On the Oscillatory Behavior for a Certain Class of Third Order Nonlinear Delay Difference Equations

S. H. Saker ${ }^{a, b}$, J. O. Alzabut ${ }^{c, *}$, A. Mukheimer ${ }^{c}$
${ }^{a}$ Department of Mathematics Skills, PYD, King Saud University Riyadh 11451, Saudi Arabia
${ }^{b}$ Department of Mathematics, Faculty of Science, Mansoura University Mansoura 35516, Egypt
${ }^{c}$ Department of Mathematics and Physical Sciences, Prince Sultan University P. O. Box 66833, Riyadh 11586, Saudi Arabia

Abstract

By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria for a certain class of third order nonlinear delay difference equations. Our results extend and improve some previously obtained ones. An example is worked out to demonstrate the validity of the proposed results.

Key Words and Phrases: Oscillation; Generalized Riccati transformation; Third order nonlinear delay difference equation.
2000 AMS Subject Classification: 34K11, 39A10.

1 Introduction

The oscillation theory and asymptotic behavior of difference equations and their applications have been and still are receiving intensive attention over the last two decades. Indeed, the last few years have witnessed the appearance of several monographs and hundreds of research papers, see for example the references $[1,3,6,11]$. Determination of oscillatory behavior for solutions of second order difference equations has occupied a great part of researchers' interest. Compared to this, however, the study of third order difference equations has received considerably less attention in the literature even though such equations often arise in the study of economics, mathematical biology and many other areas of mathematics whose discrete models are used, we refer to $[2,4,5,7,8,10,12,13,14,15,16,17,18,19]$. Some of these results will be briefly stated below. Since we are interested in the oscillatory and asymptotic behavior of solutions near infinity, we make a standing hypothesis that the equation under consideration does possess such solutions. The solutions vanishing in some neighborhood of infinity will be excluded from our consideration. A solution x_{n} is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. We say that an equation is oscillatory if it has at least one oscillatory solution.

Here are some background details that may serve the readers and motivate the contents of this paper.

[^0]For oscillation of linear difference equations: In [14], Smith considered the equation of the form

$$
\begin{equation*}
\Delta^{3} x_{n}-p_{n} x_{n+2}=0, \quad n \geq n_{0} \tag{1}
\end{equation*}
$$

and studied the asymptotic and oscillatory behavior of the solutions subject to the condition $p_{n}>0$ for $n \geq n_{0}$. Indeed, he proved that if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} p_{n}=\infty \tag{2}
\end{equation*}
$$

then (1) is oscillatory. Further, the author considered the quasi-adjoint difference equation

$$
\begin{equation*}
\Delta^{3} x_{n}+p_{n} x_{n+1}=0, \quad n \geq n_{0} \tag{3}
\end{equation*}
$$

and proved that (1) is oscillatory if and only if (3) is oscillatory. However, one can easily see that the results cannot be applied if $p_{n}=n^{-\alpha}$ for $\alpha>1$.

In [12], the authors studied the difference equation of the form

$$
\begin{equation*}
\Delta^{3} x_{n}+q_{n} x_{n}=0, \quad n \geq n_{0} \tag{4}
\end{equation*}
$$

and established some sufficient conditions for (4) to have monotonic and nonoscillatory solutions. They proved that if $q_{n}>1$ for $n \geq n_{0}$ is a positive sequence then (4) is oscillatory.

In [13], it was proved that if

$$
\begin{equation*}
\sum_{l=n_{0}}^{\infty}\left[\sum_{t=n_{0}}^{l-1} \sum_{s=n_{0}}^{t-1} p_{s}\right]=\infty \tag{5}
\end{equation*}
$$

and there exists a positive sequence ρ_{n} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n}\left[\rho_{s} p_{s}-\frac{\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}\left(s-n_{0}\right)}\right]=\infty \tag{6}
\end{equation*}
$$

then the solution x_{n} of (3) either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$. Results established in [13] provided substantial improvements for those obtained in [12] and [14].

In [16], the author considered the linear difference equation

$$
\begin{equation*}
\Delta^{3} x_{n}-p_{n+1} \Delta x_{n+1}+q_{n+1} x_{n+1}=0, \quad n \geq n_{0} \tag{7}
\end{equation*}
$$

where p_{n} and q_{n} are nonnegative real sequences satisfying

$$
\begin{equation*}
\Delta p_{n}+q_{n+1}>0 \tag{8}
\end{equation*}
$$

and proved that if x_{n} is a nonoscillatory solution of (7) then there exists an integer N for which either $x_{n} \Delta x_{n}>0$ or $x_{n} \Delta x_{n}<0$ for all $n>N$.

In [15], the author investigated the linear difference equation

$$
\begin{equation*}
\Delta^{3} x_{n}+p_{n+1} \Delta x_{n+2}+q_{n} x_{n+2}=0, \quad n \geq n_{0} \tag{9}
\end{equation*}
$$

where p_{n} and q_{n} are real sequences satisfying

$$
\begin{equation*}
p_{n} \geq 0, \quad q_{n}<0 \text { and } \sum_{n=n_{0}}^{\infty}\left(\Delta p_{n}-2 q_{n}\right)=\infty \tag{10}
\end{equation*}
$$

It was shown that if $p_{n+1}+q_{n} \leq 0$ for $n \geq n_{0}$ then $\operatorname{sign} x_{n}=\operatorname{sign} \Delta x_{n}=\operatorname{sign} \Delta^{2} x_{n}$ and (9) has both oscillatory and nonoscillatory solutions. Further, the author established a sufficient
condition for the existence of oscillatory solutions. The main investigation is based on the value of the functional $F_{1}\left(x_{n}\right)=\left(\Delta x_{n}\right)^{2}-2 x_{n+1} \Delta^{2} x_{n}-p_{n} x_{n+2}^{2}$. In particular, it was proved that if there is a solution x_{n} of (9) such that $F\left(x_{n}\right)>0$ then x_{n} is oscillatory. However, one can easily see that the condition depends on the solution itself whose determination might not be possible.

For oscillation of nonlinear difference equations: The authors in [18] considered the equation

$$
\begin{equation*}
\Delta\left(\Delta^{2} x_{n}+p_{n} x_{n+1}\right)+p_{n} \Delta x_{n}+f\left(x_{n+1}\right)=0, \quad n \geq n_{0} \tag{11}
\end{equation*}
$$

where $f(x) / x \geq k>0$ and p_{n} is a bounded real sequence such that

$$
\begin{equation*}
\sum_{s=n_{0}}^{\infty} p_{n}=\infty \tag{12}
\end{equation*}
$$

The authors studied the asymptotic behavior of the solutions and proved that if there exists a solution x_{n} of (11) satisfying $F_{2}\left(x_{n}\right)<0$, where $F_{2}\left(x_{n}\right)=2 x_{n}\left(\Delta^{2} x_{n}+p_{n} x_{n+1}\right)-\left(\Delta x_{n}\right)^{2}$, then x_{n} is oscillatory. On the other hand, the authors proved that if there exists a solution x_{n} of (11) satisfying $F_{2}\left(x_{n}\right)>0$ then $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \Delta x_{n}=\lim _{n \rightarrow \infty} \Delta^{2} x_{n}=0$. Nevertheless, due to condition (12) the results are no longer valid if $p_{n}=n^{-\alpha}$ for $\alpha>1$.

In [16], the author investigated equation of form

$$
\begin{equation*}
\Delta\left(\Delta^{2} x_{n}-p_{n+1} x_{n+1}\right)-q_{n+2} x_{n+2}=0, \quad n \geq n_{0} \tag{13}
\end{equation*}
$$

where p_{n} and q_{n} are nonnegative real sequences and satisfying (8). It was shown that there exists a solution x_{n} of (13) such that $x_{n} \Delta x_{n} \Delta^{2} x_{n} \neq 0, x_{n}>0, \Delta x_{n}>0$ and $\Delta^{2} x_{n}>0$ for $n \geq n_{0}$ and if x_{n} is a nonoscillatory solution then there exists an integer N for which either $x_{n} \Delta x_{n}>0$ or $x_{n} \Delta x_{n}<0$ for all $n>N$. Furthermore, the author investigated the same result for equation (7) and proved that if v_{n} is a nonoscillatory solution of (13) then the two independent solutions of (7) satisfy the self-adjoint second order equation

$$
\begin{equation*}
\Delta\left(\frac{\Delta x_{n}}{v_{n}}\right)+\left(\frac{\Delta^{2} v_{n-1}-p_{n} v_{n}}{v_{n} v_{n+1}}\right) x_{n+1}=0 \tag{14}
\end{equation*}
$$

In [8], the authors studied the oscillatory behavior of

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n} \Delta\left(x_{n}\right)\right)\right)+q_{n} f\left(x_{n-\sigma+1}\right)=0, \quad n \geq n_{0} \tag{15}
\end{equation*}
$$

where σ is a nonnegative integer and $f \in C(\mathbb{R}, \mathbb{R})$ such that $u f(u)>0$ for $u \neq 0$ and satisfies

$$
\begin{equation*}
f(u)-f(v)=g(u, v)(u-v), \text { for } u, v \neq 0 \text { and } g(u, v) \geqslant \mu>0 \tag{16}
\end{equation*}
$$

and q_{n}, c_{n}, d_{n} are positive sequences of real numbers such that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left(\frac{1}{c_{n}}\right)=\sum_{n=n_{0}}^{\infty}\left(\frac{1}{d_{n}}\right)=\infty \text { and } \Delta c_{n} \geqslant 0 \tag{17}
\end{equation*}
$$

For the linear case, they used the Riccati transformation technique and established a sufficient condition for oscillation of equation (15). For the nonlinear case, however, some oscillation criteria were provided by reducing the oscillation of the equation to the existence of positive solution of a Riccati difference inequality. Nevertheless, one can easily see that condition (16) might not be satisfied when $f(u)=u^{\gamma}$ for $\gamma>0$ and the results are valid only when $\Delta c_{n} \geqslant 0$. Therefore, one of our aims in this paper is to establish some sufficient conditions for oscillation bypassing condition (16) and removing the restriction in (17).

In [2], the authors considered the nonlinear delay difference equation

$$
\begin{equation*}
\Delta^{3} x_{n}=p_{n} \Delta^{2} x_{n+m}+q_{n} F\left(x_{n-g}, x_{n-h}\right)=0, \quad n \geq n_{0} \tag{18}
\end{equation*}
$$

where p_{n} and q_{n} are positive real sequences, p_{n} is nonincreasing, m, g, h are nonnegative integers and $F(x, y)=\operatorname{sign} x \geq|x|^{c_{1}}|y|^{c_{2}}$ where c_{1} and c_{2} are nonnegative constants such that $c_{1}+c_{2}>0$. They established some sufficient conditions for the existence of oscillatory solutions. The main results are proved by reducing the order of the equation under consideration. Indeed, the oscillation of equation (18) reduces to the oscillation of a first order delay or advanced difference equations.

In [5], the authors considered the nonlinear difference equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n} \Delta\left(x_{n}\right)\right)\right)+q_{n} f\left(x_{n+\sigma}\right)=0, \quad n \geq n_{0} \tag{19}
\end{equation*}
$$

where c_{n}, d_{n}, q_{n} are sequences of nonneagtive real numbers and the function $f \in C(\mathbb{R}, \mathbb{R})$ such that $u f(u)>0$ for $u \neq 0$. The main result in [5] was the classification of the nonoscillatory solutions with respect to the sign of their quasi differences.

In [7], the authors considered the nonlinear delay difference equation

$$
\begin{equation*}
\Delta\left(c_{n}\left(\Delta^{2} x_{n}\right)^{\gamma}\right)+q_{n} f\left(x\left(\sigma_{n}\right)\right)=0, \quad n \geq n_{0} \tag{20}
\end{equation*}
$$

where c_{n}, σ_{n}, q_{n} are sequences of nonneagtive real numbers, $\sigma_{n}<n, \gamma$ is quotient of odd positive integers, $f \in C(\mathbb{R}, \mathbb{R})$ such that $u f(u)>0$ for $u \neq 0, f^{\prime}(x)>0,-f(-x y) \geq f(x y) \geq$ $f(x) f(y)$ for $x y>0$ and

$$
\sum_{n=n_{0}}^{\infty}\left(\frac{1}{c_{n}}\right)^{\gamma}<\infty
$$

The main approach of proving the results in [7] was also based on the reduction of the oscillation of (20) to the oscillation of first order delay difference equation. However, the results can only be applied in the case when $\sigma_{n}<n$. Further, the restriction $f^{\prime}(x)>0$ might not be satisfied. Indeed, if $f(x)=x\left(\frac{1}{9}+\frac{1}{1+x^{2}}\right)$ then $f^{\prime}(x)=\frac{\left(x^{2}-2\right)\left(x^{2}-5\right)}{9\left(1+x^{2}\right)^{2}}$ changes sign four times.

Following this trend, we are concerned with the oscillation and the asymptotic behavior of solutions of the nonlinear delay difference equation of form

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n} \Delta x_{n}\right)^{\gamma}\right)+q_{n} f\left(x_{n-\sigma}\right)=0, \quad n \geq n_{0} \tag{21}
\end{equation*}
$$

where $\gamma>0$ is quotient of odd positive integers, $\sigma \in \mathbb{N}$ and
$\left(h_{1}\right) c_{n}, d_{n}, q_{n}$ are positive sequences of real numbers;
$\left(h_{2}\right) f \in C(\mathbb{R}, \mathbb{R})$ such that $u f(u)>0$ for $u \neq 0$ and $f(u) / u^{\gamma} \geqslant K>0$.
Our attention is restricted to those solutions of (21) which exist on $\left[n_{x}, \infty\right)$ and satisfy $\sup \left\{|x(n)|: n>n_{1}\right\}>0$ for any $n_{1} \geq n_{x}$. It is to be noted that the results of the above mentioned papers provided several oscillation criteria under the conditions

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left(\frac{1}{c_{n}}\right)^{\gamma}=\infty \quad \text { and } \quad \sum_{n=n_{0}}^{\infty}\left(\frac{1}{d_{n}}\right)=\infty \tag{22}
\end{equation*}
$$

Therefore, it will be of great interest to establish oscillation criteria when

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left(\frac{1}{c_{n}}\right)^{\gamma}<\infty \quad \text { and } \quad \sum_{n=n_{0}}^{\infty}\left(\frac{1}{d_{n}}\right)<\infty \tag{23}
\end{equation*}
$$

The aim of the paper is to employ Riccati transformation technique to establish some new oscillation criteria for equation (21) under assumptions (22). We will prove our results bypassing condition (16) and removing the restriction $\Delta c_{n} \geqslant 0$. Unlike previously obtained
results, new oscillation criteria are also obtained under assumptions (23). We will complement and improve the results in [8] and extend those in [13]. Some comparison between our theorems and those previously known ones are indicated throughout the paper.

The paper is organized as follows: In Section 2, we present some fundamental lemmas that will be useful in proving our main results. In Section 3, we will state and prove the main oscillation theorems. An example is given to demonstrate the validity of the results.

2 Some Fundamental Lemmas

In this section, we present some fundamental lemmas that will be used in the proofs of the main results. For equation (21), we define the quasi differences by

$$
\begin{equation*}
x_{n}^{[0]}=x_{n}, \quad x_{n}^{[1]}=d_{n} \Delta x_{n}, \quad x_{n}^{[2]}=c_{n} \Delta\left(x_{n}^{[1]}\right)^{\gamma} \quad \text { and } x_{n}^{[3]}=\Delta x_{n}^{[2]} . \tag{24}
\end{equation*}
$$

It is to be noted that if x_{n} is a solution of (21) then $z=-x$ is also a solution of (21) since $u f(u)>0$ for $u \neq 0$. Thus, concerning nonoscillatory solutions of (21), we will only restrict our attention to the positive ones.

We start with the following lemma which provides the signs of the quasi differences of the solution x_{n} of (21).

Lemma 1. Let x_{n} be a nonoscillatory solution of (21). Assume that $\left(h_{1}\right)-\left(h_{2}\right)$ hold. Then there exists $N>n_{0}$ such that $x_{n}^{[i]} \neq 0$ for $i=0,1,2$ and $n \geq N$.

Proof. Without loss of generality, we assume that x_{n} is an eventually positive solution of (21) and there exists $n_{1} \geq n_{0}$ such that x_{n} and $x_{n-\sigma}>0$ for $n \geq n_{1}$. Since $q_{n}>0$, then $x_{n}^{[3]}<0$. Thus, there exists $n_{2} \geq n_{1}$ such that $x_{n}^{[2]}$ is either positive or negative for $n \geq n_{2}$. It follows that $x_{n}^{[1]}$ is either increasing or decreasing for $n \geq n_{2}$ and so there exists $N \geq n_{2}$ such that $x_{n}^{[0]}$ is either positive or negative for $n \geq N$.

In view of Lemma 1, we deduce that all nonoscillatory solutions of (21) belong to the following classes:

$$
\begin{aligned}
& C_{0}=\left\{x_{n}: \exists N \text { such that } x_{n} x_{n}^{[1]}<0, x_{n} x_{n}^{[2]}>0 \text { for } n \geq N\right\}, \\
& C_{1}=\left\{x_{n}: \exists N \text { such that } x_{n} x_{n}^{[1]}>0, x_{n} x_{n}^{[2]}<0 \text { for } n \geq N\right\}, \\
& C_{2}=\left\{x_{n}: \exists N \text { such that } x_{n} x_{n}^{[1]}>0, x_{n} x_{n}^{[2]}>0 \text { for } n \geq N\right\}, \\
& C_{3}=\left\{x_{n}: \exists N \text { such that } x_{n} x_{n}^{[1]}<0, x_{n} x_{n}^{[2]}<0 \text { for } n \geq N\right\} .
\end{aligned}
$$

Lemma 2. Let x_{n} be a nonoscillatory solution of (21). Assume that $\left(h_{1}\right)-\left(h_{2}\right)$ hold. If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{d_{n}} \sum_{s=n_{0}}^{n-1} \frac{1}{\left(c_{s}\right)^{\frac{1}{\gamma}}}=\infty \tag{25}
\end{equation*}
$$

Then C_{3} is empty.
Proof. To prove that C_{3} is empty, it is sufficient to show that if there is a positive solution x_{n} of (21), then the case $x_{n} x_{n}^{[1]}<0$ and $x_{n} x_{n}^{[2]}<0$ for $n \geq N$ is impossible. For the sake of contradiction, assume that there exists $n_{1}>n_{0}$ such that $x_{n}^{[1]}<0$ and $x_{n}^{[2]}<0$ for $n \geq n_{1}$. Denote $a_{0}=x_{n_{1}}^{[2]}<0$. Then, since $x_{n}^{[2]}$ is decreasing we have $c_{n}\left(\Delta x_{n}^{[1]}\right)^{\gamma}<a_{0}$ for $n \geq n_{1}$. Thus by summing from n_{1} to $n-1$, we have

$$
x_{n}^{[1]}<x_{n_{1}}^{[1]}+a_{0}^{\frac{1}{\gamma}} \sum_{s=n_{1}}^{n-1} \frac{1}{\left(c_{s}\right)^{\frac{1}{\gamma}}} .
$$

Using that $x_{n_{1}}^{[1]}<0$, we get

$$
x_{n}^{[1]}<a_{0}^{\frac{1}{\gamma}} \sum_{s=n_{1}}^{n-1} \frac{1}{\left(c_{s}\right)^{\frac{1}{\gamma}}} .
$$

Summing up from n_{1} to $n-1$, we obtain

$$
x_{n}<x_{n_{1}}+a_{0}^{\frac{1}{\gamma}} \sum_{s=n_{1}}^{n-1} \frac{1}{d_{s}} \sum_{u=n_{1}}^{s-1} \frac{1}{\left(c_{u}\right)^{\frac{1}{\gamma}}} .
$$

Letting $n \rightarrow \infty$, then by (25) we deduce that $\lim _{n \rightarrow \infty} x_{n}=-\infty$ which contradicts that $x_{n}>0$. The proof is complete.

Lemma 3. Let x_{n} be a nonoscillatory solution of (21). Assume that $\left(h_{1}\right)-\left(h_{2}\right)$ hold. If (22) holds. Then $x_{n} \in C_{0} \cup C_{2}$.

Proof. Without loss of generality, we assume that x_{n} is an eventually positive solution of (21) and there exists $n_{1} \geqslant n_{0}$ such that x_{n} and $x_{n-\sigma}>0$ for $n \geqslant n_{1}$. In virtue of Lemma 1 , we deduce that $x_{n}^{[0]}, x_{n}^{[1]}$ and $x_{n}^{[2]}$ are monotone and eventually of one sign. Therefore to complete the proof, we show that there are only the following two cases for $n \geqslant n_{0}$ sufficiently large:
(I) $x_{n}^{[0]}>0, x_{n}^{[1]}>0$ and $x_{n}^{[2]}>0$;
(II) $x_{n}^{[0]}>0, x_{n}^{[1]}<0$ and $x_{n}^{[2]}>0$.

In view of $\left(h_{2}\right)$ and (21), we see that $x_{n}^{[3]}<0$ for $n \geqslant n_{1}$. We claim that there is $n_{2} \geqslant n_{1}$ such that for $n \geqslant n_{2}, x_{n}^{[2]}>0$. Suppose to the contrary that $x_{n}^{[2]} \leq 0$ for $n \geqslant n_{2}$. Since $x_{n}^{[2]}$ is nonincreasing, there exists a negative constant L and $n_{3} \geqslant n_{2}$ such that $x_{n}^{[2]} \leq L$ for $n \geqslant n_{3}$. Dividing by c_{n} and summing from n_{3} to $n-1$, we obtain

$$
x_{n}^{[1]} \leq x_{n_{3}}^{[1]}+L^{\frac{1}{\gamma}} \sum_{s=n_{3}}^{n-1} \frac{1}{\left(c_{s}\right)^{\frac{1}{\gamma}}} .
$$

Letting $n \rightarrow \infty$, then by (22) we deduce that $x_{n}^{[1]} \rightarrow-\infty$. Thus, there is an integer $n_{4} \geqslant n_{3}$ such that for $n \geqslant n_{4}, x_{n}^{[1]} \leq x_{n_{4}}^{[1]}<0$. Dividing by d_{n} and summing from t_{4} to t, we have

$$
x_{n}-x_{n_{4}} \leq x_{n_{4}}^{[1]} \sum_{s=n_{4}}^{n-1} \frac{1}{d_{s}},
$$

which implies that $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. This contradicts the fact that $x_{n}>0$. Then $x_{n}^{[2]}>0$.

Lemma 4. Let x_{n} be a nonsocillatory solution of (21) that belongs to C_{0}. Assume that $\left(h_{1}\right)-\left(h_{2}\right)$ and $n-\sigma \leq n$ hold. If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{d_{n}}\left[\sum_{t=n_{0}}^{n-1} \frac{1}{c_{t}} \sum_{s=n_{0}}^{t-1} q_{s}\right]^{\frac{1}{\gamma}}=\infty \tag{26}
\end{equation*}
$$

Then $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof. Without loss of generality, we assume that $x_{n-\sigma}>0$ for $n \geq n_{1}$ where n_{1} is chosen sufficiently large. In view of $\left(h_{2}\right)$ and (21), we obtain

$$
\begin{equation*}
x_{n}^{[3]}+K q_{n} x_{n-\sigma}^{\gamma} \leq 0, \quad n \geq n_{1} . \tag{27}
\end{equation*}
$$

Since x_{n} is positive and decreasing it follows that $\lim _{n \rightarrow \infty} x_{n}=b \geq 0$. Now we claim that $b=0$. If $b \neq 0$ then $x_{n-\sigma}^{\gamma} \rightarrow b^{\gamma}>0$ as $n \rightarrow \infty$. Hence there exists $n_{2} \geq n_{1}$ such that $x_{n-\sigma}^{\gamma} \geq b^{\gamma}$. Therefore from (27), we have

$$
x_{n}^{[3]}+K q_{n} b^{\gamma} \leq 0, \quad n \geq n_{2} .
$$

Define the sequence $u_{n}=x_{n}^{[2]}$ for $n \geq n_{2}$. Then $\Delta x_{n}^{[2]} \leq-A q_{n}$ where $A=K b^{\gamma}>0$. Summing the last inequality from n_{2} to $n-1$, we get $x_{n}^{[2]} \leq x_{n_{2}}^{[2]}-A \sum_{s=n_{2}}^{n-1} q_{s}$. In view of (26), it is possible to choose an integer n_{3} sufficiently large such that $x_{n}^{[2]} \leq-\frac{A}{2} \sum_{s=n_{2}}^{n-1} q_{s}$ for all $n \geq n_{3}$. Hence $\Delta\left(x_{n}^{[1]}\right)^{\gamma} \leq-\frac{A}{2} \frac{1}{c_{n}} \sum_{s=n_{2}}^{n-1} q_{s}$. Summing the last inequality from n_{3} to $n-1$, we obtain

$$
\left(x_{n}^{[1]}\right)^{\gamma} \leq\left(x_{n_{3}}^{[1]}\right)^{\gamma}-\frac{A}{2} \sum_{t=n_{3}}^{n-1}\left(\frac{1}{c_{t}} \sum_{s=n_{2}}^{t-1} q_{s}\right) .
$$

Since $\Delta x_{n}<0$ for $n \geq n_{0}$, the last inequality implies that

$$
\Delta x_{n} \leq-\left(\frac{A}{2}\right)^{\frac{1}{\gamma}} \frac{1}{d_{n}}\left[\sum_{t=n_{3}}^{n-1} \frac{1}{c_{t}} \sum_{s=n_{2}}^{t-1} q_{s}\right]^{\frac{1}{\gamma}}
$$

Summing from n_{4} to $n-1$, we have

$$
x_{n} \leq x_{n_{4}}-\left(\frac{A}{2}\right)^{\frac{1}{\gamma}} \sum_{l=n_{4}}^{n-1} \frac{1}{d_{l}}\left[\sum_{t=n_{3}}^{l-1} \frac{1}{c_{t}} \sum_{s=n_{2}}^{t-1} q_{s}\right]^{\frac{1}{\gamma}}
$$

Condition (26) implies that $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ which is a contradiction with the fact that $x_{n}>0$. Then $b=0$ and this completes the proof.

Lemma 5. Let x_{n} be a nonoscillatory solution of (21) that belongs to C_{2}. Then there exists $n_{1} \geq n_{0}$ such that

$$
\left(x_{n-\sigma}^{[1]}\right)^{\gamma} \geq \delta_{n-\sigma} x_{n}^{[2]}, \text { for } n \geq n_{1}
$$

where $\delta_{n}:=\sum_{s=n_{0}}^{n-1} \frac{1}{c_{s}}$.
Proof. Since $x_{n} \in C_{2}$, then without loss of generality we can assume that there exists $N>n_{0}$ such that

$$
x_{n}>0, x_{n}^{[1]}>0, x_{n}^{[2]}>0 \text { and } x_{n}^{[3]} \leq 0 \text { for } n \geq N
$$

Hence

$$
\begin{equation*}
\left(x_{n}^{[1]}\right)^{\gamma}=\left(x_{n_{1}}^{[1]}\right)^{\gamma}+\sum_{s=n_{1}}^{n-1} \frac{c_{s} \Delta\left(x_{s}^{[1]}\right)^{\gamma}}{c_{s}} \geq \delta_{n} x_{n}^{[2]}, \quad n \geq n_{1} \tag{28}
\end{equation*}
$$

Since $x_{n}^{[3]} \leq 0$, we have $x_{n-\sigma}^{[2]} \geq x_{n}^{[2]}$. This and (28) imply that

$$
\left(x_{n-\sigma}^{[1]}\right)^{\gamma} \geq \delta_{n-\sigma} x_{n-\sigma}^{[2]} \geq \delta_{n-\sigma} x_{n}^{[2]}, \quad n \geq N_{1}=N+\sigma .
$$

Thus

$$
\left(x_{n-\sigma}^{[1]}\right)^{\gamma} \geq \delta_{n-\sigma} x_{n}^{[2]}, \text { for } n \geq N_{1}
$$

3 Oscillation Criteria

In this section, we will establish some new sufficient conditions which guarantee that every solution x_{n} of (21) either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$. In our analysis, we will present the proofs of our results under conditions (22) and (23) in two separate investigations.

3.1 Oscillation under condition (22)

Throughout this subsection we assume that there exists a double sequences $\left\{H_{m, n}: m \geq\right.$ $n \geq 0\}$ and $h_{m, n}$ such that:
(i) $H_{m, m}=0$ for $m \geq 0$;
(ii) $H_{m, n}>0$ for $m>n \geq 0$;
(iii) $\Delta_{2} H_{m, n}=H_{m, n+1}-H_{m, n} \leq 0$ for $m \geq n \geq 0$;
(iv) $h_{m, n}=-\Delta_{2} H_{m, n}\left(H_{m, n}\right)^{-\frac{1}{\gamma+1}}, m>n \geq 0$.

For a given sequence ρ_{n}, we define

$$
\begin{aligned}
\psi_{n}: & =K \rho_{n} q_{n}-\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}}\left(c_{n+1}\right)^{1+\frac{1}{\gamma}}\left(\alpha_{n+1}\right)^{1+\frac{1}{\gamma}}}{d_{n-\sigma}} \\
\xi_{n}: & =\Delta \rho_{n}+\gamma \rho_{n}\left(1+\frac{1}{\gamma}\right)\left(c_{n+1} \alpha_{n+1} \delta_{n-\sigma}\right)^{\frac{1}{\gamma}} d_{n-\sigma}^{-1}
\end{aligned}
$$

and

$$
\phi_{m, n}:=\frac{\rho_{n+1}^{1+\gamma}}{(1+\gamma)^{1+\gamma} \rho_{n}^{\gamma} \delta_{n-\sigma} d_{n-\sigma}^{-\gamma} H_{m, n}^{\gamma}}\left(\frac{\xi_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} H_{m, n}^{\frac{1}{\gamma+1}}\right)^{1+\gamma} .
$$

Theorem 6. Let x_{n} be a solution of (21) and ρ_{n} be a given positive sequence. Assume that $\left(h_{1}\right)-\left(h_{2}\right),(22)$ and (26) hold. If

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{0}}} \sum_{n=n_{0}}^{m-1}\left[H_{m, n} \psi_{n}-\phi_{m, n}\right]=\infty \tag{29}
\end{equation*}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
Proof. Suppose to the contrary that x_{n} is a nonoscillatory solution. Without loss of generality, we assume that $x_{n}>0$ and $x_{n-\sigma}>0$ for $n \geq n_{1}$ where n_{1} is chosen so large. In view of Lemma 3, we deduce that condition (22) implies that $x_{n} \in C_{0} \cup C_{2}$. If $x_{n} \in C_{0}$, then we are back to the proof of Lemma 4 to show that $\lim _{n \rightarrow \infty} x_{n}=0$. We assume that the solution $x_{n} \in C_{2}$ and define the sequence ω_{n} by the generalized Riccati substitution

$$
\begin{equation*}
\omega_{n}:=\rho_{n}\left[\frac{x_{n}^{[2]}}{x_{n-\sigma}^{\gamma}}+c_{n} \alpha_{n}\right], \quad n \geq n_{1} \tag{30}
\end{equation*}
$$

It follows that

$$
\Delta \omega_{n}=\Delta\left(\rho_{n} c_{n} \alpha_{n}\right)+x_{n+1}^{[2]} \Delta\left[\frac{\rho_{n}}{x_{n-\sigma}^{\gamma}}\right]+\frac{\rho_{n} x_{n}^{[3]}}{x_{n-\sigma}^{\gamma}}
$$

In view of (27) and (30), the above equation can be written in the form

$$
\begin{equation*}
\Delta \omega_{n} \leq-K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\rho_{n} x_{n+1}^{[2]}}{x_{n-\sigma}^{\gamma} x_{n-\sigma+1}^{\gamma}} \Delta\left(x_{n-\sigma}^{\gamma}\right) \tag{31}
\end{equation*}
$$

First: we consider the case when $\gamma \geq 1$. By using the inequality ([9, see p. 39])

$$
x^{\gamma}-y^{\gamma} \geq \gamma y^{\gamma-1}(x-y) \text { for all } x \neq y>0 \text { and } \gamma \geq 1
$$

we may write

$$
\Delta\left(x_{n-\sigma}^{\gamma}\right)=x_{n-\sigma+1}^{\gamma}-x_{n-\sigma}^{\gamma} \geq \gamma x_{n-\sigma}^{\gamma-1} \Delta x_{n-\sigma}, \quad \gamma \geq 1 .
$$

Substituting in (31), we find out

$$
\Delta \omega_{n} \leq-K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\gamma \rho_{n} x_{n+1}^{[2]} \Delta x_{n-\sigma}}{x_{n-\sigma} x_{n-\sigma+1}^{\gamma}} .
$$

Since $x_{n} \in C_{2}$, it follows from Lemma 5 that there exists $n_{2} \geq n_{1}$ such that

$$
\begin{equation*}
\left(\Delta x_{n-\sigma}\right)^{\gamma} \geq \frac{\delta_{n-\sigma}}{d_{n-\sigma}^{\gamma}} x_{n}^{[2]} \quad \text { for } \quad n \geq n_{2} \tag{32}
\end{equation*}
$$

Using the fact that $x_{n-\sigma+1} \geq x_{n-\sigma}$, we obtain

$$
\begin{equation*}
\Delta \omega_{n} \leq-K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\gamma \rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}} x_{n+1}^{[2]}\left[x_{n}^{[2]}\right]^{\frac{1}{\gamma}}}{d_{n-\sigma}\left(x_{n-\sigma+1}\right)^{\gamma+1}} \tag{33}
\end{equation*}
$$

Since $x_{n}^{[3]}<0$, it follows that $x_{n+1}^{[2]} \leq x_{n}^{[2]}$ and thus $\left[x_{n+1}^{[2]}\right]^{\frac{1}{\gamma}} \leq\left[x_{n}^{[2]}\right]^{\frac{1}{\gamma}}$. This yields that

$$
\begin{equation*}
\Delta \omega_{n} \leq-K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\gamma \rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}}}{d_{n-\sigma}}\left(\frac{x_{n+1}^{[2]}}{x_{n-\sigma+1}^{\gamma}}\right)^{\frac{1+\gamma}{\gamma}} \tag{34}
\end{equation*}
$$

Second: we consider the case when $0<\gamma<1$. By using the inequality

$$
x^{\gamma}-y^{\gamma} \geq \gamma x^{\gamma-1}(x-y) \text { for all } x \neq y>0
$$

we may write

$$
\Delta\left(x_{n-\sigma}^{\gamma}\right) \geq \gamma x_{n-\sigma+1}^{\gamma-1} \Delta x_{n-\sigma}
$$

Substituting in (31), we have

$$
\Delta \omega_{n} \leq-K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\gamma \rho_{n} x_{n+1}^{[2]} \Delta x_{n-\sigma}}{x_{n-\sigma}^{\gamma} x_{n-\sigma+1}} .
$$

By using the fact that x_{n} is increasing, we have

$$
\begin{equation*}
-\frac{\gamma \rho_{n} x_{n+1}^{[2]} \Delta x_{n-\sigma}}{x_{n-\sigma}^{\gamma} x_{n-\sigma+1}} \leq-\frac{\gamma \rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}}}{d_{n-\sigma}}\left(\frac{x_{n+1}^{[2]}}{x_{n-\sigma+1}^{\gamma}}\right)^{\frac{1+\gamma}{\gamma}} \tag{35}
\end{equation*}
$$

Thus, we again obtain (34). However, from (30) we see that

$$
\begin{equation*}
\left(\frac{x_{n+1}^{[2]}}{x_{n-\sigma+1}^{\gamma}}\right)^{1+\frac{1}{\gamma}}=\left(\frac{\omega_{n+1}}{\rho_{n+1}}-c_{n+1} \alpha_{n+1}\right)^{1+\frac{1}{\gamma}} \tag{36}
\end{equation*}
$$

Then, by using the inequality [19, see p. 534]

$$
(v-u)^{1+\frac{1}{\gamma}} \geq v^{1+\frac{1}{\gamma}}+\frac{1}{\gamma} u^{1+\frac{1}{\gamma}}-\left(1+\frac{1}{\gamma}\right) u^{\frac{1}{\gamma}} v, \quad \gamma=\frac{o d d}{o d d} \geq 1,
$$

we may write equation (36) as follows

$$
\left(\frac{\omega_{n+1}}{\rho_{n+1}}-c_{n+1} \alpha_{n+1}\right)^{1+\frac{1}{\gamma}} \geq\left(\frac{\omega_{n+1}}{\rho_{n+1}}\right)^{1+\frac{1}{\gamma}}+\frac{\left(c_{n+1} \alpha_{n+1}\right)^{1+\frac{1}{\gamma}}}{\gamma}-\frac{\left(1+\frac{1}{\gamma}\right)\left(c_{n+1} \alpha_{n+1}\right)^{\frac{1}{\gamma}}}{\rho_{n+1}} \omega_{n+1}
$$

Substituting back in (34), we have

$$
\begin{align*}
\Delta \omega_{n} \leq & -K \rho_{n} q_{n}+\rho_{n} \Delta\left(c_{n} \alpha_{n}\right)-\frac{\rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}}\left(c_{n+1}\right)^{1+\frac{1}{\gamma}}\left(\alpha_{n+1}\right)^{1+\frac{1}{\gamma}}}{d_{n-\sigma}} \\
& +\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}+\frac{\gamma \rho_{n}\left(1+\frac{1}{\gamma}\right)\left(c_{n+1} \delta_{n-\sigma} \alpha_{n+1}\right)^{\frac{1}{\gamma}}}{d_{n-\sigma} \rho_{n+1}}\right) \omega_{n+1} \\
& -\left(\frac{\gamma \rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}}}{d_{n-\sigma}\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}\right)\left(\omega_{n+1}\right)^{1+\frac{1}{\gamma}} . \tag{37}
\end{align*}
$$

Thus,

$$
\psi_{n} \leq-\Delta \omega_{n}+\frac{\xi_{n}}{\rho_{n+1}} \omega_{n+1}-\frac{\bar{\rho}_{n}}{\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}\left(\omega_{n+1}\right)^{1+\frac{1}{\gamma}}, \quad n \geq n_{3}
$$

where $\bar{\rho}_{n}=\gamma \rho_{n} \delta_{n-\sigma}^{\frac{1}{\gamma}} d_{n-\sigma}^{-1}$. Therefore, we have

$$
\sum_{n=n_{3}}^{m-1} H_{m, n} \psi_{n} \leq-\sum_{n=n_{3}}^{m-1} H_{m, n} \Delta \omega_{n}+\sum_{n=n_{3}}^{m-1} \frac{\xi_{n} H_{m, n}}{\rho_{n+1}} \omega_{n+1}-\sum_{n=n_{3}}^{m-1} \frac{\bar{\rho}_{n} H_{m, n}}{\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}\left(\omega_{n+1}\right)^{1+\frac{1}{\gamma}},
$$

which yields after summing by parts

$$
\begin{aligned}
\sum_{n=n_{3}}^{m-1} H_{m, n} \psi_{n} & \leq H_{m, n_{3}} \omega_{n_{3}}+\sum_{n=n_{3}}^{m-1} \omega_{n+1} \Delta_{2} H_{m, n}+\sum_{n=n_{3}}^{m-1} \frac{\xi_{n} H_{m, n}}{\rho_{n+1}} \omega_{n+1} \\
& -\sum_{n=n_{3}}^{m-1} \frac{\bar{\rho}_{n} H_{m, n}}{\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}\left(\omega_{n+1}\right)^{1+\frac{1}{\gamma}}
\end{aligned}
$$

Hence

$$
\sum_{n=n_{3}}^{m-1} H_{m, n} \psi_{n} \leq H_{m, n_{3}} \omega_{n_{3}}+\sum_{n=n_{3}}^{m-1}\left(\frac{\xi_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} H_{m, n}^{\frac{1}{\gamma+1}}\right) \omega_{n+1}-\sum_{n=n_{3}}^{m-1} \frac{\bar{\rho}_{n} H_{m, n}}{\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}\left(\omega_{n+1}\right)^{1+\frac{1}{\gamma}}
$$

Using the fact that

$$
B u-A u^{1+\frac{1}{\beta}} \leq \frac{\beta^{\beta}}{(1+\beta)^{1+\beta}} \frac{B^{1+\beta}}{A^{\beta}}
$$

for $A=\frac{\bar{\rho}_{n} H_{m, n}}{\left(\rho_{n+1}\right)^{1+\frac{1}{\gamma}}}$ and $B=\left(\frac{\xi_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} H_{m, n}^{\frac{1}{\gamma+1}}\right)$, we obtain

$$
\sum_{n=n_{3}}^{m-1}\left[H_{m, n} \psi_{n}-\phi_{m, n}\right]<H_{m, n_{3}} \omega_{n_{3}} \leq H_{m, n_{0}} \omega_{n_{3}}
$$

which implies that

$$
\sum_{n=n_{0}}^{m-1}\left[H_{m, n} \psi_{n}-\phi_{m, n}\right]<H_{m, n_{0}}\left(\omega_{n_{3}}+\sum_{n=n_{0}}^{n_{3}-1} \psi_{n}\right)
$$

Hence

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{0}}} \sum_{n=n_{0}}^{m-1}\left[H_{m, n} \psi_{n}-\phi_{m, n}\right]<\infty
$$

which contradicts (29). The proof is complete.
The following result is an immediate consequence of Theorem 6.
Corollary 7. Let x_{n} be a solution of (21) and assume that all the assumptions of Theorem 6 hold, except that the condition (29) is replaced by

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{0}}} \sum_{n=n_{0}}^{m-1} H_{m, n} \psi_{n}=\infty \quad \text { and } \quad \lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{0}}} \sum_{n=n_{0}}^{m-1} \phi_{m, n}<\infty \tag{38}
\end{equation*}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
In view of Theorem 6 , if we choose $H_{m, n}=1$ and

$$
\begin{equation*}
\left(\alpha_{n+1}\right)^{\frac{1}{\gamma}}:=-\frac{\gamma \Delta \rho_{n}}{(\gamma+1) \rho_{n}} d_{n-\sigma} c_{n+1}^{-\frac{1}{\gamma}} \delta_{n-\sigma}^{-\frac{1}{\gamma}} \tag{39}
\end{equation*}
$$

we deduce that $\xi_{n}=0$ and we have the following result.
Theorem 8. Let x_{n} be a solution of (21) and ρ_{n} be a given positive sequence. Assume that $\left(h_{1}\right)-\left(h_{2}\right),(22)$ and (26) hold. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n} \psi_{s}=\infty \tag{40}
\end{equation*}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
Theorem 8 improves Theorem 1 of Graef and Thandapani [8] in the sense that our results are proved for the nonlinear case and do not require condition (16) and that $\Delta c_{n} \geq 0$ for $n \geq n_{0}$. Moreover, we note that if $\gamma=1$ and $\rho_{n}=1$ then condition (40) reduces to condition 3 of Theorem 1 in [8]. This implies that Theorem 8 is an extension of Theorem 1 in [8].

Theorem 8 might provide different conditions for oscillation of all solutions of equation (21). This occurs upon choosing different values for ρ_{n}. For instance, let $\rho_{n}=n^{\lambda}, n \geq n_{0}$ where $\lambda>1$ is a constant. Then, the next result follows.

Corollary 9. Let x_{n} be solution of equation (21) and assume that all the assumptions of Theorem 6 hold, except that condition (40) is replaced by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n}\left[K s^{\lambda} q_{s}-s^{\lambda} \Delta\left(c_{s} \alpha_{s}\right)+\frac{s^{\lambda} \delta_{s-\sigma}^{\frac{1}{\gamma}}\left(c_{s+1}\right)^{1+\frac{1}{\gamma}}\left(\alpha_{s+1}\right)^{1+\frac{1}{\gamma}}}{d_{s-\sigma}}\right]=\infty \tag{41}
\end{equation*}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
By choosing the sequence $H_{m, n}$ in an appropriate form, one can derive several oscillation criteria for (21). Let us consider the double sequence $H_{m, n}$ defined by

$$
H_{m, n}:=(m-n)^{\lambda} \text { or } H_{m, n}:=\left(\log \frac{m+1}{n+1}\right)^{\lambda}, \lambda \geq 1, m \geq n \geq 0
$$

or

$$
H_{m, n}:=(m-n)^{(\lambda)} \quad \lambda \geq 1, m \geq n \geq 0
$$

where

$$
(m-n)^{(\lambda)}=(m-n)(m-n+1) \ldots(m-n+\lambda-1),(m-n)^{(0)}=1
$$

and

$$
\Delta_{2}(m-n)^{(\lambda)}=(m-n-1)^{\lambda}-(m-n)^{\lambda}=-\lambda(m-n)^{(\lambda-1)} .
$$

We observe that $H_{m, m}=0$ for $m \geq 0$ and $H_{m, n}>0$ and $\Delta_{2} H_{m, n} \leq 0$ for $m>n \geq 0$. Then, the following results can be formulated.

Corollary 10. Let x_{n} be a solution of (21) and assume that all the assumptions of Theorem 6 hold, except that the condition (29) is replaced by

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{m^{\lambda}} \sum_{n=0}^{m-1}\left[(m-n)^{\lambda} \psi_{n}-\varphi_{m, n}\right]=\infty \tag{42}
\end{equation*}
$$

where

$$
\varphi_{m, n}=\frac{\rho_{n+1}^{1+\gamma}\left(\frac{\xi_{n}(m-n)^{\lambda}}{\rho_{n+1}}-\lambda(m-n)^{\lambda-1}\right)^{1+\gamma}}{(1+\gamma)^{1+\gamma} \rho_{n}^{\gamma} \delta_{n-\sigma} d_{n-\sigma}^{-\gamma}(m-n)^{\lambda \gamma}}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
Corollary 11. Let x_{n} be a solution of (21) and assume that all the assumptions of Theorem 6 hold, except that the condition (29) is replaced by

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{(\log (m+1))^{\lambda}} \sum_{n=0}^{m-1}\left[\left(\log \frac{m+1}{n+1}\right)^{\lambda} \psi_{n}-\vartheta_{m, n}\right]
$$

where

$$
\vartheta_{m, n}=\frac{\rho_{n+1}^{1+\gamma}\left(\frac{\xi_{n}\left(\log \frac{m+1}{n+1}\right)^{\lambda}}{\rho_{n+1}}-\left[\left(\log \frac{m+1}{n+2}\right)^{\lambda}-\left(\log \frac{m+1}{n+1}\right)^{\lambda}\right]\right)}{(1+\gamma)^{1+\gamma} \rho_{n}^{\gamma} \delta_{n-\sigma} d_{n-\sigma}^{-\gamma}\left(\log \frac{m+1}{n+}\right)^{\gamma \lambda}} .
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
Corollary 12. Let x_{n} be a solution of (21) and assume that all the assumptions of Theorem 6 hold, except that the condition (29) is replaced by

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{m^{\lambda}} \sum_{n=0}^{m-1}(m-n)^{\lambda}\left[\psi_{n}-\frac{\rho_{n+1}^{1+\gamma}\left(\frac{\xi_{n}}{\rho_{n+1}}-\lambda(m-n)^{-1}\right)^{1+\gamma}}{(1+\gamma)^{1+\gamma} \rho_{n}^{\gamma} \delta_{n-\sigma} d_{n-\sigma}^{-\gamma}(m-n)^{\lambda \gamma}}\right]=\infty .
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

Example 13. Consider the equation

$$
\begin{equation*}
\Delta\left(\frac{1}{n} \Delta\left(\sqrt[3]{n} \Delta x_{n}\right)\right)+n x_{n-1}=0, \quad n \geq 1 \tag{43}
\end{equation*}
$$

where $\gamma=1, c_{n}=\frac{1}{n}, d_{n}=\sqrt[3]{n}, q_{n}=n$ and $n-\sigma=n-1$. It follows that $\delta_{n}=$ $\sum_{s=1}^{n-1} \frac{1}{c_{s}}=\frac{n(n-1)}{2}$. It is clear that the sequences c_{n}, d_{n}, q_{n} and the function f satisfy conditions $\left(h_{1}\right)-\left(h_{2}\right)$ and (22). It remains to check conditions (26) and (40). From the above assumptions, it follows that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}} \sum_{t=1}^{n-1} t \sum_{s=1}^{t-1} s=\infty
$$

This shows that condition (26) is satisfied. By choosing $\rho_{n}=n$, one can easily see that

$$
\limsup _{n \rightarrow \infty} \sum_{l=1}^{n}\left[K l^{2}-l\left(\frac{1}{(l-1)(l-2)^{\frac{2}{3}}(l-3)}-\frac{1}{l(l-1)^{\frac{2}{3}}(l-2)}\right)+\frac{1}{2 l(l-1)^{\frac{1}{3}}(l-2)}\right]=\infty
$$

Thus, condition (40) holds. Therefore, by Theorem 8 we conclude that every solution x_{n} of equation (43) either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

Remark 14. It is obvious that results obtained in [8] can not be applied to equation (43).

3.2 Oscillation under condition (23)

Throughout this subsection, the sequences ρ_{n}, ψ_{n} and $\left(\alpha_{n+1}\right)^{\frac{1}{\gamma}}$ are assumed in similar manner. In addition, we assume that (25) holds and thus in view of Lemma 2, we deduce that the class C_{3} is empty. Therefore, if x_{n} is a solution of (21) then $x_{n} \in C_{0} \cup C_{1} \cup C_{2}$.

We define the sequence Q_{n} by

$$
Q_{n}:=K q_{n}\left(\sum_{s=N}^{n-\sigma} \frac{1}{d_{s}}\right)^{\gamma}
$$

where $n-\sigma>N$ for $N>n_{0}$.
Theorem 15. Let x_{n} be a solution of (21) and ρ_{n} be a given positive sequence such that (40) holds. Assume that $\left(h_{1}\right)-\left(h_{2}\right),(23),(25)$ and (26) hold. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{u=n_{6}}^{n-1} \frac{1}{d_{u}}\left[\sum_{s=n_{5}}^{u-1} \frac{1}{c_{s}} \sum_{t=n_{4}}^{s-1} Q_{t} \sum_{\tau=t-\sigma}^{\infty} \frac{1}{c_{\tau}}\right]^{\frac{1}{\gamma}}=\infty \tag{44}
\end{equation*}
$$

Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.
Proof. Suppose to the contrary that x_{n} is a nonoscillatory solution of equation (21). Without loss of generality we may assume that $x_{n}>0$ and $x_{n-\sigma}>0$ for $n \geq n_{1}$ where n_{1} is chosen so large. Condition (25) implies that the solution x_{n} belongs to the space $C_{0} \cup C_{1} \cup C_{2}$. If $x_{n} \in C_{0}$, then we are back to the proof of Lemma 4 to show that $\lim _{n \rightarrow \infty} x_{n}=0$. If $x_{n} \in C_{2}$, then we are back to the proof of Theorem 6 to get a contradiction. To complete the proof, it is sufficient to show that under condition (44) there is no solution $x_{n} \in C_{1}$. Therefore, we suppose to the contrary that there exists $N>n_{1}$ such that $x_{n}^{[1]}>0$ and $x_{n}^{[2]}<0$ for $n \geq N$. In view of the quasi differences (24), we observe that

$$
\Delta x_{n}=\frac{x_{n}^{[1]}}{d_{n}}
$$

Summing up from N to $n-1$, we have

$$
\begin{equation*}
x_{n}-x_{N}=\sum_{s=N}^{n-1} \frac{x_{s}^{[1]}}{d_{s}} \geq x_{n}^{[1]} \sum_{s=N}^{n-1} \frac{1}{d_{s}} . \tag{45}
\end{equation*}
$$

Hence, there exists $n_{3}>N$ such that

$$
x_{n-\sigma} \geq x_{n-\sigma}^{[1]} \sum_{s=N}^{n-\sigma} \frac{1}{d_{s}}, \text { for } n \geq n_{3}
$$

Using this in (21), we get

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(x_{n}^{[1]}\right)^{\gamma}\right)+K q_{n}\left(\sum_{s=N}^{n-\sigma} \frac{1}{d_{s}}\right)^{\gamma}\left(x_{n-\sigma}^{[1]}\right)^{\gamma} \leq 0, \quad n \geq n_{3} \tag{46}
\end{equation*}
$$

Setting $y_{n}=\left(x_{n}^{[1]}\right)^{\gamma}>0$, we deduce that $\Delta y_{n}<0$ and y_{n} satisfies the difference inequality

$$
\begin{equation*}
\Delta\left(c_{n}\left(\Delta y_{n}\right)\right)+Q_{n} y_{n-\sigma} \leq 0, \quad \text { for } n \geq n_{3} . \tag{47}
\end{equation*}
$$

Since $n-\sigma \rightarrow \infty$ as $n \rightarrow \infty$, we can choose $n_{4}>n_{3}$ such that $n-\sigma \geq n_{4}$ for $n \geq n_{4}$ and thus

$$
\begin{aligned}
y_{\infty}-y_{n-\sigma} & =\sum_{s=n-\sigma}^{\infty} \Delta y_{s}=\sum_{s=n-\sigma}^{\infty} c_{s} \Delta y_{s} \frac{1}{c_{s}} \\
& <c_{n-\sigma} \Delta y_{n-\sigma} \sum_{s=n-\sigma}^{\infty} \frac{1}{c_{s}}<c_{n_{4}} \Delta y_{n_{4}} \sum_{s=n-\sigma}^{\infty} \frac{1}{c_{s}} .
\end{aligned}
$$

Thus

$$
-y_{n-\sigma}<c_{n_{4}} \Delta y_{n_{4}} \sum_{s=n-\sigma}^{\infty} \frac{1}{c_{s}} .
$$

Substituting back in (47), we have

$$
\begin{equation*}
\Delta\left(c_{n}\left(\Delta y_{n}\right)\right)<L Q_{n}\left(\sum_{s=n-\sigma}^{\infty} \frac{1}{c_{s}}\right), \quad \text { for } n \geq n_{4} \tag{48}
\end{equation*}
$$

where $L=c_{n_{4}} \Delta y_{n_{4}}<0$. Summing this inequality from n_{4} to $n-1$, we see that

$$
c_{n}\left(\Delta y_{n}\right)<c_{n}\left(\Delta y_{n}\right)-c_{n_{4}}\left(\Delta y_{n_{4}}\right)<L \sum_{s=n_{4}}^{n-1} Q_{s} \sum_{\tau=s-\sigma}^{\infty} \frac{1}{c_{\tau}}
$$

where $\Delta y_{n}<0$. Summing again from n_{5} to $n-1$, we have

$$
y_{n}<L \sum_{s=n_{5}}^{n-1} \frac{1}{c_{s}} \sum_{t=n_{4}}^{s-1} Q_{t} \sum_{\tau=t-\sigma}^{\infty} \frac{1}{c_{\tau}}
$$

or equivalently

$$
\Delta x_{n}<(L)^{\frac{1}{\gamma}}\left(\frac{1}{d_{n}}\right)\left[\sum_{s=n_{5}}^{n-1} \frac{1}{c_{s}} \sum_{t=n_{4}}^{s-1} Q_{t} \sum_{\tau=t-\sigma}^{\infty} \frac{1}{c_{\tau}}\right]^{\frac{1}{\gamma}}
$$

Summing from n_{6} to $n-1$, we have

$$
x_{n}<x_{n_{6}}+(L)^{\frac{1}{\gamma}} \sum_{u=n_{6}}^{n-1} \frac{1}{d_{u}}\left[\sum_{s=n_{5}}^{u-1} \frac{1}{c_{s}} \sum_{t=n_{4}}^{s-1} Q_{t} \sum_{\tau=t-\sigma}^{\infty} \frac{1}{c_{\tau}}\right]^{\frac{1}{\gamma}} .
$$

By condition (44), we have $\lim _{n \rightarrow \infty} x_{n}=-\infty$ which contradicts the fact that $x_{n}>0$. The proof is complete.

Theorem 16. Let x_{n} be a solution of (21). Let ρ_{n} be a positive sequence. Assume that $\left(h_{1}\right)-\left(h_{2}\right),(23),(25)$ and (26) hold. If (44) holds and there exist double sequences $H_{m, n}$ and $h_{m, n}$ satisfy (29), then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof. Suppose to the contrary that x_{n} is a nonoscillatory solution of equation (21). Without loss of generality we may assume that $x_{n}>0$ and $x_{n-\sigma}>0$ for $n \geq n_{1}$ where n_{1} is chosen so large. Condition (25) implies that the solution x_{n} belongs to the space $C_{0} \cup C_{1} \cup C_{2}$. If $x_{n} \in C_{0}$, then we are back to the proof of Lemma 4 to show that $\lim _{n \rightarrow \infty} x_{n}=0$. If $x_{n} \in C_{1}$, then we are back to the proof of Theorem 15 to get a contradiction. To complete the proof, it is sufficient to show that under condition (44) there is no solution $x_{n} \in C_{1}$. Thus, we proceed as in the proof of Theorem 15 to get a contradiction. The proof is complete.

The following results are an immediate consequences of Theorem 16.
Corollary 17. Let x_{n} be solution of equation (21) and assume that all the assumptions of Theorem 16 hold, except that condition (29) is replaced by (41). Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

Corollary 18. Let x_{n} be a solution of (21) and assume that all the assumptions of Theorem 16 hold, except that the condition (29) is replaced by (42). Then x_{n} either oscillates or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

References

[1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Revised and Expanded, Marcel Dekker, New York 2000.
[2] R. P. Agarwal and S. R. Grace, Oscillation of certain third-order difference equations, Comp. Math. Appl. 42 (2001) 379-384.
[3] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, Dordrecht 1997.
[4] M. Artzroumi, Generalized stable population theory, J. Math. Biology, 21 (1985) 363381.
[5] Z. Došlá and A. Kobza, Global asymptotic properties of third-order difference equations, Comp. Math. Appl. 48 (2004) 191-200.
[6] S. Elaydi, An Introduction to Difference Equations, Third Edition, Springer, New York, 2005.
[7] S. R. Grace, R. P. Agarwal and J. Graef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math. 3 (2009), 27-38.
[8] J. Graef and E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funk. Ekvac. 42 (1999) 355-369.
[9] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd Ed. Cambridge Univ. Press 1952.
[10] G. D. Jones, Oscillatory behavior of third order differential equations, Proc. Amer. Math. Soc. 43 (1974) 133-135.
[11] W.G. Kelley and A. C. Peterson, Difference Equations; An Introduction with Applications, Academic Press, New York 1991.
[12] J. Popenda and E. Schmeidel, Nonoscillatory solutions of third order difference equations, Port. Math. 49 (1992) 233-239.
[13] S. H. Saker, Oscillation of third-order difference equations, Port. Math. 61 (2004) 249257.
[14] B. Smith, Oscillatory and asymptotic behavior in certain third order difference equations, Rocky Mountain J. Math. 17 (1987) 597-606.
[15] B. Smith, Linear third-order difference equations: Oscillatory and asymptotic behavior, Rocky Mountain J. Math. 22 (1992) 1559-1564.
[16] B. Smith, Oscillation and nonoscillation theorems for third order quasi-adjoint difference equation, Port. Math. 45 (1988), 229-234.
[17] B. Smith and Jr. W. E. Taylor, Asymptotic behavior of solutions of a third order difference equations, Port. Math. 44 (1987) 113-117.
[18] B. Smith and Jr. W. E. Taylor, Nonlinear third order difference equation: Oscillatory and asymptotic behavior, Tamakang J. Math. 19 (1988) 91-95.
[19] J. Jiang, X. Li, Oscillation of second order nonlinear neutral differential equations, App. Math. Comput. 135 (2-3) (2003), 531-540.
(Received May 2, 2010)

[^0]: *Corresponding Author E-mail Address: jalzabut@psu.edu.sa

