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On the representation of distributive algebraic lattices. II 

|A. P. HUHNf) 

1. Introduction 

Around 1980, H. Bauer found a result which implies that countable distributive 
semilattices with 0 can be represented as seniilattices of compact congruences of a 
lattice, whence it also follows that every lower bounded distributive algebraic lattice 
with countably many compact elements is the congruence lattice of a lattice. This 
proof, however, was not published. In [2], we proved that if Dx and D2 are finite 
distributive semilattices with 0 such that Dx is a O-subsemilattice of Z)2, then Dx and 
D2 have a simultaneous representation (in a sense precisely defined in [3]) as semilat-
tices of compact congruences of lattices Lt and L2, respectively. There we promised 
to show that this idea can be developed to a proof of the countable representation 
problem. Here we present this proof. We note that independently and by different 
methods H. DOBBERTIN [1] found another proof of the theorem. 

It is easy to show that any finite subset of a distributive semilattice with 0 is 
contained in a finite distributive O-subsemilattice. Hence it follows that for any 
countable distributive semilattice D with 0, there exist finite distributive semilattices 
D^'DifDi, ... with 0 and embeddings £;: A~*"A+n i=1,2,..., such that D is 
the direct limit of the family ( { A } ( 6 N > {£;};£N)- Now let D and Dt, / = 1 , 2 , . . . , 
be as above and fixed once and for all. We prove the following 

Theorem. There exist lattices Lu / = 1 , 2 , . . . , such that 
(a) £>j=Con (Lj) under an isomorphism to be denoted by (pt, / = 1 , 2 , . . . , 
(P) L( has an embedding to Li+1, i= 1, 2, . . . , 
(y) if we denote by Con (¿¡) the mapping of Con (LJ to Con (Lt+1) induced by 

(that is the one that maps & € Con to the congruence generated by 

*) This paper was left behind by András Huhn in the form of a first draft of a manuscript. 
Hans Dobbertin was kind to prepare it for publication. 

t* 
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{(<xi;, W.;)£.L?+1|(a, b)dQ}), then the following diagram is commutative 

A — A + i 
•fij jvi+i 

Con (£,) . Con (L,+ ]) Con 

where e,- denotes the identical embedding of Di to Di+1. In other words Con (X,) 
represents id;. 

C o r o l l a r y . Every countable distributive semilattice with 0 is isomorphic to the 
semilattice of all compact congruences of a lattice. 

To prove the Corollary from the Theorem, observe that the Con (Lf)'s form the 
same directed system (up to commuting isomorphisms) that the Djs, whence their 
direct limit is also isomorphic with D. On the other hand, the Z ; 's also form a di-
rected system and the congruence lattice of their direct limit is the direct limit of 
their congruence lattices (see PUDLAK.[3]) . This proves the corollary. 

2. The construction of L}. Proof of (a) 

First we define the following lattices, Let i=j be natural numbers. Let /)(/—_/) 
be the distributive lattice whose join-irreducibles are (af, ..., aj),(ai+1, ..., aj), ..., (aj), 
where, aL, ...,a} are join-irreducibles of •Dl,...,DJ, respectively, and ate^ 

u ai+ie;+i—a;+2> ••• • Let these join-irreducibles be ordered componentwise, 
that is, let (ak, ...,aj)^(a't, ...,a'j) iff k^l and Clearly, the 
set of join-irreducibles and their ordering determines D(i—j). Let B(\-+j) be 
the Boolean lattice whose set of atoms is {[a] | a join-irreducible in D(1 —j)}. 
Of course, instead of [(a l 5 . . , , aj)] etc. we shall write [a l 5 . . . , aj\. Now there are 
some natural 0-1-epibeddings. Each element of Z)(/ + 1 —_/) can be identified with 
an element of D(i->-j) as follows: x£D(i+l—j) is a join of join-irreducibles. 
These join-irreducibles are, however, join-irreducibles of D(i--j), too. Thus x can 
be identified with their join in D(i->~j). This is a lattice 0-1-embedding and from 
now on we shall • consider D(i+i—j) as a sublattice of D(i—j). Note that 
D(j—j)Dj and will be identified with it. Furthermore, D(l-+j) can be con-
sidered as a 0—1-sublattice of B(l-+j), namely x£.D(l-+j) can be identified with 
the joint of all [a], a = x , a join-irreducible. 

Now we define lattices L(\-+j) as follows. Let consist of all triples 
(x ,y , z)£(5(l—y))3 satisfying xNy=xNz=y/\z. Let L(\-+j) be the set of all 
those triples in Af(l—y) also satisfying z££)(l —_/'). Let M(i-*j) (/=-1) consist 
of all those triples (x,y, z)€(£>(i— 1 —j))3 satisfying xf\y=xt\z=yf\z, and let 
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£(/—/) be the set of all those triples satisfying also z£D(i—j). Now we describe 
the operations of L(l —/) and L(i->-j), i=2, . . . , / . The meet operations are the 
same as in (J?(l—j'))3 and in (D(i— 1—j))3, respectively. We shall denote the joins 
in (B(l-*j))3, M(l—j), £ (1— j ) by V, VM, y L , respectively and the join in 
(D(i— 1 —./))3, M(i-*j), L(i-»j) by V, VM>VL, respectively. This will cause no 
confusion. As D(l—y) is a sublattice of JB(1—/), with every z£2?(l->-/) we can 
associate an element z(LD(l-~j) which is the smallest element of B(l—j) such 
that z ^ z . Also, with any z£D(i—1-7) (/=-1) we can associate a z£Z>(/—y), 
which is the smallest element of D(i—j) such that z~z. Now ft is proven in SCHMIDT 

[4] that 
(x, y, z)NM{x', / , z') = (xVx', y\Jy\ z V z T , 

where 

(x, y, z) ' - (xV(yAz), yV(xAz), zV(xAy)) for (x,y, z)e(B( 1 - j))3, 

and 
(x, j , z)VL(x\ y', z') = (xVx', yVy', z V z T , 

where 

(x, >>, z)~ = (xW(yAz), yV(x/\z), z) for (x, y, z)£M( 1 - j ) . 

The same proof as in [4], pp. 82—86 yields that this description remains valid for 
(x, y, z)dD(i— 1—j) as well as for (x, y, z)£M(i^j). Now L(l->-j) has an ideal 
isomorphic to D(l—j), namely the ideal [(0, 0, 0), (0, 0,1)], where 0 and 1 denote 
the bounds of 5 ( W ) . The ideals [(0, 0, 0), (1,0,0)] and [(0, 0, 0), (0,1, 0)] are 
isomorphic to B{\—j). Furthermore, the dual ideals [(0,1,0), (1,1,1)] and 
[(1, 0, 0), (1, 1, 1)] are isomorphic to B(l—j). All these proofs can be carried out 
by using the description of the operation of L(l—j). In fact, as an example, we 
prove that [(1,0,0), (1,1,1)] is isomorphic to D(l-+j). The elements of this 
interval are the elements (1 ,y,z) with z£D(l —j) and by J>A1=ZA1 = 1A1 we 
have y=z, that is, the elements of the interval are (1, z, z), z£Z)(l —y). Their 
meet is always formed componentwise and, using the previous description of the 
operation, is obvious, that the componentwise join is already invariant under 
and Now we are ready to define L}. Namely, similarly as the L(l-+j), all the 
L(i—j), i=2,...,j, have ideals isomorphic to D(i— l—j) and to D{i-*j) (the 
proof is the same), so we can "glue them together" as shown in Figure 1. More 
exactly we form the direct product of the L(i—y')'s. It has an ideal isomorphic to 
L(i-»j) for all i = l , . . . , / We glue the bottom of this direct product to the topi 

of f[ M(i—j). The latter has dual ideals isomorphic to for all i—2,...,j. 
¡=2 

Now we identify, for all z = l, 2 , . . . J - l , the ideal [(0,0,0), (0, 0,1)] of L(i-^j) 
( g / 7 £ ( W ) ) with the dual ideal [(0,0,1), (1,1,1)J of a copy of M{i+\^j). 

i 
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¿(1 - j ) 

M(2 j) 

/ \ 

/ ¿ K i - i ) \ 

L(2 - j) 

M{3 - » 

Figure 1 

We identify the ideal [(0,0,0), (0,0, 1)] of this copy with the dual ideal 

[(1, 0,0), (1, 1, 1)] of the copy of Mt(i+l-j) which is a dual ideal in ¡J M(k-j), 
fc= 2 

and we identify the dual ideal [(0,0,1), (1, 1, 1)] of this copy with the ideal 
[(0, 0,0), (0,0,1)] of a third copy of M(i+ \ Finally, we identify the dual 
ideal [(0,0,1), (1, 1, 1)] of this third copy with the ideal [(0,0,0), (1,0,0)] of J 

L(i+1 —7) (= ¡J L(k-~j)). The lattice we so obtain is Lj. 
k = l 

Now we have to prove (a). Consider any congruence a of Lj. First of all it splits 
into a join of congruences of the two direct products and of the joining M(i-~j)'s. 
By perspectivity, the generating pairs of these congruences can be transformed to j 
the upper part J] L(i—j), and there they factonze according to the direct 
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representation, thus a is generated by pairs contained in the L(i—j)'s (considered 
as ideals of J]L(i-+j)). We shall prove that a is generated by an ideal of the interval 
[(0, 0, 0), (0, 0, \)]~Dj of L(i-~j). As we mentioned, a is a join of principal 
congruences generated from the L(i—y)'s. We may assume that a itself is such 
a principal congruence (because the join of ideals of [(0,0,0), (0,0, 1)] £/(_/—j) 
itself is an ideal). 

Let a be generated by the pair ((x, y, z), (x', y', z')), where (x, y, z), (x', y', z')6 
ZL(k-»j), that is 

x,y,x',y'£D(k-l ^ j ) , z,z'£D(k-*j). 

Then, forming the meets with (I, 0, 0), (0, 1, 0), (0, 0, 1), we obtain 

(x, 0, 0) a (x', 0,0), (0, y, 0) a (0, y', 0), (0, 0, z) a (0,0, z'). ' 

Hence (x, 0, 0)Vl(0, 1, 0)=(x, 1, 0)~"=(x, 1, x)~ =(x, 1, x), thus we have 
(x, 1, x) a. (x', 1, x'). Forming the meet of both sides with (0,0, 1), we get 
(0, 0, x) a (0, 0, x')- Similarly (0, 0, y) a (0, 0, y'). Thus the congruence generated by 
((x,y,z), ( x ' , / , z ' ) ) contains the pairs ((0,0, x), (0,0, x')), ((0,y,0), ( 0 , / , 0 ) ) , 
((0, 0, z), (0, 0, z')). It is also generated by them. We refer to p. 241 of [2] with which 
our notation coincides. Now (0, 0, x), (0, 0, x'), etc. are contained in the copy 
D(k—l—j), which was used for the glueing in Figure 1. Hence a is generated from 
L(k-l—j) already (the generators can be transported by perspectivity), that is, 
by induction, it is generated from L(l->~j), and, finally, with the same computation 
as above, from 5(1—j). B(l—j) is Boolean, hence a is generated by an ideal, 
say, by the pair ((0, 0, 0), (i, 0, 0)), (0, 0, 0), (/, 0, 0 ) € £ ( W ) - Then it is also gen-
erated by 

((0, 0, 0), (t, 0,0))VL((0, 1, 0), (0, 1, 0)) = ((0, 1, 0), a , 1, 0), 
that is, by 

((0, 1, 0), (1,1, i))AL((0, 0, 1), (0,0, 1)) = ((0,0, 0), (0,0,1)), 

which is an ideal of D(l—j). By induction, it is generated by an ideal of D}, as 
claimed. 

3. The construction of the embeddings Xj. Proof of 0?) 

First of all we define embeddings 

/*„: 5 (1 - B( 1 1) and 5U : D(i - y ) -*D(i 1), 

whenever i ^ j , as follows: The atoms of 5(1—y) are of the form [ax, ..., a,-], a ^ ^ 
§ a 2 , a2

£2=fl3> •••> o r of the form [a2, ..., aj\, a2e2^a3, ..., aj^Sj^^ 
^ a j , and so on, or of the form [a,], where ax, ...,aj are join-irreducibles of 
Dlt..., Dj, respectively. (These atoms are unordered.) We associate with [a,-, ..., aj] 
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the join of all [ai} ..., a}, aJ+1] in 2?(1 — j+ l ) , where ajej^aj+1, and aj+l is a 
join-irreducible element in Dj+1. With the join of a set of atoms we associate the 
join of their images. This mapping is then denoted by clearly preserves 0 
and the lattice operations, thus we only have to prove that it is one-to-one. In 
other words we have to prove that the dual mapping under Stone's duality is onto. 
This dual mapping associates with the atom [a1( ..., a}, aj+1] the atom [a ls ..., aj\, 
that is, we have to show that, for every atom [ax, ..., aj] of B(l—j), there is an 
atom [alt..., aJt flJ+1] of 5(1—7+1) with a ; e , s a > + 1 , and this is evident as ajSj^0. 
Now we define <5i;-. The join-irreducibles of D(i—j) are of the form (at, ..., aj), 

• • • .ay- i^- i^f l / , or {ai+1, ...,aj), ai+1ei+1^ai+2, ..., a j ^ E j ^ a j , 
and so on, or (aj), and they are ordered componentwise. For x£D(i—j), let xSu 

be the join of all (ak, ..., aj), where (ak, ..., aj) is join-irreducible in D(i—j), 
(ak, ..., a j ) ^x , and a ^ S c i j + l . <5y is a 0-preserving lattice embedding. The proof 
is the same as for Pl}, but we have to prove Priestley's duality, rather than Stone's 
duality. We need the following lemmas. 

Lemma 1. Let x£.B(l —j). Then xblj=xblj. 

Lemma 2. Let x£D(i— l—j), i— 1</. Then xdij=x5i^1j. 

Proof of Lemma 1. Let (ax, ..., aj, aJ+1)£D(l -*j+1) such that 

(«1, aj, aj+l) =§ xSy and (alt ..., a}, aJ+1) 

is join-irreducible. Then (a ls ..., aj)dx. Hence there is a join-irreducible element 
(blt...tbj) in D(\ —y) such that (b1,..., bj)s(a1, ..., aj) and (bt,...,bj) occurs 
in the join-representation of x, that is, [bx,..., bj\ occurs in the join-representation of 
x. Then \blt..., bj]^x. Hence [bx,..., bs, aJ+l]^xf}1J, that is, (a l 5 . . . , a}, ay + l ) g 
^(b x , ..., bj, a j + l ^ x P y . Conversely, if (a l s ..., a,-, 0, + 1 )^x0^ , then 

(ax, ..., a}, aj +1) ^ (bx, ..., bj, bj +1), 

where (bL, ..., bj, bj + l) occurs in the join-representation of that is 
[61, ..., bj, bj +1] occurs in the join-representation of xPrj. Hence [bx, ..., bJy bj + 1 ] 

Then [bt, ...,bj]^x (see the definition of pi}), (bx, ..., bj)^x, thus 
(flj, and (a l5 . . . , i J y ,a y + 1)^x6 i ; . 

P r o o f of Lemma2. Let (at, ..., a}, aJ+1)^xSiJ, join-irreducible in D(i-~j+1). 
Then fa,..., d j )^x , that is, (at, ..., a^(bit..., bj), where {b^ bj) occurs 
in the join-representation of 3c, that is, for a suitable join-irreducible b i_1^D i_x 

with bi-iBi-x^bi, (6,_i, bt, ..., bj) occurs in the join-representation of x. Hence 
(b^, b„ ..., bj, aj+J^xSi-u, that is, (a„ ..., ajf aj+1)^(bi,..., bj, 
Conversely, (a f , . . . , a,-, Then (a f , . . . , a}, a y + 1 ) s (6 ; , . . . , bJybJ+j), 
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where (b¡, ..., bj, bJ+1) occurs in the join-representation of xd^xj, that is, for 
suitable ¿>¡_j with bi^i-i^bi, (b¡_x, b¡, ..., bJ+,) occurs in the join-representa-
tion of x<5¡_M. This means, that (b¡_ls b¡, ..., bj)^x. Hence (b¡, ..., bj)^x, that is 
(a¡, ..., aj, aJ+1)^(bi, ..., bj, aj+1)7sx5ij. 

Now we are ready to prove (/?). First we prove that L(\—-j) can be embedded 
to L(1 —7+1). Consider the elements (xfiu, yfirj, z<5l7-)£L(l —7'+1) with x, y£B( 1 —7), 
z£D(l —7°). These triples form a A-subsemilattice of L(1 —7+1). Now consider 
two such triples (x, y, z), (x\ y', z')£L(l —7), and let Xu denote the mapping 
(Pij> described above. Then 

[(*, y, z)Vl<.i-.j)(x', O R , - = {x\lx\ y\/y\ z V z T A y = 

(x,y,z)Xlj\lH1^n(x',y',zt)Xlj = (xftu, y f i j j , z§1J)yL(1^j)(x'^1j, y'Pij, z'du) = 

= [(xVx', y\Jy\ z\Zz')(Aj, Pu, <5i;)]" 

Now it is evident, that the operator " and ({¡LJ, Pxj, <5ly-) are permutable, and 
Lemma 1 shows that the same is true for ~ and (/?ly-, fixj, <5ly). 

Finally we remark that the embedding /.Lj- coincides with Pu on B(l —7) con-
sidered as the ideal [(0,0,0), (1,0,0)] of L(l—7) and coincides with 5 U on 
D(l—7) considered as the ideal [(0, 0, 0), (0,0, 1)] of L(l-7"). 

Now L(\ —7) can also be embedded to L{i-~j+\) (i~j) by the embedding 
/,.j=(Si_1j, <5¡-x,j). The proof is the same as above, but we have to use 
Lemma 2 instead of Lemma 1. Furthermore, X¡j coincides with d¡-ltJ on the copy 
of /)(/—1—7) used in the glueing of Figure 1 and it coincides with 5tj on the 
copy of D(i-*j) used in the glueing. Thus we can glue together the Ay's to get an 
embedding Xj of L} to Lj+1. 

4. Proof of (y) 

We need a last lemma. 

Lemma 3. Let x£Dj_x- Then x5j_1=xsJ_1, where ój_1 stands for ¿>j_lj_1 

and maps D}_x to DjQD(j— 1 —7). 

Proo f . Let a j be a join-irreducible element in D¡ such that a J ^ x S J _ 1 . Then 
Qj=bj for some bj in the join-representation of x<5,-_i. Thus, for some join-irreducible 
bj-x^Dj-1 with bj-xEj-x^bj, (6j_i, bj) is in the join-representation of x8j_-¡. 
Hence (6y_!, b j ) ^ x d j _ 1 , thus Now xsJ_1 is the Join of all d} with 

and b'j-x ( = x ) join-irreducible. Thus b^xEj_x , whence a ^ x e j - x -
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Conversely, let aj^xEj_x- Then a j ^ a j ^ j - i for some aJ_1 (=x) join-irreducible 
of Dj_lt which can be proved as follows, x is a join of join-irreducibles ay, y(LP, 
of Dj_x. fly=(V ar)eJ-_1=(V ayEj_j). As as is join-irreducible (hence join-prime), 

y V 

it is less than or equal to one of the components in this join. (Notice, that this is 
the point of the proof which cannot be generalized to arbitrary directed systems.) 
Hence (aj_x,aj)^x5j_i, that is, aJ^xdj_1. 

Now the proof of (y) is to prove that, for d£DJ_1, dsj-l(pJ=d<pJ_1 yj_x, where 
yy_i=Con Now d(pj_x is the congruence generated by [(0, 0, 0), (0, 0, d)] 
of the copy of L(J— 1—j— 1) used in Figure 1 (constructed with j— I instead of j, 
thatis representing Lj_x). takes this interval to the interval [(0, 0, 0), (0, 0, dSj-x)] 
of the copy of L(j— 1—j) used in the construction of Lj. Thus d(pJ_1yJ_l is gen-
erated by this interval. It is also generated (by perspectivity) by the interval 
[(0,0, 0), (dSj-x, 0, 0)] of L(j—j). But then further generating pairs are 

((0,0,0), (0,0, ddj.x))y((0, 1, 0), (0,1, 0)) = ((0, 1,0), (ddj-x, 0, 

and 

((0, 1, 0), (ddj .x , 0, ddj-X))A((0, 0, 1), (0, 0, 1)) = ((0, 0, 0), (0, 0, •_,)). 

Using Lemma 3, we have that d(pJ_lyj_1 is generated by ((0, 0, 0), (0, 0, dsj^x)). 
On the other hand, d&}_x <Pj-1 is evidently generated by the pair ((0,0,0), (0, 0, dsj-J) 
of the copy of L(j—j) used to construct Lj . This completes the proof. 
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On the representation of distributive algebraic lattices, HI 

|A. P. HUHNI1) 

1. Introduction 

Around 1980, unpublished investigations of Heiko Bauer led to the conjecture 
that every distributive semilattice with 0 of cardinality ^ is isomorphic to the 
semilattice of compact congruences of a lattice. In [2], H. DOBBERTIN gave a partial 
ordering which can be used to prove that on a set of cardinality there is a directed 
family of finite subsets covering every finite subset such that the Boolean lattice 23 is not 
order-isomorphic to any subset of this family. We shall use this fact to prove the 
above formulated conjecture.2) In more usual terms, this means that every alge-
braic lattice with 0 having at most X! compact elements is the congruence lattice 
of a lattice. We cannot extend the proof for more than compact elements, the 
reason for that will be discussed in [—]3). Note.that the case of finitely many com-
pact elements was already settled in [3], while the countable case was discussed in 
[2] and [5]. 

x) This paper was left behind by András Huhn in the form of a first draft of a manuscript-
The remarks in footnotes 2, 3, 4 and 6 are due to Hans Dobbertin, who was kind to prepare the 
paper for publication. 

2) In [ 1] the mentioned partial ordering has already been used implicitely in order to prove a 
theorem (see [1; Thm. 3.4]) which has the following corollary: every distributive semilattice with 
0 of cardinality ^ K, is the image of a generalized Boolean lattice under a weak-distributive V-ltomo-
morphism. (See [6] for the definition of the notion "weak-distributive".) In the present paper a 
sharper result is proven, namely "weak-distributive" is replaced by "distributive". The important 
new idea in András Huhn's proof is the use of "reduced free products". 

3) Perhaps András Huhn had planned to write another paper to which he made a reference 
here, but unfortunately no manuscript of it has been found in his inheritance. It is also possible 
that he wanted to make a here reference to [2]. 
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2. Outline of the proof 

Let D be a distributive semilattice with 0. Assume that |D| = First we 
define a directed family of finite subsets of D. Let a<a>1 be an ordinal number. 
For a=0 , let hI = {0}, where 0 is the lower bound of D. For a = n + l (h£N, 
N denotes the set of natural numbers), let hx=h„U{a}, where a£D\h„. Now if 
a=(ofi+n, n£N, then we proceed as follows, aifi has a confinal co-chain a 0 < a 1 < . . . . 
For a=aP, let ha—hlg\J{a} with a$hy for y<a>fi. For a=coP+n + l, let ha = 
=hx.^iUhca0+nU{a} with a^holfl+n. Let H be the set of all hz, CKCOX- The in-
clusion relation orders H, this ordering will be denoted by ^ . h0 will also be de-
noted by 0.4) 

Figure 1 shows how {/iy: y<a>(/? + l)} is constructed from {hy: y<a>/?}. 

For every li£H, choose a finite distributive O-subsemilattice Dh of D such 
that h^k, h,kZH, implies DhQDk. This can be carried out by induction on a, 
using the fact that any finite subset of D is included in a finite distributive 0-sub-
semilattice. Then D is the direct limit of the Dh's. For later purposes we introduce 
the notation 

provided that h^k (and therefore DhQDk). 

4) The definition of the family (.h,),,^^ has to be modified slightly in order to guarantee that 
D is in fact completely exhausted. 

Figure 1 

e 
\Dh - Dk 

I d~d 
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Now, for every h, i£H with h s i, we shall define finite distributive lattices 
D(h, i) and O-preserving lattice embeddings 

cp(hg, i): D(h, i) -*D(g, i) for g s h si i, 

<p(h, ij)\ D(h, i) -~D(h,j) for h i — j 

such that the following diagrams be commutative 

0 ) </>(.!>g, 0 

D{g,i) 
<p(a.ij) 

<l>(.hg,j) 

D(g,j) 

(2) 

\ 

<Kgf. 0 

D(f, /) 

(3) 

D(h,k) 

where g ^ h s i ^ j , h ^ i ^ j ^ k , respectively. We denote by 5 (0 , / ) the smallest 
Boolean extension of Z>(0,/) and by %(0, /): D(0, /)—2?(0, /) the canonical em-
bedding (precisely defined later). We also define O-preserving lattice embeddings 
i//(0, ij): B(0, i)—B(0,j) for i ^ j such that the following diagrams are commu-
tative 

B(o, 0 

(4) 

HO.iJ) 

\ 

B(0,j) 

«0.U) 
\ 

(5) 

D(0, 0 

9(0.I/) 

D(0,j) 

z(o.O 

B(0, k) 

B(0,i) 

| «0,17) 

5(0, y) 

for i ^ j ^ k and i ^ j , respectively. Now let 5(0, —) be the direct limit of all 
B(0, i) and D(h, —) be the direct limit of all D(h, i)- Using the above commu-
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tativities, we can define embeddings 

<p(hg,-y.D(h,-)~D(g,-), gsh, and -/(0, - ) : D(0, - ) - 5(0, - ) 

such that the following diagram is commutative 

(6) \ 
\ 

\ 

<?<9f, -) 

D(f, - ) 

The mappings (p(hg, i) have inverses (p'(gh, i) (which means that 

<p(hg, i)(p'(gh, i) = idD(hti), 

the mappings are carried out in the written order) such that the following diagrams 
are commutative with g s h ^ i s j and f ^ g S h ^ i , respectively. 

(7) <p'(sK 0 

D(g,i)-
<p(g, i j ) 

<p(gh.j) 

D(g,j) 

(8) 
\ 

\ D(f,i) 

The right inverses are monomial O-preserving weakly distributive V -homomorphisms 
(in the sense of SCHMIDT [6 ] ) . Also the %(0, *')'s haive 0 - and V-preserving monomial 
weakly distributive right inverses / ( 0 , /) and we have the following commuta-
tivities 

»'(0. f) D ^ ^ J L l L 5 ( 0 , 0 

(9) 9 ( 0 . i j ) | 

D(0,j) 
iXO.J) 

«0, ¡J) 

m j ) 

for i^j. These commutativities allow to carry over the y_'(Q, i) to the direct limit 
5(0, —) and so we get a 0-preserving monomial weakly distributive V-homo-
morphism 

• X'(0, -): B(0, - ) -~D(0, - ) 
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which is a right inverse to %(0, —). Similarly, we define (p'(gh, —) for g^h. 

<p'(gh, -): D(g, - ) -D(h, - ) 

is again a O-preserving monomial weakly distributive V-homomorphism and a right 
inverse to (p(hg, —). Again we have that the following diagram is commutative 

\ 

D(f, - ) 
for f s g ^ h . 

Now we shall consider the congruences 6h associated with %'(0, —)<p'(0h, —). 
These are monomial weakly distributive congruences with the kernel 0 in the sense 
of SCHMIDT [6]. Thus, if we prove that 5(0, —)/ V is isomorphic to D, then 

he я 
we are done by the following theorem of SCHMIDT [6]: if 6h, h£H, are monomial 
weakly distributive congruences of the generalized Boolean lattice B, then Bt\f 6h h 
is isomorphic to the semilattice of all compact congruences of a lattice. 

3. The main construction 

We start to define the D(h,i)'s. Motivation: Whenever h^i, DQi,i) will 
be a "reduced free product" of all the Dx, h^x^i, in the class of distributive 
lattices with 0, namely we take free 0-product in the class of distributive lattices 
and factorize it by a congruence (by the smallest possible) so as to insure that in 
:he factor lattice all the relations d^de(x,y), h^x^y^i, d£Dx, hold (here, for 
brevity d etc. stands for the congruence class of d etc.). This free choice of the D(h, /)'s 
is one of the important ideas of the proof, however, we shall not need in the proof 
that D(h, i) is really free (relative to the given relations), we only need the descrip-
tion given in the following definition. 

Def in i t ion . D(h,i) will be the finite distributive lattice with the following 
V-irreducibles: j is an irreducible of D(h, i) if j is a mapping of a dual segment 
P to the poset [h, /] to IJ Dx such that for all x j x is an irreducible of Dx XdP 
(0 is not irreducible) and whenever xSy, x,y£P, then jy^jxa(x, y).5) 

s) They are ordered componentwise, that is (jx\x£.P)^(j'x\x£Q) if P=IQ and, for all x£Q, 
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Def in i t i on . The irreducibles of DQi, i) are the irreducibles of D(g, i), too, 
if g=h. Therefore we get an embedding (p(gh, i), if we map the irreducibles 
j€D(h, i) to j£D(g, i) and extend this map such that the V is preserved. (This 
is a lattice embedding as its dual mapping — by Priestley's duality — maps 
(jx\x£P), P a dual segment of [g, /], to (/*|x6-Pn[A, /]) and therefore is onto). 

De f in i t i on . (p{h, ij) is defined as follows. The irreducibles of D(h, i) are the 
choice functions (jx\x£P) where P is a dual segment of [h, /]. ~Now (jx\x£P)<p(h, ij) 
is the join of all ( j ' x \x íQ ) such that Q is a dual segment of [/1,7], QP\[h, i]=P, 
j'x=jx for x£P, and (j'x\x£Q) is an irreducible in D(h,j). To arbitrary elements 
of D(h, i) we extend this mapping in such a way that it preserves joins. 

Now the commutativities (1), (2), (3) are evident. To show that (p(h, ij) is 
one-to-one we have to prove that its dual mapping is onto. To do that we first de-
scribe how the poset [h,i] is obtained from [h,j]. According to Figure 1, j is 
the greatest element of a finite chain in {hy: y^co(P+\)}\{hy: y^c0/?} for some y. 
Omitting this chain we obtain another poset. This remaining poset has a largest 
element, so we can continue this procedure until the largest element in the remaining 
poset is i. Now, if we go the other way around, we get [h,j] from [h, /] in such 
a way, that add finite chains da, an, ..., aln¡; a21, a22, ..., a^; ...;aml, am2, ..., am„m 

successively to \h,i\ as in Figure 2 (a0llo=i, am„m=j)-
Now we show that the dual map of q>{h,ij) is onto. Let (jJxdP) be an 

irreducible of [h, /], where P is a dual ideal of [h, /]. For simplicity, we assume that 
the adjoined elements are I, m, n, and the chain consisting of the lower covers of 
these elements is i, h, k. 

N o w we m a y choose an irreducible j, in DT such t h a t J'¡E(Í, jH£(H, 
too. Let x=jhe(h,m). Then xe(m, /)=y,. x is a join of join-irreducibles: 
x = Vjy and j^yjye(m,l), thus, for some y0, e(m,l). Define jm=jy. v y 

Figure 2 Figure 3 
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Similarly, we can define /„, and continuing this procedure we get a vector (jx\x(LQ) 
which is mapped to (jx\x€P)*) 

To define B(0,i), we agree that the atoms of B(0, z) are [jx\x£P] where 
(jx\x£P) is a join-irreducible of D(0, /), the only difference is that in B(0, z) 
they are, of course, not ordered. The embedding y_(0, i) is defined as in [5]. Then 
the commutativity of (4) and (5) is again evident. 

Now let B(0, - ) be the direct limit of all 5(0, /) and D(h, - ) be the direct 
limit of all D(h,i). Then there exist embeddings ^(0, / - ) : 5(0, z ) -5 (0 , - ) such 
that the following diagrams are commutative 

(11) 

\ 

fth.j-) 

D(h, - ) 

5(0, /) j) 
\ 

(12) 

\ 
5(0, - ) 

with h ^ i ^ j and z's/, respectively. These commutativities make it possible to 
define embeddings <p(hg, —): D(h, -)-»D(g, —) and /(0, —) with g^h, such 
that the following diagrams are commutative: 

(13) 

(14) 

<p(.hg, 0 

D(g, /)• 

¿ > ( 0 , / ) -

x(o,0 

5(0 , / ) -

<P(«.i~) 

« 0 . 1 - ) 1 

<PV>9t 

•D(g,~) 

D(0, - ) 

5 ( 0 , - ) 

6) By means of some additional observation the case that both i and j lie on a chain added 
in the inductive construction, can be handled similarly. 

2 



18 A. P. Huhn: Representation of distributive algebraic lattices. Ill 

Also the following diagrams commute: 

D{h,i) *M } >D(h, - ) 

(15). </№0 <p(gh, -) 

D(g,i) ' D(g, - ) 

(16) x'(o,oj ' • .. | Jrto.-) 

5 ( 0 , I) • 5 ( 0 , - ) HO.i-) 

Hence it follows that the (p'(gh, —) and —) are weakly distributive monomial 
congruences and so are their composition. (To show the commutativities of (15) 
and (16) we have to show the commutativities of (7) and (9), but it is the same as 
Lemmas 1, 2 in [4].) 

Now we can finish the proof as follows. The factor lattice by the congruence 
V Qh i s the direct limit of the D(h, — )'s relative to the morphisms (p(gh, —). 
h 

Let us denote this limit by F. F has subsemilattices isomorphic to the Dh's. Namely, 
D(h,h)^Dh, hence D(h, h)(p(h, h-)z=Dh. 
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Relatively free bands of groups 

P. G. TROTTER 

The subvarieties of the variety CS of all completely simple semigroups, along 
with their free objects, have been studied by V. V. RASIN [15], P. R . JONES [9] and 
by M. PETRICH and N. R . REILLY [14]. The lattice of subvarieties of the variety B 
of all bands has been constructed by A . P . BIRJUKOV [1], J. A . GERHARD [6] and 
C . F . FENNEMORE [5]; the defining laws of these varieties are known. 

In this paper we observe that any regular semigroup is a subdirect product 
of any idempotent separating homomorphic image by any idempotent pure ho-
momorphic image. This enables the construction of free objects of subvarieties 
of the variety POBG of all pseudo orthodox bands of groups in terms of relatively 
free bands and relatively free completely simple semigroups. It is shown that in 
any subvariety V of the variety BG of all bands of groups where CSQVigPOBG, 
the Jf-classes of elements on 3 or more generators of the free objects are not free 
in any group variety. It is also shown that the free completely simple semigroup 
on a finite set is a retract of the free object on a countable set in any variety of com-
pletely regular semigroups that contains CS. 

The first section includes a subdirect product decomposition of a regular semi-
group and some preliminary results on varieties; it is shown that RBGDPOBG 
is a significant lower bound of the set of varieties V, C S ^ V ^ B G \ P O B G , where 
RBG is the variety of all regular bands of groups. In the next section models of free 
objects in subvarieties of POBG are described, with an emphasis on those con-
tained in RBG fl POBG. The retract and -class results mentioned above are 
in the final section. 

2* 
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1. Definitions and preliminary results 

Suppose g is a congruence on a regular semigroup S. Denote by E(S) the set 
of idempotents of S. Define 

trace of Q = tr g = 
and 

kernel of g = kerg = (u, e)£ Q for some e£E(S)}. 

By FEIGENBAUM [4; Theorem 4.1], g is completely determined by its trace and kernel. 
Note that if x is also a congruence on S then tr ^Htr z = t r (oflx). Also, by [8; 
proof of Lemma II.4.6], ker o Piker t = k e r (oflx). By [10; Theorem 3.2], there exist 
least and greatest congruences on S with the same trace as Q (denoted respectively 
gmin and (?mM), or with the same kernel as g (denoted respectively gmin and emax). 

L e m m a 1.1. Let g, x and ). be congruences on a regular semigroup S such that 
gQxQgmax and QQAQQ™*. Then S/g is isomorphic to the subdirect product 
{(ax, aX); a£S} of Six by Sj?.. 

P r o o f . Since ker 2=ker g^ke r t and t r r = t r g g t r A then ker ( rPU)=ker Q 
and tr (Tfl/-)=tr g. So g = t PU and the result follows (see [12; Proposition 
II.1.4]). 

Throughout the paper U will denote the variety of all semigroups that have 
a unary operation, and X will denote a countably infinite set. The free object on X 
in U is denoted by F%. is the smallest subsemigroup of the free semigroup on 
XU {( , )"1} such that XGF% and ( w ) " 1 ^ for all w<iF%. We will write w~1 = 
= (w) - 1 and iv°=vvu'~3. 

If V is a subvariety of U let F% denote the free object in V on X, and let gv 

be the fully invariant congruence on such that F%szFx/gv. Denote by L(V) 
the lattice of subvarieties of V and by C(V) the lattice of fully invariant congruences 
on (both ordered by inclusion). There is a lattice anti-isomorphism between 
Z(V) and C(V) given by W F o r V g W in L(U) let [V,W] = 
= {Z£L(V); V g Z ^ W } . For YQX, let Fy denote the subsemigroup of gen-
erated in V by Y; Fy is free on Y. We may regard as being the set subject 
to the laws of V. 

A semigroup is completely regular if and only if it is a union of its subgroups. 
It is well known that the class CR of all completely regular semigroups is a sub-
variety of U defined by the laws xx_1x=x, xx~1=x~1x and ( x - 1 ) _ 1 = x . So 
gCR is generated by {(MW_1M, u), (MM-1, M_1M), ( ( M - 1 ) - 1 , M); 

By [10; Theorems 3.6, 4.2 and 4.3], for any V£JL (CR ) then (Qv/eCR)m-m, 
(8v/ead*"* (8y/eCR)™* and (EV /0CR)M A X are in C ( C R ) . Let V M A X , V M M , V M I N and 
Vmm denote the varieties in L(CR) that are respectively defined by these congruences. 
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It is usual when V£L(B), the lattice of varieties of bands, to write VG for 
Vmax. VG is the variety of all semigroups SgCR such that is a congruence on 
5 and S / j f e V . 

Let G denote the variety of all groups, CS is the variety of all completely simple 
semigroups, and let OBG be the variety of all bands of groups that are orthodox. 
Let POBG denote the variety (see [7; Proposition 4.1]) of all BG such that 
for each e£E(S), eSe is orthodox; S is called a pseudo orthodox band of groups. 
The following list, from [11], is of the bottom 15 varieties in L{B) along with their 
defining laws as subvarieties of B: T=trivial variety (x =y); LZ=left zero semi-
groups (xy=.v); ReB=rectangular bands (xyx=x); SL=semilattices (xy=yx); 
LNB=left normal bands (xyz—xzy); NB=normal bands (xyzx=xzyx); LRB=left 
regular bands (xy=xyx); LQNB=left quasinormal bands (xyz=xyxz); RB=reg-
ular bands (xyzx=xyxzx ) ; LSNB=left seminormal bands (xyz=xyzxz); and 
the left-right duals RZ, RNB, RRB, RQNB and RSNB of LZ, LNB, LRB, LQNB 
and LSNB respectively. If V £ L ( B ) is not in the list then ViLSNBVRB or 
V^RSNBVRB. 

LSNB RSNB 

LQNB > RQNB 

LRB "RRB 

LNB RNB 

LZ RZ 
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The following results are to be used later in the text. Define the content of 
to be 

c(v) = {letters of X appearing in v), 

and for VeZ-(CR) define 
2ls = {(w, v); u,v£Fx and UQV 3I fgv}-

T h e o r e m 1.2. (i) [2; Theorem 4.2]. For u, v^F*, (u,v)e2>cR if and only if 
c(u)=c(v). 

(ii) is a congruence on For V£L(CR) either and V 3 S L 
or and V^CS. 

P r o o f . Since 3) is the finest semilattice congruence on any completely regular 
semigroup then 3>CVL is a congruence of and £>v=^CR if and only if V 3 S L . 
If V S C S then V ^ S L and hence Suppose T h e n b y (0 
there exists u, such that (u, v)(L Qv and c(u)^c(v). We may assume that 
there exists x£ c(u)\c(v). Select finite subsets Y, Z of X and endomorphisms 
(p, \ji of F^ such that c(x(p)=Y=c(ztp) and c(x\J/)=Z—c(z(p) for all z £ X \ { x ) . 
Since QV is fully invariant and (U,V)£Qv then (yep, (u°V)(p), (vip, (u° v)\J/)£ QV while 
c(vcp)=Z, c(vil/)=Y and c((u<>v)(p) = YUZ=c((ifiv)il/). Hence by (i) F°/ev has 
just one ^-class and is therefore completely simple. 

T h e o r e m 1.3. Suppose V£L(BG). Then 
(i) Vm„€L(OBG) if and only if V f l B ^ R e B , 

(ii) Vmax€L(POBG) if and only if V f l B ^ R B , and 
(iii) RBGDPOBG is the greatest lower bound in L(POBG) of 

[CS, BG]\L(POBG). 

P r o o f . Note that since J f is the greatest idempotent separating congruence 
on and ^ is a band congruence then V m i n =VDB. Also observe that if Z 3 W 
inX(CR) then Z m M i W m M . 

(i) Since ReBm M=CSgiOBG then Vm a x$i(OBG) if VDB3ReB. Con-
versely suppose V f l B ^ R e B ; then L R B 2 V H B or RRBSVf lB . By duality, 
it suffices to assume V=V m a x =LRBG, and to prove V ^ O B G . In this case V 
is defined as a subvariety of BG by (xy)°=(x>>.x)0. So for any e,f^F^ where eqv 

and fgv are idempotents, 

efev e f ( e f f f Q v e f ( e f e f f Q v e f ( e f e f e f Q s e f ( e f f e f Q w efef. 

Thus is orthodox. 
(ii) The free completely simple semigroup with adjoined identity, (F^ ) 1 , is 

not a pseudo-orthodox band of groups but. it is a regular band of groups since it 
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satisfies the law (xyzx)°=(xyxzx)°. Conversely, suppose VDBjgRB; so V i l B g 
QLSNB or Vf lBgRSNB. By duality we may assume V=Vm a x=LSNBG. Sup-
pose e, f Fx such that egw,fgw and ggv are idempotents and (efe,f), (ege, g)€ev-
Since V is defined in L(BG) by (xyz)°=(xyzxz)° then 

(fg)° 6v Сfgef Q\ (fgefef Qy(fgf)0 Qv ( f g f f f Q y (fg)% 

so fg g v f g ( f g f g 8vfg( fg)°fg Qsfgfg- Hence F ^ P O B G and the result follows. 
(iii) By [7; Theorem 3.1 and Corollary 5.4], L(BG) is modular arid POBG = 

=CSVB. Therefore, since RBG3CS, 

POBGHRBG = (CSVB)flRBG = CSV(BflRBG) = CSVRB. 

By (ii) CSVRB is a lower bound for [CS, BG]\L(POBG). Furthermore.; if 
V£L(POBG) is a lower bound for [CS, BG]\L(POBG) then VQjPOBGПRBG. 

L e m m a 1.4. Suppose V€L(CR) and W6[V, VmaxVVm"]. Then W ^ 
= ( w n v j v ( w n v ™ ) . Furthermore k e r ( Q w ! Q C R ) = t e r ( Q w n V m J g C R ) . 

P r o o f . The first statement is by [10; Theorem 5.4]. The second statement is 
proved in the initial part of the proof of [10; Theorem 5.1]. 

2. Free pseudo orthodox bands of groups 

The lattice L(CS) of completely simple semigroup varieties has been studied 
by several authors. In particular F^ has been characterized fór V£L(CS) in [9], 
[14] and [15]. 3 ' 

Write ^ to mean "is embedded in", and omit the embedding details where 
they are obvious. 

T h e o r e m 2.1. (i) If VeL(OBG) then 

^ - {(«evnB, wevnc); ^ 

(ii) If V€[ReB,POBG] then 

F j - {(«evna, M!?vncs); u ^ } ^ F ? n B X F j n C s . 

P r o o f . We have T m a x =G, T m a x = B = R e B m " and ReBmax=CS. By [13; 
Lemma 1] and [7; Corollary 5.4], OBG=BVG and POBG=BVCS respectively. 
By Lemma 1.4 then V i V n G i V m i n in case (i) and V 3 V n C S 2 V m i n in case (ii). 
Since V m i n = V n B , the result is by Lemma 1.1. 1 - ' 

This result can be.refined, given more information oii F ^ n B ànd F j n c s . 
The head h(v) of v£F% is the first letter of Jf to appear _io v. Dually the tail 
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t(v) is the last letter of X to appear in v. The initial part i(v) of v is the word obtained 
from v by retaining only the first occurrence of each letter from X. Dually define 
the final part f(v) of v. Define I={i(v); v^F^}', so / ^ F " consists of finite strings 
of distinct letters from X. Then 

( 1 ) 0LNB = { ( « . » ) ; u,v£Fx where c(u) = c(v) and h(u) = h(v)}. 

To see this note that the set is a fully invariant left normal band congruence on 
that is contained in gSL fï gLZ. Since the sublattice described in the diagram is 
convex, the congruence is £?LNB. 

Likewise 

(2) {?NB = {("> t(u) = t(v)}, 

(3) 0LRB = { ( " , ti,v£Fx where i(u) = i(v)}, 

(4) CLQNB = { ( « , t(u) = t(v)}, 

and 

(5) 5RB = { O , ^ 0 l r b ; / (") = / ( » } • 
Along with the well known results we readily get the following. 

T h e o r e m 2.2. F j={0} ; F^Z=X with multiplication x-y=x; 

F*eB s F^xF™; FxL = { r g X-, \Y\ under set union; 

Fx™ ~ {(*,Y); xiYQX, \Y\ < « ) s i f x F | L ; 

F?* 9£ {(x,y, Y); x , y e Y Q X, \Y\ S F£ e B XF| L , 

F£ r b S I with multiplication a-b = i(ab); 

FÎqnb - {(a, x); at I, xtc(a)} s F ^ x F f v and 

FP ~ {(a, b)£lxl; c(a) = c(b)} s F^xF™*. 

The free objects in other varieties of bands are not so easy to model. 

C o r o l l a r y 2.3. Suppose V€L(LRBG) and W = V n G . If V€[SL, SLG] then 

Fx = g€FiT, c(g) g YQ X, \Y\ s F^xF?. 

If V£[LNB, LNBG] then 

FÏ ~ {(x, Y, g); giF?, {*}, c(g) QYQX, \Y\ s F^xF?. 

If V€[LRB,LRBG] then 

F? - {(a, gXIXFx, c(g) i c(a)} ^F^XF?. 
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P r o o f . With F™ replaced in these descriptions by F^/Qw it can be easily 
seen by Theorems 2.1 and 2.2 that the respective isomorphisms are given by UQv-~ 
-(c(w), UQw), ugv-+(h(u), c(u), ugw) and ugv^(i(u), ugw). 

Select h£X and let {/?>,,; y, z£X\{/i}} be a set in one to one correspondence 
with X\{h}XX\{h}. Put pyz=e if y=h or z=h. By [9], [14] or [15], 

Jt (H, X, X, P), a Rees matrix semigroup, where H is the free group with identity 
e freely generated by {exe, pyz; x, y, z£X, y^h^z}, and P is the matrix with pyz in 
row j and column z. Ji(H, X, X, P) is freely generated in CS by {(exe, x, x); xÇX}. 

Also by [9], [14] and [15], if V€[ReB, CS] then there is a unique normal sub-
group Nv of H such that F^Jl (H/Nw, X, X, P/Ny). 

Let i¡/: F^^Jt (H , X, X, P) be the surjective homomorphism given by x\[/ = 
=(exe,x,x) for all x£X. Define (p: by iif=(uq>, h(u), t(u)) for all 
u t T h e n x<p=exe, (xy)(p=x(ppxy{yq>) and m_1 ̂ =(/V)*«("<?>)/>,(«».(«)) for 
any x,y£X and It follows that for VÇ[ReB, CS] and u,v£F% then 
(u,v)£gv if and only if h(u)—h(v), t(u)=t(v) and u(pNv=vcpNv. 

Corollary 2.4. Let V<E [NB, RBG flPOBG] and W = V n CS. 7/V£ [NB, NBG] then 

FJ S {((X, Y), (g, x, >')); gdtyNw, \x, y}, c(g) QYQX, \Y\ ^ F?BXF?. 

If V£[LQNB, LQNBG] then 

Fx = {((a, x), (g, h(a), x)); gtH/Ny,, at I, {x}, c(g) Q c(a)} â F £ q n b x 

If V£[RB, RBG fl POBG] then 

Fx = {((fl, b), (g, h(a), t(b))); g£H/Nw, a, be], c(g) g c(a) = c(b)} ^ F*BXF™. 

P r o o f . By Theorems 2.1 and 2.2 it can be readily checked that the re-
spective isomorphisms are given by ugw—((h(u), t(u), c(u)), (u<pNy, h(u), t(u))), uov~* 
-((/(«), t(u)), (tt<pNv, h(u), t(u)j) and ugv-((i(u),f(u)), (ucpNv, h(u), t(u))). 

Note that there are repetitive symbols in the models; h (a) and t(b) are derivable 
from a and b. The repetitions are included so as to give a simple description of 
the multiplication. 

Since the relatively free objects of LZG are known modulo G then by the cor-
ollaries the relatively free objects of RBG fl POBG are known modulo CS and G. 

By [12; Theorem IV.4.3], S is a normal band of groups if and only if S is a 
strong semilattice of completely simple semigroups. We can use Corollary 2.4 to 
characterize free objects of varieties in [NB, NBG] in these terms. 

Suppose F is a semilattice and {5,; a£E} is a disjoint set of semigroups. 
Suppose there exists a set of injective homomorphisms Sx—Sp for all a, fidE 
where a§J?, such that ij/ttia is the identity map and for all a, ft, y£E 
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where a S ^ y . Then S=UxiESx with multiplication a-b=a^/XfIpb^PiXfi for Sx 

and b£Sfi is called a sturdy semilattice E of semigroups Sx; a.€£ with transitive 
system {¡¡/x>p; a, (see [12]). 

Co ro l l a ry 2.5. //V<E[NB, NBG] and W = v n C S then 

Fx = {(r, (g, x, y)); g£H/Nw, {x, y), c(g) QYQX, \Y\ S F^xF?. 

Hence F% is a sturdy semilattice F^h of semigroups F™; Y^F^ with transitive 
system {^Y.ZI Y,Z£F^} such that {xip^Y; x£ Y) generates F™. Conversely any 
such sturdy semilattices of semigroups is isomorphic to F™. 

Proof . The subdirect decomposition is immediate by Corollary 2.4. So Dr = 
={(T, g, x, y); gZH/Ny,, {x, y}, c(gy} is a 0-class of the model and DY==F™. 
With F>y^D7 given by (Y, g, x, y)—(Z,g, x, y) for Z 5 7 we see that 
Fx is a sturdy semilattice of the required form. Now suppose S is a sturdy semi-
lattice F | l of F?; with transitive system {ip'r z-, Y, Z<= f | L } such that 
{^{x}. Y! generates F™ for all Y. Define an automorphism r\Y of F™ by 

for all x€Y. We have for Z^Y, ¡¡IW.YVYVY.Z^U,YVY.Z = 
= z = ^ { x } , z 1z• By [12; Exercise III.7.12.11] then S = F ^ . 

3. Free non-pseudo orthodox bands of groups 

This section begins with a description of ^-classes of relatively free completely 
regular semigroups that allows easy comparison of some properties of the relatively 
free objects. 

Throughput, Y will denote a finite subset of X and DY = {u£F^; c(u)—Y}. 
Dr is a unary subsemigroup of Let Q be a congruence on Dr such that DR/G is 
completely simple. Select eY=wn for some vv(EDY; so eYQ^E(DY!g). For u, FY 

define 

(6) eYUtV = ueY{eYvueY)~1eYv. 

We have E(DY/g)={eYu,„g; u,v£FY) since eYUt0g is an idempotent and for r£DY, 
r° Q eYrr. For notational convenience write eY_u=eYe^ a and eYa_=eY„ e^. Define 

(7) pYu,v = eY-ueYc-; u, v£FY . 

By [3; Theorem 3.4], for any u£DY there is a unique ag such that ag eYg and 
u Q eYu..aeY_tt. In fact since eYu_ Q £CeYG eY_UO then ag=(eYueY)g; so 
u g eYu_eYueYeY_a. Let HY be the unary subsemigroup of F^ generated by 

(8) {erueY, pYu>0; u,viFY}. 
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Then by [3; Theorem 3.4], HY/g is the ^f-class of eYg in DY/g and 

{(eYu.heY_v)g\ h£Hr} 

is the ^f-class of (eYu~eY-v)g, u, v£DY. 
Suppose V£[CS, CR]. Let SVY be the completely simple subsemigroup of 

DY/gy that is generated by 

{(eYx-eYxeYeY-x)gv; x<EK}. 

Let T be a subsemigroup of a semigroup S and ij/: S-<-T' be a homomorphism. 
Then T is a retract subsemigroup of S under ij/ if and only if there is an isomorphism 
(p: T'-*T, and <p\]/ is the identity map. 

T h e o r e m 3.1. Let Y be a finite subset of X and V€[CS, CR]. Then SVY is 
a retract subsemigroup of F^/gv under (gcslgv)$. In particular SVY = 

Proof . Let xjj: FYjgy->-FYjgcs be the surjective homomorphism determined 
by the action (xgy)il/=xgcs for each x£Y. So ipoip"1 is the restriction of (gcs/gv) 
to the subsemigroup FY/gv of F^/gv. We have eYx__eYxeYeY_XQwxeY(eYxeY)~1eYx, 
and (xe Y (e Y xe Y )~ 1 e Y )g c s is an idempotent that is -related to xgcs. Hence 
((eYx_eYxeYeY_x)gv)\l/=xgv\¡/ and \j/ maps SWY onto FY/gcs. But S v r i C S so there 
is a surjective homomorphism cp: FYJgcs->~SVY given by xgcs(p=(eYx_eYxeYeY_x)gy. 
The result follows. 

The Theorem can be strengthened in the two variable case. 

T h e o r e m 3.2. If V£Z,(BG) and W = V f l N B G then F ^ ^ F ^ y 

Proof . By [8; Lemma IV.4.6] it can be easily seen that auva oB avua for any 
a,u,v€Ffx y}. So (auva)0 gy (avuaf and hence i ^ i y } eW. But F"xy)eV, so the 
homomorphism F^^—F^^ such that x—x, y-*y is an isomorphism. 

Now suppose V£L(BG) and Y is a finite subset of X. Let a, b, c, d£ FY . If 
(a, b), (c, d)£gB then since tr e B G =t r qb we have by (6) and (7), (eY„tC, eYbtj)£gBG, 
whence (pY„lC,pYb,dKQBG- So 

(9) (pYa,c, Prb,d)£Q\ ^ (a,b),(c,d)£gB. 

Also by (7) pYacgy(eYaeY)~1eYaceY(eYceY)~1 and since HY/gy is a group, 

(10) eYaceY gy eYaeYpYa-ceYceY. 

By (9) and (10) eYaeY gy eYacfieY gy eYaeYpYaiaeYd>eY so 

( 1 1 ) eYa0eYgv pYla. 
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Also eYaeYgveYa-a 1eY gv eYaeYpY„taeYaeYpYaiaeYa 1eY so 

(12) e r a s e r i?v 

Also note that since (a0, (h(a)t(a))°)£gcs while eYa_ qcs and eY_bgcs are 
idempotents then by (6), (eYa_, ,<„,_), (eY_b, eY_,(b))£Qcs, so by (7) 

(13) PYa.b 0CS Prt(a),h(b)-

L e m m a 3.3. Suppose V£[CS,BG]. Then V^L(POBG) if and only if 
(PYa,b> PYtw,h(b))€Qv for some finite subset Y of X such that \ 7| and for all 
a,bkf?. 

Proo f . As noted in the proof of Theorem 2.1, POBG=ReBmaxVReBmax. Then 
by [10; Theorem 3.4], POBG=(ReBmax)max D (ReBmax)max. Since ReB m a i =CS then 
POBG€[CS,CSmax] so ker oP O B G /gC R=ker e c s /o C R . Thus if C S g V Q P O B G then 
ker e C s / ö c R = k e r QVIQCR- T h e n b y (13)> s i n c e Pra.bQcr a n d Prm.imQCR ARE -^-RE-

lated, (PrlttpYm,h(b))6cr£ker Qv/Qck s o (PYa.b, Py^k^Qw for all a,b£F]?. 
Conversely suppose and (pYa,b> PYi(a),h(b))£Qv for all a,b£FY. Then 

by (8), (10), (11) and (12), HY/gv is the group generated by 

{(eYxeY)qv, pYx,ygv; x, y£Y}. 

We begin by showing that ker ((qcsIgy)\(FYjgv))=E(FYlov). Recall that SVY is a com-
pletely simple subsemigroup of DY/gv generated by {(eYx~eYxeYeY_x)gy; x£ F}. So 
there is a subgroup KVY of HY/gv such that for each x,y£Y, {(eYx-keY_y)gv; k£KyY} 
is an Ji?-class in SVY. We have (e Y xe Y )g y £K V Y . Also, by (7), (eYy-pYx yeY_x)Qv 

is an idempotent; it is ^-related to (eYy_eYyeYe_yY)gv and ¿'-related to 
(eYx_eYxeYeY_x) qv so it is in SVY. Hence pYx,yQv(zKVY. It follows that HYjgw — 
=KVY, so the -classes of SVY are tf -classes of DY/gv. Hence, since Dr/gv£ CS 
and ker((gcs/gy)\SVY)=E(SVY) by Theorem 3.1 then ker ((gcs/gv)\(DY/gv)) = 
=E(D,ley). 

Suppose ZQ Y. There is an endomorphism \j/ of f y such that x\p=x if x € Z 
and xi]/£ Z if x£ Y\Z. Since gy is fully invariant then ip induces an endomorphism 
ip of FYJgv given by agv(p=aij/gy. Define ez=eY\¡/, so ezov=eYgv<p is an 
idempotent in Dzlgy. Construct pZlliV by (7) for u,v£Fz. Then 

PYU, VQ\(P ={(eYueY)-1eYuveY(eYveY)~1)gv(p = pZU>VQV. 

Hence (Pzu,v>PztM,h(v))£Qv for all u,v£F%, and as above we get 

ker((ecs/ev)l(^z/ev)) = F(Dz/Qv). 

Hence ker ( ( e C s ) / M ( ^ v ) ) = £ ( ^ / i ? v ) -
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Since (x°^x°) /e c s eOBG it now follows that (x° F^ X")IQv£OBG. But 
then (x>x0x°zx0)0 QV (x°jx0)n(x0zx0)0 for any x,y,z(=Y. So (x°^0x0zx°)0 = 
^ixPyxOf^zx?)0 is a law in V and V€i(POBG). 

The major result of this section can now be proved. 

Theo rem 3.4. Suppose V€[POBGflRBG, BG]\L(POBG), and Y is a finite 
subset of X such that |7|s3. Then any №-class of F^/GV in the ¿¿-class Dy/QV is 
not a free group. 

Proof . Suppose v£ Y and it, By (9), (10) and (11) we have 

(14) eYuvweY Qv eYiteYpY„vw eYveYpYVtWeYweY, 

(15a) eYuvweY Qy eYuv°eYpYuVtVWeYvweY, 

(15b) eYuvweY Qy eYuveYpYuv-vweYv°weY, 

(16a) eYuv°eY QyeYueYpYu>veYv°eY QveYueYpYUtVpY^v, 

(16b) erv°weYQwpYJ;vpYViWeYweY. 

Then by (15a), (16a) and (14) 

(17a) 
Pvuv, vw eY vweY qv (eY uv° eY) 1 eY uvweY 

8\PYV,VPYU,VPYU,VWEYver PY»,WEY WEY • 

Likewise by (15b), (16b) and (14) 

(17b) eYuveYpYuVtVW Qy eYueYpYUiVweYveYpYOiV. 

So by (10) and (17a), and (10) and (17b) respectively 

eYuv2weY Qy eYuveY(pYuv,vweYvweY) uv, vw 
(18a) 

Qy eYueYpYll) „eYveYpYv,vpYv\vpYu,vweYveYpYVtw eYweY, 

eYuv-weY Qy (eYuveYpYuVtVJeYvweY 
(18b) 

Qy eYueYpYlltvw eYveYpYv> v eYveYpYv>weYweY. 

Comparing (18a) and (18b) then 

PYU, v ^Y^YPYV, vPYu.vPYu , ww Qv PYU, t'w eyVeYpYv, 

(eYveYpYVi v) (pYu) vpYUt ,„,) QY (PVU.VPYU, VJ {eYveYpYVt „). 
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Alternatively we may repeat the above calculation with (14) replaced by 
eYuvweY gyeyueYpyUiCeYveYpyUViWeYwey to get 

(20) (j>Yv,veYvey)(pYuo , WPYV, W ) e\ (PYUV, WPYV. W)(PYV, v EYveY). 

Let 

a = eYveYpYe_v, P = pYu,vpyu,vw, f = pYv,veYveY, S = pYuv,wpYv\w. 

Note that agv is not an idempotent. To see this observe that For Y then as in 
the proof of Theorem 3.1, (eYv_eY veYeY_„) gcs=vgcs which is not an idempotent 
in Fy/Qcs. But (eYv-pYlveY_V)GCS is the idempotent JP-related to vgcs. Hence 
(eYvey,pYl„)igcs, so agcs^eYgcs=ofigcs. Likewise ygcs9±y°qcs. 

Let A and B denote the subgroups of the -class HY/gy of eYgy that are 
respectively generated by { a g y , p g y ) and c>ov}. Assume HY/gy is a free 
group. By (19) and (20), (agy, pgy} and {yev> <5gv} are not sets of free generators 
of free groups, so A and B are free cyclic groups. Say ).Qy generates A for some 
).dFY and a gy Xm, p gy But a g c s , and Xgcs, are not idempotents while by 
(13) PgCs—^tt6cs is idempotent, so «=0 . Therefore (pYUlVW,pYu,v)£gy, and like-
wise (Pyuv,w>Pyv,w)€ 8v f ° r a n y M, 'fC Fy and v£ Y. Of course v=h(vw)—t(uv) 
so by (9) we now have (pYa,b> PYt(a%h(b))£Qv for all a, b£FY; thus by Lemma 3.3 
V£Z,(POBG). This is a contradiction. Thus HY/gy is not a free group. 

R e m a r k . Since the subgroup SVY of F^/gy is isomorphic to F f s then for 
| Y| ^ 2 and -class of Syr is a free group on more than | Y\ free generators; that 
is, it generates the variety G of all groups. Hence any ¿^-class in Drlgy generates 
G and thus lies in no proper subvariety of G. 
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Congruences on semigroups of quotients 

JOHN K. LUEDEMAN 

Introduction. PETRICH and others [2 , 5 , 6 , 7 ] have studied semigroups V which 
are ideal extensions of a semigroup S by the quotient semigroup T=V/S. These 
extensions are classified by their homomorphic image in the translational hull £2(S) 
of S. Most often S is required to be weakly reductive so that S is embedded in 
Q(S). On the other hand, given a right quotient filter I on S, the semigroup Q(S) 
of right quotients of S can be defined and all right ¿"-systems M12S for which 
M/S is torsion can be classified by their homomorphic image in Q(S). Often S 
is required to be strongly torsion free so that S is embedded in Q(S). When M 
is strongly torsion free, M is isomorphic to an ¿"-subsystem of Q(S) and so may 
receive a semigroup structure from Q(S). The author [4] has shown that these 
two concepts are special instances of a common generalization. 

In this paper we study semigroups V containing the strongly torsion free semi-
group S with T=V/S torsion, called semigroup extensions of S by torsion T. 
In this situation T is an (S, 5")-system which may not be a semigroup. However, 
T*=T\{0} has a partial multiplication for pairs t,t'£T* with tt'$S in V. This 
partial multiplication is associative. When considering ideal extensions, the (S, S)-
system T has a trivial scalar multiplication. In our situation, the (S , S)-system 
structure on T is not trivial and plays an important role. 

In Section 1, the necessary definitions concerning semigroups of quotients are 
given and the semigroup extensions V of S are characterized in terms of an (S, 5)-
homomorphism 0: which preserves any partial multiplication in T*. This 
characterization is reminiscent of the characterization of ideal extensions due to 
CLIFFORD [1]. In Section 2 , semigroup congruences O on V are characterized in 
terms of the restriction CT=U|s of o to S, and the (S, S")-system congruence x on 
T inherited from o when Sja is strongly torsion free. In Section 3, the semigroup 
V/u is shown to be an extension of Sja by a quotient ^-system of T. In Section 4, 
the special case of extensions determined by partial homomorphisms is considered. 
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1. Extensions of semigroups. Let S be a semigroup with zero. (In this paper 
S will always have a 0 unless otherwise noted.) 

Def in i t ion . A right quotient filter on S is a nonempty collection I of right 
ideals of S satisfying 

(i) if A£Z, AQB, a right ideal of S, then B£Z; 
(ii) if A,B£Z then Af]B£Z; 

(iii) if A£Z,s£S then = and 
(iv) if I is a right ideal of S, A£Z, and a^ItZ for all a£A, then / £ ! . 
H I N K E L [ 3 ] calls such right quotient filters "special". 
For A£Z, let Horn (A, S)={f: A^S\f(ax)=f(a)x for all x£S, a£A). Let 

B = U' Horn (A, S), then B is a semigroup under composition with multiplication 

o f / : A-»S,g: B—S defined by the composition fog: C-+S where 

c — {b£B\gQ>)£A} 

which is in Z. Define the relation y on B by fyg if and only if there is some A£Z 
with f(a)=g(a) for all a£A. y is a semigroup congruence and Q= B/y is the 
semigroup of right quotients of S with respect to Z. 

Let M be a right ¿¡"-system and define a relation 5 on M by mbm if and only 
if for some API, ma=m'a for all a£A. 8 is called the torsion congruence on M. 
Mis strongly torsion free if 8 is the identity relation, and M is torsion if 8=MXM. 
For each i^S", the y class of the mapping Xs: S—S given by left multiplication by 
s is denoted by [J] and the mapping [ ]: S-^Q is a semigroup homomorphism. 
If 5" is strongly torsion free, [ ] is a monomorphism and we identify S with its image 
[s] in Q: . . 

Defini t ion. A partial (S, S)-algebra T is a partial groupoid which is, at the 
same time, an (5", 5")-system, for which (ts)t' — t(st') for all sdS whenever both 
products are defined. 

Let V be a (S, 5")-system which is' also a semigroup. If V satisfies (vs)v' = 
=v(sv') for all v, v'dV, s£S, we call V aa S-algebra. A semigroup V containing 
Sas a subsemigroup is clearly an ¿"-algebra. Let T=V/S, the Rees quotient (S, S)-
system. T has a partial associative iiiultiplication of nonzero elements t, t'£ T if 
tt'^S (as an element of V) inherited from: V, and so is a partial (5", S):algebra. 
We denote T \ ( 0 } by T* and note that V_=T*US as sets. 

In general, given a partial (S, S)-algebra T, We wish to define a semigroup 
multiplication on V—T*l)S: extending the-partial multiplication in T* and the 
multiplication in S. If such a multiplication can be defined, we call V a semigroup 
extension of S by T. 
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Def in i t ion . Let Q be a semigroup of right quotients of S with respect to a 
right quotient filter I , and let T be a partial (S, S)-algebra. A mapping 9: T*-*Q 
is a partial homomorphism if 

(i) whenever t,t'£T*, and tt' is defined, 0(tt')=(9t)(9t'), and 
(ii) if teT*,s£S and ts^O [st^O], then 0(ts)={Qt)s [0(i/)=.y0(O]. 
When S is strongly torsion free and T i s torsion, the, desired multiplication on 

V=T*\JS can be defined as shown by the following theorem. 

Theo rem 1. Let I be a right quotient filter on S and S be strongly torsion 
free. Let T be a partial (S, S)-algebra. If 0: T* — Q is a partial homomorphism 
satisfying (0a)(0b)£S if a, b<=T*, ab undefined and s(0b)£S [(Ob)s£S] if sb=0 
[¿>5=0], then V=T*[JS is a semigroup under the multiplication 

(9a)(9b) if a,b£T*, ab undefined 
a(9b) if aZS,b£T*,ab = 0 
(9a)b if a£T*, b£S, ab = 0 
ab otherwise. 

Conversely, every semigroup extension V of S by torsion T—V/S can be con-
structed in this manner. 

Proof . The proof of the direct part of the theorem consists of verifying the 
associative law. The proof is tedious but not difficult so only the verification that 
(ia*b)*c=a*(b*c) for a, b, c£T* isgiven. If ab, be, a{bc) and (ab)c are defined, then 

(a*b)*c = ab*c = (ab)c = a(bc) — a*bc = a*(b*c). 

If ab and be are defined while (ab)c is not, then 

(a*b)*c = ab*c = (0ab)(0c) = (6a8b)6c = ea(db0c) = 6a9(bc) = a* be = 

= a*(b*c). . 

If be is defined while ab is not, then 

(a*b)*c = (6aGb)*c = (6a9b)9c = 8a(9b9c) = 9a9(bc) = a*bc = a*(b*c). 

Since the case be undefined^ ab defined is similar to the previous ,case, we consider 
the case where ab, be are both undefined. In this case 

(a*b)*c = (9a9b)*c = (9a9b)9c = 9a(9b6c) = a*(9b9c) = a*(b*c). 

Conversely, let F = T * U S be a semigroup extension of S by T where T is 
torsion. We define 0: V-+Q to be the natural mapping given as follows: for- v£V, 
since T is torsion t>-1.S={.y£iS|iw£iS'}£.E so we define 0v to be the- y^class of 
g: v~1S—S given by g(a)—va. Clearly 0 is a semigroup homomorphism of V 
into Q whose restriction to S is the identity. By abuse of notation, denote the restric-. 

3» 
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tioii of 9 to T* by 9. Clearly, 9 is a partial homomorphism satisfying Oa 8b£S 
iiabis undefined, and s(9b)£S [(OAKS'] if sb=0 [¿>j=0]. 

Moreover, if juxtaposition denotes the multiplication in V, then if a, b£ T*, 
ab undefined, then a*b=9a9b=9(ab)=ab; if as=0, a£T*, s£S, then a*s= 
=(9a)s=6(as)=as; if sa=0, a£T*, s£S, then s*a=s9a=9(sa)=sa; and other-
wise, .aft is defined in T*, or ab£S in V, and in both cases a*b=ab. 

2. Congruences on V. Let I be a right quotient filter on S, let S be strongly 
torsion free, and V be a semigroup containing S with T=V/S a torsion partial 
(S, ¿)-algebra. To describe this situation we say that V is a semigroup extension of 
S by torsion T. 

Def in i t ion . Let a be a semigroup.congruence on S and P be a (S, ¿^sub-
system of T with the following property: 

(1) For each p&P* there is 's£S and A£Z with the property that paasa for all 

In this case we say the p is a-linked to s. (Note that TjP inherits a partial multiplica-
tion from T.) 

Let t be a 0-restricted multiplication preserving (S, ¿^-congruence on TIP 
satisfying 

(2) if XTy, sat and xs, yt£S then xsayt. 

The relation (a,P, t )=o on V=T*\}S is defined as follows: 
for x,y£T\P, xoy if and only if XTJ; 
for ~x, y£P*, xoy if and only if there are s, t£ S a-linked to x and y (respectively) 

with sat; 
for x£P*, s£S, xvs if and only if sux if and only if there is t£S <r-linked to 

x and tas; and 
u|s=<x... . 
A congruence a on S is strongly torsion free if S/a is a strongly torsion free 

semigroup with respect to the right quotient filter I/a with base {a^A^AdZ} 
where is the canonical semigroup homomorphism from 5 to S/a. 

Lemma. Z/a is a right quotient filter on S/a. 

Proof . Property (i) is clear, while (ii) follows from elementary properties of 
the function <j*. 

•(iii) Let BeZ/a and t=a"(s)€Sla. Let A£Z with a*(A)QB. Then s~lA£Z 
and cr*sa$(s~1A)^=B and (ah^B^Z/a. 
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(iv) Let <?*(/) be a right ideal of S and B£Z/cr. Let A£Z with a*(A)GB. 
Let ( а f o r all a£A. Then without loss of generality, for 
all a£A so / € £ and o*(I)£ZI<r. 

Theorem I. If a is a strongly torsion free semigroup congruence on'S, then 
v=(a, P, T) is a semigroup congruence on V whose restriction to S is strortgly torsion 
free. Moreover, every semigroup congruence on V whose restriction to S is strongly 
torsion free is of this type. 

Proof . To show that v is an equivalence relation it suffices to verify that for 
p£P, s, t£S, pvs and pot imply that sat. However, pvs and put imply the existence 
of some x£S cr-linked to p with xas and xat. Thus sat. 

We next verify that о is a left congruence. The "right" case is dual. 

Case 1. Let t, t'£T\P, c£V and tut'. Hence txt'. If ct£T\P then ct'eT\P 
since т is O-restricted. Hence ctxct' or ctvct'. Next let ct£P*\JS, then ct'£P*US. 
We consider several subcases. 

(a) ct, ct'dP*: By (1), for some x, y£S, A^Z ctvx and ct'vy so that ctaaxa, 
ct'aaya for all af_A. By (2), txt' implies ctaact'a which implies xay since a is 
strongly torsion free. Thus ctvct' by definition of v. 

(b) ct£S, ct'£P*: For some x£S and A€Z, ct'aaxa for all a£A. Hence 
by (2), ctaaxa for all a£A so ctax since a is strongly torsion free. Hence ctvct'. 

(c) The other cases ct£P*, ct'£S and ct, ct'£S are treated similarly. 

Case 2. Let p,p'£P*, pop' and c£F. Then pvs, p'os for some sf_S by the 
definition of o. By (1), for some AfZ, cpaacsa for all a£A. Similarly cp'aacsa 
for all ad A. Again we consider several cases. ; 

(a) cp, cp'£P*: Then cpvx and cp'oy for some x, ydS. Thus xaacpaacp'aaya 
for all A and so xay and cpvcp'. 

(b) cpdS, cp'£P*: Then cp'ox for some x£S. Thus for all a£A, cpaacp'aaxa 
so cpax and cpvcp'. .-

The verification of the remaining cases is either similar to some case considered 
above or follows immediately from (1) or (2). 

Conversely let ц be semigroup congruence on V whose restriction to S is strongly 
torsion free. Let P={t£T*\t}is for some ig5}U{0}, then P is an (S, ¿^-subsystem 
of T. Let a = f i \ s and define x on T / P by: 

txt' if and only if tpt' (t, t'£T\P); ОтО. 

Then clearly IT is a strongly torsion free semigroup congruence on S, every 
element of P* is <x-linked to an element of S, and т is a partial multiplication pie-
serving O-restricted (S, S')-congruence on T/P and conditions (1) and (2) are sat-
isfied. Clearly pQv=(a, P,x). To see the converse we need to consider two cases. 
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Case 1. pvp'; p,p'dP*'- Then there are s, s'dS and A£l with paasa, p'aas'a 
for all ad A, and sas'. On the other hand there are x,x'dS with ppx, p'\ix'. Thus 
for all ad A, xaapaasa and x'aap'aas'a so xasas'ax'. Thus pps, p'¡is' and sps' 
so pup'. 

Case 2. pos; pdP*, sdS: There is xdS, Ad£ with pacxa for all ad A and 
xas. However piix' for some x'dS so x'aaxa for all ad A or xax'. Thus ppx' pxps 
or pus. 

C o r o l l a r y 2. A relation p on V is a semigroup congruence whose restriction to 
S is strongly torsion free if and only if p is of the form (a, P, x) for some strongly 
torsion free semigroup congruence a on S. 

If P is a nonzero (S, S)-subsystem of T such that P*US is a strict extension 
of S (i.e. for all pdP*US there is some sdS, AdZ with xa=sa for all ad A [4]), 
then P can be used in (<r, P, t). In this case condition (1) is automatically satisfied 
but condition (2) must still hold. 

Def in i t i on . A semigroup extension V of S by T=V/S is determined by 
the partial hotnomorphism to: T*-~S if (1) co preserves the partial multiplication 
and the (51, S)-system multiplication on T, and (2) the multiplication of a, bdV 
is given by 

(coa)((ob) if a, bdT*, ab undefined 
I(oja)b if adT*,bdS,ab=: 0 

"* \a(cob) if bdT*, adS, ab = 0 
ab otherwise. 

Recall from [4] that if S is strongly torsion free, a semigroup extension V of 
S by torsion T=V/S is strict if and only if V is determined by a partial homo-
morphism co: T*~*S. 

When V is determined by a partial homomorphism, we have the following 
result: 

P r o p o s i t i o n 3. Let V be an extension of S determined by a partial homo-
morphism co: T*—S where T=VjS is torsion, a be a strongly torsion free semi-
group congruence on S, and P be any (S, S)-subsystem of T. Then there exists a 
multiplication preserving (S, S)-congruence x on TIP for which i)=(<r, P, i) is a 
semigroup congruence on V. Moreover, condition (2) on a and x is equivalent to 

(3) cotaoit' if tot' 

while condition (1) holds automatically. 

Proof . Let r be the identity congruence on T/P, then the first statement 
follows from the remarks preceding the statement of the proposition. If (2) holds, 
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and txt', then for some A£Z and all a£A, taat'a hence (at)aa(cot')a but since 
S is strongly torsion free, cotacot'. If (3) holds, then txt' and xay implies mtamt' 
from which (o>t)xo((ot')y and so txat'y if tx, t'y=0, otherwise txxt'y since txot'y 
(o is a congruence) and tx, t'y are both nonzero. 

R e m a r k . If T has no nontrivial (S, 5)-subsystems then .P=.{0} or P—T. 
Consequently for any semigroup congruence on V, either S is saturated by v(P= {0}) 
or every u-class intersecting T* also intersects S; in these cases both conditions (1) 
and (2) are vacuous. 

3. Homomorphic images of V. In this section we describe the homomorphic 
image of V induced by a congruence v=(a, P, x), where a is strongly torsion free. 
Recall that for any semigroup congruence a on S, o" denotes the natural mapping 
of S" onto S/<T. 

T h e o r e m 1. Let V be a semigroup extension of S by torsion T—V/S deter-
mined by the partial homomorphism 9: T*-+Q. Let v=(cr,P,x) where a is strongly 
torsion free. Then v is a semigroup congruence on V and one of the following two 
cases occurs: 

(i) P=T; then V/o^S/a; or 
(ii) P^T; then Vjo is an extension of S/a, by (V/o)l(S/o)^(T/P)lx deter-

mined by the partial homomorphism ¡3: ((T/P)/x)* — Q(S/cr) where ¡3 is defined by 
fi(x" t) = (x^ t), where (t-1) is the equivalence class in Q(S/a) of the mapping 

/ , if,: <T* (t~1S) - S/ii defined by #, (a*a) = (ta). 

Proo f . That v is a congruence follows from Theorem 2.1. If P—T, the mapping 
Q(O*X)=V*X for all x£S is a semigroup isomorphism from Sjo onto F/u. 

Suppose P^T. Let K=T/P, V'=VJO, and S'=S/A. V is a semigroup 
extension of (P*US)/O by K/O (by an obvious abuse of notation). From the 
construction of (o,P,x) it is clear that (P*\JS)/O'=SIVS£S/<J, and K/o^K/x. 
Hence we may consider V as an extension of S' by K' —K\x. Here 5" is strongly 
torsion free so we may describe this extension by means of a partial homomorphism 
¡3 defined above. Let o be the multiplication in V, * the multiplication in V , and 
denote the multiplication in T, K and S' by juxtaposition. It remains to show that 
* satisfies the conditions of Theorem 1.1 in V'=K'*\JS'. 

For any a', b'£K'* (a'=osfl=tsa), 

(ab)' if ab£T\P 
•a'*b' = (aob)' = • s' if ab£P*, abvs 

[9a0b]' if ab is undefined 

a'V if. a'b'^0 
([3a') (fib') if a'b' is undefined. 
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If a'eS'. b'£K'* then 
(ab)' if ab£T\P 

ar*b' = (aoby = • s 
n UUtzl \r f , 
•e i/- n* l )ab u a b if ab£P*, abos =\.RW ,,, 

(aBbY iiab=0 Pb l i a b = ° -

The case a'£K'*, b'dS' is similar to the above case and if a', b'£S' then a'*b' — 
=(aob)'=(aby=a'b'. 

Coro l l a ry 2. Under the same hypothesis and notation as in the theorem, if V 
is also a strict extension of S and P^T, then V/o is an extension of S/a by (T/P)/x 
determined by the partial homomorphism Q: ((T/P)fx)* — S/a defined by Q(X*X) = 
=o$s where for some A£Z, xa=sa for all a£A. 

4. Extensions determined by a partial homomorphism. Let V be a semigroup ex-
tension of S by torsion T determined by a partial homomorphism GO : T*->-S, a 
be a semigroup congruence on S, P be an (S, S')-subsystem of T, T be a O-restricted 
partial multiplication preserving (S, ¿^-congruence on T/P, and suppose caaawb 
if axb where a, b£P. On V define the relation u by 

a, b£T\P: avb iff axb 

a, b£P*: avb iff coaacob 

a£P*, b£S: aob iff boa iff coaab, and 

a,b£S: aob iff aab. 

We write o=[<r, P, x]. 

Theorem 1. The following statements hold: 
(i) o—[a, P, x] is a semigroup congruence on V; 

(ii) if a is strongly torsion free then [a, P, x]=(a, P, x); 
(iii) every semigroup congruence p on V whose restriction to S is strongly torsion 

free is of the form [a, P, x]; 
(iv) if P=T, then V/o si S¡a; 
(v) if P^T and a is strongly torsion free then V/o is an extension of S/a by 

(T/P)/x determined by the partial homomorphism to' defined by 

(4) cu'(t *a) = a**(<aa), a£T\P, 
and 

(vi) condition (3) is equivalent to the existence of the function (o'\ ((T/P)/x)* -*S/a 
satisfying (4). 

P roof , (i) o is clearly reflexive and symmetric. Let p£P* and s, tdS with 
pos, pvt. Then copas, (opat and sat or sot. Let a, b, c£T*US with a, b, c£T*, aob. 
| f d,b,c£T* with QQdT* then bc^T* and acobc. If ac£P* and bcdP* then 
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since coaacob, со (ас)=coacocacobcoc=co(bc) or acvbc. If ac£P*, bcdS then 
tacmmb^-m (ac)crcobcoc=>co (ac) abc. The other cases are either obvious, or follow 
easily by arguments similar to the above. 

(ii) Since in the definition of (a,P,x), for any pdP*, copdS is ст-linked to p, 
[a, P,x]^(a, P,x). Conversely suppose px,p2dP* and p^o, P, x)p2. Then pi is 
u-linked to s£S (i=l, 2) by A£E and Hence (cop1)a(Ts1aas2acT(cop2)a for 
all a£A and since AdI and a is strongly torsion free, cop1acop2 or /^[с, P, x]p2. 
The cases p±dP*, PzdS and ptdS, p2dP* are obtained by similar arguments. 

(iii) This follows from ii) and Theorem 2.1. 
(iv) This is obvious. 
(v) Using the notation in the proof of Theorem 3.1, for t2dT\P we obtain: 

t[ = t'2 => tx xt2 =• cotx oa>t2 => (cotj' = (cot2)' =>co't[ = со' t2 

and so со' is single-valued. If t[t'2 is defined, then /1t2dT\P and 

oVxQ = cAh h)' = [«(fj f2)]' = (cohcoQ' = (cotj)'(cot2)' = (co'Q(co't'2) 

and со' is a partial homomorphism. If /[t2 is undefined and t2dT\P then 

{ [coQxQ]' if txt2 is defined 
{(coh)(cot2))' if txt2 is undefined 

= [(cohXcoQ]' = (cot,)'(cot,)' = (co'tiXco'Q. 
If tidT\P and sdS, we have 

l[*s' = (txos)' = {(соф)' = (cotes' = (co'Qs' 

and dually s' * t[=s'(co' Q. 
(vi) By (v), (3) implies the existence of со' satisfying (4). Conversely if (4) 

holds, then 
txxt2 => t{ = t2 => со' t[ = со' t'2 => (cot,)' = (cot2)' => wf1 acot2 

and (3) holds. 
Condition (4) can be expressed by saying that the following diagram com-

mutes : 
СTIP)* — S 

t' J CT& 

(F/P)/T)*-2U S/FF 

where со* = ш | г ^ р and т ' ^ т ^ у р . 
Comparing Theorem 4.1 with Theorem 3.1, we see that condition (3) in the 

definition of и=[<7, P, x] implies that о is a semigroup congruence on V, while in 
Theorem 3.1, we had to suppose that a is strongly torsion free to prove that (a, P, x) 
is a semigroup congruence on V. In Theorem 4.1, we obtain all semigroup con-
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gruences FI on V whose restriction to S is strongly torsion free; if /t|s is not strongly 
torsion free, condition (3) need not hold. 

Coro l l a ry 2. Let T be a zero (left zero, right zero) (S, S)-system, then all 
semigroup congruences v=[a, P, T] on V can be constructed as follows: let a be a 
semigroup congruence on S, and on T* define a' by 

(5) ^ a' t2 o co/x o-co/j • 
Let P be any (S, S)-subsystem of T, r be a 0-restricted multiplication preserving 
equivalence relation (right S-congruence, left S-congruence) on TIP for which 
t l r \ p = ( 7 ' l r \ p - Then (3) holds and [<r, P, i] is a semigroup congruence on V. Con-
versely any semigroup congruence [a, P, T] on V can be constructed in this fashion. 
In particular, we obtain all semigroup congruences on V whose restriction to S is 
strongly torsion free. 

Proof . On zero (left zero, right zero) (S, 5)-systems all 0-restricted multi-
plication preserving equivalence relations (right ^-congruences, left ¿¡"-congruences) 
are (S, ¿¡^-congruences. From (5) and T|TX^,gj<7'|TXi, it follows that(3) holds. Hence 
[a, P, t] is a semigroup congruence on V by Theorem 4.1. 

Conversely, if [<r, P, T] is a semigroup congruence on V, then (3) is satisfied 
and so 

The last statement of the corollary follows from part (iii) of Theorem 4.1. 
When J1 is a zero (5, S)-system, every subset of T containing 0 is an (S, ^ - s u b -

system, while (S, 5)-subsystems of the other two types are 0-simple. Thus it is possible 
to characterize in a simple way a large class of semigroup congruences on V when T 
is of one of these types of (S, 1S')-system. Moreover, the extension is determined by a 
partial homomorphism. 
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On maximal clones of co-operations 

Z. SZÉKELY 

In this paper we determine all maximal clones of co-operations on a finite set, 
presenting a completeness criterion for co-operations in the spirit of Rosenberg's 
completeness theorem for operations on a finite set (cf. [3]). The result has some 
consequences for the theory of selective operations [2], too. 

Our terminology is based on [1]. Here we present a short summary of the notions 
we use in this paper. For shortness, the set {0,1, ..., /—1} will be denoted by I for 
every natural number /. Let A stand for the finite set n for n > 1 and let m > 0 be 
an integer. An m-ary co-operation f on A is a mapping of A into the union of m dis-
joint copies of A which can be given by and hence identified with a pair of mappings 
</„,/>, where f0: A—m is called the labelling and A--A is called the mapping 
o f / The i-th m-ary coprojection pm,i (a special kind of co-operation) is defined by 
p"-'(a)=i and p™'l(a)=a for each a£A (i£m). The set of all co-operations and 
that of all m-ary co-operations on A are denoted by and 'Í?™, respectively. The 
variables of the co-operation /=( /o»/ i}£^T are the disjoint copies of A where / 
maps to, indexed by the elements of m. The i-th copy of A is an essential variable 
o f / i f its intersection with the range o f / i s nonempty, i.e. f0(x)=i for some x£A. 
The co-operation/is called essentially k-ary if \f0(A)\ =k. Omitting all non-essential 
variables o f / , we obtain a k-ary co-operation/, called the skeleton o f / . We call 
a co-operation essential if it is injective and essentially at least binary. 

Let /€<<?" and£(0>, gw, ...,g(m-1'>£<#A. The superposition h :=f(gw, gw,. ••,g(m~1)) 
of/wi th g(0), g(1), . . . ,g ( m - 1 ) is the co-operation determined by the equalities h0(a)— 

and hl(a)=gif«W)(f1(a)) for each a£A. The co-operation / is 
called the main component in this superposition. A set of co-operations on A is 
called a done if it contains all coprojections and is closed under superposition. The 
least clone containing a set C of co-operations is called the clone generated by C 
and denoted by [C]. C is complete if [C] equals <§A. (A co-operation/is called Shejfer 
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if { /} is complete.) The mappings of the set C generate a semigroup Sf(C) of self-
maps of A called the semigroup of C. We call C transitive if ¿?(C) is transitive. 
Note that sr(C)QP[C]. 

We remark that the lattice of clones of co-operation on A is finite. This fact 
can be shown in an easy way using the following remarks: 

(1) The relation % on (€A defined for / g(zVA by f ^ g if both of the skeletons 
of / and g are A:-ary and gc=fe(pk'ihl, pk'l!Z,pkAk~1)n) for some permutation n 
of k is an equivalence relation with finitely many blocks. (Note that each block of 
the partition associated with » can be represented by an at most |^4|-ary co-opera-
tion and the number of these co-operations is finite.) 

(2) Every subclone of <gA is a union of some blocks of the equivalence % defined 
above. (It is trivial noting that for a clone C from / € C it follows g£C for each 

with f ^ g . ) 
A maximal clone of co-operations on A is a proper subclone C of (tfA such that 

C c Z ) c ^ for no clone D. Similarly to the case of algebras, a pair (A, F) with a 
nonempty set A and FQWA is called a coalgebra. We say that (A, F) is a finite 
coalgebra if A is finite. (A, F) is called primal is F is complete. A co-operation 
f£(€A is said to be constant if both / 0 and f1 are constants. The coalgebra (A, F) 
is functionally complete if the union of F with the set of constant co-operations on 
A is complete. 

There is a close connection between co-operations and regular selective opera-
tions, as follows. Let P and M be nonempty sets, let k be a natural number and 
let / , : P—k and / : P-+P. The fc-ary operation/on Mp is called a regular selective 
operation if for every p£P the /^-component of the result o f / i s the / -component 
of the/ , - th operand. Observe that the mappings / 0 and / can be considered as the 
labelling and the mapping of a fc-ary co-operation on P. Moreover, for any non-
trivial M and nonempty P this natural correspondence yields a bijection between 
the regular selective operations on Mp and the co-operations on P. This bijection 
is a clone isomorphism. Hence the lattice of clones of regular selective operations 
on a finite power of a set is isomorphic to the lattice of clones of co-operations 
on a finite set and our criterion for the maximality of a clone of co-operations pro-
vides a description of all maximal proper subclones of the clone of all regular selective 
operations on a set Mp with P finite (cf. [1], [2]). 

Consider a nonempty subset T of A. We say that a co-operation pre-
serves Tit IT is closed under the mapping / . Let it be a partition of A.f preserves it 
if the labelling/, is constant on each block of it a n d / preserves it in the usual sense 
(i.e. / ( a ) = f f / ( 6 ) holds for every a,b£A with a=„b, where =„ is the equiv-
alence associated with 7T). 

We call a co-operation f£e&A (x, y)-gluing for some distinct x,y£A if f(x) = 
—f(y) (i.e. fi(x)=ft(y) for i£2). Note that an arbitrary superposition with an 
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(x, _y)-g1uing main component is also (x, y)-gluing. We say that / glues in TQA 
if / is (x, y)-gluing for some x, y£ T. We write / | | T for " / does not glue in T" 
(i.e., f\T is injective on T). Let M be a family of subsets of A. M is called disjoint 
if its members are pairwise disjoint and called uniform if all its members have 
the same cardinality. M is regular if it is nonempty, disjoint, uniform and distinct 
from :={{«}: a£ A}. The set of regular families of subsets of A will be denoted 
by Rf (A). The family M determines the following relation ~ M on A: x~Mj> if 
x,y£S for some S£M. If M is disjoint, then ~ M is an equivalence on the set 
UM:= (J S. We remark that every member of Rf(^4) can also be considered 

as a partial equivalence on A. 
jB Let M£Rf (A) and S£M be arbitrary. The co-operation /preserves S in M if 
/„ is constant on S and f maps S into a member of M, i.e. f(x)=fQ(y) and 

f ( x ) ^ M f 1 ( y ) for all x, y£S. (Note that the property " / preserves S in M" is 
not equivalent to the simple property " / preserves £"' even in the case of M sin-
gleton !) Further, (i) / weakly preserves S in M if either /preserves S in M or / glues 
in S, (ii) f (weakly) preserves M i f f (weakly) preserves each S£M in M, and (iii) a 
subset C of (weakly) preserves M if each fdC (weakly) preserves M. Denote 
by CM the set of co-operations weakly preserving M. 

L e t T < g A and \f(T)\=k. We put ess T ( / ) : = £ and ess (f):=essA ( / ) . 
Let gm,g{1\ ...,gim-1)£<ZA. The superposition h=f(gi0\ gw, ..., g (m-1)) is called 
disjoint if the ranges of g ^ ^ g ^ , are pairwise disjoint. The following 
fact is obvious: 

Lemma 1. Let h=f(gm, g(1), ...,g (" I -1)) be a disjoint superposition, let TQA 
and for i£m put f := TO / - 1 (/) = {x6T: /„(x)=/}. If f\\T and g^WMT,) (in 
particular, if is non-gluing) for each i£m, then h\\ T and ess (/i)^ess ( / ) . 

A disjoint superposition of form 

It =f{pk-°, ...,pk'J-\g(pkJ, ..„p"-^™'-1),pk-s+'"\ ...,pk-k~x) 

will be denoted shortly by h=f(...,g, ...)j. Here where k=m+m' — 1 for 
and Obviously we have: 

Lemma 2. Let T^A, and • If both f and g preserve T then 
/(...,g, ...)j preserves T. 

We shall also use the following trivial facts: 

Lemma 3. Let T and T' be proper distinct subsets of A and let 
C={f£*tfA: f preserves T}. Then there is an f£C not preserving T'. 

Lemma 4. Let Cx be a set of selfmaps of A. The semigroup generated by C\ 
is transitive if and only if no non-trivial subset of A is preserved by Cx. 
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We need some other preparations, as follows: 

Lemma 5. For arbitrary Af£Rf(v4) the set CM is a proper subclone of %>A. 

Proof . First observe that CM9i'SA (indeed, there is some f ^ A not pre-
serving weakly M). We show that CM is a clone. Clearly the coprojections preserve 
M and so it is enough to show the closedness under superposition, i.e. to prove that 
h=f(gm,gll\ . . . ,g (m-1))€CM for arbitrary m-ary f€CM and £ (0),g (1), 

In order to do so consider a subset S£M. The definition of CM implies that 
either/glues in S or f preserves S in M. If / (x )= / (v ) for two distinct x, y£S then 
h(x)=g?№{fl(x))=g*f'0i>(f1(y))=h(y), i.e. h glues in S too. Thus assume /US'. 
Then f0(S)—i for some /(Em, f is injective on S and / ( 5 ) ^ 5 " for some S'£M. 
However, |S"| = |Sj, whence / maps S bijectively onto S'. If g(i) glues in S', i.e. 
g<-i)(u)=gw(v) for two distinct u,v£S' then (as / m a p s S onto S') f1(x)=u and 
f1(y)=v for some and so h (x) = ( f (x)) = £(i) (u) =g{i> (v) = 
=gVoO>»(f1(y))=/i(},)i i.e. h glues in S too. Thus assume £(i)||S". Then g(i> pre-
serves S' in M, i.e. g'^ is constant on S' and maps S' onto some S"£M. Since 
"for all x£S, h0(x)=gft)(f1(x)), we see that /¡0 is constant on S and, similarly, ht(x)= 
=gi°(fi(x)) for all x£S shows h^S^S", i.e. It preserves S in M. Therefore, h 
weakly preserves S in M. 

Lemma 6. Let McRi(A) and suppose that the common cardinality of the 
members of M equals 1. Consider the m-ary co-operation f£^A\CM and put 
£>:=[CMU {/}]• Let S be an arbitrary member of M which is not weakly preserved 
by f . Then for every {u, rigs' there is a co-operation f*(zD such that f* preserves S, 

Proof . It will be done in several steps. 

Claim 0. For every permutation h of 5" there exists a unary co-operation h'£CM 

preserving thé set S, such that h[ extends R. 
Indeed, put h'0(x)=0 for all x£A, h'1(x)=H(x) for x£S and h'1(x)=x on 

-4\iS. Then h' obviously preserves M. 

Claim 1. There are {x, y ^ S 1 and f'dD such that f'\\S and fo(x)^fô(y). 
Indeed, from the choice of S it follows /US'. Furthermore, clearly it suffices 

to consider the case o f / 0 constant on S, i.e. f(S)=j for m and f\(x)-pMf(y) 
for some x, y£S. Consider the co-operation h defined as follows: 

. Suppose M={S 0 , Si, ..., S",.!} and y4 \ | JM={i f 0 , wx, ..., t ^ . J where Oë 
^ r i s n - q k ? & n - k . Let /;€CM from defined by 

f*\\S and f0*(u)^f*(v). 

(*) 
ï if xeSi (/'€ q) 
q+j• if x = wj (j£r) and /i! = idx . 
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Obviously h0{f1(x))^h0(fL(y)). Put / ' = / ( . . . , h, ...)J-. According to Lemma 1 
/ 'US and ¿ ' ( * )=M/ i (* ) )*M/ iOO)= .£0>) . 

Claim 2. There are x,y£S and f"£D such t h a t / " preserves the set S, f"\\S 
and 

Indeed, consider x, y and / ' from Claim 1. Suppose P u t J ' = f o ( S ) 
and, for each j£J, put Rj'= {u£A: /¿{z)=j and / / (z)=w for some z€S}. Further, 
for each j£J let ha)£CM be a unary co-operation such that hJ

0(x)=j for all x£Rj, 
hU)\\Rj and Such an hu) exists, because |Kj-|;g|S|. Form the disjoint 
superposition f"=f'(gw,gm, where gU)=ha)(pm'J) for j£J and 
gU) otherwise. Lemma 1 implies f"\\S. As hU) preserves S for each j£J, 
from thé definition of Rj it follows t h a t / " also preserves S. Furthermore, /0" =/0 ', 
hence f j ' (x )^f^(y) holds too. 

To prove the assertion of the lemma consider two arbitrary distinct elements 
u,v£S. Let x, y a n d / " satisfy Claim 2. As x^y, Claim 0 implies that there exists 
a unary h'£CM with h^(u)=x and h[(v) =y. Put f*:=h'(f"). Since it is a dis-
joint superposition,/* preserves S and /"US by virtue of Lemmas 1 and 2. Further-
more, fo(u)=fo(x)^fo(y)=fo*(v), as needed. 

Lemma 7. Let D and S be the same as in Lemma 6. For every i=1, 2, ..., k 
there are an i-element subset H of S and g£D such that g preserves the set S, g||S 
and g0 is injective on H. 

Proof . We proceed by induction on /=1 ,2 , . . . ,k. The assertion is trivial 
for 1 = 1. 

Let Assume the statement is valid for Ht and Choose an 
arbitrary element x£S\Hi and let Hi+1:= HjlJ {x}. If g® is injective on Hi+X, 
we can put g ( , + 1 ) :—gV). 

Assume go)(y)=go)(x)=j(£mi) for some y£Ht. As g(i)||S, the elements 
u=gi\x) and t)=g®(>>) are distinct. Hence by Lemma 6 there exists an m*-ary 
co-operation f*£D such tha t /* preserves the set S, /* | |S and / * ( M ) ^ / * ^ ) . NOW 

put s ( i + 1 ) =£ ( i ) ( . . . , /* , ...)j, where gV+Vç^i+i for mi+1=mi+m*-\. Lemma 1 
and 2 imply that g ( i + 1 ) preserves S and g ( i+1) | |S. The definition of g ( i + 1 ) yields 
that go+ 1 ) (x)—f^(u)^fo(v)=^+ r ) (y) . As £ ( i + 1 ) is a disjoint superposition and, for 
z ^ z ^ H t , g ^ i z ^ g f i z j implies g . V ' ^ f z i W / ^ f e ) , we conclude that g«+1> is 
injective on H i + 1 and the lemma is proved. 

Coro l l a ry 8. Let the conditions of Lemma 6 be satisfied. Then there exists a 
co-operation g£ D such that g0 is injective on S. 

j The promised Rosenberg-type criterion for completeness of sets of co-opera-
tions is the following. 
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Theorem. A set C of co-operations on a finite set A is complete if and only if 
no regular family of subsets of A is weakly preserved by C. 

Proof . We shall prove the following claim, which is equivalent to the theorem: 
A set CQ(6a is a maximal clone if and only if C=CM for some M^Rf (A). 

1. Sufficiency. Let M£Rf(y4). In accordance with Lemma 5, CM is a proper 
subclone of r€A. We verify that CM is maximal by showing that for arbitrary 
the clone Z):=[CMU {/}] equals %>A. This will be done in two parts. 

(i) Suppose that MT±A* consists of singletons. Put M : = U M . Then h ^ A 

weakly preserves M iff it preserves M. If if is a proper subset of A distinct from 
M, then in accordance with Lemma 3 there is a g£CM not preserving H. Clearly 
/does not preserve M, thus CM U { /} preserves no proper subset of A. Then CM U { /} 
is transitive as a consequence of Lemma 4. Further, CM obviously contains an 
essentially n-ary co-operation and thus applying Proposition 2 from [1] we obtain 
that CM\J{f} is complete, as required. 

(ii) Now suppose that the common cardinality of the members of M equals 
k>-1. Then CM is transitive as CM contains all the constants in (as each of them 
glues in every S£M). We shall construct an essentially n-ary co-operation in D. 
Let S be an arbitrary member of M being not weakly preserved by / (there is such 
an S as f$CM), and l e t / be a selfmap of A, which maps each member of M bijectively 
onto S. Consider the unary co-operation / with mapping / , equal to / on U M 
and to the identity map otherwise. Clearly / £ C M . Take the co-operation h defined 
by ( * ) and the co-operation g from Corollary 8. Form the disjoint superposition 

...J(g(pnAq-1)k,PnM-1)k+\ ...,pn'qk-1)),p"-'>k,pn>'>k+1, ...,P"-'>k+'-1)eCM, 

where q and r are the same as in (*) . From the properties of h,f and g it follows 
essS' (¿r*)=|S'|=fc for each S'£M. Also we see that e s s ^ u M ( g * ) = e s s ^ u M ( h ) = 
= | / 1 \ U M | =/'. As g* is a disjoint superposition, its essential arity can be obtained 
additively:ess(g*)=ess(UM)UuxUM)(g*)= 2 ess s ,(g*)+ess j l xUM(g*)= 2 1^1 + 
+ U M| =kq+r=n. This completes the proof of the sufficiency. 

Remark . For M={A} the clone CM is called the Slupecki clone of co-opera-
tions on A. It consists of all non-essential co-operations. We see that it is a maximal 
clone, which occurs in the coalgebraic counterpart of Slupecki's completeness criterion 
for operations (Proposition 4 in [1]). 

2. Necessity. Consider an arbitrary maximal clone C in q>A. We verify that 
there exists a family M£Rf (A) weakly preserved by C. This is enough, since then 
C^CMcz(&A from Lemma 5 and thus C has to equal the clone CM. 
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(i) If C is not transitive, then in virtue of Lemma 4 there1 is £ nonempty sub-
set TczA preserved by C. However, then M:={{a}<z.A\ a f T j i R f C ^ ) is preserved 
by C too. 

(ii) Assume in the sequel that C is transitive. Observe that the clone of all 
gluing co-operations on A is a proper subset of the Slupecki clone on A. Thus C 
being maximal, it contains a non-gluing co-operation, for else C would be complete 
according to Proposition 2 in [1]. 

Consider an (m-ary) non-gluing co-operation fee with maximal essential 
arity for the set of non-gluing co-operations of C. Denote by n the partition of A 
induced by /„ and let Mx be the set of blocks of n with maximal number of ele-
ments. The members of Mx are not singletons, else % would be trivial and hence / 
essentially ra-ary. It follows that M ^ R f (A). 

Claim 0. For arbitrary TeMx, the restriction of / to T is a bijection from T 
onto some T'eMx. 

Let j:=f0(T)(em) and put / ' : = / ( . . . , / , ...),€C. Obviously, for any z^A,f[(z) 
equa l s / ( / ( z ) ) if f0(z)=j and / ( z ) otherwise. Lemma 1 implies f'\\A and e s s ( / ' ) s 
Sess ( / ) . It is easy to realize that ess ( / ' ) ^ e s s ( / ) iff there are x,y£A such 
that f0(x)=f0(y)=j and / o ( / ( x ) ) ^ / o ( / 0 ) ) , i.e. /(*)=„/(.>>) does not hold 
for some x, y£T. Then it follows from the choice o f / t h a t / ( x ) =*/(}>) for each 
x,yeT. Fur the r , / i s injective, thus / is 1 - 1 on T, whence | / ( r ) | = | r | . Then 
T a s needed. 

Put the set M ^ ^ M ^ . / ( U M 1 ) n r ? i 0 } and let M:= {SgMi: there is 
g^C and S'dM2 such that the restriction of to S' is a bijection from S" onto S}. 

Due to Claim 0, M2 is nonempty. On the other hand, MSQM; thus M is also 
nonempty and Me Rf (A). 

We show that M is weakly preserved by C. This property will be obtained as a 
result of two claims. Let SeM be arbitrary and let geC and S'eM2 be associated 
with S in the definition of M. Note that g can be chosen to be unary. Now Claim 0 
guarantees that a suitable restriction o f / is a bijection onto S" from some S"eM1. 
Let k:=f0(S"). 

Claim 1. If heC and h\\S, then h0 is constant on S. 
Indeed, put /* := / ( . . . ,g(h ) , ...)keC. Then, for arbitrary zeA, /*(z) equals 

h1(g1(f1(z))) if f0(z)=k and / ( z ) otherwise. From Lemma 1 it follows / * M 
and ess ( /*)£ess ( / ) . Similarly to the discussion of / ' above, ess (/*)=> ess ( / ) iff 
ho(gi( fi(*)))=K(ffi(fi(y)j) does not hold for some [x^eS''. As / and gx are 
1 — 1 when restricted to S" resp. S', this condition is equivalent to h0(u)yih0(v) 
for some u, v£S. However, the choice of/implies that this condition does not hold, 
as asserted. 

4 
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Claim 2. If h£C and h\\S then the restriction of /ix to S is a bijection from S 
onto some S0£M. 

Indeed, assume h^é™* and let k0:=h0(S)em0. Put h':=h(...,f ...)kfC. 
Obviously h'0(z)=f0(h1(z))+k0 and h'1{z)=f(h1{z)) for zÇS. Lemma 1 implies 
h'\\S, thus it follows from Claim 1 that h'0 is constant on S, whence for each JC, y£S 
we have f0(h1(x))=f0(h1(y)), i.e. h^^h^y). Note that h, is injective on S, 
since h\\S and h0 is constant on S. Then, as S is a block of maximal size in n, the 
restriction of hi to S is a bijection from S onto some S^M,. Now consider S'£M2. 
The restriction of the mapping of the co-operation g*:=g(h)£C to S' is the product 
of the bijections gi|s. and h^s, hence g-*|s> is a bijection from S" to S0. Thus 
S0£M, as required. 

This completes the proof of the theorem. 
We list some easy consequences of the Theorem (we omit their proofs). 

Coro l l a ry 9. (Proposition3 in [1].) A co-operation on n is Sheffer if and 
only if it preserves neither non-least partitions nor nonempty proper subsets of n. 

Coro l l a ry 10. A finite coalgebra (A, F) is 
(i) primal if and only if no regular family of subsets of A is weakly preserved 

by F; 
(ii) functionally complete if and only if no regular family of nonsingleton subsets 

of A is weakly preserved by F. 
Coro l l a ry 11. No distinct maximal clones of co-operations on a finite set have 

the same semigroups. 

The last corollary is the coalgebraic counterpart of the well-known fact that 
maximal clones of operations on a finite set are uniquely determined by the (semi-
group of) unary operations they contain. 
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Über multiplizitätenfreie Permutationscharaktere 

KURT GIRSTMAIR 

1. Einleitung. Man erhält — bis auf Ähnlichkeit — alle transitiven Permutations-
darstellungen einer endlichen Gruppe G, wenn man G in natürlicher Weise auf den 
Linksnebenklassen G/H nach Untergruppen H operieren läßt. Der Charakter izG/H 

einer solchen Darstellung (nG/H(s)=ZäbH der Fixpunkte von s, s$G) zerfällt über 
einem Körper K der Charakteristik 0 in der Form 

r 
XG/U = 2 tiXn ei = 0 , i=l 

wobei die gerade die irreduziblen Charaktere von G über K sind. Man nennt 
nG/H bzw. die dazugehörige Permutationsdarstellung multiplizitätenfrei (über K), 
wenn £¡€ {0,1} für alle /=1, ..., r. Ist nG/H multiplizitätenfrei über C, so gilt 
dies für jedes K. 

Multiplizitätenfreie Permutationscharaktere sind in mehrfacher Hinsicht von 
Interesse. Sie haben praktische Bedeutung bei der Bestimmung von (großen) Unter-
gruppen endlicher Gruppen G, bei der Konstruktion primitiver Elemente in Körper-
erweiterungen und bei der expliziten Erstellung einer irreduziblen Darstellung aus 
ihrem Charakter (vgl. [5], S. 147 ff., [1]). Ferner sind die häufig untersuchten Per-
mutationsdarstellungen niedrigen Ranges multiplizitätenfrei (vgl. [6]). Auch kennt 
man im multiplizitätenfreien Fall bemerkenswerte arithmetische Zusammenhänge 
zwischen den Bahnlängen von H auf G/H und den Charakterdimensionen /¡(1), 
i=l,..., r (vgl. [9], Th. 30.1). Für weitere Motive zum Studium solcher Charaktere 
siehe [6]. 

Bis jetzt gibt es keine befriedigende Theorie der multiplizitätenfreien Permuta-
tionsdarstellungen bzw. -Charaktere. So ist etwa deren Verhältnis zu den primitiven 
Darstellungen nicht geklärt. D. E . LITTLEWOOD hat einst vermutet, daß alle primi-
tiven Permutationsdarstellungen multiplizitätenfrei sind ([5], S. 147). Dies wurde 
aufgrund des Gegenbeispiels G=PSL(2, 11), //=Diedergruppe der Ordnung 12 
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widerlegt, das von J. A. T O D D mit Hilfe expliziter Charakterrechnungen gegeben 
wurde ([8]). Mittlerweile kennt man bei einfachen oder fast einfachen Gruppen 
weitere Gegenbeispiele (für G=S„ vgl. [6], Sect. 2). In vielen anders gearteten Fäl-
len (z. B. für auflösbare oder Frobeniussche Gruppen) ist die Vermutung jedoch 
richtig. Im übrigen beschränken sich unsere Kenntnisse multiplizitätenfreier Per-
mutationsdarstellungen m. W. auf einige hinreichende Bedingungen (etwa [9], Th. 
29.6) und Spezialfälle (vgl. [6]). 

In der vorliegenden Note wird aus einem Grundgedanken, der von J. SAXL 

bei der Untersuchung der Gruppen G = S„ angewendet worden ist ([6], Beweis 
von Th. 1), eine relativ leicht überprüfbare notwendige Bedingung für die Multipli-
zitätenfreiheit von nG/B — über einem beliebigen Körper K der Charakteristik 0 — 
entwickelt (Satz 1). Diese Bedingung liefert erhebliche Beschränkungen für die Grup-
pen H*QG, die //" enthalten (Satz 2). Ferner gibt sie eine gewisse Erklärung dafür, 
daß gerade bei einfachen Gruppen nicht-multiplizitätenfreie Permutationsdarstellun-
gen zu erwarten sind. Es wird insbesondere auf ganz einfache Weise gezeigt, daß 
bis auf endlich viele Ausnahmen alle Gruppen PSL(2,p), p prim, solche Dar-
stellungen besitzen (Satz3; somit ist das Toddsche Gegenbeispiel p = 11 keines-
wegs singulär in dieser Gruppenserie). Schließlich wird Satz 1 verwendet zur teil-
weisen Bestimmimg der Struktur der Gruppe G, wenn rrG/H multiplizitätenfrei und 
die Ordnung von H klein ist; G ist auflösbar für (Satz 5). 

r 
2i Die Bahnenungleichung und ihre Anwendung. Sei wie oben nG / H= 2 eiXi> s e i 

i = 1 
r 

H* eine weitere Untergruppe von G und nc/H*= 2 e*Xi • Es gelte 
¡=i 

(I) für alle i"=l,..., r ist entweder e^e* oder ef=0. 

Dann folgt für das innere Produkt (bezüglich G) der beiden Permutationscharaktere 
r r 

, - <^G/H. *G/H*> = 2 Xi) ^ 2 ef<Xi> JCi> = (IG/H*, ^G/H«), 
í=I i=i 

da (für beliebiges K). Nach dem Frobeniusschen Reziprozitätsgesetz 
ist das erste Glied dieser Ungleichung gleich dem inneren Produkt des 1-Charakters 
mit dér Einschränkimg von nG/H* auf H. Dies aber ist gerade die Anzahl der Bahnen 
von H auf G/H* (vgl. [3], S. 597) die wir mit orb (H, G/H*) bezeichnen wollen. 
Andererseits ist das letzte Glied der Ungleichung gleich orb (H*, G/H*) (loc. cit.). 
Wir haben 

Satz 1. Seien H, H* Untergruppen von G und et bzw. e*, /=1 , . . . , r, die Viel-
fachheiten der irreduziblen K-Charaktere von G in nG/H bzw. nG/Ht. Ist (I) erfüllt, 
so gilt 

(II) orb {H, G/tf*)3=orb (H*, G/H*). 
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Ist insbesondere HQH*, so ist (I) äquivalent zur Aussage orb (H, GJH*) = 
=orb (H*, G/H*). 

Nur die zweite Behauptung des Satzes ist noch zu zeigen. Sie folgt aus der 
obigen Ungleichung für die inneren Produkte, wenn man e ^ e * , /=1, . . . , r , Und 
orb (H, G/H*)^orb (H*, G/H*) berücksichtigt. Ferner ergibt sich sofort 

K o r o l l a r 1. Sei 7tG/H multiplizitätenfrei über dem Körper K der Charakteristik 0. 
Dann sind (I) und (II) erfüllt für alle Untergruppen H* von G. 

K o r o l l a r 2. Seien endliche Gruppen. Folgende Aussagen sind zu 
(I) und (II) äquivalent: 

(III) Für jedes t£G ist H*tQHtH*. 
(IV) Für jedes t£G stimmen die Indizes [H:HC\H*'\ und [H*:H*OH*'] 

überein (H*' = tH* i"1). 

Beweis. Nach Satz 1 ist (I) genau dann erfüllt, wenn für jedes t£G die H*-
Bahn H*t (?=Restklasse von t in G/H*) gleich der //-Bahn Hl ist. Dies liefert 
die Äquivalenz von (I) und (III). Schreibt man die Längen dieser Bahnen als Gruppen-
indizes, so erkennt man die Äquivalenz von (I) und (IV). 

Die nachfolgenden Bedingungen an Gruppen H*, die den Punktstabilisator 
H einer multiplizitätenfreien Permutationsdarstellung enthalten, werden wegen ihrer 
Einfachheit und praktischen Bedeutung als Satz formuliert. Man gewinnt sie ohne 
Schwierigkeit aus den obigen Korollaren. 

Satz 2. Sei nG/„ multiplizitätenfrei über K und H*QG eine Gruppe, die FI 
enthält. 

1) Jede weitere solche Gruppe H**, H**^H, ist mit H* vertauschbar (d.h. 
die Menge H*H**=H**H* ist eine Gruppe). 

2) Jedes t£G mit H'QH* normalisiert die Gruppe H*. Insbesondere ist der 
Normalisator NG(H) in NG(H*) enthalten. 

3) Der Index (in H*) des Durchschnitts von H* mit einer dazu konjugierten 
Gruppe teilt \H\. 

Anwendungsbe isp ie le . Sei NG/H multiplizitätenfrei über K. 
1. Ist H— 1, so ist NG(H)=G. Nach Satz 2,2) ist jede Untergruppe H ein 

Normalteiler in G und mithin G eine abelsche oder hamiltonsche Gruppe (vgl. [3], 
S. 308). In der Tat ist NG/1 multiplizitätenfrei über jedem K für abelsches G. Für 
hamiltonsche Gruppen G und K=Q gilt: NG/I ist genau dann multiplizitätenfrei, 
wenn |G| nicht durch solche Primzahlen p ^ 3 teilbar ist, für die die Zahl 2 gerade 
Ordnung in der Primrestgruppe modulo p hat. Diese Tatsache erhält man aus dem 
Studium der Kreisteilungskörper, über denen die Standard-Quaternionenalgebra 
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ein Schiefkörper, oder, anders ausgedrückt, —1 nicht Summe zweier Quadrate 
ist (vgl. [2]). 

2. Sei H zyklisch von Primzahlordnung p. Operiert G treu auf G/H, so gibt 
es keine zyklische ^-Gruppe die H enthält. Sonst wäre nach Satz 2, 3) 
H*(]H*'^ 1 für alle t£G und damit H<gC\H*'. Da DH*' ein Normalteiler 
von G ist, würde dies auch für H als charakteristische Untergruppe dieser Gruppe 
gelten. 

3. Sei q=pk, p prim, F, der Körper mit q Elementen und G=PSL(2, q) die 
positive Gruppe der projektiven Geraden Fg U }. Sei H*=ASL(1, q) der Stabi-
lisator von oo in G. Wegen orb (//*, F4U {°°})=2 ist na/H* multiplizitätenfrei. Sei 
H=ASL(l,q') (QH*) mit q'\q. Für q'^q ist nGIH nicht multiplizitätenfrei. Da 
alle Bahnen von H auf F 4 \F 4- die Länge \H\ haben, hat man nämlich 
oib(H,G/H*)=2+(.q-q')l\H\>2=orb(H*,GIH*), im Widerspruch zu Satz 1. 
(Alternatives Argument: H* und H**=PSL(2,q') sind nicht vertauschbar.) 

K o r o l l a r 3. Die endliche Gruppe G besitze eine transitive Permutationsdarstel-
lung vom Grad n und vom Rang k (d. i. die Zahl der Bahnen eines Punktstabilisators). 
Ist HQG eine Untergruppe und KG/rl multiplizitätenfrei über K (Charakteristik 0), 

k 
so gilt 11= 2 da wobei d~0 oder ein Untergruppenindex von H ist. Insbesondere ist 

\H\ Sn/k. 
Beweis. Nach der Bahnenungleichung (II) ist k größer oder gleich der Anzahl 

der Bahnen von H auf der «-elementigen Menge, die der Darstellung vom Rang 
k zugrundeliegt. Deshalb läßt sich n in der angegebenen Weise schreiben. 

Grob gesprochen bedeutet Korollar 3, daß die Existenz von Permutations-
darstellungen niedrigen Ranges verhindert, daß Darstellungen mit einem Punkt-
stabilisator kleiner Ordnung multiplizitätenfrei sein können. Dies wird besonders 
deutlich im Beweis des folgendes Satzes. 

Satz 3. Sei p eine Primzahl. Ist jede primitive Permutationsdarstellung von 
PSL(2,p) multiplizitätenfrei über K (Charakteristik 0), so ist 

p(L{2, 3, 5, 7, 19,23,31,47, 59}. 

Beweis. Sei p s 1. Nach dem Hauptsatz von Dickson ([3], S. 213) enthält 
G=PSL(2,p) eine maximale Untergruppe H mit 

H ; 
As p = ± 1 mod 5 
Si p = ± \ mod8 
A t sonst. 

Sei 7tg/h multiplizitätenfrei. Da die gewöhnliche Permutationsdarstellung von G auf 
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FPU{°°} den Grad p +1 und den Rang 2 hat, ist (nach Korollar 3) \H\^(p + l)/2, 
also 1 2 0 im ersten, bzw. / > < 4 8 , / > < 2 4 im zweiten und dritten Fall. Diese 
Menge von Ausnahmeprimzahlen wird durch genauere Betrachtung der Unter-
gruppenindizes von H verkleinert zu { 2 , 3 , 5 , 7 , 11, 17 , 1 9 , 2 3 , 2 9 , 3 1 , 4 1 , 4 7 , 5 9 } . 

Für />1513 bzw. p^ 11 besitzt (7 auch noch Diedergruppen Dp_1 bzw. Dp+i als 
maximale Untergruppen. Von diesen hat Dp_x mehr als zwei Bahnen auf FP U 
sofern p = l mod 4, Dp+1 dagegen nie. Deshalb kann man die Zahlen 17, 29 und 
41 auch noch ausschließen. Die Zahl 11 fällt nach TODD [8] weg. 

Bemerkungen. 1. Auch das Toddsche Gegenbeispiel G=PSL(2,11), H=D12, 
läßt sich ohne Charakterrechnungen behandeln. Denn PSL(2,11) hat eine 2-fach 
transitive Darstellung vom Grad 11 ([3], S. 214). Wäre nG/H multiplizitätenfrei, 
müßte nach Korollar 4 die Zahl 11 Summe von höchstens zwei Teilern von 12 sein. 

2. Betrachtet man die der hier beschriebenen Methode zugrunde liegenden 
Tatsachen genauer, so gewinnt Satz3 sofort folgende Gestalt: Sei x der eindeutig 
bestimmte, absolut irreduzible Charakter der Dimension p, der im gewöhnlichen 
Permutationscharakter (vom Grad p +1) von G=PSL(2, p) auftritt. Genau dann 
ist die Vielfachheit von % in jedem primitiven Permutationscharakter von G kleiner 
oder gleich 1, wenn p = 11 oder eine der Ausnahmeprimzahlen des Satzes 3 ist. 
Zu den irreduziblen Charakteren von G vergleiche [4], S. 211 flf. 

3. Mit Hilfe der Charaktertheorie von G=PSL(2, p) kann man. im Satz3 
die Ausnahmeprimzahlen p ^ 19 ausschließen, zumindest für algebraisch abgeschlos-
senes K. Der Normalisator H eines Singer-Zyklus S von G ( |S| =(/? + l)/2) ist 
nämlich eine Diedergruppe der Ordnung p +1 ([3], S. 192) und maximal in G. 
Ferner gibt es einen zu S gehörigen "Ausnahmecharakter" % mit folgenden Eigen-
schaften (vgl. [4], S. 204 ff.): %0)=p-l, %(t)=2 für alle Involutionen t in 
G und x(j*)=—(e^-Fe-*), k=l, ...,(p-l)/2. Dabei ist S=(s) und e eine 
primitive (p+l)/2-te Einheitswurzel. Daraus ergibt sich (Frobenius-Reziprozität!) 

= 2. 

K o r o l l a r 4. Sei nGjH multiplizitätenfrei, h=\H\ und H* eine p-Untergruppe 
von G. Ist p>-h, so gilt 

[G-.NG(H*)]^h(p-l)/(p-h). 

Beweis. Sei n=[G:H*], j die Anzahl der #*-Fixpunkte in G/H* und / 
die Anzahl der /i*-Bahnen der Länge auf G/H*. Es ist j=[NG(H*):H*] und 
j+lp^n. Ferner ist nach (II) j+l=orb (H*, G/H*)^orb (H, G/H*)^n/h, sodaß 
wegen l^(n—j)/p gilt: j+(n—j)lp=n/h. Durch Umformung (beachte p>h) erhält 
man [G:NG(H*))=nlj^h(p-l)l(p-h). 

Bevor wir dieses Korollar anwenden, notieren wir die folgenden Hilfssätze, 
deren einfache Beweise weggelassen werden. 
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Hi l f s sa t z 1. Sei P eine p-Sylowgruppe der endlichen Gruppe G und 
N= p) NG(P)'. Dann ist Pf)N ein Normalteiler von G. Falls p\[G\N], ist N=G, 

«€G 
also P Normalteiler von G. 

Hi l f s sa t z 2. SeiltG/H multiplizitätenfrei über K, N Normalteiler von G, G=G/N 
und H=HNJN. Dann ist nCjE multiplizitätenfrei. 

Satz 4. Sei nG/H multiplizitätenfrei über K, h — \H\ und P eine p-Sylowgruppe 
von G. 

1) Ist p^4h/3, so gibt es einen Normalteiler P0 von G mit P0QP und 
[P-.P^p. 

2) Ist />s2A + l, so ist P abelscher Normalteiler von G. 

Beweis. Im Fall 2) ist nach Korollar4 n=[G:N0(P)]^p— 1, und deshalb 
nach dem Satz von Sylow n=1. Ferner ist jede Untergruppe H*QP normal 
in P, denn wegen [G:Na(H*)]^p~l enthält NG(H*) den Sylow-Normalteiler P. 
Da p§=3 ist P abelsch ([3], S. 308). 

Zum Beweis von 1) setzen wir P0—Pf]N, N wie im Hilfssatz 1. Die Gruppe 
G=G/N operiert treu und transitiv auf der Menge G/Na(P), die nach Korollar4 
und dem Sylowschen Satz entweder 1, p +1 oder 2p+1 Elemente hat. Es liege 
der letzte Fall vor, da nur dann |G| durch p2 teilbar sein kann. Wir fassen G als 
Untergruppe von iS2(,+1 auf. Wäre G=A2p+1 oder S2p+i, so hätte man wegen 
Hüfssatz2 und Korollar3 den Widerspruch +1)/2>/i. Ist G primitive 
Untergruppe von S2p+1, Gs^A2p+1, S2p+1, so teilt p den Index von G in iS2p+1 

([9], Th. 14.1). Ist G jedoch imprimitiv, so gilt sogar p\\G\. Jedenfalls hat man 
pz\\G\ und deshalb [P:P0]^p. 

Anwendungsbe i sp ie le . Sei nGfH multiplizitätenfrei, h = \H\. Sei Gp=P eine 
p-Sylowgruppe von G. 

1. / |=2. Für PMr5 ist GP abelscher Normalteiler von G. Sei N= f | NG(G3)' -
und G=GJN. Ist NT^G, so ist wegen [ G : J V G ( G 3 ) ] ^ 4 die Gruppe G ähnlich 
zu einer transitiven Untergruppe von . Nach Hilfssatz 1 teilt 3 die Anzahl von G. 
Somit ist G=Ai oder S4. Letzteren Fall kann man wegen Hilfssatz 2 ausschließen, 
da die Summe der Dimensionen der irreduziblen Charaktere von S t gleich 10 (< 12) 
ist. Unser Ergebnis lautet: Der Normalteiler N hat die Struktur N^(AXP)XAQ, 
wo A eine abelsche Gruppe, 2, 3{\A\, P eine 3-Gruppe, Q eine 2-Gruppe und 

das semidirekte Produkt bezeichnet. Es ist N=G oder G/N^AI. 

2. h=3. Ähnlich wie im Fall h=2 bleibt hier eine einzelne Primzahl >/t 
gesondert zu untersuchen, nämlich p=5. Sei N= f l Na(Gs)' und G=G/N, G = l . 

I€G 
Nach Korollar 4 und Hilfssatz 1 ist die Gruppe G ähnlich zu einer zweifach transiti-
Y$n Untergruppe von Se, d.h. , G=A6, S^, A9, S9. Da G aber höchstens s^phs 
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5-Sylowgruppen hat, scheiden S6 und A6 aus. Wäre Gs=A5 oder Ss, so ließe sich 
nach Hilfssatz 2 und Korollar 3 die Zahl 5 als Summe höchstens zweier Teiler von 
3 darstellen. Somit ist G = 1 und G hat nach dem Satz von Zassenhaus die Struktur 
Gs=(y4xG6)><iß, mit einer abelschen Gruppe A, 2, 3, 5f \A\, und einer {2,3}-
Gruppe Q. 

3. h=4. Durch ähnliche, wenn auch weitläufigere Überlegungen (etwa unter 
Zuhilfenahme der Tabellen in [7]) erhält man in diesem Fall: G hat einen Normal-
teiler N der Form N^(AXPXP')x*Q, mit abelschem A, 2, 3, 5,1\\A\, einer 
7-Gruppe P, einer 5-Gruppe P' und einer {2, 3}-Gruppe Q; ferner gilt entweder 
G—N oder G/NszAGL( 1,8) oder G/N ist isomorph zu einer Untergruppe von 
¿GL(1,16), |G/JV|=80. 

Diese Strukturanalyse liefert insbesondere 

Satz 5. Sei nG/H multiplizitätenfrei über dem Körper K der Charakteristik 0. 
Ist |/f|s4, so ist die Gruppe G auflösbar. 

Bemerkungen . 1. Satz 5 ist falsch für | # | = 5 , 6 , da die Permutations-
charaktere nAslH, #=((12345)), bzw. //=((123), (12) (45)), multiplizitätenfrei 
sind über jedem K. 

2. Gelte in der Situation des Anwendungsbeispiels 1 zu Satz4: 
H * ^ A l . Dann ist H* Normalteiler von G, da sonst A t eine Untergruppe vom 
Index 2 hätte (Satz 2, 3). Man schließt jetzt unschwer: G ^ N x A t mit nN/1 multipli-
zitätenfrei. Die Gruppe N muß sogar abelsch sein (dies ist darauf zurückzuführen, 
daß der Gruppenring von A t den 3. Einheitswurzelkörper enthält, über dem die 
Standard-Quaternionenalgebra sicher kein Schiefkörper ist; vgl. Bsp. 1 nach Satz 2). 
In der Tat sind alle Permutationsdarstellungen dieser Art multiplizitätenfrei. 

3. Im Beispiel 3 zu Satz 4 lassen sich die Fälle G/Ns=AGL( 1,8) bzw. |G/iV|=80 
nicht ausschließen. Ist etwa N= 1, so ist die Summe aller ^T-irreduziblen Charaktere 
(K beliebig von Charakteristik 0) in beiden Fällen ein multiplizitätenfreier Permuta-
tionscharakter der Form nGIH, \H\ =4. 

4. Viele Beispiele multiplizitätenfreier Permutationsdarstellungen mit kleinen 
Punktstabilisatoren liefert die folgende Tatsache: Ist A eine Gruppe, nA/1 multipli-
zitätenfrei, und G—AxiH, so ist TZG/H multiplizitätenfrei. 

Dank. Die Bemerkung 3 zu Satz 3, die Richtigstellung von Beispiel 3 zu Satz 4 
und einige kleinere Verbesserungen gehen auf Hinweise des Referenten zurück, dem 
ich dafür herzlich danke. 
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On additive functions taking values from a compact group 

Z. DAROCZY and I. RATA! 

1. Let G be a metrically compact Abelian topological group, T be the one-
dimensional torus. A function q>: N—G will be called additive if (p(mn)=q>(m) + 
+(p(n) holds for every coprime pairs m, n of natural numbers, while if <p (mn) ~ 
=<p(m) + (p(n) holds for each couple of m,n£N then we say that it is completely 
additive. Let sJG, be the class of additive, and the class of completely additive 
functions, respectively. 

Let {xv}~=i be an infinite sequence in G. We shall say that it is of property D, 
if for any convergent subsequence xv the shifted subsequence xY + 1 has a limit, too. 
We say that it is of property A if xv+1—xv—0 (v— 

Let S&G(D), be the set of those (p£sfa for which the sequence {x„=<p(n)} 
is a property D, A, respectively. The classes S / g ( A ) are defined as follows: 

It is obvious that ¿¿G(A)Qs/G(D), In [1] we proved that 
stf*(A)=sfG(D). Recently E . W I R S I N G [ 4 ] proved that cp£s/T(D) if and only if 

(1.1) (¡d(m) = t log n (mod 1) (n€N) 

for a T£R. By using Wirsing's theorem we proved in [2] the following assertion. 
If <p£sdG(A) (=sfG(Dj) then there exists a continuous homomorphism 

i/r: RX—G, RX denotes the multiplicative group of the positive reals, such that cp 
is a restriction of i¡/ on the set N, i.e. (p(n)=il/(n) for all n£N. The converse asser-
tion is obvious. If rj/: R*—G is a continuous homomorphism, then (p(n):= 

We should like to extend our results for the class sfa(D). This was done in [3] 
for G=T. Our aim in this paper is to characterize the class SFA(A) for a general 
metrically compact Abelian group G. 

Received January 15, 1986. 



60 Z. Daroczy and I. Katai 

Let NX, N0 be the set of the odd and the even natural numbers, respectively. 
For a <p£sfG let S(Nj) be the set of limit points of {<p(n) \ «€Ny} ( 7 = 1 , 0), and let 
S(N) be the set of limit points of {cp(n) | H£N}. 

Theorem 1. Let (p£sfG(D). Then ¿"(NJ is a compact subgroup of G, S(N0)= 
=y+iS(N1) with a suitable y£G. There exists a continuous homomorphism 1¡/: RX-*G 
such that (p{n)=\j/{n), /16 The function u(n):=(p(n)—\j/(n) is zero for 
and u(2)=u(2") ( a = l , 2,...). If u(2)£S(S1), then 2u(2)=0. 

Conversely, let \]/: RX—G be a continuous homomorphism. Let f}£G an ele-
ment for which f}£t{/(G) implies that 2)8=0. Let ue_stG be defined by the relation 

u(2") = 0 (a = 1, 2,...), u(n) = 0 for all n<EN,. 

Then (p—u+\j/: N—G belongs to s4G(A). 

2. To prove our theorem we need some auxiliary results that can be proved 
by a method that was used by E. WIRSING [4] and in our earlier papers [1], [2]. 

Lemma 1. If (pesfG and 

(2.1) (p(m + 2)-(p(m) - 0 (m ^0°, »¡eNj) 

then <p (nm)—cp (m)+(p (n) for each m,n£ NX. 

Proof . We need to prove only that 

(2.2) <P(P*)-<P(PX-1)-<P(P) = 0 (a = 1 , 2 , . . . ) 

for each odd prime p. From (2.1) we get that 

Em:= <p(p*m)-(p(p*m-2p) - 0, Fm:= cpip^m)-^"-1 m-2) - 0, 

as M€N X , Since for (m(m+2),2p) = l the relation 

Em = <p(px)-cp(p^1)-q>(p)+Fm 

holds, therefore (2.2) is true. 

Without any important modification of the proof of Wirsing's theorem one 
can get 

Lemma 2. If the conditions of Lemma 1 are satisfied, G=T, then (p(n)= 
=T log n (mod 1) for all «GNj, T€R. 
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Upon this result, in the same way as in [2] one can prove easily the next 

Lemma 3. Assume that the conditions of Lemma 1 hold. Then there exists a 
continuous homomorphism ¡¡J: R x - * G such that q>(n)=\f/(n) for each n£Nx. 

In the next section we shall prove that (p£j&g(A) implies (2.1). 
3. Let us assume that (p£jtfG(A). Let S denote the set of limit points of 

{<p(n)|«6N}, i.e. g£S if there exists n^n^...</!„£N, for which <p(nv)—g. 
Let (¡¡>(nv+l)—g'. In [1] we proved that g" is determined by g. So the cor-
respondence F: g—g' is a function. Furthermore, it is obvious that F(S)=S. 
Let p(n) and P(n) denote the smallest and the largest prime factor of n£N. 

Let k be an arbitrary integer, 

(3.1) R = 

be a sequence of natural numbers. We shall say that R belongs to 0>k if for every 
d£N, d divides Ry—k for every large v, i.e. if v>v0(R, d). Let be the 
set of those for which the limit lim cp(R„) exists. For an arbitrary sequence 
R let 

o(R) = lim q>(Rv) V-»co 

if the limit exists. Furthermore, if R is an infinite subsequence of natural numbers 
increasing monotonically and k is an integer then R+A: denotes the sequence of 
the positive elements of Rv + k written in increasing order. It is obvious that 
R+ k£0>k if and only if R€&>0. Furthermore, if l<k, then R + (k-l)e&>k. 
If l=~k, then RZ&i implies only that R-}-(k—l)€&k . In this case we can assert 
only that there exists a suitable subsequence of R+(k—l) that belongs to &k. 

Let 

(3.2) Kk:= { f l ( R ) | R ^ J . 

It is obvious that 

(3.3) 

for every integer k, and that 

(3.4) 

Let now gi£Kk, g £ K u where k£{l, - 1} . Then there exist 
such that a(R)=^i , a(S)=g2 . Since k£{\, —1}, therefore p(Rv)-+<*> •=). Let 
now the sequence QV=R} -Sv be defined as follows: ja=0, jv>jv-i such that 
p(RJv)>P(Sv). Then (RjJ, Sv) = l, and so (p(Qv)=(p(RJ)+<p(Sv)^gl+g2. But 

F[Kk] = Kk+1 

u KkQS. 
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Qv=kl (mod d) for every d£N whenever v>v0(d), so {ő v}€^w , i.e. gi+g2€Kkl 

So we proved 

L e m m a 4. For every integer I 

( 3 . 5 ) A I + A J 

( 3 . 6 ) K ^ + K T Q K ^ . 

(3.5) gives that K^+K^K^, i.e. that KT is a semigroup in G. It is clear that KT 

is closed. The closedness of KT implies that KX is a compact semigroup in G, and 
so by [5] (9.16) it must be a group. 

Lemma 5. Let k£N. Then 

(3.7) Kk = K-i + cp (k), K-k = K^+cpik). 

P r o o f . Let TeK k , a(R)=t. Let Sv:=RJv~k be a subsequence of 
R—k for which S£áV Then R. can be written as 

Jv 

RJv=k[Av +1], Sv = kAv. 

The sequence {Av}e^0, therefore +1, A;)=1 for every large v, so 
<p(Av+l) = <p(Rj )—(p(k), consequently 

So we proved that Kk—tp(k 
Let now so that a(R) = o. Then the sequence Sv=kRv belongs 

to &>k, (k,Rv) = 1 if v is large, Um q>(Sv)=(p(k)+lim (p(Rv)=(p(k) + QeKk. This 
implies that K1+(p(k)QKk. 

The proof of the second relation of (3.7) is the same, and so we omit it. 

L e m m a 6. If g£K_2, then 

(3.8) F[g] + F2[g] = Fi[g + F* [*]]. 

Proof . Let us start from the identity 7 I ( N + 3 ) + 2 = ( « + l ) ( « + 2 ) . If (n, 3 ) = 1 , 

then (n, « + 3 ) = 1 , furthermore (K + 1 , « + 2 ) = 1 for every K £ N . Let {Mv}€^_2 such 
that a({nv})=g£K_2. Then 3f?jv, consequently (p(nv(nv+3))=(p(nv)+(p(nv+3), 
(p((nv+l)(nv+2))=<p(nv+l) + <p(nv+2). Since q>(nv+k)^Fk[g] (k=0, 1,2, 3), we 
get (3.8) immediately. 

Since 0£KL, there exists R € # L , A ( R ) = 0 . Let Rjv~3 be a subsequence of 
Rv—3 for which the limit lim q>(R^-3)=ri exists. Since {RJy-3}v€#_2, there-
fore and F3[RI]=0. Let us apply (3.8) with. g=rj . Then we get F[TJ]= 0 . 

S i n c e . t h e r e f o r e F[R\]E.K-%, consequently 0EK_X. Furthermore, 0 = F 3 [ R / ] = 

—F2 [ F [ / / ] ] = F 2 [0] . So we proved 
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№ 1 к 

Lemma 7. We have 
(3.9) F2[0] = 0, 

(3.10) 

L e m m a 8. We have 

(3.11) К - г = К х . 

P roof . Put 1=1 in (3.6). We get К_Х+КХЯK_x . Since 0€AT_i, we deduce 
that KxQK^ . Let now / = - 1 . Then K ^ + K ^ Q K ^ Since 0 w e get 
that K ^ Q K , . Consequently (3.11) is true. 

Since F'2[Kl]=Kl+2 holds for every integer /, we get that K2n+1=K1 for 
every TJ€N. From (3.7) we get that cp(2n + l)£K1. Consequently S i ^ Q ^ . On 
the other hand, it is obvious that ^j^S^Nx). So we know that 

(3.12) 

Since F[Km]=Km+1, we get that Kx=K2n (n£N), i.e. that cp(2n)-(p(2)£K1 

for all 7i€N, and so <р{2а)-(р(2)£К1 (oc = l, 2,. . .) . So we get that 

^ U t o O + t f ! } if (p{2)iKx, 
if <P(2)€^. 

Lemma 9. The function F: S-»S is continuous. 

For the proof of this quite obvious assertion see [1]. 

Lemma 10. If gdKx, then 

(3.13) F [g ]= i r+F[0] . 

If h£K2, then 

(3.14) F2[A] = h+C, 

where 

(3.15) С = <p(4)-2cp(2)+F[ 0]. 

P roof . Let k£Nls M€#l , a(M)= -cp(k). Then (k, Mv)=1, and so (p(kMv)-~0, 
<p(kMv+k)^-Fk[0]=F[0]. Furthermore, (k, M v + l ) = l , therefore <p(kMy+k)= 
==0(k)+cp(Mv + i), cp(My + l)-+ F[—<p(k)]. This implies that 

(3.16) F[-</>(fc)]=-<KA:)+F[0]. 

, and so {—<p(£)|A:6N,} is everywhere dense in Kx, F is con-
tinuous on Kx, therefore (3.13) is true. 
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Let now h=(p(2)—(p(k), k and M as above. Then <p(Mv)-*—<p(k)=h. Since 
22|(2Mv+2), 23f(2Afv+2), we have 

(p(2Mv+2) = (p(4)—(p(2)+cp(Mv + l), 
and so that 

F*[h] = (p{4)—(p(2)+F[—(p(k)]. 

Since -q>(k)£Klt from (3.13) we get that F[—<p(k)] = —<p(k) + F[0], and so that 
F2[h]=h+C, h=(p(2)-(p{k) with the C defined in (3.15). 

Since {—(¡»WlfciNi} is everywhere dense in Klt therefore {q>(2)—^(/^I^GNJ 
is everywhere dense in K2, F2 being a continuous function, we get (3.14) immediately. 

For a sequence xn let Axn:-xn+1-xn, A2xn:=xn+2-xn. 

Lemma 11. We have 

(3.16) lim Acp(m) = F[0], 
M€N, 

(3.17) lim Aicp(m) = C, 
M€NA 

(3.18) lim A2<p(m) = 0. 
OI€N, 

Furthermore, C=0. 

Proof . Assume that (3.16) is not true. Then there exists a subsequence 2wu+1 
of positive integers such that <p(2n,+2)—<p (2ny + 1)—<5, <M F[0]. Then for a suitable 
subsequence 2tij + 1 there exists the limit lim <p(2rij +1 )=tx£Kl, and F[a ]=a+5 . 
This contradicts (3.13). 

The proof of (3.17) is the same and so we omit it. 
Since A2<p(2n-1)=A2<p(4n-2)+A2<p(4n), from (3.17) we get that 

(3.19) A2cp(2n-l) - 2 C . 

Observe that 

A(p(2n — 1)—A<p(2n—1) = A2<p(2n)—A2q>(2n — 1). 

From (3.16), (3.17), (3.19) we get that 0 = F [ 0 ] - F [ 0 ] = C - 2 C , and so that C=0. 
This proves (3.18). 

4. We have almost finished the proof. We know that A2cp(2n — 1)—0. The 
condition of Lemma 1 is satisfied. Then, by Lemma 3 there exists a continuous 
homomorphism >]/: RX-*G such that q>(n)=\p(n) for all « i N j . Let u(n):=<p(n) — 
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—ij/(n). Then u£si, u(n)=0 for all n^Nj. Since i¡/ is continuous, therefore 
\ l / ( n + k ) — 0 as for every fixed k. From (3.16) we get 
that u(2n+2)-F(0) as that is u(2)=u(2a)=F[0] (a = l , 2,.. .). 

If, in addition, then S = K l t and (3.13) can be applied twice. This 
gives F2[g] = F[F[g]]=:F[g+F[0]]=?+2F[()] , that by F2[0]=0 gives that 
2F[0]=0. 

By this the first assertion in our Theorem is proved. The converse is obvious. 
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Symmetrische Schrotungen im reellen dreidimensionalen 
projektiven Raum 

OTTO RÖSCHEL 

: - Herrn Prof. Dr. F. Hohenberg zum 80. Geburtstag 

1. Transformationsgleichungen. Im reellen dreidimensionalen projektiven Raum 
P3(R) weisen wir den Punkten homogene Koordinaten X q I X j : ^ : ^ ^ 0 : 0 : 0 : 0 zu, 
die wir zu Vektoren x=(xQ, xx, x2, x3f zusammenfassen. Dann werden durch 

(1) x = Rtt 'O)+Rf(i) (/ = 1, 2) 

mit n ' ( / ) = ( . . . e j ( 0 - ) . f ( 0 = ( - / ; ( { ) - ) , (7 -0 , 1,2,3) und / / ( O C C ^ / c R ) 
zwei erzeugendenweise aufeinander bezogene C1-Regelflächenstücke <f>j und <P2 des 
P3(R) beschrieben. Den Erzeugenden e'(t) können Plücker-Koordinaten 

(2) P)k := e ) f t - e i f } { i = 1, 2 ; j, fc = 0, 1, 2, 3) 
/ 

zugewiesen werden, die die Plückerbedingung 

(3) Q(e'(t), e'(tj) := pLpL+pkpk+pfapi» = 0 

erfüllen. Schneiden der Erzeugenden e1(t0) und e2(t0) (t0£l) ist durch 

(4) Q(eHtu), e*(ta)) := det (n^o) , PC/o), n2('o), PCo)) = 0 

gekennzeichnet (vgl. etwa [1]). Wir werden im folgenden stets 
(5) Q{ei(t),ei(i)) ^ 0 V i£ / 

verlangen und können dann dem erzeugendenweise aufeinander bezogenen Regel-
flächenpaar {«ij, einen symmetrischen projektiven Bewegungsvorgang zuordnen 
( H . PRADE beschäftigt sich in [ 1 3 ] ebenfalls mit projektiven Bewegungsvorgängen, 
die solch einem Regelflächenpaar zugeordnet werden können; er betrachtet die hier 
untersuchten Zwangläufe jedoch nicht): Je zwei zugeordnete Erzeugende el(t0) und 

Eingegangen am 29. Januar 1986. 

5» 
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e2(t0) (t0£I) sind nach (5) windschief und bestimmen daher eine eindeutige axiaie 
Spiegelung S(t0) mit den Fixpunktgeraden e'(t0) ( /=1,2) , die wir Spiegelungs-
achsen nennen wollen. Unterwerfen wir nun das Rastsystem Z' der stetigen Schar 
der durch e'(t) ( /=1,2) bestimmten axialen Spiegelungen S(t) (/£/), so entsteht 
eine stetige Folge von Bildern Z(t), die untereinander und auch zu Z' projektiv 
äquivalent sind; Z(t) stellt somit die Lagen des Gangsystems Z bei einem projek-
tiven Zwanglauf Z/Z' dar. Diesen Zwanglauf werden wir als projektive symmetri-
sche Schrotung mit den erzeugendenweise aufeinander bezogenen Grundregelflächen 

Der Punkt x wird bei der Spiegelung S(t) auf einem Strahl des durch el(t) 
und e 2 ( t ) bestimmten Netzes in den Punkt x'(t) transformiert (vgl. Abb. 1). Dieser 
Netzstrahl trifft e1^) und e*(t) in den Punkten a und b. Für a muß 

(6) a = u • tftf+v • f ( / ) = Ax+/m 2 ( i )+vf (0 (X * 0) 

(M, t7j A,/x, v £ R) gelten. Daraus gewinnen wir 

' _ A-det(3c,f ,n2 , f2) X• det(n1, x, n2, f2) 
. . det(nVT\n2 , f ) ' det (n1, f1, n2, f2) 

(dabei hänge» e', n'", f von t ab (/=1,2)), 

X • det (n1, f1, x, f2) X • det (n1, f1, n2, x) 
det (n1, f , n2, f2) ' det (n \ f \ rt2, f2) _ ' , 
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Damit haben wir zusammen mit (4) 

k 
(8) 

und analog 

(9) b = 

Q(e\ e2) 

X 

[n1 • det (x, f1, n2, f2) + f1 • det (n\ x, n\ f2)] 

[tt2• det(tt1, f , i , f 2 )+f-detCn 1 , f1, n2, x)]. Q(e\ e2) 

Auf dem durch x laufenden Netzstrahl 

(10) I = e - o + f f - b (q, <t€R) 

erhalten wir wegen (6) bis (9) für g=a—\ genau unseren Ausgangspunkt. Der 
Bildpunkt x' ist daher durch 

(11) - 1 = DV(a, b, i , x') = 

1 1 
0 1 • 

0 Q 
1 <7 

1 e 
0 A • 

0 1 
1 1 

Q_ 
a 

gekennzeichnet und wird demnach durch 

(12) x' = a ( a - b ) (a iE R - { 0 } beliebig) 

beschrieben. Nach Unterdrückung des nicht verschwindenden Proportionalitäts-
faktors oc(?.jQ(el, e2)) erhalten wir als Transformationsgleichung 

(13) x' = n1 • det (x, f1, n2, f 2 )+f 1 • det (n1, x, n2, f2) -

- tt2 • det (n1, f1, s, f2) - f2 • det (n1, f \ n2, s). 

Unter Verwendung der Plückerkoordinaten (2) gewinnen wir 

(14) det (i, f \ n2, f2) = + ( x j i - x J t y p l + { x 0 f i - x 3 f t ) p \ i + 

+ f i - fz)ph + (*3 /x1 - xJDpli+(*1 f i - fi)Pm • 

Analog können die anderen drei Determinanten in (13) berechnet werden. Wenn 
wir nun zusätzlich 

(15) Pim = phpli-pliph ( W , M = = 0,1 ,2 ,3) 

definieren, können die Transformationsgleichungen (13) in der Form 

(16) *'(*) = 

^0123 — /(>213 + -̂ 0312 

~2 P1213 P„ 
— 2/1223 
—2/1323 

angeschrieben werden. 

2/0203 
0123 + /0213 — -/0312 

2̂ 0223 
2/Q323 

2 /0103 
— 2/0113 

~~ -^0123 — / O 2 1 3 ~ / ( 1 
— 2/o313 

2 Po 
2 P„ 

0102 

0112 

0312 2/O212 

~ -̂ 0123 + ^0213 + PO 0311/ 
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Wir haben damit den 

Satz 1. Zu zwei erzeugendenweise aufeinander bezogenen Grundregelflächen 
<Pi={ei(t)\t£I<zR, el(t)r\e-(t) = { }} (i = l, 2) existiert ein eindeutig bestimmter sym-
metrischer projektiver Zwanglauf E/E', der durch (13) bzw. (16) beschrieben wird. 
Die Elemente der diesen Zwanglauf beschreibenden Transformationsmatrix sind bis 
auf einen Proportionalitätsfaktor quadratische Polynome der Plücker-Koordinaten der 
Grundregelflächenerzeugenden. 

Formel (16) umfaßt die Darstellung der symmetrischen Schrotungen in allen 
dreidimensionalen Cayley—Klein-Räumen: Man hat dabei zu beachten, daß in diesen 
Räumen i. a. bereits durch Auszeichnung einer Grundregelfläche <P1 = {e1(t)/t£lczR} 
ein solcher Zwanglauf eindeutig bestimmt ist, da den Erzeugenden e 1 ^) durch die 
Polarität an der Maßquadrik des Cayley—Klein-Raumes Erzeugende e-(t) zugeord-
net werden, die die zweite Grundregelfläche <f>2 erfüllen. So wurde Formel (16) 
für den euklidischen Raum von O. BOTTEMA und B . ROTH in [2, S. 319] und für den 
einfach isotropen Raum von M. HUSTY in [3] hergeleitet. 

2. Momentanbewegung. Wird Formel (16) kürzer durch x'(t)=A(t)x beschrie-
ben (det (^4(0)^0), so besitzt die infinitesimale Transformation T(tB) zum Zeit-
punkt f 0€/ die Darstellung 

( 1 7 ) 
dt 

dA = Ä{QA(t0)x' mit i ( i 0 ) : = — t-t0 dt 

Sie erzeugt eine einparametrige projektive Transformationsgruppe m(i0), die wir als 
Momentanbewegung des Zwanglaufs Z/Z' (16) zum Zeitpunkt /„ ansprechen. Um 
Aussagen über diese Momentanbewegung zu gewinnen, beachten wir, daß offen-
sichtlich 

(18) m(t0) =l imS(r o+*)°S(/ o ) + 0(/t2) 

gilt, und m(<„) damit vom differentialgeometrischen Verhalten erster Ordnimg der 
Erzeugenden e'(t0) auf den Grundregelflächen abhängt. Längs den Erzeugenden 
e'(t0) erfüllen die Flächentangenten der Grundregelfläche eine spezielle lineare 
Geradenkongruenz i ' ( 0 - Ist die Flächenerzeugende e'(t0) torsal, so besteht i'(i0) 
aus den Geraden der Tangentialebene von <£, längs e' (t0) und des Geraden bündeis 
durch den Gratpunkt (Kuspidalpunkt von e'(t0)), andernfalls aus den Geraden eines 
parabolischen Netzes mit der Brennlinie e'(t0) ([1, S. 73 und 78 f.]). Bezeichnet man 
in Analogie zur Terminologie in dreidimensionalen Cayley—Klein-Räumen jene 
Geraden, die sowohl f1(/0) als auch f2(/0) angehören, als Zentraltangenten (dieser 
Begriff der Zentraltangenten ist sehr viel weiter gefaßt als in der euklidischen Regel-
flächentheorie) der beiden Grundflächen, so gilt mit (18) der 
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Satz 2. Die beiden Grundregelflächen und <T>2 besitzen in zugeordneten Er-
zeugenden Zentraltangenten, die bei der Momentänbewegung deh zugeordneten sym-
metrischen projektiven Schrotung Fixgeraden sind. • 

(Vgl. das euklidische Ergebnis von J. KRAMI;S [4, S. 397]. Es ist zu bemerken, 
daß die in Satz 2 angesprochenen Fixgeraden nicht alle Fixgeraden der Momentan-
bewegung umfassen.) 

Es ist unmittelbar einsichtig, daß Fixpunkte von m(/0) (wir werden im folgenden 
die komplexe Erweiterung P3(C) des projektiven Raumes vornehmen) auf diesen 
Zentraltangenten liegen müssen. Zu den Spiegelungen 5(i0)-und S(t0+h) gehören 
jeweils invariante hyperbolische Geradennetze f(/0) und !(i0+/i) mit Brennlinien 
e'(t0) bzw. <?'(/„+/;), deren Schnittgeraden die Fixpunkte von S(t0+h)oS(t0) ent-
halten: Auf jeder dieser Schnittgeraden schneiden die Spiegelungsachsen e'(t„) und 
el(t0+h) Punktpaare einer Projektivität aus, deren Doppelpunkte beim Grenz-
übergang (18) zu den Fixpunkten der Momentanbewegung m(?0) werden, während 
die Schnittgeraden von l(i0) und i ( t 0+h) gegen die Zentraltangenten konvergieren. 

3. Flächenläufige symmetrische Schrotungen im P3(R). Bisher hatten wir zwischen 
den beiden Grundregelflächen <PX und <i>2 eine erzeugendenweise Kopplung voraus-
gesetzt. Läßt man zu, daß die Erzeugenden e1cz$1 und e2c <i>2 voneinander 
unabhängig sind, so stellt (16) die Transformationsgleichungen eines flächenläufigen 
symmetrischen Schrotvorganges im P3(R) dar. Diese flächenläufigen (zweiparametri-
gen) Bewegungsvorgänge sind geometrisch deshalb interessanter als die in Abschnitt 2 
studierten Zwangläufe, weil sie unabhängig von der (willkürlichen) Koppelung der 
Grundregelflächenerzeugenden sind. Für algebraische Grundregelflächen gilt .nach 
komplexer Erweiterung der . • , 

Satz 3. Sind die Grundregelflächen und <P., einer flächenläufigen symmetri-
schen Schrotung Z/Z' nichtzerfallende und verschiedene algebraische Flächen der 
Ordnung nl beziehungsweise n2, so ist die von einem allgemeinen Punkt des Gang-
raums Z bei Z/Z' überstrichene Bahnfläche algebraisch von der Ordnung n^. 

Beweis. Sei P ein allgemeiner Punkt (P(t<PL, <2>2), g eine allgemeine Test-
gerade, die die Schnittkurve von <P1 und <Z>2 nicht trifft. Wir zeigen, daß P bei Z/Z' 
im algebraischen Sinn genau n^m-mal nach g gelangt (vgl. Abb. 2): 

P und g spannen eine Ebene e auf, die <2\ und <P2 nach zwei' algebraischen 
Kurven k1 und k2 schneidet, die bei allgemeiner Lage von g nicht zerfallen und die 
Ordnungen n1 und n2 besitzen. P gelangt genau dann in einen Punkt P* auf g, wenn . 
[P, P*} kl und k2 in einem zu P, P* harmonischen Punktepaar trifft. Unterwirft 
man daher, etwa ky der ebenen projektiven Spiegelung an P und g, so schneiden sich: 

k2 und die Spiegelkurve k* im algebraischen Sinn in nxn2 Punkten X*, die-über 
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P*:=([/•,X*],g) genau nxn2 Lagen von P auf g liefern; die Bahnfläche besitzt 
somit die Ordnung 

Eine Reduktion der Bahnflächenordnung tritt damit genau dann auf, wenn P 
der Schnittkurve von und 4>2 angehört; die Ordnung wird dann Mi«2 — 1 und 
verringert sich jeweils weiter um 1, wenn sich <l>1 und <P2 in P berühren usw. 

Die Bahnflächenordnung aller allgemeinen Punkte wird sich nur dann reduzie-
ren, wenn und &2 zusammenfallen. Es gilt der 

Sa tz 4. Stimmen die beiden Grundregelflächen und <f>2 einer zweiparametri-
gen symmetrischen Fchrotung Z/Z' mit einer nichtzerfallenden algebraischen Fläche 
$ der Ordnung n überein, so ist die von einem allgemeinen Punkt des Gangraumes 
Z bei S/Z' überstrichene Bahnfläche algebraisch von der Ordnung n(n — \)/2. 

Beweis. Wie im Beweis zu Satz 3 suchen wir die Schnittpunkte der Bahnfläche 
eines allgemeinen Punktes mit einer allgemeinen Testgeraden g (vgl. Abb. 3): 

k und k* haben nun n(n—1) für uns interessante Schnittpunkte, weil die n 
Schnittpunkte von k und g nicht in Betracht kommen. Da die übrigen Schnitt-
punkte von k und k* bezüglich g und P symmetrisch liegen, kommt P bei Z/Z' 
im algebraischen Sinn genau n(n—1)/2 mal auf die Gerade g. 

In diesem Fall wird die Bahnflächenordnung für Punkte der Grundregelfläche 
zu n ( n - l ) / 2 - l . 

Flächenläufige symmetrische Schrotungen Z/Z' mit durchwegs ebenen Bahn-
flächen werden wir zweiparametrige symmetrische Darboux-Bewegungen des P3(R) 
nennen. Diese Definition erfolgt in Anlehnung an die Bezeichnung Darboux-Zwang-
läufe des euklidischen Raumes (alle Bahnkurven sind eben; vgl. [2, S. 304 f.]). Es 
gilt der folgende 
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Abbildung 3 

Satz 5. Die zweiparametrigen symmetrischen Darboux-Bewegungen des P3(R) 
besitzen als Grundregelflächen <Pt und <P2 entweder die Tangentenscharen zweier ebener 
Kurven in verschiedenen Ebenen des P3(R) oder es gilt: und <P2 erfüllen einen festen 
Regulus auf einer nichtzerfallenden Quadrik <f>. Im ersten Fall erfüllen die Bahnebenen 
das von den Trägerebenen von ^ und <P2 aufgespannte Ebenenbüschel, während im 
zweiten Fall alle allgemeinen Ebenen des P3(R) als Bahnebenen auftreten: 

Beweis. Die allgemeinen Bahnflächen sind bei flächenläufigen symmetrischen 
Schrotungen nach Satz3 und 4 genau dann Ebenen, wenn und <f2 entweder 
selbst Ebenen sind oder ein und denselben Regulus einer Quadrik $ durchlaufen. 
Im ersten Fall gehören alle Bahnebenen dem von <PX und <P2 aufgespannten Ebenen-
büschel an. Der zweite Fall ist nicht trivial: Wird der Regulus 4>f (i = l, 2) in der 
Normalform 

(19) P'oi = Pl23 = 0 . pi>2 = l P'os = P'l2 = P'l3 = ("')3 

mit i i 'C /cR beschrieben, so erhält der zugehörige flächenläufige symmetrische 
Schrotvorgang Z/Z' mit (16) die Gestalt 

(20) x = 

V + m2 - 2 0 0 
2mV -(M1-}-«2) 0 0 

0 0 Mx + M2 - 2 
0 0 2wV — (m1 + u2)) 

« 
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Man bestätigt unschwer, daß jeder nicht auf $ gelegene Punkt P des Gangraumes 
Z als Bahnfläche eine Ebene TT(P) durchläuft, wobei TI(P) genau die Polarebene 
von P bezüglich der Grundregelfläche 4> = <P1 = <P2 ist. Punkte P von <P werden auf 
der zweiten Erzeugendenschar von <P bewegt. 

Interessant ist, daß eine Gerade gczZ, die der Grundquadrik <i> nicht angehört, 
bei diesen zweiparametrigen symmetrischen Bewegungsvorgängen eine lineare Ge-
radenkongruenz © durchläuft, deren Leitgeraden von den Bahngeraden der Schnitt-
punkte von g und 0 gebildet werden. Damit treten je nach Lage von g,und $ hyper-
bolische, elliptische oder parabolische lineare Bahngeradenkongruenzen auf. 

4. Flächenläufige symmetrische Schrotungen mit einer reellen Fixebene. Wir wol-
len versuchen, die beiden Grundregelflächen und <P2 so zu bestimmen, daß die 
Bahnfläche aller Punkte der Ebene co (,vo=0) diese Ebene co selbst ist. Bei der axialen 
Spiegelung an den Erzeugenden e' der Grundregelflächen ( /=1,2) werden nur 
dann alle Punkte der Ebene co in dieser Ebene bleiben, wenn eine der beiden Spiege-
lungsachsen ganz in üi liegt; eine der beiden Grundregelflächen (o. B. d. A. <P2) muß 
daher in co enthalten sein. Besondere Beachtung verdient bei diesen Bewegungs-
vorgängen die Tatsache, daß offensichtlich eine Änderung der Regelfläche <P2 in 
co die entstehenden Bahnflächen der Punkte nicht ändert! Es existiert in diesem 
Fall sogar ein dreiparainetriger symmetrischer Schrotvorgang im P3(R), bei dem 
jeder Punkt auf einer festen Bahnfläche bleibt. Mit Satz 3 haben wir den 

Satz 6. ist eine der beiden Grundregelflächen (P1 einer symmetrischen Schrotung 
des projektiven Raumes P3(R) algebraisch von der Ordnung n, während die Schar der 
zweiten Spiegelungsachsen die Geraden einer festen reellen Ebene co erfüllt, so ent-
steht eine dreiparametrige symmetrische Schrotung, bei der alle Punkte auf algebrai-
schen Bahnflächen der Ordnung n gleiten. 

(Wird co als Fernebene eines im P3(R) eingebetteten affinen Raumes A3(R) 
gedeutet, so sind die hier erwähnten symmetrischen Schrotungen dreiparametrige 
affine Bewegungsvorgänge. In jedem dieser dreiparametrigen Bewegungsvorgänge 
kann durch Auszeichnung eines nullteiligen Kegelschnitts in co über die dann in co 
vorliegende Polarität ein eindeutiger euklidischer symmetrischer Zwanglauf im Kra-
mes'schen Sinne definiert werden. Umgekehrt kann so jede Krames'sche symmetri-
sche Schrotung des euklidischen Raumes in einen zwei- bzw. dreiparametrigen affinen 
symmetrischen Bewegungsvorgang eingebettet werden.) 

Diese symmetrischen Schrotungen werden wir affine symmetrische Schrotungen 
nennen. Bei affinen symmetrischen Schrotungen sind die Bahnflächen der Punkte 
P im Gegensatz zum allgemeinen Fall stets Regelflächen, deren Erzeugenden e(t) 
aus den Grundregelflächenerzeugenden e*(t) mittels einer perspektiven Raumkollinea-



Symmetrische Schrotungen 75 

tion mit Zentrum P und Fixpunktebene co hervorgehen; das charakteristische Dop-
pelverhältnis S hat dabei den Wert 1/2 (vgl. Abb. 4). Wir haben damit den 

Satz 7. Bei den dreiparametrigen affinen symmetrischen Schrotungen sind die 
Bahnflächen aller allgemeinen Punkte Regelflächen, die zu der nichtebenen Grund-
regelfläche <P± projektiv äquivalent sind. 

Die affinen symmetrischen Schrotungen lassen sich wie folgt kennzeichnen: 

Satz 8. Seien und <J>2 nL- undn2-parametrige Geradenscharen ( « i ^ l , «2 = 2), 
I/I" der darauf gegründete (nr + n.^-parametrige symmetrische projektive Bewegungs-
vorgang. Wenn dann alle Punkte des Gangraumes I beim ganzen Bewegungsvorgang 
III' auf Bahnflächen gleiten, ist I[I' notwendig eine affine symmetrische Schrotung. 

Beweis. Wir wählen in eine einparametrige Geradenschar e1(t) ( r f / c R ) 
aus, während die Schar der zweiten Spiegelungsachsen mindestens zweiparametrig 
ist (e~(u, v), u, v£l2c:R). Wir setzen voraus, daß nicht in einer Ebene gelegen 
ist und studieren eine feste Erzeugende e*(/0) ( / , ( / c R ) . Ein nicht auf e 1 ^ ) gelege-
ner allgemeiner Punkt P wird bei den axialen Spiegelungen (e1^), e2(u, v) \ /0=konst., 
U, D £ / 2 C R } nur dann nicht ein ganzes Gebiet der Ebene [P, e1(/u)]=£(/0) über-
streichen, wenn die Geradenkongruenz e-(u, v) in e(t0) eine Leitkurve besitzt. 
Wird nun e*(t) geändert, müßte e2(u, v) in jeder der Ebenen s(t) eine Leitkurve 
besitzen, was aber nur möglich ist, wenn die Kongruenz e2(u, v) einer Ebene 
angehört, 
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Convergence of Hermite—Fejér interpolation at zeros 
of generalized Jacobi polynomials 

PAUL NEVAI*) and PÉTER VÉRTESI 

1. Introduction 

The aim of this paper is to find necessary and sufficient conditions for uniform 
convergence of Hermite—Fejér interpolating processes based at the zeros of gen-
eralized Jacobi polynomials. As a by-product of our investigation we also give an 
answer to a question raised by P. T U R A N [35, Problem XXVII, p. 47] (cf. [36, Sec-
tions 2.3.1 and 3.6, pp. 337—338]). I f / i s a bounded function and w is a nonnegative 
integrable weight function on the real line, and xln(w)>x2n(w)>...>x„„(w) are 
the zeros of the orthonormal polynomials p„(w) corresponding to w, then the as-
sociated Hermite—Fejér interpolating polynomial H„(w,f) is defined to be the 
unique polynomial of degree at most 2n— 1 which satisfies 

H„{w, / , xkn(w)) = /(x t o(w)) and H'n(w, f , xkn(wj) = 0, k = 1, 2, . . . , n. 

Ever since the work of L. Fejér, G. Grünwald and G. Szegő there has been a 
great deal of research performed in conjunction with convergence properties of 
these polynomials in terms of the weight function w, the point system {xtn} and 
the function / . In particular, when {xtn(w(o,6))} are the zeros of the Jacobi poly-
nomials which are orthonormal with respect to the Jacobi weight w>(fl,fc) de-
fined by 

{ X ) - [ 0 for x<t( - l , l ) , 

*) This material is based upon research supported by the National Science Foundation under 
Grant No. DMS 84—19525, by the United States Information Agency under Senior Research 
Fulbright Grant No. 85—41612, by the Hungarian Ministry of Education, and by NATO (first 
author). The work was started while the second author visited the Ohio State University in 
1982/83 and it was completed during the first author's visit to Hungary in 1985. 

Received December 20, 1985. 
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— 1, — 1, one has a complete description of the conditions assuring uniform 
convergence of the corresponding Hermite—Fejér polynomials Hn(wiab),f). 
Namely, roughly speaking, for negative parameters a and b lim Hn(w^a,b^,f)=f 
uniformly for all continuous functions f , whereas for nonnegative a and b 
lim Hn(wia'b\f)=f takes place uniformly only under additional conditions on / . 
An accurate synthesis of the results we are interested in is given by the following five 
statements. 

P r o p o s i t i o n 1.1. Let ö=— 1, ¿>=— 1 and 0 < e < l . Then 

lim max \f(x)-H„№-b>,f,x)\=Q oo —e^x^e 

for every function f continuous in [—1, 1]. 

P r o p o s i t i o n 1.2. Let — 1 and —1<£<1. Then 

sup max \Hn{w^b\f x)| 
nSl 

for every function f bounded in [—1,1] if and only if — 1 

Propos i t i on 1.3. Let b> — 1 and — l < e < l . Then 

lim max \f(x)-Hn(w^b\fx)\ = 0 
n— CO 

for every function f continuous in [—1,1] if and only if — 1 <ö<0. 

The above three theorems are condensed from [4, Vol. II, pp. 9—48, 285—317, 
361—417, 502—512, 527—562, 767—801], [28, p. 138], [32, Theorem 14.6, pp. 340— 
344] and [33, Vol. 1, pp. 335—362]. 

By Markov's theorem on the derivatives of algebraic polynomials (cf. [16, 
§ VI. 6, p. 141]) if {Q„} (deg On=ri) is a uniformly convergent sequence of algebraic 
polynomials in an interval, then is 0(«2r) in the same interval for r= 1,2, 
In view of this observation the following result whose special case of Legendre 
zeros (a=b=0) was also treated by A. SCHÖNHAGE [27] and J. SZABADOS [29] is 
especially satisfying. 

P r o p o s i t i o n 1.4 [38, Theorem2.1, p. 84]. Let — 1 <e-= 1 and let f be con-
tinuousin [—1,1]. Let a£[s—I, s) for a fixed positive integer s, and let í>=—1. Then 

lim max \f(x)—H„(w<a'b\f,x)\ = 0 /I-*« e^x^l 
holds if and only if 

lim H a W b \ / , D = / ( 1 ) 
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and (if 1) 
lim n-»[Hp№-b>, f , x)]L=1 = 0 

for r= 1 ,2 , . . . , s— 1. 

The following result of J. Szabados is the culmination of research by several 
authors including L. FEJÉR [4, Vol. II, pp. 22 and 40], E . EGERVÁRI and P. TÚRÁN [3], 
A . SCHÖNHAGE [27] a n d G . FREUD [9]. 

P r o p o s i t i o n 1.5 [29, Theorems 1 and 3, pp. 470 and 457]. Let 6>—1 and 
— l < e < l . Let fbe continuous in [—1,1]. Then 

i 
lim Hn(w^»\f 1) = (1 + b)2-"-1 f /(f)w«»-6>(0dt, 

and 
lim max \f(x)-Hn(\^a'h\fx)\ = 0 n-»oo es i s l 

holds if and only if 

/(1) = (1 + b)2~b~1 ¡f(t)wV-bHt) dt. 
- l 

In what follows the function w is a generalized Jacobi weight if it can be re-
presented as 

w = where O^C 1 and g 'SLip l on [ - 1 , 1 ] 

for some a>- — l and — 1. Because of J. Korous'theorem yielding bounds for 
the corresponding generalized Jacobi polynomials p„(w) (cf. [32, Theorem 7.1.3, 
p. 162]) one expects a close relationship between Jacobi and generalized Jacobi 
polynomials, in particular, between associated approximation procedures. This is 
indeed the case as shown in the research conducted by V. M. Badkov, A. Máté, 
V. Totik and us (cf. [1], [2], [11]—[15], [18]—[22] and [24]). 

In [24] we dealt with characterizing weighted mean convergence properties of 
Hermite—Fejér interpolating sequences associated with generalized Jacobi poly-
nomials and we proved the following 

P r o p o s i t i o n 1.6 [24, Theorem 5, p. 55]. Let 0<p<°°, and let w be a gen-
eralized Jacobi weight. Let u be an unrelated Jacobi weight function. Then 

lim H„(w,f)=f in Lt(u) in [ - 1 , 1 ] 

for every function f continuous in [—1, 1] if and only if w~1£Lp(u) in the interval 
[ - 1 , 1 ] . 
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2. Main results 

As announced in [23], we can generalize and/or extend the previous six proposi-
tions as follows. 

- Theorem 2.1. Let w be a generalized Jacobi weight, and let 0 < e < 1. Then 

lim max \f(x)-Hn{w,f,x)\=0 n— co —e^x^e 

for every function f continuous in [—1,;1]. 

Theorem 2.2. Let w be a generalized Jacobi weight: Then for every fixed non-
negative integer m there exists a polynomial II such that R defined by R(x) = 
=(l-x)mn(x) satisfies 

l iminfn- 2 a |K( l ) - t f n (w, R, 1)| s 1. 
FL-»CO 

Theorem 2.3. Let iv be a generalized Jacobi weight, and let — l < e < 1. Then 

sup max \H„(w,f x)| «*> nmi 
for every function f bounded in [—1, 1] if and only if »'(1)^0. 

Theorem 2.4. Let w—gw(a'b^ be a'generalized Jacobi weight function, and let 
— l < e < l . Then 

lim max \f(x)-Hn{w,f,x)\ = 0 n-*co ET-X1 

for every function f continuous in [—1, 1] if and only if w(l) = °°. 

Theorem 2.5. Let w=gw<-a,b) be a generalized Jacobi weight function, and let 
— l-==e-= 1. Let f be continuous in [—1,1]. Let — 1, s) for a fixed positive 
integer s, and let ¿>=>-.— 1. Then 

lim max \f(x)-Hn(w,f,x)\ = 0 ISiSl 
holds if and only if 

lim Hn(w,f> 1) = / ( 1 ) 

and (if aslj 
lim n-*[H<;\w,fix))\x=1=0 

for r= 1, 2, ..., s— 1. 

Theorem 2.6. Let ,w—gw{0,b) be a generalized Jacobi weight function, and let 
— 1 . Let f be continuous in [—1,1]. Then 

l i m / / n ( w , / , l ) = ^ 
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Hence, 
lim max \f(x)—Hn(w,f x)| = 0 

holds if and only if 

/(1) = (2w(l))-* ff(t)d[w(t)(l + t)]. 

Needless to say that analogous results can be proved in the interval [—1, e] as 
well, and therefore one can formulate results that are concerned with convergence 
in the entire interval [—1, 1]. 

3. Notations 

As a rule of thumb, all positive constants whose value is irrelevant and which . 
are independent of the variables in consideration are denoted by "K". Each time 
"K" is used it may (or may not) take a different value. The symbol is used 
to indicate that if A and B are two expressions depending on some variables then 
A-oB^AB-^K and \A~1B\^K. We use N and R to denote the set of positive 
integers and real numbers, respectively. 

Given a weight function w, the leading coefficient of the corresponding ortho-
normal polynomial p„(w) is denoted by y„(iv). Kn(w) is the associated reproducing 
kernel function, that is 

(3-1) Kn{w,x,t) = "2 pn(w,x)pn(w,t). k=0 

In terms of the Christoffel—Darboux formula (cf. [32, Theorem 3.2.2, p. 43]), K„(w) 
can be expressed as 

(3.2) Kn{w, x, 1) = (y„-1(>v)/v„(M'))[/?n(H', x)pn^1(w, t)-p„^(w, x)pn(w, t)]/(x~t). 

The Christoffel function A„(u>) is defined by 

(3.3) ¿„(w, x) = x, x). 

The Cotes numbers kkn(w) in the Gauss—Jacobi quadrature formula are given by 

(3-4) Xkn(w) = Xkn(w, xin(w)). 

The fundamental polynomials of Lagrange interpolation / i n(w) associated with the 
zeros of/7„(iv) are defined by 

(3-5) 4n(w> x) = pn(w, x)/[p'n(w, xA„0v))(x-xk„(w))]. 

6 
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Another useful expression for fkn(w) is the following 

(3.6) tk„(w, x) = (y„-1{w)jyn(w))).kn(w)p„_ 1 (iv, xtB(vv))/7„(vv, x)j(x-xk„(w)) 

(cf. [32, formula (3.4.7), p. 48]). 
The usual way of expressing the Hermite—Fejér interpolating polynomial 

H„(w,f) is in terms of the fundamental polynomials ¿k„(w), and it is given by 

(3.7) .. Hn(w,f, x) = 2 f(xkn(w))vkn(w, x)if2
kn(w, x) 

t=i 

where vkn (w) is defined by 

(3.8) vk„ (w, x) = 1 -pi (u>, xkn (w)) [p'n (w, xkn (w))] - 1 (.v - xkn (iv)) 

(cf. [32, p. 330—331]). For special orthogonal polynomial systems due to available 
differential equations p"„(w, xkn(wj)[p'n(w, xfe„(vv))]_1 can be expressed explicitly in 
terms of the weight function and the zeros of the orthogonal polynomials, the above 
expression is convenient when investigating Hermite—Fejér interpolation. How-
ever, for general weight functions it is difficult (if not impossible) to handle the 
derivatives of orthogonal polynomials, and thus this formula is of limited value. 
On the other hand, G. Freud's formula 

(3.9) ' • _ ' . vkn(w, x) = 1+A'n(w, xk„(w))),kn(w)"1 (x-x k n(w)) 

(cf. [5, p. 113]) involves the Christoffel functions and their derivatives which are 
much more suitable when the weight function is not one of the classical ones (cf. 
[5, 8, 24]). If P is a polynomial of degree at most 2n—1 then in view of the Hermite 
interpolation formula (cf. [32, pp. 330—331]) we can write 

(3.10) P(x) = Hn(w, P, x)+^n(w, P\ x) 

where 

(3.11) X„(w,/, x) = 2 f(^nM)(x-xk„(w)yi(w, X). 
k=l 

4. Technicalities 

Here, in addition to formulating some useful and known properties of generalized 
Jacobi polynomials which run parallel to those of Jacobi polynomials, we will 
also prové a few propositions of technical nature that will subsequently be applied 
to demonstrate our principal results. In what follows w is a generalized Jacobi 
weight. . . . . • • 



Convergence of Hermite—Fejdr interpolation 83 

If * t ( I(w)=cos (0fe„(iv)) where x0„(iv)=l, .vb+1;„(m') = - 1 and O s B ^ w j ^ n then 

(4-1) 0k+i,n(w)-Okn(w)~lln . 

uniformly for O ^ k ^ n and M£N (cf. [18, Theorem 3, p. 367]). 
Using Korous' theorem (cf. [32, Theorem 7.1.3, p. 162]), similarly to Jacobi 

polynomials, the generalized Jacobi polynomials can be estimated in terms of the 
weight function as follows: 

(4.2) |Ai(m',X)|=§K 
[ i v W ( l - i ! ) " ! ] - " ! for x<E[-l + n-2 , l - n ~ 2 ] 
n ^ l w i l - n - 2 ) ] - 1 ' * for X 6 [ l - n - 2 , 1] 
n ^ i w i - l + n-2)]-1 '2 for x e [ - l , - l + n-2], 

uniformly for (cf. [32, Theorem 7.32.2, p. 169] or [1, p. 226]), 

(4.3) 
n|x-xm„(iv)|[w(x)(l-x2)3/2]-1 '2 for 2x€[— 1 +x„„(w), 1 +x ln(w)] 
n^ lwi l -n- 2 )}- 1 / 0 - for 2x£[l +x ln(iv), 2] 
ni/2[W(_ i + „-2)]-i/2 f o r 2x6[—2, - 1 +x„„(w)], 

li>„("', x) | • 

uniformly for «€N where m is the index of the zero xk„(w) which is (one of the) 
closest to x (cf. [19, Theorem 9.33, p. 171]), and 

(4.4) !/>„-,(.V, Xtn(iv))|~M'(x^„(vv))~1/'2(1 - x , „ ( w ) ^ 

uniformly for l ^ k ^ n and N (cf. [19, Theorem9.31, p. 170]). 
The derivatives of generalized Jacobi polynomials at ± 1 satisfy 

(4.5) If/^H«-, :h 1)F'I Kr^\p~l(w, ± 1)| 

uniformly for H€N (cf. [20, formula (23), p. 674]). Writing P ^ M p ' ^ i p ' 1 ) , and 
using (4.5) and the product differentiation rule (Leibnitz's formula) we obtain 

(4.6) |[p-%w, ± 1)]W| ^Kni(\p--(w, ±1) | 

uniformly for N. 
For the Christoffel functions and Cotes numbers we have the following esti-

mates 
* 7i—*w(x)(l —X2)1^2 for x e t - l + n"3, l-tl~2] 
?? - 2 w(i -» - 2 ) for x 6 [ l - « - 2 , 1] 
n-2w(-l + n~2) for x€[— 1, — 1 + « - 2 ] , 

(4.7) ?Jw, x)-

uniformly for «6N (cf. [17, p. 336]) and 

(4.8) ^ ( " ^ « - ' « ' ( - ^ ( ^ ( l - x ^ w ) 2 ) ^ 

uniformly for l s / c s « and n€N (this follows immediately from estimates (4.1) 

6» 
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and (4.7). (tf. 3.4)). The'derivatives of. the Christoffel functions satisfy 

n - M x X l - x 2 ) - 1 / 2 for х£[-1 + п~2, 1 - й " 2 ] 
(4.9) \K(w,x)\ S i w ( l - « " 2 ) for x € [ l - n " 2 , 1] 

|4V (— 1- -f- n ~2) for JC€[ — 1 , - l + n~2], 

uniformly for (cf. [24, formula (23), p. 36]) and 

(4.10) rn(w, xkn(w)) m Kn-iw(xkn(wj)(l-xkB(w)2)-^ 

uniformly" for~l щ к ^ п and n£N (cf. [24, formula (24), p. 36]). 
A weight function w is said to belong to Szego's class (w£5) if it is supported 

in [—1,1] and log w(cos in [0, я]. For instance^ all generalized Jacobi 
weights are in Szego's class. According to the Szego Theory (cf. [32, Theorem 12.7.1, 
p. 309]) the leading coefficients y„(vv) of the orthogonal polynomials p„(w) satisfy 

(4.11) 0 < lim 2~"yn{w) = я - 1 / 2 exp | (2я ) - 1 f log w(cos &)dd} <» 
" " " о 

whenever w£S. 
The following proposition is a simple but unexpected generalization of (4.2) 

and (4.4). 

Lemma 4.1. Let w(a'b) and w2=g2w<-a,b) be two (not necessarily dif-
ferent) generalized Jacobi weights corresponding to the same parameters a>- — 1 
and — 1. Then for every fixed integer / we have 

(4.12) ' | / w K > 0 v 2 ) ) | S Kw{xkn(w2))-W{l-xk„(w2)2)^ 

uniformly for l^k^n and n£N. 

: P roof . By Korous' theorem (cf. [32, Theorem 7.1.3, p. 162]) we have 

\P«+t(Wl> *)l ^ K[\Pn+ir(w2, *)l + \Рп+(-ЛЩ, *)|] 
for x£[—1, 1]. Being orthogonal polynomials, the generalized Jacobi polynomials 
satisfy the three-term recurrence 

xpn(w, x) = an+1(w)pn+1(w, x) + b„(w)p„(w, x)+an(w)pn_l{w, x), 

and since w>0 almost everywhere in [—1,1], we have lim a„(w) = l/2 and 
lim b„(w)=0 (cf. [25], [26], [12, p. 68]," [22, Sections 4.5 and 4.13] and (4.11)). Hence 
by repeated application of the recurrence formula we obtain 

Ipn+j(w2> ^ K[\pn^(w2, x)| + b„(w2, x)|], 1], 

for all fixed j. Now inequality (4Л 2)'follows from (4.4) applied with w=w2. 
;:. The; next step is to conipare Christoffel functions of generalized Jacobi weights. 
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Lemma 4.2. Let wi=giw^c,b) and u>2=g2wia,6). be two generalized Jâcobi 
weights corresponding to the same parameters a> —1 arid b>~—l. Then , 

(4.13) (A-ft„ (m'j)) Afc„ (>v,) ~ 1 — ( » v j ) Àk„ (w2) - ' | s ' / . 

holds uniformly for 1 Sk^n and w£N. 

P r o o f . Let wx=gw2. Then the identity 

g(x)À~1(w1, x)-À~1(w2, x) = f K„(wx, x, t)K„(w2, x, t) te(x)-g(i)j w2(t) dt 
R 

is a straightforward consequence of orthogonality relations. Since we have g'£ Lip 1, 
we can write g(x)—g(t)=g'(x)(x—t)A-0(}x—tf). Hence the previous formula 
becomes .. -

(4.14) g(x)k~\ wi,x)-k-\w2,x) = 

= g'(x) ¡Kn (W, , x, t)Kn (w2, x, i) (x - 0 w2 (t) dt + 
R 

+ 0 ( 1 ) f lK^Wx, x, t)Kn(w2, X, 01 (x~tfw2(i) dt. 
R 

In view of (3.2) the first integral here can explicitly be evaluated in terms of . the 
orthogonal polynomials involved and their leading coefficients.-We have 

(4.15) : 

fKn(Wlt X, t)K„(w2, X, t)(x-t)w2(t) dt = (yn-iiwJlySwàypn-xÇwx, x)pn(w2, x). 
R 

Using Schwarz's inequality, wa=Kwlt (3.2) and again orthogonality relations, we 
can estimate the second integral as follows : 

(4.16) [ / \Kn(Wl, x, t)K„(w2, x, i)| (x-tTw2(t) dtf ^ 
R 

- ^ K J Kl(wx, x, t)(x— t)2w1(t) dt ¡K;(w2,x,f)(x-tfw2(t)dt = 

R R 

= K[yn- i(vVi)/yB(Wi).]2[/>^ 1(^1, x) +pl{Wl, *)]X 

X^-iOvaVy^w,)]2!^.^^, x)+pl(w2,.*)]. 
Since generalized Jacobi weights vv are in Szegô's .class, we can use (4.11) to estimate 
the ratios of the leading coefficients of generalized Jacobi polynomials. Using this 
observation and inserting (4.15) and (4.16) into (4.14), we obtain 

ë £[!/>„_!(»!>!, ^l + LPnOvj, x)\]{\p„^(w2, x)| + |/?„(tv2,.\:)|]. 
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Applying this inequality with x=xfc„(H>1) (cf. (3.4)) and using Lemma 1 (cf. (4.12)), 
Lemma 4.2 follows immediately. 

Our next goal is to estimate v^w, x) (cf. (3.7)—(3.9)) via improving (4.10) 
regarding the derivatives of the Christoffel functions. For Jacobi polynomials 
we have 

(4.17) vb,№-h\x) = l-{l-xiri[a-b+(a+b+2)xk„}(x-xkn) 

(*fcn=*fa.(yo'i,))) (cf. [32, formula (14.5.2), p. 339]). In what follows we will show 
that the right-hand side of (4.17) is the principal contribution to vk„(w, x) as well. 

Lemma 4.3. Let w=gw(a'b) be a generalized Jacobi weight. Then 

(4.18) №(w, xtB(w))).kn(w)~> + [1 (m;)']"1^ - b+(a + b+2)x,„(vv)]| s K 

uniformly for and n(L N. 

P r o o f The crux of the matter is the inequality 

\g(x)K'n(w, x, x)-K;M°'h), x, x)| S 

si K[ \p n ^(w^" \ x)| + | A , - i ( u ^ , x)\ + \ p n W b > , ,v)|]x 

X t l / C i O v ^ , x)| +!/>;(»<"•»), x)\] ( x £ [ - l , 1]), 

N, which is a special case of a general inequality proved in [24, Lemma 1, p. 31]. 
Setting here x=xkn(w) we can apply Lemma 4.1 to estimate pn+i(w(a'b\ xkn(»')). 
Moreover, since 

p№'b\ x) = constpn-1(w<-a+1-bf1\ x) 

where the constant is of precise order n (cf. [32, formula (4.21.7), p. 63]), we can use 
(4.1) and (4.2) to estimate p'n+i(w(a-b\ xkn{w)). We obtain 

(4.19) ¡g(^(n>))tf„'(w, xkn(w), xkn(w))-K(w("-b\ xkn(w), xt„(w))| s 

^Knw-*(xkn(w))(l~xkn(wy)-w 

for 1 ^ k ^ n and Now the point is that Kil(w(a,b\ xk„(w), xk„(w)) can be 
evaluated. By (3.2) 

K(w) = (y„ _ 1 (w)/y„ (w)) \p'n (w) p„_l (w) — P„ (w) pii_ , (vv)], 

and since the Jacobi polynomials satisfy the differential equation 

(l-xz)Y" = -n(n+a+b+l)Y+[a-b+(a+b + 2)x]Y' 

(cf. [32, Theorem 4.2.1, p. 60]) we obtain 

K{w(a'b\ X, x) = (1 -x2)-1{[a-b+(a+b+2)x]K„(wi°-b\ x, x)~ 

-{yn-ii^mw("-b)))(2n+a+.b)pn_l(w^b\ x)pn(w^b\ x)} 
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(which, as a matter of fact, immediately yields formula (4.1-7)). We have. 
y , , - i ( w U M )hn( w ( a ' h > ) 1 /2, (cf. (4.11))., Therefore, substituting x=xkn(w) here 
and applying Lemma 4.1, we get 

(4.20) \Ki(vf*b\ xkn(w), :v tn(w))-tl-x fcH(iv)2]-iX 

X[a-b+(a + b+2)xin(w)]KMa-"\ xkn(w), xto(w))| ^ 

- Knw{xkn{w))~1[\ —^i„(w)2]-1/2 ... .;: 

for l ^ k ^ n and Inequalities (4.19) and (4.20) enable us to conclude 

\g{xkn{w))K'n(w, Xkn(w), *ta(w))-[-l-xUwfnx 

X[a-b+(a + b+2)xkn(w)]Kn(w^b\ xkn(w), xkn(w))\^ 

^Knw~i(xkn(w))(i-Xkn(wy)-v* ; • 

for \S:kSn and ngN. Now we apply Lemma 4.2 with weights vvx=w and 
w2 = \v(a-b). We obtain - S 

^„'(^^„(wX^iw))-!!-^^)2]-^ . 
X[a-b+(a+b+2)xkn(w)]Kn(w,xkn(w),xkn{w))\^r , ,, 

•2 KmV-%xkn(w))(\-xkn(Wy)-v* 

for l^k-^in and «6N. Since K„=A ~1 so that K'JKn=—k'JXn, and since the 
right-hand side here is precisely of order kkn (w)-1 (cf. (4:8)), the'latter inequality 
is equivalent to (4.18) what we had to prove. 

Freud's formula (3.9) and Lemma 4.3 immediately yield 

Lemma 4.4. Let w=gw(a,b^ be a generalized Jacobi weight. Then 

K ( w , x ) - l - [ l - ^ n ( w ) 2 ] - 1 [ a - 6 + ( a + f c + 2 ) x ) i n ( w ) ] ( x - x t n ( i v ) ) | ^ ' 

uniformly for JCG[— 1, 1] , l^k^n and n£ N . 

The following three purely technical lemmas deal with Lebesgue function type 
estimates. 

Lemma 4.5. Let w=gw(a,b) be a generalized Jacobi weight, and let cgR. Then 
the asymptotics 

(4.21) 2 [1 -xM]-c[x-xkn(wWfin(w, x)> 
k=1 

-pliw, x) 
n-1 for a—c+2 >0, 
/i"1 log n for a—c+2 = 0, 
„2(c-<.-5/2) jo r a _ c + 2 o, 
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h o l d s u n i f o r m l y f o r ri6N a n d xER. I n a d d i t i o n , a n a l o g o u s e s t i m a t e s h o l d w h e n 

[1 —xfc„(n>)]~c
 i s r e p l a c e d b y [1 +x t n ( i f ) ] _ c

 i n t h e l e f t - h a n d s i d e o f (4.21). 

P r o o f . By (3.6) we have 

[ 1 - x k n ( w ) ] - c [ x - x k n ( w ) ] 2 f l , ( w , x ) p ~ 2 w , x ) = 

= ( y n - i ( » v ) / y „ ( H ' ) ) 2 [ l - x M V ' k ^ w f p l . A w , x k n ( w ) ) -

Since lim [y„_1(w)/v„(iv)] = l/2 (cf. (4.11)), we can use (4.4) and (4.8) to obtain 

~ n - \ l - x k n { w ) ] - < + ° W [ \ + x k n ( w ) \ b + * l 2 

for ;I€N , and then ( 4 . 2 1 ) follows from ( 4 . 1 ) via routine estimates. 

L e m m a 4.6. L e t w = g w { a , b ) b e a g e n e r a l i z e d J a c o b i w e i g h t f u n c t i o n , a n d l e t 

0«=e< 1. T h e n 

' • n 
(4.22) sup max 2 H - x k n ( w ) } - c \ v k n ( w , x ) \ f t n ( w , x ) • , . 

n s l 

for c^a+3/2 and 

(4.23) lim max 2 [1 - x k n ( w ) ] - < \ x - x k n ( w ) \ r k n ( w , x ) = 0 

for c<f l+5/2. 

P roo f . First let c=0 . For c = 0 formula (4.23) was proved in [24, Lemma 4, 
(36), p. 40]. The proof of (4.22) with c = 0 is based on 

n 
(4.24) sup max 2^ ln (w, x) <«= 

nsl 

which was verified in [24, Lemma 4, (35), p. 40]. We write 

(4.25) 
n 

2 \ v k n ( w , ( w , x ) = 2 \ V k n ( w , x ) \ t l „ ( w , x ) + . 2 • K O ^ x ) \ < ? l n ( w , x ) . 
k=l 2 | x , J c l + c 2 ] x f c n | £ l + £ 

By Freud's formula (3.9) and by Lemma 4.3 (cf. (4.18)), | v k n ( w , x)j ^ K for 2 | x J < 
< 1 +e and - e S x S e . Hence (4.24) can be used to estimate the first sum on the 
right-hand side of (4.25). For 2 | x t n | ^ l + e and - c S x S i we can apply again 
(3.9) and (4.18) to obtain \ v k n ( w , x ) \ - x k n ( w ) 2 ] - \ Now, in view of (4.4) and 
(4.8), t-kn(w)pl-i{w> ^tnO^Hl— •Xikn(M')2]-1~«~1- Therefore, the Gauss—Jacobi 
quadrature formula (cf. [32, Theorem 3.4.1, p. 47]), (3.6) and (4.11) yield 

2 k „ ( w , x ) \ a , ( w , x ) , s K n ~ 1 p „ ( w , x ) 2 == 

S K n - y n ( w , X ) 2 . . = . K n - i p l i w , x ) f w 

H 
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for —eSJC-Se and m£N. By (4.3) the generalized Jacobi polynomials are uniformly 
bounded for —s^x^e . Therefore, the second sum on the right-hand side of ( 4 . 2 5 ) 

converges to 0 as N—°° uniformly for - S S X S E . Consequently ( 4 . 2 2 ) and ( 4 . 2 3 ) 

hold for c = 0 which naturally implies their validity for all c < 0 as well. The ex-
tension of ( 4 . 2 2 ) and ( 4 . 2 3 ) to all permissable values of c is done via Lemma 4 . 5 as 
follows. We write 

i[i--xkn(W)]-c\vkn(W,xMn(w,x)= 2 [i-xM]~c\vkn(w,x)\nn(w,x) + 

To prove (4.22), we can estimate the first sum on the right-hand side here by (4.22) 
applied with c—0, whereas for the second sum Lemma 4.5 can be used in the fol-
lowing way. First, we can assume that c > a + l . Second, we do not need to con-
cern ourselves with pl(w, x) since by (4.2) it is uniformly bounded in the interval 
[—e, s]. Thirdly, we note as before that \vkn(w, — ̂ „(w)2] - 1 (cf. (3.9) and 
(4.18)). Thus applying (4.21) with c+1 instead of c, inequality (4.22) follows. 
Formula (4.23) can be proved in a similar way from (4.21) applied with c and then 
from (4.23) applied with c=0. 

Lemma 4.7. Let w=gwi"'i) be a generalized Jacobi weight function, and let 
— I <£< 1. Then for every nonnegative c we have 

(4.26) sup max (1 -xf 2 [1 ~xkn(w)]-^ln(w, x) 

if c—5/2<a<c, 

(4.27) sup max (1 - x f 2 [1 - x M ^ - ^ x - x M ^ U w , x) 
NSL "S.XS1 K = 1 

if c—3/2^a<c, and 

(4.28) lim max (1 -x)c 2 [1 ~xkn(w)]~c\x-xkn(w)\fin(w, x) = 0 
n-*<x> c^x::• 1 ^- | 

if c — 5 /2<a<c . 

Proof . Unfortunately, we were unable to find a nontechnical proof, not even 
one with partially soft features. On the other hand, the computation yielding (4.26)— 
(4.28) is totally routine, and thus we can (and must) save the reader from the details. 
Instead, we provide a few hints and instructions as to the nature of the computa-
tions. Thus, let c s O satisfy the appropriate conditions. First, by Lemma 4.6 we 
can assume £=1/2. Second, in view of Lemma 4,5 and inequality (4.2), one needs 
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to consider only those values of k in (4.26)—(4.28) for which xkn (if) is positive! 
Third, since 

/L(W, X) rs Xmn(w) 2 x)Xkn{w)-^ = X^X-Hw, X) 
k =1 

(cf. (3.3) and [7, formula (1.4.7), p. 25]), we have by (4.1), (4.7) and (4.8) 

sup max (1 -x)c[l-xmn(w)]~cf2
mn(w, x) 

„2:1 HSXSI 

sup max ( l - x ) c [ l - . ^„ (w)] - e - 1 |x -xm„(w)\r;nn(w, x) <«> nsl eaxsl 
and 

lim max (1 - x ) c [ l -xmn(iv)]~c\x-xmn(w)\£2
mn(w, x) = 0 

rt-»oo F. A - I 

for all nonnegative c. Here (and in what follows) m is the index of one of the zeros 
xiu,(w) which are closest to x. Hence it is sufficient to estimate the sums in (4.26)— 
(4.28) for which xS l / 2 , xkn(w)>0 and k^m. For such values of x and x tn(w) 
we can use (4.1) to verify (1 —x)^K(m/n)2, (1 —xkn(w))~(k/n)2 and |x—x t„(w)|~ 
~|m2—k2\rt~2. Moreover, in view of expression (3.6) for the fundamental poly-
nomials £kn{w), we also need inequalities for yn-1(w)/y„(w), Xk„(w), \pn^(w, xtn(vv))| 
and \p„{w,x)\. The required estimates are given by formulas (4.11), (4.8), (4.4) 
and (4.2), respectively (cf. (4.1) as well). Putting all the pieces together, the proof of 
the lemma is reduced to showing 

(4.29) sup max /n- 2 a + 2 c - 1 y fc2o-2c+3|/M2-A:2|-2 <oo 
„gllSm==n k = 1 

k^m 
if c—5/2<a<c, 

(4.30) sup max 2 kia-2c+1\mi-k2\-1 <=° 
nsl ISmmn t = 1 k^m 

if c-3/2ga<c, and 

(4.31) lim max y fc2a-2c+3|m2-fc2|-1 = 0 
n-*oo 1 m n k:l 

k^m 
if c—5/2<a<c. Estimating sums such as the ones in (4.29)—(4.31) is a routine 
exercise, and it is easily accomplished via splitting up the range of the index k into 
four subsets given by the inequalities l^k^[m/2] , [m/2]</c<w, m<Jfc<2w and 
2 m s i s « . Or, as an alternative, one can apply [19, Lemma 6.3, p. 109] from which 
(4.29)—(4.31) follow immediately. 



Convergence of Herraite—Fejér interpolation 91 

5. Underlying ideas (Part I) 

Even though a significant portion of results concerning Hermite—Fejér inter-
polation is proved via hard analysis, such an approach is not always capable of 
producing the right result. For instance, if one tries to prove the uniform boundedness 
of the Hermite—Fejér interpolating polynomials associated with the zeros of Legendre 
polynomials in [—1,1] by splitting up the interpolating polynomials and by at-
tempting to prove the uniform boundedness of 2 \x~xkn\(l—xkn)~1^kn(x) a r |d 
2 tkn(x) which comes to one's mind when examining (3.7) and (4.17) with a=b—0, 
then, one is. destined to fail since the maximums of the latter two expressions are 
of precise order log n, and thus they are unbounded. In other words, Proposition 1.2 
with a=b=0 holds for more delicate reasons. These reasons are of the soft variety 
related to the positivity of the operator sequence {.ff„(w(0'0))}. Since for generalized 
Jacobi weights of the form w=gw^0,b) both sequences 

2 |.v-A-tn(w)|(l ~xkn(wy)-^l(w, X) 

and 2 ¿Li», x ) a r e a ' s o unbounded on [a, 1], one is forced again into finding a 
more sensible and sensitive approach to estimating {Hn(w,f)}. This is the subject 
of this section, and we will accomplish it via soft analysis which is based on some 
quasi-positivity properties of the former sequence. 

Theorem 5.1. Let w=gw(0 '6) be a generalized Jacobi weight function, and let 
- 1 < 2 < 1 . Then 

sup max | H n ( w , f , x)| < « 
nslC3X31 

for every function f bounded in [—1,1]. 

Proof . According to (3.7) we have to prove 

n 
(5.1) sup max 2 Kn(w, x)|¿2

kn(w, x) 
netesxslk=1 

Step 1. Here we will show quasi-positivity of vkn(w) in some sense which helps 
to reduce the Lebesgue function in (5.1) to an expression which can be subjected to 
rougher handling without ruining its essential behavior. Our main tool is Lemma 4.4 
applied with a = 0 according to which 

(5.2)' vkn(w, 1) s (1 + b)(l-xkn(w))( 1 +xkn(w))-*-K{l-xkn(w)). 

Hence there exists d£[—1,e) such that vk„(w, l ) S l for — 1 <xkn(u>)^d. But 
vkn(w) is a linear function which takes the value 1 at xkn(w). Consequently, 

(5.3) ^„(w, x) s 1 for - 1 < xif„(w) s 4 and x€[s, 1]. 
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If d<xkn(w)< 1 then by (5.2) 

vkn(w, l)^-K{l-xkn(w)), 

and by (3.9), (4.8) and (4.10) we have \v'kn(w, x)\^K{\ - ^ ( w ) ) " 1 . Therefore 
we obtain 

Vkn(YV, x) s -K{ 1 -xt„(tv))-

(5.4) - ^ ( l - j c J i l - X t a C w ) ) - 1 for ¿ < x * „ ( w ) < 1 and x€[e, 1] 

with an appropriate positive constant K. Now by (5.3) and (5.4) we have 
n 

2 \vkn(w, x)| £\n(w, x) = 2 I v k n ( w , x)\rkn(w, x)+ 2 \»kn(w, x)| ¿\n(w, x) 
*=1 xk„^i xkn>d 

S 2 vkn(w,xy2
k„(w,x)+ 2 vkn(w, xy2

kn(w, x)+ 

+ 2K 2 (1 -Xkn(w)yi(w, x) + 2K(l-x) 2 (1 W ) - V f „ ( W , x) = 

= 1 + 2 K 2 (l-xkn(w))tl(w,x)+2K(l-x) 2 (l-xkn(W))-^l(W,x) 

since Hermite—Fejér interpolation preserves the constant function. Using the 
asymptotics for the Cotes numbers (4.8) we obtain from here 

(5-5) 2 *M„(w, x) =§ 1 +Kn_1 2 (1 -xkn(w)r'V.kn(W)-^l(w, x) + 
k=1 k=1 

+Kn~H 1 -x) 2 (1 x) 
k=1 

which is the inequality we were to establish in the first step of the proof. 

S tep 2. The first sum on the right-hand side of (5.5) can be estimated by 
applying the same techniques that led to (4.26) in Lemma 4.7. However, 
we will proceed in a different way which consists of evaluating the sum 
2 (1— Xicniw))^^)'1^^, x) in a closed form. We have 

¿ ( l - ^ ( w ) ) 4 „ ( w ) - V L 0 v , i ) = ( l - i ) 2 hn(w)-Hl(w,x) + 
k = 1 . . . k—1 

+ 2(x-xk,Xw))).kn(wr^l(w, x). 
k=l 

Here the first sum on the right-hand side equals A~1(w, x) (cf. [7, formula (1.4.7), 
p. 25]), whereas the second one can be obtained from (3.6) and the Lagrange inter-
polation formula. We get 

n • ' 

2 0 x ) = (¡=1 

= (1 -x)X^1(w, x)+(yn_1(w)/y„(w))p,1(w, x)p„.1(w, x). 
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Thus, applying (4.2), (4.7) and (4.11) we obtain 

n 

sup max n'1 2 (1 -*fcn(w))4„(w)-Vfn0v, x) 

from which the inequality 
a 

(5.6) sup max « - 1 2(l-x t n(M'))3 /2A t n(w)-Vfn(w,x) <o° 
n S 1 ISlSl lt=l 

follows as well. 

Step 3. The uniform boundedness of the second sum on the right-hand side 
of (5.5) was established in Lemma 4.7 (cf. (4.26)). This can also be shown via re-
placing computations by some properties of Christoffel functions as follows. By 
Cauchy's inequality 

. [ i (1 - x k n ( w ) ) - ^ ) _ k n ( y V ) - ^ l n ( w , X ) f 2 A*„0v)-Vf„(w, x)x 
* = 1 fc=l 

X ¿ ( 1 -xMY^kM-^Uw, X) = ?.n-,{w, x)X„.r(w, X) 
k=1 

(here w is defined by w(,x:)=(l —x)iv(x)) where we used two identities involving 
Christoffel functions (cf. [7, formula (1.4.7), p. 25], [6, Lemma 2, formula (15), 
p. 251] and [19, Lemma 6.1.4, p. 59]). Since both w and w are generalized Jacobi 
weights, we can use (4.7) to obtain 

(5.7) sup max n ^ l - x ) 2 (1 x) 
nsl k = 1 

Inequality (5.1) follows from (5.5)—(5.7), and so does the theorem. 

6. Underlying ideas (Part II) 

Here we will be concerned about the connection between uniform convergence 
of Hermite—Fejér interpolation and its behavior at one single point. In other 
words, we look behind the scenes that govern the phenomenon described in Theo-
rem 5.1. 

For s nonnegative integer define the function us by . ws(x)=(l— x)s. Then it 
turns out that under certain circumstances it is more convenient to approximate 
/£C[—1,1] by usH„(w,fuJ1) then by Hn(w,f). Since the former vanishes at 
x=l for i > 0 , it can only approximate such functions / which also vanish at 
x—l. What is against H„(w,f) is that if iv(l)=0 then the sequence of the cor-
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responding Lebesgue functions becomes unbounded at 1 and thus lim Hn(w,f)=f 
cannot be expected at the point 1 or uniformly in a neighborhood of 1. What 
u.H^wJu-1) does-is that it tempers the quick growth of p„(w) in such a way 
that and operator UsHn(\v)U~x (where U'1 is the multiplication operator defined 
by the formula Us(g)=usg) becomes appropriately balanced with the right 
choice of s. 

The real role of usHn(w,fuJx) is that it is the principal term in the Hermite— 
Fejér type interpolating polynomial H„ s(w,f) defined by 

H„,s{w,f, xt„(w)) = f(xkn(w)), H'n<s(w,f xkn(w)) = 0, 

k=1, 2, ..., n, and 
fJíiKwj, 1) = o 

for j=0, 1, ..., s— 1. The closed formula for Hn<s(w,f) is.given by 

(6.1) Hn,s(w,f) = usHn(W,fu-') + uMwJ[u-'Y) 

(cf. (3.7) and (3.11)) which is easy to verify directly (cf. [38, Section 3.2, p. 88]). 
It was E. EGERVÁRY and P. TÚRÁN [3] who first realized how H n A (w,f ) can be 
used to investigate uniform convergence of H„(w,f) for the Legendre weight func-
tion n'=w(0,0). The process H„ s (w i a ' b \ f ) was fully investigated in [38] where 
it was shown that it can be used to prove necessary and sufficient conditions for 
uniform convergence of Hermite—Fejér interpolation at zeros of Jacobi poly-
nomials. The reason-for the usefulness of WsflnOt',/«^1) and Mn s(w,f) lies in the 
representation 

. (6.2) 

Hn(w,f x) = H„,s{w,f, x)+pl (w, x) 2(1 //c\)[Hn(w,f, 1 )/>»->, l)]w(*-l)* 
fc=o 

which provides a direct link between Hn{w,f),usH„(w,fuJi), p„(w) and H„(w,f, 1). 
The verification of (6.2) is again easily done by checking out the interpolation con-
ditions. The following is not only a tool necessary for proving one our main results 
(cf. Theorem 2.5) but the special case s= 1 is also a de facto solution of P. Turán's 
Problem XXVII in his collection of "On some open problems of approximation 
theory" (cf. [35, p. 47]). 

Theorem 6.1. Let w=gw{a'h) be a generalized Jacobi weight function, and let 
— l < e < l . Let f be continuous in [—1,1] such that / (1)=0. Let a^O, — 1, 
and let s be a fixed positive integer such that a£ [í— 1, s). Then 

(6.3) lim max \f(x)—us(x)H„(w,fuJl,x)\ = 0 eSiSt 
and 
(6.4) lim max \f(x)-U„tS(w,f, x)| = Ü. 

H f v s 
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Proof . In view of (3.11), (6.1) and Lemma 4.7 we have 

lim max \Hn¡s(w,f, x)-us(x)Hn(w,fur1, x)\ = 0 

so that it is sufficient to prove (6.3). 

Step 1. First we prove (6.3) for the special case when the function/is given by 
/ (x)=l—x. Then 

f(x)-Us(x)Hn(w,fu~\X) = Uj (-X) [ 1 -Us_i(x)H„(w, (MS-X)"1 , X ) ] 

so that applying (6.1) and (6.2) with / = 1 and 5—1 we obtain 

f(x)-us(x)H„(w,fur\ x) = K1(x)[l-//n,s_1(1v, 1, x) + us^1(x)jen(w, [wr-i]'» *)] = 

= Ul(x)pA"',x) i'Olk\)[pn-t(w, L ) ] ( , L ) ( X - l)"+«1(x)[« s_1(x)^,(W , [u^]', X)J. 
k=0 

Here the first term on the right-hand side can be estimated using (4.2) and (4.6), 
while the second one by Lemma 4.7 (cf. (3.11) and (4.28) applied with c—s). This 
proves (6.3) for /== u,. 

Step 2. Now let / b e continuous and / (1)=0. The point is that the sequence 
of operators from C[—1, 1] into C[s, 1] given by /"•ws//n(w,/M¡"1) is uniformly 
bounded by (3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.26) and (4.27) applied 
with c=s). Therefore we can finish the proof in the routine fashion as follows. 
Given ¿ > 0 there exists a polynomial P such that P(1)=0 and |/(x)—P(x)| =5 
for x 6 [ - l , l ] (cf. [34, Theorem 2, p. 259]). Write P=u,Q. With this polynomial 
P we have 

(6.5) f(x)-us(x)Htt{w,fu~\x) = [f(x)-P(x)]-us(x)Hn(w,(f-P)ur\x)-

-us(x)Hn(w, [ e - e W l K - J - 1 , x) + Q(x)[u1(x)-us(x)H„(w, h ^ " 1 , x)]. 

By (3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.28) applied with c=s) 

lim max |us(x)H„(w, IQ-Qix)]^]-1, x)| = 0 n-»o= e s i s l 1 '' 

since \Q(xk„)—Q(x)\^K\xkn—x|, whereas the last term on the right-hand side 
was taken care of in the first part of the proof. Therefore letting n —• in (6.5) 
we obtain 

lim sup max \f(x) — us{x)HAw,fu~i,x)\ á Kd 
n-*<*> esxsl 

from which (6.3) follows. 
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7. The proofs 

On the basis of the results in Sections 4—6 this can be accomplished virtually in 
a few lines. 

P roof of Theo rem 2.1. This follows from Lemma 4.6 applied with c=0 . 
The details are as follows. By (3.7) and (4.22) the sequence of Hermite—Fejér inter-
polating polynomials is a bounded sequence of operators from C[—1,1] to 
C[—e, s]. By (3.10), (3.11) and (4.23) it converges for polynomials, that is for a dense 
set of function in C[— 1, 1]. 

P roof of T h e o r e m 2.2. This was de facto proved in [24, Lemma 5, formula 
(46), p. 43] where it is given with n - 2 a replaced by np~2(w, 1). However, in view of 
(4.3), they are of the same order. 

Proof of T h e o r e m 2:3. First let it>(l) = °°. Then by (3.7), (3.9), (4.2), (4.8), 
(4.10), Lemma 4.5 and Lemma 4.7 (cf. (4.26) and (4.27) applied with c=0) the 
Hermite—Fejér interpolating polynomials are uniformly bounded in [e, 1] 
(here inequality (4.2) and Lemma 4.5 are needed to estimate the expression 
2 [I +xk„(w)]-1[x-xkn(w)y2

kn(w, x)). If 0< w(l)< then this is given in Theo-
rem 5.1. The necessity of the condition «'(1)^0 follows from Theorem 2.2. 

P roof of Theo rem 2.4. If n>(l)=°o then by formulas (3.7), (3.10), (3.11) 
and Lemma 4.7 (cf. (4.28) applied with c=0) the Hermite:—Fejér interpolating 
polynomials Hn(w, P) converge uniformly in [e, 1] for every fixed polynomial 
P. Thus Theorem 2.3 yields convergence for every continuous function. The neces-
sity of the condition M>(1) = OO for uniform convergence in [e, 1] follows from 
Theorem 2.2. 

P roo f of T h e o r e m 2.5. If Mm H„(w,f)=f uniformly in a left neighborhood 
of the point 1 then by Markov's theorem (cf. [16, § VI.6, p. 141]) the r-th derivative 
of H„(w,f) is o(n2r) in the same interval for every /"=1, 2,... . On the other hand, 
if we have information concerning, the behavior of H„(w,f) at 1 then we can use 
Theorem 6.1 (either of (6.3) and (6.4)) and formulas (6.1) and (6.2). First, we can 
assume without loss of generality that / (1 )=0 (cf. (3.7), (3.10) and (3.11)). We 
need to prove 

lim maxp 2(w, x) (l/k\)[Hn(w,f, 1 )p~\w, 1 ) ] « ( * - 1 ) ' = 0; 
"-«> [e,l] k=0 

This follows immediately by straightforward application of inequalities (4.2), (4.6) 
and the conditions H%\w, f , l) = 0(n2r), r=0, 1, ..., s. 

P roof of Theo rem 2.6. We use an observation by G. FREUD in [9, formula 
(2), p. 176] according to which since H'a(w,f) vanishes at the zeros of p„(w) we 
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have H'n(w,f)=pn(w)Qn_2 where ö„_2 is a polynomial of degree at most n—2. 
Thus by orthogonality 

J H'n(w, f , t)[w(t)(l + t)]dt=0, 

and integration by parts yields 

H„(w,f, 1) = (2w(l))-i / Hn(w,f, t) d[wm + t)] 
- I 

(cf. [9, formula (4), p. 176]). Now we can use Proposition 1.6 applied with u=w 
to pass to the limit of the integral which together with Theorem 2.5 proves Theo-
rem 2.6. 
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Orthogonal polynomials and their zeros 

PAUL NEVAI*) and VILMOS TOTIK 

Let dp be a finite positive Borel measure on the interval [0,2n) such that 
its support is an infinite set, and let {<p„}̂ L0, <pn(z)=(p„(dp, z)=xnz"+..., xn = 
=y.n(dp)>0, denote the system of orthonormal polynomials associated with dp, 
that is, 

The corresponding monic orthogonal polynomials xn
 1cpn will be denoted by $>n. 

For an nth degree polynomial P the reverse polynomial P* is defined by P*(z)= 
=z"P( 1/z). Let zkn—zkn(dp) be the zeros of cpn ordered in such a way that 

P . ALFARO and L. VIGIL (cf. [1, Proposition 1] and [2, Theorem 1]) proved 
that for every sequence of complex numbers {z„}~=1 with |z„|-= 1, n —1,2,... , 
there is a unique measure dp (modulo an arbitrary positive constant factor) such 
that cpn(dp, z„)=0 for n = l, 2, ... . This result can be obtained from the recurrence 
formula 

(cf. [7, formula (11.4.7), p. 293]) as follows. By (2) the recurrence coefficients #„(0) 

*) This material is based upon research supported by the National Science Foundation under 
Grant No. DMS 84—19525, by the United States Information Agency under Senior Research 
Fulbright Grant No. 85—41612 and by the Hungarian Ministry of Education (first author). The 
work was started while the second author visited The Ohio State University between 1983 and 
1985, and.it was completed, during the first author's visit to Hungary in 1985. 

Received February 3, 1986. 

<Pjz)<Pn(z) dp(6) = Ô, , z = ew. 

(1) 
(cf. [7, p. 292]). 

| z j ^ |zn_1(„| S . . . S | r j < 1 

(2) *.(z) = z4>„-1(z) + &n (0) ! (z) 

T 
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can be expressed as 

and thus one can successively define the monic polynomials \¡/n by and 

i¡/„(z) = z<p„ _ j (z) - [z„ «h (zJ/ i /C! (z„)] xpt-1(z), 

n = l, 2 , . . . . It is a matter of simple induction to show that |iA„(0)|< 1, n = 1, 2, ... , 
and then is orthogonal with respect to some dp (cf. [4, Theorem 8.1, p. 156]). 
Since \[/n(z„)=0, this is the measure dfi we were looking for. 

We point out that P. Alfaro and L. Vigil's result solves the following problem 
proposed by P. Turán: is there a measure d¡i such that the set {zkn(dix)} is dense in 
the unit disk (cf. [9, Problem 67, p. 69]). Namely, the above measure d¡i associated 
with ány sequence {zn} which is dense in the unit disk provides such an example. 

In view of this result by P. Alfaro and L. Vigil (and also because of the rela-
tion <P„(0)=i7zfel),one would want to seek for connections between orthogonal 
polynomials, their zeros and their recurrence coefficients. In spite of the great variety 
of results of such nature for orthogonal polynomials on the real line, and in spite 
of the intimate connection between real and complex orthogonal polynomials, there 
is only a very Jimited amount of research performed in this direction (cf. J. SZA-
BADOS [6] añd R. Áskey's; comment to paper [34—2] in [8, Vol. 2, p. 542]). 

The main purpose of this note is to find a relationship between the quantities 
rlt r2, /"¿'and r4 which are defined as follows: 

>i№) = lim sup ¡0i,(d;i-,O)l1'a, 

r2(dfi) = inf lim sup \zk n(dfi)\ , 

k n-»=o 
rÁdpi) = {inf r: sup max z)\ <=} 

and ... • Tiidfi) — {inf/-; D(dfi, z)~l is analytic for \z\ < r - 1 } 
where for |z]<l the Szego function D(d¡x) is given by 

D(d¡i, z) = exp j - L ' J logix'(t) d^, u = e\ 

if log / / is integrable, and D(dn)=0 otherwise (cf. [3], [4], [5] and [7]). 

Theo rem 1. For every measure dp we have r^d^^r^dfi). If there is 
{1', 2, 3 ,4} such that (<//<)< 1 then rx (dpi)=r3 (dp)=r4 (dfi). 

.. P roof . i , - . . . . - . - . • .. • I 

Step 1. r^r2. Since 0n(O)=nztn and \zkn\^], we have | ^„ (0) | á | z j n - f c + 1 : 
for A: = l ,2 , ...,n (cf. (1)), and thus r^r2 follows. -
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Step 2. r1 = l=*r1=r2 . This is obvious in view of Step 1 and r ^ l . 

S t ep 3 . r^l^Vi, r^r^f-L. By a result of Y A . L . GERONIMUS [4 , Theorem 8 . 3 , 

p. 160] the sequence {|<P„|} is uniformly bounded on the unit circle. Thus by the 
maximum principle {\z~n 4>n(z)\} is uniformly bounded for |z| ^ 1 . Repeated appli-
cation of the recurrence formula (2) leads to 

«£(*) = 1 • + z " £ * ^ ) < P k ( z ) . o 

Therefore lim <P* = <&* exists uniformly on every disk with radius less than r^1 

which implies By formula (8.6) in [4, p. 156] 

(3 ) = N V - W M T 1 -
i=i 

so that r^ 1 implies the boundedness of the sequence {*„} which by a theorem of 
Y A . L . GERONIMUS [4, Section 1 . 2 ( 1 5 ) , p. 14] guarantees the integrability of log n'. 
But then by the Szegő theory (cf. [7, Theorem 1 2 . 1 , 1 , p. 2 9 7 ] ) lim <j>*=D{0)D~1 

holds uniformly on compact subsets of the open unit disk where D denotes the 
Szegő function. Applying Yitali's theorem we can conclude that lim <P*(z)=<P*(z) 
exists for every |z|</-~1 and obtain <P* =D(0)Z)~1, and thus r4Sr3. In addi-
tion, since á>* possesses at most a finite number of zeros inside every disk with 
radius r-^rg1, the number of elements of the sets {z: \z\^r, <P*(z)=0} is bounded 
for every This follows from Rouche's theorem. In other words, 
{|{*fa}2_0n{z:>|sr}|}£,0.. is bounded for every r > r 3 . Thiis ^ S f j . . . 

S tep 4. r 1 ^ r 3 . We may assume Then by Cauchy's formula " 

= (£ z" _ 1<P*(z)dz = 0(r") 
2 m u-i=r-' 

holds for every r > r s . Hence 

Step 5. r i S ^ . We may assume /'4< 1. Then log ¡i is apriori integrable, 
and thus we have the Szegő theory at our disposition. Applying formula (5.1.18) 
in [3, p. 195] and using lim <p* — D~1 in L2(dfi) (cf. [3, p. 219]) we obtain 

« 2lt 
(4) <P„(0) = ^ f V- l(z)<Pn(z)d,i(0), z = * f ° . 

Let us denote the Taylor expansion of D~l by Ickzk. Then lim sup |c t |1 / k=r4 and 
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by orthogonality 

= f [ Z WW, * = 

Now using Cauchy's inequality and y.0=x„ (cf. (3)) we obtain / ' i ^ /v 
Combining the inequalities proved in Steps 1 through 5, we get immediately 

Theorem 1. 

Coro l la ry . The following assertions are pairwise equivalent: 

(a) limsup \zln(dp)\ < 1. 
»••OO 

(b) lim sup \$n(dp, 0)p/" < 1. 
jl-*oo 

(c) dp is absolutely continuous and p.'(0)=g(0) a.e. where g is a positive 
analytic function. 

Remark . 1. Note that this corollary characterizes the measures for which all 
zeros of the corresponding orthogonal polynomials lie in a smaller circle inside the 
unit circle. 

2. There are many other statements equivalent to (a) above. Here are a few 
of them: 

(d) There is 0 < r < l such that <PnU¥, z) = 0(rn) for \z\=r. 

(e) lim sup max 14>n+1(dn, z)—z<P„(dp, z)[1/n < 1. 

(f) lim sup ess sup |$„(dix, z)z-"—D-1(dn, z)\ < 1. 

Using the considerations below it is a fairly simple exercise to prove that any of 
(d)—(f) is equivalent to any of (a)—(c). 

P r o o f of the Coro l l a ry . (a)=>(b) by Theorem 1. That (c) implies (b) fol-
lows from the formula 

| 2 it 

(cf. (4)) where r„_, is any trigonometric polynomial of degree at most n— 1, if 
we take into account that the <P„'s are uniformly bounded on \z\ = 1 (see [4, Theo-
rem 4.5]) and that, by the analiticity of (n')~1/!t, we can choose a 1 and 
{r„_ J such that 

(D-W-T.-Mt.&dm = 
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Finally, both (b)=>-(a) and (b)=>(c) follows if we can show (see Step 3 
above) that v , 

(5) 0*(z) if \z\ = 1. 

In fact, (b) implies that dpi is absolutely continuous (see [4, Theorem 8.5]) and 
n'(0) = D~2(eiO) a.e., hence (b)=>-(c) is an immediate consequence of Step 3 w h i l e 
(b)=>(a) can be derived from Rouché's theorem, namely , there is a neighbourhood 
U of the unit circumference such that <P* does not have a zero in U (and hence <Pn 

does not have a zero in U~l) for large n. (5) follows from 

<P*(z) = D(0)D-Hz) = (//'(ö))-"2, z • ei0,- ." ;' " 

and the analiticity of 0* on |z| = 1 (which was proved above under the assumption 
(b)), namely <P*(ew»)=0 would imply that /i'(0)~(0—0O)-2 in a neighborhood 
of 0O except on a set of measure zero and this contradicts ii'e&lQo—n, Q0 + n]. 
The proof is complete. 

Example . Let 1 < R s L e t / b e analytic in the open (but not in the closed) 
disk JJR with radius R centered at 0, and assume /(0) = 1 and / ( z ) ^ 0 for | z | s l . 
Let 1< |zx| ̂  |z2| = . . . be the zeros of / i n UR. Define the'measure dp by d/i(0) = 
=1 f(^$)\~°-d6. Then lim 4>*(z)—f(z) uniformly for \z\^r<R. Hence 

(6) lim zkn{dn) = (zk)~i 
N -+00 

holds for every k i f / h a s infinitely many zeros in UR. I f / h a s finitely many zeros 
there, say N, then (6) is satisfied for k=l, 2, ..., N. In the former case we have 

R'1 = lim sup |4>„(d/i, 0)|1/n < lim \zk„(dn)\ = .\'zk\~1, • ! 
n-* CO It — » 

k—1,2,... . If, in addition, / is a polynomial of degree, say, m then by the Bern-
stein—Szegő formula (cf. [3, Theorem 5.4.5, p. 224]) <P*=f for «gm, and thus 
zkn=(zk)~1 k = 1,2, ...,m, zkn=0, k=m+1, ...,n and <P„(0)=0'"holds for nSm. 

We conclude this paper by observing that similarly to P. Alfaro and L. Vigil's 
result in [1, 2], orthogonal polynomials on the real line are also completely deter-
mined by some of their zeros. 

Theorem 2. Let {x„}~=1 and {j>„}~=1 be given sequences of real numbers 
such that 

... < X3 < X2 < XI = YX < y2 < Y 3 < ... . 

Then there exists a unique system of monic polynomials {P,,}^ orthogonal with 
respect to a positive measure on the real line such that Pn(xn)=Pn(y„) =0 and P„(t)^0 
for t$[xn,yn], n= 1,2, ... . 
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Proof . Set P0=l, A0=0 and b0=xi. Define {P„}n~i> a n d by 

(7) P . W = (x-bm-JPm-1(x)-A.-1Pm.t(x), 

A - ( x -v if Pn-i{yn+i) I'1 H h - x A An-(xn+1 yn+1)[ Pn(Xn+d Fn(yn+i) j and bn-xn+l 

(The latter two formulae come from (7) and from the requirement />„+1(xn+1) = 
=JPn+i(j'ii+i)=0.) Using induction one can show that P„{X)T±0 if y„], 
Pn(xn)~Pn(yn)—0 and A n >0 for « = 1 , 2 , . . . . Hence by Favard's theorem (cf. 
[3, Theorem 2.1.5, p. 60]) {P,,}^ is an orthogonal polynomial system. 

If x0 = —yn for n = l, 2, ... , then the formula for A„ and b„ above reduces to 

Pn(x„+1) 
•̂ n-lC^n + l) 

A=xn+1 :nKn+1\ and bm = 0. 
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Noncyclic vectors for the backward Bergman shift 

SHELLEY WALSH*) 

§ 1. Introduction and notation. The Bergman space s i 2 is the Hilbert space of 
analytic functions / on the unit disk D such that 

, 2K i 
ll/li2 = ~ J f \f(re>Wrdrd6^. 

o o 

The Bergman shift is the operator S on si2 defined by (Sf)(z)=zf(z). If we let 
/n+l \ 1 / 2 

en=(n + l)1/2z" then {<?„}~=0 is an orthonormal basis for $22 and Sen = I — en+1, V Tl ~/ / 
so S is a weighted shift. The Bergman shift is a subnormal operator so in particular 
it is hyponormal, so by Theorem 2 in [5], the functions which are contained in 
finite dimensional 5,*-invariant subspaces are the finite linear combinations of the 
functions of the form Kxn for some a£D and n a nonnegative integer. In this paper 
I will give some examples of noncyclic vectors for S*, which are not contained in 
finite dimensional ¿""-invariant subspaces. I will do this by giving two sufficient 

eo 
conditions for the smallest invariant subspace containing the function 2 ckKx 

l c = J k 

to be the orthogonal complement of {/ : / ( a t ) = 0 for all k}. This is done in §2. 
The theorem in [2] which Theorem 1 in [5] follows from for the special case 

of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the 
sum of two noncyclic vectors is noncyclic. In § 3 I will use the second condition 
given in § 2 to show that this is not true for S*. 

Throughout this paper cyclic will mean cyclic for S*. If fdstf2, then [/]* 
will be the smallest ¿""-invariant subspace containing/ If a£Z> and n is a nonnega-

*) This paper includes a part of the author's dissertation [4] written under Professor Sarason 
at the University of California—Berkeley, while a member of the Technical Staff of Hughes Air-
craft Company, Ground Systems Group, and a holder of a Howard Hughes Fellowship. 
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tive integer then KXi„ will be the function in st2 such that ( / , K„ „> = / ( n ) (a) and 
Ka> o will be written Kx when it is convenient. 

Since 

= i (j+ i ) y . . . ( ; - « + I ) « / - v = > 

Theorem 1' in [5] can be stated for the Bergman shift as follows. 

T h e o r e m 0. if f is analytic in a neighborhood of D, then f is either cyclic or a 
rational function with zero residue at each pole. 

Proof . It suffices to show that the rational functions with zero residue at each 
pole are the linear combinations of the Klt„'s. The residue of Kx n at its only pole 
1 

— is 

so any lineary combination of the KXi„'s has zero residue at all its poles. Conversely, 
to show that every rational function with zero residue at each pole is a linear com-
bination of the K. _'s it suffices to show that the function is a linear 

( 1 - 5 z)"+2 

combination of them, for any a£ D and nonnegative integer n. This is true because 

• * ( / ) " " 
(1 -ocz)"+~ j% (l—az)J+2 ' 

§ 2. Some infinite dimensional cyclic invariant subspaces for S*. 

T h e o r e m 1. If i <s a Blaschke sequence of distinct points in D and 
oo 

ic*Kli's a sequence of nonzero complex numbers such that f= 2 ckK 

[f]* = {g^-- g(«k)=0forallk}J-. 

Proof . If g(ak)=Q for all k then 

<g, S*"f) = (z-gj) = 2 Ck0Llg(«k) = 0, so g t l f t t . )c=l 

If h£H°° then if h*(z)=h(z), there is a uniformly bounded sequence of poly-
nomials {qn\ with \\qn-h*\\-~0. Then \\qn(S*)f-P(lif)\\ =\\P(q„(z)f-Kf)\\^ 
— \\<]n(z)f— hf\\ which tends to zero by the Lebesgue dominated convergence theo-
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rem so P(K№W*- Hence if then 0=(g, P(Kf)) = (hg,f)= 2c~kh(*Jg(*k) 
k = 1 

for any h in H°°. Fix m and let h be an H°° function such that h(ocm) = 1 and h(ak)=0 
for k ^ m . Then cmg(am)=0. Since cm^0, it follows that g(oem)=0. 

The next result uses a result of L . BROWN, A . SHIELDS, and K . ZELLER [1] con-
cerning dominating sequences. 

Def in i t ion . If {a*} is a sequence of distinct points in D, then {a*} is dominating 
if for any function h in H°°, we have ||/i||«,=sup |/i(afe)|. 

k 

The following is contained in Theorem 3 of [1]. 

Lemma 1. If {«¡¿}r=i a sequence of distinct points in D with all its limit points 
on dD, then the following are equivalent. 

(i) There exists {tfj;}r=i suc^ that 0< 2 00 °nd 2 ak ot£=0 for all non-
k=l k=l 

negative integers n. 
(ii) {at} is a dominating sequence. 

(iii) Almost every boundary point p=eli may be approached nontangentially by 
points of {afe}. 

Theorem 2. Let {afc}£°=1 be a sequence of distinct points in D which has all 
its limit points on dD and is not a dominating sequence, and let {£*}£!=! be a sequence 

of nonzero complex numbers such that y —< «=. If f= y ckK , then J F 1 — |a*|2 J J "" 
lf]* = {s^2- g(«k)=0forallky. 

Proof . If g(otk)=0 for all k, then for any n, we have 

(g,S**f)= 2ck*lg(oik) = 0 
i=l 

©e> 
so #€[/]*• If #€[/]* then yCkCilg(txk)=0, for any n. For any k, we have 

k = 1 

= \(g, KXk)| S ||*|| | | A J = - y z ^ j r • 

" \ck\ ~ _ So since y. —< the sum y |cfcg(at)| is finite. Thus by Lemma 1, we 
* = 1 1 — |0Eftl = i 

have Ckg(ak)=0 for all k. Since c k ^0, it follows that g(ak)=0 for all k. 

§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theo-
rem 2 and the results and methods in [3] concerning zero sets for s i 2 to give an 
example of two noncyclic vectors whose sum is cyclic. 

Def in i t ion . A set E of points in D is a zero set for si2 if there exists a function 
f^O in s f 1 with / ( z )=0 (where z£,D) if and only if z is in E, 
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The following lemmas are proved in [3]. 

Lemma 2. If I and /? is à positive integer with 1, then 

y=l • 

Lemma 3. I f , fdsi2, /(0)5*0 and {c^, a2 , ...} are f/ie zeros o / / indexed so 
that |a t |rS|a t+1 | , then 

Lemma 4. Lei f(z)— JJ (1 +pzfiJ) where 1 anJ is an integer. If 
j=o 

a= — and {al5 a», ...} are the zeros of f indexed so that |a*| = |afc+i|5 for all k, 
log P 

N I 
then II >Const-AT 

• k=1\tx.k\. , . 
Lemma 5. A subset of a zero set for si2 is a zero set for si2. 

Example 1. Let P be even and p2 + 1 < p3. Then the function /(z) = 

= belongs to si2. Let E be its zéro set and E1 = {rew^E:TII2^6<2K}. 
J=2 

Then ^.is . 'a zero set by Lemma 5. The set E has /?J equally spaced points on the 
3 

circle |z\=p~p J . On the same circle, the set Ex has — points. Let {zls z2, ..;} 
4 

be the points of E and {a1; a2, ...} be the points of ¿^ indeed so that \zk\=\zk+l\ 
log p 

and for all k. By Lemma 4, if a— , then for any N, we have 
- V : - )Og/i 

I» 1 ' r . 
]J ^Const • N". Thus if jç=2 and N=P2 + ... +0J, then 
k = 1 \Zk\ •• • ' - -, ••• 

3W/4 1 ( N 1 \3/4 

/ 7 — = I n-r-T\ S Const • N3"'* = Const• (3N/4)3a/i. 
fc=i \*k\ • vi=i \zk\ ' 

Choose 0< 7r/2 such that e"pE1 is disjoint from Ex and let E2=e,q'E1. Then 
E2 is also a zero set for si2. If O<0<7i/2 then e'° is not a nontangential limit point 
of Et and if njl+cp •. then ei0 is not a nontangential limit point for E2, so, 
by Lemma 1, Ex and E2 are not dominating. 

°° |cfc| Let {c*} be a sequence of nonzero complex numbers such that 2 ^ — 
oo oo 4 ' 

Let / 1= 2 ckK, and /2= 2 ckKe>**,- Then by Theorem 2, 

[/¡tt = {g^2 : g(z) = 0 for all zÇEj 
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for i = l ,2 . If <p<0<Tr/2, then ei0 is not a nontangential limit point of £'1U£'2, 
so, by Lemma 1, E ^ E ^ is not dominating. Therefore by Theorem 2, 

[/1+/2]* = {gist2'. g(z) = 0 for all zeE^Ej. 

If {?i > V2» • • •} are the members of £'1U£'2 indexed so that lŷ l ^ |yk+1| for all k, 
then since 

3JV/4 1 
N - r - r S Const -(3N/4F'N, 

k=1 \V-k\ 

N 1 
for N=P* + ...+PJ, we have JJ i?Const• NSA>'\ for infinitely many N's. 

Since P^fi3, we have a= >1/3, so 3a/2>l/2. Thus by Lemma 3, £1U£ ,
2 log)? 

is not a zero set for jj/2, so [/!+/2]* = {0} and thus /1+/2 is cyclic. 
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The point spectra for generalized Hausdorff operators 

B. E. RHOADES 

It is the purpose of this paper to show that the point spectra of a large class of 
generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under 
consideration were defined independently by ENDL [3] and JAKIMOVSKI [6]. Each 
matrix // ( a ) is a lower triangular matrix with nonzero entries 

(1) = 

where {/¿t} is a real or complex sequence, and A is the forward difference operator 
defined by A[ik=nk—/ik+1, A"+1fxk—A(A"/ik). Let c denote the space of convergent 
sequences. The bounded linear operators on c and lp, 1 ^p^ will be denoted by 
B(c) and B(l"), respectively. Although (1) is defined for any real a which is not a 
negative integer, in this paper a is restricted to be nonnegative. 

Let l < p < ° ° , H(a)e.B(lp). The author showed in [8] that the point spectrum of 
Hix)*, the adjoint of contains an open set. Let C ( I ) denote the generalized 
Hausdorff matrix generated by fi„=(n-l-a + l ) - 1 , q the conjugate index of p. It was 
also shown in [8] that the spectrum of /— 2C(a)/tf is the closed unit disc. For p—2, 
every HMdB(lp)r\B(c) is an analytic function of C ( l ), so the spectral mapping 
theorem can be used to obtain the spectrum. GHOSH, RHOADES and TRUTT [5J showed 
that each Hw£B(l2), for integer a, is subnormal. In [8] the author showed that each 
C(a) is hyponormal. 

In order to establish the point spectra results it will first be necessary to extend 
some results of FUCHS [4]. Define 

(2) S = S(a!, a2, ...) = {<pk(x)} = (e-cxx°«: c > 0 ; t s l ; flx < a2 <...}. 

The set is closed in L2(0, if, for each h£L2(0, » ) and for each e>0, there 

Received October 7, 1985 and in revised form October 8, 1987. 
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exists a finite linear combination $(x) of the functions <pk such that. 

J (h(x)-$(x))2dx< e. 
o 

The set S is said to be complete in L2(0, if, for each /i£L2(0, <==>), 

oo 

J h(x)<pk(x) dx — 0 
o 

for all /c&l implies h(x)=0 a.e. It is well known that the concepts of closed and 
complete are equivalent. 

Theo rem 1. Let {s„}cC satisfy s„=o(nM+"), M > 0 , a a nonnegative real 
number. Define {/„} by 

(3) ^ ¿ p j i - i v , . 

Then tn— 0 for n = ai,a2, ... implies s„=r(n+oc + l)P(n)/nl, P a polynomial of 
degree less than M if andonly if S—{e~x/2x°": n= 0,1, 2, . . .} is closed in L2(0, 

Suppose that sn = 0(nM+*), tn=0 for n=a1,ai, ... implies 

í „ = r ( » + a + l)P(»)/íi!, 

where the degree of P is less than M. 
We may write (3) in the form 

, _ ( ~ i m / + « + ! ) / > ( / ) 
n~iÚ\n-k) i\ 

Since the degree of P is less than n, t„=0 for each wS[M] +1, and the set S 
is closed. 

To. prove the converse we may assume, without loss of generality, that {J„} is 

real and that |s„ |Sl for « < 2 M + 2 + s , f o r n==2Af+2+s, *=[<*] +1, 

replacing sn by some scalar multiple ys„, if necessary. 
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eo 
L e m m a 1 [1, p. 77]. Let ank, b„ be real numbers, with sup„ £ |a„ t |< <*>. Then 

k = o 

the system of equations 

2ankxk = bn (« = 0 ,1 ,2 , . . . ) 
k=0 

has a solution satisfying |x„ |S l if and only if 

k n = 0 k 

for every finite set of real multipliers Xk. 

L e m m a 2. Let {a„\ h = 0 , 1, 2, ...} be an increasing sequence of natural num' 
bers, {/„} as in (3). Then tn=0 for it=a1, a2,... implies / ^ = 0 if and only if 

(4) » . b d . f F | i * ( £ i ) | + 2 • ' ( * - - ) | i ^ ) | } = 0 I h=0 k=0 "/ ¡1S2M + 2+S V- lfc=0 ",/|J 

u7ie/r s=[a] +1, /„ = 1 and the for 0 run through all sets of real numbers for 
N= 1 ,2 , . . . . 

P r o o f of L e m m a 2. Consider /„=0 for n=a1,a2, ..., t^y^-0 as a system 

of equations for the unknowns x„, where xn=s„ for n<2M+2+s, xn= "^^J 

for m s 2 M + 2 + j . From Lemma 1 this system has a solution for \x„ if and 
only if the left side of (4) is ^y. Therefore (4) implies that y = 0 . 

Conversely, if 7=0, then (4) is nonnegative for every choice of the /.„. But the 
choice k k = 0 for /c>0 gives the lower bound. 

To complete the proof of Theorem 1, we shall show that the condition that S be 
closed is equivalent to (4). Let the set 5 in (2) be closed and a^2M+2+s. We 
shall show that (4) is satisfied. 

(IB2M+2+SV' > U=0 Vfc "/I /IS2M + 2S+2 N ' k=0 V"(t "J 

tM-llv ^ ) } (2^+^+2) ( J ( K ) ) } S ; v 
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since the first sum is 0(Zh~2). 

2 ( 2 J + 2 M + 2 ) {ak-l) = 

1 S (Qy+J)! f 
(2s+2M+2)\ „^jf+z+s (h —S—2M—2)!(aj — h)! U~/JJ 

_ ( aj+s Y*-™-2-s/aj_2M-2-s)( ak+s ) 
~{2s+2M+2) 2 { i J \ak—2M—2—s— i)' 

For b, c positive noninteger real numbers, 

Since also, (I+tf+c=Z p j " 

Substituting (7) in (6), 

••• v f / i + j ) f a j + s \ ( «*+*) 

(aj+ak-2M-2)l = 

r ~ ( 2 i + 2 M + 2 ) ! ( a J - 2 M - 2 - j ) ! ( a t - 2 M - 2 - j ) ! 

1 °° • — ' ." ! I f p—x va, + ak—2M— 2 sly 

(2M+2s + 2)\(a}-2M-2-s)\(ak-2M-2-s)\ J ' 

and (5) can be written 

where A is independent o f .Nand the Afc's and 

; 'N UJx°fc-2 M-2- s 
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For h<2M+2+s, 

|JMiiiJI-iwî )-" 

CO oo 

0 y 
CO CO 

0 0 

OO OO 

< / e~yQ(y)dy f e-z(y + z)h+s+2M-h+1+s dz = 
0 0 

oo oo 
= / e~*Q(y)dy f e~=(y+z)2M+1+2s dz < 

o o 
OO CO 

< 2
 2M+1+2s f e~yQ(y)dy f e-'ifM+i+to+zSM+i+teyfa^ 

o o 
oo 

0 

<£(/ ( f e-yQ2(y) dyyi* = C{je-yQ2(y)dyf\ 
o o o 

It remains to show that 
oo 

(8) / +^Ai+2S+2) ^ ^ e 

o 
Using Lemma 1 and Theorem 4 of [4], the system 

(9) {e -* /2(l +X2M+2+2sy/2A.flfc_2Ai_2-SJ ^ g. j) ; 

is closed since S is closed. Therefore 

e-x/2^2Af+2+2sy/2J^oo-2M-2-s 

(Oo-2M-2)! ' 

can be approximated arbitrarily close by finite linear combinations of functions from 
(9). This proves (8). 
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We shall now show that, if (4) is true for every a0^2M+2+s, then S is com-
plete. If (4) is satisfied then, for suitable values of Xk, 

h 

It then follows that 

0 0 , .. 

But 

Z [h-v] = j . i o ^ A {h-M) [aj-h] ( a l - h ) = hSM 

" XjXk % r(aj+a + 1) (ak+oi\_ 
; i „ f ( a + M + l ) h±U (h-M)\(aj-hy. W - h ) 

- y X X { a,+«YkyM["i-M\{ ak+a ) _ 

v j 3 K + a ) (aj+th+u-M) 
' ¿ o J H M + aJl ak-M ) -

- y XX r(aj+ak+a-M+1) _ 1 7 e-xRi(x) dx 
~ j.tLo J " r(M+<x+\)(aj-M)\(ak-M)\ ~ r ( M + a + l ) J e KWax> 

where 
N A,. Y"k+a/2-M/2 

R(x)= 2 k 
¿f0 (ak-M)\ • 

Therefore 

I W ^ W / E ~ X R 2 ( X ) C / X < E 2 ' 

which implies that 

(11) e-xi^w+'iz, n = 2M+2+S, 2M-\-3+s,..., 

can be mean square approximated by linear combinations of the functions 
e-xi2^k-Miz+*i2^ F r o m Theorem5] the set (11) is closed. Thus also is 
^-xiz^-Miz+tizy From Lemma 1 of [4] with p(x)=xM/2-a/2, d isclosed. 

Suppose 0 for n=ai, a^,:.:, and S i s closed. Then one can use condition 
(4) and mathematical induction to force /„=0 for all n s a 0 . 

'Now suppose that i ,„=o(«- i+cl), {/„} satisfies (3) with /„=0 for ws2MH-
+ j + 2 . Note that (3) is the nth term of a diagonal matrix t satisfying t=dl*)s, 
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where s is the diagonal matrix with entries s„ and —1)* j ^ ^ ^ J • Since <5(S!)-

is its own inverse, and multiplication is associative, 5 i . e . "r" 

n * + r ( « + g + l ) 4, (— \)kn! 1k 

~ l ) Vn-k)1* n! (n —A:)!r(A; + a-(-1) ' 
where Q is the largest integer for which 4 ^ 0 . Therefore sn=T (n+<x+l)P(n)lnU 
where P is a polynomial in n of degree Q. Since s„—o(nM+x), a + Q.^M+a, and 
the degree of P is less than M. ... „,;. . ' .-, 

Let ap(A) denote the point spectrum of an operator A, and write H lor /f ( 0 ) . 

T h e o r e m 2. (a) Let l ^ « » , ff(0I) 6 B (/")(") 5(c). Then <rp(Hw) is empty: 
(b) Let H(x)£B(l), Then Bp(Hw) is empty. 
(c) Let H{a)£B(c). For <x>0, ap(HM) is empty. For a = 0 , if H is multipli-

cative, then. (Tp(H)={n0}. 

P r o o f of (a). Suppose there exists an xOp with Hi?)x=kx. Then; 
(H^-XI)x=0. But H<r)£B(lp)r\B(c) implies that K(*> =H(x)-/./€B(lp)f]B(c). 
Moreover, is also a generalized Hausdorff matrix. Thus, we are looking for 
solutions of the system K(x)x=0. One may write K(a)=S<-X)¡i8(x\ where ^ is a 

diagonal matrix with diagonal entries nn and (— l)k ^ [ ^ ¿ j • Since 8M is its 

own inverse, and each matrix forming K(x) is row finite, the system. K(a)x=0 is 
equivalent to pS(*)x=0; i.e., 

(12) . = « = 0 , 1 , 2 , . . . : / 

Since Hix)€B(c), so also does so that /i is a moment sequence. This 
means that 

<A(z)= / e+'dp(t) 

is analytic for Re (z)>0, where fl and ¡i„ satisfy 

I 

/ c+'dp(t). ,,..., 
o 

From [2], the integer values for which \l/(b„)=0 satisfy the condition ° 
Therefore (12) implies that tn=0 for all values of n except possibly a subset {¿>„} 
satisfying Ikbk

x< Using Theorem 3 of [4], the set S of integers n for which 
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/„=0 remains closed. Since { x ^ c F , X„=O(H1/2+*). . Applying Theo-
rem 1, x„=r(n+x+l)P(ri)/nl, where P(x) is a polynomial of degree less than 
M = 1/2; i.e., P is a constant polynomial. But, unless P is the zero polynomial, 
x$l", so has empty point spectrum. 

P r o o f of (b). The author has shown in [7] that Hw£B(l) implies H(l)eB(c). 
The rest of the proof is the same as that of (a). 

P r o o f of (c). Following the proof of (a), since {x„}€c, {x„} is bounded, hence 
x„=o(n1 /2+a), and again ffp(i/(a)) is empty, for a > 0 . 

For a = 0 , x„=o(itl/2), and the only nonzero sequence satisfying (12) is 
í = ( l , 1,...). With a = 0 , each row sum of i f is //„. Therefore <rp (//)={/%}• 

A matrix A is multiplicative if lim Ax=tlimx for some scalar t, x£c. In 
terms of the matrix entries, multiplicativity of A translates into A haying all zero 
column limits. For Hausdorff matrices in B(c) this condition is equivalent to the 
mass function /?(/) being continuous from the right at zero, and specifically ex-
cludes the compact Hausdorff matrix generated by /t0=l> /i„=0, «>0 . Theorem 1 
does not apply to this matrix since there are too many zeros on the main diagonal, 
but a direct analysis yields the point spectrum to be {0, 1}. 
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A spectral dilation of some non-Dirichlet algebra 

TAKAHIKO NAKAZI») 

Let X be a compact Hausdorff space, let C (.30 be the algebra of complex-valued 
continuous functions on X, and let A be a uniform algebra on X. Let § be a com-
plex Hilbert space and L(%>) the algebra of all bounded linear operators on I is 
the identity operator in An algebra homomorphism f^~Tf of A in £(§) , which 
satisfies 

T\ = I and || 7/|| = H/ll 

is called a representation of A on A representation £/0 of C(X) on a Hilbert 
space ft is called a spectral dilation of the representation f—Ts of A on § if § is a 
Hilbert subspace of ft and 

Tfx = PUfx for feA and 

where P is the orthogonal projection of ft on 
If A is a Dirichlet algebra on X and f-*-Tt a representation of A on then 

there exists a spectral dilation. This was proved by FOIA§ and Suciu (cf. [3, Theo-
rem 8.7]). However, it is unknown whether any representation of a non-Dirichlet 
algebra has a spectral dilation. In this paper we give an example of a uniform alge-
bra which has a spectral dilation for any operator representation and is a subalgebra 
of a disc algebra, of codimension one. 

If f—Tf is a representation of A on a Hilbert space § with the inner product 
(x,y) (x, then there are measures jiXiy (x, y£§) such that \\fiX:y\\ S||x|||| j>|| 
for x, y€§> and 

(Tfx, y) = J f d\ix<y for f£A and x, 

(see [3, p. 173]). Let T be in the maximal ideal space of A and G the Gleason part 
of T. We say that the representation f-+Tf of A is G-continuous (Grsingular) if 

*) This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of 
Education. 
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there exists a system of finite measures {px,y} such that pXjy is G-absolutelv con-
tinuous (G-singular) and ( T f x , y ) = J f dfixy for all f£A and all x, (cf. [2, 
p. 182]) . We need the following three lemmas to give a theorem. The first one is a 
theorem of MLAK [2, Theorem 2 . 3 ] and the second one is one result of FOIA§ and 
Suciu (cf. [3, p. 173]). 

Lemma. 1. Let f-~Ts be a representation of A on Then f-+Tf is a unique 
orthogonal sum Tf=T"f@Ts

f where the representation f-~T"{ (f-*Ts
f) ofAisG-abso-

lutely continuous (G-singular). 

Lemma 2. Let f—Tf be a representation of A on Then there are measures 
Hx.r (*> such that \\nxJ\ S||x|| ||>-|| for x, and 

. ((Tf+T*)x, y)= J (/+g) df.ixy 

for f,g£A and 
A family Ax>y (x, y£§) of measures on X is called semispectral if it satisfies 

the following properties: 

(1) = + 

(2) / <Pd?.x,y = f $ dky,x ($£C(X)), 

(3) S 0, 

(4) : l |A,J^yMllj>ll 

where a and /? are complex numbers, and y is a positive number. 
Now we can give an example of a uniform algebra which has a spectral dila-

tion for any operator representation and is not a Dirichlet algebra. Let T be the 
unit circle and si the algebra of those continuous functions on T which have ana-
lytic extensions / to the interior such that / ( 0 ) = / ( l ) . Then si is a uniform algebra 
on T and T is the Shilov boundary of si. The complex homomorphism x on si 
is defined by t ( / ) = / ( 0 ) = / ( 1 ) . Both d()/2n and the unit point mass <5j at 1 represent 
the same linear functional r on si. Therefore si is not a logmodular algebra and 
hence not a Dirichlet algebra bn T (cf. [1, p. 38]). 

Lemma 3. If /t is an annihilating measure on T for si+si then dfi= 
^c(d0j2n—ddf) for some constant c. . . . 

Proof . We may assume that n is a real measure on T. I f / i annihilates si .then 

J zdn = J z2 dfi — J z3 dn = . . . 

because the functions z—za, z2—z3, z3—z4, ... are all in si. Hence for any positive 
integer n 

J z"(,ifi-cyddi) = 0, 



A spectral dilation 121 

where ct=Jzd\i. By a theorem of F. and M. Riesz (cf. [1, p. 45]), dfi — c1dô1 = 
=hd9/2n for some h in the usual Hardy space H1. The absolutely continuous 
part of ц with respect to dOjln is a real measure and coincides with h d0/2n. Since 
H1 has not nonconstant real functions, h is constant. Thus d\i=c d9/2n+c1dô1 and 
c=—ct because J 1 ф = 0 . 

Theorem. Let f-+Tf be a representation of si on a Hilbert space There 
exists a spectral dilation Ф-»иф of f-*T 

Proof . By Lemma 1 we may assume that the representation /— Tf of si is 
G-continuous or G-singular, where G is the Gleason part of т in the maximal ideal 
space of si. Suppose the representation is G-continuous. By Lemma 2 there are 
measures цх,у (x, y€9j) such that IKJsS| |x | | |Ы| and ((Tf+T*)x, y)=f (f+g)dpx,y 

for fg^si and .г, Since the representation of si is G-continuous, by the 
definition цх-у is absolutely continuous with respect to d9j2n+dbx. Hence 

d\ixa = hXt y d0/2n + cXt y dôx 

where hx>y is in the usual Lebesgue space U(d9\2n) and cXtf is constant. 
Put 

dK.y = (hx,y+cXiy)d9/2n. 
We shall prove that the family Xx<y (x, y(z§>) of measures on T is semispectral, that 
is, it satisfies (1)—(4). (4) is clear. dnax+pyiZ—(a dpXtZ+fi dfiy/z) annihilates si+si. 
Therefore by Lemma 3 for some constant aXiyz 

+ = ax,y,z(d9/2n-dô1), 

consequently 

and Cax + ffy,z (aCx, z + PCy, z) = ~ ax, y, z • 

This implies (1). dpXty—dJiyiX annihilates si+si. 
Therefore by Lemma 3 for some constant bXiJ> 

dpXi y - djiyi x = bx< y (d9/2n — dd,) 
consequently 

hxy HylX bx,y and сху Суд. = bXty. 

This implies (2). By Proposition 7.8 in [3], if f£si and R e / s O then Re 7>^0. 
Hence if uÇsi+si and u^O then J u d f i x x ^ 0 . Thus for udsi+si with mS0 

J и dkXtX = J u(hxx + cxx) dOI2n = J uhxx d9/2n + cx x J ud9\2n = 

= / uhXtX d9/2n+cXiXJ ud51=ju dfiXtX ^ 0. 
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By the Riemann—Lebesgue lemma we know that z"—0 in the weak* topology 
of L°°(ddl2n). Hence the functions z, z2, z8 , . . . are all in the weak*-closure of si 
because zk=(zk-zk~1) + ... +(zn-zn~1)-zn for n>k. Therefore for M € C ( T ) with 
u^Ojud) . X t X ^0 and this implies (3). 

Since the family ?.X)V (.v, of measures on T is semispectral, there is a 
positive definite map of C ( T ) in (cf. [3, Theorem 7 . 1 ] ) . By a dilation 
theorem of Naimark (cf. [3, Theorem 7 .5 ] ) , we obtain a representation $ -»U 0 

of C(T) on a Hilbert space ft which is a spectral dilation of If f£si0 then 
J f dQjln — J f ddi=0 and hence 

(T/x, y)= J f d l x , y = /fhx<y dd/2n = f fd»x,y = (Tfx, y), (x, ye§,). 

Thus T'f=Tf if f£si and the representation is the spectral dilation 
o f / V T , . 

If the representation is G-singular, the family ¡iXiy (x, >'€§) is singular with 
respect to dO^n+ddy. Then Lemma 3 implies that it is semispectral immediately, 
and the proof can be completed as above. 
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Generalized Toeplitz kernels and dilations of intertwining operators. 
n . The continuous case 

RODRIGO AROCENA 

I. Matricial Toeplitz kernels and intertwining operators 

This paper continues a study about the relation between generalized Toeplitz 
kernels and the problem of the dilation of the commutant of contractive semigroups, 
started in [2], where only discrete semigroups were considered. In Section II we 
shall extend that study to general groups. In Section III the group of the real num-
bers is considered and the basic results of this paper on dilation theory — theorems 
(III. 11) and (III. 13) — are obtained; the last includes a continuous version of the 
theorem on the dilation of the commutant due to Sz.-Nagy and Foia§. 

In this section we start with preliminary results concerning the relation between 
intertwining operators, unitary representations of groups, and positive definite 
matricial functions. 

We fix a (topological) group f with neutral element e and consider ££(H)-
valued kernels on T, i.e. functions K: TXT — £?(H), where is the set of 
bounded operators on a Hilbert space H. Such a kernel is said to be positive definite, 
p.d., if 

2 (K(s, t)h(s), h(t))„ s 0, 
s.ter 

for every function h: r— H whose support {t£T: h(t)?i0} is a finite set. 
If K is such that K(st, su)=K(t, u) holds for all s, t, u£T, then K is deter-

mined by the function G on T given by G(s)—K(s, e); conversely, if a function 
G on r is given, setting K(s, t)=G(t~1s) we get a kernel with the above property; 
in that case we say that K or — informally speaking — G are Toeplitz kernels. 
When / / = # ! © #2 is the direct sum of two Hilbert spaces, H1 and H2, then G is 
given by a matrix where GJk(s)£&(Hj, Hk) for all and we say that 
G is a matricial Toeplitz kernel. 

Received April 16, 1985, and in revised form October 15, 1985, 
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A positive definite matricial Toeplitz kernel can be viewed as a relation be-
tween two unitary representations of the given group, in the following sense. 

P ropos i t i on 1. For 7 = 1,2 let Hj be a Hilbert space and Gj\ r-^SC(Hj) 
a positive definite Toeplitz kernel on the group r, such that Gj equals the identity 
on the neutral element of r; let Uj be the minimal unitary dilation of Gj to a Hilbert 
space Fj. Let 01 (Ux, U2) be the set of intertwining operators between U1 and U2, 
considered as a (closed) subspace of F2). Then the relation 

g(s) = PSiWU^s)^, i.e. (WUy(s)hl, h2)F: = (g(s)h1, h2)Hi, 

for all str, h^Hi, h2Ç_H2, gives a bijection fV-*g between the unit ball of U2) 
and the set of functions /: T —• JS? (HX, H2) such that G=(GJk)jik=1, G11=G1, G12—g, 
Gn =g, G22 = G2 is a positive definite matricial Toeplitz kernel. If moreover F is a 
topological group and , G2 are continuous in the weak topology of operators, then 
all such functions g will be continuous in the strong topology. 

Nota t i on . When H is a closed subspace of a Hilbert space F, iF
H denotes 

the inclusion of H in F and the orthogonal projection of F onto H. If g is a 
function on r , we set g(s)=£*(.s_1). If {S1,: /ÇM} is a family of subspaces of 
F, V denotes the minimal closed subspace of F that contains S, for all t£M. 

t£M 

Proof of P r o p o s i t i o n 1. For 7 = 1,2, Uj = {Uj(s): ' sÇ.r}c&(Fj). is. such 
that Gj(s)=P%JUj(s)\H holds for all s ^ r and the minimality condition Fj — 
= V Uj(s)H: is also true; that is the content of Naimark's dilation theorem (see 

ser 
[9]). Let G be as in the above statement; set, for all s, t£F, h^Hx, h2£H2, 

B(Ui(s)K, U2(t)h2) := (G^r1.^, h2)Hi. 

Taking in account that the elements Uj(s)hj span the space Fs, it is easy to verify 
that G is p.d. if and only if B defines a bounded sesquilinear form on Fx X F2 of norm 
P l l ^ l . In that case there exists W€&(FltF2) such that | | IF | |=j |5 | |^; l and 
{Wf l,f^)Ft—B(f1,f^) hold; moreover, from the equalities 

{WU^sWMhil U2(t)h2)Fi = (G^t-isu)^, h2)Ht = . 

= (U2(s)WU1(u)h1,U2(t)h2)F! 

and the minimality condition it follows that WUl(s)= U2(s)W is true for all jÇT. 
Hence, IF is a contraction belonging to R(UJ,U2). 

By setting g(s)=P^' WU-t( s) | for all s£ T, the converse also follows. 
We now apply the preceding result to the dilation of the commutant of two 

semigroups of isometries. 
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P r o p o s i t i o n 2. Let r be a group with neutral element e and rL a subsemi-
group of T. Set r~l = {s£r: .s"^/!} and assume that f f| T f 1 = {e} and rxU 
Uri"1=r hold. Let {^(j): sdand {K(s): sÇ.^} be two semigroups of iso-
metries in the Hilbert spaces Hx and H2, respectively, and Y a contraction inter-
twining them, so that 

(2a) YV^s) = V2(s)Y, for every sÇjlt and ||F|| = 1 hold. 

Let a matricial Toeplitz kernel G be associated with the commutator Y by: 

GJJ(s) = VJ(s) if GJJ(S) = VJ(S-i) if sdTr\ j = 1 , 2 ; 
(2b) _ 

Gï2{s) = V2(s)Y if sir,, G12(s) = V2(s~1)Y if serr1; G21 = G12. 
Then G is p.d. if and only if the following conditions hold: 

(2c) for 7 = 1, 2 there exists a unitary representation U} of f in a Hilbert space Fj 
that contains Hj and satisfies 

= for ser,, Fj = V [ t / y C W ; 

(2d) there exists We , F2) that verifies 

WU^S) = U2(s)W for SER; [ |^| | = i|y||; PHIW\Hi = Y. 

Moreover such a W is unique. 

Proo f . If 7 = 0 , W—0 is the only solution of (2d), so we may always assume 
that Y^O and, by homogeneity, | | r | | = l, as in (2a). 

If G is p.d. Gn and G22 have the same property; let UL and U2 be their minimal 
unitary dilations, respectively. From P¿j Uj(s)\=Gn(s) and (2b) it follows that 
Uj(s) is an extension of the isometry Vj(s) for every s£rx. Thus (2c) is satisfied. 
Let W be associated with G as in Proposition 1; then W intertwines 
Uy and U2, and (Whlt h2)F =(G12(e)h1, h2)H —(Yhls h2)H holds for all h1^H1, 
h2<iH2, thus Pn\W\H=Y, so l= | | r | | =S | | f l n |S l . Consequently (2d) is also sat-
isfied. 

Conversely, assume that (2c) and (2d) hold. From Proposition 1 it follows that 
it is enough to prove that G12 is the same function as ¿ ' ( i ) = Pfr WUi(s)\H ; now, 
if s€ / i , then g(s)=P^WV1(s) = YV1(s)=G12(s); if ser~\ we have for all 
h2^H2, 

(g(s)h 1; h2)„, = {U2{s)Whly h2)Fi = {PfcWK, V2(s~l)lin),,. = 

= {VHs-^YK, h2),u = (G12(s)h1, h2)H%. 
The simplest example is perhaps T = Z , the set of integers, rL=Z, {¡¡(¿Z: n=0}. 

In that case the semigroup Fj-(i') is determined by the isometry Vj( 1), so that we are 
concerned with the commutator -YVl=V2Y of two isometries. Then it is easy to 
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prove ([2], Lemma II.3) that G is p.d. so, if C/t and U2 are the minimal unitary ex-
tensions of VX and V2, there exists W that verifies WU1=U2W, ||lF|| = | |y| | and 
PH\ W\Hi=Y. Note that in general the last equality cannot be improved so as to 
get W to be a strict lifting of Y, i.e., such that PW= YPG1. In fact, the last equa-
tion implies YV* = YPR

H\ U* =PFO WU? = U * = V * , because 
U2 extends V2; thus YV*=V2Y. Now, the last equality is not a consequence of 
YV^V^Y because if V1=V2 = Y=V is any non-unitary isometry then YV*=W*^ 
*I=V*Y, e tc . 

Let us now go from the discrete to the continuous case. Set r = R = { r e a l num-
bers}, r1=R1 = {s£R: 5S0}. In order to apply Proposition 2 we assume that (2a) 
holds and consider G given by (2b). Working as in [9], page 30, we can prove that 
G is p.d. whenever the semigroups VX and V2 are weakly continuous. Thus: 

C o r o l l a r y 3. Let {Pi(i)}, (•?)}, s^O, be two continuous monoparametric 
semigroups of isometries in the Hilbert spaces H1, H2, respectively, and let 

S?(i/i, H2) be a contraction intertwining them, i.e., such that 

YVL(S) — V2(S)Y for jg0, ||F||Sl. 

For j= 1,2 let {Uj(s)}, s£R, be a minimal extension of Vj to a continuous mono-
parametric group of unitary operators in a Hilbert space Fj. Then there exists a unique 
operator F2) such that 

WUJs) = U2(s)W, for every s£R; Y = PftW\Ht-, ||F|| = ||W||. 

II. Generalized Toeplitz kernels and dilations of the commutator 
of two contractions 

When we consider a commutator of two contractions instead of isometries 
the method of the preceding section does not work. In fact, the associated matricial 
Toeplitz kernel need not be positive definite. (See [2], ILlb.) Nevertheless a suitable 
extension of such kind of kernels allows a similar approach to the more general 
situation. 

Let rx be a sub-semigroup of the group T. A generalized Toeplitz kernel (GTK) 
on (T, Tj) is by definition a set 

K = {(KJk), j,k = 1,2; H„H2} 

composed of two Hilbert spaces, H1 and H2, and four functions 

Ku: r - JSPtfy; K12: r1^&(H1,H2); K21: r^1 - &(H2, HJ; K22: r — £f(H^). 
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We say that K is positive definite when 

2 2 (KJk(r\s)hj(s), hk(t))Uk ^ o 
j,k=1,2 s,ter 

holds for every pair of functions of finite support h1: r^Hy, h2: T~1-*H2. 
When r x = r we have a matricial Toeplitz kernel. 
Before, in [5],'the vectorial case was considered, and in [2] the subject was 

related to the dilation of a commutant of two contractions. Here we shall consider 
the general relation between GTK and lifting properties. 

We start extending Proposition (1.1). 
P r o p o s i t i o n 1. For j ' = l , 2 let Hj be a Hilbert space and Kj an Jz?(//;)-

valued positive definite Toeplitz kernel on an abelian group F, such that Kj equals the 
identity on the neutral element e of call Uj the minimal unitary dilation of Kj to a 
Hilbert space Fj. Let ^ c f be a semigroup such that and every u£T can be 
written as u=t—s,t,s^.r1. Set: 

E+:= V [U^H^F,, E. := V [U2(-t)H2]czF2. 
Igr, 

Then the formula 
(la) k(s) = Pu~YU1(s)\Hi, ser, 

gives a bijection between the operators Y£ , EJ) that satisfy 

(lb) YU^s)?^ = PtU,(s)Y, for sfSr, ||T|| = 1, 
and the functions k such that K={(KJk), k=l, 2; Hlt H2), given by K11=K1, K12=k, 
K21=Jc, K22=K2, isap.d.GTKon (f f ) . Set 

L(Y) = F2): W£R(Ult U2), || W\\ :: 1, W\E+ = Y}. 
Then 
(lc) g(s) = PfiWU^s)^, ser, 

gives a bijection between L(Y) and the set of functions g: r^-SCiH,, H2) such that 
Gi!=Kn, G12=g, G21=g, G22=K22 defines an element G=(GJk)2

 k=1 of the class 
y(K) of the p.d. matricial Toeplitz kernels that extend K. In particular, L(Y) is 
lion void if and only if <§{K) is non void. 

Proof . Assume first that (lb) holds; then K satisfies the following equations 
for every hlt h2 as in the definition of p.d. GTK: 

2 2 <Kjk(s-t)hj(s), hk(t))fIk = 2 {(Uiis^is), u.m^t))^ + 
' j,k=i,2 s.ter s.ter 

+2Re(YU^h.is), U2(t)h2(t))E_ +(U2(s)h2(s), U2{t)h2{t))E_) = 

= 2U2(t)h2(t))E, + \\2U2{t)h2(t)% , 
ser sir rer ter 1 

which is a non-negative real number because || Y|| s 1; thus, K is positive definite. 
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Conversely, if the last is assumed, set for all hi, h2 as above 

W h 2 ) = Z {(K^s-Oh^s), h2(t))Hl: seru t ^ 1 } . 

Then D defines a sesquilinear form on E+XE_ such that ||Z>||^1. So there exists 
Y^Se ( £ + , £ _ ) which satisfies | | F | | S l and <Ya,b)E =D(a,b) for all (a, b)£E+X 
XE_. The proof of Naimark's dilation theorem shows that we may assume 
Uj(s)lij(t)=hj(t—s) to be always true. Thus 

{YU,(u)hu h2)E_ = Z {(Kuis-t^is-u), h2(t))fl!: ser,, i^Tf1} = 

= (Yhu U2(—u)h2)E_ = (PtU2(u)Yhu h2)E_. 

From the definitions of E+ and E_ it follows that (lb) holds. Our first assertion 
is proved. 

Now let W£L(Y). From (1.1) we know that G is p.d. For any s€r l 5 X1^H1, 
X2£H2 we have that 

(G12(s)Xl, x2)lh = (P,i^WU1(s)x1, x2)H, = <P#a-(P/?|£+)^C*)*i> x2)„t = 

= (P,Fi:YU1(s)x1, x2)„, = ( K y ^ X I , X2)LH, 

so If we start by assuming this, we know that (lc) defines a contraction 
U2). For all x^H!, x2£H2, ter-1 we have: 

(PtWUMxi, U2(t)x2)E_ ^{WU^Xy, U2(t)x2)F, = (WUAs-Qx^x^p, = 

= {PalWU!(5 — i ) 5 x2)fh = (g(s-t)Xl, x2)Ht = (k(s-i)*i, *2>h2 = 

= (PfcYUAs-^xlf x2)Hi = (Pl'U^-DYU^x,, x2)Hl = (YU1(s)x1, U2{t)x2)E,. 

Thus PltW\Et = Y. 
If K is a p.d. GTK, the (possibly void) set K) is naturally related with the 

set °U(K) of the minimal unitary dilations of K, i.e., of the unitary representations 
U of r on a Hilbert space F such that: 

H1,H2czF; F = V {V [ t f W , ] } ; 
j-1,2 s£r 

KJk(s-t) = Pflk(s-t)\Uj, for (s, t)erjxrk, j,k = 1,2, with r2 = r1-\ 

In fact, if Ue<W(K), Gjk(s)=Pf
Hk U(s)\nj, for s^r, defines an element G={Gjk))k=1 

of 'S(K). Conversely, if Gf/S(K), its minimal unitary dilation U satisfies the con-
ditions required to belong to %{K~) and, by its very definition, is related to G by 
the last equality. Moreover, this correspondence between U and G is a bijection if 
we identify in <%(K) the representations that are equivalent under unitary isomor-
phisms that leave invariant all the elements of Hx and H2. Thus, if rS{K) non void 
for every positive definite, generalized Toeplitz kernel K on (F, it follows that 
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Naimark's dilation theorem extends to these kernels. In such a case we could say 
that (r, rx) has Naimark's property. 

When r=Z, r1=Z1 (lb) reduces to YV+=V*_Y, with V+, isometries. 
It is known that L(Y) and ^(K) are both non void and these two facts have been 
proved independently. Because of (1) each of them can be deduced from the other 
one. In fact, (Z, Z t) has Naimark's property [5]. On the other side the lifting of 
YV+=V*_ Y to a commutator of isometries can be obtained as a particular case 
of the. theorem of Sz.-Nagy and Foiaj. More precisely, this theorem is based on a 
previous result ([9], Proposition II.2.2) which implies that, if V is a minimal iso-
metric dilation of V* to then there exists Y'££?(E+,E') such that Y'V+ = 
V'Y', Y=P% Y' and | | y ' | | s l . Now, it is well known that every commutator 
of isometries can be lifted to a commutator of their minimal unitary extensions 
(this has also been proved in the previous section); if U2 is a minimal unitary dila-
tion of F_, U2 has the same property with respect to V* and V; it follows that 
there exists W£L(Y), so that this set is non void. In particular, this gives another 
proof of the fact that is non void (which is certainly less simple than the original 
one presented in [5]). 

Now we can state the relation between GTK and commutators of semigroups 
of contractions by means of the following extension of proposition (1.2). 

P r o p o s i t i o n 2. Let r be an Abelian group with neutral element e and f i a 
sub-semigroup of F. Set (—rl) = { s f _ f . —sÇ^} and assume that fin(—ii) = {e} 
and T 1 U ( - r 1 ) = r . Let (7i(.s): sÇFj} and {T2(s): s^rj be two semigroups of con-
tractions in the Hilbert spaces H1 and H2, respectively. Let ZÇif (Hlt H2) be 
such that: 
(2a) XT^s) = T2{s)X, for s£r1} and \\X\\ = 1. 

Let the GTK K={(Kjk), j,k=1,2; Ht, H2} associated with the commutator (2a) 
be defined by 

(2b) KJJ(S) = TJ(S) if Kjj(s) = T/(—s) if s ^ - T J , J= 1,2; 

K12(s) = T2(s)X for stri; K21=K12. 

Then K is p.d. and &(K) is non void if and only if the following conditions hold: 

(2c) for 7 = 1 , 2 there exists a unitary representation Uj of T in a Hilbert space Fj 
that contains H} and satisfies 

TJ(s) = P%Uj(s)\Bj, for strlt Fj = V [UJ(S)HJ]; 
sÇT 

(2d) there exists F2) that satisfies WU^s)^ U2{s) W for all 

•sÇTi P U = m and PftW\Ei = XPSl, where £x:= V s€I\ 
9 
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Moreover, if these conditions are satisfied, (lc) gives as in Proposition 1 a bijection 
between and the set of operators W as in (2d). 

P roof . We start assuming K p.d. and non void; then A"u and K22 are 
also p.d. and (2c) follows from Naimark's dilation theorem. For a given G£&(K), 
.(1.1) shows that there exists a contraction W^RiUx, U2) such that G12(s) = 
=PF

H\WU1(s)\Hi holds for all s^T. Then, for xiH^sfTi, we have P£WU1(s)x= 
=G1l(s)x=K12(s)x=XT1(s)x=XPfrU1(s)x=XPfriUl(s)x and (2d) follows. As-
sume conversely that (2c) and (2d) are true. First of all, it is easy to see that Uj 
is a minimal unitary dilation of Kj}; thus the last is positive definite and Uj is es-
sentially unique. Let G=(GJk)2j k=1 be the matricial Toeplitz kernel associated with 
the commutator (2d); then GJJ=KjJ,j= 1,2, and G12(S)=G21(S)=PI

F,'I fVC/^s)!^, 
for s£r. We know that G is p.d.; moreover, for s£rlt U1(s)H1cE1 so we have 
K12(S)=T2(S)X=XT1(S)=XPE

H\U1(S)\e=PF
H*I W U ^ S ^ G ^ S ) . Thus Gf^(K). 

In the next section what has been done up to now will be applied to commutators 
of continuous monoparametric semigroups of contractions. Here, as an example, 
we shall recall and complete some results of [2]. The following holds. 

Let 7i and T2 be contractions in Hilbert spaces Hx and H2, respectively, and 
H2) such that XTX=T2X. Let V^&iEJ, V2e^(E2) be the minimal 

isometric dilations and U1€£f(F1), U2e^C(F2) the minimal unitary dilations of 71, 
T2, respectively. The following two problems are considered: 
i) find F€JS?(£'1,£2) such that YVX=V2Y, PE

H\Y=XPE
H\, \\Y\\=\\X\\-

ii) find W€&(FltFj such that WUt=U2W, PF
H'W\E=XPE

H^, \\W\\=\\X\\. 
If X=0 both problems have only the trivial solution, so it is also assumed that 
№1 = 1. 

Let K={(KJk),j, k=l,2; Hu H2} b e t h e G T K o n (Z, ZJ given by Kjj(n)=TJ 
if n^O, Kjj(n)=TJ-n if n^O, / = 1 , 2 ; K12(n)=XT? for n^O and K21=K12. 

Theorem 3. 
a) Both problems have solutions. 
b) K is positive definite. 
c) There is a bijection between the sets of solutions of these problems and with 

the set ^(K) of all the positive definite matricial Toeplitz kernels that extend K. 
d) This bijection can be obtained as follows: given Ge^(K), let F=Fj\JF2 

be the space of the minimal dilation of G; then set W=PE |f , solution of (i), and 
Y=Pi\E~Pl\ W\Ei, solution of(ii). 

e) The solution of these problems is unique if and only if one of the following 
equalities is satisfied: 

{(I-X*X)1l2H1}-®{(U1-T1)H1}-= {(I-X*X)V*T1h+(U1-T1)h: htHj-, 

{(I-X*X)1'2H1}-(B{(U2-T2)H2}- = {(I-X*X)y2h®(U2-T2)Xh: hZHj-. 
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P r o o f . 

a) Follows from (c) and (b) which imply 
b) was proved in [2], Proposition II. 1; 
c)—d) the assertions concerning Problem (ii) stem from Proposition 2; those 

concerning Problem (i), from [2], Theorem II.4; 
e) follows from (c) and the theorem on the uniqueness of the lifting [1]; also, 

because K) has only one element if and only if one of these equalities is satis-
fied ([2], Theorem II.8). 

The proof is done. 

R e m a r k . The above theorem includes the following result (see [8]) for Tl5 T2, 
X, Ut, U2 as before there exists F2) such that WUX=U2W, | |A1- | | 
and W\Ht hold. 

III. The continuous case 

Our task in this section is to show that the results for the discrete case can be 
extended to the continuous one also. Specifically, we shall show that Proposi-
tion II.2 gives positive results when r=R, the set of real numbers, and r1=R1= 
= 0}. . . . : 

Following our general approach we shall first see that (R, Rx) has Naimark's 
property; in other words, we shall state the dilation theorem for. continuous operator-
valued GTK, proofs of which were given in [6] and [7] for the scalar case. That 
result will then be applied to the commutator of two continuous semigroups of 
contractions. 

Our method will be to relate each GTK on (R, RJ with another on (Z, Zx) 
by means of a systematic use of the results concerning semigroups, their dilations 
and cogenerators, of S Z . - N A G Y and FOIAÇ ([9], Sections III.8 and III.9). 

We start with a p.d. GTK on (R, Rj), K={(KJk), j,k=1, 2; Hlf H2}, such 
that the KJk are weakly continuous functions. We keep the notation of the preceding 
section, in particular that of Propositions II. 1 and II.2. Let U[ and U2 be the co-
generators of XJl and U2, minimal unitary dilations of Ku and K22, respectively. 
It is known that U[ and U2 are unitary operators and that the following holds ([9], 
Theorem III.8.1): 

1) C/;=strong limit j=l, 2, where <PS is the holomorphic function 
s - 0 + 

in the complex plane minus the point (1+s) given by 0s(z)=(z— l+s)/(z—1—s), 
for s€Rt. ' ' ' • • 

9* 
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What follows is based in the next equalities ([9], III.9.6, III.9.10). 

2) FJ = V [ U J ( S ) H J ] = V r U ' / H j i , j = 1 , 2 ; 
sgK n€Z 

•' ' E+= V [Ui(s)HJ= V WHJ, 
iiezj 

V [U2(s)H,] = V [ I t f f f J . 
-SSJ?! - n e z , 

As we said, a GTK on (Z, Z2), AT' = {(A^), j,k=\,2; HX, H2} will be associated 
with K. We start defining K'n and K22 in the natural way: 

3) K;.j(m):= P^U'jm\Hj, for m£Z, J = 1 , 2 . 

Then, from (1), we get that 

3a) Xj^rn) = strong limit • sign m)]|„ , / = 1, 2. 

Let 2) be the sesquilinear form on E+XE_ determined by 

4), DiU^h,, U2{i)h2) = (K^s-t)^, h2)Hl, 0, i = 0, 

. 

From the very definition we get the identity 

- • • 4a) D(U1(s—t)h1, h2) = DiU^s)^, U2(t)h2) = D(K, U2(t-s)h2). 

We want to prove the corresponding result for the discrete case, that is, 

4b) DiU'r^K, h2) =D(U?hx, U'2%) = D(h,, 

for all m^O, w^O, h ^ H , , h2£H2. In order to do that we refer to the identity ([9], 
III.9.9) and to the one we obtain from it by conjugation. They imply, respectively, 

4c) U'^h, = limit y dk(s, rr^U^ks)^, m ^ 0, h^H,, 

and 

4d) U2"h2 = limit Y dk(-s, -n)U2(ks)h2, n si 0, h2£H2, 

where, for s£Rx and m£Z l 5 {dk(s, m)}£L0 are the coefficients of the Taylor series 
of the function <P™. Since K is positive definite, D is bounded and consequently the 
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following hold: 

4e) D(U'1m-"h1, h2) = limit Z dk(s, m-r^DiU^ks)^, hX 

D(Uimhl5 U?hJ = limit Z dk(s, m) dj(s, -r^D^ks)^, U2(-js)h2) = s"*0+ k,j=0 

= limit Z [ 2 dv-j(s, Tn) dj(s, -riftD^ivs)^, h2). 
v = 0 y _ 0 . . . . . . . 

In order to prove the last, recall (4a), set v=k+j and remark that the dk(s,m) 
are real numbers. Then the first equality (4b) stems from 

k 
dk(s, m + n) = Z dk-j(s, m) dj(s, n), . ? € m , n, keZlf 

j=o , .; 
which is a consequence of <t>™$"s = The second equality (4b) can be proved 
in the same way. 

We now complete the definition of K' by setting 

5) (K[2(m)hx, h2)Hz = D{U'xmK, h2), miZx, h^H^ h2tH2; K'2i = R'12. 

From (3a), (4) and (4e) we get the following direct formulas for K' in terms of K. 

eo 

6) Kjj(m) = strong limit 2 dk(s, |m|)^:j7[(sign m)ks], m£Z, j = 1, 2; 
o+ )t=o 

oo 
K^m) = strong limit Z dk(s, m)Kl2(ks), m£Zx. 

s - 0 + k-0 

We shall see that K' is p.d. Set Z2 =—Z x and let f y . ZJ—HJ be functions 
with finite support, j=1, 2. From definitions (3) and (5), and the identity (4b) it 
follows that 

2 2 (Kjk(m-n)fj(m),fk(n))Hk. = || ^ C/im/iM||K + 
j,k=l,2(.m,n)ezj-xzk m€ zt 

+ 2ReZ)( Z UTfiim), 2 U'2nf2{n)) + \\ Z UTMn)fFl ^ 0, 
mi Z, it e Z, it 6 z, 

because K p.d. implies | | D | | s l . 
Consequently, With each G'£&(K') we,shall associate 

a G ^ { K ) , getting in that way a bijection and, in particular, proving that 
is non void. In order to do that we refer once more to the relation between matricial 
Toeplitz kernels and intertwining operators. Given G'=(Gjk)j k=1€&(K') let 

F2) be the operator determined by 

7) (Tc.Ui^U^h^^iG^im-n^h^, m, n£Z, h^Jh, h2ai2. 
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As we know, 

7a) TG,U[ = U'2TG., \\TG,\\ ^ 1, 

and it is clear that 

7b) G[2(m) = P£\Ta.U?\„x = UimTG.\Hl, for m€Z. 

We shall show that TG. also intertwines U1 and U2 : 

7c) TG. U^s) = Ut(s)TG., for sOt. 

It is enough to see it for all ¿>0 ; in order to do that we refer to a reciprocal ([9], 
III.9.8) of a formula we have already used; it implies that 

8) Uj(s)h, = limit 2 ^CkW/hj, for ^ > 0 , hj£Hj, j= 1,2, 
' - 1 fe=0 

where {cfc(s)}"_0 are the Taylor coefficients of the function ejz)—exp ^—""j-)' 

j > 0 . From (8) it follows that TG- C/1(s)/i1=limit 2 rk ck(s)U2
kTG.h1 = U2(s)TG.h1, k=o 

so (7c) is proved. 
Let G12: R-^SCiHx, H2) be given by 

9 ), (Gu(s)k>fàBt = (TG>Ul(s)h1,hàet, scR, h^H,, h2£H2. 

Setting Gn:=Ku, G12, G21:=G12, G22\=K22 we define a p.d. matricial Toeplitz 
kernel G. It only remains to see that G extends K. Since 

K) = (K'^k)^, h2)Hl = (Gi2(k)hu h2)H: = (TG,Ui%, h2)F2, 

it follows from (8) that, for 0, we have 

( K ^ h , h2)Bi = D^SVH, h2) = (TG,[limit 2 Sc.isWhJ, h2)Fi = • r—i~ k = o 

= (T^UA^h, h2)F2 = (G^s)^, h2)Hl. 

Thus, G£%(K). Also, it follows from (9), (8) and (7b) that 

10) G12(S) = strong limit 2 ^^(liDGiaffcisigni)], for s£R. 
r-1-". t=o 

Conversely: 

10a) G'12(m) = strong limit 2 dk(s, |w|)G12[/cjr(sign m)], for m£Z. 

So we have proved the following 
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T h e o r e m 11. Let K={(Kjk), j,k=1,2; Hx, H2} be a positive definite gen-
eralized Toeplitz kernel on (R, RX) such that the functions Kjk are continuous in the 
weak topology of operators. Then there exists a p.d. GTK K' on (Z, Zx), such that 
there is a bijection between and &(K'). 

The correspondence K-+K' given by this theorem is reversible; the converse of 
formula (6) is the following: 

OO • • 
11a) AT,,(J) = strong limit 2" s£R, j= 1,2; 

r - l " k=0 

K12(s) = strong limit 2 ^c^K'uik), s£Ri-
r-1- k=0 

Theorem (11) allows us to transfer a uniqueness condition from the discrete 
case ([2], Proposition 1.6) to the continuous one. 

C o r o l l a r y 12. Let K be as in theorem (11). Then contains only one 
element if and only if at least one of the following two conditions is satisfied: 

i) { ( I - Q * Q ? l i E } - = {(/—2*01/2 UiE+}~, 

ii) {(I-QQ*)1>2E-}-= {(I-QQ*y'*U'2E-}~, 

where U[, U2 are the cogenerators of the minimal unitary dilations of Ku, K22, respec-
tively, and Q is the operator from 

E+ = V Ux(s)H, to E_ = V U2(s)H2, 
sSO s S 0 

given for 0, /s=0, h^H-t, h2£H2 by 

(QUMK, U2(t)h2)E_ = ( A ^ + O/iiAW 

As an application of what has been done in this section we shall state a theorem 
on the commutator of two semigroups of contractions which is the continuous 
version of (II.3). 

T h e o r e m 13. Let {7i(s): iSO}, {T2(s): 0} be continuous monoparametric 
semigroups of contraction an Hilbert spaces Ht, H2, respectively, and (Hx, H2) 
such that XTi(s)=T2(s)X holds for all s^ 0. Let (F2(I): J S 0 } C 
c i f ( £ 2 ) be minimal isometric dilations and {U^s): s£R)<z£P(Fx),{U2(s): s£R}a 
CJS?(F2) minimal unitary dilations of the semigroups 71, T2, respectively. The following 
problems are considered: 

i) find YZ&iE^Ej such that YV1(s)=V2(s)Y, for P^Y=XPfr and 
\\Y\\=\\X\\; 

ii) find WZ&iF^Fi) such that WU1(s)=U2(s)W, for s£R, P%>W\E =XP% 
and \\W\\ = \\Xl 
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Discarding the trivial case, it may be assumed by homogeneity that, ||.y|| —1. 
Let K= {(KJk), j,k=l,2; Hu H2} be the GTK on (R, RJ given by 

KJJ(S) = TJ(s) i f J = 0 , KJJ(S) = T J * ( - S ) i f i S O , j = 1 , 2 ; 

K12(s)=T2(s)X if s^O, K21=K12. Then: 
a) Both problems have solutions. 
b) K is positive definite. 
c) There exist bijections between the set of solutions of (i), the one of (ii) and 

and these bijections are determined by 

_i(WU1(s)h1,U2(t)h2)F2, for s,t£R, h.elf, h2£H2 

<G*(s-№*WB*-\Qrv1(s)h1,V2(t)hi)Et, f o r 

d) The solution of both problems is unique if and only if at least one of the fol-
lowing equalities is satisfied: 

{(I-X*Xy'2H1}-®{(Ui-T{)H1}-={(I-X*X)i'*T[li+(U,
1-T[)h: h^Hj-, 

{Cl-X*Xfl2H1}-®{(U'2-n)H2}-={{I-X*Xy'2h®(U'2-Tl)Xh: htHj-, 

where Ux, U2, Tx, T2 are the cogenerators of Ux, U2,TX,T2, respectively. 

Proof . First step: some properties that we have already used ([9], Sections III.8 
and III. 9) show that U'j (Vj) is the minimal unitary (isometric) dilation of Tj, where 
Vj' denotes the cogenerator of the semigroup V}; moreover, XT[=T'2X holds; 
from WU{=U'2W it follows that WUl(s)=U2{s)W for all s£R, and from 
YVX=V2Y, that YV1(S)=V2(S)Y for all S^RX. 

Second step: apply Theorem II.3 to T[, T2, V{, V2 , Ux, U2, calling K' the GTK. 
on (Z, Zx) that in its statement is called AT. ; , : 

Third step: note that (11a) relates precisely the kernels K and K' we are con-
sidering here. 

Fourth step: apply Theorem 11 of this section. 

Remark . The applications of generalized and matricial Toeplitz kernels to 
the realization of linear systems and scattering theory are considered in [3] and [4]. 

Added in p roofs . A more conceptual approach to the concept of section 
III is given in [10]. ' 
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Contractions quasisimilar to an isometry 

PEI YUAN WU*) 

1. Introduction. The bounded linear operators 7i and T2 on complex, separable 
Hilbert spaces and §>2 are quasisimilar if there are operators X: Si— 
and Y: with trivial kernel and dense range such that XT1=T2X and 
YT2=TXY. This paper is concerned with the question when a contraction is quasi-
similar to an isometry. This problem has been studied before: in [12] for contrac-
tions with finite defect indices, [5] for subnormal contractions and [15] for hypo-
normal contractions. Our main result in this paper (Theorem 2.7) generalizes all 
these previous ones. We show that a contraction T whose C.0 part has finite multi-
plicity is quasisimilar to an isometry if and only if its C.x part is of class Cu and 
its C.0 part is quasisimilar to a unilateral shift. These latter conditions can further 
be expressed in terms of the inner and outer factors of the characteristic function 
of T. In § 3, we show that in certain circumstances quasisimilarity to an isometry 
even implies unitary equivalence and partially verify a conjecture we proposed 
in [15]. 

Recall that a contraction T ( | |T | |^1) is of class C.„ (resp. C0.) if T*"x^0 
(resp. T"x-~0) for all x; T is of class C.j (resp. C^.) if T*"x-(-0 (resp. T"x+0) 
for all x^O. Cxp=Ca.f)C.p for a, /?=0, 1. Any contraction T can be uniquely 

triangulated as ^ J , where Tx and T2 are of classes C.x and C.0, respectively 

(called the C.x and C.„ parts of T). A contraction T can also be decomposed as 
U®T', where U is a unitary operator and T' is completely nonunitary (c.n.u.); 
U and T' are called the unitary part and c.n.u. part of T. T is said to be of analytic 
type if it has no singular unitary direct summand. For such T, the functional calculus, 
(p(T) for cp£H°° is well-defined. For the details and other properties of contractions, 
readers are referred to SZ.-NAGY and FOIA§' book [7]. 

*) This research was partially supported by National Science Council of Taiwan, China. 
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d 
Let 71 and T2 be operators on and § 2 , respectively. We use TX<T2 to denote 

that there is an operator X\ § 2 with dense range and satisfying XT1=T2X, 
and TX-<T2 if the intertwining X is both injective and with dense range (called a 

d d d 
quasiaffinity). TX~T2 if TX<T2 and T2«C71; TX~T2 if TX<T2 and T2<TX. 
Tx is similar to T2 (TX^T2) if the intertwining operator X is invertible; 71 is unitarily 
equivalent to T2 (71 = T2) if X is unitary. The multiplicity fiT of an operator on § 

OP 
is the minimum cardinality of a set for which § = V T"R. Note that 

n = 0 
d 

TX<T2 implies ¡iT ^nTt. In the following, we use S„ to denote the unilateral shift 
with multiplicity n acting on H*. 

2. Main results. We start with the following proposition. 

P ropos i t i on 2.1. Let T be a contraction on $ and 1SB<«>. Then T~Sn 

if and only if T~S„. Moreover, in this case, T is of class C10, and there exist quasi-
affinities X: § — H* and Y: //n

2—§ which intertwine T and S„ and such that 
XY=8(S„) and YX=S(T) for some outer function 8 in H°°. 

Proof . Assume that T~S„. We first show that T is of analytic type. Let 
T=US®T' on § = § j © § 2 , where Us is a singular unitary operator and T' is a 

contraction of analytic type, and let y = j ^ j . H 2 — § = § i © § 2 be an operator 

intertwining S„ and T and with dense range. Then Yx intertwines S„ and Us and 
has dense range in . It can be lifted to an operator Yx which intertwines the minimal 
unitary extension U of S„ and Us (cf. [4, Corollary 5.1]). Since U is absolutely con-
tinuous and Us is singular, Tx must be the zero operator (cf. [4, Theorem 3]). Hence 
y 1 = 0 and it follows that T= T is of analytic type. 

Let X: be an operator intertwining T and Sn and with dense range. 
Then XY commutes with Sn and has dense range in H2. We may assume that 
|| Z y || s i . Thus Z y is the operator <P+ of multiplication by a contractive operator-
valued analytic function <P on which is even outer (cf. [7, Lemma V.3.2]). By 
[7, Proposition V.6.1], 0 has a scalar multiple there exists another con-
tractive analytic function Q such that Q {).)<!>(?)=6 {>) I and <P(X)Q(X) = 
=5(X)I 1). Since 0 is an outer function, we may take 8 to be outer (cf. [7, 
Theorem V.6.2]). Let Z=Q+X. Then Z intertwines T and Sn and ZY=(Q+X)Y= 
=Q+$+=S(Sn). Multiplying both sides by Y, we obtain YZY=Y8(S„)=8(T)Y 
(here we need the fact that T is of analytic type). Since Y has dense range, we infer 
that YZ=8(T). Note that 8 is outer implies that S(S„) and 5(T) are quasiaffinities 
(cf. [7, Proposition III.3.1]). It follows easily that X, Y and Z are all quasiaffinities. 
This shows that 7T~S'n. That T is of class Cw can be easily deduced. 
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C o r o l l a r y 2.2. Let T be a contraction of analytic type and l s n < « > . Then 
d 

T~S„ if and only if fiT=n and T-<Sn. 

P r o o f . The assertion follows from Proposition 2.1 and the fact that fiT=n 

implies that S„-<T (cf. [15, Lemma 2.3]). 

When T is subnormal, the preceding corollary was essentially proved by HAS-
TINGS [5, Proposition 4.1]. For another set of conditions in order that T ~ S n , 
compare [1, Theorem 2.8]. 

C o r o l l a r y 2.3. Let 7 " = ^ * j on §=§1©§2 be a contraction of analytic 
d 

type. If 7i is not missing and T2<Sn, then /ir£n +1. 

P r o o f . Since we may assume that Let X: §>2^»H2 be 
an operator intertwining T2 and S„ and with dense range. Let Y= [0 X): §=§!© 
©§2—-ff„2. Then Y intertwines T and S„ and has dense range. If pT=n, then 
T~S„ by Corollary 2.2 and so by the proof of Proposition 2.1 y is injective, which 
implies that § i = {0}, a contradiction. Hence we have +1. 

The next theorem characterizes those contractions which are quasisimilar to 
a unilateral shift with finite multiplicity in terms of their characteristic functions. 
It generalizes [12, Lemma 1] for contractions with finite defect indices. For any 
contraction T, let 0T denote its characteristic function (consult [7] for its definition 
and properties). 

T h e o r e m 2.4. Let T be a contraction and l s n < = » . Then T~Sn if and 
only if T is of class C10, pT—n and there exists a bounded analytic function Q such 
that QQT—8I for some outer function § in H°°. 

P r o o f . Assume that T~Sn. It is easily seen that T is of class Cio whence 
c.n.u. We may consider its functional model, that is, consider 7"acting on § = / / £ © 
QGTHl by Tf=P(e"f) for / £ § , where t>=ran(/-T*T)1'2, = r a n ( I - 7 T * ) 1 / 2 

and P denotes the orthogonal projection onto § (cf. [7, Proposition VI.2.1]). By 
Proposition 2.1, there exist quasiaffinities X: and Y: //n

2—§ which inter-
twine T and S„ and satisfy XY=S(Sn) and YX=8(T) for some outer function 
3 in H°°. Note that Xf= <Pf for / € $ and Yg=P(1/g) for g£H2, where and W 
are bounded analytic functions satisfying <P0T=O (cf. [7, Theorem VI.3.6]). From 
XY=S(Sn) and YX=5(T), we deduce that <P1/=d and V$-5 = -0TQ for 
some bounded analytic function Q. Since 0 T is an inner function (cf. [7, Proposi-
tion VI.3.5]), we have 

Q0T—8 = 0$0T(Q0T-D) = 0*T(0TQ-S)0T = ©$(- V&)0T = 0. 
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Therefore Q0T=ôI as required. The reverse implication follows as in the proof 
of [12, Lemma 1]. 

Using Proposition 2.1, Theorem 2.4 and [14, Theorem 2.1], we can obtain the 
following interesting result. 

[ T, * 1 <* 

q j I be a contraction. If T2~S„ for some 1 then T~TL®T2. 

Proof . If Tis c.n.u., then the conclusion follows from the results cited above. 
For general T, let T=U@T' on § = « © £ , where U is unitary and T' is c.n.u. 

Assume that T— | q1 * j is acting on § = § 1 © § 2 . We first check that f$2 = ~-

Since T2~Sn implies that T2 is of class C10 by Proposition2.1, for any x£§>2, 
we have T*mx=T%mx-~0 as If a ^ ^ © . ^ , where x^Sx and x2£2, 
then ZJ*mxx —*-0. Since U is unitary, this implies that x1=0 and thus x = x 2 £ £ . 
This proves § 2 Q f i which is equivalent to . It is easily seen that 

T = 
U 0 0 
0 T{ * 
0 0 T2 

on $ = « ' © ( $ ! e i i ) © $ 2 . 

Since * | is c.n.u., from above we have j — r / f f i i ; and therefore 

We remark that it is unknown whether the preceding theorem is still valid 
under n = °°, that is, when T 2 ~S m or T2~S'00. In a very special case, this is 
indeed true. 

Theorem 2.6. Let q1 * j be a contraction. If T2 is similar to an isometry, 

then T is similar to Tt ®T2. 

Proof . If Tis c.n.u., this follows from [8,.Theorem 2.4] and [14, Theorem 2.1]. 
For the general case, assume that T2 is similar to the isometry V = W© Sn, where 
IF is unitary and S„ is some unilateral shift. It is easily seen that T2 can be triangulated 

as [ I *J with T Z ^ W and T ^ S „ . Letting 7 ; = ^ * ] , we have * J . 

Since T4~5„, proceeding as in the proof of Theorem 2.5 we obtain r « r 5 f f i r 4 . 
On the other hand, T 3 ^ W implies that T ^ T ^ T s and r 2 ^ r 3 © r 4 (cf. [9, Theo-
rem 2.14]). Thus TzzT1@Ts(BTi^Ti®T2 as claimed. 

Now we are ready for our main result. 

Theo rem 2.7. Let T be a contraction and T= ^ q1 * j be its triangulation of 

type j ^ 1 J . Assume that 00 • Then the following statements are equivalent: 
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(1) T is quasisimilar to an isometry; 
(2) 7i is of class C u and T2 is quasisimilar to a unilateral shift; 
(3) 0e (the outer factor of 0T) is outer from both sides, 0¡ (the inner factor 

of ©r) is inner and *-outer, and there exists a bounded analytic function Q such that 
Q©¡=31 for some outer function 5 in H°°. 

Moreover, if T is of analytic type and is quasisimilar to the isometry V, then 
there are quasiaffinities X and Y intertwining T and V such that XY=5(V) and 
YX=5(T). 

Proof . (1)=K2): Assume that T^V-U®S„, where U is unitary. Since T± 

and U are of class C.x and T2 and S„ are of class C.„, we can easily deduce that 
T2~S„. This, together with implies that T2~Sn by Proposition2.1. 
On the other hand, T<y implies that T is of class Cx. whence Tx is of class C u . 

(2)=>(1): This follows from Theorem 2.5. 
(2)<=>(3): Since 0e and 0¡ correspond to the characteristic functions of Tx 

and T2, respectively, this follows from Theorem 2.4 and [7, Proposition VI.3.5]. 
The assertion concerning the intertwining quasiaffinities can be deduced easily 

from [14, Theorem 2.1]. 
As we remarked in §1, the preceding theorem generalizes [11, Theorem 3] 

for contractions with finite defect indices, [5, Corollary to Theorem 4.5] for sub-
normal contractions and [14, Corollary 3.11] for hyponormal contractions. An ex-
ample of HASTINGS [5] shows that (1) may not imply (2) without the assumption 
/xTj< It is interesting to contrast this theorem it with [10, Theorem 2] where 
"quasisimilarity" is replaced by "similarity" in which case 00 won't be needed. 

3. Some consequences. In this section, we will derive two results for which an 
operator quasisimilar to an isometry is even unitarily equivalent to it. More precisely, 
we show that if V= U®Sn is an isometry, where U is unitary and and 
T is a quasinormal operator or TéAlg V (the weakly closed álgebra generated by 
T and 1), then r ~ V implies T= V. For the first one, we prove the following 
more general result. 

P r o p o s i t i o n 3.1. If T is a contraction whose c.n.u. part is of class C.0 and 
V=U®Sn is an isometry with n< then T~V implies T~V. 

Proof . Let T=U'®T', where U' is unitary and T' is c.n.u. Since U' and 
U are of class C.v and T' and S„ are of class C.0, we deduce from V that 
T'¿S„. Thus T'~S„ by Proposition 2.1 and therefore T~U'®S„-iv. [ 15,' 
Lemma 3.4] yields that U'®Sn^V. Thus T~V as asserted. 

C o r o l l a r y 3.2. If T is a hyponormal operator and V=U®Sn is an isometry 
i 

with then T~V implies T~V. 
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P r o o f . implies that their spectra are equal [2, Theorem 2], so are their 
spectral radii: r(T)=r(V). Hence \\T\\=r(T)=r(V) = \ showing that T is a con-
traction. Now the assertion follows from Proposition 3.1 and the fact that c.n.u. 
hyponormal contractions are of class C.„ [6]. 

C o r o l l a r y 3.3. If T is a quasinormal operator and V=U®S„ is an isometry 
with «< <», then T~F implies T^V. 

Proof . By Corollary 3.2, we have T ~ V . For quasinormal T, this implies 
cf. [15, Proposition 4.2]). 

Now for our final result. In [15], we asked whether for isometry V, Alg V 
and r ~ F imply T ^ V , and showed that this is indeed the case if T ^ V [15, 
Proposition4.6]. We will now verify its validity when V=U®Sn with We 
start with the following. For any operator T, denotes the direct sum of n co-
pies of T. 

L e m m a 3.4. Let T be a contraction. If T(n) ~ Sn for some 1 then 
T~S1. 

P r o o f . Since 0tM = ©<$\ Proposition 2.1 and Theorem2.4 imply that Tin) 

is of class C10 and there exists a bounded analytic function Q such that Q & ^ = d l 
for some outer function <5 in H°°. If <f> denotes the (1, l)-entry of Q, then &&T=5I. 
Thus, by Theorem 2.4 again, T~Sk for some 1 Since Sn ~ T(n) ~ Skn, we 
conclude that k=1 and T~St. 

P r o p o s i t i o n 3.5. Let V=U®S„ be an isometry with If Alg F 
and T~ V, then T^V. 

P r o o f . Let U=Us®Ua, where Us and Ua are singular and absolutely con-
tinuous unitary operators, respectively. In view of [15, Lemma 4.3], we may assume 
that F is not unitary. Hence T£ Alg F implies that T=W®(p(Ua®S„), where 
W^Alg Us and (cf. [13, Lemma 1.3] and [11, Lemma 3.11]). This shows 
that T is hyponormal and therefore V implies, by Corollary 3.2, that F. 
If <p is a constant function, then 7" is normal whence 7"~F implies that F i s unitary, 
a contradiction. Thus q> is nonconstant and therefore cp(S„) is completely non-
normal (cf. [15, Lemmas4.4 and 4.5]). Hence T~V implies that W®(p(Ua)^U 
and q>(Sn) ~ S„ by [5, Proposition 3.5]. We apply Lemma 3.4 to obtain that 

" It follows from [3, Theorem 1] that (p(S1)^S1 whence (p(Sn)^S„ and 
T ^ V follows. 

A d d e d in p roof . TAKAHASHI [16] showed that for isometry F, 7<£Alg F 
and T ~ V imply T ^ V which answered the question asked in [15]. 
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On the reflexivity of contractions with isometric parts 

K A T S U T O S H I T A K A H A S H I 

For a bounded linear operator T on a Hilbert space, let Alg T denote the 
weakly closed algebra generated by Tand the identity. Also let Lat T and Alg Lat T 
denote the lattice of all invariant subspaces of T and the algebra of all operators 
A such that Lat T ^ L a t A, respectively. An operator T is said to be reflexive if 
Alg Lat T = Alg T. (Note that we always have Alg Alg Lat T.) The first exam-
ples of reflexive operators were given by SARASON [7], that is, he proved that normal 
operators and analytic Toeplitz operators are reflexive. Subsequently DEDDENS [4] 
proved the reflexivity of isometries, and now various classes of operators are known 
to be reflexive. 

In [9] and [10], Wu considered the generalizations of Deddens' result. In [9] 
the reflexivity was proved for contractions T o n § such that T|9J1 and T* |§09K 
are isometries for some SDtfLat T, and in [10] for contractions which have parts 
similar to the adjoints of unilateral shifts, in particular, for contractions with a 
unilateral shift summand. The results of [10] were generalized in [2] as conjectured 
by Wu, that is, it was proved that if T is a contraction and there exists a nonzero 
operator X such that XT=SX where S is a unilateral shift, then T is reflexive. 
In this note we prove the reflexivity of a contraction with a unilateral shift part. 
This result contains the main theorem of [9] as a special case. As an application, 
we obtain the reflexivity result for a contraction T on a separable Hilbert space 
such that a 0 p is an operator-valued -function for some nonzero scalar H°°-
function u, where 0T is the characteristic function of T and 0*r(e")—(0T(e"))* 
for almost every t, in particular, for a contraction T such that 0T is a polynomial. 
Our proof needs the reflexivity result of [2] stated above. We will extensively use 
the theory of contractions developed by SZ.-NAGY and FOIA§ [8]. 

Theorem 1. If T is a contraction on a Hilbert space § and there exists a non-
zero 9K£Lat T such that r|S)t is a unilateral shift, then T is reflexive. 

Received December 3, 1985. 
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First let us prove the following lemma. 

Lemma 2. If T is a contraction on § and there exists a nonzero SOlfLat T 
such that TI3JI is a unilateral shift, then there exists a nonzero operator Y: Z,2 

satisfying the following conditions (i) and (ii); (i) YT=WY where W is the bilateral 
shift on I? defined by (Wf)(e")=e"f(e") a.e. t, f£L2, (ii) there exists a linear mani-
fold 2 dense in §©ker Y such that .W\yi,Yx ' s a unilateral shift for all O^xgfi , 
where 5Ryx=V {W"Yx: n^ 0} (a cyclic sub space for W). 

Proof . By assumption, if SO?! is a cyclic subspace for T included in SDi, then 
riSOtj is unitarily equivalent to the unilateral shift S=W\H2 (cf. [6, Theorem 3.33]), 
hence there exists an isometry Z: H2>-—$> such that TZ=ZS. Let U be the minimal 
unitary dilation of T acting on ©, thus U is a unitary operator such that PU\9) — T 
where P is the orthogonal projection of © onto and if © + = V U"§>, then 

nSO 
© + 9 $ € L a t U (cf. [8, Theorem 1.4.1 and 4.2]). By the lifting theorem of Sz.-Nagy 
and Foia§ (cf. [8, Theorem II.2.3] and [5, Corollary 5.1]) there exists an operator 
Z : Z2-*© satisfying the conditions (a) UZ=ZW, (b) PZ\H2=Z and (c)| |Z| | = 
= ||Z||=1. Let us show that the operator Y=Z*->•!? is a required one. 

Since the condition (a) implies Z*U-WZ*, to prove YT—WY, it suffices 
to show that © + © § § k e r Z * . Since © + 0 S £ L a t JJ, ® + © $ is orthogonal to 
V U*"§>. On the other hand, since Z is isometric, it follows from (b) and (c) that 

nSO 
Z\H2=Z, andsince ZW*"=U*"2{n = \, 2,...) by (a), we see that Z is an isometry 
and r a n Z g V £/*"$• Therefore it follows that © + © § g k e r Z * . Next to see (ii), nSO 
let 9J?n={Zp; p is an analytic polynomial}. Clearly 93i0 is linear and dense 
in ZH2. Also since Z\H2=Z, we have ZH2Q§>Qker Y. We consider £ = ® t 0 © 
®((§©ker Y)QZH2), which is linear and dense in § 9 k e r Y. If 0^x=Zp+xx£2 
where p is a polynomial of degree n and ^(!(§©ker Y)QZH2, then Yx=p+Yx1 

because Z\H2=Z and Z is an isometry. Since xx is-orthogonal to ZH2, or equi-
valent^ Yxx is orthogonal to H2, it follows that where x(e")=e", is 
orthogonal to H2, so that Yx=qg (Yx^O), where q is a function in L°° such that 
\q(eu)\ = 1 a.e. t and g is an outer function in H2 (cf. [3, Chapter IV, Theorem 6.1 
and Corollary 6.4]). This shows 9%Xx—qH2, hence the isometry W\9lYx is a uni-
lateral shift. Thus the condition (ii) holds. 

Any contraction T can be decomposed uniquely as T=U®TX where U is a 
unitary operator and Tt is a completely non-unitary (c.n.u.) contraction, that is, 
Ti has no nontrivial unitary direct summand. The operators U and 71 are called 
the unitary part and the c.n.u. part of T, respectively. For a contraction T whose 
unitary part is absolutely continuous, the H°°-functional calculus defines a weak*-
weak continuous algebra homomorphism, u>-+u(T), from H°° to Alg T, and T 
is said to be of class C0 if u(T)=0 for some nonzero u£Hm (cf. [8, Chapter III]). 
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P r o o f of Theorem 1. Let T=US@7i on § = § s ® § i where Us is a sin-
gular unitary operator and 7i is a contraction whose unitary part is absolutely 
continuous. It is known that the reflexivity of T is equivalent to that of Tx (cf. the 
proof of [9, Theorem 4.1]). Since T has a unilateral shift part, as in the proof of 
Lemma 2, we have an isometry Z such that TZ=ZS where S is the unilateral 
shift on H2. If Ps is the orthogonal projection onto §>s, then Us(PsZ)=(PsZ)S 
and it follows from [5, Corollary 5. land Theorem 3] that PSZ=0, hence ran ZQ&t. 
This shows that 7j has a unilateral shift part. Thus we may assume that the unitary 
part of r i s absolutely continuous and it suffices to show that for each A€ Alg Lat T, 
there exists f£H°° such that A=f(T). 

Let Y, W and £ be as in Lemma 2, and let £ be the set {xy+x^: xx£ker Y and 
0¿¿x2£2} that is dense in §>. If that is, X=X1+JC2 where ;qeker Y and 
(Mx2€£, then since Yx=Yx2(?i0), by Lemma2 the isometry W\9lYx is a uni-
lateral shift and with where 3Slx = 
= V {T"x : n^O}, so it follows from [2, Theorem 4] that 

Alg Lat (r|9Jtx) = {/(r)|93ix: / € / / "} . 

Here note that the unitary parts of T and riSR* are absolutely continuous. Take 
6Alg Lat T. For each x£2, since 9Jix€Lat TQLatA and ^ lan^Alg Lat ( f I9JIJ, 

by the above fact there is fx£H°° such that ^ l a r t ^ / ^ r ) ! ® ^ , in particular, 
Ax=fx(T)x. Here note that it follows from the identity WY=YT with Yx^O 
that Tlffl^ is not of class C0 (cf. [8, PropositionIII.4.1]), so that the funct ion/ , 
is determined uniquely by x. Since fl is dense in §>, in order to show A=f(T) for 
some / € it suffices to prove that fx=fy for all x, First suppose x—>>€ker Y. 
Then since Yx—Yy and ker y^Lat T^La t A, we have 

(fx-fy)(W)Yx = Yfx(T)x—Yfy(T)y = YAx—YAy = YA(x-y) = 0, 

and since Yx^O, it follows that fx=fy- Next assume that x—j^ker Y. Then 
since clearly x—y£2, there is fx_y£H°° such that 

fx-y(T)x-fxiy(T)y =fx-y(T)(x-y) = A(x-y) = Ax-Ay =fx(T)x-fy(T)y, 

hence (fx-y-fx)(T)x=(fx_y-fy)(T)yemxniSly. Therefore we have 

fx(T)(fx-y-fx)(T)x = A(fx_y-fx)(T)x = fy(T)(fx.y-fx)(T)x, 

and since r|9Jtx is not of class C0 , ( f x —fy)(fx-y—fx)—0. Similarly we have 
(fx—fy)(fx-y—fy)=0. This shows fx=fy and completes the proof. 

Let T be a contraction on a separable Hilbert space. The characteristic function 
QT of T is defined by 

0T(X) = [-T+Wt*(I-2.T*)~1Dt]|Dr (U|<1), 
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where DT—(I—T*T)1/2, D r*=(/—7T*)1 / 2 and S r = ( r a n DT)~. The function 0T 

is an operator-valued H°°-function whose values are contractions from D r to 
X)r« := (ran DJ*)- (cf. [8, Chapter VI]). If T is c.n.u., then it follows from [8, Theo-
rem VII.4.7] that there exists a nonzero 9ft£Lat T such that r|9Jl is a unilateral 
shift if and only if there exists a nonzero /i£//2(£>r*) such that 0^héATL2(X>T), 
where H2(DT*) (resp. L2(X>T)) is the space of £>r*-valued //2-functions (resp. T)T-
valued /^-functions), 0* (e*)=(0T(e*))* a.e. t and AT(eu)={l- 0T(e;,)+0r(e"))l/2 

a.e. t. 
Now we obtain the reflexivity result for a contraction T such that u0*T is an 

operator-valued //"-function for some nonzero scalar function w£//~. If such 
a contraction T is of class C00, that is, 0 and T*"—0 strongly as n— 
then since 0T(e") is unitary a.e. t (cf. [8, Proposition VI.3.5]), the condition that 
u0\ is an operator-valued //"-function with a nonzero udH°° means that w(T)=0 
and so T i s of class C0 (cf. [8, Theorem VI.5.1]). Reflexive contractions of class C„ 
were characterized in terms of their Jordan models [1]. 

T h e o r e m 3. Let T be a contraction on a separable Hilbert space such that 
u0j is an operator-valued H°°-function for some nonzero u£H°°. If the c.n.u. part 
of T is not of class C0o, then T is reflexive. 

P r o o f . By Theorem 1 it suffices to show that T or T* has a unilateral shift 
part. Since the characteristic function of a contraction is equal to the one of its 
c.n.u. part, we may assume that T i s a c.n.u. contraction. Since 0%{I—0T0%)= 
—A2

rOj and by the assumption for 0T the function u(T—QTOj) is an operator-
valued //"-function, if lim ||r"jcjj 5^0 for some x, or equivalently 0T(eu) is not 
coisometric on a set of / 's of positive Lebesgue measure (cf. [8, Proposition VI.3.5]), 
then there is a nonzero h£H2CX)T*) such that 0£/i€zlTZ.2(D r), and so T has a 
unilateral shift part by the fact remarked above. Also since 0T*(elt)—{0T(e~lt)Y 
a.e. t for the characteristic function 0-r* of T* (cf. [8, p. 239]), the contraction T* 
satisfies the same condition as T, that is, w0£* is an operator-valued / /"-function 
where ű is a function in ZZ" defined by ü(e'')=w(e-") a.e. t. Thus if lim ||r*"x|| ^ 0 
for some x, then it follows that T" has a unilateral shift part. 

The following theorem gives a complement of Theorem 3. 

T h e o r e m 4. Let T—U®TX where U is a unitary operator and Tx is a contrac-
tion of class C0. Then T is reflexive if and only if the following condition (i) or (ii) 
holds: 

(i) U has a (nontrivial) bilateral shift summand; 
(ii) 7j is rejlexiye. 
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Proof . Again we may assume that U is absolutely continuous (cf. the proof 
of [9, Theorem 4.1]). If U has a bilateral shift summand, then by Theorem 1 T i s 
reflexive. If U has no bilateral shift summand, then by Lemma 5 below we have 
Alg r = A l g U® Alg 71 and Lat r = L a t £/©Lat 71, so Alg Lat T=Alg Lat V® 
©Alg Lat 71- Therefore it follows from the reflexivity of the unitary operator"!/ 
(cf. [7]) that T is reflexive if and only if 7i is. This shows Theorem 4. 

The implication (2)=>(1) in the following lemma was pointed out by P. Y. Wu. 

Lemma 5. Let T=U®Ti on ¡5=§o©§i where U is an absolutely continuous 
unitary operator and 71 is a contraction of class C0. Then the following conditions dre 
equivalent: 

(1) U has no bilateral shift summand; 
(2) Lat T=Lat i/© Lat 71; 
(3) Alg r = A l g i/ffiAlgTi-

P roof . (1)=>(2): Since the inclusion Lat i /©Lat71^Lat T is obvious, we. 
have to show that any 9Jl6Lat T is decomposed into 931—£©9t where £6Lat U 
and 916 Lat 71. Suppose 9Ji£Lat T. Since 71 is of class C0, there is a nonzero 
function /6£P° such that /(71)=0. We set £= ( / ( r )9 J t ) -g9K. Then clearly 
£6Lat T and 2 Q ( r a n / ( r ) ) " =(ran f(U))~Q&0, so £ is an invariant subspace 
of U. But since U has no bilateral shift summand, £ reduces U (cf. [3, Chapter VII, 
Proposition 5.2]), hence £ also reduces T. Then the subspace 91=9310 £ is invariant 
for Tand since f(T) 91^91 and / ( r ) 9 t g / ( r ) 9 M g £ , we have /(T)9l={0}. But 
since f(T)=f(U)®0 and obviously f(U) is injective, we conclude and 
therefore 916 Lat 71- This shows (2). 

(1)=K3): For « = 1 ,2 , . . . , T(n) = Uw®Tln) satisfies the same condition as T, 
where for an operator A, A(n) denotes the direct sum of n copies of A. Therefore, 
using the implication (1)=K2) proved already, we have Lat T ( n )=Lat E/(n)ffiLat T±"\ 
If A£A]g U and 56Alg 71, then clearly Lat £/(n)©Lat r ^ L a t (A®Bfn\ so that 
Lat r ( n ) g L a t (A®BYn) for n = 1 ,2 , . . . , hence it follows from Sarason's lemma 
(cf. [6, Theorem 7.1]) that A@B£AlgT. This shows Alg U® Alg 71 £ Alg T. Since 
the converse inclusion is obvious, we conclude Alg J = A l g i/ffiAlg 71-

(3)=>(2) is obvious. (2)=>(l): If U has a bilateral shift summand, then by the 
proof of Theorem 1 Alg Lat T= {f(T): / 6 H°°}. Since the condition (2) implies 
the inclusion Alg Lat C/© Alg Lat Alg Lat T, we have 0 ©76 Alg Lat T, so 
that there is / 6 ^ ° ° such that f(U)—0 and / (71)=I , but this is impossible because 
/ (£ / )=0 implies / = 0 . This shows (2)=K1). 
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On normal extensions of unbounded operators. II*) 

J. STOCHEL and F. H. SZAFRANIEC 

This paper continues our study of unbounded subnormal operators. The results 
contained here may be regarded as reviewing, extending and completing those of 
[21] (and also of [20] and [22]). The next paper [26] in this series will be devoted to 
spectral problems as well as to the question of uniqueness of normal extensions. 

Subnormal operators in general aspect 

1. Let S be a densely defined linear operator in a complex Hilbert space 
$ ( S ) , 9l(S) and 91(S) stands for the domain of S, the null space of S and the 
range of S, respectively. S is said to be subnormal if there is a Hilbert space ft con-
taining § and a normal operator N in ft such that 

S(S)c:S(i \r) and Sf=Nf for each /<E£(S). 

(A densely defined linear operator N in ft is said to be normal if it is closed and 
N*N=NN*. This is the same as to require that T>(N)=T>(N*) and ||iV/|| = ||W*/||, 
f(iT>(N). A normal operator has a spectral representation on the complex plane C.) 

The first thing we have to point out is that a subnormal operator must nec-
essarily be closable. Even more we show that T>(S)czX)(S*). To see this take 
g ^ i S ) , then 

(Sf,g)6 = <f,N*g)st, /€£(S) 

which gives us g£l>(S*) and S*g=PsN*g. 
The following characterization of densely defined subnormal operators based 

on the spectral representation of normal extensions is due to FOIA§ (cf. [8], p. 248). 

*) The essentials of this paper were presented at the 9th OT Conference in Romania (Timi-
soara—Herculane, June 1984). 
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T h e o r e m 1. A densely defined operator S in § is subnormal if and only if 
there is a (normalized) semispectral measure F in §> on the complex plane C such that 

(Snf,STg) = Il"Im(F(d/.)f g), fig£T>(S), m,n = 0,1. 
c 

This theorem seems to be the only known characterization of unbounded 
densely defined subnormal operators in the general case (without any additional 
assumption on 5"). It ought to be noticed that a characterization like this of Foia§ 
for bounded operators has appeard in [2] (cf. also [6]). However that involves all 
the powers of the operator S. This requirement is superfluous for bounded operators, 
while for unbounded ones it leads to unnecessary restriction on behavior of domains 
of all powers of S. 

2. Now we want to discuss the relation between subnormality and quasi-
normality. Like in the bounded case we have two equivalent possibilities of defining 
quasinormal operators. Because commutativity of unbounded operators is rather 
a delicate matter, we wish to discuss this equivalence with more care. 

A closed densely defined operator Q in a Hilbert space § is said to be quasi-
normal if Q commutes with the spectral measure E of \Q\ :—(Q*Q)1/2 i.e. E(a)Qc 
<zQE(a), a being a Borel subset of the non-negative part R + of the real line R. 

P r o p o s i t i o n 1. Q is quasinormal if and only if Q is closed and U commutes 
with the spectral measure E of \Q\, where Q = U\Q\ is the polar decomposition of Q. 

Proo f . Suppose that U commutes with E. Since E commutes with \Q\ (i.e. 
E(&)\Q\^\Q\E(a)) we have 

E(A)Q = E(A) U\Q\= UE( a) \Q\ czU\Q\E(A) = QE(G). 

Thus Q is quasinormal. 
Suppose now that Q is quasinormal. Since Q commutes with E, U commutes 

with E on 9i(|2|). Indeed, for each /€$(121) we have 

(UE(a)-E(o)U)\Q\f= UE(o)\Q\f-E(CJ)U\Q\f = U\Q\E(a)f-E(cj)Qf= . , 

= QE(a)f—E(a)Of= 0. 

Since £({0}) is the orthogonal projection onto 9i( |g|) and SRflgl)-1- = 9 t ( | g | ) = 
= 9 l ( U ) , (UE(a)- E(<r) U)f= UE(a)f= UE(a)E({0})/= UE{{0})E{o)f= 0 for each 
/69?(|Q|)-L. Thus U commutes with E. This completes the proof. 

The following result as well as its proof is patterned upon that for bounded 
operators ([6], Prop. 1.7, p. 115) however technically more involved. 
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Theorem 2. Every quasinormal operator is subnormal. 
oo 

Proof . Let S=C/ |5 | be the polar decomposition of S and let \S\ = f tE(dt) 
o 

be the spectral representation of |5| . Denote by i ^ s ^ and P^s*) the orthogonal 
projections onto 5ft(|iS|) and 1fl(S*), respectively. Define in §ff i§ two operators 
R and 0 as JR=|S'|©|5| and 

r U (/-C/C/W 
I -(i-u*uy'2 U* J" 

It is easy to see [11] that 0 is a unitary operator which dilates U (the Halmos dilation) 
and R is a self-adjoint extension of |.S|. Since U is a partial isometry, 0 is in fact 
of the form 

o = f u P9,<S*>1 
I---P«C|S|) U* J 

Due to Proposition !, U and U* commute with E. Since I— UU*=Pm(St) and 
I—U*U=P9l(\s\), Pm(S*) and ijiflsD commute with E. Consequently 0 commutes 
with E®E which is the spectral measure of R. Therefore ORaRO. This implies 
that RU=t)0*Rt}c0(R0)*0c:U(0R)*0=0RG*0=UR and OR=RO in con-
sequence. Denote by N the operator OR. Since N*N=RU*UR=R2 and NN* = 
=(RO)(RO)*=RW*R=R\ N*N=NN*. This means that N is normal. 

Let now /€35 (S) = ©(IS11). Then /©0£D(R). Since P„(|S|) commutes with E, 
P ^ I S I c l ^ l P ^ ^ O . Thus 

N(f® 0) = OR(f® 0) = tf(|S|/©0) = tf |S | /©(-P* ( |S | ) |S | / ) =(C/ |S | / )©0 = 5/©0 

which means that N extends S. This completes the proof. 

Coro l la ry 1. An operator is subnormal if and only if it has a quasinormal' 
extension. 

Proof . We have only to prove that each normal operator N is quasinormal. 
oo 

Indeed, if N= J zE(dz) then \N\= j \z\E(dz) = j tF(dt), where F(&)= 
c c o 

=E({z£C: \z\£o}), a being a Borel subset of R + . Since EN<zNE, FNczNF< This 
means that N is quasinormal. 
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Subnormal operators and the complex moment problem 

3. The following condition, introduced by HALMOS [11], characterizes [2] 
bounded subnormal operators in a Hilbert space This is 

(H) J (S% S'fk> S 0 
j,k=o 

for all finite sequences f0, . . . T o consider the same condition in unbounded 
case one needs the linear subspace D°°(S) of § 

Î R ( S ) = FL Î>(S") 
n = 0 

(members of X)°°(S) are customarily refered to as C°°-vectors). In this paper we will 
require that 1>°°(S) is big enough (in most cases dense in §). This requirement 
makes serious (comparing with Section 1) restriction on subnormal operators be-
cause there are symmetric operators (even semi-bounded [4]) with trivial domains 
of their squares. Moreover the condition (H) considered for / 0 , 35"(5), 
which is the only possibility to do, is not sufficient for subnormality for S even if 
T>°°(S) is dense in Let us discuss the following. 

Example 1. Take a sequence of real numbers {am,n}m,n=o which is positive 
definite in the following sense: 

2 am + p,n + q^m,n^p,q — 0 

for each finite sequence {¿m„}c:C, and which is not a two parameter moment 
sequence (see [1] and [9]). There are two densely defined symmetric operators A 
and B in some Hilbert space §> with a common domain T)=T>(A) = X)(B), having 
a vector f0€T) such that all the powers AmB"f0, m, nsO, span 35, and such that 

(I) <Vn = (AmBnfoJ0), m,n^0 

(cf. again [9]). Moreover A and B commute i.e. ABf—BAf for each /Ç35. Define 
T=A+iB. Tsatisfies (H) for all finite sequences / 0 , . . . , / ; i6S=D~(S') (even more, 
| | r / | | = | | r* / | | , / € î> , because A and B commute). 

Define S as a restriction of T to the linear span of {T"f0: ns0} . 
Neither T nor S is subnormal. If T would be subnormal (then S would be too), 

then there existed a measure fi on C (constructed via the spectral measure of a 
normal extension of T) such that 

(T%, Tmf0) = f fz™ dfi(z), m,nmQ. 
c 
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Then, due to (1), 

flm.n = / (Re z)m(Im z)n dp(z), m,n^0. 
c 

This would mean that {amj„}~ n = 0 was a two parameter moment sequence, which 
gives a contradiction. 

Thus we have got an example of an operator which has a cyclic vector (an 
operator 5" in § is said to be cyclic with a cyclic vector f0 if f0£t>°°{S) and T)(S) 
is a linear span of {S"1 / 0 : nsO}) satisfies (H) on T)(S) but is not subnormal. 

If one would be interested in an example of a non-cyclic operator, one could 
take a Nelson pair (cf. [17], [5]) to get an operator satisfying (H) on £ ( 5 ) with no 
normal extension. 

As the following proposition shows the condition (H) is satisfied on t>(S) 
if and only if S has a formally normal extension (with dense "reducing" domain). 
Here by a formally normal operator in we mean a densely defined operator N in 
§ such that T>(N)cT>(N*) and [|yV/|| =||iV*/|| for each f£T>(N). 

P r o p o s i t i o n 2. Let S be a densely defined operator in § such that St>(S)c: 
<zT»(S). Then S satisfies (H) for all finite sequences /0, ...,fn£T>(S) if and only if 
there is a formally normal operator N in some Hilbert space ftz)§ such that 

(i) NT>(N)czT>(N) and N*D(N)c:T>(N), 
(ii) T>(S)czD(N) and SczN, 

(iii) T>(N) is a linear span of the set 

{N*"f: »SO, /<E35(S)}. 

Proof . The proof of the "if" part of Proposition 2 follows from the equality 
N*Nf=NN*f, /£D(iV), via direct computation. 

To prove the converse, suppose that S satisfies (H) for all finite sequences 
/ 0 , ...,/„€£>(£)• The set S = N x N (N={0,1,. . .}) equiped with the coordinate-
wise defined addition and the involution (m,n)*=(n,m) becomes a *-semigroup. 
Define the form <p over (<S, D(S)) (cf. [23]) 

?>((»»,"); f,g) = {Smf,SBg), f,g&(S), m,nZN. 

Then like in [24, par. 10], one can show that (p is positive definite i.e. 

(2) 2 ( P ( s t + s j ; f j , f k ) ^ 0 , f , . . . , / „€£(£) and ^ , . . . , ^ € < 5 ( « e l ) 

(S$)(S)c:T)(S) is important here). It follows from Proposition in [23] that there 
is a family {#(j) : i£®} of densely defined operators in some Hilbert space ft 
with common dense domain D, a linear operator V: X>(S)—T> such that 
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® c | J £(#(•?)*) and 

<p{s- f,g) = {$(*№ Vg), f,g£V(S), 

and i>(i)*DcS, s£<Z, 

$(s)$(t)f= $(s+t)f, s, tee, /eT>, 
<P(s*)c:<P(s)*, see, 

35 is a linear span of {$(s)Vf: see, /€®(S)}. 

Set jV = 2>(l,0). Since (1,0)*+(l, 0)=(1, 0)+( l , 0)*, N is a formally normal 
operator which satisfies the condition (i) of Proposition 2. Moreover we have 

<5™/ S"g) = (*(n( 1, 0)*+m(l, 0 ) ) V f , Vg) = (NmVf, N"Vg), 

m,neN and / , g€'35(S). 

This implies that V is an isometry from 35(5") into D. Identifying T)(S) with VT>(S) 
one can easily check the conditions (ii) and (iii). This completes the proof. 

R e m a r k 1. In [21] and in this paper we consider exclusively the operators 
with invariant domains. If T)(S) is not invariant for S, we have to replace the con-
dition (H) on 35(5) by the condition (2). 

4. Example 1 shows that the condition (H) itself is not sufficient for subnor-
mality even of cyclic operators (however it is for weighted shifts — cf. Section 6). 

If / 0 is a cyclic vector for <S and S satisfies (H) on D~(5") then the sequence 
K , J : „ = « defined by 

cm.„ = (Smfo, S"/0) H€N 

is positive definite in the sense that 

2 Cm + q,n + p^m,n^p,q — 0 
m.nSO 
P , « E 0 

for all finite sequences {Am>„}<zC. Unfortunately positive-definiteness of {cmi„}~ n = 0 

does not imply that {cmi„}^n=0 is a complex moment sequence (this is a substance 
of Example 1). However this gives a hope that subnormality of S (still being cyclic) 
may be forced by the fact that {cm>n}~„=0 is a complex moment sequence.' There 
is a characterization ([14]) of complex moment sequences in terms of non-negative 
polynomials which has been originated by M. RIESZ. Though this may be interesting 
rather from the theoretical point of view than applicable to concrete sequences 
(read: operators — in advance), we will follow this in a context of subnormal opera-
tors. It turns out even more: a result of SLINKER ([19], Th. 4.2) enables us to prove 
a M. Riesz-like characterization for non-cyclic case. 
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T h e o r e m 3. Let S be a densely defined operator in a Hilbert space § such 
that SD(S)cX>(S). Then S is subnormal if and only if the following implication 
holds: if 

{a",,; ...,m} and p,qe{0, 1, ...,«}} 

is a sequence of complex numbers such that 
m it 

(i) 2 2 a^lV/z^j^O, for all X, ..., zm£C, 
I.J=LJ>.4=0 

then 
m it r 

(ii) 2 2 2 <(sk+pf/,sl+«fi)^o, i,j=l P, 4=0 FC, 1=0 

for each finite sequence {/¡?: i = l, ..., m, k=0, ..., r}czT>(S). 

Proo f . Suppose that S is subnormal and that N is its normal extension in a 
Hilbert space Notice that 

£ (S) = © - ( S ) c D - ( N ) and 
iV(©-(JV))c©-(JV), N * ( p - ( N ) ) c 3 > - ( N ) and 
NN*f = N*Nf for each /€®~(iV). 

(3). 

Define the polynomials piJ (i,j€{ 1, ..., m}) of two complex variables X and 1 by 

(4) piS(X, 1) = 2 o'J^X", XdC. 
P, 9=0 

Then, since S c N and (3), we have 

(5) 2 2 ap{(sk+PfiJ> st+qfk)= 2 2 a ^ N W f J , NqN*kfk
l) = p, 9=0 k,1=0 p, 8=0 k,1=0 

= 2 ^(N'hj, N%) = (p'J(N, N*)hj, ht), 
P. 4=0 

where 

(6) = 2X*kfi, i = \,...,m. 
k=Q 

Thus we have to show that 

m 
(7) 2 (p'J(N, N*)hj, hi) s 0 

i.J=l 

for all ^ . . . „ ^ © " ( i V ) . 
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Let E be the spectral measure of N. Since all the complex measures (E( •)hj, /if), 
{1,..., m}, are absolutely continuous with respect to the non-negative measure 
m 

P=2 (E(')hi-, hi), we find a matrix of summable Borel functions such 

that (E(a)hj, /i,)= / hu dp for each Borel subset a of C and for all i, j. a 
Let Q be a countable dense subset of C. For cx, ..., cn£Q we have 

. w m m m 
/ 2 hiJtt)cicJdp(X) = 2 CiCj{E(o)hj, ht) ={E{a){2 Cjhj), 2cjhj)^0 

a i.J=1 t.J=l J=1 7=1 

for each a. This implies that 
(8) 2 W c i C j ^ 0 a.e. [ /4 

i.i=i 

Since Q is countable, we can find a common Borel subset tr0 of C (which does not 
depend on the choice of the numbers ck) such that p(a0)=p(C) and (8) is fulfilled, 
first for all ckeQ and then, after limit passage, for all complex c'ks. 

Thus we have shown that the complex matrix [/i,y(A)]™J=1 is positive definite 
for each Since, by (i) and (4), the matrix [piJ(X,X)]^J=1 is also positive definite, 
an application of the classical Schur Lemma gives us that 

(9) [p'KKbKmtj^ 

is a positive definite matrix for each A£<r0. 
Thus 

m m _ 
2 (piJ(N, N*)hj, ht)= 2 f PiJ& X)hu(X)dn(X) = 

i.j=l i,j=l Q 

. m 
= / ( 2 W , l)hu{).)])dn(i) ^ o. 

(The integrand is non-negative due to (9).) This shows (7). 
Now suppose that the implication holds for S. Then S satisfies (H) for all 

finite sequences f0,...,/,6£(<5) (put m-1, n—0 and aJJ=l). Thus, according 
to Proposition 2, there is a formally normal operator N in some Hilbert space 

which fulfills the conditions (i), (ii) and (iii) of Proposition 2. Due to a theo-
rem of [19] all we have to prove now is the following implication: if for each 
the polynomial matrix [pll(X, is positive definite, then (7) holds for all 

For this let [pli] be such a matrix of polynomials with coefficients {a'Jq} as in (4). 
Let hx,..., hm£T>(N). Then, by (iii) of Proposition 2, there is a sequence 
{/¿: i = l k=Q, . . . , r}c!D(S) which fulfills the condition (6). Since N is 
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formally normal extension of S, which has property (i) of Proposition 2, we can 
rewrite all the equalities (5) to obtain 

m m n r 
2 <PiJ(N, N*)hj, h,) = 2 2 2 al

P{(Sk+Pfi> sl+qfi) = i,j=1 i,j=lp,!=«M=0 

This proves (7) and finishes the proof of theorem. 
As we have mentioned this characterization of subnormals may be useful in 

proof. The following application is at hand. 

C o r o l l a r y 2. Let S be a densely defined operator in H such that ST>(S)c: 
c £>(£)• Then 

(a) If S is subnormal, then among all the subnormal operators T in § extending 
S and such that TT>(T)(z T>(T) there is a maximal one. 

(b) Suppose that there exists S - 1 which is densely defined and S~1'£>(S~1)c: 
c®(5'-1). Then if one of the operators S and S_1 is subnormal, so is the other. 

Proof , (a) If {rm} is a chain (ordered by inclusion) of subnormal operators 
extending S and such that T,0Ti(TJcT>(TJ, then \JTa is an upper bound, 

CO 
which, due to Theorem 3, has the same properties as Ta's do. Now an application 
of the Zorn Lemma gives the conclusion (a). 

(b) Let {a^q} satisfy (i) of Theorem 3. Set b ' J q ( r e m i n d that O^p, q^n). 
Then one can check that {b'Jq} satisfies (i) of Theorem 3 too. 

Suppose that S is subnormal. Take a finite sequence {/¿; l S / S m , 0 
c B ( S ) . Then, because in fact T)(S)=ST> (S), we have 

m n r m n r 

2 2 2 «'¿As-y+W, (s-y+W) = 2 2 2 bUsk+psl s'+'g') >.j=1 p.9=0 k,l= 0 1 p,Q=Q h,l=0 

where gf=S~in+r)fj_l. Applying Theorem 3 we get the conclusion (b). 
A characterization like this in Theorem 3 in a case of cyclic operators appears 

implicity in KILPI [14]. What can be easily deduced from [14] is the following. 

P r o p o s i t i o n 3. Let S be a densely defined cyclic operator in § with a cyclic 
vector f0. Then the following conditions are equivalent: 

(i) S is subnormal; 
(ii) {(5™/o, S"f0)}™n=0 ' s a complex moment sequence, i.e. there is a non-

negative measure p on C such that ( S m f 0 , S"f0)= J zmz" dn(z), m,n£N, 
c 
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(iii) if {ak ¡}™l=0 is a complex matrix such that 2 akl).kl1^0 for each 

A6C, then 

2 ak,i(Skf, S%) ^ 0. . 4,1=0 
Our characterization in Theorem 3 applied to cyclic operators looks more com-

plicated than that of Kilpi. Because we are unable on this stage, to reduce directly 
ours to Kilpi's this is why we do not state it explicitely here; though they must 
necessarily be equivalent. 

Subnormal operators and the Stieltjes moment problem. Weighted shifts 

5. As we have "already known subnormal operator S satisfies the condition 
(H) for any ..choice of vectors f0, ...,f„dT)°°(S). Taking gk—Skfk and replacing 
fq,"y,fn b y : ¿o, •••>Sn in (H) we get the condition: 

( E ) 2 < S ' + V } , S J + * / * > S O 
J tk=o 

for all choices of vectors f0, ...,fn in D°°(S), which reminds a condition considered 
by EMBRY [7] in the bounded case. Going on set f—Cjf and fj=CjSf in (E), 
respectively (f£T>°°(S)) we obtain 

2 \\Si+kf\\2CjCk s 0, j, Jc=0 
and 

2 ws^+yrcjc,^ o, j-k=0 

for all complex numbers cl5 . . ., c„. This is precisely what is required for the se-
quence {||<S"'/||2}^10 to be Stieltjes moment sequence i.e. to be represented as 

(S). I |5"/ | |2= / fd/i(t), "6N, 
o 

p=iuf is a finite non-negative measure. 
All what has been said here can be stated as 

P r o p o s i t i o n 4. The following implications hold true: 
S is subnormal satisfies (H) on T>°*(S), 
S satisfies (H) on => S satisfies (E) on t>m(S), 
S satisfies (E) on T)°°(S) =• S satisfies (S) for each f in £>°°(S). 
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6. It turns out that the implications in Proposition 4 can be inverted for S 
being unilateral weighted shift. Recall S is said to be a unilateral weighted shift 
if iSe„ç(C\{0}) en+1, nëO, where {<?„}"=0 is an orthonormal basis of The domain 
of S is meant as the linear span of {<?„}~=0. It is clear that 5" is a cyclic operator with 
the cyclic vector e0. 

Theorem 4. Let S be a unilateral weighted shift. Then the following conditions 
are equivalent: 

(i) S is subnormal; 
(ii) S satisfies (H) for all finite sequences f0, S); 
(iii) S satisfies (E)for all finite sequences /0, ...,/„€ £>(£); 
(iv) S satisfies (S) for f=e0. 

Since S (S)=T>°°(S), all the implication but (iv)=>(i) follow from Proposition 4. 
To prove the implication (iv)=>(i) we utilize the following result which may be 
interesting for itself. 

Lemma 1. Let /0€§ be a cyclic vector for S. Then the following two conditions 
are equivalent: 

(a) Sa U® R, where U is a unitary operator in R is a self-adjoint operator 
in and / 0 = / i ® / 2 with some and /2ÇX>°°(.R); 

(b) there are two functions a: N—C and /?: Z-*-C such that 

(10) < , S n f 0 , S m f 0 ) = x(n + m)p(n-m), n,m£ N, 

(11) 2 <m + n)cmc„^Q, 
0 

for all finite sequences c0, . . . ,c r£C, 

(12) 2 P(n-m)c„cm^0, 
M,N=0 

for all finite sequences c0, ..., c,£C. 

P roo f . Let U, R and f , f2 be as in (a). Because 

<S"/0, Smf0) = <Un-mf1J1)(Rn+mf2,Â>, m, w€N, 

a direct computation shows that 

a (n) = <*"/2,/2>, «€N, 
and 

p(m) = <CT-/„/,>, m€ Z, 

satisfy the condition (11) and (12) respectively, 

ii* 
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Suppose that the condition (b) is satisfied. Then is a Hamburger 
moment sequence [18] and {/?(")}„€Z is a trigonometric moment sequence [18]. 
Consequently there are two positive finite measures ¡i and v defined on R and the 
unit circle T, respectively, such that 

(13) (S"fo, Smf0) = J f+m dfi(t) J f~m dv(z), n,mtN. 
R. T 

Denote by Mz and M, the multiplication operators by z and t in L2(T, v) and 
JL2(R, n), respectively. Then by (13) 

(S"f0,Smf0) = <M" + 'n 1,,, \)LHll)(Mrm lv , 1 v>L.(v) = 

= ((M2®M,r( 1,® g , (Mz®M,)m(lv® m, tie N. 

This equality allows us to identify Snf0 with (Mz®Mt)"(lv®lll), 7Z£N, which 
gives us SaMz®Mt. Since M, is unitary and M, is self-adjoint, we set U=M:, 
R=Mt,f1=lv and / 2 = 1„ to get the conclusion. This completes the proof. 

R e m a r k 2. If any .of the ^equivalent conditions (a) and (b) of Lemma 1 is 
satisfied then S is subnormal. Moreover the operator R can be choosen to be positive 
if (in addition to (11)) 

(110 2 «(n+rn+l)cncm^0, 
m,n=0 

for all finite sequences c0 , . . . , cr£C, (since then (11) and (IT) imply that {a(«)}n€N 

is a Stieltjes moment sequence) and Lemma 1 leads then to an £2-model of S as the 
multiplication by z on the complex plane C. 

P r o o f of (iv)=Ki) of Theo rem 4. Let us define <5: Z - { 0 , 1} by 5(0) = 1 
and 5(/i)=0 if n^O. So we have 

(14) 

(S"e0,Sme0) = 5(«-M)| |SV0 | |2 = 8(n-m) J t" dn(f) = S(n-m) f t(n+m^ dn(t), 
o o. 

m, w£N, 

where is the measure given by the integral representation (S). Setting 

a(n) = f tn/2dfi(t), n£N 
o 

and 
P(h) = 5(n), n€Z, 

in (14) we get the condition (b) of Lemma 1. An application of Remark 2 completes 
the proof of our theorem. -
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7. Now we want to show usefulness of Theorem 4. 

Example 2. In [21] we have shown that the creation operator is subnormal. 
This has been ensured by the condition (H) and the presence of analytic vectors 
for the operator. However, since this operator is a unilateral weighted shift we can 
use directly the condition (iv) of Theorem 4 instead of checking condition (H) 
and looking for analytic vectors. To be more precise, recall that the creation operator 
is defined as • . -

with T)(/i+) = £(R), the Schwartz space. Since the Hermite functions 

/„(*) = „ = 0 , 1 , . . . , 

form an orthogonal basis for L-(R) and 

= m = 0,1 , . . . , 

A+, when restricted to the linear span 35. of the Hermite function is a weighted 
shift in L2(R). Denote this restriction by S. Since 

[|Sn/0||2 = n ! ^ , « = 0 ,1 ,2 , . . . , 

and {«!}r=o is a Stieltjes moment sequence, according to Theorem 4, S is sub-
normal. Since j4+=(j4+|©)-, A+ is subnormal. . 

Theorem 4 allows to produce subnormal operators from simpler ones. As an 
illustration take a subnormal weighted shift S and define Sk=S*kSk+1, k is a 
positive integer. Then, after some computation — which, in a more general context, 
will be presented elsewhere [25] — one can show that Sk satisfies the condition (iv) 
of Theorem 4 and consequently it is subnormal too. In particular, if 5 is the creation 
operator then 

8. We pass now to bilateral weighted shifts. In order to prove an analogue 
of Theorem 4 in this case we need an appropriate version of Lemma 1. 

Lemma 2. Let S be a densely defined operator in § such that 9l(5) = {0} 
and ST>(S)=D(S). Suppose there is a vector f0£l)(S) such that T>(S\ is the 
linear span of the set {S"f0: n£Z}. Then the following conditions are equivalent: 

(a) SaU®R, where U is a unitary operator in R is a self-adjoint operator 
in S\2 with 0 ^ ^ K ^ c S ^ f i s and /0=/i®/2 with some f d a n d /2€ f ) ®(/?"); 

»ez 
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(b) there are two functions ac, fi: Z—C such that 

(15) {Snfo> ¿yfo) ~ <x(n + m)fi(n — m), n,m£Z, 

( 1 6 ) 2 . «(n+m)c„cm^ 0 , 
—R^'IN, N '-R 

for all finite sequences c_ r , ..., cr£C, and ¡3 satisfies (12). 

The proof of Lemma 2 goes in the same way as that of Lemma 1. However 
one has to use instead of the Hamburger characterization of moment sequences the 
following result ([13], [1]). A sequence (a(w)}„ez of complex numbers can be rep-
resented as 

tx(n) = f tndp(t), n£Z, 
R\{0} 

with a finite non-negative measure fi if and only if (16) holds. 

R e m a r k 3. Each of the equivalent conditions (a) and (b) of Lemma 2 guar-
antees subnormality of S. If the function a: Z—C satisfies the additional con-
dition 

(17) 2 oc(n+m+l)cncm^0, 
— r a n , m a r 

for all finite sequences e_ r , ..., C, then the operator R can be choosen to be 
positive. This happens because, due to the conditions (16) and (17), the sequence 
{a(n)}„ez becomes (cf. [1], [12]) a two-sided Stieltjes moment sequence which means 
that there is a non-negative finite measure ¡i such that 

a(«) = f f d f i ( t ) , neZ. 
(0, 

A densely defined operator S in H is said to be a bilateral weighted shift if 
there is an orthonormal basis {<?„}„£Z of § such that Sen£ (C\{0})en + 1 for each 
«6Z. The domain T>(S) of S is the linear span of {e„}niZ. 

We have an analogue of Theorem 4 for bilateral weighted shifts. 

Theorem 5. Léi S be a bilateral weighted shift. Then the following conditions 
are equivalent: 

(i) S is subnormal; 
(ii) S satisfies (H) for all finite sequences f0, ...,f„ in T>(S); 

(iii) S satisfies (E) for all finite sequences /0, ...,/„ in ^(S); 
(iv) S satisfies (S) for each f£ { 5 ' - 2 " 4 e o ; 
(v) {||S"e0P}.€z ' s a two-sided Stieltjes moment sequence. 

Proof . The only implications which need a proof are (iv)=>(v) and (v)=>(i). 
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(iv)=>(v): The operator 5 satisfies all the assumptions of Lemma 2 with f0=e0. 
Now we show that the sequence {|| 2}„ e z satisfies the conditions (16) and 
(17). Let c_ r , . . . , cr be an arbitrary sequence of complex numbers. Then 

2 \\Sn+me0Vcncm= 2 l\Sn+mS-^eordnRm .;.'"; 
and 

2 ||S"+m+1e0H2c„cm = 2 |jsn+™+is-iVoll2412m,.' . 
-rsn.m^r n,m=0 - • . 

where i/„=c„_r for {0,1,..., 2r}. Due to (iv), all the sums appearing in the 
above two equalities are nonnegative. This ensures that {||5",e0li2}ncz a t w o " 
sided Stieltjes moment sequence. 

(v)=^(i): Like in the proof of Theorem 4 we put 

<x(/j) = J t"'2dii(t), «€Z 
(0,+==) 

and 
p(n) = 8(n), n£Z. 

The equality (15) follows from the same argument as its analogue in the proof of 
Theorem 4. The application of Lemma 2 completes the proof. 

Subnormal operators through C°°-vectors 

9. In the papers ([20], [21], [22]) we have studied subnormal operators by means 
of some of their classes of C°°-vectors. Here we wish to review and extend these 
investigations. Recall the definitions. 

A vector /£ (S) is said to be a bounded vector of S if there are positive 
numbers a=a(f) and c=c(f) such that 

\\S"f\\ Sac", n = 1,2, .... 

A vector fdT>°°(S) is said to be an analytic vector of S if there is a positive number 
t=t(f) such that 

£ IIS"/II ^ , 2 —i—• nti n! 

A vector / € © " ( 5 ) is said to be a quasi-analytic vector of S if 

2IIS"1/!!-1'" = + " • • .. • . . 
n = l 
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Finally /£35~(S) is said to be a Stieltjes vector of S if 

jJ | |SB / | ] - 1 / 2 n= + ~ . 
n = l 

Denote by 93 (S), 9l(S), Q(S) and 6 ( S ) the sets of bounded, analytic, quasi-
analytic and Stieltjes vectors of S, respectively. It is clear that 93(5) and 91 (S) 
are linear subspaces of $ and S (S )c9 I (S ' ) cQ(5 )c®(S ' ) . By direct verification 
we get that S(<B(S))<z%(S) and 5(9I(5))c9I(5'). To check that Q(S) and 
<S(S) share the same property as S ( S ) and 21(5'), use the Carleman inequality [3]: 

(18) ¿an+2]fJVn 11=2 11=2 F n = 2 
1_ 1 

with aB = i|S"/|| " - 1 and an=||Sn/li 2("_1) > respectively. 

In [20] we have proved the following theorem. 

Theorem I. Let S be a densely defined linear operator in Suppose that 
£)(£)=23(5). Then the following conditions are equivalent: 

(i) S is subnormal; 
(ii) S satisfies (H ),for all finite sequences /„, ...,f„£T>(S); 

(iii) there is an increasing sequence {^»„Ĵ Lj of closed linear subspaces of §> 
contained in 3>(S) such that S§„c§„ , each restriction of S to is a bounded sub-

oo 
normal operator in § and (J is a core for S. 

n=i 
Remark 4. The following comments may be usefull here. Let A be a densely 

defined closable operator in A linear subspace 35 of 35(v4) is said to be a core 
for A if A closed linear subspace © of § is said to be invariant (resp. 
reducing) for A if PAP=AP (resp. PAczAP), where P is the orthogonal projec-
tion of § onto (5. If a closed linear subspace © of $ is contained in D(y4)Dl5(^4*) 
then © is reducing for A if and only if >i(©)c:© and ^4*(©)c©. 

The example of the creation operator indicates that there are closed subnormal 
operators having no nontrivial bounded vectors. However, if an operator has a 
dense set of bounded vectors, Theorem I provides us with some additional informa-
tion on its geometrical structure. We show that quasinormal operators we have 
already considered in Section 2 fall in this class and get, as a by-product, another 
proof of subnormality of quasinormal operators. 

P ropos i t i on 5. Suppose that S is a quasinormal operator in Then 23(5") 
is a core for S, there is an increasing sequence {$„}"=1 of closed linear subspaces of 
§ contained in T>(S) such that each §>n reduces S, each restriction of S to is a 

bounded quasinormal operator in fj„ and (J §„ is a core for S. 
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Proof . First of all we show that 33(S) is a core for S. Let S=U\S\ be the 
polar decomposition of S and let E be the spectral measure of | S \. Set §„=£([0, n]) § 

and î>= U Take / e $ m . Then 
n = l 

| S | / = \S\E([0, m])f= £([0, m]) |S | / 

and by Proposition 1, 
Uf=UE([0,m])f=E([0,m])Uf. 

This means that each §,„ and consequently I> is invariant for |S|, U and S. Thus 
for f££>m we have 

l|S"/ll2 = II C/" |S | n / | | 2S II |S|"/ | |2 = 
«I 

= | | |S |»£([0,W]) / | |2= f t*>(E{dt)f,f)^m*»\\f\\\ 
0 

so /¡E93(S). In other words DciB(S). It is easy to see that the equality |5 | = 
=( |S| |C)~ implies 5 = ( 5 | D ) - . So © and 33(5) are cores for S. 

n 

Define a bounded operator Sn = URn, where R„ = J tE(dt). Then 9î(jR2)c: 

c91 (R„)c9Î(|S11¿s([0, n]))c9î(|iS|), so 9t(£2)c5R(|S|). S°ince U* Uis the orthogonal 
projection onto 9l(|S|), we have U*URl=R*. By Proposition I, U commutes 
with Rn. Therefore S*Sn=U* URl=Rl, which implies \S„\=Rn. Since U com-
mutes with R„, S„ commutes with / ^ H S J . This means that S„ is a quasinormal 
operator. Denote by T„ the operator 5„| s . Then 

7*Tn = E([0, n])S„*S„|s„ = £([0, n])/?2|s„ = (Rn\sf. 

Thus = l'S'nlIô =R„|6 . Since S„ commutes with R„, T„ commutes with |r„|. 
This means that for each « s i , 5 | s =T„ is a bounded quasinormal operator. Since 
£([0, n ^ S c ^ t O , «]), §„ reduces S. This completes the proof. 

Corollary 3. S is a subnormal operator if and only if there is a subnormal extension 
S of S in such that 23(5) is a core for S. 

Proof . This is an easy consequence of Proposition 5 and Theorem 2. 

Coro l l a ry 4. An operator S in §> is normal if and only if S is formally normal 
and quasinormal. In particular S is self-adjoint if and only if S is symmetric and quasi-
normal. 

Proof . Since S is quasinormal, there is a sequence {§„}"=1 of closed linear 

subspace of § with properties described by Proposition 5. Let U §„; Then 
n=i 

î>cz©(S) and D is a core for S. Since §„ is a reducing subspace for S and § „ c 
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c S ( 5 ) n S ( 5 ' * ) = D(S), Remark4 implies that £$>„<=$>„ and 5 * § n c § „ , for 
each n. Thus S D c ® and S * S c D . Since S is formally normal, the nontrivial 
conclusion of Corollary 4 follows from Theorem 1 of [20]. 

10. Another result we wish to discuss is one which bears a resemblance to a 
result of Embry for bounded operators [7]. 

T h e o r e m 6. Let S be a densely defined operator in § such that ST>(S)aT)(S). 
Suppose that T>(S) is a linear span of the set Q(S). Then S is subnormal if and 
only if S satisfies (E) for all finite sequences f0, ...,fn£T>(S). 

This is a stronger version of Theorem 8 of [21] where instead of (E) the con-
dition (H) appears. 

In order to prove Theorem 6 we need some lemmas. The first of them gives 
the full characterization of determinate moment sequences in terms of their rep-
resenting measures. The proof of it can be done in the same way as that for Ham-
burger moment sequences (cf. [9], Theorem 8). 

Lemma 3. A Stieltjes moment sequence {a„}"=n with the representing measure 
H is determinate if and only if the set of all polynomials of one real variable is dense 
in L 2 (R+ , (1 +x2)p). 

Lemma 4. Let N be a densely defined operator in ft such that 

(19). D = £(N) = S(N*N), N(T>)cD and N*N(2>)czT>, 

(20) N(N*N)f=(N*N)Nf /££, 

(21) <3((N*N)) is a total set in ft. 

Then N is closable and N is quasinormal. 

Proof . Denote by A the symmetric operator N*N defined on T>. Then 
( N f , Ng)=(Afg),f, g£t>. This implies that N is closable. Denote by X)0 the linear 
span of S(A). Then i ( B „ ) c B 0 , A=N*NczN*N and, by (21), S(A) is a total 
set in ft. It follows from [16] that (<4|c)~=,4=:iV*N. The last equality can be 
written as ^=| iV|2 . Since T>0cl>(|/V[2) and D0 is a core for. \N\2, £>„ is a core 
for \N\. Now an application of the polar decomposition for N gives us that 

(22) D0 is a core for N. 
oo 

Let E be the spectral measure of A, i.e. A= J tE(dt). Then for we have 
o 

oo 

.' (A"f, f ) = / t"(E(dt)f, / ) , n€N, 
n • • -
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and 

(AnNf, N f ) = / t"(E(dt)Nf, Nf>, w€N. 
o 

Since A=N*N, (19) and (20) imply 

(AnNf, N f ) = ( A n + 1 f f ) , ne N. 

Combining these three equalities we obtain 
©o oo 

(23) ( A " ^ f f ) = / l"(E(dt)Nf N f ) = / t"t{E(dt)f,f), / € $ , n ^ 0. 
0 0 

Let / 6 3 (/4). Due to the Carleman criterion (cf. [18]) the sequence {<^"/,/)}r=0 

is a determinate Stieltjes moment sequence. Using now the Carleman inequality 
(18) and again the Carleman criterion we infer that {</T+1/,/)}"=0 is a determinate 
Stieltjes moment sequence. Consequently, due to (23), we have 

(24) (E(dt) N f , N f ) = t ( E ( d t ) f f ) . 

Let a be a Borel subset of R + . Since {(A"ff)}™= 0 is a determinate Stieltjes 
moment sequence (f€<3(A)l), Lemma 3 gives us a sequence {/?„}~=1 of polynomials, 
which converges to the indicator function l„ of the set a in L2(R+ , (1 +x2)/i), 
where /x=(E(-)f,f). One can show then that {/>„}~=1 converges to 1 „ in L 2(R+ , ¡i) 
as well as in L?(R+, x/i). Since 

oo 

\\E(G)f-pn{A)f\? = / \K~Pn\2dn 
o 

and, by (24), 
oo 

\\E(a)Nf-pM)Nfr = j \l„(x)—p„(x)\2(E(dx)Nf,Nf) = 
0 

oo 

= / \K(x)~pn(x)\2xdn(x), 
o 

we have E(a)f=Y\m pn(A)f and E(a)Nf=\xm pn(A)Nf=Ym Npn(A)f Thus 
E(a)f£T>(N) and EE(a)f=E(a)NfioT each f£ <5 (A). This implies That E(a)(N\a)(Z 
<zNE(a) and E(a)(N\0J~ czNE(a), in consequence. Due to (22) we obtain 

(25) E(o)NaNE((j), for each Borel subset a of R + . 

Since \N\=A1'2= f tll2E(dt), 
the spectral measure F of \N\ is given by the fol-

0 
lowing formula: (26) F(a-y = E((p~1(a)), for each Borel subset a of R + , 
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where <p: R + —R + is a homeomorphism defined by cp(x)=x1/2, x£R + . The 
conditions (25) and (26) show that N commutes with the spectral measure F of |JV|. 
This completes the proof of Lemma 4. 

The next lemma shows that the condition (E) holds on D°°(iS) if and only if S 
has a "formally quasinormal" extension with "reducing" domain. 

Lemma 5. Let S be a densely defined operator in § such that S(T>(S))cz 
cX>(S). Then S satisfies (E) for all finite sequences /„, ...,fn£T>(S) if and only 
if there is a densely defined operator N in some Hilbert space ft z>£j such that 

(i) N satisfies the conditions (19) and (20), 
(ii) » (S)c©( iV) and SaN, 

(iii) X>(N) is a linear span of the set {(N*N)"f n^O, f£T>(S)}. 

Proof . Suppose that N satisfies (i) and (ii). Then (19) and (20) imply (via an 
induction procedure) 

((N*N)"f, g) = (Nnf N"g), fgeV(N), n^O, 

and this can be used to prove the inequality (E) for all finite sequences / 0 , . . . , /„€ X) (5). 
To prove the converse, suppose that 5 satisfies (E) for all finite sequences 

fa, ...,/„<= I>(S). Define the form <p over (N, t>(S)) (cf. [23]) by 

<p(n,f,g) = (S»fSng), n<LN, fgtZ(S). 

N is a *-semigroup with the identity map as an involution. Since S satisfies (E) for 
all finite sequences f0, ...,fn£T>(S), the form cp is positive definite. Notice also 
that 1 is a hermitian generator of the ^-semigroup N and (p(0,f,g) = ( f , g ) for all 
f,g£T>(S). Thus, by Proposition of [23], there is (under suitable unitary identifica-
tion — see the proof of Prop. 2) a densely defined symmetric operator A in some 
Hilbert space ftr>JFj such that A(T>(A))(z1)(A), T)(A) is the linear span of the set 
{Anf: 71—0, £ ( S ) c £ ( i i ) and 

(27) (S"f, S"g) = <p(n; f , g) = (A"f, g), n V o , f , g ^ ( S ) . 

Define an operator TV with X)(N)=X>(A) by 

N(2*/*)= 2AkSfk, /„,..., fn€J>(S), ns.O. 
k=0 k=0 

It follows from (27) that for all / „ , . . . , /„6 D (S ) 

I I J ^ s a I I 2 = J (A*+lSfk, S/(> = J (Sk+>Sfk, S'+'S/,> = 
k=0 k,l=0 M = 0 

= 2 <sk+l+1fk,sk+t+1f) = 2 (Ak+l+lfk,fb = (A(2Akfk), 2 ¿ f t ) . . 
k, 1=0 • k,l=0 k=0 1=0 
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This implies the correctness of the definition of iV and shows that \\Nf\\2=(Aff), 
f£T>(N). Consequently 

<Nf,Ng) = (Af,g>, f,g£T)(N). 

This implies that A=N*N. The equality (20) follows from the following ones 

NA{2 A%) = N(Z ¿k+1A) = 2 ¿k+1Sfu = 
i=0 k=0 1=0. 

= A{2 AkS/k) = AN( J A%), /„, ...,/„62)(S). 
fc=0 t=0 

The inclusion SczN is obvious. This completes the proof of Lemma 5. 
Now we are able to pass to the proof of Theorem 6. 

P r o o f o f Theorem 6. "Only if" part of Theorem 6 follows from Proposi-
tion 4 as well as from Theorem 3. 

Conversely, suppose that S satisfies (E) for all finite sequences f0, ..., fn£T)(S). 
Due to Lemma 5, there is a densely defined operator N in some Hilbert space 
which satisfies the conditions (i), (ii) and (iii) of Lemma 5. Then 

(28) Q ( 5 ) c S ( 4 A = N*N. 

To prove this suppose that f£Q(S). Then Proposition 4 implies that the sequence 
{fl„}"=0, where a„=||S^/ll2 for N, is a Stieltjes moment sequence. Thus a2

n^aka l 

for k, /€N such that 2n=k+l . Due to Section 1 of [21] we obtain 

2 lis2"/ir1/2n =+=°. 

n=l 

It follows from (i) and (ii) of Lemma 5 that \\Anf | |2=<^2n/ ,/>=||52"/| |2 , so 

2 U ' f t l f l n = 2 [|S2B/l|-1/2" = + Thus f£<5(A). n=1 n=1 
Now we are in position to use Lemma 4. Indeed, since T> (A) is a linear span of 

{A"f : nsO, feT)(S)} and T>(S) is a linear span of Q(5) , an application of (28) 
and A(<5(A))cz<o(A) gives us that T>(A) is a linear span of <o(A).lt follows from 
Lemma 4 that N is quasinormal and, by Corollary 1, S is subnormal. This completes 
the proof. 

Coro l l a ry 5. Let S be a closed densely defined operator in Suppose that the 
linear span 35 of Q(S) is a core for S and that S satisfies (E) for all finite sequences 
/„, 3). Then S is a subnormal operator. 

11. Now we show that if an operator S has a dense set of analytic vectors 
then, similarly as in the case of weighted shifts, the condition (S), when satisfied 
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for all / €D(S) , is sufficient for S to be subnormal. This result is an extension of 
Lambert theorem (cf. [15], Th. 3.1) to the case of unbounded operators. Similarly as 
in [22] we ask whether this theorem is true for operators having dense set of quasi-
analytic vectors. 

Theo rem 7. Let S be a densely defined operator in $ such that &(S)=$t(S). 
Then S is subnormal if and only if S satisfies (S) for each f£T>(S). 

Proof . We have only to prove sufficiency. Suppose that S satisfies (S) for 
each fdT)(S). Then for each f£_T>(S) there is a unique non-negative measure nf 

such that 
CO 

(29) ||S»/||2 = / fdnf{t), n = 0, 1, 2, . . . . 
o 

Using the polarization formula we define complex measures 

f , g) = J W+s(ff) -Hf -g(0-) + + ig(0-) - -ig(<*)} 

for each Borel subset a of R+. Since the measure n f is uniquely determined we have 

Haf = \a\2n f, a€C, /62>(S). 

This implies that / i y= / i ( - ; / , / ) , /6®(5') and that the form fi(<r; • ,—) is her-
mitian symmetric. It is easy to see that 

(30) (Snf S"g) = Jtnn(dt; f , g), f g f Z ( S ) , n€N. 
o 

Now we prove that n(y, •, —) is linear with respect to the first variable. To 
show it is additive we write 

(S"(f+g), S"h) = (Snf, Snh) + (Sng, S"h), fg,h£T)(S), n£N. 

Using the polarization formula for the form ( / , g)—(S"f S"g) and the integral 
representation (29) we get 

/ tndVl(t)-f tndv2(t)+i(f t"dv3(t)~ f tndv4(t)) — 0, wiN, 
0 0 0 0 

where 

Vj V2 = f l f + a . h + ( i f + h + H g + h , 

V3 = Hf + g + ih + Pf-ih+Hg-ih* V4 = ^f+g-ih + ^f + ih + ^g + ih-
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Since the measures vk, k=1 , 2,3, 4, are non-negative we obtain 

• OO CO 

/ fdv^t) = / /"dva(i), /16N, 
0 0 

and 

(31) j f dv3(t) = j f'dv^t), n£N. 
0 0 

Each of these Stieltjes moment sequences is determinate. To see this consider the 
first of them 

a„= f t"dVl(t) = \\Sn(f+g+hW + \\Sn(f-h)r + \\S"(g-hW, neN. 
o 

Since the vectors f+g+h,f—h, g—h are analytic vectors of S, one can prove that 
there is a positive real number / > 0 such that 

~ «1/2 
y -2— f < + 

This implies that j? a~ll2n = + ^=. Due to the Carleman criterion (cf. [18]), {a„} 
n=i 

is a determinate Stieltjes moment sequence. The same is true for the other sequence 
given by (31). 

Thus v1=v2 and v3=v4. This in conclusion implies the required additivity 
H(a; f+g, h)=n(a; f , h)+n(a, g, h). By the same trick we can prove that 
¡i{a\ a f , g)=an(<r; f , g), first for 0 then for a < 0 and finally for a=i which 
exhausts all possibilities. 

Thus for each Borel subset a of R+, fi(a; •, —) is a hermitian bilinear form 
and n(•;/,/) is a non-negative finite measure on R + for each f£Ti(S). Using 
the generalized Naimark dilation theorem [10] we find a Hilbert space ft, a linear 
operator V: J>(5)—ft and a spectral (normalized) measure E on R + in ft such that 

(32) n(<r; f , g) = (E(a)Vf,Vg), f , g ^ ( S ) , 

for every Borel subset u of R + . According to Theorem 6, the proof of Theorem 7 
will be finished if we. show that 5 satisfies (E) for all finite sequences /„, ...,/„££>(£). 
Let / 0 , ..,,/„€T>(S). Due to (32) 

• ; F ( ® ( S ) ) c : S ( / t-E(dt)), n<EN. 
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Using (30) and (32) we obtain 

2 (sJ+kfj, sJ+kfk) = 2 f tJ+k^t; f j , f k ) = 2 </ tJ+kE(dt)vfj, vyk\ = 

= 1 </ / <№<)!%> = || 2 f ^(dt)Vfk||2 S 0. 
j,k=0 0 0 *.=0o 

This completes the proof. 
The proof of Theorem 7 is similar to that of Theorem 6 in [21]. For reader's 

convenience we have repeated the most essential parts of it. 

C o r o l l a r y 6. Let S be a closed density defined operator in H such that 9I(£) 
is a core for S. If S satisfies (S) for each /g9I(S), then S is a subnormal operator. 

In the case when the operator S is invertible, Theorem 7 implies the following 

Coro l l a ry 7. Let S be a densely defined operator with the densely defined 
inverse S~K Suppose S ^ ( S ) ^ ( S ) and 5"_1S(1S'-1)cD(S'-1) and S satisfies 
(S) for each f£T>(S). Then S is subnormal provided ®(5-1)=3I(S , - : l) . 

P roof . Due to Corollary 2 (b), it is sufficient to show that S~l is subnormal 
and, due to Theorem 7, it is sufficient to show that S ~1 satisfies (S) for each 
/€X>(1S,-1) = S(S'). Take f£T)(S) and c0, ..., c„£C. Define g=S~uf, h=S~1f 
and dj=cn_j, 7=0, ..., n. Then 

2 \\(S-1)nkf\\2CjCk= 2 IIS'+WdAsO 
j,fc=0 j,k=0 

and 

2 ll(s-iy+k+1/ll2c,.c* = 2 ll(s-1)J+k>>lliV*so 
j,k=0 j,k=0 

which means that iS - 1 satisfies (S) for each f£T>(S). 
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Some uniform weak-star ergodic theorems 

JOSEPH M. szCcs 

0. Introduction. Let SB be a Banach space and let 6 be a bounded semigroup 
of adjoint operators in 23*. We have proved the following result in [3]: 

Suppose SB is weakly complete and G is commutative and separable. If for 
every /£23*, the vv*-closed convex hull of the orbit Gt={gt: g€G} contains 
exactly one (/-invariant element tG, then the mapping t-*t°\ 23*—23* is a ^ -con-
tinuous linear projection P such that gP=Pg=P (g€G). 

(The term "separable" here means that G contains a countable subset G0 which 
is dense in G if G is considered in the topology of pointwise w*-convergence on 23*.) 

According to [4], the above result also holds if instead of the commutativity 
of G, we only assume its amenability. 

In the present paper we are going to prove analogues of the above result for 
the uniformly closed convex hull of the orbit Gt. The particular case where 23* 
is a JF*-algebra M and G is a group of *-automorphisms of M may be of some 
interest. 

1. Results. Let SB be a Banach space with dual SB* and let G be a bounded semi-
group of w*-continuous linear operators in 23*. In other words, sup {IIgH: g€G}< °° 
and for every g€G, there is a unique bounded linear operator g4 acting in SB, such 
that (&*)*=£• Let us consider the following two properties of the pair 23, G : 

(N) For every ¿623*, the norm-closed convex hull of the orbit Gt={gt : g€ G} 
contains at least one G-invariant element. 

(Nx) For every t(L SB*, the norm-closed convex hull of the orbit Gt contains 
exactly one G-invariant element, say tG. 

Theorem 1. Suppose SB is weakly complete and G is amenable and countable. 
Then condition (N) implies condition (N,). If condition (Nx) (or (N)) is satisfied, then 
the mapping t—tG SB*) is a w*-continuous linear projection P such that gP— 
=Pg=P(g£G). 
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Theorem 2. Suppose 23 is weakly complete and G is commutative and separable. 
Then condition (N) implies condition (Nx). If condition (N) [or (Nx)) is satisfied, then 
the mapping t—tG (/£23*) is a w*-continuous linear projection P such that gP= 
=Pg=P (g£G). 

Propos i t i on . Let 5B*=M, a von Neumann algebra and let G be a countable 
amenable group of *-automorphisms of M or let 23 *=M, a von Neumann algebra 
in a separable Hilbert space and let G be a commutative group of *-automorphisms 
of M. Assume that condition (N) is satisfied. Then condition (Nx) is also satisfied 
and M is G-finite. (For this notion, cf. [2].) 

2. Proofs. . 

Proo f of Theorem 1. For every <¡¡>£93 and /£23*, let us define the element 
/„>te/~(<7) by the equality f<pJ(g)=<p{g(t)) (g£G). Assume that (N) holds and 
consider a given /623*. Then there is a sequence {«n}^ of elements of the con-
vex-hull conv G of Gr, for which v„(t) converges in norm to a (/-invariant element 
of 23*, say / ' . Let a positive number e be given. Using the notation ||G|| = 
=sup {Hgil: g£G), we'can find a positive integer n0 such that ||t>„(/)—z'|| <£/||G|| 
if n ^ n i . Then Bg»,1(0-i'll=||«(«'B(0-i ,)| |sll«llll®»(0-/ ,HI|G|l(e/l |G||)=e uni-
formly in g£G for n^ri0. Consequently,for a given <p623 we have \f^,,(gvn) — (p(t')\ — 

for all g£G if n^n0. 
Since e> 0 was arbitrary, we have proved that the constant function on G which 
is equal to q>{t') can be uniformly approximated by convex combinations of the 
right translates of the element/^, of l°°(G). 

Let m now be a right invariant mean on /°°(G). The result above implies that 
m(fPtt)=(p(t'). In particular, if t". is another element of the norm-closed convex 
hull of Gt, then m{fiPit)=(p(t"). Consequently, (p(t')=(p(t") for every <p£93, 
and thus t'=t". Therefore, since f 623* was arbitrary, we have proved that (N) 
implies (NJ (even without assuming the weak completeness of 23 or the countability 
of G). 

Now let {G„}"=1 be a right-hand summing sequence for G, i.e., let 
(1/card G„) card ([G„ U. G„ g-]\[G„ fl G„ g])—0 as (For the existence of such 
a sequence, see [1].) We are going to prove that for <p623 and /£23*, 

( * ) • (1/card G„) 

as To prove this, we fix <p€23 and /623* and assume that for some filter 
F finer than the "filter base {{«: n^k}: £6N}, limF (1/card G„) 2 /_ ,{h) exists. 

Let Fj be an ultrafilter finer than F. Then for every /6/°°(G) and gdG, the limit 
limF (1 /card G„) 2 f(hg) exists (since Fx is an ultrafilter) and is independent of 1 hCii 
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g£G (because of the summing sequence property, since Fx is finer than 
{{n:n^k}: &€N}). Consequently, m ( / ) = l i m F (1/card GJ ^ / ( / i ) is a right in-

1 hiti„ 
variant mean on /°°(G). By the beginning of our proof,. 

m(/„, () = lim (1/card G„) 2 / „ W = <P<f)-
hZGn 

This means that limP (1/card G„) 2 f<? t(h) = (p(tG) for every filter F which is finer 

than the filter base {{«: n^k} : and for which limF (1/card G„) 2 f<p,t(h) 

exists. This means that lim (1/card Gn) 2 L Since <p£iB and i£SB* 
" AC«,, 

were arbitrary fixed elements, we have proved (*). 
Let us write w„=(1/card G„) 2 h. Then iv„€convG and by (*), wnt—tG 

in the ivMopology for every i£SB*. From this point we proceed in the same way. 
as in the first paragraph of Proof of Theorem 2 in [3]. For the sake-of completeness,, 
we repeat that reasoning here. 

Let <p£93 be given. Then for every ¿623* we have (w*<p — wm*<p, t) = 
=((p, (w„—wm)t)->-0 as n, m— Therefore, the sequence {wf is a weak 
Cauchy sequence in 93. Since 23 is weakly complete, there is an element P̂ <p of S 
such that (wn*(p, ̂ —(P^cp, t) for every /£23* as It is obvious that P^ is a 
bounded linear operator in SB. Furthermore, letting n— we obtain that ((p, w„ t) = 
= ( 0 , ^-(P^cp, t)=(cp,(P¥)*t) for (p£SB, /623*. Consequently, for every i6SB* 
we have wnt-(PJ*t (/z-°°) in the w*-topology of SB* and thus tc=(P^)*t (t£f&*). 
Since (P+)* is obviously w*-continuous, this completes the proof of Theorem L 

Remark . The first part of the proof of Theorem 1 shows that if Gis a bounded 
amenable semigroup of linear operators in a Banach space £ and „for every 
the norm-closed convex hull of the orbit Gt contains at least one G-invariarit element, 
then it contains exactly one G-invariant element. This can be seen in the same way 
as in the first part of the proof of Theorem 1 if we replace SB* by £ and SB by (£* 
there. • 

P roof of Theorem 2. Assume (N). We shall prove that for every i6SB*, 
the w*-closed convex hull of the orbit Gt contains exactly one G-invariant element. 
Then Theorem 2 of [3] will imply the statement of Theorem 2 of this paper. 

First we prove that for every /623*, the norm-closed convex hull of Gt con-
tains exactly one G-invariant element. (This follows from the above Remark, but 
in the commutative case the proof is simpler and we prefer to give an independent 
proof.) In fact, let t' and t" be two G-invariant elements in the norm-closed con-
vex hull of Gt and let e be a positive number. There exist v and w in conv G, such 
that | |vt- t 'W^e and \\wt-t"\\<e. We have \\t'-t"\\^\\t'-vwtl + \\vwt-f\\ = 
= \\w(t'-vt)\\M\v(wt-t'')\\^t'-vt\\ + \\wt-t"\\<2£, since vw=wv and ||t>||=§l, 
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M|=§1. Since e > 0 was arbitrary, this proves that t'=t" and thus the norm-
closed convex hull of Gt contains exactly one (/-invariant element, say tG. 

Now we prove that for every /633*, the only G-invariant element in the un-
closed convex hull of Gt is tG. In fact, let t£ SB* and let be a G-invariant element 
in the w*-closure of [conv G] t. Given £>0, there is wfconvG such that 

iG | |<e. Furthermore, there exists a net v„ in convG, such that vnt->-t' in 
the w*-topology. Then wvnt-*wt'=t' in the iv*-topology. On the other hand, 
||wt7„i—/G|| = ||t>„{wt—/c)||<e. Consequently, | | i ' - /G | |Ssup„ | |wt;n i-ic | |<e. Since 
£>0 was arbitrary, this proves that t'=tG is the only G-invariant element in the 
w>*-closure of [conv G] t. This completes the proof of Theorem 2. 

P r o o f of P ropos i t i on . The Proposition is a special case of Theorems 1 
and 2. We only have to note that if M is a von Neumann algebra in a separable 
Hilbert space and G is a group of *-automorphisms of M, then G is separable, as 
was pointed out in [3]. 

P rob lem. If 58 is weakly complete and separable, does condition (Nx) imply 
that the mapping t-+ tG is vv*-continuous on S* ? 
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Reflexive lattices of operator ranges with more than one generator 

S I N G - C H E O N G O N G 

Introduction. A linear submanifold (subspace, not necessarily closed) in a Hil-
bert space § is an operator range (paraclosed subspace) if it is the range of some 
bounded operator on §>—some member of B(§>) (the algebra of bounded linear 
operators on § ) . We refer the interested readers to the article [2] of FILLMORE and 
WILLIAMS for detailed discussions of operator ranges. Since the publication of the 
pioneering work of FOIA§ [3] on operator ranges invariant under algebras of operators, 
much progress has been made by many authors in this direction. However, there 
are few concrete examples of reflexive lattices of operator ranges have been explicitly 
described. A reflexive lattice of operator ranges is the lattice of all operator ranges 
invariant under an algebra of operators. The extreme case of singly generated lattices 
are described in [6] in terms of the generators. In [1] a description of the operator 
range lattice invariant under a reflexive algebra with commutative invariant sub" 
space lattice is given. Here we describe the reflexive lattice of operator ranges in 
terms of the generators. All lattices here will be lattices of operator ranges. 

Main results. For fixed positive operators Pt, P2,..., P„, the reflexive lattice 
generated by (the ranges of) Px, P2, ..., P„ will be denoted by RL , P2,..., P„). 
This is the lattice invariant under the algebra of operators leaving the ranges 
Py9), P2$), ...,Pn§> invariant. We wish to represent this lattice as ranges of func-
tions of the generators as in [5] for the case of single generator. For a>0 , the set 
of all continuous concave nonnegative nondecreasing functions on [0, a] will be 
denoted by K[0, a]. 

T h e o r e m . Let PlfP2, ..., P„ be commuting positive operators on §such that 
n 

there is an orthogonal decomposition 2®§>J °f §> reducing for every Pt, such that 
i 
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the restriction of Pj to the orthogonal complement 2 °f ' s invertible, 

/ = 1, 2, . . . , n. Then the following conditions on an operator range 91 are equivalent: 

(i) 9i6RL(P l5 P2,..., P„), 

(ii) 9\ = {JJ cpj(PM, for some tpfi K[0, \\Pj\\], j =1,2,..., n. 
J 

Proo f . Let si be the algebra of operators on § that leave the ranges of 
Pt, P2,..., P„ invariant, and let 91 be an ^-invariant operator range. Since the von 
Neumann algebra generated by Pt, ..., Pn and the projections onto ..., §„ 
is commutative and is contained in «sz/, 9? is the range of some operator in the com-
mutant of this commutative von Neumann algebra by a result of FOIA§ [3, Lemma 8, 
p. 890]. It follows, that 9 ? = ( 9 i n § 1 ) + ( 9 i n § 2 ) + . . .+(9i f l§„) and each MPIS, 
is an operator range in the reflexive lattice generated by the range of By 
[6] Theorem 8, 910.^ is the range of some operator of the form <•/>,•(/• 15^), where 
<p, is in K[0, I^ISill]. Extend cpt to all of [0, ||i}||] by defining <pi(0=<Pi(l|i?l§i||) 
for all /6(||/J|S,||, ||if||]- Then (pi is still a concave function and ^¡(i?) is defined. 
We claim that 9 1 = . . . (pn (P„)) <rj. 

To see the inclusion 91 £(<P l(PJ . . . r p „ ( P „ ) ) l e t x€91. Then x = x 1 + x 2 + . . . +x„, 
where x i € 9 i n § i , i=\, 2,..., n. We note that if one of 9 1 0 5 ^ ( 0 } , then 910$,-^ 
7^(0} for all j. Indeed, let X;€9in§;, x^O. For each j, let X^PJ^J, (as-
suming PJ&J^ {0}, otherwise we can omit Pj from the discussion at the beginning). 
Define the operator Ax=(x, xj)xj for x£§>. Then ASjQPjfyj. Thus APk§>QPk§>, 
k=l, 2, ...,n (since for j^k). Therefore A£st. Thus, and 
hence for all j = l , 2, ..., n. In particular, SRf l i?^ {0}. For a fixed 
i = l , 2 , . . . , n , it is easy to see that <p,(i;)|§/ is invertible for all j^i; and 
( Z f O ^ O I S i ) - 1 ) * ^ 9 * ^ ; - T h u s > t h e r e i s a i s u c h t h a t <Pi(fyyi = 

^ y = y i + - + y n - Then <Pj(Pj))y=x. Therefore 

To see: the opposite inclusion, let y=(<Pi (Pi). • • <P„(Pn))x, for some Write 
x=x1+x2 + ...+xn where ^6$,- . Let z ; =( /7 (PjiP^x^^. 

n 
Then obviously, y= 2 <Pi(Pi)is an element of <Pi(Pi)$i + ...-Ho„(P„)$„= 

= ( 9 i n § 1 ) + . . .+ (9 in$ n ) = 9i. So 913(<p1(P1)...<p„(P„))5. Thus equality holds. n 
This proves the implication (i)=>-(ii). For the converse we note that ( f f <Pj(PJ))$):= 

n 
= n ((pj(Pj))9), and each (pj{Pj)§> is ¿/-invariant. The proof is thus complete. 

J=i 

In the special case of §=Z,2[0,1], we have more definite conclusions when 
the generators are some special multiplication operators. To simplify the statement, 
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we introduce some notations. For a Function / on [0,1], Z ( / ) denotes the set of 
zeros of / . For a sequence of functions / i , / 2 , . . . ,/„, Z ( / l s / 2 , 
UZ( / 2 )U . . .UZ( /„ ) . If G is an open set relative to [0,1], G is a disjoint union of 
open intervals together with perhaps one or both of [0, a) and (/?, 1] for some 
a, /?E(0,1). A nonnegative continuous function is concave on G if the restriction 
to each component of G is concave (chords below graph). The set of all such func-
tions will be denoted by C(G). For each <P6JL°°[0, 1], the multiplication operator 
on L2[0,1] induced by <p will be denoted by M^. The symbol x denotes the identity 
function on [0,1], and 1 the constant function sending every i€[0, 1] to 1. 

C o r o l l a r y 1. RL (Mx, M x _ x ) = § : <p€C([0,1]), Z(q>)Q{0,1}}. 

P r o o f . Let 5R€RL (Afj,, M1_JC). Then by the proof of the above theorem 
9i=(M<f>M^-)§, where ij/~ (t)=i]/(\ — t), and <p,\]/ are nonnegative, nondecreasing 
concave functions on [0, 1]. Since the functions cp and \j/ are nonzero (assuming 
5R?i{0}) the restrictions cp|[l/2, 1] and i^|[0,1/2] are bounded from below, we 
may replace them by a constant functions, viz: the functions taking the constant 
values (p(l/2) and 4/(1/2) on [1/2,1] and [0,1/2] respectively. Then it is obvious 
that Mq>M^~=Mq>^~ and (p>{/~ is concave near the points 0 and 1. By replacing 
the restriction of <p\p~ to an interval [a, /?], a, /?6(0,1) by a suitable linear function, 
we may assume that (pi//~ is a concave function on all of [0,1]. Thus, the inclusion 
^ of the sets in the corollary holds. The opposite inclusion follows from a result of 
[4] (see [5, Theorem B]). 

With a suitable modification, the above proof can be adapted to a proof of the 
following 

C o r o l l a r y 2. Let f x , f 2 , •...,/„ be nonnegative continuous functions on [0, 1] 
such that Z(f1),..., Z ( f n ) are pairwise disjoint. Then RL (Mf , ..., Mf ) = 
= 96C([0; I M A , ••••/»)). Z W i Z ^ , ...,/„)}. 
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Generalized projections for hyponormal and subnormal operators 

C. R. PUTNAM 

0. Sufficient conditions for the existence of certain invariant subspaces of a 
pure hyponormal operator, T, are obtained. In case T is also subnormal these sub-
spaces are even reducing. In particular, a pure subnormal operator T is shown to 
be reducible in case o(T) is bisected by the imaginary axis and if, in addition, that 
part of c(r),iwhich has a projection onto the real axis lying in the absolutely con-
tinuous support of Re (T), is sufficiently sparse near the imaginary axis. 

1. Let T be a pure hyponormal operator on the separable Hilbert space ^f . 
Thus, T* T^TT* and there is no nontrivial reducing subspace of T on which 
r i s normal. In particular, op{T) is empty. Let C be a rectifiable, positively oriented, 
simple closed curve separating the spectrum a(T); thus, a(T) intersects both int C 
and extC, the interior and exterior, respectively, of C. It may be noted that, in 
general, the set CC\a(T) may have positive (arc length on C) measure. There will 
be proved the following 

Theorem 1. Let T be purely hyponormal on and satisfy 

(1.1) / ||(r-0 -1x|||ifr| < » , *63T, 
c 

where 3C is a set dense in ffl. Then there exists a linearly independent pair of invariant 
subspaces Jii and Jic of T for which ^ C J t c and 

(1.2) <7(7W,.) = (<7(r)nintC)- and o(T\Mc) = {o(T)C\extC)-. 

Further, in case T is also subnormal, Mi and J f e are reducing subspaces of T on 
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P r o o f of Theorem 1. Define the "projection" Pc by 

(1.3) PCX=-(27T/)-1 ¡(T-t^xdt, xi.SC, 
c 

so that, by (1.1), (Pcx, y) = -(2ni)~l J ( ( T - / ) _ 1 x , y) dt is defined as a Lebesgue 
c 

integral for any x in and y in . Clearly, it may be assumed that S£ is a linear 
manifold. If Jt{ and Jte are the respective closures of the linear manifolds Pc3C 
and (I—Pc)SC, then, in particular, J({ and J(e are hyperinvariant subspaces of T. 
Relation (1.2) now follows from a proof analogous to that of [5], pp. 13—14, and 
will be omitted. (The set L and the curve CR of [5] correspond to the present S£ 
and C.) A crucial part of the argument in [5] is that the set {x: <JT(X)C<T} is a sub-
space whenever a is any nonempty compact subset of the plane and <rT(x) is the 
local spectrum of any vector x in jif. This result is due to STAMPFLI [7] (p. 288, see 
also p. 295) in case T* has no point spectrum and to RADJABALIPOUR [6] in the 
general case. 

Also, Jt=Jf(r\J/e={0}. For if 0}, then a(T\Jt)<zC and hence 
a(T\Ji) has (area) measure zero. Consequently (cf. [3]), Ji^ {0} is a reducing 
space of T on which T is normal, in contradiction to the hypothesis that T is purely 
hyponormal. 

Before completing the proof of the remainder of Theorem 1 when T is sub-
normal, there will be proved the following 

Lemma. If T is a pure hyponormal operator satisfying (1.1) then 

(1.4) H<rp(T*) for t£C-Z, 

where Z is a subset of C of (arc length) measure zero. In case T is also subnormal 
on with the minimal normal extension N=J z dEz on J f z ) then 

(1.5) E(C) = 0. 

P roof of Lemma. As noted above, since T is purely hyponormal, ap(T) is 
empty. Further, by (1.1), for x fixed in SC and for almost all t on C, yl=(T—t)^1x 
is defined. Thus, for each x in SC, there exists a set Z(x) on C of arc length measure 
zero and with the property that x£R(T—t) for t£C—Z(x). If (x l5 x2, ...} is a 

countable subset of 2£ which is dense in 2/C then Z = (J Z(xk) is also a zero set. 
k = l 

Thus, St(T—t) is dense in «5f for all t in C—Z and, in particular, relation (1.4) 
follows. 

Next, relation (1.5) will be established when J" is also subnormal. Let x be any 
vector in SC. For t in C—Z(x) one has y,—(T—t)~1x, hence x—(T—t)y,= 
—{N—t)yt, and so / (z-t^dE^. (Note that £'({i})jc=0.) Con-

ff(iV) 
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sequently, for any u in Jf, an application of the Schwarz inequality and (1.1) yields 

/( f\z-tn\d(Ezx,u)\)\dt\S /( f\z-t\-*d\\Ezx\f)ll2{ fd\\E:ur)lii\dt\ = 
C <R(JV) C <R(JV) A(N) 

= {j\\(T-t)-ix\\\dt\)\\u\\ <». 
c 

(Note that J = / •) Consequently, in view of Fubini's theorem, 
C C-Z(X) 

(1.6) / ( / \ t - z \ - * \ d t \ ) \d(Ezx, u)I 
ff(JV) c 

However, J" \t-z\~1 \dt\ = <*= for all z on C. (In fact, otherwise, there would 
c 

exist some z* on C for which j\t—z*\~1 However, z* is not an atom 
c Z* 

of the measure \dt\ on C and so I s J \t—z*|_1 \dt\+ 0 as t*—z*, a contradic-
t* 

tion.) Hence, by (1.6), (E(C)x , u)=0 for u arbitrary in j f and x arbitrary in SC. 
Thus, for x in E\C)X=0 and hence also 0=N*KE(C)x=E(C)N*kx 
(k=0,1, 2,...). Since SC is dense in JF and N is the minimal normal extension of T, 
the linear span of {N*kSC} (k=0,1, 2, ...) is dense in J f and (1.5) follows. This 
completes the proof of the Lemma. 

The assertion of Theorem 1 when T is purely subnormal now follows from 
the above Lemma and Corollary 1 of [4], p. 106. In fact, only the hypothesis (5.1) 
of Corollary 1, corresponding to (1.1) of the present paper, is need to ensure the 
validity of the assertion of Corollary 1. Indeed, the remaining hypotheses there, 
namely, that {z£C: AP(T*)} has measure zero and that E(C)=0, are con-
sequences of (1.1), in. view of the Lemma. For completeness, however, an alternate 
proof of the assertion of Theorem 1 when Tis purely subnormal will be given below. 

By the Lemma, E(C)=0, and so for x in SC and 14 111 one has, by Fubini's 
theorem, 

(Pcx, u) = j [-(2TT/)-1 / ( z - / ) - 1 dt] d(Ezx, u)= f 4>(z) d(Ezx, u), 
A(.N)-C C O(N)-C 

where <£(z) is the characteristic function of int C. Thus, (Pcx, u)=(E(int C)x, u) 
for all u in X and so Pcx=E('mt C)x for all x in SC. Let P denote the 
orthogonal projection P: Jf—Jf. Since the (orthogonal projection) E(intC) is 
bounded on X and £(int C)x=PcxiJf for x in SC, then clearly E(iatC)P= 
=PE(intC)P(=PE(int C)). Thus E'=E(mtC)\3^ is an orthogonal projection 
and E'\SC=Pc. Since TPcx=PcTx for x in 9C and SC is dense in then T com-
mutes with £". Further, it is clear that E' =jK-t, and so the spaces and 
defined earlier reduce T and =JTI®JLE. This completes the proof of Theo-
rem 1. 
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2. For use below, note that if T is purely hyponormal then Re (T) is absolutely 
continuous; see [2], p. 46. 

Theo rem 2. Let T be purely subnormal on 34? and suppose that o(T) inter-
sects both the right and left open half planes 2?={z: Re (z)>0) and L={z: Re (z)<0| . 
In addition, let 

(2.1) f t~2F(t) dt < 2n, 
a 

where a is the absolutely continuous support of Re (T) and F(t) is the linear measure 
of the vertical cross section a(T)r\{z: Re {z)=t} of a(T). Then there exist sub-
spaces JtR and Jih of reducing T, satisfying №=JlR@J(L and 

oCTM = (A(T)N^)- and O{T\ML) ={G{T)C\L)~. 

Theorem 2 follows from Theorem (*) and its proof in [5] and from Theorem 1 
above. In fact, let C denote the positively oriented boundary of the semicircular 
disk {z: Re(z)>0, |z |<r) , where /->0 is chosen so large that O(T)A (Z: |z|-=r}. 
It was shown in [5] that S£ of Theorem 1 above can now be chosen so as to contain 
the range of EA (/?) where {EA} is the spectral family of ^4=Re (T) and P is any 
Borel set of the real line whose closure does not contain 0. This completes the proof 
of Theorem 2. 

For other sufficient conditions ensuring the reducibility of a subnormal operator 
see the references in CONWAY [1], pp. 299—300. 

The author is grateful to the referee for very helpful comments and sugges-
tions. 
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Approximation Theory, Tampa, Proceedings of the seminar held in Tampa, Florida, 1985— 
1986. Edited by E. B. Saff (Lecture Notes in Mathematics, 1287), VI+228 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

The Institute for Constructive Mathematics at the University of South Florida had its begin-
nings in 1985. The papers contained in these Proceedings of the Tampa Approximation Seminar 
prove the quality and variety of research activities conducted of the Institute and show the individual 
interest of the visitors to the Institute during the academic year 1985—1986. 

Contents: P. R. Graves-Morris and J. M. Wilkins, A fast algorithm to solve Kalman's 
partial realisation problem for single input, multi-output systems; A. Knopfmacher and D. Lu-
binsky, Analogues of Freud's conjecture for Erdős type weights and related polynomial approxima-
tion problems; A. L. Levin and E. B. Safif, Some examples in approximation on the unit disk by 
reciprocals of polynomials; D. Lubinsky and E. B. Saff, Strong asymptotics for Lp extremal poly-
nomials ( l< />3 =•=) associated with weights on [ — 1, 1]; L. S. Luo and J. Nuttall, Asymptotic 
behavior of the Christoffel function related to a certain unbounded set; H. N. Mhaskar, Some 
discrepancy theorems; J. Palagallo-Price and T. E. Price, Properties of projections obtained by 
averaging certain polynomial interpolants; L. Reichel, Boundary collocation in Fejér points for 
computing eigenvalues and eigenfunctions of the Laplacian; B. Shekhtman, On the geometry of 
real polynomials; H. Stahl, A note on a theorem by H. N. Mhaskar and E. B. Saff: "Where does 
the sup norm of a weighted polynomial live? (a generalization of incomplete polynomials)"; H. Stahl, 
Existence and uniqueness of rational interpolants with free and prescribed poles; J. Waldvogel, 
Zero-free disks in families of analytic functions. 

J. Németh (Szeged) 

N. H. Bingham—C. M. Goldie—J. L. Teugels, Regular Variation (Encyclopedia of Mathe-
matics and its Applications, Vol. 27), XIX+491 pages, Cambridge University Press, Cambridge— 
London—New York—New Rochelle—Melbourne—Sydney, 1987. 

The publication of this book is a major mathematical event. 
The theory of regularly varying functions was initiated by Jovan Karamata in 1930. A positive 

measurable function / defined on a half-line (a, with « > 0 is called regularly varying (at 
of index e€R if ( * ) f(Xx)lf(x)-*Xe, as *-*<*>, for each (Measurability can usually be 
replaced by the Baire property for most of the basic results.) If Re denotes the class of all such func-
tions then the functions in R0 are called slowly varying, and for f£R0 we have f(x)=xe l(x) with 
some /Si?0. The notion of regular variation at zero rather than and then at any other point, is 
straightforward, every result at ~ has a corresponding counterpart. 

Karamata himself used his basic results on regular variation in Tauberian theorems and the 
theory was further developed by his Yugoslav School. As the authors write in their preface "The 
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great potential of regular variation for probability theory and its applications was realised by William 
Feller, whose book [An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New 
York, 1968 and 1971] did much to stimulate interest in the subject. Another major stimulus — again 
from a probabilistic viewpoint — was provided by Laurens de Haan in his 1970 thesis [On Regular 
Variation and its Applications to the Weak Convergence of Sample Extremes, Math. Centre Tract 32, 
Amsterdam], while Eugene Seneta gave a treatment of the basic theory of the subject in his mono-
graph of 1976 [Functions of Regular Variation, Lecture Notes in Mathematics 506, Springer, Berlin]." 

The first chapter is the essential Karamata theory (pp. 1—60). This is based on results like 
the uniform convergence theorem (stating that if l£R0 then the convergence in ( * ) above holds 
uniformly on each compact A-set in (0, °°)), the representation theorem (stating that if l£R0 then 

X 

l(x)=c(x) exp { J b(t) dt/tj, x^a, for some 0, where c(x) is measurable and c(x)-*c 6(0, 
a 

b(x)—0 as the characterisation theorem (stating that if for a positive measurable/ rela-
tion ( * ) above holds for a /.-set of positive measure and with an unspecified limiting function g(/.) 
on the right side, then it holds for all A=-0 and necessarily ¿»(A)=Ae, /„>0, for some e€R) and 
the absolutely basic Karamata theorem, with many variants and refinements, stating very roughly 
that f£Re if and only if certain integral functions of/behave near ~ as i f f ( x ) were constant times 
x". There are many variants, versions or extensions of everything, monotone equivalents, asymptotic 
inverses and conjugates and various related notions and properties are discussed extremely intel-
ligently together with special cases such as smooth variation and monotonicity with first applica-
tions as Karamata's Tauberian theorem for Laplace—Stieltjes transforms. Regularly varying se-
quences receive a separate discussion. 

Chapter 2 (Further Karamata theory, pp. 61—126) is devoted to the investigation of the classes 
ER of extended regularly varying functions f and OR of O-regularly varying functions / (of posi-
tive measurable or Baire functions) for which /.dSf^ (A) s / * (A) ̂ Ac, for some c and d, 
and for which 0-=/J(.(A)S/*(A)< 1 respectively, where, as *-«-<*>, /*(A)=lim i n f f ( X x ) / f ( x ) 
and f*(X) — \imsupf(lx)/f(.x), and to related classes. These are functions of bounded or positive 
increase or decrease, the classes and R^, quasi-monotone and near-monotone functions, 
various subclasses of R0, functions with Pólya peaks, Beurling slow variation, self-neglecting and 
self-controlled functions, to mention a few for those who know what these are or have the right 
sense of imagination. 

Taking logarithms, relation ( * ) above, with a general limiting function, can be written as 
<p(Xx)— <p{x)—hQ.). Chapter 3 (de Haan theory, pp. 127—192) provides the extended modern 
theory when the left side here is replaced by the ratio (i>(Ax) — <p(x))/y (x), where ij/ is some aux-
iliary function, with the corresponding O-, o-, E- and other versions or extensions. 

Chapter 4 (Abelian and Tauberian theorems, pp. 193—258) and Chapter 5 (Mercerian theo-
rems, pp. 259—283) together constitute a virtually complete and beautifully constructed account 
of that part of classical analysis which is defined by these names, obtained by full-force applica-
tion of the results in the first three chapters, with many far-reaching extensions and complements. 
All integral transforms of convolution type and all matrix transforms receive detailed attention 
where some form or other of regular variation plays some röle in the result. These five chapters 
form a completely integrated and unrivalled unit which will be difficult to surpass before the twenty-
second century. 

And now come two little pearls. The first is Chapter 6 (pp. 284—297) on applications to analytic 
number theory (partitions, the prime number theorem and the order of sums of multiplicative 
functions), while the second is Chapter 7 (pp. 298—325) with applications to complex analysis 
concerned mainly with the growth of entire functions. 
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The last Chapter 8 (Applications to probability theory, pp. 326—422) is a masterpiece in itself. 
It offers a fantastically rich field of applications of regular variation and here we restrict this review 
to listing section headings: tail-behaviour and transforms, infinite divisibility, stability and domains 
of attraction, further central limit theory, self-similarity, renewal theory, regenerative phenomena, 
relative stability, fluctuation theory, queues, occupation times, branching processes, extremes, 
records, maxima and sums. 

Six short appendices (pp. 423—444) with indications of further fields of applications and 
technical necessities complete the main body of the text. 

However, the remaining forty-seven pages are very important to the excellence of the book. 
There is a list of references of 645 different items, each one supplied with a list of all the page num-
bers where it is cited. Then there is an index of named theorems. This is followed by a seven-page 
comprehensive index of notation and a sixteen-page very detailed general index concludes this 
encyclopedia of regular variation. These, together with the extremely clever structuring of the 
material into chapters, sections and subsections, the page headings and the nine-page table of con-
tents make the book very easily usable. This is just one sign of the authors' sense of scholarship. 
Throughout, all Serbian, Croatian, French, German, Hungarian, Russian or Scandinavian accent 
marks are proper and are at their own place. All second- or third-named authors have a separate 
entry in the bibliography with a reference to the first-named author. There are no misprints in this 
book. (The three trivial typos this reviewer found were probably left intentionally by the three 
authors: to satisfy reviewers who believe that perfect works are impossible.) 

This is a perfect work of art in every sense of the word. The language is perfect, the taste is 
perfect, the typography is perfect and, above all, the mathematics is perfect. The amount of knowl-
edge brought together and of the work that went into this book is truly fascinating. There should 
be dozens of mathematicians sweating on their problems at this late hour of the night, or early 
hour of the morning, all over the world who would only need to look up page x of it and exclaim 
'heureka'. Many-many results are new: brand new or completely polished versions of older results, 
when, needless to say, the authors always give the original sources just as when they follow some-
body else in the proof even if they greatly simplified and polished that proof. And they are never 
tired to do so, even when they give five different proofs for the uniform convergence theorem in 
Chapter 1. In a sense everything is new here: every word of the subject is redigested and the whole 
comprehensive theory and its many applications are unified and integrated. The writing style is very 
modest, the mathematical and general intellect shines through, each page ticks, it is sheer delight 
to read the book. 

It is a classic right away. A book for all seasons. 
Sándor Csörgő (Szeged) 

H. G. Dales—W. H. YVoodin, An Introduction to Independence for Analysts (London Mathe-
matical Society Lecture Note Series, 115), XIII+241 pages, Cambridge University Press, Cam-
bridge—New York—Melbourne, 1987. 

Let X be an infinite compact space and let C(X) be the Banach algebra of all continuous 
functions. A famous question, first discussed by Kaplansky in 1948, asks if every algebra norm 
on C(X) is necessarily equivalent to the given uniform norm. In 1976, using the continuum hypoth-
esis (CH) H. G. Dales and J. R. Esterle, independently of each other, showed that there are algebra 
norms on C(X) which are not equivalent to the uniform norm. More surprisingly, also in 1976 
R. M. Solovay and W. H. Woodin proved that the existence of such norms is independent of the 
basic axioms of set theory (ZFC). 

13 
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"As" the'authors write in the preface: "The purpose of this book is'to explain what it means 
for a proposition to be independent of set theory, and to describe how independence results can be 
proved by the technique of forcing." A full proof of the independence of ( C H ) from (ZFC ) is given 
and the first proof of the theorem of Solovay and Woodin, accessible not only to logicians but 
intelligible also to analysts, is provided here. The authors include a discussion of Martin's Axiom, 
"which can be used to establish independence results without the necessity of knowing any of the 
technicalities of forcing". ' 

This book offers analysts a good possibility to get acquainted with the powerful technique 
of forcing and with its application in the resolution of a deep problem in analysis. It can be recom-
mended also to students of set theory as an introductory work. 

László Kérchy (Szeged) 

Dependence in Probability and Statistics. A Survey of Recent Results (Oberwolfach, 1985). 
Edited by E. Eberlein and M. S. Taqqu (Progress in Probability and Statistics, Vol. 11), XI+473 
pages, Birkhauser, Boston—Basel—Stuttgart, 1986. 

. This is a fine collection of a large number of excellent survey papers and a smaller number 
of equally excellent research papers on various kinds of dependent random variables, concentrating 
mainly on limit theorems. 

Section 2 is on various mixing conditions with papers by R. Bradley, M. Peligrad, W. Philipp, 
M. Denker, C. M. Goldie and G. J. Morrow and by N. H. Bingham, while Section 3 contains 
the papers by P. Gaenssler and-E. Haeusler and by E. Eberlein on martingale types of dependence. 
Section 4 carries the articles by A. R. Dabrowski, E. Waymire and by R. H. Burton and E. Waymire 
on positive and Gibbs dependence, the papers by F. Avram and M. S. Taqqu and by R. A. Davis 
and S. Resnick on moving averages in independent variables belonging to the domain of attrac-
tion of a non-normal stable law constitute Section 5. 

Advances in dependent extreme value theory are sketched in the papers of G. O'Brien, J. Hüs-
ler, and W. Vervaat in Section 6. Finally, Section 1 is on the recent hot topic of long-range de-
pendence with papers by T. C. Sun and H. C. Ho, L. Giraitis and D. Surgailis, M. S. Taqqu and 
J. Levy, M. Maejima, N. Kőno, H. Dehling, the last paper being here a bibliographical guide by 
M. S. Taqqu to some 286 items. The preface of the two editors provides an intelligent guide to 
the collection itself, which will probably be indispensable for anyone with dependencies. 

Sándor Csörgő (Szeged) 

Luc Devroye, A Course in Density Estimation (Progress in Probability and Statistics, Vol. 14), 
XIX+183 pages, Birkháuser, Boston—Basel—Stuttgart, 1987. 

This seems like a most enjoyable book on density estimation using the criterion. The larger 
part of it appears as a lighter edition of the author's research monograph with L. Győrfi, Non-
parametric Density Estimation: The £, View, Wiley, New York, 1985. It is based on the notes of 
a course the author has taught, at Stanford University in 1986. Indeed, it is a first-class textbook 
for a graduate course with many examples, figures and exercises. The author should indeed be 
commended for having made the results of a very fresh and sophisticated research available for a 
wade public in just a little more than no time at all. In comparison to the earlier research mono-
graph, however, some new material is also found in the present book. (Indeed, the opposite would 
have been very much uncharacteristic for the author.) These are chapters on robustness, minimum 
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distance estimation, estimation of monotone densities, and on relative stability. The book can 
be enthusiastically recommended to every statistician: students, instructors, research workers, and 
the layman for that matter. 

Sándor Csörgő (Szeged) 

Differential Geometry, Calculus of Variations, and their Applications, Edited by G. M. Rassias 
and Th. M. Rassias (Lecture Notes in Pure and Applied Mathematics, Vol. 100), XIII+521 pages, 
Marcel Dekker, Inc., New York—Base', 1985. 

This book contains a series of papers dedicated to the memory of Leonhard Euler (1707—1783) 
on 200th anniversary of his death. His discoveries and significant contributions were devoted, to 
every area of the mathematical sciences that existed in his day: calculus of variations; differential 
geometry of surfaces; the geometric origins of topology and combinatorics; particle, rigid body 
and celestial mechanics etc. The pure and applied aspects of mathematics and mechanics were not 
separated yet in that time. Lagrange, Laplace and Gauss were influenced directly by Euler's work, 
thus his activity belongs to the foundaments of the modern science. The papers in this volume are 
written by the authorities of the fields: dynamical systems, differential topology and geometry, 
calculus of variations, differential equations, control theory, and history and philosophy of sciences. 

Peter T. Nagy (Szeged) 

H. Edelsbrunner, Algorithms in Combinatorial Geometry, ETACS Monographs on Theoretica 
Computer Science, XV+423 pages, Springer-Verlag, Berlin—Heidelberg—New York—London— 
Paris—Tokyo, 1987. 

Computational geometry is a rapidly expanding part of mathematics today and several books 
have been published on this topic. This is not "just another book" but certainly one of the best 
ones. The theory emerged as the unification of computational technics and results of combinatorial 
geometry, and this book follows this line. The author's aim was "to demonstrate that computational 
and combinatorial investigations in geometry are doomed to profit from each other". According 
to this intention the book is divided into three parts. 

The first part is devoted to the combinatorial geometry. It contains the fundamental geometric 
structures (arrangements of hyperplanes, configurations of points, convex polytopes, Voronoi 
diagrams), the main combinatorial tools and basic results of the complexity of families of cells 
(the Euler relation, the Dehn—Sommerville equations, an asymptotic version of the upper bound 
theorem). 

The second part contains the computational methods, the organization of data structures of 
arrangements and the most important geometric algorithms (construction of convex hulls, linear, 
programming, point location search). 

The third part presents applications of the first two parts proving that the combination of 
these two fields results a really fruitful method. 

Each chapter contains a problem section including exercises as well as research problems 
and the chapters end with a complete and updated bibliographical notes. 

The book can be useful to specialists as a reference book but it is also recommended to every-
body interested in the present advances in computational geometry. 

J. Kineses (Szeged) 

13» 
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F. Forgó, Nonconvex Programming, 188 pages, Akadémiai Kiadó, Budapest, 1988. 

Nonconvex programming deals with the class of mathematical programming problems in 
which a local maximum-point is not necessarily a global maximum-point. This book is devoted 
to provide a survey of the basic research directions of the nonconvex programming except its two 
major fields, the integer programming and the global optimization which are treated in a number 
of excellent monographs. 

The book consists of ten chapters. The firsi il.ici ones con-prise such topics and techniques 
as optimality conditions, nonlinear duality, convex and concave envelopes of functions, direct 
and implicit enumerations, branch and bound method, different cuts which will be used in sub-
sequent chapters. 

Chapter 4 deals with the problem of maximizing a quasi-convex function over a polytope. 
Cutting-plane methods based on different kinds of cuts such as convexity, polaroid and shallow 
cuts are given for solving the problem in question. For the case of convex objective function the 
method of Falk. and Hoffmann is presented. This part ends with the treatment of the Tuy—Zwart 
method. 

Chapter 5 studies the problem of maximizing a linear objective function with convex inequality 
constraints, and an indirect cutting-plane algorithm is discussed. 

The general case is studied in Chapter 6, where a continuous function is to be maximized 
over a compact subset of the «-dimensional Euclidean space. For solving it a branch and bound 
algorithm developed by Horst is presented, then some bounding techniques are discussed. Finally, 
the special case of separable objective function is investigated. 

Chapter 7 is devoted to the nonconvex quadratic programming problems. Such methods 
are presented which more or less utilize the quadratic nature of the objective function. 

A special nonconvex problem, the fixed charge problem, and some methods of solution are 
investigated in Chapter 8. 

Chapter 9 deals with techniques for converting constrained problems to unconstrained ones 
and gives an explicit formula for the optimal solution of a nonconvex programming problem in 
terms of a multiple integral. 

Finally, Chapter 10 contains a partition algorithm to decompose the nonconvex programming 
problem. 

The book is well-written. The material is well-organized, the proofs are clear, a subject index 
helps the reader. It may be recommended to mathematicians, operation researchers, and computer . 
scientists. I 

B. Imreh (Szeged) 

S. Gallot—D. Hulin—J. Lafontaine, Riemannian Geometry (Universitext), XII+248 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

It is a great fun to read this book. The authors had found the ideal rate of abstractions and 
examples. When a new definition or theorem occurs the reader will meet a detailed recurrent study; 
of the most important examples of Riemannian geometry like spheres, tori, projective spaces, etc. 
At the same time, throughout the book there are several exercises (the solutions of most of them 
are given at the end of the book) to help to understand the text. 

The book is divided into five chapters. The first one is a quick introduction to differential; 
manifolds. The next, two chapters contain the basics of Riemannian geometry until Myer's and 
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Milnor's theorems. Chapter IV deals with analysis on manifolds and Chapter V is about Riemannian 
submanifolds. 

Summing up, this is a modern, well built and useful book, and we warmly recommend it to 
all who need a good introduction to Riemannian geometry. 

Árpád Kurusa (Szeged) 

M. Göckeler—T. Schiicker, Differential geometry, gauge theories, and gravity (Cambridge 
monographs on Mathematical physics), XII+230 pages, Cambridge University Press, New York— 
New Rochelle—Melbourne—Sydney, 1987. 

This book is an introduction to those concepts of differential geometry which are funda-
mental for applications in elementary particle theory and general relativity. On the mathematical 
side, the only prerequisites are linear algebra and real analysis. The physical part of the book is 
essentially self-connected, but it is useful if the reader is already motivated by some knowledge 
of Yang—Mills theory, general relativity, and the Dirac equation. 

The first three chapters contain an elementary account of differential forms in R". This ma-
chinery is used then to reinterpret and rewrite basic quantities and equations of Yang—Mills theory 
and general relativity in geometric, coordinate-free terms. Next, the reader is acquainted with the 
notion and some applications of the Lie derivative. This is followed by chapters providing the 
rudiments of manifolds and Lie groups. 

In Chapter 9 the authors present an introduction to fiber bundles and connections on them. 
This is a topic of growing importance in applications. The following chapter illustrates the theory 
on the examples of the Dirac monopolé, the 't Hooft—Polyakov monopolé, Yang—Mills and 
gravitational instantons. 

Chapter 11 treates the algebraic (Clifford algebra, spinor representations) and analytic (Dirac 
operator, spin structures) aspects of the Dirac equation. The concept of Káhler fermions is also 
touched upon here. The next chapter is devoted to a subject of more advanced character, to the 
algebraic approach to anomalies. The final sections contain some background material on anomalous 
graphs. 

This book is intended for graduate students in theoretical physics in the first place. The reviewer 
warmly recommends it also to everybody else searching for a well written, elementary introduc-
tion to modern differential geometry with emphasis on applications in particle theory and relativity. 

László Fehér (Szeged J 

Lj. T. Grujic—A. A. Martynyuk—M. Ribbens-Pavella, Large Scale Systems Stability under 
Structural and Singular Perturbations (Lecture Notes in Control and Information Sciences, 92), 
XVI+366 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

Almost one hundred years ago, 1892, A. M. Lyapunov founded the mathematical stability 
theory in his famous doctoral dissertation. Previously stability concepts had been used only for 
mechanical systems. He has not only formulated the abstract definitions of stability concepts for 
arbitrary differential systems but established methods of investigation of these properties. One 
of them, the so-called direct method is suitable for finding conditions of stability properties via 
the system state differential equation without use of its solutions. This method has been proved 
to be extremely useful not only in mechanics but in many fields of the applications of differential 
equations such as control theory, reaction kinetics, population dynamics, biology and so on. 
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These lecture notes, which are a revised and completed version of their original Russian edi-
tion, are devoted to a recently developed branch of stability theory, to large scale systems stability. 
It is also based upon Lyapunov's direct method. 

The first two chapters give an up-to-date survey on the state of Lyapunov's direct method. 
It was an excellent idea to start some sections with citations of the original definitions of stability 
concepts and fundamental theorems from Lyapunov's work. The reader can follow the arch of 
the one hundred years' development realizing that Lyapunov's original theorems are important 
and actual even today. Chapter I entitled Outline of the Lyapunov Stability Theory in General 
gives new versions of the definitions of stability concepts and theorems involving the earlier gen-
eralizations. The absolute stability is also treated. 

Chapter II (Comparison Systems) contains the theory and application of the comparison 
method with scalar, vector and matrix functions. (The theory of comparison matrix functions 
initiated by A. A. Martynyuk was available earlier only in papers.) 

The second part of the book is devoted to large-scale systems. The main idea here is to de-
compose the whole system into interconnected subsystems and then to find an aggregation form 
of the system yielding conditions under which the desired property of the original system can be 
deduced from the same properties of its interconnected subsystems and from qualitative properties 
of their interactions. 

Chapter V (Large-Scale Power Systems Stability), which is essentially revised and completed 
in comparison with the original Russian edition, gives a good example for the process of mathe-
matical modelling from the introduction of the physical problem, through the mathematical formula-
tion and treatment until the interpretation of the results. 

This book — which should be found on the book shelf of every mathematician, engineer, 
and any other user of mathematics interested in stability theory — is worthy of celebrating the 
oncoming hundredth anniversary of the publication of Lyapunov's fundamental work. 

L. Hatvani (Szeged) 

Jack Carl Kiefer, Introduction to Statistical Inference, Edited by G. Lorden (Springer Texts 
in Statistics), VIII+334 pages, 60 illustrations, Springer-Verlag, New York—Berlin—Heidelberg-
London—Paris—Tokyo, 1987. 

This book is unique and is best in its kind. It gives a systematic development of decision 
-theoretic statistics, and it does this as a first course in mathematical statistics. It is based upon 
lecture notes of the late Professor Kiefer, one of the great masters of the subject to be compared 
only to Neyman and Wald, on whose work he builds here. So this is a posthumus book and it would 
have been a very great loss to the whole international statistical community if these notes had re-
mained only in the privileged possession of those individuals who were fortunate enough to be 
around Cornell where Kiefer has developed them. It is a gift to all of us. The editor and the pub-
lisher should be thanked for making it available. 

• The first three short chapters (Introduction, Specification of a statistical problem, Classifica-
tions of statistical problems; pp. 1—30) introduce the basic decision-theoretic notions such as 
decision or procedure, loss function, operating characteristic, risk function and admissibility. Chap-
ter 4 (Some criteria for choosing a procedure; pp. 31—80) explains the Bayes, the minimax and 
the unbiasedness criteria, and gives the essentials on randomized procedures and the methods of 
maximum likelihood and moments. Following the important Chapter 5 (Linear unbiased estima-
tion; pp. 81—136) concentrating on the general linear model, least squares, orthogonalization 

the Gauss—Markov Theorem, the whole Chapter 6 (pp. 137—157) is devoted to sufficiency. 
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The criteria of completeness, unbiasedness, sufficiency, invariance and asymptotic efficiency are 
discussed at length in Chapter 7 (pp. 158—245) in the context of point estimation, where more on 
minimax procedures and maximum likelihood are naturally found. Chapter 8 (pp. 246-^-286) is 
on hypothesis testing with less than twenty pages on "common normal theory tests", and the main 
body of the book concludes with Chapter 9 (pp. 287—311) on confidence intervals. Three .short 
appendices, a list of fifteen references and an index complete the volume. 

What is so special in such a book? It is the lucidity of the mind and, as a result, the simplicity 
of the language. Every sentence has a clear meaning (and this in itself would be sufficient to make 
the book unique) and Kiefer always means something. Every single-minded direction gets its share 
from him, sometimes in rather sharp terms, thus those who decide to cite Kiefer against some-
thing for their own benefit should be careful enough to leaf one or two before they do so. This is 
the work of a thinker. With the possible exception of Charles Stein alone, every living statistician 
will find something interesting or new in this book. And, at the same time, this is a textbook of 
introductory statistics for (good) students with minimal mathematical background but with a 
necessary maturity, seriousness and interest. This is achieved by a very large amount of examples 
and homework problems with fascinating notes and suggestions from the author. Instructors with 
the necessary characteristics just listed for students will want to have a copy of the book, independ-
ently of the nature of the statistics course they teach. 

Sándor Csörgő (Szeged) 

A. Kertész, Lectures on artinian Rings, Edited by R. Wiegandt, 427 pages, Akadémiai Kiadó, 
Budapest, 1987. 

The text is a substantially extended and completed translation of the original German edi-
tion "Vorlesungen über artinsche Ringe" of the late A. Kertész. The present edition realizes the 
ideas and intentions of A. Kertész left behind in his notes. 

Rather than being a comprehensive account of the theory of artinian rings, this book provides 
a well-written elementary text on ring theory centered on the basic theorems on artinian rings. 
Moreover, its scope is considerably wider than the title suggests and the main topic is developed 
within the framework of those modern generalizations which resulted from the systematic use of the 
artinian approach. 

The book consists of fifteen chapters from which only nine have been treated in the German 
edition. The first four chapters are developments of the general theory of rings and modules, and 
requires practically no previous knowledge of that topic. This introduction to rings, modules,, 
prime and Jacobson radical is carried out with care in an almost leisure manner. 

The following part of the book deals with artinian rings and with generalizations without 
assuming the existence of unit element. For artinian rings it presents the classical theorems on 
semi-simple, primary and simple rings as well as on projective and injective modules. There we 
also find the general theory of rings of linear transformations, Jacobson's Density theory, the Wed-
derburn—Artin structure theorem, and Maschke's theorem. Steinfeld's theory on quasi-ideals is 
developed and used in giving ideal-theoretical characterization of semi-simple rings. The Litoff—Anh 
theorem on local matrix rings and Vámos' theorem on characterizing artinian modules by finitely 
embedded modules are also included, which have not been treated in the German edition. A full 
account of the additive structure for artinian rings is given including the fundamental theory of 
Fuchs and Szele. 

The last six chapters of the book were written by A. Betsch, A. Widinger, and R. Wiegandt. 
During the last decades many new branches of ring theory have been developed and several impor-
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tant results have been proved involving artinian rings and modules. Thus it has become highly 
desirable to supplement the text with important topics such as Goldie's theory on rings of quotients, 
quasi-Frobenius rings, and ConnelPs theorem on artinian group rings. This part includes also a 
general decomposition theorem on strictly artinian rings, and investigations of linearly compact 
rings. In the study of rings with minimum condition on principal right ideals, the splitting 
theorem due to Ayoub and Huynh is also treated. 

For better understanding, each chapter ends by a set of exercises with hints for 
solutions. 

Writing this book the contributors and the editor made an excellent job, and the extended 
English version enlivens the reputation of the original German edition. 

N. V. Loi (Budapest) 

Serge Lang, Calculus of Several Variables, Third Edition (Undergraduate Texts in Mathe-
matics), XII+503+A91+14 pages, Springer-Verlag, New York—Berlin—Heidelberg—London— 
Paris—Tokyo, 1987. 

Sometimes one pays less attention to the functions of several variables than to the functions 
of one variable. Once a famous mathematician told that: "In several variables everything goes 
just as in one variable." It was true for him, but the teachers know that in general this is not true 
for the students. We have several problems teaching this theme. 

This book was previously published in 1973 and 1979, and therefore it is widely known. In a 
self-contained presentation it covers all essential topics in the calculus of several variables. Having 
read this book the reader will be familiar e.g. with the mathematics of mechanics. 

Perhaps the best way to characterize the method of the book is to sketch the discussion of 
two, slightly embarrassing problems. The paragraph on inverse mappings contains three examples 
after the definition, then the inverse mapping theorem comes: Let F: U-+R" be a C'-map. Let 
P be a point of U. If the Jacobian determinant AF{P) is not equal to 0, then Fis locally CMnvertible 
at P. The proof of this theorem is beyond the scope of this book. Then we have three examples 
again. The next paragraph contains ten proposed exercises, the answers can be found at the end 
of the book. In the paragraph on implicit functions, after a short introduction the implicit function 
is stated in the form: Let U be open in R- and let / : U-+R be a ^-function. Let (a, b) be a point 
of U, and let f(a, b)=c. Assume that D2f(a, b)^0. Then there exists an implicit function y— ip(x) 
which is C l in some interval containing a, and such that <p(a)=b. Before the proof we can find 
four examples. The next paragraph consists of various interesting exercises. 

In connection with mathematical analysis in the former century it has been said that while 
Berlin found Göttingen lacking in rigour, Göttingen found Berlin lacking in ideas. These standpoints 
are problematical today as well. In my opinion "this book is between Berlin and Göttingen", it has 
a proper level in rigour and in ideas. 

L. Pintér (Szeged) 

Ricardo Mané, Ergodic Theory and Differentiable Dynamics (Ergebnisse der Mathematik und 
ihrer Grenzgebiete, 3. Folge, Band 8), XII+317 pages, Springer-Verlag, Berlin—Heidelberg— 
New York—London—Paris—Tokyo, 1987. 

Modelling systems, especially in mechanics, one often comes to a measure space and a meas-
urable map on it such that the measure is invariant with respect to the map. The theme of ergodic 
theory is the dynamic behavior of sych measure-preserving maps. The first theorem of the theory 
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was proved by Poincare. His celebrated recurrence theorem says that if the evolution of a system 
is described by. a vector field whose divergence vanishes identically, then the system returns infinitely 
often to configurations arbitrarily close to the initial one, except for a set of initial configurations 
with zero Lebesgue measure, i.e. except for a set which can be neglected from the probabilistic 
point of view. 

Around the turn of the century the work of Boltzmann and Gibbs on statistical mechanics 
raised the following mathematical problem: Given a measure-preserving map 7*of a space ( X , si, u) 
and an integrable function / : X^-R, find conditions under which the limit 

' / ( * ) + / ( 7 * ) + . . . + / ( 7 - " ' ( * ) ) hm — 
n 

exists and is constant almost everywhere. Birkhoff proved that for any 7'and/the limit exists almost 
everywhere, and a necessary and sufficient condition for its value to be constant almost everywhere 
is that there exists no set A£si such that 0<u(A)-< 1 and T~1(A)=A. Maps which satisfy this 
condition are called ergodic. 

It can be very difficult to decide whether or not a map occurring in statistical mechanics is 
ergodic. For example, Gibbs initiated the study of billiards as models for a perfect gas. In a billiard 
spheres move with constant velocity within a bounded region colliding with one another and with 
the boundary in a perfectly elastic way. In the thirties Birkhoff gave an abstract formulation of 
the problem, but only in the sixties, starting with Sinai's work, were any billiard proved to be 
ergodic. The first example of a convex ergodic billiard was given by Bunimovich in 1974, but no 
examples of ergodic billiards with convex C°° boundary are known. 

The book is an excellent survey on the ergodic theory of differentiable dynamical systems. 
Chapter 0 summarizes the basic definitions and theorems of measure theory. This is a quick 

review, but the reader can find results with proofs on derivatives with respect to sequences of parti-
tions, which cannot be found in standard references. Chapter 1 entitled Measure-Preserving Maps 
starts with a brilliant introduction outlining the basic problems of the ergodic theory, then presents 
the main kinds of dynamical systems around which ergodic theory has developed. Chapter II (Er-
godicity) contains the classical concepts and results including Birkhoff's Theorem, Kolmogorov— 
Arnold—Moser Theorem, Gaussian and Markov Shifts. Chapter III (Expanding Maps and Anosov 
Diffeomorphisms) and Chapter IV (Entropy) are devoted to contemporary ergodic theory. A good 
part of the information is contained in the great number of exercises which give the reader the 
opportunity of working actively and individually in the field. 

The book can be highly recommended either as an introduction or as a monograph for mathe-
maticians and physicists. 

L. Hatvani (Szeged) 

Bernard Maskit, Kleinian Groups (Grundlehren der mathematischen Wissenschaften, 287), 
XIII+326 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988. 

The fractional linear transformation group PSL(2, C) with complex coefficients on the 
extended complex plane CU has fundamental importance in theoretical and applied mathe-
matics. This group is isomorphic to the orientation preserving conformal transformation group 
of the euclidean plane, to the isometry group of the hyperbolic space and to the rotation group 
of the pseudo-euclidean space-time and contains as subgroup the isometry groups of the euclidean 
and non-euclidean planes. The discrete subgroups of PSL(2, C) were investigated already by 
Felix Klein in the relation with the space-form problem of the hyperbolic geometry. This theory 
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had a large development in the last century and has many applications in complex analysis for 
the investigation of automorphic functions in topology, differential equations and number theory. 

The new aspects of this theory are connected with the geometry and topology of 3-manifolds. 
The fundamental results of W. P. Thurston and his active school show that one could analyse discrete 
subgroups of PSL(2, C) using 3-dimensiona! hyperbolic geometry. 

The present book is an introduction to the theory of Kleinian groups which are subgroups 
of PSL{2, C) acting freely and discontinuously at some point Z£CU(~). The methods of hyper-
bolic geometry are used consequently in the treatment. The book is designed for using as a text-
book for a one year advanced graduate course in Kleinian groups. The first three chapters give an 
introduction to the basic notions and results concerning fractional linear transformations, dis-
continuous groups acting on the plane and the theory of covering spaces. Chapters IV—VII con-
tain the-explanation of the general theory and can be used as foundation of Thurston's work, too. 
Chapter VIII is a collection of examples of Kleinian groups with diverse properties. The last two 
chapters give a study of special groups and discusse their structure theory. 

The chapters are followed by a set of exercises which are quite uneven in terms of difficulty 
and also by notes giving a brief historical outline of the theory. 

The reader is assumed to be familiar in group theory, topology, analytical and differential 
geometry of hyperbolic spaces. The book is highly recommended to everyone interested in the related 
fields of mathematics. 

Peter T. Nagy (Szeged) 

Non-Linear Equations in Classical and Quantum Field Theory, Proceedings, Meudon and 
Paris VI, France 1983/84. Edited by N. Sanchez (Lecture Notes in Physics, 226), VIII+400 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. 

Field Theory, Quantum Gravity and Strings, Proceedings, Meudon and Paris VI, France 
1984/85. Edited by H. J. de Vega and N. Sanchez (Lecture Notes in Physics, 246), VI+381 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986. 

Field Theory, Quantum Gravity and Strings II, Proceedings, Meudon and Paris VI, France 
1985/86. Edited by H. J. de Vega and N. Sanchez (Lecture Notes in Physics, 280), VI+245 pages, 
Springer-Verlag, Berlin-—Heidelberg—New York—London—Paris—Tokyo, 1987. 

These three volumes contain the lectures delivered at the series of seminars on current devel-
opments in mathematical physics held alternately at DAPHE-Observatoire de Meudon and LPTHE-
Universite Pierre and Marie Curie (Paris). The series of seminars started in October 1983 and these 
volumes account for the lectures (60 altogether) read up to October 1986. The lectures delivered 
by outstanding experts together provide the reader with a comprehensive review of recent advances 
and trends in mathematical physics. The following list of key-words can give only a taste of the 
variety of topics covered in this collection. 

The central themes of the first volume are integrable non-linear theories and methods to 
solve them. Among the key-words are: Lax pairs, Backlund transformations, Yang—Baxter and 
Kac—Moody algebras. The models reviewed include self-dual Yang—Mills fields, Bogomolny— 
Prasad—Sommerfield monopoles and sigma models. 

A number of lectures in the second volume of this set are devoted to the superstring attempt 
of unification of interactions and to the related topic of conformally invariant two dimensional 
models. Other reviews treate Kaluza—Klein theories, quantum cosmology and stochastic quantiza-
tion. Exact solvability is amongst the key-words of most frequent occurrence here too. 

In the third volume the reader finds lectures on string theory, quantum gravity, integrable 
systems, soliton dynamics, twistor theory, dynamical symmetries and critical phenomena. 
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This collection of stimulating and comprehensive reviews encourages further the interaction 
between different fields of theoretical physics and mathematics. It should have a place on the shelves 
of every theoretical physics and mathematics library. 

László Fehér (Szeged) 

Nonlinear Semigroups, Partial Differential Equations and Attractors, Proceedings, Washington, 
D.C., 1985. Edited by T. L. Gill and W. W. Zachary (Lecture Notes in Mathematics, 1248), IX+ 
185 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

Reading the classic textbooks and monographs in partial differential equations nowadays 
one can realize in surprise that everything was linear at that time. During the last three decades 
it has been pointed out that nonlinear structures are of interest, e.g. that the chaotic behaviour 
of some nonlinearities offers new explanations for some misterious phenomena. The methods of 
nonlinear theory have been developing so fast, and so many books have appeared on.them that 
now one must think: everything is nonlinear. 

These lecture notes are the proceedings of the symposium on the topics involved in the title 
held at Howard University in Washington, D. C. on August 5—8, 1985. In the reviewer's opinion, 
all the articles are of such interest and importance that each of them has to be cited: Joel D. Avrin, 

Convergence Properties of Strongly-Damped Semilinear Wave Equations; S. A. Belbas, Numerical 
Solution of Certain Nonlinear Parabolic PDE; Melvyn S. Berger, The Explicit Solution of Non-
linear ODE's and PDE's; Whei-Ching C. Chan and Shui-Nee Chow, Uniform Boundedness and 
Generalized Inverses in Liapunov—Schmidt Method for Subharmonics; Hans Engler, Existence 
of Radially Symmetric Solutions of Strongly Damped Wave Equations; H. Engler, F. Neubrander, 
and J. Sandefur, Strongly Damped Semilinear Second Order Equations; Lawrence C. Evans, Non-
linear Semigroup Theory and Viscosity Solutions of Hamilton—Jacobi PDE; Jerome A. Gold-
stein, Evolution Equations with Nonlinear Boundary Conditions; Jack K. Habe, Asymptotically 
Smooth Semigroups and Applications; John Mallet—Paret and George R. Sell, The Principle of 
Spatial Averaging and Inertial Manifolds for Reaction Diffusion Equations; Robert H. Martin, Jr., 
Applications of Semigroup Theory to Reaction-Diffusion Systems; Jeffrey Rauch and Michael 
C. Reed, Ultra Singularities in Nonlinear Waves; M. C. Reed and J. J. Blum, A Reaction-Hyper-
bolic System in Physiology; Eric Shechter, Compact Perturbations of Linear M-Dissipative Oper-
ators Which Lack Gihman's Property; Thomas I. Seidman, Two Compactness Lemmas; Andrew 
Vogt, The Riccati Equation: When Nonlinearity Reduces to Linearity. 

L. Hatvani (Szeged) 

Numerical Analysis, Proceedings of the Fourth IIMAS Workshop held at Guanajnato, Mexico, 
July 23—27, 1984. Edited by J. P. Hennart (Lecture Notes in Mathematics, 1230), X+234 pages, 
Springer-Verlag, Berlin—Heidelberg, 1986. 

This volume contains 18 selected items (mainly of the invited lecturers) from the 29 papers 
delivered at the Fourth Workshop on Numerical Analysis hosted by the National University of 
Mexico. 

The program of the workshop was centered on the following main areas: optimization problems, 
the solution of systems of both linear and nonlinear equations, and the numerical aspects of dif-
ferential equations. Most of the papers deal with special problems/methods of these fields. More-
over, many practical hints and experimental results are provided, too. 

The authors' motivations vary from practical problems, e.g. the planning of semiconductor 
devices and the stability of capillary waves, to 'pure' (numerical) mathematics such as the deriv-
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ation of new Runge—Kutta formulae and convergence results on the secant methods in Hilbert 
space. 

Let us quote some titles just to give a taste of the book: 
Goldfarb: Efficient primal algorithm for strictly convex quadratic programs; Falk and Richter: 

Remarks on a continuous finite element scheme for hyperbolic equations; Elman and Streit: Polyno-
mial iteration for nonsymmetric indefinite linear systems. 

Although a part of the contributions is available in a more polished form in journal this book 
may be a valuable guide for the specialists working in these subfields to the directions of current 
interest. 

J. Viragh (Szeged) 

Tadao Oda, Convex Bodies and Algebraic Geometry; An Introduction to the Theory of Toric 
Varieties (Ergebnisse der Mathematik and ihrer Grenzgebiete, 3. Folge, Band 15), VII+212 pages, 
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988. 

The beginners learning algebraic geometry usually have difficulties with the lot of new and 
abstract notions familiarity of which is necessary to understand the theory. The purpose of this 
book is to give an introduction to algebraic geometry, especially to the theory of toric varieties, 
using the language of the visuable convex geometry. The author writes in the introduction: "For 
this reason, we chose to construct toric varieties as complex analytic spaces, so that they can be 
understood more easily without much prior knowledge of algebraic geometry. Not only can some 
of the important complex analytic properties of these spaces be translated into easily visualized 
elementary geometry of convex figures, but many interesting examples of complex analytic spaces 
can be easily constructed by means of this theory." Chapter 1 is devoted to the basic notions and 
facts about toric varieties. Chapter 2 contains results on the cohomology of compact toric varieties 
and the imbedding theory into projective spaces. Chapter 3 contains a study of the automorphism 
group using holomorphic differential forms. Chapter 4 deals with applications of the theory to 
the investigation of singularities. In Appendix the basic results of convex geometry are collected 
without proofs. 

Peter T. Nagy (Szeged) 

Nicolae H. Pavel, Nonlinear Evolution Operators and Semigroups. Application to Partial 
Differential Equations (Lecture Notes in Mathematics, 1260), VI+ 285 pages, Springer-Verlag,) 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. 

In the last two decades a very successful new branch has appeared in the theory of differential 
equations. It has been pointed out that semigroups and evolution equations techniques can be 
widely used to solve problems related to partial differential equations and functional differential 
equations. This allows these equations to be treated as suitable ordinary differential equations in 
infinite dimensional Banach spaces. 

The book presents some of the fundamental results and recent research on nonlinear evolu-
tion operators and semigroups and their applications. Most of the results involved were available 
earlier only in papers. 

The first chapter is devoted to the construction and main properties of nonlinear evolution 
operator associated with nonautonomous differential inclusions. Chapter 2 is concerned with 
nonlinear semigroups generated by dissipative operators (Crandall—Liggett Theory). The most 
interesting chapter, the third one, shows how to apply the abstract results of the theory to unify 
the treatments of several types of partial differential equations arising in physics and biology (equa-
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tion of long water waves of small amplitude, Porous Medium Equation, the heat equation, Schrödin-
ger Equation, Semilinear Schrodinger Equation, and so on). 

L. Hatvani (Szeged) 

Probability Theory and Mathematical Statistics, Proceedings of the 5th Pannonian Symposium 
on Mathematical Statistics, Visegrád, Hungary, 20—24 May, 1985. Edited by W. Grossmann, 
J. Mogyoródi, I. Vincze and W. Wertz, XIII+457 pages, Akadémiai Kiadó, Budapest and D. Reidel 
Publishing Company, Dordrecht, 1988. 

The proceedings of the 3rd and 4th Symposia have been reviewed in these Acta, 47 (1984), 
page 513 and 51 (1987), page 283. 

Just as the financial support shrinks as the symposium moves over to Hungarian territory 
from the Austrian, the number of participants decreases. Accordingly, the proceedings reduce 
from two volumes to one. Fortunately, however, the level of the quality achieved by the proceedings 
of the 4th Symposium has been maintained. 

Part A (pages 1—234) containes the papers on various probability problems by G. Baróti, 
N. L. Bassily, E. Csáki and A. Földes, G. Elek and K. Grill, I. Fazekas, S. Fridii and F. Schipp, 
J. Galambos and I. Kátai, B. Gyires, I. Gyöngy, M. Janzura, I. Kalmár, A. Kováts, L. Lakatos, 
E. G. Martins and D. D. Pestena, T. F. Móri, T. Nemetz and J. Ureczky, P. M. Peruniőic, D. Plachky, 
T. Pogány, G. J. Székely, I. Vincze, and by A. Zempléni. Part B then consists of the papers on 
diverse statistical topics and applications written by J. Andél, G. Apoyan and Yu. Kotojants, 
J. Hurt, P. Kosik and K. Sarkadi, A. Pázmán, Z. PráSková, L. Rüschendorf, A. K. Md. E. 
Saleh and P. K. Sen, L. Szeidl, G. Terdik, R. Thrum, J. Tóth, S. Veres (2 papers), J. A. ViSek, 
L. Vostrikova, P. Volf, and by W. Wefelmeyer. 

Those who liked the "Pannonian" flavour in the preceding Proceedings will want to savour 
it in this volume as well. 

Sándor Csörgő (Szeged) 

Probability Theory and Mathematical Statistics, Proceedings of the Fifth Japan—USSR 
Symposium, Kyoto, Japan, July 8—14, 1986. Edited by S. Watanabe and Yu. V. Prohorov (Lecture, 
Notes in Mathematics, 1299), VIU+589 pages, Springer-Verlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo, 1988. 

The volume contains 61 papers, 20 of which are by authors from the USSR, 2 by visitors 
in Japan from Czechoslovakia and France, and the remaining 39 articles are written by Japanese 
authors, 2 with co-authors from France and the USA. There are 2 papers describing the work 
of G. Maruyama who deceased three days before the symposium, 5 papers which could be classified 
as belonging to statistical theory, and the great majority of the rest is in probability theory with á 
few contributions representing related fields such as probabilistic number theory, ergodic theory 
or information theory. A number of the papers are expository in nature, most of them are proper 
research articles on a wide variety of different topics. 

Sándor Csörgő (Szeged) 

Maurice Roseau, Vibrations in Mechanical Systems. Analytical Methods and Applications, 
XIV+515 pages, Springer-Verlag, Be r I i n—Hei de I berg—New York—London—Paris—Tokyo, 1987. 

The vibrations and prediction of their effects are of great importance in construction of ma-
chines, and devices. The change in time of the mechanical variables is governed by ordinary or 
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partial differential equations. Based on the analysis of differential equations various theories have 
been developed such as linearized or non-linearized, and very often of an asymptotic nature. These 
theories deal with the conditions of stability and resonance and the coupling of modes in non-
linear systems. In this book such methods are developed which deal with free and induced vibra-
tions in discrete or continuous mechanical structures. 

In each of the twelve chapters the reader can find well selected illustrations to the theories 
and methods. Numerous important examples, known and original, are discussed in a complex 
and thoroughfui way. To show the variety of the subject covered in this book it is enough to cite some 
items of the contents: Forced Vibrations, Vibrations in Lattices, Gyroscopic Coupling, Stability 
of Linear Systems, The Stability of Operation of Non-Conservative Mechanical Systems, Flexible 
Vibrations of Beams, Longitudinal and Torsional Vibrations of Bars, Vibrations of Elastic Solids 
and of Plane Elastic Plates, Vibrations in Periodic Media, Model Analysis, Synchronisation Theory, 
Stability of a Column Under Compression, The Method of Amplitude Variation, Rotating Ma-
chinery, Non-Linear Waves and Solitons. 

This volume is a translation of the French original published in 1984. Several chapters have 
been taught to graduate students at the Pierre and Marie Curie University in Paris. 

The book is useful for mathematicians dealing with applications of differential equations 
and is recommended to students and researchers interested in mechanics and mechanical engin-
eering. 

I. K. Gyémánt (Szeged) 

\ 

Kennan T. Smith, Power Series from a Computational Point of View (Universitext), VDI+ 
132 pages, Springer-Verlag, New York—Berlin—Heidelberg, 1987. 

The author summarizes his aims as follows: 
"The purpose of this book is to explain the use of power series in performing calculations, 

such as approximating definite integrals or solutions to differential equations. This focus may seem 
narrow but, in fact, such computations require the understanding and use of many of the important 
theorems of elementary analytic function theory These computations provide an effective 
motivation for learning the theorems, and a sound basis for understanding them." 

In the refree's opinion, the title could be paraphrased such as "Power Series from the Point 
of View of Complex Analysis" because most of the material is hard-core mathematics. The chapter 
headings are the following: Taylor polynomials, Sequences and Series, Power Series and Com-
plex Differentiability, Local Analytic Functions, Analytic continuations. So the minimal prerequisite 
would be an introductory analysis course. In this case, however, some elementary parts of the 
second chapter Could be omitted. For the convenience of the reader the theorems, definitions and 
formulae are numbered and cross-referenced throughout the text. However, references such as 
"According to the next section, this is Taylor's formula for log( l+x) centered at a, but this is 
not needed" (pp. 25), or "Referring to the picture in Section 4, use Definition 1.7 and Theorems 
2.4 and 2.8 to show that ..." (pp. 84) are rather awkward. The book ends with a useful index of 
notions. 

After each chapter a set of selected problems can be found. They belong mainly to the two 
categories "prove the following theorem" or "compute the definite integral/Taylor polynomial 
of the following function". There are only a few scattered indications of computer practice one of 
them, e.g. "Write the FORTRAN program to compute..." (pp. 26). 

Finally, I miss the links with Numerical Analysis from the book. (The rare exceptions are the 
trapezoid and the Simpson's rule mentioned in some problems.) 

J. Virágh (Szeged) 









INDEX 

A. P. Huhn, On the representation of distributive algebraic lattices. II 3 
A. P. Huhn. On the representation of distributive algebraic lattices. Ill 11 
P. G. Trotter. Relatively free bands of groups 19 
J. K. Luedeman, Congruences on semigroups of quotients 33 
Z. Székely, On maximal clones of co-operations 43 
K. Girstmair, Über multiplizitátenfreie Permutationscharaktere 51 
Z. Daróczy, I. Kátai. On additive functions taking values from a compact group 59 
O. Röschel, Symmetrisché Schrotungen im reellen dreidimensionalen projektíven Raum 67 
P. Nevai, P. Vértesi, Convergence of Hermite—Fejér interpolation at zeros of generalized 

Jacobi polynomials 77 
P. Nevai, V. Totik, Orthogonal polynomials and their zeros 99 
S. Walsh, Noncyclic vectors for the backward Bergman shift 105 
B. E. Rhoades, The point spectra for generalized Hausdorff operators I l l 
T. Nakazi, A spectral dilation of some non-Dirichlet algebra 119 
R. Arocena, Generalized Toeplitz kernels and dilations of intertwining operators. II. The con-

tinuous case ; • 123 
P. Y. Wu, Contractions quasisimilar to an isometry 139 
K. Takahashi, On the reflexivity of contractions with isometric parts 147 
J. Stochel, F. H. Szafraniec, On normal extensions of unbounded operators. II 153 
J. M. Szűcs, Some uniform weak-star ergodic theorems 179 
S. C. Ong, Reflexive lattices of operator ranges with more than one generator 183 
C. R. Putnam, Generalized projections for hypo^rmal and subnormal operators 187 
Bibliographie 191 

ACTA SCIENT1ARUM MATHEMATICARUM 
SZEGED (HUNGAR1A). ARADI VÉRTANÚK TERE 1 

On peut s'abonner à l'entreprise de commerce des livres et journaux 
„Kultúra" (1061 Budapest, I., Fő utca 32) 

ISSN 0234-6523 Acta Univ. Szeged 
ISSN 0001-6969 Acta Sci. Math. 

INDEX: 26024 

88-3708 — Szegedi Nyomda — Felelős vezető: Surányi Tibor igazgató 

Felelős szerkesztő és kiadó: Leindler László 
A kézirat a nyomdába érkezett: 1988. október 25 
Megjelenés: 1989. június 

Példányszám: I 000. Terjedelem: 18,2 (A/5) Iv 
Készült monószedéssel. íves magasnyomással, 
az MSZ 5601-24 és az MSZ 5602-55 szabvány szerint 


