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On the lattice of complete congruences of a complete lattice: 
On a result of K. Reuter and R. Wille 

G. GRATZER, H. LAKSER and B. W O L K 

1. Introduction. For a complete lattice L, let Com L denote the lattice o f 
complete congruence relations of L. Obviously, Com L is a complete lattice; however, 
unlike Con L, the lattice of congruence relations of a lattice L, it is not distributive 
in general. In fact, in [4], K. REUTER and R. WILLE raise the question whether every 
complete lattice K can be represented in the form Com L for some complete lattice L. 

K . REUTER a n d R . WILLE [4] p r o v e the f o l l o w i n g 

T h e o r e m . Let K be a complete distributive lattice in which every element is the 

(infinite) join of (finitely) join-irreducible elements. Then K is isomorphic to the lattice 

of complete congruences of some complete lattice L. 

They quote [1, pp. 69 and 58]: the condition of the Theorem holds for every 
distributive dually continuous lattice, and in particular, for every completely distri-
butive complete lattice. 

The proof of K. Reuter and R. Wille is based on an earlier paper of R. WILLE 
[5] on complete congruence relations of concept lattices. In this note we show how 
the approaches of [2] and [3] apply. 

In Sec. 2 and 3, we present two essentially equivalent proofs of the Theorem. 
The first uses sequences and it is purely computational; it assumes no background in 
lattice theory. The second is based on ideals o f partial lattices and uses some knowl-
edge of lattice theory; this approach may help visualize the proof. 

In Sec. 4, we show that the complete lattice L of the Theorem can be chosen to 
be sectionally complemented. W e also compare the constructions of [4], Sec. 2, and 
3. Finally, we find the "simplest" complete lattice L such that Com L is not distribu-
tive. 

This research was supported by the NSERC of Canada. 
Received July 27, 1988. 
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4 G. Gratzer, H. Lakser and B. Wolk 

2. Construction with sequences. Let K be a complete distributive lattice; let 

J denote the set o f join-irreducible elements o f K. W e assume that every element u 

o f AT is a join o f join-irreducible elements, that is, H = V K (("]!"!./), where ( « ] = 

= {p£K\p^u}. 

T o construct the lattice L, take the lattice Q = t h e /-th power o f the lattice 

M3. (In forming the direct power, J is regarded as an unordered set.) The elements o f 

the lattice M3 will be denoted by o, a, b, c, i, where o is the zero, a, b, c are the atoms, 

and i is the unit. For Q and p£J, s(p) will denote the p-th component o f s. 

For s£Q, let T(s) = {/>6/|s(/>)=i'} and X(S) = \/kT(S). W e define s€Q as fo l -

lows: 

|7, i f p ^ r (J ) in K and s(p) > o in Mz\ 

f l ) ~s(p) = Up), otherwise. 

W e call s closed iff s=s. W e construct L as the set o f all closed sd Q, partially or-

dered componentwise. 

C l a i m 1. Let SQL. Then u=f\QS is again closed. 

P r o o f . Take a p£J such that u(p)>o. Since u(p) — /\Q(s(p)\s£S) and u(p) 

is completely meet-irreducible in M3, it follows that u(p)=s(p) for some s£S. 

N o w hence u^. s=(since s is c losed)=s, hence « (/>)= s(p)=s(p) = u(p), and 

therefore u is closed. 

Thus L is a /\-sublattice o f Q. It fol lows that L is a complete lattice, in which 

(2) V L S = V ^ S for S Q L . 

For z£K, we define a congruence, 0Z, on Q as fol lows: 

(3) u = v (modQ z ) iff u(p) = v(p) for all p ^ z. 

Obviously, Gz is the kernel of the projection of Q—M33 onto 

C l a i m 2. Let u,v£Q. Then 

u = v (mod 6Z) implies that u = v (mod 9Z). 

P r o o f . Let M = y (mod 6Z). W e want to prove that u(p) = v(p) f o r p^*z. 

Since u(p) = v(p), we can assume that u(p)^u(p), by symmetry. By (1), in K, 

p x(u) = YKT{u) = Vk {T{U)-(Z))VK Vk ( r ( « ) N (z] ) . 

SinceP is join-irreducible in K, this implies that P^ \/K ( T ( U ) — (z ] ) or p s V * (7" ( " ) i 1 

f l ( z ] ) . The latter would imply that p^z , . contradicting that p ^ z . Hence p ^ 
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By (3), u(q) = v(q) for q<l(z], Hence T(u)-(z] = T(v)-(z]. Since u(p)^U(p), 

therefore, by (1), u(p)>o and so v(p)>o. Finally, 

p ^ yK (:T(u)-(z]) = VK № > - < > ] ) \JKT(V) = x(v), 

hence v(p)=i by (1). Therefore, U(p) = v(p). 

By Claim 2, the restriction, 6ZL, o f 0Z to L is a complete congruence relation on L. 

T o complete the proof of the Theorem we have to prove that every complete congru-
ence relation of L is of this form. 

Let 9 be a complete congruence of L. Set 

p = {p£J\there exist up, vp£L, u" = vp (modO), up(p) ^ v"(p)}. 

W e claim that 9=9ZL with z=\/KP. 

Obviously, e^e z L . 

For x € M 3 and Y^J, let xY denote the element of Q defined by 

fx, 
*Y(P) = f „ KO, 

x, for pÇ.Y, 

otherwise. 

No t e that xY=xY, since xY(p) is either o or x, and so x y £ L . 
For convenience of notation, if x(iM3 and Y ^ K , then we write xY for xYnJ. 

For Y={y}, we write xy for x { y } . No te that { x y |x6M 3 } is a sublattice of L 

isomorphic to Ms. For all YQJ, oY=0, the zero of L. 

Since, for all p£P, 

up = vp (mod 0), 

it follows, by taking the meet of both sides with ip, that 

up(p)p = v»(p)p (modO), and so 

ip = op (mod 9). 

By the completeness of 8, 

(4) iP = 0 (mod 6). 

N o w consider s=ipVLb{z-i-p. Obviously, z(s)—z, hence, s=z ( z ] . Thus join-
ing both sides o f (4) with b i z } - P yields 

i(z] = ?>(z]-r (mode). 

Thus 
i ( 2 ] - P = b(z]-P (mod0), 

so 

i(z]—p = 0 (mod 9). 
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Consequently, 

/ ( г ] = 0 (mod в), 

completing the proof of BZL=0, and the proof of the Theorem. 

3. Construction with ideals. W e are given К and J as in Sec. 2. First, we 

construct a partial lattice, M , as in [3, pp. 81—84]: the elements of M are 0, for every 

p£J, the elements p,pt, and p2, and for p, q£J, p>q, the element p{q)\ if p is a 

maximal element of J, we set p=pi=p2. For p>q, we form the six-element lattice, 

M(p, q), with elements 0 ,p 2 , qi, q2, q, and p{q)\ the operations are defined by 

q^q2 = 0, q^lq2 = q, p2Aq=0, 

p2Vqi=p(q), p2hq2=p(q), p2\j q = p(q). 

In the partial lattice M, all the elements pi and p2 (p£J) are atoms; any two 
elements have a meet; two elements have a join iff they belong to an M(p, q) and 
then their join is the join in M(p, q). Note that JQM. 

The partial lattice M is atomic (every element is a join of atoms), hence every 
complete congruence relation is determined by its kernel, i.e., by the congruence 
class containing 0. 

Every congruence of M extends uniquely to a congruence of the lattice, Id M—Q, 

of ideals of M. Since Q is atomic, it follows f rom [3, p. 147] that an element S o f Q 

is standard iff for any atom и o f Q such that u^S, the atoms of M in S\! и are 
the atoms of S and u. 

For an ideal I o f M, we define x(I) = \JK(IC\J). W e call I closed iff for all 
p£J and рШх(1), if or p2£l, then p£l. Using the fact that all p£J are join-
irreducible, it is easy to verify that i f ID J is finite, then I is closed. Every ideal I 

has a closure I , the smallest closed ideal containing I, and the closed ideals o f M 
form a lattice Cd M—L. 

For a£K, let Ia be the ideal of M generated by /П (а ] . Obviously, la is a 
closed ideal. W e claim that Ia is standard. Indeed, let и be an atom of L, such that 

then there is a p^J with u—{pl] (or (p2 ] ) and p^a. Obviously, 
т ( T a Vq u ) = a , hence Ia4Qu is closed, implying that the only atom o f IaVLu not in 
I a is u. 

Let 6a be the standard congruence relation associated with the standard ele-
ment Ia o f L. W e claim that a-»Qa is an isomorphism between К and Com L. Since 

is obviously order preserving, it is sufficient to prove that it is one-to-one and 

onto. 

ва is a complete congruence on L. Indeed, I=J (mod 6a) iff the atoms of I—Ia 

and J—Ia are the same; thus 6a preserves П ( = Л о = А ь ) a n d it also preserves 
VL since the kernel, (/„], is principal. Conversely, let в be a complete congruence on L. 

Since в is complete, the kernel must be principal, generated by an ideal S o f M. 
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Let a=\JKJf)S. W e claim that 9 = 9a; equivalently, that S=Ia. The ideals S and 
Ia are equal iff they contain the same atoms. So let p £ S ( i = 1 or 2), i.e., p ^ 0 
(mod 9); then p=Q (mod 9) also holds: if p is maximal in J, it holds by virtue o f 
p=Pi, otherwise, take a q>p in J and compute in M(q,p) that />¡=0 (mod 9) 

implies that p=0 (mod 9). Conversely, let p f j a (i= 1 or 2), i.e., p^a— \/K(Jf\S). 

Then and S is closed, hence p£S. This, again, completes the proof o f 

Theorem. 

4. Concluding remarks. A lattice L with zero is sectionally complemented if 
every interval [0, a] is complemented. See, e.g., [3, Sec. I I I . 3 and I I I . 4] for the signifi-
cance of this property. Using our first proof we can somewhat strengthen the Theo-
rem. 

A d d e n d u m to T h e o r e m . The complete lattice L of the Theorem can be chosen 

to be sectionally complemented. 

P r o o f . Let u,t£L, and let a < i . W e have to construct a v£L with uhLv—0 

and u\lLv=t. Set 

A = |p€/| t(p) = i and u(p) = o}. 

For p£J, define u*(p) as a complement o f u(p) in [o, t(p)]. N o w we describe v; 

for pdJ, define 

v(p) = 

u*(p), if u*(p) is the unique complement of u(p) in [o, t(p)], 

u*(p), if p^yKA, 

o, otherwise. 

Obviously, v€Q. Furthermore, T(v)=A. Hence v is closed, and so v£L. Now , 
u(p)t\v(p)—o holds in M3 by definition for all /?€/, so u/\Lv=0. Finally, 
( « V Q V ) ( P ) — U ( P ) \ I u * ( p ) = t(p) except if u*(p) is not the unique complement o f 
u(p) in [o, t(p)] and p^\JKA; in this case, (u\fQv)(p)=u(p)Vo=u(p). However, 
T{u VQ v) 3 T(v) = A and u{p)£ {a, b, c } (otherwise, u*(p) would be the unique 
complement of u(p) in [o, t(p)]), hence by (1), uVQv(p)=i=t(p), proving that 
u\/Lv = t. 

It is reasonable to ask how the constructions of [4], Sec. 2, and 3 compare. 
Let K be the three-element chain. It can be computed that the construction of [4] 
yields a lattice isomorphic to L t which can be represented as M | with the elements 
(a, a), {a, b), and (a, i) removed. Sec 2 yields a lattice L2 which can be represented as 
Ml with the elements (a, i), (b, i>, and (c, i) removed. Note that Lx and L2 both 
have 22 elements but they are not isomorphic. Finally, Sec. 3 produces the six-element 
lattice M(p, q). 
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Finally, in [4, Section 4], K. REUTER and R. WILLE produce examples of com-
plete lattices L such that Com L is not distributive. We think the following example 
is the simplest. 

Let L be N (the set of nonnegative integers with the usual partial ordering) with 
two additional elements: a, i. Let 0 be the zero, and i the unit of L. Let aAn—0 and 
aNn=i for all n£N, n^O. Obviously, L is a complete lattice. W e define three com-
plete congruences, a, /?, and y on L : 

nontrivial classes 

or [ 2 « + l , 2n + 2], for n = 0, 1,2, ... 

0: [2n+1, 2n + 2], for n = 1, 2, ... 

y. [2n,2n+\], for « = 1,2, . . . . 

It is easy to check that a, ft, y generate a sublattice isomorphic to Ns in Com L. 

Observe that L is a "minimal" example. I f Com L is nondistributive, then L 

must contain a chain, C, of the type co+1 or its dual, otherwise Com L is isomorphic 
to Con L, and hence distributive. L—C is nonempty; indeed, if L=C, then 
C o m L = C o m C , and C o m C is isomorphic to Conco, which is distributive. W e 
conclude that L—C must contain at least one element. In our example, it contains 
exactly one element. 
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Endomorphism monoids in small varieties of bands 

M. D E M L O V A and V. K O U B E K * ) 

Introduction 

The study of the relationship between an algebra A and its endomorphism' 
monoid End (A) has gradually, in the course of two decades, crystallized into a gene-
ral framework, which we find worthwhile to outline here. 

As soon as we have a class X of algebras, the assignment A—End (A) for A£ jf 

defines the class Jl of monoids M isomorphic to End (A) for some i.e. the 
monoids representable in The class J f is said to be monoid universal if all monoids 
are representable in №. I f every finite monoid M is representable by a finite algebra 
in JT then we say that Jf" is finite monoid universal. 

The problem of representability of a given monoid M in a given class X~ o f 
algebras is just one aspect of the relationship between A£ X and End (A). Another, 
in a way complementary aspect of this relationship is the problem of determinancy 

of A£ Jf" by End (A): to what extent the knowledge of End (A) (up to isomorphism) 
determines the structure of A (within the class J f ) ? The class ,yf is said to be k-

determined, for a cardinal k, if any set of pairwise non-isomorphic algebras from J f 
with the same (up to isomorphism) endomorphism monoid has the cardinality 
strictly less than k. 

Since both representability and determinacy are tied to the algebraic structure of 
the algebras of a given class, it is natural to consider in the first place the varieties of 
algebras (of a given similarity type); the lattice of subvarieties can serve as a sort of 
a structural hierarchy in which universality is an increasing property and determinacy 
a decreasing property. 

When we try to elucidate the nature of universality/determinacy in this lattice 
of subvarieties setting, we are naturally led to the notion of (categorical) universality: 

*) The results were presented at the Colloquium on Semigroups and its Applications held 
in Wien, July 4—8, 1988. 

Received August 15, 1988 and in revised form June 13, 1989. 
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A variety J f is said to be universal i f the category o f all graphs and compatible mapp-

ings can be fully embedded into X . If, moreover, there exists a full embedding f rom 

the category o f all graphs and compatible mappings into J f such that it maps finite 

graphs into finite algebras then c/C is called finite-to-finite universal. 

Al l known monoid universal varieties are also universal but, in general, it does 

not hold. It is an open problem whether for varieties the monoid universality and the 

categorical universality are equivalent. The categorical universality o f a variety 

"V excludes any A>determinacy of "V, for the reason that simply for any cardinal k, 

the discrete category of k graphs can be fully embedded into "K M o r e generally, any 

monoid M has a proper class o f pairwise non-isomorphic representing objects in "V 

(see [7] or [9]). 

So much for the general framework of the present study. 

Our subject proper — endomorphism monoids o f bands (i.e., idempotent semi-

groups) — does not ideally fit into the above general scheme for the obvious reason 

that bands admit all constant self maps as endomorphisms, thus the endomorphism 

monoid of any band has left zeros, thus no variety o f bands is monoid universal 

(and also not universal). However, as it is shown in the previous work [3] o f the 

authors, monoid universality (and even more, universality) is there, only as if buried 

by a layer of superfluous morphisms. A natural way how to dispose of the undesi-

rable morphisms is to strengthen the structure o f the representing objects — the 

bands in our case. It may come as a surprise that even very small varieties o f bands 

can be made universal by enriching their operational type by two or three miliary 

operation symbols, i.e. by turning the bands in question into 2 or 3-pointed bands 

(1-pointed would not do). 

Every band variety is determined, within the variety o f all bands, by a single 

equation u=v, a useful means to refer to the variety as [M=I>] (especially if there is 

no other commonly accepted name for its members). 

Figure 1 visualizes the meet semilattice T0 which is isomorphic to the bottom o f 

the lattice of band varieties, see [1, 4, 5]. The nodes o f T0 represent the fol lowing band 

varieties: 

do =[x=y] — trivial bands 

ai = [xy=x] — left zero semigroups 

a2 = [xy=yx] — semilattices 

a3 =[yx=x] — right zero semigroups 

= [xyz=xzy] — left normal bands 

«5 = [xyz=xz] — rectangular bands 
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a6 = [yzx = zyx] 

7 -[xyx = xy] a. 

a8 = [xyzu = xzyu] 

a9 = [xyx-yx] 

a10=[xyz=xyxz] 

an — [xyz = xzyz] 

— right normal bands 

— semilattices of left zero semigroups 

— normal bands 

— semilattices of right zero semigroups 

— left distributive bands 

— right distributive bands. 

The meet semilattice T„ 
Figure 1 

It is readily seen that no number of nullary operations added to semilattices or 
rectangular bands makes them monoid universal. 

The aim of this paper is to prove 

T h e o r e m 1.1. The variety of rectangular bands and the variety of semilattices 

with an arbitrary number of nullary operations added is not universal. 

T h e o r e m 1.2. A variety 'f of bands with two nullary operations added is uni-

versal if and only if 'f contains either the variety of semilattices of left zero semigroups 

or the variety of semilattices of right zero semigroups. 

T h e o r e m 1.3. A variety 'V of bands with three nullary operations added is uni-

versal if and only if the variety of semilattices is a proper subvariety of "V. 
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It should be said that the very "undesirable" morphisms, removed by the additio-
nal nullary operations in order to achieve universality, are very precious for the 
determinacy of small band varieties: semilattices are 3-determined [10], normal bands 
are 5-determined [11], semilattices of left (or right) zero semigroups are 3-determined 
and left (or right) distributive bands are 5-determined [3]. 

The results of this paper raise the question whether there exist other strengthen-
ings of the structure of bands to obtain a universal category. The authors [3] showed 
that also the variety of bands with a unary operation * satisfying the identities 
xx*x=x and x**=x is universal. It is an open question whether we can restrict 
ourselves to the *-bands (here the unary operation, moreover, satisfies the identity 
x*y* = (7* )* ) , or to a subvariety of *-bands. 

The semigroup theoretical notions used in this paper can be found in the mono-
graphs [2] or [8]. 

The rest of the paper is devoted to the proof of Theorems 1.1, 1.2, and 1.3. The 
proof is divided into three parts. The proof of the universality of the 2-pointed 
variety [xyx=xy] (or [xyx=yx]) is contained in Section 2, and the proof of the uni-
versality of the 3-pointed variety [xyz=xzy] (or [yzx=zyx]) is the aim of Section 3. 
Common to both parts is the use of unary varieties. Denote by 7(1, 1) the variety o f 
algebras with two unary idempotent operations and 7(1, 1, 0) its 1-pointed version. 

It is known 

T h e o r e m 1.4 [9]. 7(1, 1) and 7(1, 1,0) are finite-to-finite universal. 

Our universality proofs construct a full embedding of 7(1, 1) or 7(1, 1, 0) into 
the variety in question. 

The final section is devoted to the proof of non-universality of some pointed 
varieties of bands. This finishes the proof of Theorems 1.1, 1.2, and 1.3. 

2. Universality of 2-pointed semilattices of left zero semigroups 

Denote by (S, # ) the groupoid given by the following table (see on the next 
page). 

Then the following holds: 

P r o p o s i t i o n 2.1. The groupoid (S, *) is a semigroup belonging to the variety 

[xyx=xy] of semilattices of left zero semigroups. Moreover, B={bt', 2}, C = 

= {c f ; /62}, D = {di; 2}, E= {et; 4} are all non-singleton Si-classes of (S, *). 

P r o o f by a direct inspection. 

Assume that (.X, <p0, <px) is an algebra from 7(1. 1) such that Z D 5 ' = 0 . Denote 

by X0, X1, X2 three disjoint copies of X, the element xiX in the copy X(, 3 
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(S, *) a0 « i 'o 6o ¿1 Co Ci ¿0 d. Co ex ea C, 

a„ a0 bo to bo to ¿>0 bo Co Ci rfi dx Co Cl e3 c, 

a-L ¿i Oi by tl 1X bx Ci Ci do dx e i Ci c2 e3 

to 'o bo to bo to ¿0 ¿0 Ci Ci dx dx Cl Ci e3 c3 

h bi ti bi tl 11 61 Ci Ci dx dx Ci Ci c3 c3 

h 'o t-L to h h ¿0 ftl Ci Ci di dx Ci Ci c3 c3 

bo bo bo bo bo bo ¿0 bo Ci Ci dx dx el Cl c3 c3 

¿i ¿i ¿1 bx K bx ¿1 by Ci Ci h dx Ci Ci Ca e3 

c„ Co Co Co Co Co Co Co Co Co Co Co Co e0 Co Co 

Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci e-L Ci Cl Ci «1 Ci 

d0 do do do ¿0 ¿0 ¿0 ¿0 e2 c2 do <4 C2 c2 e2 c2 

dx rf. dx di dx rfl dx c3 e3 dx dx e3 c3 c3 c3 

e„ Co c0 Co Co Co Co Co Co Co Co Co Co Co e0 

e t Ci Ci ei ct Ci Ci «1 Ci Ci ex Ci Ci Cl Cl ex 

c2 e2 e2 Ca C2 Co Co <?2 C2 Co c2 C2 C2 C2 c2 

e3 c3 e3 c3 c3 e3 e3 c3 C3 C3 c3 c3 C3 e3 C3 e3 

Figure 2 

is denoted by W e shall define a groupoid 4>'(X, <p0, <p1)=(Y, •) which is a co-
extension of S (i.e. there exists a surjective homomorphism f:(Y, • )—(S, * ) ) as 
follows: 

Y = (S\{tt; / € 3 } ) U ( U { ^ ; ¿€3}) 

and if y,z£Y then: 

y-z=u*v if the following hold: 

j ^ S and y — u or y£Xi and u = ti for some 3, 

! z£S and z=v or z£X( and v = tt for some 3, ti*v£Y; 

y-z=uk if there exist u, v£X with y=uh z=v}, and t* t} = tk for some 
i,j,k£ 3; 

y-z=uk if y=u t £X i , and ti*z—tk for some i,k£3; 

y • z=(<pk(u))k if y=di, z = Ujf_Xj and a-, * tj — tk for some i,j,k£3. 
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Denote by a mapping from Y to S such, that 

t¡/(y) = y for y£S, iHy) = U for y£X„ /63. 

W e have 

P r o p o s i t i o n 2.2. 4>'(X, <p0, <p1) = (Y, •) is a semigroup belonging to the variety 

[ x y x = x y ] for every (A", (p0, 1, 1). Furthermore, \p: ( Y , •) —(5, * ) is a sur-

jective homomorphism and B, C, D, E, Xh /63 are all non-singleton <2>-classes of 

(Y, •)• 

P r o o f . That \jj is a homomorphism is straightforward. W e show that (Y , • ) 
is a semigroup. Let x, y, z6 Y and we investigate the equality 

(*) (x-y)-z = x-(y-z). 

Since i/i is a homomorphism and (S, * ) is a semigroup we obtain that ( * ) holds for 
every x,y,z£Y with (x-y)-z£S or x-(y-z)£S. if(x-y)-z£Y\S then (x-y)-z£ 

6 U {Xi; /€3}, and moreover, (x •y)-zdXi if and only if x -(y • z)£Xi. Assume 
that (x-y)-z£X,o then x,y,z€XQUX«U {aQ}. I f x£X0 then ( * ) holds because x 
is a left zero with respect to the set X0UX2[J {fl0}- If x=u2 for some u£X then for 
every i;6^0UA'2U {fl0} we have u2 • (w0, u2) and hence we again obtain ( * ) . 
Finally, assume x=a0. I f y=ui for some u£X, /6(0,2} then we have (x-y) z = 

= (<Po(")o) • z=(pu(u)a and y-z£{u0,u2}, hence x-(y-z)-(p0(u) 0 and ( * ) hold. 
I f y = a0 then Z = H; for some u£X, /6(0,2} and hence (x • y) • z=a0 • z = <p0(u)0 

and x • (y • z)=x • cp0(w)0=(Po(<Pa(«))o=9o(")o because <p0 is idempotent. Analogously 
we prove ( * ) if (x • j ) • z£X1. Finally, if (x-y)-zZX2, then x, y, ziX2 and be-
cause X2 is a left zero subsemigroup of (Y , •) we conclude that ( * ) holds and hence 
(Y, •) is a semigroup. The rest is obvious. 

Define a functor <P from 7(1, 1) into the 2-pointed variety [xyx=xy] of all 
2-pointed semilattices of left zero semigroups. For an algebra (X , q>0, f rom /(1,1) 
define <P(X, tp0, <p1)=(Y, •,c0,d0) where <P'(X, <pQ, cpi)=(Y, •)• For a homomor-
phism /: {X, (p0, cp'0, (p'J in 7(1, 1) define a mapping <£/: 

$f(x/) = /00; f ° r every x£X, /63, and $f(s) = s for every s£S. 

If u£{a0,aj}, U {Xt; /63} then <Pf(uv) = <Pf(u) • <Pf(v) because / i s a homomor-
phism, for the remaining case we obtain by a direct inspection that <Pf is a homo-
morphism. Thus we can summarize: 

P r o p o s i t i o n 2.3. <t> is an embedding of 7(1, 1) into the 2-pointed [xyx=xy]. 

W e prove that $ is full. Assume that &(X, cp0, (p1) = (Y, •, c0, d0), <t>(X\ <p'0' 

(p'1) = (Y', - ,c0,d0) are algebras from the 2-pointed variety [xyx=xy] and let 
/: (7 , •, c0, d0)-+ (Y\ •,c0,d0) be a homomorphism. Then we have 
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L e m m a 2.4. For every we have f(u) = u. 

P r o o f . Since/preserves the miliary operations we have /(c0 ) — c0,f(d0)=d0. 

Hence f(C)QC, f(D)QD. Furthermore, an arbitrary ^-class containing an arbit-
rary element of the set U {Xt; ¡£3}U-BU {aQ, аг} is greater than the ^-classes С and 
D. Thus / ( и { Л ^ ; /€3 }U5U {a 0 , вх})Е /63 }U5U {a0, a j . Moreover, ай 

is a unique element of the set U {Xt; z£3}U.6U {a0, a^} with a0 • c 0 =c 0 and ax is a 
unique element of the set U ^ ; / 6 3 } U S U { a 0 > «1} with a1-d0=d0. Hence f(a0) = 

= a0, f(a1)=a1. Since the subsemigroup generated by {a0, c0, d0j is STl У we 
obtain that / is identical on the set 5 П Y. 

L e m m a 2.5. There exists g: X-»X' such that for every x£X, 3 we have 

Л * г ) = * ( * ) , -

P r o o f . Choose x£X. By Lemma 2.4 we conclude that /(x2 )6 U {X'r, /£3}U 
UBU{ao , tfj}. I f f(x2KX'0U{a0,b0} then bx=f(b1) =/(x2 • a, • aQ) =f(x2) -Да,) • 

• f(ao) = b0 — a contradiction, if /(x2 )6 X[ U {аг, Ьг) then b0 =f(b0) =/(x2 • a0 • at} = 

=f(x2)-f(a0)-f(a1) = b1 — a contradiction. Thus f(X2)QX'2. Set g: X-+X' with 
f(x2)=g{x) 2 forevery x£X. Then we have f(x0) =/(x 2 • a0) =/(x2 ) •f(a0)=g(x)2 • aa= 

=g(x)о and / ( x j ) =/(x 2 • flj) =/ (x 2 ) -/(aj) = g ( x ) 2 • аг =g(x\. 

L e m m a 2.6. ГЛе mapping g of Lemma 2.5 is a homomorphism from (X, cp0, cp^y 

into (X\ (p'0, <pi). 

P r o o f . Consider x£X, then g(cp0(x))„ =/ (% ( x ) 0 ) =f(a0 • x2) =f(an) -/(x2) = 
=a0 g(x)2=(p'0(g(x))0 and hence go<pQ = <p,0og. By the dual argument we obtain 
go<p1=(p[og, whence g is a homomorphism. 

Since for a homomorphism g from Lemma 2.5 we have <!>g—f we have proved 
that Ф is a full embedding and thus Theorem 1.4 completes the proof of the following 

T h e o r e m 2.7. The variety [xyx = xy] with two nullary operations added is 

finite-to-finite universal. 

Hence we immediately obtain 

C o r o l l a r y 2.8. The variety [xyx=yx] with two nullary operations added is 

finite-to-finite universal. 

P r o o f . Obviously, a semigroup ( T , • ) belongs to the variety [xyx=xy] i f 
and only if the semigroup (T, ® ) belongs to the variety [xyx=yx] where t®u=u-t 

for every t,u£T. Hence Corollary 2.8 immediately follows from Theorem 2.7. 
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(xm, Oi)(yn, dj) = 

3. The universality of the 3-pointed variety [xyz = xzy] 

For an algebra A = (X, <p, if/, q)£l(l, 1, 0) denote by Xt, /62 two disjoint 
•copies of the set X, for an element x£X denote by xt the corresponding element in 
the copy /62. Define an algebra 4>A in the 3-pointed variety [xyz=xzy]. The 
underlying set of 4>A is (X0X K , a 2 , a 7 , a10})U{XrX {a3, a%, an})U((A^UA^X 
X { a 4 , a 5 , a 6 , i i g } ) U { ( 0 , a0)}- For x,y£X, m, «62 , /,./612 if aiAaj=ak in the semi-
lattice T0 and if (xm, a,), (y„, aj) are elements o f the underlying set o f <PA then 

( x m , a k ) if k > 3 , 

( * ( * J i , « a ) i f k = 3> 

(.xa, a2) if k = 2, 

{<P(xJo, « i ) i f k - \ , 

(0 ,a0 ) . if k = 0, 

moreover (0, a0) is a zero in <PA, where <p, ¡¡/: ( X q U X ^ ^ X are the mappings defined 
q>(x0)=x, cp(xJ) = (p(x), = ip(x), $(xl) = x for every x£X. By a direct ins-

pection we obtain that the definition of the binary operation is correct and that <PA 

is a strong semilattice of left zero semigroups, thus by [8] it is a left normal band. The 
three added miliary operations are (q0, a5), (qQ, a7), (qx, a9). 

For a homomorphism f: A—B where A = (X, <p, i//, q), B = (Y, (p',\j/', r) 

•denote b y / ' the mapping defined as follows: f'(xm, ai)=(f(x)m, aj for every 
x£X, w62, /612\{0} , / ' (0 , a0)=(0, a0). By a direct inspection we obtain that f 

maps the underlying set o f <PA into the underlying set o f <PB, furthermore the res-
triction o f / ' to &A is a homomorphism. Thus if the restriction o f / ' to <PA and <PB is 
•denoted by <t>f then we obtain 

P r o p o s i t i o n 3.1. 4> is an embedding of 1(1, 1,0) into the 3-pointed variety 

[xyz=xzy]. 

P r o o f . By a direct inspection. 

W e prove that $ is a full embedding. For the purpose assume that A, 56/(1, 1,0) 
where A—(X, cp, ip, q), B=(Y, cp', i¡/', r) and that f : <PA — <PB is a homomorphism 
in the 3-pointed variety [xyz = xzy]. 

L e m m a 3.2. The structural homomorphism of f is the identity. 

P r o o f : Since T0 is the structural semilattice of <M and <PB we get that the 

.structural homomorphism g o f / is an endomorphism of Ta. Since / preserves the 

nullary operations we conclude that g ( a , ) =a ; for every /6 {5, 7, 9}. Moreover, g 

preserves the order and thus g ( a , ) = a ; for /6 {10, 11}. Since g is an endomorphism 

and { a f ; /6 {5, 7, 9, 10, 11}} generates T0 we conclude that g is the identity. 
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Define mappings f0,fi- such that 

/0o . «10) = ( / o ( 4 > «10) for every x£X, 

/(x l 5 flu) = ( / i ( 4 , au) for every x£X. 

L e m m a 3.3. For every {1, 2, 4, 5, 6, 7, 8, 10}, we have /(x0 , a i )= (/ 0 ( x ) 0 , at) 

for every x£X. 

For every /6 (3 ,4 ,5 ,6 ,8 ,9 ,11 } , we have / (x l 5 ai)=(f1(x)1, a) for every 

xex. 

P r o o f . For every x£X and /6 (1 ,2 ,4 ,5 ,6 ,7 ,8 } we have (x0, a , )= (x 0 , a10) • 

• (x0 ,a i ) and hence 

f(x0, ai) = / ( x 0 , a10)f(x0, a,) = (/0(x)0, a10)f(x0, a ;) = (/0 (x)0, a,). 

Hence we obtain the first assertion. The proof of the second assertion is dual. 

C o r o l l a r y 3.4. f0= 

P r o o f . We apply Lemma 3.3 and the fact that 

(/o(*)o> a2) = f(x0, a2) = / ( ( x 1 ; a u ) ( x 0 , a2)) = f ( x u a n ) / ( x 0 , a2) = 

= ( / i W i - « i i ) (/oWo, a2) = (yi(x)q, a2) 
for every xdX. 

L e m m a 3.5. /0 zi a homomorphism of /(1, 1, 0) from A into B. 

P r o o f . Obviously fo(q) = r. W e have 

0 (/o (*))o > = (/o ( * ) i , a5) (/o W o > Oi) = / ( ( * ! , o5) (*o > « i ) ) = 

= /(<fWo, fli) = (fo(<P(x))o, «x)-

Thus/0 commutes with <p. By duality we obtain that f0 commutes with Hence f0 

is a homomorphism. 

Since $fQ =f we conclude that $ is a full embedding from /(1, 1, 0) into the 
3-pointed variety [xyz=xzy]. Theorem 1.4 completes the proof of the following: 

T h e o r e m 3.6. The variety [xyz=xzy] with three nullary operations added is 

finite-to-finite universal. 

I f we apply the same idea as in the proof of Corollary 2.8 we obtain 

C o r o l l a r y 3.7. The variety [yzx=zyx] with three nullary operations added is 

finite-to-finite universal. 
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4. Non-universality of pointed varieties of bands 

First we investigate the variety o f rectangular bands, and the variety o f semilatti-

ces. If B is a rectangular band then B is a product o f a left zero semigroup L and a 

right zero semigroup R. It is well known that / : B-~B is an endomorphism o f B if 

and only if f=gXh where g:L-~L, h : R — R. Hence we obtain: 

P r o p o s i t i o n 4.1. For any cardinal a, no a-pointed rectangular band B repre-

sents a non-trivial group as End (B). 

W e prove an analogous result for semilattices: 

P r o p o s i t i o n 4.2. For any cardinal a, no a-pointed semilattice S represents a 

non-trivial group of a finite order as End (S ) . 

P r o o f . Assume the contrary, let S be an a-pointed semilattice such that its 

endomorphism monoid is isomorphic to a non-trivial group G o f finite order. First, 

for every g C l E n d ^ ) and for every x£S if g(x)j±x then x and g(x) are incompa-

rable because there exists a natural number n with g"(x)=x. For every endomor-

phism g £ E n d ( S ) define /: S-~S such that f(x)=xg(x) for every x£S. Obviously, 

/6End (S) and f(x) and x are comparable for every x£S. Moreover. / is identical 

if and only if g is identical and this is a contradiction with the fact that G is 

non-trivial. 

Propositions 4.1 and 4.2 complete the proof o f Theorem 1.1. Moreover, Theo-

rems 1.1 and 3.6, and Corollary 3.7 complete the proof of Theorem 1.3. Thus it 

suffices to finish the proof o f Theorem 1.2. For this purpose we. shall investigate the 

2-pointed variety o f normal bands. 

Proposition 4.3. Let B be a normal band with a structural semilattice S. If f is an 

endomorphism of S such that f(s)^s for every s£S then there exists an endomorphism 

g: B —2? with a structural morphism fsuch that for every ¡¡¡-class D of B with f{D) = D 

and for every x£D we have g(x) = x. 

P r o o f . By [8], B is a strong semilattice o f rectangular bands, i.e. for every s£S 

there exists a rectangular band D{s) (it is the S)-c)ass corresponding to 5) and f o r 

every pair s, t£S with s^t there exists a homomorphism [iUs: D(t)^D(s) such 

that . 

a) for every s£ S, ps>s is the identity; 

b) for every triple s, t, u£ S with s^ t~ u we have 

c) 5 = U { D ( J ) ; s£S} and { D ( s ) ; are pairwise disjoint; 
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d) for every s,t£S, x£D(s), y^D(t) we have 

xy = Vs,sAt(x)H<,sA,(y) 

where the former product is in B and the latter one is in D (sA t). 

For every x£D(s), s£S define g(x)=fisfis)(x). By a) through d) we easily 
obtain that g is an endomorphism of B with the required properties. 

L e m m a 4.4. Let S be a semilattice with an element d£S. If /6End (Sd) where 

Sd—{s(iS; s=sd} is a subsemilattice of S then g: S—S defined by g(s)=f(s) for 

s£Sd, g(s)=dAs for s£S\Sd is an endomorphism of S. 

P r o o f . Clearly g is correctly defined. Let x,y£S. I f x,y£Sd then also 
xAyiSd and since /6End (Sd) we obtain g(x)Ag(y)=g(xAy). I f y£S\Sd then 
g(xAy)=xAyAd. I f x£Sd then x,f(x)sid, whence xAyAd=f(x)AyAd-

=g(x)Ag(y); if xiS\Sd then obviously g(x)Ag(y) = xAyAd. I f x£S\Sd the 
proof is analogous. 

T h e o r e m 4.5. No 2-pointed normal band B represents a nontrivial group as 

End (B). 

P r o o f . Assume that B is a normal band with two added miliary operations ah 

/62 such that End (B) is a group (i.e. every endomorphism of B is an automorphism). 
Let S be the structural semilattice of B, assume that elements bh /6 2 of S corres-
pond to the ^-classes containing ah /62. I f there exists s£S such that s^b( for 
/62 and s is not the unity of S then consider the endomorphism h of S such that 
h(x)—sAx for every x6S . Since i ^ i ) ; we have By Proposition 4.3 

there exists a band endomorphism g of B with structural endomorphism h and 
g(ai)=at for /62. Thus g is an endomorphism of B and because neither h nor g 

is an automorphism, this is a contradiction. Hence we can assume that only the unity 
1 in S is greater than bh /62. Set c = fc0Afc1 and let dfS with JSc . Denote Sd= 

= {s£S; s^d} and define f: Sd^Sd as follows: 

f(x) = x if x = l , 

f ( x ) = b i if x ^ l and x ^ b i for an /62, 

f(x)=c if x^bj for any /62 and 

f(x)=d if x^c and x^d. 

By a direct inspection we obtain that / i s an endomorphism of Sd with f(x)Sx for 
every x£Sd and /(6 i )=fc1 for /62. I f we use Lemma 4.4 we obtain an endomor-
phism h of S with h(x)sx for every x£S and h (£>,-)=£>; for /62. Finally, if we 
apply Proposition 4.3 we obtain a 2-pointed band endomorphism g of B with structur-

2* 
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a l e n d o m o r p h i s m h. S ince g is a n a u t o m o r p h i s m w e c o n c l u d e that h is a n a u t o m o r -

p h i s m o f S, thus Sd=SQ { 1 , b0, by, c, d) w h e r e 1 is the un i ty o f S ( i f i t ex is ts ) . I t 

is r ou t ine t o v e r i f y that B is r i g id . 

T h e p r o o f o f T h e o r e m 1.2 f o l l o w s f r o m T h e o r e m s 2.7, 4.5, a n d f r o m C o r o l l a r y 

2.8. I n f ac t , w e have p r o v e d s t r onge r results than T h e o r e m s 1.1, 1.2, a n d 1.3: 

C o r o l l a r y 4.6. For a variety "V of bands with k nullary operations the following 

are equivalent: 

a) "V is finite-to-finite universal; 

b) "V is universal; 

c) "f is monoid universal; 

d) ~V is finite monoid universal; 

e) there exist a non-trivial group G of finite order and an algebra A(Hr with 

E n d 0 4 ) ^ G ; 

f ) either k^2 and ir^[xyx=xy] or k^2 and ir^[xyx=yx] or k^3 

and the variety of all semilattices is a proper subvariety of "V. 
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Loops with and without subloops 

J. K O Z M A 

In the theory of local loops, those loops which have one-parameter subloops are 
of considerable importance. M . A . AKIVIS [1] gave an interesting example of a quasi-
group which has /--parameter subloops in every direction [2]. A t the "Web Geometry 

Conference" held at Szeged, 1987, K . H. Hofmann raised the problem of exhibiting 
a simple example in which there is no one-parameter subloop in any direction. 

Searching for a satisfactory answer to this problem we shall investigate the ques-
tion: Is the existence of one-parameter subloops a general property of local loops? 

The aim of our considerations are as follows: 
1. Firstly, we exhibit a class of loops which have subloops in every direction, and 

examine associativity conditions for this loop-class. 
2. Secondly, we give (analytic) examples of elastic loops in our class which are 

not groups on the one hand, and a further example for elastic loops whose one-
parameter subloops are not one-parameter subgroups on the other hand. Hence we 
separate analytic elastic loops from right alternative analytic loops since the latter 
ones are necessarily power-associative (see [6]). 

3. Thirdly, we exhibit a class of loops which have one-parameter subloops only 
in one direction. 

4. Finally, we give an example of a loop without one-parameter subloops at all. 

Al l the results of the present paper are based on the existence of canonical 

coordinate systems [3] and the following main feature of loops ([4], Theorem 1). I f / 
is a local loop of class Ck (&S2) and D is a canonical coordinate system then every 
one-parameter subloop is locally a straight line through the origin in D. 

The author expresses his sincere thanks to K . H. Hofmann, P. T. Nagy and 
A. Kurusa for their help and suggestions. 

Received October 13, 1988 and in revised form December 10, 1990. 
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I. Preliminaries 

D e f i n i t i o n 1. Let be an «-dimensional differentiable manifold. A partial 
mapping / of class Ck 

f: SF\ (x, y) - z (x, y, JO 

is called local loop-multiplication of class Ck and (JF\ f ) is called a local loop of class 

Ck if the following conditions are satisfied. 

a) The multiplication is a local quasigroup, that is, there exist open neighbour-
hoods - ^ ^ ( - r c ^ e j ^ ) such that /: and / (x , y )=z6^r for all 
x, Furthermore for arbitrary elements z £ i r (respectively, y^'V, 
z ^ y ) there exists one and only one (respectively, x ^ ^ ) for which / ( x , y ) = z . 

b) The loop has a unit element, that is, there is an element such that 
/ ( x , e) = / ( e , x ) = x for all 

c) The loop-multiplication is o f class Ck. 

W e shall consider charts ( % , <p¡) for which <p;: fy-^i^QR"; e>—0, where 0 
is the origin of R". 

A loop on an /«-dimensional manifold J5" is called an m-parameter loop. Instead 
of (JF\ f ) we shall frequently write /. 

Since the canonical coordinate-system defined in [3] plays an important role in 
our considerations further on, we recall its definition. 

D e f i n i t i o n 2. Let us consider a loop / o f class Ck (A:S2). W e shall say that a 
coordinate-system <p given by the chart <p), /: ^ — R", <p(e)=0, is a canonical 

coordinate system (CCS) with respect to / if in these coordinates we have 

F(x, x ) = 2x 
for all x£cp(-f), where 

F = (pofo (^_1X<j9_1). 

Further on, by a loop we mean a local loop of class Ck (k^2). 

D e f i n i t i o n 3. Let (JF\ f ) and (&; g) be two loops, and let £ be a local map 
& — <g of class Ck. I f £ is a local embedding, then f ) is called a local m-

parameter subloop of 
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II. Maximal families of one-parameter subloops 

Our purpose is now to describe a class of loops having subloops in every direc-
tion. 

D e f i n i t i o n 4. A local multiplication 

F: R n x R " — R" ; f X f - « 

(where % <?/ are appropriate neighbourhoods of 0) is called an (a, P)-multiplication 

if for all x, y6 -T 

(1) F (x , y) = x + y + a (y )x+/? (x )y 

where a, j3: R "—R: 0—0 are real-valued functions of class Ck. 

P r o p o s i t i o n 1. An (a, ^-multiplication is a local loop-multiplication on a neigh-

bourhood of the origin 0 of R", the unit element is the origin 0. 

P r o o f . First of all let us show that (1) defines a local loop-multiplication of 

class Ck. 

a) As a and P are defined on R", F (x , y) is well-defined. The multiplication is 
locally solvable from left and right since 

D1F(0, 0) = 7, £>j F(0, 0) = 7 

where Dj and D2 denotes the partial derivative with respect to the first, respectively, 
second variable belonging to R", and where 7 is the identity map in R". 

b) The origin 0 of R" is the unit element since we have 

F(x, 0) = x + 0 + a (0 )x + j3(x)0 = x, 
and similarly 

F(0, y ) = y. 

c) The loop-multiplication is of class Ck because a and j8 are of class Ck, as 

well. 

A loop (Rn, F) with (a, /^-multiplication is called an (R"; a, /?)-loop. 

N o w we are going to show that these loops have subloops in every direction. 

T h e o r e m 1. For every vector subspace sd of R" the restriction F\siysi of an 

(a, P)-multiplication is a loop-multiplication on a neighbourhood of 

P r o o f . Let be a vector subspace of R". Then for x, y^stf the element 

z = F ( x , y ) = [ l + a ( y ) ] x + [ l+/? (x ) ]y 

obviously belongs to si, as well. Similarly if x, z (respectively y, z) are elements of 
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si, then y (respectively x ) also belongs to si. This implies that the restriction of F 

to six si is a local subloop of (R" ; F). 

The subloop (si; F) is called an (si; a, /?)-loop. 

Let us emphasize two details of the above result. 

C o r o l l a r y . The loop (R" ; a, /?) has r-parameter subloopS in every r-dimensional 

subSpace of R". In particular, it has one-parameter subloops in every direction. 

T h e o r e m 2. Let Fbe an (a, /?)-multiplication defined on a neighbourhood f c R " . 
Then the loop (R" ; a, fi) (/J=2) is a local group on a sufficiently small neighbourhood 

if of 0 if and only if 

a ( f ( * . y ) ) = a ( x ) + a ( y ) + a ( x ) a ( y ) 

(for every x , y&f). 

P r o o f . 1) For the necessity we show that (Rn ; a, /?) is a group if and only if for 
all x, y6 if the relations 

(2a) a (F ( x , y) ) = a ( x ) + a ( y ) + a ( x ) a ( y ) 

(2b) J8(f(X, y » = p ( x ) + m + m m 

are satisfied. Indeed, (R" ; a, fi) is a group if and only if F is associative, that is, 

F{F(x, y), z ) = F ( x , F(y, z ) ) 

holds for all x, y, z (if is a sufiiciently small neighbourhood of 0). By a straight-

forward calculation we see that this identity is equivalent to the following one: 

[a (F (y , z ) )—[a (y ) + a ( z ) + a ( y ) a ( z ) ] ] x = [/J(F(x, y))-[ i?(x)-l-/?(y) + j8(x)j8(y)]] z 

for all x, y, z £ i f which is equivalent to (2a) and (2b). 

2) In order to show that condition (2a) is sufficient we shall prove that (2a) 
implies (2b). For this purpose we show that (2a) implies the linearity of a—0 via the 
commutativity of the one-parameter subloops. 

By (2a) we have 
(3) a ( F ( x , y ) ) = a ( F ( y , x ) ) 

for all x, y£if. Whenever for a direction a D aa (0 )T i0, we get from (3) that 

F (x , y ) = F (y , x ) 

for all x, y belonging to the one-parameter subloop of direction a. That is, this 

one-parameter subloop is commutative. However, if for the direction a D a a ( 0 ) = 0 , 
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we introduce new defining functions 

a*(x) = a(x)+<a, x>, /T(x) = /?(x)-<a, x> 

to obtain the (R" ; oc*, 0*)-loop on i f . Since 

ua+vsLtx*(va)ua+P*(ua)va = ua+vao. (va) ua+p (ua) «a 

for all sufficiently small real number u and v the one-parameter subloops of the 
direction a of the loops (R"; a*, P*) and (R"; a, P) are the same. Since D a a * ( 0 ) ^ 0 
when D a a ( 0 ) =0 , we obtain that this one-parameter subloop is commutative. 

From the commutativity it immediately follows that 

oc(vx)ux+P(ux)vx = a(ux)vx+P(vx)ux 

holds in every direction x for all sufficiently small nonzero u and v in R, which, 

yields 

a(vx) — fi(vx) a(ux) — P(ux) 

v u 

The left hand side does not depend on u, so we get 

(4) 
< \ a/ \ r a ( » « ) - a ( 0 ) P(ux)~P( 0) , . 

a(vx) — p(vx) = v • lim - v • lim = v-Dx(a(0) — p{0)) 

for each x ^ i f . Thus 

a(z)-/J(z) = <D(a-j8)(0), z). 

That is, a—J? is a linear function on the appropriate neighbourhood. 
N o w we are ready to prove (2b) from (2a). If in the left and right hand side o f 

(2a) we substitute A + p for a (where A is a linear function), we obtain firstly 

a(F(x, y)) = A(F(x, y)) + p(F(x, y)) = A(x) + A(y) + a(y)A(x) + /f(x) A(y) + 

+ p(F(x,y)) = [A(x) + A(y) + 1 (y)A(x) + p(y)X(x) + ft(x) /.(y)] + p(F(x, y)), 

secondly 

a(x) + a(y) + a (x )a (y ) = 

= [A(x)+A(y) + A(x)A(y)+A(x)/i(y)+/i(x)A(y)] + [j8(x)+j8(y)+j8(x)/i(y)], 
ILCDCC 

P(F(x, y)) = fi(x) +ft(y) + P(x)P(y) 

which is just (2b) and the theorem is proved. 
* 

R e m a r k s 1. In accordance with the proof above, the (R"; a, /0-loop is not a 
group if a—p is not linear ( for example if p is identically 0, and a is not linear). Thus 
relation (1) defines a non-trivial loop, in general. 2. By Theorem 1, /--parameter sub-
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loops ( a , p) of (R"; a, /?) exist for all subspace j r fQR" . Since Theorem 2 holds for 
these loops, too, we obtain that the /--parameter (/•&2) subloops of (Rn ; a, /?) are not 
r-parameter subgroups if a—0 is not linear. 

W e now consider some other algebraic identities which are weaker than associa-
tivity. Let us recall some definitions. 

D e f i n i t i o n 5. A loop has the left-inverse property (right-inverse property) if 
f o r each x t h e r e is an element x,£"V ( x r £ " f ) such that for every y g - f 

(5) F(x„ F(x, y ) ) = y, respectively, F (F ( y , x), x r ) = y, 

in particular, for y = 0 

(6) F(x,, x ) = 0, respectively, F (x , x r ) = 0. 

The loop Fsa id to be left alternative (right alternative) if for all x, y ^ f 

(7) F (F ( x , x), y) = F (x , F (x , y)), respectively, F(y, F (x , x ) ) = F (F ( y , x), x). 

The loop has the property of elasticity if for all x, y 

(8) F(x, F (y , x ) ) = F (F ( x , y), x). 

T h e o r e m 3. An (Rn ; a, fi)-loop (n=s2) is a group if and only if it 

a) possesses the left-inverse property (right-inverse property), 

b) possesses the left alternative property (right alternative property). 

T h e o r e m 4. Whenever a=(j and a is linear then the corresponding (R" ; a, /?)-
loops ( « = 2 ) are elastic. Such an (R"; a, ¡})-loop of dimension n (m = 2) is a group if 

and only if a = 0 . 

P r o o f o f T h e o r e m 3. a) I f we use expression (1) to reformulate (5) and (6) 
we get 

(5') [ l + a [ x + y + a ( y ) x + /J(x)y]] •x, + [ l + a ( y ) + 0 (x i ) +a ( y )0 (x / ) ] -x + 

+ [p(x)+p(xi)+p(x) j5(x,) ]-y = 0, 

<6') [ H - a ( x ) ] - x , + [ l + 0 ( x / ) ] - x = 0 

fo r all x, y and xfijV- Subtracting (6') from (5') we get 

[a [ x+y+a (y ) x+/? (x ) y ]—oe (x ) ] x i + a ( y ) [ l + / ? ( x i ) ] x + 

+ [p(x) + p(xl)+p(x)p(x,)]y = 0 

f o r all x, y and x ^ i C In view of (6') we obtain 

[a [x + y + oc(y)x+/?(x)y]—a(x)—a(y) —a(x )a (y ) ] x ( + [0 (x ) + 0 (x i ) + 0 (x )0 (x / ) ] y = 0 
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for all x, y and x t£iC Notice that x , = 0 if and only if x = 0 (see (6)). Hence rela-
tion (5) holds for the loop (R"; a, /?) if and only if the following two identities are 
satisfied 

(9a) a[x + y+a(y)x + [j(x) y] = a ( x ) + a ( y ) + a ( x )a ( y ) 

{9b) 0 = jS(x)+/J(x ( )+j3(x) j3(x) 

f o r all x, y ^ f . Since condition (2a) is the same as (9a), this local loop is a local 
group. As a group always possesses left-inverse property, part a) of the theorem is 
proved in the case of left inverse loops. 

Notice that from (9b) and (6') we can express x, as follows: 

. v _ _ 1 
X ' [1 + a ( x ) ] • [1 +/?(x)] X-

For right inverse (R" ; a, j8)-loops the proof can be carried out in the same way as 
above. Furthermore, the right and left inverse of an element are clearly the same by 
• ( * ) above. 

b ) Expressing identity (7) in terms of (1) we obtain that (7) is equivalent to the 
following two identites 

(10a) a [ x + y + a (y )x+J? (x )y ] = a (x ) + a (y ) + a (x )a (y ) , 

(10b) J5[2x + a ( x ) x + j?(x)x] = 2/?(x) + /?(x)/?(x). 

W e see that (10a) and (2a) are equivalent. Thus from the left alternative property it 
follows that an (Rn ; a, /?)-loop is a local group. The converse is obvious, furthermore 
the right alternative case is similar, therefore part b ) is proved. 

P r o o f o f T h e o r e m 4. From expression (1) we obtain that (8) is equivalent 
to the following equality; 

a (x ) + a ( y ) + a ( x ) a ( y ) - a [ x + y + a (x ) y + j3(y)x] = 

= £ ( x ) + / ? ( y ) + j ? ( x ) 0 ( y ) - £ [ x + y + a ( y ) x+ j ? ( x ) y ] 

for all x, y I t is clear that if a = p , then this equality is an identity for all 
x, y^-V. In other words, for a = f i the loop (R" ; a, ft) is elastic. Let now a=/J be 
linear function. Let us suppose that (Rn ; a, ¡1) is a group, and Then (2a) is 

fulfilled and has the form 

« (FCx) , y ) = a ( x ) + a (y) + a (x ) a (y) 

a[x + y + a ( y ) z + a ( x ) y ] = a ( x ) + a ( y ) + a ( x )a ( y ) 

a ( x ) + a (y) + a (y) a ( x ) + a (x ) a (y) = a (x ) + a(y ) + a ( x )a ( y ) 

a(x)a(y) = 0 
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for all However, this means that a = 0 = 0 . Thus for the linear function 

a = 0 which is not identically zero the loop (R"; a, 0) is elastic, but not a group. 

Another (less obvious) example is an (R"; a, 0)-loop ( « ^ 1 ) for which a ( x ) is 

a quadratic function, e.g. a ( x ) = ||x||2. It is easy to see that in this case the one-para-

meter subloops are not one-parameter subgroups. Indeed, for arbitrary s, t, R 
we have 

F(F(s\, fx), ux) — F(sx, F(tx, ux)) = 

= stu • ||x||2 • [(3i + 2 j + 2i/)(j—i/) + ||x||2i[i(i3 —« 3 ) + 2i2 ( j2 —w2) + i3 ( i—M ) ] ] x. 

Hence these subloops are not subgroups because the difference vector has a positive 

norm provided 0 < « < i < / . Consequently, these loops are not groups. 

R e m a r k . L. V. SABININ and P. O. MIKHEEV [5] proved that analytical right-
alternative loops are power associative (that is, F(xm , x " ) = x m + n for arbitrary 
xG J5" and any integers m and n). However, we can show that the analogous state-
ment for elastic loops is false. As a power-associative loop has one-parameter sub-
groups in every direction (see KUZ'MIN [6]), our analytical elastic (R"; a, a)-loops 
(a (x ) = ||x||2) can not be power associative. 

III. Loops without one-parameter subloops 

In final part of this paper we exhibit loops which do not have any non-trivial 

one-parameter subloops whatsoever. However, let us start with another class o f 

loops which have one-parameter subloops in one unique direction. For this pur-

pose we give a slight modification of the loops given by (1). 

D e f i n i t i o n 6. Let us define a local multiplication (a, — A; Q, a) in R" as follows 

F 2 : R "XR" — R": ^ X l ^ - ^ 

where % °ll are appropriate neighbourhoods of 0, furthermore for all x, yd'f" we 

have 

(11) F2 (x , y) = x + y + a ( y ) x - a ( x ) y + e ( x , y )a 

for all x, Here a is the same as in Definition 4; furthermore a^R" is a point 

(sufficiently close to 0) different from 0, and Q is a real function of class Ck : 

Q: R " X R " — R : F - ^ C R 

such that £>(x, y ) = 0 if and only if x = 0 or y = 0 or x = y. (That is, Q(X, 0) = 
= {?(0> y) — z ) = 0 for all x, y, and Q does not vanish in any other case). 
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Such functions Q exist, e.g. the function g defined as fol lows: 

(12) e ( x , y ) = ||x|Hly|H|x-y||«. 

P r o p o s i t i o n 2. The local (a, —a; Q, a)-multiplication given by (13) defines a 

local loop of class Ck which has one-parameter subloop in the direction of a, exclusively. 

P r o o f . W e show that F2 is a loop-multiplication. 
a) Since a. and Q are o f class Ck, F2 is well defined in "K F 2 (x , y ) = z can be solved 

f rom left and right because the derivative of F2 with respect to the first and second 
variable (belonging to R" ) is the identity map. 

b ) The origin 0 in R " is the unit element since 

F a ( x , 0 ) = x + O + a ( O ) x - o c ( x ) O + 0 ( x , O ) a = x 

and similarly F2 (0, y ) = y , for all x, 
c ) a and Q are of class Ck, therefore F2 is also o f class Ck. 

Following this, let us notice that the coordinate system in which F2 is defined, 
is a CCS. Indeed, according to Definition 2 we have 

F 2 ( x , x ) = x + x + a ( x ) x —a (x ) x + g (x , x ) a = 2x 

for all xGT^T So, owing to Theorem I in [4], if there exists a one-parameter subloop, 
then it is locally a straight line. It is obvious that there exists one-parameter subloop 
in the direction of a. 

Let us suppose that there exists one-parameter subloop in the direction o f d. 
Then the elements of this subloop are of form t d, t£(—T0, T0), at least locally. 
Let x = s 1 d 7 i 0 and y = s 2 d ? i 0 ( s ^ i a ) be two different elements of it. According 
to (11) we have 

F 2 ( x , y ) = Fa fod , j 2 d ) = [5 1 + j 2 + j 1 o ! ( j od ) - j 2 a ( . y 1 d)]d + <?(i1d, ,y2d)a + /-d 

for some rf R. Since for these and s2: Q(Sjd, directions a and d must 

be the same, which completes the proof. 

This loop is called an (R" ; a, —a; Q, a)-loop. 

Our next and last example is that of a loop without nontrivial one-parameter 

subloops. For this purpose we shall modify the previous construction. 

D e f i n i t i o n 7. Let us define a local multiplication (a, —a; q, a; a, b) in R " 

( n S 2) in the following manner 

F 3 : R B X R " r ^ r ^ f y 

where ~V, °ll are appropriate neighbourhoods o f the origin 0, furthermore for all 



30 J. Kozma 

x, we have 

(13) F3 (x, y) = x + y + a ( y ) x - a ( x ) y + e ( x , y )a + <r(x, y )b 

where a and a are the same as in Definition 6, a and b are linearly independent (fixed) 
points (directions) in R" (sufficiently close to 0). Further we suppose that a possesses 
all the properties of G and that, in additional, from Q(X0, y0) = a(x0, y0) it follows 
that £>(x0, y0) = ff(x0, y 0 ) =0 (that is that A and G are different, except where they 
vanish). 

Functions a with the required properties exist, e.g. the one defined by the fol-
lowing formula: 

(14) ff(x, y) = /j(x)||y||2||x-y||2, 

where h: R" — R" and h(x) vanishes if and only if x = 0 , and fcOO^M2. Further-
more h is assumed to be of class Ck. 

P r o p o s i t i o n 2. Any multiplication given by (13) defines a local loop of class Ck 

which has no one-parameter subloop at all. 

This loop is called an (R" ; a, —a; g, a; er, b)-loop. 

P r o o f . In the same way as above we can prove that conditions a), b ) and c ) 
for loops are fulfilled. 

It can be stated, again, that F3 is defined in a CCS. Thus if there exists a one-
parameter subloop of F3 in the direction of d, then for two different elements 
x^s^d, y = i 2 d (0T^S-L^SZ^O) we have 

Fa(*,y) = F a C ^ d ^ d ) = 

= [ j 1 + i ' 2 + j 1 a ( j 2 d ) —i-aa^id^d + ^ ^ d , i 2 d ) a+ ( r ( j 1 d , = rd. 

Thus we obtain that 

i?(.yid, j2d)a-f a^ id , J2d)b = id 

for some / = i ( j 1 , s^)£(—T0, T0). As for d we have unique expression d = x 1 a+K 2 b , 

we get 

td = (txj) a + (tx2) b = eC^d, j2d)a+c7(j1d, j2d)b 

for all allowable s^s^, hence we obtain that 

(15) J2d) = ty.! and a ^ d , .r2d) = ty,2. 

Let us first suppose that d = a. That is, there exists a one-parameter subloop in the 
direction of a. Then we have 

e(5i a, j2 a) a+o-fo a, s2 a) b = /a. 
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Since e O i a , i 2 a ) ? i 0 , a ^ a , s 2 a ) ^ 0 a n d t?±0, i t f o l l o w s that b = a , w h i c h c o n -

tradicts the assumpt i on f o r a a n d b. I n the case o f d — b w e ge t the same result. 

L e t us n o w suppose that a ^ d ^ b . T h e n f r o m re la t i ons (15 ) w e o b t a i n t h a t 

X i ^ O , x ^ O , consequent l y f o r a l l 

( 16 ) g f e d, s2d) = — c f e d, So d) . 
x2 

But , w e shal l n o w g i v e a q a n d a such that this e qua t i on does n o t h o l d i d en t i ca l l y 

in * a n d s2. W i t h re la t ions (12 ) and ( 14 ) equa t i on ( 16 ) b e c o m e s 

I I * d||:2 ||JS d||'2 l i f e - s2) d||2 = ^ h (Sl d ) I I d p l i f e - s 2 ) dip3 

Ji2 

and consequent l y 

I M I I 2 = — ¿ f e d ) 

f o r al l suf f ic ient ly sma l l s ^ 0. N o w the func t i on 

A ( x ) = e»*»*-||x||a 

can n o t sat is fy ident i ca l l y the p r e v i o u s equa t i on , w h i c h c omp l e t e s the p r o o f . 
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The heat kernel for /7-forms on manifolds of bounded geometry 

I N G O L F BUTTIG and JÜRGEN E ICHHORN 

1. Introduction 

In [3] an approximation result for the eigenvalues below the essential spectrum 
of the Laplace operator was proved for open manifolds. These eigenvalues were 
approximated by the eigenvalues of some sequence of semicombinatorical Laplace 
operators. The essential assumptions were completeness and bounded geometry up 
to a certain order. Using this, the first author proved, following a paper of DONNELLY 
[6], the existence of a good fundamental solution of the heat operator acting on 
functions, or what is the same, the existence of a good heat kernel. For /»-forms this 
existence was presumed. It is widely believed that the existence result holds for p-

forms and several authors refer to [4] for example. But in [4] a rigorous proof was 
given only for functions. Further, in [5] there is a nice existence proof for functions 
and a uniqueness proof for /?-forms. The paper [4] does not contain an existence 
proof for /?-forms. As a matter of fact, we have never seen such a proof until now. 
This is in some sense understandable because it needs some nontrivial facts that have 
to be established. In this paper we present an existence proof for a good heat kernel 
on open manifolds of bounded geometry of infinite order, as expressed by Theorem 
4.1. The uniqueness then follows from [5]. 

The paper is organized as follows. In Section 2 we introduce and summarize 
some facts on manifolds of bounded geometry. Section 3 is devoted to the main te-
chnical lemmas concerning the construction of the heat kernel. Finally, in Section 4 we 
present the main results of this paper. 

3 
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2. Manifolds of bounded geometry 

Let ( M N , g) be open and complete. Denote the curvature tensor of (MN, g) 

by R and the Levi—Civita derivative by V. W e consider the following conditions: 

(1) RINJ (M) = jrrf R¡„j ( x ) > 0, 

1.e. the injectivity radius possesses a positive lower bound. 

( B J There exist bounds C, such that IV'-R^C,-, O ^ i S m . 

Assuming condition (1), we consider further the condition 

(BCm ) For every £>0 , 0<s</- i n j (A f ) , and multiindex 

a = {<*!, ..., <xK), a ; & 0, |a| = a1+...+aN ^ m 

and every choice of an orthonormal base in all points x£M there exist constants Ca 

independent of x such that I D ^ I s Q , y£Be(x), in normal coordinates xl defined 
in the open ball Bt(x). 

R e m a r k s . 1. (B0 ) is equivalent to the boundedness of the sectional curvature. 

2. (BCM) is independent of the choice of the orthonormal base in TXM. This follows 

from the chain rule, the triangle inequality and the compactness of the orthogonal 

group O(n). 3. The boundedness of the |Da(g;j)|, |a|gm, implies the boundedness 

of the |Da(g i j)l- For |a|=0 this is seen from 

(2-1) (gu)(giJ) = E. 

Assuming the validity for \a\=m— 1, we obtain the validity for m, applying D" 

to (2.1), expressing D'(gtJ) by the Dp(gkl), \0\Sm and Dy(grs), and 

applying the induction assumption. 

W e summarize some relations between the above conditions. 

P r o p o s i t i o n 2.1. Let (MN, g) be open, complete and satisfying (1). 

(a) (BCm) implies (Bn,_2), 

(b) ( B C a n d (Bm) are equivalent, 

(c) (B0) implies (BC°), 

(d) (Bi) implies (BC). 

P r o o f , (a) The curvature tensor can be expressed by derivatives of the gtj, 

gkl o f order s 2 . 

(b) W e refer to [4], page 33. 
(c) The boundedness of the g t j , assuming (B0), is just Lemma 1 of [9]. 
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(d) In [10] it was shown that (l?,) implies the boundedness of the Christoffel 
symbols From 

(2-2) rhik = grjr{k, r j i k + r i j k = {d/dxk)giJ 

and (c) we obtain the assertion. 
Examples of open manifolds satisfying (1) and ( B a r e the Riemannian homo-

geneous spaces, in particular the symmetric spaces of noncompact type. 
The existence problem for metrics satisfying (1) and (Bm) is more subtle. The 

condition (Beo) does not imply (1), as cusp manifolds of constant curvature K = — 1 
show. CHEEGER, GROMOV and TAYLOR presented in Theorem 4.7 of [4] explicit 
lower bounds for the injectivity radius r i n j (x) by relative volume estimates, assuming 
additionally curvature bounds. As a trivial conclusion, the injectivity radius of an 
open manifold in general is governed by the curvature and by additional geometrical 
entities. 

Let us list up some classes of open manifolds admitting a natural construction of 
metrics of bounded geometry. 

P r o p o s i t i o n 2.2. The following classes of smooth open manifolds admit a natural 

construction of complete metrics satisfying (1) and (B„). 

(a) Reductive homogeneous Spaces G/H, G beeing a Lie group and H a compact 

subgroup. 

(b) Coverings of closed manifolds. 

(c) Open manifolds which are built up by infinitely often gluing together a finite 

number of bordisms (manifolds with so called almost periodic ends, cfi [7]J. In par-

ticular, any infinite connected sum of a finite number of closed manifolds or manifolds 

with a finite number of ends, each of them collared, belong to that class. 

(d) Leaves of a foliation of a compact manifold. 

(e) Every finite connected sum of open manifolds, each of them admitting a metric 

of the above type. 

P r o o f , (a) Every such manifold admits a metric making it to a Riemannian 
homogeneous space. 

(b) Equip the closed manifold with any metric and take its lift. 
(c) I f M1, ..., MR are the nondiffeomorphic boundaries, fix a metric g0 at MQ, 

extend ge as a product metric to collar neighbohoods and then to the bordisms. For a 
collared end there is a simpler construction by fixing a product metric at each end 
and extending the end metrics to the remaining compact part of M. 

(d) This item was proved in [8]. 
(e) The proof is trivial. 

R e m a r k . Natural construction here means that the construction of the metric is 

3» 
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in a certain sense adapted to the topology of M. Nevertheless, a much more general 
existence theorem holds true. Namely, we reformulate Theorem 2' of [8] as 

T h e o r e m 2.3. Every open manifold admits a complete Riemannian metric 

satisfying (1) and (BJ). 

In the present paper we call an open, complete manifold (M N , g ) satisfying (1) 
and ( B „ ) a manifold of bounded geometry (o f infinite order). 

In the next Section we need some properties of the Christoffel symbols fo r such 
manifolds which we establish now. W e recall that (B m ) implies (BC°° ) according to 
(2.2). Fixing x£M and 0 < e < r i n j ( M ) , we consider geodesic polar coordinates 
(r,u)=(r,ul,...,uN~1)=(x1,...,xN) around x. Then according to the tensorial 
transformation rule, we have 

(2.3) \D*gu(y)\ ^ Cx 

and 
(2.4) W O O I S C'x 

for all y^Ue(x), Cx, C'x independent of x. From the definitions of the Christoffel 
symbols, (2.3) and (2.4) we immediately obtain 

P r o p o s i t i o n 2.4. Let (MN, g) be of bounded geometry, x£M, 0 < e < r i n j ( x ) , 
(r, u1, ..., K a _ 1 ) geodesic polar coordinates. Then there exist constants Ka independent 

of x such that 

(2-5) \D*r$(y)\ S Kx 

for all yeUE(x). 

3. The main estimates for the heat kernel construction 

Let (M'v , g) be open, complete, oriented and of bounded geometry. W e denote by 
Q resp. Q¡¡ the vector space of all smooth p-forms with compact support, by 2QP 

the vector space of all measurable square integrable p-forms and by D(A)cz2£2p 

the domain of the closure of the Laplace operator 

A = d5+5d: Qp - Qg. 

Since A is nonnegative and selfadjoint, the spectral theorem implies representations 

M CJO 

2= f A dEx, e~<2= f e-,xdEx. 
0 0 

I f e~t3 can be written as an integral operator, the kernel of the latter is called 

the heat kernel of (MN, g) for p-forms. One asks then for the properties of the kernel. 
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An integral kernel always exists according to the Schwartz kernel theorem, but this 
kernel has on open manifolds no importance since it has no mapping properties 
between L?-spaces, 1 S g ^ 

Let us now make the definitions precise. A two-point form E" with values 
Ep(t,x,y)£ApTxM®ApTyM is called a good global heat kernel, if it satisfies the 
following conditions: 

( H I ) Ep(t, x,y) is smooth for 
(H2) (dldt + A)Ep(t, x, y)=0, where we apply A acts on E" as a section depend-

ing on y. 

(H3) Km J E"(t, x,y)A *co0(y) = ®o (x ) for all x£M and 
M 

(D0£QS, i.e. Ep(t, x, y) - 5Xty. 

(H4) There exist constants C j , C2 =-0, depending on I, m, n, such that for all 
x,y£M, 0<?<oo 

\(d/dt)1 Vm V"E"(t, x, y)I =£ C 1/~' v / 2 " ( m + n ) / 2 ' 1 exp (—C 2r ' (x , y)/t). 

(H5) The heat kernels £"(/, x, y) and Ep+1(t, x, y) are related by dx(E"(t, x, y)= 

=SyEp+1(t, x,y). 

The main aim of this paper is an existence proof for a good heat kernel, assum-

ing (M N , g ) to be of bounded geometry. The method of proof consists in summing 

up iterated convolutions of a certain initial expression, where the convergence is 

guaranteed by some majorization. 

Let us start with preparatory lemmas. Assume 0 < e < r i n j , (R) , cp(a) = 1 
for |a|<e/2 and <p(a)=0 for |a|>l. Then we define f j : M x M — R by means of 
t](x, y):=i](r(x, y)). We define a smooth two-point form (1)E(t,x,y) as follows: 

(l)Ep{t, x, y) := (4nt)-N'2 e xp ( - r> ( x , y)jAi) J t%{x, y)n(x, y) =: Sp"{t, x, y)n{x, y), 

i = o 

where C/f(x, y), O^i^k are some smooth two-point p-forms, k fixed. 

L e m m a 3.1. The two-point forms C/,(x, y), Osi^k, can be choosen such that 

( i ) (d/dt+A,)S*(t, x, y) = ( 4 7 1 / ) - ^ - ^ exp ( - r2(x, y)/4t)A, Uk(x, y). 

(ii) There exists some constant D ( > 0 such that for all Os/^A:, O^l^k, we 

have \AlyU,(x,y)\*D,. 

P r o o f . The two-point forms Ut(x,y), O^i^k, are the classical Hadamard 
coefficients. Existence, uniqueness, and recursion formulae for the C/;(x, >>) are shown 
in the literature [2, 11, 12]. The calculation of these Hadamard coefficients leads to a 
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system of differential equations of the following form: 

0r(d/dr) + G + k)Uk(x, •) = AU^x, •), r(x, •) < e/2, 

U0(x, y\ ¡p,h Jp = gilh(x) ••• gipJp(x), U-l(x, -):=0, 

where G means some matrix function. 
An integral recursion formula for the Uk(x, y) is given by 

(3.1) Uk(x, y) = -U0(x, y)Q~k f r*-1 £/„(*, z)^AyUk^(x, z) dr 
o 

where g:=r(x, y), r:=r(x, z) and z lies on the geodesic connecting x and y. 

Assertion (ii) follows from an analoguous integral recursion formula obtained 
by covariant differentiation of (3.1) and from the assumption of bounded geometry. 

Further we set 

x, y) := (d/dt+Ay)^Ep(t, x, y). 

N o w we will estimate |(1)J?p(i, x, y)\. 

L e m m a 3.2. There exist constants Al(T)^-0, A2(T)>-0 depending on 7">0 
such that for all 0 x , y £ M 

(3.2) x, j ) „ i p > A J si A1(T) tk~N/2 exp (—A,(T)r2(x, y)/t). 

P r o o f . W e use the following well-known formula A(F<P)=(AF)<J> +FA<P — 
-2Vgrad/<i>, for / £ C ~ ( M ) , <P£ Q". With that we obtain 

0/dt + A,)S*(t, x, y)ij(x, y) = ( 4 * ) - "/ 2 i f c - "/ 2 exp (~ r 2 ( x , y)/4t)AyUk(x, y) + 

+ S"-(t, x, y)Ayrj(x, J>)-2Vgrad„S<"<(', x, y). 

The estimation of the first term follows from Lemma 3.1 and our assumption of boun-
ded geometry. In the expressions of the second and third ones there occur factors rj' 
and rj" which are zero for r(x, >>)<e/2. So they decrease exponentially to zero as 

+0 . Furthermoore \Ayt](x,y)\ is uniformly bounded because of bounded geo-
metry. These arguments yield the desired estimations. 

C o r o l l a r y 3.3. Let (AT, g) be open, complete and of bounded geometry. Then 

there exist constants A1(T)^-0, A2(T)>0 depending on T>0 such that for all 

0<t^T and x,y£M 

(3.3) x, y)\(x,y) S A[(T) tk~N/2exp(—A2(T)r(x, y)/t), 

where | • means the pointwise norm of two-points forms. 

P r o o f . The assertion follows from (3.2) and from the fact that for manifolds of 
bounded sectional curvature and our choice of coordinate systems the pointwise Rie-
mannian norm and the euclidean norm are equivalent (cf. [9]). 
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Now we define for two-point forms Ap and Bp their convolution according to 

t 
A"*BP •= f f Ap(s, x, z)A *Bp(t—s, z, y) dyoh ds, 

0 M 
i.e.: 

AP*B" = 2 (Ap*B")h ipi ht . Jpdx?lf\...A dxl" ® dyh A... A dyJ-

with 
(Ap*B%,_ip,h Jp := 

i 

2 f f Al .„, ^ kp(s, x, z)Bfck};j'kp(t—s, z, y)dvoU ds. 
O M 

We set 0)RP:=WRP* ...*mRp /-times, and assume k>N/2. 

L e m m a 3.4. Let be T>-0 and I a positive integer. Then there exist constants 

A3,A^0 such that for T, 1^/^/, x, yf_M and all 

we have 

(3.4) |«>Jl'(f, x, y\ ip,h,...Jp\ == A3tk~NI2+i~1 exp(— Air2(x, y)/i). 

P r o o f . W e perform mathematical induction. For fixed x by definition of mRp 

the v-support of ( i )i?f , , i is contained in B:Jx). W e consider /=2. Then, i "•» piJi*"'tJp> 
denoting 2 '•— 2 w e have 

ik) k^-^kp 

\™Rp(t,x,y)h jpl = 

= \2 f f(i>Rp(s,x, z\ ,„kl kp0)Rp(t-s, z, y))i::::±dvolJs\ = 

(3.5) 0 0 ; M 

= I f f [2 (i)RP(s, X, z\ ip.kl tp VRp(t-s, z, y)h i p , J , X 
0 M №) 

XgKlii... gVp] d^xds\ A\D2™R{t, x, y), 

with some constant £>2>0 and 

(2>R(t,x,y):= f J sk~lN'2)(t-s)k-iN^ exp(-A2r2(x, z)/s)x 
0 Be(x)nBJy) 

X e x p ( - A 2 r 2 ( z , y)/(t-s))dvo,Tds. 

For the estimation of (2)R(t, x, y) we need 

L e m m a 3.5. 

r2(x, z)/s+r2(z, y)/(t-s) ^ r2(x, y)/t+(t/s(t-s))[r(x, z)-sr(x, y)/tf. 
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For the simple p r o o f which immediately follows from the triangle inequality, 

we refer to [3]. 

Lemma 3.5 now implies 
t 

|™R(t, x, y)| =5 exp(—A2r2(x, y)/t) / / s k' ( Nl2)(t-s) k- ( N' 2 )X 
o B (wn8 tw 

Xexp [ - A 2 ( r ( x , z)-r(x, dyo1xds lk~(N'2>+i[k-(N/2) + l j - ' x 

X e x p ( ~ A 2 r 2 ( x , y ) / t ) f f f ( t - s f - ^ 2 ) X 
0 s"-1 0 

Xexp [-A2{r{x, z)-r(x, y)(s/t))2(t/s(t-s))] 9x(z)drxduxds, 

where ( r x , u x ) are the geodesic polar coordinates of z£Bc(x) and 0x(z):= 

:=(det gij)1/2(z). According to the Rauch comparison theorem and our assumption of 
bounded geometry there exists a constant D 3 > 0 independent of x such that 
\0x(z)\^D3 for all ziBt(x). 

W e set Q:=r(x,y), r:=r(x,z). Then there remains the integral I(s):= 
t 

: = f exp [—A 2 t ( r—(g/ t ) g ) 2 s ( t—y ) ] dr to be estimated. But I(s) decreases at 
o 

least like i " ' 2 resp. (t-s)NI2 for resp. s 1, For \{2)R(t, x, this 
implies the estimate 

x, y)| tk~(N/2)+1[k — (N/2) + 1 ] - 1 exp (-A2r2(x, y)H)D3 ( f du)x 
ss -1 

t 

X f sk~(N/2)l(s)d.s =g D3DiD5tk-(NI2)+1[k-(N/2)+l]-1exp(-A2r2(x, y)/t), 
o 

where 

f du s Z)4 
S2V-1 

and 
t 

/ (t-sf'iN'2)I(s)ds =s £>.. 
o 

Using these estimates and (3.5), we obtain for 0 a n d x,y, £M 

(3-6) \™R"(t,x,y\ ip„, J s 

^ AlD2D3DiDstk-lN'»+1[k-(NI2)+\]-1exp(-A2r!(x, y)/t). 

Using the estimate of Corollary 3.3, and its iteration, we obtain 

(3.7) \V>R(t, x, y\ ip,h Jp\ ̂  A[D^ «>j?(i, x, y), 

where {i)R(t, x,y) is the /-fold convolution of tk~<-N/2) exp (-A2r2(x, y)jt). 
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In the sequel we need also an estimate for x,y), which we establish 

again by mathematical induction, namely 

(3.8) | « j i ( i , x, y)| (DzDzDs)'"1 lk~(N/i)+i~1 X 

X e x p ( - A2r2(x, y)/t)[k — (N/2)+]]~1... [k — (N/2) + i— l ] - 1 . 

For ¿'=2 this is already proved. The induction step i—z '+ l shall be done 

below. Assuming (3.8) for a moment, we obtain from the induction assumption and 

the estimation of the first i convolution factors of (1+1).R(f, x,y) 

|<'+»jf(i, x, y)| (X>a_D4 1 - ( N / 2 ) + 1 ] . . . ^ - ( i V ^ + Z - l J ^ X 

X / / (i-i)l-('"!)+^1it-w'2) exp(-A2r2(x,z)/s)X 
0 B,cU)nBc(y) 

Xexp(—v42r2 (z , y)/(t-s))dvol__ ds. 

Denoting the last integral by /, we get 

J f J (t—s)k~<-N/2)+i~1sk~(iV/2) exp (—A 2 r 2 ( x , Z)/J)X 
0 SN-1 0 

X e x p ( - A/-2 (z, y)/(t-s))0x(z)drduds S A ¿ V " ~ W 2 > + ' ~ (JV/2)+/]"1X 

f £ 

Xexp (~A2r2(x, y)/t) J f exp(-A2t(r-(s/t)Q)2js(t-s))drds ^ 
o o 

=£ Z)4D5 I ^ ( ] V / 2 ) + i t 1 exp ( - 7)/i). 

This finishes the induction for ( i +1 ) .R(i , x, >>) and shows 

|<'+»* ' (*, x, W l J ^ A i ^ ( D 2 D 3 D M x 

Xexp(-A2r2(x, y)/t)tk~(N/2)+'[k — (N/2)+l]~1... [yc-(jV/2) + /]-1. 

Furthermore, there exist constants A3, A4>0 such that for 0 < / s r , 

(3.9) 4 ( D i D , 2 ) 4 2 ) 6 ) ' - 1 e x p ( - ^ 1 i a ( x , y ) / i ) [ f c - ( A / 2 ) - | - l ] - 1 . . . 

... [k-(N/2)+i-l]"1 ^ A3exp(— A4r2(x, y)/1) 

which finishes the proof of the Lemma. 

L e m m a 3.6. For every T>0 there exist contstants A5, Ag>0 such tath 

(3.10) \^R"(t, x, y\ I p iJ1 Jp| == ASA™tk~(N,2)+2m~1(m\)~1 exp ( ~ A 2 r 2 ( x , y)/t) 

for all T and all positive integers m. 
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P r o o f . The calculations in the proof of Lemma 3.4 give for i—2m 

|^Rp(t, x, y\ ip,h J ^ ( Д ^ з ^ А Г - ' х 

x tk-(N/2)+2m-i [ic-(NP) +1]"1... -(N/2) + 2m-l]"1 exp ( - A2r2(x, y)/t). 

Using 
[k-(N/2) + l]...[k-(N/2) + 2m-i] > m\(m+\) ... (2m-1) 

we obtain 

A5 AS(mI)"1 tk~[W2)2m~1 exp ( - Aoг(x, y)/t), 

as an upper bound for the right-hand side of (3.10) (where A5, Ae>0). 

L e m m a 3.7. For every T>0 there exist constants A7,A8=~0 such that 

(3.11) \(2m+^Rp(t,x,y\t^p>h jp\ - A7 A?(m!)-1 tk"<<^>+^ exp (~A2r2(x, y)/t) 

for all 0 < / g T and all positive integers m. 

P r o o f . 

| ( г и + 1 ) л Ч ' , x, j>),4 ip>Jl Jp| s 

Хехр(-Л2|-2 (х, j)/i) 3= A1Af(m^~1tk-<'N^+2mexp(-A2r2(x, y)/t). 

Let us define Q p : = ^ (-1)1 ' ( i ) i?p , i.e. 

= 

L e m m a 3.8. For all T> 0 the series for Q? i ,J„-J converges absolutely 

and uniformly. There exist constants A9, A10>0, depending on T, Such that 

(3.12) 16ЧГ, x, W l J ^ A9tk-(Wexp(-A10r2(x, y)/t) 

for all T, x,y£M, г ' ^ . • • • - = : j p -

P r o o f . The convergence follows from the preceding two lemmas since 
6?„- , i ,j\,-,j c a n estimated from above by an exponential series. Furthermore, 
we obtain from (3.2), (3.4), (3.10), (3.11): 

|™Rp(t, x, y ) h , . . . , t r t j l , . . . , j r \ r AS-M'expC-A^Cx, y)/t), 

Z I(2m)Rp(t, x, y\ ,Wl jp\ Аъexp(—АоГ2(х, y)/t)X 

m—1 

X [ 2 (AZ/rn\)tk-W»+2m-1] S Ds exp(— D6r2(x. y)/t), 
m = 1 

2 \(2m+1)R"(t, x, у)>, ,р>л jp\ ^ A7exp(~A2r2(x, y)/t)X 
m=l 

x [ 2 (^ r a/'" ! ) i f c- ( f i / 2 ) + 2 m ] S A exp {-D8r2(x, y)/i), 
m=1 

where D5, De, D7, Ds are positive constants. This provides the asserted estimate. 
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4. The main results 

We set Ep:-mEp-Qp*wEp and show that Ep is the asserted heat kernel. 

M a i n T h e o r e m 4.1. Let (MN, g) be open, complete, and of bounded geometry. 

Then there exists a good global heat kernel Ep(t, x, y) satisfying the conditions ( H I ) — 
(H4), and 

(H5) E"(t, x,y)=Ep(t, y, x ) for all x,y£M (symmetry), 

(H6) Ep (t + s, x, y)= f E" (t, x,z) A* E"(s, z, y) (semigroup property ). 
M 

Moreover, E" is uniquely determined. 

P r o o f . ( H I ) Smoothness is a local property and it is sufficient to establish it 
for all compact subsets. The kernels mEp and 0>R" are smooth by construction. On 
compact subsets one can differentiate (1)RP under the integral sign, thus establishing 
the smoothness of ( l )Rp . Also on compact subsets the series for O" and its derivatives 
converge uniformly according to the estimates of Section 3. 

(H2) Using, once again, the argument of uniform convergence, we obtain for 
0 a n d k^N/2+2 (c.f. [2]) 

(d/dt+A)Ep = (d/dt+A)(a)Ep-Qp*mEp) = (1)R»-Op-Op*(1)Rp = 

= WRP- 2 ( -1 ) ' ' 2 1)"' Wrp = 0-
¡=1 i=2 

(H3) For ÛJ0€Î2£ there holds 

f Ep(t, x, y)A*co0(y) = 2 [ f Ep{t, x, y)t\*oh(y)\i ^ ; dx^A-.Adx1-, 

•where 
[fEp(t,x,y)f\*co0(y)] = 
M 

= 2 f Ep(t, X, y)h lp, tl kpOJ0(y)^ k" dvoiy = 
(k) M 

= 2 / WEp(t, X, y\ , kpco0(y)k> ** dvoly-
<*) M 

/ (Qp*wE»)(t, x, y)h , tl kœ0(y)Ki <WvoV 

W M 

Introducing normal coordinates centered at x, the formula 

¡2WEp(t,x,y)h ip,kl,...,kpco0Jl lp(y)X 
M W 

Xgklh(y)-- gkplp(y)dvoly = to0ih ip(x) 
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follows just like in the Euclidean case. The estimate (3.12) for Q p gives 

(4.1) | r i Q ' O , x, >•),„,.,,„ h Jp\ ^ A9tk~(Ar/2)+1 exp (—A 1 0 r 2 ( x , y)/t). 

The calculation Qp*mEp=t(t-1Qp*^Ep), use of (4.1) and a version of Lemma 
3.5 lead to an estimation from above by 

t 
A9tf f sk~(*/»+*(,-.j)*-«"/» e x p ( - A10r2(x, z)/s)exp(- A2r2(z, y)/(t-s))dvolJs 

o M 
t 

S / / J exp (— Anr2(x, y)/t)sk~(N/2)+1(t—s)k~^/2)X 
0 M 

X exp [ - A12(r(x, z)-r(x, y)(s/t))2(t/s(t-s))] dvoU ds 

where An, A12 are positive constants. Therefore we have for cu0£ 

ItZ J(t~1Qp*il)Ep)il lp,tl kp(Oo{y)kl-~'k>d,0A 
1 (« M 1 

t 
^t{A9 f e x p ( - Anr2(x, y)!t) f f x 

M 0 M 

X e x p [ - ^ M ( r ( x , 2)-/-(x, 7 ) ( 5 / 0 ) 2 ( ^ ( i - i ) ) ] t max K ( y ) k l ' -k>\dvol._dsdy\. 

Since suppco0 is compact, we can cover it by a finite number of e-balls, e-=r i n j , 

and apply for the estimation of all three integrals the estimates of Section 3. Thus we 

prove that the expression { . . . } remains bounded as /—0+ and lim J (QP*WEP) A 

A *co 0 00=0 . (H3) is proved. M 

(H6) In order to show the semigroup property 

E"(t, x,y)= f Ep(s, x, z)A *Ep(t-s, z, y) 
M 

we prove that 

Fp(t, x, y) := JEp(s, x, z)A *Ep(t-s, z, y) 
M 

has the properties of a heat kernel. The uniqueness theorem of [5] then ensures 
Fp(t, x,y)=E"(t, x,y). In fact, from (H2) for Ep(t,x,y) we obtain 

(id/dt + Ay)Fp(t, x, y) = f E"(s, x, z)A *Ep(t-s, z, y) + 
M 

+ f Ep(s, x, z)A*AyEp(t-s, z,y)= f Ep(s, x, z)A *(- Ay)Ep(t-s, z, y) + 
M M 

+ Ep(s, z, x)A * AyEp(t—s, z, y) = 0. 
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Property (H3) of Ep(t, x, y) implies 

lim F"(t, x, y) = lim f Ep(s, x, z)A*E"(t-s, z, y) = 8xiz8z<y = 8x,y 

M 

since 0 + implies i — 0 + , t—s—0+ 

(H7) (Symmetry). Using property (H3), we get 

lim f Ep(s, x, z)A *Ep(t-s, y, z) = Ep(t, y, x), 
S~0+ M 

lim f E"(s, x,z) A* Ep(t—s, y, z) = E"(t, x, y). 
M 

Then, according to Duhamel's principle for forms, 

t 

E"(t, x, y)—Ep(t, y, x) = f d/ds f Ep(s, x, z )A *Ep(t—s, y, z) = 
o M 

t 

= f f[Az Ep(s, x, z)A *Ep(t—s, y, z)—Ep(s, x, z )A * AxEp(t-s, y, z) ] = 

0 Ai 
t 

= f J {3zE"(s, x, z)A*dzEp(t-s, y, z) + 3zEp(s, x, z)A*SzEp(t-s, y, z)-
0 M 

-[3zEp(s, x, z)A *dzEp(t~s, y, z) + d.Ep(s, x, z)A *5zEp(t-s, y, z)]) = 0. 

Here we essentially used the completeness of ( M N , g). 

(H4). (Estimates for the derivatives.) Assume T > 0 , O ^ t ^ T and A->Ar/2 + 
+ (m + n)/2 + l, and begin with l=m = n=0. Then the proof is done according to 
the estimates for (i)E and Qp. Next we consider W"Ep(t, x,y). There holds 

| V , x , y\ Ip, j1 jp| |V; ™Ep(t, x, >•)„ ip, „ J + 

+ \Vy(Q" *wEp)(t, x, y)h ,riJl ,p|.j 

We start with the estimation of the first term. 

L e m m a 4.2. There exist positive constants A1S, Au(n, T) such that for all 0 < 
T, x , y £ M , / 1 < . . . < j p , A < . . . < y p 

(4.2) |V" a)Ep(t, x, y\ ip,h Jp\ S A13 t~Nl2-"/2 exp (— Aur2(x, y)/t). 

The p r o o f is by mathematical induction. For « = 0 it is done. Assume the 
assertion for 1, ...,n— 1. Since (MN, g) has bounded geometry, there exists a uniformly 
locally finite cover of MN by geodesic e-balls, 0 < £ < r i n j . According to [1] there 
exists a constant D 9 > 0 , independent of x, such that for all y£BE (x) 

(4.3) |V; exp ( - r2(x, y)/4t)\ ^ D9\(d"/dr") exp ( - r2(x, y)/4t)\. 
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This follows from Lemma 3 of [1] and the boundedness of the Christoffel symbols 
together with their derivatives. Using the inequality e~ 2 ^ ( a e ) ~ l , we obtain 

|d/dr exp ( - /-7401 ^ [exp ( - r2/40(r2/4t)fl2 exp ( - r2/8t) s= e " 1 r1'2 exp ( - r2/8i). 

Iteration and application of the product rule gives 

(4.4) \(d"/drn) exp ( - r2/4t)\ S £> 1 0 r N ' 2 —' 2 exp (~Dn r2/t) 

with positive constants D10, Dn(n, T). According to Lemma 4 of [1] there exists a 

constant D 1 2 > 0 such that 

(4.5) |V;(r(x, y))| S D12. 

Lemma 3.1 (ii), (4.3)—(4.5) and the derivation rules applied to ( 1 )£p provide the 
asserted estimation. 

In order to estimate the second term, we use the uniform convergence o f the 
integrals and can therefore differentiate under the integral sign: 

i 

I v ; c e ' *< »£ * ) ( / , X, > • ) „ , . . . , i p . , J p | ^ f f 21Qp(s, x, z)h ip<kl,...,kp\ X 
0 M (k> 

(4.6) X |V, ™Ep(t-s, z, y\ ipwJlf ...,Jp| |gk^(z)\ ... |g*'Wz)| dvol= ds ^ 

S D13tk~NI2~n/2 exp {-D^rix, y)/t), D13, Du(n, T) > 0. 

N o w (4.2) and (4.6) provide the asserted estimate. From the symmetry of Ep{t, x, y) 

in x, y we obtain the analogous estimate 

\^Ep(t,x,y\ J A1B t~N/2-m/2exp (— A10r'2(x, y)/t), A15,Aie(m, T) > 0. 

W e now turn to /-derivatives of Ep. Clearly, 

|(dW)Ep(L x, . . . . . . | ^ \(d'/dt')WEp(t, x, y\ ,p„, J + 

+ \(dl/dtlmp*WE»Xt, x, y)h l p ,y i J . 

W e start with the first term. Since 

w E p = f M I ? U ^ y ) , 
i = 0 

and the C/; and // are independent of t, it suffices to estimate (d'/dt1)^: 

Ait, x, y) := (4ni)~N/2 exp ( - r ( x , y)/4t), 

(4n)NI2(d/dt){t~!il2 exp (— r(x, y)/4t)) = (-(N/2)t^N/'2~l + rN-l2(rf4i2)) exp ( - r2/4t). 

Use of the inequality e~1^(ae)~1, like in the proof o f Lemma 4.2, gives 

t~N/2 exp (— r2j4t) (r2!4t2) s 2 e~l t-N!-~1 exp ( - r78/ ) . 
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Iterating this procedure and applying the product rule, we obtain 

W№v>Er{t,x,y\ 

S Z>i5t~N,2~ l exp (— D1Sr2(x, y)/t), D1S, D16(l, T) > 0. 

We estimate the second term as follows: 

\(dl/dt'№p*ME")(Ux,yh,...,ip,j1 J, f f (4 n)-N'Ht-s)-^X 
W 0 Be(y) 

X e x p ( - r(z, y)l4(t-s)) ^ t'Uiy,lf....Ip,kl,...,kp(z, y)X 
k 

= 0 

X Q'(s, x, z)., (p, ... Jp gk1,1 ( z ) . . . ¿vol, S 

^ 2 k a ' - v a t ' - ^ f l l im / - lim f](4n)-N/2(t-s)-Nt2exp (-r2(z, y)/4(t-s))x 

X 2 t//. (I>... .¡,. Q" & >P, h JP ski h (Z) • • • '' (Z) dvcU S 
i = 0 

^ D17 ik-N/2~l exp (-D18/'2(X, ?)/')> Di7,Dls(l, T ) > 0. 

Gathering the results, we have 

c, ,.„Wl JP\ - J/)/i), 

A11tAia(l,T)> 0. 

Iterating the derivatives V™, V,, dl/dtl, using the above estimates and the fact that 
Vj,(x, >0 is bounded thanks to the bounded geometry, we finally obtain the asserted 
estimate for 0 < ts T. In order to establish (H4) completely, we have still to consider 
the behaviour of the derivatives for t—oo. To do this, we essentially use the semi-
group property (H6). Until now we have proved 

\(d'/dtl)V'" Ep(2t, x, y)ix W l 

/Cljm,,(T) e x p C 2 mJ(T)r2(x, z)/t)Cli0t0(T) r»l*x 
M 

X exp (— C2i o, o (T) r (z, y)/t) dmU_. 

Without loss of generality we assume C 2 m l ( T ) > C i i 0 0 ( T ) . Lemma 3.5 now gives 

№ 0 VJ£'(2/, x, iptJl Jp| ̂  C l i I „ . I ( r )C 1 > 0 , 0 ( r ) r " - " ' 2 " ^ 

X EXP(— C 2 ; 0 J O ( T ) r'2(x, y)/2t) f exp [(-C2r0,0(T)/t)(2/l)(r(x, z ) - r { x , J)/2)2 ] DVOL=. 
M 

We denote the latter integral by /,(/) and state as induction assumption 

| ( W ) V ™ x , . . . ) l W l j,I ClimJ(T)CUOi<)(Tf-' x 

X r ^ - ^ r - ^ e x p ( - C 2 > 0 j 0 ( r ) r 2 ( x , y)/t)I2(t)...h(t), 
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where 

h(i) : = / exp [-C2,0t0(T)/t(k/(k-l))(r(x, z)-((k- \)/k)r(x, y))2] dyol_. 
M 

From the semigroup property we obtain 

\ { d i i d t i m E > { { k + \ ) t , x , y ) h W l j s 

^ f c ^ o c ^ i T f - i r ^ i t - ^ x 
M 

Xexp(— C2f0f0(T)r2(x, z)/fo)I2(t)... h(t)Clt0i0(T)X 

Xexp(— C 2 >o,o (T ) r 2 ( z , y)/t)rNl2dvoh S Chm,(T)(Q,0,0(T))k t~ml2~l ( r » / * ) * + ' X 

X exp ( - C 2 ; 0 > 0 ( r ) r2(x, y)/t) I2(t)... h{t) X 

X / e x p [(— C2j0io(71)/1)((£ + l )A)(/-(x, z ) - ( £ / ( £ + 1 ) ) rix, j ) ) 2 ] dyoU == 
M 

= c1>miliT)(clt0y0 iT)f ( r B ' z ) i + 1 /2 ( 0 . . . /i ( 0 4+1 ( 0 x 

X r ^ e x p i - C ^ i T ) ^ , y)/t), 

where we denoted the last integral by 7C+1(/). There exist constants D 1 9 > 0 , /J0>0, 

such that for all £>/r0 

t-mn-i^-N/2^-1 ^ D1<,ikt)-N'2-m'2-1. 

Moreover, 
7 s ( 0 - 0 for i — 0, hit)-* lit) for £ - o o , 

where 
7(0 := f exp [ -C 2 j 0 i 0 ( r ) // ( r ( x , z ) - r (x, j; ) )a ] rfvols. 

M 

This implies the existence of a constant ^ > 0 and /0€]0, T] such that for all r0 

and l o k y 

14(01 ^ (Q.o .oCr ) ) " 1 . 

Therefore, there exists a constant D i 8 > 0 , dependent on t0, k0, klt such that for all 

x,y£M, lc>k0, Jc^ky 

\iVldtl)S/™E'ikt,x,y\,...:ApJl Jr\ =5 

D18(kt)~N/2^m/2~1 exp (—C 2 i 0 > 0 ( r ) r2(x, y)/t). 

Since /6]0, /0[ was arbitrary, we have the estimation for arbitrary large kt. 
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In a similar manner we estimate |V"£p(i, x, ; . . |. We have for 
O^t^T 

\V"yE»(2t, x, y)h W l Jp\ ¡CUT)rN/2X 
M 

Xexp ( - C 2 ; 0 ( r ) r2 (x, z)//)C1>n (r) rNr-n,2 e x p ( _ c 2 > n ( r ) r 2 ( z , y)lt) dy0,x S 

X / e x p [— C2>O(r)/i(2/1)(/• (x, z)—(1/2)r(x, y ) )2 ] </voV 

M 
The last integral shall be denoted by /2 (0- Furthermore, we assumed without loss o f 
generality C 2 > n ( T ) > C 2 0 ( r ) . This implies 

I W . .Wl J ^ ci.o(T)C1 i0(T)I(t)(t~N'2)2 X 

X t~"!2 exp (— C2_ o (T) r2 (x, y)/2t). 

By mathematical induction, 

Iv;E"(kt,X,y\ ,Wl Jp\ ==CUTOUT)?-1 h(t)... 

...h{t){t-mf t-'2exp(~C2,0(T)r2(x, y)/Jct). 

There exist constants f„, k0, kt, D 1 9 >0 , D19 dependent on t0, k0, kx, such that 

for all Jc>k0, 

|V;E'(t, X, y)h ipJl J ^ DM(kt)-N/2 -"'2 exp ( - C U T ) r2(x, y)/h). 

The time value i£]0, /0[ was arbitrary and we obtain the estimate for arbitrary 
large kt. Iterating both estimates and using once again the boundedness o f V'r, 
we finally obtain (H4). 

(H5). 3xEp(t, x, y) = SyEp+1(t, x, y). 

The property (H3), lim E"(t, x, y)=8x „, implies 

lim f Ep+1(s, x, z)A *azE"(t-s, z, y) = 3xEp(t, x, y), 

lim f 5zEp+1(s, x, z)A *E"(t-s, z, j>) = SvEp+1(t, x, y). 
s " M 

4 
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Using this, Duhamel's principle and the heat equation, we obtain 

dxE"(t, x,y)-5yEp+1(t, x,y) = 
t 

= f(d/ds) j Ep+\s,x,z)A*dzEp(t-s,z,y) = 
0 M 

t 

= f f [AzEp^(s, X, z)A *3.Ep(t—s, z, y)—Ep+1(s, x, z)A *3zAzEp(t-s, z, y)] = 
0 M 

I 

= f f [SzEp+1(s, x, z)A *3z3zEp(t—s, z, y)-
0 M 

-3JzEp+1(s, x, z)A *3zEp(t-s, z, y)] = 0. 

since (MN, g ) is complete. 
This finishes the proof of the main Theorem 4.1. 
As it is well known, the existence of a good heat kernel has many good con-

sequences in global analysis, for instance in spectral theory, in the theory of semi-
groups, and for the existence of characteristic numbers. W e do not intend to present 
all this here, but restrict ourselves to a special class of applications. For many 
purposes one is interested to invert the Laplace operator A outside the L2 -harmonic 
forms. Denote by 2QP the space of square integrable measurable /»-forms on MN, by 
2QP the set of all smooth /»-forms m such that ||co||, |Mco]|, ..., |M*co|| < <=° ( H | = 
=L 2 -norm) and by 2Qp,k the completion of 2QP with respect to 2|| • ||t, 

*|Mk:= IM| + №<»||-K.. + |M*<0||. 
Let H denote the projection onto 

= {(0(iQp C\2 Qp\d<o = Soi = 0} = kerZ 

(since ( M N , g) is complete). 
Then one is searching for an operator G satisfying 

AG 03 — co — Hco 

and, if possible, for a meaningful integral representation of G. This G is called Green's 
operator. 

T h e o r e m 4.3. Let (Af'v, g) be open, complete, and of bounded geometry. Assume 

further that A — Ap has positive eigenvalues below the essential spectrum. Then 

G(o(x)= J f E"(t, x, y)A * (a-Ha>)(y) dvo¡y 

O M 

is a Green operator and has the following properties: 

(a) ||Gco|| (̂211)~1/2||co|| for co£fl{¡, where is the first nonzero eigenvalue of A. 

Hence G can be extended to a bounded linear operator G: 2QP-»2QP. 
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( b ) Gme2Qp'k for arbitrary large k. 

( c ) co = Hut + dÔGco + SdG(û is the Hodge decomposition. 

P r o o f . A c o m p l e t e p r o o f is g i v e n in [3] unde r the a ssumpt i on o f the ex is tence 

o f a g o o d heat kerne l . T h i s ex istence w e h a v e jus t n o w establ ished. 

U s i n g T h e o r e m 4.3, w e can establ ish the a p p r o x i m a t i o n t h e o r e m f o r the e i gen-

values b e l o w the essential spec t rum b y the e igenva lues o f s em i comb ina to r i c a l L a p l a c e 

ope ra t o r s assoc ia ted t o sequences o f u n i f o r m t r iangu la t ions a l so f o r O ^ p ^ N . 

F o r p=0 this was c o m p l e t e l y p r o v e d in [3], f o r / > > 0 unde r the assumpt ion o f the 

ex is tence o f a g o o d hea t kerne l . 
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On a problem posed by I. Z. Ruzsa 

R I C H A R D W A R L I M O N T 

In his paper titled "On the small sieve II. Sifting by composite numbers'* 
(Journal of Number Theory, 14 (1982), 260—268) I. Z . RUZSA p o s e d the f o l l o w i n g 

problem: 
For and fc€ Z let R(a, b) denote the residue class b mod a. Consider all 

systems ax, ...,am (m not fixed) of natural numbers 1 S f l i < „ . « j f f l g « for which 
there exist integers blt ...,bm such that 

m 

( * ) U R(aj,bj)z>{l, ...,n}. 
j-1 

Put 
m J 

H{n) := mm Jg — 
J=I aj 

where the minimum has to be taken over all those systems. What can be said abou 
the behaviour of n(ri) for «-*»=? 

Since ( * ) implies 

the lower estimate /i(n)S — follows at once. Ruzsa mentions that he can improve 

it to 

H(n) S l o g ^ ¡ - = 0-56754538... 

and he also gives the upper estimate 

Received October 11, 1988 and in revised form May 29, 1990. 
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Ruzsa's problem appears to be very delicate but it gives rise to another one which 
can be solved: Denote by si(n) the family of all subsets Ac{ 1, . . . , « } with the 
property 

illSH» 
and put 

v(n) : = min y . — . • • : • • • 
At*wafA a 

Obviously v(n)^/i(n). I could show 

Ruzsa simplified my proof. His modifications also led to the better error term 0( l/n) . 
With his kind permission I present this simpler version. 

Let Y(n) denote the set of all y=(yt, ...,y„)€R" which fulfil 

O s j j s l i l s j s n ) and . ¿ 3 > j ( [ y ] + l ) s n. 

Put 

" 1 
v*(n):= min 2 y j — . 

y e r w y t i J j 

Obviously v* (w)^v(n) . It will be shown that 

and 

(2) v ( « ) ^ v * ( » ) + o ( i ) . . . 

I f we put Pj:= — j + l j and denote by Z ( « ) .the set of all z=(zlt ..., z„ )6Rn 

which fulfil 

0 ^ z , 4 - (1 s / s /3) and 2 z jp j s 1 
J i=i 

then 
tl 

v*(ri) = min 7 z,. 
Z€Z(N) YTI 1 .. :•: 
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Let (Ci, ..., U e Z ( n ) be such that v * ( w ) = Then 
j=i 

The quantity 

and ZZJPJ = 1-
J i=i 

y =y(n) : = m i n i 

turns out to be crucial in the argumentation. One has 

(3) Sj = 0, 

(4) = 

Here (3) is evident and (4) can be seen this way: Let m, l s m s n , be such that 

fim=y. Then £ m >0 . I f there existed some k, l^k^n, with and 
k 

then k ^ m and 

N o w put 

+ £Pm, Zj for j ^ ttl, k. 

Since O s ^ i and Z = 2 S j P j = l> we have ( C - , 0 € Z ( n ) . This 
J j=i y=i implies v* ( « ) S i i j = v*(n)-e(pk-y) < V*(M) j=i 

which is absurd. 

N o w put 5=5(n):=y(n)—l. From / ^ 2 and 

^iMMi lHi ' -^K 
we see that in particular — 1. I f A: is an integer, l ^ k ^ n , then 

n 

P j - i w for T i T ^ f 

W e shall show next that 

(5) for all n. 
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W e put x : = m i n j y , and have 

i = 2 ZjPJ-
j=1 k-zx nyUk+l)^jmnlk 

y 
Since in the inner sum ( f c + l ) = y . W e infer from (4) that 

k~1-1 

kTx wUk+f&jzinik J n n kTx \\.k\ Yk + \\) 

= D f f - T x r - ^ 2T~5 2 ( k + 2 J - 3 -

Therefore ^ — = 4 which implies x ^ 50. 
k 

I f x=Vn then Vn S 50 and therefore <5 =r — s . I f x = — then 
n 2500 5 

1 1 
— 35 50, and therefore 3 — . 
5 50 

N o w comes 

(6) 3 ( n ) = ^ + 0 { ± ) . 

T o establish that we start from 

i = 2 ZjPJ+ 2 tjPj) + 
j = l fc-=l/<5 n/(* + l)cjSnW(fc + l ) nyl(k + l)cjmnlk 

+ 2 2 = s 1 + s a + s 8 . 

n 1 1 
W e estimate 5S . If ./ < — then f}, < H s 1 +<5 = y. I f k > — then 

A: & 5 
1 72 

/?,- s 1 + — < 1 + 5 = y. Thus by (3) there is at most one term c,-n i = , 
* l/<5 

in S3 which may not vanish. Therefore, by (5), 

1 2 2 

ny y 
W e estimate 5X. I f j < — — then Pj < — i — (£ + 1 ) = y. Thus by (3) there 

/c -f-1 /c -f-1 
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is at most one term in the innermost sum which may not vanish and 

/ n Yl 

Therefore, by (5), 

<? ^ y k + l 2 - 2 

1 ~ n ~ 5*n ~ S2n ' 

y 
Finally we evaluate S2. In S2 we have 0,- = (k+1) = y which by (4) 

k + l 

implies i = —• Therefore 

" k^l/d U K + L J 

= 2 where 
kills yk ) B-n 

1 ~ W ~ J L t ~ 1 + W " 

Thus we obtain 

fccl/5 
If we put 

/ ( 0 : = 2 ( i - ' l for 0 < / ^ 1 
*«=l/t 

then one easily verifies that the following inequality holds true: 

\h-h\ S \f(h)-f(u)\ for 0 < t2 =1 1. 

Since f\ — I = 1 we obtain /y-
P r o o f o f (1). 

« - - i f 
= l/(<5) — ll = 6 

92n " 

* ( n ) = 2 Z j = 2 ( 2 2 Q+ 
j = 1 fc-=l/5 n/(* + l)-c/3ny/(fc-t-l) nyKk + l)-zjSnlk 

+ 2 2 ^J = T1+Ti+Ta. 
llisk&n n/ (H l ) < j sn f t 

Because of we have 

Jl + T j ^ S i - l - S a « ^ - . 
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Further for ?JSH0 by (6) one has 

T . - 2 2 I - i k ^ i + o t i ) ] - i o g A + 0 ( i ) . 
k = l nyKk+VcjSnlk J fctu yk \n)) y3 \n) 

But (6) implies 

"•-«•«•-(SMt)-
P r o o f o f (2). Since — is no integer we may write k > — in T3. Therefore 

8 8 

= 0 in T3. In Tx there are at most 3 terms with ^ < — . These are replaced 

1 4 
by — s —. I f we denote the new system by then we have 

J n 

t'j = 0 or 1 (1 j ^ n) and J i'jßj ^ 1 Zjßj s 1. 
J j=i j=i 

Therefore 

" " 12 12 
j=l j=l n n 
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Well-quasiordering depends on the labels 

IGOR KRIZ and JIRI SGALL 

1. Introduction 

A well-quasiordering ( W Q O ) is a quasiordered set containing no infinite de-
creasing chain and no infinite antichain. A considerable part of the results on W Q O 
is of the form that a concrete category Q is WQO, where as b means that there 
exists a Q-morphism from a to b. 

As an example let us mention the category T of finite trees with tree embeddings 
(see [2]). The recent solution of the Wagner's conjecture by ROBERTSON and SEYMOUR 
([5]) is also of the form that certain category is WQO. 

Other categories are trivially W Q O , for example the category F of finite sets 
and injective mappings or the category H of finite linearly ordered sets and strictly 
increasing mappings. Still, we come to non-trivial questions, if we introduce more 
involved orderings: 

Let A be a W Q O and let Q be a concrete category with finite objects and injec-
tive morphisms. W e consider a class Q(A) o f objects of Q "labeled by " elements of A 

at each point. W e put a^b if there is a morphism from a to b which increases the 
labels (not necessarily strictly). N o w the question is: Is it true that 

(1) Q(A) is W Q O whenever A is W Q O ? 

(1 ) w a s p r o v e d f o r F, H b y HIGMAN [1] and f o r T b y NASH-WILLIAMS [4]. O f 

course, it would be useful if (1) were implied by a simpler condition, say, 

(2). Q(y) is W Q O for any y^Ord. 

Although this is not known in general, it was proved recently by one of the auth-
ors ([3]) for a considerably broad class of categories ( for all subcategories of H ) . 
Let us note that, by an easy cardinality argument, (2) is equivalent to 

(3) , 2 K ) is WQO. 

Received August 4, 1988. 



60 I. Kfiz and J. Sgall 

So, for subcategories of H, (3)—(1). However, it has not been known if (1) were not 
implied by a still weaker condition, say (even!), 

(4) 0 ( 2 ) is WQO. 

It is the purpose of this paper to present a bunch of counterexamples of this kind. 
To be exact, we show that the set 

(5) M = { y| (30 ( ( (V j? < y)Q(fi) is W Q O ) & ( g ( 7 ) is not W Q O ) ) } 

is confinal in (Mj. W e also prove that 

M i ® , 

showing that (4) does not imply Q(3) to be W Q O . 

2. Preliminaries 

2.1. Conventions and notation. The cardinality of a set X is denoted by \X\. 

For the ordinals, we use that definition where y is identified with 

OW < y}-

In particular, this will apply to natural numbers. A quasiordering is a reflexive and 

transitive relation. In a quasiordering, a sequence (at) (finite or infinite) is called bad 

if 
/ < j - a, $ ai 

and is called good if 
' < 7 - a, = "j-

Each infinite sequence contains an infinite good subsequence or an infinite bad sub-
sequence (Ramsey theorem). A quasiordering is called W Q O , if no infinite sequence 
is bad. This definition is equivalent to that used in the Introduction by the Ramsey 
theorem. For a category C and objects a, b the symbol C(a, b) designates the corres-
ponding hom-set and the symbol Ida designates the identity on a. For a concrete 
category, let the forgetful functor be denoted by U. 

2.2. D e f i n i t i o n . In this paper, a QO-category is a concrete category with finite 
objects and injective morphisms. For a QO-category O and a quasiordering A, put 

Q(A) = {z = (w., cz)|c, is an object of Q and u.: cz — A). 

The quasiordering on Q(A) is given by z ^ i if there exists a Q-morphism 
<p: c, such that u,oU((p)^tiz (pointwise). W e also say that z^t via the mor-
phism (p. In the sequel, we shall use the symbol M for the set defined by formula (5) 
of the Introduction. 
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3. The results 

T o warm up, we start with a special theorem which demostrates the basic idea o f 

our construction. 

3.1. T h e o r e m . M 2 c o . 

P r o o f . Let a category Qk consist o f finite sets an (n£(o) where each an is a dis-

joint union of k sets a°n, Moreover, we shall assume 

lim |ail = a> for each i£k. 

n CJ 

The hom-set Qk(an, am) will be 

(a) 0 if n >- m, 
(b ) { I d J if n = m, 

(c) {<p: an - am| q> injective and ( V / € * ) ( p ( a i ) c (J < ) & (3 ¡ek) (q>(a l n ) £ o j , ) } 
jSi 

if n < m. 

T o see that Qk (k) is not W Q O , let zn (u„, a„) where w„ sends aln to i for each ick. 

It is easily seen that (z„)„e<3 is a bad sequence. T o prove that Qk(i) is W Q O for i<k, 

introduce an auxilliary category Qk with the same objects as Qk and with the same 

morphisms f rom a„ to am for n g m , while for w < m 

<2kO„, am) = {<p: an - ajcp injective and ( i i£k) (<p(4) £ U <)}. 
jsi 

Let (Z,)=((H , , «„(,) ) ) be a bad sequence in Q k ( i ) , i < k . O f course, we have 

l imn ( i ) = co, 
« — CO 

since (z,) is bad. By HIGMAN'S theorem [1], we may assume that (z,) is good with 

respect to Qk(i). Let, in Qk(i), via cps>t: an(s)-~an(t). N o w , since i<k, there 

is a such that, for each Kdco, there exist p, r£k, p>r, and t(K)£a> such that 

({*€ap(r(K» I ut{K)(x) = j}\ s K, 

|{-^€<(t(K))I ut(K)(x) = /}| s K. 

Without loss o f generality, we may assume p, r fixed and / (0 )=0. Put t = t{\tfnW\ +-1). 

Thus, there exist y£ar0 such that 

u0(x) = u,(y) =y 

Im <p0.,. 
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W e conclude that, in Qk(i), z0^z, via a mapping cp given by 

cp(z) = <p0,,(z) if z x 

<P(x) = y, 

contradicting our assumption. 

3.2. T h e o r e m . M is confinal in (o^. 

P r o o f below in 3.8. 

3.3. The Constructions. Let t o ^ y ^ a ^ . The there exists a bijection sy: 

o)--y. Let the objects of Cy be the sets 

ay(n) = {iy(0),..., jy(n-l)}. 

The hom-set Cy(ay(k), ay(n)) will be 

(1) 0 for k > n , 

(2) {IdDy(n ) } for k = n, 

(3) the set of all injective mappings (p: ay(k)^ay(n) such that, for some j<k, 

( a ) <p{s-,(j)) < sy(j), 

(b) for i < j, (p{sy{ij) = sy{i), 

(c) for i rSj, 0 < sy(i) - (p (fi) < sy(i). 

3.4. L e m m a . Cy is a QO-category. 

P r o o f . What remains to show is that, for k < m < n , 

cp£Cy(ay(k), ay(n)), \jj£Cy(ay(m), ay(n)) 

\l/o(p£Cy(ay(k), ay(n)). 

To this end, let <p, tp satisfy the statement of (3) with constants j^k, ] < m , respect-
ively. W e will show that ij/o(p satisfies it with the constant min ( j , ]). W e distin-
guish two cases: 

Case 1. J =./: The proof of (a), (b), (c) for ij/o<p is contained in the following 
computations. (By (a) for cp, ] and (c) for \p) 

\po(p(sy(j)) < sy(j). 

For /<7 (by (b) for <p, if/ and j ^ f ) 

$o<p(Sy(i)) = \j>(sy(ij) = sy(i). 

For /Ha./, P<sy(i), (by (c) for <p, i¡j and 

^ocp(P)^ sy(i). 



Well-quasiordering depends on the labels 63 

Case 2. ]<j: Compute again. (By (b) for <p and by (a) for \jj) 

lj/0(p(sy(])) = ip(sy(j)) = sy(J). 

For i'-=j, (by (b) for <p, ij/) 

\jjO(p (Sy (/)) = I¡/(sy(i)) = sy(i). 

For isaj, P~=sy(i), (by (c) for <p, ip) . 

^ocp(P) < sy(i). 

3.5. L e m m a . Cy(y) is not WQO. 

P r o o f . Introduce a sequence z„=(u„, c„) in C y ( y ) by putting 

cn = ay(n) 

u„{sy(i)) = sy(i). 

By condition (a) in 3.3 (3) we see easily that (z„)„€(0 is bad in cy(y). 

3.6. A u x i l l i a r y d e f i n i t i o n . Let us call a pair {fi, a), a, P^.o)1 admissible, if 
there exist a y = cc, an increasing sequence (N(Z))IG(0, a number K£CD and 
a bad sequence z,-= («,-, ay(n(i))) in C-^cOy) such that for each i£co 

|{<5 < a|5eay(w(z))&w ;(5) p}\ < K. 

3.7. L e m m a . 
(1) If Cy(fi) is not W Q O then (fi, y) is admissible. 

(2) If {fi, a) is admissible and a < a then (ft, a) is admissible. 

(3) (0, co) is not admissible. 

(4) I f ( f i , a + co) is admissible then there exists a P such that (p, a) is admissible. 

P r o o f . (2) and (3) are obvious. Note that in (1) we may use K= 1. W e shall 
prove (4). 

Consider the entities y,n(i), K,zt constituting the admissibility of (P,a + (o). 

Let 
p = max {/|a = sy(i) ----- <x-\-K). 

Further, let a p + 1—y, 

K ( 0 ) , = {a0 < < . . . < ap }. 

For i£p+1, t£co, define ( « ] ) (recall that F is the category of finite sets 

and injective mappings) in the following way: 

£¡(0 = K ( ./ ' ) !7 < n{t), ctf < .y./y) < a i + 1 } , 

bM = ( « ¡ k , ( 0 . C;(0). 

By Ramsey and Higman's theorems there exists an increasing sequence (tx)xia> 



64 I. Kriz and J. Sgall 

such that n(tx)>p and for x^y, i£p+1 

(*) «,>,) ^ u, {a,) 

( ** ) bi(tx) ^ bi(ty) in FCcoj) via some mapping (pi(tx, ty). 

Without loss of generality, we may assume tx=x. Now, by ( * ) and by the definition 

o f K there exists an a § a < a + K such that for all t 

",(«) < P. 

We will show that (w0(a), a) is admissible, concluding the proof of (4) by (2). 
In fact, for the new K we may take « (0 ) : If, for some t > 0 , there are more than 

« (0 ) , of y '< « (/ ) with ut(ny(j))^u0(a) then there exists at least one such /' that neither 
j^p nor sy(J) lies in the image of <p;(0, 0 for any i. N o w define cp: ay(n(0)) — 

- f l r ( « ( 0 ) by 

(p(sy(ij) = sy(t) whenever i£p+], s(i) ^ a 

tp( a) = sy(j) 

<p(5) = <p;(0, t)(6) if 5£Ci(0). 

W e see easily that <p£Cy(ay(n(0)), ay(n(t))) and 

z0 ^ z, via (p, 

contradicting the assumption that (z,) is bad. 

3.8. P r o o f o f T h e o r e m 3.2. Define y(fi) inductively by 

7(0) = (0 

y(P + l) = y(P)+co 

y(p) = (limyO?,))+co for pyp. 

I t follows from 3.7. (2), (4) that (p, y(fij) is not admissible for any p. Thus, by 3.7. (1), 
cv(fi) ifi ) is WQO. This, together with Lemma 3.5, concludes the proof of Theorem 3.2. 
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Embedding results pertaining to strong approximation 

L. LE INDLER 

1. The aim of the paper is to make a step toward answering an open problem of 
our previous paper [2] and to extend another result published in the same paper. 

In order to quote the known results we have to recall some notions and notations. 
Let f(x) be a continuous and 2^-periodic function and let 

CI
 00 

(1) fix) ~ + 2 (an c o s nx + K sin nx) 
n = 1 

be its Fourier series. Let sn=s„(x) = a„(f;x) and T„=T„(X)=T „ ( f x ) denote the 
w-th partial sum and the classical de la Vallée Poussin mean of (1), i.e. 

| 2n 
xn(x) = — 2 sk(x), w = 1,2, .... 

fl k = n+1 

We denote by || • || the usual supremum norm. 
Let £«(<5) be a nondecreasing continuous function on the interval [0,2n] having 

the properties: a>(0)=0, w ( ¿ j + ¿ 2 ) ^ w(<),)+a)(I52) for any 

Such a function is called a modulus of continuity. The modulus of continuity o f/wi l l 
be denoted by co(f; <5). 

W e define the following classes of continuous functions: 

H" := {/: co(f; Ô) = 0 (a ) (5 ) ) } , 

n=0 
and 

KW ••={/•• \\2 n = l 

where /. = { ! „ } is a monotonie sequence of positive numbers and 0 

V. G. KROTOV and the author ([1]) proved the following result. 

Received July 4, 1988. 

5» 



68 L. Leindler 

T h e o r e m A. If {A„} is a positive monotonie sequence, co is a modulus of continuity 

and 0</?< then 

(2) = 

implies 

(3) S, (A) c //». 

Conversely, if there exists a number Q such that 0 1 and 

(4) rfiln\, 

then (3) implies (2). 

Since the de la Vallée Poussin means r„ usually approximate the function/, in the 
sup norm, better than the partial sums s„ do, so we may expect that under reasonable 
conditions the following embedding relations will hold 

(5) SP (A) c FP(A) c ¿ T . 

In [2], A . MEIR and me, verified some results pertaining to (5). More precisely 

the following theorems were proved: 

T h e o r e m B. If p=l and {A„} is a monotonie (nondecreasing or nonincreasing) 

sequence of positive numbers satisfying the condition 

(6) XJk^^K*, n = 1,2, . . . , 

then 

(7) SP (A) c VP{X) 

holds. 

T h e o r e m C. Let {Ah} be a monotonie sequence of positive numbers, furthermore 

let (a be a modulus of continuity and Then condition (2) implies 

(8) Vp{X) a H». 

If p^l and there exists a number Q such that 0 g g < l and (4) holds, then, 

conversely, (8) implies (2). 

T o decide whether 5 p ( A ) c ^ ( A ) , i.e. (7), holds when 0 < / ? < l ; it was left as 

an open problem. 
Making many unsuccessful attempts to prove (7) or its converse, at the present 

time, I have the conjecture that neither Sp(Z)czVp(X) nor ^ ( A ) c S p ( A ) hold gene-
rally, but I have not been able to verify this statement. 

*) K, K, will denote positive constants, not necessarily the same at each occurence. 
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However it turned out that if one defined a new subclass of VP(X), which one could 

call "strong" J^(A)-class, and denoted by F^s )(A), i.e. 

L U„=I V « ( T = N + I ) II J 

then under restriction (6) S p ( A ) c J ^ s ) ( A ) also holds for pSsl, and S P ( X ) ^ V ^ { X ) 
is already true for 0 1 if 1 2 „ = K X n . First we prove these statements. 

Compare the definitions of VP(X) and V(ps\X), it is obvious that for any positive p 

and for any A 

(9) F/*>(A) (= Vp(A) 

always holds. 
It is clear that (8) and (9) imply 

(10) Vp^(X)<z H'°. 

Secondly we prove that (10) also implies relation (2) for any positive p if (4 ) 
holds. 

This result is a mild sharpening of the second part of Theorem C for p ^ l ; and 
by (9) it extends the previous statement for any positive p. The latter result is the more 
important one. 

2. W e prove the following results. 

T h e o r e m 1. Let A = {!„} be a monotonic sequence of positive numbers. The 

following embedding relations hold: 

(11) S f ( l ) c F W ( l ) if p^ 1 and A„ = 0(A2 „ ) ; 
and 

(12) S P ( A ) 3 Vp(s)(A) if 0 < ^ 1 and A2M = O(?,,). 

T h e o r e m 2. Let A = { A „ } be a monotonic sequence of positive numbers, further-

more let to be a modulus of continuity and p >0 . If there exists a number Q such that 

0 ^ 1 and (4) holds, then the embedding relation (10) implies relation (2). 

Theorem C and Theorem 2 convey as an immediate consequence the following 

result. 

C o r o l l a r y . Under condition (4) the embedding relation (8) implies relation (2) 

for any positive p. 

3. T o prove our theorems we require some lemmas. 

L e m m a 1 ([1]). If a „ £ 0 and the function 

f(x) ~ 2 an sin nx 

B = 1 
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belongs to the class H™, then 

Z kak = O\no) 
* = 1 

L e m m a 2. If 0</ ;<< » , A„t or kj and there exists a number Q, 0 § (?< 1, 
such that (4) holds, then the function 

f(x):= 2 ~ fix 
n = l n 

belongs to the class V^s)(k). 

P r o o f . It is easy to see that 

2 - { n K Y l l v = 2 n - a + U / p K l - Q ) ) ( n a A n ) - V P 
n= l n n = 1 

so / is a continuous function, and / (0 )=/ (7t )=0. 

T o prove that /£F^S ) (A) we fix 0 < x < 7 t and choose N such that 

N+1 N 

W e make the following estimates: 

~ f 1 2n IP 

2 ¿A- 2 K M - / M l ^ 
„ = 1 l n k=n+l J ' 

N/2 f 1 2N /I ¡V + L 1 

* 2 z [\ 2 —(mlJ-V'Sin 
n = l I n k=n +1 V'M=FT + I M 

f 1 2" I ~ J " I I P — ' 
+ — ( « A J r ' / ' s m r n x f = 

n=N/2 I tl k=n+l lm=*+l ttl I) 

+ 2 —(mh)~1/p sin mx 
'm=JV+2 tn 

+ 

where 
JV/2 f 1 2 n 

Zi = K Z An i— 2 

n = 1 " ic=n + ] 

N12 F 1 2N 

n.1 I « * = n + 

JV + 1 J 
2 — (wAm ) ~ ̂ p sin wx 

m = * + l "J 

1 
2 " —(/wAm ) _ 1 / psin mx 

m=N+2 m 

h 
}P = 2 » + 2 

First we assume that A„j. By our assumption, we iCan.choose, a positive Q such 

that and nQ),n\. Then — > — 1, so for any n<k<N we have 
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that 
N+l I N + l 

2 — ("lAJ-V'sin mx^x 2 (wAJ-I/P = 

m=k + l m m=k +1 

N+l N+l = x 2 (mQXmml-V)-1"' xC^AJ-1/" 2 m®-1»": 
m = 4+ l m=n + l 

whence we get that 

N/2 

Furthermore 

2n = Ki 2 ¿„xP^n-ON'+o-1 ^ K2xpNp ^ K3. n=1 

N/2 co 1 |p 
212 = 2 K 2 —(m^m)~ 1 / P

 sin/WX S 
n=l |m=N+2 rn 

JV/2 f oo 1 -|P 
^ 2k\ 2 — (rrfilmtn^yM s 

n= l lm=JV + 2 m J 

JV/2 
^ 2 K{(NqXn)~1Ip 2 m-^-v/ry^ 

2 KiNO^N-^-v = 

= W"1^1 2 rflknn-v s ÍVÖ-1 2 « - G sá K. 

To estimate 2 2 we use the following inequality 

1 
2 —-(mlj-llpsinmx 

m=k +1 f" 

for any 0<X<TE. Hence 

n=NI2 n=NI 2 

Collecting these estimates we get that /€Fp(s)(A) in the case A„J. 
The proof in the case A„f is easier, then we can simply replace condition (4) by 

A„t in some parts of the previous proof. Therefore we omit the details. 
The proof is completed. 
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4. N o w we can prove our theorems. 

P r o o f o f T h e o r e m 1. For p ^ 1, by Holder's inequality, the inequality 

1 2n f I 2n I1/'' 

n k=n +1 i n * = n + l J 

holds, whence 

« f 1 2n IP oo r 1 2n 1 
0 3 ) 2 K \ - 2 s 2 4 2 s 

n = l I " k=n + l J /1 = 1 I n k=n +1 

^ 2 tot-/I' 2 K in = 2 3 
* = 2 n=fc/2 

follows. By An = 0(A2 n ) we have 

(14) 
k = 2 

Inequalities (13) and (14) imply (11). 

In the case we use the inequality 

1 2n f | 2n l1/? 
(15) - 2 K - / I S - 2 W - f l p , 

n k = n + 1 l n k=n +1 J 

\Vp 

\sk-f\p 

n + 1 

which can also be proved by Holder inequality, and the estimate 

(16) h = 0 ( z Kin), 
B=fc/2 

it follows from X2n = 0 ( l „ ) . Then, by (15) and (16), 

i;.„\s,-f\" = k z ( 2 K/k)\s,-f\"S 
n = 2 n=2 fc=rt/2 

~ 2* oo / 1 2 k 
^ K Z k j k z T 2 k . - / l 

* = 1 n=fc+l t = l n = k+1 > 

\p 

v * -

holds, whence (12) clearly follows. 

P r o o f o f T h e o r e m 2. Let us consider the function given in Lemma 2, i.e. let 

/o(-v) := ¿ - ( « A J - ^ s i n n . v . 
n = l n 



Embedding results 73 

Then, by Lemma 2, f0eV^(A). The assumption Vps) ( 2 ) c Hm conveys that 
fo^H'0 also holds. Hence, using Lemma 1, relation (2) follows, that is, (10) really 
implies (2). 

The proof is completed. 
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On the strong and very strong summability of orthogonal series 

L. L E I N D L E R 

1. Let {(¡£>„(x)} be an orthonormal system on the interval (0, 1). W e shall consider 
real orthogonal series 

(1.1) 2 C„<pn(x) with 
11=0 n=0 

By the Riesz—Fischer theorem series (1.1) converges in L2 to a square-integrable 
function f(x). Let us denote the partial sums of (1.1) by fn(x). 

As introductory sample results we recall the following theorems: 

T h e o r e m A (A. ZYGMUND [15]). If series (1.1) (C, \)-summable almost every-

where then it is also strongly (C, \)-summable almost everywhere, i.e. 

1 i k W - / W l 2 - 0 fl.e. 
n+l t=o 

T h e o r e m B (K . TANDORI [13]). If 

j? c2 log log2 n < °o 
n= 4 

then series (1.1) is very strongly (C, \)-summable on (0, 1) almost everywhere, i.e. 

1 

n + l k=0 

for any increasing sequence {vfc} of natural numbers on (0, 1) almost everywhere. 

T h e o r e m C (K. TANDORI [12]). There exist an orthonormal system {(pn(x)} 

and coefficients dn with 2 °° suc^ series 
n = 0 

2 dncpn(x) 
71 = 0 

Received October 10, 1988. 
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is strongly (C, \)-summable almost everywhere but it is nowhere very strongly (C, 1)-
summable. 

In other words Theorem C states that the strong (C, l)-summability does not 
imply the very strong (C, l)-summability, generally. 

The analogues of Theorems A and B for other summability methods have been 
proved individually. E.g. for Riesz-means J. MEDER [5] and L. LEINDLER [1], for 
(C, a>0)-means G. SUNOUCHI [11], for Euler-means H. SCHWINN [9] and for generali-
zed Abel-method L. LEINDLER [3] proved similar results. 

On the other hand. F. MÓRICZ [6] proved that for an arbitrary regular Toeplitz 
T-summability method it is not true that if series (1.1) is T-summable then it is strong-
ly T-summable, too. 

The Móricz's result gives a reason for writing of a new paper, namely in the pre-
sent paper we prove the analogues of Theorems A and B for a large class of general 
summability methods; and shall apply them to verify that the so-called generalized 
de la Vallée Poussin method also belongs to these summability methods. It will be 
easy to see that some of the above mentioned summability methods also belong to the 
class to be treated in Theorem 1. Roughly speaking one of the aims of the present 
paper is to verify that for a large class of summability methods the summability 
implies the strong summability for orthogonal series. 

We mention that H. SCHWINN [10] also investigated the latter problem, and 
proved a slightly sharper result, but his proof quite differs from our one. 

Theorem C shows that it cannot be expected that a general summability method 
should imply the very strong summability. But we shall show that if a coefficient-
condition, e.g. of the form 

n = 0 

implies the summability — as in Theorem B — then this condition will imply the 
very strong summability, too. 

Let a := (a n t ) be a positive regular Toeplitz-matrix satisfying the usual condi-

tions: « . ¿^0 ; lim a„,.=0 (k=0,1,...); lim j f a,lk = 1. W e say that yenes (1.1) 

is a-summable to f(x) if 
CO 

<*«(*) := 2 vnksk(x) -/(*) 
k=0 

almost everywhere; and it will be called strongly a-summable if 

* „ W := ¿ « J ^ W - Z W P - O 
*=o 
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almost everywhere ; and very strongly a-Summable if for any increasing sequence {vt} 

of natural numbers 

an |v; x\ := 2 «»k k v t ( * ) - / ( * ) l 2 - 0 
k=0 

holds almost everywhere. 

W e say that an a-summability method is an N(jim)-summability if there exists an 
increasing sequence {/¿m} o f natural numbers such that if series (1.1) is a-summable 
then s^ (x)^f(x) always holds almost everywhere, i.e. the convergence of the partial 
sums s (x) is a necessary condition of the a-summability of series (1.1) for any ortho-

oo 
normal system {(p„) and for any coefficients c„ with 2cl<tx>- It is known that the 

n = 0 

(C, a>0)-methods and generalized Abel-methods (for the latter see L. REMPULSKA 
[7]) are iV(2m)-summability methods and the Euler-method is an iV(m2)-method 
( see O . A . Z I Z A [14] a n d H . SCHWINN [8]). 

N o w we recall the definition of the generalized ordinary and strong de la Vallée 
Poussin summability methods (see [2]). Let 1 = {).„} be a nondecreasing sequence 
of natural numbers for which A 0 =1 and A „ + 1 — S e r i e s (1.1) is (V, X)-sum-

mable if 

V„(X;x):=-j- 2 sk(x)^f(x) 

almost everywhere, strongly (V, l)-summable if 

Vn\X; x\ : = 2 k»W-/MI2-0 
'•n fc=n-A„+l 

almost everywhere; and very strongly (F, X)-summable if for any increasing sequence 
{ v j of natural numbers 

Vn |A, v ; x\ - 1 2 K(x)-f(x)|2 - 0 
k=n-X„+1 

almost everywhere. 

It is obvious that if ) .n=n then the (V, A)-means reduce to the (C, l)-means, and 

if A„ = (nfe2), where [/?] denotes the integer part of P, then we get the classical 

de la Vallée Poussin means. 
In [2] we proved that for any I the (V, A)-summability is an iV(vm)-summability 

m —1 
with v0 = l and vm:— 2 Av , m is 1 ; furthermore that if 

fc = 0 k 

(1.2) 2 { j f c ^ l o g 2 ™ ^ 
m = 1 n = v m + l 

then series (1.1) is (V, A)-summable; moreover very strongly (V, A)-summable. 
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2. Now we can formulate our theorems: 

T h e o r e m 1. If a positive regular Toeplitz-matrix « = («„*) generates an N(nm) 

summability and satisfies the following additional conditions: there exist a natural 

number p and a positive M constant such that 

p 
(2.1) a n k ^ M 2 «(^-ofc f°r Vm-i^n^Hm 

i = -p 
and 

(2-2) 2 2 ^ i ^ M 
»=i ¡ ^ „ . i + i 

hold for all m and k, then the a-Summability of series (1.1) implies its strong a-summa-

bility. 

T h e o r e m 2. Under the assumptions of Theorem 1, if the following condition 

(2.3) y„ = yn+i, 
n=l 

implies the a-summability of series (1.1) for any orthonormal system, then (2.3) also 

implies the very strong a-summability of series ( 1 . 1 ) . 

Using these theorems we verify the following theorems: 

T h e o r e m 3. If series (1.1) is (V, ))-summable then it is strongly (V, X)-summable, 

too. 

T h e o r e m D. Condition (1.2) implies that series (1.1) is very strongly (V, /.) 

summable. 

W e remark that Theorem D was proved in [2] as we stated above, but its proof 
is totally different from to be given here. 

3. W e require the following lemma. 

L e m m a ([4], Lemma 3). Let z > 0 and {/?„} be an arbitrary sequence of nori~ 

negative numbers. Assuming that the condition 

(3.1) 2 P n { 2 4 } * ^ ~ 
/1=1 k=n 

implies a "certain property T=T({sn (*)})" of the partial sums sn(x) of (I. I) for any 

orthonormal system, then (3.1) implies that the partial sums sv (x ) of (1.1) also have 

the same property T for any increasing sequence {v„}, i.e. if (3.1)=>T( {•?„(*)}) then 

(3.1)=^T({sv ( x ) } ) for any increasing sequence {v„}. 
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4. N o w we can prove our theorems. For the sake of brevity, from now on, 
convergence and summability have the meaning of convergence and summability 
almost everywhere in (0, 1). 

P r o o f o f T h e o r e m 1. Since the oc-summability now implies the convergence 
of the partial sums ^ (x), thus putting vk:=fim for k=fim_1+1, fim_1+2, ... 
...,Hm, m = 1 , 2 , . . . ; v 0 = 0 and v x = l ; we can see by the following obvious ine-
quality 

«„1*1 =5 2 ¿a n f c ( |^ ( x ) - i v ) c ( x ) | 2 +k V k W-/ ( x ) | 2 ) 
fc=0 

and on account of the regularity of a-summability, that in order to prove Theorem 1 
it is enough to verify that 

(4.1) lim ¿a„ f c|^(x ) - J v , . (x )| 2 = 0 
*=o 

holds almost everywhere. 
By (2.1) we have for any ¡j.m_1^n-=:nm 

co e© p 
(4.2) 2 ank \sk(x)-sVk(x)\2 ^M 2 2 « W o * ( * ) - J v t (*)l2> 

k=0 k=0i=-p 

therefore if we can prove 

(4.3) lim 2 k M l 2 = 0 
m-o°k = o 

almost everywhere, then, by (4.2), (4.1) will be proved. 
An elementary calculation shows on account of (2.2) that 

oo oo 1 GO CO fit Hi 

2 2<x»mk f \sk(x)-sVk(x)\2dx^ 2 2 2 anmk 2 cl = 
m=l fc=0 q m=l i = H = ^ f _ 1 + l k=ii,.1+l 

= 2 2 4 2 2 i=l = + l m=lk=fil_1+l k=0 

whence by B. Levi's theorem (4.3) follows. 
This has completed the proof. 

P r o o f o f T h e o r e m 2. Putting y 0 = 0 th e n condition (2.3) and 

71 = 1 4 = 7 ! 

are obviously equivalent. Hence we can already see that the statement of Theorem 2 is 
a consequence of Theorem 1 and our Lemma. 
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P r o o f o f T h e o r e m 3. In order to prove Theorem 3 it is enough to verify 

that if 

(4.4) H0 = 0 and nm:= 2 

then for this sequence {fim } conditions (2.1) and (2.2) are fulfilled. 
Since A i + 1 -A , - s l for any i and nm-fi^^X^^, therefore X^IX^ ^ 

whence for any 

(4.5) 1 . 1 . 2 
a„ - a, A„ 

holds, which verifies that (2.1) also holds with M=2 and p = 1. Since then for 

any n 
0 for k^n+l— A„ and k > n, 

(4.6) a„t = 
for M + l - L ^ f c s « ; 

and thus by (4.5) for n m _ ^ n ^ i x m 

ank — 2(a(lm_lA. + a/Im(r) 

always holds because //m_i + 1 —A S h + 1 —A„ by A I + 1 —A,s l . 
Namely if « + 1 — then 

1 1 

K Km-X 

and if n m - x < k ^ t K n m then by (4.5) 

A„ A„ 
2a, Cm* 

hold. 
Next we show that (2.2) is also fulfilled for the a-matrix given by (4.6) and for 

sequence {/zm} defined under (4.4). 
By (4.6) it is clear that if v S m - 1 then 

(4.7) 

and if v ^ m then 

(4.8) 

2 cc^i = ° 0*v<0> 
i=nm_i+l 

Pm 1 
2 <*»„i = ~r~ - O v - A„v)]+ = : Am v, 

¡=Xm-l+l 
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where [ft]+ denotes the positive part of p. On account of the definition {¡Am} and the 
property we can verify that for any vSra 

(4-9) m 

holds. Namely an easy calculation shows that 

<- /iv J k=m 

k=m l k — m J 

• [t-^^I <-]**••• «(4T"-
Collecting the results of (4.7), (4.8) and (4.9) we get (2.2) with M=2. 
So we can apply Theorem 1 which obviously proves Theorem 3. 

P r o o f o f T h e o r e m D . Let 

Po = Pi — = 1; 

a log ni 
P":= 77, 7 T T f o r ft« < " = A W , m = 1 ,2 , . . . ; 

and x = 2 . A standard calculation shows that for these p„ and y. (3.1) holds if and 
only if (1.2) is fulfilled. Namely if (3.1) holds then by 

03 <*> ~ Pm + l o» 
2 P „ 2 4 ^ 2 2 Pn 2 4 = 

n=l k=n m = ln=fim+l k=fi,ni.i+l 

= ¿ ^ i 2 c l = i ci 
/71 — 1 m v = /n + l fc = fiv+l v = 2 k=fiv+l /71=1 m 

(1.2) also holds. Conversely if (1.2) is fulfilled then the following inequalities 

~ , fm + l 1 ~ Pm +1 771 — 1 10o v 

2{ 2 ci)iog*m^±. 2 4 ) 2 - ^ = 771=1 k = flm +1 ^ 771 = 3 V = 2 V 

_ J_ ~ logy ~ > I v l Q g ( v + 1 ) V 2 _ 
— A Z Zj Z Ck — A Z TT1 Zj ck — 

1 v = 2 V 771 = V + 1 fc=Mm + l v=2 V + i fc=^v + 1+l 

1 00 lr»P 07 00 1 00 m̂ + 1 00 1 CO oo = { 2 ^ 2 2 P„24 = j 2 Pn.24 ** /71 = 3 k = Pm + 1 H 771 = 3 n=ilm + l fc = 7I 1 n = H3 + l k = 71 

prove (3.1). 
On account of this equivalence and our Lemma the statement of Theorem D is 

proved. 

6 
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Note on Fourier series with nonnegative coefficients 

J. NÉMETH* ) 

1. Let f ( x ) be a continuous and 2ÎI-periodic function and let 

(1) 2 ( a k c o s kx + bk sin kx) 

be its Fourier series. Denote s„=s„(x) the n-th partial sum of (1). I f co(S) is a non-
decreasing continuous function on the interval [0,2n] having the properties 

for any 0 = ¿ i — t h e n it will be called modulus of continuity. 
Define the following classes of functions 

where || • || denotes the usual maximum norm. If m(i5)=d : t then we write L ip a 
instead of H s " . 

In 1948 G. G. LORENTZ [7] proved a theorem containing a coefficient-condition 
for /f L ip a in the case if the sequence of the Fourier coefficients is monotonie. 
Namely he proved the following result. 

T h e o r e m A ([7]). Let A„I0 and let Xn be the Fourier sine or cosine coefficients of 

cp. Then (p£Lip a ( 0 < « - = l ) if and only if i „ = 0(n~] 

Later this result was generalized by R. P. BOAS [1] in 1967 as fol lows: 

*) This result was partly obtained while the author visited lo the Ohio State University, 
Columbus, U.S.A. in the academic years 1985—86 and 1986—87. 

Received July 4, 1988. 

CO(0) = 0, CO(<5X + Ő2) S C Ü ^ + C Ü ^ ) 

(3) 

(2) = {/: \\f(x+h)-f(x)\\ = O(co(h))}, 

( H » y = { / : ll/(x + h) +f(x — h)—2f(x)|| =0(co(h))}, 

5» 
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T h e o r e m B ([1]). Let A „ = 0 and let ).n be the sine or cosine coefficients of (p. 

Then (piLip a ( 0 < a < l ) if and only if 

(4) Z h = 0 ( n - > ) , 
k = n 

or equivalently 

(5) J KLK = O ( N ^ ) . 
k = l 

In 1980 L. LEINDLER in connection with certain investigations in the theory o f 

strong approximation by Fourier series, defined some function classes which are more 

general than L ip a but narrower than Hm. Namely he gave the fol lowing definition. 

Let o)x(S) ( O ^ a ^ l ) denote a modulus of continuity having the following pro-
perties: 

( i ) for any a there exists a natural number (oc') such that 

(6) 2""'cox(2-n-") > 2cox(2~") holds for all n ^ l ; 

(ii) for every natural number V there exists a natural number N(v) such that 

(7) 2mcox(2~"~v) s 2cox(2~") i f n > N(v). 

Using cox(§) L . LEINDLER defined the function class L ip a>x in the fol lowing way 

L ip ^ = { / : \\f(x+h)-f(x)|| = O{cox(h))}. 

Recently the author o f the present paper generalized the result o f R . P. BOAS formu-

lated in Theorem B and some other ones for L ip a>x instead of L ip a. 

For example we proved the following 

T h e o r e m C ([8]). Let and ).„ be the Fourier sine or cosine coefficients of 

<p. Then • . . . 

<p£Lip coa (0 «= a < 1) 
if and only if 

(8) ; • 

or equivalently 

w v.. 
The question of further generalizations f o r arbitrary to (5 ) and H a can naturally 

be arisen. 

The first results in this direction were already given by A. I. RUBINSTEIN ([9]) 
for cosine series, furthermore V . G, KROTOVand L..XEI№LER.([3], .see, also in [6]) 
for the sine case. Their results read as follows 
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T h e o r e m D ([9]). Let f be an even function belonging to H°' and let a„ be its 

Fourier coefficients with a„^0 (n— 1,2,... ) . Then 

(10) 

and 

hold for some fix S0>-0. 

Jf co satisfies the condition 

(12) ô f ^ L d t = 0{(û(ô)) 
a 

then conditions (10) and (11) are sufficient for 

It should be noted that (10) implies (11) for any co, namely 

n nn " f M m(t) 
2kak= 2 Z*i = 0(\)2<o T = 0 ( 1 ) f - ^ - d t , 
= 1 k = l i=k k = 1 U / xfn I 

and thus for the special moduli of continuity œ satisfying relation (12) the condition 
(10) itself is a sufficient condition. 

T h e o r e m E ([3] Lemma 3, see also in [6]). If A„^0 and 

g(x) = 2 ;-nsin nx 

n = l 
belongs to the class Hm then 

(13) 2Uk = o[nco(±)). 

The aim of this paper is to show that neither (10) nor (13) is sufficient for the 
corresponding function to be in H c ' ; furthermore to give sufficient condition for 
f d H w in both cases. We also show that (10) is a necessary and sufficient condition 
for/to belong to the class (Hm)* (which is broader than H"\ so this result in this sense 
is a little sharper than that of Rubinstein). Finally it will be proved that (10) and (13), 
respectively, is not only a necessary but also sufficient condition for f£Ha and 
.gÇ_Hc\ if the coefficients ak and bk form monotonically decreasing sequences. 

2. Now we formulate our results. 
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T h e o r e m 1. If A„sO and Xn are the Fourier sine or cosine coefficients of cp, 

then the conditions 

(14) ¿ * ; , = O ( „ A , ( I ) ) 

and 

(15) J/'̂ Hi)) 
imply 

(16) <ptH". 

R e m a r k . The well-known Weierstrass function 

cos 2nx 
/W= 2- 2" 

shows that (15) itself is not sufficient for <p£Hm (since /(£//<" if t»(<5)=<5 and (15) 
is obviously satisfied). 

The example 

proves that from (14) alone (16) does not follow. This function was constructed by 
A . I. RUBINSTEIN ([9]) in connection with lacunary series. He proved that H"\ 

for a>((5) = . A t the same time it can easily be checked that (14) holds. 
|log3<5| 

T h e o r e m 2 . If akS 0 and ak are the Fourier cosine coefficients off then 

(17a) / € ( / / T 

if and only if 

<17b) 

R e m a r k . Notice that (17b) implies 

(18) ¿ k a k S K 2 

* = 1 k=1 \Kt 

and using the standard estimation we have that (18) implies fÇ.Ha*, 
where 

m ^ n 
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In fact, since from (17a) (18) follows we have that 

implies f£Ha* and Theorem 2 gives that the same condition (17a) implies 

too. Thus the following question can be arisen: whether 

(20) ftH01* of£(Hc')* 

or not. 
W e can prove that 

(21) MHa)* =>f£H°>* 

but the converse is false. Really, from Theorem 2 we have that 

which assures that f£Hw*, so (21) is proved. In order to prove that 

(22) f£Ha* ^f£(Hm)* 

we consider the following function 

(23) / ( * ) = 2 — ¿ r - c o s n x 

k = 1 « 

and let <o(t) = t, that is, 03jf(t) = t log t. From Theorem 4 of [8] it follows that 

f£HSlosi (=Ha*) because both 

(24 ) 

and 

Z ^ r ^ s i n k x = 0 ( l o g i i ) 
k=1 k II 

(25) 

hold. And at the same time 
MH'y = (H*y, 

because 

4-|/ (0+2/t )+/ (0-2/ l ) -2/ (0 )| = j ? ~~ i r~ (1 —cos 2 nh) = 
n=l n 

„ ~ logn . „ , „ . „ ' i f f 1 , sin2 nh „, „ 
= 2 Z - 4 - s i n a » f t s 2 A 2 ^ l o g « a g; 2h |log/i|, 

n=l W n = l " " 
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which gives that 

\\f(x + h)+f(x-h)-2f(x)\\ * 0(h), 

that is, f$(Hs)* and so (22) is proved. 

T h e o r e m 3. If bk[0 and g(x) = ¿ " ^ s in/oc then 
k = 1 

(26a) g£Ha 

if and only if 

(26b) = 

oo 
T h e o r e m 4. If aki0 and f(x) — 2 ak c°s kx then 

k = 1 

(27a) f e H " ' 

if and only if 

(27b) 2 ^ 0 ( « , ( ! ) ) . 

3. W e require the following lemmas. 

L e m m a 1. Let {«„} be a sequence of nonnegative numbers and co be a modulus of 

continuity. Then 

(28) J > = ° № ) ) 

implies 

(29) = 

P r o o f . * ) Using (28) we have 

(30) J k*ak = 2 (2k- 1) Z <h ^ 2 i km f | ) = I 
k=1 k=l i=k * = 1 VK/ 

Since for any co the inequality 

(31) a ^ ^ c o f e ) ( 0 < V 2 S V i ) 

* ) This very elegant proof is due to L. Leindler; the author's original one was much more 
complicated. 
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(see for example [11] p. 103) holds I can be estimated as follows 

(32) / s 2n • 2nco (-i-j = 4n2co (-J-). 

Thus (30) and (32) give (29). 

L e m m a 2. Let ak^0 and ak be the Fourier cosine coefficients of f . Then 

(33) ak = ° ( 7 ) ) a n d II Ê i kak sin fcx|| = O j 
imply 

(34) feH". 

This lemma can be proved in the same way as Theorem 4 in [8] for c o ^ ) . 

4. Proofs. 

P r o o f o f T h e o r e m 1. W e detail the proof just for cosine series. Set 

(35) \f(x+2h)-f(x)\ = 2\2 Aksin k(x+h) sin kh\ ^ 
it=i 

[i//>] 
s?2(2 lksmkh+ 2 h) = 1+11. 

k = 1 k = [llh] 
Since 

M"! sin kh I1""] 
(36) I * K h 2 k h 2 kh, 

k=l ICn k=1 

from (14) it follows that 

(37) I = 0(co(h)). 

By using (15) we have that 

(38) II = O(o>(h)). 

So (35), (36), (37) and (38) give that 

Theorem 1 is completed. 

P r o o f o f T h e o r e m 2. Suppose that (17b) holds. Then 

(39) \f(x+2h)+f(x-2h)-2f(x)\ = 4 1 2 ak sin2 kh cos kx\ ^ 
= 1 

im sin2 kh 
2aksin2kh = 4h2 2 k2ak±-£-+ 2 

*=1 fc=l « k = lllh] 
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The first item of the last formula does not exceed 0(co(h)) because of Lemma 1; 
and from (17b) we get that the second one is also 0(co(ti)). So (17b)=>(17a) is proved. 

Turning to prove (17a)=>(17b) first we note that the proof will be led by the same 
way as A. I. RUBINSTEIN did in [9]. Let I„(x, g) be the Jackson polynomial defined by 

(40) I Ax, g) 
2nn(2n2+1) 

J s(t) 

sin n • 
t-x 

sin 
t—x 

dt. 

This polynomial can be written in the following form 

(41) 
2n —2 

h (x, g) = + 2 &kn) (ak cos kx + bk sin kx), 
k=1 

where ak, bk are the Fourier coefficients of g and Q^ are defined as follows 

(42) e£ 
I 

i(2n—k — 2)\ (n-k-2)! J 

Q<kn) = 

2n(2n2+l) Y(2n-k-2) 

1 (2n—k+1)! 

2n(2n- + l) (2n—k—2)\ 

(n-k-2)! 

for n—2<ks2n—2. 

Formula (42) was given by G. P. SAFRANOVA ([10]). 
Consider the following difference for 

fix) = 2 ak cos kx 
k=1 

(43) /(0)-/„(0; /) = 2 (1 -ein)) ak+ 2 ak. 
k-1 fc = 2n — 1 

It can be proved that the order of approximation by polynomial (40) is O (to f—11 
for I 

ge(H°>y 

(see for example [2] pp. 496—497). 
Using this fact and that 1 — g£n)s0 we have from (43)' 

which was to be proved. 
Theorem 2 is completed. 

P r o o f o f T h e o r e m 3. The statement (26a)=*(26b) was proved by V. G. KRO-
TOV and L. LEINDLER (see Theorem E). Now we suppose (26b). It is obvious that to 
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prove (26a) it is sufficient to show 

tew-gm^K^oih) 

\g(x)-g(x + h)\ S K2co(h), for 0 < h S x ^ n. 

(44) 
and 
(45) 

First we prove (44). 
Set 

, [IM 
(46) |g(/i)-g(0)| ^ bksmkh\ + \ Z bks'mkh\ = 1 + 11. 

k = 1 k=[l/h] 

Using (26b) we can estimate I as follows 

(47) 
IVh) s j n j [1 lh] 

l ^ h Z kbk ^KhZ kbk = 0(co(h)). 
k=l Kn k=l 

From the well-known inequality 

<48) 

it follows that 

(49) 

I Z ak sin kx| Ä _ an (fl„|, x£(0, TT)) 

T 
I I ^ 4 - 6 t l / H . 

But taking into account that bk\, from (26b) we have 

CO 
ft (50) bn = 0 

From (49) and (50) we get 

(51) I I = 0(co(h)). 

Using (46), (47) and (51) we obtain (44). 
N o w we verify (45). Consider 

(52) \g(x + h)-g(x)\ = Msin/cx-s inA: (x + /i))| 

. [1 Ik] 
Z bkcosk(x + h)sm kh\ + | Z ¿fcSinfcx — sinfe(x + /l)| S 

k=im 

, im 
i&\2 bksinkh\+\ Z M in f cx|+| Z bksiak(x+h)\ = l + U' + ll". 

k = 1 k = [l/h] k = [llh] 

By (47) we have 

(53) I = 0(<o(h)). 
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Taking into account again (48), (49) and the condition we have that the 
magnitude of either I I ' or I I " is O(co(h)), that is, 

(54) I I ' + I I " = 0{a>(hj). 

Thus (52), (53) and (54) give (45) which is the desired statement. 

Theorem 3 is completed. 

P r o o f o f T h e o r e m 4. Using Theorem 2 and the fact that i i " c ( r f 
the statement (27a) => (27b) can immediately be obtained. Concerning the opposite 
direction, by Lemma 2, it is enough to show that 

(55) || J ; A:aksinA:x|| 3= K - n < o \ ^ . 

Let x£(0,7t) be fixed and let v denote £—J; if n>~—, then split up the left hand 

side of (55) into two parts as follows 

N V N 
(56) ||2" fcflfcSin A:x|| S ||2" &a*sinA:x||+|| 2 fca* sin fc*|| = I + 1I. 

fc = l k=1 k — v = 1 

Estimating I we get 

(57) I s KlX 2 k2ak. 
k = 1 

Taking into account the monotonity of ak and (27b) we have 

(58) ^ = ( • ! ) ) . 

From (58) it follows that 

(59) x 1 k2 ak S K2 x J ka> ^ K3 nco [ -1 ] . 

In the last step we used again inequality (31) and n>v. 

Thus from (57) and (59) 

(60) I = o ( n a > ( - i ) j 

can be obtained. 

N o w we estimate the second item in (56). Since 

(61) I I = || 2 kak s i n H I ^ || 2 2 aisin «11 + v 2 ai = i i ' + i i " 
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and using again (48) and (58) 

(62) 
ü=v x t=v \k) к2 I n ; 

And for I I " using (58) we immediately obtain that 

(63) 

and (61), (62), (63) give that 

(64) I I = 0 ( „ . ( 1 ) ) . 

Thus (60) and (64) together give (56) which was to be proved. 
Theorem 4 is completed. 
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On Fourier series with nonnegative coefficients 

J. NÉMETH 

1. Let f ( x ) be a continuous and 2K periodic function and let 

Ű 00 

(1) fix) ~ + 2 " ian cos nx + b„ sin nx) 
n= 1 

be its Fourier series. Denote by s„=sn (x)=sn(f; x) the ?j-th partial sum of (1). 

I f co id) is a nondecreasing continuous function on the interval [0, 2n] having the 

following properties 
co(O) = 0, w ^ + á, ) S tMCdJ + o j ^ , ) 

for any + then it will be called modulus of continuity. A s 

usually WrHm and Wrill")' denote the following function classes: 

(2) W'H® = {/: \\f(r)ix + h)-f<r,(x)\\ = O(o j (/ ) ) ) } , 

(3) W(H°r = { / : \\f 'Hx + h)+f<'Hx~h)-2frHx)\\ = 0(co(h))}, 

where /<r )denotes the r-th derivative o f f and || • || denotes the usual supremum norm. 

For r=0 and (x>id) = 5* Ha = Hi' is called the Lipschitz class of order a. 

L. LEINDLER ([3]) defined the so called generalized Lipschitz-classes as follows. 

For O s a s l let coa(ő) denote a modulus o f continuity having the fol lowing proper-

ties 

( i ) for any there exists a natural number n = n ( « ' ) such that 

(4) 2 " " ' <^ ( 2 - " - " ) > 2(0, (2-" ) holds for all n fel; 

( i i ) for every natural v there exists a natural number iV(v) such that 

(5) 2 v a co a ( 2 _ n _ v ) 35 2coa (2 _") i f H S TV(V). 

Using such modulus of continuity, H03* defines the generalized Lipschitz class. 

Received July 4, 1988. 
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For any positive ß and p L . LEINDLER ([2]) defined the following strong means 
and function classes: 

i l " l1/pll 
(6) hn(f,ß,p)= pjj 2o (k +1/-1 ktW -/(a-)!"} J, 

(7) H(ß, p, r,'co) = {/: hn(f, ß, p) = O co ( 1 ) ) } , 

and in [3] and [4] he proved the following relations : 

H (ß, p, r, co j = W'H». for 0 < a < l ; l 
( 8 ) r r c ^ , M l f f l l ) E r r r for a = l j l f P ^ ^ + ^ P -

In [8] we gave coefficient-conditions assuring that a function should belong to 
(and so in certain cases to H(ß, p, coa)). 
For example the following theorem was proved. 

T h e o r e m A (Theorem 1 of [8]). Let A„ = 0 and Xn be the Fourier sine or cosine 

coefficients of (p(x). Then 

(p£Ha' (0 < a < 1) 

if and only if 

or equivalently 
(10) Z k . X k = o [ n œ \ L ) \ 

It is clear that in order to obtain coefficient-conditions of type (9) for / to belong 
to H{ß, p, r, co j instead of H(ß, p, co j it is sufficient to give conditions assuring that 

/should belong to WH^* or equivalently, under the restriction X„ ̂ 0 , to H(ß, p, r,cox). 

In other words it is sufficient to find coefficient conditions for the derivatives of / to 
be in H°". 

In the special cases co(ô)=ô* coefficient-conditions for f£Hs" and feW'H0* 

w e r e g i v en b y G . G . LORENTZ ( [ 7 ] ) , R . P. BOAS ( [1 ] ) a n d L I N G - Y A U CHAN ( [ 6 ] ) . 

2. Theorems. Throughout the rest of the paper we shall assume that the Fourier 
coefficients an, b„ are nonnegative and 

oo oo 

g(x) = 2 bk sin kx, f(x) = 2 ak cos kx, 
k=1 fc=l 

furthermore / and g are continuous functions on [0,7t]. 

T h e o r e m 1. If 0 < a < l then for any r ^ l 

g£WrHa* 
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if and only if 

or equivalently 

2 kr+1bk = O «eu, 

2 ^ = 0 « , 

T h e o r e m 2. If 0 < a < l then for any r f e l 

f£WrHm* 

if and only if 

or equivalently 

I ) ) , 

T h e o r e m 3. If a = l and r is odd, then 

if and only if 

T h e o r e m 4. If a = l and r is even ( r s 2 ) , then 

if and only if 

T h e o r e m 5. If a = l and r is even (rfeO), then 

f£Wr(H^f 

if and only if 

Zk-+*ak = 0 

T h e o r e m 6. If a = 1 and r is odd, then 

feW'H^ 

if and only if 
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T h e o r e m 7. If a = l and r is odd, then 

g e W H a i 

if and only if 

i kr^bk = O I « 2 « , (1)) and II i k'+>bk sin kx\\ = O ( 1 ) ] . 

T h e o r e m 8. If a = l and r is even ( r sO ) , then 

f£WrH°>' 

if and only if 

J V+*ak = O J « 2 « ! ( I j j and || j j kr+iak sin A:x|| = O [nay ( 1 ) j . 
k= 

3. Lemmas. 

L e m m a 1 (Lemma 2 of [8]). If and <5>/?>0, then 

Zk-nk = 0 
k = l 

if and only if 

n s a ) s _ ß 

L e m m a 2. (Lemma 2 of [6]). For each integer /^0 the quantity 

»3 C -1V+ 1 

is of constant sign for all « > 0 . Furthermore if 0 < « s 1, then 

u2j+3 

| G a " ) | - ( 2 ; + 3 ) ! 2 -

L e m m a 3 (Lemma 3 of [6]). For each integer jsO the quantity 

M2 . , u-J 
F(j, u) = cos u-1 +-57 - -..+(- iy+ 

2! - v ' ( 2 j ) \ 

is of constant sign for all « > 0 . Furthermore, if O^wSl, then 

,.2j + 2 

\HJ- u)I S • (27 + 2)12 
L e m m a 4 (Theorem 2 of [8]). 

gtH-* 
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if and only if 

¿ ^ = 4 ^ ( 1 ) ) . 

L e m m a 5 (Theorem 3 of [8]). 

/€ (// a i r 
if and only if 

i Mi))-
L e m m a 6 (Theorem 4 of [8]). 

if and only if 

(~M)] ane^ I I 2 kak sin kx|| = O ^n^ ( ^ j j . 
Zak = 0\co 

k = n 

4. Proofs. Since the proofs of all theorems above mentioned can be done in the 
same way as LING-YAU CHAN did in [6] (by using Theorem A and Lemma 1—Lemma 6 
instead of those used in [6]) we here show only the proof of Theorem 1 for r — 1. 

Let us suppose that 0 < a < l and 

( i i ) = 

By Lemma 1 we get that (11) is equivalent to 

( 1 2 ) gkbk = o{*\\)\ 

So 2 kbk is convergent series, that is, the series 
k = 1 

(13) 2 kbk cos kx 
k = 1 

is convergent uniformly which allows us to differentiate the series 

(14) j?bksinkx 
k = 1 

term by term, which gives that 

(15) g'(x)= j? kbk cos kx. 
k= 1 

Using Theorem A and (11) we have that 

g'iH"«, 
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that is 

which proves our Theorem 1 in the case r= 1 in one direction. 
For the other direction we assume that 

(16) g ' e H 

that is, 
gtmH"". 

From (16) it is obtained that 

(17) l s ' ( 0 - i r ' ( 0 ) l = o (û> « ( 0 ) . 

Integrating both sides over (0, x] we have 

(18) \g(x)-xg'(0)\=0(x<oa(x)). 

Using (18) we have that 

(19) g(x) = 0(x). 

But (19), by using Lemma 4 ( for <y1(<5)=ô) and the fact that 

I * ( * ) - S ( 0 ) l = O(x) 

implies g(x)£Hs, what gives that 

(20) 2 k b k = 0 ( 1) 
k = 1 

that gives that the series 

(21) 2 kbk cos kx 
k = 1 

is convergent uniformly, so the series 

(22) g(x) = 2 h sin kx 
t= i 

can be differentiated term by term, that is, 

(23) g'(x) = £ kbk cos kx and g'(0) = 2 kbk-
k=1 k=l 

Combining (18) and (23) we have 

(24) 2 bk (sin kx—kx) = O (xcox (x)). 



Fourier series with nonnegative coefficients 10t 

U s i n g L e m m a 2 ( f o r u=kx) w e ge t f r o m (24 ) 

[l/x] 

( 25 ) 2 h (s in kx - k x ) = 0 (xcoa (x)). 
k = l 

U s i n g aga in L e m m a 2 ( f o r u=kx) w e h a v e 

( 2 6 ) = 0{x-ua{x)). 
4=1 

Put t ing I — j = n w e h a v e tha t 

( 2 7 ) 
* = 1 

U s i n g L e m m a 1 f r o m (27 ) w e ob ta in the desired 

T h e p r o o f o f T h e o r e m is c o m p l e t e d f o r r = l . 

Re f e r ences 

[1] R. P. BOAS, Fourier series with positive coefficients, J. Math. Anal., 17 (1967), 463—483. 
[2] L. LEINDLER, Strong approximation and classes of functions, Mittelhmgen Math. Seminar Gies-

sen, 132 (1978), 29—38. 
[3] L. LEINDLER, Strong approximation and generalized Lipschitz classes, in Proceedings of Con-

ference in Oberwolfacli, 1980, pp. 343—350. 
[4] L. LEINDLER, Strong approximation and generalized Zygmund class, Acta Sci. Math., 43 (1981), 

301—309. 
[5] L. LEINDLER, Strong approximation by Fourier series, Akadémiai Kiadó (Budapest, 1985). 
[6] LING-YAU CHAN, On Fourier series with non-negative coefficients and two problems of R. P. 

Boas, J. Math. Anal. Appl., 110 (1985), 116—129. 
[7] G. G. LORENTZ, Fourier Koeffizienten und Funktionenklassen, Math. Z., 51 (1948), 135—149. 
[8] J. NÉMETH, Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. 

Math., 54 (1990), 291—304. 

BOLYAI INSTITUTE 
UNIVERSITY SZEGED 
ARADI VÉRTA NÜK TERE-1 
6720 SZEGED, HUNGARY 

\ 





Acta Sci. Math., 55 (1991), 103—117 

Pointwise limits of nets of multilinear maps 

Á R P Á D SZÁZ 

Introduction. Motivated by the fact that most of the standard integrals are 
pointwise limits of the nets of their approximating sums which are either linear or 
bilinear maps (see [7] and [8]), we establish the most important algebraic and topolo-
gical properties of the pointwise limit of a net of multilinear maps. 

More concretely, using our former results on bounded nets [14] and multi-
preseminorms [15], we show that the pointwise limit of a net of multilinear maps 
being equicontinuous at the origin is a selectionally boundedly uniformly continuous 
multilinear relation whose domain is a closed set whenever the range space is complete. 

Having had the necessary definitions, it becomes clear that particular cases of 
this assertion greatly improve a useful continuity criterion for multilinear maps [3, 
(18.2) Theorem], a general convergence theorem for net integrals [7, Theorem 3.8] 
and a part of a generalized Banach—Steinhaus theorem [1, 7. (5)]. 

1. Prerequisites. Instead of topological vector spaces, it is often more convenient 
to use preseminormed spaces [9]. A preseminormed space over K = R or C is an or-
dered pair XÍ&)=(X, 3?) consisting of a vector space X over K and a nonvoid family 
& o f preseminorms on X. A preseminorm on X is a subadditive real-valued function 
p on X such that p(lx)Sp(x) for all ^ 1 and x€X, and lim p(/.x)=0 for all 
x£X. Note that these latter properties imply, in particular, that p(0)=0 and 
p(Xx)^p(px) for all |A|==|ju| and x£X. 

I f X(3?) is a preseminormed space, then because of [4, Theorem 6.3], the family 
of all surroundings 

Brp = {(x, y): p(x-y) < /-}, 

where p^SP and /•>0, is a subbase for a uniformly on X. However, this fact is 
only of minor importance for us now since among ^ and the various structures on X 

induced by ^ we shall actually need only the induced net convergence l i m ^ ^ l i m ^ 
which can also be naturally derived directly from 

Received June 27, 1988. 
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I f X{3?) is a preseminormed space, then lim^, is a relation between nets (x a ) 
and points x in X such that, after a customary convention in the notation, we have 
x^lim? xx if and only if lim/?(xa—x) = 0 for all p£0>. As usual a net ( x j in X(0>) 

<1 a 
is called a convergent net (a null net) if lim^ (Oglim^ x j . Moreover, two nets 

x a 
( x j and (j>J in X(0>) are called coherent [12] if (xx—yj is a null net. Note that 
several useful properties of the convergence lim^ can be easily derived from the usual 
properties of the convergence of nets of real numbers by using the above properties 
of preseminorms. 

On the other hand, a net ( x j in is called a bounded net (a Cauchy net) if 

limlim p(/A" ) = 0 (lim p(x,—xn) — 0) 

for all p^SP. In [14], we have proved that all Cauchy nets in X{0" ) are bounded. And 
a net (xx) in X(£?) is a bounded net (a Cauchy net) if and only if for any subnet (yp) 

of ( x j and any null net of scalars (/.¡¡y^) is a null net (any two subnets (z v ) and 
(wv ) of ( x j are coherent). 

Another remarkable feature of this new definition of bounded nets is that a 
nonvoid subset A of X(SP) may henceforth be called bounded if the identity function 
( x ) x 6 A of A is bounded as a net whenever A is considered to be directed such that 
xSy for all x, y£A. Note that A is therefore bounded if and only if 

lim sup p(Xx) = 0 
xiA 

for all p f . ^ . And thus nets contained in bounded subsets of X ( & ) are necessarily 
bounded. 

Having the above definition of bounded nets, we may also define a function / 
from a subset D of X(gP) into another preseminormed space Y(Q) to be boundedly 
uniformly continuous if (f(xx)) and (/ ( j ' J ) are coherent nets in Y(O) whenever ( x j 
and ( j ^ ) are bounded coherent nets in D. No te that / may be called uniformly 
continuous if it maps coherent nets into coherent nets. Thus, i f / is uniformly conti-
nuous, then / is also boundedly uniformly continuous. On the other hand, if / is 
boundedly uniformly continuous, then / is necessarily continuous and the restric-
tions o f / to bounded subsets of D are uniformly continuous. 

In the sequel, we shall also need a straightforward notion of a product presemi-
normed space from [10]. If X{(J?t) is a preseminormed space for each i in a nonvoid 
set /, and moreover 

X=XX{ and 9 = \ } 9 i O n i % 
HI iii 

where 7r,- is the projection of X onto X{ and {pon/. then the prese-
minormed space X{0") is called the Cartesian product of the spaces X, {2?,) and the 
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notation 
X(0>) = X 

is used. An important consequence of this definition is that a net (x2 ) in X{Sf) is 
convergent, Cauchy, resp. bounded if and only if each of its coordinate nets (x,,-) 
has the corresponding property. 

n 
Finally, a real-valued function p on a product vector space X = X Xc is called 

<=i 

a multi-preseminorm [15] if it is a preseminorm in each of its variables separately, 
and moreover 

p(xi, •••, Xj-!, Xxt, + ..., x„) = p(xy, ..., xk_x, Xxk, xk + 1, ..., xn) 

for all x = (xt)£X, scalar X and i, k= 1,2, ..., n. The importance of this notion 
lies mainly in the fact that a multilinear map / from a product preseminormed 
space 

X(&) = X XA&.) 
i = 1 

into an arbitrary preseminormed space Y ( l ) is boundedly uniformly continuous if 
and only if the multi-preseminorm qof is continuous at the origin of X(&) for all 

2. Multilinear relations. Since the pointwise limit of a net of multilinear maps is, 
in general, only a relation which need not be defined on the whole product space, the 
usual concept of a multilinear map [3, p. 72] has to be subtantially extended. 

For this, we need a straightforward notion of a linear relation from [17] which is 
mainly motivated by the fact that the inverse of a linear function is a linear relation. 

D e f i n i t i o n 2.1. A relat ion/from a vector space X over K into another Y is 
called linear if 

f(x)+f(y) + and Xf(x)^f(Xx) 

for all x,y£X and AgK. 

R e m a r k 1.2. Note that, in other words, this means only that / is a linear sub-
space of the product space XXY such that the set fix) — {y: (.v, >)£/} is not empty 
for all x£X. 

After having this self-evident definition now we can easily define a sufficiently 
general notion of a multilinear relation whose insufficient particular case has already 
been considered in [18]. 
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D e f i n i t i o n 2.3. Let X b e a vector space over K for all < = 1, 2, ..., « , and 

X = X X,. 
<=i 

For each x= (x , )C A' and < = 1,2, ...,n, denote by (pxi the function defined on Xi 

by 

(PxAO = (Xl, t,X,- + 1, ...,X„). 

A subset D of X will be called multilinear if the set 

Dxi = <Pu{D) 

is a linear subspace of X{ for all x£X and / = 1, 2, ..., n. 

A relation/from a multilinear subset D of A'into a vector space Y over K will be 
called multilinear if the partial relation 

f x i =f°<Pxi 

is a linear relation from Dxi into Y for all x£X and « '=1 ,2 , . . . , « . 

R e m a r k 2.4. Instead of "x£X" we might only write "x£D" in the above 
definition. However, this would lead to a further generalization which we do not 
need here. 

Moreover, instead of "multilinear" we may also say "«-linear". Thus, " l inear" 
and "bilinear" can be identified as "1-linear" and "2-linear", respectively. 

Concerning multilinear sets and relations, we will only list here a few basic 
theorems without proofs. 

T h e o r e m 2.5. If X is as in Definition 2.3, then 

X0 = {x£X: x\ = 0 for some i = 1, 2, ..., « } 

is the smallest multilinear subset of X. 

n 
T h e o r e m 2.6. If D is a multilinear subset of X = X then 

¿=i 

D = U LJ ( K * i ) X • • • XCKx. - i )XZ» * . - X ( K x , + 1 ) X . . . X ( K x „ ) . 
xZX «=1 

R e m a r k 2.7. This latter theorem, which is also true under a more general defi-
nition of multilinear sets, has been pointed out to me by György Szabó. 

T h e or em 2.8. I f f is a multilinear relation from a multilinear subset D of X into Y, 

then /(0) is a linear subspace of Y and f(x)=f(0) for all x£X0. 
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T h e o r e m 2.9. If f is a multilinear relation from X into Y, then there exists a 

multilinear function cp from X into Y such that 

f{x) = cp(x)+f( 0) 

for all x£X. 

R e m a r k 2.10. Note that if <p is a multilinear function from a multilinear subset 
D of X into Y and M is a linear subspace of 7, then the relation / defined on D by 
f(x)=<p(x)+M is also multilinear. 

By an immediate application of the above assertions, we can at once state the 
next simple 

E x a m p l e 2.11. A subset D of K" is multilinear if and only if either D=(K")0 

or D = K". 
A relation / f r o m D = K" or (K")0 into Y is multilinear if and only if there exist 

a vector y£ Y and a linear subspace M of Y such that 

fix) = ( f l y + M for all x£D. 

More difficult examples for multilinear sets and relations can be easily obtained 
from the following obvious, but important theorem which needs only a few properties 
of convergent nets in preseminormed spaces. 

/i 
T h e o r e m 1.12. If (/J is a net of multilinear maps from X= X X{ into a pre-

<=i 

seminormed space Y (SI), then the set 

D = {x£X: ( f { x ) ) converges in Y(£)} 

is a multilinear subset of X and the relation f defined on D by 

fix) = \\m9fa(x) 
a 

is a multilinear relation from D into Y. 

R e m a r k 2.13. Note that f is a function if and only if Y(H) is separated in the 
sense that for each y£Y with y^O there exists J such that q(y)?±0. 

Therefore, in separated preseminormed spaces we may usually restrict ourselves 
to multilinear functions. But, unfortunately separated preseminormed spaces are 
often insufficient. 

3. Equicontinuity. Before defining a suitable new notion of equicontinuity, 
which is necessary to rightly state our main results about the pointwise limit of a 
net ¡of multilinear maps, we shall briefly deal with a corresponding concept of point-
wise boundedness. 
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D e f i n i t i o n 3.1. A net ( f x ) of functions from a set X into a preseminormed space 
will be called pointwise bounded if (/Ax)) is a bounded net in 7 ( J ) for all 

x£X. 

R e m a r k 3.2. A nonvoid set { / J a g r of functions from X into Y(£) may hence-
forth be called pointwise bounded if the family ( f x ) x € r is pointwise bounded as a net 
whenever f is considered to be directed such that a S /? for all a, /?Ç/\ 

For a preliminary illustration of the appropriateness of these unusual definitions, 
we can now easily prove a useful characterization of pointwise boundedness in 
terms of multi-preseminorms. 

n 
T h e o r e m 3.3. If ( f x ) is a net of multilinear maps from X= X X{ into Y (¿2), 

i=4 

then the following assertions are equivalent: 

(i) ( / J is pointwise bounded; 

(ii) Mq = lim qofx is a multi-preseminorm on X for all 

P r o o f . Because of the fact that qofx is a multi-preseminorm on X for all a 
and some of the basic properties of upper limit, it is clear that Mq is always multi-
subadditive and 

Mq (q>xi (kx.)) = Mq (x) and Mq (cpxi (fix/)) = Mq (<pxl (jixt)) 

for all fiç.K, x£X and ¿ ,/£=1,2, . . . , « . 

Moreover, since 
Mq(cpxi(?.x$ = lim q{)fx(x)) 

for all ÀÇK, x£X and ¿—\,2,...,n, it is also clear that 

lim Mq((pxi(Xxt)) = 0 

for all q£J2, x£X and / = 1 , 2 , . . . , « if and only if ( i ) holds. Thus, it remains only to 
show that Mq is necessarily real-valued for all q£ 2, if ( i ) holds. For this, note that if 
x£X and p = Mqo(pxl, then 

Mq(x) = p(xJ = p(m(m~1x)) S mp(m~1x1) 

for all m6 N, whence because of 

lim p(m_1x) = 0, 

it is evident that Mq (x) < » . 

R e m a r k 3.4. Hence, it is clear that a nonvoid set {/, } of multilinear maps from 
A'into Y(3) is pointwise bounded if and only if Mq= sup qofx is a multi-preseminorm 

on X for all q£M. 
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Having in mind a particular case of the last statement of Section 1 and our basic 
concept of boundedness of a net, it seems now quite reasonable to introduce a sui-
table new notion of equicontinuity. 

D e f i n i t i o n 3.5. A net ( f x ) of multilinear maps from a product preseminormed 
space 

X{&) = X X№.) 
€=1 

into another preseminormed space Y(M) will be called equicontinuous at the origin of 

X(&>) if the function 
Mq = lim qofx 

a 

is continuous at the origin of X(2P) for all qd J. 

R e m a r k 3.6. A nonvoid set { / J a € r of multilinear maps from X(3P) into Y(Q) 

may henceforth be called equicontinuous at the origin of X(3?) if the family ( / J a € r 

is equicontinuous at the origin of X(l?) as a net whenever r is considered to be 
directed such that a^/? for all a, fi^T. 

To let the reader feel the appropriateness of these apparently very strange defi-
nitions, we first show that this particular equicontinuity does already imply point-
wise boundedness. 

T h e o r e m 3.7. If ( f a ) is a net of multilinear maps from 

X(0>) = X 
¿=i 

into Y(£) such that ( f x ) is equicontinuous at the origin of X(8P), then (/J is pointwise 

bounded. 

P r o o f . I f x£X and q(L£, then we clearly have 

q(lf(x)) q(\).\fa(x)) = q{fx(^\T\x1, .... 

and hence 

E5 q{)fAx)) SS Mq(fiT\x1, .... "/pi*.) 

tx 

for all K. Hence, because of the continuity of Mq at 0, 

lim Em q(?fa(x)) = 0 
follows. And this shows that (/J is pointwise bounded. 
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R e m a r k 3.8. Hence, it is clear that if { /J is a set of multilinear maps from XiSP) 
into Y{£) such that {/, } is equicontinuous at the origin of X(SF) then {/, } is point-
wise bounded. 

Next, we prove a useful characterization of equicontinuity which, together with 
Theorem 3.3, provides subtantial motivation for introducing and studying multi-
preseminorms. 

T h e o r e m 3.9. If ( f x ) is a net of multilinear maps from 

x(&) = X X-(^) 
«•=i 

into Y(2), then the following assertions are equivalent: 

( i ) (/J is equicontinuous at the origin of X(3?)\ 

(ii) Mq = lim qof is a boundedly uniformly continuous multi-preseminorm on 

X(0>) for all qd£. 

P r o o f . I f ( i ) holds, then by Theorem 3.7, (/J is pointwise bounded. Thus, by 

Theorem 3.3, Mq= lim qofa is a multi-preseminorm on X for all On the other 

hand, by [15, Theorem 2.7] a multi-preseminorm which is continuous at the origin 

is necessarily boundedly uniformly continuous. Therefore, (ii) also holds. 
The converse implication (ii)=>(i) is trivial since bounded uniform continuity 

always implies continuity. 

R e m a r k 3.10. Hence, it is clear that a nonvoid set {/<,} of multilinear maps from 
X(0) into Y(£) is equicontinuous at the origin of X(&>) if and only if Mq— sup qofx 

a. 

is a boundedly uniformly continuous multi-preseminorm on X(&) for all q£Sl. 

4. Main results. To easily prove our main results about the topological pro-
perties of the pointwise limit of an equicontinuous net of multilinear maps, we also 
neeed a somewhat deeper characterization of equicontinuity. 

T h e o r e m 4.1. //"(/J is a net of multilinear maps from 

X(&) = X X-(^) 
«•=i 

into y(J), then the following assertions are equivalent: 

( i ) (/,) is equicontinuous at the origin of X(&*)', 

(ii) lim lim q(fa{xv)—f(yv))=0 for all whenever (xv) and (j>v) are bounded 

coherent nets in X(&>). 

P r o o f . Assume that ( i ) is true, and moreover (x v ) and (yv) are bounded coherent 
nets in and q££. I f / = { 1 , 2, ..., n} and %A is the characteristic function o f 
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A d I, then according to [3, (18.3) Lemma], we have 

fa(Xv)-fa(yv) = 2 f (?.A (*v - X.) HXl~ 1A) J'V) 
O^AczI 

for all a and v, where the multiplication is taken in the usual pointwise sense. Hence, 

because o f the subadditivity o f q and lim, it follows that 

H E q ( f x (xv) - f x ( v v ) ) 2 M I (/.A (XV-YV) + (XI-XA) y v ) 
* 0piAa/ 

for all v, where again M — lim qofx. y
 a 

On the other hand, if fi^AcI, then by our former results mentioned in 

Section 1, it is clear that 

( .XA(x v -y v ) + (X i -XA ) y » ) and ( ( / / - x J j ' v ) 

are bounded coherent nets in X(&>). Moreover, since f x ( { X i — — 0 for all a 

and v, it is also clear that 

Mq((xi-xA)y,) = o 

for all v. Thus, by a particular case of Theorem 3.9, we also have 

lim Mq (xA (xv - yv) + (/, -y.A)y,) = 0 

for all Q ^ A c z I . Using these latter equalities, from our previous inequality, we can 

immediately infer that 

lim lim q(fx(xv)-fx(yv)) = 0, 
v a 

which shows that (i i ) is also true. 

T o prove the converse implication (ii)=>(i), note that if (xv) is a null net in 

then by defining yv=0 for all v, we can at once state that (x v ) and ( y v ) are 

bounded coherent nets in X{3?) such that / a ( j > v ) =0 for all a and v. Therefore, if 

( i i ) holds, then we also have 

lim lim q(fx(xv)) = 0 
v a 

for all q£M. Consequently, the function M „ = ITm qof is continuous at the origin 
a 

o f X(3P) for all q£2., and thus ( i ) also holds. 

R e m a r k 4.2. Hence, it is clear that a nonvoid set {/„} of multilinear maps f rom 

X(3?) into Y{3) is equicontinuous at the origin of X(S?) if and oly if lim sup q(fx(xv)— 

—f(yv))=0 f o r all q££> whenever (x v ) and ( j v ) are bounded coherent nets in X{S?). 

T o partly express a very strong continuity property of the pointwise limit o f an 

equicontinuous net o f multilinear maps, we also need the next straightforward 
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D e f i n i t i o n 4.3. A relation/from a subset D o f a preseminormed space 
into another preseminormed space Y(£) will be called selectionally boundedly uni-

formly continuous if each selection function <p for / is boundedly uniformly conti-
nuous. 

R e m a r k 4.4. Note that a selectionally boundedly uniformly continuous rela-
tion is, in particular, lower semicontinuous in the usual topological sense [6, p. 32]. 

Now, having all the necessary preparations, we can easily state and prove the 
following important addition to Theorem 2.12 which greatly improve the second 
assertion of [16]. 

T h e o r e m 4.5. If (/J is a net of multilinear maps from 

X(&) = X XA&A 
<=i 

into Y(3) which is equicontinuous at the origin of Y(0>), then the relation f defined by 

fix) = Wmsfa(x) 
a 

is a selectionally boundedly uniformly continuous relation from its domain D into Y(£l). 

P r o o f . Assume that cp is a selection function for/and (x v ) and (_yv) are bounded 
coherent nets in D. I f then because of the subadditivity of q and the assump-
tion that (¡»(x)6 l im 3 / a ( x ) for all x£D, we clearly have 

a 

q (cp (x v ) - (p O v ) ) S q(<p (xv)-fa (xv)) + q ( f a ( x v ) - f x ( j v ) ) + q ( f a ( j v ) - <p (y v ) ) 

and 
lim q(tp (x v ) - f (x v ) ) = 0 and lim q {My,) - <p ( j v ) ) = 0 
a a 

for all a and v, respectively. Hence, it follows that 

q(<p ( x v ) - < p ^ lim q(f ( x v ) - f (y,)) 

<X 

for all v. Hence, by Theorem 4.1, it is clear that 

lim q(<p(xy)-q>(yv)) = 0. 

Consequently, <p is a boundedly uniformly continuous function of D into F ( ^ ) , 
and thus the selectional bounded uniform continuity of f is proved. 

Since each preseminormed space can be naturally embedded into a complete 
one, we may usually assume that Y(l) is complete. In this particular case, the above 
theorem can be supplemented by the next important 
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T h e o r e m 4.6. I f ( f x ) is a net of multilinear maps from 

X(SP) = X X,(&>.) 
i=1 

into Y(3) which is equicontinuous at the origin of X(3P), and Y{2) is, in addition, 

complete, then the set 

D = {xeX: ( f ( x ) ) converges in Y(Q)} 

is a closed subset of X{3P). 

P r o o f . Assume that x£X and (x v ) is a net in D such that 

x£\im9 x v . 
V 

If then because o f the subadditivity o f q and Em, we clearly have 

Jim q(fx(x)-fi,(x)) s Em q ( f j x ) - f ( x ( x v ) ) + 

+ Em q (/« (*,) - f p ( * , ) ) + Em q {fp C O - f „ ( x ) ) tat, p) 

for all v, where (a, /?) runs in the corresponding product directed set. Moreover, 

since convergent nets are Cauchy nets, we also have 

I ' m q { f a ( x . ) - f e { x S ) = 0 
(ot.p) 

for all v. On the other hand, because of q{—y)—q(y) and the definition of upper 
limit, it is also clear that 

Em q{fx(x)~f{xv)) = Em - / , ( * ) ) = Em q { f a ( x v ) - f ( x ) ) 

for all v. Consequently, we have 

lim q ( f ( x ) ~ f p ( x ) ) ^ 2 E m q ( f a ( x y ) - f a ( x ) ) 

for all v. Hence, by noticing that ( x v ) and ( x ) are bounded coherent nets in X(3?) and 
thus by Theorem 4.1 

lim Em q { f a ( x , ) - f { x j ) = 0, 
v (or, P) 

we can infer that 
l jm q { f ( x ) - f p ( x ) ) = 0. 

This shows that ( f ( x ) ) 

is a Cauchy net in Y(£t). Hence, by the completeness o f Y (Q) , 

it is clear that x£D . And thus, we have proved that D is closed in X(&). 

R e m a r k 4.7. Particular cases o f Theorems 4.5 and 4.6 can be used to derive 

some essential extensions o f a general convergence theorem for net integrals [7, 

Theorem 3.8]. 

8 
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However, to realize the usefulness of Theorems 4.5 and 4.6 in integration, the 
reader is rather advised to derive first a uniform convergence theorem for the classical 
Reimann—Stieltjes integral. 

5. Supplements. By using Theorem 4.1, we can also easily prove a remarkable 
characterization of equicontinuity of a net ( f x ) of multilinear maps from X{SP) into 
Y(£>) in terms of the induced uniformities ^ and 

T h e o r e m 5.1. If ( f x ) is a net of multilinear maps from 

X(&>) = X X(3?,) 
<=i 

into y (J), then the following assertions are equivalent: 

(0 ( / J ' s equicontinuous at the origin of X(SP)\ 

(ii) lim ( / " 1 o V o f )(x) is a neighbourhood of x in X(éP) for all V£%s and 

x£X. 

P r o o f . I f (ii) does not hold, then because of the definition of the induced uni-
formities and [9, Remark 3.9], there exist x£X, and £ > 0 such that the ball 

is not contained in the set 

!im ( A - ' o B ^ o f J i x ) = u n 
a a p^z 

for all and m£N. Thus, for each v=(p, m)£A = ^ * X N there exists 
xy£B"f\x) such that 

îîm q ( f ( x , ) - f , ( x ) ) S £. 
Z 

Hence, it is clear that (x v ) v € J is a net in X(2P) such that xÇl im^x v , but 

îîm îîm q(fx (xv ) —fx (x ) ) S e, 
v a 

and thus (i) cannot hold because of Theorem 4.1. 
Thus, we have proved that (i) implies (ii). To prove the converse implication, 

note that even the particular case of (ii) when x = 0 does already imply (i). 

R e m a r k 5.2. Hence, it is clear that a nonvoid set { /J of multilinear maps from 
X(0>, into Y(£) is equicontinuos at the origin of X{SP) if and only if F| (/^OFO/JÇY ) 

a 

is a neighbourhood of x in X f o r all and xÇ_X. 

R e m a r k 5.3. By using the topological refinement 

4lg, = {R c XxX: 'ix£X: 3 U(x) c R(x)} 

of aU9 [13], the assertions of Theorem 5.1 and Remark 5.2 can be rephrased in the 



Pointwise limits of nets 115 

more instructive form that the net (/J (set { /J ) is equicontinuous at the origin o f 
X(&>) if and only if 

Jim / . - ' o K c i ( П / Г ' о Г о / . € « ? » ) 

for all V€WS . 

Note that the "only if parts" of the above assertions are much weaker then the 
corresponding parts of Theorems 3.9 and 4.1 and Remarks 3.10 and 4.2. In principle, 
lim^ and should be equivalent tools in X(&). However, actually we do not even 
know that which subfamily of could be used to express the bounded uniform 
continuity of a function / from Х(ё?) ino 7 (2 ) . 

Whenever the net (/J of multilinear maps from X(SP) into Y(£) is pointwise 
convergent in the usual sense that the net ( f i x ) ) converges in Y($) for all x£X, 

then the converse of Theorem 4.5 is also true. In fact, in this particular case, we can 
even prove a little more. 

T h e o r e m 5.4. If (fa) is a pointwise convergent net of multilinear maps from 

X(Sfi) = X Х,{ЗР?) 

into Y (J) and f is the relation defined on X by 

fix) = l im3/a (x), 
a 

then the following assertions are equivalent: 

( i ) (/J is equicontinuous at the origin of X(0>); 

(ii) f is selectionally boundedly uniformly continuous; 

(iii) / is lower semicontinuous at the origin of X(3P). 

P r o o f . Because of Theorem 4.5 and Remark 4.4, we need only show that (iii) 
also implies (i). For this, assume that (iii) holds, and let and M„— ITm qof 

a 
If £>0, then by the definition of the ball B*(0) is a neighbourhood of 0 in 
7(J2). Thus, because of 0<E/(0) and (iii), the set и=У~ г {В\ (0 ) ) is a neighbourhood of 
0 in X(0>). I f x£U, then by the definition of U, there exists y€Beq(0) such that 
y£f(x). Hence, it is clear that 

чШх)) ^ q{fx(x)-y) + q(y) q { f ( x ) - y ) + c 

for all a, and 
\\mq{Ux)-y) = 0. 

a 
Consequently, we have 

Mq(x) = lim (j ( f i x ) ) =i e. 

8' 
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Hence, it is clear that Mq is continuous at the origin of X{dP), and thus by Definition 

3.5, ( i ) also holds. 

R e m a r k 5.5. Note that to obtain (i) we have only used a particular case of (iii). 
As an immediate consequence of Theorem 5.4, we can easily get the essential 

improvement of [3, (18.2) Theorem] proved directly in [15]. 

C o r o l l a r y 5.6. If f is a multilinear map from 

X{0>) = X X(^) 
¿=i 

into Y(£), then the following assertions are equivalent: 

( i ) / is boundedly uniformly continuous; 

(ii) / is continuous at the origin of X(3?); 

(iii) qof is continuous at the origin of X(3?) for all q£2.. 

P r o o f . T o apply Theorem 5.4, note that/is a selection function for the relation 
F defined on X by 

F{x) = lim ¡¡fix), 
a 

where a runs in an arbitrary nonvoid directed set. 

Acknowledgement. The author is indebted to Piotr Antosik for pointing out the 
usefulness of sequential methods in abstract analysis, and to Zoltán Daróczy for 
suggesting the investigation of the converse of Theorem 4.5. 
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A model for a general linear bounded operator between two 
Hilbert spaces 

A N D R E I H A L A N A Y 

The main result of this paper is a theorem asserting that every bounded linear 
operator between two Hilbert spaces is unitary equivalent with a certain particular 
operator, the "model" , in a similar sense with that used for contractions in [5]. This is 
accomplished by proving a model theorem for a contraction between two Hilbert 
spaces inspired by the techniques used in Ch. I, Sec. 10 from [7] then by proving a 
model theorem for an invertible linear bounded operator between two Hilbert spaces 
whose inverse is a contraction and then by the use of the canonical decomposition o f 
every linear bounded operator as a direct sum of a contraction, an operator whose 
inverse is a contraction and an isometry (see [4], [6]). The model for the contraction 
is used also to prove a result concerning dilation of the couple (T, T*). 

W e express our gratitude to the referee for the carefull reading of the manu-
script and for useful suggestions with the consequence of improved and shorter 
proofs o f the Theorem 1.1 and especially Theorem 4.2. 

1. A model for a contraction between two Hilbert spaces 

Let be two separable Hilbert spaces and T: a contraction, 

that is a bounded linear operator with Then T*: is also a con-
traction. Define 

where denotes the identity operator in 2t?. The norms in the two Hilbert spaces 
J f j , will be denoted respectively by ¡| • ||1; || • ||2. 

Received April 18, 1988 and in revised form March 28, 1990. 
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We observe that ((T*T)l)™=0 is a decreasing sequence of selfadjoint contrac-

tions, consequently Q1=\im(T*T)k exists in the strong sense and O ^ g i — ^ r , -

Since Qiiljp —T*T)h=0 for h^^, Q1 is the orthogonal projection onto 

ker (Ijp— T*T). Similarly g 2 = s - l i m ( r r * ) l £ is the orthogonal projection onto 

ker (I^—TT*). In particular and are closed subspaces of ^ and 

respectively. 

The definitions of <2i 6 2 show that 

(1.1) ft = T*Q2T, Q2 = TQ1T*. 

Let W : be defined by 

(1.2) WQ1h = Q2Th, h ^ . 

Then by (1.1) one can easily see that 

WQ1h\\2 = \\QiTh\\2 = \\Q1h\\i, 

such that W is an isometry. 
Since, by (1.1), g2 (ker T*) = {0}, it results that Q2T^ is dense in Q23tf2, such 

that, by (1.2), W has dense range in It results that W is a unitary operator. 
A computation shows (see [7] Ch. I, Sec. 10) that for every h^J^ 

2 \\D{T*Tfh\W+ 2 \\D*T(T*Tfh\\l = 
fc=0 fc=l 

= 2 ((T*T)2k-(T*T)2k+1h, h)+ 2 ( ( T * T ) 2 k + 1 - ( T * T ) 2 k + 2 h , h) = 
k=0 lc = 0 

= ||/I||i-||r*T)"+1/i||f. 

Taking limits we have 

(1.3) mi= 2mT*Tfh\\i+2 \\D*T(T*T)kh\\22+nah\\t, he^. 
k=0 k=0 

By similar computations 

(1.4) wn= 2WATT*yii'\\l+2\\DT*(TT*)kh'\\2+\\Q2h'\\i 
k=0 * = 0 

For a Hilbert space S, H2{&) denotes the vectorial Hardy space (see [7], Ch. V 
Sec. 1 or [5], Sec. 0). For 

0 0 

u ( z ) = 2 ^ a k , | z | < 1 
4 = 0 
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the norm is defined by 

M I W ) = ¿ i k i i i -
k = 0 

W e denote by Sg the unilateral shift on H2(S), ([5] Sec. 0). Let 

K: H'i^QHH^OQi^i, 
(1.5) 

Vxh = [ 2 zkD(T*T)kh]®[2 zkD„ T{T*Tf h] © Q1 h. 
k =0 k=0 

From (1.3) we have ||Ĵ /I||2=||/I||I, where the square o f the norm in the direct sum is 

the sum of the squares of the norms of the components. Let 

^ V2: - H2(^)®H2(S2)®Q23e2 

V2h' = [ 2 zkDT*{TT*fh']@[Z zkDM(TT*f h'](BQ2h', h'£3ft. 
k=0 k = 0 

From (1.4) it fol lows that ||K>/i'||2=|l̂ 1l2- From the previous definitions 

(1.7) V2Th = [ 2 *DT*(TT*)kTh]®[ 2 zkD„(TT*)kTh]®Q2Th = 
k = 0 k=0 

= 12 zkD(T*T)k+1h]®[2 zkD*T(T*T)kh]®Q2Th = [S*gl®/„,(*)© W] »i * 
k=0 k—0 

for ewery and 

(1.8) V^h' = [ 2 ¿D(?*T?T*h']®[2 ¿D*(TT*Y+1W\®Q-iT*W = 
k=0 * = 0 

= [lEHtl)®Sit®W*]Vthf 

for every Therefore the following model theorem is proved. 

T h e o r e m 1.1. Let T: be a contraction. There exist the Hilbert spaces 

the closed subspaces Jfic//2^)©//2^), and the 

unitary operators 

vx\ - j f i e a j«;, v2. je2 - jr2®Q2jr2, w-. Qx#x - Q2^2 

such that 

(1.9) T = VfiS^Iu^^WW-,, 

(1.10) = 
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2. A model for the inverse of a contraction 

Let T: <3f2 an invertible contraction. T* is then invertible, too. W e proceed 
to exhibit a model for J - 1 . 

Lemma 2.1. 

(2.1) \\Dh\\\= 2W*Th\\% for every h ^ . 
n = l 

Proo f . First we observe that !|D+||<1. Indeed, 

||£J2 = sup \\D,h'\\t = sup (l-\\T*h'\\!) = l - i n f l i r - 1 . 
II ft' II2 = 1 IIVIIi=l ll/i'llj-l 

Then ||D2||<1, so (I-Dl)~1= 2 D*n. But ( / - D 2 ) - 1 ^ ^ * ) - 1 and so 
n = 0 

(2.2) ¿D^ = DUTT*)~1. 
n = l 

We observe that 

T*D%(TT*)~XT = TVx-z-TT^iT*)-1 = I^-T*T = D2. 

Then 

H^llf = (£)2/j, AX = (T+DUTT+y'Th, h\ = {Dl(TT*)-'Th, Th)2 = 

= (¿Z>?TA, Th)2 = 2 (DfTh, Th)2 = J ||/>J 77*111. 
n — 1 n = l n=1 

The lemma is proved. 
From (1.3) and (2.1) it results 

(2.3) ||h||2 = 2 2 \\D%T(T*T)kh\\l+ 2 \\D,T{T*Tf h\\t + WQMl 
k=On=l t=0 

for every h F r o m (1.4) and (2.1) it results 

(2.4) ||/i'||i = 2 2 ||D%(TT*)k+1 /j'III + 2 \\D*{TT*)kh'\\l+\\Q2h'\\l 

t=On=l * =0 

for every 

Let Jt = {ueH2(£2)\u(l)= 2 '}"D"Ji', |A|<1, h'e^}. M is a closed subspace n = l 

of H2{§a)- Indeed, let («,-)JiE0 be a sequence in y/, u£H2(£2), w ;(A) = 

= Z ^ l h ' j , |A|< 1; « ( ; . ) = f |A|<1, then 11 = 1 n = 1 

I I " ; - » , ! 2 = 2 m(hj-h'k)\\i = WDT-Hh'j-h'Ml - 0 as j, k —. 
n=1 
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We have ^ T - ^ - h ^ W j - K K + ^ T - H h ' j - h ^ l But, since ||r-W||2S 

^\\T\\-W\\t it results (||r||-2-l)||/i;-^||2-0 as so there exists 

h'= lim hj and then D" h y — f o r every wi=l as But as 

j—oo, so a „=D"/ i ' and thus u is in Jt. 

Let V i - M ' l + H H J l ) ® H H g 2 ) @ Q 1 t f 1 be defined by 

(2.5) Vxh = [ 2 ^ i h k ] @ [ 2 ^ T ( T * l T h ] ® Q 1 h , h t J ^ 
k=0 fc=0 

where 

(2.6) /i* (A)= 2 DlT(T*T)kh, for |/| < 1. 
n = l 

(2.1) implies 1 1 ^ 1 1 ^ = 110(7*70^11; and (2.3) implies | | № = l № for 
every h^.y^. 

Let V2: © H 2 ( < ? , ) © b e defined by 

(2.7) V2f=[Zzkfk]®[ZzkD*(TT*)kf]®Q2f, /€•#£ 
fc—0 k = 0 

where 

(2.8) fk(X) = 2)."Dl(TT*f+1f, for |A| < 1. 
n= 1 

(2.1) implies \\fk\\2HHej = \\DT*(TT*)kf\\l and (2.4) implies ||K2/||2=||/||2 for 

a l l /eJ f . . 
In order to find a model for we compute ^ T - 1 / for /6,?f2. 

(2.9) K 1 r - v = [ 2 z 4 f t ] © [ i ^ a , n t / ] © e i r - 1 / 
fc=0 fc=0 

where 

(2.10) gk(X)= 2 ^ * ( T T * ) k f , for |A| < 1. 
n = l 

Then 

(2.11) g k ( X ) ~ f k a ) = 2 > - D V % { T T * f f for |A| - 1. 

Observe that J( is invariant for Sgt and let us denote 

(2.12) S* = Sit\M. 

(2.11) becomes gk-fk=Slgk, so 

(2.13) fk = ( I - S l ) g . 
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For a Hilbert space 8and A£B(&) a linear bounded operator, we denote by Ax 

the operator of multiplication by A from H2(<?) to H2(S) : 

CO oo 

(Axu)(z) = 2, z*Auk, for u ( z ) = Z ^ u k , Ul < 1. 

L e m m a 2.2. The operator Hi{Ji)-H2(J() is invertible. 

P r o o f . W e will prove that IM-S\\ is invertible. Let Sg\ 

-~H2{<g2) be the unilateral shift 

(Sgiu)(z)= ¿ z * + 1 M ) t , for M ( z ) = j ; z % , | z | < l . 
Jfc = 0 ([ = 0 

W e observe first that (S2^=PMS2St\M. 

Let ker (IM - =ker (IM-PM S2 Then u=PMu=PMS*gu*> 

oPM(u— S^m)—0 or equivalently (u—S2 su ) is in Jt^ and this implies 
(M— from which it results 

(2.14) (u,u) = (Sl2u,u). 

Let u{?) = 2l"Dlh', |>1|<1, (2.14) becomes 
n = l 

¿11^11 = 2(D%-2h\ Dlh') = 2(Dl~lh\ Dl-'h') = 2mh'\[l 
n=l n=3 rt=3 n = 2 

Then HD^/i'H^O since the series are convergent by Lemma 2.1, so D^h'=0 and 
this implies u=0 , so 

(2.15) k e r ( / « - S 2 ) * = {0} . 

Next we prove that IJt—S% is bounded from below. Let u(/.)= 2 /."D^h', 
n = l 

h ' i3 f 2 , |A|<1, then 

\\(i„«-si)u\\h(S2) = 2 \m-m+2)hTz = 2 \№{TT*)h'\\l = 
n=l n=l 

= 2 \\(TT*)D%h'\\2 s c2 2 W* h'Wl = C2 Ill/Ill^. 
n = l n=l 

Here we used the fact that TT*, being positive and invertible, is bounded from below, 
i.e.: 

\\TT*h% fe c\\h'\\2 for every with c > 0. 
So 

(2-16) l l (^-5|)u|| f l 2 ( i 2 ) fec||M||H! ( i 2 ) , 0. 



Model for bounded operator 125 

(2.15) and (2.16) prove that there exists (IM—S*)-1: Jt-~M and then there 

exists ( I j f - S l ) ' 1 : H2(Jt)^H2(Jt). So the lemma is proved. 

Lemma 2.2, (1.2), (2.9) and (2.13) imply 

[ 2 A i j t - s i r v M i z^(7T*)fc/]©^-W= 
t=0 fc=0 

= l(Ij<-Sl)-x1®IHHg2)@W-1]V2f. 
So we have proved 

T h e o r e m 2.3. Le i T: be an invertible contraction. There exist the Hil-

bert spaces <f2, M, the subspaces (closed, linear) and of 7/1 (.//)©//2 (<?2) 

and the unitary operators Vx: ^-¿^©gi^i, V2: Jf2©g2t#2 such that 

(2.17) r - i = K 

where S* is defined by (2.12) and W by (1.2). 

3. A model for a general bounded linear operator 

To apply the Theorems 1.1 and 2.3 to a general linear bounded operator 
T: let us denote as in [4], [6] 

DT = K XT = [(I^-T*TYfl2 

where, for A=A*, A - = M z A . 

Let 9T=DTJfx be the defect space of T, ^ = k e r (/- T*T), %T=XTtfx the 

excess space of T, and consider the corresponding spaces dCfif. for T • 

Then 3#'1=2$t@!!£t@2$t, and from the relations TDT = 

=DT*T, TXrt = XTT (see the proof in [4]) it results T3>Tc.9Ti, T9[Tc:3CTt and 

obviously T2>).czg\t. Define the operators T1 = T\3^. T2= 

= T \ x T - a n d T 3 = T l 3 < '• 71 is a strict contraction and (|7[r)~=1 

converges strongly to 0 as n — °° (see [4], [6]). T2 is an invertible operator and T2l 

is a contraction. T3 is an isometry. 

In order to obtain the model for T we apply Theorem 1.1 for 7i with replaced 
by & T and replaced by 2>Tt and Theorem 2.3 for T~l with replaced by SCTt 

and replaced by 9CT. 
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4. Some results concerning the dilation of a contraction and its adjoint 

Let be a separable Hilbert space and T: J? — J? a contraction. For the sake 
of simplifying the presentation we suppose that 

(4.1) (T*T)n * 0 and (7T* ) n - 0 strongly, as n 

The main results remain valid without this assumption. From (4.1), <?1 = < f 2 = ^ 
and by Theorem 1.1 we have the subspaces and JT2 oi H2(3^)®H2(^C) and the 
unitary operators V2. such that ^ r = G S * © / ) ^ and V1T* = 

=(I®S*)V2 (where we denoted S% by S* and by /). 

Define J—V^V\. J is an unitary operator from X2 to Using the (easy to 
prove) fact that dim JiT2 = dim = the orthogonals being considered in H2(ff)(& 

we define J: L2(J?)©L2(JT)-L2(ff)©L2(JT) 

(4.2) J = /©(unitary operator tf^ - JT^)®(identity of H i ( J i f ) ® H i ( J i f ) ) 

( for the definition of L2(Jf ) see [6], Ch. V ) ; H2_(^f)=L2(2?) Q H2(Sf)). 

Let Z * be the backward shift on L 2 ( f f ) . if 

then 

Define 

(4.3) 

U and V are unitary operators on L2(/e)®L2(2C). Let us identify jtf with X2 b} 
the mean of V2. Then we state 

T h e o r e m 4.1. For every polynomial p in two variables, 

p(T,T*) = P*p(V,U)\, 

where by P# we denote the projection onto . 

The proof relies on direct computation and is omitted. Next we show that in 
the case of a normal contraction T satisfying the hypothesis (4.1), the operator J o f 
(4.2) can be choosed such that the operators U and V defined in (4.3) commute. 

T h e o r e m 4.2. Let T: be a normal contraction satisfying ( 7T 1 ) "—0 

strongly as n—* Then the operator J in (4.2) can be constructed such that U and V 

defined in (4.3) satisfy UV=VU. 

u(z) = 2 z"u„, \z\ = 1, 
li — — 00 

(Z* t t ) ( z )= J z" t/„+1, \z\ = 1. 
n— — 00 

U = J*(ILH)n@Z*), V = (Z*®ILH^)J. 



Model for bounded operator 127 

P r o o f . The proof that follows was suggested by the referee, replacing the more 
complicated original one. T normal implies D^=D and by hypotheses 

(7T*)"-~0. 
Let T=WR be the polar decomposition of T. Then W can be a unitary operator, 

WR = RW and WD=DW. Define the operator U on H 2 ( j f ) by 

u(2z"hk)= 2z*w*hk. 
k = 0 k = 0 

U is a unitary operator that commutes with S*, the backward shift on H~{3/f). The 
operator U defined by 

Me'T) 
with respect to i/2 (J f ) f f i//2 (J^) is a unitary operator that satisfies 

(4.4) (S* @S*)U= U(S* © S*). 

Then 

V((2 zkDT* (TT*f h)@( 2 zkD(TT*fh)) = 
k=0 k=0 

= U{{2 zkDW*F?k+1h)@(2 zkD.*R-kti)) = ( J? zkD, R2k h)©( 2 zkDWRR2kti) = 
k=0 k = 0 k=0 k = 0 

= ( 2 zkD(T*Tfh)®( 2 ^D J{T*Tfh) = 
k-0 fc = 0 

= KK* ( ( 2 zkDT*(TT*)kh)@(2 zkDJTT*)k/i) 
k=0 k=0 

for every hf This shows that = and Since ¿7 is a unitary 
operator it results Ojf^- = Jff- and so we can choose J such that 

For this J we have, due also to (4.4), 

U V \ = 0"(S*@S-)0 = S @S* = 

Since by (4.2), (4.3) the same is true for Hi(M>)®H2_(tf) it results UV^VU and 
the theorem is proved. 

W e remark at the end that we can drop the assumption (4.1) from Theorems 4.1 
and 4.2 without altering the results. 
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AF-algebras with unique trace 

A N D R E I TÖRÖK 

An A F C*-algebra is, by definition, the norm closure of an increasing sequence of 
finite dimensional C*-algebras. In some sense, these are the simplest noncommutative 
infinite dimensional C*-algebras. 

Our interest in AF-algebras with unique trace is related to the problem of 
constructing subfactors with a given index of the hyperfinite type von Neumann 
factor R. For this, one is led to find a sequence of increasing finite dimensional C*-
algebras and to take their weak closure in the GNS representation given by a tracial 
state. I f there is only one tracial state, the finite hyperfinite von Neumann algebra one 
obtains is a factor, hence it is R if it is infinite dimensional. 

One way to guarantee the uniqueness of the trace is to fit the situation described 
in Remark 3: one can apply then either the quoted theorem of Elliott (stated in K -
theoretic language) or the Perron—Frobenius theory on matrices with positive 
entries. 

Our approach gives the desired conclusion for a wider class of A F algebras (the 
matrix given in Remark 2 is not primitive) and establishes some additional properties. 

Statement of the result 

Let A be a unital A F C*-algebra, inductive limit of the finite dimensional al-
gebras C - l c ^ c A c ^ c . . . (1 is the unit of A). 

W e denote by mk—{m![, m\, ..., mkcJ the dimension vector of the algebra Ak 

and by R k = ( r k j ) i = 1 Ck. j = 1 Cfc+i the inclusion matrix for AkaAk+1 (A;Sl ) . 
In particular, 'R kwtk—+1. 

I f w is a real vector, w feO means that its entries are nonnegative. 
For w—(w1, ..., w„)6R", wfeO, w^0 , we define 

X(w) := ( I n ) ' 1 min { 2 w,\l c {1, 2, ..., n}, card (/ ) fe n/2}. 

Received July 28, 1988. 

9 



130 A. Török 

W e consider the multiplicative group G= |J %(Ak) and its action on A by 
k = l 

inner automorphisms. 

g£G i—~ Ad g€ Int {A) c A u t ( ^ ) 

g ( x ) = (Ad £ ) (x ) = gxg'1 (g£G, x£A). 

W e prove the following 
T h e o r e m . With the notations introduced above, let 

e k : = . min x ( ( » i i J (k ^ 1). 
}=' ck+I 

CO 

( * ) ' 2Ek=°°> 
k=1 

then: 

(a) there is a unique normalized trace, denoted by T, on A; 

(b) r is faithful if and only if A is simple; 

(c) the action 0 is mixing with respect to the trace i, i.e. 

{-i)x,y£Ah, ( 3 ) g n i G (n£N) such that lim T(gn(x)y) = T(x)r(y). 

There are conditions which imply ( * ) and depend only on the inclusion matri-
ces Rk. 

C o r o l l a r y . With the Rk's introduced above, let 

Sk min /•£-/max r*. (/ = 1, ..., ck; j = 1, ..., ck+1) 
i, J i, j 

and 

h '•= m i " z ( 0 o - ) , = i J -
J — l, ..., cfc + 1 

If 
OO 

(1) 
k = 2 

or 

(2 ) ¿ < 5 * - A = ~ , 
k = 2 

then: 

( i ) ¿/¡e algebra A is simple and has a unique normalized trace r, which is faithful; 

(ii) the action 0 is mixing with respect to the trace x. 

Namely, we shall prove that (2)=>(1)=» (* ) . 
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R e m a r k 1. Condition ( * ) depends effectively on the particular sequence o f 

algebras A„ defining A. Indeed, let m 1 = ( l , 1, 1, 1), and fo r 

•̂ 24 + 1 — 

'1 1 0 0" ' i 0 1 0 

1 1 0 0 
J Rîk — 

0 1 0 1 

0 0 1 1 J Rîk — 1 0 1 0 

,0 0 1 1 . ,0 1 0 I 

hence R2k-iR2k = 

Then the sum in ( * ) is zero for the sequence AxaA 

the sequence 
2*—A3c 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 , 

but it is infinite for 

R e m a r k 2. Condition ( * ) does not imply any of the equivalent conditions in (b ) : 

let m1=(l, 1, 1), and 

f l 1 2 
for all fcsl. Rk 0 1 0 

2 1 1 

Then e f t = 1/2, but the (unique) trace on A has the weights ( ( l/2)3- f c + 1 , 0, ( l/2)3- f c + 1 ) 

on Ak, hence it is not faithful. One can also see f rom the Bratteli diagram that A is 

not simple. 

R e m a r k 3. As a special case of the Corollary (part (i) ), we can treat the situation 

dealt with in a theorem of ELLIOTT (Th. 6.1. in [2]), namely when Rk—R for all k, 

where R is a primitive matrix, i.e. there is a nonzero p such that Rp has positive 

entries. Indeed, if we consider the sequence 

A •Ap-i-i cz A2P+i c: A3p+1 a ... 

(which also defines A), the inclusion matrices will be constantly R"; hence, the dk s 

will be all equal and nonzero (because R" has no zero entry), and then clearly (2) 

holds. 

The proof o f Elliott fol lows different ideas. 

Notations and steps of the proof 

Let 

A n = e @ A ' a , A ' n ^ Matm„ (C) 

be the factor decomposition of the A„'s. For x£A„, we denote by its A'n -com-

ponent and by ot!n{x) the normalized trace of [x]'n£A'n: 

a U ^ ) = t r ( [ x U ) = ( l / m 7 ) T r ( M 0 

9* 
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(we denote by Tr the canonical trace on a full matrix algebra — i.e. the sum of all 
diagonal entries — and by tr the normalized one). 

If v=(v1...vk)€C* is a vector, we write QJ(V) for the "oscillation" of v, i.e. 

o)(v) := max I®,-—v.\. 
i, j=1 k 1 

Now for any xdA„, we introduce the vector <xn(x):=(aj,(x), a2(x), ..., a^"(x)) 

and the value w(an (x) ) . We denote 

A „ := U An-
n = l 

The proof will be divided in a sequence of lemmas. 
The first step is to show that for any lim a j (a „ (x ) )=0 , i.e. the entries 

of a„(x) tend to become mutually equal. It is here that we use condition ( * ) . This 
implies that as n goes to infinity, the entries of « „ ( * ) converge to some complex 
number T(X). This result is derived in Lemma 3, using the results of the previous two 
lemmas. 

In Lemma 4 we check that the map x£A„>-+x(x)£C defines a tracial state on A m 

and we show that this is the unique one. So assertion (a) of the Theorem will be 
proved. 

In Lemma 5, using a characterization of simplicity for A F algebras in terms of 
the inclusion matrices, we prove that the above defined trace is faithful if and only if 
the algebra A is simple, i.e. assertion (b) of the Theorem. 

Assertion (c) of the Theorem (that the action <9 is mixing with respect to the trace 
T) is proved in Lemma 6, after some remarks on finite dimensional C*-algebras. 

Finally, in Lemma 7, we show that (2)=>(l)=>-( * ) and that if (1) or (2) hold, then 
the algebra A is simple. Using these facts, the Corollary follows easily f rom the 
Theorem. 

W e emphasize that the whole proof depends on the fact that lim a ) (a „ (x ) )=0 . 
This is deduced from condition ( * ) by the estimate given in Lemma 2. One can look 
for other estimates in order to obtain the same fact from other conditions. Our 
estimates is insensitive to the equality of all rows of Q, when ||<2IL=0, regardless of e 
(see the notations in Lemma 2). W e have chosen it because of its relative simplicity. 
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The proofs 

First of all we clarify how the inclusion matrices Rk and the dimension vectors 
mk allow the computation of a n + 1 ( x ) from a„(x). Let Qn—(<7"j);=i,...,Cn+1; ¡=\,...,c„ 

be the matrix given by g^^m^-Jm"* 1 , i.e. 

m î + 1 0 ' - 1 ml 0 ' 

Q* = 

. 0 
nf+1 

<R n 
0 rril 

c n / 

and l m = ( l , 1, ..., l )€Cm . Note that Qn(lJ= l c„+ 1 because m?+1 = 2 m"kr"kl (/ = 
k=1 

= 1, ..., Cn + 1 ) . 

L e m m a 1. For any xÇJ„ we have 

(a) an+1(x)=Qnan(x), 

(b) min Re ak ( x ) s R e aln+1 (x ) ^ max Re ak (x), 

min ImaJ;(x) ^ Ima^ + 1 ( x ) ^ max I m a k ( x ) for all I = 1, ..., cn+1. 
i s tac„ l s k i e . 

P r o o f , (a) Using the information given by the inclusion matrix, it follows that 

«i+iOO = Tr ([*]<+i)/™?+1 = ( 2 Tr (M;)/iw?+ 1 = ( 2 mïrnkian(x))/m'l + l. 
k=l k=1 

(b) This is a consequence of the relation Q n ( l c J = K n + l and of the fact that Q„ 
has real nonnegative entries (hence aj,+ 1 (x) is a weighted average of the entries o f 
a„(x)). 

Let us study the matrices g = ( 9 j J ) ( = 1 ... „. J = 1 with real nonnegative 
entries which satisfy <2 (1J=1„ . Note that i f uÇÏT and co(u) = 0, then c o ( 0 ( y ) ) =0 
(co(vv)=0 o w is proportional to the vector lm ) . Since a> defines a seminorm on 
any Rp , from the above remark we see that Q induces a linear map Q: Rm/a)^R"/co, 
where Rp/co denotes the quotient space Rp/{u€Rp|co(t;)=0}. Hence, 

IIÔIL := sup{co(Ô(i;))|i;€Rn, œ(v) ' 1} 

is finite. Clearly 

< » ( e ( » ) ) ^ l i e i L f f l ( f ) and IIÔ1Ô2IL ^ IIÔ1LIIÔ2L 

whenever Q1Q2 is defined. 

L e m m a 2. Le i Q=(giJ)i=iy3...i„i /=1,...,m be a matrix with real nonnegative 

entries which satisfies g ( l m ) = l „ . Then ||0||raSl —£, where 

e : = min »>)• 
I =1, ..., n 
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P r o o f . It is enough to show that if o=(i> l5 ..., um)£Rm> IV = (Vi , • wm )£Rm 

m m 
are such that v^O, wsO, 2 vk=^ 2 !> '/XV)=E> / (w )^e , then 

k = 1 k = l 

|<a,v>-<a, w>| ^ ( l - e ) c u ( a ) 

for any a= ( a 1 , ..., a m ) iR m , where ( • , •> stands for the canonical scalar product 
of Rm. The desired result will then follow by considering v=(qik)k=1^m, vv= 

= ( ? a ) * ° I . - . « f o r a 1 1 1 = '>•/="• 
Let a= mina t , b= maxa t , I=[a,b]m. Then ag/, a>(ct)=b—a. Since the map 

k k 

/:/—R, f(u):=(u, v)—(u, vv). is an affine map, / (/ )=co/ ( ex t/ ) , where ext I 

denotes the set of extreme points of / and co stands for convex hull. 
Let p£extl, ..., PJ. Then pk£{a,b} for any k=\, ..., m. Denote 

Ka = ^k^m, pk = a}, Kb = {k\l ^ k == m, pk = b). 

One of the sets Ka and Kb has at least nil elements. Suppose card Ka^nj2. Since 

(P, we have 
/(/?) = (a 2 vk+b 2 Vk)~(P, vv> = 

k£Ka k<LKb 

= [b-(b-a) 2 vk]-(p,w)sb-(b-a)x(v)-a^(l-e)(b-a). 
kiKa 

For v instead of w we also obtain / (/? )&- (1 —s)(b—a). 

The case card Kb^n/2 can be treated similarly and we obtain the same results. 
Thus for any /?£ext/ we have 

_(1 -eXb-a) ^f(p) ^ (1 -e)(b-a), 

hencc 
/(/) c [ - ( 1 -e)(b-d), (1 -e)(b-a)], 

and therefore 
| / ( a ) | S ( f e - f l ) ( l - £ ) = c 0 ( a ) ( l - £ ) . 

oo oo 

Recall that JJ ( l - r i „ ) = 0 whenever O ^ ^ s l and 2 r l n = ca- Therefore, by 
n = l n=1 

condition ( * ) we have 

( * * ) i z ( 1 - O = o ( v ) «o = i -
n=n0 

Note that due to Lemma 1(a), the e„'s defined in the Theorem have the same meaning 
for the matrices Q„ as e for the matric Q in Lemma 2. 

For o= (p l 9 ..., vm)£Cm, define 

I H U : = . max \vk\. 

Now we can prove 
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L e m m a 3. For any we have 

(a) lim co(oc„(x)) = 0, 

( b ) l im | | A „ ( x ) - T ( x ) - L J U = 0 for some T(X)£C. 

P r o o f . Let n^n0. Since both co and || • are seminorms, we can deal separ-

ately with the real and imaginary parts o f a„ (x) . Denote by R e a„ (x ) and Im a„(x) 

the vectors whose entries are the real and the imaginary parts, respectively, o f the 

entries o f a„ (x). By Lemma 1(a), we see that 

Reoc„ + 1 (x ) = <2„(Re <x„(x)), I m a „ + 1 ( x ) = Q„(Ima„(x)). 

Lemma 2 implies that 

c o (Rea „ + 1 ( x ) ) s ! l & , L c « ( R e ajx)) ^ ( 1 -e „ ) a> (Re « „ ( « ) ) . 

Iterating we get 
n 

co(Re a n + 1 ( x ) ) JJ (1 - s k ) co(Re a„0 (x) ) 
k=n0 

and then, by ( * * ) , 
l im co (Re a „ (x ) ) = 0. 

Since 
a) (Rea„(xY) = max R e a ' ( x ) — min R e a ' ( x ) , \ nv ' ! lS!Sc„ ISISc, 

Lemma 1(b) implies that 

lim ||Rea„(x) —a l c 11«, = 0 for some a£R. 

The vectors I m a „ ( x ) can be treated similarly. 

L e m m a 4. (a) The mapping x£A„ I — T ( X ) € C is a continuous normalized trace 

on A„ which can be extended by continuity to the whole A. 

(b ) Any normalized trace on Am equals r. 

P r o o f , (a ) Linearity follows f rom the fact that 

oc„(ax+by) = a<x„(x)+b<x„(y) for any x, y£An and a, b£C. 

I t is easy to see that a n ( l ) = lCn , hence T(1) = 1. Since |tr ([x^)|S[|[x]il|S||x||, we 

see that ||a„(x)||„S||x||, and hence |T(X)|S||X||. Similarly, a „ ( x * x ) ^ 0 , hence 

T (X*X )= ;0 . 

That r is a trace fol lows f rom the relation 

a„ (xy ) = ajyx) for any x, y£An, 

which is a consequence of the definition of a„. 
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(b ) Let n be any normalized trace on A. Since the factors Aln have unique norm-
alized traces, the restriction o f fi to the algebra A„ is described by a nonnegative 

vector / „ = ( £ , C with ¿ / ¡ = 1 . I f xiAa, then 
fc = l 

n(x) = 2tknakn{x). 
k = l 

Then for all x£A„. 

\M(x)-r(x)l = \2 < Ü [ « Ü ( * ) - T ( * ) ] | ^ 2 / Í I I « „ W - t ( x ) 1 J U = L K W - T ( J C ) y . . 
k=1 k = 1 

Hence Lemma 3 (a) implies that p(x)=z{x) for all x£Am. 

L e m m a 5. Suppose ( * ) holds and i is the above defined trace. Then i is faithful if 

and only if the algebra A is simple. 

P r o o f . Denote by e'n the minimal central projection o f A„ corresponding to A'n. 

It is known that A is simple if and only if for any n £ 1 and any 1 there is a 

p>n such that the inclusion matrix Rn,p—(rTjP)i=x,-,c -,j=iy-,c f ° r 

has only nonzero entries on the /-th row (i.e. Aln "enters" in all factor summands o f 
Ap)—just look at the description of the ideals in the Bratteli diagram of A. Since 

* ' P t ó ) = (/•,"•" nift/mf, i = 1, ..., cp , 

we see that the above condition on the inclusion matrix is equivalent to the fact that 
ap(e'n) has only nonzero entries. 

Suppose first that T is faithful. Choose n^l and 1 s l s c „ . Since z(e'J^0, and 

lim \\ctp(eln) — r(eln)lc \\„ = 0, » p 

we infer that for p large enough, all the entries of ap(e'n) are nonzero. Thus by the 
above remark, A must be simple. 

The converse implication is obvious since J \={x£A\i (X*X)=0} is a bilateral 
ideal and 1$/. 

For proving the mixing property o f 0 we need two elementary and possible 
well-known results which we record below. 

For a finite dimensional C*-algebra N, with a fixed system of matrix units and 
x£N, we denote by Diag (x) the set of values which are on the diagonal o f x. 

R e m a r k 4 . Let x6Matn ( C ) s ^ ( C " ) , Then there is a unitary i/£Mat„ (C ) 

such that Diag ( (Ad m)(x)) has only one element (namely tr (x) ) . (This statement 
also holds for x r *x * but its proof would be more intricate.) 

T o see this, notice first that since x=x*, there is an orthogonal basis o f C" with 
respect to which x has diagonal form, hence the corresponding matrix has real entries. 
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I f we consider ( A d u)(x) instead of x, where u is the unitary matrix that describes the 
change of coordinates, we may assume that x€ Mat„ (R) . 

W e shall obtain the assertion by induction. Let n=2, x = ^ ^ j ( ;Mat 2 (R ) . 
W e define 

(cos t sin t \ 

- s i n , c o s J ^ M a t 2 ( R ) ) ' 

Since (Ad u0)(x) = ^ ^ j , (Ad un/2)(x) = | ^ and / ^ ( A d u,)(x) is a con-

tinuous function with values in Mat2 (R) , the Darboux property of it implies that 

there is a ?€[0, it/2] such that (Ad u,)(x) has equal diagonal entries. Moreover, 

(V)/L6R, minja , c/ }^A^max {a , f/}=>(3) n/2], such that 

(3) (Ad i i f ) ( * ) = ( * * ) . 

The statement is proved for n =2. Assume we have proved it for n— 1, nS3. 
Let x = ( a ; j ) € M a t „ (R). I f x has different diagonal entries, one of them, say an, 

differs from tr (x). W e may assume that a u < t r ( x ) . There must be an i ^ l such 
that a i o i o>tr (x). W e may consider i0=2. Due to (3), there is a unitary 

• (u, U ^ 

M~' = l o / „ J € M a t " ( R ) 

such that 
(tr (x) 

x ' : = ( A d t 7 , ) ( x ) = [ # x „ j . . 

where x ' ^ M a t n ^ R ) . By the inductive assumption there is a i i "6Mat„_1 (C) such 
that Diag ( (Ad u")(x")) has only one value, namely tr (x" )- But tr ( x " ) = t r (x), 
hence if 

(I 0, = (o „•) 
then Diag ( (Ad u'ut) (x ) ) has only one value. 

R e m a r k 5. Let N be a finite dimensional C*-algebra with a fixed system o f 
matrix units, and let /i be a normalized trace on N. I f x, N and y has a diagonal 
form, then 

\n(xy)-ii(x)n(y)\^\\y\\AN(x), 

where ^^ ( x ) = max {\a—a'\\a, a ' gD iag (x ) } . 
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This follows by an easy computation. Suppose that N= 0 Mat„ (C ) , and let 
¡=1 ' 

t=(t1, ..., tm) be the vector o f the weights of the minimal projections o f the factor 
m 

summands of N in the trace p (so that niU= Le t the diagonal entries o f x 
¡=1 

and y be a\, a\, ...,a\,a\, . . „ o ^ and b\,b\, ...,b1„i, b{, ..., 

...,b™, ..., b™m, respectively (the upper index indicates the factor summand of N). 

Then 
m- ni m nk m nk 

n(*)=ZhZ<ti, n(y)= 2 tk = 2 h 2 № 
1=1 i = 1 k =1 j=1 k=1 j = 1 

m "i 
(because y has a diagonal form). Since 1 = 2 2 li> 

i=i¡=i 

m m "i "k 
\li{xy)-n{x)n(y)\ = 2 2 2 2 htk{d)b)-a\bkj)\ 

¿ = 1/( = 1 j = l j = l 
m m ni nk 

= ( 2 2 2 2 Uh) max ail max \V)\ = AN(x)\\y\\. 
I=lk = l i = l j = l k,l,i,j k,j 

L e m m a 6. Suppose ( * ) holds and x is the trace on A given in Lemma 4. Then the 

action © is mixing with respect to x. 

P r o o f . Choose the systems of matrix units in the A„'s such that the matrix 

units o f A„ are sums o f matrix units o f An+1 f o r all n. Let x, y€A„, x=x*, y=y*. 

W e may assume x, y€An^. Since y is selfadjoint, there is a u0£W(AnJ such that 

( A d u0)(y) is diagonal in the matrix units system of A„o; moreover, this will hold in 

all A„,n^n0. 

From the Remark 4, we infer that for « S « 0 there is a such that 

Diag ( [ (AdW n ) (x ) ] ; , ) = { t r ( [ x ] y } = { a i ( x ) } for all 1=1, ...,c„. 

Hence J ^ ( ( A d wn ) (x)) = co(a„(x)). Since Iim co (a „ ( x ) ) =0 and x ( (Ad w) (x ) ) = r ( x ) , 

by Remark 5, we see that 

|T((Ad yjMn)(x)J>)—T(X)T(J>)| = 

= |r((Ad w„ ) (x ) (Ad w 0 ) 0 0 ) - T ( ( A d w„ ) ( x ) ) x ( (Ad « 0 ) ( j ) ) [ s 

s ||(Ad m0)0')|| AAn({Ad un)(x)) = M a>(a„(x)) - 0 as n -

So we proved the mixing property for x, y£(AJ)h. That it also holds fo r any 

x, y£ Ah can be proved using an obvious approximation argument. 

L e m m a 7. (a) With the notations of the Corollary, 

1 / 2 ^ - 1 ^ - = ¿fe-1£fc = ( k ^ 2) ; 
hence (2)=>(1)=>(*). 
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(b) If any of (1) or (2) holds, then the algebra A is simple; hence, by Theorem, part 

(b), the unique normalized trace on A is faithful. 

P r o o f , (a) Since mk—'Rk^1mk_1, we see that 

(max T j f 1 ) m l ' 1 ' z ^ m f = rf- =5 (min ft1) 2 m t 1 

'•J /=i ( = i i = i 

for any fixed j= 1, ..., ck. Hence 

(4) min m{/max ml S min rl-f1/ma.x t j f 1 = 
j j i,j i.j 

The result can now be obtained using the following straightforward inequalities: 
for any nonnegative nonzero vectors vv=(vv1, ..., w„), a=(a1, ..., a„) we have 

(1/2)min w,/max w; s x(w); 
i i 

(min ajmax a,)y_(w) ^ '/((aiwi> a2w*> •••> fl»wn))-

The first one of these inequalities gives (l/2)5k^ek, while the second one and (4) 
give ¿ t_1e iS6Jk. 

(b) Both (1) and (2) imply that there is an infinity of Rk s with no zero entries. 
This implies that A is simple, by the same argument as that used in the proof of 
Lemma 5. 

This concludes the proof of the Theorem. 
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Hyponormal operators on uniformly convex spaces 

M U N E O CHO 

Dedicated to Professor Jun Tomiyama on his 60th birthdy 

1. Introduction. Let X be a complex Banach space. W e denote by X* the dual 
space of X and by B(X) the space of all bounded linear operators on X. 

Let us set 
7T = {(xJKXxX*: ll/ll =/(*) = ||x|| = 1}. 

The spatial numerical range V(T) and the numerical range V(B(X), T) of T£B(X) 

are defined by 
V(T) = (f(Tx): ( x , f ) f n ) 

and 
V(B(X), T) = {F(T): F£B(X)* and ||F|| = F(I) = 1}, 

respectively. 

D e f i n i t i o n 1. If F ( r ) c R , then T is called hermitian. An operator T£B(X) 

is called hyponormal if there are hermitian operators H and K such that T=H+iK 

and the commutator C=i(HK— KH) is non-negative, that is 

V(C) cz R + = {a£R: a 0}. 

An operator N is called normal if there are hermitian operators H and K such that 
N=H+iK and HK=KH. A normal operator N on a Banach space X has the 
following properties: 

(1) coa(N) = V(Nj = V(B(X), N). 

(2) If Nxn-~0 for a bounded sequence { * „ } in X, then Hxn-+ 0 and Kxn^0. 

D e f i n i t i o n 2. Let X be Banach space. X will be said to be uniformly convex if 

to each £ > 0 there corresponds a ¿ > 0 such that the conditions ||x|| = ||y|| = I and 

ll* + J>ll 
\\x-y\\^e imply —==1-<5 . 

Received August 11, 1988. 
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X will be said to be uniformly c-convex if for every e > 0 there is a ¿ > 0 such 
that [|j>||<e whenever ||x|| = 1 and + 5 for all complex numbers X 

with 
X will be said to be strictly c-convex if y=0 whenever ||x|| = 1 and ||x+A_y||sl 

for all complex numbers X with \X\^\. 

All uniformly convex spaces, for example ¿fp(S, I , ¡j) and ^ „ ( ¿ f ) for 1 < p < oo, 
are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex. 

i f 1 ( 5 , 1 , ¡i) and the trace class ^ ( ¿ f ) are the typical examples of uniformly 
c-convex spaces. See [7] and [9]. 

For an operator T£B(X), the spectrum, the approximate point spectrum, the 
point spectrum, the kernel, and the dual of T are denoted by a{T), <rK(T), op(T), 

Ker (T) and T*, respectively. 
For an operator T=H+iK we denote the operator H—iK by T. 

The following are well-known for T£B(X) : 

(1) co V{T) = V(B{X), T), where c o E is the closed convex hull of E. 

(2) co (x(T)czV(T), where co E and E are the convex hull and the closure of E, 

respectively. 

W e now give a concrete example of a hyponormal operator on a uniformly c-
convex space. Let X be a Hilbert space. Then the trace class Cx { f f ) is a two sided 
ideal o fB(3t f ) . 

Given we define 

SA,B(T) = AT-TB (Jif)). 

Then 5a b is an operator on a uniformly c-convex space ^ ( j ^ ) . It is easy to see that if 
A and B* are hyponormal then SA B is a hyponormal operator on ( № ) (see Theo-
rem 4.3 in [9]). 

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4]. 

T h e o r e m A . If H is hermitian and Hx = 0 for xdX (||x|| = l ) , then there exists 

feX* such that (xj)en and H*f= 0. 

2. Hyponormal operators on uniformly convex spaces. The following theorem 
was shown by K. MATTILA [9]. 

T h e o r e m B. Let Xbe uniformly c-convex and let T=H+iK be a hyponormal 

operator on X. If there exists a sequence {x„} of unit vectors in X such that 

(T-(a+ib))xn + 0, 

then (H-d)xn^0 and (K-b)xn-~0. 

W e shall show the following (converse to the theorem above): 
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T h e o r e m 1. Let X be uniformly convex and let T=H+iK be a hyponormal 

operator on X. (1) If a£o(H), then there exist some real number b and sequence {x„} 

of unit vectors for which (H— a)x„—0 and (K—b)x„-~ 0, so that in particular, 

a + ib£o(T). (2) Similarly, ifb'(_o(K), then there exist some real number a' and sequ-

ence {yn} of unit vectors for which (H—a')yn-*Q and (K-b')yn-*0, so that in par-

ticular, a'+ib'£o(T). 

W e need the following 
T h e o r e m C ([9], Theorem 2.4). Let X be strictly c-convex and let C s 0 be 

hermitian. If f(Cx)=0 for some (x,/)£n, then Cx=0. 

P r o o f o f T h e o r e m 1. (1) Since H is hermitian, so it follows that a(Lan(H). 

Consider the extension space X° of X and the faithful representation B(X) -^BiX0): 
T— T° in the sense of DE BARRA [1]. Then a is an eigenvalue of № . If x° is in 
Ker (H°—a) such that ||x°|| = l , then by Theorem A there exists such that 
/0 (x0 ) = ||/°|| = 1 and (H°—a)*f0—0. 

Since T is hyponormal we can let that C=i(HK-KH)^0\ then C ° g 0 and 

f°(C°x0) = ix (K°* (II - a f * f ) - if°(K" (H° — a) x°) = 0, 

where x is the Gel'fand representation of x. Since the space X° is uniformly convex 
([1], Theorem 4), by Theorem C, it follows that C°x°=0 . Therefore, it is easy to 
see that Ker (H°—a) is invariant for K°. So there exist a sequence { * „ } of unit vectors 
and a real number b such that (H—a)x„-~0 and (K—b)xn^0. 

(2) is the same. So the proof is complete. 

T h e o r e m 2. Let X be uniformly convex and let T=H+iK be a hyponormal 

operator on X. Then 

co a(T) = V f - f ) = V(B(X), T). 

Proo f . It is well-known that co <J(T)CV(T)CZV(B(X), T). We assume that 
Re ff(r)ci {aC R : tf^O}. Then, by Theorem 1, it follows that er (//)c {a6R: ai=0}. 
So it follows that V(B(X), // ) c { a£R : ¿z^O} and so Re V(B(X\ r ) c { a<ER: 
flgO}, Since aT+ft is hyponormal for every a, jSgC, it follows that co a(T) = 
= V(B{X), T). So the proof is complete. 

T h e o r e m D ([9], Theorem 2.5). Let X be uniformly c-convex and let C^O be 

a hermitian operator on X. If there are sequences { i , } c l and { / „ } c l * such that 

ll*J = ll/J = l for each n, f„(xn)^ 1 and f„(Cxn)-*0, then C x „ - 0 . 

L e m m a 3. Let T—H+iK be a hyponormal operator. If TT and TT are not 

invertible, then 0£e)cr(TT) and Q^da(TT), respectively, where d denotes 'the boun-

dary of'. 
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P r o o f . W e may only prove that a(TT) and a{Ti ) are included in the half-
plane {«(EC: R e c f l O } . Since V(H") and V(K2) are included in { a£C : Re a^O } , 
it follows that V(TT) = V(H2+K2+ C) c V(H2) 4- V(K2) + V(C)c { «€ C : Re a s O } , 
where C=i{HK-KH)^Q>. Therefore, <r(7T) is included in { a£C: Re a==0}. 
Also, since a{TT)-{0}=a(TT)-{0}, it follows that a ( 7 T ) c { a 6 C : Re a&0 } . 

So the proof is complete. 

L e m m a 4. Let X be uniformly c-convex and let T=H+iK be a hyponormal 

operator on X. IfTTis not invertible, then TT is not invertible. 

P r o o f . By Lemma 3, there exists a sequence { * „ } of unit vectors in X such that 
TTx„^0. W e let that C=i(HK-KH)^0. Then, for a sequence {/„} in X* such 
that (x„,f„)£n, we get that /„(Cx„)—0. So, by Theorem D, C x „ - 0 . Therefore, 
TTxn = (H2+K2-C);c„-0. 

So the proof is complete. 

T h e o r e m 5. Let X and X* be uniformly c-convex and let T=H+iK be a hy-

ponormal operator on X. Then 

o(T) = { z 6 C : z£oK(T)l 

P r o o f . Since T—z is hyponormal for every z£C, it is sufficient to show that 
0£a(T) if and only if 06 f f x (T ) . Assume that 0 belongs to a(T). By Lemma 4, we 
may assume that TT is not invertible. 

Therefore, by Lemma 3, 0 belongs to do(TT). It follows that there exists a 
sequence {x„ } of unit vectors in X such that TTx„-*Q. Since T is hyponormal, by 
Theorem B it follows that T2x„—0. By the spectral mapping theorem for approxi-
mate point spectrum, 0 belongs to cn(T). 

Conversely, assume that 0 belongs to on(T). Then it follows that 0 £ o { T T ) = 

~o(T*T*). Similarly, 0 belongs to aJT*T*). Here, T* is hyponormal on a uni-
formly c-convex space X*. Therefore, 0 belongs to c{T*)=a(T). 

So the proof is complete. 

T h e o r e m 6. Let X be strictly c-convex and let T=H+iK be a hyponormal 

operator on X. Suppose that lis an extreme point of coV (T) such that /£ V{T). Let 

f(Tx)=l for some (x,f)£n. Then Tx=Xx. 

P r o o f . Each linear mapping w(z)=az+/? (z£ C), where a, /?£ C, a^O, 

maps V(T) onto V(u(T)) and V(T) onto V(u(T)). In addition u(T) is hyponormal. 

Hence, we can suppose that l £ R and R e z ^ A (z£V(T)). Since f(Hx)=).— 

=max {a: a^V(H)}, it follows by Theorem C that Hx=Xx. If x ' € K e r ( J i - A ) 

such that ||x'|| = l , then there exists f'£X* such that (x'J'Kn and (H-X)*f'=0. 



Hyponormal operators 145 

It follows that 

f'(Cx') = ix {K*(H-X)*f')-if'(K(H-X)x') = 0 

where C=i(HK-KH)*sO. 

By Theorem C, C x ' = 0 . Hence, it follows that (77-A ) A x ' = 0 . Therefore, it 

is easy to see that Ker (H—X) is invariant for K. Let be the restriction of K to 

Ker (H-XI). Let j ^ K e r (H-X) with ||y|| = l and g€ (Ker (H-X))* such that 

IISI!=SOO=1. Then 

Ty = Xy+iKy = Xy+iK1yeKer (H-X) 
and 

g(Ty)=X + ig(Kiy). 

Here, g(Ty)£ V(T). Since X is an extreme point o f co V(T) and Re z S X (z€ V(T)), 

it follows that F ( K 1 ) c : R + or F ( - i 1 ) c R + . Let / x=/|Ker (H-X). Wehavethen 
f1(K1x)=f(Kx)=0 and ||/1||=/1(x) = l . Since Ker (H-X) is strictly c-convex, it 
follows that Kxx=Kx=0, by Theorem C. 

So the proof is complete. 

3. Doubly commuting «-tuples of hyponormal operators 

D e f i n i t i o n 3. For commuting operators 7\ and T2 such that Tj = H j + i K j 

(Hj and Kj hermitian, j=l, 2), Tx and T2 are called doubly commuting if T^—T^. 

If 7\ and T2 are doubly commuting, then Hj and Kj commute with H, and Kt for 

Ml. 

Let T=(T1, ..., T„) be a commuting «-tuple of operators on X. Let <j(T) 
be the Taylor joint spectrum of T. W e refer the reader to TAYLOR [11]. 

The spatial joint numerical range V(T) and the joint numerical range 
V(B(X), T ) of T are defined by 

V(T) = {(f(TlX), . . . , / ( 7 » ) £ C " : (x,f)en} 
and 

V(B(X), T ) = { № ) , ..., F(T„))6C": F€B(XT and ||F|| = F(I) = l } . 

The joint numerical radius i>(T) and the joint spectral radius /-(T) of T = ( 7 i , ...,T„) 

are defined by 
v(T)=sup{\z\: z£V(T)} 

and 
'"CO = sup {\z\: z6<r(T)}. 

T h e o r e m E (V. WROBEL [14], Corollary 2.3). Let T=(Ti, ..., T„) be a commut-

ing n-tuple of operators. Then 

co o ( T ) c F ( f ) . 

10 
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T h e o r e m 7. Let X be uniformly convex, and let T = ( 7 ] , . . . , T„) be a doubly 

commuting n-tuple of hyponormal operators on X. Then 

co <X(T) = K ( T ) = V(B(X), T ) . 

P r o o f . B y T h e o r e m E , it is c lear that c o o(T)cK(T)cV(B(X), T ) . A s s u m e 

that c o a(T)^V(B(X), T ) . S u p p o s e that oc=(au ..., an)€V(B(X), T ) - C O C T ( T ) . 

T h e n there exists a l inear func t i ona l <P o n C " a n d a real n u m b e r r such tha t 

R e <í>(z) < r < R e <£ ( « ) ( z € c o ff(T)). 

L e t ^ ( z ) = / 1 1 z 1 + . . . + / l nzn ( z = ( z l 5 . . . , z n ) € C " ) , a n d c h o o s e a non-s ingu la r « X « 

mat r i x M w i th ( f u , . . . , tln) as its first r o w . T h e n 

R e Z j < r < R e ft ( z = ( z l s . . . , z „ ) e < r ( M T ) ) , 

w h e r e ( f t , . . . ,/?„) = M a . T h e r e f o r e , c o a ( I ; ^ - 7 } ) ^ ( Z ) , 2 ^ 7 } ) . S ince 

I j t l j T j is a h y p o n o r m a l o p e r a t o r on a u n i f o r m l y c o n v e x space , this y i e l ds a c o n t r a -

d i c t i on t o T h e o r e m 2. 

S o the p r o o f is c o m p l e t e . 

C o r o l l a r y 8. Let X be uniformly convex and let T={TX, ..., T„) be a doubly 

commuting n-tuple of hyponormal operators on X. Then R (T ) = Y (T ) . 
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Restrictions of positive self-adjoint operators 

Z O L T Á N SEBESTYÉN and JAN STOCHEL 

A densely defined positive symmetric operator in a Hilbert space has a positive 
self-adjoint extension within the same space. This theorem is well known for a long 
time and forms a solid part of our knowledge of the theory of unbounded operators in 
Hilbert space. Hence the restrictions of positive self-adjoint operators to a dense 
linear subspace are completely characterized by the properties of symmetry and 
positiveness. The same problem for an arbitrary linear subspace has so far remained 
unsolved. 

The main aim of this note is to give a necessary and sufficient condition for the 
existence of a positive self-adjoint operator whose restriction to a linear subspace of a 
Hilbert space is given. Our theorem contains, as a special case, the above mentioned 
classical result as well as its generalisation given in 1970 by ANDO and NISHIO 
[1, Theorem 1 ; Corollary 1] for closed initial operators. Our method of proof follows 
the proof used in 1983 by the first named author [2, Theorem] in the bounded operator 
case. Further properties of our extension presented here generalise the results of [3], 
[4], [5]. 

This work is a result of a visit in April 1988 of the second named author at the 
Eötvös University, Budapest. 

Let A be a (linear) operator defined on a linear subspace S o f a (complex) 
Hilbert space with values in the space Here Q> is not assumed to be closed or 
dense, nor A is assumed to have a closed graph. Throughout the paper we assume 
that A is symmetric and positive, that is, A has the following property: 

(1) 0 s (Ax, x) for each x in 

Of course, (1) is necessary for the existence of a positive self-adjoint extension. 
Starting with assumption (1) we define a semi inner product (. , .) on 3) by 

(x, y) := (Ax, y) for x and y in 3). 

Received October 19, 1988. 
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A new Hilbert space appears by the usual construction: let 30 = { x6D : (Ax, x) = 

= 0 } be the kernel of < •, • ) and let Q be the quotient map of 3 with respect to 30, 

that is, 

Qx = x+30 for all x in 3, 

then Q(3) is a pre-Hilbert space with inner product 
(2) (Qx, Qy> := (Ax, y) for x, y in 3. 

N o w will denote the completion of Q(3). 

Assume first for a moment that x belongs to 30 if and only if Ax—0. Then the 
formula 

(3) V(Qx) := Ax for x in 3 

defines a linear map V from Q(3) into 3tif factoring A through Q. A t the same time 
we ^observe that V* extends Q. Indeed, the identity 

(4) (VQx, y) = (Ax, y) = (Qx, Qy) for x and y in 3 

shows that V*y — Qy. I f moreover we assure that 3(V*) is dense in 3V, in other 
words that V** exists, then (3) gives us that V**V* is a self-adjoint positive extension 
of A. This is because the closure of V is equal to V** and because V* is a closed 
operator with adjoint V** . 

T h e o r e m 1. Let A be a positive linear operator defined on a linear subspace 3 

of a Hilbert space 34?. The following two statements are equivalent: 

( i ) A has a positive self-adjoint extension A in J f ; 

(ii) sup {\(Ax,y)\2: x £ ( A x , x ) ^ 1 } < is dense in tf. 

P r o o f . Assume first (i). Then the domain 2>(A) of A is dense in J" . Hence the 
inclusion 9>(A)cUSi^ proves (ii); indeed, to prove that an element y f rom Qj(A) 

belongs to it is enough to see that for each x from 3, Ax=Ax holds and 

|(Ax, y)\2 = |(Ax, y)|2 (Ax, x)(Ay, y) = (Ax, x)(Ay, y). 

Assume now that (ii) holds true. The operator V (see (3)) is then well defined. 
Indeed, if x is a vector from 3! such that (Ax, x ) = 0 then one can show that (Ax, y)=0 

holds true for each y from 3)^. Since 3)¥ is assumed to be dense in 2/C, we obtain 
Ax=0. Moreover the domain 3(V*) o f V* is just Hence V* is densely defined 
by the assumption (ii). Here we arrive at the situation mentioned before, and V**V* 

is a positive self-adjoint extension of A. The proof of Theorem 1 is complete. 

C o r o l l a r y 1. Let A: be a positive linear densely defined operator. Then 

A has a positive self-adjoint extension in . 
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P r o o f . Arguing similarly as in the proof of the implication (i ) =>(ii) of Theorem 1, 
we show that Thus the condition (ii) of Theorem 1 is satisfied. Hence ( i ) of 
Theorem 1, which is our present assertion holds true. 

C o r o l l a r y 2. For the positive linear operator A: Sl^^C the following state-

ments are equivalent: 

( i ' ) A has a continuous positive extension A on ^ f ; 

( i i ' ) % = 
(iii ') there exists a constant m^O such that 

\\Ax\\2 ^ m(Ax, x) for each x from 3>. 

P r o o f . Since = (A)cQ)^ holds true for each continuous positive extension 
A of A, the implication (i ')=>(ii ') is immediate. Notice also that 
So if ( i i ' ) holds true then V* is an everywhere defined closed operator, that is, V* 

is continuous indeed. Hence y**V* is a continuous positive linear extension of A 
on 2/f. This proves (ii')=>(i')-

I f (iii') holds, the operator V defined by(3 ) is continuous. Consequently V**V* 

is a continuous positive extension of A. Conversely, ( i ' ) implies (iii') with m:=\\A\\. 

C o r o l l a r y 3. Let A: be a positive linear operator with a positive self-

adjoint extension A: Qi-^yf. Then A:=V**V* has the following properties: 

( i v ) 3>(A1/2)Q£;(A1/2); 

(v) ||A1/2x[|2^ [|A1/2x||2 for each x in ¡¿(A1'2). 

P r o o f . Starting with positive self-adjoint operator A, we can construct the 

subspace S>0, the quotient map Q, the completion ,/f and the operator V factoring A 

through Q in the same way as we have obtained 3>0, Q, and V, respectively, from 

A. Then A= y * * y * , because both of these operators are self-adjoint. As in [4], we 

define an isometry T from into Jf(=the completion of Q(S>)) by the following 

identity: 

T(Qx) = Qx for all x from 9. 

That T is an isometry follows from 

{Qx, Qx) = (Ax, x) = (Ax, x) = (Qx, Qx) for each x in S. 

Since, moreover, 

(VT)(Qx) = V(TQx) = VQx = Ax = Ax = VQx 

holds true for each x from 2>, we conclude that 

VT\QW = V. 
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Hence, using the fact that T* is a contraction, we have that 

||A1/2x||2 = \\V*x\\2 = \\T*V*x\\2 ^ \\V*x\\2 = ¡M1/2x||2 

holds for each x in 3(AV2)C\3(Â1/2). Now, since Â extends A, it follows that 

3(V*) = i»* c = 3(V*), 

and therefore 

3(A1'2) = 3((V** V*f!2) = 3(V*) c 3(V*) = 3((V**V*)1/2) = 3(A1/2). 

This completes the proof. 

C o r o l l a r y 4. Let A: be a linear operator bounded below by m, that is, 

such that 

m ||x||2 ^ (Ax, x ) holds for all x in 3). 

A admits a self-adjoint extension with the same bound if and only if the subspace 

sup {| (Ax-mx, y)\2: x£3, (Ax, x ) ^ 1 + m ||x||2} < « , ] 

is dense in №. 

P r o o f . Since for each self-adjoint extension A of A with a bound m,Â—mI 

is a positive self-adjoint extension of the positive (symmetric) operator A—ml, the 
conclusion of Corollary 4 follows from Theorem 1. 

C o r o l l a r y 5. Any densely defined semibounded linear operator in Hilbert space 

has a self-adjoint extension with the same bound. 

P r o o f . Corollary 5 follows from Corollary 4 via arguments used in the proof 
of Corollary 1. 

An extension of [5, Theorem] is the following 

T h e o r e m 2. Let A: be a positive linear operator with a positive self-

adjoint extension Â. Let B and C be continuous linear operators on leaving 3 

invariant and such that 

(v i ) ABx = C*Ax, ACx = B*Ax for all x in 3. 

Then, with A = V**V* in Theorem 1, we have 

(vi i ) ABx = C*Ax, ACx = B* Ax for all x in 3(A). 

P r o o f . W e define, as in the proof of [5], continuous linear operators B and C 

on Q(3) as follows 

(5) B(Qx) = Q(Bx), C(Qx) = Q(Cx) for each x in 3. 
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To show that B and C are well-defined and continuous we find estimates for the 
norm of B(Qx) and C(Qx) step by step. First we have for any xin 3> that 

(B(Qx), B(Qx)) = (ABx, Bx) = (C*Ax, Bx) = (Ax, CBx) = (Qx, Q(CBx)> 3= 

S (Qx, Qx)112 (Q(CBx), Q(CBx)Y12. 

Repeating this argument we obtain 

(¿(Qx), B(Qx)) ss (Ox, Qxyi2+-+1l2n(Q(CBfn-\x, Q^B)2"-1 x)1/22 = 

= (Qx, Qx)1-1'2"^, (CBrx)1'2" == 

^ (Qx, Qx)1-1'2" I\Ax\l1'2" \\(CBT\\112" M l 1 ' * . 

Passing with n to infinity we get 

(6) (B(Qx), B(Qx)) r(CB)(Qx, Qx) for each x from 3>, 

where r(CB)(^ ||C5||) stands for the spectral radius of CB. (6) tells us that B 

is a well-defined continuous linear operator. B has norm not exceeding r(CB)1/2. 

A similar argument applies to show that € is also continuous and its norm does not 
exceed the same value r(BC)1/2=r(CB)112. Thus both B and C have unique conti-
nuous extensions on № which we also denote by B and C, respectively, as this causes 
no confusion. 

N o w we see that B and C*, hence also C and B*, coincide since on Q(@>) they 
agree: 

(Qx, C*(Qy)> = (C(Qx), Qy) = (Q(Cx), Qy) = (ACx, y) = (Ax, By) = 

= (Qx,B(Qy)) 

holds true for each x and y in 2). On the other hand V interwines B and C* (respect-
ively C and B*). Indeed, if x belongs to Qi then 

VB(Qx) = VQ(Bx) = A(Bx) = C* Ax = C*V(Qx), 

VC(Qx) = VQ(Cx) = A(Cx) = B*Ax = B*V(Qx). 

Hence C*VczVB and B*V<zVC. Since C* is bounded, we get 

CV* = B*V* c (VBf c (C*Vf = V*C. 

Similar argument shows that BV*cV*B. Thus 

(viii) V*By = BV*y, V*Cy = CV*y for every y from 

Returning to the proof of (vii) we see that for each x£S>(A) and for each 
y(L3)* the following identities hold true (using (viii)) 

(V*Bx,V*y) = (BV*x, V*y) = (V*x, B*V* y) = <F*x, CV* y) = 

= (V* x, V*(Cy)) = (C*V**V* x, y) = (C*Ax, y). 
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A s a - consequence w e h a v e that , f o r each x f r o m © ( A ) , V * B x b e l o n g s t o 3(V**) a n d 

a t the same t ime 

C* Ax = V**V*Bx = ABx. 

T h e o the r equa l i t y o f ( v i i ) can b e s h o w n s imi lar ly . T h i s c o m p l e t e s the p r o o f . 
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On the local spectral radius of a nonnegative element with 
respect to an irreducible operator 

K.-H. FORSTER and B. N A G Y 

1. Introduction 

The local spectral radius of a nonnegative element of a partially ordered Banach 
space with respect to a general positive linear continuous operator has been studied 
in [2]. The main results there gave, among others, sufficient conditions that the local 
spectral radius be a singularity of the local resolvent function, characterized the 
distinguished eigenvalues outside the essential spectrum, and sought positive solutions 
u o f the equation (/ — T)u = x for positive I and positive x. 

If T is a reducible positive operator, then we may, in general, clearly find nonneg-
ative elements x of the space E such that the local spectral radius rT(x) of x with 
respect to T is strictly smaller than the (global) spectral radius r{T) of T. The situation 
is more delicate, if the operator T is irreducible. The first main result of this paper, 
Theorem 7, lists four groups of fairly natural conditions, each of which is sufficient 
for any nonzero x in the positive cone E+ to ensure that rT(x)=r(T), assuming T 

is irreducible. The preceding Propositions 1 through 5 and Remark 6 formulate 
some more general conditions ensuring rT(x)=r(T) even if T is reducible, whereas 
Example 8 shows that the irreducibility of T alone is not sufficient. 

The second main result, Theorem 12, yields three groups of conditions, each of 
which guarantees that the equation ( r ( T ) — T ) u = x has no solution u in all of E, 

assuming that T i s irreducible and x £ 2 s + \ { 0 } . The preliminary results contain also 
here more general conditions. Several examples illustrate the irredundancy of some 
conditions, or that some other group of conditions is not sufficient. 

In the third part of the results we show that if T is irreducible and r(T) > 0 is 
a pole of its resolvent, then some conditions ensure that the equation ( r ( T ) — T)u= 

This research of the second-named author was supported by Hungarian National Founda-
tion for Scientific Research grant BME 5—134. 
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= ( 1 — P)x, where P denotes the spectral projection corresponding to the set {/'(7')}, 
has a positive solution u for all xmE+. It is also shown that some extra conditions 
are really needed to ensure the existence of a positive solution u. Further, we show 
that the algebraic eigenspace to the spectral radius of a compact, nonnegative oper-
ator need not have a basis of nonnegative elements, and discuss some connections to 
w o r k s o f U . G . ROTHBLUM [8] , H . D . VICTORY, JR. [11 ] a n d J. KOLSCHE [5 ] . 

2. Preliminaries and notations 

Let £ be a real Banach space and let T be a linear continuous operator f rom E 

into E. By N(T) and R(T) we denote the kernel and the range of T, respectively. As 
usual ([9], p. 261]), we sometimes identify T with its complex extension T . In this 
spirit, e.g., for x in E we define 

rT(x) = lim sup ||T"x||1/n, 
Tl— oo 

QT(x) = {X£C\rT(x)^\X\} 

and 

xT:QT(x)-E with xT(X) = j? X~k~lTkx. 
k = 0 

W e call rT(x) the local spectral radius of the element x with respect to the operator T, 

xT the local resolvent function of the element x with respect to the operator T in 
its main component QT(x). Of course (X—T)xT(X)=x for all Xd QT(x). W e recall 
some results from [2] which will be used several times in this paper. 

Unless explicitely stated otherwise, in the following E will always denote a parti-
ally ordered real Banach space with positive cone E+, and T is a nonnegative oper-
ator in E. I f x ^ O is a nonnegative element in E, then 

(I) rT(x) is a singularity of xT if E+ is normal or there is a pole p of xT with 

\n\ =zrT(x); see [2, Theorems 6 and 10]. 
( I I ) If E + is normal and there exist a u£E+ and a 0 such that (n~T)u = x, 

then rT(x)^n; see [2, Theorem 6]. 
( I I I ) If rT(x) is a pole of xT, then there exist a u£E+ anda /i>0 with (p — T)u — 

= x if and only if rT(x)<p\ see [2, Theorem 10]. 
The proof for the last two assertions depends essentially on the following in-

equality: I f m^O and /¿&0 such that (p.— T)u=x then 

n\ T y j - { X - n f 

for all n = 0, 1, 2, ... and all max {p,rT(x)}. This inequality was proved in [2, 
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Proposition 5] with the help o f the iterated local resolvent; we give here a very 
( — n)" °° (k4-ri\ 

simple proof. From « s 0 it fol lows that -uW(k) = 2 \k~k~"-iTku^Q 
n\ k=o \ n ) 

f o r all n=0, 1,2, ... and all 2>rT(u). F rom ( / i — T ) u = x it fol lows that rT(x)^ 

srT(u)^max {ji, rT(x)} and 

uT(k) = — — y ^ — — for k > max {/i, rT(x)}. 
/ fi 

( - 1 ) " 

Differentiating this equality n times and multiplying by — j — we get fo r 

max {p, rT(x)} 

ô izit̂ a)-- T(~iy - •• 
n\ T " & j\ (k-n)"-J+1 (>--/i)n+1 ~ 

(-1)" x'-FHk) u 

n\ k — fl + (k-fi)n+1 

since each summand in the sum is nonnegative, because ( — i f x s O 

and k>rT(x). The last inequality is equivalent to the wanted inequality. 

3. Results and proofs 

P r o p o s i t i o n 1. Let the spectral radius r(T) be a pole of the resolvent R(- ,T) 

of T, and let xbea quasi-interior point in the sense of[ 9, p. 241] of the positive cone E+. 

Then rT(x)=r(T). 

P r o o f . Let p denote the order o f the pole r = r(T), and let 2 V-~r)kQk 
k=-P 

be the Laurent expansion of R(k, T) around r. It is well-known that Q - P = 0 . As-

sume that rT(x)<r(T). Then < 2 _ p x = 0 and, since x is quasi-interior, we obtain that 

Q-p=0, a contradiction. 

A slightly stronger condition on the spectral radius than in the next proposition 

was used in [10, Lemma 4] fo r similar purposes. 

P r o p o s i t i o n 2. Let E be a Banach lattice. Let r(T) be a limit point of the set 

]— r(T)[C]g(T), and let x be a quasi-interior point of E+. Then rT(x)—r(T). 

P r o o f . Let k0>~rT(x) and z = x r (/.„). Let Ez denote the principal ideal gener-

ated by z. I t is well-known that E, with the cone E0=E+C\EZ is an (AM)-space 

with respect to the norm ||j>||z=inf ( a £ R + : \y\s<xz}. 

The restriction T0 o f T to Ez satisfies 

T0z ' Txj-(A0) = k0x-f(A0)—x = k0z. 
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Hence the z-norm of T0 satisfies and for the corresponding spectral 
radius we have r(TQ)^?.0. 

Assume rT(x)<r{T), and let rT(x)<?.0<r(T). Then z = xT (A0 ) = 

= 2 Xu"~1T"x is also a quasi-interior point of E+, hence the ideal E, above is 
n = 0 

dense in the topology of E. By assumption, there exists p£g(T) such that 
< r ( T ) . The operator T0 above is celarly positive with respect to the cone E0 and 
r (7J)sA0 , hence the resolvent ( / / — a c t i n g in Ez, is also positive with respect 
to E0 • Since £ is a Banach lattice and E, is dense in E, the closure of E0 in the topology 
o f E is E+. Hence the resolvent (/¿— 7*) -1, acting in E, is also positive with respect to 
E+. However, this contradicts n<r(T) and [9, App. 2.3, p. 263]. 

The next result is contained in [7, Theorem 9.1], and can be stated in our ter-
minology as follows. 

P r o p o s i t i o n 3. If x is an interior point of the normal cone E+, then rT(x) = 

= r ( T ) . 

In fact, a bit more is proved in [7]: under the given conditions we have r(T) = 

=Jim ||7,"x||1/" (which is clearly equal to rT(x)). 

The conditions in the next two propositions were used in [6, Theorem 16.2] 
for other purposes. 

P r o p o s i t i o n 4. Let the cone E+ be normal and generating, and the E+ -positive 

operator T be bounded from above by the element v in E+. If x is a quasi-interior point 

of E+, then rT(x) = r(T). 

P r o o f . Let X>-rT(x). Then xT(/.) is also a quasi-interior point of E+, further 
rT(xT(/.)) = rT(x). We have (/.-T)xr(/)=xisO; therefore Txr(/.)^AxT(A). By 
assumption and [6, Theorem 16.2], r(T)^/. for any />rT(x). Hence r(T)SrT(x), 

whereas the converse inequality always holds. 

P r o p o s i t i o n 5. Let the cone E+ be normal and generating, x g £ ' + \ { 0 } , and 

the E+ -positive operator T be bounded from above by the element x. Then rT(x) = 

= r(T). 

P r o o f . Let u£E+. There is a positive number /?=/?(«) such that Tu^fix. 

Hence fiT"~lx for every n=1,2,.... Since E+ is normal, there is y £ R + 

suchthat l i r ^ l l S ^ l i r ' - ^ H for all n. Therefore rr{u)^rT(x) for every u in E+. 

Since E+ is generating, we have by [2, Lemma 4] 

r(T) = max {rT(u): «?£+)} ^ rT(x) s r(T). 

R e m a r k 6. Assume that T is a positive continuous linear operator acting in 
the partially ordered Banach space E, the continuous operator A, acting in E, com-
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mutes with T and the real number A satisfies |A| >rT(x) for some x in E (A and x 
need not be nonnegative). Then rT(Ax)^rT(x) and rT(xT(A))=rT(x). Therefore 
the assertions of Propositions 1 through 5 remain valid (i.e. rT(x)=r{T)) if instead 
of x the element Ax or the element AxT (A) satisfies (together with T and E) the 
respective assumptions. The proofs are slight modifications of those given above, 
thus they will be omitted. 

Note further that if T is irreducible, A=w (T ) and x £ £ + \ { 0 } , then R(X, T) 

commutes with T and 77? (A, T)x is a quasi-interior point in E+. Hence the fol low-
ing theorem is a simple corollary to Propositions 1 through 4 and the remarks 
above (note that the condition in Proposition 5 is of different, i.e. of more individual, 
nature). 

T h e o r e m 7. Assume that the irreducible positive continuous linear operator T 

acting in the partially ordered Banach space E and E Satisfy one of the following condi-

tions: 

( i ) r(T) is a pole of the resolvent R( •, T), 

(ii) r(T) is a limit point of the set ]— r(T)[Clo(T), and E is a Banach lattice, 

(iii) the cone E+ is normal and solid (i.e. has a nonvoid interior), 

( iv) T is bounded from above by an element v in the normal and generating cone E+ _ 

Then for any x in i ? + x \ { 0 } we have rT(x)=r(T). 

The following example will show that the irreducibility of T alone does not 
guarantee that rT(x)=r(T) for every x in E+\{0}. 

E x a m p l e 8 . Let E be the real sequence space l" (1 °=) or c0 with the usual 
cone E+ = {x=(xi)°l1^E: x , s O for /=1 ,2 , . . . } . Then x is quasi-interior in E+ 

if and only if every x ; > 0 . W e shall denote this by xs>0. Let S be the left shift in E 
defined by ( S x ) , = x i + 1 (/=1,2 , . . . ) . Let / £ £ ' act as / x = x 1 ; and let a = ( a ^ E , . 
a»0. Define T: E-E by T=f®a + S, i.e. 

(7x); = + + ! ( / = 1 , 2 , . . . ) . 

T is then a positive irreducible operator. Indeed, for each x in i J + X j O } take 
/¡; = min {/: x,->0}. Then (TJx)i=xi+j ( l s/</c ) , (Tkx)¿=aixk + xi+k^aixk>0 
for every /=1,2, . . . . Thus Tkx^>0, hence T is irreducible. 

It is well known that the Fredholm domain of S is the complement of the unit 
circle. Since T is a one-dimensional perturbation of S, their essential spectra are 
identical (cf. [4, Theorem IV. 5.35]). Hence r ( T ) & 1. 

1 

Now let 0 a n d consider the particular case of the operator T when 

a=(qi)°ll. For any x^E and A£R the equality 7 x = A x is equivalent to 

^ x j + x i + 1 = Ax,- (/ = 1, 2, ...). 
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This holds for if and only if (x,)€£, where 

= ( A ' " 1 - j f ^ A ' - 1 - * ) * ! = + Xl (i = 2 , 3 , . . . ) . 

Let A satisfy and let x x >0 . Then x=(x,)£E, and x:s>0 is an 
eigenvector corresponding to the eigenvalue A < l S r ( T ' ) . Hence rT(x) = /.<r(T) 

as stated. 

P r o p o s i t i o n 9. If the positive cone E+, the element x in E+ and the positive 

operator T satisfy one of the conditions in Propositions 1, 3, 4 or 5, further in the cases 

of Propositions 4 or 5 we have, in addition, r(T)>0, then the equation (r(T)— T)u = x 

has no solution u in E. 

P r o o f . (-P) will denote that we are considering the case when the conditions of 
Proposition P ( P = 1 , 3 , 4, 5) are satisfied. 

(1) Assume that there is a solution u in E, and that R(?., T) = 2 Q~r)kQk 
k=-P 

is the Laurent expansion of the resolvent around the pole r=r(T) o f exact order 
p^l. Then 0, Q - p ^ 0 , and Q - t H T - r f ^ Q ^ for k=\,2,...,p. 

By assumption, Q_px=(r—T)Q-pu= — Q-p_1u=0. Since x is quasi-interior, we 
obtain Q - p = 0 , a contradiction. 

(3) Since the cone E+ is normal and solid, a result of M . Krein and M . Rutman 
(cf. [9, p. 267]) shows that r(T) is an eigenvalue of the dual T' with corresponding 
eigenvector />¿0 in the dual cone E'+. Should a solution u£E exist, then we should 
have (denoting the dual pairing by < • , •> ) </, x)=((r(T)-T')f u)=0, and this 
contradicts the fact that f£E'+, / ^ 0 , and x is an interior point in E+. 

(4) Since /•(T)>0, our assumptions imply that r{T) is an eigenvalue of the 
dual T with eigenvector / in the dual cone (cf. [7, Proof of Theorem 5.5]). The rest 
as in case (3). 

(5) Let Ex denote the linear manifold of x-measurable elements y o f E (cf. [6, 
p. 34], [7, p. 80]), i.e. those satisfying — a x ^ ^ ^ a x for some a £ R + . I f we set 
||^||x=inf { a £ R + : — a x ^ j ^ a x } then, since E+ is a normal cone, Ex is a Banach 
space with respect to the norm || • a n d E+ C\EX is a closed solid normal cone in 
Ex. N o w E+ is generating and T is bounded from above by x, therefore R(T)c.Ex 

and Ex is invariant under T. Assume that there is a solution u, then we obtain from 
r(T)u=Tu+x and r ( T ) > 0 that u£Ex. It is fairly straightforward to show (cf. 
[5, p. 80]) that the spectral radii of the operator T in E and in Ex are identical, so we 
come to the situation of case (3) in the space Ex, and we reach a contradiction. 

C o r o l l a r y 10. If one of the conditions in Proposition 9 is fulfilled, R, and 

the equation ().— T)u=x has a Solution 0, then ).>r(T). 
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P r o o f . By the preceding results, we have rT(x)=r(T), and for X=rT(x) 

there is no solution u in all of E. On the other hand, [2, Theorems 6 and 10] show 
that there is no solution u£E+ under the given conditions if 0 ë A < r T ( x ) . It 
is clear that there is no solution u in E+ for 1 Ç R \ R + . Hence A > r ( r ) . 

R e m a r k 11. If the operator A commutes with T, and the element x=Az satis-
fies (together with T and E) the conditions of Proposition 9, then the equation 
[r(T) — T)u=z has no solution u in all of E. Indeed, assuming the contrary, the 
element Au would satisfy (r(T)—T)Au = x, which is impossible. The case A= — 

identity operator is of interest in the next theorem. 

T h e o r e m 12. Let the positive operator T in E be irreducible, satisfy together 

with E one of the conditions (i), (iii) or (iv) of Theorem 7, in the last case let r(T)>0, 

and let z£E+U(—E+) and z^-O. Then the equation (r(T)—T)u — z has no solution 

u in all of E. 

P r o o f . Let X>r(T) and A = TR(X,T). Then x = Az=TR(X, T)z if z£E+\ 

\ { 0 } and x=-Az=-TR01, T)z if z Ç ( - £ + ) \ { 0 } is a quasi-interior element of 
the cone E+, since T is irreducible. Hence x satisfies conditions (1), (3), or (4) in 
(see the proof! ) Proposition 9, and Remark 11 shows that there is no solution u in 
E to the equation ( r ( T ) - T ) u = z. 

R e m a r k 13. Much stronger conditions on T and E are imposed in [1 ; Theorem 

1.13] to obtain the assertion of Theorem 12. 

It is clear that the assertions of Proposition 9 or Theorem 12 are not valid with-
out extra conditions such as (1), (3), (4) or (5) and (i), (iii) or (iv), respectively. This is 
shown by Example 8, where T is irreducible and there are quasi-interior elements x 

in E+ such that rT(x)<r(T). Then the element u=xT(r(T)) belongs to E+ by 
[2; Lemma 4], and satisfies ( r ( T ) — T ) u = x . 

t 

I f V is the Volterra operator defined by ( F x ) ( i ) = / x(s)ds for x£L 2 (0 , 1), 
o 

then V clearly satisfies condition (4) of Proposition 9 except that we have r ( F ) = 0 . 
The elements M(Î) = —1 and x(t) = t satisfy here (r(V) — V)u=x, and x is quasi-
interior point in the (usual) cone E + . Hence the requirement of the positivity of the 
spectral radius in Proposition 9 is not redundant. 

The following example shows that the conditions in Proposition 2 are not suffi-
cient to ensure that ( r ( T ) — T ) u — x has no solution u in Efor any x in E+. 

E x a m p l e 14. Let X= Q [2n, 2n + l ] c :R and let E=C(i(X) with the usual 
/1 = 0 

positive cone E+. Let T be the operator of multiplication by f(t)=(l + in E. 

Then r{T) = 1, and [ ( 1 - 7 > ] ( i ) = ( l + 0 ~ M 0 - If x ( i ) = ( l + 0 - 1 e ~ ' then x is 

it 
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quasi-interior in E+, and the studied equation has the solution u(t) = e~'. The 

element u is quasi-interior in E+, and the spectrum of the operator T, i.e. the set 

f(X)cz R, clearly satisfies the condition in Proposition 2. 

The next example will show that the series for the main component o f the local 

resolvent function can converge at r~rT{x) for an E+ -positive operator T and a 

quasi-interior point x in E+. Its sum w = 2! r~"~1T"x is then a positive solution o f 

the equation ( r — T ) u = x . "~0 

E x a m p l e 15. Let E=c0 with the usual positive cone E+, let T be the left 

shift in E, and let x = (\/rf)~=i- T h e n I I ^ I H O t + l ) - 2 , hence rT(x)= 1. Further, 

the sum u = 2 T"x exists in E and itsy-th component Uj is 2 The solution 
71 = 0 n = J 

u of ( r — T ) u = x is a quasi-interior point o f E+. 

Let T^O be irreducible, and let r=r(T)>0 be a pole of the resolvent R( •, T). 

Then r is a pole o f order one ([9], App. 3.2]). Therefore the residuum of R(•, T) at r 

is the projection P o f E on N(r— T) along R{r— T), hence the equation (r— T)v = 

= (1 —P)x has solutions v for all x£E. 

P r o p o s i t i o n 16. Let T^0 be irreducible, let r = r(T)>0 be a pole of its 

resolvent and let P be the residuum of R(-, T) at r. If E+ contains interior points, or 

else T is finite dimensional, then the equation (r—T)u = (l—P)x has solutions t/sO 

for all x£E in the first case, and for all x£0 in the second one. 

P r o o f . N(r—T) is one-dimensional and generated by a quasi-interior element 

M0 of E+ ([9, App. 3.2]). Let v be a solution o f (r-T)v = ( l - P ) x , then ( r - T ) • 

• (y + Aw0) = ( l — P)x for all X. I f E+ has interior elements, then u0 is such. In this 

case x can be an arbitrary element o f E, and we can choose X such that is 

an interior point o f E+. 

Consider now the second case, and let i ^ O . There exists a fi with Px = iiu0. 

Then we have 

v + Xuq = — [x + Tv + (Xr—p) j/0] for all A. 

N o w we prove that there exists a A such that Tv + (Xr—//)M0&0. Then v + Xu0^0, 

since x s O . Let R0= |J {z£R(T): —ku0Sz^kuo}. Then R0 is a linear subspace 
ki N 

which is dense in R(T); this fol lows from ru0=Tu0£R(T) and the fact that E0 = 

— U {y^E: —/CM0=J=^hO} is ^-invariant, and is dense in E, since u0 is a quasi-

interior element o f E+. Since T is finite dimensional (i.e. dim R(T)< <=), we have 

R0=P(T) and we can find a A such that Tv + (Xr-p)uc^0. 
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The question naturally arises whether the conditions in Proposition 16 are re-
dundant. W e now give an example of a compact, irreducible operator T such that 
r = r{T)>0, and the equation (r—T)u = (l~ P)x has solutions M^o for some 
x^O, x ^ O , and has no solution u ë 0 for other x^O. A consequence o f 

this example will be discussed at the end of this paper. 

E x a m p l e 17. Let E—c0 or E=F (1 with the cone E+ o f nonne-
gative sequences in E, a = (a,)Ç£" (here we identify E' with the corresponding se-
quence space), and b=(fc ; )€c0 . W e consider the operator 

T = a®e1 + SMb, 

where ek is the sequence with 1 in the /cth position and 0 in the others, S is the right 
shift and Mb is the operator of multiplication by b. W e have for x = (x, )€£ 

(Tx\ 
2 a jX j if / = 1, 

j = i 

bj - iX i - i if / > ] . 

It is well known that Mb is compact and that the weighted shift SMb is compact and 
quasinilpotent [3, Problem 80 for £ = P ] . Therefore T, being a one-dimensional 
perturbation of SMb, js compact. 

Clearly T is non-negative if and only if a ^ O and ¿ s 0. T is irreducible i f 
a - » 0 and 0, i.e. a,>Q and fc,^0 for all i; this follows from 

(Tx\ - 2 OjXj, (Tnx)„ = bn^ . . . . . bATx), for n S 2. 
j = i 

Let X T̂ O be an eigenvalue pf T and v=(v;) be a corresponding eigenvector ^ 0 ; 
this is equivalent to 

a1A-1 + a2b1X-* + ... + aibi_1-... • M"^... = 1 
and 

here and in what follows we put i>, _ x •... • b i f i—1. Since b£c0, we have 
(bi-1-... • b1X~i+1v1)£E for all X^0 and all Uj, and the power series 

/ 0 0 = 2 a¡b-,-1-••.•b1ni 

¡=1 

converges for all /t. Therefore X^0 is an eigenvalue of T if and only i f f ( l / X ) = l. 

Let us assume that a » 0 and 0. Then /(l/X) is strictly decreasing for 

2>0 , l im/(l/A) = «> and Jim/(l//l)=0. Thus there exists exactly one r > 0 with 

f(\/r) = 1. This r is the spectral radius of T, by the Krein—Rutman Theorem, and is a 

pole of multiplicity one of R{-, T), since T is irreducible and compact ([9, App. 
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3.2]). Let P be, as in Proposition 16, the residuum of R(-, T ) at r. Then P is a 
projection on the subspace spanned by v = (bi-1 •...• b1r~'+1)Jl1. I f x = ( x , ) , 
u=(«,) and ( r - T ) u = ( l - P ) x , then for /^2 

u, = ... -V~,+1 O&i-i- •••' + 

where ¿0 is uniquely determined by Px=B0v. I f x 2 > 0 , but x , = 0 for i V2 , then 

x s O , x^O. Therefore ¿ 0 >0 , and 

Ui = b j - x - . . . • b2/- - ' [ rZ>1u1 + /-;c2 — (/— 1 ) £ 0 ] if 

Clearly, it is not possible to choose I/J in such a way that.«,- is non-negative for all i. 

Therefore the equation (R— T)u=(l — P)e2 has no solution MSO. Nearly the same 
argument proves that ( r — T ) w = ( l — P ) x has no solution i/S0 if a; is a "finite 
sequence", x s O , x^O. 

On the other hand, if we take x such that X j = 0 and 

Xi = ¿¡-i •... - b1r~i+1x0 if i > 1 

where x o > 0 , then x^O , x ^ O , and 

Mj = 6 j _ 1 . . . . . f e 1 r - ' [ ' " " x + 0 ' - l ) ( - « o - ^ 6 ) ] ' if i ' = 1 -

W e show that x0>B0 in this case. There exist solutions « of (r— T)u={\ — P)x; for 
the first coordinate in this equation we get using /(1//•) = ! and w; as above, 

and this implies S 0<x 0 - Therefore, for these special x£E we have nonnegative 
solutions u of the equation (V— T ) « = ( 1 — P)x, if we choose a solution with 

This example can also be used to show that the algebraic (or generalized) eigen-
space to the spectral radius o f a compact, non-negative operator need not have a basis 
of non-negative elements. 

E x a m p l e 18. Let E=lpXl" and" 

where 7] is the operator of the last example and SL is a compact, non-negative, non-
zero operator in lp. E is an order continuous Banach lattice, T is compact and non-

negative, and r=/ ( r ) = r ( 7 0 > 0 is a pole of order 2 of R( •, T). Let x = 
then (r-T)2x=0 is equivalent to 2 

( * ) (r-T.fx, = [(r-TJS. + S^r-T^Xz and (r-T.fx, = 0. 

- Z aibi-i-••••b1 r-'(i-l)(x0-50) = x1-S0 =-£< 'o. 
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Since 7i is irreducible and compact, r = r(T1) is a pole of order 1 of R( •, 7\), there-
fore O ) is equivalent to (r-T1)x2=0, (r—7\)2x, = ( r—71)S 1 x 2 , and the last equa-
tion has a solution xx. I f x2^0, then x2 generates N(r— 7^), so we have (r— T1)x1 = 

= S1x2—Äx2=(l — P1)S1x2 for some X, where P1 is the residuum of R( •, 7[) at r. 

Therefore ( r — T ) 2 x = 0 is equivalent to 

(r—T1)x2 = 0 and (r-TJxj = (\-P1)S1x2. 

For each x ^ O in N((r—T)2) with (r—T)x?i0 we have to and may choose x 2 ^ 0 , 
x2 7^0, in N(r—7i), therefore x2 is a quasi-interior element in /p. Since SiSsO, 
SL9£Q, we have S, x2=0, S1X2T£0. N o w we have to look f o r a solution x1=S0 o f 

(r— 7i)xx = ( l — POSVxü. But such a solution does not exist in general, since 7i is 
the operator of the last example and we can obtain each non-negative, non-zero 
element in l" as by an appropriate choice of ^ (as a one dimensional non-nega-
tive operator). 

As a final remark we recall that U. G. ROTHBLUM [8, Theorem 3.1] has shown 
that for a non-negative matrix the algebraic eigenspace to its spectral radius has a 
basis of non-negative elements. Generalizing a result of H. D. VICTORY, JR. [11, 
Theorem 1] on integral operators in //-spaces, J. KÖLSCHE [5, Satz IV. 2.2] has 
proved: Given e > 0 arbitrarily, for a non-negative, eventually compact operator T 

in an order continuous Banach lattice there exists a basis for the algebraic eigenspace 
of T to r(T) such that every vector in this basis has norm 1 but its negative part 
has norm smaller than or equal to e. The last example shows that, in general, e has to 
be positive in this assertion. 
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Der Bidual von F-Banachverbandsalgebren 

E G O N SCHEFFOLD 

In der Arbeit [5] haben C. B. HUIJSMANS und B. DE PAGTER das Arens-Produkt 
im Ordnungsbidual von Archimedischen /-Algebren untersucht. Die Frage, ob bei 
den spezielleren F-Banachverbandsalgebren der Bidual, versehen mit dem Arens-
Produkt, stets wieder eine F-Banachverbandsalgebra ist, bleibt dabei offen. 

In der vorliegenden Arbeit werden wir diese Frage bejahen und zeigen, daß 
der Bidual als direkte Summe seines Annullatorbandes und dessen orthogonalen 
Komplements dargestellt werden kann, wobei letzteres algebraisch- und verbands-
isomorph zu einem Vektorverbandsideal in der Banachverbandsalgebra C0(Ji)" 

ist. Unter anderem ergibt sich, daß die Banachverbandsalgebren C0(X) die einzigen 
F-Banachverbandsalgebren sind, deren Bidual ein algebraisches Einselement mit 
Norm 1 besitzt. 

Vorbemerkungen 

Wir benutzen in dieser Arbeit die auf dem Gebiet der Banachverbände übliche 
Terminologie und Bezeichnungsweise. Der leichteren Lesbarkeit wegen wollen wir 
kurz ein paar für uns wichtige Begriffe in Erinnerung rufen. 

Eine reelle Banachverbandsalgebra A ist ein reeller Banachverband A, welcher 
gleichzeitig eine reelle (lineare assoziative) Algebra mit den beiden folgenden Eigen-
schaften ist: x>'£Ö und ||xy||S||;t||[|j[| für alle positiven Elemente x und y von A. 

Eine reelle Banachverbandsalgebra A ist eine F- bzw. FF-Banachverbands-
algebra, falls sie die folgende Eigenschaft F bzw. FF besitzt: 

F : inf (a, b)=0 impliziert inf (ca, ¿ ) = 0 = inf (ac, b) für a, b, c£A und c s O ; 
FF: inf (a, b) = 0 impliziert a-b = 0 für a,b£A. 

Wie man leicht sieht, ist jede F-Banachverbandsalgebra auch eine FF-Banach-
verbandsalgebra und somit nach [11, § 2] kommutativ. 

Eingegangen am 16. August 1988. 
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Für einen lokalkompakten Hausdorffraum X bezeichne C0(X) die reelle Banach-
verbandsalgebra aller stetigen reellen Funktionen / auf X mit der Eigenschaft, daß 
für jedes e > 0 die Menge {xgA' : |/(x)|Se} kompakt ist, versehen mit der Supre-
mumsnorm und der kanonischen punktweisen Multiplikation und Ordnung. Falls K 

ein kompakter Hausdorffraum ist, stimmt die Banachverbandsalgebra C0(K) natür-
lich mit der Banachverbandsalgebra C ( K ) überein. Alle Banachverbandsalgebren 
Co iZ ) sind F-Banachverbandsalgebren. 

Die Banachalgebra der beschränkten Endomorphismen eines Banachverbandes 
E bezeichnen wir mit <£ (E) und den Spektralradius eines Elements a einer reellen 
normierten Algebra mit r(a). Bekanntlich gilt r(a) — lim (||a"||)1/n. 

Ist E ein Banachverband und u ein positives Element von E, so bedeutet Eu 

das von u im verbandstheoretischen Sinn erzeugte Hauptideal. Es läßt sich bekannt-
lich mit einem Funktionenverband C(K) (K kompakter Hausdorffraum) identifizi-
eren, und diese Identifizierung werden wir die kanonische Identifizierung eines Haupt-
ideals nennen. Dem Element u entspreche dabei stets die Einsfunktion eK auf K. 

Sei nun A eine F-Banachverbandsalgebra, c ein Element des positiven Kegels A + 

und Tc die linksreguläre Darstellung von c auf A, d.h. Tcx=cx für alle x£A. Nach 
[6,1.1] gilt dann TCX^L\\TC\\X für alle x£A+, wobei HTJ die Operatornorm von 
Tc in der Banachalgebra £f(A) bezeichnet. Für a£A gehören also die linksregulären 
Darstellungen Ta zum Zentrum Z(A) des zugrunde liegenden Banachverbandes A, 

wobei Z(A) aus allen Operatoren besteht mit der Eigenschaft: Es gibt 

eine von T abhängige Konstante yd R + mit 

\Tx\^y\x\ für alle x£A. 

Mit Hilfe einer kleinen zusätzlichen Überlegung erhält man aus dem Beweis von 
[6,1.1] sofort das folgende Resultat über positive Orthomorphismen: Es sei E 

ein Banachverband und T ein positiver Orthomorphismus auf E, d.h. T besitzt die 
Eigenschaft: 

inf (x, y) = 0 impliziert inf (Tx, y) = 0. 

Dann gilt Tx^r(T)x für alle x£E+. 

Aus der Definition einer F-Banachverbandsalgebra folgt unmittelbar, daß die 
linksregulären Darstellungen positiver Elemente positive Orthomorphismen sind. 
Mit der vorhergehenden Aussage über Orthomorphismen erhalten wir die im fol-
genden wichtige Ungleichung: 

Satz 0.1. Es sei A eine F-Banachverbandsalgebra. Dann gilt abSr(a)b für alle 

positiven Elemente a und b. 

Aus Satz 0.1 folgt sofort, daß in einer F-Banachverbandsalgebra jedes Vektor-
verbandsideal auch ein Ringideal ist. 
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Eine Subalgebra einer Banachverbandsalgebra C„(X), welche gleichzeitig auch 
ein Vektorunterverband ist, nennen wir eine Verbandssubalgebra. Eine Anwendung 
der Stone—Weierstrass-Theorie ergibt den folgenden, für uns wichtigen Approxima-
tionssatz: 

Satz 0.2. Es sei X ein lokalkompakter Hausdorff räum und F eine Punkte trennende 

Verbandssubalgebra der Banachverbandsalgebra Cn(X), welche nirgendwo verschwin-

det, d.h. zu jedem t£X existiert eine Funktionen k£F mit kOj^O. Dann gibt es zu 

jeder positiven Funktion g£C0(X) und jedem s > 0 eine positive Funktion f(LF mit 

||/||=1 und \\g—f-g\\=£, d.h. die nach oben gerichtete Menge B:={h(iF: h^O und 

\\h\\ S I} ist ein approximierendes Einselement in C(I(X). 

1. Die Gelfand-Theorie von F-Banachverbandsalgebren 

Wichtiges Hilfsmittel bei der Behandlung von F-Banachverbandsalgebren ist 
in der Arbeit [6] die Algebra der Zentrumsoperatoren, welche eine Algebra vom 
Typ C ( K ) ist. In der Arbeit [5] übernimmt diese Rolle die Algebra der Orthomorphis-
men. Wir werden dagegen im folgenden wesentlichen Gebrauch von der Gelfand-
Theorie machen. 

Da F-Banachverbandsalgebren spezielle FF-Banachverbandsalgebren sind, 
gelten für sie bezüglich der Gelfand-Theorie die in der Arbeit [11] gemachten Aussa-
gen. Wir wollen die wichtigsten Punkte kurz angeben (s. [11, Kap. 2]). 

Es sei A eine'F-Banachverbandsalgebra und Ji die Menge der nichttrivialen 
komplexen Homomorphismen auf A. Wir setzen Jlj^ty voraus. Dann sind die 
Elemente von Ji sogar reelle Vektorverbandshomomorphismen. Die Menge ._//, als 
Teilmenge des topologischen Duals A' betrachtet und versehen mit der von der 
schwachen Topologie a(A\ A) induzierten Topologie, ist ein lokal kompakter Haus-
dorffraumund kann als der Raum der maximalen regulären Ideale von A angesehen 
werden. Die Gelfand-Transformation <P: a^ä von A nach C0(J/), definiert durch 
ä(p)\=ji{a) für alle a£A und ist ein Algebra-und Vektorverbandshomo-

morphismus. Ihr Wertevorrat Ä ist daher eine dichte Verbandssubalgebra der 
Banachverbandsalgebra C^Jt). Für alle a£A gilt r (a) = ||a|| und das Radikal 

r a d ( ^ ) := {a£A : r(a) = 0} 

von A ist sowohl ein abgeschlossenes Algebraideal als auch ein Vektorverbands-

ideal. 

Ist rad (A) = A, so folgt aus 0.1 sofort a-b = 0 für alle a,b£A, d.h. die Mul-
tiplikation ist trivial. Wir werden daher von nun an stets rad ( A ) ^ A voraussetzen, 
was auch Jiimpliziert. 
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Unter dem Annullator Ann ( B ) einer kommutativen Algebra B versteht man 
die Menge {x£B: x - 5 = { 0 } } . Bei der folgenden Charakterisierung des Radikals 
handelt es sich im Grunde um schon bekannte Ergebnisse (s. [1, 3.1.3] und [8, S.89]). 

Satz 1.1. Es sei A eine F-Banachverbandsalgebra. Dann gilt: 

(i) rad ( A ) = Ann (A) = {x€ A: x 2 = 0 } , 
(ii) das Vektorverbandsideal rad (A) ist sogar ein Band. 

Bewe is . Zu ( i ) : Sei a£rad(A) und b£A. Dann gilt \a\£rad(A), \a-b\á 
^\a\\b\^ /-(101)161=0 undsomit a-b = 0, d.h. rad ( ^ ) ^ A n n (A). Da die Beziehung 
Ann (A)Qrad (A) offensichtlich ist, erhalten wir rad (/l) = Ann (A). Für Ann (A) 

ist y2=0. Ist andererseits x£A und x2 = 0, so gilt r ( x ) = 0 undsomit x£rad(A)^ 

QAnn(y4). Es ist also auch Ann (,4) = (x£ : x 2 =0 } . 

ZM(Ü ) : Sei x, a£A+ und {aj: ./€•/} ein nach oben gerichtetes Netz positiver 
Elementein Ann (^4) mit a = sup {af. j£J}. Da die Multiplikation ordnungsstetig 
ist, folgt ax=x • a=sup {xaj: j£J}=0. Es ist also a£Ann(A) und Ann (A) ein 
Band. Aus Ann ( ^ ) = r a d (A) ergibt sich die Behauptung. 

Mit dem vorhergehenden Satz erhalten wir für ordnungsvollständige F-Banach-
verbandsalgebren einen erwähnenswerten Darstellungssatz, dessen Beweis klar ist. 

Satz 1.2. Es sei A eine ordnungsvollständige F-Banachverbandsalgebra. Dann ist 

A direkte Summe der beiden Ringideale Ann ( A) und Ann (A)1. Das Band Ann (A)1-

ist für sich betrachtet eine halbeinfache F-Banachverbandsalgebra, welche algebraisch-

und verbandsisomorph zu einer dichten Verbandssubalgebra der Banachverbands-

•algebra C0 ( Jt) ist, wobei Ji den Raum der maximalen regulären Ideale von A bezeich-

net. 

2. Der Bidual von F-Banachverbandsalgebren 

Zunächst möchten wir das Arens-Produkt in Erinnerung rufen. Es sei A eine 
F-Banachverbandsalgebra, A' ihr topologischer Dual und A" ihr Bidual. Damit 
keine Verwechslung mit der natürlichen Multiplikation • bei Funktionenalgebren 
auftreten kann, werden wir die Multiplikation in A mit * bezeichnen. Für /£ A 

und n^A' sei das Element Hj£A' definiert durch Hf(g) = n(f*g) für alle g€A. 

Nach 0.1 gilt für alle f£A+ und die Ungleichung 

pf S r ( f ) p . 

Sei nun G£A". Bei der Definition des Arens-Produkts spielt der folgende, zu G 

gehörige Operator T G ££e (Ä ) , definiert durch (TGn)(J):=G(nf) für alle p£A' 

und f£A, eine wichtige Rolle. Mit diesem Operator TG ist für F, G£A" in A" das 
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Arens-Produkt F * G wie folgt definiert: 

F*G{p) := F{Tcti) 

für alle FI£A'. Durch eine Routinerechnung läßt sich zeigen, daß der Bidual A", 

versehen mit diesem Arens-Produkt, eine Banachverbandsalgebra ist. 

M i t Hi l fe der vorhergehenden Ungleichung und der Kommutativität der Multi-

plikation erhalten wir, daß die Operatoren TG zum Zentrum von A' gehören. 

S a t z 2.1. Sei A eine F-Banachverbandsalgebra, N£A'+ und G£A"+. Dann gilt 

TCFIS\\G\\FI und \\TGH\\^G(H). 

B e w e i s . Sei f£A+ und £ : = ||g||^l}. Dann gilt 

WlifW = sup {nif*g): g€S} = sup {n(g*f)\g£S} = 

= sup gts} == sup {r(g)nif): p ( f ) , 

da r(g)=! für g£S. Hieraus erhalten wir 

(TGPW = G(ßf) S ||G|| ll^ll ^ IIGII/!(/). 

Es gilt also Tan^\\G\\fi. 

Für g£S gilt fig^r(g)ji^Sfi. Es ist somit 

||rG|i|| = sup {(TGfi)(g): g£S} = sup {G(fig): gdS} 

Sa t z 2.2. Es sei A eine F-Banachverbandsalgebra. Dann ist der Bidual A", 

versehen mit dem Arens-Produkt, wieder eine F-Banachverbandsalgebra und somit eine 

kommutative Algebra. 

B e w e i s . Es sei F,G,H£A"+. Es genügt zu zeigen: inf (F, G ) = 0 impliziert 

inf ( 7/*F , G ) = 0 = inf (F*H, G). 

Sei ¡i£A'+. Nach 2.1 gilt \\Trii\\^ F(ß). Hierausfo lg t 

(H*F)(ß) = H(TPp) S I M ^ ||ff|| FQi). 

Es ist also H*F?s\\H\\F. 

Nach 2.1 gilt auch THn^\\H\\ti. Hieraus ergibt sich 

(F*H)Qi) = F(THtt) ^ [|ff|| F(p). 

Es ist also auch F*H^\\H\\F. Seinun inf (F, G)=0. Aus H*F^\\H\\F und F*H^\\H\\F folgt dann sofort 

inf (H*F,G) = 0 = inf (F*H, G). 

Nach 2.1 gehören die Operatoren Ta(G£A") zur Banachverbandsalgebra Z(A') 

der Zentrumsoperatoren von A'. In Analogie zu [7] nennen wir die Abbildung G-*-Tc 

von A" nach Z(A') Arens-Homomorphismus. M i t Hi l fe von Satz 2.2 erhalten wir, daß 
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diese Abbildung ein Vektorverbandshomomorphismus ist, was wir später benötigen 
werden (vgl. [5, 5.2]). 

Satz 2.3. Sei A eine F-Banachverbandsalgebra. Dann ist der Arens-Homomor-

phismus ein Algebra- und Vektorverbandshomomorphismus. 

Beweis . Wie man leicht nachprüft, ist der Arens-Homomorphismus ein positiver 
Algebrahomomorphismus. 

Sei nun G£A". Da A" eine F-Banachverbandsalgebra ist, gilt G+*G~= 0. In 
Z(A') bedeutet dies 7C+ • Tc. =0 . Da Z(A') bekanntlich vom Typ C(K) ist, erhalten 
wir i n f ( r c + , TG-)=0. Es ist also der Arens-Homomorphismus auch ein Vektor-
verbandshomomorphismus. 

Als Beispiel betrachten wir nun den Bidual der F-Banachverbandsalgebra 
C0(X). Es wird sich später zeigen, daß diese Biduale bei der Darstellung der Biduale 
allgemeiner F-Banachverbandsalgebren eine bedeutende Rolle spielen. Wie es 
scheint, ist bis jetzt der Bidual der Banachalgebren C0(X) nur im Rahmen der B* -
Algebren-Theorie behandelt worden. Wir wollen nun diesen Bidual mit verbands-
theoretischen Mitteln charakterisieren. 

Es sei X ein lokalkompakter Hausdorifraum. Da der Banachverband C0(X) 

ein AM-Raum ist, ist der Dual C0(X)' ein AL-Raum und somit der Bidual C0(X)" 

ein AM-Raum mit Einheit. Wir können also den Banachverband C0(X)" mit einem 
Banachverband C ( Q ) identifizieren, wobei £2 ein gewisser kompakter Hausdorff-
raum ist und die Einsfunktion E auf Q dem Normfunktional auf C0(X)' entspricht 
(s. [10, Kap. II , 7.4 und 9.1]). Wir nennen diesen Banachverband C(Q) die kanonische 
Identifizierung von C0(X)". Auf C(£2) haben wir nun zwei Produkte, das von C0(X) 

herrührende Arens-Produkt * und das natürliche Funktionenprodukt. 

Satz 2.4. Es sei X ein lokalkompakter Hausdorffraum und C( i2) die kanonische 

Identifizierung des Banachverbandes C0 (X)". Dann gilt F*G=FG für alle F, 

GeC(Q). 

Beweis . Nach 2.2 ist C(Q), versehen mit dem Arens-Produkt * , e ine (kommu-
tative) F-Banachverbandsalgebra. Auf Grund von [2,28.7 und 28.8] ist die Eins-
funktion E Einselement für das Arens-Produkt * . Nach [11, 1.7] stimmt daher die 
Multiplikation * mit der natürlichen punktweisen Multiplikation überein. 

Wir kehren nun wieder zu der Situation einer allgemeinen F-Banachverbands-
algebra zurück. Im folgenden sei A eine F-Banachverbandsalgebra und Jl der Raum 
der maximalen regulären Ideale von A. Nach 1.2 ist der Bidual A" direkte Summe von. 
Ann (A '-) und Ann (A")x. Wir werden jetzt diese beiden Summanden genauer un-
tersuchen. 
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Der Spektralradius r definiert auf A die Halbnorm x-*r(x), welche Spektral-
halbnorm genannt und wieder mit r bezeichnet wird. Es sei nun Ä:={n£A': Es 
gibt eine von abhängige Zahl c € R + mit |/i(x)|âc/-(x) für alle x£A}. Die 
Menge Ä besteht also aus allen Linearformen in A', welche auch bezüglich der Spek-
tralhalbnorm /• stetig sind. Aus diesem Grunde möchten wir die Menge Ä den spek-
tralen Dual von A nennen. Offensichtlich ist Ä ein linearer Teilraum von A'. 

Zunächst zeigen wir folgenden Zusammenhang zwischen der Gelfand-Transfor-
mation und dem spektralen Dual auf, was im übrigen auch in jeder kommutativen 
Banachalgebra gilt. 

Satz 2.5. Es sei A eine F-Banachverbandsalgebra. Dann ist der spektrale Dual Ä 

gleich dem Wertevorrat der adjungierten Abbildung <P' der Gelfand-Transformation <P. 

Bewe is . Es gilt offensichtlich <r(C0 

Sei nun ß£Ä. Da ß auf rad (A) verschwindet, ist das folgende Funktional p0 

auf dem linearen Unterraum A(—<P(A)) von C0(Jt~) wohl definiert und linear: Für 
f£Â sei At0 (/ ) :=/%)» wobei gÇA und f=$(g) ist. Da ||/||=r(g) gilt, ist 
auf Â stetig. Nach dem Satz von Hahn-Banach gibt es nun ein n£C0(Jty mit 
H(k)=p0(k) für alle k£Â. Für dieses ¡.i gilt dann offensichtlich ß= <P'/x. Es ist also 

ße$'{c0(jty). 

Satz 2.6. Es sei A eine F-Banachverbandsalgebra. Dann ist der spektrale Dual Ä 

ein Ideal in Ä. Ferner ist die adjungierte Abbildung <P' der Gelfand-Transformation <t> 

ein Vektorverbandsisomorphismus von dem Banachverband C0(JI)' auf das Ideal Ä 

in Ä. 

Bewe is . Da 4> ein Vektorverbandshomomorphismus ist, ist <P' intervallerhal-
tend, d.h. es gilt &[0,p} = [0,&p] für alle ß£C0(JO'+. Hieraus folgt, daß 
4>' (C0 (J/y) ein Ideal ist. Nach 2.5 ist somit Ä ein Ideal in A'. Da Â dicht in CQ(Ji) 

ist, ist <2>' injektiv. Ferner ist jeder injektive, intervallerhaltende positive Operator 
auch ein Vektorverbandshomomorphismus. Es ist also <P' ein Vektorverbandsiso-
morphismus von C0 { Jiy auf Ä. 

Da CQ(Jf)' ein AL-Raum ist,ist auf C0{Jt)' jede positive Linearform ordnungs-
stetig. Nach dem vorhergehenden Satz hat daher das Ideal Ä die Eigenschaft, daß 
für jedes F£ A"+ die Einschränkung F| Ä von F auf das Ideal Â ordnungsstetig ist. 
Es bezeichne (A') 'n das Band der ordnungsstetigen Linearformen in A" und (A% 

dessen orthogonales Komplement. 

Für F(iA"+ bezeichne N(F) den absoluten Kern von F in A', also N(F):= 

:={/iÇA': F(|A<|)=0}. Zwischen Ä und (A^ besteht folgende interessante Bezie-
hung: 

Sa t z 2.7. Es gilt (A'yaQÄ°, wobei Ä° die Polare von Ä in A" ist. 
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Bewe i s . Sei F£(A% und F > 0 . Dann gilt F l G für alle Ge(A%. Bekannt-
lich folgt hieraus N(F)± QN(G) für alle G£(A'Yn mit G&0. Da die kanonische 
Einbettung von A in A" in dem Band (A')'n enthalten ist, trennt (A')'n die Punkte in Ä. 
Aus der vorhergehenden Enthaltenseinsbeziehung folgt daher N(F)1- = {0}. Es 
gilt also A'=N(F)XS-. 

Sei nun / i i i und ¿¿>0. Da A' = N(F)X± gilt, existiert in N(F) ein positives, 
nach oben gerichtetes Netz {fiß: ß£B} mit /¿=sup {/iß: ß£B}. Aus der Ordnungs-
stetigkeit von F\Ä folgt F(p) = sup {F(ßß): ß£B}=0. Hieraus ergibt sich F£Ä°. 

Es gilt also (A%QÄ°. 

Da die Gelfand-Transformation ein Vektorverbandshomomorphismus ist, ist 
die Spektralnorm r eine M-Verbandshalbnorm auf A, d.h. impliziert r(x)^ 

^r(y) für alle x, y£A und es ist / (sup (x, j ) ) = s u p ( r (x ) , r(y)) für alle x, y£A+. 

Satz 2.8. Es sei A eine F-Banachverbandsalgebra. Für den spektralen Dual 

ÄQA' gilt: 

( i ) ßf£Ä für alle udA' und f£A; 

( i i ) /i = sup {pf :f£A+ und r ( f ) ^ 1} für alle 

(iii) TC(A')^Ä für alle G£A"; 

(iw) für G£A" gilt genau dann TG= 0, wenn G£Ä°. 

Bewe i s . Zu ( i ) : Für fg£A und p£A' gilt |g|*|/|S/-([g|)|/| nach 0.1 und 
somit 

\f/(g)\ = \n(f*g)\ = \ß(g*f)\ S \ii\(\g\*\f\) 3? r(|f|)|At|(|/|) s M I II/II r(g). 

Es ist also pf£Ä. 

Zu (i i ): Diese Gleichung beweisen wir mit Hil fe von 2.6 und der zu A gehörigen 
F-Banachverbandsalgebra C0(Jt) wie folgt: Für alle f£A und ¡x£C0(J()' gilt 
<P'(nf) = (<P'p)f. Hieraus folgt <P'-1(vf) = (<P'-1v)f für alle v£Ä und f£A. 

Sei nun p£Ä+, vfC0(J/)'+ und S:={f£A+: r ( f ) S 1}. Wi r beweisen zu-
nächst v = sup { v : f£S}. Für f£S gilt ||/|| = r ( f ) S 1 und somit v ^ v . Ferner 
ist die Menge {v^: f£S} nach oben gerichtet, da r eine M-Verbandshalbnorm ist. 
Sei g£C0(J/)+ und e>0 . Da Ä eine Punkte trennende, nirgendwo verschwindende 
Verbandssubalgebra von C0(^//) ist, gibt es nach 0.2 ein f 0 £ S mit ||g—/0 • g|| = £. 
Hieraus folgt 

v ( g ) = sup { v ( / - g ) : / € S } = sup {vf(g): ftS\. 

Es ist also v=sup {v y , :/65 } . Insgesamt erhalten wir 

<P'~Hp) = sup {(<P'-1p)f. AS} = sup { « f ' - 1 ^ ) : /<=S}. 

Das bedeutet aber /<=sup {/ i f : f^S). 
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Zu (i i i ): Sei f,g£A, fi£A' und G£A". Dann ist 

I M * ) I = W*g)\ ^ N ( 1 / 1 * 1 * 1 ) ^ K I / D M (1*1) ^ r ( f ) M \ 11*11-

Es gilt also \\iif\\^\\p\\r(f). Hieraus folgt 

\{TGß)(f)\ = |G(MI = "GH U M = IIGII M r ( f ) 

und somit TGiu£Ä. 

Zu ( iv ) : => : Sei G£A" und TG = 0. Nach 2.4 gilt dann auch 7^C|=0. W i r 
nehmen nun an \G\$Ä°. Dann gilbt es ein mit |G|(/i)>0. Nach (ii) gilt 

H — sup {pf: f£A+ und /•(/) = 1}, wobei die Menge in der geschweiften Klammer 
nach oben gerichtet ist. Da \G\\Ä ordnungsstetig ist, gibt es dann ein f0^A+ mit 
r ( /o )= l und |G|(/</o)>0. Dies bedeutet aber 7"|G|(/v)>0, was ein Widerspruch ist. 
Es ist also \G\£Ä° und somit auch G€Ä". 

<=: Sei f£A, p£A' und Ä°. Dann gilt juf£Ä nach (i). Hieraus folgt 
(TFfi)(/) = F(pf)=0. Es ist also TF=0. 

Die angekündigte Charakterisierung der Bänder Ann (A") und Ann (A")1-

lautet nun 
Satz 2.9. Es sei A eine F-Banachverbandsalgebra und C(Q) die kanonische 

Identifizierung des Biduals Ca(Ji)" der zu A gehörigen Banachverbandsalgebra Cü(Jf). 

Ferner bezeichne <P" die biadjungierte Abbildung der Gelfand-Transformation. Dann 

gilt: 

( i ) Ann (A") = Ä°; 

(ii) Es ist 4>"(A") ein Vektorverbandsideal in C(Q). Die Einschränkung der 

Abbildung 0 " auf Ann (A")-1 ist ein Algebra- und Vektorverbandsisomorphismus von 

Ann (A")x auf das Vektorverbandsideal 4>"(A") in der Funktionenalgebra C(Q). 

Bewe i s . Zu ( i ) : Sei FfÄ". Nach 2.8 ( iv) ist dann 7> = 0. Dies bedeutet 

H*F=0 für alle H£A". Es ist somit F € A n n ( ^ " ) - Sei G ^ A n n ( ^ " ) . Dann muß 

TG=0 sein. Nach 2.8 ( iv) gilt dann G£Ä°. 

Zu ( i i ) : Nach [3, 6.1] ist die Abbildung <P" von A" nach C{Q) multiplikativ. Da 
und </>' Vektorverbandshomomorphismen sind, ist <P" ein intervallerhaltender Vektor-
verbandshomomorphismus (s. [10, Kap. I I I , Ex. 24]). Es ist also <P"(A") ein Ideal in 
C (Q ) . Aus Ä = <Z>'(C0 („//)') folgt l o = i - " - i { 0 } . 

Hieraus ergibt sich, daß die Einschränkung von auf Ann (A")X(=Ä0-L) 

injektiv ist. Insgesamt erhalten wir, daß diese Einschränkung ein Algebra- und 
Vektorverbandsisomorphismus auf das Ideal <I>"(A") in C(Q) ist. 

Nach dem vorhergehenden Satz können wir also Ann (A")L mit dem Vektor-
verbandsideal <t>"(Ä') in C ( ß ) identifizieren. Es sei nun ß 0 : = ( / £ ß : es gibt ein 
Fi <P"(A") mit F(t )^0}. Dann ist der Unterraum Q0 von Q lokalkompakt. Nach 
Satz 1.2 ist Ann (A")± algebraisch- und verbandsisomorph zu einer dichten Verbands-
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subalgebra der Banachverbandsalgebra C0 (.//"), wobei Jt" den Raum der maximalen 

regulären Ideale von A" bedeutet. Der Raum ß 0 läßt sich nun mit Jt" identifizieren. 

Sa t z 2.10. Der lokalkompakte Raum ß 0 ist homöomorph zum Raum Jt" der 

maximalen regulären Ideale von A". 

Bewe i s . Es bezeichne B das Vektorverbandsideal 4>"(A") in C ( ß ) . A u f Grund 

der in 2.9 (i i ) angegebenen Isomorphie kann die Punktmenge Jt" als die Menge 

aller nichttrivialen, multiplikativen reellen Vektorverbandshomomorphismen auf B 

betrachtet werden. Da B ein Vektorverbandsideal ist, trennt B die Punkte in £20. 

Wir betrachten nun die Abbildung r : Q0-*Jt", definiert durch t ( / ) ( F ) = F(/) 
für alle F£B und t£Q0. Die Abbildung T ist injektiv, da B die Punkte trennt. Sie 

ist aber interessanterweise sogar surjektiv, wie man wie folgt einsieht. 

Sei F e B , F > 0 , (9:={t£Q: F(t)>0}undßO die Stone—Cech-Kompaktifizierung 

von 6. Da C(Q) ordnungsvollständig ist, ist ßß homöomorph zu 0 in Q. Es bezeichne 

F die eindeutig bestimmte stetige Fortsetzung von F auf ßO. Wegen der Homöomor -

phie zwischen ß& und Q gilt dan F = 0 auf ß&\0. Au f C(ß&) definieren wir die 

folgende Multiplikation * * : 

G 1 * * G 2 := F G^Go für alle Gu G2£C(ßß). 

Es sei C(Q)F das von F in C(Q) erzeugte Hauptideal. Wi r betrachten die folgende 

Abbildung <p von C(Q)f nach C(ß(9), welche definiert ist durch (p(G)(t)\= —i— G(t) 

für alle G € C ( ß ) f und alle und (p{G) = <p{G) auf ßß\ß, wobei <p(G) die 

kanonische Fortsetzung von <p(G) ist. Wie man leicht nachprüft, ist (p ein Algebra-

und Vektorverbandsisomorphismus. 

Es sei nun n ^ J i " und n ( F ) ^ 0 . Es ist also ¡i ein multiplikativer reller Verband-

homomorphismus auf B. Dasselbe gilt für die Einschränkung ¡iF auf C(Q)F. M i t 

HF ist dann auch die Linearform /¿o<p_1 ein nichttrivialer multiplikativer reeller 

Vektorverbandshomomorphismus auf der F-Verbandsalgebra C(ßß), versehen mit 

der Multiplikation * * . Hieraus folgt, es gibt ein t£(P(Q£20) mit fipocp'1^F(t)s,, 

wobei E, das Dirac-Maß im Punkt t bezeichnet. Dies bedeutet aber, daß pF=st 

auf C ( ß ) f gilt. 

Der Punkt t bei der Darstellung von pF hängt auf den ersten Blick von F ab. 

Daß er aber unabhängig vom gewählten F ist, kann man zeigen, indem man zu 

F^B mit F x > 0 und F das Hauptideal C ( ß ) s u p ( f f ) betrachtet und feststellt, 

daß der zu F bzw. F1 gehörige Punkt jeweils mit dem zu sup (F, F j ) gehörigen 

Punkt identisch ist. Wi r erhalten also, daß es zu p ein t£Q0 gibt mit (i=£t. D i e 

Abbildung T ist also surjektiv. Die Homöomorphie zwischen Jt" und ß 0 folgt nun 

sofort aus [9, 3.2.5]. 
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Im Hinblick auf die Frage, ob A" halbeinfach ist bzw. ein algebraisches Einsele-
ment besitzt, erhalten wir aus dem Vorhergehenden folgende Aussagen. 

S a t z 2.11. Der Bidual A " einer F-Banachverbandsalgebra A ist genau dann halbein-

fach, wenn der spektrale Dual Ä dicht im Dual A' ist. Eine notwendige Bedingung dafür, 

daß A" halbeinfach ist, ist A"=(A')'„. 

Beweis . Nach 1.1 ( i ) und 2.9 ( i ) gilt rad ( ^ " ) = A n n (A")=Ä°. Es ist also A" 

genau dann halbeinfach, wenn Ä°= {0 } ist, wenn also Ä dicht in A' ist. Die zweite 
Aussage fogt sofort aus 2.7. 

Der Bidual der F-Banachverbandsalgebren C0(X) besitzt ein algebraisches 
Einselement mit Norm 1. 

Satz 2.12. Die Banachverbandsalgebren C0 (A ' ) (X lokalkompakter Hausdorff-

raum) sind die einzigen F-Banachverbandsalgebren, bei denen der Bidual ein algebra-

isches Einselement mit Norm 1 besitzt. 

Beweis . Es sei A eine F-Banachverbandsalgebra mit der Eigenschaft, daß A" 

ein algebraisches Einselement e mit ||e|| = 1 besitzt. Ferner sei C(Ke) die kanonische 
Identifizierung des Ideals A"e. Wie wir in [11, S. 204] gezeigt haben, ist dann die F-
Banachverbandsalgebra A" isometrisch isomorph zur Banachverbandsalgebra C(Ke). 

Da A in A" isometrisch eingebettet ist, erhalten wir ||a"|| = |MI" für alle a£A und 
w£N. Auf Grund des Satzes von Stone-Weierstrass ist dann die Gelfand-Transfor-
mation ein isometrischer Algebra- und Vektorverbandsisomorphismus von A auf 
die Banachverbandsalgebra C0(J'/), wobei Jt der Raum der maximalen regulären 
Ideale von A ist. 

Für den in Satz 2.3 betrachteten Arens-Homomorphismus ergeben sich nun 

folgende Aussagen. 

Satz 2.13. Es sei A eine F-Banachverbandsalgebra. Dann ist der Kern des Arens-

Homomorphismus mit dem Band Ann ( A " ) identisch. Der Arens-HomomorphismuS ist 

genau dann surjektiv, wenn A topologisch-algebraisch- und verbandsisomorph zur 

Banachverbandsalgebra C0 (Jt) ist. 

Beweis . Es bezeichne S den Arens-Homomorphismus. Nach 2.8 ( iv) stimmt der 
Kern von S mit dem Band Ä°, welches gleich Ann (A") ist, überein. 

Sei nun S surjektiv. Ferner sei G£A" mit S(G) = TG=f£Z(Ar), wobei I die 
Identität auf A' ist. Nach 2.8 (iii) gilt dann A'= Ta(A')<gÄ. Dies bedeutet Ä=Ä. 

Hieraus folgt, daß A" topologisch isomorph zu C0(J/)" ist. 

Da auf der Funktionenalgebra Cü(Jt)" die Normbeziehung ||F"|| = ||F||" für 
alle F£C0(Ji)" und alle n£N gilt, sind auf A" und somit auch auf A die gegebene 
Norm und die Spektralhalbnorm r äquivalent. Es ist daher in C0 ( Jt) die dichte Ver-

12 



178 E. Scheffold 

bands-subalgebra Â abgeschlossen. Es gilt also Â=C0(J/). Nach dem Satz von der 
offenen Abbildung ist dann die Gelfand-Transformation auch ein topologischer 
Isomorphismus. 

Falls wir die im Satz angegebene Isomorphie zwischen A und Cü(Jl) voraus-
setzen, können wir auf A eine neue äquivalente Norm einführen, so daß A auch iso-
metrisch isomorph zu C0(J/) ist. Wählen wir nun die kanonische Identifizierung 
C ( ß ) von Cü(Jl)", so läßt sich C0(J()' mit C(Q)'n identifizieren. Nach Satz 2.4 gilt 
daher 

J F d(TG/i) = fF*Gdß= jF-G dp 
n a n 

für alle F, G£C(Q) und alle /i€C0(„//)'. Hieraus folgt die Darstellung 

TGp = G • p für alle G£C{Q) 

und ¡ i ^C^J i y . Da aber bekanntlich zu jedem Ä£Z(C0(«///)') genau ein //ÇC(fi) 
existiert mit Rp = H-p für alle pÇ_C0(J()', ist in der betrachteten Situation der 
Arens-Homomorphismus offensichtlich bijektiv. 

Beispiele. Die Ergebnisse der Arbeit wollen wir nun an den Banachverbänden c0, 
l± und l2 veranschaulichen. Mit der koordinatenweisen Multiplikation sind sie auch 
F-Banachverbandsalgebren. Alle drei haben denselben Raum Jt der maximalen 
regulären Ideale, nämlich N, versehen mit der diskreten Topologie. Sie haben also 
auch denselben spektralen Dual C0(Jt)' und dasselbe C0(Jl)". Es ist 

C0(Ji) '= c0, Cü(Jl)' lx, C0(Jl)" ^ L und C0(J/y s* C(Ü) mit Q = ßN: 

Zu A — c0: Aus A^C0(J/) folgt Ä=Ä und somit A"^C0(Jt)" = C(ßN). 
Zu A = lx. Hier gilt Ä^lj^C(jSN) und A"z=C(ßN)'. Es ist Ä^l^l^A'. 

Wir erhalten Ann (/!") = /? = (^€C(j5N)': Träger von pQßN\N} und Ann (A,,)1 = 

Satz 2.9 (ii) besagt nun, daß als ein Vektorverbandsideal in C (ßN ) betrachtet 
werden kann, was offensichtlich stimmt. 

Zu A—l2: Bei diesem Beispiel gilt A=A". Interessant ist aber, daß hier 
/f(=/i) dicht in A'(BÎ12) ist, daß also nach 2.10 der Bidual A" und somit A halbein-
fach sein muß. 
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Reflexivity and direct sums 

D O N H A D W I N and ERIC A. N O R D G R E N 

1. Introduction. Let H be a Hilbert space and let B{H) be the set of (bounded 
linear) operators on H. I f £fdB(H), then the commutant £f" of y is the set o f 
all operators that commute with every operator in Sf. Also Lat y denotes the set o f 
(closed linear) subspaces of H that are left invariant under every operator in 
and Alg Lat <7 denotes the set of all operators T such that Lat i ^ c L a t T. A unital 
weakly closed subalgebra s4 of B(H) is reflexive if si=Alg Lat si, and an operator 
T is reflexive if the weakly closed algebra si ( T ) generated by 1 and T is reflexive. 
A commutative subalgebra si of B(H) is hyporeflexive if si—si'Alg Lat si, 

and an operator T is hyporeflexive if si(T) is. Much work has been done on reflexivity 
(see e.g., [1]—[7], [10], [11], [14]—[27], [30]—[32]). Recently W. WOGEN [31], ans-
wering a question of P. ROSENTHAL and D. SARASON, has constructed a class o f 
operators that are not hyporeflexive. 

This paper contains two main ideas. The first idea deals with very general types 
of shifts, and we prove, for a large class of operators T, that A lg Lat Tcz { T}'. For 
such operators, the problems of reflexivity and hyporeflexivity coincide. In some cases 
we show that the elements of A l g Lat T correspond to formal power series in T. As a 
consequence we show that every operator-weighted shift is hyporeflexive and that 
every operator-weighted shift with 1—1 weights of rank at least 2 is reflexive. In 
particular, the direct sum of two weighted shifts with nonzero scalar weights is 
reflexive. 

The second idea concerns reflexive graphs. Suppose si is a reflexive algebra o f 
operators and u \ s/-*B(Hn) is a homomorphism. W e deal with the problem of 
when the graph of n is a reflexive subalgebra of B (H®H/ ) . In particular, we show 
that if the algebra si has property D of [17] and if n is continuous in the weak operator 
topology, then the graph of n is reflexive. W e use these results to show that if T is 
polynomially bounded and S is the unilateral shift operator, then S®T is reflexive. 

Received January 8, 1988 and in revised form July 12, 1990. 
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W e also show that if 5 is a nonreductive subnormal operator, then there is a nonempty 
open set Q of complex numbers such that S@T is reflexive for every operator T 

whose spectrum is contained in Q. 

2. Shifted vectors. The principal technique of this section shows that 
A lg Lat Tcz {T\ for many operators T. Much of what will be done is valid in the 

context of a complex locally convex topological vector space X; indeed, some of the 
results hold in an arbitrary vector space. I f £ is a subset of X, then we will write sp E 

for the linear span of E and sp E for the closed linear span of E. A biorthogonal base 
for a closed subspace M of X is a finite or infinite sequence {ek} whose closed linear 
span is M for which there exists a corresponding dual sequence {cpk} in X*, the dual 
space of all continuous linear functionals on X, such that <pj (ek)=8Jk, for all j 

and k, where 5 is the Kronecker <5, and such that M Q ( n ker <pk)={0}. Equi-
k' 

valently {ek} is a biorthogonal base for M if and only if {ek} is a spanning set for M, 

ej is not in sp {ek: /:>/} for every j, and Q sp {ek: & ^ / } = { 0 } . 
j 

I f {ek} is a biorthogonal base for a closed subspace M and {cpk} is the correspond-
ing dual base, then, for every x in M , the sequence {(pk(x)} determines x. Hence we 
will write Vk(*)ek to indicate this relationship. Note that for x in sp {ek: 

k 
k^ 0}, x = Z (Pk M ek > but in general the series need not converge. Clearly if 

k 
x ~ 2 akek, 2 bkek, and if a and /? arescalars, then <xx + Py~ 2 (aak + Pbk)ek. 

k k k 

Let T be a continuous linear operator on X. W e will write M(x) = MT(x) for 
the smallest invariant linear manifold of T that contains the vector x, i.e. M(x) — 

sp {Tkx: /csO}. A vector x is called a shifted vector for T in case the nonzero vectors 
in { T k x : form a biorthogonal base for M(x)~. Let the order of x, o rd (x ) , 
be the dimension of sp {T k x : = 0}. The following lemma is easily established, and 
the proof is left to the reader. 

L e m m a 2.1. The following are equivalent: 

(1) x is a shifted vector for T; 

(2) D M ( F x ) - = {0}. j 

It may be tempting to think that x is a shifted vector for T if 7 " x $ M ( 7 n + 1 x ) -
for 0 s « < o r d ( x ) . However, if one lets {e„. n^0} be an orthonormal basis for a 

Hilbert space Hand lets Tbe the operator defined by Te0—eQ, and Te„=(n/n+\)e„+1 

for n = l , 2 ,3 , . . . , and lets x=e0+e1, the temptation quickly fades away. 
W e remark that if x is a shifted vector for Tand {Tkx} has a dual sequence {<pk}, 

then for each polynomial p, we have q>k(p(T)x) = q>k+x(Tp(T)x). Thus if 

~ 2akTkx, then 7 > ~ 2 akTk+1x. More generally, if AeB(X), A is invertible, 
k k 

and AT= TA, then, for each shifted vector x for T, Ax is a shifted vector for T of the 



Reflexivity and direct suras 183 

same order as x, and whenever 2 akTkx, we have Ay~ 2 akTkAx. T o see 
k k 

this, first note that Q M{T'Ax)~ = A[C\ M ( r y x ) ~ ] = {0 } ; whence, by Lemma 2.1, 
j j 

Ax is a shifted vector for T. I f {ij/k} is the corresponding dual base for {TkAx}, 

then {A*\pk} is a dual base for {Tkx}, i.e., (A*ipk)(T"x)=i{/k(AT"x)=5kn. Thus 
<pk = A*i//k on M(x) for k^O. I f y£M(x), and y~2akTkx, then, for each k^O, 

k 

we have ak = <pk(y)=(A*il/k)(j) = \]/k(_Ay). Hence, Ay~ %akTkAx. 
k 

The following notion will be basic for our needs. A pair of vectors x, y is called 
a shifted pair for T if sp { T k x : /fSOJflsp {Tky: A r&0 }= {0 } and ({Tkx: k=sO}U 
U {Tky : fe=0})\{0} is a biorthogonal base for its closed span M ( x , y)~=MT(x, y)~. 

In this case each IV in M ( x , y)~ is associated with a formal series, 2 akTkx + 

+ 2bkTky. 
k 

L e m m a 2.2. Suppose x and y are shifted vectors for Tand m = ord ( x ) < o r d (y) = 

= oo. Then {x, y} is a shifted pair for T. 

P r o o f . Note that o r d ( j ) = =° implies that T is 1—1 on If u £ M ( x ) ~ n 
f)M(y)~, then Tmv=0 (since veM(x)) and thus v = 0 (since Tm is 1—1 on 
M(y)~). Hence M(x)~ C\M(y)~ =0. Since M ( x ) is finite dimensional, it follows 
that M(x, y)-=M(x)~+ M(y)~ is a direct sum and that the projections onto 
M(x)~ and M(y)~ are continuous. Thus {x, y} is a shifted pair for T. 

L e m m a 2.3. Suppose T is a continuous linear transformation on a locally convex 

space X and that x and y are shifted vectors of orders m and n respectively. Suppose 

also that {x, y) is a shifted pair for T. Let Alg Lat T, and suppose S x ~ 2 akTkx 
k 

and Sy~ 2 bkTky. The following are true, 
k 

(1) Every nonzero vector in M(x, y)~ is a shifted vector for T. 

(2) Suppose z£M(x,y)~, z~ 2 (ckTkx+dkTky), c^0 for some i, and m = 
k 

=« = » . Then {z, y) is a shifted pair for T. 

(3) If m^n, then 

(a) a — b i f o r 0 ^ i < m , 
(b) Sz~ % bkTkz for every z in M{x)~, 

(c) ST=TS on M(x)~. 

P r o o f . (1). If z£M(x, y)~, then {Tkz: k^j}czsp({Tkx: ksj}U{Tky: k^j}), 

and since 

n i p ( { r f c x : k ^j}U{Tky: k = {0}, 
/=0 

it follows that z is a shifted vector for T. 
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(2) Let 2 - 2 " (ckTkx+dkTky) and let / be the smallest index for which c.^O. 
k 

It will be shown that {z, y} is a shifted pair for T. Let Mj=sp ({Tkz : k^j}U 

U { 7 * y : yt^O} ) and Nj = sp ({Tkz: k^0}(J{Tky: k^j}) for every j. I f TJz£Mj 

for some j, then there is a smallest p such that 

TJz = upTpz+ap+lTp+1z+ ...+(Xj-1TJ~1z+w, 

ot.p7iO, and W6sp {{Tkz-. k>j}\J{Tky: k^O}). It follows that Tpz£Mp, and thus 

we will suppose that TJz£sp({Tkz: k>j}U{Tky: k^O}) and show that this leads 

to a contradiction. Let q>k and vs be continuous linear funct ional on X f o r k^O 

and s s O such that (pk(Tpx)=5kp, cpk(Tpy)=0, vs(Tpx) =0, and vs(Tpy)=8sp 

for all />3=0. Then (pi+J{Tjz)=ci^0, but <pi+j(Tkz)=0 for k=~j and (pi+J(Tky) = 

= 0 for all k, which is impossible in view of our supposition. Thus T'z is not in Mj 

for every j . 

A similar argument will show that TJy is not in N} for every n. A s above, it 

will suffice to show that TJy belonging to sp ({Tkz: k^OjU {Tky: k>j}) leads to a 

contradiction. W e have 

TJ y = 2akTkz + w, 
k^j 

where w£sp ({Tkz: k=~j}U {Tky\k>j}). Applying <pi5 <pi+1, ..., (pi+] successive-

ly to TJy, we see that oc0=a1= ...=txj=0. I t follows that Tjy = w, and hence 

1 = Vj (Tjy) = Vj (vc) = 0, which is a contradiction. Thus T'y is not in Nj f o r every j, 

and consequently {z, j } is a shifted pair for T. 

(3a) By (1), x+y is a shifted vector for T. Let <pk and vk be functionals as in the 

proof of part (2). For every polynomial p, it is clear that (Pk{p(T)(x+y)) — vk(p(T) • 

• (x+ j/ ) ) for all k<m, and thus cpk(z) = vk(z) for all k<m and every z in 

M(x+y)~ = s p {7^(x-f- j ; ) : k^0}. Since M(x+y)~ is invariant under S and 

S(x+y) = Sx + Sy, it follows that 

ak = <pk(Sx) = (pk(Sx+Sy) = vk(Sx+Sy) = vk(Sy) = bk 

for k<m. 

(3b) I f z£M(x)~, then z is a shifted vector for T and ord ( z ) S w . I f Ttl < CO, 
then (z, y} is a shifted pair, and if m = °o, then {z, y} is a shifted pair by part (2 ) 

above. Applying (3a) to the pair {z, y}, we obtain (3b). 

(3c) I f zeM(x)~, then 7 z € M ( x ) - and (3b) implies both Sz~ZbkTkz 

and STz~ ZbkTkTz= 2bkTk^z. Also Sz~ZbkTkz implies that TSz~ 
k ft k 

~ 2 bkTk+1z; thus STz—TSz, establishing (3c). 
k 

Useful results concerning shifted vectors of finite order can be cast in a purely 

algebraic setting. A linear transformation T on a vector space V over a field F is 

locally nilpotent if, for each v in V there is a positive integer n—nv such that Tnv~0. 
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Note that if T is locally nilpotent and {o„} is a sequence in F, the sum 2 akTk is 
kSO 

finite at each vector, and thus the sum defines a linear transformation that commutes 
with every transformation commuting with T. 

L e m m a 2.4. Suppose S and T are commuting linear transformations on a vector 

space V over a field F Such that 

(1) T is locally nilpotent, 

(2) S leaves invariant every T-invariant linear subspace of V. 

Then there is a sequence {an} in F such that S= 2 akTk Moreover, S commutes with 
kso 

every linear transformation on V that commutes with T. 

P r o o f . It follows from [16, Cor. 5] that there is a net {px} of polynomials in 
F[x] such thatp x (T )—<S in the strict topology (i.e., pointwise in the discrete topology 
on V). I f T i s nilpotent, then the set of polynomials in Tis strictly closed and S is a 
polynomial in T. W e can therefore assume that T is not nilpotent. For each integer 

1, choose a vector v(m) in V so that Tmv(m)^0. It follows, for sufficiently large 
X, that px(T)v(m) = Sv(m). Hence, for O^k^m, the coefficients of xk in px(x) 

are equal to a constant ak for sufficiently large X. It follows that S= 2 akJk-
ksO 

It is clear that if A is a linear transformation on V and AT= TA, then 

AS = 2 akATk = 2 akTkA = SA. ksO kSO 

The following lemma was proved for matrices by DEDDKNS and FILLMORE 
[11]; it was observed in [17, p. 20] and [14] that the result holds in general. Note that if 
J is an nXn Jordan nilpotent matrix and k=^2 is an integer, then dim (ker Jk/ 

/ker Jk~2) is 2 if k^n and is 1 if k = n+l, and is 0 if k^n + 2. Hence if Tis a nil-
potent matrix, «£=2, T"=0 and r " ~ V 0 , then dim (ker T"/ker T"~2) is the 
number of ( «— 1)X(«— 1) Jordan blocks plus twice the number of nXn Jordan 
blocks in the Jordan canonical form for T. Note that this number is greater than 2 if 
and only if there is one block of size n and another block of size n or n— 1. 

L e m m a 2.5. Suppose T is a nilpotent linear transformation on a vector space V 

over a field F. The following are equivalent: 

(1) every linear transformation leaving invariant each T-invariant linear subspace 

commutes with T, 

(2) every linear transformation leaving invariant each T-invariant linear subspace is 

a polynomial in T, 

(3) for every x in V and every positive integer n such that T"x -A 0, there is a y 

in V such that 

sp {Tkx: k ^ 0 }Dsp { T k y : k s? 0} = {0} and T'^y ^ 0, 
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( 4 ) // /? = 2 and F - ' ^ O , then d im(ker 7"/ker T n " 2 ) > 2 . 

T h e o r e m 2.6. Lei X be a locally convex space, and let T be a continuous linear 

transformation of X. Suppose [J ker Tk is dense in X and, for every k^O with 
ks 1 

r s + V 0 , dim (ker Tk+2/ker Tk)>2. If SCAlg Lat T, then S£ {T}", and there 

exists a sequence {ak} of complex numbers such that Sx~ 2 akTkx for every shifted 
k 

vector x for T. 

P r o o f . The dimension hypothesis implies, via Lemma 2.5, that T|ker Tk 

is reflexive for every k £ 1. I f T is nilpotent, then we are done. Otherwise let S be in 

A l g Lat T, and let Sk and Tk be the restrictions o f S and T respectively to ker Tk. 

By the reflexivity o f Tk, there is a polynomial pk o f degree k— 1 or less such that Sk = 

—Pk(Tk)- If A£{T}' and if Ak = A\ker Tk, then clearly AkSk = SkAk, and since 
U ker Tk is dense, it follows that AS = SA. Hence St {T}". 
k 

Applying Lemma 2.4 to the restriction of T to (J ker Tk, we obtain a sequence 
k 

{ o k } o f complex numbers such that S x ~ 2 akTkx f o r every x in IJ ker Tk. I f y 
k k 

is a shifted vector of infinite order, then Sy~ 2 bkTky. There are shifted vectors x 
k 

of arbitrarily large finite order that may be used in conjunction with Lemma 2.2 and 

part (3a) of Lemma 2.3 to conclude that bk=ak for every k. 

C o r o l l a r y 2.7. If T is a nonnilpotent operator on a Hilbert Spacesuch that Tis 

a direct sum of nilpotent operators, then every vector is a shifted vector for T, and 

A lg Lat 7 c {T}". If SC Alg Lat T, then there exists a sequence {ak} of complex 

numbers such that Sx~ 2 "kTkx for every vector x. 
k 

P r o o f . The hypothesis of the corollary implies that o f the theorem, and therefore 

A l g Lat T c {T}" and there exists a sequence { a j such that Sx~ 2 akTkx f o r 
k 

every shifted vector x. That every vector is shifted fol lows easily f rom the fact that 

every vector is a direct sum o f shifted vectors. 

In a Hilbert space, the hypothesis p| (ran Tk)~ = {0 } in the fol lowing theorem 
km l 

is equivalent to T having a strictly lower triangular matrix with respect to an ortho-

gonal direct sum decomposition of the space into a sequence of subspaces. 

T h e o r e m 2 . 8 . Suppose X is a locally convex space and T£B(X) has the property 

that f | (ran Tk)~ = {0}, and, for each integer n & 1, dim ( ^ / ( J " ) " 1 [(ran T n + 2 ) - ] ) > 2 . 
( i i 

Then 

(1) every vector in X is a shifted vector for T, 

(2) A l g Lat 7"c {T}", 
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(3) for each S in A lg Lat T, there is a sequence {a,,} of complex numbers such 

that, for every vector x in X, we have S x ~ 2 akTkx. 
k 

P r o o f . Suppose that S£ A lg Lat T and A£{T}' and « > 2 is a positive integer. 
Since S, T and A each leave (ran T")~ invariant, they induce operators S„, T„ and An 

(respectively) on the space A7(ran T " ) - . Clearly, S„£ Alg Lat Tn and Ane {Tn}'-

Moreover, T„ is nilpotent, and it follows from the hypothesis on dimensions above and 
Lemma 2.5 that there is a polynomial p„(z) (unique modulo z"C[z ] ) such that 
Sn=pn(Tn). Thus SnAn = A„Sn. 

Translating back in X, we obtain ran (S—p„(T))c:(ran T")~ and ran (AS — 

-SA)a(mnT")-. Since we have ran (S-p„+1(Tj)cz(ran Tn+1)~ c ( r a n T " ) - , we 
have that pn+1(z)=p„(z) modulo z"C[z], Hence there is a sequence {ak} of complex 
numbers such that we can take p„(z) = ^ ak^ for each n. It follows that Sx~ 

~ 2 akTkx for every x in X. Also we have ran (AS-SA)c f | (ran 7"A)~ = (0}. 
k k^l 

which implies AS=SA. Hence S£ {T}". 

C o r o l l a r y 2.9. If TJ and T2 are operators on a Hilbert space that are strictly 

lower triangular with respect to some infinite direct sum decomposition of the Space, and 

if neither Tx nor T„ is nilpotent, then for T=TX®T2 on the direct sum H of the space 

with itself, A lg Lat Ta {T}", and for every S in A lg Lat T there exists a sequence 

{ak} Such that Sx~ % akTkx for every x in H. 
k 

R e m a r k . It follows from the preceding theorem that if {x, y} is a shifted pair 
and ord (x) = ord ( j ) = °°, then, for any S in Alg Lat T there is a sequence {a t } 
of complex numbers such that Sz~ ^ akTkz for every z in M(x,y)~. 

k 

T h e o r e m 2.10. Suppose that X is locally convex, T£B(X) and T has shifted 

vectors of arbitrarily large finite orders and at least one shifted vector of infinite order. 

If S(i A lg Lat T, then there exists a sequence {ak} of complex numbers such that 

Sx^ 2 akTkx for every shifted vector xfor T. Moreover, if A£{T}' and A is inver-
k 

tible, then SA — AS=0 on the linear span of the set of shifted vectors for T. 

P r o o f . I f y is a shifted vector of infinite order for T, and if S is a linear transfor-
mation that leaves invariant all the invarjant subspaces of T, then there is a sequence 
{ak} such that ^ akTky. By Lemma 2.2, if x is a shifted vector of finite order, 

k 

then {x, y) is a shifted pair. Thus by part (3a) of Lemma 2.3, Sx= 2! akTkx, 
k<m 

where m = ord (x). I f z is another shifted vector of infinite order, then Sz~ 2 bkTkz, 
k 

and another application of Lemma 2.2 and part (3a) of Lemma 2.3 yields bk=ak 

for k<.m. Since there are shifted vectors of arbitrarily large finite order, bk=ak 

for every k. 
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Let A be a continuous invertible linear transformation in {T}'. I f x is a shifted 
vector for T, then Ax is also a shifted vector for T and 

SAx~ 2 akTkAx. 
k 

On the other hand, Sx~2akJkx implies that ASx~ 2 akTkAx. It follows that 
k k 

ASx=SAx, and hence AS=SA on the span of the shifted vectors. 

R e m a r k . If X is a Banach space in the preceding theorem, we can drop the 
assumption that A is invertible, since there is a scalar A such that A—X is invertible, 
and every operator that commutes with A — X also commutes with A. 

T h e o r e m 2.11. Suppose that X is a locally convex space, T£B(X), and 

{Mk: k£ Z } is a collection of closed linear subspaces with zero intersection such that 

T(Mk)czMk+1czMk for each kin Z. Let N= (J Mk and assume that SeAlg Lat T 
ki Z 

and ST-TS=0 on N. Then 

(1) each vector in N is a shifted vector for T, 

(2) there is a sequence {a„} of complex numbers such that, for every vector x in N, 

we have Sx~ 2 akTkx. 
k 

Moreover, if, for each integer 2, we have dim (M_ „/ [ ( r 2 " ) _ 1 ( A f n ) ] nM_ „ ) = -2 , 
then AT— TA = 0 on N for every A in A l g L a t T. 

P r o o f . Statement (1) is clear. Note that S leaves N invariant, since SZ A lg Lat T. 

For each positive integer n, we can apply Lemma 2.4 to the operators induced by S 

and T on M_„/M„ to obtain a polynomial p„(z) such that (S—pn(T))(M_n)cMn. 

Moreover, it is clear that there is a single formal power series f(z) = 2 akzk such that 
k 

each p„(z) is a partial sum of/ (z ) . Since P| Mk = 0, it follows that S x ~ 2 akTkx 

for every x in N. k k 

Note that the hypothesis dim (M_J[(T2n)~1(Mn)] f ! M _ „ ) > 2 implies, via 
Lemma 2.5, that the operator induced by T on M_„/M„, is reflexive, which implies 
that the operator induced by A on M_„/M„ is a polynomial in the operator induced 

by T. In particular, (AT— TA)(M_„)c M„ for all 2. Since f ) = it follows 
k 

that AT-TA=0 on N. 

3. Weighted shifts. The results of the preceding section often yield 

Sx ~ 2 akTkx for every vector x (or for at least a dense set of vectors). This suggests 
k 

that the operator S is in the weakly closed unital algebra s?(T) generated by T; 

however, the formal power series 2 akTk n e e d not converge, and it is not clear that 
k 

either the sequence of partial sums (or its Cesaro means) need have a convergent 

subnet in the weak operator topology. For unilateral weighted shift operators on 
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Hilbert space with scalar weights, A . L. SHIELDS and L. J. WALLEN [29] proved that 
the commutant coincides with the generated weakly closed algebra. In the course of 
the proof they show that the sum of a formal power series in a weighted shift is 
the strong limit of the sequence of Cesaro means of the sequence of partial sums of 
the formal power series in the shift. W e will show that the Shields—Wallen result 
holds for shifts of a much more general nature. 

Suppose that X is a normed linear space and {X^. i£T} is a linearly independent 
family of closed linear subspaces of X whose algebraic sum is M. We say that X is the 
direct sum of the XCs if there is a family {/>,: /67} of idempotents in B(X) such that 

(1) Pi\M is the projection onto Xt for each i£f, 

(2) M is dense in X, 

(3) sup {|| 2 A l l : F c / , F finite} < <*>. 

It follows that 2 P i = 1 converges in the strong operator topology, since the 

net of partial sums is bounded and converges strongly to 1 on the dense subset M. 

It also follows that the set { 2 Pi- Fczl, F or / \ F finite} is a bounded Boolean 

algebra of idempotents. Standard results on bounded Boolean algebras of projections 
(see [13]) imply that there is a constant K such that, for every function a: / - » C 
with finite support, we have 

(*) || 2 a(0-P;|| — -Ksup |a(/)|. 
i £ / ' 

Moreover, if X is a Banach space, the preceding inequality holds for every bounded 
a: /—C and 2 a ( < )P i converges in the strong operator topology, 

•ef 
Note that a c0-sum or an /"-sum of subspaces is a direct sum in the 

above sense; however, an /"-sum is not a direct sum since M fails to be dense. 
An operator T is a (forward) unilateral operator-weighted shift on a normed 

space X if there is a sequence {Xn : Z + } of subspaces of X such that 
(1) X is the direct sum of the A^'s, 
(2) T(Xn)czXn+1 for n£Z+. 

Here Z + denotes the set of non-negative integers. If Z + is replaced by the set Z 
of integers, then T is called a bilateral operator-weighted shift. The restriction opera-
tors T\X„ are the weights of the shift. I f all of the Xn's are 1-dimensional, then the 
weighted shift is called a scalar-weighted shift. If, on the other hand, condition (2) 
above is replaced by 

(2)' T(X,o) = 0, T ( I J c I „ for ni Z+ , 

then T is a backwards unilateral operator-weighted shift. If T is an operator of any 
o f the three types defined above we say that T is an operator-weighted shift. 

The following is a generalization of the SHIELDS—WALLEN theorem [29]. 
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T h e o r e m 3.1. Suppose T is an operator-weighted shift on a normed space X that 

is a direct sum of subspaces {X„}. Suppose A£B(X) and {a„} is a sequence of scalars 

such that, for each x in UXn, we have Ax~ 2 ak Tkx. Let {A„} be the sequence of 
k 

Cesaro means of the sequence of partial sums of the series 2 akTk- Then 

( 1 ) S U p . I M . H o o , 
(2) A „—A in the strong operator topology. 

P r o o f . First note that since X is the direct sum of the Xn's, it follows, for each x 
in U Z „ , that the sum 2 akTkx converges in norm to Ax. It follows that |\Anx— 

k 

-AxII-0 for every x in U Z „ . I f (1) is true, then {x£X: \\Anx-Ax\\^»0} is a 

closed linear subspace of X containing U X„, which implies (2). Hence it suffices to 

prove (1). 

Let P„ denote the projection of X onto X„, and, for each finite set F o f indices, 

let QF= 2 Pi- L e t K be as in ( * ) above. It follows that, for each index n, we 
i£F 

have { Q F A n Q F } converges in the strong operator topology to A„; whence, \\An\\ s 

S l i m sup IIQFA„QF\\. W e will show that if m is any index and k and n are positive 

integers, and if F= {;': m^j^m + k), then \\QpAnQF\\^K*\\A\\. From this it 

follows that \\A„\\^K2\\A\\ for « = 1 ,2 ,3 , . . . , which proves (1). 

Define continuous functions /, g: [—n, TZ]—B(X) by 

/ ( 0 = 2 ^'Pm+j and g(t) = 2 e^'Pm+j. 
0 sjsk 0 sjsk 

Let 
l2 

1 f s in (n + l ) t/2Y 

~~ ~n + Y I sm7//2) J sin (t/2) 

be the nth Fejer kernel. A simple computation shows that 

QfA„QP = J - f f ( t ) Ag(t)Kn{t) dt, 2K 

and it follows that 

WQFAQFW S /11/(0 (Oil dt ^ K2\\A\\ - J - j Kn{t)dt = K2\\A\\. 
— 7t 

This completes the proof. 

C o r o l l a r y 3.2. Suppose that T is scalar-weighted unilateral shift with nonzero 

weights. Then {T}' = si(T). 

P r o o f . Suppose e is a nonzero vector in X0. Then {T"e} is a basis for Xn for 

« = 0 ,1 ,2 , . . . . Suppose Then Se= 2 akTke for some sequence {ak} o f 
Ogfc 
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scalars. Since { T } ' , it follows that 

STne — T"Se = T" 2 akTke = 2 akTk{T"e). 
0 Sk 0 S i t 

Hence the hypothesis of Theorem 3.1 is satisfied, which implies that S£s#(T). 

C o r o l l a r y 3.3. If T is an operator-weighted shift on a normed linear space, then 

{ r y n A l g Lat T=J*{T). 

P r o o f . It follows from Theorem 2.11 that if S£ { r } T l Alg Lat T, then S satis-
fies the hypothesis of Theorem 3.1. 

T h e o r e m 3.4. Suppose T is an operator-weighted shift on a normed space X 

relative to the direct sum X— 2 Let M— (J X„, and suppose for each x in M 
n n 

and each positive integer n with T"x ^ 0, there is ay in M such that sp {Tkx: A : ^0 } d 
sp {Tky: {0 } and T"y^0. Then T is reflexive. 

P r o o f . Suppose S f A l g Lat T. In view of Corollary 3.3, we need show only 
that S£ {T}'. W e first show that if x,y£M and sp {Tkx: /c^0} f lsp {Tky: k^0}=0, 

then {x , y} is a shifted pair for T. Once this is done, it will follow from part 3(c) 
of Lemma 2.3 and the hypothesis of the theorem that ST=TS on M, and, since 
Z = s p M, it will follow that {T}'. 

Suppose x,y<iM and sp {Tkx: k^0}f]&p {Tky. k^0}=0. Suppose xQXk 

and y€Xj. By symmetry, it will suffice to show that if n is a positive integer and 
Tnx^0, then r " j c$sp ( { r ' x : ISO, R V « } U { 7 > : I^O}). However, T"x£Xk+n, 

and if P is the projection onto Xk+n, then r"x<Esp ({Tlx: Z'I=0, IVN }U {Ty \ LISO}) 
implies that Tnx=PT"x£sp ({PTlx: ¡ 's0, z V « } U {PTy. ¿SO}), and the last set is 
either 0 or sp {Tn+k~Jy}. This violates the conditions that Tnx^0 and sp {Tkx: 

Jts0 }nsp [Tky: k^0}=0. It follows that {x,y} is a shifted pair for T, and the 
proof is complete. 

The following corollaries are immediate consequences of the theorem. 

C o r o l l a r y 3.5. Operator-weighted shifts with injective operator weights of rank 

at least two are reflexive. 

C o r o l l a r y 3.6. Every direct sum of at least two scalar-weighted shifts with non-

zero weights is reflexive. 

The following is a corollary of Theorem 2.10. 

C o r o l l a r y 3.7. If T is a unilateral backwards operator-weighted shift with in-

jective weights, and T has a shifted vector of infinite order, then T is reflexive. 

We will show that the unweighted (i.e., all weights 1) backwards unilateral shift 
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operator on the Hilbert space H2 has no shifted vectors of infinite order. Our demons-
tration depends on the characterization of noncyclic vectors of the backwards shift 
in [12]. A vector/is noncyclic for the backward shift T in case there exists a mero-
morphic pseudocontinuation o f / to the complement De of the closed unit disk in 
the Riemann sphere such that = G/H, where G and H are bounded holomorphic 
functions on De. To s a y i s a pseudocontinuation of/means that the radial limits 
of f and f" agree at almost every point of the unit circle. We need the following lemma. 

L emma 3.8. If f is a noncyclic vector for the backwards shift T, then /6 M(Tf)~ 

if and only if /~(°°)=0. 

Proo f . The proof is virtually the same as that of Theorem 1 in [12]. Suppose 

f ( z ) = Z ^ , G(z)=Zbkz~k and H(z)= Zckz-k. 
kmo kmo keo 

By multiplying both G and H by an appropriate power of z, we may assume that 
either b0^0 or c 0^0. Then (I f c 0 =0, then f~ ( « ) = « = . ) W e have 
/(e ;3)//(e i9) = G(e i3) a.e., and hence as in [12], 

Ooco + aici-r-.. = b0, 

a1c0 + a2c1+... = 0, 

fl2c0+a3c1+... = 0, 

etc. Thus if / " ( « O ^ O , then b ^ O , and the preceding equations show that there 
exists a vector that is not orthogonal to /but is orthogonal to 7*/for every k ^ 1. 
Thus / does not belong to M(Tf)~. 

Conversely suppose ( ° ° )=0 . Let h be a vector that is orthogonal to M(Tf) 

If ck is the conjugate of the kth Fourier coefficient of h, then all but the first of the 
sequence of equations in the preceding paragraph hold. Thus if H0(z)= Z ckZ~k, 

km 0 
then H0 has radial limits at almost every point of the unit circle, and //0(e'9)/(e'3) = 
= G0(e'3) defines a function G0 in Ll(d9) with G 0 ( e i 3 )= Zbke~ik9. It follows that 

km o 
if G 0 ( z ) = Zbkz~k, then g~ = G0/H0 is a pseudocontinuation o f / to De and G„ 

kmo 
and H0 are quotients of bounded holomorphic functions since they are in H2 and H1 

of De respectively. Since the pseudocontinuation of a function is unique, it follows 
that g~ ( ° ° ) =0 , and thus fc0=0. Hence the first equation of the sequence in the 
preceding paragraph shows that / is also orthogonal to h, and it follows that 
fdM(Tf)-. 

P r o p o s i t i o n 3.9. The only shifted vectors of the adjoint of the unweighted uni-

lateral shift operator are polynomials. 
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P r o o f . It will be shown that 7" has no noncyclic shifted vectors of infinite order. 
This will imply that it has no infinite order shifted vectors. For i f / is cyclic, shifted 
and of infinite order, then Tf is shifted and of infinite order, but it is noncyclic. 

Suppose / is any noncyclic vector of infinite order and is its meromorphic 
pseudocontinuation. Then since Tf=(f—f(0))/z, and since pseudocontinuations 
are determined by their radial limits (see [12]), it follows that (2/ )~= (/~—/(0 ) )/z . 
Hence if_/ has a pole at of order m, then {Tf)" has a pole at of order m—1, 
and consequently ( r r a + 1 / ) ~ ( ° = ) = 0. By Lemma 3.8, rm + 1/£sp {Tkf : A : > m + 1 } . 
Since T m + 1 yV0 , / is not a shifted vector. 

4. Reflexive Graphs. In this section we study conditions that make graphs 
reflexive. W e wish to consider a more general version of reflexivity than that of the 
preceding sections. A linear subspace if of B(H) is reflexive if Tf_if whenever 
Tx€[£fx]~ for every x in H. W e say that a linear functional cp on if is elementary if 
there are vectors x, y in H such that <p(S) = (Sx, y) for every S in i f . W e say that if 

is weakly elementary if every weak-operator continuous linear functional is elemen-
tary on i f . ( In [17] and [7], respectively the terms "property D" and "property A " 
used. Our notation agrees with that in [3].) 

T h e o r e m 4.1. Suppose that if is a reflexive linear subspace of B(H) and 

7i: SP—B(M) is a linear mapping such that the set of elementary linear functionals <p on 

B(M) for which cpon is elementary on if separates the points of B(M). Then 

Graph (n) = {S®n(S): StS?} is a reflexive linear subspace of B(H®M). 

P r o o f . Suppose that A^B(H®M) and Ae£[Graph (n)e]~ for every vector e 

in H®M. Clearly, we can write A=B®C. Also, since if is reflexive, it is clear that 
B^Sf. Thus, by replacing A by A — (B®n(B)), we can assume that 5 = 0 . W e 
need to show that C = 0 . Suppose that CVO. Then there is an elementary functional 
(p on B(M) such that cp(C) =¿0 and such that <pon is elementary on £f. Thus there 
are vectors xx, x2 in H and y\, y2 in M such (p(T) =(Ty\, y2) for all T in B{M) and 
such that (¿"xj, x2 ) = ^(7r(-S')) = (7t(5)y1 , j 2 ) for all S in £f. Letting e = x1®y1, 

it follows that there is a sequence { 5 „ } in if such that (Sn®n(S„))e^Ae. Thus 
^ „ x ^ O and n(S„)y1^Cy1, Hence 0^<p (C ) = (Cy1, y2)=lim (tc(5n)y t, >>2) = 
= l i m (p(7t(5'n)) = lim (5„Xi , x 2 ) =0 . This contradiction shows that C = 0 . 

C o r o l l a r y 4.2. If Of is a weakly elementary reflexive linear subspace of B(H) 

and n: if — B ( M ) is a weakly continuous linear map, then Graph (n) is reflexive and 

weakly elementary. 

I t was shown in [5] and [32] that if S is the unilateral shift operator and T is a 

contraction operator, then S®T is reflexive. An unsolved problem of P. R. HALMOS 
[18] asks whether every polynomially bounded operator is similar to a contraction, 

13 
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and it was shown by W. MLAK [22] that every polynomially bounded operator is 
similar to the direct sum of a unitary operator and an operator with a weakly conti-
nuous H°° functional calculus. 

C o r o l l a r y 4.3. If S is the unilateral shift operator and T is a polynomially boun-

ded operator, then S®T is reflexive and weakly elementary. 

P r o o f . The result of the preceding corollary shows that S@T is reflexive 
and elementary when T has a weakly continuous H°° functional calculus. The direct 
sum of such an operator with a unitary operator must be reflexive and elementary by 
[17]. 

Suppose that S is a subnormal operator. A result of D. SARASON [27] says 
that there is a compactly supported Borel measure p in the plane and an open subset 
Q of the plane such that the weakly closed algebra generated by 1 and S is isomorphic 
to Z.~(/i)ffii/"(i3). Call the set Q the Sarason hull of S. I t is shown in [8] that conver-
gence in the weak operator topology in the H°°(Q) summand implies uniform con-
vergence on compact subsets of Q. Thus if T is an operator whose spectrum is con-
tained in Q, then there is an appropriate H°°(Q) functional calculus. The Sarason 
hull of the unilateral shift operator is the open unit disk. It was shown by R. OLIN 
and J. THOMSON [23] that the weakly closed algebra generated by a subnormal opera-
tor is weakly elementary. The proof of the preceding Corollary combined with the 
aforementioned facts yield the following. 

C o r o l l a r y 4.4. If S is asubnormal operator and T is an operator whose spectrum 

is contained in the Sarason hull of S, then S@T is reflexive and weakly elementary. 

Note that the definitions of reflexivity and of being elementary for a linear sub-
space ¡f of B(H) makes sense when ^ is a subset of B(H, K), the set of operators 
from the Hilbert space H to the Hilbert space K. In this way, it makes sense to talk 
of a subspace if of B(H) having a reflexive (or elementary) restriction to a linear 
subspace M of H, i.e., £f\M is reflexive. 

Suppose that Sf is a linear subspace of B{H) and x£H. W e define Gy(x) to 
be the set of all vectors y in H such that 

(a) [ y x ] - n [ < ? y ] - = {0}, 
(b) [ y x ] ~ + [ y y ] ~ is closed, and 
(c) if {S1.} is a sequence in if such that HS'.-tH—0 and is norm conver-

gent, then SJJ y ** 0. 

Note that (a) and (b) imply that the sum in (b) is direct sum of Banach spaces 

and that (c) implies that {£.* + S>: is a graph in this direct sum. 

T h e o r e m 4.5. Suppose that M is a subspace of the Hilbert space H and if is a 

linear Subspace of B{H) such that 
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(1) if\M is reflexive, 

(2) M+span(\J{Gy(x)-. x^M}) is dense in H. 

Then if is reflexive. 

P r o o f . Suppose T£B(H) and Tei[ife\~ for every e in H. It follows from (1) 
that T\M£6f\M; hence we can assume that T\M=0. Suppose x£M and y<iGy(x). 

Then there is a sequence {£ „ } in if such that S„ (x+y) — T(x+y). It follows from 
parts (a) and (b) of the definition of Gy (x) that SHx-*Tx = 0 and Sny-Ty. It 
follows from part (c) of the definition of Gy(x) that 7>=0 . Thus, by (2), T=0, 

since T=0 on a dense subset of H. 

C o r o l l a r y 4.6. Suppose if is a reflexive subspace of B(H) and n: ¿f—B(M) 

is a linear map such that the set 

{ y ^ M : 3 x £ H such that {1S';t©;r(1S').y: is a graph} 

is dense in M. Then Graph (n) is reflexive and % is continuous with respect to the ultra-

weak (and norm) topologies on if and B(M). 

The preceding Corollary can also be used to recapture the result, that S®T is 
reflexive whenever S is the unilateral shift operator and T is a contraction [5], [32]. 
The basic idea is to let if be the unital weakly closed algebra generated by S and to 
define 7t by n((p(S)) = (p{T) for each (p in H°°. In the case ||T||<1, it follows that if 
x is a unit vector in ker S*, then { <p ( S ) x ® c p { T ) y : (p£H°°}~ is a graph for every 
vector y. This follows from the fact that if {<p„} is a sequence in and cp„(S)x-+ 

-*cp(S)x, then (pn-*cp in H- and thus uniformly on compact subsets of the open 
unit disk, which, by the Riesz functional calculus, implies that (pn(T)-+(p(T) in 
norm. 

5. Questions and comments. 
1. A Donoghue operator is a weighted shift on /2 with square summable weights 

that tend monotonically to zero. It is easy to see that a backwards Donoghue operator 
has no shifted vectors of infinite order. For i f/ i s a vector of infinite order, then D*f 

is a cyclic vector. Does ( D ® D ) * have a shifted vector of infinite order, where D is a 
Donoghue operator? 

2. Suppose S is the unilateral shift operator on P. What is the set of all Hilbert 
space operators T for which S®T is reflexive. This paper shows that the set con-
tains all polynomially bounded operators and all operator-weighted shifts. 

3. I f T is a nonnilpotent Hilbert space operator that is a direct sum of nilpotent 
operators, must T be reflexive? 

4. The results in this paper on reflexive graphs have been generalized in [15] 
and have been extended to prove that certain graphs are hyperreflexive. In particular, 
it is shown in [15] that if S is the unilateral shift operator on P and T is polynomially 

13* 
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b o u n d e d , then 5 © T is hyper re f l ex i ve . I n [9] K . DAVIDSON p r o v e d that the un i la te ra l 

sh i f t o p e r a t o r is hyper re f l ex i ve . W h a t abou t the d i rec t sum o f t w o w e i g h t e d shi f ts , 

o r the ope ra t o r -we i gh t ed shi f ts o n H i l b e r t space c ons ide r ed in T h e o r e m 3.4? 
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Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Edited by 
Fred Roberts (The IMA Volumes in Mathematics and its Applications), IX+345 pages, X+156 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo—Hong Kong, 
1989. 

One of the principal motive powers of the development of mathematics is the hard demand on 
more and more application which appear from the side of living sciences. For the people who are 
makers or users of pure and applied mathematics, a very interesting experience is to find the meeting 
point of mathematics and the living nature, biology and social sciences. 

This volume contains fifteen exciting overviews concerning the above topics. The leading idea 
of the book is formulated in the first paper (by F. Roberts), drawing up seven fundamental concepts, 
as R N A chains as "words" in a 4 letter alphabet, Interval graphs, Competition graphs or niche 
overlap graphs, Qualitative stability, Balanced signed graphs, Social welfare functions, and Semior-
ders. 

Diversity of human and biological sciences manifests itself in the interesting and multicoloured 
topics in the remaining forteen papers. The list of authors (in the order of papers) is: J-P. Barthelemy, 
M. B. Cozzens, N. V. R. Mahadev, J-C. Falmagne, P. C. Fishburn, B. Ganter, R. Wille, E. C. John-
sen, V. Klee, J. C. Lundgren, J. S. Maybee, J. K. Percus, P. H. Sellers, P. D. Straffin Jr. 

The volume is mainly based on the proceeding of a workshop which was organized in course of 
an IMA program on Applied Combinatorics. 

J. Kozma (Szeged) 

Applied Mathematical Ecology, Edited by Simon A. Levin, Thomas G. Hallam and Louis J. 
Gross (Biomathematics, 18), XIV + 491 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo, 1989. 

This book contains the subject-matter of the Second Autumn Course on Mathematical 
Ecology held at the International Centre for Theoretical Physics in Trieste, Italy in November and 
December of 1986. The contents and the structure of the book is introduced by the editors in the 
Preface as follows: "This book is structured primarily by application area. Part II provides an intro-
duction to mathematical and statistical applications in resource management. Biological concepts 
are interwoven with economic constraints to attack problems of biological resource exploitation, 
conservation of our natural resources and agricultural ecology. Part III consists of articles on the 
fundamental aspects of epidemiology and case studies of the diseases rubella, influenza and AIDS, 
Part IV addresses some problems of ecotoxicology by modelling the fate and effects of chemicals in 
equatic systems. Part V is directed to several topics in demography, population biology and plant 
ecology, with emphasis on structured population models." 
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The list of authors shows that the Autumn Course was participated by the most outstanding 
experts in Mathematical Ecology from all over the world. Their book must be found on the bookshelf 
of every specialist wishing to follow the main directions of the development of the field. 

L. Hatvani (Szeged) 

E. Arbarello—C. Procesi—E. Strickland, Geometry today, Giornate di Geometria, Roma 
1984 (Progress in Mathematics, 60), 329 pages, Birkháuser, Boston—Basel—Stuttgart, 1985. 

The meeting "Giornate di Geometria" was held at the "Dipartimento di Matematica, Istituto 
G. Castelnuovo" during the period A—9 June 1984. There were many mathematicians on this con-
ference from almost all of the area of geometry. At the same time some top specialists were also 
there such as S. Donaldson, W. Fulton, P. Griffiths, V. Kac, D . Kazdhan, D. Mumford for example 
only. The book contains almost all of the talks given at the meeting, hence the reader finds accounts 
on geometry ranging from algebraic curves to topology, from non linear equations to algebraic 
groups and number theory. 

We recommend this book to all who are interested in the modern geometry. 

Árpád. Kurusa (Szeged) 

P. L. Barz—Y. Hervier, Enumerative Geometry and Classical Algebraic Geometry (Progress in 
Mathematics, 24), X 4-252 pages, Birkháuser, Boston—Basel—Stuttgart, 1982. 

This book is based on the conference held at the University of Nice during the period 23—27 
June 1981. The major areas of the activity were enumerative geometry, curves and cycles and multi-
plicities. We mention that half of the papers are written in french. The papers of the book are from 
L. Gruson, C. Peskine, R. Piene, F. Catanese, W. Fulton, R. Lazarsfeld, D. Laksov, A. Beauville, 
A. Hirschowitz, M. S. Narasimhan, P. Le Barz, I. Vainsencher and S. L. Kleiman. 

We recommend this book to graduate students and resarchers as well. 

Árpád Kurusa (Szeged) 

P. Biler—A. Witkowski, Problems in Mathematical Analysis, (Pure and Applied Mathematics) 
v-r 227 pages, Marcel Dekker, Inc. New York—Basel, 1990. 

This is a truly excellent collection of problems in mathematical analysis, although several 
problems from other mathematical disciplines are also included. The level of problems varies consi-
derably, but most of them are above the level of standard textbook exercises. Most of them require 
some trick or strong theoretical background. Some of the problems are very hard and have the fla-
vour of research results. The collection was selected from several sources, many of them were taken 
from the American Mathematical Monthly. 

The book, which contains about 1200 problems, is divided into nine sections: real and complex 
numbers, sequences, series, functions of one variable, functional equation and functions of several 
variables, real analysis, analytic functions, Fourier series and functional analysis. Each of them gives 
a very thorough account of the given field through fascinating problems, although I have found the 
first chapter more entertaining than the other ones. It starts out with the easy exersice that for irra-
tional a and b the power ab can be rational. But the trick is nice: ( / 2 ^ ) ^ = 2. However, the next 
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problem, that for ac>8/3 asks for the existence of a 5 such that [5C"] is prime for every n, is a 
much more challenging one. 

Unfortunately the hints given to the problems are very scarce and very often of little use since 
they rather give the reference to the source of the problem than lending help in the solution. This 
makes the use of the book rather cumbersome since no one wants to run to the library every time 
he gets stuck with a particular problem. Sometimes no hint or reference is given at all, which may be 
puzzling for many readers in case of problems like the one which asks if it is possible to divide a 
square into an odd number of triangles of the same area (try it!). I found it a pity that the authors do 
not give more detailed hints or full solutions which would have made the book even more outstand-
ing. 

I would very strongly recommend the book to both students and teachers, but everyone who 
likes problem solving, which, according to many of us, is the heart of mathematics, will find hours, 
and hours of fun and enjoyment in the problems. 

Vilmos Totik (Szeged) 

A. Bohm—M. Gadella, Dirac Kets, Gamow Vectors and Gel'fand Triplets. The Rigged Hilbert 
Space Formulation of Quantum Mechanics, (Lecture Notes in Physics 348), VIII +119 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989. 

This book presents the Rigged Hilbert space formulation of Dirac's bracket formalism of 
quantum mechanism, preferred by most physicists for its elegance and practicality in actual calcula-
tions. It is an extension of the first author's well-known lecture notes ( LNP 78) on the subject. 

Dirac's formalism of bras and kets has been considered as mathematical nonsense by von Neu-
mann, whose Hilbert space formulation became the standard, mathematically rigorous model of 
quantum mechanics. The right mathematics for describing Dirac's formalism appeared by the in-
vention of the theory of distributions in the fifties, and the concept of Gel'fand triplets and the nuc-
lear spectral theorem in the sixties, which make sense of the complete system of eigenvectors of self-
adjoint operators with continuous spectrum. The discovery of these beautiful mathematical theories 
was inspired by Dirac's heuristic ideas. 

This book not only gives a clear exposition of the mathematics of the Rigged Hilbert space 
formulation of Dirac's approach to quantum mechanics, in a languagage accessible to physicists, 
but also presents interesting physical applications concerning decaying states and resonances, by 
using the concept of Gamow vectors. 

The reviewer recommends this volume to everybody interested in quantum mechanics, especi-
ally to graduate students studying physics or functional analysis, and university instructors lecturing 
on quantum mechanics. 

László Fehér (Szeged) 

David M. Burton, Elementary Number Theory (second edition), X V I I + 450 pages, Wm. C. 
Brown Publisher, Dubuque, Iowa, 1989. 

The theory of numbers has occupied a unique position in the world of mathematics. This posi-
tion is due to several facts, e.g., it has an unquestioned historical importance, it has several easily 
formulated but hardly solvable problems (this is the reason why it arises the interest of many ama-
teurs), it is one of the best subjects for early mathematical instruction. We share Gauss' opinion, 
,'Mathematics is the Queen of science, and number theory the Queen of mathematics". 

The elementary number theory is an integral part of almost all undergraduate mathematical 
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curriculum, therefore several textbooks are available on this topic. Nevertheless, Burton's very 
readable book is unique in some sense among them. 

In each chapter we can read a historical introduction or/and they end with a historical outline. 
Evoking a nice old practice, we can find a pearl of quotation from mathematicians, philosophers or 
writers at the top of every chapter. There are problems at the ends of the chapters (the total amount is 
about 600) ranging in difficulty from the purely mechanical to challenging theoretical questions. 
They form an integral part of the text, to require the reader's active participation. 

This second edition is an enlarged version of the first one (Allyn and Bacon, 1980). The substan-
tial changes are an entirely new section on cryptography, the enlargement of the section on Fermat 
numbers, introduction of a variety of new topics, e.g., Merten's conjecture, absolute semiprimes, 
amicable number pairs, and primes in arithmetical progression. Some 150 additional problems are 
also included. 

The first nine chapters (Some Preliminary Considerations, Divisibility Theory in the Integers, 
Primes and Their Distribution, The Theory of Congruences, Fermat's Theorem, Number-Theoretic 
Functions, Euler's Generalization of Fermat's Theorem, Primitive Roots and Indices, The Quadratic 
Reciprocity Law) can be used as a basic material of a one semester course. The additional four chap-
ters (Perfect Numbers, The Fermat's Conjecture, Representation of Integers as Sums of Squares, 
Fibonacci Numbers and Continued Fractions) are independent of each other. They may be taken 
up at pleasure. Despite of the material is mostly classical, there are several hints to modern results, 
too (only in the second edition). Among the five appendices there are an outline of the prime number 
theorem and answers to selected problems. 

This well-organized textbook is warmly recommended to any undergraduate number theory 
course. 

Lajos Klukovits (Szeged) 

Categorical Methods in Computer Science, Edited by H. Ehrig, H. Herrlich, H.-J. Kreowski 
and G. Preuss (Lectures Notes in Computer Science, 393), V I + 350 pages, Springer-Verlag, Berlin— 
Heidelberg—New York, 1989. 

This volume contains the papers presented at the International Workshop on Categorical 
Methods in Computer Science with Aspects from Topology held in Berlin in September 1988. The 
material is organized into three parts. The following quotation is from the Preface. " In part 1 we 
have collected papers concerning categorical foundations and fundamental concepts from category 
theory in computer science. Applications of categorical methods to algebraic specification languages 
and techniques, data types, data bases, programming, and process specifications are presented in 
part 2. The papers on categorical aspects from topology in part 3 mainly concentrate on special 
adjoint situations like cartesian closedness, Galois connections, reflections, and coreflections, which 
are of growing interest in categorical topology and computer science." 

The volume can be recommended to those interested in categorical methods in computer 
science. 

Z. Esik (Szeged) 

Collected papers of Paul Túrán, Edited by P. Erdős. 3 Volumes, X X X V I I I + 2665 pages. Akadé-
miai Kiadó, Budapest, 1990. 

Paul Túrán was born in 1910 in Budapest, Hungary. He died in 1976. He achieved a remarkably 
prolific career with publishing two books and 246 papers. The three volumes of his collected works 
contain the collection of most of his papers (some of them written to very specific audience were 
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omitted). Many of the earlier papers are in German bacause the works were reproduced photocopi-
cally, a process that amplifies the immense variety of Turán's work. The exceptions to this are only 
the papers written in Hungarian that were translated to English. Naturally, his books about the 
power sum method invented by him in 1938 are not included in the list, but there are many research 
papers dealing with the method and its applications. 

The main areas in which Túrán worked are as follows: power sum method and its applications 
(some 70 papers), analytic number theory (cc. 60 p.), elementary number theory (15 p.), function 
theory (22 p.), approximation theory and interpolation (34 p.), Fourier series (8 p.), differential 
equations (11 p.), statistical group theory (18 p.), combinatorics (16 p.), numerical solutions of 
equations (10 p.), polynomials (8 p.). 

Also included are some most interesting writings discussing the lifelong achievements of L. 
Fejér (his master), P. Erdős (his lifelong friend and coauthor), K. Rényi, A. Rényi, A. Baker (for 
Fields Medal), S. Knapowski (his student and coauthor), S. Ramanujan and young Hungarian 
mathematicians that were the victims of fascism. He himself was in a nazi labour camp during second 
world war, where he initiated extremal graph theory. One can read about this in two affectionate 
obituaries contained in volume I by P. Erdős and G. Halász. 

Turán's works have initiated several new directions and stimulated the research of an enor-
mous number of mathematicians, so it is natural that in many areas there have been new develop-
ments since the publications of his results. Therefore it is most appropriate that the collected works 
contain many mathematical notes written by L. Alpár, P. Erdős, G. Halász, J. Pintz, M. Simonovits, 
J. Szabados, M. Szalay and P. Vértesi on the progress in the subjects of the different papers. Unfortu-
nately no list of these notes is included although it would have made easier for the reader to keep 
trac of these developments. 

Paul Turán's collected papers are not the type of books that one would read from the beginning 
to the end, although I found it impossible to quickly paging through the volumes because quite often a 
title, a formula or a problem caught my eyes that forced me to read further. I am certain that brow-
sing among Turán's papers will be truly enjoyable for every mathematician even if his or her field 
is completely different. N o library can afford to miss these volumes, and for many of us it will be 
very pleasant to have them on our bookshelf. 

Vilmos Totik (Szeged) 

R. Courant—F. John, Introduction to Calculus and Analysis, Vol. I, XXIII + 661 pages; Vol. II, 
XX I I I + 954 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo— 
Hong Kong, 1989. 

Although the first volume of this book was originally published in 1969 and the second one in 
1974 it remained one of the best textbooks introducing several generations of mathematicians to 
higher mathematics. This book leads the students to the heart of the mathematical analysis preparing 
them for an active application of their knowledge. The main goal of this book is to exhibit the inter-
action between mathematical analysis and its various applications emphasizing the role of intuition 
furthermore the importance of the union of intuitive imagination and deductive reasoning. Numerous 
examples and problems are given at the end of the chapters. Some are challenging, some even diffi-
cult; most of them supplement the material in the text. The book is adressed to students on various 
level, to mathematicians and engineers. Volume I contains among others the following chapters: 
Integral, and Differential Calculus; The Techniques of Calculus; Applications in Physics and Geo-
metry; Taylor's Expansion; Infinite Sums and Products; Trigonometric Series; Differential Equa-
tions. 
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The most characteristic chapters of Volume II are: Functions of Several Variables and Their 
Derivatives; Vectors, Matrices, Linear Transformations; Applications; Multiple Integrals; Rela-
tions Between Surface and Volume Integrals; Differential Equations; Functions of Complex 
Variable. 

This excellent book is highly recommended both to instructors and students. 

J. Németh (Szeged) 

CSL '88, Edited by E. Börger, H. Kleine Büning and M. M. Richter (2nd Workshop on Com-
puter Science Logic, Duisburg, FRG, October 1988), Proceedings. (Lectures Notes in Computer 
Science, 385), V I + 399 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1989. 

This volume is a collection of 24 papers presented at the workshop "Computer Science Logic" 
held in Duisburg, from October 3 to 7, 1988. The papers cover a broad class of topics ranging from 
logical aspects of computational complexity to the acceptance of co-regular languages under various 
fairness constrains. Below we briefly discuss three contributions of particular interest to the reviewer. 

In the paper "Characterizing complexity classes by general recursive definitions in higher ty-
pes" by A. Goerdth, it is proved that recursive definitions of rank n +1 correspond to the complexity 
class U ( D T I M E ( e x p „ ( p ( x ) ) ) : p(x) a polynomial). Consequently, due to a hierarchy theorem of 
complexity classes, rank n recursive definitions form a proper hierarchy. 

Star-free regular languages have attracted a lot of interest in theoretical computer science. By 
McNaughton's theorem, star-free regular sets are exactly those definable by some first-order sentence 
in a suitably chosen language. The paper "Interval temporal logic and star-free expressions" by 
D. Lippert relates star-free languages and a generalisation thereof to interval temporal logic, a kind 
of logic introduced for the specification of digital circuits. 

Automata and tree automata have continued to play an important role in establishing decida-
bility of certain logics. In the paper "On the emptiness problem of tree automata and completeness 
of modal logics of programs" by H. Wagner, it is proved that the non-emptiness problem of alternat-
ing tree automata is /"-complete. This result is then used to show that the satisfiability problem of 
Propositional Dynamic Logic with a repeat construct is EXPTIME-complete. 

The volume can be recommended to those interested in recent research in logical aspects of 
theoretical computer science. 

Z . Ésik (Szeged) 

Gerald A. Edgar, Measure, Topology, and Fractal Geometry, (Undergraduate Texts in Mathe-
matics), + 230 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo— 
Hong Kong, 1990. 

Nowdays the fractals are in the center of the scientists' interest. Since Benoit Mandelbrot estab-
lished the notion and phylosophy of fractals, quite a lot of books were published on this subject. 

Now here is a mathematics book about fractals. The authors' main aim was to give a systematic 
discussion of the topological and measure theoretical background and to present the most important 
ideas of fractal geometry. 

In Chapter 1 the most basic examples of fractal sets are introduced, such as the Cantor set, the 
Sierpinski Gasket, the Koch curve, to motivate the "whole story". Chapter 2 is a very good introduc-
tion to the topology of metric spaces and Chapter 3 contains the basics of topological dimension 
theory (small and large inductive dimensions). Chapter 4 is devoted to the complete and detailed dis-
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cussion of the self-similarity and the more general "graph self-similarity". Here can be found the 
description of iterated function systems which is an efficient way of generating fractal sets, discovered 
is recent years by Michael Barnsley. In Chapter 5 the Lebesgue measure and the general methods of 
generating outer measures and measures are discussed. In Chapter 6 the Hausdorff measure and the 
Hausdorff dimension are introduced and various fractal dimensions are compared to each other. 
Finally in Chapter 7 some additional topics are discussed. 

Each section contains several exercises for practicing the use of the notions and theorems. The 
book is written in a nice style illustrated by a lot of figures. 

This text is recommended to students as a first course on fractal geometry but it may be useful 
to anybody who is interested in the rigorous mathematical background of fractals. 

J. Kineses (Szeged) 

Bernard d'Espagnat, Reality and the Physicist. Knowledge, duration and the quantum world, 
280 pages, Cambridge University Press, Cambridge—New York—New Rochelle—Melbourne—-
Sydney, 1989. 

Since the very beginning of this science, quantum mechanics has always been a source and a 
field of philosophical debates. The founders of this discipline were fully aware of the fact, that the 
results of quantum theory are in sharp contradiction with the concepts of classical mechanics. They 
revealed, that microscopic objects are strongly influenced by the measuring apparatus, and the term 
of physical phenomenon makes sense only, if we take into account the whole apparatus that produces 
a result of an observation. This process is a kind of collapse, in which the original state of the system 
changes radically and irreversibly. According to the orthodox view, this final step takes place in the 
mind of the observer, which is in contradiction with realism, with the principle of the existence of in-
dependent reality. For a long time physicists gave up the idea of digging more deeply into such ques-
tions, regarding them to belong to the field of philosophy. They rather made use of the calculation 
rules of quantum physics, which proved to be a very succesful theory. 

The debate has been showing a revival in recent years, because it turned out, that the conse-
quences of most simple and logical assertions about a physical system can be put into the form of 
inequalities (the Bell inequalities), the validity of which can be tested by (much less simple) experi-
ments. And the experiments show, that these most plausible inequalities are violated, while the pre-
dictions of quantum mechanics are confirmed. The novelty of these experiments lies in the fact, that 
the collapse manifests itself on a macroscopic scale, when the "parts" of a single quantum system are 
several meters apart. 

The book, whose author is a well-known theoretical physicist and philosopher, is intended to 
clear up the situation, stating as precisely as possible the different views on this problem. It is out of 
question, that d'Espagnat enriches the concept of independent reality and its relation to physical 
observations. He places his own views somewhere between those of the positivists and the materia-
lists. The book concentrates on the philosophical aspects of the issue, and almost totally avoids the 
mathematical technicalities, as well as the description of physical experiments. This is certainly a 
merit, because the book can be recommended to everybody, interested in natural philosophy and the 
fundamental problems of the material world. Nevertheless, I would propose that the reader should 
get acquainted with the article by the same author in the Scientific American (vol. 241, p. 158, 1979), 
where some part of the background is explained in simple terms. This paper, as well as a short 
synopsis of more recent experimental work, might have been added as an appendix to the text. But 
anyway, there are a plenty of deep and interesting thoughts in this book, and it enforces us to think 
over: how absurd independent reality can be on the quantum level. 

M. G. Benedict (Szeged) 
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H. Gross, Quadratic Forms in Infinite Dimensional Vector Spaces (Progress in Mathematics, 
1), XXII + 419 pages, Birkhauser, Boston—Basel—Stuttgart, 1979. 

Well, one can say this book is old (ten years have gone since its publication) but I think no one 
can say it is absolete. Although many new results have born in the last decade, for example H. A. 
Keller's non classical Hilbert space (Math. Z. 172, 41—49), most of the more important results until 
1979 are collected in this book together with the directions of the present researches. Its clear style 
and carefully considered built up makes it still the best book in the subject in my opinion. 

The contents of the book are gathered around some important notions and theorems. These are 
the sesquilinear forms, the diagonalization of N0-forms, the Witt decomposition for Hermitean 
N o - f o r m s , the quadratic forms and the theorems of Witt an Arf. Every sections are written almost just 
like a paper closed with specific reference list and some of them with appendix. This helps the reader 
very well. 

I think this book should be on the shelf of every mathematician who makes research on this 
subject. 

Arpdd Kurusa (Szeged) 

Gunther Hammerlin—Karl-Heinz Hoffmann, Numerische Mathematik, XII + 448 pages, Springer-
Verlag, Berlin—Heidelberg—New York (Grundwissen Mathematik, B. 7), 1989. 

This book offers all the material of the customary one-year introductory courses and a lot of 
extras. 

Its main merit is the clear and intelligent mathematical treatment of the problems. There are 
numerous consize proofs, illuminating examples and fascinating historical remarks throughout the 
text. 

Even the first Chapter on numerical calculations and algorithms contains supplements on back-
ward error analysis branch-and-bound algorithms and complexity issues. 

In Chapters 2 and 3 Numerical Linear Algebra, i.e., Systems of Linear Equations and the Eigen-
value Problem are treated. 

The main body of the book follows: Chapter 4: Approximation, Chapter 5: Interpolation and 
Chapter 6: Splines. In this part the standard topics are investigated with deep mathematical insight. 
Moreover, the questions of the (two and) finite dimensional interpolation and approximation are 
touched on. 

Chapter 7: Integration starts with the elementary interpolation quadrature rules, extrapolation 
methods and departs to the special issues of optimal quadrature rules and Monte Carlo methods. 

Chapter 8: Iteration gives the basic material on iteration methods for systems of linear and 
nonlinear equations. 

The final Chapter 9: Linear Programming traces out the theoretical background the different 
variants of the Simplex Method and ends with the polynomial algorithms of Karmarkar and Kha-
chyan. 

A Guide on General Literature, an Index and 270 not-only-routine exercises complete this 
valuable book. It can be recommended to anybody who wants to get a general overview of the spirit 
and the methods of the Numerical Analysis. 

J. Virdgh (Szeged) 
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Micha Hofri, Probabilistic Analysis of Algorithms (Text and Monographs in Computer Science), 
XV+240 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987. 

To analyse of an algorithm there are two different basic methods. One of them has the objective 
to find the running time of the algorithm operation in the worst-case in the term of some specified 
function. 

In the other one the operations of algorithms are shown to be associated with probabilistic 
concepts and processes. In this sense there are two subclasses: On one hand there are explicitly in-
troduced operations in the algorithm and they are choosed on the basis of random elements (pseudo-
random numbers, simulated coin flipping etc.). On the other hand we have the operations of a deter-
ministic algorithm and we consider the input data over which some probability measure can be sti-
pulated. 

Among the algorithms for which the book provides detailed analyses, the reader finds examples 
of both varieties. Chapter 1 shows that the second type brings up methodological and conceptual 
problems that the first case need not entail. Since the probabilistic analysis of algorithms, as a discipli-
ne, draws on a fair number of mathematics Chapter 2 is dealing with some of them as introduction to 
asymptotics, generating functions, integral transforms, combinatorial calculus, asymptotics from 
generating functions and some selected results from probability theory. 

The remining part of the book gives applications. Chapter 3 presents algorithms over permu-
tations (locating the largest term in a permutation, representations of permutations, analysis of 
sorting algorithms). Chapter 4 contains algorithms for communications network, and Chapter 5 is 
dealing with bin packing problems. 

This is a good book which is recommended to all people who are working in the given fields. 

G. Galambos (Szeged) 

Irregularities of Partitions, Edited by G. Halász and V. T. Sós (Algorithms and Combinatorics, 
8), V I I I + 168 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 
1989. 

The problem of uniform distribution of sequences has now become an important part of num-
ber theory, and this is also true for Ramsey theory in relation to combinatorics. This volume is the 
homogeneous account of a workshop held at Fertőd in Hungary. Participants discussed the recent 
emergence of close links between Ramsey theory in combinatorics and the theory of uniform distri-
bution in number theory. 

The titles and authors of papers are: J. Beck and W. W. L. Chen: Irregularities of Point Distri-
butions Relative to Convex Polygons; J. Beck and J. Spencer: Balancing Matrices with Line Shifts 
II; M. Cochand and P. Duchet: A Few Remarks on Orientation of Graphs and Ramsey Theory; 
P. Erdős, A. Sárközy and V. T. Sós: On a Conjecture of Roth and Some Related Problems I; Ph. 
Flajolet, P. Kirschenhofer and R. F. Tichy; Discrepancy of Sequences in Discrete Spaces; P. Franki, 
R. L. Graham and V. Rödl: On the Distribution of Monochromatic Configurations; A. Gyárfás: 
Covering Complete Graphs by Monochromatic Paths; H. Lefmann: Canonical Partition Behavior 
of Cantor Spaces; L. Lovász and K. Vesztergombi: Extremal Problems for Discrepancy; J. H. 
Loxton: Spectral Studies of Automata; M. Mendes France: A Diophantine Problem; J. Nesetril 
and P. Pudlák: A Note on Boolean Dimension of Posets; Zs. Tuza: Intersection Properties and 
Extremal Problems for Set Systems; G. Wagner: On an Imbalance Problem in the Theory of Point 
Distribution. 

Z. Blázsik (Szeged) 



208 Bibliographie 

W. Klingenberg, Lineare Algebra und Geometrie, zweite verbesserte Auflage, X I I I + 293 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990. 

This book consists of ten chapters. The material of the first five chapters has an algebraic cha-
racter. In accordance with the didactical motivation, the text starts with an exposition of the classical 
algebraic structures: groups, rings and fields. Then moduls and vector spaces, basis systems, dimen-
sion of vector spaces and dual spaces are defined. Matrices are first formally defined and then the 
connection between matrices and linear operators is showed. Solution of linear equation systems and 
the notion of determinants are also given. At the end of the algebraic part eigenvalues and normal 
forms of linear operators are discussed and as an application linear differential equation systems are 
investigated. With the sixth chapter starts the geometric part. First normed vector spaces are intro-
duced. Affin and projectiv spaces are considered over general finite dimensional vector spaces. If the 
finite dimensional vector space is endowed with an euclidean norm, then the affin space over this 
one supplies the euclidean, the projectiv space supplies the elliptic geometry. If the vector space is 
endowed with a Lorenz metric, then the afline space over this supplies the hyperbolic geometry. The 
main theorem of the affin and projectiv spaces with which the general collineations are characterized 
is completed with Staudt theorem concerning bijections of a projectiv line. 

L. Geher (Szeged) 

R. Kress, Linear Integral Equations (Applied Mathematical Sciences, 82), X I + 299 pages. 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989. 

Sometimes the classical theory of integral equations serves as an introduction to the abstract 
theory of compact operators, on the other hand the theory of integral equations is derived as an 
important application of the operator theory. Mostly the numerical methods are treated separately. 

The aim of the author of this book is to attach the same value on the theory, the application 
and on the numerical methods. This is a considerable task from scientific and pedagogical aspects as 
well. Integral equations are useful for engineers, too. Therefore it is desirable that the work should be 
readable for them. So presenting a modem introduction one cannot begin by saying "you must have 
solid backgrounds in differential and integral calculus, in differential equations, in complex function 
theory, in functional analysis, in numerical methods" and so on. (Something like this is often presu-
med implicitly.) The author of this book relies on bases which — I think:— are expectable from trai-
ned readers. Some useful and necessary topics are briefly presented. 

Roughly speaking the work consists of four main fields: the Riesz—Fredholm theory for in-
tegral equations of the second kind; the classical applications (Laplace and heat equation, singular 
integral equations); introduction to the numerical solution of the equations and finally, ill-posed 
integral equations of the first kind. These are done in 18 chapters. 

The proofs are clear, detailed in a suitable manner. In several cases the considerations are 
more elementary and straightforward than as customary. 

As an example let us quote here the outline of the third chapter. This consists of three points: 
Riesz theory for compact operators (in my opinion remarks which may be found for example here 
such as "The main importance of the results of the Riesz theory for compact operators lies in the 
fact that we can conclude existence from uniqueness as in the case of finite dimensional linear equa-
tions." are valuable for the readers; Spectral theory for compact operators (the former results in 
terms of spectral analysis); Volterra integral equations (the result is formulated in the classical way 
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and also in terms of spectral theory). Finally, as at the end of the other chapters as well we find inte-
resting problems without solutions but with hints in some cases. 

I am sure that after reading this book everyone will like integral equations a bit better which was 
indeed the author's aim. 

L. Pintér (Szeged 

Y. A. Kubyshin—J. M . Mourao—G. Rudolph—I. P. Volobujev, Dimensional Reduction of 
Gauge Theories, Spontaneous Compactification and Model Building, (Lecture Notes in Physics, 349), 
X + 8 0 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong 
Kong, 1989. 

At present there is a general agreement among physicists that the experimental facts of particle 
physics are correctly reproduced by the so called standard model. The most challenging problem of 
theoretical particle physics is to produce a theory unifying the Weinberg-Salam-Glashow model of 
the electroweak force with the quantum chromodynamics describing the strong interaction, and, if 
possible, describing gravity as well. The dimensional reduction approach to this problem presented 
in this monograph is a modern version of the ideas put forward by T. Kaluza and O. Klein in the 
twenties. 

In the first part of the book the authors discuss the dimensional reduction of pure Yang-Mills 
theories. In particular, they present a general method for calculating the scalar potential. The second 
part is devoted to the dimensional reduction of gravity and to spontaneous compactification. In the 
final part matter fiels and some aspects of model building are considered. 

Throughout the book, the authors make extensive use of homogeneous spaces of Lie groups 
and connections on fibre bundles. They exhibit the global aspects of the dimensional reduction me-
thod and give all the important formulae in local terms as well. 

It seems that till now nobody suceeded in constructing a model describing the fundamental 
interactions in a unified scheme, which is satisfactory in all respects. The dimensional reduction 
approach to constructing such a model deserves further investigation. This book is primarily intended 
for researchers and graduate students working on this program. It is also recommended to physicists 
and mathematicians interested in unified field theories and in applications of differential geometry. 

László Fehér (Szeged) 

Serge Lang, Undergraduate Algebra (Undergraduate Text in Mathematics.), I X + 256 pages, 
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987. 

The book is a second part of an algebra program which is addressed to undergraduates. The 
theme of Chapter 1 is the set of the real numbers. After some basic properties such important defi-
nitions are introduced as the greatest common divisor, the unique prime factorization and the equi-
valence relations and congruences. The next two Chapters are dealing with the groups and rings with 
general definitions on mappings, the homomorphisms and automorphisms. Among the groups the 
permutation groups, the cyclic groups and the finite Abelian groups are studied in details. In the 
Chapter on rings there are mentioned some basic theorems on their homomorphisms. In Chapter 4 
the polynomials are considered. The Euclidean Algorithm, the greatest common divisor, the unique 
factorization and the partial fractions are introduced. The Chapter is closed by examinations on 
polynomials over the integers, the principial rings and the factorial rings. Vector spaces and modules 
are considered in Chapter 5. After some basic definitions (vector space, subspace, generators, basis, 
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homomorphism, kernel) some theorems are presented on the dimension of a vector space. Subsec-
tions are dealing with the linear maps, the modules, the factor modules and the free Abelian groups. 

For familiar readers have been suggested the next two Chapters which are dealing with some 
linear groups as the general linear group ( G L „ ( K ) ) . Theorems are introduced for the structure of 
GLz(F) and SLZ(F). The Chapter 7 considers the elements of Field Theory: embeddings, splitting 
fields are mentioned. Basic theorems on the Galois Theory are given. In Chapter 8 the finite fields 
are considered. Chapter 9 introduces some theorems on the real and complex numbers, and the book 
is closed with the examinations on the sets. In this section such well-known theorems are considered 
as the Zorn-Lemma and the Schroeder—Bernstein Theorem. 

This book is an elementary text in the Algebra and so a lot of examples are introduced together 
with the development of the abstractions. The author intended to write a self contained book. The 
aim has been obtained. 

G. Galambos (Szeged) 

W. Y. Lick, Difference Equations from Differential Equations (Lecture Notes in Engineering), 
X + 282 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989. 

In mathematical physics and in other branches of the practical problems the first task is to 
construct a correct model. (Of course every model has some imperfection.) In mechanics one gene-
rally obtains a differential equation. The investigation of the obtained equation is twofolded. By 
using qualitative methods one gets general properties of the solutions and on the other hand we try to 
present the solution or an approximation of the solution in an explicit form. In general this is done 
by translation of the differential equation into accurate, stable and physically realistic difference 
equation and the investigation of this task is the aim of the author. 

There are several methods to form difference equations from differential equations. A brief and 
clear survey of these methods can be found in the Preface. The advantages and disadvantages of 
every single method are enumerated. In the author's opinion the volume integral method seems to be 
superior to other methods, therefore this is the primary method used in this book. The application of 
this single procedure makes the work easier to understand and at the same time it gives more possi-
bility for deriving new and improved difference equations. 

The book consists of five chapters. In the first four ones the volume integral method is applied 
for ordinary and partial differential equations. (Parabolic, hyperbolic and elliptic partial differential 
equations are treated separately.) Chapter 5 contains the applications of the ideas and algorithms 
treated formerly for special problems. Let us list them: currents in aquatic systems; the transport of 
fine-grained sediments in aquatic systems; chemical vapor deposition; free-surface flows around 
submerged or floating bodies. 

The text is clearly written and well-organized. The emphasis on the important role of the basic 
physical problem is a characteristic feature of the investigations. 

In my opinion this book is valuable not only for phisicists, engineers and computer scientists 
but for mathematicians who are interested in the qualitative theory of differential equations, as well. 

L. Pintér (Szeged) 

D. Lüst—S. Theisen, Lectures on String Theory, (Lecture Notes in Physics 346), V I I I + 346 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1989. 

In the past few years string theory has been one of the most active areas of theoretical, mathe-
matical physics. Although its relevance for explaining the mysteries of Nature still has not been pro-
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ven, there can not be áriy doubt at all that it greatly contributed to the interaction of mathematics 
and physics. For'example, string theory played an important role in the development of conformal 
field theory, which involves the fascinating mathematics of the Kac-Moody and the Virasoro algebras. 

This introduction to string theory is an expánded version of the lectures given by the authors at 
the Max-Planck-Iiistitut für Physik und Astrophysik in Munich in fall and winter 1987/1988. The 
authors present a standard introduction to the bosonic and fermionic strings in the critical dimen-
sions, and give a detailed description of the covariant lattice construction of four-dimensional hete-
rotic strings. They give a clear introduction to conformal field theory, including the supersymmetric 
version, and emphasize its role in constructing four-dimensional strings. 

This book will prove useful for graduate students and researchers interested in string theory and 
is warmly recommended. 

László Fehér (Szeged) 

Mathematical Logic and Applications, Edited by J. Shinoda, T. A. Slaman and T. Tugué (Lec-
ture Notes in Mathematics, 1388), 222 pages, Springer-Verlag, New York—Berlin—Heidelberg— 
London—Paris—Tokyo—Hong Kong, 1989. 

These are the proceedings of the '87th Meeting on Mathematical Logic and its Applications 
held at the Research Institute of Mathematical Science's of Kyoto University during August 3—6, 
1987. The authors are C. T. Chong, Y. Kakuda, H. Katsutani, S. Kobayashi, M. Shimoda, J. Shino-
da and T. A. Slaman, T. A. Slaman and W. H. Woodin, T. Yamakami and M. Yasugi. 

Vilmos Totik (Szeged) 

Meyberg-Vachenauer, Höhere Mathematik 1. Differential — und Integralrechnung Vektor — 
and Matrizenrechnung, X I V + 517 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo—Hong Kong, 1990. 

The text is divided into eight chapters. The first chapter is of introductory character. Here the 
real and complex numbers, vectors, lines and planes are introduced. In the second chapter the limit 
of number sequence, the limit value and continuity of functions of one variable are defined. The 
third chapter is devoted to developing the differentiation theory of functions and its applications-
At the end of this chapter the exponential and logarithm functions are introduced and discussed. 
Chapter 4 deals with the integration theory of functions and applies the theory for determining the 
length of a curve, the area of a rotation surface and the volume of a rotation body. Numerical in. 
tegration is also shortly discussed. Chapter 5 introduces the concept of convergence of number 
series and function series. The power series and especially the Taylor series are examined in detail. 
Chapter 6 is a glimpse into linear algebra, where the usual notions and theorems are given. Chapter 7 
investigates functions of several variables, defines the differentiation of such functions and finally 
develops the differentiation theory of functions with vector values. Chapter 8 treats the theory of 
integration of functions of two and three variables and the theory of line and surface integration. 

The book is recommended to students in the first two semesters. 
L. Gehér (Szeged) 

Angelo B. Mingarelli—S. Gotskalk Halvorsen, Non-Oscillation Domains of Differential Equa-
tions with Two Parameters (Lecture Notes in Mathematics 1338), XI+109 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988. 

Nowadays the literature of the qualitative theory of the linear second order ordinary differen-
tial equations fills almost a whole library. To find some new and interesting result is not an easy 
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task. In this book the authors present an important problem, new results and open questions. The 
starting point is the investigations of R. A. Moore on the equation y + ( — a + p • B(x))y=0 (1), 
where a, fi are real parameters, the function B is continuous, periodic of period one and has mean 
value equals to zero. Several well-known equations (Hill, Mathieu etc.) are of this form with various 
B. Equation (1) will be called disconjugate on R if and only if every nontrivial solution has at most 
one zero in R. (1) will be called non-oscillatory on R if and only if every nontrivial solution has at 
most a finite number of zeros in R. The pairs (<*,/?)€BP for which (1) is disconjugate resp. non-
oscilatory constitute the disconjugacy domain resp. nonoscillation domain of (1) and these sets are 
denoted by D resp. N. Moore proved that D=N and N is a closed, convex unbounded set. The 
main problem of this book is the investigation of sets D and N of the equation y+(—a • A(x)-r 
+0 • B(x))y—0, where x is nonnegative, the functions A, B are Lebesgue integrable on every 
compact subset of the nonnegative reals. In cases treated in this work D is colsed, convex, bounded 
or unbounded set, DczN, N is convex, but N is not always closed. Naturally more interesting 
questions arise on D and TV and their connections. Chapter headings are: Introduction, Scalar linear 
ordinary differential equations; Linear vector ordinary differential equations; Scalar Volterra— 
Stieltjes integral equations. 

From the style of this work it seems to me that the authors do not take the topic as their own 
hunting-field and they would not mind if somebody else should solve some of their problems. 

L. Pintér (Szeged) 

J. D. Murray, Mathematical Biology (Biomathematics, 19), XIV+767 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989. 

The most intensive development of sciences can, to my mind, be waited in the biology. One of 
the good omens of this is that more and more biological models are constructed and investigated by 
mathematical methods. This is the way that creates a good possibility of the interaction of mathe-
matical and biological researches and the established involvement would be useful not only for the 
development of biology, but the mathematics itself should benefit from this connection. 

Murray's new book takes an inspiring influence on the involvement of these two sciences. It 
contains a lot of models from several branches of the biology, for example from the population 
ecology, reaction kinetics, biological oscillators, the developmental biology, the evolution, the 
epidemology and so on. The most important biological laws of studied phenomena can be found in 
it; therefore, the reader will attain a great practice in modelling of biology. 

To understand and follow this book, no serious preliminary biological knowledges are needed. 
The reader has to be familiar only with the basic calculus and differential equations. The authors have 
involved only deterministic models described by ordinary differential equations, delay equations, 
integro-differential equations, partial differential equations and their discrete analogies. The used 
mathematical tools, as such as the catalogue of singularities in the plane, Poincare-Bendixson theo-
rem, Routh—Hurwitz conditions, Juri conditions, Hopf bifurcation theorem, the properties of Lap-
lacian operators in bounded domains are collected in an appendix that is a great help to the reader. 

The book contains simpler and more particular models, too. So, on the one hand this book is 
an excellent handbook for investigators working in the field of biomathematical modelling. The rea-
son is not only that it provides a good survey on deterministic models of the biology, but its style 
is suitable for giving inspirations for further researches. On the other hand, the simpler models in 
the book assure possibility to use it as an introduction for beginer scientific workers in this branch and 
also in the teaching differential equations. 
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The book is easy-to-read. The clearness is assured by numerous figures, diagrams. At the same 
time, the style is deeply interesting since the results obtained by theoretical methods are compared 
with experimental dates. 

The book is recommended to specialists in biomathematics, differential equations, to biologists 
interested in mathematics, and to graduated students in mathematics and biology. 

J. Terjéki (Szeged) 

New Integrals, Proceedings. Coleraine 1988. Edited by P. S. Bullen, P. Y. Lee, J. L. Mawlin, 
P. Muldowney and W. F. Pfeffer (Lecture Notes in Mathematics, 1419), 202 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990. 

In recognition of the pioneering work done by Ralph Henstock in the field of post-Lebesgue 
integration theory, the 1988 Summer Symposium on Real Analysis was held in Coleraine. The papers 
in this volume cover current research in generalised Riemann, Denjoy and Perron integration. The 15 
papers contained in this volume are written by R. Henstock, P. S. Bullen, T. S. Chew, S. F. L. de 
Foglio, C. Pierson-Gorez, J. Kurzweil and J. Jarnik, S. Leader, P. Y. Lee, P. Maritz, P. Muldowney, 
P. Mikusinski and K. Ostaszewski, W. F. Pfeffer, V. A . Skvortsov, J. D . Stegeman. 

The wide range ensures that everybody interested in integral theory will find at least one paper 
of his own interest. 

/. Németh (Szeged) 

Number Theory and Dynamical Systems (London Mathematical Society Lecture Note Series, 
134), Edited by M. M. Dodson and J. A. G. Vickers, 172 pages, Cambridge University Press, Cam-
bridge—New York—Port Chester—Melbourne—Sydney, 1989. 

Fifty years ago the title of this book would have been a great surprise. Nowadays number theory 
appears in various branches of practical applications. Therefore the connection of number theory 
and dynamical systems is not so astonishing, but at the same time it invariably holds that the com-
bination of various branches produces significant results. 

In connection with number theory and dynamical systems let us mention only two facts. One is 
the Kolmogorov—Arnold—Moser theorem concerning the question of stability of the solar system. 
The other is Furstenberg's proof of Szemerédi's theorem on arbitrarily long arithmetic progressions 
in infinite integer sequences. But we could cite several other examples, too. 

This book consists of contributions from a Conference on Number Theory and Dynamical 
Systems held at the University of York in 1987. Perhaps a little characterizing are the addresses of 
the contributions: H. Rüssmann: Non-degeneracy in the perturbation theory of integrable dynamical 
systems; J. A. G . Vickers: Infinite dimensional inverse function theorems and small divisors; S. J. 
Patterson: Metric Diophantine approximation of quadratic forms; Caroline Series: Symbolic 
dynamics and Diophantine equations; S. G. Dani: On badly approximate numbers, Schmidt 
games and bounded orbits of flows; S. Raghavan and R. Weissauer: Estimates for Fourier coeffi-
cients of cusp forms; K. J. Falconer: The integral geometry of fractals; J. Harrison: Geometry of 
algebraic continued fractals; Michel Mendes Frances: Chaos implies confusion; J. V. Armitage: 
The Riemann hypothesis and the Hamiltonian of a quantum mechanical system. 

Not only researchers in dynamical systems or in number theory can find interesting ideas in 
this volume but every curious mathematician, too. 

L. Pintér (Szeged) 
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Numerical Methods for Ordinary Differential Equations, Proceedings of the Workshop held in 
L'Aquila, 1987. Edited by A. Bellen, C. W . Gear and E. Russo (Lecture Notes in Mathematics, 
1368), VII+136 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1989. 

This slim volume contains the following 8 invited lectures of the Workshop. C. Baiocchi: 
Stability in Linear Abstract Differential Equations. — A. Bellen: Parallelism Across the Steps for 
Difference and Differential Equations. — D. D i Lena, D. Trigiante: On the Spectrum of Families 
of Matrices with Applications to Stability Problems. — C. W. Gear: DAEs; ODEs with Constraints 
and Invarianst. — P. J. van der Houwen, B. P. Sommeijer, G. Pontrelli: A Comparative Study of 
Chebyshev Acceleration and Residue Smoothing in the Solution of Nonlinear Elliptic Difference 
Equations. — O. Nevanlinna: A NoteonPicard—LindelofIteration. — S. P. Norsett, H. H. Si-
monsen: Aspects of Parallel Runge—Kutta Methods. — L. F. Shampine: Tolerance Proportionality 
in ODE Codes. 

In these research and survey papers the connections between the classical background of 
numerical initial value ODE methods and new reserarch aras such as differential-algebraic equations, 
effective stepsize control and parallel ODE solver algorithms for small — and large — scale parallel 
architectures are investigated. 

This volume may be of interest to researchers and graduate students in the ODE field. 

J. Viragh (Szeged) 

G. Nürnberg, Approximation by Spline Functions, X I + 243 pages, Springer-Verlag, Berlin— 
Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989. 

Splines play an important role in applied mathematics since they possess high flexibility to 
approximate efficiently, even nonsmooth functions which are given explicitly or only implicitly, e.g. 
by differential equations. 

The aim of this book is to deal with basic theoretical and numerical aspects of interpolation and 
best approximation by polynomial splines in one variable. 

In Chapter I basicly the unique solvability of interpolation problems for Chebyshev spaces is 
invesitgated, furthermore the construction of interpolating polynomials is given, and the best appro-
ximation by functions from Chebyshev spaces in the uniform norm, Z^-norm, X2-norm is detailed. 

Chapter II is devoted to the following main topics: Weak Chebyshev Spaces; B-Splines; Inter-
polation by Splines (for example Lagrange and Hermite Interpolation by Splines); Best Uniform 
Approximation by Splines (Algorithms with fixed knots and free knots are detailed); Best Lx-
Approximation by Weak Chebyshev spaces; Best One-Sided -Approximation by Weak Chebyshev 
Spaces and Quadrature Formulas; Approximation of Linear Functionals and Splines. From Appen-
dix' the section on Splines in Two Variables should be mentioned. The fact that a large number of 
new results presented in this book cannot be found in earlier books on spline makes it really valu-
able one. 

This excellent book can be very useful for graduate courses on splines or approximation theory. 
Only basic knowledge of analysis and linear algebra is supposed. 

The book is warmly recommended to everybody interested in approximation theory. 

J. Németh (Szeged) 
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Ortogonal Polynomials, Theory and Practice, Edited by P. Nevai with the assistance of M. E. H. 
Ismail, ( N A T O ASI Series C., 294) xi+472 pages, Kluwer Academic Publishers, Dodrecht, 1990. 

A N A T O Advanced Study Conference was organized by P. Nevai during May 22, 1989 and 
June 3, 1989 in Columbus, Ohio on "Orthogonal Polynomials and Their Applications". The volume 
under review contains the proceedings of this conference. Most of the leading researchers of the 
theory of orthogonal polynomials and related subjects that live east or west of the USSR attended 
the conference, so its proceedings provide up to date insight of current research, the available methods 
and applications. 

Two main parts can be distinguished in the book: there are papers the primary aim of which is 
to introduce the readers to applications of orthogonal polynomials, while others are dealing mainly 
with the extension of the theory. A few papers can be considered to belong to both parts. The theo-
retical papers can further be classified as those dealing with the algebraic aspects of the theory and 
the relation of orthogonal polynomials to special functions and combinatorics, while others discuss 
the analytic properties of orthogonal polynomials. 

Among the applications and interrelation with other branches of mathematics are: coding theory 
and algebraic combinatorics (E. Bannai), Padé approximation and Julia sets (D. Bessis), digital signal 
processing (P. Delsarte and Y. Genin), functional analysis (J. Dombrowski), numerical analysis (W. 
Gautschi), Schroedinger equation (R. Haydock), birth and death processes (M. Ismail, J. Letessier, 
D. M. Masson and G. Valent), Hopf algebras and quantum groups (T. Koornwinder), group repre-
sentation (D. Stanton). 

A sketchy list of the topics dealing mainly with questions of the theory is the following: charac-
terization theorems for orthogonal polynomials (W. A. Salam), three term recurrence relations and 
spectral properties (T. S. Chihara; W. Van Assche), rational function extensions on the unit circle 
(M. M. Djrbashian), special functions and symbolic computer algebraic systems (G. Gasper), mo-
ment problems and orthogonal polynomials with respect to exponential weights (D. Lubinsky), 
root systems (I. G. Macdonald), extensions of the beta integral (M. Rahman), orthogonal matrix 
polynomials (L. Rodman), complex methods (E. B. Saff), potential theory and /i-th root asymptotics 
(H. Stahl and V. Totik). 

This excellent book should serve as a standard reference for researchers in the field, but it can 
also be recommended to students because many of the papers are of introductory nature. 

Vilmos Totik (Szeged) 

Gilles Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in 
Mathematics, +250 pages, Cambridge University Press, Cambridge—London—New York—Port 
Chester—Melbourne—Sydney, 1989. 

During the last decade, considerable progress was achieved in the Local Theory, i.e. the part of 
Banach Space Theory which uses finite dimensional tools to study infinite dimensional spaces. One of 
the leading schools of this subject is the Israel Seminar on Geometric Aspects of Functional Analysis 
(three Springer Lecture Notes volumes mark their works). The author of the present book is an out-
standing researcher of this topic. The aim of this book is to present a self-contained discussion of a 
number of recent results. A very powerful method is introduced which is a combination of the classi-
cal theory of convex sets, probability theory and approximation theory. One of the main ideas is to 
get quantitative versions of theorems on convex bodies. For example the quantitative version of the 
famous result of Dvoretzky, due to V. D. Milman, is the following: 
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Let B be the unit ball of an n-dimensional Banach space. Given e>0 , there exists a subspace 
F with dimension [(p(e) log n] (<p(.e) > 0 depending only on e) and an ellipsoid DczF such that 

D c (1+« )Z ) . 

The book is divided into two parts. The object of the first part (Chapters 1 to 9) is to give detait 
led proofs of three fundamental results: 

(I) The quotient of subspace Theorem due to Milman: For each 0<<5< 1 there is a con-
stant C=C{5) such that every n-dimensional normed space admits a quotient of a sub-
pace F=EJE1 (with EiczE1cE) with dimension dim F^Sn which is C-isomorphic 
to a Euclidean space. 

(II) The inverse Santalo inequality due to Bourgain and Milman: There are positive constants 
a and /? (independent of n) such that for all balls ficR" we have 

a/« s (vol (B ) vol (B°)y/n /?/«. 

(The upper bound goes back to a 1949 article by Santalo.) 

(III) The inverse Brunn—Minkowski inequality due to Milman: Two balls B1,B1 in R" can 
always be transformed (by a volume preserving linear isomorphism) into balls 3 l t B2 

which satisfy 
vol(B,+.B2)1/n =5 C[vol (B1 )1 /"+vol C§2)1/n] 

where C is a numerical constant independent of n. Moreover, the polars B\, and all 
their multiples also satisfy a similar inequalty. 

The second part (Chapters 10 to 15) is devoted to the discussion of recently introduced classes 
of Banach spaces of weak cotype 2 and weak type 2 and the intersection of these classes, the weak 
Hilbert spaces. 

The book is recommended to researchers in functional analysis but it may be useful to convex 
geometers, too. 

J. Kineses (Szeged) 

Philip Protter, Stochastic Integration and Differential Equation. A New Approach (Application 
of Mathematics, 21), X+302 pages, Springer-Verlag, Berlin—Heidelberg—New York—London— 
Paris—Tokyo—Hong Kong, 1990. 

The novelty of this introductory book is that the author defines a semimartingale as a stochastic 
process wich is a "good integrator" on an elementary class of processes, rather than as a process 
of general Walsh series is equivalent to the study that can be written as the sum of a local martingale 
and a finite variation process. 

At first an intuitive Riemann-type definition of the stochastic integral as the limit of sums is 
given for the adapted processes having left continuous paths with right limits. This is sufficient to 
prove many theorems including Ito's formula. Then it is shown that the "good integrator" defini-
tion of a semimartingale is equivalent to the usual one and a general theory of semimartingales are 
developed. Finally, the author extends the stochastic integral by continuity to predictable integrands, 
making the stochastic integral a Lebesgue-type integral. These integrands give rise to a presentation 
of the theory of semimartingale local times. The book is concluded by an introduction to stochastic 
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differential equations and to the theory of flows (existence and uniqueness of solutions, stability, 
Markov nature of solutions). 

The book allows a rapid introduction to some of the deepest theorems of the subject. It is 
highly recommended both to instructors and students in probability and statistics. 

L. Hatvani (Szeged) 

^-Series and Partitions, Edited by D. Stanton (The I M A Volumes in mathematics and its 
applications, 18), X + 212 pages, Springer-Verlag, New York—Berlin—Heidelberg—London-
Paris—Tokyo—Hong Kong, 1989. 

This is the Proceedings of the Workshop on ^-Series and Partitions held at the Institute for 
Mathematics and its Applications, Minnesota, U S A on March 7—11, 1988. It contains up to date 
research papers on ^-series, unimodality, (/-special functions and (/-orthogonal polynomials. 

What is a (-/-series? In the theory of partitions it is customary to write q as the argument in 
the generating functions, but many "ordinary" objects in mathematics have their ^-analogues. For 

example the ^-analogue of the binmial coefficient is 

( l - < 7 ) ( l - < ? 2 ) - ( ! - < / " ) 
(\-q)(\-q*)...{\-q«){\-q)(\-q*)...(\-q"-k) 

(note that for q-+1 — 0 we get back the original definition of the binomial coefficient). G. Gasper's 
paper in the proceedings under review discusses many such «/-analogues. 

Identities in terms of q-series often have interpretation in terms of partitions. Perhaps one of the 
most famous ^-identities are the two Rogers—Ramanujan identities the first of which reads as 

- q^ - 1 
1 + nil ( l - </ ) ( l - </ 2 ) . . . ( l - q") ~ £ ( l - V + 1 ) ( l -</5 » + 4) " 

What does this have to do with partitions? If we look at the coefficiens of q" on both sides then 
this identity has the interpretation that the partitions of n into parts which differ by at least 2 are 
equinumerous with the partitions of n into parts congruent + 1 modulo 5 (try to verify this "transla-
tion"; there is twist in the proof!). G. Andrews's paper discusses diffeent proofs of the Rogers— 
Ramanujan identities. The paper by D. Zeilberger attempts to classify identities with regard to 
computer time required for their verification using computer algebra. Computers and symbolic 
computations appear in other papers in the proceedings, as well. 

The papers by D. M. Bressoud, F. M. Goodman and K. M. O'Hara, D. Zeilberger and I. G. 
Macdonald are related with the recent combinatorial proof of K. M. O'Hara for the unimodality of 
the Gaussian polynomials, which asserts that the coefficients in the polynomials 

(1-</)... ( l -</*) 

are increasing up to a point and decreasing after that. Earlier proofs used very advanced techniques 
and even K. M. O'Hara's proof was rather involved. Using her ideas a relatively simple elementary 
proof can be found in Zeilberger's and Macdonald's papers. 
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The papers by F. G. Garvan, L. Habsinger and D. St. P. Richards discuss integrals in several 
variables and their ^-analogues that are related to Selberg's integral 

f n ^ - C - y y - i n ^ r , 77 n a + i n - t ) c ) n b + {n-i)c)rQc+ 1) 
[o,i]»1=1 < = 1 r(a + b + (2n — i— l)c)r(c+1) 

where * = ( > , , ..., x„) and D(x)= /7 (Xj-xt) is the Vandermonde determinant. 
i<j 

D. Stanton writes on an elementary approach to the Macdonald identities which expand pro-
ducts of the form 

II (\~e°) 
ÍJ2-0 
fl£S 

as certain sums. 
The volume ends with four papers by R. Askey, I. M. Gessel, M. H. Ismail and W. Miller, 

about orthogonal polynomials, their zeros and recurrence coefficients and their ^-analogues (such as 
4-Hermite polynomials). 

The book under review is an excellent source for a flourishing and very exciting area and can 
be recommended both to researchers and to advanced students in analysis, combinatorics and 
number theory. 

Vilmos Totik (Szeged) 

Rewriting Techniques and Applications, Proceedings, Chapel Hill 1989. Edited by Nachum 
Dershowitz (Lecture Notes in Computer Science 355), V I I + 579 pages, Springer-Verlag, Berlin— 
Heidelberg—New York, 1989. 

This volume contains the proceedings of the Third International Conference on Rewriting 
Techniques and Applications (RTA—89). The conference was held April 3—5, 1989, in Chapel Hill, 
North Caroline, U.S.A. 

This book contains 34 papers in the following areas: Term rewriting systems, Conditional rew-
riting, Graph rewriting and grammars, Algebraic semantics, Equational reasoning, Lambda and 
combinatory calculi, Symbolic and algebraic computation, Equational programming languages, 
Completion procedures, Rewrite-based theorem proving, Unification and matching algorithms 
Term-based architectures. 

Also included in this volume are short description of a' dozen of the implemented equational 
reasoning systems demonstrated at the meeting. 

This book is recommended to everybody working in the theory of Rewrite Systems. 

Sándor Vágvölgyi (Szeged) 

F. Scliipp—W. R. Wade—P. Simon (with the assistance from J. Pál), Walsh series, an intro-
duction to dynamic harmonic analysis, X+560 pages, Akadémiai Kiadó, Budapest, 1990. 

The Walsh system is the simplest nontrivial model for harmonic analysis but shares many pro-
perties with the trigonometric system. It has been used to solve some fundamental problems in 
analysis, e.g., the basis problem. It has played a role in the development of other areas of mathematics, 
e.g., the fundamental theorem of martingales was proved first by Paley for the Walsh system. 

The Walsh functions can be applied in many situations, among others, in data transmission, 
image enhancement, pattern recognition, etc. Since the Walsh functions take on only the values + 1 
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and — 1, they are easy to implement on high speed computers and can be used with very little storage 
space. 

This is the first systematic and detailed exposition of the subject, from the foundations up to 
the most recent results, including many which were not previously published. The book can serve 
both as an excellent reference book and as a textbook. The reader is merely assumed to be familiar 
with the notion of and basic theorems on Lebesgue integration. Except for this material, concepts are 
developed as needed and the book is nearly self-contained. In particular, it is accessible to beginning 
graduate students and doctoral candidates in various specialities in mathematics and engineering. 

The abundance and variety of the material presented in the book makes an exhausting descrip-
tion in a short review quite impossible. Thus, we can only comment on the general plan of the book, 
and mention some samples of the most characteristic results contained. 

Chapter 1 contains a systematic account of the dyadic group, the definition of the Walsh 
functions in various enumerations, such as they were introduced by Walsh in 1923, by Paley in 
1932, and by Kaczmarz in 1948. Separate sections are devoted to the transformations and rearrange-
ments of the Walsh system, showing, in particular, that the Haar and Walsh systems are Hadamard 
transforms of each other; to Walsh—Fourier series, the Walsh—Dirichlet kernel, Walsh—Fejér 
kernel, dyadic derivative, and Cesáro summability. 

The first half of Chapter 2 presents results which estimate the growth order of Walsh-Fourier 
coefficients for various classes of functions, e.g., Lp functions, continuous functions, etc., while the 
second half identifies conditions sufficient for pointwise convergence and absolute convergence of 
Walsh—Fourier series. 

The Walsh functions provide a vehicle to link harmonic analysis and probability theory. The 
basic tool in this interrelation is the dyadic martingales which play an important role in the develop-
ment of new spaces such as the dyadic Hardy spaces and dyadic B M O (=bounded mean oscillation). 
These results are dealt with in Chapter 3. Dyadic Hardy spaces are characterized in two ways: by 
means of martingale maximal function and of the atomic decomposition. It then proceeds to give an 
account of duality relations. Among others, H'0 (the dual of H0, i.e., the collection of bounded linear 
functionals of HB) is isometric and homeomorphic to BMO, and V M O ' (=vanishing mean oscilla-
tion) is isometric and homeomorphic to H0, whereas the proofs are heavily relied on the dyadic 
version of the famous Fefferman inequality. The chapter ends with the study of martingale trees, i.e., 
martingales indexed by the tree-like collection of dyadic intervals. By introducing these nonlinear 
martingales and generalizing the Burkholder—Gundy theory of martingale transforms, the reader 
sees that the inequalities of Khintchin, Paley, and Sjólin as well as a.e. convergence of Walsh-
Fourier series are all parts of a general theory of nonlinear martingale transforms. 

Chapter 4 is devoted to study of convergence in ¿/-norm, p s l , and uniform convergence of 
Walsh—Fourier series. The treatment of summability of Walsh—Fourier series in homogeneous 
Banach spaces and of sets of divergence is a certain adaptation of the corresponding technique deve-
loped by Kahane and Katznelson. Likewise, the adjustment of an integrable function /on a set of 
small measure in order to obtain a new function whose Walsh—Fourier series converges uniformly 
is modelled after Menshov's celebrated one for trigonometric series. 

The first part of Chapter 5 touches the problem of approximation by Walsh polynomials. 
In great lines, it follows the trigonometric analogue. The major part of Chapter 5, however, presents 
the Haar, Walsh, Faber— Schauder, Franklin, and Ciesielski systems as bases and identifies for each 
of them the subspace of V- in which the given system is a basis. By indexing the Haar and Franklin 
systems in a natural way to make them nonlinear sequences, the authors find that the corresponding 
canonical isomorphisms induce explicit isomorphisms from the dyadic Hardy spaces and dyadic 
B M O to their classical trigonometric counterparts. This approach gives a natural way to get classical 
results from dyadic ones and vice versa. Then the authors show that the Haar and Franklin systems 



220 Bibliographie 

are equivalent bases in LP for 1 On the other hand, it turns out that the trigonometric 
and Walsh—Paley system are not equivalent bases in Lp for except for p = 2 . Finally, 
they also answer the long-standing problem of Banach by constructing a separable Banach space, 
similar in spirit to the dyadic Hardy space, which fails to have a basis. However, their decisive step 
in the construction is due to Enflo. 

In Chapter 6 the authors collect several sufficient conditions ensuring the a.e. convergence of a 
Walsh-Fourier series. Using the notion of the so-called logarithm spaces, the sharpest result is due to 
Sjolin which says: If /€L log + L l og + l og + L, then the Walsh—Fourier series of/converges a.e. 
Then they prove the Walsh analogue of the famous Kolmogorov example of divergent Fourier 
series. On the other hand, the Walsh—Fourier series of an integrable function is Cesáro summable 
a.e. This is proved by exploiting the intimate connection between summability and pointwise dyadic 
derivative. 

A fundamental problem in the theory of general Walsh series is the problem of uniqueness. To 
go into details, a set £ is called a U-set (set of uniqueness) if every Walsh series converging to 0 out-
side E vanishes identically. Otherwise, E is called an M-set (set of multiplicity). It follows that 
every countable set is a U-set, while every set of positive measure is an M-set. Thus, it remains a 
delicate problem, not yet solved, to distinguish among sets of measure zero not normally made in 
Lebesgue analysis. The up-to-date approach of Chapter 7 is based on the observation that the study 
of general Walsh series is equivalent to the study of Walsh—Fourier—Stieltjes series of quasi-
measures (i.e., finitely additive, real-valued set functions) defined on the dyadic intervals. This allows 
certain problems to be recast as measure theoretic questions. In some cases this perception pro-
vides simple explanations of known results, while in other cases it gives new insight into the nature 
of the problem itself. For example, the fact that no Walsh series can diverge to + ~ on a set of 
positive measure is a reflection of the fact that a quasimeasure is either a.e. differentiable or has 
upper derivative and lower derivative — <» a.e. 

Chapter 8 is dedicated to the problem of representing measurable functions by Walsh series. 
This is connected with the term by term dyadic differentiation and the behavior of Walsh series 
with monotone coefficients, where a Sidon type inequality proved jointly by Schipp and the reviewer 
plays a crucial role. Then the representation problem is considered here in the more general frame-
work of normalized convergence systems studied mainly by Talaljan. 

Chapter 9 treats the questions of the Walsh—Fourier transform, which is the counterpart of the 
classical (trigonometric) Fourier transform. The fast Walsh transform seems to be more appropriate 
to implement on a computer than the fast Fourier transform. The inverse dyadic derivative plays a 
central role in the treatment. The various applications of the Walsh functions are only outlined, 
since several books have been written about them. For further reading we suggest the books by 
H. F. Harmuth, K. G. Beauchamp, C. A. Bass, M. Maqusi, etc. 

Each chapter ends with Exercises ranging from fairly routine applications of the text material 
to those that extend the coverage of the book. For the reader's convenience there are seven Appendi-
ces containing a number of auxiliary topics at the end of the book. Historical Notes to each chapter 
separately, References to about 450 papers or books, Author, Subject, and Notational Index comp-
lete the book. 

The book is carefully and accurately written. The presentation is concise but always clear and 
well-readable. 

Finally, may the reviewer venture to express his particular desire to take some time a second 
volume in his hands comprising the latest research done in the field of multiple Walsh 
series as well as providing a rigorous mathematical treatment of the concrete questions occurring in 
the vast and diverse field of pratical applications. The reviewer's hope is that all this enormously 
arge material in the authors' unified presentation would prove to be more accessible to anyone in-
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terested in dyadic harmonic analysis. Of course, this desire does not affect the value of this almost 
perfect work at all. 

To sum up, this book fills in a gap in the literature. It provides in a polished form a rich and 
up-to-date material of a fast-growing field whose significance is becoming basic for practice. It is-
perhaps not exaggerated to assert that this book is of fundamental importance for everybody who' 
wants to keep pace with modern developments in the Dyadic and Classical Analysis. 

Ferenc Móricz (Szeged)' 

C. L. Siegel, Lectures on the Geometry of Numbers, X+160 pages, Springer- Verlag, Berlin— 
Heidelberg—New York, 1989. 

This is the printed version of Siegel's lectures at New York University during 1945—46. The-
original notes by B. Friedman were rewritten by K. Chandrasekharan with the assistance of R. Suter. 

"Geometry of Numbers" is a subject dealing mainly with lattices and their points in prescribed 
sets in Rn. Its fundamental theorem is Minkowski's First Theorem: A convex body in Rn, having a 
centre at the origin and having a volume larger than 2", must contain at least one point other than 
the origin with integer coordinates. The first chapter of the book is devoted to this theorem and its 
generalization involving the so called successive minima of even gauge functions. 

The second chapter starts out with the discussion of vector groups which are nothing else than 
the subgroups of the additive group of Rn. Discerte vector groups correspond to lattices and so to 
matrices. Such concepts as basis, ranks, characters duals etc. are treated in detail. As an application 
of the duality theorem Kronecker's approximation theorem is proved together with one-of its gene-
ralization. Further applications are given concerning periods of real and complex functions, parquets 
formed by parallelepipeds. The rest of the chapter deals with the minimum of products of linear 
forms and of positive definite quadratic forms on lattice points different from the origin. The exact 
minimum value in R- is determined and it yields a proof of Hurwitz' theorem according to which to 
every irrational a there are infinitely many pairs (p, q) of integers with 

P 
a 

1 

1 

fiq"' 

A lattice is a geometric object but for its analytic description we use matrices. Several matrices 
correspond to the same lattice and these are connected by unimodular transformations. In other 
words, several lattices have the same set of points as a geometrical entity and it would be advanta-
geous to single out one lattice from the class of all lattices which are equivalent under a unimodular 
transformation. The problem of finding such a representative for every class of equivalent lattices is 
called the problem of reductions, and Chapter III is devoted to the theory of reduction. Some appli-
cations, as for instance closest packing in two, three and four dimensions are also covered. 

The lectures on the geometry of numbers provide an excellent source of learning for under-
graduate and graduate students and the book can serve as a basis for a course in the field. Some of the 
lectures contain more material than what is appropriate for a single lecture, so the active participa-
tion of the students seems to be absolutely necessary if one would like to keep up with the pace sug-
gested by the table of contents. The only criticism I make is that some of the proofs are unnecessarily 
detailed and some parts of Chapter III may seem to be more specialized and less exciting for an 
average reader than the material in the first two chapters. 

Vilmos Totik (Szeged) 
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R. Silhol, Real Algebraic Surfaces (Lecture Notes in Mathematics, 1392), X+215 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989. 

If a book is written by a specialist then it is in a great danger of becoming too dry or too special 
for a general reader. Fortunately this book has avoided these trips inspite of the fact that its subject is 
far away from the basics of mathematics. 

The basic idea in this book is to consider the real algebraic surfaces and to regard them as 
complex algebraic varieties with an antiholomorphic involution. From this point of view there are 
two classes of the real algebraic surfaces as the Galois group Gal (C|R) on H*(X(C, Z)) determi-
nes or only estimates the dimension of H*(X(R), Z/2). The previous type of the surfaces, such as 
rational surfaces and Abelian surfaces etc., are under a detailed analysis in this book. The main 
result is the complete classification of these surfaces. 

We have to mention two great advantages of the book finally. First of all the two introductory 
chapters are extremely useful because they make really possible to read the book for non-specialists 
and graduate students in algebraic geometry. Also the examples throughout the book are useful to 
understand better the new notions. 

Árpád Kurusa (Szeged) 

James K. Stayer, Linear Programming and Its Applications (Undergraduate Texts in Mathema-
tics), X I I + 265 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo— 
Hong Kong, 1989. 

This book is devoted to serve as an introductory text in linear programming. It is divided into 
two main parts. 

The first part consisting of four chapters deals with methods for solving general linear program-
ming problems. Chapter 1 exhibits the usual geometrical representation which is a good preparation 
for the later texts. The canonical forms are considered in Chapter 2 and the classical Dantzig's 
simplex algorithm is given as a solving method. The general problem of linear programming is trea-
ted in Chapter 3, and different methods are presented to solve it. Finally, Chapter 4 discusses the 
theory of duality showing the connection between the problems of maximization and minimization. 

The second part presents several applications related to linear programming. Firstly, Chapter 5 
deals with the two-person zero-sum matrix games. Such traditional applications of linear program-
ming as transportation and assignment problems are treated in Chapter 6, and as solving algorithms 
the stepping stone method and the Hungarian method are given, respectively. Finally, Chapter 7 
deals with networks. Algorithms are presented to solve the network-flow problem, the shortest-path 
network problem and the minimal-cost-flow network problem. 

The book is well-written. It contains a rich collection of examples and exercises. Every algo-
rithm is illustrated in a step-by-step manner. It can be recommended as an excellent text for an intro-
ductory course in linear programming. 

B. Imreh (Szeged) 

John Still well, Mathematics and Its History (Undergraduate Texts in Mathematics), X + 371 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1989. 

At almost all universities mathematics students are those who never get a course in mathema-
tics. They get several separate courses such as calculus, algebra, geometry, topology and so on, and 
our usual teaching method seems to prevent these different topics from being combined in to a 



Bibliographie 223 

whole. Therefore there are several important questions which are not discussed in the proper place, 
e.g., the fundamental theorem of algebra, because that is analysis. Thus, if students are to feel they 
really know mathematics by the time they graduate, there is a need to unify the subject. This feeling 
is very important for future teachers of mathematics. A course on the history of mathematics does 
not take this job. 

This book has grown from a course given to senior undergraduates at Monash University. The 
selection of the material has been a success. It covers almost all topics of primary importance. The 
emphasis is on history as a method for unifying and motivating mathematics. The twenty chapters 
are the following: The Theorem of Pythagoras, Greek Geometry, Greek Number Theory, Infinity 
in Greek Mathematics, Polynomial Equations, Analitic Geometry, Projective Geometry, Calculus, 
Infinite Series, The Revival of Number Theory, Elliptic Functions, Mechanics, Complex Numbers in 
Algebra, Complex Numbers and Curves, Complex Numbers and Functions, Differential Geometry, 
Noneuclidean Geometry, Group Theory, Topology, Sets, Logic, and Computation. 

This is not a book on the history of mathematics, therefore it uses modern notations. This is 
debatable only in the first glance. For those readers, who want to read the original texts, there is a 
long reference at the end of the volume. 

In each chapter we can find biographical notes and well selected exercises. 
We warmly recommend this gap-filling book to any undergraduate course of mathematics, 

especially to teachers of mathematics. 
Lajos Kulkovits (Szeged) 

Josef Stoer, Numerisbe Mathematik I (Springer Lehrbuch), X I I + 314 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1989. 

A brief comparison to the previous English translation (Stoer—Bulirsch, Introduction to Nume-
rical Analysis, Springer-Verlag, 1980) reveals two major changes beside a few technical updates. 

Chapter 2 on interpolation has a comprehensive supplement on the formal properties and a 
simple recurrence relation of B-splines. 

The second addition in Chapter 4 shows the pecularities of sparse matrix techniques. Effi-
cient pivoting and storage schemes are demonstrated for the sparse Cholesky factorisation algorithm. 

The standards of this book stand comparison with most new textbooks and, in the reviewer's 
opinion, this latest edition will not be the last one. 

J. Viragh (Szeged) 

J.-O. Stromberg—A. Torchinsky, Weighted Hardy Spaces, (Lecture Notes in Mathematics 
1381), IV+193 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo— 
Hong Kong, 1989. 

The development of harmonic analysis in the last few years has been centered around spaces of 
functions of bounded mean oscillation and the weighted inequalities for classical operators. The main 
goal of this book is to further develop some results in this topic in the general setting of the weighted 
Hardy spaces and to discuss some applications. The authors derive mean value inequalities for wa-
velet transforms and introduce halfspace techniques with, for example, nontangential maximal func-
tions and ^-functions. This leads to several equivalent definitions of the weighted Hardy spaces. 
Fourier multipliers and singular integral operators are applied to the weighted Hardy spaces and 
complex interpolation is considered. 
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Rich bibliography helps the reader in going back to the origin of the research of this topic. 
Apparently the book covers the whole spectrum of papers dealing with these very important spaces. 

The book is highly recommended to research workers interested in the modern harmonic ana-
lysis. 

J. Németh (Szeged) 

J. L. Balcazar—J. Diaz—J. Gabarro, Structural Complexity I, (EATCS Monographs on 
Theoretical Computer Science, 11), IX+191 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1988. 

There are many different yet related studies in the complexity of algorithms. The subject of 
structural complexity takes an abstract view of the complexity of computation by looking for in-
herent mathematical structures inside the problem classes. Many concepts of structural complexity 
originate in recursion theory, as is clearly demonstrated in the present book. 

The first two chapters are included for the sake of completeness and to broaden the accessibi-
lity of the volume. Chapter 1 provides a brief exposition of models of computation, such as finite 
automata, and several versions of Turing machines. Some elementary properties of languages that 
represent decision problems and classes of languages are discussed. The main purpose is to explain 
the basic notions and to present a formalism for the remainder of the book. Enough references are 
provided for those who want a deeper background on the material covered in this chapter. 

Chapter 2 starts with a survey of the rate of growth of functions and is followed by a discussion 
of the running time and work space of Turing machines. Some basic results are presented, e.g. the 
linear speed-up theorem and the tape compression theorem. 

Then, after a thorough treatment of time and space constructible functions, complexity classes 
are defined in a general setting. This chapter ends with some simulation results, such as Savitch's 
theorem. 

Central complexity classes form the subject matter of Chapter 3. Polynomial time (many-one) 
reducibility and logarithmic space reducibility are defined and related concepts (completeness, hard-
ness, etc.) are discussed. Some well-known NP-complete problems are presented and QBF is 
shown to be PSPACE-complete. A separate section is devoted to padding arguments, which 
provide a useful tool for establishing inequalities between complexity classes. 

Other types of reducibilities, namely polynomial time Turing reducibility and SN-reducibi-
lity are studied in Chapter 4, giving rise to relativizations of complexity classes. SN-reducibility is 
then related to self-reducible sets. 

Finite sets can be accepted by deterministic finite automata in constant time with no work 
space whatsoever. The "intrinsically algorithmic approach" taken in preceding chapters thus fails 
when dealing with finite sets. The "uniform" approach of Chapter 5 measures the sizes of the algo-
rithms accepting finite sets and associates with an infinite set the growth of the sizes of the algorithms 
that accept initial segments of the set. The unifying concept of "advice" functions is then used to 
relate the two approaches. Boolean complexity fits nicely in this framework. 

The average case behavior of algorithms has become a topic of increasing interest in recent 
years. By using pseudo-random number generators, it is possible to design algorithms that solve 
problems with a reasonable rate of probability. Accordingly, Chapter 6 provides a glimpse of 
probabilistic algorithms. A basic theory of probabilistic complexity classes is developed. 

A number of studies in complexity theory depend on the assumption that P ^ N P . Uniform 
diagonalization provides a powerful technique to prove e.g. that there are incomplete problems in 
NP—P, assuming that P^NP. Uniform diagonalization and its applications are discussed in 
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Chapter 7. The last chapter deals with the polynomial time hierarchy, the polynomial analogue of 
Kleene's hierarchy. 

The book is well-written, the presentation of the material is sufficiently clear. The necessary 
prerequisites are a basic knowledge of automata and formal languages. Some acquaintance with 
recursion theory might be helpful. Each chapter ends with detailed bibliographical remarks and a 
number of exercises. The book can very well serve as a text for a graduate course in structural com-
plexity. 

Z. Esik (Szeged) 

Aimo Torn—Antanas Zilinskas, Global Optimization (Lecture Notes in Computer Science, 350), 
X+255 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989. 

Global optimization is a part of nonlinear programming: it is aimed at solving nonlinear opti-
mization problems with many local minima. This problem is in general unsolvable, if the algorithm 
is based only on the evaluation of the objective function and its derivatives. Although such problems 
are rather frequent in practice, the traditional approach of the users is to accept the first local mini-
mum found as an estimate of the global minimum. 

The book by Torn and Zilinskas was the first to cover the broad field of global optimization. 
Since its publishing, some other volumes have been available, dealing mainly with different sub-
problems of global optimization (such as deterministic and stochastic methods). 

After the definition and characterization of the global optimization problem, the book dis-
cusses the covering, the clustering and the random search methods, the method of generalized de-
scent and the algorithms based on statistical models of the objective function. Testing is a crucial 
part of the evaluation of global optimization methods, since their reliability has to be measured 
somehow. The book devotes a section to questions arising in testing and applications. The test results 
are collected very carefully, thus the reader looking for a suitable method can rely on the tables given 
by the authors. 

It must be mentioned that spelling errors make the text somewhat difficult to read. An exten-
sive bibliography of more than 400 references completes the book. 

The volume can be warmly recommended (beyond experts of the field) to everyone who must 
solve nonlinear optimization problems that can be multiextremal. 

T. Csendes (Szeged) 

L. Trave—A. Titli—A. Tarras, Large Scala Systems: Decentralization, Structure Constrainst 
and Fixed Modes (Lecture Notes in Control and Information Sciences, 120), XIV+384 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1989. 

The models of the present day technological, environmental and societal processes are of 
high dimensions and complexity, which makes impossible to use the classical mathematical tools 
developed for system analysis and control. This book gives an excellent survey on the new tech-
niques for the large scale systems characterized by a huge number of input and output variables on 
subsystems which are generally geographically distributed. 

Chapter 1 presents an overview of the well-known results around the problem of stabilization 
and pole assignment of linear time — invariant dynamic systems subjected to centralized control. 
Chapter 2 deals with these problems when a specified restricted information pattern is required, 
which constraints the feedback control structure. Chapter 3 gives the different existing characteri-
zations of fixed modes, namely characterizations in term of transmission zeros of subsystems, char-

is 
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acterization in time-domain and in the frequency-domain, and graph-theoretic characterizations. 
In Chapter 4 it is shown that systems with unstable non structurally fixed modes can be stabilized by 
using time varying or non-linear feedback control laws which preserves the feedback structure cons-
traints. Chapter 5 presents the different available methods for the design of an appropriate feedback 
control structure. Chapter 6 considers the problem of the synthesis of feedback gains under struc-
tural constraints. Chapter 7 is devoted to the problem of structural robustness. 

The results are illustrated by significative examples which make easier their understanding. 
Some important algorithms are presented in a collection of program packages. 

This book will be very useful both as a text and as a monograph in the control of large scale 
systems. 

L. Hatvani (Szeged) 

Ferdinand Verhulst, Nonlinear Differential Equations and Dynamical Systems, I X + 277 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo—Hong Kong, 1990. 

Recently the theory and applications of nonlinear differential equations and dynamical sys-
tems have strongly attracted the attention of mathematicians and users of mathematics. The reason 
is that a lot of phenomena in the sciences and economy can be explained by modelling the processes 
by nonlinear differential equations and applying the new results of the nonlinear dynamics to these 
models. It is not easy to get acquainted with these results demanding deep mathematical prerequisites. 
This introductory text bridges the gap between elementary courses in ordinary differential equations 
and the modern research literature in the field of nonlinear dynamics. 

The first part of the book — after giving the basic definitions — deals with the periodic pheno-
mena. The reader can find here a very plastic proof for the Poincare—Bendixson theorem on the 
existence of periodic solutions. The second part is devoted to the stability theory. The third part gives 
an overview on the methods for systems containing a small parameters (perturbation theory, Poin-
care—Lindstedt method, averaging). In the last four chapters, which give the most interesting part of 
the book, more advanced topics like relaxation oscillations, bifurcation theory, chaos in mappings 
and differential equations, Hamiltonian systems are introduced. 

The book is well-written and well-organized. Only the most important proofs are included; 
the results are illustrated by interesting and important examples from the real world. The chapters 
are concluded by exercises (at the end of book the reader gets answers and hints to them). After 
studying this book and solving the exercises the reader will be able to start working on open research 
problems. 

This excellent textbook can be warmly recommended both to beginners and specialists inte-
rested in the modern theory of nonlinear differential equations and its applications. 

L. Hatvani (Szeged) 

Wolfgang Walter, Aanalysis I, zweite Anflage (Grundwissen Mathematic, 3) V I I I + 385 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—Paris—Tokyo—Hong Kong, 1990. Analysis II, 
(Grundwissen Mathematic 4) V I I + 396 pages, Springer-Verlag, Berlin—Heidelberg—New York—• 
Paris—Tokyo—Hong Kong, 1990. 

The first volume consists of three parts. The first part summarizes the basic knowledges about 
real numbers, mathematical induction and polynomials. The second part introduces the concept of 
convergence of sequences and series of real numbers, defines the limit and continuity of functions, 
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discusses power series and elementary transcendent functions. At the end of this part the complex 
numbers and functions are introduced. The third part is devoted to Riemannian integral and dif-
ferentiation of functions. A lot of applications can also be found here. This part ends with comple-
mentary notes. 

The second volume is divided into 10 paragraphs. The text starts with the introduction of metric 
spaces, basic topological concepts and continuity of functions in metric spaces. Then the differen-
tiation theory of functions of several variables, the problem of implicite functions and extremal values 
of functions are developed. The general Moore—Smith convergence is introduced and the Rieman-
nian integral as Moore—Smith limit is showed. The length and differentialgeometric concepts of 
curves are discussed, the equations of motions are developed and the classical two bodies problem is 
solved. A paragraph (the sixth) is devoted to Riemann—Stieltjes integral and line integrals. Two 
paragraphs deal with the Jordan mass, the Riemannian integral in n dimension and the Gauss, 
Green and Stokes integral theorems. The last two paragraphs introduce the Lebesgue integral, the 
Fourier series and develop the Hilbert-space theory of Fourier series. 

The books are highly recommended to students in the first four semesters. 

L. Geher (Szeged) 
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