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SOME RESULTS OF NONTRIVIAL SOLUTIONS FOR A
NONLINEAR PDE IN SOBOLEV SPACE

SAMIA BENMEHIDI AND BRAHIM KHODJA

ABSTRACT. In this study, we investigate the question of nonexistence
of nontrivial solutions of the Robin problem
Pu 0 9 .
7@ — Z 8—%(15@/, ay“;)+f(y,u) :OH’IQ:RXD,

s=1

(P)

u—l—a%:OonRx@D.
on

where as : D x R — R are H'- functions with constant sign such that

s
(Hl) 2f as(y7t5)dt5 7£Sa5(y755) §073: 17"'7”
0
and f: D xR — R is a real continuous locally Liptschitz function such
that
(H2) 2F(y,u) —uf(y,u) <0,

We show that the function

B(z) = / fu(z, ) dy

is convex on R . Our proof is based on energy (integral) identities.

(D: ﬁ e, Br[,e >0 and F(y,u) :ff(y,r)dr)

k=1

1. INTRODUCTION
The problem of existence and nonexistence of nontrivial solutions of prob-

lems of the form
—Au+ f(u) =01in Q,

u = 0 on 012,

has been investigated by many authors under various situations. Previous
works have been reported by Berestycky, Gallouet & Kavian [1], M. J. Esteban
& P. L. Lions [2], Pucci & J. Serrin [9] and Pohozaev [10]. To illustrate some
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of the typical known results, let us consider Dirichlet problem

—Au+ f(u) = 0,u € C3(Q),

u = 0 on 01,

Under hypothesis
Vu € L*(9),
f(O) = OQ’L
F(u) = [ f(s)ds € LY(),
0

where Q is a connected unbounded domain of RY such as
A € RY, [[A] = 1, (n(2), A) > 0 on 00, (n(x), A) # 0,

(n(x) is the outward normal to O at the point =) Esteban & Lions [2]
established that the Dirichlet problem does not have nontrivial solutions.
Berestycky, Gallouet & Kavian [1] established that the problem

—Au—ud +u =0,
u € H%(R?)

admits a radial solution
This same solution satisfies

—Au—ud+u=0,

u € H?(]0, +oo[ x R)

ou R

= 0 on {0} xR,
this shows that analogous Esteban-Lions result for Neumann problems is
not valid.

The Pohozaev identity published in 1965 for solutions of the Dirichlet
problem proved absence of nontrivial solutions for some elliptic equations
when 2 is a star shaped bounded domain in R™ and f a continuous function
on R satisfying:

(n—2)F(u) — 2nuf(u) > 0,

where, n = dim R".
When
Q=JXxw,

where J C R is unbounded interval and w C R™ domain , Haraux & Khodja
[3] established under the assumption

{ f(0) =0,

2F (u) — uf(u) <0,
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if we assume that v € H?(J x w) N L®(J x w) is a solution of the problems
—Au+ f(u) =01in Q,

(wor 24) =0o0n 9 (J xw).

Then these two problems (Dirichlet and Neumann) do have only trivial
solution.

When
flw) =u(u+1)(u+2),
and
Q=R x]0,a[(a <),
Neumann problem

—Au+u(u+1)(u+2)=0in £,

0
% = 0 on 01,
is still open.

In this work, let a;,i = 1,...,n be a sequence in H'(D x R) verifying

ai(y,0) =0in D = H]ak,ﬁk[,
k=1

and f : DxR — R alocally Lipschitz continuous function such that f(y,0) =
0 in D, so that v = 0 is a solution of the equation

d%u "9 ou .
We assume that

u € H*(Q)NL>(Q),
and satisfies

(1.2) u(z,s) = 0,(z,s) e Rx 0D
or
ou
(1.3) %(:c,s) = 0,(x,s) e Rx 9D
or
ou
(1.4) <u +ea—n> (x,s) = 0,(z,s) e Rx9ID

Let us denote by:
P'=RxJD =Ty Ul'g U..UT, Ulg |

(F,ui = {(x,yla < Yi—15 Hiy Yit 1, ayn) T € R’ 1<:< TL})
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the boundary of €2,

n(z,s) = (0,ny (z,8),...,ny (z,5)), the outward normal to 92 at the point (z,s)
and

(32u (z,y)

907 > the second derivative of u with respect to y; at point (z,y).
Yi i=1,...n

goooy

IfzeQ k=1,2,..n and 7 € {1, 1, a2, B2, ..., , Bp } One writes:
Z = (.%',y) - (x7y17"-7yn)

Z]: = (yla s Yk—1 Ty Yk+15 -+ yn) )
dzj, = dy1...dyg—1dyg+1...dyn,

Br1 Bi-1 Bi+1  Bn
[ [ [ ) fey)dyr...dyicidyisr...dy, == [ f(z,y)dz}.
Dy

[e%1 Qi_1 Q41 Qn

The objective of this paper is to extend the results of [3], [5] to problems
(1.1) — (1.2), (1.1) — (1.3) and (1.1) — (1.4).

2. INTEGRAL IDENTITIES
We begin this section by giving an integral identity useful in the sequel.

Lemma 1. Let
a; € HY (DxR),i=1,..,n
satisfy
a;(,&): D —R, >0 or <0,Y,i€{1,...,n},
and assume f: D xR — R a locally Lipschitz continuous function. Then
any solution u € H*(RxD)NL>®(Rx D) of (1.1) satisfying (1.4), verifies for
each x € R and € # 0 the integral identity

1|0u
(L
(2.1) p\ 2

2 n

ox
+€ i (A; (ziai,sflu(m, zf‘l)) + Ai(zf", (—5*1) u(z, zf')))dz;k =0
i=1D

i=1

<%

Proof. Let
H:R—R
the function defined by

H@):/(-%
D

@
Ox

2 n
0
2 Ay 5 )+ Fl, u>> (. )dy.
i=1 ¢
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The hypotheses on u, a;, i = 1,...,n and f imply that H is absolutely
continuous and thus differentiable almost everywhere on R, we have
(2.2)
d Oou 0%u 0%u ou
H Zu — d
(-5 528 + S0 B + )5 ) (e0)ly

D

<_% - Zf:l 83 <al(y, o )) + f(y, )) (%) (z,y)dy

Indeed a simple use of Fubini’s theorem and an integration by parts yields

ou 0%u pi ou 0%u N
/ai(y, (9_@/@) <—(9yi(9:6> (z,y)dy = / (/al a;(y, (9_@/@) <—8yi8:6> dyi> dz;
D D*

i

B9 ou \ du i
—/(/a —a—%< i(v, ay1)> o (z, y)dyz> dz;
D;

- Ou ou ) - Ou ou ,
(P 7 Biy _ & 7 % *
+/ (ai(z’ ’0yi) (51’) (#.27) ~ailz ’ay@) (51’) (.2 )> 4
D*

| :Z_a% (astv 50} (52 ) o) o

DF
By summing up these formulas with respect to ¢ and substituting them in
(2.2), one obtains

%H(m) :[[ <_% _ Zil 8%2 (ai(y, %)) + f(y,u)> <%) (z,y) dy

- = Qu(z, 2’ ou : o, Ou(z,z") Ou a
i 'ﬁz ’ ™ 'ﬁz . K e i *
+ E / <al(zl ’ ayl )({91' (1’, Z@ ) al(zl ? 5% )({91' (1’, Z@ ) dZZ .

As u satisfies equation (1.1), the above expression reduces to
(2 3)

= ID*
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Bi Bi Biy _ (% Ou @ ; *
(Zz ’ ay (1’ Z ))({91' (1’ Z ) al(zz ’ Jy; (.%', Zz ))8.%' (.%', Zz )> dzl .

+/ (a,(z ,%@Z)) (gi) (z, 27 — ai(zﬁ%’yj?i)) (%) (m,zfﬂ) dz:.

Z/ <al 5.2 " ))gZ(m zﬁ')—ai(z?@iau(g’y?i))gzw z )) dz]

*
i



0
Now observe that <u + 58—u> (x,s) = 0 on 09, is equivalent to
n
ou
(’U, - 5%) (xayla e Yi—1, 04, Y41, 7yn) =0
K]
(2.4) rEeR a; <y < B

ou
(u + 8@) (x7y17 "7yi—17/3i7yi+17 7yn) =0
1

This allows to write formula (2.3) in the following form

Z—ID;
ie
d & S o - : ]
Iz H(m)—i—sZ/(Ai (ZZ-Z,E lu(x,zl-l))—i—Ai(zf',(—s 1) u(x,zf'))) dz' | =0.

Integrating this expression,with respect to z one obtains

H(:C)—}—&Z/ (Ai (20, e u(z, 2)) + Ai(zfi, (=) u(a, zlﬁl))> dz! = const.

=11«
D;

u(x,y) € HX(R x D),

one must get

—+o00 n
/ H(z) + 62/ (Al- (28 e u(z, 2)) + Ai(zfi, (=) u(a, zf')))dzf dx < oc.
—00 =1

7

We conclude that the constant is null which is the desired result.

Lemma 2. Let u be chosen as in Lemmal.1. If one assumes u to be solution

of problems (1.1) — (1.3) or (1.1) — (1.4), then for each x € R, the solution
u verifies

29 /(_; 0
D

2 n
ou
+Y Aily, G—y) + F(%U)) (z,y)dy = 0.
i=1 v
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Proof. To prove (2.5) it suffices to show that the second term of (2.1)
vanishes if w verifies (1.2) or (1.3), i.e

/ (Ai (qui’gilu(x, z") + Ai(Zfi, (—671) u(z, zlﬁl))) dzf = 0.
D
If one supposes that u(x,s) = 0 for (z,s) € R x 9D, it is immediate, that

A; (20,0) = Ai(27,0),Vi = 1,...,n.

Now if the boundary condition is %(m, s) =0 for (z,s) € R x 9D, then
ou
%(x,s) = (Vu.n) (x,s) =0 (z,s) € R x dD,
e
et = gl =
U, e Ou
oy (1‘,211) = @(wvzlﬁl) =0
. ’xeR’aiSyiSﬂia
g_;i(szlaz) = g;l (wvzzﬁl) =0
Sz 5) = () = 0
consequently
(a0 o) = el () = 0, = L
because

a;(z,0) =0,Yr € D,Vi=1,...,n..
Finally one gets
Ai (221,0) = A;(27,0) = 0,Vi = 1,...,n.

3. MAIN RESULTS

The goal of this section is to establish the nonexistence of nontrivial so-

lutions to Robin problem.
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Theorem 1. Let a;,i =1,....,n and f satisfying respectively

a;(,&): D —R,>0 or <0,
(3.1) V&L Vie {1, ..., n}
24 (y,&) —a;i (y,8) & <0,

(32) QF(y7u) - uf(y7u) <0 )

and assume
u € H*(Q)N L>®(Q)
to be a solution of (1.1) — (1.4). Then the function

x— E(zr) = / lu(z,y)|* dy is convex on R.
D

Proof. To begin the proof, we see that almost everywhere in 2 =R x D,

we have
2

&%u 1 92
)(x,y).

(5 2) () = (3 s (%) — |2

Ox

In fact by multiplying equation (1.1) by g and integrating the new equation

over D, we obtain

2u n " .
0 :D/ <_% B ;a% (az‘(% g_y@)> —i—f(y,u)) §(x,y)dy
(3.3)

192 1oul” 1~ 0 9
_ / (7@ (u2) +3 — 52@ <ai(y,a—:i)> u+ gf(y,u)(w,y)> dy.
D =

A simple use of Fubini’s theorem and an integration by parts yields,

/ a‘; (axy, g—;>) (w) ) dy = [ </6£ <(y g—y%) wdys)dt —

D Dy oy

@
ox

B Ou . Ou 3; Bu(x,zzﬁi) 3 o Ou(w,z") o .
= —/az(%a—w)a—%(%y) dy+/(az(2¢ 737%)”(%2@- )—ai(%; 787%)”(%% ))dz;

D Dy
Instead of (3.3), we obtain

15 1
/(‘1@ (5 +3
D

2 n
+ 5 izlai(y, a—yl)@yz + guf(y,u)> (gj’y)dy
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[

1o 0 Bi ,  Ou(x, 2 _
=52 /(az‘(z@@% %)u(mﬁ') (e, 2Dy o) g
l:lDiK
From (2.4) it follows that

n Bi a;
S [lotel PG e ) e G Dt
1= D:;

1 ) ) ) 1 ) ) )
=Y / (—ai(2l, —e u(w, 20)) (™) ulz, 2)) ——gai(=0, e u(z, 28))e ula, 20))dz]

ie
102 1
/ (‘1@ () +3
D

n
€ , : _ : o S %
+§ Z /(ai(zf', (—5_1) u(w,zlﬁ')) (—e 1) u(m,zf')—i—ai(zf”,a Yz, 22))e tu(w, 28))dz) = 0,
i=1 e

@
Ox

IS 225 s ) e

Combining this formula and (2.1) we obtain

10?2 ,, 1oul* 1 Oou,O0u 1
_Zam2(“)+§
D

+g Z /(a@'(zfi, (—e_l) u(z, zlﬁl)) (—5_1) u(z, zfi)+ai(zf‘i,e_1u(x, zf"'))e_lu(x, 2{))dz]

ie

(Z(A@(y, o) = 5l ) 5io) + Flyvu) = %uf(ym)) (2, )y
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=1p:
Hypotheses (3.1) and (3.2) imply that

d? ou
o /\U(ﬂc,y)\gdy 24/‘6_90(”6’3/)
D

This completes the proof.

2
dy > 0,Vz € R.

Remark 1. The convexity of the function E(xz) on R implies the triviality
of the solution u(x,y) of the problem (1.1) — (1.4).

Theorem 2. Let the function a;,i = 1,...,n and f be as described as in
Theorem 3.1. We assume u € H?(2) N L>¥(R2) is a solution of (1.1) — (1.2)
or (1.1) — (1.3), then the function E(z) defined above is conver on R.

Proof. By similar arguments as in the proof of Theorem 3.1, we obtain
102,, 1|0u
/ (‘ZW ()3
D

o
1 — . Bux,zzﬁi . 0, Ou(zm, 27" PR
=3 Z/(ai(zf', %)u(m,zzﬁl) —a; (2", %)u(m,zZ ))dz;

n

2 ou . Ou 1
+t3 izlaz(y, 8—%)(9% + §Uf(y,U)> (z,y)dy

i=1p
Now if u (x,s) = 0 or g—z (z,s) =0, for (x,s) € R x 9D this formula reduces
to

16 1
/(‘1@ (=3
D

We can now employ (2.5) to transform this identity into the following form

1 02 1]0u
/(‘1@(“2“5
D

@
Ox

a2 2 L ) ey =0
3 2l ) gy, 3 ) | (wddy =

oz

2 n
1 Oou. Ou 1
+ 92 ;ai(ya 8_%)6_% + §uf(y,u)> (z,y)dy

9 n
D =
i.e | o2 ) e
/<_Z@(u)+ o )(w)dy
D
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- Bu(x7 y) 1 ou . Ou 1

= Ay, 2090y . Z ou I 1 |
D 1=

Our assumptions on a;, and f imply the desired result.

4. APPLICATIONS

A practical tool for characterizing the assumption (3.1) or (3.2) of Theo-
rem 3.1 is the following Proposition.

Proposition 1. Let

f:R—>R
a Lipschitzian real function such that
f(0) =o.

We suppose that f is concave on | — o0, 0[ and convex on |0,+o00[. Then the
function f satisfies the assumption (3.1) or (3.2) of Theorem 3.1.
Application 4.1: Taking
ou(x, ou(zr,
oy, ( y)) _ Ou(z,y)
Ay 9y

then the equation (1.1) becomes

(4.1) —Au+ f(y,u) =0in Q
Application 4.2: We can put
ou _ Ou(x,y)
az(y7 a_yl(xa y)) =G ayl

with ¢; are reals constants. In this case (1.1) can be rewritten as
u <~ O%u
(4.2) ——=—=— Y ¢i—5+ f(ly,u) =0in Q
0z ZZ:; " oy?

Application 4.3: We can also put
du(z,y), du(z,y)
ai(y, % ) =pi(y) 90

with p;(y) < 0 or > 0 in D, it follows that the equation(1.1) is
equivalent to

0%u "9 ou .
(4.3) _W_;(?—yi (pi(y)a—y) + f(y,u) =0in Q

7

We observe that in this three applications, we have

2AZ (y’ 5@) — aj (ya 5@) 5@ = 07v£ia 1= 1, sy T
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5. EXAMPLES

To conclude this work, let us give a few simple examples illustrating the
use of Theorem 3.1.

Example 1. The problem
Pu  n 0

~5a2 ~ 2 gy (@ 50) + @) T u=0in Q=R x D
(5.1) =

(u+eg—2)(:ﬂ,s) =0,(z,s) e Rx 9D
where

0:D — R,
s a nonnegative continuous real function, p > 1 does not have nontrivial
solutions.
Indeed,
2F(y, ) — uf(y,u) = 0(y) (—— — 1) [l <0
p+1
Theorem 3.1 give the desired result.

Example 2. Let p: D — R, be a continuous function . The problem

Pu 1 0 .
—@—Z—(ai(y,g—;))er(y)u:OmeD

(5.2) i=1 8%

u—i-sg—z:O on R x 0D
considered in H*(R x D) N L>®(R x D) does not have nontrivial solutions.

A simple calculation gives

2F(y,u) —uf(y,u) = 0.

and
1 d? ) ou | 1
1o | [QupPas) = ( ou +F(y,U)—5Uf(y,U)> dr
D D
2
:/ % (z,y)dz >0
D

Example 3. Let o
91, 92 D — R,
be two continuous nonnegative functions, p,q > 1 and

Fy,u) = mu+ 61 (y) [ul " u+ 02 (y) [ul” " u),m e R.
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The problem

32u no 0 ou .
"oz 2; Em (%’(% a_%)> + f(y,u) =0 in R x D

(5.3)

u+6@:0 on R x 9D
on

does not have nontrivial solutions.

It suffices to remark that,

2F(y’ u) - uf(y, u) =

2 2
0 D) |ul 46 Dt <0
1) (g = DI 62 ) (= — D™ <
and then apply theorem 3.1.
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