? 

2. In a two-player version of the model, what would be the best strategy for a 
defender who is allowed to reposition a prize or a portion of a prize after each 
move by an attacker? And, what would the complexity of this problem be? 

3. Are there on-line variants of the model that are interesting to study? For 
example, a version where the topology of the tree changes dynamically or 
where only a partial description is known to the attacker. 
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4. Could a dynamic programming approach be used to obtain a SS that is some-
how quantifiably better than a good SS or allow us to pick the "best" good 
SS? 

5. Is there a more useful definition of neighboring configuration that could lead 
to an efficient algorithm for producing better SSs, for example, perhaps a 
definition where sibling vertices or edges can have their prizes or penetration 
costs swapped, respectively? 
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Adapting Dynamic Time Warping to the Speech of 
the Hearing Impaired* 

László Czap* and Attila K. Varga* 

A b s t r a c t 

One service provided by our application 'Speech Assistant System' assist-
ing the teaching of the hearing impaired to speak is the automat ic assessment 
of words and sentences in the course of practice and feedback to the per-
son. Individual speech sounds can only be correctly evaluated if they are 
compared with the appropria te reference speech sounds. This requires seg-
ment ing the speech to be examined. T h e methods currently known do not 
give sufficiently correct results for t he speech of the hearing impaired, which 
is of ten so distorted and halt ing so t h a t it prevents understanding. T h e pa-
per presents a reference generation method suitable for segmenting distorted 
speech, a modification of dynamic t ime warping and its comparison with t ra-
dit ional methods. T h e procedure presented has been successfully used for t he 
au tomat ic assessment of the pronunciation of the hearing impaired. 

K e y w o r d s : dynamic t ime warping, speech quality assessment, acoustic-
phonetic features, distorted speech, speech of hard of hearing children 

1 Introduction 
The project 'Basic and Applied Research for the Internet-Based Speech Develop-
ment of the Hearing Impaired and for the Objective Measurement of Progress' 
served the purpose of creating a new aid for the deaf and the hard of hearing in 
learning to speak, called the Speech Assistant System. The foundation of the re-
search is represented by the 'talking head' developed at the University of Miskolc 
and the audio-visual transcoder developed at the University of Debrecen. The ob-
jective of the project is to create a complex system which provides the audio-visual 
representation of the speech process, by the visual representation of the sound 
images of speech on the one hand, and of the articulation on the other, set in a 
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training framework system. The 3D head model with its transparent face can vi-
sualise the tongue motion better than a natural speaker. In addition, the system 
includes a number of functions (visualisation of prosody, automatic assessment and 
implementation of the knowledge-based system) that facilitate individual practice 
not only on the computer, but also on a mobile device. The module of the technol-
ogy developed performing the audio-visual transcoding is language independent, so 
the talking head and the automatic assessment can be adapted to other languages 
besides Hungarian. 

Automatic assessment provides feedback to the hearing impaired, who can use 
the Speech Assistant System on their own. The assessment of the speech produced 
during practice shows not only progress achieved in utterance, but also serves as 
input to the knowledge-based system, which assists in designating the next word 
to be practiced based on teacher experience [1]. 

The methods developed for automatic speech quality assessment include speech 
segmentation in explicit or implicit form. Speech tempo changes from speaker to 
speaker, from articulation to articulation. These non-linear extensions and short-
enings do not necessarily count as faulty pronunciation. The hearing impaired 
usually speak more slowly than the average speech tempo. For the assessment 
of the pronunciation of the individual speech sounds, the time segments of the 
reference pattern and of the actual pronunciation have to be matched. The ref-
erence and the actual waveforms can be made to have identical lengths by linear 
stretching and/or linear shrinking. This, however, does not ensure a time paral-
lel of the individual speech sounds, for the pronunciation rhythm may differ from 
the reference. If certain speech sounds are pronounced longer and others are pro-
nounced shorter, in linear time warping it will not be the speech sound segments 
that matched with which it should be similar, therefore the comparison will produce 
false results. The articulation of certain speech sounds differing in time from their 
ordinary articulation is particularly characteristic of the speech of the hearing im-
paired. Therefore, for the purpose of comparing the reference and the speech being 
examined, non-linear time-warping that is needed, procedures and algorithms de-
veloped in computer-based speech processing are available for this purpose. These 
methods work well for high-quality speech and pronunciation acceptable in everyday 
communication. However, they produce poor results for distorted speech sounds 
and unusually drawling and halting speech. The paper discusses our segmentation 
method suitable for low-quality speech that pairs the test and artificially generated 
reference shape. 

2 Non-linear t ime warping 
We can speak of an ideal time comparison if two samples are aligned along the 
individual speech sounds. This generally accepted method is used in computer-
based speech recognition [15]. 

The hidden Markov model (HMM), by virtue of its characteristics, is suitable 
for handling the time structure in speech recognition, for the states belonging to the 
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speech sounds pronounced longer simply return into themselves repeatedly. Maier 
and others [9] [10] have successfully applied the method with adults whose larynx 
had been removed due to throat cancer and with children born with a cleft lip and 
palate. In these patients a close relation can be achieved between the subjective and 
automatic assessments. This was used as a basis for developing PEAKS (Program 
for Evaluation and Analysis of all Kinds of Speech Disorders), a recording and 
analysing system for the automatic or manual assessment of utterance disorders 
and speech impediments. 

Typical, easy-to detect utterance disorders are associated with the different 
disorders. For the speech disorders, the researchers had training models available 
in sufficient quantities, so it was possible to develop the statistical model necessary 
for automatic assessment. However, the mispronunciations of the hearing impaired 
cannot be typified [7]. Our general-purpose speech recognition device based on the 
HTK Speech Recognition Toolkit [6], which is adapted to 3,600 words and 1,800 
sentences recorded with the voices of 60 school children (12-14 year-old primary 
school children from three special institutions for the teaching of the deaf and 
hard-of-hearing) proved to be unsuitable for automatic assessment. 

Dynamic time warping (Dynamic Time Warping, DTW) was used in the early 
era of speech recognition for the comparison of the patterns to be recognised and the 
reference samples. The procedure examines optimum time alignment as the search 
for the path with minimum length or weight in a given graph. Let us suppose 
that the x words to be examined consist of k pieces of segments and the data 
characterising the f-th (i = 1 ,2 , . . . , k) segment are summed up in vector x, . Next 
these elementary vectors are collected into a matrix in the classification algorithm. 
Thus the incoming word is characterised by the vector series x\, x2, .. -, xk • Let 
the vector series y4, y2, ..., yr characterise in a similar way the vocabulary element 
y, with which the incoming word is to be compared. The objective is to produce a 
vector series xk ,2 , . . . , r (length r) from the vector series x\, x2, ..., xk by repeating 
some and omitting others, for which the 'distance' 

takes its minimum. Here d(x, y) is an arbitrary given distance function. In produc-
ing the vector series xi,2,...,r , secondary conditions are set, of which the following 
is a possible version: 

• any vector Xi can only be repeated once (thus we can at most double, but 
not triple the number of vectors); 

• if Xi is omitted, its neighbours (xj_i and Xi+i) cannot be omitted, thus two 
neighbouring segments cannot be omitted; 

• the order of segments cannot be reversed [4]. 

The characteristic vectors used as the inputs to the algorithm are provided by 
feature extraction of speech. The result of segmentation was examined on the basis 

r 
(1) 
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of feature extraction by means of the usual procedures: 

• MFCC: Mel-Frequency Cepstral Coefficients [2], 

• PLP: Perceptual Linear Prediction [5], 

• MEL band energy: logarithmic energy [13]. 

In our experiment the references were provided by recorded speech samples of 
university students of liberal arts participating in competitions of proper pronun-
ciation and school children with proper pronunciation in the same age group as 
the hearing impaired involved in the experiment. These references were regarded 
as standard recorded speech samples. The recorded speech samples of the hearing-
impaired children were provided by the speech sound database recorded for the 
purpose of creating the assessment scale. 

The database includes 2,421 words (some words occur several times, but with 
different speakers, therefore their time structures are also different), which were 
assessed by 13 teachers and 23 students. Every teacher assessed only the recorded 
speech samples of the pupils of a school different from his own so as to avoid bias 
resulting from recognising the speaker. The assessors could listen to a recorded 
speech sample several times and could make comments on the samples. The results 
were recorded via an Internet application. In the case of the teachers, the basis of 
the assessment was given by a five-grade scale set worked out by them. 

Interpretation of the scale: 

• Unintelligible (1): articulation is completely distorted; the vowels and conso-
nants are unrecognisable; the reproduction of the syllable number is not ad-
equate or discernible; breathing and management of breath is faulty; tempo 
and rhythm are incorrect; the utterance is unmelodious, non-dynamic or too 
tense. 

• Difficult to understand (2): grave distortions, omission of speech sounds, 
speech sound replacement; only some of the vowels can be discerned; distor-
tions due to insufficient breathing, e.g. too breathy or choked; characterised 
by irregular, disturbing tonality, rhythm and tempo. 

• Moderately intelligible (3): the articulation of vowels is correct, the number 
of syllables is appropriate; serious speech defects may occur, e.g. dyslalia 
(the speech impediment in which certain vowels are incompletely formed), 
nasality, head voice, prosodic inadequacies. 

• Easy to understand (4): slight speech defects; slight prosodic inadequacies. 

• Understandable at the same level as the speech of the hearing (5)\ at most 
1-2 speech sound defects may occur. 
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The 23 students had to score the recorded speech samples on a scale of 1-5 on the 
basis of everyday usage. Three hundred words were chosen out of the 2,421 words 
for the detailed segmentation analyses. The stock of words chosen is sufficiently 
varied not only according to the lengths of the words, but also from the aspect 
of the occurrence of speech sound juncture features, which is characteristic also of 
the complete word database. The stock of words of the recorded speech samples 
was prepared by teachers of the hearing impaired, taking the active vocabulary of 
the individual students carefully into consideration. The 300 words were manually 
segmented by a speech processing expert, providing the basis for the comparison. 

Comparing the result of the segmentation time warped to correctly articulated 
reference speech with the time data given by the expert provided values that could 
not be used for poor quality speech. Often completely different results were ob-
tained for the standard reference samples originating from the various subjects 
articulating the given word. 

The cause of the failure was attributed to the deficiencies in dynamic time warp-
ing. The application of dynamic time warping for the purpose of speech recognition 
was neglected because the comparison has to be performed for every conceivable vo-
cabulary element, which is extremely time-consuming. In addition, more advanced 
decision-making methods compare the speech section to be recognised not with the 
voice of a given speaker, but compare the element to be recognised with the data of 
a population of speakers using statistical learning methods. Our solution integrates 
a statistical model into the input data, and eliminates the speaker dependence of 
the reference sample by a new method of reference generation. 

It was supposed that the characteristics obtained for the individual speech 
sounds by statistical methods would provide more reliable results. A neural network 
was trained on the basis of the BABEL speech sound database. 

The BABEL database consists of three different parts: recorded speech samples 
of numbers of isolated and connected words, CVC (consonant-vowel-consonant) 
syllables, and continuously read speech. Both the sentences read and the number 
series were planned so as to provide a good coverage of the speech sound combi-
nations in the Hungarian language. Some of the speech samples in the continuous 
part are in whispers. Part of the database is segmented into phonemes and labelled. 
The database includes the voices of a total of 30 male and 30 female speakers as 
well as 2,000 sentences and 14,000 connected number series. 

3 Dynamic t ime warping input data 
We attempted to derive the essence of speech sounds by means of the output activity 
of neural networks. Neural networks were trained in acoustics-phonetics classifica-
tion, then using their outputs, new neural networks were trained to differentiate 
within the class. In the course of training the correct outputs were given a value 
1 in their own time frame, and the others were given the value 0. The goodness 
of classification was checked on testing patterns not included in the training and 
amounting to a quarter of the complete speech sound material. In the course of 
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testing, in order to obtain the goodness criterion for each speech sound, the sum of 
the activities of their own outputs was divided by the sum of the activities of the 
other outputs, calculated for all the testing time segments. 

Gi - goodness of neural network for feature of speech sound or class of speech 
sounds (z), 

OjvN ~ neural network outputs, 

VR - correct output activity for all of its own time frames, 

\/F - incorrect output activity for all the other time frames. 

The neural network whose goodness factor was the maximum for all speech 
sounds was kept, so we had five neural networks for acoustic-phonetic classification 
and four neural networks for grouping within the class. For orthography transcrip-
tion we will use SAMPA symbols. The classes formed by the neural networks are 
as follows: 

• pause; 

• vowels (a, a:, E, e:, i, o, 2, u, y); 

• semi-vowels (m, n, J, r, I, j); 

• fricatives ( f , s, S, h, v, z, Z)\ 

• plosives (p, t, ts, tS, t', k, b, d, d\ g). 

The speech sounds belonging to the outputs of the neural network dedicated 
to the classes are listed in parentheses. We tried to perform the acoustic-phonetic 
classification by using only a single neural network, but we got weaker results 
than when using neural networks dedicated to individual classes (Figure 1). For 
dynamic time warping, these outputs were directly used as a feature vector of the 
word analysed. Among the speech feature extraction methods examined (MFCC, 
PLP, MEL subband energy), PLP showed the highest goodness factors, thus the 
outputs of neural networks trained by PLP speech feature extraction were used as 
the inputs of dynamic time warping. Training was performed with several options. 
The setting providing the maximum of the goodness factor is: to the 12 PLP 
data and logarithmic energy of the actual 40ms frame were added the average of 
two frames of the preceding 80 ms section and the average of two frames of the 
subsequent 80 ms. The feature 3 x 13 describes the 40ms segment in the middle 
of the 200 ms interval. Training of the 5 neural networks meant for phonetic 
classification was performed with these parameters. 

(2) 

where 
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4 Feed-̂ rwarc Neural Network (viear) 
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Figure 1: Model of the neural network determining the acoustic speech sound class 

In addition to the 39 PLP features, neural networks trained to recognize speech 
sounds within the phonetic classes were also given the outputs of the five classifying 
neural networks as input. Figure 2 shows the structure of the neural network used 
for sorting vowels. 

Figure 2: Neural network model of the acoustic speech sound class of vowels 

Segmentation was also performed with the neural networks trained with the 
shorter PLP time frames; the smallest errors were obtained with the above setup. 
The relevant toolboxes of the program package MATLAB were used for the calcu-
lations [11]. 

4 Reference generation 

Using a concrete recorded speech sample as reference, the failure of segmentation 
discussed above was attributed to individual differences. On the basis of a statis-
tics model, a neural network trained with a great number of speakers is better at 
reflecting the similarities to the individual speech sounds. 

In developing the reference shape, the chosen input data had to be accom-
modated. Since in this task the objective is not recognition of the word but the 
alignment of the recorded speech sample, the phonetic transcription of the word 
was at our disposal. For the purpose of reference generation, the output belonging 
to the given speech sound and output of the class including the speech sound are 
made active in the allocated time interval. The timing of the individual speech 
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sounds can be determined starting out from the average time length of the speech 
sounds [12]. The speech of hearing-impaired children is slower than the average 
speech tempo. According to our measurements, the time length of the fastest 
speech was one and a half times the average, therefore in reference generation one 
and a half times the average time lengths of speech sounds were used, thus a few 
speech sounds pronounced shorter also fall in the range allowed. Calculating with 
the above auxiliary conditions of dynamic time warping, the length of individual 
speech sounds may vary between 3/4 of and three times the average speech sound 
time length after time warping. Figure 3 shows the created reference features of 
the word hűséges [hy:Se:gES] (meaning 'faithful'). The horizontal axis shows the 
time index of the frames, and the vertical axis shows (from bottom to top) the 
acoustic-phonetic features starting with the pause then the outputs classifying 
vowels, semi-vowels, fricatives and plosives, and above them the individual outputs 
of the speech sound classes in the above order. 

40 
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Figure 3: Features created in the reference generation of the word [hy:Se:gES] 

In case of good quality speech, the outputs of the neural networks show signif-
icant activity. The word 'hűséges' can be clearly understood and is of a quality 
accepted in everyday communication (Figure 4). 

On the other hand, the output levels decrease visibly and several outputs show 
activity simultaneously as Figure 5 shows the output activities belonging to the 
word 'valami' [vOlOmi] (meaning 'something') pronounced with a distortion mak-
ing it unintelligible. The outputs of a neural network are not faultless and among 
the speech sound samples to be segmented there are also speech samples distorted 
to unintelligibility. 
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Figure 4: Significant activity of the actual outputs 
in aligning the clearly understandable word [hy:Se:gES] 
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Figure 5: Weak activity of the actual outputs 
in aligning the word [vOlOmi] with a distorted pronunciation 
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Therefore not simply the activity of the relevant output is used as input, but the 
activities of the outputs belonging to the same acoustic-phonetic class are summed 
and weighted with the similarity measurement between the speech sounds. 

On the basis of the speech sound database BABEL and using PLP speech feature 
extraction, the average of the coefficients belonging to the total occurrence of the 
individual speech sounds was determined. A 40 ms segment was marked from the 
center of each speech sound having a stationary phase (vowels, semi-vowels and 
fricatives) and the last 40 ms (burst) for plosives. Then Euclidean distances were 
formed between the averages of Hungarian speech sounds [3]. By reversing the 
normalised distance, similarity measurements were formed between the individual 
speech sounds: 

H(i,j) = l-D(i,j)/Dmax, (3) 

where H(i,j) is the similarity of the z-th and j-th speech sounds, D(i,j) is the 
distance of the averages of the PLP coefficients of the z-th and j-th speech sounds 
and Dmax is the maximum of these distances. 

Summation of the similarity measurements for an acoustic-phonetic class is as 
follows: 

S(i) = Y,H(i,j)*NN(j), (4) 
jBO 

where O designates the speech sounds belonging to its own class and NN(j) is the 
y-th output of the neural network. 

Without transferring output activities to the similar phones, in case of misclas-
sification or highly distorted speech the right neural network output would not get 
any activity, causing false pause frames in the time interval of the phone. This 
time shift would risk the right segmentation of neighbouring phones as well. The 
artificially created reference pattern and the cumulated neural network outputs of 
speech examined form the basis of dynamic time warping. 

The following figures show the similarity measurements of speech sounds be-
longing to the classes of the neural network compared to each other (Figures 6-9). 
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Figure 6: Similarity measurements of vowels 
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Figure 7: Similarity measurements of semi-vowels 
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Figure 8: Similarity measurements of fricatives 

Figure 9: Similarity measurements of plosives 
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5 Modifying the D T W algorithm 

Tested by the classical rules of dynamic time warping and using the outputs of the 
neural network as feature vector, time warping produced much better results than 
when recorded words were used as reference. 

During testing, however, it was found that in the speech samples of hearing-
impaired children pauses of several tenths of a second frequently occurred between 
speech sounds. In order to treat this problem, the secondary conditions of the 
dynamic time warping algorithm were modified: 

• an optional pause was inserted after each speech sound in producing the 
reference; 

• the pause can be repeated number of times. 

According to the rules set out above, a time interval can be lengthened to a 
maximum of twice its original length. However, in the speech samples of hearing-
impaired children there were often speech sounds pronounced longer than that. 

Therefore: 

• double reiteration of a time frame can also be allowed, thus a time interval 
can be lengthened to three times its original length. In the following, this will 
be referred to as adapted dynamic time warping (ADTW). 

Figure 10 shows the segmentation results of the haltingly pronounced word 
'lazmero' [la:zme:r2:], (meaning 'clinical thermometer') and the hardly intelligible 
word 'valami' [vOlOmi], (meaning 'something') as examples. 

I I I I I 
I a: z m e: r 

timeframes of the reference word 

35 

2: 
10 12 1< 16 1 8 20 22 

I 0 m i 
time frames of the reference word 

Figure 10: Dynamic time warping of 
the words [la:zme:r2:] and [vOlOmi] using the ADTW method 

The horizontal axis shows the reference segments and the vertical axis shows 
the segments of the speech sample examined. In the reference the vertical bands 
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of the size of one time frame indicate the pauses inserted. The shading of the 
points of the matrix is proportional to the similarity measurement. Darker bands 
mean greater similarity. The horizontal line appears in the time frames matched. 
On the horizontal axis of the word 'lazmero' [la:zme:r2:], time frame 16 shows 
the insertion of a pause of considerable length. The word 'valami' [vOlOmi] even 
with an extremely distorted articulation can be successfully segmented with the 
procedure proposed. 

The recorded speech samples can be heard at the following links: 

h t t p : / /mazsola . i i t . uni-miskolc. hu/~avarga/hangmintak/huseges. wav 
h t t p : / /mazsola . i i t .uni -miskolc .hu/~avarga/hangmintak/ lazmero . wav 
h t t p : / /mazsola . i i t .uni-miskolc .hu/~avarga/hangmintak/valami .wav 

6 Evaluation 

In evaluating the modified algorithm, expert segmentation was regarded as the 
reference. In expert segmentation, the segment boundaries were determined on the 
basis of a combination of the time function, the spectrogram and the speech sound 
played from the segment boundary (or to the segment boundary). The comparison 
was performed using two other segmentation procedures: 

1. DTW algorithm based on acoustic-phonetic features, optimised for good-
quality speech without being adapted to hearing-impaired speech samples. 

The objective of the time warping method based on acoustic-phonetic (AF) 
speech sound classes is to compare prosody (the combination of melody, pro-
nunciation speed, rhythm, stress, speech sound intensity and tonality), which 
can be applied to several languages. It is a time warping method which 
aligns the two samples strictly along the speech sounds and performs scaling 
only within them. In this method the novelty is represented by the execu-
tion method of the computer segmentation, for which general acoustic speech 
sound classes were used, which determined language-independent articulation 
configurations [8]. Applicability to several languages followed from that . In 
the present case the developers supposed that the difference between the ac-
tual and the reference sample is minimal (the speaker is cooperative). Three 
differences were taken into account: insertion, omission and different pronun-
ciation. The AF segmentation procedure was not adapted to poor-quality 
speech. 

2. HMM-based speech recognition with PLP feature extraction, with the pauses 
between the speech sounds and their repetition of optional times included in 
the grammar rules and forced alignment segmentation. 
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Table 1: Proportions of correct segmentation for 
different speech feature extraction methods 

Tolerance (ms) Speech feature extraction methods Tolerance (ms) 
MFCC PLP MEL 

< = 10 0.31 0.48 0.38 
< = 20 0.61 0.72 0.60 
< = 30 0.78 0.84 0.73 
< = 40 0.86 0.90 0.82 
< = 50 0.90 0.93 0.88 
< = 60 0.93 0.94 0.91 
< = 70 0.95 0.95 0.93 
< = 80 0.95 0.95 0.93 
< = 90 0.96 0.95 0.94 
< = 100 0.96 0.96 0.94 

The recordings of the 24 male and 24 female speakers of the BABEL speech 
sound database provided the training samples, and recordings of 6 male and 6 
female speakers provided the testing samples. A 10 ms time frame was chosen and 
the previously used speech feature extraction procedures were examined as feature 
vectors from a segmentation aspect: 

• MFCC: 12 coefficients and log energy give the 13 components, 

• PLP: 12 coefficients and log energy, 

• MEL: logarithmic band energy dividing the 125 Hz - 8 kHz frequency domain 
into 30 part bands on the basis of the mel-scale. 

On the basis of the results (Table 1), PLP speech feature extraction was chosen 
here and will be referred to as HMM in the following. Since the ultimate objective 
of the method to be developed is automatic assessment, in speech feature extraction 
the centre of phones is searched for, thus the stationary phase if there is one will 
characterise the given speech sound [14]. Therefore a segmentation error is regarded 
as serious or less serious depending on its sign. If the segmenter puts the beginning 
of a speech sound further forward of the real limit, the error is in the incorrect 
direction, for the erroneous limit lies outside of the interval of the desired speech 
sound. Again the error is more serious if the end of the speech sound is put farther 
back of the real limit. The error is not so serious if the limit is placed farther back 
of the real beginning or further forward of the real ending within the speech sound 
examined (Figure 11). 
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Figure 11: Segmentation error by error direction 

The following tables (Table 2-5) sum up the results of the segmentations per-
formed by the different procedures concerning the 3,694 speech sounds included in 
the 300 words. 

Table 2: Results of the acoustic-phonetic (AF) segmentation procedure 

AF segmentation procedure 

Tolerance (ms) Initial Final Tolerance (ms) 
Incorrect Correct Correct Incorrect 

0 1785 62 1782 65 
20 1747 100 1795 52 
40 1667 180 1801 46 
60 1500 347 1805 42 
80 1340 507 1811 36 

100 1187 660 1812 35 
200 692 1155 1825 22 

Table 3: Results of the HMM segmentation procedure 

H M M segmentation procedure 

Tolerance (ms) Initial Final Tolerance (ms) 
Incorrect Correct Correct Incorrect 

0 1327 528 1569 286 
20 620 1235 1669 186 
40 296 1559 1734 121 
60 190 1665 1761 94 
80 142 1713 1780 75 

100 122 1733 1792 63 
200 66 1789 1824 31 
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Table 4: Results of the ADTW segmentation procedure 

A D T W segmentation procedure 

Tolerance (ms) Initial Final Tolerance (ms) 
Incorrect Correct Correct Incorrect 

0 137 1718 1717 138 
20 97 1758 1753 102 
40 80 1775 1776 79 
60 64 1791 1791 64 
80 54 1801 1803 52 

100 46 1809 1815 40 
200 25 1830 1838 17 

Table 5: Number of errors outside of the time interval of 
the speech sound from the shifts in the correct direction in the tables above 

Segmentation Procedure Initial 
Shifted 

Final 
Shifted 

AF segmentation procedure 15 1258 
HMM segmentation procedure 135 42 

ADTW segmentation procedure 39 77 

The results show that 'incorrect direction' errors definitely lying outside of the 
time interval of the speech sound are a magnitude smaller for the proposed ADTW 
segmentation than for thé AF procedure not adapted to poor quality speech or for 
the HMM procedure. 'Correct direction' errors, exceeding the time length of the 
speech sounds are also the fewest also with the ADTW method. 

The AF segmentation considered the speech sounds shorter than their real 
length: placing the beginning of a speech sound is shown in the column of er-
rors in the incorrect direction of Table 3, placing the end of a speech sound more 
forward is located in the field outside of the domain of Table 5. In HMM segmen-
tation mainly the accuracy of marking the limits at the beginning of speech sounds 
lags behind the results of the ADTW procedure. 

ADTW segmentation is utilized in automatic speech assessment. Speech sam-
ples of hearing impaired children were evaluated by the 36 assessors. The average 
scores served as a reference. The scores of the automatic assessment were closer 
to the averages than that of 28 subjects out of the 36 ones, while one teacher and 
seven students reached scores closer to the averages [13]. 
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7 Summary 
Adaptation of dynamic time-warping has been presented with the objective of a 
more efficient segmentation of the voices of hearing-impaired children. Pauses in-
serted between the speech sounds which can be repeated arbitrarily are able to 
handle the long pauses of halting speech. Time frames that can be repeated twice 
- that can be included a maximum of three times - make it possible to follow 
extremely slow speech. The acoustic-phonetic features used as inputs of the algo-
rithm are able to create perceptible activity at the outputs of the neural networks, 
thus a statistical model is incorporated into the input data. The proposed method 
of reference generation does not require the recording of reference speech samples, 
thus eliminating the speaker-dependence of the reference sample. 
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The Holonomy Decomposition of some Circular 
Semi-Flower Automata 

Shubh N. Singh* and Kanduru V. Krishna* 

A b s t r a c t 

Using holonomy decomposition, the absence of certain types of cycles in 
a u t o m a t a has been characterized. In the direction of s tudying the s t ruc ture 
of a u t o m a t a with cycles, this paper focuses on a special class of semi-flower 
a u t o m a t a and establish the holonomy decomposition of certain circular semi-
flower au tomata . In part icular , we show t h a t the t ransformation monoid 
of a circular semi-flower au tomaton with a t most two bpis divides a wrea th 
product of cyclic t ransformat ion groups with adjoined constant functions. 

K e y w o r d s : t ransformat ion monoids, semi-flower au tomata , holonomy de-
composition 

1 Introduction 
Usefulness of a decomposition method for any given system does not require any 
justification. The primary decomposition theorem due to Krohn and Rhodes has 
been considered as one of the fundamental results in the theory of automata and 
monoids [13]. Eilenberg has given a slight generalization of the primary decomposi-
tion called the holonomy decomposition [8]. Here, Eilenberg established that every 
finite transformation monoid divides a wreath product of its holonomy permutation-
reset transformation monoids. The holonomy decomposition of an automaton is 
considered to be the holonomy decomposition of the transformation monoid of the 
automaton. The holonomy decomposition is also used to study the structural prop-
erties of certain algebraic structures [11, 12], The holonomy decomposition method 
appears to be relatively efficient and has been implemented computationally [4, 5]. 
One can use the computer algebra package, SgpDec [7] to obtain the holonomy 
decomposition of a given finite transformation monoid. 

In order to ascertain the structure of an automaton, the holonomy decompo-
sition considers the monoid of automaton and looks for groups induced by the 
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monoid permuting some set of subsets of the state set. These groups are called the 
holonomy groups, which are building blocks for the components of the holonomy 
decomposition. Using the holonomy decomposition, Egri-Nagy and Nehaniv char-
acterized the absence of certain types of cycles in automata [6]. In fact, they proved 
that an automaton is algebraically cyclic-free if and only if the holonomy groups 
are trivial. On the other hand, the structure of automata with cycles is much more 
complicated. 

In the direction of studying the structure of automata with cycles, this work 
concentrates on a special class of semi-flower automata (SFA) [9, 15]. Using SFA, 
the rank and intersection problem of certain submonoids of a free monoid have 
been studied [10, 16, 17]. 

In this paper, we consider circular semi-flower automata (CSFA) classified by 
their bpi(s) - branch point(s) going in - and obtain the holonomy decomposition of 
CSFA with at most two bpis. We present some preliminary concepts and results in 
Section 2. The main work of the paper is presented in Section 3. Finally, Section 
4 concludes the paper. 

2 Preliminaries 
This section has two subsections on the holonomy decomposition and automata to 
present necessary background materials on these topics. 

2.1 The Holonomy Decomposition 
In this subsection, we provide brief details on the holonomy decomposition which 
will be useful in this paper. For more details one may refer [2, 4, 8]. 

We fix our notation regarding functions. Let / : X —> Y be a function from X 
into Y. We write an argument x E X of / on its left so that xf is the value of / at 
x. The rank of / , denoted rank(/), is the cardinality of its image set X f . The set 
of all functions from X into Y is denoted by Y x . The composition of functions is 
designated by concatenation, with the leftmost function understood to apply first 
so that xfg = (xf)g. 

A transformation monoid is a pair (P,M) consists of a nonempty finite set P 
and a submonoid M of P), where -V(P) is the monoid of all functions on P with 
respect to composition of functions. Note that there is an action of submonoid M 
on set P . Let us denote the action of m E M on p G P a s pm. If M is a subgroup 
of 37 (P), then (P, M) is called a transformation group. 

A transformation monoid ( P , M ) divides a transformation monoid ( Q , N ) , de-
noted (P, M) -< (Q,N ) , if there exists a partial surjective function tp : Q P 
and, for every m G M, an element n G N such that (q<p)m = {qn)p> for each 
q G Dom(<p). The wreath product of two transformation monoids (P, M) and 
(Q,N), denoted (P, M) I (Q,N ) , is the transformation monoid (P x Q,W), where 
W = {(f,n) | / G M® and n E N} is the monoid with operation given by 

(f,n)(g, k) = (h, nk), qh = (qf)((qn)g) for every qeQ, 



The Holonomy Decomposition of some Circular Semi-Flower Automata 793 

and the action of ( / , n) € W on an element (p,q) £ P x Q is given by 

(P. ? ) ( / . « ) = ( p ( q f ) , q n ) • 

The wreath product is an associative operation on transformation monoids. 
Let (P, M) be a transformation monoid. For p £ P, let p be the constant 

function on P whichtakes the value p. The semigroup of all these constant functions 
on P is denoted by P. The closure of (P, M) is the transformation monoid (P, M) = 
(P, M U P). The skeleton of (P, M) is J = {Pm| TO e M) U ( J {{p}} with the 

peP 
subduction relation < on ^ given by R < S if and only if R C Sm for some 
TO £ M. The subduction relation is a preorder relation. Consequently, there is an 
equivalence relation ~ on ^ given by R ~ S if and only if R < S and S < R. 
We write ^ to denote the set of all elements of ^ of cardinality i (for i > 1), i.e., 

/ i = { T e / | | T | = i } . 

Let (P, M) be a transformation monoid. The height of T € J? is given by the 
function -q : J Z, which is defined by Tp = 0 if |T| = 1, and for |T| > 1, 
Tp is the length of the longest subduction chain(s) in the skeleton starting from 
a non-singleton set and ending in T. The height of (P, M) is defined as Pp. For 
r e / with |Tj > 1, put K{T) = {me M \ Tm = T}. The paving ofT, denoted 
B(T), is the set of maximal subsets of T that are contained in ^ , i.e., 

B(T) = {R € J | R C T and if S € J with RCSCT, then S = R or S = T}. 

The set G(T) of all distinct permutations on B(T) induced by elements of K(T) 
is called the holonomy group of T, and (P(T),G(T)) is a transformation group. 
We denote an element of G(T) by TO which is induced by TO G K(T). For T, T' € J 
with |Tj > 1, |T'| > 1, if T ~ T', then (B(T),G(T)) is isomorphic to (B(T'), G(T')). 

The holonomy decomposition theorem due to Eilenberg states that every finite 
transformation monoid divides a wreath product of its holonomy permutation-reset 
transformation monoids, as presented in the following: 

Theorem 2.1 ([8]). If (P,M) is a finite transformation monoid of height n, then 

(P,M) .. . \ W n , 

where, for 1 < i < n, 

(ki ki \ 

j=i j=i / 
in which ki is the number of equivalence classes at height i and {Tij \ 1 < j < ki) 
is the set of representatives of equivalence classes at height i. 
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2.2 Automata 
This subsection is devoted for essential preliminaries on automata and monoids. 
For more details one may refer [1, 9, 15]. 

Let A be a nonempty finite set called alphabet with its elements as symbols. 
The free monoid over A is denoted by A* whose elements are called words, and e 
denotes the empty word - the identity element of A*. 

By an automaton, we mean a quintuple A = (Q,A,S,qo,F), where Q is a 
nonempty finite set called the set of states, A is alphabet, qo € Q called the initial 
state, F C Q called the set of final states, and 6 : Q x A Q called the transition 
function. Clearly, by denoting the states as vertices and the transitions as labeled 
directed edges, an automaton can be represented by a digraph in which the initial 
state and final states shall be distinguished appropriately. A path in a digraph is 
an alternating finite sequence vo, e4, v\, e2, v2,... vk-i,ek,vk of vertices and labeled 
directed edges such that, for 1 < i < k, the tail and the head of the edge ez are i>i_i 
and Vi, respectively. A path in an automaton is a path in its digraph. For pi £ Q 
(0 < i < k) and a,- £ A (1 < j < k), let 

a i a2 as Ofc — l at 
PO ^ Pi >P2 > Pk-1 • Pk 

be a path in A. The word a4 • • • ak £ A* is called the label of the path. A null path 
is a path from a state to itself labeled by the empty word e. A path that starts 
and ends at the same state is called as a cycle, if it is not a null path. 

Given an automaton A, we can inductively extend the transition function for 
words by, for all u £ A*, a £ A and q € Q, 

S(q,e) = q, and 8(q,au) = 6(5(q,a),u). 

We write qu instead of 8(q,u). There is a natural way to associate a finite monoid 
to A. For each x £ A*, we define a function 8X : Q —» Q by qSx = qx for all q £ Q. 
The set of functions, M(A) = {Sx | x € A*}, forms a monoid under the composition 
of functions. If M(A) is a group, then A is called a permutation automaton. Note 
that the monoid M(A) is generated by the functions defined by symbols. Further, 
for all x, y £ A*, we have 5xy = Sx8y and 8e is the identity function on Q. 

Let A be an automaton. A state q is called a branch point going in, in short 
bpi, if the number of transitions coming into q (i.e. the indegree of q - the number 
of edges coming into q - in the digraph of A) is at least two. We write BPI(A) to 
denote the set of all bpis of A. A state q is accessible (respectively, coaccessible) 
if there is a path from the initial state to q (respectively, a path from q to a final 
state). An automaton A is called a trim automaton if all the states of A are 
accessible and coaccessible. An automaton A is called a semi-flower automaton (in 
short, SFA) if it is a trim automaton with a unique final state that is equal to the 
initial state such that all the cycles in A visit the unique initial-final state qo-

Let X = {p i , . . . ,pr} be a finite set and f C I . A Y-cycle is a permutation f y 
on X such that f y induces a cyclic ordering on Y (= { p i i ; . . . ,pia), say) and f y is 
identity o n I \ F , i.e., for 1 < j < s and p £ X \ Y, 

Pi, fv = Pij+1, Pi, f y = Pi!, and p f y = p. 



The Holonomy Decomposition of some Circular Semi-Flower Automata 795 

A circular permutation on X is an A-cycle. It is well known that for every permuta-
tion / on X, there exists a partition {Yj , . . . . Yt} of X such that / = /y,/y2 • • • /y t , 
a composition of (disjoint) K,-cycles. 

An automaton A is called a circular automaton if there exists a symbol a € 
A such that 8a is a circular permutation on Q. Circular automata have been 
studied in various contexts. Pin proved the Cerny conjecture for circular directable 
automata with a prime number of states [14]. Further, Dubuc showed that the 
Cerny conjecture is true for any circular directable automata [3]. 

In order to investigate the holonomy decomposition of circular semi-flower au-
tomata, we consider these automata classified by their number of bpis and complete 
the task for the automata with at most two bpis. 

3 Main Results 
We present results of the paper in three subsections. In Subsection 3.1, we obtain 
some properties of circular semi-flower automata (CSFA) which are useful in the 
work. We investigate the holonomy decomposition of CSFA with at most one bpi 
and two bpis in subsections 3.2 and 3.3, respectively. 

In what follows, A = (Q, A, 8, qo,qo) is an SFA such that \Q\ = n (n > 1). 
Further, for 1 < m < n, c f f m denotes a transformation group (A, Cm) for some set 
X C Q with \X\ =m and Crn is the cyclic group generated by circular permutation 
induced by a word on the set X. 

3.1 Circular Semi-Flower Automata 
In this subsection, we first ascertain that there is a unique circular permutation 
induced by symbols on the state set of CSFA and then we proceed to obtain certain 
properties pertaining to the bpis of CSFA. 

Proposition 3.1. Let A be an SFA and a,b € A. 

(i) If 8a is a permutation on Q, then Sa is circular permutation on Q. 

(ii) If 5a and 8 b are permutations on Q, then 6a = 8b. 

Proof. 

(i) Write 8a = fQ1 • • • fQt, a composition of Qj-cycles for some partition 
{Qi ,...,Qt} of Q. Let q0 € Qr for some r € {1 , . . . , t}. If Qr — Q, then 
t = r = 1 and so that Sa is circular permutation on Q. Otherwise, there exists 
q £Q\Qr and s € { 1 , . . . , t } \ {r} such that q eQs. Note that the Qs-cycle 
induces a cycle in A that does not pass through the initial-final state qo; a 
contradiction. 

(ii) On the contrary, let us assume that 5a ^ ¿6- From Proposition 3.1 (i), the 
permutations 5a and 8b are circular permutations on Q. Let cyclic orderings 
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on Q with respect to 6a and 6b be as shown below. 

6b : qo,q3l,qn,. • • 

Since 5a ^ 6b, let k be the least number such that qik qjk. Note that there 
exists s > k such that = qja and also there exists r > k such that qjk = qir. 
The path 

a'—k b"~k 

qik — • qir = qjk — • qj, = qik 

is a cycle in A labeled by the word ar~kbs~k that does not pass through the 
initial-final state <?o; a contradiction. 

• 

Corollary 3.1. There is a unique circular permutation induced by symbols on the 
state set of a CSFA. 

Proposition 3.2. Let A be an SFA; then 

BPI(A) = 0 |A| = 1. 

Proof. In an n-state automaton, 

the total indegree of all states = the total number of transitions — n|A|. 

Since A is accessible, indegree of each state is at least one. Consequently, 

BPI (A) = 0 the total indegree of all states = n |A| = 1. 

• 

In what follows, B = (Q, A, 6, qo, qo) stands for an CSFA with |Q| = n (n > 1). If 
the number of bpis in B is less than the number of states in B, then there is a unique 
symbol induces a permutation on Q. For the rest of the paper we fix the following 
regarding B. Assume that the symbol a £ A induces a circular permutation 6a on 
Q. Accordingly, 

6a '• qo, qi, • • •, <Zn-i 
is the cyclic ordering on Q with respect to 6a. 

Proposition 3.3. If B has at least one bpi, then its initial-final state qo is a bpi. 

Proof. Since B has at least one bpi, by Proposition 3.2, we have |A| > 2. We claim 
that qn~i6b = qo for all b £ A \ {a} and so that qo is a bpi. 

On the contrary, let us assume that qn-\6c ^ q0 for some c £ A \ {a}. Then 
qn-\6c = qi for some i (with 1 < i < n). Note that q,6ar,~x-\c = qt. Therefore there 
is a cycle in B from qi to qi labeled by the word an~l~1c that does not pass through 
the initial-final state qo\ a contradiction. Hence qn-i6b = qo for all b £ A \ {a}. • 
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Proposition 3.4. For 1 < m < n, if \BPI(B)\ = m, then any non-permutation 
function in M(B) has rank at most m. 

Proof. Since \BPI(B)\ = m > 1, by Proposition 3.2, we have \A\ > 2. Note that 
the permutation Sa contributes one to the indegree of each state of B. 

For x £ A*, let 8X be a non-permutation function in M(B). The nonempty 
word x contains at least one symbol of A \ {a}. We claim that \Q5b\ < m. for 
all b £ A \ {a} and so that the rank of Sx is at most m. On the contrary, let us 
assume that |Q6C| > m for some c £ A \ {a}. This implies that \BPI(B)\ > m; a 
contradiction. Hence \Q8b\ < m for all b £ A \ {a}. • 

In view of Proposition 3.3, we have the following corollary of Proposition 3.4. 

Corollary 3.2. If B has a unique bpi, then Q8b = {go} for all b £ A \ {a}. 

3.2 Circular Semi-Flower Automata with at most one bpi 
In this subsection, we obtain the holonomy decomposition of an SFA which is 
permutation automaton or has no bpis or circular automaton with a unique bpi. 
We first prove the following result. 

Proposition 3.5. Let A be an SFA. If A is permutation automaton or has no bpis, 
then M(A) is a cyclic group. 

Proof. 

Case (A is permutation): The monoid M(A) is a group. All elements in M(A) 
induced by words are permutation functions on Q. Note that M(A) is gener-
ated by the functions induced by symbols. Also A is an SFA, all the permu-
tations on Q induced by symbols are equal (cf. Proposition 3.1). Therefore 
M(A) is a cyclic group. 

Case (A has no bpis): Here |A| = 1 (cf. Proposition 3.2 ). Clearly the function 
induced by the symbol is a circular permutation on Q, and so A is permutation 
SFA. Therefore, by the previous case, the monoid M(A) is a cyclic group. 

• 

Theorem 3.1. Let A be an SFA. If A is permutation automaton or has no bpis 
or circular automaton with a unique bpi, then (Q,M(A)) -< 

Proof. 

Case ( A is permutation or has no bpis): Here M(A) is a group (cf. Proposi-
tion 3.5). Therefore |Q6X| = n for all 8X £ M(A). 

Case ( A is circular with a unique bpi): Since A has a unique bpi, we have 
Q8b = {go} for all b £ A \ {a} (cf. Corollary 3.2). This implies that 8b = 8C 
for all b, c £ A \ {a}, and so that M(A) is generated by the set {¿a, ¿¿J of 
functions induced by the symbols a and b. For 8X £ M(A), by Proposition 
3.4, we have either \Q8X \ = n or \Q8X\ = 1. 
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In all the cases, the skeleton of the transformation monoid (Q, M(A)) is JP = 
{Q} U J i . Clearly B(Q) = and so that |B(Q)| = n. Note that K(Q) = 
{¿ai | 1 < i < n}. The holonomy group G(Q) is 

G{Q)= {¿a* | f<i<n). 

For 1 < i < n, since 5ai = (<5a)\ we have San = (Sa)n = K- The holonomy group 
G(Q) is cyclic group of order n generated by 6a. Thus, in each case, the holonomy 
decomposition of ( Q , M ( A ) ) is 

( Q , M ( A ) H C -

• 

3.3 Circular Semi-Flower, Automata with two bpis 
In this subsection, we investigate the holonomy decomposition of CSFA with two 
bpis. Here B = (Q, A, S,qo,qo) denotes a CSFA with two bpis. Note that , by 
Proposition 3.2, we have |A| > 2. If |Q| = 2, then the holonomy decomposition 
of B follows directly from Theorem 3.1. Therefore, let us assume that |<2| > 2. 
By Proposition 3.3, the initial-final state qo of B is always a bpi. Let qm, where 
1 < m < n, be the other bpi of B so that BPI(B) = {qo,qm}- Note that there is 
only one symbol a e A which induces the permutation on Q. 

Lemma 3.1. Let B = (Q,A,S,qo,qo) be a CSFA with two bpis. 

(i) For a symbol b 6 A, if rank(6B) = 2, then Qôb = BPI(B). 

(ii) There exists a symbol b 6 A \ {a} such that QSB = BPI(B). 

Proof. We note that ôa contributes one to the indegree of each state of B. Since 
BPI(B) = {got 9m}) we have QSb Ç {q0> qm} for all b € A \ {a} (cf. Proposition 
3.4). 

(i) Straightforward from the above statement. 

(ii) By Lemma 3.1(i), it is sufficient to prove that rank(<5/,) = 2 for some b € 
A \ {a}. On the contrary, let us assume that rank(<5(,) / 2 for all 6 e A \ {a}. 
Then rank(6i,) = 1 for all 6 £ A \ {a} (cf. Proposition 3.4). This implies tha t 
either QSb = {%} or QSb = {qm} for all b € A \ {a}. If QSb = {qm} for some 
b G A \ {a}, then there is a loop at qm\ which is not possible. Consequently 
QSb = {?o} for all b G A \ {a}, and so that BPI(B) = {90}; a contradiction. 
Hence rank(<5f,) = 2 for some 6 € A \ {a}. 

• 

The following lemma provides the skeleton of the transformation monoid 
(Q,M(B)). 
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Figure 1: CSFA B\ with two bpis 

Lemma 3.2. Let B be a CSFA with BPI(B) = {go, 9m}- Then the skeleton of 
transformation monoid (Q,M(B)) is given by 

/ = { Q } U / 2 U 

where J2 = {{go,gm}<5<n | 1 < i < n). 

Proof. In view of Proposition 3.4, other than Q and singletons, the skeleton J? can 
have some sets of size two. Therefore it is sufficient to determine J?2. 

By Lemma 3.1(h), there exists a symbol b £ A \ {a} such that QSb = {go, gm}. 
Therefore, for 1 < i < n, the image set QSbai = {go,gm}da« € J?2, and so that 

{{go,qm}8ai I 1 < i < n) <Z J2. 

Let us assume that Qôw £ for some nonempty word w € A*. Then w is of 
the form 

w = ailbiai2b2 • • • aikbkaik+1, 

for ij > 0 (1 < j < k + 1) and bt £ A (1 < t < k) such that the rank of each function 
5bt is two (cf. Proposition 3.4). Write w = àllbiubkàlk+1, where u = a%2b2 • • • a%k. 
Since rank(dhlUf);t) = rank((5tfc) = 2, we have 

Qdbiubk = Qôbk = {go, 9m}, 

by Lemma 3.1(i). Therefore Q5W = Q8ailbiubkaik+1 = {qo,qm}5aik+1, and conse-
quently 

J i = {{go,qm}ôai I 1 < i < n}. 

• 

Remark 3.1. As shown in Example 3.1, the cardinality of Jp2 is not necessarily 
n. 
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Example 3.1. The 4-state automaton B\ given in the Figure 1 is CSFA with 
BPI{Bi) = {<70,92}- We observe that 

{ 9 0 , 9 2 } ^ = { 9 i , 9 3 } , {90,92}<5o2 = { ? o , 9 2 } , a n d s o t h a t 1 ^ 2 1 = 2. 

Lemma 3.3. Let B be a CSFA with BPI(B) = {90, qm}- Then there is a nonempty 
word x £ A* such that QQ5x = qm and qm6x = 9o-

Proof. If there exists a symbol b £ A \ {a} such that qo^b 9o, then clearly 
the word x = b will serve the purpose. Otherwise we have 90 6b = 90 for all 
b £. A \ {a}. However, by Lemma 3.1(ii), there exists a symbol c £ A \ {a} such 
that Q6C = {90,9m}-

Note that the permutation 6a induces the cyclic ordering 90,91,.. . , qn-i of the 
state set Q. Since qo6c = q0 and the state qm is the other bpi of B, there exists a 
state 9i (with 1 < i < m) such that qi6c = qm. Let t (with 1 < t < m) be the least 
integer such that qt6c = qm. Choose the word x = a*c and observe that qo6x = qm. 
We claim that qm6x = 90-

On the contrary, let us assume that qln6x f- 9o- Since BPI(B) = {90,9m}, we 
have qm6x = qm and so that there is a cycle in B from qm to qm labeled by the 
word x. Since B is SFA, the cycle must pass through 90. Since qo6c = 90, there 
exist ti and t2 (1 <t\,t2 < t) with t\ + t2 = t such that 

qm6at 1 = 9o and qo6at2c = qm. 

Note that qo6at2c = qt26c = qm. This contradicts the choice of t, as t2 < t. Thus 
we have qm6x = q0. • 

Theorem 3.2. If B is an n-state CSFA with BPI(B) = {qo,qm}, then 

(Q,M(B)) -<W2\Wr, 

where r (with 1 < r < n) is the smallest integer such that {qo,qm}6ar = {90,9m}-

Further, if n is an odd number, then 

0Q,M(B)) <W2\Wn. 

Proof. From Lemma 3.2, the skeleton of (Q, M(B)) is given by 

Jr = {Q} U / 2 U J i 

in which all the elements of J?2 are equivalent to each other. 
For 1 < i < n, note that 6a* permutes the elements of Q. Also, for x £ A*, 

if 6X f 6ai for any i (with 1 < i < n), then 6X is not a permutation on Q (cf. 
Proposition 3.1). Consequently we have K{Q) = {<5a< | 1 < i < n}. Since the 
elements of axe maximal in Q, we have B(Q) = Jp2. Let r (with 1 < r < n) 
be the smallest integer such that {9o,9m}<5ar = {90,9m} so that \B(Q)\ = r. The 
holonomy group of Q is 

G(Q) = | 1 < i < r). 
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For 1 < i < r, since <5a. = (<5a)\ we have 8ar = (Sa)r = 5S. The holonomy group 
G(Q) is cyclic group of order r generated by Sa, and so that (B(Q), G(Q)) = Y>r. 

Let P = {qo,qm} be representat ive in Clearly B(P) = {{go}, {qm}}-
By Lemma 3.3, there exists a nonempty word x G A* such that qoSx = qrn and 
qrnSx = q0. This implies that K(P) = {<5X, <5e}- Therefore the holonomy group 
G(P) is cyclic group of order two generated by 8X, and so that (B(P ) , G(P)) = 7?2. 
Thus the holonomy decomposition of (Q,M(B ) ) is 

{Q,M(B)) <W2\Wr. 

If n is an odd number, we claim that r = n. On the contrary, let us assume that 
r <n. Since {go, qm}5ar = {go, qm} and 8a is circular permutation on Q. It follows 
that q0Sar = qm and qm5ar = q0. This implies that q0da2r = q0 and qm8a2r = qm 
with 1 < 2r < 2n. Therefore 2r = n: which is a contradiction. Thus the holonomy 
decomposition of (Q, M(B)) is 

• 

Example 3.2. The 4-state automaton B\ given in the Figure 1 is CSFA with 
BPI(Bi) = {g0,g2}. Using [18], we find the skeleton of {Q,M(B1)) as 

S = {Q} U / j U / n 

where JA2 = {{g0, g2}<5ai | 1 < i < 4}. Clearly B(Q) = The smallest integer r 
(with 1 < r < 4) such that {go, g2}<5or = {qoi q2} is two, and therefore \B(Q)\ = 2. 
The holonomy group G{Q) is cyclic group of order two generated by Sa, and so 
that (B(Q),G(Q)) = 

We observe that the elements of are equivalent to each other. Let P = 
{go, <72} be representative in J?2. Clearly B(P) = {{go}, {92}} C The 
holonomy group G(P) is cyclic group of order two generated by Sah, and so that 
(B(P),G(P)) = (A2. Thus the holonomy decomposition of (Q,M(Bi)) is 

( Q , M ( B i ) ) <^2\W2. 
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If the cardinality of the state set is an odd number, the following example 
illustrates Theorem 3.2. 

Example 3.3. The 5-state automaton B2 given in the Figure 2 is CSFA with 
BPI(B2) = {90,93}- Using [18], we find the skeleton of (Q, M(B2)) as 

J = {Q} U / 2 U J u 

where J?2 = {{90,93}«^ | 1 < i < 5}. Clearly B(Q) = c f 2 . The smallest integer r 
(with 1 < r < 5) such that {90, q:i}8aT = {90,93} is five, and therefore \B(Q)\ = 5. 
The holonomy group G(Q) is cyclic group of order five generated by <5a, and so that 
(B(Q),G{Q)) = %5. 

We observe that the elements of are equivalent to each other. Let P = 
{90,^3} be representative in J2. Clearly B(P) = {{g0}, {g3}} C The 
holonomy group G(P) is cyclic group of order two generated by 6ab, and so that 
(B(P), G(P)) = (d2. Thus the holonomy decomposition of (Q,M(B 2 ) ) is 

(Q,M(S2)) 

We conclude the paper by looking at two examples that exhibit that the study 
on the holonomy decomposition of CSFA with more than two bpis is much more 
complicated. 

Figure 3: CSFA B3 with three bpis 

Example 3.4. The 6-state automaton B3 given in the Figure 3 is CSFA with 
BPI{B3) = {90,91,95}. Using [18], we find the skeleton of (Q, M(B3)) as 

/ = {Q} U / j U / s U / i , 

where J3 = {{g0,91, q5}8ai \ 1 < i < 6}, and J2 = {{90,9i, gs^to- | 1 < « < 6}. 
Clearly B(Q) = and \ l / 3 \ = 6. The holonomy group G(Q) is cyclic group of 
order six generated by 8a, and so that (B(Q), G(Q)) = ^6-

We observe that the elements of are equivalent to each other. Let P = 
{90,91,95} be representative in Clearly B(P) = {{g0,91}, {g0 ,95}} C ^i-
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The holonomy group G(P) is cyclic group of order two generated by 5ab, and so 
that (B(P),G(P)) = tf2. 

We further observe that all six elements of ^ f 2 are equivalent to each other. Let 
T = {9o,9i} be representative in J2. Clearly B{T) = {{90}, {91}} C The 
holonomy group G(T) is cyclic group of order two generated by 5b, and so that 
(B(T), G(T)) = cf>2. Thus the holonomy decomposition of ( Q , M ( B 3 ) ) is 

b 

Figure 4: CSFA B4 with three bpis 

Example 3.5. The 6-state automaton B4 given in the Figure 4 is CSFA with 
BPI{B4) = {90,92,94}- Using [18], we find the skeleton of (Q,M{B 4 ) ) as 

J = {Q) U / 3 U 

where J3 = {{90,92,94}, {91,93,9s}}- Clearly B(Q) = f 3 . The holonomy group 
G(Q) is cyclic group of order two generated by Sa, and so that (B(Q) , G(Q)) = 

We observe that the elements of ^ 3 are equivalent to each other. Let P = 
{90,92,94} be representative in J3. Clearly B(P) = {{90}, {92}, {94}} C 
The holonomy group G(P) is cyclic group of order three generated by 5b, and so 
that ( B ( P ) , G ( P ) ) = Thus the holonomy decomposition of (Q,M{B 4 ) ) is 

{Q,M(B4)) <W3l%. 

4 Conclusion 
In this paper we have initiated the investigations on the holonomy decomposition of 
circular semi-flower automata (CSFA) classified by their number of bpis. In fact, we 
have ascertained the holonomy decomposition of CSFA with at most two bpis. Our 
experiments for the holonomy decomposition of CSFA with more than two bpis 
over numerous examples exhibit that their structure is much more complicated. 



804 Shubh N. Singh and Kanduru V. Krishna 

However, we feel that the approach adopted in the paper may be useful to target 
the holonomy decomposition of CSFA having arbitrary number of bpis. In general, 
one can look for the holonomy decomposition of semi-flower automata. 
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Bounds on the Stability Number of a Graph via the 
Inverse Theta Function 

In the paper we consider degree, spectral, and semidefinite bounds on the 
stabili ty number of a graph. T h e bounds are obtained via reformulations and 
variants of the inverse t h e t a function, a notion recently introduced by the 
au thor in a previous work. 

K e y w o r d s : stabili ty number, inverse the ta number 

1 Introduction 
In this paper we provide several new descriptions and variants of the inverse theta 
function, a notion recently introduced by the author (see [10]). We also present 
some applications in the stable set problem, bounds on the cardinality of a maxi-
mum stable set in a graph. 

We start the paper with describing sandwich theorems on the inverse theta 
number and its predecessor, the theta number (see [4]). First we fix some notation. 
Let n £ TV, and let G = (V(G),E(G)) be an undirected graph, with vertex set 
V(G) = {1 , . . . , n}, and with edge set E(G) C {{¿, j} : i ± j}. Let A(G) be the 0-1 
adjacency matrix of the graph G, that is let 

where I is the identity matrix, and J denotes the matrix with all elements equal 
to one. The disjoint union of the graphs Gi and G2 is the graph Gx + G2 with 
adjacency matrix 

Miklós Ujvári: 

A b s t r a c t 

A(G) := ( a i j ) e {0, l }" X n , where a*. { 0, if {i,j}?E(G), 
1, if {i,j}£E(G). 

The complementary graph G is the graph with adjacency matrix 

A(G) := J — I — A(G), 

"H-2600 Vác, Szent János utca 1., Hungary. E-mail: ujvarimacs.elte.hu 

DOI: 10.14232/actacyb.22.4.2016.5 
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Let (¿1, . . . . <5n) be the sum of the row vectors of the adjacency matrix A(G). 
The elements of this vector are the degrees of the vertices of the graph G. We 
define similarly the values 6i,...,6n in the complementary graph G instead of G. 
Let AG (resp. pG) be the maximum (resp. the arithmetic mean) of the degrees in 
the graph G. Note that 

n i p a + n2pG2 
MG = n ~ 1 - To, BG1+G2 = -L— -- (1) 

zzi + n2 

By Rayleigh's theorem (see [7]) for a symmetric matrix M = MT £ 77 n x n the 
minimum and maximum eigenvalue, AM resp. AM, can be expressed as 

AM = min uTMu. AM = max uTMu. 
||u||=i ' |H|=i 

By the Perron-Frobenius theorem (see [6]) for an elementwise nonnegative sym-
metric matrix M = MT £ 77" x n the maximum is attained for a nonnegative unit 
(eigen)vector: we have Am = uTMu for some u £ 77.", uTu = 1. Furthermore, if 
M = MT £ 77™xn, then —Am < AM-

The maximum (resp. minimum) eigenvalue of the adjacency matrix A{G) is 
denoted by AG (resp. AG)- By Exercise 11.14 in [5], we have 

pG, \f&G <Ag< AG, fypG{n-l). (2) 

The set of the n by n real symmetric positive semidefinite matrices will be 
denoted by <S", that is 

SI := {M £ 7 7 n x n -.M = Mt, VFMU > 0 (u £ 77")} . 

For example, the Laplacian matrix of the graph G, 

L{G) •.= DSu.,.,sn-A{G)£Sl. 

(Here Ds1:...,sn denotes the diagonal matrix with diagonal elements ¿1,.. -, 6n.) 
It is well-known (see [7]), that the following statements are equivalent for a sym-

metric matrix M - (rriij) £ 77"Xn: a) M £ b) XM > 0; c) M is Gram matrix, 
that is rriij = v f v j ( i , j = 1 , . . . ,n) for some vectors . . . ,vn. Furthermore, by 
Lemma 2.1 in [9], the set <S" can be described as 

m
 1, (aidj)„ J / t,j=i 

m £ Af, üí £ 77 m (1 < i < n) . . . 
ajat - 1 (1 < i < n) • 

The stability number, a(G), is the maximum cardinality of the (so-called stable) 
sets S C V(G) such that {i,j} C S implies {z, j} g E{G). The chromatic number, 
x(G), is the minimum number of stable sets covering the vertex set V(G). 

Let us define an orthonormal representation of the graph G (shortly, o.r. of G) 
as a system of vectors a i , . . . , an £ 77m for some m £ Af, satisfying 

ajai = 1 (z = 1 , . . . ,n), ajaj = 0 ({*, j } G E(G)). 
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In the seminal paper [4] L. Lovász proved the following result, now popularly 
called sandwich theorem, see [2]: 

a(G) < 0(G) < x(G), (4) 

where d(G) is the Lovász number of the graph G, defined as 

•d(G) := inf j max -—!¡ 
[ i < i < n ( a ¿ a ¿ 

_ : a i , . . . ,an o.r. of G 
i n 

The Lovász number has several equivalent descriptions, see [4]. For example, by 
(3) and standard semidefinite duality theory (see e.g. [8]), it is the common optimal 
value of the Slater-regular primal-dual semidefinite programs 

( xu = A - 1 (i G V(G)), 
(TP) min A, < Xij = - 1 ({«, j} € E(G)), 

{ X = (Xij) G <S?, A <E n 

and 
f tr (Y) = 1, 

(TD) m a x t r ( J Y ) , < Vij = 0 ({¿, j} € E(G)), 
[ Y = (Vij) e si. 

(Here tr stands for trace.) Reformulating the program (TD), Lovász derived the 
following dual description of the theta number (Theorem 5 in [4]): 

ti(G) = max | ¿ ( M Í ) n '• b\,... ,bn o.r. of G j . (5) 

Analogously, the inverse theta number, L(G), satisfies the inverse sandwich in-
equalities, 

n2/tf(G), (a(G))2 + n- a(G) < i(G) < nd(G), (6) 

see [10], and (19) for an extension. Here the inverse theta number, defined as 

t(G) := inf \ 7 — : a i , . . . , a n o.r. of G I , M ) 11 j 
equals the common attained optimal value of the primal-dual semidefinite programs 

(TP~) inf tr (Z) + n, zy = - 1 ({i,j} G E(G)), Z = (Zij) G 5? , 

( ma = 1 (i = l,...,n), 
MIJ = 0 ( { t , j } £E(G)), 
M = (mi:i) G 5? . 

Moreover, rewriting the feasible solution M of the program (TD~) as the Gram 
matrix M = (bfbj) for some vectors bi,...,bn € TZm, we obtain the following 
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analogue of (5): 

i(G) = max | Y bjbj :bu...,bn o.r. of G j . (7) 

The structure of the paper is as follows: In Section 2 we will describe a refine-
ment of (7) and also several new descriptions of the inverse theta function (with 
well-known analogues in the theory of the theta function). Some of these results 
will be applied in Section 3, where we present two new lower bounds for the stabil-
ity number of a graph, and examine their additivity properties. Finally, in Section 
4 we study three variants of the inverse theta function, and derive further bounds 
in the stable set problem. 

2 New descriptions of L(G) 
In this section we will describe three reformulations of the inverse theta number of 
a graph G. The results have analogues in the theory of the theta function, which 
we will mention in chronological order. 

Let us denote by AG the following set of matrices: 

AG := \ A = (OIJ) £ 7ZN> 
an = 0 (i = 1,..., n), 
Oij = 0 ( { i j j e E(G)l 
an = üji ({z,y} £ E(G)) 

We will describe bounds for the minimum eigenvalue XA with A £ AG-
First, we have for A £ AG the lower bounds 

A4 > -AMI > - A g -maxlaijl , (8) 

by Rayleigh's theorem and the Perron-Frobenius theorem. (Here |A| £ lZnxn de-
notes the elementwise maximum of the matrices A and —A.) 

On the other hand, using an equivalent form of the reformulation 

11(G) = max < AM 
rriu = 1 (z — 1 , . . . , zz), 
mij = 0 ({i,j} eE(G)), 
M = (rriij) £ 

(see for example [2], [10]), L. Lovasz proved in Theorem 6 of [4] the upper bound 

Analogously, as a consequence of the next theorem, we have also the upper bound 

<
1 0

> 
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(Note that by Rayleigh's theorem tr (JA) < uAA, and by the inverse sandwich 
theorem i(G) — n < n(d(G) — 1) so there is no obvious dominance relation between 
the bounds in (9) and (10).) 

Theorem 2.1. The program 

, . tr (JA) r , 
(P i ) : supn + \ ',{AeAG 

- A A 

has attained optimal value i(G). 

Proof. The variable transformations 

MA := I + —!—A, AM •= M - I 
- A A 

show that programs (TD~ ) and (Pi) are equivalent: if A and M are feasible solu-
tions of (Pi) and (TD~ ) , respectively, then MA and AM are feasible solutions of 
the other program such that between the corresponding values the inequalities 

tr (J A) tr (J AM) 
tr (J M A) > n + \ \n+ \ ' > tr (JM) 

- A A —AAm 

hold. Hence, the two programs have the same (attained) optimal value. • 

A different approach leads to another description of the inverse theta number. 

Karger, Motwani, and Sudan proved the reformulation 

1 - 0(G) 
= mm < v 

nu-l {i = l,...,n)1 
nij = v ({i,j} G E(G)), 
N = (n i3) G «S™, i / ë K 

and used a variant of this theorem in their graph colouring algorithm. (See [3] for 
a summary of related results.) By the inverse sandwich theorem we have the lower 
bound 

1 n 
1 - 0 ( G ) - N-I(G)' ^ ^ 

we will show that this latter value can be obtained as the optimal value of a semidef-
inite program, too. 

Let us consider the primal-dual semidefinite programs 

{foil - bu = 0 (i = 2, . . . , n ) , 

&i¿=0({M}e£?(G)) , 
tr ((J — I)B) = 1, B = (BIJ) G 5™, 

{tr G = n, _ 

d j = 7 ({*,;} G P(G)), 
G = (dj) G SI, 7 € TZ. 

The programs have common attained optimal value by standard semidefinite dual-
ity theory, see for example [8]. 
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Theorem 2.2. The programs (P2) and (D2) have (common attained) optimal value 
n/(n — r(G)). 

Proof. Similarly as in the proof of Theorem 2.1, the variable transformations 

Mb •= 7—5B, Bm := . , * M 
tr B tr (JM) — n 

show the equivalence of programs (P2) and n/(n—(TD~)), where the latter program 
can be obtained from ( T D ~ ) formally exchanging its value function tr (JM) for 
n/(n — tr (JM)) and adding the extra constraint tr (JM) > n. • 

It is left to the reader to prove that the program 

^ ( tr R = n, 
inf^ —, { rij = l({i,j}eE(G)) 

R = ( n j ) = ( r j i ) e i z n x n 

is equivalent with both (D2) and n/(n— (TP~)). 

Now, we turn to the third description of the inverse theta number. 

We will use the following lemma, a slight modification of (7). 

Lemma 2.1. For any graph G, 

i(G) =snp\Y bjbj 
i,j=1 

Si,... Â o.r. of G 
(Sj)i = ef Si > 0 for i = 1 , . . . , n 

with ei denoting the vector ( 1 , 0 , . . . , 0 ) r . 

Proof. Let (fy) be an orthonormal representation of G such that 

n 
i(G) = Y bfbj 

i,j = 1 

(that is an optimal solution in (7)). For 0 < e < 1, let us define an orthonormal 
representation (bi(e)) of G the following way: 

to) -( :r 1 - £ 2 • O \ 
'!,...,£&„ J ' 

where O € lZnxn is an orthogonal matrix satisfying efO > 0. Note that then 
efbi(e) > 0 holds for all i. On the other hand, it can easily be verified that 

Ybne)h(e)^b(G) (e —t 1). 
I,J = 1 
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Hence, we have proved 

i(G) < sup { £ bfbi 
i,j = 1 

6 1 , . . . , bn o . r . of G 
efbi > 0 for i = 1,. 

which is the nontrivial part of the lemma. • 

Applying the variable transformation described in (3) to the program in Lemma 
2.1, as an immediate consequence we obtain an analogue of Theorem 2.2 in [9]. 

Theorem 2.3. The optimal value of the program 

( P ) . snn V ^ +1 J <*« = -1 (NT e E(G)), 
( 3) • T f e y/(dii + 1) • {djj + 1)' I D = (dij) e 5? 

equals b(G). • 

We will apply Theorem 2.3 in the next section for obtaining lower bounds in 
the stable set problem. 

3 Lower bounds on A(G) 
In this section we will describe two lower bounds on the stability number of a graph 
G, and examine their additivity properties. 

Note that the 
Zi := L(G), Z2 := K^I - A(G) 

feasible solutions in ( T P - ) give the inequalities 

XA(G) < v /n(MG + l),Vn(AG + 1)- ( 1 2 ) 

By Exercises 11.20 and 11.14 in [5], we have 

X(G) < Ac + 1 < y J p G ( n - l ) + 1, pG < AG-

On the other hand, easy calculation verifies 

fypG(n- 1) + 1 < v/n(pG + 1)-

Hence, we have besides (12) also 

X{G) < y W c + 1) < y / n ( A z + l ) . (13) 

On the dual side instead of ^/¿(G), x(G) we can approximate b(G)/n,a(G). 
Note that 

Dt := L(G), D2 := AGI — A(G) 
are feasible solutions of the program (P3) in Theorem 2.3. This fact implies the ver-
sion of the following theorem, where a(G) is exchanged for t(G)/n. (For analogous 
results with 0(G), see [9].) 
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Theorem 3.1. For any graph G, 
a) 

ot'{G) := 1 + Y 2 / n = < a(G); 

{ i J £ E ( g ) v ^ r n r w r i ) -

Proof. By Exercise 11.14 in [5] we have pG < Ac- Using this relation it is immediate 
that 

-7——- < a"(G) < (14) 
A g + 1 K ' pg + 1 

We will show that the inequalities 

n 
T < a'(G) < Y — ( 1 5 ) 

PG +1 v +-f6i + l v ' 
Z=1 

hold also, from which the theorem follows, as 

¿ ^ l ^ ( G ) (16) 
i=l 

by the Caro-Wei theorem (see [1], or for another proof [9]). 
First, using the obvious inequality 

V3TTT • V ^ T + i ~ 5I + 1 sJ +1' 

we obtain 

— I T ~ T T ' ( 1 7 ) 

¿=1 
" 1 

»=I 

On the other hand, we will verify the relation 

a'(G) > (18) 
FG + 1 

Using the arithmetic mean-harmonic mean inequality, it is easy to show that 

{¿j}eE(G) 

> 1 + ^ ( n p a ) 2 / _ + 1 + ^ + 1) . 
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Hence, to prove (18), it is enough to verify that 

npcipo + 1) > ] T (Si + 1 + 5j + 1) 
{i,j}€E(G) 

holds. This inequality can be rewritten as 

n n n 
- 1 -Si)- + 1) > n • + 1)(" - 1 - Si), 

i—1 ¿=1 ¿=1 

and thus is a consequence of the Cauchy-Schwarz inequality. The proof of (18) 
complete, as well. 

The following theorem describes additivity properties of the bounds a ' , a" . (F 
additivity properties of 0(G), see Sections 18, 19 in [2].) 

Theorem 3.2. With the lower bounds £ = a', a" we have 
a) £(G1 + G2)<£(G1) + £(G2), 
b) l(G\ + G2) < max{7(Gi),£(G2)}, 
for any graphs G\,G2. 

Proof. Case 1: £ = a', a) Rewriting the statement, we have to verify 

iev(G^ev(G2) V(Si + l)(Sj + 1) 

that is (without loss of generality assuming G\ = G2 = G) 

2 

Ifev^+T J ~ 
In other words, we have to prove the inequality 

S ̂  +
 {J£(G) Y/ISI + M + L) 

which follows immediately applying (17). 
b) is obvious, as 

a ' (Gi + G2) < 
a ' (Gi)ni +a'{G2)n2 

ni + n2 

< max{a' (Gi), a! (G^)} 

hold. 
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Case 2: i = a". By Rayleigh's theorem the formulas 

A G I + G 2 > m a x { A G l , A G 2 } . 

Agt+G7 > m a x f A ^ - . A ^ } 

hold. The statements a) and b), respectively, are straightforward consequences of 
these inequalities, after applying (1): For example, a) can be reduced this way to 
the inequality 

NIPG} + NIP-GI / F A A T 
2. < max{AG , AG }, 

nx+n2 

which holds true, as p G < AG for any graph G, by Exercise 11.14 in [5]. • 

Additivity properties of a lower bound on the stability number can be applied 
for strengthening the bound if the given graph or its complementer is not connected. 
In fact, if 

G = Gi + G2 (or G = Hi + H2) 

with some graphs G'i, G2 (Hx, H2), then a(G) is equal to 

a (Gi ) + a(G 2 ) (max{a( lh ) , a ( Jh )} ) . 

Hence, both t(G) and the, by additivity stronger, bound 

RGi) + l(G2) (max{e(Hd,e(Hd}) 

are lower bounds on a(G). 
It is left to the reader to adapt this bound-strengthening method to upper 

bounds u(G) on the chromatic number x(G). 

Summarizing, the so-called weak sandwich theorems (see [9]) 

i(G) < a(G) X(G) < u(G) 

involve the bounds 

£(G) = a ' (G) ,a"(G) , u(G) := + 1), y/n(AG + 1) 

in inverse theta number theory. In the next section we turn to the inverse sandwich 
theorem and its strengthened version. 

4 Upper bounds on a(G) 
In this section we introduce three variants of the inverse theta number. They 
constitute bounds for the stability numbers of G and G. 
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First, let us derive a bound from the original version i(G). Let S C V(G) be 
a stable set with cardinality # 5 = a(G), and let e > 0. Let us define the matrix 
Z = Z(z) € TZnXn the following way: let Z := (zy), where 

z(n — # 5 ) + 0, if i,jeS, 
1/z + (n — #S — 1), if i=j#S, 
0 + ( - l ) , 
(—1) + 0 otherwise. 

It can easily be verified using Schur complements (see [6]) that Z € <S". (This 
statement holds even without adding the second terms in the definition of the 
elements zy.) For z = \ j \ f f f S the value of Z in ( T P - ) satisfies 

tr( • (Z) + n = (n - a(G) + v^(G)) • 

As this value is at least ¿(G), so we obtained 

Proposition 4.1. For any graph G, we have 

t(G) <{n-a(G) + y/^Gfj 2 , (19) 

in other words 

a(G) < \ ( l + ̂ 1+4 ( n - y f ^ ^ j (20) 

holds. • 

We remark that the upper bound in (20) is between the values 

l(G) 
n+1- ifb(G),n + l -

n 

as it can easily be verified. 
Proposition 4.1 allows a strengthening: a L, L+ exchange in (20), where we add 

the Zij > — 1 constraints in ( T P - ) . Let us denote by i + (G) the common attained 
optimal value of the Slater regular primal-dual semidefinite programs 

r z± = -l ({i,j} e P(G)), 
(P+) : inf n + tr Z+, { z% > -1 ({i,j} 6 E(G)), 

[ Z+ = ( z + ) e 5 ? , 

{ mti = 1 [i = • • •, n), 

< 0 ({i,j} 6 E(G)), 
M+ = (m+) G 

(Standard semidefinite duality theory can be found for example in [8].) 
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Theorem 4.1. For any graph G, 

1 
a(G) < - l l + W l + 4 (21) 

tf+(G) := sup < tr (JY+) 

holds. • 
For an analogue in theta function theory, see the results of Szegedy and Meur-

desoif concerning the variant 

t rF+ = 1, 
ytj<0({i,j}GE(G)), 
Y+ = (y±) G 

the relations 6(G) < 6+(G) < x(G), e.g. in [3]. 
Now, we turn to the lower variants of t(G'). Let us consider the primal-dual 

semidefinite programs 

< -1 ({i. j} e E(G)), (P>): inf n + tr Z', { ^ ( z ^ E ^ , 

m'u = 1 (i = 1, •••.«), 
(£>') : suptr (JM'), { mL = 0 ({i,j} € E(G)), 

M' = (rab) G <S" D 77" x". 
The programs have common attained optimal value by standard semidefinite dual-
ity theory (see for example [8]), we will denote this value by ¿'(G). 

Obviously, t'(G) < ni7'(G), where 6'(G) is a sharpening of the theta number, 
due to McEliece, Rodemich, Rumsey, and Schrijver (a(G) < 6'(G) < 6(G), see for 
example [3]), defined as 

6'(G) := sup { tr (JY') 
t r F ' = 1, 

y' = (yU) G <S" n 77"x" 
Besides the mentioned relations 

6'(G) > ¿/(G)/n, a(G), 

we have also 

\ ( l + v / 4 ( P ( G ) - n ) + l ) > b'(G)/n, a ( G ) 

as the following theorem shows. (For analogous results with i(G), see [10].) 

Theorem 4.2. For any graph G, we have 

i'(G) > a(G)2 + n — a(G), 

in other words 
a(G) < \ (l + V4(i'(G)-n) + l) 

holds. 

(22) 

(23) 
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Proof. Let S be a stable set in G with cardinality # 5 = A(G). Let us define the 
matrix M' := (m{) G JZnxn the following way: let ra+ := 1 if i, j G S or i = j, and 
let m+ := 0 otherwise. Then, the matrix M' is a feasible solution of the program 
(£>') with corresponding value 

(#S)2+N-(#S) <T'{G). 

Hence, the statement follows. • 

The bound in Theorem 4.2 implies 

A(G) < Y/H(G), (24) 

and also, by L'(G) < ¿(G), the relations 

A(G) < I ( l + Y/4(I(G) - n ) + l ) < Y / J c j (25) 

from [10]. It is an open problem whether any of these bounds can be less than 0(G) 
or even 0'(G) for some graphs. 

We mention a related result, see also Theorems 3 and 6 in [4] and Proposition 
2.1 in [10], where the bounds in (26) appear as lower and upper bounds for 0(G) 
and \J¿(G), respectively. 

Proposition 4.2. For any graph G, the inequalities 

1 + ^ ^ \ j ' n + Z ^ ) > A<? + 1 ^ V n ( P G + 1) (26) 

hold. 

Proof. By (2), it suffices to prove (26) after substituting with A/,/(n— 1). Then, 
the first inequality follows by 

l l ^ _ 2 + l ( r ^ _ 2 Y + \ Ac 

(note that —AG > 1 and AG < n — 1), the second inequality is immediate. This 
finishes the proof. • 

Finally, we mention another variant of the inverse theta number, which leads 
to an interesting weak sandwich theorem. 

Let us define ¿"(G) as the common attained optimal value of the primal-dual 
semidefinite programs 

f mil = 1 (i = 1,... ,n), 
(P") : inf tr ( JM") , ^ m+ = 0 ({», j} G E(G)), 

[ M" = ( m + ) G S I , 
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(See, for example, [8] for standard semidefinite duality theory.) 

Theorem 4.3. For any graph G, the inequalities 
a) i"(G) < a(G), 
b) ¿"(G) <n-X(G) 
hold. 

Prooj. a) Let us introduce the notation 

r i i f i j 
MS := (NIIJ) £ LLNXN, where mfj- := < -#5=1 if I,3 # s - 1 

1 
if i, j £ S, i — j, 
if i,j / j, 

0 otherwise 

for S C V(G). 
Let Si,...,Sk be a stable set partition of V(G) such that the cardinality of the 

index set {i : jjSi > 2} is maximal. Then, 

is feasible in (P") with corresponding value # 5 < a(G), which completes the proof 
of statement a). 

b) Let S 1 , . . . , St be disjoint stable sets in G covering the vertex set V(G), 
where £ := x(G). Then, there exist non-edges evq £ E(G) between Sp and Sq for 
each 1 < p < q < I. Let us define a symmetric matrix M E 1Znxn by writing 
in it: 1 on diagonal positions, —1/(7 — 1) on the positions corresponding to ep q , 
and 0 otherwise. By Gerschgorin's disc theorem (see [7]) the matrix M is positive 
semidefinite, a feasible solution of the program (P") with corresponding value n — 
x(G). This finishes the proof of statement b), too. • 

Summarizing, in this section we obtained the 

is a stable set in G. Furthermore, the matrix 

k 

(a(G))2 +n-a(G) <L'(G) 
I'(G) < ¿(G) < i+(G) 

inverse sandwich theorem as an analogue of Lovász's sandwich theorem. 
In the same context we mention also the well-known 

x ( G ) < n - , ( C ) < ^ m (27) 
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sandwich theorem, where v(G) denotes the matching number of G, that is the 
largest number of pairwise disjoint edges in E(G), see Section 7 in [5]. This fact, 
together with the formulas 

a(G)-x(G)>n,x(G) + x(G)<n+1 (28) 

(see Exercise 9.5 in [5]), makes upper bounds for a(G) particularly useful in deriving 
other (upper and lower) bounds for a(G),x{G), for example 

«(C) > 20(G) ~ n , n + i
n _ m (29) 

and _ 
x ( G ) < n + l - 0 ( G ) , ^ M (30) 

via the sandwich theorem. 

5 Conclusion 
In the paper we studied the inverse theta function: results analogous to sandwich 
theorems and their strengthened versions from the theory of Lovász's theta number 
were derived, based on new descriptions of the inverse theta number. Whether 
the new bounds on the stability number can be tighter than already known ones 
remained a partly undecided question. 
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An Estimation of the Size of Non-Compact 
Suffix Trees 

Bálint Vásárhelyi* 

A b s t r a c t 

A suffix tree is a d a t a s t ruc ture used mainly for pa t t e rn matching. It 
is known tha t the space complexity of simple suffix trees is quadrat ic in the 
length of t he string. By a slight modification of the simple suffix trees one gets 
the compact suffix trees, which have linear space complexity. T h e motivation 
of this paper is the question whether the space complexity of simple suffix 
trees is quadrat ic not only in the worst case, bu t also in expectation. 

1 Introduction 
A suffix tree is a powerful data structure which is used for a large number of 
combinatorial problems involving strings. Suffix tree is a structure for compact 
storage of the suffixes of a given string. The compact suffix tree is a modified 
version of the suffix tree, and it can be stored in linear space of the length of the 
string, while the non-compact suffix tree is quadratic (see [11, 14, 18, 19]). 

The notion of suffix trees was first introduced by Weiner [19], though he used 
the name compacted bi-tree. Grossi and Italiano mention that in the scientific 
literature, suffix trees have been rediscovered many times, sometimes under different 
names, like compacted bi-tree, prefix tree, PAT tree, position tree, repetition finder, 
subword tree etc. [10] . 

Linear time and space algorithms for creating the compact suffix tree were given 
soon by Weiner [19], McCreight [14], Ukkonen [18], Chen and Sciferas [4] and others. 

The statistical behaviour of suffix trees has been also studied. Most of the 
studies consider improved versions. 

The average size of compact suffix trees was examined by Blumer, Ehrenfeucht 
and Haussler [3]. They proved that the average number of nodes in the compact 
suffix tree is asymptotically the sum of an oscillating function and a small linear 
function. 

An important question is the height of suffix trees, which was answered by De-
vroye, Szpankowski and Rais [6], who proved that the expected height is logarithmic 
in the length of the string. 
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The application of suffix trees is very wide. We mention but only a few examples. 
Apostolico et al. [2] mention that these structures are used in text searching, 
indexing, statistics, compression. In computational biology, several algorithms are 
based on suffix trees. Just to refer a few of them, we mention the works of Hohl et 
al. [12], Adebiyi et al. [1] and Kaderali et al. [13]. 

Suffix trees are also used for detecting plagiarism [2], in cryptography [15, 16], 
in data compression [7, 8, 16] or in pattern recognition [17]. 

For the interested readers further details on suffix trees, their history and their 
applications can be found in [2], in [10] and in [11], which sources we also used for 
the overview of the history of suffix trees. 

It is well-known that the non-compact suffix tree can be quadratic in space as 
we referred before. In our paper we are setting a lower bound on the average size, 
which is also quadratic. 

2 Preliminaries 
Before we turn to our results, let us define a few necessary notions. 

Defini t ion 1. An alphabet E is a set of different characters. The size of an 
alphabet is the size of this set, which we denote by <r(E), or more simply a. A 
string S is over the alphabet E if each character of S is in E. 

Defini t ion 2. Let S be a string. 5[i] is its ith character, while 5'[2, j] is a substring 
of S, from S[i] to S[j], if j > i, else 5[i, j] is the empty string. Usually n(S) (or n 
if there is no danger of confusion) denotes the length of the string. 

Defini t ion 3. The suffix tree of S is a rooted directed tree with n leaves, where n 
is the length of S. 

Its structure is the following: 
Each edge e has a label £{e), and the edges from a node v have different 

labels (thus, the suffix tree of a string is unique). If we concatenate the edge 
labels along a path V, we get the path label C(V). 

We denote the path from the root to the leaf j by V(j). The edge labels are 
such that C(j) = C(V(j)) is S"[j, n] and a $ sign at the end. The definition 
becomes more clear if we check the example on 1 and 2. 

A naive algorithm for constructing the suffix tree is the following: 
Notice that in 2 a leaf always remain a leaf, as $ (the last edge label before a 

leaf) is not a character in S. 

Definit ion 4. The compact suffix tree is a modified version of the suffix tree. We 
get it from the suffix tree by compressing its long branches. 

The structure of the compact suffix tree is basically similar to that of the suffix 
tree, but an edge label can be longer than one character, and each internal node 
(i.e. not leaf) must have at least two children. For an example see 2. 

With a regard to suffix trees, we can define further notions for strings. 
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Growth of the string 

Figure 1: Suffix tree of string aabccb 

Definition 5. Let S be a string, and T be its (non-compact) suffix tree. 
A natural direction of T is that all edges are directed from the root towards the 

leaves. If there is a directed path from u to v, then v is a descendant of u and u is 
an ancestor of v. 

We say that the growth of S (denoted by y{S)) is one less than the shortest 
distance of leaf 1 from an internal node v which has at least two children (including 
leaf 1), that is, we count the internal nodes on the path different from v. If leaf j 
is a descendant of v, then the common prefix of S\j,n) and S'[l, n\ is the longest 
among all j !s. 

1. 
If we consider the string S = aabccb, the growth of 5 is 5, as it can be seen on 

An important notion is the following one. 

Definition 6. Let Cl(n, k, a) be the number of strings of length n with growth k 
over an alphabet of size a. 

Observe that the connection between the growth and the number of nodes in a 
suffix tree is the following: 

Observation 1. If we construct the suffix tree of S by using 2, we get that the sum 
of the growths of S[n — 1, n], 5[n — 2 ,n] , . . . , S[l, n] is a lower bound to the number 
of nodes in the final suffix tree. In fact, there are only two more internal nodes, the 
root vertex, the only node on the path to leaf n, and we have the leaves. 

In the proofs we will need the notion of period and of aperiodic strings. 
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Let 5 be a string of length n. Let j = 1 and T be a tree of one vertex r (the root, 
of the suffix tree). 

Step 1: Consider X = S[y,n] + $. Set i = 0, and v = r. 

Step 2: If there is an edge vu labelled X[i+ 1], then set v = u and i = i + 1. 

Step 3: Repeat Step 2 while it is possible. 

Step 4: If there is no such an edge, add a path of n — j — i + 2 edges from v, 
with labels corresponding to S\j + i,n] + $, consecutively on the edges. At 
the end of the path, number the leaf with j . 

Step 5: Set j = j + 1, and if j < n, go to Step 1. o 

Definition 7. Let S be a string of length n. We say that S is periodic with period 
d, if there is a d\n for which £>[z] = S{i + d] for all i < n — d. Otherwise, S is 
aperiodic. 

The minimal period of S is the smallest d with the property above. 

Definition 8. p(j,a) is the number of j-length aperiodic strings over an alphabet 
of size a. 

A few examples for the number of aperiodic strings are given in 1. 

a p ( l , c r ) Ai(2 ,a) p(3 ,cr) M(4,cr) M(5,<T) /z(6,cr) p(7, a) p(8,o) 
2 2 6 12 30 54 126 240 504 
3 3 6 24 72 240 696 2184 648 
4 4 12 60 240 1020 4020 16380 65280 
5 5 20 120 600 3120 15480 78120 390000 

Table 1: Number of aperiodic strings for small alphabets, a is the size of the 
alphabet, and p(j, a) is the number of aperiodic strings of length j 
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3 Main results 
Our main results are formulated in the following theorems. 

Theorem 2. On an alphabet of size a for all n > 2k, Q(n, k, a) < <f>(k, <r) for some 
function <j>. 

Theorem 3. There is a c> 0 and an no such that for any n > no the following is 
true. Let S' be a string of length n— 1, and S be a string obtained from S' by adding 
a character to its beginning chosen uniformly random from the alphabet. Then the 
expected growth of S is at least c • n. 

Theorem 4. There is a d > 0 that for any n > n0 (where n0 is the same as in 
3) the following holds. On an alphabet of size a the simple suffix tree of a random 
string S of length n has at least d • n2 nodes in expectation. 

4 Proofs 
Proof. (4) 

Considering 1 we have that the expected size of the simple suffix tree of a 
random string S is at least 

n n 
E Y , (7(S[n - rn, n])) > Y E(7(S[n - m, n])). (1) 

m = 1 m = l 

If m < no, 3 is obvious. If TO > n0, we can divide the sum into two parts: 

n no n 
£ E ( 7 ( S [ n - m , n ] ) ) = 2 E ( 7 ( S [ n - m , n ] ) ) + Y E(7(5[n - m,n))). (2) 

m = l m—1 m = n o + l 

The first part of the sum is a constant, while the second part can be estimated 
with 3: 

n n 

Y e (7 (S[n-m,n]))> Y c n = d-n '2- (3) 
m = n o + l m = n o + l 

This proves 4. 
• 

First, we show a few lemmas about the number of aperiodic strings. 1 can be 
found in [9] or in [5], but we give a short proof also here. 

Lemma 1. For all j > 0 integer and for all alphabet of size a the number of 
aperiodic strings is 

p,(j,a)=aj -Yd(d>°)- (4) 
D\J 
<¥i 
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Proof. /z(l.a) = a is trivial. 
There are a* strings of length j . Suppose that a string is periodic with minimal 

period d. This implies that its first d characters form an aperiodic string of length 
d, and there are p(d, a) such strings. This finishes the proof. • 

Specially, if p is prime, then p(p, a) = <xp — a. 

Corollary 1. If p is prime and t € N, then p(pl,a) = apl — apt 1 for all alphabet 
of size a. 

Proof. We count the aperiodic strings of length pl. There are ap' strings. Consider 
the minimal period of the string, i.e. the period which is aperiodic. If we exclude 
all minimal periods of length k, we exclude y(k, a) strings. This yields the following 
equality: 

p(p\a)=apt- y p ( p V ) . (5) 
l < s < t 

With a few transformations and using 1, we have that (5) is equal to 

a p t - p ( f - \ a ) - y p(ps,<7) = apt-apt-1+ £ / x ( p V ) - £ p(ps,e), 
l < s < t - l l < s < t - l l < s < i - l 

(6) 
which is 

a p t — ap t l . (7) 

• 

Lemma 2. For all j > 1 and for all alphabet of size a , p(j, a) < er3 — a. 

Proof. From 1 we have p(j, a) = a? — p(d, a). Considering p(d, a) > 0 and 
d\j 

p(l , <t) = <7, we get the claim of the lemma. • 

Lemma 3. For all j > 1, and for all alphabet of size a 

p(j,a)>a(a-iy-\ (8) 

Proof. We prove by induction. For j = 1 the claim is obvious, as g(l,a) = a. 
Suppose we know the claim for j — 1. Consider a (a — 1) J _ 2 aperiodic strings 

of length j — 1. Now, for any of these strings there is at most one character by 
appending that to the end of the string we receive a periodic string of length j . 
Therefore we can append at least a — 1 characters to get an aperiodic string, which 
gives the desired result. 

• 
Observation 5. Observe that if the growth of S is k, then there is a j such that 
5[l,rz — = S[j + 1, j + n — k\. For example, if the string is abcdefabcdab (n = 12), 
one can check that the growth is 8 (the new branch in the suffix tree which ends in 
leaf 1 starts after abed), and with j = 6 we have 5[1,4] = S[7,10] = abed. 
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The reverse of this observation is that if there is a j <n such that S[l, n — k] = 
S[j + 1 ,j + n — k], then the growth is at most k, as S[j + 1, n] and S[l, n] shares a 
common prefix of length n — k, thus, the paths to the leaves j + 1 and n share n — k 
internal nodes, and at most k new internal nodes are created. 

Proof. (2) For proving the theorem we count the number of strings with growth k 
for n > 2k. 

First, we fix j , and then count the number of possible strings where the growth 
occurs such that 5[1, n — k] = 5[ j + 1, j + n — k] for that fixed j. Note that by this 
way, we only have an upper bound for this number, as we might found an £ such 
that S[l, n — k + 1] = S[£ + 1, £ + n - k + 1]. 

We know that j < k, otherwise S[j + l,j + n — k] does not exist. 
If j = k, then we know S[l, n — k] = S[fc + 1, n]. 
S[l, fc] must be aperiodic. Suppose the opposite and let S[l, k] = p.. .p, where 

p is the minimal period, and its length is d. Then S[k + 1,n] = p.. .p. Obviously, 
in this case ¿>[1,n — d] = S[d + 1,n], which by 5 means that the growth would be 
at most d. See also 3. 

Therefore this case gives us at most /¿(fc) strings of growth fc. 

Figure 3: Proof of 2, case j = k 

If j < fc, then we have S[l ,n — fc] = Bfj + 1 ,j + n — fc]. 
First, we note that 5[ l , j ] must be aperiodic. Suppose the opposite and let 

£>[1, j] = p.. .p, where p is the minimal period, and its length is d. Then 

S[j + 1,2 j] = S[2j +1,3 j} = ...=p...p, (9) 

which means that 

fc 
3 + h3 + 

k 
1, •3 = S 3 + h3 + — •3 = p.. .p. 

.3. .3. 

This implies that S[l,j + n — fc] = p. . . pp', where p' is a prefix of p. However, 
S[l, j + n — fc — d] = S[d,j + n — fc] is true, and using 5, we have that 7 ( S ) < 
n — ( j + n — k) + d = k — j + d < k, which is a contradiction. 

Further, 5[j + n — k + 1] must not be the same as S[k + 1], which means that 
this character can be chosen o — 1 ways. 

Therefore this case gives us at most p(j)(o - l)ok~j~1 strings of growth fc for 
each j . 

By summing up for each j , we have 
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3 k 

Figure 4: Proof of 2, case j < k 

fc-i 
<j>(k, a) =J2 Mi, o)(a - + p(k, a) 

3 = 1 

This completes the proof. 

Proof. (3) 
According to 2, /¿(j, <r) < M - er (if y > 1). 
In the proof of 2 at (11) we saw for k > 1 and n > 2k — I that 

fc-i 
4>(k, a) = ffik, o) + Y2 Mi, <*){? - l ) o k ~ j - \ 

j=i 

We can bound the right hand side of (12) from above as it follows: 

(11) 
• 

(12) 

H(k,a) + E t i ( j , o ) (a - 1 J**"'"1 = y{k,o) + y(l,o)(o - l)ok-2 + e V o » M - l)**"'"1, 
3=1 3=2 

(13) 
which is by 2 at most 

fc-l k-1 
a k - a + a ( o - l ) a k ~ 2 + < <rk+ a k + < kak . 

j=2 j=2 
(14) 

Thus, <j>(k,cr) < ka , which means 

Y HK, k ( j k - ( m + i M m + I - (15) 
fc=i fc=i 

The left hand side of 15 is an upper bound for the strings of growth at most m. 
Let m = [§J. 
As an » f r H , this implies that in most cases the suffix tree of S has at least 

§ more nodes than the suffix tree of S[l, n — 1], 
Thus, a lower bound on the expectation of the growth of S is 

(16) 

which is 

; w a ) ) a ± + ( . . - = „ » ) ( 2 + l ) ) , 
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with some c, if n is large enough. 
• 

With this, we have finished the proof and gave a quadratic lower bound on the 
average size of suffix trees. 
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