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- Endliéhe LoopS und i.hr'e Unterloopverbiinde

HUBERTA LAUSCH

Die vorliegende Arbeit setzt die bereits in [8] begonnene Untersuchung endlicher
Loops und ihrer Unterloopverbinde fort. Auch hier zeigt sich, daB ‘ohne zusétzliche
Forderungen an die Struktur der Loops wie z. B. Potenz- oder Diassoziativitit,
zentrale Nilpotenz etc., kaum Aussagen dariiber moglich sind, welche Auswirkungen
die Struktur des Unterloopverbandes auf die Struktur der Loop hat und umgekehrt.

Der q:}ste Abschnitt behandelt endliche Loops mit modularen Unterloopver-
banden und gibt eine vollstindige Beschreibung von endlichen Loops mit booleschen
Unterloopverbanden. - Wesentlichstes Ergebnis des zweiten Abschnitts ist, daB
endliche Loops mit schwach booleschen Unterloopverbinden von (hochstens) zwei
Elementen erzeugt werden kdnnen(Satz 2.1). Abschnitt 3 wendet sich den endlichen
zentral nilpotenten Loops zu. Beispielsweise erfiillt der Unterloopverband einer
endlichen zentral nilpotenten Loop stets die Jordan—Dedekind-Kettenbedingung
(Satz 3.1). ‘

Der. abschlieBende Abschnitt 4 ist den endlichen kommutativen Moufang-
Loops gewidmet. In Satz 4.1 wird das Resiimee aus den bisherigen Ergebnissen
iiber endliche kommutative Moufang-Loops und ihre Unterloopverbiande gezogen.
Sodann ergibt sich fiir endliche kommutative Moufang-Loops mit modularen Un-
terloopverbinden eine interessante Analogie zu den endlichen nilpotenten Gruppen :
Eine endliche kommutative Moufang-Loop besitzt genau *dann einen modularen
Unterloopverband, wenn alle ihre Unterloops quasinormal sind (Korollar 4.4).
Ferner erhilt man fiir endliche kommutative Moufang-Loops mit modularen
Unterloopverbinden die schone Strukturausage, daB die Faktorloop G/Z(G) einer
derartigen Loop G nach ihrem assoziativen Zentrum Z(G) eine elementar-abelsche
3-Gruppe ist (Satz 4.7). Endliche kommutative Moufang-Loops mit modularen
Unterloopverbinden sind also insbesondere nilpotent der Klasse zwei.

Die Bezeichnungen sind im wesentlichen wie in [3] bzw. [5] gewihlt; mit L(G)
bezeichnen wir den Unterloopverband einer Loop G. :

-~ - Received June 17, 1986 and in revised form April 11, 1988. .
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1. Loops mit modularen und booleschen Unterloopverbinden

Fiir endliche Loops mit modularen Unterloopverbinden kann man keine wirk-
lich schonen Strukturaussagen erwarten, wie bereits die Diskussion spezieller modu-
larer Verbinde (projektiver Geometrien) in [8] gezeigt hat. Ganz im Gegensatz zu
den Gruppen brauchen endliche Loops mit modularen Unterloopverbinden nicht
direkte Produkte von Unterloops zu sein; dies belegen die Beispiele 3.2 und 3.3 in
[8]. Doch spielt (dhnlich wie fiir Gruppen) die Vertauschbarkeit zweier Unterloops
einer Loop G eine gewisse Rolle. Zwei Unterloops U, ¥V der Loop G heiBlen ver-
tauschbar, wenn UUV =UV=VU gilt, und man nennt eine Unterloop U von G
quasinormal in G, wenn U mit allen Unterloops von G vertauschbar ist. Auch fiir
Loops hat man die folgende, [11, Theorem 5, p. 5] entsprechende Aussage:

1.1. Satz. Sind zwei Unterloops U, V der Loop G vertauschbar, so gilt fiir alle
Unterloops W2U die modulare Identitdt (UUVINW=UUWV NW).

Daher besitzen Loops, in denen alle Unterloops quasinormal sind, modulare
Unterloopverbinde. Insbesondere trifft dies fiir hamiltonsche Loops zu, in denen
alle Unterloops normal, also erst recht quasinormal sind.

Fiir potenjzassoziative p-Loops, wo p eine Primzahl ist, gilt:

1.2. Satz. Sei G eine potenzassoziative p-Loop. Dann bilden die Elemente der
Ordnung p zusammen mit 1 eine charakteristische Unterloop. Ist G sogar diassoziativ,
so bilden die Elemente der Ordnung p zusammen mit 1 eine charakteristische kom-
mutative Unterloop 2

Beweis. Seien, a, b€ G zwei Element:é der Ordnung p. Da L({a, b)) wegen der
Modularitat endhche Linge hat, ist (g, b) endlich. Gabe es ein Element g¢(a, b)
der Ordnung p*, 1<i€N, so wire {gYN{a)=(g)N{b)=(1). Wegen der Modularitit
von L({a, b)) miite {g)={a, b) gelten und (a, b) wire zyklische Gruppe. Also hat
jedes von 1 verschiedene Element von (g, b) die Ordnung p, was die erste Behauptung
zeigt. Fiir diassoziatives G ist (@, b) nach [11, Proposition 1.7, p. 14] eine Gruppe
der Ordnung p?, also kommutativ.

Als Folgerung aus dem obigen Satz ergibt sich, daB alle Elemente einer Ordnung
_p néN, einer potenzassoziativen p-Loop G eine charakteristische Unterloop von
G bilden.

Nun geben wir eine vollstandlge Beschreibung endlicher Loops, deren Unter-
Todpverbinde boolesch, d. h. distributiv und komplementlert sind. Dazu rekapituli-
eren wir einige wichtige Ergebnisse aus [8]: Endliche Loops (und alle ihre Unter-
loops) mit distributiven Unterloopverbianden sind monogen. Als Konsequenz davon
sind potenzassoziative Loops mit distributiven Unterloopverbanden.zyklische Grup-
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pen. Hilfreich ist ferner die Beobachtung,'daB di¢ Frattiniunterloop einer Loop mit
einem komplementierten Unterloopverband trivial ist, vgl. [11, Proposition 1.14;
p. 26]. Falls der Unterloopverband der Loop G die triviale boolesche Algebra ist,
sind keine genaueren Aussagen iiber die Struktur von G méglich, da es fiir jede
ungerade natiirliche Zahl n=5 eine Loop der Ordnung # ohne echte Unterloops
gibt, s. [5, p. 93 f]. Zur Vereinfachung der Schreibweise filthren wir die folgende
Bezeichnung ein: Fiir Elemente a,€G, j€J, JE{I, ..., n} bezeichne jg a; das

Produkt aller g;, j€J, in belicbiger Reihenfolge und mit beliebiger Klammerung
des Produktes. Damit gilt:

1.3. Satz. Der Unterloopverband einer Loop G ist genau dann eine boolesche
Algebra der Linge n, wenn n Unterloops A, ={a), 1>a€d;,, i=1,...n, ohne
echte Unterloops in G existieren, die paarweise trivialen Durschschnitt haben und fur
welche gilt:

(@) G=(Ali=1, .. m)= -/

(b) Fiir jede Unterloop <1>¢ U<G gibt es eznegeezgnete Teilmenge Jc ], ..., n}
mit U= UA-([Za,) _

© Sind U= <]] a;y und V=_[[ ay mit J,Kc{l,...,n} zwei Unterloops

KEK
von G, so hat man UUV=< II ay, UNV={ [[ ay, falls JNK#9 und
i JUK reINK .

UNv=qQ) fir JNK=9.

Zum Beweis von Satz 1.3 hat man nur zu beachten, daB der Verband aller
Teilmengen von {1, ..., n} eine boolesche Algebra der Linge # ist.

Fiir potenza55021at1ve Loops ergibt sich unmittelbar aus [8, Satz 1 .2] und [12
Corollary 2]:

1.4; Korollar. Die endlichen potenzassoziativen Loops mit boolescheﬁ Unter-
loopverbdnden sind genau die zyklischen Héldergruppen.

2. Loops mit schwach booleschen Unterloopverbiinden

Der Unterlbopverband L(G).einer Loop G heiBt schwach boolesch, wenn das
Intervall [G/A] fiir jedes Atom A von L(G) boolesch ist. Endliche Loops mit schwach
booleschen Unterloopverbinden haben die folgende bemerkenswerte Eigenschaft'

2.1. Satz. Sei G eine endliche Loop mit schwach booleschem UnterIoopverband
L(G). Dann ist G von hichstens zwei Elementen erzeugbar.

Beweis. Falls es in L(G) genau ein Atom gibt, so ist L(G) offensichtlich dis-
tributiv-und G kann nach [8; Satz 1.2] sogar von nur einem Element erzeugt werden.

"
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. Seien nun 4,, ..., 4, die Atome von L(G). Falls das [ntervall [G/4] fiir alle
i=l, ...,n .die boolesche Algebra der Lange 1 ist, so stellt L(G) eine projektive
Gerade dar und wird daher nach [8, Satz 4.1] von hichstens zwei Elementen erzeugt.

- Ist, [G/A4]] fiir mindestens ein i€{l, ..., n} eine boolesche Algebra der.Linge
I=>1, so wird G bereits von zwei maximalen Unterloops aus [G/4,] erzeugt. Sei
nun 4; so gewahlt, daB [G/4,] eine boolesche Algebra maximaler Linge in L(G)
ist. Das Atom 4; wird offenbar von einem Element erzeugt, sei 4;=(a;), 17a;€ 4;.
Nun seien B;, j=I,...,m, dic Atome von [G/4]. Dann ist L(Bp, j=1,...m,
entwedér eine Kette der Lange zwei und B; wird von einem Element b;¢€ B;, b jefA,,
erzeugt, oder B, ist das Erzeugnis von 4; und einer weiteren Unterloop C von G.
Dabei ist C notwendigerweise ein Atom von L(G), denn sonst wire [G/4;] keine
boolesche Algebra maximaler Linge. Also gilt in jedem Fall B;=(b;, a;), 12b,¢4,;,
Jj=1,...,m. Nun ist G aber die Vereinigung aller Atome B;, j=I1,...,m, von
[G/4), also gilt G=(b;,a|j=1,...,m). Wir betrachten die von dem Produkt
b;...b, (mit beliebiger Klammerung) und dem Element a; erzeugte Unterloop H=
=(b,...b,, a;) von G. Trivialerweise hat man A4,<H. Wire H eine echte Unter-
loop von G, so wire entweder H=A; oder H wire Vereinigung von r<m Atomen
B;. In beiden Fillen wire H also in einer maximalen Unterloop M von G enthalten;
o. B. d. A. diirffen wir H<({b,, ..., b,_;,a;) annehmen. Dann folgt b&,...5,¢
‘€{byy ..oy B_y, a;), was nach Voraussetzung nicht moglich ist. Daher gilt H=G
und die Behauptung ist gezeigt.

Fiir diassoziative Loops hat Satz 2.1 eine interessante Konsequenz, die eine
wesentliche Verallgemeinerung von [10, Korollar 3 in Abschnitt 2] darstellt und die
lnsbesondere fiir Moufang-Loops gilt:

2.2. Korollar Der Unterloopverband einer endlichen diassoziativen Loop G
ist genau dann schwach boolesch, wenn G eine Gruppe von einem der folgenden Typen
ist: ’

(1) zyklische Héldergruppe,

(2) Z(p? fiir eine Primzahl p,

(3) Z(p)X Z(p) fiir eine Primzahl p,

- (4) direkt unzerlegbare Holdergruppe mit prtmzykltscher Kommutatorgruppe

AbschheBend geben wir noch ein Be1sp1el fur eme mcht dlassomatlve Loop mit
emem schwach booleschen Unterloopverband

.. 2.3. Beispiel. Die Loop G={, ..., 16} sei gegcben durch d1e Permutatlonen
(zur Schreibweise . [8, Abschmtt 3]) o

_ R2 = 2)(3 4)(56)(71310 16 15 12)(8 11)(9 14)
5= (1324)(51014 1612 119 13 7 6.8 15),
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Ry =(1423)(51510128 14716 69)(11 13)
Ry =(1526)(3141015711)(413912168),

Ry =(1625)(3159111041671213 148),

R, =(178910)216 14 12)(36 135)(415 11),
Ry =(181079)21513312641116514),
R, =(197108)212311151413616)(45),
Rio = (11098 )2 11)(3 16 13 15 4 14 6)(5 12),
Ry =(1111293106141516)(48 572 13),
Ry =(11215)216 13)(358 16 496 7)(11 14),
Ry = (11316105117 14)29 153 8)(46 12),

Ry =(11441210375916116 152813)

Ry =(115861011516921431312)(47),

R =(1163941027156 11)(5 138 12 14).

Die Loop G besuzt die Unterloops 4,={1, 2}, Az_{l 7 8, 9 10}, B,={1,2, 3, 4},

BZ_{I 2,5, 6). Dabei sind 4, und A4, die Atome von L(G); das Intervall [G/A1]
ist eine boolesche ‘Algebra der Linge 2, das Intervall [G/4,] eine boolesche Algebra
der Linge 1. Ferner gilt G=(4;, Ay)=(By, By)=(By, 4:)={(B,, A,). " AuBerdem’
kann G von nur einem Element erzeugt werden, man hat namlich G= (11) (12)=

=(13)= <14> -(15)=(16)..

3. Zentral nilpotente endliche Loops

Im folgenden Abschnitt 4 werden wir uns mit endlichen kommutativen Moufang-
Loops beschiftigen. Da endlich erzeugte kommutative Moufang-Loops zentral nil-
potent sind (s. [5, Theorem 10.1, p. 157]), lohnt es sich, zunachst endhche zentral
nilpotente Loops zu untersuchen.

- Bekanntlich erfiillt der Untergruppenverband L(G) einer endllchen Gruppe
G genau dann die Jordan—Dedekind-Kettenbedingung, wenn G uberauflosbar.
ist. Daher erfiillen insbesondere die Untergruppenverbiande endlicher nilpotenter’
Gruppen die -Jordan—Dedekind-Ketténbedingung. Fiir: endliche zentral nilpotente
Loops hat man die entsprechenden Sétze wie fiir endliche nilpotenté Gruppen, dd
die Ordnung jeder Unterloop die Ordnung jeder sie enthaltenden .Unterloop teilt.
Ferner ist eine Unterloop einer zentral nilpotenten Loop G genau dann maximal in
G, wenn sie normal in G ist und Primzahlindex in ‘G hat, s. [4, Theorém 7B, Léemma
7F + Corollary]. Weiter existiert stets eine Hauptreihe' G=4,>4, 5... D 4,=(1),
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wobei jede Faktorloop A4;_,/4; keine echten Unterloops besitzt und 4; Primzahl-
index in A;_, hat. Daher folgt mit genau den gleichen Argumenten wie fiir Gruppen
(vgl. [3, p. 177]) und [11, Theorem 9, p. 9]):

3.1. Satz. Der Unterloopverband einer endlichen zentral nilpotenten Loop erfiillt
die Jordan—Dedekind-Kettenbedingung.

Ferner gestatten endliche zentral nilpotente -Loops noch die folgenden Aussagen:

3.2. Satz. Eine endliche zentral nilpotente Loop G hat genau dann einen komple-
mentierten Unterloopverband L(G), wenn G ein dzrektes Produkt. elementar-abelscher
p-Gruppen ist.

Beweis. Da G endlich ist, ist die Frattiniunterloop &(G) von G verschieden
von G und wegen der Komplementiertheit von L(G) gilt &#(G)=(1). Daher ist
G nach [5, Theorem 2.2, p. 98] eine abelsche Gruppe und mit [11, Proposition 1.15,
p. 16] folgt nun die Behauptung.

Aus Satz 3.2 und [8, Satz 1.2] ergibt sich imrrﬁttelbar_:

3.3. Korollar. Ist der Unterloopverband einer endlichen zentral nilpotenten
Loop G eine boolesche Algebra, so ist G eine zyklzsche Holdergruppe

Als weitere Folgerung aus Satz 3.2 erhilt man mit Hilfe von [12, Corollary of
Theorem 1]:. :

3.4. Korollar. Der Unterloopverband L(G) einer endlichen zentral nilpotenten
Loop G ist genau dann orthomodular, wenn G direktes Produkt von P-Gruppen mit
paarweise teilerfremden Ordnungen ist.

4. Endliche kommutative Moufang-Loops

_In den vorhergehenden Abschnitten haben wir gesehen, daB man fiir endliche
kommutative Moufang-Loops und ihre Unterloopverbande einige schéne Aussagen
machen kann. Dies rechtfertigt eine gesonderte Behandlung' endlicher kommutativer
Moufang-Loops Zuniichst seien hier noch einmal die wichtigsten Ergebmsse zu-
sammengestellt

4.1.°Satz. Fiir eine endliche kommutative - Moufang-Loap G mit dem Unter-
loopverband L(G) gelten: :
(1) L(G) etfiillt die Jordan—Dedekind- Kettenbedmgung
(2) L(G) distributiv < G zyklische Gruppe: .
(3) L(G) komplementiert <> G direktes Produkt eIementar-abeIscher p-Gruppen
" (4).L(G) boolesch <> G-zyklische Héldergruppe.
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(5) L(G)-schwach boolesch <> G ist abelsche Gruppe von genau einem der folgenden
Typen: zyklische Holdergruppe, Z(p®), Z(p)X Z(p).

. Im folgenden soll die Struktur von endlichen kommutativen Moufang—Loops
mit modularen Unterloopverbinden hergeleitet werden. Es zeigt sich, daB fiir end-
liche kommutative Moufang-Loops — &hnlich wie fiir endliche nilpotente Gruppen,
vgl. [11, Theorem 8, p. 8] — die Umkehrung von Satz 1.1 gilt. Dazu benétigen wir
zunichst das folgende Lemma.

4.2. Lemma. Die Unterloops U und V einer endlichen kommutativen Moufang-
Loop G sind genau dann vertauschbar, wenn ((UUV): U|=|V: (UNV)]| gilt.

Beweis. Sei zundchst [(UUV): U|=|V: (UNV)|. Dann gilt |UUV|=
=|U}- (UUV): U|=|U|-|V: (UNV)|=|UV|=|VU|, woraus wegen UV=VUS
C(U, V) sofort UUV=UV=VU folgt. Seien nun U und ¥ vertauschbar. Dann
hat man |UUV|=|UV|=|U|-|V: (UNV)| und andererseits |UUV|=
=|(UUV): U|-|U|. Damit folgt die behauptete Identitit. -

Jetzt kénnen wir den gewiinschten Satz zeigen:

-4.3. Satz. Sei G eine endliche kommutative Moufang-Loop und seien U und V
ein modulares Paar von Unterloops von G. Dann sind U und V vertauschbar.

Beweis. Als endliche kommutative Moufang-Loop ist G direktes Produkt
einer endlichen abelschen Gruppe 4 von zu 3 teilerfremder Ordnung und einer
kommutativen 3-Moufang-Loop B. Daher 148t sich G als direktes Produkt der p-
Sylowgruppen Sy, ..., S, von 4 und der 3-Moufang-Loop B schreiben, also G=
=8;X...X8,XB, s.[7, Proposition 1.3]. Somit ist auch jede Unterloop U von G
in der Form U=U;X...XU,XU,;; mit U;=UNS; (i=1, ...,n), U, ;,=UNB
darstellbar. Seien also U=U;X...XU,;, und V=V;><...><V,,_,_1 ein modulares
Paar von Unterloops von G. Wir bezeichnen die Ordnungen von U,V, UUV,
unvy, U, ¥V, U;UV, bzw. U;N¥; mitu, v, m,d Uy U3, bzw d;. Wegen UUV =

=(U,UR)X...X(U,41UV,,,) folgt m= ]] m; und d= ]]’ d;, und md ist durch

uv teilbar. Andererseits wird das Intervall [( U U V)/U] von L(G) wegen der Gilltigkeit
der modularen Identitit isomorph auf das Intervall [V/(UNV')] abgebildet. Da G
zentral nilpotent ist, sind auch U, ¥, UUV und UNV zentral nilpotent und ‘es
existiert je eine Hauptreihe zwischen UUV und U sowie zwischen ¥ und UNYV,s.
[4, Abschnitt 7]; dabei ist die Lange einer Hauptreihe zwischen UUV¥ und U nicht
groBer als die Lange einer Hauptreihe zwischen ¥ und UNV. Daher ist die Anzahl
der Primfaktoren in [(UUV'): U|=mj/u nicht gréBer als die Anzahl der Primfaktoren
in |V: (UNV)|=v/d. Wegen uvlmd muB md=up, also |(UUV): U|=|V: (UNP)|
gelten. Nach Lemma 4.2 hat man somit UUV =(U, V)=UV=VU. :
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" Aus den SitZen 4.3 und 1.1 folgt unmittelbar:

4.4. Korollar. Eine endliche kommutative Moufang-Loop besitzt genau dann
einen modularen Unterloopverband, wenn alle ihre Unterloops quasinormal sind.

- Eine wichtige Klasse von Loops, in denen alle Unterloops quasinormal sind,
sind. die ‘hamiltonschen Loops. Wegen der Diassoziativitit von Moufang-Loops
ergibt sich mit [5, Theorem 7.2, p. 87] sofort, daB endliche hamiltonsche kommutative
Moufang-Loops abelsche Gruppen sind. Von besonderem Interesse ist daher die
Struktur nicht hamiltonscher kommutativer Moufang-Loops mit modularen Un-
terloopverbanden die im folgenden untersucht wird.

' 4 5. Lemma. Sei G= AXB eine endliche kommutative Moufang-Loop mit

einer abelschen Gruppe A von zu 3 teilerfremder Ordnung und einer kommutativen

-Moufang-Loop B. Dann ist der Unterloopverband L(G) von G genau dann modular,
wenn L(B) modular ist.

Beweis. Wegen [5, p. 101] ist G in der angegebenen Form G =4 X B darstellbar
und mit L(G) ist auch L(B) modular. Da L(A4) als Untergruppenverband einer abel-
schen Gruppe von vornherein modular ist, ist umgekehrt fiir die Modularitit von
L(G) die Modularitit von L(B) hinreichend (vgl. den Beweis von Theorem 4, p. 5,
in [11)).

Somit kénnen wir uns darauf beschrianken, endliche kommutative 3-Moufang-
Loops mit modularen Unterloopverbdnden zu untersuchen. Ein wichtiges Hilfs-
mittel dazu liefert das folgende Lemma:

-4.6. Lemma. Eine kommutative 3-Moufang-Loop B vom Exponenten 3 hat
genau dann einen modularen Unterloopverband, wenn B eine elementar-abelsche 3-
Gruppe ist.

Beweis. Angenommen, B ist keine Gruppe. Dann gibt es unter den von drei
Elementen erzeugten Unterloops mindestens eine nicht assoziative Unterloop
U=(x, y, z) von B. Wegen [7, Lemma 1.6] hat U mindestens die Ordnung 81, wihrend
das Komplexprodukt {x, y){z) von der Ordnung 27 ist. Daher kann L(B) nach
Korollar 4.4 nicht modular sein.

Das vorstehende Lemma zeigt insbesondere, dafB3 die von allen Elementen der
Ordnung 3 erzeugte Unterloop S einer endlichen kommutativen Moufang-Loop G
mit modularem Unterloopverband eine elementar-abelsche 3-Gruppe ist, da wegen
der Giltigkeit von (xy)*=x%" fiir alle x, y¢G alle Elementes#1 von § die Ordnung
3 haben. Eine weitaus wichtigere Konsequenz aus Lemma 4.6 1st Jedoch d1e fo]gende
Aussage: o .
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47, Satz. Es sei G einie endliche -kommutative Moufang-Loop iind Z(G) ihr
assoziatives Zentrum. Ist der Unterloopverband L(G) von G modular, so. ist die Faktor-
Ioop G|z (G) eine elementar-abelsche 3-Gruppe. Insbesondere ist.G also nllpotent der
Klasse 2.

Beweis. Nach [9, Theorem 1.8, p. 9] ist G/Z(G) eine kommutatlve Moufang-
Loop vom Exponenten 3. Da mit L(G) auch L(G/Z (G)) modular ist, muB G|Z(G)
wegen Lemma 4.6 eine abelsche Gruppe vom Exponenten 3 sein.

Ubrigens hat Satz 4.7 eine interessante Parallele fiir endliche Gruppen mit
modularen Untergruppenverbénden, sogenannte M-Gruppen: Endliche M-Gruppen
sind stets metabelsch, s. [11, Theorem 15, p. 18].

Das kleinste Beispiel fiir eine nicht assoziative kommutative 3-Moufang-Loop
mit modularem Unterloopverband ist die von den Elementen x, y, z mit den definie-
renden Relationen x*=)*=2'=1, (x,y,2)=2* erzeugte Loop B der Ordnung
81, s. [7, Proposition 6.1]: Alle echten Unterloops von B sind Gruppen, also ist das
Komplexprodukt zweier Unterloops, die zusammen eine echte Unterloop von B
erzeugen, gleich dem Erzeugnis dieser Unterloops; das Komplexprodukt zweier
Unterloops, deten Erzeugnis B ist, hat die Ordnung 81 und ist daher gleich B. Somit
sind alle Unterloops von B quasinormal.
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On composition of idempotent functions

A. KISIELEWICZ

The general problem of composition of functions was raised by W. SIERPINSKI
[13]. Since then the problem has been extensively investigated in many-valued logic,
synthesis of automata, and recently, in universal algebra (cf. [11], [1], [3], [4]).
There are some results and problems showing that idempotent clones play here a
special role (cf. [2], [3], [8], [10,] [12], [14], see also [7]). In this paper some further
special properties- of idempotent clones are established, and examples are provided
to show that our theorems do not hold in the general (nonidempotent) case.

The results are stated in Section 3. Before we introduce some definitions
(Section 1) and give background information (Section 2). Proofs are given in
Section 4. '

" 1. Definitions. A clone is a composition closed set of functions (on a fixed uni-
verse A) containing all projections (cf. [12]). For two clones A and B such that
B2A we say that A is a subclone of B, while B is an extension of A. If A=B and
A is not a trivial clone (i.e. consisting of projections only), then A is said to be a
proper subclone of B, If m is the least integer such that there is an essentially m-ary
function.in B—A, then B is called an m-ary extension of A.

For any set F of functions, P,(F) denotes the set of essentially n-ary functions
in F, and p,(F) is the cardinality of B,(F). Moreover, we denote S(¥)={n: p,(F)>0}.
A function f: A"—~A is idempotent if it satisfies f(x, ..., x)=x .identically.
If, in addition, it satisfies ‘
f(f(xi’x%’ baad 4 x:)’ f(x%’ xg""" xﬁ)"""f(x?ﬁ xg’""’ x:)) =f(x%’ xg’ bt 4 x:‘l)’
then it is called diagonal. If every function in-a clone is idempotent (diagonal), then
the clone itself is called idempotent (diagonal).
' Other, undefined concepts are standard and can be found in corresponding
papers given in our references. Throughout the paper we make use of the fact that
clones can be identified with sets of polynomials of universal algebras (cf. [11]).

" Received May 26, 1986.
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2. Examples. The algebraic property of idempotency is of special interest in
studying clones, because for any clone A, the idempotent functions in A, as it is
easy to check, form a composition closed set (the full idempotent subclone of A).
Consequently, studying minimal clones leads to studying certain idempotent clones
(see [2], [12]). Also, p,-sequences (and free spectra) of idempotent clones are com-
pletely different in nature from those of nonidempotent clones (se¢ [4], [7], [8]). Diago-
nal clones are rather exceptional among idempotent-clones and are fully described.
Properties of diagonal clones mentloned below are derived from [9] and [6].

(2.1) Diagonal clones. A clone D generated by a single essentially r-ary diagonal
functlon d(xl, .-s X,) is called an r-dimensional diagonal clone (algebra). S(D)=
={2,3,..,r} and p,(D) is finite for all n. A. diagonal clone’D is. finitely generated
iff it'is as above. Otherwise, ‘S(D)={2, 3, ...} ‘and p,(D)={, for all n=2. For
any diagonal clone. D, P(D) with n=2, if not empty, is a generating set for D.
Finally, if a clone A is generated by diagonal functions only, and has no nondiagonal
binary. functions, then it.is a‘diagonal clone; it.is' finitely generated if and only if
D2(A) is.finite. Also, the structure of m-ary extens1ons of r-dlmens1ona1 diagonal
clones w1th m=r+1 is described (see [14])

(2 2) Boolean reducts. For the full 1dempotent subclone 1 of the clone (of poly-
nomlals) of any Boolean group (G, +) we have SI)={3,5,7,...} and p,(D=1
for odd n=3 (see [8], p. 234). In this paper such clones are called simply Boolean
reducts. The structure of m-ary extensmns of Boolean reducts w1th ‘m=35 is described
in [14].

(2.3) Counter-examples. Let C be the union of two infinite disjoint sets 4 and B
and two further elements a and b. For any nz=1 "we define two functions on C:
fuxys ooy x)=a if xq, ..., x,6 A and are pairwise distinct, and f,=b otherwise.
Similarly, g,(x;, ..., x,)=a if x, ..., x,6B and are pairwise distinct, and g,=b
otherwise. It is easy to check that any set of functions f;, g; containing the constant
b is a clone. Thus, for any set of positive integers .S, there exist a:clone B and a sub-
clone A of B such that S(B—A)=S. For these clones B,(B)U{b} is always a sub-
clone. Also, examples of clones without constants and having the.same. properties
can be given using constructions appliedin [3]. oo

. 3. Results. OQur main result concerns the difference B A of an idempotent
clone B and its subclone A. In the’ general case, by example (2.3), the set S(B—A)
can be arbltrary If Bis assumed to be 1dempotent “the situation is very deferent

Theorem 1. Let B be an idempotent clone and A its proper subclone --Then one
of the following conditions holds: . ~
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(i) SB—A)={m,m+1, ...} for some m= =2,
() SB—A)={2,3,...;r} for some r=2, - L
(i) SB—A)={2,3, ..., r}U{m, m+1, ...} for some- r=2 and m>r+l
(iv) S(B—A)={3,5, 7 }U{m,m+1 ..} for some even m=>5.
Moreouer, conditions (ii)—(1v) determine. the structure of the clone B. Namer,
1. if (ii) holds, then B is an r-dimensional dzagonal clone,
2. if (iii) holds, then B is an m-ary extension of an r-dzmenszonal dzagonal cIone
3. if(iv) holds, then B is an m-ary (or.(m— 1)-ary) extension of a Boolean reduct.

Corollary. The difference B— A of an idempotent clone B and its proper sub-
clone A is always infinite, unless B isa Jfinitely generated diagonal clone.

Theorem-1 is actually a classification of the differences B—A, analogous to that
of [14]. It is of some interest that from such a theorem one can derive a result con-
cerning composition of functions:

‘Theorem 2. If B is an idempotent clone which can be generated by (at most)
k-ary functions, then for any n=k, the set P,(B) of essentially n-ary functions in B,
if not empty, is a generating set for B.

In addition to fhe examplés in (2.3), many others can be constructed showing
that our theorem fails to hold for nonidempotent clones.

4. Proofs. At first, we give the proof of Theorem 1 which is based on several
lemmas. We use techniques and constructions worked out in [5] and [8]. Throughout,
B is assumed to be an idempotent clone, and A its subclone. The numbers in question
are always integers. For every k=2 we consider the following property of the
clone B:

(+) for every function f(x, ..., x,)€F,(B) with n=k there exists a _function
FCets ooos Xup D€L, 11 (B) in B such that f(xg, ..., Xps X)=f(x1, ..., %) for some .

Lemma 1. If B satisfies (+) for some k, then Sfor every m=k, mES(B A)
implies {m, m+1, ... }SS(B—A).

Proof. mcS(B—A) means that there is an essentially m-ary function
Sf(x1, ...y X)) in.B—A. Then, f(x;,-...; Xn4+4A, since-(by substitution x,,.,=x;)
it generates f(xy, ..., Xp)- It follows that m +'1€S(B—A). Now thc result follbwé
easily by induction. ' : -

Lemma 2. Let g(x, y) xX-y be a btnary functzon in B, not dzagonal If f—
=f(x15 ooy ,,)EP(B) (n=2), thenfor some I, f=F(xy, .ccs Xi* Xpa1s 100s X)€ Byp1(B).

Proof. At first, note that f obviously depends on ‘each of the variables
X1s eees Xie1s Xi41, -o0s Xy SiDCE substituting ' x,,,=x; in f we get f dependmg on
these variables. . .
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Now, suppose that f(x-y, Xz, .., x,) does not depend on y. Then by sub-
stituting y=x, f(x ¥, Xas --.r X)) =f(X, Xz, ..., X,). Consequently, f((x-3):z, xs, ...,
cees X)) =f(X, X3, ..., X,). Similarly, if f(x-y,x,, ..., x,) does not depend on x, then
f((x-y)-2, x5, ..., x)=f(2, X, ..., X,)- By analogous arguments for all indices i,
and in view of the idempotency of f, we infer that, if f(xy, ..., X;  Xp415 <15 Xp)
_ is not essentially (n+ 1)-ary for any 7, then (x-y)-z=f((x-y)-z, ..., (x-»)-z) does
not depend on y. Consequently, (x-y)-z=x-.z. Similarly, x.-(y-z)=x-.z. This
means that x - y is diagonal, a contradiction.

Lemma 3. If there is a binary nondlagonal function in B, then condition (i) of
Theorem 1 holds.

Proof. By Lemma 2, B satisfies condition (+) for k=2. Now, if m is the least
integer such that m¢ S(B—A), then in view of Lemma 1, S(B—A)={m, m+1, ...},
as required.

Lemma 4. If B is a diagonal clone, then SB—A)={2, ...,r} for some r=2
whenever B is finitely generated, and S(B—A)={2, 3, ...} otherwise.

Proof. If B is finitely generated, then the result is by (2.1). Suppose that B is
not finitely generated and m¢ S(B—A). Then B,(B)=PF,(A). However, as P,(B)
generates the clone B (cf. (2.1)), B,(A) also does, and so A=B, a contradiction.

Lemma 5. If B is an m-ary extension of a diagonal clone D for some m=2, then
D is contained in the clone generated by P, (B).

Proof. If there is a diagonal function in P,(B), then by (2.1) B,(D) generates
D, and since PB,(B) > F,(B), the result follows. In the opposite case, D is an r-dimen-
sional diagonal clone for some r<m (r=2). In this case we apply the method of
diagonal decomposition of the clone B with respect to D (see [8], p. 244).

Let f(x;, ..., x,) be a nondiagonal essentially m-ary function in B, which
exists by assumption. Then

f(xls "er -xm) = <f](x19 sees xm)’ _“’fr(xl,'.;_, xm)>

and each fis either essentially m-ary or equal to h;(x;). Indeed, if e.g. f1(xy, ..., Xm)
depended on exactly k variables with 1<k<m, say f1(xy, ..., Xm)=8(X15 --.» Xp)s
then we would have (g(xy, ..., xi), ha(xy), ..., b, (x))E F(B). This function is non-
diagonal (by propertles of diagonal decomposmon) contradicting the assumptions
in our lemma. Moreover, at least one f must be essentially m-ary, since otherwise
f would be a diagonal function.

So, suppose that e.g. f1(xy, ..., xm) is'ess¢ntially m-ary.

F (X1 ooy X1y Xy—1) = By(x;) for some k (1=k=m-1)
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(otherwiseé we can infer a contradiction, as:above). Put’

ICNE SESCLCTNERNY NCARN X8

where i, ..., i, are pairwise distinct and k¢ {iy, ..., ;}S{1, 2, ...,m}. Then g€ F,(B)
and  g(xy, .-+ X¥m-15 X¥m-0) =M (30, Ba(x;) ... B (x,)) is an essentially r-ary diag-
onal function, and by (2.1), it generates the clone D. This completes the proof.

Lemma 6. Suppose that P,(B) is finite, nonempty, and consists of diagonal
Junctions only. If B is not a diagonal clone, then either S(B—A)={m,m+1, ...}
Jor some m=2, or SB—-A)={2, ..., r}U{m, m+1, ..} for some r=2 andm=>r+1
In the latter case B is an m-ary extension of an r-dimensional diagonal clone.

: Proof. Denote by D the clone generated by F,(B). By (2.1) it is an r-dimensional
diagonal clone for some r=2, and consits of all diagonal functions in B. In other
words, since by assumption B=D, B is an m-ary extension of D for some m=2,
just as the second part of the lemma states. Moreover, B satisfies (+) for k=m.
Indeed, it is enough to set f=fL, where L is a mapping defined in [8], Section 5.4.

Now, if s is the least integer such that s¢ S(B—A) and s=m, then in view of
Lemma. 1, SB—A)={s,s+1,...}, as required. It remaines to consider the case
when s<m, which means that there exists a diagonal essentially s-ary function in
B—A (s=2). By means of (2.1), it follows that the full diagonal subclone of A is
contained properly in D, and consequently, {2,...,7}SS(B—A). On the other
hand, by Lemma 5, mc S(B— A), and since B satisfies (+) for k=m, {m, m+1, ...} &S
ES(B-A). ' :

Now, if r=m—1, then S(B—A)={2,3,...}, while if r<m—1, then as B
is an m-ary extension .of D, S(B—A)={2, ...,r}U{m, m+1,...}. This completes
the proof.

Lemma 7. If P,(B) is infinite and consists of diagonal functions only, then con-
dition (i) in Theorem 1 holds.

Proof. In view of Lemma 1 it is enough to show that B satisfies condition (+) -
for k=2. Applying again the method of diagonal decomposition [8], we construct
a suitable mapping.

Let f(xy5 ..., xn)€B,(B), m=2. By v1rtue of (2.1) (for every m) there exists
-an essentially (m+ 1)-ary diagonal function in B. This function generates an (m+1)-
dimensional diagonal clone, a subclone of B We decompose B just w1th respect
to this d1agonal clone. Thus, we have

f(xl" ’xm) <ﬂ’f2s-- fm+1>

Smce each’ f* depends on at least one variable, there are a variable x, and indicies
iy, iy such that-both f and f* depend on x;. Replacing in f# the variable x, by
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Xm+1, WE obtain an essentially (m+ 1)-ary function f which yields f, with the sub-
stitution x,, ., =x; as reqmred

. Lemmas8. If pz(B) 0 andBisnota. q-ary extenszan of a Boolean reduct for
any q=4, then S(B— A) {m, m+l ..} for some m=3.

Proof. 1t is enough to show that B satisfies condition (+) for k 3. For the
proof .one should consider three cases corresponding to Sections 3, 4 and 6 of [5]
(note that in Section 7, actually, 4-ary extensions of Boolean reducts are cons1dered),
and observe that the constructions given there satisfy the requirements of our con—'
dition (+) for k=3. '

Lemma 9. If B is an m-ary extension of a Boolean reduct 1 with m=4, then
either SB—A)={g,q+1,...} for some gq=m or SB-A)={3,5,7,. }U
U{m,m+1,...}. -

Proof. For feP(B) with n=m—1 put f=fL,, where L, is the mapping
defined in [8], Section 5.2. It follows (by properties of L,) that B satisfies condition
(+) for k=m—1. (In [7] it is assumed that m=5, but the construction works also
for m=4, since the conditions (i), (ii) in [8], p. 242, hold for m=4 as well (cf.
{51, p. 111)).

Now, if g is the least integer such that g¢ S(B—A) and g=m, then by Lemma
1, S-A)={q,q+1, ...}. '

- Inturn, g<m means that one of the essentially n-ary functions of Iwith 3=n<m
isin B— A, and as each Boolean reduct function generates I, we have {3, 5,7, ...} &
"ES(B—A). Since B satisfies (+) for k=m—1 (applying this condition to Boolean
reduct functions), we get SB—A)={3,5,7, ...}U{m, m+1, ...} regardless as to
whether m is even or odd. The proof is complete. :

- Lemma 10. If p,(B)=p;(B)=0, then S(B—A)¥{m,m+1;...} for some
m=4, ' '

A Proof. Let s be the least integer (=4) with the property p,(B)>0. Then B
satisfies (+) for k=s. To see this, it is enough to put f=fL,, where L1 is as in
the prev10us proof The result follows by Lemma 1.

Now, T heorem 1 is a consequence of Lemmas 3, 4, 6, 7, 8, 9, and 10. The Co-
rollary is an immediate consequence of Theorem 1. We prove Theorem 2.

To this end suppose that F,(B) is nonempty (i.e. n€ S(B)), and. denote by A
the subclone of B generated by P,(B). Then we have n¢ S(B—A). Now, if A=B,
then the result is true. Hence, suppose that A is a’ proper subclone of B and apply
Theorem 1. Observe that.in cases (ii)}—(iv) of Theorem 1, the second part of the
theorem combmed with Urbanik’s result [14] yields that we always have S(B—A) 0.
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This contradicts the fact that n€S(B), while n¢ S(B—A). It follows that under
our assumptions case (i) in Theorem 1 holds for some m=>n. In particular, for every
i=n, i¢S(B—A), i.e. R(B)=P(A). Since by assumption k=n, and B is generated
by k-ary functions, it follows that A=B, completing the proof of Theorem 2.
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“Modifications of congruence permutability

IVAN CHAJDA

One of the most important congruence properties is congruence permutability.
Recall that an algebra A is congruence permutable if @-®d=¢@.0 for each two
congruences @, #cCon 4. This importance follows especially from two basic pro-
perties: If ©, @ are congruences on A4, then

(a) © - is a congruence on A if and only if @.P=¢.0;
(b)if - 9=¢.0, then OV P=6-P in Con A.

This implies among other things that congruence permutability makes it easy to
investigate other congruence conditions, e.g. congruence regularity, distributivity,
subdirect reducibility of subalgebras, etc. However, there are broad classes of al-
gebras which are not congruence permutable, but are very useful in applications.
The aim of this paper is to show that such varieties can satisfy some weak modi-
fications. '

1. Ideal permutable algebras

A variety ¥ is permutable if ‘each A€¥  is congruence permutable. Permutable
varieties were characterized by A. I. MAL’CEV [6]. Let 4 be an algebra with a nullary
operation O (briefly an algebra with 0). A is permutable at O (see [1], [5]) if

[0)o.0 = [Olo.¢

for each O, dcCon A. Varieties of such algebras were characterized in [11, 2], [5).
In 1963, G. GrATZER [3] introduced an intermediate property. An algebra A has
weakly associative congruences if for each subalgebra B of 4 and every ©, $€Con 4,

[[B]G]O = [[B‘]o]e .

Received October 6, 1986 and in revised form February 1, 1988.
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Lemma 1. Let A be an algebra with a ternary polynomial p(x, y, z) and unary
polynomials f,(x) (a€I) such that for each a, b of A there exists BcI with

p(a,a,b)=0>b, p(a, b, b) = fz(a).
Then A has weakly associative congruences.

Proof. Let B be a subalgebra of 4 and @, $cCon 4. Suppose bE[[Bls]e-
Then there exist a€ B and ¢c€ 4 with b © ¢ ¢ a. Hence b=p(a,a,b) P p(a,c,b)
© p(a, b, b)=fs(a). However, acB implies f;(a)¢B and thus b¢[[Blo]e. The
converse inclusion can be proved analogously.

Example 1. Let 4={0, a, b} be a three-element algebra with 0 and a binary
operation ‘“—” given by the table

—|0ab
0{000

alaOa.
b|bboO

A has unary polynomials f,(x)=x and fy(x)=x—x=0. Put p(x, y, 2)=z—(y—x).
Then ’
p(x,x,2)=z—(x—x)=2z—-0 =z,

1 f =
R

By Lemma 1, 4 has weakly associative congruences. However, 4 is not congruence
permutable since

(a, bYe@(0, a)-@(0,b) and (a, bY¢©(0, b)- O, a).

Denote by F,(xy, ..., x,) the free algebra of the variety ¥, generated by the
free generators x,, ..., x,. We show that for varieties of algebras, the concept of
weakly associative congruences gives nothing new.

Theorem 1. Let ¥ be a variety of algebras. The following conditions are equi-
valent: ST : o

(1) ¥ is permutable;

(2) every A€V has weakly associative congruences.

Proof. Evidently, (1)=>(2). We prove (2)=(1). Let ¥ satisfy (2). Clearly
F,(x) is a subalgebra of F,(x,y,z) and z€[[F,(x)]e]e for d=0(x,y), O=0(y, 2).
By (2), this implies z€[[F,(x)]s]s, i.e. there exist elements be F,.(x), c€Fy(x, y, z)
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such that (z, c)€O(x, y), {c, b)cO(y, z). Hence c=p(x,y,z), b=f(x) for some
ternary or unary polynomials p or f, respectively. The foregoing relations yield

z=p(x,x,2), p(xz 2)=f(x).
By putting z=x we obtain x=p(x, x, x)=f(x), hence z=p(x, x, z), p(x, z, z)=x,
which implies permutability, see [6].

On the other hand, this concept can be modified so that subalgebras of A4 are
required to be of a special kind.

Definition 1 (see [5]). Let ¢ be a class of algebras of the same type with 0.
An (n+m)-ary polynomial p(X, ) is an ideal polynomial in y if p(%, 0)=0 is an
identity in J¢. A subset I=0 of A€ is an ideal if for each ideal polynomial
p(%,¥)1in j,

acA", icI™ imply p(ad,iel

Evidently, the intersection of any system of ideals is an ideal, thus we introduce
the ideal 7(x) generated by a single element x€ 4 as the intersection of all ideals
containing x. From Lemma 1.2 in [5], we obtain immediately:

Lemma 2. Let A be an algebra with 0. For each ¢€ A,
I(c) = {p(@,c); dcd", p(x,y) is an (n+1)-ary ideal polynomial in y}.
Definition 2. An algebra A with O has ideal permutable congruences if [[I1g o=

=[[/l¢]e for each &, #cCon 4 and every ideal I of 4. A variety ¥ with O has
ideal permutable congruences if each A€ has this property.

Remark 1. Clearly, every permutable variety with ideals has also ideal per-
‘mutable congruences. On the other hand, putting /={0} we obtain immediately
that permutability at O is a special kind of ideal permutability of congruences.

Lemma 3. For a variety ¥ with 0, the following conditions are equivalent:

(1) E,(x,y, 2) has ideal permutable congruences;

(2) there exists a ternary polynomial p(x, y, z) such that

p(x,x,2)=2z and p(x,z, 2)€I(x).

Proof. Let I(x) be the ideal of F,.(x, y, z) generated by x.

1)=(): Put =06(y,2), P=0(x, y).. Then. ze[[I(N)]s]e-
By 1), z€[[I(x))e)e, whence (2) is evident.

(2)=>(1): Let I be an ideal of F,.(x, y, 2), let @, #cCon F,(x, y, z) and c€ [[I]q,]a
Then there exist elements a€ F,(x, y, z) and i€ with {c, a)€@, (a,i)¢ ®. Put d='
=p(i, a, ). By (2), we have

CAod)y= (P, i, ), pl, 3, ))eD, R p(t,c,C)) (p(i, a, ), (:,c,c))ee

and p(l, ¢, ¢)eI()CI Thus ce [Nelo-
(f?f”



-228 1. Chajda

Theorem 2. For a variety ¥~ with 0, the following. conditions -are .equivalent:

(1) ¥ has ideal permutable congruences; : -

(2) there exist a ternary polynomial p(x,y, z) and a bmary zdeaI polynomtal
f(z, x) in x such that

p(x,x,2) =2z and p(x,z z) = f(z, x).

Proof. (1)=(2): If ¥ has ideal permutable congruences, then F,(x, y, z) also
has this property. By Lemma 3, there exists a ternary polynomial p(x, y, z) with
p(x; x,z2)=z and p(x,z z)€I(x). By Lemma 2, there exists an (n+ 1)-ary ideal
polynomial g(x,, ..., x,, x) in x such that p(x, z, z)=g(xy, ..., X,, X). Since Fy(x, y, z)
has three generators x,y,z, we can take n=3 and x.=x, x,=y, x3=2z, thus
p(x, z, 2)=g(x, y, z, x). Moreover, p(x, z, z) does not depend on y, thus g also has
this property. Hence p(x, z, z)=f(z, x) for some ideal polynomial f(z,x) in x.

(2)=(1): Since for icI we have f(z, {)€I(i), this implication can be proved in a
routine way. ' ' o

2. Permutability in lattice varieties

By a lattice variety we mean a variety ¥~ of type T= {V A, ...} such that the
reduct of A€¥ onto {V, A} is a lattice.

Remark 2. It is known that every relatively complemented dlstnbutlve lattice
is congruence permutable. Denote by 7(x; y, z) the relative complement of y in the
interval [xAyAz, xVyVz]. Denote by £ the class of all relat1ve1y complemented
distributive lattices. Clearly % is a lattice variety of type o=(V, A, r). Smce
r(x, x,z)=z and r(x, z, z)=x, 4 is permutable.

Remark 3. Let L be a pseudocomplemented lattlce with 0 Put f(x, y)=xAy*
(»y* is the pseudocomplement of y). Denote by & the class of all pseudocomplemen-
ted lattices. Then & is a lattice variety of type o= v, /\, , 0), where * is the unary
operation of pseudocomplementatlon Clearly,

f(x,x) —x/\x —0 f(x, 0) -—x/\O* —x,

thus. f satisfies.the identites:of. [1] ensurmg permutablhty at 0. (however, &.is not
permutable) :

Theorem 3. A lattice variety ¥ with O has ideal pe'rr'nutabile: cdngfuencés -if
and only if there exists aternary polynomial p(x, y, z) such that p(x, x, z) z and
pix; z,2)=x.
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" Proof. Let L be a lattice with 0. Clearly, p(x,y)=xAy is an ideal polynom1a1
in'y and -

I(¢c) = {p(a,c); acL and p(x,y) = 'x/\y} = {bEL; b=c}

By Theorem 2, ¥” has ideal permutable congruences if and only if F,(x, y, z) has
this property. Hence, the assertion follows directly from Lemma 3.

Let L be a lattice and a, b be elements of L. An element axb is a relative pseudo-
complement of a with respect to b (see [4]) if for any x¢ L we have

(*) aAx=0>b if and only if x = axb.

Denote by £ the class of all relative pseudocomplemented lattices with 0, i.e. Zisa
class of type n=(V, A, %,0) where % is a binary operation of relatxve pseudo-
complement.

. Theorem 4. Each lattice variety V'SP (of type n) has ideal permutable
congruences. P is not permutable.

Proof. Put p(x,y, z)=(y*x)Az. Then by (%),
px,x,2)=x%xNz=1Az=12z2 p(x, 2 2)=zxxNz=x.

By Theorem 3, ¥” has ideal permutable congruences. By [4], a distributive lattice
is congruence permutable if and only if it is relative complemented. Since there
exist relative pseudocomplemented distributive lattices that are not relative comple-
mented. the second statement is evident.

3. Weak permutability

"+ The concept of congruence permutability can be localized.
Definition 3. Let c€ 4. A is weakly permutable in c if
(x,c)€® and (¢, y)e® imply (x,y)cP-0

for every x, y€ A and each ©, #€Con 4. A variety ¥” with a nullary operation ¢
is weakly permutable in ¢ if éach A€ ¥ has this property.

- Theorem'S. Let ¥ be a variety wzth a nuIIary operatzon ¢. The foIIowmg con-
dmans are equivalent:

M) ¥is weakIy permutable in'c; .

(2) there exzsts a bmary polynomzal f (x, ) such that

f(x’ c)=x -—\f(C, x).
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Proof. (1)=(2): Since. {x, ¢)€O(x,c) and {(c,y)€O(y,c) in F,(x,y), (1)
implies the existence of de€F,(x,y) with (x;d)cO@(y,c) and {d, y)cO(x, c).
Hence d=f(x, y) for a binary polynomial f and (2) is evident.

(2)=(1) can be proven in the routine way.

Example 2. The variety of (V -semi-) lattices with O and the variety of addi-
tive groupoids with 0 are weakly permutable in 0, as we may put f(x, »N=xVy
resp. f(x,y)=x+y.

Remark 4. An algebra A is congruence permutable if and only if it is weakly

permutable in each element ¢ of 4. If ¥"is a permutable variety and m(x, y, z) is
its Mal’cev polynomial, put f,(x, z)=m(x, y, z) for each y€ A€¥_ Then

L) =mx, 3, 9)=x, f[(0nx)=m@y,yx)=x

are the polynomials desired by Theorem 5.

Definition 4. Let p(x, y) be a binary polynomial in a variety ¥, ¥ is weakly
permutable in p(x, y) if

(x, p(x,y))€@ and (p(x,y), y)€P imply (x,y)cd-O

for each A€ ¥; for every x, y€ A and every @, #<Con A.

Theorem 6. Let p(x, y) be a binary polynomial in ¥. The following conditions
are equivalent:

(1) ¥ is weakly permutable in p(x, y);

(2) there exists a binary polynomial q(x, y) such that

9(x, p(x, ) = x, q(p(x, ), y) = ».
The proof is analogous to that of Theorem 4.

Example 3. Every variety of lattices is weakly permutable in xVy (or in xAy).

4. Relational properties

H. WERNER [7] proved that permutability of ¥ is equivalent to some properties
of compatible relations. We proceed to show how this can be modified for our
modifications of permutability. A binary relation R on an algebra A4 is compatible
if it has the substitution property with respect to all operations of 4, ie. R isa sub-
algebra of AX A. ‘

Definition 5. Let R be a compatible binary Telation on an algebra A. Ris
ideal-transitive if (a, b)¢R and (b, c)c R imply {(a, ¢’)€R for some c’cl(c). R is
ideal-symmetric if (a, b)€ R implies (b, @’')¢ R for some a’'€I(a).
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Theorem 7. For a variety ¥ with O, the following conditions are equivalent:
(1) ¥ has ideal permutable congruences;

(2) every reflexive compatible binary relation R on A€V  is ideal-transitive;
(3) every reflexive compatible binary relation R on ACY is ideal-symmetric.

Proof. (1)=(2): If (g, b)c¢ R and (b, c)€ R, then also {p(b, b, a), p(c, b, b))¢R
for the ternary polynomial p(x, y, z) derived in Theorem 2, thus (g, ¢’)¢ R for ¢’'=
=p(c, b, b)e I(c).

(1)=(3): Analogously, (g, b)€ R implies {p(a, a, b), p(a, b, b))ER thus (b, a’)cR
for a’=p(a, b, b)cI(a). ,

(2)=(1): Let R be a reflexive compatible binary relation on F,(x, y, z) gene-
rated by the pairs (z, y) and (y, x). Then {z, y)€R and (p, x)€ R and, by (2), there
exists d¢ I(x) such that (z, d)¢ R. Hence, there exists a 5-ary polynomial g(x;, x;, X3,

Xy, X5) with z=¢(y, z, x, y, 2) and d=q(x, y, x, y, 2)- Put p(x,y, 2)=q(x, z, X, y, z)-
Then

plx,x,2) =q(x, z,x,x,2) = z, p(x 2, 2) = q(x, z, X, 2, 2)€1(x).

(3)=(1): Let R be a reflexive compatible binary relation on F,.(x, y) generated
by the pair {x,y). Then {x, y)€R and, by (3), (y, c)€R for some c€I(x). Hence,
there exists a ternary polynomial p(x, y, z) with y=p(x, x, ), c=p(x, y, y).

Theorem 8. Let ¥ be a variety with a nullary operation c. The following con- '
ditions are equivalent:

(1) ¥ is weakly permutable in c;
(2) every compatible relation R on A€V satisfies: if {a,c)€R and {c,b)ER,
then (a, b)€ R.

Proof. (1)=(2) is evident. We prove (2)=(1). Let R be a compatible binary
relation on F,(x, y) generated by two pairs (x, ¢) and {c, y). Then (x, c)€ R, {¢, y)ER
imply (x, y)€ R, i.e. there exists a binary polynomial f such that

x, ¥) =S ({x, ), L& ).
By writing this componentwise, we obtain (2) of Theorem 5.
The proof of the following theorem is analogous.

Theorem 9. Let p(x, y) be a binary polynomial of the variety ¥. The following
conditions are equivalent:

(1) ¥ is weakly permutable in p(x, y);

(2) every compatible binary relation R on A€V satisfies: if {a, p(a, b))¢R and
{p(a, b), b)ER, then (a, b)cR.
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Two finiteness conditions for finitely generated and
periodic semigroups

GIUSEPPE PIRILLO

1. Introduction. In this paper we present two finiteness conditions for a finitely
generated and periodic semigroup. The first condition requires that the function
which counts the number of elements of the first i generations grows less rapidly
than i(i+3)/2. The second one requires that the semigroup be repetitive and that
there should exist a positive integer p such that each element of the semigroup has
order smaller than p.

. 2. Notations and preliminaries. Let 4 be an alphabet, AT (resp. A*) the free
semigroup (resp. free monoid) on A. For any word wE A*, |w| will be the length of w.
A word v is a factor of a word w if there exist two words u, u'€ A* such that w=uvy/'.

Let S be a semigroup, G a finite set of generators of S and G be a copy of G.
Let ¢: G*—S be the (epi-)morphism defined by ¢(g)=g, for each g€ G. Suppose
that in G a total order < is given and consider the lexicographic order induced by
< on G, for each positive integer i (i.e., given two words w, w'€¢ G' we say that w
precedes W in the lexicographic order if there exists a positive integer j, 1=j=i,
such that
w = ua;w, W =uby

whe'fe' u, v, u are words of G*, a; and b, are letters of G such that a;<b)).

Definition 1. We say that a word we G* is the canonical word of an element
s€ S if:,
1) e(w)=s,
2) for any other word w’é G+ such that ¢ (w)=s we have either
a) [wl<|w'|, or
) b) le —lw’ | and w precedes w’in the lexicographic order

Received-January 24, 1986. .
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Fact 1. A factor of a canonical word is a canonical word.

Namely, if v is a factor of w and w is the canonical word of an element s¢ S,
then there exists another element s’¢S such that » is the canonical word of s'.
Now consider the following subsets of S':

G'=¢(G), R=UG, R=PF-P,
j=1
(where B,=0) and the functions p, r from the set of positive integers into the set of
positive integers defined by

p(iy=card B, r(i)=p@)—-p@i-1),
for each positive integer i.

Definition 2. We say that a finitely generated semigroup has linear growth if
there exists a positive integer k such that p(i)=ki, for each positive integer .

For future reference we state below without proof a theorem due to Justin [4].

Theorem 1. For a finitely generated semigroup, the following conditions are
equivalent.

a) There exists a finite subset F of G* such that the canonical word of each ele-
ment of the semigroup belongs to F or has a factorization w=uv"' where u, v, W€ F
and n is a positive integer.

b) There exists a positive integer m such that r(i)=m, for each positive integer i.

¢) The semigroup has linear growth.

d) There exists a positive integer i such that p(i)<i(i+3)/2.

€) There exists a positive integer d such that r(d)=d.

3. Two conditions of finiteness for finitely generated semigroup. The Burnside
problem for semigroups has been recently studied by several authors (see, for example,
pE Luca [2], pe Luca and Resnivo. [3], Restivo and REUTENAUER [6]).

We present here two conditions which are natural in the study of repetitive
semigroups (see definition below) and are necessary and sufficient conditions for the
finiteness of finitely generated and periodic semigroups.

Our first result is the following proposition.

Proposition 1. Let S be afinitely generated semigroup. Thefollbwing'cdnditions
are equivalent:

a) S is finite.
b) S is periodic and has linear growth.
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Proof. (a)—~(b) is trivial. Using Theorem 1, the proof of (b)—(a) is just a re-
mark. In fact, the finiteness of F (see condition a) of Theorem 1 and the periodicity
of S gives a suitable positive integer ¢ such that

S = (F)Up({Fo"F: v¢F, n = g)),

that is S is finite.
So, we have proved, without much effort, that if S is a periodic semigroup
such that p(i)<i(i+3)/2 for a suitable non-negative integer #, then S is finite.
Now, let us introduce following definition.

Definition 3. Given a (finite) alphabet 4 and a semigroup §, a morphism
o: AY -8 is called repetitive if for each integer k there exists a positive integer
1,(k) such that each word w¢ A* of length at least /,(k) can be factorized as follows:

w= WOWI “er Wkwk+1
where  wg, W i1€4%, Wi, Wa, ..., W €AY, and a(w)=a(w,)=...=0(w,).

Definition 4. A semigroup S is called repetitive if, for each finite alphabet
A, each morphism a: 4+ ~S§ is repetitive.

We can prove the following proposition.

Proposition 2. Let S be a finitely generated semigroup. The following con-
ditions are equivalent:

a) S is finite.

b) S is periodic, repetitive and there exists a positive integer p such that each
element of S has order at most p.

Proof. The only non-trivial part of (a)—(b) is *S finite” —*S repetitive”.
This has been proved by JusTIN [5] (see also [7]).

(b)—~(a). Let G be a finite set of generators of S. Let Gand ¢: G—~S be as in
the preceding paragraph. By way of contradiction, let S be infinite. We have that the
subset of G* of the canonical words of the elements of S is infinite and so there
exists a canonical word w of length greater that /,(p+1).

By the repetitivity of ¢ we have w=w,w,...w, W, 1W,., Where wy, w,,,€ G,
Wis e Wps W, 1€ Gt and @(w)=...=p(w,)=¢(w,+1). Now considering the pro-
perty of p one easily sees that the word wyw,...w,w, ., is too long to be a canonical
word of an element of S. This is in contradiction with Fact 1.

Remark. In the proof of Proposition 2 we can make use only of the repetitivity
of the epimorphism ¢.

Proposition 2 provides us with one of the few criteria to establish if an infinite
semigroup is repetitive.
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Let us show that the semigroup S=A4*U{0}/~ (whére 4 is a finite alphabet
with at least three elements, 0 is a zero and ~ is the congruence generated by the
relation R on A% defined by ww R O for each we At) is non-repetitive.

In fact, the semigroup S is infinite (this is a consequence of the Thue construc-
tion of infinite square-free words over each alphabet with at least three elements, see
[1], evidently periodic and its elements have at most order 2. So, by Proposition 2,
S cannot be repetitive. :

On the contrary, the semigroup S’=4’/~ (where A is a finite alphabet, =~
is the congruence generated by the relation R’ defined by ww R’ w for each we 4+)
is finite (see again [1]) and therefore repetitive (see [5]).

Acknowledgements. The author would like to thank J. Justin for his helpful
comments in the preparation of this work.
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Henpasogumbie mpaBbie NpaBoa/jbTepHATHBHbIC NPeICTABJICHHS

1. JAIIZOPX

B paGotax [2], [1] A. M. Cnuabko u WM. I1. llecTakoB onpeAeNnIN DOHATASL
ApaBOro HPEACTABIIEHHS W IIPABOTO MOIyNs Iy anarebp IpoH3BOJLHOIO MHOIO-
oOpasmuia. B Hactosimeit pabore m3yyaeTcs HENPHBOAMMEIC NpaBHIE IIPaBOAILTEP-
HATHBHBIE TIpeACTaBiicHHAs (GeCKOHEUHOMEPHBIX) NpaBoaibTepHATHBHLIX anre6p. B
YaCTHOM Clyvae aJbTEPHATHBHBIX anreOp H NPEICTABICHHUN YTBEPXICHHS TEOPEM
1 u 2 parot pesynbrat paboter U. II. HlecTakosa [1]. HanomauM, 4to mnis xo-
HeYHOMEDHBIX IPaBOANbTEPHATABHBIX anreGp HCUepIBIBAIONICE ONMCAHHE HEIPH-
BOJIMBIX HPABEIX NPaBOANILTEPHATHBHEIX npeacTasnernii monyveno W. IT. Mec-
TaxoBBIM [1].

Iycts. ¢ — acconMaTHBHO-KOMMYTaTHBHOE KOJBIO C enuHmUeH. Anrebpa
HA3BIBAECTCS NPABOANBLTEPHATHBHOM, €CIIH OHA YIOBJIETBOPAET TOXKAECTBAM

)y =xy% () 2)y = x((2)y).

IycTh A HeKoTOpas HpaBoalbTepHaTHBHas anrebpa mag €, ¥ — Hexoropbm
@-monynb, Endg (Y) anredpa sanoMopdhusmos P- MOI[y.l'ISI Y.

Onpeneneuue 1. Ecim ans  P-nuHeltHOTO o‘roﬁpaxcemm o: A-End, (Y)
BEHITIOJIHAIOTCS PABEHCTBA

M ) ] (@®? = (a%? (ab-a) = a®b?a®

WIS MIOGHIX 31EMEHTOB d, b U3 A, To MOAy/b ¥ Ha3biBAeTCA TPABBIM NPABOAIbTED-
HATHBHBIM MOZYJIEM Hall A, ¢ — TpaBbIM NPaBOATLTEPHATUBHEIM MPECTABICHHEM
anre6ps A. )

ByZieM HCHoNb30BaTh 0603HAYCHHE va BMeCTO va®, vEY, ac A, A

(a,b) = a®b®—(ab), (a,b)* = bea®—(aby, a, bCA;
(4, 4) = {(a, b)la, bed), (4, A = {(a, b)*|a, bc 4).

ITocrymamno 31 oxrabpa 1986.
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Onpenencuue 2. Ecnmu Ann Y={a€A4|Ya=0}=0, 10 A-mMomyns Y Ha3H-
BaeTCHA TOYHBIM.

Onpenenenne 3. Mogyne Y Ha3biBaeTCs HENPHBOABMSBIM, ecig ( sBisgeTCA
€AHCTBEHHBIM COOCTBEHHBLIM noaMonyneM A-moayns Y.

Ilycts C — anrebpa Kanu—/InkcoHa ¢ kaHOHMYeckoii muBoMronueit —: C—~C,
a reg C, reg C Momy/H, NOJYdalOIMECS BBEJCHAEM HA BEKTOPHOM MPOCTPAHCTBE
Y=C cooTBeTcTBeHHO cienyromux aeiicremiti anrebpet C: ecnmm »€Y, acC, 1O
v-a=va mas momyns reg C, v-a=vd, ana Momyns regC, rae vepes va 0603-
Ha4eHO NPOH3BEIEHHE 3JIEMEHTOB v B a B anrebpe C.

OCHOBHEBIM pe3y/IbTaToM pabGoTHI ABJISETCSA CAEAYIOLIasn:

Teopema 1. IIycme Y — mounblii HenpugoOumblii npagwlii npasoassmepHamug-
Hblil MOOYAb HAO npasoasbmepHamusHoil aszebpoii A. Toz0a aubo

(1) A npumumusnoe accoyuamugroe Koavyo u Y npassiii uau aegulii accoyuamug-
Hbtii A-M00yab, aubo

(2) A seasemca anzebpoii Kaau—[uxcona nad csoum yewmpom u Y,€
€{regC, reg C}.

PaccMoTpuM HEKOTOpHIE ONpele/ICHAS H YTBEPXXICHAS A3 TeOPHH HOPIaHOBHIX
anrebp, HeoGXOMAMEBIE [T IOKA3aTENbCTBA OCHOBHOM TEOPEMBI.

Onpepenenune 4. Ecnm mist d-moayna J ¢ enununeit 1 onpenenera koMmo3u-
nas . (y), KBagpaTHYHas N0 X M JIEHEHHAd OO y, YAOBIETBOPAIOIIAA AKCHOMAM

vy = idy, vax,y = I,y,xvx = Vi), xr Vuuly) ™ VxUyUxs

roe
Ve,z = Vxp—Ux— Uy, K.y(z) = vx,z(y) = {xyz},

10 Tpoiika (J, v, 1) HasbIBaeTCA KBaJApaTHIHOHN ftopmaHOBO# anrebpoii ¢ 1. B saTom
cllydae ¢AMHHMIA ONpeJeNseT omepammio x-=v,(1) Bo3Beaenus B kpaapaT. Ecim
s @-Momyns J onpenencHs KOMIO3HNMAH v, ()), x° B Monyns J¥=1. d+J sna-
€TCS KBaApaTH4HOH HopzaHoBoi anrebpoit ¢ 1, To.J Ha3bBaeTcAd KBaOpaTHIHOR
iopnaHOBOIf anredpoit.

H3BectHO, YTO €CJIA A MpaBoalbTepHATHBHASR anrebpa, To omepaTops v, (y)=
=xy-x, X*=Xx ONpENENSIOT Ha A CTPYKTypy KBaJpaTHIHOMK HOpHAHOBOM anre6pbl
o6o3na1aM eé depe3 A'. B manbmeiimieM nopm HopaaHOBoii anreGpoit Ml Gymem
MOHAMATH TOJIbKO KBAaJAPATHTHYIO HOpAaHOBY anrebpy.

Onpepnenerne 5. Ecnm pns HekoToporo @-imHedHOro oTOOpakeHHS
¢: J-End, (Y) BLIIONHAIOTCH paBeHCTBA

2 (@®° = (a%?%, {aba}® = a®b?a®
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tae {aba}=4v,(b) mna moGHIX 371eMeHTOB a, b U3 J, To MOIyIL Y Ha3mBaeTcs Clie-
OAALHLIM HOpHAaHOBBIM MoAyileM Han J, a oToOpakeHWe ¢ — CIENHATLHEIM
npencrapieHAeM anre6psr J. 3amMeTHM, YTO ecid Y mpaBhiii IpaBoasibTePHATHBHEIN
Monyse Hax A, TO Y SBseTCS CHEIHANLHBIM - MODAAHOBHIM MOOYJeM Ham A*.

TOYHOCTh ¥ HENPHBOIMMOCTH ISl CHENAAIBHOrO HOPAAHOBOTO MOXYIA OI-
penesteTCsl aHaJOTMYHO COOTBETCTBYIOIIEM OIpeleNieHHEM IS HpaBoajbTepHa-
THBHOTO MOAyJs. DJeMeHT a€J HasnBaeTCsA aOCOMIOTHBIM JeNHTENIEM HyNs Hop-
nanoBoi anrebpsr J, ecnm v,(J*)=0, roe J¥=1. &+J, 1 — popmanpHas equHATA.
" Mopaanosa anre6pa HEBEIPOXIEHA, €CIH OHA HE COAEPKHAT HEHYJIEBEIX a6COTIOTHBIX
nenmreneit Hyns. U3secrHo, uTo ecnm I, K — Wxeaisl iiopaaHosoit anreGpst J, To
P-moaynb v;(K), TOPOKIECHHBI MHOXKECTBOM

{a(0)lac T, keK}

TakoKke sBiseTca macanoM B J. Mopnanosa anre6pa J mepBHuHA, €CNA ANA JHOGHIX
meyx #uaeanoB K, L amreGps: J m3 vg(L)=0 cnegyer smu6o K=0, naGo L=0.

Jlemma 1. Ecau Y cneyuaavhniii iiopdanos mooyas Had J, mo muodcecmso
Ann Y={acJ|Ya=0} ssanemca udeasom ¢ J, a J/Ann Y cneyuasvnoit iiopdanosoii
aszebpoii.

HoxaszaTenascTtBo. IlycTh ¢ — coemuaabHOe RpeACTaBieHHe aureOpur J.
ScHo, uTo oTOoGpakenme ¢: a—a®, rae acJ, a®€ Endg (Y), aBnsercs romoMopdu3MoM
¥WiopmaHoBOii anrebpst J B HopaaHosy anre6py Endg,(¥)*. Takem o6pasom, sapo
3Toro roMmoMopduzma

Ker ¢ = {acJ|Ya =0} = AnnY

sBisfercs maeanoM B J. B cmiy m3omopdmsma Img=~J/Ann Y daxrop-anreSpa
J/Ann Y conemmansha, Tak kak Im g={a®lacJ} #opnamosa momanreGpa, mopox-
IenHas onepatopamMa a° B Endg (Y)*. Jlemma pmokasana.

Taxkem o6pa3oM, ecliA Y TOUHBIH CeNAANbHEIN J-MOAYIb, TO B CHIY JeMMEI 1
anrebpa J-cmenmampaa: OGo3Ha9mM depes . Ry(J) acconmaTHsHy:0 momanrebpy ai-
reOprt Endq, (Y), mopoxnéunyro MEOXecTBOM {a®lact}.

JIemma 2, ITycme Y mounblii HenpugoOumblii cneyuaibiulii Mooyab Haz) tiop-
Oarosoii anzebpoii J. Tozda anzebpa J nepeulma u Heebxpook:c)eua

Hoxas arem:c*rno IloxaxceM HeBLIpO)K}IeHHOCTL anre6pm J. Tombko 9T0 MBI
3aMETHIIH, 9ITO anre6pa_ J cmenmanbea. B camy teopemsr A. M. Cnmabko—B. T
Crocsipcroro [2; crp. 355], mmeem M(J)SLoc (J), rae M(J) pamukan MakkpaM-
moma, a Loc.(J) nokanbHO-HENILOOTEHTHHI pafukan. Jaiee, mo Teopeme B. T.
‘Cxochipckoro [2] mveem Loc (J)SLoc(Ry(J)). ScHo, 4ro mnpencraBneEme @

3
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anre6pw J MEAyNEpYeT HEIPHBOARMOE IpencTaBiaeHne ¢ anrebpul Ry(J) B Momyne
Y B Jac (Ry())EKer.g, rae Jac (Ry(J)) pamaxan-/Ixeko6cona anreGper. Ry(J).
Cuaeposatenbuo, ecmu a€ M(J), To a€Jac (Ry(J)) u.a®=a?=0 T. e. acKer 0=0.

Joxaxem BebipoxaerHOCTs anredpst J. Iycts {KLK}={{klk}lk€K, lIcL}=0,
rae K, L senyneswie aaeansi B J. Ecnim KN L=M 0, To B CAIy BEBHPOXACHHOCTH
M nonysaem {MMM}>=0. Ho {MMM}S{KLK}=0. Taxum o6paszomM K L=0,
ac8o uto Ko LS KN L=0, 3xech

KoL = {kol|>kol = (k+D?—k*— P2, keK, I€L}

T.e. KoL=0. U3 TouyHOCTRM MOmyns Y cnemyeT, uto YK=0. Hcnomp3ys nmHe-
apuzanmio pasenctBo (a%)°=(a%)? ans moboro acJ, Mel AMeEEM

vk - a = —va-k+v(aok)eYK.

Orciona cnenyet, uto YK noamonyms J monyss Y. Beaay HenmpHBOIAMOCTH Y
uMeeM YK=Y. Torma HaiimyTcs aneMeBTHl k€K, l€L Takde, 4to Yk-/={0}.
3aMeTHM, 9TO

vk-l =—zl-k+vlkol) =—vl-k

ans aroboro v€V. 3naunr, Yk-[/=Y!-k. Hanee, B criy nnneapmonammro TOX-
IIECTBA (1) ans JnoGLIx 3/1EMEHTOB aEJ H v€ Y aMeeM

vk - l)a = —(va -Dk+v{kla} =—(va- Dk

Tak xaKk {kla}¢ KN L=0. Otcroma cnenyet, 9to Yk-I=YI-k ectb J-mommonyin
Moayns Y. BBEAy HenpHBOAAMOCTH Monymi Y nmeeM Y=Yk .l. OgHako no ToX-
nectsy (1) _
: Y=Yk l—(Yk Dk - I—Y{klk} l—{O}

9T0 HpOTHBOpH‘IHT HerHBOL[HMOCTH MOI{y.TIﬂ Y. Jlemma moxasaHa.

CnenctBue 1. Ecau'Y — Henpusooumeiii npagvlii npasoaibmepHamugHblii mo-
Oyas nad A, mo Ann Y={ac A|Ya=0}. aganemcs udeasom ¢ A.

NokasaTenbcTBo. E¢im bEAnnY, To mis mo6oro aneMeHTa a€A mMeem
Y(ab+ba)=Ya:b+Yb-a=0. -3gaqnT, Ann Y sBnseTcs HOearoM B HOPAIHOBOMH
anrebpe A+. TakaMm 00pa3oM, Y. ToUHbIH HENPUBOIMMEIH HOpPHAHOB MOIYJIL Hald
anre6poii A=A*/AnnY. Ilo nemme 2 anreGpa A nepsHYHa ¥ HEBHIPOXKIEHA.
3BaunT, Ann Y seisercs AzfeanoM B A COITIACHO TeMMe Tanu [5].

_PacCMorpHM cndGonﬂyx_o' acéonnamﬂylo @-anre6py 0T MHOXeCTBA LOPOX-
paromux X={x;, X;, ...} A CBOGOAHYIO CHeNHAILHYIO HOpaaHoBy.anreGpy ot X;
SJ [X]SAss [X]*. B pabore.[4] JIOCTPOEHB! BIOJIHE XapaKTepHCTHIecKHd Hpean. T’
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anrebper *SJ[X] n gynkinsa HaTypansHOro aprymenta f(k), k=3, f(3)=0, Taxume
9TO s -JEOObIX MeMeHToB tETY® " q,. ... a,€SJ[X], ¢npaBennuBo . BKIIOYEHUE

{ay...a;ta;;...a}=ay...1t ..aq+a...t...a€SJ[X], 1=isk. -

O6o3paumM T, = T<f("')> ; Ilycts J. cmenmanbHas dopnaroBa. anrebpa m R eé
acconyaTHBHAS OGCpTHBa}OHIa‘{ anre6pa. SIcHo, 9TO anrera J ABAfETCS rOMO-
MOpPGHBEIM 06pa30M HEKOTOPOi cBOBOMHOMN CrienMaNbHOMN anre6p1>1 SJ[X]. Hycrs
T,.(J) rOMOMop(bm,m 06pa3 aneana T,,(SJ[X]). Ecnu ] unean B J, 16 v, (J) {IJI} f
TOXE ﬂBJISIeTCﬂ Hneanom BJ. MHO)](ECTBO

Ann(R,T=) = {aERla,T,,»,.(J) T w()a=0 nna HCKOTOpOFO m= 1}
ABNseTC HOeasioM B anrebpe R [7].

JlokasaTenbcTBO TeopeMsl 1. TouHsiil 'HENPHBOJNMEII [paBoOaibTepHA-
THBHBIH MOZYAb Y ABNAETCA TOYHBIM HENPHBOMMMBIM CHEHNHATIBHBIM MOIYJEM Hal
fopnaroBoii anrebpoit A*. ITo .JleMMe 2 HopnaHosa anreGpa A+ nepBEYHA H He-
BHIPOXJIEHA, CENOBATENBHO, anrebpa A anbTepHATHBHA [7].  3HAUHT, COIJIACHQ
Teopeme Cireiitepa [2] 4 Jm6o acconuaTHBHA, Jubo sBIgeTcs KoxbmoM Komm—
Huxcona. :

(a) Hpe,LHIO.HO)KHM, 9T T(A +)#O B cuiy ToYHOCTH At-Monyins Y anrebpa
Ry(A*) sBnserca accommaTHBHOM ob6epThiBaromeif amreGpoit mia A+. B. [7]
AOKa3aHO, YTO A nro6bIX 371EMEHTOB @, bE A BBIOJIHAETCA BKIIOYCHHE

. (a b)Ry(A“)(a B* S B(Ry(4").

rae B(RY(A+)) nonm,m npooﬁpa3 panekana Bapa B(RY(A“)) pH  TOMOMOP-
uzme
Ry(4%) ~ Ry(A+)/AHH (RY(A+): T=) = R,,(A+)

HokaxeM, 4TO YB(R,,(A*)) 0. HyCTB v€Y, W€B(R,,(A+)) n oW=0. U3
HENPHBOJAMOCTH aCCOMUaTHBHOTO Ry(A*)-Monyma Y cnenyer, ato vWW’'=v
LA HeKoToporo omepatopa W’€Ry(4*). Torma mns mxoboro HaTypalbHOTO 7
mveeM v(WW'Y'=v20. Haiinetca m=1 Taxoe uro (WW’)"¢Ann (Ry(4™"), T*),
TO €CTh AJI HEKOTOPOTO.HaTYpIBLHOTO YHcHa K ameeM (WW YT, =0, v(WW YT, =
=T, =0..- MHOXecTBo Y;={v€Y|vT,=0} sBasercs HeHyNeBHIM NOAMOIYJIEM
iiopnamoBa A*-mopyns Y. 3HauwT, W3 HenmpuBoAMMOCTH A*-Momyns Y .cuemyer,
uto Y=Y .T.¢." YT, =0. :-Tlockonsky ¥ — Toumsit Momyas, To T,=0. DT0 mpo-
THBOPEYAT ToMy, uto 13 #0. Taxam o6pa3om; monyuaem Y (a, b) Ry(A*)(a, b)*=0
Ecim Y(a, b) =0, TO. Y(a, b)Ry(A*)=Y, uro Byever (a, b)*= 0 Cne,uona'renbno,
s moﬁmx sneMeHTOB a, bEA Jm60 (a, b)=0, nrbo (a, b)*

Jemma 3. -ITyemy Y=Y, UY,, 20e Y; u Y, nodzpynner addumuenou epynnu
(Y, +). Toz0a aubo Y=Y, aubo Y=Y,. . RO

3
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Hoxka3ateascTso. HdomyctaMm uto Y=Y, m Y#Y;. Ilycte 9,€Y;, v,4Y;,
vs€Y,, v,4Y;. Torma 0s£v, +v,4Y; | v, +v,¢Y;. IIpoTEBOpeune. JleMma mokasaHa.

3adurcupyem sneMenT ac A. Muoxectsa
= {bcAl(a, b) =0}, 4, = {b€4|(a, b)* =0}

SBIISIOTCA afATHBEBIME moarpymmamu B (4, +). ITo memme 3 nmEbo A,=4,
6o A,=A T.e. mus moboro aneMenTa acA mubo (a, A)=0 mmabo (a, A)*=0.
Ilycte A,={b€A|(b, 4)=0} m A,={bcA|(b, A)*=0}. Torna cHoBa mo IemMme 3
nonydaeM, uro anbo (4, A)=0, mbo (4, A)*=0 T.e. 1ubo A;=A mEOO A,=A.

(6) IIycts  T(A*)=0. HanmoMHEM, 4TO HEHTPOM aJBTEPHATHBHOIO KOJBbIA
A Ha3BIBAETCS MHOXECTBO

z(A) = {z€ Al[z, A] = (z, A4, 4) = 0}

rae (z, x, y)=(zx)y—z(xy) accomEaTop 3JIEMEHTOB z, X, y€A. Uepes Z*(A)
0603HaYAM MHOXECTBO 0OOpaTHMBIX 31€MeHTOoB NeHTpa Z(A). B accommarmsHOM
ciydae mo TeopeMe Mapkxosa—Poy3Ha [6] H B anbTepHATHBHOM CiIyuae IO Teo-
peMme Caeiitepa [2] momydaeM, uto 4,=Z*(4)" A smnsercs NpocToii KOHETHO-
MepHO# anrebpoit Han moseM YacTHHIX K=Z*(4)'z(A) wm anrebpoit Kona—{uk-
coHa Hax nojieM K. B mepBoM ciydae H3BECTHO, 4To dimyg 4; =4, TaK kak B anrebpe
A, ToXe BEHINOMHSIETCA ToXAeCTBO T(A+)=0.

Jlemma 4. ITycmv A — asbmepnamusnan aszebpa, Y — Henpusooumvlii npagsiit
npasoasbmepramuenblii mooyav nao A, z€Z(A), ac A. Tozoa Y(z, a)=0.

Hoxka3zateinbcTBO. B cruly HHeapm30BaHHbIX ToXAeCTB (1) mus JMro6BIX 31e-
MeHToB v€Y, b€ A aMeeM

w, z, )b = (vz-a)b—(v-za)b =
=—(wb-a)z+v(za-b+ba-2)+vb-za—v(za-b+b-za) =
=—(@b-a)z+vb-az =—(vb, a, z) = (vb, z, a).

Ortcropa cuenyert, 4To noamHoxecTso (Y, z, @) sBisteTcs HoaMONyieM A-Monyns Y.

Hounycram, ato Y (z, a)=(Y, 2, @) 20. Torma BBHAY HENPHBOZMMOCTH MOIYJIS
Y mmeeM Y(z,@)=Y. 3amermM, 4TO0 9(2, @)=0(a, 2)*=—2(z, a)*. TlosToMy
v(z, a)(a, z)*=0, Tax kax (a; b)(a, b)*=0, (cm. [2]). Ho Torma Y=Yz, a)(z, a)=0.
ITony4eHHOE IPOTHBOPEUHE JOKA3BIBAET JIEMMY.. :

Onpe,ue.rmM H2 Y CIpyKTypy HOpaBoro npanoanmepaamiméror A,-Moayns.
ITpoBepam cHauana, 9to ecnm 0#wv€Y, 0#zE€Z(A4), To vz#0. JelicTBHTEIbHO,
ecm vz=0 To mo nemme 4 mMeeM O0=vz - A=v:zA=v -Az= vA -z=Yz, orxyna
z€Amn ¥, z=0. :
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Ona vz=v,#0 nonoxuM ov,z-'=wv,. Jlamee. MONOXEM v-z la=wvz7'.a.
JokaxkeM KOPPEKTHOCTb Takoro ompefeieBms. Ilycts zyla=z"'a,. Torma za=
=z,4,. CHavYaja JI0OKaXeM PaBEHCTBO : :

3 vz loz7l =0zt 271 = p(zz) 7t

ans mobsix o€Y, z,2,€2*(A4). Hycts w=wvz~l.z7Y, wy=vz;'.z7%. Orcroma

CIIEHYIOT, YTO Wz -Z=v, WZ.2;=0, T. €.
WeZiZ=WZ Z=V=WZ-2y =W+ 232, W—Wy)-2,2=0, w=w,.
B cany nemmer 4 B paBeHCTBa (3) EMeeM

vzolzrlza = vzt a=v-z7%a, vz 'zilzia=vz"l.a, =v-z7 g,
T. €. ’
(C)] v-zila=v-z7a,.

Hcnons3ya (3) u (4), nerko mosyyaeM, 9To
v(z7a-z71a) =v(z" %) =vz72%. a* = (vz7' -z V)a =
=@zl @)z =Wzl a)a-z7 =@z @)zl a=(v-z"'a)-z7a,
v((z~'a-zy b))z~ a) = ((v-z7'a) 2y 'b) - z 'a.

Tourocts A,-Moxnynsa Y B scHa.

TaxaMm 00pa3oM, B HepBoM ciiydae (T. €. korna A, — accomnaTHBHA) Jubo Y
ABJAETCA IPaBhIM NIPaBOATILTEPHATABHLIM MoAyJeM Hal A, =K, nubo dimy 4,=4.
YroObl 3aKOHYATH HOKa3aTeNbCTBO MOXHO ObIIO cocnathes Ha [3], HO panmu mos-
HOTBH! H3TOXKEHHS ITPONOIKAM paccyxaeHme. Ecima A4,=K, 10 (4;,4,)=0 (cm.
[2; cTp. 277)).

IIycrs dimg A;=4. B A, Moxuo BEIOpaTh a3y 1, v, v, v3. PaccMoTpEM
CHMMEeTPHAYECKHI MHOTOWICH '

d = (X3 X3—X3) X4 (X2 X3 — X,).

Ionaras B d, x,=a% x,=b% x3=(ab)’, x4=c% rme a,b,c€Ad;, nonyunm, qro d
ABJISETCA CEMMETPHYECKAM MHOTOWIEHOM OT Tpex OykB %, o2, v8. 3Haumrt, mo
Teopeme -Kona [2] d ABnserca #0paaHOBEIM MHOTOWIEHOM OT %, 22, 8. IloaTomy"
w3 1d=0 nerko cnemyeT, uro d=0 Ha Af. ‘ o _
B pa6ore [1] noxasasa, 9To yHHBepCANbHAs anreGpa HpaBhIX NPaBOATBTED-
HATHBHBIX npe,ucrannenm‘i R(A4,) m3oMopdra npsMoit cymme ai_r,re6pm A, u anm-'
momopdHoii eif anrebprr 43. Jlokaxewm, ato (a, b)R(4,)(a, b)* =0, rne a, be4,.
HOycts (a, b)=x®y, xE€A,, yEA], (a,b)*=x,®y, x:€4;, »1€4]. Vuntebag
paseBcTBO d=0 H M30MOpPGHYIO BIOXAMOCTL anrebpsl 4, B R(4;) mocpencrsoM
orobpaxeHns c—»c®c® mmeeM (xPY)(cD ) (x ®y)=xcx, ®yc’y; =0, xcx;=0-
B yc’y,=0 mnx moboro snementa ¢€4;. Ecmm x#0 m x,#0, To x4,x,=0,
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YTO MPOTHBOPEYAT IMEpBHIHOCTH aireOpH A;. Orciona creldyeT, 4ro-nmbo x=0,
6o x;=0. AmanormyHo, 1860 y=0, mGo y,=0. Ilosromy. mns moﬁoro ane-
MerTa cPd°CR(4,) mMeeMm : :

(a, b)(cead°)(a, by* = xex, ®yd°y, =00 =0,

1.¢. (a, )yR(4)(a, b)*= ;

B anre6pe Ry(A,) ToXe BHINONHAETCS PAaBEHCTBO (a b)Ry(Al)(a, b)*—O Taxk
kak Ry(4,) sBasercs rOMOMOp(bHLIM obpasom anreﬁpm iR(Al) W3 pasencrsa
Y(a, b) Ry(4)(a, b)*=0, paccyknas KaK B cnyqae @) HOJIY'IKM qT0 Jmﬁo (Al, A)=
=0 mabo (4;, A)*=0.

Ecnm anre6pa A, -ansTepHaTHBHA, TO . AI—C H U3 HerHBO,LIHMOCTK A, -
Moayis Y mmeem (cM. [2; crp. 275]) Y€ {regC reg C}. V3 HeNpHBOOEMOCTH A-Mo-
‘myns Y=C cuenyer, uto A=C. Teopema goka3asa.

Teopema 2. ITycmb Y HenpugoOumblii. npasuiii npagoasbmepHamusHsii mooyab
Hao npasoassmepnamusioil anzebpoii A. Tozoa Aubo (A A) O /tub'o (4, A% =0,
aubo YHE{regC TegC), 20e A= A/AnnY

Joxa3aTensCTBO. ﬂcno, 4TO BCSAKHI HerHBOJ.IHMI:IH A-Mo;[ym: Y aBis-
€TCs TOYHBIM HETPABO JAMBIM A-MonyneM, rne A=A/AnnY. Usva=v(a+Ann ¥)=
=va cnexayer, ato (A4, A)=0 mm (4, A)*=0 Torma H TOJEKO TOTAa, Koraa,
(4, A)=0 mna (4, A)*=0. Teopema moxazana.

AsTop Gnmaromaput npodeccopa JI. A. Bokyrs 3a- Hay'moe PYKOBOACTBO pa-
601'014 nE W 3enbmanona 32 IeHHbIC COBETHI.
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On «}-products of automata

.Z.-ESIK .

1. Introduction

In [3] we introduced a’-products and gave an algebraic characterization of
(homomorphically) complete classes of automata for the af-product:

Theorem 1.1. 4 class " of automata is complete for the a-product if and
only if for every simple group G- there exists an. AcP%, () such that G is a divisor
of the characteristic semigroup of A, written G|S(A).

» Further, we proved the following result.

Theorem 1.2. Let A be a class of automata.

() If A contains a nonmonotone automaton, i.e. an automaton in 24 has a non-
trivial cycle, then A< HSP’l (o) if and only if for every simple group G with G|S(A)
there exists an automaton BEP () with G|S(B).

@) If A consists of monotone automata one of which is not discrete, then
HSPﬁ1 (oY) is the class of all monotone automata.

- (i) If A consists of discrete automata one of which is not trivial then HSPﬁ1 )
is the class of all discrete automata.

(iv) Otherwise, i.e. if A consists of trivial automata, then HSP? (Ji" ) is the class
of all trivial automata.

“The aim of this paper is to give a graph theoretic characterization of complete
classes for the ai-product and to give a description of the ‘classes of the
form HSP?: (.9{ ) on the basis of graph theoretic terms. We believe this solution to
be the final one as regards af-products. The proofs are based on the fact that the
symmetric group of degree n—1 (n>1) can be “realized” in a biconnected graph
on n vertices. For recent results on ay-products and o, -products see [2] and [1].

Received July 10, 1986.
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2. Notions and notations

An automaton is a system A=(A4, X, §) with finite nonvoid sets 4 and X, the
state set and input set, respectively, and transition 6: AXX—~A. The transition
extends to a mapping 6: 4XX*-4 in the usual way, where X* is the free semigroup
with unit element A generated by X. The characteristic semigroup of A, denoted
S(A), is the transformation semigroup on A consisting of all the mappings §,: 4—~4,
d,(@)=6(a, u) (a€A, ucX™).

Given a system of automata A,=(4,, X,,,) and a family of feedback func-
tions

Qi A X XA, XX ~ X,U{4},

t=1,...,n, the g*-product of the A;’s with respect to X and ¢ is defined to be the
automaton A with state set 4,X...X 4,, input set X, and transition

8((ay, ..., @), x) = (6,(a1, wy), ..., 6,(ay, u,))
where (@15 ..., a)€EA X...XA4,, x€X and

U = q)t(al’ evey am X),

t=1,...,n 1If none of the feedback functions ¢ (ay,...,a,, x) depends on the
state variables g, with s>, we have an a’-product.
Given a (nonvoid) class & of automata, we set:
P’ (o): all oj-products of automata from ;
Pfal(.%’ ): all a?-products with a single factor of automata from & (i.e. n=1
above), '
S(#): all subautomata of automata from %,
H(o): all homomorphic images of automata from .

Recall that a class o is called (homomorphically) complete for the a’-product if
and only if HSP:}1 (&) is the class of all automata.

By a semigroup (group) we shall mean a finite semigroup (group). We write
S,|S; for two semigroups S,; and S, if S; is a homomorphic image of a subsemi-
group of S,. If S; is a group, this just means that S, is 2 homomorphic image of a
subgroup of S,. The following statement is known e.g. from [4]:

Proposition 2.1. If G|G,X...XG, for a simple group G and a direct product
of groups Gy, ..., G, (n=>0), then G|G; for some i. '
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3. Some useful facts

To investigate ai-products of automata we introduce the (directed) graph
D(A) of an automaton A=(4, X,J) as follows. We put D(A)=(V, E) where
the vertex set V is just the state set 4 and

E = {(a, b)c AxAla = b, Ix€X 6(a,x) = b}.

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall
always mean a graph without loop edges.

Take a graph D=(V, E). We say that D is connected if for every pair a, b
of different vertices there is a (directed) path from a to b. A maximal connected sub-
graph of D is a connected graph D’'=(V’, E’) with V'SV, E’SE and such that
whenever D”=(V”, E”) is a connected graph satisfying V' CV”’CV and E’'SE"C
CE, wehave V'=V", E'=E".

A cycle is a graph D=(¥, E) with V={a,, ..., a,}, n>1, and E={(ay, ay), ...,
(@u-15 @), (a5, @)} Thus, cycles are connected graphs. Connected graphs other
than cycles and having at least two vertices will be referred to biconnected graphs.

~ Take a graph D with vertex set ¥'={a,, ..., a,} and place a pebble p; onto g; for
every i= ,n. Suppose we are allowed to move the pebbles according to the
following three rules:

R1: Each step, an arbitrary number of pebbles can be moved. (Thus, some
pebbles may stay where they are.)

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b)
is an edge.

R3: Once two or more pebbles hit the same vertex, they cannot be separated,
i.e. have to be moved jointly.

Suppose that after a (possibly zero) number of steps p; is on vertex g, , i=1, ..., n.
To this sequence of transformations we assign the mapping V' —~V given by a—a;,
i=1,...,n. Denote by S(D) the set of all mappings obtained in this way. Clearly,
S(D) is a transformation semigroup on ¥. We let G(D) denote the group of all
permutations in S(D). The following observation easily comes from the definitions:

Fact 3.1. Let A be an automaton and D=D(A). Then, for every BCP], ({A}),
S(B) is a subsemigroup of S(D). Further, there exists an automaton CEP{a ({A})
with S(C)=S(D). .

Our game can be further generalized. Take a graph D=(V, E) and fix a non-
void subset ¥V’ of V, say V’'={a,, ..., a,}. Put pebble p; onto q;, i=1,...,n, and
move the pebbles in the graph according to R1; R2 and R3. Suppose that after.a
(possibly zero) number of steps the pebbles get back to the vertices in V7, i.e. for
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every i, p; is located on a vertex g; in V’. We obtain a mapping ¥’V that assigns
a; to a;. The collection of all these mappings is a transformation semigroup on ¥V,
denoted S(D, V’). Put G(D, V’) for the group of all perrnutatlons in S(D V).
The following statement is obvious. .

Fact 3.2. S(D, V")|S(D) and G(D, V’)|S(D).
The next assertion is a reformulation of a well-known fact.

“ Fact 3.3. If G is a subgroup of S(D) then there is a nonvoid subset V'’ of the
vertex set of D such that G is isomorphic to a subgroup of G(D, V"). ’

- Directly from Fact 3.3 and the observatlon that it is impossible to move a
pebble back in a maximal connected subgraph if it has been moved out, we obtain:

Fact 3.4. If G is a subgroup of S(D) then G has maximal connected subgraphs
D;, ..., D, (n>0) such that for some nonvoid subsets V; of the vertex sets of the
graphs D, it holds that G is isomorphic to a subgroup of the direct product G(D,, V)X
X XG(Dy, V).

Fact 3.5. Let G be a simple group. Then G|S(D) if and only if G|G(D’, V")
for a maximal connected subgraph D’ of D and a nonvoid subset V'’ of the vertex set
of D’.

Proof. Suppose that G|S(D). There is a subgroup H of S(D) which can be
mapped homomorphically, onto G. By Fact 3.4, H is isomorphic to a subgroup of
a direct product G(Dy, %;)X...XG(D,,V;) where the graphs D; are maximal
connected subgraphs of D and for every i, ¥; is a nonvoid subset of the vertex set of
D;. Thus, G|G(Dy,)X...XG(D,, V). From Proposition 2.1, G|G(D;,V;) for
some i. '

Conversely, GlG(D’ V") and G(D’, V)IS(D) yield G|S(D).

Suppose we are given a graph D= (V E) with V={a,, ..., a,}, n=l, ie. D
has at least two vertices. Set. ¥;=V—{a;}, i=0, ..., n.  Fix a pair of different in-
tegers i, j€{0, ..., n} and define the mapping np, it V—»V by

a; if i=k,

_ AI%-" (_a") B {ak otherwise:

Let us say that , ; has a realization in D if starting with pebble p, located on a;,
k=0,...,n, ksj, the placement that p, is located on ¥, ;(@), k=0, ..., n, k=j,
can be achieved by a sequence of moves according to R1, R2, R3. Obviously, if
y,,; can be realized for every pair of different integers i, j¢ {0, ..., n}, then for every

ic{0, ...,n}, G(D,;¥)- is the group of all permutations on ¥}: to interchange two
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pebbles on a; and a; (4, , a,€V, a;#q ) take a realization of ¥, , followed by
a realization of ¢, ; and a reahzatlon of 1,0

Conversely, suppose that D is connected and for every i€{0, ..., n}, G(D, V)
is the group of all permutations on ¥,. It then follows that y; , can be realized for
every choise of i and j (i, j€ {0, ..., n}, i#j). Take a path a;=by, by, ..., by=a; from
a; to a;. If the length of this path is 1, i.e. #=1, just move the pebble on g; to a;,
the. others stand still. If ¢>1, since the permutation (byb,—;...by) is in G(D, V),
we can move the pebbles on by, ..., b,_; onto the vertices b,_y, by, ..., b,_s, respec-
tively, so that the rest of the pebbles get back to their initial positions. To achive
the final situation just move the pebbles on b, ..., b,_, one vertex forward along
the path b, ..., b,.

4. The main results

In this section we give a graph theoretic characterization of complete classes
for the af-product. Further, we give a complete description of the classes of the
form HSP; (%)

We start with two lemmas. In these lemmas the following designations will be
used. Given a path q,, ..., q,, n=1, so that g, is free and for each i=0,...,n—1
therfe is a pebble on g;, by moving the pebbles along the path gy, ..., a, we shall
mean the transformation that, in a single step, we move each pebble on g; to Gia1s
i=0, ...,n—1. This definition extends to the case n=0: the placement of the
pebbles remains unchanged. Given a cycle ay, ...; a,-; (n=2) with at most one
pebble on g;, i=0, ..., n—1, by rotating the pebbles around the cycle we shall mean
the transformation obtained by moving the pebble on g; to @;41mean fOT every i,
provided that there was a pebble on g;.

Lemma 4.1. Let D=(V,E) be a graph with D={ay; ..., 0y 1n}, n,m=l,

E= {(a{)! al)! sers (an+m—13 an+m)9 (an+ms_ao)’ (a,,, ao)}' Then fOI‘ every pair 'l', j Of
different integers in {0, ..., n+m}, ¥, ; can be realized in D.

Proof. Fix an integer i€{0, ..., n+m}. We shall show that G(D,¥)) is the
group of all permutations on ¥. Since dy, ..., @,+m i a cycle in D, we may restrict
ourselves to i=n+1. To see that G(D, ¥,,,) is the group of all permutations on
¥, 1 if suffices to prove that the cyclic permutation (d...4,8, 425 -++» dy+m) and the
transposition (a,_,a,) are in G(D, ¥, ;).

- Place pebble p,; onto @;, i=0,...,n,n+2, ...,n+m. Move p, from a, to a,,4,
then rotate the pebbles around the cycle ag, ..., @+ Wesee that (ag...a,8p.12...Gp4m)€
EG(D, V.41 For the transposition (a,, _ la,,), apply the following procedure:

Step 1. Move Pn from a4 10 Gyyy-
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Step 2. Check if p, is located on a, .5, if so, go to Step 3. Move the pebbles
along the path a,,,,, a,, ..., a,. (It is garanteed that g, is free when this transforma-
tion applies.) Next, rotate the pebbles n times around the cycle 4y, ..., a,, and after
that, move the pebbles along the path a,, ..., a,4,, and go back to Step 2.

Step 3. Before this step applies, the placement of the pebbles is this: for every
ic{0, ...,n—1}, p; is located on a;; a, is free; for every. i€ {n+2, ...,n+m}, p; is
ona;_,;p,isona,.,. Move p,_, from a,_; to a, and then rotate the pebbles around:
the cycle ay, ..., a, until g, gets free, we see that a, is free, p,_, is located on a,, and
for every ic{0, ..., n—2}, p; is on a,+;. Now move p, from a,,, to a,, rotate the
pebbles n—1 times around the cycle g4y, ..., a,, and move the pebbles along the
path a,. 15 -.c; Ay -

Lemma 4.2. Let G=W,E) be a graph with V={ay, ..., 8t mi1}>
n_Z_O, m, 1519 and E= {(ao’ (11), cecy (an+m—1a an+m)3 (an+m9 ao): (an’ an+m+l)s [ERE

eeey (an+m+l—1, an+m+l)’ (an+m+l, aO)}' Then' for every pai" of dgﬂerent integers
i, ke {0, ..., n+m+1), ¥; , can be realized in D.

Proof. Place p, onto q,, t=0, ...,n+m+1, tk. First we show that we may
restrict the consideration to the case that k=mn. Either k€{0,...,n+m} or k€
€{0,....n,nt+m+1, ..., n+m+1}. If ke {0, ..., n+m} rotate the pebbles around the
cycle dy» .., Gner until a, gets free, then move p; to a, so that the rest of the pebbles
get back to the position they were after the rotations. Finally, rotatethe pebbles
around the cycle ay, ..., a,4,, S0 that p; gets onto a,. The pebbles p, other than p;
get back to a,, respectively. Similar procedure applies when k¢ {0, ey ntm+1, ..,
wontm+l}. ‘

Let k=n. Because the assumptions i€ {0, ..., n+m}and i€ {0, ..., n,n+m+1, ...,
...,n+m+1} are symmetrical, we may suppose i€ {0, ..., n+m}. We shall realize y/; ,
in five steps.

Step 1. Rotate the pebbles once around the cycle ay, ..., @,, @i my1s -5 Ay mti-
Observe that a,, ,,., becomes free and p, .., gets onto a,.

Step 2. Rotate the pebbles around the cycle ay, ..., @, until p; hits a,. Then
move p; from a, to @, .1, S0 that a, becomes free.

Step 3. When this step applies, one of the vertices ay, ..., a,,, is free, and
exactly one of ppimt1s +os Potm+1> S3Y Py, 18 in the cycle a, ..., @y 4 (Potm+ for the
first time). Check if p; is on @, ,,, if s0, go to Step 4. Otherwise rotate the pebbles
around the cycle gy, -.., @,.,, until p, gets onto a,, and rotate the pebbles once
around the cycle g, ..., @y, Ayimi1s o5 Qpimsr- GO to Step 3.

Step 4. Observe that the placement‘éf the pebbles is this. The cycle ay, ..., Gp1m
contains p,,+1 and the pebbles p; with j€{0, ...,n+m}, j=i, j=n. Thus, one of
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Gy, iy Gyym i free. The relative order of the pebbles p; (j€{0,...,n+m},
Jj#i, j#n) is their original order. Further, p; iS ON @, pi1s Potmtz 1S ON Gy pmits +oes
wees Ppim+t 1S ON @y ypig—q. It is now clear that the pebbles in the cycle ay, ..., Gy p
can be arranged in such a way that a, gets free and after moving the pebbles along
the path @, 115 --os Guim+1» G0 (SO that p; gets onto ay), the relative order of
the pebbles p;, j€{0,...,n+m}, j=n, in the cycle a, ..., a,., Will be just as
desired.

Step 5. We have p, .1 free. The pebbles p,.,..05 ..., Pyams: are back on
yimiss s Qurmyr, Tespectively. Further, the cycle ay, ...,a,,, contains the
pebbles p; j€{0,...,n+m}, j=n, and the pebble p,,,,,. The relative order of
the pebbles p; (j€{0, ..., n+m}, j=n) is just as desired. Rotate the pebbles around
the cycle ay, ..., @, until p,,,+, gets onto a, then move p,, 4 from a, to @, 1.
The pebbles p,imits -oos Patm+: 3T€ NOW back ON ay iy -y Gnimsr> TESPECtively.
Further, it is clear that the pebbles in the cycle a4y, ..., a,,,, can be arranged so
that p; is on a,, and for j€{0, ..., n+m}, j#i, j¥n, p;is on a;.

Theorem 4.3. S,|S(D) for every biconnected graph D on n+1 vertices.

Proof. Let D=(V,E) with V={a,...,a,}. We are going to show that
¥;, j can be tealized in D for every possible pair of different integers i, j. Consequently,
G(D, V) is the group of all permutations on ¥, for every i (0=i=n). Hence the
result follows by Fact 3.2. )

Put pebble p, onto g, for every 1€{0, ..., n}, t5%j. Take a path

a,- - bo, b], ceey bk - aj

from g; to a;. If k=1, y, ; can be realized obviously. We proceed by induction on
k. Assume k=1. There are an mc{0, ..., k—1} and a path

a; = by, bysys vvs bty = by

with {bo, ..., B} {brs1s -oos biyy—1}=0. We distinguish two cases.

Case m>0. Let us rotate the pebbles / times around the cycle b,,, ..., b,
bis1s --os beyi—1. We see that b, is free now. By induction hypothesis, p, can be
moved from g; to b,, in such a way that meanwhile all the other pebbles get back to
the vertex they.were before. Finally, rotate the pebbles k—m times around the cycle
bos -ees Do bk+1, +vs by yy-1. Obviously, we obtained a realization of |//, je

Case m=0. We have a cycle :

bo, by, .. bka bk+1, v by 1

Two subcases arise according to whether this cycle contains all the vertlces of D
or not. i _ o
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Subcase V.={by, ..., byy;-1}- Since D is biconnected, there is at least one edge
in E other than the edges (bo,by), ..., (bxyi—2> Dry1-1)s (Bryi-1, bg). The result
follows by Lemma 4.1. :

Subcase V= {by, ..., bpy;-1}. Take a vertex c€V—{by, ..., b1} closest to
the cycle by, ..., by,;-1. We then have paths b,=c,, ¢y, ..., c,=c¢ and c=d,, ...,
d,=b, for t,sc{0, ..., k+I1—1} such that the sets {b, ..., by4;-1}> {c1, ...; ¢,} and
{d,, ..., d,_,} are pairwise disjoint. The result follows by Lemma 4.2. '

Theorem 4.4. Let D=(V, E) be a cycle with n vertices. Then for every group
G, G|S(D) if and only if G|Z,, for some m=n.
"Proof. It suffices to show that a group is isomorphic to a subgroup of S(D)
if and only if it is isomorphic to a subgroup of Z,, with m=n.
Suppose that H is isomorphic to a subgroup of S(D). From Fact 3.3, there is a
subset J/ of the vertex set of D such that H is isomorphic to a subgroup of G(D, V’).
Let m be the cardinality of ¥’. We prove that G(D, V") is a cyclic group of order m.

Set V={a,,...,a,} and V’'={a;,..,q } so that a4, ...,a, is a cycle and
iy<...<i,. Place pebble p; onto a;, j= 1,..., m. Rotate the pebbles once around
the cycle a;, ..., a,. If each of the pebbles p; is on the vertex g, , or on a, if j=m,

we see that the cycllc permutation (g ...a; ) is in G, V). Otherw15e rotate those
pebbles around the cycle ay, ..., a, for whlch it does not hold. In a finite number of
steps we obtain a realization of the cyclic permutation (g; ...a; ). Thus, (a,l...a,.m)e
€G(D, V). On the other hand, since by our rules and the structure of D the pebbles
can never pass each other, every permutation in G(D, V) is a power of the cyclic
permutation (a a; ) :

Conversely, it is clear from the above proof that if H is isomorphic to a sub-
group of a cyclic group Z,, with m=n then H is isomorphic to a subgroup of G(D, V")
for every subset ¥V’ of ¥ with m elements. Thus, Fact 4.2 yields G|S (D).

Let & be a class of automata. Set D(")={D |3 A€ D is a subgraph of
D(A)}, where the notion of a subgraph of a graph is used in the usual sense. With
the concept of D(X') and that of a biconnected graph we are able to characterize
complete classes for the a}-product:

- Theorem 4.5. A4 class o is complete for the ai-product if and only if for every
positive integer n, D(X) contains a biconnected graph on at least n vertices.

Proof. If D(’) does not contain biconnected graphs then, by Theorem 4.4,
Fact 3.5 and Fact 3.1, every simple group dividing S(A) for some AcP} (.%’ } is
commutative. If » is the highest integer such that D(x") contains a blconnected
graph on n vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple
group dividing S(A) for an A€P}, (9{ ) is either commutative or a divisor of S,.
In either case, 2" cannot be comp]ete for the a}-product by Theorem 1.1. ‘
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For the converse, suppose that for every positive integer n there exists a bicon-
nected graph in D(2¢) having at least n vertices. Take a simple group G. There is a
positive integer n with G|S,. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see
that S,|S(A) for some AcP} [(A). Thus, o is complete for the at-product by
Theorem 1.1.

In exactly the same way we obtain the following result:

Theorem 4.6. Let " be a class of automata. If A is not complete for the
a*-product then three cases arise.

(i) There is a highest integer n such that D(XA") contains a biconnected graph on
n vertices. Then AEHSPL(.%” )} if and only if for every simple group G with G|S(A),
.either G|S,_, or G|G(D) for a biconnected graph DED(X") on n vertices or G is a
prime group of order p and D (XY contains a cycle of length at least p.

(i) D() does not contain biconnected graphs but there is at least one cycle in _
D). Then Ac HSP:}I(% Y if and only if for every simple group with G|S(A), Gisa
prime group of order p such that D(H") contains a cycle of length at least p.

(iii) Otherwise, i.e. if there is no cycle in D(A), then HSP? (Ji’ ) is the class of
all monotone automata or the class of all discrete automata or the class of all trivial
automata, just as in Theorem 1.2.

Corollary 4.7. There are a countable number of classes of automata of the
form HSP; (X).
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On general coniections satisfying V/=0®1I

NAOTO ABE, HIROAKI NEMOTO and SEIICHI YAMAGUCHI

0. Introduction

The notion of general connections was initiated by T. OTsUK1 in 1958 [10].
He obtained various result [11—21]. A. Modr studied Riemannian manifolds with
general connections, he called them Otsuki spaces [2—7]. T. Ot1sukt [21, 22] and
H. NaGgavama [8] applied general connections to the theory of relativity. Recently
N. AsE [1] defined general connections on arbitrary vector bundles and H. NEmMoTo
[9] studied the geometry of submanifolds in a Riemannian manifold with a general
connection. o

One of the appealing facts in the theory of general connection is the fact that
the covariant derivative of the identity endomorphism does not necessarily vanish.
In this paper, we will study the case where the identity endomorphism is recurrent.

1. Preliminaries

‘In this section we review the theory of general connections along [1, 9, 11].
Throughout this paper; we assume that all objects are smooth and all vector bundles
are real, Let M be a manifold, TM the tangent bundle and C(M) the ring of real-
valued functions on M. Let ¥ and W be vector bundles over M. The fibre of V at
p€M will be denoted by ¥, and the dual bundle of ¥ is denoted by ¥*. The space
of cross-sections of ¥ will be denoted by I'()). By Hom (¥, W) we will denote the
vector bundle of which fibre Hom (¥, W) at p is the vector space Hom (¥, W)
of linear maps from ¥, to W,. In particular, Hom (¥, V) will be denoted by End (V).
Let HOM (V, W) be the space of vector bundle homomorphisms from ¥ to W,
Bspecially HOM (¥, ¥) will be denoted by END (V). Let 1, be the identity endo--
morphism of V. Note that HOM (¥, W) can be naturally identified with the space
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I'(Hom (¥, W)). We will generally use the same symbol to denote a vector bundle
homomorphism and the induced linear map on the space of cross-sections.

For seI' (V), we will denote the 1-jet of s by j*(s) and the 1-jet at p by j1(s).
LetJ1(¥) be the 1-jet bundle of ¥. Now we define two vector bundle homomorphisms.
The vector bundle homomorphism 1: TM*Q¥V-J1(V) is defined to be

1((d),®s(0) = j3(f—f(p))s) for feC(M), scT V).
The vector bundle homomorphism A: J1(V)—V is defined to be

A(3®):=s(p) for ser'y).
Definition 1.1. A vector bundle homomorphism y¢ HOM (¥, J1(V)) is called
a general connection on V. The endomorphism P?:=A0y€END (V) is called the
principal endomorphism of y. The linear operator V': I'(V)-I'(TM*®QV),
defined by
Vis:=1"1(jY(P's)—y(s)) for ser(¥),

is called the covariant derivative of 7.

It is easily shown that the covariant derivative V? of a general connection y
with the principal endomorphism P? satisfies

(L.1) VI(fs) = (df)@P's+fV's for feC(M), scI'(V).

For P€END (V'), we will denote the set of linear operators on I' (V) into F'(TM*®V)
satisfying (1.1) by O(V; P). Then the following theorem is known [1]:

Theorem A. If VEO(V; P) for PCEND (V), then there exists a unique general
connection y such that P’=P and V'=V.

Thus we may say that a pair (V, P) of a linear operator V and an endomorphism
P satisfying (1.1) is a general connection on V. Given v€ TM and p€ M, we define
the linear map V,: I'(V)—~V¥, by V,s:=i,(Vs) for scI'(V), where i, is the inner
product operator. Similarly, given XcI'(TM), we define the linear operator Vy:
r(Y)—~Ir ) by (Vxs)(p):=Vx,s. We call Vx the covariant derivative along X.
Then we have

(l 1y V,xs—fos and Vx(ﬁ) (Xf)Ps+fos for fEC(M)

When P=I,, our general connectxon (V, I)) is nothing but a usual connection
on ¥, that is, the linear operator Vy: I'(V)->I'(¥V) satisfies V,xs=fVys and
Vx(f5)=(Xf)s+fVxs.

Definition 1.2, A general connection (V, P) on V is said to be regular if P
is a regular endomorphism.
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In the theory of general connection, we can define the product of VEO(V; P)
and Q€END (V) as follows:
(2V)xs:=Q(Vxs) and (VO)ys:=Vy(0s).

Then we have 2VeO(V; QP) and V2€O(V; PQ). Hence, if a general connection:
(V, P) is regular and Q is the inverse endomorphism of P, then the general connec-
tions 2V and V2 are usual connections. Furthermore we can naturally extend a
general connection (V, P) to general connections on the dual bundle and the tensor
bundles. We will use the same symbol (V, P) for the extensions. For instance, we
present here the following formulas:

(Vxn)(s) = X(n(Ps))—n(Vx ),
(Vx @)s = Vx(@Ps)—Po(Vy ),
(Vx 8)(s, 8') = X(g(Ps, Ps’))—g(Vx 5, Ps")—g(Ps, Vx5')

for n€I'(V'*), @€I'(End (V)), g€ ((VQV)*) and s,s€r' (V). In contrast to the
case of usual connections, we must note that VI, does not vanish in general.

i

Definition 1.3. Let g¢I'((F®V)*) be a fibre metric on V. A general connec-
tion (V, P) on ¥V is said to be metric if Vg=0, that is,

(Vx 8)(s, s") = X(g(Ps, Ps'))—g(Vx s, Ps')—g(Ps, Vx5) =0
for s, s’éI‘(V) and XeI'(TM).
Definition 1.4. The element R(V)éHOM (A2(TM), End (V)) defined by
R(V)x,ys =V (Vy(P))—Vy(Vx (P5))—P(Vix,11(P$))~(Vx Iy) Vy s+ (Vy 1) Vy s

for seI'(V) and X, Y<I'(TM), is called the curvature tensor field of the general
connection (V, P).

Remark. When the vector bundle is the tangent bundle TM, the curvature
tensor field defined above coincides with the one defined by 7" Otsuki [11].

In the case of ¥'=TM, we can define a torsion tensor field of a general con~
nection (V, P) as follows: . ‘
Definition 1.5. Let ¥=TM. The element Y€HOM (TMRTM, TM) de-
fined by : : o o
P(X,Y):=Vy Y-V, X—-P[X,Y]

for X, YeI'(TM), is called the torsion tensor field of the general connection (V, P).
If ¥=0, then the general connection on TM is said to be torsion free.

‘.
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2. General connections of recurrent type

In a theory of general connection we noted that the covariant derivative of the
identity endomorphism VI, does not vanish in general. The case of VI,=0 was
studied in [9]. The purpose of this paper is to study the case of  (Vx Iy)=w(X) Iy,
where @ is some 1-form on M.

Definition 2.1. Let (V, P) be a general connection on a vector bundle ¥ over
M. If the general connection (V, P) satisfies

2.9 (Vx Iy)s = @(X)s

for some 1-form w on M, then we call the general connection (V, P) to be of recur-
rent type.

Example. For g€C(M), we put P:=¢l,. Let D be a usual connection on V.
If we define a general connection (V, P) by FD, then it is easily seen that the general
connection (V, P) is of recurrent type whose recurrent 1-form w is given by w=
=(1/2)d(g%. For the curvature tensor fields R(V) and R(D), we can get the following
formula:
R(V) = ¢*R(D),

which will be generalized in the folloving section. If ¢ does not vanish everywhere
on M, the general connection (V, P) is regular. Let g be a fibre metric on ¥ and ¢
does not vanish everywhere on M. We define the fibre metric G which is conformal
to g by G:=g%. Then we obtain that

(Vx 8)(s, 5") == X(g(Ps, Ps))—g(Vx s, Ps')—g(Ps, Vxs) =
= X(g(es; e5"))—g(eDxs, 05')—g(es, eDys’) =
= X(G(s,5"))—G(Dys, s")=G(s, Dy s’) = (Dx G)(s, 5).
Hence we know that the general connection (V,P)isa ﬁl_etric general connection
with respect to g if and only if the usual connection D is a metric connection with
respect to G. Especially when ¥V'=TM, itis clear that the general connection (V, P)
is torsion free if and only if the usual connection D is torsion free.. This type of

general connections was treated by T.. OTsukl [21] and H. NAGAYAMA [8] when
V=TM. - ' o
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3. Regular geueral connections of recurrent type

In this section we study the case that the general connection (V P) is recurrent

type and regular.
At first, we prepare several formulas for a regular general connection. Let’ Q
be the inverse endomorphism of P, that is,

PO =0P =1y,

Thus the products 2V and V2 are usual connections on ¥ and are denoted by D and
D’ respectively. The following equations were proved in [9].

@3.1) (Vy Iy)s = P(Dy P)s = (D P)(Ps),
3.2) R(V)x,ys= P2R(D)y, y(Ps)+P(Dx P)(DyP)s—P(DyP)(Dy P)s =
= PR(D)y,y(P*s)+(Dy P)(D} P)(Ps)— (D} P)(Dy P)(Ps).

Remark. When V=TM, these formulas are first proved by 7. Otsuki in
(11, 18].

Lemma 3.1. Let (V, P) be a regular general connection of recurrent type on V.
Then we have the following equations:

(3.3) ' (Dx P)s = (DxP)s = o(X)Qs,
(3.4) (DxQ)s = (DxQ)s = —a(X) P,
where w is the recurrent 1-form and Q is the inverse endomorphism of P.
Proof. From (2.1) and (3.1), we obtain

P(Dx P)s = (Dx P)(Ps) = (Vx Iy)s = o(X)s,

from which we get (3.3). Since D is a usual connection, we have
| Dys = Dy(PQs) = (Dx P)Qs+ PDx(Qs) =
= (Dx P)Qs+P{(Dx Q) s+QDxs} = (Dx P)Qs+ P(DxyQ)s+ Dxs.
Hence we find by (3.3) that
(D3Q)s = —O(Dy P)0s = —a(X)Q%s.

Similarly we get (3.4),.

As a regular general connection (V, P) can be naturally related to usual con-
pections D:=9V and D’:=V2, we give a relation among the curvature tensor fields
of R(V), R(D) and R(D").
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Theorem 3.2. Let (V, P) be a regular general connection of recurrent type on
V. Then we have the following equations:

(.5 R(V)y.ys = PPR(D)x,ys-+2dw(X,Y)Ps = PPR(D')g, y5+4dw(X, Y) Ps,

where
2do(X,Y) = X(o(¥))-Y (0(X))—o(X, Y]).

Proof. At first, substituting (3.3) into (3.2), we have
R(V)x,ys = PPR(D)x, y(Ps).
Using (3.3) and (3.4), we calculate Dy Dy(Ps) and Dy, y;(Ps) as follows:
Dy Dy(Ps) = Dy{(DyP)s+ PDys} = Dy {0 (Y)Qs+ PDys} =
= X(0())0s+o(¥)(Dx0)s+w(¥)QDxs+(Dx P)Dys+PDyDys =
= X(0¥)Q@s—w(X)o(¥)Q%s+a(Y)QDx s+w(X)QDy s+ PDx Dys,
Dix,v1(Ps) = (Dix,y1P)s+ PDix,yy5 = 0([X, Y])Os+ PDix 1.
Hence we obtain
R(D)x,y(Ps) = PR(D)y,ys+{X(0(¥))-Y(«(X))—w (X, Y]} Os,

from which we get (3.5),. By similar calculations we get (3.5),.

4, Regular metric general connections of recurrent type

In this section we will deal with a regular metric general connection (V, P) of
recurrent type.

Let g be a fibre metric on V and P be regular. Now we define the new metric
G by
“.1) G(s,s):=g(Ps, Ps’).

Itis known that when ¥V'=TM and g is a Riemannian metric, G is also a Riemannian
metric.- Furthermore if the regular metric general connection is torsion free, the
product 2V is the Levi—Civita connection with respect to G [9].

Lemma 4.1. Let (V, P) be a regular metric general connection of recurrent type
on V. Then we obtain

@2 (Dx8)(s,5") = —(X)g(Ts, 5),
where we put
. : T:= QZ +Q*2

and O is defined by g(0"5, 5)i=g(s, 05",
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Proof. As D is a usual connection, we-get
X(g(Ps, Ps")) = Dx(g(Ps, Ps')) =
= (Dy 8)(Ps, Ps')+g((Dy P)s, Ps’)+g(Ps, (Dx P)s')+g(PDxs, Ps')+g(Ps, PDys")=
= (Dy g)(Ps, Ps')+g((Dx P)s, Ps')+g(Ps, (DxP)s’)+g(Vys, Ps')+g(Ps, Vys'),
where we used FDys=Vys. Therefore, substituting (3.3) and X(g(Ps, Ps’))=
=g(Vyxs, Ps)+g(Ps, Vxs’) into the above equation, we obtain
(Dx 8)(Ps, Ps") =—g((Dx P)s, Ps’)—g(Ps, (Dx P)s') =
= ~w(X){g(Qs, Ps")+g(Ps, Os)}.
Changing s to Qs and s’ to Qs’, we find (4.2).
Theorem 4.2. Let (V, P) be a regular metric general connection of recurrent

type on V. If G(s, s)=g(s, &), that is g(Ps, Ps’)=g(s, s"), then the recurrent 1-form
o vanishes identically.

Proof. At first, we note that g(Ps, s)=g(s, Os") because of g(Ps, Ps")= g(s, ).
Moreover, by virtue of Lemma 4.1 and Dg=DG=0, we obtain

o (X){g(Q%s,s")+g(s, 0*s")} =0,
for any XEF(TM) and s, s’¢ (V). Suppose that there is a point p €M such that
w0 at p, then w0 on some open neighborhood U of p. Thus, on U, we have
8(Q%,5)+8(s,0%") =0, |
from which we have :

- I Ve
Then from (3.3), we can easily get the following equation:

—Dy s = Dy(—5) = Dy(Ps) = 4o (X) P2s—Dyss,
which yields that 4
: 4o (X)Ps = 0.

Since P is regular, this implies that w=0 on U. This is a contradiction. Therefore,
there are no points p€ M such that w0 at p.

5. Regular metric general connections of recurrent type on TM ‘

- In Section 4, we mentioned. that if the general connection (V, P) on TM .is
torsmn free, regular and metric with respect to g, then D is the Levi—Civita con-
nection with respect to G. On the other hand; there is the Levi—Civita connection
D with respect to the original metnc g From now on, we study the relation between
D and D. :
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From the definition of D, we have ,
G  X(s(%,2) = g(DxY, Z)+5(¥, DxZ), Dx¥-DyX =[X,Y].
On the other hand, by Lemma 4.1, we also obtain
(Dx &)Y, Z) = X(g(¥, 2))—g(Dx Y, Z)—g(¥, Dy Z) = —0(X)g(TY, Z).
Substituting (5.1) into above equation, we have
(52 g(DxY —DxY, Z)+g(¥, DxyZ—Dx Z) = w(X)g(TY, 2).
Since both D and D are torsion free, we get
g(DxY—DyY, Z)+g(Y, DxyZ—Dx Z)+g(DyZ—Dy Z, X)+
+8(Z, DyX— Dy X)—g(D;X—Dz X, Y)—g(X, D;Y—D,Y) = 2g(DxY— DxY, Z).
From (5.2), the left hand side of the above equation equals
o(X)g(TY, Z)+wX¥)g(TZ, X)~w(Z)g(TX, Y).
Therefore, we have '
(5.3) 2(DxY—DyY) = 0(X)TY+o¥)TX—g(TX, Y)W,

where W is the vector field defined by g(W, X):=w(X) and we used g(TX, ¥Y)=
=g(X, TY). For brevity, we set

(5.4) SX,Y):=1/2){o(X)TY+o@)TX—g(TX,Y)W)}.
Then (5.3) is rewritten as
5.5) DyY = Dy Y+S(X,Y).

Now, we consider the relation between the curvature tensor fields R(D) and
R(D). Using (5.5) twice, we have

DyDyZ = Dy Dy Z+(Dy SYY, Z)+S(Dx Y, Z)+
+S8(Y, Dx 2)+S(X, Dy Z)+5(X, S(¥,2)).
Dix.1Z = Dix, 1nZ+S((X, Y1, Z).
Hence it follows from above equations and Dy Y~ Dy X=[X, ¥] that
(5.6) '
R(D)y,y Z = R(D)y,y Z+(Dx S)(Y, Z)—(Dy S)(X, 2)+S(X, S(Y, Z))—S(¥, S(X, Z)).

To express the right hand side of (5.6) more preciselg}, we prepare several formulas.
At first, we put .
;.7 U=0% and U*:=Q*
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Then we have :
T=U+U*
From (3.4),, we easily get
(5.8) | (Dx )Y = —20(X)U?Y.
Let us calculate (D, U*)Y.
g((Dx UMY, Z) = g(Dx(U*Y), Z)—g(U*Dy ¥, Z) =
= X(¢(U*Y, 2))~(Dx8)(U*Y, 2)~g(U*Y, Dy Z)—g(U*Dy Y, Z) =
= (Dx8)(¥, UZ)+g(Dy ¥, UZ) +g(¥; (Dx U) Z)+ (¥, UDx Z)+
+0(X)g(TU*Y, Z)—g(Y, UDx Z)—g(DxY, UZ) =
=—w(X)g(TY,UZ)-2w(X)g(¥, U*Z)+w(X)g(TU*Y, Z).
Therefore we find that
(5.9) C (DyUMY = —o(X)[U*TY~TU*Y+2U%Y].
Using (5.8) and (5.9), we compute (D T)Y.
(5.10) (DyT)Y = (Dy U)Y+(Dx U*Y = — (X )[2U2 ¥+ 2U* ¥+ U* TY—TU*Y).
Next, we compute (Dy T) Y by the aids of (5.4), (5.5) and (5.10).
(5.11)  (DxT)Y = Dy(TY)—TDy Y= (D T)Y—S(X, TY)+TS(X, Y) =
= —0(X)[2UY+2U*2 Y+ U*TY—TU*Y] -
~(1/)[o(TY)TX—0(¥)T2X—g(TX, TY)W+g(TX, Y)TW)].
By virtue of these equations, we can get the following:
(5.12) (Dx S)(X, Z)—(Dy S)(X, 2) =
= (1/2){[(Dx 0)(¥)~(Dy 0)(X)]TZ+[(Dy @)(Z)TY — (Dy 0)(Z)TX ]~
—[g(TY, Z)DyW—g(TX, Z) Dy W]—-(1/2) 0(TZ)[w(Y) TX— (X ) TY ] +
+(1/2o(2)lo@)T*X ~o(X)TY]-(1/2)[0(Y)g(TX, Z) - o(X)g(TY, Z)| TH—
—a(Z)[20(X)U2Y—20F)UX +20(X ) U*2Y—20 (¥ ) U*2X +
+0(X)U* TY—0o@)U*TX~o(X)TU*Y+0(¥)TU*X]— -
—(1202) [0 TY)TX—o(TX)TY—o(¥)T2X +o(X)T2Y]+
+20(X)g(UY, Z)-20®)g(UX, Z)+
+20(X)g(U**Y, Z)—-20(Y)g(U**X, Z)+o(Y)g(TU*X, Z)—
—0(X)g(TUY, Z)-oX)g(U*TX, Z)+o(X)g(U*TY, Z)|W+
+(1/2)[0(TY)g(TX, Z)—a(TX)g(TY, Z)W}.
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The following equation follows from (5.4) and (5.12).
(Dx S)(Y, 2)—(Dy S)(X, 2)+S(X, S(¥, Z))—S(¥, S(X, Z)) =
= do(X,Y)TZ+(1/2){{(Dx o)(Z)TY—(Dy)(Z)TX]—
—[g(TY, Z)DxW—g(TX, Z) Dy W1} ~(1/){l0l*[g(TY, Z)TX—g(TX, Z)TY] +
+o(X)w(Z)[AU?Y+4U*?Y+2U*TY—-2TU* Y+ T?Y] -
—o@)o(Z)[AUX+4U* X +2U*TX —2TU*X + T2X] —
| —o(X)g(QUY+4U Y+ 2U*TY—-2TU*Y+T?2Y, Z)W+
+o)g(AUX+4U*X+2U*TX - 2TU*X +T%X, Z)W.
Therefore, we obtain the following theorem:

Theorem 5.1. Let (V, P) be a torsion free regular metric general connection
of recurrent type on TM, D the product °V and D the Levi—Civita connection with
respect to G. Then the curvature tensor fields R(D) and R(D) satisfy the following
equation.

(5.13) R(D)“z = R(D)g.yZ+dw(X,Y)TZ+
+(1/2){(Dyx @)(Z)TY—(Dy 0)(Z)TX]~[g(T¥, Z) Dy W—g(TX, Z) By W]}
—(1/8){lol*[g(TY, Z)TX—g(TX, Z)TY]+
+0(X)0(Z2) AV (¥ )0(Z) AX — (X)) g (AY, ZYW+0(Y)g(4X, Z)W ]},

where we put : )
A = 4U+-4U* L 2U T 2TU* +- T2,

6. Regular metric general connections of recurrent type
whose principal endomorphism is symmetric

In this section, we study the case that the principal endomorphism P is sym-
metric with respect to g, that is,

6.1) g(PX,Y) =g(X, PY).
As a consequence of thls, we easily get the followmg
6.2 B _ Q =Q and U= U, |
(6.3) _ S - T=2,

6.4) o . A=1202 .
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Then the equation (5.13) is rewritten as
(6.5) R(D)x.yZ = R(D)y.y Z+2dw (X, Y)UZ +
+[(Dx 0)(Z)UY — (Dy )(Z)UX}~[g(UY, Z) Dy W—g(UX, Z) Dy W]—
—lo*[g(UY, Z)UX-g(UX, Z)UY]+3[o(No(Z)U*X —o(X)o(Z)UY +
+o(X)g(U*Y, Z)W-0¥)g(UX, Z)W].
Proposition 6.1. Let (V, P) be a torsion free regular metric general connection

- of recurrent type on TM. If the general connection (V, P) satisfies g(PX, Y)=g(X, PY),
then the 1-form w is closed.

Proof. Let {e;} be a local orthonormal frame field with respect to g and {f}
‘the dual frame of {e;}. Then, from (6.5), we have

(6.6) FH(R(D)e,,xZ) = f{(R(D).,,y Z)+2dw(e;, ) f{(UZ)+
+[(D.,)(2)f}(UY)—(Dyw)(Z) f'(Ue)]—
—[g(UY, Z)f{(D. ,W)—gUe;, Z)f'(Dy W)] -
— |02 [g(UY, Z)f(Ue)—g(Ue;, Z)f/(UY)]+
+3[o@)w(2)f!(Ue)—w(e)o(2) f(UY)+
+0(e)g(UY, Z)f' (W)~ (¥)g(U?e;, Z)f (W),
whe{e we used the summation convention. Thus we get
(6.7 K(D)(Y, Z) = K(D)(¥, Z)+2do(UZ, Y)+(Dyy 0)(Z)—(Dyw)(Z) Tr U —-
~ —g(UY, 2)f' (D, W)+g(UDy W, Z)—|w|*(g(UY, Z) Tt U — g(U*Y, Z))+
" +3(eX)w(2) Tr U2—o(UY)w(Z)+o(W)g(UY, Z)—w(Y)g(U*W, Z))
where K(D)(¥, Z), K(D)(¥, Z) denote the Ricci curvature tensor fields with respect
to G and g respectively. Changmg Y and Z in (6.7) and subtracting this from (6.7),
we obtain
6.8) A 2dw(Y,Z)Tr U =0,
since K(D)(Y, Z) and K(D)(Y, Z) are symmetric. As Tr U=Tr Q%*=|0Q|*=0, we
have '
' : do = 0.
This proves our proposition.
In this case, (6.5) reduces to

6.9) K(D)y,yZ = K(D)x,yZ+[(Dx 0)(Z)UY—(Dy 0)(Z)UX]—
—[g(UY, Z)DxW—g(UX, Z) Dy W] —|o*[g(UY, Z)UX —g(UX, Z)UY]+
+3[0¥)0(Z) VX —o(X)0(Z)U*Y+o(X)g(UY, Z)W-w(Y)g(UX, Z)W].
Remark. Excepting Proposition 6.1, our results are true in the case that the
metrics are pseudo-Riemannian.
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On the boundedness of solutions of nonautonomous
differential equations

WU JIANHONG* and L. HATVANI**
Dedicated to L. Pintér on his 60th birthday

1. Introduction

In the study of existence of periodic solutions and almost periodic solutions as
well as behavior of limiting sets of solutions of ordinary differential equations, the
uniform boundedness and uniform ultimate boundedness of solutions are frequently
needed [1—4, 9]. These properties of solutions can be regarded as either the instability
of infinity or a special case of some kind of stability of a set. Therefore, there exists
a close relation between Lyapunov’s direct method and the boundedness of solutions.
A typical result showing this relation is Theorem 10.4 in [3]. In this theorem the
uniform ultimate boundedness is guaranteed by the existence of an appropriate
Lyapunov function having a negative definite derivative along the solutions. How-
ever, in practiceitis very difficult to construct such a Lyapunov function. For example,
for mechanical systems the total mechanical energy, which is a typical Lyapunov
function, never has a negative definite derivative along the motions with respect to
the generalized coordinates.

The purpose of this paper is to study the boundedness and ultimate boundedness
of solutions of nonautonomous differential equations by Lyapunov’s direct method
when the derivative of the Lyapunov function along the solutions is only semidefinite.
The results generalize V: M. MATROsOV’s theorem [5] on the asymptotic stability
to the boundedness of solutions. An application is given to the boundedness of the
motions of a holonomic scleronomic mechanical system of »n degrees of freedom

being under the action of potential, dissipative and gyroscopic forces.

e Supported by the Science Fundation of Academia Sinica : 3
** This research was supported by The Hungarian Research Fund with grant number 6032/6319
Received September 1, 1986.
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2. Notations and definitions

Consider the system
2.1) x = X(t, x),

where (¢, x)ERT X R", Rt =[0, =) and X: R*XR"-R" is continuous. Throughout
this paper, for simplicity, we assume that for any (7,, xo)€ R* XR”, there exists a
unique solution x(z; ¢y, x,) of (2.1) through (#,, x,) defined for all r=1,.

Definition 2.1 [3]. A solution x(¢;1,,x,) of (2.1) is bounded, if

sup Ix(#5 2o, Xo)l < e=.
=

The solutions of (2.1) are uniformly bounded (U.B.) if for every a >0 there exists
a B(x)=0 such that [£,=0, |x,|<a, t=1] imply |x(¢; t,, Xo)| < ().

The, solutions of (2.1) are equiultimately bounded (E.U.B.) for some bound B
if for every «=0 and f,=0 there exists a T(f, «)>0 such that [|x|<e, t=1¢,+
+T(t, )] imply |x(¢; £, x,)|<B.

The solutions of (2.1) are uniformly ultimately bounded (U.U.B.) for some bound
B if for every a=0 there exists a T(x)>0 such that [1,=0, |x,|<a, t=t,+ T(x)]
imply |x(Z; ty, Xo)| <B.

By a pseudo wedge W we mean a continuous and strictly increasing function
W: Rt*—-R* with W(r)>0 if r=0. A pseudo wedge W is called unbounded if
11m W(r)=+ o=

Denote by [a], and [a]_ the positive and negative part of the real number a,
respectively, that is, [4], =max {a, 0}, [a]- =max {—a,0}.

Definition 2.2 [5]. A measurable function 1: R*—~R" is said to be integrally
positive if f A(t)dt=o= holds on every set J= U [@m, bp) such that a,<b,=a, .,
and b —a,,,§5>0 m=1,2,..) foraconstant 6>O.

Definition 2.3 [7]. A measurable function 1: R*—~R* is said to be weakly
integrally positive if for every >0, 4>0 and for every set J= O [a,, b, with
m=1
G+ 0=bp=0p4,<by+4 (h=1,2,"..) the relation [ A(f)dt=co holds.
J

Lemma 2.1. If a measurable function A: R* -R* is 'integrally Dpositive, then
Jor every a>0 and 6>0 there exists a positive integer K(a, ) such that for every

set J= U [Gm» bw] With ap<a,+0=b,=an41 for 1=m=K-1, we have
j ).(t)dtza ' '
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Proof. Itis easy to see that A.is integrally positive if and only if for every 6=0

the inequality
t+4

2.2) : lin inf [ Me)ds =0
' R

holds. Consequently, for any given =0 there are T=T(0)>0 and u(6)=0
such that t=T(5) implies
t+d

[ As)ds = p(d).
; .

Let «=>0 and 6>0 be given, and define K(x, 8)=[T(5)/0]+ 1 +[a/u()]+1,
where [a] denotes the integer part of ac R, that is, [g]l=max {z: z is an integer with
z=a}. Then the number K(z, §) has the property mentioned in the assertion.

The following assertion can be easily proved by making use of (2.2).

Lemma 2.2. If a measurable function A: RY—+R* is integrally positive, then
1o+ T

@.3) Clim [ A=e
%

T—+co
uniformly with }espect to t,ERT,

Remark 2.1. The property of weak integral positivity and property (2.3) are
independent of one another. E.g. A(¢)=1/(1+1t) is weakly integrally positive, but
it does not satisfy (2.3) and so it is not integrally positive. On the other hand, weak
integral positivity and (2.3) together do not imply integral positivity. E.g., the function

4 1/(14+6) n=t=n+1)2
0= 1 n+12<t<n+l
is weakly integrally positive and satisfy (2.3) but it is not integrally positive.
With a continuous function ¥: R* X R"—~R we associate the function

Van(t x) = lim sup (1/h) {V(t+h, x+hX(t, x))-V(t, x)},

which called the derivative of ¥ with respect to (2.1).
It can be proved (see [3], p. 3) that if ¥_is locally Lipschitz, then for an arbitrary.
solution x(z) of (2.1) we have '

V(ta, x(12)) =V (t;, x(1)) = f V(t; 5c(i)) ar, (t, t2€Rv+).
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3. The theorems and their proofs

Theorem 3.1. Suppose that there exist nonnegative constants B and D, non-
negative locally Lipschitz functions V (¢, x), P(t, x) and continuous K(t, x) defined for
t=0, |x|=B satisfying the following conditions:

O W (x)=V (@, x)=W,(x]), where W, and W, are unbounded pseudo wedges;

(i) the derivative of V' with respect to (2.1) satz.sﬁes the inequality

G.D) Veu(t,x)=—K(t,%) for t=0, |x|=B;

(il]) for each M=>B there are k=k(M)>0 and H=H(M)=0 such that
[t=0, B=|x|=M, P(t,x)=H] imply K(t, x)=k;

(iv) for each M =B there exists an L(M)=0 such that [t=0, B=|x|=M,
H(M)=P(t, x)=2H(M)] imply P .(t, x)=L(M);

(v) for each M =B thereis a T(M)=0 such that for any solution x(t) of (2.1)
with B=|x(O)|=M and P(t,x())=2H(M) for ty=st=ty+T(M) there exists
S€[ty, to+T(M)] with |x(s)]<D.

Then the solutions of (2.1) are U.B. and U.U.B.

Proof. For any >0, define f(x)=W,"!(W,(max {B, a})). It is easy to prove
that [t,=0, |x|=«a] imply [x(z; t,, x)|=B(«) for t=t,. Therefore, the solutions
of (2.1) are U.B. Throughout the remainder of this proof we use the notations x(¢)=
=x(t; ty, x), V(O)=V(t, x(2)) and V(t)=V5,(t, x(1)).

To prove the uniform ultimate boundedness, we consider the following two
cases:

(a) there exists a t,=¢, with [x(¢)|=B;

) [x(®)|=B for all t=1,.

In case (@) |x(1)|=B(B) for t=¢t,.

In case (b) we have V(f)=—K(t, x(¢)) for all t=¢,. By (iii) there exist k=
=k(B(x))>0 and H=H(B(«))=0 such that P(t x(t))=H implies K(1, x(¢))=k.
Let i=#, be fixed, and choose a constant S=S(x)>W;(B(e))/k. Then by (3.1)
the nonnegativeness of ¥ implies the existence of a t;€[t, 1+ S(0)] such that
P(t3, x(t)<H. By (v), there exists T=T(B(®))>0 such that if P(t, x(t))<2H
for t€[ts, 1,4 T), then there is an s€[t3, t,+ 7] with |x(s)|<D, which implies
|x(0)|<B(D) for t=t;+T, especially, for t22+S+T

Therefore, only two cases may occur:

(b)) P(t, x())<2H for all t€[t,, ts+T).

In this case, |x(t)|<B(D) for t=i+T+S.

(by) there exists #,€[ty, t3+T] with P(tg, x(t))=2H.

In this case, there are z5, fg such that ty<ty<tg=t,, P(ts, x(t:))=H, P(ts, x(t5))=
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‘=2H. and -H=<P(t, x(t))<2H for - ts<t<ts. By (iv), we get te—t;=H/L(B()).
On the other hand, by V(f)=—K(¢, x(t))=—k for t€[t;, t;] we obtain " ‘
32 - : : W (ts) = V(ts)—kH/L(B()).

Since in case (b) V()=—K(t, x(1))=0 for all t=¢, we get V(E+S+D)=
éIf(i)—kH/L(ﬁ(a)). Let #=t,+m(S+T), where m is a nonnegative integer.
Then from the argument above we get either

©n) x()] = max {B(B), B(D)} for t= to+(m+1)(S+T),
or’ ’ ’ )
(d.) V(ty+(m-+1)(S+T)) =V (ty+m(S+T))—kH/L(B(«)).

Choose a positive integer N=N(x) such that
G3) N(2)kH/L(B(®)) = W(B()):

Then by the nonnegativeness of ¥, (d,,) holds for at most m=0,1,..., N—1, and
thus  |x(t)| <max {$(B), B(D)} for t=t,+N(S+T). This completes the proof.

. Remark 3.1. Using the same argument as one above, the comparison method
and Lemma 2.1, we can prove the following assertion:
If conditions (i), (iii)—(v) of Theorem 3.1 are satisfied and if for each M=B
there exists a weakly integrally positive function 4,;: R*—R* such that

Vit X) = —Ay (DK@, x)+ F(t, V(t, x)) for t=0

and B=|x|=M, where F: Rt XR* R is continuous, the solutions of .z2=F(t, z)

are uniformly bounded, and f 0sup F(t,z)dt<< for r=0, then the solutions
0 =z=r

of (2.1) are U.B. and E.U.B. K, in-addition, AM is mtegrally positive, then the solu-

tions of (2.1) are U.B. and U.U.B.

Remark 3.2. If conditions (i), (iii) and (v) of Theorem 3.1 are satisfied and if

@) Veay(t, )=—AK(E, )+ F(, V(t,x)) for =0 and |x|=B, where
J: R >R* is measurable and satisfies condition (2.3), and F is of the same kind
as in Remark 3.1;

(b) for any M >0 thereexistsa p=u(M)=0 such that [B=|x|=M, HM)=
=P(t, x)=2H(M)] imply

Vean(t, x) = —pPen(t, x)+F(t, V(t, %)),
then the solutions of (2.1) are U.B.and UU.B. .- .

5
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To prove this remark it is sufficient to replace (3. 2) and @3. 3) in the proof of
Theorem 3.1 by - '

V(t)) = V(1) —n(B@) H(B() + j max {F(t; 2):.0 = z = W(B())} dt
and . , K ,
" Nu(B(@)H(B(@) > Wz'(ﬂ(a))‘—i-f max {F(t, z): 0 = z =W (B(x))} dt, "
respectively. °
Remark 33 Condition (iv) in Theorem 3.1 can be weakened as follows: for
any M=>B there exists a continuous function L,: R*—~R#* such that f L, is

uniformly continuous on [0, =) and either

[P(z,l,(t, X))y =Ly for t=0, B=lx|=M and H(M) = P(t,x) = 2H(M),
or

[Peay(t ¥)]- = Ly(t) for t=0, B=|x]= M and H(M) = P(t, x) =2H(M),

Remark 3.4. Condition (i) in Theorem 3.1 can be replaced by 0=V (t, x)=
SW;(lxl) if the solutions of (2.1) are U.B.

Example 3.1. Consider a Liénard equation with forcing term
(3.9 : X+f(x)x+ gt x) =e(®), -
where f(x), g(t, x), dg(t,x)/dt and e(¢) are continuous for (¢, x)éR*XR and
. f le(3)ds< <. Besides, we assume that there exist unbounded pseudo wedges

W;,Wz, a continuous W;: R*>R* with %(r)>0 for r>0 :and an mtegrally
positive function A: R* R such that - .

S W(xD) = [ g6 x)dx = W(lx)),
V S S Sl ; )
gt F) - [ Gg(, Do) dr= 20W(xD,
where F(x)= f f(s)ds.: Obviously, (3.4) is equivalent ,vto’ o

33 =y F0) p =g X)),
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. x t. o+ - - ) , N
Let V(t, x,5)=[»*+2 [ g(t,r)dr]*+ [ le(s)lds, then
0 t

D242 (Ix))) /2 = V(;, x,y) = [y2+2W§(|xl)]i‘/2+ f le(s)| ds
. ’ T
Ve (t, %, ) = —A(OWy(Ix) [p2+2W5(1x])] /2.

Let K(t, x, p))=W(IxD[¥2+2W,(IxD]~*?, P(t, x,y)=|xl, B=1 and H=1. Then
for each M=>1 and for =0, 1=|x|+|y|=M and |x|=1, we have K(, x,p)=
=min {W,(r): 1=r=M} (M2+2W,(M))~*2. Therefore, conditions (i)}—(iv) of
Theorem 3.1 hold (see also Remark 3.1). Now we check condition (v). e

Let E=max {|{F(x)|+1: |x|=2}, D=E+2, and for M>1 define T(M)—
=2M+1.. Suppose that (x(), y(2)) is a solution of (3.5) with 1=|x(?)|+|y()|l=M
and |x(2)|=2 for t€[ty, 1,+T(M)). If |x(D]+|y()|=E+2 for all t€[ty, t,+ T(M)],
then |y(?)|=E, e.g. y(1)=E, and consequently %(¢)=y(t)— F(x(t))=E— max F(x)=
=1. Hence we obtain the inequality 2M le(to+ T(M))—x(t)|=T(M)=2M+1,
which is a contradiction. Therefore, there is an s€[t,, t,-+ T(M)] with [x(s)|+
+|y(s)|<D=E+2, i.e. condition (v) in Theorem 3.1 holds.

Consequently, under our conditions the solutions of (3.5) are U.B. and U.U.B.

Notice that if P(#, x)=|x], then condition (iv) in Theorem 3.1 can be dropped.
(Indeed, if condition (i)—(iii), (v) are satisfied for P(z, x)=[x|, then all the con-
ditions of the theorem are satisfied for the new auxiliary function P(¢, x)=V (¢, x).
If, in addition, H in (iii) is constant, then (v) obviously holds. This special case initi-
ates the following generalization of T. YOsHIZAWA’s theorem ([3], Theorem 10.4):'

Theorem 3.2. Suppose that there exist a constant B=0, a locally Lipschitz
function V(t,x) and a continuous function K(t,x) defined for t=0 and |x|=B
satisfying the following conditions: : .

() W (x)=V(t, x)=W,;(|x]), where W; and W, are unbounded pseudo wedges;,

(i) Vay( x)s—-l(t)K(t x) for t=0 and |x|=B, where A: R+—>R+ is

measurable with hm f /l(s)ds—-oo Jfor any IOEO

(iii) for each M (>B there exists k(M )>0 such that B=|x| =M zmphes
K(t, x)=k(M). v

Then the solutions of (2 l) are U B. and E.U.B. If in addmon A satt.gﬁes condmon
(2.3), then the solutions of (2.1) are U.B. and U.U.B.

" Proof. For any a>0, define f(a)=W""(W,(max (B, a}). Let: x(; f, Xo) be
a solution of (2. l) with lx,l<a "Then . Ix(t to,xa)|<ﬁ(a) for all tzto, ’i,e. the
solutions are U:B. S . S .

s.
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For a given 7,=0 choose T(to, oz) >0 such that o
ot Tltga)
/ As) ds > W(B (a))/k(ﬂ (a))
- Y : ‘o l'=~.‘, L ;o
It is easy to prove that Ix(t to, xo)|<ﬂ(B) for all t>t0+ T(to, a)
The second conclusion can be proved similarly. - w

The following theorem is a generahzatlon of V. M MATROSOV s stablhty theorem
5] to the boundedness of solutlons

‘Theorem: 3.3. Suppose that there ‘exist-a-constant B>O and nonnegatwe lo-
cally Lipschitz functions V (t, x), W (t, x), P(t, x), a contmuous functzon F(t, u) defined
for t=0, |x|=B, u=0 and such that

(1) W (xD=V(t, x)=W,(Ix]), where W, and VI’2 are - unbounded pseudo wedges;

(i) for every M>B ‘there is a measurable functton Apes' RY R such that

4 V(zl)(t x) ——A.M(t)P(t x)+F(t V(t x)) for tZO and BS le =M,

where . ' : co _,;n;.;gz,
(a) Ap IS weakly mtegrally po.s'ztwe R
(b) the solutions of the equatton z= F (t z) are U. B and f [ sup F (t z)]dt<oo
L0sz=r
forevery r=0; _ S : DT :
~ (iid) for every M >B there exists' a continuousA function LM' R* —»R*‘

such that f Ly is uny'ormly contmuous on R+ and ezther [P(g 1)(t x)]+<LM(t)

or [Pm,(t x)]-= LM(t) for 1=0, lexlsM

(iv) for .every: M =B there exists a. constant A(M )>0 :such. that IW(t x)|=
=A(M) for t=0 and B=|x|=M; .

(v) there exists a constant D>B and for any.-M: >B there e.xzsts a. contmuous
functzon Ws R*—=R* with W,(#)=0. for +r=D such that o

' max {P(t X) [Waay(ts x)]} = I’Vs([xl) for =0 and D & Ix[ =M.

Then the solutions of (2.1).are ‘U.B. and E. U B. If 2 tn addztwn AM(t) is mtegrally
positive, then the solutions of (2:1)-are.U.B. and U.U:B.. «

Proof. First we show that under the assumptlons of the .theorem condltlon
(v) it Theofem 3.1'is satisfied. ) '

For any M=>D, choose H(M) 50" ‘such” thdt" ‘2H<a(M)'—bm12M %(r)
and define: T(M)=[24(M)+ 1)/e: Let () be'a solution of (2.1) with,-B=|x ()| =M
and P(t, x(t))=2H(M) for. t€[ty, 1o+ T(M)]. If |x()=D for-all t€[ty, 2+ T(M)]
then according to condition (v) we get [Way(t, x(1))|=a, hence. 24(M)=
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W (55+ T(M) X(ty+ T(M))) Witys x(to))|2ch(M) 24(M)+1, whichis a contra-

diction. Therefore, condition (v) of Theorem 3.1 holds. :
An application of Theorem 3 1, Remark 3.1 and Remark 3.3 completes the

proof. . . . , v v

Remark 3.5. Condition (v) of Theorem 3.3 can be weakened by asking there
is a constant D=B such that for every "M =>D. there are .B,(M)=0 and a con-
tinuous function u,: R*—R* with property (2. 3) and such that [t>0 D= |x| <M
P(f X)=B;) imply |We1y(2, x)| = up (2)-

An application of this theorem to a holonomlc scleronomlc mechamcal system
will be given in Section 4. L : : »

As we have seen so far, the key step in the appllcatlon of Theorem 3 1is- to
check condition (v). Now we establish a sufficient condition for this property by

Lyapunov’s direct method

Lemma 3.1. Suppose that there exist HO>0 D=>B and a IocaIIy Ltpschttz
function Q(t, x) defined on the set {(t,x): t=0, |x|=D, P(t, x)=2H,} such that
(i) for each M >D there are continuous functzons y,g: R* >R and a number

He(0, Hy) such that y has property 2.3), the functmn f [g()),ds is bounded on R+

and [t=0, D=|x|=M, P(t, x)=2H) imply Q(zl)(t x)<—y(t)+g(t),

(ii) for each M=D. there exists L(M)=0 with |Q(t,x)|=L(M). for t=0
and D=|x|=M.

Then condmon (v) of Theorem 3.1 holds wzth these numbers H and D.

Proof. Let M D be glven and let a solution x(¥) of (2. 1) satisfy B< |x(t)| <M
and P(t, x(t))<2H(M) for tE[to, o+ T(M)], where T(M)>0 is a constant such

that
fo+ T(M)

[ y@ds=>2L(M)+ f [g(s)]+ ds for all £,=0.
1 0

If [x(t)|=D for [ty to+T(M)], then'we get _

A ' ‘ t;+T(M) e o
—L(M) = Q4+ T(M), x(t,+ T(M)) = L(M)— [ y()di+ [ [g(s)], ds

1 » )
which yields a contradiction to the choice of T(M). Consequently, there is -s¢
€lto, 1o+ T(M)). -with |x(s)|<D, and the proof is complete .

"Exam ple 3.2, Consider the equatxon

(3.6) SRR x+a(r)x+f(x)—e(t)
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and suppose that the continuous functions a, e: R*—+R, f: R—~R satisfy the
following conditions: _
@) a(t)=0 for tcR*, ais weakly integrally positive, and there exist constant
to+¢
a=0, T>0 such that [5,=0, r=T] imply (1/¢) [ a(s)ds=a;
L £
(i) e€IM, o); '
(iii) there is an r,>0 such that xf(x)>0, |f(x)|>0 provided |x|>r,, and

F@= [ f(s)ds~es, a5 [xl+on

Then the solutions of equation (3.6) and their derivatives are U.B. and E.U.B.
If, in addition, the function a(f) is integrally positive, then the solutions and their
derivatives are U.B. and U.U.B.

Equation (3.6) is equivalent to the system

(EN)) =y, y=—f(x)—a(@y+e).

Define V' (4, x, ) =[y*+2F()]'*+ [ |e(s)|ds. Then
t

7 Von(t x, y) = —a()y* y* +2F(x)] 1.
Choose K(t, x, y)=y*[y*+2F(x)]~'"%, P(t, x,y)=y%. Then

[Pan( x Ve = [=fXx)y—a@y*+e(®yl, = IFNIYI+le@) Iy

Let B>0 be fixed arbitrarily. For M>B let Ky =max {| f(x)|: 0=|x|=M}
and suppose B=|x|+|y|=M. Then [Pgs(t, x, »)]S[Ky+le(®)]M and

f Kyt |e(s)|)M ds is uniformly continuous in R*. Consequently, condltlons (i)—(@iv)

of Theorem 3.1 (see also Remark 3.3) are met with arbitrary H=>0, and the solutions
are U.B. 4
Now define D=ry+1, Hy=1/2, and

) { y if x= To»s
Q(t’ X, y) - __y lf x§—ro,
whose denvatlve is S _— - fo

ot {‘f (—a@yte(® i x=ry
(3. 7)( X }’) f(x)+a(t)y e(t) if x= - —ro.

For a given M >D mtroduce the notation m(M)=min’ {| Sl ro=|x|=M}. By
the conditions, m(M)>0, and [t=0, D=|x|+|y|=M, y*SZH] imply the me-
quality

Q(B.?)(t’ x,y) = —m(M)+4(t)[2H]1/2+e(t)-
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. f1 ) -1 T - L.
Let H=min{ m@DI@+DP, 5}, 1O)=mOD-@HY a) and g()=le(r)
Then Q.4 (2 x, y)=—7(t)+g(t) and for sufficiently large T>0,

to+T 1)+ T '

[ v(@dt =m(T—QHY? [ a(t)dt = m(M)a/(G+1)T~e

t t, . . ’
as T—oo uniformly with respect to #,=0, and so all the conditions of Lemma 3.1
are satisfied.

This completes the proof.

Consider now the system

(3.8) x =X x,»), y Y(t, x,)

where x€R™, yeR¥; X: R* XR™ .R™ and Y: R+><R"'+" RF are continuous,
The following theorem shows that the function Q in Lemma 3.1 can be constructed
from the reduced subsystem

(39) y= Y(t’ 0, y)'

Theorem 3.4. Suppose that

(i) There exist constants B, H=0 and a locally Lipschitz functzon v, x, )
defined for t=0 and |x{+|y|=B such that :

@) WxI+IyD=V({t, x, y)=W(Ix| +|y]), where W, and W, are unbounded
pseudo wedges;

) V(3 ot x, Y)=—A()K(x,y) for t=0 and |x|+|y|=B, where AQ) is
weakly integrally positive, K(x,y)=0 for |x|+|y|=B, and for any M“>B there
exists k(M)=0 such that K(x,y)=k(M) for H=|x|, B=|x|+|y|=M;

(ii) there exist a constant B,>0, a continuous N: R*—+R* with N(s)>0 for
s=B, anda IocaIIy Lipschitz function Q(t, y) defined for t=0 and |y|=B, such that

(©) 0=0(t, Y)=W,(ly|), where W, is a pseudo wedge;

()] Q(s.,,)(t »=—-w(y) for |y|=B,, where W, is a pseudo wedge,

(e) 12@t, »)— (¢, PI=N(max {|y|, |71Ply—7;

(iii) for any M=0 there exists L(M)>0 such that 1X(t, x, y)ISL(M) if
x|+ yl=M;

(iv) there exist continuous Pl, B R‘*—»R+ with Pl(s)>0 for szB1 such that
7@, x, )~ Y (¢, 0, »)| =R (Iy)) B(Ix]);

@) lim ) (BEN())==.

Then the squtzons of (3.8) are U.B. and E.U.B. If, in addmon A is integrally positive,
then the solutions of (3.8) are U.B. and U.UB.

Proof. Obviously, (i)—(iv) of Theorem 3.1 hold with P(t, x, y)=|x|.
Choose D=0 such that D—2H =B,, W(r)/N (r) B(r)=max {B(s): |s|=2H}+1
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for s=D—-2H. Thenlf D<|x|+|y|<M |x]§2H, then lyl;;D}-}HéBl, and
thus ' )

Oea(ty) = .Q(s.e)(’a »+ N(I}’I)IY(I, %, ¥)—¥(1,0, p)| = —Wi(li’l)}' :

+NADBDGDAED =~ NIDROD |- ebr~ A (] -

—N(yDR(Iy)) = ~inf {N() B (r): B, = r = M}.

Therefore, condition (v) of Theorem 3.1 holds by Lemma 3.1, and so the proof is
complete.

Example 3.3. Consider now the system
(3.10) X = A, x)+by, ¥ = falt, x)+dy+e(1),

where Ji> LECRYXR,R) with f£,(¢, 0)=0, f,(¢,0)=0, e(?) is a bounded con-
tinuous function on R* with e€ L1[0, =), b, d are constants with db=0. BeSIdes,

we assume
@) sup {| L(t, )+ £ (2, X)|: t>0 lx[ M}<o for any M=0;
(ii) [dfl(t x)—bfo(t, x))/x=a(x)>0 for r=0 and x>0, where « is continuous

and 11m fa(r)rdr—

(111) LA, x)+dx][bf (8, )~ dfl(t x)]- j[(dafl(t r)[00)— (b3f(t, r)[01)] dr=

2A(t)ﬁ x), _where l(t) is mtegrally positive, ﬂ is continuous with f(x)=0 if x;éO
Under these conditions the solutions of (3.10) are U.B. and U.U.B.
Indeed, let

V(t,x, y)= [(dx—b_y)2+2 /x [dj}(t, N —bfy(t, N dr]"+ b fm le(s)| ds.

Then
V. 10)(t X, y) =

—[bfs(t o dﬁ(t UAtt, x)+dx] + j[d A.n=by; O hte r)]dr B

1

=

[ax—byp+2 [ 1t D=bst, ) ]
0 ’ ’

=-A(OK(x, y),
where

. K(x,y) = B(x) [(dJF% bj:).2.+ Z_éug f [dfi(t, - bfu(t, 'r)] d,] -
L . : 120 o . . h A .
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It is easy to prove that for any M=0 there exists k= k(M)>0 such that
[Ix|+|y|=M, |x|=H] imply - K(x, y)>k(M). Therefore, (1) of Theorem 3.4 holds.
On the other hand, for the subSystem

3.11) : y=dyte(t)
and for Q(t,y)=y%2, N(r)=r, we have _
O (t, ¥) = dlyl[1y] +.(1/d),s,‘2‘§ le(9)I] = (1/2)dy* for |yl =—(2/d) sup le(I.

Therefore, after making the choice B(r)=1, B()=sup {| fo(t, x)|: 1=0, [x|=r}
all the conditions of Theorem 3.4 are met, and our assertlon is true.

Theorem 3.5. For system (3.8), suppose that

(i) there exist continuous functions B, F,: RY—~R* with Pl(s)>0 Jor s=0
such that Y (1, x, y)—Y (¢, 0, =Ry FB(Ix]);

(i) there-exist a constant 'B;>0 and a locally Lipschitz function V,(t, x, y)
deﬁned for t=0, |x|=B, and yeR* such that

WxD =W, x, p) = W(IXI),
' V1(3 0 (t, x, y) =—=W,(Ix]) fo" t=0, [x] ZB1 and ycRY,
where W, and W, are unbounded pseudo wedges and W;: Rt =R+ is continuous wzth
W,(r)=0 for r=8B;;
(iii) there exist a constant Bz>0 a Iocally Lipschitz function I/2(t y) defined

for t=0 and |y|=B,, and a positive continuous functtonN R*‘-»R'* with N(r)=0
for r=B, and such that

Wa(ly)) = Va1, ) = Wa(lyD),
Vz(a.o)(t, »»==Wlyh for |yl =B,
Va(t, )=Vt | = N(max {1y, 15}y 7,
where W, W; are unbounded pseudo wedges, W is nonnegative and continuous with
hm We(r)[(N (r)Pl(r))— oo,

Then the solutions of (3. 8) are U.B. and U U.B.

Proof. First, we shall prove the uniform boundedness. For any a>max {B,, B,},
there exist B(a), By(x) and B,(x)=0 such that W(B(e))=Wi(e), Ba(0)>p1(0)>a,
W, (s)/N(s) B (s)— ,max By(r)=1 for s=p,(a), and W(ﬂz(a))>W(ﬂ1(a)) Then for
any solution (x(t), (t)) with lx(to)|<ac, and | y(to)[<oc, we have x(¢)<p(x). and

|y ()] <B.(a) for 1=t,. _ .
If this is not true, then only two cases may occur:
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Case 1. There exist t>#>f with [p(t)|=p1(®), [y(t)]|=Pps(x), Bl(a)<
<Ip(0)l<Be(@) for t(t, ) and |x(D|<B(x) for t€[ty, 1,).

Case 2. There exist f,>1,>1, such that [x(#)|=a, |[x(t)I=p(@), a<|x()|<
<pB(a) for te(ty, t,) and |y(DI=P:(x) for t€[ts, 1)

In Case 1, for €[, t,], we have
Vs (1, y(0) = =W (Iy )+ N(yOD R(y DN B(x(0I) =
== N(yONB(yON [y OD/(N(yOD)A(y®) - R(Ix@))] =
=-N(y@)B(y@)) = 0.
Therefore, W;(B(0))=V,(ts, y(t))=V;(t,, y(t))=W,(B,()). This contradicts
Wi(B2(e))>W(B1(2))-
In Case 2, for t€[t5, t,], we have V;(t, x(¢), y(¢))=0, thus
W(ﬁ(a)) = I,l(tés x(td)s y(té)) = Ifl(t:i, x(ta), .V(ts)) = VVZ((!)’

whlch contradicts W(B(x))=W,(«).

Therefore, |x(t; to, X0, yo)l<B(®) and [y(t; to, xo, Yo)l<Pal@) for t=1, 1f
{xol<a and |yol<a. This completes the proof of uniform boundedness.

Let v;()=min {¥;(r): B,+1=r=4(2)} and Tj()=W(a)/v,(e). If |x(O)|=
=B, +1 holds for t€]ty, 7] (I>1,+T1(2)) then

W (B, +1) = V(% x(®), y(D) = Vi(t, x(t), y(to))—vl @E—1) <
, < W) —vi(@) Wi(e)/v: (o) =
whlch y1e1ds a contradlctlon Therefore, there exists t;€[t,, t,+ T (x)] with |x(t)l=
=B,+1. Following the same argument as in the proof of uniform boundedness,
we get |x(8)|<B(B,+1) for t=t5, especially for 1=t,4+T; ().

Choose B;>B, with Wy(s)/N(s)B(s)—max {F(r): |rl<p(By+1)}=1 for
s=Bs. If |y()=B,; for t>t°+T1(oz), then there exists v;(0)>0 such that
B(y®O)N(y@®)=vs(®), andso
" Vaas(t y@) ==B(IyODN(y OD Wy @D/ N(yO) B 1y (1)) — B(Ix(DI)] é '

=- N(Iy(t)l)ﬂ(l}’(l)l) = —v(®). ) o
Therefore, if | y(t)|283 for t¢ [t0+T;(a) t0+2';(a)+i], then _
Bl FR@+, y(b+B@+)) =
SH(t+Ti(@, y(to+ H@))—va(@)i = Ho(B(@)~ve(@)t. -
If #=T,(s), where T,(a)= (W (B2(6)) — W;(By))/va(a), then

Wi(By) = Vy(to+Ti(@)+1 y(te + i@ + 1)) < Wé(ﬂz(a))—Va(a)Té(a) = W(By), |
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which yields a contradiction. Therefore, there exists €[ty + T3 (@), 7o+ T3 (@) + Ta(a)]
with |y(te)|<Bs, and thus [x(f)|<B, and |y(ts)|<B,, where B,=max {B;,
B(By+1)}. This implies |x(t)|<B(By and |y(t)l<pBa(B,) for t=t,+T,(x)+T3(®).
This completes the proof.

Sometimes in practice it is very difficult to find a Lyapunov function satisfying
the condition ¥ (¢, x, y)=W,(|x]) (see Example 3.4). Now we give a modification
of Theorem 3.5 asking the much milder property ¥ (¢, x, ) =W,(Ix}+{yl).

Theorem 3.6. Suppose that
(i) conditions (i), (iii) of Theorem 3.5 hold;
(ii) there exist a constant B,>0 and a continuous function Vi(t, x, y) defined
for 1=0, (x, Y)ER™* and such that

W (Ix1) = V(s %, ¥) = (x| +1p),

I./l(a.s)(t’ X, y) = “‘VVa(x, y)9
where W, and W, are unbounded pseudo wedges, and Wy: R™t* . R* is continuous
and |x| >B1 implies Wy(x, y)=0;

(m) Jor any M =0 there exists L(M )=0 such that [t=0, |x|+|y|=M) imply
X (2, x, p)|=L(M);
Then the solutions of (3.8) are U.B. and U.U.B.

Proof. Obviously, by (ii) for any a=>0, if |xo|+ |yl <o, then |x(¢; #, Xo, Yo)<
<W, Y (W;(2))=B(x) provided that (x(¢; ty, Xo, Yo)» ¥(1; £y, Xo, Vo)) exists. Following
the same argument as in the proof of Theorem 3.5, there exists f,(c)>0 such that

[p(t; t, %o, yo)l < Ba(e) provided that [xo| + | yol <aand (x(#; t4, Xo, yo) ¥ (1 to, %o, ¥0))
exists. Then the solutions of (3.8) are U.B. Throughout the remainder of the proof

denote x(1)=x(t; £y, X9, ¥o)» Y ()=y(t; o, Xy, ¥o)-
Let T; () =Wq(B (@) + Ba(e))/min {W;(x, y): By +1=|x|=p(w), Iylsﬁz(a)} Then
by (i), for any ¥=t, thereis a #€[f, i+Ty(a)] with |x(t)]<By+1.
Suppose that for all t€[s,, I+T;(x)+¢*] we have |x(t)|<Bl+2 and |y(¢)|=B,,
where B,=B, is a fixed constant such that
W,(r))N(B(r)—max {B(s): 0=s=B,+2} =1 for r=B;:
Then from \ _ :
, ’ ' W(ly(9)))
Vaaan(b @) =~ N(rO) B (o) |
o0t 20) = =Ny O A1y O N(|y(t)|)P1(|y(r)|)

= —min {N(DB(r): By = r = fy(@)} =—

NICOER

we get S g
0sK(I+L@+1 yI+h@+M) ="

= Vi(t, y(8) — mlt* + Ti(@)+1— 1] = W(B(2) — mir* + Ty (@) +E—1,).
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Thi{refore, t*'<7"2(a)=[W§(ﬂ2(a))+l]/m. This shows only two cases may occur:
' :Case’l. |x(t)|<By+2 for all t€[t,,i+T(a)+T(«)] and there exists £,€
€lty, I+ T () +T,(a)) with |y(2)|<Bs. In this case, |x(f)|<p(B,+Bs;+2). and
Iy(t)|<ﬂ2(Bl+Ba+2) for 1=i+T,(0) +T,(%)-
CaseZ There exists €[4, 1+ (2) +T,(a)] such that Ix(t3)|231+2 In. this

case, there exist 1, t;€[1, t;] with |x(¢)|=B;+1 and [x(s)|=B,+2 and B,+1<

<|x(#)|<B,+2 for t€(t,,t). By condition (iii) f;—1,= 1/L(,B(a)+ﬁ2(a)) and
(i) implies V(F+T(0)+T(@) =W () =V (t)—(t;— t)m() =V, (H—v(x), - where
RO =W(t x(t), y(@)), v@=[L(B@+B:(x))]*m(2), and m(x)=min{#(x, y):
Br¥1=ix{=8(a), |y|=B.(¢)}. Making the choice I=t,=t+mTj(0)+T,()]
(m=0, 1,2, ...) we get that either lx(t)|<ﬂ(B1+Ba+2) and |y(1)l<B(Bi+B;+2)
for t=t,,,, or
(3.12) Viltns1) = I/](tm)_—v(a)'

On the other hand, 0=V (t)=W;(B()+ B.(«)) for r=1,, and so (3.12) can not be
true for m=0, 1, ..., N, where N=N(«) is a positive integer such that N(o)v(a)=>
>W,(B(@)+Bo(a)). Therefore, [x(¢)|<B(B,+Bs+2) and |y(t)|<B2(Bi+By+2)
for t=t,+[N(a)+11[T1(«)+T;(2)]. This completes the proof. -

Example 3.4. Consider the Liénard equation with forcing term
(3-13)‘ N X+f(x)x+g(x) =p(),

where f(x) and g(x) are continuous for x€Rand p(t) is continuous for ¢=0. Besides,
we assume that

O f@=1;
i) x{g()—xLf (- 1)=0;

i) [ ip(s)ds<eo. -
. CL0 ] . . .
Then the solutions of (3.13) are U.B. and U.U.B.

Proof. System (3.13) is equivalent to
(B314)  x=-x+y, y=—{g@)—x[f(x)—1]}~[f)-1y+p(s).

Let V(t, %, )= [y2+2 f {g(r) r[f(r)—ll}dr]”2+ f 1p(s)l ds.

Then
[f(x)—lly2 x{g(x) x[f(X) ]}

[re+2 f {e—rlf -1 dr]”

V(a.u)(f, X, y) = W( y)-
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Then |y|=>0 implies W(x, y)>0. On the other hand, for the subsystem %=—x
the auxiliary function V(f, x)=x%, N(r)=2r and W;(r)=2r? satisfy condition
(iii) of Theorem 3.5 and so the solutions of (3.13) are U. B. and U.U.B. by Theorem
3.6.

4. An application to a holonomic scleronomic mechanical system

Consider a holonomic scleronomic mechanical system of n degrees of freedom
being under the action of potential, disspative and gyroscopic forces. The motions
such a system can be described by the Langrangian equation

@1 i—@l-% = gg ~Bj+Gi,
where g, geR" are the vectors of the generalized coordinates and velocities, respec-
tively, m==(t, g) is the potential energy, T=T(q, §)=(1/2)47A(q)q is the kinetic
energy where A(q) is a symmetric n)Xn matrix function (v denotes the transposed

of v€R™); B=B(t, q) is the symmetric positive semi-definite nX» matrix function
 of dissipation; and - G=G(¢, q) is the antisymmetric nXn matrix of the gyroscopic
coefficients.

By the Hamiltonian variables ¢, p=A(g)d system (4.1) can be rewritten into

the form

: ._OH . - O0H o0H
4.2) | q—-W, p=- 27 —+(G~ B)’——

where H=H (t D, q) is the total mechanical energy:
H=H(t, q, p) =T+r =(1/2)p"47 (Qp+=(t, 9).

Choose the auxiliary functions V=H(t,p,q), W=pTq. Their derivatives with
respect to (4.2) read as follows: : ’

H_(gﬂ) G-B) gf gf — A B DA qngt,q) _

on(t,
S0 94" 1<q)pTA-1(q)p+[ G.9]
where B(t, g) denotes the ‘smallest eigenvalue of the matrix B(t, g); A(q) denotes
the largest eigenvalue of A(g). It is known from the mechanics that the kinetic energy
is.a.positive definite quadratic form of the velocities, consequently A4(g)=>0 for all
3:
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© Let R
e A7 = (357" (@D)nsn>

S 1y, -1 - ) '
dyy = ( dai"(9) Y aers aagq:q)]A'l(q)Pa D = (d;j)nxn>

oq:
3 dag) o
ek.—‘ i jZ'l aq 'pzpp e = (el’ n)

Then for P = pTA 1(q) p, its derivative with respect to (4 2) is

p= _a__'? 577 TA 1(q)p+(G B)A 1(q)p] A~ 1(q)p+

1
+pTA~Y( )[———7 aaq pTA- 1(q)17+(G —B)A~ 1(q)p]+pTDp =

=2 [""’},‘—;’q’]TA-l(q)p'+pTA-*(q)[<G'—E)T+(G—B)1A-1<q)p—
=P @) 4 A @p+p7Dp =2 P 4 -
—2pTA~1(q9)BA~Y(q)p—pTA~ (q)e+p"Dp;
(7L, = |70t 9| B(a: D+Fa. )
where
F(q p) = 21472l (g, p) = IpIlA7 (9l lel +1D] p"

Similarly,

W=p q+p g=-— [‘%0 q)] q+ e q+pTA‘1(q)(G B)’q+pTA (@)p,

W)= _1G(t, 9)—B(t, I E:(a. P)— Fa, p),

on(t, q) I
T

"
where

F(0,8) = 5 lellad+ 4 @IF Fulg. p) = 14~ al ol

It is easy to prove that F(g, p) are continuous for .p, g€R", and for every M=0,
hm sup F(g,p)=0 for i=2,..,5. Therefore, from Theorem 3.3 and Remark
3 5 we get the following . 4 - ‘

Corollary 4.1. Suppose that there are- B=0 and unbounded pseudo wedges
W,, W, such that
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® W gl)==n(t, 9=W,(ql) for t>0 and gcR";
(i) for every M =0 the function B\ (t)=min {B(¢, q): 0=|q|=M} is weakly
integrally positive;
(iii) there is a continuous function r: R¥ XR* +~R* such that r(t, u) is increasing
with respect to u for every t€R* and [9n(t, q)/01).=r(t, n(t, q)) for t€R* and
geR";

(iv) for every uy=0 there is a u,>u, with f “r(s, u) ds<u,—u,;

0
(V) for every M =0 the function |0n(t, q)/0q| is bounded for t=0 and |q|=M;
(vi) for every M>B thereare py=>0 and Ky>0 such that |q"on(t, q)/aqlz,uM
IG(t, 9)—B(t, 9)|=K,, for t=0 and B=|q|=M.
Then the motions are U.B. and E.U.B.
If, in addition, B\ (t) is integrally positive, then the motions are U.B. and U.U.B.
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On the convergence of the differentiated
trigonometric projection operators

P. O. RUNCK, J. SZABADOS and P. VERTESI¥

Let Cy, be the set of 2zn-periodic continuous functions and J, the set of trigono-
metric polynomials of order at most n. We will consider projection operators Pec
€Cs—~T,, 1.€. linear operators P,(f, t) with the properties

() E(f,9€T, if feCo
@) B(fi)=f(1) if fed,.

Let r be a nonnegative intéger, and consider the 7 times differentiated operator
PO)(f, 1). One may ask: under what conditions will this operator uniformly converge
to f®(t)? To state a result in the positive direction, we need some definitions. Let

A 1P®
Y B9 := - 1B Dl

sup
Coxrec,, IS

be the norm of the r times differentiated operator (] -| denotes supremum norm
over the real line), and let E,(g) be the best (umform) tngonometnc approximation
of order n of g€C,,. i _

Theorem 1. If f®(¢) is continuous and BECyy— T,
then

I/ ()~ P")(f )l = O(E (f"’)+E AOIEDL).

Here the O-sign refers to n—e, wh11e r is fixed. Hence a sufficient condltlon of
" the uniform conv~rgence is

Lo

lim E, ({)IIR,"’II =o.

*) The second and third authors were partially supported by The Hungarian Research Fund;
Grant No. 1801. y .
Received April 9, 1986° = - . - S :



288 P. O. Runck, J. Szabados, P..Vértesi .

Proof of Theorem 1. Let T,(¢) be the best approximating polynomial of
S(t). Then according to a result of Czipszer and FREUD [2] on simultaneous appro-
ximation

IfPO-THO| = 6E,(f®) (k=0,1,....,r).
Using this result, as well as property (ii) of the projection operator P, we get
1fOO=-EOF DI = 1 OO-TOOI+ IO~ BT, O]+
+HIEOT £, )l = G EL(f)+ 6 Ey(N)IPD.

Now we turn to the divergence phenomena of the operator P®(f, f). Let
() be an arbitrary modulus of continuity, and define

(r) (.f " t)
@ Cr(@) = f DS WECs., SUP— .
- Theorem 2. Given r=0 and a modulus of continuity w(t) such that
. t
@ 2hem =%

Sfurther a sequence of projection operators BcCyr—~T,, there exists an f,()€C,(w)
such that

() — P®
@ - tmsup VPO=EOG O
? w[—;}logn

For the proof of Theorem 2 we need the following

- Lemma. Given r and n, there exists a function g, (1)€Cy, such that

(5) ug(j)(t)" = cln" (j: 0, 1’ cees ’.+1)
and
@ ,1, f g9(1) D, () dt = cyn” log n,
’where' o o
| C 241
s ) t
0] A D)) =—F—
' s 2sin-2—

is the Dirichlet kernel.

2 In what follows ¢,, €,, ... will denote constants depending on » but independent of .-
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Proof. We distinguish two cases."
Case 1. ris odd. Then let

X 2n+1 . 2n 2nxw
— (— 1) +1)2 : o
®) g = (-Dsgnheos——1 if S ==

To extend the definition of g (?) for [t|<2m/(2n+1), let h,(t) be that uniquely
determined algebraic polynomial of degree at most 2r+3 which satisfies the condi-
tions '

2z ) 2r ) ; ( 2 ) ( 2n )
L)} = o] () = o)
(9) hnr ( 2n+l gm‘ 2n+1 b hnr 2n+1 gnr 2n+1

(=0,1,...,r+1).

Then let
. 27
(10) () = hy() if 1 <5
Assume .
2r4-8 k
(11) hnr(t) = 2 akn(2?12+1 t] ,
k=0 T
then by (9) and (8) —~
2r . 2n+l)12r+s. .
)] _f{_#Antl _ _ L
2n
= g |- -
L 2n+l] o)

(j= 0, 1, ey I+ 1),
ie.
2r+8
(12) 2 D=1 ... (k—j+Da, =0(1) (j=0,1,..,r+1).
k=J _ '
Similarly, from the second group of conditions in (9),

13 2" k(k=1)...(k—j+1)ap =0(1) (j=0,1, ..., r+1).

(12) and (13) togethercan be considered as a system of linear- equations for the un-
knowns a,,. Since h,,(?) is uniquely determined, this system is uniquely solvable and

el = (k=0,1,..,2r+3).



B

290 -P. O. Runck, J. Szabados, P. Vértesi . -

Thus by (10) and (11) we get for j=0,1, ...,r+1
- gL = KD =

- l 2n+1 2n '

TN\ 2nm n+1
- Now g,,,(t) is defined. on [f|=2n/(2n+1), and extending the definition by
' 2nn 2(n+1)1r.

] (and

‘ 2n+1° 2n+1
its translates). In this interval the construction is similar: let H,(¢) be that
uniquely determined algebraic polynomial of degree at most 2r+3 for which

HU)( 2nn ) (J){ 2nn ), H,‘,{)(,2(n+l)ﬂ]=g§,{)(2(n+l)n]
2n4-1 2n+1 © 2n+1 2n+1

J 5 ke e Dl = e i 1=

ftanslat;qns of length 2z, the only missing mterval is. (

(G=0,1,..,r+1),
and let -

N .. 2nmm 2(n+1)=
&n() = H,. (1) lf n+1 <t<_5;1_-}T-'

Thus the definition of g, (f) is complete. Preperty (5) on the interval
2nn 2(n+D)= .
2n4+1" 2n+1
The only thing remamed to prove is (6). : Slnce by (7) IID (t)|| —n+1/2 we get
from (8) and (5)

] can be easily established.

2nn sin? 2n+l
2n+1
— f £9()D, (t)artz—(z";r ‘] T : L
2z 2sin ~
Lo 2n-{-1x 2
‘ (8k+3)n
r n—1 2(2n+1)
—rleponor=E £ (F5) 5 Fesar=
n+ T k=1 (4k+1)1r .
2(2n+1)

'~\,:"

3c1n' = can’log n.

_1 2n+1] 1
[ Z W+3 |
R w t' Pooovy

Case 2. ris even Now the deﬁmtlon of g,,,(t) starts w1th

2n+4t Qg n;"- D Dpgsin
= (— I2
gu,(t) ( )’ (sgnt)sm _2,.;t lf P el I ey W

instead of (8). The rest of the proof is very similar to Case, |, and we omit the details.
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Proof of Theorem:2. Since- B,(f, ) is a projection- operator accordmg to
the Berman—Faber—Marcinkiewicz relation we have

% f 2(f(- +1), x—u)du = S,(f, x)
where -

s0=2 [ reton,wa

is the n'® partial sum of the Fourier series of f(x) (see e.g. Lorentz [3], p. 97). Apply-
ing this for f(x)=g,(x), differentiating » times and setting x=0 we get

U o /- 1 F :
7 | Ben(+, —du=2 [ g2OD(D .

Let u, be a point whete |P"(g, (- +u), —u)| attains its maximum, then by (6) we
get

(14) (1B (gne (- +14,), |l = IP"’(g,.r( +u,), —uy)| = ¢y log n. _
Now define a sequence of integers n;<n,<... with the following propertles let
. ) ) i ‘ 1] - cz 8/c
(15) ()] [7]’ = 8_6‘1 Py nl > e/

and assume that ny, n, :.., n; j—1 -has been already defined. .
If there exists a k, 1=k=j—1, such that for infinitely many n’s we have

llesD)— BN g (- +ut), 1)]| = ere0(1/m)log m -
then this g, ,(7) will satisfy the requirements -of the theorem. If this is not the case,
then for suﬂiaently large n’s

(18428 — B g (- +210), ]| < y(1/n)log <k—1 L j=1).
Now choose n; in this case such that
a6  |le2m- m;’(gn,‘,( +u,k), | < ecxo(1/n;) log n; *=1,..751)
and : -

an

hold. (The left hand side mequahty is possible because of (3).)
We may assume that we can construct an infinite' sequence of mdlces this way.
Define . :

2"} -1

(0(1/"1 1) = a)(l/nj) = mm( w(l/nj 1)9 &lllP(r) "

n,,

gllk'(t + unk)
n;

f.(t) =. Z’ o(Un): |
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Here the right hand side series, even after differentiating r times, uniformly converges
by (5) and (17). Moreover, if 0<d=h then

If+8)—fO()) = Z

nr t+ 5 + u’lg '(l:)r t+ unk)
LGRS CGTN I

Let O<h<1/n, and j be that index for which
l/nj+1 = h< l/nj
Then by (5) and (17)

518 5 20g2)
s = 52O oy, 5 HOL oy,

=60 2 "kw(l/"k)'*‘zclk:%_l o(1/n41) = 2c.hnyo(1/n)) +4c,0(1n; ) = 8c,0(h),
ie. f,gt)EC,(w) (cf. (2)).

Finally, to show (4) we obtain by (14), (16), (5), (17) and (15)

(r) . Pn(’) e »Y
"f'(")(t)—P(r)(/” Ol = ”2 gnk,(t+uk) !(g (- +u,), )

L w(1/n)| =
A +un,) Wty 2 ! et tn) = B e O
nj. s n
o g . dq
_ 5t Ilg,k,ll o(ln) .. , 3 || (8 (- + 12, )|

- o(l/n) =

= cu(1/ny)log n,—clw(l/n,) log n; kg o(l/n) 5‘ o(l/n)—
—elBI

2;1 o(l/n) = c;0(l/ny)log ny—2c, w(1/n)w(1/n)) log n,

—zw(l("j) 2, IlP‘A,"lI'w(.l_'/.nm) = cy(1/n;) log ny—— w(1/n;) log n;

—Fa(n) logn,—Z o(l/n)log n, = (i) logn; (=1,2,...)

o(t)=o(t) is excluded in Theorem 2, by condition (3). With a slight modifica-
tion of the proof we can easily get the following statement in this case
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Theorem 3. Given r=0, a sequence of projection operators PECs—~T,,
and a sequence & =¢g,=...; ,HE_}, e,=0, there exists an f,(t)€Cs, such that ()¢
€Lip 1 and

(r) (r)
a8 fim sup Q=BG 0L

s &, log n/n

We do not give the details of the proof of this theorem. We only mention that
now
Eny
f;(t) - Z n,"‘"l gnkr(t+unk)
will be the function satisfying (18), where m<mn,<... is a properly chosen sequence
of indices.
An obvious consequence of Theorem 1 is that if f(#)€C,(w) then

(19) : 1fOO—BI(f, Ol = 0(n=" e (1/m)| EX).

Since here ||P?|=c,n" logn for any projection operator P, (cf. BERMAN [1]), the
best estimate one can obtain from (19) is

1fOO— B, Ol = O(w(l/n)log n) (f(DEC, (w)).

This shows that the results of Theorems 2 and 3 are sharp.

In particular, our theorems can be applied to the differentiated partial sums of
the Fourier series and to the differentiated interpolating polynomials based on arbit-
rary systems of nodes.
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_ Notes on approximation by Riesz-means

L. LEINDLER
To my dear colleague L. Pintér on his 60th birthday

1. Let f=f(x) be a continuous 2z-periodic function i.e. f€C,,, and let
1) f(x)~—‘;1+ S’(a,, cos nx+ b, sin nx)
* n=1 N

be its Fourier series. Denote s,=s,(x)=s,(f;x) and o;=05(x)=0;(f;x) the
n-th partial sum and the n-th (C, «)-mean of (1), respectively, i.c.

a0 = 3 aln . 4=

’

n+a]
n

furthermore f denotes the conjugate function of f, and f®'is the r-th derivative of f.
Let E,(f) denote the best approximation of f by trigonometric polynomials

of order at most n in the space C,,, and let || - | denote the usual supremum norm.
We define two important strong means:

1 ‘ v
Wh B D)=y 3 0 1Pl P) T 8.9 =0)

1 o 1p .
alfhn sty S atise—s@r) T op=o.

The first result on strong approximation by Fourier series has been éonnected
with the following classical theorem of S. N. BERNSTEIN [3]:
If feLip a then

@ AA—fl=0() for O<a=<1
and ST o

6) loa—fll =O(n~logn) for a=1.

Received April 25, 1986.
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Namely G. Arexirs and D.. KRALIK [2] sharpened this theorem by proving
that the order of approximation given in estimates (2) and (3) can be achieved for
the strong means h,(f, 1, 1; x), too; i.e.

JeLip a implies that

0O(n~% if 0<a<l,

115 91 = {0 srog A

Improving further the result of Alexits and Kralik we ([4], [5]) proved, among
others, the following theorems:

Theorem A. If f®¢Lipa, O<a=1, p>0 and B>(r+a)p
then
(£, B, ) :=1ho(f, B, b3 2] = O(n~").

Theorem B. If f¥¢Lipa, 0<a=1, p=>0 and (r+a)p<1 then for arbitrary
y=0 :
ol fs pl:=lio}|fs p; xl|l = O(n="~%.

It is clear that these estimations are best possible, namely, by the well-known
result of Jackson f®¢Lip a implies that E,(f)=0@n""9%.

The following theorems show that the conditions f>(r+a)p and (r+a)p<l1
are very essential with respect to the order of approximation. If they are not fulfilled
then the strong means do not approximate in the order of best approximation.

Theorem C. If f@¢Lipa, O<a=1, p>0 and f= (r+a)p then we have onIy
h(f, B, p) = O(n~"~*(log n)"”)

Furthermore there exists a function f; such that. fPcLlipa, 0<a=1, but
h,(f1, B, p; 0) = cn="~*(log n)/? (c >0),
holds if n is large enough.

Theorem D. Iff(’)ELlpa, 0<a$1 p>0 y>0 and (r+oz)p 1 then we
have only
621f, pl = O(n~"~*(log n}"")

Moreover, there éxists a functzon fo such that fP¢lipa, 0<a<1 and
ol fzs D 0| = dn""‘(log n'? (d > 0)
holds for sufficiently large n.

Analogous estimations for the conjugate functlons have been proved but now
we do not treat them.
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Analysing these results we can see that the strong means o]| £, p; x| behave like
ail f,p; X|=h,(f, 1, p; x), ie. the strong means h,(f, B, p; x) are more sensible of
parameter f regarding the order of approximation.

This phenomenon raises the following problems: If we consider the followmg
regular ordinary Riesz-means

Rih B.3) =

TR IP 2 Z(k+1)" 1sk(X) Brt=(n+1)"* 2(k+1)" 1)
and take the difference '

IR.(f; B5 x)—f (%)

i.e. if we consider the ordinary approximation instead of strong one for the Riesz-
means, then at which value of the parameter # will a jump in the order of approxi-
mation appear, also at the parameter f=r+a (p=1) as in the strong case? If
r=0, then will the jump be at f=a independently of the value of «, regardless
whether a<1 or a=1? The answer is affermative if r=0, and this shows that the
analogue of Bernstein’s theorem holds for the Riesz-means, but the jump of the
order of approximation can appear at any value f=1 if the Lipschitz class has the
same parameter. But if 7340 then a curious phenomenon appears, namely if r is
odd then the case a=1 will be exceptional. The reason of this exception has its
roots in the following classical result of M. ZAMANSKY [10]: f®¢Lip 1 if and only if

I f=R,(f,r+D)| =0(n~""") for an odd r, and
I/ =R, (f, r+ D =0(n~""Y) for an even r.
We mention that the case r=0 of this theorem was proved by G. ALEXITS [1]'

Now we formulate the statements mentioned above precisely, and rcfer to our
paper [6] where the statements of Theorem E appear implicitly. 4

Theorem E. Let f®¢Lipa, O<a=1. Then
@) zfr is even _ _
o(n—r"%, if r+a<§g,

(R.(f, B5 x) f(x)" {O(n—r—a logn), if r+a=4;

(ii) if ris odd , :
on—% if. r+ta<p

IR, (/> B; X)=f) =10  if r+l= (@=1)
O(n"'“‘log n) if r+a=8 and a<l1, -

Furthermore, if whether r is even or a<1, then there exists a function f, such
that f{"cLipa, 0<a=1 and

@ |R,(for 7+ O)—£o(O)] = cn~"~*log
holds with a positive c=c(r, «) if n is large enough.
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" We mention that analogous results for the conjugate functions also hold, and
that the special case a=1 of (4) is not proved in [6], but it is true, and our theorem
to be proved includes this special ¢ase, too.

" The results of Theorem A and C (B and D also) were generahzed by V. Torx
[9] as follows:

Theorem F. If fcW"H® then for any p=0 and p=0
®) h,(f, B, p) = O(H!:5 )

holds, where
5 1 p)1/p
HEP = .
tt= (i S (o 1))

‘ Furthermore there exists a function f, such that f,¢ W"H®, but
' ho(f:, B, p; O) = cHEE, (c > 0).

The aim of our note is to show that Theorem E can be generalized for the class
W™ H®, i.e. to prove that the ordinary Riesz-means do not approximate better than
the strong Riesz-means on the whole class W"H® if r is even or if r is odd but

g"; w(llk)=0(nw(1 /n)).

" Our theorém reads:
Theorem. If feW"H® then for any =0’

(). . IR.(f, B; X)—f(X)| = O(HES,,
holds.

furthermore, zf whether r is even or r is odd but Z"' w(1/k)y=0(nw(1/n)) is ful-
k=1 ’

filled, then there exists a function fy such that f,c WTH® and
(D  |Ry(fos B 0)—=£o(O)| = cHE:3, s
hold with a positive c=c(B, r). ‘ ’

It is easy to verify that if r is even, B r+1 and w(d)=4 (x=1) then (7)
reduces to (4) as we stated above.

2. To prove our theorem we require the following lemmas.

We may assume, without restriction of generality, that the modulus of conti-
nuity w is always concave. (See [8, p. 45].)

~~Lemma 1. If @ is a modulus of continuity, then the fuhction S

@)= 3 (@(1/m)—o(1/n+1)) cos nx
belongs to H®. S _
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See Lemma 2.18 of [7] or V. ToTIK [9]. .

Lemma 2. If the modulus of continuity w satisfies the condition

®) 3 00k = 0(mo(i/m),
then _ _

| g*(x) = kg (@(1/k)—o(1/(k+ 1)) sin kx
belongs to H®.

Proof. Since

E,(g%) = lg*—s:,(g" = o(1/(n+1))
and

( IJ « 1 n+1

so, by (8), g*¢H®.
Now we can start the proof of Theorem.

3. Proof of Theorem. The estimation (6) follows from (5) obviously.
To prove the lower estimation (7) we define £, as follows:

fo() = Z’ n~"(w(1/n)—w(1/(n+1))) cos nx.

Since, by Lemmas 1 and 2, the functions f* and g* belong to H® and

t+f*(x) if r is even,

Jx) = - . .
. oo tg*(x) if .r is odd,
S0 fo€ WTH®. ‘
A standard - calculation gives that

Ru(for B 0—75(0) = '(n g 2(k+1>" 3 vream-o(ifo+1) =

= -—n-— Z kb2 vé" v (e/M-o(l/(v+1) =

d(ﬂ) Z’v"(w(l/V) w(l/(v+l))) Zkﬁ 1=

- dl(ﬂ) va "M —o(l/(v+D)) =

= d(B, Nn—" 3 o1y~ = c(p, HHEL,,
y=1
what proves (7).
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Finally, we mention that a comparison of the statements of Theorem F and
those of Theorem shows that if r is odd and -

g’l o (1/k) % O(no(1/n))

then the ordinary Riesz-means can approximate better than the strong ones, e.g.
if w()=4.

Theorems C and E, in the special case a=1, and f=r+1, also show this
phenomenon clearly.
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Fourier—Stieltjes transforms of vector-valued
measures on compact groups

V. S. K. ASSIAMOUA and A. OLUBUMMO

1. Introduction. In recent years, various studies have shown the growing im-
portance of vector-valued measures as can be seen for instance from [1], [3], [4] and
many others as well as the numerous references contained in them. To give just one
specific example: the Fourier transforms of the distributions studied by BoNNET [2]
in generalizing the Bochner theorem to noncommutative Lie groups turn out to be
vector-valued measures.

In the present paper, we study the Fourier—Stieltjes transforms of vector-valued
measures defined on an infinite compact group. Let G be an infinite compact group
with X as its dual object. We consider measures m on G with values in a Banach
space E. Following AsSIAMOUA [1], we define the Fourier—Stieltjes transforms of
such measures and obtain analogues of the results in § 28 of HEwrtT and Ross [6].
Among other results, we prove the celebrated Lebesgue theorem and the Parseval—
Plancherel—Riesz—Fischer theorem.

2. Preliminaries
-2.1. Definition. Let S be a locally compact Hausdorff space and ¢ (S) the
real (resp. complex) vector space of all continuous real (resp. complex) valued func-
tions on S with compact supports. A vector measure on S with values in a real (resp.
complex) normed linear space E is any linear mapping m: X'(S)—~E with the

following property: for every compact set KC.S, there exists a positive constant ag
such that if feo#'(S) and supp fcK, then ([3], 2, no. 1)

Im(Nls = awsup {LfQ)]: 1€K). |
We note that if S is compact, then 5¢'(S) is equal to the vector space €(S, R) (resp.
%(S, C)) of all continuous functions on S into R (resp. C)-and a vector measure

Received September 16, 1986.
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on S is a linear mapping m: 5 (S)—E which is continuous in the uniform norm
topology since in this case, there exists a constant g=as such that

Im(Nlie = allfl, feX(S),

where | fll=sup {| f(?)}: €S} is the uniform norm on #(S, R). If m: 4 (S)—~E
is a vector measure, we shall write

m(f) = [f(Odm() or f fdm.
S

2.2. Definition. An E-valued vector measure is said to be dominated if there
exists a positive (real-valued) measure u such that

I/ fdml, = [1/1du, fex(s).

If m is dominated, then there exists a smallest positive measure |m| called the variation
or the modulus of m that dominates it. _

A positive measure is said to be bounded if it is continuous in-the uniform norm
topology of #°(S) and a dominated vector measure is said to be bounded if it is
dominated by a bounded positive measure. _

Thus every dominated vector measure on a compact space is bounded. (For
these properties of vector measure and the general theory of vector integration, the
reader is referred to [3] or [4].) We note also that if E is a Banach space and S=G
is a group, then the space M1(G, E) of all bounded E-valued measures on G is a
Banach space with the norm

lmll = [ 1o diml,
where x¢ is the characteristic function of G.

3. The Fourier—Stieltjes transform. We shall now define the Fourier—Stieltjes
transform of a vector-valued measure on a.compact group G and obtain some of the
propertles of such transforms. :

3.1. Definition. Let G be a compact infinite group and X its dual object
For each o€Z, we choose once and for all, an element U in o, denote its- Te-
presentation space by H,, fix a conJugatlon D, on H, and put U(")—D U"”D,, ([6],
27.28. C). :

As in [1], we define the Fourter——StzeItjes transform of a vector-valued measure
m: G—~E by

(o)) = f OE nydm(®), & DEH, XH,.

Let E be a Banach space. Then the mapping (&, #)—>(6)(€, ) from H,XH, into
the space &(H,,X H,, E) of the E-valued continuous sesquilinear mappings on
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‘H,X H,, equipped with the norm .
@) = sup{l @) Mle: 1¢la, =1, Inlla, =1}

is continuous ([1], 4.1).
Following HEWITT and Ross [6], 28.24, we shall write

SC,E)= [ #(H,XH,, E).
L3

It is easy to see that, with addition and scalar multiplication defined coordinatewise,
& (Z, E) is a vector space. For #¢%(Z, E), we put

2]l = sup {lP(0)]: c€Z}
and denote by &_(Z, E) the space {P€F(Z, E): | D|.<<}. Also we denote by
F0(Z, E) the space
{9 %.(Z, E): {o€Z: ®(0) = O} is finite}
and by %(Z, E) the épabe '
{9€%.(Z, E): for every & >0, {o€Z: |P(o)] >¢} is finite}.

The next theorem is an analogue of HEwitT and Ross [6], 28.25.

3.2. Theorem. ‘

(1) The mapping & ||l is a norm on %..(X, E) and %.(Z, E) is a Banach

space with respect to this norm. _

(ii) S (2, E) is dense in %(Z, E).

Proof. (i) Itis clear that ¢—||P||.. is a norm. Let {®,} be a Cauchy sequence

&.(Z, E). Then'for every a€ X, {®,(0)} is a Cauchy sequence in & (H,XH,, E).

Since ¥ (H,X H,, E) is a Banach space, {®,(¢)} converges to. an element $(o) in
S (H,X H,, E). An argument similar to [6], 28.25 shows that ®=(&(c¢)) belongs
to % (Z, E) and that {&,} tends to &.

(i) Let @ be an element of S(Z, E). For n=1,2,..., define the element
&, of .5‘.’,0(2 E) by o

' 45(0') if 2@l = 1/n,

@,,(0') = { : -
0 if [[@(o)] < 1/n.

Then plainly {&,} converges to & in %(Z, E).

. 33 Lemma Every ®(0)€e¥(H,XH,,E) is determmed by the. a”; elements
a;=9(0)(;, &) of E where d, is the finite dimension of H; and (&, &a; ... &4) i

an orthonormal bas:s of H,. More precisely, we have o (0)= z d a;’,fi;’,(a) where
()= (U%, £, -

7
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(Note that for a complex function u, # is the Fourier transform that is- the
Fourier—Stieltjes transform of the measure uA A being the normalized Haar measure
on G.)

Proof. We have »
L
e = 3 B

. hj=1
on putting

d, d,
&= Zajfj and n = Zﬂiél
j=1 i=1
Now for a coordinate function uj;: t-(U®, ¢;, &), we have (by [6], 27.19)
50D = [TOLugOad =3 [aan@)un)dio) = 1d.aB.
G st G .

Thus . L .
2(0)(¢&, n) = 2 a;Baf; = 3 d,af(a) (& n)af;.

Hence

(o) = Z' d,a(pifj(0).
i,j=1

3.4. Definition. We shall write % (Z, E) for the vector space
{oc7C, E): %;dag'- 18(0) (&5 ENNE <==}-
4 s J

3.5. Lemma. Suppose that E is a Hilbert space. jThen.th'e mapping

i (¢’ T) <d> W> = Zd 2 <¢(a)(fj’ l) q’(a)(fj’ :i)>

1, j=1

is an inner product on .9;(27, E).
Proof

22 4, 20)(¢;, &), P@)EstN =35 d"2l|45(0)(€,, .)Ilad"zllY’(U)(éj, .)"ES
=22 (d:19(0)(&; DNPY2 2 3 (d ¥ ()5 E)PH? <o

This shows that the mapping is well defined and the proof can be easily completed.

4. Properties of Fourier—Stieltjes transforms. Throughout this section, we adopt

the following notation: if X is a subset of M 1(G, E), we shall denote by X the set

{t: ucX). In the ‘next two theorems we obtam analogues of Theorems 28 36 and
28:39.(i,-ii) of [6), respecuvely - g :

‘4.1, T-heorem.«vThe mapping m— from M\(G, E) into "IS’;;(Z‘,'E”)' is linear,

‘injective and continuous. . o
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Proof. That mi—m 1s hnear is clear We know that it is one-to-one by [1],
Lemma 4. 1 5. Now B : :

(@)l = sup {||m(&5(£, Dl 1Els, = 1 and s, = 1) =
= sup{||f O 1) dm(0);: 1€lm, = 1. Inls, = 1} = fodlml

since U is unitary. Thus [#(o)l =|ml, c€Z and |#]-=|m|. Hence M (Z, E)'
and the mapping is continuous.

4.2. Definition. Let (G, E) denote complex Banach space of all continuous
E-valued functions on G with pointwise operations and norm given by |f]=
=sup {|| f(¢)lg: t€G}. For ¢€X and a fixed orthonormal basis (¢;, &, ..., ;) in
H,, J°(G) will denote the subspace of 4(G, C) generated by the coordinate functions

- We set” £7(G, E)={x¢: x€E and @€ S5°(G)} and define S (G, E) to. be sub-
space of %(G, E) generated by the union U £°(G; E). ’ :

4.3. Theorem. ‘ .
() For each o¢X, we have S°(G, E)=%(H,XH,, E).
NN
Proof. (i) The result readily follows from Lemma 3.3 since
. 9(O)EH(H,XH,, E) =
< afs in 'E and- u ’s in- J(G C) such that (o) = 3 d, a,,uu(o)a
o = 0(0)e5°(G, E). '
(i) Suppose that fc #(G,E). Then f may be written f= }:" o o,€C,
i=1

iJo,?

0,€Z and f, = 3 x5, x,€E, uj€ (G, C). Thus
j=1

f©@) s &m) = Z' o ij 451(0) (415 E) # 0 onlyif o=0;, i=1,2,.0,m.
Hence feS(E, E). ' S e
Conversely, if (peym(}: E), then the set P= {062 di(a);éO} is finite. More-
over, ¢ach di(a)— Z’ d,afyif;(c): Putting f=23d, é'-quu”', we get f=9o
and so #(G, )= 9:,0(2 E). : I o
4.4, Lemma, The space J(G E)is densé in (G, E) i

Proof. We identify #(G, E) with #(G, C)®.E, the m_]ectxve tensor product of
#(G, C) and E, i.e. the tensor product carrying the norm

" 2 xi‘Pi"b""“‘ " ‘2‘”‘Pi®xs"c =sup {IZ u(xi)”(‘/’:)[3 Jul = L ol = 1},
1=i=n 1=j=n i 1=i=n -

id
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u€E’, vc 5 (G, C)’ where E’ and # (G, C)’ are the topological duals of E and # (G, C),
respectively ([7], 44.2 (3)). Since 4 (G, C) is dense in € (G, E), ([6], 27.39), it follows
that J4(G, E) is dense in %(G, E), because ¥(G, E) is norm isomorphic to
€ (G, O)'®,E, the completion of 4(G, C)®,E, ([7], 44.7 (2)).

4.5. Theorem. The space L,(G, E) of the Fourier transforms of Haar-integrable
Junctions f: G—E is dense in (2, E).

Proof. The space £ (G, E) is dense in L,(G, E) because # (G, E) is dense in
%(G, E) and ¥(G, E) is dense in L,(G, E) ([4], 7.16). Since S (@):5«3.,(2, E)
is denise in %(Z, E), £,(G, E) which contains # (G, E), is dense in %(Z, E).

4.6. Corollary. If fecL,(G,E), then the set {ccZ: f(6)#0} is countable.

4.7. Lemma. Let L,(G, E) denote the Banach space of the Haar-square integ-
rable functions on G into E. If f€L,(G, E), then

f= ng,f(a)(f,,f.-)ui-’,--

Proof. If f=xh, xcE and h€Ly(G, C), then
f= Ez; d, . :2;'1 ([ xh(ag,(e) dA)) ug;
(use [6], 27.40 for k). Hence f= ; d, : ,2=1 ([ f@)ag (1) da(9) ug;. Since Ly(G, O)QE
is dense in Ly(G, E) it is clear that the last equality holds for fcL,(G, E). Now,
. [roug@die) = [ (?§“’éj, ENS (O dAt) = f(0) (¢ &)
Hence f=2d, > f©)(E), E)u-
Finally, we obtain the analogue of [6], 28.43.

4.8. Theorem. Assume that E is a Hilbert space. Then the mapping f—f is
an isometry from L,(G, E) onto %,(Z, E) and so &3(Z, E) is a Hilbert space.

‘Proof. If E is a Hilbert space, than L(G,E) is a Hllbert space so that
JeLy(G, E) if and only if

1118 = (3 2 datpsyy 3 2 d,a:,u:?;>,
where af,=/f(0)(¢;, &), 1=i, j=d,. Hence |
3= 3 2 Blalil = 3 3 d 1@ i
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since d, ||u,,u2 1 ([6], 27.40). Thus fc %(Z, E) and
170g = 2 d, 1 f()(&;, EDIE = I £ 113

Conversély, let €% (2, E). Then sz,lldﬁ(a)(éj, E)2<c and hence
a 2 J N

the set {®(0)(¢;, £)=0} is countable, say {a.},.n. Put f;,=k2n’ d, a,u,, where
=1 "

uy replaces uf; whenever af;=a, is different from zero. Then the functions f, form

a Cauchy sequence in LZ(G E) whose limit f satisfies f=® and the proof is com-
plete.
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L,(G, A)-multipliers

V. S. K. ASSIAMOUA

1. Introduction

Throughout this paper, G will be a locally compact group and 4 a complex.
Banach algebra.

In [9] MinG-KaM CHAN characterizes the L;(G, A)-multipliers for algebras
having a weak (hence a strong) bounded approximate identity.

By the present work, we prove that the characterizations remain true even in
case A4 doesn’t possess such an approximate identity, using the fact that any Banach
algebra is contained in a Banach algebra with identity. Next, we enter upon the
sitnation (not considered in [9]) where G is compact, non abelian. Doing this, we
are induced to extend the notion of Fourier—Stieltjes transform of a vector measure.

2, Terminology

" 2.1. Vector measures. Let S be a locally compact (Hausdorff) space and E,

a real or complex normed space. Denote by o (S, E) the vector space over the same

fiéld ‘as E of all continuous functions on S into E, having compact supports, and
write o (S) for o (S, R). '

" Let F be a real Banach space. By definition, an F-valued vector measure on §

is a linear mapping m: X (S)—F such that, ‘for every compact set KciS, there

exists a non negative constant oz and. |m(f )uSax supl J(@)| for every function

fwith support in K m( f) is-also written"
f fdm, ) £ dm(t) or f £ dm@).

(See [2], chap VI, §2 no. 1.)

¢ 1. Received:September .16, 1986.. .
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Suppose now F is complex and consider the underlying real Banach space F,.
Then any R-linear mapping: ¢ (S)—F, extends uniquely to a C-linear mapping:
A (S, C)—F. As such, we shall always identify every measure m: X' (§)—~F, with
the corresponding linear mapping (still denoted m) from o¢°(S, C) into F, and shall
call again vector measure, any linear mapping m: % (S, C)—~F whose restriction
to X (S) is a measure (into F).

2.2. Bounded measures. A vector measure is said to be dominated if there
exists a positive measure y such that || {10 dm(t)||§ [17Oldu@), fet (S).

If m is dominated, then there exists a smallest positive measure |m| called the
modulus or the variation of m, that dominates it. A positive measure is said to be
bounded if it is continuous in the uniform norm topology of ¢ (S).

A vector measure is said to be bounded if it is dominated by a bounded positive
measure. It is clear that m is bounded if and only if |m|-is bounded ([3], § 3).

2.3. Integration. Assume yu is a positive measure on S and E is a -Banach
space. For a function f: S—~E, put

MO = ([ (If@leyPdu®)?, 1=pze

%
where f designates the upper integral (2], chap. IV, § 1, no. 3).
N.,,(f) =inf{a: [ f()lz =, p-almost everywhere}.

The vector space (over the same field as E) of all y-measureable functions
f: S—E such that N,(f)<< is denoted by Z,(S, y, E) or Z,(S, E)... and the
corresponding quotient space %,(S, u, E)/#" with respect to the closed subspace
of the negligible functions, by L,(S, g, E) or L,(S, E). The seminorm N, induces
a norm || . ||,z on L,(S, E) which becomes a Banach space. In the sequel, we shall
write f for the class [ f] as it is usually done.

With the positive measure u on S is uniquely associated a continuous linear
mappmg n: X (S, E)—-E glven by the equation

n(xy) = xu@W), x€E, YA (S)

(3], 2.11). Since X'(S, E) is dense in %,(S, E), n has an extension (still called n)
to %,(S, E). The integral of f€.%,(S, E) with respect to u is the value n(f) denoted:
[ £ du().

S

(It belongs to E.)
Now, let m be a dominated measure with values in a Banach space F. Then
the space %,(S, m, E) is by definition the space Z,(S, |m|, E). We associate ‘with
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m in a unique manner a continuous linear mapping (still called m) from %,(S, m, E)
into a Banach space D, provided there exists a continuous bilinear mapping:

EXF~D. The corresponding integral f S (@) dm(t) belonging to D, is the value
m(f) (3}, 8.61. or [2], chap. VI, §2, no. 7). If fc%(S,R), put D=F and E=R
and the required bilinear mapping is the multiplication by real numbers: RXF~F.

2.4. Convolution. The space M,(4A)=M,(G, A) of all bounded 4-valued
measures on G is a Banach algebra with the norm |m|= f Yo d|m| where X is the
characteristic function of G, and the convolution - :

mxn(f)= [(f f(st) dm(s)) dn(f), feAX(G) and m, néMl(A),
shortly written f f f(st)dm(s) dn(t).

Let A be the left Haar measure on G. Identifying f€ L, (G, /1 A) with the bounded
measure fA deﬁned by

fA@ = [ f(ng@)di(®), geH(G)
then the functions '
t~frg(@) = [f(Dg(s™0)ds, [ 8ELL(G, A), ds=di(s),
t~mxf()) = [f(s70)dm(s), meMy(4), feLy(G, 4),

and

t~fem@) = [fs)AE Y dm(s), fEL (G, 4), meMy(d),

(where 4 is the modular function of G), belong to L,(G, A). Consequently, L,(G, 4)
appears as a two-sided ideal of M, (A).

2.4.1. Lemma. Let t,, S€G, be the right translation: <, f(t)=f(ts™). Then
() 7,(f*g) = f*7,8 =(A©S)t,-1f)*g, f,g€L\(G, 4),

(i) t,(m*g) = m*7,8,  mEM(A) and geL,(G, 4).

The proof is straightforward.

. 242 Lemma. If m is bounded and mxg=0 or gxm=0 for euery gE.%"(G)
or for every g€ X (G, A), then m=0.

See [3], 24.35 for the proof..
From now on, we shall write dt for dA(t)
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3. L,(G, A)y-multipliers for general locally compact groups

31 Definition. A left L,(G, A)-multiplier is a contmuous linear operator
T: LG, A)—»LI(G A) such that

3.1.1) 1, T =Tr,, s€G and T(xf) xT(f), x€4, feL,(G, A).

‘A right L,(G, A)-multiplier is respectively deﬁned. Now, any result true for
left multipliers has its analogue for right multipliers. Therefore we are going to
study the left multipliers only, and omit the word ““left” and sometimes the symbol

L,(G, A)”. By [6], it is not necessary to include continuity in the definition of
multipliers. We do it only to avoid superfluous discussions.

We are going to use in the proof of the next theorem a number of facts that we
want to point out now.

3.2. Extension of L,(G, A)-multipliers to L, (G, A*) In the sequel, A* will
be the Banach algebra obtamed by _101mng an identity e to 4. We recall that 4 is

a two sided maximal ideal in A

321 Lemma. The space L,(G, A) is norm isomorphic to the direct sum

Ly(G, A ®eL(G).

Proof. It is known that A* = AdeC. Hence every FcL,(G, /I) may be
represented as f—f+e(a, feL,(G, A) and @€L,(G). To see it, put f=PoF and

ep=(I—P)oF where P is the projection operator: A—»A Indeed, f and ¢ are
integrable ([4] p. 480 and. 3], 8. 3).

322 Lemma. Let T be an L,(G, A)-multiplier. Then T is extendable to an
L\(G, A)-multtpher T and. there exists a. linear. operator S
v L(G) ~ Ly(G) such that T(xp) = xu(p), x€4 and ELy(G).

Proof. The condition .T(xf)=xT(f) in (3.1.1) shows that T is an .4-module
homomorphism on L;(G, A); hence according to [2], § 1, mo. 1, T has an extension

T which 1s C- and A—hnear on LI(G A) Thus, for X—x+e€ 1nA and F=
—f+e(o in L1(G A) wehave '

T(XF) = T(:gf+§f+x(p+e§(p) = xT(f)+éT(f)+xT(ego)+§T(e¢)
Put $=the restriction of T to eLx(G) Smce TlL,(c H= T, it is clear that

T(XF) = xT(f)+ET(f)+xt(eg) + Eh(ep) = (x-+e&)T(f)+(x+ed)i(eg) = XT(F).
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The definition of -? proves that 7(ep)=et(p) for some linear mapping 7: L,(G)—~

—+L,(G).- Hence T— T+er.
For x€A and ¢ L,(G), xp€ Ly (G, A) then

T(xp) = T(xep) = xt(ep) = *1().

It is easy to deduce that 7 is continuous, [t =|T|| and rsr=775. Now,

ITE)_x = IT(FaatIe@) = 17N st Iellol =
= ITI( ol = ITIIFY ; |

Hence T is continuous. Finally

., T(F) = 7,T(f) +e1,7(9) = T(z, f) +et(r,0) = T, (F).

Therefore, T is an L(G, Z)-multipl_ier.
Now, here is the first main theorem:

3.3. Theorem. Let T be a continuous linear operator from L,(G, A) into
Ll(G A) Then the following statements are equivalent:

G.Ll)  Tr,=1,T, s€G and T(xf) = xT(f), x€A, fELl(G A),

(3.3.0) T(f*wW) =T(f)*u, fEL(G, ), neM(G,C),
3.3.2) - T(f*g) =T(f)*g, f and gcL,(G, 4),
(3.3.3) ot T(H = m*f for some meM,\(G, A).

Proof. (a) Assume (3.1.1) and denote by 4’ the topological dual of 4. Using
[3] Corollary 14.21, we claim that, if #—(f(¢), g(¢)) is negligible for every g€ L..(G, 4")
then f, feL,(G, A) is negligible because the assertion is true for functions of the
form ‘X'¢, ¥’€ A’ and @€ (G), which belong to L..(G, 4). :

We know that L..(G, A)cL,(G, 4). Let uEMl(G C) and T" be the ajomt
of T. We have, for g€L(G, 4),

f <T(f *p)(1), g(t)ydt = f < f f(ts"l)A(s-l) dy(s), T’(g)(t)> dt =
R = [f s, T/ (@O A du(s) .
Applymg Fubml S. theorem, we have , ‘ »
JJ 5™, T (@)™ du(s) dt = fj (O™, T (@YOVAGs™) di du(s) =
' = [f @Y, gAY drdu(s) -
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according'to (3.1.1). We apply once again the Fubini’s theorem.
Jf @™, gA™ dtdu(s) = [{[ TN A du(s), g(0)) dt =

= [T *p)@), g@)ar.

Hence T(f¥u)=T(f)*u. Therefore (3.1.1)=(3.3.1). _
(b) Assume (3.3.1). We know that the projective tensor product L,(G)®, 4
is dense in L, (G, A). Then it suffices to prove (3.3.2) for g=x¢, x€ A and ¢ L,(G).

Now, putting u=¢2in(3.3.1), T(f*x@) =T(x(f*¢))=xT(f)*@=T(f)*x¢. Thus
(3.3.1)=(33.2).
(c) Suppose (3.3.2). Then, for f€L,(G, A) and g€ (G, A) we have

Tt,(f)*g = T(1,(N) g =T(4(s")1,-1(f%8)) = A(s™IT(f*7,-1(8)) =

= A(s)T(f) *75-1(8)) = A(s™)1,-T(f) %) = wT(f) *.

Consequently Tt,(f)=1,T(f), f€L,(G, 4) (Lemma 24.2) and hence Tt,=7,T,
SE€EG. Moreover, for x€ A, the equalities

TOxf)xg =T(f*8) =T(f*xg) =T(f)*xxg = xT(f)*g
hold.
Therefore (3.1.1) obtains and hence (3.3.2)=(3.1.1). We deduce that (3.1.1),

(3.3.1) and (3.3.2) are equivalent. To show that (3.3.3) is equivalent to them, let us
suppose (3.1.1). Since 4 hasan identity and L, (G), an approximate identity, L, (G, 4 )
possesses an approximate identity. By Lemma 3.2.2., T is extendable to an L, (G, A*)-
multiplier f Applying [9], Theorem 4 (ii) and results on page 181§ 2 to f‘, we conclude
that there exists a vector measure m, mé€M,(G, A* ) such that

identifying A* with its canonical image in its second conjugate space A*” (see
also [9], page 186, Remark (2)).

Finally, for FEL,(G, A), T(f)= T(f) mxf, which is (3 3.3).
Conversely, by Lemma 2.4.1. (ii) and the fact that mxxf=x(m*f), x€A,
the implication (3.3.3)=(3. L 1) is clear. This ends the proof of the theorem.

3.4. Remark. (i) In the proof of Lemma 3.2, 2 we saw that the extenston
T of T has the form T= T+et where 7 is related to T" by the equation

T(x¢) = x1(9), x€A and @€L,(G).
Hence, if A is right faithful i.e. the right annihilator of A is {0}, then 7" is the unique
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extention of T which is a multiplier; and uniqueness holds- in (3.3.3). This' occurs
for instance when A has a right approximate identity.

(ii) We shall not repeat the theorem concerning the Fourier transform when
G is abelian as found in [9]. We shall rather treat the corresponding statement for
compact groups which is a new fact.

4. L,(G, A)-multipliers for compact groups

4.1. Fourier—Stieltjes transform. Let mcM,(4). The Fourier—Stieltjes
transform 2 of m is well known if G is abelian or if G is compact and 4=C or R.
In fact, let G be abelian and denote its character group by G. Then 7 is defined by
the equation:

@.1.1) m(l) = f F(dm(t), reé,

where I’ is the complex conjugate of I' [9]. If G is compact and 4=C, the equality
defining 7 becomes :

@12)  (A)E ) = [(TOE nydm(t), o€Z, (& n)eH,XH,,

where X is the dual object of G, U™, a representative of-the equivalent class ¢¢ X
and H,, the corresponding representation Hilbert space [5].

Now, suppose G is compact, non abelian and 45 C and R. The formula (4.1.2)
is no longer meaningful because the mapping:

n— [ (O, 1) dm(t)

is a function from H, into 4 and as such, it is impossible to express it as a scalar
product n—~@n(s)é, n) in general. The next lemma clarifies the situation.

4.1.3. Lemma. The mapping H,X H,—~A:
&) ~ [(UE nydm(t), meM,(4)
is sesquilinear and continuous.

Proof. It is easily checked that the mappmg is sesquxlmear Let us show that
it is continuous. . : :

Since U is unitary for every t€G, the inequality
|f @z, amqo)], = 160w, Inla, Il

holds, and the lemma obtains.
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'4.1.4. Definition. We define the Founer—StleltJes transform fi
EMl (4) by the equation:

()& ) = [(O©E nydm(t), ocZ and (& meH,XH,,

where U is fixed once and for all for each o [5].

Let E and F be topological vector spaces. Denote by .# (E, F) the space of the
continuous linear mappings from E into F, by #(EXE, F) the space of the conti-
nuous bilinear mappings from EXE into F and by ¥ (EXE, F) the space of the
continuous sesquilinear mappings from EXE into F. We know that Z(EXE, F)
is norm isomorphic to Z(E, £(E, F)) if E and F are Banach spaces [7]. -Similarly
S (EXE, F) is norm isomorphic to Z(E, #(E, F)). Thus, if G is abelian, & (H,X
XH,, A)= A for, H,2 C in this case, and, if 4=C, ¥(H,XH,, A=%(H,, H,)
for compact groups because Z(H,, O)=H,. Hence 4.1.4 generalizes (4.1.1) and
4.1.2).

of m, me

4.1.5. Injectivity of the Fourier—Stieltjes transform
Lemma. The map m—m from M (4) into [J] S(H,XH,, A) is one-
o€x
to-one. I '

Proof. Suppose 7i=1. Then for any ¢€X and any (&, #)€ H,XH,

[T nydnt) = [(TDE, ny dm(1).
G G

In particular f (U, nyd(n—m)(1)=0 for any o, and ¢ and # in an orthonormal

basis of H,, aEE According to [5] Theorem 27 39 and Remark (a) 27.8, n—m is
identically O on %°(G). Thus n=m. Therefore the map is one-to-one.

4.1.6. Fourier—Stieltjes transform of a convolution
Lemma. Assume G is compact and consider the set
M, (4, o) = {r(0): mEMl(A), aEZ}
DeﬁneB by

B,(0(0), m(@))(E, ) = f ()T, n) dm(t), ®¢ [ S(H,xHy, )

mEMy(4) and (¢, n)EH, X H,. Then "

@) B, zsabllmear mappmg from .V(H XH,, A)XMI(A 0) into .?(H ><H,, A).
(1) n*m(ﬂ) B,(#(0), (0)), (n, m)E My(A)XM,(A).
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Proof. (i) For v¢Z, (5, meH,XH, and [2(6)|=sup {|@(0)(®. A)l4: IlotllS
=1 Ilﬂllsl} we have

f II‘P(G)(Q‘”)é, Mladm(@) = 2@l [ 16 dlml = @@ lnl|m] <eo.
G : G ; ’ o

Heﬁcé B, is well defined. Thus the 'contlinuous (hence |mj-measurable) function
t—+®(0)(UE, n) from G'into A4 is |m]- or equivalently m-integrable. Thus B,(®(0)),
m(o)eS(H,XH,, A) since

[B.(2(0), (@) &l = [12@)TDE n)l, dlml (2.
o i G _ ‘

It is obvious that B, is bilinear.
(ii) Plainly

RO 1) = [ @@ nydimn)e) = i <U§:>c, n) dm(s) dn(1) =
= [[ OOV, 0y dm(sydn(s) = [ (@) TLE, ) dn(i) = B.,(m(a), A@))(& 0.

Notation. We shall use the notation mX#(o) instead of B,(r(a), n(o-)).
The second main theorem follows .

4.2. Theorem. Suppose G is compact Let T be a continuous linear operator:
Ly(G, A)~L,(G, A). Then '

(4.2.1) T is a multiplier
if and only if

(4.2.2) there exists a € J[ S(H,xH,,A) such that
g€l

N
T(f) = oXf, feLi(G, 4).

Proof. Suppose (4.2.1) and write down T(f)=m=f, for some mcM,(G, A )

AN N . .
(Theorem 2.2). Then T(f)=mxf=mXxf. We obtain (4.2.2) if we put ®=1.
Conversely, suppose (4.2.2). Then

T
T(f*2)(@)(&n) = [ ®@)(T¢,n) [ f()g(s~1r)ds dt =
= [ 2©@)(T©¢, n) f()g(s~10) ds dt
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and, for o€, E€ H, and ncH, we have

N —
T RO = [ TD@OTE, e dt = [[ 6@TDE f 2w du =

: N
= [[ () UDE n)f()g(s710) dt = T(f*£)(0)(&, n).

Therefore T(f*g)=T(f)*g, the mapping m—m being one-to-one. We conclude
that T is a multiplier since it is supposed to be continuous.
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Characterization of locally bounded functions with a
finite number of negative squares

Z. SASVARI

1. Introduction

Throughout the paper G denotes a locally compact commutative group.

Let f be a complex-valued function on G. The function f is called Hermitian
if f(—x)=f(x) holds for every x€G. If k is a nonnegative integer the Hermitian
function f is said to have k negative squares if the Hermitian matrix

m (f (xt_xj))'i',j=1

has at most k negative eigenvalues for any choice of n and x,, ..., x,€G, and for
some choice of xy, ..., x, the matrix (1) has exactly k negative eigenvalues. This
definition reduces to that of a positive definite function in the case k=0. We denote
by F.(G) (B°(G)) the set of all (continuous) functions on G which have k negative
squares.

- For a function f€ F7(G), where G is second countable, an integral representation.
was given in [10]. The bounded functions in £ (G) are exactly the Fourier transforms
of such measures on the character group of G which assigne negative measure to
k points and which are nonnegative outside of these points [9, 10]. A survey and
bibliography about functions with k negative squares can be found in [1, 10, 12].

- It is the aim of this note to characterize those functions f¢F,(G) which are
locally bounded, i.e., bounded on every compact set KCG. As was shown in [11],
every measurable function f with k negative squares on an arbitrary locally com-
pact group is locally bounded. Moreover, f has the decomposition f=f,+p, where
f. is a continuous function with £ negative squares and p is a positive definite func-
tion vanishing almost everywhere on G [10]. .

If f is.not measurable and k=0, then it may be unbounded on every open
set. To see this let / be a nonmeasurable real-valued function on R satisfying the

Received May 12, 1986.
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equation I(x+y)=I(x)+1(y) (x, y€R). Then the function f=il has one negative
square and f is unbounded on every openset VCR.
The main result of the present paper is the following

Theorem 1. Every locally bounded function f€B(G) has the decomposition

¢)] S=nht..+1futp
where

(i) y; is a bounded (continuous or discontinuous) character of G (j=1, ..., n);
(i) f; is a continuous function with k; negative squares and ky+...+k,=k;
(iii) p is a positive definite function.

Recall that a complex-valued Hermitian function defined on G is said to be
conditionally positive definite if

Z"' Sxi—x))e;c; =0

, ij=1"
holds for every choice of x,, ..., x,6G and for every choice of complex numbers
€15 ...y ¢, Such that ¢;+...+¢,=0. It is easy to see that a conditionally positive
definite function has at most one negative square. For a bibliography about condi-
tionally positive definite functions we refer to [2, 4].

The above theorem has the following

Corollary 1. Let f be a conditionally positive definite function on G which is
bounded on a set of positive Haar measure. Then f has the decomposition

f=sf+p
where f, is a continuous conditionally positive definite function and p is positive defi-
nite.
‘ .We remark that a conditionally positive definite function f is bounded if and
only if f=p+m, where m€R and p is a positive definite function [2]. The function
S=il 1ntroduced above is a condltlonally positive definite function which is un-
bounded on every set ¥CR of positive Haar measure.

2. Notation and preliminaries

(2.1) Let k£ be a nonnegative integer. Throughout the paper the symbol IT,
denotes a m,-space with rank of negativity k. We shall assume famlhanty with basic
information about m,-spaces as found in [3, 5].

Let
€)) I, =Hn,eII_
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be a fixed decomposition of IT, where I1, is a positive subspace and IT._ is a negative
k-dimensional subspace. Representing each vector v€Il, in the form v=v,+v_
(v4€11,, v_€Il_) we introduce a new scalar product [, ] in IT; by

@ Wl =@ w)—-, W), wwel,. .

This scalar product is positive definite and II, can be regarded as a Hllbcrt space
with scalar product [, ] and with the norm

©) loll = Vlv, 2]
The scalar product (v, w) is continuous with respect to the norm (5) in both vanables
vand w.

Let {e, ..., &} be a basis of IT_ such that [e;, e;]=—(e;, ¢;)=3,;. Then we
have for any v€lIl, , .

©) ol = [o, o] = (v, 0)+2 2" s O

Recall that a linear operator U in IT, is called unitary if it maps IT, onto 1Y

and preserves the scalar product (, ) of I1,, i.e.,
Uv,Uw) = (v,w) for all », well,.

By a unitary representation of G in IT, there is meant a mapping x—U, of G

satisfying the following conditions:
(i) U,=I where I is the identity operator in IT;;

(i) U,4,=U,U, forany x, y€G;

(iti) U, is a unitary operator in II, for all x€G.
We shall need the following correspondence between cyclic unitary representations
of G in 7, -spaces and functions of the class £, (G) [10, Satz 9.2]. :

Theorem 2. For an arbitrary function f¢B(G) there exists a m-space H,(f)
with the following properties: '
(1) the elements of II,(f) are complex-valued funcnons on G, fell.(f), and
10,(f) is invariant under translations;
(ii) the linear manifold T(f) spanned by all translations of f is dense in II,(f);
(iii) x—~U, is a cyclic unitary representation of G in II,(f), where U, is defined by
(Ux g)(y) g(y_x)’ gEHk(f)s X5 }’€G

(iv) g(x)=(g, U, f), gell(f), x€G;
) if f is locally bounded then every functton gEH,‘(f) is IocaIIy baunded

 We now.prove a further assertion.
) If f is locally bounded then the function x-»llU I is IocaIIy bounded.?.

1) The operator norm is ihduced by the vector norm;(s).
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Proof of-(vi). It follows from the proof of Satz 9.2 in [10] that

where P is a positive subspace and N is a negative k-dimensional subspace such
that every function €N is a finite linear combination of translations of f, ie.,
hReT(Y). Let {e;, ...; &} be an orthonormal basis of N. By (6) we have

U gl = (g g)+2£"1 U.g, e’ geIL(f)

From e,c T(f) and (iv) it follows easily that the function h(—x)=(U_.g, €)=
=(g, U,e) is a finite linear combination of translations of g (i=1, ..., n). By (v),
gis locally bounded, so the function x—[|U,gl|? is locally bounded for every g€ I, (f).
The local boundedness of x—| U, follows now from the Banach—Steinhaus
Theorem.

(2.2) Let x—~U, be a representation of G by invertible bounded linear operators
on a Hilbert space $. We say that the representation x—U, is locally bounded if
the function x—~||U,.]| is locally bounded. Denote by $, the subspace of continuously
translating elements of §, i.e., the set of all h€ $ for which x—~U,h is continuous
from G into $ in its weak topology. Let ¥ denote the set of all neighbourhoods ¥
of the zero of G, Uy={U,: x€V}, and ¥(Uyh) the closed convex hull of the
“partial orbit” U, h={U,h: x€V}. The subspace §, of elements averaging to
0< $ is the set of all h¢ § for which

0¢ N €Uy k).
Vey .

K. pELEeuw and 1. ‘GLICKSBERG [6, Th. 2.7] proved the following

Theorem 3. Let x—~U, be a locally bounded representation of G in a Hilbert
space $. Then . and $, are closed (U,)- mvanant subspaces and $) is the orthogonal
direct sum of 9. and 9,-

Let now f€R.(G) be a locally bounded function and consider the umtary&r%';i
resentation x—~U, of G in IT;(f). By (vi) this représentation is locally bounded
with respect to the pos:tlve deﬁmte scalar product (4). (Note that local boundedness
of x—+U, does not depend on the special decomposmon (3)) It follows from the
definition of $. and from (iv) that every he 9. is a continuous functlon When
he $, then A has ‘the following property: for ¢>0" and any Ve for which sup MUl <

<o there exist x;, ...; x,€V and positive numbers pl, ens p,, summmg to 1 such
that . . oo

¢ |3 ph(x—x)| <& for all xcV. |
=1 . . RERT R
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Indeed, by the definition of £, there are x;, ...,.x;,€ V" and positive numbers p,, ..., Pa
summing to 1 such that : '

|2 71U hl| < efsup 10 71,
By (iv) we have

12 pibx=| = (2 U0 = (2 10, U2 1) =
= ”é;PiUx'h”"Uxfll <¢ for xeV.

(2.3) Let G be the discrete version of G. The character group of G? is denoted
by I'. We introduce the notation I'! for the set of unbounded characters of G%
i.e., the set of complex-valued unbounded functions y on G* for which y(0)=1 and
Y(x+y)=y(x)7(y) hold. Let '
4 =rayrs,

In the proof of Theorem 1 we shall need the following result which is the dis-
crete version of Folgerung 11.7 in [10] (see also Theorem 3.1 in [8]).

Theorem 4. For every fcP(G) there exist positive integers k;, functions
Si€R (G) and y€ I’ (i=1, ..., n): with the following properties: :

@) f=H+...+f

(b) k=k,+...+k,;

(© fiell, () (=1,...,n);

(d) the only common nonpositive eigenvector of the translation operators -U, in
1, (f) are y; and ;1.2

When f is locally bounded then by (c) and (v) in Theorem 2 the functions
J; are locally bounded as well. ‘

3. Proof of Theorem 1 and Corollary 1: .

(3.1) Let feP(G) be a locally bounded function and consider the locally
bounded unitary representation x—U, of G in II,(f). By Theorem 4 we can restrict
ourselves to the case where the only.common nonpositive eigenvectors of the opera-

tors U, are y, y—1¢€ "%, Since I—ﬂ— 'is a bounded character of _G,- the (locally bounded)

1) Note that y,=%;* if and only if p €T,
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function f'= u f hask negauve squares. Moreover, the only common nonpositive
14

eigenvectors of the translation operators U, in IT,(f") are |y| and |y| ™2 (see for this

(11.5)(a) and (3.2)(c) in [10]). Thus, the proof of Theorem 1 will be complete if we

verify the following.

Proposition 1. Let f¢ B(G) be a locally bounded function. If the only common
nonpositive eigenvectors of the operators U, in II.(f) are y and y™*, and if they are
positive then

f=r+p,
where f.€PS(G) and p€Fy(G).

- Proof. We consider the m,-space IT,(f) as a Hilbert space with the scalar
product [,] in (4). By Theorem 3 II.(f) is the [, ]-orthogonal direct sum of the
closed (U,)-invariant subspaces X, and X;. Considering X, as subspace of the m;-
space II,(f) there are three possibilities:

(i) X, is a m;-space (I=1);
(ii) X, is degenerate;
(iii) X, is a Hilbert space.

In the first case the commuting unitary operators U, have a common non-
‘positive eigenvector in X, [7] which by our assumption must be y or y~L In the
second case the isotropic part N of X, is (U,)-invariant and finite dimensional.
Hence the commuting operators U, have a common eigenvector in N which must
- be again y or y~L Thus, in both cases we have yEXo ory ~¢ X,. Suppose for example

Y€ X, and let V be an open symmetnc nelghbourhood of zero such that y is bounded
on/V: :
r(x) <K (x€V).
As y(—x)y(x)=1, we get

1/K<y(x)<K (x€V)."
Consequently, for any x, x,€¥ (i=1, ..., n) and arbitrary positive numbers p,; ..., p,

summing to 1 we have:

| g yx— x.)p;—v(x)Zv(— .)p..>?(X)/K>1/K*'

in contradlctlon to (7). Hence (1) and (ii) are not poss1ble and so Xo isa Hllbert space.
Let X denote the- (, )-orthogonal complement “of Xo “Then X! is a closed
(U,)-invariant =, -space and

® n(N=XX. ... ..
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(the symbol @ denotes (, )-orthogonal direct sum). On the other hand, X is a
Hilbert space with respect to the scalar product [,], and the restriction x—U, of
x—U, to X/ is a locally bounded representation of G in X/. If h'¢X_ averages to
zero with respect to the representation x— U, then it averages to zero with respect
to x—U, as well. Since X, consists of all h€ IT,(f) averaging to zero we necessarily
have h’=0. Applying Theorem 3 to the representation x—~U, in X we see that
every h€ X/ is continuously translating. Hence the function x—[g, U, h]is continuous,
from which the continuity of x—»(g, U.h) follows (g, he X7). :

Let now f=f.+p (f.€X., p€X,) be the decomposition of f correspondlng
to (8). We have .

f(X) = (.f’ Uxf) = (f::+p7 Uxf;:+pr) = (f;:’ Uxfc)+(p9 pr)

Moreover,

® f;:(x) = (f;:’ Uxf) = (f;:s Uxf;:)+(f;’ pr) = (f;:a Uxf;:)

and analogously
p(x) =(p, Usp)-

It follows from (9) that f, is continuous. The function f is a cyclic vector for x—U,
and so f is cyclic for x—~U,. Thus, f has & negatnve squares [10, Satz 11.1]. Since
X, is a Hilbert space (w1th respect to (,)) the function p is positive definite,
completing the proof of Proposition 1.

(3.2) Let now f be a conditionally positive definite function which is bounded
on a set ACG -of positive Haar measure. By a well known property of the Haar
measure, 4— A contains an open set V'=@. It follows from the inequality

(10) VIfFG=M = VIfGI+VIO), x y€G,

that f is bounded on V. Moreover, (10) implies that f is bounded on y+V for
every y€G. Since compact sets can be covered by finitely many sets V of the form
Vi=y;+V, f is locally bounded.

Let us consider the (locally bounded) unitary representation x—U, in IT,(f)
(we neglect the trivial case where f is positive. definite). By [10, (11.5)] the only
.common nonpositive eigenvector of the operators U, is y=1. Therefore, we can
apply Proposition 1 to obtain the decomposition

f= fc+p,

where fCEP"(G) and pER,(G) All what remains-to prove is that f,_. is condltlonally
.positive definite. Since T'(f) is dense in IT,(f), there is a sequence.w,.of ﬁmtely sup-
ported complex measures on G such that

f. = lim f*w,,.‘

B+
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(the symbol * denotes convolution). By (9) and (iv) in Theorem 2 we have
Jo(®) = (fe» Uy f) = lim (frw,, Us(fxwy) =
= lim (f*w,*W,, U, f) = lim fxw,*W,(x),

where W, is defined by W,({-x})=w,({x}). It follows immediately from the defini-
tion of conditional positive definiteness that the functions f«w,*Ww, and so f. are
conditionally positive definite. The proof of Corollary 1 is complete.

Remark 1. As we have seen, boundedness on a set of positive Haar measure
of a conditionally positive definite function implies local boundedness. It would
be interesting to know whether a similar assertion holds for functions with a finite
number of negative squares.

Remark 2. Corollary 1 probably holds even for noncommutative groups while
the problem of characterization of locally bounded functions f¢F.(G) seems to be
very difficult if G is not commutative.

Remark 3. Let G be an arbitrary commutative topological group. We say
that a complex-valued function g on G is locally bounded if there exists an open set
VG such that g is bounded on y+V for every y€G. Let now f€F.(G) be a
locally bounded function and consider the representation x—U, in IT.(f). It
follows by the same arguments as in the proof of property (vi) that the function
x—| U, is locally bounded. Since Theorem 3 holds for an arbitrary commutative
topological group G [6, Th. 2.7] we can repeat the proof of Theorem 1 to get the
decomposition (2) of f.
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Injection of shifts into contractions

L. KERCHY

The structure of unilateral shifts is well understood. Hence any relation between
a contraction and a unilateral shift can be very useful. Here we only quote a recent
result of H. Bercovict and K. TakaHAsHI (cf. [1]) claiming that a contraction T is
reflexive whenever the set S (T, S)={A4: AT=SA4} of intertwining operators con-
tains a nonzero element, where S denotes the simple unilateral shift. In 1974
B. Sz.-NAGY and C. Foiag proved the following (cf. {7, Corollary 2]):

Theerem 0. If T is a contraction of class C,, with finite defect indices dy and
dy«, then

SO LT < S®, where k = dp—dy.
Here S(") stands for the unilateral shift of multiplicity %, i.e. for the orthogonal

sum of k copies of the simple unilateral shift S=8®. T<S® denotes that T is a
quasiaffine transform of S®, i.e. J(T, S®) contains a quasiaffinity (an operator

with trivial kernel and dense range). The meaning of the notation S® X T is that
S® can be completely injected into T} i.e. £(S™, T) contains a subsystem & con-
sisting of injections such that V {ran 4: A€ #}=dom 7. In connection with other
notions concerning contractions readers are referred to the monograph [9]. ’

We remark that, as it was illustrated by an example in [7], the relation S® <T
in Theorem O can not be generally replaced by S® < T.

Definition. Let T be a completely non-unitary (c.n.u.) contractlon If the
space of T is separable then the number :

By = ess sup rank 4,, +({)€[0, =]

will be called the *-multiplicity of T. In the general case p, 1 is deﬁned as the least
upper bound of the %-multiplicities of the restnctlons of T to its separable reducmg
subspaces

Received July 28, 1986.
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Here 4. r(Q=[-0r()Or()*/* is the defect function of the adjoint of
the characteristic function @1 of 7, and the essential upper bound is taken with
respect to the normalized Lebesgue measure m on the boundary d D of the open
unit disc D.

The %-multiplicity p, r of T coincides with the usual multiplicity of the unitary
operator R, r of multiplication by the identical function x({)={ on the Hilbert
space (44, rL2(Dr+)) ™. (CL. [3].) Furthermore, we can observe that if 7T"is of class
C.o with dy<woo, then rank 4y r({)=dr-—dr a.e., whence u, r=dr—dr. Now,
it is natural to ask how the statement of Theorem O alters if u,, r<< is assumed
instead of drs< .

First we note that by a result of Takahashi (cf. [10, Proposition 2) S® < T
is already a consequence of the relation 7<S®. However T< S® does not hold
in general. This is shown by the following.

Example. Let us consider a contraction T of class Cy, such that rank 4, r=y,
a.e., where y, denotes the characteristic function of a Borel set «cdD of measure
O<m(a)<1. (The existence of such a contraction was proved in [4].) Now the
*-multiplicity of T is 1.

Let us assume that T is the quasi-affine transform of S®, for some 1=k=oo,
and let CeS# (T, S¥) be a quasi-affinity. Let U® denote the minimal unitary
extension of S®. The operator C can be considered as an element of (T, U*).
In view of [5, Proposition 4] there exists an operator D€S(R,, 1, U®) such that
C=DX, where X€JS (T, R, 1) is a canonical intertwining operator. Since
R} 1 |(ran X)* is always of class Cy, (cf. [,5 Proposition 4]) and since R, r is now
reductive, it follows that X has dense range. We infer that (ran D)~=(ran C)~ =
=dom S™, so D.can be considered as a quasi-surjective operator from # (R, 1, S®),
whence D*¢#(S*™, R} ;) is an injection. This yields that - {0}=ker Rf ;>
DD* ker $*® {0}, what is a contradiction.

Therefore T<S™® is not true, for any 1=Kk=-o.

In [10) K. TARKAHASHI characterized, in terms of the characteristic function,
contractions which are quasi-affine transforms of unilateral shifts of finite multiplicity.
While in [11] P. Y. WU gave a characterization for contractions which are quasi-
similar to unilateral shifts of finite multiplicity.

Though, as we have seen, T<S® (k=p,, 1) loses validity in Theorem O if

drs+= oo, we shall prove that the relation S*® 2T k= Ux, 1) does remain true in
a very general setting. This is expressed in the following theorem, the main result
of our paper.
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Theorem. If T is a c.n.u. contraction with x-multiplicity 1=y, r<eo, then

S® KT, where k =p, 1.

We remark that injection of shifts into strict contractions was investigated in
[8] and [12]. A contraction T is called strict if | T|| <1, in which case y,, r=0.

In proving our theorem we can assume that T acts on a separable Hilbert space
9. In fact, in the opposite case $ can be decomposed into the orthogonal sum of
separable subspaces reducing for T, and then the characteristic function of T will
be the orthogonal sum of the characteristic functions of the restrictions of 7. Hence
in the sequel every Hilbert space will be supposed to be separable.

Since T is c.n.u. it can be given as a model operator (cf. [9, Chapter VI]). So
let {@, €, E,} be a purely contractive analytic function, its defect function is
A=[I-0*@P*. Let U, denote the operator of multiplication by the identical
function y({)={ on the Hilbert space &, =H2(E,) ®(4L*(E))~. The c.n.u. contrac-
tion T is defined on the Hilbert space H$=K,0{Owddw: we H3(€)} as T=
=PU. |9, where P denotes the orthogonal projection onto § in & ;. The *-multiplic-
ity of T is py, 7=€s5 Sup rank 4,((), where 4, =[I—OO*/2.

The proof of the Theorem is based on the following.

Lemma. Let h be a function in L*(€,) such that |h({)le,=1 a.e. Then for

any non-zero function f€ H*(€,) and for any number O0<c<1, there exists an analytic
Sfunction u€ H*(€,) such that

) [u@le. =1 ae.,
)] Ku@), h(QD)el =c ae., and
&) : u, fInxes # 0.

Proof. First we show that a function u#€H?(€,) can be found with the
properties (1) and (2). The proof of this is essentially the same as the proof of the
Lemma in [6). For the sake of easy reference we give the details.

Let {x;};2, be a dense sequence on the unit sphere of €,, and for every j let us
consider the function h,({)=(x;, h({))e, ((€0D), h;c L% Then we have

@ 1=1kOle. = sup k@)L, for ae. [edD.

P . ;1
- Let O<v<l be arbitrary, and define {o;}, as o,=o, aj=a§°)\(j U o)
. i=1

(j=2), where a?={{cdD: |k;({)|>v}. The sequence {x;}7, consists of pairwise
disjoint Borel sets, and by (4) we have

o m(@D\( ®;)) = 0.
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‘Let {u;};2, be a sequence of positive numbers such that O<u= 2 pi<l.
ji=1

For every j, let us consider an outer function #;¢ H= with absolute value [d;|=
=(1—p)x¢,+pjxm\a’ a.e. on gD, and let us define u;=a;x;€ H%(E,).
For every j and for a.e. {€a; we can write J [[u;(Qlle,=1—pu+ > w=1-
i=1 i=1
. i)
~p+p=1. Hence in view of (5) 3 fu;(Dlle,=1 and so > u;({) strongly con-
J=1 . j=1

verges in €, a.e. on §D. The limit function u()= 5’ u;({) satisfies (1), therefore,
j=1
u€L?*(€,). Furthermore, Lebesgue’s dominated theorem ensures that
lim ||Zn'u_,-——u”,‘,(e*)=0, whence uc H2(E,).
=1

R0

For every j and for a.e. {€«; we have

© K (), BOell = | § 0, hQe| = | ;" 2OmQ)| =

= Iﬁ,-(C)lIhj(C)I—‘:S; @O hO] = (1—#)"—5;/1; =(1-pv—p

i%j

If u and v are chosen sufficiently close to 0 and 1, respectively, then (1—p)v—p=c,
and so (2) is implied by (5) and (6).

Now, let us take real numbers ¢; and ¢, satisfying c¢<c¢;<c;<1. By the previous
part of the proof we can find a function u,€ H%(€,) such that (1) and (2) hold with
¢i/c; in place of ¢. Then for the function u,=c,u,€ H*(€,) we have

@) Iqu(lele,écz a.e., and
@®) K (), Bl =1 ace..

Let & denote the positive number- §=min {¢,—¢, 1—¢,}, and for any integer
n=0 and for any vector ac €,, [la|=6 let us define the function u, € H%*(E,) as
U, .=+ x"a. By (7) and (8) it easily follows that u, , has the properties (1) and (2).
Let us assume that (3) is not true, for any choice of n and a. Then taking a=0 we
obtain (i, faxey=0, Whence (£'a, )=(th,,, £)=0 for every n=0 and acE,,
lal=6. But the set {("a: n=0, ac€,, |la]|=8} istotal in H%(E,) and fc H*(E,),
so f must be zero, which is a contradiction.

Therefore, the function u=u, ,€ H*(€,) possesses the properties (1)—(3) for
an appropriate choice of n=0 and ac€,; |a] =J. :

Now we turn to the

Proof of the Theorem. Let & Ndveno_‘tg_ the *-multiplicity of T: l=k=

A, T<
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1) First we show that there exists an injection A in 4 (S®, T).

The operator X,: &, —~(4,(L*(€,))", X (udv)=(—4,u+0Ov) intertwines
U, with the operator R, of multiplication by x on the space (4,L*(€,))~, X,€
€£ (U4, R,). In view of the commuting relation 4,8=04 it is immediate that
X, (8,6 9)={0}, and so the operator X=X,.|$ belongs to S(T, R,) and the
relation
® X, =XP
holds. (A detailed study of the operator X can be found in [5].)
~ Since 4,({) is a positive operator of finite rank a.e. and ess sup rank 4, (0)=k,

we conclude that 4,(0) is of the form

(10) 40 = ,-é 5,k OO RO,
where v
h;eL¥(€,) forevery 1= j=k,
{h;(O)}}., is an orthonormal system in €, a. e. on 9D,
(11) " 0=6,6L” forevery 1=j=k,
126,z 6,(0)=...=26,(() ae. on 0D, and
m(oy) >0, where o = {{€0D: 6,({) = 0}.

(Indeed, the function 8,())=]4,()ll¢, is measurable, and an easy application of"
[2, Lemma II.1.1} guarantees the existence of a function h,€L?(€,) such that

11, (lles=1 a.e. and hy({)€ker (4, (0)—6,(0)I), whenever ker (4,(D)—6,(0)I)={0}.
The functions &,€L* and h,€L?*(€,) can be obtained from A4,—6,h in place
of 4, in an analogous way; and so on.)

Let O<c=<1 be arbitrary. In virtue of our Lemma, for every 1=j=k, we can
find a function u;€ H2(€,) such that

(12) lu;(Qlle, =1 ae., and
(13) (D), b DYed = e ace..

Let {e,}j-, be an orthonormal basis on a Hilbert space . The operator of
multiplication by x on the space H2(®) is a unilateral shift of multiplicity k, which
will be denoted by S™®. Since on account of (12), for any sequence {¢;}i_,cH?,
we have

, |
.3 eulnen = guf, haves = g"(j e, dm)"*

Z 1¢0ae = kl/’" Z fje;"m(a)a
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it follows that by the definition
k k )
W(jé; ¢ie5) = jgl' Eujy &)1 H?,

we obtain a bounded, linear operator, belonging to #(S™®, U,). Now, in virtue of
[9, Theorem 1.4.1] the operator
(19 A=PW-
belongs to £ (S®, T).

We are going to prove that A is injective if ¢ is sufficiently close to 1. First of all
we observe that by (9) and (14)

15) XA=X W
holds, hence the injectivity of A is a consequence of the injectivity of X, W.
k
Let us assume that X, W(> ¢;e)=0, for a sequence {{}_,cHZ On
j=1
account of (10) this means that for a.e. {€dD we have

0= (7 3 8,e)0) ==4,0 3 50 -

= —[_gk; 8O O®h(0)] ,é; §iOuO = —é; 5;‘(6)(}21 &0 w0, 1 ()e) i (D).

Making use of (11) we obtain that

(16) | é O hQYe, =0, 1=i=k,

for a.e. {€u.

Let us introduce the operators B({), C({), D({) ((€0D) acting on ® such that
their matrices [b;; (O ;15 [e; QN ;1. [d; (D) ;—, , Tespectively, in the basis {e;}_,
are of the following form:

by (©) = 0, Qw156 j Sk,
ey = {b"@ =g

0 otherwise,
0 if i=j
4 = {— b, (0) otherwise.
By (13) we see’ that  |c;;(DI=1by;Ol=Iu,(©), hjQ)e,|=c ae. (1=j=k), hence
C(0) is invertible and
an e Y st ae.
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On the other hand, if i#j then by (12) and (13)
1y (D1 = 1B, (O = Kt (s b(Oel = Kot () s (), hj(C))c,,hj(C), h(QYe =
= Ny (0= (s By ©Deu by Ollen = [t Ol&a~ <y ), By (Ol = (1 —02»)"’,' |

and so ‘
(18) IDQ)| = ;_2 (Ekl 1, QM2 = (1= ace.

Consequently, if c¢ satisfies : ‘
(19) 1 >c > Kk32(k3 1)~

then k**(1—c?)'*<c, and by the inequalities (17), (18) we infer | D()|l<|C ({);lll‘l.
Then the operator B(()=C({)—D)=C()[I-C()~2D({)} will be invertible and

(20) IBQ)=1 = IC@O(1-IC@O=IDON) " =
= c—l(l —K*2(1 _02)1/20—1)—1 —_ (c—k3/2(l —02)1/2)"1

Since the matrix of B({) coincides with the matrix of the system of equations (16),
it follows that ¢;({)=0 for every 1=j=k and for a.e. {€a,. But o, is of positive
measure and the functions ¢; are from the Hardy class H2, so we conclude that
¢;=0, forevery 1=j=k.

Therefore, taking into consideration (15) we obtain that under the assumptlon
(19) the operator 4€.#(S®, T) defined before is injective.

2) To prove that §® can be completely injected into T it is enough to show
that for any non-zero vector h in § the injection 4€#(S™, T) can be chosen in
such a way that A4 is not orthogonal to the range of 4.

Let us be given first 0fc H*(€,) and g€(4L3(E€))~ such that fHgeH. Our
Lemma ensures the existence of a function € H2(€,) for which beyond (12) and
(13) even the relation {4y, f)yxg,#0 holds. In this case (de;, fDg)=
=(P(u, ®0), fDg)a, =1 B0, P(fDE))a, = DO, fBL)a, =, MNaxey=0, ie.
f®g is not orthogonal onto ran A.

Let us assume now that 0sg€ HN(4L2(€))~. Let A>1 be a real number
such that the set a={{cdD: A <[ g({)llg<A} is of positive measure. Let ¢=0
be arbitrary and let us consider the functions {u}5_,cH2(E€,) occuring in the
first part of the proof. Since for any &,€H? we have :

184 ® ereDla, = ( f AL (PAEE S "g"e) dm)"® = (14 A
it follows that the definition

k k ‘
' ”f»(]gl Ee) =6 ("1@07&:8)‘*',;; &up (€5 HY)
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gives a bounded linear operator (|W] =k'2(1+ ¢%A%)"/*) belonging to #(S®, U,).-
We define 4,65(S®,T) by A,=PW,. Since XA,=X,W,, the injectivity. of
A, is again implied by the injectivity of X, 1.

Forany {£):_,CcH® wehave

X, W,(jg'; Ge)0 = X,(3 L @tens)®) =
——4,0 éé;(()u,(CH OMED ex2(O) =

= Z’ [-6:D Z ;00 BDeu+81 (02O 1D Q) (D)) (D) ace..

Hence X+W(2 ¢;e;)=0 yields that
21

() ,-é; & O w0, WD~ &0 OO XOED, WD, =0, 1 =isk,

holds for a.e. {€a;.

. Let E,(D) ((eap) stand for the operator acting on ® with matrix in the basis‘
{e;}5—, of the form

90 = {95»'(0“(9(C)x¢(£)g(£), B, if j=1

L. 0 otherwise.
By (11) we infer that
| el = eld: DI KOO8 (), m()e,) =
= 216D %DNgDlle = 0Ala (DI

is true for every 1=i=k and a.e. {€«,, whence

@) IE, (()II—(Z' Ie‘“’(C)I2)1’2ék"zellék(@l" ae. on a.

Let us con51dcr a Borel set fco;, of positive mcasuré and a ppsiiivc number A'>0
such that [§,({)]~*=1" for a.e. {€B. Let us assume that the functions {u;}}_;
correspond to.a number c satisfying (19). Now, if ¢>0-fulfils the inequality

23) okMV2AA < c—k3I2(1 —c2)Ue,

then by (20) and (22) we obtain that [ E,())l<[|B()~*|~* and so BI(C) =B(0) VE.(C)
is invertible a.e.. on B. In view of (21) we infer that é,({) 0 (I=j=k) a.e. on 8,
and since m(f)>0 that {,=0 (I=j=k).
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Therefore, the: operator 4,6 £ (S®; T) defined before will ‘be 4n ‘injection
whenever .c.and g>0 satlsfy the Iinequalities (19) and (23), respcctlvely At the
same time we have

(A,6;, 0D g)g = (P(th® axag), 0619g>a+ (4, ®0x.8, PODE)s, =

= (0 D018 008)a, = (X8 Srxw = ¢ ( [ lgle dm)'” = ga-*m(a)y2 > 0

i.e. g is not orthogonal to ran 4,.

According to [7, Theorem 5], if T is a contraction of class C., with finite defect

indices dr, dr+ and if S® -é T, then k=dr«—dr=p,, r. Hence, under the assump-
tions of Theorem 0, p,, r is the maximum of the multiplicities of those unilateral
shifts which can be completely injected into 7. The following example shows that
this statement fails if dps= oo

Example. Let {o,}>, be a sequence of pairwise disjoint Borel subsets of
oD of positive measure. For every n, let T, be a contraction of class C;y such that

rank 4, » =2, a.e. (cf. [4]). Then the orthogonal sum T= é T, is also of class
n n n=1

Cy, with rank 4, r=rank é 41,1 = a.e., whence pu, r=1. By our Theorem
n=1 U a,

n=1

S% T, for every n, which results in that S <
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On conimutativity and spectral radius property of
real generalized *-algebras

ZOLTAN MAGYAR

. Introduction. Let A denote a Banach algebra over the real field throughout this
paper. Of course, a complex algebra is a real algebra as well, although the spectra
will change (cf. [1], p. 70): Assume we have a linear operation g—~a* on 4 with the
properties

() a**=a,

@ii) (ab)*=>b*a*
Then A4 is called a *-algebra. If we replace (ii) by
i) (ab)*=a*b*

then we call 4 an auto-*-algebra. We say A is a generalized *-algebra if 4 is either
a *-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let

Ag ={acAd; a=a*), A;={acd; a=—a*}, Ay={acA; aa* —aa}

We call the elements of 4y, A, and Ay self-adjoint, skew-adjoint and normal, res-
pectively.

In [6] A4 is called Hermitian if each self-adjoint element has purely real spectrum
and A is called skew Hermitian if the spectra of the skew-adjoint elements do not
contain any non-zero real number (the spectrum is defined as follows: a complex
number z belongs to Sp (x) if and only if z.1—x is not invertible in A4;, where A4,
is the complexification, and unitization if necessary, of 4, see [1], p. 70). None of
these properties implies the other one as simple examples show. This i is a marked
difference from the complex case.

We shall retain the above definition of skew Hermitianness but we shall call A
Hermitian if both properties are satisfied.

Our main results then:

" Received November9, 1984 and-in revised form May 25, 1988.
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Theorem 1. If A is an Hermitian Banach auto-*-algebra then Afrad A is com-
mutative.

Theorem 2. If Ais an Hermitian Banach generalized *-algebra then r(a*a) =r(a)?
for any a€ A, where r denotes the spectral radius.

Remarks. If the *-operation is the identical mapping then Theorem 1 reduces
to a theorem of I. KAPLANSKY (see Thm. 8 in [2]) and, indeed, that result is the
starting point of our proof. We should emphasize that the significance of Kaplansky’s
theorem for Hermitian auto-*-algebras was first pointed out by T. W. PALMER
in [4], though [4] contains a wrong proof assuming the unitary elements form a
group, which is not true in an auto-*-algebra. On the other hand, the authors of [6]
simply overlooked that the proof of their key Gelfand—Naimark type theorem
{Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies
that all results of [4] and [6] are true.

* Finally we shall include a version of Theorem 2 which answers a question in
{6} (see Proposition 3 below).
To prove our theorems we shall need the following simple lemmas.

Lemma 1. If A is skew Hermitian then every skew-adjoint eIement has purely
imaginary spectrum. : :

Proof. Suppose to the contrary that a€4;, z€Sp (@) and z is not imaginary.
Then z can not be real, since 4 is skew Hermitian, and hence 2 is not real. Thus z
and 23 are linearly independent over R, and hence ‘there are s, t€R such that sz+
+1z2=1. Then Sp (sa+ ta3)91 while sa+1a® is skew-ad_]omt this is a contra-
diction.

Lemma 2. If A is an auto-*-algebra then. *
. rad Ag —AgﬂradA _
(see [1] for the concept of the Jacobson-radlca])

~ Proof. The contamment > follows at once from the qi.lasi-'inVerse-characte‘-

rization” of the radical (see [1], p. 125). : R '

Prove “‘c”. Consider an element acrad AH, and an 1rreduc1ble representatlon

- p of A ovet the real vector space X. Thén we havé 1o show p(a) 0°(if this is true

for all p then acrad A). If p is irreducible for Ay too,’ then we are done If p lS not
irreducible thien for any non-trivial 4z -mvanant subspace M set ’

= the linear span of p(A ,)M

Then therelations Ag 4, 4;, A; 4;C Ay imply p(Ag) M’ M’ and p(4,)M’'c M.
Hence M+M’ and MN M’ dre invatiant for: -dg+A;=~4; and therefore. X=Mo
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@®M’. Now if M were not irreducible then one could find a non-trivial Ay -invariant
subspace L in M, on the other hand, X=L@L’ and clearly L'CcM’, which is a
contradiction. The same is true for M’ since it is another invariant subspace So
we see pl,_ is a direct sum of two irreducible representations and hence p(a)=0.

Lemma 3. Let A be an auto-*-algebra. Then
SPag (h) =Spa(h) for any hcAy.

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A4, then this
quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement .using the
well-known characterization of the spectrum (see [1], p. 70).

Lemma. 4. Factorization by the radical does not effect the spectra except pos-
sibly for the number O in them.

Proof. Use the “quasi-inverse-characterization™ of the radical (see [1], p. 125)
and the fact if x has a left- and a right-quasi-inverse then x is quasi-invertible.

Proof of Theorem 1. First observe that the “* preserves the radical (use
- the characterizations of the radical from [1]). Hence 4/rad 4 is'a Banach auto-*-
~algebra and it is Hermitian by Lemma 4. Thus we can assume A4 is semi-simple.
In this case Ag is semi-simple, too, by Lemma 2. If [a]|’:=|a*]| then | .|’ is another
Banach algebra norm, hence by Johnson’s theorem the two norms are equivalent
(see [1], p. 130 for the proof of Johnson’s theorem). Thus Ay is closed. Using Lemma
4 we see Ay is a semi-simple Banach algebra in which every element has purely real
spectrum. This 1mphes, by Theorem 8 of {2], that

)) Ay is commutative.

Let h-»ﬁ be the Gelfand transform on Ag. It is 1nJect1ve, because Ay is semi-
simple. Next we will show
)] if j€d; and =0 then j=0.
Consider a.fixed j€A4; for which j*=0. Let k€A, be arbitrary and reR. Since
A is skew Hermitian, thus Sp (rj+k) is imaginary, and hence, using Lemma 3,

P P

we have 02(U+k)’-—r( Jk +kJ)+k2 for j2=0. This is true for any r; therefore
N
jk+kj =0, jk+kj=0. -Thus: (_]k)z“](— jk)k=0, which implies ( JB)=0, jk=0.
Since jk+kj=0, we have jk=kj=0 for any k€A,. Now let ac4 be arbitrary,
and h=(1/2)(a+a"), k=(1/2)(a— a*). Then aj=(h+k)j=hjc4,, and therefore
Jjaj=0, (aj)*=0. We get from this Sp (aj)={0} for each aEA and hence j=0

for A is semi-simple.
Next we want to show that

3) khk = k*h for any h€dy, keAd,.



342 Z. Magyar

Let g=hk—kh. Since k”EAH, thus k®h=hk? and hence gk=—kg. Therefore
(kg)*=k-(—kg)-g and hence (kg) —k2g2. Since k,g€A, and kg€Ay, thus
k2, g* have non-positive real spectra, while (kg)? has non-negative spectrum. Thus
we can infer I?E =0, kg=0, which is exactly (3).

Now we will prove that
4 kh =hk for any h€Ay, k€A;.

Let g=hk—kh. Then g®=hkhk—hk®h+khkh—kh®*=0 (use (3) for h, k in the
1st and 3rd term, and for A2, k in the 4th term). Thus, by (2), we get g=0.
Finally, we will show that

(5) - Jk=kj for any j,keA,.

Since jk, kj€ Ay, thus, by (4), jkj=7*k and kjk=Kk?; therefore 0=Fkjkj—kj*k+
+jkjk—jk%j, in other words, m*=0 where m=kj—jk€Ay. Thus m=0 and (5)
is proved.

The theorem is proved by uniting (2), (4) and (5).

Remark. Since the complex radical of a complex algebra is the same as the
real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of
course, one should check that a complex Hermitian algebra is Hermitian in our
sense as a real algebra. This follows from the fact if S is the complex spectrum of
an clement then the “real spectrum” is the set SUS.

Proof of Theorem 2. By Lemma 4 we may again assume A is semi-simple.
But then, by Theorem 1, 4 is a *-algebra anyway. So let 4 be an Hermitian Banach
*.algebra. Let p(x):=r(x*x)'? for all x€A4. Now A satisfies the conditions of
Lemma 3.1 from [6], therefore we can infer

()] p is an algebra-seminorm on A.
The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that

@) if 1€Sp(a) then p(a)=1.
We assert that ‘
(8) 3p(a) = r(a) for all acA.
If r(9)=0 then this is clear. If r(a)>0 then let b=r(s)~'a. We can choose a

~ z€Sp (b) such that |z|=1. Let c=(z+Z)b—b% Then 1=(z+Z2)z— 2%¢Sp (¢), and
hence, by (7) and (6), we have

1= p() = |2+2lp(b)+p () = (2+P(b)) p(b), thus p(d)=1/3
and (8) is proved. :
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Applying (8) to a” we get r(a)"=r(a*)=3p(a"). Now use the submultiplicativity
of p and tend with n to infinity. The theorem is proved.

Remark. Differently from the complex case (cf. [5]), r(a*a)=r(a)? does not
imply A4 is Hermitian; e.g., if A=C (considered as a real algebra) and the * is the
identical mapping then r(a*a)=r(a)® for all a but 4 is not Hermitian.

Proposition 3. Let A be a skew Hermitian Banach generalized *-algebra. Then
r(a*a)=r(a)® for any normal element a.

Proof. Let acAy be fixed. Let B be the second commutant of the set {a, a*}.
Then B is a Banach algebra, closed under the involution and Spg (b)=Sp, (b)
for any b€B. Further, B is commutative for a is normal. Let f be a multiplicative
linear functional on B. Let f(@)=u, f(a*)=v. Since A is skew Hermitian, thus, by
Lemma 1, a—a* and a?—(a*)? both have imaginary spectrum, and hence u—v and
u?—v® are imaginary numbers. Thus if u>v then u+4v is real and v=4#. In any
case |v|=|u|, and hence | f(a*a)|=| f(a){%. This is true for any multiplicative linear
functional f on B, therefore r{a*a)=r(a)2
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A characterization of (real or complex) Hermitian
algebras and equivalent C*-algebras

ZOLTAN MAGYAR

0. Introduction

We use the symbol F to denote a field that is either the real field R or the complex
field C. We call an algebra 4 over F a *-algebra if there is a conjugate linear mapping
“*» from A into A satisfying

(i) (ab)* = b*a* for all - a, b A4,

(i) (a¥)* =a for all acA.

We call 4 an auto-*-algebra if we replace the axiom (i) by the axiom
@) (ab)* = a*b* for all aq, bcA.

We call 4 a generalized *-algebra if 4 is a *-algebra or an auto-*-algebra. An element
a€ A is called self-adjoint, if a=a*, skew-adjoint, if a=—a*; and normal, if ga*=
=a*a. Denote by 4y, A; and Ay the sets of all self-adjoint, skew-adjoint and normal
elements, respectively.

We will treat Banach generalized *-algebras, that are generalized *-algebras
with complete algebra norm. We define the spectrum of an element with respect to
an. algebra containing it as in [1] (see pp. 19—20 and 70). Then it is known that

max {|z|; z€Sp (4, @)} = inf ||a"|*" = lim [e"|*/
n n-»co

if || . || is a complete algebra norm on 4. We write in this case

r(a):= inf [a|",

‘ Let A be a Banach generalized *-algebra. A4 is called Hermitian if Sp (4, )R
for all a€ Ay, and skew-Hermitian if Sp.(4, @)ci-R for.all a€ 4,. Every Hermitian
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algebra over C is automatically skew-Hermitian, of course. But this assertion is not
true for real algebras. We will prove that a real Banach generalized *-algebra A4 is
Hermitian and skew-Hermitian if and only if its complexification A¢ (see {1] pp.
68—69) is Hermitian (see Theorem 3 below).

We remark that there is an equivalent, but formally weaker, definition of the
skew-Hermitian property demanding only 1¢ Sp (4, @) for all a€ 4,. It is not very
hard to see that if Sp (4, a)di-R for some a€ 4, then there are s,-1€ R such that
Sp (4, sa+1ta®)>1, and sa+ta*c 4;.

A is called a C*-algebra, if it is isometrically *-isomorphic to a norm-closed
*-subalgebra of the Banach *-algebra B($) of all bounded F-linear operators on
some Hilbert space $ over F. A is called an equivalent C*-algebra, if it is homeo-
morphically *-isomorphic to some C*-algebra. We will give a characterization of
equivalent C*-algebras in Theorem 1 below, which is a generalization of a result
of PTAK (see [4]).

We will prove the following characterization of Hermitian and skew-Hermitian
algebras: A is Hermitian and skew Hermitian if and only if there is such a *-homo-
morphism = of 4 into some B($) which preserves the spectral radius (se¢ Theorem 2).
In contrast to a lot of characterizations of complex Hermitian algebras, this is valid
for real algebras, too.

Our results are based on the following lemma:

Lemma 0.1. Let A be a Hermitian and skew-Hermitian Banach generalized
*-algebra over F. Then there is a Hilbert space $ over F and a *-homomorphism =
A—>B(9) such that |n(a)]|=r(a*a)'’* for all ac A. Moreover, r(a)=|n(a)| for all
ac 4, and rad (A)=n"1({0}). If A4 has a unit then © can be chosen so that n(1)=1.

Proof. First we suppose that A4 is a *-algebra. Let -
A, = {acAy; Sp(4, a)cR.}:

Then it is known that 4, is a cone and a*a€ 4, for all ac 4 (see [5]). This is also
true for the unitization A+F of A, since A+F is Hermitian and skew-Hermitian as
well. Thus it is not hard to see that we can find for any fixed a€ 4 a self-adjoint
positive functional such that f(1)=1 and f(a*a)=r(a*a) so that the customary
GNS-construction gives us a Hilbert space $ and a *-homomorphism = of 4 satisfying
jm (@) =r(a* a)'/* for all a€ 4. (For more detailed description see [2], Lemma 3.1
and [1] § 37. See also [4] for another proof in case F=C.)

Since rad (4)={ac4; r(ga)=0 for every ge A} (see [1] p. 126), it is clear
that rad (4)c N, where N:=n"1({0}). On the other hand, the author has proved
in [3], that-r(a@)=r(a*a)'® in a Hermitian and skew-Hermiitian Banach *-algebra.
Thus N is an ideal consisting of elements of spectrum {0} whence Ncrad (A)
Moreover, we see that r(g)=||n(a)]| for all ac 4. o .
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Now we suppose A is an auto-*-algebra. Being a conjugate linear automorphism
the “*”” maps rad (4) onto itself. Let B=A/rad (4) and p be the canonical mapping
A—B. Then it is known that

¢)) Sp (4, a)\{O} = Sp (B, p(a))\{O} for all acA.

(It is not hard to deduce this fact from Proposmon 24, 16 (i), p. 125 in [1]. )

Therefore B is a Hermitian and skew-Hermitian Banach auto- *-algebra. More-
over, B is semisimple (see [1] p. 126). Thus, by a result of the author’ (see [3]), B is
commutative, and hence B is a *-algebra. Therefore we have a representation 7,
of B satisfying the statements of our lemma, and so by (1) n:=m0p is a representa-
tion we asked.

1LA charéc_térization of eﬁuivalent C*-algebras

Lemma 1.1. Let A be a Banach-algebra over F, and let g be an entire function
on C, satisfying g (0)#0 Further in case F=R we assume that the Taylor-series
of g at zero has only real coefficients. Then there is a functzon f: Ry—R, so that
Ix12=f(c) - |x¥| whenever x is such that | g(tx)l|=c for all tcR .. (g(a) may be in the
unitization A+F of A, if A does not have a unit. We fix a norm on A+F in that case.)

Proof. Let g(z) Zcz Z" If h(z)= Z'Ioc,,l .z" then h is an entire function,

too. Suppose that ||g(tx)|l =c¢ for all t¢ R+ for some x€A4 and c€R,. We can as-
sume that [|x||=1 because both sides of the inequality |x[|2=f(c)-[x?%| are mul-
tiplied by |4|2 when we replace x by Ax, and the case x=0is trivial. Then let p=|x|'/3,
thus we see that p=1 and |x"|=(p*}"*'=p" for all n=2. Hence we have for all -
t€R,

t = tx]) = lon| 2 |[g (tx)—ap- 1 — Zza..t"x"” = log| ™1+ (e +lowol - 110 + B(2p))-

Hence p#0, and replace t=p~!, we see that p~l=¢(c), where o¢(c)=
=|ay| "2 (c+]atol - 11| +A(1)). Thus [x?| —p3>¢(c)‘ , and so f(c)=¢(c)® satisfies
our condition.

Lemma 1.2. Let A and g be as in Lemma 1.1, and let (x) denote the real algebra
generated by an element x¢ A. Then the function f of Lemma 1.1 also satisfies ||x| =
=£(c) - r(x) whenever x is such that [|g(a)|] =c for all ac (x).

Proof. Assume that |g(a)|=c for all ac (x) for some x€A4 and c€R,.
Then by Lemma 1.1 we have

[lall® éf (©-la* for all ac x>
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Writing a=x", we can infer by induction that

[x** = f(e)* 2 [x*])
and hence, tending with z to infinity we get [ x||=f(c)-r(x).

Theorem 1. Let A be a Banach generalized *-algebra over F. Then A is an
equivalent C*-algebra if and only if there is a constant C such that

@) lsin M =C for all h€ Ay and,
(i) ||sinh (k)||=C for all k¢ A;.

Remark. Of course, in case F=C (i) is equivalent to (ii).

Proof. First we assume that 4 is an equivalent C*-algebra. Then there is a
norm p on A so that (A4, p) is a C*-algebra and a constant C such that |q|=C-p(a)
for all ac 4. It is known that a C*-algebra is Hermitian, skew-Hermitian and its
norm equals the spectral radius on normal elements (this is well known for F=C,
and for F=R we can canonically embed the subalgebra of B(9) into B($) where
D¢ is the éomplexiﬁcation of the real Hilbert space $, and thus we can infer the
statement). Therefore if h€ Ay then Sp (4, h)CR, and so Sp (4, sin (h))c[-1, 11
(see [1], § 7), further sin (h)€ Ay for the * is norm-preserving in a C*-algebra, and
hence p(sin (h))=r(sin (B))=1, [sin (W||=C-p(sin (1))=C. Similarly, if k€ 4, then
Sp (4, k)ci-R, Sp (4, sinh (k))ci-[—1, 1], sinh (k)€ 4;, and hence |sinh (k)| =C.
"~ Now we assume that A satisfies (i) and (ii) with a suitable constant C. First we
show that

1) A is Hermitian and skew-Hermitian.

Observe that if z¢ C\ R, then the set {sin (¢z); t¢R} is not bounded. This fact
implies that {r(sin (th)); t€R} is not bounded if Sp(4,k)d R, and similarly
{r(sinh (tk)); 1€ R} is not bounded if Sp(d4,k)¢i-R for sinh(z)=—i-sin (iz).
Since r(a@)=lal, thus (i) and (ii) clearly imply (1).

Now we want to show that

(2) there is a constant M such that [a] = M-r(a) for all acAgUA,.
We have by Lemma 1.2 and (i) a constant m; such that

@ - - lal=me-r@ forall acdy

and we have by Lémfna 1.1 and (ii) a constant m2>s1'1ch4tt-1at »

@ : _ lal?® = myla®| for all acd,.

But a*cAdy for ac4;, thus |a?|=m,- r(az) =m, r(a)2 and hence Q)i is true with
M=max (m,, Vm, - my).
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We can apply Lemma 0.1 to 4 because (1) holds; let 7 be the corresponding’
representation. Since [|n(a)]| =r(a*a)"/?, we have

) ' In(@)] = r(a) for all acAgzUA,,

and so by (2) we get. |al|=M.||n(a)]] for all ac 43U 4;. Thus if a is an arbitrary
! £ —_n* .

element in 4 and h= “’;“ , k=2 2“ , then [la] = |lk] + 1kl =M(lz®)| + = (L)

and [z =l=(@@)l, zE)|=lz(a)| for the * is norm-preserving on B(H). Thus
we get

6) lall = 2M .||n(a)]] for all acA.

We have |n(a)|2=r(a*a)=|a*a]=|a*|-]lal, and -hence by (6) we infer |a]=
=4M?%.|a*|. Thus ||a*]|=4M2-|a| for a**=a, and hence

™ In(a)|2 = 4M2-|la]? for all acA.

It follows from (6) and (7) that z is homeomorphic and n(4) is complete. Therefore
A is an equivalent C *-algebra.

2, A characterization of Hermitian algebras

Lemma 2.1. Let A and B be Banach generalized *-algebras over F. Assume that
p: A—B is a *-homomorphism satisfying r(h)=r(p(h)) for all h€ Ay. Then A is
Hermitian (resp. skew-Hermitian) whenever B is.

Remark. The condition r(h)=r(p(h)) is equivalent to r(h)=r(p(h)) for
Sp (B, p(W)=Sp (4, K) U {0}.

Proof. Suppose that 4 is not Hermitian (resp. skew-Hermitian) but B is.
Then there is an element h € Ay (resp. ki€ A4;) such that Sp (4, b)) &R (resp.
Sp(4,k)¢i-R). If zEC\(RUi-R) then z?¢ R and hence {rz+sz3; 1, s R}=C.
This implies that there is an element h¢ {thy +sh3; 1, s R} Ag. (resp. k€ {tk,+sk3;
t, s€ R}C 4;) such that i€Sp (4, h) (tesp. 1€Sp (4, k)). Let c=h® (resp. c=—k?.
Then '

(M —1¢Sp(4,¢) .and c€Ay..

Further, p(c)=p(h)? (resp. p(c)=—p(k)?), p is a *-homomorphism, and B is
Hermitian (resp. skew-Hermitian); thus we get
@ Sp(B, p(d))CR,.

Since A4 is a Banach-algebra, Sp (4, c) is bounded and hence there is a real
number A such that

A3 A>1 and —A71.¢ has a quasi-inverse d in 4.
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Moreover, d€ Ay, because —A~1.c€Ay. Since p is homomorphic, thus p(d)
is the quasi-inverse of —A~1-p(c). It is known that if b is the quasi-inverse of g in
an arbitrary algebra then {t(t—1)~%; t€Sp (a)}=Sp (b). (Sketch of the proof: b is
the quasi-inverse of a if and only if 1—5 is the inverse of 1—a, where 1—a, 1—-b¢
€A+F if 4 does not have a unit in.which case Sp (4, x)=Sp (4+F, x) for all
x€A; and hence it is easy to deduce the statement) Thus we get from (1), (2) and
(3) that

@ there is'a negative number (namely (1—2)-1) in Sp (4, d)
and . A
%) . ~ Sp(B, p(@)cIo, 1).

Consider the polynomials PA(X)=X(1—X)". Then P,(d)¢Ay, and since
Sp (B.(@))=P,(Sp (@) in an arbitrary algebra, thus r(P,(d))>1 for sufficient large
n by (4), while 7(B,(p(d)))<1 for all n by (5). Thus we have got a contradiction to
the assumption of our lemma.

Lemma 2.2, Let A and B be Banach algebras over F and p: A—B be a homo-
morphism. Then the following conditions are equivalent:

@) r(@=r(p(a) for all ac4,

(i) dSp (4, a)<dSp (B, p(a))U {0} for all ac A.

Proof. First we assume (ii). Let a€ 4 be fixed and let S be the closed disc
about zero in C with radius r(p(a)). Then 4 Sp (4, @) S, and Sp (4, a) is a bounded
setin C, thus Sp (4, @), r(a)sr(p(a)) Therefore (i) holds, for r(a) =r(p(a)) is
true for any homomorphism p.

Now we assume (i). Fix an element a€4 and a complex number
2€dSp (4, a)\{0}. Suppose that z¢9 Sp (B, p(a)). Since Sp (B, p(a))<Sp (4, a)U
U{0}, we get z¢Sp (B, p(@)). Choose a sequence of complex numbers z,—z such
that z,¢ Sp (4, a). We may assume z,0 for all n. If F=R then let

=-z,|"2-(2-Re(z,)a—a%) and u=|z|"2.(2-Re(z)a—ad),
while in case F=C let -
u,=z;l-a and u=z"1.qa

Then we have by [1] (see p. 70):

(1) u,~u in A and p(u,) — p(u) in B,
) u, has’a quasi-inverse in A4,
3) u does not bave a quasi-inverse in' 4,

@ - p(u) has a quasi-inverse in B.
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Eurther on, u, and u are polynomials of a, and hence there is a maximal commutative
' subalgebra A of 4 containing u and u,.for all », and similarly a maximal commu-
tative subalgebra B’ of B containing p(A4"). By (3) there is a character ¢ on 4’ such that
¢()=1. Thus ¢(u,)~1, and hence, denoting the quasi-inverse of u, by v,,,
lo (v,)] = oo. Therefore r(v,)—~<> and thus (i) yields

® : r(p(v,) +o.

On the other hand, 1¢Sp(B’, p(4)), and hence there is an &>0 such that
W(pw)—1j=>e for all characters ¢ of B’. Thus if [p(u,)—p)|=e/2 then
1V (p(un))— 1l Ze/2 for all y, and [ (p(w)) = p(uy)] Sconstant, because p(u,)~p(u).
Hence r,:=max {|[A(A—1)7Y; A€Sp (B, p(u,))}4+=, while r,=r(p(v,)) for p(v,)
is the quasi-inverse of p(u,). This contradiction to (5) proves our lemma.

Theorem 2. Let A be a Banach generalized *-algebra over F. Then the following
conditions are equivalent:
(i) A is Hermitian and skew-Hermitian,
(ii) there is a Hilbert space $ and a *-homomorphism n: A—B(9) satisfying
An(a)|=r(a*a)'’® for all ac A, .
(iii) there is a m as in (ii) and satisfying r(n(a))=r(a) for all ac 4,
(iv) there is a n as in (ii) and satisfying

9 Sp (4, a)cd Sp (B(9), n(a)) U{0} | for all acA.

Proof. First we prove (i)=»(iii). Consider the homomorphism = obtained from
Lemma 0.1. Then for any ac4 r(a)’=r(a")=|n(a™| for all n, and hence r(a)S
=r(n(a)), thus r(@)=r(r(a)).

Now we prove (i)=(i). If h€ Ay then r(h)*=r(h®)=r(*h)=|n(h)|2=r(r(h))?
and hence by Lemma 2.1 we get (i), because B($) is Hermitian and skew-Hermitian.

Since (iii)=(ii) is trivial and (iii) <>(iv) was proved in Lemma 2.2, the proof of
Theorem 2 is complete.

3. Relation between real and complex Hermitian algebras

Lemma 3.1. Let A and B be Banach-algebras with unit over F, and p: A-~B.
be a homomorphism satisfying p(1)=1 and r(p(a)) r(a) for all ac A. Assume that
Sp (B, p(x))c R\{O} Jor some x¢ A. Then. x is invertible in A.

Proof. Since'4 is a Banach algebra with unit, there is a real number ‘A=>0sothat
a=(A+x?) ! exists in A. Then p(a)=(A+p(x)?)~%, and kence Sp (B, p(a))=(0, 1/3),
r(p(a))<A~ Thus r(@)<A~%, and therefore A-2¢Sp (4, a), A4 Sp (4, 1+x9), and
we see that x? is invertible in 4. Hence x is invertible in A :

10
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""" :sLemma’3.2. Let A be a generalized *-algebra over R, and A be its. complexz-
: ﬁcatzon Then (A/rad (A))c is” -zsomorphzc fo. AC/rad (Ac) -
i Proof We want to prove that

A

o rad (40) = {(@ DY de; @, berad (4).

(We use the symbols of [1], see p. 68.) Let N= {a€ 4; (a, 0)¢rad (4c)}. Clearly N
is an ideal of 4. If ac N, then (a, 0) is quasi-invertible i in AC, hence a is quasi-invert-
ible i in A Thus we obtam i} o

@ . o Ncrad (4).

~y Now we fix an element berad (4) and an irreducible representation p of 4.
over the complex linear space X. Suppose that L is a real subspace of X, invariant
for the operators pl(a, 0)) for all a€4. Then L+i-L and LUi-L are complex
subspaces, invariant for p(AC), and hence, being p an irreducible representation,
if L is non-trivial then X=L@®i-L as a real linear space. Hence if L, is another
such subspace then {0}& L, &L is not’ possible, that is a—»p((a, 0))|. is an irreduc-
‘ible’ répresentation of 4 on L. Thus p((, 0))|L—0 for berad (A) and hence
(b, 0))=0 because X is the complex hull' of L. If such L does not exist then
a—p((a, 0)) gives an irredicible representation and p((b, 0))=0, too. Having this
for any irreducible representa’uon p of A we see that beN, rad (4)C N, and hence
by (2) we get - :

(3) o N =rad (4).

"~ Now~ cons1der the mapping (a,b)":=(a, —b) on Ac. This is conjugate linear
automorphlsm, hence it preserves the qua51-1nvert1b1hty, and therefore maps rad (4¢)
onto 1tself We can mfer from this:

‘ rad (AC) {(a’ b) (a’ 0)’ (0 b)erad (AC)}

But —i. (O b) o, 0) and hence rad (4c)={(a, b); a, be N}, . that is, by (3), we
can see that (1) holds.
It is easy to deduce from (1) that (A4/rad (A))c is *-isomorphic to A¢/rad (4c).

Theorem 3. Let Abea Banach generalized *-algebra over R. Then A is Her-
miitian and skew-Hermman if an.only lf its compIexzﬁcatzon AC isa compIex Hermman
algebra. : ; :

Proof. Since the spéctrum in a re'al algebra is defined through its 'compleidﬁ-'
cation; one of the diréctions is trivial. To prove the other direction let 4 bé' Hermitian
and skew-Hermitian as. well. We may assume 4 has-a unit, because otherwise 4+ R -
is ‘Hermitian and skew-Hermitian while (4+ R)¢.-is -1somorph1c to Ac+ C Then
we may also assume A is semi-simple by Lemma 3.2.. :
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Thus by Lemma 0.1 we have a *-homomorphism n: A—B($), which is now
injective. Moreover, it is easy to show (see e.g. the proof of Theorem 2) that

(1) = satisfies the conditions of Lemma 3.1.

We want to prove that 4 is Hermitian. Since 1€ 4, it is enough to show that 14 x2
is invertible in A whenever x€(A4c)g. Fix an x=(a, b)€(Ac)y, then a€ Ay and
be4;. Let ¢c=1+a>—b? d=ab+ba, then 1+x%=(c,d). Since the complexifica-
tion of B($) is clearly *-isomorphic to B($¢), which is Hermitian, thus (z(c), n(d))
is invertible in B($)c, so we have u, v€ B(9) satisfying

()] u-nlc)—v-n(dy=1, u-n(d)+v-n(c)=
and ,
A3 n(c)-u—n(d)y-v=1 n(d) -utn(c)-v=0

It is known that the set A,={h€ Ag; Sp (4, h)c R,} is a cone (see [5]), and hence
—b%* A, because a?, —b*€A4,. Thus we can infer

(C)) ¢ has an inverse h in Ap.

We see from (2) that v=—wu-n(dh) and so u-n(c+dhd)=1. Similarly, we
can see from (3) that =w(c+dhd).-u=1. Observe that m=c+dhdc Ay because
dc A; and c, h€ Ay, and hence Sp (B(9), n(m))cR. Applying Lemma 3.1 we get
a k=m™! in A4, moreover, n(k)=u. Hence v=n(j), where j=—kdh. Now by
the injectivity of = we can infer that (k, /)=(1+x%~? in 4. The proof is complete.
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Models for infinite sequences of noncommuting operators

GELU POPESCU

In 1], J. W. BUNCE developed a model theory for n-tuples of not necessarily
commuting operators, extending the work of A. E. FRAzHO [4] for pairs of operators.
He proved, for a finite number of operators on Hilbert space, versions of the Rota
model theorem, the de Branges—Rovnyak model theorem, and the coisometric
extension theorem. :

The aim of this paper is to extend these results for infinite'sequences of non-
commuting operators, to generalize some results due to B. Sz.-NAGY [8] and G. C.
RotA [7] [5, Problem 121] and to give some necessary and sufficient conditions for
simultaneous similarity. We shall prove all these results without using the theorems
above mentioned (for a finite number of operators).

1. Let 5% be a Hilbert space and B(5#) be the algebra of all bounded operators
in »#. We recall that a coisometry V€ B(2¢)is called pure if V™ -0 (strongly) as n— oo,
In [1, Proposition 2] J. W. Bunce proved that for any finite family {4;; 1=i=n}
(n€N) of operators-such that r(4;)<1 for each i, (r(T) denoting the spectral radius

of an operator T€B()), and 2"' AfA;=I, (I, is theidentity on 5#), there area

Hilbert space 2 D and pnre cmsometnes {S;; 1=i=n} acting on A" such that
S;(#)cH, S)|,e=A; for each i and S,S; 0 for i=j.

We begin with a-theorem which generalizes Proposition 1 of [1] and the above
mentioned result, replacmg the condition that r(4,)<1 by the condition 4"->0
(strongly) as n— o, Let us consider A and J to be sets of indices such that card A=, .

Proposition 1.1. Let of,= {A..;: i€ A}YCB(#) for each a€J. Then the
following two conditions are equivalent: : :
a) Z'A,,,A,,,_I, Jor each a€J.
i€a .
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b) There exist a Hilbert space A D and families of coisometries ¥,=
={V.i; i€ A}CB(X) (xcJ) such that

V= Ly, Vo ()t and V, i|le = A,,; for each acl, icA.

i€q
One can even require that V, ; be a pure coisometry for every a€J and i€ A for which
A; —~0 (strongly) as n— oo,

Proof. Itis easy to see that b) implies a).

Conversely, assume that for each a€J, 2,'1 A% ,4,,=I,. Consider the Hilbert

i€

space H= @ X, ;, where £, ; is a copy of the Hilbert space 5, and the

a€l,icA

operator T€ B(H) defined by
‘ T( D -ha,i)— @ Aaihal

a€J,i€d a€J,i€

ﬁote that T is a contraction. Indeed,
"T( e hll l)”2 2 ( Z A a iha,l’A ha,l) .§ zg "ha,lll2 = ”aél%?GA ha,i”z’

for every o) ha ,GH
a€d,d€d
Let us determine a Hilbert space K>DH and a cmsometry VEB(K) such that

V(H)cH and V|g=T. Let K= HEB.//I where .# is a Hilbert space which we
shall determine: With respect.to this decomposition of K the matrix of V' is

0Y
where X: #—~H and Y: 4~ satisfy the relations:
Ly O TTHXXt=Ig, XYT=0, YT =L
Since Yisa cmsometry, the Wold decomposmon of the. Hllbert space . with
respect-to Y* is .M =My®M; and Y=S*@U,. where. Sr is the -unilateral shift
acting on - #My= é Y™(P), L=MOY (#) is the ‘wandermg»'subspaCe of §,

and U is a umtary operator acting on M, =4O M= ﬂ P& (.ll)

The relation XY*=0 implies X|, =0. Therefore, w1th respect to the de-
composition K=H®.#,®4;, the matrix of V'is = ' :

TX 0
V=|0S*0
00U elared
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where X'stands for X|,, . Therefore X: .#;—H- and the relatxons (1 1) becomé
(1.2) TT*+XX* =Ig, XS=0.

Obv10us1y, we can consider -
My = {2("?) = {(xla Xg5 +0)} x,e.‘? Z "xl"2 <°°}

and §: M,—~M,, 'S(Xyg5 Xgy .0 )= (0 Xps X35 .- ) Since XS=0, it follows that
X(0, ¥y, ya, ...)=0 for every y,€% satisfying ley,|2<oo We embed . & in.

£2(%) by identifying the element £€ % with the element (Z,0,0,...)E¢*(Z). In the
sequel X stands for X|,. "Thus the relations (1.2) become .

(1.3) B C TT*+XX* =y, -
where X: £—H.
The relation (1.3) holds for ¥=H .and X=(Iz—TT*)"?. With respect to the

decomposition H= @ #,; we have X= P X,;, where X, H-X#
a€d,icA z€J, i€ 4 ) s

Takmg into account (1.3),.the following relations hold:
(1.4)_, {A,,,Aa,,+X,,Xf,'—I,,, for acl, icd,

_ A,,,A*-+X, Xz;=0 for act, isj,. i jeA.

Let {1,2,..}= U N, such that- N,ﬂNj 0 (i>4j) -and ‘card N;=1§; -for
each i€ A. Setting N, {n"), 7P, ...}, where nP<nP<... for each icA, we define
Z,EB(£2(H)) by | R L |

L Ziles by ) = (g, g, ), h,eH (Z Wl <),

Note that Z; Zf =l (zeA), and Z;Z}=0 (1#_])

Consider the Hilbert space oA = .;K’GBI"‘(H) and define . ,,iEB(.%" ) (ozGJ zGA)
by the matrix

- N4 a, '
Veu = (o z,s*]
where W, ; (a€J, i€ A) stands for ‘the operator X¢ ; 0006... By (l 4) a s1mp1e
computatlon shows that for every a€J, i€Awehave . .
¢.1V i =L, Va,iK.j =0 ( # ), 2, :(”)C” and 2, :l: Au
" Let, us prove that, if A4 —»0 (strongly) as -n—eo for some. agJ;. i€ A, then

Va"i—»O (strongly) as n—+o for the same a€J, i€ A. Note that with: respect to. the
decomposmon A= .#69(2(}1), .we have A

e

e Zam ..i(z,S*)"-f-l

0 (z‘s*)" i
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Let .y=(0, ..., 0, ,y,,,,JO, 0,...)e2(H), where m=1, . and let n=m. Since
\V-t .
m~1 times
W, (0, hy, by, ...)=0 for every (0, h,, h3, ...JE/2(H), it follows that, if there exists
1=p=msuch that (Z;S*)Py=(¥s, 0,0, ...), then

g"o AL W, (ZiSH1y = AP W (Z:S™YPy,

otherwise we have

Z a,i a,v(ZiS*)” jy A a, 1y
In both the cases, since 4 ;~0 (strongly) as n— oo, it follows that

ZA,, L i(ZiS*=iy ~0 as n—oo.

Since (Z;S*)"—~0 (strongly) too, it follows that V", (h@y)~0 as n—eos, for
every h€ s and all y of the form above mentioned. But the span of all the vectors
y of considered types is the Hilbert space #2(H) and || Vrll=1 for each ne{l, 2, ...}.
Thus, we have that ¥.",—~0 (strongly) as n—eo for the same a€J, i€ A for which
Aj; ;0 (strongly) as n-—ec. This completes the proof.

We remark that, if card A=card /=1, we find again the coisometric extension
theorem and the de Branges—Rovnyak model theorem (see [9], [5]). The result of
E. DurszT and B. Sz.-NAGY [2] is contained also in Proposition 1.1.

2. We say that a family o ={4;};c,©B(5#) is simultaneously similar to a
family #={B;};c,<B(x’) if there exists an invertible operator REB(, X)
so that 4;=R™B; R for every i€ A.

In what follows we shall obtain a generalization of a result due to B. Sz.-NAGY
[8], that is, an operator A€ B(s#) is similar to an isometry if and only if there exist
a=b=0 such that

b(A|* = ([ 47h|* = a]lh|®
for every he.# nEN.

We shall also obtain a generalization of Rota’s model theorem for infinite
sequences of operators, and we shall give some necessary and sufficient conditions
fora family {4;}ie4<B(#) tobe sxmultaneously sxmxlar toa farmly {T}ig ACB(%’)
‘of ‘contractions with . Z'T Ti=I,

Let us denote by F(k A) the set of all functions from the set {1,2,. k} td
the set A. For &= {A,}i“ CB(#) and fE€F(k,A), let A,—A,(,)A,(z, - Apy-

The following two:lemmas are simpleé’ extenswns of Lemmas 4 and 5 from [1).
We omit the proofs. =5;4 R ;
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i Lemma 2.1. Let -of ={A;};c4CB(#) such that the series 3 A*A; is con-
. - icd :
vergent in the strong operator topology (if card A=1R,).

a) If 1=m=<n, then 3 Aid;= 3 A A;4)4,.

SEF(n, A) 4 q€F(n—m, A) gGF(m A)

b) For any m,n=1 ”

oo A= A

Lemma 2.2. Let &/ ={4; }.e ACB(#) with Z’ AFA; strongly - convergent.

Then

1 A*A l/m_ f A l/m
| 2, A= {n,m A

Define :
= * 4 [it/emy
r(&’)v._ lg.f{||fm2m’,lo‘4f_ f" }

For A with card A=1 we find again the well-known formula for the spectral radius
of an operator. The case when card A<, is considered-in [1].

Proposition 2.3. Let o ={A4;};c 4<B(). The following statements are
equivalent:

a) .'Ihere exists a family of contractions = {T:}ica<B(#) with Z’T*T I

such that .sz! is simultaneously similar to J.
b) There exists a positive invertible operator PEB(#) such that Z’ A*PA,§P

" Proof. Assume a) and let REB(H) be an mvertlble operator such that A =
=R™IT;R for each i€ A. Since

ST =R 3 AR RA)R = I,
icA i€A R

it follows that 2 Af PA;=P, where P=R*R. Conversel&, assume b) and con-
sider T;= RA,R 1, where R=PY2. Thus, 2‘T*T<I and the proof is complete.
- A necessary condition for s1multaneousi similarity is the followmg
. Proposition 2.4. If a family of ={A4;};¢ ACB(&?) is szmultaneously similar
to a family T={T};caCB(#) of contractions with .- ZTi Ti=L,; then there‘
exists M>0 such that

Z IlAfhll3 = Mllhll2
JEF(nm A

for every he # and neN. I pafiic"ular it fo'llow.s"’t'hai' r(f)= 1.
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Proof: According to Proposition 2.3 there is a' positive invertible.operator
REB(o#) such'that T;=R4; R for each €A, By Lemma 2.1 we have s

N Z TIN=NZ T = forany ke

Since A,=R 1T,R (feF(k, A)) it follows that -

.2, Ar4 )| = IRE). 2 T*(R ety = IRIPIRE
for any' k€N. By Lemma 2.2 it is simple to deduce that r(d)é 1.
The following proposition is a generalization of the result due to B. Sz.-NAGY
[8] (for single operators).and the proof is on the same line.

Proposition 2.5. Let .xz/ {A,},E ACB(%’) The foIIowmg two conditions
are equivalent:

a) There exists V={V;};c ACB(.#) with Z'V*V—I such that &/ is simul-

taneously similar to ¥,
b) There exist a=b=0 such that
bl = ; 2 NAgh? = allh|?

€Fpn, A

for any he# and neN.

Proof. Assume a) and let REB(#) be a positive invertible operator such that

A;=R™'WR for each i€ A. Since 3 V;*V;=I,, we have, usmg Lemma 2.1,
. dea

(2 1) ' Z 173 V, = I,, for any neEN.
. SEF@m,4) -

As in the proof of Proposition 2. 4 we obtain that

2 N A4sh|? = [RIP[R-2|lA]2 -
ref@a S

for any he A, nEN. On the other hand using (2.1), we have

i . 1A
fe%.@"”f"“z TRF seigin 0 = nRu= TR = TR

for any h€s#, néN. :
- Conversely, assume condition b) is true. If card A=#,, we can take

4=N={1,2,, }..K-‘%")HA,hIP is convergent for h€s# 'and - n€N, .. whence
KF(Z o (A,hl,A,hz) is convergent for every hy, hy¢5# and nEN. Since for any
By, hy€ 3 we have that ' S

| 2. (4h, A;ha)[s(a/z)(umu%uhguz)

- fEF(m:4):
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for every nEN we can deﬁne for any hy, hze.#

R ) = LIM 2 <A,h1,A,ha),
- B reF(n,

where LIM means a Banach limit. : .
" Taking into -account, the properties of. the: Banach limit we see that ( Ly is
a hermman bllmear form and

(22) ' b|[h(12=s<h By = LIMI > [lA,h||2Sa|(h|]2 for each heH, .
€F(m A4). .

By a well-known theorem on the bounded herm1t1an blhnear form, there exrsts a
selfadjoint operator P€B(o#) such that .

<h], h2> (Ph] , hz) for all h], hges# . o
From (2 2) it follows that bl,= PSaI L therefore Pis a positive invertible operator
Now we shall show that P= 2' A} PA;. Since the series: 3 [[4;h® - is con-
i=1 icd

vergent, for every ¢>0, :there exists ky;€N. such that 5’ |4;h]|2=¢fa for any
ST , , skt o
k=k,. Thus, forevery k=k, and neN we have:
oo k .
0= Z F%’ o 4, 4:H12-2 5 "AJ‘A hIl* =

- i=1 f€F(n,A

= _%' Z IIAfA hF=a 2 HAthlZS g,

'l
when¢é it follows . Do _ N e S

n~>oo =1 IEF(

k
0 SLIM(Z uAfAihuz)—LIM(Z > A 4P =e
] B+ =1 feF(n,z.i)”
for any k=k,. Since
(PhB)=LIM 3> |4h]* =LIM(3 3> |4 4%
B+ fEF(n +1.A) A=+ j=1 f€F(n, A)

for any hest, we have that -

0 = (Ph, h)— Z(LIM 2 Mk =e for any kzko‘ c

n-»oo f
In other words RS -" ST : ’_r\ R A
E o
TP _(Ph,b)= lim. Z'(LIM > [!AfAihllz) =
B2 B ) k- oo (3] "Bsco. .IQF(,

Z(Aih Aih) ((2’ A*PA,)h h) for every hex’
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Therefore, ‘2 A}PA;=P and setting R= =P2, V RA‘R‘1 for each IEA we
deduce that 3 V/*¥,= I. The case when A is a finite set is even simpler to deduce.

icA
The proof is complete.

‘We now give a necessary and sufficient condition for simultaneous similarity.

Proposnlon 26. Let o={4; }.e ACB(.#) Then the foIIowmg condttlons
are equivalent.’
a) There exists T={T}};c ACB(.;?) wnh ZT, 7:51,,. such that A is simul-

taneously similar to I.
b) There exist DEB(#) and a=b=>0 such _that

blhEs 3 4hlP+ S |DAKP+..+ 5 DA P+ DA = alhf
R 2 . feFQH) ,

n,A) - n-1,
for every he€s#, neN.

- Proof. Assume condition a) is true. Then, according to Proposition 2.3, there
exists a positive invertible operator -PE€B(3#) such that 3 A!PA;=P (we can
assume that |P]=1). Let e

D =(P- 3 AtPA)"?

HP S
and for each h€# and n€N let
Sww= > lA4;HP+ 3 |DA/hP*+...+ > |DAgh|*+ ||Dhj?.-
S €F(n—1, A) SEFQ, 4)

F(n, A) (n-1,

An easy computation shows that

Sen= 2 (AfAh,n)— 3 (AfPAsh, h)+(Ph, h).

SEFm ) S€F@m, 1)
By Proposition 2.4 there exists M>0 such that _ _
Sun= 2 (AfAch, H)+(Ph, ) = (M+ DA

S E€F@m, A)
for any h€s# and neN.
On the other hand, since PSI,,,, we have

2 (AfAfh n= 3 (A}‘PAfh h),

SEF(m, A IGF(n.

therefore S, ,=(Ph, h)allR‘lﬂ -1 llhl]2 (where R P‘l”) for any h€s# and neEN.
"Now we shall prove that b) 1mp11es a) Let us con51der the Hllbert space

K %’@@@9@ where 9= DX’
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and embed #.in K by identifying the element h€ 5# with the element (h, 0, 0, ...)EK.
Let 4,c C (i€ A) with Z‘ lﬂ. [*=1 and define the operators B,c B(K) (ic A) by

B, oy s )= (dibos Dho, Ahy, ...

For each feF(n, A) (nEN) we have ‘
By(hos hy,y ...) = (Apqy -+ Apmybos ApayDAgay ... Apyhg,
vk DAgesy -+ Agaytos o Ay -+ Asa-1y DAseny o,
Arqy - Ay Dhy, Aghy, )

where 1, stands for Asq, ... Ay
~ Since ; |A72=1, for any n€N, it is easy to show (by 1nduct10n) that,
4)

for each ke {l Ln—1},

Arty oor Ary DA o Ay B2 = DAkl
IG%A) “ (1) f(k)‘ J(k+1) J(n) " géF(nZ—vk,A) " g "

for any h¢ 5% and neN. Therefore
2 Be(hos by, 2= ¥ )"Afho"2+

SEF(n, 4) SEF(m A
+ 3 |DAshP+...+ 3 |\DAgh|E+ | Ayl +
SEF(n~-1,4) SEFQ, A)

for any (ko hy, ...)EK énd n€N. Thus, by the assumption b), there exist a=h=0
such that - S
blklE= 3 |Bskl?=alkl* for any k<K, nEN.
re o T

F(n, 4)

According to Proposition 2.5, there exists Y= {V;};c4B(K) with 3 V*V,=I;
such that the family #={B;};c, is simultaneously similar to ¥7 Léf Aus notice
that Bf|,=Af, Bf(#)cH. Let QcB(K) an invertible. operator such that

=QV;* Q! (ic A) and consider the invertible operator Qy: # —~#,, Qy=07Y ¢,
where 5#; stands for Q1. Since Bf(#)C o we have-that V;*(H#,)Co#, (icA)
omd : ; ,

| 47 = = Blle = 05" (7'1)0s:
Using the polar decomposmon of Q,, that is Qo-U 10,] where 106l =(0F Qp)'/2
and U=Q,|Q,|™" we obtain A =RT;* R, where R=|Q,|™" and T}*= U*(V;*2)U.
Now Z'V V—IK implies that Z’T*I}él The proof is complete

Remark 2.7. For A with card A=1 the above proposition was proved in [3]
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Corollary28 Let Dd_|I, A*A‘”z. If there exists. a>0 such that

R

(2.3 fEFZ’ "Afh"2 2 "DdAfh"z'*' +IID.‘=¢hllz<aIlh!l2

(n, 4 ) f €F( 1|—1 .
for any he # and nEN, then the condmon b) of Proposmon 2 6 is fuIﬁIIed

Proof. The upper estrmatlon is tr1v1al Smce for every hE% kEN

(A}‘DdAfh = 2 (A,Afh h)— 2’ (AF Agh, h),
SEFQ ) S€FG ) SEF(F1, 4)

we have the lower estimation with b=1.

The following corollary is a generalization of Rota s model theorem [7]

Corollary29 Let of = {4, },GACB(#) and suppose that there exists ‘a=0
such that :

ey () =a
S n=l fEFmA)

Jfor any h€ #. Then there exist a Hilbert space X DH, a family F={S}c 4,<B(X)
of pure coisometries satistying S(#)cH (i€ A) wzth orthogonal initial spaces and
an invertible operator R€ B(#) such that

"A; =R~ 1(SI,(;:)R Jor each -

Proof. According to .(2.4) and Proposition 2.6 (wrth D= I,,,) there exists
I= {T},e ASB(#) with 2’T*T<I, and an invertible operator RéB(.#) such

that e :
2.5 . A R‘lTR (zeA)

On the other hand for each i¢ A
Ay uA"huz = 2( 2 nA,h'uz) = alk|* for any “hek. -

Hence A0 (strongly) as n—oo and by’ (2 3 T"—»O (strongly) for any i€ A. Applymg
Proposition 1.1, -there exist a Hrlbert space A D, a family F={S;};c,CB(X)
of pure corsometrles with Z’ S*S I,, S; (.;f)cai" and S ,_1} for each

i€A: Thus, A R‘l(S ] ,,,)R (16 A) and the proof is-.complete. - [
Remark 2.10. For A wrth card A—l we ﬁnd agarn the Rota model theorem

namely, if there exists a=0 such that 2’ l]A"hl|2<al|hl|2 for any hE.;f’ (equlvalent

to..r(A)<1), then Ais similar to a part of a backward shift. - R
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"We now ‘givé some. conditions equivalént-to condition: (2.4) in"Corollary 2.9..
The proof of the following proposrtlon is almost 1dent1cal to that of [1, Proposition
6). We omit the proof. : S

Proposition 2.11. Let o= {A,-},.G)CB(J?). - The: following - conditions. -aré
equivalent.
a) There isa pos:tlve operator PeB(#) such that (2’ A*PA )+ ,,,—P

b) The. series 2 A*A and 2( > A* f) are . strongly . convergent,
i€ 1 f€F(,4)
_c) T he series Z’ A*A is strongly convergent and r(d)<

d) There is a>0 such that 2( 2’ ||A,h|]2)<a|]hl|2 for any he.%”

Remark212 If Z’A*A,_ L, where r<1 then the family o ={4;};c4

3. In this section we generalize the result from [5], _namely, an operator AEB(.%’)
is similar to a contraction if and only if there exists k€N such that 4* is similar to
a contraction. We.shall also obtain a formula for r(&),” where: &={4;};c ; = B(5¢)
with 2’ AF A; strongly convergent which generahzes the well-known formula, for.}

the spectral radius of an operator AEB(%) that is,
' ' LAy = inf IS- 1AS||,

where the infimum is taken for all invertible operators SEB(.#) (see [5 Problem 122])

-Proposition 3.1. Let .g!:{Ai}ieAcB(#). The Jollowing .. statements are

equwalent
a) There'is afamzly €= {C},GACB(.%”) wzth _Z’C*C I,, such that .91

is szmultaneously similar to €.

b) TherearekéN and a famzly T= {Tm},em‘ A)CB(.#) wrth 2’ Tme =
.- JE€F(k, 4)
=1 - suéh that the famzly .slk_{A f}f€ Fk,4) IS szmultaneously sumlar to 7.

Moreover, a) zmplzes b) for all kEN

- Proof Assume condmon a) is. true Let REB(.??’) an 1nvert1b1e operator such
that " A;: =R" 1C; R (i€ A). Hence’ A;=R 1C‘,R for fEF(k A), kEN. Settmg
T,,=C; for feF(k, A), k€N, we have that for each k€N the family 7, i$ simul-
taneously similar to, 9;‘ . e

Conversely, assume b) is. true By Proposrtron 2 3 there is.a, posmve mvertrble
operator PEB(.#) such that .

@.1) T A;PA, =P

! €F(k, A)

T
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Let us consider the positive invertible operator Q€B(s#) given by the relation

Q=P+ Z' ( Z 47P4)).

n=1 feF(n4)
Taking into account (3.1) we have

k-1
Z’ ATQA4;, = Z'( AfPA)=sP+ 3 ( 3 ArPA) =0.
n=1 IGF , 4) n=l fEF@mA)
It then follows from Proposition 2.3 that a) is true, so the proof is complete.
Corollary 3.2. Let of ={A;},c4CB(3#) be such that there exist kN, O<r=1

and

(3.2 S A hlE = rlhlE for any hedt,
. S €F(k, A)

Then there exists T={T;};c4<B(#) with 3 T*T,=I, and such that o is simul-
icA
taneously similar to J.
If O<r<1, one can even require that |T|<1 for any i€ A.
Proof. Note that the condition (3.2) is equivalent to the condition

(3.3) 2 A;Af = "Ix.
- FEF(k, A)

By Proposition 3.1 there exists a family J={T}};c,CB(#) with J T*T,=I,
i€A

and such that & is simultaneously similar to .
If O<r<l1, then there is &>1 such that [|e* A} Agl|=1. Considering

IEF(k 4)
B;=¢cAd; (icA) we have B B;=I, and by Proposition 3.1 there exists a
i3

family ¢= {Ci}icacB(3¢) w1th Z‘C*C =TI, such that the family #&={B;};c.
is simultaneously similar to %. Hence, o is s1mu1taneously similar to the family
F—{T},M, where T;=(1/e)C; (i€ A).

Remark 3.3. If o/={4,};c ACB(Q?’) and r(&f)<1, then the condition (3 2)
of Corollary 3.2 is fulfilled. 4

Corollary 34. If oA ={A}c,<B(¥) and r(4)=0 then for every &0,
there is a family T={T;};c,CB(#) with 2’T*TS£21 (tEA) such that o is
s:multaneously similar to 7.

Proof. For any e>0 we have r(e7'of)=e"'r(«)=0, where & lof =
={e7*4};c4. Hence, r(e*o/)<1 and by Remark 3.3 and Corollary 3.2 there is
a family ¢={C.};c, with Z'C*C,él such that =14/ is simultaneously 51m11ar

to €. Setting I={T;};c4 where T;=¢C; (i€ 4) the. proof is complete.



Models for sequences of operators , 367

We now use these results for proving the following
Proposition 3.5. If o ={4;};ca<B(#) and 5 AfA; is strongly con-
: \ Iy
vergent, then
r(of) = inf {|| 3 (S48 (S 4|}, - :
where the infimum is taken for all invertible operators S€B(f).

Proof. First we show that for each invertible operator S€B(#), r(«f)=
=r(S~14S), where S~14/S stands for the family {S~'4,S};c4. By the definition
of r(&/) we have o

r(S~'4/S) = inf {||S||1/"||S‘1||1/"||f€ %'A) AFA |V} = r().

Hence, r(#)=r(S(S1£S)S~Y)=r(S-*#S). Therefore,

34 - r(f) = r(S~1«49).

Using Lemma 2.1 and (3.4) we obtain

(3.5) r(sof) = inf {ll ZA (S14,8)*(S14;5)|[V2}.
i€

According to Corollary 3.4, if r(«)=0 and O<e<]1, then there is a family I=
={T};e4<B(s#) with Z/’iTi*T,éazI,, (i€ A) such that A4;=R-'T,R (icA) for
i€

an invertible operator R€B(s#). Therefore,

| = RARH*RAR|2 =

ica
whence

inf {I| Z (5714;8)*(S14;S)||"2} = .
€A

i r(o#)=0, let us consider the family B={B;};c, where B;=(s/r())4;,
O<e<l, i€A.. Since r(#)<l1,. by Remark 3.3 and Corollary 3.2 there exist a
family €={C;}ica With eZ,; C}C;=1I, and a positive invertible operator P€ B(o#)

such that B,=P~'C;P (ic A). An easy computation shows that
2, (PAPY)*(P4; P7Y) = (r()fe)* > CIC,
whence | iez-t‘ : o U iea
r(f) =¢ ]|i eZA (PA; P~ (P4, P V)2 = ¢ inf {||i EZA (54;S~)*(S4,8~)|[2}
for every 0<e<1. Setting ¢-1 it follows that
(3.6 r(sf) = irslf {||‘l‘€§l,'1 (SA,S‘l)*(SAiS'l)"W}.

The proof is complete.

11
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On reducing subspaces of éomposition operators

JAMES. GUYKER

If ¢ is an analytic function mapping the unit disk into itself, RYrr [10] has
shown that ¢ induces a bounded linear operator C, on Hardy space H? defined by
C, f=foe. Many of the basic properties of C, depend on the fixed points of ¢ in
the closure of the disk (see [4], [9] for references). If ¢ is not a rotation about a fixed
point, then by the Denjoy—Wolff theorem ([6], [13]) ¢ has a unique fixed point
such that |¢’(®)l=1. In-this paper, the reducing subspaces of classes of C, are
characterized when |x|<1 and either ¢ is univalent or some positive integral power
of C, is compact. The complementary case when a=0 and ¢ is inner follows from
results of NORDGREN [8] and BrowN [2].

Notion. We will assume henceforth that ¢ is neither a constant nor a Mébius
transformation of the disk onto itself, that « is the Denjoy—Wolff fixed point of ¢,
and that |a]<1. Then |¢’(ax)l<1, and there is a natural basis of H? with respect
to which C, is lower triangular with diagonal [1, ¢'(2), ¢’ (2)? ...]. Indeed, let
]

_]" (n=0,1,...), N

(1
by(@, 2) = 1—2z& 1—z&

then for i=j,
—lal? —a Pt
(Cobyb) = 1l—¢':zl)a [£=ef [11<p::)a] =1 1-lza>_"'

which is ¢’ («)' whenever i=j, and is O when i<j.
Moreover, if f is in. H2, then f=3 ( f, b,)b, where

#oy =2 ()L carra—mamrrem

This follows diféctly'by wi'iting fin terms of "1§s ‘Taylor sefies, expanding

z n
R e
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by the binomial theorem, and by observing that {(z—a)*, 2°/(1 —z&)"*') is O when-
ever n#k, and is 1 when n=k, since the adjoint of multiplication by z/(1—z&)
on H? maps h(z) into (h(z)—h(®))/(z—0).

We recall that a subspace .# reduces an operator T on a Hilbert space 5% if
both .# and # ©.# are invariant under 7, or equivalently, if the orthogonal
projection onto .# commutes with 7. If the only subspaces that reduce T are {0}
and # itself, then T is said to be irreducible (otherwise T is reducible).

Theorem 1. If ¢ is univalent and o0, then C, is irreducible.

When a=0, the constants reduce C,. In fact, by [4, Theorem 4.1], the kernel
of 1-C, contains only the constant functions, so it follows in this case that .
reduces C,, if and only if 4 =.4,®.4#,, where 4, is either {0} or the space of
constants, and ., reduces the restriction of C, to zH?. A complete description (Theo-
rem 2) of the subspaces ., may be obtained under a compactness condition, with
univalence weakened to ¢’ («x)>%0. The study of compact composition operators
was initiated by SCHWARTZ in [11], and continued by several authors ([3], [5], [12]).
In particular, CAUGHRAN and SCHWARTZ [3, Theorem 2] have shown that when
some positive integral power of C,, is compact, the Denjoy—WOolff point always lies
inside the disk. Note that Cj) =C,,, Where gy is defined 1nduct1vely by ¢, =¢ and

¢n+1—'(P°¢n

Theorem 2. Suppose that Cy is compact for some positive integer N, and that

@' (@)#0. Then C, is reducible if and only if a=0. Moreover, if a=0, then the

restriction of C, to zH?* is reducible if and only if there exists an H* function ¥ which

is bounded by one, and a nonnegative integer p1, such that ¢(z)=z¥(2*); in this

*case, a subspace M reduces C,, restricted to zH? if and only if M =V{bjp+;: =0,
JjET} where I is an arbitrary subset of {1, ..., p} ({1, 2, ...} if p=0).

The reducing subspaces of more general composition .operators are formed
from cyclic subsets of basis vectors as follows. Let j=1, p>0 and r=1 be integers
such that if p>0 then j=p and p is relatively prime to r. Let ]0“"] and j,i1=
=rj,—i,p (n= ...) where i, is the unique integer which is 0 if p=0, and satis-
fies i,p<rj,= (z,,+1) p if p=0. The set {j,: n=0)} will be called the (r, p)-cycle
generated by j. Let p=0. Then since 1=j,=p for all n, the terms of the sequence
J. tepeat. It follows easily that if j,.;=j,,, (m=>n), then j,=j,; and hence
Jm—n=Jj. Therefore, j is the first term to reappear. Moreover, the set {1, ..., p}
({1, 2, ...} if p=0) may be written as a dlS_]Olllt umon of (r, p)-cycles With no add1-
tional conditions on ¢, we have

Theorem 3. If a0, then no nontrivial closed span of basis vectors b, (n=0)
reduces C,: If a=0, and is of order r, then a nontrivial closed span. 4 of vectors b,
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(n=1) reduces the restriction of C, to zH?* if and-only if there exists a nonnegative
integer p#1, which is relatively prime to r whenever p#0, such that -¢(z)=z"¥(z)
for some H= function ¥ which is bounded by one, and M =VN{b;,,;: i=0, jcI'}
where I is a union of (r, p)-cycles.

In view of the above results, a natural question is: when either ¢ is univalent
or Cg is compact, are all the reducing subspaces of C, closed spans of basis vectors?
The related step in the proof of Theorem 2 follows by expressing the span of the
first » basis vectors (n=0, 1, ...) in terms of the kernel of some element of the von
Neumann algebra generated by 1, C, and Cj. A similar argument may be used
in the following example.

Example 1. Let ¢=10 where A is a constant (0<|4|<1) and 6 is an inner
function such that 6(0)=0. By ([1, Theorem 20], [8, Theorem 1], or [10, Theorem
3]), C, is an isometry, so that C,;C, is a diagonal operator with diagonal
(1,141, 143 ...). Therefore, V b,:ker]](C;C,,,—M[') (n=0, 1,...), and it follows

[ 0
that the reducing subspaces are closed spans of b,’s and are thus described by The-
orem 3.

Further evidence is provided by the following result which implies that reducing

subspaces are (at least) closed spans of finite linear combinations of basis vectors.

Theorem 4. Suppose that ||¢ll.<1 and ¢’(x)=0. If X commutes with C, and
(&) is the matrix of X with respect to {b,}, then A;=0 (j=1,2,...) and there
exists an integer M such that A,;=0 (i=1,2,...) for every j=Mi.

Theorem 4 suggests an alternative approach to answering the above question
in the affirmative, as illustrated by

Example 2. Let a=0 be of order r=>1, and suppose that ¢ is a polynomial
of degree r™ such that |@ylle<1 for some positive integers M and N. Then the
reducing subspaces of C,, are given by Theorem 3: Let P be the projection onto a
reducing subspace. Since P commutes with C;N, it follows from Theorem 4 that
Pb, is a polynomial for every n; thus, it suffices to show that the degree of Pb, does
not exceed n for every n. Suppose that n<deg Pb, for some n,.and let i be the least
such integer. Seiting j=deg Pb;, we have that

(PC, Coybis b)) = (Cry Co, Pbi, b)),
and hence by straightforward calculations, u‘=p’ where
= bus 91, e -1

(so that- O<]u|<1). ‘Therefore i=j, a contradiction.
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The- verification of Theorem 3 depends upon a reformulation of the usual
multinomial theorem, which subsequently determines how often powers of ¢ have
nonzero coefficients.

Lemma. Let
w p—1
f@=aw+ 3 3 aype;27H
i=1 j=0
be a formal power series where ay, is nonzero, and for j=0,1, ..., define
j ~
&y =0,,4; and Gy = kg; @, p+k8m-1,j-x (m>1).

Then for every positive integer n,

S(2)" = a+

u[\48

P—
Z . lM_Jzipu

where

X

i
’an,l'p+j = Z (m)a'l.o_mdm.(i—m)p+j'

m=1

In particular, for fixed i and j, either a,;,.;=0 for all n=1, or a,;,,;=0
Jor at most i—1 values of n=1. If a,,#0, then a,;,=0 for at most i—1 values
of n=l.

The followmg estimate in H= is essential to the proof of Theorem 4, and may
be of independent interest.

Proposition. If ¢ (@)=0 for every i=1, ...,r—1, then

(e —1)/(r —1)

IC bl = |22

Jor all nonnegatwe integers'm and n.

- Acknowledgments. 1 am grateful to Professor M. A. KAASHOEK for his support
and encouragement during my sabbatical at the Free University, at which-time this
work was completed. Also, I am indebted to Professors L. DE BRaNGEs and-C. C.
CoweN for their lectures and conversations concerning composmon operators.

Proof of Theorem 1. Let # reduce C,. By [4, Theorem 4.1], the kernel of
1-C, consists of just thé constant functions. Thus we may assume that constants
belong to .#, and hence so does C}"1=[1— 20,0 (n=1,2,..). -

Let f be orthogonal to /. Then f vanishes on the set Q= {(p,,(O) n>1}
If ¢,(0)=¢,,,(0) for some positive integers m and n, "then ¢,(0) is a fixed point
of ¢,. But « is also a fixed point of ¢,,-and ¢, is not.a rotation about.a fixed. point
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since otherwise ¢ would be-inner and hence by [7; Theorem 3.17] ¢ ‘would be a
Mébius transformation. Thus it follows that ¢,(0)=a=¢,(x), and since ¢, is
univalent, we have that «=0, a contradiction. Hence, the set Q consists of distinct
points which must cluster in the closure of the disk. However, by Schwarz’s lemma,

z—a
1—2z&

Pn(2)—
1 _(Pn(z)&

for every z in the disk. Setting z=0, we conclude that Q must cluster inside the
disk. Therefore, f is identically zero.

Proof of the lemma. The formula is obvious for n=1, so by induction,
we assume it is valid for some n. Multiplying f(2)"+'=f(z)-f(z)", we have that

_ (i-2)p+j .
Ayit,ip+] = G100n,ip+j+ al,p+kan.(i—1)p+j—k]+al,ip+ja10 =

i | ' n . . .
= [ 2 ( )alo m.(i—m)p+j] +[ 2 (m—l] a?o_"'uam,(i—m)ﬁj]+a§oal,ip+j =
=1 m

=2

LI(n n n+1) : .
=2 (m)"'(m—l)]“'l'o—m Y 2 )a( DG mmyp s+
m= .

Thus, the form of f(z)" follows for every n.

Fix i and j, and let n=i. Then (na}))~'a,,,+; is a polynomial in n of degree
at most i—1. Suppose that g, ;,,;=0 for some k such that 1=k=i—1. It follows
that the sum of the first k terms of (na},)~'a,,;,+, is equal to

L2 | (n—-1)! (k—1)! m
m§1 m! L (n—m)! (k-m)!]am o, i=myp+ >

which is divisible by n—k. Since each of the last i—k terms contains a factor of
n—k, we have that n—k divides (na}))~'a, i,+;. Therefore, either all of the
coefficients of (na}o) =" a,, i+, (n=1) are zero, or a,, ,p+ ;=0 for at most i—1 values
of n=1.

Fmally, suppose that an,#O Then the leadmg coeﬁicxent of (na{o) On,ip
(n=i) is (t'am) 1é,o—(z'am) 1p70- Hence, aG,,ip=0 for at most i—1 values of
nzl . .

Proof of Theorem 3. Let oc;éO and suppose that M is & nontr1v1al closed
span of b,’s (n=0) which reduces C,. Since .# L is of the same form, we may assume
that by.is.in . Let n be the greatest 1nteger such that b,, belongs to- A for every

m=0, ..., n. Since A is invariant under C,, we have that f—C Z’(—a)”'
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X (1—|a|?)~"2b,, isin A and {f,b,,,)=0. However, by induction,
(@) =—(n+ )(-a)"+ 19’ (D[l —p(2)a] " *[p(z)—a]’

and .
() = —(n+DH=a)* 1 (1—|al?)~" 2" (a)"+.

Therefore,
(s bpsr) = ()" (A —|a|)~V3[1— ¢ (a)"*'] 52 O,

a contradiction. Thus, .# must be trivial.

Next, let «=0 be a zero of ¢ of order r, and let .# be a nontrivial closed span
of vectors b,=2z" (n=1) which reduces the restriction of C, to zH?. Let us write
@(z)=2"¥(z) for some H= function ¥. If ¥ is a constant function, then the proposed
forms of ¢ and # clearly follow with p=0. Henceforth, using the notation of the
lemma, we assume that ¥(z)=3 (¥, b,)b,=ay,+a1,2%+ay, ,412°" +... where
a,, and a,, are nonzero. Observe that if .# contains 2°, and a,,,#0, then ./ also
contains z"*%. Indeed, "¢ (2)"=z"¥(2)" is in A, and {p(z)", Z"+tP)=0; there-
fore, by the given form of .#, z7"*? belongs to .#. Since z™ is orthogonal to .#
whenever z™ is, we have that .# contains z"*4.

Let 2" be in .#. By the lemma, there exists an integer K such that g ,, =0 for
every k=r¥n. Now, 27" is in . And, if z7"t™ is in 4 for some m=0, then
%, 1 mg rg 70> and, by the above argument, .# contains 2t miDa Thys, by in-
duction, z7*™ is in .# for every m=0, 1, ..., and hence, in particular, z"<(+9
is in . Consequently, ./ contains z"*? whenever it contains z".

For integers i and j, let iAj denote the greatest common divisor of i and j.
Let g(1)=q, and for ¢=2,3, ..., define q(¢)=[rAq(t—1)]"2q(t—1). Since {q(¢)}
is a monotonically decreasing sequence of positive integers, there exists a least in-
teger T such that q(T+1)=q(T), ie., rAq(T)=1. Note that q(T)=r"Tgq

T
where o=]] [rAq(t)]"'r. If z" belongs to ., it follows that z"+4(T =z~ "¢"a+ed
1

belongs to .#. Similarly, the orthogonal complement of .# in zH? is invariant under
multiplication by 24T, Therefore, there exists a subset I3 of {1, ..., g(T)} such that
A is the closed span of vectors of the form z9M+/ (i=0; jcI;). Furthermore,
if j is in I, then ig(T)<rj=(i+1)q(T) for some integer i, and rj—ig(T) is in
I;. Hence, I, is a union of [r, g(T)}-cycles.

If $=¥(z%D), let p=q(T) and I'=I;; otherwise, let p(1)=q(T). Suppose
that for some integer s=1, a positive integer p(s), relatively prime to r, is defined
such that #=V{zP@+): j=0, jcI} for some union I, of [r, p(s)}-cycles, and
P=P(z"®). Let I=min {i: a ;,4+;#0 for some j such that O<j<p(s)}, and
let J=min {j=0: 8y, 1,+;#0}. By the lemma, a, ;5)+s=n @, 1p+s70.
for every n=1,2,.... Asabove, 2"+P®+J  and hence z™*’, belong to 4 when-
ever 2" belongs to /.
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Let 2" be in . Then n=ip(s)+j where j isin Iy and i=0. Since I, is a union
of cycles, there exists an element j’ in I and an integer i’ such that j=rj’—i’p(s).
Thus, n+J=(—i)p(s)+(rj’+J), so that z'*’ is in . Similarly, zH?*©.# is
invariant under multiplication by z’. '

Let p(s+1)=p(s)AJ. Then p(s+1) is relatively prime to r, and there exist
integers u and v such that p(s+1)=up(s)+vJ. It follows that .# and the orthogonal
complement of .# in zH? are invariant under multiplication by z”¢+1,and hence,
as above, there exists a union I, of [r, p(s+1)]-cycles such that =V {Z'P6+D+i:
i=0, jeI,,,}. Therefore, p(s+1) (s=1, 2, ...) may be defined recursively provided
Y= P(zP®) for every s. But this is impossible since {p(s)} is a strictly decreasing
sequence of positive integers. Consequently, there exists an integer S such that
P=9 ("), and the forms of ¢ and .# follow by setting p=p(S) and I'=I}.
Note that ps>%1 since ./ is nontrivial.

Conversely, suppose that ¢(z)=z"¥(z?) where rAp=1 if p=0, and that
M=\ {ZPt: i=0, jcI'} for some union I' of (r, p)-cyclés. If p=0, then clearly
A is invariant under C,; so we assume that p>1. If z" belongs to .#, then so does
Z%+mP for every m=0. Indeed n=ip+j where j is in I' and /=0 and there exists
an integer i’ such that i"p<rj=(’+1)p. Hence, rj=i’'p+j’, where j* isin I’
by the definition of (r, p)-cycle. Therefore, z™+mP=z+¥+mp /" i5 in 4, and thus,
sois @(z)"=2"¥(z")". It follows that .# is invariant under C,,.

Finally, .#+ is invariant under C, since it is the closed span of vectors of the
form Z'P+J (i=0; jeI'’), where I'” is the complement in {1,...,,p} ({1,2,...}, if
p=0) of I' and is hence the union of (r, p)-cycles.

Proof of Theorem 2. Since C,";N=C;N is compact with nonzero eigenvalues
(p’(a)’"N (m=0, 1, ...), it follows from (4, Theorem 4.1] that ¢’ («)" is an eigenvalue
of C;, of multiplicity one for every m. Thus, by the matrix of C}, with respect to {b,},

we have that \n/b,,,=ker ﬁ '[C:’:‘—qo’(a)"'] for every n=0,1,.... Therefore, by
0 0

induction, either b, belongs to .# or is orthogonal to .# for each n, and hence the
form of . is given by Theorem 3.

Proof of the proposition. Using induction on n with m fixed, the case
n=0 is obvious, so we assume that the inequality holds for some 7. Since ¢ (a)=a
and ¢®(a)=0 (i=1;...,r—1), we have that ¢P(2)=0 for every i=1,...,r"—1.
Hence, C3*b,,=C, f where f=b,(a, ¢,)=[(z—)/(1—2z8)]""g for some H> func-
tion g. Therefore, -[C%™ b, [lo=[(p—a)/(1— )™ | g(¢)l~ where [g(¢)]e=
=gl = flleo=[(p—a)/(1 — @a)| ™=~ by the induction hypothesis. The
case n+1 now follows by combining the above inequalities.

Proof of Theorem 4. Since |¢[l.<1, C, is compact by [11, Theorem 5.2].
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Therefore, by [4, Theorem 4.1], the kernel of I—C; is one-dimensional, and since
it is invariant under X*, we have that 1,,=0 (j=1).

Suppose that ¢™(@)=0 (m=1,...,r—1) and ¢ (x)#0. By direct compu-
tations, there exist constants u,=u.(n) such that for every i=0,

b= p-—i(r"—l)/(r'—l)crbl’n_*_i 2 1 b,
where p=(1—|a|?y 1o (x)(r!)~2. Moreover, since |¢l.<1, it follows that

llog—)/(1—9@)]|<1, and hence there exists an integer M=1 such that
o —a)/(1~ @)% <|u|. Thus,

Ay = (Xby, by)y = p= i =DIT=D(XC D, bypndy + 2 By Ay

and consequently by the proposition, for j=Mi we have that
—a

M
V] 2 vhoi] = 1X ( -1
Jhiy— 3 B dey| = 1 X5 - _lul

Therefore, the theorem follows by induction on i=1, and the separate case i=0,
since the right hand side converges to zero as n tends to infinity.

]i(r" —1){(r—1)
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The numerical ranges and the smooth points of the unit sphere

FRANK PIETSCHMANN and ADOLF RHODIUS

L Let S, be the unit sphere of a complex Banach space (E, p). The set of all
smooth points on S, will be denoted by F,. The element x€S), is a smooth point if
and only if the Gateaux derivative p” at x exists. We denote by ¥}, (T) the spatial
numerical range of T. If the unit sphere is smooth, then the relation

Vp,(T) = {p'(x, Tx)—ip’(x, iTx): x€S,}
holds. We assume that the set F, is dense in the unit sphere S, e.g. this holds for

separable or reflexive Banach spaces. We prove that for continuous operators T’
the closure of the set

{p'(x, Tx)—ip'(x, iTx): xCF,}
is the closure of a Lumer numer1cal range of T.

1L Let D, be the mapping of S, into the power set of the dual E” of E defined by
Dy(x) ={f€E": f(x) =1, [f W] =p(), (y¢E)}-

We consider the continuous operator G: E—~E with the domain D(G)SS,. For
a mapping Q, of D(G) into the power set of E’ with

0 0,(x) S D,(x) (x€D(G))

‘ VQP(G) = {f(Gx): fEQ,(x), xeD(G)}

is called the numerical range of G corresponding to Q,,. (See [71) It card Qp(x) 1
(x€D(G)) holds, then ¥, (G) is a Lumer numerical range | (G) is called the
spatlcal numerlcal range ¢ of G.

the set

Theorem 1. Let T be a contmuous operator ofS into E. Ibe (TIA) is a nu-
merical range of i the restriction of T to the subset A of S, with cl A S, then there
extsts an extens:on Qp of Q,, to the unit sphere S, such that :

cl VQ (TlA) = c% ).

Received August 4, 1986.
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Proof. Let x¢S,\4. Then there are sequences (x,) in 4 and (f;) with
£€0,(x,) and p(x,—x)—0. Since the unit ball of E’ is weak*-compact, we can
choose subnets ( f3)p¢p Of (f,) and (x)s¢p Of (x,) and an f,€E’ such that

(f3)sen is weak *-convergent to f, and p(xz—x)—0

The inequalities
IOl = p(y) (YEE, nEN)

IO = p(y) (¥EE).
J3(xp) = fa(xs—2)+f3(x); | fo(xp—2) = p(x5—x)

we deduce fj(x;)—~f.(x) and f,(x)=1. So we have f,€D,(x). Now we extend the
mapping §, by the definition

imply

But since

0,(z) for zed,
22 = {{f,} for zeS\A4.

It is clear that the relation cl VQ (TR, (T) holds. It remains to show that
the scalar Jx(Tx) is a cluster point of Vs (TIA) (x€S,\4). By the construction
there are nets (xz)5¢p of 4 and (f3)pcs w1th Js€ Qp(xﬂ) such that

f6() ~ f:(») ()€E) and  p(xp—x) ~0

The inequality |fz(Txs—Tx)|=p(Tx;—Tx) and the continuity of T imply
J3(Txs—Tx)~0. Hence from the relation

J5(Txp) = fo(Tx)+f3(Txp—Tx)
follows fp(Tx,)—>f(Tx).

Remark 1. The proof of Theorem 1| shows that there exists an extension
Q,of Q'p satisfying the condition card @,(x)=1 (x€S,\4).

Theorem 2. Let T be a continuous operator of S, into E. If F, is dense in S,

then the set
cl {p’(x, Tx)—ip’(x, iTx): xCF,}

is the closure.of a Lumer numerical range of T corresponding to a mapping Q, defined
on the whole S,,.

Proof. We applicate Theorem 1 putting A=F,. There exists exactly one
mapping Qp of F,, into the power set of E’ with § 0, (x)E D,(x) (x€F,). By [6] holds

Vs, (TIE) = {p"(x, Tx)—ip’(x, iTx): x€ E}.

Hence by Theorem 1 the conclusion follows.
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Corollary 1. Let T be a linear continuous operator of S, into E. If F, is dense
in S,, then for the numerical radius v,(T) the following relation holds:

v,(T) = sup |p’(x, Tx)—ip’(x, iTx)|.
xGFP

Remark 2. The condition ¢l F,=S, is fulfilled for separable Banach spaces
(see [5]), and for reflexive Banach spaces (see [3]).

Remark 3. Let E be a separable Banach space and let T be a linear continuous
operator of S, into E. While the set
c{p’(x, Tx)—ip’(x, iTx): xEE,}
is the closure of a Lumer numerical range of T defined on the whole S,,, in general it is
not the closure of the spatial numerical range of 7. We consider the following example.
Let ¢, be the Banach space of all complex null sequences x=(x;) equipped
with the norm p(x)=max |x;|. Then x€S, is a smooth point on S, if and only

if the relation |x;/=1 holds for exactly one coordinate x; of x; let be [x;,l=1.
Using the functional f, defined by

_ S (¥) = YVieyXien (J’ = (J’i)),
it follows J,(x)={f.} (x€F,). For the operator T with

Tx = (xy, 1/2x5, 1/3x,, ..., 1/nx,, ...) (x€cp)

one obtains VQP(TIFP)={1, 1/2,1/3, ..., 1/n, ...}. Therefore the set {1/n: n¢ N}U {0}
is the closure of a Lumer numerical range of T defined on the whole S,. The closure
of the spatial numerical range of T is the interval {1€R: 0=A=1}.
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On the joint Weyl spectrum. II
MUNEO CHO

Dedicated to Professor Satoshi Koté in token of gratitude

1. Introduction

In [3], we studied the joint Weyl spectrum for a commuting pair. In this paper
we shall show that the Weyl theorem holds for a commuting pair of normal ope-
rators. j

Let H be a complex Hilbert space with the scalar product (, ) and the norm
[I-1l. Let B(H) be the algebra of all bounded linear operators on H and C(H) the
algebra of all compact operators in B(H).

Definition 1. Let T=(T},T;)cB(H) be a commuting pair. Taylor joint
spectrum o(T) of T is defined by o(T)={z=(z,, z,)€C*: a(T—2) is not invert-
ible on H@®H}, where

a(T—z) - (_ Li—2y T~z ]

(Ta—22)" (h—2)"

Definition 2. Let T=(T;, T,)CB(H) be a commuting pair. The joint Weyl
spectrum w(T) of T is defined by

o(T) = N{e(T+C): C =(C,, C) cC(H) and T+C = (T;+Cy, T+Cy)

is a commuting pair}. _
z=(z,,2;) in C? is said to be joint eigenvalue of T'=(T;,T;) if there exists
a non-zero vector x such that

ITx=2zx (i=1,2).

. ,(T) is the set of joint eigenvalues of T.

Received November 10, 1986 and in revised form August 26, 1987.
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z=(z,2,) in C? is said to be joint residuval eigenvalue of T=(T;,T,) if
there exists a non-zero vector x such that

T*x=zZ;x (i=1,2).

0,(T) is the set of joint residual eigenvalues of 7.

For a commuting pair T=(T},T;), 0,,(T) is the set of joint eigenvalues of
finite multiplicity, 6,,(T) is the set of joint residual eigenvalues of finite multiplicity,
0,7:(T) is the set of isolated points in ¢(7) which are joint eigenvalues of finite
multiplicity and o, ,;(T) is the set of isolated points in ¢(T) which are joint residual
eigenvalues of finite multiplicity.

For any operator S on H, we denote by N(S) the null space of S.

2. Theorem

Theorem A (VasiLescu [6]). For a commutating pair T=(T},Ty), «(T) is
invertible if and only if

sy =5 ")

is invertible on H®H.
" Theorem B (Cuo and TakacucHi [3]). For a commuting pair T=(T,,T,),
o(T)—w(T) c 0,(THUa,(T).
Lemma 1. Let T= Ty, T») be a commuting pair. Then
o(T)—0,,(T)Ua, (T) < o(T).

Proof. Let z=(z,, z,) be a joint eigenvalue of infinite multiplicity. Let C =
=(C;,Cy) be in C(H) such that T+C=(T,+C,, T,+C,) .is a commuting pair.
For a infinite orthonormal sequence {x,}in {x: T;x=z;x (i=1, 2)}, we may assume
that there exist vectors y; and y, such that Iim C;x,=y; (i=1, 2). If

. _(R+C—z —(1;+cz—zz)*) .
, BI+C-z)= (T2+_C2—zz (T,+Cy—2)*
" is invertible, then

lim (x,®0) = B(T+C —z2)" 1 (»1®y2).

It is a contradiction to the choice of {x,,}.. Sé it follows, by Theorem A, that z€ w(T).
Let z=(z,2z,) be a joint residual eigenvalue of infinite multiplicity. Then for
an infinite orthonormal sequence {x,} in

e Rx=2x (i=1,2)}
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we, may- assume that-there exist vectors y, and y, such that -
imCix, =y, (i=12)."
If B(T+C—2z) is invertible, then-
1lim 0&x,) = f(T+C—2)~ (=, @),

Itisa contradlctlon So it follows that -z€w(T).
So the proof is complete by Theorem B.

Next following Baxley we consider the following condition %,: If {z,} is an
infinite sequence of distinct points in 0,,(T)Ug,,(T) and {x,} is any sequence of
cbrrespOnding normalized joint eigenvectors; then the sequence {x,} does not con-
verge.

Lemma 2. If a commuting pair T=(T,, T,) satisfies €,, then
o(T)—(0,7::(T)U0,;(T)) € o(T).
. Proof We have the identity
o(T)— —(0,:(MVUo,(T)) = :
(0 (1) (05, MU0, DN U(0,r(T) U5, (T) —(0,1:(T) U, 1, (T))).

So, by the above lemma, it will be sufficient to prove that z=(él,22) is in
(apf(T)Ua,f(T)) (05:(T)Ua,;(T)) and not in the closure of (o(T)—(o, (THU

6,+(T))), then z is in ‘¢(T+C) for every C=(C,,Cs) such that T+C= (T1+C1,
T:+C,) is a commuting pair.

Assume that z is in (6,,(T)Uoc,(T))—(0,(T)U0,;,(T)). Then there: exist
z,=(24,23) (n=1,2,...) in a,0(T) or in 0,;(T) such that z,#z, (n=m) and
limz,=z. Suppose that the z,s are in a,7(T), then we can consider a sequence
{x,} of unit vectors such-that T;x,=z'x, (i=1,2) for every n. Of course, we can
suppose, without loss of generality, that there exist vectors y; and y, such that
lim C;x,=y;, (i=1,2). If, for T+C—z=(T1+Cy—2z,, T,+Cs—2,), B(T+C—2)
is invertible, then

lim (x,0) = -B(T+C—2) (1@ y)-

It isa contradlctlon to the condltlon %:. So it follows that zEco(T) .
" ‘'When {z,} is in a,f(T ), then we can prove that z belongs to w(T ) ina 51m11ar
way: (see the proof of the lemma.above). - :
So the proof is complete

' Next we shall show that the Weyl theorem holds for a commutmg pair of
normal operators: We need the: followmg theorem An easy computation shows that
the theorem holds: - e o , -

Theorem C. Let T=(T;,T;) be a commuting pair of normal operators. T hen
a(T) is invertible if and only if TT,+T,*T, is invertible.

12
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Theorem. Let T=(T},T,) be a ¢commuting pair of normal operators. Then
the Weyl theorem holds, that is,

0(T)—~0,0(T) = o(T).

Proof. Since T=(T;,T,) is a commuting pair of normal operators, T satisfies
the condition %,. So, by Lemma 2, it suffices to prove that ‘

6(T)—0,;(T) D o(T).

Let us consider a point in 6,.,;(T). We may assume without loss of generality
that this is (0, 0). We define N=N(T;*T}+7T;*T;), then dim (N)< . Let P denote
the orthogonal projection of H onto N. Then P is a compact operator and T;P=
=PT;=0 (i=1, 2). Hence

T+Q = (L+(1/V2)P, T,+(1/V2)P)

is a commuting pair of normal operators. Since (0, 0) is an isolated point of o(7T),
so using Theorem C for T;—2z, and T,—z, in place of T; and T, respectively, by
continuity arguments we obtain that 0 is an 1solated pomt in the spectrum of T;* T +
+T}T,. 1t follows that :

G+ NVD PG+ ND P+ (L1 VD P G+ (1 V2)P) = RRA T T+ P

is invertible. So, by Theorem C, (0, 0)¢ a(T+ Q) and thus (0, 0)¢ o (T).
So the proof is complete.

Acknowledgment. We would like to express our cordial thanks to- the referee
and Professor T. HUurRUYA for their kind advice. :

References

[1] J. BaxiEy, Some general conditions'implyingv Weyl’s theorem, Rev. Roum. Math. Pures Appl.,
16 (1971), 1163—1166.

2] J. BAXLEY, On the Weyl spectrum of a Hilbert space operators, Proc. Amer. Math. Soc., 34

(1972), 447—452.

{3] M. Cud and M. TARAGUCHI, On the joint Weyl spectrum, Sci.” Rep. H irosaki Univ., 27 (1980),
47—49.

[4] M. Cu0 and M. TaRAGUCHI, Boundary of Taylor’s joint spectrum for two commuting opera-
tors, Rev. Roum. Math. Pures Appl., 27 (1982), 863—866.

{5] V. IsTrATESCU, Introduction to linear operator theory, Dekker (New York, 1981).

[6] F.-H. VasiLescu, On pairs of commuting operators, Studia Math. 62 (1978), 203—207.

DEPARTMENT OF MATHEMATICS
JOETSU UNIVERSITY OF EDUCATION
JOETSU, 943, JAPAN



Acta Sci. Math., 53 (1989), 385—394

The accuracy of the normal approximation for
U-statistics with a random summation index
converging to a random variable

M. AERTS and H. CALLAERT

Introduction

The exact order of the normal approximation has been obtained in [2] for U-
statistics with a random summation index L, where L,/n—~t with 7 a constant.
In this paper it is shown that the same order bounds can be obtained in the situation
that the random index L, satisfies L,/n-~t where now 7 is a positive random variable.
Moreover, a sharpening of the moment condition on the kernel is included. The
results are valid for U-statistics with kernel of general degree r but in order to avoid
a cumbersome notation, the proofs of the main theorems are given for the case that
r=2. Tools for passing from r=2 to an arbitrary degree r are given in the prelimi-
nary lemmas which are formulated and proved for general r. For further information
we refer to the Ph. D. thesis of one of the authors [1].

The results obtained in this paper are an extension of carlier results for random
sums of ii.d. random variables, proved in [6] and [3]. The proofs of these results
use some methods which heavily rely on the i.i.d. structure. However, if one makes
use of the structure of a U-statistic together with some technical fine-tuning, it is
possible to obtain order bounds which are as sharp as in the ii.d. case without
imposing any additional condition. We also note that an asymptotic normality
result contained in Theorem 1 below could in principle be obtained from Theorem 1
of [4]. However, this denvatlon would require some extra assumptions on the kernel
function and no information on the rate of convergence could be gamed

Received December 17; 1985 and in final revised form July 20, 1987,
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Preliminary lemmas

In order to create some flexibility in the renormalization of the statistics under
consideration we formulate some general lemmas, special cases of which will be
needed in the proof of our main theorem. The proof of Lemma 1 is elementary and
is left to the reader Throughout the paper we use the convention [x] min {k€N,
x=k}.

Lemma 1. Let (R, &, P) be a probability space and X, and Y, two sequences
of random variables defined on Q. Let C be a positive constant and d, a sequence of
nonnegative real numbers. If for some k=0 and some a=1, S* denotes the set on
which Y,>kaf(a—1), then

spenf| 2

E [ aca) e spon

;‘: 1‘ >Cd,,}.

n

Y,—

Lemma 2. Let (Q, d P) be a probabllzty space and X and ¥, " two sequences
of posmve randomi variables defined on Q. If there exist positive constants ¢, and c,
and a sequence of positive numbers g, with g, —»0 Jor n—eo, such that

(11)_"" - P(lay %, " - e = O(V—)
and - . : s
:(2)‘ ‘ P(Y < gy 1/") = (}/3—) n oo, 0‘<-51.-'sf1" .

then, for every znteger k>0 there exists a constant Mk such that

V[Y] X(X 1).. (X &)
AR AlCAR I G ART N

> M, l/s ] O(Vs ) n—»oo

ca P[

Proof The proof 1s by 1nduct10n For k= 0 (3) follows by takmg Mo—]/c1
Assume that (3) holds true When k—r—l for some rE N0 Puttmg _

V[Y] X(X 1) ... (X,—r+1) -
VX_ [Y]([Y] 1) ([Y]—r+1)

the 1nductlon hypothe51s ylelds that P(|Z,—1|>M, 1]/8) O(VS) n—, for

Z, =

some constant M,_,. Now choose M, such that M,=max (3M,_,, 6c,) and then
take n so large that
@ & < min {1, (co/2r)?, 9/(M?)}

is satisfied. Since (4) implies that.[c e, ¥%]>2r; .one has, using .the, Bonferroni ine-
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quality and (2)
Z,

7

u—l)([—l",'"];_Lr-1]+([;‘,’"]" 1)+(z,- 1|~ 1,77, [Y1>2r]

[?"]——1|>M V‘)s P, < c,e7Y%) +

A AT

SO(V_)+P[1Z—1| M, V"]+P[

(g 1]|>T'Vs‘,, [Y,]>2r].

It is easy to see, using the choice of M,, the induction hypothesis, (1), (4), and Lemma
1 with C=M,/6, a=2, d,=Ve, and k=r, that the second and third terms here
are O(E). But by (4) the fourth term is not greater than

+P

()= 2 v =2 -1 =1+ p0Z-1 - D =
tART 3
X,—r ll M

= p(| 1| - 2oy, wa ) p (2ot -2,

and the lemma follows.

The next lemma, which states the rate of convergence to normality for non-
stochastically indexed U-statistics, plays a crucial role in the proof of the main
theorem. It determines, together with the asymptotic behaviour of the random
index L,, the ﬁnal approximation order for random U-statistics.

Lemma 3 Let (Q, o, P) be a probabzlzty space and Xy, X;, ... i.i.d. random

vartables defined on Q. Let U, —(f] (X, ..., X;) be a U-statistic with

Eh(Xy, ... X)=0 and put’ g(X)=E(h(Xi,..., X,)—0|X;). Assume that o*=
=Var g(Xl) is strictly positive, and that for some 5, 0<d=1, one has that
E|g(X)?*0< o and E|h(Xy, ..., X,)|4+98< co, Then, one has: '
sup |p{‘_/"—([r];i—9)— = x}—cp(x)[ — O, 1w,
Proof. The proof is esseﬁtially based on an improvement of a’ Bérry—Esseen
bound for more general non-parametric statistics (see. [5D. For details of the proof
we refer to [1], where it is also shown that the result of Lemma 3 is valid for statistics

with structure > g(X))+Y; 4s used in the proof of our main theorem.
=1 Sa - .
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Main result

Theorem 1. Let (2, o/, P) be a pro’bébility space and X, X,, ... i.i.d. random
variables defined on Q. Let U, —[;]_1 2 hX,X;) be a U-statistic with

Eh(X;, Xz) =0 and put g(X,)=E(h(X,, Ajz)i%li’l) Assume that o®=Var g(X;) is
strictly positive, and that for some 5, 0<d8=1, one has that E|g(X)|*t°< and
Elh(Xy, Xp)|4+PP<co, Further, let ¢, be a.sequence of positive numbers tending to
zero and such that, for n large, n~%=¢,. Let L,: 2~{2,3,4,...} and ©: Q—(0, =)
be random variables satisfying, for some constants c¢,, c;>0:

L, —
(5) P[lm—ll > cls,,) =0(/e,), n-—e
6) P[1:< ‘W] O(Vs_,,), n —oo
D t is independent of ‘X, k=1,2, ...
then, one has:
-1 —_
@ suplP V;‘; ( ] (h(X;, X))— B)Sx] ®(x)| =0(e,), n—e
x 20 2 151<15L
} VL -
(i) sup P( o —-0)= x)—d5(x)| =0(Ve,), n-=
and, if 6:=VarU, exists:
(iii) sup |P(65}(UL,—6) = x)—(x)| = 0(Ve,), n-—>oo.
Proof. W.l.g. we assume that 8=0. The following notation will be used:
' N, =1{2,3,4,...}
I** I**(w)

= (N [Im @)1 —e8) = = L(@) or L) <j=<[m@)](l-cs),
Ir= 1*(w) (€M) < [me(@](1 —exe),
= [jEN I = k(1=¢8,)},
THw) = {feNlum(w)J(l—clen) = j = [m@I(L+aa),
Jo = {jeNilk(I—cie) = j = k(1+6,8)},

1 if [nt(w)](l cle,.)SL(w),A o
1 ‘otherwise. = k

I*

il

-0, = O(w) = {
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Proof of (i). We first prove (i) with nt replaced by [n7]. Choose n large enough
so that &,<c} and, using (6), remark that

® P(lre] < ety ) = P < 2 67%) = 0(/3).

Hence

[VW [nT]) > h(X,.,Xj)éx]—<P(x)'§

1si<j=L,

sup | P
x

= sup (X, X) = x, [ = [czs-""l]

[ Vil [[m]

151<1§L
— &(x) P([n7] = [co2; V)| + O (V).

Putting ¥ (X;, X;)=h(X;, X;)—g(X)—g(X}), the following decomposition holds
on the set where [nt]=[c,¢;]: .

]/[nr] [[m] h X, X)) =
s,<j
1 j=1
o‘l/[m] Z'g( )+ oV[nd(n—1) ,-521;' ié; v (X, X))+
L,—1 ' 5,
(=)o Zses oVmd (]~ 1) ,e%é'“x"xf)“

= [+I1+TL+1V.
Using a Slutsky argument and the Bonferroni inequality, it suffices to prove that
(.A) '
sup [PA+11 = x, [n1] = [ca67 ) — S (X) P((n] = [cae; )| = O(Ve,), 1 —eo

(i.B) P[IIIII > -%‘, [ni) = [cge,,-‘/"]) =0(/e,), n—e
i.C) P[IIVI Ve" , [n1) E[cas,,“”“']]: O(Vg), N -roo,
Proof of (i.A) ' | | ‘
9) sup |P(+IL= x; [m] é[cas:”f])—ﬂx)P([m] = [css;"‘])l =
= Z‘ P([nfl k) sup IP( 2' g(X)+Y, = by(x)|[m] vk):-'-sb(x)l“

k=[ege]?
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. ol e e . L
with b,(x)=xc}/k and Y,=: Z > 2 lﬁ(X,, X). On the summands in the

_1 61k =1
r.h.s. of (9) we use the following inequality:

oL L, ' P L
(10) sup IP(%' g(X)+Y, = by(x)|[m] = k)—2(x)| =
= sup |p(i§"1 gX)+Y, = bk(ic))f-;li(x)|+ _';

Lu
+sup lP(g; g(X)+ Y = bu(x), Lacylln] = k) P(Z’ g(Xa)+Yk be(x))|+

+P(L U;I[m] )
Putting

- n(x) = P(Z’ gX)+¥, = bi(x), L€ [[ne] = k)
5i(x) = P(Z’ g(X.)+Yk = bk(X))

A (x) = {wlmax 2 g(Xi)+Yk = bk(x)},

Bi(x) = {wlmm Zg(Xs)HG = bk(x)}

one has that P(A,,(x))<sk(x)SP(Bk(x)) and P(Ak(x), L EJkl[m] ky=sr(x)=
=P(B,(x)), where we have used (7) to, obtain the last inequality. Since P(4,(x))=
=P(4,(%), L€ \[nt]=k)+P(4,(x), L.éJlInt]= k) it follows that [rk(x) —5. (%)=
=P(B(x)) =~ P{A(x))+ P(4i(x), L,¢J;|[nt]=k) and hence that..

(1) suplr()—s,()] = sup (P(B,,(x))—P(Ak(x)))+P(Ln¢1,,1[m] b.
An applicatféﬁ" of Lemma 3. yields that there exists a constant € such that
(12) sup IP(Z sX) R = bi(x))— cb(x)l = Ck=o0

Applying (11) and (12) on the r.hs. of (10) and using the obtamed mequahty in (9)
leads to: ‘ STeror el
sup IP(I+II =x, [m] 2[czs,.“"’]) cli(x)P([m] 2[csw,.“"’])l =
2’ P([m'] : k) sup (P(B(x))—~ P4 (x)));+

k=[cgc

Z' P(L..ﬁfkl[m] k)P([m] k)+C Zh k"””P([nf] k).

k=[c3a N k [c,a
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Now, remark that " : ‘ - _

0 3 kR = K) = Y PO = e ) = O(e)

and that using (5), . i |

(14) k=[;§ lP(L..UkI[m] k)Pf[nr] - k)= P(L &) = o(/z).

Hence, it suffices to show that | . | o

(15 i g P([nt] = k) sup (PFBk(x))—P(Ak(x))) = o_(;/;).'. .

Putting p=min J;, g=maxJ,, r=max I, and remarking that r=p—1, it follows

from Lemma 2 in [2] that

P(By(x))—P(4x(x)) = C{P(Z' g(X) = bk(x) =Y, _Z’g(X) = b(x)- %)+

+P(Z' gX) = bk(x) Yes Z'g(Xa) = b(x)- %)}

for some constant c. We now use Lemma 3 from [2] with X replaced by

3 e(X)+%; ¥ by 3 g(X); b by oVk; d by Ck™** and by by(3).
i=1

i=p+1

We then obtain that for constants K and L: :
q -
sup (P(By(x))~P(4,(x)) = Kk~ +Lk—E| > g(X))|= Kk‘-".2+aL]'/ -‘I—kL
* ; ) i=p+1

— Z’ 2(X) =0 by the moment
g—p i=pi1
inequality and- the independence of the X’s together with Eg(Xl) 0 Insertmg

this result mto the l.h.s. of (15), after remarking that I/ qT§V2c1 &,, and using

where the last ioequality follows from El

(13), one amves at the desued order bound O(Vz-: ), completmg the proof of (1 A)
- Proof of (. B) From (8) and (14) it follows that

a _P(IIII|>‘V2" , [n‘r]E_[cgs;_‘/".]]éoﬂ(}/a_")-}-_:

v 5 #([et o) B eon] = B2 st = k) i = b

keleest )
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Using (7) and the fact that max |m—k|=kec,¢,, one obtains:
mCJy

. . L, - . . L
p(| =] “’|,.§1g(‘“)|> e Ledlim=k)=
ke, m gooelk—=1)) -
SP[%’.& || el - )= rlpag| 3 el = $522).

Since Z'g(X ) m=1,2, ..., forms a martingale, the Kolmogorov' inequality
yields that : '

[prsn,s;(q |2g(X)I 2c }/E
1 n

= 4cigke,(k—1)* = O(Ve,)
showing that the r.h.s. of (16) is of the order O(V—)

Proof of (i.C). Using the same reasoning as in the proof of (i.B) and remem-
bering that 8,=1 if [#7](1—c,¢,)=L,, one has:

P[IM ~ VTe (] = [eae; ) =

o(k—1) 4cike, 2 _
] = ot (k—1) E(Z g(X))

= 2” [max[ > z.p( X,)|>i@—%k—l)—)l’([m] k)+0(Ve,).

k=[cz 18 M€k j=pi=1
Further, it is well-known that V, Zm' Z_' y(X;, X;), m=p, p+1, ..., q, and also
Jj=p i=1

W{:Z’l//(X,-,X ) k=12, .., ]fl are martingales. An application of the Kol-
i=1 - .

‘ d
mogorov inequality and a theorem in [§] lead to (denote by s]
P( max, |2 2 v, xp) > THEEED. Kol ) ) < 2r-s(—1)-=(ke) 1 EW =
p=m=

= K(k— 1) (ke,)™" ZEIW " = K (k=1 (kz)” */2(q p+l)g

where K and K’ are constants. A short computation, usmg q p52kcls and
g=k(1+cys,), yields the desired order bound- O(Ve) To complete the proof of
(1), we have to show that [n7] can be replaced by nz. An application of Lemma 1 of
[7] yields that it is sufficient to prove that for some constant C - -

frm=l) - Y| <o)

w0 P EEEEL
O T
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That (17) holds follows from Lemma 2 with X,=Y,=nt and k=1, checking by
(6) that ( 1) and (2) are satlsﬁed

Proof of (u) As above, it can be shown that [nr] may also be replaced by
L,.We take X,=L,, Y,=nt and k=1 in Lemma2 Smce (1) and (2) then commde
with (5) and (6), the proof of (ii) is complete. .

Proof of (iii). We ﬁrst show that

-

Using that no®=40%+ _
n

L aL,,

2E¢2(X1, Xz)
- 4¢? —_—

’ c262

—1l>c2 ] o(Vs) with C? =

0 E¢2(X1,X2),_ this follows from _condltlon (6) after
easy marnipulation. Since ’ - ‘ S

R I O M R

a lemma of [7] makes it possible to go from (ii) to (iii). This ﬁmshes ‘the proof of
the theorem. :

We close with a result concerning the case when the 1nd1ces are 1ndependent
of the basic sequence. The details of the proof are of course simpler than in the
general case (for instance, there is no need for the decomposition of U,) and there-
fore are not given here.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with (5) deleted and
(7) replaced by: L,, T and X, k=1,2,... are independent for each n=1,2, ....
Then

(@) if P( L]—l >c Ve) =0(Ve,), the results (i), (i) and (iii) oj Theo-

[ne

rem 1 hold;
() if P[
of Theorem 1 hoId

) O(Va) for some constant a<1, the results (ii) and (iii)

Acknowledgement. The authors thank the editor and a referee for careful readin_g'
and precise remarks which have resulted in a considerable improvement of the
presentation of the paper.
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G. M. Adelson-Velsky—V. L. Arlazarov—M. V. Donskoy, Algorithms for Games, X+ 197
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1988.

The original Russian edition was published in 1978. Though.the progress in the deveIopment
of computer chess programs has been rapid, present translation is still interesting since it deals
with the basic ideas of the research problems rather than with spec1ﬁc programs and programming
techniques.

The book consists of four chapters. Chapter 1 is devoted to a descnptlon of a two-person
game with complete information. It contains the definition of the game tree and the position score
furthermore brand- and- bound method of. searching for the best move in a position. Some simple
theorems on the decomposition of a game tree are proved as well as theorems on valuation of po-
sitions for finding the best moves.

Chapter 2 is devoted to heuristic methods for choosing a move in a contemplated position. A proba-
bilistic method is used for justifying a heuristic algorithm. Shannon’ s model with the concept of
evaluation function and depth of the search are introduced. '

Chapter 3 (entitled The Method of Analogy) is devoted to the definition and study of moves which
are independent of positions (analogous positions) having thus analogous consequences in different
positions. In Chapter 4 (Algorithms for Games and Probability Theory) constructions of proba-
bilistic models for two-person games and calculation of model scores on a probabilistic basic are
investigated. :

The authors of the book had written the program of KAISSA whlch won the Fxrst Internation-
al Championship for Chess Programs in 1974.

In the Appendix the reader finds a list of chess programs which took part in 1974—1977 com-
petitions, and an interesting historical survey of game programming of computer age up to 1978.

Zoltdn Bldzsik (Szeged)

Brian A. Barsky, Computer Graphics and Geometric Modeling Using Beta-splinés (Computer
Science Workbench) IX+156 pages, Springer-Verlag, Berlm—Heldelberg—New York——London—
Pans—Tokyo, 1988 :

" Specialist” of Bsplines B. A. Barsky gives the following conception of this book in the In-
troduction: “The undeérlying concept of this work is the synthesis of two useful concepts: the appli-
cation of tension to a shape; and the study of a parametrically defined shape as fundamental geo-
métric measures.” The whole method is based on considering the continuity of these two differential
geometric notions, which are of basic importance in the investigation of their geometric shape.

Even the reader who is unfamiliar with the theory of curves and surfaces can easily catch
ideas of the considerations concerning continuity-of the unit tangent and curvature vectors of a
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curve given by a piece-wise representation. The visualization problems of these concepts by computer
graphic methods are introduced in a clear way, as well.

As to the technical applications, the most important feature of the 8-spline curves and surfaces
is that the base points render local control possibility. The shape of the curve and the surface can
be modified locally, furthermore the so called shape parameters determine the “tightness” and
“looseness™ of the curves and surfaces as they fit close the control polygon or surface.

Independent chapters are devoted to the cases of uniform, respectively continuously varying
shape parameters. In the both cases a method is explained in detail for determination of the S-spline
curve (surface). For this purpose the author shows REDUCE computer algebra system developed
at the Department of Computer Science at the University of Utah. This is a perspicuous program
for the evaluation of the unkhown coefficient functions of p-spline curves and surfac"es.'Boundary
conditions (respectively, end conditions) are analyzed in original chapters, including the problem
of classification.

One of the greatest merits of the book is the excellent collection of figures and pictures. They
help the reader to understand the concepts above more exhaustively, and demonstrate the effective-
ness of f-spline representation. Especially remarkable are the figures analyzing the relations between
control polygons (surfaces) and shape parameters, by the side of which the reader can see the synthet-
ic image appearing on the monitor. Wide pOSSlbllltleS of B-splines are illustrated by nice colour
pictures in the 19th chapter.

The book is recommended to readers interested in ability of f-spline technique. However,
it should be a pleasure first of all for those mathematicians and computer scientists who want to
deal with computer graphic and design problems. In the latter case, the summary in the 20th chapter
with an outlook on further research directions; the enclosed Reduce programs in the Appendix;
and the Bibliography on Curves and Surfaces including about 400 references are very useful.

Jozsef Kozma (Szeged)

M. Berger—B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces (Graduate
Texts in Mathematics, 115), XII+474 pages, Springer-Verlag, Berlin—Heidelberg—New York—
—London—Paris—Tokyo, 1988.

First of all we must sound out that this is an extremely good book. The observant readers must
certainly find great pleasure in reading this book, because of its clear style and very nice sefting up.
Although one has to read this book to know its taste we try to say some words about it.

" "This book can be regarded as an enlarged and revised version of M. Berger’s book “Géométrie
Différentielle” (1972). In order to know something about the building up of this book it is worth
to quote Berger’s words about his aims in lectures he read in Paris in 1969—71 served as the basis
of this beautiful book:

“First, to avoid making the statement and proof of Stokes’ formula the climax of the course
and running out of time before any of its applications could be discussed. Second, to illustrate each
new notion with nontrivial examples, as soon as possible after its introduction. And finally, to famil-
iarize geometry-oriented students with analysis and analysxs-onented students with geometry, at
least in what concerns manifolds.”

-.While the first nine chapters are based on the- above mentxoned book absolutely, the last two
chapters are an.”attempt to remedy the notorious absence in the original book of any treatment of
surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most
common geometrical objects, not only in mathematics but in many branches of physics”.
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Although we have not detailed the book’s contents- we suppose these words above can take
a fancy to reading of this book, hence we call again attention of everybody interested in differential
geometry on graduate level or reading lectures about it to this well illustrated nice book.

Arpdd Kurusa (Szeged)

K. H. Borgwardt, The Simplex Method. A Probabilistic Analysis, XI+268 pages, Springer-
Verlag, Berlm—Heldelberg-New York—London—Pans—-—Tokyo, 1987.

Since the Slmplex-Method was dlscovered by George B Dantzig it has been in the central of
interests of researches. One of the most interesting problem in connection with the Method is the
discrepancy of its worst-case behaviour and the good practical behaviour of' it.

This book — giving a comprehensive probabrllstlc analysrs of the so-called Two-Phase Simplex
Method — attempts to resolve this discrepancy.

After an extensive introduction in which the author overviews the known results of-the proba-
bilistic analysis of the Symplex Method including some theorems from the field of stochastic geom-
etry, the papers of Smale and Haimowich-and of course their own earlier results as well,

Because of the analysis is based on the shadow vertex algorithm, the first chapter reviews this
algorithm. The next two sections deal with giving an upper bound for the average number of pivot
step of the algorithm. The research culminates in the - Theorem 6 of the Chapter 3 in which the
author postulates that the average number of pivot steps (E,,.) for the complete Slmplex Method
is polynomial, namely if we have m inequalities with » variables then

E,, .= O(m'/"-Vpy,

Chapter 4 studies the asymptotic average behaviour of the Simplex Method. (The author uses the
term “asymptotic” in the sense that m—«, and nis fixed.) ‘
Upper bounds have been given in integral form, for certain classes of distributions including
the uniform and the Gaussian distributions as well. ’ ‘
In the Chapter 5 the author introduces a modified version of the Two-Phase Simplex Method
solving the so-called rotation invariant model with n additional nonnegativity constraints. It has
been proved that the expected number of pivot steps of this algorithm is not greater than

2 en
me=D(t 1y — 14+ —}.
o1+
An Appendix including definitions and proqfé for Gamafunction and Betafunction closes the
book. The book is well-organized readable (in mathematical sence), but I have to mention thag rhe
lack of some definitions causes that the book is not absolutely “self-contained”.

G. Galambos (Szeged)

CAAP ’88, 13th Colloquium on Trees in Algebra and Programming, Proceedings, Nancy 1988.
Edited by M. Dauchet and M. Nivat (Lecture Notes in Computer Sciénce, 299), VIII+304 pages,
Sprmger—Verlag, Berlm—Herdelberg—New York 1988.

. . This volume contams the proceedmgs of the 13th Colloqmum on Trees in Algebra and Prog-
rammmg, held on March 21—24, 1988, in Nancy. -

. CAAP ’88, following the tradition, is devoted to trees, whrch are.a baslc structure for Com-

puter Science, and which are explicitly or unphc;tly studied in a lot of papers in this volume. But
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CAAP ’88 covers also a wider range of topics in Theoretical Computer Science: Algorithms and
complexity on trees and other structures Abstract data types and term rewriting; Logic, parallelism
and concurrency.

We warmly recommend this book to everybody, working in Theoretical Computer Science.

Sdndor Vigvolgyi (Szeged)

G. S. Campbell, An Introduction to Environmental Biophysics, XV + 159 pages, Springer-Verlag,
New York—Heidelberg—Berlin, 1986.

Environmental biophysics is a specialized branch at the borderline of physics and biophysics
and mainly concentrates on energy exchange processes taking place in our environment exposed
to solar radiation and variations in air humidity. The principal emphasis of the book is to present
the differential equation formalism for mass and heat transfer and it gives an introduction into
the mathematical physics of rate equations. Special attention has been paid to a quantitative analysis
of energy balance using the continuity equation. Then it goes on to apply the general principles-to
selected examples and in the second part of the book the energy and mass transfer models are applied
to exchange processes between organisms and their microenvironment. Throughout the book the
basis principles are illustrated by several examples which are rahter useful in gaining an under-
standing the subject. The illustrations are superb and rahter useful additions to the text. This book
is addressed to the physics and biophysics undergraduate student of conventional course background.
The author does not review mathematical physics, butit is a useful supplement for those who have
met the concepts in other courses. It can be used as a textbook of environmental biophysics or a
supplementary reference source of classical mechanics for first year undergraduate courses. At the
end of each chapter further problems are presented which can be very useful additions to conven-
tional physics courses. '

. ‘L. 1. Horvdth (Szeged),

Classic Papers in Combinatorics, Edited by Ira Gessel and Gian-Carlo Rota, X+489 pages,
Birkhduser, Boston—Basel—Stuttgart, 1987.

Excellent papers from different fields of the combinatorics are presented in this collection.
Without giving a completé enumeration on the contents of the book we give some significant results.
From the Ramsey theory we meet the basic paper of Ramsey from 1930, the classical paper of
Erdés and Szekeres (1935), the Erdés—Rado theorem on the partition calculus. The new results
are represented by the Graham’s, Leeb’s, Rotschild’s papers on the categorical underpinning of
Ramsey theorem. -

Withney’s paper (1932) presents the first paper on the theory of matriods. Tutte’s paper in-
cluded in this book roots in the matroid theory. Classical papers are presented from the graph
coloring (Brooks, Lovasz). The matching theory represent 8 papers among them the opening papers
of Hall (1935), Halmos (1958) and Dilworth. Here we can find the lot-cited papers of Ford and
Fulkerson, Tutte’s paper on factors of graphs and Edmonds’s efficient matching algorithms.

One of the editors (Rota) has used Pélya’s paper on plcturewntmg to establish the theory of
Mobius functions. His work was extended by Crapo.”

On the field of the extremal set theory the first paper is due to Katona. Clements’s, Kruskal s,
Kleitman’s and Erdds’s results are cited in this part.
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. Again an Erd6s’s paper on the probabilistic method is in the collection. This.paper.is very
important since it helps to prove a lot of existence theorems in the graph theory. Lovasz’s contri-
bution to the Ulam reconstruction problem is an ingenious use of the inclusion-exclusion priciple.

It was a great pleasure of the refree that the Hungarian matematicians who played significant
role in this field of matematics are present in this collection with a weight.

G. Galambos (Szeged)

Underwood Dildley, A Budget of Trisections, XV + 169 pages, Springer-Verlag, New York—
Berlin—Heidelberg—London—Paris—Tokyo, 1987.

From time to time every mathematical institute receives letters in which the authors “solve,,
some famous problems. They prove the Fermat Conjecture, the Goldbach Conjecture, they dupli-
cate the cube with compass and straightedge and so on. Numerous amateurs try the trisection of
the angle. (This is impossible with straightedge and compass as was proved by P. L. Wantzel in
1837.) Archimedes trisected the angle using a compass and a straightedge with two scratches on it.
This.is a non-euclidean construction and you will find some more examples of this kind in the first
chapter. The second and third chapters (Characteristics of Trisectors, Three Trisectors) enlighten
the personalities of these amateurs. The fourth chapter contains the collection of trisections.

This book is a curious, extraordinary work. I have never seen anything similar to this.

* "Everyone can read it with minimal mathematical background. The author writes in the In-
troduction: “What follows, then, is something which has never been done before: it is an effort
to do something which may be as impossible as trisecting the angle: namely to put an end to tri-
sections and trisectors”. '

L. Pintér (Szeged)

‘Dynamics of Infinite Dimensional Systems, Edited by Shui-Nee Chow and Jack K. Haie
(NATO ASI Series, Series F: Computer and Systems Sciences, 37), IX+ 514 pages, Spnnger-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

" This is the Proceedings of the NATO Advanced Study Institute on Dynamics of Infinite Di-
mensional Systems, held in Lisbon, Portugal, May 19—24, 1986.

In recent years it has become a general method in the researches into partial differential equa-
tions (PDE’s) and functional differential equations (FDE’s) to consider these equations as dynamical
systems on functional spaces. The purpose of this workshop was to bring together research workers
from the various areas coming with several different backgrounds and interests. The pépers investi-
gate asymptotic behaviour of solutions (e.g. stability properties oscillation, bifurcation) for such
equations as semilinear and nonlinear parabolic and elliptic PDE’s integrodifferential equations
dissipative systems, FDE’s with finite and mﬁmte delay, infectious disease model, wave equation
and reactxon diffusion system. :

o . L.‘Hatvam (Szeged)

- Foundations of Logic and Functional Programming, Proceedings, Trento 1986. Edited by M.
Boscarol L. Carlucci Aiello and G. Levi (Lecture Notes in Computer Science 306), IV+218 pages
Spnnger-Verlag, Berhn—Heldelberg—-New York 1988

Thxs volume contains ten papers presented at the workshop on “Foundatlons of Loglc and
Fungctional Programming” held in Trento, Italy, December 15—19, 1986 Co

13
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“ The titles of invited contributions are: 1. C. Talcott: Rum. An intensional theory of function
and control abstractions. 2. L. Cardelli: Typechecking dependent typés and subtypes. 3. C. B6hm:
Reducing recursion to iteration by means of pairs and N-tuples. 4. J.-L. Lassez, M. J. Maher and
K. Marriott: Unification revisited. 5. C. Zanjolo and D. Sacca: Rule rewriting: methods for ef-
ficient implementations of Horn logic.

The titles of submitted contributions are: 1. P. Miglioli, U. Moscato and M. Ornaghi: PAP:
A logic prbgramming system based on a constructive logic. 2. E. Giovannetti and C. Moiso: A
completeness result for E-unification algorithms based on conditional narrowing. 3. N. Guarino:
Representing domain structure of many-sorted Prolog knowledge bases. 4. A D’Angelo: Horn:
An inference engine prototype to implement intelligent systems. 5. E. G. Omodeo: Hints for the
design of a set calculus oriented to Automated Deduction. )
This book is recommended to everybody working in the theory of Logic and Functional
Programming. ‘
’ Sdndor Vdgvélgyi (Szeged)

M. Goresky—R. MacPherson, Stratified Morse Theory (Ergebnisse der Mathematik und ihrer
Grenzgebiete), XIV+272 pages, Springer-Verlag, Berlm—Hexdelberg—New York—ILondon—
Paris—Tokyo, 1988.

This book consists of three parts and a nice mtroductxon This mtroductxon makes absolutely
clear basis for the tree distinct subjects of three parts. The parts contain: a systematic exploration
of the natural extension of Morse theory to include singular spaces; a large collection of theorems
on the topology of complex analytic varieties; the calculation of the homology of the complement
of a collection of flat subspaces of Euclidean space.

The only common thing in these parts is the application of the Morse theory, but we think
the appearance of these subjects in one book was a very good and natural idea.

To end our review we establish that this book is very nice in its form, contents and also its
getting-up. We are sure that it will become a fundamental book of its subject. »

Arpdd Kurusa (Szeged)

Martin Grotschel—Ldsz16 Lovisz—Alexander Schrijver, Geometric Algorithms and Combinatorial
Optimization, X114 362 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—
Tokyo, 1988.

In spite of the fact that many of the most frequently used combinatorial algorithms were based
on the discrete structure of -the problems in the last several years geometnc methods have played
more significant role in' combinatorial optimization.

In the focus of this book states the investigation of two geometncal algorithms: the ellipsoid
method .and the-basis reduction. The first one has been developed by L. G. Khachiyan for linear
programs and the authors examined it deeply in their earlier papers as well. The roots of the second
method go back to Hermite and Minkowski, and it has been used for the polynomial time solv-
ability of integer linear programming in fixed dimension by Tardos and H. W. Lenstra.

The first two sections of the book contain preliminaries. A list of the main problems (The
Weak Optimization Problem, the Weak Violation Problem, the Weak Validity Problem, the Weak
Separatlon Problem, the Weak Membership Problem) are introduced’in Chapter 2. The next section
contains the description of ‘the ellipsoid method.  Applications and specializations of the method
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are collected in Chapter 4. The algorithms concerning the different charactenstlcs of a convex set
are approximations (because of the nature of the method).

The next two sections contain the basis reduction algorithm for lattices and its applications.
Different combinations of the ellipsoid method with basis reduction are given for the programming
in fixed dimension. The last four chapters contain further applications: Chapter 7 gives some basic
examples, in Chapter 8 there is given a deep survey of the basis reductions. Specific ﬁelds of the
application of the ellipsoid method are discussed in the finishing sections.

‘The book has a clear style. It may be a useful piece of reading not only for experts but for
students as well

" 'G. Galambos

John L. Kelley—T. P. Srinivasén, Measure and Integral, Volume 1 (Graduate Téxts in Mathe-
matics, 116),. X+ 150 pages, Springer-Verlag, New York—Berlin—Heidelberg—ILondon—Paris—
Tokyo, 1988.

The measure and integral have been two basic notions of analysis and probability theory
since their beginnings. Nowadays they play an important role also in other branches of pure and
applied mathematics. This book is a systematic exposition of the theory of measure and integration
emphasizing the part of the theory most commonly used in functional analysis.

The book consists of two kinds of text. The body of the text, requiring only a first course in
analysis as a background, is a study of abstract measures and integrals. It establishes Borel measures
and integration for R. The chapters are followed by supplements, which are more informal and
present such parts of the theory as Borel measures and integration for R", integration for locally
compact Haussdorff spaces, invariant measures for groups, Stieltjes integration, Haar measure,
the Bochner integral.

The method of presentation differs from the standard one, namely, at first integrals are con-
structed, ther. measures are derived from them. The integral is extended to some R* valued functions,
and measures with R* values; signed measures and indefinite integrals are also treated. .

The well-written book can be highly recommended to mathematicians especially those dealing
with functional analysis.

L. Harvani (Szeged)

Neal Koblitz, A-Course in Number Theory and Cryptography (Graduate Texts in Mathematics),
1V 4208 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987:
\ .

Since the fifties number theory has changed in an extremly rapid manner. Only a few decades
ago this theory had no practical use. Gauss called it the “Queen of Mathematics”. The results are
interesting and sometimes surprising, the methods can be delightful, and nowadays there appear
more and more new applications. A course is interesting and the publication of a book is justified
if it has got some original distinguishing features. In my opinion the reader will enjoy this book.
One of its characteristic features is the algorithmic approach, emphasizing estimates of the efficiency
of the techniques. Cryptography is in the centre of the discussions. The inclusion of some very
recent applications of the theory of elliptic curves seems to be originally new.

The first two chapters — Some topics in elementary number theory and Finite fields and quad-
ratic residues—give a géneral background. Séme of the proofs are omitted (one finds them in intro-
ductory textbooks). A characteristic (unusual) topxc is the mtlmatxon of the number of bit operatxons .
needed to perform different tasks by computer. .. :

13*
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The following four chapters—Cryptography; Public key; Primality and factoring; Elliptic
curves — are similar to a fascinating novel. Especially the chapter on public key supplies astonishing
novelties for the readers who are inexperienced in this theme. Let us cite the last sentences-of this
chapter from which consequences may be drawn on the discussion and further we can see that the
book holds the benefits of a lecture: “At the present time there is no known polynomial time algo-
rithm for solving the iterated knapsack problem, i.e., the public key cryptosystem described in the
last paragraph. However, there are some promising approaches to generalizing Shamir’s algorithm.
It is not unlikely that intensive research on this problem would before long produce an efficient
algorithm for breaking the iterated knapsack cryptosystem. In any case, most experts, traumatized
by Shamir’s unexpected breakthrough, do not have much conﬁdence in the security of any public
key cryptosystem of this type.”

Several various exercises increase the interest of the work, answers and in more difficult cases
solutions are given.

Although we can read on the cover: “No background in algebra or number theory is assu-
med”, however, in my opinion the reader needs some experience in the theory and in this case she/he
can find great enjoyment in this text and very much of it indeed.

’ L. Pintér (Szeged)

Max Koecher, Klassische elementare Analysis, 211 pages, Birkhiuser Verlag, Basel—Boston,
1987. '

The text is divided into six parts. Chapter 1is a preparatory part the main idea of which is
the investigation of the connection between the classical golden section problem, the Fibonacci
numbers and continued fractions. An algebraic application of golden section is also given. Chapter
2 introduces the notions of convergence of sequences and series of real numbers. In Chapter 3 the
Riemann integral is defined, the integration methods are acquainted and at the end of the chapter
the logarithm function as an integral andits inverse, the exponential function are introduced. Chapter
4 is devoted to algebraic and number theoretic applications. Chapter 5 deals with convergence of
function sequences and series, the power series of elementary functions are deduced, the partial
fraction decomposition of cotangent function and by using the power series representation of the

. LY n
arctangent function a series of 7 are considered. Chapter 6 discusses famous classical problems

of elementary analysis. Here Bernoulli polynomials, Euler series, Euler and Poisson summations
and the Gamma-Function are investigated. |
The book is a pearl of the mathematical literature. It is hrghly recommended to students for
learmng analysis in the first two semesters.
L. Gehér (Szeged)

Panl Koosis, The logarithmic integral. I (Cambridge Studies in Advanced Mathematics 12),
XI+606 pages, Cambridge Umversrty Press, Cambridge—New York—New Rochelle— Melbourne
—Sydney, 1988. ;

The frequent appearance of f M) /(1+1%)dt (or its transformed form) m more or less

different branches. of. mathematrcal analysrs as. well as in their applications naturally raises ‘the
question: What is the role of this integral in the analysis? One, who is interested in' this theme;
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should consult with the present book. Moreover, having even a look at its “Contents”, the pros-
pective reader will surely find something of his particular interest. .

The first two Chapters are devoted to Jensen’s formula, the celebrated Szegd’s theorem and
the familiar Poisson integral. Chapter III, called for more frequently in the subsequent ones, deals
with “Entire functions of exponential type”, i.c.:. entire functions satisfying |f(z)]=Ce*'%'. The
rest of the Chapters are entitled as follows: “IV. Quasianalycity”, “V. The: moment problem on
the real line”, “VI. Weighted approximation on the real line”, “VII.. How small can the Fourier
transform of a rapidly decreasing non-zero function be?”, “Persistence of the form dx/(1+x?)”.
An “Addendum” improves the content of Chapter VII by discussing some recent results.

The author pays attention to show how things grow up from simple ideas. The reader, familiar
with an introduction to the theory- of real and complex functions, and a bit of functional analysis,
will find only a few cases, when he needs to look for supplementary material. Exact references
help the readers to find way in such situations. “Blbhography for volume I” lists approximately 80
items, including a number of books. .

The argumentations are detailed to such an extent that one can follow them easily. However,
a large area for the reader’s activity is provided by giving “Problems“ accompanied with hints
(if necessary). By solving these problems (mostly of own interest) one can deeply understand, how
to use the methods of the discussed theme, and thus possibly feels to be stimulated to do research
work in analysis.

Reading this book, everybody will certainly be caught by the author’s enthusiasm: “It is a
beautiful material. May the reader learn tolove it asI do.” Thus, it mustn’t escape the reader’s atten-
tion that this book is completed by “Contents of volume I1.”

Endre Dyrszt (szeged)

Hary Krishna, Computational Complexity of Bilinear Forms' (Lecture Nofes in Control and
Information Sciences, 94), XVI+ 166 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1987.

The book contains two parts: the first one has four chapters and is a deep study of the rela-
tionship between the computation of biliniear forms and the linear error-correcting codes. The two
chapters of the second part describe an application of the class of linear codes showed in Part I.

In details, Chapter 2 discusses the multiplicative complexity of certain noncommutative algo-
rithms that are usable tO Compute a system of & bilinear forms and establishes a connection between
linear (n, K, d) codes and algorithms. Using the property of duality it is shown that the multiplicative

" complexity of the bilinear forms is the same as the multiplicative complexity of an aperiodic convo-
lution algorithm with length (k+d+1).

In Chapter 3 efficient algorithms are developed for aperiodic convolutions. In Chapter 4 bi-
linear algorithms — basing on two approaches developed in the previous Chapter — are presented
for aperiodic convolution of sequences defined over GF(2) and GF(3).

Chapter 5 shows the decoding procedure for the class of codes obtained from the aperiodic
convolution algorithms, moreover it is established that the length-and theerrorcorrecting capability
of these codes can be varied easﬂy As a consequence it has been proved that ‘the encoder/decoder
can be designed to incorporate a large number of these codes into the same conﬁguratlon

The next two chapters deal with the basic automatic repeat request schemes, with their proto-
cols and their generalization. S

: ~ G. Galambos (Szeged)



404 Bibliographie

Fred Kroger, Temporal Logic of Programs (EATCS - Monographs on Theoretical Computer
Science, 8), VIII-} 148 pages, Spnnger-Verlag. Berlm—Hexdelberg—New York—London—Pans—-
Tokyo, 1987. .

' Temporal logic is a branch of modal logic. Its basic idea is that the truth of an assertion may
depend on a discrete time scale. As a logic of this kind, it can be used to describe properties of prog-
rams in a natural way where. the execution sequence of a program plays the role of the time scale.

Besides the Introduction, the book consists of seven chapters. Chapter I provides a detailed
discussion of syntax and semantics of propositional temporal logic. In addition to the usual modal
operators, the nexttime operator and the atnext operator are taken as primitive. If A and B are
formulas, then A atnext B expresses that A will hold at the next time poirt than B holds. Other
temporal operators are introduced as derived ones. Soundness and completeness of an axiomatiza-
tion of propositional temporal logic is established in Chapter II. Some induction principles are
also included. Chapter III is devoted to first order temporal logic. No completeness theorem is
stated. '

A basic (parallel) programming language is the subject of Chapter IV. Program properties
are formalized and classified as safety (or invariance), liveness (or eventuality) and precendénce
properties. The rest of the book is devoted to program verification using temporal logic. Invariance
and procedence properties are discussed in Chapter V and eventuality properties in Chapter VI.
Hoare’s calculus is embedded in temporal logic in Chapter VII.

It is shown in each case how program verification rules can be derived within the system,
these are however the only theorems incorporated. Several examples are discussed.

The volume can be recommended to graduate students with interest in program verification.

Z. Esik (Szeged—Munich)

Yurii T. Lyubich, Introduction to the Theory of Banach Representatlon of Groups, VI+223
pages, Birkhduser Verlag, Basel—Boston—Berlin, 1988..

This is a translation of the original Russian edition. The book consists of five chapters. The
first three chapters are devoted to give the mathematical background needed in the last two chapters.
Chapter one deals with the basic properties of bounded linear operators in Banach spaces and with
commutative Banach algebras. Chapter 2 introduces the notions of topological groups and topo-
logical semigroups, a brief reference to invariant measures and means is also given. Chapter 3 gives
a glimpse into the elements of general representation theory. Chapter 4 presents the representation
theory of compact groups and semigroups in the space of bounded operators of a Banach space.
In the final chapter the representation theory of locally compact Abelian groups can be found. In
the text a rich collection of exercises and examples is given, serving as the illustration of the ideas.

L. Gehér (Szeged)

Erkki Mikinen, On context-free denvatlons (Acta Umversxtatlcs Tamperensxs ser. A, vol.
198), 94 pages, Tampere, 1985.

Given a context-free grammar, its Szilard language contains one word for each terminating
derivation. Szilard languages also arise with restricted types of derivations such as leftmost deriva-
tions, depth-first derivations and breadth-first derivations. The book provides a good survey of
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results on Szilard languages: basic properties and relation to the Chomsky hierarchy, decision
problems, recognition of Szilard languages, etc. Unrestricted Szilard languages are related. to m-
counter automata and left Szilard languages to simple pushdown automata. The 1mportance of
depth-first derivations lies in the fact that depth-first Szilard languages are context-free yet they are
more general than leftmost derivations. The last chapter is devoted to the relation of Szilard lan-

guages to grammatical similarity.
The book can be recommended to graduate students and computer scientists with interest in
formal languages and compiler construction.
: Z. Esik (Szeged—Munich)

Mathematical Foundations of Programming Language Semantics, Edited by M. Main, A. Melton,
M. Mislove and D. Schmidt (Lecture Notes in Computer Science, 298), VIII+ 637 pages, Sprmger-
Verlag, Berlin—Heidelberg—New’ York—London——Parls—Tokyo, 1988.

This volume is the proceedings of the Third Workshop on Mathematical Foundations of
Programming Language Semantics held at Tulane. University, New Orleans, Louisiana, in April,
1987. The 32 contributions (4 invited and 28 selected) are organized into six chapters. The subject
matter covers a wide range from category theory and A-calculus to domain theory and implemen-
tation issues.

The invited addresses are the following: J. W. Gray: A Categorical Treatment of Polymorphic
Operations; The main thesis is that 2-categories provide the right framework for studying poly-
morphic operations, i.e., operations that behave the same everywhere. J. D. Lawson: The Verstile
Continuous Order; A survey of basic properties of continuously ordered sets including two natural
topologies. S. D. Brookes: Semantically Based Axiomatics, A discussion on the basic ideas of
Hoare’s calculus. N. D. Jones et al.: MIX: A Self-Applicable Partial Evaluator for Experiments in
Compiler Generation (Extended Abstract). The volume does not contain the text of the invited
talks given by G. Plotkin and D. Scott.

The volume can be recommended to researchers and graduate students with interest in semantic
issues.

Z. Esik (Szeged—Munichy

Particle Physics, A Los Alamos Primer, Edited by N. G. Cooper and G. B. West, XI-+199
pages, Cambridge University Press, Cambrxdge—New York—New Rochelle—Melbourne—Sidney,
1988.

Particle physics is one of the most challenging fields for the human thought, and likewise for
the budget of those few countries and organizations that can afford to finance the enormous costs
of experimental particle physics. This book, which is a collection of articles written by a group of
particle physicists at Los Alamos, is divided into two main parts. The first one is a theoretical frame;
work. The authors explain here what are meant by the fundamenial physical particles as quarks-
leptons, gauge bosons, and how the related mathematical ideas: gauge fields, spontaneous symmetry
breaking, quantum chromodynamics, etc., have emerged in the last 20 years. The subject is treated
on a variety of technical levels and will certainly be enjoyed by anyone who is interested in the modern
developments of ‘natural sciences. Physicists working-in other fields than particle physics will like
this book too because everything is explained on the level of ordinary four dimensional electro-
dynamics and quantum mechanics. I think also the professional particle physicist may obtain much
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help reading this book . because it demonstrates how to expose this most difficult subject in a simple
manqer..

’ The second- part of the book acquamts us with the grandiose experiments have been done so
far or- planned in.the future by particle physicists. 'We can-learn about “underground science”, as
the énormous detectors, that are to be detecting proton decay, or neutrino oscillations — predicted
by some theories — are located in deep mines. Not less interesting are the details of huge accelerators
with diameters of tens of kilometers etc.

Each article is illustrated with several figures that help very much to undetstand the physncal
ideas. In the end of the book the authors express their personal viewpoint in a lively discussion about
their profession, and also about social psychology of the particle physics community.

Physical theories of the first half of our century yielded us, among others, the theoretical basis
of atomic power plants, but at present one can only hope that some time in the future high energy
physics will also provide us with practical comfort. And though physicists are convinced that this
will come true one day, the situation is more idealistic at present. We can only state that the gigantic
and very expensive experiments serve merely to prove that deep mathematical ideas, such as Lie
groups, supersymmetry, gauge invariance etc. have their origins in reality. Nevertheless these theories
have strong predictive power and will allow mankind to control reality in an ever increasing manner.

M. G. Benedict (Szeged)

S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function (Cambridge
Studies in Advanced Mathematics, 14), 156 pages, Cambridge University Press, Cambridge—New
‘York—New Rochelle—Melbourne—Sidney, 1988.

One of the most famous problems of mathematics is the so called Riemann Hypothesis. This
. . 1
states that all the zeros of the zeta-function lie on the “critical line” {z: Rcz=?}. (This is one of

the-several forms of the conjecture.) This was formulated jn 1859 by B. Riemann, and it occurs in
the eighth problem of the famous 23 unsolved problems presented by D. Hilbert before the Inter-
national Congress 6f Mathematicians in 1900,

The following little story told by G. Pélya in a speech characterizes the importance of the
problem. Somebody allegedly asked Hilbert, “If you would revive, like Barbarossa, after five hund-
red years, what would you do?” “I would ask” said Hilbert, “Has somebody proved the Riemann
Hypothesis?” .

The problem had resisted for over 100 years the efforts of mathematxclans

Several examples prove that the most fruitful and exciting task is to build a bridge over mathe-
matical branches which are seemingly far off. The zeta-function is a meromorphic function, it can
be investigated by the techniques of complex analysis and at the same time it yields important and
characteristic results concerning the integers. Through the history of the zeta-function a long series
of the world's greatest mathematicians (the enumeration is almost impossible) obtained determinant
results: Two widely known classical summaries were written by E. Landau and E. C. Titchmarsh.

‘This book grew out of a lecture course about the Riemann Hypothesis and Weil’s point of
view.concerning it. In determining the direction of the investigations the Riemann Hypothesis
plays a-central role. Chapter headings are: Historical introduction; The Poisson stimmiation formula
and the functional equation; The Hadamard product formula and explicit formulae of prime number
theory; The zeros of the zeta-function and the prime number .theorem; The Riemann- Hypothesxs
and the Lindeléf: Hypothesis; The approximate functional equation; Appendices. -
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.~ .. An interested reader having a good background in analysis and number theory should be able
to read the.main part of the book. For the reviewer one.of the most attractive features of this work
is the concise but clear style of the treatment. The appendices make the reading of the texts easier.
Various exercises in an unusually large number constitute an essential part of the book..(Some
‘hints would be useful for the reader concerning the more difficult examples.) The thorough examina-
tion' of this book offers the.reader a good:possibility to study special problems and to do some
resca.rch .Last but. not least the work consists of only 156 pages.

L, Pintér (Szeged)

Efim M. Polishchuk, Continual Means and Boundary Value Problems in Function Spaces, 159
-pages, Birkhiuser Verlag, Basel—Boston—Berlin, 1988.

The main purpose of this book is to develop the theory of integration of infiite dimensional
spaces and to give applications to boundary value problems for function domains. The text is divided
into four parts. In the first part the definitions of uniform and normal functional domains are in-
troduced. The notion of the main value of a functional over a domain is given and explicit for-
mulae for its calculation are deduced. The procedure of functional averaging is shown to result in
a Dirac measure, which is a generalized function. At the end of this part several definitions of the
functional Laplace operator are presented. The second part is devoted to study the weak Dirichlet
problem for normal domains with boundary values from the Gatoux class, furthermore the Pojsson
equation and the solution of an exterior Dirichlet problem in a function space are considered. In
‘the third part a completely different approach to the functional boundary value problems is pro-
posed. Also boundary value problems for uniform domains are investigated. The final part deals
‘,‘w.ith the extension of some of the previous results to boundary value problems with a general elliptic
_functional operator using the theory of diffusion processes and the compact extension of a function
“domain.

. . The materialis as selfcontained as it is possible. The book is recommended to research workers
‘who_are familijar with measure theory and functional analysis. _
B ’ : L. Gehér (Szeged)

IR C. : . :
. Recent Developments in Mathematical Physics, Edited by H. Mitter and L. Pittn@s, XT+323
-pages, Springer-Verlag, Berlin—Heidelberg—New York—ILondon—Paris—Tokyo, 1987.

. - The demand for mathematical rigor appears in theoretical physics mostly when “rude” physics
_itself shows that “something is wrong”. This is the point where it is worth to try more exdct methods;
and it turns out very often that behind the new mathematics there is something new in physics as
well. Mathematical rigor has the advantage that the physical model, its assumptions and restrictions;
can | be formulated in a most compact way. The 34 articles, contained in this book are written in this
spirit. They are the texts of the lectures given at a meeting in Schladming, Austria, in 1987, in- honour
..of, Professor W. Thirring. Both classical and quantum mechanical problems are considered as well
.as problems in statistical physics and quantum field theory. The book will be interesting for mathe-
maticians and also for physicists who like the mathematical style in.theoretical physics. It will'be
.useful'for anyone who :wants to see at least a part of fields of present day mathematical physics.

T M. G. Benedict (Szeged)
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Recent Topics in' Theoretical Physics (Proceedings in Physics, 24). Edited by H. Takayama,
IX+129 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988.

: The volume consists of -10 lectures on recent developments in theoretical physics, held at the
Yukawa Memorial Symposium, in 1986, in Nishinomiya. The topics of the lectures can be divided
into two classes. The first one is high energy physics and cosmology. The titles contain: superstrings,
lattice quantum chromodynamics, the quark-structure of the nucleus, solar neutrinos,.the very
early universe, and gravitational collapse. The rest of the volume is devoted to some most recent
developments of solid state theory, such as the quantum Hall effect, diffusion of heavy particles in
metals, spin glasses, and pattern formation. The lectures are written on a high level, mostly by well
known Japanese specialists. Nevertheless, the style is introductory and the text is aimed at any
physicist independently from his special field of research. Concepts unfamiliar to the nonexpert are
explained in simple terms. From the book one can learn what is in the centre of interest of theoretical
physics now. It can be recommended to mathematicians and experimental physicists as well.

M. G. Benedict (Szeged)

Rewntmg Techmques and Applications, Edlted by J. P. Jouannaud, 216 pages, Academic Press,
London—Orlando—San Diego—New York——Austm—Montreal—-—Sydney—Tokyo—Toronto, 1987.

- This volume contains a selection of papers presented at the first intérnational conference on
Rewriting Techniqués and‘Applications held in May 1985, in Dijon, France. The material is reprint-
‘ed from the Journal-of Symbolic Computation, Volume 3; Numbers 182, 1987. The -8 selected
papers are: B. Buchberger: History and Basic Features of the Critical-pair/completition procedure;
R: V. Book: Thue Systems as Rewriting Systems; N. Dershowitz: Termination of Rewriting; M.
Rusinowitch: Path of Subterms Ordering and Recursive -Decomposition Ordering- Revisited;
'3, Hsiang - Rewrite Method for Theorem Proving in First Order Theory with Equality; K. A. Yelick:
Unification in Combinations of Collapse-free Regular Theories; E. Tiden and S. Arnborg: Uni-
fication Problems with One-sided sttnbutmty, D. Benenav, D. Kapur and P. Narendran: Comp-
lexity of Matching Problems. -
The first 3 papers are invited and provxde ‘good surveys on 3 dxfferent topics of symbolic com-
putation. The following is a quotation from the Editorial by Jean-Pierre Jounnaud.

-~“The paper. by Bruno Buchberger relates the history of the most.important discovery in term
_rewriting theory ::the notion of a critical pair, and its natural consequence, the completion algorithm.
~The reader: will find his. bibliography.very. helpful. -

+ .The:paper by Ronald: Book synthesies at:least ten years .of research on Thue Systems, with
~a pamcular ;emphasis on'‘the role of Church—Rosser. properties .in decxdmg 1mportant quesuons
related to, Thue Systems..
: The paper by:Nachum. Dershowntz isa bw.utlful pmentanon of 1he current state of knowledge
~of termination:.Moreover,.he gives a hew coding of Turing machines by rewrite rules, which leaves
open he uniform termination problem of.the one rule case only.” .
- The book cin be recommended:both to researchers and graduate students mterested in the field.

Comerldade Lo Z. Esik (Szeged—Munich)
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- Paulo Ribenboim, The Book of Prime Number Records, XXII-+4 76 pages; Spnnger-Verlag,
New York—Berlm—Hexdelberg—London—Pans—Tokyo, 1988.

. Havirig read this book the opinion of A. Rényi ¢came to my mind (he was a Hungarian mathe-
matician (1921—1970), mentioned in this book in-the Index of Names, too). He wrote somewhere
that the really beautiful, interesting, very significant and genuine things will never beccme ordinary
or boring. This is true for the field of mathematics as well. One will never be tired of Euclid’s proof
stating that there exists infinitely many prime numbers. This proof is astonishing and it is a delightful
experience every time just as when climbing up a peak the scenery opens up in front of us.

~ To tell the truth I didn’t quite understand why Rényi mentloned this very example. After
reading this book it became obvious for me.

Consider the above mentioned theorem. You find it in Chapter 1 having the title: How many
prime numbers are there? Giving Euclid’s classical proof you find some records. Denote by p# the
products of all g=p, where g and p are primes. The largest known prime of the form p%+1 is
136494 + 1 and it was discovered by H. Dubner in 1987. (This number has 5862 digits.) Then several
other proofs are given-for the infinity of prime numbers: Kummer’s proof; Pélya’s proof (this
uses the idea: it is enough to find an infinite sequence of natural numbers 1=<a,~<a,<... that are
pairwise relative prime); Euler’s proof investigating the product of 1/(1—1/p,) which leads to im-
portant developments; Thue’s proof (this applies the fundamental theorem of unique factorization
of natural numbers as product of prime numbers); Perrot’s proof requiring the convergence of
X (1/n%); Auric’s proof; Métrod's proof; Washington's proof done via commutative algebra (this
comes from 1980); and the last is Fiirstenberg’s proof that appeared in 1955 and is based on topolo-
gical ideas. I think that there are only a few mathematicians, who don’t find something new for
themselves in this first chapter concerning a well-known theorem.

The further questions (at the same time chapter headings) are: How to recognize whether a
natural number is a prime? Are there functions defining prime numbers? How are the prime numbers -
distributed? Which special kinds of primes have been considered? Heuristic and probabxhstrc results
about prime numbers.

Let us mention only a few of the records: the largest known prime of the form kX2"+1
with n=2'is 7X2%4%.1-1 having 16402 digits (J. Young (1987)); the largest known prime of the
form n34-1 is 173X 218041 (Keller (1984)).

Let us consider another- record concerning the famous Waring’s problem: for every k22
there exists‘a number r=1 .such-that every natural number is the sum of at most r £th poweis:
If such’a number r exists denote by g(k) the smallest possible one. While these phenomena tend’
to become more regular for sufficiently large numbers another characteristic number is introduced:
denote by C(k) the minimal value of r such that every sufficiently large integer is the sum of r £th
powers, obviously C(k)=g(k). Waring’s problem (the existence of g(k)<e for arbitrary k)
was first solved by Hilbert in 1909. Here you have the records on g(3) and ((3), (In the book
the reader finds much-more in detail.) J.- A. Euler (L. Euler’s son) g(3)=9. E. Maillet -(1985)
£(3)=21, C(3)=4, g(3)-exists; A. Fleck (1906) -g(3)=13; A. Wieferich (1906) g(3)=9, g(3) best’
possible; E. Landau (1909) C(3)=8; Yu. V. Linnik C(3)=7. Present status: 4= cB)=7; reoent
computatlons of- Bohman and Frbberg as well as of Romam (1982) pomt to the lrkehhood that
C(3)=4.

We could enumerate several interesting problems from this work but we have no'space. (One
of my favoumes is the discussion -of Dirichlet’s famous result on anthmetxc progressxons, and a-
related question established by Sxerpmslu in'1959:Let a,, s, ..., dm, b1, b,. b, be any digits
(OSa,, 5,=9), satisfying &,=1,3, 7 or 9. Then there'exist infinitely many prime- numbers p’'which
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are written in base 10, with thea,aslmtlal d1g1ts andthe b; as final d1g1ts = a,, a,, . am, by, b, ...
wba)

I liked this book. (For the reviewer thxs is the book of prime numbers w1th records.) It is well
written in a conversational style, and with evident enthusiasm. The Bibliography which is compiled
caréfully is extremly useful. Reading on prime numbers is simjlar to playmg tennis: 1t is marvellous
in your youth and in your old age, too.

L. Pintér (Szeged)

J. L. C. Sanz—E. B. Hinkle—A. K. Jain, Radon and Projection Transform—Based Computer
Vision (Algorithms, A Pipeline Architecture, and Industrial Applications), VIIT+ 123 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988,

This book provides a description of the applicability of Radon and projection transforms to
computer vision and processing. Particularly it deals with novel machine vision architecture ideas
that make real-time projection-based algorithms a reality. '

The authors concern themselves with several image analysis algorithms for computing (for
example the projections of gray-level images along linear patterns, i.e. the Radon transform). They
provide fast methods to transform images into projection space representations and to backtrace
projection space information to the image domain which are suitable for unplementatlon in a pipeline
archltecture

We recommend this book to the beginners and also to the specxahsts, since it includes a survey
of the architecture trends and some novel algorithms in computer vision.

" Arpéd Kurusa (Szeged)

Jaroslay Smital, On Functions and Functional Equations, VII+ 155'page's, Adam Hilger, Bristol
and Philadelphia, 1988.

" The text  consists of five chapters. The introductory one'summarizes the elementary ideas
concernirig functions. The second chapter studies functional equations of several variables, and
solves the Cauchy functional equation starting different initial assumptions. The third chapter
dealing with iterations is the most important part of the text playing a central role in the book.
Chapter 4 gives the application of the iteration method for the study of population growth model.
The. final chapter investigates linear functional equations, the Abel and the Schréder equations.

-‘Only elementary mathematical knowledge of the reader is supposed.: o

L. Gehér (Szeged)

Song Jian—Yu Jingyuan, Population System Contro}, XI+286 pages,. Chma Acadexmc Publi-
shers, Beumg and Spnnger-Verlag, Berlm—Hexdelberg—New York——London—Pans——Tokyo,
1988 ’ : :

B

Durmg the last century the world's populanon has mcreased enormously Today more than
five:billion people live on Earth and the population has been increasing further, Will the resources
of energy and food be enough for the mankind? Phllosophers have always ‘shown great concern
about this problem throughout history. The earlier works on population stud1es, however, used
figurative and literary language and methods and were not of a scxennﬁc nature. The modem natural
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sciences are required to have theories that can be quantifiably tested and verified. Recently popula-
tion studies has been included among these sciences thanks to the use of statistical and qualitative
research methodologies. One of the most significant steps in this direction was ihat researchers have
begun to regard the population evolution of 2 community as a dynamic process. The book gives an
excellent account on the latest results of Chinese systems analysts achieved by the investigation of
this mathematical model.

Chapter 1 (Introduction) gives a survey on the history and basic ideas of population studies
and formulates tasks of population cybernetics. In Chapter 2 the continuous, discrete and stochastic
population equations are derived. In the continuous model the state function is the agedistribution
density function p(a, 7). (Roughly speaking, if 4a=0 is small, then the total number of people of
age between @ and a-+da at time ¢ is p(a,?)- 4a.) The state function in the discrete model is a
vector: x(8)=(xo(t),x:(t),. . ., x,n(t)), where x;(¢) is the total number of persons in year ¢ whose
full age is within the age interval [7, i+ 1]. The model is a first order partial differential equation and
difference equation, respectively. In Chapter 3 demographic indeces (average lifetime and life ex-
pectancy, net population reproduction rate, average female fertility rate) are expressed by the state
functions p(a, t) and x(z). Chapter 4 contains the dynamic analysis of population systems based
upon the evolution equations. The most interesting (in reviewer’s opinion) Chapter 5 is concerned
with stability problems for population systems. The authors prove that the necessary and sufficient
condition of stability in Liapunov’s sense for a population system is that the total fertility rate
should not exceed a critical value. Chapters 6 and 7 are devoted to population projections and
policies, and description of the population structure in an ideal society. The concluding Chapter 8
presents an optimization theory of birth control policy and its applications.

This book will be very useful for mathematicians as well as social scientists dealing with popula-
tion dynamics and population policy. .

L. Hatvani (Szeged)

STACS 88, Edited by R. Cori and M. Wirsing (Lecture Notes in Computer Science, 294),
IX+404 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988,

The fifth Symphosium on Theoretical Aspects of Computer Science was held in Berdeaux
in February 1988. The volume contains the text of the invited talk “Geometry of Numbers and
Integer Programming™ by C. P. Schnorr as well as 34 sclected contributions that cover a wide range
of theoretical computer science: Algorithms, Complexity, Formal Languages, Rewriting Systems
and Abstract Data Types, Graph Grammars, Distributed Algorithms, Geometrical Algorithms,
Trace Languages, Semantics of Parallelism. In addition to the technical contributions, eight soft-
ware systems presented at the symphosium are reviewed.

The wide range and high quality ensure that every computer scientist will find at least one
paper of his own interest. '

. - Z. Esik (Szeged—Munich)

Topics in Operator Theory, Constantin Apostol Memorial Issue, Edited by Gohberg, 274
pages, Birkhduser Verlag, Basel—Boston—Berlin, 1988. . -

The text startS with a short glimpse of the life and mathematical results of Constantin Apostol.
List of his publications is also given. Eleven papers can be found in the book. Their subjects are:
operator theory and operator algebras. The first paper contains a result of Constantin' Apostol
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(On the Spectral Equivalence of operators). The other papers are written by different, in general
well known authors, all of them are dedicated in memory of Constantin Apostol.

- The book is highly recommended to research workers interested in the modern functional
analysis. T AR RN .
: . L. Gehér (Szeged)

s Steph'eil' Wiggins, Global Bifurcations and Chaos. Analytical methods (Applied- Mathematical
Sciences, 73), XIV+494 pages, Springer-Verlag, New York—Berlm—Heldelberg—London—‘
Pans—-Tokyo, 1988

-The first chostlc phenomena arised in determlmstxc nonhnear dynarmcal systems ﬁfteen years
ago. As it can be followed also in our Review Section, since that time an unusually great number
of texts and monographs have been published devoted to the theoretical and applied problems of
these phenomena. This book is concerned with the following three fundamental questions exciting
‘both mathematicians and applied scientists: What is meant by the term “chaos”? What mechanism
does chaos result? How can one predict when chaos will occur in a specific dynamical system?
i. Itis pointed out in the book that the global bifurcation can often be the mechanism for produc-
ing deterministic chaos (the final answers are far from known). The global bifurcation means a
qualitative change in the orbit structure of an extended region of phase space.

The first chapter contains the background for ordinary differential equations and dynamical
systems -(including such notions as conjugacies, invariant manifolds, -structural stability, genericity,
bifurcations, Poincaré maps) which are derived for a dynamical system to exhibit chaotic behaviour.
The reader can find here a clear and exact, easily readable description of the Smale horseshoe which
is the prototypical map possessing a chaotic invariant set, and which is absolutely essential for
understanding what is meant by the term “chaos”. The chapter includes also a good introduction
to symbolic dynamics. Chapter 3 is concerned with homoclinic and heteroclinic motions, which
typically result global bifurcation and chaotic behaviour in deterministic systems. A homoclinic
orbit connects an unstable equilibrium to itself, a heteroclinic one connects two unstable equilibria.
In the fourth chapter a variety of perturbation techniques are developed which allow the scientists
to detect homoclinic and heteroclinic orbits. These are such generalizations and improvements of
the Melnikov—Arnold method which are applicable to arbitrary finite dimensional systems and
allow for slowly varying parameters and quasiperiodic excitation. ‘

The book is written in an excellent style. It is selfcontdined, requiring only the knowledge of
calculus. During the exposition of the complicated notions the author first gives some examples of
specific physical systems so that the reader may develop some intuition. After this he gives the
exact mathematical definition.

This excellent book can be highly recommended to every mathematician, user of mathematics
or stident interested in qualitative theory of dynamical systems and its apphcatlons

L. Hatvani (Szeged)

- Eberhard Zeidler, Nonlinear Functional Analysis and its Applications I'V: Applications to Mathe-
matical Physics, XXIII+975 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—
Paris—Tokyo, 1988.

This book is the fourth of a five-volume survey on the main principles and methods of nénlineaxj
. functional analysis and its applications. The main goal of the book.is to give an exact clear exposition
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of the field which is self-contained and accessible to the nonspecialists, which combines the classical
and modern ideas, and which builds a bridge between the language and thoughts of physicists and
mathematicians. The specific nature and importance of the problems of mathematical physics are
well expressed by M. Atiyah’s opinion, which is cited in the book: “The more I have learned about
physics, the more convinced I am that physics provided, in a sense, the deepest applications of
mathematics. The mathematical problems that have been solved, or techniques that have arisen out
of physics in the past, have been the lifeblood of mathematics. The really deep questions are still
in the physical sciences. For the health of mathematics at its research level, I think it is very impor-
tant to maintain that link as much as possible”. However, reading physical literature mathematicians
often complain that the presentation is not rigorous and exact enough, and vice versa, physicists
find the mathematical methods too abstract and useless for their purposes covering the physical
thoughts. The present book helps to solve this difficulty. Mathematicians will feel it comfortable
because it uses precise mathematical language, at the same time the reader can learn a lot about
the physical interpretation. On the other hand, the physicists can recognize the familiar physical
ideas and can get acquainted with their justification.

Similarly to the previous volumes, the chapters are grouped into blocks according to applica-
tions:

Applications in Mechanics: Ch. 58. Basic Equations of Point Mechanics; Ch. 59, Dualism
Between Wave and Particle, Preview of Quantum Theory, and Elementary Particles.

Applications in Elasticity Theory: Ch. 60. Elastoplastic Wire; Ch. 61. Basic Equations of
Nonlinear Elasticity Theory; Ch. 62. Monotone Potential Operators and a Class of Models with
Nonlinear Hooke’s Law, Duality and Plasticity, and Polyconvexity; Ch. 63. Variational Inequalities
and Signorinj Problem for Nonlinear Material; Ch. 64. Bifurcation for Variational Inequalities;
Ch. 65. Pseudomonotone Operators, Bifurcations, and the von Karmén Plate Equations; Ch. 66.
Convex Analysis, Maximal Montone Operators and Elasto-Viscoplastic Material with Linear
Hardening and Hysteresis.

Applications in Thermodynamics: Ch. 67. Phenomenological Thermodynamics of Quasi-
Equilibrium and Equilibrium States; Ch. 68. Statistical Physics; Ch. 69. Continuation with respect
to a Parameter and a Radiation Problem of Carleman.

Applications in Hydrodynamics: Ch. 70. Basic Equations of Hydrodynamics; Ch. 71. Bi-
furcation and Permanent Gravitational Waves; Ch. 72. Viscous Fluids and the Navier-Stokes
Equations.

Manifods and their Applications: Ch. 73. Banach Manifolds; Ch. 74. Classical Surface Theory;
the Theorema Egregium of Gauss, and Differential Geometry on Manifolds; Ch. 75. Special Theory
of Relativity; Ch. 76. General Theory of Relativity; Ch. 77. Simplicial Methods, Fixed Point Theory,
and Mathematical Economics; Ch. 78. Homotopy Methods and One Dimensional Manifolds;
Ch. 79. Dynamical Stability and Bifurcation in B—S-spaces.

The chapters are followed by interesting problems supplying the body of the text and encour-
aging the reader’s individual thinking. B

Apparently, the book covers the whole spectrum of the significant applications of the non-
linear functional analysis. It will be very useful and inevitably importan tfor mathematicians, phys-
icists and students interested in applications of mathematical methods in physics.

L. Hatvani (Szeged)
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