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EXISTENCE AND APPROXIMATION OF SOLUTIONS TO

THREE-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL

DIFFERENTIAL EQUATIONS

RAHMAT ALI KHAN

Abstract. In this paper, we study existence and approximation of solutions to some three-

point boundary value problems for fractional differential equations of the type

cDq

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < q < 2

u′(0) = 0, u(1) = ξu(η),

where 0 < ξ, η ∈ (0, 1) and cDq

0+ is the fractional derivative in the sense of Caputo. For

the existence of solution, we develop the method of upper and lower solutions and for the

approximation of solutions, we develop the generalized quasilinearization technique (GQT).

The GQT generates a monotone sequence of solutions of linear problems that converges

monotonically and quadratically to solution of the original nonlinear problem.

1. Introduction

The study of fractional differential equations is of fundamental concern due to its important

applications to real world problems. Many problems in applied sciences such as engineering

and physics can be modeled by differential equations of fractional order [1, 2, 3]. It has

been observed that the models with fractional differential equations provide more realistic

and accurate results compared to the analogous models with integer order derivatives, see,

[4, 5]. Existence theory for solutions to boundary value problems for fractional differential

equations have attracted the attention of many researcher quite recently, see for example

[6, 7, 8, 9, 10, 11, 12] and the references therein. However, the method of upper and lower

solutions for the existence of solution is less developed and hardly few results can be found in

the literature dealing with the upper and lower solutions method to boundary value problems

for fractional differential equations [13, 14, 15, 16, 17]. The method of quasilinearization is

somewhat developed for initial value problems for fractional differential equations [18, 19,

20, 21] but results dealing with quasilinearization to boundary value problems for fractional

differential equations can hardly be seen in the literature. The paper seem to be an attempt
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to develop the generalized quasilinearization to three-point boundary value problems for

fractional differential equations.

2. Preliminaries

We recall some basic definitions and lemmas from fractional calculus [4].

Definition 2.1. The fractional integral of order q > 0 of a function g : (0,∞) → R is defined

by

Iq
0+g(t) =

1

Γ(q)

∫ t

0

g(s)

(t − s)1−q
ds,

provided the integral converges.

Definition 2.2. The Caputo fractional derivative of order q > 0 of a function g ∈ ACm[0, 1]

is defined by

cDq
0+g(t) =

1

Γ(n − q)

∫ t

0

g(n)(s)

(t − s)q−n+1
ds, where n = ⌈q⌉,

provided that the right side is pointwise defined on (0,∞).

Remark 2.3. Under the natural conditions on g(t) the Caputo fractional derivative becomes

conventional integer order derivative of a function g(t) as q → n.

Lemma 2.4. For q > 0, g ∈ C(0, 1)∩L(0, 1), the homogenous fractional differential equation
cDq

0+g(t) = 0 has a solution g(t) = c1 + c2t + c3t
2 + ... + cnt

n−1, where ci ∈ R, i = 0, 1, ..., n

and n = ⌈q⌉ + 1.

Now, we consider the following nonlinear boundary value problem for fractional differential

equation

−cD0+u(t) = f(t, u(t)), t ∈ (0, 1), 1 < q < 2

u′(0) = 0, u(1) = ξu(η),
(2.1)

where ξ, η ∈ (0, 1) and the nonlinearity f : [0; 1] × R → R is continuous.

Definition 2.5. A function α is called a lower solution of the BVP (2.1), if α ∈ C[0, 1] and

satisfies

−cDq
0+α(t) ≤ f(t, α(t)), t ∈ (0, 1), α′(0) ≥ 0, α(1) ≤ ξα(η).

An upper solution β ∈ C[0, 1] of the BVP (2.1) is defined similarly by reversing the inequality.
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We know that for h ∈ C[0, 1], the linear problem

−cDq
0+u(t) = h(u(t)), t ∈ (0, 1), 1 < q < 2, u′(0) = a, u(1) − ξu(η) = b,

has a unique solution given by

u(t) =
1

1 − ξ
[b + a{ξ(η − t) − (1 − t)}] +

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1],(2.2)

where

G(t, s) =































(1−s)q−1
−(1−ξ)(t−s)q−1

−ξ(η−s)q−1

(1−ξ)Γ(q)
, 0 ≤ t ≤ 1, η ≥ s,

(1−s)q−1
−(1−ξ)(t−s)q−1

(1−ξ)Γ(q)
, 0 < η <≤ s ≤ t ≤ 1,

(1−s)q−1
−ξ(η−s)q−1

(1−ξ)Γ(q)
, 0 ≤ t ≤ s ≤ η < 1,

(1−s)q−1

(1−ξ)Γ(q)
, 0 ≤ t ≤ s ≤ 1, η ≤ s

is the Green’s function. The Green’s function G(t, s) > 0 for all t, s ∈ (0, 1). Hence, if

a ≤ 0, b ≥ 0 and h(t) ≥ 0 on [0, 1], then any solution u of the linear BVP is positive on

[0, 1]. Thus, we have the following comparison results.

Comparison results: If u′(0) ≤ 0, u(1) ≥ ξu(η) and cDq
0+u(t) ≤ 0 on (0, 1), then u ≥ 0 on

(0, 1).

If u′(0) ≥ 0, u(1) ≤ ξu(η) and cDq
0+u(t) ≥ 0 on (0, 1), then u ≤ 0 on (0, 1).

3. Main Results

Theorem 3.1. Assume that there exist lower and upper solutions α, β ∈ C[0, 1] of the BVP

(2.1) such that α ≤ β on [0, 1]. Assume that f : [0, 1] × R → (0,∞) is continuous and

non-decreasing with respect to u on [0, 1]. Then the BVP (2.1) has C[0, 1] positive solution

u such that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

Proof. Define the modification of f ,

(3.1) F (t, u) =



















f(t, β(t)), if u ≥ β(t),

f(t, u(t)), if α(t) ≤ u ≤ β(t),

f(t, α(t)), if u ≤ α(t).

Clearly, F is continuous, bounded on [0, 1] × R and is non-decreasing with respect to u for

each fixed t ∈ [0, 1]. Hence, the modified BVP

−cDq
0+u(t) = F (t, u(t)), 1 < q < 2, t ∈ (0, 1), u′(0) = 0, u(1) = ξu(η),(3.2)
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has a solution u. Moreover, we note that a solution u of the problem (3.2) such that

α(t) ≤ u ≤ β(t), t ∈ [0, 1], is a solution of the BVP (2.1). We only need to show that

α(t) ≤ u ≤ β(t), t ∈ [0, 1], where u is solution of the BVP (3.2). In view of the non-

decreasing property of f , we obtain

(3.3) f(t, α(t)) ≤ F (t, u) ≤ f(t, β(t)), (t, u) ∈ [0, 1] × R.

Set m(t) = α(t) − u(t), t ∈ [0, 1], then, m′(0) ≥ 0, m(1) ≤ ξm(η). Using the definition of

lower solution and (3.3), we obtain

−cDq
0+m(t) = −cDq

0+α(t) + cDq
0+u(t) ≤ f(t, α(t)) − F (t, u(t)) ≤ 0, t ∈ [0, 1].

By comparison result m(t) ≤ 0, t ∈ [0, 1]. Similarly, we can show that u(t) ≤ β(t), t ∈

[0, 1]. �

Now, to develop the the iterative scheme, the generalized quasilinearization, choose a

function φ(t, u) with φ, φu, φuu ∈ C([0, 1] × R) such that ∂2

∂u2 φ(t, u) ≥ 0 for every t ∈ [0, 1]

and u ∈ [ᾱ, β̄] and

(3.4)
∂2

∂u2
[f(t, u) + φ(t, u)] ≥ 0 on [0, 1] × [ᾱ, β̄],

where ᾱ = min{α(t) : t ∈ [0, 1]} and β̄ = max{β(t) : t ∈ [0, 1]}.

Define F : [0, 1] × R → R by F (t, u) = f(t, u) + φ(t, u). Note that F ∈ C([0, 1] × R) and

(3.5)
∂2

∂u2
F (t, u) ≥ 0 on [0, 1] × [ᾱ, β̄],

which implies that

(3.6) f(t, u) ≥ f(t, y) + Fu(t, y)(u− y) − [φ(t, u) − φ(t, y)], t ∈ [0, 1],

where u, y ∈ [ᾱ, β̄]. Using the non decreasing property of φu with respect to u on [ᾱ, β̄] for

each t ∈ [0, 1], we obtain

(3.7) φ(t, u) − φ(t, y) = φu(t, c)(u − y) ≤ φu(t, β̄)(u − y) for u ≥ y,

where u, y ∈ [ᾱ, β̄] such that y ≤ c ≤ u. Substituting in (3.6), we have

f(t, u) ≥ f(t, y) + [Fu(t, y) − φu(t, β̄)](u − y) ≥ f(t, y) + λ(u − y), for u ≥ y,(3.8)

where λ = min{0, min{Fu(t, ᾱ)−φu(t, β̄) : t ∈ [0, 1]}}. We note that λ ≤ Fu(t, z)−φu(t, β̄) ≤

fu(t, β̄) : t ∈ [0, 1].
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Define g : [0, 1] × R × R → R by

g(t, u, y) = f(t, y) + λ(u − y).(3.9)

We note that g(t, u, y) is continuous on [0, 1] × R × R and for u, y ∈ [ᾱ, β̄], using (3.8) and

(3.9), we have

(3.10)







f(t, u) ≥ g(t, u, y), for u ≥ y,

f(t, u) = g(t, u, u).

Now, we develop the iterative scheme to approximate the solution. As an initial approxima-

tion, we choose w0 = α and consider the linear problem

−cD0+u(t) = g(t, u(t), w0(t)), t ∈ [0, 1], 1 < q < 2, u′(0) = 0, u(1) = ξu(η).(3.11)

The definition of lower and upper solutions and (3.10) imply that

g(t, w0(t), w0(t)) = f(t, w0(t)) ≥ −cDq
0+w0(t), t ∈ [0, 1], w′

0(0) ≥ 0, w0(1) ≤ ξw0(η),

g(t, β(t), w0(t)) ≤ f(t, β(t)) ≤ −cDq
0+β(t), t ∈ [0, 1], β ′(0) ≤ 0, β(1) ≥ ξβ(η),

which imply that w0 and β are lower and upper solutions of (3.11). Hence by Theorem 3.1,

there exists a solution w1 ∈ C[0, 1] of (3.11) such that w0 ≤ w1 ≤ β on [0, 1]. Again, from

(3.10) and the fact that w1 is a solution of (3.11), we obtain

−cDq
0+w1(t) = g(t, w1(t), w0(t)) ≤ f(t, w1(t)), t ∈ [0, 1], w′

1(0) = 0, w1(1) = ξw1(η)(3.12)

which implies that w1 is a lower solution of (2.1).

Similarly, we can show that w1 and β are lower and upper solutions of the linear problem

−cDq
0+u(t) = g(t, u(t), w1(t)), t ∈ [0, 1], 1 < q < 2, u′(0) = 0, u(1) = ξu(η).(3.13)

Hence by Theorem 3.1, there exists a solution w2 ∈ C[0, 1] of (3.13) such that w1 ≤ w2 ≤

β on [0, 1]. Continuing in the above fashion, we obtain a bounded monotone sequence {wn}

of solutions of linear problems satisfying

(3.14) w0 ≤ w1 ≤ w2 ≤ w3 ≤ ... ≤ wn ≤ β on [0, 1],

where the element wn of the sequence is a solution of the linear problem

−cDq
0+u(t) = g(t, u(t), wn−1(t)), t ∈ [0, 1], 1 < q < 2, u′(0) = 0, u(1) = ξu(η)
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and is given by

(3.15) wn(t) =

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds, t ∈ [0, 1].

The monotonicity and uniform boundedness of the sequence {wn} implies the existence of a

pointwise limit w on [0, 1] such that wn → w uniformly. The dominated convergence theorem

implies that for each t ∈ [0, 1],

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds →

∫ 1

0

G(t, s)f(s, w(s))ds.

Passing to the limit as n → ∞, (3.15) yields w(t) =
∫ 1

0
G(t, s)f(s, w(s))ds, t ∈ [0, 1], which

implies that w is a solution of (2.1).

To show that the convergence is quadratic, set en(t) = w(t) − wn(t), t ∈ [0, 1], where w

is a solution of (2.1). Then, en(t) ≥ 0 on [0, 1] and from the boundary conditions, we have

e′n(0) = 0, en(1) = ξen(η). Moreover, for every t ∈ [0, 1], we have

−cDq
0+en(t) = F (t, w(t)) − φ(t, w(t)) − f(t, wn−1(t)) − λ(wn(t) − wn−1(t)).(3.16)

Using the mean value theorem and the fact that φuu ≥ 0 on [0, 1] × [ᾱ, β̄], we obtain,

φ(t, w(t)) ≥ φ(t, wn−1(t)) + φu(t, wn−1(t))(w(t) − wn−1(t))

≥ φ(t, wn−1(t)) + φu(t, ᾱ)(w(t) − wn−1(t)),

F (t, w(t)) = F (t, wn−1(t)) + Fu(t, wn−1(t))(w(t) − wn−1(t)) +
Fuu(t, δ)

2
(w(t) − wn−1(t))

2

≤ F (t, wn−1(t)) + Fu(t, β̄)(w(t) − wn−1(t)) +
Fuu(t, δ)

2
(w(t) − wn−1(t))

2,

where wn−1 ≤ δ ≤ w. Consequently,

F (t, w(t)) − φ(t, w(t)) ≤ f(t, wn−1(t)) + [Fu(t, β̄) − φu(t, ᾱ)](w(t) − wn−1(t))

+
Fuu(x, δ)

2
(w(t) − wn−1(t))

2.
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Hence the equation (3.16) can be rewritten as

−Dqen(t) ≤ [Fu(t, β̄) − φu(t, ᾱ)]en−1(t) +
Fuu(t, δ)

2
(en−1(t))

2 − λ(en−1(t) − en(t))

≤ [Fu(t, β̄) − φu(t, ᾱ) − λ]en−1(t) + λen(t) +
Fuu(t, δ)

2
(en−1(t))

2

≤ [Fu(t, β̄) − φu(t, ᾱ) − λ]en−1(t) +
Fuu(t, δ)

2
(en−1(t))

2 ≤ ρen(t) + d‖en−1‖
2, t ∈ [0, 1],

(3.17)

where ρ = max{Fu(t, β̄) − φu(t, ᾱ) − λ : t ∈ [0, 1]} ≥ 0 and d = max{Fuu(t,y)
2

: y ∈ [ᾱ, β̄]}.

By comparison result, en(t) ≤ z(t), t ∈ [0, 1], where z(t) is a unique solution of the linear

BVP

−cDq
0+z(t) − ρz(t) = d‖en−1‖

2, z′(0) = 0, z(1) = ξz(η),(3.18)

and is given by

en(t) ≤ z(t) =

∫ 1

0

k(t, s)d‖en−1‖
2 ≤ A‖en−1‖

2,(3.19)

where A = max{d
∫ 1

0
k(t, s)}, k(t, s) is the Green’s function corresponding to the homogenous

problem −cDq
0+u(t)−ρu(t) = 0, u′(0) = 0, u(1) = ξu(η). Hence the convergence is quadratic.
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