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1. Introduction

The aim of this paper is to prove existence and uniqueness theorems for the

nonlinear double delay integral equation

x(t) =


g(t) +

∫ t−τ1

t−τ2
k(t, s)f (s, x(s)) ds, t ∈ [τ2,+∞),

Φ(t), t ∈ [0, τ2),

(1.1)

where the constant delays τ2 > τ1 > 0.

Equations of the type (1.1) are typical in the mathematical modeling of age struc-

tured populations in which, for example, the growth of two sizes of the same popu-

lation is considered (see [1, 2, 5, 6]). In this case τ1 and τ2 represent the maturation

and the maximal age, respectively.
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Problem (1.1) represents an integral formulation of the following nonlinear Gurtin–

MacCamy model (see, for instance, [5, 8]).

B(t) =

∫ t

0

K (t, t− σ, S)B(σ)dσ + F (t, S),

S(t) =

∫ t

0

H(t, t− σ, S)B(σ)dσ +G(t, S),

(1.2)

where

K(t, σ, S) = β(σ, S)Π(σ, t, σ, S), H(t, σ, S) = γ(σ)Π(σ, t, σ, S),

Π(σ, t, x, S) = exp

(
−
∫ x

0

µ(a− σ, S(t− σ))da

)
,

F (t, S) =

∫ +∞

t

β(a, S)Π(a, t, t, S)p0(a− t)da,

G(t, S) =

∫ +∞

t

γ(a)Π(a, t, t, S)p0(a− t)da.

We refer to [5, 8] for the meaning of all the data functions.

The unknown S in (1.2) can be transformed, under some initial conditions (see [8])

to a solution of the following double delay integral equation

S(t) = R0C

∫ t−am

t−a+
γ(t− σ) exp

(
−
∫ t−σ

0

µ(a− t+ σ, S(σ))da

)
φ (S(σ))S(σ)dσ,

(1.3)

where φ is a nonnegative decreasing function which is responsible for the reduction

of fertility by crowding effect, a+ and am are the maximum and the maturation

age of the considered population.

On the other hand, J. Dibĺık and M. Růžičková [4] studied the exponential solutions

of the following differential equation containing two delays τ > δ ≥ 0

y′(t) = β(t) (y(t− δ)− y(t− τ)) . (1.4)
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We note that if y is a solution of (1.4), then x(t) = y(t)−y(t− (τ − δ)) is a solution

of the following double delay integral equation

x(t) =

∫ t−δ

t−τ
β(s+ δ)x(s)ds. (1.5)

Also, if β is periodic with period τ − δ, then y is a solution of (1.5).

To our knowledge, there are a few papers concerning the existence and the unique-

ness of the solution of (1.1). E. Messina et al. (see [7, 8, 9]) studied the existence

and the uniqueness of the continuous solution of the following integral equation

x(t) =


g(t) +

∫ t−τ1

t−τ2
k(t− s)h (x(s)) ds, t ∈ [τ2, T ],

Φ(t), t ∈ [0, τ2),

where the functions g and k are continuous and the function h satisfies the Lipschitz

condition.

However, many physical and biological models include data functions, which are

discontinuous. For this reason, we devote our investigations, here, to extend the

theory developed in [7, 8, 9] to study the existence and the uniqueness of a solution

of (1.1), under simple and convenient conditions on the data functions, in more

general spaces.

The paper is organized as follows. In Section 3, we prove a general existence

principle. Section 4 is devoted to proving existence and uniqueness of a locally

bounded solution, an exponentially stable solution and a bounded solution. In

Section 5, we show existence and uniqueness of a locally integrable solution and

an integrable solution. Finally, existence and uniqueness results of the solution of

double delay convolution integral equations are discussed in Section 6.
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2. Notations and some auxiliary facts

In this section, we provide some notations, definitions and auxiliary facts which

will be needed for stating our results.

Denote by L1(R+) the set of all Lebesgue integrable functions on R+, endowed

with the standard norm ‖x‖L1(R+) =

∫ +∞

0

|x(t)|dt and by L∞(R+) the set of all

bounded functions on R+, endowed with the norm ‖x‖L∞(R+) = ess sup{|x(t)|, t ∈

R+}. Also, denote by L1
Loc(R+) the set of all Lebesgue integrable functions on

any compact set of R+ and by L∞Loc(R+) the set of all bounded functions on any

compact set of R+.

Let F(R+,R) be the set of all measurable functions from a subset of R+ to R.

Let f : R+ × R −→ R be a measurable function. We define the operator Nf

on F(R+,R) by Nfx(t) = f(t, x(t)), t ∈ R+. The operator Nf is said to be the

Nemytskii operator associated to the function f .

Let k : [τ2,+∞)× R+ −→ R be a given measurable function. We define the linear

operator K on F(R+,R) by the formula

(
Kx
)

(t) =



∫ t−τ1

t−τ2
k(t, s)x(s)ds, t ∈ [τ2,+∞),

0, t ∈ [0, τ2).

Let E ⊂ F(R+,R) be a vectorial space satisfying the following property:

If f ∈ E and ∅ 6= A ⊂ D(f), D(f) is the domain of f , then the function: f/A (the

restriction of f on A) belongs to E and if f1, f2 ∈ E such that D(f1) ∩D(f2) = ∅,

then the function f : D(f1) ∪D(f2) −→ R defined by

f(t) =


f1(t), t ∈ D(f1),

f2(t), t ∈ D(f2),

(∗)
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belongs also to E.

Remark 2.1. If f ∈ E, then the function

f̂(t) =


f(t), t ∈ D(f),

0, t ∈ R+ −D(f)

belongs to E.

We note that the spaces L∞(R+), L∞Loc(R+), L1(R+), L1
Loc(R+) satisfy the prop-

erty (∗).

3. Existence of a measurable Solution

Let E ⊂ F(R+,R) be a vectorial space satisfying the property (∗).

Theorem 3.1. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R and Φ : [0, τ2) −→ R are measurable functions such that

Φ, g ∈ E.

(ii) f : R+×R −→ R is a measurable function such that the Nemytskii operator

Nf transforms the space E into itself.

(iii) k : [τ2,+∞) × R+ −→ R is a measurable function and the linear integral

operator K generated by the function k transforms the space E into itself.

Then Problem (1.1) has a unique measurable solution defined on R+.

Proof. It is clear that there exists a unique integer r ≥ 1 such that rτ1 ≤ τ2 <

(r + 1)τ1. We define the function x : R+ −→ R as follows: x = xn on the interval
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[0, (r + n)τ1) for n ≥ 1 such that

x1(t) =


Φ(t), if t ∈ [0, τ2)

g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s,Φ(s))ds, if t ∈ [τ2, (r + 1)τ1)

=


Φ(t), if t ∈ [0, τ2)

g(t) +
(
KNfΦ

)
(t), if t ∈ [τ2, (r + 1)τ1),

(3.1)

and for n ≥ 2

xn(t) =


xn−1(t), if t ∈ [0, (r + n− 1)τ1)

g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, xn−1(s))ds, if t ∈ [(r + n− 1)τ1, (r + n)τ1)

=


xn−1(t), if t ∈ [0, (r + n− 1)τ1)

g(t) +
(
KNfxn−1

)
(t)ds, if t ∈ [(r + n− 1)τ1, (r + n)τ1).

(3.2)

We will prove that the sequence (xn) is well defined and xn ∈ E for all n ≥ 1.

1) We have x1 = Φ ∈ E on [0, τ2), and on [τ2, (r+1)τ1) we have x1 = g+KNfΦ ∈ E.

Then, by the property (∗), we deduce that x1 ∈ E.

2) Assume that xn−1 ∈ E for n ≥ 2, hence by the definition of xn, we get xn ∈ E

on [0, (r+n−1)τ1). Moreover, by the assumptions of Theorem 3.1, we deduce that

xn = g +KNfxn−1 ∈ E on [(r + n− 1)τ1, (r + n)τ1).

Then, by the property (∗), we get xn ∈ E.

Thus the sequence (xn) is well defined and xn ∈ E for all n ≥ 1, therefore the

function x is measurable and defined on R+.

Now, we will prove that x is a solution of (1.1).

Step 1 : x is a solution on [0, (r + 1)τ1). By definition, x is a solution of (1.1) on

[0, τ2). Moreover, for t ∈ [τ2, (r + 1)τ1) we have 0 ≤ t− τ2 < t− τ1 < rτ1 ≤ τ2
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which implies that

x(t) = x1(t) = g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s,Φ(s))ds

= g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, x(s))ds.

Then x is a solution on [0, (r + 1)τ1).

Step 2 : x is a solution on [(r + 1)τ1,+∞). For t ∈ [(r + 1)τ1,+∞), there exists a

unique integer n ≥ 1 such that (r + n)τ1 ≤ t < (r + n+ 1)τ1, hence

x(t) = xn+1(t) = g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, xn(s))ds

= g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, x(s))ds.

Thus x is a solution on [(r + 1)τ1,+∞).

For the uniqueness, let y be a solution of (1.1) on R+, we will prove that x = y by

the following induction.

1) x = y on [0, (r + 1)τ1).

We have x = y = Φ on [0, τ2) and for t ∈ [τ2, (r + 1)τ1) we have

0 ≤ t− τ2 < t− τ1 < rτ1 ≤ τ2, then y(t) = g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s,Φ(s))ds = x(t),

we deduce that x = y on [0, (r + 1)τ1).

2) Assume that x = y on [0, (r + n)τ1) for n ≥ 1, and show that x = y on

[0, (r + n+ 1)τ1).

Let t ∈ [(r + n)τ1, (r + n+ 1)τ1), hence 0 ≤ t− τ2 < t− τ1 < (r + n)τ1.

Then,

y(t) = g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, y(s))ds

= g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, xn−1(s))ds

= xn(t) = x(t),
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which implies that x = y on [0, (r + n+ 1)τ1).

Then Problem (1.1) has a unique measurable solution defined on R+.

�

Remark 3.2. Under the conditions of Theorem 3.1, the solution x need not be in

the space E as in the following counterexample.

Example 3.3. Consider the following double delay integral equation

x(t) =


1 +

∫ t−τ1

t−τ2
x(s) ds, t ∈ [τ2,+∞),

0, t ∈ [0, τ2),

(3.3)

such that τ2 − τ1 ≥ 1, we have Φ(t) = 0, g(t) = 1, k(t, s) = 1 and f(t, x) = x.

Let E = L∞(R+), it is clear that E satisfies the property (∗) and contains the

functions Φ and g. Moreover, the operators K and Nf transform the space E into

itself. Then, by Theorem 3.1, Problem (3.3) has a unique measurable solution x

defined on R+ by (3.1) and (3.2). Hence, for all t ∈ [τ2, (r+1)τ1), x(t) = x1(t) = 1

and for all t ∈ [(r + 1)τ1, (r + 2)τ1), x(t) = x2(t) = 1 + (τ2 − τ1). So, by using the

iteration, we deduce that for n ≥ 2 and t ∈ [(r + n− 1)τ1, (r + n)τ1),

x(t) = xn(t) =

n−1∑
i=0

(τ2 − τ1)i.

This implies that ‖x‖L∞(R+) ≥ n for all n ≥ 1.

Consequently, we obtain ‖x‖L∞(R+) = +∞ and x /∈ E.

4. Existence of an Exponentially Stable Solution

We will need the following lemma.

Lemma 4.1. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R and Φ : [0, τ2) −→ R are measurable functions such that

Φ ∈ L∞([0, τ2)) and g ∈ L∞Loc([τ2,+∞)).
EJQTDE, 2013 No. 56, p. 8



(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

a function a ∈ L∞Loc(R+) such that |f(t, x)| ≤ a(t) + b|x| for all t ∈ R+ and

x ∈ R.

(iii) k : [τ2,+∞) × R+ −→ R is a measurable function and the linear integral

operator K transforms the space L∞Loc(R+) into itself.

Then Problem (1.1) has a unique solution in L∞Loc(R+).

Proof. We have the vectorial space L∞Loc(R+) verifies the property (∗) and the

functions Φ, g ∈ L∞Loc(R+). Moreover, the assumption (ii) guarantees that the

Nemytskii operator Nf transforms the space L∞Loc(R+) into itself. Additionally

to the assumption (iii), we deduce, by Theorem 3.1, that Problem (1.1) has a

unique measurable solution x on R+ defined by x = xn on [0, (r + n)τ1) for n ≥ 1,

where the sequence (xn) is defined by (3.1) and (3.2). Moreover, the sequence

(xn) ∈ L∞Loc(R+), hence for all n ≥ 2, we have x ∈ L∞ ([0, (r + n− 1)τ1]), which

implies that x ∈ L∞Loc(R+).

Thus Problem (1.1) has a unique solution in L∞Loc(R+). �

The following result gives a sufficient condition on k so that the operator K

transforms the space L∞Loc(R+) into itself.

Proposition 4.2. Assume that the function t 7−→
∫ τ2

τ1

|k(t, t − s)|ds belongs to

L∞Loc([τ2,+∞)), then the operator K transforms the space L∞Loc(R+) into itself.

Proof. The operator K transforms the space L∞Loc(R+) into itself if and only if, for

all α ≥ τ2 and for all x ∈ L∞Loc(R+), we have Kx ∈ L∞([τ2, α]).

We have for all t ∈ [τ2, α]

|Kx(t)| ≤
∫ t−τ1

t−τ2
|k(t, s)||x(s)|ds

=

∫ τ2

τ1

|k(t, t− s)||x(t− s)|ds
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≤ ‖x‖L∞([0,α−τ1])

∫ τ2

τ1

|k(t, t− s)|ds

and since

∫ τ2

τ1

|k(t, t− s)|ds ∈ L∞([τ2, α]), then Kx ∈ L∞([τ2, α]).

Thus, K transforms the space L∞Loc(R+) into itself. �

Example 4.3. Consider Problem (1.1) with g,Φ and f fulfilling the assumptions

(i) and (ii) of Lemma 4.1 and k(t, s) = t+s
t−se

s. Since∫ τ2

τ1

|k(t, t− s)|ds =

[
2t ln

(
τ2
τ1

)
− (τ2 − τ1)

]
et ∈ L∞Loc([τ2,+∞)),

then, by Proposition 4.2 and Lemma 4.1, Problem (1.1) has a unique solution x ∈

L∞Loc(R+).

In the sequel, we will utilize the following definition.

Definition 4.4. A measurable function h : R+ −→ R is called exponentially stable,

if there are M ≥ 0 and γ > 0 such that ∀t ∈ R+, |h(t)| ≤Me−γt.

The following result gives the existence of an exponentially stable solution of

Problem (1.1).

Theorem 4.5. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R is exponentially stable and Φ ∈ L∞([0, τ2)).

(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

an exponentially stable function a : R+ −→ R such that |f(t, x)| ≤ a(t)+b|x|

for all t ∈ R+ and x ∈ R.

(iii) k : [τ2,+∞)× R+ −→ R is a measurable function such that the function

t 7−→
∫ τ2

τ1

|k(t, t− s)|ds ∈ L∞Loc([τ2,+∞)).

(iv) There exists c ≥ τ2 such that bα = b

(
ess sup

t≥c

∫ τ2

τ1

|k(t, t− s)|ds
)
< 1.

Then Problem (1.1) has a unique exponentially stable solution.
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Proof. By Proposition 4.2, the assumption (iii) guarantees that the operator K

transforms L∞Loc(R+) into itself, then from the above assumptions, we deduce by

Lemma 4.1, that Problem (1.1) has a unique solution x ∈ L∞Loc(R+). Moreover,

there exist γ1, γ2 > 0 such that |g(t)|eγ1t ∈ L∞(R+) and a(t)eγ2t ∈ L∞(R+).

Now, let 0 < γ ≤ min(γ1, γ2), we have for all t ≥ c

|x(t)|eγt ≤|g(t)|eγt +

∫ t−τ1

t−τ2
eγ(s+τ2)|k(t, s)||f(s, x(s))|ds

≤|g(t)|eγ1t + eγ2τ2
∫ t−τ1

t−τ2
|k(t, s)|a(s)eγ2sds

+ eγτ2b

∫ t−τ1

t−τ2
|k(t, s)||x(s)|eγsds

≤|g(t)|eγ1t + eγ2τ2
∫ τ2

τ1

|k(t, t− s)|a(t− s)eγ2(t−s)ds

+ beγτ2
∫ τ2

τ1

|k(t, t− s)||x(t− s)|eγ(t−s)ds

≤‖g(z)eγ1z‖L∞(R+) + αeγ2τ2‖a(z)eγ2z‖L∞(R+)

+ bαeγτ2‖x(z)eγz‖L∞([c−τ2,t])

≤‖g(z)eγ1z‖L∞(R+) + αeγ2τ2‖a(z)eγ2z‖L∞(R+)

+ bαeγ2τ2‖x(z)eγz‖L∞([c−τ2,c]) + bαeγτ2‖x(z)eγz‖L∞([c,t]),

hence, for all t ≥ c

(1− bαeγτ2) ‖x(z)eγz‖L∞([c,t]) ≤‖g(z)eγ1z‖L∞(R+) + αeγ2τ2‖a(z)e−γ2z‖L∞(R+)

+ bαeγ2τ2‖x(z)eγz‖L∞([c−τ2,c]).

Since bα < 1, then there exists 0 < γ ≤ min (γ1, γ2) such that (1− bαeγτ2) >

0, which implies from the above estimate that x(t)eγt ∈ L∞ ([c,+∞]), moreover

x(t)eγt ∈ L∞ ([0, c]), it follows that x(t)eγt ∈ L∞ ([0,+∞)).

Thus Problem (1.1) has a unique exponentially stable solution on R+. �
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Example 4.6. Consider Problem (1.1) with g,Φ and f fulfilling the assumptions

(i) and (ii) of Theorem 4.5 and k(t, s) = 1
t+s , hence∫ τ2

τ1

|k(t, t− s)|ds = ln

(
2t− τ1
2t− τ2

)
∈ L∞Loc([τ2,+∞)).

Since, lim
t→+∞

ln
(

2t−τ1
2t−τ2

)
= 0, then there exists c ≥ τ2 such that

b

(
ess sup

t≥c

∫ τ2

τ1

|k(t, t− s)|ds
)
< 1.

Thus, by Theorem 4.5, Problem (1.1) has a unique exponentially stable solution.

Remark 4.7. If we replace the expression “exponentially stable” by “bounded” in

the assumptions (i) and (ii) of Theorem 4.5 and by setting γ = γ1 = γ2 = 0 in the

proof, we obtain a unique bounded solution of (1.1).

Before state the second result, we need the following lemma.

Lemma 4.8. [3](Discrete Gronwall’s inequality) Assume that (αn)n≥1 and (qn)n≥1

are given non-negative sequences and the sequence (εn)n≥1 satisfies

ε1 ≤ β and

εn ≤ β +

n−1∑
j=1

qj +

n−1∑
j=1

αjεj , n ≥ 2,

then

εn ≤

β +

n−1∑
j=1

qj

 exp

n−1∑
j=1

αj

 , n ≥ 2.

Theorem 4.9. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R is exponentially stable and Φ ∈ L∞([0, τ2)).

(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

an exponentially stable function a : R+ −→ R such that |f(t, x)| ≤ a(t)+b|x|

for all t ∈ R+ and x ∈ R.

(iii) k : [τ2,+∞)× R+ −→ R is a measurable function and |k(t, s)| ≤ h(s) such

that h ∈ L1
Loc(R+).
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Then Problem (1.1) has a unique solution x ∈ L∞Loc(R+). Moreover, there exist

γ > 0, λ ≥ 0 and β ≥ 0 such that for all t ∈ R+,

|x(t)|eγt ≤
(
β + λ

∫ t

0

h(s)ds

)
exp

(
beγτ2

∫ t

0

h(s)ds

)
. (4.1)

Proof. We have, by the assumption (iii), for all α ≥ τ2 and for all t ∈ [τ2, α]∫ τ2

τ1

|k(t, t− s)|ds ≤
∫ τ2

τ1

h(t− s)ds ≤
∫ α−τ1

0

h(s)ds < +∞.

Then, by Proposition 4.2, the operator K transforms L∞Loc(R+) into itself, hence

from the above assumptions, we deduce by Lemma 4.1, that Problem (1.1) has a

unique solution x ∈ L∞Loc(R+). Moreover, the solution is given by the following

iteration: x = xn on the interval [0, (r + n)τ1), n ≥ 1 such that

x1(t) =


Φ(t), if t ∈ [0, τ2)

g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s,Φ(s))ds, if t ∈ [τ2, (r + 1)τ1)

and for n ≥ 2

xn(t) =


xn−1(t), if t ∈ [0, (r + n− 1)τ1)

g(t) +

∫ t−τ1

t−τ2
k(t, s)f(s, xn−1(s))ds, if t ∈ [(r + n− 1)τ1, (r + n)τ1)

On the other hand, there exist γ1, γ2 > 0 such that |g(t)|eγ1t ∈ L∞(R+) and

a(t)eγ2t ∈ L∞(R+).

Let γ = min (γ1, γ2) and define the sequence (εn)n≥1 as follows: for n ≥ 2

εn = ess sup
{
|x(t)|eγt, t ∈ [(r + n− 1)τ1, (r + n)τ1)

}
and ε1 = ess sup {|x(t)|eγt, t ∈ [0, (r + 1)τ1)}.

Now, for n ≥ 2 and t ∈ [(r + n− 1)τ1, (r + n)τ1), we have

|x(t)|eγt ≤|g(t)|eγt +

∫ t−τ1

t−τ2
eγ(s+τ2)|k(t, s)|(a(s) + b|x(s)|)ds
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≤‖g(z)eγ1z‖L∞([τ2,+∞)) + eγ2τ2‖a(z)eγ2z‖L∞(R+)

∫ (r+n−1)τ1

0

h(s)ds

+ beγτ2
∫ (r+n−1)τ1

0

h(s)|x(s)|eγsds

≤‖g(z)eγ1z‖L∞([τ2,+∞)) + eγ2τ2‖a(z)eγ2z‖L∞(R+)

∫ (r+1)τ1

0

h(s)ds

+ eγ2τ2‖a(z)eγ2z‖L∞(R+)

n−1∑
j=2

∫ (r+j)τ1

(r+j−1)τ1
h(s)ds

+ beγτ2
∫ (r+1)τ1

0

h(s)|x(s)|eγsds+ beγτ2
n−1∑
j=2

∫ (r+j)τ1

(r+j−1)τ1
h(s)|x(s)|eγsds

≤‖g(z)eγ1z‖L∞([τ2,+∞)) +

n−1∑
j=1

qj +

n−1∑
j=1

αjεj ,

where

q1 = eγ2τ2‖a(z)eγ2z‖L∞(R+)e
γ2τ2

∫ (r+1)τ1

0

h(s)ds and for j ≥ 2

qj = eγ2τ2‖a(z)eγ2z‖L∞(R+)

∫ (r+j)τ1

(r+j−1)τ1
h(s)ds

α1 = beγτ2
∫ (r+1)τ1

0

h(s)ds and for j ≥ 2

αj = beγτ2
∫ (r+j)τ1

(r+j−1)τ1
h(s)ds.

On the other hand, for t ∈ [0, τ2), we have |x(t)|eγt ≤ eγτ2‖Φ‖L∞([0,τ2)), and for

t ∈ [τ2, (r + 1)τ1), we have

|x(t)|eγt ≤‖g(z)eγ1z‖L∞([τ2,(r+1)τ1)) + eγτ2‖h‖L1([0,rτ1))

×
(
‖a(z)eγ2z‖L∞([0,rτ1)) + beγrτ1‖Φ‖L∞([0,rτ1))

)
,

hence,

ε1 ≤ max{eγτ2‖Φ‖L∞([0,τ2)), ‖g(z)eγ1z‖L∞([τ2,(r+1)τ1))

+ eγτ2‖h‖L1([0,rτ1))

(
‖a(z)eγ2z‖L∞([0,rτ1)) + beγrτ1‖Φ‖L∞([0,rτ1))

)
} ≡ ρ.
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Let β = max
{
ρ, ‖g(z)eγ1z‖L∞([τ2,+∞))

}
, then for all n ≥ 2

εn ≤ β +

n−1∑
i=1

qi +

n−1∑
i=1

αiεi

with ε1 ≤ β, we deduce, by Lemma 4.8, that for all n ≥ 2

εn ≤

(
β +

n−1∑
i=1

qi

)
exp

(
n−1∑
i=1

αi

)

=

(
β + eγ2τ2‖a(z)eγ2z‖L∞(R+)

∫ (r+n−1)τ1

0

h(s)ds

)

× exp

(
beγτ2

∫ (r+n−1)τ1

0

h(s)ds

)
.

Then, for λ = eγ2τ2‖a(z)eγ2z‖L∞(R+) and t ∈ [(r + n− 1)τ1, (r + n)τ1), we obtain

|x(t)|eγt ≤ εn ≤

(
β + λ

∫ (r+n−1)τ1

0

h(s)ds

)
exp

(
beγτ2

∫ (r+n−1)τ1

0

h(s)ds

)

≤
(
β + λ

∫ t

0

h(s)ds

)
exp

(
beγτ2

∫ t

0

h(s)ds

)
.

Moreover, for t ∈ [0, (r + 1)τ1), we obtain

|x(t)|eγt ≤ β ≤
(
β + λ

∫ t

0

h(s)ds

)
exp

(
beγτ2

∫ t

0

h(s)ds

)
.

This completes the proof of the theorem. �

Remark 4.10. 1) If h ∈ L1(R+) we deduce, by the inequality (4.1), that the solu-

tion is exponentially stable.

2) If we replace the expression “exponentially stable” by “bounded” in the assump-

tions (i) and (ii) of Theorem 4.9, then, by setting γ = γ1 = γ2 = 0 in the proof, we

obtain the inequality (4.1) with γ = 0. Moreover, if h ∈ L1(R+), then the solution

is bounded.
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Example 4.11. Consider Problem (1.1) with g,Φ and f fulfilling the assumptions

(i) and (ii) of Theorem 4.9 and k(t, s) = ts e−(t+s). Since

|k(t, s)| ≤ se−s = h(s) ∈ L1(R+),

then, by Theorem 4.9, Problem (1.1) has a unique exponentially stable solution.

5. Existence of an integrable Solution

Arguing as in Lemma 4.1, we deduce the following result.

Lemma 5.1. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R and Φ : [0, τ2) −→ R are measurable functions such that

Φ ∈ L1([0, τ2)) and g ∈ L1
Loc([τ2,+∞)).

(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

a function a ∈ L1
Loc(R+) such that |f(t, x)| ≤ a(t) + b|x| for all t ∈ R+ and

x ∈ R.

(iii) k : [τ2,+∞) × R+ −→ R is a measurable function and the operator K

transforms the space L1
Loc(R+) into itself.

Then Problem (1.1) has a unique solution in L1
Loc(R+).

The following result gives a sufficient condition on k so that the operator K

transforms the space L1
Loc(R+) into itself.

Proposition 5.2. Let k̃ be the function defined on R+ by k̃(s) =

∫ τ2

θ(s)

|k(t+s, s)|dt

such that

θ(s) =


τ1, s ≥ τ2 − τ1,

τ2 − s, 0 ≤ s ≤ τ2 − τ1.

If the function k̃ ∈ L∞Loc(R+), then the operator K transforms the space L1
Loc(R+)

into itself.
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Proof. The operator K transforms the space L1
Loc(R+) into itself if and only if, for

all α ≥ 2τ2 − τ1 and x ∈ L1
Loc(R+), we have Kx ∈ L1([τ2, α]).

Assume that k̃ ∈ L∞Loc(R+), then for α ≥ 2τ2 − τ1 and x ∈ L1
Loc(R+), we have∫ α

τ2

|Kx(t)|dt ≤
∫ α

τ2

∫ t−τ1

t−τ2
|k(t, s)||x(s)|dsdt

≤
∫ 2τ2−τ1

τ2

∫ t−τ1

t−τ2
|k(t, s)||x(s)|dsdt

+

∫ α

2τ2−τ1

∫ t−τ1

t−τ2
|k(t, s)||x(s)|dsdt

≤
∫ 2τ2−τ1

τ2

∫ τ2−τ1

t−τ2
|k(t, s)||x(s)|dsdt

+

∫ 2τ2−τ1

τ2

∫ t−τ1

τ2−τ1
|k(t, s)||x(s)|dsdt

+

∫ α

2τ2−τ1

∫ t−τ1

t−τ2
|k(t, s)||x(s)|dsdt

≤
∫ τ2−τ1

0

∫ s+τ2

τ2

|k(t, s)||x(s)|dtds

+

∫ 2τ2−2τ1

τ2−τ1

∫ 2τ2−τ1

s+τ1

|k(t, s)||x(s)|dtds

+

∫ α−τ1

τ2−τ1

∫ s+τ2

s+τ1

|k(t, s)||x(s)|dtds

≤
∫ τ2−τ1

0

|x(s)|
∫ τ2

τ2−s
|k(t+ s, s)|dtds

+

∫ 2τ2−2τ1

τ2−τ1
|x(s)|

∫ τ2

τ1

|k(t+ s, s)|dtds

+

∫ α−τ1

τ2−τ1
|x(s)|

∫ τ2

τ1

|k(t+ s, s)|dtds

≤‖k̃‖L∞([0,τ2−τ1])‖x‖L1([0,τ2−τ1])

+ ‖k̃‖L∞([τ2−τ1,2(τ2−τ1)])‖x‖L1([τ2−τ1,2(τ2−τ1)])

+ ‖k̃‖L∞([τ2−τ1,α−τ1])‖x‖L1([τ2−τ1,α−τ1]).
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This shows that Kx ∈ L1([τ2, α]).

Thus, K transforms the space L1
Loc(R+) into itself. �

Example 5.3. Consider Problem (1.1) with g,Φ and f fulfilling the assumptions

(i) and (ii) of Lemma 5.1 and k(t, s) = (t− s)es. Since

k̃(s) =


(τ2 − τ1)es, s ≥ τ2 − τ1,

ses, 0 ≤ s ≤ τ2 − τ1,

then k̃ ∈ L∞Loc(R+), this implies, by Proposition 5.2 and Lemma 5.1, that Problem

(1.1) has a unique solution x ∈ L1
Loc(R+).

The following result gives the existence of an integrable solution of (1.1).

Theorem 5.4. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R and Φ : [0, τ2) −→ R are measurable functions such that

g ∈ L1([τ2,∞)) and Φ ∈ L1([0, τ2)).

(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

a function a ∈ L1(R+) such that |f(t, x)| ≤ a(t) + b|x| for all t ∈ R+ and

x ∈ R.

(iii) k : [τ2,+∞)× R+ −→ R is a measurable function such that k̃ ∈ L∞(R+).

(iv) There exists c ≥ τ2 − τ1 such that b‖k̃‖L∞([c,+∞)) < 1.

Then Problem (1.1) has a unique solution x ∈ L1(R+).

Proof. By Proposition 5.2, the assumption (iii) guarantees that the operator K

transforms L1
Loc(R+) into itself, then from the above assumptions, we deduce by

Lemma 5.1, that Problem (1.1) has a unique solution x ∈ L1
Loc(R+).

We will show that x ∈ L1(R+). We have for all t ≥ c+ τ2∫ t

c+τ2

|x(s)|ds ≤
∫ t

c+τ2

|g(s)|ds+

∫ t

c+τ2

∫ s−τ1

s−τ2
|k(s, r)||a(r)|drds
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+ b

∫ t

c+τ2

∫ s−τ1

s−τ2
|k(s, r)||x(r)|dr

≤
∫ t

c+τ2

|g(s)|ds+

∫ t−τ1

c

∫ τ2

τ1

|k(r + s, s)|a(s)drds

+ b

∫ t−τ1

c

∫ τ2

τ1

|k(r + s, s)||x(s)|drds

≤‖g‖L1(R+) + ‖k̃‖L∞(R+)‖a‖L1(R+) + b‖k̃‖L∞([c,t])‖x‖L1([c,t])

≤‖g‖L1(R+) + ‖k̃‖L∞(R+)‖a‖L1(R+) + b‖k̃‖L∞([c,+∞)])‖x‖L1([c,c+τ2])

+ b‖k̃‖L∞([c,+∞))‖x‖L1([c+τ2,t]),

hence, for all t ≥ c+ τ2

(
1− b‖k̃‖L∞([c,+∞))

)∫ t

c+τ2

|x(s)|ds ≤ ‖g‖L1(R+) + ‖k̃‖L∞(R+)‖a‖L1(R+)

+ b‖k̃‖L∞([c,+∞)])‖x‖L1([c,c+τ2]).

This shows that x ∈ L1([τ2,+∞)), moreover Φ ∈ L1([0, τ2)) and x ∈ L1([τ2, c+τ2]).

Then Problem (1.1) has a unique integrable solution on R+. �

Example 5.5. Consider Problem (1.1) with g,Φ and f fulfilling the assumptions

(i) and (ii) of Theorem 5.4 and k(t, s) = (t+ s)e−t, hence

k̃(s) =


[(τ1 + 1)e−τ1 − (τ2 + 1)e−τ2 ] e−s + 2 (e−τ1 − e−τ2) se−s, s ≥ τ2 − τ1,

e−τ2 [τ2 + s+ 1− τ2e−s − e−s − 2se−s] , 0 ≤ s ≤ τ2 − τ1.

We have, k̃ is continuous and lim
s→+∞

k̃(s) = 0, then k̃ is bounded and there exists

c ≥ τ2 such that b‖k̃‖L∞([c,+∞)) < 1.

Thus, by Theorem 5.4, Problem (1.1) has a unique solution x ∈ L1(R+).
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6. Double delay convolution integral equations

Consider the following nonlinear double delay integral equation:

x(t) =


g(t) +

∫ t−τ1

t−τ2
h(t− s)f (s, x(s)) ds, t ∈ [τ2,+∞),

Φ(t), t ∈ [0, τ2),

(6.1)

where h : R+ −→ R is a measurable function.

We have (6.1) is of the form (1.1) such that k(t, s) = h(t− s).

Then

∫ τ2

τ1

|k(t, t− s)|ds =

∫ τ2

τ1

|h(s)|ds and

k̃(s) =



∫ τ2

τ1

|h(t)|dt, s ≥ τ2 − τ1,

∫ τ2

τ2−s
|h(t)|dt, 0 ≤ s ≤ τ2 − τ1.

The following result is directly yielded by applying Theorem 4.5 and by using

Remark 4.7.

Theorem 6.1. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R is exponentially stable (resp. bounded) and

Φ ∈ L∞([0, τ2)).

(ii) f : R+ × R −→ R is a measurable function and there exist a constant b

and an exponentially stable function (resp. bounded) a such that |f(t, x)| ≤

a(t) + b|x| for all t ∈ R+ and x ∈ R.

(iii) h : R+ −→ R is a measurable function such that

∫ τ2

τ1

|h(t)|dt < +∞ and

b

∫ τ2

τ1

|h(t)|dt < 1.

Then Problem (6.1) has a unique exponentially stable (resp. bounded) solution.

Also, by applying Theorem 5.4, the following result takes place.
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Theorem 6.2. Suppose that the following conditions are satisfied:

(i) g : [τ2,+∞) −→ R and Φ : [0, τ2) −→ R are measurable functions such that

g ∈ L1([τ2,∞)) and Φ ∈ L1([0, τ2)).

(ii) f : R+×R −→ R is a measurable function and there exist a constant b and

a function a ∈ L1(R+) such that |f(t, x)| ≤ a(t) + b|x| for all t ∈ R+ and

x ∈ R.

(iii) h : R+ −→ R is a measurable function such that

∫ τ2

τ1

|h(t)|dt < +∞ and

b

∫ τ2

τ1

|h(t)|dt < 1.

Then Problem (6.1) has a unique solution x ∈ L1(R+).

Finally, we consider the following double delay integral equations of the form

(1.3)

x(t) =



R0C

∫ t−τ1

t−τ2
γ(t− σ) exp

(
−
∫ t−σ

0

µ(a− t+ σ, x(σ))da

)
φ (x(σ))x(σ)dσ,

t ∈ [τ2,+∞),

Φ(t), t ∈ [0, τ2).

(6.2)

Problem (6.2) will be studied under the following assumptions:

(1) R0, C ∈ R+.

(2) γ is a nonnegative function on R+.

(3) µ(a, b) = α(a) such that α is a nonnegative function.

(4) φ is a nonnegative decreasing function on R+.

(5) Φ is a nonnegative function on [0, τ2).

Then Problem (6.2) is a double delay convolution integral equation of the form

(6.1) such that

h(s) = R0Cγ(s) exp

(
−
∫ s

0

α(a− s)da
)
, f(s, x) = φ(x)x.
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Moreover; it is clear, by the above assumptions, that if (6.2) has a measurable

solution x on R+, then x is nonnegative.

The following corollaries are directly yielded by applying Theorem 6.1 (resp. The-

orem 6.2).

Corollary 6.3. Suppose that the following conditions are satisfied:

(i) Φ ∈ L∞([0, τ2)).

(ii) γ, α : R+ −→ R+ are measurable functions such that

R0Cφ(0)

∫ τ2

τ1

γ(t) exp

(
−
∫ t

0

α(a− t)da
)
dt < 1.

Then Problem (6.1) has a unique nonnegative bounded solution.

Corollary 6.4. Suppose that the following conditions are satisfied:

(i) Φ ∈ L1([0, τ2)).

(ii) γ, α : R+ −→ R+ are measurable functions such that

R0Cφ(0)

∫ τ2

τ1

γ(t) exp

(
−
∫ t

0

α(a− t)da
)
dt < 1.

Then Problem (6.1) has a unique nonnegative solution x ∈ L1(R+).
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