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^-products of slender modules 

JOHN DAUNS and LÁSZLÓ FUCHS 

Throughout, modules will be right unital over an arbitrary, but fixed ring R. 
Let x be an infinite cardinal, and Hj (jdJ) a set of J?-modules. By their x-pro-

duct n^*{Hj\j£J) is meant the submodule of the direct product H=n {Hj\j£j} 
consisting of all the elements h={hj) whose support supp h = {j^J\hj^0} has 
cardinality (We shall write supp K= U{supp h\h£K} for a subset K of H.) An 
/?-module A is called slender if for 7?-modules etR^R (/<cu) and for any /?-homo-
morphism 

<p\ n{etR\i < co} — A 

we have (pet=0 for almost all i. Slender modules behave in many respects like slen-
der abelian groups; cf. DIMITRIÓ [2 ] . Slender modules need not be torsion-free, not 
even over commutative domains [3, p. 77]. 

In this note, our purpose is to investigate properties of x-products of slender 
modules over arbitrary rings. We shall concentrate on the problem of homomor-
phisms rj of a product n{Gt\i£l} of ^-modules G, with non-measurable index 
set / into the ^-product n^*{Hj\ j£J} of slender modules H} . A generalization of a 
well-known theorem by Loá [3, p. 52] guarantees that, for each j£J, only finitely 
many T]GÍ have nonzero projections in Hj, but virtually nothing is known about the 
global behavior of such a homomorphism rj. 

We study both the kernel and the image of rj. Easy examples show that meaning-
ful results on the image of t] can only be obtained if the modules Gt are not too 
large: more precisely, if they can be generated by fewer elements than the cofinality 
cof x of x. We shall prove the following theorem which also generalizes the well-
known result that direct sums of slender modules are slender [3, p. 77]. 

Theorem. Let I be a non-measurable index set and x an infinite cardinal. Assume 
G( (/67) are R-modules each of which can be generated by strictly less than A=cof x 
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206 John Dauns and László Fuchs 

elements, and H} (j£J) are slender R-modules. Given an R-homomorphism 

(1) ij: G = II{Gi\ia} - H = n<x{Hj\jZJ), 
define 

(2) X = {/6/| nGi ^ 0} and Y=\J {supp ifG, \ /£/}. 

Then we have: 

(A) |X| < x; 

(B) n{Gt\i£l\X} =g kerjj; 
(C) \Y\ < x; 

(D) Imtjs n{Hj\j£Y} H. 

For x regular, conclusions (A) and (B) are actually proved without requiring 
the Gt to be less than cof x generated. The proof requires a more sophisticated ar-
gument if x is a singular cardinal. We break down the proof into several lemmas and 
propositions dealing with portions of the Theorem. 

For recent work on products of slender modules, and for applications of x-
products in ring and module theory, see [3], [7], [8] and [1], as well as the literature 
quoted there. 

1. Preliminaries 

The symbols x, k will denote infinite cardinals (or ordinals); x+ denotes the 
successor cardinal of x, and \X\ stands for the cardinality of a set X. For an /{-mo-
dule G, gen G means the minimum cardinality of generating sets of G. Here a cardinal 
x is measurable if there exists a non-principal ultrafilter on x which is closed under 
countable intersections. For the set theoretical concepts and results needed here, 
we refer to JECH [ 5 ; p. 2 7 — 2 8 ; p. 5 2 ] . 

By making use of [3, p. 52], the proof of the main theorem of £o£ on slenderness 
([4; p. 161, Theorem 94.4]) can be modified so as to hold for slender .R-modules, 
rather than for abelian groups. 

1.1. J. toS Theorem. Let I be a non-measurable index set and A a slender 
R-module. For any R-homomorphism <p: Il{Gi\i£l}-»A where the Gt are arbitrary 
R-modules we have: 

(i) <p<j,=0 for almost all i£l; and 
(ii) if (pGi=0 for all iO, then <p=0. 

It is straightforward to check that (1.1) continues to hold if the direct product 
IlGi i s replaced by the x-product n~:xGi with uncountable non-measurable x. 

Using coordinate-wise arguments, we can at once derive the following corollary. 
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1.2. Coro l la ry . Let 

(3) n : G = n {G; | /€/} H = Il {Hj \ j£J} 

be an R-homomorphism where the Gt are R-modules, all Hj are slender, and the index 
set I is non-measurable. If t]Gt = 0 for each /€/, then rj= 0. 

From now on we assume that the index sets are infinite. 
In order to compare homomorphisms into products with those into ^-products, 

we include the following result. 

1.3. P ropos i t ion . Assume the hypotheses of (1.2). Then the subset X= 
= {i£l\riGi7i0} of I satisfies: 

(i) and 
(ii) rj vanishes on II {Gt\i£I\X}. 

P roo f . Let Qj: H—Hj be the yth coordinate projection. By the definition of 
slenderness, for each j£J, the set 

is finite. Evidently, U{f(j)\j£J}=X whence (i) is obvious. Since ^£/¡=0 for all 
i£l\X, (ii) follows immediately from (1.2). 

To facilitate proofs, we state here a lemma the proof of which is an easy 
exercise in set theory. 

1.4. Lemma. Let I be a set of infinite cardinality x and x a cardinal < x. Suppose 
that {Fyl/C/} is a set of finite subsets of I such that, for each i£l, the cardinality 
of does not exceed x. Assume that \J\=x, which holds in particular if 
{J{Fj\j£J}=I. Then there is a subset SczJ such that 

(a) | S | = x ; 
(b) the sets Fj S) are pairwise disjoint. 

Note. If x is regular, and in particular, weakly inaccessible, then it suffices to 
assume K y c / I ^ f / J l ^ x for each /'£/ to obtain (a)—(b). 

In this section, we assume x is a regular cardinal. Our first concern is the kernel 
of homomorphisms of products of modules into the x-products of slender modules. 
The following theorem gives fairly complete information about the kernel. (The 
restriction on gen Gt is not required for regular cardinals x.) 

(4) f U ) = { i a i e j i G i ^ 0} 

2. Maps into x-products, regular x 

l 
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2.1. P r o p o s i t i o n . Let Gt (i£l) be R-modules, H j ( j £ j ) slender R-modules, 
and |7| a non-measurable cardinal. Let (1) be an R-homomorphism where x is a regular 
cardinal. Then (A) and (B) of Theorem hold. 

P r o o f . As (B) is a consequence of (1.2), only (A) requires a verification. 
By way of contradiction, suppose that (A) is false. Without loss of generality, 

we may then assume that X=I. has cardinality x (in particular, x is non-measurable) 
and G,=g,R are nonzero cyclic .R-modules. 

As in the proof of (1.3), we form the sets /(_/) [cf. (4)] which are finite for each 
j£j. Setting Y= Ujsupp y]gi\i£.I), we have 7= U {f(j)\j€ H because of X=I. 
The finiteness of the f ( J ) and \I\—x imply \Y\=x. Since £>//£¡=0 for j£J\Y 
and every /£/, we may assume Y=J and f ( J ) ̂  0 for each j£J. 

The next step in our proof is to select a subset S of J such that the finite subsets 
/ 0 ) C/6S) are pairwise disjoint and |5 |=?i . This can be done with the aid of (1.4) 
(where x is the immediate predecessor of x if such an ordinal exists; otherwise no 
such x is needed). 

For each j£S, set CJ=®{Gi\i^f{j)}^0. Manifestly, G*=n{Cj\jeS} is 
a summand of G and H*=n**{Hj\j£S) is a summand of H. The restriction of 
t} to G* followed by the projection H—H* yields a map t f : G* —H* such that, for 
each j£S, O^rjCjSHj. For every j£S, pick a cfiCj satisfying t]*Cj^0, and 
let 

c = (. . . , Cj, ...)£G* (j£S). 

In view of Qjt]*Ck=0 for all j^k in S, the slenderness of Hj implies Qjtf(c—cj)= 
= 0 for every (recall the non-measurability of x). Consequently, QjT]*C= 
= eJt]*cJ7i0 for all J£S, contradicting the fact that the support of rj*c must have 
cardinality 

We turn our attention to the question as to when the image of t\ in (1) has to 
be contained in the x-product of a smaller subset of the Hj. 

It is readily seen that some sort of restriction on the G, is necessary in order to 
obtain such a conclusion. In fact, if one of the Gt's is the direct sum 0 H, and 

t] acts on each H j as the identity map, then the x-product of the H j over the entire 
index set J is needed to accomodate Im rj. This example also shows that it won't 
be of any help to assume the slenderness of the G,'s. Cardinality restrictions on the 
<7, seem to be inevitable. 

Accordingly, let us assume gen Gt<x for each /£/. If x is a regular cardinal, 
then |supp t]Gt\~=x. Keeping this in mind, we prove: 

2.2. P r o p o s i t i o n . Let Gi (i£l) be R-modules with genG,<x where I is 
non-measurable. I j (1) is an R-homomorphism with H} slender and x regular, then 
both (C) and (D) of Theorem hold true. 
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Proof . (2.1) shows that rj acts non-trivially only on a subproduct /7{Gi|/gA'} 
where \X\<x. By the regularity of x, likewise F = U{supp rjG^i^X] has cardi-
nality less than x. Assertion (D) is an obvious consequence of (C). 

3. Maps into x-products, singular x 

In this section, x denotes a singular cardinal. 
Let us start with a weak version of (2.1). Viewing (3) as a map into the x + -

product of the Hj , we derive: 

3.1. Corol la ry . Under the hypotheses of (2.1), but assuming x is singular, 
we have: 

(i') \X\r£x, and 
(ii') »7 vanishes on n{Gi\i£l\X}. 
We shall improve on (3.1) by limiting the sizes of the generating systems of 

the 
The analogue of (2.2) fails if x is singular, even if I is restricted to have cardi-

nality A=cof x — as is shown by the following example. 
Let {/a |a<A} be a set of pairwise disjoint subsets of J such that | / J < x for 

all a<A and s u p | / a | = x . Let Gx= ® G = / 7 { G J a < A } and r/: G^H= 
—n^x{Hj\j^J} be induced by the identity maps on the Hj. This rj exists (Im 
t] is already in the A+-product of the Hj) and provides a counterexample. 

Our best bet is cutting down the sizes of Gt to below A. This enables us to obtain 
reasonably strong results. The point of departure is the following. 

3.2. Lemma. Let x be a singular cardinal, I a non-measurable index set of 
cardinality ^A=cof x, and Hs (/€•/) a family of slender modules. If gen G,<A 
for all the R-modules Gh then for any R-homomorphism (1) conclusions (C) and (D) 
of Theorem hold true. 

Before entering into the proof of (3.2), we prove two auxiliary lemmas. In the 
next lemma, x can be any infinite cardinal. 

3.3. Lemma. Suppose ¡i is a non-measurable ordinal < x and 

r-G = n{G.\a = n<*{Hj\jdJ} 

is an R-homomorphism where G„ =gxR are non-zero cyclic modules and Hj are slender. 
If x0 is a cardinal number satisfying 

H S x„ < N p p t]ga\, 

then there exist a subset Y of J and an ordinal such that 
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(a) F c s u p p Tjg0; 
(b) m > x 0 ; 
(c) Fflsupp Tiga=0 for all a^j3. 

Proof . Let Q] denote they'th coordinate projection H—Hj. Define a function 
ij/: J—fi by letting ip(J) be the smallest ordinal y</z such that 

Qjtin{g.R\y a < ¡1} = 0. 

Owing to the slenderness of Hj, such a exists, so \j/ is well-defined. For 
a^ f i , we set 
(5) Ya = O'^supp t]g01 \]/(j) = a}. 

Visibly, the Yx are pairwise disjoint and their union for a< / i is exactly supp t]g0. 
Consequently, 

x0 < |supp rjg0\ = 2 1^1 = max{n, sup |Fj}. 
a-c/i a -eft 

Hence fi = x0 implies x 0 <sup \YJ which means that \Yp\ for a suitable ordinal 
/}<//. This p and Y—Yp are as desired. 

The next lemma is more technical. 

3.4. Lemma. Assume x is a singular cardinal, A=cof x is non-measurable, 
Ga are non-zero cyclic and Hj are slender. If there are cardinals y.x(a<X) satisfying 

(a) x ^ l s u p p r]ga\ for a<A; ^ 
(b) i s x 0 < x i < . . . < x a < . . . (a<A); 
(c) Sup Xa

 = X) 
then there exist subsets Ja of J and ordinals fi (a) < A for all a < A such that 

(i) / i(0)<Ai(l)<. . .<ii(a)<.. . ; 
(ii) c: supp tjg^y, 

(iii) |Jr«l>'<a for a<A; 
(iv) the sets Ja, Jlt ...,/a,... are pairwise disjoint. 

Proof . We take advantage of the function i¡/:J-*X defined in the proof of 
(3.3), and in addition to (i)—(iv) we also require that Ja be of the form Ye as in (5). 
More precisely, we impose an additional condition: 

(v) J<z={j£supprigKx)\\j/(j)=P(a.) for some )?(«)< A}. 
Right away we note that (v) implies 

(vi) Qjr\gi=0 holds for every j£J0{J ...UJa andfor every ¿>supp {¿¿(a), [3(0),... 
...,/?(«)}. 

The Jx and /¿(a) will be constructed by transfinite induction. To start off, put 
/i(0)=0. Application of (3.3) yields a subset YaJ and an ordinal /?(0)<A satisfy-
ing (a)—(c) of (3.3) as well as (v). Define J0 = Yfim. Then for a=0 , all of (i)—(v) 
hold. 
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Let 7<A, and suppose that /г(а)<А and J a c 7 have been selected for all 
а <y satisfying conditions (i)—(v) for indices Define /x(y) to be any ordinal 
<A exceeding ц(а) and /?(а) for all a < y ; since A=cof x, such а ц(у) does exist. 
Apply (3.3) to g^ playing the role af g0 and xy the role of x0, in order to obtain a 
set r={j '6supp rigllM\il/(j)=d} for some 5<A and an ordinal /?(y) as stipulated 
by (3.3) (a)—(c). Setting Jy=Y and P(y)=5 (see the proof of (3.3)), conditions 
(i)—(iii) and (v) will clearly hold for all indices To convince ourselves that 
JyC\Ja=8 for every a<y, it suffices to note that (vi) implies Qj for every 
j£ja. This completes the proof of (3.4). 

Proof of (3.2). Since gen (7г<А implies |supp t]Gt\<x, the assertion follows 
at once whenever |/ |<A. So let us assume |/ |=A in which case we can think of I 
as consisting of the ordinals <A. 

From (1.2) we infer that Y= U {supp //Ga|a<A} is the smallest subset of J 
with the property riG^n^"{Hj]j£ Y}. Hence \Y\^x is immediate. By way of 
contradiction assume that \Y\—x. 

Passing to a summand of G, we may assume that the cardinal numbers |supp rjGJ 
are all different and >A. Reindexing, we obtain an ascending chain 

A < |suppt]G0\ < Isuppz/Gil < ... < |supptjGx\ < ... (a < A) 

whose supremum is x. Since gen Gx+1<). and |supp »;Ga+1|>|sup tjGa\, there 
must be a generator gx£Gx+1 whose image rjgx has support of cardinality strictly 
=-|supp >lGa\. Setting xx=\supp t]Ga\, we obtain an ascending chain of cardinals, 

A = x0 < x1 < ... < xx < ... (a < A) 

with supxx=x, and with |supp qgj for all а<A. 
Restricting tj to the submodule G=П {gxR\a< k), (3.4) yields the existence 

of subsets / „ с / and ordinals ;<(«)</ satisfying (i)—(iv) of (3.4). Define an element 
g=isa)x<x£G as follows. Let gx=gMfi) if ct=n(P) for some J3<A, and let gx=0 
otherwise. From the definition of the //(/?) it is clear that Qjti(g—gM(x))=0 for all 
jf Ja. Hence Qjt]g=Qjt]g^fi->9i0 for j£Jx, and we conclude that 

|supp t]g\ ̂  (J {Jx | а < 1} = supxa = x. 

This contradiction completes the proof of (3.2). 
We still need the following lemma. 

3.5. Lemma. Let x be a non-measurable singular cardinal, and I an index set 
of cardinality x. If Gt are R-modules with gen G ;<A=cof x, and if {1) is an R-
homomorphism with H} slender, then there exists a cardinal x-<x such that, for each 
i£l, the set supp i/G,- has cardinality ^x. 
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Proof . First observe that gen<7,<A and |supp tjg^x for each gt£Gt 

imply that |supp Denying the existence of a x of the indicated type means 
that we can select a subset {Gct|a<A} of {G,|/£/} such that the cardinalities x„= 
= |supp t]GJ form an increasing chain (with increasing a) whose supremum is x. 
The restriction of rj to G'=77{GJa<A} is a homomorphism satisfying the hypothe-
ses of (3.2). Therefore, we conclude that r\G' has a support of cardinality in 
contradiction to U |supp tjGJ = (Jx„=x. 

Proof of Theorem. (2.1) and (2.2) take care of the case in which x is a regular 
cardinal. So assume x is singular. 

(A) Without loss of generality, we may assume |/ | ^ x ; otherwise there is noth-
ing to prove. It suffices to verify (A) for \I\=x. By way of contradiction, assume 
\X\=x. We apply (1.4) to the set {f(j)\j<iJ} defined in (2) to obtain a subset ScJ 
of cardinality x with f ( j ) (j£S) pairwise disjoint; (3.5) assures the existence of a 
cardinal x needed in (1.4). Consider the following element of G : g=(gd where 
gfcGi with rjg^O if /'€ U{/(y)|j'i S} and gt=0 otherwise. An argument similar 
to the one used at the end of the proof of (2.1) leads us to the conclusion that tjg 
must have a support of cardinality x — a contradiction. 

(B) follows from (A) in view of (1.2). 
(C) Because of (3.5), we have |supp tjG,\sx<x for each i. This, together with 

(A), implies | Y\<x. 
(D) is an immediate consequence of (C). 

4. Embedding of //-products in x-products 

The case when the map q in (1) is a monomorphism deserves particular attention. 
In the following two corollaries, no restriction on gen Gt is needed. 

4.1. Coro l la ry . Let G,*0 (/£/) and Hj ( j £ j ) be R-modules, |/| and x 
non-measurable cardinals. If the Hj are slender and i f , for some cardinal /i, there is a 
monomorphism 

r.G = n<>{G,\/€/} <^H = II<X {H}\JO), 

then either |7|<x or fisx. 

Proof . If | 7 | s x and then G contains a submodule which is the product 
of x cyclic submodules gtR with rjg^O. This is impossible in view of (A), (B) 
in Theorem. 

The next result is an immediate consequence of the preceding one. It generalizes 
a result on products and direct sums of slender groups, due to LoS [6, p. 271]. 
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4.2. Corol la ry . Let both G{ (idI) and Hj (j£J) be families of non-zero 
slender modules. If\I\, \J\ are non-measurable cardinals, and if then 
I T " { G ^ / } n ^ " { H j \ j £ j } implies x=/i. 
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Idempotent algebras with transitive automorphism groups 

LÁSZLÓ SZABÓ 

To Professor Béla Csákány on his 60th birthday 

0. Introduction 

As a rule a finite algebra with "large" automorphism group is functionally 
complete. The first general result was found by B. CSÁKÁNY [1], who proved that 
almost every nontrivial homogeneous algebra (i.e. an algebra whose automorphism 
group is the full symmetric group) is functionally complete; up to equivalence there 
are six exceptions. Csákány's theorem was first extended to algebras with triply 
transitive automorphism groups [9] and later to algebras with doubly transitive 
automorphism groups [4]; the exceptions are the affine spaces over finite fields. The 
most general result in this direction is proved in [5] where the structure of functionally 
incomplete algebras with primitive automorphism groups are completely discribed. 

In this paper we investigate finite idempotent algebras with transitive auto-
morphism groups. We show that if an at least three element finite idempotent algebra 
with transitive automorphism group is simple and has no compatible binary central 
relation then it is either functionally complete or affine (Theorem 3.1). Moreover, 
if an at least three element finite idempotent algebra with transitive automorphism 
group is simple and has a nontrivial semi-projection or a majority function among 
its term functions then it is functionally complete (Theorem 3.2). 

1. Preliminaries 

Let A be a fixed universe with \A\ >2. For any positive integer n let 0 ( n ) denote 
oo 

the set of all n-ary operations on A (i.e. maps A"—A) and let 0 = | J 0 ( n ) . An 
n = l 

operation from O is nontrivial if it is not a projection. By a clone we mean a subset 
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of O which is closed under superpositions and contains all projections. A ternary 
operation / on A is a majority function if for all x,y£A we have f(x,x,y) = 
=f(x, y, x)=f(y, x, x)=x; f is a MaVtsev function if f(x, y, y)=f(y, y, x)=x for 
all x,y£A. An n-ary operation t on A is said to be an i-th semi-projection 
(n^3, l s / ^ n ) if for all x1, ..., xn€A we have t(x1, ..., x„)=xi whenever at least 
two elements among x1, ...,xn are equal. 

A subset FQO as well as the algebra (A, F) is primal or complete if the clone 
generated by F (i.e. the set of all term functions of (A, F)) is equal to O; F as well 
as the algebra (A, F) is functionally complete if the clone generated by F together 
with all constant operations (i.e. the set of all algebraic functions of (A, F)) is equal 
to O. 

We are going to formulate Rosenberg's Completeness Theorem [6], [7] which 
is the main tool in proving our results. First, however, we need some further de-
finitions. 

Let n,h^l. An n-ary operation / £ O w is said to preserve the h-ary relation 
g^Ah if Q is a subalgebra of the h-th direct power of the algebra (A;f); in other 
words,/preserves g if for any nXh matrix with entries in A, whose rows belong to 
g, the row of column values of /be long to g. Then the set of operations preserving 
Q forms a clone, which is denoted by Pol g. We say that a relation g is a compatible 
relation of the algebra (A, F) if FQ Pol Q. A binary relation is called nontrivial if 
it is distinct from the identity relation and the full relation. 

An /i-ary relation g on A is called central if g^A* and there exists a non-void 
proper subset C of A such that 

(a) (fix, ..., ak)€g whenever at least one atdC (1 
(b) g is totally symmetric, i.e. (a l5 ..., ah)£g implies (aln, ..., ahx)^g for every 

permutation n of the indices 1, ..., h\ 
(c) Q is totally reflexive, i.e. (at, ..., aH)^Q if a—aj for some iV/ (1 

The set C is called the center of Q. 

Let h^3. A family 7 , ={0 1 , ..., 0m} ( m S l ) of equivalence relations on A 
is called h-regular if each 0t (1 s i ^ m ) has exactly h blocks and 0 T = 0in... H 0 m 

m 
has exactly hm blocks (i.e. the intersection P| B, of arbitrary blocks ¿?, of ©t i = 1 

(/ = 1, ..., m) is nonempty). The relation determined by T is 

kT={(ax, ..., ah)ZAh: alt ..., ah are not pairwise incongruent 

modulo ©i for all i ( l i / S m ) } . 

Note that /¡-regular relations are both totally reflexive and totally symmetric. Now we are in the position to state Rosenberg's Theorem: 



Idempotent algebras 217 

Theorem A ( I . G . ROSENBERG [6] , [7 ] ) . A finite algebra A = ( A , F) is primal 
if and only if F^Pol g for no relation of any of the following six types: 

(1) a bounded partial order ; 
(2) a binary relation {(a, an)\a£A} where n is a permutation of A with \A\jp 

cycles of the same length p (p is a prime number)-, 
(3) a quaternary relation a2, as, a^ÇA^^+a^as+ai} where (A; +) is 

an elementary abelian p-group (pis a prime number); 
(4) a nontrivial equivalence relation; 
(5) a central relation; 
(6) a relation determined by an h-regular family of equivalence relations. 

Let B be a finite set with |j3| =3, and let / M > l , n S l , M—{l,...,m}, N= 
= {1, ...,«}. An n-ary wreath operation on Bm is an operation w associated to per-
mutations Pi of B (/=1, • ••,m), and maps r : M—N, s: M—M, as follows : For 
xt=(xa, ..., x,m)£Bm, 7 = 1, ..., n set 

W(Xl5 ...,X„) = (Pi(Xr(1)s{1)), .••,/>„,(X(m)s(m)))-

Now an algebra is a wreath algebra if it is isomorphic to an algebra on Bm with wreath 
operations only. 

In [8] I. G. ROSENBERG gave a functional completeness criterion for finite al-
gebras whose operations are all surjective. Among others he proved the following: 

Theorem B ( I . G . ROSENBERG [8]). Let Abe a finite algebra whose operations 
are all surjective. 

(i) If A has a compatible at least binary central relation then it also has a compat-
ible binary central relation. 

(ii) If A has an operation depending on at least two variables, A is simple and has 
a compatible relation determined by an h-regular family of equivalence relations then 
it is a wreath algebra. 

An algebra (A, F) is said to be affine with respect to an elementary abelian group 
(A; + ) if it has a compatible relation of type (3) in Theorem A determined by (A : +). 
To any finite field K and natural number n we associate the following affine algebra : 

AK>„ = (.K"; x-y + z, {rx + (l-r)y: r€^nXB}) 

where KnX„ is the nXn matrix ring over K. 

Theorem C (Â. SZENDREI [10]). Let A be an at least three element simple finite 
idempotent algebra. If A. is affine with respect to an elementary abelian group then it 
is equivalent to AK„for some finite field K and n ̂  1. 
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2. Lemmas 

Lemma 2.1. An idempotent wreath algebra cannot be simple. 

P r o o f . Let B be a finite set with |Z?| ^3 , 1, and consider an n-ary wreath 
operation w on Bm associated to permutationsp t of B (i= 1,..., m), and maps r: M— 
-+N,s: M-*M(M={ 1, . . . , m}, N={\,..., w}). It is easy to check that w is idempotent 
if and only if each pt is the identity permutation on B, ...,m, and s is the identity 
permutation on M, i.e., for xl=(xn, ..., xim)ÇBm, i— 1, ..., n we have 

•••>*n)
 =

 C*r(l)l» •••> xr(m)m)-

Then w preserves the equivalence relations 0j (j= 1, ..., m) defined by 

0j = ..., am), (b1} ..., bm))e(Bmf: = bj}, 

Lemma 2.2. If an at least three element finite algebra with transitive automorph-
ism groups has a compatible bounded partial order then it has a nontrivial compatible 
binary reflexive and symmetric relation. 

P r o o f . Let A=(A, F) be an at least three element finite algebra with transitive 
automorphism group and let g be a compatible bounded partial order of A with 
least element 0 and greatest element 1. Choose an automorphism n of A with In^O, 1. 
Then the relation A—(QÎ] QTI)O(Q f) ore)-1, where QN — {(XK, yn): (x, y)€G}, is a 
compatible binary reflexive and symmetric relation of A. Furthermore, a is non-
trivial, since (0, l n ^ g O g n Q a and 

Lemma 2.3. If an at least three element finite algebra has a nontrivial compatible 
binary reflexive and symmetric relation then it has either a nontrivial congruence rela-
tion, or a compatible at least binary central relation, or a compatible relation deter-
mined by an h-regular family of equivalence relations. 

P r o o f . Let A = ( A , F) be an at least three element finite algebra and let a 
be a nontrivial binary reflexive and symmetric relation on A with (a, b)£<r, a^b. 
Suppose that a is a compatible relation of A, i.e. FQ Pol a. Since a is nontrivial we 
have Pol a ^ O . Therefore, by Theorem A, there is a relation q of one of the types 
(1), . . . , (6) such that Pol aQPol Q. Clearly, Q is a compatible relation of A. We 
have to show that Q is of type (4) or (6) or an at least binary relation of type (5). 
Since Pol Q contains all constant operations, it cannot be of type (2) or a unary 
central relation. Suppose that Q is a bounded partial order with least element 0 
and greatest element 1. Consider the unary operations / and g defined by / (0 ) = 
=a, f(x)=b if XT^O and g(\)=a, g(x)=b if X^l. Then / , £ £ P o l «r^Pol Q. 
Therefore {a, ¿ )=( / (0 ) , / ( l»Çg and (b, a)=(g(0),g(l))£Q, a contradiction. Fi-
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nally suppose that q is of type (3), and let c£A with c^a,b. Consider the unary 
operation h defined by h(a)=A and h(x)=b if x^A. Then /26 Pol Q, and a+ 
+b—c?£a as c^a,b. Therefore, (a,b,c,a+b—c)£Q implies (a,b,b,b) — 
=(h(a), h(b), h(c), li(a+b—c))£g, a contradiction. 

3. Results and proofs 

Theorem 3.1. Let A be an at least three element finite idempotent algebra with 
transitive automorhism group. If A is simple and has no compatible binary central 
relation then it is either functionally complete or is equivalent to AKt„for some finite 
field K and natural number n. 

Proof . Let A be a simple at least three element finite idempotent algebra with 
transitive automorphism group, and assume that A has no compatible binary central 
relation. If A is functionally incomplete then, by Theorem A, there is a relation Q 
of one of the types (1), ..., (6) such that Pol Q contains all algebraic functions of A. 
Since Pol Q contains all constant operations and A is simple, Q cannot be of type 
(2), (4) or a unary central relation. If Q is of type (6) then, by Theorem B, A is a wreath 
algebra and then, by Lemma 2.1, we have that A is not simple contrary to our 
assumption. If Q is an at least binary central relation then, again by Theorem B, A 
has a compatible binary central relation contrary to our assumption. Finally, if Q 
is a bounded partial order then taking into consideration Lemma 2.2 and 2.3, we 
obtain that A has a nontrivial congruence relation or an at least binary central 
relation or a compatible relation of type (6), which is a contradiction. 

Hence Q is of type (3), i.e. A is affine with respect to an elementary abelian group 
and then, by Theorem C, we have that A is equivalent to AK>„ for some finite field 
.Kand «s:] . 

It is well-known (see e.g. [5] and [9]) that every nontrivial idempotent algebra 
has either a majority function or a Mal'tsev function or a nontrivial semi-projection 
or a nontrivial binary idempotent operation among its term functions. _ 

Theorem 3.2. If an at least there element finite idempotent algebra with trans-
itive automorphism group is simple and has a majority function or a nontrivial semi-
projection among its term functions then it is functionally complete. 

Proof . Let A = ( A , F) be an at least three element simple finite idempotent 
algebra with transitive automorphism group that have a majority function or a 
nontrivial semi-projection among its term functions. It is well known (see e.g. [5] 
or [9]) that neither majority functions nor nontrivial semi-projections preserve a 
relation of type (3) and therefore A is not affine. Using Theorem 3.1, we have to 
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show only that A has no compatible binary central relations. Suppose that A has 
a compatible binary central relation g with center C and let c£C. 

First consider the case when A has an n-ary nontrivial semi-projection / among 
its term functions («S3). We can suppose that / is a first semi-projection. We call 
a subset IQA an ideal iff t{a1, ..., a„)£l whenever a^I. Since an intersection of 
ideals is an ideal again, we may speak about an ideal generated by a subset of A. 
For any a£A denote by 1(a) the ideal generated by {a}. Clearly, if I is an ideal and 
rcÇAut A then In is again an ideal, and I(a)n=I(an). Because of the transitivity 
of Aut A the cardinalities of the 1-generated ideals are equal, and greater then one 
since t is not the first projection. So the 1-generated ideals form an Aut A-invariant 
partition of A. Denote by 8 the corresponding equivalence relation. Then 0 is distinct 
from the identity relation and Aut A g Pol 9. 

We show that 9<^g, i.e. for any a,b£A we have (a,b)£g if I(a)=I(b). 
Let a,b£A with I(a)=I(b). Consider the subset Ia={x: (x,a)£g). Then Ia is 
an ideal. Indeed, if x^Ia and x2,..., xnÇA are arbitrary elements, then (xj, a), 
(x2, c), ..., (x„, c)<Ee implies that (t(xu ..., xn), a)=(t(x1, x2, ..., xn), t(a, c, ..., c))£ 
£g, i.e. t(xu ..., *„)€/„• Now, since Ia is an ideal with a£la, we have b£l(b) = 
= / ( a ) g / a and (b, a)Ç_g. Hence OQg. 

Consider the subalgebra a of A2 generated by 9. Then OQoQg and FU 
U Aut A g Pol <7, i.e.,. a is a nontrivial compatible binary reflexive and symmetric 
relation of the algebra Â=(A; FUAut A). Taking into consideration Lemma 2.3, 
we have that Â has either a nontrivial congruence relation or an at least binary 
central relation or a relation of type (6). The first case cannot occur since Â is simple. 
In the third case, according to Theorem B, we obtain that Â and so C is a wreath 
algebra which, by Lemma 2.1, implies that A is not simple, a contradiction. In the 
second case let t be an h-ary central relation of Â, let u be an element in the center 
of T, and let alt ..., ahÇ.A be arbitrary elements. Choose a 7tÇAut A such that im = 
=at. Then (u, a.2n~1, ..., ah7r_1)ÇT implies that (aL, ..., ah)=(un, (a27r_1)7t, ... 
..., (ah7r-1)7r)€T. Hence t is the full relation Ah, which is a contradicton. This com-
pletes the proof in the case when A has a nontrivial semi-projection among its 
term functions. 

Now consider the case when A has a majority term function d. From now on 
we call a subset IQ A an ideal iff d(x, y, z)£l whenever at least two of the arguments 
belong to I. A and the one-element subsets are obviously ideals. Since an intersection 
of ideals is an ideal again, we may speak about an ideal generated by a subset of A. 
For any a^A the set Ia~{x\(x, a)^g} is an ideal. Indeed, if for example x,y£la 

and zÇ A is arbitrary element, then (x, a), (y, a), (z, z)£ g implies that (d(x, y, z), a) = 
=(d(x, y, z), d(a, a, z))€ g, i.e. d(x, y, z)£Ia. Clearly, if I is an ideal and 7:6 Aut A 
then In is again an ideal. 

Define a binary relation 9 by setting (a, b)£9 if and only if there is a minimal 
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ideal (i.e. an ideal properly containing one-element ideals only) containing a and b. 
Then 9 is distinct from the identity relation and A u t A ^ P o l f l . We show that 
OQQ. Indeed, let (a,b)£9. If a=b then (a,b)£g, too. If a^b then put u= 
=d(a, b, c) (c is a central element of g) and let I be the minimal ideal with a, b£l. 
Now a=d(a, b, a), b=d(a, b, b)£lu. Since a and b are distinct, u is distinct from 
one of them, say u^b. By definition udl. We have u, b£lf}Ib, so by minimality 
o f / , it follows that implying that (a,b)£g. Hence 

Consider the subalgebra <r of A2 generated by 0. Then QQoQg and 
FUAut A ^ Pol a, i.e., a is a nontrivial compatible binary reflexive and symmetric 
relation of the algebra A=(A; FUAut A). As we have seen above, this is impossible. 
This completes the proof in the case when A has a majority term function. 

Theorem 3.3. Every simple at least three element finite idempotent algebra 
with a MaVtsev function among its term functions is either functionally complete or is 
equivalent to AKnfor some finite K and natural number n. 

Proof . Let A = ( A , F) be an at least three element simple finite idempotent 
algebra with a Mal'tsev function among its term functions. If A is functionally in-
complete then, by the well-known Gumm—McKenzie Theorem (cf. e.g. in [2] and 
[3]) we have that A is affine. Finally apply Theorem C. 

Problem. Is every at least three element finite simple idempotent algebra with 
transitive automorphism group either functionally complete or equivalent to AK> „ 
for some finite field K and natural number «? 

As we have mentioned, every nontrivial idempotent algebra has either a majority 
function or a Mal'tsev function or a nontrivial semi-projection or a nontrivial binary 
idempotent operation among its term functions. Taking into consideration Theorem 
3.2 and 3.3, the answer is positive if the algebra has either a majority function or a 
Mal'tsev function or a nontrivial semi-projection among its term functions. The 
remaining case is that, when the algebra has a nontrivial binary idempotent function 
and has neither a majority function nor a Mal'tsev function, nor a nontrivial semi-
projection among its term functions. 
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Central pattern functions 

ENDRE VÁRMONOSTORY 

To Professor Béla Csákány on his 60th birthday 

A finite algebra St with base set A is called functionally complete if every (finit-
ary) operation on A is an algebraic function of 91 (in GRATZER'S sense [3]). W E R N E R 

[8] proved that every finite algebra (A; t) where t is the ternary discriminator function 
ŐRI A is functionally complete. F R I E D and PIXLEY [ 2 ] showed that (in the case \A\>2) 
the algebra ( A ; d ) with d the dual discriminator function on A is also functionally 
complete. The ternary discriminator and the dual discriminator are the most familiar 
examples of pattern functions. B. CSÁKÁNY [1] proved that for \A\>2 every finite 
algebra ( A ; f ) where/is a non-trivial pattern function on A is functionally complete. 
B. Csákány suggested the following generalization of pattern function (see [6]). 
Consider an n-ary relation QQ(A") on A. Two /¿-tuples (jq, ..., xk), (y1, ..., y

K
)£A

K  

are of the same pattern with respect to g if for /x, ..., /„£{1, ..., k}, (xt[, ..., X^Q 
and (yti,...,yir)€Q mutually imply each other. An operation / : A

K

—A is a g-
pattern function i f f ( x l y . . . , xk) always equals some xh i£{1, ..., k}, where / depends 
on the g-pattern of (xj, ..., xk) only. The g-pattern functions with g the equality 
relation are the (usual) pattern functions. 

The aim of this paper is to prove a functional completeness theorem on Q-
pattern functions with Q central, which is analogous to the theorems mentioned 
above. 

An n-ary relation Q on A is called central [5], if G ̂ A" and there exists a nonvoid 
proper subset C of A such that 

(1) (an ..., a„)£g whenever at least one ajdC (l^jsri); 
(2) <ŰJ, ..., a„)£g implies <a^(1), ..., a,(n))£g for every permutation o of the 

indices 1, ..., n; 
(3) (alt ..., a„)€e if at=aj for some i ^ j N o t e that every unary 

relation C distinct from 0 and A is central. 

Received September 7, 1990. 
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Let e be an equivalence and Q an arbitrary w-ary relation on A. If for a1, ...,an 

bu ...,bneA, (au ..., an)€g and (au bJZe,..., (an, b„)ee together imply (bu ... 
•••> bn)£g, then e is said to be compatible with g. We say that q is simple, if no non-
trivial equivalence on A is compatible with Q. An operation / o n A is said to preserve 
Q if Q is a subalgebra of the nth direct power of the algebra {A;F). 

We will use the following version of ROSENBERG'S completeness theorem (see [5]). 
A finite algebra ( A ; f ) with a single fundamental operation / is functionally 

complete iff 
(a) / i s a monotonic with respect to no bounded partial order on A, 
(b) /preserves no non-trivial equivalence on A, 
(c) / preserves no binary central relation on A, 
(d) / is surjective and essentially at least binary, 
(e) / preserves no quaternary relation. 

0 = {<ao, au a2, a3)£,44|ao+ai—fl2+fl3} where (A; +> is an elementary abelian 
/»-group (p is prime number). 

Let A be a finite set. For 2 and for arbitrary (k—l)-ary, resp. /-ary ( I s 
S/^fc—1) relations t and 9 on A we define the ¿-ary x-pattern functions fH,g\ 
resp. the /-ary 0-pattern functions h\ on A as follows 

. _ if (*1, ...,x*_i)eT 
/*(*!, ...,,**) otherwise> 

A - / * 1 ' i f (*!» 
&(*i, otherwise, 

r. 
K{xi, ...,*») = ( 

xk, if (xtl, ..., xh)£9 for some 1 s ^ < ... < h s k, 
xx otherwise. 

If T and 9 are the equality relation on A, then f l is the ternary discriminator, gl is 
the dual discriminator and h\ is a near projection. 

Theorem. Let i and 9 be arbitrary central relations on an at least three element 
finite set A. The algebras ( A ; f ) with f=fl or are functionally complete if and 
only if T is simple. The algebras (A; hi) are not functionally complete. 

Remark 1. If \A\ =2, then t and 8 are unary. In this case/,* andg\ are mono-
tone on A(={0, 1}), and h\ is a projection; therefore { A \ f ) with f=fl,g\, or 
h\ is not functionally complete. 

For the proof of Theorem 1 we need the following lemma. 

Lemma. Let x be a relation and f an arbitrary x-pattern function on A. If x is 
not simple, then { A \ f ) is not functionally complete. 
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P r o o f . If T is not simple, then there exists an nontrivial equivalence e on A 
which is compatible with T. Clearly, E is a congruence of ( A ; f > . Hence ( A ; f ) is 
not functionally complete. 

Remark 2. If an at least binary arbitrary central relation r on A has at least 
two central elements, then T is not simple. In this case Lemma implies that, for an 
arbitrary T-pattern function/, the algebra (A;/) is not functionally complete. 

P roo f of Theo rem. First we prove that the algebras (A; hi) are not function-
ally complete. If the centre of 9 has at least two elements, this follows from Remark 
2. If the centre of 9 consists of a single element c, then the equivalence of A with 
blocks {c} and is an non-trivial congruence of (A;he

k). Therefore ( A \ h \ ) 
is not functionally complete. 

It remains to show that the algebras ( A ; f ) with f=/k or gl and T simple are 
functionally complete. Rosenberg's criterion will be used. Clearly, (d) is true for 
fk and gk. Furthermore, they depend on all of their variables and fk(x1, ..., xk), 
g l f a , ..., ..., x*} for Xi, ..., xk£A. Then, by Lemma 1 in [7], (e) also 
holds for them. Thus it is enough to prove that neither fk nor g\ does preserve the 
relations Q in (a), (b), (c). Therefore we have to present a kx2 matrix with entries 
in A such that all rows belong to Q, but the row of column values does not belong 
to Q. 

(a) Let s b e a bounded partial order on A with least element 0 and greatest 
element 1 (0,1 €A). In view of Remark 2, we can suppose that c is a unique central 
element of r. We will use the following matrices to show that none of the functions 
f l , gl does preserve 

h h h 1 0 h h h 0 / i l l 
ti 1 0 h h h h 1 1 0/x 
• • h h 

'k—a 1 h-zh-z h-zh-2 'ik-al h-z 1 0 f t _ 2 
0 0 0 0 1 1 I h 1 1 hh 
h 0 tt 0 1 h \ h \ h \h . 

Let h always denote an element of A distinct from 0 and 1. Consider the operation 
f l , and first suppose c=1 . Since h is not a central, there exist tlt ..., tk_2(£ A) for 
which (h, tx, ..., /k_2)Ct. Then the first matrix shows that/j^ does not preserve S . 
Next suppose c=h. Since 0 is not central, there exist tu ..., tk_z(£A) for which 
(/l5 0, r2, ...,tk_z)$T, and the second matrix applies. Finally, if c=0, then h is 
not a central, and there exist tx, ..., tk_z(£A) with (h, ..., and now 
the third matrix does the job. Now consider the operation gx

k, and first suppose c=1. 
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Since h is not central, there exist flt ..., tk_2(£A) with (h, ti, ..., tk_¡¡^T. Then 
the fourth matrix shows that g\ does not preserve s . If c=h, then 0 is not central, 
and there exist tu ..., tk-2(£A) with (0, tu ..., tk_2)$T, and the fifth matrix is 
used. Finally, suppose c=0 , then 1 is not central, and there exist t u ..., 
with (1, tx, ..., tk_2)$r. In this case using the sixth matrix we also get that g\ does 
not preserve . 

(b) Let e be an arbitrary non-trivial equivalence on A. We prove that the opera-
tions fk and gk do not preserve e. Since T is simple, there exist elements ar, ..., ak_1, 
•bu .:.,bk-1 with . . „ a ^ ^ i , ^ , ^ ) ^ , ...,(ak-1,bk-1)es,(b1, ...,bk.1)it. 
Let (t, then (alt t)$s holds as well, and the matrix 

a} b} 

bk-i 
t t 

t h 
ax t 

shows that none of f l and g\ do not preserve e. 
(c) Let Q be a binary central relation with centre Ce. Let c be a unique central 

element of T. TO show that fk and g\ do not preserve Q we use the following 
matrices 

b b d d 
h C h I 

d d 
tk-iC h I h- • « ' / 

a a c c c c 
b a d c d c 

or or 
a b c d c d. 

Now we have two cases. 
(1) If c£Ce, then let (a, b)$g. We can choose elements t1, ..., tk_2 with 

(b, tu ..., Considering the first matrix we get that fk and g\ do not pre-
serve Q. 

(2) If c$Ce, then let d and / such that (c, d)&Q, and KCe. For k=3, if 
( D , / ) € T then let ^ such that (d, f ^ x , and if (d, then let tt=d. From the 
second matrix we get that fk and g\ do not preserve Q. Finally, if K^4, there are 
elements tlt ..., tk_2 with (d, tlt ..., tk-2)$T and the third matrix works. 

Remark 3. Let A be a finite set, \A\^3. For an arbitrary relation Q on A 
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we define the following k-ary ^-pattern function on A 

rx t, if XxQXaQ ...QXt-! 
tk(xi,x2, . . . , x k ) - ^ otherwis£) 

f X j , if X1QXiQ...QXk.1 p 
4 ^ X 2 , ..., XK) = otherwise. 

We saw in [7] that (A ; / ) with f=t°k of f—s"k are functionally complete, if fcë3, 
and Q is an arbitrary permutation on A or <?=<5Ue>-1 with an arbitrary permutation 
<5 on A. If Q is an arbitrary central relation on A, then 

t%(X\ > x2, • •., x2, x3) = fs(x1, xs, x3), 
and 

^(XLI X2, ..., X2, X3) = ^ (Xj , xs, XS). 

Hence, using the Theorem, the following result follows. 
{A',F) with F=tk or functionally complete if and only if Q is an arbitrary 

simple central relation. 
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Estimation of generalized moments of additive functions 
over the set of shifted primes 

K.-H. INDLEKOFER and I. KATAI 

1. Introduction. A function <p: [0, [0, is called subadditive, if it is 
monotonically increasing, <p(x) —00 a s x — a n d the condition 

(1.1) q>(x + y)s ^((pW + cpiy)) for 1 

holds with a suitable constant ^ > 0 . 
It is clear that the functions log (1 +x), xr ( r > 0 ) are subadditive. On the 

other hand (1.1) implies that (p(x)=0(xc) (x—0) with some constant c. 
We are interested in giving necessary and sufficient conditions for an additive 

function / for which 

(1.2) (/>(*) =) P(x) := 2 <P (I f(P +1) - «WD « K x 
p&x 

holds true with a suitable function cc(x). Here, and in what follows p runs over the 
set & of primes. 

For the sake of simplicity we extend the domain of (p to the whole real line 
by <p(—x):=cp(x). Then 

(1.3) <p(x+y) s c2 + c3(q>(x) + (p(y)) 

obviously holds for x, y^R, where c2, c3 are suitable positive constants. 
For an arbitrary additive function / let 

(1.4) A,(x):= 2 f i P ) 

pS* P 
I/(P)I-=I 

Received January 3, 1991. 
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and (Ef), (E*f) denote the conditions: 

(Ef) 2" i s convergent (finite) 
pi» P 

I/(P)I«I 
(E*f) Z !//><-• 

l/(p)|si pi» 
An additive function / is said to be finitely distributed if (Efl), {E*f) hold true. 
Let n(x, k, I) denote the number of the primes q^x for which q=l(mod k). 

Theorem 1. Let <p be subadditive. Assume that f is an additive function, for 
which there exists a real-valued function a(x) such that (1.2) holds. Then f can be 
written as f=Alog+A, where h is finitely distributed, A£R, furthermore 

(1.5)i 2 
P 

and 
(1.6) 2 <p{h{qm))n{x, <T,~ 1) = 0(l ix) . 

I»(«m)|sl 

We have a(x)=a*(x)+0(l) , where 

(1.7) a*(x):=Alog x+Ah(x). 

In contrary, let h be a finitely distributed additive function for which (1.5)i and 
(1.6) hold and let / = l l o g + / i , A£R. Then (1.2) holds. 

R e m a r k s . A. Assume that 

|/l(pm)|Bl p 

holds with a suitable f > l . Then (1.5X and (1.6) are satisfied. 
B. It is not known whether condition (1.6) could be omitted or not. Let P*(n) 

denote the largest prime power divisor of n. Assume that 

(1.8) lim s u p 0 o g ^ ( ^ l ) ) l o g l o g ^ ( ^ l ) _ . 
p log (p + 1 ) 

Then the condition (1.6) cannot be omitted in the Theorem, i.e. there exists such a 
finitely distributed h for which (1.5)a holds, but (1.6) does not hold. 

P r o o f of R e m a r k B. According to (1.8), there exists a sequence />i<p 2<. . . 
of primes, < 02 • • • of prime powers, such that />, +1 =£¡,2,-, and 

. l o g f o + l) 
'¡•= r - i a 



Generalized moments of additive functions 231 

Let now /tsO be defined on the set of prime powers qm such that h(qm)=0 if 
«"^{(Wies. and <p(h(Qij) = Qi/i2. Then (1.5)L holds, while 

^ • W V « * . * - . - » » » « 0 9 ' - T 5 & -

Thus (1.6) does not hold. 
The theorem and Remark A will be proved in sections 3 and 4. 

2. Lemmata. The main result of the proof of our theorem is a recent deep 
result of A. HILDEBRAND ([1], Theorem 4), which we state now as 

Lemma 1. There exist positive absolute constants <5 and c such that if x^2, 
and f is a realvalued additive function satisfying 

(2.1) m a x # { / 7 ^ x : / ( />+ l)<=[a, a+1]} s (1 -S)n(x), 

then 

(2.2) min 2 4 m i n 0 ' l / ( / > ) - ^ o g p | 2 ) ^ c. 

Remark . Assume that (2.1) holds for an unbounded sequence xv of x. Then, 
for each xv there exists a AV(=A) for which (2.2) holds ture, |Av|^c. Set A be a 
limit point of the sequence {Av}. Then, from (2.2) 

2 ^ m i n ( l , | / 0 0 - A l o g / > | 2 ) < ~ , 
p P 

which implies that h(ri):=f(n)—A log n is finitely distributed. Another important 
tool is the following 

Lemma 2. Let a be a real number satisfying 0 ^ a < 2 . Then we have, for every 
xS2 and every additive f , 

2\f(P + 1) - E{x)\* « * B*(x), 
pMx iOgx 

where 

I W -

p™Si P \pmSx P t 

and the implied constant depends only on a. 
Remark . This analogue of the Turan—Kubilius inequality was established by 

P. D. T. A. ELLIOTT for strongly additive functions (see [2], Lemma 4.18], the gen-
eral case can be proved in the same way. 

The following assertion due to ELLIOTT ([2], Lemma 4.19). 
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Lemma 3. Let m be a non-negative integer, and 5 a real number, 0<(5s l /2 . 
Then there is a number c, depending upon n but not 5, so that the inequality 

(*) 2 P"-1^, Q-iy^5c{-r^—\ 
,<-<<25« U o g x J 

holds for all sufficiently large values of x. Here Q runs over all prime powers. 

Elliott proved this inequality letting Q to run over the set of primes only. ( * ) 
can be proved in the same way. 

Lemma 4. The number of solutions of the equation p + l—aq in prime variables 
cx .— 

p, o < x is less than — uniformly as l S i z S J x . 
1(a) log2 x 

Lemma 5 (Titchmarsh inequality). We have 

cx 
Q%(fc) log*/ fc i f 

For the proof of Lemma 4 and 5 see HALBERSTAM—RICHERT [3] . 

Lemma 6. Let g be a strongly multiplicative function such that 0 ^ g ( p ) ^ c 
holds for every prime p. Then 

2 g(P +1) « n(x) exp ( 2 • 

pgl VpSx P J 

For the proof see [4], Lemma 1. 
3. Proof of the Theorem. Necessity. Assume that (1.2) holds. Then the condi-

tion (2.1) of Lemma 1 is satisfied for every large x, consequently / = A l o g +h, 
where h is a finitely distributed function, L£R. Let a1(x)=a(x)—X log x. Since 
h(n)-«1(x)=f(n)+?Aog — -«(/fl , by (1.3), (1.2), and by 

n 

2 <?Ulog—xt) <Klix, 
p-mx v P~r i / 

we get 
(3.1) 2 < P ( K P + l ) - ^ ( x ) ) ^ h x . 

pt-x 

Let hx be strongly additive defined for primes q such that 

f Kq) if \h(q)\^\, 
h i { q ) ~ lO otherwise, 

and let ht be defined so that h2(n):=h(n)—(n). 
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Since <p(x)<s£\x\C<c1e1*1, and (Eht), (E£) hold, we have 

2 <pQh(P+ «e~Mx) 2 ek^+»+eAM 2 
pSx pSx pSX 

By Lemma 6, the right hand side is bounded by 

<sc (h x) exp I 2 — + 

(li X) exp f 2 « l i x . 

Thus 
(3.2) 2 <P{K(P+1 )~A{x)) « lix, 

PSx 
whence 
(3.3) 2 <P (MP + ~ «»(*)) « u *> 

P — X 

a2(x) = a 1(x)-A(x) 
immediately follows. 

We shall prove that a2(x) is bounded. 
Let y be a large positive number. Let \ hf^ be additive functions, h2(ri)= 

=h<p(n)+h<p(n), and for prime powers qm let 

fh(qm) if <f ^ y 
otherwise. K1)(qm) = {0 

Since is bounded, therefore from (3.3) we have 

(3.4) 2 V № (P+1) - (*))« H 
P S X 

Let Qy denote the set of all prime powers qm^y for which either or 
|A(^f)|Sl holds. By using Lemma 4 and 5 and the Eratosthenian sieve one can get 
easily that there exists at least cx/logx prime p up to x, such that qm\\p+\ implies 
that qm$Qy. For such a prime p we have hf)(p+1)=0. Consequently, (3.4) can 
be held only if a2(x)=0(l). 

Let qm€Qy and Sqm be the set of those primes p^x for which p + \=qmv, 
where v is square free, (v, q)=1, and v does not contain any prime factor 2 
forwhich |/t(7?)|>l. It is clear that hf)(p+\)=h(qm). By using the above argument 
and the prime number theorem for residue classes one get readily that 

$(Sqm) 
(p(qm) logx 

uniformly as # m s log logx , say. Hence, by (3.4), and by a2(x)=0(l), we get 
(1.5)! immediately, and even that a(x)=A log x+^4(x)+0(l). 
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Let Jl denote the set of those integers D, all exact prime-power factors of which 
belong to Qx. Let us wr i t ep+\ in the form p+l=Dv, where v is square-free and 
does not contain any prime factors for which h2(q)?i0, and D^Ji. This represen-
tation is unique. It is clear that h2(p+l)=h(D). Consequently 

(3.5) l i x » 2 <P(*.(/»•+1)) = 2 <P(ht(D))it(x, D, — 1), 
p3x DZM 

and (1.6) holds true. 
The necessity of the conditions is proved. 

Sufficiency. Assume that (1.5)1; (1.6), (1.7) are satisfied, where A is a finitely 
distributed function. We shall prove that (1.2) holds, if f=X log+/i, By using 
the subadditive property of <p, it is enough to prove it for A=0, i.e. i f f = h is finitely 
distributed. We keep the notations hy, h2, Jt. 

It is enough to prove that 

(3.6) 2 9{hi(P +1)~A(x)) « l i x, 
pSx 

and that 
(3.7) 2<p(h(p+ l ) ) « H x . 

pSx 

The first inequality was deduced from Lemma 6 earlier. It remains to prove 
only (3.7). We have 

2 <P (M/> +1)) = 2 <P ( W ) ) «(*. D, -1) = 2 i + 22, 
psx D£M D<i 

where in 2 i we sum over flSx1"', and in over the others. Here 5 is a constant, 
0 < £ < 0 , 1. By Lemma 5, 

DZM 

Let us consider 2z- We split the sum 2<i> where in 2'z we sum over those 
which can be written as D=D1D2, where (D1,X)2) = 1 and D i-=x1 _ , ! 

(/=1,2). Since q>(h2(D))^c(p(h2(D1))+(p(h2(D2)), we can use Lemma 5 again, 

y . i- y ^ <p{h(P2j) 
Z a < < u x Z 77771 r l i x Z uTr\ ' 

If D is considered in 2a> then D has the form D=D1-D2, where Z) 1 >x 1 _ i and 
Z>! is a prime or a prime power, D1=^m . Thus 

2 a « 2 <p(h2(D2))n(x, D2, — l)+ 2 <PQhiqm))n(x,<r,-l). 
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Collecting our inequalities, and taking into account (1.6), we have 

DiM 

Finally we prove that the sum on the right hand side is convergent. 
Indeed, iterating (1.1), we get that 

«"•IID 

where <y(n) is the number of distinct prime divisors of n. Thus we have 

y <p{h(D)) „ y ~ ^Dlqm) 

DTM 1(D) ~ I 1(D) l(Dlqm) ~ 

^( y <p(h2(<n))( y cm(HM 
" K4Ql Kqn) J U f ^ 1 ( H ) ) -

(1.5)! implies the convergence of the first sum. The second sum is convergent as well. 
The sufficiency part is proved. 

4. Proof of Remark A. To estimate 

S = 2 <p(h(qm))n(x, q,-\), 

we apply Lemma 3, namely that 

2 n (x, q™, -1)"+V < cn (li x)"+1 

holds for every integer n £ l . Let n be so large that ax := 1 + y=—-—, 
« + 1 

1 1 
/? be defined from b—-=1. Then, by Holder's inequality, 

Oi p 

4m=-X s / « H 

« ( , 2 r ( 2 («(*, - 1 ) F f f » . 

MMi^Bi 1 > 

By Lemma 3, and by (1.5)r we get S'=0(li x). This finishes the proof. 
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On a theorem of Kátai-Wirsing 

BUI MINH PHONG 

1. Introduction. An arithmetic function f(n) is said to be additive if (m, «)=1 
implies that 

f(mn) = /(m)+/(w) 

and it is completely additive if the above equality holds for all positive integers m 
and n. Let si and si* denote the set of complex-valued additive and completely 
additive functions, respectively. 

The problem concerning the characterization of log n as an additive arithmetic 
function was studied by several authors. The first such characterization is apparently 
that of P . ERDŐS [3] . He proved in 1 9 4 6 that if a real valued additive function / 
satisfies the condition 

f(n+ 1 ) - / ( « ) - 0 as n - °o, 

then/(«) is a constant multiple of log n. Later I . KÁTAI [4] and E . WIRSING [6] improv-
ing this result, proved that a function fesi satisfying 

2 l/(» + l)-/(»)l = «(*) as x 
FL^X 

must be of the form / = £ / log for some complex constant U. 
On the other hand, solving a conjecture of Kátai, P. D. T. A. ELLIOTT [1] 

showed that if a real function f is additive and satisfies the condition 

(1) f(An+B)-f(an + b) - C as « - oo 

for some integers A>0,B,a>0,b with Ab—aB^O and for a real constant C, 
then f(n)=Ulog n holds for all positive integers n which are prime to Aa(Ab-aB). 
In his proof Elliott relaxed the condition (1) to 

2 \f(An+B)-f(an+b)\2 = o(x) 
BÁJC 

for the case A ¿¿a. 

Received March 13, 1991. 
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Our purpose in this paper is to give a complete characterization of those func-
tions / , gi st for which the relation 

(2) 2 \g(an + b)-f(ri)-d\ = o(x) 
nSx 

holds for some fixed positive a, b and for a complex constant d. 
We shall prove the following 

Theorem 1. Assume that f g i s t satisfy (2) for some fixed positive integers 
a, b and for a complex constant d. Then there are a complex constant U and functions 
Fist, Gist such that 

f{n) = U\ogn + F(n) 

g(n) = Ulogn + G(n) and 
G(an + b)~ F(n) — d+U\oga = 0 

hold for all positive integers n. 
Theorem 2. Assume that fist satisfies the condition 

(3) 2 I f ( A n + B) —f(Cn) -D\ = o(x) 
nsx 

for some positive integers A, B, C and for a complex constant D. Then there are a 
complex constant U and a function Fist such that 

f(n) = Ulogn + F(n) 
and 

F(n) = F[(n,BCCA)] 

hold for all positive integers n, where CA denotes the product of all prime divisors of 
C which are prime to A. 

We note that our theorems can be derived from a recent result due to P. D. T. A. 
ELLIOTT [2 ] , which was obtained with analytic methods. Here we shall prove our 
results by using elementary methods, which were used in [5]. 

2. Auxiliary results. In this section we assume that a function fist satisfies (3), 
i.e. 

2\f(An+B)-f(Cn)-D\ = o(x) nSx 

holds for some positive integers A, B, C and for a complex constant D. 
Let CA denote the product of all prime divisors of C which are prime to A. For 

an arbitrary positive integer n, let E(n)=EB(n) be the product of all prime power 
factors of B composed from the prime divisors of n, i.e. E(ri)\B, (E(n), B/E(n)) = 1 
and every prime divisor of E(n) is a divisor of n. 
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Lemma 1. For every fixed positive integer k and Q we have 

(4) f(BCCA Qk) = kf(BCCA Q) — (k— 1 )f(BCCA), 
furthermore 

(5) f{ACC\ E(C)) = 2f(CCAE(C)) -f(E(C)) + D. 

Proof . For each positive integer Q we define the sequence 

R= R(ACaQ)= {Rk}?=1 

by the initial term = 1 and by the formula 

(6) Rk = Rk(ACAQ) = 1 +ACaQ+... +(ACAQ)k~1 

for all integers fcs2. Moreover, let 

(7) Tk(n, Q ) = (AC
A
 QF E(CQ)n + BR

K
(AC

A
Q). 

By using (6) and (7), we have 
(8) Tk+1(n, Q) = ACa QTk(n, Q) + B 
and 
(9) (CC

A
QE(CQ), Tk(n, Q)1E(CQ)) = 1 

for all integers k ^ 1. Thus, using (3), (7), (8), (9) and the additivity o f / , we have 

2 Q))-f{CCAQE(CQ)n)-D\ = o(x) 
nSx 

and 
2 |f(Tk(n, Q))—f(Tk-i(n, Q))-H{Q)\ = o(x) «Si 

for all integers k ^ 2 , where 

H(Q):=f{CCA QE(CQ)) - f(E(CQ)) + D. 
These imply that 

(10) 2 | / ( № Q))-f{CCAQE(CQ)n)-(k-1 )H(Q)-D\ = o(x) 
n i l 

holds for every integer fcsl. 

We shall deduce from (10) that 

(11) f{A^CC\ QkPE(CQ)) = (k-\)H(Q) +f(CCA QPE(CQ)) 

holds for every positive integer k, Q and P. 
Let k, Q and P be positive integers. Considering 

(12) n:= PRk (ACa Q) {APCQRk(AC AQ)m+ 1} 

and taking into account (10), it is easily seen that (11) holds if k, Q and P satisfy the 

3* 
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relation 
(13) (P, Rk(ACAQ)) = (PE(CQ) + B, Rk(ACAQ)) = 1. 

It is obvious that (13) is satisfied in the following cases: 

P=l,Q = 2B; P=l,Q = 2pB, 

where p is a prime. Thus, we get from (11) that 

f(Pk) = k f ( p ) if (p, 2ABC) = 1. 

This with the additivity o f / shows that 

(14) f(nm)=f(n)+f(m) if (n, m, 2ABC) = 1. 

Thus, by using (10), (12) and (14), we see that (11) also holds if we relax the condi-
tion (13) to 
(15) (P, Rk(ACAQ), 2B) = (PE(CQ) + B, Rk(ACAQ), 2) = 1. 

Assume that (2, ABC)=1 and k is an odd positive integer. In this case one 
can check that (15) holds for P=Q= 1 and P= 1, Q=2. Thus, we get from (11) 
that 
(16) /(2") = kf(2) for all odd positive integers k. 

On the other hand, (15) also holds for P=2V, Q=2 and k=2, where v^O 
is an integer. From (11) we have 

(17) / (ACCa 2 V+ZE(C)) = ff( 2) +/(CCA 2V+1E(C)). 

Thus, we get from (17) that 

f(2k) = kf(2) + (k-\) {H(l) +f(CCA E(C)) —f(ACC\E (C))) 

holds for every positive integer k, which with (16) shows that 

/(2>) = */(2) ( k = 1,2, . . . ) . 

This with (14) implies that 

(18) /(nm) = f(n)+f(m) if («, m, ABC) = 1. 

Similarly as above, by using (10), (12) and (18) we also have (11) if k, Q and P satisfy 

(19) (P,Rk(ACAQ),B)= 1. 

Finally, let P = P 1 - P 2 , where (P
LT
 PJ=(PI, AC

A
Q)=1 and every prime di-

visor of P
2
 is a divisor of A C

A
Q . We have 

(P2,Rk(ACAQ),B)= 1, 
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therefore by (11) and (19) it follows that 

f(A
K

~
1

CC
A
QkP2E(CQ)) - ( f c - 1 ) H(Q) +/(CC

A
 P2E(CQ)). 

Since (Pu ACa QP2) = 1, by using the additivity o f / , we get 

f{Ak~1CCA Qk PE (CQ)) = f(Ak~1CCA Qk P2 E(CQ)) +f(P1) = 

= (k -1) H(Q) +f(CCA QPE(CQ)), 
which proves (11). 

Applying (11) in the case <2=1, we obtain that 

f(Ak~1CCA PE(C)) = (k-l)H(l)+f(CCAPE(C)) 

holds for every positive integer k and P, consequenly 

(20) f(Ak~1CCA QkE(CQ)) = (k—\)H(\) +f{CCA QkE(CQ)). 

On the other hand, (11) with P= 1 implies 

f(Ak~1CCAQkE(CQ)) = (k—\)H(Q) +f{CCA QE(C Q)), 

which with (20) gives 

f(CCAQkE(CQ)) = (k-\)(H(Q)-H(l))+f(CCAQE(CQ)). 

This, using the fact (E(CQ), B/E(CQ))=1 and the additivity o f / , shows that 

f(BCCA Qk) = kf(BCCA Q) — (k— 1 )f(BCCA). 
So, we have proved Lemma 1, because (5) follows from (11) in the case k=2 and 
^ = 6 = 1 -

Lemma 2. Let A, B be positive integers and D be a complex constant. If fast* 
satisfies the condition 

(21) 2 \f(An+B)-/(«)- D\ = o(x) as 
nmx 

then there is a complex constant U such that 

f(n) = Ulogn ( n = 1,2 ,3 , . . . ) . 

P roof . We first note that, by using (5) of Lemma 1 and the fact / (W*, (21) 
implies 
(22) f(A) = D, 

If A=1, then our assertion follows from the theorem of I. Katai—E. Wirsing 
mentioned in Section 1. In the following we assume that A s 2 and 

(23) 2 I/O*" + B) ~f(M\ = o(x). 
n&x 
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Let If denote those pairs (k, r) of positive integers for which 

2 \f(kn + r)—f(kn)\ = o(x). 

Since ( A , B ) £ l f and fisi*, we have (A, l)£lf, furthermore if (k0,l)£lf, then 
(k, 1 )ilf for all integers k^k0, because 

f((k + 1) n +1) —f((k +1) n) = {f(kn +1) -f(kri)} -

~{f[k((k +1)»+1)+1]-f[k((k+ l)n+1)]}. 

Thus, we have (k, 1 )£l f for every integer k ^ A . 
We shall prove that if (h+1, 1)€// and integers k, r satisfy 

(24) 0 < r < kjh and (k, r) = 1, 

then (k, r)af. We prove this by using induction on r. For r=1 our assertion is 
true, because 1 <k/h implies k>h. Assume that for every integer k, r satisfying 
(24) and r<R we have (k,r)£lf. Let AT be an integer such that 

(25) 0 < R^KIh and (K, R) = 1. 

Let k and r be positive integers which satisfy 

(26) Rk = Kr+1 and k < K, r < R. 

It is easily seen by (25) and (26) that (k, /0=1, furthermore 

Kr < Kr+1 = Rk < Kklh, 

which implies that r<k/h. Thus, k, r satisfy (24), and so (k, r)£If. 
On the other hand, we have 

f(Kn+R)-f(Kn) = {f[K(kn + /•) + 1 ]-f[K(kn + /•)]} + {f(kn + r) -f(kri)}, 

therefore, by using the fact (K,l)£lf and (k, r)£lf, we have (K,R)£lf. Thus 
we have proved (24). 

We now deduce from (23) that (2, l)€/y. To see this enough show that 

(27) (h+1, l)£lf with h+1>2 implies (h, \)£If. 

Assume that (h + 1, \)£lf and /z + l > 2 . Let 

S(x)= 2 \f(hn+l)-f(hn)\. 
nsx 

For each integer d with Osd^h — 1 we can choose positive integers K=K(d) 
and R=R(d) such that 
(28) (hd+ 1)K= h2R+l. 
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We have 
(29) 

S(x)= Z I f i h n +1) - / ( M l = 2 Z |Ah2™ + hd+ 1 ) - f ( h ( h m + d))\ = 
nSx d=0 hm+d^x ' 

= 2 Z \f{h\Km + R)+\)-f(h\Km + R)) + d=0 km+dSx 
+f(K(hm + d) + hR- Kd) -f(K(hm + rf))| 

and so S(x)—o(x) if hR—Kd=0, because (A + l, l)£7y and A +1 > 2 implies 
(A2, l)€/y. If hR-Kd^O, then we get from (28) that 

0 < hR-Kd = (K- 1)/A < Klh 
and 

(AT, hR-Kd) = (A', AT?) = 1. 

Thus, and r:=hR-Kd satisfy the condition (24), and so (K,hR-Kd)£lf. 
By using this and the fact (A2, l )€7 / ; we also get from (29) that S(x)=o(x). This 
shows that (A, 1 )€/ / , consequently (2, 1)67/. 

Assume now that 
(30) A(x) = 2 1/(2»+ l ) - / (2«) l = o(x). 

nsx 
Let q be a fixed prime. As we have proved above, from (30) we have (q, r)£lf if 
0 < r < q (see (24)). Let 

T(X)-.= Z M • 

Then, we have 

ni l raSx/a I ? J n = 0mod? 

Let r be an integer for which 0<r<q. Then (q, r)£lf, and so 

2 / 0 0 = 2 {f{qrn+r)-f(qm)}+ Z f{qm) = o(x)+\^f(q) + T[^\. 
nSx qm + r^x qm+r^x L q J \q / riinrmodq 

These imply that 

T(x) = q [|] /(<?) + qT[^) + o(x) = xf{q) + qT (|) + o(x) 
iq 

as from which we get 

/<*> = l im J M L = : u. 
log q i -*~xlogx 

From this and using fast* the proof of Lemma 2 is finished. 
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3. Proof of Theorem 2. Assume that fis/ satisfies the condition (3). Then 
from Lemma 1 we get that 

(31) f(BCCAQk) = kf(BCCAQ)-(k-\)f(BCCA) 

holds for every positive integer k and Q, where CA denotes the product of all prime 
divisors of C which are prime to A. 

For each prime p let e--e(p) be a non-negative integer for which pe\\BCCA. 
Then for all integers fi^e we deduce from (31) that 

(32) f(pfi+1)-f(pp) =f(Pe+1)-f(Pe). 
Now we write 

/(«) =f(n) + F(n), 

where f is a completely additive function defined as follows : 

(33) Mp):=f(pe+1)~f(pe), e = e(p). 

Then, from (32) and (33) it follows that 
F(p"+1) = F(p»), 

which implies 
F(pk) = F[(pk, BCCA)] (* = 0,1,2,...). 

Thus, we have 
(34) F(RI) = F[(n, BCCA)] (n = 1, 2, 3, ...). 

We shall prove that fx—U log for some constant U. 
We note that by (3) we have 

(35) 2\f(ABCAn + B)-f(BCCAn)-D\ = o(x). 
nsx 

By using f=fi+F and (34) we get that 

f(ABC
A
 n + B) - f ( B C C

A
 «)-£)=/! (ABC A n + B ) - f ( B C C

A
 n) + F(ABC

A
 n + B)-

- F(BCCAn)-D = f (ABC
4
 n+B) —fx («) - { f ( B C C

A
) - F(B) + F(BCC

A
) + D) 

and so, by (35) and Lemma 2, there is a complex constant U such that fx = U log. 
This completes the proof of Theorem 2. 

4. Proof of Theorem 1. Assume that f g i s i satisfy the condition (2), i.e. 

(36) 2 \g(an + b)-f(n)-d\ = o(x), 
nâx 

where a and b are positive integers and d is a complex constant. 

• M 



On a theorem of Katai-Wirsing 245 

For each positive integer N we have 

(abN+l,a(abN+l)n + b) = 1 
and 

(abN+ 1 )(a(abN+ 1 )n + b) = a[(abN+ 1 f n + b2N]+b 

for every positive integer n. Thus, by using the additivity o f / , we get 

f[(abN+ If n + b2N] -f[(abN+1) n] - g(abN+ 1) = 

= -{g [(aWV+ \)(a(abN+ 1)« + A)]-f[(abN+ \)2n + b2N]-d} + 

+ {g [a (abN+ 1 )n + b] -f[(abN+ 1) n]-d}, 

which with (36) implies that 

(37) 2 I f [ (abN+ 1 )2n + b*N]-f[(abN+ 1 )n]-g(abN+1)| = o(x). nsx 

Applying Lemma 1 with A=(abN+l)2, B=b2N and C=(abN+1) it follows 
from (37) that 

(38) f[b2(abN+ 1 )NQk] = kf[b2(abN+1 )NQ\-(k- l)f[b2(abN+ l)N] 

holds for every positive integer k and Q. Since (38) holds for each fixed positive 
integer N, so (38) also holds for every positive integer N. 

For each prime p, let Np be the smallest positive integer for which p\abNp + \. 
It is obvious that 1,2} for all primes p. We apply (38) with Q=p and N=NP 

to get 
(39) f(b2NpP

k) = kf(b2Npp) — (k— 1 )f(b2Np). 

Similiarly, as in the proof of Theorem 2, we can deduce from (39) that there are 
functions and F ^ s i such that 

(40) f = f i + F 
and 
(41) F(pk) = F[(pk, 62iVp)] (k = 0, 1, 2 ...), 

where p is a prime number. Since /VP£{1, 2}, one can check from (41) and the fact 
(b,N2)=1 that 

(42) F(n) = F[(n, b2)] + F[(n, N2)] (n = 1, 2, 3, ...). 

By using (40) and (42), we have 

(43) f[(abN+ l)2N2m + b2N]-f[(abN+ 1 )N2m]-g(abN+ 1) = 
= / {(abN+ l)2N2m + b2N] -Mm)- D, 
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where 

D:= g(abN+\)+f1[(abN+ l)N2]-F[(abN+l)2N2m + bzN] + F[(abN+ l)N2m] = 

= g(abN+1) + / i [(abN+1) N2] - {F[(m, A2)] + F[(/V, iV2)]} + {F[(m, b2)] + F(N2)} = 

= g(aMV+ l)+/x 1)/V2) + F[(a& + 1, N2)]. 

Applying (37) with n=N2m, by (43) we have 

2 | / i[(abN+ \fN2m + b*N) - / x ( m ) - D\ = o(x), 
nSx 

which, by using Lemma 2, implies 

(44) fL = C/log for some constant U 
and 

g(ai>W+ 1 ) + F[(abN+ 1, AT2>] = f1(abN+ 1) = U\og(abN+1). 

The last equality holds for every positive integer N, consequently 

g(m) + F[(m, N2)] = C/logm 

holds for all positive integers m which are prime to ab. Let 
(45) G(m) := g(m) — C/log m (m = 1 ,2 ,3 , . . . ) . 
Then, we have 
(46) G(m) = 0 if (m, lab) = 1. 

Finally, we shall prove that 

G(an + b) — F(ri) — d+Uloga = 0 (n = 1 ,2 ,3 , . . . ) , 

which with (40), (44), (45) gives the proof of Theorem 1. 
Since 

G(art + b) — F(ri)—d+ C/log a = 

= {g(an + b) -f(ri)-d}- {Ulog (an + b) - C/log n - C/log a} 

we obtain from (36) that 

(47) 2 IG(an + b)~F(n)-d+ Uloga\ = o(x). USX 

Let r be an arbitrary integer for which 0S/-<262. Then we get from (42) and 
(47) that 

F(2b2m + r) = F(r) (m = 1 ,2 , . . . ) 
and 
(48) 2 \G(2ab*m+ar + b) — F(r) — d+Uloga\ = o(x). 

Let M be a positive integer. By (46), we have G(2ab2t+1)=0 ( /=1, 2, ...), con-
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sequently 
(49) G(2ab2M+ar+b)-F(r)-d+Uloga = 

= G(2ab2M+ar + b) + G(2ab2t+l)-F(r)-d+Uloga = 

= G[2abz ((lab 2M+ar + b)t + M) + ar + b]— F(r) — d+U log a 

holds for every positive integer t. Thus, we get from (48) and (49) that 

2 \G(2ab2M+ar + b)-F(r)-d+U\oga\ = o(x), 
tsx 

which implies 
(50) G(2ab2M+ar+b)-F(r)-d+Uloga = 0 

for each positive integer M, i.e. (50) holds for every positive integer M. Since r 
is an arbitrary integer for which 0Sr<2fe2, and (50) holds for every positive integer 
M, we have 

G(an + b)-F(n)-d+U\oga = 0 (n = 1,2, ...). 

This completes the proof of Theorem 1. 
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On additive functions with values in a compact Abelian group 

BUI MINH PHONG 

1. Introduction 

Let G be an additively written, metrically compact Abelian topological group, 
N be the set of all positive integers. A function / : N—G is called a completely addit-
ive, if 

f(nm) =/(«)+/(m) 

holds for all n, m£ N. Let denote the class of all completely additive functions 
/ : N—G. 

Let A > 0 and B^O be fixed integers. We shall say that an infinite sequence 
{xv}~=1 in G is of property D[A, B] if for any convergent subsequence {xv }"=1 the 
sequence {xx»B+B}n=i has a limit, too. We say that it is of property E[A, B] if for 
any convergent subsequence {x4Vn+B}r=i the sequence {xv }~=1 is convergent. We 
shall say that an infinite sequence {xv}7=i in G is of property A [A, B] if the sequence 
{^v+B-^v}r=i has a limit. 

Let s/*(D[A,B]), s/*(E[A,B)) and si*(A[A,B}) be the classes of those fast* 
for which {xv=/(v)}"=l is of property D[A,B], E[A,B] and A[A, B], respectively. 

It is obvious that 

¿¿¿(A [A, B]) g st£(D[A, 5]) and ¿¿¿(A [A, 5]) g J£(E[A, B]). 

Z . D A R 6 C Z Y and I . KATAI proved in [1] that 

and in [2] they deduced the following assertion: If 1,1), then there exists 
a continuous homomorphism W: Rx—G, Rx denotes the multiplicative group of 
the positive reals, such that / ( « ) = !F(w) for all N. 

For the case A=2 and B= — 1 the complete characterization of — 1]) 
and s#l(A [2 , — 1 ] ) has been given by Z . D A R 6 C Z Y and I . KATAI [3] , [4 ] . 

Received July 18, 1990. 
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In a recent paper [5] we gave a complete characterization of s/£(E[A, B]) and 
s/£(A[A, B]). Namely we showed that 

^¿(E[A, B]) = [A, B]) 
and 

j*S(A[A,B\) = s/3(A[ 1, 1]). 

In the other words, if f£s/£(E[A, B])=rf£(A[A, B]), then there is a continuous 
homomorphism f : R x - G such that f(n)=xF(n) for all n£N. 

Our main purpose in this paper is to give a complete determination of 
st£(D[A, 5]). We note that it is enough to characterize those classes ^¿(D[A, B]) 
for which (A, B) = l, since 

s*2(D[Ad, Bd]) = s/£(D[A, B]) 
holds for each d£ N. 

We shall prove the following 

Theo rem. Let A> 0 and B^O be fixed integers for which (A,B)=l and 
let G be a metrically compact Abelian topological group. If f£sf£(D[A, B]), then 
there are and a continuous homomorphims $ : Rx—G, Rx denotes the multi-
plicative group of positive reals, such that 

(I) f(n) = *(n) + U(n) V«6N, 

(II) U(n + A) = U(n) V«6N, (n, A) = 1, 

(III) If Xu r denote the set of all limit points of {<*>(")I"€N} and {£/(«)|«<=N}, 
respectively, then 

X1C)r={0} 

and r is the smallest closed group generated by 

{£/(m)|l ^ m < A, (m, A) = 1} and {U(p)\p is prime, p\A). 
Conversely, let <P: RX—G be an arbitrary continuous homomorphism, Xx be 

the smallest compact supgroup generated by {$(«)|«6N}. Let be so chosen 
that U(n+A) = U(ri) for all (n, A)=l and the smallest closed group r gener-
ated by U(N) has the property Z 1 f i r={0} . Then the function 

/(»>:= *(n) + U(n) 
belongs to S4q{D[A, 5]). 
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2. Preliminary lemmas 

In this section we shall prove some results which will be used in the proof of 
our theorem. 

Lemma 1. We have 

for all fixed integers A> 0 and B^O. 

Proof . Let 0, BT±0 be fixed integers. Assume that 

f^(D[A,B}). 
Let 

« ! < . . . < tjv < ... (wv€N) 

be an infinite sequence for which the sequence {/(«v)}"=1 is convergent. Then, it is 
obvious that the sequence {f(\B\nJ)}™=1 has also a limit, consequently we get from 
the definition of sst£(D[A, 5]) that 

lim/[^«v+||j-] = \mf[A\B\nv+B]-f{\B\) 

exists as well. This implies in the case B > 0 that 1]). 
We now assume that ¿?<0. In this case we have f£sfZ(D[A, —1]). Since 

{/("v)}r=i i s convergent, therefore the sequence {f(An^}°^=1 is convergent, too. Thus, 
by using the fact [A, — 1]), it follows that the following limit exists: 

lim f(Anv +1) = lim f[(An,f - 1] - lim f[Anv -1]. 

This shows that f£s/%(D[A, 1]). 
So we have proved Lemma 1. 

In the following we assume that A>0, B^O are fixed integers and G is a met-
rically compact Abelian topological group. Let 

f€s/£(D[A, B]). 

We shall denote by A" the set of limit points of {/(n)|w£N}, i.e. g£X if there exists 
a sequence 

/ii-=...«= n„ «= ... (mv€N) 

for which f(nv)->-g. Let Xx (QX) be the set of limit points of {/(^n+l) |«6N}. 
Since N and the positive integers m= 1 (mod A) form semingroups, therefore 
{/(«)|«6N} and {/(/iH+l)|rt£N} are semigroups as well. Thus, Zand X1 are closed 
semigroups in the compact group G, so by a known theorem (see [6], Theorem 
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(9.16)) they are compact subgroups in G. Since O Ç ^ g J we have f(n)£X and 
f(An+1)^ for each «6N. 

Let g£X and f(nv)-—g as v— «>. Then, by using Lemma 1, it follows that 
the sequence {/(/4«v + l )Kl i is convergent. Let f(Anv+l) — g'iaXJ. It is easily 
seen that g' is determined by g, and so the correspondence 

H:g - g' (g£X, g'tXJ 
is a function. 

Lemma 2. The function H: X-*Xx is continuous and 

H(X) = X1. 

P r o o f . We can prove Lemma 2 by the same method as was used in [1] (see 
Lemma 4 and Lemma 5), so we omit the proof. 

Lemma 3. We have 

(2.1) ff(g+h+f(A)) + H(g) = H(g+H(h + H(g))) 

for all geX and h£X. 

P r o o f . Let g£X and h£X be arbitrary elements. Let 

ny < ... and mj < ... < mv < ... (wv,mv€N) 

be such sequences for which f(nj)-*g and f(mv)-+h. By using the following rela-
tion 

(Ainvmv + l)(Anv+ 1) = Anv[Amv(Anv + 1)+ 1]+ 1 

and using the definition of H, we get immediately that (2.1) holds. So, we have proved 
Lemma 3. 

Lemma 4. Let 

E(J)'.= {QiX\H(Q) = 0}. 

Then E(f)9±0. Furthermore, if QiE(f), then 

(2.2) H(kQ + {k-\)f{A)) = 0 

for every integer k. In particular, we have 

(2.3) H(-f(A)) = 0. 
P r o o f . Since X

1
 is a group, therefore 0 6 ^ . Thus, it follows from H ( X ) = X

L 

that there is at least one QÇ.X for which H(Q)=0. Then E ( f ) ̂ 0 . Furthermore, 
it is easily seen from (2.1) that 

(2.4) ff(Qi + E,+f(A)) = 0 if H(
QL
) = H(Q

2
) = 0. 
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Assume that Q£E(J~), i.e. H(Q)=0. By using (2.4) and induction on k we 
get immediately that (2.2) holds for every Let 

K = { * ( e + / ( ^ ) ) | * € N > . 

Since (2.2) holds for every therefore we have 

(2.5) H(S-f(A)) = 0 for all ¿£Ve. 

Let Vg be the smallest closed set containing Ve. It is clear that Ve is a semigroup, 
therefore V

E
 is a closed semigroup in G. Thus, by using a known theorem of [6], we 

get that V
E
 is a compact group. Since H is continuous function and V

E
 is the smallest 

closed set containing Ve, it follows that (2.5) holds for all consequently 
(2.2) holds for every integer k. So (2.2) is proved. 

Finally, by applying (2.2) with k=0, we obtain (2.3). 
The proof of Lemma 4 is finished. 

Lemma 5. We have 
(2.6) H(g+r) = H(g)+x 
for all g£X and 

Proo f . We first prove that 

(2.7) H[x-f(A)) = x for all T ^ 
and 
(2.8) H{g-H(g)) = 0 for all giX. 

Let TGJ^. Then, it follows from H(X)=X1 that there is one h£X such that 
H(h)=x. We apply (2.1) with g=—f(A) and using (2.3), we have 

H(H(h)-f(A)) = H{h), 

which with H(h)=x proves (2.7). It is clear that (2.8) is a consequence of (2.1) 
and (2.3) in the case h+H(g)= -f(A). 

We now prove Lemma 5. 
Let g(LX and T£Xx be arbitrary elements. By using (2.8), we have 

= 0 
and 

H[g~H(g)] = 0. 

Applying Lemma 4 with Q=g—H(g) and k= — 1, we get that 

H[-g + H(g)-2f(A)] = 0. Let 
Qi :=g+r-H(g+r) and Q2 :=-g+H(g)-2f(A). 

4 
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Then H(Q
1
)=H(Q

2
)=0, and so by (2.4) we have 

H[{g+x- H(g+T)) + (-* + H(g) - 2/(A)) +f(A)] = 0, 
i.e. 
(2.9) / / [ ( T - / / ( g + T) + H(g))-f(A)\ = 0. 

Since T£Xx, H(g+x)^X1, H(g)£X\ and X1 is a group, therefore 

(2.10) x - H t e + ^ + H t e ) ^ . 

Finally, from (2.7), (2.9) and (2.10) we get that 

i-H(g + x) + H(g) = 0, 
which proves (2.6). 

So we have proved Lemma 5. 

Lemma 6. We have 

(2.11) H(g + h+f(A)) = H(g + h)+H( 0) = H(g)+ff(h) 
for all g£X and h£X. 

P r o o f . Let g£X and h£X. Since H(h+H(g))^X1 and H(g)£Xt, by using 
Lemma 5, we have 

H(g + H(h + H(g))) = H(g) + H(h + H(g)) = H(g)+H(h) + H(g). 

This with (2.1) implies that 

(2.12) H(g+h+f(A)) = H(g) + H(h). 

Thus, (2.12) holds for all g£X and h£X. 
On the other hand, we get from (2.12) that 

H(g + h+f(A)) = H(g+h) + H( 0). 

This with (2.12) shows that (2.11) holds for all g£X and h£X. The proof of Lemma 
6 is finished. 

3. Proof of the theorem 

Assume that A>0 and are fixed integers for which (A,B) = 1 and G 
is a metrically compact Abelian topological group. Let 

f^(D[A,B]). 

As in the Section 2, we denote by X and the set of limit points of {/(«)|£N} 
and {/(^1«+1)|«6N}, respectively. Let H: X-*-X1 be a continuous function which 
is defined in Section 2, i.e., if f(nv)—g, then f(Anv +1) —H(g). 
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For an arbitrary n£N, let S(n) be the product of all prime factors of n com-
posed from the prime divisors of A, R(n) be defined by n=S(n)- R(n), i.e. 
(A, R(n)) = 1 and every prime divisor of S(n) is a divisor of A. Let R(n) be the 
smallest positive integer for which 

R(n) = R(n) (mod A). 

It is obvious that (R(n), A)=l and 1 («)</!. 

Lemma 7. Let 

(3.1) U(n) :=f[S(n) •*(«)] + H(0) - H(f[S(n) • R(n)]). 
Then, we have 
(3.2) / / ( / (« ) ) - / ( » ) - 7/(0) + U(n) = 0 
for all n£N. 

Proof . Let H: X—X^ be the function which is defined by the relation H(g) = 
=H(g)—H(0). Then, it is easily seen from Lemma 5 and Lemma 6 that 

(3.3) H(g+h) = B(g)+H(h) vg, hex, 

(3.4) H( t) = r VTG^ 
and 
(3.5) H(X) = X1. 

For each n£N, let c(n) be the smallest positive integer for which R(n)-c(n) = 
= 1 (mod A). Then, it is obvious that 

/[/?(«)• c(n)K*x and /[K(n).e(n)]€*i 

hold for every w£N. By using (3.3) and (3.4), we deduce that 

H [/(«)] + H [/(c(/7))] = E [fin • c(«))] = f[R(n) • c(«)] + H [/(£(«))] 
and 

#[/(*(«))]+#[/№)] = B[f(R(n)-c(n))} =f(R(n).c(n)). 

These imply that 

H [/(»)] - H [/(*(«))] = f(R(n))-f(R(n)) + H [/(S(«))], 

consequently 

m m ] - f i n ) + {/(S(h). R(n)) - H [/(£(«) • R(n))]} = 0. 
This with (3.1) proves (3.2) 

Lemma 8. We have 
(i) 

(ii) U(n+A)=U(n) for all n£N, (n, A)=1, 

4* 
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(iii) I/{a1, ..., is a reduced residue system moduls A, then Ufa),..., U(a^A)) 
form a group in G. 

(iv) Let r denote the set of all limit points of {£ / (M) |M£N}. Then T is the smallest 
closed group generated by Ufa),..., U(avU)), U{px),..., U(pa(A)), where fa,..., a„(A)} 
is a reduced residue system moduls A and plt •••,pco(A) are all distinct prime factors 
of A. Furthermore, we have 

XiCir = {0}. 

P roof . Parts (i) and (ii) follow at once from the definition of U and Lemma 7. 
The part (iii) is a consequence of (i) and (ii). To prove (iv) we first note that f is a 
closed semigroup in G, and so r is a group by Theorem (9.16) of [6]. Hence by (ii) 
it follows that T is the smallest closed group generated by U fa), ...,U (a^A)), U (pj,... 
— » U(PalA))-

Since r are subgroups in G, therefore OgA^nr. Let us assume that <5(E 
CA^Pir. Then there is a sequence {«v}7=i for which Ufa)Applying (3.2) 
with n=ny, we have 
(3.6) H [ f f a ) ] -/(»,) - H( 0) + Ufa) = 0. 

Since G is sequentially compact, therefore the sequence {/(/iv)KLi contains at least 
one limit point. Let 

/(«.,)-* (€X). 

Then, by (3.6) and using the fact H is continuous, we get 

H(g)—g — H(Q) + S = 0, 

which with H(g)-H(0)+6£X1 implies that g£Xx. So, by Lemma 5 

8 = g + H(0)-H(g) = 0. 

Thus, we have proved that A r
1fir={0}. This completes the proof of (iv). 

The proof of Lemma 8 is finished. 
We now prove the theorem. We first show that 

(3.7) f(An+l)-H(f(n))-0 as 

Assume the contrary. Let 

(3.8) f(Any +1) - H ( f f a ) ) 1 0 as v - °°. 

Since the sequence {/(«v)™=1 contains at least one limit point, we can find a sub-
sequence {nvj}j=1 of the sequence {MvK°=I such that f f a ^ g (£X) as Using 
the continuity of H, by (3.8) we have 

H(g)-H(g) = X, 

which is contradiction. Thus, we have proved (3.7). From (3.2) and (3.7) we get 
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immediately 
(3.9) f(An+ 1 ) - / ( " ) - H(0) + U(n) - 0 as 
Let 

F(n) :=f(n)-U(n) ( « € N ) . 

It is obvious by Lemma 8 that and 

F(An+1) = f(An+l)-U(An +1) =f(An+1) 

for all «^N. This with (3.9) implies 

F(An+ l) — F(ri) — H(0) — 0 as n 
consequently F£s/£(J[A, 1]). It was proved in [5] that if F£sf*(A[A, 1]), then 
there is a continuous homomorphism Ф : R,—G such that F(n)=<P(n) for all 
H€N, where Rx denotes the multiplicative group of positive reals. Thus, we have 
proved that 
(3.10) / (и ) = Ф(п) + и(п), 

where U satisfies the conditions (i)—(iv) of Lemma 8. By (3.2) and (3.10) we also 
have 

Ф(п) = Я ( / ( и ) ) - Я ( 0 ) for all 

therefore it follows from (3.5) that the set of all limit points of {$(/J)|W£N} is XL. 
So we have proved the first part of our theorem. 
Finally, let Ф: Rx—G be a continuous homomorphism and let be so 

chosen that 
(3.11) U(n + A) = U(n) for all N, (n,A)= 1 
and Х х П Г = {0} 

where Xu Г denote the smallest closed groups in G which are generated by 4>(N) 
and C/(N), respectively. 

Let 
/(«):= Ф(п) + 1/(п)&2. 

Assume that for some subsequence {nJ^lj of positive integers the sequence 
{/(«X=1 converges. Then, by using Ф(п^Х1, U(nv)£r and Х1Г\Г={0}, we 
deduce that the sequences {Ф(?;„)}~=1 and {i/(«v)}~=] are convergent, therefore 
by (3.11) and (A, B) = l we see that 

lim f(Anv + B) = lim №(Anv+B) + U(Anv+B)} = V-+oo V— oo 

= lim Ф(Ап1/+В) + и(В) = Ф(А) + Ц(В)+ lim Ф(пЛ V-*-oo \-fOO 

exists as well. So we have proved that f£s/£(D[A, £]). 
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The proof of our theorem is finished. 

Acknowledgements. I am thankful to Professor I. Kátai for the indication of 
the problem and his help in the preparation of this paper. 
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Moufang Lie loops and homogeneous spaces 

PfiTER T. NAGY 

0. Introduction 

The classical model of the Moufang Lie loops is the multiplication on S7 defined 
by Cayley numbers of norm one. This multiplication is in a close relation with the 
spherical geometry of S7, which is a symmetric Riemannian space of constant curva-
ture. This connection has been generalised by O. Loos in [9] to any Moufang loop 
by proving that the modified local multiplication (x, y) —x1/2 • y • x1/2 gives the (local) 
geodesic loop multiplication of a symmetric space (cf. [6]). The analogous corres-
pondance gives a differential geometric machinery for the investigation of analytic 
Bol and Moufang loops (cf. [2], [4], [10]). For group multiplications, one has a 
1-parameter family of modified local loop multiplications xo)y=x°-y-x1~" (<r£R) 
investigated by M. A . AKIVIS [1], that are geodesic loops. 

This paper is devoted to study geodesic loops of reductive homogeneous spaces 
associated with Moufang loops. Such a geodesic loop is gotten from the modified 
multiplication x^y^x"-y -x1-" for each cgR in the case of the groups. For Mouf-
ang loops one obtains geodesic loop of reductive homogeneous space only for 

1 1 2 1 
<7=—, —, and —. For (7=—, the geodesic loop of the symmetric space was in-
vestigated by O. Loos in [9]. 

2 
For < 7 = y > w e S l v e a description of the corresponding reductive space struc-

1 
ture in this paper. An analogues description can be obtained for <r=— using the 

right multiplication instead of the left one. Our method to describe this reductive 
space structure is to represent the original loop multiplication on the Moufang 
loop by a geodesic loop multiplication of an invariant connection on a reductive 

Received October 1, 1990. 
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homogeneous space. Then we deform this latter geodesic loop multiplication as 

xo y=x" • y-xl~" f<x=—1 and prove that this gives the geodesic loop multiplica-
(') \ 3) 

tion of the canonical connection of the reductive homogeneous space. 

1. The local loops x(o)y=xa •y-x1-' (<r£R) on a group 

Let 'S be a connected Lie group and let us consider the action of the group 
on <S given by ((g1,g2),g)€(&X&)X&-»gi-g-g21<£&. The isotropy 

subgroup of this action is the diagonal Jif=A(&X&)={(g,g);g€&}. We denote 
by tn" the transversal subspace in the Lie algebra of JT = 

to the diagonal defined by ma={((rX, (<r-l)X), where 
p^ST/S and <r£R. It is clear that Ad hence the subspace W is a reductive 
complement of in p+p. Let V" denote the canonical connection of the re-
ductive homogeneous space j f / j f given by m". 

T h e o r e m 1.1. The geodesic loop multiplication of the canonical connection 
V® of the reductive homogeneous space J f / ^ f defined by 

e xP2° Te. x ° (exPe 1 y> X,yt<S 
can be expressed in a normal neighbourhood of e ^ as 

e*Pi ° * ° ( e*Pi)_ 1 y = xoy = x?-y- x1'*, v?) 

where exp"x denotes the exponential map at x£@ and x"e x is the parallel translation 
yjS along the geodesic through e and x with respect to the connection V". 

P r o o f . If (aX, (1— G)X)^i" then the orbit of the 1—parameter subgroup 
exp t(oX,(\-o)X) through is 

exp t(aX, (l—c)X)e = (exp taX, exp t(a-1) e = 

= exp taX- e • exp /(1 —o)X = exp tX. 

Using Proposition 2.4 in f7, Chap. X.] we obtain the parallel translation Ta
e x in 

the form t® raptX=^lexp,<rXo^0expf(1_ff)X, where X
x
 and QX denote the left and the 

right multiplication maps on
 <

S, respectively. Since the mapping X
e%ptaX

og
expt(1

_
a)X 

is an affine transformation of the connection V", the geodesies of this connection 
have the form 

¿«pf,xoe«p,(i-»)xexpjy = exp taX- e x p . ? y - e x p / ( l = 

= exp X- exp i (Adeipt((r_1)XF). 
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It follows that the geodesies of the connections V (erÇR) are independent of the 
parameter a. Hence the geodesic loop multiplication of the connection V" satisfies 
the equations 

e xPé*pX°expX0(e xP«py)~1 e x P Y = exp£pXOT* e IpX Y = 

= expjipXcxpaXo3r gcxp(1_a)XY= explxpXo^reXexpXoAd„pla.1)XY. 

Since the group multiplication coincides with the geodesic loop multiplication of 
its left canonical connection V1 we obtain 

exp^pXoT?,eipXo(expe
ff

ipy)-1expy = exp X-expoAd„p(ff_1)Xy = 

= exp aX • exp Y- exp (l—cr)X, 

that proves the theorem. 

2. The left canonical connection of a loop 

Let JS? be a smooth loop with identity element eÇ. 3?. We define the translated 
loop multiplications centered at a£ i f by the formula 

x • y := x • a\y, (aÇJ?) 
a 

where x-y=x^y and x • x\j>=_y. This loop is isotopic to the original loop 
multiplication and has aÇ S£ as identity element. 

Let Xx denote the left multiplication map of the loop ,5? and ^eXx. £TeSâ—!TX<£ 
be its tangent map. 

Def in i t ion 2.1. The left canonical connection V of the loop S£ is defined by 
the parallel vector fields 

X(x):=3TeXxX(e). 

Since these vector fields are globally defined, the connection V is obviously 
flat. 

Propos i t ion 2.2. The left canonical connection of the translated loop multiplica-
tion x^y(aÇSf) on <£ coincides with the left canonical connection^ of the original loop. 

Proof . The assertion follows from the definition, because the left multiplica-
tion map of the translated loop multiplication x -y is XxX~1. 
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P r o p o s i t i o n 2.3. The covariant derivative (VZT)(X, Y) of the torsion tensor 
field T(X, Y) of the connection V is 

(VzT)(Z, Y) = <Z, Y, X)-{Z, X, Y), 

where (X, Y, Z)a is the associator of the translated loop multiplication x • >>. 

Proo f . Wedenoteby r(x) the mapping ^ ¡ i f — 2TJ£. Using the covariant 
constant vector fields X(x)=r(x)Xe and Y(x)=t(x)Ye, the torsion tensor field 
takes the form 

T(X, Y) = V
X
Y - V

Y
X - [ X , Y] = - [X, Y] = - i(x) Y

E
(X(x)) + t ( x ) X

E
(F(x)) = 

= -i(x) Ye (z(x) Xe) + t(x) Xe (z(x) Ye), 

where i(Y) denotes the derivative of the mapping T by the variable x in the di-
rection Y. It follows 

(VZT)(X, Y)e = Z{z-\x)T(X, y)]e = -x(e)T(X, Y)e(Ze) + Z[T(X, Y)]e = 

= - t(e) [-*(*) Ye{T(x)Xe) + i(x)Xe(T(X)7C)](Z)- YC(X^, Ze)-

- t(e)Ye(i(e)Xe(Ze)) + r(e)Xe(Ye, Ze) + i(e)Xe(i(e)Ye(Ze)). 

We consider now a local coordinate system defined on a neighbourhood of the 
identity e on which the loop multiplication is of the form 

x-y = x+y + q(x, y) + r(x, x, y)+s(x, y, y) + {higher order terms}, 

where q is a bilinear, r and s are trilinear maps on the coordinate vector space. Then 
we can write 

NX,Y)
E
 = -q{X,Y) + q{Y,X), 

( V z T ) ( X , Y)e = q(Z, q(X, Y)) - q(Z, q(Y, X)) - r(X, Z, Y) - r(Z, X, Y) -

-q(q(Z, X), F) + r(7, Z, X) + r{X, Z, Y) + q(q(Z, Y), X). 

By the Theorem IX. 6.6. in [5], the commutator and the associator of the loop have 
the forms 

[X,Y] = q{X,Y)-q(Y,X) 
and 

Y, Z) = q(q(X, Y), Z)-q(X, q(Y, Z)) + r(X, Y, Z) + 

+ r(Y, X, Z) — s(X, Y, Z) - s(X, Z, Y), 

respectively. Hence we obtain 

(Vz T)(X, Y)e = <Z, Y, X) - <Z, Z, Y), 

which proves the assertion at For a ^ e we consider in the same way the 
loop multiplication x • y instead of x • y to prove the assertion. 
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3. Alternative family of loops 

Definit ion 3.1. The family of loop multiplications x-y defined on $£ is 
a 

called alternative if the identities 

x-(x-y) = (x-x)-y, x-(y-y) = (x-y)-y, x-(y-x) = (x-y)-x, 
a a a a a a a a a a a a 

are satisfied for all x, y, a£ 3?. 

Propos i t ion 3.2. If the family of loop multiplications x-y defined on i ? is 
a 

alternative then the torsion tensor field of its canonical connection V satisfies 

(Vz T)(X, Y) = J {T(T(X, Y), Z) + T(T{Y, Z), X) + T(T(Z, X), y)}. 

Proof . By the assumption of the alternativity of the loop system the associator is 

(X, r,Z)= j {[[X, Y], Z] + [[Y, Z], X] + [[Z, X], y]} 

(cf. Remark IX. 6.18. in [5]). Since T(X, Y)= -[X, Y], the assertion follows from 
Proposition 1.3. 

1 
Propos i t ion 3.3. The connection V defined by VXY=VXY+ — T(X, Y) is 

O O 
complete. Its torsion and curvature tensor fields T(X, Y), R(X, Y)Z satisfy 

%T= 0, %R = 0, 

i.e. the manifold if with the connection V is a locally reductive homogeneous space. 
o o 

Proof. Since the connections V and V have the same geodesies V is complete. o o o o 
The relations VzT=0, Vz7? = 0 follows by standard calculations from Proposition 
3.2. 

Theorem 3.4. Let be a connected and simply connected manifold equipped 
with an alternative family of loop multiplications x-^y. Then & can be represented as 
a global reductive homogeneous space Z£=($l2te, where the Lie algebras of the Lie 
groups № satisfy and Ad ^mfz-m. If V is the canonical connection o 
of the homogeneous space and T is its torsion tensor field, then the left canonical 
connection V of the family of loop multiplications takes the form 

V*7= VxY-T(X,Y). 

Proof . The assertion follows from the preceding propositions because a comp-
lete, connected and simply connected locally reductive homogeneous space is a global 
one (cf. Chap. X. Theorem 2.8. in [7]). 
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4. Geodesic loops of the left canonical connection 

P r o p o s i t i o n 4.1. Let jSf be a Moufang loop and let V denote its left canonical 
connection. If x(t) is a geodesic through the point a=x(0) with respect to V then 
x(t) is a one-parameter subgroup of the translated multiplication x - y, and the parallel 

a 
translation along x(t) coincides with the map T ( x ( 7 ) ) o T ( a ) _ 1 , where x(x)=STe).x. 
Consequently the loop multiplication can be written in the form 

x-y = expxoT(x)oT(a)-1oexpj1j a 

in a neighbourhood of a. 

P r o o f . Since the Moufang loops are alternative and their isotops are also 
Moufang loops, the family of loop multiplications x - y consists of diassociative a 
loops (cf. Chap. VI. in [3]). The geodesic loop multiplication x ^ = e x p x o T ( x ) o 
oT(a)_1oexpJ1 y of the left canonical connection of the diassociative loops coincides 
with the original multiplication because the geodesies of the left canonical connec-
tion of the diassociative loops are the curves x-exp tY(x^£C, Y^JJg), where 
exp tY is the 1-parameter subgroup of S£ tangent to Y^STeS£. Hence the assertion 
follows from the results in the Section 1. 

P ropos i t i on 4.2. Let xoy denote the local loop multiplication with identity 
element a defined by 

xoy = x2/s • (y • X1/s) 
a a a 

on a Moufang loop JSf. If x(t) is a geodesic with respect to the left canonical connec-
tion V through x(0) = a, then it is a one-parameter subgroup of the loop with multipli-
cation xoy. The parallel translation along the one-parameter subgroup x(t) with 

respect to the connection Vx Y= VXY+— T(X, Y) coincides with the map ¿fa\a(x(t)), 
o « 

where Xa denotes the left multiplication map la(x)y=x°y. Consequently, 

xoy = expxo^ iaoexp"1^ 
a 

in a neighbourhood of a. 

P r o o f . We know, that the loop multiplications x^y(a€£f ) have 1-parameter 
subgroups in each direction that are geodesies of the connection V. Since 
a-exp. tY is a 1-parameter subgroup of the multiplication x-y, it can be written e a 
in the form 

a • expe tY = expa tFeXe(a)Y. 
e 

Similarly, x - 1 - ( exp e tY-x ) is a 1-parameter subgroup of the multiplication x -v , 
e e 0 

- -M 
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hence it can be written in the form expc t^'eXe(x)~1o^"ege(x)Y. Thus we have 

xoexpe tY= x - (x-^-Cexp. /F-x 1 / 3 ) ) = x • (expe tftXe(x1<3)-1o£rege(x1'3)Y) = 

= exp* t3Te Xe (x2/3) oFege (x1/^) y 
and so 

xoy = expx^"cAc(x2/3)o^"egc(x1/3) exp - 1 ^ 
e 

follows. 
We prove now that the mapping ^¡Ae(x2 / 3)o^oe(x1 / 3) is the parallel translation 

e 

of the connection V along the geodesic segment expe tX ( O s / s 1), where expe X=x. 
First, we note that the 1-parameter groups of the multiplications x • v and xov a a 
coincide for all Sf. Let Y(t) denote the vector field 

7 ( 0 = STeXe (expe j tx}oreQe (expc - i tx} Y0 

along exp e iZ, where Y ^ F j e . If x 0 =exp e / 0 Z, j>0=exp e^y 

and X(t0)=yeXe(x0)X then we can write 

2 1 2 1 
= expe(t —10) X • y0 • expe ~^{t — t0)X = expe— tX• y • expe -^tX. 

3 e e j j e e j 

Now 

n o = ^ ^ ( c x p ^ j ( / - / „ ) J r ( r 0 ) ) o ^ ^ ( e x p ^ - j ( i - / 0 ) 2 r ( / 0 ) ) r ( i o ) 

follows, and then 
(V*JO(>o) = A-1 (expIO(/ - 1 0 ) X(t0j) y(/0)},0 = 

= ^ fa^ [exPx0 j 0 - to)X(>o))°y~Xo6Xo (exp^ j(i-10)*(?„)) r(i0)} t • 

We introduce a coordinate system around x0 in which the multiplication x • y is *0 
of the form 

x-y = x+y+q{x,y) + r(x,x,y)+s(x,y,y) + {higher order terms}. 
*0 

Then we obtain that 

(VxY)(t0) = j<?(X(t0), Y(t0)) + j<?(Y(t0), X(t0)) = j r ( X ( t 0 ) , Y(t0)), 

or 

(%Y)(t0) = (V*y)(r„)- j r ( J r ( i 0 ) , Y(t0)) = 0. 
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Thus 3Teie=STe).e |expe — tX^ o 3TeQe |expe — tXJ gives the parallel translation along 
O 

exp„ tX with respect to the connection V, which was to be proved. 

Theorem 4.3. Let i f be a connected Moufang loop with the multiplication 
x • y and is the Lie transformation group generated by the maps le(x) := ),e(x2/3) Qe(x1/S) 

e 
i f ) . Let tf be the isotropy subgroup of <3 at e£ if . The loop can be represented 

as a reductive homogeneous space 'S/^C with the reductive decomposition + 
where p and A are the Lie algebras of and , respectively. The complementary 
subspace m of A in y consists of the tangent vectors of the one parameter subgroups 
{Ae(x(?))} at the identity of '¡S, where the curves {*(/)} are the one parameter subgroups 

o o 
in the loop i f . Let T be the torsion tensor field of the canonical connection V of IS ¡J? 
and let V be the invariant connection of the homogeneous space ^¡^ defined by 

VXY= VxY-T(X,Y). 

Then the multiplication x^y locally coincides with the geodesic loop multiplication ofV. 

Proof . Let i f be a connected Moufang loop. The translated multiplications 
x • y :=x • a\y locally coincide with the geodesic loop multiplications of the canonical 

a 

connection V. Let p: i f — i f be the universal covering of the loop if. The kernel 
p~x(e) is a central abelian discrete subgroup of if, which is naturally isomorphic 
to the fundamental group of i f (cf. Proposition IX. 1.24. in [5]). Since p: 
is a covering homomorphism it is covering homomorphism for the translated multi-
plications x • y\=x • a\y too. Let V denote the covering connection of V defined a 
on the manifold if . It is clear from the construction of the covering loop multiplica-
tion on i f and of the covering connection V that i f is a Moufang loop and the 
translated multiplications x -y on i f locally coincide with the geodesic loop multi-
plications of V. By Proposition 3.3. if is a locally reductive homogeneous space 
with the connection V. Since it is simply connected, it can be represented as a global 
homogeneous space where '¡S is the transvection group (cf. Theorem 
I. 25. in [7]) of i f generated by the affine transformations having the local representa-
tion 

o o 

Xx(y) = expyoS'xJ.x(y)oexpx
1, 

where 

l(y):=W3)ex(y1/s) 

and lx(y) is the left multiplication map of the translated covering loop x - v on JSf. 
a 

o . o 

Since the mappings Ie(z) are isomorphisms between the multiplications le(x)y and 
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o o e o o o o 

Xz(x)y we have Xe(z)Ie(x)y=Xz(Ie(z)x)ke(z)y. With the notation u=Xe(z)x, we 
obtain 

l(u) = i(z)ic(i(zrlu)i(z)-\ 
» O „ 

Thus the transvection group 'S is generated by the maps Ie(z), z£ i f . Consequently, 
O 

the subgroup generated by the maps le{t), i£p~1(e) in <S is central and the homo-
morphism p: i f—if can be extended to a homomorphism k{p).(S — <S so that 
k(p)(Xe(z))=ke(z) and the group '3 is generated by the maps ke(z) :=ke(xm) Qe(x1/a) 
(x£ i f ) and acts transitively on if. 

Since the complementary subspace <m of A in g- correspond to the subspace 
spanned by the tangent vectors of the parallel translated frames in the linear frame 
bundle over if, we obtain from Proposition 4.2. that m consists of the tangent 
vectors of the one parameter subgroups {Ae(x(/))} at the identity of Thus the 
assertion follows from Theorem 3.4. 
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Basic cohomology classes of compact Sasakian manifolds 

HILLEL GAUCHMAN 

1. Introduction and preliminaries. It was proved in [Gl] that for any compact 
(2m +1 )-dimensional Sasakian manifold M the following inequality is satisfied: 

(1.1) [JgdVf ^ 2m(2m + 1 ) V o l ( M ) , 

where g, Vol (M), and dV are the length of the Ricci tensor, the scalar curva-
ture, the volume of M, and the Riemannian measure on M, respectively. Inequality 
(1.1) was applied in [Gl] to a study of cohomologically Einstein—Sasakian manifolds. 
The purpose of this paper is to prove a set of inequalities for basic cohomology 
classes of compact Sasakian manifolds. The simplest of these inequalities is equivalent 
to inequality (1.1). 

Let M be a (2m +1 )-dimensional differentiable manifold (in what follows we 
assume the all manifolds, maps, differential forms, etc. are of class C~). Assume 
that M carries a global differential 1-form t] such that qA(dri)m¿¿0 everywhere on 
M. Then we say that t] defines a contact structure on M. A manifold M furnished 
with a contact structure rj is called a contact manifold. It is known, [B], that a contact 
manifold (M, q) admits a unique global vector field X0 satisfying rj(X0) = \ and 
dt](X0> X)=0 for any tangent vector field X on M. X0 is called the characteristic 
vector field of a contact manifold (M, rj). Since vector field X0 nowhere vanishes, 
M can be considered as a foliated manifold with 1-dimensional leaves. Let co be 
a F-valued differential fc-form on a contact manifold (M, rj), where F = R or C. 
We say that a> is horizontal if i(X0)co=0, invariant if Lx<a>=0, and basic if it is 
horizontal and invariant. Here i(X0) and Lx<> are the inner product by X0 and the 
Lie derivative, respectively. Denote by AB(M, rj, F) (resp. Ak

B(M, rj, F)) the set of 
all F-valued basic forms (resp. basic fc-forms), and by CB(M, r\, F) (resp. Ck

B(M, tj, F)) 
the set of all F-valued closed basic forms (resp. closed basic /c-forms) on M. It is 
easy to see that dAB~1(M, r\, F)cC^(M, rj, F). Set Hk(M,t],F)=Ck

B(M,t],F)/ 
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¡dA1^1 (M, t], F). HB(M,rj, F) is called the kth basic cohomology group of ( M , r j ) 
over F. In what follows we shall usually write HB(M) or HB(M, F) instead of 
Hk

B(M, rj, F), and similarly for Ak
B(M, rj, F) and Ck

B(M, rj, F). It is easy to see that 
if k£Ck

B(M), n£Cl
B(Af), then M ^ C k + \ M ) , and if k£CB(M), ^dA'^iM), then 

A A ¡itdAf-^M). Therefore, for any a £Hk(M), P£H'B(M), we have a well-defined 
product a-0£Hk+l. Clearly, 

HB(M, F) = F, HB(M) = {0} for k is 2m+\. 

Generally, dimF HB(M, F), k=\, ...,2m, may be infinite. However, for "good" 
contact structures (such as /^-structures or Sasakian structures) dimR HB(M, R) = 
=d im c HB(M, C)<°°. 

A contact manifold (M , t]) is called regular, [B], if X0 is a regular vector field 
on M, that is every point x£M has a cubical coordinate neighborhood °U such 
that the integral curves of X0 passing through W pass through the neighborhood 
only once. It is known, [B], that any compact regular (2m + l)-dimensional contact 
manifold M is the bundle space of a principle circle bundle n: M-»B over a 2Tri-
dimensional simplectic manifold B. It is easy to show that in the case of a compact 
regular contact manifold HB(M) is the pullback of Hk(B), where Hk(B) is the DeRham 
cohomology group of B. 

Let (M, t]) be a contact manifold. In what follows we will always use the follow-
ing notation: 
(1.2) <P = dtj. 

4> is a closed basic form. Therefore $ represents a basic cohomology class. In what 
follows we will denote this cohomology class by Q. £2£H$(M) is called the funda-
mental basic cohomology class. 

For a compact contact (2m+l)-dimensional manifold (M, rj) we now define 
a linear function I: AB(M, F)—F from the set of all basic F-valued forms on M 
into F as follows: If co£Af(M,F), k=0, 1, ..., m, then 

<
L 3

> 2 ' m l Y o H M ) J ^ V " t A a ' 

If w£Af+1(M, F), k=1, ..., m, then /(co)=0. We shall denote by the same symbol 
I a function 7: HB(M, F)—F defined as follows: Let <x£HB(M,F) and let co be 
a closed basic form representing a. Then, by definition, 

(1.4) 7(a) = 7(a>). 

We will show in Sec. 2 that 7(a) is well-defined by formula (1.4), that is 7(a) does 
not depend on a particular choice of a basic form to representing a. It is clear from 
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the definition of I that 

I(4>kAa>) = I(co), if toÇy4|' and l+ksm\ 
(1.5) 

/(Í2* • a) = 1(a), if a a n d l+ksm. 

By [S], page 3—4, f rjA<Pm=2mrn\ Vol (M). Therefore 

(1.6) I(<Pk) = I(tt) = 1 , 0 ^ k m. 
Let (M, t]) be a contact manifold. An associated contact metric structure, [B], 

for a contact structure rj is a collection (r¡, X0, cp,g), where X0 is the characteristic 
vector field, cp is a field of automorphisms of the tangent spaces of M, and g is a 
Riemannian metric on M such that 

<p*(X) =-X+r,(X)X0, 

r¡(X) = g(X, X0), 

g(q>X, cpY) = g(X, Y)-r,(X)r,(Y), 

&(X, Y) = g(X, q>Y), 

for any tangent vector fields X and Y on M. An associated contact metric structure 
for a contact structure tj always exists, but is not unique, [B]. We say that a contact 
metric structure (tj, X0, cp, g) on M is normal, [B], if the almost complex structure T 

on M x R defined by T^X, / — j = j is integrable. Adifferenti-

able manifold M furnished with a normal contact metric structure (r¡, X0, (p,g) is 
called a Sasakian manifold. 

Let (M,r¡, X0, q>,g) be a (2m + l)-dimensional Sasakian manifold. For XÇ.M, 
set 
(1.7) Dx = {XZTMx: t,(X) = 0}. 

Dx is called the horizontal subspace at the point x. By (1.7), <p induces an almost 
complex structure (once more denoted dy <p) on Dx. Denote by Dx the complexifica-
tion of Dx. Then Dx =D];°® D°x- \ where 

&0 = {XZLÇ: <pX = f=IX}, 

D*1 = {XíD*: <pX = - i ~ I X } . 

It follows that the set Horp (M) of all C-valued horizontal /7-forms on M may be 
bigraded as follows ; 

HOTp(M) = £ Hor»- ' (M) , 
* + i = p 

where H o r M (M) is the set of all horizontal (fc+/)-forms on M which can obtain 

5* 
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non-zero values only for sets of vectors Xu ..., Xk+t€TM% among which k vectors 
belong to D];0 and / vectors belong to D°A. 

Let a £ H g + l ( M , C). We say that a is of the type (k, I), if there is a basic form 
co representing a, such that (o£tloTk',(M). We will see in Sec. 2 that for a (2m +1)-
dimensional compact Sasakian manifold the notion for a£H%(M), (Osp^m) , 
to be of the type (k, /) is well defined. That means that if £o£Hor*''(M) and 
r£Hor r , s (M) represent the same basic cohomology class <x£Hp

B(M, C), then k=r 
and I=s. For O s H / ^ m , set 

(1.9) Hk
B>'(M) = {a£Hk

B
+l(M, C): a is of the type (k, /)}. 

Then //£•' is a subgroup (as an additive group) of HB
+l(M, C). We will show in 

Sec. 2 that for a compact Sasakian manifold there is a direct sum decomposition 

H%(M, C) = 2 Hk
B-\M), O^p^m. 

t+i=p 
For O ^ k + l S m , set 

= dimc HB'
1

(M). 

hkil will be called the basic Hodge number of the type (k, I). By (1.3), ^€Hor1 , :1(M). 
Hence Qk£Hk-k(M). By (1.6), i2*^0. Therefore 

*5r° = i, 1, k= 1 [-£•]. 

Moreover, we will show in Sec. 2 that 

1 = hy° h\-1 s... ^ hl^/2]-lm'2\ 

In Sec. 3 we prove the main result of this paper: 

Theorem 1.1. Let (M, rj, Xu, <p, g) be a compact (2m+1 )-dimensional Sasakian 

manifold and let k be an integer such that l S & S —. Assume that /jji -1 ,* -1 = l . 
Let ot£Hk-k(M). Then 
(1.10) ( - l ) ' [ / ( a a ) - / ( a ) / ( a ) ] s 0 , 

and the equality holds if and only if a=t£2k, t$ C. Here a means the complex conjugate 
of a.. 

Taking k = 1 in Theorem 1.1, we obtain 

Corol la ry 1.2. Let M be a compact Sasakian (2m+l)-dimensional (m^2) 
manifold and let a£Hl

B-1(M). Then 

(1.11) /(a • a) — 1(a) 7(a) s 0 

and the equality holds if and only if oc=tQ, where t£ C. 
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It follows easily from the results of Sec. 2 that if b2(M) =0, where b2(M) is 
the second Betti number of M, then /¡J;1 = 1. Hence, taking k=2 in Theorem 
1.1, we obtain 

Corol la ry 1.3. Let M be a compact Sasakian (2m+l)-dimensional (m^4) 
manifold and let <x£H%*(M). If b2(M)=0, then 

(1.12) /(a • a) —/(a)/(a) s 0, 

and the equality holds if and only if a = tQ2, where t£ C. 

In Sec. 4 for any (2m +1 )-dimensional Sasakian manifold and for any k= 
= 1, ..., m we introduce a canonical real closed basic form C[B) of bidegree (k, k). 
We will call this form the basic Chern form of a Sasakian manifold. Substituting 
C<B) instead of a in (1.10), we obtain an integral inequality similar to inequality 
(1.1). In the simplest case, when k = 1, we obtain inequality (1.1). 

If Mis a regular Sasakian manifold, then Mis a unit circle bundle over a Kaehler 
manifold B. It is easy to see that in this case the basic Chern form C£B) belongs to 
a basic cohomology class which is the pull-back of the Chern class Ck(B). It was 
shown in [G2] that for B=P2(C)xP3(C), 

l(C2(B) • C2(B)) - I(CZ(B)) • I(C2(B)) < 0. 

Hence, if a Sasakian manifold M is a unit circle bundle over B=P2(C)xP3(C), 
then 

7(C£B>(M) • C<B)(M)) - 7(C<B)(M)) • 7(C<B>(M)) < 0. 

Comparing this inequality with inequality (1.12), we see that the condition b2(M)=0 
in Corollary 1.3 cannot be omitted. More generally, this example shows that the 
condition in Theorem 1.1 is essential. 

We conclude Sec. 4 by Remark showing how one can define basic Pontrjagin 
classes Pft

(B)6ff|*(M, R), fc = l, ..., [m/2], on X-contact manifolds. 
Finally we note that for Kaehler manifolds a theorem similar to Theorem 1.1 

has been proved in [G2]. 

2. Decomposition theorems. For a compact metric manifold (M, tj, X0, <p, g) 
we will denote by ( , ) the local scalar product with respect to the Riemannian metric 
g, and by (A, fi)= J (A, n) dV the global scalar product, where A and p. are diffe-

M 
rential forms of the same degree. As usual, % will be the Hodge "star" operator and 
6 will be the adjoint of the operator of exterior differentiation, i.e. (dk, p)=(X, dp), 
where A and fj. are forms of degrees p and />+1, respectively. We also will denote by 
e(tj)A the exterior product by t], i.e. e(t;)A=>}AA. Clearly, (i(X0)X, n)=(X,e(r])p) 
for any two differential forms A and p of degrees p+1 and p respectively. 
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Lemma 2.1. Let (M, t]) be a compact (2m+\)-dimensional contact manifold. 
Then the function I: HB(M, F)—F given by formulas (1.3) and (1.4) is well-defined. 

Proof . Let X and be basic closed 2fc-forms representing the same basic 
cohomology class a T h e n X—X

x
=dn where p. is a basic (2k— l)-form. 

We must prove that J q A $
m

~ * A A = Jr]A<P
m

~
k

X
1
. Therefore we must prove 

M M 

that J"rjAdco=0, where co = <Prn~kAfi. Clearly, co is a basic form. Let (r\, X0, <p,g) 

be a contract metric structure on M associated with contact structure rj. By [S], 
page 3—4, 

(2-1) *1 = l i f ^ ^ -
Hence, 

friAdco = (riAdco, *1) = ^^{e(ti)d<o, e(t])<Pm) = 
Af 

= - ¿ T ^ ' i(X0)e(n)^) = <P") = -¿f(co, 8$m). 

By [SH], 
(2.2) <54>r = 4 r ( m - r + l)tj A®'"1. 
Therefore, 

fvAdco = ^ K e M r - 1 ) = J?L(i(X0)co, &>-*) = 0, 

since i(X0)co=0. 

Corol la ry . For any basic form X, I(dX)—0. 

From now and to the end of this section let (M, rj, X0, q>, g) be a compact 
(2m + l)-dimensional Sasakian manifold. Let us denote by dB and ( , )B the restriction 
of the exterior differential and of the global scalar product on the space AB(M) 
of basic forms on M. Let 5B: AB(M)-~AB(M) be the adjoint operator for dB with 
respect to ( , ) B . Then AB=SBdB+dBSB is called the basic Laplacian. The set £>B 

of basic harmonic k-forms is the kernel of AB on Ak
B(M). Any Sasakian manifold 

M can be considered as a foliated manifold with 1-dimensional leaves. By the Main 
Theorem of [KT] (whose conditions are obviously satisfied for Sasakian manifolds), 
we have 

(2.3) Ak
B(M) - AB(Ak

B)© &B(M) 

and dimc It follows from (2.3) that 

(2.4) A§(M, C) = im dB® im SB© £>B(M). 

As usual we obtain from (2.4) that HB(M, C)^§*(M) . 
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Let be the complexified tangent space at the point x£M. Then 

(2.5) TMx = Dx°®D°x'1®CX0, 

where Z>x*° and D"'1 are defined by (1.8). It is known, [I], that the pair of complex 
distributions ( D D ® ' 1 ) defines a C—R structure on M. Hence each of the distribu-
tions D^'0 and D"'1 is integrable. Let {eh e:, X0}, i= 1, ..., m; l=m+1, ..., 2m, be a 
local field of frames adapted to the decomposition (2.6). That means that at the point 
x each e£DY and each e^D^1. Let {9\ 0\ t]} be the dual basis of C-valued 1-
forms on M. Then, by Frobenius' theorem 

d9' = 0 (mod 6', j=\, ..., m) and d9l = 0 (mod 93, J = m+1, ..., 2m). 

Therefore 

d0•' = z a ) ^ / \ e k 2 b'jnh eJ, 

dff = 2 4 + 2 a +2 b)r,A0], 
where al

jk, a'^, ajk, ajj, bp b] are functions. It follows that for any horizontal form 
(o£UoTk-'(M) of bidegree (k, I) 

(2.6) dco = o)' + to" + t}A(o'", 

where m'£Hork+1J(M), co"<EHork<l+l(M), a/"eHorM(M). Assume now that co 
is basic. Then 0=i(X0)dm=m"'. Therefore dm=m'+m". Set dm'=X'+»/A/t', 
dm"=)."+r\t\\i , where )', /.", p.', and n" are horizontal. If follows that 0=dm'+ 
+dco"=(X' + A")+ri(ii'+n")- Hence n'+n"=0. Since /¿ '€Hork + 1- l(M) and / ' € 
£HorM + 1(Af), we obtain that f i '=fi"=0. Hence dm' and dm" are horizontal and 
therefore m' and m" are basic. It follows that if m£Akjl(M), where A^'(M) is the 
set of basic forms on M of bidegree (k, I), then dm—m'+m", where m'€AB

+1''(M) 
and m"£Ak

g
+1'l(M). Set d'Bm=m', dBm=w". Then we obtain that dB=dB+dB, 

where d'B and d"B are differential operators on AB(M, C) of bidegrees (1, 0) and (0, 1), 
respectively. Let ¿'B: AB(M, C)-~AB(M, C) and 5B: AB(M, C)-+AB(M, C) be the 
adjoint operators for d'B and d"B, respectively, with respect to the global scalar pro-
duct ( , ) B . Then 5B and 5B are of bidegree (—1,0) and (0, —1), respectively, and 
<>B = SB + SB- S e t = AB = &BdB + dB&B-

Lemma 2.2. Let m be a basic p-form, O ^ ^ m . Then 

ABm = 2A'Bat = 2ABco. 

Proof . This lemma is analogous to Theorem 3.7 of [W], Chapter V. A proof 
Lemma 2.2 can be obtained by repeating the arguments of the proof of the above 
mentioned theorem from [W], and we omit it. 
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Denote dy JJk<l the natural projection from AB(M, C) to Ak
B'(M). By Lemma 2.2, 

(2.7) = Ilk<lAB, O s H / ^ m . 

For any differential form co on M, set Lco=<P/\(o, where <P=drj. If co is basic, 
then Leo is also basic. Therefore L induces the map LB: AB(M)^AB(M). Denote 
by A the adjoint operator of L with respect to ( , ), and by AB the adjoint operator of 
LB with respect to ( , ) B . Clearly LB and AB are operators of bidegrees (1, 1) and 
( —1, — Irrespectively. 

Lemma 2.3. 
(i) If (o is basic, then nk tco is also basic. 

(ii) If co is a basic harmonic p-form and O^p^m, then nk to) is also basic 
harmonic. 

(iii) If co is a harmonic p-form and 0S/)Sm, then nkJco is also harmonic. 

Remark . By [Tl] and [Y], any harmonic/»-form, O s p ^ m , is basic harmonic. 
Therefore the operator IIkl is well-defined on the set of harmonic p-forms, Osp^m. 

Proof , (i) Let co^A^(M,C). Then co=co0(P+eoliP_i + ...+cOp>0, where 
coktl=nk la). By (2.6), d(okii=X+t]t\nkt l, where A is horizontal and ¡ikl is horizontal 
of bidegree (k, /)• Since co is basic, 

0 = i(X0)doo = i(X0)(da>0tP + ... +d(oPf0) = n0.P + P i ,„-i + ••• +HP,o, 

Hence each nktt=0. Therefore i(X0)da>kit=i(X0)A=0. Thus, (ok,=nktla) is 
basic. 

(ii) Let o be a basic harmonic /»-form, 0 S p ^ m . By (2.7), AB(IIkl(o)= 
=nktt(AB(o)=0. This proves (ii). 

(iii) Let A and p. be two basic forms on M. For Sasakian manifolds, formula 
(3.8) from [KT] gives 
(2.8) (Ak,ii) = {(AB + LA)X,p). 

Let co be a harmonic /»-form, O s p s m . Then co and therefore n k J o) are basic. 
Hence, by (2.7) and (2.8), 

(J(J7Mco), J7Mco) = (ABnktlm + LAJIkj(o, nkila>) = 

= (JIkAABw + LIlk-lt..-xAco, nk,,co). 

Since any harmonic /»-form, is basic harmonic, we have ABca=0. By 
[Tl], any harmonic /»-form, O^psm, is effective, i.e. Aco=0. Therefore 
(A(nKI<o), nkil(o)=0. It follows that (d(nkJ(o), d(nk<la>))+(d(nkJaj), <5(/7M))=0. 
Thus, d(nktlco)=8(nkJco)=0. Therefore, IIkiloj is harmonic. This proves (iii). 

Let co be a closed basic form of bidegree (k, I), O s k + l ^ m . Then, by (2.3), 
o)=ij/+ABX, where \j/ is basic harmonic and A is basic. By (2.7), co=77Meo= 
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=nktl\l/+AB(IIktlX). Since ip is uniquely defined by co and since, by Lemma 2.3, 
TIk>l\l/ is basic harmonic, \p = nk l\p. Therefore i¡/ is of bidegree (k, I). Thus, we 
obtain that if a basic cohomology class a£HB

+l(M, C), O ^ f c + l s m , contains a 
closed basic form of bidegree (k, I), its basic harmonic form is also of bidegree (k, I). 
Therefore, the cohomology group HB'l(M), defined by (1.9), is well-defined. By 
Lemma 2.3, we have a direct sum decomposition 

(2.9) H\{M, C) = HI-<'(M)®H1bp~1(M)® ... ®Hfr°(M), 0 ^ p s m. 

Similarly, let HP(M, C), OSpSm, be the ptb DeRham cohomology group, and 
let Hk,l(M) be the set of all elements of H" which are represented by a harmonic 
/»-form of bidegree (k, /)• Then 

(2.10) H"(M, C) = H°-p(M)®H1-p-1(M)® ... ®H"-°(M), O^p^m. 

Let O ^ p ^ m , O ^ k ^ l ^ m . Set 

bp = dimc H"(M, C), b^ = dimc H&M, C), 

hk-' = d i m c H k , l ( M , C), hk/ = dimcHk
B- l(M, C). 

Here bp are usual Betti numbers. We will call b f \ hk,l and h^1 the basic Betti numbers, 
the Hodge numbers, and the basic Hodge numbers, respectively. By (2.9) and (2.10), 

b. = H>'p + h1-p-1+...+hp-°, O^p^m; 
(2.11)

 P 

bw = Hj(' + hii>-1+...+ht-0, 0 m. 

Denote by C a linear operator C: Hor (M)—Hor (M) such that Cco=(\f—i)k~l(o 
if co is of bidegree (k, I), where Hor (M) is the set of all horizontal forms on M. 
Let * denote the Hodge "star" operator. Remind that cO is called effective, if AOJ=0. 

Lemma 2.4. Let co be a horizontal and effective p-form, O^pSm, and let 
OSr^m-p. Then 

*(L'co) = (-1 y<r-W 2m-p-2r£J_p_ry
 e(ri)Lm~p~rCco. 

Proo f . This lemma is similar to Theorem 1.6 from [W], Chapter 5. The proof 
of Lemma 2.4 is just a repetition of the proof of the above mentioned theorem from 
[W], and we omit it. 

We now prove a decomposition theorem for closed basic forms. 

Theorem 2.5. Let M be a compact (2m+l)-dimensional Sasakian manifold 
and let co be a closed basic p-form on M. Then 

(i) co can be decomposed as 
[p/2] 

(2.12) co= 2 L'fa + M, 
t=(p-m)* 
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where (p — m)+ =max {0,/? — m), ipt is a harmonic (p-2i)-form, any ). is basic. In 
addition, harmonic forms \ph i=(p-m)+, ...,[p/2], are uniquely defined by co. 

(ii) If a) is of bidegree (k, I), then for each i, ipi is of bidegree (k — i, l—i). 

P r o o f , (i) We first consider the case O ^ p ^ m . By (2.4), œ = ip+dÀ, where 
ip is a basic harmonic /?-form uniquely defined by co, and / is basic. Since \p is basic 
harmonic, dBip=0 and SBip=0. For Sasakian manifolds formula 3.3 from [KT] 
takes the form ô\p-ôBtp+e(rj)A\p. Therefore 

(2.13) dip = 0, dip = e(tj)Aip. 

Differential forms on Sasakian manifolds satisfying (2.13) were introduced in 
[0] and were called there C-harmonic forms. By the decomposition theorem for en-
harmonic forms of degree p, O^p^m, [T2], 

[p/2] 

Z L ti> i=o 

where ipt are harmonic (p—2/)-forms uniquely defined by ip. This proves (i) in the 
case O ^ p ^ m . 

Let now m + l s / ? s 2 m . Once more, <o=\p+dA, where \p is a basic harmonic 
form uniquely defined by co, and X is basic. Following [KT], for any basic for m 
p. we set 

*H = ( - 1 yi(X0)*fi. 

Then * *p = (— l)®/i. By Lemma 2.4, for any horizontal and effective q-iovm ft, 
O s ^ ë m , and for any r, 0 ^ r ^ m — q , 

(2.14) *(Lr[i) = ( - 1 ) ^ > / 2 L™-*->Cp. 

Set ip=*\p. By [KT], *AB = AB*. Therefore \p is basic harmohic. Since ip is of 
degree 2m—p<m, we have a decomposition 

t(2m—p)/2] 
ip= Z L^xPj, 

0 

where ipj are harmonic of degree (2m—p—2j). By (2.24), 

[(2m-p)/2J 
xP = ( - 1 )*">-•> *ip = 2 *(LJipj) = 

j=0 

t<2m-p)/2] , / I . „ 

= & ( - 1 )P ( P + 1 ) / 2"m + J y - 0 , - m + y ) ! L " J C ^ 
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Set i—p—m+j, 

Then 
IP/2] 

(2.15) 2 I-'ti, 
i—p—m 

where we used the identity p—m + j^—2~~~] = [t]' c'e®ree 

(p—2i). Therefore deg $ f _ p + I B Sm for i=p—m, ...,[p/2]. It follows by Lemma 2.3, 
that J7M$,_ p + m is harmonic. Since 

C$I-
P + M

= 2 0
+ k+/=p-2i 

[P/2] _ . 
we obtain that is harmonic of degree (p—2i). By (2.15), *t// = 2 

i — p — n 
Using Lemma 2.4, we easily obtain from the last equality that i//¡, i=p—m, ..., [/»/2], 
are uniquely defined by \J/. This completes the proof of (i). 

(ii) To prove (ii), assume that co is of bidegree (k, /). Then, by (2.3), co = \j/ + 
+ABn, where i// is basic harmonic and /t is basic. Then 

[P/2] 
co = 2 L'\j/i + ABp, 

i=(p—m) + 

where i¡/t is harmonic of degree (p—2i). It follows that 

[p/2] [p/2] 
eo = i7Mco = 2 + = 2 £ ' № - ¡ , 1 - ^ 0 + ^ i B p . 

i = (p—m)+ i=(p-m) + 
If p=k+l^m, then, by 2.7, nklABfi=ABIIkln. Let By [KT] 
AB£=(—l)p*ABWfi. Therefore, since deg(i; t)='"> 

nk,iABfi = ( - 1 )pnktl*AB*ix = (-l)p*nm-lim-kAB*n = 

= ( - 1 ) " * ABnm.itm.k* fi = (-iy*AB*nkilu = ABnkt,fi. 

Thus, for any p, 0^p^2m, 

[p/2] 
(0= 2 Li(nk_il-i\l/i) + AB(IIkjn). 

i = (p-m) + 

By Lemma 2.3, is harmonic and n k ln is basic. By uniqueness of decom-
position (2.12), \j/ i=nk_u i^ i\j/ i . Hence i/f( is of bidegree (k—i,l—i). This proves (ii). 

In course of the proof of Theorem 2.5 we saw that the notion of a basic har-
monic form is the same as the notion of a C-harmonic form. Therefore we can use 
results of [0] and [T2] on C-harmonic forms. If co is C-harmonic, then Lea is also 
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C-harmonic. Thus we obtain homomorphisms 

L: H$~*(M) - Bi(M), psm, 
and 

L: Hl-u-^M) - Hk
B>l(M), k + l sm. 

These homomorphisms are one-to-one. In addition, 

HUM) = LHl~\M)®IP(M), p^m, 
Hg,l(M) = LHk

B-1-l~1(M)®Hk-l(M), k + l s§ m. 
It follows that 

/!*•' = hh-'-Wf1-1-1, k + l ^ m, 

where we set =fc<_B
1>=/i£-1=/£1-'=0. It follows from (2.17) that 

(2,8, 
ht1-'-1 ^ k + l s m. 

In particular, we have 

(2.19) 1 = h°B-° hy s ... ^ cm/a] 

Note that the mapping * induces the isomorphisms 
HUM) == Hlm~p(M), 0 =g 2m, 

(2.20) 

Hh
B-\M) ^ H%-l>m-k(M), 0 s i , / s m . 

In addition, the complex conjugation induces the isomorphism 
(2.21) Hk

B-\M) ^ Hlik(M), 0^k,l^m. 
Therefore we have 

b™ = b™_p, O g p g 2m, 
(2.22) 

Hit' = Hf = h^~k-m~l = hB~Um~k, OrSkJ^m. 

3. Inequalities for basic cohomology classes. In this section we continue to 
assume that (M, rj, Xa, <p,g) is a (2m+l)-dimensional compact Sasakian manifold. 

Lemma 3.1. Let co any T be harmonic forms of degrees 2 i and 2j, respectively. 
Assume that 0^ /^M/2, O^jSm/2, and i?±j. Then 7(coAt)=0, where I is defined 
by formula (1.3). In particular, if u is a harmonic form of degree 2 i, where 0< i^m/2 , 
then l(u)=0. 

Proof . Let u be a harmonic p-form, O ^ p S m . Then, by [Tl], u is effective 
(i.e. Au=0), and therefore, by [T2], 

ArLr+su = 22r{s+ 1) ... (s-r)(m-p-s-r+1)... ( m - p - s ) L ' u . 
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Take r=m+1 and s=m—p+1 in this formula. Since r+s^-m, we obtain that 
Lr+'u=0. Therefore, 
(3.1) Lm-p+1u = 0, 

where u is a harmonic /»-form, 0S/>Sm. By (3.1) we obtain that if / > / , then 

$»- ' -Ma>A{ = (Lm~ i i+ l i~J )(o)Ax = 0. 

Similarly, if /< / , then 

i"- ' - - 'Aa>Ai = ®A(L"-v+U-oT) = o. 
It follows that 

/ ( f l , A T ) = 2 ^ ! Vol ( i O / " A * * " W A a , A t = 

Let co and r be closed basic C-valued forms of bidegree (&, fc), where O ^ k s 
^m/2 . By Theorem 2.5, we have 

k & 
co = ^L'coi + itt, t = 2 + 

i = 0 ( = 0 

where co, and T, are harmonic forms of bidegree (k—i, k—i), and A and ¡x are basic 
forms. 

Lemma 3.2. 

/(coAT) — 7(CO)7(T) = ^ ^ ( M ) g ( - l )*-*2 a ' (m-2k + 2Ql(co,, i,). 

P r o o f . 

7(COAT) = 7(( J L'coi + dX)A( 2 L'zj + dfij) = J / ( L ' + ^ A r ^ / ^ v ) , 
i=0 j=o ¡,./=0 

where 

V = A A ( 2 L'z^+iiL^An + XAdfi 
j~0 i = 0 

is a basic form of degree 4A:—1. By Corollary to Lemma 2.1, l(dv)=0. By (1.5) 
and by Lemma 3.1, 7(7.'+Jco,Aa>j)=7(cu,A coy)=0, if / V / Therefore 

(3.2) 7(e)AT) = I(<okAxk) + *2 
i=0 

Since deg cofc=deg zk=0, we obtain that I(cokAzk)=(okzkI(l)=cokzk. By Lemma 
k k 

3.1, I(co)=I( 2 L cot+d£)= 21(c°d=I((ok)=cok. Similarly, I(z)=zk. Therefore, 
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by (3.2), 

/ ( « , A T ) - / ( « » / ( T ) = Z « . » M ) = = 

1 2 {t\r\«>i, *{Lm-*k+*%)). 
2mrn\ Vol (M) ,fo 

By Lemma 2.4, 
^(Ln.-2*+2if() = l) l-'2m_2fc+2i(/7i —2fe + 2/)!i/Afj. 

Hence 

I(coAT) - / ( £ B ) / ( T ) = 2 T T M , V O L ( M ) J C - T F - ^ O " - 2k + 2/)!(CO I , I , ) . 

This proves the lemma. 
Now we are able to prove Theorem 1.1. 

Proof of Theorem 1.1. Let a> be a closed basic C-va1ued form of bidegree 

(k, k), representing a.£Hik(M). By Theorem 2.5, co= 2 iJ&t+dl, where cot is a 
<=o 

harmonic form of bidegree (k—i,k—i), and A is a basic form. Since hk
B~1,k~1 = 1, 

we have by (2.19), that ^ - ^ - ' = 1 for i=l,...,k. Hence, by (2.17), hk-i-k~i=0 
for /=1, ..., k — 1. Therefore there is no harmonic forms of bidegree (k—i, k—i) 
for /=1, ..., k—l. By Lemma 3.2, we obtain that 

1 )*[/(© A to) — /(co)/(ftj)] = m]Y
l
ol(M) (m-2k)\(co0, co0) s 0. 

The equality holds if and only if cu0=0. In this case (o=t$k+dA, where t=cok. 
Therefore the equality holds if and only if a = tQk. This proves the theorem. 

4. Basic Chern forms. Let (M,t ] ,X 0 , ( p ,g ) be a compact (2m +1 )-dimensional 
Sasakian manifold and let V be the Riemannian connection on (M,g). A linear 
connection on M given by the formula, [Ta] : 

(4.1) V x 7 = VxY+ti(X)<pY+ri(Y)(pX+<P(X, Y)X0 

will be called the canonical connection on M. The following properties of the canonical 
connection are easily verified by direct computation: 

(4.2) Vxr, = 0, V**0 = 0, V x <p=0 

for any tangent vector X on M; 

(4.3) i(X0)6 = 0, i(X0)T = 0, 
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where & and T are the curvature form and the torsion form of V, respectively; 

R(X,Y)Z = R(X, Y)Z + 2<t>(X, Y)<pZ+[$(X, Z)-n(X)ri{Z)}q>Y-
(4'4) -MY, Z) — r\(Y)r\(Z)]<pX+ [g(X, Z)t](Y) — g(Y, ZMX)]X0, 

where R and R are curvature tensors of V and V, respectively; 

(4.5) R(<pX, <pY) = R(X, Y). 

Consider M as a base of a vector bundle F with the fibre Dx—{X£ TMX: t\ (X) = 
=0} at the point x£M. The map cp\x: DX-*DX defines a complex structure on 
Dx. Hence F may be considered as a complex vector bundle over M. By (4.2), the 
canonical connection V induces a complex linear connection in the complex bundle 
F, which we will denote again by V. Let C[B) be the kth Chern form of V, [CJ. C'kB\ 
k—1, ..., m, are defined by the formula 

i/ _ 1 1 m 
(4.6) det — 0 = tm+ 2QB)r-k. 

2n \ t=i 

C(
k
B) is closed. By (4.3), 0 is horizontal. Therefore C<B) is horizontal. Hence C[B> 

is basic. Because of (4.5), C[B) is real and of bidegree (k, k). Thus, for any k — 1, ... 
...,m, C(B) is a canonically defined real closed basic 2fc-form of bidegree (k ,k ) . 
We will call C[B) the ktb basic Chern form of a Sasakian manifold. Substituting C'kB) 

in (1.10) we obtain that in the case hq ^^ 1 the following integral inequality is 
satisfied 
(4.7) ( - l)fc[/(CiB> • C n - I ( C n i ( C t B > ) ] ^ 0. 

Using (4.4), we obtain by direct computation that in the case k—1 inequality (4.7) 
is the same as inequality (1.1). 

Remark . Let (M, >/) be a contact manifold. An associated contact metric 
structure (rj, X0, cp, g) is called an associated K-metric structure, [B], if X0 is a Killing 
vector field with respect to g. If a contact manifold (M , rj) admits an associated K-
metric structure, (M, t]) is called a Af-contact manifold. We will show now how one 
can define basic Pontrjagin cohomology classes on a A'-contact manifold. 

Let (M,r\) be a (2w+l)-dimensional contact manifold. A linear connec-
tion V on M will be called basic if 

(4.8) Vxn = 0, V x Z 0 = 0, i(Xo)6> = 0, i(X0)T = 0, 

where & and f are the curvature form and the torsion form of V, respectively. 
Assume that (M , rj) admits a basic linear connection V. Consider M as the base 

space of a real vector bundle with the 2m-dimensional fibre Dx={X£TMx: rj(X)— 
=0} at the point x£M. By (4.8), V can be considered as a connection in this vector 
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bundle. Put 

det = Z ^ t ^ f - " . 

Then £ ^ ( 0 ) is a closed and horizontal (since & is horizontal) 4/c-form, [C], p. 118. 
Hence E^iQ) is basic and therefore defines an element pk

B)^H^(M, R). We will 
show that pk

B) does not depend on a choice of a basic linear connection. Indeed, let 
V' be another basic linear connection and let &' and T' be its curvature and torsion 
forms, respectively. Set a=V'—V, V' = V + /a. Let 0' be the curvature form of 
V'. Then a is a linear form on M of the type ad GL (2m, R), and by (4.8) and (4.9), 

a(X0)X = YXoX-V^X = VxX0 + [X0, X] + f'(X0, X)-

- Vx Z0 - [X0, X] - T(XQ, X) = 0. 

Hence a is horizontal. By [C], p. 42, & = @+tD<x—t2<xAa. Taking /=1, we obtain 
D<x=&'-0+xAa. Therefore &=(l-t)0 + t&' + t(l-t)<x.Aa.. It follows that 

I 
is horizontal for all t. By [C], p. 115, E2k(0')-E2k(&)=de, where Q= f W(t)dt 

S 
and where i¡/(t) is a polynomial function of a and &. It follows that Q is hori-
zontal. In addition, 

LXoQ = [i(Xa)d+di(X0)]e = i(X0)dQ = i(X0)[E2k(Q')-E2k(d)] = 0. 

Hence Q is basic. Thus, E2k(0') and E2k(&) are homologous within basic forms. 
Therefore E^S') and Eu(0) define the same element p(

k\H^{M, R). If (M,rj) 
is a contact manifold which admits a basic linear connection, then p[B\ fc=1, ... 
..., [m/2], will be called basic Pontrjagin classes of (M , rj). 

Let now (M,rt;) be a /sT-contact manifold. Let (t], X0, (p,g) be an associated 
/^-metric structure and V be the Riemannian connection on M with respect to g. 
Direct calculation shows that the connection 

Vxr= VxY+n(X)cpY+t,(r)(pX+$(X,Y)X0 . 

is a basic connection on (M,g). Hence the basic Pontrjagin classes p(
k
B)dHgk(M, R), 

k=1, ..., [m/2], are well-defined on each 7^-contact manifold (M, t]). 
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A note on the strong de la Vallée Poussin approximation 

L. LEINDLER 

1. Let {<pn(x)} be an orthonormal system on the finite interval (a, b). We shall 
consider series 

(1.1) 2cncpn(x) 
11 = 0 

with real coefficients satisfying 

(1.2) ¿ c n
2 < ~ . 

li=0 

By the Riesz—Fischer theorem, series (1.1) converges in the metric Z,2 to a square-
integrable function f(x). We denote the n-th partial sum of series (1.1) by sn(x). 

It is well known that the notion of strong summability is due to H A R D Y and 
LITTLEWOOD [3], and the notion of strong approximation is due to ALEXITS [2]. 

Since the strong approximation investigations have started in the 1960s it has 
become more and more clear that most of the results concerning any property of 
ordinary approximation have an analogue in strong sense. In other words, we have 
the same rate of approximation for strong means as for ordinary ones if we consider 
any one of the most frequently used means. This is true in spite of the facts that, in 
general, neither strong summability nor strong approximation do not follow from 
the suitable general ordinary summability and approximation (see M Ó R I C Z [ 1 1 ] and 
LEINDLER [9]). Some sample theorems showing the great analogy between the ordinary 
and strong approximation results can be found e.g. in the works [1], [4], [5], [6], 
[8], [10]. 

Recently we have discovered that even in the case of the classical de la Vallée 
Poussin approximation there exists a result which has only a weaker analogue in 
strong sense. One of the aims of this note is to fill up this gap. 

In order to formulate our statements precisely we recall some definitions and 
theorems. 

Received June 17, 1991. 
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Now we define the ordinary, furthermore the strong and very strong de la Vallée 
Poussin means with exponent p (p>0): 

1 2n-l 

K(x):=- Z sv(x), (nël), 
n v=n 

f 1 2n-l ll/p 

v„\p-x\:= \ - 2 K(*)-/(*)lp 

I« v=n ' 
and {1 2n—1 11/p 

- 2 M * ) - / ( * ) l p [ , « k - n ' 

where v:={vt} denotes an arbitrary increasing sequence of positive integers. 
In [4] we proved 

Theorem A. Let {A„} be a monotonie sequence of positive numbers such that 

(1.3) KX\m. *) 
k=0 

If 

(1.4) 
B = 0 

then we have that 
K(x)-f(x) = O^n1) 

holds almost everywhere (a.e.) in (a, b). 

A similar, but weaker result in connection with the strong approximation 
(p = 1) was proved in [6] which reads as follows. 

Theorem B. Let {A„} be a monotonie sequence of positive numbers with (1.3). If 

(1.5) Z c l X 
/1=0 

then 
(1.6) V„\p,x\ = ox(A„_1) 

holds a.e. in (a, b) for any 

It is easy to see that if A„=nï with y=»0, then conditions (1.4) and (1.5) are 
equivalent; but if e.g. X„—qn with q > 1, then (1.5) requires much more that (1.4) 
does in order to have the same order of approximation. 

*) K will denote positive constant not necessarily the same one at each occurrence. 
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First we show that (1.4) also always implies (1.6), but this proof will be longer 
than that of the implication (1.5)=>(1.6) in [6]. Thereafter, using a very general 
lemma proved only in 1982, we shall extend our result to the very strong approxima-
tion ; i.e. we shall prove the following result. 

Theorem. Let {A„} be a monotonic sequence of positive numbers with (1.3). If 
(1.4) holds, then 
(1.7) FJp .v ; x| = ox(K1) 

a.e. in (a,b) for any 0</>^2 and for any increasing sequence v:={vt} of positive 
integers. 

2. In order to prove our theorem we need two known lemmas. 

Lemma 1 (Kronecker lemma, see e.g. [1] p. 68). If s„(a) denotes the n-thpartial 
oo 

sum of the numerical series am ^ a n increasing sequence of positive num-
/71 = 0 

oo 

bers such that A„—°° and the series Z converges, then s„(a)=o(A„) holds. 
m-0 

Lemma 2 ([7]). Let 5 > 0 and {<5„} an arbitrary sequence of non-negative 
numbers. Suppose that for any orthonormal system {<p„(x)} the condition 

(2.1) Z U Z c i y — 
11=0 m = n 

implies that the sequence {s„ (x)} of the partial sums of (1.1) possesses a property P, then 
any subsequence {^(x)} also possesses property P. 

3. First we carry out the proof of (1.7) when p=2 and vk=k. An elementary 
consideration shows that 

{1 2n—1 1 2n-l 1 

- 2 | i v ( * ) - n ( * ) l 2 + - 2 m(*) - / (* ) l 2 • n v=i> n ¥=„ ; 

The second term on the right hand side of (3.1) is ox(X~2) a.e. in (a, b) on account 
of Theorem A regarding the monotonicity of the sequence {A„}. Thus we have only 
to estimate the first term. For that purpose we first show that 

(3.2) 2 i := 2 ft"'1 f (s„(x)-Va(x)Y 
n = l a 
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Namely, an easy calculation gives that ' 

~ 1 2n—1 
21= 2 tin-1-* 2 (2«-v ) 2 c*s n = l » v=n + l 

^ 2 ^ cl^ 2 c\ 2 ¿J«-1 ^ 2 № 11 = 1 " v = n + l v = l v/2 <n<v V = 1 

whence, by (1.4), (3.2) obviously follows. From (3.2), using B. Levi's theorem, we 
get that 

2 ftn-'isnW-Kix))* 

n=l 

a.e. in (a, 6). Hence, by Lemma 1, the estimation 

2m (3.3) 2 № ( * ) - KM)2 = 0x(2m) 
n = l 

holds a.e. in (a, 6). But (3.3) clearly implies that 

1 2m—1 — 2 \sn(x)~K(xr = ox(}->) m n=m 

also holds a.e. in (a, b). Summing up our partial results we get that 

(3.4) V„\2>x\ = ox(X-1). 

On account of the Holder's inequality, we get, for any 0</?^2, that 

V„\p,x\^V„\2,x\ 
whence, by (3.4), 
(3.5) Vn\p,x\ = ox(k~l) 

also holds a.e. in (a, b). This completes the proof when vk—k. 
Finally, the statement of Theorem in its generality, i.e. for arbitrary v:={vt}, 

follows from (3.5) using Lemma 2 with ¿ = 1 and 8„:—X2—(2_1=0); further-
more the property P in this case will be just the estimation given by (3.5). 

Theorem is hereby proved completely. 
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On strong approximation by Cesàro means of negative order 

L. LEINDLER 

1. Let {<p„(x)} be an orthonormal system on the finite interval (a, b). We shall 
consider series 

(1-1) 2cncpn(x) 
n = 0 

with real coefficients satisfying 

(1-2) 2 c l : o o . 
n = 0 

By the Riesz—Fischer theorem, series (1.1) converges in the metric L2 to a square-
integrable function f(x). We denote the partial sums and the (C, a)-means of series 
(1.1) by j„(x) and <r®(x), respectively. Furthermore, T„ will denote a positive regular 
summation method determined by a triangular matrix (<xnk/An) (a„k^0 and A„:= 

n 
:= 2 ank> and if sk tends to s, then 

ft = o 
1 B 

Tn := - j - 2«nkSk - s). 
n t=0 

G. SUNOUCHI [7] proved the following result. 

Theo rem A. If 0 < y < l and 

(1-3) 
n=l 

then 

{1 » li/p 
~7cT 2 ^ l i l / ( * ) - * v ( * ) l p = oAn - i ) 
J t „ V = 0 J 

holds almost everywhere (a.e.) for any a > 0 and where 

Received July 5, 1991. 
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In [3] we generalized this result in such a way that we replaced the partials in 
(1.4) by Cesaro means of negative order. Our theorem reads as follows, where and 
in the sequel K will denote positive constant, not necessarily the same one. 

Theorem B. Suppose that 0 < y < l , 0</?<y~ l and (1.3) holds, furthermore 
that there exists a number Q > 1 such that 

and with this Q for any 0 < m < l and 2m<n^2m+1 

m min(2I + I,ii) 
(1-6) Z{ 2 « ^ ( v + l ) ^ 1 - ^ - 1 } 1 / " ^ Kn-°>An. 1=0 v=2 ' - I 

Then, for arbitrary 

(1.7) d > 1 — 0 - 1 

QP 

F 1 N LL/P 
(1-8) \ - j - Z ^ m - d - W i =ox(n-i) 

LJI„
 V=
0 J 

holds a.e. in (a, b). 

It is easy to verify that in the special case am = A*z\ (a>0) condition (1.6) is 
satisfied, thus Theorem B with d= 1 reduces to Theorem A. 

But if we set a„ v =(v+l ) p - 1 (jS>0), then condition (1.6) will be satisfied only 
if P ^ l . Consequently, for 0</3< 1, we cannot apply Theorem B to get an estimate 
for the following strong Riesz means 

hn(f,d,p,P• x):={(«+l)-" ¿(v+iy-VW-^-W}1", 
v=0 

but the Riesz summability is a frequently used summation method in connection 
With strong approximation. Nevertheless, if we want to get the estimate 

(1.9) hn(fd,p,p-,x) = ox(n~->) 

for some 1, then, as a possible solution, we can try to weaken the requirement 
of (1.6). 

One of our aims is to give such a generalization of Theorem B. 
We mention that in the special case ¿=1 , i.e. if we approximate the function 

f(x) with the partial sums s,(x) (=<r®(x)), then already an estimate of type (1.9) 
is known. Namely, in a joint paper with H. SCHWINN [6], we proved among others: 
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Theorem C. If y>0 and 0</?y</? then condition (1.3) implies 

(1.10) H„(f, fi,p, v.; X):={(«+1)-" ± (k+ W^lfM-s^W}1" = ox(n~*) 
k=0 

a.e. in (a, b) for any increasing sequence v : = { v j of natural numbers. 

In [5] we investigated the so-called limit case of the restriction of the parameters, 
i.e. if P=py. Among others we proved: 

Theorem D. If p and ft are positive numbers then for any increasing sequence 
v :={v j 

(1.11) (y = P!p) 
n = l 

implies 
(1.12) Hm(f, p, p, v; x) = ox(n-V(]og n)1») 
a.e. in (a, b). 

Theorem E. If a and p are positive numbers then for any increasing sequence 
v - K } 

(1.13) ¿ c 2 « 2 / * < ~ (V = !//>) 
n=l 

implies 

(1.14) C„(f, K,p,v; 2 Alz\\f(x)-sVk(x)A = ox{n-^(\ognfl") 

a.e. in (a, b). 

We want to point out that Theorems C, D and E contrary to Theorems A and 
B do not claim the extra restriction y < 1. This is a great advantage of these theorems, 
but they do not allow of approximating with Ces^ro means of negative order. 

The common kernel of the proof of Theorems A and B is a very interesting result 
of T. M . FLETT [1] and a useful lemma of G . SUNOUCHI [7 ] (here Lemma 2 and Lemma 
3, respectively) and they, unfortunately, require the assumption 0 < y < l . The 
proofs of Theorems C, D and E run on a perfectly different line, and these proofs 
do not use the assumption y< 1. 

In the present paper we prove such a general theorem which generalizes Theorem 
B and includes all of Theorems C, D and E if y<l. Unfortunately, we cannot extend 
the validity of our result for y ^ l . This remains as an interesting open problem, in 
our view. 

Using the notations introduced above we can formulate our results. 

Theorem. Suppose that /?>0 and 0 < y < 1. Moreover let us suppose that 
there exists a number e > l with property (1.5) and that with this Q and with n([):= 



296 L. Leindler 

:=min (2', n), 2 m < « s 2 m + 1 

in n(/+l) 
(1.15) 2{ Z «S»(v+1 Y*-»*-1}1" 3S Kg(n)Amn-», 

( = 0 v = n ( l ) - J 

where g(t) denotes a non-decreasing positive function defined for 0S(<«=. 

Then, for any d satisfying (1.7), (1.3) implies 

{1 » lVp 
-J- Z a J / M - ^ M I " = Ox(g(n)y"n-y) 

a.e. in (a, b). 
I f , in addition, for every fixed I, 

«(i+i) 
(1.17) { 2 a S , } 1 ' ^ » ^ « ) ^ « - ^ as n-*oo, 

v=»(i)-l 

then the Ox in (1.16) can be'replacedby ox. 

Hence, by a useful lemma (here Lemma 1) we easily get the following result. 

Coro l la ry 1. Under the assumptions of Theorem we have the estimate 

{1 1 "»l/p 
-j- Z «-v l/to - *)IP = Ox{g(nfl"n-y) 

A
H

 v = 0 ' 

a.e. in (a, b), where p := {¡xk} is an increasing sequence of natural numbers and 
x) := - 4 - Z ^ I k \ t ( x ) . 

If (1.17) also holds, then the Ox in (1.18) can be replaced by ox. 

From Corollary 1, by an easy consideration to be detailed later on, we get the 
following results: 

Corol lary 1.1. If 0<y-c l , </>max (1/2, (/>—1)//>) and 0 t h e n (1.3) 
implies 

{(«+l)-p ¿(v+iy-M/M-a?-1^; *)|P}VP = 0x(n->) 
v = 0 

a.e. in (a, b) for any increasing sequence p .={fik}. 
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Coro l l a ry 1.2. If ooO, 0 < y < l , 0 < p < y - 1 and </>max (1/2, (p — l)/p, 
(p—a)/p), then (1.3) implies 

(1-19) f 4 r 2 ¿l-W/W-oi"1^; X r P = 
l -^"n v = 0 J 

a.e. in (a, b) for any increasing sequence p.:={fik}. 

Coro l l a ry 1.3. / / 0 < y < l , i />max (1/2, (/>-1)//?) and P=py, then (1.3) 
implies 

(1.20) {(»+1)-" i ( v + l y - M / W - f f i " 1 ^ ; *)lp}1/p = 
v = 0 

a.e. in (a, b) for any increasing sequence p. := {fik}. 

C o r o l l a r y 1.4. If 0 < y < l , / ? y = l, a > 0 anrf i/>max(l/2,(/?—l)//>,(/> —a)//?), 
then (1.3) implies 

{1 « LI IP 

-¡r 2 Alz\\m-ci-\n-, x)|" = ox{(\ogn)x'pn-y) A
N
 v = 0 ' 

a.e. in (a, b) for any increasing sequence p.:={pk}. 

First we remark that Corollary 1.2 is a slight improvement of Theorem 1 proved 
in [2]. 

Furthermore we mention that since o\(n\ x)=st,J<x), thus the special case 
d— 1 of Corollary 1.1 coincides with Theorem C if 0«=y<l. But if y s l then 
Corollary 1.1 does not work, consequently, we cannot say that Corollary 1.1 is a 
generalization of Theorem C. So, we can say that Corollary 1.1 is a generalization 
of Theorem C if and only if the range of parameter y is restricted to 0 < y < l . 

The same assertion can be made regarding Corollary 1.3 and Theorem D, 
moreover in connection with Corollary 1.4 and Theorem E. 

Finally we deduce one more statement from Corollary 1. 

Co ro l l a ry 1.5. If p>0, 0 < y < l and ¿ > m a x ( l / 2 , ( p - \ ) l p ) , then (1.3) 
implies 

(1.22) f l 2 l / W - t f ? - 1 ^ ; x)lp}1/p = 0x(n~?) 
v=n+l J 

a.e. in (a, b)for any increasing sequence p:={pk}. 

We point out that Corollary 1.5 sharpens and generalizes Corollary 1 proved 
in [3]. It can be used for any positive p, not only if /><y _ 1 as in [3]. 

2. In order to prove our theorem and corollaries we need three known lemmas 
and one to be proved now. 
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Lemma 1 ([4]). Let <5>0 and {<?„} an arbitrary sequence of non-negative 
numbers. Suppose that for any orthonormal system {(p„(x)} the condition 

(2-1) 
n=0 m=n 

implies that the sequence {v„(x)} of the partial sums of (1.1) possesses a property P, 
then any subsequence {¿^(x)} also possesses property P. 

Lemma 2 ([1]). Set 

TS := T£(X) := h {«!(*)-®S-i(*)} (= o c K " 1 ( x ) - ^ ( x ) } / / a > 0). 

Let 1, a > £ - l and / ? s a + ® _ 1 - ( p ) _ 1 . T/ien 

(2.2) { i («+ l r " 1 ! ^ ! ^ i («+ lr"-1!^!*}1 '5 . 
«=0 n=0 

Lemma 3 ([7]). If 0 < Y < l and (1.3) /IOWJ, then 

/ { ¿ ( " + l ) 2 , - 1 K - 1 ( x ) - ^ ( x ) | ! ! } < / x S * JC««»' 
O » = 0 n = l 

for any a. >1/2. 

Lemma 4. Under the assumptions of Theorem we have the inequality 

Л ( n p y " * \ l / p l 2 co 

s u p terj" ^ a»v W " 1 (*) - ^vWlH U * == * 2" „ V g\Jl)SI„ V=0 / ' n—1 

P r o o f . Set 0 / (0-1) , then by (1.5) and (1.7), we have 

(2.4) g'ps 2 and l-(e'p)-1. 

Applying Holder's inequality, by (1.15) and g > l , we obtain that 

(2.5) 2 « » v № ) I " 3 { 2 a«v(v + l)(«/«'>-w«}1/«{ 2" (v + 1 ) y p e ' - 1 (x)|pe'}1<,e' =§ 
v = 0 v = 0 v = 0 

=S Kg(n)n~»Am{ 2 (v•+1)™'"1 IT^X)]«'}1^. 
v = 0 

By the second statement of (2.4) we can choose a* such that 

(2.6) d - l + - L =-«*>! 
2 QP 2 

holds. By (2.6), 0 < y < 1 and q'q^2 the conditions of Lemma 2 are fulfilled with 
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p=g'p, q=2, Q=y, a=a* and Using Lemma 2 we get 

(2.7) { ̂  (v+ ly^'-MTiix)]^'}1^' ^ ^ { ¿ ( v + l f ^ M T f W I 2 } 1 ' 2 . 
» = 0 v = 0 

Thus, by (2.5), (2.6), (2.7) and Lemma 3, we have 

/{.r-h&^HT** 
(v+1)"- 1 (*)!"}<& s k 2cW y  

/ \=0 n=l 
/ 

which gives statement (2.3). 

3. Proof of Theorem. It is clear that 

f 1 " V'P 
(3-1) { - r - 2 ^ \ f ( x ) - a i - \ x ) A ^ 

v = 0 } 

- K ( H r M a"v l / ( x ) " ^ W | P F ' P + ( x i a«v KW - °l!"1(*)lij1/P) • 
First we show that the first term has the required order. 
Since ¿>1/2, so, e.g. by Theorem A with p=1, we get that 

(3.2) f(x)-ci(x) = 
a.e. in (a, £)• 

Let now e>0 be given. If x is a point where (3.2) holds, then let M(x) be a 
positive integer such that for M > M ( X ) the inequality 

(3.3) 

is valid. For such x we get that 

(3.4) ¿ o U / ( * ) - o i ( * ) l ' s ( 2 + 2 K 
v=0 «(OSMW n(l)>M(i) 

ZSm 
where 

n(«+i) r n(/+i) i 1i/e' 

v=n(l)-l lv=n(l)-l v + ! ' 

By (1.15) it is easy to see that the first sum remains Ox(g(n)Ann~yp), but if 
(1.17) also holds, then its order ox(g(n)A„n~yp). 

On the other hand, by (1.15) and (3.3), the second sum in (3.4) is always less 
than Ox(l)e"g(n) A„n~yp, that is, its order is always ox(g(n)A„n~',p). 
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Consequently we have 

f l • J yip ГO x (g(nf ' pn- y ) , always, 
( 3 - 5 ) = k i f (1.17) holds, 

a.e. in (a, b). 
Next we show that the second term in (3.1) also has the suitable orders of (3.5), 

according as (1.17) is not or is satisfied. 
Now let 6 be any positive number. Let us choose N so large that 

(3.6) 2 c W < e3. 

By means of N we split series (1.3) into 

¿ c 2 n 2 l , < со and 2 < £3, 
n = l n = W + l 

and consider the corresponding orthogonal series. More exactly, let 

°° | c„ for n s N, 
(3.7) w i t h a* = { 0 for 

and 
fO for n s N, 

(3.8) 2ЬП<РЛХ) With 6л = {Сп f o r ^ 

If <7l(a;x) and o"„(b; x) denote the (C, a)-means of series (3.7) and (3.8), res-
pectively, then 

(3.9) <r*n(x) = <fn{a-, x) + o*n(b; x). 

Since the number of the coefficients а„ИО is finite, 

1 N 

oi-^a-, x) — o*(a; x) = —¡- 2 kA*z\ck(pk(x) 
k=0 

if v=-N; and for any ksN A*ll/Ad
y=0(l/v), so 

(3.10) 2 anv W(e; x) - a i - ^ a ; x ) \ ' s 
v = 0 

m n(l+l) n(/ + l) 

s 2{ 2 anv(v+i)e(1->p)-1}1/c{ 2 (v+i ) - 1 + w e / |< r? -<r?-T e ' } 1 / e ' s 1=0 »=»(0-1 v=n(l)-l 
m n(i+l) " (1+1) 

ё 0 , ( 1 ) 2 { 2 ag v (v+l)« ( 1 -^- i} i / e | 2" ( v - H ) ^ - 1 > - i } w : = 
1=0 v=n(J)-l V=B(1)-1 

:=Ox(l) 2 ArBt. 
1=0 
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By and В,^2'21'~1)р(г~1}(ш2), for any e>0, there exists a positive integer 
l0 such that if />/„ then B,<s. Thus 

m lg m Ig ш 
24B, = (2+ 2 2 A + S 2 

1=0 1=0 J = l 0 + 1 1=0 » = ' o + l 

whence, by (1.15), we get that 

m (3.11) 2 AB, S Kg(n)A„n-yp; /=o 

and if (1.17) also holds then we have the estimate 

(3.12) 2 = o(g(n)Ann-*p). 
1 = 0 

Summing up estimates (3.10), (3.11) and (3.12) we obtain that 

f 1 » li/p \Ox(g(n)llPn~y), always, 
( З Л З ) = Ц ^ - , ) , i f ( 1 Л 7) holds, 

a.e. in (a, b). 
In order to estimate the suitable terms of series (3.8) we use Lemma 4 and (3.6). 

Then 
ь, Л ! пРУ n \Vp"|2 

SUP L ы л л 2«пЛ<(Ь\ х)-&*~\Ъ\ x)\p] dx s Kes. 
Hence 

meas f ( npy B \4P 1 
| x | l i m s u p [ g ( w ) ^ Д а Я У И ( й ; x ) - ^ - 1 ^ ; *)IPJ > ej =s Кг. 

This, (3.9) and (3.13) imply 

Г 1 » li/p ГОх(«(и)1/рл~у) VP \Ox{g{nfipn-y), always, 
if (1.17) holds, 

a.e. in (a, b). 
Finally, (3.5) and (3.14) yield both statements of Theorem, so our proof is 

completed. 

Proof of Corol lary 1. The statements of Corollary 1 follow from the state-
ments of Theorem and from (1.3) using Lemma 1 with 8 = 1 and 8„ :=n2y—(n — 1 )2y. 
More precisely, now we have to use Lemma 1 twice. First the property P is that the 
means ff„_1(X) of the sequence {J„(X)} approximate f(x), in strong sense regarding 
the matrix (a„JA,) and the exponent p, at the order given in Theorem by (1.16) 
a.e. in (a, b). Secondly, if (1.17) is also satisfied, then the suitable property P is 
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that the order of the approximation by the means mentioned above is ox(g(n)1/pn~y) 
a.e. in (a, b). 

Proof of Corol lary 1.1. Set anv:=(v + 1 / - 1 . Then, regarding the condi-
tion an elementary calculation shows that both (1.15) and (1.17) with g(ti)= 
= 1 hold for any Q > 1. 

On the other hand, since rf>max (1/2, (p—l)/p) and (1 —<f)<min (1/2, l/p) 
are equivalent, we can give a number £>'>1 such that (1 —£/)/><l/g'<min (I, p/2) 
and if Q:=Q'I(Q'-\), then both (1.5) and (1.7) hold. 

Consequently, with this Q, all of the assumptions of Corollary 1 can be satisfied, 
so, applying Corollary 1, we get (1.18) immediately. 

Proof of Corol lary 1.2. We set <xm:=A'Zl and follow a similar considera-
tion as in the previous proof with the only change that now we choose Q' such that 
(l—d)p<l/g'<min(l,a,p/2). Using the suitable Q and the condition />y< 1, ele-
mentary calculations show that all of the assumptions of Corollary 1 are satisfied; 
and Corollary 1 yields (1.19). 

The proofs of Corollaries 1.3 and 1.4 run parallel, therefore we detail only the 
proof of Corollary 1.4. 

P roof of Corol lary 1.4. Set a„v:=A%I*. Using the assumption py = 1 
and Q' chosen by (1 —d)p< l /e '<min (1, a ,p/2) , we get that conditions (1.15) 
and (1.17) with g-(n):=logK and g'-—Q'/{g' — \) hold, furthermore (1.5) and (1.7) 
are also fulfilled. Therefore, with these quantities, Corollary 1 can be applied, and 
we get (1.21). 

Proof of Corol lary 1.5. Now we set 

An easy calculation shows that both (1.15) and (1.17) with g(rt)=1 hold for 
any Since the assumption on ¿yields to choose Q' such that (1 —d)p<l/g'< 
<min (1,p/2), therefore conditions (1.5) and (1.7) can be satisfied simultaneously. 
Consequently we can apply Corollary 1, whence (1.22) obviously follows. 

0, if v ^ n, 
a 2 f l ' v : ~ t l , if n < v s 2 n , 

and 
r<*2i,,v> if V ^ 2n, 
0, if v = 2n+1. 
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On Jessen's inequality 

J. E. PECARIC and I. RA§A 

1. Introduction 

Let X be a compact Hausdorff space and let C(X) be the space of all continuous 
real-valued functions on X, endowed with supremum norm and usual ordering. Let 
M\(X) be the set of all probability Radon measures on X. The following fact is 
well-know [7, Sect. 6]: 

(1) If n is a bounded linear functional on C(X) such that \\n\\ =/x(l) = 1 then 
fi is positive, i.e. i i^M\(X). 

Let K be a compact convex subset of a locally convex Hausdorff real space B 
and let B' be the topological dual of B. Let ii£M\(K). Then (see [7, Sect. 1 and 
Sect. 4]): 

(2) There exists a unique b£B such that fi(l)=l(b) for all KB'. (In fact, 
b£K; it is called the barycenter of /x). 

(3) f(b)^n(f) for every convex function f£C(K). 
The inequality (3) is related to the Jessen's inequality (see [1], [4], [5], [6], [10]). 
We shall use these results to prove a Jessen-type theorem similar to Theorem 

5 of F . V. HUSSEINOV [3] and we shall extend (1), (2), (3) by considering a class of 
sublinear functionals studied by V. TOTIK [12] instead of linear functionals ¡i£M\(K). 

2. A Jessen-type theorem 

Let E be a nonempty set and let L be a linear space of real-valued functions 
defined on E\ suppose that the constant function 1 belongs to L. Let M'. L-+R 
be a linear isotonic (i.e., M(f)sM(g) whenever / , g£L,f^g) functional such that 
M ( l ) = l . 

Received January 3, 1991 and in revised form May 8, 1991. 
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Let B be a locally convex Hausdorff real space and let i f be a set of 5-valued 
functions defined on Esuch that loF£L for all F££ and all l£B'. Let Se^B 
be such that l(JtF)=M(loF) for all KB' and F£ 

Let K be a compact convex subset of B, let q>£C(K) be a convex function and 
let if . Suppose that F(E)aK and cpoF^L. Denote H={h£C(K): hoF^L). 

The following theorem contains a Jessen-type inequality (see [1], [2], [6], [10] 
and, especially, [3]). 

Theorem 1. a) MF^K and <p(J(F)SM(<poF). 
b) If cp is a strictly convex function then <p (J(F)=M{<p o F) if and only if 

h(JtF) = M{hoF) for all h£H. 

P r o o f . Let us remark that 1 cp£H and l£H for all l£B'. Consider 
A: H-~R, X(h)=M(hoF) for all h£H. Then A is a positive linear functional with 
HA! = 1. Using the Hahn—Banach theorem we deduce that there exists a bounded 
linear functionaln on C(K) such that fx coincides with A on H and ||/i|| =||A||. It 
follows that M =j i ( l ) = l . Using (1) we infer that ^ M \ ( K ) . 

Now let l£B'. Then n(I)=A(/)=M{loF)=I(JIF) and (2) implies that JtF 
is the barycenter of p, hence JtF^K. Using (3) we deduce (p(J?F)^n(q>)=X((p) = 
=M(<poF). 

Suppose now that q> is strictly convex (such a function exists in C(K) if and 
only if K is metrizable) and cp(J/F)=M((poF). Then n(q>)=(p(JiF). By virtue 
of [8, Lemma], fi is the Dirac measure corresponding to JiF. It follows that M(hoF)= 
=A(/J)=nQi)=h(J(F) for all h£H. 

3. Inequalities for sublinear functionals 

Let X be a compact Hausdorff space. Denote by 3~{X) the set of all sublinear 
functionals A: C(X)-*R such that .4(1)= 1, A(-l)=-l and M|| = l (i.e., 
\ A ( f ) m for all feC(X) with l l /IMl). 

V. TOTIK has proved in [12] that if Ae^(X) then A(f)^maxf for all feC(X); 
moreover, if A'is metrizable then for every A £ ^ ( X ) there exists a sequence (xn)n£N 

in X such that A(f)=\\m sup (f(x1) +...+f(x„))/n for all fiC(X). 
We shall extend (1), (2) and (3) replacing M\ (X) by ST{X). 
Example 1. Let ¡i, v£M\(X). Define A{f)= J max (v(f),f(x))dfi(x) for 

all f£C(X). Then A£&"(X). * 

Example 2. Let (v,) be a net in M\(X). Define A(f)=lim sup v {( / ) for 
all feC(X). Then A£ST(X). 
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Although the following extension of (1) is a consequence of Proposition 2 
below, we insert here a direct proof. 

P ropos i t ion 1. Every A£^~(X) is isotonic. 

Proof . Let f,g£C(X), f&g, A(f)>A(g). Then 0^A(f)-A(g)sA(h) 
where h=f—g^0. Let m=—mjn/i. Clearly 0. We have 0 < A ( h ) s A ( — m ) + 
+A(h+m); this yields A(h+m)>m. On the other hand O s A + m s m and ||/i|| = l 
imply A(h+m)^m, a contradiction. 

P ropos i ton 2. A£&~(X) if and only if there exists a nonempty set SaM\(X) 
such that A(f)=sup {p(f): fi£S} for all f£C(X). 

Proof . Let Ae 9~(X) and let S={fx:C(X)-<-R: p linear, fi^A}. Using the 
Hahn—Banach theorem we deduce that A(f)=sup {p(f): for all f£C(X). 
But if then ||/i||=/i(l) = l ; therefore S<zM\{X). 

The converse is easy to prove. 
The following result extends (2) and (3). 

Theorem 2. Let K be a compact convex subset of a locally convex Hausdorff 
real space B and let A£&~(K). There exists a unique nonempty compact convex subset 
Q of Ksuch that A(h)=m&xh for all h£B'. Moreover: 

a) A is linear on B' if and only if Q reduces to one point. 
b) Let Mc.K. Then y i ( / ) s s u p / for every convex function f£C(K) if and M 

only if McQ. 

Proof . By Proposition 2 there exists ScrM\(K) such that A(f)— 
=sup {n(f): niS} for all feC(K). Let C=conv{b(fi):fx£S} where b(p) is the 
barycenter of pi. Let Q be the closure of C. If h£B' we have A(h)= 
=sup {)u(h): /i€5"}=sup {h(b(fi): [i£S}=sup {h(x): x£C}=maxh. The uniqueness 
of Q is an easy consequence of separation theorems. 

a) Clearly A is linear on B' if Q reduces to one point. Conversely, let A be 
linear on B'. For h£B' we have maxh=A(h) = — A(— h)= — max (— /i)=mjn h. 
It follows that every h £B' is constant on Q, hence Q reduces to one point. 

b) Let MczQ and let f£C(K) be convex. Then A(f)=sup {p(f): 
s sup {/(¿>0)): /i€5'}=sup {f(x): x 6 C } = m a x / s s u p / . 

Conversely, suppose that A ( f ) == sup f for every convex function f£C(K). 
If t£M and t^O, there exists hdB' such that /t(/)>max h. We have sup A s 
^h(t)>maxh=A(h)^suph, a contradiction. Hence M c Q . 

i 
Example 3. Let <a€[0,1], A: C[0, A ( f ) = f m a x ( f ( a ) , f ( x ) ) d x . Then 

A€f<[ 0, 1]) and Q=[( 1 - ( 1 —a)2)/2, (1 +a2)/ 2]. 
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Example 4. Let K=[0, l]2 and 

A = supj^-(e ( 0 ,o)+ e(o,i))' -^(£(i,o) +e(i,i))} 

where e, is the Dirac measure corresponding to t. 

Then 

Example 5. Let l]2 and 

A = sup|-^(e(0>0)+e(i;i)), y (e(o,i)+ £(i,o))}-

Then Q reduces to the point , — j . 

R e m a r k 1. Let n£M\(K) and let b=b(/i). For g£C(K) define 

B«g(P) = / g ( ( t i + - +tn)ln)d((i® ... ..., /„). 
K" 

(B„ is a Bernstein—Schnabl type operator; see [11] and the references given there.) 
For every convex function f£C(K) we have the following improvement of (3): 

K f ) = B 1 f ( b ) ^ B i f ( b ) ^ . . . ^ f ( b ) 

and lim BJ(b)=f(b) (see [11]). In [9] it is shown that ii(f)=f(b) if and only i f / 
is affine on the closure of conv (supp n). 

R e m a r k 2. Let now K be a Choquet simplex. Let ii£M1
+(K) and b=b(fi). 

Let sb be the Dirac measure and let ¡xb^M\(K) be the unique maximal measure 
which represents b. Then for every convex function f€C(K) we have (see [7, Sect. 9]): 

(4) Bb(f) ^ K f ) ^ !<*(/)• 

For K=[a, b]<z.R inequalities similar to the second inequality are studied and 
generalized in [1] and [6], Lemma 1. 

Let S<zM\(K), A= sup{/K fi£S}. Let f£C(K) be convex. Then 
A(f)=sup {//(/): sup {fi„(/): b£Q}. Hence 

(5) sup(6 6 ( / ) : b£Q}sA(f)s s up { ( i„ ( f ) : b£Q}. 

This is an extension of (4). 
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Approximation theorems for modified Szász operators*) 

ZHU-RUI GUO and DING-XUAN ZHOU 

1. Introduction 

The Bernstein operators on C[0, 1] are given by 

(1.1) Bn(f, x) = 2/Wn){l) xk(l -xy-K 

In 1 9 7 2 , H . BERENS and G . G . LORENTZ [3] gave the pioneering theorem on 
Bernstein operators in the form 

(1.2) | Bn(f, x)-f(x)\ == M{x(\ -x)lny2 ~ o h ( f , t) = 0 ( f ) , 

where 0<oc<2, and 

(1.3) (o2(f,t)= sup sup \f(x-h)-2f(x)+f(x+h)\. 
Oshst HSxSl-h 

In 1 9 7 8 , M. BECKER [1] , R . J . NESSEL [ 2 ] gave similar results for Szász and 
Baskakov operators, Meyer—Konig and Zeller operators. 

Berens—Lorentz type theorems for all exponential-type operators were given 
by K . SATO [9] in 1 9 8 2 . All these exponential-type operators reproduce linear func-
tions, however if this is not the case, then similar Berens—Lorentz type results for 
non-Feller modified exponential-type operators have not been obtained till now. 

In this paper we shall give such a result for modified Szász operators defined 
i n 1 9 8 5 b y S . M . M A Z H A R a n d V . TOTIK [ 8 ] : 

oo
 0 0 

(1.4) Ln(f, x) = 2 (« / f(OPnA') dt) pn,k(x), 

where 
(1.5) p„ik(x) = e~"x(nxflk\. 

*) Supported by ZPSF and NSF of China. 
Received November 19, 1990 and in revised form January 29, 1991. 
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Concerning these operators, Mazhar and Totik stated: "However it is far less 
obvious how the analogues of Theorem 2—3 look like in the case of Ln." Our interest 
stems from this problem. In fact, we will show a result, which, together with some 
known theorems, yields for 0<<x-=l 

\L„(f, *)-/(*)! s M{\ln+(xlnfiy*>\Sn(f, x)-f(x)\ s Mx(\ln + (xln?l*y 

IW> *)-/(*)! S M2(xlny'*o co^f, t) = 0 ( f ) , 

where S„(f, x) are the Szász operators given by 

(1-6) Sn(f,x)= 2fWn)p„,k(x). 
k = 0 

We shall also give an equivalence theorem involving the smoothness of func-
tions and the derivatives of the modified Szász operators. 

2. A Berens—Lorentz type theorem 

First let us give some identities. 

Lemma 1 [8]. For L„(f(t), x) given by (1.4), we have 

L„(t, x) = x+l/n-, 

(2.1) Ln ((t - x f , x) = 2x1 n + 2n~\ 

MAZHAR and TOTIK [8] gave the following direct theorem for modified Szász 
operators: 
(2.2) | L „ ( f , x) - f ( x ) | =s Kco, (((x +1 lri)lnfl% 
here 

<u(/,0 = sup sup \f(x + hl2)-f(x-hl2)\ OSh^txShli 

is the usual modulus of smoothness of / . 
: We have the Berens—Lorentz type inverse result as follows: 

Theorem 1 .Let /6C[0,<=°) be bounded. Then with 0 < a < l , 

(2.3) \Ln(f, x)-f(x)\ ^ M(xln + n-*y<2 (x is 0, 

holds if and only if 
(2.4) co^f, t) = 0 ( f ) (t > 0). 

Remark 1. The assumption t h a t / i s bounded is necessary, which can be seen 
from the following example: Let / ( x ) = ( x + l ) ln (x+1)—(x+l). Then c o ^ f t ) ^ 
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7±0(f) for a,—1/2. However (2.3) is satisfied: For x ^ l / n , we have 

I Lm{f,x)-f{x)\ = \ f'(x) L„(t—x, x) + Ln{ J (t - u)f"(u) du, x)| s 

S ln(* + 1)1,1+\\uf"(u)UL„((t-xflx, x) s 

Mx1'iln + 2ln + 2l(n2x) si (4 + M)(xln + n-2y*. 
For x < l / n we have 

\L„(f, x)-f(x) | =\Ln[f In (w+1) du, x)\ ^ 
X 

^ L„[f udu,x)^L„(t2 + x\x) = 
X 

= 2x2 + 4xln + 2n~2 ss 8(xln + n~2fi\ 

Thus we have proved that the boundedness cannot be dropped. 

P roof of Theorem 1. By (2.2) we shall only prove the necessity. For d>0, 
let 

(2.5) fi(x) = d-i / f ( x + s)ds. 
o 

Then we have for /£C[0, °°)nL„[0, °°) 

ll/d-/IU S oh{f,d)-, 

(2.6) l i y i l - S ^ 1 « ^ / , * * ) . 
Note that since 

O© 00 

(2.7) I I ( / , X) = «X-1 2 n f f(0pn,M dt (ikin - x)p„tk(x), 
k=0 o 

OO 00 

(2.8) =n2n j f(')(Pn,k+iO)~Pn,k('))dtp„,k(x), 
*=0 o 

we have 

I L ' „ ( f d - f , x)\ == nx-1 \\f-fi\U S„(\t-x\, x) ^ ( n l x f ' ^ i f , d)-, 

\K(fd-f,x)\ s 2n II/—/d[U, 
where we used that 

S„( | / -x | , x) (S„ ( (F -x ) 2 , x)f'2 = (X/H)1'2 (see, e.g. [ 1 , 1 2 ] ) . 
Hence 
(2.9) \ K ( f d - f , x)\ ^ 2co,(f, d) min {n/xf2, n). 
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From (2.8) and [7] we can also derive 

o© °° 

\L'„(fd,x)\ = In 2'J Pn,k+i(0fi(0dtpn,k(4 & d-^co^d). 1 «==o0
J 1 

Now for any 0 and x£(0, we get from (2.3) for any /i£N 

(2.10) I f(x+h)-f(x)\ m \f(x + h)-Ln(f, x + h)I +1 f(x)-L„(f, x)\ + 
h h 

+ 1/ W ^ + kH + I / L'n(f-fd,x + u)du\^ 
o o 

h 
s2M((x+h)ln + n-2)'"2+d-1(oi(f,d)h + 2(o1(f,d) f min {(nl(x+u))112, n}du =§ 

o 

^ 2M(d(n, x, K)Y + tha^tf, d)(d~1+\ld(n, x, h)), 

where d(n, x,h)=((x+h)/n+n~2)1/2. Note that d(n, x,h)^d(n + l, x, h)s 
^d(n,x,h)/2 for any N, hence for any 1/2><5 > 0 we can choose w£N such 
that 

2d(n, x, h) s 8 > d(n, x, h). 

With this choice we get from (2.10) the estimate 

\ f ( x + h) -/(*) | ^ 2MS' + 36hco1 ( / , d)IS, hence 

co 1 ( f , t) g 2M8" + 36/co1(/, <5)/<5 s (2M+36)(5" + to1(/, <5)/<5), (t, 8 > 0) 

which implies £0i(/, t)=0(f) (see [3, 6]). Our proof is complete. 

Remark 2. The same statement is true for Szasz operators, however we shall 
omit the proof since it is just the same. 

Remark 3. In [14], we have proved for Bernstein—Durrmeyer operators 

(2.11) £>„(/> x) = 1 [(« + 1 ) / / ( 0 (£) i*(l - t y - k t f ) ( l ) x*(l - * ) - ' , 

that for l < a < 2 there exist no functions { ^ . W } , ^ such that the following 
equivalence holds for /£C[0, 1] 

(2.12) <o2(f, t) = 0 ( f ) <=> \Dn(f, x)-f(x)| s Jl#B>a(x). 

In view of this result we cannot expect a similar characterization theorem by the 
modified Szdsz operators for functions satisfying 

co2(f, t) = 0 { f ) with 1 < a < 2. 
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3. Derivatives and smoothness 

Some results on the relation between the order of derivatives and smoothness 
have been obtained in [5, 7], most of which characterize the Ditzian—Totik modulus 
of smoothness. Z. DITZIAN gave a result on the characterization of the usual modulus 
of smoothness by the derivatives of Bernstein polynomials [4]. Recently one of the 
authors gave similar results for higher order of smoothness [14]. 

Let 
co2(f, t) = sup sup | / (x ) - 2f(x + h) +f(x + 2h)\. 

Ociisr xeO 

For the modified Sz&sz operators, we can prove 

Theorem 2. For /<EC[0, °°)nL«[0, «0, 0 « x < 2 , we have 

(3.1) ©,(/ , t) = 0(f) o \L"n(f, *)| s M(min {n\ nfx})«-»*. 

Theorem 3. For /£C[0,°°)nL«, , 0 < a < l , we have 

(3.2) (o.if, t) = 0(f) o | L ' a ( f , x)| M(min {n\ 

Proof of Theorem 2. Proof of the direction "=>": Suppose m 2 ( f , t ) ^ M f . 
By simple calculation one can get 

oo 00 

(3.3) L"n(g, x) = r? 2 (« J g(0(P.,*(0-2/>„,*+1 (0 +/>„,*+ 2(0)dt)pn , ,(x) 
t=0 Q 

(3.4) = 2 (« f g(')PnA')dt) {(kln-xf-kn-*)p„tk(x), 
k = 0 Q 

hence 
(3.5) l ^ t e . ^ l s ^ H g i u , 
and 
(3.6) \K(g,x)\ ^2nlx\\g\U. 

Now for /€C[0, °°)nz„„(0, let us define the Steklov function as 
d/2 

(3-7) fd(x) 4d~* J f (2f(x+u + v)-/(x+2u + 2v))dudv. 
o 

Then 
(3.8) I I / - / J S ^ ( f , d), 
and 

(3.9) \\fJ'\\s9d-*cot(f,d). 

For fd one can verify (see [7]) 

(3.10) \K(fd, x)\S\2n f pn,k+2(t)fd"(t) dtpn,k(x) I 9d-*a>i(f, d). 
*=o 0 
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Thus, we have for d=(min {n2, n/x})~112 

| K ( f , x) ш | K ( f d , x)| + \L"H(f-fd, x)\ s 

== 9d~2w2(f, d) + 4 min {n2, n/x) a)2(f, d) s 

SE 13M(min [n2, п/х})1-"'2. 

Proof of the direction "<=": To prove this part, we need the combination of 
{Ln} defined as 
(3.11) LnA(f, x) = a0(n)Lno(f, x) + ai(n)Lni(f, x), 

where |a0(w)l + lfli(")l—-S» п ^ щ о г ^ А п , with А, В absolute constants, having 
the property 

(3.12) ¿ „ Д (Л x) = i = 0 ,1 (see e.g. [7]). 

Then we have for /¡ЕС[0, °°)П£оо[0, °°) by the method from [1, 3] 

(3.13) IAi,i(/> x)-f(x)| s Мй>а(/, 1 ln + (xln)42). 
Now we can give our proof, where the commutativity of {£„} is crucial (see [7]). 

For n, x€(0, we have 
(3.14) 

|Lm(/, x)-2Lm(/, x+h) + Lm(f,x + 2h)\ s 4Mco2{Lmf, 1/„ + ((х + 2 В Д 1 / 2 ) + 

+//|L:(£n>1(/), и + v)\ dudv 
о 

Now we shall estimate the second term. First we have 

\Ll{LniX(f),x + u + v)\ s KxCOlU ^ 25(^n)2"«. 

On the other hand, note that by 

1*1_в/2£м(/> *)l ^ MABn1-"2 

we have 

\x^l2L"m{LnA{f), x)| = Ix1-/* j > J pm,k+2(0L'Uf, t)dtPm>k(x)I =§ 1 *=o о 1 

S МАВп1'*!2 хг~*>г 2 m { f Pn,k+i(t)r^tY~m ( f pm,k+2(t)dtf2pm,k(x)^ 
*"=° о о 

MABn1-"'2 x1-*'2 ( 2 mPm,k(x)l(k + 2))1-*/2 =g MABn1'*'2, 
k = 0 

hence 
h h 

ff\L^(Ln>1(f),x + u + v)\dudv s MABn^2 f j ( x + u + vf'2'1 dudv s 
о 0 

S MABrf-^tf (Мгh2l(x+2h)f-^2 s Msh*(nl(x + 2h)y-l\ 
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here we have used the fact that 
h 

f f ll(x+u + v)dudv sS M1h2/(x + 2h), 0 < A s l , x g O 
o 

(see [1]). Thus, combining the above estimates with (3.14), we have 

(3.15) \Lm(f, x) - 2Lm(f, x+h) + Lm(f,x + 2h)\ ^ 

S 4Mco2(Laf 1 In + ((x + 2h)ln)1'2) + Mzh2(\ln + ((* + 2/j)/«)1'2)^2, 

where M3 is a constant independent of n, x, h and m. 

Let C be a constant which will be determined later. Since 

lln + ((x+2h)lny8 < 1 l{n-\) + {{x + 2h)!(n- l))1'2 s 2(\ln + ((x + 2h)ln)112), 

we can choose n£N, such that 

tl(2C) s lln + ((x + 2h)ln)1't s t/C. 

Then we get from (3.15) by induction 

(oz(Lmf, t) s 4Mco2(Lmf, tlC) + (2C) ( 2 - a ) M 3 t x S 
s . . . 

S (4M)ka>t(Lmf, tC~k) + (2C)2~"M3t* 2(4MC~'f s 
1=0 

S t2(4MfC-2k\\(Lnfr\\00 + (2Cf-'M3t'CI(C'-4M). 

Now if we take here C = ( l +4M)1/", and let fc—«>, we obtain 

co2(Lmf, t) 4CiM3t"l(C'-4M), 
which implies oj2(f, t) — 0 ( f ) , since the constant 4CiM3/(C"—4M) is independent 
of m€ N. 

Our proof is complete. We shall omit the proof of Theorem 3, since it is almost 
the same as the proof of Theorem 2. 

4. A direct theorem for uniform approximation 

When treating uniform approximation we shall always assume the boundedness 
of the functions. Let CB be the set of bounded and continuous functions on [0, 

Theorem 4. Forf£CB, L„(f, x) given by (1.4), we have 

(4.1) | | L B f - f U ^ C « ( / , n-^U + uM, n~i) + n-111/11»), 

where C is a constant independent of n, and (o\(f, n~1,2)„ is the so-called Ditzian— 

8 
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Totik modulus of smoothness defined as 

(4.2) <o%(f, 0 » = sup \\AIJ\U, 
0<ftsr 

cp(x) = хг'\ 

A\№ = f(x-h)-2f(x)+f(x + h), x ^ h; 

Ahfix) = otherwise. 

Remark 4 . In view of the characterization theorems of M A Z H A R and TOTIK 

[8] on the saturation and non-optimal approximation, we can see that our result 
is of some value. 

P roof of Theorem 4. For Szasz operators given by (1.6), we have for f£CB 

(see [6]) 
(4.3) II W ) " / I U ^ M(col(f n - v % + n - i ll/IU). 

We now need the Szasz—Kantorovich operators given by 

(4.4) s:xfix)= 2" J / ( 0 d t p n k ( x ) . 

k=0 kfn 

For these operators, we can easily deduce from (4.3) the direct result as 

(4-5) | | 5 * ( Л - f \ U ^ М « ( / , + coAf, 1/«) + n-1 H/IU). 

We shall use the identities 

(4.6) SZ(t,x) = x+ll(2n), S»*((t-xy,x) = xln+3-1n-\ 

By (4.5), we only need to prove 
I | 2 ( / - s : ( f ) ) - ( f - L n f ) \ \ „ s С(ю»(/, n - ^ + n-1 ll/IU). 

Using the Ditzian—Totik ^-functional 

0 ~ = inf { | | / - g i u + i(ll5iu + | | < ? v i u ) + i 2 i n u } . 

and its equivalence to со2, it is sufficient for us to prove for g£D = CB: g'd A.C.,oc, 
£•"€£==[0, °°)} the estimate 

( 4 . 7 ) | | 2 ( G - S „ * ( I 0 ) - T E - A . G 0 ) | | ~ ^ С ( ( | | G | | » + | | Ф 2 Л 1 ~ ) / Л + И ~ 2 | | G " I U ) . 



Modified Szisz operators 319 

From the above identities, we have for g£D, x s n " 1 

| 2 ( g ( * ) - S ; f e , x))-(g(x)-Ln(g, x))| = 

= \La{f (t-u)g"(u)du,x)-2S?{f (t-u)g"(u)du, x)| =§ 
X X 

S \\cp*g"U{Ln({t-xflx, x) + is:{{t-xflx, X)) S 12 \\<p2g"WJn. 

For 0<X<1/H, we have 

\2(g(x) - Sa*(g, x)) - (g(x) - Ln(g, x))| s 

Thus we have obtained (4.7) and our proof of Theorem 4 is complete. 

R e m a r k 5. The second term on the rihgt of (4.1) is necessary, which can be 
seen from the following example: Let 

fx] 
(4.8) m = { 0 ) 

Then we have rln 
(4.9) / ' ( x ) = {0> 

f l / 
(4-10) •>"(*) = to, 

x lnx—x 2 / 2+ 1/2, for x£[0,1); 
otherwise. 

l n x - x + 1 , for x€(0,1); 
otherwise. 

1 / x - l , for xe(0,1); 
otherwise. 

Therefore we obtain a function / € C B which satisfies 

«*( / , «" 1 / 2 ) - = 0(1/72) n - 1 ll/IU = 0(1/»), 
and 

/'<*£„. 

On the other hand, from the saturation class of the modified Szisz operators 
{L„} [8] we have 

\\L„f-f\U * 0(Un). 

Thus we have proved that the second term w ^ f , 1/w) is necessary. 
We can also give the weak-type inverse estimates for the moduli. 



320 Zhu-Rui Guo and Ding-Xuan Zhou 

Lemma 2. For L„(f,x) given by (1.4), N, we have 

(4.11) \\{Lnm~ + \\Lnf\U^ Mn*\\fU, / €C B ; 

(4.12) \\<p\LnfrU + \\Lnf\U^Mn\\f\U, f£CB-, 

( 4 . 1 3 ) \ \ { L T T M ~ N L N F U ^ M { \ \ R U + \ \ F \ \ - ) > 

(4.14) \\<p\LJ)"|U + \\LJU ^ M(||<p2/"|U + ll/IU), <P !/"€L„, 

where M is a constant independent of n andf. 

The proof can be easily obtained from the representations of the derivatives of 
LJ in [7]. 

Theorem 5. For f(LCB, L„(f,x) given by (1.4), we have 

(4.15) < ( / , M1n~1 i I I A / - / I U + » -
1

 ll/IU; 

( 4 . 1 6 ) a t f , n~l) s M , « - 1 ( 1 « £ » / - / « - • + LL/IU)-

W/IERE M X W independent of f and N £ N . 

The proof is the same as given by D I T Z I A N and T O T I K [ 6 ] , (see also [ 1 0 ] ) , so we 
shall omit it. 
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On the divergence phenomena of the differentiated 
trigonometric projection operators 

S. P. ZHOU 

1. Introduction 

Let r be a nonnegative integer, the class of 2;r-periodic continuous functions 
which have r continuous derivatives, C2„=C®)t, 3Tn the set of trigonometric poly-
nomials of degree at most n. Let 

be projection operators, that is, linear operators with the following properties: 

(i) Pn(fx)£STn if f<iC2K, 

(ii) Pn(f,x)=f(x) if f£2Tn. 

Furthermore, 

s „ p M ^ i l 
o^/ec.« 11/1! 

is the norm of the r times dilferentiated operator, || • || denotes supremum norm over 
the real line, En(f) 

is the best approximation of f£C i K by trigonometric polynomials 
of degree n, and 

co(f, 8) = max mx+h)-f(x)\\. 
Recently, P . O . RUNCK, J . SZABADOS and P . VÉRTESI [1] studied the convergence 

of differentiated trigonometric projection operators, they established 

Theorem A. If f£C\K and PniC2n-+£Tn, then 

!!/«(*) -P«(/, x)\\ = 0(£„(/(r)) + En(f) ||). 

On the divergence phenomena [1] showed 

Received August 13, 1990 and in revised form April 22, 1991. 
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Theorem B. Given r S 0, a modulus of continuity co(t) such that 

(1) lim - 4 - r = 0, v ' «-o+ co(t) 

and a sequence of projection operators then there exists an fr(x)£ 
€Cr(a>) such that 

— « , ( > . - > ) tog rt— " 
where 

Cr(co) = { / (x) : fZC\„ sup 0 

I o o ^v) > 

Theorem C. Given r^O, a sequence of projection operators 
and a sequence lim e„=0, then there exists an / r ( x ) £ W L i p 1 such 

H-«eo 

that 

limsup ^ 
n - ~ 8 n / i log n 

where 
W'Uv 1 = / w € L i p 1}. 

From the above discussions, a natural question thus arises: Can we remove 
condition (1) eventually while the same conclusion of Theorem B still holds? 
Using some new ideas, together with the basic methods given in [1] and careful 
calculation, the present paper will prove this fact. 

Lemma 1. Let 

then for |x|=i/r8/2, 

and for |x|arW-1/2, 

2. Result and Proof 

J=N J 

ys*,.(*)l = 0(N-W). 

Proof . It is easy to see that 

(2) | S » . . ( * ) | s n | * | 
since 
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At the same time, by Abel transform, 

while 

• sin/x " - 1 1 4 1 4 
2 — f - = 2 777TTT 2 s inkx + — 2 sin**. J=K J J=N JU+1) k=N « t = N 

COS 

2 sin kx — k=N 
(7+t) *+cos T) * 

„ . X 2 sin — 2 
so ») 

(3) 

Now Lemma 1 follows from (2) and (3). 

Lemma 2. Given r s 0 and « s i , there exists a function gnr(x)^C^ such that 

(4) 

(5) 

(6) 
and 

(7) 

where 

||gw(*)|| s Crf, 

Hg^toll == Cn1, j = r,r+1, 

f 0 ( t f + 2 ' 3 ) , |*| si B - i 

l*£+1>(*)l = {0{tf **'*), |*| s «~1/4, 

4 f gS>(ODm(t)dt^ Crf log n, 
71 J 

—jr 2/1 + 1 sin-

2 s i n y 

w r/je nth Dirichlet kernel. 

Proof . Set 

g«r(x) = * 

then 

Bnr 

tn»/Sl COS ((" - j ) [„,/»] cos [(« +. / )*+ 

T"̂ 3) COS (/2 — /) X OOS(R + / )X^ • «£?> v v - - A — 2rfs\nnx 2 
V/^'n j j ' 

sin JX 
i=["

l / I

] J 

l) In the whole paper, C always indicates some positive constant depending upon r but inde-
pendent of n which may have different values at different places. 
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Furthermore, 
„ ^ sin jx n r . ^ 
2if+L cos nx 2J —7—h 2rf sin nx 2 cos Jx 

S 2rf in I [ 2 ] - ^ + | s i n n x | | l"£] cos jx |]. 
H=T"1/2I J 

Altogether with Lemma 1 and 

[fl2/3] 

2, 

|sin nx\ s n |x|, 

[n2/3J 

I 2 cosyxl = 0(min{«2/3 , |x| -1}), 

we then get for |x| s n " 1 , gir
r
+1)(x) = 0(rf+2'3), and for 

g(nrr+1)(x) = 0(rT+*'% 

(6) is completed. By above discussions and the well-known estimate 

= 0(1) 2 s m J x 

J=i J 

for all n, (5) is trivial. The estimate (4) is also not difficult. If r=0 , then (5) implies 
(4). Let 1, we have 

[n2/3] 1 

||g„r(x)|| ^ 2tf 2 :,„ ,.y - 0(rf), 

which implies (4). At last, 

1 r I""3] 1 
- f gS>(0Dn(t) dt = rf 2 -f^Crf log n, 
n -i ;=r»1/2l J that is (7). 

Theorem. Given r^O, a modulus of continuity co(t) and a sequence of projec-
tion operators Pn£C2„—then there exists an fr(x)£Cr(w) such that 

limsup > 0 . 
CO(M_1) log n 

Proof . Considering Theorem B, we only need to prove our theorem in Lip 1 
case. If for any fixed N, 

limsup I ' ^ W - f fa»,*)| . Q , 
n Mog/J 
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then gNr(x) is the required function. Now we suppose otherwise for any fixed N, 

n - 1 log n (8) jim •KMrK J z i ;J : K r ' = o. 

Using the argument from [1], p. 291, we have 

/Pnir) M -+u),-u)du = ± f g%>(0D„(t)dt. 
— s —it 

By (7) we get 
(9) ||PB«(gnr,x)|| s C i f log n. 

We select a subsequence from natural numbers « i<« 2 <. . . by induction. 
Let n t = \ . After nk, we choose nk+1 satisfying the following properties: 

(10) 

(11) tik+i ^ m i n j l , HiJ^ir1}nf \ 

( 1 2 ) «£+ilog/i t+1 = * 1 0 8 k ' J - 1 ' 2 ' 

Due to (8), (12) is possible. Define 

/r(*) = 2 g i j r M n j ' - 1 . 
./=1 

Clearly, /r£C£„. For ¿>0 , let n ^ + ^ S ^ n ^ 1 . Then by mean value theorem 
there is a [0, 1] such that 

I / « ( * + $ ) - / « ( * ) ! g 8 2 + nJr~1 + 2 2 IISn'r(*)ll"7r-1 : = 

Due to (5), (6) and (11), 

j=i j=k+i 

I2SC 2 "J1 = 0(nkU) = 0(8). 
j-=k+1 

Meanwhile since ( n r \ n r ^ O X n J 1 , «J1 / 4)=0,1 =§/</ (by (10)), if x+e k 8£(n^\ n r w ) 
for some /„, then 

x + dMin^njV*) 
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for 1 S j ^ k j ^ i g , that is, x+0k8 satisfies (6). Therefore, 

A S д (I^V' (.x + 0k8)\ п70'-1+ 2 I fit1* (* + ek 5)| nj" ») s 
0 13ijSk,j*i0 

^ C8(l+ 2 nj1») = 0(8), 
j=I 

thus we have proved f r £ W Lip 1. On the other hand, 

IIf,('\x)-P£(f„ x)|| s ¡P^C^r, x^r,;'-1-. 

- 21 KlM-P^Hgnjr^)^-1- 2 }=1 j=k 

- 2 I K i g n j r . x n i j ' - 1 := 

From (9), 

(13) s C ^ - M o g « , , 

while (5), (11) and (12) imply that 

(14) ¿6 = 0 { 2 п Г ) = О («Г1), 
J=k 

(15) = 0(k~1nk
1lognk), 

finally using (4) and (11) we get 

(16) г в = о( | |# ; )ц 2 и/1) = 0 ( | | ^ | | «¿-Л) = OK - 1 ) . 
j=k+1 

Combining (13)—(16), we thus have 

II /«(*)-P„ ( ;>(/ r , *)| ё Сиг1 logПк 

for sufficiently large k. Theorem is proved. 
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On the central limit theorem for series 
with respect to periodical multiplicative systems. II 

s. V. LEVIZOV 

Introduction. In [1] we studied the question of the central limit theorem (CLT) 
for lacunary subsystems of periodical multiplacitve orthonormal systems (PMONS), 
satisfying the so-called weak lacunarity condition.*) We also defined the concept of the 
subjection of subsystems to CTL and gave sufficient conditions for being a subjection, 
too. The sharpness of the given conditions was also shown. The assumption 
about the boundedness of the sequence {/>„} generating the investigated PMONS 
had an essential importance. The purpose of the present work is to extend these 
results to the case when Ilm p„=+ We shall also investigate the connection 
of the rate of the growth of {/?„} and the "density" of the lacunary sequence {«J. 

1. Sufficient conditions. Let the PMONS X={x„(x)} be defined by means of 
the sequence {/>„}. Denote {x„k(x)} a lacunary subsystem of A'such that the sequence 
{wj satisfies the conditions 

(1) S 1 + œ(k) for k s k„, 
nk 

where co(&)|0 and for some a, 0 < a < l . 
For given sequence {«k} we define, as earlier, Xk and Xl

k (q) as the quantity of the 
conjugate pairs and the (/, fc)-adjoint numbers (with nq for fixed q) in the k—th 
block of X, respectively. Also we put /¡fc:=max {/?,: l s / ^ f c + l } ; k=1,2, .... 

Without the restriction pn—0( 1), first we shall give sufficient conditions for 
the validity of CLT in the case when all of the coefficients xk are equal to 1. 

*) Here and further, in order to avoid the repetitions, for concepts, notations and formula-
tions we refer to [1]. 

Received July 20, 1990. 
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Theorem C. Suppose that the sequences {nk}, {co(/c)} and {pk} satisfy condi-
tion (1) and additionally: 
a) 
(2) \npk= ©(//(*+1)-<»(/(*+1») as k 

b) there exists a real number rj, O^rj^l such that 

1 N 

(3) lim N-*~/(./V+i) ¡=i 

c) there exists an absolute constant C > 1 such that for any fixed q and for any 

(4) tt(q)-a>(№) = 0(&-k)-lnpk as 

Then the subsystem {x„k(x)} is the subject to CLT. 

P roo f . The line of the proof follows that of Theorem A in [1] (conditions 
(2)—(4) of Theorem C are the analogues of conditions (1.2)—(1.4) of Theorem A, 
respectively). All of the lemmas of § 2 ([1]) remain valid. Lemmas of § 3 need only 
some light modifications, caused by the estimation of the value 8k=f(k+\)—f(k). 
In our case, using the arguments of [2], we have: 

A - D f 1 1 S k - ° U f ( k + i ) ) l 

In addition, since ak=1 for fc=l,2, ..., then bk=max {\aj\ :/(fc)</S 
s / ( f c + l ) } = l and with condition (2) we conclude that 

bk
 = °\ h ^ 1 38 * — 

These facts simplify the proofs of Lemmas 3.2 and 3.3 (see [1]). The completion 
of Theorem C runs as in § 4 of [1]. 

R e m a r k l . I t i s easy to see that Theorem A is a corollary of Theorem C in 
the case pn=0(l) and ak=1 for k=1,2,.... 

Remarks 2. The sharpness of condition b) of Theorem C follows from the 
proof of Theorem B ([1]). At the same time the sharpness of conditions a) and c) 
remains open. 

If the coefficients ak are not all equal we can formulate the following statement, 
which is a generalization of Theorems A and C. 
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Theorem D. Let the sequences {/zj, {(o(k)} any {/?fc} satisfy conditions (1), 
(2) and (4). Further let a sequence {o4} be such that 

(5) k 

and there should exist the limit 
1 №+1) 

(6) n = ] i m w Z ( a j - â j ) ^oo . 

Then the subsystem {akx„k(x)} is the subject to CLT (briefly : K ^ W J c C L T ) . 

The proof of Theorem D goes analogously to the foregoing reasons. 

Remark 3. The additional condition ak=o(—in this case is essential. 
W 
'A* 
ItffcJ 

Namely, in the coursc of the proofs of Theorems A and C we used the estimation 
=o(Bk). In Theorems A and C this estimation arises from conditions (1.2) 

(see [1]) and (2), respectively. But in Theorem D it needs some supplementary cal-
culations. Since the condition ak=0 ( — i m p l i e s that bk=o(——|. hence 

V k> \Yf(k)' 
(2) gives that 

i m 
as k 

because f(k+l)~f(k) fby virtue of 5k< , = o(]/f(k +1))]. The con-
l co(/(/c+1)) J) 

dition ak=0\—holds, e.g., for any non-increasing sequence {ak} (ak^0). 
Vk> 

Using the methods of proof of the previous theorems it is possible to establish 
a further analogue of Theorem A. 

Theorem E. Let the sequences {«J, {<»(£)}, {ak} and satisfy conditions 
(1), (4), (6) and 

(7) Ak = 0(k-ak)-, t-1 

(8) bk=o[ — J as 

Then {akyn (x)} czCLT. 
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Remark 4. The second condition of (7) assures the relation f(k + l)~f(k) 
(in the proofs of Theorems A, C, D this follows form conditions (1.2) and (2), res-
pectively). In the present case we have: Bk=Aj-ik+1)=0(f(k+l)-a/(k+1)) = 
=0(bk-f(k +1)), whence (8) gives the required relation. The condition Ak = 
=0(k-ak) is fulfilled, e.g., for any non-decreasing sequence {a*}. 

Concluding the paragraph we note that in Theorems A, C, D, E conditions 
(1.4) and (4) can be replaced by the next one. Denote by p{ the quantity of pairs 
(nq, nr) such that mk^nq, nr<mk+1 and l^q+r<mJ+1 ( j can be equal to 0, 1, ... 
..., k — 1). Then instead of conditions (1.4) and (4) it is possible to use the condition 

(9) k2b*j .Q{.5j = o(Bl) as A: — 
o 

This condition is "cruder" than conditions (1.4) and (4), but, on the other hand, 
it simplifies the proof of Lemma 3.3 (see [1]) essentially. In this case we immediately 
obtain the estimation 

¡\Al-A))dx^bl.b).Qi.5j 
o 

(see the arguments in [1]). Therefore 

LP = 2 21 j (At-A)) dx^ i b\. k£bj.Qi-5j s 1=1 j=o f »=1 j=o 

N /(*+1) *-l 
S 2( 2 ) 2 b2j-QJ

k-dJ=jlBo(B%) = o(Bjl) as N — 
k=l •'=/(*)+1 j=0 

that was required. Then we can estimate Lff similarly and the proof of Lemma 3.3 
can be completed faster. 

The sharpness of condition (9) can be demonstrated by the same counter-
examples as the sharpness of (1.4) in Theorem A. 

2. How fast can the numbers pk grow? Comparing Theorem A with Theorems 
C, D, E we notice that the conditions of type (2) is a "key moment" in the question 
on CLT for the case lim pn=+c°- Now we consider the problem: What kind 
of growth of { p J does the fulfilment of condition (2) assure even if ak = l, a>(k)= 

1 
=—: k=1, 2, ...; a £ 0 ? In this case we have: 

k" 
(10) In pk = o (v7W+l) • (f(k+\))-*) = o((f(k+1 )?/>-). 

By (10) it follows that when pk=0( 1) then an admissible boundary of the 
1 

lacunarity is a=— (this fact is well known for the Walsh system). 
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For convenience we assume that the sequence {«J is "regularly" lacunary, i.e. 
there exist constants c and ¿such that 0 and 

(11) 1 + — a Ht±L s, 1 ' + kf ~ nk
 + 

for some a > 0 and k = 1 , 2 , . . . . 
In this case we have: 

m* - - - •• -ni ' Si i1+_f) • 
Taking the logarithm, we obtain that 

/(« ( c ^ 
(12) l n m t s l n ^ + 2 In 1 + — • 

1=1 v i > 

Since f(k)t«> and In (l ( -^- j , then (12) implies that 

(13) In mk = 0 (in n1+ J ? - L ) = O (Ak)1-*). 

By (10) and (13) it follows that under assumptions (11) we used relation (13). 

(14) lnA = {(lnm t)^-«)/ i - .} 

(here we use the relation f(k+l)~f(k)). 
k 

Since In mk= y ln P i , thus (14) shows a correlation between the growth 
<=i 

of {/>*} and the index of the lacunarity. So, if pk~exp (kf), /?>0, then In mkxkf+1 

and from (14) we obtain the following sufficient condition 

(15) /? < 1 — 2a. 

Inequality (15) shows that only an exponential growth of {/?*} can force to move 

away from the boundary a=—. 

Investigating the critical case we shall suppose that 

nfc+i , ^ <P(k) 
J!k 

where (p(Jc)t°° 
and q>(k)=otyk). 

Then for the fulfilment of (2) it is sufficient that (16) In pk = o(<p{f(k))). 

9 
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i By simple calculations we obtain the relation 

\nmk = o(iW)-<P(m% 
which implies 
(17) In mk = o{fQc)). 1 

By (16) and (17) we conclude that if pk~ky (y>0), then the following functions 
<p(k) are suitable: cp(k)=(\n k)1+e for any e>0, (p(k)—\n /с-ln ln (/c + l) and 
so on. f . ;; 

In particular, if {pk} consists of only the prime numbers (i.e. pl —2, p2=3, p3— 
= 5 , . . . etc.) then p k ~ k In к and all foregoing statements are valid. 

Finally, we remark that under condition (11), by the estimation max (¡¡= 

= o { — — , condition (9) can be simplified. In,the case ak = 1 (k= 1, 2, ..'.) 

it has the form 
k£e{-= o(k),. 
j=0 

where we used relaiton (13). 
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On composition operators 

ASHOK KUMAR 

1. Preliminaries 

Let (X , i f , A) be a tr-finite measure space and let <P be a measurable non-singular 
(?.<P~1(E)=0 whenever A(£)=0) transformation from X into itself. Then the 
composition transformation C® on L2(X, SP, A) is defined as 

C0f = fo<P for every f^L\X,Sf,X). 

In case C0 is a bounded operator with range in L2(X, Sf, A) we call it a composition 
operator. In this paper we generalize the Theorem 1 [11] and prove that the result is 
also true in case (X, Sf, A) is a c-finite standard Borel space. In the subsequent 
sections we characterize composition operators with ascent 1 and descent 1 and 
give a criterion for partial isometry and co-isometry composition operator. In the 
last section hyponormal composition operators on /2(N, A), the square summable 
weighted sequence space, have been characterized and a necessary condition for 
CQ to be hyponormal on L2(X, Sf, A) is given, where (X, Sf, A) is a standard Borel 
space. 

. Let B(L2(X)), R(C0), RiCJ-1 denote the Banach algebra of all bounded Jinear 
operators on L2(X), the range; of C0 and the orthogonal complement of the range 
of C 0 respectively. We denote by 

' dXQ-1 , dX(4>o<P)~x 

= ~dT~ 3nd g°= dX 

the Radon—Nikodym derivative of the measure A<2>_1 and A(<fo4>)_1 with respect 
to the measure A, respectively. The symbols X0 and X'Q will stand fot the set 
{x:/0(*)=0} and g0(x)=O} respectively. The multiplication operators induced 
by fa and g„ are denoted by Mfo and M^. 

Received October 16, 1989 and in revised form October 3, 1991. 
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If E and F are two measurable sets, then "E=F" will indicate that their sym-
metric difference is of measure zero. We denote the characteristic function of a 
measurable set E by %E-

Def in i t ion . An operator A on a Hilbert space His called a Fredholm operator 
if the range of A is closed and the dimensions of the kernel and co-kernel are finite. 

Def in i t ion . A standard Borel space X is a Borel subset of a complete separable 
metric space T. The class Sf will consist of all the sets of form XC\B, where B is a 
Borel subset of T. 

2. Fredholm composition operators 

Theorem 1. Let (X,6f, A) be a a-finite non-atomic standard Borel space and 
B(L2(X)). Then C0 is a Fredholm operator if and only if it is invertible. 

P r o o f . If C0 is invertible, then C0 is clearly a Fredholm operator. 
Since Ker C0=Ker C% Q , = K e r Mfo [17, p. 82], where Mfo is the multiplica-

tion operator induced by / 0 , and A'is a non-atomic, the nullity of C0 is either zero 
or infinite. Suppose C0 is a Fredholm operator. Then, since C0 is one-to-one with 
closed range, to prove that C0 is invertible it is enough to show that $ is one-to-one 
a.e. [18, Theorem2; 13, Corollary 2.4]. Suppose <P is not one-to-one. By Corollary 8.2 
[22] there exist two Borel sets and Zx such that <P is one-to-one on Yx onto Z2 and 
AfTVjTiO. Now (A'Vi) is a Borel set. Let <PX = ^ ¡ ( X ^ ) . Again by Corollary 
8.2 [22] we get two Borel sets ^^ ( -^X^ i ) and Z2 such that <P is one-to-one on Y2 

oo 
onto Z2 . Since A'is a non-atomic, we can write F2 = U En such that 0<A(£'„)-=:°°, 

nsl 
E„f)Em=& whenever n ^ m , and A ^ D ^ - ^ [ J E , , ] ) ) ? ^ . From the fact that 
R(C0)=L2{X,^-\Se),X) [13, Lemma 2.4], where Ee^}, it 
follows that, for every «6N, there exists A ^ i - 1 ^ ) such that (xE , XK 
This shows that XE„ does not belong to R(C^. Since A f l $~ 1 ( [ £ „ ] ) ) ^ 0 , we 
have En7i<P~1(E) for any E^Sf, and hence XE can not belong to R(C0) also. 
Let L2(X)=R(C0)±®R(C0). Consider {/£n} = {/„+g„}, where fndR(C0)^ and 
g„£R(C0). In view of the remark [22, page3]" $[En] = {<t>(x): x£En} is a Borel set. 
Let = <P-1(<P[.E'(I]). Since <P\Y2 is one-to-one, {F„} is a disjoint sequence of sets. 
We claim that gn=g„-xFn- Suppose gn^gn-xFn- Then X(Gn\Fn)?iO, wheer G„ = 
= {x: Since 

f l — f o r xdEn, 
U x ) for x£X\Ett. 

We can find a set G'Q(G„\F„) belonging to the a-algebra such that 
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( f n ^ X c ) ^ which is a contradiction. Thus g„—gn-XFn- Since 

</„. fm) = (XE„ - gn, XE
M
 -gm) = 0 whenever n * m, 

{/J,} is an infinite orthogonal sequence in R(C<p)L which contradicts the assumption 
that dim RiC^)-1 is finite. Hence <f> is one-to-one (a.e.). Thus C 0 has dense range and 
hence C® is invertible. 

3. Ascent and descent of a composition operator 

Def in i t ion . Let A be an operator on a Hilbert space H. Then the ascent a (A) 
of A is the least non-negative integer such that Ker Ak=Ker Ak+1 for all k^a(A) 
and the descent 3(A) of A is the least non-negative integer such that R(Ak) = R(Ak+1) 
for all k^S(A), where R(A) is the closure of the range of A. 

We shall prove the following theorem which characterizes composition opera-
tors with ascent 1. 

Theorem 2. Let Ca>£B(L2(X,S^ A)). Then C0 has ascent 1 if and only if 
A($o$) - 1 (£ )=0 implies X<P~\E)=0 for E<i9>. 

Proo f . Since is a composition operator, there exists an such that 

X0~
1

(0~
1

(E)) S MX<P~\E) =§ M
2

X(E) 

for every [20, Theorem 1]. This shows that the measure X(<Po<P)~1 defined as 
X(4>o(E)=X<P^1('P~1(E)) is absolutely continuous with respect to the measure 
X, and consequently for every E££f we have X($o$)-\E)= fg0dX. Suppose 

X<P~1(E)=0 whenever A($o3>)_1(.E)=0. Then, by absolute continuity of A(<Po$)-1 

and the equation X<P~HE)= f f0dX, it follows that Xa=Xg and hence by [17, 
E 

page 82] we conclude that 

KerC® = Ker M
F O
 = L

2

(X
0
) = KerMeo = K e r C | . 

This shows that C 9 is of ascent 1. 
Conversely, suppose KerC®=KerC^. Since Ker C,J,=L

2

(X
0
) and Ker 

=L
2

(Xq), it follows that X
0
=X'

Q
. Since X<P~1(E)= f fadX and A(<f>o 

= / g 0 d X , it follows that X(^oi>)~1(E)=0 implies X4>~1(E)=0. 
£ 

Theorem 3. Let Xbe a a-finitestandardBorelspace and let C0£B{L2(X, i f , A)). 
Then the operator C0 has ascent 1 if and only if 4>[X1]^X1, where <&[Xx] = 
= x ^ X j and X1=X\X0. 
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Proof . Suppose « P ^ J i Z i . Then, since KerC„=L*(X 0 ) and L2(X) = 
= L2(X0)®L2(Xl), every /i~Ker C2 can be written as 

f = fi+gi, 

w h e r e K e r C® and g1£L2(X1). Since 

ftoíoí = C%gl = C S / = 0 and 

it follows that g !=0 a.e. on Xt. Hence f=f1. Thus Ker C%gKer C0. The inclu-
sion otherway is true in general for every operator. This shows that Ker C 0 = K e r C j . 

Conversely, suppose Now, if E is a measurable subsetof A W i ^ ] 
of non-zero finite measure, then C |x E =0 . Since E is a subset of X1, it follows that 
CdXe^O, which implies Ker C05¿Ker C®. Hence the proof of the theorem is 
completed. 

Corol la ry 4. Let ^ /)). Then Ker Q , = K e r C% if and only if 
(4>o$)[N] = #[N], where i>[N] is the range of 

Example 5. Let A"=R, the set of real numbers, and let 4>(*) = |JC|, 
Then CQ is a composition operator with ascent 1 on L2(R). 

In the following theorem, we shall characterize composition operator with 
descent 1. 

Theorem 6. Let C9$B{L* (A)). Then R(C0) = R(C%) if and only if <¡>-\<f>)= 
= (<Po<P)~1(Sf), where SP is the o-algebra of measurable subsets of X. 

Proof . Suppose Then, since the ranges of C 0 and 
CJ are dense in L\X, Q-^ST), A) and L2(X, (<¡>o<P)-\Sf), A) respectively [13, 
Lemma 2.4], it follows that JR(C®) = R(C 

Conversely, suppose R(C0) = R(C%). Then 

L\X, A) - L\X,{<¡>o<P)-i(<?), A). 

We claim that Suppose ^ ( ¿ ^ ( ¿ o í ) - 1 ^ ) . Then, 
since is a subfamily of there exists an element E=<P~1(F) 
which does not belong to ($o<P~l(5p). Since X is c-finite, we can write 

* = U = Ü = ü ¡=i >=i ¡=i 

where {A',} is a disjoint sequence of sets of finite measure. Let Fi=Ef)(0o4>)~1(Xi). 
Then Ft does not belong to ($oQ-^SP) for sonie fgN or otheswise E will be in 
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( ^ o ^ ) " 1 ^ ) . This shows that /F |$K(C|) for that /^N, which is a contradictiotf. 
Thus the proof of the theorem is complete. 

In the following theorem we characterize composition operators with descent 
1 in particular case. ' •. V «! 

Theorem 7 . 'Let X be a a-finite standard Borel space and lei C0^B(L2(X)). 
Then R(C0) = R(C0) if and only if <P\Xx is injective a.e., where = fQ{x)^0}. 

Proof . Since R(A)^±R(A2) for any bounded operator A on a Hilbertrspace, 
it follows that R(C0)^R(C%). We will show that if <P\Xx is injective a.e., then the 
equality prevails. Suppose xE€.R(C9). Then there exists a measurable subset FQXx 

such that E=<P~1(F). Since 0\X± is injective a.e. and Xis a c-finite standard Borel 
oo 

space, <P[F] is a Borel set and <&[F]= U E„ for some disjoint sequence {E„} of 
n = l 

measurable subsets of finite measure. Consider the sum . 

. 2 X E „ O<PO$= 2C%XE„-n=l >1 = 1 

It is easy to see that the sum converges to XE a.e. By the Lebesgue dominated conver-
gence theorem it converges to Xe in I<2-norm. Hence y_E belongs to the closure of 
R(C%). From this it follows that all simple functions which belong to R(C0) also 
belongs to R(C%). This is enough to establish the equality R(C0) = R(C0). 

Conversely, suppose <P\Xx is not injective a.e. Then, since Xx is a Borel set, by 
Corollary 8.2 [22], there exists two Borel sets A and Z such that is one-to-
one on A onto Z, A$~ 1 (Z 1 \Z)=0 and ¿(A^VO^O. Let FQ(Xx\A) be a measur-
able set of finite measure such that X(AN^_1(^[F]))T I0. Then X®-I(FJ=C,®Xf€ 
^RIC^), We claim that X#--

H
E) does not belong to R(C%). If XO-HF)^R(C%) = 

= L2(X,(<Po<P)-1(Sf),X), then there exists E^P such that 4>-i(F)=($o$yi(E)= 
= <p-i(G)=<I>-1(Gr\A)U<I>-1(G\(Gr)A)), where Since X(Af) 
fl <P~1(<P[F])^0, we can conclude that X(GDA)^0, and hence ?.{4>-1(GC\A))^ 
= f fo?*0 which is a contradiction. 

Gr\A 

Corol lary 8. Let inf{A(rt): n€N}>c=>0 and sup{A(n): n£N}«*> and let 
C0£B(l2(N,^,A)). Then R(C0)=R(C%) if any only if <P\$[N] is one-to-one. 

. Example 9. Let X=[ — 1, 1]. and A be the Lebesgue measure on the Borel 
subsets of X. Let 4>(x)=\x\. Then C0£B(L 2(X)) and 7?(C0)=i?(C2). . 

We shall give an example of a composition opeartor when R(C
0
)T£R(C

0
) 

but K(C^=.R(C|) . 

Example 10. Let Af=R, and let Sf be the <7-algebra of BoreLsubsets of R 
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wint X as the Lebesgue measure. Define the measurable function $ as follows 

1/* if xÇ]0,1[, 
—x—(«—2) if x€[l,°°[ and n s x < «+1 , « = 1 , 2 , 3 , . . . , 
x - (n—1) if *€] — °°,0] and n x < «4-1, « = 0 , 1 , 2 , . . . . 

This $ induces a composition operator C 0 on L2(R). Since X]-i>0]$.R(C|) and 
it follows that R(C0)*R(C%). But, since 

we have R(C0) = R(C2
0). 

4. Partial isometry and co-isometry 

Def in i t ion . An operator A on a Hilbert space is said to be a partial isometry 
if it is an isometry on the orthogonal complement of its kernel. 

Theorem 11. Let C0 be a composition operator on L2(X,SP, X). Then C0 is 
a partial isometry if and only i f f is a characteristic function. 

Proof . Suppose C0 is a partial isometry. Then C0=C0C0C0, [8, Corollary 
3, Problem 98] and it follows that C*C0=C0C0C0C0 which is equivalent to 
M¡=M¡^-Mf=Mf«. From this we conclude that f0 is a characteristic function. 

Conversely, suppose / 0 is a characteristic function. Then, since Ker C0 = 
=L2(X0) and (Ker C0)±=L2(X1,#i, X), where X1=X\X0 and Ed?}, 
it follows that 

C%C0f= MfJ = f for all /e(KerC®)-L. 

This shows that C0 is an isometry on the orthogonal complement of its kernel. 

Corol lary 12. Let C0dB(P{N)), where / 2 (A0={R}: I k l 2 « » } . Then C0 

is a partial isometry if and only if <P is one-to-one. 

Proof . Since 

the Corollary follows. 

Example 13. Let ^= [0 , «=[ and X be the Lebesgue measure on the Borel 
subsets of X. Let $c(x)=x+c, where c£X. Then C0£B{L2(X))\ / 0 ( x ) = l , for 

and / o (x)=0, for O s x < c . Hence by the above theorem {C0 : c(iX} 
is a family of partial isometries on L2(X). 

Defini ton. An operator A on a Hilbert space is called a co-isometry if AA*=I. 
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Theorem 14. Let C0£B(L2(X)). Then C0 is a co-isometry if and only if Co 
is onto and f0 o = 1 a.e. 

Proof . Since, for every feR(C0), 

/ = C * C £ / = C0C%C0g = C0Mug = C0(fo-g) = / 0 o<?. / , 

where C0g=f, C0 is is co-isometry if and only if C0 is onto and / O o $ = l a.e. 

Corol lary 15 .Let C0£B(l2(N)). Then the following statements are equivalent: 
(i) C0 is partial isometry, 

(ii) C0 is co-isometry, 
(iii) C0 is onto, 
(iv) 4> is one-to-one. 

5. Hyponormal composition operators 

Def in i t ion . An operator A on a Hilbert space H is called hyponormal if 
A*A-AA**sO. 

In [9] hyponormal composition operators have been studied but it remains an 
open problem to find measure theoretic condition which is both necessary and 
sufficient for the hyponormality of C 0 . 

Lemma 16. Let C0 be a composition operator on L2(X). Then C0 is hyponormal 
only if C0 is one-to-one. 

Proof . Suppose C0 is hyponormal. Then 

Ker C0C% i Ker C%C0 = KerC 0 = L\X0). 

Since Ker C0C0 =Ker C% =R(C0)±=L2(X, Q'1^), then, for every measur-
able subset E of X0 of non-zero finite measure, there exists an element F in £f such 
that 

(XE, C * X F ) = ( X E , X*->(F)) * 0 , 

which is contradiction. Thus it follows that the measure of X0 is zero. This shows 
that C0 is one-to-one. 

Corol lary 17. Let C 0 O 2 ( T h e n C0 is hyponormal only if $ is onto. 

Lemma 18. Let C0£B(l2(N, X)). Then 

_ X(ri) 
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where e„ is the characteristic function of {«}, and 

Proof . Since 

/2(N, A) = = /2(N, <p- 2 ( ,n A)®(/2(N, «P- 1 ^) , A))^ 

en admits the form 

and it follows that 

Since cx#-i(<nn))-Len> 

which implies that 

e'n — en — cX>f-lw))-

(c/®-•(«(„)), en-ex®->(«(»))) = °> 

X(n) c = 

This completes the proof of the Lemma. 
Using the notation 

C%, the adjoint of C®, can be expressed as follows: 

¿00 -- Hn) f ^ = = i ^ i ^ y - Z o o ^ W - M , ) -

A(n) A4>~1(4>(«))̂  A(w) 
~ A$_1(<P(m)) A(*(n)) '**<"> ~ A<2>(n) 

The proof of the following theorem is analogous to the proof of the Proposition 
11.5 [2]. 

Theorem 19. Let C®£5(/2(N, SP, A)). Then C® is hyponormal if and only if 
<P is onto and 

~ ( W ) 2 
^ A(n). 

P roof . Suppose C® is hyponormal. Then, by Corollary 17., $ is onto. Let 
Cn be the subspace spanned by {em}mi0-Hn), feCn and f=2cm«m- Then 

/ \fo$\*dk = <C®/, C®/> <CJ/, C%f) = (C% 2 cmem, C%Zcmem) 
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and thus, by the above computation, 

/ 1 
X(m) 

Cm X<P(m) e<"(m) 

This implies 

11/11!®-' s 

where 

X(m) 
A$(m) ' m = TWI2" CmA(w)la = 7¿J" 

h = dX 
dXQ-1 • 

Since the inner product with /t |$ - 1(«) in L2(N, 3?, Ai>-1) induces a linear functional, 

Conversely, suppose the hypothesis of the theorem holds. Then 

{CoClf, f ) = {Ctf, C t f ) = (C% Z cnen, C% Z cnen) = 

X(n) „ ^ X(n) „ A 
V = ~ C" X<P(n) 

= (z Z ct 

X®(n)> Z Cn } Z®(n)/ 

A(i) " X(i) e»> 2 2 ci X<P(i) e„ ) = 

= 2 "T7rr| 2 c(A(0|a = 2 i€®-'( n) (I 

n i€®-'(n) A$ (i) " 

w l 
S 2 ll/l^_1(")ll!®-' = 11/11!®-' = <C®/, c®/> = {c%c0f, / ) , 

which shows that is hyponormal. 
Let X be a c-finite standard Borel space and X1 be the maximal subset of X 

such that ^ - ^ ( x y n C ^ X M ) ) ^ f ° r Let X ^ ^ X ^ ^ x ^ : x ^ X J . 
Then X2is a Borel set [22, page 3]. Let f0(x)=cn for xtX^, where {A^00} is a disjoint 
sequence of sets such that and let = Q-^X™). 

n 
In the following theorem we consider measurable transformation $ on a a-

finite standard Borel space such that f0 satisfies the above property and find necessary 
condition for C 0 induced by such to be hyponormal which would explain 
'—.fo0<& [9> Theorem 9, Example 16] is not a necessary condition for hyponormality 
of C®. : 
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Theo rem 20. Let C® be a composition operator induced by above type measur-
able transformation. Then C® is hyponormal only if 

and 
fQ(x) ÈÏ f0o<P(x) a.e. on x£X\Xlt 

where Xx is the maximal subset of X, a-finite standard Borel space, such that 
nC-SVXi*})0 for 

P r o o f . It follows similarly as in Lemma 18 that 

and 

Since C® is hyponormal, then for Ec:Y2
(n) 

FF0dX = ( C % C 0 X E , XE) ^ ( C F C Z X E , XE) = (FOO^-'MS,), XE) = 

H E ) , , X ( E ) F 

= I ^ W M ( / o X E t X e ) = M - W V ) / / o 

If E={x:/O(x)</Oo$(x), has a positive measure, then for a finite set 
FcE. 

F F O D X = < C J C „ Z F , ' XF> < / = ( C ® C S X F . XF)> 
F F 

which is a contradiction. This proves the theorem. 
The above theorem explains why the function in Example 10 [9, p. 131] does 

not induce hyponormal composition operator. 
Since in Example 10 [9, p. 131] 

JLA*"1/4'"2 = 1,8' JL**A' 
1 / 2 5 / 2 - 1 / 2 = 1 / 4 , 

1 + 1/2+1 
is not hyponormal. 
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On the coadjoint orbits of connected Lie groups 

L. PUKANSZKY 

Introduction. Let G be a connected Lie group with the Lie algebra g, O an orbit, 
of positive dimension, of the coadjoint representation and a>0 the corresponding 
canonical 2-form (cf. [2], Proposition 5.2.2, p. 182). It is well-known, that pairs 
like (O, co0) play an important role in many questions of the unitary representation 
theory of G. The objective of the present paper is to analyse (O, co0) by aid of suitable 
ideals of g. In more details, given an element g of O, we define B(x, y)=([x, y],g) 
(x, y£ g). Let tn be an ideal of g, different from g. We say, that it is admissible, if 
it contains its orthogonal complement, with respect to B, for one and hence for all 
g of O. Such ideals always exist if g is nilpotent, and are of a common occurrence 
when g is solvable (cf. Section 4 belöw). Lét 0 be the projection of O on m*, the dual 
of the underlying space of m. Then m determines a subbundle 9Jt of the tangent 
bundle T(0) of O. Let O' be the subbundle, orthogonal to 9JI, of the cotangent 
bundle T*(0) of O. 0 and O' carry canonically the structure of a principal bundle, 
with the structure group m-1, over 0; O is acted upon by Tnx through translations 
and both bundles are trivial. Let s be a global section of O; it determines an isomorph-
ism <p of principal m-1--bundles over 0, from O onto O' (cf. Lemma 9 and Lemma 
11 in Section 2). We set rj—s*a>0^Z2(0) and write p for the canonical projection 
from O' onto O. Let 3 be the canonical 1-form on T*(0). Our principal result (cf. 
Theorem 1 in Section 3) states, that 

<o0 = <p*(p*n-d8). 

As an application, in Section 4 we give a new proof for the existence of global Dar-
boux coordinates in the case, when G is is solvable and O is simply connected (cf. 
[5], Theorem 3, p. 208). 

The organization of the paper is as follows. Section 1 discusses the bundle 
structure of O, and Section 2 the relation of O to O'. Section 3 contains the proof 
of the result quoted above, and Section 4 the discussion of the Darboux coodordinates. 

Received December 18, 1990. 
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The reader is advised to consult the end of the paper, where some key notational 
conventions, employed throughout the paper, are explained. 

1. As stated above, the objective of this section is the investigation of some 
bundle structure on O. The proof of the principal statement (cf. Proposition) could 
be abbreviated by the use of standard results (cf. in particular [1], 16.14.1, p. 87) 
but some elements of the proof below will be needed later. 

Let G be a connected Lie group with the Lie algebra g. If a is a subspace of g, 
a ^ c g will stand for its orthogonal complement with respect to B, belonging to 
some g£ g* specified by the context and a x for the orthogonal complement in g*. 
We fix an orbit O, of positive dimension, of the coadjoint representation and an 

ideal m, admissible with respect to O, that is m ^ c m for one, and thus for all 
elements of O. Fixing an element g of O, we set K=Gt, and consider O as a C°°-
manifold by transfer from G/K. Let us note, that the identity map from O into g* 
is smooth. We write h for #Jm, and set T=Gh; 0 has a differentiable structure as 
G/T. Let n be the restriction map g*-m*. We recall (cf. [1], 16.14.9, p. 94) that 
with the above definitions (O, <9, n) is a fiber bundle with a fiber diffeomorphic to 
T/K. In the following we show that this fibration is identical with the orbit space 
of m-1-, acting on O by translation. 

Lemma 1. With the above notation we have: (Gh)0 g=g+m±. 

Proof , (i) For n—2, 3, ..., let {/,•: l s / ^ « } be some subset of g f c=m£. We 
claim, that ... l„g=0. In fact, let L be the left-hand side. Given an element k£g, 
we put Z=(—l)n[/n_1...[/,/c] ...]. Since n s 2 and g^ctn, 1 belongs to m, and thus 
we conclude that (k, L)=([/„, l ] ,g)=0 by virtue of /„£ gh. Since (Gh)0 is generated 
by elements of the form exp (/) (/£ gh) we conclude that (Gh)0g=g+Qhg. — (ii) 
This being so it is enough to prove that if m is an ideal of g containing gff, we have 
m ± = !}/>.?• Note, that if a is a subspace of m, then =(ag)±. We have therefore 

m = m + g9 = (qh)i = (g^g)-1-, 

whence gAg=m-L. Summing up, we have proved that 

(G„)og = g+m±. 

From here we can conclude 

Lemma 2. The triple (0, 0, it) is a principal m-1-space. 

Lemma 3. The map t^-tg (t£T) induces a diffeomorphism T/K^g+m-1-. 
Proof . We recall (cf. [1], 16.10.7, p. 62) that if G acts smoothly on the C~-

manifold X, and x^X is such that Gx is locally closed, then Gx carries a differenti-
able structure, well-determined by the condition that s>--sx be a diffeomorphism 
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from G/Gx onto Gx. We apply this by replacing X, G, x through g*, Gh and g re-
spectively. To conclude our proof it is enough to note that, by Lemma 1, we have: 
Tg=g+m±, which is closed in g*. 

Lemma 4. There is a global section s: (9>-*-0. 

P r o o f . We recall (cf. [1], 16.12.2, p. 82) that if (X, B, n) is a fiber bundle, with 
a fiber diffeomorphic to R", then there is a global section s: B~X. Thus it is enough 
to note that in our case, by Lemma 3, we have T/Ksig+m-1. 

For a fixed s£T(0), we define f : 0>-~Q* by f(g)=g—s(n(g)). We can note 
at once that / i s smooth, takes its values in m-1- and satisfies f(g+v)=f(g)+v for 
any g£0 and ^ m 1 . We set X = 0 X m x and define !f: 0-»X by f(g)= 
=*{(g),№)} (giO). 

Lemma 5. is a smooth bijection O—X. 

P r o o f . Smoothness being evident, it is enough to show that is bijective. In fact, 
(i) Assume, that Then, in particular, n(g)=7i(g') and thus g'= 
=g+v with some Dim-1-. We have, however, also f(g) =f(g') =/(g)+v and hence 
t;=0 and g=g'. — (ii) We claim that f is surjective. In fact, let {h, w}£.Ybe given. 
Suppose that g£0 satisfies n(g)=h. Defining g' =g+w—f(g) we have clearly 
¥(g')={h, vv}. Summing up, we have shown, that f is a smooth bijection O—X. 
We recall that K=Gg, h=g\m and T=Gh. 

Lemma 6. The restriction of the canonical map G/K—O to a fiber of G/K— 
--G/T is an isomorphism of this fiber to an mx-orbit of O (the latter considered as a 
submanifold of g*). 

P r o o f . Suppose that g'£0 is given, and, say, g'=ag (a£G). Then a(T/K) 
is the fiber corresponding to g'. It is enough to show that the map t>—atg (t£T) 
induces an isomorphism T/K-*g'+m±. But, by Lemma 3, the map of loc. cit. (h, 
say) from T/K onto £ + m x induces an isomorphism and thus it suffices to observe 
that 

a(TIK)—•g'+mJ-

T/K—I— s+m-L. 
Lemma 7. With the above notation if: O ~-X is an isomorphism of fiber bundles. 

P r o o f . By Lemma 5, W is a smooth fiber preserving bijection !P: O—X and 
by Lemma 6, the restriction of Y to any fiber in O is an isomorphism with its image. 
Thus it is enough to recall (cf. [1], 16.21.2, p. 75) that (in particular) if (X, B, n) and 
(X', B, n') are fiber bundles and / : X—X' is a fiber-preserving smooth map, then it 

10 
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is an isomorphism of fiber bundles, if its restriction to any fiber is an isomorphism 
with its image. 

P ropos i t ion . (O, <S, n) is a principal bundle with the structure group m x acting 
on O by translations. 

• Proof . By what we have seen above, it is enough to observe that W is equi-
variant with respect to the action of m x on O and X respectively. 

2. The objective of this section is to present some material needed in the next 
section for the proof of Theorem 1. We continue to assume that O is a fixed orbit, 
of positive dimension, of the coadjoint representation and m is an admissible ideal 
(cf. Introduction). We start by introducing some notational conventions. 1) If Y 
¡s a left (7-space, m£Y, and x£g=Lie(G), we set 

(rm(x) = (d/dt) exjp (tx) m| ( = 0 . 

Given we denote by r9 the canonical translation 7^(g*) ^g* (cf. [1], p. 22). 
Note that we have clearly: xgcg(x)—xg. 3) With the" above notation we can write 
for x, y£ g: 

' (o0{dg(x)hag(y)) = B(x,y). 

We remark, that if t=ag(x) and v£Tg(0), then a>0(tAv)=(x, xgv). In fact, assuming 
v=ag(y) we have co0(iAt>)=([x, j ] ,g )=(x , yg)=(x, zgv). We denote by 91 the 
distribution on O such that rgNg=mg. Let us observe, that if and t£Tg(0) 
is such that Tg(n)t=0:, then coo(tAvg)=0I In fact, assuming t=ag(x); we have 
0=Tg(n)t=ah(x), whence Qm. If vg=ag(y) for a ydm we have: 
co0(tAvg)=([x, y], g)=0 by xG qh. We conclude from all this that there is a map 
P: %^(Th((9)y such that P(vB)(Tg(Ti)t)=oj0(tAvg) (/€ Tg(Oj). Writing p: T*(G)-*G 
and pr: T(0)-+0 for the canonical projections, we note 

p r \ J , 

O »<S. n 

Let a be a section 0—O (cf. Lemma 4) and form as loc. cit. f(g)=g—o(n(g)) 
(g£O). If / i s any smooth map 0 — m x we can define F(g)£7^(g*) by rgF(g)= 
=f(g), and note that F i s a vector field on O taking its values in In fact, to see 
this, it is enough to have m x g m g ; but this is equivalent to. rn^=( r t tg ) x cm or 
rrtg c m , which we assume. All this being so, for g£0 we set: (p(g)=P(F(g)); 
we have clearly 

" ' o 9 • r*(0) ' 
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Lemma 8. With notation as above, we have for* g£0 arid x£,g: 

<PG?)M*)) = (*,/(*))'"' 
Proof; Writing f=cr9(x), we obtain , ' , 

= P{F(g))(Tg(n)t) = co0{tM(g)) = (x,/(g)) 

.and-thus:, <p(g){oh(x))=(x,f(g))(g<iO',x£Q). , ' V ' ' ' 
' >" We denote by 9JI tlie subbimdle of T{&) such that rhMh = mh. Recalling, that 
X=&Xm-1, we note that there is a canonical identification between and X. 
In fact, given AeStR-1 let us put h=p(X). We define X%m± by X'(x)=X(<xh(x)) 
(x£g). This being so, we set 4>(l) = {h, A'}. We observe that 4> is a bijection 9JI-1-— X. 
In fact; if $(/i) = i>(v) = {/z, A}, say, we have p, v£(Th(G))* and fi(ah(x))= 
=X(x)=v(oh(x)) (x€g), and thus p=v and $ is injective. Let now {h, X'}£X 
be given. If <Th(x)=0, we have and hence we can define ' X£{Tk(0))* 
by A(crft(x))=A'(x) (x£g). In this fashion <P(X)={h, X'}, and 4> is surjective. Below 
we shall write O' for'5Dl+. We can define'on O' the structure of a principal m-1--
bundle as follows. Given rim-1-, let Ah(v)£(Th((9))* such/that Ak(v)((Th(x)) = 
= (x, v) (x,£g). Then.if XdO' and p(X)—h, we can set Xv=X+'Ak(v). We note, 
that <P(Xv)=<P(X)v. — We remark that if gdO, then we have: (p(g)dO'. In fact, 
Lemma 8 implies, that q>{g){ak{x))=(x,f(g)) (x€g); but by f(g)€mx, the right-
hand-side vanishes for x£m. . , , . , , 

Lemma 9. <p: O—O' -is an isomorphism, of principal m-1-bundles over 0: 

Proof . Let T: O—X be as in Lemma 5, corresponding to the section 0-0 
employed in the definition of (p. To obtain the desired conclusion, it is enough to 
note that clearly 0o <p=*F. • .• 

Lemma 10. Let $ be the canonical \-form on T*(§). Then, with notation as 
above, we have: cp*&=— i(F)co0. 

Proof . Assume that t£Tg{0). .We have 

. ' = HT.(v)0 = (M'p)Tg(<p)t, <p(g)) = 

= <P(g){T9(po<p)t) = q>(g) (Tg(n)t) = P(F(g))(Tg(n)t) = 
= co0(tAF(g)) = ~(i(F)co0)(t) 

whence <p*9= — i(F)co0. ' > • v < 

Lemma 11: Let <p; 0—0' be an isomorphism of principal m x -bundles o,ver <9. 
Then there is a section s£T(0) giving rise to (p as described before Lemma 8., 

Proof , (i) Given t£Tg{0)i by virtue of the computation of the proof ofLemma 
10 we have: ((p*&)(t)=cp(g)(Tg(n)t). — (ii) We define the vector field F on O by 

10* 
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<p*&=-i(F)(o0 and set f(g)=rg(F(g)). We claim, that for all x£g: <p(g)(ah(x))= 
=(x,f(g)). In fact, writing t=a9(x) we have 

<p(g) («>(*)) = <p(g)(Tg(x)t) = (<p*m) = M{AF(S)) = (*•/(?)) 

whence <p(g)(o»(;c))=(*,/(£)), as stated above. — (iii) a) We observe t h a t / takes 
its values in m x . In fact, we have <p(g)tO' and thus, by (ii) above: (x,f(g)) = 
=(p(g)(<rh(x))=0 for all b) We note that for any g£0 and v£mx: f(g+v)= 
=/(g)+v. In fact, we have for all xgg: 

(x,f(g+v)) = <p(g + v)(oh(x)) = 

= + = (*./(*)) + (*, v) = (x,f(g) + v) 

and thus f(g+v)=f(g)+v. In this manner we can define s^T(O) by s(n(g))= 
=g~f(g) (gtO). — (iv) We observe that F(g)£Nt. We have, in fact rgF(g)= 
=f(g)£m± cmg, since m is admissible with respect to O. In this fashion we can 
form *l>(g)=P(F(g)). —(v) We show finally, that <p=*p- In fact, we have by Lemma 
8 and (ii) above: ^(g){ah(x))=(x,/(g))=<p(ab(x)) (x£g), providing the desired 
conclusion. 

3. The principal objective of this section is Theorem 1. We start with the follow-
ing definition. Let us write b for the quotient algebra g/m and a for the canonical 
morphism g—b. Given x£g, we write Xfor the vector field on O satisfying Xt= 
=at(x). This being so, we define the b-valued 1-form 5 by S(tg)=ct(x), if tg= 

Lemma 12. With the above notation we have: d5=[d, 

Proof . Let t, f be in Tg(0), t=at(x), f=og(y), say (x, y£ g). We have 

d5(tAt') = d5(XgAYg) = Xg5(Y)-Yg5(X)-5([X,Y]g). 

But S(Yg)=S(at(y))=a(y) and thus Xg(6(Y))=0 and similarly, Yg5(X)=0. 
Writing z=[x,y], we have Z=—[X,Y]. From this we conclude that 

dS(tAt') = S(Zg) = a(z) = «([*,;>]) = [«(*), a ^ ] = [<5(0, <5(0], 

and therefore: d5(tAf)=[5(t), 5 ( 0 ] (', f£Tg(0)). 
We note that there is a canonical identification between the dual b* and m-1-. 

Given a b-valued Ar-form y on O, and a smooth map / : <9—mx, we shall write yf 

for the numerical-valued ¿-form defined at g£0 by yf( )=(y( ),.f(g)). In particular, 
if f(g) = tnx is fixed, we write yv for yf. — Below, given »Cmx, we denote by 
Lv the map Lvg=g+v (g^O). 
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Lemma 13. With the above notation we have 

L*0io - (00 — {dS)v. 

Proof . Let t and f be in Tg(0) such that t=erg(x), t'=crg(y), say. There is 
an x£ g such that 

xg = V = *g+v{Tg(Lv)t) = x(g-v)' 

and analogously for y. From this we conclude, that 

( L > 0 ) ( f A f ) = co0 (Tg(Lp)tATg (Lv) t') = 

= ([*, >*]» g + v) = (*, y(g + v)) = (x, yg) = ([x, y], g) 
and therefore: (L*co0—(o0)(t At')=([x—x, y], g). In this manner it will be enough 
to show that ([x—x, y],g)— — (d5)u(tAt'). To this end we note that a) x—xigh. 
In fact, we have by definition: (x—x)g=—xv, and thus for all / f m : ([x—x, /], g )= 
=(/ ,xv)=0. Next we note, that xv=xv. In fact, to see this, by a) it suffices to 
observe that ¿rv=0 for all a£ g„. In this fashion we can conclude, that 

( [ x - x , >>], g) = -(>>, (x-x)g) = (y, xv) = (y, xv) = 

= — ([•*•» v) = -([¿(0, sen 1, ®) = -(ddUtAf) 
where we have made use of Lemma 12. Summing up, we have thus obtained L*0)o= 
=co0—(dS)a, as claimed at the beginning. 

Since, as we have seen in Section 1, O is a principal bundle with the structure 
group m-1-, below, whenever convenient, we shall write gv in place of g+v=L„g 
(t^m-1-). Note that gv can stand also for 

(dl<h)(g+Tv)\vm0ZTt(O). 

Let / : O— tn x be a smooth map satisfying f(g+v)~f(g) + v (g£0, » fm 1 ) . We 
define the m^-valued 1-form C by £(t)=z/{g)(Tg(f)t). We have for g£0, t£T„(0) 
and i^m-1: 1) tgi>(Tg(Lv)t)=(g(t), 2) (g(gv)=v. In this manner ( defines a con-
nection form on the principal mJ--bundle (O, <5, n). We shall write Vg(0) for the 
collection of all vertical vectors at g that is Vg(0)={t; t£Tg(0) such that Tg(n)=0}. 
We recall that the dual b* of b is canonically identifiable with m x . 

Lemma 14. We have for t£Tg(0), w£Vg(0): 

<o0(tAw) = (6(t),C(v)). 

Proof . To this end it is enough to note that, if t=ag(x) and w=ag(y) (y£ g„), 
then we have 

co0(tAw) = (x,yg) = (8(t),C(w)). 

Let us observe that, in particular, Vg(0) is orthogonal to itself with respect to (<o0)l. 
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Below we assume to be given a fixed choice of s€T(0); cp : 0±0' will correspond 
to it as preceeding Lemma 8. — We Recall that 9 is the canonical 1-form on T*(0). 

.Lemma 15. Wifh the previous notationwe have: <p*9=5f. 

Proof . Let t£Tg(0) be such that t=ag(x) g). We have, as in the proof 
of Lemma 10, using Lemma 8, . 1 

ov* m = <p(g)'(^(4 = (*./(*)) =
 sao 

and hence (<p*3)(/)=<5/(0- ( ' , ; • . 

Theorem1 1. With the previous noration let-us put ri=s*a>0£Z2(@). Then we 
have co0=(p*(p*t]-^d9). . }'.'•• 

Proof , (i) Writing t=ifp*,tj£Z*(0), we have: - : •< • 

, , L = (poq>)*t\ =,-i*s*o)0 = (son)*a>0. i 

(ii) We have, by virtue of the flat connection, corresponding to £ on' the principal 
m-1--bundle (0,(9, n), the following representation of tg^Tg(0) as the sum of hori-
zontal and vertical components , 

, , tg = , . ' " • ' / , 

Denoting by P the horizontal projection, we thus obtain: ' 

Tg{son)tg = Tg(L.M)(Ptg). 

Given t,f£Tg(0)t, we have by Lemma 13: ' • > 

L(tAt') = co0(r9(L_/(s)) PtATg{L_m) Pt') = (co0)P(tAt') + (dS)f (Pt APf). 

(iii) We claim that d5(PtAPf)=d8(t/\t').. In fact, we have by, Lemma 12: 
d8(PtAPf)=[8(Pt),S(Pf)] and thus it suffices to show, that <5(/)=<5(?/), or 
that ¿ ( 0 = 0 if t£Vg(0). To see this we can assume that t=<rg(x)(x£gk). But then 
5(t)=u(x)=0, by g A ^m=ker(a) . In this manner, by- the end of (ii) above we 
obtain: « . • 

L(f AO = (¿0)ktkt') + (d8)f(tAt'). 

(iv) For the definition to be used below, of the wedge product between tyvo vector-
valued 1-forms we refer to [1], 16.20.15.5, p. 141. — We maintain, that 

'. • (co0)p = 0)o + £Ad. ' '• 
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In fact, let us write P0 for the vertical projection. We have by Lemma 14: 

(o>0)P(tAt') = <o0{PtAPt') = o>0{(t-Pv{t))A(t'-P&'))) = 

= co0(tAt')-oio{tAPM)-o)o{Pv(t)At') = 

= w0(tAt')-(S(t), UO) + (S(t'), C(0) = o 0 ( M O + (CA5)(Mi') 

or (co 0 )p( tAf )=co 0 { tAt / )+( .CA8)( tAf ) , proving our assertion. In this fashion 
we can conclude that L=co0+£Ad+(d5)f. — (v) We assert next that d(8f)= 
= CAS+(d8) f . In fact, this is implied by the following simple proposition. Let V 
be a real vector space of dimension m, M a C°°-manifold, y a F-valued 1-form and 
f: M-~V* a smooth map. Then we have d(yf)=df/\y+(dy)f. In fact, let (vj) be a 
basis in F and (up the dual basis. Then we can write 

? = ! № / = Z f j V j where ( y ^ c ^ M ) . 
y=i j=i . • 

We have 
m m m 

7f = 2 / J V j and thus ¿Ov) = ^ ( # 7 ^ . ) + 2 f j • dy}-. j=i j=i j=i 
Hence it is enough to note that for any pair h, k of tangent vectors we have: 
(dfAy)(h A k)=(df(h), y (k))—(df(k,)y(h)), which concludes our proof. — (vi) Sum-
ming up, we have by (iv)—(v) above: L=a>0+d(df). Lemma 15 asserts that 5f= 
=(p*9 and thus d(df)=q>*{d&). Since L—(p*p*t] we get finally 

(o0 = (p*(p*t\-dd) 
as claimed in Theorem 1. 

4. The objective of this concluding section is an alternative approach to the 
following result, first proved in [5], Theorem 3, p. 208. 

Theorem .2. Let O be a simply connected coadjoint orbit of the connected and 
simply connected solvable Lie group G. Then there is a diffeomorphism /?: Rd-*0 
such that p*co0 is constant. 

P r o o f . We denote by g the Lie algebra of G and proceed by induction according 
to dim (g). We distinguish the following two major possibilities: 

A. There is an ideal m of codimension one such that g = g 9 +m for some g 
in O. Let n be the restriction map g* —m*, and M the connected subgroup of G 
determined by m. Then n(O) is a coadjoint orbit of M and n\0 is a diffeomorphism 
O—7t(0). We have, in addition, that co0 — (n\0)*can{0). By virtue of the assumption 
of our induction there is a diffeomorphism y: R s—n(0) such that y*(a>B(0)) is con-
stant. But .then it is enough to take p = (n~1\0)ey. 

B. Here we assume that the hypothesis of A cannot be realized. Let m be a fixed 
ideal of codimension one. Then, for any g£g*, we have gffQm. Putting h=g\m 
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we claim that g , g m . In fact, if k is in Qh—m, k is orthogonal, with respect to B 
belonging to g, to m. But then k is orthogonal to g and thus k£ g9 and g = m + gB, 
contrary to our assumption. We note, in particular, that in this case m is admissible 
with respect to O. 

(i) We fix an element y in O, and write x=n(y) and O0—MxQm*. We claim 
that O0 is simply connected. In fact, let us put G=n(0). We have, by Lemma 1, 
0—n~x{6), and thus 6 is simply connected and Gx is connected. But, by what we 
have seen above, g x Qm and thus GxczM, and GX=MX, and O0=M/Mx is simply 
connected. — (ii) We omit the straightforward verification of the following result. 
Let G be an arbitrary connected and simply connected Lie group with the Lie algebra 
g. Let a be an automorphism of g; we set /?=(a_1)*£End (g*). Then, if O is any 
coadjoint orbit, then so is 0(0) and P*((oKi0))=co0. — (iii) By virtue of the assump-
tion of our inductive procedure, there is a diffeomorphism g0 from R3 onto O0 such 
that <?o(c£>0) is constant. We fix an element m, write y(?)=exp (tk) and 
define a map h: R>JrX-G by h(t, T)=y(t)g0(T) T£Ra). Then A is a diffeo-
morphism from Rt+1 onto 0. Let a be the subspace spanned by k; we have g= 
= m + a . Let j be the projection onto the second summand. We define i: tn*-»g* 
such for h£m* we have i(h)\m=h and i(h)\a=0. We write i also for i\0^r(0) 
and set t] = i*oo0. In the following we shall proove that h*(tj) is constant, a) Let 
h£0 be fix and g=i(h). Assuming that t, t'^Th(0) are given and t=<rh(u), 
t/=all(v)(u, t?€g) we claim that r\(t/\f)=B(u, v)—B(Ju, v)—B(u,jv). In fact, 1) 
we have for any real x: exp (-cu)g—i(exp (ii^/i^m-1 . Hence there is an w£mx 

such that ug=i(uh)+n. 2) By virtue of (ii) in the proof of Lemma 1, we have ghg— 
= m x , and thus there is qh with n=ug. From this we can conclude that t9 i+»(0= 
= i(uh)=(u—u)g. Similarly, there is v£qh such that Tgi*h(t)=(v—v)g. 3) We 
conclude from this that 

(MO = a>oM0Ai+„(O) = ([«-", »-»I g) = ([", ®], g)~([u, ®], g)-([u, v], g). 

4) We note that ([u,v],g)=(u,vg)=(ju,vg). But, by 2), vg=vg—i(uh) and the 
last term is orthogonal to a. Hence ([u, v],g)=(ju, vg)=B(ju, v), and similarly 
([«> v],g)=B(u,jv). In this manner we obtain for t=ah(u), f=ah{v): r\(tf\t')= 
=B(u,v)—B(ju,v)—B(u,jv) as claimed above. — b) Let U be an M-orbit in 0. 
We claim that (idv)*t}=cov. In fact, suppose that h£U and /, t'^Th(U). Then 
there are u (»6m such that t—ah(u), t/=ah(v). Since ju—0=jv, we have by a): 

((idvyt,)(t/\0 = ([«, v], h) = cov(tM') 

and thus (idu)*t]=(ov as claimed above. For 7 ,=(/1 , ..., tt) we form vector fields 
on <P by 

D0 = dldt, Dj = dldtj (1 
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To prove that h*t] is constant, it will be enough to show that (/i*f/)(Z)jA/)J) is constant 
for 0 — c ) We start by proving the last claim for i,j such that 1 ^=/,/^<5. 
In fact, let h be an element of G, h=h(t, T), say. We write h0=h(0, T)£00, and 
thus h—y(t)h0. Putting O,—y(t)O0 we recall (cf. (ii)), that this is an M-orbit in 
0. We have also Dj\h=Th<>(y(t))(Dj\h^Th(Ot). Using b) above we conclude from 
this that 

if(AI»ADy|») = (OoXD^ADjl,) = 

= eoo, (7IO(y (OXAiO) AT;0 (y = (y(0*<»o,)(AkA£,k)-

But the last expression, by virtue of (ii), is equal to 

œO0(AkAZ>,|»„) 

which, by the choice of g0: Rs-*O0 is constant, as h0 varies over O0. — d) We claim 
now that ti(D0\h/\Dj\h)—® (1 =/=<5). To this end it is enough to show that 
r}(<rh(k)A<r*(w))=0 if u£m. But, by jk~k and ju=0 this is implied by a). In 
this manner we have completed proving that h*tj is constant, as we claimed at the 
start of (iii). — (iv) Let {€*,(«) be such that h*(Q=dt. We define / : R3+2-~0' 
by f(u, t, T)=(h(t, T), w£). Then / i s a diffeomorphism from Rs+2 onto O'. Also, 

is the pullback of the canonical 1-form on T*((P), to O'. By virtue of what 
we have seen in (iii), f*(p*t]—dS') is constant. — (v) We recall that by Theorem 1, 
there is a diifeomorphism q>: 0—O' such that (0o—(p*(p*t]—d9'). Hence /? = 
= <p -1o/ is a diffeomorphism Rd-*0 such that /?*a>0 is constant, completing the 
proof of Theorem 2. 

Some notational conventions. 1) Given a Lie group G with the Lie algebra g, 
g is considered as a G-module with respect to the adjoint representation. Similarly, 
g is a g-module with respect to the adjoint representation of g. Also g*, the dual of 
the underlying space of g, is a G or g-module with respect to the coadjoint representa-
tion and its differential respectively. — 2) If a Lie group G acts smoothly on a C°°-
manifold X, for xÇX, Gx stands for the stabilizer of x in G, and gx for the subalgebra 
corresponding to Gx. — 3) A distribution on X will be denoted by a capital German 
letter. If 331 is such, MxczTx(X) will denote its value at x X. — 4) Given a principal 
bundle OS with the structure group G, given x£B and g£G, we shall write sometimes 
xg even if the action of g derives from an abelian group structure. 
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Compatibility and incompatibility of Calkin 
equivalence with the Nagy—Foias calculus 

J. ESTERLE and F. ZAROUF 

Introduction. We have shown in [2] that there exist two absolutely continuous 
(a.c.) contractions and T2 which commute and are such that T2—Tx is compact, 
and such that there exists a function h in H°° with h (73,)—h (71) not compact. 

In this article, we give sufficient conditions on 7i and T2 which guarantee that 
h{T^—h(T^) is compact for any h in H°°. In the particular case where 7} is a diagonal 
operator whose eigenvalues are simple we characterize thé a.c. T2 which commute 
with Tx and which verify h (T2)—h (Tx) is compact for any h in H°°. 

Notations. Let H be a separable infinite-dimensionai complex Hilbert space, 
£?(H) the Banach algebra of bounded linear operators on H and Jf(H) the spacé of 
compact operators on H. For . T£J£(H), we denote by r(T) the spectral radius of 
T\ if Tis an absolutely continuous contraction, we denote by h(T), h£H°°, the image 
of h under the Sz.-Nagy—Foias functional calculus. 

P ropos i t ion 1. Let and T2 be two a.c. contractions in such that 
TXT2=T2TX and T2-Ti is of finite rank. Then for every h^H", h(T^-h(T^ is 
of finite rank. 

Proof . Set A=TZ—T1 and let k be the rank of A. Then, for «ÇN, we hâve 
7 ^ = 7 i + AVn, where Vn is 'an element of S.?(H). "Now, let h be in H and (pj) a 
polynomial sequence which converges to h in the weak*-topology. Then Pj(T2) = 
=Pj(T1)+AWj, Wj£g(H). Since the rank oî AWj is less than k, by taking the limit 
in the weak*-topology, we obtain h(T2)=h(T1) + W, where W is an operator whose 
rank is less than k. (It is wellrknown and easy to see. that the set of operators T 
whose rank is less than k is weak*-closed in iS?(//)). This completes the proof of 
the proposition. 

We have the following observation for Tx and T2 with compact difference whose 
spectral radii are less than 1. , j , . 

Received May 7, 1991. 
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Observat ion 2. Let 7i and T2 be two contractions satisfying r(7,
1)< 1, 1 

aw/ T2-T^K{H). Then: 

h{Tt)-h{T^K{H), h£H~. 
oo 

Indeed, let h(z)= 2 be a function in H°°. Then: 
k-0 

hÇTJ-hÇTJ = ZadTi-Tf) 
*=0 

and T2—Tk can be written in the form: 

T}-n= k2 TJiTz-TjTf-J-1. 
j=o 

Hence T2—Tk is compact for every k^ 1 and so h(T2)—h(Tl) is a norm-limit of 
compact operators, hence, it is compact. 

The following theorem gives another example of a.c. contractions Tx and T2 

such that hiTJ-hiTJiJfiH), h£H°°. 

Theorem 3. Let Ty and T2 be two a.c. contractions such that 7̂  = 5'©0 and 
T2=S@K, K£jr(H). Then, S and K are a.c. contractions, r(K)< 1 and h(T)~ 
-/i(71)€X(77) for every hÇ.H°°. 

Proof . It is clear that K is absolutely continuous. If r(K)= 1, then K will 
have a eigenvalue of modulus 1 which contradicts the absolute continuity of T2. 

CO 

Hence /•(£)< 1 and if h(z)= 2 akzk is in /7°°, we have: 
fc = 0 

hÇTJ-hÇTJ = (h(S)®h(K))-(h(S)®h(0j) = 2akKk 

k=1 

which is compact. 
We examine now the particular case where Tx and T2 are diagonal operators. 
Let (en) be an orthonormal basis for H, let (a„) and (/?„) be two sequences in 

the unit disc D and let Ta and Tf be the diagonal operators associated to (a„) and (/?„) 
respectively. Then: 

Theorem 4. The following assertions are eguivalent: 

a) l i m f ^ = 0, 

b) h(Tp) — h{T^) is compact for every h£H~. 

The proof uses the following 
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Lemma 5. Let («„) and (vn) be two complex sequences. 
a) If (un) and (v„) are in D, then: 

lim = 0 o lim V"~U"t = 0 1 ~V„U„ it— l-|rB| 

b) If lim i/„=lim vn=0, then there exists an increasing sequence (nk) cz N 
H-*-00 n ^ o o 

such that: 

K l i f j ^ i A N D ^ 2 . - J - 1 I F i ^ j 

k j l К I 
P roof . Assertion a) results from: 

к - « J _ k - " „ l 
11-^«»! ~ 1 - k l 

and 
к - н - l k - « » l ( i + k l ) 

Assertion b) can be obtained by using a simple induction. 

Proof of Theorem 4. To prove a)=*b), it is sufficient to show that if a) holds 
then: 

lim |й(/?„)-А(«л)1 = 0. 

For and a£D, we can write the function g(z)=h(z)—h(a) under the form 
g(z)=(z-a)ga(z), gttdH- and | | « J s2 | |A |U/ ( l -M) . This implies that 

W „ ) - A(a„)| S 2 ||A|U ' А € Я " 

and so a)=>-b). 
Now, suppose that h{Tf)—h(Ta) is compact for every h£H°° and the sequence 

(v„), vn=\(Pn—a„)/(l — Д,а„)| does not converge to zero. Since the sequence (vn) is 
bounded, it contains a subsequence (vnJ which converges to a positive limit /. As 
Ta — Tpis compact, we have 0^P„k—a„fc—0 and so |а„ь| —1 and |/?„J — 1. Therefore, 
for example, the sequence (/3„ ) contains a Blaschke subsequence (/?„ ) that is к kt 

¿ ( 1 —1/?„. From Lemma 5, by extracting another subsequence, we can 
1=0 1 
suppose that the subsequence is a Blaschke sequence and: 

i f a n d Щ ш ^ if 



362 J. Esterle and E. Zarouf •• , 

For denote by ea the function: 

We have: 
a l—az ze D. 

l - M - | l - k ( z ) | | s 2 T 

and as \ea(z)\ = \e2(a)\ we have also: 

It results that: 
, v . 

Il~\el>n,(a"M = 2~v~Ji> i so s i 

and for any fixed j 

n\ePA«n)\ S i 7 (1 -2-1'--") i Z X J ^ ( J 7 (1 -2 - k ) ) 2 = c > 0. ' i^j i?~j k=1 
Let : 

B(z)= j y J M J » ^ . 
*=1 Pnk l~P„

K
Z 

be the Blaschke product associated to the sequence (Pnk)- Then: 

IftJ , §ak-<*nj \B(0Lnj)\ = li-kéi Pnk 1 —P„kanj 

hence 5(/?nj)—B(an^ = —B(anj) does not converge to 0. This contradicts the com-
pactness of B(fp)—B(Ta), and the theorem is proved. 

Remark 6. If T=TX, where a=(a„) is a sequence.of distinct elements of D, 
then every element S of the commutant of T can be written S=Tf, where /?=(/?„) 
is a sequence of complex numbers. If S is an a.c. contraction, then /?„£D, h£N. 
Therefore we see that H(S)—h(T) is compact for every HdH°° if and and only if 

ri ' lim f n "" g " = 0. - •• = • .< 
: j , 1 ~ M • ' ' . - ' 

If sup|a„| = l, T is a completely nonunitary contraction with r{T) — \. Hence 
we see that there exist a.c. contractions S?±T such that r(T)=l, ST=TS and 
h(S)-h(T)£JiT(H) for .every M H~. and a.c. cpntractions S' such that r (5")=l , 
S'T=TS', S'-TeX~(H) and h(S')-h{T)i^T{H) for some h£H°°. 
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On the joint Weyl spectrum, i n 

MUNEO CHO 

Dedicated to Professor Tsuyoshi Ando on his 60th birthday 

1. Introduction. In [3], we proved that the Weyl theorem holds for a commuting 
pair of normal operators on a Hilbert space. In this paper we show, by a simple 
proof, that the Weyl theorem holds for a commuting «-tuple of normal operators 
and, moreover, its Weyl spectrum coincides with the essential spectrum. 

Let § be a complex Hilbert space. Let be the algebra of all bounded 
linear operators on §> and Jf (§) be the ideal of all compact operators on Let 
# (§ ) denote the Calkin algebra with corresponding Calkin map 
it: #(§) . Let T = ( 7 1 , . . . , Tn) be a commuting «-tuple of operators on 
Let c(T) be the (Taylor) joint spectrum of T. We refer the reader to [9] for the defi-
nition of <T(T). 

The joint Weyl spectrum a>(T) of T=(7i , ..., T„) is defined as the set 

<o(T) = f l M T + K): T + K = (Tx+Kxt ...,Tn + Kn) 

is a commuting «-tuple for K l t ..., Kn£JiT(%>)}. 

The joint essential spectrum ce(T) of T=(T1? ..., T„) is defined as the set 

<xe(T) = <T(7I(T)), 

where T T ( T ) = ( * ( ? ! ) , . . . , n(Tnj). 
For a commuting «-tuple T = ( 7 I , ..., T„), 7T00(T) is the set of all isolated points 

in CT(T) which are joint eigenvalues of finite multiplicity. 
2. Theorem. From Corollary 3.8 in [6] and Theorem 2.6 in [7], we have the 

following 
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Theorem 1. Let T=(7], ...,T„) be a doubly commuting n-tuple of hyponormal 
operators on H. Then z=(zlt ...,z„)£(rc(T) if and only if there exists a sequence 
{ x j of unit vectors in § with x t—0 weakly such that (Ti—zi)*xk—0 as 

Immediately, we have the following result. 

T h e o r e m 2. Let T = ( 7 1 , ...,T„) be a doubly commuting n-tuple of hyponormal 
operators on Then CTC(T)CCO(T). 

L e m m a 3. Let T=(T1 , ..., Tn) be a doubly commuting n-tuple of hyponormal 
operators on §>. If a=(cc1, ..., x„) is an isolated point of <X(T), then A is a joint eigen-
value of T. 

Proof . Let r be a surface |z—«|=e (s>0), whose interior has no point of 
<T(T) except a. Define 

Then P is a nonzero projection which commutes with every Tt ( /=1, ..., T„) (see 
[10]). Let T | P =(PT 1 P, PT„P). Then T I P is a doubly commuting «-tuple of 
hyponormal operators and a-(T|P)={ot}. By Theorem 3.4 in [5], a is a joint eigen-
value of T. 

T h e o r e m 4 . Let T = ( 7 ^ , . . . , Tn) be a doubly commuting n-tuple of hyponormal 
operators on Then CO(T)C=FF(T)-7I00(T). 

P r o o f . For every z=(z1, ..., zn)£C", T—z=(T1—z1, ..., Tn—z„) is a doubly 
commuting «-tuple of hyponormal operators. Hence we may only prove that if 
0<ETC00(T), then 0<£o>(T). Let 0 be in 7t00(T). Then 91=Ker (T*Tx + ... + T*T„) 
is a finite dimensional subspace. Let P denote the orthogonal projection of onto 
91. Since then P is a compact operator and PT,=T,P=0 ( / = 1 , . . . ,N) , T + P = 

= 171-1—=• P, P\ is a doubly commuting «-tuple of hyponormal opera-
in in ' 

tors. We let R=F(r1+JL. p) , ..., [T„+~ i>) 1 and S = F I R 1 + - ^ : . i>) , . . . 
(A \n /|si v \n >\*) H \n 'I«-1 

..., \ T„-\—= • P | . Since then 91 is a reducing subspace for every 7] (i— 1, . . . ,«), 
v in A»-1-J 

it follows that R and S are doubly commuting «-tuples of hyponormal operators on 
91 and 9lx respectively and a(T+P)=<r(R)UFF(S). It is clear that 0$<r(R). If 0£<t(S), 
then 0 is an isolated point of <r(S). Hence by Lemma 3, 0 is a joint eigenvalue of S 
and so of T. So there exists a nonzero vector x in 9lx such that 2]x=0 ( /= 1, ..., «). 
This is a contradiction. Therefore we have 0$<r(T+P). 
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Theorem 5. Let T=(7 \ , ..., Tn) be a commuting n-tuple of normal operators 
on Then ffe (T)=co (T)=a (T)—n00(T). 

Proof . By Theorems 2 and 4, we may only prove that 

<7(T)-7t00(T)C<7e(T). 

In [8], FiALKOwproved that if y is a nonisolated point of a(T), then y€ce(T). It is 
also clear that if y is a isolated point of c(T) with infinite multiplicity, then y£ae(T). 

Acknowledgement. We would like to express our thanke to Professor R. Curto 
for his advice. 

References 

[1] J. BAXLEY, Some general conditions implying Weyl's theorem, Rev. Roum. Math. Pures Appl., 
16(1971) , 1163—1166. 

[2] J. BAXLEY, On the Weyl spectrum of a Hilbert space operators, Proc. Amer. Math. Soc., 34 
(1972), 447—452. 

[3] M. CHO, On the joint Weyl spectrum, n , Acta Sci. Math., 53 (1989), 381—384. 
[4] M. CH6 and M. TAKAGUCHI, On the Joint Weyl spectrum, Sci. Rep. Hirosaki Univ., 27 (1980), 

47—49. 
[5] M. CHO and M. TAKAGUCHI, Some classes of commuting /¡-tuple of operators, Studia Math., 80 

(1984), 245—259. 
[6] R. CURTO, On the connectedness of invertible «-tuples, Indiana Univ. Math. J., 29 (1980), 

393—406. 
[7] A. T. DASH, Joint essential spectra, Pacific J. Math., 64 (1976), 119—128. 
[8] L. A. FIALKOW, The index of an elementary operator, Indiana Univ. Math. J., 35 (1986), 73—102. 
[9] J. L. TAYLOR, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 

172—191. 
[10] J. L. TAYLOR, The analytic functional calculus for several commuting operators, Acta Math., 

125 (1970), 1—38. 

DEPARTMENT OF MATHEMATICS 
JOETSU UNIVERSITY OF EDUCATION 
JOETSU 943, JAPAN 

11* 



ri 



Acta Sci. Math., 56 (1992), 369—334 

On the compositions of (a, ^-derivations of rings, 
and applications to von Neumann algebras 

MATEJ BRESAR 

Introduction 

There are two motivations for this research. The first one is an old and well-
known result of E. POSNER [12]: 

Theorem A. Let Rbe a prime ring of characteristic not 2. If the composition of 
derivations d,g of R is a derivation, then either d—Q or g—0. 

A number of authors have proved extensions of this theorem; we refer the 
reader to some ring-theoretic results [3, 5, 9] and to some results from analysis 
[4, 10, 11]. ' 

The other motivation comes from the theory of von Neumann algebras. In a! 
series of papers A. B. Thaheem and some other authors have studied the identity 
a+a.~1=f}+f}~1 where a and /? are automorphisms of a von Neumann algebra. 
This identity plays an important role in the Tomita—Takesaki theory (see, e.g., 
[6, 7, 8]). In [13 and 14] and in a joint paper with AWAMI [18], THAHEEM has given 
various proofs of the following theorem. 

Theorem B. Let Rbe a von Neumann algebra and a, /? be *-automorphisms of 
R satisfying a+a~1=p+p~1. If a. and P commute then there exists a central pro-
jection p in R such that oc(p)=P(p)—p, a=/? on pR, and a=/?-1 on (1 —p)R. 

For other results concerning the identity a + a ~
1

= P + P ~
1

 we refer to some 
recent papers [1, 15, 16, 17] where further references can be found. 

It is our aim in this paper to extend Theorem A to more general mappings on 
more general rings, so that the special case of this extension gives a generalization 
of Theorem B. In particular, our research can be viewed as a new, more elementary 

Received March 5, 1991. 
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approach to the study of the identity ac+<x~1=P+P~1. In a subsequent paper we 
hope to consider this identity without assuming the commutativity of a and p. 

Let R be a ring and a, P be automorphisms of R. An additive mapping d of R 
into itself is called an (a, ^-derivation if 

d(xy) = a(x)d(y) + d(x)P(y) for all x,y£R. 

An (a, /?)-derivation d is said to be inner if there exists a£R such that d(x)—<x(x)a— 
—aP(x) for all x£R. Of course, derivations are (l,l)-derivations where 1 is the 
identity on R. We will study the case where the composition of an (a, j8)-derivation 
d and a (y, <5)-derivation g is an (ay,/?<5)-derivation. We will first generalize Theorem 
A byjjroving that if R is prime of characteristic not 2 and g commutes with both y 
and <5, then either d—0 or g=0 (Corollary 1). An abbreviated version of our main 
theorem reads as follows. 

Theorem 1. Let Rbe a 2-torsionfree semiprime ring, d be an (a, P)-derivation 
of R, and g be a (y, 8)-derivation of R. Suppose that d commutes with both a and p, 
and that g commutes with both y and 8. If dg is an (ay, p8)-deriavtion then there exist 
ideals U and V of R such that U@V is an essential ideal of R, d=0 on V and g=0 
on U. Moreover, if the annihilator of any ideal in R is a direct summand (in particular, 
if R is a von Neumann algebra), then XJ@V=R. 

As an immediate consequence of Theorem 1 we obtain that the decomposition 
of Theorem B holds in arbitrary semiprime ring in which the annihilator of any 
ideal is a direct summand (Corollary 2). Moreover, the assumption that a and 8 
preserve adjoints is removed (in fact, we do not work in rings with involution). 

r 
x Preliminaries 

Throughout, R will represent an associative ring. Recall that R is prime if 
aRb=0 implies that a=0 or b=0. R is said to be semiprime if aRa=0 implies 
that a=0. Equivalently, R is semiprime if it has no nonzero nilpotent ideals. Every 
C*-algebra is semiprime (for 0^aa*a€aRa if a^O). A von Neumann algebra is 
prime if and only if it is a factor (i.e., its center consists of scalair multiples of the 
identity). 

Let R be semiprime. Suppose that aRb=0 for some a,b£R. Then we also 
have (bRa) R (bRa)=0, abRab=0, baRba=0, and therefore bRa=0, ab=0, ba=0 
since R is semiprime. Note that the left and right and two-sided annihilators of an 
ideal U in R coincide. It will be denoted by Ann (U). Note also that C/DAnn (U)= 
= 0 and C/© Ann (U) is an essential ideal (i.e., ( t /©Ann (U))f]I^0 for every 
nonzero ideal I of 7?). We will be especially concerned with semiprime rings R in 
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which the annihilates of any ideal is a direct summand; that is, Ann(C/)© 
©Ann (Ann (U))=R for any ideal U of R. Every von Neumann algebra has this 
property; namely, the annihilator of any ideal in a von Neumann algebra R is a-
weakly closed, therefore it is of the form pR for some central projection p in R. 
More generally, the same is true for Baer *-rings, and, therefore, for AW*-a\gebras 
(see, e.g., [2]). 

The results 

Lemma 1. Let R be a 2-torsion free semiprime ring, d be an (a, ^-derivation 
of R and g be a (y, 5)-derviation of R. Suppose that the composition dg is an (ay, ¡35)-
derivation, and suppose that g commutes with both y and <5. Then g(x)R(a~1d)(y)=0 
for all x, y£R. 

Proof . We have h=dg is a (ay, /?<5)-derivation. Consequently (P~1d)(g5~1)= 
=fi~1h5~1; that is, the composition of a 0S -1a, l)-derivation fi~1d and a (y<5-1, 1)-
derivation g5_1 is a ((/?_1a)(y<5_1), l)-derivation fi~1hd~1. We will show that g<5-1 

commutes with y<5_1. Note that this implies that there is no loss of generality in 
assuming /?=1 and ¿ = 1. 

Thus, let us prove that gd-1 and y<5_1 commute. Since g commutes with y and 
S, it suffices to show that gyd~1=g5~1y. By the definition of (y, ^-derivations we 
have 

(fg)(xy) = y*(x)(yg)(y) + <yg) (x)(vS) (y). 

(gy)(xy) = y2(x)(gy)(y)+(gy№(Sy)(y)-
Since we have assumed that yg=gy the relations imply that (gy)(x)(y8—Sy)(y)=0 
for all x, y£R; but y is onto, so we also have g(x:)(y5—8y)(y)=0 for all x,y£R. 
Substituting xz for x it follows easily that g(x)R(y5—5y)(y)=0 for all x, y£R. 
In particular, g((yS—Sy)(x))R(yS—Sy)(g(x))=0 for every x in R. Since g commutes 
with yd—Sy, and since R is semiprime, it follows that gyd =gdy. Multiplying this 
relation from the right and from the left by <5-1 we arrive at gS~1y=gy5~1. 

Now, we may assume that /£=<5 — 1. A direct computation shows that 

(dg)(xy) = (0ty)(*)№)O')+№)(*)iO')+(«i)WrfO')+№)Wy. 

On the other hand, since dg is an (ay, l)-derivation, we have 

(dg)(xy) = (a y)(x)(dg)(y) + (dg)(x)y. 

Comparing the two expressions so obtained for (dg)(xy), we see that 

(1) (dy)(x)g(y) + (zg)(x)d(y) = 0 for all x,yiR. 
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Replacing y by yz in (1) we obtain 

(dy)(x)y(y)g(z) + (dy)(x)g(y) z+(<xg)(x)x(y) d(z) + (ag)(x) d(y) z = 0. 

By (1) this relation reduces to 

(2) = 0 for all x,y,z£R. 

Replacing y by g(y) in (2) and using the assumption that g commutes with y, we then 
get 

On the other hand, using (1) twice we obtain 

{M>0(*)s(y0'))}*(z) = -fog)(*) {(dy)(y)g(z)} = (ag)(x)(xg)(y)d(z). 
Comparing the last two relations we get 2(ag)(x)(ag)(y)d(z)=0 for all x,y, z£R. 
Since R is 2-torsion free we then have 

0 = ^{(0Lg)(x)(ag){y)(d){z)) = g(x)g(y)(a^d)(z). 

Thus g(x)g(y)(a~1d)(z)=0 for all x, y, z£R. Replacing x by xu it follows at once 
that g(x)Rg(y)(x-1d)(z)^0; similarly we see that g(x)Rg(y)R(a~1d)(z)=0. The 
semiprimeness of R then yields g(y)R(a~1d)(z)=0 and so the lemma is proved. 

As an immediate consequence of Lemma 1 we obtain the following generaliza-
tion of Posner's theorem. 

Corol lary 1. Let R be a prime ring of characteristic not 2, d be an (a,/?)-
derivation of R, and g be an (y, 8)-derivation of R. Suppose that g commutes with 
both y and 8. If the composition dg is an (ay, p8)-derivation then either d=0 or g=0. 

Example . The assumption that g commutes with both y and 8 is not super-
fluous. Moreover, the following simple example shows that it cannot be replaced by 
the assumption that d commutes with both a and /?. Suppose that a prime ring with 
unit element 1 contains elements a and b such that a 8 =0, bz—l, ab+ba=0, and 
a, b do not lie in the center of R (for example, in the ring of 2 x 2 matrices the ele-
ments 

fl=[oi]> 
satisfy these conditions). Define the inner automorphism y by y(x)=bxb and the 
(y, l)-derivation g by g(x)=y(x)ba—bax; g^0 since g(x)a=— baxa^O for some 
x£R by the primeness of R. If d is the inner derivation, d(x)—ax—xa, then dg=0. 

We need two easy lemmas. 

Lemma 2. Let R be any ring and 0 be an automorphism of R. If 0 maps an 
ideal W onto itself then 0 maps Ann (W) onto itself. 
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Proof . Given w£W, Ann (fV) we have 0 = 0 { u w ) = 0 (w)0(w) and sim-
ilarly, 0(w)0(u)=0. By assumption, 0(w) is an. arbitrary element in W, so 
it follows that 0(«)£Ann (W). Thus 0 maps Ann (W) into itself. Analogously, 
0 - 1 maps Ann (W) into itself, which means that 0 is onto on Ann (W). 

Lemma 3. Let R be a semiprime ring, and let d be an (a, ¡5)-derivation of R 
which commutes with both a and p. If d maps R into an ideal W of R, then d is zero on 
Ann (W). 

P roo f . Given wdW, u^Ann (W) we have u(tx~1d)(w)=ud(<x~1(w))€ 
£Ann(W)W=0. Thus a (u)w)=a(m(a~ 1 (vv))=0. Hence d(u)P(w)=a(u)d(w)+ 
+d(u)P(w)=d(uw)=0. But then also 0=p~1 (d(u)P(w))=d(p~1 («))w. That is, 
rf(/?-1(«))£Ann (W) for any w£Ann (IV). However, by assumption rf(/J-1(M)) 
lies in W, so we are forced to conclude that d(p~1(u))=0. Since d and /? -1 commute, 
d(u)=0 as well. 

We now have enough information to prove the main theorem of this paper-

Theorem 1. Let R be a 2-torsion free semiprime ring, d be an (a, P)-derivation 
of R, and g be an (y, S)-derivation of R. Suppose that d commutes with both x and /?, 
and that g commutes with both y and <5. If the composition dg is an (ay, pb)-derivation, 
then there exist ideals U and V of R such that: 

(i) UC\V=0 and U®V is an essential ideal of R. Moreover, if the annihilator 
of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), 
then U®V=R, 

(ii) If 0 is any automorphism of R which commutes with d then 0 maps U onto 
U and V onto V, 

(iii) J maps R into U and d is zero on V, 
(iv) g maps R into V and d is zero on U. 

In particular, dg=gd=0. 

Proof . Let U0 be the ideal of R generated by all d(x), x£R. Let F=Ann (U0) 
and U=Ann(F). Thus (i) holds. If an automorphism 0 of R commutes with d, 
then 0(xd(y)z)=0(x)d(0(y))0(z)£Ua for all x,y,z£R. Similarly, 0(xd(y))e U0, 
0(d(y)z)£ U0 and &(d(y))d U0. Thus U0 is invariant under 0 . Likewise U0 is 
invariant under 0 - 1 . Hence 0 maps U0 onto itself. From Lemma 2 it follows that 
0 maps V onto V, and therefore also U onto U. Thus (ii) is proved. Since d maps R 
into U0QU, (iii) follows immediately from Lemma 3. It remains to prove (iv). 
In view of Lemma 3 it suffices to show thatg(x) lies in v for every x^R. By Lemma 
1, since d and a - 1 commute, we have g(x)Rd(y)=0 for all x,y£R. Thus g(x)£ 
£Ann (U0)=V. Combining (iii) and (iv) we see that dg=gd=0. The proof of the 
theorem is complete. 
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Let R be any ring. Suppose that automorphisms a and p of R satisfy a + a - 1 = 
=/?+/? - 1 and aP=P<x. Multiply the first relation by a, and observe that the relation 
which we obtain can be written in the form (a—P)(oc—p~1)=0. That is, the com-
position of the (a,/?)-derivation cc—p and the (a, /?-1)-derivation a—/?-1 is equal 
to zero. Note that all the requirements of Theorem 1 are fulfilled. Thus we have 

Corol la ry 2. Let R be a 2-torsion free semiprime ring. Suppose that auto-
morphisms a and p of R satisfy a+a_1=j?+/?_1. If a and P commute then there 
exist ideals U and V of R such that: 

(i) UCIF=0 and U@V is an essential ideal. Moreover, if the annihilator of 
any ideal in R is a direct summand (in particular, if R is a von Neumann algebra) 
then TJ@V=R, 

(ii) a and j3 map U onto U and V onto V, 
(iii) cc=P on V, 
(iv) a=/?-1 on U. 
We conclude this paper with the following direct consequence of Corollary 2. 

Corol la ry 3. Let R be a prime ring of characteristic not 2. Suppose that 
automorphisms a, p of R satisfy a+a~1=/?+/?~1. If a and p commute then either 
a=j5 or a.=P~1. 

We leave as an open question whether or not the assumption that a and P 
commute can be removed in Corollary 3 (it certainly cannot be removed in the 
case R is semiprime, as Thaheem [17] has shown). 
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K. Andersen, Brook Taylor's Work on Linear Perspective. A study of Taylor's Role in the His-
tory of Perspective Geometry. Including Facsimiles of Taylor's Two Books on Perspective. (With 
114 Illustrations), (Sources in the History of Mathematics and Physical Sciences, 10), X+259 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong— 
Barcelona—Budapest, 1992. 

In order to indicate the significance of Taylor's studies, the author cites Edward Noble's words: 
"...[Taylor's] fate has been to be more admired and celebrated than understood." K. Andersen 
explains this fact noticing two "paradoxes" (in the Concluding Remarks of the book). First, "... 
the part of Taylor's theory that was mostly applied — and presumably known as his principles — 
existed long before him. His real and impressive improvements of the theory of perspective — 
among which his wider use of vanishing lines, and his contributions to direct constructions, and the 
theory of inverse problems are especially significant — were, however, not much noticed." Secondly, 
"... precisely Taylor's studies, which are the most incomprehensible of the entire pre-nineteenth-
century literature on perspective, evoked response in a circle of practitioners." 

When Brook Taylor wrote his books, the theory of perspective and the everyday demands of 
the painting were in strong interrelation, and perspective was an independent theory in mathematics 
of its own. So that the linear perspective was the integrating part of the fine art — at least in Taylor's 
mind. His work reflects a typical viewpoint of some scientists'. Namely that the scientific understand-
ing is a "sine qua non" for the appropriate practical problem (painting, design, etc.). 

In the introductionary study K. Andersen presents Taylor's work as a comprehensive survey 
of the preceding and actual results of the early 18th century. Without this essay it would be almost 
impossible to establish the significance of the two works presented in facsimile form. The modern 
mathematician needs some help to understand the terminology and the treatment since the two books 
were written in the time of the evolution of the theory as a whole (and also in details). This task is 
entirely fulfilled (starting with the exposition of the basic concepts and methods, Taylor's "inheri-
tance" and his contributions to development of the perspective geometry, proceeding to some his-
torical overview). 

After the preliminaries the author could restrict the deal of necessary remarks on the two fa-
csimiles to 41 respectively 35 remarks (indicated by starts in the original texts). 

A bibliography is also added, listing the most important works concerning this exciting ma-
terial. 

This volume is not only a useful book for any researcher in this field, but also an original con-
tribution to the researches in the history of mathematics. 

J. Kozma (Szeged) 



378 Bibliographie 

R. R. Akhmerov—M. I. Kamenskii—A. S. Potapov—A. E. Rodkina—B. N. Sadovskii, Measures of 
Noncompactness and Condensing Operators, (Operator Theory: Advances and Applications, 55), 
Vm+249 pages, Birkhauser Verlag, Basel—Boston—Berlin, 1992. 

Kuratowski was the first who introduced (in 1930) a quantitative characteristic measuring 
the degree of noncompactness. In the mid Fifties in functional analysis various measures of non-
compactness was applied to investigate condensing operators which map any set into a set which 
is in certain sense more compact than the original set. It turns out that condensing operators have 
similar properties as compact operators. The text is divided into four chapters. The first chapter 
introduces the notions of Kuratowski, Hausdorff and general measures of noncompactness, the 
notion of condensing operators and gives the basic properties. The second chapter is devoted to the 
characterization of linear condensing operators in spectral terms and studies the perturbation of 
the spectrum. The third chapter develops the theory of the index of fixed points for nonlinear condens-
ing operators. The fourth chapter applies the theory to problems for differential equations in Banach 
space, stochastic differential equations, functional differential equations and integral equations. 

The book can be offered to anyone who is interested in topological relation of functional ana-
lysis and has some background in functional analysis and general topology. 

L. Gehir (Szeged) 

R. Balian, From Microphysics to Macrophysics, Vol I., (Texts and Monographs in Physics), 
XXH+465 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo— 
Hong Kong—Barcelona—Budapest, 1991. 

This is the English translation of the original French book, which has grown out from lecture 
notes for students of the Ecole Polytechnique in Paris. It is an advanced textbook of statistical phy-
sics and thermodynamics. One of its great merits is that the subject is based on the laws of quantum 
physics, which is necessary if one wants to avoid the problems and contradictions, raised by classical 
statistical mechanics. This modern approach is made familiar by beginning with the simple example 
of an ensemble of two-level magnetic atoms. Then the introduction of the concepts of statistical 
mechanics with its foundations in quantum mechanics follows naturally. Classical systems are treated 
as a special case. The concept of entropy is also introduced from the quantum physical point of 
view, and its connection with information theory is presented too. The connection between thermo-
dynamics and statistical physics is built up gradually, first by only referring to elementary facts from 
thermal physics, and later on in two separate chapters devoted to advanced thermodynamics. In 
the first one the traditional presentation in the form of the main laws can be found, in the other one 
the more modern approach is presented by postulating the existence and the properties of the ent-
ropy as a thermodynamic potential. Among the examples the very delicate and problematical ques-
tions of dielectric and magnetic substances are treated with due attention. The perfect gas, the real 
gas, and the gas-liquid phase transition are also discussed in this first volume, while the ideal quantum 
gas together with other non-traditional applications of statistical physics are left for the second one. 

There are several interruptions of the main text. Vivid discussions on the historical evolution 
of the fundamental concepts of statistical physics, and also philosophical considerations concerning 
its paradoxes makes the reading a pleasant entertainment. The clarity of the presentation and the 
comprehensive content will certainly make this book together with the forthcoming second volume 
a standard reference of the field. 

M. Benedict (Szeged) 
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P. Bamberg—S. Sternberg, A course in mathematics for students of physics: 1, Cambridge 
University Press, Cambridge—New York—Port Chester—Melbourne—Sydney, 1991. 

We have already recommended this book when read its 2nd volume. However, the reviewer 
is in the position of presenting a recommendation anew after reading the first volume, too. 

This volume is "neither more" nor less than a very good textbook for studying mathematics 
necessary to understand most important physical concepts, phenomena and lows. It provides, at 
the same time, the basis for any mathematical studies: affine and Euclidean planes, linear transfor-
mations, matrix representations, linear differential equations (in 2-dimensional planes), calculus 
in the plane, differential forms, line and double integrals, vector spaces, and determinants. The 
above list indicates a standard material, however the demands on the physical applications comple-
tely satisfied in each sections and on all levels. 

The reader meet this requirement firstly in the examples (e.g. applications of differential equa-
tions to the well-known physical systems, normal modes — also in higher dimensions). On the other 
hand, some significant chapters of the classical and modern physics are explicitly discussed (special 
relativity, Poincare group and the Galilean group, momentum, energy and mass, Gaussian optics). 

This text examines the most important concepts (on undergraduate level), paying attention to 
both excellent exposition and demonstration by clear reasonings. 

The redaction systematically goes back to the notions and facts previously introduced and 
proved, so that the volume is self-contained in this respect. Every section begins with some introduc-
tion, which give an outlook of the subsequent material, and closes with a brief summary which is 
used to take some emphases on the appropriate place. 

Various topics are described in a uniform manner. This is a good help for the beginner to 
find the relations between new and previously discussed ideas. 

This new classical book is recommended as an undergraduate text as well as a good reading 
for anybody interested in physics, but with some need of mathematical backgrounds. 

J. Kozma (Szeged) 

T. Banchoff—J. Wermer, Linear Algebra Through Geometry (Second Edition), with 92 
Illustrations, (Undergraduate Texts in Mathematics), XII+305 pages, Springer-Verlag, New York— 
Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1992. 

The second edition of this classical book has been enlarged. 
The first four chapters remained unchanged except for some additional remarks in Chapter 4: 

simultaneously are discussed the 4-spaces and the possibility of their generalization for n-spaces, 
closed by the general definition of the determinant of an ny.n matrix. These four chapters represent 
a good introduction into linear algebra through geometry. The leading idea of the authors is to 
consider the Euclidean plane (space) as a vector space, and find their properties independent from 
the concrete geometric meaning. The first two chapters provides a detailed analysis of the geometry 
of vectors in the line and the plane, starting with the notion of the vector and linear transformation, 
furthermore a development of the elementary properties of the commonly used binary opera-
tions, and proceeding in the third chapter to a deeper study of vectors in a 3-space (by means of linear 
transformations). There is also given the classification of conic sections and quadric surfaces. 

The content of the next chapter of the first edition is now partly attached to Chapter 4 (ho-
mogeneous and inhomogeneous systems of linear equations). The new 5th chapter treats the notion 
of an abstract n-dimensional vector space. There is no more direct contact with the (visualizable) 
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space, however the uniform treatment helps the reader to remember the lower-dimensional ana-
logues. 

Chapter 6 is completely a new one, dealing with inner product vector spaces, the Gram-Schmidt 
orthonormalization process and orthogonal decomposition of a vector space. 

In Chapter 7 we can find a brief summary on symmetric matrices in the necessary extent in 
order to prove the theorem on diagonalization. 

Finally, Chapter 8 covers three applications: differential systems, least squares approxima-
tion and curvature of function graphs. 

These latter new chapters contain welcome and useful material concerning the original topic. 
In this new form the book can be recommended as an introductionary text-book. However, 

after studying algebra without parallel studies on geometry, every reader will find a strengthening 
of his or her former knowledge on both geometry and algebra. 

J. Kozma (Szeged) 

David M. Bressoud, Second Year Calculus (Undergraduate Texts in Mathematics), XI+386 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong— 
Barcelona, 1991. 

This is an excellent textbook for multi-variable and vector calculus, emphasizing the historical 
physical problems from which the subject has grown, but couching much of it in the modern ter-
minology of differential forms. The book guides the reader from the birth of the mechanized view 
of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics 
becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often 
counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical 
model that suggests new aspects of that reality. The student learns to compute orbits and rocket-
projections, model flows and force fields, and derives the laws of electricity and magnetizm. The 
languages of differential forms enables the reader to see how mathematical symmetry leads to the 
conclusion that matter and energy are interchangeable. 

The chapter headings are: F=ma; Vector Algebra; Celestial Mechanics; Differential Forms; 
Line integrals; Linear Transformations; Differential Calculus; Integration by Fullback; Techniques 
of Differential Calculus; The Fundamental Theorem of Calculus; E=m(?. Every chapter contains 
very good exercises helping the students to understand the text. 

The style of the book is clear. It is highly recommended both to instructors and students. 

J. Németh (Szeged) 

Commutative Harmonic Analysis I, Edited by V. P. Khavin and N. K. Nikol'skij, (Encyclopae-
dia of Mathematical Sciences, 15), VI+268 pages, Springer-Verlag, Berlin—Heidelberg—New 
York—London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

This volume is consisting of three parts: I. Methods and Structure of Commutative Harmonic 
Analysis (V. P. Khavin); II. Classical Themes of Fourier Analysis (S. V. Kislyakov); III. Methods 
of the Theory of Singular Integrals: Hilbert Transform and Calderon—Zygmund Theorem (E. M. 
Dyn'kin). 

In the first part the following topics are detailed: A short course of Fourier analysis of periodic 
functions; Harmonic analysis in Rd; Harmonic analysis on groups; Historical survey on Fourier 
series; Spectral analysis and spectral synthesis. 
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The second part is dealing with the following materials: Fourier series (convergence and 
summability); The harmonic conjugation operator; Fourier coefficients; Absolutely convergent 
Fourier series; Fourier integrals. 

The third part is devoted to the subjects as: Hilbert transform (in L1, in L2, in LP and in Holder 
classes); Calderon—Zygmund operators; L2 estimates, LP estimates; The maximal operator. 

At the end of all parts rich references can be found. Furthermore it should be pointed out that 
numerous examples illustrate the connections to differential and integral equations, approximation 
theory, number theory, probability theory and physics. 

This excellent well-written book should serve as a standard reference for researchers in the 
field but it can also be recommended to students who want to become researchers in mathematics. 

J. Németh (Szeged) 

Delay Differential Equations and Dynamical Systems, Edited by S. Busenberg and M. Martelli, 
(Lecture Notes in Mathematics, 1475), VIII+249 pages, Springer-Verlag, Berlin—Heidelberg— 
New York — London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

This is one of the Proceedings of a Conference in honor of Kenneth Cooke held in Claremont, 
California, Jan. 13—16, 1990 under the title International Conference on Differential Equations and 
Applications to Biology and Population Dynamics. A companion volume in the Biomathematics 
Lecture Notes series of Springer contains papers devoted to applications in biology and population 
dynamics. The contents of the present volume is summarized in the Preface by the editors as follows: 

"The contributions in this volume are collected in two groups, the first consisting of survey 
articles and the second of research papers. The three survey articles are by Kenneth Cooke and 
Joseph Wiener who review the recently opened area of differential equations with piecewise con-
tinuous arguments; by Jack Hale who discusses a fascinating array of results in the stability of delay 
differential equations viewed as dynamical systems; and by Paul Waltman who presents an overview 
of useful , new results on persistence in dynamical systems. The research contributions part of the 
volume consists of nineteen papers which present new results in delay differential equations and 
dynamical systems. The papers are united by the common thread of the underlying topic but, as 
is characteristic of this field, employ a wide array of deep mathematical theories and techniques. 
These include methods from linear and nonlinear functional analysis, a number of topological and 
topological degree techniques, as well as asymptotic and other classical analysis methods. Many 
of these mathematical techniques were originally created in order to address problems arising in the 
field of differential equations and are still being stimulated by challenges from this field." 

Kenneth Cooke has been one of the most artful and original practitioners in the interdiscip-
linary research work involving delay differential equations, dynamical systems and their applications 
in biology and population dynamics. This volume is worthy of him, it will be very interesting and 
useful for scientists interested in the topic. 

L. Hatvani (Szeged) 

F. Digne—J. Michel, Finite Groups of Lie Type (London Mathematical Society, Student 
Texts, 21), 159 pages, Cambridge University Press, Cambridge—New York—Port Chester— 
Melbourne—Sydneay, 1991. 

The aim of this volume is to present basic facts concerning a particular class of finite groups, 
called of Lie type. They are finite groups arising as groups of rational points of reductive groups 
over Fq defined over Fq. 

12 
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The text follows a course given at the University of Paris VII in the academic year 1987—88, 
so that it contains a fairly complete picture of the topic on introductionary level in the style of a well-
organized series of lectures. It is enough refer to the strict and consequent definirion-proposition-
corollary-remark structure which is completed by references at the end of each chapter (lecture). 
On the other hand the reader can find introductionary sentences at the beginning of the chapters, 
gaining perspective for the "audience". Furthermore, the proofs are well thought, and for the omitted 
ones (easy or standard) can be found a good reference. 

The book is divided into 16 chapters. The introductionary chapter (ch. 0) is directed towards 
the basic knowledge on algebraic groups. Further chapters develop the theory step by step. The 
first three chapters provide a good introduction to this theory by explaining basic concepts as Bruhat 
decomposition, intersection of parabolic subgroups, rationality and Frobenius endomorphism. The 
subsequent chapters include a treatment of cohomological methods and Gelfand-Graev represen-
tations. Finally, the last chapter ensures numerous examples of finite groups of Lie type. 

This volume is .suitable by its design for introductionary courses or seminars on the subject. 

J. Kozma (Szeged) 

L. R. Foulds, Graph Theory Applications. (Univeritext), 385 pages, Springer-Verlag, New York— 
Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong, 1992. 

The book is divided into two parts: the first one discusses the theory of graphs and the second 
one is dealing, with the applications. 

The first part begins with a historical background and the basic notations. The next chapters 
concerned with such a fundamental graph theoretical disciplines as the connectivity (Chapter 2), 
the trees as the most important class of the graphs (Chapter 3), Euler and Hamiltonian Graphs (Chap-
ter 4) and the planarity. Chapter 6, on the matrices on graphs, is essential for a later discussion, on 
graph theoretic algorithms. Chapter 7 is an introduction to the directed graphs. These graphs are 
widely used in electrical ingeneering. The next chapter discusses the coverings and colouring which 
has applications in industrial ingeneering and other disciplines. Chapter 9 covers graph theoretic 
algorithms. The electrical ingeneering uses the results of the matroid theory which are introduced 
in Chapter 10. 

Part II has mainly longer chapters explaining the applications of the abovementioned material 
in various branches of engineering, operation research and science. Due to limitation of space just 
a few applications have been presented in some depth: some exact and heuristic algorithms in ope-
ration research, the printed circuit design in electrical engineering, production planning and control, 
the facility layout (in which the author's research activity is well known) in industrial engineering. 
Some other algorithms are mentioned from the fields of physics, chemistry and biology. The last 
chapter covers such civil engineering applications as earthwork projects and traffic network design. 

Since the book offered to different university courses each chapter has a separate subtitle with 
different exercises. This book, like the other works of the author, is written in clear style. The 
book is well organized and self-contained. Is is recommended as a textbook in teaching 
experience and for those students who are interested in the applications of graph theory in practice. 

Gábor Galambos (Szeged) 
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Geometric aspects of Functional Analysis, Edited by J : Lindenstrauss and V. D. Milman (Lecture 
Notes in Mathematics, 1469), IX+207 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

This is the fifth published volume of the proceedings of the Israel Seminar on Geometric 
Aspects of Functional Analysis. The program on the first page shows that in the period 1989—90, 
as in the previous years, the most outstanding representatives of the subject participated at the 
seminar. The papers collected in this volume are original research papers and some survey papers 
which also contain new results. From the contents: 

L. Carleson, Stochastic models of some dynamical systems; V. Milman, Some applications of 
duality relations; Ya. G. Sinai, Mathematical problems in the theory of quantum chaos; P. M. 
Bleher, Quasi-classical expansions and the problem of quantum chaos; A. G. Reznikov, A strengthe-
ned isoperimetric inequality for simplices; M. Talagrand, A new isoperimetric inequality and the 
concentration of measure phenomenon; P. F. X. Miiller, Permutations of the Haar system; J. 
Bourgain, On the distribution of polynomials on high dimensional convex sets; J. Bourgain, J. 
Lindenstrauss, On covering a set in Rd by balls of the same diameter; M. Meyer, S. Reisner, Cha-
racterization of affinely-rotation-invariang log-concave measures by section-centroid location; 
J. Bourgain, Remarks on Mongomery's conjectures on Dirichlet sums; M. Schmuckenschlager, 
On the dependence on e in a theorem of J. Bourgain, J. Lindenstrauss and V. D. Milman; G. Schecht-
man, M. Schmuckenschlager, Another remark on the volume of the intersection of two L"p balls; 
J. Bourgain, On the restriction and multiplier problem in R3. 

The papers prove taht the organizers of the seminar and the participants keep continue the 
developing of a new theory which is a combination of the very strong methods of probability theory, 
Banach space theory and convex geometry. The volume is recommended mainly to specialists who 
would like to follow the results of this subject. 

J. Kineses (Szeged) 

E. Hairer—G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Al-
gebraic Problems (Springer Series in Computational Mathematics, 14), VIII+601 pages, Springer-
Verlag, Berlin—New York—Budapest, 1991. 

This book is the continuation of the excellent Part I. (published in 1987 as Vol. 8 of the same 
Series). The present volume has all the virtues of the first part plus even more up-to-date material, 
more references (from the last 3 centuries), more then 100 figures and more humour. Let me quote 
just one pun exercise from page 213: 

"Interpret the meaning of the "N" in the definition for AN-stability. Check among 

Nec plus ultra 
Notre Dame 
Nottinghamshire 
No smoking 

other 

and send to the authors." 
This second volume reconsiders and enlarges the material of Part I. Chapter IV investigates 

12» 
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Runge-Kutta methods for stiff problems. Chapter V is on multistep methods for stiff problems. The 
last Chapter VI introduces singular perturbations and differential-algebraic equations. 

This book needs no special recommendations. Everybody opening it will read it, too. I think 
it will be 'the' book for my graduate courses in the next few years. 

Jdnos Viragh (Szeged) 

Y. Hino—S. Murakami—T. Naito, Functional Differential Equations with Infinite Delay, (Lecture 
Notes in Mathematics, 1473), X+317 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

In several processes, e.g. in biology and population dynamics, it is typical that the velocity of 
the change of the state variable depends not only on the momentary values of the state variables 
but also on their earlier values, too. In other words, the future depends not only on the present but 
on the past, too. If one has to take into account only a finite segment of the past, then one has a 
functional equation with finite delay. In that case the single natural phase space is the space of 
continuous functions over a finite interval with the usual supremum norm. However, if one has to 
take into account the whole past, then the delay is infinite, and there is a big variety in the choice 
of the phase space among the linear spaces with seminomas. There are many facts which hold inde-
pendently of each concrete phase space. It is a natural idea to summarize these results from the dis-
cussion of the equation on an abstract phase space defined by some axioms induced from many examp-
les for the phase space. The authors develop the theory of the functional differential equations with 
infinite delay from such a point of view. 

Chapter 1 contains the formulation of axioms of the phase space together with many examples. 
After a brief presentation of the basic theorems on the existence, uniqueness, continuous dependence 
of the solutions (Chapter 2) and an introduction to Stieltjes integrals (Chapter 3), the theory of 
linear equations is developed from Chapter 4 through Chapter 6. Chapter 7 is devoted to fading 
memory spaces. In Chapter 8 the stability problem in functional differential equations on a fading 
memory space is studied in connection with limiting equations. Chapter 9 discusses the existence 
of periodic and almost periodic solutions of functional differential equations. 

This is a very important monograph; it should be on the shelf of every mathematician who 
makes research on functional differential equations. 

L. Hatvani (Szeged) 

I. S. Hughes, Elementary Particles, Third edition, XXII+431 pages, Cambridge University 
Press, Cambridge—New York—Port Chester—Melbourne—Sydney, 1991. 

It would be difficult to find any other science that has developed in recent years as fast as 
particle physics. Therefore there is a great demand for textbooks presenting the subject in a compre-
hensive manner. This was the aim of the author and he fulfilled his task very well, by upgrading the 
earlier editions of the book. 

The text is written for undergraduates in physics, but it can be interesting for a mathematical 
physicist as well, who deals with gauge field theory and related issues. The volume explains in simple 
terms the interesting interplay between actual physical experiments and theoretical concepts, that 
has led to the great revolution in particle physics in the last two decades. The reader gets some insight, 
how people do work in the huge laboratories of the few giant accelerator centers of the world, what 
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are the principal features of their complicated apparatus, and understands the common aims and 
efforts of theorists and experimentalists to understand and classify the different interactions of 
elementary particles. 

The organization of the chapters follows the historical formation of particle physics, what is 
certainly the consequence of the fact, that this is already the third edition of the book. This can be 
advantageous from a pedagogical viewpoint, but leads also to a certain kind of unbalance in the 
exposition. For instance the detailed and common discussion of muons and pions — such very 
different particles — should have been possibly avoided. On the other hand the reader can find 
every important fact of the subject in this book, the theory of leptons, quarks, gluons, weak bosons, 
spontaneous symmetry breaking, supersymmetry and all that explained only with simple quantum 
mechanics. Especially remarkable is the last chapter, written for this third edition about the connec-
tion between particle physics and cosmology. 

M. Benedict (Szeged) 

Arthur Jones—Sidney A. Morris—Keneth R. Pearson, Abstract Algebra and Famous Impossi-
bilities (Universitext) X+187 pages, Springer-Verlag, New York—Berlin—Heidelberg—London— 
Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

In this book three of the oldest problems of mathematics are discussed. They are the cube 
duplication (the Delian problem), the angle trisection and the quadrature of the circle. These are 
construction problems performed by straightedge and compass, which are more than 2000 years 
old and have mytical origin known in several version. For example, one version of the problem of 
doubling the cube, found in a work of Eratosthenes (c. 284—192 B.C.) relates that the Delians, 
suffering from pestilence, consulted the oracle, who advised constructing an altar double size of 
the existing one. The Delian realized that doubling the side would not double the volume and there-
fore they turned to Plato, who told them that the god of the oracle had not so answered because 
he wanted or needed a doubled altar, but in order to censure the Greeks for their indifference to 
mathematics and their lack of respect for geometry. Plutach also gives this story. 

Actually, these construction problems are extensions of problems already solved by the Greeks. 
Various explanations of the restriction to straightedge and compass have been given. The straight 
line and the circle were, in the Greek view, the basic figures, and the straightedge and compass are 
their physical analogues. Hence constructions with these tools were preferable. The reason is also 
given that Plato objected to other mechanical instruments because they involved too much of the 
world of sense rather than the world of ideas, which he regarded as primary. 

The unsolvability of these problems was proved in the last century, based on the Galois theory 
and Lindemann's result on the transcendence of n. 

It is very useful if these questions are in the curriculum of mathematics, but after a course of 
Galois theory (with a course on Group theory as prequisite) and after a course of Complex variables 
very few students can be involved in it. 

The excellent book of Jones, Morris and Pearson solves this problem by giving a very simple 
and nearly self-contained treatment of the unsolvability of the three ancient constructing problems. 
Most of the material needs only some knowledge of linear algebra. This is the content of the first 
six chapters. 

In the fairly independent Chapter 7 complete and elegant proofs of transcendence of e and n 
are given. In contrast to the most known proofs they need only elementary facts from the calculus. 
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A special feature of this volume that at the begining of the more complicated or long proofs 
there is an outline of the procedure. 

Each chapter contains examples and exercises which makes the book more comfortable for 
teaching purposes. It is warmly recommended for second year university courses. 

Lajos Klukovits (Szeged) 

H. Jiirgensen—F. Migliorini—J. Szép, Semigroups, 121 pages, Akadémiai Kiadó, Budapest, 
1991. 

The authors describe the book in the introduction as follows: 
"This volume does not attempt to provide a "complete" presentation of semigroup theory. 

Instead, we focus on essentially one aspect: the classification of elements by properties of the induced 
translation and the related global structural properties of a semigroup. Several new results were 
found in particular, on increasing elements in semigroups and many new open problems were 
identified. In this sense, we hope that this book may serve not only as a summary but also a starting 
point for further research." 

L. Megy esi (Szeged) 

Frances Kirwan, Complex Algebraic Curves (London Mathematical Society Student Texts, 
23), VIII+264 pages Cambridge University Press, Cambridge—New York—Port Chester—Mel-
bourne—Sydney, 1992. 

The purpose of this book is to give an introduction to the elementary methods of algebraic 
geometry and Riemann surface theory on the basis of the usual undergraduate courses of algebra, 
surface topology and complex analysis. Chapter 1 contains a collection of motivations from dif-
ferent areas of classical mathematics and historical background for the study of algebraic curves. 
Chapter 2 is devoted to the introduction of complex projective space and to the investigation of 
elementary properties of algebraic curves in this space. Chapter 3 studies the tangent and intersec-
tion properties of complex algebraic curves. Chapter 4 gives an investigation of the intuitive topolo-
gical properties of algebraic curves and proves the degree-genus formula. In Chapters 5 and 6 the 
methods of holomorphic and meromorphic function theory are used for the study of the relations 
between complex algebraic curves and Riemann surfaces. There is given an introduction to the 
theory of abelian integrals and to the Riemann—Roch theory of nonsingular projective curves in 
the complex projective plane. Finally Chapter 7 is devoted to the study of the singularities of algeb-
raic curves. 

The book contains three appendices on the basic results of algebra, topology and complex 
analysis which are used in the treatment. Thus it is as self-contained as possible. There are given 
many exercises of different difficulties. 

This well-organised book can be recommended to lecturers and students of universities and 
for mathematicians who are interested in the interrelation of algebra, geometry and analysis. 

Péter T. Nagy (Szeged) 
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Helmut Koeh, Introduction to Classical Mathematics I (Mathematics and Its Application, 70), 
XH+453 pages, Kluwer Academic Publishers, Dordrecht—Boston—London, 1991. 

The main purpose of this volume is expressed by the author as follows: "This book is directed 
towards all those who have mastered two years of university mathematics. It aims to convey an 
overview of classical mathematics, particularly that of the 19th centrury and the first half of 20th 
century". 

Here "classical" means that the methods and results discussed are the real classics of mathe-
matics. Motivation, especially the original motivation, is a prime concern and so is clarity and, 
consequently, proofs and discussions are in terms of modern concepts and ideas. The order of the 
contents follows historical development beginning with Gauss', Disquesitions Arithmeticae and 
ending with the Idee der Riemannschen Flache of Weyl. 

The book is divided into 30 chapters, all of them end with exercises. 
For further orientation here are some of the most characteristic chapter headings: Congruen-

ces; Quadratic forms; Theory of surfaces; Harmonic analysis; Prime numbers in arithmetic prog-
ressions; Theory of algebraic equations; The beginnings of complex function theory; Entire func-
tions; Riemann surfaces; Elliptic functions; Riemann geometry; Field theory; Dedekind's theory 
of ideals; Theory of algebraic functions of one variable; Proof of the prime number theorem; Com-
binatorical topology. 

The book is well written, the presentation of the material is clear. The necessary prerequisi-
ties are a basic knowledge of algebra and calculus. 

This very valuable, excellent book is recommended to researchers, students and historian of 
mathematics interested in the classical development of mathematics. 

J. Németh (Szeged) 

Bernhard Korte—László Lovász—Rainer Schrader, Greedois. (Algorithms and Combinatorics, 
4), 211 pages, Springer-Verlag, Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong, 1991. 

This book is organized as follows. After an exhausting historical overview the authors review 
some basic concepts of matroid theory in Chapter II. Chapter III gives a comprehensive study of 
antimatroids and gives a large variety of examples. In the next three chapters the basic toolbox of 
matroid theory to greedoids have been extended. The chapters VII—X deal with special classes of 
greedoids. The first three of these answer the general question: which greedoids can be obtained 
from matroids and antimatroids by certain construction principles? In Chapter X the class of trans-
position greedoids is treated. Chapter XI was devoted to the optimization in greedoids and the last 
section deals with the connection between greedoids and topology. 

The algorithmic principles play an ever increasing role in mathematics. The connection bet-
ween the algorithms and the structure of the underlying mathematical object is obvious. The idea 
of greediness plays a fundamental role not only in discrete algorithms but in the design of continuous 
algorithms as well. This excellent book leads the reader to the current borderline of open research 
problems of greedoid theory. By unifying different approaches this self-contained book is an in-
dispensable tool for all scientists interested in algorithmic aspects and computer science. 

Gábor Galambos (Szeged) 
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P. Latiolais, Topology and Combinatorial Group Theory, (Lecture Notes in Mathematics, 
1440), VI+207 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo— 
Hong Kong—Barcelona, 1990. 

In the last decades more and more nice and deep theorems and methods was born as a result 
of the interaction among topology, algebraic topology and combinatorial group theory. The aim 
of the editor of this proceeding was to present some of the most typical results of this subject. From 
the contents: 

I. L. Anshel, On two relator groups; M. A. Bogley, When is the homotopy set [X, Y] infinite?; 
R. N. Cruz, Periodic knots and desuspensions of free involutions on spheres; C. Droms, J. Lewin, 
H. Servatius, The Tits conjecture and the five — string braid group; C. Droms, B. Servatius, H. 
Servatius, The finite basis extension property and graph groups; B. Fine, Subgroup presenta-
tions without coset representatives; M. Frame, J. Hefferon, Fractal dimensions of limit sets of some 
Kleinian groups; R. Goldstein, Bounded cancellation of automorphisms of free products; C. Hog — 
Angeloni, A short topological proof of Cohn's theorem; C. Hog — Angeloni, On the homotopy 
type of 2 — complexes with a free product of cyclic groups as fundamental group; C. Hog — An-
geloni, M. P. Latiolais, W. Metzler, Bias ideals and obstructions to simple — homotopy type; 
G. Huck, Embeddings of acyclic 2 — complexes in S* with contractible complement; W. Imrich, 
E. C. Tuener, Fixed subsets of homomorphisms of free groups; G. Lupton; A note on a conjecture 
of Stephen Halperins; M. Lustig, On the rank, the deficiency and the homological dimension of 
groups: the computation of a lower bound via Fox ideals; S. Rosenbrock, A reduced spherical dia-
gram into a ribbon — disk complement and related examples; C. Schaufele, N. Zumoff, ""-groups, 
graphs, and bases; T. W. Tucker, some topological graph theory for topologists: A sampler of 
covering space constructions; 

The ideas and methods of these papers can be regarded as a kernel from which a new theory 
can be developed. This volume is recommended to everybody who is interested in this new subject 
of mathematics. 

J. Kineses (Szeged) 

Stanislaw Lojasiewicz, Introduction to Complex Analytic Geometry, XIV+523 pages, Birk-
hauser-Verlag, Basel—Boston—Berlin, 1991. 

This monograph is a self-contained presentation of the basic results and methods of complex 
analytic geometry, i.e. the geometry of analytic spaces (sets) described by systems of analytic equa-
tions. 

We can fully agree with the aim of the author: "It does not pretend to reflect the entire theory. 
Its aim is to familiarize the reader with the basic range of problems, using means as elementary as 
possible." So that it presents a number of the results and techniques in detail. 

The first 138 pages develop most of the necessary background material on algebra, topology 
and complex analysis (on complex manifolds). The first chapter deals with rings of holomorphic 
functions, while the notion of analytic sets and germs can be found in the following chapter. The 
aim of the third chapter is to make clear the local structure of analytic sets. As a consequence of 
Rickert's descriptive lemma can be found the Hilbert Nullstellensatz. Chapter IV and V include 
some observations on local structure, singularity problems and holomorphic mappings (Rouche's 
theorem, Andreotti—Stoll theorem). Problem of normalization is considered in Chapter 6, based 
on Cartan-Oka theorem. The last chapter contains a comprehensive presentation of the ideas of 
Serre about the "necessary" algebraicity of analytical objects in projective spaces, including the 
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most important theorems on algebraicity and normality from the elementary discussion of the mani-
fold structure on the projective and Grassmannian spaces up to the characterization of biholo-
morphic mappings of Grassmann manifolds. 

This new edition is an important contribution to the (English language) literature. It is a slightly 
revised and extended version of the Polish edition (translated from Polish by Maciej Klimek). The 
important changes in chapter V and VI are, first of all, the Grauert—Remmert formula, Cartan's 
closedness theorem and Serre's normality criterion (among others). These changes call forth some 
minor corrections and additional remarks in the first chapters, as well. 

The book is a clearly written excellent expository text on the theory. It is carefully organized 
so convenient for the reader for individual study or as a text-book of seminars. 

J. Kozma (Szeged) 

Mathematik, Realität and Ästhetik — Eine Bilderfolge Zum VLSI Chip Desing —, Mathema-
tics, Reality, and Aesthetics—A Picture Set on VLSI Chip Design —, Forschungsinstitut für Diskrete 
Mathematik Rheinische Friedrich — Wilhelms — Universität, Springer-Verlag, Berlin—Heidel-
berg—New York—London—Paris—Tokyo—Hong Kong—Barcelona, 1991. 

About fifty years ago in the course of a discussion on the teaching of calculus in the secondary 
schools G. Alexits — a famous Hungarian mathematician — tried to sketch the intention of the 
teaching of mathematics in these schools. In his opinion one of the most important thing is the 
emphasis of the aesthetical features of the subject. G. H. Hardy wrote the following words in his 
booklet "A Mathematician's Apology": "The mathematician's patterns, like the painter's or the 
poet's, must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious 
way." The aesthetical features of the mathematics show a great variety. This (picture) book is pro-
duced by the Forschungsinstitut für Diskrete Mathematik Rheinische Friedrich — Wilhelms — 
Universität. The role of the discrete mathematics is constantly increasing. The partical and also 
the theoretical problems demand the changes. Perhaps the best is to cite some sentences of the 
(short) texts (the texts are in German and in English): "The Research Institute of Discrete Mathe-
matics/Institute of Operations Research of the University of Bonn is engaged in the mathematical 
calculation and desingn of VLSI (very large scale integrated) logic chips within the framework of a 
scientific cooperation contract with IBM Germany. 

The pictures shown here have been chosen to provide an insight into this design process. We 
have in particular tried to emphasize the contrast between the mathematical design (plotter plan) 
and physical reality (microphotograph of the chip). 

For this purpose we have chosen a telecommunication chip with the code name ZORA. 
It is especially satisfying for a mathematician interested in applications to see a direct relation-

ship between the mathematical model and reality. We begin by showing several examples of the ZORA 
chip which can also be viewed in tenfold magnification. We next present a complete wiring and pla-
cement plan as calculated with methods of discrete mathematics. This is contrasted with a picture 
of the produced chip magnified 40fold. The pictures that follow show corresponding portions 
magnified 220fold to 4500fold. 

As mathematics — and its applications — always has an aesthetic component, we have made 
the daring attempt to contrast some of our pictures which are a direct result of our desing algorithms 
with several chosen pictures of modern constructivist art. We hope that our artistically interested 
public as well as the artists themselves: De Stijl, Bauhaus, Mondrian, Albers, Bill, Lohse will for-
give us." 



390 Bibliographie 

This unusual book gives an interesting visual adventure to the reader and if he is a teacher 
then he will show these pictures to his students too, and perhaps everyone will see the connections 
of mathematics, arts and technology in another way. 

L. Pintér (Szeged) 

Matroid Applications. Edited by Neil White, 350 pages, Cambridge University Press, 
Cambridge—New York—Port Chester—Melbourne—Sydney, 1992. 

This is the third volume of a series that began with Theory of Matroids and continued with 
Combinatorial Geometries. 

This volume-begins with a chapter on the applications of matroid theory to the rigidity of 
frameworks (Walter Withley). In the next chapter M. Deza discusses the perfect matroid design 
problem which is one of the most beautiful application of the matroids. In Oxley's chapter different 
methods are considered for generalizing the matroid axioms to infinite ground sets. The next chapter 
(Simoes Pereira) is dealing with the matroidal families of graphs. Rival and Stanford consider two 
questions of algebraic aspects of partition lattices. T. Brylawski and J. Oxley discusses the matroid 
connection of the Tutte Polynomial and its applications. The last but one chapter (by A. Björner) 
desribes the homology and shellability properties of several simplicial complexes associated with 
a matroid. The book is concluded with an exposition by Björner and Ziegler on greedoids. 

The book concentrates on the applications of matroid theory to a variety of topics from geo-
metry, combinatorics and operation research. The contributors have written their articles to form 
a cohesive account so this volume is a valuable reference for research workers. 

Gábor Galambos (Szeged) 

Peter Meyer-Nieberg, Banach Lattices, XV+395 pages, Springer-Verlag, Berlin—Heidelberg— 
New York—London—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

The book contains five chapters each of which is divided into sections. The first chapter intro-
duces the notions of Riesz spaces and Banach lattices and develops the classical theory of these 
spaces. The second chapter is devoted to classical Banach lattices and contains technical results 
being essential for the remainder of the book. The third chapter studies operators which are defined 
on Riesz spaces or have values in a Riesz space from topological as well as lattice theoretical point 
of view. The fourth chapter is concerned with the spectral properties of positive operators on complex 
Banach lattices. In this chapter the so-called order spectrum of regular operators is also introduced. 
The last chapter investigates the structural properties of Banach lattices. At the end of each section 
a rich collection of exercises can be found. The familiarity of the reader with the Banach space 
theory is supposed. 

L. Gehér (Szeged) 

Microlocal Analysis and Nonlinear Waves, Edited by Michael Beals, Richard B. Melrose and 
Jefferey Rauch, (The IMA Vlumes in Mathematics and its Applications, 30), XI +199 pages, Sprin-
ger-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona, 
1991. 

The volume contains articles based on proceedings of a workshop which was a part of the 
1988—89 IMA program on "Nonlinear Waves". Twenty years ago it was shown that some methods 
used for the investigation of the behaviour of linear hyperbolic waves can be applied to nonlinear 
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problems, too. The use of these relatively new techniques characterizes the articles of this volume. 
The titles and authors of the works: On the interaction of conormal waves for semilinear wave 
equations (A. S. Barreto); Regularity of nonlinear waves associated with a cusp (U. Beals); Evolu-
tion of a punctual singularity in an Eulerian flow (J. Y. Chemin); Water waves, Hamiltonian systems 
and Cauchy integrals (W. Craig); Infinite gain of regularity for dispersive evolution equations (W. 
Craig, T. Kappeler and W. Strauss); On the fully nonlinear Cauchy problem with small data. II 
(L. Harmander); Interacting weakly nonlinear hyperbolic and dispersive waves (J. K. Hunter); 
Nonlinear resonance can create dense oscillations (J-L. Joly and J. Rauch); Lower bounds of the 
life-span of small classical solutions for nonlinear wave equations (Li Ta-Tsien); Propagation 
of stronger singularities of sulutions to semilinear wave equations (Liu Lingi); Conormality, cusps 
and non-linear interaction (R. B. Melrose); Quasimodes for the Laplace operator and glancing 
hypersurfaces (G. S. Popov); A decay estimate for the three-dimensional inhomogeneous Klein— 
Gordon equation and global existence for nonlinear equations (T. C. Sideris); Interaction of singu-
larities and propagation into shadow regions in semilinear boundary problems (U. Williams). 

L. Pintér (Szeged) 

Miscellanea Mathematica, Edited by P. Hilton, F. Hirzenbruch, R. Remmert, XHI+326 
pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong— 
Barcelona—Budapest, 1991. 

Mathematics is surrounded by certain mysticism. It is mostly due to its exactness, abstractness 
and his own individual language which often disguise its origins in and connections with the physical 
world. Publishing mathematics, therefore, requires special efforts and talent. Dr. Heinz Götze, with 
his typical enthusiasm, took up this challenge and has dedicated his life to scientific publishing. He 
has made a unique and invaluable contribution to the spread of the mathematical culture. 

A group of 22 eminent mathematicians, including the editors of this volume, has decided to 
publish a "Festschrift" for him (a series of papers dedicated to him). 

The result of their efforts is this volume which contains 22 independent articles. They are not 
usual research papers rather contributions to the culture of mathematics. Most of them have strong 
historical and/or personal feature. 

The reviewer is sure that this Festschrift, this series of essays will be enjoyed by mathematicians 
and a lot of non-mathematicians, teachers and students of mathematics, everybody who interested 
in the culture of mathematics. 

Lajos Klukovits (Szeged) 

Numerical Methods for Free Boundary Problems, Edited by P. Neittaanmaki (International 
Series of Numerical Mathematics, 99), XV+439 pages, Birkhauser-Verlag, Basel—Boston—Ber-
lin, 1991. 

This volume contains 4 invited lectures and 35 contributed papers of a Conference held at the 
University of Jyvaskyla, Finland on July 23—27, 1990. 

The invited lectures were: H. W. Alt and I. Pawlow: A mathematical model and an existence 
theory for non-isothermal phase separation — V. Barbu: The approximate solvability of inverse 
one-phase Stefan problem — H. D. Mittelmann, C. C. Law, D. F. Jankowski and G. P. Neit7el: 
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Stability of thermócapillary convection in float-zone crystal growth — V. Rivkind: Numerical 
solution of coupled Navier-Stokes and Stefan equations. 

The contributed papers can be grouped around the topics Stefan like problems, optimal control, 
optimal shape design, identification, dam and fluid flow problems. 

Many participants of the Conference came from Eastern Countries and their papers — hitherto 
hardly accessible to Western scientists — could be of special interest to both mathematicians and 
applied scientists. 

János Virágh (Szeged) 

Jan Okninski, Semigroup Algebras (Monographs and Textbooks in Pure and Applied Mathe-
matics, 138), IX+357 pages, Marcel Dekker, Inc., New York, 1991. 

The present book is the first monograph on the theory of noncommutative semigroup rings. 
This branch of ring theory has grown rapidly during the last ten years, and has proved to be very 
useful not only for constructing examples in various domains of ring theory but also as a tool in 
theories like those of linear representations of semigroups, representations of finite dimensional 
algebras, growth and Gelfand—Kirillov dimension of algebras. 

Here is the table of contents of the book: 
Part I. Semigroups and their algebras: 1. Completely 0-simple and linear semigroups. 2. Semi-

groups with finiteness conditions. 3. Weakly periodic semigroups. 4. Semigroup algebras: general 
results and techniques. 5. Munn algebras. 6. Gradations. — Part II. Semigroup algebras of cancella-
tive semigroups. 7. Groups of fractions. 8. Semigroups of polynomial growth. 9. ¿-methods. 10. 
Unique-/two-unique-product semigroups. 11. Subsemigroups of polycyclic-by-finite groups. — 
Part III. Finiteness conditions. 12. Noetherian semigroup algebras. 13. Spectral properties. 14. Des-
cending chain conditions. 15. Regular algebras. 16. Self-injectivity. 17. Other finiteness conditions: 
a survey. — Part IV. Semigroup algebras satisfying polynomial identities. 18. Preliminaries on PI-
algebras. 19. Semigroups satisfying permutational property. 20. Pl-semigroup algebras. 21. The 
radical. 22. Prime Pi-algebras. 23. Dimensions. 24. Monomial algebras. 25. Azumaya algebras. — 
Part V. Problems. 

Most of the material comes from the literature of the past 10 years, and several new results 
are included. The author's main concern was ring theoretical properties for which a systematic 
treatment could be presented. The starting point is mostly results on group rings, in the case of 
Pi-semigroup algebras also those on commutative semigroup rings. The approach is that of ring 
theory, no special class of semigroups (except cancellative ones) is considered for its own sake. In 
consequence of this approach, putting together the results from pure semigroup theory in the book, 
one gets a rather specific and unusual but interesting selection of material. 

Each chapter ends with bibliographical notes and comments on related results appearing in the 
literature. The last part presents 37 open problems (many of them extracted from the mam text) 
with information on partial results and sometimes comments on possible developments. 

Summarizing: This book is a valuable contribution to the literature. It puts together an impor-
tant collection of results, and will therefore certainly serve as a basic reference in the field. By de-
veloping various interesting topics up to the borders of our present-day knowledge, it will hopefully 
stimulate further research. The exposition is very clear, suitable also for graduate students who are 
familiar with the fundamental results in ring theory. For the reviewer it was a pleasure to read this 
book. 

László Márki (Budapest) 
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Robert E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations, 
(Applied Mathematical Sciences, 89), Vm+225 pages, Springer-Verlag, New York—Berlin— 
Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

Perturbation theory provides a useful collection of methods for the study of equations close 
to equations of a specific (simpler) form. These equations are called unperturbed, and their solutions 
are assumed to be known. Perturbation theory studies the effect of small changes in the differential 
equations on the behaviour of solutions. The perturbed problem P*(yt)=0 (e.g. a boundary value 
problem, an integral or other operator equation) typically contains a small parameter e=»0 which 
represents the influence of many nearly negligible physical influences. The problem is a regular 
perturbation problem if its solution ye(x) converges as e—0 to the solution y0 (x) of the unperturbed 
(limiting) problem P0(yt)=0. A singular perturbation is said to occur whenever the regular pertur-
bation limit y,(x)-+y0(x) fails. This is the case e.g. if the small parameter e is the coefficient of the 
highest derivative in the differential equation. 

The book treats both the initial and boundary value problems, linear and non-linear ones-
The methods are illustrated by interesting applications such as relaxation oscillations, a combustion 
model, semiconductor modeling, shocks and transition layers, nonlinear control problems. The 
numerous exercises closing the sections are extremely valuable. 

This well-written and well-organized book can be highly recommended to both mathematicians 
and users of mathematics interested in ordinary differential equations. 

L. Hatvani (Szeged) 

Bruce P. Palka, An Introduction to Complex Function Theory (Undergraduate Texts in Mathe-
matics), XVII+559 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris— 
Tokyo—Hong Kong—Barcelona, 1991. 

This book is the outgrowth of lectures held by the author at the University of Texas. The 
work is intended for a broad class of students, for students who are interested in practical questions 
and also for students who are primarily interested in theoretical problems. This great variety of the 
audience (and — I hope — the readers) requires a considerable effort from the author. To find the 
right level of mathematical rigor and to present the necessary details of considerations is such a 
task which does not go without rich pedagogical experiences. To offer the right emphasis on techni-
ques and — on the other hand — on concepts and motivation is an important problem of the author. 
For the reviewer the most characteristic feature of this work is the excellent "mixing" of the conser-
vative and modern discussions. Also the titles of the points of Chapter 5 (Cauchy's Theorem and 
its Consequences) give an insight into the attitude of this work: The Local Cauchy Theorem; Wind-
ing Numbers and the Local Cauchy Integral Formula. (Do you know where the expression "winding 
number" comes from? The author gives an answer to this question.); Consequences of the Local 
Cauchy Integral Formula; More about Logarithm and Power Functions; The Global Cauchy Theo-
rems; Simply Connected Domains; Homotopy and Winding Numbers; Exercises (There are 83 
exercises here, some of them with hints). 

In the book you can find the customary themas of complex function theory, sequences and 
series of analytic functions, isolated singularities, conformal mapping and so on. My favourite one 
is the (short) chapter on harmonic functions. I am sure that the reader after investigating this chapter 
will be eager to read more about these problems. 
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The exercises worked out in the text and especially the proposed exercises at the end of the 
chapters represent an essential part of the work. Sometimes it is evident that the author spent as 
much effort in preparing these examples as he did on the corresponding main text itself. 

At last I would like to mention the great number of the beautiful figures. 

L. Pintér (Szeged) 

Prospects in Complex Geometry. Proceedings of the 25th Taniguchi International Symposium 
héld in Kata, and the Conference held Kyoto, July 31—August 9, 1989. Edited by J. Noguchy—T. 
Ohsawa (Lecture Notes in Mathematics, 1468), 421 pages, Springer-Verlag, Berlin—Heidelberg, 
1991. 

These contributions report on recent research on a wild spectrum of modern geometry. The 
central subject is complex structure with the point on geometric connections. 

Each article is written by a prominent author specially for this volume. 
Contents. Hyperkahler Structure on the Moduli Space of Flat Bundles (A. Fujiki), Hardy 

Spaces and BMO Riemann Surfaces (H. Shiga), Application of a certain Integral Formula to Comp-
lex Analysis (K. Takegoshi), On Inner Radii of Teichmüller Spaces (T. Nakanishi—T. Veiling), On 
the Causal Structures of the Silov Boundaries of Symmetric Bounded Domains (M. Taniguchi), 
A strong Harmonic Representation Theorem on Complex Spaces with Isolated Singularities (T. 
Ohsawa), Mordel-Weill Lattices of Type Et and Deformation of Singularities (T. Shioda), The Spect-
rum of a Riemann Surface with a Cusp (S. Wolpert), Moduli Spaces of Harmonic and Holonormic 
Mappings and Diophantine Geometry (T. Miyano), Global Nondeformability of the Complex Pro-
jective Space (Y.-T. Siu), Some Aspects of Hodge Theory on Non-Complete Algebraic Manifolds 
(I. Bauer—S. Kosarew), Z.p-Cohomology and Satake Compactifications (S. Zucker), Harmonic 
Maps and Káhler Geometry (J. Jost—S. T. Yau), Complex-Analycity of Pluriharmonic Maps and 
their Constructions (Y. Ohnita—S. Udagawa), Higher Eichler Integrals and Vector Bundles over 
the Moduli of Spinned Riemann Surfaces (K. Saito). 

J. Kozma (Szeged) 

S. Prossdorf—B. SQbermann, Numerical Analysis for Integral and Related Operator Equations 
(Operator Theory: Advances and Applications, 52), 542 pages, Birkhauser-Verlag, Basel—Boston—; 

Berlin, 1991. 

This monograph is devoted to the investigation of the 'boundary element methods' (sometimes 
referred to as 'boundary integral equation methods') for solving boundary value problems. 

As the Authors state: "The book is addressed to a wide audience of readers. We hope that both 
the mathematician interested in theoretical aspects of numerical analysis and the engineer wishing 
to see practically realizable recipes for computations will find a few suggestions." 

And now the bad news: "...The study of the equations we encounter... requires having 
recourse to a series of heavy guns from mathematical analysis." Chapters 1, 2 and 6 contain the 
theoretical background. 

The primary aim of the book is to demonstrate the power of Banach algebra techniques in 
numerical, analysis. In Chapter 7 they are introduced and applied to the finite section and colloca-
tion methods for singular integral operators. In Chapters 10—13 this approach is.carried over to 
spline collocation and spline Galerkin methods. For.further orientation h;*re:are.a few characteristic 
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notions tackled throughout the book: the convergence manifold concept for Fredholm integral 
equations of the second type, Wiener—Hopf integral equations and convolution equations of 
the Mellin type. 

The 'Notes and Comments' part at each chapter gives full references and historical remarks of 
the presented material. Equipped with Notation, Name and Subject indices this book is a valuable 
source of information for all specialists working in this field. 

János Virágh (Szeged) 

Jeffrey Rauch, Partial Differential Equations (Graduate Texts in Mathematics), X+263 pages, 
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong—Bar-
celona—Budapest, 1991. 

This work is based on a course given by the author at the University of Michigan. In our days 
perhaps one of the main problems of the lectures (writers) of partial differential equations is the 
following. Several important mathamatical notions appear in connections with problems concerning 
partial differential equations at first. See e.g. the Fourier series, various orthogonal systems and so 
on. But at the same time e.g. the application of the theory of Fourier series, Fourier transforms and 
other mathematical notions becomes an indispensable and powerful tool to our treatment. So e.g. 
the theory of the partial differential equations gives a natural introduction of the notion of the 
orthogonal series and at the same time it uses the results of the theory of these series. (Sometimes these 
results are relatively deep ones.) The author of this work assumes that the reader is trained in ad-
vanced calculus, real analysis, complex analysis and functional analysis. In an appendix there is a 
short introduction into the theory of distributions, but since from Charter 2 the distribution theory 
is the basic language of the text. I hope that the reader has some knowledge from this theory, too. 
Although the aim of the author is to present such a text which requires no previous knowledge of 
differential equations, in my opinion only the reader who has some classical bases in differential 
equations will enjoy this work really. But for a qualified reader I can not recommend a better work 
in partial differential equations (taking into account the number of pages, too). I think this is a modern 
up to date discussion. The style is clear and inspiring. I like the remarks: "The reader is invited to 
give the generalizations by using the language of..."; "There are many ways of defining the notion of 
a function with derivative in LS(I). Most are equivalent and useful. One which is not good is that..." 
and the similar ones. Chapter headings and some titles of points are: Power series methods (The 
fully nonlinear Cauchy—Kovalevskaya theorem; F. John's global Holmgren theorem; Characteristics 
and singular solutions); Some harmonic analysis (Tempered distributions; L' derivatives and Sobo-
lev spaces); Solution of initial value problems by Fourier synthesis (Schrodinger equation; Fourier 
synthesis for the heat equation; Fourier synthesis for the wave equation; Inhomogeneous equations, 
Duhamel's principle); Propagators and x-space methods (Applications of the heat propagator; 
The wave equation propagator for d= 1, for d= 3; The method of descent); The Dirichlet problem 
(Dirichlet's principle; The direct method of the calculus of variations; The Fredholm alternative; 
Maximum principles from potential theory). 

L. Pintér (Szeged) 

Reinhorld Remmert, Funktionentheorie II (Grundwissen Mathematik, 6), XIX+ 299 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong—Barce-
lona—Budapest, 1991. 

For a reader about to embark on research work in any field in which complex function theory 
plays a part this volume is a splendid and probably an essential introduction. The most characteri<tic 
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feature of this book is a strange phenomenon: the readers see the finished work (building) but at 
the same time they see the starting-points, the development of the work (the support of the building). 
This development may be followed closely step by step. E.g. in the first chapter the presentation of 
the well-known product form of sin nz is a mathematical gem. The presentation of the material 
reminds me of the best Pólya's works. I have seen only a few books where the historical remarks 
form such an essential and natural part of the work as in the present case. To mention an especially 

l 
interesting citation see p. 60 where we find: "Demonstratio formulae $ w 0 - 1 ( l — 

o 
by C. G. J. Jocobi, in original form written in Latin. (Of course this is not the most significant cita-
tion but a strange one.) The book consists of three main parts: infinite products, theory of mappings 
and selecta, and these parts consist of chapters. Some themas from these chapters: products of 
holomorphic functions; the gamma function; entire functions; holomorphic functions with given 
zeros; functions with given rational singular part; theorems of Vitali and Montel; the Riemann's 
mapping theorem etc. (The chapter on Riemann's mapping theorem is my favourite one in this 
book. A citation from the book: Ahlfors: "Riemann's writings are full of almost cryptic messages 
of the future. For instance, Riemann's mapping theorem is ultimately formulated in terms which 
would defy any attempt of proof, even with modern methods." Here are some mathemeticians who 
worked on the mapping theorem: C. Neumann, H. A. Schwarz, H. Poincaré, D. Hilbert, P. Koebe, 
C. Carathéodory, L. Fejér and F. Riesz. What a list of names!) The third part (Selecta) consists of 
special important questions. In general one cannot find these problems gathering systematically 
in one volume. Some of these questions are: theorems of Bloch, Schottky, Picard (after the „small" 
Picard's theorem we have "two amusing applications"), Fatou, M. Riesz, Ostrowski and the theory 
of Runge. Perhaps a reference to the solution Bieberbach's conjecture by de Branges fails to me in 
this part. Naturally this subjective remark does not diminish the advantages of this excellent work. 

L. Pintér (Szeged) 

Representation Theory of Finite Groups and Finite-Dimensional Algebras, Edited by G. O. 
Michler and C. M. Ringle, Proceedings of the Conference at the University of Bielefeld from May 
15—17, 1991, IX+520 pages, Birkhauser-Verlag, Basel—Boston—Berlin, 1991. 

Besides the seventeen research papers in this book the first 220 pages are devoted to seven 
survay articles, which are: 

B. Fischer: Clifford matrices, 
B. Huppert: Research in representation theory at Mainz (1984—1990), 
K. Lux and H. Pahlings: Computational aspects of representation theory, 
B. M. Matzat: Der Kenntnisstand in der konstruktiven Galoisschen Theorie, 
G. O. Michler: Contributions to modular representation theory of finite groups, 
C. M. Ringel: Recent advances in the representation theory of finite dimensional algebras, 

and 
K. W. Roggenkamp: The isomorphism problem for integral group rings of finite groups. 
These papers give a good account of what progress has been made in group representation 

theory recently and how are the recent developments related to classical results and problems. 
I recommend this excellent book mainly for experts of group (representation) theory and related 

topics. 
Gábor Czédli (Szeged) 
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Y. S. Samoilenko, Spectral Theory of Families of Self-Adjoint Operators (Mathematics and Its 
Applications, 57), XVI+293 pages, Kluwer Academic Publishers, Dordrecht—Boston—London, 
1991. 

This volume is a translation by E. V. Tisjachnij; the title of the original work is: »Элементы 
математической теории многочастотных колебаний. Инвариантные торы« and it was 
published by »Наука« in Moscow, 1987. 

The book deals with finite and countable families of self-adjoint operators which are connected 
by various algebraic relations. Such families are closely connected with representation theory of 
Lie groups and Lie algebras and are applied in the mathematical models of quantum systems. 

Part I is devoted to commutative families of self-adjoint operators and discusses their joint 
spectral properties, the connections of such families with the unitary representations of inductive 
limits of certain Lie groups and (as illustration) deals with differential operators on functions of 
countably many variables. In Part II countable dimensional Lie algebras are discussed which are 
inductive limits of finite dimensional ones. Dealing with their representations, families of self-
adjoint operators are treated, which establish basises in these Lie algebras. In Part III some algebraic 
relations are exactly defined for unbounded self-adjoint operators, and collections satisfying such 
relations are considered. Among others spectral properties are studied and structure theorems 
are given. In Part IV constructive methods of description of non-commutative random sequences 
are presented. The Bibliography lists more than five hundred items connected with the contents 
of the book. 

The reader needs (of course) some backgrounds. The prerequirements include the basic theory 
of * -unbounded self-adjoint operators, Lie groups and Lie algebras as well as some knowledge 
of algebras and their representations. The book can be recommended to mathematicians and phy-
sicists interested in spectral theory, Lie algebras, (non-commutatative) probability, statistical physics, 
physical systems with many degrees of freedom or quantum field theory. 

E. Durszt (Szeged) 

W. M. Schmidt, Diophantine Approximations and Diophantine Equations (Lecture Notes in 
Mathematics, 1467), VIII+217 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo—Hong Kong—Barcelona—Budapest, 1991. 

This is the printed version of the author's lecture at Columbia University in the fall of 1987 
and at the University of Colorado 1988/1989. 

The text is devided into five chapters. The main topics of the first chapter are: Siegel's Lemma 
and heights (or "field height"). The second chapter is devoted to Roth's theorem, and its some useful 
generalizations. The Thue equation is in the centre of the third chapter. Among others there are 
interesting new results given by Bombieri, Mueller and the author (on the number of solutions of 
such equation, furthermore on the number of solutions of Thue equation with few nonzero coeffi-
cients). The fourth chapter deals with the 5-unit equations and hyperelliptic equations. One of the 
interesting equations is: 2*+3 y =4 I ; Evertse's results for this equation are very useful.The final 
chapter is devoted to diaphantine equations in more than two variables. 

The rich Bibliography includes more than hundred references. 
The book is easy-to-read, it may be a useful piece of reading not only for experts but for stu-

dents as well. 
J. Németh (Szeged) 

12 
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. J. B. Seaborn, Hypergeometric Functions and Their Applications, (Texts in Applied Mathematics, 
8), XI+250 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo— 
Hong Kong—Barcelona, 1991. 

The main purpose of this book is to develop the theory of special functions which often occurs 
in applied mathematics, engineering and in classical and quantum physics. These functions (gamma 
function, Bessel functions, Hermite, Lagrange and Laguerre polinomials etc.) are solutions of dif-
ferential equations, but more equivalent ways of defining these functions can be found in the text. 
It is shown that these functions can be expressed in terms of special power series, called hypergeo-
metric functions which is the most practical method to the study and numerical calculation of these 
functions. The text is divided into 12 chapters. It is assumed that the reader is familiar with classical 
analysis and has some knowledge of Schrodinger equation. 

L. Gehir (Szeged) 

V. A. Smirnov: Renormalization and Asymptotic Expansions (Progress in Physics, 14), X+380, 
pages, Birkhauser-Verlag, Basel—Boston—Berlin, 1991. 

The monograph treats the fundamental problem of quantum field theory, how to remove 
divergences in the perturbation expansion of Feynman amplitudes. This is a very important proce-
dure in modern theoretical physics, and it has shown up considerable successes in calculating experi-
mentally measurable quantities. Renormalization is not only a certain calculational method, however, 
but also a theoretical construction involving group theory, graph theory, and the author tries to 
introduce both the practical and the principial aspects of the subject. The book is divided into three 
parts. The first one outlines the general problem and characterizes the nature of divergences. Part two 
is devoted to the different regularization schemes the Bogoliubov — Parasiuk — dimensional, the 
analytic and the auxiliary mass renormalizations. The infrared counterpart of usual renormalization 
is examined in detail. Part three contains the methods of asymptotic expansions, when the relevant 
energies and momenta are large. It is a pity that the author does not place this very interesting theme 
into a somewhat wider scope, at least a more detailed introduction would have been very useful. 
The style and the presentation is rather technical. Therefore, the book can be recommended mainly 
to the experts in quantum field theory. 

M. Benedict (Szeged) 

André Weil, The Apprenticeship of a Mathematician, 198 pages, Birkhâuser-Verlag, Basel— 
Boston—Berlin, 1992. 

This excellent book is the English edition of the author's autobiography. It shows the life of 
a great mathematician whose horisons have never been limited to mathematics. His career led him 
to a lot of countries: to Italy, Germany first of all; to India where he lived and thaught at a critical' 
time in the history of that country ; to Russia ; to Princeton called at times a mathematician's paradise 
to Finland (to a prison, where he narrowly escaped execution); to France where he was convicted 
for dodging his military obligations (in the prison — like a lot of mathematicians in the history — 
he had time to write one of his best mathematical works); to England where lived through the Battle 
of London before returning to France and then to United States and finally to Brasil, scene of the 
last of his vicissitudes, before returning permanently to United States. Through these often pictures-
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que episodes, the destiny of a mathematician is unfolded, of which perhaps the most important 
event was his participation in the foundation of the Bourbaki Group. 

This very enjoyable reading is recommended to all mathematicians. 

J. Nêmeth (Szeged) 

Anatoly A. Zhigljavsky, Theory of Global Random Search (Mathematics and Its Application, 
65), Edited by J. Pintér, XVm+341 pages, Kluwer Academic Publishers' Dordrecht—Boston-
London, 1991. 

The book is the English translation of an earlier work of the author written in Russian (Lenin-
grad University Press, 1987). Beyond the general overview of global optimization methods, the 
majority of the volume deals with random search methods and their theoretical background. 

In recent years, several review books and monographs have been published on global optimiza-
tion. Dixon and Szegő edited two volumes of contributed papers of the Workshops Towards Global 
Optimisation 1 and 2 (North-Holland, 1975 and 1978). The first overview of the field was the book 
of Torn and Zilinskas (Global Optimization, Springer, 1989) followed by the volumes of Horst and 
Tuy (Global Optimization — Deterministic Approaches, Springer, 1990) and Floudas and Pardalos 
(Recent Advances in Global Optimization, Princeton, 1991). Specific parts of the field have been 
addressed by Pardalos and Rosen (Constrained Global Optimizations Algorithms and Applications, 
Springer, 1987), Mockus (Bayesian Approach to Global Optimization, Kluwer, 1989) and Floudas 
and Pardalos (A Collection of Test Problems for Constrained Global Optimization Algorithms, 
Springer, 1990). 

The book of Zhigljavsky completes this series quite well: the random search and sampling 
methods have not been studied in such a detailed way. The reader will find an interesting comparison 
of present global optimization methods according to their conditions, type of information utilised, 
theoretical grounds and amount of numerical results available. The construction and convergence 
of global random search algorithms and the role of statistical inference in global optimization are 
investigated thoroughly together with some auxiliary results. 

The strength of the bibliography including some 240 references is that special attention is 
devoted to the Russian language literature that remains usually hidden for the English-oriented part 
of the optimization community. The unusual typesetting (e.g. and / instead of the more common 
/J" and X causes an uneven line-spacing in the book that (together with many other errors) makes 
the reading somewhat tiring. The volume can be recommended for those working in the field of 
multiextremal nonlinear optimization and interested in stochastic methods. 

T. Csendes (Szeged) 

12» 
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