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On the representation of distributive algebraic lattices. I1

|A. P. HUHN[*)

1. Introduction

Around 1980, H. Bauer found a result which implies that countable distributive
semilattices with O can be represented as semilattices of compact congruences of a
lattice, whence it also follows that every iower bounded distributive algebraic lattice
with countably many compact elements is the congruence lattice of a lattice. This
proof, however, was not published. In [2], we proved that if D, and D, are finite
distributive semilattices with O such that D, is a O-subsemilattice of D,, then D, and
D, have a simultaneous representation (in a sense precisely defined in [3]) as semilat-
tices of compact congruences of lattices L; and L,, respectively. There we promised
to show that this idea can be developed to a proof of the countable representation
problem. Here we present this proof. We note that independently. and by different
methods H. DoBBERTIN [1] found another proof of the theorem.

It is easy to show that any finite subset of a distributive semilattice with 0 is
contained in a finite distributive O-subsemilattice. Hence it follows that for any
countable distributive semilattice D with O, there exist finite distributive semilattices
D,,D,, Dy, ... with 0 and embeddings ¢;: D,~D,,,, i=1,2,..., such that D is
the direct limit of the family ({D;}en, {ei}icn). Now let D and D,, i=1,2, ...,
be as above and fixed once and for all. We prove the following

~Theorem. There exist lattices L;, i=1,2, ..., such that
(a) D;=Con (L,) under an isomorphism to be denoted by ¢,, i=1,2,...,
(B L; has an embedding 2, to L,,,, i=1,2, ...,
(y) if wedenote by Con (1)) the mapping of Con (L;) to Con (L) induced by
2; (that is the one that maps ©@€Con (L)) to the congruence generated by

*) This paper was left behind by Andrias Huhn in the form of a first draft of a manuscript.
Hans Dobbertin was kind to prepare it for publication.
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{(ak;, b2)EL?,  |(a, b)EO}), then the following diagram is commutative

&

D, Dy
¢il 1‘4’:“
Con (L) T Con (L;+,)

on(4;)

. whére g, denotes the identical embedding of D;to D; . In other words Con (4,)
represents id;.

Corollary. Every countable distributive semilattice with 0 is isomorphic to the
semilattice of all compact congruences of a lattice.

To prove the Corollary from the Theorem, observe that the Con (L;)’s form the
same directed system (up to commuting isomorphisms) that the D,’s, whence their
-direct limit is-also isomorphic with D. On the other hand, the L;’s also form a di-
récted system and the congruence lattice of their direct limit is the direct limit of
-their"congruence lattices (see PupLAK [3]). This proves the corollary.

* 2. The construction of L;. Proof of (a)

First we define the following lattices, Let i=j be natural numbers. Let D(i—f)
be the distributive lattice whose join-irreducibles are (a;, ..., ;), (G; 415 --.s ;) ..., (@),
where - a;, ..., a; are join-irreducibles of - Dy, ..., D;, respectively, and aq;e;=
=041, ;11841 =10, ... . Let these join-irreducibles be ordered componentwise,
that is, let (ay,...,a)=(q;,...,a)) iff k=/ and =g, ..., a;=a]. Clearly, the
set of join-irreducibles and their ordering determines D(i—j). Let B(1-j) be
the Boolean lattice whose set-of atoms is -{[a] | @ join-irreducible in D(1-j)}.
Of course, instead of [(ay; ..., a;)] etc. we shall write [q,, ..., a;]. Now there are
some natural 0-1-embeddings. Each element of D(i+1-j) can be identified with
an element of D(i—j) "as follows: x€D(i+1-j) is a join of join-irreducibles.
These join-irreducibles are, however, join-irreducibles of D(i—+j), too. Thus x can
be identified with their join in D(i—j). This is a lattice O-I-embeddmg and from
now -on we shall . consider D(i+1—j) ‘as a sublattice of D(i—j). Note that
D(j—+j)= Dj and will be identified with it. Furthermore, D(1-j) can be con-
sidered as a 0—1-sublattice of B(1—j), namely x€D(1-j) can be identified with
‘the j join of all {d], a=Xx, a join-irreducible.

Now we define lattices L(1—j) as follows. Let M(1 —>J) consist of all triples
(x,y, 2)€(B(1~j))® satisfying xAy=xAz=yAz. Let L(1-j) be the set of all
_those triples.in M(1—j) also satisfying z€D(1-j). Let M(i—j) (i=1) consist
of all those triples (x,y, z)€(D(i—1-j))® satisfying xAy=xAz=yAz, and let
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L(i—j) be the set of all those triples satisfying also z€D(i—~f). Now we describe
the operations of L(1-I) and L(I—j), i=2, ...,j. The meet operations are the
same as in (B(1-/))® andin (D(i—1-))3, respectively. We shall denote the joins
in (B(1-/)P, M(1—j), L(1-j) by V, Vy, V., respectively and the join in
(D=1, M(@—~j), LGE~j) by V, Vy, Ve, respectively. This will cause no
confusion. As D(1-j) is a sublattice of B(1-j), with every z€B(l—j) we can
associate an element z€D(1—j) which is the smallest element of B(1—/) such
that z=Zz. Also, with any z€D(i—1—j) (i=1) we can associate a z€D({i—j),
which is the smallest element of D(i—) such that z=Z. Now it is proven in SCHMIDT
[4] that

(x, 3, D)V (X', ', 2,) = (xVx, yVy', 2VZ'),

where s

(%, 3, 2)" = (xV(yAz), yV(xA2), zV(x/\y))- for (x,y,2)e(B(1 - /)y,

and
(x5, ¥, V(X ¥, 2') = (xV X', pV Y, 2V )7,
where

(5,9, 2)° = (WV(YAZ), Y(xAZ),2) for (x,y, )EM( — ).

The same proof as in [4], pp. 82—86 yields that this description remains valid for
(x,y, 2ED(i—1—j) as well as for (x,y, 26 M(—~j). Now L(1-j) has an ideal
isomorphic to D(1—+j), namely the ideal [(0, 0, 0), (0, 0, 1)], where 0 and 1 denote
the bounds of B(1-j). The ideals [(0, 0, 0), (1,0,0)] and [(0,0,0), (0, 1, 0)] are
isomorphic to B(l-—j). Furthermore, the dual ideals [(0,1,0), (1,1,1)] and
[(1,0,0), (1,1, 1)] are isomorphic to B(1—j). All these proofs can be carried out
by using the description of the operation of L(1-j). In fact, as an example, we
prove that [(1,0,0), (1,1,1)] is isomorphic to D(1-j). The elements of this
interval are the elements (1, y,z) with zéD(1-j) and by yAl=zAl=1A1 we
have y=z, that is, the elements of the interval are (1, z, z), zé D(1-j). Their
meet is always formed componentwise and, using the previous description of the
operation, is obvious, that the componentwise join is already invariant under .~
and ~. Now we are ready to define L;. Namely, similarly as the L(1~j), all the
L(i~j), i=2,...,j, have ideals isomorphic to D(i—1-j) and to D(i~j) (the
proof is the same), so we can “glue them together” as shown in Figure 1. More
exactly we form the direct product of the L(i—j)’s. It has an ideal isomorphic to
L(i—»j) for all i=1,...,j. We glue the bottom of thls direct product to the top

of ]] M(i—~j). The latter has dual ideals isomorphic to M (i—+j) for all i=2,..,Jj.

Now we identify, for all i=1, 2, ..., j—1, the ideal [(0, 0, 0), (0, 0, 1)] of L(z->])
(EIT L@E~j)) with the dual ideal [(0,0,1), (1,1,1)] of a copy of M(i+1-)).
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L(1 = j) L(2 — j)

M(3 — j)
M(2 - j)

\O/

Figure 1

We identify the ideal [(0,0,0), (0,0, 1)] of this copy with the .dual ideal
[(1,0,0), (1, 1, 1)] of the copy of M,(i+1-j) whichis a dual ideal in ]J] Mk—j),
=2
and we identify the dual ideal [(0,0, 1), (1, 1, 1)] of this copy with the ideal
[(0,0,0),(0,0,1)] of a third copy of M(i+1—j). Finally, we identify the dual
ideal [(0,0,1), (1,1, 1)] of this third copy with the ideal [(0, 0, 0), (1,0, 0)] of
- _
L(i+1~j) (S J[ L(k—j)). The lattice we so obtain is L;.
k=1 .
Now we have to prove (x). Consider any congruence « of L;. First of all it splits

into a join of congruences of the two direct products and of the joining M (i—j)’s.
By perspectivity, the generating pairs of these congruences can be transformed to

7
the upper part ‘]] L(i—j), and there they factorize according to the direct
=1
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representation, thus « is generated by pairs contained in the L(i—~j)’s (considered
as ideals of JJ L(i—j)). We shall prove that « is generated by an ideal of the interval
[(0,0, 0), (0,0, 1)]=D; of L(i~j). As we mentioned, o is a join of principal
congruences generated from the L(i—j)’s. We may assume that « itself is such
a principal congruence (because the join of ideals of [(0,0,0), (0,0, 1)]CJ ( ]—»1)
itself is an ideal).

Let a be generated by the pair ((x, y, z), (x', ¥, 2')), where (x, ¥ 2),(x,y,2)¢
€L(k—j), thatis

x, 3, x,yeDk—1—j), z Z’eD(k —~j).

Then, forming the meets with (1, 0, 0), (0, 1, 0), (0, 0, 1), we obtain
(%,0,0)a(x',0,0), (0,,002(0,5,0), (0,0,2)2(0,0,2).

Hence  (x,0,0)V.(0, 1,0)=(x, 1,0) " =(x, 1, x) =(x, 1, x), thus we have
(x,1,x)a (x’,1,x"). Forming the meet of both sides with (0,0,1), we get
(0, 0, x) 2 (0, 0, x’). Similarly (0, 0, y) « (0, 0, y). Thus the congruence generated by
((x, 9, 2), (x',¥',2")) contains the pairs ((0, 0, x), (0,0, x")), ((0, y,0), (0,5, 0)),
(0,0, 2), (0,0, 2")). Itisalso generated by them. We refer to p. 241 of {2] with which
our notation coincides. Now (0,0, x), (0,0, x"), etc. are contdined in the copy
D(k—1-j), which was used for the glueing in Figure 1. Hence « is generated from
L(k—1-j) already (the generators can be transported by perspectivity), that is,
by induction, it is generated from L(1-j), and, finally, with the same computation
as above, from B(l1—j). B(l1—j) is Boolean, hence « is generated by an ideal,
say, by the pair ((0,0, 0), (2, 0, 0)), (0, 0, 0), (, 0, 0)€ L(1-~j). Then it is also gen-
erated by

(0,0, 0), (£,0,0)VL((0, 1, 0), (0, 1, 0)) = ((0, 1, 0), (3, L, D)),

((0,1,0), (2,1, D)AL((0, 0, 1), (0,0, 1)) = ((0, 0, 0), (0,0, D)),

which is an ideal of D(1-j). By induction, it is generated by an ideal of D;, as
claimed.

that is, by

3. The construction of the embeddings A;. Proof of (8)

First of all we define embeddings
Bij: B(L—~j)~B(1 ~j+1) and &;: D(i ~j)~D(i ~j+1),

whenever i=j, as follows: The atoms of B(1-j) are of the form [ay, ..., a;], a,6,=
=ay, a,8,=4y, ..., 4;_y8;_1=a; or of the form [a,, ..., a}], aye,=ay, ..., a1 8;_; =
Zza;, and so on, or of the form [q;], where ay,...,a; are join-irreducibles of

D,, ..., D;, respectively. (These atoms are unordered.) We associate with [a;, ..., a;]
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the join of all [a,, ..., q;, a;4,] in B(1—j+1), where a;e;=a;,,, and aq;,, is a
join-irreducible element in D;,,. With the join of a set of atoms we associate the
join of their images. This mapping is then denoted by f,. B,; clearly preserves 0
and the lattice operations, thus we only have to prove that it is one-to-one. In
other words we have to prove that the dual mapping under Stone’s duality is onto.
This dual mapping associates with the atom [ay, ..., 4;, a;14] the atom [ay, ..., aj],
that is, we have to show that, for every atom [a, ..., a;] of B(l1—j), there is an
atom [ay, ..., a;, @;14] of B(1—j+1) witha;¢;=a;,,, and this is evident as a;¢;20.
Now we define §;;. The join-irreducibles of D(i—j) are of the form (q, ..., a;),
B Aigyy ooy G181 Z Ay, OF  (Gig1s ey Bg)s Gi1186 112 Bjyn,y o5 G518 45,
and so on, or (g;), and they are ordered componentwise. For x¢€D(i—~j), let xé;;
be the join of all (4, ...,a;), where (g, ...,a;) is join-irreducible in D(i—j),
(&, ...,a;))=x, and a;e;=q;+1. J;; is a O-preserving lattice embedding. The proof
is the same as for B;;, but we have to prove Priestley’s duality, rather than Stone’s
duality. We need the following lemmas.

Lemma 1. Let x€B(1~j). Then %5,;=xd,;.

Lemma 2. Let x€D(i—~1—j), i—1<j. Then %6;;=x0;_, ;.

Proof of Lemma 1. Let (a,, ..., a;, a;,))€ D(1—j+1) such that
(4, ..., 8;,8;4,) = X0,; and (ay, ..., a5, a;44)

is join-irreducible. Then (4, ...; @;)€X. Hence there is a join-irreducible element
(b1s ..., b;) in D(1—j) such that (b, ...,b)=(ay, ...,a;) and (by,...,b;) occurs
in the join-representation of X, that is, [by, ..., b;] occurs in the join-representation of
x. Then [b,, ..., b;]=x. Hence [by, ..., b;, a;+1]=xp,;, that is, (a,, ..., a;, a;+1)=
=(by5 ..-» b}, aj+1)§;cﬁlj. Conversely, if (a, ..., a;, aj+1)—<_—ﬁlj, then

(al_, cees aj’ aj+l) = (bl’ ieey bj, b]‘*‘l)s

where (by, ..., b;, b;+1) occurs in the join-representation of xp; j» that is
{b(s ..., bj, b;+1] occurs in the join-representation of xB,;. Hence [b, , ..., b;, b;+1]=
=xp,;. Then [by,...,b;]=x (see the definition of ), (by, ..., b))=ZX, thus
(a1, ...,a)=X and (ay, ..., a5, a; 1)) =Xy,

Proof of Lemma2. Let (a;, ..., 4;, a;,,)=XJ;;, join-irreducible in D(i-j+1).
Then (a;,...,a)=%X, thatis, (a;,...,a)=(b;,...,b;), where (b;,...,b;) occurs
in the join-representation of X, that is, for a suitable join-irreducible b;_,€D;_;
with b, &_,=b;, (b;-1, by, ..., b;) occurs in the join-representation of x. Hence
GBi-1, b5 - by, @;11) =X,y ;, thatis, (@, ..., 8;,a;,)=(b;, ..., b, 8,1 )=X0;_4, ;.
Conversely, (a;, ..., a;, 8;4.1)=x5;_y,;. Then (a, ..., a;, a;,)=(b;, ..., by, b0
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where (b;, ..., b;, b;;;) occurs in the join-representation of X6;_1, ;» that is, for
suitable b;,_; with b;_,&_;=b;, (b;_y, b;, ..., b; 1) occurs in the join-representa-
tion of x4;_,, ;. This means, that (b;,_y, b;, ..., b)=x. Hence (b;, ..., b)) =X, thatis
(@, ..., a5, a;1)=(b;, ..., b;, ;) =X0;;.

Now we are ready to prove (). First we prove that L(1—j) can be embedded
to L(1-j-+1). Consider the elements (xf;, yBy;, 26, )€ L(1 ~j+1) with x, y€ B(1 ),
z€D(1-j). These triples form a A-subsemilattice of L(1—-j+1). Now consider
two such triples (x,,z), (x’,y,2")€EL(1—~j), and let 1;; denote the mapping
(B> B1j» 01) described above. Then

[(x, ¥, 2Vpa=p X', ¥ 2D Ay = (VX pVY, 2V2Z) "2y =
=[(xVx', pV Y, 2VZ) 1By, Bujs 015),
& » Z);"ljvl.(l—»j)(x,a ¥, Z,)}'lj = (xﬂljs leIjs Zélj)VL(l-»j) (x’ﬂljs ylﬂlj’ 12’51]) =
' =[xV, yVy', ZVZ,)(BIj’ Byj> 51;‘)]M-

Now it is evident, that the operator ~ and (By;, By, 6,;) are permutable, and
Lemma 1 shows that the same is true for ~ and (Byjs Bij> 017)-

Finally we remark that the embedding Z,; coincides with B,; on B(1-/) con-
sidered as the ideal [(0,0,0), (1,0,0)] of L(1-j) and coincides with §,; on
D(1~j) considered as the ideal [(0, 0, 0), (0,0,1)] of L(1-j).

Now L(1—j) can also be embedded to L(i--j+1) ({=j) by the embedding
2:;=(0;_1,j> 0i-1,j» 0i—1,j)- The proof is the same as above, but we have to use
Lemma 2 instead of Lemma 1. Furthermore, 2;; coincides with J,_; ; on the copy
of D(i—1—j) used in the glueing of Figure | and it coincides with J;; on the
copy of D(i—j) used in the gluemg Thus we can glue together the ), ;s to get an
embedding A; of L; to L;,

4. Proof of (y)

We need a last lemma.

Lemma 3. Let xcD;_,. Then x6;_,=xe;_,, where 6;_, stands for 6
and g;_; maps D;_, to D;SD(j—1-j).

Jj—14Ji-1

Proof. Let a; be a join-irreducible element in D; such that a,éﬁj_l. Then
a;=b; for some b; in the join-representation of x—éj_l.Thus,forsome join-irreducible -
b;_1€D;_, with b;_,e; ;=b;, (b;_;,b;) is in the join-representation of x4;_;.
Hence (b;_;,by)= x5 j—1» thus b;_,=x. Now xe;_, is the Join of all & with
b;_,e;—1=d; and bj_, (=x) join-irreducible. Thus b =Xxe;_,, whence aj<xe
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Conversely, let a;=xe;_,. Then a;=a;_,¢;_, for some a;_, (=x) join-irreducible

of D;_,, which can be proved as follows. x is a join of join-irreducibles a,, y€P,

of D;_;. a;=(V a,)¢;_,=(V a,&;_,). As a; is join-irreducible (hence join-prime),
7 ?

it is less than or equal to one of the components in this join. (Notice, that this is
the point of the proof which cannot be generalized to arbitrary directed systems.)
Hence (a;_;,a;)=x8;_,, thatis, a;=x5,_,.

Now the proof of (y) is to prove that, for d€D;_,, de;_,¢;=dp;_y;_,, where
7j-1=Con (4;_,). Now dg;_, is the congruence generated by [(0, 0, 0), (0, 0, d)]
of the copy of L(j—1-j—1) used in Figure 1 (constructed with j—1 instead of j,
thatis representing L;_,). 4;_, takes this interval to the interval [(0, 0, 0), (0, 0, dd;_,)]
of the copy of L(j—1-j) used in the construction of L;. Thus do;_,y;_, is gen-
erated by this interval. It is also generated (by perspectivity) by the interval
[(0,0,0), (d6;-1,0,0)] of L(j—~j). But then further generating pairs are

((09 Oa O)a (09 05 d(sj-l))\/((o’ 1’ O)a (O, 1’ 0)) = ((01 19 0)9 (d_gj—ls O’ d_‘s-j—l))

and
((0, 1,0), (d5;-4,0,d5;_))\((0,0, 1), (0,0, 1)) = ((0, 0, 0), (0, 0,d5;_,)).

Using Lemma 3, we have that do;_,y;_, is generated by ((0,0,0), (0,0, c%j_l)).
On the other hand, de; _, ¢;_, is evidently generated by the pair ((0, 0, 0), (0, O, de i-1))
of the copy of L(j—j) used to construct L;. This completes the proof.

References

[1] H. DoBBERTIN, Vaught measures and their applications in lattice theory, J. Pure Appl. Algebra,
43 (1986), 27—51.

{2] A. P. HunN, On the representation of distributive algebraic lattices. II, Acta Sci. Math., 45
(1983), 239—246.

[3] P. PupLAK, On the congruence lattices of lattices, Algebra Universalis, 20 (1985), 96—114.

[4] E. T. ScamIpT, A Survey on Congruence Lattice Representations, Teubner-Texte zur Mathematik
(Leipzig, 1982).



Acta Sci. Math., 53 (1989), 11—18

On the representation of distributive algebraic lattices. IIT

|A. P. HUHN]Y)

1. Introduction

Around 1980, unpublished investigations of Heiko Bauer led to the conjecture
that every distributive semilattice wiﬂi 0 of cardinality =¥, is isomorphic to the
semilattice of compact congruences of a lattice. In [2], H. DOBBERTIN gave a partial
ordering which can be used to prove that on a set of cardinality R, there is a directed
family of finite subsets covering every finite subset such that the Boolean lattice 2*is not
order-isomorphic to any subset of this family. We shall use this fact to prove the
above formulated conjecture.?) In more usual teérms, this means that every alge-
braic lattice with 0 having at most &, compact elements is the congruence lattice
of a lattice. We cannot extend the proof for more than 8, compact elements, the
reason for that will be discussed in [—]°). Note .that the case of finitely many com-
pact elements was already settled in [3], while the countable case was discussed in
[2] and [5].

1) This paper was left behind by Andras Huhn in the form of a first draft of a manuscript-
The remarks in footnotes 2, 3, 4 and 6 are due to Hans Dobbertin, who was kind to prepare the
paper for publication.

3) In[1) the mentioned partial ordering has already been used implicitely in order to prove a
theorem (see [1; Thm. 3.4]) which has the following corollary: every distributive semilattice with
0 of cardinality =N, Is the image of a generalized Boolean lattice under a weak-distributive \/-homo-
morphism. (See [6] for the definition of the notion “weak-distributive”.) In the present paper a
sharper result is proven, namely “weak-distributive” is replaced by “distributive”. The important
new idea in Andras Huhn's proof is the use of “reduced free products”.

3) Perhaps Andras Huhn had planned to write another paper to which he made a reference
here, but unfortunately no manuscript of it has been found in his inheritance. It is also p0551ble
that he wanted to make a here reference to [2].
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2. Qutline of the proof

Let D be a distributive semilattice with 0. Assume that [D|=R;. First we
define a directed family of finite subsets of D. Let a<w,; be an ordinal number.
For «=0, let h,={0}, where O is the lower bound of D. For a«=n+1 (nEN,
N denotes the set of natural numbers), let h,=h,U {a}, where a€ D\h,. Now if
a=wf+n, néN, then we proceed as follows. wf has a confinal w-chain ay<o,~<... .
For a=wp, let h,=h, U{a} with a¢h, for y<wf. For a=wf+n+1, let h,=
=h,., Uhyp,U{a} with a¢h,g.,. Let H be the set of all h,, a<w,. The in-

clusion relation orders H, this ordering will be denoted by =. h, will also be de-
noted by 0.%)

Figure 1 shows how {h,: y<w(B+1)} is constructed from {h,: y<wp}.

For every hcH, choose a finite distributive O-subsemilattice D, of D such
that h=k, h, k€ H, implies D,C D,. This can be carried out by induction on a,
using the fact that any finite subset of D is included in a finite distributive 0-sub-
semilattice. Then D is the direct limit of the D,’s. For later purposes we introduce

the notation
h k Dh g -Dk
8( 1, )‘ d — (l

provided that h=k (and therefore D,ED,).

4) The definition of the family (h,)¢<gl has to be modified slightly in order to guarantee that
D is in fact completely exhausted.
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Now, for every h,ic H with h=i, we shall define finite distributive lattices
D(h, i) _and O-prese_:rving latt_ice embeddings
o(hg,i): D(h, i) - D(g,i) for g=h=i,
o(h, if): D(h,i)—D(h,j) for h=i=j
such that the following diagrams be commutative

o(h, i)

D(h, i) D(h, j)
)] olhg, i)I : l«p(ha.n
¥
D(g; ) —— Dig; ))
D(h, )22 D(g, i)
2 \ olgf.d)
E Nv
D(f, )
@b, i))

D(h, i) ==+ D(h, j)
o RN
AN

D(h, k)

where g=h=i=j, h=i=j=k, respectively. We denote by B(0,i) the smallest
Boolean extension of D(0,7) and by x(0,i): D(0,i)—~B(0,i) the canonical em-
bedding (precisely defined later). We also define O-preserving lattice embeddings
v (0,i5): B(0,7)~B(0,j) for i=j such that the following diagrams are commu-
tative

@(h, 1%)

v(0,i))

| L B0 o, )
@ & o \\ $O.i)
N
B(0, k)
DO, ) =2, B0, i)
&) ¢(o.if)l R Iw(o.m

D(1r7;;3(1) -

for zS]<k and zf_], respectwely ‘Now let B(O —) be the dlrect limit of all
B(0,i) and D(h, —) be the direct limit of all D(h, ). Using the above commu-
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tativities, we can define embeddings
(p(hg, _): D(hs —) _'D(gi _): g = ha and Z(Oa _): D(O9 —) _’B(O’ —)
such that the following diagram is commutative

o(hg, =)

*D(gs ")'

D(hs —)

(6) N

\\ oaf.~)
N 1
D(f, )
The mappings ¢@(hg, i) have inverses ¢’(gh, i) (which means that
o(hg, i) (p'(gh, D= idD(h.i)s

the mappings are carried out in the written order) such that the following diagrams
are commutative with g=h=i=j and f=g=h=i, respectively.

oh,ij)

D(h ] - D(h, j)
@) @(gh, 1) | i olgh J)
~D(g, 1) D(g, j)

D(h, i) T2

D(g, i)
® . N
' . oS

- D, 1)

The right inverses are monomial O-preserving weakly distributive V -homomorphisfﬁs
(in the sense of ScHMIDT [6]). Also the (0, )’s have 0- and V -preserving monomial
weakly distributive right inverses x’(0,7) and we have the following commuta-
tivities

D, i) === B, )
©) N ij)l lw(o i

D( J)*WB( J)

for i=j. These commutativities allow to carry over the x’(0,#) to the direct limit
.B(O —) and so we get a O-preserving monomial weakly distributive V-homo-

'morphlsm
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which is a right inverse to (0, —). Similarly, we define ¢’(gh, —) for g=h.
¢’ (gh, —): D(g, =) =~ D(h, —)

is again a O-preserving monomial weakly distributive V-homomorphism and a right
inverse to ¢(hg, —). Again we have that the following diagram is commutative

@’'(hg, —)

D(h’ _) i D(g9 _)
(10) \ -
N
D(f, -)

for f=g=h.

Now we shall consider the congruences 6, associated with »’(0, —)¢’(0h, —).
These are monomial weakly distributive congruences with the kernel O in the sense
of ScamipT [6]. Thus, if we prove that B(0, —)/hYH 8, is isomorphic to D, then

we are done by the following theorem of Scumipt [6]: if 6,, h€ H, are monomial
weakly distributive congruences of the generalized Boolean lattice B, then B/ V6,
h

is isomorphic to the semilattice of all compact congruences of a lattice.

3. The main construction

We start to define the D(h,i)’s. Motivation: Whenever h=i, D(h,i) will
be a “reduced free product” of all the D,, h=x=i, in the class of distributive
lattices with 0, namely we take free O-product in the class of distributive lattices
and factorize it by a congruence (by the smallest possible) so as to insure that in
-he factor lattice all the relations d=de(x, y), h=x=y=i, dcD,, hold (here, for
brevity d etc. stands for the congruence class of d etc.). This free choice of the D(h, i)’s
is one of the important ideas of the proof, however, we shall not need in the proof
that D(h, i) is really free (relative to the given relations), we only need the descrip-
tion given in the following definition.

Definition. D(h,7) will be the finite distributive lattice with the following
V-irreducibles: j is an irreducible of D(h, i) if j is a mapping of a dual segment
P to the poset [h,i] to |J D, such that for all x€P, j, is an irreducible of D,

x€P

(0 is not irreducible) and whenever x=y, x, yP, then j,=j.é(x, y).%) '

5 They are ordered componentwise, that is (j.Ix€P)=(jIx€Q) if P2Q and, for all x€Q,

JeSi%.
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Definition. The irreducibles of D(h, i) are the irreducibles of D(g, i), too,
if g=h. Therefore we get an embedding ¢@(gh, i), if we map the irreducibles
j€D(h,7) to jeD(g,i) and extend this map such that the V is preserved. (This
is a lattice embedding as its dual mapping — by Priestley’s duality -— maps
(jslx€P), P a dual segment of [g,i], to (j/xéPN[h,i]) and therefore is onto).

Definition. ¢(h, ij) is defined as follows. The irreducibles of D(h, i) are the
choice functions (j,|x€P) where P is a dual segment of [k, i]. Now (j |x€P)o(h, ij)
is the join of all (j {x€Q) such that Q is a dual segment of [h,j], QN[h, i]=P,
Ji=j, for x€P, and (j|x€Q) is an irreducible in D(h, j). To arbitrary elements
of D(h,7) we extend this mapping in such a way that it preserves joins.

Now the commutativities (1), (2), (3) are evident. To show that ¢@(h, ij) is
one-to-one we have to prove that its dual mapping is onto. To do that we first de-
scribe how the poset [h, 7] is obtained from [h,j]. According to Figure 1, j is
the greatest element of a finite chain in {h,: y=w(f+1)\{h,: y=wp} for some 7.
Omitting this chain we obtain another poset. This remaining poset has a largest
element, so we can continue this procedure until the largest element in the remaining
poset is i. Now, if we go the other way around, we get [h,j] from [h, ] in such
a way, that add finite chains ay,, a5, ..., a;nl; Ao1s ags oons Gay5 o5 s Oz <5 iy
successively to [h,i] as in Figure2 (a,, =i, 4, =Jj)-

Now we show that the dual map of ¢(h,ij) is onto. Let (j.x€P) be an
irreducible of [h, {], where P is a dual ideal of [h, i]. For simplicity, we assume that
the adjoined elements are /, m, n, and the chain consisting of the lower covers of
these elements is i, h, k.

Now we may choose an irreducible j, in D, such that je(i, l)=j,. j,e(h, I)=j,,
too. Let x=j,e(h,m). Then xe(m,l)=j,. x is a join of join-irreducibles:
x:Yj, and j,é\y/jye(m, I), thus, for some 7y, ji=j, &(m,1). Define j,=j, .

o Gkny

Figure 2 Figure 3
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Similarly, we can define j,, and continuing this procedure we get a vector (j,|lx€Q)
which is mapped to (j.|x€P).?)

To define B(0,i), we agree that the atoms of B(0,7) are [j,x€P] where
(jlx€P) is a join-irreducible of D(0,7), the only difference is that in B(0,7)
they are, of course, not ordered. The embedding (0, i) is defined as in [5]. Then
the commutativity of (4) and (5) is again evident.

Now let B(0, —) be the direct limit of all B(0,7) and D(h, —) be the direct
limit of all D(h, ). Then there exist embeddings (0, i—): B(0,i{)—~B(0, —) such
that the following diagrams are commutative

o(h,ij)

1y - \\

D(h, i) ——— D(h, j)

oh, §—)
N
D(h’ _)
B, H 222, B(, )
_ o _ N
(12) \ lwm.j—)
N
B(Oa —)

with h=i=j and i=j, respectively. These commutativities make it possible to
define embeddings ¢(hg, —): D(h, —)—~D(g, —) and ,((0 —) with g=h, such
that the following diagrams are commutative:

o(hi—)

D(h, i) D(h, =)
(13) ' #(hg, D) I lqz(ha. =)
D(g, )——=D(g, -)
_ o DO, ), p(o, -)
(14) 20,9 I |20
B, D B(O -)

%) By means of some additional observation the case that both # and j lie on a chain added
in the inductive construction, can be handled similarly.

2
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Also the following diagrams’ oommute :

" D(h, ) D(h —)
(15) ' _‘_'«mhnl R ‘ ]mh—) }

D(g, l) =D& )
R )T ¥ )—M—D(O—)
(16) '(O.I)I . Iz'(o.:-)

BO, )~ BO, -)

lll(i)

Hence it follows that the ¢’(gh, —) and 2, '_—) are weakly distributive monomial
congruences and so are their composition. (To show the commutativities of (15)
and (16) we have to show the commutatlwtles of (7) and (9), but it is the same as
Lemmas 1, 2 in [4].)

Now we can finish the proof as follows. The factor lattice by the congruence
\’{6,I is the direct limit of the D(h, —)’s relative .to the morphisms ¢(gh, —).

Let us denote this limit by F. F has Subsemilattices isomorphic to the D,’s. Namely,
D(h, h)=D,, hence D(h, h)o(h, h—)=D,. ‘
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Relatively free bands of groups

P. G. TROTTER

" The subvarieties of the variety CS of all completely simple semigroups, along
with their free objects, have been studied by V. V. RasIN [15], P. R. Jongs [9] and
by M. PerricH and N. R. REeLY [14]. The lattice of subvarieties of the variety B
of all bands. has been constructed by A. P. Biriurov 1], J. A. GERHARD [6] and
C. F. FENNEMORE [5]; the defining laws of these varieties are known.

In this paper we observe that any regular semigroup is a subdirect product
of any idempotent separating homomorphic image by any idempotent pure ho-
momorphic image. This enables the construction of free objects of subvarieties
of the variety POBG of all pseudo orthodox bands of groups in terms of relatively
free bands and relatively free completely simple semigroups. It is shown that in
any subvariety V of the variety BG of all bands of groups where CSEV £POBG,
the s#-classes of elements on 3 or more generators of the free objects are not free
in any group variety. It is also shown that the free completely simple semigroup
on a finite set is a retract of the free object on a countable set in any variety of com-
pletely regular semigroups that contains CS.

The first section includes a subdirect product decomposmon of a regular semi-
group and some preliminary results on varieties; it is shown that RBGNPOBG
is a significant Jower bound of the set of varieties V, CSSVESBG\POBG, where
RBG is the variety of all regular bands of groups. In the next section models of free
objects in subvarieties of POBG are described, with an emphasis on those con-
tained in RBGNPOBG. The retract and s#-class results mentioned above are
in the final section.

“ " Received December 13, 1984 and in revised form May 21, 1986.
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1. Definitions and preliminary results

Suppose ¢ is a congruence on a regular semigroup S. Denote by E(S) the set
of idempotents of S. Define

trace of 9 =trg = g|E(S)
and
kernel of ¢ = ker o = {u€S; (u,e)co for some e€E(S)}.

By FeigenBauM [4; Theorem 4.1}, g is completely determined by its trace and kernel.
Note that if 7 is also a congruence on S then tr ¢Mtr t=tr (¢MN1). Also, by [8;
proof of Lemma I1.4.6], ker gMNker T=ker (¢N7). By [10; Theorem 3.2}, there exist
least and greatest congruences on S with the same trace as ¢ (denoted respectively
Omin and 0,,,.), or with the same kernel as ¢ (denoted respectively o™ and ™)

Lemma 1.1. Let g, T and ). be congruences on a regular semigroup S such that
081C 0, and oSAiCo™* Then Sfo is isomorphic to the subdirect product

{(at, ak); a€S} of S/t by S/

Proof. Since ker A=ker gCker t and tr t=tr o&tr A then ker (zMNA)=ker o
and tr(zNi)=trg. So @=tN2 and the result follows (see [12; Proposition
11.1.4]).

Throughout the paper U will denote the variety of all semigroups that have
a unary operation, and X will denote a countably infinite set. The free object on X
in U is denoted by Fy. Fy is the smallest subsemigroup of the free semigroup on
XU{(,)"?} such that XS FY and (w)"l¢Fy for all weFY. We will write w™1=
=(w)"* and Wl=ww"L

If V is a subvariety of U let FV denote the free object in V on X, and let ¢y
be the fully invariant congruence on Fy such that Fy=:Fy[oy. Denote by L(V)
the lattice of subvarieties of V and by C (V) the lattice of fully invariant congruences
on Fy (both ordered by inclusion). There is a lattice anti-isomorphism between
L(V) and C(V) given by W-gwfoy. For VEW in L(U) let [V, W]=
={ZcL(U); VEZSW). For YCX, let Fy denote the subsemigroup of Fy gen-
erated in V by Y; Fy is free on Y. We may regard Fy as being the set FY, subject
to the laws of V. ’ :

A semigroup is completely regular if and only if it is a union of its subgroups.
It is well known that the class CR of all completely regular semigroups is a sub-
variety of U defined by the laws xx 'x=x, xx~'=x"1x and (x")'=x. So
ocg is generated by {(uu™u, u), (=Y, u™u), (W=, u); uc FY}.

By [10; Theorems 3.6, 4.2 and 4.3], for any VEL(CR) then (e¢y/0cr)min>
(QV_/QCR)min’ (QV/QCR)max and (QV/QCR)max are in C(CR)' Let Vmax\’ anx, Vmin and
V™ denote the varieties in L(CR) that are respectively defined by these congruences.
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It is usual when VEL(B), the lattice of varieties of bands, to write VG for
V- VG is the variety of all semigroups SE€CR such that 5# is a congruence on
S and S/H#CV. _ o

Let G denote the variety of all groups, CS is the variety of all completely simple
semigroups, and let OBG be the variety of all bands of groups that are orthodox.
Let POBG denote the variety (see [7; Proposition 4.1]) of all S€BG such that
for each ecE(S), eSe is orthodox; S is called a pseudo orthodox band of groups.
The following list, from [11], is of the bottom 15 varieties in L(B) along with their
defining laws as subvarieties of B: T=trivial variety (x=y); LZ =left zero semi-
groups (xy=x); ReB=rectangular bands (xyx=x); SL=semilattices (xy=yx);
LNB=left normal bands (xyz=xzy); NB=normal bands (xyzx=xzyx); LRB=left
regular bands (xy=xyx); LQNB=left quasinormal bands (xyz=xyxz); RB=reg-
ular bands (xyzx=xyxzx); LSNB=left seminormal bands (xyz=xyzxz); and
the left-right duals RZ, RNB, RRB, RQNB and RSNB of LZ, LNB, LRB, LQNB
and LSNB respectively. If VEL(B) is not in the list then V2LSNBVRB or
V2RSNBVRB.

LSNB¢ RB <r RSNB
LQNB "RQNB
LRB¢ } RRB
LNB ¢ RNB
LZ¢ * RZ
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The following results are to be used later in the text. Define the content of
v€FY to be
c(v) = {letters of X appearing in v},

and for VEL(CR) define
Dy = {(u, v); u,vEF;{J and ugy 2 voy}.

Theorem 1.2. (i) [2; Theorem 4.2). For u, v€ FY, (u, v)€9cg if and only if
c(w)=c(v).

(ii) Dg Is a congruence on FY. For VEL(CR) either ¢y&9cp and V2SL
or o0y EDcp and VZCS. '

Proof. Since 2 is the finest semilattice congruence on any completely regular
semigroup then gy is a congruence of Fy and ¢y E9. if and only if V2SL.
If VECS then VRSL and hence ¢y EDy. Suppose ¢y EDcr. Then by (i)
there exists u, v€ Fy such that (4, v)€gy and c(u)s%c(v). We may assume that
there exists x€c(u)\c(v). Select finite subsets ¥, Z of X and endomorphisms
@, Y of Fy such that c¢(x@)=Y=c(zyy) and c(xy)=Z=c(zp) for all z€X\ {x}.
Since gy is fully invariant and (u, v)€ gy then (ve, (¥v)e), (vf, WP v)Y)E oy while
c(vp)=2Z, c(w)=Y and c(°v)p)=YUZ=c((’v)y). Hence by (i) Fy[oy has
just one @-class and is therefore completely simple.

Theorem 1.3. Suppose VEL(BG). Then
(i) V_..€L(OBG) if and only if VNB2ReB,
(ii) V€ LAPOBG) if and only if VNB2RRB, and
(iii) RBGNPOBG is the greatest lower bound in L(POBG) of

[CS, BGI\L(POBG).

Proof. Note that since 5# is the greatest idempotent separating congruence
on Fy, and 5 is a band congruence then V_;,=VNB. Also observe that if Z2W
in L(CR) then Z_, .2W,,.,. '

(i) Since ReB,,=CSEOBG then V_,¢L(OBG) if VNB=2ReB. Con-
versely suppose VIB2P2ReB; then LRB2V(IB or RRB=2V(B. By duality,
it suffices to assume V=V, =LRBG, and to prove VEOBG. In this case V
is defined as a subvariety of BG by (xy)°=(xyx)’. So for any e, fc Fy where egy
and fpy are idempotents,

ef ov ef(ef )'f ev ef(efe)'f ov ef (efe)ef ov ef (ef )'ef ov efef.
Thus F} is orthodox.
(i) The free completely simple semigroup with adjoined identity, (FSS), is
not a pseudo-orthodox band of groups but it is a regular band of groups since it
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satisfies the law (xpzx)*=(xyxzx)°. Conversely, suppose VNBPRB; .so VOIBE
ZSILSNB or VNBSRSNB. By duality we may assume V=V;,,;=LSNBG. Sup-
pose e, f, g€ FY such that epy;, foy and goy are idempotents and (efe, f) (ege, g)E Oy -
Since V is defined in L(BG) by (xyz)°=(xyzxz)° then

(f2) av (fge)’ ov (fzefe)* ev (J&f)° ov (J&f)'f av (fg)°f

50 f2 ov/8(/8)°8 ov f8(f2)°/2 ov f&/8.- Hence. FVGPOBG and the result follows
(iii) By [7; Theorem 3.1 and Corollary 5. 4], L(BG) is modular and POBG =
=CSVB. Therefore, since RBG2CS,

POBGNRBG = (CSVB)RBG = CSV(BﬂRBG) CSVRB. .

By (i) CSVRB is a lower bound for [CS, BGI\L(POBG). Furthermore: if
VEL(POBG) is a lower bound for [CS, BG]\L(POBG) then VCPOBGﬂRBG

Lemma 1.4. Suppose VEL(CR) and WE[Y, Vm,VV’““"] Then W-,
=(WNV,,)V(WNV™), Furthermore ker (ow/ocr)=Kker (ewnv__ /0cr)-

max’ ,‘. .

Proof. The first statement is by [10; Theorem 5.4]. The second statement is
proved in the initial part of the proof of [10 Theorem 5. l]

2, Free pseudo orthodox bands of groups o ‘ o

The lattice L(CS) of completely srmple sem1group varretres has been studred
by several authors. In partrcular Fv has been characterlzed for VEL(CS) in [9],
[14] and [15]. S :

Write = to mean “is embedded in” and omlt_ the embeddmgv,__detatls where
they are obvious. oo e ’

Theorem 2.1. (i) If VEL(OBG) then
FX = {(“QVnB, llQvn(;) uEFx} = F;n'BXFan.
(11) If VE [ReB POBG] then S
| {(uva;, uQvncs), uEFx }< F;,OBXFJV“CS

Proof. We have Tm,_G T“‘“—B ReB“““ “and* ReBm“_CS By [13;
Lemma 1] and [7; Corollary 5.4], OBG=BYG and POBG=BVCS . respéctively.
By Lemma 1.4 then V2VNG2V™" in case (1) and VDVﬂCS DV““" in case (ii).
Since V,,=VNB, the result is by Femmal.d:' - -°

This result can be refined, given more information on I;';}'nn' and“ F}'“CS
The head h(v) of vEFY is the first.letter -of X to_ap'pear;‘i,n v. Dually the tail
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t(v) is the last letter of X to appear in v. The initial part i(v) of v is the word obtained
from v by retaining only the first occurrence of each letter from X. Dually define
the final part f(v) of v. Define I={i(v); v€F¥}; so ICFY consists of finite strings
of distinct letters from X. Then

6} ong = {(u,v); u,v€FY where c(u) = c(v) and h(u) = h(®)).

To see this note that the set is a fully invariant left normal band congruence on Fy
that is contained in gg MNgrz. Since the sublattice described in the diagram is
convex, the congruence is o ng-

Likewise
03 ens = {(u, )€ ornm; t(0) = t(v)},
3 owrs = {(u,v); u,veFy where i(u) = i(v)},
C)) oLons = {(8, v)€orrs; tH(w) = 1)},
and
&) ors = {(u, )€ orre; f() = f(¥)}-

Along with the well known results we readily get the following.

Theorem 2.2. Fy=1{0}; Ft%=X with multiplication x-hy=x;

FB o B Y Bt = {YSX; |Y] <=} under set union;

™ o {(x,7); €Y S X, [¥] <o} = FE2EXFE;

F2® = {(x, 5, ¥); x, yEY S X, [¥] <o} = FRPXFSY,

Ff® = I with multiplication a-b = i(ab);

FEONB o~ ((g,x); acl, xcc(a)) = FY®XFe%; and

F® = {(a, b) IXI; c(a) = c(b)} = FFBXFRR®,

The free objects in other varieties of bands are not so easy. to model.

Corollary 2.3. Suppose VEL(LRBG) and W=VNG. If VC[SL, SLG] then

F = {(¥,g); g€Fy,c(®) SYE X, |¥| <} = "X F.
If VE[LNB, LNBG] then
F = {(x,Y,8); g€Fx, {x} c(@) SYCS X, |¥| <o} = Fy""XFy.
If VE[LRB, LRBG] then
F = {(a, g)¢ IXFY, c(g) C c(a)} = FBXFy.
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Proof. With F} replaced in these descriptions by Fy[ow it can be easily
seen by Theorems 2.1 and 2.2 that the respective isomorphisms are given by upy,—

—(c(u), uow), ugy—~(h(w), c(u), ugy) and ugy—(i(u), uow).

Select h€X and let {pyz; ¥, z€X\{h}} be a set in one to one correspondence
with XN\ {h}XX\{h}. Put p,.=e if y=h or z=h. By [9], [14] or [15], Fg5=
= (H, X, X, P), a Rees matrix semigroup, where H is the free group with identity
e freely generated by {exe, p,.; x, y, z€X, y=h+z}, and P is the matrix with p , in
row y and column z. #(H, X, X, P) is freely generated in CS by {(exe, x, x); x¢ X }.

Also by [9], [14] and [15], if V¢[ReB, CS] then there is a unique normal sub-
group Ny of H such that FYz.# (H/Ny, X, X, P|Ny).

Let ¥: FY—4 (H, X, X, P) be the surjective homomorphism given by xy =
=(exe, x,x) for all xcX. Define ¢: FY~H by wuy=(up, h(u), t()) for all
uc Fy. Then xp=exe, (xp)@=x0p.,(yp) and 470 =(Pyuuw “P) D)t for
any x,y€X and ucFy. It follows that for V€[ReB,CS] and wu,v€FY then
(u, v)€ gy if and only if h(u)=h(v), t(u)=t(v) and upNy,=veNy.

Corollary 2.4. Let VE[NB, RBGNPOBG] and W=V NCS. J[fVE[NB, NBG] then
R ={((x5Y), (2 x,5); 86H/Nw, {x,3}, c(g) SYS X, |¥| <o} = Fy " XFY.
If VE[LQNB, LQNBG] then
FY = {((a,%), (g, h(a), x)); gcH/Ny, a€l, {x}, e(g) S c(a)} = KT X Fy .
If VE[RB, RBGNPOBG] then
K = {((a, b), (g, h(a), t(b))); g€H/Nw, a, b1, c(g) S c(a) = c(b)} = Fx X Fy .

Proof. By Theorems 2.1 and 2.2 it can be readily checked that the re-
spective isomorphisms are given by ugy—~((h(u), £(u), c(u)), (up Ny, h(u), 1(w))), uoy—~
~((), t W), (upNy, h(w), t(w))) and uoy—((i(w), f(W), (upNy, h(u), 1(w))).

Note that there are repetitive symbols in the models; s (a) and ¢(b) are derivable
from a and b. The repetitions are included so as to give a simple description of
the multiplication.

Since the relatively free objects of LZG are known modulo G then by the cor-
ollaries the relatively free objects of RBGNPOBG are known modulo CS and G.

By [12; Theorem IV.4.3], S is a normal band of groups if and only if S is a
strong semilattice of completely simple semigroups. We can use Corollary 2.4 to
characterize free objects of varieties in [NB, NBG] in these terms.

Suppose E is a semilattice and {S,; a€E} is a disjoint set of semigroups.
Suppose there exists a set of injective homomorphisms ¥, 4: S,—~S; for all a, € E
where a=p, such thaty, , is the identity map and v, ;¥ ,=V,,, forall o, , ye E
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where a=f=y. Then S=U ¢S, with multiplication a-b=ay, ,,by¥; ., for acsS,
and b€S; is called a sturdy semilattice E of semigroups S,; a€E with transitive
system {Y, 5; @, BEE} (see [12]).

Corollary 2.5. If VE[NB,NBG] and - W=VCS then
Fy = {(Y, (8 %, »)); g€H/Nw, {x, 3}, c(g) SYS X, |¥] <o} = FR“X Fy -

Hence FY is a sturdy semilattice F3 of semigroups Fy; YEFS with transitive
system {y,z; Y, ZEFQ"} such that {x\y y; XEY} generates Fy': Conversely any
such sturdy semilattices of semigroups is isomorphic to FY.

Proof. The subdirect decomposition is immediate by Corollary 2.4. So Dy=
={(Y, & x,¥); gH|Ny, {x, y}, c(g)S Y} is a D-class of the model and Dy=Fy'.
With y 2 Dy—D, given by (Y,g x,y)~(Z,8,x,y) for Z2Y we see that
FY is a sturdy semilattice of the required form. Now suppose § is a sturdy semi-
lattice Fy- of Fy; YCFj- with transitive system {y} ,; ¥, ZEF3-} such that
{x¥{y.ys X€Y} generates F}" for all Y. Define an automorphism n, of Fy' by
XY, vy =X,y for all x€Y. We have for Z2Y, Y vfiy¥y, z=Viy, yV1,2=
=Y(g,z=V(x,2Mz- By [12; Exercise II1.7.12.11] then S= Fy.

3. Free non-pseudo orthodox bands of groups

This section begins with a description of Z-classes of relatively free completely
regular semigroups that allows easy comparison of some properties of the relatively
free objects.

Throughout, ¥ will denote a finite subset of X and Dy={ucFy; c(w)=Y}.
Dy is a unary subsemigroup of Fy. Let g bea congruence on Dysuchthat Dy/g is
completely simple.-Select ey=w® for some w€Dy; so eyg€ E(Dy/g). For u, vé Fy
define ' :

6) ' €yu,p = Uey (e,vuey)‘_leyv.

We have E(Dy/o)={ey.,0; u, v€ FY} since ey, ,¢ is an idempotent and for reDy,
.1° ¢ ey,,,. For notational convenience write ey_,=ey, , and ey,_=ey, e, Define

(7) ' p}’u,v = eY—u‘eYv—; u, Q)EF;J.

By [3; Theorem 3.4], for any ‘u€ Dy there is a unique ag such that aQ M eyo and
ugey,_aey_,. In fact since ey,_oLeyoZRey_,0 then ag=(eyuey)g; so
‘u Q ey,_eyueyey_,. Let Hy be the unary subsemigroup of F} generated by -

(8) ) {eY Uy, Pyu,v ; u, ?JE FYU}.
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Then by [3; Theorem 3.4], Hy/g is the s##-class of ey¢ in Dyfe and .
{(eyu-hey_,)o; he Hy}

is the s#-class of (ey,_ey_,)0, U, vEDy.
Suppose VE[CS, CR]. Let Sy, be the completely simple subsemlgroup of
Dy/gy that is generated by

{(ey.-eyxeyey_.)ay; x€Y}

Let T be a subsemigroup of a semigroup S and : S—~T be a homomorphism.
Then T is a retract subsemigroup of S under  if and only if there is an isomorphism
¢@: T'—~T, and ¢V is the identity map.

Theorem 3.1. Let Y be a finite subset of X and VE[CS, CR]. Then Sy, is
a retract subsemigroup of Fy[oy under (ocs/oy)t. In particular Syy=Fg®.

Proof. Let y: Fy/oy—~F{[ocs be the surjective homomorphism determined
by the action (xgy)Y =xgcg foreach x€Y. So Yoy~ is the restriction of (gcs/ev)
to the subsemigroup Fy /oy of Fy[oy. Wehave ey,_eyxeyey_,oyxey(eyxey) teyx,
and (xey (e.xxey)‘ley) Ocs is an idempotent that is Z-related to xgog. Hence
((eyx—eyxeyey_,)oy)¥ =xoy¥ and y maps Sy, onto Fy/gcs. But Sy €CS so there
is a surjective homomorphism ¢: FY / 0cs—Svyy given by xgcg @ =(ey._eyxeyey_,)oy.
The result follows.

The Theorem can be strengthened in the two variable case.
Theorem 3.2. If VEL(BG) and W=V(\NBG then F, "= =FY

Proof. By [8; Lemma IV.4.6] it can be easily seen that auva gy avua for any
a,u, vEFY 1. So (auva)® gy (avua)® and hence FY, ,€W. But FJ; 1€V, so the
homomorphism FJ} ,~Fy, , such that x—x, y-y is an isomorphism. .

Now suppose VEL(BG) and Y is a finite subset of X. Let a, b, ¢, dc¢ FY. 1f
(a, b), (¢, d)€ g then since tr ggg=tr gg we have by (6) and (7), (ey,, > €ys, )€ 0pc>
whence (pyq, . Pys,a)€ 0. SO

)] (Pya,c> Prn,)€0v 1 (a,b), (c,d)Egp.

Also by (7) pya,.0v(eyaey) teyacey(eycey)™ and since Hy/gy is a group,
(10) €yacey Qv €ya€y Pya,c€yCey-

By (9) and (10) eyaey ¢y eyad®ey @y eyaeypy, ey ey so

(1) eya’ey oy Praa
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Also eyaey gy eya*a~ley oy €yaey Py, aCyeyPya a€yd '€y SO
-1 -1
(12) cya €y Oy (pYa,aeYaerYa,a) .

Also note that since (a°, (h(a)!(a))*)€ocs while ey, ocs and ey_,ocg are
idempotents then by (6), (eya—» €ynay-)s (ér—bs €x—15))€cs> 50 by (7)

13) Pya,b @cs Pyia), hp) -

Lemma 3.3. Suppose V€[CS,BG]. Then VEL(POBG) if and only if
(Pyabs Preay )€ Qv for some finite subset Y of X such that |Y|=3 and for all
a, bE Fy.

Proof. As noted in the proof of Theorem 2.1, POBG =ReB,,,\V ReB™**. Then
by [10; Theorem 3.4], POBG=(ReB, )™ N (ReB™*) ... Since ReB,,,,=CS then
POBGE[CS, CS™*] so ker 0popa/0cr=Kker 0¢cs/0cr- Thus if CSESVSPOBG then
ker gcg/ocr =ker oy/ocg- Then by (13), since py, ,0cr and Prica), nepy Ocr are H-re-
lated, (Pyg aPricay,noy) QcrEKEr 0v/ecr 30 (Pyaps Preay,ny)€0y  for all a, bEFY.

Conversely suppose |Y|=3 and (pys, s> Precaynp))€ 0y for all a, b€ FY. Then
by (8), (10), (11) and (12), Hy/oy is the group generated by

{(eyxey)oys Pyx,yov; X, YEY}.

We begin by showing that ker ((gcs/ov)I(FYov)) =E(Fy/oy). Recall that Sy, is a com-
pletely simple subsemigroup of Dy/gy generated by {(ey,.eyxeyey_Joy; X€Y} So
thereisa subgroup Ky, of Hy/oy such that foreach x, y€Y, {(ey.—key_,)oy; k€Kyy}
is an #-class in Sy,. We have (eyxey)oyEKyy. Also, by (7), (ey,—pya,er—x)0v
is an idempotent; it is Z-related to (ey,_eyyeye_,y)oy and ZLrelated to
(eyx-eyxeyey_,)oy soitisin Sy,. Hence py, ,0y€Kyy. It follows that Hy/o,=
=Kyy, so the #-classes of Sy, are #’-classes of Dy/gy. Hence, since Dy/gy€CS
and ker ((gcs/ev)|Syy)=E(Syy) by Theorem 3.1 then ker ((ocs/ov)I(Dy/gy))=
=E(Dy[gy)- ’

Suppose ZZ Y. There is an endomorphism ¥ of FY such that xy=x if x€Z
and xy€Z if x€ YN\Z. Since gy is fully invariant then y induces an endomorphism
¢ of FYjo, given by agyp=ajgy. Define e;=eyy, so ezoy=eygye is an
idempotent in Dy/gy. Construct p, , by (7) for u, v€ FY. Then

Pyu,oOvP = ((eyuey)‘leyuvey(eyvey)‘l)gvgo = Pzu,0@Qv-
Hence (pz,,v» Pz, nmy)€ 0y for all u, v€ FZ, and as above we get
ker ((acs/ev)i(Dzlev)) = E(Dzlay).

Hence ker ((ocs)/ev)l(F¥/ev))=E(FY/ay)-
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Since (x* FYx%)/cs€OBG it now follows that (x®Fyx°)/oy€OBG. But
then (x2yx°x0zx%)° g, (xOyx°)°(x°zx°)® for any x,y,2€Y. So (x° y‘c"x0 X% =
=(2yx")°(x*zx%)° is a law in V and V¢ L(POBG).

The major result of this section can now be proved.

Theorem 3.4. Suppose Vc[POBGNRBG, BGI\L(POBG), and Y is a finite
subset of X such that |Y|=3. Then any #-class of F¥[oy in the D-class Dyloy is
not a free group.

Proof. Suppose v€Y and u, w€ Fy. By (9), (10) and (11) we have

(14) eyutwey Qy eyleyPyy, vy €y Vey Py, w €y WEY,»
(15a) eyurwe 0
Y Yy @v eyuv erYuu,uw eyvwey,
(15b) eyuvivey Oy €yUvey Pyyy, oy €y VO Wey,
(16a) eyur’ey gy eyue eytle eyue e
Y Yy Qv €yUeyDyy,,€yU €y Qv €xyUEy Py, v Pyv,v»
-1
(16b) eyv®wey 0y Pyo o Dyo, weyWey.

Then by (15a), (16a) and (14)

s 0 -1
) Pruv,ow €y VWey Oy (eyt®ey) ™' eyuvwey
(17a
—1 s
oy pYu, vau,vau, uweY’berYv,w ereY'

Likewise by (15b), (16b) and (14)

(17b) €y uverYuv, ww Qv €y uerYu, ow €y V€y Pyo, v+

So by (10) and (17a), and (10) and (17b) respectively

eyuvtwey gy eyuvey (Pyuo, ow eyowey)
(18a)

\ -1 ,
Qv €yUey Py, vC€y ey Pyv,vPyv, v PYu,ow€y Y€y Pyo,w €Y WEY 5

€y w? wey Qv (eY UV€y Dyyy, vw) €yvwey
(18b)

Qv €yUey Pyy,vw €yVey Pyyv, v €y V€Y Pyv,w €y WY -
Comparing (18a) and (18b) then

-1
Pyu,v€YV€Y Pyv,v PYu,0LYu,vw @V Pyu, vw €yVey Dyo,v
whence

(19) . (eYverYv, v)(p;u%vp}’u, vw) v (p;u],'vau, vw)(eY’verYv,v)'
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Alternatively we may repeat the above calculation with (14) replaced by
eyuvwey Qy €y UeyPy, o€y Vey Dyuy, wCy Wy 1O get '

(20) (Pn. v eYveY) (pYuu, wa—v],- w) Oy (pYuv, w p;vl, w)(p}'v, v eYveY)~
Let

— — p=1 —_ — -1
a= eYverYv.v’ ﬁ ”‘pYu,quu,vww Y "‘va,veYveY’ 5 _pYuv,wPYv,w'

Note that ag,, is not an idempotent. To see this observe that for v€Y then as in
the proof of Theorem 3.1, (ey,_eyveyey_,)ocs=v0cs Which is not an idempotent
in Fy[ocs- But (ey,-py,oey-o)0cs is the idempotent s -related to vocg. Hence
(eyvey, Py, )¢ Qcss SO ®0cs#eyQcs=a"0cs. Likewise yocs#1°0cs-

Let A4 and B denote the subgroups of the s#-class Hy/gy of eyoy that are
respectively generated by {agy, foy} and {ygy, dgy}. Assume Hy/gy is a free
group. By (19) and (20), {xoy, Boy} and {yoy,dgy} are not sets of free generators
of free groups, so 4 'and B are free cyclic groups. Say Agy generates 4 for some
IEFY and ooy A™ BoyA". But agcg, and dgcg, are not idempotents while by
(13) Pocs=A"0cs is idempotent, so n=0. Therefore (py,,ws> Py, 0)€0y, and like-
Wise (Dyus,ws Pyv,w)E0y for any u, w€ FY and v€Y. Of course v=h(vw)=1t(uv)
so by (9) we now have (Py, s, Py sy for all a, be FY; thus by Lemma 3.3
VEL(POBG). This is a contradiction. Thus Hy/gy is not a free group.

Remark. Since the subgroup Sy, of Fy/gy is isomorphic to FES then for
|Y|=2 and s#-class of Sy, is a free group on more than |Y| free generators; that
is, it generates the variety G of all groups. Hence any J#-class in Dy/p, generates
G and thus lies in no proper subvariety of G.
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Congruences on semigroups of quotients

JOHN K. LUEDEMAN

Introduction. PETRICH and others [2, 5, 6, 7] have studied semigroups ¥V which
are ideal extensions of a semigroup S by the quotient semigroup 7=V/S. These
extensions are classified by their homomorphic image in the translational hull 2(S)
of S. Most often S is required to be weakly reductive so that S is embedded in
Q(S). On the other hand, given a right quotient filter X on S, the semigroup Q(S)
of right quotients of § can be defined and all right S-systems M=2.S for which
M|S is torsion can be classified by their homomorphic image in Q(S). Often S
is required to be strongly torsion free so that S is embedded in Q(S). When M
is strongly torsion free, M is isomorphic to an S-subsystem of Q(S) and so may
receive a semigroup structure from Q(S). The author [4] has shown that these
two concepts are special instances of a common generalization.

In this paper we study semigroups ¥ containing the strongly torsion free semi-
group S with T=V/S torsion, called semigroup extensions of S by torsion T.
In this situation T is an (S, §)-system which may not be a semigroup. However,
T*=T\{0} has a partial multiplication for pairs ¢, ’¢T* with 1'¢S in V. This
partial multiplication is associative. When considering ideal extensions, the (S, S)-
system T has a trivial scalar multiplication. In our situation, the (S, S)-system
structure on T is not trivial and plays an important role.

In Section 1, the necessary definitions concerning semigroups of quotients are
given and the semigroup extensions ¥ of S are characterized in terms of an (S, S)-
homomorphism 6: T*—~Q which preserves any partial multiplication in T*. This
characterization is reminiscent of the characterization of ideal extensions due to
CLirFoRD [1]. In Section 2, semigroup congruences v on ¥V are characterized in
terms of the restriction o=v|s of v to S, and the (S, S)-system congruence T on
T inherited from v when S/o is strongly torsion free. In Section 3, the semigroup
V/v is shown to be an extension of S/¢ by a quotient S-system of 7. In Section 4,
the special case of extensions determined by partial homomorphisms is considered.

Received October 10, 1985, and in revised form October 23, 1986,



34 ) - John K. Luedeman

1. Extensions of semigroups. Let S be a semigroup with zero. (In this paper
S will always have a O unless otherwise noted.)

Definition. A right quotient filter on S is a nonempty collection X of right
ideals of § satisfying

(i) if AcX, ACB, a right ideal of S, then B€ZX,;

(i) if 4,BcX then ANBEX;

(iii) if A€Z, s€S then s 'A={x€S|sx€A}cZ; and

(iv) if I is a right ideal of S, A4€ZX, and a~'IcX for all a€A, then I€Z.
HiNKEL [3] calls such right quotient filters “special”.

For A€Z, let Hom (4, S)={/f: A~S|f(ax)=f(a)x for all xS, acA4}. Let

B= [J Hom (A S), then B is a semigroup under composition with multiplication
AcZ
of f: A4S, g: B—»S defined by the composition fog: C-~S where

= {beBlg(b)c 4}

which is in'Z. Define the relation y on B by fyg if and only if there is some A€X
with f(a)=g(a) for all acA4. y is a semigroup congruence and Q=B/y is the
semigroup “of right quotients of S with respect to X.

Let M be a right S-system and define a relation 6 on M by mém’ if and only
if for some A€X, ma=m'a for all acA. & is called the torsion congruence on M.
M is strongly torsion free if 6 is the identity relation, and M is torsion if 6=MXM.
For each'sc.S, the y class of the mapping A,: S—S given by left multiplication by
s is denoted by [s] and the mapping [ ]: S—Q is a semigroup homomorphism.
- IfSis strongly torsmn free, [ ] is a monomorphism and we identify S with its image

[Sin Q.

Def1n1tion A partial (S, S)-algebra T-is a partial groupoid which is, at the
same time, an (S, S)-system, for which (ts)t .-t(st ’) for all s¢ S whenever both
products are defined.

Let ¥ be a (S, S)-system which is:also -a semigroup. If V satisfies (vs)v'=
=y(sv’) for-all v, v'€V, s€S, we call V. an:S-algebra. A semigroup ¥V containing
S'as a subsemigroup is clearly an S-algebra. Let- T=V//S, the Rees quotient (S, S)-
system. T has a partial associative multiplication of nonzero elements ¢, t’€T if
1’¢S (as an element of V) inherited from: ¥; and so is a partial (S, §)-algebra.
We denote TN\ {0} by T* and-riote that ¥ =T*US as sets.

In general, given a partial (S, S)-algebra. T,-we wish to define a semigroup
multiplication on ¥V =T*US: ‘extending the.partial multiplication in 7* and the
multiplication in S. If such a multiplication can be defined, we call V' a semigroup
extension of S by T. : S
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Definition. Let Q be a semigroup of right quotients of § with respect to a
right quotient filter X, and let T be a partial (S, S)-algebra. A mapping 8: T*—~Q
is a partial homomorphism if

(i) whenever ¢, ¢t’€T*, and t¢’ is deﬁned 0(tt) 6:)(6r), and

(i) if z€T*, s¢S and 50 [st520], then 0(ts)=(6¢)s [0(st)=50(¢)].

- When S is strongly torsion free and T is torsion, the desired multiplication on
V=T*US can be defined as shown by the following theorem.

Theorem 1. Let X be a right quotient ﬁlter on S and S be St}ongly torsion
free. Let T be a partial (S, S)-algebra. If 0: T*~Q is a partial homomorphism
satisfying (0a)(0b)ES if a, bET*, ab’ undeﬁned and s(Ob)eS [(Ob)sES] if sb=0
[bs=0], then V=T*US is a semigroup under the multiplication

(0a)(0b) if a, bET*, ab undefined -
a(@b)  if acS;beT*,ab=0 "
Ba)b - if acT™ beS,ab=0

ab otherwise.

axb =

Conversely, every semigroup extension V of S by torsion T=V|[S .can be con-
structed in this manner.

Proof. The proof' of the direct part of the theorem consists of verifying the
assoclative law. The proof is tedious but not difficult so only the verification that
(axb)xc=ax(bxc) for a, b, c€ T* is given. If ab, bc, a(bc) and (ab) ¢ are defined, then

(axb)xc = abxc = (ab)c = a(bc) = aalebc = aa«e(bxec)
If ab and bc are deﬁned while (ab)c is not, then - . .
“(axb)xc = abkc = (0ab)(6c) = (0abb)fc = Oa(f)bﬂc) OaB(bc) = a*bc =
. L = aak(b*c) '
If beis deﬁned while eb -is nof, then ' N
(a*b)*c = (0a0b)*c = (0a0b)0c = 0a(9b0(:) 8ab(bc) = a*bc = a*(b*c).

Smce the case bc undeﬁned ab defined is similar to the prev10us case, we con51der .
the case where ab, bc are both undeﬁned In this case — .

(axb)xc = (Balb)xc = (0a6b) Oe = Ba(Bb 8c) = ax(6blc) = a*(bakc)

Conversely, let V=T*US ‘be a semlgroup extension of S by T where Tis
torsion. We define -0: ¥'—Q .to be.the natural mapping given as follows: for- v€¥,
since T is torsion v=1S={scS|vscS}cZ so we define Oy to be the. y-class of
g: v 1S—~S given by .g(a)=va. Clearly 0 is a semigroup homomorphism of V
into Q whose restriction to S is the identity. By abuse of notation, denote the restric- .

3.
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tion of @ to T* by 0. Clearly, 0 is a partial homomorphism satisfying 0a 0b€ S
if ab is undefined, and s(0b)S [(0b)scS] if sb=0 [bs=0].

Moreover, if juxtaposition denotes the multiplication in V, then if a, b T*,
ab undefined, then axb=0a0b=0(ab)=ab; if as=0, acT*, s¢S, then axs=
=(0a)s=’9(as)='a.§'; if sa=0, acT*, s¢§, then sxa=sOa=0(sa)=sa; and other-
wise, .ab is defined in T*, or abcS in ¥V, and in both cases axb=ab.

2. Congruences on V. Let 2 be a right quotient filter on S, let S be strongly
torsion free, and V' be a semigroup containing S with T=V/S a torsion partial
(S, S)-algebra. To describe this situation we say that V is a semigroup extension of
S by torsion T.

Definition. Let o be a semigronp. congruence on S and P be a (S, S)-sub-
system of T with the following property:

(1) For each peP* there is 's€ S and AE 2 with the property that passa for all
acA.

In this case we say the pis a-linked to s. (Note that T/P inherits a part1al multiplica-

tion from T.)
- Let 7 be-a O-restricted multiplication preserving (S, S)-congruence on T/P

satisfying ‘ .
o)) B 12 xrjz, sot and xs; yt€S then xsoyt.

The relation (o, P, t)=v on V= T*US is defined as follows:

for x, ye T\P, xvy if and only if xty;
for.x, yc P*,; xvyif and only if there are s, 1€ S o¢-linked to xand y (respectrvely)

with sot; -
for x€P*, s¢S, xvs if and only if svx if and only if there is €S o-linked to

x and tos; and

olg=o0. .

A congruence o on S is strongly torsion Jree if Sfo is a strongly torsion free
semigroup with respect to the right quotient filter X/o with base {o%(4)|4€ZX}
where ¢* is the canonical semigroup homomorphism from S to S/a. '

Lenlrna; ' Z/& is a ri'ght quotient filter on S/o.

"Proof. Property (i) is clear, while (ii) follows from elementary properties of

the furiction ot
(m) Let Be3)e and t=0%(5)€S/o. Let AcY with o%(A)SB. Then s~'AcX

and o*sa*(s714)SB and (o*s)1BEX/o.
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(iv) Let ¢*(J) be a right ideal of S and B¢Z/o. Let A€ with % (A4)SB.
Let (6%a)~16*(I)cZ/o for all acA. Then without loss of generahty, a lI1cx for
all ac4 so I€X and o*(I)€Z/o. AU :

Theorem 1. If o is a strongly forsion free semigroup. congruence on S then
v=(o, P, 1) is a semigroup congruence on V whose restriction to S is strongly torsion
free. Moreover, every semigroup congruence on V whose restriction to S is strongly
torsion free is of this type. A

Proof. To show that v is an equivalence relation it suffices to verify't'hat for
PEP, s5,t€S, pvs and pot imply that sar. However, pus and put 1mp1y the CXIStCIlCB
of some x€S o-linked to p with xas and xat. Thus sav. :

We next verify that v is a left congruence. The “right” case is dual.

Case 1. Let t, /¢ TN\ P, c€V and tt’. Hence t1t". If ct€ TN\ P then ct’€¢T\P
since 1 is O-restricted. Hence cttct’ or ctoct’. Next let ctEP*US then ct EP*US
We consider several subcases.

@) ct, ct’e P*: By (1), for some ‘x, y€S, AcX ctox and ct’vy so that ctacxa,
ct’asya for all acA. By (2), trt” implies ctasct’a which implies xoy since ¢ -is
strongly torsion free. Thus ctvct” by definition of v. - :

(b) ct€S, ct’e P*: For some x€S and A€ZX, ct’asxa for all ac€A. Hence
by (2), ctacxa for all acA so ctox since ¢ is strongly torsion free. Hence ctoct’.

(c) The other cases ct€P*, ct’€S and ct, ct’€S are treated similarly.

Case 2. Let p,p’€P*, pop’ and c€V. Then pvs, p’vs for some s€S by the
definition of v. By (1), for some A€ZX, cpaocsa for all acA. Slmllarly cp’agcsa
for all acA. Again we consider several cases.

(a) cp, cp’e P*: Then cpvx and cp’vy for some x, y€S Thus  xaccpascp’asya
for all ac4 and so xoy and cpocp’.

(b) cp€S, cp’e P*: Then cp’vx for some x€S. Thus for all aEA cpaacp ‘aoxa
so cpox and cpocp’.

The verification of the remaining cases is either similar to some case con51dered
above ot follows immediately from (1) or (2). :

Conversely let 1 be semigroup congruence on ¥ whose restriction to S is strongly
torsion free. Let P={t€ T*|tus for some sc S}U{0}, then P is an (S, S)- subsystem
of T. Let o=p|s and define t on T/P by:

rrt’ if and only if ut’ (t, €T\ P); OrO.

Then clearly o is a strongly torsion free semigroup congruence on S, every
element of P* is o-linked to an element of S, and 7 is a partial multiplication pre-
serving O-restricted (S, §)-congruence on T/P and conditions (1) and (2) are sat-
isfied. Clearly uSo=(o, P, 7). To see the converse we need to consider two cases.
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Case 1. pvp’; p,p’€P*: Then there are s5,5’¢S and A€X with paosa, p’ass’a
for all ac 4, and'sos’. On the other hand there are x, x’€S with pux, p’ux’. Thus
for all a€ A, xaopassa and x’asp’acs’a so xosos’ox’. Thus pus, p’pus’ and sus’
s0.pup’.

- Case 2. pos; pcP*, s€8: There is- x€S, A€Z with paoxa for all aEA and
xas. However pux’ for some X’€S so x’aoxa for all acA4 or xox". Thus ppux’ pxps

or pyus.

Corollary 2. A4 relation p on V is a semigroup congruence whose restriction to
S is strongly torsion free if and only if u is of the form (o, P, 1) for some strongly
torsion free semigroup congruence ¢ on S. '

If P is a nonzero (S, S)-subsystem of T such that P*US is a strict extension
of S (i.e. for all peP*US thereis some s€S, ACZ with xa=sa forall ac4 [4]),
then P can be used in (o, P, 7). In this case condition (1) is automatically satisfied
but condition (2) must still hold.

Definition. A semigroup extension V of § by T=V/S§ is determined by
the partial homomorphism w: T*—S if (1) o preserves the partial multiplication
and the (S, S)-system multiplication on T, and (2) the multiplication of a, bcV
is given by
: (wa)(wb) if a, beT*, ab undefined
(wa)b if a€T* beS,ab=0
a(wb) if beT* a€S,ab=0
ab otherwise.

axbh =

Recall from [4] that if S is strongly torsion free, a semigroup extension V of
S by torsion T'=V/S is strict if and only if V is determined by a partial homo-
morphism w: T%-S.

When V is determined by a partial homomorphism, we have the following
result:

Proposition 3. Let V be an extension of S determined by a partial homo-
morphism w: T*—S where T=V/[S is torsion, ¢ be a strongly torsion free semi-
group congruence on S, and P be any (S, S)-subsystem of T. Then there exists a
multiplication preserving (S, S)-congruence © on T|P for which v=(o, P,1) is a
semigroup congruence on V. Moreover, condition (2) on ¢ and t is equivalent to

3 wtowt’ if tt’
while condition (1) holds automatically.

Proof. Let 7 be the identity congruence on T7/P, then the first statement
follows from the remarks preceding -the statement of the proposition. If (2) holds,
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and tt¢’, then for some A¢X and all acA, tact’a hence (wt)ao(wt’)a but since
S is strongly torsion free, wiowt’. If (3) holds, then t7¢” and xoy implies wtowt’
from which (wt)xo (wt’)y and so txot’y if tx, t’y=0, otherwise txt¢’y since txvt’y
(v is a congruence) and tx, ¢’y are both nonzero. =

Remark. If T has no nontrivial (S, S)-subsystems then P={0} or P=T.
Consequently for any semigroup congruence on ¥, either § is saturated by v (P={0})
or every v-class intersecting T also intersects §; in these cases both conditions (1)
and (2) are vacuous.

3. Homomorphic images of V. In this section we describe the homomorphic
image of ¥ induced by a congruence n=(o, P, 1), where ¢ is strongly torsion free.
Recall that for any semigroup congruence o on S, o¥ denotes the natural mapping
of S onto Sja. ' '

Theorem 1. Let V be a semigroup extension of S by torsion T=V|S deter-
mined by the partial homomorphism 0: T*—~ Q. Let v=(o, P, 1) where o is strongly
torsion free. Then v is a semigroup congruence on V and one of the following two
cases occurs: '

(i) P=T,; then V/D""S/O', or

(ii) P=T; then Vv is an extension of Sle, by (V/[v)/(S[o)=(T|P)/t deter-
mined by the partial homomorphism B: ((T/P)/t)*—Q(S/e) where B is defined by
B(#t)=(atr), where (*t) is the equivalence class in Q(S|o) of the mapping

Aoty 6¥(¢71S) —~ Sjo defined by 2.%,(c%a) = 6% (ta).

Proof. Thatvis a congruence follows from Theorem 2.1. If P=T, the mapping
o(c*x)=vfx for all x€S is a semigroup isomorphism from S/o onto V/v.

Suppose Px=T. Let K=T/P, V'=V/v, and S’=S/o. V’ is a semigroup
extension of (P*US)/v by Ko (by an obvious abuse of notation). From the
construction of (o, P,7) it is clear that (P*US)/v=S/v=S/s, and K/v=K]/r.
Hence we may consider ¥’ as an extension of § by K’=K/t. Here S’ is strongly
torsion free so we may describe this extension by means of a partial homomorphism
B defined above. Let o be the multiplication in ¥, % the multiplication in ¥’, and
denote the multiplication in 7, K and S” by juxtaposition. It remains to show that
% satisfies the conditions of Theorem 1.1 in V’/=K"*US".

For any o', b cK’™* (@ =vfa=1*a), - h

N r_ ) - a’d’ - lf ’a,b.’ # 0 . -
a'*xb = (aob) =is if abeP*, abvs (ﬁa )(ﬁb’) i a’_b’ S ﬁ;ide_ﬁhed.

(aby if abeT\P {
[0a0b) if- abis undefined
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If a’¢S’. YE€EK’* then

ab’ if ab =0

’ r __ ’__ 14 : *
a'sb’ = (aob)y ={s if abeP* abus = apb if ab =0

(aBb) if ab=0
The case a’€K’*, b’€S’ is similar to the above case and if @', b’€S’ then a’ b’ =
=(aob) =(ab) =a'b’.

(aby if abeT\P {

Corollary 2. Under the same hypothesis and notation as in the theorem, if V
is also a strict extension of S and P#T, then Vv is an extension of Sfo by (T/P)/t
determined by the partial homomorphism ¢: ((T/P)[t)*~ S/o defined by o(*x)=
=agbs where for some ACZ, xa=sa for all acA.

4. Extensions determined by a partial homomorphism. Let V' be a semigroup ex-
tension of S by torsion T determined by a partial homomorphism w: T*-S, ¢
be a semigroup congruence on S, P be an (S, §)-subsystem of 7, t be a O-restricted
partial multiplication preserving (S, §)-congruence on 7/P, and suppose waswb
if atb where a,béP. On V define the relation v by

a, beT\P: avb iff arb

-a, be P*: avb iff wacwb
acP*, beS: avb iff bva iff wach, and
a,besS: avb iff ach.

We write v=[o, P, 7).

Theorem 1. The following statements hold:

(i) v=[o, P, 7] is a semigroup congruence on V;

(ii) if o is strongly torsion free then [o, P, 1]1=(0, P, 1);

(iii) every semigroup congruence u on V whose restriction to S is strongly torsion
free is of the form [o, P, 1];

(iv) if P=T, then V/v=S/o; _

(V) if P#T and o is strongly torsion free then Vv is an extension of Sfo by
(T/P)/t determined by the partial homomorphism ' defined by =

4 w'(tta) = 6% (wa), acT\ P,
and

(vi) condition (3) is equivalent to the existence of the function o’: ((T/P)/<)*~S/o
satisfying (4).

Proof. (i) v is clearly reflexive and symmetric. Let pcP* and s,1€S with

pus, pot. Then wpes, wpot and sat or svt. Let a, b, c€T*US with a, b, c€T*, avh.
If a,b,c€T* with ac€T* then be€T* and gcevbe. If gcc P* and be€ P* then
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since waswbh, w(ac)=wawcowbwc=w(bc) or acvbc. If ac€P*, bceS then
wacwb=>w(ac)owbwc=w(ac)obc. The other cases are either obvious, or follow
easily by arguments similar to the above.

(ii) Since in the definition of (o, P, 1), for any peP*, wpeS is g-linked to p,
[0, P, 7]=(a, P, t). Conversely suppose p,,p.,€P* and p,(o, P,7T)p,. Then p; is
o-linked to 5,68 (i=1,2) by A€X and s,0s,. Hence (wp,)acs;acs,ac(wp,)a for
all acA and since A€¢X and o is strongly torsion free, wp,o6wp, or p;[o, P, 7]p,.
The cases p,€P*, p,€S and p,€S, p,€P* are obtained by similar arguments.

(iii) This follows from ii) and Theorem 2.1.

(iv) This is obvious.

(v) Using the notation in the proof of Theorem 3.1, for ¢, £,€ T\ P we obtain:

I =t =41ty > olowt, = (04) = (o) > w't; = o',
and so o’ is single-valued. If #;#; is defined, then # 6T \P and
o' (i) = ' (ht) = [w(h )] = (0t wt) = (0h) () = (o' H)(@ 12)
and o’ is a partial homomorphism. If 77, is undefined and #,, € T\ P then
[w(tt,)] if #t, is defined
fixty = (foty) = {((wtl)(wtg))’ if #, is undefined
= [(wt)(@t)] = (wt) (w1,)" = (W' H)('t)).
If ¢, P and scS, we have
fixs” = (t;0s5)" = ((wt)s) = (wt)'s” = (0't})s
and dually st =5"(0’t)).
(vi) By (v), (3) implies the existence of w’ satisfying (4). Conversely if (4)
holds, then
hit,=> 1 =620l =o'ty = (w) = (o) = wlowl,
and (3) holds.

Condition (4) can be expressed by saying that the following diagram com-
mutes : : :

(T/Py* S

, #

v a¥

¥

(@/P))* —=~ Sa

where 0*=w|n, and =11 ,.

Comparing Theorem 4.1 with Theorem 3.1, we see that condition (3) in the
definition of v=[o, P, 7] implies that v is a semigroup congruence on ¥, while in
Theorem 3.1, we had to suppose that ¢ is strongly torsion free to prove that (o, P, 1)
is a semigroup congruence on ¥V, In Theorem 4.1, we obtain all semigroup con-
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gruences p on ¥ whose restriction to S is strongly torsion free; if u|s is not strongly
torsion free, condition (3) need not hold.

Corollary 2. Let T be a zero (left zero, right zero) (S, S)-system, then all

semigroup congruences v=[o, P,t] on V can be constructed as follows: let ¢ be a
semigroup congruence on S, and on T* define o’ by
%) Lo’ o 0lowt,.
Let P be any (S, S)-subsystem of T, © be a O-restricted multiplication preserving
equivalence relation (right S-congruence, left S-congruence) on T|P for which
tnpE0 - Then (3) holds and [0, P, 1] is a semigroup congruence on V. Con-
versely any semigroup congruence [o, P,7] on V can be constructed in this fashion.
In particular, we obtain all semigroup congruences on V whose restriction to S is
strongly torsion free.

" Proof. On zero (left zero, right zero) (S, S)-systems all O-restricted multi-
plication preserving equivalence relations (right S-congruences, left S-congruences)
are (S, S)-congruences. From (5) and o p &0’ it follows that (3) holds. Hence
[0, P, 1] is a semigroup congruence on ¥V by Theorem 4.1.

Conversely, if [g, P, 1] is a semigroup congruence on V, then (3) is satisfied
and 50 |\ p S0\ p-

The last statement of the corollary follows from part (iii) of Theorem 4.1.

When T'is a zero (S, S)-system, every subset of T containing 0 is an (S, S)-sub-
system, while (S, §)-subsystems of the other two types are 0-simple. Thus it is possible
to characterize in a simple way a large class of semigroup congruences on ¥ when T
is of one of these types of (S, §)-system. Moreover, the extension is determined by a
partial homomorphism.
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On maximal clones of co-operations

Z. SZEKELY

In this paper we determine all maximal clones of co-operations on a finite set,
presenting a completeness criterion for co-operations in the spirit of Rosenberg’s
completeness theorem for operations on a finite set (cf. [3]). The result has some
consequences for the theory of selective operations [2], too.

Our terminology is based on [1]. Here we present a short summary of the notions
we use in this paper. For shortness, the set {0, 1, ..., /—1} will be denoted by 1 for
every natural number /. Let A4 stand for the finite set n for n>1 and let m=0 be
an integer. An m-ary co-operation f on A is a mapping of 4 into the union of m dis-
joint copies of 4 which can be given by and hence identified with a pair of mappings
{fo» f1)» Where fo: A-mis called the labelling and f;: A~ A is called the mapping
of f. The i-th m-ary coprojection p™* (a special kind of co-operation) is defined by
pri(@)=i and ppi(a)=a for each acA (i€m). The set of all co-operations and
that of all m-ary co-operations on A are denoted by ¥, and %7, respectively. The
variables of the co-operation f={(f,, f;)€¥% are the disjoint copies of 4 where f
maps to, indexed by the elements of m. The i-th copy of 4 is an essential variable
of £ if its intersection with the range of f is nonempty, i.e. fy(x)=i for some x€A.
The co-operation fis called essentially k-ary if | f(4)|=k. Omitting all non-essential
variables of £, we obtain a k-ary co-operation f,, called the skeleton of f. We call
a co-operation essential if it is injective and essentially at least binary.

Let fc#™and g©®, g®, ..., g™-Y¢ @, . The superposition h:=f(g®, g®, ..., gm=1)
of fwith g, g®, ..., g™= is the co-operation determined by the equalities hg(a)=
=g{/"D( f,(a)) and h(a)=g "(f,(a)) for each acA. The co-operation f is
called the main component in this superposition. A set of co-operations on A is
called a clone if it contains all coprojections and is closed under superposition. The
least clone containing a set C of co-operations is called the clone generated by C
and denoted by [C]. C is complete if [C] equals €, . (A co-operation fis called Sheffer
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if {f}is complete.) The mappings of the set C generate a semigroup &(C) of self-
maps of A called the semigroup of C. We call C transitive if #(C) is transitive.
Note that F(C)SZ[C].

We remark that the lattice of clones of co-operation on A4 is finite. This fact
can be shown in an easy way using the following remarks:

(1) The relation ~ on ¥, defined for f, gc%, by fx~g if both of the skeletons
of f and g are k-ary and g,=£,(p**, p*'%, ..., p**~D%) for some permutation =
of k is an equivalence relation with finitely many blocks. (Note that each block of
the partition associated with =~ can be represented by an at most |4|-ary co-opera-
tion and the number of these co-operations is finite.)

(2) Every subclone of €, is a union of some blocks of the equivalence ~ defined
above. (It is trivial noting that for a clone C from feC it follows g€C for each
g€¥, with fxg))

A maximal clone of co-operations on 4 is a proper subclone C of ¥, such that
CcDc%, for no clone D. Similarly to the case of algebras, a pair {4, F) with a
nonempty set 4 and FS%, is called a coalgebra. We say that (4, F) is a finite
coalgebra if A is finite. (4, F) is called primal is F is complete. A co-operation
f€%, is said to be constant if both f, and f; are constants. The coalgebra {4, F)
is functionally complete if the union of F with the set of constant co-operations on
A is complete.

There is a close connection between co-operations and regular selective opera-
tions, as follows. Let P and M be nonempty sets, let k be a natural number and
let fy: P—k and f;: P—P. The k-ary operation fon M? is called a regular selective
operation if for every p€P the p-component of the result of fis the f;-component
of the f,-th operand. Observe that the mappings f; and f; can be considered as the
labelling and the mapping of a k-ary co-operation on P. Moreover, for any non-
trivial M and nonempty P this natural correspondence yields a bijection between
the regular selective operations on M¥ and the co-operations on P. This bijection
is a clone isomorphism. Hence the lattice of clones of regular selective operations
on a finite power of a set is isomorphic to the lattice of clones of co-operations
on a finite set and our criterion for the maximality of a clone of co-operations pro-
vides a description of all maximal proper subclones of the clone of all regular selective
operations on a set M” with P finite (cf. [1], [2]).

Consider a nonempty subset T of A. We say that a co-operation fc%, pre-
serves T if T is closed under the mapping f;. Let # be a partition of A. f preserves =
if the labelling f; is constant on each block of 7 and f; preserves « in the usual sense
(i.e. fi(a)=,f£1(b) bolds for every a,bcd with a=b, where =, is the equiv-
alence associated with ).

We call a co-operation f€%, (x,y)-gluing for some distinct x, yeA if f(x)=
=f(y) (ie. fi(x)=fi(y) for i€2). Note that an arbitrary superposition with an
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(x, y)-gluing main componentis also (x, y)-gluing. We say that f glues in TCA
if £ is (x, y)-gluing for some x,y€T. We write f|T for “f does not glue in T
(i.e., flr isinjective on T). Let M be a family of subsets of 4. M is called disjoint
if its members are pairwise disjoint and called uniform if all its members have
the same cardinality. M is regular if it is nonempty, disjoint, uniform and distinct
from A4*:={{a}: ac4}. The set of regular families of subsets of A will be denoted
by Rf(4). The family M determines the following relation ~j on A: x~yy if
x, €S for some Se€M. If M is disjoint, then ~,, is an equivalence on the set
UM :=SUM S. We remark that every member of Rf(4) can also be considered
€

as a partial equivalence on 4.
B Let McRf(4) and S€M be arbitrary. The co-operation f preserves S in M if
Ju is constant on § and f; maps S into a member of M, ie. fo(x)=fy(y) and
fix)~p fi(y) for all x,y€S. (Note that the property “f preserves S in M” is
not equivalent to the simple property “f preserves S even in the case of M sin-
gleton!) Further, (i) f weakly preserves S in M if either f preserves S in M or f glues
in 8, (ii) f (weakly) preserves M if f (weakly) preserves each S€M in M, and (iii) a
subset C of €, (weakly) preserves M if each feC (weakly) preserves M. Denote
by C,, the set of co-operations weakly preserving M.

Let fe€y, TS A and | fo(T)|=k. Weput essy (f):=k and ess (f):=ess, (f).
Let g, gW, ..., g™D€%,. The superposition h=£(g®, g®, ..., g™") is called
disjoint if the ranges of g, g, ..., g"=" are pairwise disjoint. The following
fact is obvious:

. Lemma 1. Let h=f(g9, gD, ..., g"V) be a disjoint superposition, let TS A
and for icm put Ty=TNf7 (@)={x€T: fo(x)=i}. If fIT and g®| £,(T) (in
particular, if g? is non-gluing) for each icm, then h||T and ess (h)=ess (f).

A disjoint superposition of form
h =f(pk,0, .'.,pk,j_i, g(pk.j, “',pk,j+m'—1)’ pk,j+m” .“,pk,k-l)
will be denoted shortly by h=f{(..., g, ...);. Here h€@% where k=m+m’—1 for
f€€7 and g€¥’y. Obviously we have:
Lemma 2. Let TS A, fc4™ and gc%% . If both f and g preserve T then
f(...g, ...); preserves T.
We shall also use the following trivial facts:

Lemma 3. Let T and T be proper distinct subsets of A and let
C={f€%,: f preserves T}. Then there is an f€C not preserving T’.

Lemma 4. Let C, be a set of selfmaps of A. The semigroup generated by C,
is transitive if and only if no non-trivial subset of A is preserved by C,.
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‘We need some other preparations, as follows:
Lemma 5. For arbitrary MERE (A) the set Cy is a proper subclone of 4.

Proof. First observe that C, =%, (indeed, there is some f€¥, not pre-
serving weakly M). We show that C,, is a clone. Clearly the coprojections preserve
M and so it is enough to show the closedness under superposition, i.e. to prove that
h=f(g", g®, ..., g"™)¢C,, for arbitrary m-ary fcC,,and g, g, ..., gm-VeC,,.

In order to do so consider a subset S€ M. The definition of. C,, implies that
either f glues in S or f preserves S in M. If f(x)=f(y) for two distinct x, y€S then
h(x) =gV ( £, (x))=gYOP( £,(»))=h(y), i.e. h glues in S too. Thus assume f]|S.
Then f,(S)=i for some i€m, f; is injective on S and f,(S)ESS’ for some S’€M.
However, {S’|=|S|, whence f; maps S bijectively onto S’. If g glues in S’, i.e.
gP(@)=gP(v) for two distinct u, v€S’ then (as f maps S onto S’) f,(x)=u and
A()=v for some x,y€S and so h(x)=gYP(f(x))=g?w)=g" (v)=
=gV £, (»))=h(p), i.e. h glues in S too. Thus assume g?¥|S’. Then g pre-
serves S’ in M, i.e. g5 is constant on S’ and g{’ maps S’ onto some S”€M. Since
“for all x€S, hy(x)=g§(f1(x)), we see that h, is constant on S and, similarly, h,(x)=
=g®(fi(x)) for all xS shows h,(S)SS”, i.e. h preserves S in M. Therefore, h
weakly preserves S in M.

Lemma 6. Let. MERf(A) and suppose that the common cardinality of the
members of M equals k>1. Consider the m-ary co-operation fE€,\C, and put
D:=[CyU{f}]- Let S be an arbitrary member of M which is not weakly preserved
by f. Then for every {u,v}SS there is a co-operation f*€D such that f preserves S,

SIS and f5F @)= (v).
Proof. It will be done in several steps.

Claim 0. For every permutation h of S there exists a unary co-operation h'€C,,
preserving the set S, such that h; extends .
Indeed, put hy(x)=0 for all x€A, hij(x)=h(x) for x€S and h;(x)=x on
ANS. Then I obviously preserves M.

Claim 1. There are {x,y}SS and f’¢D suchthat f’|lS and f; (x)£f5 ().
Indeed, from the choice of S it follows fIIS. Furthermore, clearly it suffices
to consider the case of f, constant on S, i.e. £,(S)=j for jEem and f;(x)+y f1(»)
for some x, y€S. Consider the co-operation h defined as follows:
... Suppose M= {So, S15 ..., Sy—1} and ANUM={w,, wy, ..., w,_,} where 0=
=r=n—qgk=n—k. Let hECM from ¢4+ defined by :

() {i if xes; (icq)

(*) =lg+s. if x=w (er) and h‘1=_1d4.
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Obviously ho( f,(x))=ho( /1(»)). Put f'=f(..., h, ...);. According to Lemma 1
IS and f5(x)=he( () =h( D)) =1 (¥).

Claim 2. There are x, y€S and f”¢D such that f” preserves the set S, f”||S
and f{()2f (7).

Indeed, consider x, y and f’ from Claim 1. Suppose f€¥7, put J:i=f, (S)
and, for each j€J, put R;:={uc€A: f,(z)=j and f; (z)=u for some z€S}. Further,
for each jeJ let h€C,, be a unary co-operation such that hj(x)=j for all x€R,
K| R; and K)(A)ES. Such an kY exists, because |R;|=|S|. Form the disjoint
superposition” f”=f"(g®, g%, ..., g™-Y), where gW=pY(p™+)) for jcJ and
gV =p™+i otherwise. Lemma 1 implies f”[|S. As hY) preserves S for each jcJ,
from thé definition of R; it follows that f” also preserves S. Furthermore, f; =f,,
hence f,'(x)=f,(y) holds too.

~ To prove the assertion of the lemma consider two arbitrary distinct elements
u, v€S. Let x, y and f” satisfy Claim 2. As x>y, Claim O implies that there exists
a unary H'€Cy with hj(u)=x and h{(v)=y. Put f*:=h(f”"). Since it is a dis-
joint superposition, f* preserves S and f*||S by virtue of Lemmas 1 and 2. Further-
more, fyfW)=f (x)=f (¥ =/ (v), as needed.

- Lemma 7. Let D and S be the same as in Lemma 6. For every i=1,2, ...,k
there are an i-element subset H of S and g€D such that g preserves the set S, g||S
and g, is injective on H. '

Proof. We proceed by induction on i=1,2,...,k. The assertion is trivial
for i=1.

Let 1=i<k. Assume the statement is valid for H; and g¢%7:. Choose an
arbitrary element x€ S\ H; and let H, ,:=H,U{x}. If g is injective on H,,,,
we can put gitD:=g®,

Assume g@(y)=g{(x)=j(€m;) for some ycH;. As gW|S, the elements
u=g¥(x) and v=g{(y) are distinct. Hence by Lemma 6 there exists an m*-ary
co-operation f*€D such that f* preserves the set S, f*[S and f*(u)=f*(v). Now
put gl+D=g®( ¥ )., where gi+Degm+1 for m,,=m+m*—1. Lemma 1
and 2 imply that g@+Y preserves S and gU@*+V||S. The definition of g+ yields
that g V(x) =fF (W= )=g8V(p). As gtV is a disjoint superposition and, for
7y, 2:€ H;, 8(2,)#8%(z,) implies g{*V(z, );ég(‘“)(zg) we conclude that gf+P is
injective on H;,, and the lemma is proved.

Corol]ary 8. Let the conditions of Lemma 6 be satisfied. Then there exists a
co-operatzon gED such thal 8o 18 injective on S.

‘The promised Rosenberg-type criterion for completeness of sets of co-opera-
tlons is the following.
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Theorem. A set C of co-operations on a finite set A is complete if and only if
no regular family of subsets of A is weakly preserved by C.

Proof. We shall prove the following claim, which is equivalent to the theorem:
Aset CES9%, is a maximal clone if and only if C=C,, for some McRf(A).

1. Sufficiency. Let MeRf(A). In accordance with Lemma 5, C,, is a proper
subclone of € 4. We verify that C, is maximal by showing that for arbitrary f€%,\C,,
the clone D:=[Cy,U{f}] equals €,. This will be done in two parts.

(i) Suppose that M7= A* consists of singletons. Put M:=UM. Then h¢%,
weakly preserves M iff it preserves M. If H is a proper subset of A distinct from
M, then in accordance with Lemma 3 there is a g€C,, not preserving H. Clearly
fdoes not preserve M, thus C,U { f} preserves no proper subset of 4. Then Cy U { £}
is transitive as a consequence of Lemma 4. Further, C,; obviously contains an
essentially n-ary co-operation and thus applying Proposition 2 from [I] we obtain
that Cp U{f} is complete, as required.

(ii) Now suppose that the common cardinality of the members of M equals
k=>1. Then C,, is transitive as C,; contains all the constants in %, (as each of them
glues in every S€M). We shall construct an essentially n-ary co-operation in D.
Let S be an arbitrary member of M being not weakly preserved by f (there is such
an Sas f¢C,), andlet f be a selfmap of 4, which maps each member of M bijectively
onto S. Consider the unary co-operation f with mapping f;, equal to f on UM
and to the identity map otherwise. Clearly f¢C,,. Take the co-operation h defined
by (%) and the co-operation g from Corollary 8. Form the disjoint superposition

g" = h(f(g(p™®, p™*, ..., p"*Y), ...
' ‘."f(g(pn,(q—l)k’ p"’(q_l)k-l-l’ '-"p"’qk_l)): l)"’qka p"’qk+1: '~',P"’qk+r_1)€CM’

where ¢ and » are the same as in (% ). From the properties of A, f and g it follows
essg (89)=1|8"| =k for each S’¢M. Also we see that ess n um(g)=¢ess pupM=
=lANUM|=r. Asg*is a disjoint superposition, its essential arity can be obtained
additively: ess (g%)=esSupuca U (€7 =S§M essg (g%)+ess pnun(g)= s%'M 18’1+
+|ANUM|=kq+r=n. This completes the proof of the sufficiency.

Remark. For M={4} the clone C,; is called the Stupecki clone of co-opera-
tions on A. It consists of all non-essential co-operations. We see that it is a maximal
clone, which occurs in the coalgebraic counterpart of Stupecki’s completeness criterion
for-operations (Proposition 4 in [1]).

2. Necessity. Consider an arbitrary maximal clone C in %,. We verify that
there exists a family M¢eRf(4) weakly preserved by C. This is enough, since then
C&ECyc¥, from Lemma 5 and thus C has to equal the clone C,,.
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" (@) If C is not transitive, then in virtue of Lemma 4 theie is' & nonempty sub-
set T A preserved by C. However, then M:={{a}cA: a€ T}€Rf(4) is preserved
by C too. ' : ' '

(ii) Assume in the sequel that C is transitive. Observe that the clone of all
gliing co-operations on A4 is a proper subset of the Stupecki clone on 4. Thus C
being maximal, it contains a non-gluing co-operation, for else C would be complete
according to Proposition 2 in [1].

Consider an (m-ary) non-gluing co-operation f€C with maximal essential
arity for the set of non-gluing co-operations of C. Denote by n the partition of 4
induced by f; and let M, be the set of blocks of = with maximal number of ele-
ments. The members of M, are not singletons, else = would be trivial and hence f
essentially n-ary. It follows that M,€Rf (4).

Claim 0. For arbitrary T€M,, the restriction of f; to T is a bijection from T
onto some T'€EM,.

Let j:=fo(T)(€m) and put f":=f(...,f, ...);€C. Obviously, for any z€ 4, f; ()
equals f;( /1 (2))if fo(2)=j and f;(z) otherwise. Lemma 1 implies f'||4 and ess (/)=
=ess ( f)- It is easy to realize that ess (f’)>ess (f) iff there are x,y€A4 such
that fo()=fo()=/ and Sy AC)=H(A()) ie. i)=,£()) does not hold
for some x, y€T. Then it follows from the choice of fthat f,(x)=, f;(y) for each
x, y€T. Further, fis injective, thus f; is 1—1 on T, whence | £;(T)|=|T|. Then
T =f,(T)eM,, as needed.

Put the set M,:={TeM,: {(UM)NT=B} and let M:={SEM,: there is
g€C and S”€M; such that the restriction of g, to S” is a bijection from S’ onto S'}.

Due to Claim 0, M, is nonempty. On the other hand, M,S M; thus M is also
nonempty and MERF(4).

We show that M is weakly preserved by C. This property will be obtained as a
result of two claims. Let S€M be arbitrary and let g¢C and S’€M, be associated
with S in the definition of M. Note that g can be chosen to be unary. Now Claim 0
guarantees that a suitable restriction of f; is a bijection onto S’ from some S"€M;.
Let k:=£(S").

Claim 1. If héC and h|S, then h, is constant on S.

Indeed, put f*:=f(...,g(h), ...x€C. Then, for arbitrary z€4, f*(z) equals
k(g (/1(2)) if fo(2)=k and fi(2) otherwise. From Lemma 1 it follows f*|4
and ess (f*)=ess (f). Similarly to the discussion of f* above, ess (f*)=ess (f) iff
(g1 ( f1(x))=ho(g:1( /1(»))) does not hold for some [x,y€S”. As f; and g, are
1—1 when restricted to S$” resp. S’, this condition is equivalent to hy(u)#Hh,(v)
for some u, v€S. However, the choice of £ implies that this condition does not hold,
as asserted. :

4
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Claim 2. If h€C and h||S then the restriction of h, to S is a bijection from S
onto some SyEM. .

Indeed, assume h€%7e and let ky:=ho(S)Em,. Put h:=h(..,f, .. i €C.
Obviously hy(2)=fy(h(2))+k, and hj(z)=fi(h,(2)) for z€S. Lemma 1 implies
K||S, thus it follows from Claim 1 that hj is constant on S, whence for each x, y€S
we have fy(h(x))=/o(m:())), ie. h(x)=.h(y). Note that /; is injective on S,
since A||S and h, is constant on S. Then, as S is a block of maximal size in =, the
restriction of k; to S is a bijection from S onto some Sy€ M;. Now consider S’€M,.
The restriction of the mapping of the co-operation g*:=g(h)€C to S’ is the product
of the bijections gl and hy|s, hence gils is a bijection from S’ to S,. Thus

“So€M, as required.
This completes the proof of the theorem.
We list some easy consequences of the Theorem (we omit their proofs).

Corollary 9. {(Proposition 3 in [1).) 4 co-operation on n is Sheffer if and
only if it preserves neither non-least partitions nor nonempty proper subsets of m.

. Corollary 10. A finite coalgebra {4, F) is
(1) primal if and only if no regular family of subsets of A4 is weakly preserved
by F;
(ii) functionally complete if and only if no regular family of nonsingleton subsets
of A is weakly preserved by F.

Corollary 11. No distinct maxtmal clones of co-operations on a finite set have
the same semigroups.

The last corollary is the coalgebraic counterpart of the well-known fact that
maximal clones of operations on a finite set are uniquely determined by the (semi-
group of) unary operations they contain.
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Uber multiplizititenfreie Permutationscharaktere

KURT GIRSTMAIR

1. Einleitung. Man erhilt — bis auf Ahnlichkeit — alle transitiven Permutations-
darstellungen einer endlichen Gruppe G, wenn man G in natiirlicher Weise auf den
Linksnebenklassen G/H nach Untergruppen H operieren 14Bt. Der Charakter ng)y
einer solchen Darstellung (mg/u(s)=Zahl der Fixpunkte von s, s€G) zerfillt iiber
einem Korper K der Charakteristik O in der Form

r
Mg = _ZleiXi’ € =0,
I=

wobel die x; gerade die irreduziblen Charaktere von G iiber K sind. Man nennt
Tgm bzw. die dazugehdrige Permutationsdarstellung multiplizititenfrei (iiber K),
wenn e€{0,1} fir alle i=1,...,r. Ist ngy multiplizititenfrei iber C, so gilt
dies fiir jedes K.

Multiplizititenfreie Permutationscharaktere sind in mehrfacher Hinsicht von
Interesse. Sie haben praktische Bedeutung bei der Bestimmung von (grofen) Unter-
gruppen endlicher Gruppen G, bei der Konstruktion primitiver Elemente in Kérper-
erweiterungen und bei der expliziten Erstellung einer irreduziblen Darstellung aus
ihrem Charakter (vgl. [5], S. 147 fT., [1]). Ferner sind die haufig untersuchten Per-
mutationsdarstellungen niedrigen Ranges multiplizititenfrei (vgl. [6]). ‘Auch kennt
man im multiplizititenfreien Fall bemerkenswerte arithmetische Zusammenhédnge
zwischen den Bahnlingen von H auf G/H und den Charakterdimensionen y;(1),
i=1,...,r (vel. [9}, Th. 30.1). Fiir weitere Motlve zum Studium solcher Charaktere
siche [6].

Bis jetzt gibt es keine befriedigende Theorie der multlphzltatenfrelen Permuta-
tionsdarstellungen bzw. -charaktere. So ist etwa deren Verhiltnis zu den primitiven
Darstellungen nicht geklirt. D. E. LiTtLEWoOD hat einst vermutet, daB alle primi-
tiven Permutationsdarstellungen multiplizitatenfrei sind ([5], S. 147). Dies wurde
aufgrund des Gegenbeispiels G=PSL(2, 11), H=Diedergruppe der Ordnung 12
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widerlegt, das von J. A. Topp mit Hilfe expliziter Charakterrechnungen gegeben
wurde ([8]). Mittlerweile kennt man bei einfachen oder fast einfachen Gruppen
weitere Gegenbeispiele (fiir G=.S, vgl. {6], Sect. 2). In vielen anders gearteten Fil-
len (z. B. fiir auflésbare oder Frobeniussche Gruppen) ist die Vermutung jedoch
richtig. Im iibrigen beschrinken sich unsere Kenntnisse multiplizitiatenfreier Per-
mutationsdarstellungen m. W. auf einige hinreichende Bedingungen (etwa [9], Th.
29.6) und Spezialfalle (vgl. [6]).

In der vorliegenden Note wird aus einem Grundgedanken, der von J. SAXL
bei der Untersuchung der Gruppen G=S§S, angewendet worden ist (161, Beweis
von Th. 1), eine relativ leicht iiberpriifbare norwendige Bedingung fiir die Multipli-
zititenfreiheit von mg,y — iiber einem beliebigen Korper K der Charakteristik 0 —
entwickelt (Satz 1). Diese Bedingung liefert erhebliche Beschrinkungen fiir die Grup-
pen H*CG, die H enthalten (Satz 2). Ferner gibt sie eine gewisse Erklirung dafiir,
daB gerade bei einfachen Gruppen nicht-multiplizititenfreie Permutationsdarstellun-
gen zu erwarten sind. Es wird insbesondere auf ganz einfache Weise gezeigt, daB
bis auf endlich viele Ausnahmen alle Gruppen PSL(2,p), p prim, solche Dar-
stellungen besitzen (Satz 3; somit ist das Toddsche Gegenbeispiel p=11 keines-
wegs singuldr in dieser Gruppenserie). SchlieBlich wird Satz 1 verwendet zur teil-
weisen Bestimmung der Struktur der Gruppe G, wenn 75,y multiplizititenfrei und
die Ordnung von H klein ist; G-ist auflosbar fiir |H|=4 (Satz5).

2. Die Bahnenungleichung und ihre Anwendung. Sei wie oben 6= 2 e X, sei
i=1

H* eine weitere Untergruppe von G und 7g/ys= 2’ e} x;. Es gelte

@) fiir alle i=1, ...,r ist entweder e;=ef oder ef=0.

Dann folgt f;‘i_r'das innere Produkt (beziiglich G) der beiden Permutationscharaktere

. . r r .
. Angm» ”.G/H'> = :Z; eet (s ) = Z; e Ui ) = (Mapmes Tgymes
.S ; < &

da L xp€EN (fiir ‘beliebiges K). Nach dem Frobeniusschen Reziprozititsgesetz -
ist das erste Ghed dieser Ungleichung gleich dem inneren Produkt des 1-Charakters
niit der Emschrankung von 7z« auf H. Dies aber ist gerade die Anzahl der Bahnen
von H auf G/H* (vgl. [3], S. 597) die wir mit orb (H, G/H*) bezeichnen wollen.
Andererselts ist das letzte Ghed der Ungleichung gleich orb (H*, G/H*) (loc. cit.).
W1r haben '

Satz 1. Selen H, H* Untergruppen von G und e; bzw. e, i=1, ..., r, die Viel-
Sachheiten der irreduziblen K-Charaktere von G in ng g bzw ngar. Ist (1) erfills,
so gilt

(1) orb (H, G/H*)=orb (H*, G/H*).
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Ist insbesondere HS H*, so ist (1) dquivalent zur Aussage orb (H, G/H )=,
=orb (H*, G/H™). »

Nur die zweite Behauptung des Satzes ist noch zu’zeigen. Sie folgt ~aus der
obigen Ungleichung fiir die inneren Produkte, wenn man e;=¢}, i=1,...,r, und
orb (H, G/H*)=orb (H*, G/H*) beriicksichtigt. Ferner ergibt sich sofort '

Korollar 1. Sei ng;y multiplizititenfrei iiber dem Korper K der Charakterzstzk 0 :
Dann sind (1) und (1) erfiillt fiir alle Untergruppen H* von G. ’ :

Korollar 2. Seien G2H*2H endliche Gruppen. Folgende Aussagen sind zu'
(1) und (1) dquivalent:

(I11) Fiir jedes t€G ist H*tS HtH*.

(IV) Fiir jedes tcG stimmen die Indizes [H:HNH *‘] und [H *H *ﬂH *]
iiberein (H* =tH*t™1).

Beweis. Nach Satz 1 ist (I) genau dann erfiillt, wenn fiir jedes tEG die H*-
Bahn H*i (i=Restklasse von ¢ in G/H*) gleich der H-Bahn H7f ist. Dies liefert
die Aquivalenz von (I) und (III). Schreibt man die Lingen d1eser Bahnen als Gruppen-
indizes, so erkennt man die Aquivalenz von (I) und (IV).

Die nachfolgenden Bedingungen an Gruppen H*, die den Punktstabilisa;tp‘,r;
H einer multiplizititenfreien Permutationsdarstellung enthalten, werden wegen ihrer
Einfachheit und praktischen Bedeutung als Satz formuliert. Man gewinnt sie ohne
Schwierigkeit aus den obigen Korollaren. :

Satz 2. Sei ngy multiplizititenfrei iiber K und H*CG eine Gruppe dze H
enthdilt.

1) Jede weitere solche Gruppe H**, H **DH, ist mit H* vertauschbar { d h.
die Menge H*H**=H**H* ist eine Gruppe) : i

2) Jedes t€G mit H'SH* normalisiert die Gruppe H*, Insbesondere ist. der
Normalisator Ng(H) in Ng(H*). enthalten.

3) Der Index (in H*) des Durchschnitts.von H * mtt einer dazu kon_]ugzerten
Gruppe teilt |H|.

Anwendungsbeispiele. Sei ng/y multiplizititenfrei iiber K.

1. Ist H=1, so ist Ng(H)=G. Nach Satz 2,2) ist jede Untergruppe H ein
Normalteiler in G und mithin G eine abelsche oder ‘hamiltonsche Gruppe (vel. [3],
S. 308). In der Tat ist ng), multiplizititenfrei iiber jedem K fiir abelsches G. Fiir
hamiltonsche Gruppen G und K=Q gilt: ng, ist genau dann multiplizititenfrei,
wenn |G] nicht durch solche Primzahlen p=3 teilbar ist, fiir die die Zahl 2 gerade
Ordnung in der Primrestgruppe modulo p hat. Diese Tatsache erhilt man aus dem
Studium der Kreisteilungskorper, iiber denen die Standard-Quaternionenalgebra
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ein Schiefkorper, oder, anders ausgedriickt, —1 nicht Summe zweier Quadrate
ist (vgl. {2)). '

2. Sei H zyklisch von Primzahlordnung p. Operiert G treu auf G/H, so gibt
es keine zyklische p-Gruppe H*#H, die H enthilt. Sonst wire nach Satz 2, 3)
H*NH*=1 fiir alle t¢G und damit HSCNH*. Da NH* ein Normalteiler
von G ist, wiirde dies auch fiir H als charakteristische Untergruppe dieser Gruppe
gelten.

3. Sei q=p*, p prim, F, der Korper mit g Elementen und G=PSL(2,q) die
positive Gruppe der projektiven Geraden F, U{e}. Sei H*=ASL(l,q) der Stabi-
lisator von < in G. Wegen orb (H*, F,U{e})=2 ist n . multiplizititenfrei. Sei
H=ASL(1,q') (SH*) mit ¢’|lg. Fiir ¢’#q ist ngy nicht multiplizititenfrei. Da
alle Bahnen von H auf F,\F, die Linge |H| haben, hat man nidmlich
orb (H, G/H*)=2+(¢—q")/|H|>2=orb (H*, G/H*), im Widerspruch zu Satz 1.
(Alternatives Argument: H* und H**=PSL(2,q’) sind nicht vertauschbar.)

Korollar 3. Die endliche Gruppe G besitze eine transitive Permutationsdarstel-
fung vom Grad n und vom Rang k (d. i. die Zahl der Bahnen eines Punkistabilisators).

Ist HEG eine Untergruppe und ngy multiplizititenfrei iiber K (Charakteristik 0),
k
so gilt n= 3 d;, wobei d,=0 oder ein Untergruppenindex von H ist. Insbesondere ist
i=1 .

|H|zn/k.

Beweis. Nach der Bahnenungleichung (II) ist & groBer oder gleich der Anzahl
der Bahnen von H auf der n-clementigen Menge, die der Darstellung vom Rang
k zugrundeliegt. Deshalb 148t sich » in der angegebenen Weise schreiben.

Grob gesprochen bedeutet Korollar 3, daBl die Existenz von Permutations-
darstellungen niedrigen Ranges verhindert, daBl Darstellungen mit einem Punkt-
stabilisator kleiner Ordnung multiplizititenfrei sein konnen. Dies wird besonders
deutlich im Beweis des folgendes Satzes.

Satz 3. Sei p eine Primzahl. Ist jede primitive Permutationsdarstellung von
PSL(2, p) multiplizititenfrei iiber K (Charakteristik 0), so ist

pel2,3,5,7, 19,23, 31, 47, 59).

Beweis. Sei p=7. Nach dem Hauptsatz von Dickson ([3], S. 213) enthilt
G=PSL(2,p) eine maximale Untergruppe H mit

A; p=+t1lmod5
H=1S, p=t1lmod8
A, sonst.

Sei 7,y multiplizititenfrei. Da die gewohnliche Permutationsdarstellung von G auf
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F,U{e} den Grad p+1 und den Rang 2 hat, ist (nach Korollar 3) |H|=(p+1)/2,
also p<120 im ersten, bzw. p<48, p<24 im zweiten und dritten Fall. Diese
Menge von Ausnahmeprimzahlen wird durch genauere Betrachtung der Unter-
gruppenindizes von H verkleinert zu {2,3,5,7,11, 17,19, 23, 29, 31, 41, 47, 59}
Fiir p=13 bzw. p=11 besitzt G auch noch Diedergruppen D,_, bzw. D, als
maximale Untergruppen. Yon diesen hat D,_, mehr als zwei Bahnen auf F,U{},
sofern p=1 mod4, D,,, dagegen nie. Deshalb kann man die Zahlen 17, 29 und
41 auch noch ausschlieBen. Die Zahl 11 fallt nach Topp [8] weg.

Bemerkungen. 1. Auch das Toddsche Gegenbeispiel G=PSL(2, 11), H=D,,,
1aBt sich ohne Charakterrechnungen behandeln. Denn PSL(2, 11) hat eine 2-fach
transitive Darstellung vom Grad 11-([3], S. 214). Wire ng; multiplizititenfrei,
miiBte nach Korollar 4 die Zahl 11 Summe von hochstens zwei Teilern von 12 sein.

2. Betrachtet man die der hier beschricbenen Methode zugrunde liegenden
Tatsachen genauer, so gewinnt Satz 3 sofort folgende Gestalt: Sei x der eindeutig.
bestimmte, absolut irreduzible Charakter der Dimension p, der im gewdhnlichen
Permutationscharakter (vom Grad p+1) von G=PSL(2, p) auftritt. Genau dann
ist die Vielfachheit von y in jedem primitiven Permutationscharakter von G kleiner
oder gleich 1, wenn p=11 oder eine der Ausnahmeprimzahlen des Satzes 3 ist;
Zu den 1rredu21blen Charakteren von G vergleiche [4], S. 211 ff.

3. Mit Hilfe der Charaktertheorie von G=PSL(2,p) kann man.im Satz 3»
die Ausnahmeprimzahlen p=19 ausschlieBen, zumindest fiir algebraisch abgeschlos-
senes K. Der Normalisator H eines Singer-Zyklus S von G (|S|=(p+1)/2) ist
nimlich eine Diedergruppe der Ordnung p+1 ([3], S. 192) und maximal in G.
Ferner gibt es einen zu S gehdrigen “Ausnahmecharakter” y mit folgenden Eigen-
schaften (vgl. [4], S. 204 ff.): y(1)=p—1, %(t)=2 fiir alle Involutionen ¢ in
G und y(s9=—("+&"), k=1,...,(p—1)/2. Dabei ist S={s) und ¢ eine
primitive (p+1)/2-te Einheitswurzel. Daraus ergibt sich (Frobenius-Reziprozitit!)
s o) =2.

Korollar 4. Sei ngy multiplizititenfrei, h=|H| und H* eine p-Untergruppe
von G. Ist p=h, so gilt :

(G:Ng(H")] = h(p—D(p—h).

Beweis. Sei n=[G:H*], j die Anzahl der H*-Fixpunkte in G/H* und !
die Anzahl der H*-Bahnen der Lange =p auf G/H*. Es ist j=[Ng(H*):H*} und
j+Ip=n. Ferner ist nach (II) j+I=orb(H*, G/H*)=orb (H, G/H*)=n/h, sodal
wegen I=(n—j)/p gilt: j+(m—j)/p=n/h. Durch Umformung (beachte 'p>h) erhélt
man [G:Ng(H*Y=n/j=h(p—1)/(p—h).

Bevor wir dieses Korollar anwenden, notieren wir die folgenden Hﬂfssatze,
deren einfache Beweise weggelassen werden,
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Hilfssatz 1. Sei P eine p-Sylowgruppe der endlichen Gruppe G und
N={ Ng(PY. Dann ist PO\N ein Normalteiler von G. Falls p{[G:N), ist N=G,
t€G

also P Normalteiler von G.

Hilfssatz 2. Sei ng;y multiplizititenfrei iiber K, N Normalteiler von G, G=G/|N
und H=HN|N. Dann ist ngp multiplizititenfrei.

Satz 4. Sei ngy multiplizititenfrei iiber K, h=|H| und P eine p-Sylowgruppe
von G. '

1) Ist p=4h/3, so gibt es einen Normalteiler P, von G mit P,CP und
[P:P,)=p.

2) Ist p=2h+1, so ist P abelscher Normalteiler von G.

Beweis. Im Fall 2) ist nach Korollar 4 n=[G:Nz;(P)]=p—1, und deshalb
nach dem Satz von Sylow n=1. Ferner ist jede Untergruppe H*C P normal
in P, denn wegen [G:Ng(H*)]=p—1 enthilt N;(H*) den Sylow-Normalteiler P.
Da p=3 ist P abelsch ([3], S. 308).

Zum Beweis von 1) setzen wir Py;=PNN, N wie im Hilfssatz 1. Die Gruppe
G=G/N operiert treu und transitiv auf der Menge G/Ng(P), die nach Korollar 4
und dem Sylowschen Satz entweder 1, p+1 oder 2p+1 Elemente hat. Es liege
der letzte Fall vor, da nur dann |G| durch p? teilbar sein kann. Wir fassen G als
Untergruppe von S,,,; auf. Wire G=4,,,; oder S,,.,, so hitte man wegen
Hilfssatz 2 und Korollar 3 den Widerspruch |H|=(2p+1)/2>h. Ist G primitive
Untergruppe von S, G=A4,p41, Ssp+1, SO teilt p den Index von G in S,
(191, Th. 14.1). Ist G jedoch imprimitiv, so gilt sogar p{|G|. Jedenfalls hat man
p*|G| und deshalb [P:R]=p. '

Anwendungsbeispiele. Sei ng,y multiplizititenfrei, h=|H|[. Sei G,=P eine
p-Sylowgruppe von G. _

1. h=2. Fiir p=5 ist G, abelscher Normalteiler von G. Sei N= () Ng(G,)'

teEG ’

und G=G/N. Ist N#G, so ist wegen [G:N;(Gs)]=4 die Gruppe G ahnlich
zu einer transitiven Untergruppe von S,. Nach Hilfssatz 1 teilt 3 die Anzahl von G.
Somit ist G=4, oder S,. Letzteren Fall kann man wegen Hilfssatz 2 ausschlieBen,
da die Summe der Dimensionen der irreduziblen Charaktere von S; gleich 10 (<12)
ist. Unser Ergebnis lautet: Der Normalteiler N hat die Struktur N=(4X P)><1(Q,
wo A eine abelsche Gruppe, 2,3{|4|, P eine 3-Gruppe, Q eine 2-Gruppe und
»><1* das semidirekte Produkt bezeichnet. Es ist N=G oder G/N=A,. .

2..h=3. Ahnlich wie im Fall h=2 bleibt hier eine einzelne Primzahl =h
gesondert zu untersuchen, namlich p=5. Sei N =QG Ng(G;) und G=G/N, G=1,

Nach Korollar 4 und Hilfssatz 1 ist die Gruppe G dhnlich zu einer zweifach transiti-
yen Untergruppe von Sy, d.h., G=4;, Sy, 44, Sg. Da G aber hochstens sechs
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5-Sylowgruppen hat, scheiden Sg und Az aus. Wire G=A4; oder S, so lieBe sich
nach Hilfssatz 2 und Korollar 3 die Zahl 5 als Summe héchstens zweier Teiler von
3 darstellen. Somit ist G=1 und G hat nach dem Satz von Zassenhaus die Struktur
G=(AXGy)><Q, mit einer abelschen Gruppe 4, 2,3,5{|4], und einer {2, 3}-
Gruppe Q.

3. h=4. Durch éhnliche, wenn auch weitldufigere Uberlegungen (etwa unter
Zuhilfenahme der Tabellen in [7]) erhilt man in diesem Fall: G hat einen Normal-
teiler N der Form N=(AXPXP')=><aQ, mit abelschem A4, 2,3,5,7{]4|, einer
7-Gruppe P, einer 5-Gruppe P’ und einer {2, 3}-Gruppe Q; ferner gilt entweder
G=N oder G/[N=AGL(1,8) oder G/N ist isomorph zu einer Untergruppe von
AGL(1, 16), |G/N|=80. '

Diese Strukturanalyse liefert insbesondere

Satz 5. Sei ng;y multiplizititenfrei iiber dem Korper K der Charakteristik 0.
Ist |H[=4, so ist die Gruppe G aufiésbar.

Bemerkungen. 1. Satz 5 ist falsch fiir |H|=5,6, da die Permutations-
charaktere 7,5, H= ((12345)), bzw. H=((123),(12) (45)), multiplizititenfrei
sind iiber jedem K.

2. Gelte in der Situation des Anwendungsbeispiels | zu Satz4: G2H*2H,
H*=A,. Dann ist H* Normalteiler von G, da sonst A4, eine Untergruppe vom
Index 2 hitte (Satz 2, 3). Man schliet jetzt unschwer: G=NX A4, mit my,, multipli-
zititenfrei. Die Gruppe N muB sogar abelsch sein (dies ist darauf zuriickzufiihren,
daB der Gruppenring von A, den 3. Einheitswurzelkérper enthilt, iiber dem die
Standard-Quaternionenalgebra sicher kein Schiefkorper ist; vgl. Bsp. 1 nach Satz 2).
In der Tat sind alle Permutationsdarstellungen dieser Art multiplizitdtenfrei.

3. Im Beispiel 3 zu Satz 4 lassen sich die Fille G/N=AGL(1, 8) bzw. |G/N|=80
nicht ausschlieBen. Ist etwa N=1, so ist die Summe aller K-irreduziblen Charaktere
(K beliebig von Charakteristik 0) in beiden Fillen ein multiplizitatenfreier Permuta-
tionscharakter der Form ng,y, |H|=4.

4. Viele Beispiele multiplizititenfreier Permutationsdarstellungen mit kleinen
Punktstabilisatoren liefert die folgende Tatsache: Ist 4 eine Gruppe, 7,,, multipli-
zititenfrei, und G=A=<H, so ist ngy; multiplizititenfrei.

Dank. Die Bemerkung 3 zu Satz 3, die Richtigstellung von Beispiel 3 zu Satz 4
und einige kleinere Verbesserungen gehen auf Hinweise des Referenten zuriick, dem
ich dafiir herzlich danke.
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On additive functions taking values from a compact group

Z. DAROCZY and I. KATAI

1. Let G be a metrically compact Abelian topological group, T be the one-
dimensional torus. A function ¢: N-G will be called additive if ¢(mn)=¢(m)+
+@(n) holds for every coprime pairs m, n of natural numbers, while if ¢(mn)=
=@(m)+¢(n) holds for each couple of m,nEN then we say that it is completely
additive. Let o/, &7 be the class of additive, and the class of completely additive
functions, respectively.

Let {x,}., be an infinite sequence in G. We shall say that it is of property D,
if for any convergent subsequence x,_the shifted subsequence x, ., has a limit, too.
We say that it is of property 4 if xv+1 Xx,~0 (v=>o0).

Let «/;(D), o/;(4) be the set of those @€ for which the sequence {x,=¢(n)}
is a property D, 4, respectively. The classes & (D), #¢(4) are defined as follows:

HA5(D) = Ae(D)NAG, H5(4) = A(NNAG.

It is obvious that /;(4)Ss;(D), LH(A)SHE(D). In [1] we proved that
AE(A)=HE(D). Recently E. WIRSING [4] proved that ¢/ (D) if and only if

(1.1) e(n)=tlogn (mod1l) (neN)

for a t¢R. By using Wirsing’s theorem we proved in [2] the following assertion.

If pcofi(4) (=%(D)) then there exists a continuous homomorphism
¥: R,~G, R, denotes the multiplicative group of the positive reals, such that ¢
is a restriction of Y on the set N, i.e. @(n)=y (n) for all neN. The converse asser-
tion is obvious. If ¥: R,—~G is a continuous homomorphism, then ¢(n):=
==y ()€ L5(4)S A3(D). ~

We should like to extend our results for the class &;(D). This was done in {3]
for G=T. Our aim in this paper is to characterize the class «/;(4) for a general
metrically compact Abelian group G.

Received January 15, 1986.



60 Z. Dar6czy and 1. Katai

Let N;, N, be the set of the odd and the even natural numbers, respectively.
For a @cs; let S(N;) be the set of limit points of {@(n) | n€N;} (j=1,0), and let
S(N) be the set of limit points of {¢(n)| n€N}.

Theorem 1. Let ¢€s45(D). Then S(N,) is a compact subgroup of G, S(Ny)=
=y+S(N,) with a suitable y¢G. There exists a continuous homomorphism : R, —~G
such that @(n)=y(n), nEN,. The function u(n):=¢@n)—y(n) is zero for n€N;,
and u(Q=u(2*) (x=1,2,...). If u(Q€S(N,), then 2u(2)=0.

Conversely, let y: R.+~G be a continuous homomorphism. Let BEG an ele-
ment for which Pey(G) implies that 2B=0. Let u€sf; be defined by the relation

u@)=p8 (@=12,...), u(n)=0 for all neN,.

Then @o=u+y: N-G belongs to ;(4).

2. To prove our theorem we need some auxiliary results that can be proved
by a method that was used by E. WIRrSING [4] and in our earlier papers [1}, [2].

Lemma 1. If o€, and
2.1) e(m+2)—p(m) -0 (m -+, meN,)
then @(nn)=@(m)+@(n) for each m, neN,.

Proof. We need to prove only that
22) - . e(P)-e (" N—0(P)=0 (x=12..)
for each odd prime p. From (2.1) we get that

E,:= o(p>m)—@(p*m—2p) -0, F,= @@ 'm—o(p*~'m-2)-0,
as m€N;, m—oo. Since for (m(m+2),2p)=1 the relation
E,=¢o(@)—o(@* ) —0(p)+Fa.

holds, therefore (2.2) is true.

Without any important modification of the proof of Wirsing’s theorem one
can get : ‘

Lemma 2. If the conditions of Lemma l are satisfied, G=T, then ¢(n)=
=tlogn (mod 1) for all nEN,, 1€R. :
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Upon this result, in the same way as in [2] one can prove easily the next

Lemma 3. Assume that the conditions of Lemma | hold. Then there exists a
continuous homomorphism 1 R.—~G such that ¢(n)=y(n) for each neEN,.

In the next section we shall prove that ¢€.s7;(4) implies (2.1).

3. Let us assume that @€s/;(4). Let S denote the set of limit points of
{p(n) | neN}, ie. geS if there exists ny<mny<...<n,€N, for which ¢(n,)—~g.
Let ¢o(n,+1)—g’. In 1] we proved that g’ is determined by g. So the cor-
respondence F: g—g’ is a function. Furthermore, it is obvious that F(S)=S.
Let p(n) and P(n) denote the smallest and the largest prime factor of neN.

Let k be an arbitrary integer, .

3.1) R={R<Ry<..}

¢

be a sequence of natural numbers. We shall say that R belongs to &, if for every
deN, d divides R,—k for every large v, i.e. if v=v,(R,d). Let #,S#, be the
set of those R€#, for which the limit ,}L“l ¢@(R,) exists. For an arbitrary sequence
R let

a(R) = lim ¢(R,)

if the limit exists. Furthermore, if R is an infinite subsequence of natural numbers

increasing monotonically and k is an integer then R4k denotes the sequence of

the positive elements of R,+k written in increasing order. It is obvious that

R4 k€2, if and only if Re¢#,. Furthermore, if I<k, R€Z,, then R+ (k—1)EZ,.

If I>k, then R€#, implies only that R+ (k—/)€2,. In this case we can assert

only that there exists a suitable subsequence of R-+(k—/) that belongs to 2,.
Let

(3.2) , K= {a(R)|R€Z,).
It is-obvious that

(33 . ‘ FIK] = Kia
for every integer k, and that

Gay k_D“Kk cSs.

Let now. g,cK,, g:€K;, where kc{l, —1}. Then there exist Re%,, S€2,
such that a(R)=g,, a(S)=g,. Since k€{l, —1}, therefore p(R,)— (v—). Let
now the sequence Q,=RJV-S, .be defined as follows: j;=0, j,>j,_, such that
p(R;)>P(S,). Then (R;,S,)=1, and so ¢(Q,)=¢(R;)+¢(S,)~& +g. But
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Q,=kl (mod d) for every déN whenever v>vy(d), so {Q,}€ 97”,‘,, ie. gy +8:€Ky
So we proved

Lemma 4. For every integer |
@3.5) K, +K S K,
(3.6) KL,+KSK .
 (3.5) gives that K;+K,SK,, i.. that K, is a semigroup in G. It is clear that K,

is closed. The closedness of K, implies that K; is a compact semigroup in G, and
so by [5] (9.16) it must be a group.

Lémma 5. Let kéN. Then
3.7 K, =Ki+o(k), K_;=K_+o(k).

Proof. Let t€K,, REZ,, a(R)y=1. Let S‘,:=ij—k be a subsequence of
R—k for which S€#,. Then R; can be written as '

R;, = k[4,+1], S, =kA,.

The sequence {4,}¢%,, therefore (Av+ 1,k)=1 for every large v, so

¢(4,+1)=p(R; )—o(k), consequently
, o(4,+1) ~1—(kK)EK,.
So we proved that K,—o@(K)SK;.

Let now €K, .REQ""1 so that a(R)=g. Then the sequence S,=kR, belongs
to 93,‘, (k, R)=1 if v is large, lim ¢(S,)=¢(k)+lim ¢(R,)=¢(k)+ecK,. This
implies that K;+¢@(k)&K,.

The proof of the second relation of (3 7) is the same, and so we omit it.

Lemma 6. If g€K_,, then
(3.8 Flgl+ F*[g] = F*[g+ F?[gl].

Proof. Let us start from the identity n(n+3)+2=m+1)®n+2). If (n, 3)=1,
then (n, n+3)=1, furthermore (n+1,n+2)=1 for every neN. Let {nv}‘eé’_2 such
that a({n,})=g€K_,. Then 3{n,, consequently o(n,(n,+3))=0¢(@,)+¢(n,+3),
o((n,+ D, +2)) =0 (m,+1)+o(n,+2). Since ¢(n,+k)—~F*[g] (k=0,1,2,3), we
get (3.8) immediately.

Since 0€K;, there exists Re.g"l, a(R)=0. Let R, —3 be a subsequence of
R, —3 for which the limit 11m @(R; —3)=n exists. Smce {R, —3}v€g’ », there-
fore HEK_,, and F3[n]=0. Let us apply (3.8) with. g=n. Then we get F[n]=0.
Since.n€K_,, therefore F[yl€K_,, consequently 0€K_,. Furthermore, O=F 8[n]——
=F*[F[n]]=F?[0]. So we proved
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Lemma 7. We have

3.9 F2[0] =

(3.10) 06K _;.
Lemma 8. We have

(3.11) K., =K.

Proof. Put /=1 in (3.6). We get K_,+K,EK_,. Since 0€K_,, we deduce
that K,SK_,. Let now /=-—1.- Then K_;+K_,EK;. Since 0cK_, we get
that K_,E£K;. Consequently (3.11) is true.

Since F2?[K,]=K;., holds for every integer I, we get that K,,,,=K; for
every n€N. From (3.7) we get that @(2n+1)€K;. Consequently S(N)ESK;. On
the other hand, it is obvious that K;SS(N;). So we know that

(3.12) S(N,) = K;.

Since F[K,,]=K,,1, we get that K,=K,, (n€N), i.e. that ¢(2n)—o (2K,
for all #n€N, and so @(29)—-@(2)eK; (x=1,2,...). So we get that

~ {KIU{¢(2)+K1} if (24K,
K if @eK,.

Lemma 9. The function F: S—S is continuous.
For the proof of this quite obvious assertion see [1].

Lemma 10. If g€K;, then

(3.13) F[g] = g+F[0].
If h€K,, then
(3.14) - a F2[h] = h+C,
where
(3.15) C = ¢(4)—2¢(2)+F[0].

Proof. Let keNy, Me21, a(M)=—o(k). Then (k, M,)=1, and so ¢ (kM,)—~0,
o (kM,+k)~ F*[0] = F[0). Furthermore, (k, M,+1)=1, therefore (p(kM +k)_
=¢k)+o(M,+1), (M, +1)~F[—¢(k)]. This implies that
G. 16) F[-o(k)] =—o(k)+ F[0].

{go(k)lkENl} and so {—¢@(k)|keN,} is everywhere dense in Kl, F is con-
tmuous on K;, therefore (3.13) is true.
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Let now h=¢((2)—¢(k), k and M as above. Then ¢ (M,)—~ —¢@(k)=h. Since
22|(2M,+2), 221(2M,+2), we have

e(2M,+2) = () —¢(2)+o(M,+1),
and so that -
F2[h] = o(4)— @ ()+F[—o(Kk)].

Since —o@(k)€K;, from (3.13) we get that F[—¢(k)]=—¢@(k)+ F[0], and so that
F2[h}=h+C, h=¢p(2)— ¢ (k) with the C defined in (3.15).

Since {—o@(k)Ik€N,} is everywhere dense in K;, therefore {p(2)— ¢ (k)|k€N,}
is everywhere dense in K, F? being a continuous function, we get (3.14) immediately.

For a sequence x, let Ax,:=x,1—X,, 42X,'=X, 12— X,.

Lemma 11. We have

(3.16) | lim A¢(m) = F[0],
(3.17) | lim 4%p(m) =
(3.18) lim 2 (m) =0

Furthermore, C=0.

Proof. Assume that (3.16) is not true. Then there exists a subsequence 2n,+1
of positive integers such that ¢ (2n,+2)— ¢(2n,+1)—48, 6« F[0]. Then for a suitable
subsequence 2n; +1 there exists the limit lim (p(2n +1)—aEK,, and Fla]=a+3.
This contradlcts (3 13).

The proof of (3.17) is the same and so we omit it.

Since 4%@(2n—1)=4%¢p(4n—2)+ 4% (4n), from (3.17) we get that

(3.19) 4*p(2n—1) - 2C.
Observe that

- 4o(2n—1)—dep(2n—1) = Ap(2n)—A%p(2n—1).

From (3.16), (3 17), (3.19) we get that 0=F[0]— F[0]=C— 2C and so that C =0.
This proves (3.18).

4, We have almost finished the proof We know that 4%¢(2n— 1)—»0 The
condition. of- Lemma 1 'i§ satisfied. Then, by Lemma 3 there -exists a ‘continuous
homomorphism §: R,—~G such that ¢(n)=y(n) for all ncN;. Let u(n):=¢®)—
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—y(n). Then wucsl, u(m)=0 for all neEN;. Since ¥ is continuous, therefore
Ym+k)—y @)=y (1+k/n)-~0 as n—o for every fixed k. From (3.16) we get
that u(2n+2)—~F(0) as n—oo, thatis u(2)=u(2*)=F[0] (¢=1,2,...).

If, in addition, F[0]€K;, then S=K,, and (3.13) can be applied twice. This
gives F[g]=F[Flg]]=F[g+F[0]]=g+2F[0], that by F?[0]=0 gives that
2F[0]=0.

By this the first assertion in our Theorem is proved. The converse is obvious.
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Symmetrlsche Schrotungen im reellen dreldlmensmnalen
- projektiven Raum

OTTO ROSCHEL
e Hérrn Prof. Dr. F. Hohenberg zum 80. Geburistag

1. Transformationsgleichungen. Im recllen dreidimenisionalen projektiven Raum
P;(R) weisen wir den Punkten homogene Koordinaten x,:x;:x,:x370:0:0:0 zu,
die wir zu Vektoren x=(x,, X;, X3, X3)* zusammenfassen. Dann werden durch

) x—Rn"(t)-FR/f"(t) (f';l'z)"‘"
mit W()=(...e,(0)...), F(O)=(- 0. ) (5=0,1,% 3) und ej(t) SUDECHICR)

zwei erzeugendenwezse aufemander bezogene C- -Regelflichenstiicke ¢, und &, des.
P,(R) beschrieben. Den Erzeugenden €'(t) konngn Pliicker-Koordinaten

) = R—d S (=1,25j,k=0,1,2,3)
zugewiesen werden, die die Plﬁckerbedihgung/

A3) Q(e(D), €' () == pha P+ phepis+Phaple = 0
erfiillen. Schneiden der Erzeugenden e'(z,) und e2(to) (te€D) 1st durch
(4_),‘ L Q(eM1y), €2(1p)) = det (n'(1p), fl(to), (1), fz(to)) O 4
gekenﬁzeiéhnet (vel. etwa [1]). Wir werden im folgenden stets

5) e QeMD), () = 0 Vieel

verlangen und kénnen dann dem erzeugendenweise aufeinander ‘bezogenen Regel--
flichenpaar {®,, &,} einen symmetrischen projektiven Bewegungsvorgang zuordnen
(H. PrADE beschaftlgt sich in [13] ebenfalls mit projektiven Bewegungsvorgingen,
die solch einem Regelfiichenpaar zugeordnet werden konnen; er betrachtet die hier
untersuchten Zwanglaufe jedoch nicht): Je zwei zugeordnete Erzeugende -€(¢,) und-

Eingegangen am 29. Januar 1986.
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€%(ty) (t,€I) sind nach (5) windschief und bestimmen daher eine eindeutige axfare
Spiegelung S(t,) mit den Fixpunktgeraden €'(z,) (i=1,2), die wir Spiegelungs-
achsen nennen wollen. Unterwerfen wir nun das Rastsystem X’ der stetigen Schar
der durch €'(¢) (i=1,2) bestimmten axialen Spiegelungen S(z) (t€I), so entsteht
eine stetige Folge von Bildern X(¢), die untereinander und auch zu X’ projektiv
dquivalent sind; Z'(r) stellt somit die Lagen des Gangsystems X bei einem projek-
tiven Zwanglauf Z[X’ dar. Diesen Zwanglauf werden wir als projektive symmetri-
sche Schrotung mit den erzeugendenwelse aufeinander bezogenen Grundregelfiichen
&, und @, nennen.

Abblldung 1

Der Punkt x wird bei der Splegelung S(t) auf einem Strah! des durch e'(¢)
und €(¢) bestimmten Netzes in den Punkt x’(¢) transformiert (vgl. Abb. 1). Dieser
Netzstrahl trifft e'(¢) und €2(¢) in den Punkten a und b. Fiir a mu8 :

©) a=u-1(0)+v- () = Ax+un?()+vi2(®) (A #0)
(u, v, 2 y, véR). gelten ‘Daraus gewinnen wir
' l det(x, {4, n2, §2) __ A-det(nl,z,nd, §2)

. “det (0, fl n, 2 ° Y= Get (n}, i, n3, )
(dabe1 hangen é, ', i‘ von t ab_(i=1,2)),

_ A-det (n1’ fl, X, f2) — A-det (nl’ fl’ nZ, z)
M Y o R TT e e
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Damit haben wir zusammen mit (4)

(8) a= e (ei' 5 [n!.det (x, {4, n? 3+ - det (nt, 2, n?, §2)]
und analog ' ' ,. .
® b= g(ef gy [ det (e, 7% &, {9+ 2 det (4, %, )],
Auf dem durch x laufenden Netzstrahl

10) t=90-a4+0-b (0,0€R)

erhalten wir wegen (6) bis (9) fiir 9=06=1 genau unseren Ausgangspunkt. Der
Bildpunkt =" ist daher durch

o il

0 1j'[1 ¢ o .

Lo [0y o

0 o"|1 1
gekennzeichnet und wird demnach durch '
(12) ¥ =afa—b) (2cR—{0} beheblg)

beschrieben. Nach Unterdriickung des nicht verschwindenden Proportlonahtatsr
faktors «(2/Q(e', €?)) erhalten wir als Transformatlonsglelchung

(13) 1’ = nl.det(x, fi, n?, )+ 1. det (nl, %, n?, _fz)— :
—n®. det(nh, L %, ) —2- det (nh, L, 0% %)
Unter Verwendung der Pliickerkoordinaten (2) gewinnen wir
(14) det(z, 1 1%, 12) = (o /it = S P+ (o f2 — Xa P + (50 f3 —xsﬁ?)hﬁ
+(x2 f3 — %3 f2) P +(x3f1 _xlﬁal)Poz + (0 fi =% )G

Analog kénnen die anderen drei Determmanten in (13) ‘berechnet werden. Wenn
wir nun zusitzlich o . }

(15) Py = pliph—phpYy Gk, 1"=-o,'1, 2,3)

(11) —1 =DV(0, bs x, I’) =

definieren, konnen die Transformétionsglcichun gen (13) in der Form
(16) Y= | |
Poizz— Fonz+ Foare 2&203 o . —2Pus - 21’&02 -
- —2Pas Foras+ Poors— Bose © —2PBys - oo - 2Pme -
—2Poss 2Py03 - Poma - B3 — Pos'lg : 21’021‘2‘ . )
—2P325 2Pyg05 . —2Pg = Paos+ Bis+ Posig)

angeschrieben werden.
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Wir haben damit den

Satz 1. Zu zwei erzeugendenweise aufeinander bezogenen Grundregelfiichen
&, ={ (Nt ICR, e (1)NeX(t)={ }} (i=1, 2) ‘existiert ein eindeutig bestimmter syin-
metrischer projektiver Zwanglauf Z[%’, der durch (13) bzw. (16) beschrieben - wird.
Die Elemente der diesen Zwanglauf beschreibenden Transformationsmatrix sind bis
auf einen Proportionalititsfaktor quadratische Polynome der Pliicker-Koordinaten der
Grundregelfliichenerzeugenden.

Formel (16) umfaBt die Darstellung der symmetrischen Schrotungen in allen
dreidimensionalen Cayley—Klein-Réumen: Man hat dabei zu beachten, daB in diesen
Réumen 1i. a. bereits durch Auszeichnung einer Grundregelfiiche ®,={e'(t)/tcIcR}
ein solcher Zwanglauf eindeutig bestimmt ist, da den Erzeugenden el(¢) durch-die
Polaritidt an der MaBBquadrik des Cayley—KIlein-Raumes Erzeugende e*(¢) zugeord-
net werden, die die zweite Grundregelfliche &, erfiillen. So wurde Formel (16)
fiir den euklidischen Raum von O. BotTeMA und B. RoTH in [2, S. 319] und fiir den
einfach isotropen Raum von M. Husrty in [3] hergeleitet.

2. Momentanbewegung. Wird Formel (16) kiirzer durch #'(:)=A(¢)x beschrie-
ben (det(A4(z))><0), so besitzt die infinitesimale Transformation T'(f,) zum Zeit-
punkt 1,67 die Darstellung .

Je . , dA
V) T b, = A A it A=)

Sie erzeugt eine einparametrige projektive Transforr;lationsgruppe m(t,), die wir als
Momentanbewegung des Zwanglaufs Z|/X’ (16) zum Zeitpunkt ¢, ansprechen. Um
Aussagen iiber dlese Momentanbeweguna zu gewinnen, beachten wir, daBB offen-
sichtlich

(18) V m(t) = lim S.(to +h)oS(t0) + O(hz)

gilt, und m(z,) damit vom differentialgeometrischen Verhalten erster Ordnung der
Erzeugenden é'(z;) auf den Grundregelfiichen abhingt. Léngs den Erzeugenden
é'(t,) erfiillen die Fliachentangenten der Grundregelﬂache @, eine spezielle lineare
Geradenkongruenz t(t,). Ist die Flichenerzeugende €(#,) torsal,” $o besteht f‘(to)
aus den Geraden der Tangentialebene von @; lings e {(t,) und des Geradenbiindels
durch den Gratpunkt (Kuspidalpunkt von €'(¢,)), andernfalls aus den Geraden eines
parabolischen Netzes mit der Brennlinie €'(f,) ([1, S. 73 und 78 f.]). Bezeichnet man
in. Analogie zur Terminologie in dreidimensionalen Cayley—Klein-Raumen jene
Geraden, die sowohl 11(¢,) als auch 2(#,)) angehdren, als Zentraltangenten (dleser
Begriff der Zentraltangenten ist sehr viel weiter gefaBt als in der eukhdlschen Regel-
flichentheorie) der beiden Grundflichen, so gilt mit (18) der . :
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Satz 2. Die beiden Grundregelfiichen &, uﬁd @, besitzen in zugeordneten Er-

zeugenden Zentraltangenten, die bei der Momentanbewegung der: zugeoz dneten sym-
metrischen projektiven Schrotung legeraden smd

(Vgl. das euklidische Ergebms von' J. KRAMES: [4 S 397] Es ist zu bemerken,
daB} die in Satz 2 angesprochenen leoeraden fiicht alle legeraden der Momentan-
bewegung umfassen.)- : :

Es ist unmittelbar einsichtig, daf3 Fz*cpunkre von. m(%,) (wn werden im folgenden
die komplexe Erweiterung P;(C) des projektiven Raumes vornehmen) auf diesen
Zentraltangenten liegen miissen. Zu den Spiegelungen S(z,) und S(f,+h) gehoren
jeweils invariante hyperbolische Gera'dennetze_‘f(to) und T(t,+h) mit Brennlinien
€ (t,) bzw. €' (ty+h), deren Schnittgeraden die Fixpunkte von S(fy+h)oS(1,) ent-
halten: Auf jeder dieser Schnittgeraden schneiden die Spiegelungsachsen €'(z,) und
é'(t,+h) Punktpaare einer Projektivitit aus, deren Doppelpunkte beim Grenz-
iibergang (18) zu den Fixpunkten der Momentanbewegung .m(¢,) werden, wiahrend
die Schnittgeraden von (z,) und 1(#,+/4) gegen die Zentraltangenten konvergieren.

3. Flichenldufige symmetrische Schrotungen im P,;(R). Bisher hatten wir zwischen
den beiden Grundregelfiichen &, und &, cine erzeugendenweise Kopplung voraus-
gesetzt. LaBt man zu, daB die Erzeugenden e'c®, und e*c P, voneinander
unabhingig sind, so stellt (16) die Transformationsgleichungen eines fldchenidufigen
symmetrischen Schrotvorganges im P;(R) dar. Diese flichenldufigen (zweiparametri-
gen) Bewegungsvorginge sind geometrisch deshalb interessanter als die-in Abschnitt 2
studierten Zwanglidufe, weil sie unabhiingig von der (willkiirlichen) Koppelung der
Grundregelflichenerzeugenden sind. Fiir algebraische Grundregelflichen gilt .nach’
komplexer Erweiterung der '

Satz 3. Sind die Grundregelfiichen &, und ®, einer flichenliufigen symmetri-
schen Schrotung XX’ nichtzerfallende und verschiedene algebraische Fldchen der
Ordnung n, bezichungsweise n,, so ist die von einem allgemeinen Punkt des Gang-
raums X bei Z|X’ iiberstrichene Balnfliche algebraisch von der Ordnung myn,.

Beweis. Sei P ein allgemeiner Punkt (P¢®,, ,), & cine z‘tllgemeine.' Test-
gerade, die die Schnittkurve von &, und &, nicht trifft. Wir zeigen, daf P bei- X/%’
im algebraischen Sinn genau n n,-mal nach g gelangt (vgl. Abb. 2):’ -

P und g spannen eine Ebene ¢ auf, die ¢, und &, nach zwei algebraischen
Kurven k, und k, schneidet, die bei allgemeiner Lage von g nicht zerfallen und die
Ordnungen n, und n, besitzen. P gelangt genau dann in einen Punkt P* auf g, wenn:.
[P, P*] k, und k, in einem zu P, P* harmonischen Punktepaar trifft.” Unterwirft
man daher.etwa k, der ebenen projektiven Spiegelung an P und g, so schneiden sich’
k, und die Spiegelkurve k} im algebraischen Sinn in n;n, Punkten X*, die:iiber
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Abbildung 2

P*:=([P, X*],g) genau mn, Lagen von P auf g liefern; die Bahnfliche besitzt
somit die Ordnung n;n,.

Eine Reduktion der Bahnflichenordnung tritt damit genau dann auf, wenn P
der Schnittkurve von &, und @, angehort; die Ordnung wird dann »,n,—1 und
verringert sich jeweils weiter um 1, wenn sich ¢, und &, in P beriihren usw.

Die Bahnflichenordnung aller allgemeinen Punkte wird sich nur dann reduzie-
ren, wenn @, und &, zusammenfallen. Es gilt der

Satz 4, Stimmen die beiden Grundregelfiichen @, und &, einer zweiparametri-
gen symmetrischen Fchrotung X[X’ mit einer nichtzerfallenden algebraischen Fliche
@ der Ordnung n iiberein, so ist die von einem aligemeinen Punkt des Gangraumes
X bei Z|Z’ iiberstrichene Bahnfliche algebraisch von der Ordnung n(n-1)/2.

Beweis. Wie im Beweis zu Satz 3 suchen wir die Schnittpunkte der Bahnfliche
eines allgemeinen Punktes mit einer allgemeinen Testgeraden g (vgl. Abb. 3):

k und k* haben nun n(n—1) fiir uns interessante Schnittpunkte, weil die n
Schnittpunkte von k und g nicht in Betracht kommen. Da die iibrigen Schnitt-
punkte von k& und k* beziiglich g und P symmetrisch liegen, kommt P bei X/X’
im algebraischen Sinn genau n(n—1)/2 mal auf die Gerade g.

In diesem Fall wird die Bahnflichenordnung fir Punkte der Grundregelfiiche
P=P;=P, zu n(n—1)/2—-1.

Flachenliufige symmetrische Schrotungen X/Z’ mit durchwegs ebenen Bahn-
flichen werden wir zweiparametrige symmetrische Darboux-Bewegungen des P,(R)
nennen, Diese Definition erfolgt in Anlebnung an die Bezeichnung Darboux-Zwang-
laufe des euklidischen Raumes (alle Bahnkurven sind eben; vgl [2, S. 304 f.]). Es
gilt der folgende
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Abbildung 3

Satz 5. Die zweiparametrigen symmetrischen Darboux-Bewegungen des P;(R)
besitzen als Grundregelflichen ®, und ®, entweder die Tangentenscharen zweier ebener
Kurven in verschiedenen Ebenen des P4(R) oder es gilt: ®, und &, erfiillen einen festen
Regulus auf einer nichtzerfallenden Quadrik ®. Im ersten Fall erfiillen die Bahnebenen
das von den Trigerebenen von &, und P, dufgespannté Ebenenbiischel, wihrend im
zweiten Fall alle allgemeinen Ebenen des P (R) als Bahnebenen auftreten:

Beweis. Die allgemeinen Bahnflichen sind bei flichenldufigen symmetrischen
Schrotungen nach Satz 3 und 4 genau dann Ebenen, wenn ¢, und &, entweder
selbst Ebenen sind oder ein und denselben Regulus einer Quadrik @ durchlaufen.
Im ersten Fall gehoren alle Bahnebenen dem von @, und &, aufgespannten Ebenen-
biischel an. Der zweite Fall ist nicht trivial: Wird der Regulus ®; (i=1,2) in der
Normalform

(19) P =pks =0, pha=1, pl=ph=1 pis= )

mit ‘'€ IcR beschrieben, so erhilt der zugehérige fldchenldufige symmetrische
Schrotvorgang X|Y" mit (16) die Gestalt

w+wr -2 0 -0
, |28 —(+u) 0 0
(?0) *=l o 0 wtuwr -2 ¥

0 - 0 2w —(i+uwd))
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Man bestitigt unschwer, daB jeder nicht auf & gelegene Punkt P des Gangraumes
X als Bahnfliche eine Ebene IT(P) durchliuft, wobei IT(P) genau die Polarebene
von P beziiglich der Grundregelfiiche ®=®&,=®, ist. Punkte P von & werden auf
der zweiten Erzeugendenschar von & bewegt. :

Interessant ist, daB eine Gerade g X, die der Grundquadrik & nicht angehért,
bei diesen zweiparametrigen symmetrischen Bewegungsvorgingen eine lineare Ge-
radenkongruenz ® durchliuft, deren Leitgeraden von den Bahngeraden der Schnitt-
punkte von g und @ gebildet werden. Damit treten je nach Lage von g .und & hyper-
bolische, elliptische oder parabolische lineare Bahngeradenkongruenzen auf.

4. Flichenliufige symmetrische Schrotungen mit einer reellen Fixebene. Wir wol-
len versuchen, die beiden Grundregelflichen &, und &, so zu bestimmen, daB die
Bahnfliche aller Punkte der Ebene w (x,=0) diese Ebene w selbst ist. Bei der axialen
Spiegelung an den Erzeugenden ¢' der Grundregelflichen ¢; (i=1,2) werden nur
dann alle Punkte der Ebene  in dieser Ebene bleiben, wenn eine der beiden Spiege-
lungsachsen ganz in w liegt; eine der beiden Grundregelflichen (0. B.d. A. @,) muf
daher in o enthalten sein. Besondere Beachtung verdient bei diesen Bewegungs-
vorgingen die Tatsache, daB offensichtlich eine Anderung der Regelfliiche &, in
o die entstechenden Bahnflichen der Punkte nicht dndert! Es existiert in diesem
Fall sogar ein dreiparametriger symmetrischer Schrotvorgang im Py(R), bei dem
jeder Punkt auf einer festen Bahnfliche bleibt. Mit Satz 3 haben wir den

Satz 6. Ist eine der beiden Grundregelfliichen ®, einer symmetrischen Schrotung
des projektiven Raumes P,(R) algebraisch von der Ordnung n, wahrend die Schar der
zweiten Spiegelungsachsen die Geraden einer festen reellen Ebene o erfiillt, so ent-
steht eine dreiparametrige symmetrische Schrotung, bei der alle Punkte auf algebrai-
schen Bahnflichen der Ordnung n gleiten.

(Wird w als Fernebene eines im P3(R) eingebetteten affinen Raumes A (R)
gedeutet, so sind die hier erwihnten symmetrischen Schrotungen dreiparametrige
affine Bewegungsvorginge. In jedem dieser dreiparametrigen Beweguncsvdrgﬁnge
kann durch Auszeichnung eines nullteiligen Kegelschnitts in w iiber die dann in w
vorliegende Polaritat ein eindeutiger euklidischer symmetrischer Zwanglauf im Kra-
mes’schen Sinne definiert werden. Umgekehrt kann so jede Krames’sche symmetri-
sche Schrotung des euklidischen Raumes in einen zwei- bzw. drelparametrlgen affinen
symmetrischen Bewegungsvorgang eingebettet werden.)

Diese symmetrischen Schrotungen werden wir affine symmetrische Schrotungen
nennen. Bei affinen symmetrischen Schrotungen sind die Bahnflichen der Punkte
P im Gegensatz zum allgemeinen Fall stets Regelflichen, deren Erzeugenden &(t)
aus den Grundregelflichenerzeugenden € (¢) mittels einer perspektiven Raumkollinea-
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Abbildung 4

tion mit Zentrum P und Fixpunktebene @ hervorgehen; das charakteristische Dop-
pelverhiltnis & hat dabei den Wert 1/2 (vgl. Abb. 4). Wir haben damit den

Satz 7. Bei den dreiparametrigen affinen symmetrischen Schrotungen sind die
Bahnfliichen aller allgemeinen Punkte Regelfliichen, die zu der nichtebenen Grund-
regelfliiche @, projektiv dquivalent sind.

Die affinen symmetrischen Schrotungen lassen sich wie folgt kennzeichnen:

Satz 8. Seien @, und @, n,- und n,-parametrige Geradenscharen (n,=1, n,=2),
XX der darauf gegriindete (ny +n,)-parametrige synunetrische projektive Bewegungs-
vorgang. Wenn dann alle Punkte des Gangraumes X beim ganzen Bewegungsvorgang
Z/Z" auf Bahnflichen gleiten, ist Z|X’ notwendig eine affine symmetrische Schrotung.

Beweis. Wir wihlen in @, eine einparametrige Geradenschar e!(¢) (t€ICR)
aus, wihrend die Schar der zweiten Spiegelungsachsen mindestens zweiparametrig
ist (e2(u, v), u, v€I*CR). Wir setzen voraus, dal e(¢) nicht in einer Ebene gelegen
ist und studieren eine feste Erzeugende €1(4,) (f,¢J<R). Ein nicht auf €'(¢,) gelege-
ner allgemeiner Punkt P wird bei den axialen Spiegelungen {e'(¢,), €2(u, v) | f,=Kkonst.,
1, v€ 'R} nur dann nicht ein ganzes Gebiet der Ebene [P, e'(t,)]=¢(t,) iiber-
streichen, wenn die Geradenkongruenz e®(u,v) in &(f,) eine Leitkurve besitzt.
Wird nun e!(¢) geindert, miiBte e2(u, v) in jeder der Ebenen ¢(¢) eine Leitkurve
besitzen, was aber nur mdglich ist, wenn die Kongruenz e?(u,v) einer Ebene
angehdrt,
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Convergence of Hermite—Fejér interpolation at zeros
of generalized Jacobi polynomials

PAUL NEVAI*) and PETER VERTESI

1. Introduction

The aim of this paper is to find necessary and sufficient conditions for uniform
convergence of Hermite—Fejér interpolating processes based at the zeros of gen-
eralized Jacobi polynomials. As a by-product of our investigation we also give an
answer to a question raised by P.-TURAN [35, Problem XXVII, p. 47] (cf. [36, Sec-
tions 2.3.1 and 3.6, pp. 337—338]). If fis a bounded function and w is a nonnegative
integrable weight function on the real line, and x,,(W)=xX,,(W)>...>x,,(w) are
the zeros of the orthonormal polynomials p,(w) corresponding to w, then the as-
sociated Hermite—Fejér interpolating polynomial H,(w,f) is defined to be the
unique polynomial of degree at most 2n—1 which satisfies

H,,(W,f, xkn(w)) =f(xkn(w)) and Hr,;(waf; xkn(w)) =0, k=12,..,n

Ever since the work of L. Fejér, G. Griinwald and G. Szeg8 there has been a
great deal of research performed in conjunction with convergence properties of
these polynomials in terms of the weight function w, the point system {x,,} and
the function f. In particular, when {x,,(w*'®)} are the zeros of the Jacobi poly-
nomials  p®® which are orthonormal with respect to the Jacobi weight w(*» de-
fined by '

—x)(1+x)* for x€[-1,1]

o _ (1
wl b)(x) = {0 for XQ(— 1, 1)9

*) This material is based upon research supported by the National Science Foundation under
Grant No. DMS 84—19525, by the United States Information Agency under Senior Research
Fulbright Grant No. 85—41612, by the Hungarian Ministry of Education, and by NATO (first
author). The work was started while the second author visited the Ohio State Umversxty 1n
1982/83 and it was completed during the first author s visit to Hungary in 1985, '
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a>—1, b= —1, one has a complete description of the conditions assuring uniform
convergence of the corresponding Hermite—Fejér polynomials H,(w@?, f),
Namely, roughly speaking, for negative parameters a and b lim H, (W, f)=f
uniformly for all continuous functions f, whereas for nonnegative a and b
lim H,(w®, f)=f takes place uniformly only under additional conditions on f.
An accurate synthesis of the results we are interested in is given by the following five
statements.

Proposition 1.1. Let a>—1,b>—1 and O=e<]1. Then

lim max |f(x)—H,(w"", f,x)| =0

Jor every function f continuous in [—1, 1].
Proposition 1.2. Let b>—1 and —1<e<1. Then

sup max [H, (W), f, X)| <oo

n=1 &=
Jor every function f bounded in [—1, 1} if and only if —1<a=0.
Proposition 1.3. Let b>—1 and —1<e<]1. Then
lim max [f(x)—H,wD f, x)| =

neoo g=Xx
Jor every function f continuous in [—1, 1] if and only if —1<a<0.

The above three theorems are condensed from {4, Vol. 11, pp. 9—48, 285—317,
361—417, 502—512, 527—562, 767—801], [28, p. 138], [32, Theorem 14.6, pp. 340—
344] and [33, Vol. 1, pp. 335—362]. _

By Markov’s theorem on the derivatives of algebraic polynomials (cf. [16,
§ VL. 6, p. 141]) if {Q,} (deg O,=n) is a uniformly convergent sequence of algebraic
polynomials in an interval, then O is O(n*) in the same interval for r=1,2, ....
In view of this observation the following result whose special case of Legendre
zeros (@=b=0) was also treated by A. SCHONHAGE [27] and J. SzaBaDOS [29] is
especially satisfying.

Proposition 1.4 [38, Theorem 2.1, p. 84). Let —l<g¢=<1 and let f be con-
tinuousin [—1,1]. Let ac[s—1,s) for afixed positive integer s, and let b> —1. Then

lim Jnax If(x)—-H, WD, f,x)| = 0

holds if and only if
lim H,(w®Y, £, 1) = f(1)
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and (if a=1)
lim n=¥[HOWED, £, X))l =0

n—>co

for r=1,2,...,s—1.

The following result of J. Szabados is the culmination of research by several
authors including L. Festr [4, Vol. I, pp. 22 and 40], E. EGervARI and P. TURAN [3],
A. SCHONHAGE [27] and G. FreupD 9]

Proposition 1.5 [29, Theorems 1 and 3, pp. 470 and 457). Let b>—1 and
—l=<g<1. Let f be continuous in [—1,1]. Then

lim H,w®", £, 1) = (1+b)27>~* flf(t)W‘ (6 dr,

and
lim max |f(x)—H, WD, f, x)| =

n—>co g=X=

holds if and only if o
) =Q+0)2701 [ fweD () dr.
-1

“In what follows the function w is a generalized Jacobi weight if it can be re-
presented as

= gw®b) where g(= O)EC1 and g'cLipl on [-1,1]

for some a=>—1 and b= —1. Because of J. Korous’ theorem yielding bounds for
the corresponding generalized Jacobi polynomials p,(w) (cf. [32, Theorem 7.1.3,
p.'162]) one expects a close relationship between Jacobi and generalized Jacobi
polynomials, in particular, between associated approximation procedures. This is
indeed the case as shown in the research conducted by V. M. Badkov, A. Mité,
V. Totik and us (cf. [1], [2], [11}—{15], [18]—[22] and [24]).

In [24] we dealt with characterlzmg weighted mean convergencé properties of
Hermite—Fejér interpolating sequences associated with generalized Jacobi poly-
nomials and we proved the followma

Proposition 1.6 [24, TheoremS p 55] Let O<p<oo, and let w be a gen-
eralized Jacobi weight. Let u be an unrelated Jacobi weight function. Then

. }112 H,(w; f) =f in Ly(w) in [-11]

for every function f contmuous in [ 1, 1] lf and only if w"leL (u) in the interval

[(-11].
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2. Main results

As announced in [23], we can generahze and/or extend the prev1ous siX proposi-
tions as follows.

Theorem 2:1. Let w be a generalized Jacobi wezght and let O<e<1. Then
hm max |f(x) —H, (w,f x)| 0

—o00 —gIS
for every function f continuous in [—1, 1].
Theorem 2.2. Let w be a generalized Jacobi weight. Then for every fixed non-

negative integer m there exists a polynomial I1 such that R defined by R(x)=
=1-x)"I(x) satlsﬁes :

llmmfn‘2"|R(1) H,(w, R, 1)] = 1.

Theorem 2.3. Let w be a generalized Jacobi weight, and let —1<g<1. Then

sup max |H,(w, f, x)| <<

n=1¢
for every function f bounded n [= 1, 17 if and only if w(1)=0.

Theorem 2.4. Let w -gw‘" ") be a generalized Jacobz weight function, and let

“l=<g<]. Then
hm emax | f(x)— H (w, /i x)l

for every functton f continuous in [—1, 1] zf and only if w(1)=oo

_ Th corem 2.5. Let w=gw@® be a generaltzed Jacobi welght Sfunction, -and let
—l<g<l. Let f_be,contmuous in [—1,1). Let a€[s—1,s) for a fixed positive
integer s, and let b>—1. Then.

lim max |lfx)—H,(w, f, x)| =

n->e g=x

holds if and only if A .
‘ im H,(w, £, 1) = f(1)

and (if a=1) N
lim n=¥[H® W, f, X)]lx=1 =0
fb;"rA=1,2,,...,s,—l. B ‘ .

Theorem 2.6. Let w=gw®® be a generalized Jacobi werght function, and let
—1<g=<1, Let f be continuous in [ 1, 1] Then

hm H (W, f 1) _(2w(1))- j f(t) d[w(t)(1+t)]
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Hence,
lim max l f (x) H, (W,f, x)l =

holds if ;znd only if‘ o
1
) = @w)™ [ f@ydiw@®(1-+)].

Needless to say that analogous results can be proved in the interval [—1, ] as
well, and therefore oné can formulate results that are concerned with convergence
in the entire interval [—1, 1].

3. Notations

" As a rule of thumb, all positive constants whose value is irrelevant and which -
are independent of the variables in consideration are denoted by “K”. Each time
“K” is used it may (or may not) take a different value. The symbol “~” is used
to indicate that if 4 and B are two expressions depending on some variables then
A~Bes|AB~Y =K and |471B|=K. We use N and R to denote the set of pos1t1ve
integers and real numbers, respectively.

Given a weight function w, the leading coefficient of the correspondmg ortho-
normal polynomial p,,(w) is denoted by 7,(w). K, (w) is the associated reproducmg
kernel function, that is

3.1 o &W&0=gmMﬂmM&‘

In terms of the Christoffel —Darboux formula (cf. [32 Theorem 3.2, 2 p. 43]) K (w)
can be expressed as

(B2 K,(w,x,0)=(1,- 1(W)/vn(W))[p,.(w, X)Pra(W, )~ p..—l(ws X)p..(w, t)]/(X*t)
The Christoffel function 2, - (w) is 'defined by R ' '
3.3) 2w, x) = K71(w, x, x).

The Cotes numbers A,,(w) in the Gauss—Jacobi quadrature formula are given by
(3 4) o daw(W) = Ay (W, Xkn (W))

The fundamental polynomials of Lagrange mterpolatlon t’,,,,(w) assomated w1th the
zeros of. p,,(w) are deﬁned by .

(3.5 LW, X) = P, (W, %)] [p,.(w xk,.(W))(x xk,.(W))]

6
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Another useful expresswn for £,,(w) is the followmg

(36) (kn (W, x) (Yn -1 (W)/')’,, (W)) ) *kn (W)Pn -1 (W, Xin (W)) Dn (W x)/(x Xn (W))

(cf. [32, formula (3.4.7), p. 48]). :
The usual way of expressing the Hermite—Fejér interpolating polynomial
H,(w,f) is in terms of the fundamental polynomials £,,(w), and it is given by

BD. o HmSD = S () D502
where v,,(w) is defined by

38 a9, %) = 1= (0, 340 (9)) [ (0, 320 )]~ (¥ — 310 )

(cf. [32, p. 330—331]). For special orthogonal polynomial systems due to available
differential equations pj(w, x,,(W))[p, (W, x:,(w))]* can be expressed explicitly in
terms of the weight function and the zeros of the orthogonal polynomials, the above
.exp:rﬁessionAis_‘conv,e:nient when investigating Hermite—Fejér interpolation. How-
ever, for general weight functions it is difficult (if not impossible) to handle the
derivatives of orthogonal polynomials, and thus this formula is of limited value.
On the other hand, G. Freud’s formula

Gy vk,(uj,' x) = 1+4;(w, X1a(9)) i (0) ™ (= X1 (W)

(cf. [5, p. 113]) involves the Christoffel functions and their derivatives which are
much more suitable when the weight function is not one of the classical ones (cf.
[5,8,24]).If Pisa polynom1a1 of degree at most 2n—1 then in view of the Hermite
1nterp01at10n formula (cf [32 pp- 330—331]) we can write

310y " P(x) = H,(w, P, x)+#,(w, P’, %)
where c _
G. 11) -W (W f x) Z' f (Vk,.(W))(x xkn (W))/ i,.(w, x).

4. Technicalities .

Here, in addition to formulating some useful 4nd known properties of generalized
Jacobi polynomlals which run parallel to those of Jacobi polynomials, we will
also prové a few’ proposmons of technical nature that will subsequently be applied
to demonstrate our prmcxpal results In what follows w is a generalized Jacobi
weight. : : :
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If X (W) =cos (0, (W) wherte x,,(W)=1, X, ;(w)=-~1 and 0=0,,(W)=n then
4.1 T O 41,0 (W)= O (W)~ 1/n1..

uniformly for 0=k=n and n€N (cf. [18, Theorem 3; p: 367]).

Using Korous™ theorem (cf. [32, Theorem 1.1.3, p. 162]), similarly to Jacobi
polynomials, the generalized Jacobi polynomials can be estimated-in terms of the
weight function as follows:

wx)(1—x®)V~2  for xe[; 14+n7% 1—n"7
4.2) |pa(O¥, X)| = K n2[w(1—n~3)]"¥2  for x€[l-n"2 1]
' ' A2 w(—1+n"2]" V2 for x€[-1,—1+4n"1,

uniformly for néN (cf. [32, Theorem7322 p. 169] or [1, p 226])

4.3)
11X =X, (W W (x)(1 =x2)*2]712 for 2x€[—14+x,,(W), 14+ x1,(W)]
[pa(w, X)) ~§ n2[w(l —n—2)]~ 12 . for 2xe[l+x5,(w), 2]
2 w(—1+n"2))"1/2 for 2x¢€[-2,-—1 +x,,,,(w)],

uniformly. for n€ N where 1 is the index of the zero x,,(w) which is (one of thc)
closest to x (cf [19, Theorem 9.33, p. 171]), and

@44) = - < [Pa=1(9s Xien (WD)~ W (360 (W) ~V2(1 = X, (PR

uniformly for I=k=n and neN (cf. [19, Theorem 9.31, p. 170]).
The derivatives of generalized Jacobi polynonnals at +1 satlsfy "

4.5) I[p,. 1w, +1)]“’| = Kn¥| pyt (w, + )| A _
uniformly for #€N (cf. [20, formula (23), p. 674]). Writing pr®=(p7 1)(p,. 1), and
using (4.5) and the product differentiation rule (Leibnitz’s formula) we' obtain
(4.6) lpx 2(W il)l("l SKn”II),. 2w, il)l

umformly for nEN A
For the Christoffel functions and Cotes numbers we have the followmg esti-
mates : -
. n‘ln{(x)(l —x2)1/2 for ‘xG,[— 1+ ,,—-2, l-—n“"]
@n . LWwx)~ntw(l=n"®  for x€[l-n"%1}
I nrw(=1 +n‘2) for x¢[-1,—1+4n"7,

uniformly for nGN (cf (17, p. 336]) and
(4.8) R ) B lw(xkn(w))(l—xkn(w)2)1/2 ‘
umformly for.. ISkSn and. n€N. (this follows 1mmed1ately frorn estimites (4. 1)

6*
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and (4.7).(cf. 3.4)). The‘derivatives .of the Christoffel functions satisfy -
n~lw(x)(1 - 'x25-1/2- for x€[—1+n~2 1—n"2

(4.9) 12w, x)| = Kyw(l—n~?) . for x€[l1-n7% 1]

L T~ 1+n"2) - for x€[—1, —14n77,
unlformly for” nEN (cf [24; formula (23), p. 36]) and
(4.10) A (w, xk,,(w)) = Kn‘lw(xk,,(w))(l — X (W)?) /2

umformly for”™ 1<k<n and nEN (cf. [24, formula (24), p. 36)).

A weight | functlon w is said to belong to Szegd’s class (weS) if it is supported
in [—1,1] and logw(cos 0)¢L, in [0, n]. For instance; all generalized Jacobi
weights are in Szég8’s class. According to the Szegd Theory (cf. [32, Theorem 12.7.1,
p. 309]) the leading coefficients y,(w) of the orthogonal polynomials p,(w) satisfy

(4f'i' 1) 6= i 24'*'y;,(w) = n~Zexp {(21:)—1 f log w(cos 6) dO} <oo
.n-ﬂl\o : - . 0 .

wheneve'r" wes.
" The following proposition is a 51mple but unexpected generahzatlon of (4. 2)
and 4.9). -

Lemma 4.1. Let wy=g,w™® and w,=g;w'*® be two -(not necessarily dif-
Jerent) generalized Jacobi weights corresponding to the same parameters a=—1
and b>—1. T hen for every fixed integer { we have

(4.12) IP,.+:(W1, xkn(w2))l = Kw (i (w9) V3 (1 — X (wo) )1
umfo;mlyfor 1<kSn and nEN
Proof By Korous theorem (cf [32, Theorem 7.1.3, p. 162]) we have
[Pnte(W1s x)l = K[an+z(Wzs XN+ 1Pa+e-1(we, X)I]

for x€[—1,1]. Being orthogonal polynomials, the generallzed Jacob1 polynomlals
sat1sfy the three “term recurrence

xpn(w’ x) = an+1(W)Pn+1(W, X)—i-b (W)Pn(w, x)+a (W)Pn l(w’ x)
and since w>0 almost everywhere mn [— l 1], we have lim a,(w)=1/2 and
lim b,(w)=0 (cf. [25], [26] [12, p. 68], [22, Sections 4.5 and 4.13] and (4. 11)). Hence
by repeated application of the recurrence formula we obtain
1Pt 10025 )| = Kl1pyy (0 x)|+1pn(w2, DL, *x€[-1,1),

for all fixed j. Now mequallty (4 12) follows from (4 4) applied with w=w,.
:1.~The next step is to‘compare Christoffel functions of generalized Jacobi weights.
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Lemma 4.2. Let w,=g,w'*? and w,=g,w*?. be two generalized Jicobi
weights corresponding to the same parameters a>—1 and b>—1.-Then . -

@13 (e 00) e (90) ™ = (X O92)) A O92) 2| =
= Kwy (% (w) 11— X, (W1)2]” 2
holds uniformly for 1=k=n and neN. .
Proof. Let w,=gw,. Then the identity

g(x)i;l(wl,x)—l;‘(wz,X) fK(wl,x, K, (wz,x, t)[g(X) g(t)lwz(t)dt

is a straightforward consequence of orthogonahty relat1ons S1nce we have g €L1p I,

we can write g(x)—g(t)=g'(x)(x— t)+0([v ).’ Hence ‘the prev1ous formula'
becomes . L v : :

(4.14) g AT (wy, X)—dy H(wp, X) =
=2’ (x) [ K.(w1, X, DK, (W, X, D(x— ) wy(e) dt +
R

+0(1) f 1K, 091, %, DK, (0, 3, O] (v t)éwg(t) d'tf

In view of (3.2) the first integral here can explicitly be evaluated interms -of . the,
orthogonal polynomials involved and their leading coefficients. We have-
(4.15) ‘

f K, (W, %, DK, (g, x, Y(x— ) wo(t) dt = (v, l(wl)/vnovz))p,. 1091, 2) Pa (s, x)

Usmg Schwarz’s inequality, w,=Kw;, (3.2) and again. orthogonallty relatlons, we
can estimate the second mtegral as follows

(4.16) [ f 1K, (w3, %, DK, (W, %, 1) (x-t)2w2(t) dt]
= K [ Kiwi, x, )(x— 0Pwy(1) dt [ KE(wa, X, )(x= 1) wy(6) dt =
R R . .

= K[pn-1 WD)y WP PR =1 (W15 x) +pi (w1, X)) X
X [Pu-1(92)/7a W) P[P -1 (W35 X)+ P (W, X)),

Since generalized Jacobi weights w are in Szeg8’s class, we can-use (4.11) to estimate
the ratios of the leading coefficients of generahzed Jacobi polynomlals Usmg thlS
observation and inserting (4.15) and (4.16) into’ (4.14), we ‘obtain

AT (wyy X) =2 (W, X)| =
= Kl|pa-1 015 X+ 1pa(ws, XM par(wz, )+ 7w, D).+
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Applying this inequality with x=x,,(w;) (cf. (3.4)) and using Lemma 1 (cf. (4. 12))
Lemma 4.2 follows immediately.

Our next goal is to estimate ,(w, x) (cf. (3.7)—(3.9)) via improving (4 10)
regarding the derivatives of the Christoffel functions. For Jacobi polynomials
we have

o

4.17) Ty (WD), X) = l-—[1—xﬁ,,]‘l[a—b+(a+b+2)xk,,](x—xk,,-)’ I

(%=X (W ™)) (cf. [32, formula (14.5.2), p. 339]). In what follows we will show
that the right-hand side of (4.17) is the principal contribution to v,(w, x) as well.

Lemma 4.3. Let w=gw'®"® be a generalized Jacobi weight. Then
(4.18)  12(w, xk;,(w))lkn(w)‘1+[i ——xk,,(w)zl"l[a~b+(a+b+2)xk"(w)]l =K
uniformly for 1=k=n and n€N.

Proof The crux of the matter is the inequality

g ()KL (w, x, ) — K; (WD), x, x)| =
= K[1pu-o WD, X)|+1py 1 (W™D, 1) +[p, (WD, X)[1X
X121 (WD, )+ pr @D, )] (x€[~1, 1]),

€N, which is a special case of a general inequality proved in [24, Lemma 1, p. 31].
Setting here x=x,,(w) we can apply Lemma 4.1 to estimate p,,,(w?, x;, ().
Moreover, since :

Pa(W®, x) = const p,_; (W +10FD, )

where the constant is of precise order n (cf. [32, formula (4.21.7), p. 63]), we can use
(4.1) and (4.2) to estimate p], (w2, X (W), We obtam

(4.19) | (ean () K (9, Xin (9, X (9)) = K (WD, X, (9, X (w))l =
= Knw (%, (W) (1 — X (W)?) ~1/2

for 1=k=n and n€N. Now the point is that K,(w®®, x,, (), X,,(w)) can be
evaluated. By (3.2)

Kl; (W) ('yn ~1 (w)/Yn (W)) [p (W) pn 1 (W) pn (W) P (W)],
and since the Jacobi polynomials satisfy the differential equation

(1=x)Y" =—n(n+a+b+ Y +[a—b+(a+b+2)x]Y’
(cf. [32 Theorem 4.2.1, p. 60]) we obtain ) A .
K, (WP, x, x) = (1-x)"{[a—b+(a+b+2x]K, (w(" ) x, X)~
~ (P2 WD)y, (W@ )) 21+ G+0) ppy (WD, x) py(w'?, x)}
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(which, as a matter of fact, immediately yields formula (4.¥7)). We have.
Va1 (WO D)y, (WD) >1/2, n—+ oo (cf. (4.11)). Therefore, substituting:x =x,,(w) here:
and applying Lemma 4.1, we get . .

(4.20) K2 0959, 5300, 50a00) [ =3I 2K
X[a—b+(a+ b+2) X (WK, (", x,(W), X, (W))| =
. = Knw(x, (W) 11—, WP TV2 0 SR
for 1=k=n and n€N. Inequalities (4.19) and (4.20) enable us to conclude
lg (xin () Ky (w, Xien (W), xkn(w)) [1- xkn(w)Z] X
X[a—b+(a+b+2)x,(WIK, (w(" 0 xk,,(w), xk,,(w))l =
= Knw=(x,(w)) (1 = X, (w)?)~ 12 '

for 1=k=n and ncN. Now we apply Lemma42 with welghts wl_.w and'
w,=w(®?, We obtain :

lK,{ (Ws Xiw (W) Xpu (W) —[1 — X, (W)zl_lx
X[a—b-+(@+b+2) % (WK, (W, X (W)s Xia(W))| =,
= Knw (%, (W) (L = X, (w)2) "2

'

for 1=k=n and néN. Since K,=A;' so that K//K,=—4i)[4,, _and since the

nght-hand side here is precisely of order 2 ,m(w)‘1 (cf (4 8)) the latter 1nequa11ty

is equivalent to (4.18) what we had to prove. :
Freud’s formula (3.9) and Lemma 4.3 immediately yield

Lemma 4.4. Let w=gw@®? 4be 'c.z generaliéed Jacobi weight. Then
a9, ) — 1 =1 =y ][ b (a+ b+ 2D X W (=W =
= K|x—x,(W)|
uniforinly for xe[—1, 1], 1<k<n and neN.

The followmg three purely technical lemmas deal w1th Lebesgue function type
estimates.

"Lemma 4.5. Let w —gw(" ) be ageneraltzed Jacobi welght and let c€ R. T hen
the asymptotics .

@) 2 —x,m<w)1-°[x—xkn(w)12'f§"<w, NI

U for a—c+2 >0,
~pu(w, x)n"tlogn  for a—c+2 =0,
! p2le—a—6/2)- fQP‘,_. "d—'-c’:+2 L O,
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holds uniformly for n€N.-and x€R. In addition, analogous estimates hold when
[l ~x (W)€ is replaced by [1-+x;,(W)l~° in the left-hand side of (4.21).
Proof. By (3.6) we have
[l =X W]~ [x = X1 (W) (W, X) p°w, X) =
= (Vn-1(W)/Pa (W) {1 ~ X (W]~ 2a (W)? P71 (W, X (W)
Since lim [y,—y(W)/v.(W]=1/2 (cf. (4.11)), we can use (4.4) and (4.8) to obtain
[1 =X (W =[x — X W) £ (w, X) p 2 (W, X)~
W= (W)] S+ L ()02

for n€éN, and then (4.21) follows from (4.1) via routine estimates.

Lemma 4.6, Let w=gw™" be a generalized.Jacobi weight function, and let
O<e<l. Then

(4.22) sup max Z[I-x,m(w)] g, )12 (o0, ) <

wml —EEXEE [
for c=a+3/2 and
(4.23) Jim max 2 [1 =%, ()] =41 — Xin (W) Ein (W, X) =
Jor c<a+5/2. V

. Proof. First let ¢=0. For ¢=0 formula (4.23) was proved in [24, Lemma 4,
(36), p. 40]. The proof of (4.22) with ¢=0 is based on

(4.249) " sup max Z’ f,,,,(w, X) <oo

pz=1 TESXTeE o

which was verlﬁed in [24, Lemma 4 (35), p- 40]. We write

4.25) .
2N W, N (W, x) = 5 oW, O w, )+ 5 g (v, )| £ (W, ).
k=1 2fxp,|<1+e 2lxp, _1+5

By Freud’s formula (3.9) and by Lemma 4.3 (cf. (4.18)), [0 (W, X)| =K for 2|x,,|<
<1+4¢& and —e=x=¢ Hence (4.24) can be used to estimate the first sum on the
right-hand side of (4.25). For 2|x,|=1+¢ and —e=x=¢ we can apply again
(3.9) and (4.18) to obtain |v,,(w, x)| =K{[l —x,,(w)?]~". Now, in view of (4.4) and
(4.8), A(WIPE_ (W, Xy W) =X, (W) ' ~n~L.  Therefore, the Gauss—Jacobi
quadrature formula (cf. [32, Theorem 3.4.1, p. 47]), (3.6) and (4.11) yield

2 |Paln )Ny, x).= KnTpi(w, %) Z hu(w) =

alxylzl+e 2|xp,lz14e

= Kn '3, %) 2 Pea(W) = Kni=pw, %) [w
R
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for —e=x=¢ and neN. By (4.3) the generalized Jacobi polynomials are uniformly
bounded for —e=x=¢. Therefore, the second sum on the right-hand side of (4.25)
converges to 0 as n— o uniformly for —e=x=¢. Consequently (4.22) and (4.23)
hold for ¢=0 which naturally implies their validity for all ¢<0 as well. The ex-
tension of (4.22) and (4.23) to all permlssab]e values of c¢ is done via Lemma 4 5 as
follows. We write . : ' -

g"' l xkn(w) Clvkn(ws x)|fl%n(w, X) = 2 [l —Xk,,(W)]—cI?)kn(W, x)]’%n(wa X)+

2| xpnl<1+e

. U N (T e T O /A S W
2 x4 .

To prove (4.22), we can estimate the first sum on the right-hand side here by (4.22)
applied with ¢=0, whereas for the second sum Lemma 4.5 can be used in the fol-
lowing way. First, we can assume that ¢=a-+1. Second, we do not need to con-
cern ourselves with ‘p%(w, x) since by (4.2) it is uniformly bounded in the interval
[—e&, ¢]. Thirdly, we note as before that |v,,(w, x)| =K[1—x,(w)*]™1 (cf. (3.9) and
(4.18)). Thus applying (4.21) with c¢+1 instead of ¢, inequality (4.22) follows.
Formula (4.23) can be proved in a similar way from (4.21) applied with ¢ and then
from (4.23) applied with ¢=0. :

Lemma 4.7. Let w=gw»® be a generalized Jacobi weight function, and let
—l<e<|1. Then for every nonnegative c we have

426) sup max (1-3)° 3 [1—x, (]2 (w, x) <eo
. nz1 ESX= B . k=1 . .-

if c=52<a<c,
(427)  sup max (1—x)° 3 [1 =% (0]~ |x = X (9| £5a 00, 2) <o
n=1 ESX=E . k=1

if c=32=a<c, and .

@28)  lim max (1=9° 3 (1= %u(0)]=1x— s £2a(w, ) = O

if c—5/2<a<c.

Proof. Unfortunately, we were unable to find a nontechnical proof, not even
one with partially soft features. On the other hand, the computation yielding (4.26)—
(4.28) is totally routine, and thus we can (and must) save the reader from the details.
Instead, we provide a few hints and instructions as to the nature of the computa-
tions. Thus, let ¢=0 satisfy the appropriate conditions. First, by Lemma 4.6 we
can assume e=1/2. Second, in view of Lemma 4,5 and inequality (4.2), one needs



90 Paul Nevai and Péter Vértesi

to consider only those values of k in (4.26)—(4.28) for which x,,(w) is positive.
Third, since

L2089, X) S D) 3 Lo (W Xy (0) ™ = 2 (W) 257, %)

(cf. (3.3) and (7, formula (1.4.7), p. 25]), we have by (4.1), (4.7) and (4.8) -~

sup max (1 —x)°[1 —x,,(W)]~£2,, (v, x) <o,

"218 X=

sup max (l —x)c[l - Ym"(”))] e 1lx_—xmn (‘v)lfmn(‘v’ x) =ee

n=1 e=x=

and
lim max (1 —x)°[1 —x,,, (W)])~¢|x —x,,,(W)| £2,,(w, x) =0

n—+oo gBx=}

for all nonnegative c¢. Here (and in what follows) m is the index of one of the zeros
X (w) which are closest to x. Hence it is sufficient to estimate the sums in (4.26)—
(4.28) for which x=1/2, x,,(w)=0 and k>m. For such values of x and x,,(w)
we can use (4.1) to verify (1—x)=K(m/n)?, (1—x;,,(W))~(k/n)? and [x—x,,(W)|~
~|m*—k?n—2. Moreover, in view of expression (3.6) for the fundamental poly-
nomials £,(w), we also need inequalities for y,_y(W)/7,()s A (W), | Do (W, Xen(W))|
and |p,(w,x)l. The required estimates are given by formulas (4.11), (4.8), (4.4)
and (4.2), respectively (cf. (4.1) as well). Putting all the pieces together, the proof of
the lemma is reduced to showing

(4.29) sup max m~—329+2-1 Z k=243 |2 k2 ~? <oo
nzl 1=ms=n k=1
k#m

if ¢—5/2<a=c,

(4.30) Slill) 123"?;‘,, m—2a+2— 1k2; k.a 2c+1|m2 k2, l oo
n =
k#m

if ¢c—3/2=a<c, and

4.31) lim max n—2m—2+2-1 Z’k“ 43|12 k2"l = Q
n—ecol=m=n k=1
k#m

if ¢c—5/2<a<c. Estimating sums such as the ones in (4.29)—4.31) is a routine
exercise, and it is easily accomplished via splitting up the range of the index k into
four subsets given by the inequalities 1=k=[m/2], [m/2l<k<m, m<k<2m and
2m=k=n. Or, as an alternative, one can apply [19, Lemma 6.3, p. 109] from which
(4.29)—4.31) follow immediately.
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5. Underlying ideas (Part I)

Even though a significant portion of results concerning Hermite—Fejér inter-
polation is proved via hard analysis, such an approach is not always capable of
producing the right result. For instance, if one tries to prove the uniform boundedness
of the Hermite—Fejér interpolating polynomials associated with the zeros of Legendre
polynomials in [—1, 1] by splitting up the interpolating polynomials and by at-
tempting to prove the uniform boundedness of 3 |x—xl(1—x},)71¢;,(x) and
2 ¢%.(x) which comes to one’s mind when examining (3.7) and (4.17) with a=b=0,
then_one is. destined to fail since the maximums of the latter two expressions are
of precise order log n, and thus they are unbounded. In other words, Proposition 1.2
with a=b=0 holds for more delicate reasons. These reasons are of the soft variety
related to the positivity of the operator sequence {H,(w®”)}. Since for generalized
Jacobi weights of the form w=gw®? both sequences

2 =X W (L —Xin(W)H) 7245, (W, ¥)

and J /;,(w, x) are also unbounded on [e, 1], one is forced again into finding a
more sensible and sensitive approach to estimating {H,(w, f)}. This is the subject
of this section, and we will accomplish it via soft analysis which is based on some_
quasi-positivity properties of the former sequence.

Theorem 5.1. Let w=gw®® be a generalized Jacobi weight function, and let
—1l<g<|1. Then
sup max IH W, f, X)| <o

n=1 €

for every function f bounded in [—1, 1].

Proof. According to (3.7) we have to prove

(5.1) sup max 2 [0 (Wy XY £, (W, X) <oo.

n=1 e=x=1

Step 1. Here we will show quasi-positivity of v,m(w) in some sense which helps
to reduce the Lebesgue function in (5.1) to an expression which can be subjected to
rougher handling without ruining its essential behavior. Our main tool is Lemma 4.4
applied with a=0 according to which

52" v 1) = 1)L =X (D) (1430 9) =K (1 =X ().

Hence there exists d€[—1,¢) such that o,(w, )=1 for —1<x,,(w)=d. But
U4, (W) 1is a linear function which takes the value 1 at x,,(w). Consequently,

(5.3) Vi (W, X) =1 for —1< Xgp(w)=d and x€[e, 1].
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If d<x,,(w)<1 then by (5.2)
V(W 1) = — K(1 —x,,,(W)),

and by (3.9), (4.8) and (4.10) we have |v,(w, x)|=K(1—x,, (W)~ Therefore
we obtain

Vw05 X) = —K(1 — 2, (W) ~
5.9 ~RA—-x)(1—x,w)~t for d<x,w)<1 and x€[e, 1]

with an appropriate positive constant K. Now by (5.3) and (5.4) we have

2 12, NCE(w, X) = 3 oW, N0, )+ J [0, (9, D¢ E (w, X) =

= X n=d Xrn™>

= Z vkn(wa x)l?m(w, x) + 2 vkn (W, x)’lzm(wy x)+

x,m_d Xpen™

+2K 2’ (1 — x4 (W) 2 (w, x) +2K(1 —x) - 2 (1—xp,(w)) 243 ,,(y'v,x)=b, .

Xkn™ Xpen™

= 142K 2 (1 =X (W) £3, (w, x)+2K (1 —x) Z’ (1 =X (W) 122, 0w, X)

knX>d Xen™
since Hermite—Fejér interpolation preserves the constant function. Using the
asymptotics for the Cotes numbers (4.8) we obtain from here

(5.5 Zn’ VW, X)| €5 (W, x) = 14+Kn~1 j (1 =X W12 D (W) 7242, (W, X) +
k=1 k=1
FR L1 —x) 3 (L 0 () Y2 24 (9)1L50 (9, X)
k=1

which is the inequality we were to establish in the first step of the proof.

Step 2. The first sum on the right-hand side of (5.5) can be estimated by
applying the same techniques that led to (4.26) in Lemma4.7. However,
we will proceed in a different way which consists of evaluating the sum
S (1 =x, (W) (W) 72L2 (w, x) in a closed form. We have

2(1 xkn(W))lkn(W) w7 n(W5 x) =(1-%) Zlkn(w) Hn(w, X) +

+ 2 (x— an(W)))k”(W) lf (ws X)

Here the ﬁrst sum on the right-hand side equals l‘l(w x) (cf 17, formula (1.4. 7)
p. 25]), whereas the second one can be obtained from (3.6) and the Lagrange inter-
polation formula. We get :

3 (1= 50 () (09) a0, ) =

= (L=X) 2710, )+ (Pa= 10930 () Py, X) s (9, %).
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Thus, applying (4.2), (4.7) and (4.11) we obtain

sup max n -1 2(1 Xy (W) Ay (W) "2LE, (W, X) <oo

n=1 eSXxsS

from which the inequality

(5.6) - ~ sup max n -1 2(1 Xien (W) g (W) 2 L3 (W, X) <o

nz=1 ES=XE
follows as well.

Step 3. The umform boundedness of the second sum on the right-hand side
of (5.5) was established in Lemma 4.7 (cf. (4.26)). This can also be shown via re-
placing computations by some propertles of Chrlstoﬂ'el functlons as follows. By
Cauchy’s inequality

[2 (1= X ()~ Y2 D ()22 o9, O] = 2 Aan (W) 1£2, (9, X)X

><2 (1= X0 (9)) 2 (9) " 1E20 0y X) = Joa (9, %) Ayoa (O, X)

(here w is defined by Ww(x)=(1—x)w(x)) where we used two identities involving
Christoffel functions (cf. [7, formula (1.4.7), p. 25}, [6, Lemma 2, formula (15),
p. 251] and [19, Lemma 6.1.4, p. 59]). Since both w and W are generalized Jacobi
weights, we can use (4.7) to obtain

(7 sup max n(1-) 2"(l—xkn(w))-lfzzk,,(w)“v \05,) <.

Inequahty 5.1 follows from (5 5)—(. 7) and so does the theorem

6. Underlying ideas (Part II)

" Here we will be concerned about the connection between uniform convergence
of Hermite—Fejér interpolation and its behavior at one single point. In other
words, we look behmd the scenes that govern the phenomenon described in Theo-
rem 5.1.

For s nonnegatlve integer define the function w by U (v) (1—x)°. Then it
turns out that under certain circumstances it is more convenient to approxmlate
feCl—1,1] by u H,(w,fu7') then by H.(w,f). Since the former vanishes at
x=1 for s>0, it can only approximate such functions f which also vanish at
x=1. What is aga.inst H,(w,f) is that if w(l)_‘:=0 then the sequence of the cor-
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responding Lebesgue functions becomes unbounded at 1 and .thus lim H,(w, f)=f
cannot be expected at the point 1 or uniformly in a neighborhood of 1. What
u H,(w, fu;') does is that it tempers the quick growth of p,(w) in such a way
that and operator U, H,(w)U;* (where U ! is the multiplication operator defined
by the formula U,(g)=u,g) becomes appropriately balanced with .the right
choice of s.

The real role of u,H,(w, fu7') is that it is the principal term in the Hermite—
Fejér type interpolating polynomial H, ((w,f) defined by

Hn s(lv ./; xkn(w)) f(xkn(w)) Hn v('vsf; xkn (\‘V)) = 03

k=1,2,...,n, and
' HAw,£,1) =0

for j=0,1, ...,s—1. The closed formula for H, (w,f) is.given by

(6.1) H, s, f) = uH,(w, fug )+ u, H,w, flu5])

(cf. (3.7) and (3.11)) which is easy to verify directly (cf.' [38, Section 3.2, p. 88]).

It was E. EGERVARY and P. TURAN [3] who first realized how H, ,(w,f) can be

used to investigate uniform convergence of H,(w,f) for the Legendre weight func-

tion w=w®% The process H, (w*?,f) was fully investigated in [38] where

it was shown that it can be used to prove necessary and sufficient conditions for

uniform convergence of Hermite—Fejér interpolation at zeros of Jacobi poly-

nomials. The reason-for the usefulness of u H,(iv, fu;') and H, ,(w,f) lies in the

representation :

(6.2) _ » |
Hyw, £, %) = Hy s (0, £, %)+ 020w, %) 2 (/KD H, (w, £, D pi 2w, DI (x— 1)}

which provides a direct link between H,(w, f), u; H,(w, fu;*), p,(w) and H,(w, f, ).
The verification of (6.2) is again easily done by checking out the interpolation con-
ditions. The following is not only a tool necessary for proving one our main results
(cf. Theorem 2.5) but the special case s=1 is also a de facto solution of P. Turan’s
Problem XXVII in his collection of “On some open problems of approximation
theory” (cf [35, p. 47)).

- Theorem 6.1. Let w=gw®® be a generalized Jacobi weight function, and let
—1<e<1. Let f be continuous in [—1,1] such that f(1)=0. Let a=0, b>—1,
and let s be a fixed positive integer such that a€l[s—1,s). Then

63 lim max /)=, () Hy(w, fuz, 2)] = 0
and
64 © - lm max ) —Ho, 0l =0.
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Proof. In view of (3.11), (6.1) and Lemma 4.7 we have

lim max |Hy, s W5 £ ) —u(X)H, (w, fu;*, x)| =0

n-—+-oo BS X

so that it is sufficient to prove (6.3).

Step 1. First we prove (6.3) for the special case when the function f'is given by
f(x)=1-—x. Then

f(x)—us(x)Hn(W3fus_l’ x) = ul(x)[l —us—l(x)Hn(w’ (us—l)—la x)]
so that applying (6.1) and (6.2) with f=1 and s—1 we obtain
f(x)_us(x) Hn(wsfus_l’ X) = ul(x)[l —Hn,s—l(w5 19 X)+us_1(X)3ﬁ,(W, [us_—1]]’9 x)] =

=y (x) par (W, X) :_g_;z (/&) [pa-+(w, DI® (x~ 1*+ 14y ()[4 1 (x) 5, (w, [u524]'5 %))

Here the first term on the right-hand side can be estimated using (4.2) and (4.6),
while the second one by Lemma 4.7 (cf. (3.11) and (4.28) applied with c=s). ThlS
proves (6. 3) for f=u,.

Step 2. Now let f be continuous and f(1)=0. The point is that the sequence
of operators from C[—1,1] into C[e, 1] given by f—u H,(w,fu;") is uniformly
bounded by (3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.26) and (4.27) applied
with c=s). Therefore we can finish the proof in the routine fashion as follows.
Given 6=0 there exists a polynomial P such that P(1)=0 and | f(x)—P(x)|=06
for x€[—1, 1] (cf. [34, Theorem 2, p. 259]). Write P=u, Q. With this polynomial
P we have

(6 5) f(x) us(X)H,,(W fu_l’ -x) = [f(x)—P(x)]—u (x)H (W, (f_P)us—ls X)‘-'
=, () Ho (w, [Q = Q] [15-217, %)+ Q) [ () — 0, (X) Hy (9, 10,457, ).
By_i(3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.28) applied with c=s)

lim max |uts () Ho (0, [Q — Q) [t-1) 7% %)| =

n—>co g3ZX

since |Q(xx)— Q)| =K|xy,—x|, whereas the last term on the right-hand side
was taken care of in the first part of the proof. Therefore lettmg n—oo in (6 5)
we obtain : -

lim sup max 1£(x)~u, () H, (w, fus%, x)| = K&

fror“nv which (6.3) follows.
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7. The proofs

On the basis of the results in Sections 4—6 this can be accomplished virtually in
a few lines.

Proof of Theorem 2.1. This follows from Lemma 4.6 applied with ¢=0.
The details are as follows. By (3.7) and (4.22) the sequence of Hermite—Fejér inter-
polating polynomials is a bounded sequence of operators from C[—1,1] to
C[—¢, ). By (3:10), (3.11) and (4.23) it converges for polynomials, that is for a dense
set of function in C{—1, 1]. A

Proof of Theorem 2.2. This was de facto proved in [24, Lemma 5, formula
(46), p--43] where it is given with n~* replaced by np, 2(w, 1). However, in view of
(4.3), they are of the same order.

Proof of Theorem 2.3. First let w(l)=c. Then by (3.7), (3.9), (4.2), (4.8),
(4.10), Lemma 4.5 and Lemma 4.7 (cf. (4.26) and (4.27) applied with ¢=0) the
Hermite—Fejér -interpolating polynomials are uniformly bounded in [, 1]
(here inequality (4.2) and Lemma4.5 are needed to estimate the expression
> [+ xm (W] x — X, (W)] 45, (W, X)). If O<w(1)<eo then this is given in Theo-
rem 5.1.-The necessity of the condition w(1)>=0 follows from Theorem 2.2,

" Proof of Theorem 24. If w(l)=c then by formulas (3.7), (3.10), (3.11)
and Lemma4 7 (cf. (4 28) applied with ¢=0) the Hermite—Fejér interpolating
polynomlals H,(w, P) converge uniformly in [g, 1] for every fixed polynomial
P' Thus Theorem 2.3 yields convergence for every continuous function. The neces-
51ty of the condition w(l1)=c “for uniform convergence in [g, 1] fol]ows from
Theorem 2.2.

Proof of Theorem 2.5. If lim H,(w, f)=f uniformly.in a left neighborhood
of the point 1 then by Markov’s theorem (cf. [16, § VL6, p. 141]) the r-th derivative
of H,(w, f) is o(n*) in the same interval for every r=1,2,.... On the other hand,
if we have information concerning the behavior of H,(w, f ) at 1 then we can use
Theorem 6.1 (either of (6.3) and (6.4)) and formulas (6.1) and (6.2). First, we can
assume without loss of generality that f(1)=0 (cf. (3.7), (3.10) and (3.11)). We
need to prove o
lim maXPn(W, x) Z' (l/k')[H w, f, 1)17,72("’, DIB(x—-1)* = 0

Th1s follows 1mmed1ately by stralghtforward apphcatlon of inequalities (4.2), (4 6)
and the conditions H(’)(w f l) O(nz’), r=0,1,

Proof of Theorem 2.6. We use an observatlon by G FREUD in [9, formula
(2), p. 176] according to which since H.(w,f) vanishes at the zeros of p,(w) we
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have H(w,f)=p,(w)Q,_, where Q,_, is a polynomial of degree at- most n— -2,
Thus by orthogonality

1 N - -
[ Hiow, £, 0w )1+ dt =0,
-1
and integration by parts yields

H,w,f,1) = 2w())™! [ HoOw, £, 9 dIw(D(1+9)]

(cf. [9, formula (4), p. 176]). Now we can use Proposition 1.6 applied with u=w
to pass to the limit of the integral which together with Theorem 2.5 proves Theo-
rem 2.6.
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Orthogonal polynomials and their zeros

PAUL NEVAI*) and VILMOS TOTIK

Let du be a finite positive Borel measure on the interval [0,2x) such that
its support is an infinite set, and let {@,}2,, ¢,(2)=0,(dy, 2)=x,2"+..., %,=
=x,(du)=>0, denote the system of orthonormal polynomials associated with dg,
that is,

2z
T]T[- f(Pm(Z)m d[l(e) = 5""" 7 = ew

The corresponding monic orthogonal polyndmials % 1@, will be denoted by &,.
For an nth degree polynomial P the reverse polynomial P* is defined by P*(z)=
=z"P(1/Z). Let z,=z,,(du) be the zeros of ¢, ordered in such a way that

(l) |znn| = 'Zn—l,n' =.L= 'zlnl = 1
(cf. [7, p. 292)).

P. ArFaro and L. VigiL (cf. {1, Proposition 1] and [2, Theorem 1]) proved
that for every sequence of compléx numbers {z,}=, with |z|<I, n=1,2,.
there is a unique measure du (modulo an arbitrary positive constant factor) such

that ¢,(du, z,)=0 for n=1,2, .... This result can be obtained from the recurrence
formula ‘
03] ®,(2) = 20,-1(2)+2,(0) #]_1(2)

(cf. [7, formula (11 4.7), p. 293]) as follows. By (2) the recurrence coefﬁ01ents o (0)

*) This material is based upon research supported by the National Science Foundation under -
Grant No. DMS 84—19525, by the United States Information Agency under Sénior Research
Fulbright Grant No. 85—41612 and by the Hungarian Ministry of Education (first author). The
work was started while the second author visited The Ohio State University between 1983 and
1985, and.it. was completed. during the-first author’s visit to Hungary in 1985.
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can be expressed as
D,(0) = — 2, P, 1(24)/ P 1(2Zkn)s

and thus one can successively define the monic polynomials ¥, by ;=1 and

lpn(z) = z'#n—l(z)_[zn‘//n—l(zn)/lp:—l(zn)]lﬁ:—l(z)’

n=1,2,.... Itis a matter of simple induction to show that |,(0)|<1,n=1,2, ...,
and then {y,}2, is orthogonal with respect to some dp (cf. [4, Theorem 8.1, p. 156]).
Since V,(z,)=0, this is the measure du we were looking for.

We point out that P. 'Alfaro-and L. Vigil’s result solves the following problem
proposed by P. Turan: is there a measure du such that the set {z;,(du)} is dense in
the unit disk (cf. [9, Problem 67, p. 69]). Namely, the above measure du associated
with any séquence {z,} which is dense in the unit disk provides such an example.

-~ In.view of this.result by P. Alfaro and L. Vigil (and also because of the rela-
tion @,(0)=1IIz,,),- one would want to seek for connections between orthogonal
polynomials, their zeros and their recurrence coefficients. In spite of the great variety
of results of such nature for orthogonal polynomials on the real line, and in spite
of the intimate connettion betwéén real and complex orthogonal polynomials, there
is only a very limited amount of research performed in this direction (cf. J. Sza-
BADOS [6] and R Askey s comment to’ paper [34—2] in [8, Vol. 2, p. 542]).

* The main purpose of this note is to find a relatlonshlp between the quantltles
ri, s, ry'and ry which are defined as follows: -

r(dp) = hm sup |®: (dpt-O) |,
re (dll) inf lim sup | Zin (),

r,,(d,u) {mf r sup max |d5*(d/,¢, z)| <oo}

and
. r,;(d;t) {mf r: D(du, z)‘1 is analytlc for IzI <r71}

} u=ei‘,

1f log W is mtegrable and D(du)=0 otherwise (cf [3], [4], [5] and [7])

where for |z]<1 the Szego function D(dy) is given by

D(dy, z) = exp{ f log,u (t)

Theorem 1. For every measure dp we have rl(d/z) rz(du) If -there is .
16{1 2 3 4} such that rj(du)<1 then ry(dp)= ra(dy) ra(dy). '

Proof

Step 1. rlfr2 Smce D, (0) Hz,", and iz,‘,,|<l ‘we have |d> (0)|<|z,‘,,l""""1
for k=1,2,..,n (cf. (1)), and thus r,=r, follows. ..
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Step 2. r,=1=3r,=r,. This is obvious in view of Step 1 and FZl

Step 3. < 1:»;-:,, rOSr=r. By a tesult of Ya. L. GERONIMUS [4, Theorem 8.3,
p. 160] the sequence {|®,|} is uniformly bounded on the unit circle. Thus by the
maximum principle {|z—’l ®,(2)1} is uniformly bounded for |z| >1 Repeated apph-
cation of the recurrence formula (2) leads to Come

B (2) = 1+z”2_'1m¢;‘(z).

Therefore lim §;=®* exists uniformly on every disk with radlus less than r;
which implies ry=r,. By formula (8.6) in [4 p. 156]

@ | x3=uslg[1—|¢,<0)|21—1

so that r,<1 implies the boundedness of the sequence {»,} which by a theorem of
Ya. L. GEroNIMUS [4, Section 1.2 (15), p. 14] guarantees the integrability of log.p’.-
But then by the Szegd theory (cf. {7, Theorem 12.1.1, p: 297}). lim ¢¥=D(0)D?
holds uniformly on compact subsets of the open unit disk where D denotes "the.
Szeg6 function. Applying Vitali’s theorem we can conclude that lim ¢} (z)=&*(z)
exists for every |zj<r;t and obtain ¢*= D(O)D ', -and ‘thus Fy=ry. In addi-
tion, since di* possesses at most a finite number of zeros inside every - disk with
radius r<r;l, the number of elements of the sets {z |lz|=r, &} (z) 0} 'is bounded
for every r<r;l. This follows ffom Rouche’s theorem,. In ‘ other- words,
{I{an}k_':oﬂ{2.3.|Z|—"}|},.~o is bounded for every r>ry. Thus n=rg.

Step 4. r;=r;. We may assume ry<-os. Then by Cauchy’ s formula® .

T IL FRIEEE:
Qn(o) = Tilzlg_l z ¢" (Z) dz = O(rﬂ)‘

holds for every r=r,.  Hence ry=ry. -~

Step 5. rn=r,. We may assume r,<l. Then logpu’ is"apriori integrable,
and thus we have the Szeg theory at our disposition. Applying formula (5.1.18)
in [3, p. 195} and using lim <pn =D~ in Ly(dp) (cf. [3 ,p 219]) we obtain

- _—

@ %0 jD 128, du(®) z—ew‘

Let us denote the Taylor expansion of D! by Zc,z*. Then" lim sup lelllkzr; and
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by orthogonality

,©0) = 27: f [chz"]df'(z)du(ﬂ), z =",

Now using Cauchy’s inequality and x,=x, (cf. (3)) we obtain r,=r,.
Combining the inequalities proved in Steps 1 through 5, we get immediately
Theorem 1.

Corollary. The following assertions are pairwise equivalent:

(2) limsup |z, (d)| < 1.

(b) lim sﬁp |®,(dp, /" < 1.

(c) du is absolutely continuous and u (0) g(0) a.e. where g is a positive
analytic function. -

Remark. 1. Note that this corollary characterizes the measures for which all
zeros of the corresponding orthogonal polynomials lie in a smaller circle inside the

unit circle.
2. There are many other statements equivalent to (a) above. Here are a few

of them: 7
(d) There is O<r<1 such that @,(du, 2)=0(") for |z]=r.
(©) lim sup max @, 1(dy, 2) —28,(dp, " < 1. |
() tim sup ess sup |9, (dpt, 2)z="~D~}(dp, 2)| < 1.

Using the considerations below it is a fairly simple exerciée to prové that éh’y “of
(d)—(f).is equivalent to any of (a)—(c).

Proof of the Corollary. (a)=>(b) by Theorem 1. That (c) implies (b) fol-
lows from the formula

5,0 =5 [ 0o~ OV EG w0 =

n

= e [ (WO T O) 5 du(®) (z =)

(cf. (4)) where T,_, is any trigonometric polynomial of degree at most n—1, if
we take into account that the @,’s are uniformly bounded on |zj=1 (see [4, Theo-
rem 4.5)) and that, by the analiticity of (#’)~'/%, we can choose a 0<g<1 and
{T,-.} such that

< [ @©)~2~T,-,(0)| = Kq" (6€[0, 2n)). .
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" Finally, both (b)=(a) and (b)=(c) follows if we can show (see- Step 3
above) that

() d*(2) = 0 if |z|=1.

In fact, (b) implies that dy is absolutely continuous (see [4, Theorem 8.5]) ard
@ (0)=D"2(e") a.e., hence (b)={c) is an immediate consequence of Step 3; .while
(b)=>(a) can be derived from Rouché’s theorem, namely there is a neighbourhobd
U of the unit circumference such that &* does not have a zero in U (and hence di
does not have a zero in U™Y) for large n. (5) follows from

vt

&*(2) = DO)D1(2) = (W(B))™V% z=¢€l" "

and the analiticity of * on |z|=1 (which was proved above under the assumption
(b)), namely @*(e%)=0 would imply that u'(0)~ ~(8—6,)"% in a neighborhood
of 8, except on a set of measure zero and this contradicts u’€ L'[0,—m, 0+ 7).
The proof is complete.

Example. Let 1<R=oco. Let f be analytic in the open (but not in the closed)
disk Uy with radius R centered at 0, and assume f(0)=1 and f(z)#0 for |z|=1.
Let l<|z|=|z|=... be the zeros of fin Ug. Define the measure dy by dp(@)_ “
=|f(¢*)|"2df. Then lim ®¥(z)=f(z) uniformly for |z|=r<R. Hence :

6) ’!_‘fg Zy(dy) = (Ek)_'l

holds for every k if f has infinitely many zeros in Ug. If f has finitely maﬁy zéros_
there, say N, then (6) is satisfied for k=1, 2 s N. In the former case we have

R™! = lim SUP |@, (dpe, Q)" < lim |z, (dpt)| = |Zk|"1

k=1,2,.... If, in addition, fis a polynomial of degree, say, r'n then by the Bern-
stem—Szego formula (cf. [3, Theorem 5.4.5, p. 224]) &}=f for n=m, and thus
Za=0E) k=1,2, ...,m, 2,=0, k=m+1,...,n and @,(0)= 0 “holds for n=m.”

We conclude this paper by observing that similarly to P. Alfaro and L. Vigil’s
result in [1, 2], orthogonal polynomials on the real line are also completely deter-
mined by some of their zeros. ’

Theorem 2. Let {x,)=, and {y,};2, be given sequences of real numbers
such that
=Xy =Xg<=X; =P <Y <)<

Then there exists a unigue system of monic polynomials {P,}:>, orthogonal with
respect to a positive measure on the real line such that P, (x,)=P,(y,)=0 and P,(t)0

Jor té[x,, y.)s n=1,2,....
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Proof. Set Py=1, 4,=0.and b,=x,. Define {P,}7.,, {4}, and {b,}>, by
M B(x) = (x—by_) By (x)— 4,1 F,_2(x),

_ B_y(xy41)  Poei(Wa+1) B 1(Xp4y1)
A= (spua=oa)| ens) - BaOhs 4 Do)

(The latter two formulae come from (7) and from the requirement P, ,(x,.,)=
=P,1(Va41)=0.) Using induction one can show that P,(x)=0 if x¢[x,,y.],
P,(x,)=P,(y,)=0 and A4,>0 for n=1,2,.... Hence by Favard’s theorem (cf.
[3, Theorem 2.1.5, p. 60]) {P,}==., is an orthogonal polynomial system.

If x,=—y, for n=1,2,..., then the formula for 4, and b, above reduces to

and bn = Xps1—

B, (xy+1)
A, =%y =2tV g b = 0.
b P 1( n+1)
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Noncyclic vectors for the backward Bergman shift

SHELLEY WALSH*)

§ 1. Introduction and notation. The Bergman space /2 is the Hilbert space of
analytic functions f on the unit disk D such that

] 1 2r 1 )
2 = - i0}]2 o
1A% = ”of of [f(re®)?r dr df <eo.

The Bergman shift is the operator § on A* defined by (Sf)(2)=2zf(z). If we let
n+1\12
n+2 ) L
so S is a weighted shift. The Bergman ShlftIIS a subnormal operator so in particular
it is hyponormal, so by Theorem 2 in [5], the functions which are contained in
finite dimensional S*-invariant subspaces are the finite linear combinations of the
functions of the form K, , for some «€D and r a nonnegative integer. In this paper
1 will give some examples of noncyclic vectors for S*, which are not contained in
finite dimensional S*-invariant subspaces. I will do this by giving two sufficient

e,=(n+ ])1/ 27" then {e,}>2,is an orthonormal basis for &/? and Se, —(

conditions for the smallest invariant subspace containing the function 2 ckK

to be the orthogonal complement of {f: f(o)=0 for all k}. This is done in §2

The theorem in [2] which Theorem 1 in [5] follows from for the special case
of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the
sum of two noncyclic vectors 1s noncyclic. In § 3 I will use the second condition
given in § 2 to show that this is not true for S*. o

Throughout this paper cyclic will mean cyclic for S§*. If fE&ﬂ then [f].
will be the smallest S™*-invariant subspace containing f. If «a€D and » is a nonnega-

*) This paper includes a part of the author’s dissertation [4] written under Professor Sarason
at the University of California—Berkeley, while a member of the Technical Staff of Hughes Air-
craft Company, Ground Systems Group, and a holder of a Howard Hughes Fellowship.
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tive integer then X, , will be the function in &% such that {f, K, ,)=f"(2) and
K, o will be written K, when it is convenient.
Since

1)!
4..(2)-Z(J+1)1 (J—n+N)al~"zi = %z))'—f

Theorem 1’ in [5] can be stated for the Bergman shift as follows.

Theorem O. If f is analytic in a neighborhood of D, then f is either cyclic or a
rational function with zero residue at each pole.

Proof. It suffices to show that the rational functions with zero residue at each
pole are the linear combinations of the K| ,’s. The residue of X, , at its only pole

1
(oo [ o

-—_ is

&

so any lineary combination of the K, ,’s has zero residue at all its poles. Conversely,
to show that every rational function with zero residue at each poleis a linear com-

bination of the K, ,’s it suffices to show that the function ————— is a linear
: (1l —az)*+
combination of them, for any «¢D and nonnegative integer n. This is true because
ny_. .
! . ()

(1=azr+ ~ & (1-azi*t"

§ 2. Some infinite dimensional cyclic invariant subspaces for S*.

" Theorem 1. If {& ), is a Blaschke sequence of distinct, pomfs in D and
{ck}k_1 is a sequence of nonzero complex numbers such that f= Z’ oK, €4, then
={gcot?: g(o)=0 for all k}*.
Proof. If g(¢)=0 for all k then

(& S*f) = (. f) =§ Gag(@) =0, so ge[flt.

If he H= then if h*(z)=h(Z), there is a uniformly bounded sequence of -poly-

nomials {g,}" with [g,—h*|~0. Then lig,(S*)f—P@EN)|=|P(q.(E)f—Fkf)|=
=|q,(2)f—hf|l which tends to zero by the Lebesgue dominated convergence theo-
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remso P()EL /1, Henceif g L1f], then 0=(e, P(Rf))=(he:f)= 3 h(x)g ()

for any hin H*=. Fix m and let h be an H* function such that h(x,)= 1 and h{o)=0
for k>#m. Then c,g(2,)=0. Since ¢,0, it follows that g(x,)=0.

The next result uses a result of L. BROWN, A. SHIELDS, and K. ZeLLER [1] con-
cerning dominating sequences.

Definition. If {&} is a sequence of distinct points in D, then {a,} is dominating
if for any function h in H, we have l|h[|°°=s1gp 1A (o).
The following is contained in Theorem 3 of [1].
Lemma 1. If {w};L, is a sequence of distinct points in D with all its limit points
on dD, then the following are equivalent.
(i) There exists {a,};>, such that O< f lal< e and f a05=0 for all non-
o k=1 k=1
negative integers n.
(i1) {0} is a dominating sequence. :
(iii) Almost every boundary point p=e* may be approached nontangentially by
points of {u}. :

Theorem 2. Let {o);>, be a sequence of distinct points in D which has all
its limit points on 0D and is not a dominating sequence and let {c;};>., be a sequence

of nonzero complex numbers such that Z’ If f= Zo’o K, , then
[f1.={gcsf?: g(o)=0 for all k}*.

Proof. If g(e)=0 for all k, then for any n, we have

| kiz

(g S™f) = 2 Gapg(a) =0

so gelf1E. If ge[fIt then Z°'°c—ka2g(ak)=0, for any n. For any k, we have
k=1

g = g K = lghK, ) = 80
: LA .
So since 2’ -1—||—||—2< o, the sum 2’ [ckg(x)] is finite. Thus by Lemma 1, we
k=1 1—|o k=1

have c¢.g(x,)=0 for all k. Since ¢,=0, it follows that g(e,)=0 for all k.

§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theo-
rem 2 and the results and methods in [3] concerning zero sets for /% to give an
example of two noncyclic vectors whose sum is cyclic.

Definition. 4 set E of points in D is a zero set for o4 if there exists a function
f#£0 in o* with f(z)=0 (where z¢D) if and only if z is in E,
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. The folloWing lemmas are proved in [3].

Lemma 2. If u>1 and B is aposmve mteger wzth ﬂ>u2+] then'

f(@ = H (1+pz)eot?.

.Lemma 3. If feo?, f(0)=0 and {al,az, ...} are the zeros of f indexed so
that |og|=|ay,], then

L
]I—-—|—=O(N1/3). ~

Lemma 4. Let f(z)=[](1+uzﬁ’) where p=1 and -B=2 .is an. integer. If

. =0
_logp g '
- logﬁ

then ]]—>Const - N
»k=l akl

and “{oy, %) ...} are the zeros.of fir’idexed so that lakl.élak-:‘i-llc fo}' all k,

Lemma 5. A subset ofa zero set for sZ* is a zero set for .szﬁ""

Example’l Let /3 be even and p2+1<pf<p’. Then:the function f(z)=
= ]] I+ pz”’) belongs to 2. Let 'E be'its zero set and E1 {re®¢ E: it]2=0<2n).

J.—
Then E, is a2 zero set by Lemma 5 The set E has 7 equally spaced points on-the

3 L
circle |z|=p~#. On the same cxrcle, the set E; has z—[i’ points. Let {z;, z,, ...}
be the points of E and {o,; a3, ...} be the points of . Ey-indeed so that [z,|=|z, .l

lo
and [aklslakﬂl for all k. By Lemma4 1f a—-] OB K
0

, then for any N, we have

N
]] >Const N“ Thus 1f j>2 and N ﬁ + +ﬂ‘ then

k=1 . S
3N/4 1 N 1 )34
( —] = Const N""/4 Const (3N/4)"“‘/4
k=1 |“k| k=1 bzl
Choose 0<=g=<n/2 such that € E, is disjoint from E1 and let Ez__e"”E1 Then
E,is also a zero set for 2 If 0<0< 72 then € is not a nontangential limit point
of E, and if ¢<0<mn/2+4¢: then € is not a nontangential limit point for E,, s0;
by Lemma 1, E, and E, are not dommatm

Let {c,} be a sequence of nonzero complex numbers’ such that. 2’ | ‘ >
o kA1 o

Let ﬁ?kg oK, and fe= Z’ck e, Then by’ Theorem2

AN “{86-9/2 g(z) . 0 for all zEE} I
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for i=1,2. If ¢p<0<n/2, then €” is not a nontangential limit point of E,UE,,
so, by Lemma 1, E,UE, is not dominating. Therefore by Theorem 2,

[fit+folt = {gcA?: g(2) =0 for all zeE,UE,}.

If {1, 7, ...} are the members of E,UE, indexed so that |y=ly,, for all k,
then since

3N/4 |
I T = Const - (3N/4)%/N,

k=1 I kl

. N 1 \ . .
for N=p%+...+p’, we have ]]ﬁ§Const-N"“la, for infinitely many N’s.
k=1 [Y

Io
Since B-<p3, we have a=1 g/; =>1/3, so 3a/2=1/2. Thus by Lemma 3, E\UE,
og

is not a zero set for &2, so [fi+£;]f={0} and thus f,+f, is cyclic.
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The point spectfa for generalized Hausdorff operators

B. E. RHOADES

Tt is the purpose of this paper to show that the point spectra of a large class of
generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under
consideration were defined independently by ENDL [3] and JakimMovskl [6]. Each
matrix H® is a lower triangular matrix with nonzero entries

W np = (n o) 4,

where {4} is a real or complex sequence, and 4 is the forward difference operator
defined by Ap =, — 41, 4" . =A(4" ). Let ¢ denote the space of convergent
sequences. The bounded linear operators on ¢ and /?, 1=p=-o, will be denoted by
B(c) and B(IP), respectively. Although (1) is defined for any real « which is not a
negative integer, in this paper « is restricted to be nonnegative.

Let 1<p<oo, H®¢B(IP). The author showed in [8] that the point spectrum of
H@®*, the adjoint of H®, contains an open set. Let C® denote the generalized
Hausdorff matrix generated by u,=(n+a-+1)~", ¢ the conjugate index of p. It was
also shown in [8] that the spectrum of I—2C®/q is the closed unit disc. For p=2,
every H®@€B(IP)N\B(c) is an analytic function of C®, so the spectral mapping
theorem can be used to obtain the spectrum. GHOSH, RHOADES and TRUTT [5] showed
that each H®¢B(I?), for integer a, is subnormal. In [8] the author showed that each
C® is hyponormal, ‘ ‘

In order to establish the point spectra results it will first be necessary to extend
some results of Fucas [4]. Define o

@ "S=S(a,a,..)={pX)}=(ex%:c>0; k=1; a<a<..}

The set S.is closed in L?(0, <) if, for each h€L?%(0, =) and for each &>0, there

Received October 7, 1985 and in revised form October 8, 1987, -
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exists a finite linear combination ®(x) of the functions ¢, such that .

f (h(x)— (X)) dx < &.

0

The set § is said to be complete in L*(0, «) if, for each h€L*(0, «),

[ hx) o) dx = 0

0
for all k=1 implies h(x)=0 a.e. It is well known that the concepts of closed and
complete are equivalent.

Theorem 1. Let {s,}cC sattsfy s,=o(n™M+%), M>0, o a nonnegative real
number. Define {t,} by

3) Z",(n+a) (—1¥s,

Then t,=0 for n=ay,ay, ... implies s,=I'(n+oa+1)P(@)/n!, P a polynomial of
degree less than M if and only if S={e~*"x%: n=0,1,2,...} is closed in L(0, =),

:-Supp()se ._that 5, =0@m"**), 1,=0 for n=ay, a,, ... implies
s,,:F(n—};oc+1)P(n)/n!,

where thé degree of P is less than M. .
We may write (3) in the form

& (n+o) (= DTG+a+)PE)
o ._-i=201 (n_—_k] i B

F(n+a+1) Z[ ]( 1P() = 1"(n+a+l)

2 4"P(0).

Since the degree of P is less than n, 1,=0 for each n=[M]+1, and the set S
is closed.
- To, prove the converse we may assume, without loss of generality, that {s,} is

real and that |s,|=1 for n<2M+2+s, |s,,|_s_[":t°;‘l] for n=2M 42 +s, s=[a}+1,

replacing s, by some scalar.multiple 7s,,-if necessary. .
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Lemma 11[1, p. 77). Let a,, b, be real numbers, with sup, f |l =< oo, Then
k=0
the system of equations

S Gux =b, (n=0,1,2,.)

has a solution satisfying |x,|=1 if and only if

1> )*kbklvE 2 |Z )‘kalml
k n=0 k
for every finite set of real multipliers 2.

Lemma 2. Let {a,: n=0,1,2, ...} be an increasing sequence of natural num-
bers, {t,} as in (3). Then 1,=0 for n=a,, a,, ... implies t, =0 if and only if

(4)_ 1-bd-{2Mh§+s §N (ak+a]+hzw+2+s(}“lh+:l]§lv (ak——a]}:.o..

where s=[a]+1, 2o=1 and the Ak for k=0 run through all sets of real numbers for
N=12, ...

Proof of Lemma 2. Consider #,=0 for n=a,, a, ..., tao=y>0 as a system

of equations for the unknowns x,, where x,=s, for m<2M-+2+s, x,,=[Z i;f ‘ls,,

for n=2M+2+s. From Lemma 1 this system has a solution for |x,|=1 if and
only if the Ieft side of (4) is =y. Therefore (4) implies that y=0.

Conversely, if y=0, then (4) is nonnegative for évéry choice of the A,. But the
choice 2,=0 for k=0 gives the lower bound.

To complete the proof of Theorem 1, we shall show that the condition that S be
closed is equivalent to (4). Let the set S in (2) be closed and a;=2M+2+s. We
shall show that (4) is satisfied.

hzzM+2+s( ZN’ & [Z:—*-z]
Rl ) e o) St

N a;+s\( a.+s )2
b RZ] ot | B |

©)

h+o
h—M

= 5 [h+s) g", Akl[ak+s]

. bmIMEsF2

_,W\

h+s -
= A{§ (2M+2s+2.],
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since the first sum is o@Zh2). -

h+s a;+s)(a+s
®) 2 (2s+ 2M+2) [a,.—h) [a:—h] =
1 e (a;+s)! (ak+s] _
= T IMF DT psifiass o522 (a,— T \&~h

( a;-+s )“r‘b’g,-2-3(a{—2M—2—sJ( a,+s ]

2s+oM+2) 2 i a—2M—2—s5—i)"

For b, ¢ positive noninteger real numbers,

- (1‘%t}”(_l+!)é:= [2[ )”][2( ]’j] = [,;o[ ]( J]],,.

J
Since also . (1'+t)b'+°=2 [bj' c] H,
s T .’v ». ’
" (bY( ¢ b+c

no 3066
0 | 2L =0
Substituting (7) in (6),
R oo hds Y[ats)(ats)

%' 2s+2M+2)\a;—hj\a,—h) —

: (a;+a,—2M—2)!
(2s+2M+2)'(aj 2M —2—s)Y(a,—2M —2—5)!

. 1 .
(2M+2s+2)'(a —2M—2— (@ —2M =3

ol f e~ xa;ta—2M—2 fx.
J :
and (5) can be written

(" ‘s
2M+2s—|—2] = A{f e—xx2M+2+2sQ2(x) dx}llz

[ (a,‘+oc
hz=2M+2+s

where A is independent:pf_N and the-l,,’s aqd :

A |xak—2M—2—s .
Q(x)_ ’kzo (:lz s %=1
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For h<2M+2+s,

sz[“"“) = .__%mu{“"“) -

e xxhts ; - 1 s
(s+h)' f QM —h+1+5)! Of(x"y)w_u TR0 dy dx =

= [ 00)dy [ exhvsuoyyb=isirs s =
0 y
= [ 0Oy [ sy apatichires g <
0
< f €0 dy f e=*(y+ gyrteaENhiiie dg =
o .0 . o
= fe“”Q(y)dy;joe"(y+z)‘w+1+zsdz<
. 0 ' )
< 2Mtins f €Q(y)dy f é"(y24‘+1+2‘+22M+‘;”) dz <
: Je
<B [ erQu) 1+ rmydy <

<B([ e yersmpa)i( [ ergo) ) = o[ f e an)®
0 B - 0 0
It remains to show that
®8) f e *Q*(x)(1 +3_c2M+2‘+2) dx <e.
o - , .

Using Lemma 1 and Theorem 4 of [4], the systlaml

) {e=2(1 + x2M+2+2s)l/2.lmk—2M~2—s}"' '(ké" )

is clo§éd since S is.closed. Therefore ' I

e—x/2(1+x2M+2+2§)i/2xno—2M—2—s .
~(a—2M-2)!

can be approximated arbltrarﬂy close by ﬁmte linear combmaaons of functlons from
(9). This proves (8). : : :o.

8
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We shall now show that, if (4) is true for every a,=2M+2+s5, then S is com-
plete. If (4) is satisfied then, for sultable values of 7,,

' hg{[ h+a] Z ')'k(a,‘+a]

It then fdlldws that

o (ht+a ) & . (a+a)) '
(10) L2 '{h';M) [—k’ 4 (a: h)] <&
But

< &,

hta\f & (a+a)) ¥ % (hta)(a+a)( @t
e [h—MJ[g’)‘k[ak—h)] - j,éoljlkth (h*M] (a —h ( h] =

_ ZN’ Ak % [(a;+at1) (a,,+a]=
2o T@+M+1) 45 (h—M)(a;— B! %~ h

N a,+a) =M M a,+a
= 2 Lk M’+a] Z )[ak._kM_i)=

: a;+a)(a;+a+a—M)
zﬂszﬂ)[f M) -

a—M
ra+ae+a—M+1) | 1 Y
= 3 i = ~*Re
180 M T+ ar Doy~ e—HDT TG+t J R
whéte . -
. gk X +al2—M[2
R = 2<—“Ar
Therefore
1 ‘°°__x2 . 2
mofe R(x)dx<8,
which implies that , . :
(11) e-’f/?x",-,"/”f“/z, n= 2Mv+2+s, 2M+3+s, ...,

can be mean square approximated by linear combinations of the functions
e~*2xm—Miz+el2 p =1 From [4, Theorem 5] the set (11) is closeéd. Thus also is
{e~*2xm—ME+al2}  From Lemma 1 of [4] with p(x)=x™/*~%% §is closed.
Suppose t,=0 for n=a, a,, .., and $'is closed. Then one can use condition
(4) and mathematical induction to force #,=0 for all n=a,.
- - “Now -suppose that s,=0(n"*%), {t,} satisfies (3) with- 1,=0 for n=2M+
+s5+2. Note that (3) is the nth term of a diagonal matrix ¢ sa‘ti_sfyi_ng_v;t,_:é(ﬁ’s;
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where s is the diagonal matrix with entries s, and 5‘“’——(—1)" [n—i-oc] Smce 5(“)'
is 1ts own mverse, and multlphcatlon is assoc1at1ve, d®e=s; ie, :

"~ ”"(Z*Z)tk—“f“w(m)

_ | n+o '(n+a+1): o= 1)k n'tk
- 2(_1)"(" k)’ - nt & (n k)'F(k+oc+l)

where g is the largest integer for which #£,0. Therefore 5,=I'(n +ot+1)P(n)/n .
where P is a polynomial in n of degree g. Since: s,=o(n™+%), a+g< M +a, and
the degree of P is less than M. = . Ll R

Let o,(A4) denote the point speetrum ofan operator A, and wrlte H for -H (°)

" Theorém 2. (a) Let l<p<os, HOCB(P)NB(c). Then a'I,(H(")) is empty'_

" (b) Let HW¢B(l), «=0. Then B,(H®) is empty. )

(c) Let H®¢B(c). For a>0, o (H(’)) is empty. For o= O lf H is multtplz-.
cative, then. ap(H) {10}

Proof of (a). Suppos¢ there exists an x€/P with LH‘:”x:kx. Then’
(H®—ANx=0. But H®cB(’)NB(c) implies that K®=H®—1Ic¢B(I")NB(c).
Moreover, K is also a generalized Hausdorff matrix. Thus, we are looking for
solutions of the system K®x=0. One may write K®=6®ué®, where p is a

diagonal matrix with diagonal entries y, and 8% =(—1)* (n+,°é). Since 6(“) is 1ts

own inverse, and each matrix forming K®@ is oW, ﬁmte, the system. K(“)x 0 is
equwalent to ué®@x=0; ie., -

(12) | ;%z(lyﬁ+ﬂi=q,ﬁ=agz;;

_Since .H®eB(c), so also does K@, so that pi is a moment sequence ‘This
means that o . ST .

m frﬂwm

is analytic for Re (z)>0,- where § and g, satisfy _.-. . .
1
= [ r+*dp().
0 -
From [2], the integer values b, for which ¥ (b,)=0 satisfy the condition :k bt e

Therefore (12) implies that ¢,=0 for all values of n except possibly a subset {b,}
satisfying Z,b;'< . Using Theorem 3 of [4], the set S of integers n for which
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t,=0- remains closed. Since {x,}c/?, l<p<o, x,=0(n'/**+%).. Applying Theo-
rem1, x,=I(n+o+1)P(n)/n!, where P(x) is a polynomial of degree less than
M=1/2; ie., Pis a constant polynomial. But, unless P is the zero polynomial,
x¢P, so H® has empty point spectrum.

Proof of (b). The author has shown in [7)that H (“’EB(I) 1mp11es H®¢B(c).
The rest of the proof is the same as that of (a).

Proof of (c). Following the proof of (a), since {x,}€c, {x,}is bounded, hence
*,=0(n'**+%), and again.c,(H®) is empty, for a>0.

-For a=0, x,,—o(n”z), and the only nonzero sequence satisfying (12) is
e=(l, 1,...). With «=0, each row sum of H is p,. Therefore o,(H)={u,}.

A matrix 4 is multiplicative if lim Ax=t1lim x for some scalai ¢, xcc. In
terms of the matrix entries, multiplicativity of A translates into 4 having all zero
column limits. For Hausdorff rﬁatrices in B(c) this condition is equivalent to the
mass function f(¢) being continuous from the right at zero, and specifically ex-
cludes the compact Hausdorff matrix generated by p,=1, p,=0, n=0. Theorem 1
does not apply to this matrix since there are too many zeros on the main diagonal,
but a direct analysis yields the point spectrum to be {0, 1}.
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A spectral dilation of some non-Dirichlet .'al’_ge,br‘a o

TAKAHIKO NAKAZI*)

Let X be a compact Hausdorff space, let C(X) be the algebra'of éompléx-\ialhéd
continuous functions on X, and let A be a uniform algebra on X. Let $ be a com-
plex Hilbert space and L($) the algebra of all bounded linear operators on §. I'is
the identity operator in $. An algebra homomorphism f—»Tf of 4 in L(9), Wthh
satisfies

T,=1 and |T| =|f]

is called a representation of A on 9. A representation &—~U, of C(X) ona Hilberi
space K is called a spectral dilation of the representation f—T, of Aon Hif His a
Hilbert subspace of | and

T,x=PU,x for f€A and x€9

where P is the orthogonal projection of & on $. .

If 4 is a Dirichlet algebra on X and f-T, a representatlon of A on S), then
there exists a spectral dilation. This was proved by Folas and Suctu (cf. [3, Theo-
rem 8.7]). However, it is unknown whether any representation-of a: non-Dmchlet
algebra has a spectral dilation. In this paper we give an example of a umform alge-
bra which has a spectral dilation for any operator representatlon and is a subalgebra
of a disc algebra, of codimension one.

If f—~T; is a representation of 4 on a Hilbert space 5 with the inner product
(x,y) (x,y€PH), then there are measures pu, , (x,y€9H)- such that Ilu,,,llsllxllll ¥l
for x, y¢$ and

Trx, y) = ffdux y for fcA and. x,ye9

(see [3, p. 173]). Let t be in the maximal ideal space of A4 and G the Gleason ‘part
of 7. We say that the representation f~T,:of 4 is G-continuous (G-singular) if

*) This research was partially supported by Grant-in-Aid-for Scientific Research, Ministry of
Education. R

Received January 29, 1986,
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there exists a system of finite measures {u, ,} such that p, , is G-absolutely con-
tinuous (G-singular) and (T, x, y) f fdu,,, for all fcA4 dnd all x,y€9 (cf. [2,
p. 182]). We need the following three lemmas to give a theorem. The first one is a
theorem of MLAK {2, Theorem 2.3] and the second one is one result of Foias and
Suctu (cf. {3, p. 173)).

Lemma, 1. Let f~T; be a representation of A on $. Then f—T, is a unigue
orthogonal sum T;=T{@ T} where the representation f—~T% (f~T ?) of Ais G-abso-
lutely continuous (G-singular).

Lemma 2. Let f~T, be a representation of A on §. Then there are measures
Huz (x, y€D) such that | =I5yl for x,pe9 and
((Tf+T*)x, y) f(f+g) dux ¥y

for f,8€A4 and x,y€9H.
A family 4., (x,y€9H) of measures on X is called semispectral if it satisfies
the following properties:

O unttpss = G s Bl

@ - fed,,=[8d,, (scC(X)
3) 2z =0,

@ S A = iyl

where a and § are complex numbers, and y is a posmve number.

" Now we ‘can give an example of a uniform algebra which has a spectral dila-
tion for any operator representation and is not a Dirichlet algebra. Let T be the
unit circle and & the algebra of those continuous functions on T which have ana-
lytic extensions f to the interior such that f(0)=f(1): Then & is a uniform algebra
on T ‘and T is the Shilov boundary of <. The complex homomorphism T on o
is defined by 7(f) =f(0)=f(1). Both d0/2r and the unit point mass §, at 1 represent
the- ‘same linear functional 7 on /. Therefore o is not a logmodular algebra and
heénce not a Dirichlet algebra on T (cf. {1, p. 38]). -

Lemma 3. If p is an annihilating measure on T for .sz¢+§ then du=
'_c(d0/21r—d51) Jfor some constant c.

Proof. We may assume that g is a real measureon T. If anmhllates .xd .then
fzdy =fz2du ==fz3d/4 =...
because the functions z—2z2 z2—2% 2*—z% ... are all in /. Hence for any positive

integer n :
f 2"(dp—c, déy) = 0,
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where c1=fzdy. By a theorem of F. and M. Riesz (cf. [1, p. 45]), du—c,ds;=
=hd0/2n for some h in the usual Hardy space H'. The absolutely continuous
part of u with respect to d8/2r is a real measure and coincides with h d0f2z. Since
H! has not nonconstant real functions, A is constant. Thus du=c df/2n+¢,d5, and
¢=—c, because fl di=0.

Theorem. Let f>T, be a representation of </ on a Hilbert space H. There
exists a spectral dilation &—~U, of f-T;. '

Proof. By Lemma 1 we may assume that the representation f—T, of </ is
G-continuous or G-singular, where G is the Gleason part of 7 in the maximal ideal
space of <. Suppose the representation is G-continuous. By Lemma 2 there are
measures f,,, (x, y€9) such that ||g, =[x | y| and (T,+T)x, y)= f (f+8)dus,,
for f,gcs/ and x, y€$H. Since the representation of & is G-continuous, by the
definition g, , is absolutely continuous with respect to d6/2n+dd,. Hence

du,,, = hy,,d0)2n+c,,, dé,

where h, , is in the usual Lebesgue space L'(df/2n) and c,,, is constant.
Put
dh, , = (h,,+c.,,) dOf2m.
We shall prove that the family Z,,, (x, y€9) of measures on T is semispectral, that
is, it satisfies (1)—(4). (4) is clear. du,.ypy,.—(x du,, ,+P dy, ) annihilates of/+.of.
Therefore by Lemma 3 for some constant a, , .
d,uax+ 0)',2;'(‘1 d.ux,z+ﬂ dll’y,z) = ax,y,z(do/zn—dal)’
consequently

hxx+ﬂ.v,z_(ahx,:+ﬂh}’ﬂ) =iy,z
and

Cax+By,z —(acx.z +ﬁCY.=) == lyy,z

This implies (1). dp,, ,—dji, . annihilates &/ + .
Therefore by Lemma 3 for some constant b, ,

dpt,,y—dfi,, . = b, ,(d0)2n —dé;)
consequently

hx,y*h-y.x = bx,.v and Cry—Cyx = —bx.y'

This implies (2). By Proposition 7.8 in [3], if f¢s/ and Ref=0 then Re T,=0.
Hence if u€sZ+ o and uz=0 then fudux,xéo. Thus for u€sf+4 with u=0

Judhe.= [ulhe te,)db2n = [uh,  dO/2n+c, . [udof2n =
= f uh,,, d0/2n+c, . f uds, = f udy, , =0,
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By the Riemann—Lebesgue lemma we know that z"—0 in the weak* topology
of L>(df/2r). Hence the functions z, z2,z% ... are all in the weak*-closure of &/
because z¥=(zF—z*-Y)+...4+(z"—z""1)—2" for n>k. Therefore for ucC(T) with
uz0[ udl, =0 and this implies (3).

Since the family 4, , (x,¥€9) of measures on T is semispectral, there is a
positive definite map ®~T of C(T) in L($) (cf. {3, Theorem 7.1]). By a dilation
theorem of Naimark (cf. [3, Theorem 7.5]), we obtain a representation @ -U,,
of C(T) on a Hilbert space & which is a spectral dilation of ®—Tg. If f€.s/, then
[ £d6/2n=[ fd8,=0 and hence :

(T, 9) = [F by = [ fhey dOf2n= [ fdu, = T;%,9) (x, YES).
Thus T;=T, if fcso/ and the representation ®—~U, is the spectral dilation
of f~T,.
If the representation is G-singular, the family u, , (x,y€9) is singular with
respect to df/2n+dd,. Then Lemma 3 implies that it is semispectral immediately,
and the proof can be completed as above.
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Generalized Toeplitz kernels and dilations of intertwining operators.
II. The continuous case

RODRIGO AROCENA

I. Matricial Toeplitz kernels and intertwining operators

This paper continues a study about the relation between generalized Toeplitz
kernels and the problem of the dilation of the commutant of contractive semigroups,
started in [2], where only discrete semigroups were considered. In Section II we
shall extend that study to general groups. In Section III the group of the real num-
bers is considered and the basic results of this paper on dilation theory — theorems
(I11.11) and (I11.13) — are obtained; the last includes a continuous version of the
theorem on the dilation of the commutant due to Sz.-Nagy and Foias.

In this section we start with preliminary results concerning the relation between
intertwining operators, unitary representations of groups, and positive definite
matricial functions.

We fix a (topological) group I with neutral element e and consider % (H)-
valued kernels on I, i.e. functions K: I'XI' - %(H), where #(H) is the set of
bounded operators on a Hilbert space H. Such a kernel is said to be positive definite,
p.d., if

2 (K(s, Oh(s), h(t)hy = 0,
sterlr
for every function h: I'~ H whose support {tcI': h(¢)0} is a finite set.

If K is such that K(st, su)=K(t,u) holds for all s,t, ucI', then K is deter-
mined by the function G on I' given by G(s5)=K(s, e); conversely, if a function
G on I is given, setting K(s, 1)=G(t~1s) we get a kernel with the above property;
in that case we say that K or — informally speaking — G are Toeplitz kernels.
When H=H,® H, is the direct sum of two Hilbert spaces, H; and H,, then G is
given by a matrix (G j,‘)f,,ml where G (s)€Z(H;, H,) for all scI', and we say that
G is a matricial Toeplitz kernel. '
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A positive definite matricial Toeplitz kernel can be viewed as a relation be-
tween two unitary representations of the given group, in the following sense.

Proposition 1. For j=1,2 let H; be a Hilbert space and G;: I - L (H})
a positive definite Toeplitz kernel on the group I', such that G; equals the identity
on the neutral element of I'; let U; be the minimal unitary dilation of G; to a Hilbert
space F;. Let R(U,, U,) be the set of intertwining operators between U, and U,,
considered as a (closed) subspace of ¥(F,, F,). Then the relation

gls) = PJ”WUl(SNHI; ie. <WU1(S)hi, h2>1-‘: = (g(s)hl, 172>H,,

Jfor all s€T', hy€ H,, hy€ H,, gives a bijection W+g between the unit ball of Z(U;, U,)
and the set of functions f: I'~%(Hy, H,) such that G=(G;)} =1 > Gu=G, Gi2=g,
Gy =8, Gyw=Gy is a positive definite matricial Toeplitz kernel. If moreover I is a
topological group and G,, G, are continuous in the weak topology of operators, then
all such functions g will be continuous in the strong topology. -

Notation. When H is a closed subspace of a Hilbert space F, i/f; denotes
the inclusion of H in F and P% the orthogonal projection of F onto H. If g is a
function on I', we set g(s)=g*(sY). If {S,: 1€ M} is a family of subspaces of
F, \/M S, denotes the minimal closed subspace of F that contains S, for all M.
t€
Proof of Proposition 1. For j=I,2, Uj={Uj(s):"SEF}C$(Fj)_ is.such
that G,(s)= PHJU (s)| ", holds for all s€I" and the minimality condition F;=
= \/ U;(s)H; is also true that 1s the content of Naimark’s dilation theorem (see
ser

[9]). Let G be as in the gbove statement; set, for all s, t€l’, hy€ Hy, h,€ H,,
B(U1(s)h1 s Uz(t)hz) = (G (t715)hy, hy)y,.

Taking in account that the elements U;(s)h; span the space F;, it is easy to verify
that G is p.d. if and only if B defines a bounded sesquilinear form on F; X F, of norm
[Bll=1. In that case there exists W€ (F,, F;) such that -|W|=|B| =1 and
{Wfy, foyr,=B( f1, f2) hold; moreover, from the equalities

WU ), Va1 )by, = (Gualt ™ sty oy, =
= (Uz(s) WUl(u)hp Uz(’)”z)r

and the minimality condition it follows that WU, ()=U,(s)W is true for all sE I‘
Hence, W is a contraction belonging to R(U;, Uy). :

By setting g(s)=Pf WUl(s)]H for all s€TI’, the converse also follows

We now apply the precedmg result to the dilation of the commutant of two
semigroups of isometries. : Lo
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Proposition 2. Let ' be a group with neutral element e and Iy a subsemi-
group of T. Set I'y'={scI: s~cI;} and assume that [[NTI'{'={e} and LU
UIr'=T hold. Let {V(s): s€I} and {Vi(s): s€I1} be two semigroups of . iso-
metries in the Hilbert spaces H, and H,, respectively, and Y a contraction inter-
twining them So that :

(22) YVi(s) = Va(9)Y, for every sely, and |Y| =1 hold.
Let a matricial Toéplitz kernel G be associated with the commutator Y by:

Gj() =Vi(s) if sely, Gy(s)=V,s™Y) if seIth, j=1,25
G(s) =V)Y if s€@y, Gu(s) =Ve(s™DY if s€IT; Gu = Gpe..
Then G is p.d. if and only if the following conditions hold:

(2b)

(2¢)  for j=1,2 there exists a unitary representation U; of I' in a Hilbert space F;
_that contains H; and satisfies

Ui, =V(s) for sely, F;= V U;()Hj);

(2d) there exists W¢ .?(Fl, F) that vertﬁes
- WU () = U ()W f0' sel; Wl =1Yl; PWly, =Y.
Moreover such a W is umque T T

Proof. If Y=0, W=0 is the only solution of (2d), so we may always assume
that Y0 and, by homogeneity, | Y||=1, as in (2a).

If G is p.d. G, and G, have the same property; let U, and U, be their minimal
unitary dilations, respectively. From PF 1U;(s)| n,=G; ;(s) and (2b) it follows that
U;(s) is an extension of the 1sometry V(s) for every sel;. Thus (2¢) is satisfied.
Let W be associated with G as in Proposition 1; then [|W| =1, W intertwines
U, and U,, and (Why, hy)p,=(Gra(€)hy, ho)y,=(Yhy, he)y  holds for all h€H,,
112€H2, thus PF tWlg =Y, so 1_||Y||<HW||<1 Consequently (2d) is also sat-
isfied.

Conversely, assume that (2c) and (2d) hold. From Proposition 1 it follows that
it is enough to prove that G, is the same function as g(s)=L P WU, (s)|y,; now,
if s€I;, then g(s)= PF' WV, (s)=YV,(s)= Glg(s) if sery?, we have for all hlEHl,
heeH,, -
<g(5)hl, hz)u., = <U2(S)Wh1, 2>F, = <P thl, V.,(s*l)h2>H= =

= <V:>.*(~5' HYh,, ’12>Hg.=_<612(3)h1, h2>Hg'
The simplest example is perhaps I'=Z2, the set of integers, I =Z, := {n€ Z: n=0}.

In that case the semigroup ¥;(s) is determined by the isometry ¥;(1), so that we are
concerned ‘with- the commutator- -Y¥]=V;Y - of two isometries. Then it js easy. to
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prove ([2], Lemma I1.3) that G is p.d. so, if U, and U, are the minimal unitary ex-
tensions of ¥; and ¥;, there exists W that verifies WU,=U, W, {|W|=[Y] and
PS:Wl g, =Y. Note that in general the last equality cannot be improved so as to
get W to be a strict lifting of ¥, i.e., such that PE: W= YP{,:. In fact, the last equa-
tion implies YVy=YPyUfip=PRpWUlip=PpUs Wijp=V,* P Wig:, because
U, extends ¥;; thus YP*=¥,*Y. Now, the last equality is not a consequence of
YV;=V,Y because if ¥;=V,=Y=V is any non-unitary isometry then YV *=VV*=
#I=V*Y, etc. '

Let us now go from the discrete to the continuous case. Set I'=R= {real num-
bers}, I;=R,;={s€R: s=0}. In order to apply Proposition 2 we assume that (2a)
holds and consider G given by (2b). Working as in [9], page 30, we can prove that
G is p.d. whenever the semigroups ¥, and ¥, are weakly continuous. Thus:

Corollary 3. Let {Vi(s)}, {Va(5)}, s=0, be two continuous monoparametric
semigroups of isometries in the Hilbert spaces H,, H,, respectively, and let
Yc #(H,, H,) be a contraction intertwining them, i.e., such that

YV() =V,(s)Y for s=0, [Y]=1

For j=1,2 let {U,(s)}, SER, be a minimal extension of V; to a continuous mono-
parametric group of unitary operators in a Hilbert space F;. Then there exists a unique
operator We % (F,, F,) such that

WU.(s) = Uy()W, for every s€R; Y = EitWig,; Y] =|WI.

II. Generalized Toeplitz kernels and dilations of the commutator
of two contractions

When we consider a commutator of two contractions instead of isometries
the method of the preceding section does not work. In fact, the associated matricial
Toeplitz kernel need not be positive definite. (See [2], II.1b.) Nevertheless a suitable
extension of such kind of kernels allows a similar approach to the more general
situation:

Let I be a sub-semigroup of the group I'. A generalized Toeplitz kernel (GTK)
on (I, I7) is by definition a set

K= {(Kjk)y k=12, H, He}
composed of two Hilbert spaces, H; and H,, and four functions

Ky: T ~%(H); Kyo: I'h—>%(Hy, Hy); Ky: I'T' ~L(Hy, Hy); Kyp: T -~ ZL(H,).
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We say that K is positive definite when
2> 2 (Ku(t71)hi(s), h(D)g, =0
5, k=1,2 s,terl’
holds for every pair of functions of finite support hy: Iy~H,, hy: I'7'~H,.

When I,=I" we have a matricial Toeplitz kernel.

Before, in [5], the vectorial case was considered, and in [2] the subject was
related to the dilation of a commutant of two contractions. Here we shall consider
the general relation between GTK and lifting properties.

We start extending Proposition (I.1).

Proposition 1. For j=1,2 let H; be a Hilbert space and K; an ¥ (H;)-
valued positive definite Toeplitz kernel on an abelian group T, such that K; equals the
identity on the neutral element e of I'; call U; the minimal unitary dilation of K; 1o a
Hilbert space F;. Let I,CI' be a semigroup such that ecI; and every ucI' can be
written as u=t—s, t,scIl;. Set:

E, =V [Uys)H]CE, E_:=V [Uy(—0)H,)]CF,.
ser, tery

Then the formula

(1a)- k(s) = Pi; YU (9)ln,, s€I
gives a bijection between the operators YE L (E,, E_) that satisfy
(1b) ' YU ()ify = P*Us()Y, for s€@y, |Yl=1,

and the functions k such that K={(Kj), k=1, 2; Hy, H,}, given by K,;=K,, K;;=k,
K21=E, K22=K2, iS ap.d. GTK on (I-', 1-1). Set

L(Y) = {We Z(F,, F): WeR(Uy, U, |W| =1, PR W|; =7},
Then
(Io) g(s) = Pz WU\ (S)lg,» s€T,
gives a bijection between L(Y) and the set of functions g: I'~%(H,, H,) such that
G]_]_—'_—K]_l, G12=g, G21=g, G22=K22 de_ﬁnes an element G=(ij)§,k=1 0f the claSS
4 (K) of the p.d. matricial Toeplitz kernels that extend K. In particular, L(Y) is
non void if and only if 9(K) is non void.

Proof. Assume first that (1b) holds; then K satisfies the following equations
for every h,, h, as in the definition of p.d. GTK:

2 (K (s—Dh;(s), h(D)g, = . %r KUY (s), Uy () b (D)g, +

- jk=1,2 s,T€T

-~ +2Re YU, (8) (), Ua(D) ho(0))e_ +{Us(5)hs(s), Up(D (D) } =
= ”sé: Ul(s)hl(s)”%+ +2Re <Ys§ Ui($)hy(s), rg Us()hs(D)z. +”t§ Uz(t)hz(t)”?s_ s

which is a non-negative real number because || Y| =1; thus, K is positive definite.
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Conversely, if the last is assumed, set for all hy, h, as above

D(hy, hy) = 3 {{Kyo(s— ) by (5), ho(D)p,: €Ty, telT ).
Then D defines a sesquilinear form on E, X E_ such that ||D||=1. So there exists
Ye & (E,, E_) which satisfies | Y{|=1 and (Ya, b); =D(a,b) forall (a, b)cE, X
X E_. The proof of Naimark’s -dilation theorem shows that we may assume
U;(s)h;(t)=h;(t—s) to be always true. Thus
YU (W) hy, hopp_ = 5 {(Kpp(s— 1)y (s—u), h‘.:(t)>H=: s€ly, €I} = 4
= (Yhy, Us(—why)p_ = (Pi2Us(w)Yhy, ho)g_.

From the definitions of E, and E_ it follows that (1b) holds. Our first assertion
is proved.

Now let WeL(Y). From (L 1) we know that G is p.d. For any sel, x,€Hy,
x,€ H, we have that

(Gr2(8) X1, Xopm, = < WU, ()1, Xo)w, = (PF2|E+)U] () X1, Xo)g, =
H; YU, ()4, x2>H, = <K12(5)x1, x2>H,,

so GE¥(K). If we start by assuming this, we know that (1c) defines a contraction
WER(Uy, Uy). For all x,€Hy, x,€ Hy, s€I3, t€I'T* we have:

(PEEWUL () %1, Up(D)Xopp_ = (WUL(8) X1, Up(t) Xo)p, = (WU (s—1) X1, Xo)p, =
= <P32WU1(5“1)5‘1’ Xoym, = (85— %y, Xo)y, = k(s— )Xy, Xp)g, =
= (P§; YU, (s—t)xl, Xodu, = <PH2 U,(— t)YUl(s)xl, x2>,,2 = (YU, (8) %1, Up (D) XD _ .
Thus PF”WIE =Y.

If K is a p.d. GTK, the (possibly void) set ¥(K) is naturally related with the
set #(K) of the minimal unitary dilations of X, i.e., of the unitary representations
U of ' on a Hilbert space F such that:

Hy,H,CF;'F=\ {V [U(S)Hj]}

Jj=1,2 "s€

K (s— t)— i, (s — t)ln,, for (s,t)EFXI‘k, j,k:—l 2, with I = 1“1'.

In fact, if Ue%(K), Gy (s)=Pf U(s)lH , for s€rI, defines an element ‘G = (G k=1
of ¥(K). Conversely, if G€¥ (K) its minimal unitary dilation U satisfies the con-
ditions reéquired to belong to #(K) and, by its very definition, is related to G by
the last equality. Moreover, this corréspondence between U and G'is a bijection if
we 1dent1fy in %(K) the representatlons that are equivalent under unitary 1som0r-
phisms that leave invariant all the elements of H, and H,. Thus, if 4(K) non void
for every-positive definite generalized Toeplitz kernel K on (I, I7), it follows that
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Naimark’s dilation theorem extends to these kernels. In such a case we could say
that (I, I;) has Naimark's property. -

When I'=Z, Iy=2Z, (1b) reduces to YV, =V*Y, with V., V. isometries.
It i is known that L(Y) and ¢(K) are both non void and these two facts have been
proved mdependently Because of (1) each of them can be deduced from the other
one. In fact, (Z, Z,) has Naimark’s property [5]. On the other side the lifting of
YV+_V* Y. to a commutator of isometries can be obtained as a particular case
of the.theorem of Sz.-Nagy and Foias. More precisely, this theorem is based on a
previous result ([9], Proposition I1.2.2) which implies that, if ¥” is a minimal iso-
metric dilation of V* to E’> E_, then there exists Y'€ Z (E, E’) such that Y'V, =
V'Y, Y =P§'_ Y’ and | Y’|=1. Now, it is well known that every commutator
of isometriés can be lifted to a commutator of their minimal unitary extensions
(this has also been proved in the previous section); if U is a minimal unitary dila-
tion of V_, U, has the same property with respect to ¥* and V’; it follows that
there exists W¢L(Y), so that this set is non void. In particular, this gives another
proof of the fact that & (K)is non void (which is certamly less simple than the original
one presented in [5]).
. Now we can state the relation between GTK and commutators of semigroups
of contractions by means of the following extension of proposition (I.2).

Proposition 2. Let I' be an Abelian group with neutral element e and I a
sub-semigroup of I'. Set (—I)={s€I': —s€I } and assume that I;(\(—I})={e}
and T,U(—L)=I. Let {Ty(s): s€}} and {Ty(s): scI,} be two semigroups of con-
tractions in the Hilbert spaces H, and H,, respectively. Let Xc¢%(H,, H,) be
such that:

() - XK()=T(9X for 5B, and |X|=1.
Let the GTK K={(Ky), j, k=1,2; Hy, Hy} associated with the commutator (2a)
be defined by
(2b) K;;(s)=Ty(s) if sel, Kj(s)= Tf(=9) if se(-h), j=12;
Kip(9) = T,()X for s€hy; Ko =K.
T hen K is p.d. and %(K) is non void if and only if the following conditions hold:

(2c) for j=1,2 there exists a unitary representation U; of I in a Hilbert space F, 7
that contains H ; and satisfies

Iy = Uj(s)'l{,s Jor sel, F; V WU;()H;1;
(24) there exists WeZ (F,, F,) that satisfies WU, (s)=U,(s)W for all
s€T; |W| =X and P5W|g = XP§:, where Ey:= \ [Uy(s)Hy].

ser,
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Moreover, if -these conditions are satisfied, (1c) gives as in Proposition 1 a bijection
between 9 (K) and the set of operators W as in (2d). '

* Proof. We start assuming K p.d. and 4(K) non void; then K;; and K,, are
also p.d. and (2¢) follows from Naimark’s dilation theorem. For a given G€%(K),
(L) shows that there exists a contraction WER(U,, Uy) such that Gy(s)=
=P WUl(s)l,, holds for all s€T. Then, for x¢ Hy, s¢T;, wehave PRWU,(s)x=
_Gm(s)x Klz(s)x XT,(s)x=XP}: Uy (8)x= XPE tUy(s)x and (2d) follows. As-
sume conversely that (2c) and (2d) are true. First of all, it is easy to see that U;
is a minimal unitary dilation of Kj;; thus the last is positive definite and Uj is es-
sentially unique. Let G=(Gj)j =, be the matricial Toeplitz kernel associated with
the commutator (2d); then G;;=Kj;, j=1,2, and Gyo(8)=Gun()=P WU (s
for s¢I". We know that G is p.d.; moreover, for s€I, U,(s)H,CE;, so we have
Kyo(8)=T(8) X=XT;(8)=XP Uy()lg, =Pfz WU,(8)| g, =G1o(5)- Thus GEF(K).

In the next section what has been done up to now will be applied to commutators
of continuous monoparametric semigroups of contractions. Here, as an example,
we shall recall and complete some results of [2]. The following holds.

Let 7, and T, be contractions in Hilbert spaces H; and H,, respectively, and
Xc%(H,, H,) such that XT,=T,X. Let V€ L(E), Vo,c#(E,) be the minimal
isometric dilations and U, €% (F,), U,€ % (F;) the minimal unitary dilations of T3,
T, respectively. The following two problems are considered:

1) find . Y€ L (E, E;) such that YV,=WY, PﬁzY:XPf,ll, Yl=IXx[;

ii)) find WeZ(F,, F,) such that WU,=U, W, Pf,!g W[E1=XP,'§t, IWi=iXlI.

If X=0 both problems have only the trivial solution, so it is also assumed that
x| =1.

Let K={(K;\),j, k=1,2; Hl,Hz} be the GTK on (Z, Z,) given by K;;(n)=
1f n=0, K;;(m)=T;™" if n=0, j=1,2; Ky,(n)=XT7 for n=0 and KZI—Km

Theorem 3.

a) Both problems have solutions.

b) K is positive definite. :

¢) There is a bijection between the sets of solutions of these problems and with
the set 9(K) of all the positive definite matricial Toeplitz kernels that extend K.

d) This bijection can be obtained as follows: given GE%(K), let F=F,VF,
be the space of the minimal dilation of G; then set W=P[ IF , solution of (i), and
Y=Pf l £ =PV, solution of (ii).

e) The solutzon of these problems is unique if and only if one of the following
equalities is satisfied:

{U-Xx*X)2H}y o{(U,—T)H} = {I-X*X2Th+(U,—T)h: heH,}~,
{(I=X*X)2H}~ @{(Us—T)He} ™ = {(I- X" X)*h®(U.—T) Xh: he Hy}~.
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Proof..

a) Follows from (c) and (b) which imply ¥(K)=#;

b) was proved in [2], Proposition IL.1; :

¢)—d) the assertions concerning Problem (11) stem from Proposmon 2; those
concerning Problem (i), from {2], Theorem II.4; o

e) follows from (c) and the theorem on the uniqueness of the lifting [1]; also,
because ¢ (K) has only one element if and only if one of these equalities is satis-
fied ([2], Theorem IL.8).

The proof is done.

Remark. The above theorem includes the fbllowing result (see '[8]-)> Afor Tl, T;,
X, U, U, as before there exists We¥ (F,, F;) such that WUI_-U2 HX Il —HWII
and X=Pg W|, hold.

* II. The continuous case.

Our task in this section'is to show that the results for the discrete case can be
extended to the continuous one also. Specifically, we shall show that Proposi-
tion I1.2 gives positive results when I'=R, the set of real numbers, and I"'1 R,-
={s€R: 5s=0).

Following our general approach we shall first see that (R Rl) has Nalmark’
property; in other words, we shall state the dilation theorem for continuous operator-
valued GTK, proofs of which were given in [6] and [7] for the sca]ar case. That
result will then be applied to the commutator of two continuous semigroups of
contractions. _ . o )

Our method will be to relate each GTK on (R, R,) with another on (Z, Z,)
by means of a systematic use of the results concerning semigroups, their dilations
and cogenerators, of Sz.-NAGy and Foras (191, Sections I11.8 ‘and III. 9)

We start 'with a p.d. GTK on (R, Ry), K={(Ky), Jk=1,2; Hy, H,}, ‘such
that the K, are weakly continuous functions. We keep the notation of the preceding
section, in particular that of Propositions II.1 and IL.2. Let U; and U; be’the co-
generators of U; and U,, minimal unitary dilations of K, and K, respectively.
It is known that U; and U, are umtary operators and that the foIlowmg holds (191,
Theorem I11.8.1):

1) U’—strong llmlt o.[U; (s)], j=1,2, where di is the holomorphlc functlon

in the complex plane minus the’ pomt (1 +s) glven by D (z) (z—— 1 +s)/(z—-1 s)
for ‘s€R,. o S . - 2

9%
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What follows is based in the next equalities ([9], I11.9.6, II1.9.10).

2) F=VI[U@®H])=VIUrH) j=1,2;
SER nezZ .

E.= V [Ui®H] =V [UPH),
SER, n€z; -
L E_= V [WU@H)= 'V [UPH)
—'SGRx . —n€Z;

As we said, a GTK on (Z, Z,), K'={(K},), J, k=1,2; H, Hy} will be associated
with K. We start defining K7, and Kj, in the natural way:

3). Kj(m)= PRUPy, for meZ, j=1,2
“Then, 'fro'm'(l), we get that

3a) Kj;(m) = stronglimit P{!®I™ [U,(s-sign m))lg,, J=1,2.
s—+0*

Let D be the sesquilinear form on E, X E_ determined by

. 8. . D(Uy(s)hy, Up(Dhg) = (Kig(s— )y, hoYg,, s=0, 1=0, heH,,
UL meH,.

Efo.m £1:1e very Qeﬁnipion we get the identity

) D(Ui(s—i)hy, h) = D(Us(s)hy, Us(Dhe) = D(hy, Up(t—5)hs)

We WAz‘mtv to prove the corresponding result for the discrete case, that is,

-4b) D(Uy™""hy, hy) = D(U™hy, Ui"hy) = D(hy, Uy""hy)

for all méO, n=0, hy¢ H,, h,c H,. In order to do that we refer to the identity ([9],

,II_I.9.9) and to the one we obtain from it by conjugation. They imply, respectively,

4c) T Ugnhy = limit 3 d(s, MU, (ks)hy, m=0, hecH,,

and = _

4d) Uh, = limit 3 dy(=s, ~mUpks)hs, n=0, hcH,,
L. R ~s-0+ k=0- . .

where, for s€Ry and meZ,, {d,(s, m)}, are the coefficients of the Taylor series
of the function &7. Since K is positive definite, D is bounded and consequently the
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following hold:
4e) D(U"="hy, hy) = limit 3 di(s, m—n)D(Uy(ks)hy, hs),
s=0% g—o

D(U™hy, Uythy) = 11m1t 2' dy (s, m) d;(s, ~n)D(Uy(ks)hy,. Uz( JSHhy) =

= limit S [ 2 d,_;(s, m) dy(s, —n)]D(Ul(vs)hl, h;).

In order to prove the last, recall (4a), set v=k-+j and remark that the d,,(s, m)
are real numbers. Then the first equality (4b) stems from :

k
di(s, m+n) = de—,-(s, m) d(s, n), SERl, m, n,kEZp

which is a consequence of &7 @%=@"*", The second equahty (4b) can be proved
in the same way. . ;
We now complete the definition of K” by settlng

5 (Kip(mhy, b, = D(Us™hy, be)s  m€Zis me€Hy, h€Hy; Ky =K.
From (3a), (4) and (4e) we get the following d1rect formulas for K’ in terms of K.

6) Kj(m) = stronglimit de(s, lml)ij[(sign m)ksl, mezZ, j=1,2;

K{,(m) = strong limit Z’ d, (s, m)Klz(ks), meZ,.
s=+0+
We shall see that K’ is p.d. Set ZZ=——Z1 and let f, -»Hj be functions
with finite support, j=1,2. From definitions :(3).and (5), and the identity (4b) it
follows that

AR p(m=n) £;(m); fo(m)y, = H z Urfimp,+ -

j K=1,2 (m, n)ez,x k

+2ReD( Z' Ui fi(m), Z'Ué"fz(n))+” 2' U"'fe(n)ll

because K p.d. implies ||D|| =1.

Consequently, #(K')~%(K’)=@. With each G’€¢%(K’) we. shall associate .
a GEY(K), getting in that way a bijection and, in particular, proving that & (K)
is non void. In order to do that we refer once more to the relation between matricial
Toeplitz kernels and intertwining operators. Given G'= (G’,‘)j k= 1E?(K’) let
T €% (F;, F;) be the operator determined by

7) <TG’ Uimhl’ Ué”h2>F3 = <G;.2 (m— n)hl s h2>H27 m‘s nEZ, hléHls : h2'€H2-’ L
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As we know,

Ta) TeU; = U;Te s "TG" =1,
and it is clear that

o) Gia(m) = PETe Uy, =P U Te |y, for mcZ.
We shall show that TG also intertwines U; and U,:

7c) TG Ul(s) = Ug(S)TG , for s€R.

[t 1s enough to see it for all s=0; in order to do that we refer to a ‘reciprocal ([9],
111.9.8) of a formula we have already used; it implies that

8) Uk =limit 3 Fe)Ufh;, for s=0, heH, j=12,
B "-. —k==-0 . . o

Z+1]
—-1)
5>0. From (8) it fo]lows that TG Ul(s)hl—.hmlt 2’ e (DUSFTe hy=Uy(5)Tg by,

SO (7c) is proved
‘Let Gy,: R~% (H,, H;) be given by

9). v <Glg(s)h1’ hodu, = _<TG' Uy($)hy, h2>Fz, SER, MEH,, hy€H,.

Setting G,,:=K;, G2, G = 512, Gy:=K,, we define a p.d. matricial Toeplitz
kernel G. It only remains to see that G extends K. Since

D (U’khu hz) = <K12 (k)h19 2>Hz <G’2(k)h1, h2>Hz = <TG’ Uikhu h2>F2’

where {c,(8)};~, are the Taylor coefﬁcients of thebfunction es(z)zexp[

it follows from (8) that, for s=>0, we have
(K]z(s)h]_, h2>H3 = D(U]_(S)hl, 2) <TG [llmlt 2 rkck(s)U'khl] h2>Fz =

it <T ¢ Ur(s)h, 2)1-'2 = {G12(hy; ho)u,- ,
Thus, Ge¥% (K) Also, it follows from (9), (8) and (7b) that

10) G,z(s) = strong llmlt 2 e, (Is|)Gio[k(signs)], for sE€R.
Conversely

108) Gjy(m) = strong limit >’ dy(s, |m])Gualks(sign m)], for meZ.
s>0+ k=0 : )

So we have proved the following
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'~ Theorem 11. Let K={(Kj), j.k=1,2; Hy, H,} be a positive definite gen-
eralized Toeplitz kernel on (R, R,) such that the functions K, are continuous in the
weak topology of operators. Then there exists a p.d. GTK K’ on (Z, Z,), such that
there is a bijection between 4(K) and 9(K’). '

The correspondence K—K’ given by this theorem is reversible; the converse of
Jformula (6) is the following:

11a) Kj;(s) = stronglimit S’ e (IsDKj;[(signs)k], s€R, j= 1,2;
r—=1- k=0

K;.(s) = strong limit Z e (s)Kip(k), sER;.
r—-1-
Theorem (1 1) allows us to transfer a uniqueness condition from the discrete
case ([2], Proposition 1.6) to the continuous one.
Corollary 12. Let K be as in theorem (11). Then % (K) contains only one
element if and only if at least one of the following two conditions is satisfied:

i) {I-Q*Q)E}~ = {(I-Q*Q)'*UIE,},
i) {(I-QQ*)"*E_}~ = {(I-QQ"/*U;E_}~,
where Uy, U, are the cogenerators of the minimal unitary dilations of Ky, Ky, respec-
tively, and Q is the operator from
E.=V U(OH, to E_= VN Uys)H,,

s=0 s=0

given for s=0, t=0, hy¢H,, h,c¢ H, by
QU(s)hy, Uz(‘)”z)s- = (Kio(s+0Dhy, hy)y,.

As an application of what has been done in this section we shall state a theorem

on the commutator of two semigroups of contractions which is the contmuous
version of (IL3).

Theorem 13. Let {Ty(s): s=0}, {T,(s): s=0} be continuous monoparametric
semigroups of contraction an Hilbert spaces H,, H,, respectively, and Xc ¥ (H,, H,)
such that XT,(5)=T,(s) X holds for all s=0. Let {V;(5): s=0}C L (Ey), {Va(s): s=0}c
cZ(E,) be minimal isometric dilations and {U,(s): s€ Ryc ¥ (F), {U.(s): s€ R}
Cc & (F,) minimal unitary dilations of the semigroups T, , T, respectively. The following
problems are considered:

i) find YeZL(E,, E») such that YV(s)= Vz(s)Y for s=0, PH=Y =XPp and
1Yl=0x0;

ii) find WeZ(Fy, Fy) such that WU,(s)=Uy(s)W, for scR, Py W| £, =XPg
and |W|=|X].



136 Rodrigo Arocena

Discarding the trivial case, it may be assumed by homogeneity that .|| X|=1.
Let K={(K;), j, k=1,2; Hy, Hy} be the GTK on (R, R, given by

K;(s)=T;(s) if s=0, Kj;(s)=T(—s) if s=0, _]—12

K ()=Ty(s)X if s=0, szif12 Then:

a) Both problems have solutions.

b) K is positive definite. -

c) There exist bijections between the set of solutzons of (1), the orie of (11) and
%(K), and these bijections are determined by

' WUL()hy, Up(ho)y,, for s, t€R, heH,, heH,
(Gya(s— 0 hy, hopy, = X .
: V(S hy, Va(D) hy)g,, for st 5 0, hIEHla thHz-

d) The solution of both problems is unique if and only if dt Ieast one of the fol—
lowing equalities is satisfied: : -

(I~ X* XY HY- @ {(Ui~T) Hy)~ = (I~ X*X)* T h+(U;—T) h: heHy}™,
{(U-X"X)2H )} ©{(Us—T;) Ho}™ = {(I—X*X)l’thB(Ué—Tz')Xhli heH,}™, .
where U], U;, T, T, are the cogenerators of Uy, U,, T, T, respectively. A

Proof. First step: some properties that we have already used ([9], Sections II1.8
and II1.9) show that U; (F;) is the minimal unitary (isometric) dilation of T%; where,
Vj’ denotes the cogenerator of the semigroup ¥;; moreover, X77=T;X holds;
from WU=U,W it follows that WU,(s)=U,(s)W for all s¢R, and from
YW =V;Y, that YVi(s)=Vo(s)Y for all s€R,.

Second step: apply Theorem 11.3 to 17, T,, V', V', U;, Uy, calhng K’ the GTK,
on (Z,Z,) that in its statement is called X. -

Third step: note that (11a) relates precxsely the kernels K and K’ we are con-
sidering here. :

Fourth step: apply Theorem 11 of this section.

Remark. The applications of generalized and matricial Toeplitz kel"nels’to'
the realization of linear systems and scattering theory are considered in [3] and [4].

Added in proofs. A more conceptual appraach to the concept of section
I is given in [10].
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Contractions quasisimilar to an isometry

PEI YUAN WU#)

1. Introduction. The bounded linear operators T; and 7, on complex, separable
Hilbert spaces $, and 9, are quasisimilar (I;~T,) if there are operators X: $,~ 9,
and Y: $,—9, with trivial kernel and dense range such that X7;=T,X and
YT,=T,Y. This paper is concerned with the question when a contraction is quasi-
similar to an isometry. This problem has been studied before: in [12] for contréc-
tions with finite defect indices, [5] for subnormal contractions and [15] for hypo:
normal contractions. Our main result in this paper (Theorem 2.7) generalizes all
these previous ones. We show that a contraction T whose C., part has finite multi-
plicity is quasisimilar to an isometry if and only if its C., part is of class Cy; and
its C., part is quasisimilar to a unilateral shift. These latter conditions can further
be expressed in terms of the inner and outer factors of the characteristic function
of T.In § 3, we show that in certain circumstances quasisimilarity to an isometry
even implies unitary equivalence and partially verify a conjecture we proposed
in [15]. '

Recall that a contraction T (||T||=1) is of class C., (resp. C,.) if T**x—0
(resp. T"x—0) for all x; T is of class C., (resp..C,.) if T*"x-0 (resp. T"x-0)
for all x#0. C,z=C,.NC.; for «, f=0,1. Any contraction T can be uniquely
[6 7

0T
(called the C.; and C.y parts of T). A contraction T can also be decomposed as
U®T’, where U is a unitary operator and T’ is completely nonunitary (c.nu.);
U and T’ are called the wunitary part and c.nu. part of T. T is said to be of analytic
type if it has no singular unitary direct summand. For such T, the functional calculus,
o(T) for pc H= is well-defined. For the details and other properties of contractions,
readers are referred to Sz.-NAGY and Foias’ book [7]. -

triangulated as T= , where T; and T;, are of classes C., and C.,, respectively

*) This research was partially supportéd by Naﬁohal Science Counéil of Taiwan, China.

Received September 6, 1985,
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d

Let T; and T, be operators on $, and $,, respectively. We use T; <T, to denote
that there is an operator X: $,— %, with dense range and satisfying X7;=T,X,
and T3 <7, if the intertwining X is both injective and with dense range (called a

d d d
quasiaffinity). T~T, if T,<T, and T,<T; T~T, if T1<T, and T,<T;.
T, is similar 10 T, (T,=T,) if the intertwining operator X is invertible; T, is unitarily
equivalent to T, (I;=:T;) if X is unitary. The multiplicity u; of an operator on $

is the minimum cardinality of a set K&$ for which H= G T"K. Note that
n=0

d
T,<T, implies B =g, In the following, we use S, to denote the unilateral shift
with multiplicity n acting on H2. :

2. Main results. We start with the following proposition.

Proposition 2.1. Let T be a contraction on  and 1=n<o. Then T~Sa

if and only if y S,. Moreover, in this case, T is of class Cyy, and there exist quasi-
affinities X: $—~H? and Y: H?—~$ which intertwine T and S, and such that
XY=6(S,) and YX=046(T) for some outer function § in H>.

Proof. Assume that 7'< S,. We first show that T is of analytic type. Let
T=UoT" on H=9H,D9H,, where U, is a singular unitary operator and 7’ is a

?1]: H!~9H=9,99, be an operator
2

intertwining S, and 7 and with dense range. Then ¥; intertwines S, and U, and
has dense range in $, . It can be lifted to an operator ¥, which intertwines the minimal
unitary extension U of S, and U, (cf. [4, Corollary 5.1]). Since U is absolutely con-
tinuous and U, is singular, ¥; must be the zero operator (cf. [4, Theorem 3]). Hence
Y;=0 and it follows that T=T7" is of analytic type.

contraction of analytic type, and let Y=

Let X: 9—~H? be an operator intertwining T and S, and with dense range.
Then XY commutes with S, and has dense range in H?. We may assume that
[XY|=1. Thus XY is the operator &, of multiplication by a contractive operator-
valued analytic function @ on H? which is even outer (cf. [7, Lemma V.3.2]). By
[7, Proposition V.6.1], @ has a scalar multiple 6€¢H>: there exists another con-
tractive analytic function Q such that Q(A)®()=56(A)I and S(A)Q(A)=
=6(M)I (|A|<1). Since @ is an outer function, we may take & to be outer (cf. [7,
Theorem V.6.2]). Let Z=Q, X. Then Z intertwines Tand S, and ZY=(Q, X)Y=
=Q, &, =4(S,). Multiplying both sides by ¥, we obtain YZY=Y5(S,)=06(T)Y
(here we need the fact that 7'is of analytic type). Since Y has dense range, we infer
that YZ=4(T). Note that § is outer implies that §(S,) and 6(T) are quasiaffinities
(f. [7, Proposition II1.3.1]). It follows easily that X, ¥ and Z are all quasiaffinities,
This shows that T~S,. That T is of class Cy can be easily deduced.
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Corollary 2.2. Let T be a contraction of analytic type and 1=n-<. Then
T~S, if and only if ur=n and TéS,,.

Proof. The assertion follows from Proposition 2.1 and the fact that u;=n
implies that S,,QT (cf. [15, Lemma 2.3]).

When T is subnormal, the preceding corollary was essentially proved by Has-
TINGS [5, Proposition 4.1]. For another set of conditions in order that T~ S,,
compare [1, Theorem 2.8].

[T *

Corollary 2.3. Let T= 0T

d
type. If Ty is not missing and T,<S,, then pr=n+1.

] on H=9,99, be a contraction of analytic

Proof. Since ur=p;,=n, we may assume that n<ee. Let X: $,—~H} be
an operator intertwining T, and S, and with dense range. Let Y=[0 X]: $=,®
®9H,—~H}. Then Y intertwines T and S, and has dense range. If pur=n, then
T~S8, by Corollary 2.2 and so by the proof of Proposition 2.1 ¥ is injective, which
implies that $,={0}, a contradiction. Hence we have pr=n+1.

The next theorem characterizes those contractions which are quasisimilar to
a unilateral shift with finite multiplicity in terms of their characteristic functions.
It generalizes [12, Lemma 1] for contractions with finite defect indices. For any
contraction T, let @, denote its characteristic function (consult [7] for its definition
and properties).

Theorem 24. Let T be a contraction and 1=n<eco. Then T~S, if and
only if T is of class Cy4, ur=n and there exists a bounded analytic function Q such
that QOp=46I for some outer function § in H™.

Proof. Assume that T~S,. It is easily seen that T is of class C,y whence
c.n.u. We may consider its functional model, that is, consider T acting on $j=Hg*e
©0,H by Tf=P(¢"f) for f€$H, where D=ran(I—T*T)"/%, D =ran(I—TT*)"?
and P denotes the orthogonal projection onto $ (cf. [7, Proposition VI.2.1]). By
Proposition 2.1, there exist quasiaffinities X: $—~H?2 and Y: H2—~$ which inter-
twine T and S, and satisfy XY=4(S,) and YX=46(T) for some outer function
6 in H*. Note that Xf=®f for fc$ and Yg=P(¥g) for gc H?, where ¢ and ¥
are bounded analytic functions satisfying #©@;=0 (cf. [7, Theorem V1.3.6]). From
XY=6(S,) and YX=06(T), we deduce that d¥=6 and YP—-36=—0.Q for
some bounded analytic function Q. Since @ is an inner function (cf. [7, Proposi-
tion VI1.3.5]), we have
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Therefore QO@;=41 as.required. The reverse implication follows as in the proof
of [12, Lemma 1].

Using Proposition 2.1, Theorem 2.4 and [14, Theorem 2.1], we can obtain the
following interesting result. '

Theorem 2.5. Let T= [0 T] be a contraction. If T, ~ S Jor some 1=n< o,
then T~T,0T,.

" Proof. If T'is c.n.u., then the conclusion follows from the results cited above.

For general T,let T=U®T" on H=KDL, where U is unitary and 7~ is c.n.u.

Assuine that T'= ]01 ; "is acting on H=9H,0H,. We first check that $,S L.
2

Since TgriS,, implies that T, i$ of class C;, by Proposition 2.1, for any x€$,,

we have T*"x=T,"x—~0 as m—e. If x=x,®x,, where x,€& and x,€L,

then U*™x,—~0. Since U is unitary, this implies that x,=0 and thus x=x,€£.

Thi_s proves $.EL which is equivalent to K&9,. It is easily seen that

fu o o
. T=|0 Ty *| on 9 =KD(H0RK)DD:-
00 T,

T, *

Since [ 0T, ] is c.n.u., from above we have [ 0T,

~UOT|®T,=T8T,.
" We remark that it is unknown whether the preceding theorem is still valid

. d . N
under n=-eo, thatis, when T,~S§_ or T2~S°°. In a very special case, this is
indeed true. :

]~Tl’ @7, and therefore T~

“Theorem 2.6 Let T= [ 0 T] bea contractzon If T, is similar to an zsometry,
2
then T is similar to T,®T,.
" Proof. If Tis cn. u., thls follows from [8 Theorem 2.4] and [14, Theorem 2.1].

For the general case, assume that 7;, is similar to the isometry V=WaS,, where
Wis umtary and S, 1s some unilateral shift. It is easily seen that T, can be triangulated

0 T;] with Ty~W and T,xS,. Letting T;= [ ] we have T_[O T;]

Since T,=:S,, proceeding as in the proof of Theorem 2.5 we obtain T~T,®T,.
On the other hand, T;~W implies that T;=T;®T; and T,~T,®T, (cf [9 Theo-
rem 2. 14]) ‘Thus T~T169T3€97';~T1€BT‘, as claimed.

as,

" Now we are ready for our main result.

Theorem 2.7. Let T be a contraction and T= [0 T] be its triangulation of

type [C;)l : (jf ] Assume that pry < <. Then the following statements are equivalent:
o0
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(1) T is quasisimilar to an isometry; .

(2) T, is of class Cyy and T, is quasisimilar to a unilateral shift;

(3) O, (the outer factor of @) is outer from both sides, @, (the inner factor
of @) is inner and x-outer, and there exists a bounded analytic function Q such that
QO;=40I for some outer function 5 in H*.

Moreover, if T is of analytic type and is quasisimilar to the isometry V, then
there are quasiaffinities X and Y intertwining T and V such that XY=6(V) and
YX=46(T).

Proof. (1)=(2): Assume that T~V =U®&S,, where U is unitary. Since T,
and U are of class C., and T; and S, are of class C.,, we can easily deduce that
T; ~S This, together with Hy,< <o, implies that 7,~.S, by Proposition 2.1.
On the other hand, T<V 1mphes that T is of class C,. whence T; is of class C,.

(2)=(1): This follows from Theorem 2.5.

(2)4:»(3) Since ©, and O, correspond to the characterlstlc functions of T
and T,, respectively, this follows from Theorem 2.4 and [7, Proposition VI.3.5].

The assertion concerning the intertwining quasiaffinities can be deduced easily
from [14, Theorem 2.1].

As we remarked in § 1, the preceding theorem generalizes [11, Theorem 3]
for contractions with finite defect indices, [5, Corollary to Theorem 4.5) for sub-
normal contractions and [14, Corollary 3.11] for hyponormal contractions. An ex-
ample of HASTINGS [5] shows that (1) may not imply (2) without the assumption
Py, <. It is interesting to contrast this theorem it with [10, Theorem 2] where
“quasisimilarity” is replaced by “similarity” in which case p; <-<o won’t be needed.

- 3. Some consequences. In this section, we will derive two results for which an
operator quasisimilar to an isometry is even unitarily equivalent to it. More precisely,
we show that if V=U®S, is an isometry, where U is unitary and n<e, and
T is a quasinormal operator or T€Alg ¥V (the weakly closed algebra generated by

T and 1), then TV implies T=V. For the first one, we prove the following
more general result.

Proposition 3.1. If T is a contraction whose c.n.u. part is of class C., and
V=U®S, is an isometry with n< o, then iy implies T~V.

Proof. Let T=U'@T’, where U’ is unitary and 7” is c.n.u. Since U’ and
U are of class C., and T’ and S, are of class C.,, we deduce from TSV that

S Thus T'~S, by Proposition2.1 and therefore T~U'®S, v [15 :
Lemma 3.4] yields that U’&@S,=V. Thus T~V as asserted.

Corollary 3.2. If T is a hyponormal operator and V= U@S is an isometry
with n<co, then iy implies T~V. C S
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Proof. TV implies that their spectra are equal [2, Theorem 2], so are their
spectral radii: #(T)=r(V'). Hence ||T||=r(T)=r(¥V)=1 showing that T is a con-
traction. Now the assertion follows from Proposition 3.1 and the fact that c.n.u.
hyponormal contractions are of class C., [6].

Corollary 3.3. If T is a quasinormal operator and V=U®S, is an isometry
With n<eo, then T~V implies T=V.

Proof. By Corollary 3.2, we have T~V. For quasinormal T, this implies
T=V (cf. [15, Proposition 4.2]).

Now for our final result. In [15], we asked whether for isometry ¥, Tc€AlgV
and T~V imply T=V, and showed that this is indeed the case if T~V [I5,
Proposition 4.6]. We will now verify its validity when V=U®S, with n<-, We
start with the following. For any operator T, T™ denotes the direct sum of n co-
pies of T.

Lemma 3.4. Let T be a contraction. If T("’riS,, for some l=n<-co, then
T~S,. A

Proof. Since @rw=0%, Proposition 2.1 and Theorem 2.4 imply that 7™
is of class Cyo and there exists a bounded analytic function Q such that QO =51
for some outer function é in H*. If ¢ denotes the (1, 1)-entry of Q, then ®O =4l
Thus, by Theorem 2.4 again, T~ S, for some 1=k=<eco, Since S,~T™~S,,, we
conclude that k=1 and T~S,.

Prop031t10n 3.5. Let V=U®S, be an isometry with n<oo. If TEAlgV
and T V, then T==V.

Proof. Let U=U®U,, where U, and U, are singular and absolutely con-
tinuous unitary operators, respectively. In view of [15, Lemma 4.3], we may assume
that ¥ is not unitary. Hence TcAlgV implies that T=W®¢(U,®S,), where
WeAlg U, and @€H™ (cf. [13, Lemma 1.3] and [11, Lemma 3.11]). This shows
that T is hyponormal and therefore Ty implies, by Corollary 3.2, that T~V.
If ¢ is a constant function, then T'is normal whence 7'~V implies that ¥ is unitary,
a contradiction. Thus ¢ is nonconstant and therefore ¢(S,) is completely non-
normal (cf. [15, Lemmas 4.4 and 4.5]). Hence T~V implies that Wee(U)=U
and qo(S,,)«d‘S,, by [5, Proposition 3.5]. We apply Lemma 3.4 to obtain that
@(SP~S,. It follows from [3, Theorem 1] that ¢(S;)=S; whence ¢(S,)=S, and
T=V follows.

Added in proof. TakaHasHI [16] showed that for isometry V. TeAlgV
and T~V imply T=V which answered the question asked in [15]. -
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On the reflexivity of contractions with isometric parts

KATSUTOSHI TAKAHASHI

For a bounded linear operator T on a Hilbert space, let Alg T denote the
weakly closed algebra generated by T and the identity. Also let Lat T and AlgLat T
denote the lattice of all invariant subspaces of T and the algebra of all operators
A such that Lat TCLat 4, respectively. An operator T is said to be reflexive if
Alg Lat T=Alg T. (Note that we always have Alg TS Alg Lat T.) The first exam-
ples of reflexive operators were given by SARASON [7], that is, he proved that normal
operators and analytic Toeplitz operators are reflexive. Subsequently DEDDENS [4]
proved the reflexivity of isometries, and now various classes of operators are known
to be reflexive. B

In [9] and [10]}, Wu considered the generalizations of Deddens’ result. In 9]
the reflexivity was proved for contractions T on $ such that T|M and T*HOM
are isometries for some McLat 7, and in [10] for contractions which have parts
similar to the adjoints of unilateral shifts, in particular, for contractions with a
unilateral shift summand. The results of [10] were generalized in [2] as conjectured
by Wu, that is, it was proved that if T is a contraction and there exists a nonzero
operator X such that X7T=SX where S is a unilateral shift, then T is reflexive.
In this note we prove the reflexivity of a contraction with a unilateral shift part.
This result contains the main theorem of [9] as a special case. As an application,
we obtain the reflexivity result for a contraction 7 on a separable Hilbert space
such that u@% is an operator-valued H*-function for some nonzero scalar H*-
function u, where @y is the characteristic function of T and ©%(e")=(Or(e")*
for almost every ¢, in particular, for a contraction T such that @, is a polynomial.
Our proof needs the reflexivity result of [2] stated above. We will extensively use
the theory of contractions developed by Sz.-NaGy and Foiag [8].

Theorem 1. If T is a contraction on a Hilbert space $ and there exists a non-
zero WMcLat T such that T|\M is a unilateral shift, then T is reflexive.

Received December 3, 1985.
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First let us prove the following lemma.

Lemma 2. If T is a contraction on $ and there exists a nonzero IMcLat T
such that T|\M is a unilateral shift, then there exists a nonzero operator Y: H— L2
satisfying the following conditions (i) and (ii); O) YT=WY where W is the bilateral
shift on L? defined by (Wf)(e")=e"f(e") ae.t, f€L? (ii) there exists a linear mani-
fold £ dense in HSOker Y such that ‘W|WRy, is a unilateral shift for all 0=x€L,
where My, =\ {W"Yx: n=0} (a cyclic subspace for W).

Proof. By assumption, if I, is a cyclic subspace for T included in 9, then
T|M, is unitarily equivalent to the unilateral shift S=W|H? (cf. [6, Theorem 3.33)),
hence there exists an isometry Z: H%—$ such that TZ=ZS. Let U be the minimal
unitary dilation of T acting on ®, thus U is a unitary operator such that PU{HS=T
where P is the orthogonal projection of ® onto $, and if G,.= V0 U"$, then

®,0%cLat U (cf. [8, Theorem 1.4.1 and 4.2]). By the lifting theorem of Sz.-Nagy
and Foias (cf. [8, Theorem I1.2.3] and [5, Corollary 5.1]) there exists an operator
Z: 12~ satisfying the conditions (a) UZ=ZW, (b) PZ|H*=Z and (c) |Z|=
=] Z]|=1. Let us show that the operator Y=Z*|%: $—L? is a required one.

Since the condition (a) implies Z*U=WZ*, to prove YT=WY, it suffices
to show that & ,©9Cker Z*. Since 6,0HcLat U, 6,09 is orthogonal to
V U*$. On the other band, since Z is isometric, it follows from (b) and (c) that

n=0

Z|H?=Z, andsince ZW*"=U*"Z (n=1,2,...) by (a), we see that Z is an isometry
and ran ZS \/ U*"$§. Therefore it follows that &, 0 HTker Z*. Next to see (ii),

n=0

let My={Zp; p is an analytic polynomial}. Clearly M, is linear and dense
in ZH?. Also since Z|H?>=Z, we have ZH2C $Oker Y. We consider L=M,®
®((Hoker Y)O ZH?), which is linear and dense in $Oker Y. If 0%x=Zp+x,€2
where p is a polynomial of degree n and x,€(HSOker Y)OZH?, then Yx=p+Yx;
because Z|H2=Z and Z is an isometry. Since x, is orthogonal to ZH?2, or equi-
valently Yx, is orthogonal to H?, it follows that x~"+VYx, where y(e")=e", is
orthogonal to H? so that ¥Yx=qg (¥x20), where ¢ is a function in L™ such that
lg(e¥)|=1 a.e. ¢t and g is an outer function in H?2 (cf. [3, Chapter IV, Theorem 6.1
and Corollary 6.4]). This shows Ry,=qH? hence the isometry W|R,, is a uni-
lateral shift. Thus the condition (ii) holds.

Any contraction T can be decomposed uniquely as T=U@T, where U is a
unitary operator and 7 is a completely non-unitary (c.n.u.) contraction, that is,
7; has no nontrivial unitary direct summand. The operators U and T; are called
the unitary part and the c.n.u. part of T, respectively. For a contraction T whose
unitary part is absolutely continuous, the H*-functional calculus defines a weak™-
weak continuous algebra homomorphism, w—u(T), from H= to AlgT, and T
is said to be of class Cy if u(T)=0 for some nonzero u¢ H* (cf. [8, Chapter III)).
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Proof of Theorem 1. Let T=U;®T; on H=9H,0$; where U, is a sin-
gular unitary operator and T; is a contraction whose unitary part is absolutely
continuous. It is known that the reflexivity of T is equivalent to that of T} (cf. the
proof of [9, Theorem 4.1]). Since T has a unilateral shift part, as in the proof of
Lemma 2, we have an isometry Z such that TZ=ZS where S is the unilateral
shift on H2 If P, is the orthogonal projection onto $,, then U,(P.Z)=(P.Z)S
and it follows from [5, Corollary 5.1 and Theorem 3] that P.Z=0, hence ran ZS $,.
This shows that 7] has a unilateral shift part. Thus we may assume that the unitary
part of T'is absolutely continuous and it suffices to show that for each 4¢ Alg Lat T,
there exists f€ H* such that A=f(T). :

Let ¥, Wand £ be as in Lemma 2, and let £ be the set {x,+x5: x,€ker Y and
05£x,€ 2} that is dense in §. If xc@, thatis, x=x,+x, where x,cker ¥ and
0=x,€28, then since Yx=Yx,(#0), by Lemma 2 the isometry W|Ry, is a uni-
lateral shift and (W|Ny )(Y|MM,)=(Y|M)(T|M,) with Y|M =0, where EIR =
=V {T"x: n=0}, so it follows from [2, Theorem 4] that '

AlgLat(TM,) = {f(T)M,: feH=}.

Here note that the unitary parts of 7 and T, are absolutely continuous. Take
AcAlg Lat T. For each x€&, since M cLat TCLat A and A4|M €Alg Lat (T|9,),
by the above fact there is f,€ H” such that A[M,=f(T)|M,, in particular,
Ax=f.(T)x. Here note that it follows from the identity WY=YT with Yx520
that T|9, is not of class C, (cf. [8, Proposition I11.4.1]), so that the function f,

is determined uniquely by x. Since & is dense in $, in order to show A=f(T) for
some f€ H*, it suffices to prove that f, =f, for all x, y¢€ . First suppose x —y€ker Y
Then since ¥Yx=Yy and ker Y¢Lat TSLat A, we have

(Fu—F) W)Y = Yfu(T)x—Yf,(T)y = YAx—YAy = YA(x—y) = 0,

and since Yx#O0, it follows that fx=fy'. Next assume that x—yg¢ker Y. Then
since clearly x—y€®, there is Jfx—y€H> such that

fesMX~foey(D)Y = fomy T (x—p) = A(x—) = Ax—Ay = fu(T)x—f,(T)y,
hence (fr—,—f D) x=(feocy— )Ty M, NM,. Therefore we have

LM Samy=fID)x = Afamy =SfID)x = [(TD) (f2-y =) (Dx,

and since T|M, is not of class Cy, (f; fy)( JSi—y—f:)=0. Similarly we have
(fi=f)(fuey—1,)=0. This shows f,=f, and completes the proof.

Let T be a contraction on a separable Hllbert space. The charactertsttc functzonv
@y of T is defined by

Or(3) = [-T+AD+(I—-AT*)"1D;)| Dy (lil <1),
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where Dp=(I—T*T)Y?, Dps=(I—TT*)* and D;=(ran D;)~. The function O
is an operator-valued H>-function whose values are contractions from Dy to
Dpe:=(ran D)~ (cf. [8, Chapter VI]). If T'is c.n.u., then it follows from [8, Theo-
rem VIL.4.7] that there exists a nonzero MeLat T such that T|P is a unilateral
shift if and only if there exists a nonzero h€ H3(Dy.) such that OFh€A;L*(Dq),
where H?(Drs) (resp. L3(Dy)) is the space of Dy«-valued H>-functions (resp. Dr-
valued L*-functions), @%(e")=(@r(eM)* a.e. t and Ar(e")=(I—O1(¢")* O (e")*
a.e. t.

Now we obtain the reflexivity result for a contraction T such that uO@7% is an
operator-valued H>-function for some nonzero scalar function u€H*. If such
a contraction T is of class Cy, that is, T"—~0 and 7*"—~0 strongly as n— oo,
then since @(e") is unitary a.e. ¢ (cf. [8, Proposition VI.3.5]), the condition that
uO?%. is an operator-valued H*=-function with a nonzero u€ H= means that u(T)=0
and so T is of class C, (cf. [8, Theorem VI.5.1]). Reflexive contractions of class C,
were characterized in terms of their Jordan models [1].

Theorem 3. Let T be a contraction on a separable Hilbert space such that
u@7y is an operator-valued H>-function for some nonzero u¢ H*. If the c.n.u. part
of T is not of class Cyy, then T is reflexive.

Proof. By Theorem 1 it suffices to show that T or T has a unilateral shift
part. Since the characteristic function of a contraction is equal to the one of its
c.n.u. part, we may assume that T is a c.n.u. contraction. Since O%F(I—-0;0%)=
=4%0% and by the assumption for @y the function u(/—©,07) is an operator-
valued H=-function, if lim || 7"x||0 for some x, or equivalently @,(e") is not
coisometric on a set of #’s of positive Lebesgue measure (cf. [8, Proposition VL3.5)),
then there is a nonzero h€ H2(Dr.) such that @Fh€A;L%(Dy), and so T has a
unilateral shift part by the fact remarked above. Also since @r.(e")=(Or(e~*))*
a.e. t for the characteristic function @ of T* (cf. [8, p. 239]), the contraction 7*
satisfies the same condition as T, that is, #©73, is an operator-valued H>-function
where i is a function in H> defined by #(e*)=u(e-") a.e. . Thus if lim || 7*"x| 0
for some x, then it follows that T* has a unilateral shift part.

The following theorem gives a complement of Theorem 3.

Theorem 4. Let T=U®T, where U is a unitary operator and Ty is a contrac-
tion of class C,. Then T is reflexive if and only if the following condition (i) or (ii)
holds:

(i) U has a (nontrivial) bilateral shift summand;

(ii) T‘ is reflexive,
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Proof. Again we may assume that U is absolutely continuous (cf. the proof
of [9, Theorem 4.1]). If U has a bilateral shift summand, then by Theorem 1 T is
reflexive. If U has no bilateral shift summand, then by Lemma 5 below we have
Alg T=Alg UdAlgT, and LatT=Lat U®LatT;, so "AlgLat T=AlgLat U®
®AlgLatT;. Therefore it follows from the reflexivity of the unitary operator*U
(cf. [7]) that T is reflexive if and only if T; is. This shows Theorem 4.

" The implication (2)=(1) in the following lemma was pointed out by P. Y. Wu.

Lemma 5. Let T=U®T, on H=9,0%9, where U is an absolutely continuous
unitary operator and T, is a contraction of class C,y. Then the following conditions are
equivalent: ' '

(1) U has no bilateral shift summand;

(2) Lat T=Lat U®LatT;;

(3) Alg T=Alg UdAlgT;.

‘Proof. (1)=>(2): Since the inclusion Lat UdLatT;SLlat T is obvious, we.
have to show that any MeLlat T is decomposed into M=LPHN where LeLat U
and MeLatT,. Suppose McLatT. Since T; is of class C,, there is a nonzero
function f¢H* such that f(T;)=0. We set L=(f(T)M)~SM. Then clearly
ecLat T and 2&(ranf(T))~ =(ran f(U))"E9H,, so L is an invariant subspace
of U. But since U has no bilateral shift summand, £ reduces U (cf. [3, Chapter VII,
Proposition 5.2]), hence £ also reduces 7. Then the subspace #=IMO & is invariant
for T and since f(T)NER and f(T)NCSFH(T)MSL, we have f(T)N={0}. But
since f(T)=f(U)®0 and obviously f(U) is injective, we conclude NES$H,, and
therefore elatT,. This shows (2).

(D=(3): For n=1,2,..., T®=UW@T™ satisfies the same condition as T,
where for an operator A4, A™ denotes the direct sum of n copies of A. Therefore,
using the implication (1)=(2) proved already, we have Lat 7™ =Lat U™ @Lat 7",
If AcAlg U and B€AlgT,, then clearly Lat U @®Lat T"CLat (A®B)™, so that
Lat T™CLat (4®B)™ for n=1,2,..., hence it follows from Sarason’s lemma
(cf. [6, Theorem 7.1]) that A@BcAlg T. This shows Alg UdAlgT,SAlg T. Since
the converse inclusion is obvious, we conclude Alg T=Alg UpAlgT;.

(3)=(2) is obvious. (2)=>(1): If U has a bilateral shift summand, then by the
proof of Theorem 1 AlgLat T={f(T): f€ H=}. Since the condition (2) implies
the inclusion AlgLat UdAlgLatT,SAlgLlatT, we have O0@IcAlglatT, so
that there is f€ H* such that f(U)=0 and f(T;)=I, but this is impossible because
f(U)=0 implies f=0. This shows (2)=>(1).
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On normal extensions of unbounded operators. I1*)

J. STOCHEL and F. H. SZAFRANIEC

This paper continues our study of unbounded subnormal operators. The results
contained here may be regarded as reviewing, extending and completing those of
[21] (and also of [20] and [22]). The next paper [26] in this series will be devoted to
spectral problems as well as to the question of uniqueness of normal exténsions.

Subnormal operators in general aspect

1. Let S be a densely defined linear operator in a complex Hilbert space $*
D(S), N(S) and R(S) stands for the domain of S, the null space of S and the
range of S, respectively. S is said to be subnormal if there is a Hilbert space & con-
taining $ and a normal operator N in K such that

D(S)cD(N) and Sf=Nf for each fedD(ES). . -

(A densely defined linear operator N in & is said to be rormal if it is closed and
N*N=NN*. This is the same as to require that D(N)=D(N*) and |Nf]|=[N*f],
fED(N). A normal operator has a spectral representation on the complex plane C.)
The first thing we have to point out is that a subnormal operator must nec-
essarily be closable. Even more we show that D(S)cD(S*). To see this take
£2€D(S), then .
(S 8)s = (i N*g)s» fED(S)

which gives us g€D(S*) and S*g=PyN*g.
The following characterization of densely defined subnormal operators based
on the spectral representation of normal extensions is due to Foias (cf. [8], p. 248).

*) The essentials of this paper were presented at the 9th OT Conference in Romania (Timi-
soara—Herculane, June 1984).

Received September 23, 1985 and in revised form February 27, 1987,



154 J. Stochel and F. H. Szafraniec

Theorem 1. A densely defined operator S in § is subnormal if and only if
there is a (normalized) semispectral measure F in $ on the complex plane C such that

(S"f, S"gy = [Im(F(dA)f, &) [, 8ED(S), myn=0,1.
C

This theorem seems to be the only known characterization of unbounded
densely defined subnormal operators in the general case (without any additional
assumption on §). It ought to be noticed that a characterization like this of Foias
for bounded operators has appeard in [2] (cf. also [6]). However that involves all
the powers of the operator S. This requirement is superfluous for bounded operators,
while for unbounded ones it leads to unnecessary restriction on behavior of domains
of all powers of S.

2. Now we want to discuss the relation between subnormality and quasi-
normality. Like in the bounded case we have two equivalent possibilities of defining
quasinormal operators. Because commutativity of unbounded operators is rather
a delicate matter, we wish to discuss this equivalence with more care.

A closed densely defined operator Q in a Hilbert space © is said to be quasi-
normal if Q commutes with the spectral measure E of |Q]:=(Q*Q)"? i.e. E(c6)QC
CQE(o), o being a Borel subset of the non-negative. part R, of the real line R.

Proposition 1. Q is quasinormal if and only if Q is closed and U commutes
with-the spectral measure E of |Q|, where Q=U|Q| is the polar decomposition of Q.

Proof. Suppose that U commutes w1th E Since E commutes with |Q] (i.e.
E(0)|0|c|Q|E(0)) we have

E(0)Q = E@U|Q| = UE(9)|QIcU QI E(s) = QE(a).

Thus Q is quasinormal.
Suppose now that Q is quasinormal. Since Q commutes w1th E, U commutes

with E on 9%([Q|) Indeed, for each fe®D(|Q]) we have

(VE(0)-E()U)IQIf = UE(9)IQl f~E@UI01f = UIQIE(o) f-E(@)Qf =
= QE(0)f—E(0)Qf = 0.

Since E({0}) is the orthogonal projection onto 9(|Q]) and R(Q)*= S'I(IQI)_
=RN(U), (UE(e)—E(c) U)f=UE(c)f=UE(c) E({0})f=UE({0})E(0)f=0 for each
fER(IQD*. Thus U commutes with E. This completes the proof. .

The following result as well as its proof is patterned upon that for bounded
operators ([6], Prop. 1.7, p. 115) however technically more involved,
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Theorem 2. Every quasinormal operator is subnormal.

Proof. Let S=U|S| be the polar decomposition of § and let |S|=f tE(dt)

. 0 .
be the spectral representation of |S|. Denote by Fysy and Fy., the orthogonal
projections onto N(|S]) and ﬂt(S *), respectively. Define in $B$H two operators
Rand U as R=|S|®|S| and

0= [— (1-3* Uy (I_UUZ*)U-zl‘

Itis easy to see [11] that  is a unitary opérator which dilates U (the Halmos dilation)
and R is a self-adjoint extension of |S|. Since U is a partial isometry, I is in fact

of the form
U Py s+
U= [ m(i) .
—Pygspy U

Due to Proposition 1, U and U* commute with E. Since I—UU*=PF,, and
I-U*U=PRys)y» Pys+ and Pys, commute with E. Consequently I commutes
with E®E which is the spectral measure of R. Therefore R RU. This implies
that RU=U0*RUCU(RO)*UcT(UR*U=UR0I*T=0UR and OR=RU in con-
sequence. Denote by N the operator JR. Since N*N=RU*UR=R? and NN*=
=(RU)(RO)Y*=RUU*R=R?, N*N=NN*. This means that N is normal.

Let now f€D(S)=D(S]). Then f@OcD(R). Since By, commutes with E,
FysplS1CIS1Bygsp=0. Thus

N(f®0) = OR(f@0) = U(IS| f©0) = US| f&(— Pas|SI.f) = (UISIf)EBO = SféBO
Wthh means that N extends S. This completes the proof.

Corollary 1. An operator is--subnormal if and only if it has a quasinormal
extension.

Proof. We have only to prove that each normal operator Nis quaéin“orm'él.
Indeed, if N= f zE(dz) then |N|= f |2| E(dz)= f tF(dt), where F(o)=

=E({z€C: |z|¢ a}) o being a Borel subsot of R,. Since ENCNE, FN CNF Th1s
means that N is quasinormal.
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Subnormal operators and the complex moment problem

3. The following condition, introduced by HaLMos [11], characterizes [2]
bounded subnormal operators in a Hilbert space . This is

J k=0

H) §$%$mﬁ

for all finite sequences fg, ..., f,€9. To consider the same condition in unbounded
case one needs the linear subspace D™(S) of H

D=(S) = (| DS

(members of D>(S) are customarily refered to as C=-vectors). In this paper we will
require that D=(S) is big enough (in most cases dense in ). This requirement
makes serious (comparing with Section ) restriction on subnormal operators be-
cause there are symmetric operators (even semi-bounded [4]) with trivial domains
of their squares. Moreover the condition (H) considered for f, ..., /L€ D*(S),
which is the only possibility to do, is not sufficient for subnormality for § even if
D(S) is dense in $. Let us discuss the following,

Example 1. Take a sequence of real numbers {a,,,}m ,~o Which is positive
definite in the following sense:

ZaM+P.n+q'1mmIp,q =0

for each finite sequence {4, ,}<C, and which is not a two parameter moment
sequence (see [1] and [9]). There are two densely defined symmetric operators A
and B in some Hilbert space $ with a common domain D= (4)=D(B), having
a vector f,€D such that all the powers A™B"f,, m,n=0, span D, and such that

(1) . O = {A™B fo, o), myn=0

(cf. again [9]). Moreover 4 and B commute i.e. ABf=BAf for each fc®. Define
T=A+iB. T satisfies (H) for all finite sequences f;, ..., f,€ D=D(S) (even more,
1T =1 T*f1, f€D, because 4 and B commute).

Define S as a restriction of T to the linear span of {T"f,: n=0}.

Neither T nor S is subnormal. If T would be subnormal (then S would be too),
then there existed a measure g on C (constructed via the spectral measure of a
normal extension of T) such that

(Tfo, Ty = [ 22" du(z), mn=0,
c
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Then, due to (1),
Qe = f(Re z)"(Im z)"du(z), m,n=0.
C

This would mean that {a,, .}, ,—o Was a two parameter moment sequence, which
gives a contradiction.

Thus we have got an example of an operator which has a cyclic vector (an
operator Sin § is said to be cyclic with a cyclic vector fy if f€ D= (S) and D(S)
is a linear span of {S"f;: n=0}) satisfies (H) on D(S) but is not subnormal.

If one would be interested in an example of a non-cyclic operator, one could
take a Nelson pair (cf. [17], [5]) to get an operator satisfying (H) on D(S) with no
normal extension.

As the following proposition shows the condition (H) is satisfied on D(S)
if and only if S has a formally normal extension (with dense “reducing” domain).
Here by a formally normal operator in $ we mean a densely defined operator N in
$ such that D(N)cD(N*) and [[Nf||=[[N*f] for each fe¢D(N).

Proposition 2. Let S be a densely defined operator in $ such that SD(S)c
CD(S). Then S satisfies (H) for all finite sequences fy, ..., fL€D(S) if and only if
there is a formally normal operator N in some Hilbert space RD% such that

(i) ND(N)CD(N) and N*D(N)CD(N),

(ii)) D(S)CD(N) and SN,

(iii) D(N) is a linear span of the set

{N*"f: n= 0,» FED(S)).

Proof. The proof of the “if” part of Proposition 2 follows from the equality
N*Nf=NN*f, fe D(N), via direct computation. '

To prove the converse, suppose that S satisfies (H) for all finite sequences
Sor s Ju€D(S). The set S=NXN (N={0, 1, ...}) equiped with the coordinate-
wise defined addition and the involution (m, n)*=(n, m) becomes a *-semigroup.
Define the form ¢ over (S, D(S)) (cf. [23])

@((m,n); f, g) = (S™f, S"g), f.g€D(S), m,neN.
Then like in [24, par. 10], one can show that ¢ is positive definite i.e.
)] 2 OGE+s [ D=0, fi, . LED(S) and 5y, ...,566 (=)
k=1

(SD(S)=D(S) is important here). It follows from Proposition in [23] that there
is a family {&(s): s€S} of densely defined operators in some Hilbert space &
with common dense domain D, a linear operator ¥: D(S)-D such that
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De Y D(#(s)") and

@(s; £,8) =BV, Vg), s€G, f geD(S),
o(s)DcD and O(s)*DCD, s€S,
B()D()f = D(s+1)f, s5,1€S, fE€D,
D) P(s)*, s5€G,
D is a linear span of {P(s)Vf: s€G, fED(S)}. .

Set N=®&(1,0). Since (1,0)*+(1,0)=(1,0)+(1,0)*, N is a formally normal
operator which satisfies the condition (i) of Proposition 2. Moreover we have

(S"'f S"g) = (@(n(1, 0)*+m(1, )V, Vgy = (N"Vf, N"Vg),
- om, neN and f,gED(S)

ThlS implies that ¥ is an isometry from D(S) into D. Identifying D(S) with FD(S)
one can easily check-the conditions (ii) and (iii). This completes the proof.

. Remark 1. In [21] and in this paper we consider exclusively the operators
with invariant domains. If D(S) is not invariant for S, we have to replace the con-
dition (H) on D(S) by the condition (2).

4. Example 1 shows that the condition (H) itself is not sufficient for subnor-
mality even of cyclic operators (however it is for weighted shifts — cf. Section 6).

If £, is a cyclic vector for S and S satisfies (H) on D>(S) then the sequence
{Cm,nJmn=o defined by

= (S"f5, S"fo) m, neN

is posmve deﬁmte in the sense that .

2 cm+q.,;|+pz';r‘n,nm = 0

m,n=0

p,9=0
for all finite sequences {4, ,}<C. Unfortunately positive-definiteness of {c,, .} .o
does not imply that {c,, .}y ,—o 1S @ complex moment sequence (this is a substance
of Example 1). However this gives a hope that subnormality of S (still being cyclic)
may be forced by the fact that {c,, ,} ,-o iS a complex moment sequence.” There
is a characterization ([14]) of complex moment sequences in terms of non-negative
polynomials which has been originated by‘M. Riesz. Though this may be interesting
rather from the theoretical point of view than applicable to concrete sequences
(read: operators — in advance), we will follow this in a context of subnormal opera-
tors. It turns out even more: a result of SLINKER ([19], Th. 4.2) enables us to prove
a M. Riesz-like characterization for non-cyclic case. -



Normal extensions of unbounded operators. II 159

- Theorem 3. Let S be a densely defined operator in a Hilbert space $ such
that SD(S)CD(S). Then S is subnormal if and only if the following implication
holds: if

{aii; i, je{1, ...,m} and p,qe{0,1,...,n}}

is a sequence of complex numbers such that

) 3 3 aiderzz, =0, for all 2z, ..., 2sEC,
o i.j=1p,4=0
then
(i) > 33 aiSkers, SHfy =0,
i,J=1 p,4=0 k,1=0

for each finite sequence {f}: i=1,...,m, k=0, ..., r}<D(S).

Proof. Suppose that S is subnormal and that N is its normal extension in a
Hilbert space R2%. Notice that : :

o [D(S) = D=(S)cD=(N) and
G . {N@®=@)cD=(N), N*(D*(N))cD=(N) and
NN*f = N*Nf for each feD=(N).

"Define the polynomials p*/ (i,j€{t, ..., m}) of two complex variables 1 and 1 by
@) Py = 3 allr, JcC.
p,9=0

Then, since SCN and (3), we have

G 3 3 al(SHrfl Sy = 3 3 al(NONH, NN =
p,9=0 k,1=0

p,9=0k%,1=0

N qu'=o alf,(NPh;, N%h;) = (p" (N, N*)h;, hy,

where
© b= SN i=1,.. m
: K=o
Thus we have to show that
M 3 (N, N9k, by =0,
1521

for all hy, ..., b, D=(N).
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Let E be the spectral measure of N. Since all the complex measures (E(-)h;, h;),
i,je{l, ..., m}, are absolutely continuous with respect to the non-negative measure

p= Zm’ (E(+)h;, hy), we find a matrix of summable Borel functions {h;;}7";, such
i=1

that (E(o)h;, h;y= f h;; du for each Borel subset ¢ of C and for all /, j.
Let Q be a countable dense subset of C. For ¢, ..., ¢,6Q we have

I

o 1,

hy()Eie dud) = ,-Zzl Ge(E(@)hy, hy) =<E(a)(j_=2": esh), ,é cshy) =0

1

for each o. This implies that

h,-j(l)é,-cj =0 a.. [ﬂ].

1

®

T

Since Q is countable, we can find a common Borel subset o, of C (which does not
depend on the choice of the numbers ¢;) such that u(e,)=p(C) and (8) is fulfilled,
first for all ¢,€Q and then, after limit passage, for all complex c;s.

Thus we have shown that the complex matrix [h;(A)];-, is positive definite
for each A€0,. Since, by (i) and (4), the matrix [p”(4, DIT;_, is also positive definite,
an application of the classical Séhur Lemma gives us that

© : (27, DhyDIF - - o

is a positive definite matrix for each A€g,.
Thus ‘

S W N by = 3 [ P D hy@) du(h) =
i,j= Lj=1¢

= J( 2 1070 D) i) =0.

(The integrand is non-negative due to (9).) This shows (7).

Now suppose that the implication holds for S. Then S satisfies (H) for all
finite sequences f;, ..., ,€D(S) (put m=1, n=0 and ay=1). Thus, according
to Proposition 2, there is a formally normal operator N in some Hilbert space
K59, which fulfills the conditions (i), (i) and (iii) of Proposition 2. Due to a theo-
rem of [19] all we have to prove now is the following implication: if for each A¢C,
the polynomial matrix [pY(2, /’[)];’"j=1 is positive definite, then (7) holds for all
hys ..., b, e D(N).

For this let [p*] be such a matrix of polynomials with coefficients {a'/} as in (4).
Let hy, ..., h,e D(N). Then, by (iii) of Proposition 2, there is a sequence
{f&: i=1,...,m, k=0,...,r}cD(S) which fulfills the condition (6). Since ‘N is
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formally normal extension of S, which has property (i) of Proposition 2, we can
rewrite all the equalities (5) to obtain

~

2 (PN Ny, Yy =
s J= Li=

o

=
-
i

al(Srfy, Sl = 0.

This proves (7) and finishes the proof of theorem.
As we have mentioned this characterization of subnormals may be useful in
proof. The following application is at hand.

Corollary 2. Let S be a densely defined operator in H such that SD(S)c
cD(S). Then

(@) If S is subnormal, then among all the subnormal operators T in $ extending
S and such that TD(T)CD(T) there is a maximal one. ' ,

(b) Suppose that there exists S~ which is densely defined and S*D(S Y
CD(SY). Then if one of the operators S and S~ is subnormal, so is the other.

Proof. (a) If {T,} is a chain (ordered by inclusion) of subnormal operators
extending S and such that T,D(T,)=D(T,), then UUT, is an upper bound,

which, due to Theorem 3, has the same properties as T,,’s do. Now an application
of the Zorn Lemma gives the conclusion (a). :
(b) Let {a¥}satisfy (i) of Theorem 3. Set b =aii_, , _, (remind that 0=p, g=n).
Then one can check that {bif} satisfies (i) of Theorem 3 too.
Suppose that S is subnormal. Take a finitesequence {fi; 1=i=m, 0sk=r}c

cD(S). Then, because in fact D(S)=SD(S), we have

m n r m n r
2 2 af (SR, (ST = 5 3 3T bf(Stre, Stg))
i, j=1 p,9=0 k,I=0 iy j=1 p,9=0 k,1=0

where g/=S-"+"fJ . Applying Theorem 3 we get the conclusion (b).
A characterization like this in Theorem 3 in a case of cyclic operators appears
implicity in K1LpI [14]. What can be easily deduced from [14] is the following.

Proposition 3. Let S be a densely defined cyclic operator in § with a cyclic
vector fy. Then the following conditions are equivalent:
() S is subnormal;
(1) {(S™ fo, S" fo)Ymu=o IS @ complex moment sequence, i.e. there is a non-

negative measure . on C such that (S™ fy, S” fo)= f Z"z" du(z), m, neN,
. s

1
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(i) If {a, )5 i1=0 s a complex matrix such that Zm' a, 2*1'=0 for each
K=o ‘
A€C, then

3 4o (SHh Sy =0,

Our characterization in Theorem 3 applied to cyclic operators looks more com-
plicated than that of Kilpi. Because we are unable on this stage, to reduce directly
ours to Kilpi’s this is why we do not state it explicitely here; though they must
necessarily be equivalent.

Sﬁbnorma] operatbrs and the Stieltjes moment problem. Weighted shifts

'5.°As we have ﬁlready'known subnormal operator S satisfies the condition
(H) for any choice .of vectors f, ..., ,€D7(S). Taking &.=S*f, and replacing
Jos s Su BY. &0» +-» & in (H) we get the condition:

® L S SS =0
. SRt oe e . . Jk=0

fdf all éhbices of vect"ors‘ Jos -ees fy I D2(S), which reminds a condition considéred
by EMBRY [7] iri the bounded case. Gomg on set fi=c,f and f;=c;Sf in (E),
respectlvely ( D™ (S)) we obtam

2"0 IIS”"fII% 7 =0,

and ’ .
p -
S ISH*fe;8, = 0,
k=0
for all com’pléx numbers ¢y, cees é‘ This is précisely what is required for the se-
quence {||S"f[|*}2, to be Stleltjes ‘moment sequence i.e. to be represented as

N . +eo :
® : IIS"fII2 =.[ rdu(r), neN,
‘ e S 0.
/.t Ky is a finite non-negatlve measure.
. “All what has-been said here cdn be stated as

Proposition 4. The followmg zmpltcatzons hold true:
.. S.is subnormal = S satisfies (H) on D7 (S),
" S satisfies (H) on D=(S) = S satisfies (E) on D=(S),
S satisfies (E) on D=(S) = S satisfies (S) for each f in D“’(S)
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6. It turns out that the implications in Proposition 4 can be inverted for S
being unilateral weighted shift. Recall S is said to be a unilateral weighted shift
if Se,€(C\{0}) €,+1,n=0, where {e,};~, is an orthonormal basis of §. The domain
of S is meant as the linear span of {e,}.~,. It is clear that S is a cyclic operator with
the cyclic vector &,.

Theorem 4. Let S be a umlateral weighted shift. Then the followmg conditions
are equivalent:
(i) § is subnormal;
(ii) S satisfies (H) for all finite sequences fy, ..., f,€ D(S);
(iii) S satisfies (E)for all finite sequences fq, ..., f€D(S);
(iv) S satisfies (S) for f=e,. A

Since D(S)=D>(S), all the implication but (iv)=>(i) follow from Proposition 4.
To prove the implication (iv)=(i) we utilize the following result which may be
interesting for itself. '

Lemma 1. Let f,€H bea cyclzc vector for S. Then the following two conditions
are equivalent: ‘
(@) SCUQ®R, where U is a unitary operator in &,, R is a self- ad]omt operator
n K, DCKRQOK, and fo=£,Qf: with some fi€R, and f£€D"(R); :
(b) there are two functions a: N—~C and f: Z~C such that

(10) (8" fos S"fo) = a(n+m)B(n—m), n,meN,
(11) > a(m+n)e,E, =0,
. m,n=0 _ i

for all finite sequences c,, ..., c,€C,

(12) 3 Bln—m)e,n =0,

m,n=0

for all finite sequences c,, ..., ¢,€C.
Proof. Let U, R andfl,f2 be as in (a) Because _
&, S™foy =<U™ '”fuﬁ><R"+’"ﬁ,ﬁ> m, nEN,

a direct computation shows that
a(n) = (R fy, fo), neN,

B(m) = (U™ f1,fr), mELZ,
satlsfy the condition (11) and (12) respectively,

and

11
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Suppose ‘that the condition (b) is satisfied. Then {x(n)};>, is a Hamburger
moment sequence [18] and {B(n)},., is a trigonometric moment sequence [18].
Consequently there are two positive finite measures p and v defined on R and the
unit circle T, respectively, such that .

(13) (S fes S™fo) = ft’“"” du() fz""" dv(z), n, meN.
‘ , R i

Denote by M_ and M, the rﬁultiplicatibn operators by z and ¢ in L*(T,v) and
L%(R, p), respectively. Then by (13)
<S"/6,Smf6> = ‘<M‘n+m llus ]u>L’-(p) <Mz"_m lv’ 1v>L9(v) =
= «Mz®Mt h(1v® 1/1)’ (Mz®Mt)m(lv® 1y)>L’(v®u), m, nEN

This equality allows us. to .identify S”f, with (M ®M)"(1,®1,), n€N, which

gives us SCM,®M,. Since M; is unitary and M, is self-adjoint, we set U=M.,

R=M,, f=1, and f,=1, to get the conclusion. This completes the proof.
Remark 2. If any_of the \equivalent conditions.(a) and (b) of Lemma 1 is

satisfied then S is subnormal. Moreover the operator R can be choosen to be positive
if (1n addltlon to (11))

1) o o Z" a{n+m+1)c,C, =0,

m,n=0

for all finite sequences ¢, ..., ¢,€C, (since then (11) and (11’) imply that {«(n)},.x
is a Stieltjes moment sequence) and Lemma 1 leads then to an L2-model of S as the
multiplication by z on the cornple‘x plane C.

Proof of (iv)=(i) of Theorem 4. Let us define 4: Z—»{O 1} by 5(0) 1
and §(n)=0 if n>0. So we have

(14 A
(S"ey, S™eg) = S(n—m)|S el = 5(n—m) [ " du() = 5(n—m) [ 1@+mI2 du(s),
0 o, o

m, n€N,

where n=p,, Is the measure given by the integral representation (S). Setting
a(m) = [ rPdu(D), neN
[}

and :
B(n) =6(n), n€Z,

in (14) we get the condition-(b) of Lemma 1. An appllcatlon of Remark 2 completes
the proof of our theorem. . .
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7. Now we want to show usefulness of Theorem 4.

Example 2. In [21] we have shown that the creatiori operator is subnormal.
This has been ensured by the condition (H) and the presence of analytic vectors
for the operator. However, since this operator is a unilateral weighted shift we can
use directly the condition (iv) of Theorem 4 instead of checking condition (H)
and looking for analytic vectors. To be more precise, recall that the creation operator

is defined as
1 d
== [5)

with D(4,)=C(R), the Schwartz space. Since the Hermite functions

fi(x) = e"z/z—d(i—ne"", n=0,1,...,

form an orthogonal basis for L*(R) and

A+fm_ ]fm+1’ m=0,1, ...,

( V2
A, when restricted to the linear span D, of the Hermite function is a weighted
shift in L*(R). Denote this restriction by S. Since -

IS"filz = n'yYz, n=0,1,2,..,

and {n!}), is a Stieltjes moment sequence, according to Theorem 4, S is sub-
normal. Since A, =(A4,|D)", 4, is subnormal. . :

Theorem 4 allows to produce subnormal operators from 51mpler ones. As an
illustration take a subnormal weighted shift S and define S,=S**S**!, k is a
positive integer. Then, after some computation — which, in a more general context,
will be presented elsewhere [25] — one can show that S satisfies the condition (iv)
of Theorem 4 and consequently it is subnormal too. In partlcular, if S is the creation
operator then

2 - 3 .
S, = ]—/42—-{(1+x2)x—(3+x2)%—x%-g+<:—x3}. A

8. We pass now to bilateral weighted shifts. In order to prove an analogue
of Theorem 4 in this case we need an appropriate versmn of Lemma L.

Lemma 2. Let S be a densely defined operator in 5 such that SR(S) {0}
and SD(S)=D(S). Suppose there is a vector f¢D(S) such that D(S), is the
linear span of the set {S"f,: n€Z}. Then the following conditions are equivalent:

(@) SCU®R, where U is a unitary operator in K, R is a self- adjoznt operator
in 8, with 0¢0,(R), DCK, @K, and fy=f,Qf, with some f€R; and f,€' ﬂ D(RY);
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(b) there are two functions «, f: Z—~C such that

(15) : - A{S"fo, S"fo) = a(n+m)B(n—m), n,mcZ,
(16) 2. a(nt+me,i, =0,

fbr qllﬁnite sequences C€_,, ..., ¢,€C, and B satisfies (12).

The proof of Lemma 2 goes in the same way as that of Lemma 1. However
one has to use instead of the Hamburger characterization of moment sequences the
following result ([13] [1]). A sequence {x(n)}, ¢z of complex numbers can be rep-

resented as
a(n) = f du(t), n€Z,
R\{0}

with a finite non-negativé measure u if and only if (16) holds.

Remark 3. Each of the equivalent conditions (a) and (b) of Lemuma 2 guar-
antees subnormality of S..If the function ‘a: Z—~C satisfies the additional con-
dition ’

(17N > a(n+m+1)c,c,, =0,

—r=n,m=r - .
for all finite sequences c_,, ..., ,€C, then the operator R can be choosen to be
positive. This happens because, due to the conditions (16) and (17), the sequence
{(m}, ¢z becomes (cf. [1], [12]) a two-sided Stieltjes moment sequence which means
that there is a non-negative finite measure u such that

amy= [ £du@®), neZ.
, (@, +20)

A densely defined operator S in H is said to be a bilateral weighted shift if
there is an orthonormal basis {e,},cz of $ such that Se,€(C\{0})e,,,; for each
n€Z. The domain D(S) of S is the linear span of {eatuez-

We have an analogue of Theorem 4 for bilateral weighted shifts.

Theorem 5. Let'S be a bilateral wetghted shtft Then the following conditions
are equivalent: :
(i) S is subnormal;
(ii) S satisfies (H) for all finite sequences fy, ..., f, in D(S);
(iii) S satisfies (E) for all finite sequences fy, ..., f, in D(S);
(iv) S satisfies (S) for each fE{S~"e}n=0;
) {IS"eoli},cz is a two-sided Stieltjes moment sequence.

. Proof. The only implications which need a proof a:é (iv)=(v) and (v)=(i).
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(iv)=(v): The operator S satisfies all the assumptions of Lemma 2 with f;=e¢,.
Now we show that the sequence {|lS"e0||2}nEz satisfies the conditions (16) and
(17). Let c_,, ..., ¢, be an arbitrary sequénce of complex numbers. Then

2 18" "eleCrm = Z’ IIS"‘”"S 2’e0||2da

—~rsn,msr n,m=0

and

2 ”Sn+m+1€0||2(".n(—:m 2 "Sn+m+ls 2’,eollzdam’

—r=n.m=r n,m=0

where d,=c,_, for n€{0,1,...,2r}. Due to (iv), all the sums appearing in the
above two equahtles are nonnegatlve This ensures that {||S"e0|l ez is a two-
sided Stieltjes moment sequence.

(v)=(i): Like in the proof of Theorem 4 we put

a(n) = f t"/zdu(t) nEZ
(0, +0)
and

B(n) = 6(n), neZ.

The equality (15) follows from the same argument -as its analogue in the proof of
Theorem 4. The application of Lemma 2 completes the proof

Subnormal operators through C=-vectors

9. In the papers ([20], [21], [22]) we have studied subnormal operators by means
of some of their classes of C*-vectors. Here we wish to review and extend these
1nvest1gauons Recall the definitions. ) o

A vector fED™(S) is said to be a bounded vector of S if there are p031t1ve
numbers a=a(f) and c=c(f) such that :

IS'fl = ac", n=1,2, ...

A vector feD>(S) is said to be an analytic vector of S if there is a posmve number
=t(f) such that

I!S"f I

Z’ < +oo

A vector feD™(S) is said to be a quasi-analytz'c vector of 8 if

Sisp-m =+
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Finally f€®>(S) is said to be a Stieltjes vector of S if

SIS = o

Denote by B(S), UA(S), Q(S) and &(§) the sets of bounded, analytic, quasi-
analytic and Stieltjes vectors of §, respectively. It is clear that B(S) and A(S)
are linear subspaces of § and B(S)cA(S)cQ(S)cS(S). By direct verification
we get that S(B(S))=B(S) and S(A(S))cA(S). To check that V(S) and
&(S) share the same property as B(S) and A(S), use the Carleman inequality [3]:

(18) Sa-tm s 3 g,42 / S a,
. n=2 n=2 n=2

1

1
with a,=[S"f] »-1 and a,=|S"f| 2-D, respectively.

In [20] we have proved the following theorem.

Theorem I. Let S be a densely defined linear operator in $. Suppose that
D(S)=B(S). Then the following conditions are equivalent:
() S is subnormal;
(ii) S satisfies (H), for all finite sequences f, ..., L€ D(S); _
(iii) there is an increasing sequence {9,}>, of closed linear subspaces of
contained in D(S) such that §9,C$9,, each restriction of § to 9, is a bounded sub-

normal operator in $ and |J 9, is a core for S.
n=1

Remark 4. The following comments may be usefull here. Let 4 be a densely
defined closable operator in . A linear subspace D of D(4) is said to be a core
for Aif A=(A|D)~. A closed linear subspace ® of § is said to be invariant (resp.
reducing) for A if PAP=AP (resp. PACAP), where P is the orthogonal projec-
tion of $ onto &. If a closed linear subspace G of § is contained in D(A)ND(4*)
then ® is reducing for A if and only if 4(6)c® and A*(G)cG.

The example of the creation operator indicates that there are closed subnormal
operators having no nontrivial bounded vectors. However, if an operator has a
dense set of bounded vectors, Theorem I provides us with some additional informa-
tion on its geometrical structure. We show that quasinormal operators we have
already considered in Section 2 fall in this class and get, as a by-product, another
proof of subnormality of quasinormal operators.

Proposition 5. Suppose that S is a quasinormal operator in . Then B(S)
is a core for S, there is an increasing sequence {9,}>>, of closed linear subspaces of
9 contained in D(S) such that each H, reduces S, each restriction of S to 9, is a

bounded quasinormal operator in ), and D 9, is a core for S.
n=1
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Proof. First of all we show that B(S) is a core for S. Let S=U|S| be the
polar decomposition of § and let E be the spectral measure of |S|. Set $,=E([0, n])$

and D= D .. Take f€9,. Then
n=1 .

IS|f = ISIE([0, m])f = E([0, m])|S|f
and by Proposition 1,
Uf = UE(0, m))f = E({0, m]) UF.

This means that each $,, and consequently D is invariant for |S|, U and S. Thus
for fc9,, we have
IS"fI2 = TSI fI2 = [ISI"f1I* =

— UISPEQO, m)fI = [ #(E@of, ) = mol 12,

so fEB(S). In other words bt%(S) It is easy to see that the equality |S|=
_(|S||D)‘ implies S=(S|D)~. So O and B(S) are cores for S.

Define a bounded operator S,=UR,, where R,= f tE(dt). Then R(R})c

CR(R)R(S|E(0, n]))cR(S), so R(RDR(IS)). Smce U* Uis the orthogonal
projection onto R(|S|), we have U*UR2=RZ. By Proposition I, U commutes
with R,. Therefore S*S,=U*UR:=R?, which implies |S,|=R,. Since U com-
mutes with R,, S, commutes with R,=|S,]. This means that S, is a quasinormal
operator. Denote by T, the operator S, 9, Then

T;'T, = E((0, n])S; S,ls, = E([0, n])Ril5, = (R,ls,)"

Thus |T,|=|S, ||,5 _R,,|,3 Since S, commutes with R,, T, commutes with |T;].
This means that for each nz=1, S|g =T, is a bounded quasinormal operator. Since
E([0,n])) SC SE([0, 7)), $, reduces S. This completes the proof.

_ Corollary 3. S is a subnormal operator if and only if there is a subnormal extension
Sof Sin 909 such that B(S) is a core for §.
Proof. This'is an easy consequence of Proposition 5 and Theorem 2.

Corollary 4. An operator S in O is normal if and only if S is formally normal
and quasinormal. In particular S is self-adjoint if and only if S is symmetric and quasi-
normal.

Proof. Since S 'is-quasinormal there is a sequence {H,}:>, of closed linear
subspace of $ with properties described by Proposition 5. Let D= U 9,: Then
DCB(S) and D is a core for S. Since 9, is a reducing subspace f01 S and $,C
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cD(SIND(S*)=D(S), Remark4 implies that §9H,cH, and §*9H,=H,, for
each n. Thus SDcCD and S*DcD. Since § is formally normal, the nontrivial
conclusion of Corollary 4 follows from Theorem 1 of [20].

10. Another result we wish to discuss is one which bears a resemblance to a
result of Embry for bounded operators [7].

Theorem 6. Let S be a densely defined operator in § such that SD(S)cD(S).
Suppose that D(S) is a linear span of the set Q(S). Then S is subnormal if and
only if S satisfies (E) for all finite sequences f,, ..., ,€D(S).

This is a stronger version of Theorem 8 of [21] where instead of (E) the con-
dition (H) appears.

In order to prove Theorem 6 we need some lemmas. The first of them gives
the full characterization of determinate moment sequences in terms of their rep-
resenting measures. The proof of it can be done in the same way as that for Ham-
burger moment sequences (cf. [9], Theorem 8).

Lemma 3. A Stielties moment sequence {a,},>, with the representing measure
u is determinate if and only if the set of all polynomials of one real variable is dense
in LRy, (1+x)p).

- Lemma 4. Let N be a densely defined operator in & such that

(19), D;Q(N)=D(N*N), N®)cCD and N*N(Q)CB,
(20) N(N*N)f=(N*N)Nf, feD,
21 S((N*N)) is a total set in K.

Then N is closable and N is quasinormal.

Proof. Denote by A4 the symmetric operator N*N defined on 3. Then
(Nf, Ngy=(A41, 8), f, g€D. This implies that N is closable. Denote by D,.the linear
span of S(4). Then A(Dy)D,, A=N*NcN*N and, by (21), S(4) is a total
set in K. It follows from [16] that (ZIDO)‘ =A=N*N. The last eqiality can be
written as A=|N|2. Since D,CcD(IN[2) and D, is a core for. |N|2, D, is a core
for W |. Now an application of the polar decomposition for N gives us that

22) : - D, is a core for N.

Let E be the spectral measure of 4, ie. A= f tE(dr). Then for f€D we have

0

AL = [ @SS, e,
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and
(A"Nf, Nfy = f #(E(d)Nf, Nfy, neN.

Since A=N*N, (19) and (20) imply
(A" Nf, Nfy = (421, f), meN.

Combining these three equalities we obtain

oo oo

(23) (A fy= [ (E@INS, Nfy = [ r((E@Df,f), feD, n=0.
0 [1]

Let fc S(4). Due to the Carleman criterion (cf. [18]) the sequence {(4"f, )},

is a determinate Stieltjes moment sequence. Using now the Carleman inequality

(18) and again the Carleman criterion we infer that {(4"+'f, )}, is a determinate

n

Stieltjes moment sequence. Consequently, due to (23), we have

(24) (E(dt) Nf, Nf) = KE(dD)f. f).

Let o be a Borel subset of R,. Since {(4"f,f)}, is a determinate Stieltjes
moment sequence ( € S(4)!), Lemma 3 gives us a sequence {p,}:2, of polynomials,
which converges to the indicator function 1, of the set ¢ in L?*(R., (1+x?)p),
where pu=(E(-)f,f). One can show then that {p,};-, convergesto 1,in L*(R,, p)
as well as in L3R, xu). Since '

oo

IE@)f-pa( DI = [ 1o—pilPdp

. 0
and, by (24),

oo

IE@) NF—pu(AINFI? = [ 11,00 —pa(x)I(E(dx)Nf, Nf) =

= f 115(x) — pa(x)|2x dpu(x),

we have E(o)f=lim p,(4)f and E (o) Nf: = lim p,(4)Nf=lim Np,(4)f. Thus
E(0)fc D(N) and NE(c)f=E(c) Nf for each f€ S(4). This implies that E(c)(N lo)<
cNE(s) and E(6)(Nly)~cNE(0), in consequence. Due to (22) we obtain

25) E(6)NcNE(s), for each Borel subset ¢ of R..

+ oo

Since |N|=AY2= f r2E(dr), the spectral measure F of |N| is given by the fol-
0 ’

lowing formula:

(26) F(o) = E(¢™(0)), fof each Borel subset ¢ of R, |
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where ¢: R,—~R, is a homeomorphism defined by ¢@(x)=x2, xc¢R,. The
conditions (25) and (26) show that N commutes with the spectral measure F of |N]|.
This completes the proof of Lemma 4.

The next lemma shows that the condition (E) holds on D=(S) if and only.if S
has a “formally quasinormal” extension with “reducing” domain.

Lemma 5. Let S be a densely defined operator in  such that S(D(S))<
cD(S). Then S satisfies (E) for all finite sequences f, ..., ,€D(S) if and only
if there is a densely defined operator N in some Hilbert space KO9 such that

(i) N satisfies the conditions (19) and (20),
(i) D(S)CD(N) and SCN, '

(iii) D(N) is a linear span of the set {(N*N)"f: n=0, feD(S)}.

Proof. Suppose that N satisfies (i) and (n) Then (19) and (20) imply (via an
induction procedure)
{(N*NY'f,g) =(N"f,N"g), [ geD(N), n=0,

and this can be used to prove the inequality (E) for allfinitesequences fo; ..., fLED(S).
To prove the converse, suppose that S satisfies (E) for all finite sequences
Jos s JHED(S). Define the form ¢ over (N, D(S)) (cf. [23]) by

o(n, f, 8) =(S"f; S"g), nEN, f, gcD(S).

N is a *-semigroup with the identity map as an involution. Since § satisfies (E) for
all finite sequences f;, ..., L6 D(S), the form ¢ is positive definite. Notice also
that 1 is a hermitian generator of the *-semigroup N and ¢(0, ; g)=(f, g) for all
£, 2€D(S). Thus, by Proposition of [23], there is (under suitable unitary identifica-
tion — see the proof-of Prop. 2) a densely defined symmetric operator A4 in some
Hilbert space R59 such that A(D(4))cD(4), D(A) is the linear span of the set
{41 n=0, f€D(S)}, D(S)cD(4) and

@7 (S",5"8) = o(n; f,8) =4, 8), n=0, f,8€D(S).
Define -an operator-N with D(N)=D(4) by
N(ZAf) = S ALy for s i€DES), =0,

1t follows from (27) that for all f;, ..., £, D(S)

|2 il = 3 avisp sy = 3 (sisg, sisg =

k, =0

5 (sttag, s = 3 g, = (a3 ah), 3 A,

k,1=0 : Tk =0
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This implies the correctness of the definition of N and shows that [Nf|2=(4f,f),
JED(N). Consequently

(Nf, Ng) = (Af,8)» f,gED(N). ,
This implies that 4A=N*N. The equality (20) follows from the following ones

NA(kgn; Af) = N(ké') ALY = go AFHISE, =

— A3 ASF) = AN(S AF). oo SED(S).

The inclusion SCN is obvious. This completes the proof of Lemma 5.
Now we are able to pass to the proof of Theorem 6.

Proof of Theorem 6. “Only if” part of Theorem 6 follows from Proposi-
tion 4 as well as from Theorem 3.

Conversely, suppose that S satisfies (E) for all finite sequences fo, ey f,,EiD(S ).
Due to Lemma 5, there is a densely defined operator N in some Hilbert space 829,
which satisfies the conditions (i), (ii) and (iii) of Lemma 5. Then

@ - - QS)cS(4), A =N*N.

To prove this suppose that f€Q(S). Then Proposition 4 implies that the sequence
{a.}:,, where a,=|S"f||? for n€N, is a Stieltjes moment sequence. Thus a} _aka,
for 'k,1€N such that 2p=k+I. Due to Section 1 of [21] we obtaln

SIS <,

It follows from (1) and (ii) of Lemma5 that IIA"f [12=<4*f, f }-—]|S2"f 112,
3 1S17 = F S| = oo, Thus fe&(4).
n=1

Now we are m position to use Lemma 4. Indeed since 5D(A) is a linear span of
{4"f: n=0, f€D(S)} and D(S) is a linear span of Q(S); an application of (28)
and A(S(4))cS(A4) gives us that D(4) is a linear span of S(4). It follows from
Lemma 4 that N is quasinormal and, by Corollary 1, S is subnormal This completes
the proof.

Corollary 5. Let S be a closed denselyvdeﬁned operator in §. Suppose that the
linear span D of Q(S) is a core for S and that S satisfies (E) for all finite sequences
Jos s JAED. Then S is a subnormal operator.

11. Now we show that if an operator S has a dense set of analytic vectors
then, similarly as in the case of weighted shifts, the condition (S), when satisfied
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for all fcD(S), is sufficient for S to be subnormal. This result is an extension of
Lambert theorem (cf. [15], Th. 3.1) to the case of unbounded operators. Similarly as
in [22] we ask whether this theorem is true for operators having dense set of quasi-
analytic vectors.

Theorem 7. Let S be a densely defined operator in $ such that D(S)=U(S).
Then S is subnormal if and only if S satisfies (S) for each fcD(S).

Proof. We have only to prove sufficiency. Suppose that § satisfies (S) for
each f€D(S). Then for each f€D(S) there is a unique non-negative measure u,
such that

(29) IS = [ du@, n=0,1,2, ...

0

Using the polarization formula we define complex measures

13 £, 8) = 5 o)~ rog(@) ity a1y (0)— ity (0D}

for each Borel subset ¢ of R, . Since the measure p, is uniquely determined we have
Uy = |a|211f, a€C9 fGD(S)

This implies that p,=u(-;ff), f€D(S) and that the form u(o; -, —) is her-
mitian symmetric. It is easy to see that

(30) (S"f,S"'g) = [ ru(dr; £,8), f,8€D(S), neN.
. 0
Now we prove that u(y; -, —) is linear with respect to the first variable. To
show it is additive we write
(§"(f+8), S*hy = (S"f, S"hy+(S"g, S"h), [, & heD(S), neN.

Using the polarization formula for the form (f,g)—~(S"f,S"g) and the integral
representation (29) we get

ft"dvl(t)—ft"dvg(t)+i(ft"dvs(t)—ft"dv4(t)] =0, neEN,
0 [} ) R )

where
Vi =Ugrgentlr-ntlg-ns Vo= frigntleintlgips

Vs = PrigrintHr—intHo—ins Va = Brig~inTHrsint Ugtine
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Since the measures v,, k=1,2, 3,4, are non-negative we obtain

. oo oo

j " dvy (1) = j " dvy(f), neN,
0 (1]
and

co

(31 fwt"dv3(t)= [ e av (), neN.

Each of these Stieltjes moment sequences is determinate. To see this consider the
first of them

a,= [ an@) = |S"(f+g+RI*+IS"(f—hIP+]1S"(g =2 neN.

Since the vectors f+4-g+h, f—h, g—h are analytic vectors of S, one can prove that
there is.a positive real number 7=0 such that

o gl/2
2 n ! < oo,

n=0 n!

This implies that S a7 =4 0. Due to the Carleman criterion (cf. [18]), {a,;}
n=1

is a determinate Stieltjes moment sequence. The same is true for the other sequence
given by (31). _

Thus v,=v, and vy=v,. This in conclusion implies the required additivity
ulo; f+g W=u(o; f, )+u(o, g, h). By the same trick we can prove that
u(o; af, y=au(o; f, g), first for a=0 then for a<0 and finally for a=i which
exhausts all possibilities. ' ‘

Thus for each Borel subset ¢ of R, u(s; -, —) is a hermitian bilinear form
and u(-;f,f) is a non-negative finite measure on R, for each feD(S). Using
the generalized Naimark dilation theorem [10] we find a Hilbert space K, a linear
operator V: D(S)—{ and a spectral (normalized) measure E on R in & such that

G W £, 8) = E@VLVE), 1 geD(S),
for every Borel subset ¢ of R, . According to Theorem 6, the proof of Theorem 7

will be finished if we.show that S satisfies (E) for all finite sequences fq, ..., f,€ D(S).
Let fy, ..os /L€ D(S). Due to (32)

V(D) D( f #E(dr)), neN.
0
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Using (30) and (32) we obtain

2 sy~ 3 [ o )= 3 ([ oRE@OYS T8 =

Jik=0

= kz"*ﬂ( f PE(dDVY;, f FE(d)Vf,) = ||k2o f t"E(dt)kanzéo.
5, k=0 ¢ 0 v=0¢

This completes the proof.
The proof of Theorem 7 is similar to that of Theorem 6 in [21]. For reader’s
convenience we have repeated the most essential parts of it. '

Corollary 6. Let S be a closed densily defined operator in H such that U(S)
is a core for S. If S satisfies (S) for each feN(S), then S is a subnormal operator.

In the case when the operator S is invertible, T heorem 7 implies the following

_Corollary 7. Let S be a densely defined operator with the densely defined
inverse S, Suppose SD(S)CD(S) and S1D(SHD(S™Y) and S satisfies
(S) for each feD(S). Then S is subnormal provided D(S~)=U(S ™).

Proof. Due to Corollary 2 (b), it is sufficient to show that S~ is subnormal
and, due to Theorem 7, it is sufficient to show that S~ satisfies (S) for each
SED(S )=D(S). Take f£D(S) and ¢, ..., c,€C. Define g=S-*f, h=S"1f
and d;=c,_;, j=0,...,n. Then .

3 IS I =

Jik=0 . A

M=

0

IS/ ++gl2d,d, = 0
and :
jkz;o "(5—1)i+k+1fnzcjgk = k2=' "(S—-l)j+kh'nzcjak =0

Jrk=0

which means that S~ satisfies (S) for each fED(S).
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Some uniform weak-star ergodic theorems

JOSEPH M. Sz0CS

0. Introduction. Let B be a Banach space and let G be a bounded semigroup
of adjoint operators in B*. We have proved the following result in [3]:

Suppose B is weakly complete and G is commutative and separable. If for
every t€B*, the w*-closed convex hull of the orbit Gr={gt: g¢G} contains
exactly one G-invariant element ¢, then the mapping ¢—~¢¢: B8*—~8* is a w*-con-
tinuous linear projection P such that gP=Pg=P (g€G).

(The term “separable” here means that G contains a countable subset G, whlch
is dense in G if G is considered in the topology of pointwise w*-convergence on B*.)

According to [4], the above result also holds if instead of the commutativity
of G, we only assume its amenability.

In the present paper we are going to prove analogues of the above result for
the uniformly closed convex hull of the orbit Gz. The particular case where B*
is a W*-algebra M and G is a group of *-automorphisms of M may be of some
interest.

1. Results. Let B be a Banach space with dual B* and let G be a bounded semi-
group of w*-continuous linear operators in B*. In other words, sup {|lg]l: g€G}< =
and for every g€G, there is a unique bounded linear operator g, acting in B, such
that (g,)*=g. Let us consider the following two properties of the pair 8, G:

(N) For every t¢%B*, the norm-closed convex hull of the orbit Gt={gt: gcG}
contains at least one G-invariant element. .

(N,) For every 1€B*, the norm-closed convex hull of the orbit Gt contams
exactly one G-invariant element, say 9.

Theorem 1. Suppose B is weakly complete and G is amenable and countable.
Then condition (N) implies condition (N,). If condition (N,) (or (N)) is satisfied, then
the mapping t—t¢ (t¢B*) is a w*-continuous linear projection P such lhat gP_- '
=Pg=P (g€G).

Received January 2, 1986.
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Theorem 2. Suppose B is weakly complete and G is commutative and separable.
Then condition (N) implies condition (Ny). If condition (N) (or (N,)) is satisfied, then
the mapping t—1¢ (1€ B*) is a w*-continuous linear projection P such that gP=
=Pg=P (g€G).

Proposition. Let B*=M, a von Neumann algebra and let G be a countable
amenable group of *-au(omorphisms of M or let B*=M, a von Neumann algebra
in a separable Hilbert space and let G be a commutative group of *-automorphisms
of M. Assume that condition (N) is satisfied. Then condition (N,) is also satisfied
and M is G-finite. (For this notion, cf. [2].)

2 Proofs.

Proof of Theorem 1. For every @€B and t€B* let us define the element
S0 t€17(G) by the equality £, (8)=¢(g(?)) (g€G). Assume that (N) holds and
consider a given r£B*.” Then there is a sequence {v,}>>, of elements of the con-
vex-hull conv G- of G, for which v,(¢) converges in norm to a G-invariant element
of B*, say t’. Let a positive number ¢ be given. Using the notation ||Gl|=
=sup {| gl : g€G}, we can find a positive integer n, such that |v,(z)—¢'||<¢/|G|
if n=ng. Then |go,(1)—tIl=|g(vs(t)=1")|=lgl Io,()— I <G E/IGI) =2 uni-
formly in g€G for n=ri,. Conséquently, for a.given ¢€B we have | £, (gv,)— @ ()=
=|p(gua (1)) — @) =|e(gva()— ") =ll0l | g0,()— 'l <l @l e forall g€G if n=n,.
Since. 'e=0 ‘was arbitrary, we have proved that ‘the constant function on G which
is equal to ¢@(¢’) can be uniformly approximated by convex combmatlons of the
right translates of the element f,, . of I~(G). _

Let m now be a right invariant mean on /= (G). The result above implies that
m(f, d=¢(¢'). In particular, .if ¢”.is another element of the norm-closed convex
hull of Gt, then m( f,,)=¢(t"). Consequently, ¢(¢')= ¢(t”) for every PEB,
and thus t'=1¢". Therefore, since {€B* was arbitrary, we have proved that (N)
implies (N,) (even w1thout assumlng the weak completeness of B or the countability
of G). 4 ’
. Now let {G , bé a 'right—hand summing sequence for G, i.e., let
(1/card G,,) card ([G, U,G gI\IG,NG,gl)~0 as n—oo. (For the existence of such
a sequence, see [1].) We are going to prove that for @&B and reB¥,

) SO (1/CardGn) Z'fw(h) @ (1%

.as -+ oo, To prove thlS we ﬁx e<®B and t€B* and assume that for some ﬁlter
F finer than the filter base {{n: n=k}: kEN} limg (1/card G,) Z’ S e(h) exists.

Let F, be an ultrafilter finer than F. Then for every f€lI=(G) and geG the limit
lim, (1/card G,) 2 f(hg) exists (since F; is an ultrafilter) and is. independent of
' bEG,



Uniform weak-star ergodic theorems . : 181

g€G (because of the summing sequence property, sinée:'F; is finer' than
{{n n=k}: kEN}) Consequently, m(f)=limg, (l/card G, Z’ f(h) s’ a rrght in--

variant mean on [®(G). By the beginning of our proof
m( f,,0) = limg (1/card G,) 2 fw(h) (tG)

This means that limy (1/card G,) Z’ Jot(W)= qo(tG) for every filter F wh1ch is ﬁner:
than the filter base {{n: n=k}: k€N} and for -which - lrmF (1/card G,) 2’ T i(hy
exists. This means that 11m (1/card G,) 2’ fq,,,(h) (p(tG) Smce (pESB and tEﬂS*_

were arbitrary fixed elements we have proved (%).
Let us write w,=(1/card G,) 2 h. Then w, EconvG and by (*) W, t—»tG

in the w*-topology for every t€ EB* From this point we proceed in the same wayr'
as in the first paragraph of Proof of Theorem 2 in [3]. For the sake of completeness,‘
we repeat that reasoning here.

Let ¢cB be given. Then for every z6B* ‘we “have ‘W —w, (p, t)=
=(¢, (W,—w,)t)—~0 as n, m— oo, Therefore, the sequence {w;*@}>, is a weak
Cauchy sequence in 8. Since B is weakly complete, there is an element P, ¢ of B
such that (w,*o, t)~(P, @, t) for every t€B* as n—-oo. Itis obvious that P, is a
bounded linear operator in 8. Furthermore, letting n— -, we obtain that (¢, w,t)=
=w.* @, t)~(P. o, 1)=(p, (B)*t) for ¢cB, t¢B*. Consequently, for every tcB*
we have w,t—~(P,)*t (n—~ <) in the w*-topology of B*and thus ¢=(P)*r (1¢B*)..
Smce (B)* is obviously w*-continuous, this completes the proof of Theorem 1 _

Remark. The first part of the proof of Theorem 1 shows thatif Gis a bounded
amenable semigroup of linear operators in a Banach space € and’ ‘for' every tEG i
the norm-closed convex hull of the orbit G¢ contains at least one G-invariarit elerment,
then it contains exactly one G-invariant element. This can be seen in-the same way.
as in the first part of the proof of Theorem 1 if we replace %* by c and 23 by QZ*_‘
there. g

Proof of Theorem 2. Assume (N). We shall prove that for every B*,
the w*-closed convex hull of the orbit G¢ contains exactly one G-invariant element.
Then Theorem 2 of [3] will imply the statement of Theorem 2 of this paper.

First we prove that for every #€®B*, the norm-closed convex hull of Gt con-
tains exactly one G-invariant element. (This follows from the above Remark, but
in the commutative case the proof is simpler and we prefer to give an independent
proof.) In fact, let " and ¢” be two G-invariant elements in the norm-closed con-
vex hull of Gt and let ¢ be a positive number. There exist v and w in conv G, such
that [or—#'||<e and |wri—t"|<e. We have |t/—1"|=|t'—owt]+|owt—1"|=
=|w(t’ —vt)|| +o(wt—)|=]t" — vt || +||wt—1t"]| <2¢, since vw=wv and |v] =1,
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fiwl=1. Since e>0 was arbitrary, this proves that #'=¢" and thus the norm-
closed convex hull of Gt contains exactly one G-invariant element, say ¢¢.

Now we prove that for every r¢B*, the only G-invariant element in the w*-
closed convex hull of Gt is 6. In fact, let t¢B* and let ¢, be a G-invariant element
in the w*-closure of [convG]t. Given £>0, there is w€convG such that
lwt—t¢|<e. Furthermore, there exists a net v, in conv G, such that v,t—¢" in
the w*-topology. Then wy,t—~wt’=¢t’ in the w*-topology. On the other hand,
wv,t—t%)} =| v, (wt—£°)|<e. Consequently, |[|z’— || =sup, |wv,z—1%||<e. Since
¢>0 was arbitrary, this proves that ¢’=1¢ is the only G-invariant element in the
w*-closure of [conv G]¢. This completes the proof of Theorem 2.

Proof of Proposition. The Proposition is a special case of Theorems 1
and 2. We only have to note that if M is a von Neumann algebra in a separable
Hilbert space and G is a group of *-automorphisms of M, then G is separable, as
was pointed out in [3].

Problem. If 8B is weakly complete and separable, does condition (N;) imply
that the mapping 7-t¢ is w*-continuous on B*?

References

[1] F. P. GreeNLEAF, Ergodic theorems and the construction of summing sequences in amenable
locally compact groups, Comm. Pure Appl. Math., 26 (1973), 302—318.
12] 1. KovAcs and J. Sz(cs, Ergodic theorems in von Neumann algebras, Acta Sci. Math., 27
_ (1966), 233—246.
[3] J: Szlics, Some weak-star ergodic theorems, Acta Sci. Math., 45 (1983), 389—394.
[4] J. SzfScs, On G-finite W*-algebras, Acta Sci. Math., 48 (1985), 477—481.

TEXAS A&M UNIVERSITY

DEPARTMENT OF GENERAL ACADEMICS
MITCHELL CAMPUS

GALVESTON, TEXAS 77553, U.S.A.



Acta Sci. Math., 53 (1989), 183—185.

Reflexive lattices of operator ranges with more than one generator

SING-CHEONG ONG

Introduction. A linear submanifold (subspace, not necessarily closed) in' a Hil-
bert space $ is an operator range (paraclosed subspace) if it is the range of some
bounded operator on $—some member of B(9H) (the algebra of bounded linear
operators on ). We refer the interested readers to the article [2] of FILLMORE and
WiLLiams for detailed discussions of operator ranges. Since the publication of the
pioneering work of FoiAs [3] on operator ranges invariant under algebras of operators,
much progress has been made by many authors in this direction. However, ‘there
are few concrete examples of reflexive lattices of operator ranges have been explicitly
described. A reflexive lattice of operator ranges is the lattice of all operator ranges
invariant under an algebra of operators. The extreme case of singly generated lattices
are described in [6] in terms of the generators. In [1] a description of the operator
range lattice invariant under a reflexive algebra with commutative invariant sub-
space lattice is given. Here we describe the reflexive lattice of operator ranges in
terms of the generators. All lattices here will be lattices of operafor ranges.

Main results. For fixed positive operators P, B, ..., B,, the reflexive lattice
generated by (the ranges of) A, B, ..., P, will be denoted by RL (A, B, ..., P).
This is the lattice invariant under the algebra of operators leaving the ranges
BH, B9, ..., B9 invariant. We wish to represent this lattice as ranges of func-
tions of the generators as in [5] for the case of single generator. For a=0, the set
of all continuous concave nonnegative nondecreasing functions on [0, a] will be
denoted by K]0, 4].

Theorem. Let B, B, ..., P, be commuting positive operators on Sj such- that

there is an orthogonal decomposition 3 ®9; of 9, reducing for evéry B, such that
Jj=1 Coa

Received March 4, 1986.
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the restriction of P; to the orthogonal complement > @®9H; of 9; is invertible,
i#i

i=1,2,...,n. Then the following conditions on an operator range R are equivalent:
(i) RERL(R, R, ..., B),
(i) R = ({] @;(P))9, for some @«K[O,|B]], j=1,2,...n

" Proof. Let of be the algebra of operators on § that leave the ranges of
P, P, ..., P, invariant, and let R be an «/-invariant operator range. Since the von
Neumann algebra generated by B, ..., P, and the projections onto £,, H,, ..., H,
is commutative and is contained in &7, R is the range of some operator in the com-
mutant of this commutative von Neumann algebra by a result of Foias [3, Lemma 8,
p. 890). It follows. that R=(RNH)+RNH)+... +(RNH,) and each RNYH,
is an operator range in the reflexive lattice generated by the range of B|H;. By
[6] Theorem 8, RN H, is the range of some operator of the form ¢,(B|$,), where
@ is in K[0, | AI9;l]. Extend ¢; to all of [0, [|Bl] by defining ¢;(¢)=¢;(|FIS:l)
for all #€(|Bi9y, | BI]. Then g, is still a concave function and ¢;(B) is deﬁned
We claim that R=(¢,(B)...p.(B))S.

To see the inclusion RE(¢,(B) ... 0,(B))H, let x€R. Then X=X +x2+ .+x,,
where x,€RN$;,i=1,2,...,n. We note that if one of RNH,= {0}, then RNH,=
#{0} for all j. Indeed, let x,¢RNY,;, x;#0. For each j, let x;€F9H;, x;%0 (as-
suming P;$;7 {0}, otherwise we can omit P, from the discussion at the beginning).
Define the operator Ax=(x, x;)x; for x€9. Then AHSPF,H;. Thus ARHEERH,
k=1,2,...,n (since Pkﬁj:ﬁ,'- for j#k). Therefore A€o/. Thus, ARSR and
hence PH,ER for all j=1,2,..,n In particular, RNH;={0}). For a fixed
i=1,2,...,n, it is easy to see that ¢,(P)|H; is invertible for all j=i; and
(]]' ((pj(}})lsf)i)‘l)xieﬂiﬂﬁi. Thus, there is a y,€9; such that ¢;(P)y;=

——(]](<p1(P)|55) x;. Let y=y,+..+y,. Then (ﬁ¢j(}}))y=x. Therefore

RS (<p1(P1) 9. (B)) 9.
To see the opposite inclusion, let y=(@,(B)...¢,(B))x, for some x655 Write

X=Xy+Xp+...+x, where x,€9;. Let z _(]] @ (P))x,€9;.

Then obviously, y= Z’ ¢;(P)z; is an element of ¢1(}’1)531+ 4 0,(P)H,=
=(RNHP+... HARNH,) = fR So R2(¢1(R)...0,(B))H. Thus equahty holds.
This proves the 1mphcat10n-(1)=>(11). For the converse we note that ( /H 0;(P))H=

: . e UL

= rn] (¢;(P))H, and each ¢;(P)$ is of-invariant. The proof is thus complete.
j=1 »

In the special case of $=L?[0, 1], we have more definite conclusions when
the generators are some special multiplication operators. To simplify the statement,
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we introduce some notations. For a function fon [0, 1], Z(f) denotes the set of
zeros of f. For a sequence of functions f, fz, ... fas Z(fisfos ---s S)=Z(f)U
UZ(f)U...UZ(f,). If G is an open set relative to [0, 1], G is a disjoint union of
open intervals together with perhaps one or both of [0,«) and (B, 1] for some
o, B€(0,1). A nonnegative continuous function is concave on G if the restriction
to each component of G is concave (chords below graph). The set of all such func-
tions will be denoted by C(G). For each ¢€L=[0, 1], the multiplication operator
on L2[0, 1] induced by ¢ will be denoted by M,,. The symbol x denotes the identity
function on [0,1], and 1 the constant function sending every t€[0, 1] to 1.

Corollary 1. RL(M,, M;_)={M,9H: ¢cC([0, 1]), Z(¢)S{0, 1}}.

Proof. Let ReRL (M,, M;_,). Then by the proof of the above theorem
R=(M,M,-)9, where ¥~ (t)=¢(1—1), and g, are nonnegative, nondecreasing
concave functions on [0, 1]. Since the functions ¢ and ¥ are nonzero (assuming
R {0}) the restrictions ¢|[1/2,1] and ¥|[0, 1/2] are bounded from below, we
may replace them by a constant functions, viz: the functions taking the constant
values ¢(1/2) and ¥ (1/2) on [1/2,1] and [0, 1/2] respectively. Then it is obvious
that M, M,~.=M,, . and @Y~ is concave near the points 0 and 1. By replacing
the restriction of (plp to an interval [a, £, o, B€(0, 1) by a suitable linear function,
we may assume that ¢y~ is a concave function on all of [0, 1]. Thus, the inclusion
€ of the sets in the corollary holds. The opposite inclusion follows from a result of
[4] (see [5, Theorem B).

With a suitable modification, the above proof can be adapted to a proof of the
following

Corollary 2. Let f,fa, ..., [, be nonnegative continuous functions on [0, 1]
such that Z(f), ..., Z(f,) are pairwise disjoint. Then RL (M e Mg )=

={M,%: 9cC([0; 1]/Z(f1,~- S ZOSZ(frs - L))

References

{1] K. R. DavipsoN, Invariant operator ranges for reflexive algebras, J. Operator Theory, T (1982),
101—107.

[2] P. A. FiLLMORE and J. P. WiLLIAMS, On operator ranges, Adv. Math., 7 (1971), 254—-281.

[3] C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J., 21 (1972), 881—907.

[4] E. NORDGREN, M. RADJABALIPOUR, H. RADJAVI and P. ROSENTHAL, On invariant operator
ranges, Trans. Amer. Math. Soc., 251 (1979), 589—398.

[5] S. C. ONG, Invariant operator ranges of nest algebras, J. Operator Theory, 3 (1980), 195—201.

[6] S. C. ONG, Converse of a theorem of Foias and reflexive lattices of operator ranges, Indiana
Univ. Math. J., 30 (1981), 57—63.

CENTRAL MICHIGAN UNIVERSITY
MT. PLEASANT, MICHIGAN 48859, U.S.A,






Acta Sci. Math., 53 (1989), 187—190

Generalized projections for hyponormal and subnormal operators

C. R. PUTNAM

0. Sufficient conditions for the existence of certain invariant subspaces of a
pure hyponormal operator, T, are obtained. In case T is also subnormal these sub-
spaces are even reducing. In particular, a pure subnormal operator T is shown to
be reducible in case o(T) is bisected by the imaginary axis and if, in addition, that
part of o(T), which has a projection onto the real axis lying in the absolutely con-
tinuous support of Re (T), is sufficiently sparse near the imaginary axis.

1. Let T be a pure hyponormal operator on the separable Hilbert space .
Thus, T*T=TT* and there is no nontrivial reducing subspace of T on which
T'is normal. In particular, ¢,(T) is empty. Let C be a rectifiable, positively oriented,
simple closed curve separating the spectrum o(7); thus, .¢(T) intersects both int.C
and extC, the interior and exterior, respectively, of C. It may be noted that, in
general, the set CNe(T) may have positive (arc length onC ) measure. There w111
be proved the following

Theorem 1. Let T be purely hyponormal on 3¢ and satisfy
(8Y) | JIT—nx]ldl <o, xe€,
C ”

where Z is a set dense in 3. Then there exists a linearly mdependent pazr of invariant
subspaces M; and A, of T for which # =.HN M, and

(1.2) o(T|M) = (a(T)ﬂmt C)~ and a(TlMe) =(o(T)NextC)~.
Further, in case T is also subnormal, M, and M, are reducing subspaces of T on

H=MDM,.
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Proof of Theorem 1. Define the “projection” P, by
(1.3) Pex =—Qni)™ [(T—0)7'xdl, x€Z,
[

so that, by (1.1), (Fex, y)=—mi)™? f((T—t)’lx, y)dt is defined as a Lebesgue

integral for any x in & and y in 7. (cllearly, it may be assumed that & is a linear
manifold. If ; and .#, are the respective closures of the linear manifolds B &
and (I-FR)Z, then, in particular, .#; and .#, are hyperinvariant subspaces of 7.
Relation (1.2) now follows from a proof analogous to that of [5], pp. 13—14, and
will be omitted. (The set L and the curve Cy of [5] correspond to the present 2
and C.) A crucial part of the argument in [5] is that the set {x: g7(x)Co} is a sub-
space whenever ¢ is any nonempty compact subset of the plane and o,(x) is the
local spectrum of any vector x in #. This result is due to StampruI [7] (p. 288, see
also p. 295) in case T™ has no point spectrum and to RADJABALIPOUR [6] in the
general case. .

Also, M=MNM,={0}. For if MA#{0}, then o(T|.#)cC and hence
o(T|.#) has (area) measure zero. Consequently (cf. {3]), {0} is a reducing
space of T on which T is normal, in contradiction to the hypothesis that T is purely
hyponormal.

Before completing the proof of the remainder of Theorem 1 when T is sub-
normal, there will be proved the following

Lemma. If T is a pure hyponormal operator satisfying (1.1) then
1.4) t¢o,(T*) for 1€C—-Z,

where Z is a subset of C of (arc length) measure zero. In case T is also subnormal
on X with the minimal normal extension N = f zdE, on A DH, then

(15) | E(C) = 0.

Proof of Lemma. As noted above, since T is purely hyponormal, ¢,(T) is
empty. Further, by (1.1), for x fixed in & and for almost all t on C, y,=(T—¢)"'x
is defined. Thus, for each x in &, there exists a set Z(x) on C of arc length measure
zero and with the property that x¢ R(T—t) for 1€C— Z(x) If {x;,%;,..} isa

countable subset of & which is dense in # then Z= U Z(x,) is also a. zero set.

Thus, .%(T— t) is dense in o for all ¢in c-z and 1n partlcular, relatlon (1.4)
follows.

Next, relation (1.5) will be established when T is also subnormal. Let x be any
vector in &. For ¢t in C—Z(x) one has y,=(T—t)"'x, hence x=(T—1t)y,=

=(N—1)y,, and so (T—t)"lx= f(z—t)‘ldsz. (Note that E({t})x=0.) Con-
6(N)
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sequently, for any » in ¢, an application of the Schwarz inequality and (1.1) yields
[( [lz—a=d@Ex w))ldd = [( [1z—1"2 dIEXF)"( [ dIEu]?)" |di| =
o(¥) - a(¥) . -

C o(N) C

= ([ NT=12x) 1)) Nl <.

(Note that f = f ] Consequently, in view of Fubini’s theorem,
c  C-2(x)
(1.6) [ ([ le=zi=Yad) 1d(E.x, u)] <.

o(N) C

However, f |t—z|~1|dt]|=<> for all z on C. (In fact, otherwise, there would
[

exist some z* on C for which f |t—z*| 71 |dt]=< . However, z* is not an atom
zk

of the measure |d¢| on C and so lsf [t—z* "1 |dr}|-0 as t*—z*, a contradic-

tion.) Hence, by (1.6), (E(C)x,u)=0 for u arbitrary in X and x arbitrary in Z.
Thus, for x in %, E(C)x=0 and hence also 0=N**E(C)x=E(C)N**x
(k=0,1,2,...). Since & is dense in 2 and N is the minimal normal extension of T,
the linear span of {N**4} (k=0,1,2,...) is dense in o and (1.5) follows. This
completes the proof of the Lemma.
The assertion of Theorem 1 when T is purely subnormal now follows from

the above Lemma and Corollary 1 of [4], p. 106. In fact, only the hypothesis (5.1)
of Corollary 1, corresponding to (1.1) of the present paper, is need to ensure the
validity of the assertion of Corollary 1. Indeed, the remaining hypotheses there,
namely, that {z€C: Z€0,(T™*)} has measure zero and that E(C)=0, are con-
sequences of (1.1), in_view of the Lemma. For completeness, however, an alternate
proof of the assertion of Theorem 1 when T is purely subnormal will be given below.

By the Lemma, E(C)=0, and so for x in & and u in ] one has, by Fubini’s
theorem,

(Bexow = [ [-@r)7 f (=D di)dExw) = [ &(2)d(E,x, ),

s(N)—-C a(N)—C
where @(z) is the characteristic function of int C. Thus, (Fx,u)= (E(mt C)x, u)
for all u in o and so Fex=E(@{ntC)x for all x in Z. Let P denote the
orthogonal projection P: A#—3. Since the (orthogonal projection) E(intC) is
bounded on " and E(int C)x=F.x€# for x in &, then clearly E(intC)P=
=PE(int C)P(=PE(intC)). Thus E’=E(intC)|# is an orthogonal projection
and E'|Z=F.. Since TP.x=PFTx for x in & and & is dense in 3¢, then T com-
mutes with E’. Further, it is clear that E’3# =.#;, and so the spaces .; and ./,
defined earlier reduce T and o =.4,®.#,. This completes the proof of Theo-
rem 1.
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2. For use below, note that if T'is purely hyponormal then Re (7") is absolutely
continuous; see [2], p. 46.

.

Theorém 2. Let T be purely subnormal on # and suppose that ¢(T) inter-
sects both the right and left open half planes R={z: Re (z2)=0} and L={z: Re (z)<0}.
In addition, let

(2.1) ' - [tPF()dt < 2,

where o is the absolutely continuous support of Re (T) and F(t) is the linear measure
of the vertical cross section ¢(T)N{z: Re(z)=t} of o(T). Then there exist sub-
spaces My and My, of H# reducing T, satisfying H =MxD My and

o(T|Mp) = (c(TNR)~ and o(T|My) = (c(T)NL)".

Theorem 2 follows from Theorem (%) and its proof in [5] and from Theorem 1
above. In fact, let C denote the positively oriented boundary of the semicircular
disk {z: Re(2)>0, |z|<r}, where r=0 is chosen so large that o(T)C{z: |z|<r}.
It was shown in [5] that & of Theorem 1 above can now be chosen so as to contain
the range of E4(B) where {E4} is the spectral family of 4=Re(T) and g is any
Borel set of the real line whose closure does not contain 0. This completes the proof
of Theorem 2.

- For other sufficient conditions ensuring the reducibility of a subnormal operator
see the references in ConwaAy [1], pp. 299—300.
The author is grateful to the referee for very helpful comments and sugges-
tions. -
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Approximation Theory, Tampa, Proceedings of the seminar held in Tampa, Florida, 1985—
1986. Edited by E. B. Saff (Lecture Notes in Mathematics, 1287), VI+228 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

The Institute for Constructive Mathematics at the University of South Florida had its begin-
nings in 1985. The papers contained in these Proceedings of the Tampa Approximation Seminar
prove the quality and variety of research activities conducted of the Institute and show the individual
interest of the visitors to the Institute during the academic year 1985—1986.

Contents: P. R. Graves-Morris and J. M. Wilkins, A fast algorithm to solve Kalman’s
partial realisation problem for single input, multi-output systems; A. Knopfmacher and D. Lu-
binsky, Analogues of Freud’s conjecture for Erdds type weights and related polynomial approxima-
tion problems; A. L. Levin and E. B. Saff, Some examples in approximation on the unit disk by
reciprocals of polynomials; D. Lubinsky and E. B. Saff, Strong asymptotics for L, extremal poly-
nomials (l<p=) associated with weights on [—1, 1]; L. S. Luo and J. Nuttall, Asymptotic
behavior of the Christoffel function related to a certain unbounded set; H. N. Mhaskar, Some
discrepancy theorems; J. Palagallo-Price and T. E. Price, Properties of projections obtained by
averaging certain polynomial interpolants; L. Reichel, Boundary collocation in Fejér points for
computing eigenvalues and eigenfunctions of the Laplacian; B. Shekhtman, On the geometry of
real polynomials; H. Stahl, A note on a theorem by H. N. Mhaskar and E. B. Saff: “Where does
the sup norm of a weighted polynomial live? (a generalization of incomplete polynomials)”; H. Stahl,
Existence and uniqueness of rational interpolants with free and prescribed poles; J. Waldvogel,
Zero-free disks in families of analytic functions.

J. Németh (Szeged)

N. H. Bingham-—C. M. Goldie—J. L. Teugels, Regular Variation (Encyclopedia of Mathe-
matics and its Applications, Vol. 27), XIX+491 pages, Cambridge University Press, Cambridge—
London—New York—New Rochelle—Melbourne—Sydney, 1987.

The publication of this book is a major mathematical event. -

The theory of regularly varying functions was initiated by Jovan Karamata in 1930. A positive
measurable function f defined on a half-line (a, <) with a>0 is called regularly varying (at <)
of index @€R if (%) f(Ax)[f(x)~1%, as x—o, for each A>0. (Measurability can usually be
replaced by the Baire property for most of the basic results.) If R, denotes the class of all such func-
tions then the functions in R, are called slowly varying, and for f€R, we have f(x)=x2!(x) with
some [€R,. The notion of regular variation at zero rather than <, and then at any other point, is
straightforward, every result at = has a corresponding counterpart.

Karamata himself used his basic results on regular variation in Tauberian theorems and the
theory was further developed by his Yugoslav School. As the authors write in their preface “The



192 Bibliographie

great potential of regular variation for probability theory and its applications was realised by William
Feller, whose book [4n Introduction to Probability Theory and its Applications, Vol. 11, Wiley, New
York, 1968 and 1971] did much to stimulate interest in the subject. Another major stimulus — again
from a probabilistic viewpoint — was provided by Laurens de Haan in his 1970 thesis [On Regular
Variation and its Applications 10 the Weak Convergence of Sample Extremes, Math. Centre Tract 32,
Amsterdam], while Eugene Seneta gave a treatment of the basic theory of the subject in his mono-
graph of 1976 [Functions of Regular Variation, Lecture Notes in Mathematics 506, Springer, Berlin].”

The first chapter is the essential Karamata theory (pp. 1—60). This is based on results like
the uniform convergence theorem (stating that if /€ R, then the convergence in (%) above holds
uniformly on each compact A-set in (0, oo)) the representation theorem (stating that if /€ R, then

I(x)=c(x) exp{f b(r) dt/t} x=a, for some a>0, where c(x) is measurable and c(x)—~c€(0, ),

b(x)—~0 as x—»ao) the characterisation theorem (statmg that if for a positive measurable f rela-
tion (%) above holds for a A-set of positive measure and with an unspecified limiting function g(4)
on the right side, then it holds for all 1>0 and necessarily g(4)=4%, >0, for some g¢R) and
the absolutely basic Karamata theorem, with many variants and refinements, stating very roughly
that f€ R, if and only if certain integral functions of f behave near  as if f(x) were constant times
x%. There are many variants, versions or extensions of everything, monotone equivalents, asymptotic
inverses and conjugates and various related notions and properties are discussed extremely intel-
ligently together with special cases such as smooth variation and monotonicity with first applica-
tions as Karamata’s Tauberian theorem for Laplace—-Sueltjes transforms. Regularly varying se-
quences receive a separate discussion.

"Chapter 2 (Further Karamata theory, pp. 61—126) is devoted to the investigation of the classes
ER of extended regularly varying functions f and OR of O-regularly ‘varying functions # (of posi-
tive measurable or Baire functions) for which M= fo(D=f *(A)Slc 1=1< <, for some ¢ and d,
and for which 0<f*(l) =f*(A)< =, 1=)< , respectively, where, as x-» o, . (A) =lim inf f(Ax)/f(x)
and f*(A)=limsup f(1x)/f(x), and to related classes. These are functions of bounded or positive
increase or decrease, the classes R_ ., and R.,, quasi-monotone and near-monotone functions,
various subclasses of R,, functions with Polya peaks, Beurling slow variation, self-neglecting and
self-controlled functions, to mention a few for those who know what these are or have the rlght
sense of imagination, :

Taking logarithms, relation (%) above, with a general limiting function, can be written as
o(Ax)— p(x)—~h(4). Chapter 3 (de Haan theory, pp. 127—192) provides the extended modern
theory when the left side here is replaced by the ratio (¢(ix)— @(x)/w (x), where y is some aux-
iliary function, with the corresponding O-, 0-, E- and other versions or extensions.

Chapter 4 (Abelian and Tauberian theorems, pp. 193—258) and Chapter 5 (Mercerian theo-
rems, pp. 259—283) together constitute a virtually complete and beautifully constructed account
of that part of classical analysis which is defined by these names, obtained by fuli-force applica-
tion of the results in the first three chapters, with many far-reaching extensions and complements.
All integral transforms of convolution type and all matrix transforms receive detailed attention
where some form or other-of regular variation plays some role in the result. These five chapters
form a completely integrated and unrivalled unit which will be difficult to surpass before the twenty-
second century.

And now come two little pearls. The first is Chapter 6 (pp.-284—297) on applications to analytic
number theory (partitions, the prime number theorem and the -order of sums of multiplicative
functions); while the second is Chapter 7 (pp. 298—325) with applications to complex analy51s
concerned mainly with the growth of entire functions, .
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The last Chapter 8 (Applications to probability theory, pp. 326—422) is a masterpiece in itself.
It offers a fantastically rich field of applications of regular variation and here we restrict this review
to listing section headings: tail-behaviour and transforms, infinite divisibility, stability and domains
of attraction, further central limit theory, self-similarity, renewal theory, regenerative phenomena,
relative stability, fluctuation theory, queues, occupation times, branching processes, extremes,
records, maxima and sums.

Six short appendices (pp. 423—444) with indications of further fields of applications and
technical necessities complete the main body of the text.

However, the remaining forty-seven pages are very important to the excellence of the book.
There is a list of references of 645 different items, each one supplied with a list of all the page num-
bers where it is cited. Then there is an index of named theorems. This is followed by a seven-page
comprehensive index of notation and a sixteen-page very detailed general index concludes this
encyclopedia of regular variation. These, together with the extremely clever structuring of the
material into chapters, sections and subsections, the page headings and the nine-page table of con-
tents make the book very easily usable. This is just one sign of the authors’ sense of scholarship.
Throughout, all Serbian, Croatian, French, German, Hungarian, Russian or Scandinavian accent
marks are proper and are at their own place. All second- or third-named authors have a separate
entry in the bibliography with a reference to the first-named author. There are 7o misprints in this
book. (The three trivial typos this reviewer found were probably left intentionally by the three
authors: to satisfy reviewers who believe that perfect works are impossible.)

This is a perfect work of art in every sense of the word. The language is perfect, the taste is
perfect, the typography is perfect and, above all, the mathematics is perfect. The amount of knowl-
edge brought together and of the work that went into this book is truly fascinating. There should
be dozens of mathematicians sweating on their problems at this late hour of the night, or early
hour of the morning, all over the world who would only need to look up page x of it and exclaim
‘heureka’, Many-many results are new: brand new or completely polished versions of older results,
when, needless to say, the authors always give the original sources just as when they follow some-
body else in the proof even if they greatly simplified and polished that proof. And they are never
tired to do so, even when they give five different proofs for the uniform convergence theorem in
Chapter 1. In a sense everything is new here: every word of the subject is redigested and the whole
comprehensive theory and its many applications are unified and integrated. The writing style is very
modest, the mathematical and general intellect shines through, each page ticks, it is sheer delight
to read the book.

It is a classic right away. A book for all seasons.
Sdndor Csirgd (Szeged)

H. G. Dales—W. H. Woodin, An Introduction to Independence for Analysts (London Mathe-
matical Society Lecture Note Series, 115), XIII-+241 pages, Cambridge University Press, Cam-
bridge—New York—Melbourne, 1987.

Let X be an infinite compact space and let C(X) be the Banach algebra of all continuous
functions. A famous question, first discussed by Kaplansky in 1948, asks if every algebra norm
on C(X) is necessarily equivalent to the given uniform norm. In 1976, using the continuum hypoth-
esis (CH) H. G. Dales and J. R. Esterle, independently of each other, showed that there are algebra
norms on C(X) which are not equivalent to the uniform norm. More surprisingly, also in 1976
R. M. Solovay and W. H. Woodin proved that the existence of such norms is independent of the
basic axioms of set theory (ZFC).

13
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“As the authors write in.the preface: “The purpose of this book is 'to explain what it means
for a proposition to be independent of set theory, and to describe how independence results can be
proved by the technique of forcing.” A full proof of the independence of (CH) from (ZFC) is given
and the first proof of the theorem of Solovay and Woodin, accessible not only to logicians but
intelligible also to analysts, is provided here. The authors include a discussion of Martin’s Axiom,
“which can be used to establish independence results without the necessity of knowing any of the
technicalities of forcing”. -

This book offers analysts a good possibility to get acquainted with the powerful technique
of forcing and with its-application in the resolution of a deep problem in analysis. It can be recom-
mended also to students of set theory as an introductory work.

LdszI6 Keérchy (Szeged)

Dependence in Probability and Statistics. A Survey of Recent Results (Oberwolfach, 1985).
Edited by E. Eberlein and M. S. Taqqu (Progress in Probability and Statistics, Vol. 11), XI+473
pages Birkhduser, Boston—Basel—Stuttgart, 1986.

ThlS is a fine collection of a large number of excellent survey papers and a smaller number
of equally excellent research papers on various kinds of dependent random variables, concentrating
mainly on limit theorems. _

- Section 2 is on various mixing conditions with papers by R. Bradley, M. Peligrad, W. Philipp,
M. Denker, C. M. Goldie and G. J. Morrow and by N. H. Bingham, while Section 3 contains
the papers by-P. Gaenssler and-E. Haeusler and by E. Eberlein on martingale types of dependence.
Section 4 carries the articles by A. R. Dabrowski, E. Waymire and by R. H. Burton and E. Waymire
on positive and Gibbs dependence, the papers by F. Avram and M. S. Taqqu and by R. A. Davis
and S. Resnick on moving averages in independent variables belonging to the domain of attrac-
tion of a non—normal stable law constitute Section 5.

. Advances'in dependent extreme value theory are sketched in the papers of G. O’Brien, J. Hiis-
ler, and W. Vervaat in Section 6. Finally, Section 1 is on the recent hot topic of long-range de-
pendence with papers by T: C. Sun and H. C. Ho, L. Giraitis and D. Surgailis, M. S. Taqqu and
J. Levy, M. Maejima, N. Kono, H. Dehling, the last paper being here a bibliographical guide by
M. S. Taqqu to some 286 items. The preface of the two editors provides an intelligent guide to
the collection 1tself which will probably be indispensable for anyone with dependencies.

Sdndor Csérgé (Szeged)

Luc Devroye, A Course in Density Estimation (Progress in Probability and Statlstlcs Vol. 14),
XI_X+ 183 ‘Pages, Bu-khauser, Boston—Basel—Stuttgart 1987.

This seems kae a most enjoyab]e book on den51ty estimation using the L, criterion. The larger
part of it appears as a lighter edition of the author’s research monograph with L. Gy6rfi, Non-
parametric Density Estimation: The L, View, Wiley, New York, 1985. It is based on the notes of
a course.the author has taught.at Stanford University in 1986. Indeed, it is a first-class textbook
for a graduate course with many examples, figures and exercises. The author should indeed be
commended for having made the results of a very fresh and sophisticated research available for a
wide public in just a little more than no time at all. In comparison to the earlier research mono-
graph, however, some new material is also found in the present book. (Indeed, the opposite would.
have been very much uncharacteristic for the author.) These are chapters on robustness, minimum
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distance estimation, estimation of monotone densities, and on relative stability. The book can
be enthusiastically recommended to every statrstxcran students instructors, research workers, and
the layman for that matter. :

- Sdandor Csorgd ( Szeged )

Differential Geometry, Calculus of Variations, and their Applications, Edited by G. M. Rassias
and Th. M. Rassias (Lecture Notes in Pure a::G Applied Mathematics, Vol. 100), XIII+ 521 pages,
Marcel Dekker, Inc., New York—Base!, 1983, -

This book contains a series of papers dedicated to the memory of Leonhard Euler (1707——1783)'
on 200th anniversary of his death. His discoveries and significant contributions were devoted. to
every area of the mathematical sciences that existed in his day: calculus of variations; differential
geometry of surfaces; the geometric origins of topology and combinatorics; particle, rigid body
and celestial mechanics etc. The pure and applied aspects of mathematics and mechanics were not
separated yet in that time. Lagrange, Laplace and Gauss were influenced directly by Euler’s work,
thus his activity belongs to the foundaments of the modern science. The papers in this volume are
written by the authorities of the fields: dynamical systems, differential topology and geometry,
calculus of variations, differential equations, control theory, and history and philosophy of sciences.

Péter T. Nagy (Szeged)

H. Edelsbrunner, Algorithms in Combinatorial Geometry, ETACS Monographs on Theoretica
Computer Science, XV +423 pages, Springer-Verlag, Berlin—Heidelberg—New York—ILondon—.
Paris—Tokyo, 1987.

Computational geometry is a rapidly expanding part of mathematics today and several boo’ks':
have been published on this topic. This is not “just another book” but certainly one of the best’
ones. The theory emerged as the unification of computational technics and results of combinatorial
geometry, and this book follows this line. The author’s aim was “to demonstrate that computational-
and combinatorial investigations in geometry are doomed to proﬁt from each other” Accordmg,
to this intention the book is divided into three parts. : )

The first part is devoted to the combinatorial geometry. It contains the fundamental geometrlc
structures (arrangements of hyperplanes, configurations of points, convex polytopes, Voronoi
diagrams), the main combinatorial tools and basic results of the complexity of families of cells
(the Euler relation, the Dehn—Sommerville equations, an asymptotic version of the upper bound
theorem).

The second part contains the computational methods, the organization of data’ structures of
arrangements and the most important geometric algorithms (construction of convex hulls, linear .
programming, point location search).

The third part presents applications of the first two parts provmg that ‘the combmauon of
these two fields results a really fruitful method. . ‘

Each chapter contains a problem section including exercises as well as research problems"
and the chapters end with a complete and updated bibliographical notes.

The book can be useful to specialists as a reference book but it is also recommended to every-
body interested in the present advances in computational geometry. -

i J. Kincses (Szeged) -

13*
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F. Forgd, Nonconvex Programming, 188 pages, Akadémiai Kiad6, Budapest, 1988.

Nonconvex programming deals with the class of mathematical programming problems in
which a local maximum-point is not necessarily a global maximum-point. This book is devoted
to provide a survey of the basic research directions of the nonconvex programming except its two
major fields, the integer programming and the global optimization which are treated in a number
of excellent monographs.

" The book consists of ten chapters. The first three ones comnrise such topics and technigues
as optimality conditions, nonlinear duality, convex and concave envelopes of functions, direct
and implicit enumerations, branch and bound method, different cuts which will be used in sub-
sequent chapters. ‘

Chapter 4 deals with the problem of maximizing a quasi-convex function over a polytope.
Cutting-plane methods based on different kinds of cuts such as convexity, polaroid and shallow
cuts are given for solving the problem in question. For the case of convex objective function the
method of Falk and Hoffmann is presented. This part ends with the treatment of the Tuy—Zwart
method. .

~ Chapter 5 studies the problem of maximizing a linear objective function with convex inequality
constraints, and an indirect cutting-plane algorithm is discussed.

~ The general case is studied in Chapter 6, where a continuous function is to be maximized'
over a compact subset of the n-dimensional Euclidean space. For solving it a branch and bound
algorithm developed by Horst is presented, then some bounding techniques are discussed. Finally,
the special case of separable objective function is investigated.

Chapter 7 is devoted to the nonconvex quadratic programming problems. Such methods
are presented which more or less utilize the quadratic nature of the objective function.

A special nonconvex problem, the fixed charge problem, and some methods of solution are
investigated in Chapter 8.

Chapter 9 deals with techniques for converting constrained problems to unconstrained ones
and gives an explicit formula for the optimal solution of a nonconvex programming problem in
terms of a multiple integral.

Finally, Chapter 10 contains a partition algorithm to decompose the nonconvex programming
problem.

The book is well-written. The material is well-organized, the proofs are clear, a subject index
helps the reader. It may be recommended to mathematicians, operation researchers, and computer .
scientists. 1

B. Imreh (Szeged)

S. ‘Gallot—D. Hulin—J. Lafontaine, Riemannian Geometry (Universitext), XII+248 pages,
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987. -

. It is a great fun to read this book. The authors had found the ideal rate of abstractions and
examples. When a new definition or theorem occurs the reader will meet a detailed recurrent study :
of the most important examples of Riemannian geometry like spheres, tori, projéctive'spaces, etc.
At the same time, throughout the book there are several exercises (the solutions of most of them
are given at the end of the book) to help to understand the text. :

The book is divided into five chapters. The first one is a quick introduction to differential :
manifolds, The next two chapters contain the basics of Riemannian geometry until Myer’s and
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Milnor’s theorems. Chapter IV deals with analysis on manifolds and Chapter V is about Riemannian
submanifolds.
Summing up, this is a modern, well built and useful book, and we warmly recommend it to
all who need a good introduction to Riemannian geometry.
" Arpdd Kurusa ( Szeged)

M. Gockeler—T. Schiicker, Differential geomefry, gauge theories, and gravity (Cambridge
monographs on Mathematical physics), XIT+230 pages, Cambridge University Press, New York—
New Rochelle—Melbourne—Sydney, 1987.

This book is an introduction to those concepts of differential geometry which are funda-
mental for applications in elementary particle theory and general relativity. On the mathematical
side, the only prerequisites are linear algebra and real analysis. The physical part of the book is
essentially self-connected, but it is useful if the reader is already motivated by some knowledge
of Yang—Mills theory, general relativity, and the Dirac equation.

The first three chapters contain an elementary account of differential forms in R”. This ma-
chinery is used then to reinterpret and rewrite basic quantities and equations of Yang—Mills theory
and general relativity in geometric, coordinate-free terms. Next, the reader is acquainted with the
notion and some applications of the Lie derivative. This is followed by chapters providing the
rudiments of manifolds and Lie groups.

In Chapter 9 the authors present an introduction to fiber bundles and connections on them.
This is a topic of growing importance in applications. The following chapter illustrates the theory
on the examples of the Dirac monopole, the 't Hooft—Polyakov monopole, Yang—Mills and
gravitational instantons.

~ Chapter 11 treates the algebraic (Clifford algebra, spinor representations) and analytic (Dirac
operator, spin structures) aspects of the Dirac equation. The concept of Kihler fermions is also
touched upon here. The next chapter is devoted to a subject of more advanced character, to the
algebraic approach to anomalies. The final sections contain some background material on anomalous
graphs. .
" This book is intended for graduate students in theoretical physics in the first place. The reviewer .
warmly recommends it also to everybody else searching for a well written, elemehtary introduc-
tion to modern differential geometry with emphasis on applications in particle theory and relativity,

Ldszlo Fehér ( Szeged)

Lj. T. Grujic—A. A. Martynyuk—M. Ribbens-Pavella, Large Scale Systems Stability under
Structural and Singular Perturbations (Lecture Notes in Control and Information Sciences, 92),
XVI+366 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

Almost one hundred years ago, 1892, A. M. Lyapunov founded the mathematical stability
theory in his famous doctoral dissertation. Previously stability concepts had been used only for
mechanical systems. He has not only formulated the abstract definitions of stability concepts for -
arbitrary differential systems but established methods of investigation of these properties. One’
of them, the so-called direct method is suitable for finding conditions of stability properties via
the system state differential equation without use of its solutions. This method has been proved -
to be extremely useful not only in mechanics but in many fields of the applications of differential
equations such as control theory, reaction kinetics, population dynamics, biology and so on, -
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- These lecture notes, which are a revised and completed version of their original Russian edi-
tion, are devoted to a recently developed branch of stability theory, to large scale systems stability.
It is also based upon Lyapunov’s direct method.

The first two chapters give an up-to-date survey on the state of Lyapunov’s direct method.
It was an excellent idea to start some sections with citations of the original definitions of stability
concepts and fundamental theorems from Lyapunov’s work. The reader can follow the arch of
the one hundred years’ development realizing that Lyapunov’s original theorems are important
and actual even today. Chapter I entitled Outline of the Lyapunov Stability Theory in General
gives new versions of ‘the definitions of stability concepts and theorems involving the earlier gen-
eralizations. The absolute stability is also treated.

Chapter II (Comparison Systems) contains the theory and apphcanon of the comparlson
method with scalar, vector and matrix functions. (The theory of comparison matrix functions
initiated by A. A. Martynyuk was available earlier only in papers.)

The second part of the book is devoted to large-scale systems. The main idea here is to de-
compose the whole system into interconnected subsystems and then to find an aggregation form
of the system yielding conditions under which the desired property of the original system can be
deduced from the same properties of its interconnected subsystems and from qualitative properties
of their interactions.

Chapter V (Large-Scale Power Systems Stability), ‘which is essentially revised and completed
in comparison with the original Russian edition, gives a good example for the process of mathe-
matical modelling from the introduction of the physical problem, through the mathematical formula-
tion and treatment until the interpretation of the results.

This book — which should be found on the book shelf of every mathematician, engineer,
and any other user of mathematics interested in stability theory — is worthy of celebrating the
oncoming hundredth anniversary of the publication of Lyapunov’s fundamental work.

L. Hatvani (Szeged)

Jack Carl Kiefer, Introduction to Statistical Inference, Edited by G. Lorden (Springer Texts
in Statistics), VIII+ 334 pages, 60 illustrations, Springer-Verlag, New York—Berlin—Heidelberg—
London—Paris—Tokyo, 1987.

This book is unique and is best in its kind. It gives a systematic development of decision
-theoretic statistics, and it does this as a first course in mathematical statistics. It is based upon
lecture notes of the late Professor Kiefer, one of the great masters of the subject to be compared
only to Neyman and Wald, on whose work he builds here. So this is a posthumus book and it would
have been a very great loss to the whole international statistical community if these notes had re-
mained only in the privileged possession of those individuals who were fortunate enough to be
around Cornell where Kicfer has developed them. It is a gift to all of us. The editor and the pub-
lisher should be thanked for making it available. '

*The first three short chapters (Introduction, Specification of a statistical problem, Classifica-
tions of statistical problems; pp. 1—30) introduce the basic decision-theoretic notions such as
decision or procedure, loss function, operating characteristic, risk function and admissibility. Chap-
ter 4 (Some criteria for choosing a procedure; pp. 31—80) explains the Bayes, the minimax and
the unbiasedness criteria, and gives the essentials on randomized procedures and the methods of
maximum likelihood and moments. Following the important Chapter 5 (Linear unbiased estima-
tion; pp. 81—136) concentrating on the general linear model, least squares, orthogonalization
gngd the Gauss—Markov Theorem, the whole Chapter 6 (pp. 137—157) is devoted to sufficiency.
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‘The criteria of completeness, unbiasedness, sufficiency, invariance-and asymptotic efficiency: are
discussed at length in Chapter 7 (pp. 158—245) in the context of point estimation, where more on
minimax procedures and maximum likelihood are naturally found. Chapter 8 (pp. 246—286) is
on hypothesis testing with less than twenty pages on “common normal theory tests”; and the main
body of the book concludes with Chapter 9 (pp. 287—311) on confidence ‘intervals. Three .short
appendices, a list of fifteen references and an index complete the volume. .
What is so special in such a book? It is the lucidity of the mind and, as a result, the sunphcxty
of the language. Every sentence has a clear meaning (and this in itself would be sufficient to make
the book unique) and Kiefer always means something. Every single-minded direction gets its share
from him, sometimes in rather sharp terms, thus those who decide to cite Kiefer against some-
thing for their own benefit should be careful enough to leaf one or two before they do so. This is
the work of a thinker. With the possible exception of Charles Stein alone, every living statistician
will find something interesting or new in this book. And, at the same time, this is a textbook of
introductory statistics for (good) students with minimal mathematical background but with a
necessary maturity, seriousness and interest. This is achieved by a very large amount of examples
. and homework problems with fascinating notes and suggestions from the author. Instructors with
the necessary characteristics just listed for students will want to have a copy of the book, independ-
ently of the nature of the statistics course they teach. . .
Sdndor Csirgs (Szeged)

A. Kertész, Lectures on artinian Rings, Edited by R. Wiegandt, 427 pages, Akadémiai Kiado,
Budapest, 1987.

The text is a substantially extended and completed translation of the original German edi-
tion ““Vorlesungen iiber artinsche Ringe” of the late A. Kertész. The present edition realizes the
ideas and intentions of A. Kertész left behind in his notes.

Rather than being a comprehensive account of the theory of artinian rings, this book pr0v1des
a well-written elementary text on ring theory centered on the basic theorems on artinian rings.
Moreover, its scope is considerably wider than the title suggests and the main topic is developed
within the framework of those modern generalizations which resulted from the systematic use of the-
artinian approach.

The book consists of fifteen chapters from which only nine have been treated in the German
edition. The first four chapters are developments of the general theory of rings and modules, and'
requires practically no previous knowledge of that topic. This introduction to rings, modules,
prime and Jacobson radical is carried out with care in an almost leisure manner.

The following part of the book deals with artinian rings and with generalizations without
assuming the existence of unit element. For artinian rings it presents the classical theorems on
semi-simple, primary and simple rings as well as on projective and. injective modules. There we
also find the general theory of rings of linear transformations, Jacobson’s Density theory, the Wed-
derburn—Artin structure theorem, and Maschke’s theorem. Steinfeld’s theory on quasi-ideals is
developed and used in giving ideal-theoretical characterization of semi-simple rings. The Litoff—Anh
theorem on local matrix rings and Vamos® theorem on characterizing artinian modules by finitely
embedded modules are also included, which have not béen treated in the German edition. A full
account of the additive structure for artinian rings is given mcludmg the fundamental theory of
Fuchs and Szele.

The last six chapters of the book were written by A. Betsch, A. Widinger, and R. Wiegandt.
During the last decades many new branches of ring theory. have been developed and several impor-.
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tant results have been proved involving artinian rings and modules. Thus it has become highly
desirable to supplement the text with important topics such as Goldie’s theory on rings of quotients,
quasi-Frobenius rings, and Connell’s theorem on artinian group rings. This part includes also a
general decomposition theorem on strictly artinian rings, and investigations of linearly compact
rings. In the study of rings with minimum condition on principal right ideals, the splitting
theorem due to Ayoub and Huynh is also treated.

For Dbetter understanding, each chapter ends by a set of exercises with hints for
solutions.

Writing this book the contributors and the editor made an excellent job, and the extended
English version enlivens the reputation of the original German edition.

N. V. Loi ( Budapest)

Serge ‘Lang, Calculus of Several Variables, Third Edition (Undergraduate Texts in Mathe-
matics), XII+ 503+ A91+14 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—
Paris—Tokyo, 1987. '

Sometimes one pays less attention to the functions of several variables than to the functions
of one variable. Once a famous mathematician told that: “In several variables everything goes
just as in one variable.” It was true for him, but the teachers know that in general this is not true
for the students. We have several problems teaching this theme.

This book was previously published in 1973 and 1979, and therefore it is widely known. In a
self-contained presentation it covers all essential topics in the calculus of several variables. Having
read this book the reader will be familiar e.g. with the mathematics of mechanics.

Perhaps the best way to characterize the method of the book is to sketch the discussion of
two, slightly embarrassing problems. The paragraph on inverse mappings contains three examples
after the definition, then the inverse mapping theorem comes: Let F: U-R" be a C'-map. Let
P be a point of U. If the Jacobian determinant 4(P) is not equal to 0, then Fis locally C'-invertible
at P. The proof of this theorem is beyond the scope of this book. Then we have three examples
again. The next paragraph contains ten proposed exercises, the answers can be found at the end
of the book. In the paragraph on implicit functions, after a short introduction the implicit function
is stated in the form: Let U be open in R* and let f: U—R be a C'-function. Let (@, b) be a point
of U, and let f(a, b)=c. Assume that D, f(a, b)#0. Then there exists an implicit function y=¢(x)
which is C* in some interval containing @, and such that ¢(a)=>b. Before the proof we can find
four examples. The next paragraph consists of various interesting exercises.

In connection with mathematical analysis in the former century it has been said that while
Berlin found Gottingen lacking in rigour, Gottingen found Berlin lacking in ideas. These standpoints
are problematical today as well. In my opinion “this book is between Berlin and Gottingen”, it has
a proper level in rigour and in ideas.

' L. Pintér (Szeged)

Ricardo Mafié, Ergodic Theory and Differentiable Dynamics (Ergebnisse der Mathematik und
ihrer Grenzgebiete, 3. Folge, Band 8), XII+ 317 pages, Springer-Verlag, Berlin—Heidelberg—
New York—London—Paris—Tokyo, 1987.

Modelling systems, especially in mechanics, one often comes to a measure space and a meas-
urable map on it such that the measure is invariant with respect to the map. The theme of ergodic
theory is the dynamic behavior of such measure-preserving maps. The first theorem of the theory
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was proved by Poincaré. His celebrated recurrence theorem says that if the evolution of a system
is described by a vector field whose divergence vanishes identically, then the system returns infinitely
often to configurations arbitrarily close to the initial one, except for a set of initial configurations
with zero Lebesgue measure, i.e. except for a set which can be neglected from the probabilistic
point of view.

Around the turn of the century the work of Boltzmann and Gibbs on statistical mechanics
raised the following mathematical problem: Given a measure-preserving map T of a space (X, &, i)
and an integrable function /: X—R, find conditions under which the limit

” S (Tx)+ ..+ £ (T (%))
1m

n—+co n

exists and is constant almost everywhere. Birkhoff proved that for any T and f the limit exists almost
everywhere, and a necessary and sufficient condition for its value to be constant almost everywhere
is that there exists no set 4€.%/ such that 0<u(4)<1 and T"l(A)=A. Maps which satisfy this
condition are called ergodic.

It can be very difficult to decide whether or not a map occurring in statistical mechanics is
ergodic. For example, Gibbs initiated the study of billiards as models for a perfect gas. In a billiard
spheres move with constant velocity within a bounded region colliding with one another and with
the boundary in a perfectly elastic way. In the thirties Birkhoff gave an abstract formulation of
the problem, but only in the sixties, starting with Sinai’s work, were any billiard proved to be
ergodic. The first example of a convex ergodic billiard was given by Bunimovich in 1974, but no
examples of ergodic billiards with convex C* boundary are known.

The book is an excellent survey on the ergodic theory of differentiable dynamical systems.

Chapter 0 summarizes the basic definitions and theorems of measure theory. This is a quick
review, but the reader can find results with proofs on derivatives with respect to sequences of parti-
tions, which cannot be found in standard references. Chapter 1 entitled Measure-Preserving Maps
starts with a brilliant introduction outlining the basic problems of the ergodic theory, then presents
the main kinds of dynamical systems around which ergodic theory has developed. Chapter II (Er-
godicity) contains the classical concepts and results including Birkhoff’s Theorem, Kolmogorov—
Arnold—Moser Theorem, Gaussian and Markov Shifts. Chapter 111 (Expanding Maps and Anosov
Diffeomorphisms) and Chapter IV (Entropy) are devoted to contemporary ergodic theory. A good
part of the information is contained in the great number of exercises which give the reader the
opportunity of working actively and individually in the field.

The book can be highly recommended either as an introduction or as a monograph for mathe-
maticians and physicists. ’

L. Hatvani (Szeged)

Bernard Maskit, Kleinian Groups (Grundlehren der mathematischen Wissenschaften, 287),
X1IT + 326 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1988.

The fractional linear transformation group PSL(2, C) with complex coefficients on the
extended complex plane CU {«} has fundamental importance in theoretical and applied mathe-
matics, This group is isomorphic to the orientation preserving conformal transformation group
of the euclidean plane, to the isometry group of the hyperbolic space and to the rotation group
of the pseudo-euclidean space-time and contains as subgroup the isometry groups of the euclidean
and non-euclidean planes. The discrete subgroups of PSL(2, C) were investigated already by
Felix Klein in the relation with the space-form problem of the hyperbolic geometry. This theory
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had a large development in the last century and has many applications in complex analysis for
the investigation of automorphic functions in topology, differential equations and number theory.

The new aspects of this theory are connected with the geometry and topology of 3-manifolds.
The fundamental results of W. P. Thurston and his active school show that one could analyse discrete
subgroups of PSL(2, C) using 3-dimensional hyperbolic geometry.

The present book is an introduction to the theory of Kleinian groups which are subgroups
of PSL(2,C) acting freely and discontinuously at some point Z€ CU(). The methods of hyper-
bolic geometry are used consequently in the treatment. The book is designed for using as a text-
book for a one year advanced graduate course in Kleinian groups. The first three chapters give an
introduction to the basic notions and results conceriiing fractional linear transformations, dis-
continuous groups acting on the plane and the theory of covering 'spaces. Chapters IV—VII con-
tain. the explanation of the general theory and can be used as foundation of Thurston’s work, too.
Chapter VIII is a collection of examples of Kleinian groups with diverse properties. The last two
chapters give a study of special groups and discusse their structure theory. -

The chapters are followed by a set of exercises which are quite uneven in terms of difficulty
and also by notes giving a brief historical outline of the theory.

The reader is assumed to be familiar in group theory, topology, analytical and differential
geometry of hyperbolic spaces. The book is highly recommended to everyone interested in the related
fields of mathematics. -

. Péter T. Nagy (Szeged)

Non-Linear Equations in Classical and Quantum Field Theory, Proceedings, Meudon and
Paris VI, France 1983/84. Edited by N. Sanchez (Lecture Notes in Physics, 226), VIII4-400 pages,
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985.

Field Theory, Quantum Gravity and Strings, Proceedings, Meudon and Paris VI, France
1984/85. Edited by H. J. de Vega and N. Sanchez (Lecture Notes in Physics, 246), VI+ 381 pages,
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986.

Field Theory, Quantum Gravity and Strings 11, Proceedings, Meudon and Paris VI, France
1985/86. Edited by H. J."de Vega and N. Sanchez (Lecture Notes in Physics, 280), VI+-245 pages,
Springer-Verlag, Berlin—Heidelberg—New Y ork—London—Paris—Tokyo, 1987.

These three volumes contain the lectures delivered at the series of seminars on current devel-
opments in mathematical physics held alternately at DAPHE-Observatoire de Meudon and LPTHE-
Universite Pierre and Marie Curie (Paris). The series of seminars started in October 1983 and these
volumes account for the lectures (60 altogether) read up to October 1986. The lectures delivered.
by outstanding experts together provide the reader with a comprehensive review of recent advances
and trends in mathematical physics. The following list of key-words can give only a taste of the
variety of topics covered in this collection. -

The central themes of the first volume are integrable non-linear theories and methods to
solve  them. Among the key-words are: Lax pairs, Backlund transformations, Yang—Baxter and
Kac—Moody algebras. The models reviewed include self-dual Yang—Mills fields, Bogomolny—
Prasad—Sommerfield monopoles and sigma models.

A number of lectures in the second volume of this set are devoted to the superstring attempt
of unification of interactions and to the related topic of conformally invariant two dimensional
models. Other reviews treate Kaluza—Klein theories, guantum cosmology and stochastic quantiza-
tion. Exact solvability is amongst the key-words of most frequent occurrence here too.

In the third volume the reader finds lectures on string theory, quantum gravity, integrable
systems, soliton dynamics, twistor theory, dynamical symmetries and critical phenomena,
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This collection of stimulating and comprehensive reviews encourages further ‘the interaction
between different fields of theoretical physics and mathematics. It should have a place on the shelves
of every theoretical physics and mathematics library.

Ldszlo Fehér (Szeged)

Nonlinear Semigroups, Partial Differential Equations and Attractors, Proceedings, Washington,
D.C., 1985. Edited by T. L. Gill and W. W. Zachary (Lecture Notes in Mathematics, 1248), IX+
185 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

‘Reading the classic textbooks and monographs in partial differential equations nowadays
one can realize in surprise that everything was linear at that time. During the last three decades
it has been pointed out that nonlinear structures are of interest, e.g. that the chaotic behaviour
of some nonlinearities offers new explanations for some misterious phenomena. The methods of
nonlinear theory have been developing so fast, and so many books have appeared on.them that
now one must think: everything is nonlinear.

These lecture notes are the proceedings of the symposium on the topics involved in the title
held at Howard University in Washington, D. C. on August 5—8, 1985. In the reviewer’s opinion,
all the articles are of such interest and importance that each of them has to be cited: Joel D. Avrin,
Convergence Properties of Strongly-Damped Semilinear Wave Equations; S. A. Belbas, Numerical
Solution of Certain Nonlinear Parabolic PDE; Melvyn S. Berger, The Explicit Solution of Non-
linear ODE’s and PDE’s; Whei-Ching C. Chan and Shui-Nee Chow, Uniform Boundedness and
Generalized Inverses in Liapunov—Schmidt Method for Subharmonics; Hans Engler, Existence
of Radially Symmetric Solutions of Strongly Damped Wave Equations; H. Engler, F. Neubrander,
and J. Sandefur, Strongly Damped Semilinear Second Order Equations; Lawrence C. Evans, Non-
linear Semigroup Theory and Viscosity Solutions of Hamilton—Jacobi PDE; Jerome A. Gold-
stein, Evolution Equations with Nonlinear Boundary Conditions; Jack K. Habe, Asymptotically
Smooth Semigroups and Applications; John Mallet—Paret and George R. Sell, The Principle of
Spatial Averaging and Inertial Manifolds for Reaction Diffusion Equations; Robert H. Martin, Jr.,
Applications of Semigroup Theory to Reaction-Diffusion Systems; Jeffrey Rauch and Michael
C. Reed, Ultra Singularities in Nonlinear Waves; M. C. Reed and J. J. Blum, A Reaction-Hyper-
bolic System in Physiology; Eric Shechter, Compact Perturbations of Linear M-Dissipative Oper-
ators Which Lack Gihman’s Property; Thomas 1. Seidman, Two Compactness Lemmas; Andrew
Vogt, The Riccati Equation: When Nonlinearity Reduces to Linearity.

L. Hatvani ( Szeged)

Numerical Analysis, Proceedings of the Fourth IIMAS Workshop held at Guanajnato, Mexico,
July 23—27, 1984. Edited by J. P. Hennart (Lecture Notes in Mathematics, 1230), X+ 234 pages,
Springer-Verlag, Berlin—Heidelberg, 1986.

This volume contains 18 selected items (mainly of the invited lecturers) from the 29 papers
delivered at the Fourth Workshop on Numerical Analysis hosted by the National University of
Mexico. i

The program of the workshop was centered on the following main areas : optimization problems,
the solution of systems of both linear and nonlinear equations, and the numerical aspects of dif-
ferential equations. Most of the papers deal with special problems/methods of these fields. More-
over, many practical hints and experimental results are provided, too.

The authors’ motivations vary from practical problems, e.g. the planning of semiconductor
¢devices and the stability of capillary waves, to ‘pure’ (numerical) mathematics such as the deriv-
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ation of new Runge—Kutta formulae and convergence results on the secant methods in Hilbert
space.

Let us quote some titles just to give a taste of the book:

Goldfarb: Efficient primal algorithm for strictly convex quadratic programs; Falk and Richter:
Remarks on a continuous finite element scheme for hyperbolic equations; Elman and Streit: Polyno-
mial iteration for nonsymmetric indefinite linear systems. . )

Although a part of the contributions is available in a more polished form in journal this book
may be a valuable guide for the specialists working in these subfields to the directions of current
interest.

J. Viragh (Szeged)

Tadao Oda, Convex Bodies and Algebraic Geometry; An Introduction to the .Theory of Toric
Varieties (Ergebnisse der Mathematik and ihrer Grenzgebiete, 3. Folge, Band 15), VII+212 pages,
Springer-Verlag, Berlin—Heidelberg—New Y ork—London—Paris—Tokyo, 1988.

The beginners learning algebraic geometry usually have difficulties with the lot of new and
abstract notions familiarity of which is necessary to understand the theory. The purpose of this
book is to give an introduction to algebraic geometry, especially to the theory of toric varieties,
using the language of the visuable convex geometry. The author writes in the introduction: “For
this reason, we chose to construct toric varieties as complex analytic spaces, so that they can be
understood more easily without much prior knowledge of algebraic geometry. Not only can some
of the important complex analytic properties of these spaces be translated into easily visualized
elementary geometry of convex figures, but many interesting examples of complex analytic spaces
can be easily constructed by means of this theory.” Chapter 1 is devoted to the basic notions and
facts about toric varieties. Chapter 2 contains results on-the cohomology of compact toric varieties
and the imbedding theory into projective spaces. Chapter 3 contains a study of the automorphism
group using holomorphic differential forms. Chapter 4 deals with applications of the theory to
the investigation of singularities. In Appendix the basic results of convex geometry are collected
without proofs.

Péter T. Nagy (Szeged)

Nicolae H. Pavel, Nonlinear Evolution Operators and Semigroups. Application to Partial
Differential Equations (Lecture Notes in Mathematics, 1260), VI+285 pages, Springer-Verlag,)
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

In the last two decades a very successful new branch has appeared in the theory of differential
equations. It has been pointed out that semigroups and evolution equations techniques can be
widely used to solve problems related to partial differential equations and functional differential
equations. This allows these equations to be treated as suitable ordinary differential equations in
infinite dimensional Banach spaces. i

The book presents some of the fundamental results and recent research on nonlinear evolu-
tion operators and semigroups and their applications. Most of the results involved were available
earlier only in papers.

The first chapter is devoted to the construction and main properties of nonlinear evolution
operator associated with nonautonomous differential inclusions. Chapter 2 is concerned with
nonlinear semigroups generated by dissipative operators (Crandall—Liggett Theory). The most
interesting chapter, the third one, shows how to apply the abstract results of the theory to unify
the treatments of several types of partial differential equations arising in physics and biology (equa-
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tion of long water ‘waves of small amplitude, Porous Medium Equation, the heat equation, Schrodin-
ger Equation, Semilinear Schrodinger Equation, and so on).
L. Hatvani (Szeged)

Probability Theory and Mathematical Statistics, Proceedings of the 5th Pannonian Symposium
on Mathematical Statistics, Visegrad, Hungary, 20—24 May, 1985. Edited by W. Grossmann,
J. Mogyorddi, I. Vincze and W. Wertz, XIII 4457 pages, Akadémiai Kiadd, Budapest and D. Reidel
Publishing Company, Dordrecht, 1988.

The proceedings of the 3rd and 4th Symposia have been reviewed in these Acta, 47 (1984),
page 513 and 51 (1987), page 283.

Just as the financial support shrinks as the symposium moves over to Hungarian territory
from the Austrian, the number of participants decreases. Accordingly, the proceedings reduce
from two volumes to one. Fortunately, however, the level of the quality achieved by the proceedings
of the 4th Symposium has been maintained.

Part A (pagesl—234) containes the papers on various probability problems by G. Barb6ti,
N. L. Bassily, E. Csaki and A. Foldes, G. Elek and K. Grill, I. Fazekas, S. Fridli and F. Schipp,
J. Galambos and 1. Ké4tai, B. Gyires, I. Gyongy, M. JanZura, I. Kalmar, A. Kovats, L. Lakatos,
E. G. Martins and D. D. Pestena, T. F. Méri, T. Nemetz and J. Ureczky, P. M. Peruni¢ié, D. Plachky,
T. Pogany, G. J. Székely, I. Vincze, and by A. Zempléni. Part B then consists of the papers on
diverse statistical topics and applications written by J. And&l, G. Apoyan and Yu. Kotojants,
J. Hurt, P. Kosik and K. Sarkadi, A. Pazman, Z. Praskova, L. Riischendorf, A. K. Md. E.
Saleh'and P. K. Sen, L. Szeidl, G. Terdik, R. Thrum, J. Téth, S. Veres (2 papers), J. A. Vilek,
L. Vostrikova, P. Volf, and by W. Wefelmeyer.

Those who liked the ‘“‘Pannonian™ flavour in the preceding Proceedings will want to savour
it in this volume as well.

Sdndor Csorgs (Szeged)

Probability Theory and Mathematical Statistics, Proceedings of the Fifth Japan—USSR
Symposium, Kyoto, Japan, July 8—14, 1986. Edited by S. Watanabe and Yu. V. Prohorov (Lecture,
Notes in Mathematics, 1299), VIIT+ 589 pages, Springer-Verlag, Berlin—Heidelberg—New York—
London—Paris—Tokyo, 1988.

The volume contains 61 papers, 20 of which are by authors from the USSR, 2 by visitors
in Japan from Czechoslovakia and France, and the remaining 39 articles are written by Japanese
authors, 2 with co-authors from France and the USA. There are 2 papers describing the work
of G. Maruyama who deceased three days before the symposium, 5 papers which could be classified
as belonging to statistical theory, and the great majority of the rest is in probability theory with a
few contributions representing related fields such as probabilistic number theory, ergodic theory
or information theory. A number of the papers are expository in nature, most of them are proper-
research articles on a wide variety of different topics.

Sdndor Csorgd ( Szeged)

Maurice Roseau, Vibrations in Mechanical Systems. Analytical Methods and Applications,
X1V 515 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

The vibrations and prediction of their effects are of great importance in construction of ma--
chines. and devices. The change in time of the mechanical variables is governed by ordinary or
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partial differential equations. Based on the analysis of differential equations various theories have
been developed such as linearized or non-linearized, and very often of an asymptotic nature. These
theories deal with the conditions of stability and resonance and the coupling of modes in non-
linear systems. In this book such methods are developed which deal with free and induced vibra-
tions in discrete or continuous mechanical structures. _

In each of the twelve chapters the reader can find well selected illustrations to the theories
and methods. Numerous important examples, known and original, are discussed in a complex
and thoroughful way. To show the variety of the subject covered in this book it is enough to cite some
items of the contents: Forced Vibrations, Vibrations in Lattices, Gyroscopic Coupling, Stability
of Linear Systems, The Stability of Operation of Non-Conservative Mechanical Systems, Flexible
Vibrations of Beams, Longitudinal and Torsional Vibrations of Bars, Vibrations of Elastic Solids
and of Plane Elastic Plates, Vibrations in Periodic Media, Model Analysis, Synchronisation Theory,
Stability of a Column Under Compression, The Method of Amplitude Variation, Rotating Ma-
chinery, Non-Linear Waves and Solitons.

This volume is a translation of the French original published in 1984. Several chapters have
been taught to graduate students at the Pierre and Marie Curie University in Paris.

The book is useful for mathematicians dealing with applications of differential equations
and is recommended to students and researchers interested in mechanics and mechanical engin-
eering.

L K. Gyémant (Szeged)

Kennan T. Smith, Power Series from a Computational Point of View (Universitext), VIII+
132 pages, Springer-Verlag, New York—Berlin—Heidelberg, 1987.

The author summarizes his aims as follows:

“The purpose of this book is to explain the use of power series in performing calculations,
such as approximating definite integrals or solutions to differential equations. This focus may seem
narrow but, in fact, such computations require the understanding and use of many of the important
theorems of elementary analytic function theory, .... These computations provide an effective
motivation for learning the theorems, and a sound basis for understanding them.”

In the refree’s opinion, the title could be paraphrased such as “Power Series from the Point
of View of Complex Analysis” because most of the material is hard-core mathematics. The chapter
headings are the following: Taylor polynomials, Sequences and Series, Power Series and Com-
plex Differentiability, Local Analytic Functions, Analytic continuations. So the minimal prerequisite
would be an introductory analysis course. In this case, however, some elementary parts of the
second chapter could be omitted. For the convenience of the reader the theorems, definitions and
formulae are numbered and cross-referenced throughout the text. However, references such as
“According to-the next section, this is Taylor’s formula for log (1+x) centered at a, but this is
not needed” (pp. 25), or “Referring to the picture in Section 4, use Definition 1.7 and Theorems
2.4 and 2.8 to show that ...” (pp. 84) are rather awkward. The book ends with a useful index of
notions.

After each chapter a set of selected problems can. be found, They belong mainly to the two
categories “prove the following theorem” or “compute the definite integral/Taylor polynomial
of the following function”., There are only a few scattered indications of computer practice one of
them, e.g. “Write the FORTRAN program to compute...” (pp. 26).

Finally, I miss the links with Numerical Analysis from the book. (The rare exceptions are the
trapezoid and the Simpson’s rule mentioned in some problems.) .

: ‘ J. Virdgh (Szeged)
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