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Abstract. In this article, we establish the existence of weak solutions for a nonlinear
transmission problem involving nonlocal coefficients of p(x)-Kirchhoff type in two dif-
ferent domains, which are connected by a nonlinear transmission condition at their
interface. We get our results by means of the monotone operator theory and the
(S+) mapping theory; the weak formulation takes place in suitable variable exponent
Sobolev spaces.
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1 Introduction

Let O, Q1, QO € R? be a bounded polygonal domains with their boundaries 00, 9}, 9(),
and closures Q) , ()1 , () satisfying the relations Q = O Uy, O3 N, = ¢.
We denote

I's =00 Ny, I =00\ T3, i=1,2. (see Figure 1.1).

We are concerned with the existence of solutions to the following nonlinear elliptic system

—Mi</ A(x, V) dx) div(a(x, Vu;)) = div f + hi(x,u;) inQy, i=1,2.
0

i

Mz(/ A(x,Vui) dx)a(x,Vui).17+k|uz-]"‘(x)_2ui = f v on l"i, i= 1,2.
Q; (1.1)

Ml(/QlA(x,Vul)dx>a(x,Vu1).171 — _MZ(/Q2A(X/VM2)dx)ﬂ(X,Vuz).l_/Q

where
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Figure 1.1: Domain ()

(MO) M; : [0, +c0[— [myg;, +0o0] , are non decreasing locally Lipschitz continuous functions,

(HO) h; : O); x R — R are Carathéodory functions and satisfy the growth condition
|hi(x,t)| < cio +cn|t|PX)-1  foranyx € Q, t €R, i = 1,2,

(A1) a(x, &) : QO x RN — RN is the continuous derivative with respect to & of the continuous
mapping A: QxRN — R, A = A(x,¢),ie a(x, &) = VeA(x,¢); there exist two positive
constants Y; < Y, such that Y1|§]p(x) <a(x,&)¢ forallx € O, & € RN and

(A2) |a(x,&)| < Ya|¢|PW -1 forall x € O, & € RV,
(A3) A(x,0)=0forallx € Q,
(A4) A(x,-) is strictly convex in RY,

moj, i = 1,2, k are positive numbers, p and a are continuous functions on Q) satisfying appro-
priate conditions, f = (f1, f2) is a given vector field (determined from Maxwell’s equations),
V = (v,12) and ¥ = (v},14) denote a unit outer normal to dQ) and to 9();, respectively; of
course V' = —9% and a(x,V.).7!' = — a(x,V.).7? on I3, ¥ = ¥ on T, i = 1,2. We confine
ourselves to the case where M; = M, with my = mgp, = mg for simplicity. Notice that the
results of this work remain valid for M; # M.

The study of problems in differential equations and variational problems involving vari-
able exponents has been an interesting topic in recent decades. The interest for such problems
is based on the multiple possibilities to apply them. There are applications in nonlinear elas-
ticity, theory of image restoration, electrorheological fluids and so on (see [1,13,46]). We refer
the readers to [15,31,42] for an overview of this subject, to [11,19,20] for the p-Laplacian
and [23-27,34] for the study of p(x)-Laplacian equations and the corresponding variational
problems.

Transmission problems problems arise in several applications in physics and biology
(see [36]). Some results are available for linear parabolic equations with linear and nonlinear
conditions at interfaces, for biological models for the transfer of chemicals through semiper-
meable thin membranes (see [8,39,43]). There are cases where transmission conditions can
allow to deal with models including chemical phenomena in materials with different poros-
ity and diffusivity, and chemotaxis phenomena in regions with different substrate properties
(see [30]).
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Kirchhoff in 1883 [32] investigated an equation

0’u po E [F
Por (h =
which is called the Kirchhoff equation, where p, po, h, E, L are all constants, moreover, this
equation contains a nonlocal coefficient

0o E/L
h+2L0

1 L

ot
hence the equation is no longer a pointwise identity, and therefore is often called nonlocal
problem. Various equations of Kirchhoff type have been studied by many authors, especially
after the work of Lions [35], where a functional analysis framework for the problem was
proposed; see e.g. [3,9,29] for some interesting results and further references. In recent years,
various Kirchhoff-type problems have been discussed in many papers. The Kirchhoff model is
an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings,
which takes into account the changes in length of the string produced by transverse vibra-
tions; while purely longitudinal motions of a viscoelastic bar of uniform cross section and its
generalizations can be found in [12,33,40,41]. In particular, in a recent article, existence and
multiplicity of nontrivial radial solutions are obtained via variational methods [34]. The study
of nonlocal elliptic problem has already been extended to the case involving the p-Laplacian
(for details, see [11,19,20]) and p(x)-Laplacian (see [14,17,22,29]).

More recently, Cabanillas L. et al. [7], have dealt with the p(x)-Kirchhoff type equation

Elu
ox

2 2
o“u
dx> @:0,

2

Ju Jx

dx

which depends on the average

ou |?
I dx

M </Q(A(X,Vu) + p(lx)|u|”(x))dx> [div(a(x, Viu)) — |u|”(")_2u] = f(xw)ull) 0,

X

u = constant on d(),

/ a(x, Vu).vdl = 0.
Q)

by topological methods. Our work is motivated by the ones of Feistauer et al. [28] and Cecik
et al. [10].

The aim of this article is to study the existence of a solution to the problem (1.1) in the
Sobolev spaces with variable exponents; we use the well-known theorem named as Browder—
Minty theorem and the degree theory of (S ) type mappings to attack it.

This paper is organized as follows. In Section 2, we present some necessary preliminary
knowledge on variable exponent Sobolev spaces. Section 3 is devoted to the proof of our
general existence results.

2 Preliminaries

To discuss problem (1.1), we need some theory on W?(*) (Q) which is called variable exponent
Sobolev space (for details, see [26]). Denote by S(Q) the set of all measurable real functions
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defined on Q). Two functions in S(Q2) are considered as the same element of S(Q2) when they
are equal almost everywhere. Write

Ci(Q) ={h:heC(Q) h(x)>1forany x € O},
h™ := minh(x), ht :=maxh(x) forevery h € C+(Q).
0 0

Define
LPE(Q) = {u €S(0): / lu(x)|P™) dx < 40 for p € C+(Q)}
0

p(x)
dx <13,

with the norm
u(x)
A

oo = inf /\>0:/
|u]p(),Q 1n{ A

WP (Q) = {u e LFM(Q) : [Vu| € LPM(Q)}

and

with the norm
Huul,p(x),ﬂ = |u‘p(x),0 + |vu‘p(x),0-

Proposition 2.1 ([26]). The spaces LP™)(Q) and W'P&)(Q) are separable and reflexive Banach
spaces.

Proposition 2.2 ([26]). Set p(u) = [ lu(x)|P%) dx. For any u € LP&¥)(QQ), then
(1) for u # 0, |u|y),0 = Aifand only if p(7) = 1;
(2) |ulp,0 <1 (=L>1)ifandonly if p(u) <1 (=1,>1);

' _ +
(3) if [ulpz),0 > 1, then ’”|Z(x),0 <p(u) < |u|;€(X)fﬂ;

@ if [uly0 < L then [ul”}, o < p(u) < [ul’,,) o
(5) limy sy o |tk|p(x),0 = 0 if and only if limy_, o p(ux) = 0;
(6) limy s 1 oo |Uk|p(x),0 = oo if and only if limy, o p (1) = +00.
Proposition 2.3 ([23,26]). If g € C(Q) and q(x) < p*(x) (q(x) < p*(x)) for x € Q, then there is
a continuous (compact) embedding W'P(¥) (Q)) — L1 (Q)), where
Np(x)
p*(x) = Nt ) <N,
too  ifp(x) = N.

Proposition 2.4 ([23,24]). The conjugate space of LP¥) (Q) is L1¥) (Q), where 1~ + % =1 holds

q(x) " p(x)
a.e. in Q. Forany u € LP™)(Q) and v € L1%)(Q), we have the Holder-type inequality
[ o] < <1+1> ], o] 2.1)
Q - p— q— p(x) ‘1(3‘)’ :

Proposition 2.5 ([21]). If g € C4(Q)) a

nd q(x) < p°(x) (g(x) < p°(x)) for x € 0Q), then there is a
continuous (compact) embedding W/P(*) (

) < L1 (3Q)), where
(
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Proposition 2.6 ([26]). If h : ) x R — R is a Caratheodory function and satisfies
h(x,8)| < a(x) +b|t|Pr&/ P20 foranyx € Q), t € R,

where p1(x), pa(x) € C.(Q),a(x) € LPM(Q),a(x) > 0, andb > 0 is a constant, then the
Nemytsky operator LX) (Q)) to LP2¥)(Q) defined by (N, (u))(x) = h(x, u(x)) is a continuous and
bounded operator.

In the sequel we shall assume that f € [Lr'() (Q)]2
Let us define the Banach space E = W) (Q);) x W'P(*)(Q);) equipped with the norm

[ulle = Hulul,p(x),ﬂl + Hqul,p(x),er Vu = (u1,uz) € E
where ||u;]|1 ,(x) 0, is the norm of u; in WP (), i = 1,2. By |u|p we denote the seminorm
in E
lule = |Vt p),0, T Vi2lp),0,-
It is obvious that
Vitilpy,0, < [ule < lulle,  Vu = (u1,u2) € E.

Remark 2.7. From the assumptions on A, arguing as in [37], we get after some computations
that

Y1 . N N 1 |p(x) ,
ermm{]VuAp(x)’Qi, ]Vul|p(x),0i} <Y /01 W|Vu1] dx < /QiA(x,Vul)dx
< Yz/ L |Vui]p(x) dx
o; p(x)

Yz B -
= {W”i [0 [V |Z<x),0i} '

3 Existence of solutions

In this section, we shall state and prove the main result of the paper. For simplicity, we use c,
ci,1=1,2,... to denote the general positive constants (the exact value may change from line
to line).

Let us define the forms

2

b(u,v) = ZM(/

A(x,Vqux)/ a(x, Vu;)Vo; dx,
i—1 QO i

2
c(u,v) = kZ/ 14| *¥) 20,0, dS, a(x) > 2,
i=17Ti
d(u,v) = k/ |1y — 11| "2 (1 — uq) (v2 — v1) dS,
I3
2
I(u,0) = — Z/Q h(x,uj)vidx, 1< pB(x) < p*(x),
i=1 70
2 —
L(v) = Z/ f.Vo;dx,
i=17/C

g(u,v) =b(u,v) +c(u,v)+d(u,v) +1(u,v),
u = (u1,u2), v=(v1,v2) € E.
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We say that u = (u1,u) € E is a weak solution of problem (1.1) if
g(u,v) =L(v), forallveE.

Here we recall how the theory of monotone operators is used to prove existence of solutions
to (1.1) . For this, it will be useful to consider the differential operator as a mapping from E
into its dual space, i.e.,
G:E—E, (G(u),v) = g(u,0)
provided of course that for fixed u this indeed defines a bounded linear functional on E.
The following lemma states the rather obvious relation between the operator G and the
differential equation (1.1)

Lemma 3.1. For each u € E the forms g(u,-), b(u,-), c(u,-), d(u,-), I(u,-) and L are linear and
continuous on E .

Proof. The boundedness of the forms is an easy consequence of Holder’s inequality, Re-
mark 2.7, Propositions 2.2-2.5 and monotonicity of M. Indeed,

2
1b(u, )| chM(YE/ \Vui|p(")dx>/ la(x, Vi) || Vo, dx
i1 Q; Q;

2
1 -1 1
1
1 1
< M Fumr? ) lullZlol:
where
Y= pt—1 if |vui|p(x),ﬂi >1
P -1 if|Vui|p Q <1,
2
Ol skE /r ) 1rvzrdx<kc2\ruzr“ o Pl
2
S kCz|ui| r |vl|04 F < kCHMHEH'UHE,
where
_ at —1 1f]Vul|,x o > 1
a” =1 if [Vuilyor, <1,
and
d(u,0)] <k / |1 — 12 |*) oy — 0] dx < ke ||ug — up " [01 = 02la(a)r
T a'(x),T3 "3

< ke |y — ua )y py 01 = V2lao,r < Kl ]0]es

where

at =1 if [ug — uzyyr, > 1,
- =1 1f]u1—u2][x r3<1
and

2
Z/ (x, u; Hvl\dx<c2(/ |14 P 1]y,\dx—|—/ \v,\dx)

i=1
2

<X (Il lodpn + lodpma,) < ke(lull + Dol
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where
5 {5+ =1 if [uilgy,0 > 1,
B~ —1 if [uil 0, < 1
L]

By Lemma 3.1 we can define the mapping G : E — E’ and the functional ¢ € E’ by the
identities

(G(u),v) = g(u,v)
{¢,v) = L(v)

for each u,v € E.
Now, it is clear that solving (1.1) is the same as finding u € E such that

G(u) = ¢.

Theorem 3.2. Assume that (MO), (HO) and (A1)—(A4) hold. In addition, suppose that
(H1) h(x,0) = 0and h: QO x R — R is a decreasing function with respect to the second variable, i.e.

h(x,s1) < h(x,s2) forae. x € Qand sy, sy €R, 51> sp.
If p* < a~, problem (1.1) has precisely one weak solution .
For the proof of our theorem we need to establish some lemmas.

Lemma 3.3. Let r,s > 1, B > 1. Then there exists a positive constant c; = c»(r,s) such that

ulf +

Jull ST ; p
. U; 4wy —up > collull. (3.1)
mm{H”HE:H“H%} 1:Z1| l|¢x(x),r, ’ ’a(x),l"3 H ||E

Proof. Firstly, we prove that there exists c; > 0 such that

2
|u|lé + Z; |”i|:¢(x),r,. + |ur — uz‘i(x),rS 22 (3.2)
1=
for all u = (uq,uz) € E with |[u||[g = 1. Let us assume that (3.2) is not valid. Then there exists
a sequence {u"} C E such that

a) |[lut]le =1
b) u’ — u = (uy,uy) weakly in E,

2

I L I L A T T
i=1

<

From Proposition 2.5 and b) it follows that
u’ — u = (uy,up) strongly in L*®) (1) x L¥)(T). (3.3)

Using (3.3) , the weak lower semicontinuity of the seminorm |u|g and ¢) we get

2
lulf + Y il r, + |11 — 12l p, = 0.
i=1

1
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r, =0wehavek; =0fori=1,2,

Then, u; = k; = constant for i = 1,2. So u; |r,= ki. As |u;yx)
therefore u = 0. This is a contradiction to a).
Finally to prove (3.1) letu € E,u # 0 and w = . From (3.2) we have

B
u 1
e (anv +wy—mmmm)zw.

mind{ [|u|, [[uf|z}

o2
Multiplying this inequality by ||u" ||§ the assertion (3.1) follows. O
Lemma 3.4. There exists a constant c3 > 0 such that for any u € E with ||u||g > 1

gl u) > calull} - (34)
Proof. For any u = (u1,uz) € E we have

2
>Y M (/ (x, Vu; )dx) / a(x, Vu;)Vu;dx
i=1 Q; Q;

2 2

2/ RS dS+k/ |y — up|*¥) dS — 2/ h(x, u;)u; dx

i= I3 i=1 7

- P pt . *

. o
Zmogmm{\vwﬂx)n,|Vui|P(x)lQl_}+k§mm{|u1] r,|ul| l} (3.5)
—|—kmm{\u1—u2] ry 111 uz\ 3}
Now, if
. - +
m1n{|Vui\p ), _,|Vuz-]p Ql} = |vui|Z(x),Qi
N -
mm{\u,\ e il I"z} = [uil}0r (3.6)
min {1~ 62y 11 = w2l p, | = Jir = w2l
using inequalities (3.5) and (3.6), it follows that
glu,u) > moca|ull +k Y uily o r, + Kl —u2l3 )
i=1
P o<t

Provided that ||u||z > 1, putting 8 = p~, r =s = a~ in (3.1), and noting that ||u||%

(¢ 2 CZ/HMHZ

we obtain
T +k|u1 u2|§(x)

g(u,u) > moc4\u|E +k2\ul|“
i=1

for some ¢y > 0. For other cases, the proofs are similar and we omit them here. So we have

g(u,u) > csmin {||ullf, ull} } = csllul}
[

This ends the proof of Lemma 3.4.
The proof of the next Lemma is done by adapting some arguments employed in the proof

of Theorem 2.1 i) in [18].
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Lemma 3.5. The form a is strictly monotone:
g(u,u—v)—g(v,u—v) >0, forallu,ve E u#v.

Proof. Denote pq () (i) = fQi ﬁWuill’(x)dx, for all u; € WP (Q),), i =1,2.

So, for any u;,v; € WL”(")(QZ-) with u; # v; we may assume, without loss of generality ,
that 0y (x) (1) > 01,p(x)(vi). By virtue of monotonicity of M we have

1 1

M (Yz/ ]Vui|”(x)dx) > M <Y1/ \Vvi\”(x)dx>
0; p(x) o, p(x)

1

Noting that a(x, -) is monotone by assumption (A4), and following a similar procedure to that
used in [18] , we get

i=1 7/
ky (x)—2 (x)—2 2 2
KX la(x)— . _ )
4 1 (il = o ) i i) ds o
k
+§/1" (a1 _uZ‘“(x) - |01 — 2 (x)72)<lu1—u2’2— ‘7)1—02‘2) ds
3

i.e. ¢ is monotone.

If g(u,u —v) — g(v,u —v) = 0 then all four terms in the right-hand side of (3.7) are equal
to zero. Hence, u; = v; = k; = const. a.e. in (); and u; = v; a.e. on I';, i = 1,2. Therefore,
ki=0and u = v a.e. O

Lemma 3.6. There exists a constant cg > 0 such that

|§(u,v) — g(w,v)|

+ - +_ -
< co | (max{lfully, llullf , lullg 2 ully 2}

+ — +_ -
+max{[[wllf , wllg , lwllE 2 [lwl|E 2})HM—WIIE
2
+) (‘Nh(”i) = Nu(wi)| s,
i=1

Blx)—17%

- +
M (%2 max{|Vii|” o, \wiyg(xm})

x |a(x, Vi) — a(x/vwi)’p’(x),ﬂ,')} ol
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Proof. By definition of the form g, for all u,v,w € E , we have

8(u,0) — g(w,v)

- L{[m(,

1

.A(x,Vui)dx) —M(/Q‘A(x,Vwi)dxﬂ /Q.a(x,Vui)Vvidx

—I—M(/Q A(x, Vw;) dx) /Q (a(x,Vu;) —a(x, Vw;)) Vo, dx}

2 (3.9)
+k2/ (020 = ooy ) 2e0; )0y dx
‘ T
+ k/ <|u2 — 1w [*) 72 (1y — uq) — Jwo — wy |*) 2 (wy — wl)) (v — 1) dx
I3
2
— Z/ (h(x, u;) — h(x,w;)) v;dx
i=17€
Now in virtue of the Lipschitz condition satisfied by M and the elementary inequalities
a)|z]* 2z — ly|* Py| <Clz—y|*! forall y,zeR", if 1<a<2
b) [|z|* 2z = [y|* %y < Clz—y|(Jz| + [y|)*? forall y,z€eR", if 2<a<oo,
the equality (3.9) reduces to
|8 (u, v) = g(w,v)|

2
|Vui|F’(x)—|Vwi|”(X) _
<[, b S e
1= 1 1

+M (32 max{|Viul? ) o [Vl o bl Vi) —a(x, Vo) .0, Vol .0,
ka1 [ Iy (72 4 202 oy

i=17Ti
+keq /r3 (2 = 1) — (w2 = )| (Jut2 = 102" 2 o 05 — w0102 ) o — | dx
+ ¢z i |Nu(ui) — Niu(wi) | g (x),0,10i g ), 0,0

i=1

where Ly, > 0, the Lipschitz constant of M, depends on max{||u||g, |[w|/g}. Therefore, by
Propositions 2.2-2.6, after some calculations, we arrive at the estimate (3.8). O

Proof of Theorem 3.2. First, we note that using hypothesis (A2) and Proposition 2.2 in [24] we
get

la(x, Vu;) —a(x, Vwi)| )0, 0  ifu—>ovinE
From Lemmas 3.4-3.6 the operator a is bounded, coercive, strictly monotone and continuous

(hence hemicontinuous) in E. Therefore, by the Browder-Minty theorem [4, Theorem 7.3.2],
problem (1.1) admits a unique weak solution. O

Next, we use the degree theory of (S4) type mappings to prove the second result of this
paper.
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Let us recall the definition of the mapping of type (S;). Let X be a Banach space and
D C X an open set. “u, — u” and “u, — u” denote respectively the weak convergence and
the strong convergence in X.

A mapping A : D — X* is said to be of type (S.) if for any sequence {u,} C D for which
uy, — uin X and limsup,_, (A(uy),u, —u) < 0, u, — u in X. For (5S4 ) mapping theory,
including the degree theory and the surjection theorem, we refer the reader to [6,44,45].

Theorem 3.7. Assume that (MO) and (HO) hold. If p™ < a™ and p* < p~, problem (1.1) has a
weak solution .

Proof. By a simple adaptation of Theorem 2.11ii) in [18] to our problem, we can prove that the
mapping
(Bo(u;),vi) = M(/ A(x, V) dx) / a(x, Vu;)Vo;dx

Jo Q

for all u;,v; € WYP(¥)(();) is an operator of type (S.).
Define the mappings B,C,D and S : E — E* respectively by

(30 0) = M [

i=1 O
2
(C(u),v) = kZ/ |ui|* )20, dS, 2 < a(x) < p2(x),

=174

A(x, V) dx) / a(x, Vu;)Vo; dx,
Q;

(D(u),v) = k/r g — 11 |2 (uy — uy) (v2 — v1) dS,

3

2 *
(L(),0) = —;/ﬂih(x,ui)vi dx, 1<B(x)<p*(x)
(Np(ui), ;) Z/Q_h(x,ui)vidx,

2
T(v) = 2/ f.Vov;dx,
i=1 7€
u = (uy,up), v=(v1,v7) € E.

Then B(u) = Y7 Bo(u;), L(u) = — Y2y Ny(u;) and G(u) =
clear that u € E is a solution of (1.1) if an only if G(u) = T.

From the above analysis, it is obvious that B : E — E’ is continuous , bounded and
of type (S.). Moreover, using the compacity of embeddings WP (();) — L*¥)(T;) and
WP () — LB (Q;) we deduce that the operators C, D, L are compact (cf. e.g. [5,26]).
Noting that the sum of an (S ) type mapping and a compact mapping is of type (S;) , it
follows that the mapping G = B+ C + D + L is continuous, bounded, and of type (S4).

Then, proceeding similarly as in the proof of Lemma 3.4, for ||u|/g large enough we have
that

B(u) +C(u)+ D(u) + L(u) . Itis

B 2 B B 2
(G(u),u) > moeglulf +k) il fy,r, T Klu1 — u2ly r, — ) /Q h(x,u;)u; dx
i=1 =17
- + -
> collully —es (llulle + [ullf ) > collullf >0
By the topological degree theory for (S ) type mappings, for R > 0 large enough, we have

deg(G,B(0,R),0) =1



12 E. Cabanillas, F. Ledn, ]. B. Bernui and B. Godoy

Therefore the equation G(u) = 0 has at least one solution u € B(0, R). Furthermore

i (G00,m)

——1
> collul|” = 400
lufe—+eo  [lullE lle

So, the mapping G is coercive, and hence, by the surjection theorem for the pseudomonotone
mappings (see [45, Theorem 27.A]), the mapping G is surjective. ]
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