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Abstract

In this paper, we investigate the hyper-exponent of convergence of zeros of f (j)(z) −
ϕ(z)(j ∈ N), where f is a solution of second or k(≥ 2) order linear differential equation,
ϕ(z) 6≡ 0 is an entire function satisfying σ(ϕ) < σ(f) or σ2(ϕ) < σ2(f). We obtain some
precise results which improve the previous results in [3, 5] and revise the previous results in
[11, 13]. More importantly, these results also provide us a method to investigate the hyper-
exponent of convergence of zeros of f (j)(z) − ϕ(z)(j ∈ N).
Key words: linear differential equations, hyper-order, hyper-exponent of convergence of
zeros
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1. Introduction and results

In this paper, we shall assume that readers are familiar with the fundamental results and the
standard notations of the Nevanlinna’s theory of meromorphic functions (see [7, 10]). In addition,
we use σ(f) to denote the order of meromorphic function f(z) and τ(f) to denote the type of an
entire function f(z) with σ(f) = σ, which is defined to be (see [7])

τ(f) = lim
r→∞

log M(r, f)

rσ
.

We use σ2(f) to denote the hyper-order of entire function f(z), which is defined to be (see [14])

σ2(f) = lim
r→∞

log3 M(r, f)

log r
= lim

r→∞

log2 T (r, f)

log r
,
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where logi r = logi−1(log r)(i ∈ N). It is easy to see that σ(f) = ∞ if σ2(f) > 0. Assume that
ϕ(z) is an entire function with σ(ϕ) < σ(f) or σ2(ϕ) < σ2(f), the hyper-exponent of convergence
of zeros of f(z) − ϕ(z) is defined to be

λ2(f − ϕ) = lim
r→∞

log2 N(r, 1
f−ϕ

)

log r
,

especially if ϕ(z) = z, the hyper-exponent of convergence of fixed points of f(z) is defined to be
(see [2])

λ2(f − z) = lim
r→∞

log2 N(r, 1
f−z

)

log r
.

The hyper-exponent of convergence of distinct zeros of f(z) − ϕ(z) and the hyper-exponent of
convergence of distinct fixed points of f(z) is respectively defined to be

λ2(f − ϕ) = lim
r→∞

log2 N(r, 1
f−ϕ

)

log r
, λ2(f − z) = lim

r→∞

log2 N(r, 1
f−z

)

log r
.

We denote the linear measure of a set E ⊂ [1,∞) by mE =
∫

E
dt and the logarithmic measure of

E by mlE =
∫

E
dt
t
.

By the definition of the hyper-order, we can estimate the hyper-order and the hyper-exponent
of convergence of zeros of the solutions of linear differential equation more precisely. For second
order linear differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1.1)

where A(z), B(z) 6≡ 0 are entire functions, it is well known that every nonconstant solution f of
(1.1) has infinite order if σ(A) < σ(B) or A(z) is a polynomial and B(z) is transcendental.

In 1996, K. H. Kwon investigated the hyper-order of the solutions of (1.1) and obtained the
following result.

Theorem A.[9] If A(z) and B(z) are entire functions such that σ(A) < σ(B) or σ(B) <
σ(A) < 1

2 , then every entire function f 6≡ 0 of (1.1) satisfies σ2(f) ≥ max{σ(A), σ(B)}.
Up to now, we have known that every nonconstant solution of (1.1) satisfies σ2(f) = σ(B) if

σ(A) < σ(B) or σ2(f) = σ(A) if σ(B) < σ(A) < 1
2 (see [2]).

In 2000, Chen Z. X. firstly investigated the fixed points of solutions of (1.1) and obtained the
following results.

Theorem B.[3] If P (z) is a polynomial with degree n ≥ 1, then every non-trivial solution of

f ′′ + P (z)f = 0 (1.2)

has infinitely many fixed points and satisfies λ(f − z) = λ(f − z) = σ(f) = n+2
2 .

Theorem C.[3] If A(z) is a transcendental entire function with σ(A) = σ < +∞, then every
non-trivial solution of

f ′′ + A(z)f = 0 (1.3)
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has infinitely many fixed points and satisfies λ2(f − z) = λ2(f − z) = σ2(f) = σ.

Up to now, many authors investigated the fixed points of hyper-exponents of convergence of
zeros of the solutions of (1.2) and (1.3)(see [11,13]). In 2006, Chen Z. X. investigated the solutions
of second order linear differential equation and obtained the following results.

Theorem D.[5] Let Aj(z) 6≡ 0(j = 1, 2) be entire functions with σ(Aj) < 1, suppose that a,b
are complex numbers and satisfy ab 6= 0 and arg a 6= arg b or a = cb (0 < c < 1). If ϕ(z) 6≡ 0 is
an entire function of finite order, then every non-trivial solution f of

f ′′ + A1(z)eazf ′ + A2(z)ebzf = 0 (1.4)

satisfies λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) = ∞.

Theorem E.[5] If A1(z) 6≡ 0, ϕ(z) 6≡ 0, Q(z) are entire functions with σ(A1) < 1 and 1 <
σ(Q) < ∞, then every non-trivial solution f of

f ′′ + A1(z)eazf ′ + Q(z)f = 0 (1.5)

satisfies λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) = ∞, where a 6= 0 is a complex number.

Theorem F.[5] Let A1(z) 6≡ 0, ϕ(z) 6≡ 0, Q(z) be entire functions with σ(A1) < 1, σ(Q) > 1
and σ(ϕ) < 1, and if aj(z)(j = 0, 1, 2) are polynomials which are not all equal to zero, then every
solution f 6≡ 0 of (1.5) satisfies λ(g − ϕ) = ∞, where g(z) = a2f

′′ + a1f
′ + a0f .

In the same year, Liu M. S. and Zhang X. M. investigated the fixed points when the coefficients
of the equations are meromorphic functions and obtained the following results.

Theorem G.[11] Suppose that k ≥ 2 and A(z) be a transcendental meromorphic function

satisfying δ(∞, A) = lim
r→∞

m(r,A)
T (r,A) = δ > 0, σ(A) = σ < +∞. Then every meromorphic solution

f 6≡ 0 of the equation
f (k) + A(z)f = 0 (1.6)

satisfies that f and f ′, f ′′, · · · , f (k) all have infinitely many fixed points and λ(f (j) − z) = σ(j =
0, 1, · · · , k).

Theorem H.[11] Suppose that P (z) = P1(z)
P2(z) 6≡ 0 be a rational function with n =di(P ), where

di(P ) =degP1(z)−degP2(z), and k be an integer with k ≥ 2. Then:
(1) If n 6= −k, then every meromorphic solution f 6≡ 0 of the following equation

f (k) + P (z)f = 0 (1.7)

satisfies that f and f ′, f ′′, · · · , f (k) all have infinitely many fixed points and λ(f (j) − z) =
max

{

n+k
k

, 0
}

(j = 0, 1, · · · , k).
(2) If n = −k, then every transcendental meromorphic solution f of (1.7) satisfies that f and

f ′, f ′′, · · · , f (k−2) all have infinitely many fixed points and λ(f (k−2) − z) = 0.
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In this paper, we investigate the hyper-exponent of convergence of zeros of f (j)(z)−ϕ(z)(j ∈
N), where f is a solution of (1.1) and ϕ(z) 6≡ 0 is an entire function satisfying σ(ϕ) < σ(f) or
σ2(ϕ) < σ2(f), and obtain the following results.

Theorem 1.1. Let A(z) and B(z) be entire functions with finite order. If σ(A) < σ(B) < ∞
or 0 < σ(A) = σ(B) < ∞ and τ(A) < τ(B), then for every solution f 6≡ 0 of (1.1) and for any
entire function ϕ(z) 6≡ 0 satisfying σ2(ϕ) < σ(B), we have

(i) λ2(f − ϕ) = λ2(f
′ − ϕ) = λ2(f

′′ − ϕ) = λ2(f
′′′ − ϕ) = σ2(f) = σ(B);

(ii) λ2(f
(j) − ϕ) = σ2(f) = σ(B)(j > 3, j ∈ N).

Theorem 1.2. Let A(z) be a polynomial, B(z) be a transcendental entire function, then for
every solution f 6≡ 0 of (1.1) and for any entire function ϕ(z) of finite order, we have

(i) λ(f − ϕ) = λ(f − ϕ) = σ(f) = ∞;

(ii) λ(f (j) − ϕ) = λ(f (j) − ϕ) = σ(f (j) − ϕ) = ∞(j ≥ 1, j ∈ N).

Theorem 1.3. Let A(z) and B(z) be meromorphic functions satisfying σ(A) < σ(B) and
δ(∞, B) > 0. Then for every meromorphic solution f 6≡ 0 of (1.1) and for any meromorphic
function ϕ(z) 6≡ 0 satisfying σ2(ϕ) < σ(B), we have λ2(f

(j) − ϕ) = λ2(f
(j) − ϕ) ≥ σ(B)(j =

0, 1, 2, · · ·).

Theorem 1.4. Let P (z) be a polynomial with degree n ≥ 1 and k ≥ 2 is an integer. Then
for every solution f 6≡ 0 of (1.7) and for any entire function ϕ(z) 6≡ 0 with σ(ϕ) < n+k

k
, we have

(i) λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) = λ(f ′′′ − ϕ) = σ(f) = n+k
k

;

(ii) λ(f (j) − ϕ) = σ(f) = n+k
k

(j > 3, j ∈ N).

Corollary 1.1. Under the hypotheses of Theorem 1.1, if ϕ(z) = z, for every solution f 6≡ 0
of (1.1), we have

(i) λ2(f − z) = λ2(f
′ − z) = λ2(f

′′ − z) = λ2(f
′′′ − z) = σ2(f) = σ(B);

(ii) λ2(f
(j) − z) = σ2(f) = σ(B)(j > 3, j ∈ N).

Corollary 1.2. Under the hypotheses of Theorem 1.2, if ϕ(z) = z, for every solution f 6≡ 0
of (1.1), we have

(i) λ(f − z) = λ(f − z) = σ(f) = ∞;

(ii) λ(f (j) − z) = λ(f (j) − z) = σ(f (j) − z) = ∞(j ≥ 1, j ∈ N).

Corollary 1.3. Under the hypotheses of Theorem 1.3, if ϕ(z) = z, for every meromorphic
solution f 6≡ 0 of (1.1), we have λ2(f

(j) − z) = λ2(f
(j) − z) ≥ σ(B)(j = 0, 1, 2, · · ·).

Corollary 1.4. Let P (z) = P1(z)
P2(z) be a rational function with di(P (z)) = n ≥ 1. Then for

every meromorphic solution f 6≡ 0 of (1.7) and for any meromorphic function ϕ(z) 6≡ 0 with
σ(ϕ) < n+k

k
, we have λ(f (j) − ϕ) = λ(f (j) − ϕ) = σ(f) = n+k

k
(j = 0, 1, 2, · · ·).

Corollary 1.5. Under the hypotheses of Theorem 1.1, let L(f) = akf
(k) + ak−1f

(k−1) + · · ·+
a0f , where aj are entire functions which are not all equal to zero and satisfy σ(aj) < σ(B)(i =
0, 1, · · · , k), then for every solution f 6≡ 0 of (1.1), we have σ2(L(f)) = σ2(f) = σ(B).
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Remark 1.1. Theorem 1.1 is an improvement of Theorem C. In Theorem D, if ab 6= 0 and
a = cb(0 < c < 1), it is easy to see that σ(A1e

az) = σ(A1e
bz) = 1 and τ(A1e

az) = a < τ(A1e
bz) =

b. By Theorem 1.1, for every solution f 6≡ 0 of (1.1) and for any entire function ϕ(z) 6≡ 0 with
σ2(ϕ) < 1, we have λ2(f − ϕ) = λ2(f

′ − ϕ) = λ2(f
′′ − ϕ) = 1. Therefore, Theorem 1.1 is also a

partial extension of Theorem D. Theorem 1.3 and Theorem 1.4 are the improvements of Theorem
G and Theorem H respectively.

Remark 1.2. Theorem 1.1 and Theorem 1.2 also provide us a method to investigate the
hyper-exponent convergence of zeros of f (j) − ϕ(j = 0, 1, 2, · · ·). If we can find an equation (1.1)
with coefficients A(z), B(z) satisfying the hypotheses of Theorem 1.1 or Theorem 1.2 such that f
is an entire function of (1.1), then we have λ2(f

(j)−ϕ) = σ(B) or λ(f (j)−ϕ) = ∞(j = 0, 1, 2, · · ·).
For example, set f(z) = ea(z), a(z) is a transcendental entire function, then f(z) is a solution
of f ′′ − (a′′ + a′2)f = 0, then by Theorem 1.1 and by Lemma 2.8 (ii), for any entire function
ϕ(z) 6≡ 0 with σ2(ϕ) < σ(a) if σ(a) > 0 or σ(ϕ) < ∞ if σ(a) = 0, we have λ2(f

(j)−ϕ) = σ(a)(j =
0, 1, 2, · · ·).

2. Lemmas for the proofs of theorems

Lemma 2.1.[6] Let G(r) : (0,+∞) → R, H(r) : (0,+∞) → R be monotone increasing
functions such that G(r) ≤ H(r) outside of an exceptional set E0 of finite linear measure, then
for any given α > 1, there exists a r > r0 such that G(r) ≤ H(αr) for all r > r0.

Lemma 2.2.[2] Let f(z) be an entire function with σ2(f) = σ, and νf (r) denote the central
index of f(z). Then

lim
r→∞

log2 νf (r)

log r
= σ.

Lemma 2.3. Let f(z) be a transcendental entire function with σ(f) = σ ≥ 0, then there
exists a set E1 ⊂ [1,+∞) with infinite logarithmic measure such that for all r ∈ E1, we have

lim
r→∞

log T (r, f)

log r
= σ, r ∈ E1.

P roof . By σ(f) = σ, there exists a sequence {rn}
∞

n=1 tending to ∞ satisfying (1+ 1
n
)rn < rn+1

and

lim
r→∞

log T (rn, f)

log rn
= σ(f),

there exists a n1 such that for all n ≥ n1 and for any r ∈ [rn, (1 + 1
n
)rn], we have

log T (rn, f)

log(1 + 1
n
)rn

≤
log T (r, f)

log r
≤

log T ((1 + 1
n
)rn, f)

log rn
.
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Set E1 =
∞
⋃

n=n1

[rn, (1 + 1
n
)rn], we have

lim
r→∞

log T (r, f)

log r
= lim

r→∞

log T (rn, f)

log rn
= σ(f), r ∈ E1

and mlE1 =
∞
∑

n=n1

∫ (1+ 1

n
)rn

rn

dt
t

=
∞
∑

n=n1

log(1 + 1
n
) = ∞, thus we complete the proof of this lemma.

By the same reasoning in Lemma 2.3, we have the following result.

Lemma 2.4. Let f(z) be a transcendental entire function with σ2(f) = σ ≥ 0, then there
exists a set E2 ⊂ [1,+∞) with infinite logarithmic measure such that for all r ∈ E2, we have

lim
r→∞

log2 T (r, f)

log r
= σ, r ∈ E2.

Lemma 2.5. Let A0, A1, · · ·Ak−1, F 6≡ 0 be meromorphic functions, if f is a meromorphic
solution of the equation

f (k) + Ak−1f
(k−1) + · · · + A0f = F, (2.1)

then we have the following statements:
(i) if max{σ(F ), σ(Aj); j = 0, 1, · · · , k − 1} < σ(f) = σ ≤ ∞, then σ(f) = λ(f) = λ(f);
(ii) if max{σ2(F ), σ2(Aj); j = 0, 1, · · · , k − 1} < σ2(f) = σ, then σ2(f) = λ2(f) = λ2(f).

Proof. Since the proof of (i) and (ii) is the same, then we only prove (ii) here. By (2.1), we
have

1

f
=

1

F

(

f (k)

f
+ Ak−1

f (k−1)

f
+ · · · + A0

)

. (2.2)

By (2.2), we get

N(r,
1

f
) ≤ kN(r,

1

f
) + N(r,

1

F
) +

k−1
∑

j=0

N(r,Aj). (2.3)

By the theorem on logarithmic derivative and (2.2), we have that

m(r,
1

f
) ≤ m(r,

1

F
) +

k−1
∑

j=0

m(r,Aj) + O{log(rT (r, f))}, r /∈ E3 (2.4)

holds for |z| = r outside a set E3 ⊂ (0,∞) of finite linear measure. By (2.3) and (2.4), we have

T (r, f) = T (r,
1

f
) + o(1) ≤ kN(r,

1

f
) + T (r,

1

F
) +

k−1
∑

j=0

T (r,Aj) + O{log(rT (r, f))}

= kN(r,
1

f
) + T (r, F ) +

k−1
∑

j=0

T (r,Aj) + O{log(rT (r, f))}, r /∈ E3. (2.5)
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By (2.5), we have σ2(f) ≤ max{λ2(f), σ2(Aj), σ2(F )}. Since max{σ2(F ), σ2(Aj); j = 0, 1, · · · , k−
1} < σ2(f) , we get σ2(f) ≤ λ2(f). Therefore λ2(f) = λ2(f) = σ2(f).

Lemma 2.6.[3] Let f(z) be an entire function of order σ(f) = α < +∞. Then for any given
ε > 0, there is a set E4 ⊂ [1,∞) that has finite linear measure and finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we have

exp{−rα+ε} ≤ |f(z)| ≤ exp{rα+ε}.

Lemma 2.7. Let f(z) be an entire function with σ2(f) = α > 0, and let L(f) = a2f
′′+a1f

′+
a0f , where a0, a1, a2 are entire functions which are not all equal to zero and satisfy max{σ(aj), j =
0, 1, 2} = b < α, then σ2(L(f)) = σ2(f) = α.

Proof. L(f) can be written as

L(f) = f(a2
f ′′

f
+ a1

f ′

f
+ a0). (2.6)

By Wiman-Valiron Lemma (see [7,10]), for all z satisfying |z| = r and |f(z)| = M(r, f), we have

f (j)(z)

f(z)
=

(

νf (r)

z

)j

(1 + o(1)) , j ∈ N, r 6∈ E5, (2.7)

where E5 is a set of finite logarithmic measure. From the (1.4.5) in [8,pp.26] , for any given ε > 0,
we have that

νf (r) < [log µf (r)]1+ε (2.8)

holds outside a set E6 with finite logarithmic measure, where µf (r) is the maximum term of f .
By Cauchy ’s inequality, we have µf (r) ≤ M(r, f). Substituting it into (2.8), we have

νf (r) < [log M(r, f)]1+ε, r /∈ E6. (2.9)

By Lemma 2.4, there exists a set E2 having infinite logarithmic measure such that for all |z| =
r ∈ E2 and for all sufficiently large r, we have

σ2(f) = lim
r→∞

log2 νf (r)

log r
= α, r ∈ E2. (2.10)

By (2.10) and Lemma 2.6, for any given 0 < ε < α − b, we have

exp{−rb+ε} < |aj(z)| < exp{rb+ε} < exp{rα−ε} < νf (r) < exp{rα+ε},

j = 0, 1, 2, · · · r ∈ E2 −
6
⋃

i=4

Ei. (2.11)
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Substituting (2.11) into (2.9), we have

exp2{r
α−2ε} < M(r, f), r ∈ E2 −

6
⋃

i=4

Ei, (2.12)

where exp2{r} = exp{exp{r}}. By (2.6), we have

|L(f)| = |f |

∣

∣

∣

∣

a2
f ′′

f
+ a1

f ′

f
+ a0

∣

∣

∣

∣

≥ |f |

[∣

∣

∣

∣

a2
f ′′

f
+ a1

f ′

f

∣

∣

∣

∣

− |a0|

]

. (2.13)

Substituting (2.7), (2.11), (2.12) into (2.13), for all z satisfying |f(z)| = M(r, f) and |z| = r ∈

E2 −
6
⋃

i=4
Ei, we have

|L(f)| ≥ |f |

[∣

∣

∣

∣

νf (r)

z

(

a2
νf (r)

z
+ a1

)∣

∣

∣

∣

− |a0|

∣

∣

∣

∣

≥ |f |

[
∣

∣

∣

∣

νf (r)

z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a2
νf (r)

z

∣

∣

∣

∣

− |a1|

∣

∣

∣

∣

− |a0|

]

≥ exp2{r
α−2ε}

[

exp{rα−ε} − exp{rb+ε}
]

. (2.14)

By (2.14), we have σ2(L(f)) ≥ σ2(f).
On the other hand, it is easy to get σ2(L(f)) ≤ σ2(f). Hence σ2(L(f)) = σ2(f).

By the similar proof in Lemma 2.7, we can easily get the following result.

Lemma 2.8. (i) Let f(z) be an entire function with σ2(f) = α > 0, and let L(f) = akf
(k) +

ak−1f
(k−1) + · · · + a0f , where a0, a1, · · · , ak are entire functions which are not all equal zero and

satisfy b = max{aj(z), j = 0, 1, · · · , k} < α, then σ2(L(f)) = σ2(f) = α.

(ii) Let f(z) be an entire function with σ(f) = α ≤ ∞, and let L(f) = akf
(k) + ak−1f

(k−1) +
· · · + a0f

2, where a0, a1, · · · , ak are entire functions which are not all equal zero and satisfy
b = max{aj(z), j = 0, 1, · · · , k} < α, then σ(L(f)) = σ(f) = α.

Remark 2.1. The assumption σ(aj) < σ2(f)(j = 0, 1, 2) in Lemma 2.7 is necessary. For
example, f(z) = eez

satisfies σ2(f) = 1 and f ′′ − f ′ − e2zf = 0, where a2 = 1, a1 = 1, a0 = −e2z ,
and a0 satisfies σ(a0) = σ2(f) = 1, however, we have σ2(L(f)) = 0 < 1.

Lemma 2.9.[11] Let f(z) be an entire function with σ(f) = σ, τ(f) = τ, 0 < σ < ∞, 0 <
τ < ∞, then for any given β < τ , there exists a set E7 ⊂ [1,+∞) that has infinite logarithmic
measure such that for all r ∈ E7, we have

log M(r, f) > βrσ.

Remark 2.2. Lemma 2.9 also holds if τ(f) = ∞.
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Lemma 2.10.[12] Let A(z), B(z) be entire functions satisfying 0 < σ(A) = σ(B) < ∞, τ(A) <
τ(B), then every solution f 6≡ 0 of (1.1) satisfies σ2(f) = σ(B).

Lemma 2.11.[6] Let f(z) be a transcendental meromorphic function and α > 1 be a given
constant, for any given ε > 0, there exists a set E8 ⊂ [1,∞) that has finite logarithmic measure
and a constant B > 0 that depends only on α and (m,n)(m,n ∈ {0, · · · , k} with m < n) such
that for all z satisfying |z| = r 6∈ [0, 1] ∪ E8, we have

∣

∣

∣

∣

∣

f (n)(z)

f (m)(z)

∣

∣

∣

∣

∣

≤ B

(

T (αr, f)

r
(logα r) log T (αr, f)

)n−m

.

Lemma 2.12.[6] Let f(z) be a transcendental meromorphic function with σ(f) = σ < ∞,
Γ = (k1, j1), · · · , (km, jm)} be a finite set of distinct pairs of integers which satisfy ki > ji ≥ 0
for i = 1, · · · ,m. And let ε > 0 be a given constant, then there exists a set E9 ⊂ (1,∞) that has
finite logarithmic measure such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E9 and (k, j) ∈ Γ, we
have

∣

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε).

Lemma 2.13. Let U(z), V (z) be meromorphic functions of finite order. If lim
r→∞

log m(r,U)
log r

= β1,

and there exists a set E10 with infinite logarithmic measure such that lim
r→∞

log m(r,V )
log r

= β2 > β1

holds for all r ∈ E10, then every meromorphic solution of

f ′′ + Uf ′ + V f = 0 (2.15)

satisfies σ2(f) ≥ β2.

P roof. Assume that f(z) is a meromorphic solution of (2.15), by (2.15), we have

m(r, V ) ≤ m(r,
f ′′

f
) + m(r,

f ′

f
) + m(r, U). (2.16)

By the theorem on logarithmic derivative and (2.16), we have

m(r, V ) ≤ O{log rT (r, f)} + m(r, U), r /∈ E3, (2.17)

where E3 ⊂ [1,+∞) is a set having finite logarithmic measure. By the hypotheses of Lemma 2.13,
there exists a set E10 having infinite logarithmic measure such that for all |z| = r ∈ E10 −E3, we
have

rβ2−ε ≤ O{log rT (r, f)} + 4rβ1+ε, (2.18)

where 0 < 2ε < β2 − β1. By (2.18), we have σ2(f) ≥ β2.

EJQTDE, 2011 No. 23, p. 9



Lemma 2.14. Let U(z), V (z) be meromorphic functions of finite order. If there exist positive
constants σ, β3, β4(0 < β3 < β4) and a set E11 with infinite logarithmic measure such that

|U(z)| ≤ exp{β3r
σ}, |V (z)| ≥ exp{β4r

σ}

hold for all |z| = r ∈ E11, then every meromorphic solution of (2.15) satisfies σ2(f) ≥ σ.

Proof. Assume that f(z) is a meromorphic solution of (2.15), by (2.15), we have

|V (z)| ≤

∣

∣

∣

∣

f ′′

f

∣

∣

∣

∣

+ |U(z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (2.19)

By Lemma 2.11, there exists a set E8 having finite logarithmic measure such that for all |z| =
r 6∈ E8, we have

∣

∣

∣

∣

f ′′

f

∣

∣

∣

∣

≤ B[T (2r, f)]2,

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

≤ B[T (2r, f)]. (2.20)

where B > 0 is a constant. By (2.19)-(2.20) and the hypotheses in Lemma 2.14, for all |z| = r ∈
E11 − E8, we have

exp{β4r
σ} ≤ 2B[T (2r, f)]2 exp{β3r

σ}. (2.21)

Since 0 < β3 < β4, by (2.21), we have σ2(f) ≥ σ.

Lemma 2.15. Let A(z), B(z) be meromorphic functions with σ(A) < σ(B) and δ(∞, B) =

lim
r→∞

m(r,B)
T (r,B) > 0. Then every meromorphic solution f of (1.1) satisfies σ2(f) ≥ σ(B).

P roof. Let f be a meromorphic solution of (1.1), by (1.1), we have

m(r,B) ≤ m(r,
f ′′

f
) + m(r,

f ′

f
) + m(r,A)

≤ O{log rT (r, f)} + T (r,A), r /∈ E3, (2.22)

where E3 ⊂ [1,+∞) is a set having finite linear measure. By Lemma 2.3, there exists a set E1

having infinite logarithmic measure such that for all |z| = r ∈ E1, we have

lim
r→∞

log T (r,B)

log r
= σ(B), r ∈ E1. (2.23)

Since δ(∞, B) > 0, then for any given ε(0 < 2ε < σ(B) − σ(A)) and for all r ∈ E1, by (2.23), we
have

m(r,B) ≥ rσ(B)−ε. (2.24)

From (2.22) and (2.24), we have

rσ(B)−ε ≤ O{log rT (r, f)} + rσ(A)+ε, r ∈ E1 − E3, (2.25)

by (2.25), we have σ2(f) ≥ σ(B).
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Remark 2.3. We have to note that we can only obtain σ2(f) ≥ σ(B) if A(z), B(z) in (1.1)
are transcendental meromorphic functions and satisfy the hypotheses of Lemma 2.15. Since
if f is a meromorphic solution of (1.1), we can only obtain λ( 1

f
) ≤ max{λ( 1

A
), λ( 1

B
)} instead of

λ( 1
f
) ≤ max{λ( 1

A
), λ( 1

B
)}, we can not use the Wiman-Valiron Lemma on meromorphic function to

obtain σ2(f) ≤ σ(B). Thus, the conclusion of Lemma 2.2 in [11, pp, 194] that every meromorphic
solution f 6≡ 0 of (1.6) satisfies σ2(f) = σ(A) remains open.

Lemma 2.16.[1] Let P (z) be a rational function with di(P)=n ≥ 1, then every meromorphic
solution f 6≡ 0 of (1.7) satisfies σ(f) = n+k

k
.

Remark 2.4. Especially if P (z) is a polynomial, then every solution f 6≡ 0 of (1.7) satisfies
σ(f) = n+k

k
.

By the similar proof in Lemma 2.16, we can easily obtain the following result.

Lemma 2.17. Let Aj(z)(j = 0, 1, · · · , k − 1) be rational functions satisfying di(A0) = n0 ≥ 1
and di(Aj) = nj ≤ 0(j = 1, 2, · · · , k − 1), then every meromorphic solution f of

f (k) + Ak−1f
(k−1) + · · · + A1f

′ + A0f = 0 (2.26)

satisfies σ(f) = n0+k
k

.

3. Proof of Theorem 1.1

Now we divide the proof of Theorem 1.1 into two cases. Case (i): σ(A) < σ(B) < ∞;
Case (ii): 0 < σ(A) = σ(B) < ∞, and τ(A) < τ(B) .

Case (i): (1)Now we prove that λ2(f − ϕ) = σ2(f). Assume that f 6≡ 0 is a solution of (1.1),
then σ2(f) = σ(B) (see [2]). Let g = f − ϕ, since σ2(ϕ) < σ(B), then σ2(g) = σ2(f) = σ(B),
λ2(g) = λ2(f − ϕ). Substituting f = g + ϕ, f ′ = g′ + ϕ′, f ′′ = g′′ + ϕ′′ into (1.1), we have

g′′ + Ag′ + Bg = −(ϕ′′ + Aϕ′ + Bϕ). (3.1)

If ϕ′′ + Aϕ′ + Bϕ ≡ 0, we have σ2(ϕ) = σ(B) (see [2]), this is a contradiction. By Lemma 2.5
(ii) and ϕ′′ + Aϕ′ + Bϕ 6≡ 0, we have λ2(g) = λ2(g) = σ2(g) = σ(B), therefore λ2(f − ϕ) =
λ2(f − ϕ) = σ2(f) = σ(B).

(2) Now we prove that λ2(f
′ − ϕ) = σ2(f). Let g1 = f ′ − ϕ, then σ2(g1) = σ2(f) = σ(B) and

f ′ = g1 + ϕ, f ′′ = g′1 + ϕ′, f ′′′ = g′′1 + ϕ′′. (3.2)

By (1.1), we get

f = −
1

B
(f ′′ + Af ′). (3.3)

The derivation of (1.1) is
f ′′′ + Af ′′ + (A′ + B)f ′ + B′f = 0. (3.4)

Substituting (3.2),(3.3) into (3.4), we obtain

g′′1 +

(

A −
B′

B

)

g′1 +

(

A′ + B −
AB′

B

)

g1 = −

(

ϕ′′ +

(

A −
B′

B

)

ϕ′ +

(

A′ + B −
AB′

B

)

ϕ

)

.

(3.5)
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Set V1 = A′ + B − AB′

B
, U1 = A − B′

B
, then U1, V1 are meromorphic functions of finite order. By

the theorem on the logarithmic derivative and Lemma 2.3, it is easy to see that there exists a set

E1 having infinite logarithmic measure such that lim
r→∞

log m(r,V1)
log r

= σ(B) > lim
r→∞

log m(r,U1)
log r

= σ(A)

holds for all r ∈ E1. Let F1 = ϕ′′ +U1ϕ
′ +V1ϕ, we affirm that F1 6≡ 0. If F1 ≡ 0, by Lemma 2.13,

we have σ2(ϕ) ≥ σ(B), this is a contradiction with σ2(ϕ) < σ(B), therefore F1 6≡ 0. By Lemma
2.5 (ii), we get λ2(f

′ − ϕ) = λ2(f
′ − ϕ) = σ2(f).

(3) Now we prove that λ2(f
′′−ϕ) = σ2(f). Let g2 = f ′′−ϕ, then σ2(g2) = σ2(f) = σ(B) and

f ′′ = g2 + ϕ, f ′′′ = g′2 + ϕ′, f (4) = g′′2 + ϕ′′. (3.6)

Substituting (3.3) and V1 = A′ + B − AB′

B
, U1 = A − B′

B
into (3.4), we have

f ′′′ + U1f
′′ + V1f

′ = 0. (3.7)

The derivation of (3.7) is

f (4) +

(

U1 −
V ′

1

V1

)

f ′′′ +

(

U ′

1 + V1 −
V ′

1U1

V1

)

f ′′ = 0. (3.8)

Set U2 = U1 −
V ′

1

V1
, V2 = U ′

1 + V1 −
V ′

1
U1

V1
, then U2, V2 are meromorphic functions of finite or-

der. It is easy to see that there exists a set E1 having infinite logarithmic measure such that

lim
r→∞

log m(r,V2)
log r

= σ(B) > lim
r→∞

log m(r,U2)
log r

= σ(A) holds for all r ∈ E1. Then by (3.8), we get

f (4) + U2f
′′′ + V2f

′′ = 0. (3.9)

Substituting (3.6) into (3.9), we have

g′′2 + U2g
′

2 + V2g2 = −
(

ϕ′′ + U2ϕ
′ + V2ϕ

)

. (3.10)

Let F2 = ϕ′′+U2ϕ
′+V2ϕ, if F2 ≡ 0, by Lemma 2.13, we have σ2(ϕ) ≥ σ(B), this is a contradiction

with σ2(ϕ) < σ(B), therefore F2 6≡ 0. By Lemma 2.5 (ii), we get λ2(f
′′−ϕ) = λ2(f

′′−ϕ) = σ2(f).
(4) Now we prove that λ2(f

′′′ − ϕ) = σ2(f). Let g3 = f ′′′ − ϕ, then σ2(g3) = σ2(f) = σ(B)
and

g′3 = f (4) − ϕ′, g′′3 = f (5) − ϕ′′. (3.11)

The derivation of (3.9) is

f (5) + U2f
(4) + (U ′

2 + V2)f
′′′ + V ′

2f
′′ = 0. (3.12)

By (3.9), we have

f ′′ = −
1

V2

(

f (4) + U2f
′′′

)

. (3.13)

Substituting (3.13) into (3.12), we have

f (5) +

(

U2 −
V ′

2

V2

)

f (4) +

(

U ′

2 + V2 −
V ′

2U2

V2

)

f ′′′ = 0. (3.14)
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Set U3 = U2 −
V ′

2

V2
, V3 = U ′

2 + V2 −
V ′

2
U2

V2
, then U3, V3 are meromorphic functions of finite order,

and it is easy to see that there exists a set E1 having infinite logarithmic measure such that

lim
r→∞

log m(r,V3)
log r

= σ(B) > lim
r→∞

log m(r,U3)
log r

= σ(A) holds for all r ∈ E1. By (3.14), we have

f (5) + U3f
(4) + V3f

′′′ = 0. (3.15)

Substituting (3.11) into (3.15), we have

g′′3 + U3g
′

3 + V3g3 = −
(

ϕ′′ + U3ϕ
′ + V3ϕ

)

. (3.16)

Let F3 = ϕ′′ + U3ϕ
′ + V3ϕ. By Lemma 2.13, we have F3(z) 6≡ 0. And by Lemma 2.5 (ii), we get

λ2(f
′′′ − ϕ) = λ2(f

′′′ − ϕ) = σ2(f).
(5) Now we prove that λ2(f

(j) − ϕ) = σ2(f)(j > 3, j ∈ N). Let f (j) = gj + ϕ, f (j+1) =

g′j + ϕ′, f (j+2) = g′′j + ϕ′′(j > 3, j ∈ N), then σ2(gj) = σ2(f
(j)) = σ(B)(j > 3, j ∈ N). By

successive derivation on (3.15) and set Uj = Uj−1 −
V ′

j−1

Vj−1
, Vj = U ′

j−1 + Vj−1 −
V ′

j−1
Uj−1

Vj−1
, we have

g′′j + Ujg
′

j + Vjgj = −
(

ϕ′′ + Ujϕ
′ + Vjϕ

)

, (3.17)

where Uj, Vj are meromorphic functions of finite order, and it is easy to see that there exists a set

E1 having infinite logarithmic measure such that lim
r→∞

log m(r,Vj)
log r

= σ(B) > lim
r→∞

log m(r,Uj)
log r

= σ(A)

holds for all r ∈ E1(j > 3, j ∈ N). Let Fj(z) = ϕ′′+Ujϕ
′+Vjϕ . By Lemma 2.13, we have Fj 6≡ 0.

Then by Lemma 2.5 (ii), we get λ2(f
(j) − ϕ) = λ2(f

(j) − ϕ) = σ2(f) = σ(B)(j > 3, j ∈ N).
Case (ii): (1)Now we prove that λ2(f −ϕ) = σ2(f). Assume that f 6≡ 0 is a solution of (1.1),

by Lemma 2.10, we know that σ2(f) = σ(B) > 0. Let g = f − ϕ, ϕ 6≡ 0 is an entire function
with σ2(ϕ) < σ(B), then we have σ2(g) = σ2(f) = σ(B), λ2(g) = λ2(f − ϕ). Substituting
f = g + ϕ, f ′ = g′ + ϕ′, f ′′ = g′′ + ϕ′′ into (1.1), we have

g′′ + Ag′ + Bg = −(ϕ′′ + Aϕ′ + Bϕ). (3.18)

We affirm that ϕ′′+Aϕ′+Bϕ 6≡ 0. If ϕ′′+Aϕ′+Bϕ ≡ 0, by Lemma 2.10, we have σ2(ϕ) = σ(B),
this is a contradiction with σ2(ϕ) < σ(B). By Lemma 2.5 (ii), we have λ2(g) = λ2(g) = σ2(g) =
σ(B), therefore λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) = σ(B).

(2) Now we prove that λ2(f
′ − ϕ) = σ2(f). Let g1 = f ′ − ϕ, then σ2(g1) = σ2(f) = σ(B) and

f ′ = g1 + ϕ, f ′′ = g′1 + ϕ′, f ′′′ = g′′1 + ϕ′′. (3.19)

From (3.3)-(3.5) in case (i), we set F1 = ϕ′′ + U1ϕ
′ + V1ϕ, where U1 = A− B′

B
, V1 = A′ + B − AB′

B
are moromorphic functions of finite order. By Lemma 2.9 and Lemma 2.12, it is easy to obtain
that for all |z| = r ∈ E7 − E9 and for any given ε(0 < 2ε < τ(B) − τ(A)), we have

|U1(z)| ≤ exp{(τ(A) + ε)rσ(b)}, |V1(z)| ≥ exp{(τ(B) − ε)rσ(B)}. (3.20)

where E7 is a set having infinite logarithmic measure, E9 is a set having finite logarithmic measure.
If F1 ≡ 0, by Lemma 2.14, we have σ2(ϕ) ≥ σ(B), this is a contradiction with σ2(ϕ) < σ(B).
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Therefore F1 6≡ 0. By (3.5) and Lemma 2.5 (ii) , we have λ2(f
′−ϕ) = λ2(f

′−ϕ) = σ2(f) = σ(B).
The following cases λ2(f

(j) − ϕ) = λ2(f
(j) − ϕ) = σ2(f) = σ(B)(j ≥ 2, j ∈ N) can be obtained

by the above similar proof.

4. Proofs of Theorems 1.2-1.3

Using the similar proof in Theorem 1.1 and Lemma 2.5 (i), we can obtain Theorem 1.2. Using
the similar proof in Theorem 1.1 and Lemma 2.15, we can easily obtain Theorem 1.3.

5. Proof of Theorem 1.4

(1) Now we prove that λ(f − ϕ) = λ(f − ϕ) = σ(f) = n+k
k

. Assume that f 6≡ 0 is a

solution of (1.7), by Lemma 2.16, we have σ(f) = n+k
k

. Let g = f − ϕ, since σ(ϕ) < n+k
k

, then

σ(g) = σ(f) = n+k
k

, λ(g) = λ(f − ϕ). Substituting f = g + ϕ, f (k) = g(k) + ϕ(k) into (1.7), we
have

g(k) + Pg = −(ϕ(k) + Pϕ). (5.1)

If ϕ(k) + Pϕ ≡ 0, by Lemma 2.16, we have σ(ϕ) = n+k
k

, this is a contradiction with σ(ϕ) < n+k
k

.

By Lemma 2.5 (i) and ϕ(k) + Pϕ 6≡ 0, we have λ(g) = λ(g) = σ(g) = n+k
k

, therefore λ(f − ϕ) =

λ(f − ϕ) = σ(f) = n+k
k

.

(2) Now we prove that λ(f ′ −ϕ) = λ(f ′ −ϕ) = σ(f) = n+k
k

. Let g1 = f ′ −ϕ, by Lemma 2.16

and σ(ϕ) < n+k
k

, we have σ(g1) = σ(f ′) = σ(f) = n+k
k

and

f ′ = g1 + ϕ, f (k+1) = g
(k)
1 + ϕ(k), f (k) = g

(k−1)
1 + ϕ(k−1). (5.2)

By (1.7), we get

f = −
f (k)

P
. (5.3)

The derivation of (1.7) is

f (k+1) + P ′f + Pf ′ = 0. (5.4)

Substituting (5.2), (5.3) into (5.4), we obtain

g
(k)
1 −

P ′

P
g
(k−1)
1 + Pg1 = −

(

ϕ(k) −
P ′

P
ϕ(k−1) + Pϕ

)

. (5.5)

Let F1 = −
(

ϕ(k) − P ′

P
ϕ(k−1) + Pϕ

)

. We affirm that F1 6≡ 0. If F1 ≡ 0, by Lemma 2.17,

we have σ(ϕ) = n+k
k

, this is a contradiction, therefore F1 6≡ 0. By Lemma 2.5 (i), we get

λ(f ′ − ϕ) = λ(f ′ − ϕ) = σ(f) = n+k
k

.

(3) Now we prove that λ(f ′′ − ϕ) = λ(f ′′ − ϕ) = σ(f) = n+k
k

. Let g2 = f ′′ − ϕ, by Lemma

2.16 and σ(ϕ) < n+k
k

, we have σ(g2) = σ(f) = n+k
k

and

f ′′ = g2 + ϕ, f (k+2) = g(k) + ϕ(k), f (k+1) = g(k−1) + ϕ(k−1). (5.6)
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Substituting (5.3) into (5.4), we have

f (k+1) −
P ′

P
f (k) + Pf ′ = 0. (5.7)

The derivation of (5.7) is

f (k+2) −
2P ′

P
f (k+1) +

[

−
P ′′

P
+ 2

(

P ′

P

)2
]

f (k) + Pf ′′ = 0. (5.8)

Substituting (5.6) into (5.8), we have

g
(k)
2 −

2P ′

P
g
(k−1)
2 +

[

−
P ′′

P
+ 2

(

P ′

P

)2
]

g
(k−2)
2 + Pg2

= −

{

ϕ(k) −
2P ′

P
ϕ(k−1) +

[

−
P ′′

P
+ 2

(

P ′

P

)2
]

ϕ(k−2) + Pϕ

}

. (5.9)

If F2(z) = ϕ(k) − 2P ′

P
ϕ(k−1) +

[

−P ′′

P
+ 2

(

P ′

P

)2
]

ϕ(k−2) + Pϕ ≡ 0, by Lemma 2.17, we have

σ(ϕ) = n+k
k

, this is a contradiction. Therefore F2 6≡ 0. By Lemma 2.5 (i), we get λ(f ′′ − ϕ) =

λ(f ′′ − ϕ) = σ(f) = n+k
k

.

(4) Now we prove that λ(f ′′′ − ϕ) = λ(f ′′′ − ϕ) = σ(f) = n+k
k

. Let g3 = f ′′′ − ϕ, by Lemma

2.16 and σ(ϕ) < n+k
k

, we have σ(g3) = σ(f) = n+k
k

and

f ′′′ = g3 + ϕ, f (k+3) = g
(k)
3 + ϕ(k), f (k+2) = g

(k−1)
3 + ϕ(k−1). (5.10)

The derivation of (5.8) is

f (k) +

[

(

−
P ′

P

)

+ 2

(

P ′

P

)2
]

f (k+1) + P ′f ′′ + Pf ′′′ = 0. (5.11)

By (5.8), we have

f ′′ = −
1

P

{

f (k+2) −
2P ′

P
f (k+1) +

[

−
P ′′

P
+ 2

(

P ′

P

)2
]

f (k)

}

. (5.12)

Substituting (5.12) into (5.11), we have

f (k+3) −
3P ′

P
f (k+2) +

[

−
3P ′′

P
+ 6

(

P ′

P

)2
]

f (k+1) +

[

−
P ′′′

P
+

6P ′P ′′

P 2
− 6

(

P ′

P

)3
]

f (k) +Pf ′′′ = 0.

(5.13)
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Substituting (5.10) into (5.13), we have

g
(k)
3 −

3P ′

P
g
(k−1)
3 +

[

−
3P ′′

P
+ 6

(

P ′

P

)2
]

g
(k−2)
3 +

[

−
P ′′′

P
+

6P ′P ′′

P 2
− 6

(

P ′

P

)3
]

g
(k−3)
3 + Pg3

= −

{

ϕ(k) −
3P ′

P
ϕ(k−1) +

[

−
3P ′′

P
+ 6

(

P ′

P

)2
]

ϕ(k−2) +

[

−
P ′′′

P
+

6P ′P ′′

P 2
− 6

(

P ′

P

)3
]

ϕ(k−3) + Pϕ

}

.

(5.14)

Let F3(z) = ϕ(k)− 3P ′

P
ϕ(k−1)+

[

−3P ′′

P
+ 6

(

P ′

P

)2
]

ϕ(k−2)+

[

−P ′′′

P
+ 6P ′P ′′

P 2 − 6
(

P ′

P

)3
]

ϕ(k−3)+Pϕ.

If F3(z) ≡ 0, by Lemma 2.17, we have σ(ϕ) = n+k
k

, this is a contradiction. Therefore F3(z) 6≡ 0.

By Lemma 2.5 (i), we get λ(f ′′′ − ϕ) = λ(f ′′′ − ϕ) = σ(f) = n+k
k

.

(5) Now we prove that λ(f (j)−ϕ) = λ(f (j)−ϕ) = σ(f) = n+k
k

(j > 3, j ∈ N). Let f (j) = gj+ϕ,

f (k+j) = g
(k)
j + ϕ(k), f (k+j−1) = g

(k−1)
j + ϕ(k−1)(j > 3, j ∈ N). By derivation on (5.13), we can

also get the following equation which have similar form with (5.14),

g
(k)
j +

MP ′

P
g
(k−1)
j +

[

−
MP ′′

P
+ 2M

(

P ′

P

)2
]

g
(k−2)
j + · · · + Pgj

= −

{

ϕ(k) −
MP ′

P
ϕ(k−1) +

[

−
MP ′′

P
+ 2M

(

P ′

P

)2
]

ϕ(k−2) + · · · + Pϕ

}

. (5.15)

Let Fj = ϕ(k) − MP ′

P
ϕ(k−1) +

[

−MP ′′

P
+ 2M

(

P ′

P

)2
]

ϕ(k−2) + · · · + Pϕ . If Fj ≡ 0, by Lemma

2.17, we have σ(ϕ) = n+k
k

, this is a contradiction. Therefore Fj 6≡ 0. By Lemma 2.5 (i), we get

λ(f (j) − ϕ) = λ(f (j) − ϕ) = σ(f) = n+k
k

(j > 3, j ∈ N).

6. Proof of Corollary 1.5

By the similar proof in Theorem 1.1 and Lemma 2.8 (i), we can easily obtain the Corollary 1.5.
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