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Abstract

The second term of the asymptotics of the monodromy map of monodromic

singular point for some class of vector fields, Newton diagram of which consists of

two even edges is computed; in that case the principal term of the asymptotics is an

identity mapping. The obtained result allows to formulate the sufficient condition

of focus for the singular point from the class under consideration.
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Introduction.

In this paper we calculate the second term of the asymptotics of the monodromy map

of monodromic singular point in case when the principal term of the asymptotics is an

identity mapping.

It is known ([1],[2]), that the monodromy map (return map) of the monodromic sin-

gular point of the analytic vector field on the plane has a linear principal term of the

asymptotics

∆(ρ) = Cρ + o(ρ).

The logarithm of the coefficient of this principal term is computed in ([3]) for a so called

Γ-nondegenerate vector field. It is expressed via the Taylor coefficients of the principal

part of the vector field defined by Newton diagram Γ. If ∆(ρ) ≡ ρ, then the the singular

point is a center. The inequality ln C 6= 0 is the suffucient condition for the singular point

to be a focus.

It was found ([3]) if all the edges of the Newton diagram Γ are even, then ln C is

identically equal to zero in the class of all the Γ -nondegenerate vector fields having a
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monodromic singular point. That is impossible to obtain the sufficient condition of focus

with help of the principal term of asymptotics.

In this work we consider Γ-nondegenerate vector fields with a monodromic singular

point Newton diagram of which consists of two even edges. Under some additional con-

ditions we calculate the second term of asymptotics of the monodromy map.

Let us recall some notions connected with the Newton diagram.

We write an analytic vector field (germ) in the neighbourhood of a singular point

(x, y) = (0, 0) in the form
X(x, y)

y

∂

∂x
+

Y (x, y)

x

∂

∂y
. (0.1)

Here the functions X and Y are divisible by y and x respectively. The vector field (0.1)

defines a dynamical system that it will be convenient to write in the form

yẋ = X(x, y) , xẏ = Y (x, y). (0.2)

Definitions 1. Let

(
∑

aijx
iyj,

∑

bijx
iyj)

be a Taylor expansion of the right hand-side of the system (0.2). The support of the

vector field (0.1) and of the system (0.2) is the set {(i, j) : (aij, bij) 6= (0, 0)}. The pair

(aij, bij) is called the vector coefficient of the point (i, j) of the support. The index of the

point (i, j) of the support is the quantity







bij

aij
, if aij 6= 0

∞, if aij = 0.

The vector coefficient of any other integer-valued point we define as (0, 0).

2. Consider the set
⋃

(i,j)

{(i, j) + R2
+},

where R2
+ is the positive quadrant, the points (i, j) belong to the support. The boundary

of the convex hull of this set consists of two open rays and one broken line, which can

consist of one point. This broken line is called the Newton diagram of the vector field

(0.1). The links of this broken line are called the edges of a Newton diagram, and their

end-points are called the vertices of a Newton diagram.

3. The index of an edge of a Newton Diagram is the rational number that is equal to

the tangent of the angle between the negative direction of the j− axes, and the edge.

Consider the edge of the Newton diagram of the system (0.2) with index α = m
n

, where
m
n

is irreducible fraction. We can group the terms of the Taylor series of the system (0.2)

so that

yẋ =
∞
∑

d=0
Xd(x, y), xẏ =

∞
∑

d=0
Yd(x, y), (0.3)
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where

Xd(x, y) =
∑

ni+mj=d+d0

aijx
iyj, Yd(x, y) =

∑

ni+mj=d+d0

bijx
iyj (0.4)

are quasihomogeneous polynomials of degree d+d0 with weights n and m in the variables

x and y respectively, d0 ∈ N.

We set Fd(x, y) = Yd(x, y) − αXd(x, y).

Proposition 0.1 ([3]) Let m
n

be an irreducible fraction. For any quasihomogeneous poly-

nomial with weights n and m in the variables x and y respectively the decomposition

R(x, y) = Axs1ys2
∏

(yn − bix
m)ki

holds, where bi are distinct nonzero complex numbers and ki ≥ 0.

Definition. A factor of the form yn − bix
m, bi 6= 0, is called the prime factor of the

polynomial R(x, y), the number ki is called the multiplicity of this prime factor.

Definition. A vector field (germ) with Newton diagram Γ is Γ-nondegenerate, if

1) none of the polynomials F0(x, y) corresponding to edges of the Newton diagram Γ has

a prime factor of multiplicity larger than one; 2) the index of any vertex not lying on a

coordinate axis is different from the indices of the edges adjacent to it.

The set of Γ-nondegenerate vector fields having zero as a monodromic singular point

will be denoted by MΓ.

Definition. We call the Newton diagram Γ monodromic, if the set MΓ is nonempty.

A Newton diagram is monodromic, if and only if it has one vertex on each coordinate

axis and the lengths of the projections of the edges on the coordinate axes are all even

numbers ([3]).

Definition. Let α = m
n

be an irreducible fraction. The edge of the Newton diagram

with index α will be called even, if one of the numbers m and n and odd otherwise.

Theorem 1 ([3]) Let Γ be a monodromic Newton diagram. ln c = 0 is identically zero

on MΓ if and only if all the edges of the Newton diagram Γ are even.

Let the Newton diagram of the vector field V consist of two edges with indices α =
m
n
, α̃ = m̃

ñ
, where α̃ > α. For each edge we can consider the expansion (0.3) - (0.4).

The polynomials analogous to Xd, Yd, Fd for the edge with index α̃ we denote X̃d, Ỹd, F̃d

respectively.

In this paper we prove the following theorem.

Theorem 2 Let Γ be a monodromic Newton diagram consisting of two even edges with

indices α = m
n

and α̃ = m̃
ñ

(α̃ > α) and V be a Γ-nondegenerate vector field having

(0, 0) as a monodromic singular point, (A0, B0) be a vector coefficient of the vertex of the

Newton diagram between its edges. Let in addition the following conditions hold
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1)λ = ñ(B0−α̃A0)
B0−αA0

> 1; λ is irrational number;

2) A0

(B0−α̃A0)
< 0.

Then the monodromy map associated to the origin (taking the axis of abscissa as

transversal with a suitable chosen parameter) has possibly after a time reversal the form

∆(ρ) = ρ(1 + F2ρ
1
n + o(ρ

1
n )), ρ → 0,

where in case n > 1 F2 = 0,

in case n = 1, m̃ – even number, r = m̃n − ñm > 1,

F2 = 2

+∞
∫

−∞

Φ̃1(1, ξ)e

ξ
∫

0

Φ̃0(1,τ)dτ

dξ

Φ̃0(x, y) =
X̃0(x, y)

ñyF̃0(x, y)
, Φ̃1(x, y) =

Ỹ0(x, y)X̃1(x, y) − Ỹ1(x, y)X̃0(x, y)

ñyF̃ 2
0 (x, y)

.

If F2 6= 0, then the origin is a focus.

1 Resolution of the singularity.

Let the Newton diagram of the vector field V consist of two edges with indices α =
m
n
, α̃ = m̃

ñ
, where α̃ > α. In according to [3] in such a case the resolution of the singularity

connected with a Newton diagram consists of the following: the first quadrant of the plain

(x, y) is broken up into sectors Sα, Sα̃ and Sαα̃, corresponding to the edges and the vertex

between them of the Newton diagram.

Let ε > 0, δ > 0 be small enough. The change of coordinates

x = wzn, y = zm. (1.5)

turns the sector Sα = {εxα ≤ y ≤ δ} into the rectangle

Pα = {0 ≤ w ≤ ε−
1
α , 0 ≤ z ≤ δ

1
m}.

The change of coordinates

x = unñvn, y = unm̃vm, (1.6)

turns the sector Sαα̃ = {1
ε
xα̃ ≤ y ≤ εxα} into the rectangle

Pαα̃ = {0 ≤ u ≤ ε1, 0 ≤ v ≤ ε2},

where ε1 = ε
1

nñ(α̃−α) , ε2 = ε
1

n(α̃−α) .

Finally the change of coordinates

x = z̃ñ, y = z̃m̃w̃, (1.7)

turns the sector Sα̃ = {0 ≤ y ≤ 1
ε
xα̃} into the rectangle

Pα̃ = {0 ≤ w̃ ≤
1

ε
, 0 ≤ z̃ ≤ δ

1
ñ}.

(See fig.1.)
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Figure 1: Resolution of singularity.

2 Change of coordinates in the sector corresponding

to the edge of a Newton diagram.

Take the change (1.5) in the system (0.2), we obtain

dz

dw
= z(Φ0(w, 1) + zΦ1(w, 1) + ...), (2.8)

where

Φ0(x, y) = −
Y0(x, y)

nxF0(x, y)
,
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Φ1(x, y) = −
m(Y1(x, y)X0(x, y) − X1(x, y)Y0(x, y))

n2xF 2
0 (x, y)

.

Analogously take the change (1.7), we obtain

dz̃

dw̃
= z̃(Φ̃0(1, w̃) + z̃Φ̃1(1, w̃) + ...), (2.9)

where Φ̃0(x, y),*** Φ̃1(x, y) are defined at the statement of the theorem 2.

3 Reflected vector fields.

Let Sx and Sy be the reflections of the (x, y)-plane about the x- and y-axes respec-

tively, and let Sxy = Sx ◦Sy. The images of the vector field V after reflections Sx, Sy, Sxy

we denote V x, V y, V xy respectively. Consider in the first quadrant four vector fields

V, V x, V y, V xy and apply the described resolution of singularity to them. Correspond-

ing formulas for the vector field V are given at the previous section. The polinomials

analogous to Xd, Yd, Fd, Φd for the reflected vector fields we denote by the same letters

with the corresponding index above.

From ([3]) we obtain

Lemma 3.1

Φx
d(x, y) = Φd(x,−y), Φ̃x

d(x, y) = −Φ̃d(x,−y),

Φy
d(x, y) = −Φd(−x, y), Φ̃y

d(x, y) = Φ̃d(−x, y),

Φxy
d (x, y) = −Φd(−x,−y), Φ̃xy

d (x, y) = −Φ̃d(−x,−y).

where d = 0, 1.

4 Transition map in the rectangle Pαα̃.

In this section we denote F (u, v) be any analytic at the point (0, 0) function of variables

u, v.

Lemma 4.1 Let (A0, B0) be the vector coefficient of the vertex of the Newton diagram

Γ joining its edges, (A1, B1) be the vector coefficient of the nearest to this vertex integer-

valued point on the edge with the index α̃; (A2, B2) be the vector coefficient of the nearest

to this vertex integer-valued point on the edge with the index α. The change of variables

(1.6) in the sector Sαα̃ followed by division by a power function converts fector field V

into a vector field

u̇ = u(Ã0 + vr(Ã1 + f1(v
r)) + unr(Ã2 + f2(u

nr)) + uvF (u, v)),

v̇ = v(B̃0 + vr(B̃1 + g1(v
r)) + unr(Ã2 + g2(u

nr)) + uvF (u, v)),
(4.10)
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where (Ãi, B̃i) = (1
r
(Bi − αAi);−

ñ
r
(Bi − α̃Ai)), i = 0, 1, 2, r = m̃n − ñm, fj, gj−

polynomials, fj(0) = gj(0) = 0, j = 1, 2.

Proof. The matrix of exponents corresponding to the change (1.6) has the form

C =





nñ n

nm̃ m



 .

In according to ([3]) the support of the new vector field is the image of the support of

the vector field V by means of the map CT ; vector coefficients are transformed by means

of matrix C−1:

CT =





nñ nm̃

n m



 , C−1 = −
1

nr





m −n

−nm̃ nñ



 .

The transformation of the support of the vector field V is shown on the fig.2. From the

form of the support of the transformed vector field and from the equality

-
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-

6
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r

nr
1

1

n

m

ñ

m̃

α

α̃

(A2, B2)

(A0, B0)

(A1, B1)

(Ã1, B̃1)

(Ã0, B̃0) (Ã2, B̃2)

Figure 2: Transformation of the support.





Ãi

B̃i



 = C−1





Ai

Bi





the conclusion of lemma follows.

From conditions of Γ - nondegegeneracy Ã0 6= 0, B̃0 6= 0. After division the system

(4.10) on the expression in brackets from the second equation we obtain the system

u̇ = u(− 1
λ

+ vr(a + h1(vr)) + unr(b + h2(unr)) + uvF (u, v)), v̇ = v, (4.11)
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where

λ =
ñ(B0 − α̃A0)

B0 − αA0
, a =

A0B1 − B0A1

ñ(B0 − α̃A0)2
(α̃ − α), b =

A0B2 − B0A2

ñ(B0 − α̃A0)2
(α̃ − α),

h1, h2− polynomials, h1(0) = h2(0) = 0.

Lemma 4.2 The system (4.11) is reduced to the linear normal form

v̇ = v, ẏ = −
1

λ
y

with help of the C∞-change of variables of the form

u = y(1 + vr(ã + h̃1(vr)) + unr(b̃ + h̃2(unr)) + uvF (u, v)), (4.12)

where ã = −a
r
, b̃ = bλ

nr
, h̃1, h̃2− polynomials, h̃1(0) = h̃2(0) = 0.

Proof. In according to ([4],[5]) there exists C∞-change of variabels which linearized the

system (4.11). We shall look for it in the form (4.12).

From (4.12) and (4.11) we obtain

ẏ = y(−
1

λ
+ (a + ãr)vr + (b −

b̃nr

λ
)ynr + . . .).

Setting equal ẏ to − 1
λ
y) we obtain: ã = −a

r
, b̃ = bλ

nr
. Lemma is proved.

Because the vector field is Γ - nondegenerate and the singular point is monodromic

we have λ > 0.

On the plain (y, v) we consider the rectangle 0 ≤ y ≤ ε1, 0 ≤ v ≤ ε2. Let L1 and L2 be

the sides of the rectangle not lying on the coordinate axes: L1 = {y = ε1},  L2 = {v = ε2}.

Let g : L2 → L1 be a transition map along the trajectories of the linear system

ẏ = y, v̇ = −λv. (4.13)

On L1 we consider the parameter v, on L2 - parameter y.

Lemma 4.3 v = g(y) = ε2

(

y
ε1

)λ
.

Proof. The trajectory of the system (4.13) goes from the point (y, ε2) to the point (ε1, v)

during the time

t =

ε1
∫

y

dy

y
= −

v
∫

ε2

dv

λv
.

From here ln ε1

y
= − 1

λ
ln v

ε2
, v = ε2

(

y
ε1

)λ
.

Lemma is proved.
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5 Parametrisation of transversals.

The change (4.12) converts the segments L1 and L2 into the curves Γ1 and Γ2. On

Γ1 we consider the parameter v, on Γ2 − y. Then Γ1 and Γ2 accoding to (4.12) have the

following form (r > 1):

Γ1 : u = ε1(1 + o(ε1))(1 + O(ε1)v + o(v)), v = v, (5.14)

Γ2 :
u = y(1 + o(ε2))(1 + O(ε2)y + o(y)),

v = ε2.
(5.15)

From (1.5) and (1.6) we find that the connection between coordinates (z, w) in the

rectangle Pα and (u, v) in the rectangle Pαα̃ is the following

w = u
nñ(α−α̃)

α , z = u
m̃
α v. (5.16)

Analogously from (1.6) and (1.7) we obtain that the coordinates (z̃, w̃) in the rectangle

Pα̃ and (u, v) in the rectangle Pαα̃ are connected by following formulas

w̃ = vn(α−α̃), z̃ = unv
n
ñ . (5.17)

Substituting (5.14) in (5.16) we obtain that Γ1 in the coordinates (z, w) has the form

Γ′

1 :
w = ε∗1(1 + o(v))

z = ε̃1v(1 + O(ε1)v + o(v)),
(5.18)

where ε∗1 = ε−
n
m (1 + o(ε1)), ε̃1 = ε

m̃
α
1 (1 + o(ε1)).

Analogously substituting (5.15) in (5.17) we obtain that Γ2 in coordinates (z̃, w̃) has

the form

Γ′

2 :
w̃ = 1

ε

z̃ = ε̃2y
n(1 + O(ε2)y + o(y)),

(5.19)

where ε̃2 = ε
n
ñ
2 (1 + o(ε2)).

6 Transition maps in the rectangels corresponding

to edges.

Consider in coordinates (z̃, w̃) two transversals Γ̃0 = {w̃ = 0} with parameter ρ = z̃

and Γ′

2 (see (5.19)) with parameter y. Calculate the coefficients of the transition map

fα̃ : Γ′

2 → Γ̃0.

Lemma 6.1 The map fα̃ has the asymptotics

ρ = d̃yn(1 + d̃1y + o(y)), (6.20)
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where

d̃ = ε̃2e
−

1
ε
∫

0

Φ̃0(1,ξ)dξ

, (6.21)

d̃1

d̃
= −

1
ε
∫

0

Φ̃1(1, ξ)e

ξ
∫

0

Φ̃0(1,τ)dτ

dξ +
O(ε2)

d̃
, if n = 1, d̃1 = O(ε2) if n > 1. (6.22)

Proof. We look for the solution z̃(w̃, ρ) of the equation (2.9) with the initial condition

z̃(0, ρ) in the form

z̃(w̃, ρ) = ρ(C̃0(w̃) + C̃1(w̃)ρ + ...), (6.23)

where C̃0(0) = 1, C̃i(0) = 0 as i ≥ 0.

Solving corresponding equations in variations we obtain

C̃0(w̃) = e

w̃
∫

0

Φ̃0(1,ξ)dξ

, C̃1(w̃) = C̃0(w̃)

w̃
∫

0

C̃0(ξ)Φ̃1(1, ξ)dξ. (6.24)

For the map ρ = fα̃(y) from (6.23) and (5.19) we obtain the equation

C̃0ρ + C̃1ρ
2 + ... = ε̃2y

n(1 + O(ε2)y + o(y)), (6.25)

where C̃i = C̃i(
1
ε
), i = 0, 1.

We shall look for ρ = fα̃ in the form (6.20). Substituting (6.20) in (6.25) we obtain

C̃0d̃yn(1 + d̃1y + o(y)) + C̃1d̃
2y2n(1 + d̃1y + o(y))2 + o(y2) = ε̃2y

n(1 + O(ε2)y + o(y)).

Let n = 1. Then

C̃0d̃y(1 + d̃1y + o(y)) + C̃1d̃
2y2(1 + 2d̃1y + o(y)) + o(y2) = ε̃2y(1 + O(ε2)y + o(y))

or C̃0d̃y + (C̃0d̃d̃1 + C̃1d̃
2)y2 + o(y2) = ε̃2y + ε̃2O(ε2)y

2 + o(y2)

Setting equal coefficients in the equal powers of y, we obtain the conclusion of lemma.

In the case that n > 1 we obtain the same expression for d̃, and d̃1 = O(ε2). Lemma

is proved.

Consider in coordinates (z, w) two curves: Γ0 = {w = 0} with parameter ρ = z and

Γ
′

1 (see (5.18)) with parameter v. It is evident, that the transition map fα : Γ′

1 → Γ0 has

the asymptotics

ρ = dv(1 + d1v + ...) (6.26)

As in the proof of Lemma 6.1 we obtain that

d = ε̃1e
−

ε∗
1
∫

0

Φ0(ξ,1)dξ

. (6.27)

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 19, p. 10



7 Coefficients of the composition of the transition

maps.

The monodromy map ∆ is the composition of the following maps:

∆ = ∆2 ◦ ∆1,

where ∆1 is a transition map for the upper half-plane which transforms the positive x-

half-axis near the origin into the negative x-half-axis in the positive direction along the

trajectories of the vector field, and ∆2 is the analogous map for the lower half-plane (see

fig.1).

The maps analogous to fα, fα̃, g for the reflected vector fields we denote by the same

letters with corresponding index above. Then

∆1 = f
y
α̃ ◦ (gy)−1 ◦ (f y

α)−1 ◦ fα ◦ g ◦ (fα̃)−1, ∆2 = (∆x
1)−1,

where

∆x
1 = f

xy
α̃ ◦ (gxy)−1 ◦ (fxy

α )−1 ◦ fx
α ◦ gx ◦ (fx

α̃)−1.

According to Lemma 4.3 v = g(y) = εγyλ, where εγ = ε2ε
−λ
1 . Observe that all the

analogous to g transition maps for the reflected vector fields have the same formula,

because the number λ is the same for all of them ([3]).

The maps fα and fα̃ are defined by formulas (6.26) and (6.20) respectively. Inverse

maps have respectively forms

v = (f y
α)−1(ρ) =

1

dy
ρ(1 −

d
y
1

dy
ρ + ...),

y = f−1
α̃ (ρ) =

(

1

d̃

)

1
n

ρ
1
n (1 −

d̃1

nd̃
1
n

ρ
1
n + o(ρ

1
n )).

It is easy to compute, that

y = g−1(v) = ε
−γ
λ v

1
λ .

Taking into account that λ > 1 we obtain in consecutive order:

(f y
α)−1 ◦ fα =

d

dy
v(1 +

dyd1 − dd
y
1

dy
v + o(v)),

(gy)−1 ◦ (f y
α)−1 ◦ fα) ◦ g =

(

d

dy

) 1
λ

y(1 + o(y)).

Finally

∆1 = f
y
α̃ ◦ (gy)−1 ◦ (f y

α)−1 ◦ fα ◦ g ◦ f−1
α̃ = cρ(1 + c1ρ

1
n + o(ρ

1
n )),

where

∗ ∗ ∗ =
d̃y

d̃

(

d

dy

)n
λ

, c1 =
d̃

y
1

d̃
1
n

(

d

dy

) 1
λ

−
d̃1

d̃
1
n

, (7.28)
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Analogously ∆x
1 = cxρ(1 + cx

1ρ
1
n + o(ρ

1
n )), where

cx =
d̃xy

d̃x

(

dx

dxy

)n
λ

, cx
1

d̃
xy
1

(d̃x)
1
n

(

dx

dxy

) 1
λ

−
d̃x

1

(d̃x)
1
n

, (7.29)

From here ∆2 = (∆x
1)−1 = 1

cx ρ(1 −
cx
1

(cx)
1
n
ρ

1
n + o(ρ

1
n )). Finally

∆ = ∆2 ◦ ∆1 =
c

cx
ρ(1 + F2ρ

1
n + o(ρ

1
n )),

where

F2 =
c1(cx)

1
n − cx

1c
1
n

(cx)
1
n

.

Since c
cx is a coefficient of the principal term of the asymptotics of the monodromy

map ∆, then in our case of even edges it is equal to 1, hence

F2 = c1 − cx
1 . (7.30)

The formula (6.22) implies that in case n > 1 d̃1 = O(ε2), d̃
y
1 = O(ε2). Consider the

coefficient c1. Notice that as ε → 0

e

1
n

ξ
∫

0

Φ0(ξ,1)dξ

≈ ∗ ∗ ∗ξb0 , c > 0. (7.31)

where b0 = A0

nñ(B0−α̃A0)
< 0.

From here

e

1
n

1
ε
∫

0

Φ0(ξ,1)dξ

≈ ∗ ∗ ∗ε−b0.

Hence

d̃1

d̃1/n
=

O(ε2)

ε̃2
1/n

e

1
n

ξ
∫

0

Φ0(−ξ,1)dξ

=
O(ε2)

ε
1/ñ
2 (1 + o(ε2))

ε−b0 =
O(ε2)

ε
1/ñ
2

ε−b0 → 0

as ε → 0. Analogously
d̃y
1

d̃1/n → 0 as ε → 0.

We show, that the value d
dy is bounded as ε → 0. Really from the formula (6.27) and

lemma 3.1

dy = ε̃1e
−

ε∗
1
∫

0

Φy
0(ξ,1)dξ

= ε̃1e

ε∗
1
∫

0

Φ0(−ξ,1)dξ

= ε̃1e

0
∫

−ε∗
1

Φ0(ξ,1)dξ

.

From here

d

dy
= (1 + o(ε1)e

−

ε∗
1
∫

−ε∗
1

Φ0(ξ,1)dξ

Limits in the integral in the exponent are not symmetric, because the quantity

ε∗1 = ε−
n
m (1 + o(ε1)) (7.32)
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contains o - small, which for the reflected vector field can be differ from the analogous

quantity for the initial vector field.

Therefore

d

dy
= (1 + o(ε1))e

−

ε∗
1
∫

−ε∗
1

Φ0(ξ,1)dξ

e

∫

I(ε)

Φ0(ξ,1)dξ

, (7.33)

where the limits in the integral in the first exponent are symmetric, and both of the

ends of the segment I(ε) have the asymptotics (7.32). Because from Γ - nondegeneracy

conditions

Φ0(ξ, 1) = O(
1

ξk
), k ≥ 1, (7.34)

as ξ → ∞, then the integraal in the first exponent turns to the finite limit as ε → 0. From

(7.34) we also obtain, that the integral in the second exponent in the formula (7.33) is

O(ε
n
m

k)ε
−

n
m

1 o(ε1) = o(ε1). Hence the second exponent turns to 1 as ε → 0. From here the

ratio d
dy is bounded. Notice that if m is even the integrand in the first exponent (7.33) is

odd and so
d

dy
= 1 + o(ε1). (7.35)

Analogously
dx

dxy
= 1 + o(ε1). (7.36)

Because the ratio d
dy is bounded we have c1 → 0 as ε → 0. Analogously cx

1 → 0 as ε → 0.

From here and because F2 is undependent on ε we obtain that F2 = 0.

Let n = 1.

Because in this case m is even, that from (7.30),(7.28), (7.29), (7.35), (7.36) we obtain

that

F2 =
d̃

y
1

d̃
−

d̃1

d̃
+ o(ε1)

d̃1
y

d̃
−

(

d̃
xy
1

d̃x
−

d̃x
1

d̃x
+ o(ε1)

d̃
xy
1

d̃x

)

. (7.37)

Because m̃ is even, that from [3]

Φ̃0(−x, y) = Φ̃0(x, y), Φ̃1(−x, y) = −Φ̃1(x, y). (7.38)

From here and from lemma 3.1 we obtain, that

d̃y = ε̃2e
−

1
ε
∫

0

Φ̃y
0(1,ξ)dξ

= ε̃2e
−

1
ε
∫

0

Φ̃0(−1,ξ)dξ

= ε̃2e
−

1
ε
∫

0

Φ̃0(1,ξ)dξ

= d̃(1 + o(ε2)).

Analogously
d̃

y
1

d̃
=

d̃
y
1

d̃y

d̃y

d̃
= −

d̃1

d̃
(1 + o(ε2)) +

O(ε2)

d̃
. (7.39)

Analogously
d̃

xy
1

d̃x
= −

d̃x
1

d̃x
(1 + o(ε2)) +

O(ε2)

d̃x
.
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From here, from (7.39) and (7.37) we obtain, that

F2 = c1 − cx
1 = 2(

d̃x
1

d̃x − d̃1

d̃
) + (o(ε1) + o(ε2))

d̃1

d̃
+ (o(ε1) + o(ε2))

d̃x
1

d̃

+O(ε2)

d̃
+ O(ε2)

d̃x .
(7.40)

Investigate the asymptotics of the integral in the formula (6.22) for the quantity d̃1

d̃
.

The edge with index α̃ is situated on the line l : ñi + m̃j = d̃0, the edge with index α is

situated on the line ni + mj = d0.

Let (i0, j0) be the coordinates of the vertex, joining these edges. Then

ni0 + mj0 = d0, ñi0 + m̃j0 = d̃0.

Consider the right line l1, passing throw the point (i0−m, j0 +n) in parallel to l. Then

l1 has the equation ñi+ m̃j = d and ñ(i0−m) + m̃(j0 +n) = d. From here d− d̃0 = r > 1.

Therefore the supports of the functions X̃1 and Ỹ1 do not lie on the right line l1, hence

they lie lower. Because n = 1, then the upper points of these supports lie not above

the horizontal line j = j0. So the powers of the polynomials X̃1(1, ξ) and Ỹ1(1, ξ) are not

greater than the power j0 of polynomials X̃0, Ỹ0, F̃0. Therefore Φ̃1(1, ξ) = O( 1
ξm ), m ≥ 1

as ξ → ∞.

From here and from the formula (7.36) we obtain, that the integrand in (6.22) is

O( 1
ξl−b0

). So from the condition b0 < 0 the integral in the formula (6.22) turns to the

finite limit as ε → 0.

We proved early, that two last terms in (7.40) turn to 0 as ε → 0. From here and

because the quantity F2 does not depend on ε we conclude that

F2 = lim
ε→0

2(
d̃x

1

d̃x
−

d̃1

d̃
). (7.41)

Continue the proof of the theorem. Twice changing the variable on the opposite one

we obtain

d̃x
1

d̃x = −(1 + o(ε2))

1
ε
∫

0
Φ̃x

1(1, ξ)e

ξ
∫

0

Φ̃x
0 (1,τ)dτ

dξ + O(ε2)

d̃x =

(1 + o(ε2))

1
ε
∫

0
Φ̃1(1,−ξ)e

−

ξ
∫

0

Φ̃0(1,−τ)dτ

dξ + O(ε2)

d̃x =

(1 + o(ε2))
0
∫

−
1
ε

Φ̃1(1, ξ)e

ξ
∫

0

Φ̃0(1,τ)dτ

dξ + O(ε2)

d̃x .

(7.42)

From here, from (6.22) and (7.41) we obtain

F2 = 2 lim
ε→0

(

d̃x
1

d̃x
−

d̃1

d̃

)

=

2 lim
ε→0









1
ε
∫

−
1
ε

Φ̃1(1, ξ)e

ξ
∫

0

Φ̃0(1,τ)dτ

dξ +
O(ε2)

d̃
+

O(ε2)

d̃x









= 2

∞
∫

−∞

Φ̃1(1, ξ)e

ξ
∫

0

Φ̃0(1,τ)dτ

dξ.

Theorem 2 is proved.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 19, p. 14



References

[1] V.I.Arnol’d and Yu.S.Il’yashenko, Ordinary differential equations. 1. in: ”Sovre-

mennye problemy matematiki. Fundamental’nye napravleniya, Vol.1, Itogi Nauki i

Tekhniki, VINITI AN SSSR, Moscow, 1985, 7-149 (English: Encyclopaedia of Math-

ematical Science, Vol.1, Springer, Heidelberg).

[2] N.B.Medvedeva, The principal term of the first return function of a monodromic

singular point is linear, Sibirskii matematicheskii zhurnal. 1992, Vol.33, No.2 p.116-

124.

[3] F.S.Berezovskaja and N.B.Medvedeva, A complicated Singular point of ”Center-

focus” type and the Newton diagram, Selecta Mathematica Vol.13, No 1, 1994, p.1-15.

[4] Yu.S.Il’yashenko, The memoir of Dulak ”About the limit cycles” and the ajacent

questions of the local theory of the differential equations, Uspekhi Mat. Nauk

40(1985), p.41-78.

[5] Chen K.T. Equivalence and decomposition of vector fields about an elementary crit-

ical point. - Amer.J. Math., 1963, v. 85, N4, p.693 –722.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 19, p. 15


