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1 Introduction

In this paper, we consider the following boundary value problems (BVPs for short) for

nonlinear fractional differential equations with p-Laplacian operator:


















Dβ
0+φp(D

α
0+u(t)) = f(t, u(t), Dα

0+u(t)), t ∈ [0, 1],

u(0) = µ

∫ 1

0

u(s)ds + λu(ξ),

Dα
0+u(0) = kDα

0+u(η),

(1)
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where φp(s) = |s|p−2s, p > 1, 0 < α, β ≤ 1, 1 < α + β ≤ 2, µ, λ, k ∈ R, ξ, η ∈ [0, 1], Dα
0+

denotes the Caputo fractional derivative of order α and f : [0, 1] × R
2 → R is a continuous

function.

It is easy to know that if λ = k = ±1, ξ = η = 1, µ = 0, then the Eq.(1) re-

duces to periodic and anti-periodic BVP, respectively. Furthermore, the nonlinear operator

Dβ
0+φp(D

α
0+) reduces to the linear operator Dβ

0+Dα
0+ when p = 2 and the additive index law

Dβ
0+Dα

0+u(t) = Dβ+α
0+ u(t) holds under some reasonable constraints on the function u(t) (see

[10, 17, 19]).

Fractional calculus is a generalization of ordinary differentiation and integration on an ar-

bitrary order that can be non-integer. More and more researchers have found that fractional

differential equations play important roles in many research areas, such as physics, chemical

technology, population dynamics, biotechnology and economics (see [10, 13, 15, 17, 19]). A

fractional derivative arises from many physical processes, such as propagations of mechan-

ical waves in viscoelastic media (see[14]), a non-Markovian diffusion process with memory

(see[16]), charge transport in amorphous semiconductors (see[23]), etc. Moreover, phenom-

ena in electromagnetics, acoustics, viscoelasticity, electrochemistry and material science are

also described by fractional differential equations (see[7–9]). For instance, Pereira et al.

(see[18]) considered the following fractional Van der Pol equation

Dαx(t) + λ(x2(t) − 1)x′(t) + x(t) = 0, 1 < α < 2, (2)

where Dα is the fractional derivative of order α and λ is a control parameter which reflects

the degree of nonlinearity of the system. Eq.(2) is obtained by substituting a fractance for

the capacitance in the nonlinear RLC circuit model.

The turbulent flow in a porous medium is a fundamental mechanics phenomenon. For

studying this type of phenomena, Leibenson (see[12]) introduced the p-Laplacian equation

as follows

(φp(u
′(t)))′ = f(t, u(t), u′(t)), (3)

where φp(s) = |s|p−2s, p > 1. Obviously, φp is invertible and (φp)
−1 = φq, where q > 1 such

that 1/p + 1/q = 1.

In the past few decades, many important results with certain boundary value conditions

related to Eq.(3) had been obtained (see [3, 11, 29] and the references therein). However,
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the research of BVPs for fractional p-Laplacian equations has just begun in recent years.

For example, T. Chen et al. [5] investigated the existence of solutions of the boundary value

problem for fractional p-Laplacian equation with the following form

{

Dβ
0+φp(D

α
0+u(t)) = f(t, u(t), Dα

0+u(t)), t ∈ [0, 1],

Dα
0+u(0) = Dα

0+u(1) = 0,

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is the Caputo fractional derivative, and

f : [0, 1] × R
2 → R is continuous.

Later, in [6], T. Chen and W. Liu studied an anti-periodic boundary value problem for

the fractional p-Laplacian equation:

{

Dβ
0+φp(D

α
0+u(t)) = f(t, u(t)), t ∈ [0, 1],

u(0) = −u(1), Dα
0+u(0) = −Dα

0+u(1),

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is a Caputo fractional derivative, and f :

[0, 1]×R → R is continuous. Under certain nonlinear growth conditions of the nonlinearity,

the existence result was obtained by using Schaefer’s fixed point theorem.

In [28], J. Wang and H. Xiang have considered the following p-Laplacian fractional

boundary value problem:

{

Dγ
0+φp(D

α
0+u(t)) = f(t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(η) ,

where 1 < γ, α ≤ 2, 0 ≤ a, b ≤ 1, 0 < ξ, η < 1, and Dα
0+ is the standard Riemann-Liouville

fractional differential operator of order α. Using upper and lower solutions method, they

get some existence results on the existence of positive solution.

Since the p-Laplacian operator and fractional calculus arises from many applied fields,

such as turbulent filtration in porous media, blood flow problems, rheology, modeling of

viscoplasticity, material science, it is worth studying the fractional p-Laplacian equations.

As far as we know, there are relatively few results on BVPs for fractional p-Laplacian

equations, and no paper is concerned with the existence results for fractional p-Laplacian

BVPs (1). In this context, we study the problem (1) with integral boundary condition.

Integral boundary conditions have various applications in applied fields such as under-

ground water flow, blood flow problems, chemical engineering, thermo-elasticity, population
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dynamics, and so on. For a detailed description of the integral boundary conditions, we

refer the reader to some recent papers [1, 2, 4, 21, 24–26] and the references therein.

The rest of this paper is organized as follows: In section 2, we present some material to

prove our main results. In section 3, by applying a standard fixed point principle, we prove

the existence of solutions for nonlinear fractional differential equations with p-Laplacian

operator. Finally, an example is given to illustrate the main result in section 4.

2 Preliminaries and lemmas

Firstly, we recall the following known definitions, which can be found, for instance, in

[10, 19].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of a

function f : (0,∞) → R is given by

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t − s)α−1f(s)ds,

provided that the right side integral is pointwise defined on (0, +∞).

Definition 2.2. The Riemann-Liouville derivative of order α > 0 for a function f :

[0, ∞) → R can be written as

LDα
0+f(x) =

1

Γ(n − α)

dn

dxn

∫ x

0

f(s)

(x − s)α−n+1
ds,

where n is the smallest integer greater than α.

Definition 2.3. The Caputo fractional derivative of order α > 0 for a function f : [0, ∞) →

R can be written as

Dα
0+f(x) = LDα

0+

[

f(x) −
n−1
∑

k=0

xk

k!
f (k)(0)

]

,

where n is the smallest integer greater than α.

Remark 2.4. If f ∈ ACn[0, ∞), then

Dα
0+f(x) =

1

Γ(n − α)

∫ x

0

f (n)(s)

(x − s)α+1−n
ds,

where n is the smallest integer greater than α. Furthermore, the Caputo derivative of a

constant is equal to zero.
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For n ∈ N
+ := {1, 2, · · · }, ACn[a, b] denotes the space of real-valued functions f(x)

which have continuous derivatives up to order n− 1 on [a, b] such that f (n−1)(x) ∈ AC[a, b]:

ACn[a, b] = {f : [a, b] → R and f (n−1)(x) ∈ AC[a, b]},

where AC[a, b] be the space of functions f which are absolutely continuous on [a, b].

Lemma 2.5 ([10], p96). Let α > 0. Assume that u ∈ ACn[0, 1], Dα
0+u ∈ L(0, 1). Then the

following equality holds:

Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + ... + cn−1t
n−1,

where ci ∈ R, i = 0, 1, · · · , n − 1; here n is the smallest integer greater than or equal to α.

Definition 2.6 ([20]). Let Ω ⊂ R
n be a domain. A function f : Ω × R

m → R is said to

satisfy the Carathéodory conditions if

(i) f(x, u) is a continuous function of u for almost all x ∈ Ω;

(ii) f(x, u) is a measurable function of x for all u ∈ R
m.

Given a function f satisfying the Carathéodory conditions and a function u : Ω → R
m,

we can define another function by composition

N(u)(x) := f(x, u(x)).

The composition operator N is called a Nemytskii operator.

Lemma 2.7 ([22, 27], Schaefer’s fixed point theorem). Let X be a Banach space and T :

X → X be a completely continuous operator. If the set E = {u ∈ X | u = ρTu, 0 < ρ ≤ 1}

is bounded, then T has at least a fixed point in X.

3 Main results

In this section, we deal with the existence of solutions of the problem (1). Define

||u||∞ = maxt∈[0,1] |u(t)| and let X = {u : u ∈ C[0, 1] and Dα
0+u ∈ C[0, 1]} with the norm

||u|| = max{||u||∞, ||Dα
0+u||∞}. By means of the linear functional analysis theory, we can

prove that X is a Banach space.

Lemma 3.1. Let h(t) ∈ C[0, 1], α ∈ (0, 1], µ, λ ∈ R. If µ + λ 6= 1, then u ∈ AC[0, 1] is a
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solution of the following fractional differential equation:











Dα
0+u(t) = h(t), t ∈ [0, 1],

u(0) = µ

∫ 1

0

u(s)ds + λu(ξ), ξ ∈ [0, 1],
(4)

if and only if u ∈ C[0, 1] is a solution of the fractional integral equation

u(t) =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds +

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)
h(s)ds

+

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)
h(s)ds. (5)

Proof. Assume that u ∈ AC[0, 1] satisfies (4). For any t ∈ [0, 1], by Lemma 2.5, the first

equality of (4) can be written as

u(t) = Iα
0+h(t) + c0 =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds + c0,

substituting it into the second equality of (4), we have

c0 = µ

(
∫ 1

0

(

∫ s

0

(s − τ)α−1

Γ(α)
h(τ)dτ + c0)ds

)

+ λ

(
∫ ξ

0

(ξ − s)α−1

Γ(α)
h(s)ds + c0

)

=
µ

Γ(α)

∫ 1

0

h(τ)

∫ 1

τ

(s − τ)α−1ds dτ + µc0 +
λ

Γ(α)

∫ ξ

0

(ξ − s)α−1h(s)ds + λc0

= (µ + λ)c0 +
µ

Γ(α + 1)

∫ 1

0

(1 − τ)αh(τ)dτ +
λ

Γ(α)

∫ ξ

0

(ξ − s)α−1h(s)ds,

thus, we get

c0 =

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)
h(s)ds +

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)
h(s)ds.

That is

u(t) =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds +

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)
h(s)ds +

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)
h(s)ds.

On the other hand, assume that u satisfies (5). Using the fact that Dα
0+ is the left inverse

of Iα
0+ , we get (4), which completes our proof.

Lemma 3.2. Let ϕ(t) ∈ C[0, 1], α, β ∈ (0, 1], µ, λ, k ∈ R such that k 6= 1, µ + λ 6= 1,
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then a function u ∈ {u | u ∈ AC[0, 1] and Dα
0+u ∈ AC[0, 1]} is a solution of the following

fractional differential equation:


















Dβ
0+φp(D

α
0+u(t)) = ϕ(t), t ∈ [0, 1],

u(0) = µ

∫ 1

0

u(s)ds + λu(ξ),

Dα
0+u(0) = kDα

0+u(η), ξ, η ∈ [0, 1],

(6)

if and only if u ∈ C[0, 1] is a solution of the fractional integral equation

u(t) = Iα
0+φq(I

β
0+ϕ(t) + F1ϕ(t)) + F2ϕ(t)

=

∫ t

0

(t − s)α−1

Γ(α)
φq

(
∫ s

0

(s − τ)β−1

Γ(β)
ϕ(τ)dτ + F1ϕ(s)

)

ds + F2ϕ(t) (7)

where, for any t ∈ [0, 1]

F1ϕ(t) ≡
φp(k)

1 − φp(k)

∫ η

0

(η − s)β−1

Γ(β)
ϕ(s)ds,

F2ϕ(t) ≡

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)
φq

(
∫ s

0

(s − τ)β−1

Γ(β)
ϕ(τ)dτ + F1ϕ(s)

)

ds

+

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)
φq

(
∫ s

0

(s − τ)β−1

Γ(β)
ϕ(τ)dτ + F1ϕ(s)

)

ds.

Proof. At first, assume that u is a solution of (6). For any t ∈ [0, 1], by Lemma 2.5, the

first equality of (6) can be written as

φp(D
α
0+u(t)) =

∫ t

0

(t − s)β−1

Γ(β)
ϕ(s)ds + c̄0.

Then φp(D
α
0+u(0)) = c̄0. Combining the fact that Dα

0+u(0) = kDα
0+u(η), then we have

c̄0 =
φp(k)

1 − φp(k)

∫ η

0

(η − s)β−1

Γ(β)
ϕ(s)ds =: F1ϕ(t).

Hence,

φp(D
α
0+u(t)) =

∫ t

0

(t − s)β−1

Γ(β)
ϕ(s)ds + F1ϕ(t).

Then the equation (6) can be written as follows














Dα
0+u(t) = φq

(

∫ t

0

(t − s)β−1

Γ(β)
ϕ(s)ds + F1ϕ(t)

)

, t ∈ [0, 1],

u(0) = µ

∫ 1

0

u(s)ds + λu(ξ), ξ ∈ [0, 1].
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When we set h(t) = φq

(

∫ t

0

(t − s)β−1

Γ(β)
ϕ(s)ds + F1ϕ(t)

)

, then by Lemma 3.1, we have (7).

Conversely, we can obtain that the solution of (7) is the solution of the BVP (6) by

calculation. This completes the proof.

Now, we consider the fractional differential equation (1). Let us define an operator

T : X → X as following by

Tu(t) = Iα
0+φq(I

β
0+Nu(t) + F1Nu(t)) + F2Nu(t)

=

∫ t

0

(t − s)α−1

Γ(α)
φq

(
∫ s

0

(s − τ)β−1

Γ(β)
Nu(τ)dτ +

φp(k)

1 − φp(k)

∫ η

0

(η − τ)β−1

Γ(β)
Nu(τ)dτ

)

ds

+

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)

×φq

(
∫ s

0

(s − τ)β−1

Γ(β)
Nu(τ)dτ +

φp(k)

1 − φp(k)

∫ η

0

(η − τ)β−1

Γ(β)
Nu(τ)dτ

)

ds

+

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)

×φq

(
∫ s

0

(s − τ)β−1

Γ(β)
Nu(τ)dτ +

φp(k)

1 − φp(k)

∫ η

0

(η − τ)β−1

Γ(β)
Nu(τ)dτ

)

ds,

where N is a Nemytskii operator defined by

Nu(t) = f(t, u(t), Dα
0+u(t)), t ∈ [0, 1]. (8)

Clearly, a fixed point of the operator T is a solution of the problem (1).

Lemma 3.3. The operator T : X → X is completely continuous.

Proof. At first, we show that T : X → X is continuous.

Let {un} ⊆ X be a sequence with un → u in X. We will show that ‖Tun − Tu‖ → 0.

Since f : J × R
2 → R is a continuous function, it is easy to see lim

n→∞
Nun(t) = Nu(t)

uniformly for t ∈ [0, 1]. By the continuity of φq, we have

lim
n→∞

Tun(t) = lim
n→∞

(

Iα
0+φq(I

β
0+Nun(t) + F1Nun(t)) + F2Nun(t)

)

= Iα
0+φq(I

β
0+Nu(t) + F1Nu(t)) + F2Nu(t) = Tu(t) uniformly for t ∈ [0, 1],
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thus, ‖Tun − Tu‖∞ → 0 as n → ∞ in X. Moreover,

lim
n→∞

Dα
0+Tun(t) = lim

n→∞
Dα

0+

(

Iα
0+φq(I

β
0+Nun(t) + F1Nun(t)) + F2Nun(t)

)

= lim
n→∞

φq(I
β
0+Nun(t) + F1Nun(t))

= φq(I
β
0+Nu(t) + F1Nu(t)) = Dα

0+Tu(t) uniformly for t ∈ [0, 1],

thus ‖Dα
0+Tun − Dα

0+Tu‖∞ → 0 as n → ∞ in X. And as a consequence, we have ‖Tun −

Tu‖ → 0 in X. This shows that T : X → X is continuous.

Next, we prove that T (Ω) and Dα
0+T (Ω) are relatively compact in C[0, 1] respectively.

Let Ω ⊂ X be an open bounded subset, then for any u ∈ Ω, there exists M0 > 0

such that ||u|| ≤ M0. Since f is a continuous function, there exists M1 > 0 such that

|f(t, u(t), Dα
0+u(t))| ≤ M1, t ∈ [0, 1], u ∈ Ω. Then

|Iβ
0+Nu(t) + F1Nu(t)| ≤

∫ t

0

(t − s)β−1

Γ(β)
|f(s, u(s), Dα

0+u(s))|ds

+

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

∫ η

0

(η − s)β−1

Γ(β)
|f(s, u(s), Dα

0+u(s))|ds

≤
M1

Γ(β + 1)
+

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

M1η
β

Γ(β + 1)
:= L, t ∈ [0, 1],

|F2Nu(t)| =

∣

∣

∣

∣

∫ 1

0

µ(1 − s)α

(1 − µ − λ)Γ(α + 1)
φq

(

Iβ
0+Nu(s) + F1Nu(s)

)

ds

+

∫ ξ

0

λ(ξ − s)α−1

(1 − µ − λ)Γ(α)
φq

(

Iβ
0+Nu(s) + F1Nu(s)

)

ds

∣

∣

∣

∣

≤

∫ 1

0

|µ|(1 − s)α

|1 − µ − λ|Γ(α + 1)
Lq−1ds +

∫ ξ

0

|λ|(ξ − s)α−1

|1 − µ − λ|Γ(α)
Lq−1ds

=
|µ|Lq−1

|1 − µ − λ|Γ(α + 2)
+

|λ|ξαLq−1

|1 − µ − λ|Γ(α + 1)
:= L1, t ∈ [0, 1].

For t ∈ [0, 1] and u ∈ Ω, we have

|Tu(t)| = |Iα
0+φq(I

β
0+Nu(t) + F1Nu(t)) + F2Nu(t)|

≤

∫ t

0

(t − s)α−1

Γ(α)
φq(|I

β
0+Nu(s) + F1Nu(s)|)ds + |F2Nu(t)|

≤
Lq−1

Γ(α + 1)
+ L1,
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|Dα
0+Tu(t)| = |Dα

0+

(

Iα
0+φq(I

β
0+Nu(t) + F1Nu(t)) + F2Nu(t)

)

|

= |φq(I
β
0+Nu(t) + F1Nu(t))|

≤ φq(|I
β
0+Nu(t) + F1Nu(t)|) ≤ Lq−1.

Then, we get that ||Tu||∞ ≤ Lq−1

Γ(α+1)
+L1 and ||Dα

0+Tu||∞ ≤ Lq−1. Thus, T (Ω) and Dα
0+T (Ω)

are uniformly bounded in C[0, 1] respectively.

For 0 ≤ t1 < t2 ≤ 1, u ∈ Ω, we have

|Tu(t2) − Tu(t1)| =
∣

∣Iα
0+φq(I

β
0+Nu(t) + F1Nu(t))|t=t2 − Iα

0+φq(I
β
0+Nu(t) + F1Nu(t))|t=t1

∣

∣

=

∣

∣

∣

∣

1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]φq

(

Iβ
0+Nu(s) + F1Nu(s)

)

ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1φq

(

Iβ
0+Nu(s) + F1Nu(s)

)

ds

∣

∣

∣

∣

≤
Lq−1

Γ(α)

{
∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ds +

∫ t2

t1

(t2 − s)α−1ds

}

=
Lq−1

Γ(α + 1)
[tα1 − tα2 + 2(t2 − t1)

α],

Since tα is uniformly continuous on [0, 1], we obtain that Tu(t) is uniformly continuous on

[0, 1]. Thus, we get that T (Ω) ⊂ C[0, 1] is equicontinuous. Besides, for 0 ≤ t1 < t2 ≤ 1, u ∈

Ω, we also have

∣

∣(Iβ
0+Nu(t) + F1Nu(t))|t=t2 − (Iβ

0+Nu(t) + F1Nu(t))|t=t1

∣

∣

= |

∫ t2

0

(t2 − s)β−1

Γ(β)
f(s, u(s), Dα

0+u(s))ds −

∫ t1

0

(t1 − s)β−1

Γ(β)
f(s, u(s), Dα

0+u(s))ds|

≤
M1

Γ(β)

∫ t1

0

|(t2 − s)β−1 − (t1 − s)β−1|ds +

∫ t2

t1

(t2 − s)β−1ds

=
M1

Γ(β + 1)
[tβ1 − tβ2 + 2(t2 − t1)

β].

Thus Iβ
0+Nu(t)+F1Nu(t) is uniformly continuous on [0, 1]. This, together with the uniformly

continuity of φq(s) on [−D, D], D > 0, yields that Dα
0+Tu(t) = φq(I

β
0+Nu(t) + F1Nu(t)) is

uniformly continuous. Thus, we get that Dα
0+T (Ω) ⊂ X is equicontinuous too.

Hence, T (Ω) and Dα
0+T (Ω) are relatively compact in C[0, 1] respectively.

Finally, we are going to show that T is relatively compact in X.
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Assume that {un} ⊂ X is a bounded sequence. By using the Arzelá-Ascoli theorem, we

can select a subsequence {Tunk
} of {Tun} which is convergent with respect to the norm

||u||∞ in C[0, 1]. That is

lim
k→∞

||Tunk
− Tu||∞ = 0.

Then, by using the Arzelá-Ascoli theorem again, we can select a subsequence {Dα
0+Tuni

} ⊆

{Dα
0+Tunk

} which is convergent with respect to the norm ||Dα
0+u||∞ in C[0, 1]. Thus, we

have lim
i→∞

||Dα
0+Tuni

− Dα
0+Tu||∞ = 0.

Hence, lim
i→∞

||Tuni
− Tu|| = 0 in X, which shows that T is relatively compact in X.

As a consequence of above discussion, the operator T : X → X is completely continuous.

The proof is completed.

Theorem 3.4. Let f : [0, 1] × R
2 → R be continuous. Assume that

(H1) there exist nonnegative functions a, b, c ∈ C[0, 1] such that

|f(t, u, v)| ≤ a(t) + b(t)|u|p−1 + c(t)|v|p−1, t ∈ [0, 1], (u, v) ∈ R
2;

(H2) there exist constants µ, λ, k ∈ R, such that k 6= 1, µ + λ 6= 1 and

Ap−1B(||b||∞ + ||c||∞) < 1, where

A =
1

Γ(α + 1)
+

|µ| + |λ|(1 + α)ξα

|1 − µ − λ|Γ(α + 2)
, B =

1

Γ(β + 1)

(

1 + ηβ

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

)

.

Then the problems (1) has at least one solution.

Proof. Set Ω = {u ∈ X | u = ρTu, ρ ∈ (0, 1]}. Now we are going to show that the set Ω is

bounded. From (H1), we have

|F1Nu(t)| ≤

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

∫ η

0

(η − s)β−1

Γ(β)
|f(s, u(s), Dαu(s))|ds

≤

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

∫ η

0

(η − s)β−1

Γ(β)

(

a(s) + b(s)||u||p−1
∞ + c(s)||Dαu||p−1

∞

)

ds

≤
ηβ

Γ(β + 1)

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)

, ∀t ∈ [0, 1],
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which, together with the monotonicity of sq−1, yields that

|F2Nu(t)| ≤

∫ 1

0

|µ|(1 − s)α

|1 − µ − λ|Γ(α + 1)

∣

∣

∣

∣

∫ s

0

(s − τ)β−1

Γ(β)
Nu(τ)dτ + F1Nu(t)

∣

∣

∣

∣

q−1

ds

+

∫ ξ

0

|λ|(ξ − s)α−1

|1 − µ − λ|Γ(α)

∣

∣

∣

∣

∫ s

0

(s − τ)β−1

Γ(β)
Nu(τ)dτ + F1Nu(t)

∣

∣

∣

∣

q−1

ds

≤
|µ| + |λ|(1 + α)ξα

|1 − µ − λ|Γ(α + 2)

[

1

Γ(β + 1)

(

1 + ηβ

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

)

]q−1

×

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

, ∀ t ∈ [0, 1].

For u ∈ Ω, we get u(t) = ρTu(t). Thus, we obtain that

|u(t)| ≤ |Iα
0+

(

φq(I
β
0+Nu(t) + F1Nu(t))

)

| + |F2Nu(t)|

≤

∫ t

0

(t − s)α−1

Γ(α)
φq

(
∫ s

0

(s − τ)β−1

Γ(β)
|Nu(t)| + |F1Nu(t)|

)

ds + |F2Nu(t)|

≤

(

1

Γ(α + 1)
+

|µ| + |λ|(1 + α)ξα

|1 − µ − λ|Γ(α + 2)

)[

1

Γ(β + 1)

(

1 + ηβ

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

)

]q−1

×

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

≤ ABq−1

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

, ∀t ∈ [0, 1],

|Dα
0+u(t)| = |φq

(

Iβ
0+Nu(t) + F1Nu(t)

)

|

≤ φq

(
∫ s

0

(s − τ)β−1

Γ(β)
|Nu(t)| + |F1Nu(t)|

)

ds

≤

[

1

Γ(β + 1)
(1 + ηβ

∣

∣

∣

∣

φp(k)

1 − φp(k)

∣

∣

∣

∣

)

]q−1(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

≤ ABq−1

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

, ∀t ∈ [0, 1],

where for α ∈ (0, 1], 0 < Γ(α + 1) ≤ 1, A = 1
Γ(α+1)

+ |µ|+|λ|(1+α)ξα

|1−µ−λ|Γ(α+2)
≥ 1. Thus, we have

||u|| ≤ ABq−1

(

||a||∞ + (||b||∞ + ||c||∞)||u||p−1

)q−1

, u ∈ Ω.

In view of condition (H2), and from the above inequality, we can see that there exists a

constant M > 0 such that

||u||p−1 ≤

(

1 − Ap−1B(||b||∞ + ||c||∞)

)−1

||a||∞Ap−1B < M, u ∈ Ω.
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This shows that the set Ω is bounded. By Lemma 3.3, the operator T : X → X is completely

continuous. As a consequence of Schaefer’s fixed point theorem, T has at least a fixed point

which is a solution of the Eq.(1). The proof is completed.

4 Example

In this section, we give an example to illustrate the usefulness of our main results.

Example 4.1. Consider the following boundary value problem consisting of the equation















D
2

3

0+

(

φ3(D
1

2

0+)u(t)
)

=
7t2

cos t
+

u2(t)

(9 + et)
+

sin t

5 + |u(t)|
φ3(D

1

2

0+u(t)), t ∈ [0, 1],

u(0) =
1

2
u(1) +

∫ 1

0

u(s)ds, D
1

2

0+u(0) = −5D
1

2

0+u(
1

2
).

(9)

It is not difficult to verify that problem (9) is of the form (1). For the particular case

p = 3, q = 3
2
, α = 1

2
, β = 2

3
, λ = 1

2
, ξ = µ = 1, k = −5, η = 1

2
and

f(t, u, v) =
7t2

cos t
+

1

(9 + et)
u2 +

sin t

5 + |u|
|v|v, t ∈ [0, 1].

Moreover, there exist nonnegative functions a(t) =
7t2

cos t
, b(t) =

1

(9 + et)
, c(t) =

1

4
sin t, t ∈

[0, 1] such that the condition (H1) holds. Through some calculation, we can get that

||a||∞ ≈ 12.9557, ||b||∞ = 1
10

, ||c||∞ = 1
5
sin 1 ≈ 0.1683 and

A =
1

Γ(1
2

+ 1)
+

1 + 1
2
× (1 + 1

2
) × 11/2

|1 − 1 − 1
2
| Γ(1

2
+ 2)

=
1

Γ(3
2
)

+
7

2Γ(5
2
)
,

B =
1

Γ(2
3

+ 1)
(1 + (

1

2
)

2

3

∣

∣

∣

∣

φ3(−5)

1 − φ3(−5)

∣

∣

∣

∣

) =
1

Γ(5
3
)
(1 + 2−

2

3 ×
25

26
),

Ap−1B(||b||∞ + ||c||∞) = A2B
( 1

100
+

1

25
sin2 1

)

≈ 0.7748 < 1.

Obviously, the problem (9) satisfies all assumptions of Theorem 3.4. Hence, it has at least

one solution.
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