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Abstract. A number of theories have been constructed to explain the ecological collapse
of the Easter Island. Basener and his co-authors proposed a mathematical model in the
form of a system of ordinary differential equations. This system describes the change of
the number of people, rats and trees in some subregions of the island. The movement
of the human and rat populations was described by some diffusion parameters. They
showed that the increase of the diffusion parameters of people and rats makes the
system unstable. In the present paper we introduce a diffusion parameter for the tree
population and show that this parameter has a stabilizing effect. Thus, it behaves
oppositely to the other two diffusion parameters from the stability point of view. The
results are demonstrated with some numerical calculations of the stability region.
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1 Introduction

Since its first discovery by Europeans in the 18th century, Easter Island (Rapa Nui) has al-
ways been the subject of speculations and theories. When in 1786 comte de Lapérouse, the
first European, stepped on the island, he found only 2000 people with much less developed
civilization than the one which would be required to build big monuments. In the following
centuries, several theories tried to describe the events that could lead to the ecological collapse.
One of them blames the irresponsible inhabitants and the reckless consumption of goods on
the island. Since the increasing popularity of the conception of sustainable development, this
theory gains even more recognition.
BCorresponding author. E-mail: faragois@cs.elte.hu.
The last two authors were supported by the Hungarian Research Fund OTKA under grant no. K112157.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147092034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.math.u-szeged.hu/ejqtde/


2 B. Takács, R. Horváth and I. Faragó

In the early 2000s historian Hunt arrived on the island to confirm these theories [3, 4].
However, he found no traces of the long decline of economy proposed in the original theory.
The collected data showed a shorter and much drastic collapse that led Hunt to the realisation
that some other factors could have had an effect on the events. Because of the numerous rat
corpses and chewed seeds, he proposed a new model involving the Polynesian rats. These
animals could have been originally brought to the island by the settlers themselves (some
theories even suppose that these animals were transported to Easter Island for food – this
concept was studied in [7], but we will neglect this effect). However, because the rats ate the
seeds of the trees, the reproduction of trees was decreased so dramatically that the population
of plants could not cope with the constant harvest done by the settlers.

The following spatial invasive species model was used in [1] by Basener et al. to represent
the theories of Hunt:

dP
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= aP
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1− P
T

)
dR
dt
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)
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=
b
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M

)
− hP

(1.1)

where P, R and T denote the number of people, rats and trees, and a > 0, c > 0 and b > 0 are
the reproduction rate of these groups, respectively. The parameter M denotes the maximum
number of trees that could line on the island, h is the number of trees cut down by one person
in a year, and f > 0 is the destructive effect of rats on the reproduction of trees.

In [2], Basener et al. modelled Easter Island as an island with an uninhabitable volcano in
the middle, so the three groups only live on the coast in N regions. This way equation (1.1)
gets the form
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(1.2)

where Ps, Rs and Ts denotes the number of people, rats and trees in region s, respectively
(s ∈ {1, . . . , N}). The constant values DP and DR denote the diffusion coefficients of people
and rats, respectively, that describe the movement of these subpopulations between the re-
gions. It was found that the increase of either the DP or DR parameters leads to the instability
of the system, that is of the nontrivial equilibrium point

P? = R? = T? =
1
N

M(b− h)
b + hM f

. (1.3)

However, it is easy to notice that only the first two equations involve diffusion in (1.2), while
the third does not. This means that our system is not symmetric, which can be the cause
of the surprising results of [2]. Because Easter Island is a closed island, we cannot neglect
the movement of trees, which is caused by the constant eastern wind on the island, or the
movement of animals.
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In this paper we extend the original model (1.2) with a non-zero diffusion of the trees.
We will see that the equilibrium point (1.3) will be an equilibrium also of the new extended
system. We will show that the tree-diffusion is able to stabilize the system.

The structure of the paper is as follows. In Section 2, we extend the system introduced
in [2] by a tree-diffusion term and formulate the mathematical model of the population of
Easter Island in the form of decoupled systems of ordinary differential equations. In Section
3, the stability of the system is investigated. The results are demonstrated in Section 4.

2 Mathematical model with tree-diffusion

Putting an additional diffusion term into the third equation of (1.2), we get the system

dPs

dt
= aPs

(
1− Ps

Ts
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+ DP(Ps−1 − 2Ps + Ps+1)
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(
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b
1 + f NRs Ts

(
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N

)
− hPs + DT(Ts−1 − 2Ts + Ts+1)

(2.1)

where DT is the diffusion coefficient of the trees.

Remark 2.1. Let us notice that the above model contains a number of simplifications. The
landscape is circle symmetric unlike that of Easter Island. We chose a constant diffusion
parameter in order to model the tree-diffusion (we think that, at the present state of the model,
this simplification is at least as good as the approximation of the diffusion of people and rats).
Moreover, instead of introducing a fourth class for the seeds of the trees, we considered the
trees and the seeds together in the third equation of (2.1). The connection between the trees
and their seeds is put into the relation between the two parameters b and DT.

It can be checked easily that the equilibrium point (1.3), which is valid for all subregions
s ∈ {1, . . . , N}, obtained in [2] will be an equilibrium also of our new extended system. After
linearization at this equilibrium, we obtain the system
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dTs
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DT(Ts−1 − 2Ts + Ts+1)

 .

(2.2)

We apply the same method as used in [2]. We decouple the equations using the Fourier
transform. Let us denote the discrete Fourier transforms in the variable s of the functions P, R
and T by xr, yr and zr, respectively, where the parameter r is the variable of the transformed
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functions. Since the transform of the first two equations can be found in [2], we have to
calculate here only the transform of the third equation, which results in the expression
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with the notations

A =
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b(1 + f M)

,

B =
f Mh− b + 2h

1 + f M
.

Thus, the decoupled system has the form



dxr
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dyr
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dzr

dt

 =


−
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c

−h −A B− 4DT sin2 πr
N
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 (2.3)

with r = 1, . . . , N. We will denote the matrix of this system by S. Albeit this is not indicated
in the notation, the matrix depends both on the model parameters a, b, c, f , h, M, DP, DR, DT

and the variable r of the Fourier transform. This shortening will not make any confusion in
the sequel. In [1], the authors suggested the realistic parameter values a = 0.03, b = 1, c = 10,
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M = 12000 and h = 0.25. With these values, the matrix in equation (2.3) has the form

S =


−
[
0.03 + 4DP sin2 πr

N

]
0 0.03

0 −
[
10 + 4DR sin2 πr

N

]
10

−0.25 −2250 f
1+12000 f

6000 f−1
2+24000 f − 4DT sin2 πr

N

 . (2.4)

For example, if we choose the values f = 0.001 and N = 10, which were used for calculations
in [2], we arrive at the more specific matrix

S =


−
[
0.03 + 4DP sin2 πr

10

]
0 0.03

0 −
[
10 + 4DR sin2 πr

10

]
10

−0.25 − 9
52

5
26 − 4DT sin2 πr

10

 . (2.5)

Remark 2.2. We remark that the parameters A and B depend only on the product f M and not
on the parameters f and M separately. Thus, we get the matrix (2.5) for all parameter choices
where f M = 12.

The stability of the coexistence equilibrium of the investigated model is equivalent with
the condition that the above matrices S are stable for all r = 1, . . . , N, that is all of their
eigenvalues have negative real parts. In the next section we will investigate the effect of a
non-zero tree-diffusion on the stability of the system.

3 The effect of tree-diffusion on the stability of the system

As it was mentioned in the introduction, the increase of the diffusion parameters DP and DR

leads to the instability of the system [2]. In this section we show that the introduction of the
tree-diffusion has a stabilizing effect. Thus, it behaves oppositely to the other two diffusion
parameters from the stability point of view.

The stability of square matrices can be guaranteed by the necessary and sufficient Routh–
Hurwitz criterion [5,6]. For 3× 3 matrices the criterion can be formulated as follows. A matrix
S ∈ R3×3 is stable if and only if the three conditions

1. det(S) < 0 (det(S) denotes the determinant of S),

2. tr(S) < 0 (tr(S) denotes the trace of the matrix S),

3. tr(S) ·pm2(S)< det(S) (pm2(S) denotes the sum of the three 2×2 principal minors of S)

are fulfilled. For the sake of simplicity, let us introduce the following notations: let S+ be the
matrix S in (2.3) with positive tree-diffusion DT > 0, and let S0 denote the same matrix as
S+ but here DT is set to be zero (the other parameters are kept fixed). Moreover, let us set
Cr = 4 sin2(πr/N).

Theorem 3.1. Let us suppose that the model parameters satisfy the condition

B2 − Ac− ah < 0. (3.1)

Then, if system (2.3) is stable for DT = 0 then it is stable for all positive DT values.
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Proof. We have to show that, under the condition (3.1), to the stability of S+ it is enough to
guarantee the stability of S0. A simple calculation shows the identities

det(S+) = det(S0)− DTCr(a + DPCr)(c + DRCr),

tr(S+) = tr(S0)− DTCr,

pm2(S+) = pm2(S0) + (c + DRCr)DTCr + (a + DPCr)DTCr

= pm2(S0) + (a + c + (DR + DP)Cr)DTCr.

(3.2)

It can be seen from the nonnegativity of the model parameters that if S0 satisfies the first two
of the Routh–Hurwitz conditions then the matrix S+ will satisfy these conditions too. Let us
check the third condition. We have

tr(S+) · pm2(S+)− det(S+)

= (tr(S0)− DTCr) · (pm2(S0) + (a + c + (DR + DP)Cr)DTCr)

− (det(S0)− DTCr(a + DPCr)(c + DRCr))

= tr(S0) · pm2(S0)− det(S0)

− DTCr(a + c + (DR + DP)Cr)DTCr

+ tr(S0)(a + c + (DR + DP)Cr)DTCr

− DTCr(pm2(S0)− (a + DPCr)(c + DRCr)).

(3.3)

The last factor in the last term can be written in the form

pm2(S0)− (a + DPCr)(c + DRCr)

= [(a + DpCr)(c + DRCr)− B(c + DRCr) + Ac− B(a + DPCr) + ah]

− (a + DpCr)(c + DRCr)

= − B(c + DRCr) + Ac− B(a + DPCr) + ah

= − B(a + c + (DR + DP)Cr) + Ac + ah,

moreover tr(S0) = −(a + c + (DR + DP)Cr) + B. For the sake of brevity let us introduce the
notation X = a + c + (DR + DP)Cr. The value of X is always positive. With this notation (3.3)
can be rewritten as

tr(S+) · pm2(S+)− det(S+)

= tr(S0) · pm2(S0)− det(S0)

+ DTCr[−XDTCr + X(B− X)− (Ac + ah− BX)]

= tr(S0) · pm2(S0)− det(S0)

+ DTCr[(−X2 + 2BX− (Ac + ah))− XDTCr]

= tr(S0) · pm2(S0)− det(S0)︸ ︷︷ ︸
part I

−XD2
TC2

r︸ ︷︷ ︸
part II

+ DTCr[−X2 + 2BX− (Ac + ah)]︸ ︷︷ ︸
part III

.

Let us suppose that S0 is stable. Then the first part of the above expression is negative. The
non-positivity of the second part is valid because of the non-negativity of the factors. Up to
this point we have not used the condition (3.1) of the theorem. We need the condition to show
the non-positivity of the third part. The condition (3.1) implies that the factor −X2 + 2BX −
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(Ac + ah) is negative for all real X because the discriminant of the polynomial is negative.
Thus tr(S+) · pm2(S+)− det(S+) < 0, that is the third Routh–Hurwitz condition is satisfied
provided that S0 was stable. This completes the proof of the theorem.

Remark 3.2. It can be shown that if

max{B2, (B− 4D?
T)

2} − Ac− ah < 0 (3.4)

for some D?
T > 0 then the stability of S in (2.3) for D?

T implies the stability for all DT > D?
T.

The proof is similar to the proof of the previous theorem. We have to change simply the
parameter B in the proof to the new parameter B−D?

TCr and use the estimate (B−D?
TCr)2 ≤

max{B2, (B− 4D?
T)

2}. Let us notice that condition (3.4) can be valid only for sufficiently small
D?

T values.

Remark 3.3. Now we check whether the matrix (2.4) fulfils the sufficient condition (3.1). The
condition requires the negativity of

B2 − Ac− ah =

(
6000 f − 1
2 + 24000 f

)2

− 22500 f
1 + 12000 f

− 1
4
· 3

100

= − 1
400

104832000000 f 2 + 10272000 f − 97
(1 + 12000 f )2 ,

which can be guaranteed by choosing f to be greater than

− 107
2184000

+
1

291200

√
282 ≈ 8.6751× 10−6.

In fact, the value f M must be greater than 1.0410× 10−1 to the negativity (Remark 2.2). This
result shows that the matrix (2.5) is stable for DT > 0 provided that it is stable for DT = 0.

The next theorem shows the stabilizing effect of the tree-diffusion parameter from another
point of view.

Theorem 3.4. Let us suppose that the model parameters satisfy the conditions

B < min{a + c, A + h},
B(Ac + ah + (a + c)2) < c2(A + a) + B2(a + c) + a2(c + h).

(3.5)

Let the diffusion of the people DP and the diffusion of the rats DR be two fixed positive numbers. Then
there is a positive number D̃T such that the system (2.3) is stable for all DT > D̃T.

Proof. The conditions in (3.5) assure the stability of the matrix (2.3) for r = N. In this case
Cr = 0 and the matrix is independent of the diffusion parameters.

Let us fix DP and DR and assume that r ∈ {1, . . . , N − 1}, which implies that Cr > 0, and
recall the equalities from the proof of the previous theorem

det(S+) = det(S0)− DTCr(a + DPCr)(c + DRCr),

tr(S+) = tr(S0)− DTCr,

tr(S+) · pm2(S+)− det(S+) = tr(S0) · pm2(S0)− det(S0)

− XD2
TC2

r + DTCr[−X2 + 2BX− (Ac + ah)].

(3.6)
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Figure 4.1: Stability bound in the case DT = 0. The stable region is below the graph.

Here the values det(S0), tr(S0) and pm2(S0) are independent of DT. In order to prove the
statement of the theorem, we have to show that the expressions in (3.6) are negative for suf-
ficiently large DT values. According to the Routh–Hurwitz criterion this is enough to the
stability of the system. In the first two expressions the coefficients of DT are negative. This
gives that det(S+) and tr(S+) are negative for sufficiently large DT. In view of X > 0 the
expression

−XD2
TC2

r + DTCr[−X2 + 2BX− (Ac + ah)] = −D2
T

(
XC2

r −
Cr[−X2 + 2BX− (Ac + ah)]

DT

)
tends to −∞ if DT tends to +∞. This shows that tr(S+) · pm2(S+)− det(S+) is negative for
sufficiently large DT values, that is the third Routh–Hurwitz condition is also satisfied. This
completes the proof.

Remark 3.5. It can be checked easily that condition (3.5) is satisfied for the matrix (2.5). Thus
this system can be stabilized for arbitrary (DP, DR) pairs by choosing DT to be sufficiently
large.

4 Numerical demonstration of the results

In this section we demonstrate the results of the previous section by calculating the stability
bounds numerically. We carry out the calculation for the matrix (2.5).

For the case without tree-diffusion (DT = 0) we get the same bounds like in [2] (see
Figure 4.1). In the figure, the horizontal axis is DP and the vertical axis is DR. The stable
points are below the graph, and the points on it and above are unstable. Note that if DP = 0
then the system gets unstable if DR > 0.15 and if DR = 0 then the same happens if DP > 0.09.

If we increase the DT value, we get the bounds in Figure 4.2. The graphs were drawn
bottom-up with the values DT = 0, 0.015, 0.03, . . . 0.15, respectively. As we can see, the area of
stability gets larger as the diffusion of the trees increases.
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Figure 4.2: The increasing stability bounds for the values DT = 0, 0.015, 0.03, . . . , 0.15.

In order to confirm the statement of Theorem 3.4, we examine those DT points for which
the system changes stability at a certain (DP, DR) pairs. We choose the values DR = 50k2

(k = 1, . . . , 10) and calculate the critical DT values as a function of DP. If DT is greater than
the critical value then the system is stable, otherwise it is unstable. The result can be seen in
Figure 4.3. The critical values seem to converge for all fixed DP as DR tends to infinity. Thus,
we can suspect from the figure that a certain DT value (probably about 0.51) can make the
system stable for all possible realistic DR and DP parameters.

Figure 4.3: Left: the critical DT values as the function of DP on the interval [0, 30]. The graphs
were drawn bottom-up with the values DR = 50k2 (k = 1, . . . , 10). The stability region is
located above the graphs. Right: the same but zoomed in on the interval [0, 3].

We can also use a three-dimensional surface to represent the region of stability. Figure 4.4
shows the border of the stability region. The vertical axis is DR, the one going left is DP and
the right one is DT. As we can see, as we increase DT, the stability region gets bigger and
bigger. If we increase DR, the system becomes unstable, or it remains stable for all DR if DT
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Figure 4.4: 3D graph of the stability region.

is sufficiently large. The case of DP is more complicated. There are certain (DR, DT) pairs for
which the change of the diffusion of the people will have no effect on the stability, because it
is stable (e.g. the pair (10, 0.2) fulfills this condition) or it is unstable (in the case of the pair
(50, 0.01)) for every DP value. At the same time, with other parameter choices the system may
become stable but increasing DP further the stability can be lost (e.g. in the case of the pair
(100, 0.2)).

The above numerical results support the statements of the theorems of the previous sec-
tion.

5 Conclusions and future work

We extended a mathematical model constructed by Basener and his co-authors to describe the
ecological collapse of Easter Island. The original system describes the change of the number
of people, rats and trees in some subregions of the island. We introduced a tree-diffusion
parameter into the model and investigated that how the increase of this parameter affects the
stability of the system. We have found that the parameter can stabilize the system. The results
were confirmed with some numerical calculations of the stability region.

The investigated model is a relatively simple model of the Easter Island. The model does
not take into the account, for instance, the realistic landscape of the island and the real wind
direction. Our future plans are to formulate a more realistic model. This can be done using a
system of reaction diffusion equations for the three species and solving the system with some
numerical methods. This new model will require new mathematical tools in the investigations.
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