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Abstract

The method of upper and lower solutions and quasilinearization for nonlinear
singular equations of the type

−x′′(t) + λx′(t) = f(t, x(t)), t ∈ (0, 1),

subject to nonlocal three-point boundary conditions

x(0) = δx(η), x(1) = 0, 0 < η < 1,

are developed. Existence of a C1 positive solution is established. A monotone
sequence of solutions of linear problems converging uniformly and rapidly to a
solution of the nonlinear problem is obtained.
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1 Introduction

Nonlocal singular boundary value problems (BVPs) have various applications in chem-
ical engineering, underground water flow and population dynamics. These problems
arise in many areas of applied mathematics such as gas dynamics, Newtonian fluid
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mechanics, the theory of shallow membrane caps, the theory of boundary layer and so
on; see for example, [2, 7, 12, 13, 16] and the references therein. An excellent resource
with an extensive bibliography was produced by Agarwal and O’Regan [1]. Existence
theory for nonlinear multi-point singular boundary value problems has attracted the
attention of many researchers; see for example, [3, 4, 5, 14, 15, 17, 18] and the references
therein.

In this paper, we study existence and approximation of C1-positive solution of a
nonlinear forced Duffing equation with three-point boundary conditions of the type

−x′′(t) + λx′(t) = f(t, x(t)), t ∈ (0, 1),

x(0) = δx(η), x(1) = 0, 0 < η < 1, 0 < δ <
eλ − 1

eλ − eλη
,

(1)

where the nonlinearity f : (0, 1) × R \ {0} → R is continuous and may be singular at
x = 0, t = 0 and/or t = 1. By singularity we mean the function f(t, x) is allowed to be
unbounded at x = 0, t = 0 and/or t = 1 and by a C1-positive solution x we mean that
x ∈ C[0, 1] ∩ C2(0, 1) satisfies (1), x(t) > 0 for t ∈ (0, 1) and both x′(0+) and x′(1−)
exist.

For the existence theory, we develop the method of upper and lower solutions and to
approximate the solution of the BVP (1), we develop the quasilinearization technique
[5, 8, 9, 10, 11]. We obtain a monotone sequence of solutions of linear problems
and show that, under suitable conditions on f , the sequence converges uniformly and
quadratically to a solution of the original nonlinear problem (1).

2 Some basic results

For u ∈ C[0, 1] we write ‖u‖ = max{|u(t)| : t ∈ [0, 1]}. For any λ ∈ R \ {0}, consider
the singular boundary value problem

− x′′(t) + λx′(t) = f(t, x(t)), t ∈ (0, 1),

x(0) = δx(η), x(1) = 0, 0 < η < 1, 0 < δ <
eλ − 1

eλ − eλη
.

(2)

We seek a solution x via the singular integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds+
(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)f(s, x(s))ds, (3)

where

G(t, s) =
1

λeλs(eλ − 1)

{

(eλt − 1)(eλ − eλs), 0 < t < s < 1,

(eλs − 1)(eλ − eλt), 0 < s < t < 1,

is the Green’s function corresponding to the homogeneous two-point BVP

− x′′(t) + λx′(t) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = 0.
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Three Point Boundary Value Problems 3

Clearly, G(t, s) > 0 on (0, 1) × (0, 1). From (3), x ≥ 0 on [0, 1] provided f ≥ 0. Hence
for a positive solution we assume f ≥ 0 on [0, 1] × R.

We recall the concept of upper and lower solutions for the BVP (2).

Definition 2.1. A function α is called a lower solution of the BVP (2) if α ∈ C[0, 1]∩
C2(0, 1) and satisfies

−α′′(t) + λα′(t) ≤ f(t, α(t)), t ∈ (0, 1),
α(0) ≤ δα(η), α(1) ≤ 0.

An upper solution β ∈ C[0, 1]∩C2(0, 1) of the BVP (2) is defined similarly by reversing

the inequalities.

Choose b > η, a finite positive number, such that δ < eλb−1
eλb−eλη . Since the homoge-

neous linear problem

− x′′(t) + λx′(t) = 0, t ∈ [0, b],

x(0) = 0, x(b) = 0,

has only the trivial solution, hence, for any σ ∈ C[0, b] and ρ, τ ∈ R, the corresponding
nonhomogeneous linear three point problem

− x′′(t) + λx′(t) = σ(t), t ∈ [0, b],

x(0) − δx(η) = τ, x(b) = ρ, 0 < η < b, 0 < δ <
eλb − 1

eλb − eλη
,

(4)

has a unique solution

x(t) =

∫ b

0

Gb(t, s)σ(s)ds+
(eλb − eλt)

D
{δ

∫ b

0

Gb(η, s)σ(s)ds+ τ} +
ρψ(t)

D
, (5)

where ψ(t) = (eλt − 1) + δ(eλη − eλt), D = (eλb − 1) − δ(eλb − eλη) and

Gb(t, s) =
1

λeλs(eλb − 1)

{

(eλt − 1)(eλb − eλs), 0 ≤ t ≤ s ≤ b,

(eλs − 1)(eλb − eλt), 0 ≤ s ≤ t ≤ b.

We note that ψ(t) ≥ 0 on [0, b] and if τ ≥ 0, ρ ≥ 0 and σ ≥ 0 on [0, b], then x ≥ 0
on [0, b]. Thus, we have the following comparison result (maximum principle):

Maximum Principle: Let δ, η ∈ R such that 0 < δ < eλb−1
eλb−eλη and 0 < η < b. For

any x ∈ C1[0, b] such that

−x′′(t) + λx′(t) ≥ 0, t ∈ (0, b), x(0) − δx(η) ≥ 0 and x(b) ≥ 0,

we have x(t) ≥ 0, t ∈ [0, b].

In the following theorem, we prove existence of a C1[0, 1] positive solution of the
singular BVP (2). We generate a sequence of C1[0, 1] positive solutions of nonsingular
problems that has a convergent subsequence converging to a solution of the original
problem.

EJQTDE Spec. Ed. I, 2009 No. 17



4 Rahmat Ali Khan

Theorem 2.1. Assume that there exist lower and upper solutions α, β ∈ C[0, 1] ∩
C2(0, 1) of the BVP (2) such that α(1) = β(1), and 0 < α ≤ β on [0, 1), and α(0) −
δα(η) < β(0) − δβ(η). Assume that f : (0, 1) × R \ {0} → (0,∞) is continuous and

there exists h(t) such that e−λth(t) ∈ L1[0, 1] and

|f(t, x)| ≤ h(t) if x ∈ [ᾱ, β̄], (6)

where ᾱ = min{α(t) : t ∈ [0, 1]} = 0 and β̄ = max{β(t) : t ∈ [0, 1]}. Then the BVP

(2) has a C1[0, 1] positive solution x such that α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

Proof. Let {an}, {bn} be two monotone sequences satisfying

0 < · · · < an < · · · < a1 < η < b1 < · · · < bn < · · · < 1

and are such that {an} converges to 0, {bn} converges to 1. Clearly, ∪∞
n=1[an, bn] =

(0, 1). Let α(an) − δα(η) ≤ β(an) − δβ(η) for sufficiently large n, and choose two null
sequences {τn} and {ρn} [that is, {τn} and {ρn} both converge to 0] such that

α(an) − δα(η) ≤ τn ≤ β(an) − δβ(η),

α(bn) ≤ ρn ≤ β(bn), n = 1, 2, 3, . . . .
(7)

Define a partial order in C[0, 1]∩C2(0, 1) by x ≤ y if and only if x(t) ≤ y(t), t ∈ [0, 1].
Define a modification F of f with respect to α, β as follows:

F (t, x) =











f(t, β(t)) + x−β(t)
1+|x−β(t)|

, if x ≥ β(t),

f(t, x(t)), if α(t) ≤ x ≤ β(t),

f(t, α(t)) + α(t)−x

1+|α(t)−x|
, if x ≤ α(t).

(8)

Clearly, F is continuous and bounded on (0, 1)×C[0, 1]. For each n ∈ N, consider the
nonsingular modified problems

− x′′(t) + λx′(t) = F (t, x), t ∈ [an, bn],

x(an) − δx(η) = τn, x(bn) = ρn.
(9)

We write the BVP (9) as an equivalent integral equation

x(t) =

∫ bn

an

Gn(t, s)F (s, x)ds+
(eλbn − eλt)

Dn

{δ

∫ bn

an

Gn(η, s)F (s, x)ds+ τn}

+
ρnψn(t)

Dn

, t ∈ [an, bn],

(10)

where Dn = (eλbn − eλan) − δ(eλbn − eλη), ψn(t) = (eλt − eλan) + δ(eλη − eλt) and

Gn(t, s) =
1

λeλs(eλbn − eλan)

{

(eλt − eλan)(eλbn − eλs), an ≤ t ≤ s ≤ bn,

(eλs − eλan)(eλbn − eλt), an ≤ s ≤ t ≤ bn.
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Three Point Boundary Value Problems 5

Clearly, Gn(t, s) → G(t, s) as n→ ∞. By a solution of (10), we mean a solution of the
operator equation

(I − Tn)x = 0, that is, a fixed point of Tn,

where I is the identity and for each x ∈ C[an, bn], the operator Tn : C[an, bn] → C[an, bn]
is defined by

Tn(x)(t) =

∫ bn

an

Gn(t, s)F (s, x)ds+
(eλbn − eλt)

Dn

{δ

∫ bn

an

Gn(η, s)F (s, x)ds+ τn}

+
ρnψn(t)

Dn

, t ∈ [an, bn].

(11)

Since F is continuous and bounded on [an, bn] × C[an, bn] for each n ∈ N, hence Tn is
compact for each n ∈ N. By Schauder’s fixed point theorem, Tn has a fixed point (say)
xn ∈ C[an, bn] for each n ∈ N.

Now, we show that
α ≤ xn ≤ β on [an, bn], n ∈ N

and consequently, xn is a solution of the BVP

− x′′(t) + λx′(t) = f(t, x(t)), t ∈ [an, bn],

x(an) − δx(η) = τn, x(bn) = ρn.
(12)

Firstly, we show that α ≤ xn on [an, bn], n ∈ N.
Assume that α � xn on [an, bn]. Set z(t) = xn(t) − α(t), t ∈ [an, bn], then

z ∈ C1[an, bn] and z � 0 on [an, bn]. (13)

Hence, z has a negative minimum at some point t0 ∈ [an, bn]. From the boundary
conditions, it follows that

z(an) − δz(η) = [xn(an) − δxn(η)] − [α(an) − δα(η)] ≥ τn − τn = 0,

z(bn) = xn(bn) − α(bn) ≥ ρn − ρn ≥ 0.
(14)

Hence, t0 6= bn. If t0 6= an, then

z(t0) < 0, z′(t0) = 0, z′′(t0) ≥ 0.

However, in view of the definition of F and that of lower solution, we obtain

−z′′(t0) = −z′′(t0) + λz′(t0) ≥ −
z(t0)

1 + |z(t0)|
> 0,

a contradiction. Hence z has no negative local minimum.
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If t0 = an, then z(an) < 0 and z′(an) ≥ 0. From the boundary condition (14), we
have z(η) ≤ 1

δ
z(an) < 0. Let [t1, t2] be the maximal interval containing η such that

z(t) ≤ 0, t ∈ [t1, t2]. Clearly, t1 ≥ an, t2 ≤ bn and z(t1) ≥ z(an) ≥ δz(η). Further, for
t ∈ [t1, t2], we have

−z′′(t) + λz′(t) ≥ f(t, α(t)) −
z(t)

1 + |z(t)|
− f(t, α(t)) > 0.

Hence, by comparison result, z > 0 on [t1, t2], again a contradiction. Thus, α ≤ xn on
[an, bn].

Similarly, we can show that xn ≤ β on [an, bn].
Now, define

un(t) =











δxn(η) + τn, if 0 ≤ t ≤ an

xn(t), if an ≤ t ≤ bn

ρn, if bn ≤ t ≤ 1.

Clearly, un is continuous extension of xn to [0, 1] and α ≤ un ≤ β on [an, bn]. Since,

un(t) = δxn(η) + τn = xn(an), t ∈ [0, an],

un(t) = ρn = xn(bn), t ∈ [bn, 1].

Hence,
α ≤ un ≤ β on [0, 1], n ∈ N.

Since [a1, b1] ⊂ [an, bn], for each n there must exist tn ∈ (a1, b1) such that

|un(tn)| ≤M ; |u′n(tn)| = |
un(b1) − un(a1)

b1 − a1
| ≤ N,

where M = maxt∈[a1,b1]{|α(t)|, |β(t)|, N = 2M
b1−a1

. We can assume that

tn → t0 ∈ [a1, b1],

un(tn) → x0 ∈ [α(t0), β(t0)],

u′n(tn) → x′0 ∈ [−N,N ], as n→ ∞

By standard arguments [6], (also see [1, 3, 14]), there is a C[0, 1] positive solution x(t) of
(2) such that α ≤ x ≤ β on [0, 1], x(t0) = x0, x

′(t0) = x′0 and a subsequence {unj(t)} of
{un(t)} such that unj(t), u

′
nj(t) converges uniformly to x(t), x′(t) respectively, on any

compact subinterval of (0, 1).
Now, using (6), we obtain

| − (x′(t)e−λt)′| = e−λt|f(t, x(t))| ≤ e−λth(t) ∈ L1[0, 1],

which implies that x ∈ C1[0, 1].
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Three Point Boundary Value Problems 7

3 Approximation of solution

We develop the approximation technique (quasilinearization) and show that under suit-
able conditions on f , there exists a bounded monotone sequence of solutions of linear
problems that converges uniformly and quadratically to a solution of the nonlinear
original problem. Choose a function Φ(t, x) such that Φ, Φx, Φxx ∈ C([0, 1] × R),

Φxx(t, x) ≥ 0 for every t ∈ [0, 1] and x ∈ [0, β̄]

and
∂2

∂x2
[f(t, x) + Φ(t, x)] ≥ 0 on (0, 1) × (0, β̄]. (15)

Here, we do not require the condition that ∂2

∂x2 f(t, x) ≥ 0 on (0, 1) × (0, β̄].
Define F : (0, 1) × R → R by F (t, x) = f(t, x) + Φ(t, x). Note that F ∈ C((0, 1) × R)
and

∂2

∂x2
F (t, x) ≥ 0 on (0, 1) × (0, β̄], (16)

where β̄ = max{β(t) : t ∈ [0, 1]}.

Theorem 3.1. Assume that

(A1) α, β are lower and upper solutions of the BVP (1) satisfying the hypotheses of

Theorem 2.1.

(A2) f, fx, fxx ∈ C((0, 1) × R) and there exist h1, h2, h3 such that e−λthi ∈ L1[0, 1]
and

|
∂i

∂xi
f(t, x)| ≤ hi(t) for |x| ≤ β̄, t ∈ (0, 1), i = 0, 1, 2.

Moreover, f is non-increasing in x for each t ∈ (0, 1).

Then, there exists a monotone sequence {wn} of solutions of linear problems converging

uniformly and quadratically to a unique solution of the BVP (2).

Proof. The conditions (A1) and (A2) ensure the existence of a C1 positive solution x
of the BVP (2) such that

α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

For t ∈ (0, 1), using (16), we obtain

f(t, x) ≥ f(t, y) + Fx(t, y)(x− y) − [Φ(t, x) − Φ(t, y)], (17)

where x, y ∈ (0, β̄]. The mean value theorem and the fact that Φx is increasing in x
on [0, β̄] for each t ∈ [0, 1], yields

Φ(t, x) − Φ(t, y) = Φx(t, c)(x− y) ≤ Φx(t, β̄)(x− y) for x ≥ y, (18)
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where x, y ∈ [0, β̄] such that y ≤ c ≤ x. Substituting in (17), we have

f(t, x) ≥ f(t, y) + [Fx(t, y) − Φx(t, β̄)](x− y), for x ≥ y (19)

on (0, 1) × (0, β̄]. Define g : (0, 1) × R × R \ {0} → R by

g(t, x, y) = f(t, y) + [Fx(t, y) − Φx(t, β̄)](x− y). (20)

We note that g(t, x, y) is continuous on (0, 1) × R × R \ {0}. Moreover, for every
t ∈ (0, 1) and x, y ∈ (0, β̄], g satisfies the following relations

gx(t, x, y) = Fx(t, y) − Φx(t, β̄) ≤ Fx(t, y) − Φx(t, y) = fx(t, y) ≤ 0 and

{

f(t, x) ≥ g(t, x, y), for x ≥ y,

f(t, x) = g(t, x, x).
(21)

Moreover, for every t ∈ (0, 1) and x, y ∈ (0, β̄], using mean value theorem, we have

g(t, x, y) = f(t, y) + fx(t, y)(x− y) − Φxx(t, c)(β̄ − y)(x− y),

where y < c < β̄. Consequently, in view of (A2), we obtain

|g(t, x, y)| ≤ |f(t, y)|+ |fx(t, y)||(x− y)| + |Φxx(t, c)||β̄ − y||x− y|

≤ h1(t) + h2(t)β̄ +M = H(t) (say), for every t ∈ (0, 1) and x, y ∈ (0, β̄],

(22)

where M = max{|Φxx(t, c)||β̄ − y||x− y| : t ∈ [0, 1], x, y ∈ [0, β̄]}. Hence

e−λtH(t) = e−λth1(t) + e−λth2(t)β̄ + e−λtM ∈ L1[0, 1].

Now, we develop the iterative scheme to approximate the solution. As an initial ap-
proximation, we choose w0 = α and consider the linear problem

−x′′(t) + λx′(t) = g(t, x(t), w0(t)), t ∈ (0, 1)

x(0) = δx(η), x(1) = 0.
(23)

Using (21) and the definition of lower and upper solutions, we get

g(t, w0(t), w0(t)) = f(t, w0(t)) ≥ −w′′
0(t) + λw′

0(t), t ∈ (0, 1),

w0(0) ≤ δ(w0(η)), w0(1) ≤ 0,

g(t, β(t), w0(t)) ≤ f(t, β(t)) ≤ −β ′′(t) + λβ ′(t), t ∈ (0, 1),

β(0) ≥ δβ(η), β(1) ≥ 0,
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which imply that w0 and β are lower and upper solutions of (23) respectively. Hence
by Theorem 2.1, there exists a C1 positive solution w1 ∈ C[0, 1]∩C2(0, 1) of (23) such
that

w0 ≤ w1 ≤ β on [0, 1].

Using (21) and the fact that w1 is a solution of (23), we obtain

−w′′
1(t) + λw′

1(t) = g(t, w1(t), w0(t)) ≤ f(t, w1(t)), t ∈ (0, 1)

w1(0) = δw1(η), w1(1) = 0,
(24)

which implies that w1 is a lower solution of (2). Similarly, in view of (A1), (21) and
(24), we can show that w1 and β are lower and upper solutions of

−x′′(t) + λx′(t) = g(t, x(t), w1(t)), t ∈ (0, 1)

x(0) = δx(η), x(1) = 0.
(25)

Hence by Theorem 2.1, there exists a C1 positive solution w1 ∈ C[0, 1] ∩ C2(0, 1) of
(25) such that

w1 ≤ w2 ≤ β on [0, 1].

Continuing in the above fashion, we obtain a bounded monotone sequence {wn} of
C1[0, 1] positive solutions of the linear problems satisfying

w0 ≤ w1 ≤ w2 ≤ w3 ≤ ... ≤ wn ≤ β on [0, 1], (26)

where the element wn of the sequence is a solution of the linear problem

−x′′(t) + λx′(t) = g(t, x(t), wn−1(t)), t ∈ (0, 1)

x(0) = δx(η), x(1) = 0

and for each t ∈ (0, 1), is given by

wn(t) =

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds+

(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)g(s, wn(s), wn−1(s))ds.

(27)

The monotonicity and uniform boundedness of the sequence {wn} implies the existence
of a pointwise limit w on [0, 1]. From the boundary conditions, we have

0 = wn(0) − δwn(η) → w(0) − δw(η) and 0 = wn(1) → w(1).

Hence w satisfy the boundary conditions. Moreover, from (22), the sequence {g(t, wn, wn−1)}
is uniformly bounded by h3(t) ∈ L1[0, 1] on (0, 1). Hence, the continuity of the
function g on (0, 1) × (0, β̄] × (0, β̄] and the uniform boundedness of the sequence
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{g(t, wn, wn−1)} implies that the sequence {g(t, wn, wn−1)} converges pointwise to the
function g(t, w, w) = f(t, w). By Lebesgue dominated convergence theorem, for any
t ∈ (0, 1),

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds→

∫ 1

0

G(t, s)f(s, w(s))ds.

Passing to the limit as n→ ∞, we obtain

w(t) =

∫ 1

0

G(t, s)g(s, w(s), w(s))ds+
(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)g(s, w(s), w(s))ds

=

∫ 1

0

G(t, s)f(s, w(s))ds+
(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)f(s, w(s))ds, t ∈ (0, 1);

that is, w is a solution of (2).

Now, we show that the convergence is quadratic. Set vn(t) = w(t)−wn(t), t ∈ [0, 1],
where w is a solution of (2). Then, vn(t) ≥ 0 on [0, 1] and the boundary conditions
imply that vn(0) = δvn(η) and vn(1) = 0. Now, in view of the definitions of F and g,
we obtain

−v′′n(t) + λv′n(t) = f(t, w(t)) − g(t, wn(t), wn−1(t))

= [F (t, w(t)) − Φ(t, w(t))]

− [f(t, wn−1(t)) + (Fx(t, wn−1(t)) − Φx(t, β̄))(wn(t) − wn−1(t))]

= [F (t, w(t)) − F (t, wn−1(t)) − Fx(t, wn−1(t))(wn(t) − wn−1(t))]

− [Φ(t, w(t)) − Φ(t, wn−1(t)) − Φx(t, β̄))(wn(t) − wn−1(t))], t ∈ (0, 1).

(28)

Using the mean value theorem repeatedly and the fact that Φxx ≥ 0 on [0, 1] × [0, β̄],
we obtain, Φ(t, w(t)) − Φ(t, wn−1(t)) ≥ Φx(t, wn−1(t))(w(t) − wn−1(t)) and

F (t, w(t)) − F (t, wn−1(t)) − Fx(t, wn−1(t))(wn(t) − wn−1(t))

= Fx(t, wn−1(t))(w(t) − wn−1(t)) +
Fxx(t, ξ1)

2
(w(t) − wn−1(t))

2

− Fx(t, wn−1(t))(wn(t) − wn−1(t))

= Fx(t, wn−1(t))(w(t) − wn(t)) +
Fxx(t, ξ1)

2
(w(t) − wn−1(t))

2

≤ Fx(t, wn−1(t))(w(t) − wn(t)) +
Fxx(t, ξ1)

2
‖vn−1‖

2, t ∈ (0, 1),

where wn−1(t) ≤ ξ1 ≤ w(t) and ‖v‖ = max{v(t) : t ∈ [0, 1]}. Hence the equation (28)
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can be rewritten as

−v′′n(t) + λv′n(t) ≤ Fx(t, wn−1(t))(w(t) − wn(t)) +
Fxx(t, ξ1)

2
‖vn−1‖

2

− Φx(t, wn−1(t))(w(t) − wn−1(t)) + Φx(t, β̄))(wn(t) − wn−1(t))

= fx(t, wn−1(t))(w(t) − wn(t)) +
Fxx(t, ξ1)

2
‖vn−1‖

2

+ [Φx(t, β̄) − Φx(t, wn−1(t))](wn(t) − wn−1(t))

≤
Fxx(t, ξ1)

2
‖vn−1‖

2 + Φxx(t, ξ2)(β̄ − wn−1(t))(wn(t) − wn−1(t))

≤
fxx(t, ξ1) + Φxx(t, ξ1)

2
‖vn−1‖

2 + Φxx(t, ξ2)(β̄ − wn−1(t))(w(t) − wn−1(t))

≤
fxx(t, ξ1)

2
‖vn−1‖

2 + d1

(‖vn−1‖
2

2
+ |β̄ − wn−1(t)||w(t) − wn−1(t)|

)

, t ∈ (0, 1)

(29)

where wn−1(t) ≤ ξ2 ≤ wn(t), d1 = max{|Φxx| : (t, x) ∈ [0, 1] × [0, β̄]} and we used the
fact that fx ≤ 0 on (0, 1) × (0, β̄]. Choose r > 1 such that

|β(t) − wn−1(t)| ≤ r|w(t) − wn−1(t)| on [0, 1].

We obtain

−v′′n(t) + λv′n(t) ≤
(fxx(t, ξ1)

2
+ d1(r + 1/2)

)

‖vn−1‖
2 ≤

(h3(t)

2
+ d2

)

‖vn−1‖
2, t ∈ (0, 1),

(30)
where e−λth3(t) ∈ L1[0, 1] and d2 = d1(r + 1/2).

By the comparison result, vn(t) ≤ z(t), t ∈ [0, 1], where z(t) is the unique solution
of the linear BVP

−z′′(t) + λz′(t) =
(h3(t)

2
+ d2

)

‖vn−1‖
2,

z(0) = δz(η), z(1) = 0.
(31)

Thus,

vn(t) ≤ z(t) =
[

∫ 1

0

G(t, s)
(h3(s)

2
+ d2

)

ds+

(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)
(h3(s)

2
+ d2

)

ds
]

‖vn−1‖
2

≤ A‖vn−1‖
2,

(32)

where A denotes

max
t∈[0,1]

{

∫ 1

0

G(t, s)
(h3(s)

2
+ d2

)

ds+
(eλ − eλt)δ

(eλ − 1) − δ(eλ − eλη)

∫ 1

0

G(η, s)
(h3(s)

2
+ d2

)

ds}.

(32) gives quadratic convergence.
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