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Abstract:

This paper deals with existence of solutions to three-point BVPs in perturbed systems of

first-order ordinary differential equations at resonance. An existence theorem is established

by using the Theorem of Borsuk and some examples are given to illustrate it. A result for

computing the local degree of polynomials whose terms of highest order have no common

real linear factors is also presented.
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1 Introduction

In this paper, we consider

x′ −A(t)x = H(t, x, ε) = εF (t, x, ε) + E(t), 0 ≤ t ≤ 1, (1)

Mx(0) +Nx(η) +Rx(1) = 0, (2)

where M,N and R are constant square matrices of order n, A(t) is an n× n matrix with

continuous entries, E : [0, 1] → R continuous, F : [0, 1]× R
n × (−ε0, ε0) → R

n is a continu-

ous function and ε ∈ R such that | ε |< ε0 , and η ∈ (0, 1).
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The work is motivated by Cronin [6, 7] who considered the problem of finding periodic

solutions of perturbed systems. We adapt her approach to study three-point BVPs with

linear boundary conditions using the methods and results of Cronin [6, 7]. The three-point

BVP (1), (2) is called resonant or degenerate in the case that the rank of matrix L = n− r ,

0 < n − r < n, that is the matrix L = M +NY0(η) + RY0(1) is singular where M,N and

R are the constant n× n matrices given in (1), and Y (t) is a fundamental matrix of linear

system x′ = A(t)x and Y0(t) = Y (t)Y −1(0). In studying the resonant case, we will use a

finite-dimensional version of the Lyapunov Schmidt procedure (see [7]).

The existence of solutions to two-point, three-point, four-point or multipoint BVPs for

ODEs at resonance have been studied by a number of authors (see, for example [4], [9], [10],

[12], [13], [14], [15], [16], [20], [21], [22], [23], [24], [40], [32]), [17], [18], [19], [28], [36], [39],

[41]). A great amount of work has been completed on the existence of solutions to BVPs for

nonlinear systems of first-order ODEs at resonance which involve a small parameter (see,

for example [5], [26], [27] and [37]). The resonance case for systems of first-order difference

and differential equations has been considered by several authors (see for example Agarwal

[1], Agarwal and O’Regan [2], Agarwal and Sambandham [3], Etheridge and Rodriguez [11],

Rodriguez [33, 34, 35] and [38]). In these cases, resonance happens where the associated

linear homogeneous BVP admits nontrivial solutions.

Recently, Mohamed et al. [30] established the existence of solutions at resonance for the

following nonlinear boundary conditions

x′ −A(t)x = H(t, x, ε) = εF (t, x, ε) + E(t), 0 ≤ t ≤ 1, (3)

Mx(0) +Nx(η) +Rx(1) = ℓ+ εg(x(0), x(η), x(1)), (4)

where M,N and R are constant square matrices of order n, A(t) is an n × n matrix

with continuous entries, E : [0, 1] → R is continuous, F : [0, 1] × R
n × (−ε0, ε0) → R

n is a

continuous function where ε0 > 0 , ℓ ∈ R
n , η ∈ (0, 1) and g : R

3n → R
n is continuous. They

applied a version of Brouwer’s fixed point theorem which is due to Miranda (see Piccinini,

Stampacchia and Vidossich [31]) to prove the existence of solutions to (3), (4).

EJQTDE, 2011 No. 68, p. 2



In this paper, we make use of the Theorem of Borsuk to show the existence of solutions

of the BVP (1), (2) under suitable assumptions on the coefficients. We obtain the existence

of solutions of three-point BVPs at resonance for general BVPs. We also present a result

for computing the degree of ψ0(c) = (ψ1
0(c1, c2), ψ

2
0(c1, c2)) at (0, 0) where the ψ0(c1, c2) are

polynomials whose terms of highest order have no common real linear factors; see Cronin [7]

p. 296-297. This result is for homogeneous polynomials in two variables which need not be

odd functions while Borsuk’s Theorem holds for continuous odd functions in any dimensions.

These results generalize the degenerate case of periodic BVPs considered by Cronin [6, 7],

and also the degenerate case of three-point BVP [13, 30].

2 Preliminaries

Lemma 2.1. Consider the system

x′ = A(t)x (5)

where A(t) is an n× n matrix with continuous entries on the interval [0,1]. Let Y (t) be a

fundamental matrix of (5). Then the solution of (5) which satisfies the initial condition

x(0) = c (6)

is x(t) = Y (t)Y −1(0)c where c is a constant n-vector. Abbreviate Y (t)Y −1(0) to Y0(t).

Thus x(t) = Y0(t)c.

Lemma 2.2. [30] Let Y (t) be a fundamental matrix of (5). Then any solution of (1) and

(6) can be written as

x(t, c, ε) = Y0(t)c+

∫ t

0

Y (t)Y −1(s)H(s, x(s), ε)ds. (7)

The solution (1) satisfies the boundary conditions (2) if and only if

Lc = εN (c, α, η, ε) + d (8)
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where

L = M +NY0(η) +RY0(1),N (c, α, η, ε) = −
(

∫ η

0

NY (η)Y −1(s)F (s, x(s, c, ε), ε)ds

+

∫ 1

0

RY (1)Y −1(s)F (s, x(s, c, ε), ε)ds− g(c, x(η), x(1))
)

,

d = −
(

∫ η

0

NY (η)Y −1(s)E(s)ds+

∫ 1

0

RY (1)Y −1(s)E(s)ds− ℓ
)

,

and x(t, c, ε) is the solution of (1) given x(0) = c.

Thus (8) is a system of n real equations in ε, c1, · · · , cn where c1, · · · , cn are the compo-

nents of c. The system (8) is sometimes called the branching equations.

Next we suppose that L is a singular matrix. This is sometimes called the resonance

case or degenerate case. Now we consider the case rank L = n− r , 0 < n− r < n. Let Er

denote the null space of L and let En−r denote the complement in R
n of Er , i.e.

R
n = En−r ⊕ Er(direct sum).

Let x1, · · · , xn be a basis for R
n such that x1, · · · , xr is a basis for Er , and xr+1, · · · , xn a

basis for En−r .

Let Pr be the matrix projection onto Ker L = Er , and Pn−r = I − Pr , where I is the

identity matrix. Thus Pn−r is a projection onto the complementary space En−r of Er , and

P 2
r = Pr, P

2
n−r = Pn−r and Pn−rPr = PrPn−r = 0. (9)

Without loss of generality, we may assume

Prc = (c1, · · · , cr, 0, · · · , 0) and Pn−rc = (0, · · · , 0, cr+1, · · · , cn). (10)

We will identify Prc with cr = (c1, · · · , cr) and Pn−rc with cn−r = (cr+1, · · · , cn) whenever

it is convenient to do so.

Let H be a nonsingular n× n matrix satisfying

HL = Pn−r. (11)

Matrix H can be computed easily (see Cronin [7]). The nature of the solutions of the

branching equations depends heavily on the rank of the matrix L .
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Lemma 2.3. [30] The matrix L has rank n− r if and only if the three-point BVP (5) and

Mx(0) +Nx(η) +Rx(1) = 0 has exactly r linearly independent solutions.

Next we give a necessary and sufficient condition for the existence of solutions of x(t, c, ε)

of three-point BVPs for ε > 0 such that the solution satisfies x(0) = c where c = c(ε) for

suitable c(ε).

We need to solve (8) for c when ε is sufficiently small. The problem of finding solutions

to (1) and (2) is reduced to that of solving the branching equations (8) for c as function of

ε for | ε |< ε0 . So consider (8) which is equivalent to

L(Pr + Pn−r)c = εN ((Pr + Pn−r)c, α, η, ε) + d.

Multiplying (8) by the matrix H and using (11), we have

Pn−rc = εHN ((Pr + Pn−r)c, α, η, ε) +Hd, (12)

where

HN ((Pr + Pn−r)c, α, η, ε) = −H
(

∫ η

0

NY (η)Y −1(s)F (s, x(s, c, ε), ε)ds

+

∫ 1

0

RY (1)Y −1(s)F (s, x(s, c, ε), ε)ds− g(c, x(η), x(1))
)

and

Hd = −H
(

∫ η

0

NY (η)Y −1(s)E(s)ds+

∫ 1

0

RY (1)Y −1(s)E(s)ds− ℓ
)

.

Since the matrix H is nonsingular, solving (8) for c is equivalent to solving (12) for c.

The following theorem due to Cronin [6, 7] gives a necessary condition for the existence of

solutions to the BVP (1) and (2).

Theorem 2.4. A necessary condition that (12) can be solved for c, with | ε | < ε0 , for some

ε0 > 0 is PrHd = 0.

Definition 2.5. [30] Let Er denote the null space of L and let En−r denote the complement

in R
n of Er . Let Pr be the matrix projection onto Ker L = Er , and Pn−r = I−Pr , where

I is the identity matrix. Thus Pn−r is a projection onto the complementary space En−r of
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Er . If En−r is properly contained in R
n then Er is an r−dimensional vector space where

0 < r < n. If c = (c1, · · · , cn), let Prc = cr and Pn−r = cn−r , then define a continuous

mapping Φε : R
r → R

r , given by

Φε(c1, · · · , cr) = PrHN (cr ⊕ cn−r(cr, ε), α, η, ε), (13)

where cn−r(cr, ε) = cn−r is a differentiable function of cr and ε , PrHN is interpreted as

(HN1, · · · , HNr). Similarly we will sometimes identify Pn−rc and cn−r . Setting ε = 0, we

have

Φ0(c1, · · · , cr) = PrHN (cr ⊕ Pn−rHd, α, η, 0),

where cn−r(cr, 0) = Pn−rHd ; note that from the context cn−r(cr, 0) = Pn−rHd is interpreted

as cn−r(cr, 0) = (Hdr+1, · · · , Hdn). If Er = R
n and Pr = I , then Pn−r = 0. Since Pn−r = 0

it follows that the matrix H is the identity matrix. Thus define a continuous mapping

Φε : R
n → R

n , given by Φε(c) = N (c, α, η, ε). Setting ε = 0, we have Φ0(c) = N (c, α, η, 0).

3 Main Results

Now we state the well known Theorem of Borsuk (see, for example, Piccinini, Stampacchia

and Vidossich [31] p. 211).

Theorem 3.1. Let Bk ⊆ R
n be a bounded open set that is symmetrical with respect to the

origin (that is Bk = −Bk ) and contains the origin. If Φ0 : B̄k → R
n is continuous and

antipodal

Φ0(c) = −Φ0(−c), (c ∈ ∂Bk)

and if 0 6∈ Φ0(∂Bk), then d(Φ0, Bk, 0) is an odd number (and thus nonzero).

Next we introduce the computation of the topological degree of a mapping in Euclidean

2-space defined by homogeneous polynomials. The methods and notations described below
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come from Cronin [7, 8]. Let

Φ1
0(c1, c2) = C1

n
∏

i=1

(c1 − aic2)
pi,

Φ2
0(c1, c2) = C2

m
∏

j=1

(c1 − bjc2)
pj ,

where C1 , C2 are constants. (We include the possibility that some ai = ∞ or some bj = ∞ ;

equivalently, that the factor y−aix is equal to −x or the factor y−bjx is equal to −x). The

topological degree is resolved by examining the changes of sign of Φ1
0(c1, c2) and Φ2

0(c1, c2) as

c1 , c2 varies over the boundary of the ball Bk with centre at the origin and arbitrary radius

when computing the topological degree of (Φ1
0,Φ

2
0). We may omit the following factors since

none of them affect the degree of (Φ1
0,Φ

2
0) on Bk at 0.

1. Factors (c1 − aic2) and (c1 − bjc2) where ai and bj have complex conjugates

in Φ1
0 , respectively, Φ2

0 .

2. Factors (c1 − aic2) or (c1 − bjc2) which appear with even exponents where ai

and bj are real.

3. Factors (c1 − aic2) and (c1 − ai+1c2), if there exists a pair ai , ai+1 (i < i+ 1)

such that no bj lies between them (i.e., there is no bj such that ai < bj < ai+1 ).

Similarly for pairs bj , bj+1 .

4. Factors (c1 − arc2) and (c1 − asc2), if ar and as are the smallest and largest

of the array of numbers a1, · · · , an, b1, · · · , bm . Similarly factors (c1 − brc2) and

(c1 − bsc2), if br and bs are the smallest and largest of the array of numbers

a1, · · · , an, b1, · · · , bm .

If there are no remaining factors in Φ1
0 or Φ2

0 , then the topological degree is zero. We

now state the second main theorem in this paper (see Cronin [7] p. 38-40).

Theorem 3.2. If we assume that the terms of highest degree of Φ1
0(c1, c2) and Φ2

0(c1, c2)

are homogenous polynomials with no common real linear factors after reduction using the

EJQTDE, 2011 No. 68, p. 7



conditions 1, 2, 3, and 4 above, then

a1 < b1 < a2 < b2 < · · · < ap < bp

or

b1 < a1 < b2 < a2 < · · · < bp < ap

for some integer p ≤ min{m,n}. In the first case the degree is p, while in the second case

the degree is −p. Hence

d(Φ0, Bk, 0) 6= 0

for Bk , a ball with centre at the origin and sufficiently large radius. Then for sufficiently

small ε, | ε |< ε0

d(Φε, Bk, 0) = d(Φ0, Bk, 0) 6= 0.

Hence there is a solution x(t, c, ε) of the BVP (1), (2) with x(0, c, ε) = c where c ∈ Bk ⊂ R
2

and | ε |< ε0 for some ε0 > 0.

Remark 3.3. In this paper, we find that an arbitrarily small change in A(t) will affect the

structure of the set of solutions, and the value of the local degree will depend on how the

function f(t, y, y′, ε) is changed.

4 Applications and Examples

In this section, we apply our results from the previous section and we start by considering

the degenerate case for α =
√

2 in the interval [0, 2π] with rank L(α=
√

2) = 1 < 2. Thus, we

consider

y′′ + y = εf(t, y, y′, ε), t ∈ [0, 2π], (14)

y(2π) = αy(η), y′(0) = 0, (15)

where η = π/4, α =
√

2 and f ∈ C([0, 1] × R
2 × (−ε0, ε0); R).
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Then we study the totally degenerate case, rank L = 0 for general boundary conditions

and give an example where Borsuk’s Theorem or Theorem 3.2 applies. We consider

y′′ + 16π2y = εf(t, y, y′, ε), t ∈ [0, 1], (16)

2y(0) − y(1/2)− y(1) = 0, (17)

−y′(1/2) + y′(1) = 0, (18)

where η = 1/2 ∈ (0, 1), f ∈ C([0, 1] × R
2 × (−ε0, ε0); R).

We will use the following facts in solving the examples.
∫ 1/2

0

sinn 4πs cosm 4πs ds 6= 0,

∫ 1

0

sinn 4πs cosm 4πs ds 6= 0 (19)

if and only if both n and m are even.
∫ 1

0

sinn 2πs cosm 2πs ds 6= 0 (20)

if and only if both n and m are even.

Rank L(α=
√

2) = 1 < 2, α =
√

2 and y′(0) = 0.

The BVP (14), (15) is equivalent to




x′1

x′2



 =





0 1

−1 0









x1

x2



 + ε





0

f(t, x1, x2, ε)



 , (21)





0 0

0 1









x1(0)

x2(0)



 +





−√
2 0

0 0









x1(π/4)

x2(π/4)



 +





1 0

0 0









x1(2π)

x2(2π)



 =





0

0



 , (22)

where x =





x1

x2



, A =





0 1

−1 0



, M =





0 0

0 1



 , N =





−√
2 0

0 0



 , R =





1 0

0 0



,

F (t, x, ε) =





0

f(t, x1, x2, ε)



 . We obtain Y (t) =





cos t sin t

− sin t cos t



 , Y0(t) =





cos t sin t

− sin t cos t



,
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Y0(2π) =





cos 2π sin 2π

− sin 2π cos 2π



 , Y0(π/4) =





cosπ/4 sin π/4

− sin π/4 cos π/4



 and

Y (t)Y −1(s) = eA(t−s) =





cos(t− s) sin(t− s)

− sin(t− s) cos(t− s)



. Then by Lemma 2.2, solving the

problem (21), (22) is reduced to that of solving L(α=
√

2)c = εN (c, α, η, ε) + d for c. Thus

we find L(α=
√

2) and N (c, α, η, ε).

L(α=
√

2) = M +NY0(π/4) +RY0(2π)

=





0 0

0 1



 +





−√
2 0

0 0









√
2/2

√
2/2

−√
2/2

√
2/2



 +





1 0

0 0









1 0

0 1





=





0 −1

0 1



 ,

and

N (c, α, η, ε) = −
∫ π/4

0





−√
2 0

0 0



 eA(π
4
−s)F (s, x(s, c, ε), ε) ds

−
∫ 2π

0





1 0

0 0



 eA(2π−s)F (s, x(s, c, ε), ε) ds

= (N1(c, α, η, ε), 0);

where

N1(c, α, η, ε) =

∫ π/4

0

√
2 sin(π/4 − s)f(s, x1(s, c, ε), x2(s, c, ε), ε)ds

−
∫ 2π

0

sin(2π − s)f(s, x1(s, c, ε), x2(s, c, ε), ε)ds,

and d = 0. Thus we have rank L(α=
√

2) = 1. Let e1 =





1

0



 be a basis for Ker(Lα=
√

2), and

Ker(Lα=
√

2)=Span e1 . Let P1 be the matrix projection onto Ker(Lα=
√

2), P1 =





1 0

0 0



 .

So P2 = I − P1 =





0 0

0 1



 . Set H =





1 1

0 1



 so that HL(α=
√

2) = P2 . Since d = 0, it
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follows that P1Hd = 0. Therefore a necessary condition of Theorem 2.4 is satisfied. Then we

apply Theorem 3.2. In order to study Φ0 , we must first obtain x(t, c, 0), that is the solution

of x′ = A(t)x. By Lemma 2.1, x′ = A(t)x has a solution x(t) with x(0) = c = (c1, 0)T ,

where x2(0) = 0 = c2 . Thus (14), (15) has a solution if ε = 0 namely x1(t, c, 0) =

c1 cos t, x2(t, c, 0) = −c1 sin t. We compute

P1HN (c, α, η, ε) =





1 0

0 0









1 1

0 1









N1(c, α, η, ε)

0





=





N1(c, α, η, ε)

0



 .

Thus Φε(c1) = N1(c
1, α, η, ε), where P2c = c2 =

(

0
c2

)

and P1c = c1 =
(

c1
0

)

. Setting

ε = 0, we have Φ0(c1) = N1(c
1, α, η, 0), where c2(c1, 0) = P2Hd = 0. In system (21), let

f(t, x1, x2, ε) = ax3
1+bx2 so that f ∈ C([0, 2π]×R

2×(−ε0, ε0); R). Thus f(t, c1 cos t,−c1 sin t, 0) =

ac31 cos3 t− bc1 sin t. Using condition (20), and thus

Φ0(c1) =

∫ π/4

0

√
2 sin(π/4 − s)f(s, c1 cos s,−c1 sin s, 0)ds

−
∫ 2π

0

sin(2π − s)f(s, c1 cos s,−c1 sin s, 0)ds.

=

∫ π/4

0

√
2 sin(π/4 − s)(ac31 cos3 s− bc1 sin s)ds

−
∫ 2π

0

sin(2π − s)(ac31 cos3 s− bc1 sin s)ds

=

∫ π/4

0

{ac31 cos4 s− bc1 cos s sin s− ac31 sin s cos3 s+ bc1 sin2 sds− bc1π}ds

= ac31(
3π

32
+

1

16
) − bc1(

7π

8
+

1

2
).

Since Φ0(c1) is odd, the local degree is odd and therefore nonzero. Then for sufficiently large

Bk and sufficiently small ε , d(Φε, Bk, 0) = d(Φ0, Bk, 0) 6= 0.

Next we apply Borsuk’s Theorem in Example 1, and then Theorem 3.2 in Example 2 to

find the local degree of a mapping in Euclidean 2-space defined by homogeneous polynomials.
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Rank L = 0.

The BVP (16), (17) and (18) is equivalent to





x′1

x′2



 =





0 1

−16π2 0









x1

x2



 + ε





0

f(t, x1, x2, ε)



 (23)





2 0

0 0









x1(0)

x2(0)



 +





−1 0

0 −1









x1(1/2)

x2(1/2)



 +





−1 0

0 1









x1(1)

x2(1)



 =





0

0



 (24)

where x =





x1

x2



, A =





0 1

−16π2 0



 , M =





2 0

0 1



 , N =





−1 0

0 −1



 , R =





−1 0

0 1



.

Y (t) = eAt =





cos 4πt sin 4πt/(4π)

−4π sin 4πt cos 4πt



, Y −1(t) =





cos 4πt − sin 4πt/(4π)

4π sin 4πt cos 4πt



 ,

Y0(t) = Y (t)Y −1(0) =





cos 4πt sin 4πt/(4π)

−4π sin 4πt cos 4πt



 , Y0(1/2) =





1 0

0 1



, and

Y0(1) =





1 0

0 1



. Then by Lemma 2.2, the problem of solving (23), (24) is reduced to that

of solving Lc = εN (c, α, η, ε) + d for c. Thus we find L and N (c, α, η, ε).

L = M +NY0(1/2) +RY0(1)

=





2 0

0 0



 +





−1 0

0 −1









1 0

0 1



 +





−1 0

0 1









1 0

0 1





=





0 0

0 0



 .

Thus we have rank L = 0. Let e1 =





1

0



 , e2 =





0

1



 , is a basis for Ker(L), and

Ker(L) = Span(e1, e2). Let P1 be the matrix projection onto Ker(L), P1 =





1 0

0 1



 . So
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P2 = I − P1 =





0 0

0 0



 . Set H =





1 0

0 1



 so that HL = P2 . We obtain

N (c, α, η, ε) = −
∫ 1/2

0





−1 0

0 −1









1 0

0 1









cos 4πs − sin 4πs/(4π)

4π sin 4πs cos 4πs





×





0

f(s, x1(s, c, ε), x2(s, c, ε), ε)



 ds

−
∫ 1

0





−1 0

0 1









1 0

0 1









cos 4πs − sin 4πs/(4π)

4π sin 4πs cos 4πs





×





0

f(s, x1(s, c, ε), x2(s, c, ε), ε)



 ds

=

∫ 1/2

0





− sin 4πs/(4π)

cos 4πs



 f(s, x1(s, c, ε), x2(s, c, ε), ε))ds

+

∫ 1

0





− sin 4πs/(4π)

− cos 4πs



 f(s, x1(s, c, ε), x2(s, c, ε), ε))ds

=





N1(c, α, η, ε)

N2(c, α, η, ε)



 ,

where

N1(c, α, η, ε) = −
∫ 1/2

0

sin 4πs/(4π)f(s, x1(s, c, ε), x2(s, c, ε), ε))ds

−
∫ 1

0

sin 4πs/(4π)f(s, x1(s, c, ε), x2(s, c, ε), ε))ds,

N2(c, α, η, ε) = −
∫ 1

1/2

cos 4πsf(s, x1(s, c, ε), x2(s, c, ε), ε))ds,

and d = 0. Since d = 0, it follows that P1Hd = 0. Therefore a necessary condition of

Theorem 2.4 is satisfied. Then we apply Theorem 3.2. In order to study Φ0 , we must first

obtain x(t, c, 0), that is the solution of x′ = A(t)x. By Lemma 2.1, x′ = A(t)x has a
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solution x(t) with x(0) = c = (c1, c2)
T . Thus (16), (17), (18) has a solution if ε = 0 namely

x1(t, c, 0) = c1 cos 4πt+ c2 sin 4πt/(4π), x2(t, c, 0) = −4πc1 sin 4πt+ c2 cos 4πt. We compute

P1HN (c, α, η, ε) =





1 0

0 1









1 0

0 1









N1(c, α, η, ε)

N2(c, α, η, ε)



 .

Thus

Φε(c1, c2) =





N1(c, α, η, ε)

N2(c, α, η, ε)



 .

Setting ε = 0, we have

Φ0(c1, c2) =





N1(c, α, η, 0)

N2(c, α, η, 0)



 .

Now we state an example where the value of the local degree depends on the function

f(t, y, y′, ε).

Example 1

In system (23), let f(t, x1, x2, ε) = x3
2 so that f ∈ C([0, 2π] × R

2 × (−ε0, ε0); R). Then

f(t, c1 cos 4πt+ c2 sin 4πt/(4π),−4πc1 sin 4πt+ c2 cos 4πt, 0) = −64π3c31 sin3 4πt

+48π2c21c2 sin2 4πt cos 4πt− 12πc1c
2
2 sin 4πt cos2 4πt+ c32 cos3 4πt.

Using condition (19), we obtain

Φ1
0(c1, c2)

= −
∫ 1/2

0

{sin 4πs

4π
f(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

−
∫ 1

0

{sin 4πs

4π
f(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

= −
∫ 1/2

0

{16π2c31 sin4 4πs+ 3c1c
2
2 sin2 4πs cos2 4πs}ds

−
∫ 1

0

{16π2c31 sin4 4πs+ 3c1c
2
2 sin2 4πs cos2 4πs}ds

= 9π2c31 +
9c1c

2
2

16
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and

Φ2
0(c1, c2)

= −
∫ 1

1/2

cos 4πs{f(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

= −
∫ 1/2

0

{48π2c21c2 sin2 4πs cos2 4πs+ c22 cos4 4πs}ds

= −3π2c21c2 +
3c32
16π

.

Since Φ0(c1, c2) = (Φ1
0(c1, c2),Φ

2
0(c1, c2)) is continuous, odd on ∂Bk and 0 6∈ Φ0(∂Bk), the

local degree is odd and therefore nonzero. Then for sufficiently large Bk and sufficiently

small ε , d(Φε, Bk, 0) = d(Φ0, Bk, 0) 6= 0.

Example 2

In system (23), let f(t, x1, x2, ε) = x2
1 cos 4πt+ x2 cos2 4πt+ x1 sin2 4πt so that

f ∈ C([0, 2π] × R
2 × (−ε0, ε0); R). Then

f(t, c1 cos 4πt+ c2 sin 4πt/(4π),−4πc1 sin 4πt+ c2 cos 4πt, 0) = c21 cos3 4πt

+
c1c2
2π

cos2 4πt sin 4πt+
c22 cos 4πt sin2 4πt

16π2
− 4πc1 cos2 4πtsin4πt

+c2 cos3 4πt+ c1 sin2 4πt cos 4πt+
c2
4π

sin3 4πt.

Using condition (19), we obtain

Φ1
0(c1, c2)

= −
∫ 1/2

0

{sin 4πs

4π
f(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

−
∫ 1

0

{sin 4πs

4π
f(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

= −
∫ 1/2

0

{[c1c2
8π2

− c1] cos2 4πs sin2 4πs+
c2 sin4 4πs

16π2
}ds

−
∫ 1

0

{[c1c2
8π2

− c1] cos2 4πs sin2 4πs+
c2 sin4 4πs

16π2
}ds

=
−3c1c2
128π2

+
3c1
16

− 9c2
64π2
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and

Φ2
0(c1, c2)

= −
∫ 1

1/2

{cos 4πsf(s, c1 cos 4πs+ c2 sin 4πs/(4π),−4πc1 sin 4πs+ c2 cos 4πs, 0)}ds

= −
∫ 1/2

0

{(c21 + c2) cos4 4πs+ (c22 + c1) cos2 4πs sin2 4πs}ds

= −(
3πc21

4
+

c22
256π2

) − (
3πc2

4
+
c1
16

).

Let

Φ1
0(c1, c2) = p1(c1, c2) + q1(c1, c2)

Φ2
0(c1, c2) = p2(c1, c2) + q2(c1, c2)

where

p1(c1, c2) = −3c1c2
128π2 , q1 = 3c1

16
− 9c2

64π2 ,

p2(c1, c2) = −(
3πc2

1

4
+

c2
2

256π2 ), q2 = −(3πc2
4

+ c1
16

).

Hence p1(c1, c2) is a polynomial homogeneous of degree m = 2 in c1 and c2 , p2(c1, c2) is a

polynomial homogeneous of degree n = 2 in c1 and c2 , and qi(c1, c2) consists of the term

kc
l1(i)
1 c

l2(i)
2 where l

(i)
1 + l

(i)
2 = 1 < min(m,n) = 2 for i = 1, 2. Thus we define ψ0 to be the

mapping defined by

ψ0(c1, c2) → (p1(c1, c2), p2(c1, c2)).

Since p1 and p2 have no common real linear factors, then d(ψ0, Bk, 0) is defined for Bk of

arbitrary radius. After reduction using the conditions 1 and 4 in Theorem 3.2, ψ0 is a

constant. Hence d(ψ0, Bk, 0) = 0. If the radius of Bk is sufficiently large then d(Φ0, Bk, 0) =

d(ψ0, Bk, 0). Hence for sufficiently large Bk and sufficiently small ε , d(Φε, Bk, 0) = 0. Do

the solutions exist? The answer is yes, y ≡ 0 for each ε < ε0 , in fact this is the only

solution of the BVP (16), (17), (18). The equation Φ0(c1, c2) = (0, 0) has just one solution

(c1, c2) = (0, 0). This implies y(t) = x1(t, c, 0) = c1 cos 4πt + c2 sin 4πt/(4π) ≡ 0. Thus

a necessary and sufficient condition for BVP (16), (17), (18) to have trivial solution is

f(t, 0, 0, ε) ≡ 0 for t ∈ [0, 2π], ε < ε0 .
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