
Electronic Journal of Qualitative Theory of Differential Equations

2008, No. 6, 1-21; http://www.math.u-szeged.hu/ejqtde/

Oscillation and global asymptotic stability of a

neuronic equation with two delays

Hassan A. El-Morshedy ∗

Department of Mathematics, Abha Teachers’ College,

Abha P. O. Box 249, Saudi Arabia

(elmorshedy@yahoo.com)

B. M. El-Matary

Department of Mathematics, Damietta Faculty of Science, New Damietta 34517, Egypt

(bassantmarof@yahoo.com)

Abstract

In this paper we study the oscillatory and global asymptotic stability of a single

neuron model with two delays and a general activation function. New sufficient

conditions for the oscillation and nonoscillation of the model are given. We obtain

both delay-dependent and delay-independent global asymptotic stability criteria.

Some of our results are new even for models with one delay.
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1 Introduction

Delay differential equations have been used to describe the dynamics of a single neuron

to take into account the processing time. Pakdaman et al [15] considered a neuron that

has a delayed self-connection with weight a > 0 and delay τ . Implementing a decay rate

λ in the model, they found that the neuron activation at time t; say x(t), follows the

delay differential equation

dx(t)

dt
= −λx(t) + K + af(x(t − τ)), (1.1)
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where K is the constant input received by the neuron and the neuron transfer function

f is defined by f(x) = 1
1+e−x .

In [4] the delay differential equation

dx(t)

dt
= −x(t) + a tanh(x(t) − bx(t − τ) + C), (1.2)

has been proposed to describe the behavior of the activation level x(t) of a single neuron

which is capable of self-activation modulated by a dynamic threshold C with a single

delay τ . In the absence of the threshold effect, equation (1.2) has the form

dx(t)

dt
= −x(t) + a tanh(x(t) − bx(t − τ)), (1.3)

Letting y(t) = x(t) − bx(t − τ) in (1.3). Then y satisfies the equation

dy(t)

dt
= −y(t) + a tanh(y(t)) − ab tanh(y(t − τ)), (1.4)

the stability and/or bifurcation analysis of (1.4) have been studied in [4, 16] and [13]

but with more general activation function. It is also proved by [13, 14] that (1.4) is

not capable of producing chaos violating the existence of chaos conjectured by [16].

Gopalsamy and Leung [4] proved that the unique equilibrium of (1.4) and hence of (1.3)

is globally asymptotically stable if

a(1 − b) < 1 and a(1 + b) < 1

when a > 0 and b ≥ 0, which agrees with the findings of [13, 16]. El-Morshedy and

Gopalsamy [2] improves the above condition by allowing the equality signs to be non-

strict. In fact, Theorem 3.1 in [2] is the best known absolute (delay-independent) global

asymptotic stability criteria for (1.2).

Liao et al [10] considered a single neuron model with general activation function;

namely,
dx(t)

dt
= −x(t) + af(x(t) − bx(t − τ) + C),

They discussed the local stability as well as the existence of Hopf bifurcation under the

assumption that f has a continuous third derivative.

Based on [8]; Györi and Hartung [5] investigate the stability character of the single

neuron model
dx(t)

dt
= −λx(t) + Af(x(t)) + Bf(x(t − τ)) + C,

where f(x) = 0.5(|x + 1| − |x − 1|).

As one may observe; all the above models contain only one delay. It has been

demonstrated by [3, 7] that models of single neuron can contain many delays. In this
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work we investigate the oscillatory and asymptotic stability characters of a single neuron

(neuronic) equation with two delays; namely,

dx(t)

dt
= −λx(t) + af(x(t) − bx(t − τ) + cx(t − σ)), τ, σ > 0 (1.5)

where a, b, c ∈ R, λ > 0 and with each solution of (1.5) an initial function φ ∈ C[−l, 0]

is associated where l = max{τ, σ}. For generality reasons we will not assume that f is

a tanh-like function only. Instead, we assume that f is continuous on R, f(0) = 0 and

satisfies some or all of the following conditions

(H1) 0 <
f(x)

x
< 1 for all x 6= 0.

(H2) f is differentiable near zero with f ′(0) = 1.

(H3) x d
dx

f(x)
x

< 0 for all x 6= 0.

(H4) |f(x)| < 1 for all x ∈ R.

It can be seen that the substitution y(t) = x(t) − bx(t − τ) + cx(t − σ) transforms

(1.5) into the equation,

dy(t)

dt
= −λy(t) + af(y(t)) − abf(y(t − τ)) + acf(y(t− σ)), t ≥ l (1.6)

In Section 2, we investigate the oscillatory character of (1.5). We say that a solution

x(t) of (1.5) is nonoscillatory if it is eventually positive or eventually negative, other-

wise x(t) is called oscillatory. Equation (1.5) is called oscillatory if all its solutions are

oscillatory. If equation (1.5) has at least one nonoscillatory solution, then it is called

nonoscillatory. The oscillation theory of the delay differential equations can be found

in [3, 6]. In contrast with the stability of these equations, there are no absolute (delay-

independent) oscillation criteria for first order delay differential equations. Although the

oscillatory properties of models arising from many fields as mathematical biology is now

completely characterized (see [3, 6] for more details), the oscillation of equations of the

form (1.5) has not yet received the deserved attention. It seems that [2] is the only work

on this type of equations.

The asymptotic behavior of the trivial solution of (1.5) will be considered in Section

3. Theorem 3.1 in [2] will be extended to (1.5) and interesting delay dependent global

asymptotic stability criteria are obtained which are new even for the special case (1.2).

2 The Oscillatory Behavior

Suppose that x(t) is a solution of (1.5). Define a function M as follows:

M(t) =

{

f(x(t)−bx(t−τ)+cx(t−σ))
x(t)−bx(t−τ)+cx(t−σ)

, if x(t) − bx(t − τ) + cx(t − σ) 6= 0,

1, if x(t) − bx(t − τ) + cx(t − σ) = 0,
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for all t ≥ 0 . If (H1), (H2) hold, then M is continuous on [0, ∞), 0 < M(t) ≤ 1 for all

t ≥ 0 and

f(x(t) − bx(t − τ) + cx(t − σ)) = (x(t) − bx(t − τ) + cx(t − σ))M(t).

Thus equation (1.5) can be rewritten in the form

dx(t)

dt
= (aM(t) − λ)x(t) − abM(t)x(t − τ) + acM(t)x(t − σ), t ≥ 0. (2.1)

It is not difficult to see that if x(t) is a solution of (2.1), then z(t) = x(t)e
∫

t

0 (λ−aM(s))ds

is a solution of the equation

dz(t)

dt
+ abM(t)e

∫

t

t−τ
(λ−aM(s))dsz(t − τ) − acM(t)e

∫

t

t−σ
(λ−aM(s))dsz(t − σ) = 0. (2.2)

We will see that (2.1) and (2.2) play a key rule in the proofs of most of our results.

Theorem 2.1 Assume that (H1), (H2) hold and

bc ≤ 0. (2.3)

Equation (1.5) is nonoscillatory if one of the following conditions is satisfied:

(i) ab ≤ 0.

(ii) a(1 − b + c) > λ and (H4) holds.

Proof. Assume that x(t) is a solution of (1.5) with φ(s) > 0 for all s ∈ [−τ, 0]. Let

t0 > 0 be such that x(t) > 0 for all t ∈ [0, t0) and x(t0) = 0. From (2.2) we obtain

d

dt

(

x(t)e

t
∫

0

(λ−aM(s))ds

)

= −abM(t)e

t
∫

0

(λ−aM(s))ds

x(t − τ) + acM(t)e

t
∫

0

(λ−aM(s))ds

x(t − σ).

So if (i) holds, we get

d

dt

(

x(t)e

t
∫

0

(λ−aM(s))ds

)

≥ 0 for all t ∈ [0, t0).

Integrating from 0 to t0,

x(t0)e

t0
∫

0

(λ−aM(s))ds

≥ x(0) > 0,

which is impossible since x(t0) = 0. Therefore x(t) > 0 for all t ≥ 0; i.e., (1.5) is

nonoscillatory.

Suppose that (ii) holds. Define a function F by

F (y) = −λy + af((1 − b + c)y), y ∈ R.
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Then
dF (y)

dy
|y=0 = −λ + a(1 − b + c)f ′(0) = a(1 − b + c) − λ > 0.

Consequently, F (y) will be positive for all sufficiently small positive values of y. Since

lim
y→∞

F (y) = −∞, then there exists a positive value c such that F (c) = 0. Set x(t) = c,

it follows that x(t) satisfies (1.5); i.e., (1.5) is nonoscillatory.

In view of the idea used in the proof of Theorem 2.1(ii), a more general form from it

can be obtained by replacing (ii) by the following phrase:

The equation −λy + af(1 − b + c)y) = 0 has at least one nontrivial root.

In the next oscillation results we will make use of the following theorem which is

adapted from [6, Corollary 3.4.1] concerning the oscillation of the equation

dx(t)

dt
+ p(t)x(t − τ) + q(t)x(t − σ) = 0, t ≥ 0. (2.4)

Theorem 2.2 Assume that τ, σ > 0 and p, q ∈ C ([0, ∞), R+) such that lim inft→∞ (p(t)+

q(t)) > 0. Then each of the following two conditions is sufficient for the oscillation of

equation (2.4):

(a) lim inft→∞ (τp(t) + σq(t)) > 1
e
;

(b) lim inft→∞ (p(t)q(t))
1
2 (τ + σ) > 1

e
.

We refer here to the fact that Theorem 2.2 is a consequence of [6, Theorem 3.4.2] but we

use it here since (a) and (b) are practically easier to apply than the original condition

provided in [6, Theorem 3.4.2].

Theorem 2.3 Assume that (H1), (H2), (2.3) hold,

ab > 0, a ≤ λ, (2.5)

and either one of the conditions

abτe(λ−a)τ − acσe(λ−a)σ >
1

e
,

(2.6)
√

|bc|a2(τ + σ)e
1
2
(λ−a)(τ+σ) >

1

e

is satisfied. Then (1.5) is oscillatory.

Proof. To the contrary let us assume that (1.5) is nonoscillatory. Without loss of

generality one can assume that (2.1) has a solution x(t) such that x(t) > 0, t ≥ t0 for

some t0 ≥ 0. Recalling that M(t) ≤ 1, we find from (2.1), (2.5) that

dx(t)

dt
< 0 for all t ≥ t0 + l.
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Thus, there exists a real number µ ≥ 0 such that lim
t→∞

x(t) = µ and

x(t) > µ for all t ≥ t0 + l. (2.7)

It follows from (2.1) and (2.7) that

dx(t)

dt
< (aM(t) − λ)µ − abM(t)µ + acM(t)µ

= ((aM(t) − λ) − abM(t) + acM(t))µ

= (a(1 − b + c)M(t) − λ)µ, t ≥ t0 + l. (2.8)

Suppose that µ 6= 0. Then

lim
t→∞

M(t) =

{

f((1−b+c)µ)
(1−b+c)µ

, if b − c 6= 1,

1, if b − c = 1.

Taking into account that

a(1 − b + c) <

{

λ, if a, b > 0,

0, if a, b < 0,

we obtain

lim
t→∞

(a(1 − b + c)M(t) − λ)µ = −β,

where

0 < β =

{

λµ − af((1 − b + c)µ), if b − c 6= 1,

λµ, if b − c = 1.

Thus (2.8) yields

lim sup
t→∞

dx(t)

dt
≤ −β.

The last inequality leads to the existence of a constant ν > 0 such that dx(t)
dt

< −ν for all

sufficiently large t. Integrating the last inequality from a suitable large t (say t1 > t0 + l)

to ∞, we get

lim
t→∞

x(t) = −∞,

which is a contradiction. Therefore µ = 0; that is,

lim
t→∞

x(t) = 0.

Consequently

lim
t→∞

M(t) = lim
t→∞

f(x(t) − bx(t − τ) + cx(t − σ))

x(t) − bx(t − τ) + cx(t − σ)
= 1. (2.9)

Set

z(t) = x(t)e

t
∫

t0+τ

(λ−aM(s))ds

, t ≥ t0 + l.
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Then it is easy to verify that z(t) is a positive solution of equation (2.2) or equivalently

equation (2.4), where

0 < p(t) = abM(t)e

t
∫

t−τ

(λ−aM(s))ds

,

and

0 < q(t) = −acM(t)e

t
∫

t−σ

(λ−aM(s))ds

.

Thus (2.2) is nonoscillatory. On the other hand (2.9) yields

lim
t→∞

p(t) = abe(λ−a)τ and lim
t→∞

q(t) = −ace(λ−a)σ . (2.10)

From (2.6) and (2.10) we see that all conditions of Theorem 2.2 are satisfied and hence

equation (2.2) is oscillatory which is a contradiction.

The following oscillation results deal with the case a > λ and hence complete, par-

tially, Theorem 2.3.

Theorem 2.4 Assume that (2.3), (H1) and (H2) are satisfied. If either one of the

inequalities of (2.6) holds, a > λ and

e(a−λ)τ ≤ b, (2.11)

then (1.5) is oscillatory.

Proof. Let equation (1.5) be nonoscillatory. One can assume that (1.5) has a solution

x(t) > 0, t ≥ t0 ≥ 0. It follows from (2.2) that

d

dt



x(t)e

t
∫

t0+l

(λ−aM(s))ds



 < 0, t ≥ t0 + l.

Integrating the above inequality from t − τ to t we obtain,

x(t)e

t
∫

t0+l

(λ−aM(s))ds

< x(t − τ)e

t−τ
∫

t0+l

(λ−aM(s))ds

, t ≥ t0 + l.

Then

x(t) < x(t − τ)e
−

t
∫

t−τ

(λ−aM(s))ds

< e(a−λ)τx(t − τ) ≤ bx(t − τ), t ≥ t0 + l.

That is

x(t) − bx(t − τ) ≤ 0, t ≥ t0 + l.

Also,

cx(t − σ) ≤ 0.
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Hence

x(t) − bx(t − τ) + cx(t − σ) ≤ 0, t ≥ t0 + l.

It follows from (1.5) that

dx(t)

dt
< −λx(t), t ≥ t0 + l.

Therefore,
d

dt
(x(t)eλt) < 0, t ≥ t0 + l,

which implies that lim
t→∞

x(t) = 0. Now the proof can be completed as in the proof of

Theorem 2.3.

Notice that (2.3) and (2.11) imply that c ≤ 0. This restriction is very important. In

fact when c > 0, the conditions a > λ and (2.3) imply that ab ≤ 0 which leads to the

nonoscillation of (1.5) according to Theorem 2.1.

Lemma 2.1 Assume that a 6= 0 and (H4) holds. If x is any solution of (1.5), then

there exists t0 ≥ 0 such that

−|a|

λ
< x(t) <

|a|

λ
, t ≥ t0. (2.12)

Proof. From (1.5), we have

d

dt
(x(t)eλt) = aeλtf(x(t) − bx(t − τ) + cx(t − σ)).

Since |f(x)| < 1 for all x ∈ R,

−|a|eλt ≤
d

dt
(x(t)eλt) ≤ |a|eλt, t ≥ 0.

Integrating the above inequality from s(≥ 0) to t, we obtain

−
|a|

λ
(eλt − eλs) ≤ x(t)eλt − x(s)eλs ≤

|a|

λ
(eλt − eλs), for all t ≥ s ≥ 0.

The above inequality yields

eλt(x(t) −
|a|

λ
) ≤ eλs(x(s) −

|a|

λ
), for all t ≥ s ≥ 0. (2.13)

Therefore the function N, where N(t) = eλt(x(t)− |a|
λ

), is nonincreasing on [0,∞). This

implies that N(t) must be eventually of one sign. We claim that N(t) is eventually

negative. Suppose not. Then there exists T ≥ 0 such that N(t) > 0 for all t ≥ T . But

N(t) is nonincreasing, then it has a nonnegative finite limit as t → ∞. Also we have

eλt → ∞ as t → ∞. It follows from (2.13) that

lim
t→∞

x(t) −
|a|

λ
= 0, i.e., lim

t→∞
x(t) =

|a|

λ
. (2.14)
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By making use of (2.14), equation (1.5) yields

lim
t→∞

dx(t)

dt
= −|a| + af(

|a|

λ
((1 − b + c))) < −|a| + |a| = 0. (2.15)

As in the proof of Theorem 2.3 we conclude from (2.15) that lim
t→∞

x(t) = −∞ which

contradicts (2.14). Thus N(t) must be eventually negative as claimed; i.e., there exists

t0 ≥ 0 such that eλt(x(t) − |a|
λ

) < 0, t ≥ t0. This inequality holds only if x(t) <
|a|
λ

for

all t ≥ t0. The left inequality of (2.12) can be proved similarly.

Theorem 2.5 Assume that b ≥ 0, −c ≥ 0 and (H1)-(H4) hold. If either one of the

conditions

(abτe(λ−a)τ − acσe(λ−a)σ)r >
1

e
,

(2.16)
√

|bc|a2(τ + σ)e
1
2
(λ−a)(τ+σ)r >

1

e

is satisfied where r = min{
f( a

λ
)

a

λ

,
f(−a(b−c)

λ
)

−a(b−c)
λ

}, then (1.5) is oscillatory.

Proof. To the contrary let us assume that (1.5) has a solution x(t) such that x(t) > 0,

for all t ≥ t0 ≥ 0. Then as in the previous proofs,

z(t) = x(t)e

t
∫

t0+l

(λ−aM(s))ds

is a positive solution of equation (2.2). Set u(t) = x(t)− bx(t− τ)+ cx(t−σ), t ≥ t1 ≥

t0 + l, where t1 is so large that (2.12) is satisfied. Then

−a

λ
(b − c) < u(t) <

a

λ
, t ≥ t1.

This inequality and (H3) yield

M(t) >

{

r if u(t) 6= 0, t ≥ t1,

1 if u(t) = 0, t ≥ t1.

But (H1) implies

1 > r.

Then

M(t) > r, for all t ≥ t1. (2.17)

Defining the functions p, q as in the proof of Theorem 2.3 and using similar arguments,

then (2.16) and (2.17) imply that all conditions of Theorem 2.2 are satisfied and hence

equation (2.2) is oscillatory which is a contradiction.
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3 The Asymptotic Behavior

Theorem 3.1 Assume that f is a nondecreasing function on R, (H1), (H4) holds and

either

bc ≤ 0 and a(1 + b − c) ≤ λ, a(1 − b + c) ≤ λ, (3.1)

or

bc ≥ 0 and a(1 + b + c) ≤ λ, a(1 − b − c) ≤ λ (3.2)

is satisfied. Then all solutions of (1.5) satisfy that

lim
t→∞

x(t) = 0. (3.3)

Proof. We will prove the theorem when (3.1) holds. The proof when (3.2) holds is

similar and will be omitted to avoid repetition. First we assume that x is a solution of

(1.5). It follows from Lemma 2.1 that x is bounded. Therefore there exist L, S ∈ R such

that

L = lim inf
t→∞

x(t) ≤ S = lim sup
t→∞

x(t).

Thus for any ε > 0 there exists t0 ≥ 0 such that

L − ε ≤ x(t) ≤ S + ε, t ≥ t0. (3.4)

In view of the continuity of x one can choose two sequences {tn}, {t̃n} such that tn, t̃n →

∞ as n → ∞,
d

dt
x(tn) = 0, lim

t→∞
x(tn) = S, (3.5)

and
d

dt
x(t̃n) = 0, lim

t→∞
x(t̃n) = L. (3.6)

Assume, for the sake of contradiction, that x does not satisfy (3.3); i.e., L < S. First

consider the case when a > 0, b > 0 and c < 0. Using (3.4), (3.5) and (1.5) we obtain

λx(tn) ≤ af(x(tn) − b(L − ε) + c(L − ε)), t ≥ t0 + l. (3.7)

Also (3.4), (3.6) and (1.5) imply

λx(t̃n) ≥ af(x(t̃n) − b(S + ε) + c(S + ε)), t ≥ t0 + l. (3.8)

Let n → ∞ in (3.7), (3.8). Then we obtain respectively that

λS ≤ af(S − b(L − ε) + c(L − ε)),

and

λL ≥ af(L − b(S + ε) + c(S + ε)).
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Since ε is arbitrary small, we get

λS ≤ af(S − (b − c)L), (3.9)

and

λL ≥ af(L − (b − c)S). (3.10)

Assume that S ≤ 0. Then L < 0 which, by (3.10), yields

f(L − (b − c)S) < 0.

From (H1) we conclude that

f(L − (b − c)S) > (L − (b − c)S).

Thus (3.10) yields

λL > a(L − (b − c)S). (3.11)

Hence,

L(λ − a) > −a(b − c)S. (3.12)

But (3.1) leads to λ − a ≥ 0, then L > 0 which is a contradiction. If S > 0, from (3.9)

we get

0 < λS ≤ af(S − (b − c)L).

It follows that

f(S − (b − c)L) > 0.

From (H1), we conclude that

f(S − (b − c)L) < S − (b − c)L.

Thus

(λ − a)S < (−ab + ac)L. (3.13)

Which implies that L < 0. Therefore, we obtain (3.11) and (3.12). Combining (3.12)

and (3.13), we get

S((λ − a) + a(c − b)) < L((λ − a) + a(c − b)),

or equivalently

(S − L)(λ − a(1 + b − c)) < 0,

which is impossible in view of (3.1) and the fact that S > L. This contradiction implies

that L = S.
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When a < 0, b < 0 and c > 0, similar arguments as in the above case, imply easily

(3.7), (3.8) as well as their consequences (3.9), (3.10). If S ≤ 0, then L < 0 and hence

(3.10) yields

f(L − (b − c)S) > 0.

From (H1) and (3.10), we conclude that

λL > a(L − (b − c)S). (3.14)

Hence,

(λ − a)L > −a(b − c)S ≥ 0.

Thus L > 0, which is contradiction. If S > 0, using similar arguments we obtain

0 < (λ − a)S < (−ab + ac)L,

which implies that L < 0. Therefore, (3.14) leads to

(λ − a)L > (−ab + ac)S.

From the previous two inequalities we get

(S − L)(λ − a(1 + b − c)) < 0

which is impossible in view of (3.1) and the fact that S > L. This contradiction implies

that L = S.

When a < 0, c < 0 and b > 0, using similar arguments as before, we find

λx(t̃n) ≥ af(x(t̃n) − b(L − ε) + c(L − ε)). (3.15)

Also

λx(tn) ≤ af(x(tn) − b(S + ε) + c(S + ε)). (3.16)

Let n → ∞ in (3.15), (3.16). Then we obtain respectively that

λL ≥ af(L − b(L − ε) + c(L − ε)), (3.17)

and

λS ≤ af(S − b(S − ε) + c(S − ε)). (3.18)

Since ε is arbitrary small, we get

λL ≥ af(L(1 − b + c)), (3.19)

and

λS ≤ af(S(1 − b + c)). (3.20)
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Suppose that S > 0 then (3.20) yields

f(S(1 − b + c)) < 0.

So (H1) and (3.20) imply that

λS ≤ af(S(1 − b + c)) < Sa(1 − b + c) ≤ λS.

which is impossible. Therefore S ≤ 0 and hence L < 0. From (3.19) we get

λL ≥ af(L(1 − b + c)) > La(1 − b + c) ≥ λL.

which is also impossible. Then L = S.

Consider now the last possible case; that is a > 0, c > 0 and b < 0,. The above

reasoning implies similarly the inequalities (3.15)-(3.20). Suppose that S > 0. Then

(3.20) yields

f(S(1 − b + c)) > 0.

Thus

λS ≤ af(S(1 − b + c)) < aS(1 − b + c) ≤ λS.

It follows that

λS < aS(1 − b + c) ≤ λS,

which is impossible. Consequently we have L < 0. So, in view of (3.19), we obtain

λL < aL(1 − b + c) ≤ λL,

which is a contradiction. Hence L = S.

Since the trivial solution is the unique equilibrium, due to the second inequality of

(3.1), we get L = S = 0.

Lemma 3.1 If all solutions of (2.2) are bounded and λ > a > 0 or a ≤ 0, then the zero

solution of (1.5) is globally exponentially stable.

Proof. We know that

z(t) = x(t)e

t
∫

0

(λ−aM(s))ds

, t ≥ 0. (3.21)

is a solution of (2.2), for t ≥ l, if x(t) is a solution of equation (1.5). Since

e

t
∫

0

(λ−aM(s))ds

≥

{

eλt a ≤ 0,

e(λ−a)t a > 0.

Then,

|x(t)| = |z(t)|e
−

t
∫

0

(λ−aM(s))ds

≤ |z(t)|

{

e−λt, a ≤ 0

e−(λ−a)t, λ > a > 0.
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Since all solutions of (2.2) are bounded, then there exists a constant A > 0 such that

|z(t)| < A for all t ≥ 0. It follows that

|x(t)| ≤ A

{

e−λt, a ≤ 0

e−(λ−a)t, λ > a > 0.

for all t > 0. Then x(t) is exponentially stable.

Next we give some delay-dependent global asymptotic stability results. The first

result is extracted from [11, Theorem 2.2] and [12, Theorem 2.2] for the equation

dy(t)

dt
= −a(t)y(t) −

m
∑

i=0

ai(t)gi(y(t− τi)), (3.22)

where as usual y(t) = φ(t) for all t ∈ [−l, 0], φ ∈ C([−l, 0], R) and l = max{τi :

i = 0, 1, . . . , m}. Also, a, ai are continuous bounded functions on [0, ∞) such that

a(t) ≥ 0, ai(t) ≥ 0 for all 0 ≤ i ≤ m, t ≥ 0 and
∑m

i=0 ai(t) > 0,
∫∞

0

∑m

i=0 ai(t)dt = ∞.

The functions gi are continuous on R with the following property;

gi(0) = 0 and 0 <
gi(x)

x
≤ 1, for x 6= 0, and all 0 ≤ i ≤ m.

We use the following notations:

µ = e(inft≥l

∫

t

t−l
a(s)ds),

and

λ̄ =







supt≥l

∫ t

t−l

∑m

i=0 ai(t) dt, a(t) ≡ 0
exp (sup

t≥l

∫

t

t−l
a(s)ds)−1

inft≥0 a(t)
(supt≥0

∑m

i=0 ai(t)), inft≥0 a(t) > 0.

Now Muroyas’ results [11, Theorem 2.2] and [12, Theorem 2.2] can be joint into the

following result.

Theorem 3.2 All Solutions of equation (3.22) are bounded from above and below if

λ̄ ≤ 1
2

+ µ, and the zero solution of (3.22) is globally asymptotically stable if λ̄ < 1
2

+ µ.

The second result from literatures is the following one:

Theorem 3.3 [9] Consider the delay differential equation (2.4) where τ and σ are non-

negative constants and p, q are continuous functions satisfying the conditions

p(t) + q(t − τ + σ) 6= 0,

for τ sufficiently large and

2 lim sup
t→∞

|
t−σ
∫

t−τ

|q(s + σ)|ds| + lim sup
t→∞

t
∫

t−τ

|p(s) + q(s − τ + σ)|ds < 1.

Then every oscillatory solution of equation (2.4) tends to zero as t → ∞.
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To be able to apply Theorem 3.2, we need the following lemma.

Lemma 3.2 Assume that x(t) is a solution of equation (1.5) and y(t) = x(t) − bx(t −

τ) + cx(t− σ). If limt→∞ y(t) = 0, then limt→∞ x(t) = 0. Furthermore, if 0 <
f(x)

x
≤ 1

and the trivial solution of (1.6) is stable, then the trivial solution of (1.5) is also stable.

Proof. From (1.5), we obtain

d(eλtx(t))

dt
= aeλtf(y(t)). (3.23)

Integrating from t − l to t and rearranging, we obtain

x(t) = e−λlx(t − l) + ae−λt

∫ t

t−l

eλsf(y(s))ds,

which yields

|x(t)| ≤ e−λl|x(t − l)| +
|a|

λ
(1 − e−λl) max

t−l≤s≤t
{|f(y(s))|}, t ≥ l. (3.24)

Since limt→∞ maxt−l≤s≤t{|f(y(s))|} = 0, then for any ε > 0 there exists tε > l such that

|x(t)| ≤ (e−λl + ε)|x(t − l)| + ε, for t ≥ tε.

Therefore limt→∞ |x(t)| = 0 according to [6, Lemma 1.5.3].

Now if 0 <
f(x)

x
≤ 1 and the trivial solution of (1.6) is stable, then for any ε1 > 0, there

exists δ1 > 0 such that for the initial function φy associated with a solution y of (1.6)

we have |y(t)| < ε1 for all t ≥ l when ||φy|| < δ1 where ||φy|| = max{φy(t) : 0 ≤ t ≤ l}.

Let ε be an arbitrary positive number. Choose ε1 = λ
|a|

ε and δ < δ1 < ε1. Assume

that φx is the initial function associated with a solution x of (1.5) such that y(t) =

x(t)− bx(t− τ) + cx(t− σ). We claim that if ||φx|| = max{φx(t) : −l ≤ t ≤ 0} < δ < ε,

then |x(t)| < ε for all t > 0. Suppose not, then there exists t0 > 0 such that |x(t)| < ε

for all t < t0 and |x(t0)| = ε. Therefore, for t0 ≥ l, (3.24) yields

ε ≤
|a|

λ
max

t0−l≤s≤t0
{|f(y(s)|} ≤

|a|

λ
max

t0−l≤s≤t0
{|y(s)|} < ε,

which is impossible. When t0 < l, we see from (3.23) that

x(t0) = e−λt0x(0) + ae−λt0

∫ t0

0

eλsf(y(s))ds,

Then

ε ≤
|a|

λ
max

0≤s≤t0
{|f(y(s)|} ≤

|a|

λ
max

0≤s≤t0
{|y(s)|} <

|a|

λ
δ1 < ε,

which is also impossible. Thus we get our claim which means that the trivial solution

of (1.5) is stable.

Now assume that m = 2, a(t) = λ, gi = f for all i = 0, 1, 2, a0(t) = −a, a1(t) = ab

and a2(t) = −ac. Then, applying Theorem 3.2 on (1.6) and using Lemma 3.2, we obtain

the following result.
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Theorem 3.4 Assume that (H1), a < 0, b ≤ 0 and c ≥ 0 are satisfied. If

−a(1 − b + c)
elλ − 1

λ
<

1

2
+ elλ,

then the zero solution of (1.5) is globally asymptotically stable.

The next result can also be obtained using Theorem 3.2 and Lemma 3.2. In this

case we assume that m = 3, a(t) = 0, g0(x) = x, gi = f for all i = 1, 2, 3, a0(t) = λ,

a1(t) = −a, a2(t) = ab, and a3(t) = −ac.

Theorem 3.5 Assume that (H1), a < 0, b ≤ 0 and c ≥ 0 are satisfied. If

(λ − a(1 − b + c))l <
3

2
,

then the zero solution of (1.5) is globally asymptotically stable.

As in the proofs of Theorem 2.3 and Lemma 3.1; any solution x(t) of (1.5) can be

related to a solution y(t) of equation (2.4) where

p(t) = abM(t)e

t
∫

t−τ

(λ−aM(s))ds

,

and

q(t) = −acM(t)e

t
∫

t−σ

(λ−aM(s))ds

.

If (H4) holds then the continuity of M and the boundedness of all solutions of (1.5)

(according to Lemma 2.1) lead to the existence of a constant B > 0 such that M(t) > B

for all t ≥ 0. If ab > 0, we have

p(t) > B

{

e(λ−a)τ , if λ ≥ a > 0,

eλτ , if a ≤ 0.

Now when ab, −ac > 0, we have p(t)+ q(t) > 0 for all t ≥ 0,
∫∞

0
(p(t)+ q(t))dt = ∞ and

λ̄ ≤

{

able(λ−a)τ − acle(λ−a)σ , if a < 0,

ableλτ − acleλσ, if a ≥ 0.

Applying Theorem 3.2 on equation (2.4) and using Lemma 3.1 we obtain the following

result.

Theorem 3.6 Assume that (2.3), (H1), (H2), (H4) hold and ab > 0. Then the zero

solution of (1.5) is globally exponentially stable if either one of the following conditions

is satisfied:

able(λ−a)τ − acle(λ−a)σ ≤ 3
2
, if a ≤ 0,

ableλτ − acleλσ ≤ 3
2
, if λ > a > 0.
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Now by making use of Theorem 3.3, we obtain the following result.

Theorem 3.7 Assume that (H1), (H2), (2.3) and

ab > 0 (3.25)

are satisfied. If x(t) is any solution of (1.5), then lim
t→∞

x(t) = 0 provided that either

abτe(λ−a)τ − ace(λ−a)σ(2|τ − σ| + τ) < 1, when a ≤ 0,

or

abτeλτ − aceλσ(2|τ − σ| + τ) < 1, when λ ≥ a > 0.

Proof. We know that (2.2) has the form (2.4) with

p(t) = abM(t)e

t
∫

t−τ

(λ−aM(s))ds

, q(t) = −acM(t)e

t
∫

t−σ

(λaM(s))ds

.

Thus the functions p and q are continuous and

p(t) + q(t − τ + σ) = abM(t)e

t
∫

t−τ

(λ−aM(s))ds

− acM(t − τ + σ)e

t−τ+σ
∫

t−τ

(λaM(s))ds

6= 0.

Taking into account that

λ − aM(s) <

{

λ − a, if a ≤ 0,

λ, if a > 0.
(3.26)

From (3.26) we have,

2|q(s + σ)| ≤ 2















−ace

s+σ
∫

s

(λ−a)ds

, a ≤ 0,

−ace

s+σ
∫

s

λds

, a > 0.

= 2

{

−ace(λ−a)σ , a ≤ 0,

−aceλσ, a > 0.

Also,

|p(s) + q(s − τ + σ)| = |abM(s)e
∫

s

s−τ
(λ−aM(s))ds − acM(s − τ + σ)e

∫

s−τ+σ

s−τ
(λ−aM(s))ds |

≤ abe
∫

s

s−τ
(λ−aM(s))ds − ace

∫

s−τ+σ

s−τ
(λ−a M(s))ds.

Then

|p(s) + q(s − τ + σ)| ≤

{

abe
∫

s

s−τ
(λ−a)ds − ace

∫

s−τ+σ

s−τ
(λ−a)ds if a ≤ 0

abe
∫

s

s−τ
λds − ace

∫

s−τ+σ

s−τ
λds if a > 0.

=

{

abe(λ−a)τ − ace(λ−a)σ, if a ≤ 0

abeλτ − aceλσ, if a > 0.
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Thus

Λ <

{

abτe(λ−a)τ − ace(λ−a)σ(2|τ − σ| + τ) < 1, if a ≤ 0

abτeλτ − aceλσ(2|τ − σ| + τ) < 1, if a > 0.

where

Λ = 2 lim sup
t→∞

|

t−σ
∫

t−τ

| q(s + σ)|ds| + lim sup
t→∞

|

t
∫

t−τ

| p(s) + q(s − τ + σ)|ds|.

Then every oscillatory solution of equation (2.4) tends to zero as t → ∞ according

to Theorem 3.3. Therefore every oscillatory solution of equation (1.5) tends to zero

as t → ∞ according to Lemma 3.1. To complete the proof. We consider the case

when equation (1.5) has a nonoscillatory solution, say x(t). As usual, we assume that

x(t) > 0, t ≥ t0 for some t0 ≥ 0. Therefore

y(t) = x(t)e

t
∫

t0+l

(λ−aM(s))ds

> 0.

It follows from equation (2.4) that

dy(t)

dt
=

d

dt
(x(t)e

t
∫

t0+l

(λ−aM(s))ds

) < 0, t ≥ t0 + l.

Then there is exists L ≥ 0 such that lim
t→∞

y(t) = L. Thus x(t) is bounded and hence, as

before, a number B > 0 exists such that M(t) > B for t ≥ t0 + l. Assume that σ ≥ τ .

Then t − σ ≤ t − τ and

x(t − σ) > x(t − τ)e

t−τ
∫

t−σ

(λ−aM(s))ds

If L > 0, there exists t′ ≥ t0 such that y(t) > L for all t ≥ t′ + l and hence equation

(2.4) yields

dy(t)

dt
= −abM(t)x(t − τ)e

t
∫

t0+l

(λ−aM(s))ds

+ acM(t)x(t − σ)e

t
∫

t0+l

(λ−aM(s))ds

,

≤ B(−abe

t
∫

t0+l

(λ−aM(s))ds

+ ace

t
∫

t0+l

(λ−aM(s))ds

e

t−τ
∫

t−σ

(λ−aM(s))ds

)x(t − τ),

= Be

t
∫

t−τ

(λ−aM(s))ds

(−ab + ace

t−τ
∫

t−σ

(λ−aM(s))ds

)y(t− τ),

< BLe

t
∫

t−τ

(λ−aM(s))ds

(−ab + ace

t
∫

t−τ

(λ−aM(s))ds

).

Thus
dy(t)

dt
< −K, for all t ≥ t8 + l
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where K = BL(ab − ac) > 0. Integrating the last inequality from t8 + l to ∞ we get

lim
t→∞

y(t) = −∞.

Which is a contradiction. Therefore L = 0.

When σ < τ , similar arguments leads to the above conclusion (L = 0). Thus

limt→∞ y(t) = 0 and limt→∞ x(t) = 0; i.e., every nonoscillatory solution of equation (1.5)

tends to zero as t → ∞.

Remark 3.1 It should be noted that there are many interesting linear stability criteria

that can be applied here (see, e.g., [1, 17] and the references cited therein) but of course

it is not possible to apply all these results due to space limitation.

We conclude our results with the following consequences of Theorems 3.4-3.6 (with

c = 0, l = τ) on the single delay model (1.3). As far as the authors know these results

are new.

Corollary 3.1 Assume that a < 0, b ≤ 0. Then the zero solution of (1.3) is globally

asymptotically stable if either one of the following conditions is satisfied:

−a(1 − b)(eτ − 1) <
1

2
+ eτ ,

(1 − a(1 − b))τ <
3

2
.

Corollary 3.2 Assume that ab > 0. Then the zero solution of (1.3) is globally expo-

nentially stable if either one of the following conditions is satisfied:

abτe(1−a)τ ≤ 3
2
, if a ≤ 0,

abτeτ ≤ 3
2
, if 1 > a > 0.
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[6] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap-

plications, Clarendon Press, Oxford, 1991.

[7] Y. Hamaya and A. Redkina, On global asymptotic stability of nonlinear stochas-

tic difference equations with delays, International Journal of Difference Equations,

1(2006), 101-118.

[8] U. an der Heiden, M. C. Mackey, H. O. Walther, Complex oscillations in a simple

deterministic neuronal network, Lectures in Appl. Math. 19(1981), 355-360.

[9] G. Ladas and Y. G. Sficas, Asymptotic behaviour of oscillatory solutions, Hiroshima

Math. J. 18(1988), 351-359.

[10] X. Liao, K.-W. Wong, C.-S. Leung and Z. Wu, Hopf bifurcation and chaos in a single

delayed neuron equation with non-monotonic activation function, Chaos, Solitons &

Fractals, 12(2001), 1535-1547.

[11] Y. Muroya, Global stability for separable nonlinear delay differential equations,

Comput. Math. Appl. 49(2005), 1913-1927.

[12] Y. Muroya, A global stability criterion in nonautonomous delay differential equa-

tions, J. Math. Anal. Appl. 326(2007), 209-227.

[13] K. Pakdaman and C. P. Malta, A note on convergence under dynamical threshold

with delays, IEEE Trans. Neural Networks, 9(1998), 231-233.

[14] K. Pakdaman and C. P. Malta, Comment on ”Dynamics of some neural network

models with delays”, Phys. Rev. E 66, 043901 (2002).

[15] K. Pakdaman, C. P. Malta, C. Grotta-Ragazzo and J.-F. Vibert, Effect of delay

on the boundary of the basin of attraction in a self-excited single graded-response

neuron, Neural Computa. 9(1997), 319-336.

[16] J. Ruan, L. Li and W. Lin, Dynamics of some neural network models with delay,

Phys. Rev. E 63, 051906 (2001).

EJQTDE, 2008 No. 6, p. 20



[17] B. Zhang, Fixed points and stability in differential equations with variable delays,

Nonlinear Anal. 63(2005), e233-e242.

(Received May 9, 2007)

EJQTDE, 2008 No. 6, p. 21


