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Endliche Loops und ihre Unterloopverbände 

HUBERTA LAUSCH 

Die vorliegende Arbeit setzt die bereits in [8] begonnene Untersuchung endlicher 
Loops und ihrer Unterloopverbände fort. Auch hier zeigt sich, daß ohne zusätzliche 
Forderungen an die Struktur der Loops, wie z. B. Potenz- oder Diassoziativität, 
zentrale Nilpotenz etc., kaum Aussagen darüber möglich sind, welche Auswirkungen 
die Struktur des Unterloopverbandes auf die Struktur der Loop hat und umgekehrt. 

Der erste Abschnitt behandelt endliche Loops mit modularen Unterloopver-
bänden und gibt eine vollständige Beschreibung von endlichen Loops mit booleschen 
Unterloopverbänden. Wesentlichstes Ergebnis des zweiten Abschnitts ist, daß 
endliche Loops mit schwach booleschen Unterloopverbänden von (höchstens) zwei 
Elementen erzeugt werden können (Satz 2.1). Abschnitt 3 wendet sich den endlichen 
zentral nilpotenten Loops zu. Beispielsweise erfüllt der Unterloopverband einer 
endlichen zentral nilpotenten Loop stets die Jordan—Dedekind-Kettenbedingung 
(Satz 3.1). 

Der abschließende Abschnitt 4 ist den endlichen kommutativen Moufang-
Loops gewidmet. In Satz 4.1 wird das Resümee aus den bisherigen Ergebnissen 
über endliche kommutative Moufang-Loops und ihre Unterloopverbände gezogen. 
Sodann ergibt sich für endliche kommutative Moufang-Loops mit modularen Un-
terloopverbänden eine interessante Analogie zu den endlichen nilpotenten Gruppen: 
Eine endliche kommutative Moufang-Loop besitzt genau 'dann einen modularen 
Unterloopverband, wenn alle ihre Unterloops quasinormal sind (Korollar 4.4). 
Ferner erhält man für endliche kommutative Moufang-Loops mit modularen 
Unterloopverbänden die schöne Strukturausage, daß die Faktorloop G/Z(G) einer 
derartigen Loop G nach ihrem assoziativen Zentrum Z(G) eine elementar-abelsche 
3-Gruppe ist (Satz 4.7). Endliche kommutative Moufang-Loops mit modularen 
Unterloopverbänden sind also insbesondere nilpotent der Klasse zwei. 

Die Bezeichnungen sind im wesentlichen wie in [3] bzw. [5] gewählt; mit L(G) 
bezeichnen wir den Unterloopverband einer Loop G. 
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1. Loops mit modularen und booleschen Unterloopverbänden 

Für endliche Loops mit modularen Unterloopverbänden kann man keine wirk-
lich schönen Strukturaussagen erwarten, wie bereits die Diskussion spezieller modu-
larer Verbände (projektiver Geometrien) in [8] gezeigt hat. Ganz im Gegensatz zu 
den Gruppen brauchen endliche Loops mit modularen Unterloopverbänden nicht 
direkte Produkte von Unterloops zu sein ; dies belegen die Beispiele 3.2 und 3.3 in 
[8]. Doch spielt (ähnlich wie für Gruppen) die Vertauschbarkeit zweier Unterloops 
einer Loop G eine gewisse Rolle. Zwei Unterloops U, V der Loop G heißen ver-
tauschbar, wenn U\JV=UV=VU gilt, und man nennt eine Unterloop U von G 
quasinormal in G, wenn U mit allen Unterloops von G vertauschbar ist. Auch für 
Loops hat man die folgende, [11, Theorem 5, p. 5] entsprechende Aussage: 

1.1. Satz. Sind zwei Unterloops U, V der Loop G vertauschbar, so gilt für alle 
Unterloops W^ U die modulare Identität (£/UF)fï W= UU(VC\ W). 

Daher besitzen Loops, in denen alle Unterloops quasinormal sind, modulare 
Unterloopverbände. Insbesondere trifft dies für hamiltonsche Loops zu, in denen 
alle Unterloops normal, also erst recht quasinormal sind. 

Für potenzassoziative p-Loops, wo p eine Primzahl ist, gilt : 

1.2. Satz. Sei G eine potenzassoziative p-Loop. Dann bilden die Elemente der 
Ordnung p zusammen mit 1 eine charakteristische Unterloop. Ist G sogar diassoziativ, 
so bilden die Elemente der Ordnung p zusammen mit 1 eine charakteristische kom-
mutative Unterloop. 

Beweis. Seien, a, b£G zwei Element® der Ordnung p. Da L((a, b)) wegen der 
Modularität endliche Länge hat, ist (a, b) endlich. Gäbe es ein Element g£ (a, b) 
der Ordnung p\ 1</€N, so wäre (g) Pi (a)=(g) f] (è)=(1 ). Wegen der Modularität 
von L((a, b)) müßte (g)=(a, b) gelten und (a, b) wäre zyklische Gruppe. Also hat 
jedes von 1 verschiedene Element von (a, b) die Ordnung p, was die erste Behauptung 
zeigt. Für diassoziatives G ist (a, b) nach [11, Proposition 1.7, p. 14] eine Gruppe 
der Ordnung p2, also kommutativ. 

Als Folgerung aus dem obigen Satz ergibt sich, daß alle Elemente einer Ordnung 
^p",.«(EN, einer potenzassoziativen p-Loop G eine charakteristische Unterloop von 
G bilden. 

Nun geben wir eine vollständige Beschreibung endlicher Loops, deren Unter-
loopverbände boolesch, d. h. distributiv und komplementièrt sind. Dazu rekapituli-
eren wir einige wichtige Ergebnisse aus [8j : Endliche Loops (und alle ihre Ünter-
loops) mit distributiven Unterloopverbänden sind monogen. Als Konsequenz davon 
sind potenzassoziative Loops mit distributiven Unterloopverbänden,zyklische Grup-
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pen. Hilfreich ist ferner die Beobachtung, daß die Frattiniunterloop einer Loop mit 
einem komplementierten Unterloopverband trivial ist, vgl. [11, Proposition 1.14, 
p. 26]. Falls der Unterloopverband der Loop G die triviale boolesche Algebra ist, 
sind keine genaueren Aussagen über die Struktur von G möglich, da es für jede 
ungerade natürliche Zahl kS5 eine Loop der Ordnung n ohne echte Unterloops 
gibt, s. [5, p. 93 f.]. Zur Vereinfachung der Schreibweise führen wir die folgende 
Bezeichnung ein: Für Elemente a£G, / ^{1 , ...,w} bezeichne TT a, das 

SZJ 

Produkt aller aj, j£J, in beliebiger Reihenfolge und mit beliebiger Klammerung 
des Produktes. Damit gilt: 

1.3. Satz. Der Unterloopverband einer Loop G ist genau dann eine boolesche 
Algebra der Länge n, wenn n Unterloops Ai=(al), lp^a^Aj, /=1, . . . , n, ohne 
echte Unterloops in G existieren, die paarweise trivialen Durschschnitt haben und für 
welche gilt: 

(a) G={At\i=\, ...,«)=( JI <*!)• i=i,...t» 
(b) Für jede Unterloop (1)^E/<G gibt es eine geeignete Teilmenge Ja {1, ...,«} 

mit U=U Aj={.ll "j). 
(c) Sind U=lTTah und V=(]Jafc) mit J, K<z {1, ...,«} zwei Unterloops 

j'iJ \iK 
von G, so hat man UUV=( JJ aS, UC\V=( ¡J a\ falls JOK^Q und iiJUK r£jnx , 
UDV=( 1) für JDK=0. 

Zum Beweis von Satz 1.3 hat man nur zu beachten, daß der Verband aller 
Teilmengen von {1, ...,«} eine boolesche Algebra der Länge n ist. 

Für potenzassoziative Loops ergibt sich unmittelbar aus [8, Satz 1.2] und [12, 
Corollary 2]: 

1.4. Korol lar . Die endlichen potenzassoziativen Loops mit booleschen Unter-
loopverbänden sind genau die zyklischen Höldergruppen. 

2. Loops mit schwach booleschen Unterloopverbänden 

Der Unterloopverband L(G),einer Loop G heißt schwach boolesch, wenn das 
Intervall [GjA] für jedes Atom A von L(G) boolesch ist. Endliche Loops mit schwach 
booleschen Unterloopverbänden haben die folgende bemerkenswerte Eigenschaft: 

2.1. Satz. Sei G eine endliche Loop mit schwach booleschem Unterloopverband 
L(G). Dann ist G von höchstens zwei Elementen erzeugbar. 

Beweis. Falls es in L{G) genau ein Atom gibt, so ist L(G) offensichtlich dis-
tributiv und G kann nach [8, Satz 1.2] sogar von nur einem Element erzeugt werden. 
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Seien nun Alf ..., An die Atome von L(G). Falls das Intervall [G/̂ 4,] für alle 
i":=l, 7i die boolesche Algebra der Länge 1 ist, so stellt L(G) eine projektive 
Gerade dar und wird daher nach [8, Satz 4.1] von höchstens zwei Elementen erzeugt. 

Ist. für mindestens ein /€{1, ..., n) eine boolesche Algebra der Länge 
/=>: 1, so wird G. bereits von zwei maximalen Unterloops aus [GMJ erzeugt. Sei 
nun At so gewählt, daß [G/Aü eine boolesche Algebra maximaler Länge in L(G) 
ist. Das Atom At wird offenbar von einem Element erzeugt, sei Ai=(ai), 1 r£a£At. 
Nun seien Bj, j=1, ..., m, die Atome von [G/Ai- Dann ist L(Bj), 7=1, ..., m, 
entweder eine Kette der Länge zwei und Bj wird von einem Element bj^Bj, bj§Aiy 
erzeugt, oder Bj ist das Erzeugnis von At und einer weiteren Unterloop C von G. 
Dabei ist C notwendigerweise ein Atom von L(G), denn sonst wäre [G/A(] keine 
boolesche Algebra maximaler Länge. Also gilt in jedem Fall Bj = {b}, a,), 1 ¿¿bj^A^ 
j—l, ..., m.. Nun ist G aber die Vereinigung aller Atome Bj, j= 1, ..., m, von 
[GjA^\, also gilt G = (bj, üi\j=l,..., m). Wir betrachten die von dem Produkt 
b1...bm (mit beliebiger Klammerung) und dem Element a, erzeugte Unterloop H= 
= (b1...bm, a,) von G. Trivialerweise hat man A^H. Wäre H eine echte Unter-
loop von G, so wäre entweder H=At oder H wäre Vereinigung von r<m Atomen 
Bj. In beiden Fällen wäre H also in einer maximalen Unterloop M von G enthalten; 
o. B. d. A. dürfen wir //<(£>!, ..., a,) annehmen. Dann folgt b^ - .b^ 
€(¿>1, ..., bm_1, a;), was nach Voraussetzung nicht möglich ist. Daher gilt H—G 
und die Behauptung ist gezeigt. 

Für diassoziative Loops hat Satz 2.1 eine interessante Konsequenz, die eine 
wesentliche Verallgemeinerung von [10, Korollar 3 in Abschnitt 2] darstellt und die 
insbesondere für Moufang-Loops gilt: 

2.2. Korol lar . Der Unterloopverband einer endlichen diassoziativen Loop G 
ist genau dann schwach boolesch, wenn G eine Gruppe von einem der folgenden Typen 
ist: 

(1) zyklische Höldergruppe, 
(2) Z (p2) für eine Primzahl p, 
(3) Z(p)XZ(/>) für eine Primzahlp, 
(4) direkt unzerlegbare Höldergruppe mit primzyklischer Kommutatorgruppe. 

Abschließend geben wir noch ein Beispiel für eine nicht diassoziative Loop mit 
einem schwach booleschen Unterloopverband. 

2.3. Beispiel. Die Loop <7={1, ..., 16} sei gegeben durch die Permutationen 
(zur Schreibweise s. [8, Abschnitt 3]) 

R2 = (1 2)(3 4)(5 6)(7 13 10 16 15 12)(8 11)(9 14), 

R3 = (1 3 2 4)(5 10 14 16 12 11 9 13 7 6 8 15), ; • 
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R t = (l 4 2 3)(5 15 10.12 8 14 7 16 6 9)(11 13), 

R* = (1 5 2 6)(3 14 10 15 7 11)(4 13 9 12 16 8), 

RE = (1 6 2 5)(3 15 9 11 104 16 7 12 13 14 8), 

R7 = (i 7 8 9 10)(2 16 14 12)(3 6 13 5)(4 15 11), 

RQ = (l 8 10 7 9)(2 15 13 3 12 6411 16 5 14), 

R9 9 7 10 8)(2 12 3 11 15 14 13 6 16)(4 5), 

RIO = (l 10 9 8 7)(2 11)(3 16 13 15 4 14 6)(5 12), 

R» = (l 11 12 9 3 10 6 14 15 16) (4 8 5 7 2 13), 

Ria = (l 12 15)(2 16 13)(3 5 8 16 4 9 6 7)(11 14), 

R13 = (1 13 16 10 5 11 7 14)(2 9 15 3 8)(4 6 12), 

RL4 = (1 14 4 12 10 3 7 5 9 16 11 6 15 2 8 13), 

= (1 15 8 6 10 11 5 16 9 2 14 3 13 12)(4 7), 
R u = (1 16 3 9 4 10 2 7 15 6 11)(5 13 8 12 14). 

Die Loop G besitzt die Unterloops A1={1, 2}, A2={ 1, 7, 8, 9, 10}, 5 1 = {1 , 2, 3, 4}, 
B2 = {1, 2, 5, 6}. Dabei sind ^ und A2 die Atome von L(G); das Intervall [G/Aj 
ist eine boolesche Algebra der Länge 2, das Intervall [G/A2] eine boolesche Algebra 
der Länge 1. Ferner gilt G=(AX, A2)=(B1, B2)=(B1, A2)=(B2, A2). Außerdem 
kann G von nur einem Element erzeugt werden, man hat nämlich G=( l l )=(12)= 
= (13)=(14)=(15)=(16). ' . 

3. Zentral nilpotente endliche Loops 

Im folgenden Abschnitt 4 werden wir uns mit endlichen kommutativen Moufang-
Loops beschäftigen. Da endlich erzeugte kommutative Moufang-Loops zentral nil-
potent sind (s. [5, Theorem 10.1, p. 157]), lohnt es sich, zunächst endliche zentral 
nilpotente Loops zu untersuchen. 

Bekanntlich erfüllt der Untergruppenverband L(G) einer endlichen Gruppe 
G genau dann die Jordan—Dedekind-Kettenbedingung, wenn G überäuflösbar 
ist. Daher erfüllen insbesondere die Untergruppenverbände endlicher nilpotenter 
Gruppen die Jordan—Dedekind-Kettenbedingung. Für endliche zentral nilpotente 
Loops hat man die entsprechenden Sätze wie für endliche .nilpotente Gruppen, dä 
die Ordnung jeder Unterloop die Ordnung jeder sie enthaltenden Uriterloop teilt. 
Ferner ist eine Unterloop einer zentral nilpotenten Loop G genau dann maximal in 
G, wenn sie normal in G ist und Primzahlindex in G hat, s. [4, Theorem -7B, Lemma 
7F + Corollary]. Weiter existiert stets eine Hauptreihe G=A0Z)A1 rx... r>/i,=(l), 
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wobei jede Faktorloop A^JAi keine echten Unterloops besitzt und A¡ Primzahl-
index in A i_ l hat. Daher folgt mit genau den gleichen Argumenten wie für Gruppen 
(vgl. [3, p. 177] und [11, Theorem 9, p. 9]): 

3.1. Satz. Der Unterloopverband einer endlichen zentral nilpotenten Loop erfüllt 
die Jordan—Dedekind-Kettenbedingung. 

Ferner gestatten endliche zentral nilpotente Loops noch die folgenden Aussagen: 

3.2. Satz. Eine endliche zentral nilpotente Loop G hat genau dann einen komple-
mentierten Unterloopverband L{G), wenn G ein direktes Produkt elementar-abelscher 
p-Gruppen ist. 

Beweis. Da G endlich ist, ist die Frattiniunterloop $(G) von G verschieden 
von G und wegen der Komplementiertheit von L(G) gilt cP(GQ=(l). Daher ist 
G nach [5, Theorem 2.2, p. 98] eine abelsche Gruppe und mit [11, Proposition 1.15, 
p. 16] folgt nun die Behauptung. 

Aus Satz 3.2 und [8, Satz 1.2] ergibt sich unmittelbar: 

3.3. Korol lar . Ist der Unterloopverband einer endlichen zentral nilpotenten 
Loop G eine boolesche Algebra, so ist G eine zyklische Höldergruppe. 

Als weitere Folgerung aus Satz 3.2 erhält man mit Hilfe von [12, Corollary of 
Theorem 1]: 

3.4. Korol lar . Der Unterloopverband L{G) einer endlichen zentral nilpotenten 
Loop G ist genau dann orthomodular, wenn G direktes Produkt von P-Gruppen trat 
paarweise teilerfremden Ordnungen ist. 

4. Endliche kommutátive Moufang-Loops 

In den vorhergehenden Abschnitten haben wir gesehen, daß man für endliche 
kommutative Moufang-Loops und ihre Unterloopverbände einige schöne Aussagen 
machen kann. Dies rechtfertigt eine gesonderte Behandlung endlicher kommutativer 
Moufang-Loops. Zunächst seien hier noch einmal die wichtigsten Ergebnisse zu-
sammengestellt. 

4.1. Satz. Für eine endliche kommutative Moufang-Loop G mit dem Unter-
loopverband L(G) gelten: 

(1) L(G) erfüllt die Jordan—Dedekind-Kettenbedingung. 
(2) L(G) distributiv G zyklische Gruppe. 
(3) L{G) komplementiert o G direktes Produkt elementar-abelscher p-Gruppen. 
(A).L(G) boolesch o G zyklische Höldergruppe. 
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(5) L (G) schwach boolesch o G ist abelsche Gruppe von genau einem der folgenden 
Typen: zyklische Höldergruppe, Z(/>2), Z(p)xZ(p). 

Im folgenden soll die Struktur von endlichen kommutativen Moufang-Loops 
mit modularen Unterloopverbänden hergeleitet werden. Es zeigt sich, daß für end-
liche kommutative Moufang-Loops — ähnlich wie für endliche nilpotente Gruppen, 
vgl. [11, Theorem 8, p. 8] — die Umkehrung von Satz 1.1 gilt. Dazu benötigen wir 
zunächst das folgende Lemma. 

4.2. Lemma. Die Unterloops U und V einer endlichen kommutativen Moufang-
Loop G sind genau dann vertauschbar, wenn |(i/UF): U\ — \V: (UC\V)\ gilt. 

Beweis. Sei zunächst \{UUV)-. U\ = \V-. (Uf\V)\. Dann gilt \UUV\ = 
= |17|-|(C/UF): U\=\U\-\V-. (Ur\V)\ = \UV\=\VU\, woraus wegen UV=VUQ 
Q(U, V) sofort UUV=UV=VU folgt. Seien nun U und V vertauschbar. Dann 
hat man \UUV\ = \UV\=\U\ • \V: (UftV)\ und andererseits \UUV\ = 
=\(UUV): U\-\U\. Damit folgt die behauptete Identität. 

Jetzt können wir den gewünschten Satz zeigen: 

4.3. Satz. Sei G eine endliche kommutative Moufang-Loop und seien U und V 
ein modulares Paar von Unterloops von G. Dann sind U und V vertauschbar. 

Beweis. Als endliche kommutative Moufang-Loop ist G direktes Produkt 
einer endlichen abelschen Gruppe A von zu 3 teilerfremder Ordnung und einer 
kommutativen 3-Moufang-Loop B. Daher läßt sich G als direktes Produkt der p-
Sylowgruppen Slf ...,S„ von A und der 3-Moufang-Loop B schreiben, also G= 
=S1X---XS„XB, s. [7, Proposition 1.3]. Somit ist auch jede Unterloop Uvon G 
in der Form U=U1X...XUBXUn+1 mit U—UHS, (i=l, ...,n), U„+1=UOB 
darstellbar. Seien also U=U1X--.XUn+1 und V=V1X...XV„+1 ein modulares 
Paar von Unterloops von G. Wir bezeichnen die Ordnungen von U, V, UUV, 
UC)V, U{, Vi, UiUV, bzw. UiCWi mit u, v, m, d, ut, vt, m, bzw. dt. Wegen UUV= 

n+l n+1 
=(C/1UFi)X...X(i/„+iU^+1) folgt m— IJ mt und d= TT dt, und mdist durch 

¡=i i=i 
uv teilbar. Andererseits wird das Intervall [(i/UF)/i/] von L(G) wegen der Gültigkeit 
der modularen Identität isomorph auf das Intervall [VftUi) V)] abgebildet. Da G 
zentral nilpotent ist, sind auch U,V,UÖV und Uf)V zentral nilpotent und es 
existiert je eine Hauptreihe zwischen UU V und U sowie zwischen V und UC\V, s. 
[4, Abschnitt 7]; dabei ist die Länge einer Hauptreihe zwischen UUV und U nicht 
größer als die Länge einer Hauptreihe zwischen V und Uf)V. Daher ist die Anzahl 
der Primfaktoren in |(i/U V): U\ —m\u nicht größer als die Anzahl der Primfaktoren 
in \V: (UQV)\=v/d. Wegen uv\md muß md=uv, also \{UUV)\ U\=\V: (ur\V)\ 
gelten. Nach Lemma 4.2 hat man somit UUV=(U,V)=UV=VU. 
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Aus den Sätzen 4.3 und 1.1 folgt unmittelbar: 

4.4. Korol lar . Eine endliche kommutative Moufang-Loop besitzt genau dann 
einen modularen Unterloopverband, wenn alle ihre Unterloops quasinormal sind. 

Eine wichtige Klasse von Loops, in denen alle Unterloops quasinormal sind, 
sind die .hamiltonschen Loops. Wegen der Diassoziativität von Moufang-Loops 
ergibt sich mit [5, Theorem 7.2, p. 87] sofort, daß endliche hamiltonsche kommutative 
Moufang-Loops abelsche Gruppen sind. Von besonderem Interesse ist daher die 
Struktur nicht hamiltonscher kommutativer Moufang-Loops mit modularen Un-
terloopverbänden, die im folgenden untersucht wird. 

4.5. Lemma. Sei G=AxB eine endliche kommutative Moufang-Loop mit 
einer abelschen Gruppe A von zu 3 teilerfremder Ordnung und einer kommutativen 
3-Moufang-Loop B. Dann ist der Unterloopverband L(G) von G genau dann modular, 
wenn HB) modular ist. 

Beweis. Wegen [5, p. 101] ist G in der angegebenen Form G=AxB darstellbar 
und mit L(G) ist auch L(B) modular. Da L{Ä) als Untergruppenverband einer abel-
schen Gruppe von vornherein modular ist, ist umgekehrt für die Modularität von 
L(G) die Modularität von L(B) hinreichend (vgl. den Beweis von Theorem 4, p. 5, 
in [11]). 

Somit können wir uns darauf beschränken, endliche kommutative 3-Moufang-
Loops mit modularen Unterloopverbänden zu untersuchen. Ein wichtiges Hilfs-
mittel dazu liefert das folgende Lemma: 

4.6. Lemma. Eine kommutative 3-Moufang-Loop B vom Exponenten 3 hat 
genau dann einen modularen Unterloopverband, wenn B eine elementar-abelsche 3-
Gruppe ist. 

Beweis. Angenommen, B ist keine Gruppe. Dann gibt es unter den von drei 
Elementen erzeugten Unterloops mindestens eine nicht assoziative Unterloop 
U= (x, y, z) von B. Wegen [7, Lemma 1.6] hat U mindestens die Ordnung 81, während 
das Komplexprodukt (x, y)(z) von der Ordnung 27 ist. Daher kann L(B) nach 
Korollar 4.4 nicht modular sein. 

Das vorstehende Lemma zeigt insbesondere, daß die von allen Elementen der 
Ordnung 3 erzeugte Unterloop S einer endlichen kommutativen Moufang-Loop G 
mit mödularem Unterloopverband eine elementar-abelsche 3-Gruppe ist, da wegen 
der Gültigkeit von (xy)3=x3y3 für alle x, j>£G alle Elemente ̂  1 von S die Ordnung 
3 haben. Eine weitaus wichtigere Konsequenz aus Lemma 4.6 ist jedoch die folgende 
Aussage: 
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4.7. Satz. Es sei G eine endliche kommutative Moufang-Loop ùnd Z(G) ihr 
assoziatives Zentrum. Ist der Unterloopverband L(G) von G modular, so ist die Faktor-
loop G]Z(G) eine elementar-abelsche 3-Gruppe. Insbesondere ist G also nilpotent der 
Klasse 2. 

Beweis. Nach [9, Theorem 1.8, p. 9] ist G/Z(G) eine kommutative Moufang-
Loop vom Exponenten 3. Da mit L(G) auch L(G/Z(G)) modular ist, muß G/Z(G) 
wegen Lemma 4.6 eine abelsche Gruppe vom Exponenten 3 sein. 

Übrigens hat Satz 4.7 eine interessante Parallele für endliche Gruppen mit 
modularen Untergruppenverbänden, sogenannte Af-Gruppen : Endliche M-Gruppen 
sind stets metabelsch, s. [11, Theorem 15, p. 18]. 

Das kleinste Beispiel für eine nicht assoziative kommutative 3-Moufang-Loop 
mit modularem Unterloopverband ist die von den Elementen x, y, z mit den definie-
renden Relationen x3=y3=z9 — 1, (x,y,z)=z3 erzeugte Loop B der Ordnung 
81, s. [7, Proposition 6.1]: Alle echten Unterloops von B sind Gruppen, also ist das 
Komplexprodukt zweier Unterloops, die zusammen eine echte Unterloop von B 
erzeugen, gleich dem Erzeugnis dieser Unterloops; das Komplexprodukt zweier 
Unterloops, deren Erzeugnis B ist, hat die Ordnung 81 und ist daher gleich B. Somit 
sind alle Unterloops von B quasinormal. 
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On composition of idempotent functions 

A. KISIELEWICZ 

The general problem of composition of functions was raised by W. SIERPINSKI 

[13]. Since then the problem has been extensively investigated in many-valued logic, 
synthesis of automata, and recently, in universal algebra (cf. [11], [1], [3], [4]). 
There are some results and problems showing that idempotent clones play here a 
special role (cf. [2], [3], [8], [10,] [12], [14], see also [7]). In this paper some further 
special properties of idempotent clones are established, and examples are provided 
to show that our theorems do not hold in the general (nonidempotent) case. 

The results are stated in Section 3. Before we introduce some definitions 
(Section 1) and give background information (Section 2). Proofs are given in 
Section 4. 

1. Definitions. A clone is a composition closed set of functions (on a fixed uni-
verse A) containing all projections (cf. [12]). For two clones A and B such that 
B 5 A we say that A is a subclone of B, while B is an extension of A. If A ^ B and 
A is not a trivial clone (i.e. consisting of projections only), then A is said to be a 
proper subclone of B. If m is the least integer such that there is an essentially wi-ary 
function in B—A, then B is called an m-ary extension of A. 

For any set F of functions, i^(F) denotes the set of essentially /i-ary functions 
in F, and pn{F) is the cardinality of P„(F). Moreover, we denote 5(F)={«: />„(F)>0}. 

A function f: A"-*A is idempotent if it satisfies f ( x , x ) = x identically. 
If, in addition, it satisfies 

• f ( f ( x h x2> •••» xn)> f(x\, *n)> ./(*?. *2> *n)) —f(Xl> •*!> •••> 
then it is called diagonal. If every function in a clone is idempotent (diagonal), then 
the clone itself is called idempotent (diagonal). 

Other, undefined concepts are standard and can be found in corresponding 
papers given in our references. Throughout the paper we make use of the fact that 
clones can be identified with sets of polynomials of universal algebras (cf. [11]). 

Received May 26, 1986. 
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2. Examples. The algebraic property of idempotency is of special interest in 
studying clones, because for any clone A, the idempotent functions in A, as it is 
easy to check, form a composition closed set (the full idempotent subclone of A). 
Consequently, studying minimal clones leads to studying certain idempotent clones 
(see [2], [12]). Also, ^„-sequences (and free spectra) of idempotent clones are com-
pletely different in nature from those of nonidempotent clones (see [4], [7], [8]). Diago-
nal clones are rather exceptional among idempotent clones and are fully described. 
Properties of diagonal clones mentioned below are derived from [9] and [6]. 

(2.1) Diagonal clones. A clone D generated by a single essentially r-ary diagonal 
function xT) is called an r-dimensional diagonal clone (algebra). 5(D) = 
= {2, 3, ..., r} and pn(D) is finite for all n. A diagonal clone!D is finitely generated 
iff it is as above. Otherwise, ,S(D) = {2, 3, ...} arid />n(D)S80 for all n s 2 . For 
any diagonal clone. D, iJ(D) with 2, if not empty, is a generating set for D. 
Finally, if a cloné A is generated by diagonal functions only, and has no nondiagonal 
biliary functions, then it.is a'diagonal clone; it is finitely generated if and only if 
p2(A) is finite. Also, the structure of m-ary extensions of r-dimensional diagonal 
clones with m >r+1 is described (see [14]). 

, (2-2) Boolean reducís. For the full idempotent subclone I of the clone (of poly-
nomials) of any Boolean group {G, + ) we have 5(1) = {3, 5,7, ...} and />„(1)= 1 
for odd (see [8], p. 234). In this paper such clones are called simply Boolean 
reducís. The structure of m-ary extensions pf Boolean reducts with » i^ 5 is described 
in [14]. 

(2.3) Cornier-examples. Let C be the union of two infinite disjoint sets A and B 
and two further elements a and b. For any n^l we define two functions on C: 
/„(*!, ..., x„)=a if x1, ...,x„€A and are pairwise distinct, and f„=b otherwise. 
Similarly, g„(xl5 ..., xn)=a if x l 5 x n £ B and are pairwise distinct, and g„=b 
otherwise. It is easy to check that any set of functions f¡, g¡ containing the constant 
b is a clone. Thus, for any set of positive integers S, there exist a clone B and a sub-
clone A of B such that 5(8—A)=S. For these clones i^(B)U {6} is always a sub-
clone. Also, examples of clones without constants and having the.same, properties 
can be given using constructions applied in [3]. • . 

3. Results. Our main result concerns the difference B—A of an idempotent 
clone B and its subclone A. In the general case, by example (2.3), the set iS(B—A) 
can be arbitrary. If .B is assumed to be idempotent, the situation is very different: 

Theorem 1. Let B be an idempotent clone and A its proper subclone.-Then one 
of the following conditions holds: 
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(i) .S(B—A) = {m, m+1, ...} for some m^2, 
(ii) S'(B-A) = {2, 3, ...,r} for some rs=2, 

(iii) S(B-A) = {2, 3, ...,r}U{m, m + l, ...} for some r^2 and m>r+1, 
(iv) 5(8—A) = {3, 5, 7, ...}U {m, m+1, ...} for some even 5. 
Moreover, conditions (ii)—(iv) determine the structure of the clone B. Namely, 
1. if (ii) holds, then B is an r-dimensional diagonal clone, 
2. i/(iii) holds, then B is an m-ary extension of an r-dimensional diagonal clone, 
3. if (iv) holds, then B is an m-ary (or.(m — 1 )-ary) extension of a Boolean reduct. 

Corollary. The difference B—A of an idempotent clone B and its proper Hub-
clone A is always infinite, unless B is a finitely generated diagonal clone. 

Theorem 1 is actually a classification of the differences B—A, analogous to that 
of [14]. It is of some interest that from such a theorem one can derive a result con-
cerning composition of functions: 

Theorem 2. If B is an idempotent clone which can be generated by (at most) 
k-ary functions, then for any n^k, the set i^,(B) of essentially n-ary functions in B, 
if not empty, is a generating set for B. 

In addition to the examples in (2.3), many others can be constructed showing 
that our theorem fails to hold for nonidempotent clones. 

4. Proofs. At first, we give the proof of Theorem 1 which is based on several 
lemmas. We use techniques and constructions worked out in [5] and [8]. Throughout, 
B is assumed to be an idempotent clone, and A its subclone. The numbers in question 
are always integers. For every k ^ 2 we consider the following property of the 
clone B: 

(+) for every function f(xlt ..., x„)6i^(B) with n^k there exists a function 
/(*!, ..., x„+1)6.PB+i(B) in B such that f(xu ..., x„, xi)=f(x1, ..., *„) for some /. 

Lemma 1. I f B satisfies (+) for some k, then for every m^k, m£S(B—A) 
implies {m, m+1, ...}QS(B-A). 

Proof. m£S(B—A) means that there is an essentially m-ary function 
fixl5 ...,xm) in.B-A. Then, /(xx,...., xm+1)$A, since-(by substitution ,) 
it generates / (xj , ..., xm). It follows that ?n + l€iS'(B—A). Now the result follows 
easily by induction. 

Lemma 2. Let g{x,y)=x - y be a binary function in B, not diagonal. If f= 
=f(x1, ...,xB)£Pn( B) (n^ 2), then for some i,f=f(Xl, ..., xr x„^, ..., x„KPn+1{ B), 

Proof. At first, note that / obviously depends on each of the variables 
xu ..., x i + 1 , ..., x„, since substituting x„+1=xi in / we get / depending on 
these variables. 
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Now, suppose that fix-y, x2, •••, x„) does not depend on y. Then by sub-
stituting y=x, fix-y,x2, ..., x„)=/(x, x2, ..., xn). Consequently, f((x-y) -z, x2, ..., 
..., JC„) =fix, x2, ..., xn). Similarly, if f(x -y, x2, •••,xn) does not depend on x, then 
f{ix-y)-z,x2, ..., x„)=/(z, x2 , . . . , x„). By analogous arguments for all indices /', 
and in view of the idempotency of / , we infer that, if fixi,..., xf • x n + 1 , . . . , xn) 
is not essentially (л +1 )-ary for any i, then (x • y) • z =/((x • y) • z, ..., (x • y) • z) does 
not depend on y. Consequently, ix • y) • z=x • z. Similarly, x • (y • z)=x • z. This 
means that x • у is diagonal, a contradiction. 

Lemma 3. If there is a binary nondiagonal function in B, then condition (i) of 
Theorem 1 holds. 

Proof. By Lemma 2, В satisfies condition (+ ) for k=2. Now, if m is the least 
integer such that m£S(B—A), then in view of Lemma 1, S(B—A) = {m, m +1, ...}, 
as required. 

Lemma 4. If В is a diagonal clone, then 5(8—A) = {2, ...,/•} for some r^2 
wheneverB is finitely generated, and 5(B—A)={2, 3, ...} otherwise. 

Proof. If В is finitely generated, then the result is by (2.1). Suppose that В is 
not finitely generated and m^SiB-A). Then Pm(B)=Pm(A). However, as Pm(B) 
generates the clone В (cf. (2.1)), PmiA) also does, and so A—B, a contradiction. 

Lemma 5. If В is an m-ary extension of a diagonal clone D for some m^2, then 
D is contained in the clone generated by /^(B). 

Proof. If there is a diagonal function in Pm(B), then by (2.1) iJ,(D) generates 
D, and since ii,(B) Z3ij„(B), the result follows. In the opposite case, D is an /--dimen-
sional diagonal clone for some r<m (r^2). In this case we apply the method of 
diagonal decomposition of the clone В with respect to D (see [8], p. 244). 

Let / (x l 5 ...,xm) be a nondiagonal essentially m-ary function in B, which 
exists by assumption. Then 

f(xi, -,xm) = {fiixl, ...,xj, ...,xj> 

and each / ' is either essentially m-ary or equal to /¡¡(xk). Indeed, if e.g. fxixx, ..., xm) 
depended on exactly к variables with 1 say / J (x l 5 ..., xm)=g(x1? ..., xk), 
then we would have (g(*i> •••> h2ixj),..., /ir(xi)>6^i(®)- This function is non-
diagonal (by properties of diagonal decomposition) contradicting the assumptions 
in our lemma. Moreover, at least one / ' must be essentially m-ary, since otherwise 
f would be a diagonal function. 

So, suppose that e.g. Z 1 ^ , . . . , x„) is essentially m-ary. 

/ ( x j , . . . ,х т - 1 г xm_j) = Лх(хк) for some к (1 ё к ^ m - 1 ) 
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(otherwise we can infer a contradiction, as above). Put 

g(xi, ...,xm) = (Pix^ ...,xJ, h2(xh),..., h,(xir)) 
where i2, ..., iT are pairwise distinct and (;2, ..., 2,..., m). Then g£i£,(B) 
and g(xx, ...,xm.1,xm-i)=(h1(xk),h;i(x,), ..., hr(xir)) is an essentially r-ary diag-
onal function, and by (2.1), it generates the clone D. This completes the proof. 

Lemma 6. Suppose that P2(B) is finite, nonempty, and consists of diagonal 
functions only. If B is not a diagonal clone, then either S(B—A) = {m, m+1, ...} 
for some m S 2, or S^B— A)={2, ..., r}U {m, m+1, ...} for some r^2 andm>r+1 
In the latter case B is an m-ary extension of an r-dimensional diagonal clone. 

Proof. Denote by D the clone generated by P2 (B). By (2.1) it is an r-dimensional 
diagonal clone for some 2, and consits of all diagonal functions in B. In other 
words, since by assumption B^D, B is an m-ary extension of D for some w s 2 , 
just as the second part of the lemma states. Moreover, B satisfies (+) for k=m. 
Indeed, it is enough to set J—fL, where L is a mapping defined in [8], Section 5.4. 

Now, if s is the least integer such that j£5(B—A) and s^m, then in view of 
Lemma 1, 5(B—A)= {i, j+1 , ...}, as required. It remaines to consider the case 
when j<m, which means that there exists a diagonal essentially s-ary function in 
B—A (i^2) . By means of (2.1), it follows that the full diagonal subclone of A is 
contained properly in D, and consequently, {2, ..., /•jQjS'iB—A). On the other 
hand, by Lemma 5, m£S(B—A), and since B satisfies (+) for k—m, {m,m+l, 
i S ( B - A ) . 

Now, if r ^ m - 1 , then S (B-A)= {2, 3, ...}, while if r < m - 1 , then as B 
is an m-ary extension of D, S(B—A) = {2,..., r}U{m, m+1, ...}. This completes 
the proof. 

Lemma 7. If P2(B) is infinite and consists of diagonal functions only, then con-
dition (i) in Theorem 1 holds. 

Proof. In view of Lemma 1 it is enough to show that B satisfies condition (+ ) 
for k—2. Applying again the method of diagonal decomposition [8], we construct 
a suitable mapping. 

Let f{x%, ..., xm)£Pm(B), m^2. By virtue of (2.1) (for every m) there exists 
an essentially (m+l)-ary diagonal function in B. This function generates an (m+1)-
dimensional diagonal clone, a subclone of B. We decompose B just with respect 
to this diagonal clone. Thus, we have 

Since each / ' depends on at least one variable, there are a variable xk and indicies 
ij, i2 such that both /'» and / ' • depend on xk. Replacing in / ' • the variable xk by 
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.xm+i, we obtain an essentially (m+l)-ary function / which yields / , with the sub-
stitution xm+1=x* as required. 

Lemma 8. If /?2(B)=0 and B is not a q-ary extension of a Boolean reduct for 
any g s 4 , thenS(B—A)={m, m + \, ...} for some m^3. 

Proof. It is enough to show that B satisfies condition (+) :for lc=3. For the 
.proof one should consider three cases corresponding to Sections 3, 4 and 6 of [5] 
{note that in Section 7, actually, 4-ary extensions of Boolean reducts are considered), 
and observe that the constructions given there satisfy the requirements of our con-
dition (+) for k—3. 

Lemma 9. IfBis an m-ary extension of a Boolean reduct I with wis4, then 
either S(B-A) = {q,q+1,...} for some q^m or 5 (B-A) = {3, 5,7, ...}U 
U{m, w+1,...}. 

Proof. For /£ij,(B) with n^m— 1 put J=fL1, where L^ is the mapping 
defined in [8], Section 5.2. It follows (by properties of that B satisfies condition 
( + ) for k=m— 1. (In [7] it is assumed that m^5, but the construction works also 
for w=4, since the conditions (i), (ii) in [8], p. 242, hold for m=4 as well (cf. 
{5],p. 111)). 

Now, if q is the least integer such that qZS(B—A) and q^m, then by Lemma 
1, S(B-A) = {q,q+1,...}. 

• In turn, q<m means that one ofthe essentially w-ary functions of I with 
is inB—A, and as each Boolean reduct function generates I, we have {3, 5, 7, . . .}£ 
§5(B—A). Since B satisfies (+) for k—m— 1 (applying this condition to Boolean 
reduct functions), we get 5(8—A) = {3, 5, 7, ...}U{m,m + l, ...} regardless as to 
whether m is even or odd. The proof is complete. 

Lemma 10. If />2(B)=p3(B)=0, then S(B-A) = {m, m+1,...} for some 

Proof. Let s be the least integer (^4) with the property />S(B)=»0. Then B 
satisfies (+) for k=s. To see this, it is enough to put J=fLl, where L^ is as in 
the previous proof. The result follows by Lemma 1. 

Now, Theorem 1 is a consequence of Lemmas 3, 4, 6, 7, 8, 9, and 10. The Co-
rollary is an immediate consequence of Theorem 1. We prove Theorem 2. 

To this end suppose that P„(B) is nonempty (i.e. n£S(B)), arid denote by A 
the subclone of B generated by P„{B). Then we have /i(£S(B—A). Now, if A=B, 
then the result is true. Hence, suppose that A is a proper subclone of B and apply 
Theorem 1. Observe that in cases (ii)—(iv) of Theorem 1, the second part of the 
.theorem combined with Urbanik's result [14] yields that we always have ,S(B—A)=0. 



Composition of idempotent functions 223 

This contradicts the fact that «eSCB), while «$5(8-A) . It follows that under 
our assumptions case (i) in Theorem 1 holds for some In particular, for every 
i^/ j , A), i.e./?(B)=/?(A). Since by assumption A:Sn, and B is generated 
by ¿-ary functions, it follows that A=B, completing the proof of Theorem 2. 
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Modifications of congruence permutability 

I V A N C H A J D A 

One of the most important congruence properties is congruence permutability. 
Recall that an algebra A is congruence permutable if 0 = 0 for each two 
congruences 0, «ÊÇCon A. This importance follows especially from two basic pro-
perties : If 0, are congruences on A, then 

(a) 0 • <P is a congruence on A if and only if 0 • <P=<P • 0 ; 

(b) if 6> .$ = <p.0, then in Con A. 

This implies among other things that congruence permutability makes it easy to 
investigate other congruence conditions, e.g. congruence regularity, distributivity, 
subdirect reducibility of subalgebras, etc. However, there are broad classes of al-
gebras which are not congruence permutable, but are very useful in applications. 
The aim of this paper is to show that such varieties can satisfy some weak modi-
fications. 

1. Ideal permutable algebras 

A variety "V is permutable if each AÇ.'f is congruence permutable. Permutable 
varieties were characterized by A . I. M A L ' C E V [6]. Let A be an algebra with a miliary 
operation 0 (briefly an algebra with 0). A is permutable at 0 (see [1], [5]) if 

[0]«.® = [ 0 W 

for each 0, $£Con A. Varieties of such algebras were characterized in [1], [2], [5]. 
In 1963, G . G R Â T Z E R [3] introduced an intermediate property. An algebra A has 
weakly associative congruences if for each subalgebra B of A and every 0, 4>€Con A, 
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Lemma 1. Let A be an algebra with a ternary polynomial p(x, y, z) and unary 
polynomials /„(x) (a£/) such that for each a,b of A there exists /?£/ with 

p(a, a, b) = b, p(a, b, b) = f„(a). 

Then A has weakly associative congruences. 

Proof. Let B be a subalgebra of A and 0, <££Con A. Suppose 
Then there exist a£B and c£A with b 6 c <P a. Hence b=p(a, a, b) 4> p(a, c, b) 
e p{a, b, b)=fp(a). However, a£B implies fp(a)£B and thus The 
converse inclusion can be proved analogously. 

Example 1. Let A — {0, a, b) be a three-element algebra with 0 and a binary 
operation "—" given by the table 

— 0 a b 
0 0 0 0 
a a 0 a 
b b b 0 

A has unary polynomials f(x)=x and f0(x)=x—x—0. Put p(x, y, z)=z—(y—x). 
Then 

p(x, x, z) — z— (x—x) = z—0 = z, 

{ f ( x ) for z = x 
/oW for z ^ x 

By Lemma 1, A has weakly associative congruences. However, A is not congruence 
permutable since 

(a, b)e 0 (0, a) • 0 CO, b) and (a, b)$& (0, b) • 0 (0, a). 

Denote by Fy(xl5 ..., x„) the free algebra of the variety f , generated by the 
free generators ..., xn. We show that for varieties of algebras, the concept of 
weakly associative congruences gives nothing new. 

Theorem 1. Let 'f be a variety of algebras. The'following conditions are equi-
valent: • 

(1) "V is permutable; 
(2) every Ad'V has weakly associative congruences. 

Proof. Evidently, (1)=>(2). We prove (2)=K1). Let "f satisfy (2). Clearly 
is a subalgebra of iy(x,y, z) and zÇ [[^(x)]«]» for <P=0(x, y), 0 = 0(y, z). 

By (2), this implies z£[[Fr(x)]e]0, i.e. there exist elements b£Fr(x), c£Fr(x, y, z) 
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such that (z, (c, b)£0(y, z). Hence c=p(x,y,z), b =f(x) for some 
ternary or unary polynomials p or / , respectively. The foregoing relations yield 

z = p(x, x, z), p(x, z, z) = f(x). 
By putting z=x we obtain x=p(x, x, x)=f(x), hence z=p(x,x,z), p(x, z, z)=x, 
which implies permutability, see [6]. 

On the other hand, this concept can be modified so that subalgebras of A are 
required to be of a special kind. 

Def in i t ion 1 (see [5]). Let JT be a class of algebras of the same type with 0. 
An (n+»i)-ary polynomial p(x, j5) is an ideal polynomial in y if p(x, 0)=0 is an 
identity in A subset 7^0 of is an ideal if for each ideal polynomial 
P{X, y) in y, 

a€A", t€lm imply p(a, !)£/. 

Evidently, the intersection of any system of ideals is an ideal, thus we introduce 
the ideal I(x) generated by a single element x€A as the intersection of all ideals 
containing x. From Lemma 1.2 in [5], we obtain immediately: 

Lemma 2. Let Abe an algebra with 0. For each c£A, 
1(c) = {p(a, c); a€A", p(x, y) is an (n+l)-ary ideal polynomial in y}. 

Defini t ion 2. An algebra A with 0 has ideal permutable congruences if [[7]«]®= 
= [M®]e for each 0, i»£Con A and every ideal I of A. A variety "V with 0 has 
ideal permutable congruences if each has this property. 

Remark 1. Clearly, every permutable variety with ideals has also ideal per-
mutable congruences. On the other hand, putting /={0} we obtain immediately 
that permutability at 0 is a special kind of ideal permutability of congruences. 

Lemma 3. For a variety "V with 0, the following conditions are equivalent: 
(1) Fir(x,y, z) has ideal permutable congruences; 
(2) there exists a ternary polynomial p(x, y, z) such that 

p(x, x,z) = z and p(x, z, z)£l(x). 
Proof. Let I(x) be the ideal of Fy(x, y, z) generated by x. 
(1)=>(2): Put 0=0 (y,z), <P=0(x,y). Then z€-[[/(x)]®]e. 

By (1), ze[[J(x)]„]®, whence (2) is evident. 
(2)=>(1): Let / be an ideal of Fy(x, y, z), let 0, <P£Con Fy(x, y, z) and c£ [[/]„]<,. 

Then there exist elements adFY(x, y, z) and i£I with (c, a)£ 0, (a, i)£<P. Put d= 
=p(i, a, c). By (2), we have 

(c, d) = (p(i, /, c), p(i, a,c))e$, (d, p(i, c, c)) = (p(i, a, c), p(i, c, c)X&, ...., 
and p(i, c, c)€/( /)e/ . Thus cC^/Je]®. 

mi .¡K 
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Theorem 2. For a variety "V with 0, the following conditions are equivalent: 
(1) y has ideal permutable congruences; . . 
(2) there exist a ternary polynomial p(x,y,z) and a binary ideal polynomial 

fiz, x) in x such that 

p(x, x, z) = z and p(x, z, z) = f(z, x). 

Proof. (1)=>(2): If y has ideal permutable congruences, then Fr(x,y, z) also 
has this property. By Lemma 3, there exists a ternary polynomial p(x, y, z) with 
p(x, x, z)=z and p(x, z, z)£/(x). By Lemma 2, there exists an (n+l)-ary ideal 
polynomial ...,xn, x) in x such thatp(x, z, z)=g(x1, ..., x„, x). Since Fr(x, y, z) 
has three generators x, y, z, we can take n=3 and x2—y, x3=z, thus 
p(x, z, z)=g(x, y, z, x). Moreover, p(x, z, z) does not depend on y, thus g also has 
this property. Hence p(x, z, z)=/(z, x) for some ideal polynomial /(z, x) in x. 

(2)=>(1): Since for /£/ we have f(z, i)£/(i), this implication can be proved in a 
routine way. 

2. Permutability in lattice varieties 

By a lattice variety we mean a variety "f of type T={V, A, ...} such that the 
reduct of A ^ y onto {V, A} is a lattice. 

Remark 2. It is known that every relatively complemented distributive lattice 
is congruence permutable. Denote by r[x, y, z) the relative complement of y in the 
interval [xAyAz, x\ly\lz]. Denote by 9t the class of all relatively complemented 
distributive lattices. Clearly 3H is a lattice variety of type e=(V, A , r ) . Since 
r{x, x,z)—z and r(x,z,z)=x, Sk is permutable. 

Remark 3. Let L be a pseudocomplemented lattice with 0. Put fix, y)=xhy* 
(y* is the pseudocomplement of y). Denote by Sf the class of all pseudocomplemen-
ted lattices. Then if is a lattice variety of type <T=<V, A, *, 0), where * is the unary 
operation of pseudocomplementatión. Clearly, 

"./(*, x) = xAx* - 0,. fix, 0) = jcAO^ = x, 

thus; satisfies .the identites qf [l]:ensuring_ permutability at 0.(however, ¥ is not 
permutable). 

Theorem 3. A lattice variety "V with 0 has ideal permutable' congruences if 
and only if there exists a ternary polynomial p{x,y,z) such thai p(x, x,z)=z and 
p(x, z, z ) sx . . 
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Proof. Let L be a lattice with 0. Clearly, p(x, y)~xhy is an ideal polynomial 
in y and 

1(c) = {p(a, c); a£L and p(x, y) = xAy} = {b£L; b S c}. 

By Theorem 2, "V has ideal permutable congruences if and only if Fr(x, y, z) has 
this property. Hence, the assertion follows directly from Lemma 3. 

Let L be a lattice and a, b be elements of L. An element a*b is a relative pseudo-
complement of a with respect to b (see [4]) if for any x£L we have 

(*) a h x ^ b if and only if x ^ a * b . 

Denote by 0> the class of all relative pseudocomplemented lattices with 0, i.e. 2P is a 
class of type 7t = (V, A, *, 0) where * is a binary operation of relative pseudo-
complement. 

Theorem 4. Each lattice variety "V^SP (of type n) has ideal permutable 
congruences. SP is not permutable. 

Proof. Put p(x,y, z)=(y*x)Az. Thenby(*), 

p(x,'x, z) - x*xAz = lAz = z, p(x, z, z) = z*xhz ^ x. 

By Theorem 3, "V has ideal permutable congruences. By [4], a distributive lattice 
is congruence permutable if and only if it is relative complemented. Since there 
exist relative pseudocomplemented distributive lattices that are not relative comple-
mented, the second statement is evident. 

3. Weak permutability 

. The concept of congruence permutability can be localized. 

Def ini t ion 3. Let c£A. A is weakly permutable in c if 

(x, c)€ © and (c, y)£$ imply (x, y)£ $ • & 

for every x,y£A and each 6, Con A. A variety V with a miliary operation c 
is weakly permutable in c if each has this property. 

Theorem 5. Let "V be a variety with a nullary operation c. The following con-
ditions are equivalent: 

(1) "V is weakly permutable in c; 
(2) there exists a binary polynomial f(x,y) such that 

f(x,c) = x=f(c,x). 
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Proof. (1)=>(2): Since. <x, c)e@(x, c) and (c, y)£0(y, c) in Fv(x,y), (1) 
implies the existence of ddFr(x, y) with (x, d)£0(y, c) and (d, y)£ 0 (x, c). 
Hence d=f(x, y) for a binary polynomial f and (2) is evident. 

(2)=>-(l) can be proven in the routine way. 

Example 2. The variety of (V-semi-) lattices with 0 and the variety of addi-
tive groupoids with 0 are weakly permutable in 0, as we may put fix, y)=x\/y 
resp. f(x,y)=x+y. 

Remark 4. An algebra A is congruence permutable if and only if it is weakly 
permutable in each element c of A. If y is a permutable variety and mix, y, z) is 
its Mal'cev polynomial, put fy(x, z)=m(x, y, z) for each ydA^y Then 

fy(x, y) = mix, y, y) = x, fy(y, x) = miy, y,x) = x 

are the polynomials desired by Theorem 5. 

Defini t ion 4. Let p(x, y) be a binary polynomial in a variety Y. y is weakly 
permutable in pix, y) if 

(x, pix, y))£0 and (pix,y), imply (x,y)£$-0 

for each A^, for every x, y£A and every 0, &£Con A. 

Theorem 6. Let pix, y) be a binary polynomial in "V. The following conditions 
are equivalent: 

(1) y is weakly permutable in pix, y); 
(2) there exists a binary polynomial qix, j) such that 

q (x, p ix, >0) = x, q(p (x, y), y) = y. 

The proof is analogous to that of Theorem 4. 

Example 3. Every variety of lattices is weakly permutable in xVy (or in xAy). 

4. Relational properties 

H. W E R N E R [7] proved that permutability of is equivalent to some properties 
of compatible relations. We proceed to show how this can be modified for our 
modifications of permutability. A binary relation R on an algebra A is compatible 
if it has the substitution property with respect to all operations óf A, i.e. R is a sub-
algebra of AX A. 

Defini t ion 5. Let R be a compatible binary relation on an algebra A. R is 
ideal-transitive if (a,b)£R and (b, c)£R imply (a, c')£R for some c'í/(c). R is 
ideal-symmetric if (a, b)^R implies (b, a')£R for some a'£I(a). 
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Theorem 7. For a variety "V with 0, the following conditions are equivalent: 
(1) "V has ideal permutable congruences; 
(2) every reflexive compatible binary relation R on Ad'f is ideal-transitive; 
(3) every reflexive compatible binary relation R on A^'f is ideal-symmetric. 

Proof. (1)=K2): If {a, b)£R and (b, c)£R, then also (p(b, b, a),p(c, b, b))£R 
for the ternary polynomial p(x, y, z) derived in Theorem 2, thus {a, c')dR for c'= 
=p(c, b,b)<=I(c). 

(1)=*(3): Analogously, {a, b)£R implies (p(a, a, b),p(a,b,b))£R thus {b,a')£R 
for a'=p(a, b, b)£l(a). 

(2)=>(1): Let R be a reflexive compatible binary relation on Fr(x,y,z) gene-
rated by the pairs (z, y) and (y, x). Then (z, y)dR and (y, x)£R and, by (2), there 
exists d£I(x) such that (z, d)£R. Hence, there exists a 5-ary polynomial q(xi, x2, x3, 
x4, x5) with z=q(y, z, x, y, z) and d=q(x, y, x, y, z). Put p(x, y, z) = q(x, z, x, y, z). 
Then 

p(x, x, z) = q(x, z, x, x, z) = z, p(x, z, z) = q(x, z, x, z, z)£l(x). 

(3)=>(1): Let R be a reflexive compatible binary relation on Fr(x,y) generated 
by the pair (x,y). Then (x,y)£R and, by (3), (y, c)(LR for some c£I(x). Hence, 
there exists a ternary polynomial p(x, y, z) with y=p(x, x,y), c=p(x,y,y). 

Theorem 8. Let "T be a variety with a nullary operation c. The following con-
ditions are equivalent: 

(1) y is weakly permutable in c; 
(2) every compatible relation R on A^f satisfies: if (a,c)£R and (c,b)£R, 

then (a, b)£R. 

Proof. (1)=>(2) is evident. We prove (2)=>-(l). Let J? be a compatible binary 
relation on Fv(x, y) generated by two pairs (x, c) and (c, y). Then (x, c)£R, (c, y)€R 
imply (x,y)ZR, i.e. there exists a binary polynomial / such that 

(x, y) =/«*, c>, (c, y)). 

By writing this componentwise, we obtain (2) of Theorem 5. 

The proof of the following theorem is analogous. 

Theorem 9. Let p(x, y) be a binary polynomial of the variety "K The following 
conditions are equivalent: 

(1) "K is weakly permutable in p(x,y); 
(2) every compatible binary relation R on A^V satisfies: if (a,p(a, b))€R and 

<p(a,b),b)£R, then (a, b)£R. 
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Two finlteness conditions for finitely generated and 
periodic semigroups 

G I U S E P P E P I R I L L O 

1. Introduction. In this paper we present two finiteness conditions for a finitely 
generated and periodic semigroup. The first condition requires that the function 
which counts the number of elements of the first i generations grows less rapidly 
than i(i+3)/2. The second one requires that the semigroup be repetitive and that 
there should exist a positive integer p such that each element of the semigroup has 
order smaller than p. 

2. Notations and preliminaries. Let A be an alphabet, A+ (resp. A*) the free 
semigroup (resp. free monoid) on A. For any word w£A+, |w| will be the length of w. 
A word v is a factor of a word w if there exist two words u, u'£A* such that w=uvu'. 

Let S be a semigroup, G a finite set of generators of S and G be a copy of G. 
Let <p: G+ — S be the (epi-)morphism defined by q>(g)=g, for each g€ G. Suppose 
that in G a total order < is given and consider the lexicographic order induced by 
< on G\ for each positive integer i (i.e., given two words w, w'g G' we say that w 
precedes w' in the lexicographic order if there exists a positive integer j, 1 S /S i , 
such that 

W = UOjV, w' = ubjv' 

where u, v, u' are words of G*, aj and b} are letters of G such that aj<bj). 

Defini t ion 1. We say that a word w£G+ is the canonical word of an element 
if:, 
1 )> (w)= i , 
2) for any other word G+ such that <p(w')=s we have either 
a) M<|w' | , or 
b) M = |w'| and w precedes w' in the lexicographic order. 

Received January 24, 1986. 
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Fact 1. A factor of a canonical word is a canonical word. 

Namely, if v is a factor of w and w is the canonical word of an element s(i S, 
then there exists another element s'£S such that v is the canonical word of s'. 

Now consider the following subsets of S: 

& = <p(G% Pt = U G\ Ri = 
j=i 

(where Po=0) and the functions p, r from the set of positive integers into the set of 
positive integers defined by 

p(i) = card P^ r(i) = p(i)-p(i-1), 

for each positive integer i. 

Defini t ion 2. We say that a finitely generated semigroup has linear growth if 
there exists a positive integer k such that p(i)^ki, for each positive integer i. 

For future reference we state below without proof a theorem due to JUSTIN [ 4 ] . 

Theorem 1. For a finitely generated semigroup, the following conditions are 
equivalent. 

a) There exists a finite subset F of G+ such that the canonical word of each ele-
ment of the semigroup belongs to F or has a factorization w=uvnu' where u, v, F 
and n is a positive integer. 

b) There exists a positive integer m such that r(i)^m, for each positive integer i. 
c) The semigroup has linear growth. 
d) There exists a positive integer i such that />(/)-=/"(/+ 3)/2. 
e) There exists a positive integer d such that r(d)^d. 

3. Two conditions of finiteness for finitely generated semigroup. The Burnside 
problem for semigroups has been recently studied by several authors (see, for example, 
DE LUCA [2] , DE LUCA a n d RESTIVO [3], RESTIVO a n d REUTENAUER [6]). 

We present here two conditions which are natural in the study of repetitive 
semigroups (see definition below) and are necessary and sufficient conditions for the 
finiteness of finitely generated and periodic semigroups. 

Our first result is the following proposition. 

Proposi t ion 1. Let S be a finitely generated semigroup. The following conditions 
are equivalent: 

a) S is finite. 
b) S is periodic and has linear growth. 
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Proof, (a)—(b) is trivial. Using Theorem 1, the proof of (b) —(a) is just a re-
mark. In fact, the finiteness of F (see condition a) of Theorem 1 and the periodicity 
of S1 gives a suitable positive integer q such that 

S = cp(F)U(p{{Fv"F: v£F, n ^ q}), 

that is S is finite. 
So, we have proved, without much effort, that if S is a periodic semigroup 

such that p(i)<i(i+3)/2 for a suitable non-negative integer i, then 5 is finite. 
Now, let us introduce following definition. 

Def ini t ion 3. Given a (finite) alphabet A and a semigroup S, a morphism 
a: A+-*S is called repetitive if for each integer k there exists a positive integer 
la(k) such that each word w£A+ of length at least la(k) can be factorized as follows: 

w = w0w1...wkwk+1 

where w„, wk+1£A*, vv2, ...,wk£A+, and <x(w1)=cc(w2) = ... =a(wt). 

Def ini t ion 4. A semigroup S is called repetitive if, for each finite alphabet 
A, each morphism a: A+-~S is repetitive. 

We can prove the following proposition. 

Proposi t ion 2. Let S be a finitely generated semigroup. The following con-
ditions are equivalent: 

a) S is finite. 
b) S is periodic, repetitive and there exists a positive integer p such that each 

element of S has order at most p. 

Proof. The only non-trivial part of (a)-(b) is "S finite"-"S repetitive". 
This has been proved by JUSTIN [5] (see also [7]). 

(b)-«-(a). Let G be a finite set of generators of S. Let G and <p\ G-+S be as in 
the preceding paragraph. By way of contradiction, let S be infinite. We have that the 
subset of G+ of the canonical words of the elements of S is infinite and so there 
exists a canonical word w of length greater that /,,(/?+1). 

By the repetitivity of cp we have w=w0w1...wpwpJrlwpJl.t where w0, wp+2£ G*, 
Wj_, ..., wp, wr+1£G+ and cp(vvx) = ...=<p(wp)=<p(wp+1). Now considering the pro-
perty o f p one easily sees that the word w1w2...wpwp+1 is too long to be acanonical 
word of an element of S. This is in contradiction with Fact 1. 

Remark. In the proof of Proposition 2 we can make use only of the repetitivity 
of the epimorphism (p. 

Proposition 2 provides us with one of the few criteria to establish if an infinite 
semigroup is repetitive. 
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Let us show that the semigroup S=A+U{0}/~ (where A is a finite alphabet 
with at least three elements, 0 is a zero and ~ is the conigruence generated by the 
relation R on A+ defined by ww R 0 for each w£A+) is non-repetitive. 

In fact, the semigroup S is infinite (this is a consequence of the Thue construc-
tion of infinite square-free words over each alphabet with at least three elements, see 
[1]), evidently periodic and its elements have at most order 2. So, by Proposition 2, 
S cannot be repetitive. 

On the contrary, the semigroup S'=A(where A is a finite alphabet, % 
is the congruence generated by the relation R' defined by ww R' w for each w(LA+) 
is finite (see again [1]) and therefore repetitive (see [5]). 

Acknowledgements. The author would like to thank J. Justin for his helpful 
comments in the preparation of this work. 
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Неприводимые правые правоальтернативные представления 

Ц . Д А Ш Д О Р Ж 

В работах [2], [1] А. М. Слинько и И. П. Шестаков определили понятия 
правого представления и правого модуля для алгебр произвольного много-
образия. В настоящей работе изучается неприводимые правые правоальтер-
нативные представления (бесконечномерных) правоальтернативных алгебр. В 
частном случае альтернативных алгебр и представлений утверждения теорем 
1 и 2 дают результат работы И. П. Шестакова [1]. Напомним, что для ко-
нечномерных правоальтернативных алгебр исчерпывающее описание непри-
водимых правых правоальтернативных представлений получено И. П. Шес-
таковым [1]. 

Пусть Ф — ассоциативно-коммутативное кольцо с единицей. Алгебра 
называется правоальтернативной, если она удовлетворяет тождествам 

(ху)у = ху\ ((xy)z)y = x((yz)y). 

Пусть А некоторая правоальтернативная алгебра над Ф, Y — некоторый 
Ф-модуль, End® (F) алгебра эндоморфизмов Ф-модуля Y. 

Определение 1. Если для Ф-линейного отображения в- ^-«-End^y) 
выполняются равенства 

(1) . . (а2)® = (а<02, (аЬ • а)е = сРЬ'а?1 

для любых элементов а, £ из А, то модуль Y называется правым правоальтер-
нативным модулем над A, q — правым правоальтернативным представлением 
алгебры А. 

Будем использовать обозначение va вместо vcfi, v^Y, а£А, и 

(а,Ъ) = aftf-iab)', (а, Ь)* = bea?-(ab)e, a, be А; 

(А, А) = {(a, b)la, Ь€А}, (А, А)* = {(а, Ь)*\а, be А). 

Поступило 31 октября 1986. 
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Определение 2. Если Ann Y={a£A\Ya=0}=0, то ^-модуль Y назы-
вается точным. 

Определение 3. Модуль Y называется неприводимым, если 0 является 
единственным собственным подмодулем Л-модуля Y. 

Пусть С — алгебра Кэли—Диксона с канонической инволюцией С—С, 
a reg С, reg С модули, получающиеся введением на векторном пространстве 
Y= С соответственно следующих действий алгебры С: если v£Y, а£С, то 
v-a=va для модуля reg С, v • a=va, для модуля reg С, где через va обоз-
начено произведение элементов v и а в алгебре С. 

Основным результатом работы является следующая: 

Теорема 1. Пусть Y — точный неприводимый правый правоальтернатив-
ный модуль над правоальтернативной алгеброй А. Тогда либо 

(1) А примитивное ассоциативное кольцо и Y правый или левый ассоциатив-
ный A-модуль, либо 

(2) А является алгеброй Кэли—Диксона над своим центром и YÄ£ 
€ {reg С, reg С}. 

Рассмотрим некоторые определения и утверждения из теорий йордановых 
алгебр, необходимые для доказательства основной теоремы. 

Определение 4. Если для Ф-модуля J с единицей 1 определена компози-
ция vx(y), квадратичная по х и линейная по у, удовлетворяющая аксиомам 

Ví = idj, vxVx,y = Vy,xvx = vVxiyhx, vvJy) = vxvyvx, 
где 

Vx,z = V x + z - v x - v z , Vx,y(z) = vXi2(y) = {xyz}, 

то тройка (J,v, 1) называется квадратичной йордановой алгеброй с 1. В этом 
случае единица определяет операцию x2=vx(\) возведения в квадрат. Если 
для Ф-модуля / определены композиции vx(y), хг и модуль / # = 1 • Ф+7 явля-
ется квадратичной йордановой алгеброй с 1, то J называется квадратичной 
йордановой алгеброй. 

Известно, что если А правоальтернативная алгебра, то операторы vx(y)= 
=ху • х, х2=хх определяют на А структуру квадратичной йордановой алгебры 
обозначим её через А+. В дальнейшем под йордановой алгеброй мы будем 
понимать только квадратичную йорданову алгебру. 

Определение 5. Если для некоторого Ф-линейного отображения 
Q: 7—End^CF) выполняются равенства 

(2) (а2)» = (о")2, {aba}» = аеЬвав 
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где {aba}=va(b) для любых элементов а, b из / , то модуль У называется спе-
циальным йордановым модулем над 7, а отображение q — специальным 
представлением алгебры 7. Заметим, что если У правый правоальтернативный 
модуль над А, то У является специальным йордановым модулем над А+. 

Точность и неприводимость для специального йорданового модуля оп-
ределяется аналогично соответствующим определением для правоальтерна-
тивного модуля. Элемент а(Е/ называется абсолютным делителем нуля йор-
дановой алгебры 7, если va(J*)=0, где 7* = 1 • Ф+/, 1 — формальная единица. 
Йорданова алгебра невырождена, если она не содержит ненулевых абсолютных 
делителей нуля. Известно, что если I, К — идеалы йордановой алгебры 7, то 
Ф-модуль V j ( f C ) , порожденный множеством 

{».(*)\аО, к£К} 

также является идеалом в / . Йорданова алгебра / первична, если для любых 
двух идеалов К, L алгебры / из vK(L)=0 следует либо К=О, либо L=0. 

Лемма 1. Если У специальный йорданов модуль над J, то множество 
Ann У={а£./|Уа=0} является идеалом в J, а 7/Ann У специальной йордановой 
алгеброй. 

Доказательство. Пусть q — специальное представление алгебры J. 
Ясно, что отображение q: а—а°, где a£J, ac€End®(y), является гомоморфизмом 
йордановой алгебры J в йорданову алгебру Епёф (У)+. Таким образом, ядро 
этого гомоморфизма 

Кег q = {a£ J\ Ya = 0} = Ann У 

является идеалом в J. В силу изоморфизма Im gs= //Ann У фактор-алгебра 
J/Ann У специальна, так как 1 т е = {ав|аб7} йорданова подалгебра, порож-
денная операторами сР в Еп0ф(У)+. Лемма доказана. 

Таким образом, если У точный специальный /-модуль, то в силу леммы 1 
алгебра /-специальна: Обозначим через RY{J) ассоциативную подалгебру ал-
гебры End® (У), порождённую множеством {d*\a€J}. 

Лемма 2. Пусть У точный неприводимый специальный модуль над йор-
дановой алгеброй J. Тогда алгебра J первична и невырождена. 

Доказательство. Докажем невырожденность алгебры / . Только что мы 
заметили, что алгебра / специальна. В силу теоремы А. М. Слинько—В. Г. 
Скосырского [2; стр. 355], имеем M(I)QLoc (J), где M(J) радикал Маккрим-
мона, a Loc (/) локально-нильпотентный радикал. Далее, по теореме В. Г. 
Скосырского [2] имеем Loc ( /)^Loc (RY{J)). Ясно, что представление q 

з 
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алгебры J индуцирует неприводимое представление д алгебры RY(J) в модуле 
У и Jac (Ry(/))QKer g, где Jac (Ry(J)) радикал- Джекобсона алгебры RY(J)-
Следовательно, если a£M(J), то а£]ас (RY(J)) и .ae=as=0 т. е. а£Кег0=О. 

Докажем невырожденность алгебры J. Пусть {KLK}= {{klk}\k£K, l£L}=О, 
где К, L ненулевые идеалы в J. Если КГ\Ь=М^0, то в силу невырожденности 
Мполучаем {МММ}^0. Но {MMM}Q{KLK}=0. Таким образом КГ)Ь=0, 
ясно что KoLQKC\L—0, здесь 

KoL = {kol\kol = (k+l)*-k2-I2,k£K, l£L} 

т. e. KoL—0. Из точности модуля У следует, что YKt±0. Используя лине-
аризацию равенство (а0)2=(а0)2 для любого a£j, мы имеем 

vk-a= —va • k+v(aok)€YK. 

Отсюда следует, что YK подмодуль J модуля Y. Ввиду неприводимости Y 
имеем YK=Y. Тогда найдутся элементы k£K, l£L, такие, что Yk - {0}. 
Заметим, что 

vk • I = — vl-k+v(kol) = — vl • k 

для любого v£V. Значит, Yk • l=Yl-k. Далее, в силу линеаризованного тож-
дества (1) для любых элементов a£j и v&Y имеем 

(vk • l)a = — (va • l)k+v {kla} = — (va • [)k 

так как {kla}£Kf)L=0. Отсюда следует, что Yk-l=Yl-k есть /-подмодуль 
модуля Y. Ввиду неприводимости модуля Y имеем У= Yk • /. Однако по тож-
деству (1) 

у = Yk - I = (Yk • I)k • I = Y{klk} • I = {0}, 

что противоричит неприводимости модуля Y. Лемма доказана. 

Следствие 1. Если У — неприводимый правый правоалътернативный мо-
дульнад А, то Ann Y={a£A\Ya=Q} является идеалом в А. 

Доказательство. Если bgAnn Y, то для любого элемента а£А имеем 
Y(ab+ba)= Ya •b+Yb-a=0. Значит, Ann У является идеалом в йордановой 
алгебре А+. Таким образом, У. точный неприводимый Йорданов модуль над 
алгеброй А=А+/Ann Y. По лемме 2 алгебра А первична и невырождена. 
Значит, Ann У является идеалом в А согласно лемме Тэди [5]. 

Рассмотрим свободную ассоциативную Ф-алгебру от множества порож-
дающих Х={хг,ха,...} и свободную специальную йорданову алгебру от X, 
^/[JTJQAss [Х]+. В работе [4] построены вполне характеристический идеал. Г 
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алгебры SJ[X] и функция натурального аргумента /(&), к ^ З , /(3)=0, такие 
что для любых элементов teT^k)\ at, ..., akeSJ[X], справедливо-включение 

{at... a,tai+i... ак} = аг... t ..у. ак+ак ... t... a^SJlX], 1 ̂  i ^ к. 

Обозначим Tm=Tyim)\\ Пусть J специальная йорданова алгебра и R её 
ассоциативная обертывающая алгебра. Ясно, что алгебра У является гомо-
морфным образом некоторой свободной специальной алгебры -SJ[JF]. Пусть 
Tm(J) гомоморфный образ идеала Tm(SJ[X]). Если I идеал в J, то v1(J)={IJI}=I 
тоже является идеалбм в J. Множество 

Ann(R, Т°°) = {aeR\afm(J) = fm(J)a = 0 для некоторого m ёг 1} 

является идеалом в алгебре R [7]. 

Доказательство теоремы 1. Точньш неприводимый правоальтерна-
тивный модуль У является точным неприводимым специальным модулем над 
йордановой алгеброй А+. По лемме 2 йорданова алгебра А+ первична и не-
вырождена, следовательно, алгебра А альтернативна [7]. Значит, согласно 
теореме С л ей тер а [2] А либо ассоциативна, либо является кольцом Кэли— 
Диксона. 

(а) Предположим, чтр Т(А+)т±0. В силу точности А+-модуля У алгебра 
RY(A+) является ассоциативной обертывающей алгеброй для А+. В [7] 
доказано, что для любых элементов a, be. А выполняется включение 

(a, b)Rr(A+)(a, Ъ)* £ В(Ку(Л+)). 

где B(Ry(A+)) полный прообраз радикала Бэра B(Ry(A+)) при гомомор-
физме 

Ry(A+) - Ry(A+)/Ann (Ry(A+), Г~) = RАА*). 

Докажем, что УЯ(Ду(Л+))=0. Пусть v£Y, J¥£B(RY(A+)) И vW^O. Из 
неприводимости ассоциативного Лу(л1+)-модуля Y следует, что vWW'=v 
для некоторого оператора fV'eRY(A+). Тогда для любого натурального и 
имеем v(WW')n=v7±0. Найдется ш ё 1 такое что (WW')meAnn(RY(A+), Т°°), 
то есть для некоторого натурльного числа к имеем (WW')mfk=0, v(WW)mfk= 
~vfk—0.: Множество Y^ = {ve Y\vfk=0} является ненулевым подмодулем 
йорданова у4+-модуля К Значит, из неприводимости Л+-модуля Y следует, 
что Y=Y1 т. е. Yfk=0. Поскольку Y — точный модуль, то Тк=0. Это про-1 

тиворечит тому, что fk ^ 0. Таким образом, получаем Y(a, b)RY(A+)(a, b)*—0. 
Если Y(a,b)^0, то Y(a,b)Rr(A+)—Y, что влечет (а,Ь)*=0. Следовательно, 
для любых элементов a, be 4 > либо (а, Ь)=0, либо (а,Ь)*=0. 

Лемма 3. Пусть У = ^ и У 2 , где Y1 и У2 подгруппы аддитивной группы 
(У, +). Тогда либо Y=Y1 либо У=У2. ; 

з* 
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Доказательство. Допустим что Y^Y t и Y^Y2. Пусть Vx̂ Yx, Vx$Yz, 
v2&Yz, v2$Yx. Тогда O^Vx+Vî Yx и Vx+v2$Y2. Противоречие. Лемма доказана. 

Зафиксируем элемент а£А. Множества 

Аг = {b£A\(a, Ь) = 0}, Аг = {b£A\(a, bf = 0} 

являются аддитивными подгруппами в (А, +). По лемме 3 либо Ах=А, 
либо А2=А т. е. для любого элемента а£А либо (а,А)=0 либо (а,А)*=0. 
Пусть Ax={b£.A\(b, Л)=0} и Az={b£A\(b, А)*=0}. Тогда снова по лемме 3 
получаем, что либо (А,А)=0, либо (А, А)*=0 т.е. либо Аг=А либо А2=А. 

(б) Пусть Т(А+)=0. Напомним, что центром альтернативного кольца 
А называется множество 

z(A) = {z£ A\[z, А] = (z, А, А) = 0} 

где (z, х, y)=(zx)y—z(xy) ассоциатор элементов z,x,y£A. Через Z*(A) 
обозначим множество обратимых элементов центра Z(A). В ассоциативном 
случае по теореме Маркова—Роуэна [6] и в альтернативном случае по тео-
реме Слейтера [2] получаем, что A1=Z*(A)~1A является простой конечно-
мерной алгеброй над полем частных K=Z*(A)~1z(A) или алгеброй Кэли—Дик-
сона над полем К. В первом случае известно, что dim^ Аг ^4 , так как в алгебре 
Ах тоже выполняется тождество Т(А+)=0. 

Лемма 4. Пусть А — альтернативная алгебра, Y—неприводимый правый 
правоальтернативный модуль над A, z£Z(A), ad А. Тогда Y(z, а)=0. 

Доказательство. В силу линеаризованных тождеств (1) для любых эле-
ментов v£Y, b£A имеем 

(v, z, a)b = (vz•a)b—(v• za)b = 

= -(vb-a)z+v(za • b+ba- z)+vb • za—v(za• b+b • za) = 

= — (vb • a)z+vb • az = —(vb, a, z) = (vb, z, a). 

Отсюда следует, что подмножество (Г, z, а) является подмодулем Л-модуля Y. 
Допустим, что Y(z,a)=(Y,z,a)?± 0. Тогда ввиду неприводимости модуля 

Y имеем Y(z,a)=Y. Заметим, что v(z,a)=v(a,z)*=—v(z,a)*. Поэтому 
v(z,a)(a,z)*=0, так как (a,b)(a,b)*=0, (см. [2]). Но тогда Y=Y(z, a)(z, а)=0. 
Полученное противоречие доказывает лемму. 

Определим на Г структуру правого правоальтернативного Ах-модуля. 
Проверим сначала, что если 0 0 ¿ ¿ z £ Z ( A ) , то vzy^O. Действительно, 
если vz== 0 то по лемме 4 имеем Q=vz • A=v < zA=v • Az=vA -z=Yz, откуда 
z£ Ann Y, z=0. 
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Для v0z=v19iО положим v1z~1=v0. Далее: положим v-z~1a=vz~1-a. 
Докажем корректность такого определения. Пусть zx

1a=z~1a1. Тогда za= 
=z1a1. Сначала докажем равенство 

(3) VZ• Zí1 - VZi1 • z'1 = vizzj)-1 

для любых v£Y, z, z1eZ*(A). Пусть w—vz"1 • z"1, Отсюда 
следуют, что wzx-z=v, wz-z1=v, т.е. 

W-ZXZ = WZ} -Z = V = W1Z-Z1 = W1-Z1Z, (w — W1)-Z1Z = 0 , W — W j . 

В силу леммы 4 и равенства (3) имеем 

vz~xzx
 xza = vzí1 • а = v • z:vz'^z^z^a = vz-1 • ax = v • г~гах 

т. e. 
(4) v-zx1a = v-z~1ai. 

Используя (3) и (4), легко получаем, что 

ь(г~га • = v(z~2a2) = vz~ü • а2 = (vz-1 • z-1)a2 = 
= (vz-1 • a2)z_1 = (vz-1 • á)a • = (pz-1 • d)z~x • a = (v • г~га) • z-1a, 

V((Z_1Ű • Zi1b)z~1a) = ((v • z_ Ia)zf • z _ Ia. 
Точность -модуля Y и ясна. 

Таким образом, в первом случае (т. е. когда Ах — ассоциативна) либо Y 
является правым правоальтернативным модулем над АХ=К, либо dimKA1=4. 
Чтобы закончить доказательство можно было сослаться на [3], но ради пол-
ноты изложения продолжим рассуждение. Если Аг=К, то (А1}А,)—0 (см. 
[2; стр. 277]). 

Пусть dimK Аг=4. В Ах можно выбрать базу 1, vlt v2, v3. Рассмотрим 
симметрический многочлен 

d = (ххх2 —х^). 

Полагая в d, хi=a®, x2=be, xs=(ab)°, хл=с°, где а, Ь, с£А±, получим, что d 
является симметрическим многочленом от трех букв г^, ríj, г^. Значит, по 
теореме Кона [2] d является йордановым многочленом от Поэтому 
из ld=0 легко следует, что d—О на А\. 

В работе [1] доказана, что универсальная алгебра правых правоальтер-1 

нативных представлений 91 (Л^ изоморфна прямой сумме алгебры Ах и анти-
изоморфной ей алгебры Ах. Докажем, что (а, Ь)ЩАх)(а, Ь)*=0', где а, b£Ax. 
Пусть (а, Ь)=х®у, х€А1г у£А\, (а,Ь)*=х1@у1, х ^ А г , у^А^. Учшъшая 
равенство d—0 и изоморфную вложимость алгебры Ах в 5К(ЛХ) посредством 
отображения с-»-с ©с0 имеем (х © .у) (с © с0) ® л )=хсх х © ус0 =0, хсхх—0 
и ус°ух=0 для любого элемента сеАх. Если х^О и то хАххх=0, 
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что противоречит :первичности алгебры Ах._ Отсюда следует, что .либо х=0, 
либо Аналогично, либр у=0, либо ух=0. Поэтому , для любого эле-
мента c(Bd°£9l(AJ имеем 

(a, b)(c®d°)(a, Ь)* = xcx1®yd°y1 = 0©0 = 0, 

т. е. (а, b)9t(A¡)(a, Ь)*=0. ' • 
В алгебре i?y04x) тоже вьшолняется равенство (a, b)Ry(A])(a, Ь)* =0, так 

как Rr(Ax) является гомоморфным образом алгебры 9?04]). Из равенства 
Y(a, b)RY(A1)(a, b)*=0, рассуждая как в:случае (а) получим, что либо (А1г AJ= 
=0 либо U 1 , ^ i )*=0. 

Если алгебра Аг альтернативна, то А±=С и из неприводимости Ах-
модуля У имеем (см. [2; стр. 275]) Ус€ {reg С, reg С}. Из неприводимости ^-мо-
дуля Y= С следует, что А = С. Теорема доказана. 

Теорема 2. Пусть Y неприводимый правый правоальтернативный модуль 
над правоальтернативной алгеброй А. Тогда либо (А,А)=0, либо (А, А*)=0, 
либо YÄ£{ieg С, reg С}, где Ä=A/Ann Y. 

Доказательство. Ясно, что всякий неприводимый ^-модуль Y явля-
ется точным неприводимым Л-модулем, где A=A¡AnnY. Из vä=v(a+Arm Y)= 
=va следует, что (А, Я)=0 или (А, Я)*=0 тогда , и только тогда, когда, 
(А,А)=0 или (А, А)*=0. Теорема доказана. 

Автор благодарит профессора Л. А. Бокутя за научное руководство ра-
ботой и Е. И. Зельманова за денные советы. 
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On (¡¡¿-products of automata 

. z . £SIK 

1. Introduction 

In [3] we introduced o^-products and gave an algebraic characterization of 
(homomorphically) complete classes of automata for the a^-product: 

Theorem 1.1. A class № of automata is complete for the a.\-product if and 
only if for every simple group G there exists an AGP^ ( j f ) such that G is a divisor 
of the characteristic semigroup of A, written G|iS(A). 

Further, we proved the following result. 

Theorem 1.2. Let № be a class of automata. 
(i) If Jf" contains a nonmonotone automaton, i.e. an automaton in Jf has a non-

trivial cycle, then if and only if for every simple group G with G\S(A) 
there exists an automaton with G\S(B). 

(ii) If Jf consists of monotone automata one of which is not discrete, then 
HSP^(JT) is the class of all monotone automata. 

(iii) If X" consists of discrete automata one of which is not trivial then HSP^(JT) 
is the class of all discrete automata. 

(iv) Otherwise, i.e. if Jf consists of trivial automata, then HSP^(Jf ) is the class 
of all trivial automata. 

The aim of this paper is to give a graph theoretic characterization of complete 
classes for the aj-product and to give a description of the classes of the 
form HSP^(Jf) on the basis of graph theoretic terms. We believe this solution to 
be the final one as regards a^-products. The proofs are based on the fact that the 
symmetric group of degree n— 1 («>1) can be "realized" in a biconnected graph 
on n vertices. For recent results on a0-products and ax-products see [2] and [1]. 

Received M y 10, 1986. 
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2. Notions and notations 

An automaton is a system A=(A, X, 8) with finite nonvoid sets A and X, the 
state set and input set, respectively, and transition <5: AXX—A. The transition 
extends to a mapping S: A XX*-* A in the usual way, where X* is the free semigroup 
with unit element X generated by X. The characteristic semigroup of A, denoted 
S(A), is the transformation semigroup on A consisting of all the mappings 5U: A—A, 
5u(a)=5(a, u) (at A, u£X*). 

Given a system of automata At=(A„Xt,St) and a family of feedback func-
tions 

< ; . . . XAnXX - XtU{X\, 

t=l,..., n, the gA-product of the At's with respect to X and (p is defined to be the 
automaton A with state set A1X-.-XA„, input set X, and transition 

¿((A, ..., a„), x) = (¿iK, Mj),..., 5n(an, u„)) 

where (au ...,an)€A1X...XA„, x£X and 

u, = <p,(a1,...,an,x), 

t=\,...,n. If none of the feedback functions (p (alt ...,a„,x) depends on the 
state variables as with s>-t, we have an aj-product. 

Given a (nonvoid) class Jf of automata, we set: 
P ^ ( j f ) : all ai-products of automata from Jf, 
P ^ (^f): all a^-products with a single factor of automata from X (i.e. « = 1 

above), 
S(Jf) : all subautomata of automata from X, 
H(Jf) : all homomorphic images of automata from X. 

Recall that a class X is called (homomorphically) complete for the aj-product if 
and only if HSP^(jT) is the class of all automata. 

By a semigroup (group) we shall mean a finite semigroup (group). We write 
S,

1|52 for two semigroups and S2 if Si is a homomorphic image of a subsemi-
group of S2- If «Si is a group, this just means that S^ is a homomorphic image of a 
subgroup of S2. The following statement is known e.g. from [4]: 

Proposi t ion 2.1. If G\G1X.-.XG„ for a simple group G and a direct product 
of groups Gi, ...,(?„ («> 0), then G|Gf for some i. 
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3. Some useful facts 

To investigate aj-products of automata we introduce the (directed) graph 
D(A) of an automaton A=(A, X, <5) as follows. We put D(A)=(V, E) where 
the vertex set V is just the state set A and 

E = {(a, b)£AxA\a b, 3x£X d(a, x) = b}. 

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall 
always mean a graph without loop edges. 

Take a graph D=(V,E). We say that D is connected if for every pair a, b 
of different vertices there is a (directed) path from a to b. A maximal connected sub-
graph of D is a connected graph D'=(V',E') with V'QV, E'QE and such that 
whenever D"={V",E") is a connected graph satisfying V'QV'QV and E'QE"Q 
QE, we have V'=V", E'=E". 

A cycle is a graph D—(V,E) with V= {ax, ..., a„}, and E= {(a1? ..., 
(i*„_i, a„), (a„, flx)}. Thus, cycles are connected graphs. Connected graphs other 
than cycles and having at least two vertices will be referred to biconnected graphs. 

Take a graph D with vertex set V={%,..., an} and place a pebble pt onto for 
every i = l , ..., n. Suppose we are allowed to move the pebbles according to the 
following three rules: 

R l : Each step, an arbitrary number of pebbles can be moved. (Thus, some 
pebbles may stay where they are.) 

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b) 
is an edge. 

R3: Once two or more pebbles hit the same vertex, they cannot be separated, 
i.e. have to be moved jointly. 

Suppose that after a (possibly zero) number of steps p{ is on vertex a j t , / = 1, ...,«. 
To this sequence of transformations we assign the mapping V—V given by a^ajt, 
i = l , . . . , n. Denote by S(D) the set of all mappings obtained in this way. Clearly, 
S(D) is a transformation semigroup on V. We let G(D) denote the group of all 
permutations in S(D). The following observation easily comes from the definitions: 

Fact 3.1. Let A be an automaton and D=D(A). Then, for every B£P*a ({A}), 
S(B) is a subsemigroup of S(D). Further, there exists an automaton C^P^ ({A}) 
with S(C)=S(D). 

Our game can be further generalized. Take a graph D=(V, E) and fix a non-
void subset V' of V, say V'= {al5 ..., a„}. Put pebble pt onto a{, i= 1, ..., n, and 
move the pebbles in the graph according to Rl, R2 and R3. Suppose that after a 
(possibly zero) number of steps the pebbles get back to the vertices in V, i.e. for 
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every i, Pi is located on a vertex aJt in V'. We obtain a mapping V'-»V that assigns 
aj to flj. The collection of all these mappings is a transformation semigroup on V, 
denoted S(D, V). Put G(D, V ) for the group of all permutations in S(D, V'). 
The following statement is obvious. 

Fac t 3.2. S(D, FOIS^D) and G(D, FOIS^D). 

The next assertion is a reformulation of a well-known fact. 

Fact 3.3. If G is a subgroup of S(D) then there is a nonvoid subset V' of the 
vertex set of D such that G is isomorphic to a subgroup of G(D, V). 

Directly from Fact 3.3 and the observation that it is impossible to move a 
pebble back in a maximal connected subgraph if it has been moved out, we obtain: 

Fac t 3.4. If G is a subgroup of S(D) then G has maximal connected subgraphs 
Dx, ...,D„ («>0) such that for some nonvoid subsets ^ of the vertex sets of the 
graphs Di it holds that G is isomorphic to a subgroup of the direct product G(DJQx 
X...XG(D„, Vn). 

Fact 3.5. Let G be a simple group. Then G\S(D) if and only if G\G(D', V ) 
for a maximal connected subgraph D' of D and a nonvoid subset V' of the vertex set 
of D'. 

Proof. Suppose that G\S(D). There is a subgroup H of S(D) which can be 
mapped homomorphically.onto G. By Fact 3.4, H is isomorphic to a subgroup of 
a direct product G(D1, V1)x...XG(D„, Vn) where the graphs Dt are maximal 
connected subgraphs of D and for every i, Vt is a nonvoid subset of the vertex set of 
Di. Thus, G[G(D1,K)X...XG(D„, V„). From Proposition 2.1, G|G(D,, K) for 
some i. 

Conversely, G|G(D', V) and G(D', V)\S(D) yield G|S(D). 

Suppose we are given a graph D=(V,E) with V={a0, ...,a„}, « s 1, i.e. D 
has at least two vertices. Set. V—V— {a,}, /=0, ...,«. Fix a pair of different in-
tegers i, {0,..., «} and define the mapping \j/UJ: by 

{ aj if i = k, 
ak otherwise: 

Let us say that ^ j has a realization in D if starting with pebble pk located on ak, 
k—0, ..., n, k^j, the placement that pk is located on <J/itJ(ak), k=0,..., n, k?±j, 
can be achieved by a sequence of moves according to Rl , R2, R3. Obviously, if 
i¡/iyj can be realized for every pair of different integers i, {0,..., «}, then for every 
i€{0, ..., n}, G(D, Jty is the group of all permutations on Vt: to interchange two 
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pebbles on a, and ait ( a^a^V: , a ^ a j , take a realization of followed by 
a realization of t and a realization of ¡¡/¡t ̂ . 

Conversely, suppose that D is connected and for every i£{0, ...,/i}, G(D, iQ 
is the group of all permutations on Vt. It then follows that \j/UJ can be realized for 
every choise of i and j (/,/€ {0,..., n}, iVj). Take a path ai=b0, ..., b,=aj from 
flf to aj. If the length of this path is 1, i.e. t=1, just move the pebble on at to as, 
the others stand still. If 1, since the permutation (¿?0b<_1...&1) is in G(D, Vj), 
we can move the pebbles on b0, ..., ¿t_x onto the vertices bt-1, b0, ..., f),_2, respec-
tively, so that the rest of the pebbles get back to their initial positions. To achive 
the final situation just move the pebbles on b0, ..., one vertex forward along 
the path b0, ..., bt. 

4. The main results 

In this section we give a graph theoretic characterization of complete classes 
for the ai-product. Further, we give a complete description of the classes of the 
form HSP^(X). 

We start with two lemmas. In these lemmas the following designations will be 
used. Given a path a0, ..., an, n^ 1, so that a„ is free and for each i=0, ..., n— 1 
there is a pebble on at, by moving the pebbles along the path a0, ..., an we shall 
mean the transformation that, in a single step, we move each pebble on at to ai+1, 
i=0, ...,«— 1. This definition extends to the case «=0: the placement of the 
pebbles remains unchanged. Given a cycle a0, ..., («&2) with at most one 
pebble on at, i—0, ..., n— 1, by rotating the pebbles around the cycle we shall mean 
the transformation obtained by moving the pebble on at to a i+imod„ for every i, 
provided that there was a pebble on at. 

Lemma 4.1. Let D—(V,E) be a graph with D = {a0, ..., an+m}, 1, 
£•={(<20, ..., (a„+m_i, a„+m), (a„+m, a0), (an, <z0)}- Then for every pair i, j of 
different integers in {0, ..., n+m}, 4>uj can be realized in D. 

Proof. Fix an integer {0, ..., n+m}. We shall show that G(D, JQ is the 
group of all permutations on V;. Since a0, ..., a„+m is a cycle in D, we may restrict 
ourselves to i—n+l. To see that G(D, Vn+i) is the group of all permutations on 

if suffices to prove that the cyclic permutation (a0...a„an+2, ..., a„+m) and the 
transposition (an^1an) are in G(D, Vn+y). 

Place pebble pi onto au i=0,..., n, n+2, ..., n+m. Move pn from a„ to a„+1, 
then rotate the pebbles around the cycle OQ, ..., an+m. We see that (a0. ..a„a„+2.. .¿zn+m)£ 
€G(D, Vn+1). For the transposition (an_1a„), apply the following procedure: 

Step 1. Move p„ from a„ to an+1. 
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Step 2. Check if pn is located on a„+m, if so, go to Step 3. Move the pebbles 
along the path an+m, a0, ..., a„. (It is garanteed that a„ is free when this transforma-
tion applies.) Next, rotate the pebbles n times around the cycle a0,..., a„, and after 
that, move the pebbles along the path a„, ..., an+m and go back to Step 2. 

Step 3. Before this step applies, the placement of the pebbles is this: for every 
0, ...,«—1}, Pi is located on a,-; an is free; for every. id {«+2,..., n+m}, pt is 

on-flj-j.; p„ is on an+m. Move pn-1 from to a„ and then rotate the pebbles around 
the cycle aQ, ..., a„ until a0 gets free, we see that a0 is free, />„_! is located on at, and 
for every /£{0, ..., n—2}, pt is on ai+i. Now move p„ from an+m to a0, rotate the 
pebbles «—1 times around the cycle a0, • ••, an, and move the pebbles along the 
path an+1, ..., an+m. 

Lemma 4.2. Let G=(V,E) be a graph with V— {a0, ..., an+m+l}, 
T I S O , m, / ^ 1 , and E={{a0, A A ) , ..., (an+m.1, an+J, (an+m, O 0 ) , ( A „ , an+m+0, ..., 
...,(an+m+l_1, an+m+l), (an+m+l, a0)}. Then, for every pair of different integers 
i, {0,..., n+m+l], \j/uk can be realized in D. 

Proof. Place p, onto a„ t=0, ..., n+m+l, t^k. First we.show that we may 
restrict the consideration to the case that k=n. Either k£ {0,..., n+m} or k£ 
£{0, ..., n, n+m + l,..., n+m+l}. If k£{0,..., n+m} rotate the pebbles around the 
cycle a0, ...,an+m until a„ gets free, then movep, to a„ so that the rest of the pebbles 
get back to the position they were after the rotations. Finally, rotate the pebbles 
around the cycle a0, ..., an+m so that pt gets onto ak. The pebbles p, other than pt 
get back to a„ respectively. Similar procedure applies when kd {0,..., n+m+l, ..., 
..., n+m+l). 

Let k=n. Because the assumptions id {0,..., n+m} and id {0,..., n, n+m+l, ..., 
..., n+m+l} are symmetrical, we may suppose /€{0,..., n+m}. We shall realize 
in five steps. 

Step 1. Rotate the pebbles once around the cycle a0, ..., a„, an+m+1 , ..., an+m+l. 
Observe that a„+m+1 becomes free and pn+m+i gets onto a0. 

Step 2. Rotate the pebbles around the cycle a0, ..., a„+m until pt hits a„. Then 
move Pi from an to an + m + 1 , so that an becomes free. 

Step 3. When this step applies, one of the vertices.a0,...., a„+m is free, and 
exactly one of pn+m+1 , ...,pn+m+l, say p„ is in the cycle a0,..., an+m (pn+m+l for the 
first time). Check if pf is on a„+m+l, if so, go to Step 4. Otherwise rotate the pebbles 
around the cycle a0, ...,an+m until p, gets onto a„, and rotate the pebbles once 
around the cycle a0, ..., a„, an+m+1, ..., an+m+l. Go to Step 3. 

Step 4. Observe that the placement of the pebbles is this. The cycle aQ, ...', an+m 

contains p„+m+1 and the pebbles p} with jd{0,..., n+m}, j^i, j^n. Thus, one of 
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a0, ..., an+m is free. The relative order of the pebbles pj ( {0, ..., n+m}, 
j^i, j^n) is their original order. Further, pt is on a„+m+l, p„+m+2 is on an+m+1, ..., 
...,p„+m+l is on an+m+l_1. It is now clear that the pebbles in the cycle a0, ..., a„+m 
can be arranged in such a way that a0 gets free and after moving the pebbles along 
the path an+m+l, . . . ,on + m + i , a0 (so that pt gets onto a0), the relative order of 
the pebbles pj, /€{0, ...,n+m}, j^n, in the cycle a0, ...,an+m will be just as 
desired. 

Step 5. We have p„+m+1 free. The pebbles pn+m+2, ...,p„+m+l are back on 
an+m+2> •••» an+m+i, respectively. Further, the cycle aQ, ..., an+m contains the 
pebbles pj /€{0, ..., n+m), j^n, and the pebble pn+m+1. The relative order of 
the pebbles Pj O'€{0, ..., n+m}, j ^ n ) is just as desired. Rotate the pebbles around 
the cycle a0, ..., an+m until />„+ra+1 gets onto a„ then move pn+m+1 from a„ to an+m+1. 
The pebbles p„+m+1, ...,pn+m+l are now back on an+m+1, ...,an+m+l, respectively. 
Further, it is clear that the pebbles in the cycle a0, ..., a„+m can be arranged so 
that pi is on a„, and for {0,..., n+m}, j^i, jiAn, pj is on ctj. 

Theorem 4.3. S„\S(D) for every biconnectedgraph D on n+1 vertices. 

Proof. Let D=(V, E) with V={a0, ..., a„}. We are going to show that 
ipif j can be realized in D for every possible pair of different integers i, j. Consequently, 
G(D, VJ is the group of all permutations on V( for every i (Os/^n). Hence the 
result follows by Fact 3.2. 

Put pebblept onto a, for every t£{0,..., «}, t^j. Take a path 

^ = b0, ¿j, ..., bk = aj 
from a( to ctj. If k= 1, ij/UJ can be realized obviously. We proceed by induction on 

Assume There are an md {0, ..., k— 1} and a path 

ai = bk> bk+1,..., bk+t ' bm 

with {b0, . . . ^ J ^ f e + n •••»&k+i-i}=0- We distinguish two cases. 
Case m?±0. Let us rotate the pebbles / times around the cycle bm, ..., bk, 

bk+i, •••, bk+i_i. We see that bm is free now. By induction hypothesis, px can be 
moved from at to bm in such a way that meanwhile all the other pebbles get back to 
the vertex they-were before. Finally, rotate the pebbles k—m times around the cycle 
bm, ..., bk, bk+1, ..., bk+Obviously, we obtained a realization oii]/itJ. 

Case m=0. We have a cycle 

bo, blt ..., bk, bk+1,..., bk+i^1. 

Two subcases arise according to whether this cycle contains all the vertices of D 
or not. , 
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Subcase V= {b0, ..., bk+l-J. Since D is biconnected, there is at least one edge 
in E other than the edges (b0, bj, ..., (6fe+I_2, bk+i-i), b0). The result 
follows by Lemma 4.1. 

Subcase V^•••> Take a vertex c£V— {b0, ..., bk+l-1} closest to 
the cycle b0, ..., ¿t+j-i- We then have paths bt=c0,cl5 ..., c„=c and c=d0, ..., 
d„=bs for ^{O, ..., k+1— 1} such that the sets {b0, ..., ..., c„} and 
{i/l5 ..., d0_l} are pairwise disjoint. The result follows by Lemma 4.2. 

Theorem 4.4. Let D=(V,E) be a cycle with n vertices. Then for every group 
G, G\S(D) if and only if G\Zm for some m^n. 

Proof. It suffices to show that a group is isomorphic to a subgroup of S(D) 
if and only if it is isomorphic to a subgroup of Zm with m^n. 

Suppose that H is isomorphic to a subgroup of S(D). From Fact 3.3, there is a 
subset V' of the vertex set of D such that His isomorphic to a subgroup of G(D, V). 
Let m be the cardinality of V. We prove that G(D, V) is a cyclic group of order m. 

Set F={a l 5 ..., a„} and V'= {a., ..., atJ so that a1,...,a„ is a cycle and 
Place pebble Pj onto atj, j= 1,..., m. Rotate the pebbles once around 

the cycle a±, ..., an. If each of the pebbles ps is on the vertex or on ah if j=m, 
we see that the cyclic permutation (a, ...atJ is in G(D, V). Otherwise, rotate those 
pebbles around the cycle alt ...,a„ for which it does not hold. In a finite number of 
steps we obtain a realization of the cyclic permutation (a. ...a, ). Thus, (a, ...a. )£ r m *1 'm 
€G(D, V). On the other hand, since by our rules and the structure of D the pebbles 
can never pass each other, every permutation in G(D, V) is a power of the cyclic 
permutation (eii ...ai ). 

Conversely, it is clear from the above proof that if H is isomorphic to a sub-
group of a cyclic group Zm with m^n then H is isomorphic to a subgroup of G (D, V) 
for every subset V' of V with m elements. Thus, Fact 4.2 yields G\S(D). 

Let JT be a class of automata. Set D (jf)={D | 3 AgjT D is a subgraph of 
D(A)}, where the notion of a subgraph of a graph is used in the usual sense. With 
the concept of D(Jif) and that of a biconnected graph we are able to characterize 
complete classes for the <xx-product: 

Theorem 4.5. A class X is complete for the a^-product if and only if for every 
positive integer n, D ( J f ) contains a biconnected graph on at least n vertices. 

Proof. If D(jif) does not contain biconnected graphs then, by Theorem 4.4, 
Fact 3.5 and Fact 3.1, every simple group dividing S(A) for some AdP^CJT) is 
commutative. If n is the highest integer such that D(Jf) contains a biconnected 
graph on n vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple 
group dividing S(A) for an AgP^ ^jf) is either commutative or a divisor of Sn. 
In either case, X cannot be complete for the aj-product by Theorem 1.1. 
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For the converse, suppose that for every positive integer n there exists a bicon-
nected graph in D ( j f ) having at least n vertices. Take a simple group G. There is a 
positive integer n with G|&„. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see 
that Sn\S(A) for some A c p ^ ( j f ) . Thus, Jf is complete for the a^-product by 
Theorem 1.1. 

In exactly the same way we obtain the following result: 

Theorem 4.6. Let X be a class of automata. If Jf is not complete for the 
cc\-product then three cases arise. 

(i) There is a highest integer n such that D(yf) contains a biconnected graph on 
n vertices. Then HSP^(Jf) if and only if for every simple group G with GIS^A), 
either G|Sn_x or G\G(D) for a biconnected graph DdD(jf) on n vertices or G is a 
prime group of order p and D (¿f) contains a cycle of length at least p. 

(ii) D(X~) does not contain biconnected graphs but there is at least one cycle in 
D(X). Then AGHSPf ( J f ) if and only if for every simple group with G\S(A), G is a 
prime group of order p such that D ( j f ) contains a cycle of length at least p. 

(iii) Otherwise, i.e. if there is no cycle in D(c#~), then HSP^( j f ) is the class of 
all monotone automata or the class of all discrete automata or the class of all trivial 
automata, just as in Theorem 1.2. 

Corol lary 4.7. There are a countable number of classes of automata of the 
form HSP^ ( J f ) . 
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On general connections satisfying V/=ca®7 

NAOTO ABE, HIROAKI NEMOTO and SEIICHI YAMAGUCHI 

0. Introduction 

The notion of general connections was initiated by T. OTSUKI in 1 9 5 8 [10] . 

He obtained various result [ 1 1 — 2 1 ] . A . M O Ô R studied Riemannian manifolds with 
general connections, he called them Otsuki spaces [ 2 — 7 ] . T. OTSUKI [21 , 2 2 ] and 
H. NAGAYAMA [8] applied general connections to the theory of relativity. Recently 
N . A B E [1] defined general connections on arbitrary vector bundles and H. NEMOTO 

[9] studied the geometry of submanifolds in a Riemannian manifold with a general 
connection. 

One of the appealing facts in the theory of general connection is the fact that 
the covariant derivative of the identity endomorphism does not necessarily vanish. 
In this paper, we will study the case where the identity endomorphism is recurrent. 

1. Preliminaries 

In this section we review the theory of general connections along [1, 9, 11]. 
Throughout this paper, we assume that all objects are smooth and all vector bundles 
are real. Let M be a manifold, TM the tangent bundle and C(M) the ring of real-
valued functions on M. Let F and W be vector bundles over M. The fibre of F at 
p£M will be denoted by Vp and the dual bundle of F is denoted by V*. The space 
of cross-sections of F will be denoted by r (F) . By Horn (F, W) we will denote the 
vector bundle of which fibre Horn (F, W) at p is the vector space Horn (Vp, Wp) 
of linear maps from Vp to Wp. In particular, Horn (V, V) will be denoted by End (F). 
Let HOM (V, W) be the space of vector bundle homomorphisms from F to W. 
Especially HOM (V, F) will be denoted by END (F). Let IY be the identity endo-
morphism of V. Note that HOM (F, W) can be naturally identified with the space 
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r(Hom (V, W)). We will generally use the same symbol to denote a vector bundle 
homomorphism and the induced linear map on the space of cross-sections. 

For s£r(V), we will denote the 1-jet of s by jM1(s) and the 1-jet at p by y'J(i). 
Let71(F) be the 1-jet bundle of V. Now we define two vector bundle homomorphisms. 
The vector bundle homomorphism i: T M * % V ^ - i s defined to be 

i((df)P®s(p)) •=j1
P((f-f(p))s) for /€C(M), ser(V). 

The vector bundle homomorphism X: J1(V)-*F is defined to be 

Mj*(s)):=s(p) for ser(V). 

Defini t ion 1.1. A vector bundle homomorphism y£HOM is called 
a general connection on V. The endomorphism Pv:=/loy6END (V) is called the 
principal endomorphism of y. The linear operator V : r(V)-~r(TM*®V), 
defined by 

v - y - i - H W - O - v C O ) for s^r(V), 

is called the covariant derivative of y. 

It is easily shown that the covariant derivative Vy of a general connection y 
with the principal endomorphism Py satisfies 

(1.1) Vy(fs) = (df)®Pys+fVys for f£C(M), s(=r(F). 

For P6END (F), we will denote the set of linear operators on r(V) into r(TM*<g>V) 
satisfying (1.1) by 0(F; P). Then the following theorem is known [1]: 

Theorem A. IfV£0(V; P) for P£END (V), then there exists a unique general 
connection y such that Py=P and V)'=V. 

Thus we may say that a pair (V, P) of a linear operator V and an endomorphism 
P satisfying (1.1) is a general connection on V. Given v£TM and p€M, we define 
the linear mapV„: r(V)—Vp by Vvs:=iv(Vs) for s£r(V), where /„ is the inner 
product operator. Similarly, given XeT(TM), we define the linear operator Vx: 
r(V)-*r(V) by (Wxs)(p):=VX(p)s. We call V* the covariant derivative along X. 
Then we have 

(1.1)' V/xs=fVxs and Vx(fs) = (Xf)Ps+fVxs for f£C{M). 

When. P=IV, our general connection (V, Iy) is nothing but a usual connection 
on V, that is, the linear operator Vx: r (F)—P(F) satisfies V / x s = J V x s and 
Vx(fs)=(Xf)s+fVxs. 

Defini t ion 1.2. A general connection (V, P) on V is said to be regular if P 
is a regular endomorphism. 
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In the theory of general connection, we can define the product of V£0(F; P) 
and g€END (F) as follows: 

(QV)xs:=Q(Vxs) and (V<V := V^g-i). 

Then we have c V€0(F; QP) and VQ£0(V; PQ). Hence, if a general connection 
(V, P) is regular and Q is the inverse endomorphism of P, then the general connec-
tions GV and VQ are usual connections. Furthermore we can naturally extend a 
general connection (V, P) to general connections on the dual bundle and the tensor 
bundles. We will use the same symbol (V, P) for the extensions. For instance, we 
present here the following formulas: 

(Vxt])(s) = X(r,(Ps))-«(Vxs), 

(V* <p)s = Vx((pPs)-P(p(Vxs), 

(Vx g)(s, s') = X(g(Ps, Ps'))-g(yx s, Ps')-g(Ps, Vxs ') 

for titr(V*), <per(End (F)), gtr((F®V)*) and s,s /^T(F). In contrast to the 
case of usual connections, we must note that V/V does not vanish in general. 

Def in i t ion 1.3. Let g€r((F<g>F)*) be a fibre metric on F A general connec-
tion (V, P) on F is said to be metric if Vg=0, that is, 

(Vxg)(s,s') = X(g(Ps, Ps'))-g(Vxs, Ps')-g(Ps, Vxs') = 0 

for s , / e r ( F ) and X£r(TM). 

Defin i t ion 1.4. The element P(V)(:HOM (A2(TM), End (F)) defined by 

RMX, YS:=VX(VY (PS)) - V y (V x (Ps)) - P(VIX> y ] (Ps)) ~(VX/Y)VRS+(VY IV) V x ^ 

for s£T(V) and X, Y£T(TM), is called the curvature tensor field of the general 
connection (V, P). 

Remark. When the vector bundle is the tangent bundle TM, the curvature 
tensor field defined above coincides with the one defined by T. Otsuki [11]. 

In the case of V=TM, we can define a torsion tensor field of a general con-
nection (V, P) as follows: 

Def in i t ion 1.5. Let V=TM. The element *F€HOM (TM®TM, TM) de-
fined by 

T (X, Y) := Vx Y- Vy X-P[X, Y] 

for X, Y£T(TM), is called the torsioa tensor field of the general connection (V, P). 
If W=0, then the general connection on TM is said to be torsion free. 

4* 
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2. General connections of recurrent type 

In a theory of general connection we noted that the covariant derivative of the 
identity endomorphism VIy does not vanish in general. The case of V/K=0 was 
studied in [9]. The purpose of this paper is to study the case of (V* Iv)=a> (Z) I v , 
where co is some 1-form on M. 

Def in i t ion 2.1. Let (V, P) be a general connection on a vector bundle V over 
M. If the general connection (V, P) satisfies 

(2.1) (VxIr)s = co(X)s 

for some 1-form a> on M, then we call the general connection (V, P) to be of recur-
rent type. 

Example. For Q£C(M), we put P:=QIV. Let D be a usual connection on V. 
If we define a general connection (V, P) by PD, then it is easily seen that the general 
connection (V, P) is of recurrent type whose recurrent 1-form to is given by a>= 
=(1/2)d(Qi). For the curvature tensor fields R(W) and R(D), we can get the following 
formula: 

P(V) = Q*R(D), 

which will be generalized in the folloving section. If q does not vanish everywhere 
on M, the general connection (V, P) is regular. Let g be a fibre metric on V and Q 
does not vanish everywhere on M. We define the fibre metric G which is conformal 
to g by G:=Q2g. Then we obtain that 

(Vxg)(s,s'):=X(g(Ps, Ps'))-g(Vxs, Ps')-g(Ps, Wxs') = 

= X(g(Qs, Qs'))-g(QDxs, Qs')-g(es, QDxS') = 

= X(G(s,s'))-G(Dxs, s')—G(s, Dxs') = (DxG)(s, s'). 

Hence we know that the general connection (V, P) is a metric general connection 
with respect to g if and only if the usual connection D is a metric connection with 
respect to G. Especially when V—TM, it is clear that the general connection (V, P) 
is torsion free if and only if the usual connection D is torsion free. This type of 
general connections was treated by T. OTSUKI [ 2 1 ] and H. NAGAYAMA [ 8 ] when 
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3. Regular general connections of recurrent type 

In this section we study the case that the general connection (V, P) is recurrent 
type and regular. 

At first, we prepare several formulas for a regular general connection. Let Q 
be the inverse endomorphism of P, that is, 

PQ = QP = Iv. 

Thus the products GV and Vc are usual connections on V and are denoted by D and 
D' respectively. The following equations were proved in [9]. 

(3.1) (V* Iy)s = P(DxP)s = (D'xP)(Ps), 

(3.2) R(V)x,ys = P*R(D)X:Y(Ps)+P(DxP)(DYP)s-P(DYP)(DxP)s = 

= PR(D')X3y(P2s)+(D'xP)(D'YP)(Ps)-(D'YP)(D'xP)(Ps). 

Remark. When V=TM, these formulas are first proved by T. Otsuki in 
[11, 18]. 

Lemma 3.1. Let (V, P) be a regular general connection of recurrent type on V. 
Then we have the following equations: 

(3.3) (.DxP)s = (DxP)s = (o(X)Qs, 

(3.4) (DXQ) s = (D'xQ)s = -co(X)Q3s, 

where co is the recurrent l-form and Q is the inverse endomorphism of P. 

Proof. From (2.1) and (3.1), we obtain 

P(DxP)s = (D'xP){Ps) = (VxIv)s = co(X)s, 

from which we get (3.3). Since D is a usual connection, we have 

Dxs = Dx(PQs) = (DxP)Qs+PDx(Qs) = 
= tDxP)Qs+P{(DxQ)s+QDxs} = (DxP)Qs+P(DxQ)s+Dxs. 

Hence we find by (3.3) that ' 

(DxQ)s = -Q(DxP)Qs = -co(X)Q*s. 

Similarly we get (3.4)2. 
As a regular general connection (V, P) can be naturally related to usual con-

nections D:=CV and D':=Ve , we give a relation among the curvature tensor fields 
of i?(V), R(D) and /{(DO-
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Theorem 3.2. Let (V, P) be a regular general connection of recurrent type on 
V. Then we have the following equations: 

( 3 . 5 ) / ? ( V ) X , R I = P3R(D)XiYs+2dco(X, Y)Ps = P3R(D')XiYs+4d(o(X, Y)Ps, 
where 

2dco(X, Y) = X(a(Y))—Y(a>(X))—co([X, F]). 

Proof. At first, substituting (3.3) into (3.2), we have 

R(V)x,yS = P>R(D)XtY (Ps). 

Using (3.3) and (3.4), we calculate DxDY(Ps) and D[XtY](Ps) as follows: 

DxDy(Ps) =Dx{(DYP)s+PDxs} =Dx{co(Y)Qs+PDys} = 
= X(o}(Y))Qs+a>(YXDxQ)s+(o(Y)QDxs+(DxP)Dy s+PDxDYs = 
= X(co(Y)Qs-(o(X)cQ(Y)Q*s+co(Y)QDxs+co(X)QDrs+PDxDYs, 

Dlx,n(Ps) = (Dlx,nP)s+PD[x,ns = (o([X,Y])Qs+PDix,ns. 
Hence we obtain 

R(D)X.Y(Ps) = PR(D)X,r5+{^(F))-r(o)(Z))-a>([Z, Y])}Qs, 

from which we get (3.5X. By similar calculations we get (3.5)2. 

4. Regular metric general connections of recurrent type 

In this section we will deal with a regular metric general connection (V, P) of 
recurrent type. 

Let g be a fibre metric on V and P be regular. Now we define the new metric 
G by 
(4.1) G(s,s'):=g(Ps,Ps'). 

It is known that when V=TM and g is a Riemannian metric, G is also a Riemannian 
metric. Furthermore if the regular metric general connection is torsion free, the 
product eV is the Levi—Civita connection with respect to G [9]. 

Lemma 4.1. Let (V, P) be a regular metric general connection of recurrent type 
on V. Then we obtain 

(4.2) (Dxg)(s, s') = —a>(X)g(Ts, s% 
where we put 

T:=Q2+Q*2 

and Q* is defined by g(Q*s, s') :=g(s, Qs"). 
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Proof. As D is a usual connection, we get 

X(g(Ps,Ps')) = Dx(g(Ps,Ps')) = 

= (Dxg)(Ps, Ps')+g((DxP)s, Ps')+g(Ps, (DxP)s')+g(PDxs, Ps')+g(Ps, PDxs')= 

= (Dxg)(Ps,Ps')+g((DxP)s, Ps')+g(Ps, (.DxP)s')+g(Vxs, Ps')+g(Ps, Vxs'), 

where we used pDxs=Vxs. Therefore, substituting (3.3) and X(g(Ps, Ps'))= 
=g(Vxs, Ps^+giPs, VxsO into the above equation, we obtain 

(Dxg)(Ps, Ps') = -g((DxP)s, Ps')-g(Ps, (DxP)s') = 
= -co(X){g(Qs, Ps')+g(Ps, Qs% 

Changing s to Qs and / to Qs', we find (4.2). 
Theorem 4.2. Let (V, P) be a regular metric general connection of recurrent 

type onV.If G(s, /)=g(s, f ) , that is g(Ps, P/)=g(s, s'), then the recurrent 1-form 
to vanishes identically. 

Proof. At first, we note that g(Ps, sr)=g(s, Qs') because of g(Ps, P/)=g(s, / ) . 
Moreover, by virtue of Lemma 4.1 and Dg=DG=0, we obtain 

co(X){g(Q*s,s')+g(s,Q*s')} = 0, 
for any X£f{TM) and s, s'£r(F). Suppose that there is a point p £M such that 
co^O at p, then co^O on some open neighborhood U of p. Thus, on U, we have 

g(Q*s,s')+g(s,Q*s') = 0, 
from which we have 

Pi = - I r . 

Then from (3.3), we can easily get the following equation: 

-Dxs = Dx(-s) = Dx(P*s) = 4a>(X)P*s-Dxs, 
which yields that 

4 (o(X)P*s = 0. 

Since P is regular, this implies that co=0 on U. This is a contradiction. Therefore, 
there are no points pdM such that co^O at p. 

5. Regular metric general connections of recurrent type on TM 

. In Section 4, we mentioned that if the general connection (V, P) on TM is 
torsion free, regular and metric with respect to g, then D is the Levi—Civita con-
nection with respect to G. On the other hand, there is the Levi—Civita connection 
D with respect to the original metric g. From now on, we study the relation between 
D and 5. 
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From the definition of D, we have 

(5.1) X{g{Y,Z)) = g(DxY,Z)+g(Y,DxZ), DxY—DTX = [X,Y]. 

On the other hand, by Lemma 4.1, we also obtain 

(Dxg)(Y, Z) = X(g(Y, Z))-g(DxY, Z)—g(Y, DXZ) = -co(X)g(TY, Z). 

Substituting (5.1) into above equation, we have 

(5.2) g(DxY—DxY, Z)+g(Y, DXZ-DXZ) = (o(X)g{TY, Z). 

Since both D and D are torsion free, we get 

g(DxY-DxY, Z)+g(Y,DxZ-DxZ)+g(DYZ-DYZ, X) + 

+g(Z, DYX-DYX)-g(DzX-DzX, Y) — g(X, DZY-DZY) = 2g(DxY-DxY, Z). 

From (5.2), the left hand side of the above equation equals 

<o(X)g(TY, Z)+o>(Y)g(TZ, X)-co(Z)g(TX, Y). 

Therefore, we have 

(5.3) 2 ( D X Y - D X Y ) = (o(X)TY+(o(Y)TX—g(TX, Y)W, 

where W is the vector field defined by g(W, X):=co(X) and we used g(TX, Y) = 
=g(X, TY). For brevity, we set 

(5.4) S(X, Y) := (1/2){<o(X)TY+co(Y)TX-g(TX, Y)W). 

Then (5.3) is rewritten as 
(5.5) DXY = DxY+S(X,Y). 

Now, we consider the relation between the curvature tensor fields R(D) and 
R(D). Using (5.5) twice, we have 

DxDrZ = DxDyZ+(DxS)(Y,Z)+S(DxY, Z)+ 

+S(Y,DxZ) +.S(X, BYZ)+S(Y, Z)). 

Dix, y] 

Hence it follows from above equations and DXY—DYX=[X, Y] that 

(5.6) 

R(D)XtYZ = R(D)x,yZ+(DxS)(Y, Z)-(DyS)(X,Z)+S(X, S(Y,Z))-S(Y, S(X, Z)). 

To express the right hand side of (5.6) more precisely, we prepare several formulas. 
At first, we put 
(5.7) U :=Q2 and U* Q*2. 
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Then we have 
T=U+U*. 

From (3.4)l5 we easily get 
(5.8) (DXU)Y = - 2a (X) U2 Y. 

Let us calculate (Dx U*) Y. 

g((Dx U*)Y, Z) = g(Dx(U*Y), Z)—g(U*Dx Y, Z) = 

= X(g(U*Y, Z))—(Dxg)(U*Y, Z)—g(U*Y, DxZ)-g(U*DxY, Z) = 

= (Dxg)(Y, UZ)+g(DxY, UZ)+g(Y, (DxU)Z)+g(Y, UDXZ)+ 

+a>(X)g(TU*Y, Z)—g(Y, UDxZ)-g(DxY, UZ) = 

= -w(X)g(TY, UZ)-2co(X)g(Y, U2Z)+co(X)g(TU*Y, Z). 

Therefore we find that 

(5.9) (DXU*)Y = —co(X)[U*TY—TU*Y+2U*2Y]. 

Using (5.8) and (5.9), we compute (Dx T)Y. 

( 5 . 1 0 ) (DXT)Y= (DxU)Y+(DxU*)Y = -co(X)[2U2Y+2U*2Y+U*TY-TU*Y]. 

Next, we compute (Dx T) Y by the aids of (5.4), (5.5) and (5.10). 

( 5 . 1 1 ) ( D X T ) Y = Dx(TY)—TDXY = (DxT)Y-S(X, TY)+TS(X, Y) = 

= —co(X)[2U2Y+2U*2Y+U*TY—TU*Y] — 

- ( 1 / 2 ) [ w ( T Y ) T X - c o ( Y ) T 2 X - g ( T X , TY)W+g(TX, Y)TW]. 

By virtue of these equations, we can get the following: 

( 5 . 1 2 ) (DxS)(Y, Z)—(DrS)(X,Z) = 

= (1/2){[(Dxco)(Y)-(DYOJ)(X)]TZ+[(DxCO)(Z)TY-(DyCO)(Z)TX]-

~[g(TY, Z)DXW-g(TX,Z)DYW]-(l/2)o)(TZ)[a(Y)TX-oj(X)TY] + 

+ 0 /2) CO (Z) [CO (Y) T2X— (o(X)TY] - (1/2) [a>(Y)g(TX,Z)-a>(X)g(TY, Z)]TW-

—CO (Z) [2co(X) U2Y— 2a> (F) U2X+2co (X)U*2 Y— 2a>(Y) U*2X+ 

+co(X)U* TY- a (F) U* TX- (o (X) TU*Y+co (Y)TU*X] -

— ( 1 / 2 ) CO ( Z ) [ O (TY) TX—o) (TX) TY— a> ( F ) T2X+a>(X)T2Y]+ 

+[2xo(X)g(U2Y, Z)-2oj(Y)g(U2X, Z)+ 

+2(o(X)g(U*2Y, Z)—2(o(Y)g(U*2X, Z)+co(Y)g(TU*X, Z)-

-co(X)g(TU*Y, Z)-co(Y)g(U*TX, Z)+co(X)g(U*TY, Z)]W+ 

+(1/2)[<o(TY)g(TX, Z)-co(TX)g(TY, Z)]W}. 



60. N. Abe, H. Nemoto, S. Yamaguchi 

The following equation follows from (5.4) and (5.12). 

(DxS)(Y,Z)-(DrS)(X,Z) + S(X, S(Y,Z))-S(Y, S(X,Z)) = 

= dœ(X, Y)TZ+( 1/2){[(Dx co) (Z)TY-(D Y œ) (Z)TX] -

~[g(TY, Z)DxW—g(TX, Z)DrW]}-(\l4){\<ong{TY, Z)TX-g(TX, Z)TY] + 

+m(X)co(Z)[4U2Y+4U*2Y+2U*TY-2TU*Y+T2Y]-

-(o(Y)co(Z) [4U2X+4U*2X+2 U* TX-2 TU*X+T2X] -

-a)(X)g(4U2Y+4U*2Y+2U*TY-2TU*Y+T2Y, Z)W+ 

+œ(Y)g(4U2X+4U*2X+2U*TX-2TU*X+ T2X, Z) W. 

Therefore, we obtain the following theorem: 

Theorem 5.1. Let (V, P) be a torsion free regular metric general connection 
of recurrent type on TM, D the product eV and D the Levi—Civita connection with 
respect to G. Then the curvature tensor fields R(D) and R(D) satisfy the following 
equation. 
(5.13) R(D)X,YZ = R(D)XT YZ+ dco(X, Y)TZ+ 

+(1/2){[(Dxa>)(Z)TY-(DyCo)(Z)TX]-lg(TY, Z)DxW-g(TX, Z)DrW]}-

-(l/4){M2[g(7T, Z)TX-g(TX, Z)TY] + 

+œ(X)co(Z)AY— £0(7)co(Z)AX—(o(X)g(AY, Z)W+œ(Y)g(AX, Z)W]}, 

where we put 
A = 4U2+4U*2+2U*T-2TU*+T2. 

6. Regular metric general connections of recurrent type 
whose principal endomorphism is symmetric 

In this section, we study the case that the principal endomorphism P is sym-
metric with respect to g, that is, 

(6.1) g(PX, Y) = g(X, PY). 

As a consequence of this, we easily get the following: 

(6.2) Q* = Q and U = U*, 

(6.3) T = 2U, 

(6.4) . A = 12U2. 
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Then the equation (5.13) is rewritten as 
(6.5) R(D)XtYZ = R(D)x<YZ+2dco(X, Y)UZ+ 

+ [(Dxœ)(Z)UY-(Dyœ)(Z)UX)-[g(UY, Z)DxW-g(UX, Z)DYW]~ 
-\w\2[g(UY, Z)UX-g(UX, Z)UY] +3[(a(Y)œ(Z^U2X—œ(X)œ(Z)U2Y+ 

+(û(X)g(U2Y, Z)W— oj(Y)g(U2X, Z)W], 
Propos i t ion 6.1. Let (V, P) be a torsion free regular metric general connection 

• of recurrent type on TM. If the general connection (V, P) satisfies g(PX, F) =g(X, PY), 
then the l-form œ is closed. 

Proof . Let {e,} be a local orthonormal frame field with respect to g and {/ '} 
the dual frame of {e,}. Then, from (6.5), we have 
(6.6) f(R(D)ei,YZ)=f(R(D)ei,YZ) + 2dœ(ei, Y)f'(UZ) + 

+[(Deio>)(Z)f(UY)-(Dy<o)(Z)fi(Uei)]-
-[g(UY, Z)f(DetW)-g(Uei, Z)f(DrW)]-
- M2[g(C/F, Z)f(Uei)-g(Uei, Z)f'(UY)] + 
+ 3 [a> (F) co (Z) / ' (U2ei)—o)(ei)co (Z)f (UZY)+ 

+ co(ei)g(U2Y, Z)fi(W)—a>(Y)g(U2ei, Z)f(W)], 
where we used the summation convention. Thus we get 

(6.7) K(D)(Y, Z) = K(D)(Y, Z)+2dco(UZ, Y)+(DVïa>)(Z)-(DyCo)(Z) Tr U-
-g(UY, Z)f(DeiW)+g(UDyW,Z)-\co\2(g(UY, Z) Tr U-g(U2Y, Z))+ 

+3(œ(Y)a>(Z) Tr U2-œ(U2Y)œ(Z)+œ(W)g(U2Y, Z)-to(Y)g(U2W, Z)) 
where K(D)(Y, Z), K(D)(Y, Z) denote the Ricci curvature tensor fields with respect 
to G and g respectively. Changing F and Z in (6.7) and subtracting this from (6.7), 
we obtain 
(6.8) 2dco(Y, Z) Tr £/ = 0, 

since K(D)(Y,Z) and K(D)(Y,Z) are symmetric. As Tr £/=Tr Q2=\Q\2^0, we 
have 

do = 0. 
This proves our proposition. 

In this case, (6.5) reduces to 
(6.9) K(D)XtyZ = K(D)XiyZ+[(Dx0))(Z)UY-(Dy0))(Z)UX]-

-[g(UY,Z)DxW-g(UX, Z)DyW] — \<a\2[g(UY, Z)UX-g{UX, Z)UY] + 
+3[a)(Y)a>(Z)U2X-o)(X)co(Z)U2Y+co(X)g(U2Y, Z)W-œ(Y)g(U2X, Z)W]-' 

Remark. Excepting Proposition 6.1, our results are true in the case that the 
metrics are pseudo-Riemannian. 
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On the boundedness of solutions of nonautonomous 
differential equations 

WU JIANHONG* and L. HATVANI** 

Dedicated to L. Pintér on his 60th birthday 

1. Introduction 

In the study of existence of periodic solutions and almost periodic solutions as 
well as behavior of limiting sets of solutions of ordinary differential equations, the 
uniform boundedness and uniform ultimate boundedness of solutions are frequently 
needed [1—4,9]. These properties of solutions can be regarded as either the instability 
of infinity or a special case of some kind of stability of a set. Therefore, there exists 
a close relation between Lyapunov's direct method and the boundedness of solutions. 
A typical result showing this relation is Theorem 10.4 in [3]. In this theorem the 
uniform ultimate boundedness is guaranteed by the existence of an appropriate 
Lyapunov function having a negative definite derivative along the solutions. How-
ever, in practice it is very difficult to construct such a Lyapunov function. For example, 
for mechanical systems the total mechanical energy, which is a typical Lyapunov 
function, never has a negative definite derivative along the motions with respect to 
the generalized coordinates. 

The purpose of this paper is to study the boundedness and ultimate boundedness 
of solutions of nonautonomous differential equations by Lyapunov's direct method 
when the derivative of the Lyapunov function along the solutions is only semidefinite. 
The results generalize V. M . MATROSOV'S theorem [5] on the asymptotic stability 
to the boundedness of solutions. An application is given to the boundedness of the 
motions of a holonomic scleronomic mechanical system of n degrees of freedom 
being under the action of potential, dissipative and gyroscopic forces. 

* Supported by the Science Fundation of Academia Sinica 
** This research was supported by The Hungarian Research Fund with grant number 6032/6319. 
Received September 1, 1986. 
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2. Notations and definitions 

Consider the system 
(2.1) x=X(t,x), 

where (/, JC)€R+XR", R+=[0, ») and X: R + X R " - R " is continuous. Throughout 
this paper, for simplicity, we assume that for any (t0, jt0)£R+XRn, there exists a 
unique solution x(t; t0, x0) of (2.1) through (i„, x0) defined for all t^t0. 

Def in i t ion 2.1 [3]. A solution x(t; t0, x„) of (2.1) is bounded, if 
sup |x(/; t0, x0)|< oo. 
<BIO 

The solutions of (2.1) are uniformly bounded (U.B.) if for every a > 0 there exists 
a /?(a)>0 such that [i«sO, |x0 |<a, / s i 0 ] imply |x(f; t0, xa)\<fl(ct). 

The, solutions of (2.1) are equiultimately bounded (E.U.B.) for some bound B 
if for every a=-0 and there exists a T(t0, a )>0 such that [|*0 |<a, + 
+ T(t0, a)] imply t0, x0)\^B. 

The solutions of (2.1) are uniformly ultimately bounded (U.U.B.) for some bound 
B if for every a > 0 there exists a T(a)>0 such that [i0sO, |x0 |<a, i ^ / 0 + r ( a ) J 
imply |x(i;/0 , x0)|<J?. 

By a pseudo wedge W we mean a continuous and strictly increasing function 
W: R + —R + with tV(r)>~0 if /•>0. A pseudo wedge W is called unbounded if 
lim W(r)= + tt. 
T-*-oo 

Denote by [a]+ and [a]_ the positive and negative part of the real number a, 
respectively, that is, [a]+ =max {a, 0}, [a]_ =max {—a, 0}. 

Def in i t i on 2.2 [5]. A measurable function X: R + —R+ is said to be integrally 

positive if f X{t)dt—oo holds on every set J= | J [am, such that am<bm^am+1 

and bm—ams<5>0 (w=l ,2 , . . . ) for a constant ¿>0. 

Def in i t i on 2.3 [7]. A measurable function X: R + —R + is said to be weakly 
oo 

integrally positive if for every ¿>0, J > 0 and for every set J= (J [am, bm] with 
m = l 

am+Srsbm^am+l<bm+A \m=1,2,'...) the relation f X(t)dt=<~ holds. 
j 

Lemma 2.1. If a measurable function X: R + —R + is integrally positive, then 
for every a > 0 and ¿ > 0 there exists a positive integer K(a, S) such that for every 

K 
set J= U [am,bm] with am<am+6sbm^am+1 for we have 

m = l 

j k(f)dts=a 
j 
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Proof . It is easy to see that A is integrally positive if and only if for every 5 > 0 
the inequality 

t+t 
(2.2) liminf f AO) ds>0 I CO J t 

holds. Consequently, for any given ¿ > 0 there are T=T(5)>0 and /¿(<5)>0 
such that t^T(5) implies 

t+i 
f k(s)dsszn(<5). 
t 

Let a > 0 and ¿ > 0 be given, and define *(a,<5)=[r(«5)/.5] + l+[a//iG5)]+l, 
where [a] denotes the integer part of a£R, that is, [a]=max {z: z is an integer with 
zSa}. Then the number K(a, <5) has the property mentioned in the assertion. 

The following assertion can be easily proved by making use of (2.2). 

Lemma 2.2. If a measurable function A: R+—R+ is integrally positive, then 
t 

(2.3) lim jf A = cc 
«0 

uniformly with respect to t0£ R+. 

Remark 2.1. The property of weak integral positivity and property (2.3) are 
independent of one another. E.g. A(/) = 1/(1 + 0 is weakly integrally positive, but 
it does not satisfy (2.3) and so it is not integrally positive. On the other hand, weak 
integral positivity and (2.3) together do not imply integral positivity. E.g., the function 

fl/ci + o 1/2 
( i ) \ l 71+1/2 < i < H+l 

is weakly integrally positive and satisfy (2.3) but it is not integrally positive. 
With a continuous function V: R+XRn—R we associate the function 

J W = limsup(1 /h){V(t+h, x+hX(t, x))-V(t, x)}, 

which called the derivative of V with respect to (2.1). 
It can be proved (see [3], p. 3) that if V is locally Lipschitz, then for an arbitrary, 

solution jc(r) of (2.1) we have 

V(t„x(t2))-V(t1,x(t1))= ¡V(t, x(t))dt, (t1} /2€R+). 
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3. The theorems and their proofs 

Theorem 3.1. Suppose that there exist nonnegative constants B and D, non-
negative locally Lipschitz functions V(t, x), P(t, x) and continuous K(t, x) defined for 
t^O, satisfying the following conditions: 

(i) H{(\x\)^V(t, where Wx and W% are unbounded pseudo wedges; 
(ii) the derivative of V with respect to (2.1) satisfies the inequality 

(3.1) T W . * ) ^ - * ( * , * ) for i s 0, |*| SJB; 

(in) for each M>B there are k=k(M)>0 and H=H(M)^0 such that 
[t^0,BrS\x\sM,P(t,x)^H] imply K(t,x)Sk; 

(iv) for each M>B there exists an L(M)>0 such that [/SO, B^\x\^M, 
H(M)^P(t,x)^2H(M)] imply P{2A)(t, x)sL(M); 

(v) for each M>B there is a T(M)>0 such that for any solution x(t) of (2.1) 
with B^\x(t)\^M and P(t,x(t))^2H(M) for t0^t^t0+T(M) there exists 

h+T{M)] with |x(i)|<D. 
Then the solutions of(2.1) are U.B. and U.U.B. 

Proof. For any a>0, define /?(a) = H£-1(P^(max {B, a})). It is easy to prove 
that [?0sO, |x0l—al imply |x(i; t0> x0)l —/?(«) for t^t0. Therefore, the solutions 
of (2.1) are U.B. Throughout the remainder of this proof we use the notations x(t) = 
=x(t;t0,x0), V(t) = V(t, x(t)) and ?(0=?(«.i)(f. *(0> 

To prove the uniform ultimate boundedness, we consider the following two 
cases: 

(a) there exists a t2^t0 with I J C ^ I =B; 
(b) | x ( f ) | s * for all i s / 0 . 
In case (a) |x(f)N0(5) for mt2. 
In case (b) we have V(t)^-K(t,x(t)) for all mt0. By (iii) there exist k= 

=fc(jS(a))>0 and H=H(P(ct))>0 such that P(t,x(t))s=H implies K(t, x(tj)s?k. 
Let i^t0 be fixed, and choose a constant S=S(a)>W2(j}(a))/k. Then by (3.1) 
the nonnegativeness of V implies the existence of a ?+5(a)] such that 
P{t3,x(t3j)<H. By (v), there exists T= T(P(a))>0 such that if P(t,x(t))<2H 
for i£[/3, t3+T], then there is an with |x(i) |<D, which implies 
\x(t)\<P(D) for ts=t3+T, especially, for i s i + 5 + T . 

Therefore, only two cases may occur: 
(bO P(t,x(t))^2H for all t£[t3,t3+T]. 

In this case, |x(f)| <£(!>) for f s f + r + S . 
(ba) there exists ?4€[/3, t3+T\ with P(t4, x(t^2H. 

In this case, there are tB, t8 such that f 8 </ 6 <i 6 Si 4 , P(tB,x(tB))=ff, P(te, x(t6))= 
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-2H and H<P(t,x{t))<2H for i 5 <i< i 6 . By (iv), we get te-t6^H/L(P(jx)). 
On the other hand, by 1>(t ) s -K{ t , x(t))^-k for t£[ts, i6] we obtain 

(3.2) V(ts) ^ V(t,)-kH/L(m)-

Since in case (b) V(t)^-K(t, x(t))^0 for all t^t0, we get 
SV(i)—kH/L(P(a)). Let l=ta+m(S+T), where m is a nonnegative integer. 
Then from the argument above we get either 

(cm) |x ( f ) |S max (0(2?),/?(/>)} for t ^ t0+(m+l)(S+T), 
or 
(dm) V(t0+(m+l)(S+T))^V(t0+m(S+T))-kH/L(m)-

Choose a positive integer N=N(a) such that 

(3.3) N(a)kH/L(ft(a)) > W«))-

Then by the nonnegativeness of V, (dm) holds for at most m=0,1 , . . . , N— 1, and 
thus |x(i) l<max{P(B),P(D)} for t=st0+N(S+T). This completes the proof. 

Remark 3.1. Using the same argument as one above, the comparison method 
and Lemma 2.1, we can prove the following assertion: 

If conditions (i), (iii)—(v) of Theorem 3.1 are satisfied and if for each M > B 
there exists a weakly integrally positive function AM: R + —R + such that 

V(2.i)(t, x) S -XM(t)K(t, x)+F(t, V(t, x)) for t s 0 

and B^\x\^M, where F: R + X R + - » R + is continuous, the solutions of z=F(t, z) ' oo 
are uniformly bounded, and f sup F{t, for rsO, then the solutions 0 OSzSr 
of (2.1) are U.B. and E.U.B. If, in addition, AM is integrally positive, then the solu-
tions of (2.1) are U.B. and U.U.B. 

Remark 3.2. If conditions (i), (iii) and (v) of Theorem 3.1 are satisfied and if 
(a) ^ . D ^ ^ s - A i O ^ ^ + F ^ , for i sO and where 

A: R+->-R+ is measurable and satisfies condition (2.3), and F is of the same kind 
as in Remark 3.1; 

(b) for any M > 0 there exists a ¿¿=/i(M)>0 such that H(M 
^P(t,x)^2H(M)] imply 

*) ^ -/^W*. x)+F(t, V(t, x)), 

then the solutions of (2.1) are U.B. and U.U.B. 

5 
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To prove this remark it is sufficient to replace (3.2) and (3.3) in the proof of 
Theorem 3.1 by 

V(t6) ^ V(t6)-n(№)H(m)+ / m a x { F ( i , z):.0 S z s W2(fi(a))}dt 

and . ' 
oo 

Nii(m)H{m) > W2(m)+f max{F(t, z): 0 S z ^W2{p(a))}dt, 
o 

respectively. 

Remark 3.3. Condition (iv) in Theorem 3.1 can be weakened as follows: for 
t 

any M > B there exists a continuous function LM: R+—R* such that J LM is 
o 

uniformly continuous on [0, and either 

[P(2.i)(<> x)]+ S LM(t) for t £ 0, B s |*| s M and H(M) s P(t, x) 2H(M), 

or 

[P(2.i)C, * ) ] - ^ LM{t) for / S O , Bs\x\sM and H(M) 35 P(t, x) s 2 H(M)m 

Remark 3.4. Condition (i) in Theorem 3.1 can be replaced by 0 
=§ W2(\x\) if the solutions of (2.1) are U.B. 

Example 3.1. Consider a Liinard equation with forcing term 

(3.4) x+f(x)x+g(t,x) = e(t), 

where f(x), g(t,x), dg(t,x)/dt and e(t) are continuous for (t, x ) € R + x R and 
oo 

/ |e(s)|ife<oo. Besides, we assume that there exist unbounded pseudo wedges 
o 
WX,W2, a continuous W3: R+—R+ with W3(r)>0 for r > 0 and an integrally 
positive function X: R + -*R + such that 

, f g f r x y d x ^ t w 1*1), 
- . • . o 

g(t, x)F(x)- f(dg(t, r)/dt) dr ^ l{i)W*(\x\), 
0 

x ' 
where F(x)=J f{s)ds. Obviously,(3.4) is equivalent to . 

0 

(3.5) x = y-F(x), y=-g(t,x)+e(t). ' • " 
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Let K(r, *,;>>)=[/+2 / g(t, r)dr]xl*+ J \e(s)\ds, then 
o- » 

' EO 
+2Wx(\x\)]W s? F(f, y) ^ №+2W,(\x\)fl*+ f |e(j)| ds 

o 

W ' . y) ^ - m w M w + w i m r ^ . 

Let K(t,x,y)=Wa(\x\)[y2+2W2(\x\)]-1l\ P(t,x,y)=\x\, B=1 and H= 1. Then 
for each A f > l and for /SO, l s l x l + lyl^Af and | x |S l , we have K(t, x,y)h 
smin{^ 3 ( r ) : I S r s A f } (M2+2W2(M))~1'\ Therefore, conditions (i)—(iv) of 
Theorem 3.1 hold (see also Remark 3.1). Now we check condition (v). 

Let £=max{|F(x) | + l : I*|s2}, D=E+2, and for M > 1 define T(M)= 
=2M+1. Suppose that (jt(f), y(t)) is a solution of (3.5) with 1 s= |x(0l + I .KOI =M 
and |* ( f ) | s2 for /£[*„, ta+T(M)l If W 0 l + b ( 0 l ^ £ + 2 for all t£[t0, t0+T(M)], 
then e.g. y(t)^E, and consequently x(t)=y(t)~ F(x(t))^E- max F(x)^ 
S l . Hence we obtain the inequality 2M^\x(t0+T(M))-x(t0)\^T(M)=2M+l, 
which is a contradiction. Therefore, there is an i€|>0, i0+T(Ai)] with |JC(S)| + 

-f \y(s)\<D=E+2, i.e. condition (v) in Theorem 3.1 holds. 
Consequently, under our conditions the solutions of (3.5) are U.B. and U.U.B. 
Notice that if P(t, x)=|JC|,' then condition (iv) in Theorem 3.1 can be dropped. 

(Indeed, if condition (i>—(iii), (v) are satisfied for P(t, x)=|x| , then all the con-
ditions of the theorem are satisfied for the new auxiliary function P(t, x)—F(t, x). 
If, in addition, H in (iii) is constant, then (v) obviously holds. This special case initi-
ates the following generalization of T . YOSHIZAWA'S theorem ( [3] , Theorem 1 0 . 4 ) : 

Theorem 3.2. Suppose that there exist a constant B^O, a locally Lipschitz 
function V(t,x) and a continuous function K(t,x) defined for /SO and 
satisfying the following conditions: 

(i) where and W2 are unbounded psetido wedges;, 
(") ^(2.1)(t,x)zS-A(t)X(t,x) for m0 and where X: R + - R + is 

i 
measurable.with lim f A(si)ds=°= for any /0s0,-

1~*oo J »0 
(iii) for each M>B there exists &(M)>0 such that B^\x\^.M implies 

K(t,x)^k(M). 
Then the solutions of (2.1) are V.B. and E.U.B. I f , in addition, X satisfies condition 

(2.3), then the solutions of (2.1) are U.B. andU.U.B. 
Proof . For any a >0, define $(<*)= ^ - 1 ( ^ ( m a x {B, a}). Le tx ( i ; t0,x0) be 

a solution of (2.1) with Then |jc(i; /„, Xo)l-=fi(a) for all t s t 0 , i.e. the 
solutions are U.B. 

5* 
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For a given i0sO choose T(t0, a)=-0 such that . . , " . 

/ hs) ds > w2{m)ik{m)-

It is easy to prove that |x(i; t0, x0)\<P(B) for all t^t0+T(t0, a). 
The second conclusion can bfc proved ¡similarly. 

The following theorem is a generalization ofV- M . MATROSOV'S stability theorem 
[5] to the boundedness of solutions. 

Theorem 3.3. Suppose that there exist a constant. B^O and nonnegative lo-
cally Lipschitz functions V(t,x), W(t, x), P(t,x),a continuous function F(t, u) defined 
for is0, «2=0 and such that 

(i) where Wi and JV2 are unbounded pseudo wedges; 
(ii) for every M>B there is a measurable function ).M: R+-*R+ such that 

K(2.i)(f, x) == -XM(t)P(t, x)+F(t, V(t,x)) for i g 0 and B \x\ M, 

where, • 
(a) AM is weakly integrally positive; 

CO 

(b) the solutions of the equation z—F(t, z) are U.B., and f [ sup F(t, z)l dt< <=° 
,. $ ofirsf : 

for every r>0 ; 
(iii) for every M>B there exists a continuous function LM: R+->-R+ 

t 
such that J LM is uniformly continuous on R+ and either •*)]+= 

or iP^t! x)UsLM(t) for mO, 
(iv) for every M>B there exists a constant A(M)>0 such.that \W(t, JC)|S 

••£A{M) for m0 -and B^\x\nM't. <. v.. f 
(v) there exists a constant D^B and for any Mo-B.there exists a continuous 

function W3\ R+ -»R+ with W3(r)^0 for r^D stick that 

max {P(/, x), itfk.DO, *)l} £ W3(\x\) for i S O and D^k |jc| =S M. 
... : \ .,,: j j; \ ' . 

Then the solutions of (2.1) are U.B. andE.U.B. I f , in addition, kM(t)is integrally 
positive, then the solutions of (2A) are U.B. and U.U,B. c 

Proof . First we show that under the assumptions of the theorem condition 
(v) in Theorem 3.1 is satisfied. ' , . , ' ' 

For any M>D, choose 0 sueih that W3(r) 
and define; T(M)=[2A(M)+ l]/a. Let x(i) be a solutionof (2.1.),with sM 
and P(t,x(t))s2H(M) for i€[f0, t0+T(M)]. If \x(t)\^D for all t0+T(M)] 
then according to condition (v) we get x(i)) |sa , .hence 2A(M)s 
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\W(tQ+T(M)l x(t0+T(M)))-W:(t0i x(t9))\*z<x.T(M)=2A(M)+l, which is a contra^ 
diction. Therefore, condition (v) of Theorem 3.1 holds. 

An application of Theorem '311, Remark 3.1 and Remark 3.3 completes the 
proof. 

Remark 3.5. Condition (v) of Theorem 3.3 can be weakened by asking there 
is a constant DmB such that, for every M>D there are J?2(M)>0 and a con-
tinuous function ¡iM: R+ —R+ with property (2.3) and such that [isO, 
P(t,x)^B2] imply I ^ D ^ ^ I s ^ i i ) . 

Ah application of this theorem to a holoriomic scleronomic mechanical system 
will be given in Section 4. 

As we have seen so far, the key step in the application of Theorem 3.1 is to 
check condition (v). Now we establish a sufficient condition for this property by 
Lyapunov's direct method. 

Lemma 3.1. Suppose that there exist / /0>0, D>~B and a locally Lipschitz 
function Q(t,x) defined on the set {(;, x): isO, P(t, x)^2H0} such that 

(i) for each M>D there are continuous functions y,g: R+-»R and a number 
t 

H£(0, Ha] such that y has property (2.3), the function j [g(j)]+i/s is bounded on R+ , 
o 

and [t^0,D^\x\^M,P(t,x)^2H] imply Q^t,x)^-y(t)+g(t); 
(ii) for each Mi*D there exists L(M)>0 with \Q(t, x)\^L(M). for t^O 

and D^\x\^M. 
Then condition (v) of Theorem 3.1 holds with these numbers H and D. 

Proof. Let M > D be given and let a solution x(t) of (2.1) satisfy B^ \x ( t ) \ ^M 
and P(t,x(t))^2H(M) for t£[t0, t0+T(M)], where J(Af)>0 is a constant such 
that . . . - . ' . •••• 

»o+T(M) 
/ y(s)ds > 2 L ( M ) + f . [^(i)]+ ds for all /„ S 0. 
<„ o 

If |X(/)|SJD for t£[t0,t0+T(M)J, then we get 

. ' lo+nW 
-L(M) =5 Q(t0+T(M), x(t0+T(M))) == L(M)— f y(t)dt+ f [g(s)]+ ds 

' « 0 

which yields a contradiction to the choice of T(M). Consequently, there is 
([i0, /0+7(M)J with ¡x(s)I^D, and the proof is complete. 

Example 3.2. Consider the equation 

(3.6) x+'a(t)x+f(x) =•e(t) 
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and suppose that the continuous functions a, e: R + —R, / : R—R satisfy the 
following conditions: 

(i) a(f)sO for R+ , a is weakly integrally positive, and there exist constant 

tf>0, 0 such that [/os0, f s r ] imply (1/0 f a(s)dsSa; 

(ii) eeLi[0, «,); 
(iii) there is an r 0>0 such that xf(x)>0, | /(x)| > 0 provided |x|=-r0, and 

X 

F(x) = f f(s)ds-*°°, as |x| —oo. 
o 

Then the solutions of equation (3.6) and their derivatives are U.B. and E.U.B. 
If, in addition, the function a(t) is integrally positive, then the solutions and their 
derivatives are U.B. and U.U.B. 

Equation (3.6) is equivalent to the system 
(3.7) x = y, y = -f(x)-a(t)y+e(t). 

oo 
DeQne V(t,x,y)=[y2+2F(x)]l'2+J |e(i)|<fc. Then 

t 

V(3.„(/, x, y) ^-a(t)y2[y*+2F(x)]-V\ 

Choose K(t,x,y)=y2[y2+2F(x)]~112, P(t,x,y)=y2. Then 

y)]+ = [-f(x)y-a(t)y2+e(t)y]+ ^ |/(x)|b| + |e(0lbl-

Let B>0 be fixed arbitrarily. For M>B let ^TM=max {|/(x)|: 
and suppose B^\x\ + \y\^M. Then [t>(3.7)(t, x,^)]+^[ATM+|e(0l]M and 

J (KM+\e(s)\)Mds is uniformly continuous in R + . Consequently, conditions (i)—(iv) 
o 
of Theorem 3.1 (see also Remark 3.3) are met with arbitrary / />0, and the solutions 
are U.B. 

Now define D=r0+1, H0= 1/2, and 

a , . f y if * S r 0 , 

whose derivative is 
i-f(x)-a(t)y+e(t) if 

f(x)+a(t)y-e(t) if x S - r 0 . 
: 6(3.7) (U x, y) = J 

For a given M > D introduce the notation wi(M)=min{|/(x)|: By 
the conditions, m(M)>0, and [fsO, D^\x\ + \y\^M, y2^2H] imply the; ine-
quality 

< W > y) ^ - m ( M ) + f l ( / ) [ 2 ^ ' H e ( / ) . 
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Let H=min{j[m(M)l(a+l)]\ i } , y(t)=m(M)-(2Hfi2a(t) and g(0=[e(0i. 

Then x,y)s — y(t)+g(t) and for sufficiently large r > 0 , 

f y(t)dt — m(M)T—(2H)1/2 f a(t)dt^ m(M)a/(a+l)T-*oo 
'o >0 

as uniformly with respect to i0—0» and so all the conditions of Lemma 3.1 
are satisfied. 

This completes the proof. 

Consider now the system 

(3.8) x = X(t, x, y), y = Y(t, x, y) 

where y€R*; X: R+XR" , +*-Rm and Y: R + XR m + *-R* are continuous. 
The following theorem shows that the function Q in Lemma 3.1 can be constructed 
from the reduced subsystem 
(3.9) y = Y(t, 0, y). 

Theorem 3.4. Suppose that 
(i) There exist constants B, H^O and a locally Lipschitz function V(t, x, y) 

defined for ts= 0 and + such that 
(a) Wi(|x| + | y | ) s F ( i , * , y ) s ^ ( W + |y|), where Wt and W2 are unbounded 

pseudo wedges; 
(b) for and + where X(t) is 

weakly integrally positive, K(x,y)^0 for + and for any M>B there 
exists A:(M)>0 such that K(x,y)^k(M) for B^,\x\ + \y\^M\ 

(ii) there exist a constant Bx>0, a continuous N: R+—R+ with N(s)>0 for 
s^Bx and a locally Lipschitz function Q(t,y) definedfor isO and |y| such that 

(c) 0^Q(t, where W3 is a pseudo wedge; 
(d) for \y\^Bx, where Wi is a pseudo wedge; 
(e) IQ(t,y)~Qit , y)\^N(max {\y\, |y|})|y-y|; 
(iii) for any 0 there exists £ (M)>0 such that \X(t, x, y)\^L(M) if 

W + | y | s M ; 
(iv) there exist continuous Px, Pa: R+—R+ with i i ( j ) > 0 for such that 

|7(f, y)-Y(t, 0,^IsPxdyDP.CW); 
(v)lim ^(r)/(i i(r)iV(r))=~. 

Then the solutions of (3.8) are U.B. and E.U.B. I f , in addition, A is integrally positive, 
then the solutions of (3.8) are U.B. and U.U.B. ' ~ 

Proof. Obviously, (i)—(iv) of Theorem 3.1 hold with P(t,x,y)=\x\. 
Choose D > 0 such that D-2H^Bif Wi(r)IN(r)Pi(r)^max{P2(s)\ \s\^2H}+\ 
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for s^D-2H. Then if D^\x\ + \y\^M, \x\^2H, then \у\щО-2Н^Вг, and 
thus 

6(..8)(f, У) S Й<з..)0, * ) + W W I ^ f , x,y)-Y(t, 0, y)\ ё -И£(Ы)+ 

^ - in f {Щг)Рг(г): Bt S r S M}. 

Therefore, condition (v) of Theorem 3.1 holds by Lemma 3.1, and so the proof is 
complete. 

Example 3.3. Consider now the system 

(3.10) *=М,х)+Ьу, у = f2(t, x)+dy+e(t), 

where Л, / 2 £C(R + XR, R) with Л(г, 0)=0, f2(t, 0)=0, e(t) is a bounded con-
tinuous function on R + with e^I^fO, b, d are constants with db^O. Besides, 
we assume 

(i) sup x~)\ + \f2(t, x)h /S0, | * | s A f } < ~ for any M>0; 
(ii) \dfxit, x)—bf2(t, x)]/x^«(x)>0 for i sO and x^O, where a is continuous 

and lim f a(r)rdr= 
о 

(iii) ifi(t, x)+dx][bf2(t, x)-df1(t, x)]-/ [(ddMt, r)/dt)-(bdf2(t, r)ldt)~] dr^ 
о 

pX(t)P(x), where A(0 is integrally positive, /? is continuous with /?(x)>0 if 
Under these conditions the solutions of (3.10) are U.B. and U.U.B. 
Indeed, let 

V(t, x, y) = \(dx-byf+2 / Ш1, r) — b/2(t, r)] dr}1,2+b J \e(s)\ ds. 
о I 

Then 
V(3.io)0, x, y) S 

-№t,x)-d/1(t,xW10,x)+dxl+ ¡\d~Ut, r)~b-^f2(t,r)]dr : 
• g :—: ; : — — :—: :— ^ 

[(dx-byf+2 f m t , r)-bf2(t„ry}dr]112 

о 

=ё-Л(t)K(x,y), 
where 

K(x, y) = fi(x) [(dx-by)42sup / [ d M t , r)-bMurydr]-1». 
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It is easy to prove that for any M > 0 there exists k=k(M)>0 such that 
[|x| + |y|==M, | x | s / / ] imply K(x, y)>k(M). Therefore, (i) of Theorem 3.4 holds. 

On the other hand, for the subsystem 

(3.11) y = dy+e(t) 

and for Q(t,y)—y2/2, N(r)=r, we have 

&z.u)(t,y)^d\y\[\y\+(Vd)sup\e(t)\]^ (1/2) dy* for | j | s - ( 2 / d ) s u p \e(t)\. 
tt-.o rso 

Therefore, after making the choice P1(r) = l, P2(/-)=sup {\f2(t, x)|: /SO, |x|3/"} 
all the conditions of Theorem 3.4 are met, and our assertion is true. 

Theorem 3.5. For system (3.8), suppose that 
(i) there exist continuous functions Plt P2: R+-*-R+ with Px(s)> 0 for s> 0 

such that |Y(t, x, y)—Y(t, 0, jONP^IyDP^xl); 
(ii) there exist a constant ^ > 0 and a locally Lipschitz function V^t, x, y) 

defined for / s 0, |x| s i ^ and y£Rk such that 

W1(\x\)^V1(t,x,y)^W2(\x\), 

x, for /SO, |*| s f i , and y£ R\ 

where Hi and W2 are unboundedpseudo wedges and W3: R+—R+ is continuous with 
W3(r)>0 for r^Bs, 

(iii) there exist a constant B2>0, a locally Lipschitz function V2(t,y) defined 
for t SO and | y | sP 2 , and a positive continuous function N: R+—R+ with N(r)> 0 
for rSP2 and such that 

Wi(\y\)^V2(t,y)^W5(\y\), 

IK(t, y)-V2(t,y)| S N(max {\y\, |y|})|y-y|, 

where Ws are unbounded pseudo wedges, Wa is nonnegative and continuous with 
,'iiU W«(r)/(N(r)Pi(r))= 

Then the solutions of (3.8) are U.B. and U.U.B. 

Proof. First, we shall prove the uniform boundedness. For any a>max {¿?l5 B2), 
there exist p(oi), ^ (a ) and 02(oc)>O such that Wi(/?(a))>lf£(a), ^ 2 (a)>^(a)>a, 
fV6(s)/N(s) Px (i) - m a x P2(r) S 1 for and ^(i?2(a))>^(ft(a)). Then for 
any solution (x(/) ,y(t)) with |*(/0)|<a, and |y(/0)|«=a, we have x(t)<P(a) and 
|y(/)|<&(a) for / s / 0 . 

If this is not true, then only two cases may occur: 
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Case 1. There exist t^t^to with |y(OI =&(<*)> lyi'a)!=&(<*), A ( a ) < 
< b ( 0 l < w « ) for tç(tut2) and |x(i)|<£(a) for t£[t0,tj. 

Case 2. There exist t4>ts>t0 such that |x(i3)|=a, |JC(/4>| =y9(a), 
</?(«) for t£(t3, U) and |y(i) |S&(a) for t£[t3, U). 

In Case 1, for fÇfo, /2], we have 

KO) S - w e ( \ y ( t ) \ ) + tf(|y(OI)Pi(LKOI) JtfWOI) S 

Therefore, Wt(fa(a))*Vt(tt, y(tJ)*Vt(tlt yitjfi^Wsfaia)). This contradicts 

In Case 2, for te[t3, f4], we have \\(t, x(t), y ( 0 ) ë 0 , thus 

Wi(/K<*)) S x(i4), y(i4)) S Vi(t3, x(i3), y(f3)) S 

which contradicts 
Therefore, |x(i; i0, x0, y0)|</î(a) and \y(t; t0, x0, y0)\^Pz(<x) for if 

|x0 |<a and | j 0 | <a . This completes the proof of uniform boundedness. 
Let v1(a)=min{PF3(r): Bx+ l=ir=S/3(a)}. and T1(a)=PF2(a)/v1(a). If | x ( / ) | s 

1 holds for iÇ[/0,1] (i^-to+T^a)) then 

1) — *(Q, HO) s ^(io, x(t0), yOoiï-v^aXï-to) < 
<^(a)-v 1 (a)%(a) /v J (a) = 0, 

which yields a contradiction. Therefore, there exists t5€[t0, i0+7i(a)] with |x(f6) |ë 
1. Following the same argument as in the proof of uniform boundedness, 

we get |x(OI<£(£i+l) for t^ts, especially for i s i 0 + 7 1 (a). 
Choose B3>B2 with lF6(4W(7)ii(>)-max {P2(r): I r H / S ^ + l ^ s l for 

î è B 3 . If |y(0|s2?3 for i s i 0 +7i(a) , then there exists v2(a)>0 such that 
i i ( I H 0 l M l H 0 l ) ^ v 2 ( a ) , and so 

Therefore, if | y ( 0 | s B 3 for /€[i0+71(o!), i0+7i(a) + ?], then 

V ^ + T M + h y(/0+21(a)+?)) : s 

^ ^ ( ' o + ^ i a ) , y(r0+2î(a)))-va(a)ï S ^ (^(a) ) -v 2 (a ) ï . 

If f s r 2 (a ) , where T2(«)=(^0?2(a))-^(53)) /v a(a) , then 

W4(B3) s K2(/0 +71(a)+ ?, yito + TM + ï)) < Ws(/?2(a)) — v2(a)T2(a) s W4(B3), 
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which yields a contradiction. Therefore, there exists iB€['o+7i(a)> 'o+?i(a)+7à(a)] 
with and thus |x(f8)|<.B4 and |j(/6) |<fi4 , where fi4=max {B3, 
p ( 1 » . This implies |x(f)l<0CB4) and \y(t)\^P2(Bi) for iSi0+7i(a)4-r2(a). 
This completes the proof. 

Sometimes in practice it is very difficult to find a Lyapunov function satisfying 
the condition V^t, x, y)^W2(\x\) (see Example 3.4). Now we give a modification 
of Theorem 3.5 asking the much milder property V^t, x, y)^W2(\x\ + \y\). 

Theorem 3.6. Suppose that 
(i) conditions (i), (iii) of Theorem 3.5 hold; 

(ii) there exist a constant B^0 and a continuous function f>i(t, x, y) defined 
for mO, (x,y)£ Rm+fc and such that 

^1(3.8)0, *> y) ^ -W3(x, y), 
where Wx and W2 are unbounded pseudo wedges, and W3: Rm+,t-«-R+ is continuous 
and 1*1 implies W3(x, >0; 

(iii) for any 0 there exists L(M)>0 such that [isO, |x| + |.y|^M] imply 
\X(t,x,y)\^L{M)-, 

Then the solutions of (3.8) are U.B. and U.U.B. 

Proof. Obviously, by (ii) for any a>0, if |x0| + |^0 |<a, then |x(i; t0, x0, y0)< 
<W1~1(W2 (a))=fi (a) provided that (x(i; t0,x0,y0), y(t; t0,x0,y0)) exists. Following 
the same argument as in the proof of Theorem 3.5, there exists /?2(a)>0 such that 
IK'; 'o > > .Fo) I < & («) provided that |x0| +1 Jol < a and (x(i ; t0,x0,y0),y(t; t0,x0,y0)) 
exists. Then the solutions of (3.8) are U.B. Throughout the remainder of the proof 
denote x(t)=x(t; t0, x0,y0), y(t)=y(t; t0, x0,y0). 

Let T 1 ( a )=W l {p{a )+PM) / r^{W t (x ,yy .B i +l^ \x \^m, I T h e n 
by (ii), for any Zsr0 there is a î+7i(a)] with |x(/1)l<51+1. 

Suppose that for all i€[ii, î+Jl(a) + i*] we have |x (0 l<# 1 +2 and 
where B3=B2 is a fixed constant such that 

^ ( O W O ^ W - m a x {P2(s): 0 S i S 5x+2} s i for r S B3. 
Then from 

w , m * - n \ y i m m \ ) [ - w a o ] * 

^ -min {^(r)Pi(r) : J?2(a)} = - m 
we get 

0 ^ V^l+T^+t*, y{ï+TM+t*)) s 

s V2{h, jC^-^t^+TK^+I-iJ ^ W^M-MS+ZW+ï-h]. 
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Therefore, i*-^T2(a) = [W5(p2(a))+ l]/m. This shows only two cases may occur: 

.Case 1. |x( / ) |<5 1+2 for all i+7Uoc)+:r2(a)] and there exists ?2€ 
e['i,i+2"i(a)+r2(a)] with |y(i2)|<53. In this case, \x(t)\^P(By+Bz+2) and 
|y(?)|-:j52(fi1 + 53 + 2) for iS i + 7i(a) + r2(a). 

. Case 2. There exists i+7;(a)+r2(a)] such that |x(r3) |s£1+2. In this 
case, there exist/4, ^ [ / i , i3] with |x(?4)|=.B1+1 and |x(i6) |=51+2 and B x + 1 < 
< |x( i ) l<5 1 +2 for t£(U,tB). By condition (iii) /5-/4sl/£(/?(a)+&(«)), and 
(ii) implies V ^ i + T ^ + T ^ x ^ V ^ Q ^ i t J - i t s - t J m i ^ ^ V ^ - v i a ) , where 
KO) = Vi(t,x(t),y(0), v^lLim+PM^mix), and m{*)=mm{W3(x,y): 

(a), |y|^)?2(a)}. Making the choice /=/m=/0+wPi(«)+T2(a)] 
(jw=0, 1,2,...) we get that either |x(0l<i?(-81+53+2) and |y(r)|<J?2CBi+i?3+2) 
for tmta+1, or 
(3.12) K 1 ( / m + 1 ) s f i (U-v(a ) . 

On the other hand, 0^V1(t)^W2(P(<x)+j?2(a)) for and so (3.12) can not be 
true for m=0, 1, ..., N, where N=N(jx) is a positive integer such that N(a) v(a)> 
>W2(/?(a)+j?2(a)). Therefore, . |x(r) |<^(51+53+2) and + 
for rs/0+[7V(a) + l][7;(a)+r2(a)]. This completes the proof. 

Example 3.4. Consider the Lienard equation with forcing term 

(3.13) x+/(x)x+g(x)=p(t), 

where / (x ) and g(x) are continuous for x£ R andp( t ) is continuous for / s 0 . Besides, 
we assume that 

(i) / ( x ) > l ; 
(ii) x{g(x)-x[ / (x)- l ]}sO; 

«0 

(iii) / |p(s)|tfc<co. 
• • 0 

Then the solutions of (3.13) are U.B. and U.U.B. 

Proof. System (3.13) is equivalent to 
(3.14) x = - x + y , y = ~{g(x)-x[f(x)-l]}-[f(x)-l]y+p(t). 

Let V(t, x, y) = [y2+2 / {g(r)-r[f(r)-1 ]}dr]ll2+ f |/>(S)| ds. 
0 > 

Then 

' (3.14)(^J X, y ) : : - ; — = - W ( X , y ) . 

[f+2 / {^Cr)-rLT(r)-1]> 
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Then |_y|>0 implies W(x,y)>0. On the other hand, for the subsystem x——x 
the auxiliary function V2(t, x)=x2, N(r)=2r and W6(r)=2r2 satisfy condition 
(iii) of Theorem 3.5 and so the solutions of (3.13) are U.B. and U.U.B. by Theorem 
3.6. 

4. An application to a holonomic scleronomic mechanical system 

Consider a holonomic scleronomic mechanical system of n degrees of freedom 
being under the action of potential, disspative and gyroscopic forces. The motions 
such a system can be described by the Langrangian equation 

.... d dT dT , . 
<41) -dfW~W = ~W~Bq+Gq' 

where q, q£ R" are the vectors of the generalized coordinates and velocities, respec-
tively, n=n(t, q) is the potential energy, T=T(q, q)=(l/2)qTA(q)q is the kinetic 
energy where A(q) is a symmetric nXn matrix function (vT denotes the transposed 
of t^R"); B=B(t, q) is the symmetric positive semi-definite nXti matrix function 
of dissipation, and G=G(t, q) is the antisymmetric nXn matrix of the gyroscopic 
coefficients. 

By the Hamiltonian variables q,p=A(q)q system (4.1) can be rewritten into 
the form 
/ A • • , T>\ 

( 4 - 2 ) q = w p = ~ w + ( G ~ B ) w 

where H=H(t,p,q) is the total mechanical energy: 

H = H(t, q, p) = T+n = (l/2)pTA~1(q)p-fn(t, q). 

Choose the auxiliary functions V=H(t,p,q), W=pTq. Their derivatives with 
respect to (4.2) read as follows: 

M-

wfiere $(t,q) denotes the smallest eigenvalue of the matrix B(t, q); A(q) denotes 
the largest eigenvalue of A(q). It is known from the mechanics that the kinetic energy 
is a positive definite quadratic form of the velocities, consequently A(q)>0 for all 
qe R". 
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Let 
A~\q) = {ajiq))^, 

, ( dar/jq) da^jq)) A - l f / A n n , , 
V—Hi——H J D = (du)nx»> 

ek = ^ ^t^-PiPi, e = (e„ ...,e„)r. 

Then for P:=pTA~l(q)p, its derivative with respect to (4.2) is 

P = [ — y jjPTA-\q)p+{G-B)A-\q)p^ A~\q)p + 

+pTA-*(q)[-^-j-!Lp-TA-\q)p+{G-B)A-i(q)p\+PTDp = 

= - 2 [ ^ ^ ^ A - \ q ) p + p T A - \ q ) [ ( G - B Y H G - B ) \ A - \ q ) p -

-pTA~Hq)^[pTA-Hq)p}+PTDp A~Hq)p-

-2pTA-\q)BA-i(q)p-pTA-1(q)e+pTDp-, 

j^n (t,q) F2(q, p) + Fs(q, p), [P]+ S 
where 

F2(q, p) = 2\A~\q)p\, Fs(q, p) = \p\\A~\q)\ \e\ + \D\p\ 
Similarly, 

W = pTq+p^=-[^^]%^eTq+pTA-Hq)(G-B)T
q+pTA-1(q)p, 

\W\ S | qT d7t(^q)\-\ G(t, q)—B(t, q)\Fs(q, p)-Ft(q, p), 
where 

/r4(i,P) = yHkl + M"1(?)!/'2, Fh(q,p) = \A-\q)\\q\\p\. 

It is easy to prove that Ft(q,p) are continuous for p, q£R", and for every M>0 , 
lim sup F:(q,p)=0 for /=2, . . . , 5. Therefore, from Theorem 3.3 and Remark 
p-° |,| S M 
3.5, we. get the following 

Corol lary 4.1. Suppose that there are iJsO and unbounded pseuido wedges 
W^W^such that 
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(i) for 0 and R"; 
(ii) for every M > 0 the function /?M(i)=nrin {/?(/, q): is weakly 

integrally positive; 
(iii) there is a continuous function r: R+XR+->-R+ such that r(t,u) is increasing 

with respect to u for every t£ R+ and [dn(t, q)/dt]+^r(t, n(t, q)) for ?£R+ and 
qe R"; 

OO 

(iv) for every w0=»0 there is a ux>-u0 with J r(s, u^ ds-^^—u^, 
0 

(v) for every Af >0 the function \dn(t, q)jdq\ is bounded for rsO and \q\^M; 
(vi) for every M>B there are /¿M>0 and KM> 0 such that \qTdn(t,q)/dq\^fiM 

\G(t,q)-B(t,q)\sKM for i s 0 and B^\q\^M. 
Then the motions are U.B. andE.U.B. 
I f , in addition, PM(t) is integrally positive, then the motions are U.B. and U.U.B. 
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On the convergence of the differentiated 
trigonometric projection operators 

P. O. RUNCK, J. SZABADOS and P. VÉRTESI*' 

Let Ca,t be the set of 2Tt-periodic continuous functions and the set of trigono-
metric polynomials of order at most n. We will consider projection operators 
£ C 2 l t — i . e . linear operators P„(f, t) with the properties 

(i) Pn(f, if /€C2re 

( i i ) P . ( f , t ) = № if f^n-

Let r be a nonnegative integer, and consider the r times differentiated operator 
P^(f, t). One may ask: under what conditions will this operator uniformly converge 
to / ( r ) (0? To state a result in the positive direction, we need some definitions. Let 

(1) ||Fn
(,)[| := sup nP" ( r ) ( / '011 

OpS/€C„ 11/11 

be the norm of the r times differentiated operator (|| • || denotes supremum norm 
over the real line), and let E„(g) be the best (uniform) trigonometric approximation 
of order it of g€C2!C. ... i 1 

Theorem 1. If f(r)(t) is continuous and 
then 

| | m t ) - P P < J , Oil = 0(Ea(fV)+En(f)\\PttMII). 

Here the 0-sign refers to while r is fixed. Hence a sufficient condition of 
the uniform com-vrgence is 

lim E n { f ) \ m = 0. 

The second and third authors were partially supported by The Hungarian Research Fund; 
Grant No. 1801. 

Received April 9,1986 . > . . . . . 
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Proof of Theorem 1. Let Tn(t) be the best approximating polynomial of 
f(t). Then according to a result of CZIPSZER and F R E U D [2] on simultaneous appro-
ximation 

ll/WiO-Tf'Mli S c0Ea(f&) (k = 0 , 1 , r ) . 1 ) 

Using this result, as well as property (ii) of the projection operator Pa we get 

U / ( r ) ( 0 - W , OB ^ | | /«(0-T„w(0ll +\\{Tn(t)-Pn(T„, 0}(r)ll + 
+ №r)(Tn-f, OH ^ caEn{f^)+c0En{f)\m\. 

Now we turn to the divergence phenomena of the operator t). Let 
<a(<) be an arbitrary modulus of continuity, and define 

(2) C(a ) )={ / (0 l /W(0€C 2 n , sup 0 < 4 

Theorem 2. Given r s 0 and a modulus of continuity co(t) such that 

(3) lim - 4 v = 0, v J co(t) 

further a sequence of projection operators ij€C2„—there exists an fr(t)£Cr(co) 
such that 

( 4 ) - L I M S U P ' ^ - W ' ^ ^ 0 . 

(0 ( I ) log n 

For the proof of Theorem 2 we need the following 

Lemma. Given r and n, there exists a function g„r(t)£CiK such that 

( 5 ) FLGI^OLL^C^ ( J = 0 , 1 , . . . , R + 1 ) 

and 

(6) j J g$(t)D„(t) dt S c%if log n, 

•where 

sin-
(7) Da(t) =-

2 s i n y 

is the Dirichlet kernel. 

1 In what follows c0, et, ... will denote constants depending on r but independent of n. 
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Proof. We distinguish two cases. 

Case 1. r is odd. Then let 

(8) g„r(t) = ( - l)(,+1)/2(sgn t) cos - ^ - î - 1 if 

To extend the definition of gm(t) for |i|<27t/(2/2+1), let hm(t) be that uniquely 
determined algebraic polynomial of degree at most 2r+3 which satisfies the condi-
tions 

( 9 ) h"r) ( " l ï ï + r ) = "2ÏÏ+T) ' ( l ï ï + r ) = (2,1+1 ) 

C/ = 0 , l , . . . , r + l ) . 

Then let 

(10) gm{t) = hm(i) if 1̂1 — 

Assume 2r+8 ( 2n+1 V 
(11) M 0 = J i ^ [ ^ - t j > 

then by (9) and (8) 

( j = 0,1,..., /"+1), 
i.e. 

2r+8 
(12) 2 ( - l ) * * ( * - l ) . . . ( f t - J + l ) « t e = 0 ( l ) O = o , i , . . . , r+1) . 

t=/ 

Similarly, from the second group of conditions in (9), 

2R+3 
(13) 2 * . ( * . - = 0 0 ) O = o , i , . . . , r+1) . 

(12) and (13) together can be considered as a system of linear equations for the un-
knowns a t a . Since7i„(f)is uniquely determined, this system is uniquely solvable and 

]a t o | â ca (k = 0 , 1 , 2 r + 3 ) . 
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Thus by (10) and (11) we get for y=0, 1, ..., r + 1 

1 ^ ( 0 1 = 1^ (01 S 

(2 n + l V 2 , + 3 2n 

- = ^ ] - 2 k(k-i)...(k-J+l)\aka\s_eln'. if l i l s — ^ 
Now g„.(t) is defined on \t\^2n/(2n+l), and extending the definition by 

( 2nn 2(n + l)n S 
translations of length 2n, the only missing interval is — , — — (and 

\2n + l 2n + l ) 
its translates). In this interval the construction is similar: let Hnr(t) be that 
uniquely determined algebraic polynomial of degree at most 2r+3 for which 

U) ( 2nn \ U) ( 2nn \ ( 2(n+l)n 'j (J, ( 2(n + l)n "j 
nr\2n+\) gn,{2n+l)' " ' I 2 n + l ) g~ I 2n+l ) 

(7 = 0, 1, . . . , r + l ) , 
and let 

,, ' 2nn 2(n+l)7r 
2k+1 2 n + l 

Thus the definition of gnr(t) is complete. Property (5) on the interval 

— l ) n 1 c a n easiiy established. 
2« +1 2n +1 J 

The only thing remained to prove is (6). Since by (7) ||JDn(i)i| =« + 1/2, we get 
from (8) and (5) 

• 2 2n + 1 

2" 2 sin — 
.. 2 

(4 t+3)n 

2 n + 1 71 K 2 ' («+!)* 1 
2(2n+l ) 

Case 2. r is even. Now the definition of g„r(t) starts with 

instead of (8). The rest of the proof is very similar to J, and we omit the details. 
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Proof of Theorem 2. Since 0 is a projection operator, according to 
the Berman—Faber—Marcinkiewicz relation we have 

jPnifi • + «), x-u) du = S„if, x) 
—it 

where 

S„(f,x) = ± [f(x+t)Dn(t)dt n J 
— n 

is the wth partial sum of the Fourier series of f(x) (see e.g. Lorentz [3], p. 97). Apply-
ing this for f(x)=g„r(x), differentiating r times and setting x = 0 we get 

-¿- / Ptr)(gnr( • + «), ~u)du = ± /g£>(t)Dn(t) dt. 
—a —it 

Let u„ be a point where |i*r)(gnr(- +«), — h)| attains its maximum, then by (6) we 
get 

(14) I l i ^ M • + u„), i)|| s | P f \ g m ( • + u„), - «„)| £ c2rf log n. 
Now define a sequence of integers n ^ ... with the following properties: let 

and assume that Mx, «2, ..., Mj-i has been already defined. 
If there exists a k, l^k^j—l, such that for infinitely many n's we have 

+ « 0 , Oil S Cl(«(l/»)l0g n 
then this g„kT(t) will satisfy the requirements of the theorem. If this is not the case, 
then for sufficiently large n's ^ 

K u o - ^ M • +«J> Oil< cMmlog n (/c = i , . . . , j—i). 
Now choose itj in this case such that 

(16) H ^ u o - ^ i w i - + 0 > O l h ^«( l /n^ iog nj (k = i , . . : , / - ! ) 
and 

(17) 2 ^ c o ( l / n j - i ) ^ co(l/rij) s m i n f l c o d / « ^ , ) , ^ ¡ ^ j ) 

hold. (The left hand side inequality is possible because of (3).) 
We may assume that we can construct an infinite sequence of indices this way. 

Define 

- fM= 2 0>(i/nk). , 
*=1 nk 
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Here the right hand side series, even after differentiating r times, uniformly converges 
by (5) and (17). Moreover, if O^S^h then 

t=l "t 

Let 0<A<1/«! and j be that index for which 

l/«J+I S h < 1 / M J . 
Then by (5) and (17) 

«511^(011 . - 2[|^>(/)[1 
\mt+s)-f?m ^ Z ; ; < P ( W + ^ / B ¿ » O K ) G 

* = i "i t t = i + x "it 

i 
^ Ci8 2 n M V n k ) + 2 c 1 2 cö(l/nt+1)s2c1/inyto(l/wJ)+4c1c»(l/ny+1)^8c1co(/i), 

*=1 k=j+l 

i.e. / r(0€C,(®) (cf. (2)). 
Finally, to show (4) we obtain by (14), (16), (5), (17) and (15) 

w / m - W r , Oil = $ +«o. o 
k=l "Í * 

Hffifen.rO+»„,), Oil mfi/n ) J g + « 0 , 0 1 _ 
" y . i i i iki J fc=l « Ï * 

§ no oo 

S c2oj(l/ri/)log nJ—c1a>(l/nJ) log tij 2 /»*)- 2 a>(\lnk)-

- f t l f l ^ H 2 Û)(l/«*) S C2Cl)(l/«j)log /ly —2c1co(l/«1)û)(l//jy)log 

-2a»Cl/«j)^2cJiÇ>Bû»(l/nJ+i) s caû>(l/n,.) log n y — l o g 

- - j - 0 ) ( l / r i j ) l o g « y — j - m ( l / r i j ) l o g = - j -0) ( l /n j ) l ogn s ( j = 1,2, ...). 
a>(t)=o(t) is excluded in Theorem 2, by condition (3). With a slight modifica-

tion of the proof we can easily get the following statement in this case. 
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Theorem 3. Given r s 0 , a sequence of projection operators ДбС2я— 
and a sequence lim e„=0, there exists an f,(t)dC2K such that f}r){t)£ 
€Lip 1 and 

(18) lim sup e„ log njn 

We do not give the details of the proof of this theorem. We only mention that 
now 

fr(') = 2^kgnkr(t + unk) fc=l "k 

will be the function satisfying (18), where n 1<n 2<. . . is a properly chosen sequence 
of indices. 

An obvious consequence of Theorem 1 is that if f(t)£Cr(m) then 

(19) ||/<г>(0-Рп
(г)(/, Oil = 0(n-ra>(l/ri)\\Pir4\). 

Since here ||/*r)|| ^c3rf log n for any projection operator P„ (cf. BERMAN [1]), the 
best estimate one can obtain from (19) is 

| | / M ( 0 - w , Oil = O(co(l/n) log n) (f(t)£Cr(m)). 
This shows that the results of Theorems 2 and 3 are sharp. 

In particular, our theorems can be applied to the differentiated partial sums of 
the Fourier series and to the differentiated interpolating polynomials based on arbit-
rary systems of nodes. 
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Notes on approximation by Riesz-means 

L. LEINDLER 

To my dear colleague L. Pintér on his 60th birthday 

1. Let f=f(x) be a continuous 27r-periodic function i.e./6C2„, and let 

(1) f(x) + 2 (an cos nx+bn sin nx) 
^ n = l 

be its Fourier series. Denote s„=s„(x)=s„(f; x) and CT®=«7®(X)=O-^(/; x) the 
w-th partial sum and the H-th (C, a)-mean of (1), respectively, i.e. 

<(x) = -L' J A£l\sy{x), ^ = + An v=0 \ n J 

furthermore / denotes the conjugate function of / , and / ( r ) is the r-th derivative of / . 
Let E n ( f ) denote the best approximation of / by trigonometric polynomials 

of order at most n in the space C2„, and let || • || denote the usual supremum norm. 
We define two important strong means: 

hn(f, P,p; x) ^ f ^ j y T kÉ(k+iy-1\sk(x)-f(x)\jVP (f},p > 0), 

ol\f,p\x\:=[-^2/l-l\sÁx)-fíx)\^'' (y,p >0). 

The first result on strong approximation by Fourier series has been connected 
with the following classical theorem of S. N. BERNSTEIN [3]: 

If /€Lip a then 

(2) K - / [ | = 0(»-«) for 0 < a < 1 
and 
(3) K - / | | =0(« -Mog«) for a = l. 

Received April 25,1986. 
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Namely G . ALEXITS and D . KRALIK [2] sharpened this theorem by proving 
that the order of approximation given in estimates (2) and (3) can be achieved for 
the strong means h„(f, 1,1; x), too; i.e. 

/ € L i p a implies that 
[0(n-') if 0<a<l, 

•«/•'••^W-Mog-O </ —1. 
Improving further the result of Alexits and Kr&lik we ([4], [5]) proved, among 

others, the following theorems: 

Theorem A. / f / ( r ) £ L i p a , 0 < a ^ l , / » 0 and P>(r+a)p 

then 

h„(f, P, P) := IIha(f, p, p; x)\\ = 0{n"-% 

Theorem B. If Lip a, 0 < a ^ 1, />>0 and ( r+a) / i< l then for arbitrary 
7 > 0 

°l\f,p\ := №\f,P\ *IB =0{n-'~% 

It is clear that these estimations are best possible, namely, by the well-known 
result of Jackson / ( r ) £Lipa implies that E n ( f ) = 0{n~r~a). 

The following theorems show that the conditions j?>(r+a)/> and (r+x)p<l 
are very essential with respect to the order of approximation. If they are not fulfilled 
then the strong means do not approximate in the order of best approximation. 

Theorem C. If f(r)£Lip a, 0 < a ^ l , 0 and P=(r+x)p then we have only 

hn(fP,P) =0(n—°(log H)1/p). 

Furthermore there exists a function f such thatf^^lAp a, 0<a^l, but 

K(fi, P,p\ 0) s cn~'-*(log n)1/p (c > 0), 

holds if n is large enough. 

Theorem D. If / ( r ) €Lipa , 0 < a ^ l , />>0, y>0 and (r+<x)p=l then we 
have only 

cl\fp\=0{n-r-%\ognfl"). 

Moreover, there exists a function f2 such that Lip a, 0 < a S l , and 

< \fz,P\ 0| k ¿«- '" ' ( log nf" (d> 0) 

holds for sufficiently large n. 
Analogous estimations for the conjugate functions have been proved, but now 

we do not treat them. 



Notes on approximation by Riesz-means 297 

Analysing these results we can see that the strong means <rJ | / , p; x| behave like 
<rj| f,p; x\=hn(f, \,p\x), i.e. the strong means hn(f p,p; x) are more sensible of 
parameter P regarding the order of approximation. 

This phenomenon raises the following problems: If we consider the following 
regular ordinary Riesz-means 

Rn(f, P, X) := 7 - ^ r 2 (k+iy-^ix) 0?-1 := (n+l)-' J (k+1)'"1) 
( n + l r * = o k=o 

and take the difference \\Rn(f,Pl x)-f(x)\\ 

i.e. if we consider the ordinary approximation instead of strong one for the Riesz-
means, then at which value of the parameter /? will a jump in the order of approxi-
mation appear, also at the parameter p=r+<x {p=1) as in the strong case? If 
r=0, then will the jump be at p=a independently of the value of a, regardless 
whether a < 1 or a = 1? The answer is affermative if r=0, and this shows that the 
analogue of Bernstein's theorem holds for the Riesz-means, but the jump of the 
order of approximation can appear at any value p ^ l if the Lipschitz class has the 
same parameter. But if r^O then a curious phenomenon appears, namely if r is 
odd then the case a=l will be exceptional. The reason of this exception has its 
roots in the following classical result of M . ZAMANSKY [ 1 0 ] : / ( r )£Lip 1 if and only if 

\\f-Rn{f,r+\)\\ =0(n"^) for an odd r, and 
||/-i?n(/,r+l)|| =0(n-'-x) for an even r. 

We mention that the case r=0 of this theorem was proved by G. ALEXITS [1]. 
Now we formulate the statements mentioned above precisely, and refer to our 

paper [6] where the statements of Theorem E appear implicitly. 

Theorem E. Let / ( r )£Lipa, 0 < a s l . Then 
(i) if r is even 

f0(n-r~*), if r+oc < p, 
[0(n~r~a log n), if r + a = P; 

(ii) if r is odd 
0(n"-') if r+oc=p 
0(n~r~l) if r+l=p (a = l) 
0(n-r-"log n) if r + a = P and a < 1, 

hold true. 
Furthermore, if whether r is even or a < l , then there exists a function f0 such 

that /0
(r)€Lip a, 0 < a S 1 and 

(4) I W o , r+a; 0)-/0(0)| £ cn~'~*log n 
holds with a positive c=c(r, a) if n is large enough. 

\\Rn(f,P; x)-f(x)\\ = 

\\Rn(f,P; x)-f(x)\\ = 
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We mention that analogous results for the conjugate functions also hold, and 
that the special case a—1 of (4) is not proved in [6], but it is true, and our theorem 
to be proved includes this special case, too. 

The results of Theorem A arid C (B and D also) were generalized by V. TOTIK 
[9] as follows: 

Theorem F. If f£WTH'° then for any £ > 0 and p>0 

(5) h„(f, p, p) = 0(Hf;£J 
holds, where 

Furthermore there exists a function fr such that fr£WrHa, but 

hn(f„p,p; 0)^cH?;ln ( c > 0 ) . 

The aim of our note is to show that Theorem E can be generalized for the class 
W H " , i.e. to prove that the ordinary Riesz-means do not approximate better than 
the strong Riesz-means on the whole class W"H° if r is even or if r is odd but 

2 (o(\lk)=0{na>(\ln)). 
k=l 

Our theorem reads: 

Theorem. IffZW'H" then for any j8>0 

(6) ll*„(/, P\ * ) - /0 ) l l = 0 (H? ; l n ) holds. 
n 

Furthermore, if whether r is even or r is odd but 2 (o(i/k)=0(nco(l/n)) is ful-

filled, then there exists a function f0 such that f0dW Ha and 

(7) I W o , Pi 0)-/O(0)| S cH?:in 

hold with a positive c=c(P, r). 
It is easy to verify that if r is even, fl—r+1 and a>(<5)=<5 (a= l ) then (7) 

reduces to (4) as we stated above. 
2. To prove our theorem we require the following lemmas. 
We may assume, without restriction of generality, that the modulus of conti-

nuity CD is always concave. (See [8, p. 45].) 

Lemma 1. If a is a modulus of continuity, then the function 

f*(x) := 2 CI/») " «(!/(« +1))) cos nx n=i 
belongs to H°. 
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See Lemma 2 . 1 8 of [7] or V . TOTIK [9]. 

Lemma 2. If the modulus of continuity a> satisfies the condition 

(8) ¿®(l /*)=0(na>(l /«)) , 
*=i 

then 

g*(x) := ¿(co(l/k)-co(l/(k + l)))sinkx 
*=l 

belongs to Hm. 

Proof. Since En(g*) S k*-^*)! S ©(!/(«+1)) 
and 

CO 
( n 1 " 1 n+1 [g*, j-\ ^ ZEk(g*) ^ K±. 2 co(m, \ nj n fc=o n k=1 k 

so, by (8), g*€Hm. 
Now we can start the proof of Theorem. 

3. Proof of Theorem. The estimation (6) follows from (5) obviously. 
To prove the lower estimation (7) we define f0 as follows: 

fo(x) •= 2 n~'(co(l/n)-co(l/(n+1))) cos nx. 

Since, by Lemmas 1 and 2, the functions / * and g* belong to H a and 
r*̂  

[±f*(x) if r is odd, 
f±/*(x) if r is even, 

/o(r,W = {. 
so few*H". 
A standard calculation gives that 

Rn(f«, ß; 0)-/o(0) = 2 1)"-1 2 v-'(o>(l/v)-a)(l/(v+1))) (n+ l)1' k=0 v=k+l 
d(8) " » 

2 k ' - 1 2v - ' (o , ( l /v ) - f f l ( l / (v+ l ) ) ) s 
" i = l v=fe 

d(ß) » V 
s ^ 2 v - ' ( < i , ( l / v ) - a ) ( l / ( v + l))) £ 

« v= l *=1 

^ dAß) ¿v/i-r((ü(1/v)_Cü(1/(v + 1))) ^ 
n " v= l 

S d(ß, r)n-» ¿ « ( l / v l v ' - ' ^ d i , r)W;ln, »=i 
what proves (7). 
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Finally, we mention that a comparison of the statements of Theorem F and 
those of Theorem shows that if r is odd and 

2 a>(l/k) *0(rtco(l/n)) 
*=1 

then the ordinary Riesz-means can approximate better than the strong ones, e.g. 
if œ(ô)=6. 

Theorems C and E, in the special case a = l , and ß=r+l, also show this 
phenomenon clearly. 
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Fourier—Stieltjes transforms of vector-valued 
measures on compact groups 

V. s. K. ASSIAMOUA and A. OLUBUMMO 

1. Introduction. In recent years, various studies have shown the growing im-
portance of vector-valued measures as can be seen for instance from [1], [3], [4] and 
many others as well as the numerous references contained in them. To give just one 
specific example: the Fourier transforms of the distributions studied by BONNET [2] 
in generalizing the Bochner theorem to noncommutative Lie groups turn out to be 
vector-valued measures. 

In the present paper, we study the Fourier—Stieltjes transforms of vector-valued 
measures defined on an infinite compact group. Let G be an infinite compact group 
with I as its dual object. We consider measures m on G with values in a Banach 
space E. Following ASSIAMOUA [1], we define the Fourier—Stieltjes transforms of 
such measures and obtain analogues of the results in § 2 8 of HEWITT and Ross [6]. 

Among other results, we prove the celebrated Lebesgue theorem and the Parseval— 
Plancherel—Riesz—Fischer theorem. 

2. Preliminaries 

2.1. Defini t ion. Let S be a locally compact Hausdorff space and J f ( S ) the 
real (resp. complex) vector space of all continuous real (resp. complex) valued func-
tions on S with compact supports. A vector measure on S with values in a real (resp. 
complex) normed linear space E is any linear mapping m: Jf(S)-*-E with the 
following property: for every compact set K<zS, there exists a positive constant aK 
such that if / € Jf (S) and supp fczK, then ([3], 2, no. 1) 

I I « ( / ) I I E sup {|/(0I: *€*}• 

We note that if S is compact, then J f ( S ) is equal to the vector space ^(S, R) (resp. 
Q) of all continuous functions on S into R (resp. Q and a vector measure 

Received September 16, 1986. 
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on S is a linear mapping m: JiT(S) — E which is continuous in the uniform norm 
topology since in this case, there exists a constant a=as such that 

\\m(f)\\E^a\\f\\, f£jr(S), 

where | | / | |=sup {| /( i) | : is the uniform norm on R). If m: JT(S)^E 
is a vector measure, we shall write 

m { f ) = //(t)dm(t) or Jfdm. 
s 

2.2. Defini t ion. An £-valued vector measure is said to be dominated if there 
exists a positive (real-valued) measure fi such that 

\\jfdm\\E == f |/| dn, /€JT(S). 

If m is dominated, then there exists a smallest positive measure |m| called the variation 
or the modulus of m that dominates it. 

A positive measure is said to be bounded if it is continuous in the uniform norm 
topology of J f ( S ) and a dominated vector measure is said to be bounded if it is 
dominated by a bounded positive measure. 

Thus every dominated vector measure on a compact space is bounded. (For 
these properties of vector measure and the general theory of vector integration, the 
reader is referred to [3] or [4].) We note also that if E is a Banach space and S=G 
is a group, then the space M1(G,E) of all bounded ¿"-valued measures on G is a 
Banach space with the norm 

\\m\\=fxad\m\, 

where XG is the characteristic function of G. 
3. The Fourier—Stieltjes transform. We shall now define the Fourier—Stieltjes 

transform of a vector-valued measure on a. compact group G and obtain some of the 
properties of such transforms. 

3.1. Defini t ion. Let G be a compact infinite group and I its dual object! 
For each o£Z, we choose once and for all, an element £/(<7) in a, denote its re-
presentation space by Ha, fix a conjugation Da on H„ and put U(a)=Da Uia)Da, ([6], 
27.28. C). ' 

As in [1], we define the Fourier—-Stieltjes transform of a vector-valued measure 
m: G—E by 

7h(<7)(£, ti) = /(U<'>{, r\)dm(t), ({, t])£HaXHa. 
Q 

Let E be a Banach space. Then the mapping (£, ? / ) — r j ) from HaXHa into 
the space Sf(Ha,XH„, E) of the £-valued continuous sesquilinear mappings on 
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HaXHa, equipped withthe norm 

||<P((7)[| = sup-{B<P(a)«, n)h- HWh, 35 1, Mb, ^ 1} 

is continuous ([1], 4.1). 
Following HEWITT and Ross [6], 2 8 . 2 4 , we shall write 

S?(Z,E) = J] y(HaXH„, E). 

It is easy to see that, with addition and scalar multiplication defined coordinatewise, 
£f(Z, E) is a vector space. For 4>££f(Z, E), we put 

0*H»=sup{ | |*(a) | | :aer} 

and denote by Sf,(E,E) the space {<¡>£¥(1, E): H ÎU<<*>}. Also we denote by 
S^oo (Z,E) the space 

(Z,E): <P(a) ^ 0} is finite} 

and by S^(Z, E) the space 

{<P£#L(Z,E): for every e > 0 , {<¡£1: ||$(<r)|| >8} is finite}. 

The next theorem is an analogue of HEWITT and Ross [6], 28.25. 

3.2. Theorem. 
(i) The mapping |l is a norm on £?L(Z, E) and E) is a Banach 

space with respect to this norm. 
(ii) SPW(Z, E) is dense in (I, E). 

Proof, (i) It is clear that II^IU is a norm. Let {$„} be a Cauchy sequence 
in E). Then for every o£Z, {#„(»} is a Cauchy sequence in S?(HaXHa, E). 
Since £f(HaXHa, E) is a Banach space, {#n(ff)} converges to an element <P(o) in 
y(H„XHa,E). An argument similar to [6], 28.25 shows that <P=($(<T)) belongs 
to 9L{Z, E) and that {$„} tends to 

(ii) Let 4> be an element of S%(Z,E). For «=1,2 , . . . , define the element 
4>„ of y00(Z, E) by 

_ i f 11^)11 S l / n , 
n(<7) 1 0 if ||$(<r)|| < 1 fn. 

Then plainly {$„} converges to $ in S$(Z, E). 

3.3 Lemma. Every $(p)€£f(HaXHa,E) is determined by the d* elements 
(%]= <P(a)(£j, of E where da is the finite dimension of Ha and (£i, £2> ••;» & 

an orthonormal basis of Ha. More precisely, we have $(<x)= 2 daCf^u'ftj) where 
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(Note that for a complex function u, u is the Fourier transform that is the 
Fourier—Stieltjes transform of the measure «A, X being the normalized Haar measure 
on G.) 

Proof . We have 

l) = 2 ocjfrafj 1 
on putting 

= 2«jtj and t, = 2 Mi-
i i = I 

Now for a coordinate function t^(U\a), Q, we have (by [6], 27.19) 

J(W°^,rl)ufj(t)dA(t)=2 j*ihai(t)uij(t)dX(t)= \/daajpt. 
G G 

Thus 
*(*)(& n) = 2 = 2 dauij(o)(f, f ] ) a f j . 

Hence 

*(*) = 2 daa\?Ui№)-
i 

3.4. Def in i t ion . We shall write E) for the vector space 

{<PiSr(Z, E): 2 d , 2 II Oil! <-}• 
o€X i.j 

3.5. Lemma. Suppose that E is a HUbert space. Then, the mapping 

( * , V) <4», V)= 2 d , 2 <*(<№, a &)> 
o€i 1,7=1 

fa on inner product on E). 

Proof. 

2 2 dcm<r)(Z}, Q> *(<>)(£J,m ^ 2 2 w & ) l l * # / i ! l l «11 £ s 

^ № m o x t j , ob i)1/a K ii y m 2 ) 1 ' 2 

This shows that the mapping is well defined and the proof can be easily completed. 

4. Properties of Fourier—Stieltjes transforms. Throughout this section, we adopt 
the following notation: if X is a subset of MX(J3, E), we shall denote by % the set 
{&: In the next two theorems we obtain analogues of Theorems 28.36 and 
28.39 (ij ii) of-[6], respectively. 

4.1. Theorem. 7%« mapping m^m from E) into &L(Z,E) is linear, 
injective and continuous. 
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Proof. That m—m is linear is clear. We know that it is one-to-one by [1]; 
Lemma 4.1.5. Now, 

! ||m(<r)|| =sup { | |w(aj(^) | | £ : U K ^ 1 and Itob. S 1} = 

= sup{ | | /{m'H,n)drn( t ) \ E : mBa £ 1, ||r,\\Ha s l j s / X a d \ m \ , 

since C7[ff) is unitary. Thus \\m(a)\\^\\m\\, a£Z and ||w|U^||w||. Hence m££?L(Z, E) 
and the mapping is continuous. 

4.2. Defini t ion. Let G, E) denote complex Banach space of all continuous 
£-valued functions on G with pointwise operations and norm given by | | / | | = 
='sup {||/(i)||E: *€<?}. For o£Z and a fixed orthonormal basis ..., ¿;d) in 
H„, J"(G) will denote the subspace of %>(G, C) generated by the coordinate functions 
u'ir We set E) = {xcp: x£E and <peJ"(G)} and define J(G,E) to be sub-
space of E) generated by the union (J J°(G, E). ffg2 

4.3. Theorem. 

(i) For each a£Z, we have J"(G, E)=Sf(HaXHa, E). 
,(ii) S(G^E) = y00(Z,E). 

Proof, (i) The result readily follows from Lemma 3.3 since 

oaf/ s in E and uf/s in J{G, C) such that $(<x) = 2 d„a°jU?j(a) <=> 

<=> <P(<JW(GJZ). 

(ii) Suppose that f£J(G,E). Then / may be written / = 2 <*./*,> a £ c > 

c£Z and / = 2xjWj, x£E, u^J'^G, C). Thus 
j=i 

U = 2 «¡2 Xjti'MiZi, U only if a = au / = 1 , 2 , ..., n. 

Hence fiSrw(Z,E). 

Conversely, if then the set P={o£Z: <P(o)9±0} is finite. More-

over, each <P((T)= 2 daaljufj(<r)> Putting f=2d
0 2 <XJ> we 8 e t /= & 

and so J (G^E)=¥ W (S ,E) . 
4.4. Lemma. Thespace J{G, E) is dense in E). 

Proof. We identify J(G, E) with J(G, C)<S>eE, the injective tensor product of 
J(G, C) and E, i.e. the tensor product carrying the norm 

|| 2 ^ i l l ^ || 2 «¡»¡®*i||e = SUP {| u{*M<Pd\- II«« I M S l } , 
15(2=1! l S J S n I S i S n 

T 
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u£E\ v£J(G, C)' where E' and J (G, C)' are the topological duals of E and J (G, C), 
respectively ([7], 44.2 (3)). Since J(G, C) is dense in #(G, E), ([6], 27.39), it follows 
that J(G, E) is dense in #(G, E), because #(G, E) is norm isomorphic to 
<Z(G, C)®eE, the completion of #(G, C)®tE, ([7], 44.7 (2)). 

4.5. Theorem. The space L^G, E) of the Fourier transforms of Haar-integrable 
functions f : G—E is dense in E). 

Proof. The space S(G,E) is dense in Ly(G, E) because <f(G, E) is dense in 
<íf (G, E) and <i?(G, E) is dense in Lt(G, E) ([4], 7.16). Since S(G~E)=$'m(Z, E) 
is dense in Sf0(E, E), Li(G, E) which contains y(G, E), is dense in E). 

4.6. Corollary. If feLiiG, E), then the set {o£Z: / ( a )^0} is countable. 

4.7. Lemma. Let L2(G, E) denote the Banach space of the Haar-square integ-
rable functions on G into E. If f£Lz(G, E), then 

(use [6], 27.40 for h). Hence f = 2 d . 2 i / / ( O " f ; ( 0 ^ ( 0 R r Since L2(G, C)®E 
a i j a l w ' 

is dense in L2(G, E) it is clear that the last equality holds for f£L2(G, E). Now, 

f f ( t ) u f j ( t ) dx(t) = / (u<t°Hj, QfO) dk{t)=?(o)(Zj, a 

Hence f = Z d a 2 / W K j . ^ K -a i.J 
Finally, we obtain the analogue of [6], 28.43. 

4.8. Theorem. Assume that E is a Hilbert space. Then the mapping /—/ is 
an isometry from L2(G, E) onto E) and so E) is a Hilbert space. 

Proof. If E is a Hilbert space, than L2(G,E) is a Hilbert space so that 
/<EZ,2(G,£) if and only if 

Proof. If f=xh, XÍE and h£Ls(G, C), then 

/= 2 d„ 2 {f xh(t)ü?j{t) dk{t)) ulj 
<r€I i»J—1 

11/111 = ( 2 2 daa¡jU¡j, 2 2 daa?ju!j), a I, J a i.J <r i.J 

where <fi}=f(a)%, Q, I s / , j^da. Hence 'u 

mi-,2 2 dl K U I W J Í = 2 2d, B / (a)«i , m a i,J a i.J H: 
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since da\\u1^\= \ ( [ 6 ] , 2 7 . 4 0 ) . Thus and 

I I / I I I = 2 2 d . I I & I I S = I I / I I I -ff ¡,j 

Conversely, let $dSr2(Z,E). Then 2 2 dJ*(<r)(.Zj, and hence 
ff i,j n 

the set 0 } is countable, say { A J T € N . Put /„= 2d„akuk, where 
uk replaces u°j whenever a°j=ak is different from zero. Then the functions f„ form 
a Cauchy sequence in L2(G, E) whose limit / satisfies / = <P and the proof is com-
plete. 
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Lj(G, /^-multipliers 

V. S. K. ASSIAMOUA 

1. Introduction 

Throughout this paper, G will be a locally compact group and A a complex 
Banach algebra. 

In [9] M I N G - K A M CHAN characterizes the L^iG, ^-multipliers for algebras 
having a weak (hence a strong) bounded approximate identity. 

By the present work, we prove that the characterizations remain true even in 
case A doesn't possess such an approximate identity, using the fact that any Banach 
algebra is contained in a Banach algebra with identity. Next, we enter upon the 
situation (not considered in [9]) where G is compact, non abelian. Doing this, we 
are induced to extend the notion of Fourier—Stieltjes transform of a vector measure. 

2. Terminology 

2.1. Vector measures. Let S be a locally compact (Hausdorff) space and E, 
a real or complex normed space. Denote by JT(S, E) the vector space over the same 
field as E of all continuous functions on S into E, having compact supports, and 
write JiT(S) for j f (SV R). 

Let F be a real Banach space. By definition, an F-valued vector measure on S 
is a linear mapping m: 3f(S)—F such that, for every compact set K<zS, there 
exists a non negative constant <xK and. | |w( / ) | l^a K sup | / (0 l for every function 

t € S 
/with support in /w(/) is also written > 

/ fdm, f /(t)dm(t) or ff(t)dm(t). 
s s 

(See [2], chap VI, § 2, no. 1.) 

, i Received September 16,: 19861 
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Suppose now F is complex and consider the underlying real Banach space F0. 
Then any R-linear mapping: X(S)—F0 extends uniquely to a C-linear mapping: 

S, C)^F. AS such, we shall always identify every measure m: X(S)-*F0 with 
the corresponding linear mapping (still denoted m) from J f ( S , C) into F, and shall 
call again vector measure, any linear mapping m: X(S, C)—F whose restriction 
to X (S) is a measure (into F0). 

2.2. Bounded measures. A vector measure is said to be dominated if there 
exists a positive measure n such that J / / ( 0 < M 0 | | s / \ № \ d n ( t ) , f£X(S). 

If m is dominated, then there exists a smallest positive measure \m\ called the 
modulus or the variation of m, that dominates it. A positive measure is said to be 
bounded if it is continuous in the uniform norm topology of X(S). 

A vector measure is said to be bounded if it is dominated by a bounded positive 
measure. It is clear that m is bounded if and only if \m\ is bounded ([3], § 3). 

2.3. Integrat ion. Assume fi is a positive measure on S and £ is a Banach 
space. For a function / : S-+E, put 

N„(f) = ( / (\\f(t)\\E)pdn(t)ylp, IS 
* 

where J designates the upper integral ([2], chap. IV, § 1, no. 3). 

N ^ ( f ) = inf{a: ||/(0HE — a> /¿-almost everywhere}. 

The vector space (over the same field as E) of all /¿-measureable functions 
/ : S^E such that N„(/)<<*> is denoted by &p(S,n,E) or Sep(S,E)... and the 
corresponding quotient space SCP(S, fi, E~)\Jf with respect to the closed subspace 
of the negligible functions, by LP(S, fi, E) or Lp(S, E). The seminorm Np induces 
a norm | | . on LP(S, E) which becomes a Banach space. In the sequel, we shall 
write / for the class [ / ] as it is usually done. 

With the positive measure fi on S is uniquely associated a continuous linear 
mapping n: X(5, E)+E given by the equation 

h(p4) = xfi(\j/), x£E, 

([3], 2.11). Since X(S, E) is dense in ^(S, E), n has an extension (still called n) 
to E). The integral of fZ&^S, E) with respect to fi is the value n ( f ) denoted: 

f № d n { t ) . 
s 

(It belongs to E.) 
Now, let m be a dominated measure with values in a Banach space F. Then 

the space SPp(S, m, E) is by definition the space ^(S1 , \m\, E). We associate with 
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m in a unique manner a continuous linear mapping (still called m) from j £ m , E) 
into a Banach space D, provided there exists a continuous bilinear mapping: 
EXF-+D. The corresponding integral J f(t)dm(t) belonging to D, is the value 
m(J) ([3], 8.61. or [2], chap. VI, §2, no. 7). If / € ^ ( 5 , R), put D=F and E= R, 
and the required bilinear mapping is the multiplication by real numbers: R X F-»F. 

2.4. Convolution. The space M1(A)=Mi(G, A) of all bounded .¿-valued 
measures on G is a Banach algebra with the norm ||m||.= J xGd\mI where XG is the 
characteristic function of G, and the convolution 

m*n(f) = / (/ f(st) dm(s)) dn(t), and m, 

shortly written Jj"f(st)dm(s)dn(t). 

Let X be the left Haar measure on G. Identifying fdL^G, X, A) with the bounded 
measure fX defined by 

f m = Jf(t)g(t)dX(t), 

then the functions 

t +f*g(t) = /f(s)g(s-H) ds, / , gdl^iG, A), ds = dX(s), 

t - m *f(t) = / f(s~H) dm(s), mdMM), / 6 G , A), 
and 

t^f*m(t)=ff(ts-1)A(s-1)dm(s), f ^ ( G , A), mdM^A), 

(where A is the modular function of G), belong to Li(G, A). Consequently, Li(G, A) 
appears as a two-sided ideal of Mx(A). 

2.4.1. Lemma. Let rs, s£G, be the right translation: tsf{t)=f(ts~r). Then 

(i) Ts(/*g) = / * t s g = (A{s)xs--if)*g, / , gZL^iG, A), 

(ii) xs(m*g) - m*isg, m£Mx(A) and gtl^iGyA). 

The proof is straightforward. 
2.4.2. Lemma. If m is bounded and m*g=Q or g*m—0 for every gZJf (G) 

or for every g£tf(G, A), then m=0. 

See [3], 24.35 for the proof. 
From now on, we shall write dt for dX(t). 
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3. Lí(G, ^-multipliers for general locally compact groups 

3.1. Defini t ion. A left Li(G, ^-multiplier is a continuous linear operator 
T: L1(G,A)-*L1(G,A) suchthat 

(3.1.1) raT = TVj, s£G and T(xf) = xT(f), x£A, /€¿i(G, A). 

A right Li(G, y4)-multiplier is respectively defined. Now, any result true for 
left multipliers has its ánalogue for right multipliers. Therefore we are going to 
study the left multipliers only, and omit the word "left" and sometimes the symbol 
"LiiG, A)". By [6], it is not necessary to include continuity in the definition of 
multipliers. We do it only to avoid superfluous discussions. 

We are going to use in the proof of the next theorem a number of facts that we 
want to point out now. 

* * 
3 . 2 . Extension of L I ( G , ^ -mul t ip l i e r s to J L I ( G , A). In the sequel, A will 

be the Banach algebra obtained by joining an identity e to A. We recall that A is 
* 

a two sided maximal ideal in A. 
* 

3.2.1. Lemma. The space L^iG, A) is norm isomorphic to the direct sum 
AÍG, A)®eL1(G). 

* * 

Proof. It is known that A^A®eC. Hence every may be 
represented as f=f+e<p, feLS<j,A) and (p^L^G). To see it, put f—PoF and 

* 

e<p=(I—P)oF where P is the projection operator: A—A. Indeed, / and cp are 
integrable ([4] p. 480 and [3], 8.3). 

3.2.2. Lemma. Let T be an (G, A)-multiplier. Then T is extendable to an * * 
La(G, A)-multiplier T and thére exists a linear operator 

T: Li(G) — Za(G) such that T(xcp) = xz(<p), x^A and (p^I^iG). 

Proof. The condition T(xf)=xT(f) in (3.1.1) shows that T is an ^-module 
homomorphism on Z^G, A); hence according to [2], § 1, no. 1, T has an extension £ * # 
T which is C- and ^4-linear on L^{G, A)- Thus, for X=x+e£ in A and F— 
=f+ecp in L]_(G,A) we have: 

f(XF) = T(xf+y+x(p+e&) = xT(f)+ZT(f)+xT(ecp)+iT(etp). 
m * * 

Put t= the restriction of T to eL^G). Since r | ^ o > i 0 = T, it is clear that 

h m = xT{f)+ZT(f)+x$(eq>)+tf(e<p) = (x+eOT(f)+(x+e&(e<p) = XT(F). 
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The definition of T proves that x(e(p)=ex(q>) for some linear mapping T : L 1 ( G ) — 

—^(G). Hence T=T+ex. 
For and (p^L^G), x<p£Li(G, A); then 

T(x<p) = T(xeq>) — xz(ecp) = xr (<p). 

It is easy to deduce that T is continuous, ||T|| S | | R | | and T S T = T T S . N O W , 

Hr(F)|| J * I IWII^+I IT^IU s I I W I I M + M I M I ^ 

^ ¡riKH/llx^+llfl'lli) = lirilBFIIj. 
* 

Hence T is continuous. Finally 

*,T(F) = x3T{f)+ex,x{<P) = T(x,f)+ex(x,q>) = Tx,(F). 
* - .* 

Therefore, T is an L^iG, ^-multiplier. 
Now, here is the first main theorem: 

3.3. Theorem. Let T be a continuous linear operator from Li(G, A) into 
Lx(G, A). Then the following statements are equivalent: 

(3.L1) TX, = T,T, siG and T(xf) = xT{f), x£A, f^L^G, A), 

(3.3.1) T(f*n)=T(f)*n, f€L,(G, A), n£M,(G,C), 

(3.3.2) T(J*g) = T(f)*g, fandg<LLx(G,A), 

(3.3.3) T ( f ) = m*f for some m^M1(G, A). 

Proof , (a) Assume (3.1.1) and denote by A! the topological dual of A. Using 
[3] Corollary 14.21, we claim that, if t - ( f ( t ) , g(t)) is negligible for every g£L„(G, A') 
then / , A) is negligible because the assertion is true for functions of the 
form x/<p, x'€ A' and Jf(G), which belong to Z,«, (G, A'). 

We know that L„(G, A^czL^iG, A)'. Let n^M^G, Q and T' be the ajoint 
of T. We have, for g£L„(G, A% 

• f (T(f*n)(t), g(t)) dt = J ( f fits-1)A (s-i) dn(s), r ( g ) ( 0 ) dt = 

= ¡¡(f(ts-i),T'(g)(t))A(s-i)dris)dt. 

Applying Fubini's theorem, we have: 

¡¡(fits-1), T'(g)(t))A(s~x)dn(s)dt = //(f(ts-x),T'(g)(i))A(s-x)dtd^s) = 

> =H(T(f)(ts-*),g(t))A(s->)dtdn(s) 
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according: to (3.1.1). We apply once again the Fubini's theorem. 

/ f (Ti/K's'1), g(t))A(j_1)dtdfi(s) = / ( f T(fXts-i)A(s-*)dn(s), g(t)) dt = 

= /{(T(f)*n)(t), g(t))dt. 

Hence T(f*n)=T(f)*n. Therefore (3.1.1)^(3.3.1). 
(b) Assume (3.3.1). We know that the projective tensor product L^ iG)®^ 

is dense in L^(G, A). Then it suffices to prove (3.3.2) for g=xq>, x£A and cp^L^G). 
Now, putting n=(pX 'm (3.3.1), T(f*xcp)=T(x(f *cp))=xT(f)*q> = T(f)*x<p. Thus 

(3.3.1)=>(3.3.2). 

(c) Suppose (3.3.2). Then, for /e ia(G, A) and j f (G, A) we have 

Tzs(f)*g = T{xs{f))*g = T(A (.s~1)xa-i(f*g)) = Ais-^Tif^-rigj) = 

= dij-1)^/)»^.,^)) = /K^K-W)**) = r sT(f)*g. 
Consequently Txs{f)=xsT{f), / € L I ( G , A) (Lemma 2 . 4 . 2 ) and hence Txs=xsT, 
s£G. Moreover, for x£A, the equalities 

T(xf)*g = T(xf*g) = T(f*xg) = T(f)*xg = xT(f)*g 
hold. 

Therefore (3.1.1) obtains and hence (3.3.2)=>-(3.1.1). We deduce that (3.1.1), 
(3.3.1) and (3.3.2) are equivalent. To show that (3.3.3) is equivalent to them, let us * * 
suppose (3.1.1). Since A has an identity and I^iG), an approximate identity, LX(G, A ) 

* 
possesses an approximate identity. By Lemma 3.2.2., Tis extendable to an L^iG, A)-* * 
multiplier T. Applying [9], Theorem 4 (li) and results on page 181 § 2 to T, we conclude 

* 
that there exists a vector measure m, m£M1(G,A) such that 

T(F) = m*F, F£Li(G, A), 

* . * identifying A with its canonical image in its second conjugate space A" (see 
also [9], page 186, Remark (2)). 

Finally, for A), T(f)=T(f)=m*f, which is (3.3.3). 
Conversely, by Lemma 2.4.1. (ii) and the fact that m*xf=x(m*f), x£A, 

the implication (3.3.3)=>(3.1.1) is clear. This ends the proof of the theorem. 

3.4. Remark, (i) In the proof of Lemma 3.2.2., we saw that the extension * * 

T of T has the form T= T+ex where r is related to T by the equation 

T(xcp) = xx(<p), x€A and (pZI^iG). 

Hence, if A is right faithful i.e. the right annihilator of A is {0}, then T is the unique 
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extention of T which is a multiplier; and uniqueness holds in (3.3.3). This occurs 
for instance when A has a right approximate identity. 

(ii) We shall not repeat the theorem concerning the Fourier transform when 
G is abelian as found in [9]. We shall rather treat the corresponding statement for 
compact groups which is a new fact. 

4. LX(G, ^-multipliers for compact groups 

4.1. Fourier—Stielt jes t ransform. Let m^M^A). The Fourier—Stieltjes 
transform m of m is well known if G is abelian or if G is compact and A = C or R. 
In fact, let G be abelian and denote its character group by C. Then m is defined by 
the equation: 
(4.1.1) m(r)=fr(t)dm(t), T^G, 

where T is the complex conjugate of T [9]. If G is compact and A=C, the equality 
defining m becomes: 

(4.1.2) </n(<rK,f>= f(U^,r,)dm(t), 

where Z is the dual object of G, t/((7), a representative of the equivalent class o£Z 
and H„, the corresponding representation Hilbert space [5]. 

Now, suppose G is compact, non abelian and A^C and R. The formula (4.1.2) 
is no longer meaningful because the mapping: 

is a function from Ha into A and as such, it is impossible to express it as a scalar 
product f/—(m(a)^, tj) in general. The next lemma clarifies the situation. 

4.1.3. Lemma. The mapping HaXHa-»A: 

(£. \i) — f tj) dm(t), mZM^A) 

is sesquilinear and continuous. 

Proof. It is easily checked that the mapping is sesquilinear. Let us show that 
it is continuous. 

Since U^ is unitary for every t£G, the inequality 

\\f(UW,t,)dm(t)\\A №\BMHjm\\ 

holds, and the lemma obtains. 
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4.1.4. Defini t ion. We define the Fourier—Stieltjes transform m of m, m£ 
€MX(A) by the equation: 

m{o№ri) =j(WH, ri)dm(t), and (£, r,)£HaXHa, 

where t7(ff) is fixed once and for all for each a [5]. 
Let E and F be topological vector spaces. Denote by ¿¡C(E, F) the space of the 

continuous linear mappings from E into F, by &(EXE, F) the space of the conti-
nuous bilinear mappings from EXE into F and by (EXE, F) the space of the 
continuous sesquilinear mappings from EXE into F. We know that 38(EXE, F) 
is norm isomorphic to £P(E, &(E, F)) if E and F are Banach spaces [7]. Similarly 
Sf(EXE, F) is norm isomorphic to Z£(E, <£(E, F)). Thus, if G is abelian, Sf(H„X 
XHa, A) Si A for, C in this case, and, if A=C, SP(HaXHa, A)^£e(Ha, H„) 
for compact groups because &(Ha, C)^Ha. Hence 4.1.4 generalizes (4.1.1) and 
(4.1.2). 

4.1.5. Inject ivi ty of the Fourier—Stieltjes t ransform 

Lemma. The map m-+th from M^(A) into JJ £f(H„XH„, A) is one-
to-one. 

Proof. Suppose h—m. Then for any a£Z and any ( i l , t j )£H a XH a 

/ <E7<->{, n) dn(t) = / <E7<-)i, t{) dm(i). 
G G 

In particular J (U^^, ri) d(n—m)(t)=0 for any a, and £ and r\ in an orthonormal 
G 

basis of H„, According to [5] Theorem 27.39 and Remark (a) 27.8, n—m is 
identically 0 on Jf(G). Thus n=m. Therefore the map is one-to-one. 

4.1.6. Fourier—Stielt jes t ransform of a convolut ion 

Lemma. Assume G is compact and consider the set 

&X(A, CT) = {m(o): m£Mx(A), o£Z). 

Define B„by 

Ba($(o), m(°M, r,)= J $(o)№°H, r,) dm(t), <P£ ]J 2>(HaXHa, A), 
G 

m^Ml(A) and (€,ij)£HaXHa. Then 

(i) B„ is a bilinear mapping from SP(HaXH„, A)XMx(A, o) into Sf(HaXHa, A). 
(ii) n£m(o)=Ba(n(<r),m(<T)), (^m^M^XM^A). 
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Proof, (i) For Oil, tf,t,)ZH.XH. and ||<P(ff)ll=sup {\\^(a)(cc, P)\\A: | |a| |^ 
S i ; ||J5||S1}, we have 

f m<T)(U^,r,)\\Adm(t) S M f Xad\m\ = ||*(<R)[|[|£llll>}||IMI 
G G 

Hence B„ is well defined. Thus the continuous (hence |m|-measurable) function 
t—QifiiJJ^Z, tj) from (7 into A is \m\- or equivalently w-integrable. Thus Ba(4>(a)), 
rii(o)£Sf(HaXHa, A) since 

||*.(*(<7),,»»(*))«, ,)\\A f m<r№*/;, r,)\\A d\m\ (i). 
G 

It is obvious that Ba is bilinear, 
(ii) Plainly 

m*n(a)(i, rf) = /(U$a)i, n) d(m*n)(t) = f f (U&Z, rj) dm(s) dn(t) = 

= / / ( m w t , t])dm(s)dn(t) = fm(a)(U^{, l) dn(t) = Ba(m(o), n{c))(Z, r,).. 

Nota t ion : We shall use the notation mXn(p) instead of Ba{m{a),n(a)). 
The second main theorem follows: 

4.2. Theorem. Suppose G is compact. Let T be a continuous linear operator: 
L1(G,A)^L1(G,A). Then 

(4.2.1) T is a multiplier 

if and only if 

(4.2.2) there exists a ¡J 6?(HaXHa,A) such that 
oil 

T i f ) = $ x f , ftL^G, A). 

* 

Proof. Suppose (4.2.1) and write down T(f)=m*f for some m^M^G, A) 

(Theorem 2.2). Then T(f)=m*f=mX.f. We obtain (4.2.2) if we put <P=m. 
Conversely, suppose (4.2.2). Then 

T{f*g)^m l)=f ri) f f(s)g(s~it)dsdt = 

= f f <P(<T)(UW, r,)/(s)g(s~11) ds dt 
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and, for a£Z, and tj£Ha we have 

(TU>g)(v№ n)=f T(fK°)(UW, n)g(0 dt = JJ <£(<X)№>£, t,)f(s)g(u) du = 

= f f <P(c)(U<°H, ri)f(s)g(s~it) dt = T(f*g)((T)(^, ri). 

Therefore T(f*g)=T(f)*g, the mapping w—m being one-to-one. We conclude 
that T is a multiplier since it is supposed to be continuous. 
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Characterization of locally bounded functions with a 
finite number of negative squares 

z. SASVARI 

1. Introduction 

Throughout the paper G denotes a locally compact commutative group. 
Let / be a complex-valued function on G. The function / is called Hermitian 

if f(—x)=f(x) holds for every x£G. If k is a nonnegative integer the Hermitian 
function / is said to have k negative squares if the Hermitian matrix 

(1) (/(xi-xjitj-1 
has at most k negative eigenvalues for any choice of n and xu ..., x„£G, and for 
some choice of jcl5 ..., xn the matrix (1) has exactly k negative eigenvalues. This 
definition reduces to that of a positive definite function in the case ¿=0. We denote 
by Pk(G) (Pk(G)) the set of all (continuous) functions on G which have k negative 
squares. 

For a function f^Pk(G), where G is second countable, an integral representation 
was given in [10]. The bounded functions in Pk(G) are exactly the Fourier transforms 
of such measures on the character group of G which assigne negative measure to 
k points and which are nonnegative outside of these points [9, 10]. A survey and 
bibliography about functions with k negative squares can be found in [1, 10, 12]. 

It is the aim of this note to characterize those functions f€Pk(G) which are 
locally bounded, i.e., bounded on every compact set Kc:G. As was shown in [11], 
every measurable function / with k negative squares on an arbitrary locally com-
pact group is locally bounded. Moreover, / has the decomposition f=fc+p, where 
fc is a continuous function with k negative squares and p is a positive definite func-
tion vanishing almost everywhere on G [10]. 

If / is not measurable and 0, then it may be unbounded on every open 
set. To see this let I be a nonmeasurable real-valued function on R satisfying the 

Received May 12, 1986. 

8 



320 Z. Sasvâri 

equation /(x+j>)=/(*)+/(y) (x, R). Then the function f=il has one negative 
square and / is unbounded on every open set Fez R. 

The main result of the present paper is the following 

Theorem 1. Every locally bounded function fÇ.Pk(G) has the decomposition 

(2) f = y i f i + - + ynfn+P 
where 

(i) yj is a bounded (continuous or discontinuous) character of G (7=1, ..., n); 
(ii) f is a continuous function with k} negative squares and kx + ...+kn=k; 

(iii) p is a positive definite function. 
Recall that a complex-valued Hermitian function defined on G is said to be 

conditionally positive definite if 

2 fiXi-xJCiCj s 0 
Ui=1 

holds for every choice of ..., x„£G and for every choice of complex numbers 
cl5 ..., c„ such that c1+... + cn=0. It is easy to see that a conditionally positive 
definite function has at most one negative square. For a bibliography about condi-
tionally positive definite functions we refer to [2, 4]. 

The above theorem has the following 

Corol lary 1. Let f be a conditionally positive definite function on G which is 
bounded on a set of positive Haar measure. Then f has the decomposition 

f=fc+P 
where fc is a continuous conditionally positive definite function and p is positive defi-
nite. 

We remark that a conditionally positive definite function f is bounded if and 
only if f=p+m, where R and p is a positive definite function [2]. The function 
f=il introduced above is a conditionally positive definite function which is un-
bounded on every set Va R of positive Haar measure. 

2. Notation and preliminaries 

(2.1) Let k be a nonnegative integer. Throughout the paper the symbol Tlk 
dénotés a rc*-space with rank of negativity k. We shall assume familiarity with basic 
information about 7t*-spaces as found in [3, 5]. 

Let 
(3) n k = i l + ©i l_ 
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be a fixed decomposition of J7t where 77 + is a positive subspace and J7_ is a negative 
^-dimensional subspace. Representing each vector v£IIk in the form P=D++I>_ 
(v+£II+, i?_£J7_) we introduce a new scalar product [ , ] in J7t by 
(4) [v,w] =(v+, w+)-(t>_, w_), v,w£llk. 
This scalar product is positive definite and 27* can be regarded as a Hilbert space 
with scalar product [, ] and with the norm 

(5) |M| = i K v \ . 

The scalar product (v, w) is continuous with respect to the norm (5) in both variables 
v and w. 

Let {el5 ...,ek} be a basis of IJ_ such that fo, e;] = — (et, =<50-. Then we 
have for any v£Ilk 

(6) \W = [v,v] = {v,v)+2 2\(ei,v)\\ 
i=l 

Recall that a linear operator U in IIk is called unitary if it maps IIk onto IIk 
and preserves the scalar product ( , ) of IIk, i.e., 

(Uv, Uw) = (v, H>) for all v,w£llk. 
By a unitary representation of G in nk there is meant a mapping x—Ux of G 

satisfying the following conditions: 
(i) U0=I where I is the identity operator in nk ; 

(ii) Ux+y=UxUv for any x,y£G; 
(iii) Ux is a unitary operator in IIk for all x(i G. 

We shall need the following correspondence between cyclic unitary representations 
of G in 7rt-spaces and functions of the class Pk(G) [10, Satz 9.2]. 

Theorem 2. For an arbitrary function f€Pk(G) there exists a nk-space I I k ( f ) 
with the following properties: 

(i) the elements of I I k ( f ) are complex-valued functions on G, f € I I k ( f ) , and 
nk(J) is invariant under translations; 

(ii) the linear manifold T ( f ) spanned by all translations of f is dense in IIk(f ); 
(iii) x-*Ux is a cyclic unitary representation of G in n k ( f ) , where Ux is defined by 

(Uxg)(y) = g(y-x), g€llk(f), x, yiG; 
(iv) g(x)=(g, U x f ) , gtnk(f), x£G; 
(v) if f is locally bounded then every function g£Hk(f) is locally bounded. i 

We now prove a further assertion. 

(vi) If f is locally bounded then the function x-H|t/J is locally bounded A 

The operator norm is induced by the vector norm (5). 

8* 
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Proof of (vi). It follows from the proof of Satz 9.2 in [10] that 

n k ( f ) = P@N 

where P is a positive subspace and N is a negative ^-dimensional subspace such 
that every function h£N is a finite linear combination of translations of f , i.e., 
h£T(f). Let {e1;..., ek} be an orthonormal basis of N. By (6) we have 

ll^sll2 = (g, g)+2 2 \(Uxg, ed\\ g€nk(f). i=i 
From e&T(f) and (iv) it follows easily that the function hi{—x)—(U-xg, e;) = 
=(g, Uxe,) is a finite linear combination of translations of g ( i= l , . . . , n). By (v), 
g is locally bounded, so the function x^\\Uxg\\2 is locally bounded for every g£ J7„ (J). 
The local boundedness of x—1| Ux\\ follows now from the Banach—Steinhaus 
Theorem. 

(2.2) Let x—Ux be a representation of G by invertible bounded linear operators 
on a Hilbert space We say that the representation x—Ux is locally bounded if 
the function x-HI Ux\\ is locally bounded. Denote by § c the subspace of continuously 
translating elements of i.e., the set of all for which x ^ U x h is continuous 
from G into § in its weak topology. Let f denote the set of all neighbourhoods V 
of the zero of G, UV—{UX: x£V}, and # (U v h ) the closed convex hull of the 
"partial orbit" Uvh={Uxh:x£V}. The subspace § 0 of elements averaging to 
0€ Sj is the set of all § for which 

0<E n V(P rh). 
vtr 

K . DELEEUW and I . GLICKSBERG [ 6 , Th. 2 . 7 ] proved the following 

T h e o r e m 3. Let x-*Ux be a locally bounded representation of G in a Hilbert 
space Then §>c and §0 are closed (Ux)-invariant subspaces and § is the orthogonal 
direct sum of §c and §0. 

Let now fZPk(G) be a locally bounded function and consider the unitary rep-
resentation x-*Ux of G in n k ( f ) . By (vi) this représentation is locally bounded 
with respect to the positive definite scalar product (4). (Note that local boundedness 
of x-"Ux does not depend on the special decomposition (3).) It follows from the 
definition of pc and from (iv) that every h£ ¡Fjc is a continuous function. When 
h£$o then /i hàs thé following property : for e > 0 ànd any VÇ for which sup || Ux\\ < 

< ° ° there exist x l s ...,x„€V and positive numbers pt, ...,p„ summing to 1 such 
that 

(7) 1 2 P i H x - x , ) \ < e for all x£V. 
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Indeed, by the definition of §„ there are Xj, ..,,,jt„£F and positive numbersp l t ...,p„ 
summing to 1 such that 

¡=1 xiV 
By (iv) we have 

I i Pih(x-x,)\ = \(2 Pi UXI h)(*)| = K ( i p,UXl h), Ux f ) \ ^ 1=1 ¡=i >=i 

^W2PiUXth\\\\Uxf\\^e for x€V. 
¡=1 

(2.3) Let Gd be the discrete version of G. The character group of Gd is denoted 
by ri. We introduce the notation rd for the set of unbounded characters of Gd, 
i.e., the set of complex-valued unbounded functions y on Gd for which y (0)=1 and 
7(-*+y)=y(*)v(y) hold. Let 

r* = r*\jri. 

In the proof of Theorem 1 we shall need the following result which is the dis-
crete version of Folgerung 11.7 in [10] (see also Theorem 3.1 in [8]). 

Theorem 4. For every f£Pk(G) there exist positive integers ku functions 
fcPk (G) and y^r'd (i— 1, ...,«) with the following properties: 

(a) /= / i+-••+/„ ; 
(b) k=ki + ...+kn; 
(c) fcnk(f) ( i=l , . . . ,«) ; 
(d) the only common nonpositive eigenvector of the translation operators Ux in 

nkt(fd are y( and yf1.21 

When / is locally bounded then by (c) and (v) in Theorem 2 the functions 
f are locally bounded as well. 

3. Proof of Theorem 1 and Corollary 1 . 

(3.1) Let f£Pk(G) be a locally bounded function and consider the locally 
bounded unitary representation x-*Ux of G in n k ( f ) . By Theorem 4 we can restrict 
ourselves to the case where the only common nonpositive eigenvectors of the opera-|y| 
tors Ux are y, y~1^T'd. Since — is a bounded character of G, the (locally bounded) y ' . 

Note that y,=yrl if and only if y,€ J"-. 
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function f=— / has k negative squares. Moreover, the only common nonpositive 
y 

eigenvectors of the translation operators Ux in n k ( f ) are |y| and |y | - 1 (see for this 
(11.5) (a) and (3.2) (c) in [10]). Thus, the proof of Theorem 1 will be complete if we 
verify the following. 

P ropos i t i on 1. Let f£Pk(G) be a locally bounded function. If the only common 
nonpositive eigenvectors of the operators Ux in I I k ( f ) are y and y-1, and if they are 
positive then 

f = fc+P, 
where fc<LPc

k(G) and p£P0(G). 

Proof . We consider the 7tk-space n k ( f ) as a Hilbert space with the scalar 
product [ , ] in (4). By Theorem 3 n k ( f ) is the [ , ]-orthogonal direct sum of the 
closed (i/x)-invariant subspaces Xc and X0. Considering X0 as subspace of the nk-
space n k ( f ) there are three possibilities: 

(i) Xq is a it,-space ( / s i ) ; 
(ii) X0 is degenerate: 

(iii) X0 is a Hilbert space. 

In the first case the commuting unitary operators Ux have a common non-
positive eigenvector in X0\T\ which by our assumption must be y or y_1 . In the 
second case the isotropic part N of X0 is ({/^-invariant and finite dimensional. 
Hence the commuting operators Ux have a common eigenvector in N which must 
be again y or y - 1 . Thus, in both cases we have y^^o ory - 16X0 . Suppose for example 

and let V be an open symmetric neighbourhood of zero such that y is bounded 
on V: 

y(x)^K (xiV). 
As y(-x)y(*) = l, we get 

l/K < y(x) < K (x€V). 

Consequently, for any x, x^V ( i= 1, . . . , n) and arbitrary positive numbers px, ...,pn 

summing to 1 we have: 

: . 1 yCx-xJpi = y(x) 2 y(-x()Pi > y(x)/K > l/K2, 
i=i i=i 

in contradiction to (7). Hence (i) and (ii) are not possible and so X0 is a Hilbert space. 
Let X'c denote the ( , )-orthogorial cbniplement of X0. Then X'c is a closed 

({/•^-invariant nk-space and 

( 8 ) = , , , . 

t 
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(the symbol © denotes ( , )-orthogonal direct sum). Gn the other hand, X'c is a 
Hilbert space with respect to the scalar product [ , ] , and the restriction x-+U'x of 
x—Ux to X'c is a locally bounded representation of G in X'c. If h'£X'c averages to 
zero with respect to the representation x--U'x then it averages to zero with respect 
to x->-Ux as well. Since X0 consists of all h£IIk(f) averaging to zero we necessarily 
have h'=0. Applying Theorem 3 to the representation x—U'x in X'c we see that 
every h£X'c is continuously translating. Hence the function x—[g, Uxh] is continuous, 
from which the continuity of x—(g, Uxh) follows (g, h£X'c). 

Let now f=fc+p (fc£X'c, p€X0) be the decomposition of / corresponding 
to (8). We have 

f ( x ) = ( / , U x f ) = (fc+p, Uxfc+UxP) = ( f c , Uxfc)+(p, Uxp). 

Moreover, 

(9) fc(x) = ( f c , U x f ) = ( f c , Uxfc)+(fc, Uxp) = ( f c , U x f c ) 

and analogously 
p(x) = (p,Uxp). 

It follows from (9) that fc is continuous. The function / is a cyclic vector for x-*Ux 

and so fc is cyclic for x-+U'x. Thus, fc has k negative squares [10, Satz 11.1]. Since 
X0 is a Hilbert space (with respect to ( , ) ) the function p is positive definite, 
completing the proof of Proposition 1. 

(3.2) Let now / be a conditionally positive definite function which is bounded 
on a set AczG of positive Haar measure. By a well known property of the Haar 
measure, A—A contains an open set It follows from the inequality 

(10) li\f(x-y)\ S i\m\+i\7U)l x,ydG, 

that / is bounded on V. Moreover, (10) implies that / is bounded on y+V for 
every y£G. Since compact sets can be covered by finitely many sets V, of the form 
V—yi+V, f is locally bounded. 

Let us consider the (locally bounded) unitary representation x-*UX in i l i ( / ) 
(we neglect the trivial case where f is positive, definite). By [10, (11.5)] the only 
common nonpositive eigenvector of the operators Ux is y=1. Therefore, we can 
apply Proposition 1 to obtain the decomposition 

f=fc+P, 
where fc£P£(G) and p£P0(G). All what remains to prove is that / c is conditionally 
positive definite. Since T ( f ) is dense in i7i(/), there is a sequence of finitely sup-
ported complex measures on G such that 

fc = lim f*wn . H — co 
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(the symbol * denotes convolution). By (9) and (iv) in Theorem 2 we have 

fc(x) = ( f c , U x f c ) = lim {f*w„, Ux(f*wn)) = 
n-^-oo 

= \]m(f*wa*w„, U x f ) = \xmf*wn*wn(x), 
f|-*oo fl-*>oo 

where w„ is defined by wn ({— x})=H>„ ({x}). It follows immediately from the defini-
tion of conditional positive definiteness that the functions f*w„*w„ and so fc are 
conditionally positive definite. The proof of Corollary 1 is complete. 

Remark 1. As we have seen, boundedness on a set of positive Haar measure 
of a conditionally positive definite function implies local boundedness. It would 
be interesting to know whether a similar assertion holds for functions with a finite 
number of negative squares. 

Remark 2. Corollary 1 probably holds even for noncommutative groups while 
the problem of characterization of locally bounded functions f£Pk(G) seems to be 
very difficult if G is not commutative. 

Remark 3. Let G be an arbitrary commutative topological group. We say 
that a complex-valued function g on G is locally bounded if there exists an open set 
VczG such that g is bounded on y+V for every y£G. Let now f£Pk(G) be a 
locally bounded function and consider the representation x^-ZJx in n k ( f ) . It 
follows by the same arguments as in the proof of property (vi) that the function 
JC-017J is locally bounded. Since Theorem 3 holds for an arbitrary commutative 
topological group G [6, Th. 2.7] we can repeat the proof of Theorem 1 to get the 
decomposition (2) of f . 
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Injection of shifts into contractions 

L. KERCHY 

The structure of unilateral shifts is well understood. Hence any relation between 
a contraction and a unilateral shift can be very useful. Here we only quote a recent 
result of H. BERCOVICI and K. TAKAHASHI (cf. [1]) claiming that a contraction T is 
reflexive whenever the set J(T, 5") = {/4: AT=SA} of intertwining operators con-
tains a nonzero element, where S denotes the simple unilateral shift. In 1974 
B . SZ. -NAGY and C . FOIA§ proved the following (cf. [7, Corollary 2 ] ) : 

Theorem 0. If T is a contraction of class C10 with finite defect indices dT and 
dTt, then 

SW !< T < Sm, where k = dT*-dT. 

Here 5('c) stands for the unilateral shift of multiplicity k, i.e. for the orthogonal 
sum of k copies of the simple unilateral shift S=S(1). T< denotes that T is a 
quasiaffine transform of Sw, i.e. J(T, S***) contains a quasiaffinity (an operator 

with trivial kernel and dense range). The meaning of the notation S*** -< T is that 
can be completely injected into IT, i.e. T) contains a subsystem <t> con-

sisting of injections such that V {ran A: A(i $}=dom T. In connection with other 
notions concerning contractions readers are referred to the monograph [9]. 

. . . c . i. 
We remark that, as it was illustrated by an example in [7], the relation & ' < T 

in Theorem 0 can not be generally replaced by ^ - K T . 
Defini t ion. Let T be a completely non-unitary (c.n.u.) contraction. If the 

space of T is separable then the number 
J"*.r = esssuprankdi(t,T(O€[0,°<>] itau 

will be called the *-multiplicity of T. In the general case /z*,r is defined as the least 
upper bound of the »-multiplicities of the restrictions of T to its separable reducing 
subspaces. 

Received July 28, 1986. 
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Here J*, t (£)=[ / - ©r (0 ®T (0*]1/2 is the defect function of the adjoint of 
the characteristic function 0T of T, and the essential upper bound is taken with 
respect to the normalized Lebesgue measure m on the boundary d D of the open 
unit disc D. 

The »-multiplicity of T coincides with the usual multiplicity of the unitary-
operator of multiplication by the identical function x(0—C on the Hilbert 
space (J*>rL2(Dr*))~- (Cf. [3].) Furthermore, we can observe that if T is of class 
C.Q with then rank A+tT(0=dT*—dT a.e., whence iiiftT=dT*—dT. Now, 
it is natural to ask how the statement of Theorem 0 alters if °° is assumed 
instead of dT* < 00. 

First we note that by a result of Takahashi (cf. [10, Proposition 2]) S(k) T 
is already a consequence of the relation T< Sm. However T-< Sik) does not hold 
in general. This is shown by the following. 

Example. Let us consider a contraction T of class C10 such that rank 
a.e., where x* denotes the characteristic function of a Borel set acze)D of measure 
0<m(a )< l . (The existence of such a contraction was proved in [4].) Now the 
*-multiplicity of T is 1. 

Let us assume that T is the quasi-affine transform of S(k\ for some 1 ^k^ «>, 
and let S(k)) be a quasi-affinity. Let U(k> denote the minimal unitary 
extension of S(k>. The operator C can be considered as an element of Uk). 
In view of [5, Proposition 4] there exists an operator T, U(k)) such that 
C=DX, where T) is a canonical intertwining operator. Since 
R* T |(ran X)x is always of class C10 (cf. [,5 Proposition 4]) and since is now 
reductive, it follows that X has dense range. We infer that (ran D)~=(ran C)~ = 
=domS(k), so Dean be considered as a quasi-surjective operator from .S(fc)), 
whence D*£S(S*m, i?*T) is an injection. This yields that {0}=ker R$ rz> 
DD* ker S*(k) ^ {0}, what is a contradiction. 

Therefore T< is not true, for any 

In [10] K. TAKAHASHI characterized, in terms of the characteristic function, 
contractions which are quasi-affine transforms of unilateral shifts of finite multiplicity. 
While in [11] P. Y. Wu gave a characterization for contractions which are quasi-
similar to unilateral shifts of finite multiplicity. 

Though, as we have seen, r-<S<*) (&=/**, r) loses validity in Theorem 0 if 
. . . c.i. 

dT* = 00, we shall prove that the relation Sw -< T ( k = T ) does remain true in 
a very general setting. This is expressed in the following theorem, the main result 
of our paper. 
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Theorem. If T is a c.n.u. contraction with *-multiplicity then 

S(k) <' T, where k = /i+>T. 

We remark that injection of shifts into strict contractions was investigated in 
[8] and [12]. A contraction T is called strict if || T\\ < 1, in which case r=0 . 

In proving our theorem we can assume that T acts on a separable Hilbert space 
In fact, in the opposite case § can be decomposed into the orthogonal sum of 

separable subspaces reducing for T, and then the characteristic function of T will 
be the orthogonal sum of the characteristic functions of the restrictions of T. Hence 
in the sequel every Hilbert space will be supposed to be separable. 

Since T is c.n.u. it can be given as a model operator (cf. [9, Chapter VI]). So 
let {0, (£, (£*} be a purely contractive analytic function, its defect function is 
A=[I— 0*0]1/2. Let U+ denote the operator of multiplication by the identical 
function *(£)=£ on the Hilbert space tf+=#2(Cy ®(J.L2(®))~- The c.n.u. contrac-
tion T is defined on the Hilbert space §=.&+© {0vv©Jw: w£H2(&)} as T= 
=PU+where P denotes the orthogonal projection onto § in . The «-multiplic-
ity of T is n*. r=ess sup rank ¿4* (0, where Ajf =[I- 00*]1/2. 

The proof of the Theorem is based on the following. 

Lemma. Let h be a function in L2((E+) such that ¡/1(011^ = 1 a.e. Then for 
any non-zero function /€ii2(© i.) andfor any number 0< c< 1, there exists an analytic 
function u£i/2((E+) such that 

(1) B«C0lk s 1 a.e., 

(2) | < « ( 0 , / i ( 0 > d ^ c a.e., and 

(3) < « , / W ) * 0 . 

Proof. First we show that a function w£.if2((£„,) can be found with the 
properties (1) and (2). The proof of this is essentially the same as the proof of the 
Lemma in [6]. For the sake of easy reference we give the details. 

Let {Xj}™=1 be a dense sequence on the unit sphere of , and for every j let us 
consider the function hj(Q = (xj, h(Q)et (£€<9D), hjZL2. Then we have 

(4) ' l = ' l | f c (0 l l f c = s u p l V 0 l , fo r a.e. 

Let 0 < v < l be arbitrary, and define {a})J=i as a1=a^0), a j=a$ 0 ) \ (U a,) 

(ys2), where a^0)= |/jj(0l>v}. The sequence { o c o n s i s t s of pairwise 
disjoint Borel sets, and by (4) we have 

(5) m(dD\(Ua,) ) = 0. 
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Let {¡ij}j=1 be a sequence of positive numbers such that 0< / i= 
For every j, let us consider an outer function ufiH" with absolute value \u}\ = 
=(l-M)xXj+HjXdn\«j a.e. on 3D, and let us define u ^ U j X ^ H 2 ^ ) . 

oo oo 

For every j and for a.e. i£a> we can write 2 I I ( O i l = 1 — 2 to— 
i=i t=i i*J 

—¡1+11=1. Hence in view of (5) 2 IIMOH®* —1 and so 2 u j ( 0 strongly con-
j=i i oo 

verges in a.e. on 3D. The limit function i /(0= 2 ui(0 satisfies (1), therefore, 
7=1 

«6Z,2(G+). Furthermore, Lebesgue's dominated theorem ensures that 

n
1 ™ l l . i " ; - " I U ^ ) = 0 > w h e n c e 

For every j and for a.e. we have 

(6) l<w(0. * (Okl = 1 2 (Ui(0, h(Okl = 1 2 U0hi(0\ S 
i=1 ¡=1 

S \tij(0\\hj(0\- 2 m w t ( 0 \ ^ ( i - n ) v - 2 f i i = 
i=l i=1 

If fi and v are chosen sufficiently close to 0 and 1, respectively, then (1 
and so (2) is implied by (5) and (6). 

Now, let us take real numbers cx and c2 satisfying c<c1^c2<l. By the previous 
part of the proof we can find a function u ^ f f 2 ^ ) such that (1) and (2) hold with 
cjc2 in place of c. Then for the function u2=c2ui£H2(<&Jf) we have 

(7) I M O I k ^ c2 a.e., and 

(8) i W O . K O k l s c ! a.e.. 

Let 5 denote the positive number <5=min fa—c, 1 —c2}, and for any integer 
wsO and for any vector a £ , let us define the function wn>iI€^2(C+) as 
u„ t a—u2+fa. By (7) and (8) it easily follows that un<a has the properties (1) and (2). 
Let us assume that (3) is not true, for any choice of n and a. Then taking a=0 we 
obtain (u2, f)mSt)=0, whence ( f a , />=(«„,„, / > = 0 for every nsO and a€<£*, 
||a||S<5. But the set {fa: n's0, ||a||=S<5} is total in H 2 (QJ and /€#*(<£*), 
so / must be zero, which is a contradiction. 

Therefore, the function u=u„ i a^H2(%) possesses the properties (1)—(3) for 
an appropriate choice of nsO and 

Now we turn to the 

Proof of the Theorem. Let k denote the *-multiplicity of T: 1 s k = 
= / / * , T < 0 ° . ' ' 
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1) First we show that there exists an injection A in T). 
The operator X+: ft+-(J „.(Z.2 (<£*))", X+(u®v)=(- A^u+&v) intertwines 

U+ with the operator R^ of multiplication by x on the space (id*L2((E+))-, 
(:•/(£/+, R I n view of the commuting relation AifQ=@A it is immediate that 
J + ( f t + 9 § ) = { 0 } , and so the operator X=X+belongs to T,R*) and the-
relation 
(9) X+ = XP 

holds. (A detailed study of the operator X can be found in [5].) 
Since is a positive operator of finite rank a.e. and ess sup rank J* (£)=&,. 

we conclude that is of the form 

(10) M 0 = Z S j ( 0 h j ( 0 ® h j ( 0 , 
J=I 

where 
hj£L2((£J for every 1 == j ^ k , 

is an orthonormal system in a. e. on 3D, 

(11) 0 =1 SfiLT for every 1 ̂  j ^ k , 

a.e. on 3D, and 

m(ak) > 0, where ak = (C€dD: dk(£) ^ 0}. 
(Indeed, the function <5i(i)=IM*(0lle» is measurable, and an easy application of 
[2, Lemma II.l.l] guarantees the existence of a function such that 
IIM0IU = 1 a.e. and /z1(C)€ker ^(C)/), whenever ker ( ^ ( Q - ^ © / ^ ^ 
The functions <52€£°° and /j2iL2(C t) can be obtained from A^—3^ in place 
of A^ in an analogous way; and so on.) 

Let 0 < c < 1 be arbitrary. In virtue of our Lemma, for every l ^ j ^ k , we can 
find a function HJ€#2(®„,) such that 
(12) IMOII«, s 1 a.e., and 

(13) \ ( u j ( 0 , h j ( 0 \ J ^ c a.e.. 

Let {ej}j=1 be an orthonormal basis on a Hilbert space ©. The operator of 
multiplication by x on the space H2(G>) is a unilateral shift of multiplicity k, which 
will be denoted by Since on account of (12), for any sequence {£/}J=1c//2, 
we have 

II i ZjUj^,, S i UjUj\\B,^y = i ( / I ^ / I M I , dm)1" s )=1 j=l 1 ¿)D 

]=i J=1 
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it follows that by the definition 

7=1 7=1 

we obtain a bounded, linear operator, belonging to •/(S<*\ U+). Now, in virtue of 
[9, Theorem 1.4.1] the operator 
(14) A = PW 
belongs to S№), T). 

We are going to prove that A is injective if c is sufficiently close to 1. First of all 
we observe that by (9) and (14) 

(15) XA = X+W 

holds, hence the injectivity of A is a consequence of the injectivity of X+ W. 
k 

Let us assume that X+W( 2 £yej)=0> for a sequence {^j}k
J=1czH2. On 

account of (10) this means that for a.e. we have 

0 = (X+ W 2 ZjeJi0 = 2 £y(0«j(0 = 
7=1 7=1 

= -[2St(0ht(0®M0] 2SAOujiO =-2№(2ZJ(0(UJ(0,MO)«.) MO-

i = l 7 = 1 i = i 7 = 1 

Making use of (11) we obtain that 
(16) 2ZJ(0(»J(0, ^(0K = 0, L^/SFC, 

7=1 
for a.e. 

Let us introduce the operators 5 (0 , C(Q, D(0 (i€e)D) acting on © such that 
their matrices [6y(0]f,J=1, [cu(0tJ=1, [d,j(Q]lJ=1, respectively, in the basis {<?j}*=1 

are of the following form: 

b,j(0 ^ <«7(0. ht(0)et, A ^ i J ^ k , 

( n = J M O if i=j 
C ' j ( U jo otherwise, 

f ° 
UO = { _ 

0 if i =J 
btJ(0 otherwise. 

By (13) we see t h a t ' " M 0 l = I W 0 l = l<«j (6 .h j ( .0 \ J^c a.e. (1 s/ssfc), hence 
C(0 is invertible and 
(17) . f l C i C m - s c - 1 a.e.. 
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On the other hand, if iVy then by (12) and (13) 

\du(0\ =>«(01 = \(uj(0, H0>d = \(uj(0-(uj(0, hj(0)vM0, A,(0)«.| S ; 
s \\uj(0-(uj(0,hj(0WM0h. = Uuj(0\\l-\(uj(0, hjiO^fr2 s (l-c2)^, 

and so 

(18) 11-0(011 s 2 ( 2 MAOI2)1'2 s (1 -c*yi2k*<2 a.e.. 
i=i y=i 

Consequently, if c satisfies 
(19) 1 ^ o f c ^ i ^ + l ) - 1 ' 2 , 

then k3,2(l — c2)l/2<c, and by the inequalities (17), (18) we infer ||D(C)il <I|C(0_1I1_1. 
Then the operator 5(0=C(0-X>(C)=C(0t/-C(0_ 1 i>(0] will be invertible and 

(20) IWO^llsiiCiO-^ii-IICiO^IIIIDCOB)-1^ ; 
S c - ^ l - ^ / ^ l - c 2 ) 1 / ^ - 1 ) - 1 = (c—&3/2 (1 — c2)1/2)~1 a.e.. 

Since the matrix of 5 ( 0 coincides with the matrix of the system of equations (16), 
it follows that £;(£)=0 for every l ^ J ^ k and for a.e. i£a t . But ak is of positive 
measure and the functions are from the Hardy class H2, so we conclude that 
£j=0, for every l ^ j s k . 

Therefore, taking into consideration (15) we obtain that under the assumption 
(19) the operator ASSiS1**, T) defined before is injective. 

2) To prove that can be completely injected into T it is enough to show 
that for any non-zero vector h in § the injection A£^(Sik), T) can be chosen in 
such a way that h is not orthogonal to the range of A. 

Let us be given first 0^/Ctf 2 (<£„,) and g^(AL2(<S))~ such that /©g€§ . Our 
Lemma ensures the existence of a function u ^ H 2 ^ ^ ) for which beyond (12) and 
(13) even the relation (ui, f)^^^0 holds. In this case (Aelt f®g)& — 
=<P(Ul©0), f®g)n+ = («i©0, P{f@g))A+ = <^©0, /©g>«+ = <«i, i.e. 
f ®g is not orthogonal onto ran A. 

Let us assume now that 0^g£$n(4Z,2(©)) -. Let A>1 be a real number 
such that the set a={i€c)D: A_1<||g(Q||ffi<A} is of positive measure. Let 0 
be arbitrary and let us consider the functions {w;}*=1c://2(Ct) occuring in the 
first part of the proof. Since for any ^ H 2 we have 

Il6i(«i©0*«£)llfl+ = ( f \Ci\2(Ml+e2XaU\\l)d™y12 s ( l+e 'ATl&llH, , 
№ 

it follows that the definition 

We{ 2 Zjej) = ^(ui®QXag)+ 2 SiUj (&}5=i<=№) 
]=* 1 ]=2 
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gives a bounded linear operator { W ^ ^ Q + IFW*) belonging to U+). 
We define by AE=PWT. Since XAE=X+WE, the injectivity of 
AQ is again implied by the injectivity o f X+WE. 

For any {<FJ}J=1C//2 we have 

X+Wt(2Zj*M 0 = X+(2 Zjuj®ZiQX*g)(0 = j=i i=i 

= -MO 2 Zj(Ouj(O+0(OZi(OQX*U)g(O = 
j=i 

= ¿[-*I(0 2Zj(0(uA0, hM*.+Si(O0(®(Ox.(Og(O, /».(OKL^IO a .e . . i=l 1 

Hence X+WE(2 ZJEJ)=0 yields that 
j=i 

(21) 

5,(0 2 tj(0(uj(0, ht(0)et-Zi(0Qm)X,(0g(0, ht(0>E, = 0, l ^ i ^ k , 1 
holds for a.e. CCA*. 

Let EE(0 (C6A*) stand for the operator acting on © with matrix in the basis 
of the form 

• i e ) ( n № o - > m o x a ( O g ( o , H M . IF 7 = 1 

. t o otherwise. 

By (11) we infer that 

№ ( 0 1 = 6m)\-imox.(Qg(o, ^ ( O k i ^ 

S ^¿ ¡ (Ol -^ . iOl l f iOI I^ cA&iOl"1 

is true for every 1 and a.e. whence 

(22) LL-WH = {2 KLIC)(0L2)1/2 kfQWtiO]-1 a.e. on a 
»=1 

Let us consider a Borel set /?CAFC of positive measure and a positive number A'>0 
such that FOCOR1^' F°R a.e. C€>9- Let us assume that the functions 
correspond to.A number c satisfying (19). Now, if Q>Q ' fulfils the inequality 

(23) QK^W^C-K^CL-C2)1'2, 

then by (20) and (22) w e obtain that ||.EE(0|| < ||5(0-1||and so B1(0=B(0~E(0 
is invertible a .e . on p. I n view of (21) we infer that £¿(0=0 (LSY'SFC) a.e. on P, 
and since MOS)>0 that ¿Y=0 (IS7SJK). 
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Therefore, thé- operator ÀeÇS(S ik\ T) defined before will be an injection 
whenever c.aod 0 satisfy the inequalities (19) and (23), respectively. At the 
same time we have 

(Aeej,0®g)6 = (PfaQQXag), 00£>K+ = (ul@Qx.g, P(0®g))R+ = 

= (u!®QXag, 0©g)«+ = (eXag, g)L'm = e ( / M% dmf2 s ¿ » A ^ m « 2 > 0,' : 
a 

i.e. g is not orthogonal to ran Ae. 

According to [7, Theorem 5], if T is a contraction of class C.0 with finite defect 
i 

indices dT, dT* and if Sw -< 7", then k^dT*—dT=n*,T- Hence, under the assump-
tions of Theorem 0, /¿*, T is the maximum of the multiplicities of those unilateral 
shifts which can be completely injected into T. The following example shows that 
this statement fails if dT*=°°. 

Example. Let {a,,}^! be a sequence of pairwise disjoint Borel subsets of 
e>D of positive measure. For every n, let T„ be a contraction of class C10 such that 

EO 
rank ¿L T =xa a.e. (cf. [4]). Then the orthogonal sum T= © T„ is also of class 

' n n n=i 
M 

C10 with rank A* r=rank 0 A* T =X - a-e-> whence h*,t=1- By our Theorem 
n=i ' " u «.„ n = 1 

S <Tn for every w, which results in that S<~) •< T. 
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On commutativity and spectral radius property of 
real generalized "-algebras 

ZOLTÁN MAGYAR 

Introduction. Let A denote a Banach algebra over the real field throughout this 
paper. Of course, a complex algebra is a real algebra as well, although the spectra 
will change (cf. [1], p. 70). Assume we have a linear operation a—a* on A with the 
properties 

(i) a**=a, 

(ii) (ab)*=b*a*. 

Then A is called a *-algebra. If we replace (ii) by 

(iiO (ab)*=a*b* 
then we call A an auto-*-algebra. We say A is a generalized *-algebra if A is either 
a *-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let 

AB = {a£A; a = a*}, Aj = {a£A; a = -a*}, AN = {a£A; aa* = a*a}. 

We call the elements of AH, Aj and AN self-adjoint, skew-adjoint and normal, res-
pectively. 

In [6] A is called Hermitian if each self-adjoint element has purely real spectrum 
and A is called skew Hermitian if the spectra of the skew-adjoint elements do not 
contain any non-zero real number (the spectrum is defined as follows: a complex 
number z belongs to Sp (x) if and only if z-l—x is not invertible in Alt where Ax 
is the complexification, and unitization if necessary, of A, see [1], p. 70). None of 
these properties implies the other one as simple examples show. This is a marked 
difference from the complex case. 

We shall retain the above definition of skew Hermitianness but we shall call A 
Hermitian if both properties are satisfied. 

Our main results then: 
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Theorem 1. If A is an Hermitian Banach auto-* -algebra then A/rad A is com-
mutative. 

Theorem 2. If A is an Hermitian Banach generalized *-algebra then r(a*a) ^r(a)2 

for any a£A, where r denotes the spectral radius. 

Remarks . If the ""-operation is the identical mapping then Theorem 1 reduces 
to a theorem of I. KAPLANSKY (see Thm. 8 in [ 2 ] ) and, indeed, that result is the 
starting point of our proof. We should emphasize that the significance of Kaplansky's 
theorem for Hermitian auto-*-algebras was first pointed out by T. W. PALMER 

in [4], though [4] contains a wrong proof assuming the unitary elements form a 
group, which is not true in an auto-*-algebra. On the other hand, the authors of [6] 
simply overlooked that the proof of their key Gelfand—Naimark type theorem 
(Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies 
that all results of [4] and [6] are true. 

Finally we shall include a version of Theorem 2 which answers a question in 
[6] (see Proposition 3 below). 

To prove our theorems we shall need the following simple lemmas. 

Lemma 1. If A is skew Hermitian then every skew-adjoint element has purely 
imaginary spectrum. 

Proof . Suppose to the contrary that a£Aj, z£Sp (a) and z is not imaginary. 
Then z can not be real, since A is skew Hermitian, and hence z2 is not real. Thus z 
and z® are linearly independent over R, and hence there are s, t£ R such that sz+ 
+ tz?=1. Then Sp(sa+ta^Sl , while sa+ta3 is skew-adjoint; this is a contra-
diction. 

Lemma 2. If A is an auto-*ralgebra then 

rad Aa = y4Hflrad A 

(see [1] for the concept of the Jacobson-radical). 

Proof . The containment" =>" follows at once from the "quasi-inverse-characte-
rization" of the radical (see [1], p. 125). 

Prove " c " . Consider an element a£ rad -'AB, and an irreducible representation 
p ofA ovei the real vector space X. show:'p(«)i=0':"(if this is true 
for all p then a£rad A). If p is irreducible for AH too,'then We are done. If p is not 
ineducible'tlieii for any non-trivM ^¿-ihva^tsiibs^)ace;M'siBi : ' 

M':— the linear span of p ( A j ) M : 

Then the relations ABAjCAj, AJAJC:AB imply p(AH)M'C.M' and p(AJ)M'<zM. 
Hence M+M' and MOM' i re invariant for •A^+ A]=A, and therefore X—M® 
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®M'. Now if M were not irreducible then one could find a non-trivial AB -invariant 
subspace L in M, on the other hand, X=L®L' and clearly L'cM', which is a 
contradiction. The same is true for M' since it is another invariant subspace. So 
we see p\Aa is a direct sum of two irreducible representations and hence p(a)=0. 

Lemma 3. Let A be an auto-*-algebra. Then 
Sp^W = SpA(h) for any heAB. 

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A, then this 
quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement using the 
well-known characterization of the spectrum (see [1], p. 70). 

Lemma. 4. Factorization by the radical does not effect the spectra except pos-
sibly for the number 0 in them. 

Proof. Use the "quasi-inverse-characterization" of the radical (see [1], p. 125) 
and the fact if JC has a left- and a right-quasi-inverse then x is quasi-invertible. 

Proof of Theorem 1. First observe that the "*" preserves the radical (use 
the characterizations of the radical from [1]). Hence ^4/rad A is a Banach auto-*-
algebra and it is Hermitian by Lemma 4. Thus we can assume A is semi-simple. 
In this case AB is semi-simple, too, by Lemma 2. If ||a||':= ||a*|| then || • ||" is another 
Banach algebra norm, hence by Johnson's theorem the two norms are equivalent 
(see [1], p. 130 for the proof of Johnson's theorem). Thus AB is closed. Using Lemma 
4 we see AB is a semi-simple Banach algebra in which every element has purely real 
spectrum. This implies, by Theorem 8 of [2], that 
(1) AH is commutative. 

Let h—k be the Gelfand transform on AB. It is injective, because AB is semi-
simple. Next we will show 
(2) if jeAj and / = 0 then j = 0. 
Consider a fixed jdAj for which j2=0. Let k£Aj be arbitrary and r£R. Since 
A is skew Hermitian, thus Sp (rj+k) is imaginary, and hence, using Lemma 3, 

we have 0^(rj+k)2=r(jk+kj)+k2, for y'2=0. This is true for any r, therefore 

jk+kj = 0, jk+kj=0. Thus (jkf =j(-jk)k=0, which implies (Jk)=0, jk=0. 
Since jk+kj=0, we have.jk=kj=0 for any k£A}. Now let a£A be arbitrary, 
and ft=(l/2)(a+a*), fc=(l/2)(a-a*). Then aj=(h+k)j=hj£Aj, and therefore 
jaj=0, (aj)2=0. We get from this Sp(a/)={0} for each a£A, and hence j=0 
for A is semi-simple. 

Next we want to show that 

(3) khk = k2h for any h(iAB, k£Aj. 
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Let g=hk—kh. Since k2£AB, thus k2h=hk2, and hence gk=—kg. Therefore 
(kg)2=k-(-kg)-g and hence (kg)*=-k2g2. Since k, g£A} and kg£AB, thus 
k2, g2 have non-positive real spectra, while (kg)2 has non-negative spectrum. Thus 
we can infer kg=0, kg=0, which is exactly (3). 

Now we will prove that 

(4) kh = hk for any h£AB, k£Aj. 

Let g=hk-kh. Then g2=hkhk-hk2h+khkh-kh2k=0 (use (3) for h, k in the 
1st and 3rd term, and for h2, k in the 4th term). Thus, by (2), we get g=0. 

Finally, we will show that 

(5) jk = kj for any j,k£Aj. 

Since jk,kj£AB, thus, by (4), jkj=j2k and kjk=k2j; therefore 0=kjkj—kj2k+ 
+jkjk—jk2j, in other words, m2=0 where m=kj—jk£AB. Thus m=0 and (5) 
is proved. 

The theorem is proved by uniting (2), (4) and (5). 

Remark. Since the complex radical of a complex algebra is the same as the 
real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of 
COUTS8) cnc should check that a complex Hermitian algebra is Hermitian in our 
sense as a real algebra. This follows from the fact if S is the complex spectrum of 
an element then the "real spectrum" is the set SUS. 

Proof o f T h e o r e m 2 . By Lemma 4 we may again assume A is semi-simple. 
But then, by Theorem 1, A is a *-algebra anyway. So let A be an Hermitian Banach 
*-algebra. Let p(x):=r(x*x)1/2 for all x£A. Now A satisfies the conditions of 
Lemma 3.1 from [6], therefore we can infer 

(6) p is an algebra-seminorm on A. 

The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that 

(7) if l€Sp(a) then p(a)s= 1. 
We assert that 

(8) 3p(a) s r(a) for all a£A. 

If r(a)=0 then this is clear. If /-(a)>0 then let b=r(a)~1a. We can choose a 
z€Sp(i>) such that |z| = l. Let c=(z+z)b-b\ Then 1 =(z+z)z-z 26Sp (c), and 
hence, by (7) and (6), we have 

1 ^ p(c) ^ \z+z\p(b)+p(bf ^ (2+p(b))-p(b), thus p(b) i? 1/3 

and (8) is proved. 
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Applying (8) to a" we get r (a)"=r (cf) s 3p (a"). Now use the submultiplicativity 
of p and tend with n to infinity. The theorem is proved. 

Remark. Differently from the complex case (cf. [5]), r(a* a)^r(a)2 does not 
imply A is Hermitian; e.g., if A — Q. (considered as a real algebra) and the * is the 
identical mapping then r(a*a)=r(a)2 for all a but A is not Hermitian. 

Proposi t ion 3. Let Abe a skew Hermitian Banach generalized *-algebra. Then 
r(a*a)=r(a)2 for any normal element a. 

Proof. Let a£AN be fixed. Let B be the second commutant of the set {a, a*}. 
Then B is a Banach algebra, closed under the involution and SpB (b)=Spx (b) 
for any b£B. Further, B is commutative for a is normal. Let / be a multiplicative 
linear functional on B. Let f(a)=u, f(a*) = v. Since A is skew Hermitian, thus, by 
Lemma 1, a—a* and a2—(a*)2 both have imaginary spectrum, and hence u—v and 
u2— v2 are imaginary numbers. Thus if u^v then u+v is real and v=u. In any 
case |t/| = |«|, and hence \f(a*a)\ = \f(a)\z. This is true for any multiplicative linear 
functional / on B, therefore r(a*a)=r(a)2. 
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A characterization of (real or complex) Hermitian 
algebras and equivalent C*-aIgebras 

ZOLTÁN MAGYAR 

0. Introduction 

We use the symbol F to denote a field that is either the real field R or the complex 
field C. We call an algebra A over F a *-algebra if there is a conjugate linear mapping 
"*" from A into A satisfying 

(i) (abf = b*a* for all a, b^ A, 

(ii) (a*)* = a for all aeA. 

We call A an auto-*-algebra if we replace the axiom (i) by the axiom 

(i') (ab)* = a*b* for all a, b£A. 

We call A a generalized *-algebra if A is a *-algebra or an auto-*-algebra. An element 
a$A is called self-adjoint, if a=a*, skew-adjoint, if a=—a*\ and normal, if aa* = 
=a*a. Denote by AH, Aj and AN the sets of all self-adjoint, skew-adjoint and normal 
elements, respectively. 

We will treat Banach generalized *-algebras, that are generalized *-a!gebras 
with complete algebra norm. We define the spectrum of an element with respect to 
an algebra containing it as in [1] (see pp. 19—20 and 70). Then it is known that 

max {|z|; z€Sp(^, a)} = infl^T'" = lim ||an||1/n 
n n-* oo 

if || . || is a complete algebra norm on A. We write in this case 

r(a) := inf Ha"!]1'". n 

Let A be a Banach generalized *-algebra. A is called Hermitian if Sp (A, a ) c R 
for all a£AH, and skew-Hermitian if Sp (A, a)ci-R for.all a£Aj. Every Hermitian 
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algebra over C is automatically skew-Hermitian, of course. But this assertion is not 
true for real algebras. We will prove that a real Banach generalized *-algebra A is 
Hermitian and skew-Hermitian if and only if its complexification Ac (see [1] pp. 
68—69) is Hermitian (see Theorem 3 below). 

We remark that there is an equivalent, but formally weaker, definition of the 
skew-Hermitian property demanding only l$Sp(y4, a) for all a€Aj. It is not very 
hard to see that if Sp (A, a)<ti- R for some a^Aj then there are s,t£ R such that 
SpG^ia+ta3)}!, and sa+tcP^Aj. 

A is called a C*-algebra, if it is isometrically ^-isomorphic to a norm-closed 
*-subalgebra of the Banach *-algebra B(§>) of all bounded F-linear operators on 
some Hilbert space § over F. A is called an equivalent C*-algebra, if it is homeo-
morphically *-isomorphic to some C*-algebra. We will give a characterization of 
equivalent C*-algebras in Theorem 1 below, which is a generalization of a result 
o f PTAK ( s e e [4]) . 

We will prove the following characterization of Hermitian and skew-Hermitian 
algebras: A is Hermitian and skew Hermitian if and only if there is such a *-homo-
morphism n of A into some B(§>) which preserves the spectral radius (see Theorem 2). 
In contrast to a lot of characterizations of complex Hermitian algebras, this is valid 
for real algebras, too. 

Our results are based on the following lemma: 

Lemma 0.1. Let A be a Hermitian and skew-Hermitian Banach generalized 
*-algebra over F. Then there is a Hilbert space § over Fand a *-homomorphism n: 
A^B(F>) such that \\n(a)\\=r(a*a)112 for all a£A. Moreover, /•(a)s||7r(a)[| for all 
a£A, and rad 04)=ti-1({0}). If A has a unit then n can be chosen so that 7i(l) = l. 

Proof. First we suppose that A is a *-algebra. Let 

Ap = {a£AH-, Sp(^, fl)cR+}; 

Then it is known that Ap is a cone and a*a£Ap for all a£A (see [5]). This is also 
true for the unitization A+F of A, since A+F is Hermitian and skew-Hermitian as 
well. Thus it is not hard to see that we can find for any fixed a£A a self-adjoint 
positive functional such that / (1)=1 and f(a*a)=r(a*a) so that the customary 
GNS-construction gives us a Hilbert space § and a *-homomorphism n of A satisfying 
l|7i(a)||=r(a*a)1/2 for all a£A. (For more detailed description see [2], Lemma 3.1 
and [1] § 37. See also [4] for another proof in case F = C.) 

Since rad (A)={a£A; r(qa)=0 for every q€A} (see [1] p. 126), it is clear 
that rad (A)<zN, where jV:=7t-1({0}). On the other hand, the author has proved 
in [3], that r(a)^r(a*a)lf* in a Hermitian and skew-Hermitian Banach *-algebra. 
Thus N is an ideal consisting of elements of spectrum {0} whence A^crad (A). 
Moreover, we see that r(a)^\\n(a)^ for all a£A. 
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Now we suppose A is an auto-*-algebra. Being a conjugate linear automorphism 
the "*" maps rad (A) onto itself. Let B=A/rad(A) and p be the canonical mapping 
A>-+B. Then it is known that 

(1) Sp (A, a)\{0} = Sp (B, p(a))\{0} for all a£A. 

(It is not hard to deduce this fact from Proposition 24.16. (i), p. 125 in [1].) 
Therefore B is a Hermitian and skew-Hermitian Banach auto-*-algebra. More-

over, B is semisimple (see [1] p. 126). Thus, by a result of the author (see [3]), B is 
commutative, and hence B is a *-algebra. Therefore we have a representation nt 
of B satisfying the statements of our lemma, and so by (1) tz:= ^op is a representa-
tion we asked. 

1. A characterization of equivalent C*-algebras 

Lemma 1.1. Let A be a Banach-algebra over F, and let g be an entire function 
on C, satisfying g'(0)?±0. Further in case F = R we assume that the Taylor-series 
of g at zero has only real coefficients. Then there is a function f : R+>-*R+ so that 
||x||2=S/(c)-||*2|| whenever x is such that || g(£x)|| c for all R + . (g(a) may be in the 
unitization A+F of A, if A does not have a unit. We fix a norm on ^4+F in that case.) 

o o oo 

Proof. Let g(z)= If h(z)= 2 laJ •z" then h is an entire function, 
n=0 n=2 

too. Suppose that ||g(/;c)|| s c for all f£R+ for some x^A and c£R+ . We can as-
sume that ||;t|| = l because both sides of the inequality ||x||2^/(c) • [|x2|| are mul-
tiplied by |A|2 when we replace x by Xx, and the case x = 0 is trivial. Then let />=||x2[|1/3, 
thus we see that p ^ 1 and ||x"[] for all wS2. Hence we have for all 
te R+ 

t = \\tx\\ = • | |g(ix)-a0 -1-2 S |«,|-i • (c+|a0| • || 1|| + h(tp)). 
n = 2 

Hence p^O, and replace t=p~\ we see that p-1S(p(c), where <p(c) = 
= lail -1(c+laol • IUII +M0)- Thus ||x2|| =p3^(p(c)~3, and so f(c)=cp(cf satisfies 
our condition. 

Lemma 1.2. Let A andg be as in Lemma 1.1, and let (x) denote the real algebra 
generated by an element x(LA. Then the function f of Lemma 1.1 also satisfies ||x|| S 
-f(c)-r{x) whenever x is such that ||g(a)||Sc for all a£ (x). 

Proof. Assume that ||g(a)||Sc for all a£(x) for some x£A and c£R + . 
Then by Lemma 1.1 we have 

| | f l | | 2 s / ( c ) - M for all ae(x). 
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Writing a=x?", we can infer by induction that 

and hence, tending with n to infinity we get ||x|| s / ( c ) • /•(*). 

Theorem 1. Let A be a Banach generalized *-algebra over F. Then A is an 
equivalent C*-algebra if and only if there is a constant C such that 

(i) ||sin (A)|| =iC for all h£AB and, 
(ii) ||sinh(/c)||==C for all k^A}. 

Remark. Of course, in case F = C (i) is equivalent to (ii). 

Proof. First we assume that A is an equivalent C*-algebra. Then there is a 
norm p on A so that (A, p) is a C*-algebra and a constant C such that ||a|| ̂ C • p(a) 
for all a£A. It is known that a C*-algebra is Hermitian, skew-Hermitian and its 
norm equals the spectral radius on normal elements (this is well known for F = C , 
and for F = R we can canonically embed the subalgebra of B(§>) into ¿?(§c) where 
£>c is the complexification of the real Hilbert space §>, and thus we can infer the 
statement). Therefore if h£AB then Sp (A, h)aR, and so Sp (A, sin (/z))(z[— 1, 1] 
(see [1], § 7), further sin (h)£AH for the * is norm-preserving in a C*-algebra, and 
hence p(sin(h))=r(sia(h))^l, ¡|sin (/¡)l| =C• p(sin (h))^C. Similarly, if k£Aj then 
Sp(^, A:)c=i-R, Sp (A, sinh (Ac))ci • [— 1, 1], sinh (k)^Aj, and hence ||sinh (A:)|| ==C. 

Now we assume that A satisfies (i) and (ii) with a suitable constant C. First we 
show that 

(1) A is Hermitian and skew-Hermitian. 

Observe that if z £ C \ R , then the set {sin (tz); i£R} is not bounded. This fact 
implies that {/-(sin (i/j)); R} is not bounded if Sp (A, h) ct R, and similarly 
{/•(sinh(*&)); /6R} is not bounded if Sp (A, k)<£i• R for sinh (z)= — z- sin (iz). 
Since r(a)^||a||, thus (i) and (ii) clearly imply (1). 

Now we want to show that 

(2) there is a constant M such that ||a|| s M-r{a) for all a£ABUAj. 

We have by Lemma 1.2 and (i) a constant m1 such that 

(3) . ||a|| S mx • r{a) for all a€AB 

and we have by Lemma 1.1 and (ii) a constant m2 such that 

(4) ||a||2S/M2||fl2|| for all a£Aj. 

But a2£AB for a£Af, thus ||a2|| • r(a2)=m1 • r(a)2, and hence (2) is true with 
M=max(m1, ljmx • m2). 
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We can apply Lemma 0.1 to A because (1) holds; let n be the corresponding 
representation. Since ||7t(a)|| =r(a*a)1/2, we have 

(5) [|7t(a)|| = r(a) for all aZABUAj, 

and so by (2) we get | |a| |sAi- ||7t(a)[| for all a£AHUAj. Thus if a is an arbitrary 

element in A and h= , then ||al|^||/t[| + ||A:||sM(||7r(A)|| + ||rt(fe)ll) 

and ||7i(/i)l|^||7t(a)||, ||jt(fc)||s||jr(a)|| for the * is norm-preserving on B(§>). Thus 
we get 
(6) \\a\\^2M-\\n(a)\\ for all a^A. 

We have ||7t(a)||2=r(fl*a)s||a+a||s||a*|| • ||a||, and hence by (6) we infer 
s4M24a*\\. Thus \\a*\\^4M2-\\a\\ for a**=a, and hence 
(7) ||n(a)||2 s 4M2 • ||a||2 for all a€A. 

It follows from (6) and (7) that n is homeomorphic and 71(A) is complete. Therefore 
A is an equivalent C*-algebra. 

2. A characterization of Hermitian algebras 

Lemma 2.1. Let A and B be Banach generalized *-algebras over F. Assume that 
p: A>-*B is a *-homomorphism satisfying r(h)^r(p(h)) for all h£AH. Then A is 
Hermitian (resp. skew-Hermitian) whenever B is. 

Remark. The condition r(h)Sr(p(h)) is equivalent to r(h)=r(p(h)) for 
Sp (B, p(h))dSp (A, h) U {0}. 

Proof. Suppose that A is not Hermitian (resp. skew-Hermitian) but B is. 
Then there is an element hxeAH (resp. k^A/) such that Sp (A, hx) cj: R (resp. 
Sp(J , ¿ O i l ' - R). If z€C\(RUz'-R) then z2£R and hence {tz+sz3; i , j£R}=C. 
This implies that there is an element hdlthi+shl; t, i€R}c,4H. (resp. k£{fA^+j&J; 
M € R } c 4 , ) such that i<ESp (A,h) (resp. l£Sp (A,k)). Let c=h2 (resp. c=-k2). 
Then 
(1) - l € S p ( ^ , c ) and c£AH.. 

Further, p(c)=p(h)2 (resp. p(c)=—p(k)2), p is a *-homomorphism, and B is 
Hermitian (resp. skew-Hermitian); thus we get 

(2) Sp(5, p (c ) )cR + . 

Since A is a Banach-algebra, Sp (A, c) is bounded and hence there is a real 
number A such that 
(3) A =»-1 and — A - 1 -c has a quasi-inverse d in A. 

t 
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Moreover, d£AH, because — A-1 • c£AH. Since p is homomorphic, thus p(d) 
is the quasi-inverse of —A-1 • p(c). It is known that if b is the quasi-inverse of a in 
an arbitrary algebra then {t(t— l ) - 1 ; rgSp (a)}=Sp (6). (Sketch of the proof: b is 
the quasi-inverse of a if and only if l—b is the inverse of 1—a, where 1—a, 1—¿6 
6^4+F if A does not have a unit in which case Sp (A, x)=Sp (^4+F, x) for all 
X€A; and hence it is easy to deduce the statement.) Thus we get from (1), (2) and 
(3) that 

(4) there is a negative number (namely (1—A)-1) in Sp (A, d) 
and 
(5) Sp(5, /?(i/))c[0, 1). 

Consider the polynomials Pn(X)=X{\-Xf. Then P„(d)£AH, and since 
Sp(i^,(a))=Pn(Sp(a)) in an arbitrary algebra, thus r(/j;(i/))>l for sufficient large 
n by (4), while r(Pn(p(d)))< 1 for all n by (5). Thus we have got a contradiction to 
the assumption of our lemma. 

Lemma 2.2. Let A andB be Banach algebras over F and p: A^B be a homo-
morphism. Then the following conditions are equivalent: 

(i) r(a)=r(p{aj) for all a£A, 
(ii) aSp (A, a)cdSp (B,p(a))U {0} for all a£A. 

Proof. First we assume (ii). Let a£A be fixed and let S be the closed disc 
about zero in C with radius r(p(a)). Then d Sp (A, a) a S, and Sp (A, a) is a bounded 
set in C, thus Sp(^, a)c:S, r(a)Sr(p(a)). Therefore (i) holds, for r(a)^r(p(a)) is 
true for any homomorphism p. 

Now we assume (i). Fix an element a£A and a complex number 
zedSp (A, a)\{0}. Suppose that z$dSp (B,p(a)). Since Sp (B, p(a))aSp (A, a)U 
U{0}, we get z$Sp (B,p(a)). Choose a sequence of complex numbers zn—z such 
that z„$Sp (A, a). We may assume zn^0 for all n. If F = R then let 

"„ = |zn | -2-(2-Re(z„)a-a2) and u = \z\~2•(2-Re(z)a-a% 

while in case F = C let 

u„ = z~1 • a and u — z - 1 • a. 

Then we have by [1] (see p. 70): 

(1) u„-*u in A and p(u„) — p(u) in B, 

(2) u„ has a quasi-inverse in A, 

(3) u does not have a quasi-inverse in A, 

(4) p(u) has a quasi-inverse in B. 
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Further on, u„ and u are polynomials of a, and hence there is a maximal commutative 
subalgebra A' of A containing u and «„.for all n, and similarly a maximal commu-
tative subalgebra B' of B containing p(A'). By (3) there is a character cp on A' such that 
<p(u)= 1. Thus <?(«„) —1, and hence, denoting the quasi-inverse of un by vn, 
|<p(iv)| — T h e r e f o r e r(u„) — a n d thus (i) yields 

(5) r{p(va))~~. 

On the other hand, l$Sp (B',p(u)), and hence there is an such that 
| i /i(p(u))-l |>e for all characters i¡/ of B'. Thus if \\p(un)-p(u)\\^sll then 
№(/>(«„))-11 — e/2 for all i¡t, and №(/>K))|s||/>(«»)ll ^constant, because p(u„)~p(u). 
Hence rw:=max {|A(A-1)-X|; A€Sp(5,,p(Mn))}-H-~, while rn=r(p(vn)) for p(v„) 
is the quasi-inverse of P(H„). This contradiction to (5) proves our lemma. 

Theorem 2. Let A be a Banach generalized *-algebra over F. Then the following 
conditions are equivalent: 

(i) A is Hermitian and skew-Hermitian, 
(ii) there is a Hilbert space Jf> and a *-homomorphism n: A^B(§) satisfying 

| | 7 t ( a ) | | =r(a*a)112 for all aiA, 
(iii) there is a n as in (ii) and satisfying r{n(aj)=r(a) for all a£A, 
(iv) there is an as in (ii) and satisfying 

3 Sp (A, a)(zd Sp (£(§), 7t(a))U {0} for all a£A. 

Proof. First we prove (i)=>-(iii). Consider the homomorphism n obtained from 
Lemma 0.1. Then for any a£A r(a)n=r(cf)^\\n(cDl for all n, and hence r ( a ) s 
^r(n(a)), thus r{a)=r(n(a)). 

Now we prove (ii)^(i). If h£Aa then r(h)2=r(h2)=r(h*h)=\\n(h)\\2=r(n(h))2 

and hence by Lemma 2.1 we get (i), because 2?(5) is Hermitian and skew-Hermitian. 
Since (iii)=>(ii) is trivial and (iii)-»-(iv) was proved in Lemma 2.2, the proof of 

Theorem 2 is complete. 

3. Relation between real and complex Hermitian algebras 

Lemma 3.1. Let A and B be Banach-algebras with unit over F, and p: A*-+B 
be a homomorphism satisfying (1) = 1 and r(p(a))=r(a) for all a£A. Assume that 
Sp (5, j?(x))cR\{0) for some x€A. Then x is invertible in A. 

Proof . Since A is a Banach algebra withunit, there is a real number A >-0 so that 
fl=(A+xa)_1 exists in A. Then p(a)=(X+p(x)2)-\ and hence Sp(5,^(a))c(0,1/A), 
r{p(a))<X~\ Thus r(a)<A~\ and therefore A_1$Sp (A, a), A$Sp (A, JL+x2), and 
we see that x2 is invertible in A. Hence x is invertible in A. 

10 
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:•'••! Lemma'3.2. Let A be a generalized * -algebra over R, and Aq be its complexi-
fication. Then (Alxad(A))cis*-isomorphic to Aclrad (Ac). 

Proof. We want to prove that 

(1) rad (Ac) = {(a, b)€Ac; a, berad(A)}. 

(We use the symbols of [1], see p. 68.) Let N={a£A; (a, 0)£rad (Ac)}. Clearly N 
is an ideal of A. If adN, then (a, 0) is quasi-invertible in Ac, hence a is quasi-invert-
ible in A. Thus we obtain 
(2) iVcrad (A). 

r Now we fix an element ¿>£rad (A) and an irreducible representation p of Ac 
over the complex linear space X. Suppose that L is a real subspace of X, invariant 
for the, operators p((a, 0)) for all a€A. Then L+i-L and LUi-L are complex 
subspaces, invariant for p(Ac), and hence, being p an irreducible representation, 
if L is non-trivial then X=L(&i-L as a real linear space. Hence if L1 is another 
such subspace then {Oj^LjglL is not possible, that is a—p((a, 0))|L is an irreduc-
ible-representation of A on Z,. Thus p((b, 0))|L=0 for rad (A), and hence 
p((b, 0))=0 because X is the complex hull'of L. If such L does not exist then 
a^-p((a, 0)) gives an irreducible representation and p((b, 0))=0, too. Having this 
for any irreducible representation p of Ac we see that b£N, rad (A)aN, and hence 
by (2) we get 
(3) N = rad (A). 

Now~consider the mapping (a,b)':=(a, —b) on Ac. This is conjugate linear 
automorphism, hence it preserves the quasi-invertibility, and therefore maps rad (Ac) 
onto itself. We can infer from this: 

rad (Ac) = {(a, b); (a,0), (0, fc)€rad (Ac)}. 

But -i-(0,b)=(b,0) and hence rad b); a,b£N}, that is, by (3), we 
can see that (1) holds. 

It is easy to deduce from (1) that (A/rad (A))c is "-isomorphic to Ac/rad (Ac). 

Theorem 3. Let A be a Banach generalized *-algebra over R. Then A is Her-
fhitian and skew'-Hermitian if an only if its complexification Ac is a complex Hermitian 
algebra. " ; 

Proof. Since the spectrum in a real algebra is defined through its complexifi-
cation, one of the directions is trivial. To prove the other direction let A^be Hermitian 
and skew-Heimitiah as well. We may assume A has a unit, because otherwise A + R 
is Hermitian and skew-Hermitian while (yi+R)c is "-isomorphic to Ac+C. Then, 
we may also assume A is semi-simple by Lemma 3.2. 



Characterization of Hermitian algebras and equivalent C*-algebras 353 

Thus by Lemma 0.1 we have a *-homomorphism n: A>-—B(§>), which is now 
injective. Moreover, it is easy to show (see e.g. the proof of Theorem 2) that 

(1) n satisfies the conditions of Lemma 3.1. 

We want to prove that Ac is Hermitian. Since l£A, it is enough to show that 1 +x2 

is invertible in Ac whenever x£(Ac)H. Fix an x=(a, b)£(Ac)a, then a£AH and 
be A]. Let c = l +a2—b2, d=ab+ba, then 1 +x2=(c,d). Since the complexifica-
tion of JB(§) is clearly *-isomorphic to B(§>c), which is Hermitian, thus (n(c), n(d)) 
is invertible in B(§>)c, so we have u, v€B(&) satisfying 

(2) u-n(c)—v-n(d) = 1, u-it(d)+v-n(c) = 0 
and 
(3) n(c)-u—n(d)-v = 1, n(d)-u+n(c)-v = 0. 

It is known that the set Ap={h£.AH; Sp (A, h)cz R+} is a cone (see [5]), and hence 
a2—b2£Ap because a2,—b2£Ap. Thus we can infer 

(4) c has an inverse h in AH. 

We see from (2) that v=-u-n(dh) and so u• n(c+dhd)=l. Similarly, we 
can see from (3) that n(c+dhd)-u=\. Observe that m=c+dhd€AH because 
d£Aj and c, h£AH, and hence Sp (B(§>), 7r(m))cR. Applying Lemma 3.1 we get 
a k=m~1 in A, moreover, n(k) — u. Hence v=n(J), where j= —kdh. Now by 
the injectivity of n we can infer that (k,j) = (l - fx 2) - 1 in Ac. The proof is complete. 
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Models for infinite sequences of noncommuting operators 

GELU POPES CU 

In fl], J. W. BUNCE developed a model theory for «-tuples of not necessarily 
commuting operators, extending the work of A. E. FRAZHO [4] for pairs of operators. 
He proved, for a finite number of operators on Hilbert space, versions of the Rota 
model theorem, the de Branges—Rovnyak model theorem, and the coisometric 
extension theorem. 

The aim of this paper is to extend these results for infinite sequences of non-
commuting operators, to generalize some results due to B . SZ. -NAGY [8] and G . C . 

ROTA [7] [5, Problem 121] and to give some necessary and sufficient conditions for 
simultaneous similarity. We shall prove all these results without using the theorems 
above mentioned (for a finite number of operators). 

1. Let J? be a Hilbert space and B(JV) be the algebra of all bounded operators 
in stf. We recall that a coisometry V^B(J^) is called pure if V -»0 (strongly) as «— 

In [1, Proposition 2] J. W. Bunce proved that for any finite family {A^ l^ i ' ^n} 
(TJ£N) of operators such that r(A{)< 1 for each i, (r(T) denoting the spectral radius 

n 
of an operator T£B(Ji?)), and 2 Ix (/*. is the identity on JF), there are a 
Hilbert space and pure coisometries. {5,-; l s / ^ w } acting on X such that 
Si(J^)c^f, S,\je=Ai for each i and StSrj= 0 for /Vy. 

We begin with a theorem which generalizes Proposition 1 of [1] and the above 
mentioned result, replacing the condition that r(A,)-<l by the condition A"-*0 
(strongly) as n » . Let us consider A and J to be sets of indices such that card A s . 

Proposi t ion 1.1. Let sfa = {Aaii: i£A}<zB(3tf) for each aThen the 
following two conditions are equivalent: 

a) 2 AltAa.t-1^ for each a£J. 
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b) There exist a Hilbert space JTz)^? and families of coisometries Va= 
= {Vati; i£A}czB(X) («£/) such that 

VxA(X)<zX and = AtJ for each a a , i(LA. 
iZA 

One can even require that Vx i be a pure coisometry for every a£J and z'£ A for which 
An

a i-+ 0 (strongly) as N—<=°. 

Proof . It is easy to see that b) implies a). 
Conversely, assume that for each a£/, 2 ^r- Consider the Hilbert 

space H = © where 3Pati is a copy of the Hilbert space and the a£J, i(.A 
operator T£B(H) defined by 

T{ © K,,) = © Aa>thXil. xZJ,i£A aZJ.iZA 

Note that T is a contraction. Indeed, 

• l i n © hXti)f = 2 ( 2 K i K i K 1. M s 2 1 1 ^ , i l l 2 s II © haJ\\\ . . " a£J,iZA . aiJ itA . . *tJ aiJ,i€A 

for every © haA£H. 
aeJ.iSA 

Let us determine a Hilbert space KDH and a coisometry V£B(K) such that 
F ( H ) c H and V\H = T. Let K = H ® J i , where Jt is a Hilbert space which we 
shall determine: With respect to this decomposition of K the matrix of V is 

where X: M+H and Y: Ji^Jt satisfy the relations: 

(1.1) TT*+XX* = IB, XY* = 0, YY* = Ijt. 

Since F is a coisometry, the Wold decomposition of the Hilbert space J i with 
respect to 7* is Jt =Ji^@J{i and Y—S*®U, where. S;.is the unilateral shift 

CP 

acting on Jt0= © :Y*»(£?), <£=J(QY*(J{) is the wandering subspace of S, 
r=o 

e o 

and U is a unitary operator acting on Jix=JiQ = f ] Y*-"(JZ). 
n°0 

The relation XY*=0 implies Therefore, with respect to the de-
composition K=K®Jf0®Ji1, the matrix of V is 

T X o' 
0 S* 0 
0 0 u 
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where X,stands for X\M^. .Therefore X: H- and the relations (1.1) become 
(1.2) TT*+XX* = IH, XS = 0. 
Obviously, wè can consider 

UT, = e\<£) = {(Xl, x2, ...); xtçsr, 2 IMI2 

i=i 
and S\ „, S(xl7 x2, ...)=(0, xt, x2,...). Since XS=0, it follows that 

^(O.^x,^, ...)=0 for every y£<£ satisfying 2 lljil!^00- We embed JSP in i=i 
<f2(.S?) by identifying the element ¿^Se with the element (/, 0,0, ...)et2(£C). In the 
sequel X stands for X\x. Thus the relations (1.2) become 
(1.3) TT*+XX* = /H, 
where X: JS?-H. 

The relation (1.3) holds for ¿?=H and X=(IH-TT*)112. With respect to the 
decomposition H = © we have X— © Xxi, where Xx ¡: H-^Mf. 

aÇJ.iÇA ai J, {ÇA 
Taking into account (1.3), the following relations hold: 

„ „.. |~*»'-..i+2ra.,2?ii : f o r «€/,' ieA, (1.4) - 0, for a£J, i * j, i, je A. 

Let {1,2, . . .}=U Ni such that i\r.nA^=0 ( i^ j ) and 'cardiV^Ko for 
each A. Setting N, = n(

2°, ...}, where H^CK^C... for each i£A, we define 
H)) by 

Zi(h1,h2,...) = (hn[o,hni„,...), hj£H, (2W2<»). 

Note: that Z iZf=/ i r i (H) (i£/l), and Z (Z*=0 (iVy)-
Consider the Hilbert space Jf ®/2(H) and define ^ ¡ e ^ W (a6/, i€/l) 

by the matrix 

- to z,s*) 
where WXti ( a A ) stands for the operator Za i i©090©.... By (1.4) a simple 
computation shows that for every ct£J, i£A we have 

XtKi = Ix> W = ° and. 
- Let. us prove that, if (strongly) as -n—°o for some a€/„ then 

Vx".-*0 (strongly) as n-*°o for the same a£/, i£A. Note that, with respect to the 
decomposition jr=^f©<?2(H), we have . 

— 
j=0 

p (Z,s*r 
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Let y=(0, . . . , 0 ,y m , 0 ,0 , ...)€<^(H), where m £ l , and let n=~m. Since 
m—1 times 

fh,h3, . . .)=0 for every (0, h2, ha, it follows that, if there exists 
l S p S m such that (ZiS*)py=(ym, 0,0, ...), then 

¿AlMZtSy-Jy = A^W^iZ^yy, 
j=o 

otherwise we have 

i A^W^Z^r-iy = AltWxJy. 
j=o 

In both the cases, since 0 (strongly) as it follows that 

2 AliW^Sy-'y ~ 0 as 
j=o 

Since (Z;5*)"-0 (strongly) too, it follows that as for 
every hay? and all y of the form above mentioned. But, the span of all the vectors 
y of considered types is the Hilbert space /2(H) and ^ 1 for each « € { 1 , 2 , . . . } . 

Thus, we have that V"ti—0 (strongly) as °° for the same a€/ , i£A for which 
A" t-r0 (strongly) as «-<-«>. This completes the proof. 

We remark that, if card A =card / = 1 , we find again the Coisometric extension 
theorem and the de Branges—Rovnyak model theorem (see [9], [5]). The result of 
E . D U R S Z T and B. SZ . -NAGY [2] is contained also in Proposition 1 .1 . 

2. We say that a family si = {Ai}iiAc:B(3^') is simultaneously similar to a 
family @ = {Bi}i€A<zB(X) if there exists an invertible operator R€B(X, X ) 
so that Al=R~1BiR for every i£A. 

In what follows we shall obtain a generalization of a result due to B . S Z . - N A G Y 

[8], that is, an operator A€B(X) is similar to an isometry if and only if there exist 
a s i » 0 such that 

b\\hP ^ \\A"hV =§ a||A|P 
for every n£N. 

We shall also obtain a generalization of Rota's model theorem, for infinite 
sequences of operators, and we shall give some necessary and sufficient conditions 
for ¿family {Ai}i(iAc:B(j^) to be simultaneously similar to a family {Ti}iiA(zB(X') 
of contractions with 2 T i " r i - I j f - ' 

Let us denote by F(k, A) the set of all functions from the set {1, 2,. . . , k) to 
the set A. For s/={Ai}ieA<zB(X) and f€F(k, A), let Af=A/0)A/(2)... A/(k). 

The following two lemmas are simple extensions of Lemmas 4 and 5 from [1]. 
We omit the proofs. 
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Lemma 2.1. Let s/={Ai}iiA<zB(3^') such that the series 2 A? A t is con-
i€A 

vergent in the strong operator topology (if card A = K0>). 

a) If l^m^n, then 2 A*fAf= 2 A*A 2 ^ X K -
f£F(n,A) q£F(n — m,A) aZHm.A) " 

b) For any m , » s l || 2 4^/11=11 2 ^ H l l " 

Lemma 2.2. Let jt/ = {Ai}ieAczB(jf) with 2 strongly convergent. 
i€A 

Then 
i im| | ^ A f A f W m = i n f {II 

Define 
r(sé) = inf {|| 2" A}Af\\V*»}. . m fiHm,A) 

For A with card A = 1 we find again the well-known formula for the spectral radius 
of an operator. The case when card A c is considered in [1]. 

Proposi t ion 2.3. Lei ^ = {Ai}iiAdB(3^). The following statements are 
equivalent: 

a) There exists a family of contractions ^~={Ti}iiAc:B(3e) with 2TiTi-Ix HA 
such that si is simultaneously similar to ST. 

b) There exists a positive invertible operator P^B(^f) such that 2 AfPA^P. iCA 

Proof. Assume a) and let be an invertible operator such that At = 
=R~1TiR for each id A. Since 

2 T?Tt = (R-1T(2 AtR*RAt)R~i =§ I* ItA tiA 

it follows that 2 A*PA^P, where P=R*R. Conversely, assume b) and con-
• HA 

sider Ti=RAiR~1, where R=P1/2. Thus, 2T?Ti-Ix and the proof is complete. lid 
A necessary condition for simultaneous similarity is the following 

Proposi t ion 2.4. If a family &/={Aí}íeAc:B(Jf) is simultaneously similar to a family of contractions with 2 Ti^i-1** then there 

exists Af=»0 such that • 
2 \\Afh\\2^.M\\h\\2 

fiF(n,A) 

for every and T J £ N . In particular itfollows that 
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Proof.- According to Proposition 2.3 there is a positive invertible,opera tor 
ReB(X) suchthat T^RA.R'1 for each ie A. By Lemma 2.1 we have . 

II 2 T/Tf\\ ^ \ \ 2 T t m k ^ l for any A:€N. 
' , fiFik.A) . " "iHA . . r >.• 

Since Af=R~1TfR ( f£F(k, A)j, it follows that 

|| 2 AfM\^m%\\,2 T;(R-^Tf\\ s p i p Hi?-1!2 

for any &€N. By Lemma 2.2 it is simple to deduce that 1. 
The following proposition is a generalization of the result due to B. S Z . - N A G Y 

{8] (for single operators) and the proof is on the same line. 

P ropos i t i on 2.5. Let sf={Ai}iiAczB(X). The following two conditions 
are equivalent: 

a) There exists /f~={^}i£AczB(X) with 2vi*vi=1* such that ^ is simul-
i€A 

taneously similar to i f . 
b) There exist a=b>0 such that 

b\\h\\*s 2 l A f W & a W * 
f€Fy,,A) 

for any hex and N £ N . 

Proof . Assume a) and let ReB(X) be a positive invertible operator such that 
Ai=R~1ViR for each ieA. Since 2Y*V i '= Ix-> we have, using Lemma 2.1, 

(2.1) 2 VfVf = 1* for any n6N. 
/ 6 F(n, A) 

As in the proof of Proposition 2.4, we obtain that 

2 M / W ^ O T I I ^ - T l l f t l l 2 
fZF(n,A) 

for any hex, neN. On the other hand using (2.1), we have 

? W Z WfRhF = - ¡ j p - l l ^ l l 2 ^ | , R | , S - 1 | | 2 

for any hex, n£N. 
Conversely, assume condition b) is true. If card we can take 

y l = N - { l , 2,.,.}. 2 \\Afh\\2 is convergent for hex and «6N, whence f(F(n,A) 
2 (A/hj^, Afh2) is convergent for every /z,, h2eX and Since for any fZF{n,A) 

hu h^eX we have that 

| 2 (¿A, AfhJ\ g (^XII/^IP+UM2) 
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for every n£N, we can define for any ht 

(h1,"h2) = UM '2 (ASK, Afh2), ' . 

where LIM means a Banach limit. 
Taking into account, the properties of the Banach limit we see that ( . , . ) is 

a hermitian bilinear form and 

(2.2) ¿pll2 (h, h) = LIM 2 I Mr All2 ^ a||A||2 for each 
. . fZF(n,A) . 

By a well-known theorem on the bounded hermitian bilinear form, there exists a 
selfadjoint operator P^B(^f) such that 

(fh,hd^ (Plh,hJ for all hit 

From (2.2) it follows that b l ^ s P ^ a l ^ , therefore Pis a positive invertible operator. 
oo 

Now we shall show that P= 2 A*PAt. Since the series 2 \\AM2 is con-
1 = 1 ¡€4 

oo 

vergent, for every e>0, there exists A:06N such that 2 M . ^ l l 2 — f o r any 
i=k+l 

Thus, for every k ^ k 0 and w£N we have: 

O S 2 2 WAfAihr-2 2 \\AfAM2 = 
¡=1 fZF(n,A) ¡=1 fiF(n.A) 

= 2 2 WAfAM^a 2 \\AM*^B, 
»=* +1 / € F(n, A) l=k+l 

whence it follows • 
* 

O s L I M ( i 2 \\AfA,h\\2)-HM(2 2 IM/ AM2)^« 
»— \ = l feF(n,A) 1=1 f€F(n,A) 

for any Since 

(Ph, h) = LIM 2 \\Afh\\*=UM(2 • 2 \\AfAM2) 
oo / € F ( n + 1 ( / 1 ) n - o o j = = 1 / € F ( B > / 1 ) 

for any we have that 

• 0 s {Ph, h)-2 (LIM 2 WrAM2)^e for any fc 1=1 »—•> f(:FintA) - ' ... 

In other words ,'.• • • ; . . . . . 

. . (Ph, h) =lim J (LIM 2 , \\AfAM2) =-

= j ? = ((2 A*PAt)h, h) for every I"1 . • v- U irnl-l ... 
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Therefore, ^AfPA^P and setting R=P1/2, Vi^=RAiR~1 for each we 

deduce that 2 F* • The case when A is a finite set is even simpler to deduce. 
i€A 

The proof is complete. 
•We now give a necessary and sufficient condition for simultaneous similarity. 

P ropos i t ion 2.6. Let j/={A;}i€Ac:B(X). Then the following conditions 
are equivalent. 

a) There exists ^={Ti}iiAczB(X) with 2Ti"ri-1* such that ^ is simul-
taneously similar to 

b) There exist D£B(X) and 0 such that 

W s 2 \\AfhV+ Z \\DAfhr+...+ 2 \\DAfh\\*+\\DhV^a\\hr 
ftF(n,y1) f€.F(n—l,A) f£F(l,A) 

for every h$_X, w€N. 

Proof . Assume condition a) is true. Then, according to Proposition 2.3, there 
exists a positive invertible operator P£B(X) such that 2 AfPA^P (we can 

A 
assume that | |P | | s l ) . Let 

D = (P— 2 A*PAj)1/2 

i£A 

and for each h€X and «6 N let 

S„,H= 2 №fh\\2+ 2 \\DA,hr+...+ 2 \\DAfh\\2+\\Dhr. 
fHF(n,A) f€F(n-l,A) /€F(1,A) 

An easy computation shows that 

Sn,H= 2 (A}Afh,h)~ 2 (AfPAf h, h)+(Ph, h). 

f(F(n,A) f € F(n, A) 

By Proposition 2.4 there exists 0 such that 

2 (A*fAfh,h)HPh,h)^(M+\)\\hr f(.F(p,A) 
for any and n€N. 

On the other hand, since we have 

2 (A*FAfh, h) ^ 2 (AFPAfh, h), 
f€F(n,A) f(F(n,A) 

therefore S^^Ph.^sllR-^-lm2. (where R^P1^) for any h£X and 
Now we shall prove that b) implies a). Let us consider the Hilbert space 

K = X®2® 2/®... where &=DX, 
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and embed tf in K by identifying the element h^M' with the element (h, 0,0, ...)£K. 
Let C (/€ A) with 2 W2 = 1 and define the operators B£B(K) (/'€ A) by 

i€4 

Btiho, ...) = (Aih0, ¿¡Dho, AA, •••). 

For each /€F(n, A) (H£N) we have: 

B/(H0, HI, ...) = (AF(!)... AA/(i)DAF^ ... AF(„)H0, 

1/(1) ̂ /(2) ̂ -<4/(3) ••• Af(n) h<>> •••> 1/(1) ••• l/(n-l)^4/(n) 

1/(1) • • • l/(n) £¿01 l / ^ i > •••) 

where Ay stands for 1/ (1)... l / ( n ) . 
Since 2 |l/l2=l> for any ra£N, it is easy to show (by induction) that, 

/€F?n.A) 
foreach ¿¿{1,2, . . . ,« —1}, 

2 UfW...Xm)DAf(k+1)...Afln)hr= 2 [\DAgh\\* 
feF(r,A) g€F(n-k.A) 

for any hdJtf and w£N. Therefore 

2 WBfiho,^, ...)||2= 2 M A I I 2 + 
fZFin.A) f€F(n,A) 

+ 2 ||^/A0f+...+ 2 \\DAIhX + \\h\\i+... 
f£F(n-l,A) f€F{l,A) 

for any (h0,hx, ...)£K and n£N. Thus, by the assumption b), there exist a^h>0 
such that 

b\\k\\*^ 2 \\Bfk\\* ^ a\\k\\* for any k£K, n£N. 
/€F(b./0 

According to Proposition 2.5, there exists f = { l ^ i U c 5 ( K ) with 2 v * v i = l n 
¡(.A 

such that the family 3S={Bt}i€A is simultaneously similar to ' f . Let us notice 
that B*i\3r=A*, Bf(^)cz3if. Let Q£B(K) an invertible. operator such that 
Bf=QVi*Q~1 (i£ A) and consider the invertible operator Q0: Q0=Q~1lje, 
where stands for Since B?(3f)c3$f we have tha tJ i*pf 0 )c ,? f 0 (ieA) 
and 

Using the polar decomposition of that is Q0=U\Q0\ where \Q0\ =(QgQ0)1/2 

and U=QO\QQ\-1 we obtain A*=RTfR-\ where i?=|Q0 | -1 and T/f = U*(V:*\iFo)U. 
Now 2 V i * V i = I K implies that 2 T — The proof is complete. 

. . : . . . . HA • • HA 

Remark 2.7. For A with card /1 = 1 the above proposition was proved in [3]. 
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Corollary 2.8: Let D^ = —^A^A^12. If there exists à>0 -such" that 
. ' . —. it A. . . f • . -• * 

(2.3) 2 Ufh\\2+ 2 \\DJ,Afh\\2+... + \\DJ,h\\2^a\\h\\2 

f i Fin, A) , f Ç F(n—1, A) ; 

for any hex and K£N, then the condition b) of Proposition 2.6 is fulfilled. 

Proof. The.upper estimation is trivial. Since for every hÇX, kÇN 

2 (A}Ds/Afh, h) s 2- (AjAfh,,h)- 2 (A}Afh,h), 
fiF(k,A)• fiF(k,A) /€F(*+J,.4) 

we have the lower estimation with 6 = 1. 
The following corollary is a generalization of Rota's model theorem [7]. 

Corol lary 2.9. Let s/={Ai}iiA<zB(X) and suppose that there exists a > 0 
such that 

(2.4) 2( 2 \\Afh\\2)s a\\h\\2. ... 
n 1 f(F(n,A) 

for any hex. Then there exist a Hilbert space XZDX, a family ¿F~{SL)IIA<^B{X) 
of pure coisométries satisfying SI(X)CX (¿ÇA) with orthogonal Initial spaces and 
an invertible operator RÇB(X) such that 

Ai = R~1(Si\3e)R for each ¿ÇA. 

Proof. According to (2.4) and Proposition 2.6 (with there exists 
&={Tt}UAczB(Xy with 2 T i* T i= t t f a n d a n invertible operator R£B(X) such 

HA 
that 

(2.5) At = R-^R (ieA). 

On the other hand, for each iÇ A, 

2\\Alh\\2 ^ 2( 2 ï\Afhe)^a\\h\\2 for any hÇX. n=l /1=1 / € F(n, A) 

Hence (strongly) as and by (2.5) T"—0 (strongly) for any ieA. Applying 
Proposition 1.1, there exist a Hilbert space X p X , a family S^={Si}iiAczB(X) 
of pure coisometries with 2 stSi=Ix-> St(X)czX and ¿>¡1^=7] for each 

i(A 
ieA: Thus, Ai=R~1(Si\^)R (ieA) and the proof is complete. 

Remark 2.10. For A with' card A = 1 we find again the Rota model theorem, 

namely, if there exists a > 0 such that 2 M"'Ill2=iIll'Ill2 for anyhÇX (equivalent 
n = 1 

to r 1), then ^ is similar to à part of a backward shift. 
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We now give some conditions equivalent to condition (2/4) in Corollary 2-.9-.-
The proof of the following proposition is almost identical to that of [1, Proposition 
6]. We omit the proof. 

Proposi t ion 2.11. Let si = {Ai}i(AczB(Jif). The: following conditions, "are 
equivalent. 

a) There is, a positive operator P^B(^) such that ( 2 A*PA^+IX=P. 
• • ' ' •.. . '. ¡£4... 

b) The, series 2 AfAi. anc^ 2 ( 2 A / A f ) a r e strongly convergent. 
• i£A n = l f£F(n,A) 

c) The series 2 AfA{ is strongly convergent .and r(s#)< 1. 
• . - H.A . '. ••• . .. •• '• 
d) There is a>0 such that 2 ( 2 \\Afhf)^a\W for any hetf. 

n = l f(FXn.A) ' -

Remark 2.12. If 2 A t A w h e r e r< 1, then the family s / = {Ai}i(A 

satisfies the condition d) of Proposition 2.11. 

3. In this section we generalize the result from [5], namely, an operator AdB(^f) 
is similar to a contraction if and only if there exists k£N such that Ak is similar to 
a contraction; We,shall also obtain a formula for r(si), where si={Ai}ieAc:B(Jf) 
with 2 A t A strongly convergent, which generalizes the well-known formula for 

HA 

the spectral radius of an operator AeB(jf)^ that is, 

" ' r(A) = inf ||5-M5|i, 
where the infimum is taken for all invertible operators (see [5, Problem 122]). 

Proposi t ion 3-1- Let ¿¡/={Ai}iiA<zB(3if). The following statements are 
equivalent: 

a) There is a family (g={Cl\iiA<zB(yi?) with 2ctCi-T* such that ^ 
HA • 

is simultaneously similar to 
b) There are ke N and a family = {r{/)}/€f()k>yl) ) with 2 Tu)T(f) -

. ; 1 . f£F(k,A) 
Six such that the family sik={Aj-}fiF(ktA) is simultaneously similar to 3Tk. 

Moreover, a) implies b) for all k£ N. 
! - Proof. Assume.cohditi6n,a).is true. Let R£BX&) an invertible operator such 

that ' A^R^CiR (/€ A). Hence Af=R~1CfR for f£F(k, A), keN. Setting 
Tif)=Cf for / £ F(k, A), k£ N, we have that for each ke N the family sik is simul-
taneously similar to 3fk. ..... 

¡Conversely, assume b) is true. By Proposition 2.3 there is. a. positive invertible 
operator P£B (<?f) such that 

(3.1) 2 A*,PAf7£P. . ; fiHktA) 



366 G. Popes eu 

Let us consider the positive invertible operator QÇB(X) given by the relation 

Q = P+K2( 2 A,PAF)-n=i fen<i.A) 
Taking into account (3.1) we have 

2 AFQAI = 2 ( 2 AFPAF) S P+ K£ ( 2 AFPAF) = Q. TÇA N=1 FTF^.A) N=L F£F(N,A) 

It then follows from Proposition 2.3 that a) is true, so the proof is complete. 

Coro l l a ry 3.2. LET J>/ = {AI}L€AC=B(JF) BE SUCH THAT THERE EXIST K£N, 0 < r S l 
and 
(3.2) 2 U/W^RW FOR ANY HÇX. 

F£F(K, A) 

THEN THERE EXISTS S~={TI}IIACZB(X) WITH 2 T Î T I - I X AND SUCH THAT SI IS SIMUL-
I(.A 

TANEOUSLY SIMILAR TO ST. 

IF 0 < r < 1, ONE CAN EVEN REQUIRE THAT ||7]||< 1 FOR ANY IÇA. 

Proof . Note that the condition (3.2) is equivalent to the condition 

(3.3) 2 AfAf S r i * . 

FI FIT, A.) 

By Proposition 3.1 there exists a family ^={T,}IIACB(X) with 2TI*TI-IX 

and such that SI is simultaneously similar to ST. If 0 < r < l , then there is e > l such that lie2* 2 A*FAF\\SL. Considering " F£F(K,A) ' 
Bi=eAi (t'€ A) we have 2 B*fBf—Ijr and by Proposition 3.1 there exists a 

KHk.A) 1 

family &={C,}I£AC:B(X) with ^ C f C . s V such that the family ÂÊ={BT}IIA 
I£A 

is simultaneously similar to Hence, SI is simultaneously similar to the family 
{71-},^, where IJ=(l/e)C, (/€ A). 

Remark 3.3. If SI={AT}^AG:B(X) and R(S/)<L, then the condition (3.2) 
of Corollary 3.2 is fulfilled. 

Coro l l a ry 3.4. IF S/={AI}IEACB(X) AND R(SI)=0 THEN FOR EVERY e>0, 
THERE IS A FAMILY ^={TI}IEAC:B(X) WITH 2T*TI-&IX SUCH THAT ^ « 

iÇA 
SIMULTANEOUSLY SIMILAR TO ST. 

Proof . For any e>0 we have R(E~1SI)=E~1R(SI)= 0, where E~1SI= 
= {E~1AI}IIA. Hence, r ( e - 1 j ^ ) < l and by Remark 3.3 and Corollary 3.2 there is 
a family #={C,} i e /1 with 2CTci-1jr such that e ^ s i is simultaneously similar 

¡e/i 
to Setting Y={TI}IIA where T^EC, (I£A) the proof is complete. 
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We now use these results for proving the following 

Propos i t ion 3.5. If and 2 AfAt is strongly con-
HA 

vergent, then 
R{J) = i n f i l l s ( S - H ^ i S - ^ S ) ! ! 1 ' 2 } , 

where the infimum is taken for all invertible operators SdB(Ji?). 

Proof . First we show that for each invertible operator SEB(3V), R(s4)= 
=r(S-%j>fS), where S'^stS stands for the family {S,-1.(4iS'}i(:/1. By the definition 
of R(ST) we have 

inf{||5||1/k||5-1||1/'[|| 2 R(SF). 

Hence, r(sf)=r(S(S-1rfS)S-1)^r(S-1stS). Therefore, 

(3.4) r(sf) = rCS^j/S). 

Using Lemma 2.1 and (3.4) we obtain 

(3.5) R{*F) S inf {|| 2 ( S - ^ ^ ^ S " ^ ^ ) ! ! ^ } . s " j€/1 

According to Corollary 3.4, if r(sf)=0 and 0<£<1, then there is a family ST= 
= { T i } l U c S ( ^ ) with 2T,*Ti^s2IJi., A) such that Al=R~1TlR (/'€A) for 

HA 
an invertible operator R£B(3f). Therefore, 

|| 2 (RAiR-1)*(RAtR-*)\p**8 
teA 

whence 
inf { | | g ( S - M ^ r i S - ^ S ) ! ! 1 ' 2 } = 0. 

If let us consider the family ¿S = {Bi}i€A where . f i ^ e / r ^ ) ) ^ , - , 
0<£<1, i£A. Since r(3S)< 1, by Remark 3.3 and Corollary 3.2 there exist a 
family e&={Ci}itA with 2 C * C i ^ I x and a positive invertible operator P£B(J^) i£A 
such that J?I = P - 1 C i P (i£ A). An easy computation shows that 

2(PAiP-y(PAiP~i) = (r(si)lef 2 ^ , HA HA 
whence 

r(st) ^ e l | 2 (PAP-riPAP- 1)H 1 ' 2 ^ einf { | | 2 ( s ^ s - ^ i s ^ s - 1 ) ! ^ } i£A s i£A 11 ' 
for every 0 < e < 1. Setting e — 1 it follows that 

(3.6) r ( i ) s inf { | | 2 ( S A ^ n s ^ s - 1 ) ^ } . 

The proof is complete. 
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On reducing subspaces of composition operators 

JAMES GUYKER 

If cp is an analytic function mapping the unit disk into itself, RYFF [10] has 
shown that (p induces a bounded linear operator C^ on Hardy space H2 defined by 
Cvf=fo<p. Many of the basic properties of C9 depend on the fixed points of cp in 
the closure of the disk (see [4], [9] for references). If cp is not a rotation about a fixed 
point, then by the Denjoy—Wolff theorem ([6], [13]) <p has a unique fixed point a 
such that |<j»'(a)|sl. In this paper, the reducing subspaces of classes of C9 are 
characterized when |ot|«= 1 and either <p is univalent or some positive integral power 
of C9 is compact. The complementary case when A=0 and <p is inner follows from 
results of NORDGREN [8] and BROWN [2]. 

Not ion . We will assume henceforth that <p is neither a constant nor a Mobius 
transformation of the disk onto itself, that a is the Denjoy—Wolff fixed point of (p, 
and that | a |< l . Then \q>'(a)\^ 1, and there is a natural basis of H2 with respect 
to which C9 is lower triangular with diagonal [1, <p'(a), <p'(z)2,...]. Indeed, let 

. , N ( l - l a l 2 ) * / 2 f z-a 1" . , , = (» = 0,1,. . .), 

then for i ^ j , 
, r , t \ / l-|a|» f ?(*)-»(«) Vf 1-*« Vf ] H 1 \ 
(C" bj'b,) ~ \ 1 — <p(z)a I J 1 1 —<p(z)a. J r r ^ i i ' - J - * / ' 

which is <p'(a)' whenever /=/, and is 0 when /•<=/. 
Moreover, if / is inH2, then / = 2 (/> b„)b„ where 

</' = ¡¿0 ( 3 - W2)l+(1/2)-

This follows directly by writing / in terms of its Taylor series, expanding 

Received July 29, 1986. 
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by the binomial theorem, and by observing that ((z—oc)\ z"/(l —za)n+1) is 0 when-
ever n^k, and is 1 when n=k, since the adjoint of multiplication by z/(l— za) 
on H2 maps h(z) into (h(z)-h(<xj)/(z-ct). 

We recall that a subspace Ji reduces an operator T on a Hilbert space JF if 
both Ji and ^C QJi are invariant under T, or equivalently, if the orthogonal 
projection onto Ji commutes with T. If the only subspaces that reduce T are {0} 
and itself, then T is said to be irreducible (otherwise T is reducible). 

Theorem 1. If <p is univalent and a^O, then C^ is irreducible. 

When a=0, the constants reduce C9. In fact, by [4, Theorem 4.1], the kernel 
of 1— C9 contains only the constant functions, so it follows in this case that Ji 
reduces C^ if and only if Jt =JiQ®Ji1, where Ji0 is either {0} or the space of 
constants, and Jix reduces the restriction of C9 to zH2. A complete description (Theo-
rem 2) of the subspaces Jix may be obtained under a compactness condition, with 
univalence weakened to (p'(a)^0. The study of compact composition operators 
was initiated by SCHWARTZ in [11] , and continued by several authors ( [3 ] , [5], [ 12 ] ) . 

In particular, CAUGHRAN and SCHWARTZ [3 , Theorem 2 ] have shown that when 
some positive integral power of Cv is compact, the Denjoy—Wolff point always lies 
inside the disk. Note that C^C^ where <pN is defined inductively by (fli=(p and 
(Pn+l = (P°<Pn-

Theorem 2. Suppose that is compact for some positive integer N, and that 
(p'(a)yi0. Then is reducible if and only if a=0. Moreover, if a=0, then the 
restriction of Cv to zH2 is reducible if and only if there exists an H™ function W which 
is bounded by one, and a nonnegative integer p^l, such that <p(z)=zf(zp); in this 
'case, a subspace Ji reduces C^ restricted to zH2 if and only if Ji = \J {bip+J: i s 0, 
j^r} where T is an arbitrary subset of {1, ..., p) ({1,2, ...} if p=0). 

The reducing subspaces of more general composition. operators are formed 
from cyclic subsets of basis vectors as follows. Let 1, p ^ 0 , and r s l be integers 
such that if / » 0 , then j^p and p is relatively prime to r. Let j0 =j and jn+1 = 
=rj„—inp (n=0,1,...) where i„ is the unique integer which is 0 if p=0, and satis-
fies i„p<rj„^(i„+l)p if /?>0. The set {y„: nsO} will be called the (r,p)-cyc\e 
generated by j . Let p>0. Then since for all 77, the terms of the sequence 
j„ repeat. It follows easily that if jm+i—jn+1 (m=~ri), then j'm=j„; and hence 
jm-„=j. Therefore, j is the first term.to reappear. Moreover, the set {1,...,/?} 
({1,2,...} if p=0) may be written as a disjoint union of (r, />)-cycles. With no addi-
tional conditions on <p, we have 

Theorem 3. If a^O, then no nontrivial closed span of basis vectors b„ (nSO) 
reduces Cv.If a=0, and is of order r, then a nontrivial closed span, Ji' of vectors b„ 
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(n^l) reduces the restriction of Cv to zH2 if and only if there exists a nonnegative 
integer p^l, which is relatively prime to r whenever p^O, such that (p(z)=zfW(zp) 
for some Hm function W which is bounded by one, and J( = V{blp+J: /S0, j^T} 
where r is a union of (r, p)-cycles. 

In view of the above results, a natural question is: when either (p is univalent 
or Cy is compact, are all the reducing subspaces of C9 closed spans of basis vectors? 
The related step in the proof of Theorem 2 follows by expressing the span of the 
first n basis vectors (n=0, 1, ...) in terms of the kernel of some element of the von 
Neumann algebra generated by 1, and C*. A similar argument may be used 
in the following example. 

Example 1. Let cp=X6 where A is a constant (0<|A|<1) and 6 is an inner 
function such that 0(O)=O. By ([1, Theorem 20], [8, Theorem 1], or [10, Theorem 
3]), Ce is an isometry, so that is a diagonal operator with diagonal 
(1, |A|, |A|2, ...). Therefore, V 6,.=ker ¿J (CiC„-|A|'') (n=0, 1, ...), and it follows 

0 0 
that the reducing subspaces are closed spans of b„'s and are thus described by The-
orem 3. 

Further evidence is provided by the following result which implies that reducing 
subspaces are (at least) closed spans of finite linear combinations of basis vectors. 

Theorem 4. Suppose that ||<jo||«,-=l and (p'(a)=0. If X commutes with C9 and 
(Ay) is the matrix of X with respect to {bn}, then A0j=0 (j= 1,2, ...) and there 
exists an integer M such that Xi]=0 (/=1,2, . . . ) for every j^Mi. 

Theorem 4 suggests an alternative approach to answering the above question 
in the affirmative, as illustrated by 

Example 2. Let a = 0 be of order r > 1, and suppose that (p is a polynomial 
of degree rM such that ||9>W||<»<1 for some positive integers M and N. Then the 
reducing subspaces of Cv are given by Theorem 3: Let P be the projection onto a 
reducing subspace. Since P commutes with C*n, it follows from Theorem 4 that 
Pb„ is a polynomial for every n; thus, it suffices to show that the degree of Pb„ does 
not exceed n for every n. Suppose that n<deg Pbn for some n, and let i be the least 
such integer. Setting y'=deg Pbt, we have that 

(PCZc^bi, bj) = (C^C^Pbi, bj), 

and hence by straightforward calculations, fi'=fiJ where 

m = vYK'-Hv, 6 r«)1/ ( rM-1)]'Mi '-1 

(so that 0<:|/i|< l). Therefore i=j, a contradiction. 
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The verification of Theorem 3 depends upon a reformulation of the usual 
multinomial theorem, which subsequently determines how often powers of <p have 
nonzero coefficients. 

Lemma. Let 

№ = < * 1 0 + 1 '£ th..iP+jz"+J 
i = l ]—0 

be a formal power series where a10 is nonzero, and for j=0, 1, ..., define 

J 
&U = altP+J and &mJ = 2 <h.,+k&m-i.j-k (m > !)• 

k = 0 

Then for every positive integer n, 

f(zT = a»10+2 "2 anttp+jZ»+] 

i=l 0 
where 

° n , i p + y — 2 l/w)a"o mâm,(i-m)p+j-

In particular, for fixed i and j, either anip+J=0 for all n^l, or antip+J=0 
for at most i— 1 values of nël. If alp^0, then an ip=0 for at most i— 1 values 
of n = \. 

The following estimate in H°° is essential to the proof of Theorem 4, and may 
be of independent interest. 

P ropos i t ion . If a )=0 for every i=l, ..., r— 1, then 

l i e ; 6 j - ^ 

for all nonnegative integers m and n. 

(p—a 
1 — (pa. 

m ( r " - l ) / ( r - l ) 

Acknowledgments. I am grateful to Professor M. A. K A A S H O E K for his support 
and encouragement during my sabbatical at the Free University, at which time this 
work was completed. Also, I am indebted to Professors L . D E B R A N G E S and C . C . 

C O W E N for their lectures and conversations concerning composition operators. 

Proof of Theorem 1. Let J t reduce C v . By [4, Theorem 4.1], the kernel of 
1— C9 consists of just thé constant functions. Thus we may assume that constants 
belong to M, and hence so does C*"l =[l—z<p„(0)]-1 (« = 1,2,...). 

Let / be orthogonal to M. Then / vanishes on the set £2={<pn (0) : « = 1}. 
If <pm(0)=(pn+m(0) for some positive integers m and«, then <pm(0) is a fixed point 
of <p„. But a is also a fixed point of <p„, and <p„ is not a rotation about a fixed point 
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since otherwise <p would be inner and hence by [7, Theorem 3.17] <p would be a 
Möbius transformation. Thus it follows that ç>m(0)=a=ç>m(a), and since (pm is 
univalent, we have that a=0, a contradiction. Hence, the set Q consists of distinct 
points which must cluster in the closure of the disk. However, by Schwarz's lemma, 

z—a 
l-<pn(z)ä 1 — zot 

for every z in the disk. Setting z=0, we conclude that Q must cluster inside the 
disk. Therefore, / is identically zero. 

Proof of the lemma. The formula is obvious for n = 1, so by induction, 
we assume it is valid for some n. Multiplying /(z)"+1 =/(z) • f(z)n, we have that 

(l-2)p+j 
an + l,ip+J ~ a10an,ip+j+[ 2 al,p + ka«,(i-l)p+j-k\+al,ip + ja10 = 

Jfc=0 

= m i [ ( ; ) + [m-1)]«icr+1am,ii-m)P+J = 1 ("m 1 )< + 1 ) - m < ( i - m ) p + i -

Thus, the form of f(z)n follows for every n. 
Fix/and j, and let »Si. Then (ni^0)_1a„,ip+y is a polynomial in n of degree 

at most /'—1. Suppose that aktip+j=0 for some A: such that l^k^i—l. It follows 
that the sum of the first k terms of («aj0)_1a„>ip+y is equal to 

j , 1 r (» — !)! ( f c - D ' 1 ^ 
Am\{(n-m)\ (k-m)\\ai0 

which is divisible by n—k. Since each of the last i—k terms contains a factor of 
n—k, we have that n—k divides (naj0)-1i/niip+/. Therefore, either all of the 
coefficients of (WAJ0)-1an>ip+J (hS/) are zero, or an ip+J=0 for at most /'—1 values 
of » S i . 

Finally, suppose that a l p ^0. Then the leading coefficient of (naj0)-1fln,ip 

(nS/) is (/!oi,))-1^i0=(/!aj0)-1ajp7i0. Hence, a„,ip=0 for at most / - 1 values of 
»SI. 

Proof of Theorem 3. Let a^O, and suppose that Jt is a nontrivial closed 
span of b„'s (n sO) which reduces C9. Since JtL is of the same form, we may assume 
that ¿0 is in Jt. Let « be the greatest integer such that bm belongs to Jt for every 

. n '• . 
m=0, ...,». Since Jt is invariant under C9, we have that a)mX, 
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X(1 — |a|2)-1/26m is in Jt and (f,b„+1)=0. However, by induction, 

/ ' ( z ) = - ( n + l)(-a)"+V(z)[l-<p(z)ot]-»-2[<p(z)-a]" 
and 

/ f + i ) ( a ) =- („ + l ) ! (_a)»+ 1 ( l - | a | 2 ) - ' , - 2 ^ ' (a ) n + 1 . 
Therefore, 

(f, bn+1> = (—a)n+1(l — |a|2)_1/2[l—(¡»'(a)"+1] * 0, 

a contradiction. Thus, Jt must be trivial. . 
Next, let a = 0 be a zero of q> of order r, and let Jt be a nontrivial closed span 

of vectors bn=z" (n^ l ) which reduces the restriction of C9 to z//2. Let us write 
<p(z)=zr 'F(z) for some H°° function f . If is a constant function, then the proposed 
forms of cp and Jt clearly follow with p=0. Henceforth, using the notation of the 
lemma, we assume that 5 /(z)=_2(?r, b„)b„=a10+alqzt+ahq+1zq+1 +... where 
a10 and alq are nonzero. Observe that if Jt contains z", and an rq^0, then Jt also 
contains zn+q. Indeed, '(p(z)n=z""P(z)n is in Jt, and (cp(z)n, zr(n+9))^0; there-
fore, by the given form of Jt, zr(n+4) belongs to Jt. Since z"" is orthogonal to Jt 
whenever z™ is, we have that Jt contains z"+q. 

Let z" be in Jt. By the lemma, there exists an integer K such that akrq^0 for 
every k^rKn. Now, fKn is in Jt. And, if zrK"+mq is in Jt for some m^O, then 
a^n+mq.rt^^ and, by the. above argument, Jt contains z

rK"+<-m+1)q. Thus, by in-
duction, ¿K"+mq is in Jt for every m=0, 1,..., and hence, in particular, zrK(n+q) 

is in Jt. Consequently, Jt contains z"+4 whenever it contains z". 

For integers i and j, let iAj denote the greatest common divisor of i and j. 
Let q(l)=q, and for t=2,3,..., define 1). Since {q(t)} 
is a monotonically decreasing sequence of positive integers, there exists a least in-
teger T such that q(T+l)=q(T), i.e., rAq(T) = l. Note that q(T)=r~Tgq 
where Q=JI[rAq(t)]~1r. If z" belongs to Jt, it follows that z

n+qm=zr'T(rTn+M) 

i 
belongs to Jt. Similarly, the orthogonal complement of Jt in zH2 is invariant under 
multiplication by z , ( r ) . Therefore, there exists a subset of {1, ...,q(T)} such that 
Jt is the closed span of vectors of the form ziq(-T)+J (/SO; yd/I). Furthermore, 
if j is in r l 5 then iq(T)<rj^(i+l)q(T) for some integer /, and rj—iq(T) is in 
r1 . Hence, is a union of [r, g(T)]-cycles. 

If !f=!P(z«(T)), let p=q(T) and r = r i ; otherwise, let p(\)=q(T). Suppose 
that for some integer j s l , a positive integer p(s), relatively prime to r, is defined 
such that Jt = \J{zim+J: /SO, j€r s} for some union Ts of [r, ;?(s)]-cycles, and 

'(zp(s)). Let /=min {/: a1>ipM+J^0 for some j such that 0</</>(.?)}, and 
let 7=min { j>0: a1 ( J j , ( j ) +^0}. By the lemma, an,/p(S)+j=«ai0

_lai./p(S)+j^0 

for every »=1 ,2 As above, z" ,+ip(5)+J, and hence z" + J , belong to Jt when-
ever z" belongs to Jt. 
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Let z" be in Jt. Then n=ip(s)+j where j is in Fs and zs0. Since rs is a union 
of cycles, there exists an element j' in Ts and an integer V such that j=rj'—i'p(s). 
Thus, n+J=(i-i')p(s)+(rj'+J), so that zn+J is in Jt. Similarly, zH2QJt is 
invariant under multiplication by zJ. 

Let p(s+l)=p(s)AJ. Then p(s+1) is relatively prime to r, and there exist 
integers u and v such that />0+l)=w/?(s)+u/. It follows that Jt and the orthogonal 
complement of Jt in zH2 are invariant under multiplication by z i ( s+1V and hence, 
as above, there exists a union rs+1 of [r,p(j+l)]-cycles such that Jt = \J {zip(s+1)+J: 
/SO, j£Ts+1}. Therefore, + 1) ( j = 1 , 2 , ...) may be defined recursively provided 
W?±xF(zp<-s)) for every s. But this is impossible since {/?(.?)} is a strictly decreasing 
sequence of positive integers. Consequently, there exists an integer S such that 
S /=3 ,(zp(S)), and the forms of cp and Jt follow by setting p=p{S) and r=Ts. 
Note that p^l since Jt is nontrivial. 

Conversely, suppose that <p(z)=zr¥(zp) where rAp = l if p^O, and that 
Jt=y{z,p+J: /'SO, jer} for some union r of (r,/?)-cycles. If p=0, then clearly, 
Jt is invariant under C^; so we assume that p> 1. If z" belongs to Jt, then so does 

+mp | - Q r e v e r y m s 0 . Indeed n—ip+j where j is in F and / ' S O and there exists 
an integer V such that + l)p. Hence, rj=i'p+j\ where j' is in r 
by the definition of (r, p)-cycle. Therefore, f+mP=z

<-ri+i'+m'>Pzr is in Jt, and thus, 
so is (?(z)n=?n W(zp)n. It follows that Jt is invariant under C„. 

Finally, Jt-1- is invariant xmder C9 since it is the closed span of vectors of the 
form zip+J (/SO; j^T'), where T' is the complement in {1, ...,/?} ({1,2, ...}, if 
p=0) of r and is hence the union of (r,/>)-cycles. 

Proof of Theorem 2. Since C*"=C*N is compact with nonzero eigenvalues 
<p'(a)mN (m=0, 1, ...), it follows from [4, Theorem 4.1] that <p'(a)m is an eigenvalue 
of C* of multiplicity one for every m. Thus, by the matrix of C* with respect to {£„}, 

n n . 
we have that \f bm=ker JJ [G* — (p'((x)m] for every «=0 ,1 , . . . . Therefore, by 

o 0 
induction, either bn belongs to Jt or is orthogonal to Jt for each n, and hence the 
form of Jt is given by Theorem 3. 

Proof of the p ropos i t ion . Using induction on n with m fixed, the case 
n=0 is obvious, so we assume that the inequality holds for some n. Since <p(a)=a 
and <p(i)(a)=0 (z = l, ..., r - 1 ) , we have that <p®(a)=0 for every / = 1,..., r"~ 1. 
Hence, Cl+1bm=C„f where f=bm(a, (pn)=[(z-a)/(l-zd)]mr"g for some H°° func-
tion g. Therefore, ||C£+16JU=\\(<p-a)/(l-<p«№'"\\g(<p)\\- where ||g(<p)|U^ 
^ lk l l~ = ll/ll~^ll(?>-a)/(l-<?a)ll™(r"~1)/(r_1) by the induction hypothesis. The 
case n + 1 now follows by combining the above inequalities. 

Proof of Theorem 4. Since |MU<1, Cv is compact by [11, Theorem 5.2]. 
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Therefore, by [4, Theorem 4.1], the kernel of 1 — C* is one-dimensional, and since 
it is invariant under X*, we have that X0}=0 (y'sl). 

Suppose that <p(m)(a)=0 (m = l,...,r— 1) and (p(r)(cc)^0. By direct compu-
tations, there exist constants ni.=fii.(n) such that for every i s 0 , 

b^ii-n-M-vcZb^+Ztobe i'-ci 
where Moreover, since ||<p||„< 1, it follows that 
||(<j<>—oc)/(l—<pa)|U< 1, and hence there exists an integer A f s l such that 
| | (9-a)/(l-<pa)K<|M | . Thus, 

Ay = (Xbj, b,)2 = birn\+ 2 Mr h-i 

and consequently by the proposition, for j ^ M i we have that 

M V(r"-l)/(r-:l) 
1 —(pa. 

Therefore, the theorem follows by induction on / s i , and the separate case i=0, 
since the right hand side converges to zero as n tends to infinity. 
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The numerical ranges and the smooth points of the unit sphere 

FRANK PIETSCHMANN and ADOLF RHODIUS 

I. Let Sp be the unit sphere of a complex Banach space (E, p). The set of all 
smooth points on Sp will be denoted by Fp. The element xÇ_Sp is a smooth point if 
and only if the Gâteaux derivative p' at x exists. We denote by VD (T) the spatial 
numerical range of T. If the unit sphere is smooth, then the relation 

VDp{T) = {p'(x, Tx) — ip'(x, iTx): x€Sp} 
holds. We assume that the set Fp is dense in the unit sphere Sp, e.g. this holds for 
separable or reflexive Banach spaces. We prove that for continuous operators T 
the closure of the set 

{/(*, Tx) - ip'(x, iTx) : x6 Fp} 

is the closure of a Lumer numerical range of T. 
II. Let Dp be the mapping of Sp into the power set of the dual E' of E defined by 

Dp(x) = {/€£': f(x) = 1, |/OOI — P(y), (yeE)}. 
We consider the continuous operator G: E-—E with the domain D(G)QSp. For 
a mapping Qp of D(G) into the power set of E' with 

0 ^ Qp(x) g Dp(x) (X£D(G)) 
the set 

VQP(G) = {/(Gx): fdQpix), x£D(G)} 

is called the numerical range of G corresponding to Qp. (See [7].) If card Qp(x) = l 
(x£D(G)) holds, then VQ (G) is a Lumer numerical range. VD (G) is called the 
spatical numerical range of G. 

Theorem 1. Let T be a continuous operator of Sp into E. If VQ (T\A) is a nu-
merical range of the restriction of T to the subset A of Sp with cl A=Sp, then there 
exists an extension Qp of Qpto the unit sphere Sp such that 

clVSp(T\A) = c\VQp(T). 

Received August 4, 1986. 
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Proof. Let xdSp\A. Then there are sequences (x„) in A and ( f n ) with 
f„dQp(xn) and p(x„—x)-+ 0. Since the unit ball of E' is weak*-compact, we can 
choose subnets (fp)piB of ( f n ) and (xp)f€B of (x„) and an fx£E' such that 

( f f f ) p i B is weak "-convergent to fx and p(x^—x) — 0. 
The inequalities 

\f.{y)\ ^ P(y) *€N) 
imply 

\f*(y)\^p(y) (y£E). 
But since 

/ f W = ft(xf-x)+fff(x); \fp(xfi-x)\ s p(x0-x) 

we deduce fp(xp)^fx(x) and fx(x)=1. So we have fx£Dp(x). Now we extend the 
mapping Qp by the definition 

n r \ - № > ( z ) f o r 
W ) ~ m for z€Sp\A. 

It is clear that the relation cl VQ (T\A)<gc\ VQ (T) holds. It remains to show that 
the scalar fx(Tx) is a cluster point of VQ (T\A) (x£Sp\A). By the construction 
there are nets (xf)fiiB of A and ( f f ) p i B with ft^Qp{xf) such that 

My) ~*fx(y) 0>€£) and / > ( * , - * ) - 0 . 

The inequality \ffi(Txp-Tx)\^p(Txp-Tx) and the continuity of T imply 
fp (Txp — Tx) —• 0. Hence from the relation 

fp(TXl)) = ffi(Tx)+ffi(Txe-Tx) 

follows ffi(Txfi)-^fx(Tx). 

Remark 1. The proof of Theorem 1 shows that there exists an extension 
QP of QP satisfying the condition card £?p(x)=1 (x€Sp\A). 

Theorem 2. Let T be a continuous operator of Sp into E. IfFp is dense in Sp, 
then the set 

cl {p'(x, Tx)—ip'(x, /Tx): x£Fp} 

is the closure of a Lumer numerical range of T corresponding to a mapping Qp defined 
on the whole Sp. 

Proof. We applicate Theorem 1 putting A=Fp. There exists exactly one 
mapping Qp ofFp into the power setof E' with 0^Qp(x)QDp(x) (x€F„). By [6] holds 

VQp(T\Fp) = {p'(x, Tx)—ip'(x, /Tx): x£Fp}. 

Hence by Theorem 1 the conclusion follows. 
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Corol lary 1. Let T be a linear continuous operator of Sp into E. If Fp is dense 
in Sp, then for the numerical radius vp(T) the following relation holds: 

vp(T) = sup \p'(x,Tx)-ip'(x,iTx)\. 
xiFp 

Remark 2. The condition cl Fp=Sp is fulfilled for separable Banach spaces 
(see [5]), and for reflexive Banach spaces (see [3]). 

Remark 3. Let E be a separable Banach space and let Г be a linear continuous 
operator of Sp into E. While the set 

cl {p'(x, Tx)—ip'(x, iTx): x£Fp} 
is the closure of a Lumer numerical range of Г defined on the whole Sp, in general it is 
not the closure of the spatial numerical range of T. We consider the following example. 

Let c0 be the Banach space of all complex null sequences x=(xt) equipped 
with the norm p(x)=max Then x£Sp is a smooth point on Sp if and only 
if the relation |x(| = l holds for exactly one coordinate x{ of x; let be |xi(;c)| = 1. 
Using the functional fx defined by 

fx(y) = Уцх)Х{(х) (у = (уд), 
it follows Qp(x) = {fx} (x£Fp). For the operator Г with 

Tx = , l/2x2, l/3x2, ..., l/nx„,...) (x£Cq) 
one obtains VQp(T\Fp)={\, 1/2, 1/3, ..., l/n, ...}. Therefore the set {IIn: «¡EN}U{0} 
is the closure of a Lumer numerical range of T defined on the whole Sp. The closure 
of the spatial numerical range of Tis the interval {l£R: O^A^l}. 
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On the joint Weyl spectrum. II 

MUNEO CHO 

Dedicated to Professor Satoshi Koto in token of gratitude 

1. Introduction 

In [3], we studied the joint Weyl spectrum for a commuting pair. In this paper 
we shall show that the Weyl theorem holds for a commuting pair of normal ope-
rators. 

Let if be a complex Hilbert space with the scalar product ( , ) and the norm 
|| • ||. Let B(H) be the algebra of all bounded linear operators on H and C(H) the 
algebra of all compact operators in B(H). 

Defini t ion 1. Let T=(TltT^c:B(H) be a commuting pair. Taylor joint 
spectrum a(T) of T is defined by a(T)={z=(z1, z2)£C2: a(T—z) is not invert-
ibleon H@H), where 

Defini t ion 2. Let T=(T1,T2)<zB(H) be a commuting pair. The joint Weyl 
spectrum w(T) of T is defined by 

to(T) = n{<x(r+C): C = (Cl5 Cy c C(H) and T+C = (7I+C,, T2+CJ 

is a commuting pair}. 
z=(z1,z2) in C2 is said to be joint eigenvalue of T=(Tl, T2) if there exists 

a non-zero vector x such that 

Ttx = z,x (i = 1,2). 

ot(T) is .the set of joint eigenvalues of T. 

Received November 10, 1986 and in revised form August 26, 1987. 
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z=(z1,z2) in C2 is said to be joint residual eigenvalue of T=(T1,T2) if 
there exists a non-zero vector x such that 

T f x = ztx (/ == 1, 2). 

cr(T) is the set of joint residual eigenvalues of T. 
For a commuting pair T=(Ti,T2), opf(T) is the set of joint eigenvalues of 

finite multiplicity, arf(T) is the set of joint residual eigenvalues of finite multiplicity, 
<jpfi(T) is the set of isolated points in a(T) which are joint eigenvalues of finite 
multiplicity and arfi(T) is the set of isolated points in a{T) which are joint residual 
eigenvalues of finite multiplicity. 

For any operator S on H, we denote by N(S) the null space of S. 

2. Theorem 

Theorem A (VASILESCU [6]). For a commutating pair T=(T1, T2), a(T) is 
invertible if and only if 

is invertible on H®H. 

Theorem B (CHO and TAKAGUCHI [3]). For a commuting pair T= (7^, T2), 

o{T)-a>{T)aap(T)UGr{T). 

Lemma 1. Let T— (71, T2) be a commuting pair. Then 

a{T)-apf(T)[}arf(T) c w(T). 

Proof. Let z=(z1 ;z2) be a joint eigenvalue of infinite multiplicity. Let C = 
=(Cj , C2) be in C(H) such that T+C^^+C^, T2+C2) ,is a commuting pair. 
For a infinite orthonormal sequence {x„} in (x: Tix=zix ( i=l , 2)}, we may assume 
that there exist vectors yt and y2 such that lim Cixn=yi (i= 1, 2). If 

PK + > ~ \T2+.C2-z2 (Tl+C^ZJ*) 
is invertible, then 

li m(xn®0) = p(T+C-z)~1(yi®yid. 

It is a contradiction to the choice of {*„}. So it follows, by Theorem A, that z£co(T). 
Let z=(zlt z2) be a joint residual eigenvalue of infinite multiplicity. Then for 

an infinite orthonormal sequence {*„} in 

{x-.Ttx = ZiX ( /=1 ,2)} , 
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we, may assume that there exist vectors yt and y2 such that 
limC?*,, = у,- ( /=1 ,2 ) . 

If P(T+C-Z) is invertible, then 

lim (0©x„) = ^ ( r + C - z r H - ^ e ^ -
It is a contradiction. So it follows that гСю(Г). 

So the proof is complete by Theorem B. 

Next following Baxley we consider the following condition If {z„} is an 
infinite sequence of distinct points in apf(T)\Jarf(T) and {x„} is any sequence of 
corresponding normalized joint eigenvectors, then the sequence {x„} does not con-
verge. 

Lemma 2. If a commuting pair T=(TX, T2) satisfies then 
o{T)-(opfi{T)\JarIi(Tj) с a>(T). 

Proof. We have the identity 
<j(T)-{<jpfi{T)\Jorfi(T)) = 

, (a (T) - (apf (T) U arf (T))) U ((apf (T) U arf (T)) - (<rpfi (T) U arfl (T))). 
So, by the above lemma, it will be sufficient to prove that z=(zx,z2) is in 
(<тр/(T)Uarf (T))-(<rpfi(T)U.ffr/i(T)) and not in the closure of (c7(r)-(<7p/(T)U 
arf(T))), then z is in a(T+C) for every C=(C l 5 C2) such that T+C=(T1+C1, 
T2+C2) is a commuting pair. 

Assume that z is in (apf(T)Uarf{T))-(apfi(T)Uorfi(T)). Then there; exist 
z„=(zj, z£) (n = l, 2,...) in TPS(T) or in <7RF(T) such that z„^zm (N^M) and 
lim zn-=z. Suppose that the z'ns are in <jpf(T), then we can consider a sequence 
{*„} of unit vectors such that 7]x„=z"x„ (i = l, 2) for every n. Of course, we can 
suppose, without loss of generality, that there exist vectors уг and y2 such that 
lim С(х„=у, (г = 1,2). If, for T+C—z = (T1+C1—zl, T2+C2-z2), p(T+C-z) 
is invertible, then 
• lim(x„©0) = P(T+C-z)-1(y1®y2).' 

It is a contradiction to the condition So it follows that гбш(Г). ; -
When {z„} is in ARF(T), then we can prove that z belongs to OJ(T) in a. similar 

way (see the proof of the lemma above). 
So the proof is complete. 

Next we shall show that the Weyl theorem holds for a commuting pair of 
normal operators. We need the following theorem. An easy computation shows that 
the theorem holds: i ' 

Theorem C. Let T=(T1,T2) be a commuting pair of normal operators. Then 
a(T) is invertible if and only if Т*Тг+Т*Т2 is invertible. ...... 

12 
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Theorem. Let T=(T1,T2) be a commuting pair of normal operators. Theft 
the Weyl theorem holds, that is, 

a(T)-apfi(T) = co(T). 

Proof. Since T=(T1,T2) is a commuting pair of normal operators, T satisfies 
the condition ^ . So, by Lemma 2, it suffices to prove that 

a(T)-ap/i(T) 3 <o(T). 

Let us consider a point in opii(T). We may assume without loss of generality 
that this is (0,0). We define N=N(T*T1+T2T2), then dim(A0<°°. Let P denote 
the orthogonal projection of H onto N. Then P is a compact operator and TtP= 
=PT,=0 (/=1,2). Hence 

T+Q = (7i+(l//2)P, T2+(l/Y2)P) 

is a commuting pair of normal operators. Since (0, 0) is an isolated point of a(T), 
so using Theorem C for Tx—zx and T2—z2 in place of Tx and T2, respectively, by 
continuity arguments we obtain that 0 is an isolated point in the spectrum of T*Tt + 
+T*T2. It follows that 

(r1+(i//2)p)*(r1+(i/^)p)+(7;+(i/y5)p)*(r,+(i/y2)p) = t t t . + t ^ t . + p 

is invertible. So, by Theorem C, (0, 0)$o(T+Q) and thus (0, 0Hco(T). 
So the proof is complete. 

Acknowledgment. We would like to express our cordial thanks to the referee 
and Professor T . H U R U Y A for their kind advice. 
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The accuracy of the normal approximation for 
{/-statistics with a random summation index 

converging to a random variable 

M. AERTS and H. CALLAERT 

Introduction 

The exact order of the normal approximation has been obtained in [2] for U-
statistics with a random summation index L„ where L „ / « — T with z a constant. 
In this paper it is shown that the same order bounds can be obtained in the situation 
that the random index L„ satisfies LJn—T where now z is a positive random variable. 
Moreover, a sharpening of the moment condition on the kernel is included. The 
results are valid for t/-statistics with kernel of general degree r but in order to avoid 
a cumbersome notation, the proofs of the main theorems are given for the case that 
r=2. Tools for passing from r = 2 to an arbitrary degree r are given in the prelimi-
nary lemmas which are formulated and proved for general r. For further information 
we refer to the Ph. D. thesis of one of the authors [1]. 

The results obtained in this paper are an extension of earlier results for random 
sums of i.i.d. random variables, proved in [6] and [3]. The proofs of these results 
use some methods which heavily rely on the i.i.d. structure. However, if one makes 
use of the structure of a ¿/-statistic together with some technical fine-tuning, it is 
possible to obtain order bounds which are as sharp as in the i.i.d. case without 
imposing any additional condition. We also note that an asymptotic normality 
result contained in Theorem 1 below could in principle be obtained from Theorem 1 
of [4]. However, this derivation would require some extra assumptions on the kernel 
function and no information on the rate of convergence could be gained. 

Received December M, 1985 and in final revised form July 20,1987. 
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Preliminary lemmas 

In order to create some flexibility in the renormalization of the statistics under 
consideration we formulate some general lemmas, special cases of which will be 
needed in the proof of our main theorem. The proof of Lemma 1 is elementary and 
is left to the reader. Throughout the paper we use the convention [x]=min 
xsk}. 

Lemma 1. Let (Q, si, P) be a probability space and X„ and Y„ two sequences 
of random variables defined on Q. Let C be a positive constant and d„ a sequence of 
nonnegative real numbers. If for some k^O and some a=-l, Sk

n'a denotes the set on 
which y„>&a/(a— 1), then 

Si fn{ X.-k 
Y„—k - 1 aCd, ' j c i ' n j h . 

Y„ 1 Cd„}. 

Lemma 2. Let (Q, si, P) be a probability space and X„ and Y„ two sequences 
of positive random variables defined on Q. If there exist positive constants cx and c2 
and a sequence of positive numbers e„ with £„->-0 for n^- such that 

(1) 

and 
V) P ( Y n < c ^ * ) = 0[ten), n 0 < * • 

then, for every integer fcsO,. there exists a constant Mk .such that 

(3) VlYn] - i ) . •(Xn-k) 
YT„ k k k , ] - - i ) . 

-1 >Mk]/En\ 

.Proof. The proof is by induction. For k=0, (3) follows by taking . 
Assume that (3) holds true when. k=r— 1 for some r6N0. Putting 

z = Vra xn(x„-\).:.(xn-r+\) • 

for the induction hypothesis yields that P(\Z„ — l l>M r_ 1 Ye„) = 0(^en), n-* 
some constant Mr_x. Now choose Mr such that Mr s max (3Mr_1, 6cx) and then 
take n so large that 

(4) e„ < min {1, (cJ2r)\ 9/(Mr
2)} 

is satisfied. Since (4) implies that..[cze~y*]>2rt one has, iKing ;the. Poijiferroni ine-
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quality and (2) 

P(|Z„ -¡^r-11 > MT f ^ j s P(Yn. < + 

It is easy to see, using the choice of Mr, the induction hypothesis, (1), (4), and Lemma 
1 with C=MJ6, a=2, d„=Ye„ and k=r, that the second and third terms here 
are But by (4) the fourth term is not greater than 

p [ | ( Z „ - [ Y n ] > 2 r , | Z n - l | s l ] + P ( | Z B - l | > l ) ^ 

and the lemma follows. 

The next lemma, which states the rate of convergence to normality for non-
stochastically indexed ¡[/-statistics, plays a crucial role in the proof of the main 
theorem. It determines, together with the asymptotic behaviour of the random 
index Ln, the final approximation order for random ¿/-statistics. 

Lemma 3. Let (Q,si,P) be a probability space and X1, X2, ... iJ.d. random 
variables defined on Q. Let 12Cn,r) h(Xti, ..., Xi) be a U-statistic with 
Eh(Xlt ...,Xr)=6 and put g(X1)=E(h(X1,...,Xr)-6\X1). Assume that <r2= 
=Var g(Xt) is strictly positive, and that for some 8, 0<c5sl, one has that 
E\g(Xi)|2+*< °° and E \h(Xx,..., Zr)|(4+^3< Then, one has: 

* I I ra ) = 0(n~'l2), h-oo. 

Proof. The proof is essentially based on an improvement of a Berry—Esseen 
bound for more general non-parametric statistics (see [5]). For details of the proof 
we refer to [1], where it is also shown that the result of Lemma 3 is valid for statistics 

p . -
with structure ^ as used in the proof of our mjain theorem. 
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Main result 

Theorem 1. Let (Q, si, P) be a probability space and X1, X2, ... i.i.d. random 

variables defined on Q. Let Un=\~| 2 h{X¡,X,) be a U-statistic with 
W lSKJSa 

Eh(X1,X2)=9 and put g(X1)=E(h(X1, X2)-B\X^. Assume that or2=Var ̂ №) is 
strictly positive, and that for some 8, 0<<5^ 1, one has that E\g(X^)\2+>< and 
£'|/I(Z1,Z2)|(4+,)/3<OO. Further, let e„ be a sequence of positive numbers tending to 
zero and such that, for n large, n~s^s„. Let L„: i2—{2, 3, 4, . . .} and t : £2—(0, 
be random variables satisfying, for some constants c l 5 c 2 > 0 : 

(6) „-CO 

(7) r is independent of Xk, k = 1, 2, ... 
then, one has: 

(i) * ] - * ( * ) « — 

(ii) s u p \ p { % - ( U ^ - Q ) s *)-<P(*)| = 0(Y7„), n - co 

aw/, i / ff2 = Var £/„ exists: 

(iii) sup ¡P^iu^-e) ^ *)-<P(*) | = 0{i7n), n - c o . 

Proof . W.l.g. we assume that 0=0. The following notation will be used: 

N , = { 2 , 3 , 4 , . . . } 

/„** = i:*(co) = 

= 0'€Nj|[«T(CO)](1 -cxe„) S / S L„(co) or Ln(co) [mt((U)](1 -c l £ n)}, 

/„* = I*(m) = {ygNxl;^ [ « ( « J K l - c ^ } , 

J* = J*(a>) = O ' C N J ^ C ^ K l - c ^ J s j s [«T(co)](l +c l£n)}, 

A = { y ' ^ l f c O - c i e j S j S ¿(1 +cl£n)}, 

1 if [MT(CO)](1 — CJO ^ Ln(fii), 
otherwise. 8B = 5„(«>) = { J 
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Proof оf (i). We first prove (/) with m replaced by [ит]. Choose n large enough 
so that e„< c\ and, using (6), remark that 

(8) P([m] < [c2e-^]) < = О ( f a ) . 

Hence 

sup 

s sup 

-Ф(х)Р([т] s [с2в"^])|+0(1/еп). 

Putting \l/(Xi,Xj)=h(Xi,Xj)—g(Xi)—g(Xj), the following decomposition holds 
on the set where [m]^[c2E~vs]\ 

1!{m\ f[«T])-
2a P J T ^ W . ^ -

o-ytnx] i=i o-y [«TJ([«T]-1) ja* ¡=i 

U«T] — 1 ; a ]/[HT] i=1 <7V[HT]([«T] —1) j-e/** ¡=1 

= I + I I + I I I + I V . 

Using a Slutsky argument and the Bonferroni inequality, it suffices to prove that 

(i.A) 

sup | I > ( I + I I S x, [m] S [c2e^s))-<P(x)P([m] s [c2£-^])| = 0(l/7„), n 

(i.B) P ( | I I I | > [nr] S foe-1"]) = 0(f£), n 

(i.C) i>(|IV| > [HT] S [c2£n-1/3]) = n 

Proof of (i.A) 
(9) sup |P(I+II => x, [HT] &[CA-^-tf(x)P([NT] s [c2£"^])| S 

S 2 *<[»*] = *)sup \P(2gm+Yk =S bk(x)\[m] = *)-i»(x)| 
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_ . 1 j-i 
with bk(x)=xa У к and Yk=-r У. 2 ФС^и Xj). On the summands in the 

к — 1 ¡=1 
r.h.s. of (9) we use the following inequality: 

(10) sup \P(2 g(Xi)+Yk s bk(x)\lm] =к)-Ф(х) x i=l 

^ sup | p ( i g(X,)+Yk =s Ьк(х))-Ф(х)\ + ; 

+ sup | P t Z g W + Y , bk(x), LntJk\[m] = k)-P(Zg(Xd+Yk Ш bk(x))\ + 

+Р{ЬЛШт] = к). 
Putting 

rk(x) = P(Zg(Xd+Yk ^ bk(x), Lnak\[m] = k), 
j=I 

**(*) = P(¿g(Xi)+Yk s bk(x)), 

m 
Ak(x) = {со max Z g(*i)+Yk Ш bk(x)}, , 

Bk(x) = {co\min Z g(Xd+Yk S bk(x)}, 

one has that P(Ak(x))^sk(x)sP(Bk(x)) and P(Ak(x), Ln£Jk\[m]=k)^rk(x)TS 
^P(Bk(x)), where we have used (7) to obtain the last inequality. Since P(Ak(x)) = 
=P(Ak(x), Lnak\[nx\=k)+P(Ak{x), ЬпШ[т]=к) it follows that | rk(x)-s t( ; t ) |S 
SP(Bk(x))-p(Ak(x))+P(Ak(x), Ln$Jki[nr]=k) and hence that : , ; 

(11) sup |r4(x)-J f t(x)| ^ sup(P(5 t (x) ) -P(AW))+P(L n i J J [«x] = к). 

An application of Lemma 3 yields that there exists a constant G Such that 

(12) sup \P(Z g{X,)+Yk Ш Ьк(х))-Ф(х)\ S Скг'Ъ 
X 1=1 Î I • I . 

Applying (11) and (12) on the r.h.s. of (10) and using the obtained inequality in (9) 
leads to: . I; v . - !'••' . • ¡v ; ' : i\ 

sup |P(I+II ^ X, [ит] s [с2е-1'>])-Ф(хуР([т] ш [с2г^\)\ S 

^ Z Mит] p k)sup (P(Bk(x)).- P{Ak(x))}+ 

+2; . J Р(ЬЛЛ1М = к)РЦт] = т с . . Zi, . k-"2P(l>n] — к). 
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Now, remark that • ' •'•• 

(13) J . k-WP([nX) - k) k C^ fa P{[nx] S [c2£-^]) = 0(Y7H) 

and thati using (5), 

(14) i P(LA Jk\[nr] = k)P([nx] = *) == P(LAJfi = 0(\Q. 

Hence, it suffices to show that 

(15) 2 P([m] = k) sup (P(Bk(x))-P(Ak(x))) = 0(YTn). 

Putting p=minJk, q=maxJk> r = m a x / t and remarking that r=p—1, it follows 
from Lemma 2 in [2] that 

p{Bk{xj)~p{Ak(xj) S =5 ^ M - n , i g № ) s fc*(*)-r*)+ 
i = l ¡ = 1 

+P{2 g(Xi) s bk(x)-Yk, 2 g(*i) s 
¡ = 1 ¡ = 1 

for some constant c. We now use Lemma 3 from [2] with X replaced by 

2 g(Xi)+Yk-, Y by 2 g № ) ; b by aYh d by Ck-"z and t by bk(x). 
i = l i = p + l 

We then obtain that for constants K and L: 

sup (P(Bk(x))-P(Ak(x))) S Kk-"*+Lk-^E\ 2 g(Xi)\^Kk-i'2+<TL]f^P 

* i=p+1 r * 

where the last inequality follows from E 
1 i 

2 g(*i) ~ u by the moment 
Yq—p 

inequality and the independence of the Xt's together with Eg(X^)=0. Inserting 

this result into the l.h.s. of (15), after remarking that j / ^ ^ s „ , and using 

(13), one arrives at the desired order bound 0(Ye„), completing the proof of (i.A). 

Proof of (i.B). From (8) and (14) it follows that 

( 1 6 ) P ( | I I I | > [m] S [ C 2 8 - ^ ] ] S 0{Yen)+ . ' 
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Using (7) and the fact that max \m—k^kc^, one obtains: 

' ( l - T ^ r - i l l l ^ l - ^ - . i m = * ) . ? ; . 

- ' ( ¡ S S № l | > s ' ( ¡ S . H « * * . ' • 

Since 2g(Xi) , m = 1,2,..., forms a martingale, the Kolmogorov inequality 
«'=1 

yields that 

i n s . > s -

= 4clqkeJ(k-iy = 

showing that the r.h.s. of (16) is of the order 0(fen). 

Proof of (i.C). Using the same reasoning as in the proof of (i.B) and remem-
bering that <5„ = 1 if [WT](1 — CiB^^Ln, one has: 

I > ( | I V | [BT] S [ C 2 8 - ^ ] ) S 

- 2 p fmax | 2 2 Xj)\ > < T ^ E " ( f c - 1 ) ) P([nT] = k)+o(iVn). 

m j— 1 
Further, it is well-known that Vm— 2 2 Xj)> P + U • and also 

J-p ¿=1 K 
Wk = 2 ^Wi, XJ), k=\, 2,..., j— 1 are martingales. An application of the Kol-

i = l 
( 4 + 5 ) mogorov inequality and a theorem in [8] lead to I denote —-— by si 

Pfmax \ 2 J2MXi, Xj)\ > < 7 ^ ( f e ~ 1 ) ) S 2s<J-s{k-\)-°(ken)-^E\Vq\* ^ \pSmS9 'j=p f=i I ) 

^K(k-l)-°(kenrsl2 iElWj-A'^K'ik-iy'iksJ-^iq-p + Uq 
J=p . . . 

where K and K' are constants. A short computation, using q—p^2kclE„ and 
q ^ k ( l +c1e„), yields the desired order bound 0(/e„). To complete the proof of 
(i), we have to show that [m] can be replaced by m. An application of Lemma 1 of 
[7] yields that it is sufficient to prove that for some constant C 
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That (17) holds follows from Lemma 2 with Xn=Y„=m and k= 1, checking by 
(6) that (1) and (2) are satisfied. 

Proof of (ii). As above, it can be shown that [WT] may also be replaced by 
Ln. We take X„=Ln, Yn=m and k—\ in Lemma 2.Since (1) and (2) then coincide 
with (5) and (6), the proof of (ii) is complete. 

Proof of (iii). We first show that 

4or2 - 1 e s . ) = o ( / ï ) with 
J CnO 

Using that n&%=4a*+ 
« - 1 

Eij/2(X1, X2), this follows from condition (6) after 

easy manipulation. Since 

2a - 1 Y 4<72 - 1 C 2 e„)=0( / £ n ) 

a lemma of [7] makes it possible to go from (ii) to (iii). This finishes the proof of 
the theorem. 

We close with a result concerning the case when the indices are independent 
of the basic sequence. The details of the proof are of course simpler than in the 
general case (for instance, there is no need for the decomposition of U„) and there-
fore are not given here. 

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with (5) deleted and 
(7) replaced by: Ln, T and Xk, k = 1, 2, ... are independent for each « = 1,2, .... 
Then 

(a) if / ¡ ¡ j =0(Y7„), the results (i), (ii) and (iii) of Theo-

rem 1 hold; 
[HT] 

L 
(b) if P [——< 1 — a)=0(/e„) for some constant a< 1, the results (ii) and (iii) 

^ [HT] ) 
of Theorem 1 hold. 

Acknowledgement. The authors thank the editor and a referee for careful reading 
and precise remarks which have resulted in a considerable improvement of the 
presentation of the paper. 
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G. M. Adelson-Velsky—V. L. Arlazaro?—M. V. Donskoy, Algorithms for Games, X+197 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1988. 

The original Russian edition was published in 1978. Though.the progress in the development 
of computer chess programs has been rapid, present translation is still interesting since it deals 
with the basic ideas of the research problems rather than with specific programs and programming 
techniques. 

The book consists of four chapters. Chapter 1 is devoted to à description of a two-person 
game with complete information. It contains the definition of the game tree and the position score 
furthermore brand- and- bound method of- searching for the best move in a position. Some simple 
theorems on the decomposition of a game tree are proved as well as theorems on valuation of po-
sitions for finding the best moves. 
Chapter 2 is devoted to heuristic methods for choosing a move in a contemplated position. A proba-
bilistic method is used for justifying a heuristic algorithm. Shannon's model with the concept of 
evaluation function and depth of the search are introduced. 
Chapter 3 (entitled The Method of Analogy) is devoted to the definition and study of moves which 
are independent of positions (analogous positions) having thus analogous consequences in different 
positions. In Chapter 4 (Algorithms for Games and Probability Theory) constructions of proba-
bilistic models for two-person games and calculation of model scores on a probabilistic basic are 
investigated. 

The authors of the book had written the program of KAISSA which won the First Internation-
al Championship for Chess Programs in 1974. 

In the Appendix the reader finds a list of chess programs which took part in 1974—1977 com-
petitions, and an interesting historical survey of game programming of computer age up to 1978. 

Zoltàn Biâzsik (Szeged) 

Brian A. Barsky, Computer Graphics and Geometric Modeling Using Beta-splines (Computer 
Science Workbench) IX+156 pages, Springer-Verlag, Berlin—Heidelberg—New York—London— 
Paris—Tokyo, 1988. 

Specialist of ^-splines B. A. Barsky gives the following conception of this book in the In-
troduction: "The underlying concept of this work is the synthesis of two useful concepts: the appli-
cation of tension to a shape; and the study of a parametrically defined shape as fundamental geo-
metric measures." The whole method is based on considering the continuity of these two differential 
geometric notions, which are of basic importance in the investigation of their geometric shape. 

Even the reader who is unfamiliar with the theory of curves and surfaces can easily catch 
ideas of the considerations concerning continuity of the Unit tangent and curvature vectors of a 
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curve given by a piece-wise representation. The visualization problems of these concepts by computer 
graphic methods are introduced in a clear way, as well. 

As to the technical applications, the most important feature of the ^-spline curves and surfaces 
is that the base points render local control possibility. The shape of the curve and the surface can 
be modified locally, furthermore the so called shape parameters determine the "tightness" and 
"looseness" of the curves and surfaces as they fit close the control polygon or surface. 

Independent chapters are devoted to the cases of uniform, respectively continuously varying 
shape parameters. In the both cases a method is explained in detail for determination of the ^-spline 
curve (surface). For this purpose the author shows REDUCE computer algebra system developed 
at the Department of Computer Science at the University of Utah. This is a perspicuous program 
for the eváluation of the unknown coefficient functions of ^-spline curves and surfaces. Boundary 
conditions (respectively, end conditions) are analyzed in original chapters, including the problem 
of classification. 

One of the greatest merits of the book is the excellent collection of figures and pictures. They 
help the reader tó understand the concepts above more exhaustively, and demonstrate the effective-
ness of ^-spline representation. Especially remarkable are the figures analyzing the relations between 
control polygons (surfaces) and shape parameters, by the side of which the reader can see the synthet-
ic image appearing on the monitor. Wide possibilities of ^-splines are illustrated by nice colour 
pictures in the 19th chapter. 

The book is recommended to readers interested in ability of /?-spline technique. However, 
it should be a pleasure first of all for those mathematicians and computer scientists who want to 
deal with computer graphic and design problems. In the latter case, the summary in the 20th chapter 
with an outlook on further research directions; the enclosed Reduce programs in the Appendix, 
and the Bibliography on Curves and Surfaces including about 400 references are very useful. 

József Kozma (Szeged) 

M. Berger—B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces (Graduate 
Texts in Mathematics, 115), XII+474 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
—London—Paris—Tokyo, 1988. 

First of all we must sound out that this is an extremely good book. The observant readers must 
certainly find great pleasure in reading this book, because of its clear style and very nice setting up. 
Although one has to read this book to know its taste we try to say some words about it. 

This book can be regarded as an enlarged and revised version of M. Berger's book "Géométrie 
Différentielle" (1972). In order to know something about the building up of this book it is worth 
to quote Berger's words about his aims in lectures he read in Paris in 1969—71 served as the basis 
of this beautiful book: 

"First, to avoid making the statement and proof of Stokes' formula the climax of the course 
and running out of time before any of its applications could be discussed. Second, to illustrate each 
new notion with nontrivial examples, as soon as possible after its introduction. And finally, to famil-
iarize geometry-oriented students with analysis and analysis-oriented students with geometry, at 
least in what concerns manifolds.". 

. While the first nine chapters are based on the above mentioned book absolutely, the last two 
chapters are an. "attempt to remedy the notorious absence in the original book of any treatment of 
surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most 
common geometrical objects, not only in mathematics but in many branches of physics". 
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Although .we have not detailed the book's contents we suppose these words above can take 
a fancy to reading of this book, hence we call again attention of everybody interested in differential 
geometry on graduate level or reading lectures about it to this well illustrated nice book. 

Árpád Kurusa (Szeged) 

K. H. Borgwardt, The Simplex Method. A Probabilistic Analysis, XI+268 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

Since the Simplex-Method was discovered by George B. Dantzig it has been in the central of 
interests of researches. One of the most interesting problem in connection with the Method is the 
discrepancy of its worst-case behaviour and the good practical behaviour of it. 

This book — giving a comprehensive probabilistic analysis of the so-called Two-Pháse Simplex 
Method — attempts to resolve this discrepancy. 

After an extensive introduction in which the author overviews the known results of the proba-
bilistic analysis of the Symplex Method including some theorems from the field of stochastic geom-
etry, the papers of Smale and Hainiowich and of course their own earlier results as well. 

Because of the analysis is based on the shadow vertex algorithm, the first chapter reviews this 
algorithm. The next two sections deal with giving an upper bound for the average number of pivot 
step of the algorithm. The research culminates in the Theorem 6 of the Chapter 3 in which the 
author postulates that the average number of pivot steps (£ m , J for the complete Simplex Method 
is polynomial, namely if we have m inequalities with n variables then 

Chapter 4 studies the asymptotic average behaviour of the Simplex Method. (The author uses the 
term "asymptotic" in the sense that m-* and n is fixed.) 

Upper bounds have been given in integral form, for certain classes of distributions including 
the uniform and the Gaussian distributions as well. 

In the Chapter 5 the author introduces a modified version of the Two-Phase Simplex Method 
solving the so-called rotation invariant model with n additional nonnegativity constraints. It has 
been proved that the expected number of pivot steps of this algorithm is not greater than 

WI , /<— 1 ) ( / J+L) 4 J: . 

An Appendix including definitions and proofs for Gamafunction and Betafunction closes the 
book. The book is well-organized readable (in mathematical sence), but I have to mention that the 
lack of some definitions causes that the book is not absolutely "self-contained". 

G. Galambos (Szeged) 

CAAP '88, 13th Colloquium on Trees in Algebra and Programming, Proceedings, Nancy 1988. 
Edited by M. Dauchet and M. Nivat (Lecture Notes in Computer Sciénce, 299), VIII+304 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1988. 

This volume contains the proceedings of the 13th Colloquium on Trees in Algebra and. Prog-
ramming, held on March 21—24, 1988, in Nancy. 

CAAP '88, following the tradition, is devoted to trees, which are, a basic structure for Com-
puter Science, and which are explicitly or implicitly stiidied in a lot of papers in this volume. But 
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CAAP '88 covers also a wider range of topics'in Theoretical Computer Science: Algorithms and 
complexity on trees and other structures; Abstract data types and term rewriting; Logic, parallelism 
and concurrency. 

We warmly recommend this book to everybody, working in Theoretical Computer Science. 

Sándor Vágvölgyi (Szeged) 

G. S. Campbell, An Introduction to Environmental Biophysics, XV +159 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1986. 

Environmental biophysics is a specialized branch at the borderline of physics and biophysics 
and mainly concentrates on energy exchange processes taking place in our environment exposed 
to solar radiation and variations in air humidity. The principal emphasis of the book is to present 
the differential equation formalism for mass and heat transfer and it gives an introduction into 
the mathematical physics of rate equations. Special attention has been paid to a quantitative analysis 
of energy balance using the continuity equation. Then it goes on to apply the general principles to 
selected examples and in the second part of the book the energy and mass transfer models are applied 
to exchange processes between organisms and their microenvironment. Throughout the book the 
basis principles are illustrated by several examples which are rahter useful in gaining an under-
standing the subject. The illustrations are superb and rahter useful additions to the text. This book 
is addressed to the physics and biophysics undergraduate student of conventional course background. 
The author does not review mathematical physics, but it is a useful supplement for those who have 
met the concepts in other courses. It can be used as a textbook of environmental biophysics or a 
supplementary reference source of classical mechanics for first year undergraduate courses. At the 
end of each chapter further problems are presented which can be very useful additions to conven-
tional physics courses. 

L. I. Horvdth (Szeged), 

Classic Papers in Combinatorics, Edited by Ira Gessel and Gian-Carlo Rota, X+489 pages, 
Birkhäuser, Boston—Basel—Stuttgart, 1987. 

Excellent papers from different fields of the combinatorics are presented in this collection. 
Without giving a complete enumeration on the contents of the book we give some significant results. 
From the Ramsey theory we meet the basic paper of Ramsey from 1930, the classical paper of 
Erdős and Szekeres (1935), the Erdős—Rado theorem on the partition calculus. The new results 
are represented by the Graham's, Leeb's, Rotschild's papers on the categorical underpinning of 
Ramsey theorem. 

Withney's paper (1932) presents the first paper on the theory of matriods. Tutte's paper in-
cluded in this book roots in the matroid theory. Classical papers are presented from the graph 
coloring (Brooks, Lovász). The matching theory represent 8 papers among them the opening papers 
of Hall (1935), Halmos (1958) and Dilworth. Here we can find the lot-cited papers of Ford and 
Fulkerson, Tutte's paper on factors of graphs and Edmonds's efficient matching algorithms. 

One of the editors (Rota) has used Pólya's paper on picturewriting to establish the theory of 
Möbius functions. His work was extended by Crapó. 

On the field of the extremal set theory the first paper is due to Käto'na. Clements's, Kruskal's, 
Kleitman's and Erdős's results are cited in this'part. 
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Again an Erdős's paper on the probabilistic method is in the collection. This paper, is very 
important since it helps to prove a lot of existence theorems in the graph theory. Lovász's contri-
bution to the Ulam reconstruction problem is an ingenious use of the inclusion-exclusion priciple. 

It was a great pleasure of the refree that the Hungarian matematicians who played significant 
role in this field of matematics are present in this collection with a weight. 

G. Galambos (Szeged) 

Underwood Dudley, A Budget of Trisections, XV +169 pages, Springer-Verlag, New York— 
Berlin—Heidelberg—London—Paris—Tokyo, 1987. 

From time to time every mathematical institute receives letters in which the authors "solve,, 
some famous problems. They prove the Fermat Conjecture, the Goldbach Conjecture, they dupli-
cate the cube with compass and straightedge and so on. Numerous amateurs try the trisection of 
the angle. (This is impossible with straightedge and compass as was proved by P. L. Wantzel in 
1837.) Archimedes trisected the angle using a compass and a straightedge with two scratches on it. 
This is a non-euclidean construction and you will find some more examples of this kind in the first 
chapter. The second and third chapters (Characteristics of Trisectors, Three Trisectors) enlighten 
the personalities of these amateurs. The fourth chapter contains the collection of trisections. 

This book is a curious, extraordinary work. I have never seen anything similar to this. 
Everyone can read it with minimal mathematical background. The author writes in the In-

troduction: "What follows, then, is something which has never been done before: it is an effort 
to do something which may be as impossible as trisecting the angle: namely to put an end to tri-
sections and trisectors". 

L. Pintér (Szeged) 

Dynamics of Infinite Dimensional Systems, Edited by Shui-Nee Chow and Jack K. Hale 
(NATO ASI Series, Series F: Computer and Systems Sciences, 37), IX+514 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

This is the Proceedings of the NATO Advanced Study Institute on Dynamics of Infinite Di-
mensional Systems, held in Lisbon, Portugal, May 19—24, 1986. 

In recent years it has become a general method in the researches into partial differential equa-
tions (PDE's) and functional differential equations (FDE's) to consider these equations as dynamical 
systems on functional spaces. The purpose of this workshop was to bring together research workers 
from the various areas coming with several different backgrounds and interests. The papers investi-
gate asymptotic behaviour of solutions (e.g. stability properties oscillation, bifurcation) for such 
equations as semilinear and nonlinear parabolic and elliptic PDE's integrodifferential equations 
dissipative systems, FDE's with finite and infinite delay, infectious disease model, wave equation 
and reaction diffusion system. 

• L. Hatvani (Szeged) 

• Foundations of Logic and Functional Programming, Proceedings, Trento 1986. Edited by M. 
Boscarol, L. Carlucci Aiello and G. Levi (Lecture Notes in Computer Science 306), IV+218 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1988. 

This volume contains ten papers presented at the workshop on "Foundations of Logic and 
Functional Programming" held in Trento, Italy, December 15—19, 1986. 

13 
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The titles of invited contributions are: 1. C. Talcott: Rum. An intensiohal theory of function 
and control abstractions. 2. L. Cardelli: Typechecking dependent typés and subtypes. 3. C. Böhm: 
Reducing recursion to iteration by means of pairs and A'-tuples. 4. J.-L. Lassez, M. J. Maher and 
K. Marriott: Unification revisited. 5. C. Zaniolo and D. Saccà: Rule rewriting methods for ef-
ficient implementations of Horn logic. 

The titles of submitted contributions are: 1. P. Miglioli, U. Moscato and M. Ornaghi: PAP: 
A logic programming system based on a constructive logic. 2. E. Giovannetti and C. Moiso : A 
completeness result for ¿'-unification algorithms based on conditional narrowing. 3. N. Guarino: 
Representing domain structure of many-sorted Prolog knowledge bases. 4. A D'Angelo: Horn: 
An inference engine prototype to implement intelligent systems. 5. E. G. Omodeo: Hints for the 
design of a set calculus oriented to Automated Deduction. 

This book is recommended to everybody working in the theory of Logic and Functional 
Programming. 

Sándor Vágvölgyi (Szeged) 

M. Goresky—R. MacPherson, Stratified Morse Theory (Ergebnisse der Mathematik und ihrer 
Grenzgebiete), XIV+272 ' pages, Springer-Verlag, Berlin—Heidelberg—New York—London— 
Paris—Tokyo, 1988. 

This book consists of three parts and a nice introduction. This introduction makes absolutely 
clear basis for the tree distinct subjects of three parts. The parts contain: a systematic exploration 
of the natural extension of Morse theory to include singular spaces; a large collection of theorems 
on the topology of complex analytic varieties; the calculation of the homology of the complement 
of a collection of flat subspaces of Euclidean space. 

The only common thing in these parts is the application of the Morse theory, but we think 
the appearance of these subjects in one book was a very good and natural idea. 

To end our review we establish that this book is very nice in its form, contents and also its 
getting-up. We are sure that it will become a fundamental book of its subject. 

Árpád Kurusa (Szeged) 

Martin Grötschel—László Lovász—Alexander Schrijver, Geometric Algorithms and Combinatorial 
Optimization, XII+362 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris— 
Tokyo, 1988. 

In spite of the fact that many of the most frequently used combinatorial algorithms were based 
on the discrete structure of-the problems in the last several years geometric methods have played 
more significant role in'combinatorial optimization. 

In the focus of this book states the investigation of two geometrical algorithms: the ellipsoid 
method and the-basis reduction. The first one has been developed by L. G. Khachiyan for linear 
programs and the authors examined it deeply in their earlier papers as well. The roots of the second 
method go back to Hermite and Minkowski, and it has been used for the polynomial time solv-
ability of integer linear programming in fixed dimension by Tárdos and H. W. Lenstra. 

The first two sections of the book contain preliminaries. A list of the main problems (The 
Weak Optimization Problem, the Weak Violation Problem, the Weak Validity Problem, the Weak 
Separation Problem; the Weak Membership Problem) are introduced in Chapter 2. The next section 
contains the description of the ellipsoid method. Applications-and specializations of the method 
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are collected in Chapter 4. The algorithms concerning the different characteristics of a convex set 
are approximations (because of the nature of the method). 

The next two sections contain the basis reduction algorithm for lattices and its applications. 
Different combinations of the ellipsoid method with basis reduction are given for the programming 
in fixed dimension. The last four chapters contain further applications: Chapter 7 gives some basic 
examples, in Chapter 8 there is given a deep survey of the basis reductions. Specific fields of the 
application of the ellipsoid method are discussed in the finishing sections. 

The book has a clear style. It may be a useful piece of reading not only for experts but for 
students as well. 

G. Galambos 

John L. Kelley—T. P. Srinivasan, Measure and Integral, Volume 1 (Graduate Texts in Mathe-
matics, 116), X+150 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris— 
Tokyo, 1988. 

The measure and integral have been two basic notions of analysis and probability theory 
since their beginnings. Nowadays they play an important role also in other branches of pure and 
applied mathematics. This book is a systematic exposition of the theory of measure and integration 
emphasizing the part of the theory most commonly used in functional analysis. 

The book consists of two kinds of text. The body of the text, requiring only a first course in 
analysis as a background, is a study of abstract measures and integrals. It establishes Borel measures 
and integration for R. The chapters are followed by supplements, which are more informal and 
present such parts of the theory as Borel measures and integration for R", integration for locally 
compact HaussdorfT spaces, invariant measures for groups, Stieltjes integration, Haar measure, 
the Bochner integral. 

The method of presentation differs from the standard one, namely, at first integrals are con-
structed, then measures are derived from them. The integral is extended to some R* valued functions, 
and measures with R* values; signed measures and indefinite integrals are also treated. 

The well-written book can be highly recommended to mathematicians especially those dealing 
with functional analysis. 

L. Harvani (Szeged) 

Neal Koblitz, A Course in Number Theory and Cryptography (Graduate Texts in Mathematics), 
IV+208 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987. 
I 

Since the fifties number theory has changed in an extremly rapid manner. Only a few decades 
ago this theory, had no practical use. Gauss called it the "Queen of Mathematics". The results are 
interesting and sometimes surprising, the methods can be delightful, and nowadays there appear 
more and more new applications. A course is interesting and the publication of a book is justified 
if it has got some original distinguishing features. In my opinion the reader will enjoy this book. 
One of its characteristic features is the algorithmic approach, emphasizing estimates of the efficiency 
of the techniques. Cryptography is in the centre of the discussions. The inclusion of some very 
recent applications of the theory of elliptic curves seems to be originally new. 

The first two chapters — Some topics in elementary number theory and Finite fields and quad-
ratic residues—give a general background. Some of the proofs are omitted (one finds them in intro-
ductory textbooks). A characteristic (unusual) topic is the estimation of the number of bit operations 
needed to perform different tasks by computer.... : 
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The following four chapters—Cryptography; Public key; Primality and factoring; Elliptic 
curves — are similar to a fascinating novel. Especially the chapter on public key supplies astonishing 
novelties for the readers who are inexperienced in this theme. Let us cite the last sentences of this 
chapter from which consequences may be drawn on the discussion and further we can see that the 
book holds the benefits of a lecture: "At the present time there is no known polynomial time algo-
rithm for solving the iterated knapsack problem, i.e., the public key cryptosystem described in the 
last paragraph. However, there are some promising approaches to generalizing Shamir's algorithm. 
It is not unlikely that intensive research on this problem would before long produce an efficient 
algorithm for breaking the iterated knapsack cryptosystem. In any case, most experts, traumatized 
by Shamir's unexpected breakthrough, do not have much confidence in the security of any public 
key cryptosystem of this type." 

Several various exercises increase the interest of the work, answers and in more difficult cases 
solutions are given. 

Although we can read on the cover: "No background in algebra or number theory is assu-
med", however, in my opinion the reader needs some experience in the theory and in this case she/he 
can find great enjoyment in this text and very much of it indeed. 

L. Pintér (Szeged) 

Max Koecher, Klassische elementare Analysis, 211 pages, Birkháuser Verlag, Basel—Boston, 
1987. 

The text is divided into six parts. Chapter 1 is a preparatory part the main idea of which is 
the investigation of the connection between the classical golden section problem, the Fibonacci 
numbers and continued fractions. An algebraic application of golden section is also given. Chapter 
2 introduces the notions of convergence of sequences and series of real numbers. In Chapter 3 the 
Riemann integral is defined, the integration methods are acquainted and at the end of the chapter 
the logarithm function as an integral andits inverse, the exponential function are introduced. Chapter 
4 is devoted to algebraic and number theoretic applications. Chapter 5 deals with convergence of 
function sequences and series, the power series of elementary functions are deduced, the partial 
fraction decomposition of cotangent function and by using the power series representation of the 

. . . ft 
arctangent function a series of — are considered. Chapter 6 discusses famous classical problems 

of elementary analysis. Here Bernoulli polynomials, Euler series, Euler and Poisson summations 
and the Gamma-Function are investigated. 

The book is a pearl of the mathematical literature. It is highly recommended to students for 
learning analysis in the first two semesters. 

L. Gehér (Szeged) 

Paid Koosis, The logarithmic integral. I (Cambridge Studies in Advanced Mathematics 12), 
XI+606 pages, Cambridge University Press, Cambridge—New York—New Rochelle— Melbourne 
—Sydney, 1988. 

The frequent appearance of / M{t№+t*)dt (or its transformed form) in more or less 

different branches-of. mathematical analysis as well as in their applications naturally raises the 
question: What is the role of this integral in the analysis? One, who is interested in' this theme, 
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should consult with the present book. Moreover, haying even a look at its "Contents", the pros-
pective reader will surely find something of his particular interest. 

The first two Chapters are devoted to Jensen's formula, the celebrated Szego's theorem and 
the familiar Poisson integral. Chapter III, called for more frequently in the subsequent ones, deals 
with "Entire functions of exponential type", i.e.:. entire functions satisfying |/(z)|sCe'41*'. The 
rest of the Chapters are entitled as follows: "IV. Quasianalycity", "V. The:moment problem on 
the real line", "VI. Weighted approximation on the real line", "VII. How small can the Fourier 
transform of a rapidly decreasing non-zero function be?", "Persistence of the form dx/(l 
An "Addendum" improves the content of Chapter VII by discussing some recent results. 

The author pays attention to show how things grow up from simple ideas. The reader, familiar 
with an introduction to the theory of real and complex functions, and a bit of functional analysis, 
will find only a few cases, when he needs to look for supplementary material. Exact references 
help the readers to find way in such situations. "Bibliography for volume I" lists approximately 80 
items, including a number of books. 

The argumentations are detailed to such an extent that one can follow them easily. However, 
a large area for the reader's activity is provided by giving "Problems" accompanied with hints 
(if necessary). By solving these problems (mostly of own interest) one can deeply understand, how 
to use the methods of the discussed theme, and thus possibly feels to be stimulated to do research 
work in analysis. 

Reading this book, everybody will certainly be caught by the author's enthusiasm: "It is a 
beautiful material. May the reader learn to love it as I do." Thus, it mustn't escape the reader's atten-
tion that this book is completed by "Contents of volume II." 

Endre Durszt ( S z e g e d ) 

Hary Krishna, Computational Complexity of Bilinear Forms (Lecture Notes in Control and 
Information Sciences, 94), XVI+166 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1987. 

The book contains two parts: the first one has four chapters and is a deep study of the rela-
tionship between the computation of biliniear forms and the linear error-correcting codes. The two 
chapters of the second part describe an application of the class of linear codes showed in Part I. 

In details, Chapter 2 discusses the multiplicative complexity of certain noncommutative algo-
rithms that are usable to compute a system of k bilinear forms and establishes a connection between 
linear (n, ky d) codes and algorithms. Using the property of duality it is shown that the multiplicative 
complexity of the bilinear forms is the same as the multiplicative complexity of an aperiodic convo-
lution algorithm with length ( k + d + l ) . 

In Chapter 3 efficient algorithms are developed for aperiodic convolutions. In Chapter 4 bi-
linear algorithms — basing on two approaches developed in the previous Chapter — are presented 
for aperiodic convolution of sequences defined over GF(2) and GF(3). 

Chapter 5 shows the decoding procedure for the class of codes obtained from the aperiodic 
convolution algorithms, moreover it is established that the length-and the errorcorrecting capability 
of these codes can be varied easily. As a consequence it has been proved that the encoder/decoder 
can be designed to incorporate a large number of these codes into the same configuration. 

The next two chapters deal with the basic automatic repeat request schemes, with their proto-
cols and their generalization. 

G. Galambos (Szeged) 
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Fred Kröger, Temporal Logic of Programs (EATCS Monographs on Theoretical Computer 
Science, 8), Vin+148 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris— 
Tokyo, 1987. 

Temporal logic is a branch of modal logic. Its basic idea is that the truth of an assertion may 
depend on a discrete time scale. As a logic of this kind, it can be used to describe properties of prog-
rams in a natural way where the execution sequence of a program plays the role of the time scale. 

Besides the Introduction, the book consists of seven chapters. Chapter I provides a detailed 
discussion of syntax and semantics of propositional temporal logic. In addition to the usual modal 
operators, the nexttime operator and the atnext operator are taken as primitive. If A and B are 
formulas, then A atnext B expresses that A will hold at the next time poirt than B holds. Other 
temporal operators are introduced as derived ones. Soundness and completeness of an axiomatiza-
tion of propositional temporal logic is established in Chapter II. Some induction principles are 
also included. Chapter III is devoted to first order temporal logic. No completeness theorem is 
stated. 

A basic (parallel) programming language is the subject of Chapter IV. Program properties 
are formalized and classified as safety (or invariance), liveness (or eventuality) and precendence 
properties. The rest of the book is devoted to program verification using temporal logic. Invariance 
and precedence properties are discussed in Chapter V and eventuality properties in Chapter VI. 
Hoare's calculus is embedded in temporal logic in Chapter VII. 

It is shown in each case how program verification rules can be derived within the system, 
these are however the only theorems incorporated. Several examples are discussed. 

The volume can be recommended to graduate students with interest in program verification. 

Z. Esik (Szeged—Munich) 

Yurii T. Lyubich, Introduction to the Theory of Banach Representation of Groups, VI+223 
pages, Birkhäuser Verlag, Basel—Boston—Berlin, 1988. -

This is a translation of the original Russian edition. The book consists of five chapters. The 
first three chapters are devoted to give the mathematical background needed in the last two chapters. 
Chapter one deals with the basic properties of bounded linear operators in Banach spaces and with 
commutative Banach algebras. Chapter 2 introduces the notions of topological groups and topo-
logical semigroups, a brief reference to invariant measures and means is also given. Chapter 3 gives 
a glimpse into the elements of general representation theory. Chapter 4 presents the representation 
theory of compact groups and semigroups in the space of bounded operators of a Banach space. 
In the final chapter the representation theory of locally compact Abelian groups can be found. In 
the text a rich collection of exercises and examples is given, serving as the illustration of the ideas. 

L. Geher(Szeged) 

Erkki Mäkinen, On context-free derivations (Acta Universitatics Ta'mperensis, ser. A, vol. 
198), 94 pages, Tampere, 1985. 

Given a context-free grammar, its Szilard language contains one word for each terminating 
derivation. Szilard languages also arise with restricted types of derivations such as leftmost deriva-
tions, depth-first derivations and breadth-first derivations. The book provides a good survey of 
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results on Szilard languages: basic properties and relation to the Chomsky hierarchy, decision 
problems, recognition of Szilard languages, etc. Unrestricted Szilard languages are related to m-
counter automata and left Szilard languages to simple pushdown automata. The importance of 
depth-first derivations lies in the fact that depth-first Szilard languages are context-free yet they are 
more general than leftmost derivations. The last chapter is devoted to the relation of Szilard lan-
guages to grammatical similarity. 

The book can be recommended to graduate students and computer scientists with interest in 
formal languages and compiler construction. 

Z. Esik (Szeged—Munich) 

Mathematical Foundations of Programming Language Semantics, Edited by M. Main, A. Melton, 
M. Mislove and D. Schmidt (Lecture Notes in Computer Science, 298), VIII+637 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988. 

This volume is the proceedings of the Third Workshop on Mathematical Foundations of 
Programming Language Semantics held at Tulane University, New Orleans, Louisiana, in April, 
1987. The 32 contributions (4 invited and 28 selected) are organized into six chapters. The subject 
matter covers a wide range from category theory and ¿-calculus to domain theory and implemen-
tation issues. 

The invited addresses are the following: J. W. Gray: A Categorical Treatment of Polymorphic 
Operations; The main thesis is that 2-categories provide the right framework for studying poly-
morphic operations, i.e., operations that behave the same everywhere. J. D. Lawson: The Verstile 
Continuous Order; A survey of basic properties of continuously ordered sets including two natural 
topologies. S. D. Brookes: Semantically Based Axiomatics, A discussion on the basic ideas of 
Hoare's calculus. N. D. Jones et al.: MIX: A Self-Applicable Partial Evaluator for Experiments in 
Compiler Generation (Extended Abstract). The volume does not contain the text of the invited 
talks given by G. Plotkin and D. Scott. 

The volume can be recommended to researchers and graduate students with interest in semantic 
issues. 

Z. Esik (Szeged—Munich) 

Particle Physics, A Los Alamos Primer, Edited by N. G. Cooper and G. B. West, XI+199 
pages, Cambridge University Press, Cambridge—New York—New Rochelle—Melbourne—Sidney, 
1988. 

Particle physics is one of the most challenging fields for the human thought, and likewise for 
the budget of those few countries and organizations that can afford to finance the enormous costs 
of experimental particle physics. This book, which is a collection of articles written by a group of 
particle physicists at Los Alamos, is divided into two main parts. The first one is a theoretical frame, 
work. The authors explain here what are meant by the fundamental physical particles as quarks-
leptons, gauge bosons, and how the related mathematical ideas: gauge fields, spontaneous symmetry 
breaking, quantum chromodynamics, etc., have emerged in the last 20 years. The subject is treated 
on a variety of technical levels and will certainly be enjoyed by anyone who is interested in the modern 
developments of natural sciences. Physicists working in other fields than particle physics will like 
this book too because everything is explained on the level of ordinary four dimensional electro-
dynamics and quantum mechanics. I think also the professional particle physicist may obtain much 
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help reading this book because it demonstrates how to expose this most difficult subject in a simple 
manner; 

The second-part of the book acquaints us with the grandiose experiments have been done so 
far, o r planned in the future by particle physicists. We can-learn about "underground science", as 
the enormous, detectors, that are to be detecting proton decay, or neutrino oscillations — predicted 
by some theories—are located in deep mines. Not less interesting are the details of huge accelerators 
with diameters of tens of kilometers etc. 

Each article is illustrated with several figures that help very much to understand the physical 
ideas. In the end of the book the authors express their personal viewpoint in a lively discussion about 
their profession, and also about social psychology of the particle physics community. 

Physical theories of the first half of our century yielded us, among others, the theoretical basis 
of. atomic power plants, but at present one can only hope that some time in the future high energy 
physics will also provide us with practical comfort. And though physicists are convinced that this 
will come true one day, the situation is more idealistic at present. We can only state that the gigantic 
and very expensive experiments serve merely to prove that deep mathematical ideas, such as Lie 
groups, supersymmetry, gauge invariance etc. have their origins in reality. Nevertheless these theories 
have strong predictive power and will allow mankind to control reality in an ever increasing manner. 

M. G. Benedict (Szeged) 

S. J . Patterson, An Introduction to the Theory of the Riemann Zeta-Function (Cambridge 
Studies in Advanced Mathematics, 14), 156 pages, Cambridge University Press, Cambridge—New 
York—New Rochelle—Melbourne—Sidney, 1988. 

One of the most famous problems of mathematics is the so called Riemann Hypothesis. This 

states that all the zeros of the zeta-function lie on the "critical line" jz: Rez=— j . (This is one of 

the several forms of the conjecture.) This was formulated in 1859 by B. Riemann, and it occurs in 
the eighth problem of the famous 23 unsolved problems presented by D. Hilbert before the Inter-
national Congress of Mathematicians in 1900. 

The following little story told by G. Pólya in a speech characterizes the importance of the 
problem. Somebody allegedly asked Hilbert, "If you would revive, like Barbarossa, after five hund-
red years, what would you do?" "I would ask" said Hilbert, "Has somebody proved the Riemann 
Hypothesis?" 

The problem had resisted for over 100 years the efforts of mathematicians. 
Several examples prove that the most fruitful and exciting task is to build a bridge over mathe-

matical branches which are seemingly far off. The zeta-function is a meromorphic function, it can 
be investigated by the techniques of complex analysis and at the same time it yields important and 
characteristic results concerning the integers. Through the history of the zeta-function a long series 
of the world's greatest mathematicians (the enumeration is almost impossible) obtained determinant 
results: Two widely known classical summaries were written by E. Landau and E. C. Titchmarsh. 
. . This book grew out of a lecture course about the Riemann Hypothesis and Weil's point of 
view.concerning it. In determining the direction of the investigations the Riemann Hypothesis 
plays a central role. Chapter headings are: Historical introduction; The Poi'sson summation formula 
and the functional equation; The Hadamard product formula and explicit formulae of prime number 
theory; The zeros of the zeta-function and the prime number theorem; The Riemann-Hypothesis 
and the Lindelof;Hypothesis; The approximate functional equation; Appendices. 



Bibliographie 407 

An interested reader having a good background in analysis and number theory should be able 
to read the,main part of the book. For the reviewer one.of the.most attractive features'of this work 
is the concise but clear style of the treatment. The appendices make the reading of the texts easier. 
Various exercises in an unusually large number constitute an essential part of the book.. (Some 
hints would be useful for the reader concerning the more difficult examples.) The thorough examina-
tion'of this book offers the reader a good'possibility to study special problems and to do some 
research. Last but not least the work consists of only 156 pages. 

L, Pinter (Szeged) 

Efim M. Polishchok, Continual Means and Boundary Value Problems in Function Spaces, 159 
pages, Birkhauser Verlag, Basel—Boston—Berlin, 1988. 

The main purpose of this book is to develop the theory of integration of infiite dimensional 
spaces and to give applications to boundary value problems for function domains. The text is divided 
into four parts. In the first part the definitions of uniform and normal functional domains are in-
troduced. The notion of the main value of a functional over a domain is given and explicit for-
mulae for its calculation are deduced. The procedure of functional averaging is shown to result in 
a Dirac measure, which is a generalized function. At the end of this part several definitions of the 
functional Laplace operator are presented. The second part is devoted to study the weak Dirichlet 
problem for normal domains with boundary values from the Gatoux class, furthermore the Poisson 
equation and the solution of an exterior Dirichlet problem in a function space are considered. In 
the third part a completely different approach to the functional boundary value problems is pro-
posed. Also boundary value problems for uniform domains are investigated. The final part deals 
with the extension of some of the previous results to boundary value problems with a general elliptic 
functional operator using the theory of diffusion processes and the compact extension of a function 
domain. 

. The material is as selfcontained as it is possible. The book is recommended to research workers 
who. are familiar with measure theory and functional analysis. 

L. Gehir (Szeged) 

Recent Developments in Mathematical Physics, Edited by H. Mitter and L. Pittnes, XI+323 
> pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

• The demand for mathematical rigor appears in theoretical physics mostly when "rude" physics 
itself shows that "something is wrong". This is the point where it is worth to try more exact methods; 
and it turns out very often that behind the new mathematics there is something new in physics' as 
well. Mathematical rigor has the advantage that the physical model, its assumptions and restrictions; 
can be formulated in a most compact way. The 34 articles, contained in this book are written in this 
spirit. They are the texts of the lectures given at a meeting in Schladming, Austria, in 1987, in honour 
of Professor W. Thirring. Both classical and quantum mechanical problems are considered as well 
as problems in statistical physics and quantum.field theory. The book will be interesting for mathe-
maticians and also for physicists who like the mathematical style in, theoretical physics. I t will be 
useful ;for anyone who wants to see at least a part of fields of present day mathematical physics. 

M. G. Benedict (Szeged) 
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Recent Topics in Theoretical Physics (Proceedings in Physics, 24). Edited by H. Takayama, 
EX+129 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988. 

The volume consists of 10 lectures on recent developments in theoretical physics, held at the 
Yukawa Memorial Symposium, in 1986, in Nishinomiya. The topics of the lectures can be divided 
into two classes. The first one is high energy physics and cosmology. The titles contain: superstrings, 
lattice quantum chromodynamics, the quark structure of the nucleus, solar neutrinos, the very 
early universe, and gravitational collapse. The rest of the volume is devoted to some most recent 
developments of solid state theory, such as the quantum Hall effect, diffusion of heavy particles in 
metals, spin glasses, and pattern formation. The lectures are written on a high level, mostly by well 
known Japanese specialists. Nevertheless, the style is introductory and the text is aimed at any 
physicist independently from his special field of research. Concepts unfamiliar to the nonexpert are 
explained in simple terms. From the book one can learn what is in the centre of interest of theoretical 
physics now. It can be recommended to mathematicians and experimental physicists as well. 

M. G. Benedict (Szeged) 

Rewriting Techniques and Applications, Edited by J. P. Jouannaud, 216 pages, Academic Press, 
London—Orlando—San Diego—New York—Austin—Montreal—Sydney—Tokyo—Toronto, 1987. 

i 
This volume contains a selection of papers presented at the first international conference on 

Rewriting Techniques and-Applications held in May 1985, in Dijon, France. The material is reprint-
ed from the Journal of Symbolic Computation, Volume 3; Numbers 182, 1987. The 8 selected 
papers are: B. Buchberger: History and Basic Features of the Critical-pair/completition procedure; 
R. V. Book: Thue Systems as Rewriting Systems; N. Dershowitz: Termination of Rewriting; M. 
Rusinowitch: Path of Subterms Ordering and Recursive -Decomposition Ordering Revisited; 
J. Hsiang: Rewrite Method for Theorem Proving in First Order Theory with Equality; K. A. Yelick: 
Unification in Combinations of Collapse-free Regular Theories; E. Tiden and S. Arnborg: Uni-
fication Problems with One-sided Distributivity; D. Benenav, D. Kapur and P. Narendran: Cbmp-
lexity of Matching Problems. • 

The first 3 papers are invited and provide good surveys on 3 different topics of symbolic com-
putation. The following is a quotation from the Editorial by Jean-Pierre Jounnaud. 

" "The paper- by Bruno Buchberger relates the history of the most important discovery in term 
rewriting theory :;the notion of a critical pair, and its natural consequence, the completion algorithm. 

,The reader wiU find his bibliography very helpful. . . . . . . . . 
,The; paper by Ronald: Book synthesies at least ten years of research on Thue Systems, with 

n«: particular emphasis ori the role of Church—Rosser properties in deciding important questions 
relatedtoThue Systems.. 

: , : The paper by.Nachum Dershowitz is a beautiful presentation of the current state of knowledge 
of termination:.Moreover, .he' gives a hew coding of Turing machines by rewrite rules, which leaves 
open the uniform termination problem of. the one rule case only." 

: The book can be recommended both to researchers and graduate students interested in the field. 

Z. Êsik (Szeged—Munich) 
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Panlo Ribenboim, The Book of Prime Number Records, ХХП+476 pages, Springer-Verlag, 
New York—Berlin—Heidelberg—London—Paris—Tokyo, 1988. 

Having read this book the opinion of A. Rinyi came to my mind (he was a Hungarian mathe-
matician (1921—1970), mentioned in this book in-the Index of Names, too). He wrote somewhere 
that the really beautiful, interesting, very significant and genuine things will never become ordinary 
or boring. This is true for the field of mathematics as well. One will never be tired of Euclid's proof 
stating that there exists infinitely many prime numbers. This proof is astonishing and it is a delightful 
experience every time just as when climbing up a peak the scenery opens up in front of us. 

To tell the truth I didn't quite understand why R6nyi mentioned this very example. After 
reading this book it became obvious for me. 

Consider the above mentioned theorem. You find it in Chapter 1 having the title: How many 
prime numbers are there? Giving Euclid's classical proof you find some records. Denote by pf. the 
products of all дШр, where q and p are primes. The largest known prime of the form 4-1 is 
13649$ +1 and it was discovered by H. Dubner in 1987. (This number has 5862 digits.) Then several 
other proofs are given for the infinity of prime numbers: Kummer's proof; P61ya's proof (this 
uses the idea: it is enough to find an infinite sequence of natural numbers 1 - ^ a ^ a ^ . . . that are 
pairwise relative prime); Euler's proof investigating the product of 1/(1 — 1/p,) which leads to im-
portant developments; Thue's proof (this applies the fundamental theorem of unique factorization 
of natural numbers as product of prime numbers); Perrot's proof requiring the convergence of 
£ (1/n2); Auric's proof; Mitrod's proof; Washington's proof done via commutative algebra (this 
comes from 1980); and the last is Fiirstenberg's proof that appeared in 1955 and is based on topolo-
gical ideas. I think that there are only a few mathematicians, who don't find something new for 
themselves in this first chapter concerning a well-known theorem. 

The further questions (at the same time chapter headings) are: How to recognize whether a 
natural number is a prime? Are there functions defining prime numbers? How are the prime numbers 
distributed? Which special kinds of primes have been considered? Heuristic and probabilistic results 
about prime numbers. 

Let us mention only a few of the records: the largest known prime of the form ftX2"+l 
with лш2 is'7Х2в44ИЧ-1 having 16402 digits (J. Young (1987)); the largest known prime of the 
form n»+l is 17»Х218МЯ+1 (Keller (1984)). 

Let us consider another- record concerning the famous Waring's problem: for every кш2 
there exists a number гШ 1 suchthat every natural number is the sum of at most r 4th powers. 
If such a number r exists denote by g(k) the smallest possible one. While these phenomena tend 
to become more regular for sufficiently large numbers another characteristic number is'introduced: 
denote by C(k) the minimal value of г such that every sufficiently large integer is the sum of г ¿ th 
powers, obviously C(k)^g(k). Waring's problem (the existence of ?(<:)<» for arbitrary k) 
was first solved by Hilbert in 1909. Here you have the records on ^(3) and 0(3), (In the book 
the reader finds much more in detail.) J. A. Euler (L. Euler's son) E. Maillet (1985) 
g(3)3=21, C(3)«s4, ^(3) exists; A. Heck (1906) *(3)==13; A. Wieferich (1906) *(3)==9, *(3) best 
possible; E. Landau (1909) C(3)S8; Yu. V- Linnik C(3)s7. Present status: 4 s C ( 3 ) s 7 ; recent 
computations of Bohman and Frbberg as well as of Romani (1982) point to the likelihood that 
C(3)=4. 

We could enumerate several interesting problems from this work but we have no'space. (One 
of my favourites is the discussion of Dirichlet's famous result on arithmetic progressions, and a 
related question established by Sierpinskiin 1959: Let аг, a blt bt, ...,bn be any digits 
(0Se„ bjS9), satisfying 1, 3,7 or 9. Then there exist infinitely many prime numbers p which 
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are written in base 10, with the a, as initial digits and the bt as final digits: p—aly a2-,..., am, bl3 b2,... 

I liked this book. (For the reviewer this is the book of prime numbers with records.) It is well 
•written in a conversational style, and with evident enthusiasm. The Bibliography which is compiled 
carefully is extremly useful. Reading on prime numbers is similar to playing tennis: it is marvellous 
in your youth and in your old age, too. 

L. Pintér (Szeged) 

J . L. C. Sanz—E. B. Hinkle—A. K. Jain, Radon and Projection Transform—Based Computer 
Vision (Algorithms, A Pipeline Architecture, and Industrial Applications), VIII +123 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988, 

This book provides a description of the applicability of Radon and projection transforms to 
computer vision and processing. Particularly it deals with novel machine vision architecture ideas 
that make real-time projection-based algorithms a reality. 

The authors concern themselves with several image analysis algorithms for computing (for 
example the projections of gray-level images along linear patterns, i.e. the Radon transform). They 
provide fast methods to transform images into projection space representations and to backtrace 
projection space information to the image domain which are suitable for implementation in a pipeline 
architecture. 

We recommend this book to the beginners and also to the specialists, since it includes a survey 
of the architecture trends and some novel algorithms in computer vision. 

Árpád Kurusa (Szeged ) 

Jaroslav Smital, On Functions and Functional Equations, VII+155 pages, Adam Hilger, Bristol 
and Philadelphia, 1988. 

The teixt consists of five chapters. The introductory one > summarizes the elementary ideas 
concerning functions. The second chapter studies functional equations of several variables, and 
solves the Cauchy functional equation starting different initial assumptions. The third chapter 
dealing with iterations is the most important part of the text playing a central role in the book. 
Chapter 4 gives the application of the iteration method for the study of population growth model. 
The final chapter investigates linear functional equations, the Abel and the Schroder equations. 

Only elementary mathematical knowledge of the reader is supposed. 
L. Gehér (Szeged) 

Song Jian—Ya Jingyuan, Population System Control, XI+286 pages, China Academic Publi-
shers, Beijing and Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 
1988. 

During the last century the world's population has increased enormously. Today more than 
five billion people live on Earth and-the population has been increasing further. Will the resources 
of energy and food be enough for the mankind? Philosophers have always shown great concern 
about this problem throughout history. The earlier, works on population studies, however, used 
figurative and literary language and methods and were not of a scientific nature. The .modern natural 
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sciences are required to have theories that can be quantifiably tested and verified. Recently popula-
tion studies has been included among these sciences thanks to the use of statistical and qualitative 
research methodologies. One of the most significant steps in this direction was that researchers have 
begun to regard the population evolution of a community as a dynamic process. The book gives an 
excellent account on the latest results of Chinese systems analysts achieved by the investigation of 
this mathematical model. 

Chapter 1 (Introduction) gives a survey on the history and basic ideas of population studies 
and formulates tasks of population cybernetics. In Chapter 2 the continuous, discrete and stochastic 
population equations are derived. In the continuous model the state function is the agedistribution 
density function p(a, t). (Roughly speaking, if Aa>0 is small, then the total number of people of 
age between a and a+Aa at time t is p(a, t) • Aa.) The state function in the discrete model is a 
vector: x(t)—(x0{t),xi(.t),..., xm(t)), where xt(t) is the total number of persons in year t whose 
full age is within the age interval [/, /+1]. The model is a first order partial differential equation and 
difference equation, respectively. In Chapter 3 demographic indeces (average lifetime and life ex-
pectancy, net population reproduction rate, average' female fertility rate) are expressed by the state 
functions p(a,t) and x(t). Chapter 4 contains the dynamic analysis of population systems based 
upon the evolution equations. The most interesting (in reviewer's opinion) Chapter 5 is concerned 
with stability problems for population systems. The authors prove that the necessary and sufficient 
condition of stability in Liapunov's sense for a population system is that the total fertility rate 
should not exceed a critical value. Chapters 6 and 7 are devoted to population projections and 
policies, and description of the population structure in an ideal society. The concluding Chapter 8 
presents an optimization theory of birth control policy and its applications. 

This book will be very useful for mathematicians as well as social scientists dealing with popula-
tion dynamics and population policy. 

L. Hatvani (Szeged) 

STACS 88, Edited by R. Cori and M. Wirsing (Lecture Notes in Computer Science, 294). 
IX+404 pages, Springer-Veriag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988, 

The fifth Symphosium on Theoretical Aspects of Computer Science was held in Berdeaux 
in February 1988. The volume contains the text of the invited talk "Geometry of Numbers and 
Integer Programming" by C. P. Schnorr as well as 34 selected contributions that cover a wide range 
of theoretical computer science: Algorithms, Complexity, Formal Languages, Rewriting Systems 
and Abstract Data Types, Graph Grammars, Distributed Algorithms, Geometrical Algorithms, 
Trace Languages, Semantics of Parallelism. In addition to the technical contributions, eight soft-
ware systems presented at the symphosium are reviewed. 

The wide range and high quality ensure that every computer scientist will find at least one 
paper of his own interest. 

• - Z. £sik (Szeged—Munich) 

Topics in Operator Theory, Constantin Apostol Memorial Issue, Edited by Gohberg, 274 
pages, Birkhâuser Veriag, Basel—Boston—Berlin, 1988. . ... 

The text starts with a short glimpse of the life and mathematical results of Constantin Apostol. 
List, of his publications is also given/Eleven papers can be found in the book. Their subjects are: 
operator theiory and operator algebras. The first paper contains a result of Constantin Apostol 
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(On the Spectral Equivalence, of operators). The other papers are written by different, in general, 
well known authors, all of them are dedicated in memory of Constantin Apostol. 

: The book is highly recommended to research workers interested in the modern functional 
analysis. ..• 

L.Gehèr (Szeged) 

' 1 Stephen Wiggins, Global Bifurcations and Chaos. Analytical methods (Applied Mathematical 
Sciences, 73), XIV 4-494 pages, Springer-Verlag, New York—Berlin—Heidelberg—London— 
Paris—Tokyo, 1988. 

The first chostic phenomena arised in deterministic nonlinear dynamical systems fifteen years 
ago. As it can be followed also in our Review Section, since that time an unusually great number 
of texts and monographs have been published devoted to the theoretical and applied problems of 
these phenomena. This book is concerned with the following three fundamental questions exciting 
both mathematicians and applied scientists : What is meant by the term "chaos"? What mechanism 
does chaos result? How can one predict when chaos will occur in a specific dynamical system? 
1 • It is pointed out in the book that the global bifurcation can often be the mechanism for produc-
ing deterministic chaos (the final answers are far from known). The global bifurcation means a 
¡qualitative change in the orbit structure of an extended region of phase space. 

The first chapter contains the background for ordinary differential equations and dynamical 
systems (including such notions as conjugacies, invariant manifolds, structural stability, genericity, 
bifurcations, Poincaré maps) which are derived for a dynamical system to exhibit chaotic behaviour. 
The reader can find here a clear and exact, easily readable description of the Smale horseshoe which 
is the prototypical map possessing a chaotic invariant set, and which is absolutely essential for 
understanding what is meant by the term "chaos". The chapter includes also a good introduction 
to symbolic dynamics. Chapter 3 is concerned with homoclinic and heteroclinic motions, which 
typically result global bifurcation and chaotic behaviour in deterministic systems. A homoclinic 
orbit connects an unstable equilibrium to itself, a heteroclinic one connects two unstable equilibria. 
In the fourth chapter a variety of perturbation techniques are developed which allow the scientists 
to detect homoclinic and heteroclinic orbits. These are such generalizations and improvements of 
the Melnikov—Arnold method which are applicable to arbitrary finite dimensional systems and 
allow for slowly varying parameters and quasiperiodic excitation. 

The book is written in an excellent style. It is selfcontained, requiring only the knowledge of 
calculus. During thé exposition of the complicated notions the author first gives some examples of 
specific physical systems so that the reader may develop some intuition. After this he gives the 
exact mathematical definition. 

This excellent book can be highly recommended to every mathematician, user of mathematics 
or student interested in qualitative theory of dynamical systems and its applications. 

L. Hatvani (Szeged) 

Eberhard Zeidler, Nonlinear Functional Analysis and its Applications IV: Applications to Mathe-
matical Physics, XXIII+975 pages, Springer-Verlag, New York—Berlin—Heidelberg—London-
Paris—Tokyo, 1988. 

This book is the fourth of a five-volume survey on the main principles and methods of nonlinear 
functional analysis and its applications. The main goal ofthe.book is to give an exact clear exposition 
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of the field which is self-contained and accessible to the nonspecialists, which combines the classical 
and modern ideas, and which builds a bridge between the language and thoughts of physicists and 
mathematicians. The specific nature and importance of the problems of mathematical physics are 
well expressed by M. Atiyah's opinion, which is cited in the book: "The more I have learned about 
physics, the more convinced I am that physics provided, in a sense, the deepest applications of 
mathematics. The mathematical problems that have been solved, or techniques that have arisen out 
of physics in the past, have been the lifeblood of mathematics. The really deep questions are still 
in the physical sciences. For the health of mathematics at its research level, I think it is very impor-
tant to maintain that link as much as possible". However, reading physical literature mathematicians 
often complain that the presentation is not rigorous and exact enough, and vice versa, physicists 
find the mathematical methods too abstract and useless for their purposes covering the physical 
thoughts. The present book helps to solve this difficulty. Mathematicians will feel it comfortable 
because it uses precise mathematical language, at the same time the reader can learn a lot about 
the physical interpretation. On the other hand, the physicists can recognize the familiar physical 
ideas and can get acquainted with their justification. 

Similarly to the previous volumes, the chapters are grouped into blocks according to applica-
tions: 

Applications in Mechanics: Ch. 58. Basic Equations of Point Mechanics; Ch. 59. Dualism 
Between Wave and Particle, Preview of Quantum Theory, and Elementary Particles. 

Applications in Elasticity Theory: Ch. 60. Elastoplastic Wire; Ch. 61. Basic Equations of 
Nonlinear Elasticity Theory; Ch. 62. Monotone Potential Operators and a Class of Models with 
Nonlinear Hooke's Law, Duality and Plasticity, and Polyconvexity; Ch. 63. Variational Inequalities 
and Signorini Problem for Nonlinear Material; Ch. 64. Bifurcation for Variational Inequalities; 
Ch. 65. Pseudomonotone Operators, Bifurcations, and the von Kármán Plate Equations; Ch. 66. 
Convex Analysis, Maximal Montone Operators and Elasto-Viscoplastic Material with Linear 
Hardening and Hysteresis. 

Applications in Thermodynamics: Ch. 67. Phenomenological Thermodynamics of Quasi-
Equilibrium and Equilibrium States; Ch. 68. Statistical Physics; Ch. 69. Continuation with respect 
to a Parameter and a Radiation Problem of Carleman. 

Applications in Hydrodynamics: Ch. 70. Basic Equations of Hydrodynamics; Ch. 71. Bi-
furcation and Permanent Gravitational Waves; Ch. 72. Viscous Fluids and the Navier-Stokes 
Equations. 

Manifods and their Applications: Ch. 73. Banach Manifolds; Ch. 74. Classical Surface Theory; 
the Theorema Egregium of Gauss, and Differential Geometry on Manifolds; Ch. 75. Special Theory 
of Relativity; Ch. 76. General Theory of Relativity; Ch. 77. Simplicial Methods, Fixed Point Theory, 
and Mathematical Economics; Ch. 78. Homotopy Methods and One Dimensional Manifolds; 
Ch. 79. Dynamical Stability and Bifurcation in B—S-spaces. 

The chapters are followed by interesting problems supplying the body of the text and encour-
aging the reader's individual thinking. 

Apparently, the book covers the whole spectrum of the significant applications of the non-
linear functional analysis. It will be very useful and inevitably importan tfor mathematicians, phys-
icists and students interested in applications of mathematical methods in physics. 

L. Hatvani (Szeged) 
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