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Attractors for a Class of Doubly

Nonlinear Parabolic Systems∗

Hamid El Ouardi & Abderrahmane El Hachimi

Abstract

In this paper, we establish the existence and boundedness of solutions
of a doubly nonlinear parabolic system. We also obtain the existence of a
global attractor and the regularity property for this attractor in [L∞(Ω)]2

and

2
∏

i=1

B
1+σi,pi
∞

(Ω).

1 Introduction

This paper deals with the doubly nonlinear parabolic system of the form

(S)























∂b1(u1)
∂t − ∆p1u1 + f1(x, t, u1, u2) = 0

∂b2(u2)
∂t − ∆p2u2 + f2(x, t, u1, u2) = 0

in Ω × (0,∞),
in Ω × (0,∞),

u1 = u2 = 0 in ∂Ω × (0,∞),
b1(u1(., 0)) = b1(ϕ1)
b2(u2(., 0)) = b2(ψ1)

on Ω,
on Ω.

Where Ω is a bounded and open subset in R
N , (N ≥ 1) with a smooth

boundary ∂Ω, T > 0. The operator ∆pu = div(|∇u|p−2∇u) is the p-Laplacian.
Monotone operators, in particular the ones that are subdifferentials of con-

vex functions, like p-Laplacian, appear frequently in equations modeling the
behaviour of viscoelastic materials (see [16] for instance), reaction-diffusion (see
[17], and references therein) and in mathematical glaciology.

Here, we study the existence of solutions for a class of doubly nonlinear sys-
tems including the p-Laplacian as the principal part of the operator, and we
use the general setting of attractors ( see [19]) to prove that all the solutions
converge to a set A, which is called the global attractor. In fact, few papers
consider the question in such situations. For instance, Marion [17] considered
the problem of solutions of reaction-diffusion systems in which bi(s) = s and
p1 = p2 = 2. L.Dung [13, 14] treated a system involving the p-Laplacian and
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bi(s) = s, and proved that weak Lq dissipativity implies strong L∞ one for solu-
tions of degenerate nonlinear diffusion systems and gives the existence of global
attractors to which all solutions converge in uniform norm. We mention that
to our knowledge, the doubly nonlinear parabolic system for the p-Laplacian
operator has never been studied, not even in the case bi(s) 6= s. In the classical
setting, i.e with p1 = p2 = 2, the system with bi has been previously considered,
for example in [9] and [10]. We follow the approach of [10], generalizing some
results to the case pi > 1 and we extend the results of [11] to nonlinear system
(S). In the first section of this paper, we give some assumptions and prelimi-
naries, in section 2 and section 3, we prove the existence of an absorbing set
and the existence of the attractor, in section 4, we present the regularity of the
attractor and obtain the asymptotic behaviour of the solutions in the framework
of dynamical systems associated to the system (S).

2 Preliminaries, Existence and Uniqueness

2.1 Notations and Assumptions

Let bi, (i = 1, 2) be a continuous function with bi(0) = 0. For t ∈ R ,define,

Ψi(t) =
∫ t

0 bi(s)ds. The Legendre transform Ψ∗
i of Ψi is defined as Ψ∗

i (τ) =
sup
s∈R

{τs− Ψi(s)}. We shall assume throughout the paper that Ω is a regular

open bounded subset of R
N and for any T > 0, we set QT = Ω × (0, T ) and

ST = ∂Ω× (0, T ), with ∂Ω the boundary of Ω. The norm in a space X will be
denoted by : ‖.‖r if X = Lr(Ω) for all r : 1≤ r ≤ +∞ . ‖.‖1,q if X = W 1,q(Ω)
for all q : 1≤ q ≤ +∞ , ‖.‖X otherwise and 〈., .〉X,X′ will denote the duality

product between X and its dual X
′

. We use the standard notation for Sobolev
spaces W 1,r

0 (Ω), 1 < r < +∞, and their duals W−1,r′

(Ω), where r′ = r/(r − 1).
The following lemma are useful and frequently used :

Lemma 2.1 ( Ghidaghia lemma, cf [19])
Let y be a positive absolutely continuous function on (0,∞) which satisfies

y′ + µyq ≤ λ,

with q > 1, µ > 0, λ ≥ 0. Then for t > 0

y(t) ≤

(

λ

µ

)
1
q

+ [µ(q − 1)t]
−1

q−1 .

Lemma 2.2 ( Uniform Gronwall’s lemma, cf [19]) Let y and h be locally inte-
grable functions such that :

∃r > 0, a1 > 0, a2 > 0, τ > 0, ∀t ≥ τ

∫ t+r

t

y(s)ds ≤ a1,

∫ t+r

t

|h(s)| ds ≤ a2, y′ ≤ h.
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Then
y(t+ r) ≤

a1

r
+ a2, ∀t ≥ τ.

We start by introducing our assumptions and making precise the meaning of
solution of (S).

We shall assume that the following hypotheses are satisfied :

(H1) (ϕ1, ψ1) ∈
[

L2(Ω)
]2
.

(H2) bi ∈ C1(R), bi(0) = 0, and there exist positive constants γi and Mi such
that

|bi| ≤ γi |s| +Mi, ∀s ∈ R, i = 1, 2.

(H3) fi ∈ C1(Ω × R × R).

(H4) a) There exists positive constants c1 > 0, c2 > 0, c3 > 0 and α1 >
sup(2, p1) such that for any ξ ∈ R any N > 0 we have for any u2 :
|u2| < N



















sign(ξ)f1(x, t, ξ, u2) ≥ c1 |b1(ξ)|
α1−1 − c2 ,

lim
t→0+

sup |f1(x, t, ξ, u2)| ≤ c3

(

|ξ|α1−1
+ 1
)

|f1(x, t, ξ, u2)| ≤ a1(|ξ|) almost everywhere in Ω × R
+

where a1 : R
+ → R

+ is an increasing function.

b) There exists positive constants c4 > 0, c5 > 0, c6 > 0 and α2 >
sup(2, p2) such that for any ξ ∈ R any M > 0 we have for any u1 :
|u1| < M



















sign(ξ)f2(x, t, u1, ξ) ≥ c4 |b2(ξ)|
α2−1 − c5 ,

lim
t→0+

sup |f2(x, t, u1, ξ)| ≤ c6

(

|ξ|α2−1
+ 1
)

|f2(x, t, u1, ξ)| ≤ a2(|ξ|) almost everywhere in Ω × R
+

where a2 : R
+ → R

+ is an increasing function.

(H5) ∂fi

∂t (x, t, η, ζ) exist and for all L > 0, there exists CL > 0 such that : if

|η|+ |ζ| ≤ L then
∣

∣

∣

∂fi

∂t (x, t, η, ζ)
∣

∣

∣
≤ CL, for almost every (x, t) ∈ Ω×R

+.

(H6) a) There exist δ1 > 0 such that for almost every (x, t) ∈ Ω × R
+ and for

any N > 0 and any u2 : |u2| < N then

ξ → f1(x, t, ξ, u2) + δ1b1(ξ) is increasing.

b) There exist δ2 > 0 such that for almost every (x, t) ∈ Ω × R+ and for
any M > 0 and any u1 : |u1| < M then

ξ → f2(x, t, u1, ξ) + δ2b2(ξ) is increasing.
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(H7) ∃ε > 0 : b′i(s) ≥ ε, for all s ∈ R.

Definition 2.1 By a weak solution of (S), we mean an element w = (u1, u2) :

ui ∈ Lpi(0, T ;W 1,pi

0 (Ω)) ∩ Lαi(QT ) ∩ L∞(τ, T ;L∞(Ω)) for all τ > 0,

∂bi(ui)

∂t
∈ Lp

′

i(0, T ;W−1,p′

i(Ω)) + Lα′

i(QT ),

and for all φi ∈ Lpi(0, T ;W 1,pi

0 (Ω)) ∩ L∞(0, T ;L∞(Ω))

∫ T

0

〈

∂bi(ui)

∂t
, φi

〉

Xi,X′

i

dt+

∫ T

0

∫

Ω

Fi(∇ui)∇φidxdt = −

∫ T

0

∫

Ω

fi(x,w)φidxdt

and if ∂φi

∂t ∈ L2(0, T ;L2 (Ω)), φi(T ) = 0 then

∫ T

0

〈

∂bi(ui)

∂t
, φi

〉

Xi,X′

i

dt = −

∫ T

0

∫

Ω

(bi(ui) − bi(ui(., 0)))
∂φi

∂t
dxdt,

where Xi = L∞(Ω) ∩W 1,pi

0 (Ω), X ′
i = L1(Ω) +W−1,p′

i(Ω) and Fi(ξ) = |ξ|pi−2
ξ

for any ξ ∈ R
N .

2.2 Existence

2.2.1 Existence

We have the following.

Theorem 2.1 Let the general assumptions (H1)-(H7) be satisfied, then for any
τ > 0, the problem (S) has a weak solution (u1, u2) such that

ui ∈ Lpi(0, T ;W 1,pi

0 (Ω)) ∩ L∞(τ, T ;W 1,pi

0 (Ω) ∩ L∞(Ω)),

and bi(ui) ∈ Lαi(QT ) ∩ L∞(0, T ;L2(Ω)).

Proof. By the existence of theorem [11, theorem 3.1, p.3] , there exists two
functions u0

1, u
0
2 solutions of the problem

(P1,0)







∂b1(u
0
1)

∂t − ∆p1u
0
1 + f1(x, t, u

0
1, 0) = 0 in QT

u0
1 = 0 on ST

b1(u
0
1(., 0)) = b1(ϕ1) in Ω

(P2,0)







∂b2(u0
2)

∂t − ∆p2u
0
2 + f2(x, t, 0, u

0
2) = 0 in QT

u0
2 = 0 on ST

b2(u
0
2(., 0)) = b2(ψ1) in Ω

and u0
i ∈ Lpi(0, T ;W 1,pi

0 (Ω)) ∩ L∞(τ, T ;W 1,pi

0 (Ω) ∩ L∞(Ω)) , ∀τ > 0. By
(u0

1, u
0
2) we construct two sequences of functions (un

1 ) , (un
2 ) such that

(P1,n)







∂b1(un
1 )

∂t − ∆p1u
n
1 + f1(x, t, u

n
1 , u

n−1
2 ) = 0 in QT ,

un
1 = 0 in ST ,
b1(u

n
1 (., 0)) = b1(ϕ1) on Ω.

(2.1)
(2.2)
(2.3)
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And

(P2,n)







∂b2(un
2 )

∂t − ∆p2u
n
2 + f2(x, t, u

n−1
1 , un

2 ) = 0 in QT ,
un

2 = 0 in ST ,
b2(u

n
2 (., 0)) = b2(ψ1) on Ω.

(2.4)
(2.5)
(2.6)

The existence of solutions will be shown via some a-priori L∞ estimates on
(un

1 , u
n
2 ) and lemma 2.3 and lemma 2.4. In all this paper, we denote by ci

different constants independent of n and depending on pi,Ω, T. Sometimes we
shall refer to a constant depending on specific parameters : c(τ), c(T ), c(τ, T ).

Lemma 2.3 Under the hypothesis (H1)-(H7), there exist ci > 0 such that for
any n ∈ N and any τ > 0, the following estimate holds

‖un
i ‖L∞(τ,T ;L∞(Ω)) ≤ c7(τ, T ). (2.7)

Proof. The case n = 0 has been observed. Assume that (2.7) is valid for (n−1)

and let us derive the estimate for n. Now multiplying (2.1) by |b1(un
1 )|k b1(u1) and

using the growth condition on b1, and (H4) a) we deduce for all τ > 0

1

k + 2

d

dt

{∫

Ω

|b1(u
n
1 )|k+2

dx

}

+ c8

∫

Ω

|b1(u
n
1 )|k+α1 dx ≤

c9

∫

Ω

|b1(u
n
1 )|k+1

dx. (2.8)

Setting yk,n(t) = ‖b1(un
1 )‖Lk+2(Ω) and using Hölder inequality on both sides,

there exists two constants λ0 > 0 and µ0 > 0 such that

dyk,n(t)

dt
+ µ0y

α1−1
k,n (t) ≤ λ0, (2.9)

which implies from a lemma 2.1 that

yk(t) ≤

(

λ0

µ0

)
1

q1−1

+
1

[µ0(α1 − 2)t]
1

α1−2

= c10(t) ∀ t > 0. (2.10)

As k → +∞, and for any all t ≥ τ > 0, we have by (2.10) and (H2)

‖un
1 (t)‖L∞(Ω) ≤ c11(τ). (2.11)

The same holds for un
2

‖un
2 (t)‖L∞(Ω) ≤ c12(τ). (2.12)

Lemma 2.4 Under the hypothesis (H1)-(H7), for all τ > 0, there exists con-
stants cj , cτ such that the following estimates hold

‖un
i ‖Lpi(0,T ;W

1,pi
0 (Ω))

≤ c13(T ), (2.13)
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‖un
i ‖L∞(τ,T ;W

1,pi
0 (Ω))

≤ c14(τ, T ), (2.14)

∫ T

τ

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dxds ≤ c15(τ, T ), (2.15)

and

∫ t+τ

t

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dxds ≤ c16(τ), for any t ≥ τ > 0. (2.16)

Proof. Taking the scalar product of equation (2.1) by un
1 and (2.4) by un

2 ,
integrating on Ω and using hypothesis (H4), we get

d

dt

[

2
∑

i=1

{∫

Ω

Ψ∗
i (bi(u

n
i ))dx

}

]

+

2
∑

i=1

∫

Ω

|∇un
i |

pi dx

+c1

2
∑

i=1

∫

Ω

|un
i |

αi dx ≤ c2. (2.17)

But ‖ϕ1‖L2(Ω)+‖ψ1‖L2(Ω) ≤ c =⇒
∫

Ω (Ψ∗
1 ( b1(ϕ1)) + Ψ∗

2 ( b2(ψ1))) dx ≤ c,where

Ψ∗
i is the Legendre transform of Ψi, Ψi(t) =

∫ t

0 bi(s)ds. So, integrating (2.17)
from 0 to T we obtain

2
∑

i=1

(

∫ T

0

∫

Ω

|∇un
i |

pi

)

dxds+ c17

2
∑

i=1

(

∫ T

0

∫

Ω

|un
i |

αi

)

dxds ≤ c17(T ). (2.18)

Hence (2.13) follows.

Taking the scalar product of equation (2.1) by
∂un

1

∂t and (2.4) by
∂un

2

∂t integrating
on Ω, it follows by (H2),(H7) and lemma 2.1 that for any all t ≥ τ > 0,

2
∑

i=1

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dx+

d

dt

2
∑

i=1

[

1

pi

∫

Ω

|∇un
i |

pi dx

]

=

−

∫

Ω

f1(x, t, u
n
1 , u

n−1
2 )

∂un
1

∂t
dx−

∫

Ω

f2(x, t, u
n−1
1 , un

2 )
∂un

2

∂t
dx

≤
1

2

2
∑

i=1

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dx+ c18(τ). (2.19)

Then, we have

2
∑

i=1

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dx +

d

dt

2
∑

i=1

[

2

pi

∫

Ω

|∇un
i |

pi dx

]

≤ c19(τ). (2.20)

Integrating (2.20) on (t, t+ τ) , then yields

2
∑

i=1

∫ t+τ

t

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dx+

2
∑

i=1

[

2

pi

∫

Ω

|∇un
i (t+ τ)|pi dx

]

=
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2
∑

i=1

[

2

pi

∫

Ω

|∇un
i (τ)|pi dx

]

+ cτ . (2.21)

Integrating (2.17) on (t, t+ τ) and using lemma 2.3, we get

2
∑

i=1

∫ t+τ

t

[

1

pi

∫

Ω

|∇un
i (s)|pi dxds

]

≤ cτ , ∀t ≥ τ > 0. (2.22)

By the uniform Gronwall’s lemma 2.1, we obtain

2
∑

i=1

[∫

Ω

|∇un
i (t)|pi dx

]

≤ cτ , ∀t ≥ τ > 0, ∀n ∈ N
∗.

Integrating now (2.20) on (t, t+ τ) , we have

2
∑

i=1

∫ t+τ

t

∫

Ω

b′i(u
n
i )(

∂un
i

∂t
)2dxds ≤ c20(τ),

which gives by (H2)

2
∑

i=1

∫ t+τ

t

∫

Ω

(
∂biu

n
i

∂t
)2dxds ≤ c21(τ).

Passage to the limit in in the process (P1,n) and (P2,n)
By lemma 2.3 and lemma 2.4, there exist a subsequence (denoted again by un

i ,
i = 1, 2) such that as n → +∞: un

i → ui weak in Lpi(0, T ;W 1,pi

0 (Ω)) and
in Lαi(QT ), un

i → un
i weak star in L∞(τ, T ;W 1,pi

0 (Ω), ∀ τ > 0, bi(u
n
i ) → ηi in

L2(QT ),
∂bi(u

n
i )

∂t is bounded in L2(τ, T ;W−1,p′

i(Ω)) for any τ > 0, divFi(∇un
i )

→ χi in weak Lp′

i(0, T ;W−1,p′

i(Ω)). Moreover standard monotonicity argument
gives χi = divFi(∇u), ηi = bi(ui). To conclude that w = (u1, u2) is a weak
solution of (S) it is enough to observe that f1(x, t, u

n
1 , u

n−1
2 ) converges to

f1(x, t, u1, u2) and f2(x, t, u
n−1
1 , un

2 ) converges to f2(x, t, u1, u2) strongly in
L1(QT ) and in Ls(τ, T ;Ls(Ω)) for all τ > 0; and for all s ≥ 1, thanks to Vitali’s
theorem. Whence w = (u1, u2) is a solution of (S).

2.2.2 Uniqueness

Proposition 2.1 The solution of (S) is unique. Moreover, if (u1, u2) and
(v1,v2) are two solutions, corresponding respectively to initial data (ϕ1, ψ1) and
(ϕ2, ψ2) such that ϕ1 ≤ ψ1 and ϕ2 ≤ ψ2 then ui ≤ vi.

Proof. Suppose that (u1, u2) and (v1,v2) are two solutions, corresponding re-
spectively to initial data (ϕ1, ψ1) and (ϕ2, ψ2) such that ϕ1 ≤ ψ1 and ϕ2 ≤ ψ2.
Following Diaz [5, p.269], we consider the following test function : wi = Hn(ui−
vi), n ≥ 1, (i = 1, 2) by
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Hn(s) =















0 if s ≤ 0,
n2s2

2 0 < s ≤ 1
n ,

2ns− n2s2

2 − 1 1
n < s ≤ 2

n ,
1 s > 2

n .

It is easy to see that



















0 ≤ (Hn)′(s) ≤ n, lim
n→+∞

s(Hn)′(s) = 0.

|Hn(s)| ≤ 1, lim
n→+∞

Hn(s) = sign+(s)

and lim
n→+∞

s(Hn)(s) = s+ =

{

0 s ≤ 0
s s > 0

Considering the systems (S) verified by u = (u1, u2) and v=(v1,v2) , we get

2
∑

i=1

∫ t

0

∫

Ω

[bi(ui) − bi(vi)]tHn(ui − vi) +

2
∑

i=1

∫ t

0

∫

Ω

[

|∇ui|
pi−2 ∇ui − |∇vi|

pi−2 ∇vi

]

(∇ui −∇vi)(Hn)′(ui − vi)+

2
∑

i=1

∫ t

0

∫

Ω

[fi(x, u1, u2) − fi(x, v1, v2)]Hn(ui − vi). (2.23)

Since (Hn)′(s) ≥ 0, we deduce that

lim
n→+∞

2
∑

i=1

∫ t

0

∫

Ω

[

|∇ui|
pi−2 ∇ui − |∇vi|

pi−2 ∇vi

]

(∇ui−∇vi)(Hn)′(ui−vi) ≥ 0.

(2.24)
By (H7) and (2.24), (2.23) becomes

2
∑

i=1

∫ t

0

∫

Ω

[bi(ui) − bi(vi)]t sign+(ui−vi) ≤ k1

2
∑

i=1

∫ t

0

∫

Ω

[bi(ui(., s)) − bi(vi(., s)]+ ,

(2.25)
by Gronwall’s lemma, we get

2
∑

i=1

∫ t

0

∫

Ω

[bi(ui(., t)) − bi(vi(., t))]+ ≤ ek1t
2
∑

i=1

∫

Ω

[bi(ϕi) − bi(ψi)]+ , ∀ t ∈ [0, T ] .

(2.26)
Since the second term vanishes and recalling that ϕ1 ≤ ψ1 and ϕ2 ≤ ψ2, this
means that bi(ui) ≤ bi(vi), and by monotonicity of bi, we obtain ui ≤ vi.
Uniqueness is now an obvious consequence.

Remark. i) Our calculations above are formal. We may assume that the
solutions are smooth enough to have all estimates we need. Such assumptions
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can be justified by working with regularized problem

∂bi(ui)

∂t
− div

[

{

|∇ui|
2

+ ε
}

pi−2

2

∇ui

]

+ fi(x, u) = 0

whose solutions are smooth so that the following argument can be carried out
rigorously. One can see that the estimates obtained are independent of the
parameter ε, so that, by taking the limit, they also hold for (S).
ii) Assume that hypothesis (H1) to (H7) are satisfied and fi does not depend
on t : fi(x, t, u1, u2) = fi(x, u1, u2), then theorem 2.1 establishes the existence

of dynamical system {S(t)}t≥0 which maps
[

L2(Ω)
]2

into
[

L2(Ω)
]2

such that
S(t)(ϕ1, ψ2) = (u1(t), u2(t)).

3 Global attractor

Proposition 3.1 Assume that (H1)-(H7) hold and fi does not depend on t,
the semi-group S(t) associated with problem (S) is such that

(i) There exist absorbing sets in Lσi(Ω), for 1 ≤ σi ≤ +∞.

(ii) There exist absorbing sets in W 1,p1

0 (Ω) ×W 1,p2

0 (Ω).

Proof. Let ui be solution of (S) and un
i solution of (P i,n) such that un

i → ui .
Then for fixed t ≥ τ > 0, lemma 2.3, lemma 2.4 and Sobolev’s injection theorem
imply

‖un
i (t)‖Lσi (Ω) ≤ cτ ,

and ‖un
i (t)‖

W
1,pi
0 (Ω))

≤ cτ , ∀ t ≥ τ.

As n→ +∞, we get
‖ui(t)‖L∞(Ω) ≤ cτ ,

and ‖ui(t)‖W
1,pi
0 (Ω))

≤ cτ , ∀ t ≥ τ.

Remark. By proposition 3.1 we deduce that the assumptions (1.1),(1.4) and

(1.12) in theorem 1.1 [19] p23 are satisfied with U =
[

L2(Ω)
]2
. So, by means

of the uniform compactness lemma in [7, p. 111], we get the following result.

Theorem 3.1 Assume that (H1)-(H7) are satisfied and that fi does not depend
on time. Then the semi-group S(t) associated with the boundary value problem

(S) possesses a maximal attractor A which is bounded in
[

W 1,p1

0 (Ω) ×W 1,p2

0 (Ω)
]

∩

[L∞(Ω)]
2
, compact and connected in

[

L2(Ω)
]2
. Its domain of attraction is the

whole space
[

L2(Ω)
]2
.
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4 A regularity property of the attractor

In this section we shall show supplementary regularity estimates on the solu-
tion of problem (S) and by use of them, we shall obtain more regularity on
the attractor obtained in section 3. We shall assume that there exist positive
constants δi > 0 and a function H from R

N+2 to R such that :

(H8)







fi(x, u) = gi(u) − hi(x) = δi
∂H
∂ui

;

fi satisfy (H3),(H4),(H5) and (H6),
and hi ∈ L∞(Ω)

(H9) bi ∈ C2(R) and ∃γi, Mi > 0 such that γi ≤ b′i(s) ≤ Mi, ∀s ∈ R. We shall
denote : Ei(ξ) = |ξ|(pi−2)/2ξ, for all ξ ∈ R

N . The following lemmas are used in
the proof of the main results of this section.

Lemma 4.1 Assume that (H1)-(H9) are satisfied, there exist constants C =
C(ϕ1, ψ1), such that for any T > 0

‖ui‖L∞(0,T,W
1,pi
0 (Ω))

≤ C <∞, (4.1)

and

∥

∥

∥

∥

∂ui

∂t

∥

∥

∥

∥

L2(QT )

≤ C <∞. (4.2)

Proof. Multiplying the equation ∂bi(ui)
∂t − div

[

|∇ui|
pi−2 ∇ui

]

+ δi
∂H
∂ui

= 0 by
1
δi

(ui)t and we obtain

2
∑

i=1

1

δi

∫

QT

b′i(ui)(
∂ui

∂t
)2dxdt +

2
∑

i=1

1

piδi

∫

Ω

|∇ui(., T )|pi dx = (4.3)

∫

Ω

[−H(., u1(T ), u2(T )) +H(., ϕ1, ψ1] dx =
1

p1δ1

∫

Ω

|∇ϕ1|
p1 dx+

1

p2δ2

∫

Ω

|∇ψ1|
p2 dx.

H is continuous and (u1, u2) is bounded, we then obtain

2
∑

i=1

γi

δi

∫

QT

(
∂ui

∂t
)2dxdt+

2
∑

i=1

1

piδi

∫

Ω

|∇ui(., T )|pi dx ≤ C(ϕ1, ψ1), (4.4)

hence (4.1) and (4.2). �

Lemma 4.2 Let pi ∈ ]1, 2[, then we have the following estimate

2
∑

i=1

∫

Ω

|∇u′i|
pi dx ≤ c22

2
∑

i=1

∫

Ω

|∇ui|
pi dx +

2
∑

i=1

2(pi − 1)

p2
i

∫

Ω

∣

∣(Ei(∇ui))
′
∣

∣

2
dx,

(4.5)
with a constant c22 > 0.
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Proof. Straigthforward calculations see [9] give

∫

Ω

(Fi(∇wi))
′ .∇w′

idx ≥ (pi − 1)

(

2

pi

)2 ∫

Ω

∣

∣(Ei(∇wi))
′
∣

∣

2
dx.

AsEi(∇wi) = |∇wi|
pi−2

2 ∇wi , we get |∇wi| = |Ei(∇wi)|
2

pi and ∇wi = |Ei(∇wi|
2−pi

2 E(∇wi)
Hence

(∇wi)
′ =

2

pi
|Ei(∇wi)|

2−pi
pi (Ei(∇wi))

′
,

which yields

|∇w′
i|

pi = (
2

pi
)pi |Ei(∇wi)|

2−pi
∣

∣(Ei(∇wi))
′
∣

∣

pi
.

So that, the Hölder inequality can be applied to give

∫

Ω

|∇w′
i|

pi dx ≤ c23

∫

Ω

|Ei(∇wi)|
2−pi

∣

∣(Ei(∇wi))
′
∣

∣

pi
dx

≤
c24
2

∫

Ω

|Ei(∇wi)|
2
dx+

2(pi − 1)

p2
i

(

∫

Ω

∣

∣(Ei(∇wi))
′
∣

∣

2
dx,

then yields (4.5). For stating the next theorem we introduce the hypothesis

(H10) N = 1 and 1 < pi < 2 or N ≥ 2 and 3N
N+2 ≤ pi < 2.

Theorem 4.1 Let fi, bi and pi satisfies hypothesis (H1) to (H10).

Let r(t) =
∑2

i=1

∫

Ω
b′i(ui)

(

u
′

i

)2

dx. Then

r(t) ≤ c25(τ), ∀ t ≥ τ > 0. (4.6)

where c25 is a positive constant depending on τ.

Proof. Differentiating equation ∂bi(ui)
∂t −div

[

|∇ui|
pi−2 ∇ui

]

+gi(x, u) = hi(x)

with respect to t, we get

b′i(ui)u
′′
i + b′′i (ui)(u

′
i)

2 − div
(

(Fi(∇ui))
′
)

+

2
∑

j=1

∂gi(u)

∂uj
u′j = 0. (4.7)

Now multiplying (4.7) by u′i, and integrating over Ω gives

1

2
r′(t)+

1

2

2
∑

i=1

∫

Ω

b′′i (ui)(u
′
i)

3dx+

2
∑

i=1

∫

Ω

(Fi(∇ui))
′ ∇u′idx+

∫

Ω





2
∑

i=1

2
∑

j=1

∂gi(u)

∂uj
u′j



u′idx = 0,

(4.8)
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the L∞ estimate and hypothesis (H9) imply successively

∫

Ω





2
∑

i=1

2
∑

j=1

∂gi(u)

∂uj
u′j



u′idx ≤M

2
∑

i=1

∫

Ω

(u′i)
2
dx. (4.9)

γ
2
∑

i=1

∫

Ω

(u′i)
2
d ≤ r(t). (4.10)

On the other hand, by Gagliardo-Nirenberg’s inequality, Young’s inquality and
(4.5), we obtain

−
1

2

2
∑

i=1

∫

Ω

b′′(ui)(u
′
i)

3dx ≤ c25

2
∑

i=1

||u′i||
3(1+qi)
2 + c26

2
∑

i=1

||∇ui||
pi

pi
+

2
∑

i=1

4(pi − 1)

p2
i

∫

Ω

∣

∣(Ei(∇ui))
′
∣

∣

2
dx, (4.11)

where qi = N(3−pi)
3Npi+6pi−9N .

By (4.9),(4.10),(4.11), (4.7) becomes

1

2
r′(t) +

2
∑

i=1

(pi − 1)

2

(

2

pi

)2 ∫

Ω

∣

∣(Ei(∇ui))
′
∣

∣

2
dx ≤ c27

2
∑

i=1

||u′i||
3(1+qi)
2 +

c128

2
∑

i=1

||∇ui||
pi

pi
+M

2
∑

i=1

‖u′i‖
2
2 . (4.12)

Now (4.11) and estimate (2.13) give

1

2
r′(t) +

2
∑

i=1

2(pi − 1)

p2
i

∫

Ω

∣

∣(Ei(∇ui))
′
∣

∣

2
dx ≤ c29 (r(t))

2
+ c30 for any t ≥ τ > 0.

(4.13)
Using estimate (2.14) now gives

2
∑

i=1

[

1

pi

∫

Ω

|∇un
i |

pi dx

]

≤ c31(τ) ,∀t ≥
τ

2
for any τ > 0,

integrating (2.20) on
[

t, t+ τ
2

]

, then yields

2
∑

i=1

∫ t+ τ
2

t

∫

Ω

b′i(ui) (u′i)
2
dxdt ≤ c32(τ), for any t ≥

τ

2
> 0. (4.14)

That is
∫ t+ τ

2

t

r(s)ds ≤ c33(τ), for any t ≥
τ

2
> 0. (4.15)
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Coming back to (4.13) and using the uniform Gronwall’s lemma 2.2 gives

r(t+
τ

2
) ≤ c34(τ), for any t ≥

τ

2
> 0.

Hence
r(t) ≤ cτ , for any t ≥ τ > 0.

By use of theorem 4.1, we shall now arrive to the aim result of this section.

Theorem 4.2 Let fi, bi and pi satisfies hypothesis (H1) to (H10). Then, for
any τ > 0, the solution of system (S) satisfies the following regularity estimates

∂ bi(ui)

∂t
∈ L2(τ,+∞;L2(Ω)), (4.16)

and ui ∈ L∞(τ,+∞;B1+σi,pi

∞ (Ω)). (4.17)

Moreover, there exists a constant cτ > 0 such that

lim
t→+∞

‖∇ui|
(pi−2)/2 ∂∇ui

∂t
‖L2(t,t+1;L2(Ω)) ≤ c(τ). (4.18)

Proof. By theorem 4.1 and hypothesis (H2), we get :

2
∑

i=1

∫

Ω

(

∂bi(ui)

∂t

)2

dx ≤Mr(t) ≤ c(τ) for any t ≥ τ > 0, then yields (4.16).

Integrating (4.13) on [t, t+ 1], for any t ≥ τ and using theorem 4.1 then yields:

2
∑

i=1

∫ t+1

t

∫

Ω

∣

∣(Ei(∇ui))
′
∣

∣

2
dxds ≤ c(τ), for any τ > 0, (4.19)

whence the estimate (4.18). On the other hand by (H10) there is some σ′
i, 0 <

σ′
i < 1, such that :L2(Ω) ⊂W−σ′

i,p
′

i(Ω) where p′i is the conjugate of pi : that is
, 1

pi
+ 1

p′

i

= 1 Simon’s regularity results [18], concerning the problem

−4pi
ui = −fi(., u) − bi(ui)t ∈ L∞(τ,+∞;B

−σ′

i,p
′

i
∞ (Ω)).

Then give for any t ≥ τ,

‖ui(., t)‖
B

1+(1−σ′

i
)(1−pi)

2,pi
∞ (Ω)

≤ c35 ‖fi(., w) − b′i(ui) (ui)t‖
B

−σ′

i
,p

′

i
∞ (Ω)

+ c36(τ).

Hence estimate (4.17) follows.
For a solution (u1, u2) of (S), we define the ω − limit set by : ω(ϕ1, ψ1) =










w = (w1, w2) ∈
(

W 1,p1

0 (Ω) × L∞(Ω)
)

∩
(

W 1,p2

0 (Ω) × L∞(Ω)
)

∃tn → +∞

∣

∣

∣

∣

u1(., tn) → w1 in Lp1(Ω)
u2(., tn) → w2 in Lp2(Ω)










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Corollary 4.1 Under the assumptions (H1) to (H10), we have ω(ϕ1, ψ1) 6=
∅ and any (w1, w2) ∈ ω(ϕ1, ψ1) is a bounded weak solution of the stationary
problem

{

−∆pi
wi + fi(x,w) = 0 in Ω
wi = 0 on ∂Ω

Proof. From (4.19) we obtain ω(ϕ1, ψ1) 6= ∅, letting wi = lim
n→+∞

ui(., tn) and

w = (w1, w2) ∈ ω(ϕ1, ψ1), we get that w is a solution of the Dirichlet problem
for elliptic system. The proof is analogous to DIAZ and DE THELIN [4] and
is omitted.
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