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On the lattice of complete congruences of a complete lattice:
On a result of K. Reuter and R. Wille . '

G. GRATZER, H. LAKSER and B. WOLK

1. Introduction. For a complete lattice L, let Com L denote the lattice of
complete congruence relations of L. Obviously, Com L is a complete lattice; however,
unlike Con L, the lattice of congruence relations of a lattice L, it is not distributive
in general. In fact, in [4], K. REUTER and R. WILLE raise the question whether every
complete lattice K can be represented in the form Com L for some complete lattice L.

K. ReuTEr and R. WILLE [4] prove the following

Theorem. Let K be a complete distributive lattice in which every element is the
(infinite) join of ( finitely) join-irreducible elements. Then K is isomorphic to the lattice
of complete congruences of some complete lattice L.

They quote [1, pp. 69 and 58]: the condition of the Theorem holds for every
distributive dually continuous lattice, and in particular, for every completely distri-
butive complete lattice. ‘ ‘

The proof of K. Reuter and R. Wille is based on an earlier paper of R. WILLE
[5] on complete congruence relations of concept lattices. In this note we show how
the approaches of [2] and [3] apply.

In Sec. 2 and 3, we present two essentially equivalent proofs of the Theorem.
The first uses sequences and it is purely computational; it assumes no background in
lattice theory. The second is based on ideals of partial lattices and uses some knowl-
edge of lattice theory; this approach may help visualize the proof.

In Sec. 4, we show that the complete lattice L of the Theorem can be chosen to
be sectionally complemented. We also compare the constructions of [4], Sec. 2, and
3. Finally, we find the “simplest’” complete lattice L such that Com L is not distribu-
tive.

This research was supported by the NSERC of Canada.
Received July 27, 1988.
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2. Construction with sequences. Let K be a complete distributive lattice; let
J denote the set of join-irreducible elements of K. We assume that every element u
of K is a join of join-irreducible elements, that is, u=\/((#]NJ), where (u]=
={p€K|p=u}.
To construct the lattice L, take the lattice Q=M], the J-th power of the lattice
M. (In forming the direct power, J is regarded as an unordered set.) The elements of
the lattice M, will be denoted by o, a, b, c, i, where o is the zero, a, b, c are the atoms,
and i is the unit. For s€Q and .p€J, s(p) will denote the p-th component of s.
For s¢Q, let T(s)={peJ|s(p)=i} and 7(s)=V, T(s). We define 5€Q as fol-
lows:
i, if p=1(s) in K and s(p) >0 in M,;
. o - P =1(s) ®) :

s(p), otherwise.

We call s closed iff s=35. We construct L as the set of all closed s€Q, partially or-
dered componentwise. -
Claim 1. Let SSL. Then u=/\,S is again closed.

Proof. Take a p€J such that u(p)=o. Since u(p)= A, (stp)ls€S) and u(p)
is completely meet-irreducible in M, it follows that u(p)=s(p) for some s€S.
Now u=s, hence u=35=(since sis closed)=s, hence #(p)=35(p)=s(p)=u(p), and
therefore u is closed.

Thus L is a A-sublattice of Q. It follows that L is a complete lattice, in which

®) ViS=V,S for SESL.
For z€ K, we define a congruence, 6°, on Q as follows:
3) u=v (mod&?) iff u(p)=v(p) forall p=£ =
Obviously, 67 is the kernel of the projection of Q=M; onto M; —,
Claim 2. Let u,v€Q. Then .
' u = v (mod 6) illzﬁplies-'tha_t i =15 (mod 67).

Proof. Let u=v(mod§?). We want to prove that u(p)=0v(p) for p=z.
Since u(p)=v(p), we can assume that u(p)=i(p), by symmétry. By (1), in K,

p=1() = VeTW) =V (TW)—(2)Vx Vi (TN (2]).

Since p is join-irreducible in K, this implies that p=\/ (T(u)—(z]) or p=\/x (T(¥)(
N(z]). The latter would imply that p=z, contradicting that p%z. Hence p=
= V(T —(2)-
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By (3), u(g)=v(q) for g¢(z]. Hence T(u)—(z]=T(v)—(z]. Since u(p)=u(p),
therefore, by (1), u(p)>o0 and so v(p)=o. Finally,

P =Nk TW—(2]) = Vxk (T@)—(2]) = Vs T®) = (),

hence #(p)=i by (1). Therefore, @#(p)=v(p).

By Claim 2, the restriction, 63, of 8° to L is a complete congruence relation on L.
To complete the proof of the Theorem we have to prove that every complete congru-
ence relation of L is of this form.

Let 0 be a complete congruence of L. Set

P = {pcJ|there exist u?, vP€ L, u? = +? (mod 0), u?(p) = v*(p)}.

We claim that 0=07 with z=Vy P.
Obviously, 0=6;.
For x¢M, and YCJ, let xy denote the element of Q defined by

{x, for peY,
*(p) = o0, otherwise.
Note that X,=xy, since xy(p) is either o or x, and so xy€L.
For convenience of notation, if xéM; and YEK, then we write xy for xy. ;.
For Y={y}, we write x, for x,,. Note that {xy[x€M,} is a sublattice of L
isomorphic to M;. For all YEJ, 0y=0, the zero of L.
Since, for all p€P, )
u? = o? (mod ),

it follows, by taking the meet of both sides with 7,, that

u?(p), = v*(p), (mod o),

i, = 0, (mod 6).

and so

By the completeness of 6,
4 ip = 0 (mod 8).

Now consider s=ipV; bi1-p. Obviously, 7(s)=z, hence, s=i ;. Thus join-
ing both sides of (4) with b,y_p yields

i(z] = b(z]—P (mod 9).
Thus
i1-p = biz1—p (mod6),
s0
iz1-p =0 (mod 0).
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Consequently,
;7 =0 (mod9),

completing the proof of 8;=0, and the proof of the Theorem.

3. Construction with ideals. We are given K and J as in Sec. 2. First, we
construct a partial lattice, M, as in 3, pp. 81—84]: the elements of M are 0, for every
p€J, the elements p, p,, and p,, and for p,g€J, p>q, the element p(q); if pis a
maximal element of J, we set p=p,=p,. For p>¢q, we form the six-element lattice,
M(p, q), with elements O, p,, 41, 4., ¢, and p(q); the operations are defined by

aNg =0, ¢:1Vqgs=¢q, p,Nqg=0,
PV = p(9), p:Ngz = p(q), p.Vq=p(q).

In the partial lattice M, all the elements p, and p, (p€J) are atoms; any two
elements have a meet; two elements have a join iff they belong to an M(p, q) and
then their join is the join in M(p, g). Note that JS M.

The partial lattice M is atomic (every element is a join of atoms), hence every
complete congruence relation is determined by its kernel, i.e., by the congruence
class containing O.

Every congruence of M extends uniquely to a congruence of the lattice, Id M =0,
of ideals of M. Since Q is atomic, it follows from [3, p. 147] that an element S of Q
is standard iff for any atom u of Q such that uz£ S, the atoms of M in SVu are
the atoms of § and u.

For an ideal I of M, we define t(/)=\x{INJ). We call I closed iff for all
peJ and p=z(l), if p, or p,€l, then pcl Using the fact that all pcJ are join-
irreducible, it is easy to verify that if INJ is finite, then I is closed. Every ideal I
has a closure I, the smallest closed ideal containing 7, and the closed ideals of M
form a lattice Cd M=L.

For a€K, let I, be the ideal of M generated by JN(a]. Obviously, I, is a
closed ideal. We claim that 7, is standard. Indeed, let u be an atom of L, such that
uxl,; then there is a pcJ with u=(p,] (or (p,]) and pza. Obviously,
©(I,Vou)=a, hence I,V, u is closed, implying that the only atom of I,V, # not in
I, is u.

Let 6, be the standard congruence relation associated with the standard ele-
ment I, of L. We claim that a—6, is an isomorphism between K and Com L. Since
a—0, is obviously order preserving, it is sufficient to prove that it is one-to-one and
onto.

0, is a complete congruence on L. Indeed, I=J (mod 6,) iff the atoms of I—1,
and J—1I, are the same; thus 6, preserves ()(=Ao=/.) and it also preserves
V1 since the kernel, (Z,], is principal. Conversely, let 8 be a complete congruence on L.
Since 6 is complete, the kernel must be principal, generated by an ideal S of M.
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Let a=\gJNS. Weclaim that §=0,; equivalently, that S=1,. The ideals S and
I, are equal iff they contain the same atoms. So let p,£S (i=1 or 2), ie., p,;=0
(mod 6); then p=0 (mod 6) also holds: if p is maximal in J, it holds by virtue of
p=p;; otherwise, take a g=p in J and compute in M(q, p) that p,=0 (mod 6)
implies that p=0 (mod ). Conversely, let p,cI, (i=1o0r2), ie., p=a=Vg(JNS).
Then p=1(S), and S is closed, hence p,£S. This, again, completes the proof of
Theorem.

4. Concluding remarks. A lattice L with zero is sectionally complemented if
every interval [0, a] is complemented. See, e.g., [3, Sec. I11. 3 and II1. 4] for the signifi-

cance of this property. Using our first proof we can somewhat strengthen the Theo-
rem.

Addendum to Theorem. The complete lattice L of the Theorem can be chosen
to be sectionally complemented.

"Proof. Let u, tc L, and let u<t. We have to construct a v€ L with uA v=0
and uV, v=t Set

A ={peJ|t(p) =i and u(p) = o}.

For p€J, define u*(p) as a complement of u(p) in [o, t(p)]. Now we describe v;
for p€J, define

u*(p), if w*(p) is the unique complement of u(p) in [o, t(p)],
v(p) = (p), if p=E Vg4,
0, otherwise.

Obviously, v€Q. Furthermore, T(v)=A. Hence v is closed, and so v€L. Now,
u(p)Av(p)=o0 holds in M; by definition for all p€J, so uA,v=0. Finally,
@Vgov)(p)=u(p)Vu*(p)=1(p) except if u*(p) is not the unique complement of
u(p) in [o, t(p)] and p=V A4; in this case, (uVyv)(p)=u(p)Vo=u(p). However,
T(uVov)2T()=4 and u(p)c{a,b,c} (otherwise, u*(p) would be the unique
complement of u(p) in [o, t(p)]), hence by (1), uV,v(p)=i=1(p), proving that
uVpv=t

It is reasonable to ask how the constructions of [4], Sec. 2, and 3 compare.
Let K be the three-element chain. It can be computed that the construction of [4]
yields a lattice isomorphic to L, which can be represented as M? with the elements
{a, a), {a, b), and (g, i) removed. Sec 2 yields a lattice L, which can be represented as
M; with the elements (a, i), (b, i), and {c, i) removed. Note that L, and L, both
have 22 elements but they are not isomorphic. Finally, Sec. 3 produces the six-element
lattice M(p, q).
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Finally, in [4, Section 4], K. REUTER and R. WILLE produce examples of com-
plete lattices L such that Com L is not distributive. We think the following example
is the simplest.

Let L be N (the set of nonnegative integers with the usual partial ordering) with
two additional elements: a, i. Let O be the zero, and i the unit of L. Let aAn=0 and
aVn=i forall n¢N, n>0. Obviously, L is a complete lattice. We define three com-
plete congruences, a, f§, and y on L:

nontrivial classes
o: [2n+1,2n+2], for n=0,1,2,...
B:[2n+1,2n+2], for n=1,2,...
y: [2n, 2n+1], for n=1,2,....

It is easy to check that «, B,y generate a sublattice isomorphic to Ny in Com L.

Observe that L is a “minimal” example. If Com L is nondistributive, then L
must contain a chain, C, of the type w-1 or its dual, otherwise Com L is isomorphic
to Con L, and hence distributive. L—C is nonempty; indeed, if L=C, then
Com L=Com C, and Com C is isomorphic to Con w, which is distributive. We
conclude that L—C must contain at least one element. In our example, it contains
exactly one element.
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Endomorphism monoids in small varieties of bands

M. DEMLOVA and V. KOUBEK*)

Introduction

The study of the relationship between an algebra 4 and its endomorphism
monoid End (A4) has gradually, in the course of two decades, crystallized into a gene-
ral framework, which we find worthwhile to outline here.

As soon as we have a class A4~ of algebras, the assignment 4—End (A) for Aex”
defines the class .# of monoids M isomorphic to End (4) for some A€, i.e. the
monoids representable in K. The class " is said to be monoid universal if all monoids
are representable in . If every finite monoid M is representable by a finite algebra
in 2 then we say that £ is finite monoid universal.

The problem of representability of a given monoid M in a given class % of
algebras is just one aspect of the relationship between A€ and End (4). Another,
in a way complementary aspect of this relationship is the problem of determinancy
of A¢# by End (4): to what extent the knowledge of End (4) (up to isomorphism)
determines the structure of 4 (within the class #")? The class X is said to be k-
determined, for a cardinal k, if any set of pairwise non-isomorphic algebras from %~
with the same (up to isomorphism) endomorphism monoid has the cardinality
strictly less than k. }

Since both representability and determinacy are tied to the algebraic structure of
the algebras of a given class, it is natural to consider in the first place the varieties of
algebras (of a given similarity type); the lattice of subvarieties can serve as a sort of’
a structural hierarchy in which universality is an increasing property and determinacy
a decreasing property.

When we try to elucidate the nature of universality/determinacy in this lattice:
of subvarieties setting, we are naturally led to the notion of (categorical) universality:

*) The results were presented at the Colloquium on Semigroups and its Applications held.
in Wien, July 4—8, 1988.
Received August 15, 1988 and in revised form June 13, 1989.
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A variety ¢ is said to be universal if the category of all graphs and compatible mapp-
ings can be fully embedded into . If, moreover, there exists a full embedding from
‘the category of all graphs and compatible mappings into & such that it maps finite
graphs into finite algebras then £ is called finite-to-finite universal.

All known monoid universal varieties are also universal but, in general, it does
not hold. It is an open problem whether for varieties the monoid universality and the
categorical universality are equivalent. The categorical universality of a variety
¥ excludes any k-determinacy of ¥; for the reason that simply for any cardinal k,
the discrete category of k graphs can be fully embedded into #. More generally, any
monoid M has a proper class of pairwise non-isomorphic representing objects in ¥~
(see [7] or [9]).

So much for the general framework of the present study.

Our subject proper — endomorphism monoids of bands (i.e., idempotent semi-
groups) — does not ideally fit into the above general scheme for the obvious reason
that bands admit all constant self maps as endomorphisms, thus the endomorphism
monoid of any band has left zeros, thus no variety of bands is monoid universal
(and also not universal). However, as it is shown in the previous work [3] of the
authors, monoid universality (and even more, universality) is there, only as if buried
by a layer of superfltuous morphisms. A natural way how to dispose of the undesi-
rable morphisms is to strengthen the structure of the representing objects — the
bands in our case. It may come as a surprise that even very small varieties of bands
can be made universal by enriching their operational type by two or three nullary
operation symbols, i.e. by turning the bands in question into 2 or 3-pointed bands
{1-pointed would not do).

Every band variety is determined, within the variety of all bands, by a single
equation =y, a useful means to refer to the variety as [u=uv] (especially if there is
no other commonly accepted name for its members).

Figure 1 visualizes the meet semilattice 7, which is isomorphic to the bottom of
the lattice of band varieties, see [1, 4, 5]. The nodes of T, represent the following band
varieties:

a, =[x=y) — trivial bands

a, =[xy=x] — left zero semigroups
a; =[xy=yx] — semilattices

as =[yx =Ax] — right zero semigroups
ay =[xyz=xzy] — left normal bands

a; =[xyz=xz] — rectangular bands
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ag =[yzx=zyx] — right normal bands
a; =[xyx=xy] — semilattices of left zero semigroups
ag =[xyzu=xzyu] — normal bands
ay =[xyx=yx] — semilattices of right zero semigroups
ayp=[xyz=xyxz] = — left distributive bands
ay =[xyz=xzyz] — right distributive bands.
/ ' /
ag a \ /
T6 s
3 a2 !
%0
The meet semilattice T,
Figure 1

It is readily seen that no number of nullary operations added to semilattices or
vectangular bands makes them monoid universal.
The aim of this paper is to prove

Theorem 1.1. The variety of rectangular bands and the variety of semilattices
with an_arbitrary number of nullary operations added is not universal.

Theorem 1.2. A variety ¥~ of bands with two nullary operations added is uni-
versal if and only if ¥~ contains either the variety of semilattices of left zero semigroups
or the variety of semilattices of right zero semigroups.

Theorem 1.3. A variety ¥ of bands with three nullary operations added is uni-
versal if and only if the variety of semilattices is a proper subvariety of ¥,
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It should be said that the very “undesirable’” morphisms, removed by the additio-
nal nullary operations in order to achieve universality, are very precious for the
determinacy of small band varieties: semilattices are 3-determined [10], normal bands
are 5-determined [11], semilattices of left (or right) zero semigroups are 3-determined
and left (or right) distributive bands are 5-determined [3].

The results of this paper raise the question whether there exist other strengthen-
ings of the structure of bands to obtain a universal category. The authors [3] showed
that also the variety of bands with a unary operation * satisfying the identities
xx*x=x and x**=x is universal. It is an open question whether we can restrict
ourselves to the *-bands (here the unary operation, moreover, satisfies the identity
x*p*=(yx)*), or to a subvariety of *-bands.

The semigroup theoretical notions used in this paper can be found in the mono-
graphs [2] or [8].

The rest of the paper is devoted to the proof of Theorems 1.1, 1.2, and 1.3. The
proof is divided into three parts. The proof of the universality of the 2-pointed
variety [xyx=xy] (or [xpx=yx]) is contained in Section 2, and the proof of the uni-
versality of the 3-pointed variety [xyz=xzy] (or [yzx=zyx]) is the aim of Section 3.
Common to both parts is the use of unary varieties. Denote by I(1, 1) the variety of
algebras with two unary idempotent operations and I(1, 1, O) its 1-pointed version.

It is known '

Theorem 1.4 [9]. I(1,1) and I(1,1,0) are finite-to-finite universal.

Our universality proofs construct a full embedding of (1, 1) or I(1, 1, O) into
the variety in question.

The final section is devoted to the proof of non-universality of some pointed
varieties of bands. This finishes the proof of Theorems 1.1, 1.2, and 1.3.

2. Universality of 2-pointed semilattices of left zero semigroups
Denote by (S, %) the groupoid given by the following table (see on the next
page).
Then the following holds:

Proposition 2.1. The groupoid (S, ) is a semigroup belonging to the variety
[xyx=xy) of semilattices of left zero semigroups. Moreover, B=1{b;; i€2}, C=
={c;; i€2}, D={d;; ic2}, E={e;; ic4} are all non-singleton D-classes of (S,*).

Proof by a direct inspection.

Assume that (X, ¢y, @,) is an algebra from I(1, 1) such that XN S=0. Denote
by X,, X;, X, three disjoint copies of X, the element x€X in the copy X;, i€3
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(S, %) | a a, to fH ts bo| by | (4 d, d, | e €, e €3

a, a, | bo | 1o by | 1o bo | bo | o | o |di | dy € | & e ey
a, b, ay b, 151 I3 b, b, Cy [ d,y d, ey [0 € €3
ty ) by | 1o by | 1o bo | bo [cr | v |di| di |1 | en |es | &
h b, t by 151 5% by b, (451 [ d, d, € €y es €3
t, ty t t t 1, bo| 8 |1 | v [di| di |en | &2 | e ey

bo bo bo bo bo bo bo bo Cy C1 d1 dl €; €, €3 4 €3

by by | by by 1 by | by | By | By |ar | o 4 d e | ey | e e

Co ¢ e | o | ¢ o oo | o o | ¢ | e e e | e | e €

N g lalag jalalalalalea |a]ea |aa|lea |alea

d, de |do | dy | dy } do | dy | do | € | €o do| dy | € | € ey e,

d, dy |dy| dy {d, | dy |d,| di e | es d | dy |e | es ey ey

€ € & € € € € € & € & €y & €o & €

€. € €, € €y ey €; € e (3% € €y e (21 € €y

€, e, [ €, [N €, €, € e, e € €y 23 e, ey €,

€3 €3 €3 €, €y €3 [N €3 €3 €3 ey [ [ €3 ey e
Figure 2

is denoted by x;. We shall define a groupoid &'(X, ¢, ¢,)=(¥, -) which is a co-
extension of S (i.e. there exists a surjective homomorphism f: (¥, -)~(S, %)) as
follows:

Y = (S\{t: 1€3)U(U X ie3))
and if ‘y, z€Y then:
y-z=uxv if the following hold:
yeS and y=u or ycX; and u=¢; for some i€3,
z€S and z=v or z€X; and v={; for some i€3, uxvcY;

y-z=u, if there exist u,v€X with y=u;, z=v;, and fft;=1 for some
i, J, k€3;

yez=u, if y=u€X;, z€{ay, @} and t;xz=¢ for some i, k€3;

y-z=()) if y=a;, z=u€X; and a;x1;=1, for some i,j, ke3.
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Denote by ¥ a mapping from Y to S such that

y(p)=y for y€S, Y@ =1 for yeX, ic3.
We have

Proposition 2.2. @'(X, ¢4, ¢,)=(Y, -) is a semigroup belonging to the variety
[xyx=xy] for every (X, o, 0 )€I(1,1). Furthermore, ¥:(Y, -)—(S, %) is a sur-
Jjective homomorphism and B,C, D, E, X;, i€3 are all non-singleton 2-classes of
(Y9 ‘ )'

Proof. That ¢ is a homomorphism is straightforward. We show that (Y, )
is a semigroup. Let x, y,z€Y and we investigate the equality

(%) (x-y)-z=x-(y-2).

Since ¢ is a homomorphism and (S, ) is a semigroup we obtain that (%) holds for
every X, y,z€éY with (x-y).-z€S8 or x-(y-2)€S. If (x-y)-ze Y\S then (x-y)-z¢
€ U{X;; i€3}, and moreover, (x-y)-z€X; if and only if x.(y-2)€X;. Assume
that (x-y)-z€X, then x,y, zé X,UX,U{a,}. If x€X, then (%) holds because x
is a left zero with respect to the set X,UX,U {a,}. If x=u, for some u€X then for
every v€X,UX,U{a,} we have u,-v€{u,, u,} and hence we again obtain (*).
Finally, assume x=a,. If y=u; for some ucX, i€{0,2} then we have (x.y)-z=
=(po()e) - 2=@o(t)y and y-z€{uy, u,}, hence x-(y-z)=g@y(u); and (%) hold.
If y=a, then z=u; for some u€X, i€{0,2} and hence (x-y)-z=ay-z=¢,(u),
and x-(y-2)=x - @g()o=0(Po(1))o= (1), because ¢, is idempotent. Analogously
we prove (%) iIf (x-y).z€X;. Finally, if (x-p).-z€X,, then x,y,z€X, and be-
cause X, is a left zero subsemigroup of (¥, -) we conclude that (%) holds and hence
(Y, -)is a semigroup. The rest is obvious.

Define a functor & from (1, 1) into the 2-pointed variety [xyx=xy] of all
2-pointed semilattices of left zero semigroups. For an algebra (X, ¢,, ¢,) from I(1, 1)
define @(X, @o, 0)=(¥, -, ¢;,d,) where &' (X, ¢y, ¢;)=(Y, -). For a homomor-
phism f: (X, @q, ¢)—~(X’, ¢4, ¢7) in I(l, 1) define a mapping &f:

df(x;)) = f(x); for every xcX, i€3, and &f(s) =s for every s€S.

If uc{ay, a,}, v€ U{X;; i€3} then &f(uv)=®f(u)- ®f(v) because fis a homomor-
phism, for the remaining case we obtain by a direct inspection that &f is a homo-
morphism. Thus we can summarize:

Proposition 2.3. @ is an embedding of I(1, 1) into the 2-pointed [xyx=xy].

We prove that @ is full. Assume that @ (X, @q, @))=(Y, -, ¢, dp), PX’, @5’
op)=(Y', -, co,dy) are algebras from the 2-pointed variety [xyx=xy] and let
[, -, c,d)—~(Y’, -, ¢y, dy) be a homomorphism. Then we have
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Lemma 2.4. For every u€cSNY we have f(u)=u.

Proof. Since f preserves the nullary operations we have f(c,)=c,, f(dy)=d,.-
Hence f(C)SC, f(D)SED. Furthermore, an arbitrary 9-class containing an arbit-
rary element of the set U {X,; i€3}UBU {a,, a;} is greater than the P-classes C and
D. Thus f(U{X;;i€3}UBU{a,, ,})S U {X;; i€3}UBU{ay, a;}. Moreover, q,
is a unique element of the set U{X;; i€3}UBU{ay, a;} with a,-co=c, and g, is a
unique element of the set U{X;; i€3}UBU {q,, a,} with a,-dy=d,. Hence f(ay)=
=ay, fla;)=a,. Since the subsemigroup generated by {a,, a;, co, dy} is SNY we
obtain that f is identical on the set SNY.

Lemma 2.5. There exists g: X—X’ such that for every x€X, i€3 we have
Sx)=g(x);.

Proof. Choose x¢X. By Lemma 2.4 we conclude that f(xp)€ U{X]; i€3}U
UBU{agy, a,}. If fx)eXU{ao, boy then by=f(b)=f(x.:a,-a))=f(xs)-f(ap) -
- flag)=b, — a contradiction, if f(x,)€X;U{a;, by} then by=f(bg)=f(xs-ay-a;}=
=f(xy) - f(ao) - f(a,)=b, — a contradiction. Thus f(X,)E&X,. Set g: X—~X’ with

Sf(x2)=g(x), forevery xcX. Then wehave f(xo)=f(xs- a)) =f(x2) - f(ap))=g(x)- a=
=g(x) and f(x))=f(xy- a)=f(xs) - fla) =g(x)z - a;=g(x)1.

Lemma 2.6. The mapping g of Lemma 2.5 is a homomorphism from (X, ¢q, @)
into (X', ¢, ¢7)-

Proof. Consider x¢X, then g(@o(x))o=/(@o(x)o)=1(a- x2)=f(a0) - f(x5)=
=ay-g(x)s=¢,(g(x))e and hence gog,=¢,0g. By the dual argument we obtain
gop,=¢jog, whence g is a homomorphism.

Since for a homomorphism g from Lemma 2.5 we have $g=f we have proved
that @ is a full embedding and thus Theorem 1.4 completes the proof of the following

Theorem 2.7. The variety [xyx=xy] with two nullary operations added is
finite-to-finite universal.

Hence we immediately obtain

Corollary 2.8. The variety [xyx=yx] with two nullary operations added is
finite-to-finite universal.

Proof. Obviously, a semigroup (7, -) belongs to the variety [xyx=xy] if
and only if the semigroup (7, @) belongs to the variety [xyx=ypx] where tQu=u-t¢
for every t,ucT. Hence Corollary 2.8 immediately follows from Theorem 2.7.
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3. The universality of the 3-pointed variety [xyz=xzy]

For an algebra A=(X, ¢, {, q)€I(1,1,0) denote by X;, i€2 two disjoint
-copies of the set X, for an element x€X denote by x; the corresponding element in
the copy X;, i€2. Define an algebra @4 in the 3-pointed variety [xyz=xzy]. The
underlying set of @4 is (X,X{ay, @z, a;, @p})U(X; X {5, a5, a11}) U((XoU XD X
X {as, a5, ag, ag)) U{(0, a)}. For x, ye X, m, n€2, i, je12 if a;Aa;=a, in the semi-
lattice T, and if (x,,a;), (y,, a;) are elements of the underlying set of ®A4 then

(Xm> @) if k=3,
: ('p(xm)l» aa) if k=3,
(xm, ai) (ym aj) = (xm az) if k=2,
(‘ﬁ(xm)m al) if k=1,
(0, ay) o if k=0,

-moreover (0, a,) is a zero in @4, where @, ¥: (X,UX,)~X are the mappings defined
B(x)=x, d(x)=0&), ¥(x)=¥(x), ¥(x)=x for every x€X. By a direct ins-
‘pection we obtain that the definition of the binary operation is correct and that #A4
is a strong semilattice of left zero semigroups, thus by [8] it is a left normal band. The
‘three added nullary operations are (g,, @;), (4o, @;), (41, ay)-

For a homomorphism f: 4—-B where A=(X,¢,¥,q), B=F, ¢, ¥, r)
.denote by f” the mapping defined as follows: f'(x,,a)=(f(x)m.a;) for every
x€X, me2, ic12\{0}, f7(0, a))=(0, a,). By a direct inspection we obtain that f”
maps the underlying set of ¢4 into the underlying set of @B, furthermore the res-
‘triction of f” to @A is a homomorphism. Thus if the restriction of f* to &4 and #B is
denoted by &f then we obtain

Proposition 3.1. @ is an embedding of I(1, 1,0) into the 3-pointed variely
[xyz=xzy].

Proof. By a direct inspection.

We prove that @ is a full embedding. For the purpose assume that 4, B€I(1, 1, 0)
‘where A=(X, ¢, ¥, q), B=(, ¢’, ¥, r) and that f: #4—~PB is a homomorphism
in the 3-pointed variety [xyz=xzy].

Lemma 3.2. The structural homomorphism of f is the identity.

Proof: Since T, is the structural semilattice of &4 and ®B we get that the
structural homomorphism g of f is an endomorphism of 7;. Since f preserves the
nullary operations we conclude that g(a)=a; for every i€ {5,7,9}. Moreover, g
preserves the order and thus g(a;))=a; for i€ {10, 11}. Since g is an endomorphism
and {a;;i€{5,7,9, 10, 11}} generates 7, we conclude that g is the identity.
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Define mappings f;, fi: X—Y such that
S(xo, 1) = (fo(x)m alO) for every xeX,
S5 ayy) = (1(3), ayy) for every x€X.

Lemma 3.3. For every i€{1,2,4,5,6,7,8,10}, we have f(x,, a)=(f3(x)o, ;)
Jor every xcX.

For every i€{3,4,5,6,8,9,11}, we have f(x,,a)=(f1(x),,a;) for every
xEX. '

Proof. For every x€X and i€{1,2,4,5,6,7, 8} we have (xy, a;)=(xo, ayo)+
-(x,, a;) and hence

S(x0, a) = f(xq, a10) /(x5 @;) = (ﬁ)(x)m a1o)f(xo, a) = (fo(x)m ai)-
Hence we obtain the first assertion. The proof of the second assertion is dual.
~ Corollary 3.4. fo=f.

Proof. We apply Lemma 3.3 and the fact that

(6(x)o> @2) = f(x05 a2) = f((x1, A1) (%o, @) = fx1, A1) fxg, A2) =
= (A1, @) (/6(x)o, @3) = (fi(x)o> a2)
for every x€X.
Lemma 3.5. fy is a homomorphism of I(1, 1,0) from A into B.
Proof. Obviously f,(g)=r. We have

((P(f(‘)(x))Os al) = (ﬁ)(x)la as)(fo(x)o’ al) =f((x1, as)(xo, al)) =
=f((0 (*o> al) = (fo(q’(x))o, a1)-

Thus f, commutes with ¢. By duality we obtain that f;, commutes with . Hence f;
is a homomorphism.

Since @f,=f we conclude that ¢ is a full embedding from I(1, 1, 0) into the
3-pointed variety [xyz=xzy]. Theorem 1.4 completes the proof of the following:

Theorem 3.6. The variety [xyz=xzy] with three nullary operations added is
finite-to-finite universal.

If we apply the same idea as in the proof of Corollary 2.8 we obtain

Corollary 3.7. The variety [yzx=zyx] with three nullary operations added is
finite-to-finite universal.

2
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4. Nop-universality of pointed varieties of bands

First we investigate the variety of rectangular bands, and the variety of semilatti-
ces. If B is a rectangular band then B is a2 product of a left zero semigroup L and a
right zero semigroup R. It is well known that f: B—~B is an endomorphism of B if
and only if f=gXh where g: L—~L, h: R—R. Hence we obtain:

Proposition 4.1. For any cardinal «, no a-pointed rectangular band B repre-
sents a non-trivial group as End (B).

We prove an analogous result for semilattices:

Proposition 4.2. For any cardinal a, no a-pointed semilattice S represents a
non-trivial group of a finite order as End (S).

Proof. Assume the contrary, let .S be an x-pointed semilattice such that its
endomorphism monoid is isomorphic to a non-trivial group G of finite order. First,
for every g€End (§) and for every x€5 if g(x)x then x and g(x) are incompa-
rable because there exists a natural number » with g"(x)=x. For every endomor-
phism g€End (S) define f: S—S suchthat f(x)=xg(x) forevery x€S. Obviously,
SEEnd (S) and f(x) and x are comparable for every x€S. Moreover, f is identical
if and only if g is identical and this is a contradiction with the fact that G is
non-trivial.

Propositions 4.1 and 4.2 complete the proof of Theorem 1.1. Moreover, Theo-
rems 1.1 and 3.6, and Corollary 3.7 complete the proof of Theorem 1.3. Thus it
suffices to finish the proof of Theorem 1.2. For this purpose we. shall investigate the
2-pointed variety of normal bands.

Proposition 4.3. Let B be a normal band with a structural semilattice S. If fis an
endomorphism of S such that f(s)=s for every s€S then there exists an endomorphism
g: B—B with a structural morphism f such that for every @-class D of B with f(D)=D
and for every x€D we have g(x)=x.

Proof. By [8], B is a strong semilattice of rectangular bands, i.e. for every s€S
there exists a rectangular band D(s) (it is the @-class corresponding to s) and for
every pair s,1€S with s=t there exists a homomorphism g, ,: D(t)—~D(s) such
that .

a) for every s<S, p,, is the identity;
b) for every triple s,1, u€S with s=i=u we have

He,sO Uyt = Hy,ss

c) B=U{D(s); s¢S} and {D(s); s€ S} are pairwise disjoint;
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d) for every s,1€S, x€D(s), ycD(t) we have

Xy = l"s,s/\r(x)ﬂr,s/\l(y)
where the former product is in B and the latter one is in D (sAt).

For every xcD(s), s€S define g(x)=p, ;(x). By a) through d) we easily
obtain that g is an endomorphism of B with the required properties.

Lemma 4.4. Let S be a semilattice with an element d<S. If f¢End (S,) where
Sy={s€S; s=d} is a subsemilattice of S then g: S—~S defined by g(s)=f(s) for
S€S,, g(s)=dAs for s€S\S, is an endomorphism of S.

Proof. Clearly g is correctly defined. Let x,y€S. If x,y¢S, then also
xAy€S; and since f€End (S,;) we obtain g(x)Ag(y)=g(xAy). If ye¢S\S, then
gxAyy=xAyAd. If x€S8, then x, f(x)=d, whence xAyAd=f(x)AyAd=
=g(x)A\g(y); if x€S\S,; then obviously g(x)Ag(y)=xAyAd. If x€S\S; the
proof is analogous.

Theorem 4.5. No 2-pointed normal band B represents a wnontrivial group as
End (B). ‘ ‘

Proof. Assume that B is a normal band with two added nullary operations q;,
i€2 such that End (B) is a group (i.e. every endomorphism of B is an automorphism).
Let S be the structural semilattice of B, assume that elements b;, i€2 of S corres-
pond to the PD-classes containing a;, i€2. If there exists s€S such that s=b; for
i€2 and s is not the unity of S then consider the endomorphism & of § such that
h(x)=sAx for every x€S. Since s=b; we have h(b)=b>b;. By Proposition 4.3
there exists a band endomorphism g of B with structural endomorphism h and
g(a)=a; for ic2. Thus g is an endomorphism of B and because neither & nor g
is an automorphism, this is a contradiction. Hence we can assume that only the unity
lin S is greater than b;, ic2. Set c=byAb, and let dcS with d=c. Denote S,=
={s€S; s=d} and define f:S,~S, as follows:

f)=x if x=1,

f(xX)=b; if x1 and x=b; for an €2,
J(x)=c¢ if xzb;, for any i€2 and x=c,
f(x)=d if xzxc¢ and x=d.

By a direct inspection we obtain that fis an endomorphism of S; with f(x)=x for
every x€S, and f(b)=b; for ic2. If we use Lemma 4.4 we obtain an endomor-
phism & of § with h(x)=x for every x€§ and h(b;)=b; for ic2. Finally, if we
apply Proposition 4.3 we obtain a 2-pointed band endomorphism g of B with structur-

2%
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al endomorphism h. Since g is an automorphism we conclude that 4 is an automor-
phism of §, thus S;=S&{l, by, by, ¢, d} where 1 is the unity of S (if it exists). It
is routine to verify that B is rigid.

The proof of Theorem 1.2 follows from Theorems 2.7, 4.5, and from Corollary
2.8. In fact, we have proved stronger results than Theorems 1.1, 1.2, and 1.3:

Corollary 4.6. For a variety ¥ of bands with k nullary operations the following
are equivalent:

a) ¥ is finite-to-finite universal;

b) ¥ is universal;

¢) ¥ is monoid universal;

d) ¥ is finite monoid universal;

e) there exist a non-trivial group G of finite order and an algebra A€V with
End (4)=G;

f) either k=2 and ¥V 2[xyx=xy] or k=2 and ¥ 2[xyx=yx] or k=3
and the variety of all semilattices is a proper subvariety of ¥.

Acknowledgement. We thank the referee whose comments helped us to improve
several passages.
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Loops with and without subloops

J. KOZMA

In the theory of local loops, those loops which have one-parameter subloops are
of considerable importance. M. A. AKIVIs [1] gave an interesting example of a quasi-
group which has r-parameter subloops in every direction [2]. At the “Web Geometry
Conference” held at Szeged, 1987, K. H. Hofmann raised the problem of exhibiting
a simple example in which there is no one-parameter subloop in any direction.

Searching for a satisfactory answer to this problem we shall investigate the ques-
tion: Is the existence of one-parameter subloops a general property of local loops?

The aim of our considerations are as follows: ,

1. Firstly, we exhibit a class of loops which have subloops in every direction, and
examine associativity conditions for this loop-class.

2. Secondly, we give (analytic) examples of elastic loops in our class which are
not groups on the one hand, and a further example for elastic loops whose one-
parameter subloops are not one-parameter subgroups on the other hand. Hence we
separate analytic elastic loops from right alternative analytic loops since the latter
ones are necessarily power-associative (see [6]).

3. Thirdly, we exhibit a class of loops which have one-parameter subloops only
in one direction.

4. Finally, we give an example of a loop without one-parameter subloops at all.

All the results of the present paper are based on the existence of canonical
coordinate systems (3] and the following main feature of loops ([4], Theorem 1). If f
is a local loop of class C* (k=2) and D is a canonical coordinate system then every
one-parameter subloop is locally a straight line through the origin in D.

The author expresses his sincere thanks to K. H. Hofmann, P. T. Nagy and
A. Kurusa for their help and suggestions.
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I. Preliminaries

Definition 1. Let & be an n-dimensional differentiable manifold. A partial
mapping f of class C*

J: FXF~F: (x,) ~2 (%Y, 26F)

is called local loop-multiplication of class C* and (& f) is called a local loop of class
C* if the following conditions are satisfied.

a) The multiplication is a local quasigroup, that is, there exist open neighbour-
hoods ¥, #(¥Ycuc#) such that f. ¥'X¥->% and f(x,y)=z€% for all
X, y¢¥. Furthermore for arbitrary elements x€7¥, z¢¥ (respectively, ye¥;
Z€Y") there exists one and only one y€% (respectively, x€¥") for which f(x, y)=z.

b) The loop has a unit element, that is, there is an element e€¥” such that
fx,e)=f(e,x)=x for all x¢c¥/

c) The loop-multiplication is of class C*.

We shall consider charts (%;, ;) for which ¢;: #~%;SR"; e—0, where 0
is the origin of R™

A loop on an m-dimensional manifold & is called an m-parameter loop. Instead
of (#; f) we shall frequently write f.

Since the canonical coordinate-system defined in [3] plays an important role in
our considerations further on, we recall its definition.

Definition 2. Let us consider a loop f of class C* (k=2). We shall say that a
coordinate-system ¢ given by the chart (%, ¢), f: #—~R", ¢(e)=0, is a canonical
coordingte system (CCS) with respect to f if in these coordinates we have

F(x,x) =2x
for all x€q@(¥"), where
F=gofo(p™Xe™).

Further on, by a loop we mean a local loop of class C* (k=2).

Definition 3. Let (£; f) and (¥; g) be two loops, and let & be a local map
& F 4 of class CF, If £ is a local embedding, then (&F; f) is called a local m-
parameter subloop of (9 g).
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II. Maximal families of one-parameter subloops

Our purpose is now to describe a class of loops having subloops in every direc-
tion.

Definition 4. A local multiplication
F: R"XR" -R"; "XV —~U
(where ¥, 9 are appropriate neighbourhoods of 0) is called an («, f)-multiplication
if for all x,yc¥”
iy F(x,y) = x+y+a()x+px)y
where o, f: R">R: 00 are real-valued functions of class C*.

Proposition 1. An («, B)-multiplication is a local loop-multiplication on a neigh-
bourhood ¥ of the origin 0 of R", the unit element is the origin 0.

Proof. First of all let us show that (1) defines a local loop-multiplication of
class C*.

a) As « and 8 are defined on R*, F(x,y) is well-defined. The multiplication is
locally solvable from left and right since

D,F(0,0) =1, D,F(0,0) =1

where D, and D, denotes the partial derivative with respect to the first, respectively,
second variable belonging to R", and where I is the identity map in R",
b) The origin 0 of R” is the unit element since we have

F(x,0) =x+0+a(0)x+4(x)0 = x,
and similarly

F@O,y)=y.

¢) The loop-multiplication is of class C* because « and f are of class C¥, as
well.

A loop (R*, F) with («, f)-multiplication is called an (R"; «, §)-loop.
Now we are going to show that these loops have subloops in every direction.

Theorem 1. For every vector subspace s/ of R" the restriction F|,, , of an
(o, P)-multiplication is a loop-multiplication on a neighbourhood of 0¢c..

Proof. Let & be a vector subspace of R”. Then for x, yéo/ the element
z = F(x,y) = [1+aMIx+{1+B(x)]y

obviously belongs to &7, as well. Similarly if x, z (respectively y, z) are elements of
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o, then y (respectively x) also belongs to . This implies that the restriction of F
to /X is a local subloop of (R”; F).

The subloop (; F) is called an (&; a, f)-loop.
Let us emphasize two details of the above result.

Corollary. The loop (R"; a, B) has r-parameter subloops in every r-dimensional
subspace of R™. In particular, it has one-parameter subloops in every direction.

Theorem 2. Let F be an (o, f)-multiplication defined on a neighbourhood ¥ R".
Then the loop (R"; a, B) (n=2) is alocal group on a sufficiently small neighbourhood
W of 0 if and only if

o F(x,y)) = a(x)+a(y)+a(x)a(y)
(for every x,yeW).

Proof. 1) For the necessity we show that (R"; «, f) is a group if and only if for
all x,ye#  the relations

(22) a(F(x,Y)) = a(x)+a(y)+a(x)a(y)
(2b) B(F(x,y)) = Bx)+B(y)+BX)B(Y)
are satisfied. Indeed, (R"*; a, f) is a group if and only if F is associative, that is,
F(F(x,y),z) = F(x, F(y, 2))
holds forallx, y, z€ % (#  is a sufficiently small neighbourhood of 0). By a straight-
forward calculation we see that this identity is equivalent to the following one:
[2(F(y, ) —[e(M) +a@+aa@]]x = [B(Fx, y))—BX)+By)+B(X) B(]]z

for all x,y,z€¥, which is equivalent to (2a) and (2b).

2) In order to show that condition (2a) is sufficient we shall prove that (2a)
implies (2b). For this purpose we show that (2a) implies the linearity of a— f via the
commutativity of the one-parameter subloops.

By (2a) we have
(3) “(F(x’ y)) = oz(F(y, X))

for all x, yé#. Whenever for a direction a D,a(0)=0, we-get from (3) that
F(x,y) = F(y, x)

for allx, y belonging to the one-parameter subloop of direction a. That is, this
one-parameter subloop is commutative. However, if for the direction a D, a(0)=0,
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we introduce new defining functions
a*(x) = a(x)+{a, x), B*(x) = B(x)—(a, x)
to obtain the (R"; a*, $*)-loop on #. Since
ua+vax*(va) ua+ f*(ua)va = ua-+vao(va) ua+ f(ua)va

for all sufficiently small real number u and v the one-parameter subloops of the

direction a of the loops (R”; «*, §*) and (R”; «, ) are the same. Since D,a*(0)#=0

when D,x(0)=0, we obtain that this one-parameter subloop is commutative.
From the commutativity it immediately follows that

a(wx) ux+ p(ux)vx = a(ux)vx+ p(vx) ux

holds in every direction x for all sufficiently small nonzero # and v in R, which
yields
2 (@x)—BOx) _ a(ux)—p(ux)

v u

The left hand side does not depend on u, so we get
4)

a(vx)—pwx) =v- '1‘1_{{)1

_Llﬂi)u—“i“v.nm ﬁ(u_x)u—_ﬁ@)_ = v-D,(«(0)— B(0))

u-0

for each x€#. Thus
a(2)—B(z) = (D(x—p)(0), z).
That is, «—f is a linear function on the appropriate neighbourhood.
Now we are ready to prove (2b) from (2a). If in the left and right hand side of
(2a) we substitute 1+ B for « (where A is a linear function), we obtain firstly
2(F(, ¥) = A(F(x, )+ B(F(x, ) = 2(0+A0)+2 () A3 +B) () +
+B(F(x, y)) = [A(X)+ 2+ 1Y 2(X)+ L) A(x)+ L) AW+ B(F(%, ),

secondl
ccondly a(x)+a(y)+a(x)aly) =

= LX)+ A+ A1X) AW +AEX) @)+ BE) AWM+ [B(x) +B(y)+Bx) B(Y)],
hence
B(F(x, ¥)) = B+ +BG)B(Y)

which is just (2b) and the theorem is proved.

Remarks 1. In accordance with the proof above, the (R"; «, f)-loop is not a
group if «— f is not linear (for example if § is identically O, and « is not linear). Thus
relation (1) defines a non-trivial loop, in general. 2. By Theorem 1, r-parameter sub-
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loops (o ; «, B) of (R"; «, B) exist for all subspace & &R". Since Theorem 2 holds for
these loops, too, we obtain that the r-parameter (r=2) subloops of (R"; «, B) are not
r-parameter subgroups if «— f is not linear.

We now consider some other algebraic identities which are weaker than associa-
tivity. Let us recall some definitions.

Definition 5. A loop has the left-inverse property (right-inverse property) if
for each x€¥ there is an element X,€¥" (X,€%) such that for every yc ¥~

5) F(X,, F(x,y)) =y, respectively, F(F(y,x),X,) = Y,

in particular, for y=0

6) F(x;, x) =0, respectively, F(x,X,) =0.

The loop F said to be left alternative (right alternative) if for all x, yc¥~

() F(F(x,x),y) = F(x, F(x,y)), respectively, F(y, F(x,x)) = F(F(y, X), X).
‘The loop has the property of elasticity if for all x, ye¥”

(®) F(x, F(y, x)) = F(F(x, y), ).

Theorem 3. An (R"; a, B)-loop (n=2) is a group if and only if it
a) possesses the left-inverse property (right-inverse property),
b) possesses the left alternative property (right alternative property).

Theorem 4. Whenever a=f and « is linear then the corresponding (R"; o, B)-
loops (n=2) are elastic. Such an (R"; a, p)-loop of dimension n (n=2) is a group if
and only if a=0.

Proof of Theorem 3. a) If we use expression (1) to reformulate (5) and (6)
we get

) [tralx+y+a®x+pX)yI] - X +[1+a@)+BE) +a(y)FE)] - x +
+[BE)+BER)+BE)BE)] -y =0,
6 N+a(x)]-X+[1+5(X)]-x =0

for all x,y and X,€¥. Subtracting (6") from (5) we get
[a[x+y+a(y) x+ )yl —e®)] K +a@[+BE)]x+
+HBE)+BE)+BX) B(X)]y =0
for all X,y and X% In view of (6") we obtain

[a[x+y+a(y) x+B(x)y]—a(x)~a(y) —a (@) a(y)] X+[B(x)+ (X)) +(x) B(E)]y = 0
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for all x,y and X,€% Notice that X,=0 if and only if x=0 (see (6)). Hence rela-
tion (5) holds for the loop (R"; a, B) if and only if the following two identities are
satisfied

(92) a[x+y+a(y)x+p(x)y] = a(x)+a(y)+a(x)a(y)
(9b) 0 =Bx)+BE)+L(X)B(X)

for all x, y¢#. Since condition (2a) is the same as (9a), this local loop is a local
group. As a group always possesses left-inverse property, part a) of the theorem is
proved in the case of left inverse loops.

Notice that from (9b) and (6”) we can express X, as follows:

1
T M+ -0+

For right inverse (R*; «, f)-loops the proof can be carried out in the same way as
above. Furthermore, the right and left inverse of an element are clearly the same by
(%) above.

b) Expressing identity (7) in terms of (1) we obtain that (7) is equivalent to the
following two identites

(10a) a[x+y+a(x+B(X)y] = a(x)+a(y)+a(x)a(y),
(10b) B2x+a(x)x+B(x)x] = 2B(x)+B(x) B(X).

We see that (10a) and (2a) are equivalent. Thus from the left alternative property it
follows that an (R”; a, f)-loop is a local group. The converse is obvious, furthermore
the right alternative case is similar, therefore part b) is proved.

(%) X

Proof of Theorem 4. From expression (1) we obtain that (8) is equivalent
to the following equality;

a(x)+o(y)+a(x)a(y)—a[x+y+a(x)y+A(y)x] =
= BX)+B(¥)+B(x) B¥)—BIx+y+a(y)x+B(x)y]

for all x, ye¥ It is clear that if «=p, then this equality is an identity for all
X, y€ ¥, In other words, for a=p the loop (R*; «, ) is elastic. Let now a=p be
linear function. Let us suppose that (R"; a, ) is a group, and n=2. Then (2a) is
fulfilled and has the form

a(F(x), y) = a(x)+a(y)+ax)aly)

a[x+y+a(y)z+a(x)y] = a(x)+a(y) +a(x)a(y)

a(x)+a(y)+a(y)a(x)+a(x)a(y) = a(x)+a(y)+a(x)a(y)
a(x)a(y) =0
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for all x, y¢¥. However, this means that «=f=0. Thus for the linear function
a=p which is not identically zero the loop (R"; «, ) is elastic, but not a group.

Another (less obvious) example is an (R"; a, f)-loop (n=1) for which «(x) is
a quadratic function, e.g. a(x)=|[x||2. It is easy to see that in this case the one-para-
meter subloops are not one-parameter subgroups. Indeed, for arbitrary s, f, u€ R
we have
F(F(sx, 1x), ux)— F (sx, F(1x, ux)) =

= stu- |x||2 [(Bt+2s+2u) (s — u) + |X[|2 t[1(s3— 1®) + 223 (s* — u®) + B (s — )] ] x.

Hence these subloops are not subgroups because the difference vector has a positive
norm provided O<u<s<t. Consequently, these loops are not groups.

Remark. L. V. SABININ and P. O. MIKHEEV [5] proved that analytical right-
alternative loops are power associative (that is, F(x™ x")=x"*" for arbitrary
x€# and any integers m and n). However, we can show that the analogous state-
ment for elastic loops is false. As a power-associative loop has one-parameter sub-
groups in every direction (see Kuz’MIN [6]), our analytical elastic (R"; o, a)-loops
(x(x)=[Ix/l*) can not be power associative.

ITI. Loops without one-parameter subloops

In final part of this paper we exhibit loops which do not have any non-trivial
one-parameter subloops whatsoever. However, let us start with another class of
loops which have one-parameter subloops in one unique direction. For this pur-
pose we give a slight modification of the loops given by (1).

Definition 6. Let us define a local multiplication («, —; @, a) in R” as follows
Fo: R°XR" -~ R": V' XV - U

where ¥, % are appropriate neighbourhoods of 0, furthermore for all x, y€¥ we
have

(11) Fy(x,y) = x+y+a(y)x—a(x)y+eo(x,y)a

for all x, yeé#. Here « is the same as in Definition 4; furthermore a€R” is a point
(sufficiently close to 0) different from 0, and g is a real function of class C*:

0: R"XR*-R: ¥ ~¥*cR

such that o(x,y)=0 if and only if x=0 or y=0 or x=y. (That is, ¢(x,0)=
=0(0,y)=0(z,2)=0 for all x,y, z£¥] and ¢ does not vanish in any other case).
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Such functions g exist, e.g. the function g defined as follows:

(12) o(x,y) = x| lyl*ix—yli*.

Proposition 2. The local (¢, —u; g, a)-multiplication given by (13) defines a
local loop of class C* which has one-parameter subloop in the direction of a, exclusively.

Proof. We show that F, is a loop-multiplication.

a) Sincea and g are of class C*, F, is well defined in ¥. F,(x, y)=2 can be solved
from left and right because the derivative of F, with respect to the first and second
variable (belonging to R") is the identity map.

b) The origin 0 in R” is the unit element since

Fy(x,0) = x+0+a(0)x—a(x)0+0(x,0)a = x

and similarly F,(0,y)=y, for all x,ye¥

c) « and g are of class C¥, therefore F, is also of class C*.

Following this, let us notice that the coordinate system in which F, is defined,
is a CCS. Indeed, according to Definition 2 we have

Fo(x,X) = x+x+a(x)x—a(x)x+o(x, x)a = 2x

for all x¢¥. So, owing to Theorem [ in [4], if there exists a one-parameter subloop,
then it is locally a straight line. It is obvious that there exists one-parameter subloop
in the direction of a.

Let us suppose that there exists one-parameter subloop in the direction of d.
Then the elements of this subloop are of form ¢.d, t€(—7T;,T;), at least locally.
Let x=s5,d#0 and y=s,d#0 (s;7s5) be two different elements of it. According
to (11) we have

Fo(x,¥) = Fo(s5:4d, 5,d) =[5, +55+5,0(5,d) — 5,0 (s5, d)]d + ¢ (5, 4, 5,d) a+rd

for some reR. Since for these s; and s;: o(s;4d, s;d) %0, directions a and d must
be the same, which completes the proof.

This loop is called an (R*; «, —a; @, a)-loop.

Our next and last example is that of a loop without nontrivial one-parameter
subloops. For this purpose we shall modify the previous construction.

Definition 7. Let us define a local multiplication (x, —«; g, 2; ¢, b) in R*
(n=2) in the following manner

Fy: R°XR" > R": "XV ~ U

where ¥; % are appropriate neighbourhoods of the origin 0, furthermore for all
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X, Y€¥ we have
(13) F3(x,y) = xt+y+a(y)x—a(x)y+eo(x,y)a+a(x,y)b

where « and ¢ are the same as in Definition 6, a and b are linearly independent (fixed)
points (directions) in R” (sufficiently close to 0). Further we suppose that ¢ possesses
all the properties of g and that, in additional, from g(xX,, yo)=0(Xe, Yo} it follows
that (X, ¥o)=0(Xy, ¥o)=0 (that is that o and g are different, except where they
vanish).

Functions ¢ with the required properties exist, e.g. the one defined by the fol-
lowing formula:

(14) o(x,y) = h(X) Iyl Ix—yl>

where h: R"—R" and h(x) vanishes if and only if x=0, and h(x)s{x||2. Further-
more h is assumed to be of class C*.

Proposition 2. Any multiplication given by (13) defines a local loop of class C*
which has no one-parameter subloop at all.

This loop is called an (R"; o, —a; 0, a; o, b)-loop.

Proof. In the same way as above we can prove that conditions a), b) and c)
for loops are fulfilled.

It can be stated, again, that F; is defined in a CCS. Thus if there exists a one-
parameter subloop of F, in the direction of d, then for two different elements
x=51d, y=5,d (05%5,5,70) we have

Fi(x,y) = F3(5,d, 5,d) =
= [s;+ 5+ 50(s5,d)— s,a(s; d)]d+0(s5,d, s,d)a+a(s, d, s,d)b = rd.
Thus we obtain that
(5, d, s,d)a+o(s,d, s;d)b = rd

for some 1=1(sy, 5)€(—T;, Tp). As for d we have unique expression d=s,a+x,b,

we get
td = (tx;)a+ (%) b = (5,4, s,d)a+0(s;d, 5,d)b

for all allowable s,5s,, hence we obtain that
(15) 0(5;d, 5,d) = 12, and o(s;d, 5,d) = 1x,.

Let us first suppose that d=a. That is, there exists a one-parameter subloop in the
direction of a. Then we have

o(s,a, s;a)a+o(s,a, s,a)b = ra.
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Since o(s,a, 5,2)#0, o(s;a, s,a)>*0 and =0, it follows that b=a, which con-
tradicts the assumption for g and b. In the case of d=b we get the same result.

Let us now suppose that azdsb. Then from relations (15) we obtain that
1,70, 2,70, consequently for all 0zs #s5,0

(16) 0(s14, 5,8) = - (5,4, 5,).
2

But, we shall now give a g and ¢ such that this equation does not hold identically
in 5; and s,. With relations (12) and (14) equation (16) becomes

2 2 Z 2 2
sy dll® 52 dll* [ (sy—s2) A = _71 h(s, )]s, d[*[|(s, —s,) d]*
v2
and consequently

X
sy dliz = == h(s; d)
Ha

for all sufficiently small s;%0. Now the function
h(X) = ellx]lz. "x“2

can not satisfy identically the previous equation, which completes the proof.
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The heat kernel for p-forms on manifolds of bounded geometry

INGOLF BUTTIG and JURGEN EICHHORN

1. Introduction

In [3] an approximation result for the eigenvalues below the essential spectrum
of the Laplace operator was proved for open manifolds. These eigenvalues were
approximated by the eigenvalues of some sequence of semicombinatorical Laplace
operators. The essential assumptions were completeness and bounded geometry up
to a certain order. Using this, the first author proved, following a paper of DONNELLY
[6], the existence of a good fundamental solution of the heat operator acting on
functions, or what is the same, the existence of a good heat kernel. For p-forms this
existence was presumed. It is widely believed that the existence result holds for p-
forms and several authors refer to [4] for example. But in [4] a rigorous proof was
given only for functions. Further, in [S] there is a nice existence proof for functions
and a uniqueness proof for p-forms. The paper [4] does not contain an existence
proof for p-forms. As a matter of fact, we have never seen such a proof until now.
This is in some sense understandable because it needs some nontrivial facts that have
to be established. In this paper we present an existence proof for a good heat kernel
on open manifolds of bounded geometry of infinite order, as expressed by Theorem
4.1. The uniqueness then follows from [5].

The paper is organized as follows. In Section 2 we introduce and summarize
some facts on manifolds of bounded geometry. Section 3 is devoted to the main te-
chnical lemmas concerning the construction of the heat kernel. Finally, in Section 4 we
present the main results of this paper.

Received November 3, 1988 and in revised form March 8, 1990.
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2. Manifolds of bounded geometry

Let (M¥, g) be open and complete. Denote the curvature tensor of (M", g)
by R and the Levi—Civita derivative by V. We consider the following conditions:

(1) rinj(M) = x‘?{{ ’inj(x) =0,

i.e. the injectivity radius possesses a positive lower bound.
(B,) There exist bounds C; such that |V'R|=C;, 0=i=m.
Assuming condition (1), we consider further the condition

(BC™) For every &0, O<g<r,.(M), and multiindex

inj
a={og, .., 0py),a; =0, la] =0y +...+tay =m

- and every choice of an orthonormal base in all points x€M there exist constants C,
independent of x such that |D*g; |=C,, y€B,(x), in normal coordinates x* defined
in the open ball B,(x).

Remarks. 1. (By) is equivalent to the boundedness of the sectional curvature.
2. (BC™) is independent of the choice of the orthonormal base in T, M. This follows
from the chain rule, the triangle inequality and the compactness of the orthogonal
group O(n). 3. The boundedness of the [D*(g;;)|, lal=m, implies the boundedness
of the |D*(g")|. For |«|=0 this is seen from

(2.1) (gij)(gij) = E.

Assuming the validity for |x[=m—1, we obtain the validity for m, applying D*
to (2.1), expressing D*(g;;) by the D?(g,), |fl=m and D7(g™), |yl=m—1 and
applying the induction assumption.

We summarize some relations between the above conditions.

Proposition 2.1. Let (M~, g) be open, complete and satisfying (1).

(@) (BC™) implies (B,,-»),

(b) (BC™) and (B..) are equivalent,

(c) (By) implies (BCY),

(d) (B)) implies (BCY).

Proof. (a) The curvature tensor can be expressed by derivatives of the g;;,
g of order =2.

(b) We refer to [4], page 33.
(c) The boundedness of the g;;, assuming (By), is just Lemma 1 of [9].
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~ (d) In |10] it was shown that (B;) implies the boundedness of the Christoffel
symbols I;]. From

2.2 T o= &ilhs TjatTi = {0/0x)g;;

and (c) we obtain the assertion.

Examples of open manifolds satisfying (1) and (B..) are the Riemannian homo-
geneous spaces, in particular the symmetric spaces of noncompact type.

The existence problem for metrics satisfying (1) and (B,,) is more subtle. The
condition (B..) does not imply (1), as cusp manifolds of constant curvature K= —1
show. CHEEGER, GROMOV and TAYLOR presented in Theorem 4.7 of [4] explicit
lower bounds for the injectivity radius r;,;(x) by relative volume estimates, assuming
additionally curvature bounds. As a trivial conclusion, the injectivity radius of an
open manifold in general is governed by the curvature and by additional geometrical
entities.

Let us list up some classes of open manifolds admitting a natural construction of
metrics of bounded geometry.

Proposition 2.2. The following classes of smooth open manifolds admit a natural
construction of complete metrics satisfying (1) and (B.).

(@) Reductive homogeneous spaces G/H, G beeing a Lie group and H a compact
subgroup.

(b) Coverings of closed manifolds.

(c) Open manifolds which are built up by infinitely often gluing together a finite
number of bordisms (manifolds with so called almost periodic ends, cf. [7]). In par-
ticular, any infinite connected sum of a finite number of closed manifolds or manifolds
with a finite number of ends, each of them collared, belong to that class.

(d) Leaves of a foliation of a compact manifold.

(e) Every finite connected sum of open manifolds, each of them admitting a metric
of the above type.

Proof. (a) Every such manifold admits a metric making it to a Riemannian
homogeneous space.

(b) Equip the closed manifold with any metric and take its lift.

(c) If My, ..., M, are the nondiffeomorphic boundaries, fix a metric g, at My,
extend g, as a product metric to collar neighbohoods and then to the bordisms. Fora
collared end there is a simpler construction by fixing a product metric at each end
and extending the end metrics to the remaining compact part of M.

(d) This item was proved in [8].

(¢) The proof is trivial.

Remark. Natural construction here means that the construction of the metric is

3*
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in a certain sense adapted to the topology of M. Nevertheless, a much more general
existence theorem holds true. Namely, we reformulate Theorem 2’ of [8] as

Theorem 2.3. Every open manifold admits a complete Riemannian metric
satisfying (1) and (B..).

In the present paper we call an open, complete manifold (MY, g) satisfying (1)
and (B..) a manifold of bounded geometry (of infinite order).

In the next Section we need some properties of the Christoffel symbols for such
manifolds which we establish now. We recall that (B..) implies (BC™) according to
(2.2). Fixing x€M and O<eg<r;,;(M), we consider geodesic polar coordinates
r,wy=(r,u*, ....,u®)=(x', ..., x¥) around x. Then according to the tensorial
transformation rule, we have

2.3) |D*g;;(»)| = C,
and
24 ID*gM(y) = C;

for all ycU,(x), C,, C, independent of x. From the definitions of the Christoffel
symbols, (2.3) and (2.4) we immediately obtain

Proposition 2.4. Let (M", g) be of bounded geometry, x€M, O<g<r, (x),
(r, u', ..., u¥ 1) geodesic polar coordinates. Then there exist constants K, independent
of x such that
(2.5) ID* L)l = K,
for all yeU,(x).

3. The main estimates for the heat kernel construction

Let (MY, g) be open, complete, oriented and of bounded geometry. We denote by
Q resp. Q2 the vector space of all smooth p-forms with compact support, by 2Q?
the vector space of all measurable square integrable p-forms and by D(4)c*QP
the domain of the closure of the Laplace operator

A= ds+5d: QF ~ QF.

Since 4 is nonnegative and selfadjoint, the spectral theorem implies representations
A= [ 1dE;, e¥= [ e dE,
0 0

If "4 can be written as an integral operator, the kernel of the latter is called
the heat kernel of (M”, g) for p-forms. One asks then for the properties of the kernel.
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An integral kernel always exists according to the Schwartz kernel theorem, but this
kernel has on open manifolds no importance since it has no mapping properties
between LI-spaces, 1=g= .

Let us now make the definitions precise. A two-point form E? with values
EP(t, x, p)ENPT.MQNT,M is called a good global heat kernel, if it satisfies the
following conditions:

(H1) E?(t, x, y) is smooth for ¢=0.

(H2) (0/0r+ 4)E* (1, x, y)=0, where we apply 4 acts on EP as a section depend-
ing on y.

(H3) [im f EP(t, x, A ¥ 0o(») =wo(x) for all xéM and
M
we€QP, ie. EP(t,x,y)— 0, ,.

(H4) There exist constants C;, C,=>0, depending on /, m, n, such that for all
X, YEM, O<t<oo

18/ V™V EP(t, x, p)| = C 1~ N2 m+m2—1exp (— Cor?(x, ¥)/1).

(H5) Theheatkernels E*(t, x, y) and EP*(1, x, y) are related by d_(E”(t, x, y)=
=6,EP1(1, x, y).

The main aim of this paper is an existence proof for a good heat kernel, assum-
ing (M", g) to be of bounded geometry. The method of proof consists in summing
up iterated convolutions of a certain initial expression, where the convergence is
guaranteed by some majorization.

Let us start with preparatory lemmas. Assume O<e<r;,;, P€Cy(R), ¢(@)=1
for |a|<e¢/2 and @(a)=0 for |a|>1. Then we define n: M XM —~R by means of
n(x, y):=n(r(x, y)). We define a smooth two-point form ME(¢, x, y) as follows:

k .
DEP(1, %, y) 1= (4n) ™M exp (—r*(x, )/41) Z (Ui (x, D)n(x, y) =2 St x, y)n(x, ),

where U;(x,y), 0=i=k are some smooth two-point p-forms, k fixed.
Lemma 3.1. The two-point forms U(x, y), 0=i=k, can be choosen such that
(i) (0/0t+A4,)SP(1, x, y) = (Ant)~ V2 =N exp (— r¥(x, y)/41) 4, U, (x, ).

(ii) There exists some constant D,=0 such that for all 0=i=k, 0=l=k, we
have |4} U (x, y)|=D,.

Proof. The two-point forms U(x, y), O0=i=k, are the classical Hadamard
coefficients. Existence, uniqueness, and recursion formulae for the U;(x, y) are shown
in the literature [2, 11, 12]. The calculation of these Hadamard coefficients leads to a
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system of differential equations of the following form:
(r(3/3r)+G+k)Uk(x, ) =4U,_,(x, ), r(x, ) <¢gf2,
Uo(x, ¥)i, veerips o weesdp T 8ijy(X) ... gi,,j,(x), U_i(x, -):=0,
where G means some matrix function.
An integral recursion formula for the U,(x, y) is given by
3.1) Ui(x, y) = —Up(x, y)g"‘of P1Uy(x, )24, U, _1(x, z) dr

where ¢:=r(x,y), r:=r(x, z) and z lies on the geodesic connecting x and y.
Assertion (ii) follows from an analoguous integral recursion formula obtained

by covariant differentiation of (3.1) and from the assumption of bounded geometry.
Further we set

ORP(t, x, y) i= (9)0t+ 4,) VEP (1, X, y).
Now we will estimate |[‘VRP(s, x, y)|.

Lemma 3.2. There exist constants A (T)=0, A,(T)=0 depending on T=0
such that for all 0<t=T, x,yeM

B2 YR X, Wiy g, s iyl = AN exp (= 4(T) PP (x, Y)/1).

Proof. We use the following well-known formula A(f®)=(Af)P+fAd—
—2Vra s @, for feC=(M), #cQP. With that we obtain

@/0t+4,)SP(t, x, y)1(x, y) = (4n)~ V2N exp (— r(x, y)/4) 4, Up(x, y)+
+SP(t, X, )4y 0%, )= 2Vgeaa, SP(1, X, ¥).-
The estimation of the first term follows from Lemma 3.1 and our assumption of boun-
ded geometry. In the expressions of the second and third ones there occur factors
and n” which are zero for r(x, y)<g/2. So they decrease exponentially to zero as

t—+0. Furthermoore |4,7(x, y)| is uniformly bounded because of bounded geo-
metry. These arguments yield the desired estimations.

Corollary 3.3. Let (M", g) be open, complete and of bounded geometry. Then
there exist constants A,(T)=0, A,(T)=0 depending on T=0 such that for all
O<t=T and x,yeM

(33) ](1)Rp(tv X, y)l(x,y) = A;.(T) tk_N/2 €Xp (_A2(T) r2(x’ y)/t)’
where | - |, ,) means the pointwise norm of two-points forms.

Proof. The assertion follows from (3.2) and from the fact that for manifolds of
bounded sectional curvature and our choice of coordinate systems the pointwise Rie-
mannian norm and the euclidean norm are equivalent (cf. [9]).
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Now we define for two-point forms 4¥ and B? their convolution according to

t
AP % BP = f fA"(s, x, 2)\ % BP(t—s5, z, ) dyor_ ds,
0 M

1e.:
APxBP = 3 (APxBP)y i ., AXA L AdXP @Ay A AdyTe
Y
with

(4P % BP); .

ceslpy J1s s Jp
t

. ke kp (f
=2 f _/'Aﬁ, i s ke (S5 X5 2) B F11 5 2 (t—s, z, ) dyo, ds.
b<..<k, 0 M

We set ORP:=MRPx ... «MDRP i-times, and assume k=>N/2.

Lemma 3.4. Let be T=0 and I a positive integer. Then there exist constants
As, Ay>0 such that for 0<t=T, 1=i=I, x,yeM and adll i,<...<i,, ji<..<J,
we have
G4 |OR?(t, x, y) Ay =N+ exp (— A, (x, p)/1).

Proof. We perform mathematical induction. For fixed x by definition of ®R?
the y-support of (")R,{ is contained in B, (x). We consider i=2. Then,

11y veoslps J1s eees Jpl —

"','p,"l,"',lp,

denoting > := >  we have
) k1<...<kp
|®R2(1, x, y)i, rervipn ts e dpl =
t
_ IZ’ f f(')Rp(S, X, Z),'h vy Ky e kip (I)Rp(t_s, z, y)’.;;: 1’]‘1‘: dvolx ds| =
& ¢ M
(3.5)

t
= I(;[ M/‘ [(kZ)' (i)Rp(s’ x’ Z)ily ...,ip' kl, .‘.,kp (i)RP(t__s’ Z’ y)ilv ~~°’iP’ jl‘ ""jP x
nglil gk"i"] dvolx dsl = 41D, (Z)ﬁ(ta X, ¥)

with some constant D,=>0 and

t
@R, x, y) == f f sK= NI (1 5)e= (N1 exp (— A, r3(x, 2)[s) X
0  B/(x)NBJy)

X exp (— 4,7 (z, Y(1—15)) dyor, ds.
For the estimation of ®R(t, x, y) we need

Lemma 3.5.

12 (x, 2)/s+r2(z, (t—s) = P (x, p)/t-+(t/s(t—5))[r(x, 2)—sr(x, Y/
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For the simple proof which immediately follows from the triangle inequality,
we refer to [3].

Lemma 3.5 now implies
t
|PR(1, x, y)| = exp (— A4 r%(x, 210) f f st (f o)k ¢
0 B (x)NB.(»

X exp [— A (r(x, 2)—r(x, p)(s/D)(t/s(t —9))] dyor, ds = = NP+ [k~ (N/2)+1]7* X

XCXP(—AZrZ(x, y)/t)j f f(t_s)k—(zv/z)x

0 sN-l 1]
X exp [— Az (r(x, 2)—r(x, y)(s/0)2(t/s(t—5))] O (2) dr, du, ds,
where (r,,u,) are the geodesic polar coordinates of z€B,(x) and O,(z):=
:=(det g;))'/*(z). According to the Rauch comparison theorem and our assumption of
bounded geometry there exists a constant D;>0 independent of x such that
|©.(2)|=D; for all z€B,(x).
We set ¢:=r(x,y), ri=r(x,z). Then there remains the integral I(s):=

= f exp [— A, 1(r—(s/t) 02 s(t—5)] dr to be estimated. But I(s) decreases at
0
least like s¥* resp. (1—s)¥* for s—+0 resp. s——t. For |®R(s, x,y)| this

implies the estimate

|®R(1, x, p)| = F=WD+I [k —(N/2)+ 1]~ exp (— A r3(x, y)/t)Da( f du] X
SN -1
t
X [ s*=®DI(s)ds = Dy Dy Dyt~ NP+ [k —(N/2)+ 1] exp (= 4,7 (x, y)/1),
0

where

f du = D,
SN-I
and
t

f (t—s)~ PP [(s)ds = D,.

0

Using these estimates and (3.5), we obtain for O<¢=7 and x,y, €M

(36) I(Z)Rp(t, X, y)l'x,...,i,,,jl, ...,jpl =
= A} D, D, D, Dt~ ¥+ [k —(N/2)+ 1] L exp (— 4,73 (x, /).

Using the estimate of Corollary 3.3, and its iteration, we obtain
3.7 |@R(1, x, y)il,...,i,,,jl, ...,j,‘ = AI DS OR(1, x, y),

where OR(, x, y) is the i-fold convolution of *~®/ exp (— A,r(x, y)/1).
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In the sequel we need also an estimate for PR(z, x,y), which we establish
again by mathematical induction, namely

(3.3) [DR(1, x, ¥)| = (D3 Dy Dy)i =2 =MD +i-15¢
X exp (— Ay 72 (x, )/ Olk—(N/2)+1172 .. k= (N/2)+i—1]72

For i=2 this is already proved. The induction step i—~i+1 shall be done
below. Assuming (3.8) for a moment, we obtain from the induction assumption and
the estimation of the first i convolution factors of C+DR(¢, x, y)

|“*DR(t, x, )| = (D Dy D) [k~ (N/2)+1]7 . [k—(N/2)+i— 1172 X

t

X f f (t—s)f~ WD+I-1 =N/ exp (— A, rE(x, 2)[s) X
0 B, (x)NB.y)

X exp (_ AZ rZ(Z’ y)/(t—s)) dvol, ds.
Denoting the last integral by J, we get

t L]
|| = f f f(t—s)"“”’z”‘—ls"—(”/z)exp(—Azrz(x, z)[s) X

0 SN-1p

X exp(—A4,1%(z, )/(t—5))O(2) dr duds = Dy Dy *~ NP +i[k —(N[2)+i]71 X
X exp (= A, 7*(x, y)/1) f f s* =W exp (— Ay t(r—(s/f) @)*[s(t—s))drds =

= Dy Dy Dyt~ NP+, (N/2)+i] "t exp (— A 73 (x, Y)/1).
This finishes the induction for ¢*PR(t, x, y) and shows

[SDRP(1, X, P)iy, st s o

X exp (— A (%, Y)/t) = D+l —(N/2)+ 1] ... [k—(N/2)+ 1]

jp = A{"1(Dy D3 Dy D5) X

Furthermore, there exist constants A4,, 4,>0 such that for O0</=T, 2=i=T
(3.9) AL (Dy Dy Dy Dg)~texp (— Ay 72 (x, y)/f) [k—(N/2)+1]7* ...
v [k=(N[2)+i—1]"1 = Azexp(— A, (x, Y)/Y)
which finishes the proof of the Lemma.
Lemma 3.6. For every T=0 there exist contstants A;, A6>0 such tath

(3.10) |®™RP(t, x, V), | = s A7 = ND+E=1(ml) "L exp (— 4,7 (x, y)/t)

-'-)ip) jl» ---:jp

for all 0<t=T and all positive integers m.
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Proof. The calculations in the proof of Lemma 3.4 give for i=2m
|*™RP (1, x, y),, eripe irenipl = AT (D2 D3 Dy DY~ X
X F-WD+em=1(pe _ (N/)+ 171 [k —(N[2)+2m—1]"exp (— 4. P (x, Y)/1).

Using

[k—(N/2)+1}...Tk—(N/2)+2m—1) = mi(m+1)...(2m—1)
we obtain

As AP (M)~ WD rm—lexp (— 4, r3(x, y)/.t),
as an upper bound for the right-hand side of (3.10) (where A;, 4¢>0).

Lemma 3.7. For every T=0 there exist constants A,, Ay=0 such that
G11) IR, X, Wiy, iy i) = A7 AR (m) TN exp (— 4,77 (x, p)/1)
for all O<t=T and all positive integers m.

Proof.

| EDRE(t, 3, Py .o, o] = AT (Dy Dy Dy Dy)em(m!) = = M2 w2m 5

X exp(— 4.7 (x, Y)[1) = A; AT (mV) 1~ VR +2m exp (— A, r2(x, y)/1).

Let us define Q":=i21' (—1YORP, je.

OP (8, % Wiy, ooy ips s eerin = i=21' (-1 ORP(1, x, )i, ceeripy ftr e dp

Lemma 3.8. For all T=0 the series for Qﬁ.-..,i,,,j.,.-.,jp converges absolutely
and uniformly. There exist constants Ay, A;;=>0, depending on T, such that
(3.12) QP (1, X, Wiyy sty sl = Aot~ €xp (— Ay 7 (x, y)/1)

Jor all O<t=T, x,yeM, ij<..<ip, i<..<J,.

Proof. The convergence follows from the preceding two lemmas since
P

By, CAD be estimated from above by an exponential series. Furthermore,
we obtain from (3.2), (3.4), (3.10), (3.11):

|DRe(L, x, Wivsccorips s eripl = A 2=V exp (— 4,12 (x, Y)[1),
2'1 |emRe(t, x, Pivscorips jnr ‘..,j,,l = A exp (—Azrz(x, J’)/’)X

X[ 2 (Ar[mY) - OR+em=1] < D_exp (— Dgr*(x. y)/t),
m=1

2'1 |Gm+DRE(1, x, Wi, ceorips J1s wrip|l = A7 €Xp (‘ A P2 (x, y)/t) X
X[ Z (4g/mi) - ®+2m) < D, exp (— Der?(x, y)/1),
m=1

where Dg, Dg, D;, Dg are positive constants. This provides the asserted estimate.
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4, The main results
We set EP:=ME?P— QP «WEP and show that E? is the asserted heat kernel.

Main Theorem 4.1. Let (M”, g) be open, complete, and of bounded geometry.
Then there exists a good global heat kernel E*(t, x, y) satisfying the conditions (H1)—
(H4), and

(H5) E*(t, x, y)=E*(t, y,x) for all x,ycM (symmetry),
(H6) EP(t+s, x,y)= f EP(t, x, 2)A %« EP(s, z, y) (semigroup property).
. M
Moreover, EP is uniquely determined.
Proof. (H1) Smoothness is a local property and it is sufficient to establish it
for all compact subsets. The kernels ME? and (VRP are smooth by construction. On
compact subsets one can differentiate (" R? under the integral sign, thus establishing

the smoothness of M RP. Also on compact subsets the series for Q? and its derivatives
converge uniformly according to the estimates of Section 3.

(H2) Using, once again, the argument of uniform convergence, we obtain for
0<r=T and k>N/2+2 (cf. [2])
0/t + A EP = /0t + A)(WEP —QP x WEP) = WRP QP QP x DRP =
= WRr__ (- 1)i ORe — (- 1iWRr =0,
i=1 i=2

(H3) For wyc @} there holds

fE"(t, K MANx0() = D [ fE"(t, x, YA *wo(y)]iv ; axiA L Ndx,
M M P

N S S

ij<..<ip

where
[A[Ep(t, x, MIA *wo(J’)],-l,__.,ip, Jpendy

=3 [E (6% Wi kg @000 dy =

&) a
= (kz)' f(l)Ep(ty Xy y)il,...,i},,kl,...,k‘,(oo(y)kh'",kP voly, ™
M
—% f(Qp*(l)Ep)(ta X Pigs cyips Kty weerkey @ (P12 ¥ d gy
M

Introducing normal coordinates centered at x, the formula

lim Z DEL(t, X, Pty ooy s ey Do, 13, 1, (P X
M

t—=0+

X g N(p) ... glr () doot, = @, 5, ...1,(X)
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follows just like in the Euclidean case. The estimate (3.12) for Q7 gives
@n ek x, ) ol = At~ V1D exp (— Ay r*(x, Y)/1).

i3y eesips 1o ooosdp

The calculation QFxDEP=1(r ~1QP % MEP), use of (4.1) and a version of Lemma
3.5 lead to an estimation from above by

t
Ayt f fsk‘(”/2)+1(t~s)"‘(”/2) exp (— Ay 73(x, z)/s) exp (— A 7% (2, /(1 —5)) dyor ds =
o M ,
=1 f fexp(— Ay P (x, J’)/t)sk—(N/2)+l(t_s)k—(N/2)X
0 M

X exp [~ Ay (r(x, 2)—r(x, Y)(s/D)(t/s(t—5))] v, ds

where A,,, A,, are positive constants. Therefore we have for w,€ Q5

IzZ _/‘(l_lop'*(l)Ep)u csips K1y eenkp C")O(y)k1 Pdvoly

k) a1

t
= t{d, [exp(—Anr(x, ) [ [st-Cm+i(—s)- ¥
M 0 M

=

Xexp [— A (r(x, 2)—r(x, »)(s/DP(ts(t=s5))] max, Iwo(y)"l # k7| dy;, ds dy} .

Since supp w, is compact, we can cover it by a finite number of e-balls, e<r,,;,
and apply for the estimation of all three integrals the estimates of Section 3. Thus we
prove that the expression {...} remains bounded as —~0% and hm f (O MEP)A

A 2w,()=0. (H3) is proved.
(H6) In order to show the semigroup property

EF(t,x,y) = fE"(s, x, 2)A % EP(t—s, z, y)
M
we prove that

Fo(t,x,9):= [EP(s,x, 2)A % E?(t=s5, 2, )
M

has the properties of a heat kernel. The uniqueness theorem of [5]) then ensures
FP(1, x, y)=EP(t, x, y). In fact, from (H2) for FEP’(t, x, y) we obtain

0Pt+4,)FP(t,x,y) = f EP(s, x, 2)A % EP(1—s, z, y) +
M
+ fE"(s, X, YA % A EP(t—5,2,y) = fEP(s, X, )N % (— 4,)E*(1—s, z, ¥) +
M M

+EP(s, z, )N % 4 EP(t—5,2,) =0
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Property (H3) of EP(t, x, y) implies
lim FP(t,x,y) = lim [E(s,x, A% EP(1—5,2,Y) = 85,.0.,, = bs,
-0t S0+ Iy

since ¢t—0* implies s—0*, r—s—-07
(H7) (Symmetry). Using property (H3), we get

lirgl fE"(s, x, 2)A % EP(t—s, y, z) = EF(t, y, x),
s +
M
lirtn fE”(s, x, Z)A « EP(t—s, y, z) = EP(4, x, ¥).
SR v
Then, according to Duhamel’s principle for forms,

E°(t, %, )= E(t, 3, x) = [ 3fds [E?(s,x, )N #EP(t=s, y, 2) =
0 M

1
= f f[A,EP(s, x, 2)A % EP(t—s, v, z) —EP(s, x, ) A% A E?(t—s, y, 2)] =
M

0

t

= f f{HzEP(s, x, 2)A xd, EP(t—s, v, 2)+0,EP(s, x, Z)A % 5, E*(t—s, ¥, 2) —
0 M

—[d.E*(s, x, 2)A %d E?(t—s, y, 2)+ 8. E* (s, x, 2)\ % 6. EP(t—s, y, 2)]} = 0.

Here we essentially used the completeness of (MY, g).

(H4). (Estimates for the derivatives.) Assume 7=0, O<¢=T and k>N/2+
+(m+n)/2+1, and begin with /=m=n=0. Then the proof is done according to
the estimates for WE and QF. Next we consider VyE?(¢, x, y). There holds

IV;IEP(’: Xs y)il, wesips J1s ,..,j,,l = IV; (I)Ep([7 X, y)i;,...,ip,jx,...,j‘,[ +
+ |V;(Qp*(1)Ep)(f; X, y)il,.‘.,ip,jl,...,jpl‘ }

We start with the estimation of the first term.

Lemma 4.2. There exist positive constants Ay, Ay (n, T) such that for all 0<t=
=T, xyeM, h<..<i,, j=<..<],

42  \VyOE( X, p),,. jpol = Argt™NE exp (— Ay 12 (x, Y)/1).

ceripy J1y ees

The proof is by mathematical induction. For »=0 it is done. Assume the
assertion for 1,...,n—1. Since (M¥, g) has bounded geometry, there exists a uniformly
locally finite cover of M™ by geodesic &-balls, O<e<r;,;. According to [1] there
exists a constant D,=>0, independent of x, such that for all y€B,(x)

@.3) V7 exp (— r3(x, y)/41)| = D,|@"/0r") exp (— 2 (x, y)/41)|.
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This follows from Lemma 3 of [1] and the boundedness of the Christoffel symbols
together with their derivatives. Using the inequality e *=(xe)~!, we obtain

|0/0r exp (— r/41)| = [exp (— r*/AN(r*/ANY2 exp (— r2/81) = e~ 1~ exp (— r*/81).
Iteration and application of the product rule gives
4.4) [(0"/0r™) exp (— r2/41)| = Dyt~ N2—"2exp (— Dy /1)

with positive constants D;q, Dy,(n, T). According to Lemma 4 of [1] there exists a
constant D;,=>0 such that

@.5) [V2(r(x, »)| = De.

Lemma 3.1 (ii), (4.3)—(4.5) and the derivation rules applied to E? provide the
asserted estimation.

In order to estimate the second term, we use the uniform convergence of the
integrals and can therefore differentiate under the integral sign:

t
|V§'(Qp*(l)Ep)(fs X, J")i,,...,i,,.jl,...,j,,| = f f% |Q7 (s, x, Z)il,...,ip,kl,...,kp[ X
0 A
4.6) - XIV, OEP(t=5, 2, Vi, iy i | 1822 o 1852 (D) door, ds =
= DtV 2 exp ("'Dm r2(x, y)/t)s D,;, Dyy(n, T) = 0.

Now (4.2) and (4.6) provide the asserted estimate. From the symmetry of E?(t, x, y)
in x,y we obtain the analogous estimate

|VIEP(t, X, p);,, . = Ayt~ VA" exp (— A (x, y)/t), Ay, Aig(m, T) = 0.
We now turn to #-derivatives of EP. Clearly,
IO EP (¢, x. Pivsccrips jreerinl = 001 WE (1, x, Wity rips jurerinl +
+1(0Y0NQP + WEP)(1, x, y)il,...,ip, 1 eriple

We start with the first term. Since

wrips b ...,jp|

k
WE? = fi(n) Z £Ui(x, p),
i=0
and the U, and y are independent of ¢, it suffices to estimate (3'/07)f;:
At x, p) = (@re)" " exp (=17 (x, y)/41),
(@r)VR0/30) (1N exp (— 1 (x, p)/41)) = (= (N/2)t7N2=1 4 1= V2(r2/4r%) ) exp (— 1¥/41).
Use of the inequality e—*=(ae)~?, like in the proof of Lemma 4.2, gives

t~¥2exp (—1*/4t) (FP/41?) = 2e 1t N2 -lexp (—r¥81).
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Iterating this procedure and applying the product rule, we obtain
1(8Y/0¢") VE® (1, x, y)il,...,ip,jl,...,jpl =
= Dy; t_N/Z_lexP (—Dwrz(x, J’)/t), D5, Dy(1,T) = 0.

We estimate the second term as follows:

@ 08)(QP % DEP)(t, X, V)i, .1y, v .ors)) = @08 3 ft [ @m)~re(e—s)=Nex
(k)

0 B.(»)

k .
X exp(—7(z, y)/4(t—s)) _20 Ui, gy bas oty (2 ) X

X QP(S: Xs Z).l, wsdps J1s s dp gklll (Z) gkplp(z) dval= dSl =

=2 ](3’—]/(‘)1"1){[1im_ f — lim f] (4m)~ V12 (1 —s)" N2 exp (— r¥(z, Y)/A(t—9)) X
{0 STy TV B

()
k
X .20 Ui, csip by OF s X5 21, s iy g41(2) ... gl (2) doa, ds}| =
i=

=D, ¥ 1exp (—Dls"z(x: J’)/l), Dy;, D1, T)=0.
Gathering the results, we have
/0t E? (1, x, Wirseoripsitseripl = A1z =NP=texp (— Ay P2 (x, Y)/2),
Ay, A1 (1L, T) = 0.

Iterating the derivatives V7, V7, 901", using the above estimates and the fact that
Vi(x, y) is bounded thanks to the bounded geometry, we finally obtain the asserted
estimate for O<r=T. In order to establish (H4) completely, we have still to consider
the behaviour of the derivatives for 7-<. To do this, we essentially use the semi-
group property (H6). Until now we have proved

(@Y EPQ2t, X, YDy, osipeas i) =
= [ Com(T) 17 %222 exp (= Co o (T) (X, 2)/1) Cy0,0(T) 172X
" X exp (—Cs,0,0(T) (2, y)/1) dy, -
Without loss of generality we assume Co, ,, 1(T)>C, 9 0(7). Lemma 3.5 now gives
@OV EP 2, X, P)i, g it il = Cramt(T) Cao,oT) 17N 1
X exp (= Ca,0,0(T) 12(x, 3)/2) Mf exp [(= Ca, 0,0 M/ IV(r(x, 2)—r(x, ¥)/2)?] dy -
We denote the latter integral by I,(¢) and state as induction assumption

0"/t Vi E(kt, x, y);,, ceriprdtn gl = C1,m 1(T)Cy,0,0(T)F~1X
X =M= N exp (— Cy, g, o(T) P2 (x, J’)/t) L(1)... I (1),
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where

I()) = [exp[—Cao,o@)/t(k/K—D)(r(x, 2)~ (k= 1)/k) r(x, y))*] dyos..

M
From the semigroup property we obtain
l(a'/atl)V;"Ep((k"' 1) t3 X, y) i1, casips j1, ...,j‘,l =

= [ Comi(T)Coq oL 1= (1= N2 ¢
M

X exp (= Ca,0,0(T) r2(x, 2)/kt) I (1) ... It(1)Cy, 0,0(T) X
XX (= Ci,,0(T) 12(2 /1) 1™ du, = Capma(T)(Co,o @) 172112 1 ¢
X exp (—Ca0,0(T) (5, YD) (1) .. (D) X
X_ [ exp [(=Ca,a, o))+ DR (x, 2)—(FIE+ D) rCx, 1)) . =
2 D CoonDFE LW (D (DX
X t="21 exp (= Cy 0,0 (T) P2 (%, P)/1),s

where we denoted the last integral by I, ,(f). There exist constants D;3=0, k=0,
such that for all k=k,

t—m/2—-1(r—N/2);'c—1 §D19(/~€t)—N/2""'/2—1.
Moreover,
I(f)=0 for t-0, L()—~I({) for ke,
where

1)) = [exp[=Coo,oT)t(r(x, 2) = r(x, ))*] duar, -
M

This implies the existence of a constant k; =0 and #,€]0, T] such thatforall 0<z=1,
and k=k,, k=k
(D] = (Cl,o,o(T))_l-

Therefore, there exists a constant D3>0, dependent on ¢y, &y, k,, such that for all
O<t=t,, x,yeM, k=>k,, k=k,

|(al/3tl) V?Ep(kt’ X, y)il, ...-.-:ip,jl, ...,jpl =
= Dyg(kt)~N2—m2~Lexp (" Cs,0,0(T) ¥ (x, y)/l).

Since t€]0, t,{ was arbitrary, we have the estimation for arbitrary large k.
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In a similar manner we estimate [V}E?(1, x, »);, We have for

b eerge dpeendy
O<t=T

IVSEPQ2, X, P)iy, cyiprins or il = fC1,0(T) =Nz
M
X XD (= Co,o(T) 12(%, 2)/1) Ca, () 122 exp (= Co, o (T) P2 (25 Y)/1) dir, =
= CoT)Cr o @) (T PPt exp (~ Cop oM PG Y X

X[ exp [~ Ca,o@tQI(r (6 D—(1/2) r(x, )] dos,.
M

The last integral shall be denoted by I,(¢). Furthermore, we assumed without loss of
generality C, ,(T)>C, o(T). This implies
IVSE(t X, Pty sty iy = Cro(T) Co, o (M) (O (N2 X
X172 exp (= Cq,o(T) P(x, y)/21).
By mathematical induction,
V3 EP(Kt, %, )iy, i iy oriy) = Crn@CroTF1L(1) ..
L (D (N =2 exp (— Co, o (T) r2(x, ¥)/kt).

There exist constants #,, ky, k;, D3>0, D,y dependent on ¢,, ky, &y, such that
for all O<t=ty, k=k,, k=k,

IVSEP(t, X YDy, it i) = Doy (k)12 =112 exp (— Cy, o(T) r2(x, y)/kt).

The time value #€]0, f,{ was arbitrary and we obtain the estimate for arbitrary
large kt. Iterating both estimates and using once again the boundedness of V'r,
we finally obtain (H4).

(H5). d.E°(t, %, y) = 3, E**'(1, x, ).

The property (H3), lim E?(¢, x, y)=34,,,, implies
t-0%
s+0+

lim [ EP*'(s, x, 2)A xd, EP(t—s, z, y) = A, E°(t, x, y),
M

Hm [0, EP*(s, x, Z)A % EP(t—s, z, y) = 8, EP*(1, X, y).

st~
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Using this, Duhamel’s principle and the heat equation, we obtain

d E"(t, x, y)—06,EP*!(t, x, y) =

= [ @s) [E+ (s, % AT, E(t—s5,2,7) =
[} M
t

= f f[Z:E”“(s, X, 2)A xd_EP(t—s, z, ) —EPTY(s, x, 2)A %d, 4, E?(1—s, z, y)] =
o M
= f f[5,E”“(s, X, 2N %8,d,EP(t—s, z, y)—
0 M

—d.6.EP*(s, x, 2)A xd, EP(t—s, z, y)] = 0.

since (M", g) is complete.

This finishes the proof of the main Theorem 4.1.

As it is well known, -the existence of a good heat kernel has many good con-
sequences in global analysis, for instance in spectral theory, in the theory of semi-
groups, and for the existence of characteristic numbers. We do not intend to present
all this here, but restrict ourselves to a special class of applications. For many
purposes one is interested to invert the Laplace operator 4 outside the L,-harmonic
forms. Denote by 2QP the space of square integrable measurable p-forms on M”", by
292 the set of all smooth p-forms o such that [w), |4}, ..., Aol <o (- ll=
=L,-norm) and by *QP* the completion of *Q7 with respect to - ||,

ol = ol + 4ol + ... + 14" w].
Let H denote the projection onto
27 = {wc QPN QPldo = dw =0} = ker 4

(since (M7, g) is complete).
Then one is searching for an operator G satisfying

A4Gw = w—Hw

and, if possible, for a meaningful integral representation of G. This G is called Green’s
operator.

Theorem 4.3. Let (MY, g) be open, complete, and of bounded geometry. Assume
further that A=4, has positive eigenvalues below the essential spectrum. Then

G(D(X) = f pr(ta X, y)/\ * (O)*HCO)(}/‘) dvoly
. 0 M

is a Green operator and has the following properties:

(a) |Gl =(21) 2| wl| SJor w€QB, where A, is the first nonzero eigenvalue of 4.
Hence G can be extended to a bounded linear operator G:*QP—2QP.
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(b) Gwe®QP* for arbitrary large k.
() o=Hw+ddGw+6dGw is the Hodge decomposition.

Proof. A complete proof is given in [3] under the assumption of the existence
of a good heat kernel. This existence we have just now established.

Using Theorem 4.3, we can establish the approximation theorem for the eigen-
values below the essential spectrum by the eigenvalues of semicombinatorical Laplace
operators associated to sequences of uniform triangulations also for O=p=N.
For p=0 this was completely proved in [3], for p=>0 under the assumption of the
existence of a good heat kernel.
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On a problem posed by I. Z. Ruzsa

RICHARD WARLIMONT

"

In his paper titled “On the small sieve II. Sifting by composite numbers
(Journal of Number Theory, 14 (1982), 260—268) I. Z. Ruzsa posed the followmg.
problem:

For a¢N and b€Z let R(a, b) denote the residue class b mod a. Consider all
systems ay, ..., a,, (m not fixed) of natural numbers 1=a,<...<a,=n for which
there exist integers by, ..., b, such that

(%) g R(a;, b)o{1, ... n).
Put -

u(n) ;= min ;m' _aL

where the minimum has to be taken over all those systems. What can be said abou
the behaviour of u(n) for n—eo?
Since (*) implies

m ] m

2= A=

i=14; j=1
. 1 . .

the lower estimate u(n)= 7 follows at once. Ruzsa mentions that he can improve

itto

536
pin) = log £z = 056754538 ..

and he also gives the upper estimate

Received October 11, 1988 and in revised form May 29, 1990.
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Ruzsa’s problem appears to be very delicate but it gives rise to another one which
can be solved: Denote by &/(n) the family of all subsets Ac{l,...,n} with the

property
n
4] =
2 )=
and put
1.
v(n) = ;’ Z

Obviously v(m=pu(n). I could show
_ 25.36 _ ‘
v(n) = log —23—3+0 .(_n 1/3)

Ruzsa 51mp11ﬁed my proof. His modifications also led to the better error term O(l/n).
With his kind permission I present thJS s1mp1er vers1on '
Let Y(n) denote the set of all y=( yl, vens y,,)e R"™ ‘which’ fulﬁl

O=sy;=1(1=j=n) and VZy,-([]ﬁ.]-H)gn.
. j=1.
Put )

1
* —
(n) yrenl}(r']l) Z yJ

Obviously v*(n)év(n).. It will be shown that

1) v*(n) = log 22336 +0 (-’17)
and
2 , : v(n) = v¥(n)+0 [%)

If we put B;:= ]—[[i]+l) and denote By Z(n) the set of all z=(z,, ..., z,)ER"
n J ’ :

which fulfil
0§z,-§}l_ (I=sj= 1) and _Zzﬁ
then

* —
i) = min 22
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Let (&, ..., ¢)€Z(n) be such that v*(m)= 2"'51._ Then
Jj=1

L=j=n and Sep -1
J i=1

0

i

fiA

&
The quantity
y =v(m):=minp,

turns out to be crucial in the argumentation. One has

3 ﬂj<’)’=>fj=0,

1
4 =y = =—.
() 'ﬂ.l Y 2] J

Here (3) is evident and (4) can be seen this way: Let m, 1=m=n, be such that
B,=y. Then &,=0. If there existed some k, 1=k=n, with B>y and ék<%

then k>m and
€ =m { ?k P 3'" ;] ék > 0.

é;n = ém_sﬁk: él,c = €k+8ﬂms f_’] = éj fOI' j # m, k.

Now put

1 n n
Since 0§§;§7 and _2;6}[3,: _Z;f,-ﬂ,:l, we have (&, ...,¢)€Z(n). This
Jj= Jj=

implies
n

Vi) = 3 & =vi(n)—e(f—7) < vi(n)

Jj=1
which is absurd.
Now put 6=48(n):=y(m)—1. From p;=2 and

por - = -2 -1

1 i .
we see that in particular —=0J=1. If k is an integer, 1=k=n, then
n

] n

We shall show next that

<j=

z
-

1
®) o(n) = 2500 = § for all n.
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We put x:= mm{ Vn} and have

l=§"1€,-ﬂ,-§2 S g8

k<x ny/(k+1)<j=njk

Since in the inner sum f;> ﬁ—(k—i—l):'y. We infer from (4) that

Iy

léké’:nvl(k+é=1anlk7;(k+ )_—k‘<zl(k+1)([ ] [k+1 )

= - S (p- 1) = S48 S SkaD= I4-3

k<x k<x k<x

1
Therefore > — =4 which implies x = 50.

k<x
- 1 1 1

If x=Vn then }Yn =50 and therefore & = — = If x= 3 then
—1- = 50, and therefore 6 = i
) 50

Now comes
6) , o(n) = —i+0 [i]

18 n

To establish that we start from

—358= (3 &b+ 3 gB)+

J
=1 k<118 (k4D <TEnplk+1) 0 0 mple+D<jsnlk

+ 2 2 éjﬁj=sl+SZ+S3.

1/6=k=n nj(k+1)<j=nlk

1 1
We estimate S;. If j<—;;- then ﬂj<l+7€—_§ 1+6=y. If k>% then

n

1
Bi=1+ == 146 =7y. Thus by (3) there is at most one term ¢, B;, i= 75

in S; which may not vanish. Therefore, by (5),

S;=¢pi=2

~

_2_>
T on )

A

. , ny Y
We estimate S;. If j < 1 then §; < m(k+ 1) = y. Thus by (3) there
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is at most one term ¢;B; in the innermost sum which may not vanish and
1 k+1
b=+ oty =L
Therefore, by (5),
S, = > k+1 - 2 =

k<18 N o*n

2
NETI
Finally we evaluate S,. In S, we have f; > 7{%—}—(k+ 1) =y which by (4)

1
implies &; = j— Therefore

S2 :%kg,’a(k“)[[%]—[ klj:l ]] B

_ 1 2‘(k+1)( il +r) where |r] = 1
ey

n k<1/8
s (1 5)+R here |R| = —2
= — where =
wits\k e
Thus we obtain
6 ( 1 ) _ 2
1- I?n = k=<1/6 —k—_é = l+ 9271

If we put
f@= 2 (%——t] for 0<t=1

k=<1t
then one easily verifies that the following inequality holds true:
s la—2t] = |f(t)—f(t)} for O0<1, =1
Since f (_ﬁ] =1 we obtain

5| = 17011 =

o
Proof of (1).

v*(n)=éfj= S( 3 G+ 3 &)+

J
k<_Jl/5 nf(k+1)<j=ny/(k+1) nyl(k+1)<j=nlk

+ 2 > ¢ =h+L+T;.

1/o=k=n nl/(k+1)<j=nlk
Because of f;=1 we have

1
T+T, = S5;+S; =<
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Further for n=n, by (6) one has

T = 28' > i = 23' [log k;lrcl +0(—:—]] = 1og%+0 (ni]

k=1 ny[(k+1)<j=nlk J k=1
But (6) implies
23)3 l]
3 _ 3 . <2 —1.
v =(1+9) (18) 0 (n

1 1
Proof of (2). Since 3 is no integer we may write k > 5 in T;. Therefore

. 1
£; =0 in T;. In T, there are at most 3 terms with ¢; < —. These are replaced

1 4
by — = —. If we denote the new system by ¢ then we have
j n
’ 1 . J ’ -
J j=1 i=1
Therefore

no, d 12 12
v = 5 &G s JEG+—=v(m+-—.
i=1 i=1 n n
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Well-quasiordering depends on the labels

IGOR KRIiZ and JIRT SGALL

1. Introduction

A well-quasiordering (WQO) is a quasiordered set containing no infinite de-
creasing chain and no infinite antichain. A considerable part of the results on WQO
is of the form that a concrete category Q is WQO, where a=b means that there
exists a Q-morphism from a to b.

As an example let us mention the category T of finite trees with tree embeddings
(see [2]). The recent solution of the Wagner’s conjecture by ROBERTSON and SEYMOUR
([5]) is also of the form that certain category is WQO.

Other categories are trivially WQO, for example the category F of finite sets
and injective mappings or the category H of finite linearly ordered sets and strictly
increasing mappings. Still, we come to non-trivial questions, if we introduce more
involved orderings:

Let 4 be a WQO and let Q be a concrete category with finite objects and injec-
tive morphisms. We consider a class Q (4) of objects of Q “labeled by’ elements of 4
at each point. We put a=»b if there is a morphism from a to b which increases the
labels (not necessarily strictly). Now the question is: Is it true that

(D 0(4) is WQO whenever 4 is WQO?

(-i) was proved for F, H by HIGMAN [1] and for T by NasH-WiLLIaMS [4]. Of
course, it would be useful if (1) were implied by a simpler condition, say,

). O(y) is WQO for any ye€Ord.

" Although this is not known in general, it was proved recently by one of the auth-
ors ([3]) for a considerably broad class of categories (for all subcategories of H).
Let us note that, by an easy cardinality argument, (2) is equivalent to

3 . O(w,) is WQO.

Received August 4, 1988.
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So, for subcategories of H, (3)—~(1). However, it has not been known if (1) were not
implied by a still weaker condition, say (even!),

@ 0(2) is WQO.

It is the purpose of this paper to present a bunch of counterexamples of this kind.
To be exact, we show that the set

6)) M = {HI(3O)(((VB < 1Q(B) is WQO)&(Q(y) is not WQO))}
is confinal in w;. We also prove that
M 2 o,

showing that (4) does not imply Q(3) to be WQO.

2. Preliminaries

2.1. Conventions and notation. The cardinality of a set X is denoted by |X]|.
For the ordinals, we use that definition where y is identified with

{BIB < v}

In particular, this will apply to natural numbers. A quasiordering is a reflexive and
transitive relation. In a quasiordering, a sequence (g;) (finite or infinite) is called bad
if
i<j—a % a

and is called good if

I<j—a=a;.
Each infinite sequence contains an infinite good subsequence or an infinite bad sub-
sequence (Ramsey theorem). A quasiordering is called WQO, if no infinite sequence
is bad. This definition is equivalent to that used in the Introduction by the Ramsey
theorem. For a category C and objects a, b the symbol C(a, b) designates the corres-
ponding hom-set and the symbol I1d, designates the identity on a. For a concrete
category, let the forgetful functor be denoted by U.

2.2. Definition. In this paper, a QO-category is a concrete category with finite
objects and injective morphisms. For a QO-category Q and a quasiordering 4, put

0(A4) = {z = (u., ¢.)|c; is an object of Q and u_: ¢, -~ A4}.

The quasiordering on Q(A) is given by z=t if there exists a Q-morphism
o: c.—~c, such that w,oU(p)=u. (pointwise). We also say that z=1¢ via the mor-
phism ¢. In the sequel, we shall use the symbol M for the set defined by formula (5)
of the Introduction.
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3. The results
To warm up, we start with a special theorem which demostrates the basic idea of
our construction.
3.1. Theorem. M2w.

Proof. Let a category @, consist of finite sets a, (n€ w) where each a, is a dis-
joint union of k sets @°, ..., at™. Moreover, we shall assume

lim || = w for each ick.

The hom-set Q,(a,, a,) will be
@) 9 if n>m,
(b) {Id, } if n=m,
(©) {o: a, —~ a,| ¢ injective and (V ick) (p(a}) S g. aj) & (3ick) (o(a}) € at)}

if n<m.

To see that Q, (k) is not WQO, let z,(u,, a,) where u, sends a, to i for each ick.
Itis easily seen that (z,), ¢, is a bad sequence. To prove that Q, (i) is WQO for i<k,
introduce an auxilliary category 0, with the same objects as O, and with the same
morphisms from g, to a,, for n=m, while for n<m

0.(a,, a,) = {o: a, ~ a,| @ injective and (Vick)(p(a) S U a})}.
jsi

Let (z)=((4,, a,y)) be a bad sequence in Q, (i), i<k. Of course, we have

limn(t) = w,
t—w

since (z,) is bad. By HIGMAN’s theorem [1], we may assume that (z,) is good with
respect to @, (7). Let, in 0,(i), z,=z, via @, Gy —~dyu- NOW, since i<k, there
isa j€i such that, for each K€w, there exist p, rék, p>r, and t(K)€w such that

[{xE ak cxyy | iy (%) =j}| =K,
I{Xéaz(,(x))lu,(x)(x) =j}| =K.

Without loss of generality, we may assume p, r fixed and 7(0)=0. Put s=4( lag )l +1).
Thus, there exist x€af, y€ap such that

u(x) = u(y) =j

y¢Im g ,.
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We conclude that, in Q, (i), z,=z, via a mapping ¢ given by
0(2) =@y, (2) If z#x
@(x) =y,
contradicting our assumption.
3.2. Theorem. M is confinal in w,.

Proof below in 3.8.

3.3. The Constructions. Let w=y=w,. The there exists a bijection s,:
w—7y. Let the objects of C, be the sets

a,(n) = {s,(0), ..., s,(n—1)}.

The hom-set C,(a,(k), a,(n)) will be
1) 9 for k=n,
(2) {Id, my} for k =n,
(3) the set of all injective mappings ¢: a,(k)—~a,(n) such that, for some j<&k,
L@ els() < 5,0,

() for i<j ¢(s,(D) = 5,0,

(© for i=j, B=<s()—~oB)=<s

3.4. Lemma. C, is a QO-category.

Proof. What remains to show is that, for k<m<n,

0€C,(a,(K), ay)(m), YEC,(a,0m), a,(m)
yopeC,(a,(k), a,(n)).

To this end, let ¢, Y satisfy the statement of (3) with constants j<k, j<m, respect-
ively. We will show that yog satisfies it with the constant min(j, j). We distin-
guish two cases:

Case 1. j=j: The proof of (a), (b), (c) for Yoge is contained in the following
computations. (By (a) for ¢, j=j and (c) for )

Yoo(s,(/)) < s,(/)-
For i<j (by (b) for ¢, ¥ and j=j))
Yo (D)) = ¥(s,(i)) = s,(i).
For i=j, B<s,(i), (by (c) for @,y and j=J)
Yo (B) < 5,(d).
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Case 2. j<j: Compute again. (By (b) for ¢ and by (a) for ¥)
Yoo(s, (D) = ¥(s,(D) = 5,(J)-
For i<j, (by (b) for o, ¢)
Yop(s, (D)) = ¥(s,(D) = s,d).
For i=j, B=<s,(i), (by (c) for ¢,¥) |
Yoo (p) < s5,(4).
3.5. Lemma. C,(y) is not WQO.
Proof. Introduce a sequence z,=(u,, ¢,) in C,(y) by putting
€y = a,(n)
u,(s,(9)) = 5,(i).
By condition (a) in 3.3 (3) we see easily that (z,),¢,, is bad in c,(y).

n€w

3.6. Auxilliary definition. Let us call a pair (8, o), «, B€w, admissible, if
there exist a y€w,, y=a, an increasing sequence (n(i));c,,» a number K€w and
a bad sequence z;=(u;, a,(n(i))) in C,(w,) such that for each icw

({6 < aldea,(n()) &u,(6) = BY| < K.

3.7. Lemma.

(1) If C,(B) is not WQO then (B, y) is admissible.

2) If (B, o) is admissible and &<a then (B, &) is admissible.

3) (0, w) is not admissible.

@) If (B, a+w) is admissible then there exists a B<p such that (B, «) is admissible.

Proof. (2) and (3) are obvious. Note that in (1) we may use K=1. We shall
prove (4).
Consider the entities y, n(i), K, z; constituting the admissibility of (8, «+w).
Let
p = max {ila = s5,(i) < a+K]}.
Further, let «,,,=7,

{8,00), ..., 5,(p)} = {otp = oty <...< o).
For i€p+1, t€w, define b;(t)€ F(w;) (recall that F is the category of finite sets
and injective mappings) in the following way:
() = {s;(NNJj < n(), o« <5,(j) < %}
bi(1) = (u;]¢; (), (D).

By Ramsey and Higman’s theorems there exists an increasing sequence (7.)

x€w
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such that n(t,)>p and for x<y, i€p+1
(*) U, (ai) = Uy, (“i)
" bi(t,) = bi(t,) in F(w,) via some mapping ¢;(t,, t,).

Without loss of generality, we may assume t,=x. Now, by () and by the definition
of K there exists an a=a<a+K such that for all ¢

u(@) < B.

We will show that (u,(&), &) is admissible, concluding the proof of (4) by (2).

In fact, for the new K we may take n(0): If, for some ¢=0, there are more than
n(0), of j<n(t) with u,(n,(7))=u,() then there exists at least one such ; that neither
j=p nor s,(j) lies in the image of ¢;(0,¢) for any i. Now define ¢: a,(n(0))—
—a,(n(r)) by

¢(s,() = s5,(i) whenever i€p+1,s(i) # &

@ (@) = 5,(j)
©(6) = ¢;(0, () if d€c;(0).
We see easily that ¢@€C,(a,(n(0), a,(n(?))) and
| Zo = z, via @,
contradicting the assumption that (z;) is bad.
3.8. Proof of Theorem 3.2. Define y(f) inductively by
7(0) = @
YB+1) =y(P)+o
7(B) = (limy(B))+w for B, /B.

1t follows from 3.7. (2), (4) that (8, y(B)) is not admissible for any . Thus, by 3.7. (1),
¢, (B) is WQO. This, together with Lemma 3.5, concludes the proof of Theorem 3.2.

References

{1] G. HiomaN, Ordering by divisibility in abstract algebras, Proc. London Math. Soc., (3) 2 (1952),
326—336.

[2] J. KruskaL, Well-quasi-ordering, the three theorem, and Vazsony’s conjecture, Trans. Amer.
Math. Soc., 95 (1960), 210—225.



Well-quasiordering depends on the labels 65

[3] I. KRiz, and R. THoMAas, On well-quasi-ordering finite structures with labels, Graphs and
Combinatorics, 6 (1990), 41—44.

[4] C. ST. J. A. Nasu-WiLrLiams, On well-quasi-ordering finite trees, Proc. Camb. Phil. Soc., 59
(1963), 833—835.

{5] N. RoBertsoN and P. D. SEYMOUR; Graph minors I—XIII, submitted (1986—1988).

1K) d.S)

DEPT. OF APPLIED MATHEMATICS SCHOOL OF COMPUTER SCIENCE
UNIVERSITY OF CHICAGO CARNEGIE MELLOW UNIVERSITY
CHICAGO, IL 60637 PITTSBURGH, PA 15213—3890






Acta Sci. Math., 55 (1991), 67—73

Embedding results peftaining to strong approximation

L. LEINDLER

1. The aim of the paper is'to make a step toward answering an open problem of

our previous paper [2] and to extend another result published in the same paper.
In order to quote the known results we have to recall some notions and notations.
Let f(x) be a continuous and 2n-periodic function and let

M o S~ %4— f (a, cos nx+ b, sin nx)
n=1

be its Fourier series. Let s,=s,(x)=s,(f; x) and 1,=7,(x)=7,(f, x) denote the
n-th partial sum and the classical de la Vallée Poussin mean of (1), i.e.

2n

1,,(x)=-’11— 2 S(x), n=12, ...

k=n+1

We denote by | .|| the usual supremum norm.

Let () be a nondecreasing continuous function on the interval [0, 27] having
the properties: ©(0)=0, w(d,+5)=w(5)+w(d,) for any 0=5,=0,=6;+0,=2n.
Such a function is called a modulus of continuity. The modulus of continuity of f will
be denoted by w(f; ). '

We define the following classes of continuous functions:

H® :={f: o(f; §) = 0(0®))},
S, = {72 || Z s 11| <=}

and
V()= {f: Hé Inlta— 17| <<},

where /1={i,,} is a monotonic sequence of positive numbers and O<p-< eo.
V. G. Krotov and the suthor ([1]) proved the following result.

Received July 4, 1988.
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Theorem A. If {4,} is a positive monotonic sequence, w is a modulus of continuity
and Q<p<-oo, then

© 5"1 (ki)~1? = O [nw [%]]
implies
3) S, (1)  He.

Conversely, if there exists a number Q such that 0=Q<1 and
) nei.t,
then (3) implies (2).

Since the de 1a Vallée Poussin means z, usually approximate the function £, in the
sup norm, better than the partial sums s, do, so we may expect that under reasonable
conditions the following embedding relations will hold

(5) 5,(2) < V,(1) c H,

In [2], A. MEIR and me, verified some results pertaining to (5). More precisely
the following theorems were proved:

Theorem B. If p=1 and {A,} is a monotonic (nondecreasing or nonincreasing)
sequence of positive numbers satisfying the condition

6) Iftog =K*, n=12,..,
then

O] S,(A) C V(b

holds.

Theorem C. Lef {1} be a monotonic sequence of positive numbers, furthermore
let @ be a modulus of continuity and QO<p< . Then condition (2) implies

®) V(1) C He.
If p=1 and there exists a number Q such that 0=Q<1 and (4) holds, then,
conversely, (8) implies (2).

To decide whether S,(A)C¥,(4), ie. (7), holds when O<p<1; it was left as
an open problem.

Making many unsuccessful attempts to prove (7) or its converse, at the present
time, I have the conjecture that neither S,(A)cV,(4) nor ¥,(})cS,(4) hold gene-
rally, but I have not been able to verify this statement.

*) K, K, ... will denote positive constants, not necessarily the same at each occurence.
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However it turned out that if one defined a new subclass of ¥, (1), which one could
call “strong” V,(4)-class, and denoted by ¥V (1), i..

row={r|Za, 2 w-n)] <=}

then under restriction (6) S,())CV{?(3) also holds for p=1, and S,()>¥V (1)
is already true for 0<p=1 if 1,,=KA4,. First we prove these statements.
Compare the definitions of ¥,(1) and ¥ {?(2), it is obvious that for any positive p
and for any A
© V9 cV,(A)
always holds.
It is clear that (8) and (9) imply
(10) V.0 (2) < He.

Secondly we prove that (10) also implies relation (2) for any positive p if (4)
holds.

This result is a mild sharpening of the second part of Theorem C for p=1; and
by (9) it extends the previous statement for any positive p. The latter result is the more
important one.

2. We prove the following results.

Theorem 1. Let A={A,} be a monotonic sequence of positive numbers. The
following embedding relations hold:

(11) S, DNV, if p=1 and A, =0(1);
and
(12) SMDVEPWR) if O<p=1 and Ay, =0(4).

Theorem 2. Let A={A,} be a monotonic sequence of positive numbers, further-
more let w be a modulus of continuity and p=0Q. If there exists a number Q such that
0=Q0<1 and (4) holds, then the embedding reiation (10) implies relation (2).

Theorem C and Theorem 2 convey as an immediate consequence the following
result.

Corollary. Under condition (4) the embedding relation (8) implies relation (2)
Jfor any positive p.

3. To prove our theorems we require some lemmas.

Lemma 1 ([1). If a,=0 and the function

f&x) ~ Sta,sinnx
B=1
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belongs to the class H®, then

Zn’ kak = O[nw (—1-)]
k=1 A n
Lemma 2. If O<p=<oo, At or A, énd there exists a number 0, 0=0<1,
such that (4) holds, then the function C
: R
%(nl,,)'l/"sin ax '

=3

n=1
belongs to the class V ¥ (2).
Proof. It is easy to see that

=3

Z;-—r-l-(nl")—llp = Z; n— G+ WUNA-0) (50 ) Y- 1P < oo,
n= n=
so f is a continuous function, and f(0)=f(r)=0.

To prove that feV{?(2) we fix 0<x<n and choose N such that

i:‘
—m<)€=—.

N
We make the following estimates:

=n+

Sufs 3 wwwf =

N g=nt1

N+l ] )
2 —(ml,)"Y7sin mxl +
m=k+1 M

m=N+42

= 1
2 -1/p j
2 ~ (mi,) sin mx

Jf+

oo 2n L
v Sl 313 mp)esioms

n=N/[2 k=n+1

m=k+1
where

} 5"—.,21 +22’
N+1 1 O
2 —(ml,)"YPsin mx} +
m=k+1 M
N2 | on - ¥4 .
n=1 N k=nt1 _'?'=Nf2, m R . i, .

N2 1 2n-
1=K 2; ,1,,{— 2>

N g=nt1

First we assume that 4,}. By our assumption, weican.chpose a positive Q such
that 1>Q=1—-p and n%i,t. Then

P >—1, so for any n<k<N we have



Embedding results 71

that

LA | . N+1
—(mA,) YPsinmx = x 3 (ml,)" VP =
m m=k+1

! N+1
=x 3 (m2l,m=9)~VP=x(n2))-¥r > m@-Dirs
1 m=n+1

= Kx(nQ A,)~Ur NI+(@-D/p

whence we get that

N2
2u=K; 2 2,xPA;'n"2NP+2-1 < K, xPNP = K,.
n=1

Furthermore
Nj2 = 1 ) P
2= 2 A  —(ml,) MPsinmx| =

n=1 m=N+2 M
Nj2 oo 1 p

= 30 3 —eeimeoul <
n=1 m=N+g2 M
Nj2 o

= 2 L{NCA)P 3 mi-G-0rrte <
n=1 m=N

1A

N
S M(N®y) I N-0-0 =
n=1

N ¥
= N3 > n2l,n?=N%1 >n2¢=K
n=1 n=1

To estimate >, we use the following inequality

oo

1 Lp s K
—_ ~1/p = -i/p
> (mA,)~ Y7 sin mx o kA

m=k+1

for any O<x<mn. Hence

2:=Ky 3 lnPxTPnm ) =K, 3 nmPlxTP=K,(xN) P =K,.
n=N/[2 n=Nj2
Collecting these estimates we get that fc V(1) in the case A,
The proof in the case /,t is easier, then we can simply replace condition (4) by
2,} in some parts of the previous proof. Therefore we omit the details.
The proof is completed.
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4. Now we can prove our theorems.

Proof of Theorem 1. For p=1, by Holder’s inequality, the inequality
1 2 I 2 p
+ 3 b=l 3 s

N j=nt1

holds, whence

oo 1 2n 2n
(13) Sals 3 ) = Sat 3 -sr=
= Sla/P 3 hin= 3

follows. By 4,=0(4,,) we have
(14) 2= K’% 218 —f1P.

Inequalities (13) and (14) imply (11).
In the case O<p=1 we use the inequality

1 [ 2 1p
as) * S senzly 3 s
k=n+1 R k=n3+

which can also be proved by Hélder inequality, and the estimate

(16) =003 n),

n=kf2

it follows from 1,,=0(4,). Then, by (15) and (16),

Sl =k 3 (F amls s =

_Il

k 2k

=K Sak 3 ls—sr=k Su(g 3 i)

k =k+

holds, whence (12) clearly follows.
Proof of Theorem 2. Let us consider the function given in Lemma 2, i.e. let

Jo(x) = 5 —:1- (nA,)~YPsin nx.

n=1
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Then, by Lemma 2, f,c¢¥V (4. The assumption V?(A)cH® conveys that
o€ H® also holds. Hence, using Lemma 1, relation (2) follows, that is, (10) really
implies (2).

The proof is completed.
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On the strong and very strong summability of orthogonal series

L. LEINDLER

1. Let {¢,(x)} be an orthonormal system on the interval (0, 1). We shall consider
real orthogonal series

(1.1) S ,0,(x) with 3 <o,
n=0 n=0

By the Riesz—Fischer theorem series (1.1) converges in L? to a square-integrable
function f(x). Let us denote the partial sums of (1.1) by s,(x).
As introductory sample results we recall the following theorems:

Theorem A (A. ZyGMUND [15]). If series (1.1) (C, 1)-summable almost every-
where then it is also strongly (C, 1)-summable almost everywhere, i.e.

— 2 _,
. n+1 ; 5 () —f(X)F~0 ae.
Theorem B (K. Tanpor1 [13]). If
fcﬁ 10g logzn < oo
n=4

then series (1.1) is very strongly (C, 1)-summable on (0, 1) almost everywhere, i.e.

n+1 2’ 15y, () =/ (X)|* ~ 0

for: any increasing sequence {v.} of natural numbers on (0,1) almost everywhere.

Theorem C (K. TANDORI [12]). There exist an orthonormal system {¢,(x)}

and coefficients d, with 2 d? < o= such that the series
n=0

; o @a(X)

"Ms

Received October 10, 1988.
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is strongly (C, 1)-summable almost everywhere but it is nowhere very strongly (C, 1)-
summable.

In other words Theorem C states that the strong (C, 1)-summability does not
imply the very strong (C, 1)-summability, generally.

The analogues of Theorems A and B for other summability methods have been
proved individually. E.g. for Riesz-means J. MeDER [5] and L. LEINDLER [1], for
(C, o= 0)-means-G. SunouctHil [11], for Euler-means H. SCHWINN [9] and for generali-
zed Abel-method L. LEINDLER [3] proved similar results.

On the other hand. F. M6ricz [6] proved that for an arbitrary regular Toeplitz
T-summability method it is not true that if series (1.1) is T-summable then it is strong-
ly T-summable, too.

The Méricz’s result gives a reason for wrltmo of a new paper, namely in the pre-
sent paper we prove the analogues of Theorems A and B for a large class of general
summability methods; and shall apply them to verify that the so-called generalized
de la Vallée Poussin method also belongs to these summability methods. It will be
easy to see that some of the above mentioned summability methods also belong to the
class to be treated in Theorem 1. Roughly speaking one of the aims of the present
paper is to verify that for a large class of summability methods the summability
implies the strong summability for orthogonal series.

We mention that H. Scawinn [10] also investigated the latter problem, and
proved a slightly sharper result, but his proof quite differs from our one.

Theorem C shows that it cannot be expected that a general summability method
should imply the very strong summability. But we shall show that if a coefficient-
condition, e.g. of the form

.__2 208 <o (04 = Ops1)s

implies the summability — as in Theorem B — then this condition will imply the
very strong summability, too.
Let x:=(x,) be a positive regular Toephtz -matrix satisfying the usual condi-

tions: w,;=0; lim o,=0 (k=0,1,...); Iim Za,,k=l. We say that series (1.1)
n—-co n-»oco k=0

is g-summable to f(x) if
0,(0) 1= 3 () = f9)

almost everywhere,; and it will be called strongly a-summable if

%m=§mmmﬁmwm
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almost everywhere, and very strongly a-summable if for any increasing sequence {v}
of natural numbers

oy |v9 XI = k;(,) Ok lsvk(X)‘-f(X)|2 -0
holds almost everywhere.

We say that an a-summability method is an N(u,,)-summability if there exists an
increasing sequence {u,} of natural numbers such that if series (1.1) is a-summable
then s, (x)—f(x) always holds almost everywhere, i.e. the convergence of the partial
sums s, (x) is a necessary condition of the a-summability of series (1.1) for any ortho-

normal system {¢,} and for any coefficients ¢, with > c2< 0. It is known that the

(C, a=0)-methods and generalized Abel-methods (for othe latter see L. REMPULSKA
[7]) are N(2™)-summability methods and the Euler-method is an N(m®)-method
(see O. A. Ziza [14] and H. ScHWINN [8]).

Now we recall the definition of the generalized ordinary and strong de la Vallée
Poussin summability methods (see [2]). Let A={1,} be a nondecreasing sequence
of natural numbers for which A,=1 and A,,,—A,=1. Series (1.1) is (V, A)-sum-
mable if

V(s x) = % _z:Hsk(x) ~f(%)

almost everywhere, strongly (V, 2)-summable if
1 n
Vilds xli= o= 3 Is()—f(R -0
'n k=n—2A,+1

almost everywhere; and very strongly (V, 1)-summable if for any increasing sequence
{v.} of natural numbers
1 n
Villovixli=— 2> |5, (x)—f(x)|* ~0
An k=n—Ai,+1

n

almost everywhere.
1t is obvious that if 1,=n then the (¥, 2)-means reduce to the (C, 1)-means, and

if 4,= [%] (n=2), where [f] denotes the integer part of §, then we get the classical

de la Vallée Poussin means.
In [2] we proved that for any A the (¥, 1)-summability is an N(v,,)-summability
m—1
with vy=1 and v,:= > A, m=1; furthermore that if
K=o
(1.2) S{ 3 G} logtm <o
m=1 n=v,+1

then series (1.1) is (V, 4)-summable; moreover very strongly (¥, 1)-summable.
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2. Now we can formulate our theorems:

Theorem 1. If a positive regular Toeplitz-matrix a=(a,,) generates an N(u,,)
summability and satisfies the following additional conditions: there exist a natural
number p and a positive M constant such that

P
2.1 G =M ) 2D Ok JOr Py <n< i,
i=—p .
and
oo B
2.2) ' > 3 au=sM

v=li=pg, _;+1

hold for all m and k, then the a-summability of series (1.1) implies its strong a-summa-
bility.

Theorem 2. Under the assumptions of Theorem 1, if the following condition

(23) . g’;cﬁ’)ﬁ <o, ?n = yn+19
implies the a-summability of series (1.1) for any orthonormal system, then (2.3) also
implies the very strong a-summability of series (1.1).

Using these theorems we verify the following theorems:

Theorem 3. If series (1.1) is (V, A_)-summab[e then it is strongly (V, A)-summable,
t0o0.

Theorem D. Condition (1.2) implies that series (1.1) is very strongly (V, 1)
summable. '

We remark that Theorem D was proved in [2] as we stated above, but its proof
is totally different from to be given here.

3. We require the following lemma.

Lemma ([4], Lemma 3). Let x>0 and {B,} be an arbitrary sequence of non
negative numbers. Assuming that the condition

(3.0 B UADLARE

implies a “certain property T=T({s,(x)})" of the partial sums s,(x) of (1.1) for any
orthonormal system, then (3.1) implies that the partial sums s, (x) of (1.1) also have
the same property T for any increasing sequence {v,}, i.e. if (:“3.1)=>T ({5,(x)}) then
@.1)=T({s, (x)}) for any increasing sequence {v,}.
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4. Now we can prove our theorems. For the sake of brevity, from now on,
convergence and summability have the meaning of convergence and summability
almost everywhere in (0, ).

Proof of Theorem 1. Since the a-summability now implies the convergence
of the partial sums s, (x), thus putting v:=p, for k=p, ,+1, p, ,+2, ..
coos Mmy m=1,2,...5 v,=0 and v;=1; we can see by the following obvious ine-
quality

%, |x| = 2 kg) i (|55 () — 53, (O I3, () —/(2)I%)

and on account of the regularity of a-summability, that in order to prove Theorem 1
it is enough to verify that

CAY) lim 3 oy by (x) =5, (X)2 =0
B k=0 )

holds almost everywhere.
By (2.1) we have for any p,,_,<n<y,,

oo

(4.2) 2 |8 (x) =5, (X)[* = M 5 2 el () s, (P

= k=0i=~p

therefore if we can prove

4.3) lim Z’au S (x)—s,, (02 =

m—co p

almost everywhere, then, by (4.2), (4.1) will be proved.
An elementary calculation shows on account of (2.2) that

(\W/F]

oo 1 oo oo .
2 Oy k f s, () =5, (X)12dx = 21 2; 2 i 2 =
0 m=1 i=1k= =u,

k=0

Il
-

m

oo By

g H; o
=2 3 a3 3 4.=M3d<-

m=1k=p;_;+1
whence by B. Levi’s theorem (4.3) follows.
This has completed the proof.

Proof of Theorem 2. Putting y,=0 then condition (2.3) and

oo

2 __’yn I)ch<°°

n=1 k=n

are obviously equivalent. Hence we can already see that the statement of Theorem 2 is
a consequence of Theorem 1 and our Lemma.
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Proof of Theorem 3. In order to prove Theorem 3 it is enough to verify
that if
m—1
(44) Ho = 0 and Uy = Z Allk’
k=0
then for this sequence {u,} conditions (2.1) and (2.2) are fulfilled.

Since 4;4,—2;=1 for any i and p,—p, =4, , therefore )»um§2)uﬂm_l,
whence for any u,_;<n<u,

1
4.5) . = 7

Hm-1 "Um

holds, which verifies that (2.1) also holds with M=2 and p=1. Since then for
any n

0 for k<n+l-—1, and k=>n,
(4.6) ke = Ai for n+l-2,=k=n:

and thus by (4.5) for u,_,<n<py,
U = 2(0t,,, ko 1)

always holds because p,_,+1—4, =n+l1-4, by A,,—4=1
Namely if n+1-—24,=k=py,_, then

1
ank:Té

and if p,_,<k=n<p, then by (4.5)

i 2
[ —Tn = m =20, &

hold.

Next we show that (2.2) is also fulfilled for the a-matrix given by (4.6) and for
sequence {u,} defined under (4.4).

By (4.6) it is clear that if v=m—1 then

@ S oa=0 (u <),

i=gp+1
and if v=m then
Fm
{4.8) 2 o =

i=pp, y+1 4

1
[:um_(,uv_lu,)]*- = Am,va
Hy
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where [f]* denotes the positive part of . On account of the definition {u,,} and the
property 2, =22,  we can verify that for any v=m

&

holds. Namely an easy calculation shows that

— + v—1
Am,\' = [1 _M] = [l_ll_l.ul Z )'Hk]+ =
)‘ﬂv k=m

4.9 Ay

It

+

v—1 1 v—2
= [l--(zi“!lv-l)—l =Z' ;‘I‘k]+'= [7_(2;“14\,—1)_1"2 )“ﬂk

[IA

+

y— 1 v—m
= [—_(4)!1\;- ) 1 Z e == (7) .
Collecting the results of (4.7), (4.8) and (4.9) we get (2.2) with M=2.
So we can apply Theorem 1 which obviously proves Theorem 3.
Proof of TheoremD. Let
Bo=h=..=8,=1;

log m
(#m +1 _l'lm)rn

and x=2. A standard calculation shows that for these §, and » (3.1) holds if and
only if (1.2) is fulfilled. Namely if (3.1) holds then by

Bai=

for p,<n=p,., m=12,..;

oo o oo Hpp 1y ca
2 2
2 ﬁn Z Ck = 2 ﬂn Z € =
n=1 k=n m=n=pu, +1 k—pmﬂ-f-l
- k — k
m=1 m v=m+1l k=p,+1 v=2k=p,+1 m=1 m

'"1lov
) 3 ==t =

k=p,, +1 v=2

prove (3.1).
On account of this equivalence and our Lemma the statement of Theorem D is
proved.

6
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Note on Feurier series with nonnegative coefficients

J. NEMETH#*)

1. Let f(x) be a continuous and 2n-periodic function and let
0 f(x)~% + > (a, cos kx + by sin kx)
k=1

be its Fourier series. Denote s,=s,(x) the n-th partial sum of (1). If w(8) is a non-
decreasing continuous function on the interval [0, 2x] having the properties

@(0) =0, ©(5;+3,) = () +w(Jy)

for any 0=6,=6,=6;+6,=2n, then it will be called modulus of continuity.
Define the following classes of functions

V) He = {f: | fx+h)—f(0)] = O(w(h)},
3 (HOY = {f: If(x+1)+f(x—0)=2/(x)] = O(w(h)},
where | -] denotes the usual maximum norm. If w(d)=4* then we write Lip o

instead of H%.

In 1948 G. G. LorENTZ [7] proved a theorem containing a coefficient-condition
for feLipa in the case if the sequence of the Fourier coefficients is monotonic.
Namely he proved the following result.

Theorem A ([7]). Let A,i0 and let 2, be the Fourier sine or cosine coefficients of
@. Then ¢€ Llp o (O<oa< ]) if and only if ﬂ":O(n-l—“)_

Later this result was generalized by R. P. Boas [1] in 1967 as follows:

*) This result was partly obtained while the author visited to the Ohio State University,
Columbus, U.S.A. in the academic years 1985—86 and 1986—87.

Received July 4, 1988.
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Theorem B ([1]). Let 1,=0 and let ], be the sine or cosine coefficients of ¢.
Then @€Lipa (O<a<1) if and only if

(4) 2l =0(n"),
or equivalently .
® 2 b = 0(r™)

In 1980 L. LEINDLER in connection with certain investigations in the theory of
strong approximation by Fourier series, defined some function classes which are more
general than Lip « but narrower than H®. Namely he gave the following definition.

Let w,(0) (0=a=1) denote a modulus of continuity having the following pro-
perties:

(i) for any o'=a there exists a natural number p=pu(a’) such that
©) 2" @, (27"¥) > 20,(2™") holds for all n=1;

(i) for every natural number v there exists a natural number N (v) such that
@) 2w, 27" Y) = 20,27 if n> N(v)

Using ®,(6) L. LEINDLER defined the function class Lip o, in the following way

Lip o, = {/: |/&x+h)—fC)l = O(w (M)} .

Recently the author of the present paper generallzed the result of R. P. Boas formu-
lated in Theofem B and some other ones for Lip w, instead of Lip «.
For example we proved the following

Theorem C ([8]). Let 2,=0 and 7, be the Fourier sine or cosine coefficients of
‘@. Then ' SoeE T :
quLip W, (O < =< l)
if and only if _
® zz"-=0[wz(ij],= s r
k=n n .
or equivalently AR

© Sk = [”“’(%)]

The question of further generalizations for-arbitrary w(dy and H® can naturally
be arisen.

The first results in this direction were already glven by A. 1. RUBINSTEIN ([9])
for cosine series, furthermore V. G. Krorov and L LEINDLER ([3], see. also in [6])
for the sine case. Their results read as follows
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Theorem D ([9)). Let f be an even function belonging to H® and let a, be its
Fourier coefficients with a,=0 (n=1,2,...). Then

(10) 'kg" g = O[a) [%]]
and -

1 2 1 % w@®
(11 7kglka,‘=o(7”[ 5 dt]

hold for some fix 6,>0.
If o satisfies the condition

t2

(12) 5 f 0 i — 0(w(3)
L]

then conditions (10) and (11) are sufficient for

fEH®.
It should be noted that (10) implies (11) for any w, namely
]

fo w(t)

t2

n n n n 1
Ska =3 Fa=00 Jo(r)=0w a,
k=1 k=1_i=k ‘ k=1 k 1/n
and thus for the special moduli of continuity w satisfying relation (12) the condition
(10) itself is a sufficient condition.

Theorem E ([3] Lemma 3, see also in [6]). If 4,20 and

g(X) = 5’ )‘n Sin nx
n=1

belongs to the class H® then

(13) ' kg":kak - O[nw (%J]

The aim of this paper is to show that neither (10) nor (13) is sufficient for the
corresponding function to be in H; furthermore to give sufficient condition for
JE€H®” in both cases. We also show that (10) is a necessary and sufficient condition
for f'to belong to the class (H“)* (which is broader than H*®, so this result in this sense
is a little sharper than that of Rubinstein). Finally it will be proved that (10) and (13),
respectively, is not only a necessary but also sufficient condition for f€ H® and
gEH®, if the coefficients @, and b, form monotonically decreasing sequences.

2. Now we formulate our results.
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Theorem 1. If 7,=0 and A, are the Fourier sine or cosine coefficients of ¢,
then the conditions

(14) ‘-21 ki =0 [nw (%]]
and

(5) ki Jy = O[w {%\j]
imply
(16) QEH®.

Remark. The well-known Weierstrass function

= cos2'x
=2 o
n=1
shows that (15) itself is not sufficient for @€ H® (since f¢H® if w(8)=45 and (15)
is obviously satisfied).
The example

oo

_ b e
g(x)—’é;m(?sm3 x

proves that from (14) alone (16) does not follow. This function was constructed by
A. 1. RUBINSTEIN ([9]) in connection with lacunary series. He proved that g¢ H®,

for w(s) =

oz o] At the same time it can easily be checked that (14) holds.
08

Theorem 2. If a,=0 and a, are the Fourier cosine coefficients of f then

(172) fEH)®
if and only if '

e 1
(17b) Zak=0(w (;J]

k=n

Remark. Notice that (17b) implies
. C n n 1 .
(18) - - Ska=K S [_]
) k=1 k=1 k

and using the standard estimation we have that (18) implies

SEH,
where

’ w*(t):.= t:izli]'w [—%)
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In fact, since from (17a) (18) follows we have that

= 1

k=n n

implies f€ H** and Theorem 2 gives that the same condition (17a) implies
Fe(H?Y,
too. Thus the following question can be arisen: whether
(20) SEH® & fe(H)*
or not.
We can prove that

@D JEH )" = feHe

but the converse is false. Really, from Theorem 2 we have that

fe(eey' = 3 a,=0 [w (—,11—]]

which assures that f€ H**, so (21) is proved. In order to prove that

(22) SEH = fe(H®)*

we consider the following function

(23) Jx)= ZO'Q Iorin cos nx
k=1

and let w(f)=t, thatis, w (t)=tlogt. From Theorem 4 of [8] it follows that

fEHé logé (= Hw*)
because both

log k logn
& 25 o2
and
©5) g gk in kx“ — 0(log n)

hold. And at the same time
SEHY = (H°),
because

logn (1-—-cos2nh) =

—If(0+2h)+f(0 2m)—=2f(O)} = Z;

sin®n
2 h2

Z’ " sintnh = 22 2‘ log = 2h|logh|,

87
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which gives that
I/ (x+h)+f(x— )= 2f(x)} = O(h),

that is, f¢(H%* and so (22) is proved.

Theorem 3. If bl0 and g(x) = S’b,‘ sin kx then
k=1

(26a) gEH®
if and only if

n 1
(26b) kg; kb, =0 [nw [7)] .

Theorem 4. If 40 and f(x)= fak cos kx then
k=1

(27a) ' JfEH®
if and only if ,

= i
(27b) ké'l a, =0 [a) (7)] .

3. We require the following lemmas.

Lemma 1. Let {a,} be a sequence of nonnegative numbers and @ be a modulus of
continuity. Then

(28) Sa=0 [w (l]]
k=n n
implies C
(29) " k*a, = O [nzw(lj].
k=1 n

Proof.*) Using (28) we have -

(30) S k2a, = Z"'(Zk—l)zn'ai§22"ka)(i)=l.
k=1 k=1 i=k k=1 k

Since for any w the inequality

(1) ol _, 90 o=y

xl xZ

*) This very elegant proof is due to L. Leindler; the author’s original one was much more
complicated. )
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(see for example [11] p. 103) holds I can be estimated as follows

(32 I=2n-2nw [l] =4n’w [l)
n n
Thus (30) and (32) give (29).

Lemma 2. Let a,=0 and a, be the Fourier cosine coefficients of f. Then

(33) g a, =0 [a) {%)] and || é’ kasinkx|| =0 [nw [%]]
imply B -
(34) feH®,

This lemma can be proved in the same way as Theorem 4 in [8] for w,(5).

4. Proofs.

Proof of Theorem 1. We detail the proof just for cosine series. Set

(35) fGe+2m)—f(x)| = 2| gx Jy sin k(x-+ b sin kh| =

[1/h] g :
=2(> hsinkh+ 3 A)=I+IL
k=1 k=[1/k]

Since
(36) I= Kh:lg”i] ki, Si’; :h = th:l:Z/T Ky,
from (14) it follows that
37 I = O(w(h).
By using (15) we have that
(38) ' II = O(w(h).
So (33), (36), (37) and (38) give that
JEH®,

Theorem 1 is completed.

Proof of Theorem 2. Suppose that (17b) holds. Then
(9) |fCe+2h)+/(x—2k) = 2f(x)| = 4| 5 ay sin kh cos kx| =
k=1

1 Zkh oo
sin + 2, a,.

o fi/r
=4 a,sin? kh = 4h? k:a, ———
kg k kg; W2V TR T



90 J. Németh

The first item of the last formula does not exceed O(w (h)) because of Lemma 1;
and from (17b) we get that the second one is also O(w(%)). So (17b)=(17a) is proved.

Turning to prove (17a)=(17b) first we note that the proof will be led by the same
way as A. I. RuBINSTEIN didin [9]. Let 1,(x, g) be the Jackson polynomial defined by

4

3 ,, sin n ;
(40) I(x, g) = 3@ D) JF10) — = | %
- sin —

This polynomial can be written in the following form

2n—-2
“én L(x,g)= % + kg; of¥ (ay cos kx+ by sin kx),

where a, by are the Fourier coefficients of g and ¢{” are defined as follows

1 (Cn—k+1)! (n k+1)']
(mn _— = = n—
@2 &” = 5 oy lon—k =)~ r—or) for 1=k=n=2
— I
o™ = 1 @nk+ D! o 2k =2n-2,

= 2n@nr+]) @n—k—2)!

Formula (42) was given by G. P. Sarranova ([10]).
Consider the following difference for

Jx) = f a, cos kx
k=1

(43) JO)—1,0; /) = Z’ I at+ 3 a.

k=2n-1

1
It can be proved that the order of approximation by polynomial (40) is O [a) [—))
for n

gE(H)*

(see for example [2] pp. 496—497).
Using this fact and that 1—{”=0 we have from (43)"

2°'° a.=0 [a) [—1—)] )
k=2n—1 n
which was to be proved.

Theorem 2 is completed.

Proof of Theorem 3. The statement (26a)=(26b) was proved by V. G. KRro-
Tov and L. LEINDLER (see Theorem E). Now we suppose (26b). It is obvious that to
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prove (26a) it is sufficient to show

(44) lg(h)—g0)| = K;-w(h)
and
(45) lg(x)—gx+h)| = K,w(h), for 0 <h=x=n.
First we prove (44).
Set
wn o ]
(46) lg(h)—g©)| = | > bysinkh|+| > besinkh| = I+IL
k=1 k=[1/h] _
Using (26b) we can estimate I as follows
[/m i [/l
@7) T=h'> kb 0K = k'S kb, = 0(0(B).
k=1 kh k=1

From the well-known inequality

(48) | Zm’ a sin kx| = % a, (a4, x€(0, m))
k=n
it follows that

1
(49) 11 = 4— bym-

But taking into account that b,}, from (26b) we have

()

From (49) and (50) we get
63)) II = O(w(h)).

Using (46), (47) and (51) we obtain (44).
Now we verify (45). Consider

(52) IgCe+h)—g ()l = | 3 by (sinkx—sin k(x+h))| =
k=1
[’ ) -
= |2 bkcosk(x+h)smkh|+| 2 bksinkx—sink(x+h)|§
k=1 k=[1/h]

[1/"] o oo
= |2 bysinkh|+| 3 besinkx|+| 3 bysink(x+h)| = [+IV+11".
k=1 k=[1/h} k=[1/H]

.By (47) we have
(53) I = O(w(h)).
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Taking into account again (48), (49) and the condition 0<h=x we have that the
magnitude of either II’ or 11" is O(w(h)), that is,

59 IV +11” = O(w(h)).
Thus (52), (53) and (54) give (45) which is the desired statement.

Theorem 3 is completed.

Proof of Theorem 4. Using Theorem 2 and the fact that H®c(H®)*
the statement (27a)=(27b) can immediately be obtained. Concerning the opposite
direction, by Lemma 2, it is enough to show that

(55) || 3 ka, sinkx|| = K - no [l] .
’ k=1 n

1 1
Let x€(0, =) be fixed and let v denote [——]; if n> —, then split up the left hand
x x

side of (55) into two parts as follows

56) || 3 kaysinkx|| = | 3 kaysinkx||+]| 3 kaysinkx|| = 1+11.
k=1 k=1

k=v=1
Estimating I we get

(57 I =K,x > k2a,.
k=1

Taking into account the monotonity of a, and (27b) we have

(58) ka, =0 [a) (%)]
From (58) it follows that

(59) x Ska=Kyx 3 ko [%]émw (i]
k=1 k=1 n

In the last step we used again inequality (31) and n>v.
Thus from (57) and (59)

(60) | 120 [nw (%)]

can be obtained.
Now we estimate the second item in (56). Since

n

©1) 1= || 3 kasinkx|| = || 3 3 asinix||+v 3 a, = I+ 11"
k=v i=k i=v

k=v
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and using again (48) and (58)
LI} n 1311 1
2 = -+ = (—] — = [—] .
62) I1 Kk=v ~ Klvk;;kw e K, nw -

And for II” using (58) we immediately obtain that

(63) II” = K, now (%] ,
and (61), (62), (63) give that
(64) 11 =0[na) [%]]

Thus (60) and (64) together give (56) which was to be proved.
Theorem 4 is completed.
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On Fourier series with nonnegative coefficients

J. NEMETH

1. Let f(x) be a continuous and 2z periodic function and let
(1) Sx) ~ % + Zw (a, cos nx+ b, sin nx)
n=1

be its Fourier series. Denote by s,=s,(x)=s,(f; x) the n-th partial sum of (1).
If w(8) is a nondecreasing continuous function on the interval [0, 2z] having the
following properties
0(0) =0, ©(5;+05,) = w(d)+w(dy)

for any 0=6,=08,=6,+5,=2n then it will be called modulus of continuity. As
vsually WWH® and W' (H“)* denote the following function classes:

03] WrHe = {f: | fO(x+ )= )] = O(e(m)},
©) wrHe) = {f: IfOx+n)+fO =) =-2oO ) = O(a(h)},

where f")denotes the r-th derivative of f, and || - || denotes the usual supremum norm.
For r=0 and w(d)=6* H®=H?® is called the Lipschitz class of order «.

L. LenpLER ([3]) defined the so called generalized Lipschitz-classes as follows.
For 0=a=1 let w,(6) denote a modulus of continuity having the following proper-
ties

(i) for any o =a there exists a natural number p=pu(«”) such that
4) 220, (27" M) > 2w,(27™) holds for all n=1;

(ii) for every natural v there exists a natural number N(v) such that
5) 240, (2") = 20,277 if n= N@).

Using such modulus of continuity, H®= defines the generalized Lipschitz class.

Received July 4, 1988.
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For any positive 8 and p L. LEINDLER ([2]) defined the following strong means
and function classes:

© h(f,.0) = |

s

1/p
(o 2 e+ P —sP)

) H(B, p, r, w) = {f: h,(f,B,p) =0 [n—’a) (%])}’

and in [3] and [4] he proved the following relations:

g H(B,p,r,wa)EWer, for 0<a<1; } o
®  wraecHE o) =@ for a=1f T FTEFOP

In [8] we gave coeflicient-conditions assuring that a function should belong to
H®= (and so in certain cases to H(B, p, ,)).
For example the following theorem was proved.

Theorem A (Theorem 1 of [8]). Let 1,=0 and A, be the Fourier sine or cosine
coefficients of ¢(x). Then
9EH% (O<a<1)
if and only if

© S n=0[o.(2))
k=n n
or equivalently
(10) Sk-2=0 [nwa [i]] .
k=1 n

1t is clear that in order to obtain coefficient-conditions of type (9) for f to belong
to H(B, p, r, w,) instead of H(B, p, w,) it is sufficient to give conditions assuring that
f should belong to W™ H “= or equivalently, under therestriction 4, =0, to H(B, p, r,®,).
In other words it is sufficient to find coefficient conditions for the derivatives of f to
be in H®=

In the special cases w(8)=8* coefficient-conditions for f€ H* and feWrH®
were given by G. G. LoreNTZ ([7]), R. P. Boas ([1]) and LiNG-Yau CHAN ([6]).

2. Theorems. Throughout the rest of the paper we shall assume that the Fourier
coefficients a,, b, are nonnegative and

gx)= S bhsinkx, flx)= 2’ a, cos kx,
k=1
furthermore f and g are continuous functions on [0, x].

Theorem 1. If O<a<1 then for any r=1
gEWer“
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if and only if

ol ().
Seu-ofut)

Theorem 2. If O<oa~<1 then for any r=1

or equivalently

fE Wr H(Da

seva-ofml).
kg K a, = o[w,, (%)]

and r is odd, then

if and only if

or equivalently

Theorem 3. If a=1

gEW" (H*Y)*

Zn' k+*b, =0 [n%ol (l]]
K=1 n

and r is even (rz=2), then

if and only if

Theorem 4. If x=1

g€ Wl'le

kg"; k+lb, =0 [nco1 [%)]

and r is even (r=0), then

zf and only if

Theorem 5. If a=1

Jewr (H*)*

Z"' k"t%a, =0 [n%ul (l)]
k=1 n
Theorem 6. If a=1 and r is odd, then

if and only if

fe WrHcol

k’+1ak = 0 [nwl (’l’)] .
1 n

if and only if

M:

k

97
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Theorem 7. If a=1 and r is odd, then

gEWerl
if and only if

, " I
S kb, =0 [n2a)1 [l]] and ” 2 k™t1b,sin k.\'” =0 ['10)1 (—]] .
k=1 n k=1 n

Theorem 8. If a=1 and r is even (r=0), then

fE WIHL'J]
if and only if

" : n i 1
S ktla, =0 [n2w1 (i]] and ” > k" 'a,sin kx“ =0 [nwl [—)]
= n k=1 n
3. Lemmas.

Lemma ! (Lemma 2 of [8]). If u,=0 and 6=p=0, then

Seneofror )
if and only if
Aneofoll)

Lemma 2. (Lemma 2 of [6]). For each integer j=0 the quantity

G(j, u) = sin u——u+%— +—gj—_211—;1! TR
is of constant sign for all u=0. Furthermore if 0<u=1, then
L2i+3
IG(j. wi EW
Lemma 3 (Lemma 3 of [6]). For each integer j=0 the quantity
w2
2!

is of constant sign for all u=0. Furthermore, if 0=u=1, then

12

51 — (=1

F(j,u) =cosu—1+

2j+2

IF(j.wl = ITIER
Lemma 4 (Theorem 2 of [8]).
gEH™
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if and only if

if and only if

Lemma 6 (Theorem 4 of [8]).
_ feHo

if and only if
Zo'c a, =0 [wl [i)] and “ 2"' ka, sin kx” =0 [nwl (i]] .
k=n n k=1 n

4. Proofs. Since the proofs of all theorems above mentioned can be done in the
same way as LING-YAU CHaN did in [6] (by using Theorem A and Lemma 1—Lemmaé6
instead of those used in [6]) we here show only the proof of Theorem 1 for r=1.

Let us suppose that O<a<1 and

an S kb, =0 [nwa(i)].
k=1 n

By Lemma 1 we get that (11) is equivalent to

(12) S kb =0 [wa [i)]

k=n n

o

So D kb, is convergent series, that is, the series
k=1

(13) f kb, cos kx
k=1

is convergent uniformly which allows us to differentiate the series
(14) > bysinkx

. k=1
term by term, which gives that
(15) gx) = 5 kb, cos kx.

k=1

Using Theorem A and (11) we have that
gIEHw",

7*
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that is
gE Wl H“’a,

which proves our Theorem 1 in the case r=1 in one direction.
For the other direction we assume that

(16) g'€H®,
that is,
gEWLH®
From (16) it is obtained that
(17) lg’()—g'O) = O(wu(2)).
Integrating both sides over (0, x] we have
(18) lg(x)—xg’ ()| = O(x,(x)).
Using (18) we have that
(19) g(x) = 0(x).

But (19), by using Lemma 4 (for w,(5)=05) and the fact that

lg(x)—g0)] = O(x)

implies g(x)€ H®, what gives that

(20) 5 kb, =0(1)
k=1

that gives that the series

@1 S kb, cos kx
k=1

is convergent uniformly, so the series

22) o g(x) = kg b sin kx

can be differentiated term by term, that is,

(23) g (x) = é kb,coskx and g'(0) = kg kb, .
Combining (18) and (23) we have

(24) 3 b(sin kx—kx) = O (xa,(x)).
k=1
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Using Lemma 2 (for u=kx) we get from (24)

[1/x]
(25) > b(sin kx—kx) = O (xw,(x)).
k=1
Using again Lemma 2 (for u=kx) we have
[1/x]
(26) D kb x® = O(x- w,(x)).
k=1

1
Putting [—] =n we have that
x

27 ,é; k¥b, =0 [n2 W, (—i—]] .

Using Lemma 1 from (27) we obtain the desired

Sen-ofell)

The proof of Theorem is completed for r=1.
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Pointwise limits of nets of multilinear maps

ARPAD SZAZ

Introduction. Motivated by the fact that most of the standard integrals are
pointwise limits of the nets of their approximating sums which are either linear or
bilinear maps (see |7] and [8]), we establish the most important algebraic and topolo-
gical properties of the pointwise limit of a net of multilinear maps.

More concretely, using our former results on bounded nets {14] and multi-
preseminorms [15], we show that the pointwise limit of a net of multilinear maps
being equicontinuous at the origin is a selectionally boundedly uniformly continuous
multilinear relation whose domain is a closed set whenever the range space is complete.

Having had the necessary definitions, it becomes clear that particular cases of
this assertion greatly improve a useful continuity criterion for multilinear maps [3,
(18.2) Theoreml], a general convergence theorem for net integrals [7, Theorem 3.8]
and a part of a generalized Banach—Steinhaus theorem [1, 7. (5)].

1. Prerequisites. Instead of topological vector spaces, it is often more convenient
to use preseminormed spaces [9]. A preseminormed space over K=R or Cis an or-
dered pair X(2)=(X, ) consisting of a vector space X over K and a nonvoid family
2 of preseminorms on X. A preseminorm on X is a subadditive real-valued function
pon X such that p(Lx)=p(x) for all |A|=1 and x€X, and gi_r’r(lip()\x)=0 for all
x€X. Note that these latter properties imply, in particular, that p(0)=0 and
p(Ax)=p(ux) for all |A|=|u| and xcX.

If X(&) is a preseminormed space, then because of [4, Theorem 6.3}, the family

of all surroundings
B; = {(xa J’)3 P(x'"y) = I'},

where .p€# and r=0, is a subbase for a uniformly %, on X. However, this fact is
only of minor importance for us now since among %, and the various structures on X
induced by %, we shall actually need only the induced net convergence lim,=lim,,
which can also be naturally derived directly from 2.

Received June 27, 1988.
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If X(#) is a preseminormed space, then lim, is a relation between nets (x,)
and points x in X such that, after a customary convention in the notation, we have
xEli:ng x, if and only if ]ignp(xa—x)=0 for all pe2. As usual a net (x,) in X(2)
is called a convergent net (a null net) if liing x,#0 (Oélia{ng x,). Moreover, two nets

(x,) and (y,) in X(&) are called coherent [12] if (x,—y,) is a null net. Note that
several useful properties of the convergence lim,, can be easily derived from the usual
properties of the convergence of nets of real numbers by using the above properties
of preseminorms.

On the other hand, a net (x,) in X(£) is called a bounded net (a Cauchy net) if

limim p(Zx,) =0 (lim p(x,—x,) =0
limlim p (2x,) (Jim p (= xp) )

for all pc#. In[14], we have proved that all Cauchy nets in X(£) are bounded. And
a net (x,) in X(2) is a bounded net (a Cauchy net) if and only if for any subnet (y,)
of (x,) and any null net (4,) of scalars (4,y,) is a null net (any two subnets (z,) and
(w,) of (x,) are coherent).

Another remarkable feature of this new definition of bounded nets is that a
nonvoid subset 4 of X(#) may henceforth be called bounded if the identity function
(x),¢c 4 of 4 is bounded as a net whenever A is considered to be directed such that
x=y for all x, yc 4. Note that A4 is therefore bounded if and only if

i s0p p0) = 0
for all pc#. And thus nets contained in bounded subsets of X(#) are necessarily
bounded.

Having the above definition of bounded nets, we may also define a function f
from a subset D of X (&) into another preseminormed space ¥ (Q) to be boundedly
uniformly continuous if (f(x,)) and (f(y,)) are coherent nets in ¥ (Q) whenever (x,)
and (y,) are bounded coherent nets in D. Note that f may be called uniformly
continuous if it maps coherent nets into coherent nets. Thus, if fis uniformly conti-
nuous, then f is also boundedly uniformly continuous. On the other hand, if fis
boundedly uniformly continuous, then f is necessarily continuous and the restric-
tions of f to bounded subsets of D are uniformly continuous.

In the sequel, we shall also need a straightforward notion of a product presemi-
normed space from [10]. If X;(£,) is a preseminormed space for each i in a nonvoid

set I, and moreover
X=XX, and Z={J Pon,

cer cel

where =, is the projection of X onto X; and Z,omn,={pon,;: pc#;}, then the prese-
minormed space X() is called the Cartesian product of the spaces X (#,) and the
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notation
X(?)= X XA(2)
i€l

is used. An important consequence of this definition is that a net (x,) in X (&) is
convergent, Cauchy, resp. bounded if and only if each of its coordinate nets (x,,)
has the corresponding property.

Finally, a real-valued function p on a product vector space X = X X, is called

=1
a multi-preseminorm [15] if it is a preseminorm in each of its variables separately,
and moreover

P(xn cees Xpo1s /]‘xis Xet1s ooos xn) :p(xla vy Xg—15 ixka Xg+1s --s xn)

“for all x=(x)€X, scalar 1 and i,k=1,2,...,n. The importance of this notion
lies mainly in the fact that a multilinear map f from a product preseminormed
space

X(@) = X X(2)

into an arbitrary preseminormed space Y (2) is boundedly uniformly continuous if
and only if the multi-preseminorm gof is continuous at the origin of X(2) for all
q¢c2.

2. Muitilinear relations. Since the pointwise limit of a net of multilinear maps is,
in general, only a relation which need not be defined on the whole product space, the
usual concept of a multilinear map [3, p. 72] has to be subtantially extended.

For this, we need a straightforward notion of a linear relation from [17] which is
mainly motivated by the fact that the inverse of a linear function is a linear relation.

Definition 2.1. A relation f from a vector space X over K into another Y is
called linear if

J&)+f(y) € fx+y) and Af(x) < f(Ax)

for all x,ycX and AcK.

Remark 1.2. Note that, in other words, this means only that fis a linear sub-
space of the product space X X Y such that the set f(x)={y: (x, y)€f} is not empty
forall x€X.

After having this self-evident definition now we can easily define a sufficiently
general notion of a multilinear relation whose insufficient particular case has already
been considered in [18].
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Definition 2.3. Let X, be a vector space over K for all /=1,2,...,n, and
X=X X.
=1

For each x=(x,)éX and /=1, 2, ..., n, denote by ¢,, the function defined on X;
by
Qi () = (X1, oy X1 6, Xig1s oons Xp)-

A subset D of X will be called multilinear if the set
D.; = ¢z (D)

is a linear subspace of X, for all x€X and i=1,2,...,n
A relation f from a multilinear subset D of X into a vector space Y over K will be
called multilinear if the partial relation

f;u' ZfOQ)x,‘
is a linear relation from D, into Y for all x¢X and (=1,2,..,n.

Remark 2.4. Instead of “x€X” we might only write “x€D” in the above
definition. However, this would lead to a further generalization which we do not
need here.

Moreover, instead of “multilinear” we may also say “p-linear”. Thus, “linear”
and “bilinear” can be identified as ““I-linear” and ‘““2-linear”, respectively.

Concerning multilinear sets and relations, we will only list here a few basic
theorems without proofs.

Theorem 2.5. If X is as in Definition 2.3, then
Xy ={x€X: x, =0 for some i=1,2,..,n}

is the smallest multilinear subset of X.

Theorem 2.6. If D is a multilinear subset of X = )n( X;, then
=1
D= LeJX .L_Jl (&1)X'-- X(Kxi—l)XDxix(Kxc‘+1)X"'X(Kxn)'

Remark 2.7. This latter theorem, which is also true under a more general defi-
nition of multilinear sets, has been pointed out to me by Gyérgy Szabd.

Theorem 2.8. If fis a multilinear relation from a multilinear subset D of Xinto Y,
then f(0) is a linear subspace of Y and f(x)=f(0) for all x¢X,.
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Theorem 2.9. If f is a multilinear relation from X into Y, then there exists a
multilinear function @ from X into Y such that

Sx) = ¢(x)+£(0)
Jor all xcX.

Remark 2.10. Note that if ¢ is a multilinear function from a multilinear subset
D of X into Y and M is a linear subspace of ¥, then the relation f defined on D by
f(X)=¢(x)+M is also multilinear.

By an immediate application of the above assertions, we can at once state the
next simple

Example 2.11. A subset D of K” is multilinear if and only if either D=(K"),
or D=K".

A relation f from D=K" or (K"), into Y is multilinear if and only if there exist
a vector ycY and a linear subspace M of ¥ such that

f(x) = (ﬁx,.)y—l-M for all x€D.
é=1

More difficult examples for multilinear sets and relations can be easily obtained
from the following obvious, but important theorem which needs only a few properties
of convergent nets in preseminormed spaces.

Theorem 1.12. If (f,) is a net of multilinear maps from X = )"( X, into a pre-
seminormed space Y (2), then the set -
D = {x€X: (f,(x)) converges in Y(2)}
is a multilinear subset of X and the relation f defined on D by

J(x) =limy f(x)
is a multilinear relation from D into Y.

) Remark 2.13. Note that fis a function if and only if ¥(2) is separated in the
sense that for each y€Y with y#0 there exists g€2 such that g(y)=O0.
Therefore, in separated preseminormed spaces we may usually restrict ourselves
to multilinear functions. But, unfortunately separated preseminormed spaces are
often insufficient.

3. Equicontinuity. Before defining a suitable new notion of equicontinuity,
which is necessary to rightly state our main results about the pointwise limit of a
net.of multilinear maps, we shall briefly deal with a corresponding concept of point-
wise boundedness.
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Definition 3.1. A net (/,) of functions from a set Y into a preseminormed space
Y(2) will be called pointwise bounded if (f,(x)) is a bounded net in Y(2) for all
x€X.

Remark 3.2. A nonvoid set {f_},. of functions from X into ¥ (2) may hence-
forth be called pointwise bounded if the family (f), is pointwise bounded as a net
whenever I’ is considered to be directed such that a=p for aill a, fer.

For a preliminary illustration of the appropriateness of these unusual definitions,
we can now easily prove a useful characterization of pointwise boundedness in
terms of multi-preseminorms.

Theorem 3.3. If (f,) is a net of multilinear maps from X= )"( X, into Y(2),
i=4

then the following assertions are equivalent:
(i) (f,) is pointwise bounded; ‘
(i) M,=Tim gof, is a multi-preseminorm on X for all q€2.

Proof. Because of the fact that gof, is a multi-preseminorm on X for all «
and some of the basic properties of upper limit, it is clear that M, is always multi-
subadditive and

M (¢, (Ax)) = M (x) and M (¢, (ux,)) = M (0x(ux,))

for all |A{=1, ucK, x€X and ¢, £=1,2,....n.
Moreover, since

M (9..(2x)) = Faﬁ q(2£:(x)
for all g2, A€K, x€X and ¢=1,2,...,n it is also clear that
y_{’g Mq(ﬁoxi()-xi)) =0
forall g¢2, x¢X and ¢=1, 2, ..., n if and only if (i) holds. Thus, it remains only to

show that M, is necessarily real-valued for all g€ 2 if (i) holds. For this, note that if
x€X and p=M_,oq,, then

M, (x) = p(xy) = p(m(m™x)) = mp(m=x,)
for all meN, whence because of

lim p(m™'x) =0,

it is evident that M, (x)< <.

Remark 3.4. Hence, it is clear that a nonvoid set {f,} of multilinear maps from
X into Y (2) is pointwise bounded if and only if M= sup gof, isa muiti-preseminorm

on X for all gc4.
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Having in mind a particular case of the last statement of Section 1 and our basic
concept of boundedness of a net, it seems now quite reasonable to introduce a sui-
table new notion of equicontinuity.

Definition 3.5. A net (f,) of multilinear maps from a product preseminormed
space

X@) = X X(2)

into another preseminormed space Y(2) will be called equicontinuous at the origin of
X(2) if the function

M, = Ilim gof,
is continuous at the origin of X(&) for all g¢2.

Remark 3.6. A nonvoid set {f},. of multilinear maps from X(%) into ¥ (2)
may henceforth be called equicontinuous at the origin of X(2) if the family (f,),r
is equicontinuous at the origin of X(#) as a net whenever I' is considered to be
directed such that a=p for all o, B¢rI.

To let the reader feel the appropriateness of these apparently very strange defi-
nitions, we first show that this particular equicontinuity does already imply point-
wise boundedness.

Theorem 3.7. If (f,) is a net of multilinear maps from
n
X(?)= X X:(Z)
é=1

into Y (2) such that (f,) is equicontinuous at the origin of X(2P), then (f,) is pointwise
bounded. -

Proof. If x€X and g€2, then we clearly have

d(£09) = g L) = ¢(L VT %1, ., VAT %))

and hence

im g (1u(0) = M, (V2T 3, ..., VAT %)

for all AcK. Hence, because of the continuity of M, at 0,
lim im ¢(4£,(x)) = 0

follows. And this shows that (f,) is pointwise bounded.
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Remark 3.8. Hence, it is clear that if {f,} is a set of multilinear maps from X (2)
into Y (2) such that {f,} is equicontinuous at the origin of X(#) then {f,} is point-
wise bounded.

Next, we prove a useful characterization of equicontinuity which, together with

Theorem 3.3, provides subtantial motivation for introducing and studying multi-
preseminorms.

Theorem 3.9. If (f,) is a net of multilinear maps from

X(@)= X X{2)
é=1
into Y(2), then the following assertions are equivalent:
() (f) is equicontinuous at the origin of X(%P);
(i) M,= l_jaﬁqof, is a boundedly unmiformly continuous multi-preseminorm on
X(P) for all qc 2.

Proof. If (i) holds, then by Theorem 3.7, (f,) is pointwise bounded. Thus, by
Theorem 3.3, M, = @ gof, is a multi-preseminorm on X for all g€ 2. On the other
hand, by [15, Theorem 2.7] a multi-preseminorm which is continuous at the origin
is necessarily boundedly uniformly continuous. Therefore, (ii) also holds.

The converse implication (if)=(i) is trivial since bounded uniform continuity
always implies continuity.

Remark 3.10. Hence, it is clear that a nonvoid set {f,} of multilinear maps from
X(#2) into Y (2) is equicontinuous at the origin of X(#) if and only if M,= supgof,
is a boundedly uniformly continuous multi-preseminorm on X(£) for all ¢€32.

4. Main results. To easily prove our main results about the topological pro-
perties of the pointwise limit of an equicontinuous net of multilinear maps, we also
neeed a somewhat deeper characterization of equicontinuity.

Theorem 4.1. If (f,) is a net of multilinear maps from
X(@?)= X X(2)
é=1

into Y (2), then the following assertions are equivalent:

() (f,) is equicontinuous at the origin of X(%);

(i) im ﬁzﬁ q(f(x)—f.(»,))=0 for all g€ 2 whenever (x,) and (y,) are bounded
coherent nets in X(2).

Proof. Assume that (i) is true, and moreover (x,) and (y,) are bounded coherent
nets in X(#) and ¢€2. If I={1,2, ...,n} and x, is the characteristic function of
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AcI, then according to [3, (18.3) Lemma], we have
L)L) = 3 fulaale, =y )+ =2 3
O=ACI

for all « and v, where the multiplication is taken in the usual pointwise sense. Hence,
because of the subadditivity of ¢ and [im, it follows that

l_i;l'l— q(f;(xv) _j;(yv)) = ¢¢§ClMq(XA(xv—yv)+(X1_XA)yv)

for all v, where again M, = Hﬁqofa

On the other hand, if (D#ACI then by our former results mentioned in
Section 1, it is clear that

(axy =)+ Cr—209) and ((ur—x4) ».)

are bounded coherent nets in X(%). Moreover, since f,((x;—x)»,)=0 for all «
and v, it is also clear that

Mq((XI—XA)yv) =0

for all v. Thus, by a particular case of Theorem 3.9, we also have
lim M, (1 (e, = 2) + (=24 3,) = 0

for all @4l Using these latter equalities, from our previous inequality, we can
immediately infer that

limlim ¢(/,(x,)—/.(3)) = 0,

which shows that (ii) is also true.

To prove the converse implication (ii)=(i), note that if (x,) is 2 null net in
X(2), then by defining y,=0 for all v, we can at once state that (x,) and (y,) are
bounded coherent nets in X(£) such that f,(y,)=0 for all « and v. Therefore, if
(i) holds, then we also have

tim Tim ¢(f,(x,)) = 0

for all g€2. Consequently, the function M, = @qofa is continuous at the origin
of X(&) for all g€ 2, and thus (i) also holds.

Remark 4.2. Hence, it is clear that a nonvoid set {f,} of multilinear maps from
X(2) into Y (2) is equicontinuous at the origin of X(2) ifand oly if limsup q(fa(x)—
—f(»))=0 for all g¢2 whenever (x,) and (p,) are bounded coherent nets in X(2).

To partly express a very strong continuity property of the pointwise limit of an
equicontinuous net of multilinear maps, we also need the next straightforward
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Definition 4.3. A relation f from a subset D of a preseminormed space X (%)
into another preseminormed space Y (2) will be called selectionally boundedly uni-
Jormly continuous if each selection function ¢ for f is boundedly uniformly conti-
nuous.

Remark 4.4. Note that a selectionally boundedly uniformly continuous rela-
tion is, in particular, lower semicontinuous in the usual topological sense [6, p. 32].

Now, having all the necessary preparations, we can easily state and prove the
following important addition to Theorem 2.12 which greatly improve the second
assertion of [16].

Theorem 4.5. If (f) is a net of multilinear maps from
X(2) = X X(2)
=1

into Y (2) which is equicontinuous at the origin of Y (), then the relation f defined by
fx) = limg £,(6)

is a selectionally boundedly uniformly continuous relation from its domain D into Y (2).

Proof. Assume that ¢ is a selection function for fand (x,) and (y,) are bounded
coherent nets in D. If g€92, then because of the subadditivity of g and the assump-
tion that @(x)€ lia{ng f.(x) for all x¢D, we clearly have

Q(‘P(xv)—¢(yv)) = q((p(xv)_f;(xv))'}'q(f:z(xv)_f;(yv))-i_q(f;(yv)_(p(yv))

and
limg(p(x,)—£(x)) =0 and limg(f(y)—¢(»)) =0

for all « and v, respectively. Hence, it follows that
(o (x)— () = lim g(£(x)~£(3)

for all v. Hence, by Theorem 4.1, it is clear that
lim ¢(p(x,)— () =0.

Consequently, ¢ is a boundedly uniformly continuous function of D into Y(2),
and thus the selectional bounded uniform continuity of f is proved.

Since each preseminormed space can be naturally embedded into a complete
one, we may usually assurne that ¥ (2) is complete. In this particular case, the above
theorem can be supplemented by the next important
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Theorem 4.6. If (f) is a net of multilinear maps from
X@) = X X:(2)
é=1

into Y (2) which is equicontinuous at the origin of X(&), and Y(2) is, in addition,
complete, then the set
D = {x€X: (f,(x)) converges in Y(Q)}
is a closed subset of X ().
Proof. Assume that x€X and (x,) is a net in D such that
X€ 1i£ng Xy

If g€2, then because of the subadditivity of ¢ and im, we clearly have

I q(4()~/() = I a(a()—A0x) +

+ I (00) /() + T a(f3(x)—7, )

for all v, where («, f) runs in the corresponding product directed set. Moreover,
since convergent nets are Cauchy nets, we also have

lim g(,(s)=£3(x) =0

for all v. On the other hand, because of q(—y)=¢(y) and the definition of upper
limit, it is also clear that

Im ¢(£.(x) —f(x,)) = (h_% q(f3(x) /(%)) = Tim ¢ (f(x,) —fa())
for all v. Consequently, we have
fim g(£,(x)—/(x) = 2Tim ¢(fo(x,) —/a(x))

for all v. Hence, by noticing that (x,) and (x) are bounded coherent nets in X (#) and
thus by Theorem 4.1

lim (ﬁ_% 9(fu(x)~£.(0) = 0,
we can infer that

lim () ~/5() = 0.

This shows that (f,(x)) is a Cauchy net in ¥(2). Hence, by the completeness of ¥ (2),
it is clear that x€D. And thus, we have proved that D is closed in X(Z).

Remark 4.7. Particular cases of Theorems 4.5 and 4.6 can be used to derive

some essential extensions of a general convergence theorem for net integrals [7,
Theorem 3.8].

8
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However, to realize the usefulness of Theorems 4.5 and 4.6 in integration, the
reader is rather advised to derive first a uniform convergence theorem for the classical
Reimann—Stieltjes integral.

5. Supplements. By using Theorem 4.1, we can also easily prove a remarkable
characterization of equicontinuity of a net (f,) of multilinear maps from X (£) into
Y(9) in terms of the induced uniformities %, and %,.

Theorem 5.1. If (f,) is a net of multilinear maps from
X(2)= X X(2)
=1

into Y(9), then the following assertions are equivalent:
@) (f,) is equicontinuous at the origin of X(%);
(i) lim (f; oV of,)(x) is a neighbourhood of x in X(&) for all V€U, and

x€ X.

Proof. If (ii) does not hold, then because of the definition of the induced uni-
formities and [9, Remark 3.9], there exist x€X, g€2 and &=>0 such that the ball
B} '(x) is not contained in the set

lim (fi o B0 f)(x) = U ﬁ@ SN B(f(x))

for all p€2* and m¢N. Thus, for each v=(p,m)c4=P*XN there exists
x,€B"7'(x) such that L
Iim q(f,(x.)—/,(x)) = &.

Hence, it is clear that (x,),, is a net in X(#) such that x€lim, x,, but
ImIim ¢(/,(x)~/£.() = ¢,

and thus (i) cannot hold because of Theorem 4.1.
Thus, we have proved that (i) implies (ii). To prove the converse implication,
note that even the particular case of (if) when x=0 does already imply (i).

Remark 5.2. Hence, it is clear that a nonvoid set {f,} of multilinear maps from
X (2, into Y (2) is equicontinuos at the origin of X(#) if and only if N (f; oV of,)(x)

is a neighbourhood of x in X(&) for ali V€%, and x€X.
Remark 5.3. By using the topological refinement
Up={R C XxX: Yx€X: AUUy: U(x) C R(x)}
of %, [13), the assertions of Theorem 5.1 and Remark 5.2 can be rephrased in the
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more instructive form that the net (f,) (set {f,}) is equicontinuous at the origin of
X(#) if and only if

lim f; oVof,es (N filoVof,e%s)
for all Veu,.

Note that the “only if parts” of the above assertions are much weaker then the
corresponding parts of Theorems 3.9 and 4.1 and Remarks 3.10 and 4.2. In principle,
lim, and %, should be equivalent tools in X(2). However, actually we do not even
know that which subfamily of %s could be used to express the bounded uniform
continuity of a function f from X(#) ino Y (2).

Whenever the net (f),) of multilinear maps from X (&) into Y (2) is pointwise
convergent in the usual sense that the net (f,(x)) converges in ¥(2) for all xcX,
then the converse of Theorem 4.5 is also true. In fact, in this particular case, we can
even prove a little more.

Theorem 5.4. If (f,) is a pointwise convergent met of multilinear maps from
X(P)= X X2,
é=1
into Y(2) and f is the relation defined on X by

S0 =1imy £,(x),

then the following assertions are equivalent:
() (f,) is equicontinuous at the origin of X(P);
(ii) f is selectionally boundedly uniformly continuous;
(iii) f is lower semicontinuous at the origin of X(P).

Proof. Because of Theorem 4.5 and Remark 4.4, we need only show that (iii)
also implies (i). For this, assume that (iii) holds, and let ¢€2 and M,= ﬁ;ﬁ—lqoj;.
If e=0, then by the definition of %,, the ball B;(0) is a neighbourhood of 0 in
Y(2). Thus, because of 0¢/(0) and (jiii), the set U=j"*(B: (0)) is a neighbourhood of
0in X(#). If xcU, then by the definition of U, there exists y€B;(0) such that
y€f(x). Hence, it is clear that

4(/() = g(fL()~-2)+9() = 9(L(x)-»)+e
for all 2, and
lim g(/,()—3) = 0.
Consequently, we have
M,(x) =Tm g(£,(x)) = .

8*
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Hence, it is clear that M is continuous at the origin of X(£), and thus by Definition
3.5, (i) also holds.

Remark 5.5. Note that to obtain (i) we have only used a particular case of (iii).
As an immediate consequence of Theorem 5.4, we can easily get the essential
improvement of [3, (18.2) Theorem] proved directly in [15].

Corollary 5.6. If f is a multilinear map from
X)) = X X:A(2)
‘=1

into Y(2), then the following assertions are equivalent:
() f is boundedly uniformly continuous; '
(ii) f is continuous at the origin of X(2);
(iii) gof is continuous at the origin of X(P) for all qc2.

Proof. To apply Theorem 5.4, note that fis a selection function for the relation
F defined on X by
F(x) = limg f,(x),

where « runs in an arbitrary nonvoid directed set.

Acknowledgement. The author is indebted to Piotr Antosik for pointing out the
usefulness of sequential methods in abstract analysis, and to Zoltin Daréczy for
suggesting the investigation of the converse of Theorem 4.5.
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A model for a general linear bounded operator between two
Hilbert spaces

ANDREI HALANAY

The main result of this paper is a theorem asserting that every bounded linear
operator between two Hilbert spaces is unitary equivalent with a certain particular
operator, the ““model”, in a similar sense with that used for contractions in [5]. This is
accomplished by proving a model theorem for a contraction between two Hilbert
spaces inspired by the techniques used in Ch. I, Sec. 10 from [7] then by proving a
model theorem for an invertible linear bounded operator between two Hilbert spaces
whose inverse is a contraction and then by the use of the canonical decomposition of
every linear bounded operator as a direct sum of a contraction, an operator whose
inverse is a contraction and an isometry (see [4], [6]). The model for the contraction
is used also to prove a result concerning dilation of the couple (T, T*).

We express our gratitude to the referee for the carefull reading of the manu-
script and for useful suggestions with the consequence of improved and shorter
proofs of the Theorem 1.1 and especially Theorem 4.2.

1. A model for a contraction between two Hilbert spaces
Let 54, £, be two separable Hilbert spaces and T: #;—~3% a contraction,
that is a bounded linear operator with |T]|=1. Then T*: %+, is also a con-
traction. Define
D =(Le,~T*T)"?, D,=(Le,~TT*)" & =D#, 6 =D,
where I,, denotes the identity operator in #. The norms in the two Hilbert spaces

H#,, #, will be denoted respectively by ||« [l1, |- ll2-

Received April 18, 1988 and in revised form March 28, 1990.
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We observe that ((T*T)*);>, is a decreasing sequence of selfadjoint contrac-
tions, consequently Q,= li}"n (T*T)* exists in the strong sense and 0=Q,= Iy .
Since QI(I,I— T*T)h=0 for hcs#,, O, is the orthogonal projection onto
ker (L, — T*T). Similarly Q2=s——li£n (TT** is the orthogonal projection -onto
ker (I#’— T*). In particular Q,5#, and Q,, are closed subspaces of s, and 63,
respectively.

The definitions of @, and @, show that

(1.1 0, =T*0Q, T, Q,=TO, T*
Let W: Q.5 —0,#,; be defined by
1.2) WO, h = Q,Th, hct,.
Then by (1.1) one can easily see that
IWO, hllz = Q- Thll, = Gy All,,

such that W is an isometry.

Since, by (1.1), Q,(ker T*)={0}, it results that Q,7; is dense in Q,35, such
that, by (1.2), W has dense range in Q,5,. It results that ¥ is a unitary operator.
A computation shows (see [7] Ch. I, Sec. 10) that for every hc#;

kzo !ID(T*T)"hHHkg; 1D, T(T*TY hl§ =

— 2"' ((T* T)zk—(T*T)2k+lh, h)+ Z"' ((T*T)2k+l—(T*T)2k+2h, h) —
k=0 k=0
= [AIE—IT*T)"* hili.
Taking limits we have
(1.3) (A} = g(') IID(T*T)"hlI§+kZ0 ID, T(T*TYhIZ+1Quhlf, heA,.
By similar computations
(14) KlE= 3; IID*(TT*)"h'II§+k§) IDT*(TT*HIR+IQ: W5, Wty

For a Hilbert space &, H?(&) denotes the vectorial Hardy space (see [7], Ch. V
Sec. 1 or [5], Sec. 0). For

u(z) =k§; Fa,, |zl <1
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the norm is defined by
||u||%12(g) = k;’) I ak"??'

We denote by S, the unilateral shift on H2(&), ([5] Sec. 0). Let

5 Vi: H#, ~ HE(E)DHEE,) DO, H,,

Vih=[ 3 2D@*TYh]o[ 3 2D, T(T*TYh]®0;h.
k=0 k=0 )
From (1.3) we have ||Vjh|2=|h|3, where the square of the norm in the direct sum is

the sum of the squares of the norms of the components. Let

Vo: oy >~ HY (6D H?(6:)D0u
(1.6) HY&)@H*(6,)DQ

Vz W = [ 2.,’0 ZkDT*(TT*)k h/] EB[ f ZkD*(TT*)k h'] @th;, h,E%.
k=0 k=0
From (1.4) it follows that |[V,4’|*=||k’||3. From the previous definitions

(17)  WTh=[3 #DT*TT*Thl@[ 3 2D (TTTh|®Q,Th =
k=0 k=0

= [ 3 ADTTY RS 3 2D, T T h]©Q:Th = [S5,0 Tuxey @ Vi
for ewery hesf;, and
(18) WT*W =[3 DI T)FT* K@ 3 2*D,TTY+ K] @QT*I =
k=0 k=0

= [Ig2(s,® S5, WV, 0
for every W ¢€u#;. Therefore the following model theorem is proved.

Theorem 1.1. Let T: #,—~3#, be a contraction. There exist the Hilbert spaces
&y, &, the closed subspaces A C H2(E)DH?2(E,), HA,CHE)DH(E, and the
unitary operators '

Vit ) ~ 00 A, Vo Hy ~ A0y, W: O~ 0x5

such that
1.9 T =V (85,0 Iz ey OW)W,

(1.10) T* = Vi*(Lyre,, © St W) Vs
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2. A model for the inverse of a contraction
Let T: 5%, — 3%, an invertible contraction. 7* is then invertible, too. We proceed
to exhibit a model for 71
Lemma 2.1.

(CRY IDhIF = S IDETHIE for every hest,.
n=1

Proof. First we observe that |{D,{|<1. Indeed,
[D2= sup [DH|Z= sup (1-|T*K|D =1— inf [T*H|}=<1.
1K ll,=1 I hy=1 i Ny=1

Then [D2|<l, so (I—D%)1= 2:1)3:. But (/I—D2)~1=(TT*~! and so
n=

oo

2.2) > D¥ =Di(TT* L
n=1
We observe that

T*DLTT*) T =T (L, ~TT*)(T*) ™" = Le,—T*T = D*
Then

IDH|; = (Dh, h), = (T*DA(TT*)ATh, h), = (DL(TT*)~Th, Th), =
= (3 D¥Th,Th), = 3 (DX Th, Th), = 3 | DLTHIS.
n=1 n=1 n=1

The lemma is proved.
From (1.3) and (2.1) it results

2.3) Al = kzo ;; ID3T(T*T) hll§+k§) 1D, T(T*TY hil3 + | Q. A}
fqr every h€sf,. From (1.4) and (2.1) it results
(24) 1713 = k%'} g; IID’;(TT*)"“h’II§+kZO 1D (TT*)* K |3+10:H13

for every h'eit;.

Let 4 ={ucH2(&)| u(l)= f A"DLK, |).|<‘1, hext,). A is a closed subspace
of H(&). Indeed, let (u,),., be
= ,.Zcz A"Dih:, |A<1; u(P)= nzc’: A"a,, |Al<I1, then

be a sequence in #, u;—~u, u€cH*(&,), u;(A)=

Tty

oty —a)® = 21 ID%(H;— g = \DT (W —hIE ~ 0 as j, k e
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We have [T1(hj—h)Ii=[h;—h3+IDT *(h;—hpl;. But, since [T7'H|*=
=T -2K|2 it rtesults (T -2—1)|k)—h]JI2~0 as j, k—oo, so there exists
W=1limh; and then D}h;~D}h" for every nz=l as j—-oo. But Dih;—a, as
j—»oo,J so a,=D}h and thus u is in .Z.

Let V,: #,~H2(M)DH(E)DQ,#, be defined by

@.5) Th=[3 2h]e[ S 2D, TT* T K0, h, he,
k=0 k=0
where
2.6) h(h) = 3 "DLT(@T*TYh, for || <1.
n=1

(2.1) implies | hk”%,z(gz)z \D(T*T)*h|? and (2.3) implies ||¥71h|12=||h|[f for
every h€sf.
Let V,: #,—~H (M) H2(E,)DQ,#, be defined by

X)) vf =[k§; zk/,;]ea[kg D, (TTY f]00.f, feH
where
2.8) fu3) = 5;."D¢(TT*)'°+1f, for |3 < 1.

(2.1) implies | f|}ss, =IDT*(TT*1l} and (2.4) implies |[V2f1*=|f1} for
all fe,.
In order to find a model for T we compute ¥V, T~ for fci#,.

29 7T f = [f Fgle 3 #D.ATY /00T
where

(2.10) () = 3 IDUTTH f, for | <l.
Then "

@.11) @) —fi() = g PDETTSES for |A] = 1.

Observe that .# is invariant for S7 and let us denote
@12) S, =Shla-
(2.11) becomes g,—f,=S%g,, so

(2.13) : fi=UI-S)g -
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For a Hilbert space £and A€B(&£) a linear bounded operator, we denote by A4,
the operator of multiplication by A4 from H2(&) to H2(8):

(Ax w)(2) = Zw ZAu,, for u(z) = f Fu, lzl <L
K=o K=o

Lemma 2.2. The operator (I ,—S3),: H2(M)—~H2(M) is invertible.

Proof. We will prove that I,—S%: #—~. is invertible. Let S, : H2(£)—~
—H?(&,) be the unilateral shift

(Sg,u)(2) = Z’z"“uh, for u(z) Zc'oz"uk, |z] < 1.
=0

We observe first that (S})*=P ,S% |-

Let ucker(I,—S})*=ker(I,—P,Sz|,). Then wu=P,u=P,Sue
P, (u—S; w)=0 or equivalently (u—S;u) is in .#' and this implies
(u—S% u) Lu from which it results

(2.14)  (uyu) = (S, u, u).
Let u(?)= > A"D"I, |A|<1,KEH#, (2.14) becomes
n=1
DD = 5 (D W, D) = 3 (DY W, D) = Z;IID'M'H?
n=1 n=3 n=3 n=

Then ||D, K’J,=0 since the series are convergent by Lemma 2.1, so D,h’=0 and
this implies #=0, so
(2.15) ker (I,—S%)* = {0}.
Next we prove that 7 ,—S2 is bounded from below. Let u(i)= Zo'ol"D;h’,
n=1
W¢#,, |Al<1, then

1L =S ullrzsry = Z' (D5 =D+ K| = Z IDTTHK|E =

= ;; ITT*) DLk |} = ¢ ;lID'ih'II% = ¢ ullfrxey-

Here we uéed the fact that TT*, being positive and invertible, is bounded from below,
1.e.:

\TT*H |, = |||, for every h'€3#,, with ¢ = 0.
So

(2.16) (L= 52 ull gzesy = lulnzen, €= 0.
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(2.15) and (2.16) prove that there exists (I ,—S2)™!: .# —~./ and then there
exists (I ,— S}t H2(M)—~H*(A). So the lemma is proved.
Lemma 2.2, (1.2), (2.9) and (2.13) imply

AT/ =3 AUa=S)" A8 3 #D.AT Y /1eW 0.1 -

=[(Lg—S3) 3" ® Igz(s,y ®W 1] Vif.
So we have proved

Theorem 2.3. Let T: 3, —~#, be an invertible contraction. There exist the Hil-
bert spaces &, M, the subspaces (closed, linear) A, and A, of H(M)H H2(E,)
and the umitary operators Vi Hy~ OO H,, Vii Ko~ He®Qo s such that

(2.17) T =V [(IJt—Si)QIEBIm(gZ)@W_I]r/:z

where S, is defined by (2.12) and W by (1.2).

3. A model for a general bounded linear operator

To apply the Theorems 1.1 and 2.3 to a general linear bounded operator'
T: #,—~H,, let us denote as in [4], [6]

Dy =[(Lg, —T*T)*1'2, Xy =[(Le,—T*T)"]*?

|4+ 4

A|—4
5 = :

where, for A=A*, At = 3

, AT

Let 2, =D, be the defect space of T, Di=ker (I—T*T), %y =XrH#, the
excess space of T, and consider the corresponding spaces %, @7., %5 for T*.

Then #, =2, &%+ DD;, 3= D% 1+DP;. andfromthe relations TD;=
=D, T, TXpr.=XpT (see the proof in [4]) it results T2, C Dy, T%,C%,. and
obviously T9;C9P:.. Define the operators T1=Tl, : Dr~Dp., L=
=Ty : Zr~Z 1« and E:Tl@}l‘: Dr—~Dr.. T, is a strict contraction and (|T1")2_,
converges strongly to 0 as n —<o (see [4], [6]). T is an invertible operator and T;*
is a contraction. T; is an isometry.

-In order to obtain the model for T we apply Theorem 1.1 for 7; with 5, replaced
by @y and #;, replaced by 2, and Theorem 2.3 for T;* with 5, replaced by Z.
and ##, replaced by Zy.
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4. Some results concerning the dilation of a contraction and its adjoint

Let 57 be a separable Hilbert space and T: 3¢ -3 a contraction. For the sake
of simplifying the presentation we suppose that

4.1) - (T*TY" -0 and (TT*)" -0 strongly, as n —oco.

The main results remain valid without this assumption. From (4.1), &,=&=#
and by Theorem 1.1 we have the subspaces o] and 2%, of H2(#)® H?(#) and the
unitary operators V;: # A3, V,: # —~#, such that V,T=(S*®NV, and WV, T*=
=(I®S*)V, (where we denoted S}, by S* and Iy, by I).

Define J=WV;. J is an unitary operator from %; to J¢;. Using the (easy to
prove) fact that dim J;=dim ] = o, the orthogonals being consideredin H2(#°) @
@H(#), we define J: L2(o#)@® L2(3F) ~ L2(#) D L2(H#)

(4.2) J = J®(unitary operator #;' — A, L)@(identity of H® (#)SH2 (7))

(for the definition of L*(o#) see [6], Ch. V); H® (#)=L*#)O HX(H)).
Let Z* be the backward shift on L2(s#). if

u(z) = > 'u,, |zl =1,

n=—oo

then

(Z'u)(2) = 2 Z'Upsq, 2l =L
Define
4.3) U=J*I2y®Z"), V =(Z*®I1e(p))J.

U and ¥ are unitary operators on L2(J#)®L*(s#). Let us identify # with 7 by
the mean of ¥,. Then we state

Theorem 4.1. For every polynomial p in two variables,
where by P, we denote the prajection onto .

The proof relies on direct computation and 1s omitted. Next we show that in
the case of a normal contraction T satisfying the hypothesis (4.1), the operator J of
(4.2) can be choosed such that the operators U and V defined in (4.3) commute.

Theorem 4.2. Let T: # —~3 be a normal contraction satisfying (TT*)"—~0
sirongly as n—oo. Then the operator J in (4.2) can be constructed such that U and V
defined in (4.3) saiisfy UV=VU.
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Proof. The proof that follows was suggested by the referee, replacing the more

comphcated original one. T normal implies D,=D and & =8&,=3¢ by hypotheses
(77"~

Let T WR be the polar decomposition of T. Then W can be a unitary operator,
WR=RW and WD=DW. Define the operator U on H2(s#) by

0(3 2h)= 3 #W2h,.
k=0 k=0

U is a unitary operator that commutes with S*, the backward shift on H2(#). The
operator U defined by
7— (2 o)

u o
with respect to H2(o#)® H?*() is a unitary operator that satisfies

4.4) (S*eSH) U = U(S*aS™).
Then

U(( f 2XDT* (TT* h)s( f ZFDTT*Fh)) =
k=0 k=0

MM

= U(( 3 #DW* R+ h)a( 3 *D,R*h)) = ( 2 2D, R* W) ( z ZDWRRY h) =
k=0

k

1
=3

= (3 DA TF¥he( 3 2D, T(T*T)h) =
k=0 k=0

oo

= KW (2 2DT*(TT* )@ ( 2 2D, (TT* k)

for every h<a#. This shows that U=, and U, =WV;. Since U is a unitary
operator it results UX;- =4+ and so we can choose "J such that
j|m(:¢)em(.#) =U.

For this J we have, due also to (4.4),
UV |:myonzey = U7 (S* @SN U = S*@S* = VUlney oz ) -

Since by (4.2), (4.3) the same is true for HZ (#)DHZ(H) itresults UV=VU and
the theorem is proved.

We remark at the end that we can drop the assumption (4.1) from Theorems 4.1
and 4.2 without altering the results.
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AF-algebras with unique trace

ANDREI TOROK

An AF C*-algebra is, by definition, the norm closure of an increasing sequence of
finite dimensional C*-algebras. In some sense, these are the simplest noncommutative
infinite dimensional C*-algebras.

Our interest in AF-algebras with unique trace is related to the problem of
constructing subfactors with a given index of the hyperfinite type I, von Neumann
factor R. For this, one is led to find a sequence of increasing finite dimensional C*-
algebras and to take their weak closure in the GNS representation given by a tracial
state. If there is only one tracial state, the finite hyperfinite von Neumann algebra one
obtains is a factor, hence it is R if it is infinite dimensional.

One way to guarantee the uniqueness of the trace is to fit the situation described
in Remark 3: one can apply then either the quoted theorem of Elliott (stated in K-
theoretic language) or the Perron—Frobenius theory on matrices with positive
entries.

Our approach gives the desired conclusion for a wider class of AF algebras (the
matrix given in Remark 2 is not primitive) and establishes some additional properties.

Statement of the result

Let A be a unital AF C*-algebra, inductive limit of the finite dimensional al-
gebras C-lcA4,c4,C4;<... (1 is the unit of A).

We denote by m,=(mj, my, ..., m;) the dimension vector of the algebra 4,
and by sz(rg‘j)iﬂ’._‘,ck; j=lionc,,, the inclusion matrix for 4,C4y, (k=1).
Inparticular, ‘Rm,=n1 . :

If w is a real vector, w=0 means that its entries are nonnegative.

For w=(wy, ..., w,)ER", w=0, w0, we define

)= (3w tmin { 3 wi|I < {1,2, ..., n}, card(I) = n/2}.
k=1 iel

Received July 28, 1988.
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We consider the multiplicative group G= G (A and its action on A by
k=1

inner automorphisms.
g€G 2+ Ad gc Int (4) C Aut(A4)

g(x) = (Ad g)(x) = gxg™! (g€G, xc 4).

We prove the following

Theorem. With the notations introduced above, let

& = j__min X((mli‘ rli‘j)i=1,...,ck) (k=1).
=iy ey Cy gy
If
(%)
then:
(a) there is a unique normalized trace, denoted by 1, on A;
(b) t is faithful if and only if A is simple;
(c) the action © is mixing with respect to the trace 1, i.e.

DM

Sk oo,
k

[
-

(V) x, yA4,, (3)g,€G (nEN) such that '}ng 1(g.(x)y) = 1(x)1(y).

There are conditions which imply (%) and depend only on the inclusion matri-
ces R,.

Corollary. With the R.’s introduced above, let

6, '= min l"{j/rl}a_x r{'cj ((=1,.,a5j=1..64)
i,J LJ

and .
gk = j=1rr.1.].nc X((’fj)i:l,...,ck)'

If
D 2 k18 =,

k=2
or
) k§5k—15k =°°
then:

(i) the algebra A is simple and has a unigue normalized trace t, which is faithful;
(ii) the action O is mixing with respect to the trace t.

Namely, we shall prove that (2)=(1)=(x).
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Remark 1. Condition (%) depends effectively on the particular sequence of
algebras A, defining 4. Indeed, let m,;=(1, 1,1, 1), and for k=1,

1100 1010 1111
1100 01014, 1111
Ryys1 = 0011l Ry = 1010l hence Ry _ Ry = L1111l
0011 0101 1111

Then the sum in () is zero for the sequence 4, 4,C 4,C..., but it is infinite for
the sequence 4, CA,C A;C....

Remark 2.Condition () does notimply any of the equivalent conditionsin (b):
let m,=(1,1,1), and

1
R, =10 for all k=1.
2

—_ - =
—_ O N

Then ¢, =1/2, but the (unique) trace on A has the weights ((1/2)37%+1, 0, (1/2)37%+%)
on A,, hence it is not faithful. One can also see from the Bratteli diagram that A4 is
not simple.

Remark 3. As a special case of the Corollary (part (i)), we can treat the situation
dealt with in a theorem of ELL1oTT (Th. 6.1. in [2]), namely when R,=R for all k,
where R is a primitive matrix, i.e. there is a nonzero p such that RP has positive
entries. Indeed, if we consider the sequence

A C Ay © Agpyy C Agpyn C .o

(which also defines 4), the inclusion matrices will be constantly R?; hence, the §,’s
will be all equal and nonzero (because R? has no zero entry), and then clearly (2)
holds. ]

The proof of Elliott follows different ideas.

Notations and steps of the proof
Let

4,= @ 4, 4. = Mat (C)
=1 1

be the factor decomposition of the 4,’s. For x€4,, we denote by [x]! its A.-com-
ponent and by a}(x) the normalized trace of [x],€A}:

o (x) = tr (Ix]s) = (1/m]) Tr([x];)

9*
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(we denote by Tr the canonical trace on a full matrix algebra — i.e. the sum of ali
diagonal entries — and by tr the normalized one).
If v=(v,...v,)EC* is a vector, we write w(v) for the “oscillation” of v, i.e.
o(v) = i, jr=nlz.l.).(.,k lv"ﬁvjl'
Now for any x€A4,, we introduce the vector o, (x):=(a}(x), oZ(x), ..., atr(x))
and the value w(2,(x)). We denote

Ae = D A,.
n=1

The proof will be divided in a sequence of lemmas.

The first step is to show that for any x€4,,, lim o(e,(x))=0, i.e. the entries
of a,(x) tend to become mutually equal. It is here that we use condition ( *). This
implies that as n goes to infinity, the entries of o,(x) converge to some complex
number 7(x). This result is derived in Lemma 3, using the results of the previous two
lemmas.

In Lemma 4 we check that the map x€ A.—1(x)€C defines a tracial state on A4..
and we show that this is the unique one. So assertion (a) of the Theorem will be
proved.

In Lemma 35, using a characterization of simplicity for AF algebras in terms of
the inclusion matrices, we prove that the above defined trace is faithful if and only if
the algebra A is simple, i.e. assertion (b) of the Theorem.

Assertion (c) of the Theorem (that theaction O is mixing with respect to the trace
7) is proved in Lemma 6, after some remarks on finite dimensional C*-algebras.

Finally, in Lemma 7, we show that (2)=(1)=-(%) and that if (1) or (2) hold, then
the algebra A is simple. Using these facts, the Corollary follows easily from the
Theorem.

We emphasize that the whole proof depends on the fact that '}Ln; o (e, (x))=0.
This is deduced from condition () by the estimate given in Lemma 2. One can look
for other estimates in order to obtain the same fact from other conditions. Our
estimates is insensitive to the equality of all rows of Q, when || Qfj,=0, regardless of ¢
(see the notations in Lemma 2). We have chosen it because of its relative simplicity.
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The proofs

First of all we clarify how the inclusion matrices R, and the dimension vectors
my, allow the computation of «,,,(x) from o,(x). Let Q,=(q};)
be the matrix given by ¢f;=mjr}/mi*, ie.

m*t 0 )1 m; O
Qn = s . tR,, K . s
0 nlz:-ir]l 0 mgn

and 1,=(1, 1, ..., 1)€C™. Note that Q,(1.)=1

= 1, sery C,,+1).

=1 Cphyqs Jj=1,.cp

C'l
c..1 Decause m;'+1=k2; miry (=

Lemma 1. For any x€A, we have

(a) 0(,,+1(X)=Q,,a,,(X),
(b) 12,1‘1;1 Re a’,:(x)éReaf,H(x)élrsl}(ix Re ok (x),
12'1‘12 Imok(x) = Imol,(x) = | max Imok(x) forall I=1,..,¢441-

Proof. (a) Using the information given by the inclusion matrix, it follows that

o1 (x) = Tr ([x)h ) [+ = (ké: i Tr () [+ = (ké: my rigoy (x)) [m+1.

(b) This is a consequence of the relation Qn(lc,,)'_- 1. .. and of the fact that Q,
has real nonnegative entries (hence «,(x) is a weighted average of the entries of

o, (x))-

Let us study the matrices Q=(q,));_y, .. p, j=1,..,» With real nonnegative
entries which satisfy Q(1,)=1,. Note thatif »€ R™ and w(v)=0, then w(Q(v))=0
(w(w)=0 = w is proportional to the vector 1,). Since w defines a seminorm on
any R?, from the above remark we see that Q induces a linear map 0: R"w—R"o,
where R?/w denotes the quotient space RP/{v€ R?|w(v)=0}. Hence,

IQll,, := sup {w(Q@))[vER", 0(v) = 1}
is finite. Clearly

(@) = 10l 0@ and [0, = 10ill,11Q:ls
whenever 0, Q, is defined.

Lemma 2. Let Q=(q;);-1,...n; j=1,..m be a matrix with real nonnegative
entries which satisfies Q(1,)=1,. Then |Q|,=1—s¢, where

g:= i=1;nin . X(((],‘j)_;=1,....m)'
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Proof. It is enough to show that if v=(v,, ..., v, )ER™, w=(w,, ..., w )ER™
are such that v=0, w=0, Zm' =1, Zm' w,=1, y(v)=¢g, y(w)=e, then
k=1 - k=1 : .

(o, vy —{or, W)l = (1 —e) ()
for any a=(a, ..., «,)ER™ where (-, -) stands for thé canonical scalar product
of R™ The desired result will then follow by considering v=(g,)i~y,...m» W=
=(¢;)k=1,..m for all 1=i,j=n.

Let a= mkin o, b= max o, I=[a, b]™. Then a€l, w(x)=b—a. Since the map
fI-R, f(u):=(u,v)—{u, w). is an affine map, f(I)=cof(extI), where ext I
denotes the set of extreme points of 7 and co stands for convex hull.

Let /)’EextI B=(By, .--s B). Then B.€{a,b} for any k=1, ..., m. Denote

={klil=k=m, B=a}, Ky=1{kll =k =m, B =b}.

One of the sets K, and K, has at least #/2 elements. Suppose card K,=n/2. Since
(B, wy=a, we have

B =@ 3 n+b 3 w)—6,w) =
= [b—(b—a)kGZK' ] —B,w)=b—-(b—a)y(v)—a= (1—e)(b~a).

For v instead of w we also obtain f(f)=—(1—¢&)(b—a).
The case card K;=n/2 can be treated similarly and we obtain the same results.
-Thus for any f€extl we have

—(—e)(b—a) = f(B) = (1—6)(b—a),
A € [=(1=e)(b—a), (1—e)(b—a)],
@] = (b—a)(1—5) = o(@)(1—s).

hence

and therefore

Recall that ]] (1-n, =0 whenever 0=#,=1 and Zrln—oo Therefore by

condition (%) we have

(% %) T (—g)=0 (V)n=1.

n=ny

Note‘that due to Lemma 1(a), the ¢,’s defined in the Theorem have the same meaning
for the matrices Q, as ¢ for the matric @ in Lemma 2.
For v=(v,, ..., v,,,)EC"' define

ol o= pmax [o,l.

Now we can prove
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Lemma 3. For any x€A4, we have

(@ ,.l.i.rllo w(o,(x)) =0,

(b 3}’12 e, (x)—7(x)- 1 |l =0 for some t(x)€cC.

Proof. Let n=n,. Since both w and | - |. are seminorms, we can deal separ-
ately with the real and imaginary parts of «,(x). Denote by Re «,(x) and Im a,(x)

the vectors whose entries are the real and the imaginary parts, respectively, of the
entries of o, (x). By Lemma 1(a), we see that

Re cxn+1(x) = Qn(Re a,,(x)), Im C(,,+1(X) = Qn(Im d,,(X)).
Lemma 2 implies that

O(Re 11 (1)) = |Qullo 0(Re 0,(x)) = (1~ >(Re e, (m)).
Iterating we get

o(Rea,;(x)) = k!] (1—¢) w(Re a,,(x))
and then, by (* %), ’
nlim o(Rea,(x)) =0.
Since
o(Re «,(x)) = ,max Re o (x)— ) g}lsn Re ok (x),

Lemma 1(b) implies that

lim |Rea,(x)—al,l. =0 for some acR.

The vectors Im o, (x) can be treated similarly.
Lemma 4. (a) The mapping x€ Ao 1—~ t(x)€C is a continuous normalized trace
on A.. which can be extended by continuity to the whole A.
(b) Any normalized trace on A.. equals t.
Proof. (a) Linearity follows from the fact that
o,(ax+by) = au,(x)+ba,(y) for any x,ycA, and a, beC.

It is easy to see that a,(1)=1,, hence t(1)=1. Since (tr ([x];)|=[x]}I=[x], we
see that |[lo,(x)|=Ix|l, and hence |t(x)|=|x||. Similarly, o,(x*x)=0, hence
T(x*x) =0.
That 7 is a trace follows from the relation
a,(xy) = a,(yx) for any x, y€A,,

which is a consequence of the definition of «,.
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(b) Let u be any normalized trace on 4. Since the factors A, have unique norm-
alized traces, the restriction of u to the algebra A, is described by a nonnegative

c'l
vector f=(A, 1%, ..., 1) with > ri=1. If x€4,, then
k=1

n’ "'n3

ux) = 3 ab(x).
k=1
Then for all x€A4,.

KO- 20 = | 3 Al =0 = 3 Alam—t@ ole = o) 70 Ll

Hence Lemma 3 (a) implies that p(x)=rt(x) for all x€A4...

Lemma 5. Suppose ( ) holds and 1 is the above defined trace. Then 1 is faithful if
and only if the algebra A is simple.

Proof. Denote by ¢! the minimal central projection of 4, corresponding to 4.
1t is known that 4 is simple if and only if for any n=1 and any 1=I=¢,, thereisa
p=>n such that the inclusion matrix R, ,=([;%);_, ., ens J=L ey for A,cA4,
has only nonzero entries on the /-th row (i.e. AL “enters” in all factor summands of
Ap)—just look at the description of the ideals in the Bratteli diagram of 4. Since

wpler) = (pPm)im?, i=1,..,¢,

we see that the above condition on the inclusion matrix is equivalent to the fact that
ap(ef,) has only nonzero entries.
Suppose first that 7 is faithful. Choose n=1 and 1=/=c,. Since 7(e!)50, and

lim i, (eh) = 2(e) 1.l = O,

we infer that for p large enough, all the entries of «,(e!) are nonzero. Thus by the
above remark, 4 must be simple.

The converse implication is obvious since J:={x€ A|t(x*x)=0} is a bilaterat
ideal and 14J.

For proving the mixing property of @ we need two elementary and possible
well-known results which we record below.

For a finite dimensional C*-algebra N, with a fixed system of matrix units and
x€N, we denote by Diag (x) the set of values which are on the diagonal of x.

Remark4. Let x¢ Mat, (C)=%(C"), x=x* Then thereis a unitary u<Mat, (C)
such that Diag ((Ad #)(x)) has only one element (namely tr (x)). (This statement
also holds for x=x* but its proof would be more intricate.)

To see this, notice first that since x=x*, thereis an orthogonal basis of C" with
respect to which x has diagonal form, hence the corresponding matrix has real entries.
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If we consider (Ad u)(x) instead of x, where u is the unitary matrix that describes the
change of coordinates, we may assume that x€Mat, (R).

We shall obtain the assertion by induction. Let n=2,x=[a b]€Mat2(R).
cd
We define
(cost sint
t

“\—sins cos 1]6%(Mat2(R)), 1€{0, =/2].

Since (Ad »uo)(x)=(‘cz 2), (Ad u,,,z)(x)z[_db ';C]’ and #—(Adu)(x) is a con-

tinuous function with values in Mat,(R), the Darboux property of it implies that
there is a 7€[0, n/2] such that (Adu)(x) has equal diagonal entries. Moreover,
(V)A£R, min{a, d}=i=max{a, d}=(3)t€[0, n/2], such that

A x
3) (Adu)(x) = (ae %] .
The statement is proved for n=2. Assume we have proved it for n—1, n=3.
Let x=(g;)¢Mat, (R). If x has different diagonal entries, one of them, say ay;,
differs from tr (x). We may assume that a;;<tr (x). There must be an ;1 such
that a;; >tr (x). We may consider i;=2. Due to (3), there is a unitary

“qu, O
ﬁ, = (0' In_z]EMat" (R)

such that
tr(x) =
x’ = (Ad 171)(x) = ( " ‘cf/] s
where x”¢Mat,_,(R). By the inductive assumption thereisa u”¢Mat,_,(C) such
that Diag ((Ad u”)(x”)) has only one value, namely tr(x”). But tr(x”)=tr (x),

”

then Diag ((Ad #'#)(x)) has only one value.

Remark 5. Let N be a finite dimensional C*-algebra with a fixed system of
matrix units, and let u be a normalized trace on N. If x, y€ N and y has a diagonal
form, then

Gxy)—px) )| = 1yl dn ),

a, a' €Diag (x)}.

where dy(x)=max {ja—d|
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This follows by an easy computation. Suppose that N= P Mat, (C), and let
i=1
t=(1,, ..., t,,) be the vector of the weights of the minimal projections of the factor

summands of N in the trace p (so that Z’ m;t;=1). Let the diagonal entries of x

=
andybe ay, a3, ....a,, 4, ...,a, ... d}, ...,a, and b, b}, ..., b}, b5, ..., B%,
- b, ..., by, respectively (the upper index indicates the factor summand of N).
Then

ny

w@= 30 Sd, w)= 310 38, uex) = 31 > db
i=1 k=1 j=1 k=1 j=1

i=

(because y has a diagonal form). Since = 2 2 4,

I=1i=
m m h n
lu(xy)—px) p(y) = IZ 21 21 2 hu(dibi—dibh)| =
I=1k=1i=1j=1
(
Lemma 6. Suppose (%) holds and < is the trace on A given in Lemma 4. Then the
action @ is mixing with respect to t.

n,

-
&

[IA

Ms
Mz

f),{n X |d}— aif max |Bf| = Ay (x) Iyl

[
[

i
-

i i

i
-

K 15

Proof. Choose the systems of matrix units in the 4,’s such that the matrix
units of A, are sums of matrix units of 4,,, for all n. Let x, y€ 4., x=x%, y=y*.
We may assume x, YEA, . Since y is selfadjoint, there is a u,€¥ (A,,o) such that
(Ad uy)(y) is diagonal in the matrix units system of A, ; moreover, this will hold in

all A4,,n=n,.
From the Remark 4, we infer that for n=n, thereis a u,£%(A4,) such that

Diag ([(Ad 1) (L) = {tr (5]} = ()} forall I=1,..,c,
Hence 4, ((Ad u,)(x))=w(x,(x)). Since lim o(2,(x))=0 and t((Ad u)(x))=1(x),
by Remark 5, we see that
[ ((Ad u§ u,)(x)y)—t(X) 1 ()| =
= [c((Ad u,) (x)(Ad up) (1)) —7((Ad 1,) (x)) T((Ad u) (»))] =
= [(Ad ) (V)] 4,4, (Ad 1) (x)) = Yl @(2,(x)) =0 as n —~eco.

So we proved the mixing property for x, y€(A4.),. That it also holds for any
X, y€ A, can be proved using an obvious approximation argument.

Lemma 7. (a) With the notations of the Corollary,

126,16, =618 =¢ (k=2);
hence (2)=>(1)=(*).
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(b) If any of (1) or (2) holds, then the algebra A is simple; hence, by Theorem, part
(b), the unique normalized trace on A is faithful.

Proof. (a) Since m,='R,_,m,_,, we see that
L S R TSR e S k-1
(rrl_u}x oh )121' mEl = 121' Aitmfl =l = (T{HJH ; )121’ T

for any fixed j=1,...,¢;,. Hence

Y] mjin m,{/m;ix mi = rfnjn ri-‘j‘l/rril%x =8y,

The result can now be obtained using the following straightforward inequalities:
for any nonnegative nonzero vectors w=(wy, ..., w,), a=(a, ..., a,) we have

(1/2) min w;/max w; = x(w);
(miin a,-/m?x a) x(w) = x((ayw1, axwy, ..., a,w,)).

The first one of these inequalities gives (1/2)d,=&,, while the second one and (4)
give O, _15,=¢.

(b) Both (1) and (2) imply that there is an infinity of R,’s with no zero entries.
This implies that 4 is simple, by the same argument as that used in the proof of
Lemma 5.

This concludes the proof of the Theorem.
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Hyponormal operators on uniformly convex spaces

MUNEO CHO

Dedicated to Professor Jun Tomiyama on his 60th birthdy

1. Introduction. Let X be a complex Banach space. We denote by X* the dual
space of X and by B(X) the space of all bounded linear operators on X.
Let us set

m = {(x, NEXXX*: [ fl =f(x) = IIx]| =1}.

The spatial numerical range V(T) and the numerical range V(B(X), T) of T€B(X)
are defined by

V(T) = {/(Tx): (x,f)en}
V(B(X),T) = {F(T): FEB(X)* and [F| = F(I) =1},

and

respectively.

Definition 1. If V(T)cR, then T is called hermitian. An operator T¢B(X)
is called hypornormal if there are hermitian operators H and K such that T=H+iK
and the commutator C=i(HK— KH) is non-negative, that is

V(C) < R* = {acR: a = 0}.

An operator N is called normal if there are hermitian operators H and K such that
N=H+iK and HK=KH. A normal operator N on a Banach space X has the
following properties:

(1) co s (N)=V(N)=V(B(X), N).
(2) If Nx,—~0 for a bounded sequence {x,} in X, then Hx,—~0 and Kx,—O0.

Definition 2. Let X be Banach space. X will be said to be uniformly convex if
to each ¢=>0 there corresponds a §=0 such that the conditions [x|=|y]|=1 and

I+ I
=1-6.
2

Ix—yl=ze imply

Received August 11, 1988.
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X will be said to be uniformly c-convex if for every ¢=>0 thereisa 6=0 such
that {|y|<e whenever [[x]|=1 and |x+Ay||=1+46 for all complex numbers A
with |i=1.

X will be said to be strictly c-convex if y=0 whenever |[x]|=1 and [[x+2iy|=1
for all complex numbers A with [A[=1.

All uniformly convex spaces, for example £7(S, Z, u) and %,(5¢) for 1 <p<-co,
are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex.

Z(S, %, u) and the trace class %,() are the typical examples of uniformly
c-convex spaces. See [7] and [9].

For an operator T€B(X), the spectrum, the approximate point spectrum, the
point spectrum, the kernel, and the dual of T are denoted by o(T), 6,.(T), 6,(T),
Ker (T) and T*, respectively. )

For an operator T=H+iK we denote the operator H—iK by T.

The following are well-known for T¢B(X):

(1) coV(T)=V(B(X), T), where coE is the closed convex hull of E.

2) co O'(T)Cm, where co E and E are the convex hull and the closure of E,
respectively.

We now give a concrete example of a hyponormal operator on a uniformly c-
convex space. Let # be a Hilbert space. Then the trace class C, () is a two sided
ideal of B(A#).

Given 4, B€B(#) we define

84.8(T) = AT-TB (T<%,(#)).

Then 6,4 p is an operator on a uniformly c-convex space %, (). It is easy to see that if
A and B* are hyponormal then &, 5 is a hyponormal operator on %,(#) (see Theo-
rem 4.3 in [9]).

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4].

Theorem A. If H is hermitian and Hx=0 for x€X (|x|=1), then there exists
SEX*™ such that (x,f)en and H*f=0.

2. Hyponormal operators on uniformly convex spaces. The following theorem
was shown by K. MATTILA [9].

Theorem B. Let X be uniformly c-convex and let T=H+iK be a hyponormal
operator on X. If there exists a sequence {x,} of unit vectors in X such that

(T—(a+ib))x, — 0,

then (H—a)x,~0 and (K—b)x,—0.
We shall show the following (converse to the theorem above):
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Theorem 1. Let X be uniformly convex and let T=H+iK be a hyponormal
operator on X. (1) If a€a(H), then there exist some real number b and sequence {x,}
of unit vectors for which (H—a)x,—~0 and (K—b)x,—~0, so that in particular,
a-+ibca(T). (2) Similarly, if b’€c(K), then there exist some real number a’ and sequ-
ence {y,} of unit vectors for which (H—a’)y,—~0 and (K—b")y,—~0, so that in par-
ticular, a'+ib’€o(T).

We need the following
Theorem C ({9], Theorem 2.4). Let X be strictly c-convex and let C=0 be
hermitian. If f(Cx)=0 for some {x,f)¢n, then Cx=0.

Proof of Theorem 1. (1) Since H is hermitian, so it follows that a€e,(H).
Consider the extension space X° of X and the faithful representation B(X)—~B(X?):
T—T° in the sense of DE BARRA [1]. Then « is an eigenvalue of H® If x° is in
Ker (H°—a) such that [[x%|=1, then by Theorem A there exists f°¢X** such that
LeO)=|fl=1 and (H°-a)*f°=0.

Since T is hyponormal we can let that C=i(HK—KH)=0; then C*=0 and

FO(COX®) = (K™ (H—a)** £°)— if*(KO(H*— a) %) = 0,

where £ is the Gel'fand representation of x. Since the space X° is uniformly convex
({11, Theorem 4), by Theorem C, it follows that C°x®=0. Therefore, it is casy to
see that Ker (H°—aq) is invariant for K°. So there exist a sequence {x,} of unit vectors
and a real number b such that (H—a)x,~0 and (K—b)x,—O0.

(2) is the same. So the proof is complete.

Theorem 2. Let X be uniformly convex and let T=H+-iK be a hyponormal
operator on X. Then
coo(T) =V(T) = V(B(X),T).

Proof. It is well-known that co o(T)C¥V(T)cV(B(X), T). We assume that
Re o (T)c{acR: a=0}. Then, by Theorem 1, it follows that ¢(H)c {a€R: a=0}.
So it follows that V(B(X), H)c{a€R: a=0} and so ReV(B(X), T)c{acR:
a=0}. Since a7+ f is hyponormal for every «, B¢ C, it follows that co o(T)=
=V(B(X), T). So the proof is complete.

Theorem D ([9], Theorem 2.5). Let X be uniformly c-convex and let C=0 be
a hermitian operator on X. If there are sequences {x,}c X and {f,}CX™* such that
Ix M =Nfoll=1 for each n, f,(x,)~1 and f,(Cx,)—0, then Cx,—0.

Lemma 3. Let T=H+iK be a hyponormal operator. If TT and TT are not
invertible, then 0€0a(TT) and 0¢0o(TT), respectively, where 0 denotes ‘the boun-
dary of .
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Proof. We may only prove that ¢(TT) and 6(71 ) are included in the half-
plane {x€C: Rea=0}. Since V(H?®) and V(K? areincluded in {ax€C: Re az=0},
it follows that V(TT)=V(H*+K*+C)cV(H?»+V(K»)+V(C)c{acC: Re «=0},
where C=i(HK—KH)=0. Therefore, ¢(TT) is included in {x€C: Re a=0}.
Also, since o(TT)—{0}=0(TT)—{0}, it follows that ¢(TT)c{x€C: Re a=0}.

So the proof is complete.

Lemma 4. Let X be uniformly c-convex and let T=H+iK be a hyponormal
operator on X. If TT is not invertible, then TT is not invertible.

Proof. By Lemma 3, there exists a sequence {x,} of unit vectors in X such that
TTx,—~0. We let that C=i(HK—KH)=0. Then, for a sequence {f,} in X* such
that (x,, f,)€x, we get that f,(Cx,)--0. So, by Theorem D, Cx,—0. Therefore,
TTx,=(H2+K2—C)x,~0.

So the proof is complete.

Theorem 5. iet X and X* be uniformly c-convex and let T=H+iK be a hy-
ponormal operator on X. Then

o(T) ={z¢€C: z€o,.(T))}.

Proof. Since T—z is hyponormal for every z€C, it is sufficient to show that
0¢6(T) if and only if 0€¢,(T). Assume that O belongs to ¢(7). By Lemma 4, we
may assume that TT is not invertible.

Therefore, by Lemma 3, 0 belongs to do(7TT). It follows that there exists a
sequence {x,} of unit vectors in X such that 7TTx,—0. Since 7 is hyponormal, by
Theorem B it follows that T2x,—~0. By the spectral mapping theorem for approxi-
mate point spectrum, 0 belongs to ¢ (7).

Conversely, assume that 0 belongs to ¢,.(T). Then it follows that 0¢o(TT)=
=¢(T*T*). Similarly, O belongs to ¢,.(T*T*). Here, T* is hyponormal on a uni-
formly c-convex space X*. Therefore, 0 belongs to ¢(T*)=0(T).

So the proof is complete.

Theorem 6. Let X be strictly c-convex and let T=H+iK be a hyponormal
operator on X. Suppose that X is an extreme point of coV(T) such that 1€V (T). Let
Jf(TIx)=A for some (x,f)en. Then Tx=2Ax.

Proof. Each linear mapping u(z)=az+f (z€C), where «, fcC, o0,
maps V(T) onto ¥ (u(T)) and V(T) onto V(u(T)). In addition u(T) is hyponormal.
Hence, we can suppose that A€R and Rez=1 (z€V(T)). Since f(Hx)=A=
=max {a: «€ V(H)}, it follows by Theorem C that Hx=1x. If x’cKer (H—2)
such that | x’|=1, then there exists f’¢ X* such that (x’, f)eén and (H—A)*f'=0.
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It follows that
(Cx') = i# (K*(H—)*f")—if (K(H-2)x") =0
where C=i(HK— KH)=0.

By Theorem C, Cx’=0. Hence, it follows that (H—A)Kx'=0. Therefore, it
is easy to see that Ker (H—4) is invariant for K. Let K be the restriction of X to
Ker (H—AI). Let ycKer(H—2) with [y|=1 and gé¢(Ker (H—A))* such that
lgl=g(»)=1. Then

Ty = Ay+iKy = Ay+iK, ycKer (H—A)

g(Ty) = A+ig(Kyy).

Here, g(Ty)€V(T). Since 1 is an extreme point of co V(T) and Rez=1 (z€V(T)),
itfollowsthat V(K;))cR* or V(—K,)CR*. Let f;=f|Ker(H—A1). We have then
JilKix)=f(Kx)=0 and |fi[[=fi(x)=1. Since Ker (H—2) is strictly c-convex, it
follows that K;x=Kx=0, by Theorem C.

So the proof is complete.

and

3. Doubly commuting n-tuples of hyponormal operators

Definition 3. For commuting operators Ty and T, such that T;=H;+iK;
(H; and K; hermitian, j=1, 2), T; and T; are called doubly commuting if T,T,=T,T;.
If T; and T, are doubly commuting, then H; and K; commute with H; and K, for
J#L

Let T=(T;,...,T;,) be a commuting n-tuple of operators on X. Let o(T)
be the Taylor joint spectrum of T. We refer the reader to TAYLOR [11].

The spatial joint numerical range V(T) and the joint numerical range
V(B(X), T) of T are defined by

V(T) = {(f(T1%), ... (T, x))eC": (x, fen}
V(B(X),T) = {(F(Tl), cons F(T))EC*: FEB(X)* and |F| = F(I) = 1}.

The joint numerical radius v(T) and the joint spectral radius r(T) of T=(T, ..., T))
are defined by

and

v(T) = sup {{z|: zeV(T)}

F(T) = sup {lzI: z€a(T)}.

Theorem E (V. WRoBEL [14], Corollary 2.3). Let T=(T;, ..., T,) be a commut-
ing n-tuple of operators. Then

and

co 6(T) C V(T).

10
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Theorem 7. Let X be uniformly convex and let T=(T,, ..., T,) be a doubly
commuting n-tuple of hyponormal operators on X. Then

coa(T) =V (T) =V(B(X), T).

Proof. By Theorem E, it is clear that co o(T)CcV(T)CV(B(X), T). Assume
that coo(T)SGV(B(X), T). Suppose that «a=(0;, ..., %)EV(B(X), T)—co o(T).
Then there exists a linear functional @ on C" and a real number r such that

Re ®#(z) < r < Re ®(a) (z€co a(T)).

Let &(2)=1Iyz;+...+ 1,2, (z=(zy, ..., 2,)€C"), and choose a non-singular nXn
matrix M with (¢4, ..., #1,) as its first row. Then

Rez, <r<Refy (z=(z,...2)E0(MT)),

where (B, ..., B,)=Ma. Therefore, coo(Z; tle})gV(B(X), Z;it;T).  Since
Z;1,;T; is a hyponormal operator on a uniformly convex space, this yields a contra-
diction to Theorem 2.

So the proof is complete.

Corollary 8. Let X be uniformly convex and let T=(T, ..., T,) be a doubly
commuting n-tuple of hyponormal operators on X. Then r(T)=v(T).
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Restrictions of positive self-adjoint operators

ZOLTAN SEBESTYEN and JAN STOCHEL

A densely defined positive symmetric operator in a Hilbert space has a positive
self-adjoint extension within the same space. This theorem is well known for a long
time and forms a solid part of our knowledge of the theory of unbounded operators in
Hilbert space. Hence the restrictions of positive self-adjoint operators to a dense
linear subspace are completely characterized by the properties of symmetry and
positiveness. The same problem for an arbitrary linear subspace has so far remained
unsolved. . _

The main aim of this note is to give a necessary and sufficient condition for the
existence of a positive self-adjoint operator whose restriction to a linear subspace of a
Hilbert space is given. Our theorem contains, as a special case, the above mentioned
classical result as well as its generalisation given in 1970 by ANDO and NisHIO
{1, Theorem 1; Corollary 1] for closed initial operators. Our method of proof follows
the proof used in 1983 by the first named author [2, Theorem] in the bounded operator
case. Further properties of our extension presented here generalise the results of [3],
(41, 51

This work is a result of a visit in April 1988 of the second named author at the
E6tvds University, Budapest.

Let A be a (linear) operator defined on a linear subspace 2 of a (complex)
Hilbert space & with values in the space 5. Here 2 is not assumed to be closed or
dense, nor A is assumed to have a closed graph. Throughout the paper we assume
that A4 is symmetric and positive, that is, 4 has the following property:

(N 0 = (4x,x) for each x in Z.

Of course, (1) is necessary for the existence of a positive self-adjoint extension.
Starting with assumption (1) we define a semi inner product (., .) on @ by

{x, y):=(Ax,y) for x and y in 2.

Received October 19, 1988.
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A new Hilbert space appears by the usual construction: let Zy={x¢D: (4x, x)=
=0} be the kernel of (-, - ) and let Q be the quotient map of 2 with respect to Z,,
that is,

Ox =x+9, for all x in 9,

then Q(2) is a pre-Hilbert space with inner product
2 (Ox, Qy) == (dx,y) for x,y in 9.

Now # will denote the completion of Q(2).

Assume first for a moment that x belongs to %, if and only if Ax=0. Then the
formula
€)) V(Qx) = Ax for x in @

defines a linear map ¥ from Q(92) into & factoring A4 through Q. At the same time
we observe that ¥* extends Q. Indeed, the identity

C)) (V0Ox, y) = (Ax, ¥) = (Qx,Qy) for x and y in @

shows that V*y=Qy. If moreover we assure that Z(F*) is dense in £, in other
wordsthat V** exists, then (3) gives us that V' **V'* is a self-adjoint positive extension
of A. This is because the closure of ¥V is equal to V** and because ¥ * is a closed
operator with adjoint V/**.

Theorem 1. Let A be a positive linear operator defined on a linear subspace %
of a Hilbert space . The following two statements are equivalent:

(i) A4 has a positive self-adjoint extension A in #;

(i) @,:=[ye#: sup {|(dx, y)>: x€ D, (Ax,x)=1}<oo] is dense in K.

Proof. Assume first (i). Then the domain 2(4) of 4 is dense in 5. Hence the
inclusion 2(4)cD, proves (ii); indeed, to prove that an element y from 2(4)
belongs to Z, it is enough to see that for each x from &, Ax=Ax holds and

I(Axs y)lz = |(f‘fx’ y)l2 = (A'x’ x)(Zy, y) = (Ax’ x)(/fy, y)

Assume now that (i) holds true. The operator ¥ (see (3)) is then well defined.
Indeed, if x is a vector from 2 such that (Ax, x) =0 then one can show that (A4x, y)=0
holds true for each y from 2,. Since 9, is assumed to be dense in #, we obtain
Ax=0. Moreover the domain 2(V'*) of V* is just 2,. Hence V* is densely defined
by the assumption (ii). Here we arrive at the situation mentioned before, and V ***
is a positive self-adjoint extension of A. The proof of Theorem 1 is complete.

Corollary 1. Let A: @~ be a positive linear densely defined operator. Then
A has a positive self-adjoint extension in .
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Proof. Arguingsimilarly asin the proof of the implication (i)=>(ii) of Theorem 1,
we show that 99, . Thus the condition (ii) of Theorem 1 is satisfied. Hence (i) of
Theorem 1, which is our present assertion holds true.

Corollary 2. For the positive linear operator A: @ —~# the following state-
ments are equivalent:
(") A4 has a continuous positive extension A on 3 ;
(ii') @ .=
(iii’) there exists a constant m=0 such that

|4x|* = m(Ax, x) for each x from 9.

Proof. Since # =2 (A)c 2, holds true for each continuous positive extension
A of A, the implication (I")=(ii’) is immediate. Notice also that Z(V*)=2,.
So if (ii") holds true then V* is an everywhere defined closed operator, that is, V'*
is continuous indeed. Hence ¥ **V'* is a continuous positive linear extension of A
on 4. This proves (ii")=().

If (iii") holds, the operator ¥ defined by (3) is continuous. Consequently ¥V **p*
is a continuous positive extension of 4. Conversely, (i) implies (iii") with m:=| 4],

Corollary 3. Let A: @~ be a positive linear operator with a positive self-
adjoint extension A: G—~H. Then A:=V**V* has the following properties:

(iv) (A CS (A2,

) |AM2x|= |AY2x|* for each x in (4.

Proof. Starting with positive self-adjoint operator 4, we can construct the
subspace %, the quotient map @, the completion # and the operator ¥ factoring 4
through § in the same way as we have obtained 9,, 0, # and V, respectively, from
A. Then A=V**J* because both of these operators are self-adjoint. As in [4], we
define an isometry T from # into jf(zthe completion of Q(@)) by the following
identity: B

T(Ox) = Ox for all x from 2.

That T is an isometry follows from
(Ox, 0x) = (4x, x) = (Ax, x) = (Qx, Qx) for each x in 2.
Since, moreover,
(VT)(Qx) = V(TQx) = VOx = Ax = Ax =VQx
holds true for each x frbm 92, we conclude that

VTlg@ =V-
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Hence, using the fact that T* is a contraction, we have that
JAY2x|2 = [V*x|2 = |T*V*x||2 = |V *x]|* = | A/x|?
holds for each x in 2(AY)ND(A'/?). Now, since 4 extends 4, it follows that

IV=9,Cc D, =2(V*),
and therefore
DAV = @((17** 17*)1/2) =9V cCca(V*) = @((V**V*)‘/Z) = Q(AV?),
This completes the proof.

Corollary 4. Let A: D—~3# be a linear operator bounded below by m, that is,
such that
m|x||? = (4x, x) holds for all x in 2.

A admits a self-adjoint extension with the same bound if and only if the subspace
[yes#: sup {|(Ax—mx, Y)|2: x€D, (Ax, x) = 1+m|x[|?} <]
is dense in .

Proof. Since for each self-adjoint extension 4 of A with a bound m, A—mI
is a positive self-adjoint extension of the positive (symmetric) operator 4A—ml, the
conclusion of Corollary 4 follows from Theorem 1.

Corollary 5. Any densely defined semibounded linear operator in Hilbert space
has a self-adjoint extension with the same bound.

Proof. Corollary 5 follows from Corollary 4 via arguments used in the proof
of Corollary 1.

An extension of [5, Theorem] is the following

Theorem 2. Let A: 9 —~# be a positive linear operator with a positive self-
adjoint extension A. Let B and C be continuous linear operators on # leaving @
invariant and such that

(vi) ABx = C*Ax, ACx = B*Ax for all x in 9.
Then, with A=V**V* in Theorem 1, we have
(vii)) ABx = C*Ax, ACx = B*Ax Jor all x in 9(A).

Proof. We define, as in the proof of [5], continuous linear operators B and €
on Q(2) as follows

&) B(0Ox) = Q(Bx), C(0x) = Q(Cx) for each x in 9.



Restrictions of positive self-adjoint operators 153

To show that B and € are well-defined and continuous we find estimates for the
norm of B(Qx) and €(Qx) step by step. First we have for any x in 2 that

(B(Qx), B(Qx)) = (ABx, Bx) = (C*Ax, Bx) = (Ax, CBx) = {Qx, Q(CBx)) =

= (Qx, Ox)'"*{Q(CBx), Q(CBx))'/*.

Repeating this argument we obtain

(B(Qx), B(Qx)) = (Qx, Qx)V*++1*(Q(CB)" " x, Q(CBy" " x)!/** =

= (Qx, Ox)' ¥ (Ax, (CB)" x)V*" =
= (Qx, Ox)' M= [ Ax |V [(CBY™ ||V [ X2,

Passing with n to infinity we get

(6) (B(Qx), B(Qx)) = r(CB){Qx, Ox) for each x from 92,

where r(CB)(=|CBJ) stands for the spectral radius of CB. (6) tells us that B
is a well-defined continuous linear operator. B has norm not exceeding r(CB)Y2.
A similar argument applies to show that € is also continuous and its norm does not
exceed the same value r(BC)Y2=r(CB)'2. Thus both B and C have unique conti-
nuous extensions on # which we also denote by B and C, respectively, as this causes
no confusion.

Now we see that B and C*, hence also € and B*, coincide since on Q(2) they
agree:

<Qx’ é*(Qy)> = <é(Qx)5 Qy> = <Q(C-x)’ Qy> = (ACx, y) = (Axs By) =
= (Qx, B(Qy))

holds true for each x and y in 9. On the other hand ¥ interwines B and C* (respect-
ively € and B*). Indeed, if x belongs to & then

VB(Qx) = VQ(Bx) = A(Bx) = C*4Ax = C*V(Qx),
VC(Qx) = VQ(Cx) = A(Cx) = B*4Ax = B*V(Qx).
Hence C*VcVB and B*Vc¥VC. Since C* is bounded, we get
Cv* = B*V* c (VB)* < (C*V)* =V*C.
Similar argument shows that BV*cV*B. Thus
(viii) V*By = BV*y, V*Cy=CV*y for every y from 9,.
Returning to the proof of (vii) we see that for each x€2(A) and for each
€9, the following identities hold true (using (viii))
W*Bx,V*y) = (BV*x,V*p) = V*x, B*V*y) = V*x, CV* y) =
={V*x, V*(Cy)) = (C*V**V*x,y) = (C*Ax, y).
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As a-consequence we have that, for each x from 2(A),V *Bx belongs to 2 (V' **) and
at the same time

C*Ax = V**V*Bx = ABx.

The other equality of (vii) can be shown similarly. This completes the proof.
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On the local spectral radius of a nonnegative element with
respect to an irreducible operator

K.-H. FORSTER and B. NAGY

1. Introduction

The local spectral radius of a nonnegative element of a partially ordered Banach
space with respect to a general positive linear continuous operator has been studied
in [2]. The main results there gave, among others, sufficient conditions that the local
spectral radius be a singularity of the local resolvent function, characterized the
distinguished eigenvalues outside the essential spectrum, and sought positive solutions
u of the equation (A—T)u=x for positive 2 and positive x.

If T'is a reducible positive operator, then we may, in general, clearly find nonneg-
ative elements x of the space E such that the local spectral radius r(x) of x with
respect to T is strictly smaller than the (global) spectral radius r(T") of T. The situation
is more delicate, if the operator T is irreducible. The first main result of this paper,
‘Theorem 7, lists four groups of fairly natural conditions, each of which is sufficient
for any nonzero x in the positive cone E . to ensure that ry(x)=r(T), assuming T
is irreducible. The preceding Propositions 1 through 5 and Remark 6 formulate
some more general conditions ensuring r;(x)=r(T) even if T is reducible, whereas
Example 8 shows that the irreducibility of T alone is not sufficient.

The second main result, Theorem 12, yields three groups of conditions, each of
which guarantees that the equation (r(T)— T)u=x has no solution u in all of E,
assuming that 7 is irreducible and x€ E "\ {0}. The preliminary results contain also
here more general conditions. Several examples illustrate the irredundancy of some
conditions, or that some other group of conditions is not sufficient.

In the third part of the results we show that if T is irreducible and r(T)=0 is
a pole of its resolvent, then some conditions ensure that the equation (r(T)—T)u=

This research of the second-named author was supported by Hungarian National Founda-
tion for Scientific Research grant BME 5—134,
Received July 4, 1988.
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=(1—P)x, where P denotes the spectral projection corresponding to the set {r(7)},
has a positive solution « for all xin E, . Itis also shown that some extra conditions
are really needed to ensure the existence of a positive solution w. Further, we show
that the algebraic eigenspace to the spectral radius of a compact, nonnegative oper-
ator need not have a basis of nonnegative elements, and discuss some connections to
works of U. G. RotHBLUM [8], H. D. VICTORY, JR. [11] and J. KOLSCHE [5].

2. Preliminaries and notations

Let E be a real Banach space and let T be a linear continuous operator from E
into E. By N(T) and R(T) we denote the kernel and the range of T, respectively. As
usual ([9], p. 261]), we sometimes identify T with its complex extension T. In this
spirit, e.g., for x in E we define

rr(x) = lim sup | 7" x|"/",

Qr(x) = {2€C|r(x) < 141}
and

xp: Qr(x) — E with x;(4) = k;(') A k-1TE

We call r;(x) the local spectral radius of the element x with respect to the operator 7,
xr the local resolvent function of the element x with respect to the operator T in
its main component Q;(x). Of course (A—T)xy(A)=x for all A€ Q;(x). We recall
some results from [2] which will be used several times in this paper.

Unless explicitely stated otherwise, in the following E will always denote a parti-
ally ordered real Banach space with positive cone £ , and T is a nonnegative oper-
ator in E. If x0 is a nonnegative element in E, then

(D) rr(x) is a singularity of x¢ if E, is normal or there is a pole p of xr with
|u|=rr(x); see [2, Theorems 6 and 10].

(1) If E, is normal and there exist a u€E, and a p=0 such that (u—T)u=x,
then rr(x)=u; see [2, Theorem 6].

A1) Ifrp(x) is a pole of x1, then there exist a u€ k. anda u=0 with (u—T)u=
=x If and only if rr(x)<p; see [2, Theorem 10].

The proof for the last two assertions depends essentially on the following in-
equality: If u=0 and p=0 such that (u—T)u=x then

for all n=0, 1, 2, ... and all A=max {u,rr(x)}. This inequality was proved in [2,
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Proposition 5] with the help of the iterated local resolvent; we give here a very
L o= P (k+”) ey L

for all #=0,1,2,... and all A1=>ry(z). From (u— T)u—x it follows that rp(x)=
=ry(w)=max {y, ry(x)} and

ur(d) = —%_—u— for A = max {g, rr(x)}.

simple proof. From u=0 it follows that (=

n

Differentiating this equality » times and multiplying by we get for

A=max {u, rr(x)}

_cy o, 1Y @ u
= Tu(T)(’U % J! ()\,——:l)"—'“-l (A_l‘)n-H =
(_ )n x(n) (/1) u

nl A-p (fl—u)"+1

==

since each summand in the sum is nonnegative, because (—1)Yx¥(2)=0 if x=0
and A=>rp(x). The last inequality is equivalent to the wanted inequality.

3. Results and proofs

Proposition 1. Let the spectral radius r(T) be a pole of the resolvent R(-, T)

of T, and let x be a quasi-interior point in the sense of [9, p. 241) of the positive cone E .
Then rp(x)=r(T).

~ Proof. Let p denote the order of the pole r=r(T), and let 2 (A—r)Q,

=-p
be the Laurent expansion of R(4, T) around r. It is well-known that 0_,=0. As-

sume that rp(x)<r(T). Then Q_,x=0 and, since x is quasi-interior, we obtain that
Q-,=0, a contradiction.

A slightly stronger condition on the spectral radius than in the next proposition
was used in [10, Lemma 4] for similar purposes.

Proposition 2. Let E be a Banach lattice. Let r(T) be a limit point of the set
]— oo, r(TY[Ne(T), and let x be a quasi-interior point of E.. Then rp(x)=r(T).

Proof. Let 2y=rp(x) and z=xr(),). Let E, denote the principal ideal gener-
ated by z. It is well-known that E_ with the cone E,=FE,MNE, is an (AM)-space
with respect to the norm | y|,=inf {a€R,: |y|=az}.

The restriction Ty of T to E, satisfies

ToZ = TxT()»o) = loxT(Ao)—x = lo Z.
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Hence the z-norm of T, satisfies [|Tif,=/,, and for the corresponding spectral
radius we have r(Tp)=/l,.
Assume rp(x)<r(T), and let rp(x)<Ae<r(T). Then z=xr(l)=
=5 25" 'T"x is also a quasi-interior point of E,, hence the ideal E, above is
=0

n

dense in the topology of E. By assumption, there exists p€g(T) such that lo<pu<
<r(T). The operator T, above is celarly positive with respect to the cone F, and
r(Ty)=4,, hence the resolvent (u—T;)~%, acting in E,, is also positive with respect
to E,. Since E is a Banach lattice and E. is dense in E, the closure of E, in the topology
of Eis E .. Hence the resolvent (u— 7") ™1, acting in E, is also positive with respect to
E . However, this contradicts u<r(T) and [9, App. 2.3, p. 263].

The next result is contained in [7, Theorem 9.1], and can be stated in our ter-
minology as follows.

Proposition 3. If x is an interior point of the normal cone E ., then ry(x)=
=r(T).

In fact, a bit more is proved in [7]: under the given conditions we have r(T)=
=lim |T"x|" (which is clearly equal to rr(x)).

The conditions in the next two propositions were used in [6, Theorem 16.2]
for other purposes.

Proposition 4. Let the cone E_, be normal and generating, and the E , -positive
operator T be bounded from above by the element vin E . If x is a quasi-interior point
of E;, then ry(x)=r(T).

Proof. Let A>r (x). Then x;(4) is also a quasi-interior point of E , further
rr(xp(2))=rr(x). We have (A—T)x;(})=x=0, therefore Tx, (})=2Ax;(4). By
assumption and [6, Theorem 16.2], r(T)=2 for any A=r (x). Hence r(T)=r,(x),
whereas the converse inequality always holds.

Proposition 5. Let the cone E, be normal and generating, x¢ E \{0}, and
the E, -positive operator T be bounded from above by the element x. Then rp(x)=
=r(T).

Proof. Let ucE,. There is a positive number f=pf(u) such that Tu=fix.
Hence T"u=pT"'x for every n=1,2,.... Since E, is normal, there is y€R,
such that || T"ul|=yB{T" || for all n. Therefore ry(w)=r;(x) for every uin E, .
Since E, is generating, we have by [2, Lemma 4]

r(T) = max {rr(u): u€EL)} = rp(x) = r(T).

Remark 6. Assume that T is a positive continuous linear operator acting in
the partially ordered Banach space E, the continuous operator A, acting in E, com-
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mutes with T and the real number 4 satisfies [A|>r;(x) for some x in E (4 and x
need not be nonnegative). Then rp(Ax)=ry(x) and rr(xp(1))=rr(x). Therefore
the assertions of Propositions 1 through 5 remain valid (i.e. rp(x)=r(T)) if instead
of x the element 4x or the element Ax;(A) satisfies (together with 7 and E) the
respective assumptions. The proofs are slight modifications of those given above,
thus they will be omitted.

Note further that if 7T is irreducible, A=r(T) and x€E,\ {0}, then R(4, T)
commutes with T"and TR(Z, T)x is a quasi-interior pointin E, . Hence the follow-
ing theorem is a simple corollary to Propositions 1 through 4 and the remarks.
above (note that the condition in Proposition 5 is of different, i.e. of more individual,
nature).

Theorem 7. Assume that the irreducible positive continuous linear operator T
acting in the partially ordered Banach space E and E satisfy one of the following condi-
tions:

(1) #(T) is a pole of the resolvent R(-, T),

(1) r(T) is a limit point of the set 1— oo, r(T)[No(T), and E is a Banach lattice,

(iii) 7he cone E . is normal and solid (i.e. has a nonvoid interior),

(iv) Tis bounded from above by an element v in the normal and generating cone E , .
Then for any x in E .\ {0} we have ri(x)=r(T).

The following example will show that the irreducibility of T alone does not.
guarantee that rr(x)=r(T) for every x in E.\ {0}

Example 8. Let E be the real sequence space I (1=p-<<) or ¢, with the usual
cone E,={x=(x)2,€E: x;=0 for i=1,2,...}. Then x is quasi-interior in E
if and only if every x;=>0. We shall denote this by x>>0. Let S be the left shift in E
defined by (Sx);=x;;, (i=1,2,...). Let fEE’ actas fx=x,, and let a=(a)¢E,
a>=0. Define T: E-~F by T=f®a+S§, ie.

(Tx); = a;x1+x0 ((=1,2,..).

T is then a positive irreducible operator. Indeed, for each x in E,\ {0} take
k=min {i: x;,>0}. Then (T'x);=x;;; ((=j<k), (T*x);=a;x,+x;1x=a;x,>0
for every i=1,2,.... Thus T*x>0, hence T is irreducible.

It is well known that the Fredholm domain of S is the complement of the unit
circle. Since 7 is a one-dimensional perturbation of S, their essential spectra are
identical (cf. [4, Theorem IV. 5.35]). Hence r(T)z=1.

1
Now let 0=g< 7 and consider the particular case of the operator T’ when
a=(¢)z,. Forany x€E and A€R the equality Tx=JAx is equivalent to

Gx+xi=Ax; (i=1,2,.).
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This holds for 2q if and only if (x;)€E, where

i=2q ¢ ) -
T4 x, (1=2,3,..).

i—gq +

i—-1 . y X
X; = ()'l_l_kg; qk)&x—l—k)xl — ()'1—1

Let A satisfy 2g=A=1, and let x,>0. Then x=(x)€E, and x>0 is an
eigenvector corresponding to the eigenvalue A<1=r(T). Hence ry(x)=A<r(T)
as stated.

Proposition 9. If the positive cone E, the element x in E, and the positive
operator T satisfy one of the conditions in Propositions 1, 3, 4 or S, further in the cases
of Propositions 4 or 5 we have, in addition, r(T)=0, then the equation (r(T)—T)u=x
has no solution u in E.

Proof. (P) will denote that we are considering the case when the conditions of
Proposition P (P=1,3,4,5) are satisfied.

(1) Assume that there is a solution u in E, and that R(A, T)= f’ GA—r)o,
k=-p

is the Laurent expansion of the resolvent around the pole r=r(T) of exact order
p=l. Then Q_,=0, Q_,#0, and Q_,=(T—-r)7'Q_, for k=1,2,...,p.
By assumption, Q_,x=(r—T)Q_,u=—Q_,_,u=0. Since x is quasi-interior, we
obtain Q_,=0, a contradiction.

(3) Since the cone E is normal and solid, a result of M. Krein and M. Rutman
(cf. [9, p. 267]) shows that r(T) is an eigenvalue of the dual T” with corresponding
eigenvector f#0 in the dual cone E’, . Should a solution u€E exist, then we should
have (denoting the dual pairing by (-, -)) (f, x)={(r(T)—T")f, u)=0, and this
contradicts the fact that f€E’ , f##0, and x is an interior point in £ .

(4) Since r(T)=0, our assumptions imply that r(7) is an eigenvalue of the
dual T’ with eigenvector fin the dual cone (cf. {7, Proof of Theorem 5.5]). The rest
as in case (3).

(5) Let E, denote the linear manifold of x-measurable elements y of E (cf. [6,
p- 34, [7, p. 80]), i.e. those satisfying —ax=y=ax for some acR,. If we set
lyll,=inf {a€ R, : —ax=y=ax} then, since E, is a normal cone, E, is a Banach
space with respect to the norm || - [|,, and E;NE, is a closed solid normal cone in
E,. Now E, is generating and T is bounded from above by x, therefore R(T)CE,
and E, is invariant under 7. Assume that there is a solution u, then we obtain from
r(T)u=Tu+x and r(T)=0 that u€E,. It is fairly straightforward to show (cf.
[5, p. 80]) that thespectral radii of the operator T in E and in E, are identical, so we
come to the situation of case (3) in the space E,, and we reach a contradiction.

Corollary 10. If one of the conditions in Proposition 9 is fulfilled, /€R, and
the equation (A—T)u=x has a solution u=0, then i=r(T).
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Proof. By the preceding results, we have ry(x)=r(7), and for A=r;(x)
there is no solution « in all of E. On the other hand, [2, Theorems 6 and 10] show
that there is no solution w€E, under the given conditions if O=A<r;(x). It
is clear that there is no solution u in E; for A€ R\ R, . Hence Ai=r(T).

Remark 11. If the operator 4 commutes with 7, and the element x= A4z satis-
fies (together with T and E) the conditions of Proposition 9, then the equation
(r(T)—T)u=z has no solution u in all of E. Indeed, assuming the contrary, the
element Au would satisfy (r(T)—T)Au=x, which is impossible. The case 4=—
identity operator is of interest in the next theorem.

Theorem 12. Let the positive operator T in E be irreducible, satisfy together
with E one of the conditions (i), (iii) or (iv) of Theorem 7, in the last case let r(T)=0,
andlet z€ E,U(—E,) and z#0. Then the equation (r(T)—T)u=z has no solution
u in all of E.

Proof. Let A>r(T) and A=TR(4, T). Then x=Az=TR(A, T)z if z€E \_
\{0} and x=—Az=—TR(, T)z if z€(—E,)\ {0} is a quasi-interior element of
the cone E. , since T is irreducible. Hence x satisfies conditions (1), (3), or (4) in
(see the proof!) Proposition 9, and Remark 11 shows that there is no solution u in
E to the equation (r(T)—T)u=z.

Remark 13. Much stronger conditions on T and E are imposed in [1; Theorem
1.13] to obtain the assertion of Theorem 12.

It is clear that the assertions of Proposition 9 or Theorem 12 are not valid with-
out extra conditions such as (1), (3), (4) or (5) and (i), (iii) or (iv), respectively. This is
shown by Example 8, where T is irreducible and there are quasi-interior elements x
in E, such that r;(x)<r(T). Then the element u=x;(r(T)) belongs to E, by
[2; Lemma 4], and satisfies (r(T)—T)u=x.

t

If ¥ is the Volterra operator defined by (Vx)(¢)= f x(s)ds for xeL2(0,1),

1]
then ¥V clearly satisfies condition (4) of Proposition 9 except that we have r(¥)=0.
The elements u(z)=—1 and x(¢f)=t satisfy here (r(V)—V¥)u=x, and x is quasi-
interior point in the (usual) cone E, . Hence the requirement of the positivity of the
spectral radius in Proposition 9 is not redundant.

The following example shows that the conditions in Proposition 2 are not suffi-
cient to ensure that (r(T)—T)u=x has no solution u in E for any x in E .

Example 14. Let X= Lj [2n,2n+1]cR and let E=Cy(X) with the usual

n=0
positive cone E. . Let T be the operator of multiplication by f(¢2)=(1+1¢)"% in E.
Then r(T)=1, and [(1-D)u)@)=1+1t)"u(@). If x(@O=(0+t)"le* then x is

1
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quasi-interior in E,, and the studied equation has the solution u(r)=e~". The
element u is quasi-interior in E,, and the spectrum of the operator 7, i.e. the set
f(X)cR, clearly satisfies the condition in Proposition 2.

The next example will show that the series for the main component of the local
resolvent function can converge at r=rp(x) for an E, -positive operator T and a

quasi-interior point x in £, . Its sum u= 2 r™"1T"x is then a positive solution of
the equation (r—T)u=x. n=0

Example 15. Let E=c¢, with the usual positive cone E,, let T be the left
shift in E, and let x=(1/n"):,. Then [|T*x||=(k+1)~2, hence ry(x)=1. Further,
the sum u= 2 T"x exists in E and its j-th component u; is Zw' n~% The solution

n=0 n=j

u of (r—T)u=x is a quasi-interior point of E .

Let T=0 beirreducible, and let r=r(T)=0 be a pole of the resolvent R(-, T).
Then r is a pole of order one ([9], App. 3.2]). Therefore the residuum of R(-, T) atr
is the projection P of E on N(r—T) along R(r— T), hence the equation (r—T)v=
=(1—P)x has solutions v for all x¢€E.

Proposition 16. Let T=0 be irreducible, let r=r(T)=0 be a pole of its
resolvent and let P be the residuum of R(-, T) at r. If E, contains interior points, or
else T is finite dimensional, then the equation (r— T)u=(1—P)x has solutions u=0
Jor all X€E in the first case, and for all x=0 in the second one.

Proof. N(r—T) is one-dimensional and generated by a quasi-interior element
uy of E, ([9, App. 3.2]). Let v be a solution of (r—T)v=(1—P)x, then (r—T)-
-(v+Auy)=(1—P)x for all 1. If E_ has interior elements, then u, is such. In this
case x can be an arbitrary element of E, and we can choose 4 such that v+Au, is
an interior point of E. .

Consider now the second case, and let x=0. There exists a u with Px=puu,.
Then we have

i
v+ Ay = 7[x+Tv+().r—,u) u,] for all A.

Now we prove that there exists a A such that Tv-+(Ar—p)uy=0. Then v+ Auy=0,
since x=0. Let R,= |J {2€ R(T): —kuy=z=kuy}. Then R, is a linear subspace
kEN

which is dense in R(T); this follows from rue=Tu,€ R(T) and the fact that E,=

= k%JN {y€E: —kuy=y=kuo} is T-invariant, and is dense in E, since u, is a quasi-

interior element of E, . Since T is finite dimensional (i.e. dim R(T)< ), we have
Ry=R(T) and we can find a 2 such that Tv+(ir—p)u.=0.



Local spectral radius 163

The question naturally arises whether the conditions in Proposition 16-are re-
dundant. We now give an example of a compact, irreducible operator T such that
r=r(T)=0, and the equation (r—T)u=(1—P)x has solutions u=0 for some
x=0, x#0, and has no solution u=0 for other x=0, x#0. A consequence of
this example will be discussed at the end of this paper.

Example 17. Let E=¢, or E=[®? (1=p<o) with the cone E, of nonne-
gative sequences in E, a=(a,)€E’ (here we identify E” with the corresponding se-
quence space), and b=(b;)€c,. We consider the operator

T=a®e +SM,,

where ¢* is the sequence with 1 in the kth position and 0 in the others, S is the right
shift and M, is the operator of multip]ication by b. We have for x=(x;))€E
o, =12 =
b, 1Xi-y if =1
It is well known that M, is compact and that the weighted shift SM, is compact and
quasinilpotent [3, Problem 80 for E=1%. Therefore 7, being a one-dimensional
perturbation of SM,, is compact.

C]ear]y T is non- negative if and only if a=0 and b=0. T is irreducible if
a>0 and b>>p ie. a>0 and b;=0 for all i; this follows from

(Tx), = Z'ajxj, T"x), =b,_1-...-by(Tx), for n=2.
=1

Let 270 be an eigenvalue of T and v=(v;) be a corresponding eigenvector 0;
this is equivalent to

alﬂ._l+az.b1).—2+...+a,~bi_1- ces * bl).'—i'*‘... = 1

and ‘
?}i = bi_l'...'bll—l+]:l/'1 if ié 1,
here and in what follows we put b;_;-...-by=1 if i=1. Since b€¢,, we have

(bi_y+...- b A7 p)EE for all 170 and all v;, and the power series

S = Zab, I N

converges for all u. Therefore A0 is an eigenvalue of T if and only if f(1/2)=1.

Let us assume that g=0 and b>0. Then f(1/2) is strictly decreasing for
A=0, }11_{13 SfQ[)=co and }x_p; Sf(1/2)=0. Thus there exists exactly one r>0 with
J(1/r)=1. This r is the spectral radius of T, by the Krein—Rutman Theorem, and is a
pole of multiplicity one of R(-, T), since T is irreducible and compact (19, App.

11*

-
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3.2]). Let P be, as in Proposition 16, the residuum of R(-,T) at r. Then P is a

projection on the subspace spanned by #=(b;_,-...-byr 'tHz,. If x=(x),
u=w;) and (r—T)u=(1—P)x, then for i=2
u;=b;_y .. b Py —(—1)b;_y - ... by r b+
4r x4 b FTEX e by by X,

where b, is uniquely determined by Px=»B5y5. If x,>0, but x,=0 for i»2, then
x=0, x#0. Therefore Bo>0, and

Uy =bi_q ... bor i rbyuy+rx,—(i—1) by b,) if i=2.

Clearly, it is not possible to choose , in such a way that.«; is non-negative for all /.
Therefore the equation (r—T)u=(1— P)e? has no solution u=0. Nearly the same
argument proves that (r—7T)u=(1—P)x has no solution =0 if x is a “finite
sequence”, x=0, x#0.

On the other hand, if we take x such that x;=0 and

x;=bi_y-... by Fix, if i=1
where x,=>0, then x=0, x#0, and ' ,
w; = b,y oo by [Py (=D (x,— b)) if iz 1.
We show tﬁat Xo>b, in this case. T here qxist solutions u of (r—T)u=(1—P)x; for
the first coordinate in this equation we get using f(1/r)=1 and u; as above,

- g; a;ibi_y-...- b1"—i(i—1)(xo—50) = x1—i70 = —Bo,

and this implies by<x,. Therefore, for these special x€E we have nonnegative
solutions u of the equation (r— T)u=(1—P)x, if we choose a solution with #,;=0.

This example can also be used to show that the algebraic (or generalized) eigen-
space to the spectral radius of a compact, non-negative operator need not have a basis
of non-negative elements.

Example 18. Let E=I/?XI? (1=p<e) and’

T (T 1 Sl)
where 7; is the operator of the last example and S, is a compact, non-negative, non-

zero operator in /7. E is an order continuous Banach lattice, T is compact and non-

negative, and r=r(T)=r(T})=0 is a pole of order 2 of R(-, T). Let x=(x1]EE,
then (r—7)%x=0 is equivalent to ) e

(%) r=T)*x; = [(r—=T) S, +S(r—TYlx, and (r—Ty)x, = 0.
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Since 7; is irreducible and compact, r=r(T;) is a pole of order 1 of R(-, T;), there-
fore (%) is equivalent to (r— T x,=0, (r— T))?x, =(r—T}) S1 X, and the last equa-
tion has a solution £,. If x,70, then x, generates N(r—T;), so we have (r—T;)%, =
=8, x,—Axy=(1~P,) S, x, for some i, where P, is the residuum of R(.,T;) at r.
Therefore (r—7T)2x=0 is equivalent to

(r—T)x, =0 and (r—TyY)x = (1 —P)S;x,.

For each x=0 in N((r—7)?) with (r—T)x0 we have to and may choose x,=0,
x,#0, in N(r—T,), therefore x, is a quasi-interior element in /2. Since §,=0,
S;#0, we have S;x,=0, S;x,#0. Now we have to look for a solution x;=0 of
(r—T)x;=(—P,)S;x,. But such a solution does not exist in general, since 7; is
the operator of the last example and we can obtain each non-negative, non-zero
element in /P as S, x, by an appropriate choice of S, (as a one dimensional non-nega-
tive operator).

As a final remark we recall that U. G. RotasLuM [8, Theorem 3.1] has shown
that for a non-negative matrix the algebraic eigenspace to its spectral radius has a
basis of non-negative elements. Generalizing a result of H. D. VicToRy, IR. {11,
Theorem 1} on integral operators in LP-spaces, J. KOLSCHE [5, Satz IV. 2.2] has
proved: Given ¢=>0 arbitrarily, for a non-negative, eventually compact operator T’
in an order continuous Banach lattice there exists a basis for the algebraic eigenspace
of T to r(T) such that every vector in this basis has norm 1 but its negative part
has norm smaller than or equal to &. The last example shows that, in general, ¢ has to
be positive in this assertion.
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Der Bidual von F-Banachverbandsalgebren

EGON SCHEFFOLD

In der Arbeit [5] haten C. B. Husmans und B. DE PAGTER das Arens-Produkt
im Ordnungsbidual von Archimedischen f-Algebren untersucht. Die Frage, ob bei
den spezielleren F-Banachverbandsalgebren der Bidual, versehen mit dem Arens-
Produkt, stets wieder eine F-Banachverbandsalgebra ist, bleibt dabei offen.

In der vorliegenden Arbeit werden wir diese Frage bejahen und zeigen, daf
der Bidual als direkte Summe seines Annullatorbandes und dessen orthogonalen
Komplements dargestellt werden kann, wobel letzteres algebraisch- und verbands-
isomorph zu einem Vektorverbandsideal in der Banachverbandsalgebra C,(.#)”
ist. Unter anderem ergibt sich, daB die Banachverbandsalgebren Cy(X) die einzigen
F-Banachverbandsalgebren sind, deren Bidual ein algebraisches Einselement mit
Norm 1 besitzt.

Vorbemerkungen

Wir benutzen in dieser Arbeit die auf dem Gebiet der Banachverbande iibliche
Terminologie und Bezeichnungsweise. Der leichteren Lesbarkeit wegen wollen wir
kurz ein paar fiir uns wichtige Begriffe in Erinnerung rufen.

Eine reelle Banachverbandsalgebra A4 ist ein reeller Banachverband A, welcher
gleichzeitig eine reelle (lineare assoziative) Algebra mit den beiden folgenden Eigen-
schaften ist: xy=0 und |xy|=[ x|yl fir alle positiven Elemente x und y von A.

Eine reelle Banachverbandsalgebra A ist eine F- bzw. FF-Banachverbands-
algebra, falls sie die folgende Eigenschaft F bzw. FF besitzt:

F: inf (a, b) =0 impliziert inf (ca, b)=0=inf (ac, b) fir a,b,c€ A und c=0;

FF: inf (a, b)=0 impliziert a-b=0 fir a, bcA.

Wie man leicht sieht, ist jede F-Banachverbandsalgebra auch eine FF-Banach-
verbandsalgebra und somit nach [11, § 2] kommutativ.

Eingegangen am 16. August 1988.
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Fiir einen lokalkompakten Hausdorffraum X bezeichne C,(X) die reelle Banach-
verbandsalgebra aller stetigen reellen Funktionen f auf X mit der Eigenschaft, daB
fiir jedes e>0 die Menge {x€X:|f(x)|=¢} kompakt ist, versehen mit der Supre-
mumsnorm und der kanonischen punktweisen Multiplikation und Ordnung. Falis X
ein kompakter Hausdorffraum ist, stimmt die Banachverbandsalgebra C,(K) natiir-
lich mit der Banachverbandsalgebra C(K) liberein. Alle Banachverbandsalgebren
Co(X) sind F-Banachverbandsalgebren.

Die Banachalgebra der beschrankten Endomorphismen eines Banachverbandes
E bezeichnen wir mit % (E) und den Spektralradius eines Elements a einer reellen
normierten Algebra mit r(a). Bekanntlich gilt r(a)= lim (la"HM".

Ist E ein Banachverband und u ein positives Element von E, so bedeutet E,
das von u im verbandstheoretischen Sinn erzeugte Hauptideal. Es 148t sich bekannt-
lich mit einem Funktionenverband C(K) (K kompakter Hausdorffraum) identifizi-
eren, und diese Identifizierung werden wir die kanonische Identifizierung eines Haupt-
ideals nennen. Dem Element u entspreche dabei stets die Einsfunktion ey auf K.

Sei nun A eine F-Banachverbandsalgebra, ¢ ein Element des positiven Kegels 4,
und 7, die linksregulére Darstellung von ¢ auf 4, d.h. T,x=cx fiir alle x€ A. Nach
[6,1.1] gilt dann T.x=[T.|x fiiralle x€A4,, wobei |T.| die Operatornorm von
T, in der Banachalgebra £ (A4) bezeichnet. Fiir a€ A gehéren also die linksreguléren
Darstellungen 7, zum Zentrum Z(A4) des zugrunde liegenden Banachverbandes 4,

wobei Z(A4) aus allen Operatoren T¢.%(4) besteht mit der Eigenschaft: Es gibt
~ eine von T abhingige Konstante y€ R, mit

[Tx}{ = ylx| fir alle x€A.

Mit Hilfe einer kleinen zusitzlichen Uberlegung erhilt man aus dem Beweis von
[6,1.1] sofort das folgende Resultat iiber positive Orthomorphismen: Es sei E
ein Banachverband und T ein positiver Orthomorphismus auf E, d.h. T besitzt die

Eigenschaft:
inf(x, y) =0 impliziert inf(Tx,y) =0.

Dann gilt Tx=r(T)x fir alle x¢E,.

Aus der Definition einer F-Banachverbandsalgebra folgt unmittelbar, daB3 die
linksreguldren Darstellungen positiver Elemente positive Orthomorphismen sind.
Mit der vorhergehenden Aussage iiber Orthomorphismen erhalten wir die im fol-
genden wichtige Ungleichung:

Satz 0.1. Es sei A eine F-Banachverbandsalgebra. Dann gilt ab=r{(a)b fiir alle
positiven Elemente a und b.

Aus Satz 0.1 folgt sofort, dal in einer F-Banachverbandsalgebra jedes Vektor-
verbandsideal auch ein Ringideal ist. :
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Eine Subalgebra einer Banachverbandsalgebra C,(X), welche gleichzeitig éuch
ein Vektorunterverband ist, nennen wir eine Verbandssubalgebra. Eine Anwendung
der Stone—Weierstrass-Theorie ergibt den folgenden, fir uns wichtigen Approxima-
tionssatz:

Satz0.2. Es sei X ein lokalkompakter Hausdorffraum und F eine Punkte trennende
Verbandssubalgebra der Banachverbandsalgebra Cy(X), welche nirgendwo verschwin-
det, d.h. zu jedem t€X existiert eine Funktionen k€ F mit k(t)=0. Dann gibt es zu
Jeder positiven Funktion g€Cy(X) und jedem e=0 eine positive Funktion fC¢F mit
Ifl=1 und ||g—f gll=e, d.h.die nach oben gerichtete Menge B:={h€ F: h=0 und
=1} ist ein approximierendes Einselement in Co(X).

1. Die Gelfand-Theorie von F-Banachverbandsalgebren

Wichtiges Hilfsmittel bei der Behandlung von F-Banachverbandsalgebren ist
in der Arbeit [6] die Algebra der Zentrumsoperatoren, welche eine Algebra vom
Typ C(K)ist. In der Arbeit [5] iibernimmt diese Rolle die Algebra der Orthomorphis-
men. Wir werden dagegen im folgenden wesentlichen Gebrauch von der Gelfand-
Theorie machen.

Da F-Banachverbandsalgebren spezielle FF-Banachverbandsalgebren sind,
gelten fiir sie beziiglich der Gelfand-Theorie die in der Arbeit [11] gemachten Aussa-
gen. Wir wollen die wichtigsten Punkte kurz angeben (s. [11, Kap. 2]).

Es sei A eine’F-Banachverbandsalgebra und .# die Menge der nichttrivialen
komplexen Homomorphismen auf 4. Wir setzen =0 voraus. Dann sind die
Elemente von . sogar reelle Vektorverbandshomomorphismen. Die Menge .#, als
Teilmenge des topologischen Duals A" betrachtet und versehen mit der von der
schwachen Topologie o(A4’, 4) induzierten Topologie, ist ein lokalkompakter Haus-
dorffraum und kann als der Raum der maximalen regulidren Ideale von A angesehen
werden. Die Gelfand-Transformation @:a—d von A nach Cy(.#), definiert durch
d(w):=p(a) fur alle ac A und p€#, ist ein Algebra- und Vektorverbandshomo-
morphismus. Thr Wertevorrat 4 ist daher eine dichte Verbandssubalgebra der
Banachverbandsalgebra Co(.#). Fir alle acA4 gilt r(a)=|d| und das Radikal

rad (4) := {a€A4: r(a) = 0}
von A ist sowohl ein abgeschlossenes Algebraideal als auch ein Vektorverbands-

ideal.

Ist rad (4)=A4, so folgt aus 0.1 sofort a-b=0 fiir alle a, b€ 4, d.h. die Mul-
tiplikation ist trivial. Wir werden daher von nun an stets rad (4)s~ A4 voraussetzen,
was auch .4 #0 impliziert.
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Unter dem Annullator Ann (B) einer kommutativen Algebra B versteht man
die Menge {x€B: x-B=1{0}}. Bei der folgenden Charakterisicrung des Radikals
handelt es sich im Grunde um schon bekannte Ergebnisse (s. [1, 3.1.3] und [8, S.89]).

Satz 1.1. Es sei A eine F-Banachverbandsalgebra. Dann gilt:
(i) rad (A)=Ann (4)={x€4: x2=0},
(it) das Vektorverbandsideal rad (A) ist sogar ein Band.

Beweis. Zu (i): Sei a€rad (4) und b€ A. Dann gilt |al€rad (A4), la-bl=
=|a|lbl=r(la])|b|=0 und somit a-b=0, d.h. rad (4)SAnn (4). Da die Bezichung
Ann (A)ESrad (4) offensichtlich ist, erhalten wir rad (4)=Ann (4). Fir y€Ann (4)
ist y*=0. Ist andererseits xé A und x%2=0, so gilt r(x)=0 und somit x€rad (4) S
CAnn (4). Es ist also auch Ann (A)={x€4: x2=0}.

Zu (ii): Sei x,acA, und {a;: j€J} ein nach oben gerichtetes Netz positiver
Elemente in Ann (4) mit a=sup {a;: j€¢J}. Da die Multiplikation ordnungsstetig
ist, folgt ax=x-a=sup {xa;: jeJ}=0. Es ist also a€Ann(4) und Ann(4) ein
Band. Aus Ann(4)=rad (4) ergibt sich die Behauptung.

Mit dem vorhergehenden Satz erhalten wir fiir ordnungsvollstindige F-Banach-
-verbandsalgebren einen erwihnenswerten Darstellungssatz, dessen Beweis klar ist.

Satz 1.2. Es sei A eine ordnungsvolistindige F-Banachverbandsalgebra. Dann ist
A direkte Summe der beiden Ringideale Ann (A4) und Ann (A)*. Das Band Ann (A4)*
ist fiir sich betrachtet eine halbeinfache F-Banachverbandsalgebra, welche algebraisch-
und verbandsisomorph zu einer dichten Verbandssubalgebra der Banachverbands-
algebra Cy( M) ist, wobei A den Raum der maximalen reguléiren Ideale von A bezeich-
net.

2. Der Bidual von F-Banachverbandsalgebren

Zunichst méchten wir das Arens-Produkt in Erinnerung rufen. Es sei A4 eine
F-Banachverbandsalgebra, 4’ ihr topologischer Dual und A4” ihr Bidual. Damit
keine Verwechslung mit der natiirlichen Multiplikation - bei Funktionenalgebren
auftreten kann, werden wir die Multiplikation in 4 mit * bezeichnen. Fir fcA4
und p€ A’ sei das Element u €4’ definiert durch u (g)=pu(f*g) fir alle g€ 4.
Nach 0.1 gilt fiir alle fc 4, und p€A’ die Ungleichung

vy = r(f)p.

Sei nun G€A”. Bei der Definition des Arens-Produkts spielt der folgende, zu G
gehorige Operator T;€ % (4’), definiert durch (Top)(f):=G(u,) fiur alle pcAd’
und f€ A, eine wichtige Rolle. Mit diesem Operator T ist fiir F, GEA” in A” das
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Arens-Produkt F«xG wie folgt definiert:
FxG(W = F(Tgp)

fiir alle p€4’. Durch eine Routinerechnung 146t sich zeigen, daB der Bidual 4",
versehen mit diesem Arens-Produkt, eine Banachverbandsalgebra ist.

Mit Hilfe der vorhergehenden Ungleichung und der Kommutativitit der Multi-
plikation erhalten wir, da3 die Operatoren T; zum Zentrum von 4" gehoren.

Satz 2.1. Sei A eine F-Banachverbandsalgebra, pcA’, und GEA’ . Dann gilt
Tep=|Gllp und |Tou|l=GW.

Beweis. Sei f€4, und S:={gcA,: |gll=1}. Dann gilt

lesll = sup {u(f+g): g€S} = sup {u(gxf): gcS} =
= sup {u,(f): g€S} = sup {r(g)u(/f): g€S} = pn(/),
da r(g)=1 fir g¢S. Hieraus erhalten wir
Tem)(f) = Guy) = G ugdl = Gl (/).
Es gilt also Tou=|G| u.
Fir g€S gilt y,=r(g)u=p. Es ist somit
IT6ull = sup {(Tcp)(g): g€S} = sup {G(u,): g€S} = G (w).

Satz 2.2. Es sei A eine F-Banachverbandsalgebra. Dann ist der Bidual A",
versehen mit dem Arens-Produkt, wieder eine F-Banachverbandsalgebra und somit eine
kommutative Algebra.

Beweis. Es sei F, G, HcA” . Es geniigt zu zeigen: inf (F, G)=0 impliziert
inf (H* F, G)=0=inf (F« H, G).

Sei p€A’ . Nach 2.1 gilt ||Tpp|=F(u). Hieraus folgt

(H*F)(p) = H(Trp) = [|H| | Tr pll = 1H| F(p).
Es ist also Hx* F=|H| F.
Nach 2.1 gilt auch Typu=|H|u. Hieraus ergibt sich
(F+xH)(W) = F(Tgw) = |H|| F(w).
Es ist also auch FxH=|H| F.
Seinun inf (F, G)=0. Aus H* F=|H||F und FxH=|H| F folgt dannsofort
inf(HxF,G) = 0 = inf (Fx H, G).

Nach 2.1 gehoren die Operatoren T(G€ A”) zur Banachverbandsalgebra Z(A4")
der Zentrumsoperatoren von 4’. In Analogie zu [7] nennen wir die Abbildung G—~T
von A” nach Z(A") Arens-Homomorphismus. Mit Hilfe von Satz 2.2 erhalten wir,da3
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diese Abbildung ein Vektorverbandshomomorphismus ist, was wir spiter bendtigen
werden (vgl. [5, 5.2]).

Satz 2.3. Sei A eine F-Banachverbandsalgebra. Dann ist der Arens-Homomor-
phismus ein Algebra- und Vektorverbandshomomorphismus.

Beweis. Wie man leicht nachpriift, ist der Arens-Homomorphismus ein positiver
Algebrahomomorphismus.

Sei nun G€A”. Da A” eine F-Banachverbandsalgebra ist, gilt G* %G~ =0. In
Z(A’) bedeutet dies Ty, - T;- =0. Da Z(A4’) bekanntlich vom Typ C(KX) ist, erhalten
wir inf (Tg+, Tg-)=0. Es ist also der Arens-Homomorphismus auch ein Vektor-
verbandshomomorphismus.

Als Beispiel betrachten wir nun den Bidual der F-Banachverbandsalgebra
Co(X). Es wird sich spiter zeigen, daB diese Biduale bei der Darstellung der Biduale
allgemeiner F-Banachverbandsalgebren eine bedeutende Rolle spielen. Wie es
scheint, ist bis jetzt der Bidual der Banachalgebren Cy(X) nur im Rahmen der B*-
Algebren-Theorie behandelt worden. Wir wollen nun diesen Bidual mit verbands-
theoretischen Mitteln charakterisieren.

Es sei X ein lokalkompakter Hausdorffraum. Da der Banachverband Cy(X)
ein AM-Raum ist, ist der Dual Cy(X)” ein AL-Raum und somit der Bidual Cy(X)"
ein AM-Raum mit Einheit. Wir kénnen also den Banachverband Cy(X)” mit einem
Banachverband C(£2) identifizieren, wobei Q ein gewisser kompakter Hausdorff-
raum ist und die Einsfunktion E auf Q dem Normfunktional auf Cy(X)" entspricht
(s. [10, Kap. I, 7.4 und 9.1}). Wir nennen diesen Banachverband C(£) die kanonische
Identifizierung von Cy(X)”. Auf C(Q) haben wir nun zwei Produkte, das von Cy(X)
herrithrende Arens-Produkt % und das natiirliche Funktionenprodukt.

Satz 2.4. Es sei X ein lokalkompakter Hausdorffraum und C(Q) die kanonische
Identifizierung des Banachverbandes Cy(X)”. Dann gilt F+G=F-G fiir alle F,
GeC(Q).

Beweis. Nach 2.2 ist C(Q), versehen mit dem Arens-Produkt #, eine (kommu-
tative) F-Banachverbandsalgebra. Auf Grund von [2,28.7 und 28.8] ist die Eins-
funktion E Einselement fiir das Arens-Produkt . Nach [11, 1.7] stimmt daher die
Multiplikation % mit der natiirlichen punktweisen Multiplikation iiberein.

Wir kehren nun wieder zu der Situation einer allgemeinen F-Banachverbands-
algebra zuriick. Im folgenden sei A4 eine F-Banachverbandsalgebra und .# der Raum.
der maximalen reguldren Ideale von A. Nach 1.2 ist der Bidual 4” direkte Summe von.
Ann (4”7) und Ann (4”)+. Wir werden jetzt diese beiden Summanden genauer un-
tersuchen.
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Der Spektralradius r definiert auf 4 die Halbnorm x-r(x), welche Spektral-
halbnorm genannt und wieder mit r bezeichnet wird. Es sei nun 4:={u€A’: Es
gibt eine von yu abhingige Zahl c¢R, mit |u(x)|=cr(x) fir alle x€4}. Die
Menge A besteht also aus allen Linearformen in 4’, welche auch beziiglich der Spek-
tralhalbnorm r stetig sind. Aus diesem Grunde méchten wir die Menge A4 den spek-
tralen Dual von A4 nennen. Offensichtlich ist 4 ein linearer Teilraum von A4’.

Zunichst zeigen wir folgenden Zusammenhang zwischen der Gelfand-Transfor-
mation und dem spektralen Dual auf, was im iibrigen auch in jeder kommutativen
Banachalgebra gilt.

Satz 2.5. Es sei A eine F-Banachverbandsalgebra. Dann ist der spektrale Dual A
gleich dem Wertevorrat der adjungierten Abbildung @ der Gelfand-Transformation ®.

Beweis. Es gilt offensichtlich @’(CO(J{ )')gﬁ.

Sei nun i€ 4. Da ji auf rad (4) verschwindet, ist das folgende Funktional y,
auf dem linearen Unterraum A(=®(A4)) von C,() wohl definiert und linear: Fiir
fEA sei po(f):=fi(g), wobei gc4 und f=d(g) ist. Da |fll=r(g) gilt, ist g,
auf A stetig. Nach dem Satz von Hahn-Banach gibt es nun ein p€C,(#) mit
(k)= p, (k) fiir alle k€ 4. Fiir dieses u gilt dann offensichtlich =@’ y. Es ist also
BE D (C, (1Y),

Satz 2.6. Es sei A eine F-Banachverbandsalgebra. Dann ist der spektrale Dual A
ein Ideal in. A’. Ferner ist die adjungierte Abbildung @ der Gelfand-Transformation @
ein Vektorverbandsisomorphismus von dem Banachverband Cy(A) auf das Ideal A
in A'.

Beweis. Da & ein Vektorverbandshomomorphismus ist, ist ¢’ intervallerhal-
tend, d.h. es gilt &[0, y)=[0, ¢’u] fiir alle u€Co(A),. Hieraus folgt, daB
9’(Co(M)’) einldeal ist. Nach 2.5 ist somit 4 ein Ideal in 4. Da A dicht in Cy(#)
ist, ist @ injektiv. Ferner ist jeder injektive, intervallerhaltende positive Operator
auch ein Vektorverbandshomomorphismus. Es ist also @’ ein Vektorverbandsiso-
morphismus von Co(#) auf 4.

Da Cy(4Y ein AL-Raum ist,ist auf C;(#)’ jede positive Linearform ordnungs-
stetig. Nach dem vorhergehenden Satz hat daher das Ideal 4 die Eigenschaft, daf3
fir jedes Fe A, die Einschrankung F|; von F auf das Ideal A4 ordnungsstetig ist.
Es bezeichne (4", das Band der ordnungsstetigen Linearformen in 4” und (4'),
dessen orthogonales Komplement.

Fiir FeA” bezeichne N(F) den absoluten Kern von F in 4’, also N(F):=
:={u€A’: F(lu])=0}. Zwischen 4 und (A4'), besteht folgende interessante Bezie-
hung:

Satz 2.7. Es gilt (A),SA°, wobei A° die Polare von A in A” ist.
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Beweis. Sei F€(4"), und F=0. Danngilt F1 G fiir alle GE€(4"),. Bekannt-
lich folgt hieraus N(F)* S N(G) fiir alle G€(A"), mit G=0. Da die kanonische
Einbettung von 4 in 4” in dem Band (4’), enthalten ist, trennt (4"); die Punkte in 4".
Aus der vorhergehenden Enthaltenseinsbeziechung folgt daher N(F):={0}. Es
gilt also A'=N(F)*+.

Seinun p€A4 und p>0. Da A'=N(F)t+ gilt, existiert in N(F) ein positives,
nach oben gerichtetes Netz {u,: f€ B} mit p=sup {u,: BEB}. Aus der Ordnungs-
stetigkeit von F[; folgt F(u)=sup {F(uz): p¢B}=0. Hieraus ergibt sich Fe A°.
Es gilt also (4),SA°.

Da die Gelfand-Transformation ein Vektorverbandshomomorphismus ist, ist
die Spektralnorm r eine M-Verbandshalbnorm auf 4, d.h. |x{=|y| impliziert r(x)=
=r(y) fiir alle x, y€A und es ist r(sup (x, y))=sup (r(x), r(p) firalle x, ycA,.

Satz 2.8. Es sei A eine F-Banachverbandsalgebra. Fiir den spektralen Dual
AC A gilt:

(i) /,thfT fiir alle uc A" und fcA;

(ii) p=sup {u,: fEA, und r(f)=1} fir alle pcd,;

(ii)) T4(A)CS A fiir alle GEA”;

(iv) fir GeA” gilt genau dann T;=0, wenn GEAL.

Beweis. Zu (i): Fir f,gc¢ A und pcA’ gilt |g|*|f|=r(g])|f] nach 0.1 und
somit

lup (@1 = lu(f« )l = lu(g*N = lulgl* /1) = r(gD1ul (/D) = lul 11 (8)-

Es ist also p €A4.

Zu (ii): Diese Gleichung beweisen wir mit Hilfe von 2.6 und der zu A gehérigen
F-Banachverbandsalgebra Cy(.#) wie folgt: Fir alle fe A und ueCo(H) gilt
@' (u))=(9'y),. Hieraus folgt & ~1(v,)=(® ~*); fiir alle vé4 und fcA.

Sei nun w€d,, veCo(#), und S:={fcA,: r(f)=1}. Wir beweisen zu-
néchst v=sup {v;: f€S}. Fiir fc§ gilt Ifl=r(f)=1 und somit v;=v. Ferner
ist die Menge {v,: f€ S} nach oben gerichtet, da r eine M-Verbandshalbnorm ist.
Sei g€Cy(.#), und £¢>0. Da A eine Punkte trennende, nirgendwo verschwindende
Verbandssubalgebra von C,(.#) ist, gibt es nach 0.2 ein f,€ S mit | g—f, - gll=e.
Hieraus folgt

v(g) = sup {v(f-g): f€S} = sup {v;(g): fES}.

Es ist also v=sup {v;: f€¢S}. Insgesamt erhalten wir
'~ (u) = sup {(¥" ' p);: f€S} = sup {®"~(uy): fES}.

Das bedeutet aber p=sup {u,: f€S}.
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Zu (iii): Sei f,g€ A, pc A" und GeA”. Dann ist
I (@ = lu(f*g)l = |ul(f1*Igl) = r(fDIullg) = r(Hllul el
Es gilt also |pu |=|pullr(f). Hieraus folgt

(T U = 1G ()l = Gl gl = IGH 1l #(F)

und somit Tguc 4.

Zu (iv): = : Sei G€4” und T;=0. Nach 2.4 gilt dann auch 7}5,=0. Wir
nehmen nun an |G|¢A4°. Dann gilbt es ein p€ A4, mit |G|(x)=0. Nach (i) gilt
p=sup {u,: fEA, und r(f)=1}, wobei die Menge in der geschweiften Klammer
nach oben gerichtet ist. Da |G|z ordnungsstetig ist, gibt es dann ein fo€ 4, mit
r(fp=1 und IGI(yfn)>O. Dies bedeutet aber T|g,(#)>0, was ein Widerspruch ist.
Es ist also |G|€ A° und somit auch G¢A°.

«<: Sei fcd, pcA” und FeA° Dann gilt p€A4 nach (i). Hieraus folgt
(Tew)(f)=F(u;)=0. Es ist also T;=0.

Die a'ngekiindigte Charakterisierung der- Bander Ann (4”) und Ann(4”)*
lautet nun

Satz 2.9. Es sei A eine F-Banachverbandsalgebra und C(Q) die kanonische
Identifizierung des Biduals Coy()” der zu A gehdrigen Banachverbandsalgebra Cy(M).
Ferner bezeichne ®” die biadjungierte Abbildung der Gelfand-Transformation. Dann:
gilt:

(i) Ann (47)=A4°;

(ii) Es ist ®"(A”) ein Vektorverbandsideal in C(Q). Die Einschrinkung der
Abbildung ®” auf Ann (A”)* ist ein Algebra- und Vektorverbandsisomorphismus von
Ann (4”)* auf das Vektorverbandsideal ®"(A”) in der Funktionenalgebra C(Q).

Beweis. Zu (i): Sei FcA° Nach 2.8 (iv) ist dann 7,=0. Dies bedeutet
Hx« F=0 fir alle HEA”. Es ist somit F€Ann (4”). Sei G¢Ann (4”). Dann muB3.
T;=0 sein. Nach 2.8 (iv) gilt dann G€A°.

Zu (ii): Nach [3, 6.1] ist die Abbildung &” von 4” nach C () multiplikativ. Da &
und @’ Vektorverbandshomomorphismen sind, ist @” ein intervallerhaltender Vektor-
verbandshomomorphismus (s. [10, Kap. 111, Ex. 24]). Es ist also ®”(A4”) ein Ideal in
C(Q). Aus A= (Co()) folgt A°=@”~1{0}.

Hieraus ergibt sich, daB die Einschrinkung von &” auf Ann (4”)*(=A%t)
injektiv ist. Insgesamt erhalten wir, daB diese Einschrinkung ein Algebra- und
Vektorverbandsisomorphismus auf das Ideal ¢”(A4”) in C(Q) ist.

Nach dem vorhergehenden Satz kénnen wir also Ann (4”)L mit dem Vektor-
verbandsideal ®”(4”) in C(Q) identifizieren. Es sei nun Qy:={t€Q: es gibt ein
Fe®”(A”) mit F(1)>0}. Dann ist der Unterraum Q, von € lokalkompakt. Nach
Satz 1.2 ist Ann (A4”)1 algebraisch- und verbandsisomorph zu einer dichten Verbands-
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subalgebra der Banachverbandsalgebra Cy(.#”), wobei .#/” den Raum der maximalen
reguldren Ideale von 4” bedeutet. Der Raum €, 148t sich nun mit .#” identifizieren.

Satz 2.10. Der lokalkompakte Raum €, ist homdomorph zum Raum A" der
maximalen reguliren Ideale von A”.

Beweis. Es bezeichne B das Vektorverbandsideal $”(4”) in C(Q). Auf Grund
der in 2.9 (ii) angegebenen Isomorphie kann die Punktmenge .#” als die Menge
aller nichttrivialen, multiplikativen reellen Vektorverbandshomomorphismen auf B
betrachtet werden. Da B ein Vektorverbandsideal ist, trennt B die Punkte in Q,.
‘Wir betrachten nun die Abbildung t: Qy—~#”, definiert durch z(f)(F)=F(@)
fiir alle F€B und 7€ Q,. Die Abbildung 7 ist injektiv, da B die Punkte trennt. Sie
ist aber interessanterweise sogar surjektiv, wie man wie folgt einsieht.

Sei FEB, F>0, 0:={t€ Q: F(t)>0}und B0 die Stone—Cech-K ompaktifizierung
von 0. Da C () ordnungsvollstindig ist, ist 0 homSomorph zu 0 in Q. Es bezeichne
F die eindeutig bestimmte stetige Fortsetzung von F auf 0. Wegen der Homdomor-
phie zwischen B0 und @ gilt dan F=0 auf BONO. Auf C(B0O) definieren wir die
folgende Multiplikation *:

G, x%Gy = F.G,-G, fiir alle Gy, G,€C(B0).

Es sei C(Q), das von F in C(Q) erzeugte Hauptideal. Wir betrachten die folgende

Abbildung ¢ von C(Q); nach C(B0), welche definiert ist durch ¢ (G).(t) = % G(1)
t

fir alle GeC(2); und alle 1€0 und ¢(G)=¢(G) auf BONO, wobei ¢(G) die
kanonische Fortsetzung von ¢(G) ist. Wie man leicht nachpriift, ist @ ein Algebra-
und Vektorverbandsisomorphismus.

Esseinun p€#” und u(F)s#0. Esistalso y ein multiplikativer reller Verband-
homomorphismus auf B. Dasselbe gilt fiir die Einschrankung up auf C(Q)p. Mit
up ist dann auch die Linearform po¢™! ein nichttrivialer multiplikativer reeller
Vektorverbandshomomorphismus auf der F-Verbandsalgebra C(f0), versehen mit
der Multiplikation # *. Hieraus folgt, es gibt ein 1€ 0(E Q) mit prop '=F(t)e,,
wobeil ¢, das Dirac-Mafl im Punkt ¢ bezeichnet. Dies bedeutet aber, daB pp=¢,
auf C(Q)r gilt.

Der Punkt ¢ bei der Darstellung von uy hingt auf den ersten Blick von F ab.
DaB er aber unabhdngig vom gewdhlten F ist, kann man zeigen, indem man zu
Fi€B mit F;>0 und F,#F das Hauptideal C(Q),,, ,r,, betrachtet und feststellt,
dafl der zu F bzw. F; gehorige Punkt jeweils mit dem zu sup (F, F;) gehorigen
Punkt identisch ist. Wir erhalten also, daB es zu y ein 7€Q, gibt mit u=e,. Die
Abbildung 7 ist also surjektiv. Die Homéomorphie zwischen .#” und ©, folgt nun
sofort aus [9, 3.2.5].



Der Bidual von F-Banachverbandsalgebren 177

Im Hinblick auf die Frage, ob 4” halbeinfach ist bzw. ein algebraisches Einsele-
ment besitzt, erhalten wir aus dem Vorhergehenden folgende Aussagen.

Satz2.11. Der Bidual A” einer F-Banachverbandsalgebra A ist genau dann halbein-
fach, wenn der spektrale Dual A dicht im Dual A’ ist. Eine notwendige Bedingung dafiir,
daf} A” halbeinfach ist, ist A”=(A");.

Beweis. Nach 1.1 (i) und 2.9 (i) gilt rad (4”)=Ann (4”)=A4°. Es ist also 4”
genau dann halbeinfach, wenn A4°={0} ist, wenn also 4 dicht in 4’ ist. Die zweite
Aussage fogt sofort aus 2.7.

Der Bidual der F-Banachverbandsalgebren Cy(X) besitzt ein algebraisches
Einselement mit Norm 1.

Satz 2.12. Die Banachverbandsalgebren Cy(X) (X lokalkompakter Hausdorff-
raum) sind die einzigen F-Banachverbandsalgebren, bei denen der Bidual ein algebra-
isches Einselement mit Norm 1 besitzi.

Beweis. Es sei 4 eine F-Banachverbandsalgebra mit der Eigenschaft, daB 4”
ein algebraisches Einselement e mit |e]| =1 besitzt. Ferner sei C'(K,) die kanonische
Identifizierung des Ideals 4, . Wie wir in [11, S. 204] gezeigt haben, ist dann die F-
Banachverbandsalgebra 4” isometrisch isomorph zur Banachverbandsalgebra C(K,).
Da A in A” isometrisch eingebettet ist, erhalten wir |a"|=|al|" fiir alle a€4 und
nEN. Auf Grund des Satzes von Stone-Weierstrass ist dann die Gelfand-Transfor-
mation ein isometrischer Algebra- und Vektorverbandsisomorphismus von A auf
die Banachverbandsalgebra C,(.#), wobei .# der Raum der maximalen reguléren
Ideale von A ist.

Fiir den in Satz 2.3 betrachteten Arens-Homomorphismus ergeben sich nun
folgende Aussagen.

Satz 2.13. Es sei A eine F-Banachverbandsalgebra. Dann ist der Kern des Arens-
Homomorphismus mit dem Band Ann (A”) identisch. Der Arens-Homomorphismus ist
genau dann surjektiv, wenn A topologisch-algebraisch- und verbandsisomorph zur
Banachverbandsalgebra Cy(MH) ist.

Beweis. Es bezeichne S den Arens-Homomorphismus. Nach 2.8 (iv) stimmt der
Kern von S mit dem Band A4°, welches gleich Ann (4”) ist, tiberein.

Sei nun S surjektiv. Ferner sei G€A” mit S(G)=Tz=Ic¢Z(A"), wobei I die
Identitit auf 4 ist. Nach 2.8 (iii) gilt dann 4’=T;(4")S 4. Dies bedeutet A= 4".
Hieraus folgt, daB} 4” topologisch isomorph zu Cy(A)” ist. '

Da auf der Funktionenalgebra Cy(.#)” die Normbeziehung [ F"|=|F|* fir
alle FECy(A)” und alle neN gilt, sind auf A” und somit auch auf 4 die gegebene
Norm und die Spektralhalbnorm » d4quivalent. Es ist daher in Cy(#) die dichte Ver-

12
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bands-subalgebra A abgeschlossen. Es gilt also A=C,(.#). Nach dem Satz von der
offenen Abbildung ist dann die Gelfand-Transformation auch ein topologischer
Isomorphismus.

Falls wir die im Satz angegebene Isomorphie zwischen 4 und Cy () voraus-
setzen, konnen wir auf A eine neue dquivalente Norm einfithren, so dal 4 auch iso-
metrisch isomorph zu Co(.#) ist. Wihlen wir nun die kanonische Identifizierung
C(Q) von Cyo(A)”, so 148t sich Co(#) mit C(Q), identifizieren. Nach Satz 2.4 gilt
daher

[FdTep) = [F¥Gdu= [F-Gdy
2 Q 02

fir alle F, GeC(Q) und alle p€C,(.#)". Hieraus folgt die Darstellung
Top=G-p fir alle GEC(Q)

und p€Cy(#). Da aber bekanntlich zu jedem R€Z(Co(#)) genau ein HCC(Q)
existiert mit Ru=H-p fiir alle ucCy(A), ist in der betrachteten Situation der
‘Arens-Homomorphismus offensichtlich bijektiv.

Beispiele. Die Ergebnisse der Arbeit wollen wir nun an den Banachverbinden ¢,
I; und I, veranschaulichen. Mit der koordinatenweisen Multiplikation sind sie auch
F-Banachverbandsalgebren. Alle drei haben denselben Raum .# der maximalen
reguliren Ideale, ndmlich N, versehen mit der diskreten Topologie. Sie haben also
auch denselben spektralen Dual Cy(.#) und dasselbe C,(.#)”. Es ist

Co( ) = ¢y, ColM) = Iy, Co(M) =1, und Co(l) = C(Q) mit Q = pN:

Zu A=cy: Aus A=Cy(AM) folgt A=A und somit A”=C,(H#)"=C(pN).

Zu A=I: Hier gilt 4'=I_=C(pN) und A"=C(BN)". Esist A=LGI_ =4
Wir erhalten Ann (4”)=1)={ue C(BN)": Triger von pS SN\ N} und Ann (4”)+ =
==[,. Satz 2.9 (ii) besagt nun, daB /, alsein Vektorverbandsideal in C(BN) betrachtet
werden kann, was offensichtlich stimmt.

Zu A=l,: Bei diesem Beispiel gilt A4=A". Interessant ist aber, daf} hier
A(=1) dichtin A’(=1,) ist, daB also nach 2.10 der Bidual 4” und somit 4 halbein-
fach sein muB.
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Reflexivity and direct sums

DON HADWIN and ERIC A. NORDGREN

1. Intreduction. Let H be a Hilbert space and let B(H) be the set of (bounded
linear) operators on H. If #cB(H), then the commutant &’ of & is the set of
all operators that commute with every operator in &. Also Lat & denotes the set of
(closed linear) subspaces of H that are left invariant under every operator in &,
and Alg Lat & denotes the set of all operators T such that Lat ¥ cLat T. A unital
weakly closed subalgebra &/ of B(H) is reflexive if o/ =Alg Lat &/, and an operator
T is reflexive if the weakly closed algebra o (T) generated by 1 and T is reflexive.
A commutative subalgebra &/ of B(H) is hyporeflexive if &/=x/"NAlgLat o,
and an operator T is hyporeflexive if & (T) is. Much work has been done on reflexivity
(see e.g., [11—[7], [10], [11], [14]—]27], [30]—[32]). Recently W. WOGEN [31], ans-
wering a question of P. ROSENTHAL and D. SARASON, has constructed a class of
operators that are not hyporeflexive.

This paper contains two main ideas. The first idea deals with very general types
of shifts, and we prove, for a large class of operators T, that Alg Lat T {T}. For
such operators, the problems of reflexivity and hyporefiexivity coincide. In some cases
we show that the elements of Alg Lat T correspond to formal power series in 7. As a
consequence we show that every operator-weighted shift is hyporeflexive and that
every operator-weighted shift with 1—1 weights of rank at least 2 is reflexive. In
particular, the direct sum of two weighted shifts with nonzero scalar weights is
reflexive.

The second idea concerns reflexive graphs. Suppose &/ is a reflexive algebra of
operators and n: &/ —~B(H,) is a homomorphism. We deal with the problem of
when the graph of = is a reflexive subalgebra of B(H®H,). In particular, we show
that if the algebra o has property D of [17] and if # is continuous in the weak operator
topology, then the graph of & is reflexive. We use these results to show that if T is
polynomially bounded and § is the unilateral shift operator, then ST is reflexive.
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We also show that if S is a nonreductive subnormal operator, then there is a nonempty
open set Q of complex numbers such that S®T is reflexive for every operator T
whose spectrum is contained in Q.

2. Shifted vectors. The principal technique of this section shows that
Alg Lat Tc{T}’ for many operators T. Much of what will be done is valid in the
context of a complex locally convex topological vector space X; indeed, some of the
results hold in an arbitrary vector space. If E is a subset of X, then we will write sp £
for the linear span of E and sp E for the closed linear span of E. A biorthogonal base
for a closed subspace M of X is a finite or infinite sequence {e,} whose closed linear
span is M for which there exists a corresponding dual sequence {¢,} in X*, the dual
space of all continuous linear functionals on X, such that ¢;(e,)=0;, for all j
and k, where § is the Kronecker 4, and such that M ﬂ((g ker 9,)={0}. Equi-

valently {e,} is a biorthogonal base for M if and only if {e,} is-a spanning set for M,
e; is not in Sp {e;: k>j} for every j, and (" 5p {e;: k=j}={0}
i
If {e,} is a biorthogonal base for a closed subspace M and {¢,} is the correspond-
ing dual base, then, for every x in M, the sequence {@.(x)} determines x. Hence we
will write x~ > ¢.(x)e, to indicate this relationship. Note that for x in sp {e,:
k

k=0}, x= > ¢i(x)e,, but in general the series need not converge. Clearly if
k
x~ D are, y~ 2 bee,, and if a and p arescalars, then ax+ By~ > (aa,+ Bby)e,.
k k k

Let T be a continuous linear operator on X. We will write M(x)=M(x) for
the smallest invariant linear manifold of T that contains the vector x, i.e. M(x)=
sp {T*x: k=0}. A vector x is called a shifted vector for T'in case the nonzero vectors
in {T*x: k=0} form a biorthogonal base for M(x)~. Let the order of x, ord (x),
be the dimension of sp {T*x: k=0}. The fo]lowmg lemma is easﬂy established, and
the proof is left to the reader.

Lemma 2.1. The following are equivalent :
(1) x is a shifted vector for T,
@ NM(T'x)~={0}.

J

It may be tempting to think that x is a shifted vector for 7 if T"XQM (T x)-
for O=n<ord (x). However, if one lets {e,: n=0} be an orthonormal basis for a
Hilbert space H and lets T be the operator defined by Te,=e,, and Te,=(n/n+1)e,
for n=1,2,3, ..., and lets x=¢,+e,, the temptation qulckly fades away

We remark that if x is a shifted vector for Tand {T"x} has a dual sequence {¢,},
then for each polynomial p, we have ¢, (p(T)x)= goHl(T »(T) x) Thus if y~
~ %’ a,T*x, then Ty~ %’ a,T**1x. More generally, if 4A¢B(X), A is invertible,

and AT=TA, then, for each shifted vector x for T, Ax is a shiftéd vector for T of the
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same order as x, and whenever y~ > a,T*x, we have Ay~ 3 a,T*Ax. To see
k k
this, first note that () M(T7A4x)~=A[N M(T’x)~]={0}; whence, by Lemma 2.1,
i i
Ax is a shifted vector for T. If {y,} is the corresponding dual base for {T*4x},
then {4*Yy,} is a dual base for {T*x}, i.e., (A*Y)(T"%)=y (AT x)=6,. Thus
o, =AY, on M(x) for k=0. If ye M(x), and y~ > a,T*x, then,foreach k=0,
k
we have a,=@,(3)=(4"V) () =¥ (4y). Hence, Ay~ > a,T*4x.
. k

The following notion will be basic for our needs. A pair of vectors x, y is called
a shifted pair for T if sp {T*x: k=0}Nsp {T*y: k=0}={0} and ({T*x: k=0}U
U{T*y: k=0})\ {0} is a biorthogonal base for its closed span M(x, y)~=Mr(x, y)~.
In this case each w in M(x, )~ is associated with a formal series, w~ > a,T*x+

k

+ %’ bk Tky

Lemma 2.2. Suppose x and y are shifted vectors for T and m=ord (x)<ord (y)=
=co. Then {x, y} is a shifted pair for T.

Proof. Note that ord ()= implies that T'is I—1 on M(y)~. If ve M(x)~N
NM(y)~, then Tmv=0 (since v€M(x)) and thus »=0 (since 7™ is 1—1 on
M(y)~). Hence M(x)~(M(y)~=0. Since M(x) is finite dimensional, it follows
that M(x,y)"=M(x)~+M(y)~ is a direct sum and that the projections onto
M(x)~ and M(y)~ are continuous. Thus {x, y} is a shifted pair for 7.

Lemma 2.3. Suppose T is a continuous linear transformation on a locally convex
space X and that x and y are shifted vectors of orders m and n respectively. Suppose
also that {x, y} is a shifted pair for T. Let S€Alg Lat T, and suppose Sx~ > a,T*x

3
and Sy~ > b,T*p. The following are true.
k
(1) Every nonzero vector in M(x, y)~ is a shifted vector for T.
(2) Suppose zEM(x,y)~, z~ 2 (;T*x+d,T*y). ¢;#0 for some i, and m=
3 .
=n=co. Then {z,y} is a shifted pair for T.
() If m=n, then
(@) a;=b; for 0=i<m,
(b) Sz~ > b,T*z for every z in M(x)~,
k
“(c) ST=TS on M(x)".

Proof. (1). If zéM(x, y)~, then {T*z: k=j}csp ({T*x: k=j}U{T*: k=j}),
and since

8

QBT k= UTy: k=) = (0}

it follows that z is a shifted vector for 7.
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(2) Let z~ 3 (¢;T*x+d,T*y) and let i be the smallest index for which ¢;0.
k

It will be shown that {z, y} is a shifted pair for T. Let M;=35p ({T*z: k =j}U
U{T*y: k=0}) and N;=5p({T*z: k=0)U{T*y: k=%j}) for every j. If T/zeM;
for some j, then there is a smallest p such that

T'z=0a,T?z+0, TP z4+ ... +a; T/ 'z+w,

«,#0, and wesp ({T*z: k=j}U{T*y: k=0}). It follows that T?z€ M,, and thus
we will suppose that T'z€5p ({T"z: k=;}U{T*y: k=0}) and show that this leads
to a contradiction. Let ¢, and v, be continuous linear functionals on X for k=0
and s=0 such that @ (T?°x)=0,, @ (T"»)=0, v,(T?x)=0, and v,(T?y)=4,,
forall p=0. Then ¢;;;(T'z)=c¢;#0, but ¢, ;(T*2)=0 for k>j and ¢;, ;(T*y)=
=0 for all k, which is impossible in view of our supposition. Thus 77z is not in M;
for every j.

A similar argument will show that 77y is not in N, for every j<n. As above, it
will suffice to show that T’y belonging to 5p ({T*z: k=0}U{T*y: k>/}) leadstoa
contradiction. We have

Tiy= 2 T'z+w,
k=j
where wesp ({T*z: k>j}U{T*y: k>j}). Applying @i, ¢;41, ..., @;4; Successive-
ly to T7y, we see that ay=oy=...=a;=0. It follows that T7y=w, and hence
=v;(T’y)=v;(w)=0, which is a contradiction. Thus 77y is not in N; for every ,
and ~onsequently {z, y} is a shifted pair for T.

(3a) By (1), x+y is a shifted vector for T. Let ¢, and v, be functionals as in the
proof of part (2). For every polynomial p, it is clear that ¢,(p(T)(x+y))=v(p(T)-
-(x+y)) for all k<m, and thus ¢, (z2)=v(z) for all k<m and every z in
M(x+y)~=5p {T*(x+y): k=0}. Since M(x+y)~ is invariant under S and
S(x+y)=Sx-+S8y, it follows that

a4, = @i(Sx) = @(Sx+Sy) = v (Sx+Sy) = v, (Sy) = b,
for k<m.

(3b) If zE€M(x)~, then z is a shifted vector for T and ord (z)=m. If m<oo,
then {z, y} is a shifted pair, and if m=co, then {z, y} is a shifted pair by part (2)
above. Applying (3a) to the pair {z, y}, we obtain (3b).

(3c) If zéEM(x)~, then TzéM(x)~ and (3b) implies both Sz~ %’ b, T*z

and STz~ > bT*Tz= 3 b,T*"'z. Also Sz~ > bT*z implies that TSz~
. k k k
~ b, T**1z; thus STz=TSz, establishing (3c).
%

Useful results concerning shifted vectors of finite order can be cast in a purely
algebraic setting. A linear transformation 7 on a vector space V over a field F is
locally nilpotent if, for each v in ¥ there is a positive integer n=n, such that T"y=0.
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Note that if T is locally nilpotent and {a,} is a sequence in F, the sum > q,T* is
k=0

finite at each vector, and thus the sum defines a linear transformation that commutes
with every transformation commuting with T.

Lemma 2.4. Suppose S and T are commuting linear transformations on a vector
space V over q field F such that

(1) T is locally nilpotent,

(2) S leaves invariant every T-invariant linear subspace of V.

Then there is a sequence {a,} in F such that S= D a,T*. Moreover, S commutes with
K=o

every linear transformation on V that commutes with T.

Proof. It follows from [16, Cor. 5] that there is a net {p,} of polynomials in
F(x] such that p,(T)~S in the strict topology (i.e., pointwise in the discrete topology
on V). If T is nilpotent, then the set of polynomials in T is strictly closed and S is a
polynomial in T. We can therefore assume that T is not nilpotent. For each integer
mz=1, choose a vector v(m) in V so that T™v(m)=0. It follows, for sufficiently large
A, that p,(T)v(m)=Sv(m). Hence, for O0=k=m, the coefficients of x* in p,(x)

are equal to a constant g, for sufficiently large 4. It follows that S= > q,T*
k=0

It is clear that if A4 is a linear transformation on ¥V and 4AT=7TA, then

AS = D a AT = 3 a,T"4 = SA.
k=0 k=0

The following lemma was proved for matrices by DEDDENS and FILLMORE
[11]; it was observed in [17, p. 20] and [14] that the result holds in general. Note that if
J is an nXn Jordan nilpotent matrix and k=2 is an integer, then dim (ker J*/
/ker J*%) is 2if k=n andis 1if k=n+1, andisOif k=n+2. Hence if T is a nil-
potent mairix, n=2, 7"=0 and 7" !0, then dim (ker T"/ker 7°~% s the
number of (n—1)X(n—1) Jordan blocks plus twice the number of nX#n Jordan
blocks in the Jordan canonical form for T. Note that this number is greater than 2 if
and only if there is one block of size n and another block of size n or n—1.

Lemma 2.5. Suppose T is a nilpotent linear transformation on a vector space V
over a field F. The following are equivalent:

(1) every linear transformation leaving invariant each T-invariant linear subspace
commutes with T,

(2) every linear transformation leaving invariant each T-invariant linear subspace is
a polynomial in T,

(3) for every x in V and every positive integer n such that T"x#0, thereis ay
in V such that

sp{T*x: k = 0}N\sp{T*y: k =0} = {0} and T" 'y 0,
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@ if n=2 and T 0, then dim (ker T"/ker T""?)=>2.
Theorem 2.6. Let X be a locally convex space, and let T be a continuous linear

transformation of X. Suppose U ker T* is dense in X and, for every k=0 with

T*+t120, dim (ker T**¥ker T“)>2 If ScAlglatT, then S€{T)’, and there
exists a sequence {a,} of complex numbers such that Sx~ > a,T*x for every shifted
%

vector x for T.

Proof. The dimension hypothesis implies, via Lemma 2.5, that T|ker T*
is reflexive for every k=1. If T is nilpotent, then we are done. Otherwise let S be in
Alg Lat 7, and let S, and T, be the restrictions of S and T respectively to ker T*
By the reflexivity of T;, there is a polynomial p, of degree k—1 or less such that S, =
=p(T). If Ae{TY and if A,=Alker T¥, then clearly A4,S,=S,A4,, and since
Jker T* is dense, it follows that AS=S4. Hence S€{T}".

k

Applying Lemma 2.4 to the restriction of T'to | J ker T*, we obtain a sequence
k
{a,} of complex numbers such that Sx~ Z’ a,T*x for every x in |Jker T*. If y
k
is a shifted vector of infinite order, then Sy~ 2’ b, T*y. There are shifted vectors x

of arbitrarily large finite order that may be used in conjunction with Lemma 2.2 and
part (3a) of Lemma 2.3 to conclude that b,=a; for every k.

Corollary 2.7. If T is a nonnilpotent operator on a Hilbert space such that Tis
a direct sum of nilpotent operators, then every vector is a shifted vector for T, and
Alg Lat TC{T}". If S€AlgLat T, then there exists a sequence {a} of complex
numbers such that Sx~ %’ a,T*x for every vector x.

Proof. The hypothesis of the corollary implies that of the theorem, and therefore
Alg Lat Tc{T}” and there exists a sequence {g,} such that Sx~ > @, T*x for
k

every shifted vector x. That every vector is shifted follows easily from the fact that
every vector is a direct sum of shifted vectors.
In a Hilbert space, the hypothesis () (ran 7%)~ ={0} in the following theorem
k=1

is equivalent to T having a strictly lower triangular matrix with respect to an ortho-
gonal direct sum decomposition of the space into a sequence of subspaces.

Theorem 2.8. Suppose X is a locally convex space and T€ B(X) has the property
that () (ran T%~={0}, and, for eachinteger n=1, dim (X/(T") *[(ran T"*%)~])=>2.
k=1

Then
(1) every vector in X is a shifted vector for T,
(2) Alg Lat T {TY",
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(3) for each S in AlgLat T, there is a sequence {a,} of complex numbers such
that, for every vector x in X, we have Sx~ > a,T*x.
k

Proof. Suppose that S€AlgLat T and A€ {T} and n=>2 is a positive integer.
Since S, T and A each leave (ran T")~ invariant, they induce operators S,, T, and 4,
(respectively) on the space X/(ran T")~. Clearly, S,¢AlgLatT, and A,€{T,}.
Moreover, 7, is nilpotent, and it follows from the hypothesis on dimensions above and
Lemma 2.5 that there is a polynomial p,(z) (unique modulo z"C[z]) such that
S,=ps(T;). Thus §,4,=4,S,.

Translating back in X, we obtain ran(S—p,(T))C(ran 7%~ and ran (4S—
—SA)c(ran T")~. Since we have ran(S—p,.,(T))c(ranT ")~ c(ranT")~, we
have that p,_,(z)=p,(z) modulo z"C[z]. Hence there is a sequence {a,} of complex
numbers such that we can take p,,(z)——:kZ' a.z* for each n. It follows that Sx~

<n

~ > aT* for every x in X. Also we have ran(4S—SA4)c () (ran 7%~ ={0},
% k=1
which implies A4S=SA4. Hence S€{T}". :

Corollary 2.9. If T, and T, are operators on a Hilbert space that are strictly
lower triangular with respect to some infinite direct sum decomposition of the space, and
if neither T, nor T, is nilpotent, then for T=T,®T, on the direct sum H of the space
with itself, AlgLat Tc{T}", and for every S in Alg Lat T there exists a sequence
{a.} such that Sx~ %’akT"x Jor every x in H.

Remark. It follows from the preceding theorem that if {x, y} is a shifted pair
and ord (x)=ord (y)=<o, then, for any S in Alg Lat T there is a sequence {a,}
of complex numbers such that Sz~ > q,T*z for every z in M(x, y)".

. k

Theorem 2.10. Suppose that X is locally convex, T¢B(X) and T has shifted
vectors of arbitrarily large finite orders and at least one shifted vector of infinite order.
If ScAlgLat T, then there exists a sequence {a,} of complex numbers such that
Sx ~ %’ a, T*x for every shifted vector x for T. Moreover, if AC{TY and A is inver-

tible, then SA— AS=0 on the linear span of the set of shifted vectors for T.

Proof. If y is a shifted vector of infinite order for T, and if S is a linear transfor-
mation that leaves invariant all the invariant subspaces of 7, then there is a sequence
{a} such that Sy~ > q,T*y. By Lemma 2.2, if x is a shifted vector of finite order,

k

then {x, y} is a shifted pair. Thus by part (3a) of Lemma 2.3, Sx= > q,T"x,

k<m
where m=ord (x). If z is another shifted vector of infinite order, then Sz~ > b,T*z,
: : 3
and another application of Lemma 2.2 and part (3a) of Lemma 2.3 yields b,=q,
for k<m. Since there are shifted vectors of arbitrarily large finite order, b,=a,
for every k.
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Let A4 be a continuous invertible linear transformation in {T}". If x is a shifted
vector for T, then Ax is also a shifted vector for T and

SAdx ~ > a, T* Ax.
k

On the other hand, Sx~ > a,T*x implies that 4Sx~ > a,T*Ax. Itfollows that
k k
ASx=S8Ax, and hence AS=SA on the span of the shifted vectors.

Remark. If X is a Banach space in the preceding theorem, we can drop the
assumption that A is invertible, since there is a scalar A such that A—2 is invertible,
and every operator that commutes with 4A—/ also commutes with A.

Theorem 2.11. . Suppose that X is a locally convex space, TE¢B(X), and
{M:k€Z} is a collection of closed linear subspaces with zero intersection such that

T(M)c M, ..M, foreachkinZ. Let N= |J M, and assume that S€AlgLatT
K€z
and ST—TS=0 on N. Then
(1) each vector in N is a shifted vector for T,
(2) there is a sequence {a,} of complex numbers such that, for every vector x in N,

we have Sx~ 2 a,T*x.
k

Moreover, if, for each integer n=2, we have dim(M_,/(T*")~""(M,)JNM_,)=2,
then AT—TA=0 on N for every A in AlgLlatT.

Proof. Statement (1) is clear. Note that S leaves N invariant, since S€ Alg Lat T.
For each positive integer n, we can apply Lemma 2.4 to the operators induced by S
and T on M_,/M, to obtain a polynomial p,(z) such that (S—p,(D)YM_)CM,.
Moreover, it is clear that there is a single formal power series f(z)= %’ a,z* such that

each p,(z) is a partial sum of f(z). Since (N M,=0, it follows that Sx~ > a,T*x
for every x in N. g ¥

Note that the hypothesis dim (M_,/[(T*)*(M)INM_,)=2 implies, via
Lemma 2.5, that the operator induced by T on M_,/M,, is reflexive, which implies
that the operator induced by 4 on M _,/M, is a polynomial in the operator induced
by T. In particular, (AT—TA)Y(M_,)c M, forall n=2. Since (h] M,=0, it follows

that AT—TA=0 on N. )
3. Weighted shifts. The results of the preceding section often yield
Sx~ > a,T*x for every vector x (or for at least a dense set of vectors). This suggests
k

that the operator § is in the weakly closed unital algebra & (T) generated by 7;
however, the formal power series > a,T* need not converge, and it is not clear that
k

either the sequence of partial sums (or its Cesaro means) need have a convergent
subnet in the weak operator topology. For unilateral weighted shift operators on



Reflexivity and direct sums 189

Hilbert space with scalar weights, A. L. SHIELDS and L. J. WALLEN [29] proved that
the commutant coincides with the generated weakly closed algebra. In the course of
the proof they show that the sum of a formal power series in a weighted shift is
the strong limit of the sequence of Cesaro means of the sequence of partial sums of
the formal power series in the shift. We will show that the Shields—Wallen result
holds for shifts of a much more general nature.

Suppose that X is a normed linear space and {X;: i€} is a linearly independent
family of closed linear subspaces of X whose algebraic sum is A. We say that X is the
direct sum of the X;’s if there is a family {P;: i¢I} of idempotents in B(X) such that

(1) P,|M is the projection onto X; for each i€/,

(2) M is dense in X,

(3) sup {I iEZF’ P)|: FclI, F finite}< eo.

It follows that ZI' P,=1 converges in the strong operator topology, since the
net of partial sums isE bounded and converges strongly to 1 on the dense subset M.
1t also follows that the set { EZF' P;: FCIF or INF ﬁnite} is a bounded Boolean

algebra of idempotents. Standard results on bounded Boolean algebras of projections
(see [13]) imply that there is a constant K such that, for every function «:/-C
with finite support, we have

(*) | |5 (i) PJ| = K sup (i)

Moreover, if X is a Banach space, the preceding inequality holds for every bounded
oa: I-C and 21 a(i)P; converges in the strong operator topology.

Note that z;eco -sum or an /?-sum (1=p< ) of subspaces is a direct sum in the
above sense; however, an /™-sum is not a direct sum since M fails to be dense.

An operator T is a (forward) unilateral operator-weighted shift on a normed
space X if there is a sequence {X,: n€ Z*} of subspaces of X such that

(1) X is the direct sum of the X,’s,

Q) T(X)) X,y for neZ+.
Here Z* denotes the set of non-negative integers. If Z* is replaced by the set Z
of integers, then T is called a bilateral operator-weighted shift. The restriction opera-
tors T|X, are the weights of the shift. If all of the X,’s are 1-dimensional, then the
weighted shift is called a scalar-weighted shift. If, on the other hand, condition (2)
above is replaced by

Qy T(X) =0, T(X,,,)cX, for ncZ*

then T is a backwards unilateral operator-weighted shift. If 7" is an operator of any
of the three types defined above we say that T'is an operator-weighted shift.
The following is a generalization of the SHIELDS—WALLEN theorem [29].
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Theorem 3.1. Suppose T is an operator-weighted shift on a normed space X that
is a direct sum of subspaces {X,}. Suppose A€ B(X) and {a,} is a sequence of scalars
such that, for each x in UX,, we have Ax~ 3 aT*x. Let {A,} be the sequence of

k

Cesaro means of the sequence of partial sums of the series > a,T*. Then
3

(1) sup, | 4,]l <<,
(2) A,—~A in the strong operator topology.

Proof. First note that since X is the direct sum of the X,’s, it follows, for each x
in UJX,, that the sum  q,T*x converges in norm to Ax. It follows that ||A4,x—
k

—Ax|~0 for every x in UX,. If (1) is true, then {x€X: ||4,x— Ax|]|~0} is a
closed linear subspace of X containing UJX,, which implies (2). Hence it suffices to
prove (1).

Let P, denote the projection of X onto X, and, for each finite set F of indices,
let Qf= EZF P;. Let K be as in (%) above. It follows that, for each index n, we

have {QrA,QF} converges in the strong operator topology to A4,; whence, {|A4,|=
= limFsup O A, QFll. We will show that if m is any index and k and » are positive
integers, and if F={j: m=j=m+k}, then |Qr4,Q=K?%A|. From this it
follows that | 4,|=K2?|4| for n=1,2,3, ..., which proves (l).
Define continuous functions f, g: [—=, n]-B(X) by
f0= 2 'R, ; and g()= X e 'R,

0=j=k 0=j=sk

Let

1 [sin(n+1) 121

) =T | S

be the n'" Fejér kernel. A simple computation shows that

0 Au0r = [ F) AZ(DK, (D s,

and it follows that
10- 4,061 = = [ 1710 A K, Ol dt = K2l == [ K, (0t = K*]14]
..,Fanzn_n g n = 2”._":" - .

This completes the proof.

Corollary 3.2. Suppose that T is scalar-weighted unilateral shift with nonzero
weights. Then {T} =<4 (T).

Proof. Suppose e is a nonzero vector in X,. Then {T"¢} is a basis for X, for
n=0,1,2, .... Suppose SE€{TY. Then Se= > a,T*e for some sequence {a;} of
0=k
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scalars. Since S€{T}, it follows that

ST"e =T"Se =T" D> a,T*e = J a,T*(T"e).
0=k

osk
Hence the hypothesis of Theorem 3.1 is satisfied, which implies that S¢.of (T).

Corollary 3.3. If T is an operator-weighted shift on a normed linear space, then
{TYNAlg Lat T=(T).

Proof. It follows from Theorem 2.11 that if S€{T} NAlg Lat T, then S satis-
fies the hypothesis of Theorem 3.1.

Theorem 3.4. Suppose T is an operator-weighted shift on a normed space X
relative to the direct sum X= '2' X,. Let M=) X,, and suppose for each x in M

and each positive integer n with T"x0, there is ay in M such that sp {T*x: k=0}N
sp {T"y: k=0}={0} and T"y#0. Then T is reflexive.

Proof. Suppose S€Alg Lat 7. In view of Corollary 3.3, we need show only
that S€{TY. Wefirstshow thatif x, € M and sp {T*x: k=0}Nsp {T*y: k=0}=0,
then {x, y} is a shifted pair for 7. Once this is done, it will follow from part 3(c)
of Lemma 2.3 and the hypothesis of the theorem that ST=TS on M, and, since
X=5p M, it will follow that S€{TY}.

Suppose x,y€M and sp {T*x: k=0}Nsp {T*y: k=0}=0. Suppose xCX,
and y€X;. By symmetry, it will suffice to show that if n is a positive integer and
T"x50, then T"x¢sp ({T'x:i=0, i=n}U{T'y:i=0}). However, T"x€X.,,
and if P is the projection onto X ,, then T"x€sp ({T'x: i=0, iz=n}U{T’y: i=0})
implies that T"x=PT"x€sp ({PT'x: i=0, i=n}U{PT'y: i=0}), and the last set is
either 0 or sp {T"**~J/y}. This violates the conditions that T"x>0 and sp {T*x:
k=0}Nsp {T*y: k=0}=0. It follows that {x, y} is a shifted pair for 7, and the
proof is complete.

The following corollaries are immediate consequences of the theorem.

Corollary 3.5. Operator-weighted shifts with injective operator weights of rank
at least two are reflexive.

Corollary 3.6. Every direct sum of at least two scalar-weighted shifts with non-
zero weights is reflexive.

The following is a corollary of Theorem 2.10.

Corollary 3.7. If T is a unilateral backwards operator-weighted shift with in-
Jective weights, and T has a shifted vector of infinite order, then T is reflexive.

We will show that the unweighted (i.e., all weights 1) backwards unilateral shift
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operator on the Hilbert space A2 has no shifted vectors of infinite order. Our demons-
tration depends on the characterization of noncyclic vectors of the backwards shift
in [12]. A vector f is noncyclic for the backward shift T in case there exists a mero-
morphic pseudocontinuation f~ of fto the complement D, of the closed unit disk in
the Riemann sphere such that f~=G/H, where G and H are bounded holomorphic
functions on D,. To say f~ is a pseudocontinuation of f means that the radial limits
of fand f~ agree at almost every point of the unit circle. We need the following lemma.

Lemma 3.8. If f is a noncyclic vector for the backwards shift T, then fe M(Tf)~
if and only if f~(e)=0.

Proof. The proof is virtually the same as that of Theorem ! in [12]. Suppose

D= az, G()= Jbz* and H(Z)= Jc¢z7"
k=0 k=0 k=0
By multiplying both G and H by an appropriate power of z, we may assume that
either by=0 or c,#0. Then f~()=by/c,. (If ¢u=0, then f~(cc)=c=.) We have
f(€®)H(®)=G(e"®) a.e., and hence as in [12],

ayCo+ a0+ ... = by,
a,c,+asc,;+... =0,
a260+a3cl+..- =0,

etc. Thus if f~ (=)0, then b,70, and the preceding equations show that there
exists a vector that is not orthogonal to f but is orthogonal to T*f for every k=1.
Thus f does not belong to M(Tf) .

Conversely suppose f~(=)=0. Let h be a vector that is orthogonal to M (Tf) .
If ¢, is the conjugate of the k'™® Fourier coefficient of h, then all but the first of the

sequence of equations in the preceding paragraph hold. Thus if H,(z2)= > c¢.z 7%,
k=0

then H,, has radial limits at almost every point of the unit circle, and H,(e*)f(e’®)=
=G,(e”®) defines a function G, in L*(d9) with G,(e"*)= > b,e~*°. It follows that
k=0
if Go(z)= 2 biz7%, then g~=G,/H, is a pseudocontinuation of f to D, and G,
k=9
and H, are quotients of bounded holomorphic functions since they are in H2 and H*
of D, respectively. Since the pseudocontinuation of a function is unique, it follows
that g~ (=)=0, and thus b,=0. Hence the first equation of the sequence in the

preceding paragraph shows that f is also orthogonal to h, and it follows that
JeEM(Tf)~.

Proposition 3.9. The only shifted vectors of the adjoint of the unweighted uni-
lateral shift operator are polynomials.
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Proof. It will be shown that T has no noncyclic shifted vectors of infinite order.
This will imply that it has no infinite order shifted vectors. For if f is cyclic, shifted
and of infinite order, then 7f is shifted and of infinite order, but it is noncyclic.

Suppose f is any noncyclic vector of infinite order and f™ is its meromorphic
pseudocontinuation. Then since Tf=(f—f(0))/z, and since pseudocontinuations
are determined by their radial limits (see [12]), it follows that (Zf)~=(f~—£(0))/=.
Hence if ™ has a pole at < of order m, then (Tf)™ has a pole at < of order m—1,
and consequently (7™*'f)~(~)=0. By Lemma 3.8, T™*f¢sp {T: k=m+1}.
Since T™*f#0, fis not a shifted vector.

4. Reflexive Graphs. In this section we study conditions that make graphs
reflexive. We wish to consider a more general version of reflexivity than that of the
preceding sections. A linear subspace & of B(H) is reflexive if T€% whenever
Txef¥x]~ for every x in H. We say that a linear functional ¢ on & is elementary if
there are vectors x, y in H such that ¢(S)=(Sx, y) for every S in &. We say that &
is weakly elementary if every weak-operator continuous linear functional is elemen-
tary on &. (In [17] and [7], respectively the terms “‘property D’ and “property A”
used. Our notation agrees with that in [3).)

Theorem 4.1. Suppose that & is a reflexive linear subspace of B(H) and
n: F—~B(M) is alinear mapping such that the set of elementary linear functionals ¢ on
B(M) for which @orn is elementary on & separates the points of B(M). Then
Graph (n)={S®n(S): S€&} is a reflexive linear subspace of B(H®M).

Proof. Suppose that 4c B(H®M) and Aec[Graph (r)e]~ for every vector e
in H®M. Clearly, we can write 4A=B®C. Also, since & is reflexive, it is clear that
Bc . Thus, by replacing 4 by A—(B®n(B)), we can assume that B=0. We
need to show that C=0. Suppose that C0. Then there is an elementary functional
¢ on B(M) such that ¢(C)=0 and such that gon is elementary on &. Thus there
are vectors x;, x, in H and y,, y, in M such @ (7T)=(Ty,, y,) for all Tin B(M) and
such that (Sx, x))=¢(7(S))=(n(S)y,,y,) for all S in &. Letting e=x,Py,,
it follows that there is a sequence {S,} in & such that (S,®=n(S,))e—~de. Thus
S,x~0 and n(S,)y;~Cy;, Hence 0#¢(C)=(Cy,,y,)=lim (“ (S y1, }’2) =
=lim @(n(S,))=lim (S, x,, x,)=0. This contradiction shows that C=0.

Corollary 4.2. If & is a weakly elementary reflexive linear subspace of B(H)
and n: ¥ —~B(M) is a weakly continuous linear map, then Graph (n) is reflexive and
weakly elementary.

It was shown in [5] and [32] that if S is the unilateral shift operator and T is a
contraction operator, then S& T is reflexive. An unsolved problem of P. R. HaLmos
[18] asks whether every polynomially bounded operator is similar to a contraction,

13
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and it was shown by W. MLAK [22] that every polynomially bounded operator is
similar to the direct sum of a unitary operator and an operator with a weakly conti-
nuous H* functional calculus.

Corollary 4.3. If S is the unilateral shift operator and T is a polynomially boun-
ded operator, then S@®T is reflexive and weakly elementary.

Proof. The result of the preceding corollary shows that S@T is reflexive
and elementary when T has a weakly continuous H™ functional calculus. The direct
sum of such an operator with a unitary operator must be reflexive and elementary by
[17].

Suppose that S is a subnormal operator. A result of D. SArason [27] says
that there is a compactly supported Borel measure u in the plane and an open subset
Q of the plane such that the weakly closed algebra generated by 1 and S is isomorphic
to L= (u)® H> (Q). Call the set Q the Sarason hull of .S. Itis shown in [§] that conver-
gence in the weak operator topology in the H*=(Q) summand implies uniform con-
vergence on compact subsets of Q. Thus if T is an operator whose spectrum is con-
tained in Q, then there is an appropriate H* () functional calculus. The Sarason
hull of the unilateral shift operator is the open unit disk. It was shown by R. OLiN
and J. THomsoN [23] that the weakly closed algebra generated by a subnormal opera-
tor is weakly elementary. The proof of the preceding Corollary combined with the
aforementioned facts yield the following.

Corollary 4.4. If S is a subnormal operator and T is an operator whose spectrum
is contained in the Sarason hull of S, then S®T is reflexive and weakly elementary.

Note that the definitions of reflexivity and of being elementary for a linear sub-
space & of B(H) makes sense when & is a subset of B(H, K), the set of operators
from the Hilbert space H to the Hilbert space K. In this way, it makes sense to talk
of a subspace & of B(H) having a reflexive {(or elementary) restriction to a linear
subspace M of H, i.e., #|M is reflexive.

Suppose that & is a linear subspace of B(H) and x¢ H. We define G, (x) to
be the set of all vectors y in H such that

(@) [#x]1- N[y~ ={0},

(b) [¥x])+[Ly]™ is closed, and

(c) if {S,}is a sequence in & such that [|S,x||~0 and {S,y}is norm conver-
gent, then S,y-0.

Note that (a) and (b) imply that the sum in (b) is direct sum of Banach spaces
and that (c) implies that {Sx+ Sy: S€ &}~ is a graph in this direct sum.

Theorem 4.5. Suppose that M is a subspace of the Hilbert space H and & is a
linear subspace of B(H) such that
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(1) #IM is reflexive, :
(2) M+span(U{Gy(x): xeM}) is dense in H.
Then & is reflexive.

Proof. Suppose T€B(H) and Te€[Se]~ for every e in H. It follows from (1)
that T|M¢c#|{M; hencewecanassumethat T|M=0. Suppose x¢ M and y€G,(x).
Then there is a sequence {S,} in & such that S,(x+y)~>T(x+y). It follows from
parts (a) and (b) of the definition of G.(x) that S,x—~Tx=0 and S,y—Ty. It
follows from part (¢) of the definition of G, (x) that Ty=0. Thus, by (2), T=0,
since T=0 on a dense subset of H.

Corollary 4.6. Suppose & is a reflexive subspace of B(H) and n: ¥~ B(M)
is a linear map such that the set

{yeM: 3x€H such that {Sx@n(S)y: S}~ is a graph}

is dense in M. Then Graph (n) is reflexive and 7 is continuous with respect to the ultra-
weak (and norm) topologies on & and B(M).

The preceding Corollary can also be used to recapture the result, that S®T is
reflexive whenever S is the unilateral shift operator and T is a contraction [5], [32].
The basic idea is to let & be the unital weakly closed algebra generated by S and to
define = by 7(¢ (S))=¢(T) for each ¢ in H™. In the case ||T|| <1, it follows that if
x is a unit vector in ker %, then {p(S)x@e(T)y: p€H™}~ is a graph for every
vector y. This follows from the fact that if {¢,} is a sequence in H*= and ¢,(S)x—~
—-@(S)x, then ¢,~¢ in H? and thus uniformly on compact subsets of the open
unit disk, which, by the Riesz functional calculus, implies that ¢, (T)—¢(T) in
norm.

5. Questions and comments.

1. A Donoghue operator is a weighted shift on /2 with square summable weights
that tend monotonically to zero. It is easy to see that a backwards Donoghue operator
has no shifted vectors of infinite order. For if fis a vector of infinite order, then D*f
is a cyclic vector. Does (D@ D)* have a shifted vector of infinite order, where D is a
Donoghue operator?

2. Suppose S is the unilateral shift operator on /2. What is the set of all Hilbert
space operators T for which S@7 is reflexive. This paper shows that the set con-
tains all polynomially bounded operators and all operator-weighted shifts.

3. If T'is a nonnilpotent Hilbert space operator that is a direct sum of nilpotent
operators, must T be reflexive?

4. The results in this paper on reflexive graphs have been generalized in [15]
and have been extended to prove that certain graphs are hyperreflexive. In particular,
it is shown in [15] that if .S is the unilateral shift operator on /2 and T is polynomially

13#%



196 D. Hadvin and E. A. Nordgren

bounded, then S@ T is hyperreflexive. In [9) K. DAVIDSON proved that the unilateral
shift operator is hyperrefiexive. What about the direct sum of two weighted shifts,
or the operator-weighted shifts on Hilbert space considered in Theorem 3.47
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Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Edited by
Fred Roberts (The IMA Volumes in Mathematics and its Applications), IX+ 345 pages, X+ 156
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong,
1989.

One of the principal motive powers of the development of mathematics is the hard demand on
more and more application which appear from the side of living sciences. For the people who are
makers or users of pure and applied mathematics, a very interesting experience is to find the meeting
point of mathematics and the living nature, biology and social sciences.

This volume contains fifteen exciting overviews concerning the above topics. The leading idea
of the book is formulated in the first paper (by F. Roberts), drawing up seven fundamental concepts,
as RNA chains as “words” in a 4 letter alphabet, Interval graphs, Competition graphs or niche
overlap graphs, Qualitative stability, Balanced signed graphs, Social welfare functions, and Semior-
ders.

Diversity of human and biological sciences manifests itself in the interesting and multicoloured
topics in the remaining forteen papers. Thelist of authors (in the order of papers) is: J-P. Barthelemy,
M. B. Cozzens, N. V. R. Mahadev, J-C. Falmagne, P. C. Fishburn, B. Ganter, R. Wille, E. C. John-
sen, V. Klee, J. C. Lundgren, J. S. Maybee, J. K. Percus, P. H. Sellers, P. D. Straffin Jr.

The volume is mainly based on the proceeding of a workshop which was organized in course of
an TMA program on Applied Combinatorics.
: J. Kozma (Szeged)

Applied Mathematical Ecology, Edited by Simon A. Levin, Thomas G. Hallam and Louis J.
Gross (Biomathematics, 18), XIV+-491 pages, Springer-Verlag, Berlin—Heidelberg—New York—
London—Paris—Tokyo, 1989.

~ This book contains the subject-matter of the Second Autumn Course on Mathematical
Ecology held at the International Centre for Theoretical Physics in Trieste, Italy in November and
December of 1986. The contents and the structure of the book is introduced by the editors in the
Preface as follows: “This book is structured primarily by application area. Part II provides anintro-
duction to mathematical and statistical applications in resource management. Biological concepts
are interwoven with economic constraints to attack problems of biological resource exploitation,
conservation of our natural resources and agricultural ecology. Part III consists of articles on the
fundamental aspects of epidemiology and case studies of the diseases rubella, influenza and AIDS,
Part IV addresses some problems of ecotoxicology by modelling the fate and effects of chemicals in
equatic systems. Part V is directed to several topics in demography, population biology and plant
ecology, with emphasis on structured population models.”
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The list of authors shows that the Autumn Course was participated by the most outstanding
experts in Mathematical Ecology from all over the world. Their book must be found on the bookshelf
of every specialist wishing to follow the main directions of the development of the field.

L. Hatvani (Szeged)

E. Arbarello—C. Procesi—E. Strickland, Geometry today, Giornate di Geometria, Roma
1984 (Progress in Mathematics, 60), 329 pages, Birkhduser, Boston—Basel—Stuttgart, 1985,

The meeting ‘‘Giornate di Geometria” was held at the ‘‘Dipartimento di Matematica, Istituto
G. Castelnuovo™ during the period 4—9 June 1984, There were many mathematicians on this con-
ference from almost all of the area of geometry. At the same time some top specialists were also
there such as S. Donaldson, W. Fulton, P. Griffiths, V. Kac, D. Kazdban, D. Mumford for example
only. The book contains almost all of the talks given at the meeting, hence the reader finds accounts
on geometry ranging from algebraic curves to topology, from non linear equations to algebraic
groups and number theory.

We recommend this book to all who are interested in the modern geometry.

Arpad Kurusa (Szeged)

P. L. Barz—Y. Hervier, Enumerative Geometry and Classical Algebraic Geometry (Progress in
Mathematics, 24), X252 pages, Birkhduser, Boston—Basel—Stuttgart, 1982.

This book is based on the conference held at the University of Nice during the period 23—27
June 1981. The major areas of the activity were enumerative geometry, curves and cycles and multi-
plicities. We mention that half of the papers are written in french. The papers of the book are from
L. Gruson, C. Peskine, R. Piene, F. Catanese, W. Fulton, R. Lazarsfeld, D. Laksov, A. Beauville,
A. Hirschowitz, M. S. Narasimhan, P. Le Barz, I. Vainsencher and S. L. Kleiman.

We recommend this book to graduate students and resarchers as well.

Arpad Kurusa (Szeged)

P. Biler—A. Witkowski, Problems in Mathematical Analysis, (Pure and Applied Mathematics)
v+ 227 pages, Marcel Dekker, Inc. New York—Basel, 1990.

This is a truly excellent collection of problems in mathematical analysis, although several
problems from other mathematical disciplines are also included. The level of problems varies consi-
derably, but most of them are above the level of standard textbook exercises. Most of them require
some trick or strong theoretical background. Some of the problems are very hard and have the fla-
vour of research results. The collection was selected from several sources, many of them were taken
from the American Mathematical Monthly.

The book, which contains about 1200 problems, is divided into nine sections: real and complex
pumbers, sequences, series, functions of one variable, functional equation and functions of several
variables, real analysis, analytic functions, Fourier series and functional analysis. Each of them gives
a very thorough account of the given field through fascinating problems, although I have found the
first chapter more entertaining than the other ones. It starts out with the easy exersice that for irra-

tional @ and b the power a® can be rational. But the trick is nice: (Vi‘lz)ﬁ=2. However, the next
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problem, that for a ¢>8/3 asks for the existence of a 9 such that [9¢"] is prime for every n, is a
much more challenging one.

Unfortunately the hints given to the problems are very scarce and very often of little use since
they rather give the reference to the source of the problem than lending help in the solution. This
makes the use of the book rather cumbersome since no one wants to run to the library every time
he gets stuck with a particular problem. Sometimes no hint or reference is given at all, which may be.
puzzling for many readers in case of problems like the one which asks if it is possible to divide a
square into an odd number of triangles of the same area (try it!). I found it a pity that the authors do-
not give more detailed hints or full solutions which would have made the book even more outstand-
ing.

I would very strongly recommend the book to both students and teachers, but everyone who-
likes problem solving, which, according to many of us, is the heart of mathematics, will find hours,
and bours of fun and enjoyment in the problems.

Vilmos Totik (Szeged).

A. Bohm—M. Gadella, Dirac Kets, Gamow Vectors and Gel’fand Triplets. The Rigged Hilbert.
Space Formulation of Quantum Mechanics, (Lecture Notes in Physics 348), VIII+119 pages,
Springer-Verlag, Berlin—Heidelberg—New York—I ondon—Paris—Tokyo—Hong Kong, 1989.

This book presents the Rigged Hilbert space formulation of Dirac’s bracket formalism of
quantum mechanism, preferred by most physicists for its elegance and practicality in actual calcula-
tions. It is an extension of the first author’s well-known lecture notes (LNP 78) on the subject.

Dirac’s formalism of bras and kets has been considered as mathematical nonsense by von Neu-
mann, whose Hilbert space formulation became the standard, mathematically rigorous model of
quantum mechanics. The right mathematics for describing Dirac’s formalism appeared by the in-
vention of the theory of distributions in the fifties, and the concept of Gel’fand triplets and the nuc-
lear spectral theorem in the sixties, which make sense of the complete system of eigenvectors of self-
adjoint operators with continuous spectrum. The discovery of these beautiful mathematical theories.
was inspired by Dirac’s heuristic ideas.

This book not only gives a clear exposition of the mathematics of the Rigged Hilbert space
formulation of Dirac’s approach to quantum mechanics, in a languagage accessible to physicists,
but also presents interesting physical applications concerning decaying states and resonances, by
using the concept of Gamow vectors.

The reviewer recommends this volume to everybody interested in quantum mechanics, especi-
ally to graduate students studying physics or functional analysis, and university instructors lecturing.
on quantum mechanics.

Ldszlo Fehér (Szeged)

David M. Burton, Elementary Number Theory (second edition), XVII+450 pages, Wm. C.
Brown Publisher, Dubuque, Iowa, 1989.

The theory of numbers has occupied a unique position in the world of mathematics. This posi-
tion is due to several facts, e.g., it has an unquestioned historical importance, it has several easily
formulated but hardly solvable problems (this is the reason why it arises the interest of many ama-
teurs), it is one of the best subjects for early mathematical instruction. We share Gauss’ opinion,,
,‘Mathematics is the Queen of science, and number theory the Queen of mathematics”.

The elementary number theory is an integral part of almost all undergraduate mathematical
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curriculum, therefore several textbooks are available on this topic. Nevertheless, Burton’s very
readable book is unique in some sense among them.

In each chapter we can read a historical introduction or/and they end with a historical outline.
Evoking a nice old practice, we can find a pearl of quotation from mathematicians, philosophers or
writers at the top of every chapter. There are problems at the ends of the chapters (the total amount is
about 600) ranging in difficulty from the purely mechanical to challenging theoretical questions.
They form an integral part of the text, to require the reader’s active participation.

This second edition is an enlarged version of the first one (Allyn and Bacon, 1980). The substan-
tial changes are an entirely new section on cryptography, the enlargement of the section on Fermat
numbers, introduction of a variety of new topics, e.g., Merten’s conjecture, absolute semiprimes,
amicable number pairs, and primes in arithmetical progression. Some 150 additional problems are
also included.

The first nine chapters (Some Preliminary Considerations, Divisibility Theory in the Integers,
Primes and Their Distribution, The Theory of Congruences, Fermat’s Theorem, Number-Theoretic
Functions, Euler’s Generalization of Fermat’s Theorem, Primitive Roots and Indices, The Quadratic
Reciprocity Law) can be used as a basic material of a one semester course. The additional four chap-
ters (Perfect Numbers, The Fermat’s Conjecture, Representation of Integers as Sums of Squares,
Fibonacci Numbers and Continued Fractions) are independent of each other. They may be taken
up at pleasure. Despite of the material is mostly classical, there are several hints to modern results,
too (only in the second edition). Among the five appendices there are an outline of the prime number
theorem and answers to selected problems.

This well-organized textbook is warmly recommended to any undergraduate number theory
course.

Lajos Klukovits (Szeged)

Categorical Methods in Computer Science, Edited by H. Ehrig, H. Herrlich, H.-J. Kreowski
and G. Preuss (Lectures Notes in Computer Science, 393), VI+ 350 pages, Springer-Verlag, Berlin—
Heidelberg—New York, 1989.

This volume contains the papers presented at the International Workshop on Categorical
Methods in Computer Science with Aspects from Topology held in Berlin in September 1988. The
material is organized into three parts. The following quotation is from the Preface. “‘In part 1 we
have collected papers concerning categorical foundations and fundamental concepts from category
theory in computer science. Applications of categorical methods to algebraic specification languages
and techniques, data types, data bases, programming, and process specifications are presented in
part 2. The papers on categorical aspects from topology in part 3 mainly concentrate on special
adjoint situations like cartesian closedness, Galois connections, reflections, and coreflections, which
are of growing interest in categorical topology and computer science.”

The volume can be recommended to those interested in categorical methods in computer
science.

Z. Esik (Szeged)

Collected papers of Paul Turan, Edited by P. Erdés. 3 Volumes, XXXVIII 4 2665 pages. Akadé-
miai Kiad6, Budapest, 1990. :

Paul Turan was born in 1910 in Budapest, Hungary. He died in 1976. He achieved a remarkably
prolific career with publishing two books and 246 papers. The three volumes of his collected works
contain the collection of most of his papers (some of them written to very specific audience were
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omitted). Many of the earlier papers are in German bacause the works were reproduced photocopi-
cally, a process that amplifies the immense variety of Turan’s work. The exceptions to this are only
the papers written in Hungarian that were translated to English. Naturally, his books about the
power sum method invented by him in 1938 are not included in the list, but there are many research
papers dealing with the method and its applications.

The main areas in which Turan worked are as follows: power sum method and its applications
(some 70 papers), analytic number theory (cc. 60 p.), elementary number theory (15 p.), function
theory (22 p.), approximation theory and interpolation (34 p.), Fourier series (8 p.), differential
equations (11 p.), statistical group theory (18 p.), combinatorics (16 p.), numerical solutions of
equations (10 p.), polynomials (8 p.).

Also included are some most interesting writings discussing the lifelong achievements of L.
Fejér (his master), P. ErdGs (his lifelong friend and coauthor), K. Rényi, A. Rényi, A. Baker (for
Fields Medal), S. Knapowski (his student and coauthor), S. Ramanujan and young Hungarian
mathematicians that were the victims of fascism. He himself was in a nazi labour camp during second
world war, where he initiated extremal graph theory. One can read about this in two affectionate
obituaries contained in volume I by P. Erdés and G. Halasz.

Turan’s works have initiated several new directions and stimulated the research of an enor-
mous number of mathematicians, so it is natural that in many areas there have been new develop-
ments since the publications of his results. Therefore it is most appropriate that the collected works
contain many mathematical notes written by L. Alpar, P. Erd8s, G. Halasz, J. Pintz, M. Simonovits,
J. Szabados, M. Szalay and P. Vértesi on the progress in the subjects of the different papers. Unfortu-
nately no list of these notes is included although it would have made easier for the reader to keep
trac of these developments.

Paul Turan’s collected papers are not the type of books that one would read from the beginning
to the end, although I found it impossible to quickly paging through the volumes because quite often a
title, a formula or a problem caught my eyes that forced me to read further. I am certain that brow-
sing among Turan’s papers will be truly enjoyable for every mathematician even if his or her field
is completely different. No library can afford to miss these volumes, and for many of us it will be
very pleasant to have them on our bookshelf.

Vilmos Totik (Szeged)

R. Courant—F. John, Introduction to Calculus and Analysis, Vol. I, XXII+ 661 pages; Vol. II,
XXII1+954 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—
Hong Kong, 1989.

Although the first volume of this book was originally published in 1969 and the second one in
1974 it remained one of the best textbooks introducing several generations of mathematicians to
higher mathematics. This book leads the students to the heart of the mathematical analysis preparing
them for an active application of their knowledge. The main goal of this book is to exhibit the inter-
action between mathematical analysis and its various applications emphasizing the role of intuition
furthermore the importance of the union of intuitive imagination and deductive reasoning. Numerous
examples and problems are given at the end of the chapters. Some are challenging, some even diffi-
cult; most of them supplement the material in the text. The book is adressed to students on various
level, to mathematicians and engineers. Volume I contains among others the following chapters:
Integral and Differential Calculus; The Techniques of Calculus; Applications in Physics and Geo-
metry; Taylor’s Expansion; Infinite Sums and Products; Trigonometric Series; Differential Equa-
tions.
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The most characteristic chapters of Volume II are: Functions of Several Variables and Their
Derivatives; Vectors, Matrices, Linear Transformations; Applications; Multiple Integrals; Rela-
tions Between Surface and Volume Integrals; Differential Equations; Functions of Complex
Variable.

This excellent book is highly recommended both to instructors and students.

J. Németh (Szeged)

CSL '88, Edited by E. Bérger, H. Kleine Blining and M. M, Richter (2nd Workshop on Com-
puter Science Logic, Duisburg, FRG, October 1988), Proceedings. (Lectures Notes in Computer
Science, 385), VI+399 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1989.

This volume is a collection of 24 papers presented at the workshop “Computer Science Logic’
held in Duisburg, from October 3 to 7, 1988. The papers cover a broad class of topics ranging from
logical aspects of computational complexity to the acceptance of w-regular languages under various
fairness constrains. Below we briefly discuss three contributions of particular interest to the reviewer.

In the paper ‘“‘Characterizing complexity classes by general recursive definitions in higher ty-
pes” by A. Goerdth, it is proved that recursive definitions of rank n-+ 1 correspond to the complexity
class U(DTIME (exp, (p(x))): p(x) a polynomial). Consequently, due to a hierarchy theorem of
complexity classes, rank # recursive definitions form a proper hierarchy.

Star-free regular languages have attracted a lot of interest in theoretical computer science. By
McNaughton’s theorem, star-free regular sets are exactly those definable by some first-order sentence
in a suitably chosen language. The paper “Interval temporal logic and star-free expressions” by
D. Lippert relates star-free languages and a generalisation thereof to interval temporal logic, a kind
of logic introduced for the specification of digital circuits.

Automata and tree automata have continued to play an important role in establishing decida-
bility of certain logics. In the paper “On the emptiness problem of tree automata and completeness
of modal logics of programs™ by H. Wagner, it is proved that the non-emptiness problem of alternat-
ing tree automata is P-complete. This result is then used to show that the satisfiability problem of
Propositional Dynamic Logic with a repeat construct is EXPTIME-complete.

The volume can be recommended to those interested in recent research in logical aspects of
theoretical computer science.

Z. Esik (Szeged)

Gerald A. Edgar, Measure, Topology, and Fractal Geometry, (Undergraduate Texts in Mathe-
matics), +230 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—
Hong Kong, 1990.

Nowdays the fractals are in the center of the scientists’ interest. Since Benoit Mandelbrot estab-
lished the notion and phylosophy of fractals, quite a lot of books were published on this subject.

Now here is a mathematics book about fractals. The authors’ main aim was to give a systematic
discussion of the topological and measure theoretical background and to present the most important
ideas of fractal geometry.

In Chapter 1 the most basic examples of fractal sets are introduced, such as the Cantor set, the
Sierpinski Gasket, the Koch curve, to motivate the “whole story”. Chapter 2 is a very good introduc-
tion to the topology of metric spaces and Chapter 3 contains the basics of topological dimension
theory (small and large inductive dimensions). Chapter 4 is devoted to the complete and detailed dis-
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cussion of the self-similarity and the more general ‘“‘graph self-similarity”. Here can be found the
description of iterated function systems which is an efficient way of generating fractal sets, discovered
is recent years by Michael Barnsley. In Chapter 5 the Lebesgue measure and the general methods of
generating outer measures and measures are discussed. In Chapter 6 the Hausdorff measure and the
Hausdorff dimension are introduced and various fractal dimensions are compared to each other.
Finally in Chapter 7 some additional topics are discussed.

Each section contains several exercises for practicing the use of the notions and theorems. The
book is written in a nice style illustrated by a lot of figures.

This text is recommended to students as a first course on fractal geometry but it may be useful
to anybody who is interested in the rigorous mathematical background of fractals.

J. Kincses (Szeged)

Bernard d’Espagnat, Reality and the Physicist. Knowledge, duration and the quantum world,
280 pages, Cambridge University Press, Cambridge—New York-—New Rochelle—Melbourne—
Sydney, 1989.

Since the very beginning of this science, quantum mechanics has always been a source and a
field of philosophical debates. The founders of this discipline were fully aware of the fact, that the
results of quantum theory are in sharp contradiction with the concepts of classical mechanics. They
revealed, that microscopic objects are strongly influenced by the measuring apparatus, and the term
of physical phenomenon makes sense only, if we take into account the whole apparatus that produces
aresult of an observation. This process is a kind of collapse, in which the original state of the system
changes radically and irreversibly. According to the orthodox view, this final step takes place in the
mind of the observer, which is in contradiction with realism, with the principle of the existence of in-
dependent reality. For a long time physicists gave up the idea of digging more deeply into such ques-
tions, regarding them to belong to the field of philosophy. They rather made use of the calculation
rules of quantum physics, which proved to be a very succesful theory.

The debate has been showing a revival in recent years, because it turned out, that the conse-
quences of most simple and logical assertions about a physical system can be put into the form of
inequalities (the Bell inequalities), the validity of which can be tested by (much less simple) experi-
ments. And the experiments show, that these most plausible inequalities are violated, while the pre-
dictions of quantum mechanics are confirmed. The novelty of these experiments lies in the fact, that
the collapse manifests itself on a macroscopic scale, when the “parts” of a single quantum system are
several meters apart.

The book, whose author is a well-known theoretical physicist and philosopher, is intended to
clear up the situation, stating as precisely as possible the different views on this problem. It is out of
question, that d’Espagnat enriches the concept of independent reality and its relation to physical
observations. He places his own views somewhere between those of the positivists and the materia-
lists. The book concentrates on the philosophical aspects of the issue, and almost totally avoids the
mathematical technicalities, as well as the description of physical experiments. This is certainly a
merit, because the book can be recommended to everybody, interested in natural philosophy and the
fundamental problems of the material world. Nevertheless, I would propose that the reader should
get acquainted with the article by the same author in the Scientific American (vol. 241, p. 158, 1979),
where some part of the background is explained in simple terms. This paper, as well as a short
synopsis of more recent experimental work, might have been added as an appendix to the text. But
anyway, there are a plenty of deep and interesting thoughts in this book, and it enforces us to think
over: how absurd independent reality can be on the quantum level.

M. G. Benedict (Szeged)
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H. Gross, Quadratic Forms in Infinite Dimensional Vector Spaces (Progress in Mathematics,
1), XXII1+419 pages, Birkhduser, Boston—Basel—Stuttgart, 1979.

Well, one can say this book is old (ten years have gone since its publication) but 1 think no one
can say it is absolete. Although many new results have born in the last decade, for example H. A.
Keller’s non classical Hilbert space (Math. Z. 172, 41—49), most of the more important resuits until
1979 are collected in this book together with the directions of the present researches. Its clear style
and carefully considered built up makes it still the best book in the subject in my opinion.

The contents of the book are gathered around some important notions and theorems. These are
the sesquilinear forms, the diagonalization of &,-forms, the Witt decomposition for Hermitean
Ro-forms, the quadratic forms and the theorems of Witt an Arf. Every sections are written almost just
like a paper closed with specific reference list and some of them with appendix. This helps the reader
very well.

I think this book should be on the shelf of every mathematician who makes research on this
subject.

Arpdd Kurusa (Szeged)

Giinther Himmerlin—Karl-Heinz Hoffmann, Numerische Mathematik, XII 4448 pages, Springer-
Verlag, Berlin—Heidelberg—New York (Grundwissen Mathematik, B. 7), 1989.

This book offers all the material of the customary one-year introductory courses and a lot of
extras.

Its main merit is the clear and intelligent mathematical treatment of the problems. There are
numerous consize proofs, illuminating examples and fascinating historical remarks throughout the
text. '

Even the first Chapter on numerical calculations and algorithms contains supplements on back-
ward error analysis branch-and-bound algorithms and complexity issues.

In Chapters 2 and 3 Numerical Linear Algebra, i.e., Systems of Linear Equations and the Eigen-
value Problem are treated.

The main body of the book follows: Chapter 4: Approximation, Chapter 5: Interpolation and
Chapter 6: Splines. In this part the standard topics are investigated with deep mathematical insight.
Moreover, the questions of the (two and) finite dimensional interpolation and approximation are
touched on.

Chapter 7: Integration starts with the elementary interpolation quadrature rules, extrapolation
methods and departs to the special issues of optimal quadrature rules and Monte Carlo methods.

Chapter 8: Iteration gives the basic material on iteration methods for systems of linear and
nonlinear equations.

The final Chapter 9: Linear Programming traces out the theoretical background the different
variants of the Simplex Method and ends with the polynomial algorithms of Karmarkar and Kha-
chyan.

A Guide on General Literature, an Index and 270 not-only-routine exercises complete this
valuable book. It can be recommended to anybody who wants to get a general overview of the spirit
and the methods of the Numerical Analysis.

J. Virdgh (Szeged)
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Micha Hofri, Probabilistic Analysis of Algorithms (Text and Monographs in Computer Science),
XV +240 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—FParis—Tokyo, 1987.

To analyse of an algorithm there are two different basic methods. One of them has the objective
to find the running time of the algorithm operation in the worst-case in the term of some specified
function.

In the other one the operations of algorithms are shown to be associated with probabilistic
concepts and processes. In this sense there are two subclasses: On one hand there are explicitly in-
troduced operations in the algorithm and they are choosed on the basis of random elements (pseudo-
random numbers, simulated coin flipping etc.). On the other hand we have the operations of a deter-
ministic algorithm and we consider the input data over which some probability measure can be sti-
pulated.

Among the algorithms for which the book provides detailed analyses, the reader finds examples
of both varieties. Chapter 1 shows that the second type brings up methodological and conceptual
problems that the first case need not entail. Since the probabilistic analysis of algorithms, as a discipli-
ne, draws on a fair number of mathematics Chapter 2 is dealing with some of them as introduction to
asymptotics, generating functions, integral transforms, combinatorial calculus, asymptotics from
generating functions and some selected results from probability theory.

The remining part of the book gives applications. Chapter 3 presents algorithms over permu-
tations (locating the largest term in a permutation, representations of permutations, analysis of
sorting algorithms). Chapter 4 contains algorithms for communications network, and Chapter 5 is
dealing with bin packing problems.

This is a good book which is recommended to all people who are working in the given fields.

G. Galambos (Szeged)

Irregularities of Partitions, Edited by G. Halaszand V. T. Sos (Algorithms and Combinatorics,
8), VIII4-168 pages, Springer-Verlag, Berlin—Heidelbere—New York—London—Paris—Tokyo,
1989.

The problem of uniform distribution of sequences has now become an important part of num-
ber theory, and this is also true for Ramsey theory in relation to combinatorics. This volume is the
homogeneous account of a workshop held at Fertéd in Hungary. Participants discussed the recent
emergence of close links between Ramsey theory in combinatorics and the theory of uniform distri-
bution in number theory.

The titles and authors of papers are: J. Beck and W. W. L. Chen: Irregularities of Point Distri-
butions Relative to Convex Polygons; J. Beck and J. Spencer: Balancing Matrices with Line Shifts
II; M. Cochand and P. Duchet: A Few Remarks on Orientation of Graphs and Ramsey Theory;
P. Erdés, A. Sarkdzy and V. T. S6s: On a Conjecture of Roth and Some Related Problems I; Ph.
Flajolet, P. Kirschenhofer and R. F. Tichy; Discrepancy of Sequences in Discrete Spaces; P. Frankl,
R. L. Graham and V. Rédl: On the Distribution of Monochromatic Configurations; A. Gyarfas:
Covering Complete Graphs by Monochromatic Paths; H. Lefmann: Canonical Partition Behavior
of Cantor Spaces; L. Lovasz and K. Vesztergombi: Extremal Problems for Discrepancy; J. H.
Loxton: Spectral Studies of Automata; M. Mendes France: A Diophantine Problem; J. Nesetril
and P. Pudlak: A Note on Boolean Dimension of Posets; Zs. Tuza: Intersection Properties and
Extremal Problems for Set Systems; G. Wagner: On an Imbalance Problem in the Theory of Point
Distribution.

Z. Bldzsik (Szeged)
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W. Klingenberg, Lineare Algebra und Geometrie, zweite verbesserte Auflage, XIII+293 pages,
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990.

This book consists of ten chapters. The material of the first five chapters has an algebraic cha-
racter. In accordance with the didactical motivation, the text starts with an exposition of the classical
algebraic structures: groups, rings and fields. Then moduls and vector spaces, basis systems, dimen-
sion of vector spaces and dual spaces are defined. Matrices are first formally defined and then the
connection between matrices and linear operators is showed. Solution of linear equation systems and
the notion of determinants are also given. At the end of the algebraic part eigenvalues and normal
forms of linear operators are discussed and as an application linear differential equation systems are
investigated. With the sixth chapter starts the geometric part. First normed vector spaces are intro-
duced. Affin and projectiv spaces are considered over general finite dimensional vector spaces. If the
finite dimensional vector space is endowed with an euclidean norm, then the affin space over this
one supplies the euclidean, the projectiv space supplies the elliptic geometry. If the vector space is
endowed with a Lorenz metric, then the affine space over this supplies the hyperbolic geometry. The
main theorem of the affin and projectiv spaces with which the general collineations are characterized
is completed with Staudt theorem concerning bijections of a projectiv line.

L. Geliér (Szeged)

R. Kress, Linear Integral Equations (Applied Mathematical Sciences, 82), XI+299 pages.
Springer-Verlag, Berlin—Heidelbers—New York—London—Paris—Tokyo—Hong Kong, 1989.

Sometimes the classical theory of integral equations serves as an introduction to the abstract
theory of compact operators, on the other hand the theory of integral equations is derived as an
important application of the operator theory. Mostly the numerical methods are treated separately.

The aim of the author of this book is to attach the same value on the theory, the application
and on the numerical methods. This is a considerable task from scientific and pedagogical aspects as
well. Integral equations are useful for engineers, too. Therefore it is desirable that the work should be
readable for them. So presenting a modern introduction one cannot begin by saying “‘you must have
solid backgrounds in differential and integral calculus, in differential equations, in complex function
theory, in functional analysis, in numerical methods™ and so on. (Something like this is often presu-
med implicitly.) The author of this book relies on bases which — I think — are expectable from trai-
ned readers. Some useful and necessary topics are briefly presented.

Roughly speaking the work consists of four main fields: the Riesz—Fredholm theory for in-
tegral equations of the second kind; the classical applications (Laplace and heat equation, singular
integral equations); introduction to the numerical solution of the equations and finally, ill-posed
integral equations of the first kind. These are done in 18 chapters.

The proofs are clear, detailed in a suitable manner. In several cases the considerations are
more elementary and straightforward than as customary.

As an example let us quote here the outline of the third chapter. This consists of three points:
Riesz theory for compact operators (in my opinion remarks which may be found for example here
such as “The main importance of the results of the Riesz theory for compact operators lies in the
fact that we can conclude existence from uniqueness as in the case of finite dimensional linear equa-
tions.” are valuable for the readers; Spectral theory for compact operators (the former results in
terms of spectral analysis); Volterra integral equations (the result is formulated in the classical way
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and also in terms of spectral theory). Finally, as at the end of the other chapters as well we find inte-
resting problems without solutions but with hints in some cases.
I am sure that after reading this book everyone will like integral equations a bit better which was
indeed the author’s aim.
L. Pintér (Szeged

Y. A. Kubyshin—J. M. Mourio—G. Rudolph—I. P. Volobujev, Dimensional Reduction of
Gauge Theories, Spontaneous Compactification and Model Building, (Lecture Notes in Physics, 349),
X +-80 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong
Kong, 1989.

At present there is a general agreement among physicists that the experimental facts of particle
physics are correctly reproduced by the so called standard model. The most challenging problem of
theoretical particle physics is to produce a theory unifying the Weinberg-Salam-Glashow model of
the electroweak force with the quantum chromodynamics describing the strong interaction, and, if
possible, describing gravity as well. The dimensional reduction approach to this problem presented
in this monograph is a modern version of the ideas put forward by T. Kaluza and O. Klein in the
twenties.

In the first part of the book the authors discuss the dimensional reduction of pure Yang-Mills
theories. In particular, they present a general method for calculating the scalar potential. The second
part is devoted to the dimensional reduction of gravity and to spontaneous compactification. In the
final part matter fiels and some aspects of model building are considered.

Throughout the book, the authors make extensive use of homogeneous spaces of Lie groups
and connections on fibre bundles. They exhibit the global aspects of the dimensional reduction me-
thod and give all the important formulae in local terms as well.

It seems that till now nobody succeded in constructing a model describing the fundamental
interactions in a unified scheme, which is satisfactory in all respects. The dimensional reduction
approach to constructing such a model deserves further investigation. This book is primarily intended
for researchers and graduate students working on this program. It is also recommended to physicists
and mathematicians interested in unified field theories and in applications of differential geometry.

Laszlo Fehér (Szeged)

Serge Lang, Undergraduate Algebra (Undergraduate Text in Mathematics.), IX 4256 pages,
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987.

The book is a second part of an algebra program which is addressed to undergraduates. The
theme of Chapter 1 is the set of the real numbers. After some basic properties such important defi-
nitions are introduced as the greatest common divisor, the unique prime factorization and the equi-
valence relations and congruences. The next two Chapters are dealing with the groups and rings with
general definitions on mappings, the homomorphisms and automorphisms. Among the groups the
permutation groups, the cyclic groups and the finite Abelian groups are studied in details. In the
Chapter on rings there are mentioned some basic theorems on their homomorphisms. In Chapter 4
the polynomials are considered. The Euclidean Algorithm, the greatest common divisor, the unique
factorization and the partial fractions are introduced. The Chapter is closed by examinations on
polynomials over the integers, the principial rings and the factorial rings. Vector spaces and modules
are considered in Chapter 5. After some basic definitions (vector space, subspace, generators, basis,

14
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homomorphism, kernel) some theorems are presented on the dimension of a vector space. Subsec-
tions are dealing with the linear maps, the modules, the factor modules and the free Abelian groups.
For familiar readers have been suggested the next two Chapters which are dealing with some
linear groups as the general linear group (GL,(K)). Theorems are introduced for the structure of
GL,(F) and SL,(F). The Chapter 7 considers the elements of Field Theory: embeddings, splitting
fields are mentioned. Basic theorems on the Galois Theory are given. In Chapter 8 the finite fields
are considered. Chapter 9 introduces some theorems on the real and complex numbers, and the book
is closed with the examinations on the sets. In this section such well-known theorems are considered
as the Zorn-Lemma and the Schroeder—Bernstein Theorem. :
This book is an elementary text in the Algebra and so a lot of examples are introduced together
with the development of the abstractions. The author intended to write a self contained book. The
aim has been obtained.
G. Galambos (Szeged)

W. Y. Lick, Difference Equations from Differential Equations (Lecture Notes in Engineering),
X 4282 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989.

In mathematical physics and in other branches of the practical problems the first task is to
construct a correct model. (Of course every model has some imperfection.) In mechanics one gene-
rally obtains a differential equation. The investigation of the obtained equation is twofolded. By
using qualitative methods one gets general properties of the solutions and on the other hand we try to
present the solution or an approximation of the solution in an explicit form. In general this is done
by translation of the differential equation into accurate, stable and physically realistic difference
equation and the investigation of this task is the aim of the author. o

There are several methods to form difference equations from differential equations. A brief and
clear survey of these methods can be found in the Preface. The advantages and disadvantages of
every single method are enumerated. In the author’s opinion the volume integral method seems to be
superior to other methods, therefore this is the primary method used in this book. The application of
this single procedure makes the work easier to understand and at the same time it gives more possi-
bility for deriving new and improved difference equations.

The book consists of five chapters. In the first four ones the volume integral method is applied
for ordinary and partial differential equations. (Parabolic, hyperbolic and elliptic partial differential
equations are treated separately.) Chapter 5 contains the applications of the ideas and algorithms
treated formerly for special problems. Let us list them: currents in aquatic systems; the transport of
fine-grained sediments in aquatic systems; chemical vapor deposition; free-surface flows around
submerged or floating bodies.

The text is clearly written and well-organized. The emphasis on the important role of the basic
physical problem is a characteristic feature of the investigations.

In my opinion this book is valuable not only for phisicists, engineers and computer scientists
but for mathematicians who are interested in the qualitative theory of differential equations, as well.:

L. Pintér (Szeged)

D. Liist—S. Theisen, Lectures on String Theory, (Lecture Notes in Physics 346), VIII+ 346
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1989.

In the past few years string theory has been one of the most active areas of theoretical, mathe-
matical physics. Although its relevance for explaining the mysteries of Nature still has not been pro-
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ven, there can not be any doubt at all that it greatly contributed to the interaction of mathematics
and physics. For'example, string theory played an important role in the development of conformal
field theory, which i(ii/dlves the fascinating mathematics of the Kac-Moody and the Virasoro algebras.

This introc_iuctioh to string theory is an expanded version of the lectures given by the authors at
the Max-Planck-‘Iﬁ'stitht fiir Physik und Astrophysik in Munich in fall and winter 1987/1988. The
authors present a standard introduction to the bosonic and fermionic strings in the critical dimen-
sions, and give a detailed description of the covariant lattice construction of four-dimensional hete-
rotic strings. They give a clear introduction to conformal field theory, including the supersymmetric
version, and emphasize its role in constructing four-dimensional strings.

This book will prove usef_ul for graduate students and researchers interested in string theory and

is warmly recommended.
Ldszlo Fehér (Szeged)

Mathematical Logic and Applications, Edited by J. Shinoda, T. A. Slaman and T. Tugué (Lec-
ture Notes in Mathematics, 1388), 222 pages, Springer-Verlag, New York—Berlin—Heidelberg—
London—Paris—Tokyo—Hong Kong, 1989.

These are the proceedings of the 87th Meeting on Mathematical Logic and its Applications

held at the Research Institute of Mathematical Sciences of Kyoto University during August 3—6,

1987. The authors are C. T. Chong, Y. Kakuda, H. Katsutani, S. Kobayashi, M. Shimoda, J. Shino-
da and T. A. Slaman, T. A. Slaman and W. H. Woodin, T. Yamakami and M. Yasugi.

Vilmos Totik (Szeged)

Meyberg-Vachenauer, Hohere Mathematik 1. Differential — und Integralrechnung Vektor —
and Matrizenrechnung, XTIV +517 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tpkyo—Hong Kong, 1990. .

The text is divided into eight chapters. The first chapter is of introductory character. Here the
real and complex numbers, vectors, lines and planes are introduced. In the second chapter the limit
of number sequence, the limit value and continuity of functions of one variable are defined. The
third chapter is devoted to developing the differentiation theory of functions and its applications-
At the end of this chapter the exponential and logarithm functions are introduced and discussed.
Chapter 4 deals with the integration theory of functions and applies the theory for determining the
length of a curve, the area of a rotation surface and the volume of a rotation body. Numerical in.
tegration is also shortly discussed. Chapter 5 introduces the concept of convergence of number
series and function series. The power series and especially the Taylor series are examined in detail.
Chapter 6 is a glimpse into linear algebra, where the usual notions and theorems are given. Chapter 7
investigates functions of several variables, defines the differentiation of such functions and finally
develops the differentiation theory of functions with vector values. Chapter 8 treats the theory of
integration of functions of two and three variables and the theory of line and surface integration.

The book is recommended to students in the first two semesters. .
- L. Gehér (Szeged)

Angelo B. Mingarelli—S. Gotskalk Halvorsen, Non-Oscillation Domains of Differential Equa-
tions with Two Parameters (Lecture Notes in Mathematics 1338), XI+ 109 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988.

Nowadays the literature of the qualitative theory of the linear second order ordinary differen-
tial equations fills almost a whole library. To find some new and interesting result is not an easy

14%
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task. In this book the authors present an important problem, new results and open questions. The
starting point is the investigations of R. A. Moore on the equation y” +(—a+ﬁ-B(x)) y=0 (1),
where «, § are real parameters, the function B is continuous, periodic of period one and has mean
value equals to zero. Several well-known equations (Hill, Mathieu etc.) are of this form with various
B. Equation (1) will be called disconjugate on R if and only if every nontrivial solution has at most
one zero in R. (1) will be called non-oscillatory on R if and only if every nontrivial solution has at
most a finite number of zeros in R. The pairs («, §)€ R* for which (1) is disconjugate resp. non-
oscilatory constitute the disconjugacy domain resp. nonoscillation domain of (1) and these sets are
denoted by D resp. N. Moore proved that D=N and N is a closed, convex unbounded set. The
main problem of this book is the investigation of sets D and N of the equation y”+(—a- A(x)+
+B-B(x))y=0, where x is nonnegative, the functions 4, B are Lebesgue integrable on every
compact subset of the nonnegative reals. In cases treated in this work D is colsed, convex, bounded
or unbounded set, DTN, N is convex, but N is not always closed. Naturally more interesting
questions arise on D and N and their connections. Chapter headings are: Introduction, Scalar linear
ordinary differential equations; Linear vector ordinary differential equations; Scalar Volterra—
Stieltjes integral equations.

From the style of this work it seems to me that the authors do not take the topic as their own
hunting-field and they would not mind if somebody else should solve some of their problems.

L. Pintér (Szeged)

J. D. Murray, Mathematical Biology (Biomathematics, 19), XIV +767 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989.

The most intensive development of sciences can, to my mind, be waited in the biology. One of
the good orﬁens of this is that more and more biological models are constructed and investigated by
mathematical methods. This is the way that creates a good possibility of the interaction of mathe-
matical and biological researches and the established involvement would be useful not only for the
development of biology, but the mathematics itself should benefit from this connection.

Murray’s new book takes an inspiring influence on the involvement of these two sciences. It
contains a lot of models from several branches of the biology, for example from the population
ecology, reaction kinetics, biological oscillators, the developmental biology, the evolution, the
epidemology and so on. The most important biological laws of studied phenomena can be found in
it; therefore, the reader will attain a great practice in modelling of biology.

To understand and follow this book, no serious preliminary biological knowledges are needed.
The reader has to be familiar only with the basic calculus and differential equations. The authors have
involved only deterministic models described by ordinary differential equations, delay equations,
integro-differential equations, partial differential equations and their discrete analogies. The used
mathematical tools, as such as the catalogue of singularities in the plane, Poincaré-Bendixson theo-
rem, Routh—Hurwitz conditions, Juri conditions, Hopf bifurcation theorem, the properties of Lap-
lacian operators in bounded domains are collected in an appendix that is a great help to the reader.

The book contains simpler and more particular models, too. So, on the one hand this book is
an excellent handbook for investigators working in the field of biomathematical modelling. The rea-
son is not only that it provides a good survey on deterministic models of the biology, but its style
is suitable for giving inspirations for further researches. On the other hand, the simpler models in
the book assure possibility to use it as an introduction for beginer scientific workers in this branch and
also in the teaching differential equations.
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The book is easy-to-read. The clearness is assured by numerous figures, diagrams. At the same
time, the style is deeply interesting since the results obtained by theoretical methods are compared
with experimental dates.

The book is recommended to specialists in biomathematics, differential equations, to biologists
interested in mathematics, and to graduated students in mathematics and biology.

J. Terjéki (Szeged)

New Integrals, Proceedings. Coleraine 1988. Edited by P. S. Bullen, P. Y. Lee, J. L. Mawlin,
P. Muldowney and W. F. Pfeffer (Lecture Notes in Mathematics, 1419), 202 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990.

In recognition of the pioneering work done by Ralph Henstock in the field of post-Lebesgue
integration theory, the 1988 Summer Symposium on Real Analysis was held in Coleraine. The papers
in this volume cover current research in generalised Riemann, Denjoy and Perron integration. The 15
papers contained in this volume are written by R. Henstock, P. S. Bullen, T. S. Chew, S. F. L. de
Foglio, C. Pierson-Gorez, J. Kurzweil and J. Jarnik, S. Leader, P. Y. Lee, P. Maritz, P. Muldowney,
P. Mikusinski and K. Ostaszewski, W. F. Pfeffer, V. A. Skvortsov, J. D. Stegeman.

The wide range ensures that everybody interested in integral theory will find at least one paper
of his own interest.

J. Németh (Szeged)

Number Theory and Dynamical Systems (London Mathematical Society Lecture Note Series,
134), Edited by M. M. Dodson and J. A. G. Vickers, 172 pages, Cambridge University Press, Cam-
bridge—New York—Port Chester—Melbourne—Sydney, 1989.

Fifty years ago the title of this book would have been a great surprise. Nowadays number theory
appears in various branches of practical applications. Therefore the connection of number theory
and dynamical systems is not so astonishing, but at the same time it invariably holds that the com-
bination of various branches produces significant results.

In connection with number theory and dynamical systems let us mention only two facts. One is
the Kolmogorov—Arnold—Moser theorem concerning the question of stability of the solar system,
The other is Furstenberg’s proof of Szemerédi’s theorem on arbitrarily long arithmetic progressions
in infinite integer sequences. But we could cite several other examples, too.

This book consists of contributions from a Conference on Number Theory and Dynamical
Systems held at the University of York in 1987. Perhaps a little characterizing are the addresses of
the contributions : H. Riissmann: Non-degeneracy in the perturbation theory of integrable dynamical
systems; J. A. G. Vickers: Infinite dimensional inverse function theorems and small divisors; S. J.
Patterson: Metric Diophantine approximation of quadratic forms; Caroline Series: Symbolic
dynamics and Diophantine equations; S. G. Dani: On badly approximable numbers, Schmidt
games and bounded orbits of flows; S. Raghavan and R. Weissauer: Estimates for Fourier coeffi-
cients of cusp forms; K. J. Falconer: The integral geometry of fractals; J. Harrison: Geometry of
algebraic continued fractals; Michel Mendes Frances: Chaos implies confusion; J. V. Armitage:
The Riemann hypothesis and the Hamiltonian of a quantum mechanical system. _

Nort only researchers in dynamical systems or in number theory can find interesting ideas in
this volume but every curious mathematician, voo.

L. Pintér (Szeged)
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Numerical Methods for Ordinary Differential Equations, Proceedings of the Workshop held in
L’Aquila, 1987. Edited by A. Bellen, C. W. Gear and E. Russo (Lecture Notes in Mathematics,
1368), VII+136 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1989.

This slim volume contains the following 8 invited lectures of the Workshop. C. Baiocchi:
Stability in Linear Abstract Differential Equations. — A. Bellen: Parallelism Across the Steps for
Difference and Differential Equations. — D. Di Lena, D. Trigiante: On the Spectrum of Families
of Matrices with Applications to Stability Problems. — C. W. Gear: DAEs; ODEs with Constraints
and Invarianst. — P. J. van der Houwen, B. P. Sommeijer, G. Pontrelli: A Comparative Study of
Chebyshev Acceleration and Residue Smoothing in the Solution of Nonlinear Elliptic Difference
Equations. — O. Nevanlinna: A Note on Picard—Lindelof Iteration. — S. P. Norsett, H. H. Si-
monsen: Aspects of Parallel Runge—Kutta Methods. — L. F. Shampine: Tolerance Proportionality
in ODE Codes.

In these research and survey papers the connections between the classical background of
numerical initial value ODE methods and new reserarch aras such as differential-algebraic equations,
effective stepsize control and parallel ODE solver algorithms for small — and large — scale parallel
architectures are investigated.

This volume may be of interest to researchers and graduate students in the ODE field.

J. Virdgh (Szeged)

G. Niirnberg, Approximation by Spline Functions, X1+ 243 pages, Springer-Verlag, Berlin—
Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989.

Splines play an important role in applied mathematics since they possess high flexibility to
approximate efficiently, even nonsmooth functions which are given explicitly or only implicitly, e.g.
by differential equations.

The aim of this book is to deal with basic theoretical and numerical aspects of interpolation and
best approximation by polynomial splines in one variable.

~In Chapter I basicly the unique solvability of interpolation problems for Chebyshev spaces is
invesitgated, furthermore the construction of interpolating polynomials is given, and the best appro-
ximation by functions from Chebyshev spaces in the uniform norm, L,-norm, L,-norm is detailed.

* Chapter 11 is devoted to the following main topics: Weak Chebyshev Spaces; B-Splines; Inter-
polation by Splines (for example Lagrange and Hermite Interpolation by Splines); Best Uniform
Approximation by Splines (Algorithms with fixed knots and free knots are detailed); Best L,-
Approximation by Weak Chebyshev spaces; Best One-Sided L, -Approximation by Weak Chebyshev
Spaces and Quadrature Formulas; Approximation of Linear Functionals and Splines. From Appen-
dix the section on Splines in Two Variables should be mentioned. The fact that a large number of
new results presented in this book cannot be found in earlier books on spline makes it really valu-
able one. ) ’

This excellent book can be very useful for graduate courses on splines or approximation theory.
Only basic knowledge of analysis and linear algebra is supposed.

The book is warmly recommended to everybody interested in approximation theory.

J. Németh (Szeged)
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Ortogonal Polynomials, Theory and Practice, Edited by P. Nevai with the assistance of M. E. H.
Ismail, (NATO ASI Series C., 294) xi+472 pages, Kluwer Academic Publishers, Dodrecht, 1990.

A NATO Advanced Study Conference was organized by P. Nevai during May 22, 1989 and
June 3, 1989 in Columbus, Ohio on ‘““Orthogonal Polynomials and Their Applications”. The volume
under review contains the proceedings of this conference. Most of the leading researchers of the
theory of orthogonal polynomials and related subjects that live east or west of the USSR attended
the conference, so its proceedings provide up to date insight of current research, the available methods
and applications. .

Two main parts can be distinguished in the book: there are papers the primary aim of which is
to introduce the readers to applications of orthogonal polynomials, while others are dealing mainly
with the extension of the theory. A few papers can be considered to belong to both parts. The theo-
retical papers can further be classified as those dealing with the algebraic aspects of the theory and
the relation of orthogonal polynomials to special functions and combinatorics, while others discuss
the analytic properties of orthogonal polynomials.

Among the applications and interrelation with other branches of mathematics are: coding theory
and algebraic combinatorics (E. Bannai), Padé approximation and Julia sets (D. Bessis), digital signal
processing (P. Delsarte and Y. Genin), functional analysis (J. Dombrowski), numerical analysis (W.
Gautschi), Schroedinger equation (R. Haydock), birth and death processes (M. Ismail, J. Letessier,
D. M. Masson and G. Valent), Hopf algebras and quantum groups (T. Koornwinder), group repre-
sentation (D. Stanton).

A sketchy list of the topics dealing mainly with questions of the theory is the following: charac-
terization theorems for orthogonal polynomials (W. A. Salam), three term recurrence relations and
spectral properties (T. S. Chihara; W. Van Assche), rational function extensions on the unit circle
(M. M. Djrbashian), special functions and symbolic computer algebraic systems (G. Gasper), mo-
ment problems and orthogonal polynomials with respect to exponential weights (D. Lubinsky),
root systems (I. G. Macdonald), extensions of the beta integral (M. Rahman), orthogonal matrix
polynomials (L. Rodman), complex methods (E. B. Saff), potential theory and #-th root asymptotics
(H. Stahl and V. Totik).

This excellent book should serve as a standard reference for researchers in the field, but it can
also be recommended to students because many of the papers are of introductory nature.

Vilmos Totik (Szeged)

Gilles Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in
Mathematics, + 250 pages, Cambridge University Press, Cambridge—London—New York—Port
Chester—Melbourne—Sydney, 1989.

During the last decade, considerable progress was achieved in the Local Theory, i.e. the part of
Banach Space Theory which uses finite dimensional tools to study infinite dimensional spaces. One of
the leading schools of this subject is the Israel Seminar on Geometric Aspects of Functional Analysis
(three Springer Lecture Notes volumes mark their works). The author of the present book is an out-
standing researcher of this topic. The aim of this book is to present a self-contained discussion of a
number of recent results. A very powerful method is introduced which is a combination of the classi-
cal theory of convex sets, probability theory and approximation theory. One of the main ideas is to
get quantitative versions of theorems on convex bodies. For example the quantitative version of the
famous result of Dvoretzky, due to V. D. Milman, is the following:
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Let B be the unit ball of an n-dimensional Banach space. Given ¢=0, there exists a subspace
F with dimension [g(e) log n] (p(¢)>0 depending only on &) and an ellipsoid DCF such that

Dc BNFc (1+¢)D.

The book is divided into two parts. The object of the first part (Chapters 1 to 9) is to give detait
led proofs of three fundamental results:

() The quotient of subspace Theorem due to Milman: For each 0<d<1 there is a con-
stant C=C(d) such that every n-dimensional normed space admits a quotient of a sub-
pace F=E,|E, (with E,CE,CE) with dimension dim F=dnr which is C-isomorphic
to a Euclidean space.

(I1) The inverse Santalo inequality due to Bourgain and Milman: There are positive constants
o and B (independent of n) such that for all balls BCR" we have

a/n = (vol (B) vol (B)/" = B/n.
(The upper bound goes back to a 1949 article by Santalo.)

(III) The inverse Brunn—Minkowski inequality due to Milman: Two balls B,, B, in R” can

always be transformed (by a volume preserving linear isomorphism) into balls B,, B,
which satisfy o
vol (B, + B,)'/™ = C[vol (B) /" +vol (By)* /"]

where C is a numerical constant independent of n. Moreover, the polars B¢, B} and all
their muitiples also satisfy a similar inequalty.

The second part (Chapters 10 to 15) is devoted to the discussion of recently introduced classes
of Banach spaces of weak cotype 2 and weak type 2 and the intersection of these classes, the weak
Hilbert spaces.

The book is recommended to researchers in functional analysis but it may be useful to convex
geometers, too.

J. Kincses (Szeged)

Philip Protter, Stochastic Integration and Differential Equation. A New Approach (Application
of Mathematics, 21), X+ 302 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—
Paris—Tokyo—Hong Kong, 1990.

The novelty of this introductory book is that the author defines a semimartingale as a stochastic
process wich is a “good integrator” on an elementary class of processes, rather than as a process
of general Walsh series is equivalent to the study that can be written as the sum of a local martingale
and a finite variation process.

At first an intuitive Riemann-type definition of the stochastic integral as the limit of sums is
given for the adapted processes having left continuous paths with right limits. This is sufficient to
prove many theorems including It6’s formula. Then it is shown that the “good integrator’ defini-
tion of a semimartingale is equivalent to the usual one and a general theory of semimartingales are
developed. Finally, the author extends the stochastic integral by continuity to predictable integrands,
making the stochastic integral a Lebesgue-type integral. These integrands give rise to a presentation
of the theory of semimartingale local times. The book is concluded by an introduction to stochastic
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differential equations and to the theory of flows (existence and uniqueness of solutions, stability,
Markov nature of solutions).

The book allows a rapid introduction to some of the deepest theorems of the subject. It is
highly recommended both to instructors and students in probability and statistics.

L. Hatvani (Szeged)

g-Series and Partitions, Edited by D. Stanton (The IMA Volumes in mathematics and its
applications, 18), X+212 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—
Paris—Tokyo—Hong Kong, 1989.

This is the Proceedings of the Workshop on g¢-Series and Partitions held at the Institute for
Mathematics and its Applications, Minnesota, USA on March 7—11, 1988. It contains up to date
research papers on g-series, unimodality, g-special functions and g-orthogonal polynomials.

What is a g-series? In the theory of partitions it is customary to write ¢ as the argument in
the generating functions, but many ‘““ordinary” objects in mathematics have their g-analogues. For

example the g-analogue of the binmial coefficient [Z] is

(1-90—-¢)...(A-q")
1-9(1—¢)...0-¢90-9)(1—g?»...(1-g""")

(note that for g—1—0 we get back the original definition of the binomial coefficient). G. Gasper’s
paper in the proceedings under review discusses many such g-analogues.

Identities in terms of g-series often have interpretation in terms of partitions. Perhaps one of the
most famous g-identities are the two Rogers—Ramanujan identities the first of which reads as

oo q"2 oo 1

14+ .
DU (-q) i U= (-

What does this have to do with partitions? If we look at the coefficiens of ¢” on both sides then
this identity has the interpretation that the partitions of ninto parts which differ by at least 2 are
equinumerous with the partitions of » into parts congruent =+ 1 modulo 5 (iry to verify this “transla-
tion”; there is twist in the proof!). G. Andrews’s paper discusses diffeent proofs of the Rogers—
Ramanujan identities. The paper by D. Zeilberger attempts to classify identities with regard to
computer time required for their verification using computer algebra. Computers and symbolic
computations appear in other papers in the proceedings, as well.

The papers by D. M. Bressoud, F. M. Goodman and K. M. O’Hara, D. Zeilberger and I. G.
Macdonald are related with the recent combinatorial proof of K. M. O’Hara for the unimodality of
the Gaussian polynomials, which asserts that the coefficients in the polynomials

A=g"*H(A—g"*) ... (1—g"*H
(-q)...(01-49

are increasing up to a point and decreasing after that. Earlier proofs used very advanced techniques
and even K. M. O’Hara’s proof was rather involved. Using her ideas a relatively simple elementary
proof can be found in Zeilberger’s and Macdonald’s parers.
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The papers by F. G. Garvan, L. Habsinger and D. St. P. Richards discuss integrals in several
variables and their g-analogues that are related to Selberg’s integral

Hxa 1(1_x)b IID(X)Ichx_ H F(a+(n—i)c)I"(b+(n—z)c)I‘(ic+ 1) ,
(0,27 =" =1 rla+b+Q@n—i—-1))Ir(c+1)

where x=(x,, ..., x,) and D(x)= [] (x,—x;) is the Vandermonde determinant.
i<j

D. Stanton writes on an elementary approach to the Macdonald identities which expand pro-

ducts of the form
I (1-e%)
a>0
a€s

as certain sums.

The volume ends with four papers by R. Askey, I. M. Gessel, M. H. Ismail and W. Miller,
about orthogonal polynomials, their zeros and recurrence coefficients and their g-analogues (such as
g-Hermite polynomials).

The book under review is an excellent source for a flourishing and very exciting area and can
be recommended both to researchers and to advanced students in analysis, combinatorics and
number theory.

Vilmos Totik (Szeged)

Rewriting Techniques and Applications, Proceedings, Chapel Hill 1989. Edited by Nachum
Dershowitz (Lecture Notes in Computer Science 355), VII+ 579 pages, Springer-Verlag, Berlin—
Heidelberg—New York, 1989.

This volume contains the proceedings of the Third International Conference on Rewriting
Techniques and Applications (RTA-—89). The conference was held April 3—S5, 1989, in Chapel Hill,
North Caroline, U.S.A.

This book contains 34 papers in the following areas: Term rewriting systems, Conditional rew-
riting, Graph rewriting and grammars, Algebraic semantics, Equational reasoning, Lambda and
combinatory calculi, Symbolic and algebraic computation, Equational programming languages,
Completion procedures, Rewrite-based theorem proving, Unification and matching algorithms
Term-based architectures.

Also included in this volume are short description of d dozen of the implemented equational
reasoning systems demonstrated at the meeting.

This book is recommended to everybody working in the theory of Rewnte Systems.

Sandor Viguvdlgyi (Szeged)

F. Schipp—W. R. Wade—P. Simon (with the assistance from J. Pal), Walsh series, an intro-
duction to dynamic harmonic analysis, X + 560 pages, Akadémiai Kiadé, Budapest, 1990.

The Walsh system is the simplest nontrivial model for harmonic analysis but shares many pro-
perties with the trigonometric system. It has been used to solve some fundamental problems in
analysis, e.g., the basis problem. It has played a role in the development of other areas of mathematics,
e.g., the fundamental theorem of martingales was proved first by Paley for the Walsh system.

The Walsh functions can be applied in many situations, among others, in data transmission,
image enhancement, pattern recognition, etc. Since the Walsh functions take on only the values +1
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and —1, they are easy to implement on high speed computers and can be used with very little storage
space.

This is the first systematic and detailed exposition of the subject, from the foundations up to
the most recent results, including many which were not previously pubhshed The book can serve
both as an excellent reference book and as a textbook. The reader is merely assumed to be familiar
with the notion of and basic theorems on Lebesgue integration. Except for this material, concepts are
developed as needed and the book is nearly self-contained. In particular, it is accessible to beginning
graduate students and doctoral candidates in various specialities in mathematics and engineering.

The abundance and variety of the material presented in the book makes an exhausting descrip-
tion in a short review quite impossible. Thus, we can only comment on the general plan of the book,
and mention some samples of the most characteristic results contained.

Chapter 1 contains a systematic account of the dyadic group, the definition of the Walsh
functions in various enumerations, such as they were introduced by Walsh in 1923, by Paley in
1932, and by Kaczmarz in 1948. Separate sections are devoted to the transformations and rearrange-
ments of the Walsh system, showing, in particular, that the Haar and Walsh systems are Hadamard
transforms of each other; to Walsh—Fourier series, the Walsh—Dirichlet kernel, Walsh—-Fejér
kernel, dyadic derivative, and Cesaro summability.

The first half of Chapter 2 presents results which estimate the growth order of Walsh-Fourier
coefficients for various classes of functions, e.g., L? functions, continuous functions, etc., while the
second half identifies conditions sufficient for pointwise convergence and absolute convergence of
Walsh—Fourier series.

The Walsh functions provide a vehicle to link harmonic analysis and probability theory. The
basic tool in this interrelation is the dyadic martingales which play an important role in the develop-
ment of new spaces such as the dyadic Hardy spaces and dyadic BMO (=bounded mean oscillation).
These results are dealt with in Chapter 3. Dyadic Hardy spaces are characterized in two ways: by
means of martingale maximal function and of the atomic decomposition, It then proceeds to give an
account of duality relations. Among others, Hy (the dual of H,, i.e., the collection of bounded linear
functionals of Hp) is isometric and homeomorphic to BMO, and VMO’ (=vanishing mean oscilla-
tion) is isometric and homeomorphic to H,, whereas the proofs are heavily relied on the dyadic
version of the famous Fefferman inequality. The chapter ends with the study of martingale trees, i.e.,
martingales indexed by the tree-like collection of dyadic intervals. By introducing these nonlinear
martingales and generalizing the Burkholder—Gundy theory of martingale transforms, the reader
sees that the inequalities of Khintchin, Paley, and Sjolin as well as a.e. convergence of Walsh-
Fourier series are all parts of a general theory of nonlinear martingale transforms.

Chapter 4 is devoted to study of convergence in LP-norm, p=1, and uniform convergence of
Walsh—Fourier series. The treatment of summability of Walsh—Fourier series in homogeneous
Banach spaces and of sets of divergence is a certain adaptation of the corresponding technique deve-
loped by Kahane and Katznelson. Likewise, the adjustment of an integrable function f on a set of
small measure in order to obtain a new function whose Walsh—Fourier series converges uniformly
is modelled after Menshov’s celebrated one for trigonometric series.

The first part of Chapter 5 touches the problem of approximation by Walsh polynomials.
In great lines, it follows the trigonometric analogue. The major part of Chapter 5, however, presents
the Haar, Walsh, Faber— Schauder, Franklin, and Ciesielski systems as bases and identifies for each
of them the subspace of L! in which the given system is a basis. By indexing the Haar and Franklin
systems in a natural way to make them nonlinear sequences, the authors find that the corresponding
canonical isomorphisms induce explicit isomorphisms from the dyadic Hardy spaces and dyadic
BMO to their classical trigonometric counterparts. This approach gives a natural way to get classical
results from dyadic ones and vice versa. Then the authors show that the Haar and Franklin systems
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are equivalent bases in L? for 1 <p<e. On the other hand, it turns out that the trigonometric
and Walsh—Paley system are not equivalent basesin LP for 1<p<e, except for p=2. Finally,
they also answer the long-standing problem of Banach by constructing a separable Banach space,
similar in spirit to the dyadic Hardy space, which fails to have a basis. However, their decisive step
in the construction is due to Enfio.

In Chapter 6 the authors collect several sufficient conditions ensuring the a.e. convergence of a
Walsh-Fourier series. Using the notion of the so-called logarithm spaces, the sharpest result is due to
Sjolin which says: If feLlog* Llog¥ log® L, then the Walsh—Fourier series of f converges a.e.
Then they prove the Walsh analogue of the ramous Kolmogorov example of divergent Fourier
series. On the other hand, the Walsh—Fourier series of an integrable function is Cesaro summable
a.e. This is proved by exploiting the intimate connection between summability and pointwise dyadic
derivative.

A fundamental problem in the theory of general Walsh series is the problem of uniqueness. To
go into details, a set E is called a U-set (set of uniqueness) if every Walsh series converging to 0 out-
side E vanishes identically. Otherwise, E is called an M-set (set of multiplicity). It follows that
every countable set is a U-set, while every set of positive measure is an M-set. Thus, it remains a
delicate problem, not yet solved, to distinguish among sets of measure zero not normally made in
Lebesgue analysis. The up-to-date approach of Chapter 7 is based on the observation that the study
of general Walsh series is equivalent to the study of Walsh—Fourier—Stieltjes series of quasi-
measures (i.¢., finitely additive, real-valued set functions) defined on the dyadic intervals. This allows
certain problems to be recast as measure theoretic questions. In some cases this perception pro-
vides simple explanations of known results, while in other cases it gives new insight into the nature
of the problem itself. For example, the fact that no Walsh series can diverge to ++ on a set of
positive measure is a reflection of the fact that a quasimeasure is either a.e. differentiable or has
upper derivative +< and lower derivative —< a.c.

Chapter 8 is dedicated to the problem of representing measurable functions by Walsh series.
This is connected with the term by term dyadic differentiation and the behavior of Walsh series
with monotone coefficients, where a Sidon type inequality proved jointly by Schipp and the reviewer
plays a crucial role. Then the representation problem is considered here in the more general frame-
work of normalized convergence systems studied mainly by Talaljan.

Chapter 9 treats the questions of the Walsh—Fourier transform, which is the counterpart of the
classical (trigonometric) Fourier transform. The fast Walsh transform seems to be more appropriate
to implement on a computer than the fast Fourier transform. The inverse dyadic derivative plays a
central role in the treatment. The various applications of the Walsh functions are only outlined,
since several books have been written about them. For further reading we suggest the books by
H. F. Harmuth, K. G. Beauchamp, C. A. Bass, M. Maqusi, etc.

Each chapter ends with Exercises ranging from fairly routine applications of the text material
to those that extend the coverage of the book. For the reader’s convenience there are seven Appendi-
ces containing a number of auxiliary topics at the end of the book. Historical Notes to each chapter
separately, References to about 450 papers or books, Author, Subject, and Notational Index comp-
lete the book.

The book is carefully and accurately written. The presentation is concise but always clear and
well-readable.

Finally, may the reviewer venture to express his particular desire to take some time a second
volume in his hands comprising the latest research done in the field of multiple Walsh
series as well as providing a rigorous mathematical treatment of the concrete questions occurring in
the vast and diverse field of pratical applications. The reviewer’s hope is that all this enormously
arge material in the authors’ unified presentation would prove to be more accessible to anyone in-
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terested in dyadic harmonic analysis. Of course, this desire does not affect the value of this almost:
perfect work at all.

To sum up, this book fills in a gap in the literature. It provides in a polished form a rich and’
up-to-date material of a fast-growing field whose significance is becoming basic for practice. It is.
perhaps not exaggerated to assert that this book is of fundamental importance for everybody who
wants to keep pace with modern developments in the Dyadic and Classical Analysis.

Ferenc Moricz (Szeged)

C. L. Siegel, Lectures on the Geometry of Numbers, X+ 160 pages, Springer-Verlag, Berlin—
Heidelberg—New York, 1989.

This is the printed version of Siegel’s lectures at New York University during 1945—46. The:
original notes by B. Friedman were rewritten by K. Chandrasekharan with the assistance of R. Suter.

“Geometry of Numbers” is a subject dealing mainly with lattices and their points in prescribed
sets in R™. Its fundamental theorem is Minkowski’s First Theorem: A convex body in R", having a.
centre at the origin and having a volume larger than 2", must contain at least one point other than
the origin with integer coordinates. The first chapter of the book is devoted to this theorem and its.
generalization involving the so called successive minima of even gauge functions.

The second chapter starts out with the discussion of vector groups which are nothing else than
the subgroups of the additive group of R™. Discerte vector groups correspond to lattices and so to
matrices. Such concepts as basis, ranks, characters duals etc. are treated in detail. As an application
of the duality theorem Kronecker’s approximation theorem is proved together with one-of its gene-
ralization. Further applications are given concerning periods of real and complex functions, parquets
formed by parallelepipeds. The rest of the chapter deals with the minimum of products of linear
forms and of positive definite quadratic forms on lattice points different from the origin. The exact
minimum value in R? is determined and it yields a proof of Hurwitz’ theorem according to which to
every irrational a there are infinitely many pairs (p, ¢) of integers with

1
V5q?

p\
a—-| =
q

A lattice is a geometric object but for its analytic description we use matrices. Several matrices
correspond to the same lattice and these are connected by unimodular transformations. In other
words, several lattices have the same set of points as a geometrical entity and it would be advanta-
geous to single out one lattice from the class of all lattices which are equivalent under a unimodular
transformation. The problem of finding such a representative for every class of equivalent lattices is.
called the problem of reductions, and Chapter III is devoted to the theory of reduction. Some appli-
cations, as for instance closest packing in two, three and four dimensions are also covered.

The lectures on the geometry of numbers provide an excellent source of learning for under-
graduate and graduate students and the book can serve as a basis for a course in the field. Some of the
lectures contain more material than what is appropriate for a single lecture, so the active participa-
tion of the students seems to be absolutely necessary if one would like to keep up with the pace sug-
gested by the table of contents. The only criticism I make is that some of the proofs are unnecessarily
detailed and some parts of Chapter III may seem to be more specialized and less exciting for an
average reader than the material in the first two chapters.

Vilmos Totik (Szeged)
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R. ‘Sithol, Real Algebraic Surfaces (Lecture Notes in Mathematics, 1392), X+ 215 pages,
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989.

If a book is written by a specialist then it is in a great danger of becoming too dry or too special
for a general reader. Fortunately this book has avoided these trips inspite of the fact that its subject is
far away from the basics of mathematics.

The basic idea in this book is to consider the real algebraic surfaces and to regard them as
complex algebraic varieties with an antiholomorphic involution. From this point of view there are
two classes of the real algebraic surfaces as the Galois group Gal (C|R) on H*(X(C, Z)) determi-
nes or only estimates the dimension of H*(X(R), Z/2). The previous type of the surfaces, such as
rational surfaces and Abelian surfaces etc., are under a detailed analysis in this book. The main
result is the complete classification of these surfaces.

We have to mention two great advantages of the book finally. First of all the two introductory
chapters are extremely useful because they make really possible to read the book for non-specialists
and graduate students in algebraic geometry. Also the examples throughout the book are useful to
understand better the new notions.

Arpad Kurusa (Szeged)

James K. Stayer, Linear Programming and Its Applications (Undergraduate Texts in Mathema-
tics), XII+265 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—
Hong Kong, 1989.

This book is devoted to serve as an introductory text in linear programming. It is divided into
two main parts.

The first part consisting of four chapters deals with methods for solving general linear program-
ming problems. Chapter 1 exhibits the usual geometrical representation which is a good preparation
for the later texts. The canonical forms are considered in Chapter 2 and the classical Dantzig’s
simplex algorithm is given as a solving method. The general problem of linear programming is trea-
ted in Chapter 3, and different methods are presented to solve it. Finally, Chapter 4 discusses the
theory of duality showing the connection between the problems of maximization and minimization.

The second part presents several applications related to linear programming. Firstly, Chapter 5
deals with the two-person zero-sum matrix games. Such traditional applications of linear program-
ming as transportation and assignment problems are treated in Chapter 6, and as solving algorithms
the stepping stone method and the Hungarian method are given, respectively. Finally, Chapter 7
deals with networks. Algorithms are presented to solve the network-flow problem, the shortest-path

.network problem and the minimal-cost-flow network problem.

The book is well-written. It contains a rich collection of examples and exercises. Every algo-
rithm isillustrated in a step-by-step manner. It can be recommended as an excellent text for an intro-
ductory course in linear programming.

B. Imreh (Szeged)

John Stillwell, Mathematics and Its History (Undergraduate Texts in Mathematics), X+ 371
pages, Springer-Verlag, New York—Berlin—Heidelberg—ILondon—Paris—Tokyo, 1989.

At almost all universities mathematics students are those who never get a course in mathema-
tics. They get several separate courses such as calculus, algebra, geometry, topology and so on, and
our usual teaching method seems to prevent these different topics from being combined in to a
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whole. Therefore there are several important questions which are not discussed in the proper place,
¢.g., the fundamental theorem of algebra, because that is analysis. Thus, if students are to feel they
really know mathematics by the time they graduate, there is a need to unify the subject. This fecling
is very important for future teachers of mathematics. A course on the history of mathematics does
not take this job.

This book has grown from a course given to senior undergraduates at Monash University. The
selection of the material has been a success. It covers almost all topics of primary importance. The
emphasis is on history as a method for unifying and motivating mathematics. The twenty chapters
are the following: The Theorem of Pythagoras, Greek Geometry, Greek Number Theory, Infinity
in Greek Mathematics, Polynomial Equations, Analitic Geometry, Projective Geometry, Calculus,
Infinite Series, The Revival of Number Theory, Elliptic Functions, Mechanics, Complex Numbers in
Algebra, Complex Numbers and Curves, Complex Numbers and Functions, Differential Geometry,
Noneuclidean Geometry, Group Theory, Topology, Sets, Logic, and Computation.

This is not a book on the history of mathematics, therefore it uses modern notations. This is
debatable only in the first glance. For those readers, who want to read the original texts, there is a
long reference at the end of the volume.

In each chapter we can find biographical notes and well selected exercises.

We warmly recommend this gap-filling book to any undergraduate course of mathematics,
especially to teachers of mathematics.

Lajos Kulkovits (Szeged)

Josef Stoer, Numerishe Mathematik I (Springer Lehrbuch), XII+314 pages, Springer-Verlag,
Berlin—Heidelberg—New Y ork—London—Paris—Tokyo—Hong Kong, 1989.

A brief comparison to the previous English translation (Stoer—Bulirsch, Introduction to Nume-
rical Analysis, Springer-Verlag, 1980) reveals two major changes beside a few technical updates.

Chapter 2 on interpolation has a comprehensive supplement on the formal properties and a
simpie recurrence relation of B-splines.

_ The second addition in Chapter 4 shows the pecularities of sparse matrix techniques. Effi-
cient pivoting and storage schemes are demonstrated for the sparse Cholesky factorisation algorithm.
The standards of this book stand comparison with most new textbooks and, in the reviewer’s

opinion, this latest edition will not be the last one.
J. Virdgh (Szeged)

J.-O. Stromberg—A. T orchinsky, Weighted Hardy Spaces, (Lecture Notes in Mathematics
1381), IV 193 pages, Springer-Verlag, Berlin—Heidelberg—New York—I ondon—Paris—Tokyo—
Hong Kong, 1989.

The development of harmonic analysis in the last few years has been centered around spaces of
functions of bounded mean oscillation and the weighted inequalities for classical operators. The main
goal of this book is to further develop some results in this topic in the general setting of the weighted
Hardy spaces and to discuss some applications. The authors derive mean value inequalities for wa-
velet transforms and introduce halfspace techniques with, for example, nontangential maximal func-
tions and g-functions. This leads to several equivalent definitions of the weighted Hardy spaces.
Fourier multipliers and singular integral operators are applied to the weighted Hardy spaces and
complex interpolation is considered.
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Rich bibliography helps the reader in going back to the origin of the research of this topic.
Apparently the book covers the whole spectrum of papers dealing with these very important spaces.
The book is highly recommended to research workers interested in the modern harmonic ana-

lysis.
J. Németh (Szeged)

J. L. Balcazar—J. Diaz—J. Gabarro, Structural Complexity I, (EATCS Monographs on
Theoretical Computer Science, 11), IX <+ 191 pages, Springer-Verlag, Berlin—Heidelberg— New York,
1988.

There are many different yet related studies in the complexity of algorithms. The subject of
structural complexity takes an abstract view of the complexity of computation by looking for in-
herent mathematical structures inside the problem classes. Many concepts of structural complexity
originate in recursion theory, as is clearly demonstrated in the present book.

The first two chapters are included for the sake of completeness and to broaden the accessibi-
lity of the volume. Chapter 1 provides a brief exposition of models of computation, such as finite
automata, and several versions of Turing machines. Some elementary properties of languages that
represent decision problems and classes of languages are discussed. The main purpose is to explain
the basic notions and to present a formalism for the remainder of the book. Enough references are
provided for those who want a deeper background on the material covered in this chapter.

Chapter 2 starts with a survey of the rate of growth of functions and is followed by a discussion
of the running time and work space of Turing machines. Some basic results are presented, e.g. the
linear speed-up theorem and the tape compression theorem.

Then, after a thorough treatment of time and space constructible functions, complexity classes
are defined in a general setting. This chapter ends with some simulation results, such as Savitch’s
theorem. )

Central complexity classes form the subject matter of Chapter 3. Polynomial time (many-one)
reducibility and logarithmic space reducibility are defined and related concepts (completeness, hard-
ness, etc.) are discussed. Some well-known NP-complete problems are presented and QBF is
shown to be PSPACE-complete. A separate section is devoted to padding arguments, which
provide a useful tool for establishing inequalities between complexity classes.

Other types of reducibilities, namely polynomial time Turing reducibility and SN-reducibi-
lity are studied in Chapter 4, giving rise to relativizations of complexity classes. SN-reducibility is
then related to self-reducible sets.

Finite sets can be accepted by deterministic finite automata in constant time with no work
space whatsoever. The “intrinsically algorithmic approach” taken in preceding chapters thus fails
when dealing with finite sets. The “‘uniform” approach of Chapter 5 measures the sizes of the algo-
rithms accepting finite sets and associates with an infinite set the growth of the sizes of the algorithms
that accept initial segments of the set. The unifying concept of “‘advice” functions is then used to
relate the two approaches. Boolean complexity fits nicely in this framework.

The average case behavior of algorithms has become a topic of increasing interest in recent
years. By using pseudo-random number generators, it is possible to design algorithms that solve
problems with a reasonable rate of probability. Accordingly, Chapter 6 provides a glimpse of
probabilistic algorithms. A basic theory of probabilistic complexity classes is developed.

A number of studies in complexity theory depend on the assumption that Pz NP. Uniform
diagonalization provides a powerful technique to prove e.g. that there are incomplete problems in
NP— P, assuming that P NP. Uniform diagonalization and its applications are discussed in
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Chapter 7. The last chapter deals with the polynomial time hierarchy, the polynomial analogue of
Kleene's hierarchy.

The book is well-written, the presentation of the material is sufficiently clear. The necessary
prerequisites are a basic knowledge of automata and formal languages. Some acquaintance with
recursion theory might be helpful. Each chapter ends with detailed bibliographical remarks and a
number of exercises. The book can very well serve as a text for a graduate course in structural com-
plexity.

Z. Esik (Szeged)

Aimo Térn—Antanas Zilinskas, Global Optimization (Lecture Notes in Computer Science, 350),
X+ 255 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989.

Global optimization is a part of nonlinear programming: it is aimed at solving nonlinear opti-
mization problems with many local minima. This problem is in general unsolvable, if the algorithm
is based only on the evaluation of the objective function and its derivatives. Although such problems
are rather frequent in practice, the traditional approach of the users is to accept the first local mini-
mum found as an estimate of the global minimum.

The book by Torn and Zilinskas was the first to cover the broad field of global optimization.
Since its publishing, some other volumes have been available, dealing mainly with different sub-
problems of global optimization (such as deterministic and stochastic methods).

After the definition and characterization of the global optimization problem, the book dis-
cusses the covering, the clustering and the random search methods, the method of generalized de-
scent and the algorithms based on statistical models of the objective function. Testing is a crucial
part of the evaluation of global optimization methods, since their reliability has to be measured
somehow. The book devotes a section to questions arising in testing and applications. The test results
are collected very carefully, thus the reader looking for a suitable method can rely on the tables given
by the authors.

It must be mentioned that spelling errors make the text somewhat difficult to read. An exten-
sive bibliography of more than 400 references completes the book.

The volume can be warmly recommended (beyond experts of the field) to everyone who must
solve nonlinear optimization problems that can be multiextremal.

T. Csendes (Szeged)

L. Trave—A. Titli—A. Tarras, Large Scala Systems: Decentralization, Structure Constrainst
and Fixed Modes (Lecture Notes in Control and Information Sciences, 120), XIV 4384 pages,
Springer-Verlag, Berlin—Heidelberg—New York—ILondon—Paris—Tokyo, 1989.

The models of the present day technological, environmental and societal processes are of
high dimensions and complexity, which makes impossible to use the classical mathematical tools
developed for system analysis and control. This book gives an excellent survey on the new tech-
niques for the large scale systems characterized by a huge number of input and output variables on
subsystems which are generally geographically distributed.

Chapter 1 presents an overview of the well-known results around the problem of stabilization
and pole assignment of linear time — invariant dynamic systems subjected to centralized control.
Chapter 2 deals with these problems when a specified restricted information pattern is required,
which constraints the feedback control structure. Chapter 3 gives the different existing characteri-
zations of fixed modes, namely characterizations in term of transmission zeros of subsystems, char-

15
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acterization in time-domain and in the frequency-domain, and graph-theoretic characterizations.
In Chapter 4 it is shown that systems with unstable non structurally fixed modes can be stabilized by
using time varying or non-linear feedback control laws which preserves the feedback structure cons-
traints. Chapter 5 presents the different available methods for the design of an appropriate feedback
control structure. Chapter 6 considers the problem of the synthesis of feedback gains under struc-
tural constraints. Chapter 7 is devoted to the problem of structural robustness.
The results are illustrated by significative examples which make easier their understandmg
Some important algorithms are presented in a collection of program packages.
This book will be very useful both as a text and as a monograph in the control of large scale
systems.
L. Hatvani (Szeged)

Ferdinand Verhulst, Nonlinear Differential Equations and Dynamical Systems, 1X+ 277 f)ages,
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990.

Recently the theory and applications of nonlinear differential equations and dynamical sys-
tems have strongly attracted the attention of mathematicians and users of mathematics. The reason
is that a lot of phenomena in the sciences and economy can be explained by modelling the processes
by nonlinear differential equations and applying the new results of the nonlinear dynamics to these
models. It is not easy to get acquainted with these results demanding deep mathematical prerequisites.
This introductory text bridges the gap between elementary courses in ordinary differential equations
and the modern research literature in the field of nonlinear dynamics.

The first part of the book — after giving the basic definitions — deals with the periodic pheno-
mena. The reader can find here a very plastic proof for the Poincaré—Bendixson theorem on the
existence of periodic solutions. The second part is devoted to the stability theory. The third part gives
an overview on the methods for systems containing a small parameters (perturbation theory, Poin-
caré—Lindstedt method, averaging). In the last four chapters, which give the most interesting part of
the book, more advanced topics like relaxation oscillations, bifurcation theory, chaos in mapplngs
and differential equations, Hamiltonian systems are introduced.

The book is well-written and well-organized. Only the most important proofs are included;
the results are illustrated by interesting and important examples from the real world. The chapters
are concluded by exercises (at the end of book the reader gets answers and hints to them). After
studying this book and solving the exercises the reader will be able to start working on open research
problems.

This excellent textbook can be warmly recommended both to beginners and specialists inte-
rested in the modern theory of nonlinear differential equations and its applications.

L. Hatvani (Szeged)

Wolfgang Walter, Aanalysis I, zweite Anflage (Grundwissen Mathematic, 3) VIII+ 385 pages,
Springer-Verlag, Berlin—Heidelberg—New York—Paris—Tokyo—Hong Kong, 1990. Analysis II,
(Grundwissen Mathematic 4) VII+396 pages, Springer-Verlag, Berlin—Heidelberg—New York—
Paris—Tokyo—Hong Kong, 1990.

The first volume consists of three parts. The first part summarizes the basic knowledges about
real numbers, mathematical induction and polynomials. The second part introduces the concept of
convergence of sequences and series of real numbers, defines the limit and continuity of functions,
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discusses power series and elementary transcendent functions. At the end of this part the complex
numbers and functions are introduced. The third part is devoted to Riemannian integral and dif-
ferentiation of functions. A lot of applications can also be found here. This part ends with comple-
mentary notes.

The second volume is divided into 10 paragraphs. The text starts with the introduction of metric
spaces, basic topological concepts and continuity of functions in metric spaces. Then the differen-
tiation theory of functions of several variables, the problem of implicite functions and extremal values
of functions are developed. The general Moore—Smith convergence is introduced and the Rieman-
nian integral as Moore—Smith limit is showed. The length and differentialgeometric concepts of
curves are discussed, the equations of motions are developed and the classical two bodies problem is
solved. A paragraph (the sixth) is devoted to Riemann—Stieltjes integral and line integrals. Two
paragraphs deal with the Jordan mass, the Riemannian integral in n» dimension and the Gauss,
Green and Stokes integral theorems, The last two paragraphs introduce the Lebesgue integral, the
Fourier series and develop the Hilbert-space theory of Fourier series.

The books are highly recommended to students in the first four semesters.

L. Gehér (Szeged)
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