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Abstract

The well known Hartman–Wintner oscillation criterion is extended to
the PDE

div(||∇u||p−2∇u) + c(x)|u|p−2
u = 0, p > 1. (E)

The condition on the function c(x) under which (E) has no solution posi-
tive for large ||x||, i.e. ∞ belongs to the closure of the set of zeros of every
solution defined on the domain Ω = {x ∈ Rn : ||x|| > 1}, is derived.

Keywords. p−Laplacian, positive solution, Riccati equation.

1 Introduction

Let us consider the following partial differential equation with p−Laplacian

div(||∇u||p−2∇u) + c(x)|u|p−2u = 0 (1.1)

where p > 1, x = (x1, x2, . . . , xn), || · || is the usual Euclidean norm in R
n and

∇ is the usual nabla operator. Define the sets Ω(a) = {x ∈ R
n : a ≤ ||x||},

Ω(a, b) = {x ∈ R
n : a ≤ ||x|| ≤ b}. The function c(x) is assumed to be

integrable on every compact subset of Ω(1). Under solution of the equation
(1.1) we understand every absolutely continuous function u : Ω(1) → R such
that ||∇u||p−2 ∂u

∂xi
is absolutely continuous with respect to xi and u satisfies the

equation (1.1) almost everywhere on Ω(1).
Equation (1.1) appears for example in the study of non-Newtonian fluids,

nonlinear elasticity and in glaciology. Special cases of the equation (1.1) are the
linear Schrödinger equation

∆u + c(x)u = 0 (1.2)

if p = 2, the half–linear ordinary differential equation

(
|u′|p−2u′

)′

+ c(x)|u|p−2u = 0 ′ =
d

dx
(1.3)
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if n = 1, and the ordinary differential equation

u′′ + c(x)u = 0 (1.4)

if both n = 1 and p = 2 holds.
Remark that if c(x) is radial function, i.e., c(x) = c̃(||x||), then the equation

for radial solution u(x) = ũ(||x||) of the equation (1.1) becomes

(
rn−1|ũ′|p−2ũ′

)′

+ rn−1c̃(r)|ũ|p−2ũ = 0 ′ =
d

dr
, (1.5)

which can be transformed into the equation (1.3).
This paper is motivated by the papers [1, 4] and [5, 6], where the Riccati

technique is used to establish oscillation criteria for the equation (1.3) and (1.2),
respectively.

The well-known result from the theory of second order ODE is the following
theorem.

Theorem (Hartman–Wintner). If either

−∞ < lim inf
t→∞

1

t

∫ t

1

∫ s

1

c(ξ) dξ ds < lim sup
t→∞

1

t

∫ t

1

∫ s

1

c(ξ) dξ ds ≤ ∞, (1.6)

or

lim
t→∞

1

t

∫ t

1

∫ s

1

c(ξ) dξ ds = ∞, (1.7)

then the equation (1.4) is oscillatory.

This theorem is proved using Riccati technique in [3, Chap. XI]. The aim of
this paper is to extend this statement to the equation (1.1). Another statement
of this type was proved in [2, Theorem 3.4] under additional condition p ≥ n+1.
Here we prove a similar criterion, without the restriction on p.

We use the following function C(t):

C(t) =
p − 1

tp−1

∫ t

1

sp−2

∫

Ω(1,s)

||x||1−nc(x) dx ds . (1.8)

2 Main results

First we introduce main ideas from the Riccati technique.
Suppose that there exists a number a ∈ R

+ and a solution u of (1.1) which

is positive on Ω(a). The vector function w = ||∇u||p−2∇u
|u|p−2u is defined on Ω(a) and

solves the Riccati type equation

div w + c(x) + (p − 1)||w||q = 0, (2.1)

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 18, p. 2



where q is the conjugate number to p (i.e. 1
p + 1

q = 1 holds). Really, direct
computation shows

div w = div(||∇u||p−2∇u)u1−p − (p − 1)||∇u||p−2u−p〈∇u,∇u〉

= −c(x) − (p − 1)
||∇u||p

up

= −c(x) − (p − 1)||w||q .

The following Lemma plays a crucial role in our consideration. It is a straigh-
forward generalization of [3, Lemma 7.1, Chap XI.]

Lemma 2.1. Let w be the solution of (2.1) defined on Ω(a) for some a > 1.
The following statements are equivalent :

(i)
∫

Ω(a)

||x||1−n||w||q dx < ∞; (2.2)

(ii) there exists a finite limit

lim
t→∞

C(t) = C0; (2.3)

(iii)

lim inf
t→∞

C(t) > −∞, (2.4)

where the function C(t) is defined by (1.8).

Our main theorem now follows from Lemma 2.1.

Theorem 2.2 (Hartman–Wintner type oscillation criterion). If either

−∞ < lim inf
t→∞

C(t) < lim sup
t→∞

C(t) ≤ ∞

or

lim
t→∞

C(t) = ∞,

then the equation (1.1) has no positive solution positive on Ω(a) for any a > 1.

Proof. It follows from the assumptions of the theorem that lim inf t→∞ C(t) >

−∞. If there would exist a number a > 1 such that (1.1) has a solution pos-
itive on Ω(a), then Theorem 2.1 would imply that there exists a finite limit
limt→∞ C(t). This contradiction ends the proof.

Corollary 2.3 (Leighton–Wintner type criterion). If

lim
t→∞

∫

Ω(1,t)

||x||1−nc(x) dx = ∞, (2.5)

then equation (1.1) has no positive solution on Ω(a) for any a > 1.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 18, p. 3



Proof. If (2.5) holds, then limt→∞ C(t) = ∞ and the statement follows from
Theorem 2.2.

Remark. For the equation (1.2) were the results from this paper proved in [5].
Criteria analogous to the second part of Theorem 2.2 and Corollary 2.3 were
proved in [2] without the term ||x||1−n but under additional conditions p ≥ n+1
and p ≥ n, respectively.

Proof of Lemma 2.1. First we multiply the Riccati equation (2.1) by ||x||1−n

and integrate on Ω(a, t). Application of the identity

||x||1−n div w = div(||x||1−nw) − (1 − n)||x||−n〈w, j〉,

and Gauss divergence theorem yields

∫

||x||=t

||x||1−n〈w, j〉 dσ −

∫

||x||=a

||x||1−n〈w, j〉 dσ

− (1 − n)

∫

Ω(a,t)

||x||−n〈w, j〉 dx + (p − 1)

∫

Ω(a,t)

||x||1−n||w||q dx

+

∫

Ω(a,t)

||x||1−nc(x) dx = 0, (2.6)

where
∫
· dσ denotes the surface integral, j is the unit outside normal vector to

the sphere in R
n and 〈·, ·〉 is the usual scalar product.

“(i)=>(ii)” Suppose that (2.2) holds. The Hölder inequality implies that

∫

Ω(a,t)

||x||1−n|〈w, j〉| dx ≤
(∫

Ω(a,t)

||x||1−n||w||q dx
)1/q(∫

Ω(a,t)

||x||1−n−p dx
)1/p

≤
(∫

Ω(a)

||x||1−n||w||q dx
)1/q(

ωn

∫ t

a

s−p ds
)1/p

,

where ωn is the measure of surface of the n−dimensional unit sphere in R
n.

Hence
∫

Ω(a)

||x||−n〈w, j〉 dx ≤ ∞. (2.7)

Denote

Ĉ = −(p − 1)

∫

Ω(a)

||x||1−n||w||q dx +

∫

||x||=a

||x||1−n〈w, j〉 dσ

+ (1 − n)

∫

Ω(a)

||x||−n〈w, j〉 dσ +

∫

Ω(1,a)

||x||1−nc(x) dx .

Below we will show that Ĉ = C0. The equation (2.6) can be written in the form
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Ĉ −

∫

Ω(1,t)

||x||1−nc(x) dx =

∫

||x||=t

||x||1−n〈w, j〉 dσ

− (p − 1)

∫

Ω(t)

||x||1−n||w||q dx + (1 − n)

∫

Ω(t)

||x||−n〈w, j〉 dx . (2.8)

Multiplying (2.8) by tp−2, integrating over [a, t] and multiplying by p−1
tp−1 we

obtain

Ĉ −
(a

t

)p−1

[Ĉ − C(a)] − C(t) =
p − 1

tp−1

∫ t

a

sp−2

∫

||x||=s

||x||1−n〈w, j〉 dσ ds

−
(p − 1)2

tp−1

∫ t

a

sp−2

∫

Ω(s)

||x||1−n||w||q dx ds

+
(1 − n)(p − 1)

tp−1

∫ t

a

sp−2

∫

Ω(s)

||x||−n〈w, j〉 dx ds . (2.9)

The second and the third integral on the right hand side tend to zero as t tends
to infinity in view of (2.2) and (2.7). The Hölder inequality implies

∣∣∣∣∣
1

tp−1

∫ t

a

sp−2

∫

||x||=s

||x||1−n〈w, j〉 dσ ds

∣∣∣∣∣

≤
1

tp−1

∫ t

a

sp−2
(∫

||x||=s

||x||1−n||w||q dσ
)1/q

ω1/p
n ds

≤
ω

1/p
n

tp−1

(∫

Ω(a,t)

||x||1−n||w||q dx
)1/q(∫ t

0

sp2−2p ds
)1/p

≤
ω

1/p
n

(p − 1)2/p

(∫

Ω(a)

||x||1−n||w||q dx
)1/q

t
(p−1)2

p
−(p−1) (2.10)

and the first integral in (2.9) tends to zero too. Hence

lim
t→∞

C(t) = Ĉ = C0. (2.11)

The implication “(ii)=>(iii)” is trivial.
“(iii)=>(i)” Suppose, by contradiction, that (2.4) holds and

∫

Ω(a)

||x||1−n||w||q dx = +∞. (2.12)

Multiplication of (2.6) by tp−2, integration over the interval [a, b] and multipli-
cation by t1−p gives

1

tp−1

∫ t

a

sp−2

∫

||x||=s

||x||1−n〈w, j〉 dσ ds

+
p − 1

tp−1

∫ t

a

sp−2

∫

Ω(a,s)

||x||1−n||w||q dx ds
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−
1 − n

tp−1

∫ t

a

sp−2

∫

Ω(a,s)

||x||−n〈w, j〉 dx ds

=
1

tp−1

∫ t

a

sp−2 ds

∫

||x||=a

||x||1−n〈w, j〉 dσ

−
1

tp−1

∫ t

a

sp−2

∫

Ω(a,s)

||x||1−nc(x) dx ds . (2.13)

Define the function

v(t) := (p − 1)

∫ t

a

sp−2

∫

Ω(a,s)

||x||1−n||w||q dx ds .

The function v satisfies

v(t)

tp−1
→ ∞ for t → ∞. (2.14)

Because of the right hand side of the equality (2.13) is bounded from above,

there exists ta such that the right hand side of (2.13) is less than v(t)
3tp−1 for

t ≥ ta. Now we have from (2.13)

2

3
v(t) <

∣∣∣∣
∫ t

a

sp−2

∫

||x||=s

||x||1−n〈w, j〉 dσ ds

∣∣∣∣

+

∣∣∣∣(1 − n)

∫ t

a

sp−2

∫

Ω(a,s)

||x||−n〈w, j〉 dx ds

∣∣∣∣ (2.15)

for t ≥ ta. The same way as in the inequality (2.10) gives

∣∣∣∣
∫ t

a

sp−2

∫

||x||=s

||x||1−n〈w, j〉 dσ ds

∣∣∣∣

≤

(∫

Ω(a,t)

||x||1−n||w||q dx

)1/q
ω

1/p
n t

(p−1)2

p

(p − 1)2/p
= K

(
tv′(t)

)1/q
, (2.16)

where K = ω
1/p
n (p − 1)−

2
p
− 1

q . The Hölder inequality gives

∣∣∣∣(1 − n)

∫ t

a

sp−2

∫

Ω(a,s)

||x||−n〈w, j〉 dx ds

∣∣∣∣

≤ (n − 1)

∫ t

a

sp−2

(∫

Ω(a,t)

||x||1−n||w||q dx

)1/q(∫ ∞

1

ωnξ−p dξ

)1/p

ds

≤ (n − 1)

(∫ t

a

sp−2

∫

Ω(a,t)

||x||1−n||w||q dx ds

)1/q

×

(∫ ∞

1

ωns−p ds

)1/p(∫ t

0

sp−2 ds

)1/p
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= (n − 1)
( v(t)

p − 1

)1/q t
p−1

p ω
1/p
n

(p − 1)2/p

=
(n − 1)ω

1/p
n

(p − 1)
1
q
+ 2

p

v1/q(t)t
p−1

p . (2.17)

In view of the fact (2.14) there exists a number tb ≥ ta such that

(n − 1)ω
1/p
n

(p − 1)
1
q
+ 2

p

t
p−1

p ≤
1

3
v1/p(t) (2.18)

for t ≥ tb. Combining (2.15), (2.16), (2.17) and (2.18) we get

1

3
v(t) ≤ K

(
tv′(t)

)1/q

for t ≥ tb. From here
v′(t)

vq(t)
≥

1

t

( 1

3 K

)q

for t ≥ tb. Integration of this inequality from tb to ∞ gives a convergent inte-
gral on the left hand side and divergent integral on the right hand side. This
contradiction ends the proof.
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