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A NOTE ON THE THEOREM ON DIFFERENTIAL

INEQUALITIES

H. ŠTĚPÁNKOVÁ

Abstract. It is proved that if a linear operator ` : C([a, b]; R) →
L([a, b]; R) is nonpositive and for the initial value problem

u′′(t) = `(u)(t) + q(t), u(a) = c1, u′(a) = c2

the theorem on differential inequalities is valid, then ` is an a−Volterra op-
erator.
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The following notation is used throughout the paper.
N is the set of natural numbers.
R is the set of real numbers, R+ = [0, +∞[.
C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
C([a, b]; R+) = {u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]}.

C̃([a, b]; R) is the set of absolutely continuous functions u : [a, b] → R.

C̃ ′([a, b]; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈ C̃([a, b]; R).

C̃ ′

loc([a, b[ ; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈

C̃([a, β]; R) for every β ∈ ]a, b[ .

C̃ ′

loc(]a, b[ ; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈

C̃([α, β]; R) for every [α, β] ⊂ ]a, b[ .
L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] →

R with the norm ‖p‖L =
b∫

a

|p(s)|ds.

L([a, b]; R+) = {p ∈ L([a, b]; R) : p(t) ≥ 0 for almost all t ∈ [a, b]}.
Lab is the set of linear bounded operators ` : C([a, b]; R) → L([a, b]; R).
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Pab is the set of operators ` ∈ Lab transforming the set C([a, b]; R+) into
the set L([a, b]; R+).

We will say that ` ∈ Lab is an a−Volterra operator if for arbitrary b0 ∈
]a, b] and v ∈ C([a, b]; R) satisfying the condition

v(t) = 0 for t ∈ [a, b0]

we have
`(v)(t) = 0 for almost all t ∈ [a, b0].

We will say that an operator Ω : L([a, b]; R) → C([a, b]; R) is an a−Volterra
operator, if for arbitrary b0 ∈ ]a, b] and q ∈ L([a, b]; R) satisfying the condition

q(t) = 0 for almost all t ∈ [a, b0]

we have
Ω(q)(t) = 0 for t ∈ [a, b0].

In what follows, the equalities and inequalities with integrable functions
are understood to hold almost everywhere.

Consider the problem on the existence and uniqueness of a solution of the
equation

u′′(t) = `(u)(t) + q(t) (1)

satisfying the initial conditions

u(a) = c0, u′(a) = c1, (2)

where ` ∈ Lab, q ∈ L([a, b]; R) and c0, c1 ∈ R . By a solution of the equation

(1) we understand a function u ∈ C̃ ′([a, b]; R) satisfying this equation (almost
everywhere) in [a, b].

Along with the problem (1), (2) consider the corresponding homogeneous
problem

u′′(t) = `(u)(t), (10)

u(a) = 0, u′(a) = 0. (20)

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [1, 2, 4, 5, 8]).

EJQTDE, 2005 No. 7, p. 2



Theorem 1. The problem (1), (2) is uniquely solvable iff the corresponding

homogeneous problem (10), (20) has only the trivial solution.

Definition 1. We will say that an operator ` ∈ Lab belongs to the set H̃ab(a)

if for every function u ∈ C̃ ′([a, b]; R) satisfying

u′′(t) ≥ `(u)(t) for t ∈ [a, b], (3)

and (20), the inequality

u(t) ≥ 0 for t ∈ [a, b] (4)

holds.

Remark 1. It follows from Definition 1 that if ` ∈ H̃ab(a), then the homoge-
neous problem (10), (20) has only the trivial solution. Therefore, according
to Theorem 1 the problem (1), (2) is uniquely solvable. Moreover, the inclu-

sion ` ∈ H̃ab(a) guarantees that if q ∈ L([a, b]; R+), then the unique solution
of the problem (1), (20) is nonnegative.

Note also that ` ∈ H̃ab(a) iff a certain theorem on differential inequalities

hold. More precisely, whenever u, v ∈ C̃ ′([a, b]; R) satisfy the inequalities

u′′(t) ≤ `(u)(t) + q(t), v′′(t) ≥ `(v)(t) + q(t) for t ∈ [a, b],

u(a) = v(a), u′(a) = v′(a),

then
u(t) ≤ v(t) for t ∈ [a, b].

In the paper [7], sufficient conditions are established guaranteeing the

inclusion ` ∈ H̃ab(a). In particular, in [7, Theorem 1.3] the following propo-
sition is proved.

Proposition 1. Let −` ∈ Pab be an a−Volterra operator and let there exist

a function γ ∈ C̃ ′

loc(]a, b[ ; R) satisfying

γ′′(t) ≤ `(γ)(t) for t ∈ [a, b], (5)

γ(t) > 0 for t ∈ ]a, b[ , (6)

γ(a) + lim
t→a+

γ′(t) 6= 0. (7)

Then ` ∈ H̃ab(a).
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Below we will prove (see Theorem 3) that in Proposition 1 the condition
on ` to be a−Volterra operator is necessary. Analogous result for first order
functional differential equations is proved in [3].

Before we formulate the main results, let us introduce the following defi-
nition.

Definition 2. Let the problem (10), (20) have only the trivial solution. De-
note by Ω the operator, which assigns to every function q ∈ L([a, b]; R) the
solution of the problem (1), (20).

Remark 2. From Theorem 1 it follows that the operator Ω is well defined.
It is also clear that Ω is a linear operator which maps the set L([a, b]; R) into
the set C([a, b]; R).

Remark 3. It follows from [5, Theorem 1.4.1] that the operator Ω is contin-
uous (bounded) (see also [1, 4, 6]).

Remark 4. It immediately follows from Definitions 1 and 2 that if ` ∈
H̃ab(a), then the operator Ω is nonnegative, i.e., it transforms the set L([a, b]; R+)
into the set C([a, b]; R+).

Theorem 2. Let −` ∈ Pab and ` ∈ H̃ab(a). Then Ω is an a−Volterra

operator.

Proof. Let t0 ∈ ]a, b[ and let the function q ∈ L([a, b]; R) be such that

q(t) = 0 for t ∈ [a, t0]. (8)

We will show that

Ω(q)(t) = 0 for t ∈ [a, t0]. (9)

Denote by u the solution of the problem (1), (20) and by v the solution of
the problem

v′′(t) = `(v)(t) + |q(t)|, (10)

v(a) = 0, v′(a) = 0. (11)

According to Remark 1 (see also Remark 4) and the assumption −` ∈ H̃ab(a),
we have

v(t) ≥ 0 for t ∈ [a, b], (12)

u(t) ≤ v(t) for t ∈ [a, b]. (13)
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Since −` ∈ Pab, it follows from (10) and (12) that

v′′(t) ≤ |q(t)| for t ∈ [a, t0]

Hence, on account of (8), (11) and (12), we obtain

v(t) = 0 for t ∈ [a, t0]. (14)

On the other hand, by virtue of (1), (10), (13), and the assumption −` ∈ Pab,
we get

(u(t) − v(t))′′ = `(u − v)(t) + q(t) − |q(t)| ≥ q(t) − |q(t)| for t ∈ [a, b].

Hence in view of (8) and (14) we get

u′′(t) ≥ v′′(t) = 0 for t ∈ [a, t0].

The latter inequality, together with (13), (14) and (20), implies

u(t) = 0 for t ∈ [a, t0].

Consequently (since u(t) = Ω(q)(t) for t ∈ [a, b]), the equality (9) is fulfilled.
�

Theorem 3. Let −` ∈ Pab and ` ∈ H̃ab(a). Then ` is an a−Volterra opera-

tor.

Proof. Assume the contrary, let ` be not an a−Volterra operator. Then
there exist v0 ∈ C([a, b]; R) and b0 ∈ ]a, b[ such that

v0(t) = 0 for t ∈ [a, b0]

and
mes{t ∈ [a, b0] : `(v0)(t) 6= 0} > 0.

Without loss of generality we can assume that

mes{t ∈ [a, b0] : `(v0)(t) < 0} > 0. (15)

First we will show that

Ω(`(|v0|))(t) = 0 for t ∈ [a, b0], (16)
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where Ω is the operator introduced in Definition 2.
Choose a sequence of functions vk ∈ C̃ ′([a, b]; R), k ∈ N, such that

lim
k→+∞

‖vk − |v0|‖C = 0 (17)

and

vk(t) = 0 for t ∈ [a, b0], k ∈ N. (18)

According to Remark 3 and (17), we get

lim
k→+∞

‖Ω(`(vk)) − Ω(`(|v0|))‖C = 0. (19)

It is clear that

v′′

k(t) = `(vk)(t) + qk(t) for t ∈ [a, b], k ∈ N, (20)

where

qk(t)
def
= v′′

k(t) − `(vk)(t) for t ∈ [a, b], k ∈ N. (21)

Consequently,

vk(t) = Ω(qk)(t) for t ∈ [a, b], k ∈ N. (22)

It follows from (20)–(22) that

vk(t) = Ω(v′′

k)(t) − Ω(`(vk))(t) for t ∈ [a, b], k ∈ N. (23)

Hence, taking into account the fact that Ω is an a−Volterra operator (see
Theorem 2) and the condition (18), we obtain

Ω(`(vk))(t) = −vk(t) = 0 for t ∈ [a, b0], k ∈ N.

Thus, in view of (19), we get the equality (16).
Let u be a solution of the problem (1), (20), where

q(t) =

{
−`(|v0|)(t) for t ∈ [a, b0[

0 for t ∈ [b0, b]
. (24)
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It is evident that

u(t) = Ω(q)(t) for t ∈ [a, b] (25)

and

q(t) ≥ 0 for t ∈ [a, b]. (26)

Moreover, on account of the assumption −` ∈ Pab, the inequality

`(|v0|)(t) ≤ `(v0)(t) for t ∈ [a, b]

holds. Consequently, due to (15) and (24)

mes{t ∈ [a, b0] : q(t) > 0} > 0. (27)

According to Theorem 2, Ω is an a−Volterra operator. Hence by virtue of
(16) and (24) we get from (25) that

u(t) = 0 for t ∈ [a, b0]. (28)

On the other hand, the inequality (26) and the assumption ` ∈ H̃ab(a) imply

u(t) ≥ 0 for t ∈ [a, b]. (29)

In view of (29) and the assumption −` ∈ Pab, it follows from (1) that

u′′(t) ≤ q(t) for t ∈ [a, b].

Hence, on account of (24), we obtain

u′′(t) ≤ 0 for t ∈ [b0, b].

The latter inequality, together with (28) and (29), yields

u(t) = 0 for t ∈ [a, b].

Therefore, it follows from (1) that q ≡ 0, which contradicts (27).
�
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