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On Csákány's problem concerning affine spaces 

J. DUDEK 

Dedicated to Professor Béla Csákány on his 60th birthday 

In*[l] B. CSÁKÁNY proved that for any prime p an algebra 9 1 = ( A , f ) where / 
is at most 4-ary, is equivalent to an affine space over GF(/>) if and only if 

for all n s 4, and 

( # *) There exists no subalgebra B of A with 1 < card B < p 

(in this case, the formula ( # ) is valid for all K^O). In this connection, he posed 
the problem whether the condition ( * *) can be dropped for some or all p. Earlier 
G. GRATZER and R . PADMANABHAN [11] showed that if 91 is a groupoid and p=3, 
then actually the single condition ( * ) is sufficient. Our result is a further step in 
this problem 

Theo rem. If G is a groupoid, then G is equivalent to an affine space over GF(5) 
1 , if and only if p„(G)=—(4"—(— 1)") for all n s O . 

(Of course, as in CSÁKÁNY'S result [1], by an affine space we mean a nontrivial, 
i.e. containing more than one element, affine space.) In the sequel equivalent alge-
bras are treated as identical and "an algebra" means always "a nontrivial algebra". 
Our terminology and notation are standard (see in [9] and [10]). 

To prove our theorem we need among others the following results: 

F a c t 1 (Theorem 4.1 of [5]). If (G, •) is a nonmedial commutative idempotent 
groupoid, then 

p„(G, •) £ - ^ N ! for all H S 5. 

Received December 28, 1988 and in revised form February 6, 1991. 



4 J. Dudek 

Recall that the groupoid (G, •) is medial if (G, •) satisfies (xy) (wt>)={xu) 
for all x,y,u,v£G. 

F a c t 2 (cf. [6]). Let (G, •) be a medial idempotent groupoid with card G=> 1. 
Then p2(G, •) —3 if and only if (G, •) is either a (nontrivial) affine space over 
GF(5) or a nontrivial Plonka sum of some affine spaces over GF (3) which are 
not all singletons (for the definition of a Plonka sum see [12]). 

F a c t 3. If (A, + , •) is a proper commutative idempotent algebra of type 
(2, 2) satisfying (cf. [7], also [8]) 

(x + z)z = (x + z)y (or the dual) 

then (A, + , •) is polynomially infinite, i.e., pn(A, + , •) is infinite for all 
A proper algebra here means that x+y and xy act on A differently. 

F a c t 4 (cf. Theorem II of [5]). Let (G, •) be a commutative idempotent 
groupoid. Then (G, •) is a nontrivial Plonka sum of affine spaces over GF(3) 
being not all one-element if and only if pn(G, - ) = 3 " _ 1 for all n. 

1. General remarks. First observe that if an algebra 91 satisfies ( * ) for p = 5 , 
then represents the sequence <0, 1, 3, 13), i.e., 21 is an idempotent algebra sat-
isfying 

/>,(«) = 3 and ft(St) = 13. 

L e m m a 1.1. If (A, F) represents the sequence 

<0,1,3,13) 

then (A, F) contains as a reduct a proper idempotent algebra (A, + , *) of type 
(2, 2) such that + is commutative and * is noncommutative. Moreover the polyno-
mials x+y, x*y and y*x are the only essentially binary polynomials over (A, F). 

Proof. Since p2(A, F) is odd we infer that the algebra (A, F) contains at 
least one commutative and essentially binary operation, say, + . If all binary poly-
nomials over (A, F) are commutative, then we infer that (A, F) contains as a 
reduct a proper commutative idempotent algebra (A, +,-, o) of type (2,2,2). 
Examining the symmetry groups of the following essentially ternary polynomials: 
(x+j>)+z, (xy)z, (xoy)oz, (x+y)z, xy + z, (x+y)oz, xoy+z, xyoz and (xoy)z 
and using the Fact3 we deduce that p3(A, + , •, o )^21 which is impossible. 
(Recall that an algebra (A, (f,}t€T) of type T=(/!,), £ T is called proper if the mapping 
t—n, is one-to-one and every operation f , is essentially «,-ary provided « , ^1 , 
cf. [5].) 
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Lemma 1.2. If an algebra F) satisfies (#) for some p^3 and all 
«S0, then 91 contains at least one commutative idempotent binary polynomial, say, 
+ and each every such a polynomial is medial. 

Proof . The first statement is clear since />z(9l)=p—2 and hence /»¡¡(91) is 
an odd number. Assume now that (A, + ) is nonmedial. Thus (A, + ) is a non-
medial commutative idempotent groupoid (being a reduct of 91). Applying Fact 1 
we get 

( , - „ - l - V _ f j C K ) m p j U L + ) s 7 , 

P o 
for all n ^ 5 . This yields 

n! 8 
( / > - ! ) " - ( - 1 ) " ~ IP 

for all n ^ 5 which is impossible. This completes the proof of the lemma. 

P r o p o s i t i o n 1.3. Let (G, •) be a commutative groupoid. Then (G, •) is a 
nontrivial affine space over GF(5) if and only if (G, •) satisfies (*) for p—5 and 
all n^O. 

Proof . It is clear that (G, •) is a nontrivial affine space over GF(5), then 

PniG, - ) = 4 ~(~l) for all n (see e.g., [1]). 

4" —(— 1)" 
If (G, •) is a commutative groupoid such that p„(G, •)= for all 

n, then using Lemma 1.2 we infer that (G, •) is a medial commutative idempotent 
groupoid. Since p2(G, -)=3 and (G, •) satisfies (* ) for all n we infer, applying 
Fact 2 and Fact 4 that (G, •) is an affine space over GF(5). 

Lemma 1.4. If an idempotent algebra 91=04, F) with /?2(9I)>1 contains as 
a reduct a Steiner quasigroup (A, +), then — 5-

Proof . Since ^2(9I)>1 we infer that 9i contains as a reduct a proper binary 
idempotent algebra (A, + , •) of type (2, 2) such that (A, + ) is a Steiner quasi-
group. If xy is commutative then the following polynomials 

x+y, xy, xoy = (x + j) + (xy), x*y = xy + y and y*x 

are essentially binary and pairwise distinct. 
Assume now that • is noncommutative. Take into account the polynomial 

x*y=xy+y. It is easy to prove that x*y is essentially binary and different from 
the polynomials x+y, xy and yx. If x%y^y%x, then we clearly get j72(9l)^5. 
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Suppose that x*y=y*x. First observe that x^y^x+y. Further the polynomials 

x+y, x*y, xdy = (x+y) + x*y, xy and yx 

yield five essentially binary and pairwise distinct polynomials and hence />2(2l)s5. 

Lemma 1.5. If (G, •) is a noncommutative groupoid satisfying (*) for p = 5 
and all «=0, and (G, •) is not (polynomially) equivalent to a commutative groupoid, 
then the unique commutative polynomial + over (G, •) is a semilattice polynomial. 

Proof . Let us add that the uniqueness of the polynomial + follows from 
Lemma 1.1. Consider the reduct (G, +•). Put xoy=x+2y (in general, xyk stands 
for (...(*);)•... • )y where y occurs ¿-times and x+ky in the commutative case 
respectively). According to Theorem 1 of [1] we see that xoy^y. If x o y = x , then 
(G, + ) is a Steiner quasigroup and then applying Lemma 1.4 we get p2(G, -) = 5, 
a contradiction. If xoy is commutative, then xoy=x+y and hence applying 
Lemma 1.2 we deduce that (G, + ) is medial. According to Theorem 8 of [4] the 
groupoid (G, + ) is a semilattice. If xoy is noncommutative (of course, essentially 
binary), then either xoy—xy or xoy—yx. Both cases prove that the groupoids 
(G, •) and (G, + ) are polynomially equivalent which contradicts the assumption. 
This completes the proof of the lemma. 

2. Noncommutative idempotent groupoids. In this section we prove the theorem 
for the noncommutative case. We start with 

Lemma 2.1. If (G, •) is a noncommutative idempotent groupoid having a com-
mutative binary polynomial, then the following polynomials 

f(x, y, z) = (xy) z and g(x, y, z) = x(yz) 

are different and essentially ternary. 

Proof . Since (G, •) contains a commutative binary polynomial we infer that 
(G, •) is not a diagonal semigroup. Applying Lemma 3 of [2] we deduce that at 
least one of the polynomials / and g is essentially ternary. Further without loss of 
generality we may assume tha t / i s not essentially ternary and g is essentially ternary. 
Since (G, •) contains a commutative polynomial we infer that xy is essentially 
binary, i.e., (G, •) is proper. Thus we infer that (G, •) satisfies either 

(xy)z = xz or (xy)z = yz 

If (G, •) satisfies (xy)z—xz, then (G, •) also satisfies the identities xy=(xy)y= 
=x(xy) and x=(xy)x and every binary polynomial p(x,y) over (G, •) is of 
the form: 

*» y, xy, yx, y(xy), x( jx) , x(j>(x3>)), y {x(yx)) and so on. 
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If p(x,y)=p(y, x) holds in (G, • ), then using the identity (xy)z=xz we get 
xz=yz which proves that (G, •) is improper — a contradiction. 

If the groupoid (G, •) satisfies ( x y ) z = y z , then the proof runs similarly and 
will be omitted. To complete the proof one can easily show that there are no non-
commutative idempotent semigroups with a commutative binary polynomial: 

Lemma 2.2. If (G, •) is a noncommutative idempotent groupoid having a semi-
lattice polynomial, say, + and the symmetry groups of the polynomials f and g are 
trivial, then p3(G, -)=19-

Proof . According to the preceding lemma we infer that f and g are essentially 
ternary and different. Consider now the following polynomials 

(xy)z, x(yz), (x+y)z, z(x+y) and x+y+z. 

It is routine to prove that all these polynomials are essentially ternary and conse-
quently permuting variables in them we get 19 different essentially ternary polyno-
mials, as required. 

Lemma 2.3. If (G, •) is a noncommutative idempotent groupoid satisfying (*) 
for p=5 and all n such that (G, •) is not polynomially equivalent to a commutative 
groupoid, then either the symmetry group of f is nontrivial or the symmetry group of ' 
g is nontrivial. 

Proof . An immediate consequence of Lemmas 1.5 and 2.2. 

Lemma 2.4. If (G, •) is a proper noncommutative idempotent groupoid such 
that the symmetry group of the polynomial 

f(x,y,z) = (xy)z 

is nontrivial, then (G, •) satisfies either 

(xy)z — (zy)x or (xy)z = (yx)z or (xy)z = (xz)y. 

(The same is true for g{x, y, z)=x(yz).) 

Proof . Trivial since the identity (xy)z=(yz)x proves that (G, •) is a semi-
lattice. 

P r o p o s i t i o n 2.5. Let (G, •) be a noncommutative idempotent groupoid sat-
isfying 

(xy)z — (zy)x (or the dual). 

Then Pi(G, • ) = 3 if and only if (G, •) is a nontrivial affine space over GF(5). 
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Proof . It is clear that a nontrivial affine space over GF(5), i.e., a groupoid 
(G, •) where xy=2x+4y and (G, + ) is an abelian group of exponent 5, satisfies 
p2(G, - ) = 3 and (G, •) satisfies (xy)z=(zy)x. 

Assume now that p2(G, • )=3. It is easy to see that the identity (xy)z=(zy)x 
implies the medial law for the groupoid (G, •). Using Fact 2 we infer that (G, •) 
is either a nontrivial affine space over GF(5) or a nontrivial Plonka sum of some 
affine spaces over GF (3) being not all one-element. The second algebra is a com-
mutative idempotent groupoid which cannot be polynomially equivalent to a non-
commutative groupoid. This follows from the fact that the only noncommutative 
binary polynomial in this groupoid is a P-function, but for P-functions we have 

(for details see [12]). Thus we have proved that (G, •) is an affine space over 
GF(5) which completes the proof. 

P ropos i t i on 2.6. If (G, •) is a noncommutative idempotent groupoid sat-
isfying 

(xy) z = (yx) z (or the dual) 
then p2(G, 

Proof . The assertion is obvious for improper groupoids. 
First, we prove that if (G, •) is a proper such groupoid, then the polynomial 

xoy=(xy)y is essentially binary and noncommutative. 
If (xy )y=x , then (G, •) is right cancellative and the identity (xy)z=(yx)z 

gives the commutativity of •, a contradiction. 
If (xy)y=y holds, then we obtain 

xy = (x(xy))(xy) = ((yx)x)(xy) = x(xy). 
Hence we get 

y = (xy)y = (x(x>0)>- = {(yx)x)y = xy. 

Thus xy=y which is impossible. 
Assume now that (xy)y=(yx) x and denote (xy)y by x+y. Compute the 

polynomial xy+yx. We have 

xy + yx = i(xy)(yx))(yx) = i(yx)(yxj)(yx) = yx. 

Thus (G, •) is a commutative groupoid, a contradiction. 
If xoy is essentially binary, noncommutative and then 

Pa(G, -).=4 and therefore p2(G, •)^3. Further assume that Then we 
have xy=(xy)y—(yx)y. Putting yx for y in xy=(xy)y we get 

x(yx) = = = yx. 
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Analogously we get xy=x(xy). This proves that 

xy = (xy)y = (yx)y = x(xy) = y(xy) 

and consequently p2(G, -) = 2, as required. 
Similarly one proves that if (G, •) satisfies (xy )y=yx , then (G, •) also 

satisfies 
xy = (yx)x = x (xy) — (xy) x = x(yx) 

and therefore p2(G, -)—2. The proof is completed. 
Now we deal with the last identity appearing in Lemma 2.4, namely the identity 

(xy)z=(xz)y (the dual identity i.e., x(yz)=y(xz) will be omitted in our con-
siderations). 

Lemma 2.7. If (G, •) is a proper noncommutative groupoid satisfying 

(xy)z = (xz)y, 

then the polynomial xoy=x(xy) is noncommutative and different from y and yx. 

Proof . If x(xy)=y(yx) holds in (G, •)> then 

x(xx) = (xx) (xy) = (x(xy))x = (y(yx))x = (yx)(yx) = yx. 

Thus we get x(xy)=yx which proves that (G, •) is commutative, a contradiction. 
If x(xy)=y, then y=yy=(x(xy))y=xyxy=xy, again a contradiction. If 

x(xy)=yx, then 

xy = (xy)(xy) = (x(xyj)y = (yx)y = yx. 

Thus xy=yx which is impossible. 
Lemma 2.8. There is no (noncommutative) idempotent groupoid (G, •) sat-

isfying p->(G, • ) = 3 and the identities 

(xy)z = (xz)y and x(xy) = x. 

Proof . First we prove that the groupoid (G, •) satisfies either 

(xy)y = x or (xy)y = xy. 

Indeed, if (xy)y=y, then 

yx = ((xy)y)x = {(xy)x)y = {(xx) y) y = y 

which is impossible. If (xy)y=yx, then 

xy = (yx)x = {(xy)y)x = (xy)y = yx 

which gives xy=yx, a contradiction. 
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If (xy)y=(yx)x, then putting yx for x we get 

y = y(yx) = (y(yx))(yx) = ((yx)y)y = (yx)y = yx, 

which is impossible. Hence we proved that (G, •) satisfies either 

(xy)y = x or (xy)y — xy. 
Assume that (G, •) satisfies (xy)y=x. Consider the polynomial x xy=x(yx). 

If x*y=y*x, then 

x = (x(j;x))Ox) = (^(jgOjO'*) = (y(yx))(xj;) = y(xy). 

Hence y(xy)=x, a contradiction. 
Further it is easy to see that 

x(yx) ^ y and x(yx) ^ yx. 

According to the assumption p2(G, -)=3 we infer that (G, •) satisfies either 

x(yx) = x or x(yx) = xy. 

If so, then in both cases we get p2(G, •)—2 which contradicts the assumption. 
To complete the proof we must consider one more case, namely, the groupoid 

(G, •) satisfies 
(xy)z = (xz)y, x(xy) = x and (xy)y = xy. 

As above considering the polynomial x*y=x(yx) one proves that x*y is 
noncommutative and therefore the polynomial x*j> is one of the following poly-
nomials : x, y, xy, yx. In any case one can easily check that the considered groupoid 
satisfies p2(G, -)=2 which is impossible. The proof of the lemma is completed. 

Lemma 2.9. Let (G, •) be a proper noncommutative idempotent groupoid sat-
isfying (xy)z = (xz)y. Then p2(G, • ) = 3 if and only if (G, •) satisfies the identities 

xy = x(xy) and x(yx) = y(xy). 

Moreover if an idempotent groupoid satisfies 

(xy)z = (xz)y, xy = x(xy) and x(yx) = y{xy), 

then the polynomial x+y=x(yx) is a near-semilattice polynomial (i.e., x + x = x , 
and x+y=(x+y) + y; cf. [5]). 

Proof . Let pz(G, •)—3. Consider the polynomial xoy=x(xy). Applying 
Lemma 2.7 we infer that (G, •) satisfies either 

x(xy) = x or x(xy) = xy. 

According to Lemma 2.8, the first'case cannot occur. Thus (G, •) satisfies x(xj>) = 
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=xy. Consider the polynomial x+ j^xCyx) . If x+y£{x,y,xy,yx}, then one 
gets p2(G, • )=2, a contradiction. If x+y is essentially binary noncommutative 
and different from xy, yx, then clearly p2(G, - ) S 4 which contradicts the assump-
tion. Thus we have proved that x+y=y+x. Further we have 

(x+y)+y = x(yx)+y = (*0>x))(j;(*0»*))) = 
- (x(yx))(y(y(xy))) = (x(yx)) (y(xy)) = x+y. 

Hence x+y—(x+y)+y which proves that (G, + ) is a near-semilattice. 
Assume now that (G, •) is noncommutative idempotent, satisfying xy=x(xy), 

x(yx)=y(xy), and (xy ) z=(x z ) y . Since xy=(xy)y=(xy)x=x(xy) and (xy)(yx) = 
=x(yx) we infer that (in a proper noncommutative groupoid) we have p2(G, • )=3. 
This completes the proof of the lemma. 

Lemma 2.10. If (G, •) is an idempotent groupoid satisfying (xy)z=(xz)y 
and p2(G, then the symmetry group of the polynomial g(x,y, z)=x(yz) is 
trivial. 

Proof . It is clear that g does not admit any cycle of its variables ((G, •) is 
not a semilattice). If (G, •) satisfies x(yz)=x(zy), then using Proposition 2.6 
we infer that p2(G, •)?i3. 

If x(yz)=z(yx) holds in (G, •), then we obtain 

xy = (xy)(xy) = (x(xj>))j> = 0 (**))>> = (yx)y = yx. 

Thus xy—yx which proves that (G, •) is a semilattice, a contradiction. Assume 
now that (G, •) satisfies x(yz)=y(xz). Applying Lemma 2.9 we get x(yx)=y(xy) 
and hence using the identity x(yz)=y(xz) we get xy=yx, a contradiction. 

P ropos i t i on 2.11. If an idempotent groupoid (G, •) satisfies (xy)z=(xz)y 
(or the dual identity) and p2(G, • )=3 , then pz(G, - ) s l 6 . 

Proof . According to Lemma 2.1 the polynomials f(x, y, z)—(xy)z and 
g(x, y, z)=x(yz) are essentially ternary and different. Applying Lemma 2.9 we see 
that x+y=x(yx) is a near-semilattice polynomial. It is clear that (G, •) is a 
proper noncommutative idempotent groupoid and further the polynomials 

q1 = (x + y)z and q2 = z(x + y) 

are essentially ternary and their symmetry groups are of order 2. Consider now the 
following essentially ternary polynomials over (G, • ) : 

f=(xy)z, g = x(yz), q1 = (x+y)z, q2 = z(x+y) and s = (x + y) + z. 

By the assumption and Lemma 2.10 we see that card G ( / ) = 2 and card G(g)=l. 
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We also have card G(g1)=card G(q^)=2. Further observe that 

(xy) z yi x(y + z) and (xy) z ^ (y + z) x. 

Indeed, if (xy)z=x(y+z), then 

xy = (xy)x = x(x+y) = x(x(yx)) = x(yx) = x + y 

which proves that (G, •) is commutative, a contradiction (we use also the identity 
x(xy)=xy, see Lemma 2.9). The proof of the inequality (xy)z^(y+z)x runs simi-
larly. Further for the groupoid (G, •) we have 

3! 3! 3! 3! 
' ' ' ~ card G ( / ) + card G(g) + card G(qt) + cardG(q2) + 

+ S 3 + 6 + 3 + 3 + 1 = 16 card G(s) 

which finishes the proof of the lemma. 

3. The proof of the Theorem. In this section we prove the theorem. First if 
(G, •) is an nontrivial affine space over GF(5), then clearly using the formula 
from [1] we see 

Pn(G, •) = 4 * ; 

for all n (see also in [9]). 
Let now (G, •) satisfy (* ) for all n and p = 5. 
If (G, •) is commutative, then the proof follows from Proposition 1.3. 
If (G, •) is noncommutative but the groupoid (G, •) is polynomially equiv-

alent to a commutative groupoid, then the proof again follows from Proposition 1.3. 
Assume that (G, •) is a (proper) noncommutative idempotent groupoid being 

not polynomially equivalent to a commutative groupoid. Then applying Lemma 1.5 
we infer that (G, •) contains a semilattice polynomial, say, + . 

Consider now the following polynomials 

s = (x+y) + z, f=(xy)z, g = x(yz) 

Vi = (x + y)z and q2 = z(x+y). 
All these polynomials are essentially ternary (see Lemma 2.1). According to 
Lemma 2.2 we infer that at least one of the symmetry groups of the polynomials / 
and g is nontrivial, say, the symmetry group G(J~). Then applying Lemma 2.4 we 
deduce that (G, •) satisfies either 

(xy)z = (zy)x or (xy)z = (yx)z or (xy)z = (xz)y. 

If (G, •) satisfies (xy)z—(zy)x, then using Proposition 2.5 we infer that (G, •) 
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is a nontrivial affine space over GF (5) but such algebras are polynomially equi-
valent to a commutative groupoid which contradicts the assumption. 

Since P2(G, -)=3, applying Proposition2.6 the identity (xy)z=(yx)z does 
not hold in the groupoid (G, •). 

Analogously, using Proposition 2.11 we conclude that the identity (xy ) z= 
=(xz)y also does not hold in (G, •) which completes the proof of the Theorem. 
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Some nontrivial implications in congruence varieties 

GÁBOR CZÉDLI 

Dedicated to Professor Béla Csákány on his 60th birtday 

A congruence variety is a lattice variety generated by the class of congruence 
lattices of all members of some variety of algebras. The most known examples are 
f (R), the lattice varieties generated by congruence (or submodule) lattices of R-
modules for rings R with 1. Given a lattice identity a and a set JH of lattice identities, 
we write RT=CA if every congruence variety satisfying T also satisfies a (cf. JÓNSSON 

[8]). The implication f K « is called nontrivial if T ^ a (in the class of all lat-
tices). For r = { y } we will write y rather than {7}. 

There are many results stating that y\=ca. without y\=a. for certain pairs 
(y, a) of lattice identities. These results are surveyed in JÓNSSON [8]; for a further 
development cf. FREESE, HERRMANN and H U H N [3]. However, all the known results 
are located at distributivity or modularity in the sense that either v H a t - . dis-
tributivity ¡=cy or yt=cal=c modularity t=cy. Now [1] offers an easy way to achieve 
y )=ca results of a different nature. 

For an integer w>2 and a modular lattice L, a system 

f=(ai,ciJ: 1 SiSíi, 1 s y s n, i 

of elements of L is called a (von Neumann) «-frame in L if ctj 2 cjk=ckj > 
ajcJk=°f. aj+cjk=aj+ak and cJk=(aj+ak)(cJt+clk) for all distinct j,k, /€ {1,2,...,«} 
where Oj resp. 1 j are the meet resp. join of all elements o f / ( c f . VON NEUMANN [9]). 
We write x+y and xy for the join and meet of x and y. 

Given ras0 and n ^ l , a lattice identity A(m, n) is defined in [7, page 289] 
such that, for any ring R with 1, A (m, n) holds in Y (R) iff the divisibility condition 
(3 r)(m -r=n-1), abbreviated by D(m, rí), holds in R (cf. [7, Prop. 6]). What else 
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we need to know about A (m, n) is that A (m, n) is of the form 

(*i + *2)(.v8 + X4) ^ qm,n(x 1' *2> *s> 

Frames are projective in the variety of modular lattices. This was proved in 
two steps; first for (Huhn) diamonds in HUHN [6] (for a more explicit statement cf. 
FREESE [2]) and then frames and diamonds turned out to be equivalent in HERRMANN 

and H U H N [5, page 104]. Therefore there are lattice terms and c) in variables 
x=(xi,xij: 1 S i , j= k, i?£j) such that these terms produce a k-frame [bt{y), 
dij(y): 1 i?£j) from any system y of elements of a modular lattice 
L and, in addition, if f=(at, cu: 1 i ^ j ) is a ¿-frame in L then bi{J)=ai 

arid du(f)—Cij for every i ^ j . 
For & s 4 the conjugation of the modular law and the identity 

(d13(x) + d23(x))(dli(x) + d2i(x)) s qm,n{d13(x), d23(x), du(x), d2i(x)), 

where x=(xhxy: 1 ̂ i, jsk, i^j), will be denoted by A(m,n,k). Clearly, 
A (m, n, k) is equivalent to a single lattice identity modulo lattice theory. 

Theorem. Consider arbitrary integers m', m ^ O , n', and k', (i£l) 
where I is an index set. Then {A(mh nh kt): i£l}\=cA(m',ri,k') if and only if 
{D(mt, nt): /£/} implies D(m', n) in the class of rings with 1. 

In particular, if m\n and k^5 then A (m, n, k) \=cA{m, n, k— 1). This is a 
nontrivial implication, for we have the following 

Propos i t ion . If m\n, msO, «Si and k^5 then A(m, n, k)i±A(m, n, k— 1). 

To point out that the A (m, n, k) in the proposition are essentially distinct we 
present the following. 

Remark . The set {A(p, 1, k): p prime}, where k^4, is independent in con-
gruence varieties in the sense that for every prime q 

{A(p, 1 ,k)\p prime, p ^ q}^cA(q, 1, k). 

Proof of the theorem. Since frames and diamonds are equivalent (cf. 
HERRMANN and H U H N [5, page 104]), the identities A (m, n, k) are diamond iden-
tities in the sense of [1]. What we need from [1] is only its Theorem 2, which we re-
formulate less technically as follows: For any diamond identity a, r i= c a iff for 
any ring R with 1 f implies a in "f (R). Therefore it suffices to show that A (m, n, k) 
and A{m, n) are equivalent in any Y(R). Clearly, A (m. n) implies A(m, n, k) 
and A (m, n) are equivalent in any "V (R). Clearly, A (m, n) implies A (m, n, k) in "V (R). 
Conversely, assume that A(m,n,k) holds in ~f"(R). Let M=M(u1, u2, .... uk) 
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denote the i?-module freely generated by {u±, u2, •••, uk}. Then A(m, n, k) holds 
Sub (M) , the submodule lattice of M. It is easy to see (or cf. N E U M A N N [9]) that 
the cyclic submodules (Rut, R(ui—uj): lsi,jsk, i j ^ f ) constitute a A:-frame in 
Sub (M). (In fact, this is the most typical example of a ¿-frame.) Therefore 

(1 ) («(MI-NS) + R(U2- A , ) ) ( / ? ( « ! - u4) +R(U2- I/4)) S 

^ 9m,n(fl(wi-"3)>-R("2-"3), R(ih-i'i), R(U'.-lld) 

holds in Sub (M) and even in Sub (M(« l5 u2, u3, m4)). Now the theory of Mal'tsev 
conditions (cf. W I L L E [11] or PIXLEY [10]) together with the canonical isomorphism 
between Sub (M(ux, u2, u3, H4)) and the congruence lattice of M(w1, u2, w3, ti}) 
yield easily that A (m, n) holds in "K(R). (Note that the first nine rows in the proof of 
[7, Prop. 6] supply a detailed proof of the fact that (1) implies the satisfaction of 
A(m,ri) in y(R).) 

Proof of the p r o p o s i t i o n . Let Z denote the ring of integers. Since m\n and 
A(m, n, k— 1) implies A(m,ri) in by the proof above, A(m, n, k— 1) fails 
in TT(Z). It is shown in H E R R M A N N and H U H N [4, Satz 7] that 'V (Z) is generated by its 
finite members. Therefore there is a finite modular lattice L with minimal number of 
elements such that A (m, n,k— 1) fails in L. We intend to show that A (m, n, k) holds 
in L. Assume the contrary. Then there is a fc-frame / = ( a ; , c,7: i^j) 
such that A(m, n) fails when c13, c23, c14, c24 are substituted for its variables. It is 
known that either all elements of a frame are equal or a t , a 2 , . . . ,ak are distinct 
atoms of a Boolean sublattice of length k (cf., e.g., H E R R M A N N and H U H N [5, (iii) 
on page 101 and page 104]). Now only the latter is possible since the one element lat-
tice satisfies any identity. Hence the subframe g=(ah cu: i ^ j ) lies 
in the interval L'~[0G, lg]. From ...+ak=\j we obtain 
|Z/ |< |£ | . The frame g witnesses that A(m, n, k—Y) fails in L', which contradicts 
the choice of L. 

The remark is concluded from the theorem quite easily; we need only to con-
sider the ring of those rational numbers whose denominator is not divisible by q. 

References 

[1] G. CZEDLI, How are diamond identities implied in congruence varieties, Algebra Universalis, 
to appear. 

[2] R. FREESE, Planar sublattices of FM(4), Algebra Universalis, 6 (1976), 69—72. 
[3] R . FREESE, C . HERRMANN and A . P. HUHN, On some identities valid in modular congruence 

varieties, Algebra Universalis, 12 (1981), 322—334. 
[4] C . HERRMANN and A . P . HUHN, Zum Wortproblem für freie Untermodulverbände, Archiv der 

Mathematik, 26 (1975), 449—453. 

2 



18 Gábor Czédil: Implications in congruence varieties 

[5] C. HERRMANN and A. P. HUHN, Lattices of normal subgroups generated by frames, in Coll. 
Math. Soc. J. Bolyai 14 (1974) , pp. 9 7 — 1 3 6 . 

[6] A . P . HUHN, Schwach distributive Verbände. I , Acta Sei. Math., 2 3 (1972) , 2 9 7 — 3 0 5 . 
[7] G. HUTCHINSON and G. CZÉDLI, A test for identities satisfied in lattices of submodules, Algebra 

Universalis, 8 (1978), 296—309. 
[8] B. JÓNSSON, Congruence varieties, Algebra Universalis, 10 (1980), 355—394. 
[9] J. VON NEUMANN, Continuous Geometry, Princeton University Press (Princeton, N.J., 1960). 

[10] A . F . PIXLEY, Local Mal'cev conditions, Canadian Math. Bull., 1 5 (1972) , 5 5 9 — 5 6 8 . 
[11] R . WILLE, Kongruenzklassengeometrien, Lecture Notes in Math. 113, Springer-Verlag (Ber-

lin—Heidelberg—New York, 1970). 

JATE BOLYAI INSTITUTE 
SZEGED, ARADI VÉRTANÚK TERE 1 
HUNGARY, H-6720 



Acta Sci. Math., 56 (1992), 19—21 

Algebras and varieties satisfying the congruence extension property 

IVAN CHAJDA 

Dedicated to Professor Béla Csákány on his 60th birthday 

Algebras and varieties satisfying CEP were firstly investigated in [1]. There 
was proven the equivalence of CEP and PCEP in varieties and it was shown that 
such varieties cannot be characterized by Mal'cev type conditions. The aim of 
this paper is to give a term characterization of permutable varieties satisfying CEP 
and to give one modification of CEP. 

Recall that an algebra A satisfies the Congruence Extension Property (briefly 
CEP) if for every subalgebra B of A and each 0€Con B there exists $€Con A 
such that <P\B—0. A class of algebras satisfies CEP if each A^ has this property. 

Some notations: denote by 0A(x,y) the principal congruence on A generated 
by (x, y)£A2. If z1, ..., zn£A and s is an n-ary term over A, denote by s(z) the 
expression i(z l 5 ..., z„). If B is a subalgebra of A and 0£Con A, denote by 0\B 

the restriction of 0 onto B, i.e. 0\b=0O(BXB). For b£A and <96Con A, 
[b]e is a congruence class of 0 containing b. 

Theorem 1. For a variety % the following conditions are equivalent: 
(1) "V is congruence-permutable and satisfies CEP; 
(2) For every (1 +n)-ary term p there exists a 5-ary term q such that 

p(x, z) = q(y, x,y,p(x, z),p(y, z)), p(y, z) = q(x, x,y,p(x, z),p(y, z)). 

Proof . (1)=>(2): Let f be a congruence-permutable variety satisfying CEP 
and A=Fy(x, y, zi, ..., z„) be a free algebra of with 2+/i free generators 
x, y, z1, ...,z„. Le tp be a (1 +«)-ary term of "V. Let B be an algebra of generated 
by four generators: x, y, p(x, z), p(y, z). Then clearly B is a subalgebra of A and 

(p(y, z), p(x, z))£0Á(x, y)6Con A. 

Received May 17, 1989 and in revised form January 28, 1991. 
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20 Ivan Chajda 

Since V satisfies CEP, it implies immediately 

(P(y, z),P(x, z))£0B(x, y)£ConB. 

Thanks to the congruence-permutability of "V, it implies the existence of a unary 
algebraic function T over B such that 

p(y, Z ) = r(x), p(x, z) = T ( > ) . 

Since B has four generators, there exists a 5-ary term q such that 

T(W) = q(w, x,y,p(x, z),p{y, z)), 

whence (2) is evident. 
(2)=>(1): Suppose "V~ satisfies (2). At first, we can choose the term p to be the 

first projection, i.e. 
p{x,zlt ..., z„) = x. 

By (2), there exists a 5-ary term q such that 

x = q(y, x, y, x, y) and y = q(x, x, y, x, y). 

Put t(x,z,y)=q(z, x,y, x,y). Then 

t(x, x, y) = q(x, x, y, x, y) — y 

t(x, y. y) = Qi.y, X, y, x, y) = x, 

thus i(x, y, z) is a Mal'cev term proving congruence-permutability of V. 
Now, suppose A^'V, B is a subalgebra of A, a, b, c, d are elements of B and 

(c, d)£0A(a, b)\B. Since Y is congruence-permutable, there exists an (1 +«)-ary 
term p and elements elt ..., en£A such that 

c = p{a,e1, ...,e„), d = p{b,ex, ...,en). 

By (2), there exists a 5-ary term q with 

c = q{b, a, b, c, d), d = q(a, a, b, c, d), 

thus <c ,d)£0 B (a ,b ) proving PCEP. By the Theorem in [1], PCEP and CEP are 
equivalent conditions in varieties, hence CEP is proved. 

Example 1. Let f be a variety of abelian groups. Then every (1 +n)-ary 
term p(x,zly ..., z„) can be written in the form 

p(x, z) = • z, 

where z=r(z1, ..., z„) for some «-ary term r and a£Z. Put 

q ( . T ; , Xo, .V3 , A-4 , -Y5) = x°2 • x{ " • x&. 
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Then (2) of Theorem 1 is satisfied: 

q{y» *> y,P(x, z), p(y, z)) = • y~a • ( y • z) = x" • z = p{x, z), 

q(x, x, y,p(x, z),p(y, z)) = xa-x~a-(ya-z) = y"-z = p(y, z). 
Now, we will investigate some modification of CEP. 

Def in i t ion . An algebra A satisfies the Strong Congruence Extension Property 
(briefly SCEP) if for every subalgebra B of A and each 0£Con B there i>€Con A 
with for each b£B. A class # of algebras satisfies SCEP if each 
has this property. 

It is evident that SCEP implies CEP. 

Example 2. Every Hamiltonian group satisfies SCEP. 
This example can be generalized for algebras: 

Lemma. Every algebra satisfying SCEP is Hamiltonian. 

Proof . Let B be a subalgebra of A. Put Q = BxB£Con B. By SCEP, there 
exists 3>£Con A with [b]® = B for each b£B, thus A is Hamiltonian. 

Theo rem 2. Let "V be a variety. Y satisfies SCEP if and only if Y is Ha-
miltonian. 

Proof . Let Y be Hamiltonian and B be a subalgebra of A^Y, b£B and 
06 Con B. By [2], Y satisfies CEP, thus there exists i>€Con A extending 0 . 
Since Y is Hamiltonian, B is a block of some Con A. For 0 * = V we have 
[b]e* = [b]®C\B=[b]0 proving SCEP. The converse implication follows by the Lemma. 
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Two-dimensional real algebras with zero divisors 

S. C. ALTHOEN and K. D. HANSEN 

BENJAMIN PEIRCE in his seminal work on linear associative algebras [6] classified 
all two-dimensional real associative (pure) algebras. He reported on his results 
from this work in talks delivered to the National Academy of Sciences during the 
period from 1867 to 1870, but they were not published until 1881, posthumously. 
(See [3], [4].) In 1958 LUCHIAN [4] began a classification of all two-dimensional real 
algebras with zero divisors, and in 1970 WALLACE [8] classified all two-dimensional 
power associative real algebras. Finally, in 1983 ALTHOEN and KUGLER[1] gave 
canonical forms for all two-dimensional real division algebras. 

This paper complements all these previous works by presenting a list of canonical 
forms for multiplication tables of all two-dimensional real algebras which are not 
division algebras (i.e., which have zero divisors). The presentation is algorithmic: 
given any such algebra, one can easily derive one of our forms. Except in the case 
of the final table, as is clarified below, the tables presented are uniquely deter-
mined; the proof of this fact is not difficult and is omitted for purposes, of brevity. 

Consider the real algebra si with basis , tj2} with respect to which multiplica-
tion is given by the following table: 

f}l *12 

til a l f l + a 2 ' /2 M 1 + M 2 
>?2 Clh + C2l2 di th + d2ri2 

We use the convention that Roman letters represent real numbers and Greek let-
ters represent elements of si. We can write the table in the abbreviated form: 

h >72 

tli a P 
»/2 V Ô 
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by setting cc=a1t]1+a2t]2, etc. Let Lx and Rx denote, respectively,^left and right 
translations by the element y£s i : 

£ J [ ( A ) = Y.A A N D = <*X> F ° R A 'L . 

Then for x=x1q1 + x2ri2, with x 1 ,x 2 €R, we find that 

det (LX) = Ql{Xx , A'2) = MLxf + NLXXX2 + PLx| and 

det(flx) = QR(xx,x2) = Muxl+Nnxixi + Pzxl, 

where ML = [a, fi\, NL = |a, S\ + \y, PL = |y, 8\, 

MR = |a, y\, Nr = |a, + \p, y\, and PR = \p, <5|, 

given, for example, that the notation |a, fi\ denotes the determinant 
ax bx 

a2 b2 

Let A=Nl—4MLPL=N2
R — 4MRPR. By definition, si is a division algebra if 

and only if Lx is nonsingular for all nonzero elements y £ s i (or equivalently, Rx 

is nonsingular for all nonzero elements this is the case if and only if the 
quadratic form QL(;<x,x¿) is positive definite (or equivalently, QR{x1, x2) is pos-
itive definite). Thus si is a division algebra if and only if <d<0, and sé is an algebra 
with zero divisors if and only if A ^ 0 . 

As we proceed, we will subdivide the two-dimensional algebras with zero 
divisors into subclasses. One of the sets of criteria.we use is the classification scheme 
of LUCHIAN [4]: 

D e f i n i t i o n . A two-dimensional algebra si belongs to the class: 

Lx, if J > 0, R1} if A > 0, 

L2, if A = 0 but QlÍx^XvJjé 0, Rí, if A=0 but QR(xltx2)^0, 

L3, if Ql(XUX2) = 0, R3, if 0R(x¡, x2) = 0. 

R e m a r k s . (1) The quadratic forms QL(xi,x2) and QR(x1,x2) and the quantity 
A are dependent upon the basis {»/j, rj2) of si, and at first glance it appears that the 
subclasses L¡ and Rj are as well. However, this is not the case. In fact, the algebra 
si is in the class: 

a) ZaC^i) 'f a n d only if there are two independent left (right) zero divisors 
in si, but not every nonzero element of si is a left (right) zero divisor; 

b) L2(R2) if and only if there exists a left (right) zero divisor yjzsi and every 
other left (right) zero divisor in si is a multiple of y_; 

c) L3(i?3) if and only if every nonzero element of si is a left (right) zero divisor. 
(2) From the theory of quadratic forms (see [5], pp. 85—86), we know that if 

{vl5 v2) is another basis for si, generating corresponding quadratic forms Ql(xls x2) 
and Q\(xi, x2) quantity A", and if T: si-*si is a linear transformation such 
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that Tir i^Vt , then A°=\T\2A. This provides a direct proof that the class L1=R1 

is independent of basis. 
(3) The triplets L l 5 L2, L3 and R1, R2, R3 each form partitions of the class of 

algebras with zero divisors. Following the notation of Luchian, we let L tLj denote 
the intersection LiOLj. It is clear that L1=R1, and hence L1R2=L1R3=L2R1 = 
= LSR1=Q; all other intersections, however, are nonempty. 

As seen above, if A SO, there exist nontrivial elements i¡/(is/ such that 
Lx(il/)=^'/jp=0. In fact, in some cases there exists a nontrivial element yd si such 
that L/(-/)—y2=0. The second set of criteria we use for classification of the two-
dimensional algebras with zero divisors is based upon the number of such elements 
(if any exist). 

Def in i t ion . A two-dimensional algebra s i belongs to the class: 
S, if there exists a nontrivial element y^si whose square is 0, 
N, if no such element exists. 
The following proposition gives a criterion which determines whether an alge-

bra lies in the class N or the class S. 

Propos i t i on . A two-dimensional real algebra si lies in the class N if and only 
if given any multiplication table for si: 

we have 

>7l >?2 

h a £ 
y 5 

tfl bi + ci dt 0 
0 a¡ I l + Cl d\ 
a2 b2 + c2 d2 0 
0 a2 b2 + c2 d2 

* 0. 

Proof . There exists a nontrivial element X=x1t]1+x2>^2 in si with / 2 = 0 
if and only if there exists a nontrivial solution (xj, x2) to the system: 

ai xi + (t>i + cx) xx x2 + dxx\ = 0, 

a2 x\ + (¿o + c2) xx x2 + d2x\ = 0. 

This will be the case if and only if the two polynomials 

z2 + (b1 + c,) z + dy and a2z2 + (b2 + c2)z + d2 

have a common root, and this is true if and only if their resultant, given by the 
determinant above, is 0. (See [7] for details.) 
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Suppose that si is an algebra in which there exists a nontrivial element /£si 
such that Lz(x)=x2=0. In this case, we can set and let t]2 be any element 
independent of to obtain a multiplication table in the form of Table S below. 

Otherwise, y.ij/=0 implies that / and ip are independent elements of si, and 
setting th=x and i2 = ij/, we arrive at a multiplication table in the form of Table N 
below. Note that since si has no nontrivial elements which square to 0, necessarily 
x\a+x1x2y +x\y2=0 if and only if xx=x2=0. (This implies, in particular, that 
a, 6*0.) 

h >72 >7i >h 

h 0 ß >7i a 0 
>72 y ö >72 y 8 (xfa+x1x2y + xf<5 = 0 <=> = x2 = 0). 

Table S Table N 

The classes N and S clearly also form a partition of the class of two-dimensional 
algebras with zero divisors. The multiplication tables given above are particularly 
useful in that they simplify the definitions of the Lj and Rj classes given above, as 
is shown by the following proposition. The proof follows immediately from the 
definitions of the quadratic forms QL and QK and the quantity A. 

Propos i t ion . If an algebra si has a basis with respect to which its multiplica-
tion table has the form of Table S, then si belongs to: 

Lx, if \P,y\.*0, Rx, if \P,y\*Q, 

Lz, if \P,y\=0 but \y,S\^0, R2, if \fi,y\=0 but <51 5*0, 

¿3, if \fi,y\ = \v,6\=0, R3, if \P,y\ = \P,0\ = 0. 

If an algebra si has a basis with respect to which its multiplication table has the form 
of Table N, then si belongs to: 

Lx, if |<x, ¿ 1 * 0 , Ru if |a, ¿ 1 * 0 , 

£-2, if 1«, ¿ 1 = 0 but lv, ¿ 1 * 0 , R2, if lot, ¿ 1 = 0 but |a, y\ ^ 0, 

¿ 3 , if I«, ¿I = |y, <51 = 0, Rn if |a ; y\ = |a, ő\ = 0. 

We now find a set of canonical forms for multiplication tables of two-dimensional 
algebras with zero divisors. As we proceed, we further partition the classes L,R} 

defined by Luchian via their intersections with the classes N and S. Following 
the previously established notation, we let concatenation denote intersection. 

The Case L3R3: It is clear from the original definitions of the classes L and 
R that si belongs to the class L¿R3 if and only if in any multiplication table for si, 
the elements a, p, y and <5 are pairwise dependent. This implies that any multiplica-
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tion for has the form: 
h >72 

h (XV 6v 
12 cv dv 

The Case L3R3S: In this case we can begin with a table in the form: 

>7i >72 

h 0 bv 
12 cv dv 

The zero algebra is clearly one element of this class: 

(.L3R3SI\) 

>7i >72 

h 0 0 
>72 0 0 

This algebra is not catalogued by PEIRCE since it is "mixed". (See [6], p. 100.) 
It is Wallace's power associative algebra . 

Assume in what follows that the multiplication on s/ is nontrivial, so that 
v^O and at least one of b, c and d is nonzero. The element v is determined up to 
scalar multiples by the fact that it spans the ranges of the left and right multiplica-
tion maps Lx and Rx of any element zdsf. We proceed by considering two cases: 
v2=0 and v V 0. 

(1) v2=0: Take >h = v and tj2 any element independent of v to get a table 
in the form: 

>7i >72 

tli 0 bh 
>72 c>?i dm 

(la) b^O, b+c¿¿0: 
c'=c/b, we get the table: 

Set C2=(-¿/6[¿ + c]K+(l/fc)>/2. Then with 

ii C« 

Ci 0 Cl 
c2 c'C 1 0 (C' - 1). 

Set Ci=>7i. C2=(l/fc)>72 to get 

Ci U 

Ci 0 Ci 
c2 -Ci 0 
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In the two preceding cases we have shown that we can get a table in the form: 

Ci C2 

Ci 0 Ci 
C* c'Cl 0 (L3R3S/2) (2 

When c '= — 1, this is Wallace's algebra A ( - 1). 
(lc) b¥>0, b + c=0, d^O: Set & = ( d / b 2 ) ^ , £2=(l/b)t,2 to get: 

Ci C2 

Ci 0 Ci 
(L3R3SI3) t2 - C i Ci . 

(Id) c = 0 (i/^0): Set C2=V2 to get: 

Ci C2 
Ci 0 0 

(L3«3S/4) c2 0 Cx . 

This is Peirce's associative algebra (c2) and Wallace's algebra 
(le) 6=0, c?*0: Set C2 = (-^/c2)>7i + (l/c)f72 to get: 

• 
Ci £2 

Ci 0 0 
(L3R3S/ 5) f , Ci 0 . 

(2) vMO: Take t]2=v and t^ any element such that tj%=0 (so that t]1 is 
necessarily independent of v). We get a table in the form: 

ni >7 2 

i i 0 bt]2 

>72 cf].2 dr\2 

(2a) \c/b\Sl: Set C1=(l/fr>tf1, Ca=0/«0»l«- Then with c'=c\b, we get: 

Ci C2 

£1 0 i . 
£2 c'C2 £2 (LsR3S/ 6) C
2 

(2b) 6 ^ 0 , \c/b\^l: Set £1 = (-1/c)^+([6+c]/cdf)qB and ^2={\ld)t]2. With 
c'=b/c, we again get a table in the form of (L 3R 3S/6) . 

(2c) ¿7=0, c^O: Set & = l / c ^ + O/rf)^ , ( 2 = ( 1 a n d c ' = 0 to get 
yet another table in the form of (L3R3S/6). 
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(2d) b=c=0: Set Ci=>7i, f,=(l/«Q»h to get: 

Cl C2 

Ci 0 0 
C2 0 C2 

Although this algebra is associative, it is not catalogued by PEIRCE because it is 
"mixed". ([6], p. 100.) It is Wallace's algebra B2. 

The Case L3R3N: We begin with a table in the form: 

h n% 

h av 0 
n 2 cv dv 

where v * 0 and (0,0) is the unique solution of ax\+cxxx2+dx\=0. Once again, 
the element v is determined up to scalar multiples by the fact that it spans the 
ranges of the left and right multiplication maps Lx and Rx of any element 
If v} is dependent, we replace ^ by v to arrive at the table: 

>7i r¡2 

th a>l i 0 
»72 cf/i d>h 

Otherwise, v=n1t]1+n2tj2, where n2*0. In this case, if / = (— dn2)+ (anx-f cn2)?/2, 

then vx=0 and |v, xl — — a n l + c n ^ + d n l ^ O , so that {v, /} is -dn2 anx + au 
independent. Thus by replacing t]1 by v and tj2 by we can again assume that we 
have a table in the preceding form. 

To proceed we need a definition: 

De f in i t i on . 

sgnx {-
1 for * ^ 0 
1 for x < 0. 

(Note that we do not define sgn 0=0 , as is customary.) 
The fact that (0, 0) is the unique solution of ax\+cx1x2+dxl=0 implies that 

c 2 -4a r f<0 and hence ad>0. Thus setting £i=(l/a)>h, C2—([sgn c]ftad)t}2, and 
c' = \c\/Yad, we arrive at the table : 

Cl c2 

Ci Cl 0 
(.L3R3N) Ç2 c'Cl Cl 2). 

Thus there are eight distinct table forms in the L3R3 case. 
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The Case L^R2S: In this case we begin with a table in the form: 

m 1* 
'7i 0 P 
>?2 y 8 

with the Lj and R2 conditions 

\P, y\ = 1?. ¿1 = 0, \P, ¿1 * o. 

These imply that y=0 and the table in fact has the form: 

»7i »72 

m 0 P 
»72 0 5 

There are two cases to consider: that {»jj, /}} is dependent, and that {f/l5 /?} 
independent. 

(1) {»7i> P } is dependent: Our table becomes: 

m 
»72 

>7i »72 

0 br, t 
0 diih + dzriz (bd2?i 0). 

(la) b - d 2 * 0 : Take Ci=»7i and C2=[W4-&)]»7i+(l/&)>72- Then with d'--
= d j b , we arrive at the table: 

Ci C2 

Ci 0 Ci 
C2 0 d'U 

(lb) b — d 2 = 0 = d 1 : Set Ci=»7i and C 2 = Q f b ) r ] 2 to arrive at: 

Ci Co 

Ci 0 Ci 
C2 0 c2 

Both of the preceding tables are of the form: 

Ci c2 
Ci 0 Ci 
C2 0 d'U (L3R2S/1) C2 

If d'— 1, this algebra is associative, but it was missed by Peirce. It is Wallace' 
algebra A 3. 
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(lc) b—d2—0, d^0: Set £i=(djb2)>h and C2=(l/6)^2 to arrive at: 

Cl Co. 

Ci 0 Ci 
(.L3R2SI2) C2 o Ci+C2 

(2) {t]1, /5} is independent: Replace r\2 by j3 to get a table in the form: 

h Vi 
tii 0 l»l2 

0 di>h+d2ri2 

Taking Ci=(l/fc)fji, C,=[sgn(dy// |W1 |]ij i , and d ' = \ d 2 \ H \ b d x \ , we arrive at the 
table: 

Ci C
2 

Ci 0 C. 
C. 0 

The Case L3R2N: In this case we begin with a table in the form: 

fli Is 

1i a 0 
12 7 <5 

where the L3 and R2 conditions on such a table imply that 

\cc, S\ = |y, ¿ |==0 and |a, y| * o. 

The only way these can hold is if ¿=0 , but this is not allowed in Case N. Thus 
L3R2N=0. 

The Case L2R3: Recall that every algebra si has a corresponding algebra siopp 

whose underlying set and addition is the same as for si and whose multiplication o 
is defined by ao/? = /?a. It follows that {ijj, rj2} is a basis for si giving the multiplica-
tion table: 

>h 12 
a P 
y 5 

if and only if {tfo, t]2} is also a basis for siopp giving the multiplication table: 

h Is 

h a y 
f 2 P s 

Moreover, si lies in the class £, (/?,) if and only if siopp lies in the class for 
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i '=l , 2, 3. Thus if si lies in the class L2R3, si°pp must lie in the class L3R2. In par-
ticular, it follows that L2R3N=0. 

The Case L2R3S: If si lies in the class L2R3S, then siopp lies in the class L3R2S 
and hence must have a basis giving a multiplication table in one of the canonical 
forms just presented. Thus with respect to the same basis, si has a table in one of 
the following forms: 

Ci c 2 

Cl 0 0 
(L2R3S/l) c2 Ci d't* 

If d ' = 1, this is algebra is associative. It is Peirce's algebra ( b 2 ) and Wallace's 
algebra A2=A(0). 

Ci C2 

(L2R3S/2) 
C, 0 0 
c2 Cl Ci + C2 

Cl" C2 

c, 0 0 
C» c 2 ± C i + d'U (L2R3S/ 3) 

We have shown that there are three distinct table forms in each of the L3R2 and 
L2R3 cases. 

The Case L2R2S: In this case we begin with a table in the form: 

m >72 

m 0 p 
12 y s 

where the L2 and R2 conditions imply that 

\p,y\ = 0 and \ p , ô \ , \ y , ô \ * 0 . 
This implies that the table must actually have the form: 

11 >72 

m o p 
1z cP <5 

Note that in this case (x1r]1+x2ri2y—x2[(l +c)xiP+x26], Since {/?, <5} is inde-
pendent, this implies that (x1i71+x2»/2)2=0 if and only if x 2=0. This means that 

is determined up to scalars, as is /?, since P spans the range of L^. Again there 
are two cases to consider: when , j6} is dependent, and when , p} is inde-
pendent. 
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(1) {>?u P} is dependent: Our table becomes: 

m Is 

n i 
>72 

0 b n x 

cm diTh + dtfi (bcd2 * 1). 

(la) b+c-d2Take Ci=>7i and ?2 = [djb(d2-b-c)]^+(1 /6)f?
2
. With 

c'=c/b and d'=djb, we arrive at the table: 

Ci C
2 

=d2/b, we arrive at: 

Ci o Ci 
Í2 c'Ci 

= <k : Set Ci= 

Cl C
2 

Ci o Ci 
C

2 
c'Ci d'U 

Both of the preceding tables are of the form: 

Ci C2 

Ci 0 Cl 
C2 c'Ci d'C, (L2R2S/1) C2 

When c'=d'—l, we obtain Peirce's associative algebra (ci2) and Wallace's alge-
bra B5. When c' — l/a and d'—{\ + <r)/cr 0 , - 1 ) , we obtain Wallace's alge-
bra A (a). 

(lc) b + c-d2=0, d^O: Set Ci=№/&2)>7i and C2=(l/b)t]2. Then with c '= 
=c/b, we get: 

Ci c2 
Cl 

(L2R2SI2) C2 

0 
c'Ci C i + ( i + O C i ( c ' ( i + c ' ) ^ 0 ) . 

2) {»jj, /?} is independent: Here we can replace ;/2 by /? to get a table in the 
form: 

>7i >?2 

>?1 0 bn
2 

>72 «7 2 dih + drfz 
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In this case, take Cx=Cllb)rii and C2 = [sgn ( c J 2 ) W i t h c'=c/b and d' = 
= |i/2|/^|ii/,| we arrive at the table: 

Ci C 8 

Ci 0 ( 2 

C'U + (L2R2SI3) C2 

T/ie Case L2R2N: Here we begin with a table in the form: 

h >?2 

h a 0 
n« y <5 

where the L2 and R2 definitions imply that 

\oc, ¿ | = 0 and |a, y|, |y, <5| ^ 0. 

Since a¿¿0 and {a, <5} is dependent, we may rewrite the table as: 

h 
a 0 

I2 y dot. 

For x^XjTh+Xitji and Q=yiih+y2i]2, ZZ=(x1y1+dx2y2)oi+x2y1y. Thus since 
{a, 7} is independent, x£=0 if and only if xxyy+dx2y2=x2y1—0. When £¿¿0, 
this is the case if and only if x2—y1=0. Hence the only left zero divisors in si are 
multiples of f/i and the only right zero divisors in si are multiples of rj2. (It follows 
that rj1 and t]2 are determined up to scalar multiples.) 

We now rewrite the table as: 

h *12 

>h Ctlll + Wz 0 i ax a2 

>72 Clth + C2l2 C-1 Co 

(1) a2?i0: Take Ci=(l/«i)'h> (2=(«2/^1) >/2- With c[ = c1 a2ja\, c'2=c2jal, 
and d'=dc§]a\, we get the table: 

Ci C , 

Ci C1 + C2 0 
(L2R2NI1) C2 CiCi + ciC2 d'ttx + y (d' * 0, Cl s* c'2). 
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(2) a2=0(al9i0): Let e=sgn [c1/a1]/(a1 / | d | ) and take Ci=(l/fli)>7i and C2=£ÍÍ2• 
With c i ^ c M / Y l d i and c2=c,/«!, we get: 

Cl . C
2 

Cl Cl 0 

C2 cifi+c; C» ±fi (L2R2NI2) C2 

(3) «1=0 0): Let e=sgn [c2/a2]/(a2 ^=6»?! and C2=(l/«2MI)'7a 
ci=c!/a2 | ii | and c'2=\cja2\/^\d\ to get the table: 

Cl c
2 

Ci c
2 7 

0 

c
2 

C

lCl +
 C

2 C
2 
±c

2 

Thus there are six table forms in the L2R2 case. 

The Case LtRj S: In this case we begin with a table in the form: 

>7l 12 

>?i 0 0 
>72 y <5 

where the and Rx definitions imply that | /3, Here (xt]1+yt]2)2= 
Thus if {P+y, <5} is independent, only scalar multiples of t]x 

square to 0, while if {P+y,d} is dependent, there are two independent elements 
with this property. As above, we procced by considering cases: that {P+y, <5} is 
independent, and that {P+y, <5} is dependent. 

(1) Assume first that {P+y, <5} is independent. 
(la) {J/j, P} is independent: Replacing t]2 by P, we arrive at a table in the form: 

m 12 

m 0 br¡2 
Clt]i + C2t]2 d1t]1 + d2t]2 U I 

cx b + c21 
dx d2 I 

Taking Ci=(L/^)'7I> C2=(Mcx)t]2, c'=c2b, d[=bdjc2 and d'2=d2/c1, we arrive at 
the table : 

<1 c2 

Cl o ç2 
Ca+c'C2 d[(1 + d.;t;.¿ (dí-(i +c')dí * o). (Lx R.SH) i2 

When c.'— — 1, d[—0, and d'2=1, this is Wallace's algebra A4, 
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lb) {»7i,/i} is dependent: Since |/?, y\^0, we must have j%—br]2, b ^ 0 , and 
hence {»7!, y} is independent. In this case replacing tj2 by y yields a table in the form: 

>7i 
>72 

>7i 12 
o bm 

cr\i ¿i>7i + 4>?2 (IUH-
Here, taking ii=(l/c)>7i, (,2=(llb)tj2, d'^cdjb2 and d2=djb, we arrive at the 
table: 

Ci C2 

Ci 0 Ci 
C . Ci ¿ i C i + rfaia ( L y R ^ I 2) ( 2 

(2) {0+y, 5} is dependent: Since y\implies that 0+y^O, ¿=A:(/?+y) 
for some Then (- kf]1+t]2y= —k(fi+y)+5=0, and replacing t]2 by —kr]1 + 
+ri2 yields a table in the form: 

h 
>?2 

>7i >72 

0 b1t]1 + b2t]2 

^l>7l + C2>72 0 (ft'H-
(2a) c ^ O , b j c ^ b j c ^ . Taking C i = ( l / f c a ) > 7 i , C 2 = ( 1 / c i ) > / 2 , b ' ^ b j c ^ and 

c'=cilb2, we arrive at the table: 

(L1R1S/3) (2 

Ci . c 2 

CI 0 6 ' C i + C 2 
c 2 Cl + c ' i 2 0 ( A V < 1). 

(2b) 62, c ^ O , bjc^bjc^. Taking Ci=(l/ci)ff2, Ca = C1/^2)>ii, b' = c2lb2, and 
c^bJc-L, we again arrive at a table of the form (L1R1S/3). 

(2c) 6 2 =0 (fc^c^O), c ^ O : Taking Ci=(l/c2)f/!, and c'=c1lbi 

yields the table: 
Ci c2 

Ci 0 C i 
(L^S/4) C2 c ' C i + C 2 0 

(2d) c x =0 c2^0), b27^0: Taking f 1 = ( l / b ^ n , Ct=(l/cjth, and c'=bjc2 

also yields a table of the form (¿1i?1S'/4). 
(2e) 6 2 = ^ = 0 ( ^ , 0 2 ^ 0 ) : We take Ci = (l/c2)f7i and C 2 = ( 1 / & i ) > ? 2 to get the 

table: 
Ci C 8 

Ci 0 Ci 
( L ^ S / 5 ) C 2 C2 0 
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The Case LyRxN: In this case we begin with a table in the form: 

til Vi 
>?i a 0 
12 y <5 

where the Lx and Rt definitions imply that |a, # 0 and hence {a, <5} is independent. 
It follows that y=ka+£S, where k=\y, <5|/|a, <5| and £—\ct, y|/|a, and one 
sees that the N condition holds if and only if i.e., if and only if 

|V, |ct, y| * |«, 5\\ 

Excepting scalar multiples, there are exactly two pairs of left and right zero divisors 
in the algebra: r^, rj2 and fjlt fj2, where r\y = —krj1+ri2 and fj^th—£i]2, both are 
pairs of independent elements since k t ^ 1. With respect to {f/l51]2} the algebra 
has the multiplication table: 

f i I2 

h 0 
cif/i + c2>;2 dir)i + d2r¡2 (a^d2 ~ a2dx ^ 0) 

and with respect to {»jj, ÍJ2}, it has the table: 

ñi f¡2 

alt¡í + a2rj2 0 
(a13z — a2B1 0) 

where a1 = td1 + d2, a2 — d1 + kd2, cx--
ax a 2 —a1+ka2, and hence 
3l 

=(1 -k£) 

£cx C'2. c2— Cj kc2, —£ ax-f-a2, 32-
ax a2 7*0. 

In this case we proceed by considering cases determined by whether the num-
bers Cj, c2, c1, and c2 are zero or nonzero. While at first glance it would appear 
that there are sixteen such cases, the formulas c1= — £c1—c2 and c2— — cx—kd2 

imply that only eight are actually possible. The remaining cases can be split into 
four groups as follows: 

(1) c1=c2 = c1=c2=0. 
(2) Exactly two of ct, c2, cx and c2 are zero. 

(These are necessarily either cx and c2, or c2 and cx.) 
(3) Exactly one of cx, c2, cx and c2 is zero. 
(4) All of cx, c2, Cj and c2 are nonzero. 
(1) Assume first that cx = c2=0= ^=¿2=0. 
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(la) fll=0 ( a ^ r f ^ O ) : Taking Ci=a2
2/3d;mm, C 2 ^a 2

l i a d; 2 / 3 ^ 2 and d= 
=a~ 1 / 3 d^ w d 2 , we arrive at a table in the form: 

Ci c2 

Ci c2 0 
(I^R.N/l) C2 0 Ci + ^C2 

(lb) a^O, d2 =0 (a,, 4 * 0 ) : Take C ^ a ^ d ^ ^ , C2=a^ / Sdr l l 3 t]1 and 
d = a 1 a 2

m d i m to again obtain a table in the form (L^iV/1) . 
(lc) au d2*0: Taking Ci = (l/«1)'/i> C2 = 0/d2)t]2, a = a2d2\a\ and d=a1djdi, 

we arrive at the table: 
Ci C2 

(L.R.NH) Ca 
Cl + < 2 0 

0 ¿ i i + C2 ( a r f * l ) . 

(2) Next assume that exactly two of c l5 c2, cx and c2 are zero. 
(2a) C l *0 , c2=0, c x =0 (a2=0, a ^ O ) : Take i ^ O / ^ H , C 2 = ( l / c < = 

—Oidjcl and to arrive at the table: 

f l c2 

f l Ci 0 
i . Ci diCi + d2C2 ( A { 2 

(2b) cx=0, c 2 =0 № = 0 , 4 * 0 ) : Take C=0/<«»i i, C2 = ( - l/cj)»Ji + 
+(l/4)>/2> c2—axd2)Jc\ and ¿ 2

= — f l i / c 2 to again get a table in the form 
( I ^ A / 3 ) . 

(3) Next assume that exactly one of c1; c2, ct and c2 is zero. 
(3a) Cj=0, c2*0, c ^ O , c 2 *0 ( 4 * 0 ) : Take 

Ci = (1 /Ca) + [(fli 4 ~ «2 ¿ i ] ^ , 

C2 = ( - 1 /c2)m + [«i/(fli 4 - «2 4 ) ] ri2 , 

a{ = (axc^ + axdi — a^d^/cldx, 

a'2 = {axd2~ a2d^){-a^d^ a2d\ + c244)/c|4a, 

d{ = (a\c2dt + axa2d^d2 - a\dl)\(a^d2 - a2d-tf and 

d2 = (~ald2 +a, a2dx + a2c2dx)]c2(axd2 -a2dx) 

to arrive at the table: 

Ci C* 

Ci 
n C. 

flJCi + flJC« 0 
Ci + C 2 d{Ci + ^ C2 [ f l i ( 4 + 1 ) - " a W + 1 ) = o , fli - 4 * d'2 - di] 
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which is of the form: 

Ci 

Cl 
(LxÄxtf/4) C

2 

üiCi+.öaCa 0 
C1 + C2 ¿iCa + ^Ca (I«, ô\ * 0, ( * + ! ) ( / + ! ) = 0 , kt * 1) 

where, as defined above, 

k = (d, - dJKcti d2 - a2dx) and £ = (ax — a2)/(ax d2 — a^dy). 

(3b) c ^ O , c 2 =0, c^O, c2^0 (a2^0): Taking 

Ci = [4/fai d2 -a2dx)\rix-{\ /Cj) >h, 

Ca = [(ai<4-Mi)/0aCi]»h + (l/Ci)iZ
a
, 

ai = ( - a x <tff + a 2 c t + a 2 ^ rf2)/ci - «2 ¿1), 

«a = {axa2dxd2-a\dl + a2cxdl)l{axd2-a2d-tf, 

d{ = (ax — a2 </x) («! cx — aj + a2 i^ ) /^ c i , and 

¿2 = {a\d2-(ha^d^ a2cxd^\a2c\, 
we arrive at the table: 

Ci c2 
Ci 

(**) c2 
fliCi + û

2
C

2
 0 

Ci + C
2
 ¿ÍCi + ̂ 'Ca [K+l)rf

2
-(fl

2
+l)^i = o, oí- «4 * 

which is again in the form (LyRyN/4). 

(3c) q ^ 0 , c 2 ^0 , t j = 0, c 2 ^ 0 {axcxc2 —a2cj Jra1c2d2—a2c2d1 = 0): 

(3ci) alcl+a1d2-a2dL?iQ (c2=a2c\l{alci + aid2-a2di), a2^0): 

Take 
Ci = [(fllCi + û l r f 2 -02^l ) /ô2CÏ] i ; i , C2 = ( l /Cl) i /2 . 

= a1(alc1 + ax d2 - a2 dx)lax cf, a'2 = (fl^-t- ¿/2 - a2 c*, 

i/i = d1a2l(aiC1 + a1d2 — a2d1), and = 

to arrive at a table in the form (*) and hence of the form (L1i?1iV/4). 
(3cii) axcx + ard2-a2dx = Ç) (a 2 =0, a ^ O , ¿4^0, c1——d2): Take Ci = Cl/c2)»?i, 

Ci=(—l/d2)ih, a =ailc2, d[=c,djcl^ to arrive at a table in the form: 

Ci 
(***) C

2 

Ct C
2 

fl'Ci 0 
Ci + C

2
 d'C 1-C2 (a'd'^o, a' + d ' ^ - l ) 

which is also of the form (Lx N/4). 
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(3d) 0, c 2*0, Cj*0, c 2 =0 (fliCjd2—a2cx4 + cxc2d2 — c2 4 = 0): 
(3di) ax4—i/24-I-c2d2 * 0 (cj — c\4/(flid2—a2d1+c2d2), 4 ^ 0 ) : Take 

Ci = 0 / c 2 )»h , Ca = [ ( a i 4 - M i + c 2 4 ) / c l ^ i ] f 2 , 

4 = ajc2, a'2 = a2 dj(al d2 -a2dx + c2d^), 

4' = (aid2-a2dl + c2d2f!c\d1, and d2 = d2{axd2- a2di + c2d2)!c\di 

to arrive at a table in the form (**) and hence of the form (L^iV/4) . 
(3dii) a1d2 — a2d1 + c2d2 = 0(d1 = 0, a^O, d2^0, c 2= — Take (1 = ( ~ \/a1)r]1, 

C2=(l/c1)f/2, ci=a2cja\, and d'=djc1 to arrive at the table: 

Cl c
2 

Cl - C i + a ' C 2 0 
C1 + C2 d'U 

which is also of the form (LiR^N/4). 
(4) Finally, assume that cx, c2, cl5 c 2 T h e n a1c1c2—a2cx+a1c2d2— 

-a2c2dxji§, c t d 2 - a 2 c x d x + c L c 2 d 2 - c l d ^ 0 . Taking Ci^Cl/c^^i, C2 = (^/c1)t]2, 
a[=ajc2, a2=a2cjcl, d[ = c2dylc\, and d2=djcx, we arrive at the table: 

Ci 
(LlR1NI5) C2 

Cl [a[{d[ + \)-a'2{d[ + \) 
4c 1 + 4 C 2 o K + 1)d'2 - (a2 + 1)4 * 0, 

Ci + C2 4 + d'2 C2 a[di - * 0]. 

On the other hand, because k£ * 1, we may also use the basis change: 

Ci = [(c1d2-c2d1)l(a1c1d2-a2c1d1 + c1c2d2-cld1)]t]1-

- [(a!d2 — a2dl)l(a1 cxd2—a2cxd1 + c1 c2d2 - c!4)]>h and 

C2 = - [(fli 4 - a2 4) / ( f l i cx c2 - a2 cl + flj c2 4 - o2 c2 4 ) ] ^ -

+ c2 ~ a2 £i)l(ai Ci c2 — a2c\ + ax c2 4 - a2 c24)] r\2 

to get another table of the f o r m ( L ^ JV/5), where in this case, 

ai = - ( f l i c 2 4 - « 2 c 1 4 + a 1 4 2 - f l 2 4 4 ) / ( a 1 c 1 4 - a 2 c 1 4 + c 1 c 2 4 - c l 4 ) , 

) a2 = -(a1c1c2-a2cl + a1c2d2 — a2c2d1)(a1d1d2-a2d? + c1dl-c2d1d2)-

• (ax Cj 4 - «2 C i 4 + Cl C 2 4 - C14)~2= 

4 = — ( f li c2 — c i + fli d2 — « 1 4 ) ( 4 Cj 4 — «2 4 + Ci c 2 4 ~ c f 4 ) • 

• ( a i C 1 c 2 - a 2 c i + fliC24-a2c24)-2, 

and 4 = - (of 4 - <3j 4 + o2 c14 - a2 c2 4 ) / ( 4 Ci c2 - a , cf + ax c2 d2 - a2 c2 4 ) . 
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In this case, two tables: 

Í1 C2 Ci & 

Í, axtx + a2£2 0 Ci 4Ci + fláC
2
 0 

Í2 C1 + C2 ¿1C1 + 4C2 Í2 C1 + C2 dx C'x + d2 

satisfying the side conditions defining the (£,x iV/5) case are tables for isomorphic 
algebras if and only if 

(') ax = a1; a2 = a2, d[ = dx, d2 = d2, or 

(SS) a[ = — (axdx — a2dx + axdi — a2dxd2)l(axd2 — a2dx + d2 — dx), 

a2 = - («! — a2 + axd2 — a2 dx) (ax dx d2 - a2 df + d\ - dx d2)l(ax d2 -a2dx + d2~ d x f , 

d'x = - (af - ax a2 + ax a2 d2 - a\ dx) (ax d2 -a2dx + d2- dx)l(ax-a2 + ald2~ a2 d x f , 

and d2 = -(ald2-axa2dx + a 2 d 2 - a 2 d x ) l ( a x ~ a2 + axd2-a2dx). 

The case (L x R x N/5 ) need not necessarily result in two distinct tables since the 
systems (#) and may yield the same solutions, as is true, for example, in the 
case that ax=2, a2 — —10, dx=3, and d2 — — 3. Clearly (") and have the same 
solutions if and only if 

ax = - (axdx — a2dx + axd'i - a2dxd2)j{axd2 -a2dx+d2 — dx), 

a2 = - (ax -a2 + a^ d2 - a2dx)(axdxd2 - a2df + - dxd2)l(axd2 -a2dx + d2- d x f , 

dx = - (al -axa2 + axa2d2 - a\dx){axd2-a2dx + d2- dx)l(ax -a2 + axd2- a2dxf, 

and d2 = - (ald2 -axa,dx + a2d2- a2dx)l(ax -a2 + axd2 — a2dx). 

Each of the first and fourth of these equations is equivalent to 

ax + d2-1-1 = 0, 

and assuming this equation holds, the second and third equation each can be shown 
to be equivalent to 

(a2 + dx+\)\a,5\ + 2(ax-a2)(dx-d2) = 0. 

If these two equations are not both true, an algebra in the case (LXRXN/5) will 
have two distinct tables fitting the canonical form; if they do hold, there is only 
one such table. 

We have shown that there are ten distinct canonical forms for tables in the 
Lx Rx case. 

S u m m a r y . This paper proves that there are 34 distinct table forms two-di-
mensionel real algebras. Four of these describe division algebras and are classi-
fied in [1]. The other 30 describe algebras with zero divisors and appear above. 



42 S. C. Althoen and K. D. Hansen: Two-dimensional real algebras 

References 

[1J S. C. ALTHOEN and L. D. KUGLER, When is R 2 a division algebra?, Amer. Math. Monthly, 
90 (1983), 625—635. 

[2] I. B. COHEN, editor, Benjamin Peirce: Father of Pure Mathematics in America. Arno Press 
(New York, 1980). 

[3] J. LADUKE, The study of linear associative algebras in the United States, 1870—1927, in: 
Emmy Needier in Bryn Mawr, cd. B. Srinivasan and J. D. Sally, Springer (New York, 1983), 
pp. 147—159. 

[4] T . LUCHIAN, A classification of linear algebras of order 2, with divisors of zero, An $tiint. Univ. 
"AI. / Cuza" lasi Sect. I. IV (1958), 21—37. 

[5] O . T . O'MEARA, Introduction to Quadratic Forms, Academic Press and Springer-Verlag (New 
York, 1963). 

[6] B . PEIRCE, Linear associative algebras, Amer. J. Matli., 4 (1881), 9 7 — 2 1 5 , addenda: 2 1 6 — 2 2 9 . 
reprinted in [2]. 

[7] B. L. VAN DER WAERDEN, Algebra, Vol. 1, 7th ed., Frederick Ungar (New York, 1970), pp. 
102—105. 

[8] E . W . W A L L A C E , Two-dimensional power-associative algebras, Math. Mag., 4 3 (1970) , 158— 
162. 

DEPARTMENT OF MATHEMATICS 
THE UNIVERSITY OF MICHIGAN — FLINT 
FLINT, MICHIGAN 48502 — 2186 



Acta Sci. Math., 56 (1992), 43—45 

On the additive groups of ra-rings 

SHALOM FEIGELSTOCK and JOSEPH B. MUSKAT 

N o t a t i o n . 

Z{n) a cyclic group of order n. 
R a ring. 
R+ the additive group of R. 
Rp the ^-primary component of R+, p a prime. 
Pm {pa prime|ffj = l (mod/7—1), m>l}, m a positive integer. 

Def in i t ion . Let m>l be a positive integer. A ring R is said to be an wi-ring 
if d"=a for all a£R. 

PIERCE [2, Corollary 12.5, and following comments] showed that an »/-ring R 
with unity satisfies R= © Rp, with Rp of characteristic p for each pd_Pm. The 

P I ^ M 

existence of a unity in R is essential to Pierce's proof, as is the sheaf representation 
theory for commutative regular rings. In this note /»-rings are not assumed to possess 
a unity. A complete description of the additive groups of m-rings will be obtained 
by elementary means. This classification contains the Pierce result. 

Using Fermat's little theorem, and the existence of a primitive root of unity 
modulop for every prime p, (see [1]), one can prove: 

Lemma 1. Let m>-1 be a positive integer. A prime p satisfies p\qm — q for all 
positive integers q and m if and only if p€Pm. 

Lemma 2. Let R be a ring which does not possess non-zero nilpotent elements. 
Then Rp—@ Z(p) with ap a cardinal, for every prime p. "p 

Proof . Let a£Rp with \a\=pk. Then (pa) k =(p k a)a k - 1 =0, and so k=\. 

Received April 2, 1990 and in revised form December 10, 1990. 
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Theorem 3. Let m > 1 be a positive integer, and let G be an additive abelian 
group. There exists an m-ring R with R+ = G if and only if 

G= © ®Z(p) 
PtPn, "p 

with ap an arbitrary cardinal for each pd Pm. 

Proof . Let R be an m-ring, adR, and 1 be an arbitrary integer. Then 
qma=qm<f={qa)m — qa, i.e., {qm—q)a=0. Therefore R+ is a torsion group, and 
by Lemma 1 it follows that R= © R . Clearly R does not possess non-zero nil-

PiPm 
potent elements, and so Lemma 2 yields the result. 

Conversely, let G= © © Z(p) with ap an arbitrary cardinal for each pdPm-
Pifm <*p 

Let Fp be a field of order p. Every non-zero element ad.Fp satisfies a p _ 1 = 1. If 
pdPm, then am~1 = l, and so am~a. Clearly R= © © Fp is an m-ring with R+ PiPm "p 

The m-ring R with additive group G= © © Z{p) is not unital if a_ is an 
PtPm "p 

infinite cardinal for some prime p. To construct a unital m-ring with additive group 
G, it clearly suffices to consider G— © Z(p), with p a prime. a 

R. S. Pierce communicated to us the following example: 
View Fp as a topological space with the discrete topology, and let Xp be the 

one point compactification of a discretely topologized set of cardinality a. Then 
C(XP, Fp), the ring of Fp -valued continuous functions, is a unital m-ring with additive 
group isomorphic to G. 

Another example of a unital m-ring with additive group © Z{p) is the fol-
lowing: 

Let I be an index set, | / | =a , and let S= JJ Fp, with elements of S regarded 
i/| 

as generalized sequences (aOie/- Let R be the subring of S consisting of adS for 
which there exists a finite subset JQI such that a—a^ for all i, j£l\J. Clearly 
R is a unital m-ring, with R+= © Z(p). 

a 

An argument similar to that used in proving Theorem 3 yields: 

Theo rem 4. Let R be a ring such that for every a£R there exists a positive 
integer m(a)> 1, depending on a, with am{a) = a. Then R+= © © Z(p) with P 

Ptp *p 
a set of primes. Conversely, every such group is the additive group of a ring with the 
above property. 

For a different elementary approach to m-rings see [3]. 
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On rings satisfying (x, y, z)=(y, z, x) 

YASH PAUL 

Let R be an arbitrary nonassociative ring having a Peirce decomposition, into 
a direct sum of Z modules, relative to nonzero idempotent e in the nucleus of R. 
If R satisfies the identity (x, y, z)—(y, z, x) then (i) under certain conditions on 
the Z modules, R is associative and (ii) if R is prime then e is the identity element 
of R. 

As usual, the associator (x,y,z) denotes (xy)z-x(yz) and the commutator 
(x, y)—xy—yx. STERLING [3] has shown that semiprime rings satisfying 

(1) (x, y, z) = (y, z, x) 

are alternative. The nucleus N(R) of an arbitrary nonassociative ring R consists of 
all elements n in R such that 

(n, r,s) = 0 = (r, s, n) — (s, n, r) for all r, s in R. 

It is well known, see SCHAFER[2] p. 18, that N(R) is an associative subring of R. 
We need an identity valid in all rings, the so-called Teichmiiller identity 

(2) (ivx, y, z) - (w, xy, z) + (w, x, yz) = vc(x, y, z) + (w, x, y) z. 

We now take turns letting one of the four elements in (2) be in the nucleus. Thus 

(3) 

(4) 

(5) 

(6) 

(fix, y, z) = n(x, y, z) 

(wn, y, z) = (w, ny, z) 

(w, xn, z) = (w, x, nz) 

(w, X, yn) = (W\ X , y)n 

for any element n in N(R) and the rest of the elements arbitrary in R. 

Received June 7, 1990 and in revised forms January 16 and July 24, 1991. 
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Lemma. Let R be a ring satisfying (1). Then 

(R, N(R)) Q N(R). 

Proof . Let x, y, z be arbitrary elements of R and n be an element of N(R). 
Using (1), (3), (5) and (6) we get 

n(x, y, z) = (nx, y, z) = (y, z, nx) = (y, zn, x) = (x, y, zn) = (x, y, z)n. 

Thus 

(7) n(x,y,z) = (x,y,z)n. 

Again using (1), (3), (6) and (7) we get 

(nx, y,z) = n (x, y, z) = (x, y, z)n = (y, z,x)n = (y, z, xri) = (xn, y, z). 

Thus ((x, n),y, z)—0. This implies that (R, N(R))QN(R). 
A ring R is said to have a Peirce decomposition relative to the idempotent 

e£R if J? can be decomposed into a direct sum of Z modules RtJ (i,j=0, 1) where 

RIJ = {x£R: xe = jx and ex = ix}. 

It is known, see JACOBSON [1], that if J? is an associative ring and if e is an idempotent 
in R then R has a Peirce decomposition relative to e. Also, if R has an identity ele-
ment 1 and if we write et=e and e 0 =l—e then RlJ=eiRej. 

Let e£N(R). Embed R into the ring R'=Z+R which contains an identity 
element 1. Clearly, e and 1 — e are in N(R'). It follows that R=(BRjj and 
Rij—eiRej for i,j=0, 1. Thus 

RijRu = (<>;Rej)(ekRe,) = e,.jR(e,£gRe, 8jkeiRel = 5JkRn 

for i,j, k,l—0,1 (5 denotes the Kronecker delta). 

T h e o r e m . Let R be a ring satisfying (1) with an idempotent e^O in N(R). 
(i) If R satisfies the condition 

Rij Rji = Ru when i ^ j 
then R is associative. 

(ii) If R is prime then e is the identity element of R. 

Proof , (i) R10=(e,R10) = -(R10,e) and R01=(R01, e). Since e£N(R), by 
the above Lemma, R10 and RmQN(R). N(R is an associative subring of R. So 
R10Rqx and R01R10QN(R). By the given condit ion R1± and R00 <gN(R). I t fol-
lows that 

R — Rn + Rw + *<» + Roo i 

Hence R is associative. 
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(ii) RwRn+RfuRwQNiR). This, together with the property RijRk lQdjkRu , 
allows us to conclude that B=R10 R01++Rox+R0i Rw is an ideal of R con-
tained in N(R). All rings R have an ideal A, called the associater ideal. It is defined 
as the smallest ideal which contains all associators. It actually consists of all finite 
sums of associators and right multiples of associators. The associator ideal is never 
zero, except when R is associative. We shall show that BA=(0). Let b£B. Then 
using Teichmuller identity (2) we get 

(bx, y, z) — (b, xy, z) + (b, x, yz) = b (x, y, z) + (b,x,y)z. 

Since B is an ideal contained in N(R) and b£B we have 

(bx, y, z) = (b, xy, z) = (b, x, yz) = (b, x, y) = 0. 

Thus, from the above equation, we get 

b(x,y,z) = 0. 
Also, since b£N(R), 

b((x,y, z)w) = (b(x,y, z))w = 0. 

Thus we have proved that bA=(0) for all b in B. Hence BA=(0). But R is prime 
and nonassociative. This implies that B—(0). So we have 

R = © Roo • 
Thus, i? n and R00 are ideals of R such that 

= (0). 

From the primeness of R again Ru=(0) or i?00=(0). But 0¿¿e£Ru so that 
-^11^(0)- We must have i?00=(0). This implies that e is the identity element of R. 
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On commutativity of left s-unital rings 

HAMZA A. S. ABUJABAL 

1. Introduction. In this paper we study the commutativity of a left .s-unital 
ring R satisfying the polynomial identity 

(1) xt[x",y] = ±/[x,ym]ys for all x,y£R, 
where m, n, r, s and t are fixed non-negative integers. To establish commutativity, 
we need some extra conditions. The results of this paper generalize some of the well-
known commutativity theorems. 

2. Preliminary results. Throughout the present paper, R will represent an as-
sociative ring (not necessarily with unity 1), Z(R) the center of R, C(R) the com-
mutator ideal of R, N(R) the set of all nilpotent elements in R, N'(R) the set of all 
zero-divisors in R, and R+ the additive group of R. As usual, for each x, ydR, 
we write [x,y]=xy—yx. By GF(q) we mean the Galois field (finite field) with q 
elements, and (GF(q))2 the ring of all 2 x 2 matrices over GF(q). Set 

e " = (oo) ' Cl2 = (o o)' e « = (?o)» a n d *» = ( 2 ! ) 
in (GF(p)\, for a prime p. 

D e f i n i t i o n 1. A ring R is called left (resp. right) s-unital if x^Rx (resp. 
x£xR) for each x£R. Further, R is called s-unital if it is both left as well as right 
.s-unital, that is, x(LxRf)Rx for each xdR. 

D e f i n i t i o n 2. If R is an .s-unital (resp. a left or right .s-unital) ring, then for 
any finite subset F of R, there exists an element e£R such that ex=xe=x (resp. 
ex=x or xe=x) for all x£F. Such an element e is called the pseudo (resp. pseudo 
left or pseudo right) identity of F in R. 

Def in i t i on 3. For any positive integer n, the ring R is said to have prop-
erty Q(n) if for all x,y£R, n[x, y]=0 implies [x,}>]=0. 

Received June 7, 1990 and in revised form July 16, 1991. 
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The property Q{ri) is an .//-property in the sense of [9]. It is obvious that every 
«-torsion free ring R has the property Q(n), and every ring has the property <2(1). 
Also, it is clear that if a ring R has the property Q(n), then R has the property Q(m) 
for every divisor m of n. 

In the proof of our results, we shall require the following well-known results. 

Lemma 1 ([3, Lemma 2]). Let R be a ring with unity 1, and let x andy be ele-
ments in R. If kx?"[x,y]=0 and £(x+l)m[x, j ] = 0 for some integers m i 1 and 
k£ 1, then necessarily k[x,y]=0. 

Lemma 2 ([14, Lemma 3]). Let x andy be elements in a ring R. If [x, [x, _y]]=0, 
then [x', y]—kxk~1[x,y] for all integers ks 1. 

Lemma 3 ([18, Lemma 3]). Let R be a ring with unity 1, and let x and y be 
elements in R. If (\—yk)x=0, then (1— ykm)x=0 for some integers k>0 and 
m > 0. 

Lemma 4. Let x and y be elements in a ring R. Suppose that there exists rela-
tively prime positive integers m and n such that m[x,y]—0 and n[x, 7] =0. Then 
[x,y]=0. ' 

' Lemma 5 ([4, Theorem 4 (C)]). Let R be a ring with unity 1. Suppose that for 
each x£R there exists a pair n and m of relatively prime positive integers for which 
x"£Z(R) and xm£Z(R). Then R is commutative. 

Following results play an important role in proving.the main results of this 
paper. The first.is due to KEZLAN [10, Theorem] and BELL [3, Theorem 1] (also see 
[9, Proposition 2]), the second and third are due to Herstein. 

Theorem KB. Let f be a polynomial in n non-commuting indeterminates 
x1,...,xa with relatively prime integral coefficients. Then the following are equi-
valent: 

(1) For any ring satisfying the polynomial identity f— 0, C(R) is a nil ideal. 
(2) For every prime p, (GF(p))2 fails to satisfy f= 0. 
(3) Every semi-prime ring satisfying / = 0 is commutative. 

Theorem H ([7, Theorem 18]). Let R be a ring and let « > 1 be an integer. 
Suppose that x"—x£Z(R) for all x£R. Then R is commutative. 

Theorem H' ([8, Theorem]). If for every x and y in a ring R we can find a 
polynomial px,y{t) with integral coefficients which depends on x and y such that 
[x^Px.yix) — x, y]=0, then R is commutative. 

3. Main Results. Now, we present pur results. 
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T h e o r e m 1. Let «>1, m, r, s and t be fixed non-negative integers, and let R 
be a left s-unital ring satisfying the polynomial identity (1). Further, if R possesses 
Q(n), then R is commutative. 

Following lemma shows that the ring considered in Theorem 1 is in fact an 
y-unital ring. According to Proposition 1 of [9] this lemma enables us to reduce the 
proof of Theorem 1 to a ring with unity 1. 

Lemma 6. Let «>0, m, r, s and t be fixed non-negative integers such that 
(>, n, s, m, 0 ^ ( 0 , 1,0,1, 0), and let R be a left s-unital ring Satisfying the polynomial 
identity (1). Then R is s-unital. 

Proof . Let x and y be arbitrary elements in R. Suppose that J? is a left i-unital 
ring. Then there exists an element e£R such that ex=x and ey—y. Replace* 
by e in (1). Then e,+ny-e'yen= ±(yreym+s-yr+meys). Thus y=ye"£yR for all 
y£R. Therefore, R is i-unital. 

Lemma 7. Let «>0, m, r, s and t be fixed non-negative integers, and let R be 
a ring satisfying the polynomial identity (1). Then C(R) is nil. 

Proof . Let x—fin and y—e12 • Then x and y fail to satisfy the polynomial 
identity (1) whenever « > 0 except for r—s=0,m=l. In this later case one can 
choose x=e12 and y=e21. By Theorem KB, 

Combining Lemma 7 with Theorem KB gives the following commutativity theo-
rem for semi-prime rings. 

T h e o r e m 2. Let «>0 , m, r, s and t be fixed non-negative integers. If R is a 
semi-prime ring satisfies the polynomial identity (1), then R is commutative. 

Lemma 8. Let n > l , m,r,s and t be fixed non-negative integers, and let R be a 
ring with unity 1. Suppose that R satisfies the polynomial identity (1). Further, if R 
has Q(n), then N(R)^Z(R). 

Proof . If a£N(R), then there exists a positive integer p such that 

(3) ak£Z(R) for all . k s p, and p minimal. 

Let p=1. Then a£Z(R). Suppose that p> 1 and b—aReplace x by b in 
(1) to get b'[bn,y] = ±yr[b,ym]ys. In view of (3) and the fact that (p-l)ns=p 
for n > 1, 

(2) C(R) i N(R). 

(4) / [ ¿ , y n ] y = 0 for all y£R. 

Now, replace x by 1 +b in (1) to get (1 +b)'[(\ +bf, j ] = ± / [ 1 +b, j ] / . As 1 +b 
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is invertible, using (4), the last identity gives 

(5) [ ( l + V . J ^ O for all y£R. 

Combining (3) and (5) yield 0=[(1 +b)n, y\ = [\+nb, y]=n[b, y]. Now, Q(n) im-
plies that [b,y]=0 for all yZR, that is ap~1ZZ(R). This contradicts the minimality 
of p. So, p—1 and a£Z(R). Therefore, 

(2') N(R) g Z(R). 

Remark 1. Combining (2) and (20, one gets 

(6) C(R) g N(R) g Z(R), 

for any ring R with unity 1 which satisfies the polynomial identity (1) for all fixed 
non-negative integers «>1, m,r, s and t and whenever R has Q(ri). Hence, in view 
of (6), [x, [x,y]]=0 for all x,y£R and thus the conclusion of Lemma 2 holds. In 
the proof of Theorem 1, we shall therefore routinely use Lemma 2 without explicit 
mention. 

Proof of T h e o r e m 1. According to Lemma 6, R is i-unital. Therefore, in 
view of Proposition 1 of [9], it suffices to prove the theorem for R with unity 1. 

It wi=0, then (1) gives x/[xn,y]=0. Thus, nx '+ n _ 1[x,^]=0. Replace x by 
x + 1 and apply Lemma 1 to obtain w[x,j>]=0 which by Q(n), we get [x, j>]=0 for 
all x, y£R. Therefore, R is commutative. 

Suppose that m^l. Let q—(p'+"—p) (for a prime p). Then from (1) 
we have ?x'[x", y]=(p^n-p)x'[xr, y]-pAx", y}=(px)%px)n, y] T 
Tpyr[x, ym]ys=(px)'l(px)n, y] T/[(px), ym]ys=0. Therefore, qnx'+'-^x, y] =0. If 
we set k—qn, then k[x, ,y]=0 and thus So 

(7) x?£Z(R) for all x£R. 
We consider two cases : 

Case (a): If m > 1, then y] = ±m[x, y]yr+s+m~1 and x'[x", ym] = ± 
±/ntx,y"]^m ( r + s + m _ 1 ) . So m^[x?,y]f-1=-m[x,ym]ym(T+,+m-1). By using (1), 
we obtain m/[x, y"1]^""1=m[x, y]ym{'+s+m~1). Using Lemma 3, we get 

(8) W [ x j y n j y + s + m - l ( 1 _ y t ( m - l ) ( r + s + n , - l ) ) = q f o f a , j x y ç R 

Now, by (6), the polynomial identity (1) becomes 

(9) nx'+B-1[x,;y] = ± w / + s + m - 1 [ x , ^ ] = ±w[x ,3>] / + ï + m - 1 for all x,y£R. 

It is well-known that R is isomorphic to a subdirect sum of subdirectly irre-
ducible rings Ri (/£/, the index set). Each Ri satisfies (1), (6), (7), (8) and (9). We 
consider the ring Ri (/€/). Let S be the intersection of all non-zero ideals of Rt. 
Then .SV(O), and Sd=0 for any central zero-divisor d. 
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Let a iN ' (R^ . By (8), m[x, i f ] a r + s + m ~ 1 ( i I f 
m[x, am]cf+s+m-19^0, then o t ( m-1 ) ( r + s + m-1 ) and 1-a k ( m - 1 ) ( r + s + m _ 1 ) are central 
zero-divisors. So (0) = S(l-a* ( m _ 1 ) ( r + s + 'n - 1 ))=S'?s0, which is a contradiction. 
Thus 

(10) m[x, ef]cf+s+m-1 = 0 for all x^Rt. 

From (9) and (10), nx,+"-1[x, cT] = ±m[x, cT](f,f+s+m-1'>=0 and n\x,cT]=0. 
Therefore, nm[x, a]a r a_1=0. Now, 

n a y + » - i [ X j a] = n(n^+"-1[x, a]) = ± « m [ x , a ] a , + , + m - 1 = 0 

and n2[x,a]=0. But [x"\ a] = n2x"'~1[x, a]. Therefore, 

(11) [x"',a] = 0 for all x£Ri. 

If c e Z W , then by (1), ( c ' + " - C)x'[x\ y]=(ex)'[(cx)n, y] - cx'[x", y] = 
(cx)'[(cx)n ,^]q:/[(cx),j ' 'n]/=0 and thus «(c'+ n-c)x'+""1[x,j>]=0. By Lemma 1 
n(c'+n-c)[x,y]=0. So 

(12) (c '+ , ,-c)[x , , ,7] = 0 for all x,y£Ri. 
Using (7), we get 
(13) ( / ( , + B ) - / ) [ * " , >»] = 0 for all x,y£R{. 

Suppose that y£Rt. If [x", >•] =0, then [x"', yJ—y]=0 for all positive integers 
yand x£Ri. If [x"\y]*0, then [x",.y]*0, for [x",j>]=0 implies that [xn \y]=0, 
which is a contradiction. If [x",y]*0, then (13) implies that yki'+n)—yk is a zero-
divisor. Therefore, is also a zero-divisor. By (11), we have 

(14) [x"!, j>*('+n-1)+1—y] = 0 for all x ,yeRi. 

As each R satisfies (14), the original ring R also satisfies (14). But R has Q(n). 
Combining (14) with Lemma 2, we obtain [x, j>*(,+n_1)+1—j>]=0. Therefore, R is 
commutative by Theorem H. 

Case (b): Let m=l. Then x'[x", y] = ±/[x,y]y" and «x'+n-1[x,>>] = ± [ x , y ] / + ' . 
Replace x by x" to get 

nx"(»+»-i)[JC»> j,] = ±[x", y]/+s = ±nx"~1[x, y]yr+° = ±«x , +"-1[x",^]. 

Thus n( l -x ("- 1 ) ( '+ n - 1 ) )x '+"- 1 [xB , which in view of Lemma 3, we get 

(15) n ( l -x* ( n - 1 ) ( ' + n - 1 ) )y + " - 1 [x" ,^ ] = 0 for all 

As in case (a) if a£N'(R ), then by (15), n(l-ctl"-1*'+°-iy)ct+n-1[tf,y]=0. Also, 
we can prove that 
(16) ncf+tt-1[(f,y] = 0 for all y£Rt. 
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Now, we have ±[<f;y\/+s±nd*f+a-V)[(f,y\=Q, and thus [a",y] =0. Therefore, 
[a,y]/+'=d[cf,y]=0. So 

(17) [a, )>] = 0 for all y£Ri. 

If c£Z(R,), then as in case (a), we get (c'+n—c)[x, j>]=0. In particular, by (7), 
(;c*('+',>-x*)[;c,j;]=0.for all x,y^Rh If [x, forall x,y£Rt, then R satisfies 
[x, y]=0 for all x,y£R. Therefore, R is commutative. Now, if for each x,y^Rt, 
[x,y]*0, then xki'+n-1)+i-x£N'(Ri), and hence xki'+n-1)+1-x<=N'(R). But the 
identity (17)'is satisfied by R. So [x M ' + n - r l ) + 1 -x , j>]=0 foreach x, y£R. Therefore, 
R is commutative by Theorem H. 

In Theorem 1, Q(n) is essential. To see this, we consider the following example: 

Example 1. Let 

0 1 0 o o i' 0 0 o' 
A1 = 0 0 0 0 0 0 , and Cx = 0 0 1 

0 0 0 0 0 0, .0 0 0. 

be elements of the ring of all 3 x 3 matrices over Z2, the ring of integers mod 2. 
If R is the ring generated by the matrices Alt Bx and Cx, then using Dorroh con-
struction with Z2 (see [4, Remark]), we obtain a ring i? with unity 1. Then R is non-
commutative and satisfies [x2,y] = [x,y2] fora l l x,y(zR-

The presence of the identity in Theorem 1 is not superfluous. To see this we 
consider the following example. 

Example 2. Let 

0 0 0" / 0 0 0' 0 0 o' 
As = 0 0 0 > B% = 0 0 0 and C2 = 0 0 1 

0 1 0. 1 0 0, P o o, 

be elements of the ring of all 3 x 3 matrices over Z2. If R is the ring generated by 
the matrices A2, B2 and C2,. then for. each integer w s l , the ring R satisfies the 
identity \x", y]=[x, yn] for all x,y£R, but R is not commutative. 

Co ro l l a ry 1 ([4, Theorem 5]). Let R be a ring with unity 1, and n > 1 be a 
fixed integer. If R+ is n-torsion free and R satisfies the identity [xn, >>] = [x, y ] for all 
x, y(i R, then R is commutative. 

Coro l l a ry 2 ([15, Theorem 2]). Let n^m^l be fixed integers such that mn>l, 
and let R be an s-unital ring. Suppose that every commutator in R is m\-torsion free. 
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Further, if R satisfies the polynomial identity 

(18) [xn, y] = [x, ym] for all x,yZR, 

then R is commutative. 

Coro l l a ry 3 ([16, Theorem 1]). Let « > 1 and m be positive integers, and let s 
and t be any non-negative integers. Let R be an associative ring with unity 1. Suppose 

(19) x'[xn,y] = [x,ym]f for all x,y£R. 

Further, if R is n-torsion free, then R is commutative. 
In the following result we show that the conclusion of Theorem 1 is still valid 

if Q(n) is replaced by requiring m and n to be relatively prime positive integers. 

Theo rem 3. Let m > 1, and 1 be relatively prime integers, and let r, s, and 
t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity 
(I), then R is commutative. 

Proof . According to Lemma 6, R is s-unital. Therefore, in view of Proposi-
tion 1 of [9], it is sufficient to prove the theorem for R with unity 1. 

Without loss of generality, we assume that R is subdirectly irreducible. Let 
a£N(R). Consider p and b as in Lemma 7. Following the proof of Lemma 7, 
we obtain n[b,y]=0 and m[b, >']=0. By Lemma 4, [b, >>j=0. So up'\Z{R), 
which contradicts the minimality of p. Therefore p= 1 and a€_Z(R). Thus 
N(R)QZ(R). By Lemma 6, 

(20) C(R) i N(R) g Z(R). 

The proof of (7) also works in the present situation. So there exists an integer 
k (as in the proof of Theorem 1) such that 

(21) x?£Z(R) for all x£R. 

Let u£N'(R). Using argument similar to one as in the proof of Theorem 1 (see 
(II)), we get [x"\ w]=0 and [xm\ u]=0. By Lemma 4, 

(22) [x, H] = 0 for all x£R. 

If c£Z(R), then, as observed in the proof followed by (11), we can prove that 
n(c '+"-c)[x, j ] = 0 and m(c'+n-c)[x,y]=0. By Lemma4, 

(23) (<?+"-c)[x,y] = 0 for all x,y£R. 

By (21), ( j ; f l ( ' + " ) — } > ] = 0 . Arguing as in the proof of Theorem 1, we finally get 
yk«+n-1)+1-yiN'(R). Hence (22) yields yk«+n-1)+1-yiZ(R) for all y£R. By 
Theorem H, R is commutative. 
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Coro l l a ry 4 ([16, Theorem 2]). Let m and n be relatively prime positive integers, 
and let s and t be any non-negative integers. Suppose that R is an associative ring 
with unity 1 satisfies the polynomial identity (19). Then R is commutative. 

Next result deals with the commutativity of R satisfying (1) for the case n= 1. 

T h e o r e m 4. Let R be a left s-unital ring, and let m, r, s and t be fixed non-
negative integers such that (t,m,r,s)?±(0,1,0,0). If R satisfies the polynomial 
identity 
(24) *[x,y] = ±yr[x,ym]ys for all x,y£R, 

then R is commutative. 

Proof . According to Lemma 6, R is an i-unital ring. In view of proposition 1 
of [9], we prove the result for R with unity 1. 

Case (I): If m=0, then the identity (24) becomes x?[x,y]=0. By Lemma 1, 
[x, y ]=0 for each x,y£R. Therefore, J? is commutative. 

Case (II): Let m > 1, x = e u , and y=e12. Then x and y fail to satisfy the 
identity (24). By Theorem KB, C(R)QN(R). If a£N(R), then there exists a posi-
tive integer p such that 

(25) ak£Z(R) for all k ^ p, and p minimal. 

If p= 1, then a£Z(R). Now, let p> 1, and let b=ap~l. Replace y by b in (24) 
to get x'[x, b] = ±br[x, bm]b\ In view of (25), x'[x,b]=0. By Lemma 1, [x, 6 ]=0 
for all x£R. Therefore, ap~ 1£Z(R) which is a contradiction. Thus p = 1, and 
hence N(R)QZ(R). So C(R)^N(R)QZ(R). The method of proof of Theorem 1 
enables us to establish the commutativity of R. 

Case (III): Let m=l. Then (24) becomes 

(26) X1 [x, y] = ±/[x, y]ys for all x, ydR. 

We consider the following cases, 
(i): Let r=0 . Then (26) becomes 

(27) x'[x,y] = ±[x,y]ys for all x,y£R. 

If then f>0 . Thus, ¿[x, y] = ±[x, y] for all x,y£R. Therefore, R is com-
mutative by [11, Theorem]. Similarly, if / = 0 in (27), then R is commutative by 
[11, Theorem]. Let / > 0 and Y>0. Then x = e n , and y=e12 fail to satisfy the 
identity (27). By Theorem KB, C(R)QN(R). Now, for any positive integer q, we 
can easily see that 

(28) x«[x,y] = ±[x,y]f for all x,y£R. 
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If a£N(R), then for sufficiently large q, we get xq'[x,a] =0 for all x,y£R. By 
Lemma 1, a£Z(R). Therefore C(R)QN(R)QZ(R). 

Let /=(p s + 1—p)>0 for 0 (p is a prime). Then we can prove that 

(29) xl£Z(R) for all x£R. 

By (28) and (29), [x"+1, j ] = ± [x ,y s + 1 ] for all x,y£R. In view of Proposition 3 
(ii) of [9], there exists positive integer j such that [x, j ( i s + 1 ) J]=0 for each x, y£R. 
But (ls+ l)J=lk+l. Then (28) yields [x, y]yfc=0, and so by Lemma 1, we obtain 
[x,y]=0 for all x,y£R. Therefore, R is commutative. 

(ii): If i = 0 , then (26) becomes 

(30) x,y] = ±f[x,y] for all x,y£R, 

and so either i > 0 or r > 0. Without loss of generality, we can suppose that r>0 . 
Clearly, x=eu and y=e12 fail to satisfy (30). By Theorem KB, C(R)QN(R). 
Following the same argument as in (i) we can prove the commutativity of R. 

(iii): If /=0 , then (26) gives 

(31) [x,y] = ±yr[x,y]ys for all x , y £ R . 

Then either /•>0 or j > 0 . Clearly x=eu and y=e 12 fail to satisfy (31). There-
fore, C(R)GN(R). Let p and b as defined in case (II). Then (31) holds and [x, b] = 
= ±br[x,b]b"=0 for all x£R, which is a contradiction. Therefore a£Z(R) and 
N(R)QZ(R). Thus 
(32) C(R) i N(R) g Z(R). 

By (32) and Lemma 2, [x,y] = ±y+s[x,y] for all x, y£R. Therefore, J? is com-
mutative by [11, Theorem]. 

(iv): Let r>0 , s > 0 and />0 . Then x=en and y=e12 fail to satisfy (26). 
Therefore, C(R)QN(R). If p and b are as defined in case (II), then x'[x, b] = ± 
±fc'[x, b]bs=0. So by Lemma 1, [x, ¿>]=0, which contradicts the minimality of p. 
Therefore, N(R)<^Z(R), and thus 

(33) C(K) g N(R) g Z(R). 

By (33), the identity (26) becomes 

(34) x*[x,7] = ± [ x , . v ] / + s for all x,y£R. 

Following the proof of (i), we can establish the commutativity of R. 

C o r o l l a r y 5 ([12, Theorem]). Let t and m be two fixed non-negative integers. 
Suppose that R satisfies the polynomial identity 

(35) **[x, y] = [x,/"] for all x,yeR-
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(i) If R is left s-unital, then R is commutative except when (m, t)=( 1,0). 
(ii) If R is right s-unital, then R is commutative except when (m, i) = (l, 0); 

and 771=0 and />0. 

Remark 2. In Corollary 5, for T?J>1, R is commutative by Theorem 1. How-
ever, for 777=0 (resp. m = l and i>0), it is easy to prove the commutativity of R. 

Coro l l a ry 6. Let « > 0 and m (resp. TM>0, and n) be fixed non-negative 
integers. Suppose that a left (resp. right) s-unital ring R satisfies the polynomial 
identity 

(36) [xy, xn±ym] = 0 for till x,y£R. 

If R has Q(n), then R is commutative. 
Proof . Actually, R satisfies the identity x[xn,y] = ±[x,ym]y for all x,y(iR. 

Therefore, R is commutative. 

Co ro l l a ry 7. Let TTI>1 and 1 be relatively prime integers, and let R be 
a left s-unital ring satisfying the polynomial identity (36). Then R is commutative. 

In [6, Theorem B], Harmanci proved that "If TI>1 is a fixed integer and R 
is a ring with unity 1 which satisfies the identities fx", j ]=[x , yn] and [x"+1, y] = 
=[x, Y + 1 ] for each x, y£R, then R must be commutative." In [5, Theorem 6] BELL 
generalized this result. The following theorem further extends the result of Bell. 

Theorem 5. Let m>\ and TI> 1 be fixed relatively prime integers, and let 
r, s and t be fixed non-negative integers. If R is a left s-unital ring satisfies both the 
identities 

(37) ¿[x",y] = ± f [ x , yn]ys and x'[xm,y] = ±yr[x,ym]ys for all x,y£R, 

then R is commutative. 

Proof . According to Proposition 1 of [9], we prove the theorem for R with 1. 
Let b as in the proof of Lemma 8. Following the proof of Theorem 1 and Theo-
rem 2 of [16], we can prove that n[b, y] =0 and m[b, y]=0. By Lemma 4, [b, y]=0 
for all y£R. The argument in the proof of Lemma 8, gives N(R)QZ(R). Also, 
x=e22 and y = e2l+e22 fail to satisfy the polynomial identities in (37). Hence, by 
Theorem KB, C(R)QN(R), and thus C(R)QN(R)^Z(R). The argument of 
subdirectly irreducible rings can then be carried out for n and m, yielding integers 

1 and k>\ such that [xj-x, / ' ] = 0 and [x^-x, ymt]=0 for all x,y£R. Let 
/ ( x ) = ( x ' - x ) * - ( x J ' - x ) . Then 0=[/(x) , yn*]=rii[f(x), y]y"'~1, and 0=[ / (x) , = 
=m2[/(x), y]ymt~1. By Lemma 4 and Lemma 5, [f(x),y]/=0 for all x,y£R, 
and r=max {ttj2—1, ti2—1}. Therefore, f(x)£Z(R). Since / ( x ) = x 2 g ( x ) - x with 
g(x) having integral coefficients, Theorem H' shows that R is commutative. 
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C o r o l l a r y 8 ([4, Theorem 6]). Lei m > 1 and n > 1 be relatively prime positive 
integers. If R is any ring with Unity 1 Satisfies both thé identities [x™, y] = [x, ym] 
and [x",y] = [x,yn] for all x,y£R, then R is commutative. 

R e m a r k 3. In case m = 0 and 1, Theorem 1 need not be true for right 
.?-unital ring. Also, when m=0 and t—1, Corollary 4 is not valid for j-unital 
ring. In fact we have the following example. 

Example 3. Let K be a field. Then, the non-commutative ring , 

has a right identity element and satisfies the polynomial identity x[x,>']=0 for all 
x, y£R. Hence, in the case m=0 and n>0, Theorem 1 need not be true for right 
s-unital rings. As a matter of fact, Example 3 disproves Theorems 1, 3, 4, and 5 for 
right s-unital case whenever both r and t are positive. 
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Additive functions satisfying congruences 

I. KÁTAI1) and M. van ROSSUM-WIJSMULLER 

Dedicated to János Galambos on his fiftieth birthday 

1. Let A (A*) denote the class of additive (completely additive) functions 
having real values, AG (Aq) be the set of additive (completely additive) functions 
defined on the set of nonzero Gaussian integers and taking on complex values. 

It seems to us very probable that a condition 

(1.1) 2Fj(n+j) = O(modl) (V«6N) 
J = o 

for FjdA* (j=0, ...,k) implies that the Fj may take on only integer values, and 
similarly if G0, GX, ..., GK£AS and if 

(1-2) 2GJ(«+J)ZG 
¿=o 

holds for all a£G with the exception of a=0 , —1, ..., —k, then Gj(a)gG for 
every a£G\{0} and j—0, ..., k. In [1] the rational case was considered for k=3, 
while in [2] the Gaussian case for k=3, and the results support the above con-
jectures. 

We should like to mention that our conjecture is not true in general for the 
wider class of additive functions. We say that an additive function F is of a finite 
support mod 1, if F(p")= 0 (mod 1) holds for all but finitely many primes p and 
every a £ l . Similarly, we say that a function G£AC is of a finite support mod G if 
F(FIa)£G holds for all prime powers II" with the exception of at most finitely many 
primes IKiG. We guess that the conditions (1.1), (1.2) for additive functions imply 
that the Fj are of finite support mod 1, and G} are of finite support modG. It is 
quite easy to determine the additive functions F or G having finite support under 

*) It is written while the first named author held a visiting professorship at Temple University, 
in Philadelphia. It was financially supported by the Hungarian National Research Grant Nr. 907. 

Received June 30, 1989. 
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the conditions (1.1), (1.2), respectively. A recent result due to Robert Styer sup-
ports this conjecture (case k=2, (1.1) is assumed, F0, FX, F2£ A). 

If k— 1 then much more is known. Several years ago it was proved by E. Wirsing 
that F£A, ||F(h + 1)—F(«)||—0 (ti—•») implies that F (n )= t log n+H(n), where 
T is a suitable real number and H(n) is an integer valued additive function. Here 
[1*11 denotes the distance of x to the nearest integer. This was a conjecture of the first 
named author. By his method one can get that ||i^(w) + fi(/i-l-1)|| — 0 (n — 
F0,F^A implies that F0(tj)=t log n+H0(n), F1(n) = -x log n+H^n) and H0(n) = 
= 0 (mod 1) identically. 

It is quite plausible to believe that F0, Fx, ..., Fk£A, 

| | i ^ ( « + y ) | | - 0 as « - o o 
j=o 

implies that 

Fj(n) = TJ log h + Hj(n) 0 = 0 , . . . , k), 

¿ T j = 0, and ¿ f l > ( n + y ) = 0 ( m o d l ) . 
7=0 J=0 

Our purpose in this paper is to determine all those functions G„, ..., G5£A% for 
which (1.2) (k=5) holds true. This is formulated in Theorem 3 which is an easy 
consequence of Theorem 1 and 2. 

T h e o r e m 1. Let Hj£A* ( j = 0 , 1,2), 

(1.3) V(n) := H0(n) + Hx(n + 1) + #2(K + 2 ) - H 2 ( n + 4) - H^n + 5 )-H0(n + 6). 

Assume that V(n)= 0 (modi) for every n£ N. Then Hj(n)=0 (modi) holds for 
every j—0,1,2 and N. 

T h e o r e m 2. Let (7=0, 1, 2), and assume that 

(1.4) V(u):=H0(a) + H^a + 1) + H2(a + 2 ) - H 2 ( a + 4 ) - + 5 ) - H 0 ( a + 6) 

is a Gaussian integer for all a€<7\{0, - 1 , - 2 , - 4 , - 5 , —6}. Then Hj(a)£G for 
all a£G\{0} and j=0,1,2. 

2. Proof of Theorem 1. 

Lemma 1. If V(n)=0 (mod 1) holds for every n£N, then H}(ri) = 0 (mod 1) 
holds for « s 17 and j=0,1,2. 

Proof . The following ten expressions are integers and they are linear com-
binations of Hj(2), Hj(3) and H}{5) for j=0, 1, 2. 

1, ' ¿(4) 
2, F( 10) — V(3) + V(6) + V(2) 
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3, F(20) + 3F( 1) + 5V(2) - 2F(3) + 2F(6) - F(7) - 2F(8) - 2V(9) -

-2F(12) -2F(50) 

4, F(28) + F(l) - V(2) - 2F(3) - F(5) - V(6) - F(1 1) + V(24) 

5, V(34) + 3F(1) + 2V(2) - 2F(3) + F( 5) + F(6) - F(7) - 2F(8) - F(9) + F(11) -

- 2F(12) - F(13) - F(15) - F(19) - F(21) - 2F(50) 

6, F(86) + 8F(1) + 4F(2) - 3F(3) + 3F(6) - F(7) - 4F(8) - 3F(9) - 4F(12) -

- F(13) - F(14) - F(15) - F(17) - F(18) - F(19) - F(21) + F(24) - F(43) -

- F(45) — 4F(50) 

7, F(90) - 7F(1) - 3F(2) - F(3) - F( 5) - 3F(6) + 4F(8) + F(9) - F(11) + 2F(12) + 

+ F(18) - F(21) + F(45) + 2F(50) 

8, F(110) + 2F(1) + 5F(2) + F(3) + 3F(6) - F(7) - F(8) - 2F(9) - F(11) - F(12) -

- F(13) - F(14) -2F(15) - F(17) - F(18) - F(23) + F(32) - F(50) 

9, F(184) + 4F(1) + 2F(2) + 3F(3) - F(5) - 2F(6) + F(7) + F(9) - F(11) + 3F(12) + 

+ F(13) + F(14) + F(18) + 3F(19) + 3F(21) - F(23) - F(29) + F(32) + 

+ F(45) + 2F(50) 

10, F(203) + 6F( 1 ) - F(2) - 2F(3) - F(5) + 2F(6) + 2F(7) - 3F(8) + 3F(9) + F( 11) + 

+ F(12) + 2F(13) + 2F(14) + 2F(15) + 2F(17) + F(18) + 3F(19)+4F(21) + 

+ 2F(23) + F( 25) + F(27) + F(29) + F(31) + F(37) + F(43) + F(45) + F(50) 

These conditions can be written in matrix form as RHT=0 (mod 1), where HT 

is the transpose of the vector 

H = [H0(2), H0(3), H0(5), H1(2), H,(3), H¿5), 2), H2{3), H2(5)] 

and R is the matrix with integer entries given by 

1 0 - 1 0 - 2 1 - 2 1 0 
- 6 1 1 1 0 - 1 4 0 - 2 

- 1 3 2 - 1 1 - 2 - 2 13 3 - 9 
6 2 - 2 4 - 5 3 - 8 6 0 

- 9 5 - 2 - 2 - 2 1 11 4 - 8 
- 1 1 4 - 5 3 - 1 3 4 19 15 - 2 0 

9 5 4 3 12 - 3 - 1 5 - 1 1 17 
- 8 - 3 0 - 5 0 - 1 12 2 - 8 
- 4 - 9 - 4 - 4 - 1 1 2 1 6 - 8 

- 1 1 0 -6 1 - 1 6 4 11 9 - 1 4 

5 



66 I. Kdtai and M. van Rossum-Wijsmuller 

Using Gaussian elimination over the integers, it follows that the third row is linearly 
dependent upon the others (but needed to perform the Gaussian elimination) and 
that Hj(2), Hj(3) and Hj(5) are integer valued for j=0, 1, 2. 

To show that the same is true for the other primes less than or equal to 17 we 
consider the following expressions, which are linear combinations of Hj(2), Hj(3) 
and Hj(5) alone and are therefore integer valued. Since V(ri) =0 (mod 1) it follows 
that Hj(p)=0 (mod 1) for j=0, 1, 2, p=7, 11, 13, 17. 

i, F(l) + tf0(7) 

ii, V(2) + Hx(l) 

iii, V(3) + H2(l) 

iv, V(5)-H2(7) + H0(U) 

v, V(6)-H1(7) + H1(U) 

vi, F(8) + #0(7) + #i(13) 

vii, F (12 ) - / / 2 (7 ) -^ 1 (13 ) + W1(17) 

viii, V(50) + H0(7) + H1(U)-H1(n)-H2(l3) 

ix, V(ll) — H0(ll) — H2(l3) + H0(n) 

x, F(18) + F(22) -(- V(14) — H0(l\) + H2(\3) + H2(l 1) 

xi, F ( 2 0 ) - i i 1 ( 7 ) - / f 2 ( l l ) + //0(13) 

xii, F(26) + F(30) -H Q (13 ) + HX(J) - H2(l) + //2(17). 

This proves Lemma 1. 
The proof of Theorem 1 is completed by verifying the inductive step which is 

done in the following 

Lemma 2. If V(n)=0 (1) for all ndN and Hj(n)=0 (1) for all nS 17 and 
0,1,2, then Hj(n)s= 0 (1) for all n£N and j=0,1,2. 

Proof . We prove the lemma indirectly. Assume that there is some n which is 
smallest possible for which Hj(n)^ 0(1) for j=0 or j— 1 or j=2. Then «=/?, 
p is a prime. Since V(p-6)^0 (1), and V(p-5)=0 (1), it follows that H2(p)^0 (1). 
From V(p—4)s0 (1) it follows that p and p+2 must be prime, and therefore 
p=2 (mod3). From F(p)=0 (1) it follows that p+6 is a prime as well. Since 
(/7+10) is divisible by 3, V(p+4)=0 implies that (/>+8) must be a prime and 
therefore p = 1 (mod 5). We now consider F(4p+6), which is equal to 

H0(4p + 6) + H, (4 p + 7) + H2(4p + 9) - H2(4p + 10) - Hx (4p + 11) - H0(4p + 12). 

But (4p+6)=0 (mod 5) and (4^ + l l ) = 0 (mod 5), while (4p + l0)=2(2p+5) and 



Additive functions satisfying congruences 67 

(2/>+5)=0 (mod 3). Also (4p + 12)=4(/>+3) with (/>+3) composite and (4p+8)= 
=4(/>+2). Therefore F(4/>+6)=0 (1) means that H1(4p+7)+H2(p+2)=0 (1). 
If ^ 1 ( 4 p + 7 ) = 0 (1) the lemma is proved, since Hi(p)-Hi(p+2)=0 (1), which 
follows from V(p-2)=0 (1). Since p=2 (mod3), it follows that (4p+T)=3n. 
If n is composite, / / 1 (4^+7)=0 . 

If n is prime, then («+9)<2p since />>17. Therefore (n+k) is composite 
and less than 2p for k= — 1, 1, 3, 5, 7, 9, from which it follows that Hj(n+k)^0 (1) 
for these values of k and j=0, 1,2. Since V(n-1)=0 (1) and F ( n + 3 ) s 0 (1) 
one concludes that H^n)^0(1) means that n, « + 4 and n+8 must all be prime 
which is impossible. Hence H^ri)^0 (1) and therefore H2(p)~0 (1), which con-
cludes the proof of Lemma 2 and therefore the proof of Theorem 1. 

3. Proof of Theorem 2. To prove Theorem 2, clearly we may assume that H j are 
real valued functions. Let us observe furthermore that H(ea)=H(u) for each H£Aq 
and £= — 1,/, — /. We introduce the notations 

F + 1 ( a ) : = H0( a) + Hl(a+ 1) + H2(a + 2 ) - / / 2 ( a + 4 ) - a + 5 ) - ^ 0 ( a + 6), 

F + 1 (a ) := H 0 ( a ) + H t ( a + i ) a + 2i) - / / 2 ( a + 4/) - ^ ( a + 5/) - # 0 ( a + 6/) 

The norm of a is defined by N(a)=aa. The proof of Theorem 2 is also done 
by induction, this time using the norm of a. Because of Theorem 1, we need to 
prove Theorem 2 only for elements of G which are not real nor purely imaginary. 
The following lemma lists some properties of such elements. 

Two Gaussian integers fi=u+iv and y—c+di are congruent mod 5 in 
the arithmetic of G if u=c (mod 5) and v=d (mod 5) hold simultaneously. This 
is denoted by (u, v)=(c, d) (mod 5). 

L e m m a 3. Let a be a Gaussian integer such that: 
(i) a is a prime number, 

(ii) a = a + b i with a> fc>0 ; 
(iii) N(a) >13; 
(iv) (a, 6 )^(4 ,1) (mod 5). 

Then 
(A) N{a.-n)^N(a) for n= 1, 2, 3, 4, 5, 6 

and 
(B) both of a + 1 and a + i are composite numbers, and their norms are strictly 

less than 2N(a). 
In addition at least one of the assertions C, D, E holds true: 
(C) a + 2 is composite and N(a+2)<2N(a); 
(D) a+21 is composite and JV(a+2i)<2iV(a), furthermore iV(a—4i')sJV(a) 

and N(<x—ni)<N(<x) is true for n=2 and « = 3 ; 

5* 
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(E) N(<x—w+2/)<Af(a) for rt=2,3,4,5 and 6, while a—1+2/ is composite 
and N(a — 1 + 2i)<2N(cn). Moreover N(a—4i)^N(ai) while N(a-ki)<N(a) for 
k=2 and 3. 

Proof . Since jV(a)> 13 and (ii) holds, therefore a ^ 4 . Hence (A) follows 
easily. Also (B) is obviously true. Since a is a prime, a is not an associate of 1 +/ , 
therefore l + i is a divisor of a + 1 and of oc + i, and so they are composite num-
bers. N(a +1)=a2+b2+2a + 1, N(a+/)=a2 + b2+2b +1, therefore the second asser-
tion in (B) holds as well. 

We shall classify a according to its residue (mod 5). Let 

M(C) = {(0, 1), (0,4), (1, 1), (1, 4), (2, 2). (2, 3), (3, 0)}; 

M(D) = {(0,3), (1,0), (3,2), (4,0)}; 

M(E) = {(0, 2), (2, 0), (3, 3), (4, 4). 

Since a is a prime, therefore (a, b) (mod 5) belongs to exactly one of the sets M(C), 
M(D), M(E), (4, 1) (mod 5) is excluded by the condition (iv). We shall prove 
that the assertions (C), (D) and (E) are true if (a, b) (mod 5) belongs to M(C), 
M(D), M(E), respectively. 

Case M(C). If ( a , b ) £ M ( C ) (mod 5), then 5|iV(a+2), which can be seen 
easily. This implies that 2 + / | a + 2 , and so a + 2 is composite. Since 0, there-
fore a & 4. But a=4 cannot occur, therefore a > 4 and N(<x+2)=a2+b2+4(a+l)< 
< 2N(a) obviously holds. 

Case M(D). If (a,b)£M(D) (mod 5), then 5|iV(a+2/) which implies that 
a + 2 is composite. Since 6*1 , therefore N(a—ni)=N(a)+n(n—2b), and so 
n—2b is negative for n—2 and 3, nonpositive if n=4. This completes the proof 
of Case M(D). 

Case M(E). If (a, b)^M(E) (mod 5), then 5, and a^b (mod 2), since 
a is a prime. The case (a—b) = 1 cannot occur, furthermore 6*1 , whence we 
have that b^2 and a—b>2. By using these inequalities, we can prove (E) easily. 

Since the functions H j under the condition (1.4) satisfy the conditions of Theo-
rem 1, therefore we have that Hj (aa)=Hj (a)+H } (a)=0 (modi). This implies 
that it is enough to prove Theorem 2 either for a or for a. 

Lemma 4. If V(<x)=0 (mod 1) for all oc€G\{0, - 1 , - 2 , - 4 , - 5 , - 6 } then 
Hj(<x)t=Hj(oi.) (modi) for all oc€G\{0} and j=0,1,2. 

Proof . Let hj(a):=Hj(<x) — Hj(di). Then hj(ci) = — hj(oi). To prove the lemma, 
we prove that hj(a)=0 (mod 1) for j=0,1,2. We observe that, for j=0,1,2, 
hj(l± ) = 0 and hj(ri)—0 for all rational integers. 
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The complete additivity of the function Hs and the fact that Hj(eoi)=Hj{pi) 
for e= — 1, , — allows us to obtain the following 9 congruences modulo 1, which 
prove the assertion for those Gaussian primes with norm less than 20. The 9 con-
gruences are: 

i, h2(2 + i) s F + i (2 — 2i) + F + i (2 — 4/) + F + i (3 — 3i) — F+1(— 3 +1) = 0 (modi) 

ii, h0(2 - 3i) = V+i(2 - 3/) = 0 (mod 1) 

iii, h (3 - 20 = F+11 (3 - 3/) = 0 (mod 1) 

vi, hi(4-0 s V+1(— 1 + 0 - V + 1 ( - l - i ) = 0 (mod 1) 

v, (2 + 0 s V+i(4—4i) + V+i(4 — 2i) — F + i ( l — 3/) = 0 (mod 1) 

vi, h0(2 — i) = V+i(4—4i) + V+i(4 — 20 = 0 (mod 1) 

vii, / i 2 (4- i ) = V+'(4 — 3i) = 0 (mod 1) 

viii, h2(3 - 20 = V+i(3 -40 + V+i(3 - 2i) = 0 (mod 1) 

ix, h0(4 — i) = V+l(3 — 5i) + V+i(3 — i) = 0 (modi). 

We finish the proof by using induction. Let us assume that our Lemma 4 is 
not true. Let a be such an integer for which h j (a)^0 (mod 1) for at least 
one of the /'€ {0, 1,2}. Let us choose that a for which TV (a) is the smallest one. 
Then N(u)^20, and a is a Gaussian prime. We may assume furthermore that 
condition (ii) of Lemma 3 true also. 

It is clear that 

0 = V+1 (a — 6) — F + 1 (a — 6) = h0(<x-6) + h1(a-5) + 

+ / i 2 (a -4) —2) — hl(a — 1) — h0(a) (mod 1), 

0 = V+1(oc — 5) — F + 1 ( A — 5) = / J 0 ( A - 5 ) + / I 1 ( A - 4 ) + 

+ /i2(a — 3) — /i2(a — i) — h1(a) + h0(a+ 1) (mod 1). 

Since a + 1 is a composite number, and N(a—k)<N(oc) for l^k^6, we con-
clude that h0(rx)=0 (modi), and / i i(a)s0 (modi). 

To prove that h2(a)=0 (mod 1), we assume first that (iv) in Lemma 3 holds, 
i.e. that (a, b) ̂  (4, 1) (mod 5). We observe that 

0 = F + 1 (a —4) — F + 1 (a —4) = -A2(a) (modi) 
in Case M ( Q , 
(3.2) 0 = F+, '(a - 40 + F + , (a - 20 = 

= h0(a-4i)-h0(oi + 2i)-ha(a) + h2(oc-2i) + h1(a-3i)-h1(a + i) (mod 1). 

which implies that h2(oc)=0 (mod 1) in CaseD. In Case E we start from the re-
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lation 
-h0(<x + 2i) = F + 1 ( a - 6 + 20 - F+1(ct - 6 + 2i) = 0 (mod 1) 

whence, by (3.2) we deduce that h2(a)—0 (mod 1). 
Finally, we consider the case (a, ¿ )^(4 , 1) (mod 5). Since JV(a)s20, 

a 7*4+/. Since 5 is a divisor of N(a+2i), in the case ¿7* 1, a+2i is a com-
posite number and N(a+2i)c2N(ci), N(<x-ki)<N(a) (k= 1, 2, 3, 4) are sat-
isfied. Hence, by (3.2) we obtain that Ji2(a)s0 (modi) . If b = 1, then as 14. 
In this case N(a—k+4i)~zN(a) holds for every integer k in and from 
0=K+1(oc—6+4/)—F+1(a —6 + 4i)=0(mod 1) we deduce that / i 0(a+4/)=0(mod 1). 
Since a+3 / and a+2 i are composite numbers, and N(a+3i)<2N(a), jV(a+2/)< 
<2N(a), substituting first a by a, in (3.2), we get that /i2(a)=0 (mod 1). 

By this the proof of Lemma 4 is completed. 

Lemma 5. IfV( a )=0 (mod 1) holds for every a£G\{0 , - 1 , - 2 , - 4 , - 5 , - 6 } 
then Hj(pi)=0 (mod 1) for every a6<7\{0}, with iV(a)s 13, j=0, 1, 2. Further-
more, # 2 ( 4 + 0 = 0 (mod 1). 

P roof . The Gaussian primes n with N(it)< 17 are ( l ± / ) , ( 2 ± / ) and (3±2 ). 
By Lemma 4 it suffices to consider either n or n. Also by Lemma 4, 

Hj(a)-Hj(a) = Hj(a) + Hj(a) = 2Hj(a) = 0 (mod 1). 

This allows us to replace Hj(a) by ±Hj(a), it means also that 2Hj(a)s 
= 0 (mod 1) holds for every a. 

The additivity of the functions Hj , together with the factorization of Gaussian 
integers, allows us to obtain the following ten congruences, in the given order, which, 
as can be seen easily, prove the lemma: 

i, ^ ( 2 + 0 = F + i (3 — /) + V+1(—2 + i) = 0 (mod 1). 

ii, H2(2 + 0 = F+ 1 (4 + 6/) + F+'(5 + 0 + F+ 1(2/) + F+ 1 ( / ) + 

+ F+1(—2 + /) = 0 (modi) 

iii, H2(3-20 = ^ + 1 (6 + 2i) + F + 1 ( 0 + F + 1 (— 2 + i) + F + 1 (2 + 20 = 0 (mod 1) 

iv, H0( 3 + 2i) = F+ i(9 + /) + F + 1 (3 + 20 + F + i (5 - 2i) + 

+ F+1(—2 + /) + F+1(— 1 + 2/) + F+1(—1 + /) = 0 (mod 1) 

v, ^ ( 2 + 30 s F+ 1 (4 + 20 + F + 1 (20 + F + 1 ( l + 30 + 

+ F+1(— 1 + 2 0 + F + 1 (—1+0 = 0 (mod 1) 

vi, H0(2—i) = F+ i(6) + F + 1 ( l + 0 + V+t(5 + 0 + F + 1 (20 + F + 1 (0 = 0 (mod 1) 

vii, J70(l + 0 = F+'(4 - 20 + V+1(-1 + 0 = 0 (mod 1) 
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viii, ^ ( 1 + / ) = F + 1 (3 + i) + F + 1 ( - l + z) + r + 1 ( - l + 2 0 + r + ' ( 4 - / ) + 
+ F + 1 ( l + 3 / ) + F + 1 ( - 2 + i) = 0 (modi) 

ix, H2( 1 + 0 = F + i (5 - i) + F + 1 ( l + 3/) + F+ i(4) + F+1(— 1 + 0 + 

+ F+1(— 1 + 2i) = 0 (modi) 

x, H2{4 + i) = F+ i(4) + F + 1 ( - 1 + i) + V+i(5 - /) = 0 (mod 1). 

The final step of the proof of Theorem 2 is contained in the next 

Lemma 6. If F (a )=0 (mod 1) holds for all a€G\{0, - 1 , - 2 , - 4 , - 5 , - 6 } , 
and Hj(y)=0 (mod 1) for all nonzero a with N(a) < 17 and y'=0,1,2, then 
Hj(a)=0 (mod 1) (y=0,1 , 2) holds for all nonzero Gaussian integer. 

Proof . Assume that the assertion is not true. Let a be such a Gaussian 
integer with smallest norm for which Hj(a)^0 (modi) for at least one j. 
By Lemma 4, we may assume that a—a+bi, a>b>0. It is clear that a is a 
Gaussian prime. 

Since iV(a)> 13, taking into account the relations, F+1(a— 6)=0, F+1(a—5) = 
=0 (mod 1), by Lemma 3 we deduce that H 2 (a )^0 (mod 1). 

Let us consider first the case (a, fc)=(4,1) (mod 5) which was excluded in 
Lemma 3. If (a, fe)=(4,1) (mod 5), then a+2i is composite and N(ot+2i)< 
<2iV(a). If b* 1, then b^6 and F + i ( a - 4 ; ) = 0 (mod 1) implies that H2{a) = 
=0 (mod 1). The case a = 4 + / was treated in Lemma 5, so we may assume that 
a * 4 + i . Thus we may assume that 6 = 1 and AS 14. Then N(cc—k+4i)<N(a) 
for Jk=1,2, 3,4, 5,6, and F + 1 ( a - 6 + 4 f ) = 0 (mod 1) implies that H0(<x+4i)sO 
(mod 1). Since a+2i and a+3i are composite numbers with norm less than 2N(a), 
F+ i(a—2/)=0 (mod 1) implies that H2(a)=0 (mod 1). 

In all remaining cases Lemma 3 enables us to apply the induction hypothesis. 
In CaseC we consider F + 1 (a—4)=0 (modi), while in CaseD we take 

F + , (a—4i)s0 (modi), and hence deduce immediately that / / 2(a)=0 (modi) . 
If CaseE is satisfied, then we start from F + 1 ( a — 6 + 2 i ) s 0 (modi), which im-
plies that i / 0 ( a+2 / )=0 (modi), and consider F+ i(a—4/)=0, whence we have 
that H2(a)=0 (mod 1). 

By this the proof of Lemma 6 and therefore of Theorem 2 is completed. 

4. The next theorem is an easy consequence of our Theorem 2. 

Theorem 3. Let F0, ..., F^Aq which satisfy the relations 

(4.1) F0(a) + F 1 ( a+ l ) + F2(a + 2) + F3(a + 3) + F4(a + 4) + F8(a + 5) = 0 (modG) 

for all a€G\{0, - 1 , - 2 , - 3 , - 4 , - 5} . Then Fj(a)=0 (modG) holds for all 
a€G\{0} and j=0,..., 5. 
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Proof . It is enough to prove our theorem for functions F} which take on 
real values. 

Let us write (4.1) in the form 

U(«) := F0(a) + F 1 ( a+ l ) + F2(a + 2) + F,(a + 3) + F4(a+4) + Fs(a + 5) + F6(a + 6), 

where Fe$A£ is identically zero. Then 

£T0(oc) := F„(a) - F6(a), Fx(a) := F^a) - F6(a), tf2(a) = F2(a) - F4( a). 

Since J7(a)— £/(—a—6)=0 (modi), therefore 

(4.2) 

# 0 (a ) + i/1(a + l ) + # 2 ( a + 2 ) - # 2 ( a + 4 ) - / / 1 ( a + 5)-J7 0 (a + 6) = 0 (modi ) 

is satisfied for all Gaussian integers a for which the sequence a, a+1 , a + 2 , a + 4 , 
a+5 , a + 6 does not contain the zero. Thus the conditions of Theorem 2 are sat-
isfied, consequently F0(a)—F6(a) = 0, F1(a)=Fs(ce), F2(a)=F4(a) (modi) holds for 
all nonzero Gaussian integers a. Especially F0(a)=0 (mod 1). If we write now 

with F_1^Aq, F_1(a)=0 (mod 1) identically, then we get similarly, that F_x(a) = 
=Fs(a), F0(a)=F4(a), F1(a) = F3(a) (mod 1) which implies that F5(a)=F4(a)=F1(a) = 
s f 2 ( a ) = 0 (mod 1), and the recursion (4.1) finally implies that F3(a)=0 (mod 1) 
true as well. 

By this our theorem is proved. 

[1] I . KATAI, On additive functions satisfying a congruence, Acta Sci. Math., 47 (1984) , 8 5 — 9 2 . 
[2] M. VAN ROSSUM-WUSMULLER, Additive functions on the Gaussian integers, Publicationes Math. 

Debrecen (in print). 

0 = U (—6 —a) = Fe(a) + F5(a+ 1) + F4(<x + 2)+F3(a + 3) + 

+ F2(a + 4) + F1(a + 5) + F0(a + 6) (modi). 
Let 

V(oc ):= F-1(oc)+F0(oc)+ . . .+FB( a + 5) 
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On equivalence of two variational problems in /c-Lagrange spaces 

MAGDALEN SZ. K1RKOV1TS 

1. Introduction. In [3] we have considered generalization of the equivalence 
of two variational problems for single integrals treated by A. MO6R ([7]) in Lagrange 
spaces L*"=(M, J£?*) and L"=(M, i f ) ([6]). This problem has the following form 

(1.1) 

E ; ( J T (x, y)) = l(x, y) E; (<£ (x, y)), (E ; &T := dlty, := d/dx'}, 

A(x, j ) 0, 

where y stands for x, £C and J§?* are the two Lagrangians, and 1 depends not only 
on x but on y too. We have given the transformation of the Lagrangians as a nec-
essary and sufficient condition for this equivalence. Moreover, we have shown 
geometrical consequences of the equivalence relation (1.1). 

In 1975 A . MOOR ([8]) gave a definition of equivalence of two variational 
problems for multiple integrals with the following relation 

(1.2) EF(.S?*(xs, y%)) = Aj(x>)E, ( JS?(**, yi)), rank ¡|A{(x)|J = n 

^ := dx*ldta, E; := d]—d. (summation over a); i,j,s = 1, n; a = 1, k, k < «j. 

He investigated the properties of this relation but not in geometrical manner. 
In [4] and [5] we have constructed a geometrical model for multiple integrals 

in the calculus of variations. Now we study a generalization of the Moor equiv-
alence in geometrical manner using the theory of fc-Lagrange geometry. 

2. The Moor equivalence of multiple integral variational problems in ^-Lagrange 
k ¿ , 2 , £, 

spaces. Consider the total space £ = © TM^TM©TM©... © T M of the vector 

Received May 2, 1989 and in revised form April 22, 1991. 
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k 
bundle t]={@TM,n,M) with canonical coordinates (x\ y j where / runs from 

1 to n and a runs from 1 to k. By the theory of fc-Lagrange spaces L£ ([4], [5]) we 
k 

have a regular Lagrangian i f : © TM—R with the metric tensor field 
i 

(2.1) ¿¡f{x, y) = dfd^(x, y); rank \\g?f\\ = nk (df :=d/3yi). 

Now let <£ be defined on class C2 of the admissible submanifold Ck, Ck, ... on 
M, where 
(2.2) Ck:xl = xl{f), Ck:xJ = xJ(ta), ... 

and they coincide with each other on the boundary dG, of the parameter domain 
(7, ([9], [10]). 

Then we can construct the fc-fold integral 

(2.3) _ 
I(Ck)= f &(?f(t>),yl(t>))d(ty, d{t)-.= dt\..dtk- yUt^-^dx'Idf, (fi = 1, k). 

c t 

This integral depends on the submanifold Ck by means of which it is defined. It is 
known from the classical calculus of variations of multiple integrals ([9]) that if a 
submanifold Ck is to afford an extreme value to I relative to other admissible sub-
manifold it is necessary that the first variation 51 of (2.3) should vanish. This implies 
that Ck must satisfy the system of n second order partial differential equations: 

(2.4) E,(if) := ~ (df&)-biSe = 0 (dt := d/dx'), 

where E, are the components of the Euler—Lagrange covariant vector ([10]). 

Let us consider a pair L£=(M, and Lk"=(M, &*) of ^-Lagrange spaces 
with the same base manifold M. 

Def in i t ion 2.1. Two variational problems in Vk=(M,&) and L*k
n=(M,<e*) 

are called equivalent in the sense of Moor if 

(2.5) E;(i?*(x'-, y{)) = ¿KxJ, yi)Es(J?(xJ, yi))-, det ||/lf(x, y)|| * 0 

hold identically. 

Remark. In (2.5) the tensor field X depends on y too. 

3. Some geometrical characters of the equivalence. Relation (2.5) has the fol-
lowing explicit form: 

(3.1) (dfdlJS?* - Af^df &)ylp + (dfd, <?* - A{3]ds <£)y\-(dt <£* -Mdj SC) = 0, 
a2** 

dfdt<> ' 
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Using condition (2.1) for i f and i f* we get from (3.1) 

(3.2) = o. 

Since (3.2) is an identity in (x, y) it is necessary that the coefficients of ys
aP should 

vanish. Hence we obtain from (3.2): 

Theorem 3.1. A necessary geometrical condition for equivalence of two varia-
tional problems of multiple integrals is that the k-Lagrange spaces ( M , if*) and 
(M, i f ) be in ,,k-conformal" correspondence: 

(3.3) !?/(*, y) = H(x, y)gjf(x, y). 

From this Theorem it directly follows that the metrical d-connections (cf. [4]) 

LD* = (L)m, L"jjm, Cfm, C^fj) and LD = (L}m, L%m, C?m,C%), 

respectively, are related by the geometrical condition (3.3). 
* 

P r o p o s i t i o n 3.1. The d-tenSor fields and are in the following relation 

(3.4) iCffc = (d'm A\)gff + 2X\ C f f y . 

Proof . We have 

(a) c ^ j = = J g ^ d i g f t , 

(3.5) 
Chi - p^C'P- = ?)y 
\UJ ^msj ost Tnscj — 2 m&ij > 

(cf. [4]). Hence a direct calculus leads to (3.4). 
Using the result of the above Proposition we shall prove that our equivalence-

problem can be reduced to the MO6R one ([8]), i.e. his equivalence is a special case 
of relation (2.5). 

Theorem 3.2. If two variational problems of multiple integrals are equivalent 
in the sense of Moor then the k-conformal factor A/(x, y) is necessarily independent 
°f y'a-

Proof . Differentiating (3.3) with respect to y\ we obtain 

(3.7) d i h ! = (diM)gl!+ 

and by virtue of (3.4) we have 

(3.8) 2 C& = MM) gtf + 2 X{ Cf£>. 
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* 

Since the d-tensor fields С and С are totally symmetric ([4]), after the cyclic permuta-
tion of the indices we get 

(3.9) (d lM)gj! = (др-i)gsiy = (3?M)Slj • 

By using the symmetric property of the metric tensor g®/ from (3.9) it fol lows that 

(3.10) m ) g ! f - ( d M ) g f f = 

Contracting by g{'ß the last relation we get 

(a) (9Щ)пк-(д! M)0ft = 0, 

(b) (dJXi)nk-dJM = 0, 

respectively. This means that 

(3.12) (dJX{)(nk-\) = 0. 

Because of (nk—1)*0 the relation (3.12) holds iff 

(3.13) djM(x,y) = 0. 

Thus X is independent of y\. 

C o r o l l a r y . A geometrical character of the equivalence in (2.5) with the k-con-
formal factor X{(x) is that the torsion tensor field Cj®* of the metrical d-connection 
LD is invariant. 

P r o o f . Suppose that (2.5) holds with Xj(x). Using the relation Cj%=g£C$, 
from Proposition 3.1 we directly get 

И 141 — er" rßzy — J¡о*» }l _ Я' пЯ — 0s1 — rßsy ^jem — Sex ^jim — "tSca^jlm — Sea^jlm — ^ jem > 

where %X\=&\. 

4. Transformation of the Lagrangians. We can easily check if the Lagrangians 
differ by a total derivative, i.e. &*(х,у)=&(х,у)+%А(х)?„, then E,(.£?*) = 
s E , ( i f ) . This means that two variational problems of multiple integrals are equiv-
alent in the sense of Moor with tensor field ôj. 

N o w we examine the transformation of the Lagrangians under the equivalence 
relation in (2.5). First we prove 

P r o p o s i t i o n 4.1. If the relation (2.5) holds and the k-conformal factor X is 
independent of y then it is necessary that X{(x) = ôjX(x). 

P r o o f . Let us consider relation (3.3). Since the metric tensor fields g* and g 

are symmetric in the indices ^ j and we get 

(4.1) = 0, 
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which can be written in the following form 

(4.2) = 0 (P,y,e = Xk\ Uj,s,h = T^i). 

We infer from the symmetry of the ¿-tensor field g that the coefficients of gjh in 

(4.2) must be skewsymmetric in Q j and ^ j . This gives for the symmetric part: 

(4.3) MdWSi-AidWfi i+t i s sd i s s -kWd'f i : = o. 

Let h=s, 0=y, <*.=£, then we obtain 

(4.4) Mk2n- k{k + ?4 k - )\8{k2 = 0. 

Now putting 

(4.5) A(*) = -iAj|(*), 

we get from (4.4) 
(4.6) k2nXj(x) - k2n8{ A(x) = 0. 
Thus 
(4.7) X{(x) = <5/A(x). 

P ropos i t ion 4.2. //relation (2.5) holds with A/(x) = <5/A(x) then the trans-
formation beetwen the Lagrangians 0£*(x, y) and J?(x,y) is as follows-. 

(4.8) <e*(x, y) = A(x) <g(x, y)+A!(x)y, + U{x). 

Proof. By Theorem 3.1 we obtain f?f=5{A(x)*f. In view of property of 
Lagrangians we get 
(4.9) dfd! {&* - A(*) se) = 0. 

Hence the function X(x)S£ is necessarily linear in 

5. Some remarks about the normal form of the Euler—Lagrange equations in L£. 
It is known that in the equations of geodesies of Lagrange space the second deriva-
tives x' appear explicitly and the functions G'(x, 7) can be derived directly from 
the Lagrangians (cf. [6]). This suggests us to write the E,(jSf(x,^)) in such form 
which is a generalization of that of geodesies. Hence we get 

( i)2xs \ 

(5.1) E ; ( № , y i ) ) = gtfyle + Gt(xJ, y{) := - j ^ f ) 

where the generalized G;(xJ, y'y) are defined by 
Gi : = {fid.sew-dtse. 

By means of g^gf,=S*' equation (5.1) can be written in the following form 

(5.2) E ; (S?(x, y)) = + Glp (x, ;>)), 
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where the generalized G'xß are defined by 

Giß-gi'ßG, (G, := Glßgfs)-

Finally we directly obtain 

P r o p o s i t i o n 5.1. If two variational problems in and LJj are equivalent in 
the sense of Moor then 

(5.3) &ß = G°aß. 

Indeed, from the equivalence relation (2.5) using Theorem 3.1 and relation (5.2) 
we obtain (5.3). 

Remark . Relation (5.3) corresponds to that result which was obtained for 
equivalent single-integral variational problems in Lagrange spaces (cf. [3]). 

Acknowledgement. The author wishes to express her gratitude to Professor 
Radu Miron and Mihai Anastasiei for their kind comments and suggestions. 
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On an integral inequality for concave functions 

HORST ALZER 

In 1987 A. BEZDEK and K. BEZDEK [2] proved the following interesting pro-
position : 

Theo rem A. Let S be a convex solid of revolution in R3 with axis of revolu-
tion AB. Further, let C be the centroid of S and let C' be the centroid of the 2-di-
mensional domain obtained by intersecting S with a plane through AB. Then 

1 \AC\ 3 
( 1 ) y ^ T i c T ^ T -

As it was shown by the authors double-inequality (1) is a consequence of the 
following sharp integral inequalities. 

Theorem B. If f is a non-negative concave function defined on [0, 1] with 

f Pit) dt 

sup fix) = 1, then 

(2) S i 

and 

3 / fiOdt 

f tf\t)dt 
1 0 

(3) s i . 

f tmdt 

Received June 1, 1990. 
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The aim of this paper is to present a short and simple proof for an integral 
inequality for concave functions which includes the left-hand sides of (2) and (3) 
as special cases. 

Theorem. Let f be a non-negative, continuous, concave function on [a, b] and 
let g be a non-negative differentiable function such that the derivative g' is integrable 
on [a, b]. If a and /3 are real numbers with asO and 1, then we have for all 
x£[a,b]: 

(4) I g ( t ) r ( ! ) d ! + ^ T W { ( x - < ) g ( t ) r + H t ) d t s 

S f g(t)r^(,)dt. 
a 

Proof . First we note that the function f f is concave on [a, b] (see [6, p. 20]). 
Further, since every continuous concave function defined on a compact interval 
can be approximated uniformly by differentiable concave functions (see [6, p. 269]), 
we may assume that / and fp are differentiable on [a, b]. Then we conclude from 
the mean-value theorem: 

f i x ) s fi>(t) + p(x-Í)/*-1 (t)f'(t) for all X, te[a, b}. 

Multiplication by g(t)f(t) and integration with respect to t yields: 

(5) / ' ( * ) fg(t)f°(t)dt ^ f g(t)f ^(t)d, + - l j J (x — t)g(t)(fx+p(t))' dt. 
a a * " a 

Integration by parts leads to 

(6) J(x-t)g(t){f^{t))'dt = (x-b)g(b)f^(b)~ 
a 

-(x-a)g(a)f^(a) + f g(t)f+'(t)dt- f (x-t)g(t)fa+»(t)dt == 
a a 

b b 

s f g(t)f°+e(t)dt- f (x-t)g'(t)f^(t)dt, 
a a 

and from (5) and (6) we conclude 

/"(X) fg(t)fx(t)dt j g{t)p+l:(t)dt-JL_ f (x-t)g'(t)f*+»(t)dt 
a " a " a 

which is equivalent to inequality (4). 

Remark . Inequality (4) is an extension of a result given in [3]. 
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If we set g ( 0 = l a nd a = f i = l, then we get the following (slightly modified) 
version of the left-hand side of (2): 

J f \ t ) d t 

(7) f o ^ i / « 

/ m a 

Since the sign of equality holds for f(x)—x we conclude that the constant 2/3 
cannot be replaced by a greater number. Furthermore, setting g(t) = t and a=fi=l 
in (4) we obtain: 

C o r o l l a r y . If / ( ^ 0 ) is a non-negative, continuous, concave function on [0, 1], 
then we have for all xd [0, 1]: 

(8) ^ • 
/ tf(t)dt J tf(t)dt 
0 0 

Remarks . 1) As an immediate consequence of (8) we get the following form 
of the left-hand inequality of (3): 

J t f \ t ) d t 

(9) ^ m a x / C * ) ^ . 

/ tf(t)dt 

Putting / ( x ) = l — x equality holds in (9); hence the constant 1/2 is best possible. 
We note that (7) and (9) are striking companions of Favard's inequality 

I max / ( x ) s f / ( / ) dt 
Z OSxSl jf 

which is true for all functions / which are non-negative, continuous and concave on 
[0,1]; see [1, p. 44] and [4]. 

2) If / is monotonic, then the two integral ratios given in (2) and (3) can be 
compared: 

e 
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Let / ( ^ 0 ) be a non-negative and decreasing function on [0, 1], then 

i i 
f t f \ t ) d t f f * ( t ) d t 
0 0 

1 1 
J t f { t ) d t J f ( t ) d t 
0 0 

I f / is increasing, then the reversed inequality holds; see [5, pp. 302—303]. 
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On the generalized strong de la Vallée Poussin approximation 

L. LEINDLER 

Dedicated to Professor Béla Csákány on his 60th birthday 

1. Let {(p„(x)} be an orthonormal system on a finite interval (a, b). In this 
paper we shall consider real orthogonal series 

(1.1) Í c „ <?„(*) with 
n=0 n=0 

By the Riesz—Fischer theorem the partial sums sn (x) of any such series converge 
in the L2 norm to a square-integrable function /(x). 

It is well known that there are many interesting results stating certain sum-
mability properties of series (1.1) or providing accurate rate of the approximation 
for special summation methods both in ordinary and strong sense. Some sample 
theorems for approximation can be found e.g. in the works [1], [2], [3], [5]. 

Analysing the theorems being in the above mentioned works we can realize 
that most of the results concerning any property of ordinary approximation have 
an analogue in strong sense. In other words, we have the same rate of approxima-
tion for strong means as for ordinary ones. But there is a lack in the case of the 
generalized de la Vallée Poussin summability. 

The aim of the present paper is to bring this discrepansy to an end, that is, 
to show that the analogy also holds for this summability. Namely we shall prove 
that two theorems of [2] (see Theorems V and VI) can be extended to strong ap-
proximation by the same rate, too. 

Now we recall the definitions of the generalized ordinary, strong and very strong 
de la Vallée Poussin summability methods (see [2]). 

Let A:={A„} be a non-decreasing sequence of natural numbers for which A0= 1 
and 1. Series (1.1) is (V, A)-summable if 

K(x) := K(A; x) : = -j— 2 sk(x) - f ( x ) 
K k=n-A +1 

Received February 12, 1990. 
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almost everywhere (a.e.); strongly (V, fy-summable if 

f 1 - 1 V 2 

VJx\ := Vn\k-x\ := — ^ M*)~/«l2 0 
t n * = n-A„ + l > 

a.e.; and very strongly (V, ).)-summable if for any increasing sequence v:= {vfc} of 
natural numbers 

r j „ ->1/2 
v;\x\:=vH\x,v\x\-.= {-y- 2 KW-/WI2 a-e-

l k=n-A„ + l J 

We also note that if l„=n then the ^(x)-means reduce to the (C, l)-means, if 

A„ = l then to the partial sums sn(x), and if A„ = JyJ (« = 2), where [/3] denotes the 

integral part of ft, then we get the classical de la Vallée Poussin means. 

2. Now we can formulate our theorems : 

Theorem 1. Let o := {¡?„} and /:={/„} be monotone non-decreasing sequences. 
If the condition 

(2.1) 
n = 0 

implies the (V, k)-summability of (1:1) for any (<p„(x)} and {c„} almost everywhere 
on a set E of positive measure, then the conditions 

(2.2) - and /„m+1 S Klnm with i ^ K ^ i l , 
n = 0 

m - 1 
where n0=0 and fim:= 2 , imply that 

k = o hk 

(2.3) V„\l, v; *| = ox{l^) 

holds almost everywhere on the set E for any increasing sequence v = {vt} of positive 
integers. 

Theorem 2. If a monotone non-decreasing sequence /={/„} satisfies the con-
ditions 

m 

(2.4) '/im+i — With l S i < / 2 ; and = 
k = 0 

then already the following condition 

(2.5) 
n = 0 

implies the validity of (2.3) almost everywhere in (a, b) for any (<p„(x)} and {v„}. 
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We remind the reader of that these theorems are the strong analogues of Theo-
rems V and VI proved in [2]. Furthermore we recall that the condition 

2 { "T Cn} 1 0 g 2 / K < ~ 
m=1 n=/im+l 

implies the (V, /)-summability of of (1.1) (see [2], Theorem II). 

3. In order to prove our theorems we require some lemmas. In what follows M 
will denote an absolute constant. 

Lemma 1 ([2], Lemma II). Let {pm} be an increasing sequence of positive 
integers, let {ym} be a non-decreasing sequence of positive numbers so that 

(3.1) 2 f P m ^ M f P n , / . = 1,2, . . . . 
m=1 

If 

(3.2) 2 c l 
n — 1 

then 
(3.3) S p„ i(x)-/(x) = ox(yp-m

1) 
a.e. in (a, b). 

Lemma 2 ([2], Lemma III). Let {/?„} be an increasing sequence of positive 
integers, {m„} be an arbitrary sequence, furthermore let {i>„} be a positive, monotone 
non-decreasing sequence with the property t;Pm+1=... =fP m + 1 (m = l ,2 , ...). If the 

p,„-th partial sums of the series 2 unvn converge then the pm-th partial Sums of the 
71 = o 

°° k 
series 2 un also converge, furthermore if s= lim s. , where sk\= 2 un> we 

n = l m n = l 
also have that 

Lemma 3 ([2], Theorem I). In order that series (1.1) a.e. on a set E of positive 
measure should be (V, X)-summable, it is necessary and sufficient that the partial sums 

m-1 
^ (*) of(\.\) (/¿o = l and pm:= 2 K j converge a.e. on E. m k = 0 k 

Lemma 4 ([4], Lemma 3). Let b > 0 and {<5„} be an arbitrary sequence of non-
negative numbers. Suppose that for any orthonormal system {<p„(x)} the condition 

n — 1 k = n 

implies that the partial sums sn(x) of (1.1) possess a property P, then any subsequence 
{iv (x)} (v„<v„+1) of the partial sums of (1.1) also possesses property P. 
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Finally we need to prove the following new lemma. 

Lemma 5. If a monotone non-decreasing sequence /={/„} satisfies the con-
ditions 
(3-4) /„m+1 S Kl,m with m = 1 ,2 , . . . ; 

then condition (2.5) implies that 

(3.5) {A-1 Z k M - ^ M l 2 } 1 ' 2 = 0 ,0;!) 

/IOWJ a.e. in (a, b). 

Proof . An elementary calculation gives that 

(3-6) 2 / - ? = - 2 \sk(x)-sllm(x)\*dx = 

m=l k = lim-Xllm+1 v ; 

Let a + denote the positive part of a. Using this notion we can estimate 2 i a s 

follows: 

(3.7) 2 2 4 2 
m=1 k=nm + l n=m 

Next we show that 

(3.8) Rm := 2 iSHm- Pn + AJ+ = O(/»J 
n~m 

holds. On account of the definition of \im we have 

(3.9) Rm = 2 = IL+ 2 2 
n=m v u_ ' n=m+1 t=m 

Putting 
n-1 

k — m 

and taking into account that AM S2AM always holds, thus we get for any n>m 
that 

/i<*> s ( i - ( 2 ; > „ . , ) - 1 2 K k y = S ' A J 

s ( T - ^ - j - ' I * ' » r - a (TP 
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Hence, by (3.4) and (3.9), it follows that 

l + i 5 m
n 

n=m+l VZ/ ^ n = m+lV ^ > ) 

and this proves (3.8). Consequently, by (3.6), (3.7) and (3.8), using the Beppo Levi 
theorem, we get that 

~ p h 

almost everywhere in (a, 6), whence (3.5) obviously follows. 

4. Proof of T h e o r e m 1. On account of Lemma 4 with ¿ = 1 and dn\=Q2ll— 
~Qn-i'n-i is clear that we have to carry the proof only when vk=k. 

On the other hand a straightforward calculation gives that if fim<n^fim+1 

holds then 

(F„|A; x|)2 s (F,mU; x|)2 + 2(F„m+1|A; x \f-, 

so in order to prove (2.3) it is sufficient to verify that 
(4-1) KJ*; x\ = ox(i-^) 
holds a.e. on E. 

Nowweput 7t:=/ for nm<k^nm+1, m=0, 1,2, ... . Then, by (2.2), the series 
* 

(4.2) 2 cjn<pn(x) 
n = 1 

is'(V, A)-summable a.e. on consequently, by Lemma 3, the fim-th partial sums 
of (4.2) also converge a.e. on E. In the next step we use Lemma 2 whence the esti-
mations 
(4-3) ^ J x ) - f ( x ) = ox(l£J = ox{l~l) 
follow a.e. on E. 

Since 
0 Pm 

(4.4) 2 

so, by Lemma 5 and (4.3), we get (4.1), what completes the proof of Theorem 1. 

Proof of Theo rem 2. By the same token as in the proof of Theorem 1 we 
only have to prove estimation (4.1). Now we can use Lemma 1 with ym'-—lm and 
pm'.—fim taking into account conditions (2.4) and (2.5), so we get that 

(4-5) s„m(x)-f(x) = ox(l;i) 

holds a.e. in (a, b). By (2.4) and (2.5) we can apply Lemma 5, too; therefore (3.5) 
and (4.5), regarding (4.4), verify (4.1). Herewith Theorem 2 is also proved. 
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An additional note on strong approximation by orthogonal series 

L. LEINDLER and A. MEIR 

< 1. Let {(p„(x)} be an orthogonal system on a finite interval (a, b). In this note 
we consider real orthogonal series 

(1.1) 2cncpn(x) with 
n=0 n=0 

It is well known that the partial sums s„ (x) of any such series converge in the L2 

norm to a function f(x)£L2(a, b). 
A very general theorem we proved in [5] concerning strong approximation by 

orthogonal series included, as special cases, many of the results obtained previously 
by several authors. In addition, our theorem in [5] yielded some new results per-
taining to strong approximation by certain Hausdorff and [7,/]-means. We refer 
the reader to Theorems A, B, C, D and E cited in our paper as previously known 
and to Theorems 2, 3, 2* and 3* as the new results obtained by means of our main 
theorem. 

In order to recall the main theorem and to state the purpose of the present 
note, we need the following definitions and notations: 

Let a :={xk (cw)}, k=0,1, ... denote a sequence of non-negative functions defined 
for O s c x o o , satisfying 

(1-2) ! < * » ( a > ) = l . 
*=o 

We assume that the linear transformation of real sequences x :={**} given by 

CO 
A w ( x ) : = 2 a k(o>)xk, c o - o o , 

k = 0 

is regular [1, p. 49]. Let y :=y(t) denote a non-decreasing positive function defined 

Received March 1, 1990. 
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for O S ° ° and (i:={/zm} m=0, 1, ... an increasing sequence of integers with 
JI„=0 satisfying the following conditions: 

There exist positive integers N and h so that 

(1.3) pm+1 S Npm, y(nm+1) S Ny(n„), y(nm+k) a 2y(nJ 

hold for all m. 
For r > l , cd>0 and m=0, 1, ... we define 

f 1 Pm + i - i l 1 / ' 
(1.4) Qm(co,r):=\- 2 K M ' • 

yPm + l k=nm J 

In terms of the quantities introduced above we can recall our result in [5]: 

Theorem I. Let />>0 and g(t) a non-decreasing positive function on [0, 
Suppose that there exist 1 and a constant K(r, n, y) such that for every co>0 

(1.5) 2 №»<?«(<». r)y(nm)-e s K{r, p, y)(g(œ)ly(œ)y. 
m=0 

If 

(1.6) ¿ c n
2 y ( « ) 2 < - , 

11 = 0 

then 

(1.7) Aa(f,p, v; x):= { 2 J x ) - / M l ' } 1 / ' = Ox(g(œ)/y(œ)) 
k=0 

almost everywhere (a.e.) in (a,b) for any increasing sequence v:= {vk} of positive 
integers. 

I f , in addition, for every fixed m, 

(1.8) Qm((o, r) = o((g(co)ly(œ)y), as co 

then the Ox in (1.7) can be replaced by ox. 
We mention that the most important special case of Theorem I is when both 

(1.5) and (1.8) are satisfied with g(co) = l. In this case we get that 
(1.9) AmifP,v\ *) = ox{y(a>)-*) 
holds a.e. in (a, b). 

Next we recall the definition of the generalized ordinary and very strong de la 
Vallée Poussin summability methods (see [2]) and a theorem proved in [4]. 

Let X:={A„} be a non-decreasing sequence of natural numbers for which 
1 and A„+ 1s/„+1. Series (1.1) is (F, A)-summable if 

V„iX-,x):=-L 2 skix)-*f(x) a.e.; 
fc=n-;.„+i 
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and very strongly (V, A)-summable if for any increasing sequence v={v t} of positive 
integers 

f 1 » 11 /2 

F „ | ^ v ; x [ : = — 2 M * ) - / ( * ) l 2 - 0 a.e. 

We also note that if A„=w then the V„(k; x)-means reduce to the (C, l)-means, 

if A„ = l then to the partial sums s„(x), and if A „ = j (ns2), where [/}] denotes 

the integral part of /?, then we get the classical de la Vallée Poussin means. 
In [4] the first author proved, among others, the following result: 

Theorem II. If a monotone non-decreasing sequence 1:={/„} satisfies the con-
ditions 

m 
(1.10) /„m+1 s with 1 and 2 ¡1 = J, 

4 = 0 

m-1 
where fi0=0 and jum:= 2 ! {hen k-0 k 

(1.11) 2<?Jl 
n = 0 

implies that 

(1.12) V„\%,\; = OxQ'1) 

holds a.e. in (a, b) for any {<p„(x)} and v={v„}. 
In spite of the wide applicability of Theorem I, unfortunately, in the most 

important special case g(co) = 1, it cannot be used to estimate the approximation-
rate of the partial sums s„(x) of series (1.1) because then (1.5) does not hold for 
any p. Consequently Theorem I does not include the result of Theorem II in the 
simplest special case when A„=l. 

The aim of the present note is to fill this gap in Theorem I for 0 < p ë 2 . The 
corresponding problem for />>2 remains open at this time. 

In formulating our new result we shall use the notation as above and assume 
hence forth that the following conditions hold: 

(1.13) y(fim+1 )^NV(fim), g(/u,n+1) =s Ng(pm) 
and 

(1.14) 2 v(MJ2e(m) S Nyoo2 

m = 0 

hold for all m and n, where Q(t) denotes a non-increasing positive function defined 
On [0, oo). 

Our theorem reads as follows. 



92 L. Leindler and A. Meir 

Theorem III. Suppose that there exists a natural number q such that for all k 
and m 

i 
(1.15) ak(n) =2 N 2 <*k(Vm+i) with nm<n<n,n+! 

i=-q 
and 

(i-i6) 2 S 2 s NQ(m)y^mf 

i=o g(Mi) j=nm 

hold. Then condition (1.6) implies that 

(1.17) A„(f p, v; x) = ox(*(n)/y(n)) 

a.e. in (a,b) for every p, 0<ps2 and for every sequence v. 2. In order to prove our Theorem we need the following lemma. 

Lemma [3]. Let <5>0 and {¿„} be an arbitrary sequence of non-negative num-
bers. Suppose that for any orthonormal System the condition 

n=l k=n 

implies that the sequence {i„(x)} possesses a property P, then any subsequence {^(x)} 
also possesses property P. 

3. Proof of Theorem III. By assumptions (1.13) we have for any 
1 (m=0,1, ...) that 

nn gQU g(0 „ Ng(nm+1) 
( } Ny(jim) ~ y(l) ~ y(/Wi) ' 

so, on account of (1.15), it is sufficient to prove (1.17) only for the values p„. 
First we prove (1.17) in the special case p=2 and vk=k; and as we have 

said above, only for the indices /;„, i.e. we verify that 

(3.2) Alin(x) := A,n(f 2, {A:}; x) = ^( i f f /O/y OO) 

holds a.e. in (a, b). 
Then 

¡Al(x)dx= 2 ""2 '«kifn) f\sk(x)-f(x)\2dx^ 2 "m2 2 cl 
a m=0 k="m a j m=0 k=fm • = i»m + 1 

Putting 

R* • - y c? 
¡ = /'„ + 1 
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we get, by (1.16), that 

~ V(U I2 ~ V(tl I2 °° ''m + l - 1 

(3.3) f A^{x)dx - 2 2 = 

n = 0 g(l*n) a n=0 g(H„) m= 0 k=/im 

m °° v(ll I2 ''rn + l-1 ~ = 2 2 ^ N 2 RLQ(m)y(^)2:= 2i-
m=0 n = 0 g(Pn) k=fim m=0 

To estimate 2 i w e u s e assumptions (1.6), (1.13) and (1.14), and so we have 

(3.4) 1 IN2i s 2 ( i "'2 1 4 ) Q ( m ) y ( n J 2 = 
/71 = 0 I = JJ! = 

= 1 ('214) 2 eMy(Hn,f ^N 2 ( ' 2 1 cDyint)2 s iv 2 cly(nf <«,. 1=0 k = fij m—0 1 = 0 (i = /»i n = 0 

By (3.3) and (3.4), applying Beppo Levi's theorem, we get that 

2 v(v„)2g(p„)-2AL(x) = 
B = 0 

= 2 y(f j2g(v»)-2 2 «M \h(x) -/Ml2 < -
n = 0 k = 0 

a.e. in (a, Hence (3.2) obviously follows. 
For 0 < p < 2 

(3.5) /(,,„(/, P, {*}; X) = o ^ O O / H A O ) 

follows from (3.2) using Holder's inequality and (1.2). 
Now, on account of (3.1), relation (3.5) implies 

(3.6) An{f, P, {A:}; x) = ox(g{n)ly («)) 
a.e. in (a, b). 

Finally, if we apply the Lemma with property P characterized by (3.6), then 
(1.7) follows for all p, 0 < p ^ 2 and all sequences v. 

4. Application. We show that Theorem II can be derived from Theorem III. 
Since in the special case A„ = l, Theorem II represents a statement concerning the 
partial sums of (1.1), it follows that under the proper conditions Theorem III yields 
certain results for the rate of approximation achieved by the partial sums, as well. 

Now we show that Theorem III in the special case when Q(m)=.g(rri) = 1, 
y («)=/„ and 

(4.1) «,(»):= K ' ky ' 10 otherwise, 
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can be applied, with nm defined in Theorem II, that is, then (1.6), (1.13), (1.14), 
(1.15) and (1.16) are fulfilled. 

Condition (1.6) holds trivially, (1.13) and (1.14) follow from (1.10). 
In order to prove (1.15) we put q — 1 and N=2, i.e. we want to verify that 

for any k and 1 

(4.2) ak(n) s 2[afc(^m_1) + at(//m) + a(//m+1)] 

always holds. Since ¿ „ + 1 — 1 for all n, therefore ¡.im—X^ s«—X„, whence, 
by (4.1), 
(4.3) ak(n) s cck(nm) 
holds for any (n—X„^)kSfim. 

On the other hand, taking into account that nm+1—nm=2Xllm and 
Hm + 1-A ( l m + i=^m+A J i m-; i ; ( m + iS/im , we get 

(4-4) ak{ri) S 2cck(nm+1) 

for any fim-<k(Sn). Thus (4.3) and (4.4) verify (4.2), and herewith (1.15) is also 
proved for the entries ak(n) given in (4.1). 

To show (1.16) in the case given above we have to verify that 

(4-5) 21, *2 «jQi,) s MJm ¡ = 0 j = Mm+l 
holds for every m. 

By (4.1) it is clear that if j > f i t then aJ (¿/,)=0, therefore 

(4.6) 2* = 2 1, "T «yOO = 
i = m+l j'=/Jm + l 

= 2 ¿fT,10m+1 - max (nm, (fit - XM)))+ =: 2s, i=m+1 

where /?+ denotes the positive part of /?. 
On account of the definition of nm we have that 

(4.7) 2 a ^ 2 + = 
i=m +1 

= 2 i - . i l = 2 I I 0 - A - 2 

Setting 

* = m+l 
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and taking into account that A s always holds, we have for any 
i>tw + 1 that 

/tp"> g 2 K k y = ( i - ( 2 A i „ _ 1 ) - 1 2 ¿ J + -
* = m + l k=m+1 ' 

Hence, by (1.10), (4.6) and (4.7), we obtain that 
00 (1 y—»> 00 t K 2 Y ~ m 

2^PMm+1+2 2 d y l 2 /¡L« M =0(P,J, 
i=m + 2 V ^ / i = m + 2 V Z / 

that is, that (4.5) holds. This proves that (1.16) is satisfied, as stated. 
It follows that all of the assumptions of Theorem III are fulfilled if the para-

meters are chosen according to the requirements of Theorem II; therefore we have 
proved that Theorem III implies Theorem II. 
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On the generalized absolute summability of double series 

Z. NÉMETH 

Dedicated to Professor Béla Csákány on his 60th birthday 

1. Introduction. As usual we denote by aj,a) the n-th Cesaro means of order a of a 

series 2 an and T^ the n-th Cesaro means of the sequence {HŰ„}. The following 
n=o 

oo 
definition is due to FLETT [3]: A series 2 a n IS said to be summable |C, a, 

u = 0 

a > — 1, M^O, A s l , if the series 

71 = 1 71=1 
converges. 

In this note we consider the following definition of the generalized absolute 
Cesaro summability of double series 

(1) 2 Ci,k. i,k=0 

Let us denote by aj*® the (m, n)-th Cesaro mean of order (a, ft) of series (1), that is, 

1 1 771 71 
(2) < • « = -JW^rm 2 2 4<£L, Ai«2kai<k, m,n = -1,0, 1, ..., Am A n ¡=0(1=0 

such that in the cases min (m, n) = — 1 we define <r%£)=0, where denotes the 
, , , . . . ( l + a ) ( 2 + a)...(w + a) 

Cesaro numbers, namely, A<$>=\ and A(f=- — - 2 , .... 
ml 

This research was partially supported by the Hungarian National Foundation for Scien-
tific Research under Grant # 234. 
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Considering the notations 
1 m n 

zm,n '"\.°m,n um-l,n) J(x) j ( f f ) Zj ¿j ^m-i '1n-k,ui,k> Am An i=Ok=0 
] m n 

= = 2 2 A ^ A ^ k a ^ 
m n i=0k=0 

and 
Tm,n — mn\um,a °ra-l,n " m,n-1 + "m-l.n-V — 

1 m n 
2 2 A^llU^ ikai k, m,n = 0, 1, 2, . . . , A'^AW ¡ti,k=0 

series (1) is said to be summable |C, (a, ft), ( u , v ) w h e r e a, /?> — 1, «, t>^0, 
A s l if 

(3) 2 i i u ~ 1 \ ^ n \ i 

;=i 

(4) ¿ ^ U f t W l ^ c o 
k = l 

and 

( 5 ) 2 < C O . 
i , t=i 

The concept of summability |C, (a, /?), (0, 0)^ is well known (see e.g. [1], pp. 
2 0 9 — 2 1 4 ) . The generalized absolute Cesaro summability of double series was in-
vestigated by MÓRICZ [ 7 ] and SZALAY [ 8 ] . The fundamental theorems of summability 
|C, a, u\x were proved by FLETT (see [ 3 ] , Theorems 1 , 3 , 4 and 7 ) . 

2. Main results. The aim of this paper is to extend the fundamental theorems 
for the double series (1). The author would like to thank I. Szalay for pointing 
out this generalization and his valuable hints. 

T h e o r e m 1.* Let k^ 1, u, v^0,a>ku—l andfi^kv— 1. I f y , <5^0 then the sum-
mability | C, (a, /?), (u, v)\x of series (\) implies the summability \C, (a+y, fi + S), (w, t>)|;, 
moreover the inequalities 

(6) 2 ^ K 2 
m=l m=1 

( 7 ) 2 R F - ^ T F Z P - ' + ' N * ^ K 2 N * - 1 ! 
/1=1 „ = 1 

*) Throughout this article K denotes a positive constant, not necessarily the same at each 
- l 

occurrence which does not depend on addition indices and the formal sum X means 0. 
i=o 
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and 

(8) 2 ^ K 2 ¿ / ^ " - v - 1 |t£«I* 
m = l n = l m=ln = l 

hold. 

Theorem 2. Let u,vS0, OC>AM—1 and 1. 7/1 

i) p l > l ««i/ <5=1/A—l//i 
or 

ii) /<>1=1 a/«/ <5>1/A— 1/̂ i 
then the summability \C, (a, ft), (u, i>)|A of series (1) implies the summability 
|C, (a+y, /?+<5), (M, U)|„, moreover the inequalities 

(9) { 2 S K { 2 
m—1 m=1 

(10) { s 
n=l ' n=l 

aw/ 

W = 1 « = 1 171 = 1 n = l 

hold. 

We remark that part i) of Theorem 2, together with Theorem 1 is sharper than 
a former result of SZALAY ( [ 8 ] , Theorem 1). 

Theorem 3. If A s l , u,vS0, a > A n - l , 0>At>-l, i |Sc, ys£-u, 
5s.r\ — v, a + y, /3-t-15 =— 1, a«(i series (l) i'.s |C, (a, /?), (m, summable, then the 
inequalities 

(12) 2 / n i i - 1 l 4 " . V ' i + i ) l A S A" 2 m ^ z ^ P W 
in=1 m=l 

(13) l / i * - 1 ! ^ 7 - ' * " ! * K ¿ H ^ I ' f o ' T 
n = l 11=1 

and 

(14) 2 =
 K

 2 2 
m = l 11 = 1 m = l n = l 

are valid. 

Using Theorem 3, in the case of parameters u=v=0, — 
and and writing — t]' = — ri we have the following 

7* 



100 Z. Németh. 

C o r o l l a r y \.If O s ^ ' s a , OSf/'S /? and series (1) is | C, (a, 0), (0, 0)L 
summable, then the following inequalities 

m=l m=l 

n = l n = l 
and 

m=ln=l m=lm=1 
hold. 

Considering the case = a further specialization is the 

C o r o l l a r y 2. If Asl, a, fisO and series (1) is |C, (a, /?), (0,0)|A sum-
mable, then 

2 niX~l~X"\<lm,o\X ^K 2 
m=1 m—1 

i ^ K - N J i i n - ' l / f t w i 1 
n = 1 n = l 

and 

2 2 2m-1"-1 

m = 1 n = l m = 1 n = l 
are valid. 

The Corollary 2 is a useful necessary condition of the generalized absolute 
Cesaro summability of double series and it is an extension of results of KOGBETLIANZ 

( [ 5 ] , Théorème V I ) , FLETT ( [ 2 ] , Theorem 3 ) and ZAK and TIMAN ( [ 1 1 ] , § 3 , Theo-
rem 3 ) . 

Theorem 4. If u,vS0, a>fiu— 1, /?>juu— 1, q^v, u, 
ö^~t]—v and series (1) is \C, (a, /?), (u, v)\k summable, then the inequalities 

(15) { 2 m ^ z W ' ^ Y " 1 S K{ 2 
m—l m=1 

(16) {2,n'"'-í\t^~l-0+5)\'1}1"1 ^ K{2n>-v-l\t£-n
i>)\kyr'-

n = 1 ' n=l 
and 

( 1 7 ) { J ¿ / M ^ - 1 ^ " - 1 ! ^ ; « ^ } 1 / - 1 

m = l n = l m = l « = 1 
hold. 
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We remark that in cases r/S0 Theorems 3 and 4 mean, in other words, that 
if the suitable conditions are satisfied, the summability |C, (a, P), (H, of series (1) 
implies the summability |C, (a+y, P+d), (£, rj)\; and |C, (a+y, P+d), (£, q)^, 
respectively. 

Series (1) is said to be summable (C, (a, /?)), a, /?> — 1 to S, if the double 
sequence (2) is bounded and converges to S in Pringsheim's sense. Finally we have 

T h e o r e m 5. If A>1, u, v>0, a>w— 1, p>v— 1, y >a—u— 1/A>0 and <5>/?— 
— v— 1/A>0 then the summability |C, (a, P), (w, u)|A of series (1) implies the sum-
mability (C, (y, (5)). 

Part 4 of this note contains some negative results. We show that Theorem 2 is 
the best possible. In relation to Theorems 3 and 4 we show that the parameter u 
(or v) of summability cannot be increased by no means and parameter X cannot 
be decreased if parameters u, v are fixed. 

3. Proof of Theorems. If T^ denotes the «-th (C, a) mean of the sequence 
{na„} then it is well known that if a, p, a+y, P + (M — 1, —2, ... , then 

(18) i<rd) = - ¿ r 2 AW 4 s 0 

An k=0 

1 m n Kly) Tm,n ¿(X+V) ¿(P + S) - okO ' 

A(P+s) = ZA£i»Al?> (n = 0, 1, 2, ...), 
k=0 

moreover 
(20) A P / r f - l / r ( a + 1) (n -

In order to prove Theorems we require the following lemmas. 

Lemma 1 (SZALAY [9]). If a, p, A+Y, p+d* — 1, —2, ... , thenfor any m,n= 
= 0 , 1 , 2 , . . . 

1 m M 
„(a + y^+í) f "V y j(y-l) ^05-1) -(«,/>) zm,n — J(* + ?) AÍ.0+S) ¿J n—k zi,k •n-m An i=0k = 0 

and 
1 m n .(ot+y.p+a) 1 y y J(v-y/¡(t-1) JW J(fi) f(<*,0) 

Am n t=0k=0 

Lemma 2 (HARDY—LITTLEWOOD—PÓLYA [ 6 ] ) . Let 0 be a non-negative Se-
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quence. If and <5= 1/X—l/p, then exists a K=K(X, fi) constant, such that 

M m—1 M 
{ 2 ( 2 (m-iy-'d.yyi" s K{2dlf>-

m=0 /=0 ¡ = 0 

is valid for any M=0,1,2, ... . 

Lemma 3 (SZALAY [10]). Let {diik}^k=g be a non-negative double sequence. 
If 1 and (5 = 1/A—1 In, then exists a K=K(k, p.) constant, such that 

M N m-1 n-l M iv 
{ 2 2 ( 2 2 {m-if-\n-k?-idiikyyi^K{2 2dUY' m = 0 n = 0 ¡ = 0 k = 0 / = 0 k = 0 

is valid for any M, N=0, 1,2 

Lemma 4 (ZAK—TIMAN [11]). If series (1) is ¡C, (y, 5), (0,0)|x summable, then it 
is (C, (y, 5)) Summable, too. 

We remark that if /.=-1 then the summability |C, (y,S), (0, 0)|;. does not 
imply the ordinary summability (C, (y, <5)). 

Lemma 5. If auk=Cifor k=0 and aiyk—0 otherwise, then the \C, (a, /?), (m, d)|a 

Summability. of series (1) and |C, a, summability of the series 2 ci are equi~ 
¡ = 0 

valent. Similarly, if aufe=cfc for z'=0 and aUk=0 otherwise, then the \C, (a, /?), (w, 

Summability of series (1) and \C, P, v\x summability of the series 2 ck are equi-
valent. k~° 

Proof . A fairly trivial calculation gives that for any n, ft 

1 m n 1 m 
<-n

fi)Kk) = -JWJm 2 2/W-iWka^ = 2/£ltai.o = 
and 

= - i r 2^-Vid = *££(*,.*) = t ^ K * ) = 0, 
¡=0 

so by (3)—(5) the statement is obvious. 

Proof of Theorem 1. Considering (18) and Lemma 1, it is clear, that 
oo 

the /w-th T-mean of order a of the single series 2 a i o > does not depend on /}, hence 
i = 0 ' 

the inequality ( 6 ) follows directly from FLETT'S result ( [ 3 ] , Theorem 1). The proof 
of (7) is carried out analogously. In the case A>1, to verify (8) we use Holder's 
inequality with indices X and A/(A—1). By (19) and (20) we obtain that for any 



Generalized absolute summability 103 

M,N= 1,2, . . . 

2 2 mXa~1nXv~1\Ttf+7'fi\x s 
m=1n=1 

M N ( I m 

m=ln=l V Ax
m i = 0 / 

M N / 1 \ л m m 

m=ln=l V , = o ¡ = 0 

M N m 

(21) ^K 2 2  mXu~1n iB~ lm~ t'~y 2 (m-i+ = 

m=ln=l i=1 

л = 1 i=l m — i 

n = l i = l 
because a routine calculation gives that if y>0, then for any M=l, 2,... 

м 

m=i 

m — i m = 2i 

A similar method can be used if <5:>0. In the case Я — 1, we prove (8) in the same 
way, omitting the last factor in (21). 

Proof of Theo rem 2. Inequalities (9) and (10) follow directly from F L E T T ' S 

result ([3], Theorem 1) by similar arguments to the proof of (6) and (7). Turning 
to the proof of (11), we denote by S the sum of the series on the right side of (11). 

In the case i), <5 = 1/A—1 /ц, by (19) we have 

S j(a+g)j (fi+i) 2 2AL*--PA£y>A!°>A^lT<y>l s 
Л т л п i = 0 k = 0 

I ] ml 2 n/2 ml 2 n m n /2 m n — ~7?5+i) TTJ+ir(2 2+ 2 2 + 2 2 -ь 2 2 ) = Am An ¡ = 0 k = 0 i = 0 ft=n/2 £=m/2 4 = 0 i=m/2k=n/2 
— 7^(1) I 7Ч2) _L 7ЧЗ) 1 7>(4) 
— J m,n> лт,п' лт,п> J m,n • 
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By (20) we have 
J | m/2 n/2 

= j t z + i ) A<B+S) 2 2 ¿m-V A ^ ^ A ^ S 
Am An i=0 t = 0 

1 J m n 
— K A(a + 1) A(0 +1) ^ ^n 1=1 k=l 

Let co be a number such that 

max (—a — 1/A + w, -P-ljX + v) < co (A - 1)/A. 

A routine calculation gives that 

(22) { J ? j—B , i/u-i)jfc-<»*/u-i)jU-i)/* g 
i = l fc = l 

Applying the Holder inequality with indices fi, A/(A—1), fiX/ifi—A), we obtain that 

m n 
Ta)n g „ - /5-1 21 | j i + co-au-l)(/l-A)/AM^ + to-Ui;-l)(/i-A)/Aí1|T(a,p)|A/^ ^ 

i = l l i = l 
X {l—" A:-£0} — A J / A ^ ^ a v — | T ( o t . «jíp-AJ/ííJ g 

m n 

i = l t = l 

m n m n 

i = l t = l i = l t = l 

m n 

i = l * = l frPti + ion-Uv-mii-AyU |T(a,p) 
whence 

i = 1 * = l 
| T (a, 0) | A (<zA;i + raA/l - u A f i + l l ) / X ^(pX/l + aXfi-vX^+^/X 

and for any M, N= 1,2, . . . 

ra=l n = l ¡ = 1 k = l 

M N 
X ^ J5? ffj-aii-coil-fi/X+im-lff-Pp-ciii-tl/X+fiv-l g KS f llX 
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because, with standard computation, 

M 
( 2 3 ) j(z*.it+caXpL-uXii+ii)l>. £ m-xn-o>p-ii/X + fiu-l ^ g 

m = i 

I ] m/2 n 
^mfn = j(a + i) J(B + i) 2 2 A^t^ A jx) A j f ) g 

•™m n i = 0 k=nl2 

1 m/2 a s K - ^ - 2 2 A j f r p A p k - * | T f t » | ' ^rn ¡=0 ft=n/2 
and 

1 m/2 n 

•i^i. i = n ft = n/2 1m ¡=0 ft=n/2 

1 m n—1 

^m i=0 k=0 

m f = 0 

Applying Lemma 2, with the single sequence 

4 « ) = ( i t + i y - i M 
¡=i 

we obtain that for any iV= 1,2, ... 

1 ffi")" S Km-»*-» 1 ( J ' (» — k f ' 1 d^y s H=1 n=0 ft=0 

fc=0 i = X 

Applying the Holder inequality with indices A and A/(A— 1), by (22) we have 

i = l i = 0 

m m 

¡=i 
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and, by Holder's inequality with indices fij/. and ///(/'—/.) we have 

N N m 

n = l ' 4=0 ¡ = 1 

S in 
t = U ¡ = 1 

x | - 1 ) 0 . - A ) / / ' | | g 

N M 

Finally, by using (23), for any M = 1,2, ... 

M N JV AI 
2 Z m""-](T,í,%r)y KS'"-^- 2 2'Xu~1(k+ir~1\T^ii>Yx 

m=ln=1 * = 0¡=1 

M 
^ p p + lOfl-Utl + t l / } . m - t l L - I O l l ~ I X l ) . - \ - \ l U - \ ^ ll/X 

m = i 

By (24) we obtain that for any N = 1, 2, ... 

N .V M 

2 (TÁ%z)r = Am-**-* 2 2 A y |T,íy>|)* s 

/1 = 1 n = l 1=1 

N m S AT/J?-*3t—+ 2 2 j;-!< + 'l<u|TÍCI
n*^)|AJ''/;-. 

IV 

2 
/1 = 1 1=1 

N 
2 n=i i=i 

It is known that if and 0</?S l then 

(26) ... + */*)' h£ al + a%+ ... 
whence 

.\ ,v m 
Z(T„?n2)yi s { Z Z n ™ - 1 ^ ^ 

n=i /1=1 ;=l 

and we may finish the estimate as in (25). This completes the proof of 

2 Z h " 1 ' - 1 ^ 2 ! , ) " s a-5*/'-, 
ni = l /1 = 1 

and, by similar arguments, we have that 

2 Z m""~1""v~1(T£)n)" — 
HL = L H = 1 
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Now let us consider . 

1 m n 
T(« I y y /((«-1) J(à-l) JM a(P) |T(a.«| 

m, H J(a+S) J(P+ô) ¿J -¿J m — i nn-k nk l'i.fc I — 
An i = m / 2 k=n/2 

m it 
SK 2 2 i ~ â k ~ ô A A | n \ , 

i = m/2 k=n/2 
and 

m — 1 il— 1 
mu-1"'nv-1"'T^i = K 2 2 ('"- 0

4 _ 1

(" - Icy-1?-1'*!?-1'1 lift «I + 
i s m/2 fc=w/2 

m—1 «—1 
+ Knv~1/X 2 (m-i)s'1i"-1/i\T^\+Km'-yx 2 {n-kf-^k*-1!1 \x%{>\ 

i=m/2 ' k = n/2 

Applying Lemma 3, with the double sequence 

we obtain that for any M, 2V= 1, 2, ... 

M N M N m-1 n-1 

2 2(T<tf>y&K2 2 ( 2 2 (m-O'-Hn-ky-^y s 
m = l n = l m = l n = l i = 0 4 = 0 

Applying Lemma 2, with the single sequence 

we obtain that for any M = 1, 2, ... 

M M hi —1 

2 O ' ^ A-H»"-^ 2 1 ( 2 S 

m = l 111=1 i = 0 

M 
Si Kff"-'l'i( 2 (' + ');"~1|T;,!Xn/,)|;')''/;"' 

¡=1 
and, by (26), for any JV=1, 2, ... 

M N M N 

2 2(n%»ysK{2 2 111 = 1 n = 1 i = l n=l 

By similar arguments we have 

2 2 № > ) " s tf { 2 2 0 ' + s k s ^ - . 

M N 

m=1n—1 
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and, finally, using (26) again 

2 2 {T^Y SK z 2 ^"-""^-""K-Pr ^ 
m—ln=l m = l n = l 

S K ( Z 2 mXu-1nx"-1\Tl*;P\xyix =g KS"'X. 
m = 1 n = l 

Estimates for /'=1, 2, 3, 4 

Z Z m " u - 1 n ' l v - \ T ^ „ y =g KS"/'-
m — 1 n = l 

complete the proof of (11) in the case i), for S = l/X— l/^i. 
In the case ii) for < 5 > l / / l - l / ^ = l - l / / t , by (19), we have that for any M,N-
= 1 , 2 , . . . 

m = l n = l m = l n = l 

m n 

x { 2 2 (m — i+ 1 y-\n — k+ 1 )*-W }". 

i=x t= i 

Applying Holder's inequality with indices n and fx/(ji—l) we obtain that 

m n ¡•=i *=i 

i = l * = l 

i = l fc=l ' 

m n 
x { 2 2 

and 

KS"-1 Z Z i u ~ 1 k ° - 1 \ x ^ ^ \ i : " ' - u ' ' + f ' k i l f l - l ! t ' + » X 
i = lk=l 

M N 

m=in=fc 
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since 

(27) iz"—',+"(2 + 2 )(m-i+\)s>i-flm>1>'-1-ll*-lli 

m = i m = 2i 

g j^jf-Sf-1 2 ms>l~'' + Kf-w+i1 2 K. 
m=1 m = i 

Proo f of T h e o r e m 3. Inequalities (12) and (13) follow directly from Flett's 
result ([3], Theorem 3), by similar arguments to the proof of (6) and (7). In the 
proof of (14), considering Theorem 1, we may assume that y=£—u<0 and <5=rç — 
- u ^ O . 

Let Using (19), we have that 

m a 
m y n 5 S Km-*n~e 2 

;=ifc=i 

Let co be a number such that 

max(— a — 1 /A + h, - f i - l / A + v) < a < (A-l)/A. 

Applying Holder's inequality with indices A , A / ( A — 1 ) we obtain that 

m
X y

n*
s

\T%
+

n

y

-
p + S )

\
x

 ^ 2 M ^ l I i
X x

+ + | « | H X 
i=u=i 

m n 
X { 2 2 M i W l M ^ l i - « v a - i ) j f c - ® i / « - D \ w - i ) . 

¡=1 

A routine calculation gives that 

m m m/2 m 
2 s A: + î)»-1/-»^-1) ^ k ( 2 + 2 } s 

¡ = 1 > = 1 ¡=1 i=m/2 

m/2 ~ S Km7'1 2 i-0,i'u-1)+i:m-0,i/u-1) 2" l)1"-1 S Knî/-°>i'<-x-1\ i=1 i=m/2 
whence 

(28) s K m - ^ - o > x n - i i x - œ x x 
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and for any M,N= 1,2,. . . 

M N 

2 2 mx(u+y'>~1nx(v+i',~1\T^+
n
y'fi+í)lx á 

M N 
^ ^PyyiXu-l-xX-taXjjXv — l—PX — toXy^ 

m=1n=l 

i = l k = l 

AF N 
_ JÇ ^ y jXu—1 u — X j ^(et, ^ ) j A j'Ag + ;.C0 — ;.U + 1 jçXP + X(a — Au + 1 ^ 

i = l ft=l 

M ¡V 

x 2 2(m-i+\y-\n-k+\)
s

-
l

n
>

-m=in=k 

M N 

¡=11=1 

because 
2 i - l M 

m = t m=2i 

(29) + 2 (m-i+l)
X u

-
2

-''
x

-°'
x

+
y  

m = i m = 2 i 

i ~ 

g j f 2 + 2 m X u ~ 2 ~ a X ~ a > + y s A". 
m = 1 m = i + 1 

In the case of A = 1 we set co=0 and the inequality (28) remains valid and we 
obtain (29) in this case, too, so our proof is complete. 

Proof of Theorem 4. Inequalities (15) and (16) follow directly from Flett's 
result ([3], Theorem 4), by similar arguments to the proof of (6) and (7). In the 
proof of (17), thinking about Theorem 1, we may assume that y, <5<0. Using (14) 
we have that 

(30) 2 ë K 2 2 m
X u

~
1

n
X v

-
1

\T^'„
n

\
i

. 
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Applying Holder's inequality with indices l /n and A/(A—n), we obtain that 

m = X n = l 

= 2 iTif.i'-'^rjx m=1n=1 

m=ln=l 

m = 1 n = l 

The last factor is bounded, because y+u—f, 5 + v—t] are positive, and inequality 
(17) follows from this and (30). 

Proof of Theorem 5. We can observe that if the conditions are satisfied, 
applying Theorem 4, we obtain that the summability |C, (a, /?), (u, of series 
(1) implies the summability |C, (y, ¿), (0,0)^. Now Theorem 5 follows from 
Lemma 4. 

4. Negative results. First we show that Theorem 2 is the best possible in the 
following sense: 

a) If / i>A>l and min (y, <5)<1/A— 1/fi, thenforany £, tj^Q the summability 
\C, (a, p), (u, v)\k does not imply the summability |C, (a+y, jS+<5), (£, r \ . 

Without loss of generality, we can assume that y<l/A—1 /¡i and u, v^ 1//.. 
OO 

Applying Lemma 5, let 2C• be a single series, such that t£ ) = m1/p if m = 2V 

i = 0 

and t£)=0 otherwise, where A/(l — mA)«=/><A and m>0. The series 2 ci 
summable |C, a, u\k, since 1-0 

m=l v=0 

but not summable |C, a+y, 01,,, since 

2 m-1-"7!^!" = 2 2v(-1-"i+',/',> = 0 0 , 
ra=1 v=0 

and we may use Corollary 1. Thus the assertion is proved, because it is clear that the 
summability |C, (a+y, fi+S), (c, fj)|M implies the summability |C, (a+y, J? + c>), (0,0)1,,. 
In the case «=0, the assertion was proved by Flett ([2], part 2.7). 
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b) If fi^X—1 and min (y, <5)S 1 — l/fi then for any rj^O the summability 
|C, (oc, P), (u, y)|x does not imply the summability |C, (a, P), (£, rj)|M. 

Without loss of generality, we can assume that y=l — l/n and £ = 0 . If « > 0 , 
the proof is carried out analogously to the proof of preceding assertion. In the case 

oo 
u=0, by using Lemma 5, let 2 ci be a single series such that if m=lp= 

>=o 
=22" and t ^ = 0 otherwise. It is clear, that 

2 m - w i = 
m = l p = l 

oo 
so the series 2 ci ' s summable |C, a, O^. On the other hand, from (18), with the 

1 = 0 

notation n=lp+t,0^t^lp 

and 
21 I 2 n - ^ i i n - ^ i ' + ' J ^ A: 2 Z U p + O - H t + ^ i p p - 2 " ^ 11 = 1 p=1 n = /p p=l i = 0 

s A 2 p - 2 " 2 (i + 1 ) - 1 2 " p ~ 2 " = 
P = 1 ( = 0 p=l 

and therefore this series is not summable |C, oe+y, . We remark that this example 
is due to Flett[4], in connection with strong summability [C, OL]x-

Now we investigate the parameters u, v. The following result shows that the 
parameters u, v cannot be increased. (It is clear that ones can be decreased.) 

c) If A, ¿¿^1, m,bS0, 1, P>v— 1 and £>w or r j t h e n for any 
a i . 1, Pi^ri— 1) the summability |C, (a, /?), («, i>)L does not imply the 
summability |C, (a l5 ft), (£, fy)^. 

We can assume that Applying Lemma 5, with ci=i~p, where u+ 1 < 

+1, we obtain that the series 2 ci is summable |C, a, since 
i = 0 

2 /»^" -Mi i fV ^ k 2 <co , 
m=l m=1 

but is not summable |C, a1 ; since 

2 w ^ - 1 ! ^ ! " A 2 /»"«+ 1 -« - 1 =oo. 
m=l m=l 

Finally we prove that the parameter A cannot be decreased if parameters u, v are 
fixed. 
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d) If 1 a n d и, и ё О , then f o r any a, a 1 ; /?, a^u— 1, /?, fi^v— 1) 
the summabi l i ty | C , (a, ft), (ju, »)|л does n o t imply the summabi l i ty |C, / у , (и , t>)|„. 

W e apply L e m m a 5, wi th a single series 2 cs s u c h tha t ^ ^ ( l o g m)~ 1 / p rn~" . 
1 = 0 

where Since 

2 w ^ " 1 ! т ^ > | я = 2 m-1( \o%m)->-lp < c o , 
. m = l m = l 

oa 
the series 2 ci i s s u m m a b l e |C, a , u\x. O n the other hand , using (18), a rout ine 

i = 0 
calculation gives tha t 

1 m 

m / = 0 

m/2 m 
xi'0ogi)-1/pi~" = 2 + 2 = +r„<2>, 

¡=1 i=m/2 
and therefore 

mil T ™ ^ J K m - a - 1 ( l o g m ) - 1 / p 2 " = A-m-"(log m ) " 1 ' " 
¡=i 

and 
m/2 Г ® a A m _ a i + e t _ u ( l o g m)~1/p 2 i11-1'1 s= isr«i-"(log w ) - 1 ' " , 

/=i 
fu r the rmore 

m = l m—1 

so the series 2 c ; n o t s u m m a b l e |C, a l 5 и|„. 
f = 0 
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On an imbedding theorem 

NGUYEN XUAN KY 

Introduction. In 1968, P. L ULJANOV [13] gave a sufficient and necessary con-
dition for the imbedding of Holder class Hp into the space Lq (1 =»). The 
result of Uljanov was generalized later by L.LEINDLER [5], [6]. In this paper we con-
sider an analogous problem for the case of the new modulus CUVjW(/, S)p introduced 
by Z. DITZIAN and V. TOTIK [1], namely we give a necessary and sufficient condition 
for the imbedding of Holder type class of functions determined by a S ) p 

with w ( x ) = ( l - x ) a ( l + x / , <p(x) = Yl-x2 (a, P=0, x£(—1,1)) into another class of 
functions. 

An imbedding theorem. Let Let u(x) be a nonnegative, integrable 
function on the finite interval (a, b). Denote by (a, b) the Banach space of all 
measurable functions on (a, b) with the norm 

11/11 W ) = { / \ f { x r u ( x ) f p . 

In the case « = 1 we use the notations Lp(a,b), ||/||z.*(a,i)> respectively. 
The modulus of a function f£Lp(a, b) is defined by the formula 

b-h 
coif, 6)L.(a,b) = sup { / I f ( x + h)-fix) I" dx\'p, (0 sS^b-a). 

Let (we shall use these notations throughout this paper) 

= *«.*(*) = 0 - * ) a ( l +*)", ( a , i s O , * € ( - 1 , 1)); 

<pix) = \'\-x* (*€(-!,!)). 

Research supported by Hungarian National Foundation for Scientific Research Grant No. 1801. 
Received October ?6, 1989 and in revised form March 22, 1991. 
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The weighted modulus of a funct ion/for which wfdL"(— 1, 1) was introduced by 
Z. Ditzian and V. Totik as follows: 

w(/. <5)P := sup \ \wA v W h f (x) l L ,^ l t l ) 0-=/l Si 
where 

elsewhere. 
for x: x + (p(x)h£(0, 1), 

Let o) (<5) be a modulus of continuity, i.e. to (<5) is an onnegative, increasing continu-
ous function on [0, 1], ct)(0)=0 and o)(51+52)^o)(51)+tu(52) + 1). 
Define the Holder type class 

:= {/: wf£L»(- 1, 1), co^M', = Of{m(5)} (d - 0)}. 

We shall prove 

Theo rem 1. Let Let a>(8) be an arbitrary modulus of continuity. 
Then 
(3) H«W i P c I*./.,«./,>-.(-1, 1) 
i f f 

(4) j ^ m - ^ i l ) 
n = l v « / 

For the proof of Theorem 1 we need some lemmas. 
For any function/(x) defined on ( - 1 , 1), let /*(©):=/(cos 0 ) (06(0, n)). 

Let Pn(<x, ft, x) be the w-th orthonormal polynomials with respect to the parameters 
a, p. Then the system 

0 = { / „ ( a , P, 6)} := {P„*(a, P, 0 ) [ < , ( 0 ) < p * ( 0 ) ] , / 2 } 

is orthonormal on (0, it). Denote by <£„ the set of all ^-polynomials of degree at 
n 

most n, i.e. the set of all functions of the form Z a> 0) (¿k a r e r e a ' numbers, 
k = 0,...,n). *=° 

Lemma 1. For any (pn£<Pn («=1,2,...) and 1 //¡e inequalities 

( 5 ) M ^ o , * ) =5 c / J l l i p J i P ^ n ) 

a«*/ 
(6) IIpJl»№,> cn1'"-1'- | |9»JiP№.) 
/ioW. 

Proof . Combining [3, T. 4] with [8, T. 14] we get (5) and (6). 
For wf£Lp(- 1,1) let 

( 7 ) En{w,f)p = i n f | | » c ( / - / 7 n ) | | L p ( _ 1 , 1 ) , p„£iz„. 
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where n„ denotes the set of all algebraic polynomials of degree at most rt 
(» = 0 , 1 , ...)• 

We define also the best approximation of a function g£Lp(0,n) by $-poly-
nomials: 
(8) E*(g)p = inf ||g - (P„\]LP(O, *), <pn£ • 
It is clear that 
(9) EJw,f)p = E*(gf)p, 
where 
(10) gf (9) :=f*(9) w* (9) sin1'" 0. 

Lemma 2 ([11], T. 3). Let We have for every wf£Lp(-1,1) 

(11) En(w,f)p s c a v w ( / , i ) ^ (n = 1, 2, . . .). 

Lemma 3. Let l s / x » » . For every g£Lp(0,n) the inequality 

(12) i ) s ^ i m V n J 1^(0, it) t=0 
holds. 

Proof . Using inequality (5) we can prove this Lemma by the same way as 
that of the inverse theorem for the best trigonometric approximation (see e.g. [7]). 

By a result of DITZIAN and TOTIK (see [1], T. 2.1.1.) we have that <yp,w(/, 5)p is 
equivalent to the AT-functional 

:= inf {\Mf-d\\W<ph'\\LPi_hi)} 

where Dp
 w denotes the class of all functions g, which are locally absolutely con-

tinuous on (—1,1) and for which wg, w(pg'£L"(—\, 1). 
On the other hand, the other ^-functional defined on L"(0, n): 

K*(g, d)P : = inf {||w*(^>*)1/p(/i — g)||jy>(o, n) + 5 IK* ((p*)1,ph.' 1 ! « > } »fc Op 

where Dp denotes the class of all locally absolutely continuous functions h on (0, n) 
for which (<p*)llPw*h£Lp(0,71), is equivalent to the following modulus of con-
tinuity 

B 
(13) QA.B<g,>5),:= sup { / \g(9 + h)-g(eW(W*(9)y<p*(6)d0YlP + 

o^hsiV > 

+osup{ / \g(0 -h)- g(dr(w* (6)Y <p* (0) dd}llP, 

(0 < A B < n; 0 < S < min (A , n-Bj). 
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This fact was proved essentially in [11], special cases of which were proved in [9] 
and [10]. 

Summing the mentioned statements we have 

Lemma 4. Let Let wfdLp(—\, 1) and 

gf(6) := f*(6)w*(0) s i n 0 . 
Then 

(14) a>„ .„ ( / , S)P~QA,B(S> <5)P (* - 0). 

After these, let us turn to the 

Proof of T h e o r e m 1. a) (4)=>(3). Let w/€L p ( -1 ,1) . From (4) it follows 
by (11), that 

0 = 1 

and so, we have for the function gf defined by (10) 

n=l 

Hence, by Hardy inequality and (12) we get 

2oi"{gf,-\ „<<">-*co 
„=1 V. n / i f ( o,„) 

which implies by T. 1 of [13] that gf£Lq(0, n), therefore ' ( _ 1 » 1 ) -
b) (3)=>(4). Suppose, that (4) does not hold. Using the method applied in 

[13], p. 673 one can contract a function <p0€Lp f—, —1 satisfying the following 
conditions 
(15) <p0(x) = 0, x€[3/4, 5/4]; 

1/4+A 
(16) / \Mx)\pdx caSQi)-, 

V4 

(17) ®(<fo,i)i.»(i/4,6/4) ^ cm(8); 

(18) <Po<tL<[U4,5/4]. 
Let now 

„ m /9>o(0)"'*(0)[«?>*(0)]1/p for [1/4, 5/4], 
g o K P ) • 10 for 0£[O,7t]\[l/4, 5/4]. 

We estimate the modulus (13) with >4=3/2, 5 = 2 of the function g0. By (15), (16) 
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and (17) one can see that 

i23/2,2feo,<5)P = 0{û>(<5)} ( ¿ - 0 ) . 

Therefore by (14) we have for the function 

/ o W := g0(aTccosx)w-1(x)(p-1"'(x) 

®»lW(/"o,<5)P = 0{co(ô)} ( ¿ - 0 ) , 

which means that / 0 € # £ w , p . 
On the other hand by (18) it follows that 

foîLwitpi'p-ii— 1, 1). 

Thus, the necessity of (4) is proved. 

Remark 1. The part (3)=>(4) indeed can be obtained immediately from in-
equality (6) and T. 1 of [12]. Besides, we have appeared the other proof, because 
by this method we can prove a generalization of Theorem 1, which will be stated 
in the following. 

For a nonnegative monotonie sequence of numbers {(pk), the function 

* ( * ) = Z k ( - " » - * c p k (y , />i= 1) 

was introduced by LEINDLER [6]. We denote by the class of measurable func-
t ions /on (—1,1), for which 

0 

where gf is defined by (10). Then the following theorem is true. 

Theorem 2. Let Let {<pt} be a nonnegative monotonie sequence 
of numbers satisfying <pkl^ccpk and in the case y>-p, moreover let 

(Pk^<Pk+i ( k = 1 , 2 , . . . ) . 

Then 
(19) c Mi-,% 

iff 
(20) Z n ^ - 2 < p „ < a r Î - ) c o o . 

n=l 

Using Lemmas 1—4 we can prove this theorem by the same method as we used 
to prove Theorem I, with the modification that the results of Uljanov applied in 
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the proof of Theorem 1 will be replaced by the generalized results of Leindler (see 
Theorem 3 and its proof in [6]), while the inequality of Hardy used in the proof 
will be replaced by a generalized inequality (see [4], inequality (1'))-
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Relating the normal extension and the regular unitary 
dilation of a subnormal tuple of contractions 

AMEER ATHAVALE 

In this paper we deal with only bounded linear operators on complex infinite 
dimensional separable Hilbert spaces. If S=(Si, ..., S„) is a tuple of operators 
on a Hilbert space X , then for any «-tuple k=(k1, ..., k„) of integers ki; Sk denotes 
S'¡lSfy...S'¡l•', where Sk' is to be interpreted as S*<i~k') if kt is negative. If a 
Hilbert space j f is contained in some Hilbert space J f , then P($f, J f ) will denote 
the projection of JT onto J f . If for a tuple S=(S1, ..., S„) of « commuting oper-
ators on there exist a Hilbert space X containing and a tuple M=(Mx, ..., M„) 
of « commuting operators on Jf such that Skx=P(Jf, 3^)Mkx for any x in j f 
and any «-tuple k of non-negative integers, then S on is said to dilate to M on 
if moreover is invariant for each Mi, then S on is said to extend to M on J f . 
If S on Jif dilates to M on JT and each M ; is unitary, then M on ft is said to be a 
unitary dilation of S on ffl. If S on JP extends to M on Jf and each M ; is normal, 
then M on JT is said to be a normal extension of S on , and S is said to be sub-
normal. Among all the normal extensions of a subnormal tuple S, there is a minimal 
one which is unique up to unitary equivalence (see [4]). In particular, if N on Jf 
is the minimal normal extension of S on J f , then X = \J (Nk3f: k is a tuple of 
non-positive integers), where V denotes the closed linear span in the norm || • 
of J f . 

For our purposes, a special type of unitary dilation, known in the literature as 
regular unitary dilation (or Sz.-Nagy—Brehmer dilation) (see [3], [7]) is important. 
For any «-tuple k=(k1, ..., k„) of integers, define k+ =(max (kx, 0)), ..., max (k„, 0)) 
and k— =(min (kx, 0),.. . , min (kn, 0)). If for a tuple S of « commuting operators 
on f f , there exist a Hilbert space X containing and a tuple U of n commuting 
unitaries on X such that Sk~ Sk+x—P(X, ffi) Uk~ Uk+x for any x in tf and 
any «-tuple k of integers, then U on JT is said to be a regular unitary dilation of S 
on U is minimal if Jf = V {UkJf: k is an «-tuple of integers}. 

Received February 12, 1990 and in revised form March 5, 1991. 
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In what follows, we will use the symbols DT" and m„ to denote the closed 
unit polydisk in C", the unit polycircle in C" and the normalized product arc-length 
measure on T" respectively. The spectral measure of a normal or unitary tuple M 
will be denoted by p(M). In case « = 1, it is well known (see [2], [5]) that if N 
on Jf is the minimal normal extension of a contraction S on .Jf, then p(A ,)|T1 

is absolutely continuous with respect to m1, provided S is pure; that is, there does 
not exist a non-trivial closed reducing subspace of J ? such that S i s normal. 
(An examination of the proof in [5] and Theorem 6.4 in Chapter II of [7] actually 
reveals that "S\3%" is normal" can be replaced by is unitary".) A con-
tract ion S on a Hilbert space Jf is said to be C0. (see [7]) if H^/iH^-^O as « — °° 
for any h in tf. It is obvious from Theorem 3.2 in Chapter I of [7] that a C0. con-
traction does not have a non-trivial unitary part. At this stage, the reader may 
refer to the statement of Theorem 1 below and the question raised at the end of 
the paper. 

Lemma 1. If S is a subnormal tuple of contractions on , then S has a regular 
unitary dilation. 

Proof . This follows from Theorem 4.1 of [1] and from the observation made 
in the proof of Corollary to Theorem 3.1 of [1]. 

Lemma 2. If U on № is a minimal regular unitary dilation of S on J? and 
each Si is a C0. contraction, then ||/i(t/)( • )x||^- is absolutely continuous with respect 
to m„ for any x in 

Proof . Let U on X be a minimal regular unitary dilation of S on J f . Define 
operators Dt ( /=0, 1, ...,n) from / t o / a s follows: D0=I (Ix=x for any x 
in J?), Di+1=Di—Uf+1DTi+1, (i=0, ...,«—1). Let A be the closed linear span 
of Dn in J f . It follows from Theorem 1 of [3] that UkA and UlA are orthogonal to 
each other with respect to the inner product ( . , . ) of Jf for any two distinct in-
teger n-tuples k and i, and 

Let £=(£! , . . . ,£ , ) denote a generic point of T". For any a m A and any «-tuple 
k of integers, we have 

J f = M{Um A: m is an «-tuple of integers}. 

/ M*...Ml//(£/)(£>!& = (Uka,a) = 

MIjt- if ki = 0, for each i, 
.0, otherwise. 

Since the trigonometric polynomials are dense in C(r"), the space of continuous 
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functions with the supremum norm, it follows that 

MU)(-M* = N l ^ ( - ) . 
From our observations above and utilizing the fact that p(U) commutes with 

all Um, it is easy to deduce that |]/i(i/)(.)x||^ is absolutely continuous with respect 
to m„ for any x in J f . 

Theorem 1. Let S be a subnormal tuple of C0. contractions on . If N on 
Jf is the minimal normal extension of S, then ¡i(N)jTn is absolutely continuous 
with respect to m„. 

Proof. Let S on # be a subnormal tuple of C0, contractions and N on Jf 
be its minimal normal extension. By Lemma 1, S has a regular unitary dilation 
U on some Hilbert space X' . Define 

i f = V{t/*JT: k is an «-tuple of integers}, 

V denoting the closed linear span in the norm of J f ' , and let Wt= UJg ( i= 1, ..., n). 
Then W on i? is a minimal regular unitary dilation of S on JF. 

Now for any h in and any «-variable complex polynomial q, we have 

|| q(N)h\\% = f\q(y)\2d\\fi(N)(y)h\& 
D" 

and 
IIq(W)h\\%= f \q(0\2d\\KW)(m%-

JN 

Since 
= MS)hf„ = \\P(<?,Jf)q(W)h\\% ||q(W)h\\%, 

it follows in particular that 

(1) f\q(0\2dMNXt)h\\x^ f\q(0\2dMWXm\%-
j-n yn 

It is known that the unit polydisk algebra, as restricted to T", is an approximating 
in modulus algebra (see [6]); that is, any positive continuous function on Tn can 
be approximated uniformaly on T" by the modulii of polynomials. It follows from 
(1) that if / is any positive continuous function on T", then 

(2) f f t f ) d M N № h f m ff<Z)dMW)(m%-
•pn fn 

It is clear from (2) that | | ( / i ( i V ) | i s absolutely continuous with respect to 
||fi(W)(.)h\\% for any h in X . Next appeal to Lemma 2 to deduce that 
||(/i(iV)|r")(.)/i||^ is absolutely continuous with respect to m„ for any h in JC. The 
desired conclusion now follows by using the minimality of N. 
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Question. If S is a subnormal tuple of contractions on Jf and if there is 
no non-trivial closed subspace № of which is reducing for each 5, and on which 
each St is unitary, is it true that n(N)\T" is absolutely continuous with respect to 
m„, where N is the minimal normal extension of 5? 
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Linear operators with a normal factorization through Hilbert space 

BRUCE A. BARNES 

Introduction. Let (£2, ft) be a c-finite measure space, and suppose that K(x, t) 
is a kernel on QxQ which is selfadjoint, that is, K(x, t)=K(t, x) a.e. on QXQ-
Let X be some Banach space of functions on Q, and assume that the integral operator 

£(/)(*)= ¡K(x,t)f(t)dp(t) (/<cX) 
Si 

is a bounded linear operator on X. When X=L2(Q) and the kernel \K\ determines a 
bounded linear operator on X, then S is a selfadjoint operator on X. However, in 
general, the operator S may not have properties analogous to those of a selfadjoint 
operator. The purpose of this paper is to study a large class of operators which in 
many respects do behave like selfadjoint (or normal) operators. One motivation here 
is to find conditions under which selfadjoint kernels determine operators which 
have many of the properties of selfadjoint operators. This question is addressed 
implicitly in the context of the examples considered in Section 3. 

There is a long history of interest in operators on a Banach space that have 
some properties in common with selfadjoint operators. Examples include sym-
metrizable operators [10], [11], the quasi-hermitian operators studied by 
J. DIENDONNE [7], and hermitian operators on Banach spaces [5], [6, Part 3]. The 
class of operators we study has some overlap with these classes. We consider linear 
operators that have a selfadjoint (or normal) factorization through a Hilbert space 
in the following sense. 

Def in i t ion 0.1. An operator S£33(X) has a selfadjoint (normal) factoriza-
tion through a Hilbert space H, if there exist bounded linear maps A and T, 

T: X ^ H , A: H X, 

with S—AT and TA selfadjoint (normal) on H. 

Received March 14, 1990. 
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When S=AT is a factorization of S with TA normal, then many properties 
of S and TA are closely linked. In particular, the spectral theory of the two oper-
ators is very much the same. For example, using the operational calculus of the 
normal operator TA, a rich operational calculus may be defined for S. This is done 
in Section 2. There is a large collection of examples in Section 3 which makes it 
clear that the theory has broad application. 

Now we establish some notation. Throughout A' is a Banach space and H is 
a Hilbert space. The algebra of all bounded linear operators on X is denoted (X). 
For let a(S) be the spectrum of S. If T is a linear map, then let 9l(r) 
be the null space of T, and let 0t(T) be the range of T. 

1. Some preliminaries. In this section we derive some preliminary results con-
cerning factorizations. We assume throughout that S€&(X) has a factorization 
S=AT where T: X-+H, A : H^X and TA is normal on H. 

Def in i t ion 1.1. Let E0 be the selfadjoint projection in £fi(H) with range 
3HTA). Set N=AE0T. Then N is called the nilpotent part of S. Note that NA = 
= AE0TA=Q, and SN=NS=0. 

Proposit ion 1.2. Let E0 and N be as above and set S=S—N. Then S has 
a normal factorization S=AT through a Hilbert space H with the property that 
9 l ( f J ) = { 0}. 

Proof. Set H=(I-E0)H, and define T: X-+H by f(x)=(I-Ea)Tx and 
1: H-*X by A(y) = Ay. For x£X, AT(x) = A(/-E0)Tx=ATx-AE0Tx=Sx-
-Nx=S(x). For y£H, TAy=(/—E0)TAy=TAy. Since TA restricted to ( I - E 0 ) H 
is normal, we have TA is normal on H. 

Next we verify that 91(f l )={0} . Assume y£H and fly=0. From the 
previous computation, we have TAy= TAy =0. Then by definition, E0y=y, so 
y=(I-E0)y=0. 

Let S=S—N as in Proposition 1.2. Then the spectral theory of S is essentially 
the same as that of S. Now by Proposition 1.2 S has a normal factorization with 
the property that 9l(Z4) = {0}. This means that from the point of view of spectral 
theory, we may make the following assumption without loss of generality. 

(Al) 9l(TA) = {0}. 

An operator R£3&(X) is similar to a normal operator W£3$(H) if 3 U:X—H 
such that U is a bicontinuous linear isomorphism of X onto H with R=U~1WU. 
In this situation X is a Hilbert space in an equivalent renorming, and the spectral 
theory of R is completely determined by that of the normal operator W. 
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Proposit ion 1.3. If TA is invertible and 91(5) = {0} then S is invertible. 
When (Al) holds and S is invertible, then TA is invertible. Furthermore, in this case S 
is similar to the normal operator TA. 

Proof. Assume (Al) holds and S is invertible. The M(A)=X and 91 (7) = {0}. 
Also, since 9i(r^)={0}, 5R(^) = {0}. We verify that M(T)=H. For suppose y£H. 
We have A(&(T))=X, so 3z£X with ATz = Ay. Then A(Tz-y)=0, so Tz=y. 
This proves that both A and T are one-to-one and onto maps. Thus, TA is invertible 
with (TAy^A^T-1. Also, in this case, setting U=T, S = AT=U~1(TA)U. 

The proof that when TA is invertible and 91(5 ) = {0}, then S is invertible, is 
similar to the proof above. 

Suppose S—AT with TA invertible, but 91(5)^ {0}. We show that in this 
case S is the direct sum of the zero operator and an operator which is similar to a 
normal operator. Let R=(TA)~1, and let P=ART. Elementary computations 
show that P2=P and SP=PS = S. It follows that £ ( / - . ? ) (J*0 = {0}. Also, if 
Sx=ATx=0, then since 9}(,4)={0}, Tx=0, and thus Px=0. This implies that 
9l(S)=(I-P)X. Therefore Z=P(I)®91(S) , and S = SP@0. Define U: P(X)^H 
by UPx=TPx = Tx. Since T(X) = H, U is onto, and when Pxe^l(U), then 
TPx—0, so SPx=0, and finally, Px—0. Therefore U has a bounded inverse. 
An easy computation shows SP—U^TAU on P(X). Therefore S is the direct 
sum of an operator similar to a normal operator (SP on P(X) and 0 on (I—P)(X)). 
In this case the spectral theory of S is easily derived from that of TA. Thus, in 
studying the spectral theory of S, we can make the following assumption with-
out loss : 
(A2) TA is not invertible. 

Note that when (Al) and (A2) hold then Proposition 1.3 implies that S is not 
invertible. 

2. Spectral theory. Throughout this section it is assumed that S has a normal 
factorization, S=AT with TA normal. Most of the properties of normal operators 
used in this paper can be found in M . SCHECHTER'S book [13] . 

Theorem 2.1. 
(1) <j(S)U{0} = o(TA)U{0}. When (Al) and (A2) hold, then 0ea(S) = a(TA). 
(2) If A^0 with Ha{TA), then 

(1-S)-1 = X-I + X-IAIX-TA^T. 

Proof. Assume X$<r(TA), X^0. The formula in (2) is verified by direct 
computation: 

(X-A^iX-' + X-'ACX-TA)-^} = 
= I+A(X — TA)~XT- X~XAT- X~*ATA (X - TA)-1 T. 
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Now the last term 

- X^ATA (X - TA)~XT = A-1 A (A — TA)(X - TA)~*T— A (X - TA)~^T, 

and substituting the expression on the right for this term yields the result. This 
proves (2). 

To prove (1) note that the same computation that establishes (2) shows that 
when X 5̂ 0 is in the resolvent of S, then 

(X-TA)-1 = X'1 + X~1T(X - S)-XA. 

Now (1) follows from (2) and the remark following the statement of (A2). 

Corollary 2.2. Assume S^3S(X) has a normal factorization through Hilbert 
space. Then 3 M > 0 such that when X$o(S), A^O, 

— S M|A|-1(1 +d(A) -1) 

where </(A)=inf {|A-/z|: 
Assume A is a compact subset of C. Let BM (A) be the algebra of all bounded 

Borel measurable functions on A. Define 501 (A) to be the set of all /€BM (A) such 
that 3g£BM (A) with /(A)=Ag(A) for all X£A. Now assume that (Al) and 
(A2) hold. Set A=a(S)=a(TA). Using the fact that the normal operator TA 
has an operational calculus g^g(TA) for all g€BM (A), we construct an opera-
tional calculus / — f ( S ) for functions f^Hl(A). 

Def ini t ion 2.3. For /€®l(J) with f(X)=Xg(X) for all X£A, and where 
g€BM(4), define 

f(S) = Ag(TA)T. 

By assumption (A2), 0£/d. This means that g(0) is not uniquely determined by 
the requirement f(J)—Xg(X) on A. Nevertheless, f(S) is well-defined. To check 
this it suffices to show that when e(A)=0, Af J \ {0} , and <?(0)= I, then e(TA)=0. 
Since Ae(A)=0 for all X<=A, we have TAe(TA)=0. Then by (Al), e(TA)=0. 

Theorem 2.4. Assume (Al) and (A2) hold. Let A=o(S) = o(TA). 
(1) The operational calculus f—f(S) is an algebra homomorphism of 9Ji(.d) 

into 31 (X). 
(2) [The Spectral Mapping Theorem.] For /€®i(J) 

o(f(S)) = o{f(TA)). 

In particular, if /£5Di(zl) and f is continuous on A, then 

A{F(S)) = {/(A): X£A}. 
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(3) Assume {/„} is a sequence in 9Jl(zl) with f„(X)=Xg„(X), {g„}gBM(,d) and 
gn-*g uniformly on A. Then fn(S)^f(S) in ®(X). 

(4) Assume either 9I(S) = {0} or @(S) is dense in X. If P£@(X) with PS= 
=SP, then for every fe^A), Pf(S)=f(S)P. 

Proof. Part (1) follows from the fact that g-*g(TA) is an algebra homo-
morphism of BM (A) into 33(H). We check the property that when fx and f2 are 
in 9Jt(J), then f1fi{S)=f1(S)MS). Write fk(l)=Xgk(X) on A for k=1,2. Then 

on A where g(X)=gl(X)Xg2(X). Therefore f1f2(S)=Ag(TA)T= 
=Agl(TA) TAg2(TA) T=A(S)f2(S). 

To prove (2), note that f ( S ) factors through H where the factors are T: X-+H 
and Ag(TA): H^X. We have f(S)={Ag(TA))T and T{Ag(TA))=f(TA). There-
fore Theorem 2.1 implies that the nonzero spectrum of f ( S ) and f(TA) is the same. 
But also, by (A2) TA is not invertible, so f(TA) = TAg(TA) is not invertible. By 
Proposition 1.3 it follows that f ( S ) is not invertible. This proves 0£a(f(TA)) and 
o e « 7 ( / ( s ) ) . 

The proof of (3) is elementary. Assuming the hypothesis in (3), it follows 
8n(TA)—g(TA) in ®(H). Therefore fn(S)=Agn(TA)T-*Ag(TA)T=f(S) in <%(X). 

Now assume P£!%(X) and P(AT) = (AT)P. Then (TP A) (TA) = (TA) (TP A). 
Assume /<E®t(4) with f(X)=Xg(X) on A. Then 

(1) (TPA)g(TA) = g(TA)(TPA). 

Applying the operator T on the right to the equality in (1), we have 

TPAg(TA)T = g(TA)TPAT = g(TA)TATP = TAg(TA)TP. 

When 91(5") = {0}, then M(T) = {0}. Thus, 

P(Ag(TA)T) = (Ag(TA)T)P 

which proves (4) in this case. When &(S) is dense, apply A on the left in equality 
(1), make a computation analogous to the one above, and use the fact that ¿%(A) 
must be dense to arrive at the conclusion. 

Corollary 2.5 Assume that Sd&(X) has a self adjoint factorization through 
Hilbert space and (Al) and (A2) hold. Then 3 M > 0 such that for all t£ R 

l|e"s|| ^ M\t\. 

Therefore, if f ( t ) and tf(t) are in L^R), then f f(t)e"sdt converges in (X). 
— oo 

Proof. Assume S=AT with TA selfadjoint. 3 / > 0 such that |w>-1(e i w-1)|s/ 
for all w^R, w^O. For A£R, A^O, let g(X)=X~1(ea'-1). Then |g(A)|s / | i | 

10 
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on R. Thus 
lle"Sll = \\Ag(TA)T\\ s М У Г | | / | / | . 

Corollary 2.5 shows that when S has a selfadjoint factorization through Hil-
bert space, then S is in the class of operators studied in [2]. 

Corollary 2.6. Assume (Al) and (A2) hold. Assume / € Щ Л ) with f(A)=Ag(A) 
X£A, g£BM (A), where in addition limg(A)=g(0)=0. Then 3{/„} a sequence of 
simple functions in with f„(S)^f(S) in 38(X). In particular such a se-
quence exists for f{S)=S2. 

Proof. Let 
£„ = sup {|g(A)|: AeJ,|A| < и-1}. 

Then by hypotheis, e„->-0. Choose {/„} a sequence of simple functions such that 
for each n s l , 

\f(co)-ta(co)\ ^n-* (co£A). 
Thus, 

|(/(A)/A)-(infA)/A)| s и-1 

whenever Ad A and |А|^и -1. Let yn be the characteristic function of the 
{X£A: |А|йи-1}. Define/„ to be the simple function f„=x„t„, л=1. Then 

\gW~(fnWlA)| s n~1 + sn 

for all At A. Therefore (/„(A)/A)-g(A) uniformly on A, so fn(S)-*f(S) in 3S(X) 
by Theorem 2.4 (3). 

Assume S=AT with ТА normal, and assume 0£A = a(TA). Let U be an 
open set with АЯ=и and suppose/is holomorphic on U with / (0)=0. Then g(A) = 
—f(A)/A is holomorphic on U (g(0)=/'(0)), thus /€ЯП(Л). Let f(S) be the oper-
ator in 38 (X) defined by the operational calculus constructed above. Now f ( S ) has 
another meaning defined in terms of the usual holomorphic operational calculus. 
In fact, in this case the two possible meanings of f(S) are the same. For let у be 
an appropriate curve in U surrounding A. Then using Theorem 2.1 we have 

тр-г //(A)(A — S ) - 1 dk = ¿ 1 /(A)[A-1 + X~lA(A — TA)~XT] dX = 
у У 

= A{¿" f g m - T A y l d k ) T = = f « T ) . 

Here we have used the fact that the operational calculus determined by functions 
in BM (A) and the holomorphic operational calculus coincide for normal oper-
ators. 
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As a consequence of the coincidence of the two operational calculi, it follows 
that when T is an open and closed subset of A with 0 then the spectral idempotent 
Pr determined by the usual holomorphic operational calculus satisfies Pr=Xr(S) 
where Xr denotes the characteristic function of T. 

Next we turn to some results concerning eigenvalues and eigenspaces. 

Proposit ion 2.7. If A0€C, ¿<,^0, then 

yi((Z0-S)n) = WA0-S) = A{yi().0-TA)}. 

Proof. If TAx=A0x, then ATAx=A0Ax. Thus ^{9l(A0- 7^)}g5R(A0-1S). 
Conversely, if ATy=A0y, then TATy=A0Ty, so Ty^H^-TA). Also y= 
=A(X-lTy)dA{<Sl(Ai>-TA)}. This proves 

(1) = A{yt(&-TA)}. 

To show 9l((A0-S)")=?t(Ao-S), it suffices to prove this for n=2. Suppose 
x£9t((A0-S)2), so (A 0 -5)x€9l (A 0 -5) . By(l), ^y^(A0-TA) with ( A 0 - S ) x = 
=Ay. Then (A0 — TA)Tx=T(A0 — AT) x—TAy=Aqj. Therefore (A0-TA)2Tx= 
=A0(A0— TA)y=0. Since TA is normal, this implies 0 = ( A 0 - T A ) T x = T ( A 0 - A T ) x . 
Then as (A0-S)x£91(^-5), we have Q=AT(A0-AT)x=Aa(^-AT)x. Thus, 
(X-AT)x=0. 

Proposit ion 2.8. Assume (Al) and (A2) hold. 
(1) If A0^0 is an isolated point of c(S), then A0 is an eigenvalue of S. 
(2) Assume A0?±Q is an eigenvalue of S. Let X0 be the corresponding eigenspace. 

Let Xo be the characteristic function of {A0}, so x0Ç9Jl(zl). Then P0=xo(S) is a 
projection with 0t(Po)=Xo and 

Proof. Assume A0^0 is an isolated point of <r(S). Then A0 is an isolated 
point of o(TA), and since TA is normal, it follows that A0 is an eigenvalue of TA. 
By Proposition 2.7 A0 is an eigenvalue of S. 

Now assume 0 is an eigenvalue of S. Let X0, x„, and P0 be as in (2). By 
Proposition 2.7 A0 is an eigenvalue of TA. Let Ha be the corresponding eigenspace. 
Since TA is normal, Q0=x0(TA) is the orthogonal projection with 0t(Q0) = H0. 
Now AXO(A)=AK,ZO(A) on A, so P0(A0-S)=(A0-S)P0=0. This proves ât(P0)QX0 

and ^(A0—S)g91 (P0). By Proposition 2.7 AH0=X0. We prove that AH0Q@{P0) 
to complete the proof of (2). Set s(A)=A_1x0(A), AÇA. Then P0=Ag(TA)T, and 
for x£H0, P0Ax=Ag(TA)TAx=AQ0x=Ax. 

A number AÇC is a Fredholm point of T£B{X) if A—T is a Fredholm 
operator. Let n00(T) denote the set of eigenvalues of T of finite multiplicity. When 
Tis a normal operator on Hilbert space, then a Fredholm point of T with AÇ_o(T) 
is an isolated point of o(T) and A£nw(T). 

9* 
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In the next theorem we prove some results concerning eigenvectors and Fred-
holm points of S. 

Theorem 2.9. 
(1) Assume that 3A(S) is dense in X. For A0£a(S), Яо^0, either A0 is an eigen-

value of S, or â$(A0—S) is dense in X. When (Al) and (A2) hold, a(S) is the union 
of the point spectrum and continuous spectrum of S. 

(2) Assume Я£С, A^O. Then A is a Fredholm point of S if and only if A is a 
Fredholm point of TA. 

(3) When A£a(S), А ¿¿О, and A is a Fredholm point of S, then A is an isolated 
point of a(S) and ?.£n0Q(S). 

(4) If A.£n00(S),A9iO, then A is a Fredholm point of S and (A—S) has index zero. 

Proof. First we prove (1). Assume A0^0 and 91(Я0—5') = {0}. Then by 
Proposition 2.7 91(Я0-ГЛ)={0}, and since ТА is normal, we have ( A 0 - T A ) H 
is dense in H. Since 3i(S) is dense in X, it follows that 3%(A) is dense in X. Therefore 
A(A0— TA)H=(A0—AT)AH is dense in X. Thus, 3%(Ab-S) is dense in X. 

Now we prove (2). Assume Я^О is a Fredholm point of TA. Then ^R^ 38(H) 
and 3 F, G £ 38(H) with 3&(F) and 3Î(G) finite dimensional so that 

(A — TA)R = I— F and R(A-TA) = I-G. 
Then 

(A-AT^A-^ + A-i-ART) = /+ ART-AT-А~г ATARI = 

= I-A-1AT+A~1A(A-TA)RT= I-A~1AT+A-1A(I-F)T = I—A-1 AFT. 

Similarly, 
(A^ + A^ARI^A-AT) = I — ).~1AGT. 

Therefore Я is a Fredholm point of S=AT. The converse is proved in exactly the 
same way. 

Now assume as in (3) that A.^a(S), A?±0, and Я is a Fredholm point of S. 
By (2), Я is a Fredholm point of ТА. Since ТА is normal, this implies that Я is an 
isolated point of а (ТА) and X£n00(TA). Then by Theorem 2.1 Я is an isolated point 
of <7(5). Also, by Proposition 2.7 $ГС(Я-5) = Л$П(Я-ТА). Since A is one-to-one 
on ЩА-ТА), ЩА-S) has finite dimension. Therefore AÇn00(S). 

Assume ?.£n00(S), A?±0. Then just as above, A£n00(TA). Since TA is normal 
Я is a Fredholm point of ТА and an isolated point of <т(ТА). Thus, by part (2), Я is a 
Fredholm point of S and an isolated point of о (S). It follows that A—S has index 
zero [13, VI, Theorem 4.5]. This proves (4). 

For an operator T£B(X), let 

W(T) — {Я^С: A—T is not a Fredholm operator with index zero}. 
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The set fV(T) is called the Weyl spectrum of T. When T is a normal operator on 
Hilbert space, 

W(T) = a(T)\nm (T). 

When this equality holds for some T£3$(X), then one says that Weyl's Theorem 
holds for T; see [3]. 

Parts (3) and (4) of Theorem 2.9 imply the following corollary. 

Corollary 2.10. When 0$Tt00(S), then W(S)=o(S)\n00(S). Therefore in 
this case Weyl's Theorem holds for S. 

An operator T£3$(X) is a Riesz operator if the nonzero spectrum of T con-
sists of poles of finite rank of the resolvent of T. This implies that a{T) is either 
finite or a sequence converging to zero, and cr (T) \ {0}cn 0 0 (T ) . Every compact 
operator is a Riesz operator. 

Proposit ion 2.11. If S is a Riesz operator, then TA is compact and S2 is 
compact. 

Proof. Assume S is a Riesz operator. If S has no nonzero eigenvalue, then 
<7(S) = {0}, which implies a(TA)=0. In this case TA=0 and S2=A{TA)T=0. 

Now assume S has a nonzero eigenvalue, and let {At}fcgl be the sequence of 
distinct nonzero eigenvalues of S (of course, this set may be finite). For each k 
let Xk be the eigenspace of S corresponding to the eigenvalue Xk. Since S is a Riesz 
operator, ¿¿->0 and each Xk is finite dimensional. By Proposition 2.7 Xk is an 
eigenvalue of TA and Xk=A9l(Xk—TA), Clearly ,4 is one-to-one on 
yi(Xk-TA), so y\.{).k-TA) is finite dimensional. Then as TA is normal, TA must 
be compact. It follows that S2—A(TA)T is compact. 

Theorem 2.12. Assume S is a Riesz operator. Let [y-k}ksl be the sequence of 
distinct nonzero eigenvalues of S, and let Xk be the eigenspace of S corresponding to 
the eigenvalue Xk, fcsl. Then there exists a sequence of projection operators, 
{Pk}Q3S(X) with PkPj=0 if k^j, SPk=PkS=XkP, and M(Pk)=Xk, km I, such 
that for all x£X, 

Sx = AkPkx + Nx. 
kisl 

Here N is the nilpotent part of S. Furthermore, for //S2, 

5»= 2 W 
I t s 1 

where convergence is in the operator norm. 

Proof. By Proposition 2.11 TA is compact. Let Ek be the orthogonal projec-
tion with range the eigenspace of TA corresponding to Xk. Define Pk=?.k1AEkT, 
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¿ S i . Then 

PkPj = Xk
1Aj1 AEkTAEjT = Xk

1AEkEJT = * * * j} 

Also, SPk=Xk
1ATAEkT=AEkT=XkP, and similarly, PkS=XkP. 

Since SPk=XkPk, it follows that @(Pk)QXk. Now by Proposition 2.7 Xk = 
=A9l(Xk-TA). If x£Xk, then choose y with TAy=Xky and x=Ay. Then 
Pkx=Xk

 1AEkTx=Xk
 1AEkTAy=AEty=Ay=x. This proves M(Pk)=Xk. 

Let E0 be the orthogonal projection with range 91 (TA). Since TA is normal and 
compact, for every ydH we have 

y= 2E*y+E<>y-km l 
Thus, for x£X, 

Tx= 2 EkTx+E0Tx, 
ksi 

and applying A, 

Sx = ATx - 2 AEkTx+AE0Tx = 2" XkPkx + Nx. 
ks 1 ftSl 

Finally for ws2 , (TA)"~1= 2 Mi'1^, so 
km l 

S" = AiTAf-^T = 2^lPk-
kmi 

The next result concerns the restriction of S to a closed 5-invariant subspace 
of X. It has application to the situation when X=L°°(Q, n), where Q is a locally 
compact Hausdorff space and p is a regular Borel measure, and S£3$(X) leaves 
invariant the subspace of bounded continuous functions on Q. 

Proposit ion 2.13. Assume S=AT where TA is self adjoint. Assume Y is a 
closed S-invariant subspace of X. Let S be the restriction of S to Y, so S£38(Y). 
Then § has a self adjoint factorization through Hilbert space. Furthermore, a (S)^ 
i<7(5) U{0}. 

Proof. Let 8 be the closure of T(Y) in H. Define f : Y—H by f ( y ) = Ty 
for y£Y. Define A: H-Y, A(z)=Az for z£H. Here one notes that A(T(Y))gY, 
so A(H)QY. Then S=AT and TA is selfadjoint in ft. In fact, since A(fl)<gY, 
we have TA(H)QT(Y)Qff. This last inclusion shows that H is 7V4-invariant. 
It follows that o(fA)Qo(TA)U{0}. Therefore <7(S)g<7(S)U{0}. 

3. Examples. This section is devoted to examples of classes of operators on 
Banach spaces which have selfadjoint or normal factorizations through a Hilbert 
space. The specific operators involved are of the type that occur commonly in oper-
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ator theory and the applications of operator theory. There are also a few examples 
of operators which are closely related to selfadjoint operators, but which do not 
have a selfadjoint factorization on Hilbert space. 

Example I. Let H be a Hilbert space. Assume V, W, R£@(H) with R^O 
and WV selfadjoint. Then VRW has a selfadjoint factorization through H. For 
set T=Rll2W and A = VR1'2. Then A, S=AT and TA=Rll2WVRl12 

is a selfadjoint operator. 
Specific examples of operators S of the type considered above are well known 

in operator theory; see [10, p. 345]. 

Example II. Let X be a Banach space with a bounded pre-innerproduct (x, y), 
x,y£X. This means that the form (x,y) has all the properties of an innerproduct 
except that 

K = {x£X: (x,y ) = 0 for all y£X} 

may be nonzero. Also, that the form is bounded means 3 C > 0 such that 

|(x,j)| == C M I I J I I (x,y£X). 

The quotient space X/K has an innerproduct determined in the natural way 
(x + K,y + K) = (x,y) (x,ydX). 

Let H be the completion of X/K in the norm determined by the innerproduct. Many 
authors study operators in 38 (X) which are selfadjoint with respect to a given bounded 
innerproduct on X; see for example [10, Chapter 9]. We consider the case where 

S has an adjoint S*€&(X) where (Sx, y)=(x, iS1*» for all x,y€X, 
and 3 / > 0 with 
( i f ) I \ S x \ \ x ^ J { x , x ? l * (x€X). 

Using the special assumption ( t ) , we will show that S has a factorization through H. 
Note that (if) implies that S(A:)={0}. Then S determines an operator S: X/K+X 
in the natural way 

S(x + K) = Sx (x£X). 
(#) implies that 

|| S(x+K)\\x^J(x + K,x+K)1'2 (x€ X), 

and it follows that S has an extension to a bounded linear operator A: H—X with 
A(x+K)=Sx for all xdX. Let T: X^H be given by Tx=x+K. The fact 
that the pre-innerproduct is bounded implies the continuity of T. Then Sx=ATx 
for all x£X, and 

TA(x+K) = Sx+K (xeX). 

It follows immediately that when S=S*, then TA is selfadjoint. When 5 is normal 
further argument is necessary. First, let W be the adjoint of TA on H. Note that 
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S*(X)={0} since (Sx, Sx)=(S*Sx, x)=(SS*x, x)=(S*x, S*x) for all x£X. 
Let S* be defined on X/K in the usual way, S*(x+K) = S* x+K. For x, y£X, 
(x+K,W(y+K))=(Sx+K,y+K)=(x+K,S*y+K). Therefore W(y+K) = 
= S*y+K for all yeX. Thus, for y£X, 

(TA) W(y + K) = SS*y + K = S*Sy + K= W(TA)(y + K). 

This proves TA is normal on H. 
Note that in the situation describe above, TA is the unique extension of S to an 

operator on H. By the theory in Section 2, S and this extension have essentially the 
same spectral theory. 

Now we consider a specific class of examples where this discussion applies. Let 
(£}, N) be a cr-finite measure space, and let X=L2=L2(Q, N). Assume Q£L°°(Q) 
with g ( 0 = 0 a.e. on Q. Define a pre-innerproduct on Zb y 

(/ g)a = J f(x)W)eix) dpix) (f,g£X). 
(2 

Then 
\ ( f g ) e \ 3= l i e n - l l / l l M ( f . g e x ) , 

so this pre-innerproduct is bounded. Let V£3&(X) be selfadjoint, and define 
se@(x) by 

S ( f ) = v(Qf) (fex). 

It is easy to verify that S satisfies (if): For f£X, l|S/ll = ||K(g/")||^||F|| ||e/l|=i 
S||K|| ||e||i£2( f \f(x)\2Q(x)d[i(x))"2. Also, 5 is symmetric with respect to the 

n 
preinnerproduct: 

( S ( f ) , g)0 = J v(ef)gQ dp = (V(Qf), eg) = (,of.; V(eg)) = (/, s(g))e. 
Si 

In this case H=L2(Q), the L2-space corresponding to the measure Q dpi. Then S 
has a selfadjoint factorization S=AT with TA the unique extension of S to a 
bounded selfadjoint operator on L2(Q). As noted before, the spectral theory of S 
on L2 is essentially the same as that of the selfadjoint operator TA on L2(Q). 

Now we give an example of an operator selfadjoint with respect to an inner-
product which does not have a selfadjoint factorization through Hilbert space. Let 
X be the disk algebra; the algebra of all continuous complex-valued functions defined 
on the closed unit disk D, and holomorphic on the interior of D. Define a bounded 
innerproduct on X by 

(/.*).= ¿/(»-^iOO»-2 (f,g$X). 
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Let S£®(X) be given by 

S(f)(z) = zf(z) (ztDJeX). 

Then S is selfadjoint with respect to the given innerproduct. But a (S)=D, so S 
has no selfadjoint factorization on a Hilbert space. 

There is an extension S of S to a selfadjoint operator on H, the comple-
tion of X with respect to the innerproduct. The vectors in H are sequences in 
l2(n~2), and 

It is easy to see that S is a Hilbert—Schmidt operator on H. Thus, there exists a 
Hilbert—Schmidt operator on H which when restricted to an invariant Banach 
subspace of H no longer has the properties of a selfadjoint operator. 

Example III. Let (Q, ¡1) be a measure space with ¡i a finite measure. We set 
LP=LP(Q,n) for l ^ g o o . Assume S: LX^LT. Then for l ^ S ^ 

S(LP) Q SiL1) Q L°° c u . 

It is straightforward to check that S is closed as an operator from LP to LP. Thus 
for each p, S determines a bounded linear operator Sp: LP^-LP. We prove that 
for each p, Sp has a factorization through Hilbert space. First consider the case where 

Then 
S(Lp) g L" g L2, and L2QL". 

Let T: Lp—L2 be determined by S1 (again, T is closed, hence continuous). Let A 
be the continuous embedding of L2 into LP. Then SP=AT is a factorization of Sp 

through L2. Note that T A ( f ) = S(J) for all f£L2, so TA = S2. 
Now suppose 2 i n which case 

S(L2) g L~ g LP, and Lp g L2. 

Let T be the continuous embedding of LP into L2, and let A be the bounded linear 
operator from L2 into LP determined by S. Then SP=AT is a factorization of Sp 

through L2, and TA = S2 on L2. We summarize these results in a theorem. 

Theorem 3.1. Let (Q, ¡i) be a finite measure space. Assume S: L1-*L°°. Then 
for each p, 1 S determines an operator Sp£88(LP), Sp has a factorization 
Sp = AT through L-, and TA = S2. Therefore if S2 is normal then the factoriza-
tion is normal. 

Now we look at two specific classes of examples where Theorem 3.1 applies. 
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Corollary 3.2. Assume (Q,n) is afinite measure space and that KdLT (QxQ). 
Let S be defined by 

s(f)(x)= fK(x,t)f(t)dp(t) (/ez,1). 

Then S(L1)QL°°. If S2 is a normal operator, then Sp has a normal factorization 
through L2 for 1 gpgoo. In particular, if K(x, t)=K(t,x) a.e. on QXQ, then Sp 

has a self adjoint factorization through L2 for all p. 

Corollary 3.3. Let ip(t) and cp(t) be complex-valued measurable functions on 
(a, b) with 

(i) \\]/(t)\ increasing on (a,b); 
(ii) \(p(t)\ decreasing on (a, b); 

(iii) (p\p£LT[a, b]. 
Define 

K ' [(p(t)\j/(x) a ^ x ^ t s b. 

Let S be the integral operator determined by the kernel K. Then S: Ll[a, b] -~L°°[a, b] 
and S2 is selfadjoint. 

Proof. It is straightforward to check that K{x, t) is bounded. 

Example IV. Let ^ b e a Banach space which is a subspace of a Hilbert space 
H with X continuously embedded in H. Assume R£3$(H) with R selfadjoint (or 
normal) and suppose R(H)QX. Let S be the restriction of R to X. It is easy to 
check that S is closed on X so Si28{X). Let T: X-+H be the continuous 
embedding. Define A: H^X by Ay=Ry, y£H. Again, A is closed, hence con-
tinuous. Then S=AT and TA=R. Examples of this type are quite common. 

Here is a specific example. Let G be a locally compact unimodular group with 
a fixed left Haar measure. Fix k£L1(G)CiL2(G) such that k(x~1)^k(x), x£G. 
Then k(xt_1) is a selfadjoint kernel, and the corresponding convolution operator 

R(f)(*)= f k(xt~x)f(t)dt (/€L2(G)) 
G 

is selfadjoint on L2(G). Let X be the Banach subspace of L2(G) consisting of all 
those f£L2(G) which are continuous and bounded on G. By [9, (20.19) (iii)] 
R(L2(Gj)QX. Thus, as indicated above the operator S£@(X) defined by 

S(f)(x)= f k(xrx)f(t)dt ( f i X ) 
G 

has a selfadjoint factorization through L2(G). 
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We give one more specific class of examples. Let X=L2[0, °°)nLp[0, •») for 
some p, 1 or let X be the set of f£L2[0, which are bounded and con-
tinuous on [0, For <p, ipdX, let K(x, t) be the kernel 

~ \<p(t)il/(x) Osxgi. 

Let R be the selfadjoint operator on L2[0, °o) determined by this kernel. For 
/ € L 2 [ 0 , + 

X oo 

R(/)(x) = W ) J xl>(t)f(t)dt + W ) f <P(t)fO)dt. 
o * 

For x^O, f£L2[0, oo), 

i « ( / x * ) i s i9»(*)iii^iiBii/ii2+i^(*)i II^II, «/a«. 

This inequality proves that R(J)£X. Thus, as before, the integral operator S on 
X determined by the kernel K has a selfadjoint factorization through L2[0, oo). 

Example V. Let (i2, /i) be a c7-finite measure space. We construct a class 
of operators on L°° (and later on V) which have a selfadjoint factorization through L2. 
If / and g are measurable functions on 

Q with JgdL\ then let (J,g)= f fg dp. 
Assume ° 
(*) V: L1 —• L°° with (V(f), g) = (/, V(g)) for all f,gdL\ 
Assume k^L1, fcsO a.e. on Q. Define T: L°°->L2 by 

T ( f ) = W f (/€L°°). 
Define A: L2+L°° by 

A ( f ) = V ( k ^ f ) (/6L2). 
For f£L2, 

U f I U = F ( £ 1 / 2 / ) l l - S F l l l l ^ 1 / 2 / l l i S ||K|| | |&1 /2 | | i | | / | | 2 

where the last inequality follows by applying the Cauchy—Schwarz Inequality. 
Therefore A is bounded. Thus, S=AT: LT^LT, 

S ( f ) = V(kf) (feL~), 

has a factorization through L2. We check that TA: L2-+L2 is selfadjoint. For 
f,g£L2, kll2f and kV2g are in L1, so using (* ) we have 

(TA(f), g) = (k^Vik^f), g) = (Vik^f ), kV*g) = (k1'2/, V(k1/2g)) = (f,TA(g)). 

Now we consider a related operator on L1 that factors. Again, assume V is 
as in (*), and k£L\ k^0 a.e. on Q. Define T\ Z,1—Z,2 by 

T ( f ) = W*V{f) (/(¿L1), 
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and A: L2—L1 by 
A ( f ) = k^f (feL>). 

Then R=AT: 
R ( f ) = kV(f) (/CL1), 

and a computation similar to that above proves that TA is selfadjoint on L2. 
We summarize this discussion in a theorem. 

Theorem 3.4. Assume V: L1-*L°° with (V(f),g)=(f V(gj) for all fgtL1. 
Assume k^L1, k^Q a.e. on Q. Then S: L°°—L°° and R: LX-~LX defined by 

S ( f ) = V(kf) (/6L-), 

R ( f ) = kV(f) (/6L1), 
/iflfe selfadjoint factorizations through L2. 

Next we give some examples of operators V which satisfy (*). 

Proposit ion 3.5. Let (O, n) be a a-finite measure space and assume 
K£L°°(QXQ) with K(x, t)=K(t,x) a.e. Let V be the corresponding integral operator 

V(f)(x) = ¡K(x,t)f(t)dt (ffM(Q)). 
A 

Then V satisfies (*). 

The proof is elementary, so it will not be given. 

Proposit ion 3.6. Assume q> and are C-valued functions on (0, with 
(i) |<K0l is increasing on (0, 

(ii) | <p (i)| is decreasing on (0, + 
(Hi) <pHL~(0, 

Let 

K ( x , t ) = f f m o ^ / s x , 
v ' [<p(t)ll/(x) O s x g l . 

Let V be the integral operator determined by the kernel K. Then V satisfies (*). 

The proof of this proposition is straightforward. 
Now, without providing the details, we discuss two concrete situations involving 

kernels of the types in Propositions 3.5 and 3.6. Let W be the space of all bounded 
C-valued continuous functions f on (0, such that / ' exists and is continuous 
on (0,°°), and /"(x) exists for a.e. x in (0, <*>). Assume (?(i)>0 on (0, and 
Qev-fo, °o). Fix 0>o. 

First consider the differential operator 
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with domain ¡¿(L)QL°°(0, given by 

3(L) = {fÇtV: Q{trl{r{t) + a*f{t))dL-{Q, «,)}, 

and L ( f ) = e ( 0 _ 1 ( / " ( 0 + « 2 / (0) for №(L). 
Let 

K(x. t) = - a ~ f ° S 

Ism 

K(x, t) is a bounded kernel. Set J(x, t)=K(x, t)g(t), x, t>-0, and let S be the 
integral operator on L°°(Q, determined by J . By Theorem 3.4 S has a self-
adjoint factorization through L2(0, »). Also, S is a right inverse for L, meaning 
S(L°°)Q@(L) and L(S ( / ) ) = / for /€L°°. In addition, S is a Fredholm inverse 
for L. 

Let W, g, and a be as above. We consider a second differential operator 

K is a kernel of the type considered in Proposition 3.6. Set J(x, t)=K(x, t)g(t), 
x, t>0, and let S be the integral operator on LT(0, with kernel/. By Theorem 3.4 
S has a selfadjoint factorization on L2{0, =»). Again in this case S is a right inverse 
of L and a Fredholm inverse for L. 

Example VI. Let g(t) be the weight function on [0,1] defined by q(t)=e1", 
0 < f ^ l . Let L2(Q) be the Hilbert space of ZMunctions on [0,1] relative to the 
measure q(t) dt. Let £2=L2[0,1], and note L2(q)QL2. We construct a selfadjoint 
Hilbert—Schmidt operator S on L2(Q) such that S has an extension S^SS (L2) 
such that S is not compact and a(S) is not a subset of R. 

Let K(x, t) be the kernel 

with 
3{L) = {f<LW: e(tr\f"(t)-a2f(t))tL~(p,~)}. 

Let 

(1) K is a Hilbert—Schmidt kernel on L2(Q). 

Proof. First note that 
X X X 

f e-(1/o dt = f t2(r2e-(1"ï)dt s X2 f t~2e~(x,,) dt = x2e~^x>. 
0 0 0 



142 Bruce A. Barnes 

Then 
1 1 1 X 

f [ f K{x, tfe(t)dt)e{x)dx = J x-2e(x)[f e_ ( 1 / , ) cfrj dx =g 
0 0 0 0 

1 
f x-2

e(x)[x2e-<-1'^]dx = 1. 
o 

Let T be the Hilbert—Schmidt operator determined by the kernel K. The adjoint 
kernel of K, K*, is given by 

K*(x - i ° 0 S / < x S 1, 
A 1 ' l ) ~ I f - ^ i x ) - 1 O s x s i s l . 

The corresponding operator is the adjoint of T. Let S= T+ T* on L2(q). S is 
determined by the kernel K+K*, so for f€L2(o), 

S(f)(x) = f K(x, t)f(t)Q(t) dt + f K\x, t)f(t)Q(t) dt = 
o 

l 

Let 

= x - 1 / f(t)dt + Q(x)-x f t-x
Q(t)f{t)dt. 

0 * 

i o O s / < i s i , 
{ x ' 0 ~ X o M - ^ e O ) O s x s i s i . 

(2) J is a Hilbert—Schmidt kernel on L2. 

Proof. For x > 0 
1 1 r i l l 

f J(x, t f d t = Q(X)~2 J r2e2"dt = e(x)-2[-ye2 + y 

which is a bounded continuous function of x on (0,1]. 
Define S on L2 by 

S(f)(x) = x-1 f f ( t ) d t + f J(x, t)f(t)dt. 
0 0 

The first summand is the Cesaro operator on L2[0, 1], while the second, as verified 
in (2), is a Hilbert—Schmidt operator on L2. The Cesaro operator is studied in [4] 
where it is verified that it is bounded on 1?. Thus, S£B(L2), and by definition S 
is an extension of S. Now the Cesaro operator has spectrum a disk [4], and the 

i 
operator /-»• J J(x, 0 / ( 0 dt is compact. These two facts imply that S is not com-

o 
pact, and that a(S) is not a subset of R. 
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4. Regularity, hyperinvariant subspaces. Let si be a commutative Banach alge-
bra with unit. We denote the Gelfand space of si by Q^ (Q^ is the set of all nonzero 
multiplicative linear functionals on si equipped with the relative weak-*topology). 
For f£si, let / denote the Gelfand transform of / , so f(ip)=ip(f) for i 
A subset D of si strongly separates points of Q^ if whenever {¡/1, i i / ^ 7^2, 
then 3/€!> with /OA^M/OAa), and whenever 1 3 g € D with g(ip)^0. The 
algebra si is regular if whenever T is a closed subset of Q^ and 1p£ QJ\T, then 
3 f £ s i such that /(jT) = {0} and f(ip)^0. Let rad (si) denote the Jacobson 
radical of si. A good reference for the theory of Banach algebras is [5]. 

Now we prove a general result in a Banach algebra setting which applies to 
operators S that have selfadjoint factorizations. Some form of this result is certainly 
known (see [8]), but we include it since the proof is short and elementary. 

Theorem 4.1. Let SB be a regular commutative semisimple Banach algebra with 
unit. Let si be a commutative Banach algebra with unit. Assume cp: 08—si is a 
unital algebra homomorphism such that <p(SS) strongly separates points of Q^. Then 

(1) si is regular; 
(2) Assume S£ä$(X) and si is a closed subalgebra of ¿S(X) with S and I in si 

Such that si satisfies the hypotheses of the theorem. Also assume that si has the prop-
erty that when R£SS(X) and RS=SR, then RT=TR for all T£si. If o(S) 
contains more than one number, then S has a proper closed hyperinvariant subspace 

Proof. Define T: Q^Qm by T(Ip) = ipo(p. Then T is one-to-one and con-
tinuous. Now assume f is a closed subset of Q^ and 1/̂ 6 Q J \ T . Since T is compact, 
t(T) is compact, and also, t(iPM*(0- Then 3 / 6 ^ suchthat /(z(r)) = { 0} and 
/(T (iAi)) 5̂ 0- This proves si is regular. 

Now assume S and si are as in (2). By hypothesis a(5) contains at least two 
points. Since o(S) Qa^(S), o^(S) contains at least two points. Thus, 3<Ai, <p2£ 
with ip19iip2, then r(\pj)9ir(\p2) so we can choose f suchthat / ^ ( 1 / 0 ) ^ 0 , 
k = 1,2, and Af2=0. Therefore q>(fk)^0, k = \,2, and <p(/iM/2)=0- Let W 
be the closure of (p(f2)X in X. W is proper since (p(f1)fV={0}. If R£@S(X) com-
mutes with S, then R<p(f2) = cp(f2)R, so R(W)QW. 

Theorem 4.1 applies to the situation where S has a selfadjoint factorization on 
Hilbert space. The map q> involved is the operational calculus. As part of the proof 
of this result, we prove a preliminary proposition. 

Let A be a compact subset of C. For /£BM (A), define 

l l /L = sup{|/(A)|: AiA). 

Also, let C(A) denote the algebra of all complex-valued continuous functions on A. 
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Proposit ion 4.2. Assume that S has a selfadjoint factorization through Hilbert 
space. Also, assume that (Al) and (A2) hold. Set A=a(S). Define 

J?={fdC(A): 3g£C(A) with /(A) = Ag(A) on A}. 

Let 38 be J with a unit adjoined. Let si be the closed subalgebra of 38 (X) generated 
by S and I. Then 38 is a regular semisimple Banach algebra, and 3(P- 38—si with 
cp a continuous unital algebra homomorphism such that (p(38) separates points of Q^. 

Proof. One easily checks that J is an ideal in C(A) and that J is a Banach. 
algebra in the norm ||/|| =max( | | / |U ||gL) where gdC(A) with /(A) = 
=Ag(A) on A. It follows that J , and hence 38, is a regular semisimple Banach 
algebra. 

Now For / £ . / , let <p(f)=f(S), and extend <p to 38 by setting 
(p(l)=I. Note that <p is continuous on J by Theorem2.4 (3). We still must check 
that <p(J)Qsi. Assume /£,/" with g£C (A), f(?.)~ XgQ.) on A. Choose a sequence 
of polynomials {tf„(A)} such that lk„-gn |L-0. Set pn(X)=lqnQ), so 
Then ||p„—/L—0, so />„—/ in the norm on J. Therefore {pn(S)}Qsi and 
Pn(S)*f(S) in 38(X). Thus, f(S)dd. Finally, q>(38) separates points of Q^ 
since I, S£ cp (38). 

Theorem 4.3. Assume S£3$(X) has a selfadjoint factorization through Hil-
bert space. 

(1) If a(S) contains at least two numbers, then S has a proper closed hyper-
invariant subspace. 

Let si be the closed subalgebra of 38(X) generated by S and I. Assume (Al) and 
(A2) hold. Then 

(2) si is a regular Banach algebra, rad {¿¿)2 = {0}, and SR=RS=0 for all 
Rd rad(.«0; 

(3) If 3k(S) is dense in X or 5R(S) = {0}, then si is semisimple. 

Proof. If S^O and 9i(S)Ti{0}, then 91(5) is a proper closed hyperinvariant 
subspace of S. Thus we may assume 5R(iS) = {0}. Let N be the nilpotent part of S. 
Since SN=0, in this case N=0. Then by Propositions 1.2 and 1.3 we may assume 
that S has a factorization S=ATW\ih TA selfadjoint such that (Al) and (A2) hold. 
If TA is invertible, then by Proposition 1.3 S is invertible. In this case S is similar to 
the selfadjoint operator TA. It follows easily that S has a proper closed hyper-
invariant subspace (assuming CT(.S) has more than one point). Thus, to establish 
(1) we may assume (Al) and (A2) hold. 

Assuming (Al) and (A2) hold, Proposition 4.2 applies. Then Theorem 4.1 proves 
(1) and that si is regular. 
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Now assume Rdra&(si). Choose a sequence of polynomials {p„(A)} such 
that pn(S)—R in si. Since si is a closed subalgebra of SS(X), the spectral radius of 
V£si relative to si is the same as r(V), the spectral radius of V in B(X). Now 
r(pn(S))-*r(R)=0. Since (7(pn(S)) = {pn(fi): p£c(S)}, it follows that pn(l)-~0 
uniformly on A. Therefore by Theorem2.4 (3) Sp„(S)-*0, so SR=0. Also, it 
now follows that Rp„(S)=p„(0)R, and since />„(0)—0, we have R2—0. This com-
pletes the proof of (2). 

(3) follows easily from the fact derived in (2) that for J?6rad (si), SR=RS=0. 
In our final result, we show that when S has a selfadjoint factorization through 

Hilbert space, then S can be approximated by operators which are similar to self-
adjoint operators. 

Theorem 4.4. Assume S£&(X) has a selfadjoint factorization through a Hil-
bert space, and that (Al) and (A2) hold. Then there exists a collection of projection 
operators {PE}E^0Q3S(X) such that PES=SPC for £>0, and 

(i) PES considered as an operator on PE(X) is similar to a selfadjoint operator for 
each e>0; and 

(ii) S is the strong limit as £->-0+ of SPE on X. 

Proof. Assume S=AT is factorization of S through H with TA selfadjoint 
and that (Al) and (A2) hold. Let A=o(TA). For let ,tj be the charac-
teristic function of the specified interval and set Et=X(_„, ¡¡(TA). Thus, {£,},eR is 
the usual spectral resolution of the identity for TA. In this situation the strong limit 
of E,—E0 as f— 0~ is the projection on 9l(TA) which is 0 by (Al) [11, p. 361]. 
Also, E, is strongly continuous from the right on R, so the strong limit of Ee—E_e=0 
as e—0+. Let be the characteristic function of (— e]U(fi, +<»). Then Qe= 
=Xe(TA)=I-(Ec-E-e) has strong limit / as £ -0+ . Let Pc=xe(S). Consider the 
operator SPC on the space Xe=PcX. Let Ht=QcH. Applying the operational 
calculus to the function Ax£(A), we have 

(1) SPC = AQBT. 

Then TA (TPe A)=T(SPE) A=T(AQeT) A by (1). Then TA (TPCA—QETA)=0, so 

(2) (TA)Qe = TP, A. 
Let 

Te = Q,TPt: X - H„ and Ae = PeAQc: H. - Xc. 

Then using (1) and (2) we have 

AETE = PEAQETPE = SPE, and TEAE = QETPTAQE = (TA)QE. 

Now let f(X)=X~1xE(l). Then TAf(TA)=Qe, while Sf(S)=Pe. Therefore TAQt 

10 
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is invertible on He and SPe is invertible on XE. By Proposition 1.3 SPe as an oper-
ator on Xt is similar to the selfadjoint operator TAQe on He. This proves (i). 

To prove (ii), recall that we have shown that / is the strong limit of Qz as e—0+. 
Then for x£X, QeTx-~Tx, and therefore by (1), 

SPex = AQcTx - ATx = Sx. 
Thus, (ii) holds. 
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Shorts of operators and some extremal problems 

E. L. PEKAREV 

0. Introduction 

Let J(? be a Hilbert space, i f its closed subspace, and A a non-negative oper-
ator in As M. G. KREIN [1] showed, the set of operators 

contains a maximum element, denoted by Ax and called the short of A to HP: 

The properties of the correspondence A>-*A# were studied in detail in [2] 
and found various applications to the theory of characteristic operator-functions 
[3,4], electrical networks [5, 6], Lebesgue decomposition of nonnegative operators 
and positive definite operator-functions [7—9], operator means [10] and other prob-
lems. The notion of short was generalized to the case of non-closed i f , which is 
the range of a bounded operator, and it became clear that shorting is closely con-
nected with the operation of parallel addition arising in the theory of electrical 
networks and with its inverse operation, parallel subtraction. 

A recent work of S. L. ERIKSSON and LEUTWILLER [13], related to parallel addi-
tion, indicates essential connection between shorts and extreme points of some set 
of operators. In the present note we continue the study of this connection, and also 
give proofs to some assertions, announced earlier in [12, 14]. 

For Hilbert spaces <$, Jf , let us denote by Jf ) the class of all bounded 
linear operators from <$ to JC. For i f c.?f and tf), we denote by 
T - ^ i c ^ ) the preimage of i f under T, Jr(T) = T~l{0} and 9l(T) = T$. When 

we shall write Jf). The class of all non-negative operators 
in is denoted by 38+ (¿e). 

Received March 7, 1990. 

(0.1) X(A, &) = {X: 0 s X s A , 0i(X) a i f } 

(0.2) Az = max 3C(A, i f ) . 

10« 
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1. Shorts and complements 

Let IS, tf be Hilbert spaces, T an operator JP). In ac-
cordance with [11] let 

{Jf}T = {A£a+(X): MiA1'2) 3 ®(T)}. 

[G T*~\ 
j ¿ for some 

G£39+(<&). If A£{Ji?}T, then among those G£38+(&) there is a minimum, called 
the complement of A relative to T denoted by AT. Namely, AT — WW*, where the 
operator <§) is uniquely determined by the condition 
(1.1) WAl!* = T*, Jf(W) zd^(A). 

If is invertible, then A£{yf}T for any and AT = 
= T*A~1T. In the general case by [2] the following identity is fulfilled 

(1.2) (ATg, g) = sup {(Tg, h) + (T* h, g) - (Ah, h)} = sup • 
híJír hZ>? (A"> " ) 

The class and the complement GTt€&+(Jf) are defined correspondingly. 
The mappings A^-Ar and G>-~GTt define a Galois correspondence between the 
classes and (if in these classes the order relations are defined inversely 
to the usual ones) [11]. This gives rise to a closure operations A<-*(AT)Tt^yT(A) 
and G<-+(GT,)T=yTt(G) in { j f } r and respectively. These operations are 
monotone in their respective classes. Thus if, for instance, A1 and A2£ {Jif}r and 
A^A2, then yT(A1)^yT(A2). Besides, for any A£{j>i?}T (G£{&}T*) we have 
yT(A)^A( y r , (G)sG). In case A—yT(A) (G—yT*(G)), then the operator A(G) is 
called T-closed (T*-closed). The class of T-closed (r*-closed) operators is denoted 
by [3f]T {№t*)-

The proof of the following theorem is found in [11]. 

Theorem 1.1. In order that an operator belongs to it is ne-
cessary and sufficient that the equality A~1!23%(T) = yP holds. 

Theorem 1.2. If 3%(T1)=@(T2), then W r , = M T , and 

yTl(A)=yTt(A) forany A£{J?}Ti. 

Proof. Since for any operator T 

( j f } T = {A£2$+(,?f): ¡%(A1,V) => 3t(T)}, 

{ j f } r ={^f}T j whenever á?(7,
1)=á?(7^). Now it follows easily from the preceding 

proposition that [3^]T=[3^]TT. Then yTt(yTl(A))=yTt(A) for any A£{JÍ?}t¡, 
hence yT¡(A)^A implies yTt(A)=yTi(A). Exchanging the roles of 7{ and T2, we 



Shor t s o f ope ra to r s 149 

have yTi(A)~yTi(A). Thus for any A€{J^}Tl the expected equality yTi(A) = 
=yTl(A) is satisfied. 

Corollary. If and |T*| = (7T*)1/2, then {*}t={X}\T*\ 
and yT(A)=yiTtl(A) for any A€{jf?}r. 

In many occasions it is convenient to use the following formula, established 
in [11]. 
(1.3) yT(A) = A1,2Pj(A1/2 (Ae{<r}T), 

where PM is the orthogonal projection to the subspace Jt—A~ll2&t(T). 
Suppose that there is given an operator range i f , that is, the range of a bounded 

operator. In view of Theorem 1.2 it is possible to define the classes 
and the operation y^(A). More precisely, if i?=.i2(T) for TdSS^S, j f ) with 
some <3, then let W ] s ! = W } T , y^(A)=yr(A) for Ae{M>}T. 

Formula (1.3) is written in the form 

(1.4) y^A) = A^P^A1'2 for A 

where PM is the orthogonal projection to the subspace Jt=A~1/2£f 

Remark that an operator range 3!x is contained in i f , i f j C i f ( c^f ) , then 
{ J ^ h d i ^ } ^ and for by (1,4), 

(1-5) yxM) ^ y&(A). 

Theorem 1.3. Let i f c i^ f be an operator range, and Then y#(A) 
is a maximum element of the set 

(i.6) se0(A,se) = {X: O^X^A,x-x>2se = 

In particular, if i f = i f , then y#(A) is also a maximum element in the set (0.1). 

Proof. Remark that if XdSC^A, i f ) then Xf^0(A, i f j too, where ifx== 
=^(X 1 / 2 )Di f is also an operator range (see [15]). Here and further 
more XelJf]^, because I F ^ F ^ t f . Therefore X=y^(X)^y S i (A) because 
of the monotoneness of and it follows from (1.5) that X^ yy(A). Together 
with y^>(A)(e[^]), by Theorem 1.1, (A, i f ) contains 

y*(A) = max&0(A, i f) . 

Suppose, in particular, that i f = i f . Then we have by (1.4) 

®(y#(A)) c m(yseiAf'2) = ®(A^PJt) c if, 

hence yz(A)d 9C(A, i f) . Since obviously ST {A, y)<z&0(A, i f) , y^(A) is a maximum 
operator in 2£(A, i f ) , what is to prove. 
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Now consider an arbitrary operator range i f c . ? f and an arbitrary operator 
not supposing With Jg^=J2f D@(A1 / 2) , we have A£ {¿V}^ 

and &0(A, &)=SC0(A, if,). Therefore according to Theorem 1.3 the set &0(A, i f ) 
has a maximum element max ¿£0(A, S^)—yXi(A). As in Theorem 1.3 it is not difficult 
to see that if l £ = S e then max 3T0(A, i f ) = m a x SC(A, i f ) . 

In accordance with (0.2) let us introduce 

D e f i n i t i o n [12]. The short of an operator ( J f ) to an operator range 
i f c . ? f is the operator, defined by the relation 

(1.7) Ax = max&0(A, i f ) . 

Since AJ?=ySfi(A) with i f x = i f D^(A1/S), by (1.4) we have immediatley the 
following representation: 

Theorem 1.4. If and i f is an operator range c ^ f , then 

(1.8) Aa = AWPjtA1!* 

where PM is the orthogonal projection to the subspace Jl=A~1/2£C. 

Corol lary 1. (A%^(AX)2 . 
In fact, let J l J i ^ — A ^ S S , and PM and PM the orthogonal projec-

tions to Jt and Jtx, respectively. If then Ag£&, and AV2g£A~v2^aJi. 
Therefore PM A1'2(I-PM)=0 and for any /ig^f we have the inequality \\PM A1/2h\\ = 
= IIAY2(/-PJH\\ + IIPJT,Av*PJM ||All2PMh\\. This implies that A^P^A1'2^ 
= pMa pM> and hence AP^A^A^P^AP^^ 1 ' 2 . The last inequality means, by 
Theorem 1.4, that (A%^(A^,)2. 

Corol lary 2. Ax=A3i if and only if ^ - 1 / 2 ^ = ^ - 1 / 2 ^ In particular, 

A<e=A-z if and only if A~1/2£'=A-1l2&. 

It is easy to construct an example in which the last equality does not take place 
In fact, if = and h0^{A1/2), let & = {A1'2h: h i t f , h±h0} to 
get h o ± A = ^ . Then as 

Clearly if j S ? = ^ ( c j f ) , Ae®+ (3?) and i ? ' = ^ f © i f , then with respect to 
the orthogonal decomposition ¿P = i f © i ? ' , we have a matrix representation of 
operators 

where A0=A11—(A22)ai1, hence by (1.2) 

(1.9) (A*h,h)= mf(A(h+g),h + g) (h€JT). 
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In concluding this section, remark that in case i f = i f . the operator 
A^(=max 3i(A, i f ) = max ¿F0(A, i f ) ) becomes, obviously, the maximum in the set 

(1.10) 3C\A, i f ) = {X: 0 s X s A , « ( . X c i f } 

(because ST (A, £C)=S:(A, i f ) incase £C = 1?.) If i f as shown in the fol-
lowing section, the sets (0.1) and (1.10) do not contain maximum elements in general. 

2. Short, parallel addition and parallel subtraction 

In the theory of electrical network the parallel sum of invertible operators 
(matrices) A and B corresponding to the impedances of branches of the network, 
is the operator A:B=(A~1+B ~1)~1, which becomes the impedance of the parallel 
connection of those branches. When A and B are non-negative, their parallel sum is 
suitably defined [16, 5, 11]*). 

Let be a Hilbert space, and A, The operator 

acting on the space belongs to so that A+B£{J^}a and 
A^(A+B)a. 

Def in i t i on [5, 11]. The operator 

(2.2) A:B = A — (A+B)a ( s O ) 

is called the parallel sum of A and B. 
It is clear that if A and B are invertible then 

A:B = A-A(A + B)~XA = A(A + B)~xB = + 

Since the short of the operator A in (2.1) to the first component J? coincides 

with ^ ¿ ^ QJ> we have from (1.9) 

(2.3) ((A: B ) f , f ) = inf {(Ag, g) + (.Bh, h)}. 
g, ntir 
g+h=f 

*) Remark that in a number of papers the operation of parallel addition is extended to a 
wider class of operators, in particular, to a class of non-linear operators [17, 18, 19]. 
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The following properties of parallel sum follow easily from (2.2) and (2.3) (see, 
for instance [5, 6], and also [11]): 

(2.4) . A:B = B:A, (A:B):C = A:(B:C) 

(2.5) C(A: B)C =§ (CAC): (CBC) 

(2.6) (A + B):(C + D) s? A:C + B:C 

(2.7) A J A, BJB~ A„:B„lA:B 

(2.8) ((A: B)1'2) = 91 (A1*2) fl 3k (B1'2). 

All operators in (2.4)—(2.8) are assumed non-negative. Notice that without 
any additional condition in (2.5) equality sign may not occur even in the two dimen-
sional case. 

Example. Let "J an<^ f ] w ^ e r e 0<a, /J<1, a^J? and 

C=Jq ¡J . Then equality sign does not occur in (2.5), because 

where A =det (A + B)=4—(a + P)2. 

Lemma 1. If A,B,C£38+(3V), and 3i(A)+3l(B)<z3$(C), then 

C(A:B)C = (CAC): (CBC). 

Proof. With Se=m(C) and h'=Cli, using formula (2.3) we have 

((CAC):(CBC)f,/) = mf {(AC(f-h),C(f-h)) + (BCh,Ch)} = 

= mf {(A(Cf- h'), Cf-h') + (BW, h')}. 

The infimum does not change even if <£ is replaced by i f . On the other hand, put-
ting g-h'+h", where h' runs over and h" over ^ © i f , since Ah" = Bh" = 0, 
we have 

(C(A:B)Cf,f) = M{(A(Cf-g), Cf—g) + (Bg, g)} = 

= in! {{A (Cf- h'), C f - h') + (Bh', //)}. 
h'tse 

This completes the proof. 
Remark that all operators in (2.7) are invertible then convergence from above 

can be changed to convergence from below, though this is not the case in general. 
At the same time parallel sum becomes a non-decreasing function of "summands", 
and 0^A:B^A,B. Hence for any non-decreasing sequences {An}, {Bn}c3S+ (J?) 
the sequence (A„\B„} is also non-decreasing, and if one of the given sequences is 
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bounded, then a limit lim A„:B„ exists. Supposing that An, Bn («=1,2, . . . ) are n 
invertible, let Alim A'1, Bm = lim B'1. Then it is clear that 

tt-*- O© lt-+00 

Let the sequence {A„\ be bounded and A= lim A„(=AZ1)- Then 

Aa:Bn = AB-A„(A„ + B„)-1A„-^ A-A(A„:B„)A 

and by Lemma 2.1 
lim A„:B„ = A-A:(AB„A). 
n -»-00 

It follows, in particular, that with A„—A and Bn—nB 

lim A'.nB—A 

for any invertible Here the last equality is obvioualy satisfied for any 
A£38+ (Jif), because 

A:nB = A-ACA + nB)-^ and (A + nB)-1 jO. 

For a non-invertible operator ( j f ) the following assertion is valid 
(see [12, 21]): 

Theorem 2.2. If A, (J^), then C— lim A:nB is a minimum non-negative 
It-*- o© 

solution of the equation X:B=A:B. 

Recall that if B, S^+W), then the equation X:B=S with unknowr 
has a solution exactly when B—S£[3f]B, and in this case there exists a t 

minimum solution. 

Definit ion [11]. The minimum solution of the equation X:B=S is called 
the parallel difference of operators S and B, and is denoted by S+B. 

We can prove that 

(2.9) S+B = (B-S)b~B = (B-S)s + S, 

hence by (1.2) we have 

(2.10) ((S+B)f,f)= sup{(S(f+g),f+g)-(Bg,g)} (v/€JT). 
et *e 

It is clear that if operator B—S is continuously invertible then Theorem 1.1 im-
plies that the parallel difference S -=- B exists, and by (2.9) 

S + B = BiB-S^B-B = B(B-S)-15. 
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Let us cite, for completeness, some properties of parallel subtraction, proved 
in [11] (provided that parallel subtraction in question exists): 

S S2, 5] G IJ ^ SI-RI, & S2 -I- B2 

S = A:B=> S+(S+B) = S+A 

S = A:B=>(S+B):(S + A) = S 

S.\S, AulA=>Sa + AmtS + A 

Given let JI(S) denote the class of those for which 
the equation A:X=S is solvable. When twice applied, the mapping A^—S + A 
defines a Galois correspondence between M(S) and J/(S): s-(S + A) = gS(A). 
Since B-S=(A+B)B for A:B=S, by (2.9) we have 

(2.11) es(A) = yB(A + B)-B. 

Remark that if AdJi(S), then A:B=S for some hence by 
Theorem 2.2 

= S+B = lim A -.nB. 
On the other hand 

A-.nB = -JL-iA.Cn-VA-.Cn-DB} =-JL-{A:(n-l)S\, 

and letting we have 
8S(A) = lim A:NS. 

n—-oo 

An operator A£Jf(S) is called Qs-closed if gs(A)=A; the set of all qs -closed 
operators will be denoted by J([S]. For an operator A£Jf(S) the following three 
conditions are equivalent [11]; 

(2.12) A <*A-se[jf]s<* A-wacs1") = j f . 

Notice further that the following conditions are equivalent; 

(2.13) A£Jt[S] A+B$\tf]B <=> A+BS[3t\gj*. 

Now let us cite an assertion, proved in [12]. 

Theorem 2.3. Given ( J f ) , let Ax be its short to an operator range 
g a t f . Then A#=(A:L) + L for any such that <%(Z,1/2)=if. 

Applying to this representation of a short the expression (2.10) for parallel 
subtraction and (2.3) for parallel addition, we obtain 

Corollary. Under the assumptions of the theorem 

(Axft f ) = sup inf {(Lh, h)-(Lg, g) + (A(/+ g+h),f+g+h)} (V/€*) . 
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Comparison of Theorems 2.2 and 2.3 leads to the identity, first proved in [7] 

(2.14) Aa = Jim A\nL (£? = 01 (L1'2)). 

If S—A\L, then clearly 

(2.15) AG. = QS(A) = lim A:nS. 

The following properties of short operation to an operator range follows im-
mediately from definition (1.7) and relation (2.14): 

1. A<e 3 A; 2. (<xA)z = <xA#; 3. (A<e)se = Ase\ 
4. (A+B)# s Ax + Bx; 5. (A:B)? AX\BS s A#:B, A:BZ. 

In view of [5] if i f = i f equality sign occurs in the last part. But if i f ^ i f , equality 
sign may break down. In fact, let < £ A = I , B^O and 8T(BV*)flif={0}. 
Then (A:B)X=AX:BX=A:BX=0, but ^ : 5 = J 5 ( / + 5 ) - M 0 . 

It is known [2] that when i f is a closed subspace then A M implies (AJ^iA^,. 
This property breaks down when i f is a non-closed operator range. We can only 
assert the following 

AJA =>A#s lim (An)# s A 

In fact, since clearly (An)^(A„)^, letting a—°° in the inequalities 

A:«L ^ A„:aL ^ (A„)x 

where such that ^(L 1 / 2 )= i f , we have 

It remains to remark that the sequence {{A„)x} monotonely decreases and lim (A„)x = 

If ASy£Aig (as in the example for Corollary 2 to Theorem 1.4), then putting 

A„=A+—I («=1,2 , . . . ) we have 
n 

AJA, = 

(shorts of an invertible operator to i f and i f coincide because of formule (1.8)). 
Therefore, in the present case lim (A„) x =Av^A x . 

Remark that if ifjiDif., then and nXt=(A#)#M. It follows easily 
from this that {lim (A n ) x } x =A x . 

In view of [5], for any closed subspaces i f j and if2 the following identity holds 

Asftnsf, = (•¿srjjr, • 
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For non-closed JSfj, if2 this m a y break down. For instance, if JSf1flif2 = {0}, 
= if2=.?f (examples of such operator ranges can be seen in [15]) and A—I, then 

but ( A X ) X = I . 
In the case of arbitrary operator ranges i?i=M{L\12) (/ — 1, 2) it follows from 

the inequalities 

A.rt{L1:L2) = {A-.nLJ'.nLz s A^-.nL, ^ (A^)^ 

that A# Further we have 

(2.16) A W i s 2 ( A ^ : A ^ ) . 

In fact, denote by f l 5 P2 and P the orthoprojections to the subspaces , 
A~1/2if2 and A~1/2(jSfjflifa) respectively. Since 2(Pl:P2) becomes the orthoprojec-
tion to the intersection of the subspaces A'1'2^ and A~1/2SC2 and . ¿ - 1 / 2 ( i f i n i f 2 ) c 
c A - ^ ^ C i A - 1 ' 2 ^ , we have 

PS2(P1:P2). 

Multiplying both sides of this inequality by A1'2 from left and right, we have in-
equality (2.16) by Theorem 1.4 and Lemma 2.1. Here in (2.16) equality sign can 
occur exactly when A~xl2{SexC\ ^ ^ A - ^ ^ H A - 1 ' 2 ^ . In particular, it is the case 
when ¡¡£x and if2 are closed. 

On the other hand, it is easy to construct an example in which one of operator 
ranges ifx and if2 is non-closed and A S i n ^ ^ 2(A^:A^). In fact, if 
and , then with a dense operator range J l ^ ^ C and any oper-
ator range such that MYV\Ji2={ 0}, let Se^^Ji-, (¿=1, 2). Then clearly 
P=0 but 2(P1:P2) is the orthoprojection to j72 ^{0}. 

In concluding this section let us show that if an operator range i f is non-closed 
then the sets (0.1) and (1.10) cannot posses maximum elements. To this end, let us 
consider the example, used earlier in [11]]. 

Let A be an operator on Jf, O^A^I, for which 1 is a continuous spectrum, 
and B=I-A. Then with S=A:£=A(f-A), by (2.13) A£J/[S], With <£=M(BV\ 
by (2.12) we see that A — Ag = iirri A: nB. According to the definition of the sets 
(0.1) and (1.10) we have for all n= 1, 2, ... 

A\nB^{A, i f ) f l i f ) , 

so that ^(A:nB)c^((A:nB)1/2)cz£C. Therefore if C (resp. C') is the maximum 
operator in SC(A, i f ) (resp. 3C\A, if)), then A= lim A:nB^C (resp. C ) , hence 
A=C (resp. CO- But the equality A=C implies that @{A)<z3t{Bll2)c:@(SV2), 
that is, for some X >0, A2sAA(l-A). Thus 1+A) - 1 / , which contradicts that 
1 is a continuous spectrum of A. Impossibility of the equality A=C' is proved in 
an analogous way. 
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3. Short and extreme points 

In the theory of characteristic operator functions, on studying completely non-
regular factorizations the description of solutions of the following equation plays a 
basic role; 
(3.1) (A-X):(B + X) = 0 (A,B^+(JÍT),OsXsA). 

Formulas for this problem were announced in [14, 12]. In this section, together with 
the proofs of those formulas, we shall present, as a consequence, some propositions, 
related to extreme point of some convex sets of non-negative operators in a Hil-
bert space. In particular, short to an operator range is interpreted as an extreme 
point. 

In analogy to the scalar case an operator interval [B, C] ( 0 S f i g C ) will mean 
the set 

[B, C] = {XeM+^y, 5 s X s C}. 

The class of all solutions of equation (3.1) will be denoted by £(A,B)(<z[0 A]). 

Theorem 3.1. Let A,B£@+(J(?) and S=A:B. Then 
1) an operator ^€[0, A] becomes a solution of equation (3.1) exactly when it 

admits a representation 
(3.2) X = (A + B)1I2P(A + Bf\2 - B, 

where P is an orthoprojection to a subspace of &(A + B); 
2) the operator X0=gs(A) is a minimum solution of equation (3.1). 

Proof. 1) In fact, if A"€[0, A], by definition of parallel sum (2.2) 

(A-X):(B*+ X) = B + X-(A + B)b+x. 

Therefore if X£#(A, B), then 
(3.3) B + X= coo)*, 

where according to (1.1) an operator co is uniquely defined by the conditions B+X— 
=o)(A+By/2, rfifo^JíiA+B). 

Let co* = W(o)(o*)1/2 be the polar representation of a)*; here If is a partial 
isometry with initial space 3?(a>) and final space &(f¥)=.<%(a>*) (cr 3i(A + B)). It 
follows from the equality coo)*=co(A+B)1/2 that 

coco* = (cuco*)1'2 W* (A + B)1/2, 

and since á?(cu*)cá?(co), (coco*)x/2=IV*(A+By2. Hence a)* = JV(a)0)*y/2= 
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= WW * (A+B)1/2, and consequently 

X = co(o*-B = (A+B)1/2 P(A + B)l/2 — B, 

where P is the orthoprojection to &(W). 
Conversely, if X£ 38+ (J?) is represented in the form (3.2), then clearly XSA, 

and since 
B + X = (A + B)1'2 P(A + B)1'2, JR((A + B)1'2 P) c JF(A + B), 

by (1.1) we have (A+B)B+X=B+X. Thus (A-X)\(B+X)=0. 
2) It remains to prove that X0=gs(A) is a minimum solution of equation 

(3.1). For this, remark first that if X£S{A,B) then by (3.3) Borneo*, where, as 
clarified in the first part of the proof, a>=(A+B)1,2P. Then by [20] there is a con-
traction V for which 

B1'2 = Vco* = VP (A + B)1/2. 

Since here Jr(B1/2VP)z)Jr((A+B)1'2), we have 

(3.4) (A + B)B = B1'2VPV*B1'2. 

On the other hand, by (3.3) again 

B = B1'2 Vco* = B1'2 VW(B + X)1'2, 

and since Jr(W)=Jr(coco*)=Jr{B-(-*), we have 

(3.5) ( X + B)B = B1'2VWW*V*B1'2 = B1/2VPV*B1'2. 

Now we obtain from (3.4) and (3.5) 

X\B = B-(B + X)B = B-(A + B)b = A:B. 

This implies that if Xi£(A,B) then X^gs(A). But by (2.1) and (1.3) we have 

Bs(A) = yB(A + B)-B = (A + B)1/2 Pj( (A 4- B)1/2 — B, 

where PM is the orthoprojection to the subspace JI=(A+B)~^23K (B) D &(A+B). 
Thus Qs(A) admits a representation of the form (3.2), hence by 1) QS(A)£$(A, B). 
Thus QS(A)=Min $(A,B), which is to prove. 

Corol lary 1. If X=aX1+(l-a)X2£S'(A, B), where Xx,X£38+{je\ 0 « x < 
<1, then X1=X2£<S'(A,B). 

If fact, according to inequality (2.6) 

(A-X):(B + X) = {a(A- XJ + (I -ct)(A -X2)}:{a(B + j^) + (1 - a)(5 + X2)} ^ 

^ 0L(A-X1):{B + Xl) + (\-a)(A-X2y.{B + X2). 

Therefore if X£S(A, B), then X1, X2i<${A,B). Denoting by P, and P2 the 
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orthoprojections, corresponding to X, Xx and X2 in (3.2) respectively, we have 

P = aii + (l —a)P2, 

clearly this last equality is possible only when P=PX=P2, hence X=Xx=X2. 

Corollary 2. If 3PA denotes the class of all orthoprojections to subspaces of 
M(A), then 

(3.6) g{A, 0) = {X£[0, A]: X = A1'2PA1'2, Pd3?A}. 

Recall that X is called an extreme point of a convex set Sf, if the relation 

X=*X1 + (l-x)X2 

where Xx, X2£y, 0 < a < 1, is possible only when Xx=X2=X. The class of all 
extreme points a set Sf is denoted by ex £P. 

Corollary 3. <S(A, 0)=ex[0, A]. 

In fact, if X$L$(A, 0) and X=aX1+(l-x)X2, where Xx, ^€[0 , A], 0 < « < 1 , 
then by Corollary 1 Xx=X2=X, that is, X£ex[0,Al If X^(A, 0), then X^Xx = 

sX+(A-X):Xd[0,A],X^X2=X-{A-Xy.Xd[0,A] and X=~{Xx+X2), so that 
X$ex [0, A], 2 

Remark. The relation <${A, 0)=ex [0, A] is found in [13], where it is proved 
in essence that if Xx, X2£ex [0, A] then 2(Xx:X2)£ex [0, A], This follows also from 
Corollary 2 by Lemma 2.1, because 

2(Xx:X2) = 2((A1'2P1A1'2):(A1'2P2A1'2)) = A1l2(2(P1:P2))A1'2 = A^P^A1'2, 

where Px and P2 are the orthoprojections corresponding to Xx and X2 through (3.6), 
while PM is the orthoprojection to the subspace Jl=3&(P^)C\ 01(P2). 

Let A, BE 33 + ( X ) and C=A+B. Remark that X£EX[B, C] exactly then 
X-B£QX [0, A] thus by Corollaries 2 and 3 to Theorem 3.1 

(3.7) e x [ 0 , A] = {X£33+ ( j f ) : X = A1'2PA1'2, P ^ A ) 

hence 
(3.8) ex [B, C] = {X£33+ ( J f ) : X = A1'2PA1'2 + B, P£0>A}. 

Obviously ex [B, C] contains all points of ex [0, C] in [B, C], The converse 
is not true, if B$ex [0, C]. Relation (3.8) implies that in this case ex [.B, C] con-
tains, together with B, other points not belonging to ex [0, C]. 

Indeed, in the contrary case, taking a sequence {P„}cz0>
A such that 

( « - « ) , we have a sequence {Q„}a3?c for which 

A1/2PnA1/2+B = C1/2QnC1/2 (n = 1, 2, ...). 
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Since there exists a limit 0 = '<m Q„, and B=C1/2QC1'2 (Qe&c), hence B£ex [0, C], 
/ 1 — o o 

contradicting the assumption. 

Theorem 3.2. Let B£[0, C] Then ex [B, C]cex [0, C] exactly 
when 2?£ex [0, C]. 

Proof. Since always B£ex[B,C], it suffices to consider the case ex [0, C]. 
With A=C-B, remark that since ex [0, C]=S(C, 0) we have A:B=(C-B):B=0. 
Thus by (2.8) 

MIA^D^IB1'2) = M{{A\BF'2) = {0}. 

Then, with £E=M(BLT2), for any P£&A 

ST ((A - A1'2 PA1'2)1'2) F1£ ((A1'2 PA1'2 + B)1'2) = 

= ^(A1'2(\-PJ)C)(3I(A1'2P) + £E) = {0}, hence 
( A - A ^ P A ^ y . i B + A ^ P A 1 ' 2 ) = 0. 

Since this relation means that each operator X=A1/2PA1/2+B is contained in 
8{C, 0)(P€0>A). Therefore in view of (3.8) we can conclude that ex [B, C]c=ex [0, C], 
what is to prove. 

Remark. Let A, and C^A+B. Then fi€ex[0, C] if and only 
if ^4£ex[0, C]. In this case it follows from the already proved fact and relation 
(3.8) that ex [0, A]czex [0, C]. In other words, if A=C1/2PC112 ( .P£& C ) and 
X=A1'2XA1'2=A1'2QAV2 (Q£0>A), then X=C1/2RC1/2 for some 

Theorem 3.3. Suppose that there are given an operator and an 
operator range J S f c ^ f . Jf J5? = <%CB1/2) then 

Ase = min {ex [0, A+B] D ex [B, A + £]} - B. 

Proof. In view of (3.7) and (3.8) 

X£ex [0, A + B\ Pi ex [B, A + B] 

if and only if there are representations 

X = (A + B)1I2P(A + B)112 = A1/2P' A1'2 + B, 

where PZ&a+b and P'£3?A. Here P, which runs over all admissible elements of 
c a n attain a minimum value for the operator 

X - B = (A + B)1'2 P(A + B)1'2 - B. 
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In view of Theorem 3.1 this minimum value exists and coincides with gs(A) (S—A:B) 

XMM-B = Qs{A). 

On the other hand, by (2.15) A#=QS(A). This proves the theorem. 
It is easy to see that if A£@+(3V) and ¿¿,=3$(B1'2)=3l(B\'2), where 

B, then equations (A-X):(B+X)=0 and (A-X):(B1+X)=0 are 
equivalent. Thus their solutions, determined by A and i f , will be denoted by 
£{A, <?){=g{A, B)=*{A, 

Theorem 3.4. For an operator and an operator range i f c ^ f 
the following relation holds 

<S{A, ££) = e x [ A Z , A \ . 

Proof. Indeed, if X£$(A, and 2>=3i(B1'2) then 

(A-X):X^(A-x):(B + X) = 0, 

hence X€ex[0, A], But by Theorem3.1 we have X£[A#,A], hence X£ex[A#,A]. 
Suppose, conversely, that [A#, A]. Since by (1.8) Ay=A1/2PJiA1/2, where 

PM is the orthoprojection to the subspace Ji=A~x/2y, we have Ax£ex[0,A] and 
by Theorem 3.2 ex \AX, ^ ]cex [0, A]. Thus XCex [0, A], that is, (A-X):X=0. 
But by (2.8) this relation means that 

(3.9) 3t ((A - X)1'2) 0 ^(X1'2) = {0}. 

Further, it follows from the relations 

As S i s A(B&+(Jr), @(B112) = Se) 
that 

0t(Axl2)P\ffl{B112) c MCA1/) c 31 {X1'2) c ^(A1'2). 

Now it is clear that (A~X):(B+X)=0, since 

^ ( ( A - X y / ^ n ^ d B + X) 1 ' 2 ) = {0}. 

In fact, if for some f g, h ^ f f 

(A - xy>2f = B1'2g+X1'2h, 

then B ^ g i M i A ^ n m i B ^ c B t i X 1 ! * ) and by (3.9) (A-X)1/2f=0. This com-
pletes the proof. 

Remark. If X£[0, A], then @(X)<z@(Xll2)c:3i(Avi), that is, Ae{jf}x and 
by definition of parallel sum (2.2) (A—X):X=X— Ax. Consequently, [0, A] 
exactly when X—Ax. For invertible A this condition (X=XA~XX) is found in 

n 
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[13], in which there is proved that 

A ^ e x [ 0 , A]*>DAX = X, 
where by definition 

DAX= sup a n d QFX = supX:l-A. 
A=»0 T- A / 

Remark, in this connection, that there follows from Proposition 6.2 of [13] and 
formula (1.2) the relation DAX—AX, valid for all X in the domain of definition of 
DA, namely under the condition AD{3F}X. 
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À note on compact weighted composition operators on L"(n) 

JOR-TING CHAN 

1. Introduction 

Let (.X, I , n) be a complete «r-finite measure space and let T be a measurable 
transformation from X into itself, by which we mean for every A£Z. 
Define the composition operator CT by CT=foT for every ^-measurable func-
tion / on X. In order that functions which agree almost everywhere are mapped to 
functions with the same property, we require the measure j i o T - 1 to be absolutely 
continuous with respect to ¡i. For a fixed ^-measurable function © on X define the 
multiplication operator by M0f=©-f. The composite MeoCT is called a weighted 
composition operator. In this note we shall give a necessary and sufficient condition 
under which MeoCT is a compact operator on LP(JJ) The case p=2 
has been investigated by SINGH and DHARMADHIKARI in [3] under the assumption 
that CT is a bounded operator on L2(JI) with dense range. But as pointed out by 
CAMPBELL and JAMISON [1], one of the interesting features of a weighted composition 
operator is that the composition operator alone may not define a bounded operator 
on L"(jx). To quote their example, let T be the map T(x)=x2 on [0,1]. Then CT 

does not define a mapping on /¿[0,1]. However with 6(x)=x, MeoCT is bounded 
operator on U[0,1]. A necessary and sufficient condition on © and T under which 
M9oCT is a bounded operator on Lp(p) is given in [2]. Before stating their result, 
some preliminaries are in order. 

Let r _ 1 r denote the relative completion of the c-algebra generated by 
{T~XA\ A^E). I f / is a non-negative Immeasurable function on X, then there exists 
a unique (a.e.) T "^-measurable function E ( f ) , called the conditional expectation 
of / with respect to T'1!, such that 

J f dfi = f E ( f ) d p for all A^T'1!. 
A A 

We shall also need the following facts : 

Received May 18, 1990. 
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(1) / i s T_1Z-measurable if and only if f=goT for some T-measurable func-
tion g. 

(2) E(f • goT)=E(f) • goT whenever the conditional expectations are well-
defined. 

In view of (1) above we write £ ( / ) o T _ 1 to denote a function g for which 
E(f)=goT. 

dpoT'1 

Now let h be the Radon—Nikodym derivative . Then MeoCT is 
dp 

a bounded operator on Lp(ji) if and only if h • -E( |0 |p )or _ 1 is /¿-essentially bounded 
and in this case the operator norm of MeoCT equals \\h • £ , ( | 0 | f , ) ° 7 , _ 1 l l ~ p [2, 
Proposition 2.1]. We shall include the proof for easy reference. For any f^Lp{p), 
we have 

/10-foT\p dn= f\e\p-\f\poTdn = J E(\e\p • \f\poT) dp = 
X X X 

= f E(W) • \f\poTdp = IEimoT-1. |/|p dpoT-1 = 
x x 

= f EQOWoT-1 •\f\"-hdp = f ( h . EQOWoT-1) |/|p dp. 
x x 

The assertion follows immediately from the equations. We also note that as 
far as the condition is concerned, £ ( | 0 | p )oT _ 1 does not depend on any particular 
choice of g for which E{\Q\")^goT. For a thorough discussion of what appeared 
above, please consult [1] and [2]. 

2. The results 

Theorem 2.1. The weighted composition operator M0oCT is a compact oper-
ator on L"(ji) if and only if for any e>0, the set {h •£ ( | 0 | p )o7 , _ 1 S£} consists of 
finitely many atoms. 

Proof. (=>) Assume the contrary. Then for some E=>0, the set 

{ h - E Q O W o T - 1 S e} 

either contains a nonatomic subset or has infinitely many atoms. In both cases we 
can find a sequence of pairwise disjoint measurable subsets {A„} with 0<p(A„)< °° 
for every n. Define fn=p{An)-llv ZAn- Then | | /J = 1 and \\MeoCTfnV= 
^piAJ-1 f h- EHO^oT'1 • xAndn^e. When n^m, the functions MQoCTfn and 
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MeoCTfm have disjoint supports and hence \\MeoCTf„—MeoCTf„\\">2s. There-
fore MeoCT is not compact. 

(<=) Let £>0 and let A = {h- Put <9'=6>/r.M. Then under 
the hypothesis that A consists finitely many atoms, M0,oCT is a finite rank oper-
ator. For every f£Lp(p), 

\\MeoCT(f)-Mg.oCT(f)r = f\exx\T-iA\p-\f\poTdn = 
x 

= / |0|p • (XX\AOT) • (\f\"oT) dn= f hEQGWoT-1 • \f\"Xx\Adfi S e \\f\\p. 
X X 

So MeoCT is the limit of some finite rank operators and is therefore compact. 

Corollary 2.2. If X is nonatomic, then a weight composition operator is not 
compact unless it is the zero operator. 

In [3, Theorem 3 . 6 ] S INGH and DHARMADHIKARI assert that if C T is a bounded 
operator on L2(ji) with dense range, then MeoCT is compact if and only if 0 s O 
on the set {/IOTVO}. A closer look at their proof reveals that the latter condition 
is equivalent to |0 | 2 - / ior=O a.e. But then (M0oG)o(MeoG)*=M]e]l.hoT=O 
gives MeoCT=0. 

If X is N, the set of natural numbers and if p is the counting measure on N, 
we denote as usual L"(ju) by lp. Suppose that CT does not define a bounded operator 
on lp, then in contrast to [3, Theorem 3.3], the condition lim 6>(«)=0 does not 
imply that MeoG is compact. 

Example 2.3. On Z1, consider the mapping 

, ( 1 1 1 1 1 ) 
, > -*-3' •••) l — ) 2 x2> 2"*2> 2 ' 3 X3> 2 • • • J • 

This mapping can be realized as a weighted composition operator with T(n)^k 
1 (k-l)k k(k+1) 

and 0(«)s—whenever . A simple computation shows 
tc 2 2 

i 
h(n)^n and E(0)oT~1(n)=—. An appeal to Theorem2.1 yields MeoCT is 

n 
not compact. Actually this fact can be established by a direct argument. Let {e„} be 
the canonical basis in I1. Then clearly (MeoCr(e„)} does not have any norm-
convergent subsequence. 
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Strongly dense simultaneous similarity orbits of operators 

JOSÉ BARRÍA 

Introduction 

Let X be a (real or complex) Banach space and let B(X) denote the algebra of 
all bounded linear operators on X. Let B(n){X) denote the product B(X)X... XB(X) 
of n copies of B(X). The group of invertible operators in B(X) acts on BW{X) by 
conjugation A-KT1,...,Tn)A = (A~1T1A,...,A~1TnA). For (31, ...,Tn) in B^(X) 
denote by 5(71, ..., T„) the orbit of (71, ..., T„) in B(n)(X), 

S(TU ...,Tn) = 

= {A-ipi, ..., T„)A = (A-^A, ..., A~1T„A): A is invertible in B(X)}. 

The purpose of this paper is to describe those orbits >S(71, ...,T„) which are 
strongly dense in B("\X). Recall that a net {S ;} in B{X) converges strongly to an 
operator 5 in B(X) if and only if lim Sxf=Sf for all / in X. If X is finite-dimen-
sional then the strong topology coincides with the norm topology, and therefore 
5(71, ...,T„) is never dense in BW(X). If X is infinite-dimensional (and «=1), 
then S(T) is strongly dense in B(X) for a very large set of T's. More precisely, in 
[2] it was shown that S(T) is strongly dense if and only if T is in the complement 
of the set {XI+F: F has finite rank} (K is the field of scalars and I is the 
identity operator on X). Observe that an operator T is not a scalar plus a finite 
rank operator if and only if a.(>IJctxiT has infinite rank for all nonzero (a0, ax) 
in K2. This suggests to consider those «-tuples (T1,...,T„) such that a(sI-\-a1T1 +... +. 
+<xnT„ has infinite rank for all nonzero (a0, ax, ..., a„) in K"+1. In this paper we 
show that this condition on (7J, ...,7^) characterizes the strong density of 
5(71, ..., T„) in BW(X). Another result from [2] states that S(T) is strongly dense 
if and only if S(T) is weakly dense. The corresponding generalization to «-tuples 
is also true. From [1] it follows that the strong density of S(T) can be described 
in terms of compressions. If P is an idempotent in B(X) with range X0, then the 

Received July 12, 1990. 
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compression of ...,T„) to X0 is defined as the restriction of PS(Tlt ..., Pn)P 
to X0. Then for «-tuples the density of iS(7i, ...,Tn) is characterized by the condi-
tion that the compression of S(Tly ..., T„) to any finite-dimensional subspace 
X0(<gX) is equal to the full algebra 5 ( n )(X 0) . 

Preliminaries 

Lemma 1. Let n be a fixed positive integer. For lSi 'Sw and / « s i , let f j p , 
/(i) be vectors in X such that /¿n-/(i) («j-oo). Let gm=offf™ +... + a(

m
n)/^n), with 

a^K. If /(1), ...,/(n) are linearly independent and if the sequence {gm}~=1 con-
verges, then there are scalars a(1), ..., a(n) such that (m—°°) for i— 1, ...,«. 

Proof. If n = l we choose a bounded linear functional <Z> on X such that 
$ ( / i ) = l> then gm=a|n

1)/i1) implies that lim lim <t>(gm). Now we assume 
m-*- co tit-*-

that «52 . The next step is to show that cannot converge to infinity. 
Indeed, if la^l-*00 (w — t h e n the left hand side of 

„(2) „(") 
. fW _ " m /•(2) • | f(n) 
J m «,(1) J m ~ ' ^,(1) J"> „(1) Jrn (i) J m i ••• i (i) 

"m m 

converges to — f w and then the induction hypothesis can be applied to f^2 \ 
to conclude that there are scalars j?(2), ...,0 (n) such that - / ( 1 )=¿3 ( 2 ) / ( 2 ) + . • • 4-jS(n)/(n). 
This contradicts the fact that / ( 1 ) , . . . , / ( n ) are linearly independent. The same rea-
soning applies to any subsequence of {la^'IK^u therefore is bounded. 
Next, let {mk}~=l be an increasing sequence of positive integers such that a™ — a(1) 

Qc—oo) for some scalar a(1). Then from the induction hypothesis it follows that 
there are scalars a(2), ..., a(n) such that —a(,) ( & — f o r z'=l, . . . ,«. Since 
/ ( 1 ) , . . . , / ( n ) are linearly independent, the scalars a(1), ..., a(n) are independent of the 
sequence Then it follows that ajp — a(i) (wj — °°) for i = l, . . . ,«. 

Lemma 2. Let 71, 7 ,̂ ..., Tn£B(X). Assume that for every vector f in X the 
set {7^/, TJ",..., T n f ) is linearly dependent. Then there is a nonzero n-tuple{a1, ...,a„) 
in K" such that 0^71+...+txnT„ has rank less than or equal to n— 1. 

Proof. If « = 1 then the hypothesis reduces to 71/= 0 for all / in X, and 
the conclusion holds. Assume that « S 2. Let D be the set of all vectors fin X such 
that {71/,..., Tn_1f) is linearly dependent. If D=X then the conclusion follows 
by induction. Assume that D^X. An easy compactness argument in K" implies 
that D is a closed set. For every vector h in X\D (the complement of D) the set 
{Tj^h, ..., Tn_lh) is linearly independent; then from the linear dependence of 
{71/J, ...,T„^1h,T„h} it follows that there are functions a l 5 ...,an_1 from X\D 
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to K such that 

(1) a1(h)T1h+... +«n-1(h)T„-1h + T„h = 0 for all h i n Z \ D . 

Let / be a fixed vector in X\D, and let M be the subspace spanned by 
{TJ, ..., Tn_J}. The proof will be completed by showing that the range of 
aiif)T\Jr --+oLn_1{f)Tn_1

JrTn is contained in M. Let g be an arbitrary vector in X. 
Since X\D is open, there is a positive 5 such that f+Xg£X\D for |A|<c5. If 
|A|<(5, from (1) we obtain 

(2) a1(f+Xg)T1(f+Xg) + ... + «„_!(/+ Xg)Tn.1(f+ Xg) + T„(f+ Xg) = 0, 

and (with A=0) 

( 3 ) « I ( / ) ? ; / + . . . + an_1(f)Tn_1f+ Tnf = 0 . 

Subtracting (3) from (2) we get 

X[cc1(f+Xg)T1g+... +cc„-i(f+Ag)Tn-1g + Tng] = 

= [«! ( / ) -« i ( /+Ag)]71 /+ ... + [a n _ 1 ( / ) -a n _ i ( /+Ag) ]r B _ 1 / 

which implies that 

(4) a 1 ( /+Ag)r 1 g+. . .+a B _ 1 ( /+Ag)7;_ 1 g+7;g€M for 0 < |A| < 5. 
Let {Am}~=1 be a sequence of scalars such that Am—0 (m—«.). If we define = 
=Tt(J+ Xmg) ( I S / S t j - 1 ) , t h e n / « - 7 ; / ( m - v o o ) , and TJ..., Tn_J are linearly 
independent. Then, using (2), we can apply Lemma 1, with gm=—T„(j+Xmg), to 
conclude that af(/+Amg)—a(i) ( m — f o r /=1, ...,«—1. Then, from (2) again, 
a(1)71/+... +a ( n - 1 ) r n _ 1 /+7; /=0, and comparing with (3) it follows that a ( i )=a¡(/) 
for /=1, . . . , . . . , «—I. This shows that the functions A—aj(/+Ag)(|A|<5) are con-
tinuous at A=0 in every direction. Since M is a closed subspace, from (4) we con-
clude that tx1(f)T1g+ ...+ocn-1(f)Tn-lg+T„g£M. Since g is an arbitrary vector, 
then the range of a1(f)T1+...+an_1(f)T„_1+Tn is contained in M. 

Lemma 3. Let TltT2, ..., Tn£B(X). Assume that every nontrivial linear combi-
nation of Tt, ...,T„ has infinite rank. Then given a positive integer m there are vectors 
/i> •-j/m ' n X such that {7]/}: 1S /S« , l^jsm} is a linearly independent set. 

Proof. If fx, ...,fm are vectors in X then we denote by Z.(/l5 ...,/„) the set 
{Tifj". I s i s « , lS /Sm} . If m = l, then what is wanted is a vector finX such that 
TJ',..., Tnf are linearly independent. If this is not true then Lemma 2 implies that 
some nontrivial linear combination of Tx, ...,T„ has finite rank. Since this con-
tradicts the hypothesis, the lemma holds for 7?i = l. Now we assume that L(JX, ...,/m) 
is a linearly independent set for some vectors fx, . . . ,/m . Let M be the subspace 
spanned by L ( f l t ...,fm) and let N be a closed subspace which is a complement of 



172 José Barría 

M (i.e., X=M+N and MDJV=(0)). Let P be the idempotent in B(X) with range 
N and null space M. Since Ti=(I-P)Ti+PTi(J-P)+PTiP, and since J-P has 
finite rank, then every nontrivial linear combination of PTXP, ..., PT„P has infinite 
rank. Now from the first part of the proof it follows that there is a vector g in N 
such that PTlg, ..., PTng are linearly independent. If we define fm+1=g, then 

n m + 1 

L(f i , •••,/„,/m+i) is linearly independent. Indeed, if 2 2 auTJj=0, and since 
¡=i j=i 

n 

P annihilates L ( f x , . . . , / J , it follows that 2 and therefore 
¡=i 

ai,m+i=0 for i— U . . . ,«; finally, since L ( f , ...,/m) is linearly independent we 
conclude that ai}=0 for all i and j. 

Density 

Theorem 4. Let Tj, T2, ..., Tn£B(X). Assume that every nontrivial linear com-
bination of / , Tt, ..., T„ has infinite rank. Then the similarity orbit S(T±, ...,7^,) is 
strongly dense in B(n){X). 

Proof. Let §=(,Slt ..., S„)£BM(X) and let U be a strong neighborhood of S. 
Then there are linearly independent vectors e1; ...,em in X and a positive number 
e such that U contains 

{(Alt ..., A„)^'\xy. IK^-SOejII < i l l s / s « 1 l s ; s m}. 

Let M be the span of {el5 ..., em}. Let TV be a complement of the subspace 
M + 5 1 M + . . . + S,

BM. Since N is infinite-dimensional, we can choose in JV a 
set {/¡¡j-: l^i^n, 1 of linearly independent vectors such that |]/j,j||<e 
for all i, j. Let fij = Siej+hij. Then the set { e ^ f j : l S / S n , 1 ^ / S m } is linearly 
independent and US',- e,-— f ^ < s for all i and j. We apply Lemma 3 to I, Tx, ..., Tn 

to find vectors f , . . . , /m in X such that {/}, TJj\ l ^ i ^ n , l s y s w ) is a linearly 
independent set. If A is an invertible operator on X such that Aej=fj and A f j = 
= T j f j for I s i s n and l S j g m , then 

WiA-^A-SdejW = | M - 1 ^ / } - ^ = WA^Afj-S^jW = Wfj-S^jW < e 

for all i and j. Therefore (A'^A, ..., A~lT„A)£U, and 5(7;, ..., 7;) is strongly 
dense in BM(X). 

Theorem 5. Let T±, T2, ..., Tn£B{X). Assume that every nontrivial linear com-
bination of I, Tx, ..., T„ has infinite rank. Then the compression of (7], ..., T„) to 
a given finite-dimensional subspace M is equal to B(n){M). More precisely, if P is 
an idempotent in B(X) with range M, then the restriction of PS(7^, ...,Tn)P to M is 
B^n\M). 
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Proof. Let P be a fixed idempotent in B(X) with range M. Let (Fl, ..., F„) 
be arbitrary in B(n)(M). Let T0=I and wi=dim M. By Lemma 3 there are vectors 
fu • •••>fm such that {71/}: 0 ^ / s « , l s / s m } is a linearly independent set. For 
Os i^n let Ni be the subspace spanned by {T,f, ..., 7|/m}. We choose linearly 
independent subspaces M0, Mx, Mn (i.e., g^M; and go+&i + ••• + £ n = 0 imply 
that gi=0 for all i) satisfying the following conditions: M„=M, M ;cker P for 
l S f S n , and dim M ~ m for all i. Let B£B(X) be an invertible operator such 
that BMi—Ni for 0=2/32/7. Let S ^ B ^ B ( l ^ i s n ) . Then 

BSI(M) = TIBM0 = TTN0 = NI = BMI 

and therefore StM=Mi. In particular, 5 ; is injective on M, and we can find 
C£B(Mi, M) such that C,S,f=-FJ for a l l / i n M. Let M„+1 be a subspace of 
ker P which is a complement (in ker P) of the subspace M1+M2+.. .+M I 1 . 
Then X=M0+M1+... +Mn+1, and we use this decomposition of X to define 
the operator C on X given by the (n+2)X(n+2) operator matrix, 

/ C2 C2 . . .C„ 0 
0 1 0 . . . 0 0 

C = 
0 / o 

U 1 J 

Then C is invertible, and C i s the operator matrix whose first row is 
[/, — Ci, — C2, ..., —C„, 0], and the other rows are identical to the corresponding 
rows of C. Now for f£M and l^i^n we have (denoting the (/+ l)-th component of 
the vector / by 5 , / ) 

C-1SlCf=C~1StC(f, 0, ...,0> = C-'Siif, 0, ...,0) = 

= C - 1 < 0 , ...,0,stf,0, . . . , 0 > = < - C l S i / * , . . . , *> 

(the third equality follows from SiM=Ml), and therefore PC'1SiCf-=-CiSif= 
=FJ. Finally, with A=BC, the restriction of PA^A to M is Ft for /=1 , . . . , « . 

Corollary 6. Let Ty,T2, ..., TndB(X). The following statements are equiv-
alent: 

(1) 5(71, ..., Tn) is strongly dense in BM(X). 
(2) 5(71, ..., T„) is weakly dense in BW(X). 
(3) Every nontrivial linear combination of 1, 71, ..., T„ has infinite rank. 
(4) For every finite-dimensional subspace MofX the compression of 5(71, ..., T„) 

to M is equal to B(n){M). 

Proof. Since the strong topology is finer than the weak topology, then (1) 
implies (2). Next we assume that some linear combination a0I+oi1T1 + ...+ixnTn = F 
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has finite rank and (a0, a l 5 . . . , a N ) ^ 0 . Let ( S L 5 5 „ ) E 5 ( 7 1 , . . . , Tn). Then there 
is an invertible operator A on X such that Si=A~lTiA for l s / ^ n . Therefore 
<x0I+a,1S1 + ...+ctnSn = A~1 FA and rank(a0/+a1.S'1+...+anlS'n) = rank Since 
the set ( 5 ' € J 9 ( A ' ) : rank 5 S rank F } is weakly closed, it follows that the weak 
closure of 5(71, ..., T„) is contained in the set 

{(5!, ..., Sn)£Bin\X): rank (a 0 /+a 1 5 1 + ...+a„5„) S rank F}, 

and this set is smaller than B(n)(X). Hence (2) implies (3). Now by Theorem 4 we 
conclude that (1), (2), and (3) are equivalent. By Theorem 5, (3) implies (4). Now we 
assume that (4) holds. Let (a0, alt ..., aJ^O. Let M be an arbitrary finite-dimen-
sional subspace of X. Choose (F1, ..., Fn) in B(n)(M) such that a0I+tx1F1 + ... + 
+a„F„=I (the identity on M). By (4), there is an invertible operator A on X such 
that the compression of A_1T,A to M is F, ( l s / s n ) . Then 

rank(ct0I+ot1T1+ ... +ot„T„) = xankA-1(a<sI+a1T1 +... +<x„Tn)A s 

S rank(a0 /+a1 i^ + ... +«„F„) = dim M. 

Since M is arbitrary, we conclude that aiiI+a1T1+...+anTn has infinite rank. This 
shows that (4) implies (3). 
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^-dilations and hypo-Dirichlet algebras 

TAKAHIKO NAKAZI*) 

1. Introduction. Let X be a compact Hausdorff space, let C (X) be the algebra 
of complex-valued continuous functions on X, and let A be a uniform algebra on X. 
Let / / b e a complex Hilbert space and L(H) the algebra of all bounded linear oper-
ators on H. 1=1H is the identity operator in H. An algebra homomorphism /-«-7} 
of A in L(H), which satisfies 

31 = 7 and ||7}|| =£ ll/H 

is called a representation of A on H. A representation (p — Up of C(X) on a Hilbert 
space K is called a g-dilation of the representation / - - 7 } of A if H is a Hilbert 
subspace of K and 

Tf = gPUf\H (f£At) 

where P is the orthogonal projection of K onto H, AT is the kernel of a nonzero 
complex homomorphism r of A, and 0 

If the uniform closure of A+A, that is, [A+A] has finite codimension in 
C(X) then A is called a hypo-Dirichlet algebra and it is called a Dirichlet algebra 
when [A+A]=C(X). If A is a Dirichlet algebra on Zand /— 7} a representation 
of A on H, then there exists a 1-dilation (cf. [7], [5]). It is known that only two hypo-
Dirichlet (non-Dirichlet) algebras have 1-dilations [1], [9]. R. G. DOUGLAS and 
Y. I . PAULSEN [4, Corollary 2.3] showed that an operator representation of a hypo-
Dirichlet algebra is similar to an operator representation which has a 1-dilation. 

In this paper, using their method we show that many natural hypo-Dirichlet 
algebras have ^-dilations. Then it follows that their representations are similar to 
those which have 1-dilations. A well known theorem of T. ANDO [2] shows that the 

*) This research was partially supported by Grant-in-Aid for Scientific Research, Ministry 
of Education. 
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bidisc algebra has 1-dilation. The theory of spectral sets is concerned with deter-
ming when a particular set Y in C is spectral for an operator T and if it is, deciding 
whether or not T possesses a normal 1-dilation whose spectrum is contained in BY. 
Our main theorem shows that T possesses a normal g-dilation. The other applica-
tions are related with ^-contractions (cf. [8]). 

2. Main theorem. Let A be a hypo-Dirichlet algebra with dim C(X)I[A+A] = 
Fix T a non-zero complex homomorphism of A and let Nr be the set of 

all representing measures of t. Then dim Nx=n and there exists a core measure 
m of Nr (cf. [6, p. 106]). Hence if v£NT then v — hdm and h£L°°(m) where L°°(m) 
denotes the usual Lebesgue space. Thus Nz can be considered as a subset of L°°(m). 
In this paper we put a natural condition on Nz\ NT<zC(X). Many important hypo-
Dirichlet algebras satisfy it. 

Theorem. Let A be a hypo-Dirichlet algebra and let x be a nonzero complex 
homomorphism with NTczC(X). Then a representation of A has a Q-dilation with 
respect to r. 

Proof. Let {uj}n
j=1 be a normalized orthogonal basis in the real linear span of 

(Nt—NT) (r.l.s. of (NT—Nt)) with respect to the inner product in L2(m) where m 
is a core measure of Nr. Then for l S / S n 

uj = ¿ a 

where each a(/} is a real constant and h\'\ k\j)f_Nz. Put for v£C(X) 

<P(v) = v— 2 (f vuj dm} Uj + s(v) 

where 

s{v) = 2 ( 1 |ap|/»(ftp) + kl»)dm)\\UiU. 

Then $ is a positive map from C(X) to [A+A], <P(1)= 1 + j ( l ) and 

(1) 5 ( 0 = 2 ¿ ( ¿ l a F ' Q K I U 
j=l 1 = 1 

In fact, since JV,cC(I ) , 

[/f+I]©[AT-Ar r] = C(X) 

where 8 denotes the orthogonal direct sum of L2(m). Hence if v^C(X) then 
V = vt + v2 



e-i i i iat ions a n d hypo-Dir ich le t a lgebras 177 

where ux6[[A + A] and v2£[Nt—NT], consequently 

and therefore <P(v)£[A+A], and the positivity and the finiteness of i>(l) are clear. 
If f£Ax then 

(2) * ( / ) = / 

because s(f)—0. This is different from Lemma 2.1 in [4]. 
If we extend T to f : [A + A]-L(H) by Tf+--Tf+T*, then T is positive by 

[3, p. 152—153]. Thus <P(l)-lTo<I>: C(X)-~L(H) -is positive and 4>(l)_ 1fo4>(l)= 
=IH. By the dilation theorem of M. A. Naimark (cf. [10, Theorem 7.5]) there exists 
a Hilbert space K, an orthogonal projection P. H—K and a multiplicative linear 
map of C(X) in L(K), which satisfies UX=IK, \\UJ^\\(p\\, cpeC(X) and 

To${q>) = $(\)PUJLH. 
By (2), if f £ A „ 

Tf = $(l)PUf\H. 

Corollary. Suppose dim NT=l in Theorem, then 

g = lnH-^ ^ : h, keNA+1. 
1 f \ h - k \ 2 d m J 

Proof. By (1) in the proof of Theorem with « = 1 

<i>(i) = 2 K 1 > | K i u + i 
where 

a , = a « (h[r> - *{»>), k?> €NZ 

and 
K ^ f K ^ - k ^ ^ d m = 1. 

This implies the corollary. 
We concentrated in unital contractive homomorphism but our technique can 

be used for unital contractions. 

3. Concrete examples. In this section we will calculate g of g-dilation in few 
concrete examples or apply Theorem to them. 

(1) Let n be a positive integer and Y{ ( l s / s w ) disjoint compact subsets of C 
with non-empty interior Y°. Suppose .R^IX; is a Dirichlet algebra on Xt where 
R(Y<j) denotes the uniform closure of the set of the rational functions with poles off 

and Xi is the boundary of Y{. Put X= U X, and Y= [J Yh then A" is the boundary 
¡=1 ¡=i 

of Y and i?(F)|Z is a Dirichlet algebra on X. Put 
A = {f£R(Y)\X: / (* , ) =--f(Xl) for i > 1} 

12 
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where x^Y? (lSi'S/i). A is a uniform algebra on X and if 1 then A is not a 
Dirichlet algebra but a hypo-Dirichlet algebra. 

A representation of A has a ^-dilation with g=n. 

Proof. Let T ( f ) = f ( x 1 ) then r is a nonzero complex homomorphism. Put w, 
be a characteristic function of Xt ( lSi'Sn) and let D be the commutative C*-
algebra generated by {«¡: l S / S « } . Then AzDaAz, Az+Az+D is uniformly 
dense in C(X) and dim D=N. Let WJ,- be a harmonic measure of xt (1 s i s « ) 

n 
and m = 2 mi\n then m is a representing measure of r. In the proof of Theorem, put 

/=1 

;=1 
and 

Then $ is a positive map from C(X) to [A+A], and if f£Az then 0(f)—/ and 
0(1)—n. This can be shown as in the proof of Theorem because 

[AZ + AZ]@D = C(X) 

and DAzczAz. Thus a representation of A has a ^-dilation with g = <P(l)~n. 
If dim D=n then A is one kind of hypo-Dirichlet algebras of finite codimension 

n— 1. By a theorem of R. G. DOUGLAS and V. I. PAULSEN [4] the completely bounded 
norm of the representation T of A, \\T\\cb^2n— 1 but our result implies ¡TH^S 
S w - 1 . 

(2) Let si be the disc algebra on the circle T and 

A = {f£s/: / ' (0) = ... = / ( n )(0)} 

where fu\0) denotes the /-derivative at the origin. Then A is a hypo-Dirichlet alge-
bra on X=T and dim C(F)/[A+A]=2n. 

A representation of A has a g-dilation with f? = 8w+l. 

Proof. dd/2n is the core measure of Nz where T( /)=/(0) . Then 

r.\.s.(Nz—Nz) = r.l.s.(cos 6, cos 26, ..., cos nO; sin 9, sin 26, ..., sin n9). 

In the proof of Theorem, put for v£C(r) 

<P(v) = v - 2 2 j l ^ - / v sin j6 do} sin JO + ^ J v cos jO dej cos yflj + s(v) 

and 

J(V) = 2 » (2-s in . j6 )dm + - ^ f « ( 2 - c o s j 9 ) d ( ) \ . 
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Then $ is a positive map from C(F) to [A+A], if f£Az then <P(f)=f and <P(1) = 
=8«+1. In fact, since 

$(») = v + 2 2 { [ ^ f v d e y i - s m j 6 ) + ^fv(l-smje)d0yi+smj6) + 

+ ( ¿ 7 vdo)(l-cosje> + [ L f P ( i _ cos/0) cos y0)}, 

4> is positive. The other statements are clear. Thus a representation of A has a g-dila-
tion with 0=$( l)=8n+l . 

(3) Let th, ..., a„ be distinct points in the open unit disc and 

A = f(aj) = / ( 0 ) , j=\,...,n). 

Then A is a hypo-Dirichlet algebra on X=T and dim C(T)I[A+A]=2n. d6l2n 
is the core measure of Nz where t ( / )= / (0 ) . Then jVtcC(.T) and hence we can apply 
Theorem to this hypo-Dirichlet algebra. 

(4) Let Y be a compact subset of C and let R(Y) be the uniform closure of 
the set of rational functions in C(Y). Suppose the complement Yc of Y has a finite 
number n of components and Y" is a nonempty connected set. Let A=R(Y)\X 
where X is the boundary of Y and T a nonzero complex homomorphism defined by 
the evaluation at a point t in y°. Then A is a hypo-Dirichlet algebra on X and 
dim C{X)I[A+A]=n. If m is a harmonic measure for t then m is a core .measure 
in Nz and JV,cC(J). Hence we apply Theorem to this hypo-Dirichlet algebra and 
hence a representation of A has a g-dilation. 

In the four examples we concentrated in unital contractive homomorphisms 
our technique can be used for unital contractions. 

(5) Let 
A = { / 6 ^ : / ( 0 ) = / ( l ) } . 

Then A is a hypo-Dirichlet algebra onX=r and dim C(r)/[A+A] = l. (d9/2n+ddJ/2 
is the core measure of Nr where T ( / )=/ (0)=/ (1) and <5j is a dirac measure at 1. 
Then Nx can not be embedded in C (r) and hence we can not Theorem to this hypo-
Dirichlet algebra. However the author [9] showed previously by the different method 
that a representation of A has a 1-dilation. 

4. Normal ^-dilation. Results in this section are corollaries of Theorem and 
Examples (2)—(4). 

Corollary 1. If T£L(H) and 

\\f(T)\\ s sup |/(z)| 
Mai 

12* 
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for all analytic polynomials f with / ' (0 )= . . .= / ( n ) (0 ) , then there exists a Hilbert 
space K^H and a unitary operator U on K such that 

f(T) = (Sn+l)Pf(U)\K 

for all analytic polynomials with /(0) =/'(()) = . . . =/ ( n )(0) = 0, where P is the ortho-
gonal projection from K to H. 

Proof. Put Tf=f(T) for each analytic polynomials / w i t h / ' (0) = . . . =/ ( n )(0), 
then /—7} extends to a representation of A in Example 2. Thus the representation 
of A has a g-dilation with {?=8«+1 and the corollary follows. 

Corollary 2. Let {aj}"J=l be in the open unit disc. If TÇ_L(H) and 

\\f(T)\\ s sup | /(z) | 
M s i 

for all analytic polynomials f with /(0)=/(a1) = . . . =/(a„), then there exists a Hilbert 
space K^ H and a unitary operator U on K Such that 

f(T) = QPf(U)\K 

for all analytic polynomials with /(0) =/(űi)=. . . = f (a„)=0, where P is the orthogonal 
projection from K to H. 

Proof. It can be shown that this is a corollary of Example 3 as in the proof of 
Corollary 1. 

Corollary 3. Let Y be a compact subset of C in Example 4. If Y contains the 
spectrum a(T) of T£L(H) and 

||/(T)|| s s u p | / ( z ) | 
2 f i 

for all f in R(Y) then there exists a Hilbert space K^H and a normal operator N 
on K with a(N)QdY such that 

f(T) = oPf(N)\H 

for all f in R{Y) with t ( / ) = 0, where P is the orthogonal projection from K to H. 

Proof. It can be shown that this is a corollary of Example 4 as in the proof of 
Corollary 1. 

J . A G L E R [ 1 ] proved Q— 1 when « = 1 . R . G . DOUGLAS and V . I . PAULSEN [4] 

showed that there exists an invertible operator S on H such that S TS has a 
normal dilation. 

Corollary 4. If T£L(H) and 

ll/cnil s sup |/(z)| 
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for all analytic polynomials f with / ( 0 ) = / ( 1), then there exists a Hilbert space K^H 
and a unitary operator U on K such that 

f(T) = Pf(U)\H 

for all analytic polynomials f with / (0 )=/ ( l ) , where P is the orthogonal projection 
from K to H. In particular, for all n^l 

T"-PUnH = T-PU\H. 

Proof. It can be shown that this is a corollary of Example 5 as in the proof of 
Corollary 1. 

In Corollary 4, T is a polynomially bounded operator. We could not answer 
the following question which is a special case of Problem 6 of Halmos: Is T similar 
to a contraction? 
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Algebraic Logic and Universal Algebra in Computer Science, Edited by C. H. Bergman, R. D. 
Maddux and D. L. Pigozzi (Lecture Notes in Computer Science, 425), XI+292 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1990. 

The conference "Algebraic Logic and Universal Algebra in Computer Science" was held in 
Ames, Iowa in June 1988. The aim of the conference was to bring together researchers from com-
puter science and mathematicians working in universal algebra or algebraic logic. The LNCS vol-
ume contains the text of 6 invited papers and 10 contributed papers. 

Two questions concerning finitely generated free algebras in a nontrivial variety of relation 
algebras are of particular interest in the paper "Relatively Free Relation Algebras" by H. Andréka, 
B. Jónsson and I. Németi. The first one is whether an «-generated free algebra contains as a sub-
algebra a free algebra on n+1 generators. The second question is if a free algebra on n generators 
can be nonfreely generated by some n element subset. The results on the first question are derived 
from general facts such as the congruence extension property and the existence of a nontrivial ab-
solute retract. On the other hand, the results on the second question make use of arguments specific 
for relation algebras. It is shown that in general the two questions are completely independent of 
one another. 

The informal paper "The Value of Free Algebras" by J. Berman exhibits through a series of 
examples how free algebras occur in computer science and how these free algebras are useful in 
solving problems in computer science. The examples include non-classical logics, one-pass algebras 
and data bases. 

The paper "Dynamic Algebras as a Well-Behaved Fragment of Relation Algebras" by V. Pratt 
is devoted to the comparison of the merits of relation and dynamic algebras with converse and 
sometimes with star. Tarski proved in the 1940's that the equational theory of representable rela-
tion algebras is undecidable and not finitely based. On the other hand, the equational theory of 
dynamic algebras is both decidable and finitely based. Pratt attributes these advantages to the 
"maintenance of a suitable distance between the Boolean and monoidal sorts". One more argument 
justifying his opinion would be a proof that the equational theory of representable relation algebras 
with disjunction, relative product, converse, star and constants 0 and V is decidable, so that after 
dropping one part of the Boolean structure there results a decidable equational theory. 

Conditional logic, studied in the paper "The Implications in Conditional Logic" by F. Guz-
mán, is a 3-valued logic which is a regular extension of Boolean logic. Because disjunction is not 
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commutative, it is possible to define two kinds of implications. The main result is a complete equa-
tional axiomatization for these implications. 

The contribution "Other Logics for (Equational) Theories" by G. C. Nelson consists of two 
parts. In the first part a complete proof system is described suitable for deriving all positive sen-
tences that are logical consequences of a set of equational axioms. The proof system is extended 
to the case that the axioms are universal Horn sentences. Somè computer science applications are 
mentioned. The second part is concerned with proving equations true in finite algebras. All facts 
and ideas exploited in the paper are well known in some form. The way how these facts are arranged 
accounts for the value of the paper. 

Mal'cev algebras have been intended to serve as a variable free and signature independent 
formal treatment of (function) composition and term substitution in universal algebra. These alge-
bras are the subject of the paper "Mal'cev Algebras for Universal Algebra Terms" by I. G. Rosen-
berg. After a definition of various Mal'cev algebras, it is shown how these algebras are related to 
varieties. Of course, the connection is the same as that between varieties and Lawvere theories. 

The volume contains really good papers and covers a wide range. Everybody working in 
algebraic or logical aspects of computer science may find some papers of particular interest. The 
volume is dedicated to the memory of Evelyn M. Nelson. 

Z. Ésik (Szeged) 

Analysis III, Spaces of Differentiable Functions. Edited by S. M. Nikol'skii (Encyclopaedia 
of Mathematical Sciences, 26), 221 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo—Hong Kong—Barcelona, 1990. 

In this volume the theory of differentiable functions in several variables is treated in detail. 
The book consists of two parts. Part I: Spaces of differentiable Functions of Several Variables and 
Imbedding Theorems (by L. D. Kudryavtsev and S. M. Nikol'skii); Part II: Classes of Domains, 
Measures and Capacities in the Theory of Differentiable Functions (by V. G. Maz'ya). The aim 
of the authors of Part I is laid in the Introduction as follows: "... the authors undertake to give a 
presentation of the historical development of the theory of imbedding of function spaces, of the 
internal as well as the external motives which have stimulated it and of the current state of art in 
the field, in particular, what regards the methods employed today." The reader can be convicted 
that this aim is overfulfilled in many senses even if she or he only takes a look at the chapter headings, 
most significant ones of which are: Sobolev-Spaces; The Imbedding Theorems of Nikol'skii; Sobo-
lev—Liouville Spaces; Weighted Function Spaces; Orlicz and Orlicz—Sobolev Spaces. The main 
topic of Part II is justified by the author as follows: "An adequate description of the properties of 
function spaces has made it necessary to introduce new classes of domains of definition for the 
functions, or classes of measures entering in the norms. In this connection the universal importance 
of the notion of capacity of a set became manifest". 

The principal questions treated in this Part are: The Influence of the Geometry of the Domain 
on the Properties of Sobolev Spaces; Inequalities for Potentials and Their Applications to the Theory 
of Spaces of Differentiable Functions; Imbedding Theorems for Spaces of Functions Satisfying 
Homogeneous Boundary Conditions. 

In my opinion this book is very clearly and well written and it is warmly recommended both 
to researchers and to graduate students. 

J. Németh (Szeged) 
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Béla Andrásfai, Graph Theory: Flows, Matrices, x+280 pages, Akadémiai Kiadó, Budapest, 
Hungary, 1991. 

This book is the English translation (and revised version) of Béla Andrásfai's book Graph The-
ory: Flows, Matrices (in Hungarian, Akadémiai Kiadó, Budapest). The book includes various 
topics from graph theory and their applications to physical sciences, operation research and eco-
nomics. The author also covers the algorithmic aspects of the topics discussed in the book. 

The first chapter contains the basic results on connectivity, blocks and strongly connected 
digraphs. The second chapter includes results on bipartite graph matching, the Hungarian method, 
the max flow — min cut theorem and different flow problems. The final (third) chapter deals with 
some matrices related to graphs. Spectrum of graphs and planar graphs are also considered. The 
theory of linear electrical networks is discussed as an application of the matrix method. 

At the end of each section there are several exercises with solutions (91 altogether). Solving 
these exercises gives a good practice for the methods. 

Students and lecturers will enjoy this book. It can be also used as a textbook for classes in 
different fields where graph theoretical methods are used. 

Péter Hajnal (Szeged) 

D. K. Arrowsmith—C. M. Place, An Introduction to Dynamical Systems, VIII+423 pages, 
Cambridge University Press, Cambridge—New York—Port Chester—Melbourne—Sidney, 1990 

In the classical sense, a dynamical system is a system of ordinary differential equations. The 
solutions of such a system defines a flow in a space. Similarly, if / is a diffeomorphism, then the 
iteration xt+1 =f(xt), where t is a natural number, also gives a dynamical system. Besides their 
great natural beauty, there are two reasons for studying these "discrete" dynamical systems: on 
the one hand there are tight connections between time-periodic vector fields and diffeomorphism 
problems; on the other hand, the same phenomena and problems of the qualitative theory of ordinary 
differential equations are present in their simplest form in the theory of discrete dynamical systems. 
In recent years there has been a marked increase of research interest in dynamical systems both con-
tinuous and discrete, and a number of good postgraduate texts have been published. The present 
book is specially aimed at the interface between undergraduate and postgraduate studies. The reader 
is assumed to be familiar with courses in analysis and linear algebra to second-year undergraduate 
standard. 

The first chapter (Diffeomorphisms and flows) contains the basic definitions. In the second 
chapter (Local properties of flows and diffeomorphisms) the topological behaviour of diffeomor-
phisms and flows in the neighbourhood of an isolated fixed point is considered. The third chapter 
(Structural stability, hyperbolicity and homoclinic points) gives a description of the flows on two-
dimensional manifolds, of the Anosov diffeomorphisms, and a very nice presentation of the horse-
shoe diffeomorphisms. The fourth and fifth chapters are devoted to the local bifurcations. The last 
Chapter 6 (Area-preserving maps and their perturbations) is directed at first-year postgraduate 
students. It contains current research topics arisen from the interaction of the theories of area-
preserving and non-area-preserving maps. 

The whole book is excellent, but its main value is its extensive set of exercises; more than 300 
in all. They are companied by model solutions and hints to their construction. 

We warmly recommend this book to both senior undergraduates and postgraduate students 
in mathematics, physics engineering, to the instructors and researchers interested in qualitative 
theory of nonlinear systems. 

L. Hatvani (Szeged) 
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Bernard Aupetit, A Primer on Spectral Theory, (Universitext) x+193 pages, Springer-Verlag, 
New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona, 1991. 

The text is divided into seven chapters and an appendix. The first two chapters give a list of 
basic results in functional analysis without proofs and introduce the reader to the theory of operators 
on Banach spaces and Hilbert spaces. Some special types of operators are also examined. The third 
chapter introduces the notion of Banach algebras, gives some examples of commutative and non-
commutative Banach algebras and develops the basic spectral theory of Banach algebras. In the 
fourth chapter the Gelfand representation theory of commutative Banach algebras and the representa-
tion theory of non-commutative Banach algebras are presented. The fifth chapter is devoted to 
some applications of subharmonicity. Here the spectral characterisations of commutative Banach 
algebras and finite-dimensional Banach algebras and the spectral characterizations of the radical 
are also discussed. The sixth chapter deals with special Banach algebras in which a continuous 
involution is given. Proving the basic theorem for the Gelfand representation of C* algebras, as 
an application develops the spectral representation theory for selfadjoint and normal operators in 
a Hilbert space. The seventh chapter is an introduction to the theory of analytic multifunctions 
which has very important applications for instance to the distribution of spectral values 
in the plane. The appendix is essentially a list of results without proofs concerning subharmonic 
functions and functions of several complex variables. Each chapter ends with a collection of problems. 

L. Geher (Szeged) 

Joseph A. Ball—Israel Gohberg Leiba Rodman, Interpolation of rational matrix functions 
(Operator Theory: Advances and Applications, 45), XH+605 pages, Birkhauser, Basel—Boston— 
Berlin, 1990. 

The development over close to 100 years of the interpolation theory reached a considerable 
phase 40 years ago. Namely, since the early 1950's interpolation problems have been considered 
for matrix-valued functions, too. 

A scalar interpolation problem admits often several generalizations for matrix case. For example: 
10 can be a zero of the matrix-valued function P(X) in the sense that 1) P(X0) is zero matrix, 
2) P(A0)x=0, 3) yP(Ao)=0, 4) nP(^.o)v=0 (with appropriate column or/and row vectors). 

This book presents the interpolation theory for rational matrix functions. It would be difficult 
to list its content, it is much more informative — but not exhaustive — to say that classical results 
are generalized to this case. The presented theory admits applications to control and system theory; 
the last part of the book is devoted to such applications. In fact, the objects of this part are sen-
sitivity minimization, model reduction and robust stabilization included their engineering motiva-
tions. An Appendix dealing with Sylvester, Lyapunov and Stein matrix-equations completes the 
main text, and more than two hundred items are listed as references. 

The mean feature of this systematic and self-contained treatment is the realization approach. 
This is based on the fact that every proper rational matrix function can be expressed in the form 

fV(X) = D+C().I-A)-'B, 

which allows to reduce the interpolation problems to problems in matrix theory. 
This book certainly meets the interest of a great number of mathematicians and ingeneers as 

well as advanced students. 
E. Durszt (Szeged) 
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Bifurcation and Chaos: Analysis, Algorithms, Applications, Edited by R. Seydel, F. W. Schnei-
der, T. Küpper and H. Troger (International Series of Numerical Mathematics, 97), X+388 pages, 
Birkhäuser Verlag, Basel—Boston—Berlin, 1991. 

This volume is the proceedings of a conference held in Würzburg, August 20—24, 1990. The 
main topics discussed in the papers are the following: symmetry, applications of manifolds, Ta-
kens—Bogdanov bifurcation, homoclinic orbits, oscillators, controllability, characterization of 
dynamical systems, general numerical procedures and specific algorithmic topics. The connection 
with applications is also strongly felt in many papers including chemical oscillations convection 
problems, climate modeling, economy, robot control, rolling motion of ships, motion of a moored 
pontoon, galvanostatic oscillation, excitable systems, dry friction, rotating shafts, an elastic model 
with continuous spectrum, rings under hydrostatic pressure, combustion, Turing structures, and a 
spinning satellite. 

The volume gives the reader a good opportunity for getting an overview of the actual problems 
and results of the world of nonlinear phenomena. 

L. Hatvani (Szeged) 

Böhme, Analysis 1 (Anwendungsorientierte Mathematik, Funktionen, Differentialrechnung, 
6. Auflage), XI+492 pages, Springer-Verlag, Berlin—Heidelberg—New York—London— Paris— 
Tokyo—Hong Kong—Barcelona, 1990. 

The book essentially contains the material of the first semester. The discussion attaches great 
importance to applications. The text is divided into four parts. The first part is devoted to ele-
mentary functions of one real variable. The second part is a short glimpse into functions of one 
complex variable. The third part develops the differentiation of real function and gives the differentia-
tion rules. The last part deals with the differentiation of functions of two real variables. To make 
easier the understanding lots of exercises are given, the solutions of which at the end of the book 
can be found. 

L. Geher (Szeged) 

P. Concus—R. Finn—D. A. Hoffman, Geometric Analysis and Computer Graphics, Proceedings 
of a Workshop held May 23—25, 1988 (Mathematical Sciences Research Institute Publications, 17), 
IX+203 pages, 60 illustrations — 30 in full color, Springer-Verlag, New York—Berlin—Heidel-
berg—London—Paris—Tokyo—Hong Kong—Barcelona, 1991. « 

The unexpected title of this book comes from a workshop on differential geometry, calculus 
of variations, and computer graphics held at the Mathematical Sciences Research Institute in Berkley, 
May 23—25, 1988. Although nobody could imagine a meeting on such a divergent background 
in the past, now this book proves the successs. Reading the gathered papers in this book, it comes 
to light that scientific and technological frontiers being crossed with impressive speed and so the 
title gets a deeper meaning. Maybe this is the way of the future. 

One reads about the multi-functions, Monge-Ampere equation, rendering algebraic surfaces, 
minimal surfaces, capillary surfaces, tories and so on from the papers by Almgren, Baldes, Wohlrab, 
Banchoff, Callahan, Concus, Finn, Sterling and others. 

We recommend the book mainly to those who want to know the interaction between the 
two subjects in the title, but also to anyone interested in any of these subjects alone. 

Ä. Kurusa (Szeged) 
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M. Coornaert—T. Delzant—A. Papadopoulos, Géométrie et théorie des groupes (Lecture Notes 
in Mathematics, 1441), X+169 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo—Hong Kong—Barcelona, 1990. 

The main purpose of this book is to give a detailed treatment of the Gromov theory of hyper-
bolic groups. The material is based on the lectures which were held by the three authors at the 
University of Strasbourg. The text is divided into 12 chapters. In the first four chapters the basic 
concepts of Gromov product, hyperbolicity of metric spaces, Gromov boundary and hyperbolic 
groups are introduced, and hyperbolicity of the /¡-dimensional simply-connected Riemannian 
space with constant curvature - 1 and more generally the hyperbolicity of simply connected Rie-
mannian spaces the sectional curvatures of which is bounded from above by a strictly negative 
constant are investigated. In Chapter 5 for a given hyperbolic group a contractible locally finite 
and finite dimensional simplicial complex is constructed. Chapters 6, 7 examine linear isoperimetric 
inequalities in hyperbolic spaces and give isoperimetric characterisation of hyperbolic groups. 
Chapters 8, 9, 10 deal with approximations, isometries and quasi convexity. Chapter 11 is devoted 
to the investigation of the boundary of hyperbolic groups and the theory of automata. 

L. Gehér (Szeged) 

C. Corduneanu: Integral equations and applications, IX+366 pages, Cambridge University 
Press, Cambridge—New York—Port Chester—Melbourne—Sidney, 1991. 

Since it is so classical subject of the analysis it is a very natural question for a nonspecialist 
mathematician that "What new about the integral equations can a book write?". The book of 
Corduneanu gives a very striking answer. I recommend to all to read the excellent "Introduction" 
of the book. It is very well written, and contains not only a detailed description of the book's con-
tents, but also some interesting historical considerations as well as some important notes of the 
author about the built up of the theory. 

I think the author successfully reached his aim to write the book for three purposes. It is good 
for graduate textbook and for reference book as well as for young researchers to become acquainted 
with this field. 

The book is based on the integral and the abstract Vol terra equation as a unified starting 
point. It deals with the Fredholm theory of the linear integral equations with the Hammerstein 
equations and some of tlieir generalizations to the Banach spaces. Applications of these integral 
equations are discussed in the last chapter. A very valuable part of the book is its big list of ref-
erences, that contains more than 500 entries. 

I recommend this very well written book to everybody who get in touch with the integral 
equations even in teaching, learning or in research. 

Ä. Kurusa (Szeged) 

CSL'89, Edited by E. Börger, H. Kleine Büning and M. M. Richter (Lecture Notes in Computer 
Science, 440), VI+437 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1990. 

These are the proceedings of the 3rd Workshop on Computer Science Logic held in Kaisers-
lautern, Germany, in October 1989. Altogether 45 talks were presented at the workshop, 28 of 
which have been collected in the volume. The authors of the papers are: K. Ambos-Spies artdD. Yang; 
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G. Antoniou and V. Sperscheider; E. Börger; D. Cantone, V. Cutello and A. Policriti; E. Dahlhaus; 
B. I. Dahn; H. Decker and L. Cavedon; M. Droste and R. Göbel; A. Goerdt; E. Grädel; Y. Gurevich 
and L. S. Moss; J. Krajicek and P. Pudläk; H. Leiss; A. Leitsch; C. Meinel; D. Mey; D, Mundici; 
H.-J. Ohlbach; M. Parigot; A. Pasztor and I. Sain; W. Penczek; L. Priese and D. Note; E. Specken-
meyer and R. Kemp: R. F. Stärk (two papers), O. Stepankova and P. Stepanek; H. Volger; E. Wette. 

The volume can be recommended to those interested in logical aspects of theoretical computer 
science. 

Z. Esik (Szeged) 

Effective Methods in Algebraic Geometry (Progress in Mathematics, 94), Edited by Teo Mora 
and Carlo Traverso, X1V+500 pages, Birkhäuser, Boston—Basel—Berlin, 1991. 

The development of computers has made it possible to complete calculations which previously 
were not feasible, thus the formulation of effective methods is now an important part of many 
areas of mathematics. 

This book contains the proceedings of the symposium "MEGA—90 — Effective Methods in 
Algebraic Geometry", Castiglioncello, April 17—21, 1991. Two main areas were addressed at the 
symposium, that of effective methods and complexity issues in algebraic geometry and related 
areas (such as commutative algebra and algebraic number theory) and the use of algebraic geometry 
in algebraic computing. The book contains 33 papers, treating the resolution of singularities, codes 
and elliptic curves, algebraic differential equations, membership problems and other topics in 
algebraic geometry and algebra. 

The book is recommended to those interested in the algorithmic aspects of algebraic geometry 
at graduate level and beyond. 

G. Megyesi (Szeged) 

A. Simovici—Peter A. Fejer—Peter Dan, Mathematical Foundations of Computer Science, 
Vol. 1, X+425 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1990. 

The volume presents basic discrete mathematics relevant to computer science courses. The five 
chapters collected in the first volume are Elementary set theory, Relations and functions, Partially 
ordered sets, Induction and Enumerability and diagonalization. The computer science orientation can 
be witnessed by a thorough treatment of induction and diagonalization and topics such as databases, 
complete partially ordered sets, grammars, primitive recursive and partial recursive functions. The 
book is written in a rigorous style. New concepts are usually introduced through a series of examples 
and a number of applications are given for most theorems. In addition, each chapter contains a 
large number of exercises. Many of them are related to various fields of computer science or provide 
background information. Care is taken that general results are preceeded by a treatment of some 
particular instances. All these make the volume available for a large audience including undergrad-
uate students. The second volume will cover topics of logical nature. 

Z. £sik (Szeged) 

C. A. Floudas—P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimiza-
tion Algorithms (Lecture Notes in Computer Science, 455), XIV+180 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—-Paris—Tokyo—Hong Kong—Barcelona, 1990. 

Global optimization has been extensively studied in recent years, and numerous new theo-
retical, algorithmic and computational results have been achieved. In spite of these contributions, 
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there has been still a lack of nonconvex test problems for comparing constrained global optimization 
algorithms. 

The book of the authors contains a systematic collection of over 50 test problems for evaluating 
and testing constrained global optimization methods. For each test problem, the problem formula-
tion, data problem statistics (like number of variables, linear and nonlinear constraints) and global 
or best known solutions are given. The test problems collected reflect a wide range of practical 
applications: e.g. distillation column sequencing, pooling, blending, heat exchanger network syn-
thesis, reactor-separator-recycle system design etc. 
An extensive bibliography of more than 250 references completes the book. The volume can be 
recommended to those working in the field of nonlinear constrained optimization and to engineers 
who want to test the numerical eflectivity, efficiency and reliability of optimization algorithms. 

T. Csendes (Szeged) 

Functional-Analytic Methods for Partial Differential Equations, Proceedings of a Conference 
and a Symposium held in Tokyo, July 3—9, 1989. Edited by H. Fujita, T. lkebe, and S. T. Kuroda, 
(Lecture Notes in Mathematics, 1450) VII+ 251 pages, Springer-Verlag, Berlin—Heidelberg—New 
York—London—Paris—Tokyo—Hong Kong—Barcelona, 1990. 

An "International Conference on Functional Analysis and its Application in Honor of pro-
fessor Tosio Kato" was held on July 3 through 6, 1989 at University of Tokyo, which was followed 
by a "Symposium on Spectral and Scattering Theory" held on July 7 through 9 at Gakushuin Uni-
versity. In these meetings the study of Schrodinger operators and functional analytic study of non-
linear PDEs were the major subjects. The connection with applications is also strongly discussed in 
many papers. 

L. Hatvani (Szeged) 

I. M. Gel'fand—E. G. Glagoleva—E. E. Shnol, Functions and Graphs, IX+105 pages, Birk-
háuser, Boston—Basel—Berlin, 1990. 

The book is dealing with transferring of formulae and data into geometrical form by sketching 
the graphs of several functions without calculus. 

It is very important to show the way how to "see" functions, formulae and how to observe 
the ways in which these functions change. To see simultaneously the formula of a given function 
and its geometrical representation and to draw the graph of a function is very useful not only in 
studying mathematics but in studying any subject, because the graphs are widely used not only in 
mathematics but in economy, medicine, engineering, physics, biology, business and so on. 

The chapter headings of the book are: Examples; The Linear Function; The Function y= |JC|; 
The Quadratic Trinomial; The Linear Fractional Function; Power Functions; Rational Function; 
Problems for Independent Solution; Answers and Hints to Problems and Exercises. 

The book is very useful for high school teachers helping them in presenting basic mathematics 
in a clear and simple form. 

J. Németh (Szeged) 
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B. GoluboT—A. Efimov—V. Skvortsov, Walsh Series and Transforms. Theory and Applica-
tions (Mathematics and its Applications, 64), XIII+368 pages, Kluwer Academic Publishers, 
Dordrecht—Boston—London, 1991. 

This book is the translation of the work published in Russian in 1987. This volume is a very 
good and useful introduction to Walsh—Fourier analysis with applications of the theory. Chapters 1 
and 2 give the definitions of Walsh system and examine the basic properties of Walsh—Fourier 
series. Chapters 3—5 deal with the uniqueness of representation of functions by Walsh series, sum-
mation of Walsh series by the method of arithmetic means and convergence in Lp of Walsh—Fourier 
series. The main topic of Chapter 6 is the theory of generalized multiplicative transforms. In Chap-
ters 7 and 8 Walsh series with monotone decreasing coefficients and lacunary subsystems of the 
Walsh system are considered. 

Chapter 9 is dealing with divergence, almost everywhere convergence of Walsh—Fourier 
series of L2 functions. Chapter 10 is devoted to the question of approximation by Walsh and Haar 
polynomials. 

The last chapters (11 and 12) contain the methods for applying the Walsh system and its 
generalizations to digital information processing, to construct special computational devices to 
digital filtering, and to digital holograms. The appendices at the end of the book contain back-
ground information relating to more advanced material (group theory, measure theory, the Lebesgue 
integral, functional analysis). The appendices are followed by commentary including some remarks 
of historical nature and information about the latest developments in the area. 

The book ends with a very rich, valuable "References" containing more than 150 items (30 
of them are books). The volume is clearly and very well written. It will certainly be very useful 
book for engineers, technical specialists, graduate students of applied mathematics, and for every-
body interested in Fourier analysis and its application. 

J. Németh (Szeged) 

The Grothendieck Festschrift, A collection of Articles Written in Honor of the 60th Birthday 
of Alexander Grothendieck (Progress in Mathematics, 86—88), Edited by P. Cartier, L. Illusie, 
N. M. Katz, G. Laumon, Y. Manin and K. A. Ribet, 3 volumes, Volume IXX+498 pages, Volume II 
VIII+563 pages, Volume III VII+495 pages, Birkháuser, Boston—Basel—Berlin, 1991. 

This book contains 35 papers by leading mathematicians from around the world. Most of 
the contributions are on various areas of algebraic geometry, but there are also several on alge-
braic number theory, topology and other areas of geometry. This variety of topics reflects the vast 
area on which Grothendieck worked and the book is a worthy tribute for his 60th birthday. 

The diversity of the topics in this book, and also its price, mean that this book is less suit-
able for the individual, but it would be a good addition to any mathematical library. 

G. Megyesi (Szeged) 

Martin C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Interdisciplinary Applied 
Mathematics, 1), xiv+432 pages, Springer-Verlag, New York—Berlin—Heidelberg—London— 
Paris—Tokyo—Hong Kong—Barcelona, 1990. 

Simple elementary and deterministic mechanical systems can have very complicated mo-
tions. Their behavior is exceedingly sensitive to the precise starting conditions and they do not fol-
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low simple, regular and predictable patterns, but run along a seemingly random, yet well-defined, 
trajectory. The name for this phenomenon is chaos. 

"Chaos ... will challenge many of our assumptions about the typical behavior of dynamical 
systems. Since mechanics underlies our view of nature, we will probably have to modify some of 
our ideas concerning the harmony and beauty of the universe. As a first step, we will have to study 
entirely different basic examples in order to re-form our intuition. We must become familiar with 
certain novel specimens of simple mechanical systems based on chaotic rather than regular be-
havior." 

This book offers a collection of instructive examples, which are chaotic, yet simple enough to 
be understood thoroughly. The central theme is the connection between classical and quantum 
mechanics: classical chaos should be the limit of quantum chaos as Planck's quantum becomes 
small. The style of the book is informal. The arguments based on elementary rather than algebraic 
manipulations. In order to gain a better perspective on the more important results, the historical 
and cultural background is mentioned and related disciplines are connected. The comments on the 
motivation behind certain results and on possible future developments provide the reader with a 
new perspective and prepare her/him to attack new problems. 

Reading the book requires a knowledge of both classical and quantum mechanics at the level 
of beginning graduate students. This excellent book will certainly appeal to people working on 
this very active area of physics and its closest relatives: mathematics, astronomy and chemistry. 

T. Krisztin (Szeged) 

Werner Heise—Pasquale Quattrocchi, Informations- und Codierungstheorie, (Studienreihe In-
formatik), XII+392 pages, Springer-Verlag, Berlin—Heidelberg—New York—Paris—Tokyo, 1989. 

The aim of the German and Italian authors is to provide a tutorial for those who are interested 
in the mathematical theory of communication. According to the preface of the first edition, the 
assumed readers are students majored in informatics. However, the authors present the applied 
mathematical background, so no specific knowledge is required to understand the book. 

In the first part we can get an introduction to the theory of message transmission. The first 
two chapters introduce the basic concepts, such as code, source, channel, and give the definition 
of some special classes of channel. Chapter 3 summarizes the classical results of information theory, 
Chapters 4 and 5 discuss source and channel encoding. 

The second part of the book is devoted to the theory of error detecting and correcting codes. 
After discussing the best known combinatorial bounds for these codes in Chapter 6, in Chapter 7 
the authors present those algebraic concepts and theorems which are necessary to understand 
the theory of linear codes. The detailed description of these codes can be found in Chapter 8. The 
sections of this chapter deal with the basic concepts of linear codes (such as generator and parity 
check matrix, syndrome decoding, etc.), the modifications which preserve the linearity and the 
Reed—Muller codes. A separate chapter (Chapter 9) is devoted to the special class of linear codes, 
the cyclic codes, paying particular attention to the BCH and quadratic residue (QR) codes. 

A lot of example help to understand the theoretical material of this clearly written book, 
besides funny pictures make the reading more enjoyable. We can warmly recommend this work 
both to students and teachers. 

7*. Gaizer (Szeged) 
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J. H. Hubbard—B. H. West, Differential Equations. A Dynamical Systems Approach, Part I : 
Ordinary Differential Equations, (Texts in Applied Mathematics, 5), XIX+348 pages, Springer-
Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona, 1991. 

This is an introductory textbook, which essentially differs from the traditional courses on 
differential equations. According to the fact that most of the differential equations do not admit 
solutions which can be written in elementary terms, it takes the view that a differential equation 
defines functions, and the object of the theory is to understand the behaviour of these functions. 
To this end it uses numerical and qualitative methods. While numerical methods approximate a 
single solution as closely as one wishes qualitative methods involve graphing the field of slopes, 
which enables one to draw approximate solutions following the slopes, and to study these solu-
tions all at once. These method, are companied with a software, MacMath, which brings the notions 
to life and yields the majority of the 144 illustrations. 

Not only the approach is new but the basic terminology as well. The authors introduce the 
terms "fence" "funnel" and "antifunnel". A fence is a curve on the (t, x) plane that channels the 
solutions in the direction of the slope field. A lower fence pushes solutions up, an upper fence pushes 
solutions down. A set bounded above by an upper fence and below by a lower fence is called a funnel. 
A set bounded above by a lower fence and below by an upper fence is called an antifunnel. It is 
interesting that these concepts give simple, noniterative proofs of the important theorems, e.g. the 
Sturm comparison theorem. 

The book is ended by a chapter on iteration, which is also unusual in a text on differential 
equations. The reason of the appearance is that the iteration is another type of dynamical systems 
playing an important role in the theory of continuous dynamical systems generated by differential 
equations. 

This excellent book will be very useful for instructors and students of undergraduate courses 
in differential equations and their applications. 

L. Hatvani (Szeged) 

J. E. Humpreys, Reflection Groups and Coxeter Groups, (Cambridge studies in advanced 
mathematics, 29), XII+204 pages, Cambridge University Press, Cambridge—New York—Port 
Chester—Melbourne—Sydney, 1990. 

This is an easy-to-follow introductory graduate text on the theory of Coxeter groups. 
The book consists of two parts. Part I describes the classical examples of Coxeter groups 

and provides the motivation for Part II, which is devoted to the general study of Coxeter groups. 
The first two chapters introduce the basic notions, such as for example roots, Coxeter graphs and 
Coxeter systems of generators, on the example of finite reflection groups, and give the classifica-
tion of such groups. The next chapter describes in detail the theory of polynomial invariants of 
finite reflection groups. In particular, it presents the interesting relationships between the properties 
of the Coxeter elements and the orders of the fundamental invariants. In this part special attention 
is payed to the important examples of finite reflection groups provided by the Weyl groups of semi-
simple Lie algebras and to the related affine Weyl groups. 

The first chapter in Part II develops the theory of Coxeter groups in general. For example, 
the geometric representation of general Coxeter groups and the properties of the Bruhat ordering 
are among the topics treated here. The following chapter deals with special cases: finite, affine, 
crystallographic and hyperbolic Coxeter groups. Then the author gives an introduction to the 

13 
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theory of Hecke algebras associated to Coxeter groups. The last chapter provides the reader with a 
guide to additional topics related to the subject-matter treated in the book, which can be further 
studied by using the extensive bibliography. 

The book is clearly written and is self-contained. It can be profitably used by everybody in-
terested in the general theory of Coxeter groups and its applications, or in the special Coxeter groups 
featuring so prominently in Lie theory. 

László Fehér (Szeged) 

A. E. Ingham, The Distribution of Prime Numbers (Cambridge Mathematical Library), XVII+ 
114 pages, Cambridge University Press, Cambridge—New York—Port Chester—Melbourne—Sid-
ney, 1990. 

This book was first published in 1932. Number theory is a very strange part of mathematics. 
One of my professors told us that number theory is beautiful and good for nothing. But this was 
more than forty years ago. Nowadays number theory plays a more and more important role in 
real applications, too. The "fairly tales" become reality. 

One of the most interesting parts of number theory deals with prime numbers. The subject 
of this book is the discussion of the theory of distribution of prime numbers in the series of natural 
numbers. After an introduction which contains the history of the problem and elementary facts too, 
the discussion depends on the theory of zeta-function. Chapter headings are: Foreword, Preface, 
Introduction, Elementary theorems, The prime number theorem, Further theory of (s), Applica-
tions, Explicit formulae, Irregularities of distribution. 

An important part of this book is the Foreword written by R. C. Vaughan containing up to 
date results, comments and references. 

This work is warmly recommended to teachers and students as well. 
Finally we cite two interesting things. The last two sentences of the author's preface are: 

"The proof-sheets have been read by Prof. H. Bohr and Proof. J. E. Littlewood and also by Prof. 
G. H. Hardy, Dr. A. Zygmund ..., To Prof. N. Wiener I am indebted for some valuable 
comments ...". What a list of names! 

One of the first reviews of the book from Zentralblatt für Mathematik (1933) was written by 
F. Bohnenblust. 

A sentence from the review: Von vielen Sätzen werden verschiedene Beweisvarianten manchmal 
vollständig ausgeführt, manchmal nur skizziert, so dass der Leser-neben einer durchsichtigen 
systematischen Darstellung — eine klare Übersicht über die inneren Zusammenhänge der Theorie 
gewinnen kann. 

L. Pintér (Szeged) 

Bernd Jähne, Digitale Bildverarbeitung, XII+331 pages, 144 pictures, Springer-Verlag, Berlin— 
Heidelberg—New York—Paris—Tokyo, 1989. 

To analyze and understand pictures is a simple task for us, humans, but — at least for the 
first sight — hardly tractable for computers. Even the most obvious operations: storing pictures, 
making simple corrections or detecting some simple patterns can require strong hardware back-
ground and involved algorithms. 

Jähne's book provides a good overview of the present state of image processing. The outline 
of the book was the author's two-semester course had been held at University of Heidelberg. In 
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spite of this the book is far more than a tutorial, it can also be a helpful guide for those ingeneers 
and researchers who want to use image processing in their work. 

The chapters of the book cover the phases of image processing. The first two chapters contain 
some general introduction and concentrate on the problem of making and digitalizing pictures. 
The next two chapters are devoted to the mathematical background applied in image processing: 
Chapter 3 to the unitary transformations, Chapter 4 to the basic concepts of one and two variable 
statistics. In Chapters 5 to 10 we can read about the techniques that are used for modifying and 
analyzing digitalized pictures: for example, filtering and clustering procedures are discussed here. 
Chapter 11 is devoted to an area which has a lot of use e.g. in medical applications: the problem 
of reconstructing a picture from its projections. The last four chapter focus on analyzing and pro-
cessing a sequence of pictures that were taken of moving objects or by moving camera. 

The importance of Fourier transformation in image processing is emphasized by the fact that 
besides the DFT algorithm is described in Chapter 3, in Appendix A the author provides a sum-
mary of the one and two dimensional Fourier transformation. Finally, Appendix B contains a 
complete description of a PC-based digital image processing system. 

The book is well illustrated with experimental results: 144 pictures help to demonstrate the 
effects of the studied procedures. We can warmly recommend this work both to those who just 
wish to get familiar with image processing and to those who want to apply it in the practice. 

T. Gaizer (Szeged) 

N. Korneichuk, Exact Constants in Approximation Theory (Encyclopedia of Mathematics and 
its Applications, 38), X1I+452 pages, Cambridge University Press, Cambridge—New York—Port 
Chester—Malbourne—Sidney, 1991. 

This book is very useful for non-specialists as a self-contained introduction to the important 
and widely applied area of approximation theory that is dealing with exact constants and for ex-
perts as a rich reference book to this topic (28 monographs, 17 books and more than 300 articles 
are cited in the References). The results are concerning extremal problems in approximation theory 
and are tightly related to numerical analysis and optimization. 

Chapter 1 (Best approximation and duality in extremal problems) and Chapter 3 (Comparison 
theorems and inequalities for the norms of functions and their derivatives) contain the deep theo-
rems of analysis and function theory on which the exact constant results are based. Chapter 2 (Poly-
nomials and spline functions as approximating tools) gives an introduction to polynomial and 
spline approximation. Chapters 4 to 7 (Polynomial approximation of classes of functions with 
bounded rth derivative in Lp\ Spline approximation of classes of functions with a bounded rth 
derivative; Exact constants in Jackson inequalities; Approximation of classes of functions deter-
mined by modulus of continuity) are devoted to approximation by polynomials (trigonometric or 
algebraic) and by polynomial splines. Chapter 8 (N-widths of functional classes and closely related 
extremal problems) deals with «-widths and generalizes some of the ideas of the earlier chapters. 

Each chapter ends with valuable commentary and exercises. 
The former contains references to the authors and their works related to the results included 

in the chapter in question and the latter contains in many cases the extensions of the corresponding 
results. 

Since many of the results collected in this book have not been gathered together in book 
form before, this excellently written book of high level is warmly recommended to everybody who 
searches, teaches or applies the ¿pproximation theory. 

J. Németh (Szeged) 

13» 
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Logic and Computer Science, Edited by P. Odifreddi (Lecture Notes in Mathematics, 1429), 
V+162 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1990. 

This volume contains the lecture notes of the C.I.M.E. meeting on Logic and Computer Science 
held in June 1988 in Monteatini, Italy. 

Table of Contents: 
S. Homer, The Isomorphism Conjecture and its Generalizations 
A. Nerode, qome Lectures on Intuitionistic Logic 
R. A. Platek, Making Computers Safe for the World. An Introduction to Proofs of Programs. 

Part 1 
G. E. Sacks, Prolog Programming 
A. Scedrov, A Guide to Polymorphic Types 
It has been conjectured by L. Berman and J. Hartmanis that all /VP-complete problems are 

are polynomial time isomorphic. This conjecture and its generalizations are discussed in the paper 
by S. Homer. The second paper, written by A. Nerode, is an exposition of one part of the under-
graduate course on Intuitionistic Logic at Cornell. It focuses on Kripke's frame semantics for 
intuitionistic predicate logic (without function symbols) and on the correctness and completeness 
of a variant of Hughes and Cresswell's, or Fitting's prefixed tableaux. The paper by R. A. Platek 
develops flowchart semantics and Floyd's inductive assertion method on the basis of inductive 
definability. The fourth paper is written in a rather technical style. It fails to explain the aim and 
scope of PROLOG programming and its scientific level is well below the level of the other con-
tributions. The last paper provides a highlight of (second order) polymorphic lambda calculus 
and the semantics of polymorphism. Complete proofs of the confluence theorem and the strong 
minimalization theorem are given. 

Z. Esik (Szeged) 

Mathematical Foundations of Programming Semantics, Edited by M. Main, A. Melton and 
M. Mislove (Lecture Notes in Computer Science, 442), VI+pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1990. 

The volume contains the papers presented at the Fifth International Conference on the Mathe 
matical Foundations of Programming Semantics held at Tulane University, New Orleans, Louisiana' 
from March 29 to April 1, 1989. The contributions address concurrency, domain theory, type 
theory and lambda calculus, categorial semantics and program correctness. The authors of the 
papers are: S. Abramsky; L. Cardelli and J. C. Mitchell; E. W. Stark; G. M. Reed; J. Davies and 
S. Schneider; A. W. Roscoe andG. Barrett; G. Barrett; F. Pfenning andC. Paulin-Mohring; K. Malm-
kjaer; M. G. Main and D. L. Black; A. Stoughton; L. S. Moss and S. R. Thatte; L. Aceto and M. 
Henessey; P. Panangaden and J. R. Russell; J. M. E. Hyland, E. P. Robinson and G. Rosolini; E. L. 
Gunter; R. Jagadeesan; A. Pasztor; A. J. Power; H. Jifeng and C. A. R. Hoare; J. IV. Gray. 

The volume can be recommended to those interested in recent research in semantics. 

Z. Esik (Szeged) 

Mappings of Operator Algebras. Proceedings of the Japan—U.S. Joint Seminar, University 
of Pennsylvania, 1988. Edited by Huzihiro Araki and Richard V. Kadison (Progress in Mathematics, 
84), X+307 pages, Birkhauser, Boston—Basel—Berlin, 1991. 

This volume is dedicated to Professor Shoichiro Sakai and it is the proceedings of the fourth 
Japan — U.S. Joint Seminar on Operator Algebras held in honor of his 60th birthday. The con-
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tent is (of course) adequate to this occasion. Index theory is a frequented topic in the papers, and 
— among others — derivation of operator algebras, actions of groups on C*-algebras and com-
pletely bounded mappings are discussed. The content is connected also with quantum physics and 
ergogic theory. 

The 19 articles of several length form a really good proceedings. The reader can find some 
new results, but mainly expositions of recent results and effective methods. Open problems and 
conjectures presented with hints stimulate to make attempt at solving some of them. Thus, this 
book provides a useful reference for researchers and graduate students working in the field of oper-
ator algebras. 

E. Dursit (Szeged) 

Mircea Martin—Mihai Putinar, Lectures on Hyponormal Operators, (Operator Theory, 39), 
304 pages, Birkhauser Verlag, Basel—Boston—Berlin, 1989. 

The Hilbert space operator T is called hyponormal if its selfcommutator T* T— TT* is a 
positive operator. An important subclass of hyponormal operators is formed by the subnormal 
operators, which are restrictions of normal operators to invariant subspaces. The significant prog-
ress having reached in the study of subnormal operators up to 1981 was summarized in a mono-
graph by J. Conway. There are known however hyponormal operators which are not subnormal, 
even more such operators naturally arise in many applications, e.g. in the theory of singular integral 
operators. 

This book collects the various results achieved in the study of hyponormal operators in the 
last decades, including the basic inequalities, the invariant subspace theorems, the functional models 
and the role of the principal function. A number of examples and exercises make the treatment more 
colourful. 

This volume can be recommended to graduate students as an introduction to this rapidly 
developing, fruitful field of mathematics. At the same time it will surely serve as an indispensable 
reference for the specialists. 

L. Kerchy (Szeged) 

Jean Mawhin—Michel Willem, Critical Point Theory and Hamiltonian Systems (Applied 
Mathematical Sciences, 74), xiv+277 pages, Springer-Verlag, New York—Berlin—Heidelberg— 
London—Paris—Tokyo, 1989. 

The development of a general theory of periodic solutions of Hamiltonian systems is a fun-
damental step in understanding the structure of their solution set. The main difficulty in applying 
the naive idea of finding the periodic solutions of a general Hamiltonian system through the critical 
points of its Hamiltonian action on a suitable space of periodic functions lies in the fact that this 
action is unbounded from below and from above. Therefore, the direct method of the calculus 
of variations (which deals with absolute minima) cannot be applied in a straightforward way and 
more sophisticated approaches like minimax methods and dual least action principles have to be used. 

The aim of this interesting survey is to initiate the reader to the fundamental techniques of 
critical point theory which have been used recently in the framework of periodic solutions of Hamil-
tonian systems. The main subjects are the dual least action principle developed by Clarke and Eke-
land, minimax approaches such as the Lusternik—Schnirelman theory and the mountain pass 
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theorem of Ambrosetti and Rabinowitz, the Morse theory and some local and global aspects of 
the theory of nondegenerate critical manifolds. Various important problems concerning Hamiltonian 
systems are considered as applications of the techniques. 

The book consists of ten chapters. The titles of the chapters are the following: the direct 
method of the calculus of variation, the Fenchel transform and duality, minimization of the dual 
action, minimax theorems for indefinite functionals, a Borsuk—Ulam theorem and the index 
theories, Lusternik—Schnirelman theory and multiple periodic solutions with fixed energy, Morse— 
Ekeland index and multiple periodic solutions with fixed energy, Morse theory, application of 
Morse theory to second order systems, nondegenerate critical manifolds. Some exercises are provided 
at the end of each chapter and a very extensive bibliography is presented. • 

The excellent style of the presentation of the book may help to make critical point theory 
more popular among people working and trained in ordinary differential equations. 

T. Krisztin (Szeged) 

Nonlinear Analysis and Applications. Edited by V. Lakshmikantham (Lecture Notes in Pure 
and Applied Mathematics, 109), XIX+649 pages, Marcel Dekker, Inc., New York and Basel, 1987. 

The 7th International Conference on Nonlinear Analysis and Applications held at the Uni-
versity of Texas at Arlington, July 28—August 1, 1986 was in some sense a festive occasion because 
the main organizer, the moving spirit of these conferences V. Lakshmikantham became sixty years 
old. In this volume one finds the proceedings of this conference. Nowadays nonlinear analysis 
is a very broad part of mathematics both in theory and applications. In this book you have more 
than eighty papers. To enumerate the various problems is a nearly impossible task and to cite only 
a few of the talks could be misleading. (To enumerate all the titles is too long.) But let us emphasize 
an important feature of these talks. Everyone knows that sometimes (perhaps fairly often) the talks 
on conferences after the first five minutes are interesting for a few specialist only. We get some 
results but not ideas and important problems. Im my opinion in this collection the reader will find 
relatively many well-written, inspiring paper. Perhaps this is the best recommendation. 

L. Pintér (Szeged) 

Wlodzimierz Odyniec—Grzegorz Lewicki, Minimal Projections in Banach Spaces, (Lecture 
Notes in Mathematics, 1449), VIII+168 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo—Hong Kong—Barcelona, 1990. 

It is a well-known problem to find the best approximation of an element x in a Banach space 
X with elements of a subspace D of X. If the subspace D is complemented in X, i.e. if there exists 
a projection of X onto D, then it is of special interest to find a projection onto D (provided that 
there exists) the norm of which is the distance Q(X, D) between x and D; such projections are 
called minimal projections. (The relationship between the two above mentioned problems is not 
apparent.) The text consists of four chapters. The first chapter is devoted to the problem of unique-
ness of minimal projections. The second chapter deals with the connection between the problem of 
uniqueness of a minimal projection for subspaces with finite codimension of infinite dimensional spa-
ces, and certain linear programming problems in /(-dimensional euklidean spaces. In Chapter 3 lots 
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of Kolmogorov type characterizations of minimal projections are presented. Chapter 4 studies 
isometries of a Banach space onto itself and gives characterisations of Hilbert spaces in the class 
of uniformly smooth strictly normed Banach spaces with the aid of minimal projections. 

L. Geher (Szeged) 

Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Actes 
du colloque en l'honneur de Jacques Dixmier), Edited by A. Connes, M. Duflo, A. Joseph and 
R. Rentschler (Progress in Math., 92), XVI+579 pages, Birkhauser Verlag, Boston—Basel—Ber-
lin, 1990. 

This volume is the proceedings of the Colloquium held in Paris in 1989, celebrating the 65th 
anniversary of Professor Jacques Dixmier. The expository and research articles presented by the 
22 invited speakers cover the four great areas of research, listed in the title, where Jacques Dixmier 
achieved significant progress. The first chapter deals with "C*-algebras" and contains papers by 
E. Stormer, M. Takesaki and D. Voiculescu. The second chapter is devoted to "Lie groups and 
Lie algebras" and includes papers by L. Pukanszky, A. A. Kirillov, B. Kostant, D. Kazhdan, M. 
Kashiwara—T. Tanisaki, V. Lakshmibai, P. Littelmann—C. Procesi, W. Rossmann, R. K. Bry-
linski, D. Barbasch, D. A. Vorgan, Jr., W. M. McGovern, J. Bernstein, J.-E. Bjork—E. K. Ekstrdm, 
T. Levasseur, C. De Concini—V. G. Kac. Finally papers by M. Brian—C. Procesi, V. L. Popov 
and H. Kraft constitute the third "Invariant Theory" chapter. 

This book can be recommended first of all to the specialist, but beyond this any interested 
reader will find it useful who wants to get an insight into these areas of mathematics inspired by 
Jacques Dixmier. 

L. Kerchy (Szeged) 

Paradoxa Klassische und neue Überraschungen aus Wahrscheinlichkeitsrechnung und mathemati-
scher Statistik, 240 pages, Akadémiai Kiadó, Budapest, 1990. 

This book illustrates excellently that probability theory is not only a chapter of measure theory. 
The book has a historical framework. Chapter 1 is devoted to the oldest and most classical 

paradoxes of probability theory connected to problems of chance like card-playing, lottery, horse 
kickings and misprints ... to name a few. 

Chapter 2 presents paradoxes in mathematical statistics. The explanations of these paradoxes 
help the reader to see through statistical absurdities and understand the useful and essential con-
clusions of statistics. 

In Chapter 3 the reader can find paradoxes of random processes. Most of these paradoxes 
arose in the second half of the last century when the results of classical deterministic mechanics 
proved to be insufficient in different fundamental branches of science. 

Chapter 4 —• the most interesting for specialists of probability theory — presents paradoxes 
in the foundations of probability theory. These paradoxes are closely related to the development 
of Kolmogorov's fundamental theory. 

Each paradox is discussed in five parts : the history, formulation, explanation of the paradox, 
remarks and references. Each chapter finishes with quickes. These are not discussed in detail, not 
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because they are of less importance or interest, but because they do not fit into the main line of 
the book. 

The book is recommended to probability specialists and nonspecialists as well. 

L. Viharos (Szeged) 

H.-O. Peitgen—E. Maletsky—H. Jiirgens—T. Perciante—D. Saupe—L. Yunker, Fractals for 
Classroom: Strategic Activities Volume One, XII+128 pages, Springer-Verlag, New York—Ber-
lin—Heidelberg—London—Paris—Tokyo—Hong Kong—Barcelona, 1991. 

The subject of fractals is nowadays a rapidly increasing area of the mathematics. At the same 
time it is one of the most suitable territory of recent mathematics to introduce in a classroom, be-
cause also its most abstract theories keep the freshness of the basic experiences. A story of a young 
lady, who determined the dimensions of fractals generated by Pascal's triangle, in the foreword of 
Benoit Mandelbrot justifies also this establishment. 

As an introduction of the fractals, this book tries to drive students along a sequence of experi-
ments. The activities need the reader to construct, count, compute and measure. The fractal theory 
seems from this point of view an experimental science like physics, and this makes easier to under-
stand the underlying mathematical principles for the students. I think this approach can be made 
complete in teaching thanks to the modern computers. While these experiments are very interesting 
they make always good opportunity for the authors to call the student's attention to the most in-
teresting experiences. The concept the book is built on is the self-similarity, the chaos game and 
complexity. 

It is worth noting, that all the sheets of the book are perforated. This makes possible to use 
the sheets as separated exercise-forms. Other interest of the book is the enclosed slide package. 
This contains nine very good quality slide about fractal images. 

In sum, we warmly recommend this book to the teachers, who want to bring mathematics 
out of past history for their students, to the students, who want to know in the visual sense the 
most color and beauty geometric structures of mathematics and want to discover new exciting 
territories. I am sure that fractals, and also this publication, open new ways in teaching and learning 
mathematics. 

A. Kurusa (Szeged) 

A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Volume I, 
X+307 pages, Birkháuser Verlag, Basel—Boston—Berlin. 1990. 

This book gives a systematic, up-to-date account of the rapidly developing theory of integrable) 
classical mechanical systems with finitely many degrees of freedom. The reader is assumed to be 
familiar with the fundamentals of classical mechanics, the theory of differentiable manifolds and 
Lie groups, but apart from these prerequisities the vook is self-contained. 

The study of such well-known integrable systems as for example the motion of a point mass 
in a central potential or various special cases of the motion of a rigid body about a fixed point, 
played an important role both in the development of the mathematical formalism of classical me-
chanics and in its applications in describing physical phenomena. However, until quite recently 
only a rather small number of nontrivial examples of integrable systems was known. During the 
last twenty years or so the situation changed dramatically, the complete integrability of a large 
number of mechanical systems has been proven, mainly by applying the isospectral deformation 
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(inverse scattering) method to classical mechanics. Practically all know integrable systems are 
related to Lie algebras in some way or other, for example quite a few of them live on coadjoint 
orbits of Lie groups, or can be obtained by reduction of some sort from some higher dimensional 
system with a large, manifest symmetry group, which underlies the integrability. 

The main subject of the present volume is the isospectral deformation method and its com-
bination with various Lie algebraic techniques. The author also gives an exposition of the classical 
methods and results of the theory of integrable Hamiltonian systems. The book contains a detailed 
survey of important classes of the known integrable systems and a good bibliography as well, and 
thus it can serve as a standard reference on its subject. 

The first chapter contains a clear presentation of the general theory, including the isospectral 
deformation method, the description of Hamiltonian systems with symmetry, and the closely related 
questions of symmetry reduction and the so called projection method. Chapter 2 deals with the 
simplest, classic examples of integrable systems. Chapter 3 offers a survey of many-body problems 
of generalized Calogero—Moser type. The subject of Chapter 4 is the non-periodic Toda lattice 
and its various generalizations, described here both from the point of view of coadjoint orbits and 
Lax pairs and also as reductions of the geodesic motion on certain symmetric spaces. The last chapter 
deals with additional questions of many-body problems. Throughout the book, various aspects 
of the theory of semisimple Lie algebras are used, and the basic facts of this theory are summarized 
in an appendix. There are also three further appendices, e.g. one on symmetric spaces. 

The book is clearly written and is very redable. It will be useful to students and lectures in 
theoretical physics and mathematics as well as for researchers on related areas. 

László Fehér (Szeged) 

M. H. Protter—C. B. Morrey, A First Course Calculus in Real Analysis (Undergraduate Texts 
in Mathematics), XVIII+534 pages, Springer-Verlag, New York—Berlin—Heidelberg—London— 
Paris—Tokyo—Hong Kong—Barcelona, 1991. 

In this second edition of the successful book there are a lot of change and improvements. 
Many new problems and noticable clarifications of many proofs are added improving the readability 
of the book. 

Since the first course in real analysis follows the elementary calculus where the emphasis 
is on problem-solving and the development of manipulative skills, the book like this has to show 
the students that the higher mathematics is not simply manipulative but the rigorous proofs have 
great importance from the point of view of advanced mathematics. This problem has been excellently 
solved in this book since precise proofs of the theorem are given but the way leading from the in-
tuitive ideas to the end of the proofs is not exhausting. At the same time the book makes clear to 
the students that the proofs of the basic statements are necessary to their further study in math-
ematics. 

The main topics of the book are: The Real Number System; Basic Properties of Functions 
on R1; Elementary Theory of Differentiation and Integration in R1 and in R"; Infinite Sequences 
and Infinite Series; Fourier Series; Functions of Bounded Variation; Riemann—Stieltjes integral; 
Implicit Function Theory; Approximation Theorems; Vector Field Theory. 

The great number of exercises (more than one thousand) help the students in understanding 
the material. 

The book is excellently written, it is recommended to all instructors and students who want 
to teach or to learn first course in real analysis using an outstanding textbook. 

J. Németh (Szeged) 
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László Rédei, Endliche p-Grnppen (Finite p-Groups), 304 pages, Akadémiai Kiadó, Buda-
pest, 1989. 

The large number and variety of finite /»-groups have caused the demand for a classification 
or at least for the creation of a comprehensive theory. Successful efforts in this direction were made 
only within special (although sufficiently wide) families, such as regular /»-groups and /»-groups of 
maximal class. All these (and other) treatments mainly happen by means of the subgroups, as well 
as throughout in (finite) group theory. 

In his last work Rédei had given a new classification method based on handling the group 
elements themselves. The initial idea is very simple and natural: Using a (strictly) normal series 
of the group with cyclic factors, one can choose for each factor an element to cover. The chosen 
elements form a special generating set (a basis) such that any group element possesses a presenta-
tion as the product of powers of the generators in fixed order, determined by the order of the factors 
in the series. With the aid of a basis one easily obtains a set of defining relations for the group. 
However, this set of relations heavily depends on the particular choice of basis and that makes 
the classification problem so difficult. 

Since powers in finite /»-groups are more conveniently thought of having p-adic integers in 
the exponents, Chapter 1 is completely devoted to the ring of /»-adic integers and the /»-adic 
number field . Paragraphs 1—14 provide a practical and elementary introduction into the struc-
ture of these objects, and give the very basic terms of/»-adic analysis. In paragraph 15 a new concept 
of generalized sum is defined, with a /»-adic integer as the number of terms. 

In Chapter 2 the general theory is developed; the starting point is the following. 
Let G = i V 0 3 A f p b e a normal series for G and alr ..., a, a corresponding basis 

such that JVí_i = (öí, «/+1, a) holds for /'=1, ...,/. If qj denotes the order of aj mod Nj then 
the group is defined by the following relations: 

a]' = h 4Jk ( ' s i s 0, aj = II 4Uk 0 ^ ' s ' / s= t). 
k=j+1 k=j 

Let 
® — <?2> Tl2> r13> ••• ; Sl22> Svat •••}> 

be considered as a set of symbols, and for any integer / the l-th segment Sli denotes the subset of 3! 
with all elements, whose indices do not exceed I. Thus a presentation of a group G by means 
of an I element basis can be thought of as a place (a special value) of 3),. Places generally do not 
lead to desired (/»-)groups, therefore the text goes on with determining the conditions for that. All 
these conditions are of the form that the structure constants be zeros of some continuous /»-adic 
function. 

(It is worth mentioning that not all the functions in question are polynomials.) 
The first step towards a classification is the concept of natural classes; a group belongs to the &-th 

natural class iff A: is the minimal length of its bases. Then natural classes split into several parameter 
classes in the following way: With given n, I and continuous /»-adic functions 

qk (1 3 k 3= 1), rjk (1 s~J < k =» /), it* (1 Si-^jmk 

whose variables are /,, ..., r„, let ..., 3Tn be at least two element subsets of Suppose 
that the values of the above functions at all fh€^i , (fc= 1, ..., n) result in presentations of pairwise 
nonisomorphic groups in then the set of these groups is called a parameter class of degree n. 
To find parameter classes (for fixed / and rí) is not generally easy, and a partition of into parameter 
classes of degree n is far from being uniquely determined. The aim is always to get as the disjoint 
union of minimal (possibly finite) number of parameter classes of lowest degree. Concerning this 
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problem, the following conjecture is set: "if, can be splitted into the disjoint union of finitely many 

parameter classes of degree 3 

Going through general theory one will recognize the difficulty of application to concrete 
classes. However, Chapter 3 is an evidence to the fact that classifying certain classes is not hope-
less: Rédei succeeded in dividing ^ into 3 (for odd p) or 9 (for p=2) parameter classes of degree 
at most 4 (6.1 Satz). Even in this simplest case a good deal of extra calculation was needed to get 
the final result, which does not give rise to much optimism concerning in general. On the other 
hand, the theory yields the following beautiful "classical type" theorem: 

For any group G in (i.e., for any metacyclic p-group) |G[, exp(G), |G/G'|, exp(G/G')|, 
|Z(G)|, exp (2(G)), I {x*: AdG} | and x" — e}\ form a complete system of invariants. 

It seems to be obvious that similar theorems will not occur very often. Within the scope of 
Rédei's new method, instead, there must be more possibilities for anyone not waiting for an easy 
success. 

Péter Z. Hermann (Budapest) 

Arto Salomaa, Public-Key Cryptography (EATCS Monographs in Theoretical Computer 
Science, 23), X + 245 pages, with 18 figures, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo—Hong Kong—Barcelona, 1990. 

Cryptography, secret writing, is probably as old as writing. This old activity, i.e., to send 
secret messages, has become the object of scientific research only recently. It is partly due to the 
need to guarantee the security of data bases, but the military aims are also important. 

The first chapter is an outline of the classical two-way cryptography. All the other chapters 
are devoted to the public-key systems. 

In the "classical" cryptosystems both keys, the encrypting and the decrypting keys, are sup-
posed to be secret, in the public-key systems the encrypting keys can be published (like a telephon 
directory), but the decrypting keys are secret. 

In Chapter 1 several classical systems are considered and analysed in the cryptoanalist's (a 
person, who wants to decypher the secret message without knowing the key) point of view. 

In the subsequent five chapters we can read a systematic treatment of the public-key systems 
(the main point is the RSA system). These systems appeared in the middle of the 70's only. The 
security of this type of systems are based on results of the complexity theory. The fundamental 
idea of them is closely related with the following: given an argument value x, it is easy to compute 
the function value/(x), whereas it is intractable (in the sense of the complexity theory) to compute 
x from f(x). 

To read this very interesting book the knowledge of the basic notions and results of the com-
plexity theory (e.g. time complexity, Turing machine, the classes P and NP, etc.) and some results 
from the classical number theory (e.g. congruences, Euler's theorem, quadratic residues, etc.) are 
also supposed to be known. To help the reader in these fields there are two tutorials as appendices. 

Lajos Klukovits (Szeged) 
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