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Abstract. The authors study the boundedness of nonoscillatory solutions of forced
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CDα
c y(t) = e(t) + f (t, x(t)), c > 1, α ∈ (0, 1),

where y(t) = (a(t)x′(t))′, c0 = y(c)
Γ(1) = y(c), and c0 is a real constant. The technique

used in obtaining their results will apply to related fractional differential equations with
Caputo derivatives of any order. Examples illustrate the results obtained in this paper.
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1 Introduction

We consider the forced fractional differential equation

CDα
c y(t) = e(t) + f (t, x(t)), c > 1, α ∈ (0, 1), (1.1)

where y(t) = (a(t)x′(t))′ , c0 = y(c)
Γ(1) = y(c), c0 is a real constant, and CDα

c u(t) is the Caputo
derivative of order α, which is defined as

CDα
a u(t) :=

1
Γ(n− α)

∫ t

a
(t− s)n−α−1 u(n)(s)ds (1.2)

with n = dαe is the smallest integer greater than or equal to α.
In the remainder of the paper we assume that:
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(i) a : [c, ∞)→ R+ = (0, ∞) is a continuous function;

(ii) e : [c, ∞)→ R is a continuous function;

(iii) f : [c, ∞) ×R → R is continuous and there exist a continuous function h : [c, ∞) →
(0, ∞) and a real number λ with 0 < λ < 1 such that

0 ≤ x f (t, x) ≤ h(t) |x|λ+1 for x 6= 0 and t ≥ c.

We only consider those solutions of equation (1.1) that are continuable and nontrivial in any
neighborhood of ∞. Such a solution is said to be oscillatory if there exists an increasing se-
quence {tn} ⊆ [c, ∞) with tn → ∞ as n → ∞ such that x(tn) = 0, and it is nonoscillatory
otherwise.

Fractional differential and integro-differential equations are receiving considerably more
attention in the last twenty years due to their importance in applications in many areas of
science and engineering such as in modeling systems and processes in physics, mechanics,
chemistry, aerodynamics, and the electrodynamics of complex media. In this regard we refer
the reader to the monographs [1, 13, 14, 18–21].

Results on the oscillatory and asymptotic behavior of solutions of fractional and integro-
differential equations are relatively scarce in the literature; some results can be found, for
example, in [2, 7, 8, 10, 11, 16] and the references contained therein. Currently there does not
appear to be any such results for forced fractional differential equations of the type (1.1)
other than those in [9]. We are particularly interested in obtaining results that guarantee the
boundedness of all nonoscillatory solutions of equation (1.1).

Equation (1.1) is equivalent to the nonlinear Volterra type integral equation

y(t) = c0 +
1

Γ(α)

∫ t

c
(t− s)α−1 [e(s) + f (s, x(s))] ds, c > 1, α > 0, (1.3)

provided the right hand side of equation (1.1), namely e(t) + f (t, x), belongs to the class of
absolutely continuous functions AC, and y(t) in (1.3) belongs to the class AC2 = {y ∈ C1 :
y′ ∈ AC} (see Theorems 2.4 (iii) and 2.7 in [15]). In obtaining our results, we introduce
a technique that can be applied to some related fractional differential equations involving
Caputo fractional derivatives of any order. Recall that

CDα
a x(t) :=

1
Γ(n− α)

∫ t

a
(t− s)n−α−1 x(n)(s)ds

is the Caputo derivative of the order α ∈ (n− 1, n) of a Cn-scalar valued function x(t) defined
on the interval [c, ∞), where x(n)(t) = dnx(t)

dtn . For α ∈ (0, 1), this definition was given by
Caputo [4]; for the definition of the Caputo derivative of order α ∈ (n − 1, n), n ≥ 1, see
[1, 5, 6].

2 Main results

In what follows Γ(x) is the usual Gamma function given by

Γ(x) =
∫ ∞

0
sx−1e−sds, x > 0.

The next two lemmas will be used to prove our main results.
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Lemma 2.1. ([3, 17]) Let α and p be positive constants such that

p(α− 1) + 1 > 0.

Then ∫ t

0
(t− s)p(α−1)epsds ≤ Qept, t ≥ 0.

where

Q =
Γ (1 + p(α− 1))

p1+p(α−1)
.

Lemma 2.2 ([12]). If X and Y are nonnegative and 0 < λ < 1, then

Xλ − (1− λ)Yλ − λXYλ−1 ≤ 0, (2.1)

where equality holds if and only if X = Y.

We begin with a result that gives sufficient conditions for every nonoscillatory solution x
of equation (1.1) to be bounded.

Theorem 2.3. Let conditions (i)–(iii) hold and assume that there exist real numbers p > 1 and 0 <

α < 1 such that p(α− 1) + 1 > 0, there are numbers S > 0 and σ > 1 such that(
t

a(t)

)
≤ Se−σt, (2.2)

and there exists a continuous function m : [c, ∞)→ (0, ∞) such that∫ ∞

c
e−qsmq(s)ds < ∞, where q =

p
p− 1

. (2.3)

If

lim sup
t→∞

1
t

∫ t

c
(t− s)α e(s)ds < ∞, lim inf

t→∞

1
t

∫ t

c
(t− s)α e(s)ds > −∞, (2.4)

and

lim
t→∞

1
t

∫ t

c

∫ u

t1

(u− s)α−1
(

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
)

dsdu < ∞, (2.5)

then any nonoscillatory solution x(t) of equation (1.1) is bounded.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0 for t ≥ t1 for some t1 ≥ c. If
we let F(t) = f (t, x(t)), and use (i)–(iii), we see that equation (1.1) can be written as

(
a(t)x′(t)

)′ ≤ c0 +
1

Γ(α)

∫ t1

c
(t− s)α−1 |F(s)| ds +

1
Γ(α)

∫ t1

c
(t− s)α−1 |e(s)| ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds +
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
[

h(s)xλ(s)−m(s)x(s)
]

ds. (2.6)
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Using the fact that (t− s)α−1 ≤ (t1 − s)α−1 in the first and second integrals in (2.6), we obtain

(
a(t)x′(t)

)′ ≤ c0 +
1

Γ(α)

∫ t1

c
(t1 − s)α−1 |F(s)| ds +

1
Γ(α)

∫ t1

c
(t1 − s)α−1 |e(s)| ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds +
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
[

h(s)xλ(s)−m(s)x(s)
]

ds

≤ c1 +
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds +
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
[

h(s)xλ(s)−m(s)x(s)
]

ds, (2.7)

where

c1 = c0 +
1

Γ(α)

∫ t1

c
(t1 − s)α−1 |F(s)| ds +

1
Γ(α)

∫ t1

c
(t1 − s)α−1 |e(s)| ds.

Applying Lemma 2.2 with

X = h1/λ(s)x(s) and Y =

(
1
λ

m(s)h−1/λ(s)
)1/(λ−1)

,

we obtain
h(s)xλ(s)−m(s)x(s) ≤ (1− λ)λλ/(1−λ)mλ/(λ−1)(s)h1/(1−λ)(s),

and substituting this into (2.7), we have

(
a(t)x′(t)

)′ ≤ c1 +
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds

+

(
(1− λ)λλ/(1−λ)

)
Γ(α)

∫ t

t1

(t− s)α−1
[
mλ/(λ−1)(s)h1/(1−λ)(s)

]
ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds. (2.8)

An integration of (2.8) from t1 to t yields

a(t)x′(t) ≤ a(t1)x′(t1) + c1(t− t1) +
1

Γ(α)

∫ t

t1

∫ u

t1

(u− s)α−1 e(s)dsdu

+
∫ t

t1

∫ u

t1

(u− s)α−1
(

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
)

dsdu

+
1

Γ(α)

∫ t

t1

∫ u

t1

(u− s)α−1 m(s)x(s)dsdu

= a(t1)x′(t1) + c1(t− t1) +
∫ t

t1

∫ u

t1

(u− s)α−1
(

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
)

dsdu

+
1

Γ(α + 1)

∫ t

t1

(t− s)αe(s)ds +
1

Γ(α + 1)

∫ t

t1

(t− s)α m(s)x(s)ds

≤ a(t1)x′(t1) + c1(t− t1) +
∫ t

t1

∫ u

t1

(u− s)α−1
(

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
)

dsdu

+
1

Γ(α + 1)

∫ t

t1

(t− s)αe(s)ds +
t

Γ(α + 1)

∫ t

t1

(t− s)α−1m(s)x(s)ds.
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In view of (2.4) and (2.5), the last inequality implies

a(t)x′(t) ≤ c2 + c3t +
t

Γ(α + 1)

∫ t

t1

(t− s)α−1 m(s)x(s)ds, (2.9)

for some positive constants c2 and c3.
Integrating (2.9) from t1 to t and noting condition (2.2), we see that

x(t) ≤ x(t1) + c2

∫ t

t1

1
a(s)

ds + c3

∫ t

t1

s
a(s)

ds +
1

Γ(α + 1)

∫ t

t1

u
a(u)

∫ u

t1

(u− s)α−1 m(s)x(s)dsdu

≤ c4 +
1

Γ(α + 1)

∫ t

t1

u
a(u)

∫ u

t1

(u− s)α−1 m(s)x(s)dsdu (2.10)

for some constant c4 > 0.
Applying Hölder’s inequality and Lemma 2.1, we obtain∫ u

t1

((u− s)α−1es)
(
e−sm(s)x(s)

)
ds

≤
(∫ u

t1

(u− s)p(α−1) epsds
)1/p (∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

≤
(∫ u

0
(u− s)p(α−1) epsds

)1/p (∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

≤ (Qepu)1/p
(∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

= Q1/peu
(∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

. (2.11)

From (2.2), (2.10), and (2.11),

x(t) ≤ c4 +
Q1/p

Γ(α + 1)

∫ t

t1

ueu

a(u)

(∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

du

≤ c4 +
Q1/pS

Γ(α + 1)

∫ t

t1

e−(σ−1)u
(∫ u

t1

e−qsmq(s)xq(s)ds
)1/q

du. (2.12)

Since σ > 1 and the integral on the far right in (2.12) is increasing, we obtain the estimate

x(t) ≤ 1 + c4 + K
(∫ t

t1

e−qsmq(s)xq(s)ds
)1/q

, (2.13)

where K = Q1/pS
(σ−1)Γ(α+1) .

Applying the inequality

(x + y)q ≤ 2q−1(xq + yq) for x, y ≥ 0 and q > 1,

to (2.13) gives

xq(t) ≤ 2q−1(1 + c4)
q + 2q−1Kq

(∫ t

t1

e−qsmq(s)xq(s)ds
)

. (2.14)

Setting P1 = 2q−1(1 + c4)
q, Q1 = 2q−1Kq, and w(t) = xq(t) so that x(t) = w1/q(t), (2.14)

becomes

w(t) ≤ P1 + Q1

(∫ t

t1

e−qsmq(s)w(s)ds
)
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for t ≥ t1. By Gronwall’s inequality and condition (2.3), we see that w(t) is bounded, and so
x(t) is bounded. Clearly, a similar argument holds if x(t) is an eventually negative solution of
(1.1). This completes the proof of the theorem.

Next, we consider the fractional differential equation

CDα
c y(t) = e(t) + f (t, x(t)), c > 1, α ∈ (0, 1), (2.15)

where y(t) = a(t)x′(t) and c0 = y(c)
Γ(1) = y(c) is a real constant. We now give sufficient

conditions under which any nonoscillatory solution x of equation (2.15) is bounded.

Theorem 2.4. Let conditions (i)–(iii) hold and suppose that there exist real numbers p > 1 and
0 < α < 1 such that p(α− 1) + 1 > 0. In addition, assume that there exists a continuous function
m : [c, ∞)→ (0, ∞) such that (2.3) holds and(

1
a(t)

)
≤ Se−σt (2.16)

for some S > 0 and σ > 1. If

lim sup
t→∞

∫ t

c
(t− s)α−1 e(s)ds < ∞, lim inf

t→∞

∫ t

c
(t− s)α−1 e(s)ds > −∞, (2.17)

and
lim sup

t→∞

∫ t

c
(t− s)α−1

(
m

λ/(λ−1)
(s)h

1/(1−λ)
(s)
)

ds < ∞, (2.18)

then any nonoscillatory solution x(t) of equation (2.15) is bounded.

Proof. Let x(t) be an eventually positive solution of equation (2.15). We may assume that
x(t) > 0 for t ≥ t1 for some t1 ≥ c. Again let F(t) = f (t, x(t)). In view of (i)–(iii), equation
(2.15) can be written as

a(t)x′(t) ≤ c0 +
1

Γ(α)

∫ t1

c
(t− s)α−1 |F(s)| ds +

1
Γ(α)

∫ t1

c
(t− s)α−1 |e(s)| ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds +
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
[

h(s)xλ(s)−m(s)x(s)
]

ds. (2.19)

Proceeding as in the proof of Theorem 2.3, from (2.19) we obtain (see (2.7))

a(t)x′(t) ≤ c1 +
1

Γ(α)

∫ t

t1

(t− s)α−1 e(s)ds

+

(
(1− λ)λλ/(1−λ)

)
Γ(α)

∫ t

t1

(t− s)α−1
[
mλ/(λ−1)(s)h1/(1−λ)(s)

]
ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds,

≤ M +
1

Γ(α)

∫ t

t1

(t− s)α−1 m(s)x(s)ds, (2.20)

for some positive constant M.
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An integration of (2.20) from t1 to t yields

x(t) ≤ x(t1) + M
∫ t

t1

1
a(s)

ds +
1

Γ(α)

∫ t

t1

1
a(u)

∫ u

t1

(u− s)α−1 m(s)x(s)dsdu.

The remainder of the proof is similar to that of Theorem 2.3 and hence is omitted.

Similar reasoning to that used in the sublinear case guarantees the following theorems for
the integro-differential equations (1.1) and (2.15) in case λ = 1.

Theorem 2.5. Let λ = 1 and the hypotheses of Theorems 2.3–2.4 hold with m(t) = h(t). Then the
conclusion of Theorems 2.3–2.4 holds.

Example 2.6. Consider the equation

y(t) = a(t)x′(t) = c0 +
1

Γ(α)

∫ t

2
(t− s)α−1

[
e−2s + h(s) |x(s)|λ−1 x(s)

]
ds, (2.21)

with 0 < λ < 1. Here we have c = 2, e(t) = e−2t, f (t, x(t)) = h(t) |x(t)|λ−1 x(t), and we take
a(t) = e2t/S with S > 0, h(t) = e−t, α = 1/2, and p = 3/2 > 1. Then q = p

p−1 = 3 and
p(α− 1) + 1 = 1/4 > 0. With σ = 2 and h(t) = m(t), conditions (2.16) and (2.3) become

1
a(t)

=
1
e2t

S

=
S

e2t ≤ Se−2t

and ∫ ∞

c
e−qsmq(s)ds =

∫ ∞

2
e−3se−3sds ≤ 1

6
< ∞,

and so conditions (2.16) and (2.3) hold, respectively. With h(t) = m(t), we have

∫ t

c
(t− s)α−1

(
m

λ/(λ−1)
(s)h

1/(1−λ)
(s)
)

ds =
∫ t

2
(t− s)α−1m(s)ds =

∫ t

2
(t− s)−1/2e−sds. (2.22)

Letting u = t− s + 2 in (2.22), we obtain

∫ t

2
(t− s)−1/2e−sds = −

∫ 2

t
(u− 2)−1/2eu−t−2du

=
1

et+2

∫ t

2
(u− 2)−1/2eudu

=
1

et+2

[∫ 4

2
(u− 2)−1/2eudu +

∫ t

4
(u− 2)−1/2eudu

]
=

1
et+2

[
lim

b→2+

∫ 4

b
(u− 2)−1/2eudu

]
+

1
et+2

[∫ t

4
(u− 2)−1/2eudu

]
=

1
et+2 lim

b→2+
e4
∫ 4

b
(u− 2)−1/2du +

(4− 2)−1/2

et+2

∫ t

4
eudu

=
23/2e4

et+2 +
1√

2et+2

(
et − e4

)
,
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so (2.18) holds. Finally,

∫ t

c
(t− s)α−1 e(s)ds =

∫ t

2
(t− s)−1/2 e−2sds

= −
∫ 2

t
(u− 2)−1/2e−2(t−u+2)du

=
1

e2t+4

∫ t

2
(u− 2)−1/2e2uds

< ∞,

so condition (2.17) is satisfied. Hence, by Theorem 2.4, every nonoscillatory solution x of
equation (2.21) is bounded.

Example 2.7. Consider the equation

y(t) =
(
a(t)x′(t)

)′
= c0 +

1
Γ(α)

∫ t

2
(t− s)α−1

[
1
s2 + h(s) |x(s)|λ−1 x(s)

]
ds, (2.23)

with 0 < λ < 1. Here we have c = 2, e(t) = 1/t2, f (t, x(t)) = h(t) |x(t)|λ−1 x(t), and we take
a(t) = te2t/S with S > 0, h(t) = e−t, α = 1/2, and p = 3/2 > 1. Then q = p

p−1 = 3 and
p(α− 1) + 1 = 1/4 > 0. With σ = 2 and h(t) = m(t), conditions (2.2) and (2.3) become

t
a(t)

=
t

te2t

S

=
S

e2t ≤ Se−2t

and ∫ ∞

c
e−qsmq(s)ds =

∫ ∞

2
e−3se−3sds ≤ 1

6
< ∞,

and so conditions (2.2) and (2.3) hold. From Example 2.1, we see that

∫ t

c
(t− s)α−1

(
m

λ/(λ−1)
(s)h

1/(1−λ)
(s)
)

ds < 23/2e2 +
1√
2
< ∞,

so clearly condition (2.5) holds.
Finally,

1
t

∫ t

c
(t− s)α e(s)ds =

1
t

∫ t

2
(t− s)1/2 1

s2 ds

≤ (t− 2)1/2

t

∫ t

2

1
s2 ds

≤ − 1
t3/2 +

1
2t1/2 < ∞,

so condition (2.4) is satisfied. Hence, by Theorem 2.3, every nonoscillatory solution x of
equation (2.23) is bounded.

In conclusion, we wish to point out that the results in this paper are presented in a form
that can be extended to fractional differential equations of the type (1.1) of order α ∈ (n− 1, n),
n ≥ 1. It would also be of interest to study equation (1.1) in case f satisfies condition (iii) with
λ > 1.
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