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Abstract Galois fheory and éndotheory. II

| MARC KRASNER |

5. Abstract fields and endofields; isomorphism and homomorphism theorems

Let S=(E, R) be a structure, and consider the class R of relations preserved
by each ¢€G(E/S) and the class R of relations stabilized by each 5¢D(E/S).
These classes are closed with respect to the fundamental and direct fundamental
operations, respectively, and they are the smallest classes having this property.
Really, if ¢2R is a class closed with respect to the fundamental operations and
X° is a set such that card X°=card E and R is under X° then g includes RX¥,
By Remark 1 of Section 4, R¥”=R*%. As each r€R belongs to some R™*?, we
have RSg. The case of R can be handled similarly. Therefore, for every set R
of relations, the closure of R with respect to all fundamental or to all direct funda-
mental operations is well-defined.

Now let ¢ be a class of relations which is closed with respect to fundamental
or, respectively, to direct fundamental operations. Let G be the group of permutations
of E that preserve each r€g, and let D be the monoid of self-mappings of E that
stabilize each r€g. The semi-regular decomposition R, of each ré¢g (cf. Section 2)
is included in ¢. Further, and arbitrary ¢€S(E) preserves r iff it preserves every
relation in R,, and an arbitrary 6€ D(E) stabilizes r iff it stabilizes every relation
in R,. So G and D are completely determined by the semi-regular relations belonging
to ¢. Let r be a semi-regular relation in g, let P¢t(r), and let P: X—~E be a fixed
bijective point. Then (epp)-r is an Xp-relation belonging to @, where X,=
=P-1p.ECX. Clearly, the same permutations o€ S(E) preserve and the same
S€D(E) stabilize (epp)-r as r; and (ep p)-r is a relation under X. So G and D
are already determined by ¢NR®, which is a set of relations under X. In fact,
G=G(E/eNR®) and D=D(E/eNR®). Now put R=pNR®. As ¢Cp—invG

Received January 6, 1982. The original version of the paper was revised by the referee. The
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232 M. Krasner

or ¢Cs—inv D, we have ¢CR or ¢CR, whence ¢=R or o=R, respectively:
So, finally, every closed (with respect to all fundamental or direct fundamental
operations) class of relations is the closure (with respect to the same operations)
of some set of relations; this set may even be supposed to be under X where X is an
arbitrary set with power card E.

Classes of relations that are closed with respect to all fundamental or all direct
fundamental operations will be called absiract fields and abstract endofields on E
(or, in other words, with base set E), respectively. For a structure S=(E, R), R=R r
and 1=(=Rdf are the smallest abstract field and abstract endofield including R.
They will be called the abstract field and abstract endofield generated by S, and
will be denoted by K(S) and K,.(S), respectively. If £k and K are abstract fields
(resp. endofields) and kSK then k is said to be a subfield (resp. subendofield)
of K or, in other words, K is called an extension or overfield (resp. overendofield)
of k. The notation K/k, instead of kCSK, is also used. We have seen
that every abstract field or endofield is generated by an appropriate structure
S. Two structures, S and S’, generate the same abstract field or endofield iff
S ~ 8 or S5, respectively. More generally, K(S)SK(S’) is equivalent
to §=5", while X, (S)EK,(S’) is equivalent to S ?S’. In particular, if K is an

abstract field or endofield and card X°=card E then K=K(KNR(E; X %) or
K=K, (KNR(E; X°), respectively, and k &K is clearly equivalent to kN R(E; X°) &
CKNR(E; X°). Given a set F of structures, we say, by abusirig the language?, that
the corresponding abstract fields K(S) or endofields K, (S), S€F, form a set. In
this sense, all the abstract fields and all the abstract endofields on E form sets, de-
noted by AF(E) and AEF(E), respectively. In particular, if some set X° with the
property card X°=card E is fixed then any abstract field or endofield K is uniquely
determined by its part K*?=KNR(E; X°) under X°, and the mapping K—KN
N R(E; X°) preserves the inclusion. This allows us to say that one set of fields or
endofields is included in another, and, also, to speak of mappings, the intersection
and the join (alias compositium) of a given set of fields or endofields. That is, for
example, k ©K willmean kNR(E; X)SKNR(E; X°), amapping KNR(E; X%~
—~kNR(E; X% will be considered as a mapping Kk, K will be called the inter-
section or join of a set F of (endo)fields iff K*? is that of F¥*={k*%; k¢ F}.

Note that V K is the smallest (endo)ﬁeld that includes every K¢ F and ) K
K€EF

is the greatest (endo)field included in all . K€ F. Further, r¢ () K iff r€K for
KeF
all K¢F.

-

1) In case we want to remain within the frame of Bernays—Godel axiomatic system. There.
are other ways to found mathematics where no abuse or not this kind of abuse would occur in the
present situation.



Abstract Galois theory and endotheory. 11 233

For an abstract field K, let G(E/K) denote the group of all permutations of
E that preserve each réK. If K is an abstract endofield, let D(E/K) denote the
monoid of self-mappings of E that stabilize each r€K. Clearly, if K=K(S) or
K=K, (S) then G(E/K)=G(E/S) or D(E/K)=D(E/S), respectively. So K is theclass
of all relations preserved by every o€ G (E/K) or stabilized by every 6¢€ D(E/K), respec--
tively. Thus K—G(E/K) is a bijection of AF(E) onto the set of permutation groups
on E, while K—~D(E/K) is a bijection of AEF(E) onto the set of monoids of
mappings E—E. These mappings, called canonical Galois mappings, are decreasing,

e., kSK implies G(E/k)2G(E/K) or D(E/k)2D(E/K), respectively.

Now, if K is an abstract endofield such that D(E/K) happens to be a group
then KX is an abstract field and G(E/K)=D(E/K). Really, if all 6€ G(E/K) stabilize
a relation then they preserve it (cf. Remark 1 in Section 1). Further, AF(E)&S
C AEF(E). Therefore a number of results for endofields that will be proved later

~ are automatically valid for abstract fields, too. On the other hand, if X, is an abstract
endofield defined by a structure S, i.e., K, =K,(S), then K=K(S) is completely
determined by K., i.e., K does not depend on the particular choice of S. Really, by
Remark 1 of Section 1, G(E/K)=G(E/S) is the greatest. permutation group in-
cluded in D(E/S)=D(E/K,). When K, happens to be an abstract field then K=K,.
So the mapping K,—~K, from AEF(E) onto AF(E), can be called the canonical
projection.

Let K and K’ be abstract endofields with respective base sets E and E’. (So,
the base sets of points, relations, structures, etc. are no longer assumed to be fixed
in the rest of this paragraph.) We shall speak of a mapping of K into another endo-
field KX’ only if it is describable, in terms of Bernays—Gddel axiomatism, as a class
of pairs (r, r')EKXK’. This is the case if, for an arbitrary r€K, the corresponding
r’ can be described in terms of set theory. A mapping (assumed to be admissible
in the previous sense) n: K—~K’ will be called surjective if for each r’€K’ there is
an r€K such that r’=5.r, and it is called injective if r,#r,€K implies n.r =
#Zn-ry. This n will be said to be a homomorphism with respect to a fundamental
operation o if, with & denoting the value of the argument of w, w is defined for 5. &.
if it is defined for € and n-w(€)=w(n-&). (Here £ may be a set of relations in K,
then n.¢ denotes {n-r; re&}, or a single relation in K.)

Observation 1. If 5 is a homomorphism with respect to all projections, all
contractions and the infinitary union then # is surely a mapping, i.e., n is describable
in terms of the Bernays—Gddel system. ' '

To prove this observation, put D=D(E/K) and let P: ¥~E be a bijective
point. By Remark 4 in Section 4, for each r€K there is a superposition w of these.
three kinds of fundamental operations such that r=w(D.FP). But then o is also .

1*



234 M. Krasner

defined for n-(D-P) and n-r=n-0D -P)=o(n-(D-P)), ie, n is completely
determined by #-(D-P), the image of D-P.

In spite of the above argument we should not think that for every r'€K’ there
exists a homomorphism with respect to the fundamental operations occurring in
Observation 1 that sends D-P to r’. The reason is that w(r’) is not necessarily
defined when w(D-P) is, or w(D:P)=w'(D-P) need not imply w(r)=w'(r’).

Remark 1. If n: K—~K’ is a homomorphism with respect to all contractions
then the n-image of every X-relation in K is an X-relation again.

Really, a contraction (¢: X—Y) is defined only for X-relations and it is
defined for all X-relations when it is a floatage (i.e., ¢ is a bijection), whence the
assertion follows easily.

Remark 2. If n: K—~K’ is a surjective homomorphism with respect to all
projections, all contractions and the infinitary union, as in Observation 1, then there
exists a surjective point P’: X—~E’ belonging to n-(D- P).

To prove this remark, observe that the operations pry and (p: X—Y) are
punctual mappings of X-relations. If P: X—E is an X-point then (P|X)-XESP-X
and ((¢)-P)- Y=P-X. Therefore, if r is an X-relation, prz-r and (¢: X~Y)-r

have surjective points only if » has. Similarly, (J » has some surjective point iff
reR

there is an r€ R having one. So any relation obtained from #-(D - P) by a super-
position w of projections, contractions and infinitary unions has surjective points
only if n-(D-P) has. Since each réK is of the form w(D-P) for such a super-
position @, n-r=n-w(D-P)=w(y-(D-P)) and n-r has no surjective point when
n-(D-P) does not have. But there are relations in K’ having surjectiv points;
indeed, the D(E’/K’)-orbit of any surjective point P’ contains P’. This proves
Remark 2. '

Now let K be an abstract endofield. A non-empty relation €K is called irre-
ducible in K if §#r’Cr holds for no relation r’€K. A relation r€K is said to be
indecomposable in K if for any set RcK U -.R=r implies r€R. Every irreducible
relation is clearly indecomposable.

Lemma 1. A relation rcK is indecomposable iff it is the D-orbit of some point
P: X—F where D=D(E/K). If the D-orbit of some surjective point P is irreducible
in K then D is a permutation group and K is an abstract field. Further, if K is an abstract
endofield such that D=D(E/K) is a group then all D-orbits are irreducible.

Proof. Let r€K be indecomposable. As r= U D - P, there exists a point

Pcr such that r=D.P. It is obvious that D.P 1s indecomposable. Now let
P: X—FE be a surjective point, and suppose D is not a permutation group. If we
had Dé=D for all 3¢ D then each element of the monoid D would have a left
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inverse and, as it is well-known from the elements of group theory, D would turn
out to be a group (of permutations, of course). Hence there is a §€D such that
Dé is a proper subset of D. Then the D-orbit D.(6-P)=Dé-P of §-P is a non-
empty relation in K and a proper subset of D-P. This means that D-P is not
irreducible. Hence if D-P is irreducible then D is a subgroup of S(E) and K
is an abstract field. Finally, if D=D(E/K) is a group then any two D-orbits are
disjoint or coincide, whence every D-orbit is irreducible in K. The proof is complete.

Let K and K’ be abstract endofields on E and E’, respectively, let D=D(E/K)
and D’=D(E’/K’) denote the corresponding stability monoids, and let 5: X—~K’
be a mapping-of K into K’. With these notations fixed, we prove four lemmas.

Lemma 2. If n is a homomorphism with respect to the infinitary union then it
preserves the inclusion S between relations and semi-commutes with the infinitary
intersection. If, in addition, n is surjective and preserves the argument set of relations
then n-9=90, n-I(X, E)=I(X, E"), and for each point P’ on E’ the D’-orbit D’ - P’
is the n-image of D-P for some point P on E.

Proof. For r,r’ €K, r&r’ we have n-rUn-r'=n.-¢UrY=n.7", ie, n-rc
En-r’. If Ris a set of relations, ¢ R and RcK, then N-RE&r for every réR
and we obtain 7-(N-RYS N n.-r=0N.(n-R). If n is surjective and preserves

reR >

the argument sets then #.9=0 and #-I(X, F)=I(X, E’) easily follow from the
fact that n preserves the inclusion; the smallest and largest X-relations on E are
obviously mapped on the smallest and largest ones on E’. Assume now that n.r=
D’ - P’ where r€K and P’ is a point on E’. Then n.r=n ~(PL€J'D-P)=PL€jrr] -(D-P)

and the indecomposability of #.r=D".P’ in K’ yield the existence of some P¢r
such that D’-P'=n-(D-P). '

Lemma 3. Suppose y is a homomorphism with respect to the infinitary union
and intersection; further let n-9=0 and n-I(X, E)=I(X, E’) for any X. Then
is also a homomorphism with respect to the negation 7, which is a partially defined
operation on K. Moreover, if n is surjective and K happens to be an abstract field
then the n-images of D-orbits are D’-orbits and K’ is also an abstract field.

Proof. If r is an X-relationand r, 7 -réK then n.rUy . (7 -r)=9-(rU(1 -r))=
=n-I(X,E)=I(X,E’) and n-rNn-(7-r)=n-(rN(1-r))=n-9=0, whence
n-(1-r)="1-(n-r) follows. Now let 5 be assumed surjective and let K be an abstract
field. For each »’¢K’ thereis an r€K with r'=#n.r. As 7] -r also belongs to K,
q-r'="1-(n-r)=n-(1-r)EK’, showing that X’ is also an abstract field. The sur-
jectivity of n readily yields that.n sends indecomposable relations to indecomposable
ones. Hence Lemma 1 applies and the proof is complete.
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Lemma 4. Assume that v is a homomorphism with respect to all dilatations and
n-I(X, Ey=I(X, E") for any X. Then the n-image of a multidiagonal I.(E)EK is
I.(E"), a multidiagonal of the same pattern. If, in addition, n-9=9, n is a homomor-
phism with respect to the intersection and all points of a relation r in K are injective
then so are the points of n-r.

Proof. Let C be an equivalence relation on an argument set X, and let i denote
the canonical surjection X—X*=X/C. We have I.(E)=[{] -I(X* E), whence
n-Ic(E)=[Y]-(n-I(X*, E))=[y]-I(X*, E")=1I.(E"). In particular, if x, y€X then
exty - I({x, y}, E) is a simple diagonal and 5 - (extx - I({x, y}, E))=exty - I({x, y}, E’).
Observe that, for an X-relation r, all P€r are injective.iff rNexty«I({x, y}, E)=0
for any two distinct elements x and p in X; and so this property is preserved by 7.

Lemma 5. If n is a homomorphism with respect to the infinitary union then the
following two conditions are equivalent:

(C) if REK’, r€K and r'=VU R’ equals n-r then there exists a mapping
0: R ~K such that r=\U -(6-R’) and, for every o’€R’, n-(0-0")YES0";

(D) the yw-image of every D-orbit D-P in K is a D’-orbit (on E’) in K'.

Proof. Assume (C) and let »=D.P be a D-orbit in K. Let R"EK’ be a set
of relations such that n-r=U - R’. Consider a mapping 6 according to (C). Then
r=U.(@ R and the indecomposabilﬁy of rin K (cf. Lemma 1) yield the exist-
ence of a o’€R’ such that r=0-.¢’. Therefore o’ Sr'=n-r=n-(0-0)<¢’, ie,
r'=p". Thus r’ is indecomposable in K’ and Lemma 1 furnishes (D). Conversely,
assume (D) and let 5-r be equal to #'=U .R’ for some r¢K and R'CK’. As
r=|J D-P, we can define a mapping 6: R'~K by putting 0-0¢'= (J D-P

Pcr n-(D-P)S
for o’¢R’. Then r=U .(0-R") and n-(0-0)S¢ for every ¢’¢R’. The proof
of the lemma is done.

For two abstract endofields K and K’, a mapping #n: K—~K’ will be called
an isomorphism of K onto K’ if it is bijective and is a homomorphism with respect
to all fundamental operations. (Note that, by Lemma 3 it is sufficient to require
that n be a bijective homomorphism with respect to direct fundamental operations

“only.) As an isomorphism n is uniquely determined by the n-image of the D-orbit
D-P of a bijective point P: ¥—~E, there are no logical difficulties in considering
these mappings. The image n-(D-P) is a D’-orbit, as it follows from Lemmas 2
and 3. If K is an abstract field then, by Lemma 3,50 is K’. Therefore, if K'is an abstract
field then D’ is a permutation group on E” and #n-(D-P)=D’- P’ for some X-point

. P’ of E’. We claim that P’ is bijective. Since the points of D-P are injective, the
same is true for n-(D-P)=D’-P’ by Lemma 4. In particular, P’ is injective. If
P’ is not surjective then there are a set X X and a point PEE’® such that ‘P is
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still injective and P’ =(P|X). By applying the previous argument for D’-F and
n~! we obtain that y~'.(D’-P) consists of injective points. But then D.FP=
=n~1.(D"- P)=n"t-(pr¥- (D’ - B))=pr¥-(n=1.(D’- P)) would contain no surjec-
tive point, which is a contradiction. Therefore P’ is surjective, whence it is bijective,
indeed. :

. An obvious example of isomorphism of abstract endofields is the transporta-
tion of structures. For definition, let K be an abstract endofield on E and let s: E—~E’
be a bijection. This bijection induces a mapping (s): r—~s-r of K, and the class
s-K={s-r; réK} is visibly closed under all direct fundamental operations,
whence it is an abstract endofield. Further, (s) is a bijection of K onto s-K,
which, by Proposition 1 (1) of Section 3, commutes with all fundamental operations.
Therefore (s) is an isomorphism of K onto s-K, called the transportation of
structure induced by s. If K is an abstract field then, clearly, so is s-K.

Lemma 6. If s: E~E’ is a bijection and K is an abstract endofield on E then
D(E’[s-K)=sD(E/K)s™ .

Proof. Let r€K and let  be aself-mapping of E. Then é-rSr iff s615-rSs-r
iff s6(s™ts).rSs-r iff s6s71.(s-r)Ss-r, which proves the lemma.

Consequence. When K happens to be an abstract field then G(E’/s-K):
=sG(E/K)s™.

Theorem (the isomorphism theorem of abstract Galois theory). Every iso-
morphism of an abstract field is a transportation of structure.

Proof. We have seen that each X-point of E is of the form &P for a suitable
8: E—~E. Considering ;.5 p=(P~Y6-E)(- P) we have (g;.p5p)- (6 P)=(P|X;.p),
where X; ;=P~1.(5-E), and §-P=le;.p 5] - (P|X;.5). Now, if ¢ is a permuta-
tion of E, so 6-E=E and X, ;=X, these formulas turn into o-P=[e,.p 4]+ P;
ie. 0oP=Poe, 5 and ¢,.p 5 is a permutation of X. So for any permutation o of
E there exists one (and only one) permutation &(c)=¢,.p 5 of X such that coP=
Poe(a), £(0) being clearly dependent on the choice of P; further, for every permuta-
tion & of X there exists one and only one permutation a(e) of E such that g(e)oP=
=Poz. We obviously have &(o)=FPtocoP and o(e)=PogoP -1 Let G stand for
G(E/K) and put r=G- P. For ¢€S(X) we have [¢]-r=[e]- (G- P)=G-([¢] - P)=
=G-(o(e)- P)=Go(e)- P and, as P is surjective, [¢]-rNr=Ga(e)- PNG-P=
=(Go(e)NG)- P, which is either r=G-P or 0 depending on ¢(8)€G or ¢(e)¢G. .
But 0(e)€G iff e=¢(o(e))=P toa(e)oP belongs to P~loGoP. So [s] -rOr=r if
e€P-1GP and [e]-rNr=0 if e¢ P-1GP.
Now if #: K—~K’ is an isomorphism of an abstract field K on E onto an abstract
endofield K’ on E’ then K’ is also an abstract field and 5.(G-P)=G’- P’ where
=G(E’/K’) and P’: X—~E’ is a bijective point. For a permutation ¢ of E an
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analogous reasoning shows that [e]-7’Nr’ is r’ or @ according to € P’~1GP’ or
e¢ P’-1GP’, where r'=G’-P’.

Put s:=P’ P-1: E~E’, which is a bijzction of E onto E’. We have (s)-(G-P)=
=5-(G-P)=5G - P=sGs™!.(s- P)=sGs™1.(P'P~1. P)=sGs™1. B’ P-1P=sGs~1. P’.
Since n is a K— K’ isomorphism, we have [¢] - rNr=r=[e]-(n-r)N(n-r)=n-r and
[e] - rNr=08=[e]-(-r)N(n-r)=n-0=0. So ec PGP iff e¢ P’~1G’ P’. Therefore
we have P-1GP=P""1G’ P’ and G’ =(P’ P-Y)G(P’ P~1)"1=5Gs~1. Thus n-(G- P)=
=G . P'=5Gs™1. P'=5G . (s P")=5G - (PP'~1. P')=5G - P=5-(G - P)=(s) -(G - P).
As 3-(G-P) determines the isomorphism 7, we have n=(s), which completes
the proof.

Starting from this theorem, it is easy to develop a formalism for abstract field
extensions that I have already done in [1], i.e., an analogous counterpart of the
classical Galois theory. Indeed, let K/k be an extension of abstract fields. An iso-
morphism n: K-K is called an isomorphism of K/k or an isomorphism with respect
to k if its restriction to k is the identical mapping 1;. If  is an isomorphism of K/k
then it is induced by a bijection o: E—~E which preserves all rek, ie., by a
6€G(E/k). Two isomorphisms of Kk, say (¢) and (7) induced by o, 1€ G (E/k),
coincide if and only if for every réK we have o.-r=(a)-r=(t).-r=1-r, ie
o~ 't.r=r, which is equivalent to 6717€G(E/K) and also to t€0G(E/K). There-
fore if G(K/k) denotes the set of isomorphisms of K/k then n—{c€G(E/k); (6)=n}
is a bijection of G(K/k) onto G(E/k)/G(E/K), the set of left residue classes of
G(E/k) modulo G(E/K). The cardinal number [K:k]=card G(K/k) is called the
Galois degree of Kjk. Note that [K:k] is equal to the index (G(E/k):G(E/K)) of
G(E/K) in G(E/k). In case L, K and k are abstract fields and L2K22k then
Ljk is called an (abstract) overextension of K/k while K/k is an (abstract)
subextension of L/k. Every n€G(K/k) is induced by some % €G(L/K); really, n
is. a transposition of structures induced by some o¢€G(E/k), which induces
an appropriate isomorphism #n’ of L/k. Clearly, [L:k]=(G(E/k):G(E/L))=
=(G(E/k):G(E/K))(G(E/K):G(E/L))=[L:K][K:k]. An abstract field extension K/k
is called normal if n-K=K holds for every n€¢G(K/k), i.e., if every isomorphism
of K/k is an automorphism. In case K/k is an abstract field extension then
K/k is normal iff ¢.K=K for all 6€G(E/k) (here we put (o) instead of n), i.e.,
iff 6G(E/K)o =G (E/s-K)=G(E/K). So K/k is normal iff G(E/K) is invariant
in G(E/k). Let K/k be a normal extension; the second isomorphism theorem of
group theory readily yields that the mapping L—~G(K/L) is a decreasing bijection
from the set {L; K=2L2k} of all intermediate abstract fields onto the set of
all subgroups of G(K/k), and L/k is normal iff G(K/L) is invariant in G(K/k).
In case L/k is normal then each n€G(K/k) induces an antomorphism #=(n|L)
of L/k, and the mapping n—# is a homomorphism of G(K/k) onto G(L/k)
with the kernel G(K/L). So G(L/k) is canonically isomorphic to G(K/k)/G(K/L).
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Definition. Let K and K’ be abstract endofields with respective base sets E
and E’. A mapping n: K~K’ is called a homomorphism of K onto K’ if it is surjective,
it is a homomorphism with respect to the infinitary union, all projections, all exten-
sions, all contractions and all dilatations, and, further, it satisfies the following
condition

(O If r’=n-r=U.R’ for an arbitrary r€K and a set R’"SK’ then there
exists a mapping 0: R’—~K such that all 8.9’ (¢’€¢R’) have the same argument
set, r=U (0. R’) and, for every ¢'€R’, n-(6-0)S¢’.

Before formulating and proving a “homomorphism theorem” of abstract Galois
endotheory, some special kinds of homomorphisms will be introduced.

1. Representative homomorphisms. Let D be a subsemigroup of D(E), i.e., a
semigroup of self-mappings of E. A surjection f: E—~E’ will be called a representa-
tion of D if f-x=f.y implies f-(0-x)=f-(0-y), for every x,y€E and 6€D.

When f is a representation of D and e’€E’ then there is an e€E such that
¢ =f-e and f-(5-€) does not depend on the particular choice of e. So §/: ¢'=
=f.e—~f-(6-€) is a self-mapping of E’ such that f6=5"f. Clearly, a surjection
f: E~E’ is a representation of D if and only if for each 3¢D there exists a &/
such that the diagram '

EL . E
o Y
E’E, 87 E’

commutes. We will write D’ ={6'; ¢ D}.

Proposition 1. Let K be an abstract endofield with base set E, put D=D(E/K),
and let f: E-~E’ be a representation of D. Then the mapping (f): r—~f-r is a
homomorphism of K onto an endofield K’ where K’ is the endofield determined by the
property D' =D(E’/K’).

These kinds of homomorphisms will be called representative.

The proof requires the axiom of choice. By Proposition 1 of Section 3, f com-
mutes with all operations required by the definition of homomorphisms between
endofields. For any point P of E we have (f)-(D-P)=f-(D-P)=fD.P=
={f6-P; 5¢D}={67f-P; 6¢D}=D'f.P=D’.(f-P). So the (f)-image of the
D-orbit of P is the D'-orbit of f-P. Hence (f) satisfies (C) by Lemma 5. We have
seen that (f) is a mapping of K into the abstract endofield K’ defined by
D(E’/K’)=D’. Now it has remained to show that this mapping is surjective, i..,
there is a point -P: X—E such that f-P is a bijective point of E’. Take a bijective
point P’: X'—~E’. As f.-E=E’, the axiom of choice yields the existence of
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a mapping h: E’—E such that foh=1;. So by putting P=h-P’=hoP’ we have
f-P=foP=fo(hoP")=(foh)oP’=1g0P"=P’, completing the proof.

2. Norms and pseudo-norms. Let Kfk be an extension of abstract endofields
with a base set E. For r€K the set of relations g€k that includes  (as a subset) is
not empty. The intersection of all these ¢ also belongs to £ and it is the smallest
relation in k that includes r. This relation will be called the norm of r in K/k (or,
in other words, with respect to k), and will be denoted by N, (r). Yet, we need to
consider a more general situation, too. Let E be a subset of E and let K and k be
abstract endofields with respective base sets E and E. Put D=D(E/K), 4=D(E[k)
and Ap={6€4; 6-ECE}. If D is a submonoid of (4f|E)={(|E); d€4g} then
K will be said to be a pseudo-extension of k, and K/k will be called a pseudo-extension
of abstract endofields. As ECE, the relations on E are relations on E as well. So,
for each r€K there is a smallest relation in k that includes r, and it will still be
denoted by Hy;(r) and called the pseudo-norm of r in K/k (or with respect to k)..
Clearly, Ng,(r)=4-r. In particular, if r=D.P is the D-orbit of some point
P of E then Ng,(D-P)=A4-P. It is obvious that the mapping Ng;: r—Nyu(r)
is a homomorphism with respect to the infinitary union, all projections, all con-
tractions and all dilatations. But, generally, the pseudo-norm is not a homomorphism
with respect to extensions and it is not a surjection of K onto k. (Note that the
norm is always a surjection of K onto k since it is the identity mapping when restricted
to k.) We shall study necessary and sufficient conditions for Ny, commuting with
extensions or being surjective. As the pseudo-norm of a D-orbit is a 4-orbit, condi-
tion (C) is satisfied by Ny, in virtue of Lemma 5.

- Lemma 7. A pseudo-norm Ny, is a homomorphism with respect to all extensions
if and only if (A|E)=4%~PD where AE~P={scA; 6-E=E)}. In particular, for
a norm Ny, iff A=A4%.D where D=D(E[K) and A® is the monoid of all self-
surjections of E. .

Proof. (The necessity part requires the axiom of choice.) As pseudo-norms
commute with the infinitary unions, it suffices to prove the lemma only for D-orbits.
Let P: X—E, r=D.P, and let X’ be a disjoint union X’=XU Y. Then we have
Ngp(r)=A4-P, exty..r=D-PXE", exty.- Ng,(r)=4-PXE" and Ngy(exty. -r)=
=A.(D-PXEY). Denoting by ¢ this last relation, let us calculate it. According
to the usual conventions, an X’-point P’ will be written as an ordered pair (P, P*)
where P=(P’|X) is an X-point and P*=(P’|Y) is a Y-point. Then

o= U 8-(D-PXEY) = {(5-(3-P), 6- P*); (5, 5, P*)cAxX DXEY} =
d¢cA .

= U U 5-FIx6-B = U ({P}x U (6-EBY)
8€45€D Pc4-P JcopP)
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where O(P)={0¢4; (35¢D)(66-P=P)} and, as P-XCE, 85-P=(S6|E)-P. If
PcA-P=(A|E)-P then there exists a §: E~E, 5€(4|E), such that P=§-P
Further, if P: X—E is surjective then this § is unique and §-P=85-P implies
5=0538. Hence, in this case, 0(P)=0(8)={6¢4; (35¢ D)(35=5)}. In the general case
we have 0(8)S0(P). Since exty. - NK/k(r)—A PXEY= U ({P}XE") the equality

Ny p(exty - r)=exty. - NK,k(r) holds for every X' 2X and for every D-orbitr=D.P
w1th argument set X if and only if for every P¢A-P and for every set ¥ we have

= U (6-E)Y. When P: X—~E is surjective, this condition turns into the fol-
6&0(5)

lowing one: for every S§¢(4|E) and for every set ¥ we have E¥= |J (6 E).
3€8(3)

Note that this later condition implies the former one for each P4 . P. So this is
a condition we were looking for, i.e., a necessary and sufficient condition for Ny, .
commuting with all extensions. Further, this commutativity holds for all reK if
it holds for the D-orbit of orly one surjective point P. This condition is certainly
satisfied if, for each S€(4|E), there exists a 6€0(8) such that 6-E=E, ie., if
6=385¢4E=B D, ie., if (4|E)=4¥~B D, But, by Cantor’s diagonal method and
" using the axiom of choice, we will prove that if §.E#FE holds for some fixed
S€(4|E) with all 6€0(5), ie., if (4|E)#A4€~B D, then there exists a ¥ such that

EY= | (6-E).
5€0(3)

Indeed, if for all 5€6(5) we have &-E=E, take a ¥ with card Y=card 6(5).
Then there exists an injection y: 6(5)—Y. The set (5-E) consists of all Y-points
Q: Y-E satisfying Q-y€d-E for any y€Y. Butif all §.-E differ from E then,
by the axiom of choice, there is a Y-point O of E such that Q-(y-8)€é-E for no
5€0(3). So Q cannot belong to any (§-E)' and, consequently, does not belong
to the union Us’ (6-E)Y. Hence this union cannot be EY.

3€6(%)

When the condition of this lemma is satisfied, the corresponding pseudo-norm

or norm N, is said to be regular.

Lemma 8. The pscudo-norm Ny,: K-k is surjective if and only if there exist
a subset E* of E and 8, 8'€ A such that (|E*): E*—~E is bijective and &' (8|E*)=1g,.
(Note that in case Ngy is a norm, this. condition is always satisfied by E¥*=E=E"
and 6=06"=1;.) '

Proof. Let P: X¥—E be a bijective point of E, and assume that Ny, is surjec-
tive. Then there is an 7€X such that Ny, (r)=4 - P. Further, by Lemma 2, this
r can be chosen to be a D-orbit D.P. But then Ny, (D-P)=A4-P implies 4-P=
.=A4-P. As P€A-P and Pcd.P, this equality yields the existence of some &
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and ¢ in 4 such that P=5-P and P=¢"-P. Since 46 and 46’ are subsets of 4,
the existence of these § and &’ is, in fact, equivalent to the equation 4A.P=4.P.
The point P is a mapping of X into E, whence E*=P.X¥cE.S06-E*=46-(P-X)=
=(5-P).- X=P.X=E, and from the injectivity of P=§:P=(5|P-X)- P=(5|E*)-P
we obtain that both P and (§|E*) must be injective. That is, (§|E*) is a bijection
of E* onto E. We have &'(8|E*)-P=¢'-((6|E*)- P)=5"-(6-P)=6"-P=P. As P
is injective and E*=P.X, we have §'(§|E*)=1g. Conversely, let E*, § and &’
satisfy the conditions of the lemma. Then, as € A¥*~P, we have (§|E*)-E*=E,
and &(8|E*)=1p. implies 8’-E=E*CE. So P=§"-F is a point of E, because
P.%=(5.P). =& .(P.-%)=8-E=E* Now &(5|E*)=1p, yields that both &’
and (8|E*) are bijective and they are inverses of each other. So (5|E*)6’ =1z and § - P=
=(8|E*)- (8" - P)=(6|E*)&" - P=1;-P=P and Ng,(D-P)=4-P. Since 4- P gen-
erates k (cf. Remark 4 in Section 4), N/, is surjective, indeed.

A pseudo-norm satisfying the conditions of Lemma 8 will be called a quasi-
norm while the corresponding pseudo-extension will be called a quasi-extension.
In particular, norms are always quasi-norms. We have seen that a pseudo-norm
is a homomorphism of endofields iff it is a regular quasi-norm.

Remark 3. Let K/k be a pseudo-extension, and let E and ESE be the
base sets of k and K, respectively. Assume further that K/k is either a regular or a
quasi-extension. Then card E=card E.

To check this remark it is sufficient to show that card E=card E. If K/k is
regular and A=D(E/k) then 4®~P is not empty. Hence, by the axiom of choice,
the assertion follows. In the other case, when K/k is a quasi-extension, there are a
set E¥XCE and a 6¢4 such that (S|E*) is a bijection of E* onto E and
card E=card E*=card E. '

Theorem. (Homomorphism theorem of abstract Galois endothegry.) Let K
and K’ be abstract endofields with base sets E and E’ and endomorphism monoids
D=D(E/K) and D'=D(E’[K’), respectively. Let n: K~K’ be a homomorphism
of K onto K’. Then there is a representation f: E~E’SE’ of D such that (f-K)/K’
is a regular quasi-extension and n=N. gy o(f)-

Proof. Let P: X—~E be a bijective point. Then, by Lemma5, 5 maps
the D-orbit D.P onto the D’-orbit D’-P’ of some X-point P’: ¥—~E’. Let
f=P’P~1: E~E’ and E'=P’.X=f.E. Clearly, fis a surjection of E onto E’ SE’

“and P'=f-P. ‘

Letan arbitrary & belongto D. Then & - P=[e;. p g]- (P|X) where X =F~1.(5 . E).
But the D-orbitof 6-F is D.(6-P)=DS5-PSD-P as DSCD. Since all mappings
commute with projections and dilatations, we have D -(5-P)=D-([e,. PP Dig* P)=
=l[e;.p,5] Prg- (D - P).- But 1 is a homomorphism with respect to the same opera-
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tions. So 5 5
n-(D-(0-P)) =lesp5lprg-(n- (D P)) =

= [es.5,p) Prx - (D" P’) = D’ - ([e5.5,5) - (P'| X))
As the mapping f also commutes with projections and dilatations, we have
les.p,5]- (P'1X) =[e5.5,5]- (f- PIX) =
= f-((es.5.5]- (P|X) = f-(6-P)= f5- P,

whence f3-Pcn-(D-(6-P)). But,as D.(5-P)SD-P and 7 is a homomorphism
with respect to U, Lemma 2 yields #-(D-(5-P))Sn-(D-P)=D"-P'=D'f-P. So
there exists a &’¢D’ such that f§.P=§f. P=(§'|E")f-P. The bijectivity of P
implies f6=(5'|[E’)f. On the other hand, as f-E=E’ and f§.E=f-(6-E)S
Cf-E=E’, we have (¥|E)-E'=(5|E")f-E=f5-ECE’. That is, (¢|E") is a
self-mapping of E’. By this we have seen that, for each 5€D, there is a self-mapping
&’ of E’ making the diagram (D) commutative, i.e., satisfying f6=8"f. So fis a
representation of D, and the preceeding (§’|E’) is just 8. Further, as §’¢ D’ and
& -E’CE’, we have that (8'|E")€(Dg|E”) and DY S(DplE’). Therefore (f-K)/K’
is a pseudo-extension.
Consider a D-orbit D-P. We have

D-P=D-(le 5" (P‘YP)) lep, pl P"XP -(D-P).
So
n+(D-P)=[ep,s]pry, (D' - P’y =D -([ep, 5] pry, - (f- P)) =

=D'-(f-(lep,plPr,- P)) =D'f-P 2 D/f-P = (f)-(D- P).

So, for any D-orbit r=D- P, 5. r is a D’-orbit containing the D’-orbit D/ . (f- P)=
=(f)-r, whence it is the least relation in K’ containing (f)-.r. Therefore n-r=
=N. K),K,(( f)-r); the same is true for every r€K since r is a union of D-orbits
and both f and 7 commute with this union. We have seen that 5= =N -kyxo(f)-

It is easy to see that N(;.x - is a surjective mapping of f-K into K’; really,
if €K’ then there is an r€K such that ¢’ =n-r=Ny.g)((f)-r) and (f)-r=
=f-réf-K. So (f-K)/K’ is a quasiextension and N .k iS a quasi-norm. In
order to show that it is also regular, let ¥ be arbitrary. Then

n-(D-PXEY)y=n-(D-P)XE'" = Ny.gyx-(f-(D- P))XE"
and, as (f) commutes with dilatations,
n-(D-PXEY) = N(f-K)/K’((f)‘ (D- PXEY)) = N(f-K)/K'(f' (D- F)XE'Y)-

SO N(f~K)/Kl(f‘(D;P’)XE,Y)=£V(I.1()IK1(f'(D'P))XE’Y. But f‘(D'F)=fD'F=
=D/f-P=D’.(f-P), and f.P: X~E’ is a surjective point of E’. So Nr.xx
‘commutes with all extensions of the D/-orbit of some surjective point, and we have
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seen in the proof of Lemma 7 that then the same is true for every relation ref-K.
Hence N,.xyx is regular. The proof of the homomorphism theorem of Galois
endotheory is complete.

It would be interesting -to see what the possible decompositions of a given
homomorphism #7: K—K’, as products of a quasi-norm and a representative homo-
morphism, are. The formulate a result of this kind, let #=~N.g-0(f) be one of
these decompositions, and put E’=f-E. Then we have

Proposition 2. Let
A ={6'eD’ = D(E’|K’); (36"€D')(6"5'|E") = (8"|6"- E')NY'|E) = 12)}-
Then the set of all desired decompositions of n is {Ngs.xyx0(8'f); 6'€ A’}.I

Proof. Let P” be some generating point of n.(D-P)=D’".P’, ie., let P”
be a point with the property D’. P”=D’.P’. By the preceeding proof, if f’=P” P!
then 7=Ny .k xr0(f). Now let n=N g 0(f’) where f’ is a represen--
tation of D=D(E/K). Then (f")-(D-P)=D'.(f"-P) and D’-P' =n-(D- F)—
=N -xyx (Df' (f’ - P))=D"-(f’- P). So P”=f"- Pis a generating point of 1 - (D - P)
and f’=P”P -1 Therefore the considered decompositions correspond to different
generating points of #-(D - P).

Butif P”€n-(D-P)=D’-P’ then thereexistsa '€ D’ suchthat P”"=§".P’ =
=&'f- P. Further, P” is a generating point of D’- P’ iff there exists a 6”€ D’ such
that 6”-P”=P’. As P’.X=E’, this means that (§”6|E)=1p. In this case
f/=P"P1=(8"-P)P1=§o(P’ P~Y)=§"of =8"f. Thus the proposition is proved.

Case of finite base sets. In the finite base set case card E’=card E’ and
card E’=card X=card E imply that E’=E’. So every quasi-norm is a norm. If
n: K—~K’ is a homomorphism then, consequently, we have §=N.gy o( [) where
N KK is a regular norm and f." E—~FE’ is a representation of D.

Proposition 3 (P. Lecomte). If n=~N.gyxo(f) is a K—~K’ homomorphism
such that f: E~E’ is a representation of D=D(E/K) (i.e., N .xyx is a regular
norm) and if n is bijective then f is bijective, too, and f-K=K’. That is, in this case
n is a transportation of structures and, in particular, it is an isomorphism of K onto K’.

Proof. If # is bijective then so is (f), too. But if f: E—~E’ is not bijective
then there are e, e;,€E, e;e,, such that f-e,=f-e,. Let P: X—E be a bijective
point and x,, x,€X such that P.x;=e, and P.x,=e,. Consider the point

P: X—~E defined by (PI¥\{x;, x.})= (PIX\{xl,xg}) and P-x;=P-x,=e,. The
D orbits of P and P are different, because P€D- P is injective but no pointin D.P
can beinjective. But if ¢’ =f- e, =f - e, then (f) - (D - P)=D' . (f-P)and (f)-(D-P)=
=D’ .(f-P) coincide since for any x¢ X\ {x;, x,} we have (f-P).-x=f-(P-x)=
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=f-(P-x)=(f-P)-x while (f-P)-x;=/-(P-x)=f-e=¢’ and (f-P)-x;=
=f-(P-x;)=f-e,=¢€’, i=1, 2. That is, when fis not injective then (f) is not either.

We have seen that (f): K—f-K is a bijection, whence it is a surjection of K
onto f-K. But then Ng.gyx: f-K—~K’ must be a bijection of f-K onto K’.
If ref-K then Nip.gyx' -7=Nis.xyx (Ngxyxe - ) and the injectivity of Ny.xyx
yields r=N.gyg -r- Thus Ni.gy k- 1s the identity mapping of K and K'=
=N .xyx - K=K. So n=(f) is a transportation of structures. (Hence n is an
isomorphism and so is #71) .

Consequence. If K is an abstract endofield with finite base set then every bijec-
tive homomorphism of K is a transportation of structure (whence it is an isomorphism).

Indeed, every quasi-norm is a norm in this case.

To close this paragraph we mention some open problems. Given an arbitrary
bijective homomorphism #: K—K’ of abstract endofields, is it always true: that

(o) it is a transportation of structure?

() it is an isomorphism?

(y) 1~ is a homomorphism of K’ onto K?
and '

(8) the condition (y) implies («) and (8)? (In other words, can a regular quasi-
norm be injective without being a representative homomorphism?)

6. Abstract Galois set theory

Let k be an abstract endofield on E. For ecE the relation (x;e)={{x—e}}
is independent of the particular choice of x up to restricted floating equivalence;
and it will be identified with e if considered modulo this equivalence. So the endo-
extension of k generated by (x; A)={(x; a); ac A} does not depend on the choice’
of x; it will be denoted by k(A4) and called the set-extension of k generated by A
(or by the adjunction of A). Extensions of the form k(A)/k, where ACE, are
called set extensions; their study is called abstract.Galois set theory. One of the
main problems in this theory is to describe the set A,={acE; (x; a)ck(4)} in
terms of k and A. This set 4, will be called the rationality domain of k(4). Clearly,
A, is the set of all e€E preserved by every 6¢D(E/k(A)) that fixes the points
_ of A. Another problem, which has been studied only in some particular cases and will
not be considered here, is to characterize the monoids of the form D(E/k(A)) or
groups of the form G(E/k(A4)) where ASE. .

Theorem 1. Let A be a subset of E. The set-extension k(A) is the class of all
relations that are (infinitary) unions of relations of the form .

(o) pryg- (rﬂ(xg( gxtx (x; 6-x)))
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where X is an argument set, X and X, are subsets of X, X=XUX,, r is an X-rela-
tion in k, and 0: Xy,—~A is a mapping of X, into A.

Proof. Clearly, every relation of the considered form belongs to k(4) as we
have only used direct fundamental operations to obtain it from rckCSk(A4) and
from certain (x;a), ac A. Further, every rck is of this form (take X,=0 and
X=X), and so is every (x;a), acA (take X={x}=X=X, and 0: x—a). So,
to prove the theorem, it suffices to show that the considered class of relations is
closed with respect to all direct fundamental operations. But before doing so let us
make some remarks. °

Remark 1. Let X2X'2X,, let r be an X-relation on E, and let r, be an
X,-relation on E. Then pry. - (rNexty-ry)=pry - rflexty. - ry.

Indeed, let P’: X’~E be an X’-point. We have P’€pry.-(rfNexty-ry) iff
there exists an X-point P¢r such that P’ =(P|X’) and (P|X,)€r,. But this means
that P’€pry.-r and (P|Xo)=((P1X")|X,)=(P’|Xy). So the additional condition
(P|Xy)€Er, is equivalent to (P’|X,)€Ery, proving the remark.

Remark 2. A relation of the form (g) but hurting the condition X=XUX,
can be represented as a relation fully being of the form (g).
Indeed, as exty-(x; 0-x)=ext}o exty -(x; 6-x) and

M exty-(x; 8-x) = ext}o. () exty,-(x; 0-x),
x€Xq x€ Xy

the relation (g) can also be written as pry-(rNexty-7y) with ro= N -(x;0-x).
x€

Suppose X#XUX, and put X’=XUX,2X,. Then, by Remark 1,
pry- (rNexty - ro) = pry pry.- (rNexty-ry) =
= pry - (pry - rMexty. - ry) = prg- (prx--rN( Q\' exty. - (x; 0-x))).
*€Xo

Since pry -rék, this last expression is also of the form (g) with X’=XUX, in-
stead of X.

Remark 3.Let 7 be an X-relation, and let X S X, X Y=0. Then extg, , pry-r=
=Pryyy eXtyyy I

Indeed, as XN Y=, an (XU Y)-point P* can be represented by a uniquely deter-
mined pair (P, Q) where P is an X-point, Q is a Y-point, and P*=(P, Q)€extg  yprg-r
is equivalent to P€prg-r. But then (P, Q)=((P, Q)IXUY), and P¢r is equiv-
alent to P*=(P, Q)€exty y-7. So P*¢ exty,y Pry -7 is equivalent to the existence
of an (XUY)-point P* such that P*=(P*|XUY) and P*€exty,y-r, ie., to
P*¢prygyy eXty,y - 1. This proves the remark.
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Now we can start to prove the theorem. The closedness with respect to the
infinitary union needs no argument. As infinitary intersections distribute over in-
finitary unions and the rest of the direct fundamental operations commute with
the infinitary union, it will be sufficient to prove that these direct fundamental
operations applied to relations of the form (g) yield relations of the same form.

(«) The case of the infinitary intersection. Let us have a set R of relations
with a common argument set X and assume that each ¢€R is equal to

prg-(re) n(ﬁ@(g) eXty (g * (x; 0, X))

where r(g)¢k -is an X(g)-relation, X,(0)EX(e)=XUX,(¢) and 0, is a mépping
of X,(0) into 4. We will write @*=r(g)N( (N -(extgy-(x;0,-x))). By Lemma 1

x€ Xq(@)

of Section 2 we have
N-R= () prg-e* =prg- (N®-R*)
e€R

where N denotes the semi-free intersection of anchor X and R*={g*; o€ R}
Let us study this semi-free intersection. Without changing g, let us float the argu-
mentsin X(@)\X so that thesets Y(g)=X(¢)\X become pairwise disjoint; we can
assume that this has already been done. Then ﬂ}“ turns, up to canonical identi-
fication, into the ordinary intersection. On the other hand, a floatage (¢) of ¢*
does not affect the form of this relation; really, we have

(9)-0* = (¢)-r(e)ﬂ(x Q o)extq,.xm-(co-x; B, X)) =

. —((P) r(Q)m( n eth:-X(e)'(y’ 09(/"1‘}’))-
4 yeo-Xo() :

As x€X(o)\X are the only floating arguments, the previous floatage preserves X

and 0,01-x=0,-x holds for every x¢X. Suppose that this preliminary floatage

has already been done and let us return to the previous notations. Let Y(¢) =X (e)\X,

Xo(@=X,(e)NX, Y= U Y(@), X,= U Xo(Q), Xo—XoUY and X=U X(o)=

. . eER
=XUy where U stands for the dlS_]Olnt union. We have

NP.R* = ﬂ exty - o* ﬂ (extx - r(@N( ﬂ extx-(x; 6,- X)) =
€R x€ Xy

—((‘] exty - r(g))ﬂ(ﬂ ﬂ(o Xty - (x 6, x)).

For xcX,, let R(x)={0€R; xcX,(0)}- Then the preceding expression turns into
(ﬂ exXty r(g))ﬂ( ﬂ ﬂ exty-(x; 6,- )N(N N exty-(x; 6,-x)).

x€Xy @€ R(x) e€R x€Y(o)
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If this relation is empty then it belongs to k, and so does its. X-projection 1 -R. If

N - R0 then, for every x€X,, () ext{.(x;0,-x)=exty- [\ (x;6,+x)>0 and
@€ R(x) e€R(x)

N (x;0,-x)0. This means that 6,.-x does not depend on @€R(x), so it
QER(x) '

will be denoted by 8- x. As Yis the disjoint union of Y(¢), ¢€R, each y€Y belongs
to exactly one Y(p); let 8.y stand for the corresponding 6,-y. So 0: x—~0-x

is a mapping of X,=X,UY . 1nto A, and ) (x;0,-x)=(x;0-x) for x€X,
0€R(x) :

‘while (x;0,-x)=(x;8-x) for x€Y. Therefore, in éase N - R0, we have
NP.R* = (N exty-r(@)N( N exty-(x; 0-x)).
e€R x€Xy

Hence, putting r= () exty-r(g)ck, we have N -R=prx-(rﬂ( N exty-(x; 8-x))).
. . PER x€Xy
Consequently, N-R_is of the form (g). Besides, we have X,UX2YUX=X,
implying X=X,UX.
(B) Projections. For XX,

pre- (pre- (rN( ﬂ exty - (x; 0-x)))) = pre- (rN( 1 exty (53 0-x)))s

which is of the form (@) again except that XU X, may dlﬂ'er from X. But th1s is not
essential by Remark 2 of this section.
» Extensxons If X’2X then, by Remark 3 of this section,

ext¥. pry - (rﬂ( ﬂ exty - (x; 0-x))) = pry - (extxyx - (rﬂ( ﬂ exty- (x; 0- x))))
= er,-(extXU‘x/-rﬂ(xQ( extxux'-(alc, B-x))).

(@) Contractions. Let o=pry-o*, where @*=rN( ) exty-(x;0-x)), and
: . x€X, ’

let the contraction ()=(@: X—~Y) be applicable to g. Let T(®) be the type of @,
" andlet ¢: X—-Y=YU(X\X) be a surjection such that (¢|X)=4 and (¢|(X\X))
is the identity. (Y and X\ X are assumed to be disjoint as otherwise we may perform
‘a floatage of the arguments in X\ X.) Now T(®) and T(¢) coincide on X, and
T(¢) induces the discrete (i.e. the smallest) equlvalence on X\X. As er Q* is
compatible with &, ¢* is compatlble with T(¢). So

0" = (0" Ny (E)) = (rN Iy (EN)N( n exty - (x, 6 X)),
x€Xp
and r’=rNIry(E) is also an X-relation of k. If ¢*#0 then we have 0-x,=0-x,

for x;, x€X\X, since otherwise Ir)(E)Nexty-(x;;0-x)Nexty-(xy; 0-x5)
would be empty. As (¢) commutes with " and () - Ir,(E)=E", we have

@) e =prox- () ") = pre- () N ) exty-(o - %3 0-x))).
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This means that (@)-g is of the form (g), where X, X and X, are replaced by
Y=¢-X=3-XUX\X), Y=¢-X and Y,=¢-X,, ris replaced by (¢)-r'=
=(p) - (rNIr,,(E)), and the X,-point 6: X,—~A is replaced by (¢|X,)-0, which
is well-defined as 6 is compatible with (¢|X,).

(e) Dilatations. We preserve the meanings of X, X, X,, g, ¢* r and 6, but
consider a surjection §: Y—X instead of @: X~Y. We suppose that, by some
preliminary semi-free floatage of anchor X, X is already transformed so that
C(N\XNT=P. Let Y=YUXX), and let y: Y—X be the surjection for which
WIX)=¢ and (Y|(X\X)) is the identity. Obviously, we have [¥] - e =pry - ([¥] - ¢*).
But

-

[1-e* =Myl rﬂ(ﬂ [¥]- exty- (x 0-x)),

and [y]- rEk As it is easy to see,
[t//]-extx-(x; 0-x) =[Y]-exty-{{x ~0-x}} =
= IT"”(E)O(,G.Q:., exty- {{y ~0-x=0y-y}} =

= Ir(w)(E)n(yedQLxCXty'(y; 0y - y)).

So, if Yo=y~1-X, and F=[y]-rNIry,(E), we have- _
Y] o* =[] rﬂ]-,-w)(E)n( A ﬂ EXty‘(}’Q Blp'.}’)):

x€Xo €~

= rﬂ(yg exty(y; O - y)).

This means that [Jf]- ¢ is still of the form (o), where X, X,, X, r and @ are replaced
by Y=y~ X, Yo=y~1-X,, Y=y~1-X, F=[y]-rNIry)(E) and 6y: Y—~A. The
theorem is proved. ' '

Remark 4. The relation ¢*=rN( N exty-(x;0-x)) is the set of all points
x€X,
Pcr which extend the Xj-point 6: X;—+4 on X. '

Remark 5. If k is an abstract field then so is k(4). Therefore, in this case, the
class of infinitary unions of relations of the form (g) is also closed with respect to the
negation 7. '

Really, every € D(E/k)=G(Efk) is a permutation on E. But é-(x; a)S(x; a)
holds iff §.-a=a, which implies &- (x; a)=(x; a). Therefore every &€ D(E/k(A))
not only stabilizes but preserves every (x; a), a€ 4. Thus D(E/k(A))=G(E/k(A4))
and k(A) is an abstract field. The rest of the remark can be proved directly; note
that even in case r is of the form (g), 717 is an infinitary union of relations of the
form (@) in general.

2¢
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Operations generated by relations. Let D be a subset of EX. A mapping w: D—~E
will be called an X-operation (or partial X-composition) on E. The set D will be called
the (definition) domain of w. When D=EX, w is said to be a complete X-operation
on E; the terms X-function of E and X-polymapping of E are also used.

Let X’=XU{y} and let »SEX be an X’-relation on E. The relation r and
the argument y will define an X-operation w®: DY —E in the following way. An
X’-point P’ will often be denote by (P, {y—e}) where P=(P’|X) and {y—e}=
=(P'|{y}). If P’€r then e=(P’|{y})-y is called a prolongation of P=(P’|X)
in r. Clearly, P€EX has prolongations in r iff Pcpry-r. Let D be the set of all
PcEX that have exactly one prolongation in . For P¢DY let w®.P be the
unique prolongation of P in r.

It is not hard to express DY) from r by means of fundamental operations. Let
¥’ be an argument, not in X’, and let ¢: X'—=XU{)’} be the floatage for which
(plX) is the identity and ¢-y=y’. Put X"=XU{y,y'}=X"U{y’}, and let us
consider the set of all points P”€exty.-rMexty.-((¢)-r) such that (P”|X)=P.
This is clearly the set of all points of the form (P, {y—e}, {3’ —~¢’}), where e and
¢’ are arbitrary prolongations of P in r. An X-point P€pry-r has several distinct
~ prolongations in r iff

extxn -r nextxn . (((p) . r) and {P}X(ij’y' (E)) = extx» M {P}ﬂ(—l eXtX” . Dy’y- (E))
are not disjoint. So the set of all these points is pry -(extx.-rNextg- (@) -r)N
N(Texty.- D, ,(E))). Therefore we have

D = (pry- r)N(pry - (extg»- rNextys - ((¢) - )N (Texty. - D, . (EN)):

In case X is empty, i.e. X’ ={y}, D is non-empty iff the unique “empty”’ point
P, has a unique prolongation e in r, i.e., r=(y;e). Then w.P,=e, and 0P is,
in fact the adjunction of the element e€E.

We say that ASE is closed with respect to an X-operation w: D—E if
w- PeA holds whenever P: X—~A4 and PED.

Theorem 2. The rationality domain A, of k(A) is the closure of A with respect
to all operations w® such that rck and y belongs to the argument set of r. ‘

Proof. Let X, be the argument set of a relation r€k, and let yeX,. Put

X=X\{y}, and let P: X~ 4, be a point belonging to D). If e=e(P)=w? - P then
prpy ((PIXENNY) = {{y > &)} = (»; o). '

As {P}XEY = exty -(x; P-x) and P-x€4,, we have (x; P-x)€k(A). Since

(y;e) is obtainezet?rom (x; P-x)€k(A), x€X, and from rek(A4) by direct funda-

mental operations, (»;e) belongs to k(A4). Therefore w”.P=e(P)cA4,, and A,
is closed with respect to all the mentioned operations w®.
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Now suppose that e€A4,, i.e. (y;e)ek(4). By the previous theorem, (y;e)
is the infinitary union of an appropriate set of {y}-relations of the form

0= prm-(rﬂ(xg{ exty - (x; 6-x)))

where X={y}UX,, r is an X-relation in k and 8: X,—~A is a mapping of X,
into ASA,. As (y;e) is irreducible, it must be equal to some of these relations.
So we assume that (y;e) is the above-mentioned g. If y€X, then e=qg-y=
=0:ycA. If y¢X, then g —rﬂ( ﬂ exty-(x; 0-x)) is the set of X-points

P=(P,=(P|Xy), (PI{»})={{y—~¢}}) such that P,=0 and ¢’ is a prolongation
~of 8 in r. Therefore g is the set of all {y}-points {{y—~e'}} such that ¢’ is a prolonga-
" tion of 6 in r. But, by the assumption, g=(y;¢), whence e is the only prolonga-
“tion of #inr, 8¢D® and e=w®.0. As 0 is a point of 4, e belongs to the closure

of A4 with respect to o®. Therefore A; is included in the closure of 4 with respect to

all w®, which proves the theorem.

Remark 6. If o® is an P-operation with D®=0 and rck then DY={P.}
and r=(y; ®?.P,). In this case e=w?.P, belongs to the rationality domain
@, of k, and this operation is the mere adjunction of e€ E belonging to this domain,
i.e. preserved by all ¢ D(E/k). Therefore A, can also be characterized as the clo-
sure of AUD, with respect to all X-operations o such that X0, rck and
YEX,.

Remark 7. If an X-relation g€k is the infinitary union .U.R of a set R
of relations in k and y€X then for each P€D{’ there exists a relation réR such
that PeD® and o{-P=w{”.P. Further, this r can be chosen so that r is semi-
regular, rCpand P=(P, {y~w(’-P}) belongs to ¢(r), the head of r. Moreover,
the D(E/k)-orbit D(E/k)- P of P is such a sémi-regular relation r.

Indeed, if e=w®-P then P=(P, {y—~e})€o and e is the only prolongation
of P in g. Since g=U - R, there exists an r¢ R such that P¢r and every prolonga-
tion of P in r is a prolongation of P in ¢. So e is the unique prolongation of P in r,
which implies P€D® and e=w®-P. Since, by Lemma 2 of Section 2, each rela-
tion g€k can be decomposed into a set R of semi-regular relations belonging to &
such that any P€p belongs to 7(r) for some réR, the rest of Remark 7 follows.

Remark 8. Let €K be a semi-regular X-relation, let ycX, and assume
that P=(P, {y—~o?.P})c1(r) for some PecDY). Then there exists a semi-regular
relation r’€k such that T(+"), the type of r’, is the discrete equivalence on X,
the argument set of #”, and there are y’€ X" and a point P’¢ D¢ with P’ -(X\{/'}) €
SP-(X\{»}) 0P -P=al?-P’" and P’ =(P’, {y’ >’ P)ct(r').

Indeed, let X be the argument set of r, and put e=w?.P. Let ¢ be the can-
onical mapping of X onto X’=X/T(r). Then r'=(¢p)-r is well-defined and T(+")
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is the discrete equivalence on X’. As T(P)=T(r), we have T((p)- P)=T(r").
Hence (¢)-P is an injective point and belongs to ¢(r’). If y’=¢-.y then the
value P’.y’ of the point P’=(p)-P at y’ isequal to P.y=e. Put X=X\{y},
X'=x |y} and P’=(P’|X’). It is clear that P’.X’SP.X (in particular, if
P is a point of 4, then so is P’), and e is the only prolongation of P’ in #’. Therefore
PeDY) and 0. P =e=w.P.

Remark 9. It follows from the preceding remarks that a subset of E is closed
with respect to all w®, rek, iff it is closed with respect to the operations @?? such
that r has an injective point. Moreover, if X° is an argument set with card X°=
=card E then a subset of E is closed with respect to all »® iff it is closed with
respect to those that are determined by relations of k under X°. In particular, 4,
is the closure of ASE with respect to this last variety of operations.

- Indeed, if an X,-relation r has an injective point then card X,=card E.
On the other hand, if (¢) is a floatage then D&% =(ol(X,\{»}))-D® and
W2 (PI(X\())- P) =0 P where PeDY. | -

Let S=(E, R) be a structure, and let k=K,(S) be the corresponding abstract

" endofield. We have seen that A,, the closure of ACE, is the closure of A4 with

o

‘respect to the operations ®® such that the r are relations in k under a fixed X°

with card X°=card E. That is, these r belong to R*?=R¥” and to k. Now
the question is whether a sufficiently wide class of structures can be defined such
that the “huge set” RY” can be replaced by the (much smaller) set R in case of
these structures. The answer is positive; an appropriate class, the class of the so-
called eliminative structures, can be defined. I will not speak about these structures
in the present paper — it will be done in some other publication, which will con-
tain the necessary proofs. However, the structure (E, R) of classical Galois theory
is eliminative, and from this fact, accepted here without proof, we are going to
deduce the fundamental theorem of classical Galois theory. In other words, let E
be a normal algebraic or an algebraically closed field extension of some basic field %,
let R={(f=0);f€k[x‘1, Xy -eey Xyy ---)}, and let 4 be a subset of E; we take it for
granted that the rationality domain of the abstract set extension (k)(4), obtained
by adjoining A4 to the abstract endofield (or field) (k) defined by the structure (E, R),
is the closure of 4 with respect to all operations defined by the relations (f=0),
Seklx;, x5, ..0y X,, ...), Of this structure. In order to deduce the fundamental theo-
rem of classical Galois theory, first we introduce some constructions that yield

" operations from operations.

(1) Let X be an argument set and let U be a set of X-operations w: D,—E.
‘An X-operation o*: D, ,—~E is called a mosaic of the operations. w€U if there
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exists a partition {d,; w€U} of D,., ie. w#aw'=d,Nd,=0 and {J d,=D,,,
' ) : w€eU
such that d,ED, and (0*|d,)=(wld,) hold for every wcU.

Lemma 1. If ASE is closed with respect to all w€U then it is closed with
" respect to every mosaic w* of weU.

Proof, Let P: X~A bea point in D_.. Then there exists one and only one
€U such that P¢d,SD, and o*.P=w-P. Now the assertion follows from
w-PCA. : ‘ ’

(2) Let Q: D—+~E be an X-operation, let Y be an argument set, and for each

x€X let o~ 1 d,—~E be a Y-operatlon For- QE N dy, let w- Q be the X-point
x€X -

{x—+ow*. Q, x€X}. Let d be the set of all’ Q€ N d, such that w-Q¢€D. Then a

x€X
Y-operation, denoted by Q({x-w*}), can be defined in the followmg way. The
domain of Q({x—w*}) is d, and for every Q€d we put Q({x~w™})-@=02-(w- Q).
This Y-operation will be called the superposition of Q and the *“operation point”
w: x—+0*, xcX.

Lemma 2. If ASE is closed with respect to Q and to all w*, x€X, then it is
also closed with respect to Q({x—~w*}).

Proof Let P: Y—~A be'ong to d. Then, for every x€X, Q€d, and o*.Q¢c4.
" So w-Q: x—~w*-Q is an X-point of 4. On the other hand, w-Q€D. Therefore
Q({x~0*})- Q=R (w-Q)cA4, proving the lemma.

For a set U of operations and a subset B of U, B will be called a basis of U if
each w€U can be obtained from the operations of B by a combination of mosaics
and superpositions represented by a tree of finite height. Clearly, a subset 4 of -
E is closed with respect to all w¢B iff it is closed with respect to all w¢cU.

To conclude the paper, we determine a simple basis of operations {2, defined
by the relations (f=0), fekix;, x;, ..., X, ...]J, of classical Galois theory .Clearly,
floatages do not change, up to floatages of arguments, the operations defined by a
relation. So we can consider only the polynomials f(Xy, Xp, ..., X;, WEK[Xy, -y X;, V]
(Where s can be arbitrary) and the corresponding operatlons w?),. Let n be the
degree of such an f for y, i.e.,

f(xla sy xs’ J’) = osz.;g..fi(xl’ (AR ] xs)y‘ﬂ

Let ‘Pi X,={x,, ..., x,}~E be an X, point of E, which will be represented by the
system (&, ..., &) of its values &,=P.x,E, i=], ..., s. The point P has exactly
one prolongation in 7=(f=0) iff the polynomial f(¢,, ..., &, Y)EE[y] has exactly
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one root, i.e., for some j, 1=j=n, f(&,, ..., &, y)=a(y—n), a,n€E and a0, ie.

fiEar o &) =0 if j<i
(C) fiGrs &) =a #0

S &)= 1y (T Jaw—s it i<y,

" If the characteristic of k is O then f;_,(&, ..., &)=—Jjan; ie., (C;) implies

05 s EINHS5_1(Eqy s E)=0 and fi(&, ..., &)#0. Therefore, if we con-
sider the polynomial

gj(xla ey xs, y) = f:i l(xl.’ s xs)+J:/:i(x19 sty xs)y

then the operation w‘t’ o is defined on D;=DY _0_‘1( f;=0). Clearly, D; in-
cludes the set d; of all points P=(¢,, ..., )€ Ex, that satisfy (C;). In other words,
d;, the set of a11 P for which f(,, ..., &, ) is of the form a(y—n) for some
a,n€E, a=0, is included in D;. For Pcd; we clearly have

(a) w}y)o P = '7 = wg(f) 0 P = _'f:i—l(él, teey 65)(.]:/;(61, e 63))_1'
Now consider the case when the characteristic p of k is different from 0. Let

Jj=hp*9 where h is not divisible by the prime number p. We have, in k, [jl:]=0

if O<i<p*® and [Iz] =h if i=p¥). In particular, we have f;_pw (&, ..., &)=
=—hap””. Let - : _
85, p(X1s oo Xy ¥) = B (Xps ooy X) Y2 4= prin (Xy, ooy Xo)-

Then (C)) implies that 4f;(¢;, ..., £)#0 and 7 is the unique root of g;, ,(¢;, ..., &, ¥).
Therefore ) _y is defined on the same D;=71(f;=0), d,£D; and, for every
Pcd;, we have '

B) 0RP=n=0P,=0.-P=(—fi_pw(, ... LYW, ... &))"

In both cases, (4, d;, ...,d,) is a partition of D$),. Therefore, &, is a
mosaic of the operations @;, ,, ..., w, where these w; are defined on the respective
sets D;="1(f;=0) in the following way: for P=(¢,, ..., {)€D; we put

5 wj' P = —f;’—l(éli ey 65)(.’]}(619 srey cs))_l
when k is of zero characteristic, and we put
PR S (ST N (71 (SIS ) L

when the characteristic of k is p=0 .(cf. () and (B)). It is clear that the w; are super-
positions of the operations ,(xl’ Xo) > Xy +Xgy (X1, Xp) Xy Xo, X7 (defined on

ENJ{0)), xl—-flfl if p#0 (defined on {x?; x€E}), and the adjunctions P,~a, ack.
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Therefore these operations form a basis of - {w%e; f€k[xy, ..., x,, ...]}. If the
afore-mentioned theorem about eliminative structures is proved and it is shown
that the considered structure is eliminative then it follows that the rationality
domain of (k)(A), i.e. the set of all ec E that are preserved by any automorphism
of E/k. preserving every acA, is the closure of AUk=A4UB with respect to
addition, multiplication, inversion and, if p#0, forming p-th roots. This is one
of the classical formulations of the first Galois theorem.
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Lattice oxfdered binary systems

BRUNO BOSBACH

By a groupoid we mean an algebra (G, -)=:G of type (2). By a binary system -
we mean a groupoid weaker than a group. Special binary systems are semigroups,
quasigroups, and loops. The notion binary system was introduced by R..H. BRuck [13].

A binary system is called partially (lattice-) ordered if G is partially (Iattlce-)
ordered by an order relation = satisfying:

© a=b—~xa=xb&ax = bx.

If (G, -, =) is lattice-ordered we call (G, -, =) briefly a lattice groupoid. By a
lattice semigroup we mean a lattice groupoid satisfying (ab)c=a(bc). Analogously
we speak of a lattice quasigroup if all equations ax=>b and ya=>b have unique
solutions a\p in the first and b /a in the latter case. Accordingly by a lattice .
loop we mean a lattice quasigroup with unit 1. A loop is said to have the inverse
property if for each x there exists an x~! such that for any a the identities x~*(xa)=a
and dually a=(ax)x~! are valid. If (G, -) is an inverse loop we have in addi-

" tion the equations' (x™)~l=x and (xy)"'=p~lx"L asis easily checked by the
reader.

There is no lack of lattice quasigroups. To see this consider (R" ) w1th
respect to aob:=a+2b. Furthermore there is an abundance of lattice loops, since
starting from a lattice quasigroup (Q, o, A, V). we get a lattice loop by putting
a-b:=(a/x)o(y\b), where x, y are fixed elements. And, above all, it should be
emphasized that any free loop admits not only a lattice but even a total order [13,22].

Lattice-ordered binary systems are congruence distributive in any case and con- .
gruence permutable in many cases. Thus the theory of lattice-ordered binary systems
is rich from the purely algebraic point of view. On the other hand, however, there
are not too many lattice groupoid results arising from order theoretic or combined
apects although G. BIRKHOFF [5] and L. Fucsas [19] as well state problems of such
type. Nevertheless, at least a fruitful lattice loop theory should be possible as indicated
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already in [5], and even suggested by results of Evans and HARTMAN [17] who had
a first breakthrough after several contributions of different authors like ZELINSKY
[41], [42], Kaplansky, Ingraham and Birkhoff (cf. [5]), and AczeL [1].
An element a of a partially ordered binary system is called positive iff it sat-
isfies ax=x=xa (Vx€G). The subset C* of all positive elements is called the
(positive} cone. Dually negative elements and the negative cone are defined. Both
the positive and the negative cone are closed under multiplication, join and meet,
and if in addition a unit element is present the positive cone C* coincides with
{x]x=1}, and the negative cone C ~ is equal to the subset {x|x=1}.
The central structure of this paper is that of a divisibility semiloop, i.e. a can-
cellation groupoid with unit 1 whose carrier is semilattice-ordered such that _ax=
=b-Ju: au=b and ya=b-—Jv: va=b. Hence a divisibility semiloop is a com-
mon abstraction of the lattice loop and the lattice loop cone. ‘
It is a folklore today that any lattice group is a quotient extension of its
cone such that the structure of the whole is completely determined by the struc-
~ ture of the cone. This is quite different in the lattice loop case where not even a
total and complete order yields any connection between the positive and the nega-
tive cone. To verify this the reader may consider the real line with respect to

“aob:=a+b if one of the components is not negative and agob:=a—ab+b other-
wise, [22]. Hence the situation seems to be hopeless. Nevertheless it is possible
to prove a result shedding some light as far as isolated cones are considered, namely:
The lattice loop cones are exactly the positive divisibility semiloops (G=C*), and
every lattice loop cone is the cone even of an inverse lattice loop. This extends a
theorem and answers a.question of J. v. NEUMANN (cf. [4)).

Thus a chance might be given to settle general lattice loop problems via inverse
lattice loops.

Given a lattice ordered binary system the first order problem to arise is the
question what the descending chain condition (for closed intervals) is equivalént‘ to
from the purely algebraic point of view. Hence this question has been. treated for
different algebraic systems several times, especially for semigroups by ARNOLD [2],
CLIFFORD [14], [15], LoRENZEN [28] and others (cf. [20]), and for lattice groups by
BIRKHOFF [4] and WARD [40]. But.the problem' remained open for lattice loops until
Evans [16] showed that lattice loops, satisfying the D.C.C. are abelian lattice groups
with the prime factorization property (P.F.P.). This yields as a corollary that every
lattice quasigroup with D.C.C. is-the isotope of a free abelian group, See also TESTOV
[38]. Therefore a similar investigation of divisibility semiloops is. motivated, and it
is by no means surprising that an analogue of Evans’ theorem remains valid. How-
ever it is not the result by which Section 3 is legitimatized in the author’s opihion,
but the method of proof that justifies this part.

There are two natural generalizations.of the D.C.C: and the P.F.P. respectively
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namely completeness (for closed intervals) on the one hand and representability
on the other hand, i.e. the property to admit a subdirect decomposition into totally
ordered factors.

As. far as completeness is considered we shall prove that power-associative
divisibility semiloops are associative and commutative thus carrying over IWASAWA’s'
theorem [27] to our structure. Furthermore it is shown in Section 4 that completeness
combined only with monassociativity is a too weak requirement with respect to the
associativity or commutativity property. _

As another topic in the context of completeness we take up the problem of
characterizing divisibility semiloops admitting a complete extension. This has been
done for lattice group like systems several times and it seems to the author that
ARNOLD [2] and VAN DER WAERDEN [39] were the first to settle a problem of this
type in general, followed by others like LoRENZEN [29], CLiFFoRD [14], [15], and
EvererT and Urawm [18], the first to treat a noncommutative case. But no nonassocia-

. tive analysis was given before 1972 when P. A. HARTMAN [22}, [23] settled the prob-
lem for partially ordered quasigroups and loops. Of course, there are further results,
consult for instance [5] and [19], above all the initial contribution of RiCHARD DEDE-
KIND (cf. [5]). Hence characterizing divisibility semiloops with complete extensions
is a most natural additional step according to a long lasting development (Sec-
tion 5).

Finally we turn to representable divisibility semiloops.

There are various results concerning lattice-ordered structures of such type,
the historical one being Stone’s celebrated decomposition theorem for boolean alge-
bras, afterwards extended to distributive lattices (cf. [5]), for instance: LORENZEN
[28], CuirForD [15], RiBENBOIM [32] (abelian lattice-ordered groups); LORENZEN [29],
SIK [34], BANASCHEWSKI [3] (arbitrary lattice-ordered groups); Swamy [37] (abelian
residuated lattice-ordered semigroups); BOSBACH [8], [10] (complementary semi-
groups); TH. MERLIER [30] (abelian lattice-ordered monoids); Fucas [20] (general
lattice-ordered algebras); Fucus [21] (positive abelian lattice-ordered monoids);
BirkHOFF and PERCE [6] (lattice-ordered rings); Evans and HARTMAN [17] (lattice-
ordered loops). '

But a general solution is still outstanding and also special problems have re-
mained unsolved up to now although they were stated several times, like the lattice
semigroup problem [19], [21] or the lattice groupoid and the lattice gquasigroup
problem [17]. Therefore Section 6 will be devoted not only to divisibility semiloops
with a representation, but also to general lattice-ordered binary systems of this type,
the principal result being-a decomposition. theorem that solves the problems men-
tioned above in a one cast manner. . »

The notation of this paper is standard in general, but sometimes : will stand
for “such that”” and a- bc for a(bc). Consequently a- -b-cd f.i. will mean a(b(cd)).
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© The basic concepts of algebra and order theory are to be found in [5]. The later
paragraphs are based only on Section 1.

Finally we give a most important hint. There will appear dualities of various
kinds, for instance right/left dualities or .=/= dualities. Hence there will be proposi-
tions holding necessarily together with their dual. So the reader should realize this
situation whenever it comes up. Nevertheless he will be requested from time to
time to take that fact into account.

1. Divisibility semiloops

1.1. Definition. By a divisibility semiloop we mean an algebra 6:=(G, -, A, 1)
of type (2,2,0) satisfying

(DSL 1) (G, -) is a cancellation groupoid,

(DSL 2) 1 is unit of (G, -),

(DSL 3) (G, \) is a semilattice,

(DSL 4) x(aAb)-y=xa-yAxb-.y
(observe that (DSL4) requires right- and left-distributivity because of axiom
(DSL2)),

(DSL 5) ax=b—3u: au=b, ya=b-+3v: va=b

..(observe furthermore that the negative cone of any divisibility semiloop is itself.
a positive divisibility semiloop with respect to V).
Classical examples of a divisibility semiloop are the lattice loop and .the lattice
loop cone. Therefore the divisibility semiloop is a common abstraction of these
two structures. ’

For the sake of convenience we start from an arbitrary but fixed divisibility
semiloop.

1.2. Lemma. Va,b,x,y: asb—-ax=bx&ya=yb and
ax=bxvya=yb—-a=b.

Proof. Obviously we may confine ourselves to the left-sided cases. But these
follow by a=b-yaAyb=y(aAb)=ya for the left-right direction and from ya=yaA
Ayb—+ya=y(aAb)—~a=alb otherwise.

1.3. Lemma. b=1&a"(aAc)=a—albec=(a"Ab)(aAc).
Proof. b=1—-aAbc=a"(aAc)AbaAbc=(a"Ab)(aAc).

As an immediate consequence of 1.3 we get.
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1.3 . Lemma. x=bc&b=1->x=x,x x,=b&x,=c.”
1.4. Proposition. (aAb)a’ —a—»ba =sup (a, b)=:aV b.

Proof. Suppose (aAb)ya’ _a>(a/\b)1 Then we can infer a >1 and thereby:
ba’=a & ba’=b. On the other hand any ¢ with cza, b satisfies for some x the
implication: ¢=bx & a=(aAb)(@’'Ax)—~a' =xNd’~a’=x—+ba’=bx=c which had
to be proved. (Smmlarly one shows that (aVb)a'=a & (aV b)b’=b 1mp11es ab’=alb.
This is possible by means of (DSL 5);)

1.5. Lemma. x(aVb) - y=xa -nyb.- y.

Proof. Suppose xaVxb=(xa)c. Then by (DSL 5) there is an element u such
that xu=xaVxb from which follows u=aVb 'and thereby x(aVb)=xaVxb. The
rest follows by duality.

1.6. Lemma. (a/\b)a’=.a&(a/\b)b’=b—>(a/\b)a’-b’=(a/\b)(a'Vb’).

Proof. (aAb)a’- b =ab’=aV b=(aAb)(@’V}).

1.7. Corollary. bAc=1vbVe=1-ab-c=ac-b=a- be.

Proof. Indeed, bAc=1-abAac=a and bVe=1-abVac=a.

1.8. Corollary. aAb=1-ab=aVb=ba.

1.9. Lemma. ab=cd—~ab=(aAc)(bVd)=(aVc)(bAd).

Proof. ab=cd—~ab=(aAc)bV(aAc)d=(aAc)(bVd)
&ab=a(bVd)Ac(bVd)=(aAc)(bVd).

1.10. Corollary. a=(1Aa)(1Va)=(1Va)(1Aa).

1.11. Definition. By the positive part of a we mean the element 1Va=:a*,
by the negative part of a we mean the element 1Aa=:a~. By a* we denote the
uniquely determined element x satisfying. a~x=1, and we define. dually @', sat-
isfying a'a==1.

There is a series of crucial lemmata 1nter11nk1ng these notions.

1.12. Lemma. ab=ab*.b~=ab~-b*+.

Proof. Write ab=al-b=ab-1 and apply Lemma 1.9.

1.13. Lemma. a*Aa*=1.

Proof. at=aa*&aa*Aa*=(aA1)a*=1.

1.14. Lemma. ¢=1&bAc*=1-a-bc=ab-c=ac-b. "

Proof. bAc*=1+1Acb=(1Ac)(c*Ab)=1Ac by the dual of Lemma 1.3. Thus,
if moreover c is negative, we may infer c=(cb)~ and b=(cb)* from which we get
a-bc=ab-c=ac-b by Lemma 1.12. : '
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1.15. Lemma. uAa*=1-a"uAl=a-«—1Va~-u=u—ula*=1.
This implies nearly immediately

1.13". Lemma. y§1§x&x/\y*=l&xy=a;x=a+&y=a’.
Moreover 1.15 is essential for part (i) of the subsequent statement.

1.16. Lemma. (i) (ab)*=(1Vatb~)(1Va~b*), (ab)"—(l/\a b*)Y(1Aa*h"),
(ii) (aAb)T=a*Ab*&(aAb)"=a~Ab-,
(iii) (aVb)*t=a*Vb*&(aVb)~=a~Vb~.

Proof. Ad (i). By 1.14 we have
ab = a*a~-btb~ = (a*t-a"b*)b~ = (a*(1Va~-b*))((1Aa~b*)b") =
= ((1Aa=b*)-a*b~}(IVa~b*),

from which (i) follows by repeating the method on the grounds of

uha* =1 = uAb* ~ (IVa~u)(IVb~u) = uu = uV (@b~ - u)u.

(We shall come back to this implication in Chapter 4.)

Ad (i) & (iii). x =a - 1Ax =1Aa&1Vx = 1Va and (a-Ab-)* = a*Vb*

and (a~Vb~)* = a*Ab* by 1.9.

1.17. Lemma. aAb'=1«-aAb*=1.
Proof. aAbi=1—ab~Al=b"—a(b-b*)Ab*=1—aAb*=1.
We now introduce two further operations.

1.18. Definition. xis called the right complement axb of ain b if (aAb)x=b.

Dually we define the left complement b:a of a in b.

Because of (aAb)(a*bAbxa)=aAb we get immediately axbAbxa=1. Next

we have

1.19. Lemma. aAb=a/(bxa)=(b:a)\b and aVb=a(axb)=(a:b)b.
1.20. Lemma. a=b-x%a=x%b&axx=bxx.

Furthermore we obtain

1.21. Lemma. ax(bVc)=axbVaxc.

Proof. a(axbVaxc)=a(axb)Va(axc)=aVbVaVc=aV(bVec).

1.22. Lemma. (aAb)xc=axcVbxc.

Proof. (aAb)xc=axcVbxc&(aAb)(axcVbxc)=(aAb)Ve.

1.23. Lemma. ax(bAc)=axbAaxc.
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Proof. We have ax(bAc)=axbAaxc and
(@AbAC)a xbAaxc) = (aAb)(axb)A(ahc)(axc) = bAc
whereby axbAaxc=ax(bAc).
1.24. Lemma. (aVb)xc=axcAbxc.
Proof. We have (aVb)kc=axcAbxc and
(aVb)(aalec/\baleC). = alaxc)Vb(bxc) = aVbVe
whereby axcAbxc=(aVb)xc.

The reader should check that 1.21 through 1.24 remain vaiic_l if we replace
* by\and : by /7, provided the “‘results” under consideration do exist. Now, applying
Lemma 1.23 we are able to prove

1.25. Proposition. (G, A, V) is distributive.

Proof. aV (bAc)=a(ax(bAc))=a(axb)Aa(axc)=(aVb)A(aVc) (and, alter-
natively, by applying 1.24, aA(bVc) = a/((bVc)*a) = al(bxa)Va/(cxa) =
= (aAb)V(aAc)).

In the remainder of this section special situations are considered with respect to
later paragraphs.

1.26. Definition. We say that a covers b if a satisfies a>b and no’element
of G lies strictly between a and b. By an afom we mean any p which covers 1.

1.27. Lemma. Every atom is prime, i.e. every atom satisfies the implication
p=atbt-p=atvp=h*t.

‘Proof. p=a*tb*&pxb*t—-p=(pAat)(pAb*)=pAa* by (1.3).
" Recall that the standard meaning of p" is (--Upp)DYD-++)-
1.28. Lemma. Every atom p satisfies ap-p"=a-pp".

Proof. ap-p"=a-qp" & p+#q implies ap-p"=aq.p" because of Lemma17
since ap- p" covers ap”, whence g is an atom.

1.29. Corollary. The natural powers of any atom p form a subsemigroup.

Proof. This is easily shown by induction on the grounds of 1.28.

1.30. Lemma. Every atom satisfles px=1—xp=1.
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Proof. We prove the left-right direction: 1 covers x and moreover we have
x=1=p & x=xp=p whence we can infer

IAxp=1-xp=1 because of xp <p
VIAxp=x—-1INxp=p->xp=px=1.
We are now turning to rules relevant for Section 4.

1.31. Lemma. Let the right inverses & and b" exist. Then aA\b and a\'b are
right invertible, too, and they satisfy the formulas

(aAbY =a'Vb" and (aVh) =a Ab".
Proof. aa"=1=bb"—(aAb)(a"V b")=1=(aV b)(a"AD").

Furthermore we shall need some implications for orthogonal pairs a, b, i.e.
- pairs with aAb=1<«:a [ b. Here we.obtain:

1.32. Lemma. If ® is positive, i.e. G=G™*, then
alb—-axbc=>blaxc) & cb:a = (c:a)b.
Proof. Making use of 1.3 and 1.7 we get
alb - (aAbc)(b(axc)) = (aAc)(b(axc)) = b-(aAc)(axc) = be
and the rest follows by duality. -
1.33. Lemma. If ® is positive, then
alc—abxc=Dbxc=baxc&c:iab =c:b =c:ba.

Proof. al c—>(abAc)x=c—+(bAc)x=c by Lemma 1.3, and the rest follows'
by duality.

1.34. Lemma. If ® is positive, then
alb—xaxxb = b&bx ax = b.
Proof. a_Lb—>(xa/\xb)y xb—-x(aAb)- y—xb—»y =b, the rest following by
duality.

1.35. Lemma. If G is positive and associative then ® satisfies
(i) abxc = bx(axc),

(i) ax(b:c) = (axb):c, _ .

(\iii) axbc = (axb)((bxa)xc). '

Proof. These formulas were developed already in earlier papers of the author
but for the sake of selfcontainedness we give short proofs in spite of this.
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Ad (i): abx = ¢+ bx Ea*c«-x = bx(axc),
Ad (ii): ax=b:ic+axcz= b—cx = a:b,
Ad (iii): ax = bc —x = (axb)y « a(axb)y = b(bxa)y = bc.

Henceforth we consider (conditionally) complete divisibility semiloops. Here
we obtain analogously to the finite case:

1.36. Lemma. If ® is complete then & satisfies the equation:
@) x(Va)-y =V (xa;- y)&x(Aa)-y = A(xa;- y), implying

(i) »\(Va) =V (x\a)&x\(Aa) =A(x\a)) and

@ii)) (Va)\x =A@ \x)&(Aa)\x =V (a;\x), implying

(iv) aAVb; =V (aAb)&aV Ab, =A(aVb).

Proof. The proof is left to the reader since it is analogous to the corresponding
proofs of the finite cases. (Of course, (ii) and (m) are valid as far as the objects under
. consideration do exist.)

Finally we remark

1.37. Lemma. © is already complete if its (positive) cone is complete. More
precisely: s=a;+ A(INVa)- AN(lAa)=Aaq;.

Proof. This is an immediate consequence of x=a, if and only if 1Vx=
=1Va; & (IAx)*=(1Aag)* which implies for lower bounded sets a; (ic/) the
formula stated above.

2. Lattice lbop cones

The structure of a lattice group is completely determined (up to isomorphism)
by the structure of its cone. The question arises whether the same is true in the
lattice loop case. Obviously the situation is pleasant as far as the underlying lattice
is considered (1.31). But it was already shown in the introduction, that non-iso-
morphic lattice loops may have isomorphic cones. Hence the question is reduced
to the problem whether it is possible to characterize those divisibility semiloops
which admit some lattice loop extension. To this end we start from a positive divisi-
bility semiloop €.

2.1. Definition. By L we denote the set of all orthogonal pairs (alb) (a L b,
a, b¢C). Furthermore £ will symbolize the structure (L, o, A) the operations of
which are defined by

(alb)o(c|d) := ((a :d)(b*c)l(d:a)(c* b))
(alb)A(c|d) := (aAc]bV d).

and

3e
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Obviously o is defined in a right left dual manner. This means: a proposition and
its proof remain true if (x|y) is replaced by (y|x) and axb by b:a, c:d by dxc.
Furthermore by Lemma 1.3 o is an operation.

2.2, Lemma. (L, A\) is a semilattice.

Proof. We have to show alb & c¢1d - aAc 1 byd, which follows from
(@Ac)A(bVd)=(aAc\b)V(aNbAd)

2.3. Lemma. £ satisfies
(alb) = (cld) ~ (alb)o(x]y) = (c|d)o(x]y) & (x]y)o(alb) = (x|y)o(alb).
Proof. This is an immediate consequence of Lemma 1.20.
2.4. Lemma. (a|b)o(cld)=((alb)o(c|1))o(1|d)=(a]1)o((1|b)o(c|d)).
Proof. By 1.32 and 1.33 ‘
((a:d)(bxc)l(d:a)(c* b)) = (a(bxc):d|(d:a)(cxb))=
= (a(bxc):d|(d:a(b*c))(cxb)) = (a(bxc)cxb)o(l|d) =
= ((alb)o(clD)o(1]d),
the rest following by duality.
2.5. Lemma. ((alb)o(1}x))o(x|1)=(alb) = (llx)o((xll)o(alb)).
Proof. We have
((@:2)(x:a)b)o(x]1) = ((a:x)({(x:a) b#x)x*(x:a)b) =
= ((a:x)((x:a) bx(x:a)(aAx))|(x:a)(@Ax) % (x:a) b) = ((a.x)(x/\a)lb) = (a|b)
by 1.34, the rest following by duality. . -
2.6. Lemma. ((alb)o(x|1))o(1]x)=(alb)=(x|1)o((1|x)o(alb)).
' Proof. We have
(a(bx2)|(xxb)o(11x)) = (a(b*x):x|(x: a(b %)) (x % b)) =
(a(balex) (b/\x)(xeleb)l((x (bxx)):a)(xxb)) = (al(x/\b)(xaleb)) (alb)
by 1.34, the rest following by duality.
. 2.7. Lemma. ((alb)o(x|y))o(yIx)=(alb)= (XI}’)O(()’IJC)o (alb)).
Proof. We have
((alb)o(x1¥))o (y1x) = ((((alb)o (x| D)o (1]))o(¥I1))o(1]x) =

= ((alb)o(x]1))o(1]x) = (alb),
‘the rest following by duality. -
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2.8. Lemma. (alb)o(x|y)=(cld) and (ulv)o(alb)=(cld) have umquely deter-
mined solutions.

Proof. Apply Lemma 2.7. It follows that (x]y)=((bla)o(cld)) in the first case
and (u|v)=((c|d)o(bla)) in the second case are the only solutions.

2.9. Lemma. (alb)o(1]1)=(alb)=(1]|1)o(alb).
Proof. (a:1]1 xb)=(alb)=(1x%alb:1).
2.10. Lemma. (a|l)o(b|1)=(ab|l) and (au)/\(bu):(a/\bn)._ :

' Proof. Obvious.

Hence summarizing the- lemmata proven so far we get -

2.11. Proposi tion.” A partially ordered groupoid is the cone of some ‘lattice
loop if and only if it is a positive divisibility semiloop.

2.12. Definition. By an inverse loop we mean a loop having the inverse
property, i.e. satisfying Ya Ja~: a~(ab)=b=(ba)a™.

Obviously inverse loops satisfy xx~=1=x"1x and furthermore one can infer
(xy)"t=y~1x7L, since (xy)y l=x->yp l=(xp) x>y tx"1=(xy)"% In general a
lattice loop is far from being inverse. However we can prove

2.13. Proposition. Any lattzce loop cone is the cone of an inverse lattice loop.
Proof. Wedefine (x]y)~1:=(y|x). Then the assertion is proven by. Lemma 2.7.

Let us consider now the extension £ of the cone €. We-shall show that 2 is
uniquely determined up to ‘isomorphism provided inverse lattice loops are con-
sidered. Furthermore we shall prove some other extension properties concerning
congruence relations and order. -

2.14. Prop051t10n e is uniquely determined provzded inverse extensions are
considered.

Proof. Let 3 denote an inverse lattice loop. Then by Lemma 1.16 we can
infer ab=*-cd~=a(1Vb~1c)-(1Ab~1c)d and by the rules of lattice loop arithmetic
we get 1Va~b=axb since a(1Va~‘b)=aVbh, and 1Vba~'=b:a by duality.
Thus 1Aa™b=(1Vb~ta)"'=(b*a)~* and 1Aba~'=(a:b)~' by duality, whence

ab™! = (IVab™)(1Aab™).= (a: b)(b:a)™". .
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But applying these formulas and 1.16 we obtain
ab™*.-cd™* = a(IVbh~2)-(1Ab~Y)d? = a(b*c)-(éakb)"d‘l =
= (cxb)2-(a(bxc)-d7Y) = (cxb)*-(ad - (bxc)) =
= (c*b)"-((a;d)(d:a)“-(baq'ec)) = (a:d)(b*c)-(cxb) N (d:a)™? =
‘ = (a:d)(bx)- ((d:a)(cx b))

Hence the function (alb)—~ab~! is an isomorphism of £ and 3 if the cone € is
isomorphic to the cone of 3.

Wenowturn to elemeniary algebraic properties like associativity, commutativity,
etc., the first result of this type being nearly obvious:

2.15. Lemma. If € is commutative then 2 is commutative, too.

Proof. If € is commutative then x:y is equal to y*x which yields
(alb)o(cld) = ((a:d)(bxo)|(d:a)(c b)) =
= ((b*c)(d*a)l(cxb)(a *4)) = (cld)o(alb).

A loop 2 is called monassociative if every a€L generates a subsemigroup of
(L, -). A loop is called power-associative if every acL generates a subgroup of

(L’ *y \’ / )' v
2.16. Lemma. If € is monassociative then £ is power-associative.

Proof. By Lemma 1.3 we get (alb)"=(a"|b") (n€N) and by the inverse prop-
erty we have (a|b)~"=((alb)™?)".

2.17. Lemma. If € is associative then £ is associative, too.
* Proof. We show
((al)o(cld))o(1]) = (all)o((cld)o(1]1)),
(1bYo(cld))o(1lv) = (11b)o((cld)o(1ln)),
((11BYo(eld))o (ul1) = (11b)o((cld)o(ul1)).

(Observe that line 3 can be considered as a dual of line 1, since putting a.b:=ba
we get a dual divisibility semiloop with (a|b)e(cld)=(c|d)o(alb). Hence line 3
results from line 1 for the dual structure.)

Equivalently

((a: D c:vl(v: (a:d) c)(d:a)) = ((a:(v:e)d)(c:v)I(v:c)d:a),
((b*0):vl(v: (b %)) d(cxb)) = (bx(c:v)l(v:c)d((c:v) % b)),

(b #c)(d(c%b) % wusd(cxb)) = (bxc(dxuw)l(ud)(c(dxu)*b)).

and
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But lines 1 and 3 follow from Lemma 1.35 and its duals, and the left components
of the second equation are equal because of 1.35, too. So it remains to show

(v:(bxc))d(cxb)*(v:c)d((c:v)*b) = 1, .
(v:(b*c))d(c*b):(v:c)d((c':v)*b) =1

Now, the second equation is the right-left dual of the first one. Therefore it suffices
to settle the first case. Here we obtain:

(v:(bxc))d(cxb)*(v:c)d((c:v) %b) =
= d(cxb)%{((v: ) %(v: (b %)) %d((c:v) b)) =
= d(cxb)x(((c:v)x(c:(b %)) *d((c:v) b)) =
= d(c#b)%d(((c:0)x(c:(b*))*((c:v)%b)) =
= (c#b)%(((cAb) %(c:v)) % ((cAb)%b)) =
= (cxb) %(((cAb)%(c:v)) % (cxb)) = 1.

The second, third, and fourth equalities follow from 1.35, 1.32 and 1.19, 1.35,
respectively. Hence the proof is completed by

((alb)o(cld))o (ulv) = (((alDo((1Ib)o(cld)))o (] D)o(1]v) =
= ((al)o(((11b)o(cld))o(ul1)))o(1lv) =
= (alDo((((1b)o(cld)o (ul))o(1]e)) =
= (alDo(((1b)o((cld)o(ul1)))a(llp)) =
= (alDo((11b)o ((cld)o (u| D))o (1]6))) = (alb)o((cld)o (ulv)).
We continue our investigation by two further results concerning the order
relation. :
- 2.18. Lemma. If € is totally ordered then L is totally ordered, too.
Proof. a=b—~(alb)=(1|b) and a=b—(a|b)=(a|l). Furthermore we get (a|l)=
=(1}b) for all a, beC.

2.19. Lemma. If C is completely ordered then L is completely ordered, tod,
Proof. Apply Lemma 1.37. '
Finally we consider congruences. Here we can show

2.20. Proposition. The congruencesof (C, -, %, :) areuniquely extended to 2.

Proof. Let = be a congruence of (C, -, %, :). We define (alb)=(c|d) iff
a=c & b=d. This provides a congruence on £ as is easily checked by the reader.
On the other hand for any extension g of = from (C, -, %,:) to & we get
(alb) o(cld)«rad=bc which implies a=c¢ & b=d because of Lemma 1.3.
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3. The chain condition

Obviously a divisibility semiloop satisfies the descending chain condition for
any [a, b) iff it satisfies the ascending chain condition for any (a, b]. Hence we
may speak of models with chain condition (C.C.). Suppose in this section that &
‘has the C.C.-property. Then every positive element a is a product of atoms since
otherwise there would be a minimal one to fail, a contradiction. Furthermore for
every a>1 and arbitrary atom p there exists a maximal number p(a) such that
pP@ =a. Finally for any pair of different atoms p, g we get p™ 1 ¢" (m, n€ N) because
of 1.3, and thereby p™-q"=p™Vgq". This provides a uniquely determined prime
factorization for any positive a€G (see f.i. [16]).

The purpose of this paragraph is to show that C.C. implies commutativity
and associativity. This is nearly obvious for C* and by duality also for C~ (con-
sult 1.29 and the remark above). But thé general case requires some additional
calculation. )

3.1. Lemma. Let g be the right inverse of q and let p, q be two atoms. Then
every p™ commutes with every q".

Proof. It suffices to prove pp=1-p™.p"=1, because of 1.14, 1.30. But this
is shown by induction since 1.28 implies p™p-pp™=p™(pp-p™).

3.2. Lemma. If ® satisfies C.C. then ® is associative and commutative.

Proof. By 3.1 and the distributivity laws we get a*t-b~=b".a* whence
at.b=a*b*.b~=b"-.b*a*=b-.a* and dually a-b~=b"-a. Hence we obtain
a-b=a"-.a*b=bat.a~ =ba. Furthermore we have ab~-c¢~=a-b~c¢~. Thus we
get ab-c=(a*tb*.a7b~. .c7)ct=c*(a*b*-a"b cT)=c*tatbt.a"b"c” =a-be.

Summarizing the preceding remarks and results we get

'3.3. Theorem. 4 di’vi&ibility -semiloop satisfies the chain condition for closed
intervals [a, b] if and only if it is a direct sum of copies of (Z, +, min) and (N°, +, min)
respectively. S _

4. Complete divisibility semiloops

In this section we shall prove that power-associative complete divisibility semi-
loops are even associative and commutative. This was done for loops with the real
line as underlying lattice by Aczgv [1], and for totally ordered loops in general by
HARTMAN [22].

4.1. Definition. G is called power-associativé if any element a generates a
subsemigroup and any pair a~, a* generates a subgroup of (G, -).
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4.2, Definition. Extending the relation 1, henceforth by u 1 x "we shall
mean u*tu*Ax*x*=1. Furthermore U' will denote the set of all x satlsfymg
u ] x, where u is running through U. ° : :

» It is easily checked by Lemma 1.16 and Lemma 1.31 that U*L is a multlph-
catively closed sublattice of €. : '

43. Lemma. Let C;XC, be a dzrect decomposmon of (C+ s N, V). Then
€ XC; is a direct decomposition of G. S

Proof. We denote Ci by G, and Cy by G,. Then every element a is a product
of type a,a, where the indices indicate the components G, G,. To see this we con-

sider a~. There is a decom osmon a* —a a¥ and we'have g~ a*fl and: a‘a*<1
1 ™2 1

whence there are elements af' and aj' with (a}*.a}")-(a}-a - Hence' af'a;"

is equal to a~ and by definition o} and 4}’ are contained in G, and .G2 respectively.
But this yields - B
ata~ = afaf -at'a¥ = af (af - af'a}’) = af (aF a2+ ) =afafl-ata} '
by means of 1.14, 1.17, 1.3, and, applying 1.14, 1.3, we obtain furthermore
a1a2 = blbg"’a]*_-a;‘al_az— = bi'-bg-'bl_bz— -
—atat = biby &ayas = bbby —~af = bit...ay = bs,
since ay a; -aya; =1, which implies a; a 1 (a7 a;)*.

Hence G may be considered as the cartesian product of G, and G,. We now
show that the operations - and A may be carried out pointwise. First of all we
recall a,ay=a; af -ay a; which was stated above on the grounds of Lemma 1. 14
“This lmphes ‘with respect to multiplication : :

-a-byby=(a-bibg) -bybsy = (a-bFbi)- 'b;b; =
= (aby - bf) by - by = (abi - by)bf - by = ab, - by = ab,- b1
(in the third-step 1.7 was applied), from which it follows that ‘
810Gy~ bi by = (aya5-b1) by = (a1 by a5) by'= a, by - az bs.
Recall now g;f af =a; Va and a; a; =a; Aa; (1.8). One can“ infef:
alaz/\blb2 = (al aF Abib¥)-(arazy AbThy) =
af AbH)(aF AbF) -(ay Aby)(as AbT) =
af Abf)(ay Aby)-(af AbF)(az Aby) = (a,A bl) -(azA bz)
Thus out proof is complete.

44. Lemma. Let ® be complete and a%£b & b%a. ;hen there is a direct
decomposition ®=06,X6, with a,=b, & a@,=b,. .
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Proof. By Lemma 4.2 it suffices to verify the assertion for positive divisibility
semiloops. In this case we define C,:=(axb)* and C;:=Ci. Then C; and C,
are 1-disjoint and every ¢ has a decomposition ¢;c, with ¢;=Sup (x|x=c & x€C,).
(This idea seems to go back to RIEsz [33]. See also BIRKHOFF [4].) Observe: y€C,—
~¢,-(cgAy)=c, - 1. Furthermore this decomposition is unique and the operations
may be carried out pointwise since aAb=1-a-b=aVb.

Now we are ready to prove:

4.5. Theorem. A power-associative and complete divisibility semiloop £ is asso-
ciative and commutative. But if a complete divisibility semiloop is only monassociative
it need neither be associative nor commutative even though ® should be a complete
totally ordered loop. '

Proof. We shall verify our assertion by constructing a series of models and
specializing the situation until ab.c=a-bc leads to a contradiction.

By Lemma 4.3 we may start from a model G, with ab-c<a-bc for some
triple a, b, c. Furthermore, by the same lemma, we may suppose that a, b and ¢
are strictly positive or negative, and that {a, b, ¢} is totally ordered. We consider
l<t=d:=ab-c*a-bc and some x=>1. There exists a natural number » such that
"sx & 1% x, since otherwise Sup ("[n€N)=: Q would exist and satisfy Qr=Q,
a contradiction. Hence in any case there exists a model &,, with "=X<i"t! sat-
isfying @b-c<a-b¢ because of T<xx#"*'=ab.cxa-bec.

~ Consequently we may suppose a model ®, containing a triple u, v, w with

w-w<u-vw and l<s=uv.wxu.vow such that {s"|n€ Z}N{u, v, w} is totally or-
dered: Apply the method above successively to aVa*, bVb*, cVc*. None of these
elements is.equal to 1 and if for instance a is (strictly) negative, then according to
(DSL 5) F:=iAa@* is invertible whence we can continue the procedure with 7 sat- -
isfying T<f=d. So in ®, we have l<s=uv-wxu.-vw<s% But this implies that
the proof is complete if we deduce 1<g*=xy.z*x.yz for some triple x, y, z in
some model $. . '

To this end we start wlo.g. from s"<uVu*=:fi<s"*l. This leads to
l<uxs"t'=:f<s and further to f(f*s)=s whence we get one of the three rela-
tions l<f%=s or 1<(fA(f*s)P=s or f2%s & f1f*s. Obviously in the first
two cases there is some f; in G, satisfying the inequality 1<f}=s in G,. We now
show that also the third case provides some model of this type. Indeed, f1 fxs
implies s/ since f(f*s)=ff would yield 1<fxs<f. Hence we get f2£s£/?,
and thereby a direct decomposition G,=®,x®, with f?=5 in &, and f2=3
in ©,. Suppose now_that f is equal to 1. Then f is different from T and hence &, is
a model satisfying f*5=f*5Af2=1 whence we get f=5 and thereby #=5". Hence
continuing the procedure with 5 or w in the role of u (above), in any case we arrive
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at a direct factor &’ of & with I'<<f"2=s"=u’v’.w'su’ -v’w’. Therefore starting
from this new situation with f” in the role of s we finally do obtain a model $ with
a triple x, y, z satisfying the inequality 1<g*=xy-z*x.yz, a contradiction.

Hence G is associative and in the same manner one verifies that ® is also com-
mutative.

It remains to show that there are complete totally ordered loops which are
neither associative nor commutative. To this end we consider the real line with
respect to some derived operations:

(i) Wedefine aob:=a+b except for the case a=0=b, where we put aob:=a+
+b5/2 if a+b/2=0 & aob:=2a+b otherwise. This provides a monassociative
but non-associative and non-commutative complete and totally ordered loop.
Observe:

(- Do2)o(=1) = =1 #—1/2 = (- Do(20(~ D).

(ii) Wedefine aob:=a-+b, except for the case g, b=0, where we put aob:=a—
—ab+b [22]. This provides a commutative monassociative but non-associative
complete and totally ordered loop. Observe: -

(lo(=1D)o(=1) =—1 % —~2 = 1o((— 1)o(- 1)).4

5. Completion

The goal of this section is a characterization of divisibility semiloops admitting
a complete extension. Nearly obviously such models have to satisfy for lower bounded -
subsets A the implications

() x, Y A&XNAINA - x =y,

(i) x, y,AQA/X\A /Yy~ x =y,

(iii) A%, y& ANXtANY ~ x = y;

(iv) Al,x, y&x/Aty/A +x =y,
where |; and |, stand for left-divisor and right-divisor respectxvely, and { and t stand
for coinitial and cofinal respectively. For instance (i) follows from x\ Ajy\4—~
~AAA=ARNA= ANA=NALL

Thus a characterization of models with complete extensions is given provided
that (i) through (iv) guarantee such an extension. In order to verify this we start
by giving some symbols and notions. Henceforth (4) will denote the set of all upper
bounds of 4 and dually [4] will stand for the set of all lower bounds of A. Further-
more by p we shall mean a multiplication polynomial in one variable, i.e. a poly-
nomial of type ...a,((a;(xa,))as).... (Recall that ® has a unit.) Consequently p(4)
will denote the set of all p(a) (a€A).
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As an immediate consequence of (DSL 5) we notice that p~1(v) exists if there
is an a such that vzp(a)- :

5.1. Definition. A subset 4 of G is called a #- zdeal if A contains all elements
‘¢ with v=p(A)~v=p(c).

It is easily checked that #-ideals are lattice ideals. Furthermore the reader straight-
forwardly verifies that G is a r-ideal and that the intersection of all z-ideals con-
taining A= is a -ideal, too. This yields that there is a smallest s-ideal 4 containing
A0 and moreover the definition A-B=AB provides a unique multiplication
since A=C & B=D. xmphes v=p(AB)«v=p(CD). -Henceforth we shall denote
A also by A

Let us suppose now that the set X of elements x with AxEB is not empty.
Then X=: AxB . is a t-ideal ‘which follows from the-following-implication:

v =p(X) ~v=p(c) implies w=gq(B) - w = q(4X) - w = g(4c),
which implies Ac&SB. o '
5.2. Lemma. © satisfies A=[(4)].

Proof. Obviously A is contained in [(4)]. Furthermore any c€[(4)] satisfies
the implication v=p(4)—»p~1(v)=A—-p~(v)=c—v=p(c) whence each ¢ of [(A)]
is contained in A.

5.3. Lemma. a:=a is equal to the set of all x below a. Hence ® is embedded
" in the structure formed by the t-ideals with respect to - and inclusion.

Proof. Left to the reader.
5.4. Lemma. ® satisfies A-XEb—A-(Axb)=

Proof. By assumption Axb exists. We suppo'se' A-(Axb)=c=b. Then there
exists an element v with A4.v=c=b, whence there is also an element u with ASu &
us=b. But for any such u we get: '

us=b—>As§'b—>As§c—>A§c/s=uc'l,b.

Hence for any u with A=u we find an u, with A=u_ such that us=5 implies
u,s=c. But this means that the set U of all u with A=u & u],b satisfies UNbIUN\c¢
-which yields ¢=b.

5.5. Lemma. G satisfies ACB—~A-(A*B)=

Proof. Consider an arbitrary element b€B. Then the r-ideal A, generated
by all aAb (acA) satisfies A,-X,=b for X,=A,xb. We consider the t-ideal X
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generated by all X,. Then A-X2B is obvious and moreover for any pair a, x
(ac 4, x€ X,) we can infer

(aAb)x =b - x = axb - ax = alaxb) = aV b¢B,
whence A.X is also contained in B. |
5.6. Lemma. (i), ..., (iv)=>a-XEB—+3Z: a-Z=B.
Proof. By 5.5 there is a r-ideal Y with (a.X)- Y=B, and for every pair x, y
(x€X, y€Y) there exists an element z with (ax)y=az=b¢B since axéB & (ax)y€B

implies (ax)(1Vy)eB. Hence the t-ideal Z generated by these elements z satisfies
a-Z=B.

5.7. Lemma. (i), ...,(iv):szA&A-X=A-Y—>X=Y.

Proof. Suppose v=X. It follows A-v=A.y for all y€Y, and thereby
A-(vVy) =A-v=:B (5.2). But this yields B/v=B/(»Vv) whence we get v=yVo.
It follows v=Y and thereby X2Y. Thus the proof is complete by duality.

5.8. Lemma. (i), ..., (ivj=>a- AX;=A(a-X). 4

Proof. By 5.6 there is a t-ideal Z with a.Z=A(a-X,) (i¢I). Furthermore by
5.2 the t-ideal generated by all aVb (a€ A, bEB) satisfies {aVb|acA, beB} ={A, B}.
Consequently for upper bounded ¢-ideals A the following implication holds: A - X &
CA-Y-XCY. Thus Z is contained in ‘every X;, which implies the assertion.

Once more we emphasize that we consider a prop051t10n to be proven once its
dual has been verified.

Up to now we have been concerned with z-ideals. But obviously there is a dual
notion, called v-ideal, which is defined by writing (in 5.1) the symbol = instead
of the symbol =. We shall denote v-ideals by 4 or A. The proofs, however, given
here so far do not carry over in any case since the structure under consideration
is not =/=-dual. Nevertheless the reader will easily verify that the part up to
5.2 (excluded) can straightforwardly be dualized. Thus there is a product AcB=4B
and a right-quotient AxB:={x]AxESB} (a left-quotient B:A:={x|xA SB}).

‘We now return to the r-ideal-extension of ®. We wish to show that (DSL 5)
is valid. To this end we denote the principal -ideal t also by ¢, the r-ideals in general by
lower case greek letters. Furthermore we shall write (¢) for {v|v€G & v=a} and
define [«] dually. Thus we consider an upper-continuous cut extension Z of ® sat-
isfying:

xx=f~pf=xndoax=pf~f=72x and aAB = Aapy.

5.9. Lemma.. There are no other (lower bounded) v-ideals of ® than the subsets
(@) of Z, which means in particular that A=([4]).
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Proof. Consider a lower bounded 4 with AA=a. Then ACS(x) is valid
since X is a cut extension, and (x)SA follows from r=p(4A)—t=p(a) (5.8)=1=

=p(c) (c=a).
5.10. Lemma. If B is contained in A then A is a left (right) divisor of B.

Proof. Consider a fixed b€B. Then, for C=AAb, A is equal to C. Let
X, be the set of all x satisfying Ax=b and suppose b=c=A4X,. We abbreviate
Inf(4) by o. It follows Axz=b—-axz=b-axz=c. But according to our previous
remark there are elements B, y such that af=>b & ay=c, whence x=f--oax=b—
—axz=c—-+xx=y. This yields =y from which results b=c. Therefore any d with
d=AX, satisfies dVb=b. Hence the ideal X generated by all X, satisfies Ao X =B.

So far we have shown that the v-ideals form a lower continuous extension of
® with respect to =:= 2. We shall now show that X and the v-ideal extension are
isomorphic. Doing this we shall implicitly verify, too, that there is a complete exten-
sion satisfying also axiom (DSL 5) which results from A-BSC—+A-B&c (c=C)
(cf. 5.4) by lower continuity.

5.11. Lemma. X satisfies A(a)o A(B)=A@f).

Proof. Define aof=y if (#)o(B)=(y). Then aod and ad are equal because
of Lemma 5.8. Suppose now af=c and s=ab for all q, b€(¢) X(B) and c=waoy.
Then aoc,=ac;zaf—-c;=p for all ¢;=y, whence weé get by assumption s=aoc;
and hereby furthermore s=aocy=c.

°

5.12. Proposition. A divisibility semiloop satisfying (i), ..., (iv) has a cut
extension isomorphic to the lower bounded v-ideal extension if =:=2, as well as
to the upper bounded t-ideal extension if =:=C.

Proof. By 5.11 [(4)]~(A) is a homomorphism, and by definition this mappihg
is bijective.
Thus summarizing we can state:

5.13. Theorem. A divisibility semiloop admits a complete (cut-) extension if
and only if it satisfies the conditions (i) through (iv).

Let now G be a divisibility semiloop satisfying (i) through (iv), and let Z be its
cut extension in the sense of above. Then we can show in addition:

5.14. Corollary. If ® is power-associative, then X is power-associative, too.

Proof. If ¢ is equal to a product built by factors a; (1=i=n) satisfying ag,=a
we can infer e=(a,V...Va)'=a"
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5.15. Corollary. If ® is a lattice loop then Z is a Iattlce loop, too. lf in addi-
tion ® is inverse then Z is inverse, too.

Proof. a=a & b=p —~ a(a\b)sﬁ, and starting from «a=Va; (icl, a€G)"
we get:
“(bap)a;t=b +~\ba;A\a;t = (ba)a™l =

from which the general inverse property follows by upper continuity.

5.16. Corollary. A lattice group admits a complete extension if and only if it is
archimedean.

Proof. Obviously the condition is necessary. On the other hand, if ® is a
lattice group, (i) through (iv) are satisfied if Ax}4A—-x=1 and its left dual are valid.
But this is a consequence of the archimedean property, since

4

Ax}A =5 - Ax"JAlAX" - x "= s la=x" (acAd, nEN) ~
- (x*) =sta&(x*)" =s571a,

by application of Lemma 1.3. Hence X is a complete lattice group since associativity
follows from AoB=4B.

6. Congruences

In this section we are interested in cancellative congruences of an underlying
divisibility semiloop ®. The reader will easily remember that there was given a
first result already in Section 4, namely the direct decomposition extension result
of Lemma 4.2. The main purpose of this section is to analyze under what conditions
G is representable, that is, is a subdirect product of totally ordered factors.
Observe that cancellative congruences are also *, : congruences.

6.1. Lemma. If U is the positive part of the class 1= of some cancellative
congruence then U is a multiplicatively closed convex subset satisfying

() aU=Ua, (i) ab-U=a-bU, (iii) U-ab=Ua-b.

Proof. u€U implies a=au=va—-v=1, and

(Il
—_
s

ab=ab-u=a-bv—-bv=>bl - v=1, ab=a-bu=ab-v—~...~ v
whence (i) through (iii) are satisfied, the rest being obvious.

Every multiplicatively closed convex positive subset of G containing 1 and
satisfying (i) through (iii) will be called a kernel.
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6.2. Lemma. If U is a kernel then x=y (U) iff x=yu & y=xv for some
u, v€E U defines a cancellative congruence such that the positive part of 1= coincides
wzth U.

Proof. Straightforward by deﬁmtlon

Thus we getas a first result.

6.3. Proposition. In every divisibility semiloop & the cancellative congruence
relations = are uniquely represented by the kernels U via the following definition:
a=b (U)iff a=bu & b=au.

Hint. a=b—-a=b(axbVbxa) & b=a(axb\Vbxa) (axb, bxa=1).

Evans and HARTMAN [17] gave a characterization of lattice loops admitting a
subdirect decomposition into totally ordered ones. This result can be extended to
divisibility semiloops. To this end we consider two orthogonal elements a, b. By
(DSL 5) they obviously satisfy the equivalence

aA(bx-y)/xy =1 <> a-xyAbx-y = xy « ((a -xy)/y)/x/\b = 1.
Hence requiring the first equality means requiring: # | v implies u and (vx-y)/xy
are orthogonal, too. And the validity of the third equality means: if u, v are orthogonal
then u and ((v-xy)/y)/x. are orthogonal, too. So, if uAv=1 and U=(@u')*, we
can deduce from the validity of each of these equalities

(Ux-y)/xy € U, whence Ux-y S U-xy,

and ‘
((U-xp)/y)/x) S U, whence U-xy S Ux-y.
Similarly we get Ux=xU from uAv=1-ul(xv)/x=1.

6.4. Theorem. A divisibility semiloop ® is representable if and only if it sat-
isfies the conditions
(i) (axb)-xyA(bxa)x-y = xy,
(it) xy-(axb)Ax-y(bxa)=xy, and
(iit) x- (axb)A(bxa)-x = x.

Proof. Obviously a and b are orthogonal iff axb=b & bxa=a. Hence the
conditions above require that the positive part of any u* forms a kernel. Suppose
now that U is maximal in the set of kernels Mpc. Then G/U=: § is totally ordered
since otherwise $ would contain a 'pair p, ¢ with pxg=1>g*p. But then
Up:=((p*q)*)* and U,=(U})* would be two kernels satisfying U,NU,={1},
although U, and U, differ from {1} by construction. Therefore the condmons under
consideration are sufficiént.

On the other hand our conditions are necessary as is easily checked by the
reader..
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By 6.4. the subdirect products of totally ordered divisibility semiloops are-
characterized in a classical manner. But it is obvious that this method relies strongly
on (DSL 5) and axb | bxa. Hence, in order to find a method working also in more
general cases, we have to leave orthogonality conditions and to look for -/=-
conditions. This will be done in the remainder of this section.

Nearly immediately we get:

6.5. Theorem. A divisibility semiloop ® is representable if and only if it sdtisﬁes
the condition

(0 p(@)Aq(b) = p(b)Vq(a)
Jor any pair p, q of multiplication polynomials.

Proof. Obviously condition (0) is necessary. So let condition (0) be satisfied.
Then putting (¢*x-y)/xy:=c*0 we infer for orthogonal elements a, b,

alAbf = bVab - aAbl = (aAbO)A(bV al) =
= (aAbOAD)V (aABOAal) = (IABOV(aA1) = 1,
whence (i) is valid. And in an analogous manner one can deduce (ii) and (iii).

We now show that the condition (0) provides a key for solving the problems
stated by Fuchs and Evans & Hartman. To this end we shall leave the group oriented
standpoint and exploit the lattice-order of the underlying structure. Moreover for
the sake of economy we shall start more generally.

6.6. Definition. Let A:=(4, A, V,f;) be an algebra such that A and V
provide a lattice order and the f; are of arity n.. Then U is called a lattice-ordered
algebra if each operation is isotone at each place. If each operation even distributes
over meet and join at each place we call U a distributive lattice-ordered algebra.

Examples of lattice-ordered algebras are the lattice groupoids satisfying the - /A-
or the ./V-distributivity laws. Hence lattice quasigroups and thereby lattice loops
and lattice groups are lattice-ordered algebras in the above sense. However, there
remains an inaccuracy. For example, given a lattice group, what are the funda-
mental operations? Obviously ~! is antitone. On the other hand lattice quasigroups
satisfy

q XN@Ab) = xNaAx\b & (aAb)/x=a/x\b/x
an
' xXN\faVb) =xN\aVx\b & (aVb)./x=a/x\Vb/x.

So we may regard lattice quasigroups, lattice loops, and lattice groups as lattice-
ordered algebras by defining /. (a):=x\a and r.(g):=a/x and considering & as
an algebra (G, -, A, V, [, r) (x€G).

4



280. B. Bosbach

6.7. Definition. Let A be a lattice-ordered algebra. A term is called linearly

' composed if it is a variable or if it is of the special type f(xy1, ..., (X, Y15 -s Vim)s --5 Xu)

where f is a fundamental operation and q(x, y,, ..., y,,) is (already) linearly com-
posed.

6.7 provides a set of terms with a “starting variable” x such that in the case
of a distributive lattice-ordered algebra the arising polynomial functions p(x) of type
2(x, ¢,y .. c,) (ci€4) satisfy the distributivity laws paAb)=p(a)Ap(b) and
p(avb)=p(a)Vp(b). To emphasize that j(x) stems from a term built up without
A and V we write also §(x). Now we are ready to show

6.8. Theorem. A lattice-ordered algebra U is representable iff it is distributive
and satisfies

@ F@N(®) = 5V (a),
which can be unified to the condition .
©) ' B(@AZ(b) = F(b)V(a).

Proof. Obviously (0) is necessary and a fortiori (0) implies (0). Moreover (0)
yields f(...aha.. IASf(...bAb..Y=f(...aNb...)Vf(...bAa...), whence fdistributes over
meet, and join which is shown similarly. The reader should notice that (0) follows
nearly immediately from (0) 1f ® is distributive. Hint: write p and g as meets of joins
of ~-functions.

We now prove that distributivity together with (0) provides a representation.
To this end we may start from r<s in order to construct a totally ordered homo-
morphic image 4 satisfying 7<3. By Zorn’s Lemma, we see that there is a maximal
lattice ideal M, containing r but avoiding s. Furthermore it is well known that
such an M is A-prime (@AbeEM—acMv beM), since (4, A, V) is distributive.
(Otherwise there would be a pair u, v with uAveM & u, v¢é M which would lead to
U:={x | xAve M}, V:={y | uAye M (Yuc U)} with bc UNV SM.) We define

a=b:epla)eM—pb)EM.

‘(Obviously we could define this congruence relation also by V:=4—M and it is

casily checked by the reader that there is a dual proof w.r.t. this prime filter V.)
This is a congruence as is easily shown in the groupoid case and analogously proven
in the general case. Furthermore we obtain in W:=A/=

i=0ep)eM ~p(weM
since :
U=0=>i=uld=>pUeM—PWAFL)EM =

=pv)eM ~p(uhv)eM ~ )M
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and -
PEM ~ p(w)eM = p(uhv)eM —~ p() EMNS(v) €M =
= puNv)eEM - p()EM =1u = 7.
Hence @ and E- are incomparable if and only if there are linearly composed polynorﬁial
functions p(x), §(x) satisfying
F@4M, FBIEM, G@)eM, J(B)¢M.
But this is excluded by (0), since otherwise we could infer
P@AID)EM & pOIVi(a)eM,
contradicting p(a)AG(B)=p(b)V§(a). Hence A is totally ordered.
Theorem 6.8 yields a series of special results.

6.9. Corollary. An abelian lattice monoid M. is representable if and only if
the underlying lattice is distributive and if furthermore multiplication distributes over
meet and join [30].

‘Proof. Since M is an abelian monoid we may confine ourselves to the proof
of xaAyb=xbVya which follows by

(xaAyb)A(xbV ya) = (xaAybAxb)N (xaA ybA ya) =
= (xaA(yAx)b)V((xAy)aAyb) = xaA(xaV yb)A(xAy)(aV b)Ayb = xaA yb.
(Obviously, all we need is a common unit for any pair a, b.)

6.10. Corollary. A lattice semigroup S=(S, -, A\, V) is representable if and
only if the lattice (S, \,V) is distributive, multiplication distributes over meet and
Jjoin and in addition & satisfies the inclusion

(S0) ' xayAubv = xbyV uav,
for each quadruple x, y, u, v taken from S*. .

Proof. The laws under consideration guarantee P@ANG(b) <p(b)Vq(a) as is
easily seen.

6.11. Corollary. A4 lattice loop 8=(L, -, A, V) is representable if and only
if & satisfies the equations

(EH) x(axb)\(bxa)x = x, (axb)- xy/\(baka)x vy = xy, _
xy-(axb)Ax-y(axb) = xy [17].
Proof. It was already shown in Section 1 that multiplication and join dis-

tribute over meet and join. Furthermore the conditions are necessary. So it remains

4.
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to show that they are sufficient. Obviously this was done already by 6.4. But we
wish to give a direct proof of (EH)—(0).
To this end we consider £ as a lattice-ordered algebra (L, -, A, V, L, r,) (s€L).
We have to show
B(@AG®) = p(bV§(a).

Here, by the rules of loop arithmetic we may suppose p to be the identity mapping
and furthermore we can transform the general problem to the proof of

(a:b)ul(b:a)0 = (b:a)uV(a:b)b

where 0 is an innef mapping and u is equal to some (r(1))". So we may start from
alb, p(x)=xu and §(y)=y6, which leads to

aul\bl = x,x,°x, = a&x, = u,
aul\bl = (x,Ax,x,)(x,V1) = IVu = abV bu

since alb0 and af 1 b. (Recall: if a| b implies a) bf for the generating
inner mappings 0 then a | b implies a | b8 for all inner mappings 6.)

On the grounds of the preceding theorem one can start from (EH) and prove the
subdirect decomposition theorem for lattice loops by deducing (0) and applying
Theorem 6.8. But one has to notice that the proof given above applies the inner
mapping theorem which tells that the group of inner mappings is generated by
(G - xp)fy)]x, xyN\(x-y*) and (x-*)/x, see for instance [13].

Furthermore, applying 4.3 (and 1.29) we get as a special result

6.12. Corollary. Any complete divisibility semiloop (L, -, =,1) is repre-
sentable, and if moreover the chain condition for closed intervals is satisfied, (L, =, 1)
is a direct sum of atomic chains (recall 3.3).

Lattice quasigroups or lattice rings are not lattice-ordered algebras in the sense
of Definition 6.6. But sometimes a given structure can be turned to a lattice-ordered
algebra as was shown for instance for lattice quasigroups by splitting right and left
division into a set of operators. This idea might be fruitful also in other situations.
For example, consider a lattice semigroup &. Then by splitting its multiplication
into operators m, with m, (a):=xa any left congruence of & becomes a congruence
of (S, A, V,m,) (x€S) and vice versa any congruence of (S, A, V, m,) (x€S) may
be considered as a left congruence of &. This enables us to develop also results
based on left congruences, the most important being:

6.13. Corollary. Any distributive lattice monoid & is a lattice monoid-of chain
endomorphisms [9]. - :
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. Proof. Consider & as a lattice-ordered algebra (S, A, V, m,). This structure
satisfies condition (0) which is shown by copying the proof of 6.9. Hence there
are enough totally ordered residue systems which can be added to a chain C of
Ieft classes of S on which the elements of S act from the left. Thus & can be embedded
into the lattice semigroup of all order endomorphisms of C.

As an immediate consequence of 6.13 we get the celebrated theorem of Hor-.
LAND [25]:

6.14. Corollary. Any lattice group is a laitice group of chain automorphisms[25].

We now turn to lattice rings._ A ring is called partially ordered with respect to
= if it satisfies .
a=b-x+a=x+b and 0=gqa,b >0 = ab.

A partially ordered ring is called a lattice ring if = defines a lattice order. Obviously
multiplication is not isotone. On the other hand multiplication is completely deter-
mined once it is defined on the positive cone. Hence any homomorphic image is
completely determined by the image of the cone. So it makes sense to consider a
latticering R as an algebra (R, +, A, V, 1y, L) where r.(a):=ax* andl (a):=x"*a.
Then R is a lattice-ordered algebra but R need not be distributive since /, and r,
need not distribute over A and V. (Consider for instance the ring of 2X2-matrices
over the real field with respect to A=B if a,=b,, 1=i=2, 1=k=2) To yield
this we look for a further condition. Here we succeed by considering the positive
cone of R.

6.15. Lemma. Let R be a lattice ring. Then (R, +, A, V, 1., r) is a dis-
tributive lattice-ordered algebra in the above sense iff it satisfies

L) ct(axb)Ac*(bxa) = 0 = (axb)cTA(bxa)c™.

Proof. Suppose that (L) is valid and that ¢ is positive. Then we obtain, for

example:
' caAch = c((aAb)+axb)Ac((aAb)+bxa) =

= (c(aAb)+c(axb))A(c(@aAb)+c(bxa)) =
= c(aAb)+(c(axb)Ac(bxa)) = c(aAb)
caVch = (ca+cb)—(calch) = c(a+b)—c(a/\b) =
= c((a+b)—(a/\B)) = c(aVb).
Hence, applying Theorem 6.8 we get:

and thereby

-6.16. Corollary. A lattice ring is a function ring (is representable) iff it satz.gﬁes
the conditions (L) and (0), briefly (L, 0).
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Corollary 6.16 characterizes the function ring along the lines of this paper.
This was done by a different condition in a basic paper published by BIRKHOFF and
PierCE [6], and by a further condition in Fucas [19] where also the equivalence of
these two conditions is proved. To this equivalence proof we now add a further one
by showing

(BP) _ alb-ctalb & ac*lb

(Birkhoff—Pierce) and condition (L, 0) to be equivalent.
6.17. Remark. There is a short direct proof of (BP)«(L, 6).

Proof. We shall treat the associative case. However, the reader should notice
that associativity is by no means essential, only pleasant for the demonstration.
Let R satisfy (BP). Then (L) is obvious. Furthermoré it is easy to see that the
polynomials in (0) are of type c;"xc; +s. Hence, after some simple calculation (0)
is reduced to
(cracs+u)A\d, bdy, = (¢, bey+u)Vd ad,

for positive elements ¢,, ¢, d;, d, and orthogonal pairs a, b. But because of (BP)
we may omit c,ac, on the left side (apply Lemma 1.3). Hence condition (0) is sat-
i1sfied, too. _

Let now R satisfy (L, 0). Then (BP) follows by

ctaAb = c*bVa - ctaAb = (ctaAbActb)V(ctaAbAa) =
- = (c*(aAb)Ab)V(c*taN0) = 0.

- We turn to complementary semigroups (S, -, %, :). Complementary semi-
groups were introduced in [7] as monoids satisfying aS=S8a in which for any
pair a, b there exist uniquely determined elements axb and b:a such that blax<«
<«>axb|x and b|xa<b:alx. Complementary semigroups are partially ordered with
respect to a=be:alb, and a=b is equivalent to bxa=1 and to a:b=1 as
well. Furthermore (S, =) forms a semilattice under aVb:=a(axb)=(b:a)a. In
addition the following distributivity laws hold:

a(bVc) =abVac & (aVbh)c = acVbe
and :
a*(ch)=aaxebVae|eg & (aVb):c=a:cVb:c.

Therefore, defining operators ¢ and ¢} by ci(a)=x*a and c(d)= a:x, any
complementary semigroup may be considered as a distributive V-semilattice-ordered
algebra (S, -,ck,c., V). However, we have to show that the congruences of
(S, -, ck,ci) are congruences of (S, -, %, :). as well. Here we succeed by the
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formula ax(b:c)=(a%b):c which results from

x =z ax(b:¢c)«ax = bic+axc = b+ x = (axb):c.
To see this, let = be a congruence of (S, -, c},c.). Then we have -
a=b—>axb=1=bxa (~bia=1=a:b)—>a=alaxb) = b(bxa) =b,
and thereby A

a=b—-axb=1-(axc):(bxc)= a*(c:tb*c)) = 1.

Hence, by duality we get (b*c):(axc)=1 which leads to axc=bxc. .

Special complementary semigroups are the lattice group cones under axb:=1V
Va='b and b:a:=1Vba~! on the one hand, and the brouwerian semilattices on
the other hand. .

Complementary semigroups need not be A-closed, but products of totally
ordered complementary semigroups necessarily satisfy axb | bxa which is equiv-
alent to a:5 1 b:a and also to a:(bxa)Vb:(axb)=alb. Moreover, in this case
further distributivity laws hold, namely:

a(bAc) = abAac & (aAb)c = acAbe,

ax(bAc) = axbAdxc & (aAb):c =a:cAb:c,
and : ‘
aA(bVe) = (aAb)V(aAc).

Therefore complementary semigroups with a representation may be regarded as
distributive lattice-ordered algebras (S, -, cy,c.), and we get as an immediate
consequence '

6.18. Corollary. A complementary semigroup is representable if and only if the
Jollowing implication holds:

(0v) x = p(a), §(b) - x = p(b)V4(a)-
Proof. x=axb, bxa—»x=axaVbxb=1.
This corollary provides as a further characterization

6.18. Corollary. 4 complementary semigroup is representable if and only if it
satisfies the equation

(0°) (axb)xxV(cx(bxa)cVe(bxa):c)xx = x [8].

Proof. (a) Axiom (0V) implies nearly immediately (01) cx(axb)c 1 bxal.
Lc(axb):c. Hence (0°) can be inferred from

(0 - (axbA(cx(bxa)cVe(bxa)ic)) xx = x.
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(b) Axiom (0°) implies axb | bxa whénce. (S, =) is A-closed, and we ob-

serve that B :
() x*yz = (x%y)z and zy:x = z(y:x)
holds in any case, that ' '
- (i) cat =atc

holds according to (0+), and that

(ili) any j(a) can be extended to some ...x;((xz* (x;@)xy:X,)... .
Hence we may start from a pair 5(a), §(b) with @ b. But, applying (i) and (ii)
again and again this leads to j(a)Ag(b)=a*f(1)Ab*§(1) with a* 1 b* hence

ﬁ(a)/\q(b) = xaxp = x,,xq? xa = a*s xp §ﬁ(1)’ xb = b*’ 'xq = q(l)9
which yields '
" F@AG() = (xaAx)(x,Vx) = F()VG(L) = F(bIV §(a).

The method of proof shows that a lattice group is already representable if
atcScat. To see this look at (S0) in 6.10. Furthermore we see that (0°) is equiv-
alent to al b—~(axc)xc L b & c:(c:a) L b, since axbx=(axb)((b*a)xx) & cb:a=
=(c:(a:b))(b:a). ' '

<t As an immediate consequence we get

6.19. Corollary. An abelian complementary semigroup is representable if and
only if it satisfies axb | bxa.

Since 6.19 is a direct consequence no proof is needed. But it should be mentioned
that in the commutative case axb | bxa—(0Y) has a short proof by the formulas
(axb)x(axc)=(bxa)x(bxc) and abxc=bx(axc).

Next, applying 6.19 to-boolean algebras (B, V, *) (where axb:=a’Ab), we
can state the celebrated theorem of Stone:

6.20. Corollary. Any boolean algebra is a subdirect product of 2-element ones,
and hence a field of sets [36]. '

In a similar manner one shows that normally residuated lattices [12] are distri-
butive lattice-ordered algebras whence 6.8 applies also to these structures. Further-
more -one easily sees that dually residuated semigroups [37] may be regarded as
extended complementary semigroups by adding axb:=0Vb—a. Therefore we get

6.21. Cordllary. A dually residuated (commutative) semigroup is representable
if and only if it satisfies a—bAb—a=0 [37).

We consider cone algebras (C, *, ) Théy were introduced in [11] and turned
out to be *, :-subalgebras of some lattice group cone (P, -, *, :). Any cone alge-
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bra is A-closed with respect to aAb:=a:(bxa)=(b:a)xb but a cone algebra need
not form a lattice. However aVb is contained in C if {a, b} is upper bounded,
and abeC implies that the elements x and y with xa=ab=>by are contained in C.
So we may apply 6.18 once a prime filter is guaranteed containing b yet not con-
taining a, whenever aZb. But this is an easy consequence of maximality, smce
given a filter F maximal with respect to not containing a we get

xXVyeF - xA\fi = a& yAfo = a - XN )AfilfD) = a,
a contradiction. Thus we are led to

6.22. Corollary. A cone algebra is representable if and only if it satisfies
(CO) axb 1 a:b.

(Observe that this condition is equivalent to (aAb)?=a?Ab? in lattice group cones
and lattice groups as well, and observe furthermore that this equation is equivalent
to aaAbb=abV ab.)

Proof. Any complementary semigroup satisfies cb:a=(c:(a:b))(b:a), and the
method of 6.18 works also in the present case which is shown by cone algebra tech-
nique. Hence by the last footnote it suffices to prove the implication a1 b—a i
Lc:(c:b). But this can be done as follows: a1 b implies

c:(c:a)x(aNc:(c:b)) = (aAe)A(c:(c:a))x(c:(c:b)) =

= (c:a)*(c:b)A(c:a):(c:b) = 1,
whence .
ale:(c:b) = ahc:(c:b)Aci(c:a) = c:(c:(bAa)) = 1.

Final remark. Obviously the principle of 6.8 works whenever a partially

ordered algebra — this may be an arbitrary algebra with respect to.= — has enough
order ideals (order filters), i.e. o-ideals' (o-filters), M satisfying
® Pb)eM3g(a)eM ~ j(a)eM Ag(b)eM

If M is a prime ideal in the sense of (P) then A—M is a prime filter in the sense
of (P) and vice versa, and we see nearly immediately that the set of prime ideals
(prime filters) is closed under intersections and unions of chains of prime ideals
(prime filters).

Let us suppose now that U has enough prime ideals. Then the partially ordered
algebra 9 is representable and "hence admits an extension to some representable
distributive lattice-ordered algebra B. Therefore we should check how artificial this
condition is. To this end we present some applications which lead to well known
results.

6.23. Example. Any partially ordered set is a subdirect product of 2-element
chains, since any (a] is prime with respect to the identity operator.
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6.24. Example. Any V-semilattice is a subdirect product of 2-element chains,
since any (a] is prime in the sense of (P).

6.25. Example. A partially ordered abelian group ® is representable if and
only if it is semiclosed, i.e. iff it satisfies, for any’ n€ N, the implication

(SO a"=l-az=l

(The first proof of this result seems to be due to CLIFFORD [15]. Another proof was
given by Dieudonné in 1941, cf. [19].) '

Proof. Obviously (SC) is necessary. Suppose now that (SC) is satisfied and
azb. The set N of strictly negative elements is closed under multiplication, and
it is easily shown that ab~*, N and a~'b, N cannot both generate a submonoid
(with respect to multiplication). Hence there is a maximal subsemigroup MM con-
taining N and w.l.0.g. ab~! but not containing 1. We show that M is a prime ideal
in the sense of (P).

(i) M is an o-ideal, since u<v€M implies uv~'<1 & véM from which it
follows that (uwv~Y)v=ucM.

(ii) M is prime, since ax, bycM and ay,bx¢M would yield a k€N with
a*y~* b~*x~*¢ M whence a~*b* and a*b~* would both belong to M, a con-
tradiction. A ¢
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Onncande CKpelieHHbIX MPYNIOBLIX AJIredp
HAJl KOHEYHbLIMH HOJISIMH

| K. By3Amu | = T. KPAVC

Ilycts rpynma G COHNEpXHT OeCKOHEUHYIO IHKIMYECKYHO HOAIPYNIY KOHEY-
HOro uHuexca, K — npousBoibHOE moje (C HEKOTOPBIM OTrpaHUMYCHUEM Ha Xapak-
TepucTHKy). B pabore [1] moka3ano, 4To n3yyeHue KOHEUHONOPOXAEHHbIX KG-Mony-
Jiefl CBOAMTCA K HM3ydeHuro aureGp tuma E: CKpeleHHBIX TPYNNOBBIX ajare6p Hal
nosieM K 6o GeCkoOHeYHOH IUKINYECKOH IPyNmbl

' A= {F,a}; al=A%a;
nrbo GeckoHEYHO# rpynmbl AU3Apa
B={F,a,b}; al=41%a; biA=2b; b lab=1ya™'; b*=y,
rae F—Teno, colepxainee B cBoeM HeHTpe mojie K, A€ F — mpousBOIbHBIM,
¥, u€ F — puxcrupoBaHHble 3JIeMeHTHL, ¢ U ¥ — K-aBroMopdusMel Tena F.

B pabote [2] 6bimu onmmcansl Bce anrebpet THna E Haa nmojeM R BemecTBen-
HBIX vHceN, a B pabote [3] — Bce anrebprl Tuna E Han KoHe4HBIM moJsieM K, rae
F — pacumpenne nojs K crenenu 2. B cratbe [4] 6b11 paccMOTpeH Bonpoc 06 u3o-
mopdusme anreSp trna E, onucaHHbIXx B pabote [3].

B Hacrosueit paboTe onuceBalOTCA Bce anredpbl THoa E HajJ NPOW3BOJILHBIM
KOHEYHBIM HoJieM K 1o OTHOINeHnIO K Jiio6oMy KOHEYHOMY pacmupeHnuto F moss
K u BrIsICHEH Bonpoc 06 m3oMopdusMe 3TuX anredp.

1.

Jdemma 1. IIyemv K — xoneunoe nose xapaxmepucmuxu p(s2), F— xoney-
Hoe pacwupenue noaa K u 3adana cxkpewennaa zpynnosas aszebpa GeckoHeunoii
2pynnbl duedpa ' ‘

B={F,a,b}; al_=).“’a; bA=M¥b;, b~‘ab=1ya~l; b2=y,

Tloctymmno 27 mapra 1985 r.
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<
20e A€ F — npou3seonvnviii, y, p€ F — duxcuposannsie s1emenmsl, ¢ u y — K-asmo-
mopguzmet noan F. Tozoa K-asmomopduzmet ¢ u Yy mozym umems nopacox 2 uau
ABAAIOMCA MONCOECEEHHBIMU.

Hoka3zaTenbcTBo. Mcnmonb3ys onpeensiolue COOTHOIIEHHS anreGput B,
aMeeM b(bAb~Y)b~'=bA¥b~'=)¥". C npyroii cropornt b(bib~1)b~'b2Ab—%=
. =pip~'=1; 3maunTr A¥’=1, To ecTb Y MMeeT HOPSAOK 2 WIH TOXJECCTBEHHBIH
aBTOMOPQH3M. ‘
PaccMoTpuM aBToMopdusm ¢. C oauoit cropomst a(bib~Y)a~'=ai’a~'=
=A¥?, a ¢ npyroii CTOPOHLI
a(bibYa~t = (ab)A(ab)™r = (bya V) A(bya~1) 1 =
= bya~lAaA™1b~! = byle~'y~1b1=bie b1 = Jo~ VY,
3maunuT umeeM AY?=1° 'Y, Tak xak rpynma anroiwop:bmmon nosus F xommyTa-

THBHA, TO U3 HOCJEIHEr0 PaBeHCTBA MONYYaeM ¢ ®=1. 3HaudT @ nAUGO TOXKAECT-
BeHHBIA aBTOMOpdH3M noius F, mi6o nmeeT mopsnok 2. JleMma moxasaHa.

Jlemma 2. Hmeemca 3 ocHosHblx Kaacca CerWEHHblx 2pynnoguix aﬂee6p bec-
KoHeunoii zpynnel duedpa Had K no ommowenuto x noaro F:

0] B, ={F,a,b}; al=2a; bA=A1ib; b~*ab=9vya™'; b:=y;
) B, ={F,a,b}; al=2la; bi=172b; b tab=vya™'; b=y,
?3) .By={F,a,b}; ai=1a; bi=12b; blab=vyal; b*=y,

20e A€ F — npousgoasmsiit, y, € F — duxcuposannvie 3semenmst, A—+2 — K-agmo-
Mopgusm 2-2o0 nopaoka noaa F.

. Hoxka3aTtenbcTBO. U3 neMMeI 1 crenyeT, 9TO CyLIECTByeT TONBKO 4 OCHOB-
HBIC KJIacCa CKpPEICHHBIX I'PYHNNOBBIX anrebp OeckoHe4WHOM Ipymnbr Aueapa Hajg
mosieM K 1o oTHouleHuto K moiiro F: anre6psr By, B,, By u anredpa

(€)) B; = {F,a,b}; ai=1la; bA=2Ab; b lab=1ya™'; b=y,

onHako 3ameHa 6asuca a,=a; b,=ab anrebpy B; cBomut k Tuny B,. [eiicTBu
TeJbHO,

b A= (ab)A = aAb = X(ab) = Ib,, .
bila,b, = (ab)*a(ab) = b~'ab = ya~! = yai?,
b: = (ab): = abab = bya~lab = yb2 = yu = y,.

JleMMa nmoxazaHa.
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Mycte mopsimox monsa K paeer |K|=p™ m cremedb pacmmpenma (F:K)=n.
Toraa nopsmox nous F pasen |F|=p™ wu Bce K-aBTroMopdu3Mbl nojas F umeroT
Bug A—-A*" (i=0, 1, ...,n—1).

OueBunna cienyromas

Teopema 1. Bce anzebpvt muna E nao nosem K no ommowenuio x noawo F,
ABARIOWUECA CKPEUJEHHBIMU 2PYRNOGLIMU an2ebpamu becKoHeuHOl YUKAUYEeCKOT 2pynnbsl
(@), 3adaromca gopmyoii

E, = {F,a}; ai=A""a (A€F;i=0,1,..,n-1).

3aMeuanue 1. KBagpaThl 21eMeHTOB MyIbTHIUIMKATHBHOM rpynnsl F* mons
F oGpasyrot moarpynny F; rpynnst F* wagexca 2, 3Ha49uT rpymna F* pasmaraerca
B 00BeIUHEHHE CMEXHBIX KJIACCOB

F * = F 1U£ . F 1,
rae £€ F* — ¢murcHpOBaHHBIA KBaJpaTHbIM HEBBIYET B molie F.

Teopema 2. Ocrosnoil ksacc By aszedp muna E (cm. (1)) csodumca k munam

anzebp :
A4, = {F,a,b}; al=la; bl=2b; b lab=a"1; b2=1,

Ay, = {F,a,b}; al=2a; bl=2Ab; b lab=~¢a"t; b?=1;
A; = {F,a,b}; al=2a; bA=2Ab; b~lab=a"'; b2=¢;
20e AcF, &€ — gpurcuposannuiii xgadpammuuiii Heeviuem 8 noae F.

Hdoka3ateabcTBO. B 3aBHCHMOCTH OT TOI'O, 3JEMEHT y anreOpel B; JeXHT
B moarpynmne F; (cM. 3amevaHne 1) wim HeT, 3aMeHa (asuca a,=a, b1=;/;7‘_1-b
I a,=a; bl=]/f_-1-b, rae p=¢-f; f€F,, UpUBOOUT K COOTHOMEHuIM bi=1
wix bi=¢ B anreGpe B;, IpuueM oCTalbHbIE COOTHOIIEHAS HE H3MEHSIOTCA.

Tenepb, B 3aBUCHMOCTH OT TOTO, 9JIEMEHT Y JICKUT B MOArpynie F; WM HeT,
clenaeM onATh 3aMeHa Gasuca a,=Vy~' a; b=b, mmm a,=Vf['a; by=brne
y=¢&-f1, /1€ Fy, 9TO BeneT Kk cooTHomeHusM brlayby=ar* wm bilayby=¢& a7t
' B xoHeuHOM cueTe MonydyaeM anreOpel THNOB A;, Ay, A5 u anredpy

Aj={F,a,b}; al=2a; bl=2b; b lab=¢a"'; b2=¢,
OIHAKO HOBas 3aMeHa Gasuca a,=a; b;=E&"'ab:
(E-1ab)® = £~2abab = ¢~2béa~lab = (1b2 = 1
IpUBOIMT 3Ty anredpy x Tuny 4,. Teopema noka3ana.

3aMeuanne 2. Eciy creneHs pacimpeHHst OCHOBHOTO HoJia K HedeHoe YHCho:
(F:K)=2k+1, T0 BCe anrebprl Tuna E Haxg moyseM K mo oTHOLIEHMIO K moyio F
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ocuepnrBaroTcs aarebpamu THnoB E;, 4,, A,, A3 (i=0,1,...,n—1), omucaBHEIX
B TeopeMax 1 1 2.

HIoka3zaTenbcTBo. Tak kak rpynna K-aBromMopdn3MoB mosst F uMeeT nops-
ook 2k+1, to K-aBromMopdu3MoB BToporo mopspaka mnojie F He mMeeT. 3HAUUT
OCHOBHBIX KJ1accoB B, u B; anre6p Tuna E B 3T0M Clly4ae HE CYLUECTBYET.

PaccMOTpuUM ciyuaif, KOraa creleHb paciuuperus nois K — 4eTHOe YHCHO:
(F:K)=2k. Torga K-aBToMop¢u3M BTOporo mopsaka nons I umeeT Bun A 2P,

B nanbHeiiineM OyneM NMOnb30BaThCA Cielylolleld JeMMoOH, koTopasd aBaseTcs
YaCTHEIM ClydaeM HM3BECTHOIO pe3yiabTaTa 06 aBroMOpdH3Max KOHEYHOIO IOp-
SANIKA.

Jlemma 3. IIycmo ssemenm o€ F evidepacusaem K-asmomopgpusm ¢ emopozo
nopaoxa noas F. Tozoa cywecmeyem maxoii snemenm BEF, 0aa xomopozo @vi-
NOAHAEMCA PABEHCMEO

) a=p-p°

JemMma 4. Ocuosnvie kaaccot By u By aseebp muna E (cm. (2) u (3)) ceodamea
K ocHogHbiM Kaaccam aszebp muna E nao K:

By={F,a,b}; ai=2ia; bA=2""b; b~lab=ya™'; b =1;
B, = {F,a,b}; al=2"*"a; bA=Ai""b; b~lab=ya"l; b=1,
20e A€ F — npoussoavnbiii, y€ F — uxcuposannviii s1emenm.

Joka3aTenbcTBO. B anrebpax B, u B, 3IeMEeHT y BLIAEPKHBaeT aBTOMOD-
dusm p—p?". JlelicTeuTensHo, p? " =bub~'=bb?b—'=b?=p. Ho Torma m ane-
MeHT p~' BBIIEPXKHBAET 3TOT aBTOMOpPGM3M, H, corjacHo Jlemme 3, CymecTByeT
Taxoit aneMenT j,€F, uto pu~l=p, - u{"‘ . ChenaeM 3ameRy 6asuca a,=a; by=u, b
B oboux anrebpax B,, Bj:

b} = (1 b)® = by b = b = pp =1,
brla,by = (b)) ta(u b) = b urtay b = b~Yab = ya~! = ya;?
B anrebpe B,, a B anrebpe B,
bita,b, = (Il;b)_la(ﬂlb) =b lurtamb = u;""’"-ﬂlb‘lab = pnarl
IUia HexoToporo y,€F. JlemMma nmoxa3aHa.
Teopema 3. Obwuii kaacc arzebp B, ( oM. JIEMM-y 4) ceodumca k anrzebpe muna

A= {F,a,b}; ai=1la; bi=2*"b; b-lab=a"1; b=1 (ACF).
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HdoxasaTtenbcrso. ITokaxem, yTo B anrebpe B, 3NMEMEHT y BHIAEPXKHBAET
aBTOMOp¢H3M y—»y”" . JIelCTBHUTENBHO, C OJHON CTOPOHbI
b-1(b~tab)b = b~lya~lb = yP"(ya~N) "l = yP"ay~t = yP".y 1. q,

a c npyroit ctoponst b='(b—'‘ab)b=b-2ab®=gq. 3maautr """ .y-'=1 To ecTh
pEm
Y =7
Torpa, MCMoONb3ys JNeMMy 3, Jis 3JeMeHTa =) CyHIeCTBYeT Takoil 3neMeHT
71€F, aro y~'=y,.9?". Cuenaem Tenepb moACTaHOBKY a,=%,a; b, =b n monyyaem

bila,b, = b(y,a)b = yP"-y7la =y 9y P a1 = (y,0) 7 = ap
Teopema mokazana.

TeopeMa 4. O6wuii kaacc anzebp By (cm. Jlemmy 4) ceodumea x anzebpam
munoe

As={F,a,b}; al=2"".a; bl=21b; b lab=a"1; b:=1,
Ag={F,a,b}; al=2"".a; bA=2#"-b; b~lab=¢a™'; b*=1,

20e AEF — npouzsoavtuvli 3aeMenm, & — GuUKCUposanvlil keadpamuvlii HeGuiYem
nose F,

Hokasatenscrpo. Ecan aneMeHT y B anrebpe B, stBasieTcst KBaApaToM B IOJsie
F, To moacravoBka a,=a-}y~*; b=b anreGpy B; coaut k anrebpe Tuna

A;={F,a,b}; al=2A"".a; bl=2A"".b; b lab=a"'; b2=1.
HeiicTBUTENIBHO,
b'ayb, = b-1(aV7T)b = ya=t- V7" =y Yy T at = (a5T) " = apt
OpHako JOTMONbHMTENbHAA 3aMeHa a,=a;, b,=ab anrebpy A ; CBOJHT k anrebpe A;:
(ab)A = al?™b = A(ab); (ab)'a(ab)=b"lab=a™1,

Ecii %e IeMeHT y He ABISeTcA KBaapaToM B nofte F, To y=&f, fe F, (cm. (4)),
¥ 3ameHa Gasuca al=a}/f——1; b,=b anreGpy B; cBoauMT K anrebpe Ag:

bi'aby = b (af)b = ya T =
=yVfTat = ¢Yfat = ¢(aVf) 7 = éai
Teopema mokasaHa. '

CnepnctBue 1. Bce arzebput muna E naod xoneunsim nosem K xapakmepucmuxu
p(3£2) no omnowenuio x noao F, 20e |K|=p™, (F:K)=n umerom guod:

5
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ITpu neyemuom n: , _
E;={F,a}; aA=2"".a (JF;i=0,1,..,n-1),
A, = {F,a,b}; al=2a; bA=2Ab; b~ lab=a"1'; b®=1,
A, ={F,a,b}; al=1lda; bi=2b; b lab=¢a'; b*=
A= {F,a,b}; al=2a; bA=Ab; b~lab=a"'; b®=¢

20e y€F— npoussoavhbiii 51emenm, & — duxcuposanmviii Keadpammoiil Hegbluem 6
nose F. Aazebpa E,— 2pynnosan anzebpa Geckoneunoii yuxauveckoti epynnet (Q)
nad nosem F, E; (i=1,2, ..., n—1) — ckpewjennvie zpynnogvie aazebpwvi zpynnvt (a)
Hao noaem F. Anzebpa A, — 2pynnosan aszebpa beckoneuroii epynnsl dusdopa D Had
nosem F; A,, A3 — cxkpeujennvie zpynnoguie aszebpel zpynnvt D nao F.
Hpu uemnoii cmenenu n=2k pacwupenus nosa K: Azzebpw E; (i=0, 1, ey B 1,
A19 A2’ AS u . .
Ay ={F,a,b}; aA=24a; bA=21".b; b lab=a"1; b*=1,
Ag={F,a,b}; aA=21"".a; bi=1b; b~lab=a"'; b*=1,
Ag={F,a,b}; aAl=2"".a; bl=21"".b; b lab=¢a"l; b2=1,

20e y€F — npoussoavuvlii 31emenm, & — duxcuposanmviii keadpammvlii Heevivem 6
nose F. Anzebpwr A,, A;, Ag— cxpewjennvie zpynnogsie a/tze6pb1 epynnot D Hao
noaem F.

2. .
B sTtom maparpade paCCMOTpi/IM Bompoc 06 w3omopdusme K-anrebp E;, A;
@(i=0,1,...,n—1;j=1,2,...,6). B panbHeitiueM 6yaeM moJib30BaTHCH cneny}omeu
JIeMMoit, KoTopas JokasniBaercs B paborte [1].

JlemMa 5. IMyemo A={F, a, b}; b*=1 — anzebpa muna E c deaumeramu nyaa.
Toz0a cywecmeyem He 6oAee uemvlpex NONAPHO HeuzomopPuvix A-modyaeii M,
AgAAIoUuxca cgobooHsiLMu yukauueckumy F(a)- mooyaamu. Ecau 0as nexomopozo
anemenma yEF ewvinosnnemcea paeeHcmeo (yab)’=1, mo A-modyas M uzomoppen
00HOMY U3 Mooyaeti

I = A(1+b); L= A(1-b); I = A(l+vyab); I, = A(1—yab).
B npomusHom cayuae modyse M uzomopgen ooHomy uz moodyaeil I, I,. Modyau
I, u I, (coomeemcmeenno I, u I,) He uzomopgner mozda u moavko mozoa, xo20a

anemenm b (coomsemcmeento yab) nepecmariosouer co ecemu Inemenmamu noaa F.
Kaxcowiii uz modyaeii I, I, ne usomopgen nu odnomy u3 modyaeii I, I,.

Taxxe u3 pabotst [1] ciexyet
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JlemMma 6. IIycmv A={F,a,b}; b"‘=l u B={F,a, b}; b*=1— uzomopgdusie
anzebper muna E nao nosem K. Tozda uucaa neusomopgnvix A-moodyaeit u B-mody-
Aeil, AGAANWUXCA c80000HBIMYU YukauuecKumu F(a)-mooyaramu, pasuot.

. TeopemMa 6. Aazebpa Ey ne K-uzomopgna nu oouoit uz anzebp E; (i=1,2, ...
wwn—1), 4; (j=1,2,...,6). '

HokasatenbcTBo. Anrebpa E, koMMyTaTuBHa, a Bce anrebpul E;, A;
((=12,..,n-1; j=1,2,...,,6) He KoMMyTaTuBHBL Tax kak Ipum H30Mopdu3Me
KOMMYTaTHBHOCTb ajre0p COXpaHSETCH, TO TEOpeMa OYEBHAHA.

TeopeMa 6. Aszebper E; (i=1,2,...,n—1) nonapno K-uzomopgnvi aazeb-
pam E; (j=1,2,...,n—1), i#j, mozda u moavko mozda, xozda j=n—i, u no-
napno e K-uzomopguvr anzespam A, (I=1, ..., 6).

HoxasaTenbcTBo. CHa"aNa JOKaXXKeM, NIEPBOE YTBEPXKICHUE TEOPEMEL. ITycts
Ei= {F, al}; alﬂ.=/1"""~a1 (AEF), Ej={F, az}; a21=)~P!m-a2 (AEF)

s duxcuposamubix i#j (i,j=1,2,...,n—1), 1 umeer mecto K-msomopdusm
¢: E;~E;. Tak kak MHOXECTBO 3JIEMEHTOB KOHEYHOTO NMOpsiAKa B oGoux amreG-
pax coBmajmaer ¢ moireM F, To orpammdeHue ¢y K-m3oMopdusma ¢ Ha moje F
asnsaércs K-aproMopdusmom nonst F. 3HaunT Ha nosie F usoMopdusM ¢ 3apaercs
B BUfE @: A~AP", rae s — ¢ukcupoBaHHoe HaTypaibHoe umcio (1=s=n). Bce
obpaTumble 37eMeHTEL B E; uMeroT Bua Oa; (0€F). Tak kak afeMeHT g obpatum
B E, 10 ¢(a)=da; (6€F). Omnaxo ¢(a})=(0a})’=05,dyf. OnemeHTHl BHOA
2 6,4 He UCUEpPNBLIBAIOT BCE 3JIEMEHTHI aureGpel E; Tonbko B ciaydae r=41,

v
no3ToMy npu u3oMopdusme ¢ anrebp E; u E; JO/DKHO BHIIONHATECE ¢ (a,)=0da,,
uma ¢(a)=3da;'. PaccMOTpHM mepBblil Ciyyaii.

C oaHOil CTOPOHB! Iyt NpOM3BONBHOTO A€F uMeeMm

o(adar) = o(a) (N p(a) ™ = 62y 2" " az16= = (Y571 = 27

.C Apyroii CTOpOHbI
(P(al }.(11_1) = (p(,{pm) — (AP‘"‘)p‘"‘ - j.p('“)m
CrnenoBaTeNbHO .
P(S'H)"’ = p(S+J')m (mod p"™—1),

q1o o3Ha"aeT p""—1|p¢-H™_1, Tak xak 1=i#j=n, To mocjeHee HeBO3MOKHO.
PaccMoTpuM Tenepb ciydail ¢(a;)=da; . IIoBTOpSi pacCyxpaeHus, cAelaH-
HBI¢ B NpeAbIAYLIEM ClyYae, NPHXOAUM K CPaBHEHHUIO

peTIm = pl=Pm (mod p™—1),

5
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KOTOpOe BHINOJHAETCS TOrAA M TOJbKO TOrAa, korga j= —i (mod n). DTo 3HAYHT,
aro E;~E; Torhaa u TolbKo TOrja, Korma i=n-—i.

IlokaxeM Temeps, yto Kaxzaas anrebpa E; (i=1,...,n—1) me K-uzomopdua
HA ofHOU u3 amrebp A4,, A,, ..., As. HelcTButensio, anrebpa E; He COAEPXKUT
JesuTeNeil Hyns, 3HAa4YUT OHa He MoxeT OwTh K-n3omopdHa HH oAHOH M3 aiareGp
Ay, Ay, Ay, A5, Ag, TaK KaK BCE OHH COJEpXKaT AejiuTesield ByJis (Harxp. (1+b).
-(1-b)=0). '

Octanochk nokasath, 4ro anrebpel E; (i=1,2,...,n—1) He K-msomopdhs
anrebpe As. JeiicTBUTENbHO, NYCTh ¢@: As—F; K-mzomopdusm anrebpsl, 3ajJaH-
HOH COOTHOLUEHUSIMH .

A3 = {F, a,, b]}; all = Ilal; b]_)u = )ubl; bflalbl = al—l; b2 = 6

¢!
ga anrebpy E;={F,a}; al=AP".a. Tax xak aneMeHTHl @, U b; 06paTHMHI B aJi-
rebpe A;, T0 uX 0o6pa3bl ToXe o6paTuMbl ‘B E;, TO ecTh

o(a) = da*; (b)) = 0.a% (8, 6,€F).
Torpa, ¢ oHOI CTOPOHBI
o(bitaby) = (b)) @(a)@(b,) = a=*18:18a%6,a% = 6ya°
IS HEKOTOPOTO 3NeMeHTa 0,€F, a ¢ npyroii CTOpOHEI
o(brra b)) = p(a7) =(Ba’)y L =a=56"1 = §;a~° (6,6 F).

CpaBsHuBas ABa paBEHCTBA, HmojyuaeM s= —s, To ectb s=0. CnenoBaTenbHo,
¢(a,)=6. OpHako, B none F aeMeHT ¢ MMeeT KOHEUHBIH NOPSNOK, KOTa 3J€MEHT
a, — OGeckoHevHOTro mnopsigka B anredpe A,. IlpoTusopeuwe OoKa3bIBaeT HEW30-
mopoHocTh anrebp E; u A;. Teopema noxa3aHa.

Jlemma 7. UYucao n; Ay-modyaeii (i=1,2,4,5,6), aersomyuxca ceo600-
HuIMu yuxaudeckumu F(a)-modyaamu, 3adaemcsa caedyowmyum obpazom:
1. ny=4, onu uzomopgduvl MoOyAAMm

IM = A,(1+b); I =A4,(1-b); I = A;(14+ab); I{P = A4,(1—ab).
2. ny=2, OHU U30MODPEHHLI MOOYAAM
| IP® = A,(1+b); IfP = A,(1-b).
3. ny=2, onu uzomopduvl mooyaam
I® = 4,(1+b); I® = A,(1+ab),
4. ny=3, onu uzomopdrsl MoOYAAM

I = A(14+b); IP = 4(1-b); I = A;(1+ab).
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5. ng=1, on uzomopgen modymo
I® = A4;(1+b).

HOoxa3aTenbcTBo. Tak kak B anrebpe A4, BEHINOJHAIOTCS paseHcTBa b®=]1,
(ab)’=1, xpome TOro 31eMeHTHI b M ab MEePeCTAHOBOYHLI CO BCEMH BIIEMEHTAMH
nonst F, To, cornacao Jlemme 5, yTBepxaeHue 1 nokasaHo.

IToxaxeM, 4To B anrebpe A, HET TAKHX 3EMEHTOB yEF, uto (yab)’=1. IeiicT-

BUTEJIBHO, ‘
(yab)? = y2abab = y?*b€a—lab = y2Eb? = y2¢ =1,

To ecTh P2€¢~1. Ommako ToClHedHee PABEHCTBO IPOTHBOPEIHT TOMY, UTO BHCMCHT
¢ — xBaapaTHEIA HeBbYeT B mosie F. Tak kak B anrebpe A, umeer mecro b*=1 u
3NEMEHT b MepecTaHOBOYEH CO BCeMH dJieMeHTaMu noiig F, To, ACONb3ysa JIeMMy 5,
OTCIOJA TOJIy4aeM yTBepxkAeHe 2 NEMMBI.

B anreGpe A, Bomonnsercs b?=1 u (ab)®=1, Ho HE 3MeMeHT b, HH 37TEMEHT
ab He 1epecTAaHOBOYHBLI CO BCEMH anementamu monst F. 3HauuT, corjiacao JlemMe 5,
HMEET MECTO YTBEpXKAECHHE 3 JIEMMBL.

B anrebpe A4, Bumonusiorca paseHctsa b®=1 m (ab)®=1, anement b mepe-
CTaHOBOYeH CO BceMd seMeHTamy mois F, ogsako (ab)A=aib=2A""(ab), 3navur -
H3 JEMMBI 5 cnenyeT yTBepX AcHUE 4 JIEMMBL

ITokaxeM, uTto B anrebpe A, HET Takux 3AeMeHTOB yE€F, uro (yab)’=l.
,I[eHCTBnTenLHO,

(yab)? = yabyab = yay?*" bab = yy?*"abab = y*bfa~lab = yzﬁ?’“” =1,

TO €CTh y2=£""" . DnemeHr & ;KBanpaTHLIﬁ HeBbIueT B moJie F. Kaxawtii npumn-
“THBHBIH 371eMeHT moJist F iexuT B cMexxHOM Kiacce & - F; (cM. 3amedanne 1), 3HAUAT
MOXHO CYHTaTh, YTO 3JeMeHT & — NpUMHWTHBHEIN B node F. VlmeM 3jieMeHT y
B Buge y=¢&. Torma ¢¥=¢-P", uTo BeNeT K CPAaBHEHHIO

2s = —p"™ (mod p”""— 1).

Tak xak HamGombmumit o6t DenATeNDb 2, p*™—1)=2, HO 4HCIO p — HeYeTHo,
TO moCieaHee CpasHEHHE Hepa3peIInMo.

B anrebpe A4, BuIONHAETCS paBeHCTBO b =1, HO 31eMeHT b He TepecTano-
BOY€EH CO BCEMH dJIeMEHTaMH Tojs F, O3TOMY H3 JIEMMEI 5 ClieiyeT yTBEPXKACHHE 5
geMMbl. Jlemma fJoka3aHa. '

TeopeMa 7. Aazebpur Ay, A,, ..., Ag nonapuo ue K-uzomopguet.

IokasaTenbpcTBo. ITokaxkeM cHayana, 9To anrebpa 4 He COAEPXHUT HCIH-
Teneit Hyns. Tak kak Bce anareOpul A, Ay, Ay, A5, Ag comepxar nenuTened Hyns,
To U3 3Toro OymeT clenoBaTh Hem3oMophHOCTh anrebphl A; ¢ anrebpamm 4,
(i=1,2,4,5,6).
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ITycts L — mojie 4acTHEBIX TpynnoBoii anrebpr! F(a) 6eckoHeqHOM MUKIHIeCKOR
rpynnsl (@) Hag moneM F. Torpa anrebpa A; nmorpyxaercs B aiarebpy

©) ~ A4={Lb}, b=

KOTOpas SBNAETCA CKPEIleHHBIM Npou3BeldeHHeM moas L ¢ aBToMopdu3MOM BTO-
pOro mopszxa, MOPOXACHHBIM JJEMEHTOM b.

CornacHo o6ueii Teopun anredp, A4 sBasiercs 1100 MOJHBIM MATPHYHBIM KOJIb-
DOM BTOPOTO TMopsaka (M Toraa HMeeT ACNUTENeH HyJif), MO0 TeJoM (CM. HaNpu-
mep [5]). ITepBas BO3MOXHOCTh HMEET MECTO TOTAa ¥ TOJbKO TOrja, KOorjga sje-
MEHT §(CM. (6)) €CTh HOpMa ISt HEKOTODPOTO JleMeHTa X€L OTHOCHTEIBHO aBTO-
Mopbpusma A1, To ecTh

@) E=x.-xb

Ilycte
2 lia‘
x= —Z‘-Ea—, (%, u;€F).
p]

IlopctaBuM BeIpaxkeHne demMeHTa X B dopmyny (7):
> hat 3 lat
[] i
. —=¢
2 wal el T
J J
OTKyO2 IIOJIy4aeM DaBeHCTBO

®) 3na- 3 et = 3y Zuja"

B IpyImoBoii anre6bpe F(a). Tak xax F(a) — KoJNBIO IVIABHEIX MAEATIOB, TO JIEMEHT
2 A;@' ONHO3HAYHO (C TOYHOCTBIO OO EJWHHI[ KOJIBIA) HpEACTABIACTCA B BHIAE
i . .

IPOM3BEICHUS IPOCTHX 3JIEMEHTOB
9) ;’Aia';t-pl-...-p,, (pi€ F(a), T F).

Torpma nesas cropoHa pasencTsa (9) mmeeT BHR 72-p;-....p,-pb-...- p°. Beuny
OIHO3HAYHOCTH Pa3JIoXCHHS 3JIeMEHTOB Kojbma F(a) B mpoW3BedeHHE IPOCTHIX
37IEMEHTOB, NpaBas CTOPOHA paBeHCTBA (8) pasnaraeTcs B IpOM3BEHNEHHE TEX XK€
HOPOCTHIX 3JIEMEHTOB Koiyibla F(a) mpHYeM C TOYHOCTLIO A0 KOHCTAHT 3 F, 4To H
nepad cTopoHa, ubo mpm

%’u_,af =dab-py+... p,

aBTOMOpdHEH 06pa3 3TOro deMeHTa HMEET BHIL
b —b
(Z #;a') = éa P,
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TO €CTh TIPUXOAUM K DaBEHCTBY

2 pree Py Py Py =8:0% P15 Py oo PR
Otcrona caenyer 1:3—552 Tax xak ¢ — KBaJIpaTHBI HEBBIYET B 10J1e F, TO mocues-
Hee PAaBEHCTBO HEBO3MOXKHO. IIpoTHBOpeuue noxan,maeT uTo anrebpa He Comep-
xch RenuTenei Hyns. :

Cornacio nemme 7, 4ucno HemsoMopdHbix A;-momyneit (i=1,2,4,5,6),
SBIAFOLIAXCA  CBOOONHBIMH IMKIAYeckaMH F(a)-MonynsMmu mnd 3Tux MogyJieit
HoNapHO pa3iuyaeTcss, kpome anuredp. 4; u A,. Ilostomy, cormacHo nemme 6,
cpenu anrebp Ay, Ay, Ay; Ag, Ag MOTYT - ObITE - K-H30MOPDHEI TOJIBKO anrerH
Ay B Ay
" QueBHOHO, UEHTP anreopnr A, connanaer c HOJICM F 3HAUMT 9HCIO0 oGpam-
MBIX 3JIEMEHTOB LEHTpa anrebpel A, paBHo p™™ —1. _

"B to *xe Bpems, ecau 6 — NPUMHTHBHBIA 35eMeHT nong F, To rpynna BCex
' OGpaTHMBIX 3/TEMEHTOB LEHTpa anrebpsl A, IOpoxaeTcs siemMeHToM OP"*1,
rae n=2k. JeACTBHTEILHO, U3 PAaBCHCTBA ‘

b.6* = (65)""-b = 6%b
CleflyeT CpaBHEHHE .
x(p"™—1)=0 (modp™—1)
HIIH
x=0 (modp*+1).

3HAYKT, YHCIO BCEX OOPATHMBIX 3JIEMEHTOB LEHTPa anreGpel pasHo wuciay p*™=1.

Tak xak npu m3oMopdu3Me LEHTpaJbHbIE 3JEMEHTH MEPEXOAAT B IEHTPAJIb-
HBble, 0O6paTHMBIE B 06paTUMEIe, TO anre6pel 4, u 4, He K-u3omopdusl. Teopema
JoKa3aHa. '

CunenctBue 2. Bee ne K-usomopgnvle aszebper muna E nad nosem K xapax-
mepucmuxu p (#2) no omuowenuio k noaio F, 20e |K|=p™, (F: K)=n 3adaromca
aszebpamu munog:

IIpu wemnom n: aszebpor E; (i=0, 1, ..., [%D u d; (j=1,2,3,4,5,6).

ITpu nevemnom n: asze6pur E; (_i =0,1, ..., [%D u A; (j=1,2,3), 20e aszebper

E;, A; 3adanvt ¢ caedcmsuu 1.
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Rare bases for finite intervals of integers

KATALIN FRIED

In this paper we discuss the following finite problem for additive bases: What is
the least possible number of elements of a set B, for which all integers in the interval
[1, n] can be represented as the sum of two elements of B. (B can be called a basis of
order 2 for the interval [1, n]). Let us denote this minimal number by c,.

Clearly, c¢,=V2 -Vn holds, since if there are k elements in B, then we can form

k+1y k%
at most( ' 2 ]~3— sums which have to give at least n different values, hence

2

k — —
nso, ie. k=V2-Vn.

On the other hand, a simple construction shows ¢,=2-Vn. Let B be the union
of two arithmetical progressions; 0, 1,2, ...,[Vnland 2-[Vnl, 3-[Val,...,[Vn]-
.[yn), where [a] means the least integer s=a. These approximately 2-¥n elements
form a basis of order 2 for the interval [1, n].

Rohrbach conjectured in 1937 that ¢,=2}n +O(1). This was disproved in
1976 by HAMMERER and HOFMEISTER [2], they showed ¢,=}3.6-Yn. (For fur-
ther references and related problems see [1], 47.)

The aim of this paper is to improve the result of Himmerer and Hofmeister:

Theorem. ¢, =V35-Vn+o(Vn).

‘The method of proof is different from that of [2], it is completely elementary, and
is based.on similar simple ideas as the one which gave the obvious upper bound. Some
further refinements might yield even better upper bounds for c,.

Proof. For a-clearer exposition of the construction we show first ¢,=}3.6-
-¥n +o(Yn). B will consists of the union of 4 arithmetical progressions:

I ay=0, ay=1, ..., ¢,=t; here the difference of the consecutive terms is d;=1.

Received August 7, 1985.
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II. Bo=,=1t, By=2t+1,...,Bs =3t(t+1)+t=324+4t; d,=1t+1.
III. y, =3245t+1, ..., y,41 = 383461 +1; dy=1.
TV. 8, = 688412t43, ..., 8,4, = T+ 12t4+3; d, =1t.

Thé following inclusions (mostly in form of equalities) are all obvious, except
the last but one, which we shall verify below:

{40} 2(1,21], {o+8;} 2 2t +1, 32+ 51],
{7y} 2 BE+H5+1, 323+ T7e+1], - {B:+7,} 2 BE+Tt+2,6124+10¢+1),
{ri+7,} 2 [682+10+2, 62412t +2]), {2, 46;} 2 [6£2412143, T2+ 1324-3],
{8,406} 2 [160+13t+4, 92+ 17t+3), {5, +0;} 2 [92+17t+4, 102+ 18¢+4].

To verify the last but one inclusion we use the following two equalities, which
are straightforward from the construction of II and IV:

Bis1+6;-1 = Bi+6;+1 and B;_ :+1+51+: Bi+d;+1.

Hence we obtain the consecutive elements of the interval [7¢2+137+3, 912+ 17t‘+3]
by the following sums:

Bot+  Oi41. Bt O PatOio1s .., B +6y,
Bi+  bes1, Bt O ., Bes1+84,
Bs+ Oy,

ﬂz:+ 5:+1,— 'ﬁzz+1+5:> (X3 i ﬂs:+61,
ﬂzx+1+5t+1, ﬂ2:+a+5n v ﬂsr‘l"sz :

' Summanzmg our construction, B contalns k= 6t+3 elements and is a basis for
the interval [1,n], where n=10¢2+18¢+4. This proves c S}/B 6- l/n +o(l/n )
(for all n). :

To obtain c¢,=}3.5. Vn +o(Yn) we have to add justﬂ another - arithmetical
progression to B

Ve o = 108418145, s,+1=1112+18t+5; dg=1t.. -

Now L
{ai-}-a,} 2 [10/2+18¢+5, 112419t + 5],

{Bi+e,} 2 [112+191+6, 13224231 +5),
{r:+e;} 2 (132423146, 1424241 +6). .. -
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Here the first and last inclusions are obvious, and the second one follows exactly the
same way as the one for {f;+6;}.

Hence we have a basis for [1,n] with n=1412+24¢4+6, and it consists of
k=T7t+4 elements, ie. k~}3.5-Vn.

References

[1] P. ErpGs—R. L. GrauaM, Old and New Problems and Results in Combinatorial Number Theory,
L’Ensecignement Mathématique (Geneve, 1980).

[2] N. HAMMERER—G. HOFMEISTER, Zu einer Vermutung von Rohrbach, J. Reine und Angew.
Math., 286/287 (1976), 239—246.

EOTVOS UNIVERSITY BUDAPEST
TEACHER’S TRAINING FACULTY
DEPARTMENT OF MATHEMATICS

fe






Acta Sci. Math., 52 (1988), 307—319

Wreath product decomposition of categories. I*)

CHARLES WELLS

1. Introduction. In this paper I prove a theorem (Theorem 4.1) giving sufficient
conditions for decomposing a functor F: C—Cat into the wreath product of two
functors, given a natural transformation A: F—G. When the functors are discrete
(set-valued) the sufficient conditions always hold.

The theorem is a double generalization of the theorem about embeddlng a
group into a wreath product due to KALOUININE—KRASNER ([7], stated also in
WELLS [13]). To be precise, it generalizes the one-step version of that theorem, although
for any action — not just for the regular representatlon as it is commonly stated
in group theory texts.

The generalization is double in the sense that the group is generalized to a cate-
gory and the action not merely to a set-valued functor (which already gives a new
theorem) but to a Cat-valued one. The theorem provides a decomposition of any
Set-valued functor with given quotient, and any Cat-valued one provided the fibers
of the quotient are split opfibrations. Since the wreath product itself is a split fibra-
tion, this brings the theory of fibrations into the picture in two different ways. '

Some applications are given in Section 6. One, Proposition 6.4, provides a gen-
eralization of a technique used in some proofs of the Krohn—Rhodes Theorem
(see KRoHN—RHODES [10], WELLs [13)). (A generalization of another of the techniques
to Cat-valued functors is in WELLS [17].)

My hope is that both techniques might be useful in developing a theory of state-
transition systems with structured, typed states. Any functor F: C—Cat can be
thought of as such a system. The objects of C are the types of states. For each object c,
the objects of Fc are the states of type ¢. The transitions are the functors Ff: Fc—~Fd
for f: ¢—~d in C. The structure on the states of type c is the category structure on Fc
(thus having a poset or monoid or group structure as possible special cases).

Received August 7, 1985.
*) Supported in part by DOE Contract DE—AC01—80RA5256.
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Perhaps the theorem of the present paper will also be useful in developing a
theory of varieties for categories, in the way the embedding into a wreath product has
proved useful in group theory (NEUMANN [12]).

Categorical fibrations and opfibrations are discussed in Section 2, and the wreath
product with categorical action in Section 3. The decomposition theorem is stated in
Section 4 and proved in Section 5. Some applications are given in Section-6.

Throughout this paper, a set is identified with the category which has the ele-
ments of the set as objects and no non-identity arrows. Such a category is called
discrete.

These results were obtained in part while I was a guest of the Forschungsinstitut
fiir Math., E.T.H. Ziirich, for whose support I am grateful. An earlier version, con-
taining errors, called Wreath product decomposition of categories and functors, was
distributed but never published.

2. Fibrations. In this section, I outline that part of the theory of split fibrations
and opfibrations needed for the main theorems. The material is not new, and is
scattered through GROTHENDIECK [5)], GIRAUD [1], GrAY [2], [3], [4]. -

Given a functor P: E—C there is an induced functor S froim the arrow cate-
gory Ar E to the comma category (C, P) which takes u: e’—~e to (Pu,e). A right
adjoint right inverse R for S is called a cleavage, and a left adjoint right inverse R°®
to the functor S°: Ar E—~(P, C) which takes u: ¢’>e to (e’, Pu) is an opcleavage.
P, together with a cleavage R, is a fibration of C. If R°® is an opcleavage, (P, R°) is
an opfibration of C. Neither a cleavage nor an opcleavage necessarily exists for any
given functor P.

Assume (P: E—~C, R) isa fibration. Let f: b—~c in C and u: ¢ —elie over ¢
(i.e. Pu=1). Define @f.e”=dom R(f, e”) for any object ¢” over ¢, and &f.u
by requiring R(l,, u)=(®f . u, u) (the second component is necessarily ). Similarly
for an opfibration (P; R°), let ®°f. e”=cod R°(e”, f) for ¢” over b, and R%u, 1.)=
=(u, °f.u). One then has the commutative squares

of.¢’ RLD, o e XD, gof. o
2.1) w-ul [ 1 | 1«»;.,,
Qf.em—»e eonf.e

By setting ®c= @°c=P~1c¢ (the full subcategory of E lying over 1,) one has
@, @° both defined on objects and arrows of c. They may not be functors. If they are,
they are functors to Cat and R(f, —) and R°(—, f) are natural transformations for
each f. If P~'c is a set (no non-trivial arrows) the fibration or opfibration is called
discrete.

A fibration (P, R) is split if

a) @ is a functor, and
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b) if f: ¢’~¢, g: c>¢” in Cand Pe"=c”, Pe=c, then

(2.2 R(f, @g.¢")oR(g, ¢") = R(gof, &").
Then & is a splitting, and 1 shall refer to the split fibration as (P: E~C, R, D).
A split opfibration (P, R°, ®°) requires
a)° &° is a functor, and
b)° if f: ¢’~c, g: c>c” in C, Pe’=c’, Pe=c, then
(2.2 Ro(¢, gof) = R'(8°f.¢', g)o R°(¢', f).
It is easy to see that (P: E—~C, R, ®) is a split fibration if and only if (P*:
E°P— C°P, R°?, $°P) is a split opfibration.
A morphism of split fibrations is a pair (U,¥V): (P: E-~C, R, &)~(P":
E'~C/,R’, ¢’) where U: C-~C’ and V: E—~E’ are functors for which

EXLFE

2.3) . I
CT C

commutes and for f: b—c in C, e an object of ¥c,

2.9) V(R(f, ) = R(Uf, Ve).

Composition of morphisms is componentw1se giving a category F of spht fibra-
tions.

Morphisms of opfibrations are defined similarly. (2.3)° is the same as (2.3) and
(2.4) becomes )
ar € V (R(e, ) = R'(Ve, Uf)

where e is an object of ®°b. The resulting category is denoted F°.
It follows from (2.4) that

2.5) V(®f.¢) = &'(Uf).Ve,

i.e. ¥ respects fibers, A similar statement holds for morphisms of opfibrations.

Now I define another category Scat which will turn out to be equivalent to both
F and F°. The objects of Scat are all Cat-valued functors from all categories. An
arrow (K, 1): F~G has K: dom F~dom G a functor and A: F+~GoK a natural
transformation. Composition is given by

(2.6) . (L, wo(K, 2) = (LoK, uKol).

All functor categories Func (C, Cat) are subcategories of Scat,.and so is the comma
category (Cat, Cat), where the second ¢Cat” is an object in the first. Scat is th¢ cate-
gory called Cat,oCat, by KELLY [8, §7].
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Given any functor F: C°?’—Cat, let SD(F) be the category defined this
way: an object of SD(F) is a pair (¢, x) with ¢ an object of C and x an object of
Fc. An arrow (f,4): (¢, x)~(c’,x") has f: ¢’~c in C and u: x—Ff.x" in Fec.
If (g,v): (¢, x)~>(c”, x”), then

@.7) (8 0)o(f; u) = (fog, (Ef.v)ou).

Likewise, given F: C—~Cat define SD°(F) the same way except that for (f, u):
(¢, x)=(c,x"), f: ¢c>~c" and u: Ff.x—x’, and

@7° (& 90 (s ) = (gof, V o(Fg.u).
There are then functors SN(F): SD(F)-~C* and SN°(F): SD(F)—~C taking
(fiu) to f.

There are then functors Rg(R;) and F(F°) for which (SN(F), Rg, F) (resp.
(SNO(F), R;, F°) is a split fibration (split opfibration). The definitions are, for
(f; u): (C, x)_’(c,s xl) in SD(F)s

(2.3) Re(f, (', X)) = (f; Lpp.x): (6 Ef- X)) = (¢, X))
and for (f,u): (c, x)=(c’, x") in SD°(F),
(2~8)O ' R?‘((Q x)’ f) = (lFf.x’ f)' (C, x) g (C’, Ff X).

As for F and F° the definitions are determined by Rg. In particular (because it is
used later), for F: C—Cat, u an arrow in Fc, '

9y Ff.(1e, w) = (1o, Ef.u).
These constructions make SN: Scat—-F and SN°: Scat—F° into the object
maps of functors. )

I will continue the development only for opfibrations, since the constructions for
fibrations are not needed. Let F: C—~Cat, G: D—~Cat, (K, 1): F-G in Scat.
Let (f,u): (¢, x)—~(c¢’, x") in SD°(F). Then define

(2.10)° SD°(K, A)(f, u) = (Kf, Ac".u)
and
.11y SN°(K, 1) = (K, SD°(K, })).

Thus SD°: Scat—Cat and SN°: Scat—F° are functors. -
SN° is an equivalence of categories. Define the functor A4°: F°—~Scat as fol-
fows.

(2.12)° A°(P: E - C, R°, ¢°) = @°.
(2.13)° A°(U, V) = (U, o), where
(.14 ay.c =V|®°

for ¢ an object of C.
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There is a natural isomorphism &: idg,—~A°0SN°, whose component at
F: C~Catis
(2.15)° eF =(1c, éF): F~F°

(see (2.9)), where for an object ¢ of C, &F.c: Fc—~F°c takes an object x to (c, x)

and an arrow u over 1, to (1., u). _
There is also a natural isomorphism #: idg—~SN®0A°, defined as follows.

Given a split opfibration (P: E—~C, R°, @°), let I: E—~SD°(9°) take an arrow u

to (Pu, u). Then the component of  at (P, R°, #°)is (id¢, 1): (P, R®, #°)—~(SN°(2°),

Rge, °). Thus SN° and A° are equivalences. '
This Lemma is needed later:

‘Lemma 2.1. Let (U, V), (U, W): (P: E~C, R° 9°)~(P": E'—>C’, R* %)
be morphisms of split opfibrations for which for every object ¢ of C, V|Ge=W]|Ge.
Then V=W.

Proof. Let m: e—~e, in E liec over f: b—c. It is enough to show that Vm=
=Wm. Since R° is left adjoint to S°, there is a unique morphism of Ar E from
R°(e, f) to m corresponding to the identity arrow in (P, C) from (e, f) to (e, f)=S°m.
Since R°is left inverse to S°, this arrow must be of the form (1,, k) where k: ¢°f. e—
—e, and k is in ®°c. Then by definition of morphism in Ar E, m=koR°(e, f).
Hence by (2.4)°, :

Vm = VkoVRC(e, f) = Wko R’ (Uf, Ve) = Wko R (Uf, We) = WkoWR® (f, ¢) = Wm
since k is in #°C and e is in $°b. ’

3. The wreath product of categories. Given categorles B and C and a functor
G: C—Cat, let Gy=Func (G(—), B): C°®—~Cat. The wreath product of B by C with
action G, denoted B wr® C, is SD(Gp). Thus via SN(Gp) it is a split fibration of C
in a'canonical way. Note that Scat= Cat wr’ Cat with / being the identity functor.

The concept is due to KerLy [8,§5], who denotes B wr C by [C, GloB and
calls it the composite. His definition is more general than mine, since for him B
can be any object in a 2-category.

B wr€ C is natural in both variables in the sense that functors U: B~B’ and
V: C’'~C induce a functor SD (Func (G(—), U), ¥): Bwr® C’~B’ wr® C which
is natural in both variables. _

More important, a functor F: B--Cat induces a functor FwrG: BwréC—
- Cat which generalizes the concept of the wreath product of two actions. Given F,
define F: Bwr® C—~Scat as follows. For an object (¢, P) of Bwr® C (whence
P: GC—~B is a functor), set F(c, P)=FoP. For an arrow (f,1): (¢, P)~(d, Q)
(whence f: ¢—~d in Cand A: P—~QoGf), set F(f, A)=(Gf, FA). Thenset Fwr G=
=SD°cF: Bwr® C—Cat.

6
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KErLY[8, § 7] shows that wreathing for categories and for functors is associative
up to a 2-natural isomorphism.

If B and C are groups regarded as categories and G is discrete (Set-valued) then
B wr€ C is the usual wreath product of groups. If G is not discrete then B wré C
is a groupoid. If B is a set regarded as a discrete category, C is a monoid acting on B
and G is the action, then B wr® C is a directed graph with objects which are functions
f: B=B and edges f—jfg~! where g is an invertible element of C. When B and C
are groupoids, B wr® C has as a special case the untwisted version of the wreath pro-
duct due to HouGHTON [6]. Here the functor G is discrete; its value at an object ¢ of
C is the total sieve on ¢ (the set of all arrows into c¢).

4. Coordinate systems. In the Kaloujnine—Krasner setup a group action is
decomposed along a quotient action. The second coordinate is the quotient, and the
first coordinate (the one with the most dependencies) is the action on a fiber. One can
get away with this because the fibers are all isomorphic — although to get a decompo-
sition you have to specify the isomorphisms.

In the present schema this-corresponds to introducing a “typing functor” (defi-
ned below), which allows a partial skeletonization of the fibers of the quotient action.
To do this we will make the fibers into a category Fib(41) where 4 is the quotient map.
A “‘coordinate system” will then be a category and an action (Cat-valued functor)
which “includes” Fib(2) in a certain sense. All this requires that the components of
A be split normal opfibrations, a condition which is vacuous in the discrete case. The
main Theorem 4.1 then says that in the presence of a coordinate system the action
can be decomposed into the wreath of the action on the (partially skeletonized) fibers
and the quotient action.

Let C be a category, F: C—~Cat and G: C—Cat functors, and A: F-G a
natural transformation. Then A is split if for each object ¢ of C, Ac: Fc—~Gc is a
split opfibration with splitting Lc: Ge—Cat, and for each f: ¢—~d in C, the pair
(Gf, Ff) is an F°-morphism. The latter requirement implies that for each object x
of Ge, Ff|Lc.x has values in Ld(Gf. x), and for each u: x—+y in G,

Le.x Hkex, 13(Gf.x)
4.1) ch.u lLd(G f.0)

commutes. If F and G are discrete, any natural transformation A: F—G is split.

The fibers of A, in other words the categories Lc . x for ¢ an object of C and x °
an object of Gc, are objects of a category Fib(1). The arrows are the functors from
Lc. x to Ld(Gf. y) given by (4.1) for each f: ¢—~d in C and each u: x—y in Gc.
Thus Fib(1) is a subcategory of Cat.
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A functor T': Fib(1)—~Cat is a typing functor if there is a natural isomorphism
t: I, T, where I,: Fib(1)— Cat is inclusion. Extreme cases of typing functors are
I, and a skeletonizing functor. An intermediate case is actually used in an applica-
tion in- Section 6. :

(M, K, T) is a coordinate system for a split A: F—~G with splitting L if T is a
typing functor for Fib(1), M is a category and K: M- Cat a functor for which

CS—1. For each object ¢ of C there is a set &, of functors P: Gc~M for each
of which ToLc is a subfunctor of Ko P, and

CS—2. If f:¢—+d in C and P: Gc+-M in &, then there is Q: Gd-M
in @, for which for each object x of Gc there is an arrow m: Px—Q(Gf. x) for
which Km|T(Lc . x)=T(Ff|Lc . x).

A transitive group action with a quotient always has a coordinate system. Let C
be the group, F the action, G the quotient action, A the quotient map, so the fibers
form a system of imprimitivity. T is then a way of identifying all the fibers with one
of them, M is the isotopy subgroup of that fiber with action K. P is then a constant
map. Even a nontransitive group action with quotient has a coordinate system, but
then M will be a disjoint union of isotopy subgroups regarded as categories.

If F,G: C—~Set, A: F~G any natural transformation, then 1 always has a
coordinate system based on Fib(4). This is discussed further in Section 6.

A functor H: A—~B lifts triangles if for all arrows f of A and h, k of B for
which Hfoh and koHf are defined, there are arrows u, v of A for which fou and
vof are defined, and Hu=h, Hv=k. A decomposition ought to lift triangles, as I
explain later. Too bad, because the decomposition is trivial to construct if it needn’t
lift triangles. '

In the following theorem, F: C—Cat, G: C—Cat are functors and A: F—~G
a natural transformation. G is the image of G in Cat, and I5: G— Cat is inclusion.

Theorem 4.1. If F is faithful and A is split with coordinate system (M, K, T),
then there is a subcategory SCMwr ¢G and a triangle-lifting functor H: S—C
Sfor which FoH is isomorphic to a subfunctor of the restriction of KwrIgto S.

The proof is given in Section 5, and applications are discussed in Section 6.

If you think of this theorem as giving sufficient conditions for simulating a
state-transition system triangularly (in the sense of KROHN, LANGER and RHODEs [11))
by a wreath product or cascade of systems, then the simulation has the property that
for any state and any transition from that state in the simulated system, there is at
least one state and transition from it in the simﬁlating system which mimics (functori-
ally) the operation of the simulated system. Moreover you can always simulate the
next transition from the simulating state you find yourself in. That is the meaning of
triangle-lifting. Clearly it is a necessary property of typed-state simulations.

6
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Note that the system F: C-Cat might very well dllow a sequence of transitions
which begin and end at the same state, but for which the simulation begins and ends
at different states, behavior reminiscent of a path in a Riemann surface lying over a
loop. ’

Theorem 4.1 is similar to, but apparently not exactly a generalization of, both
Theorem 11.1 of WELLs [13] and the main theorem of WELLS [15].

5. Proof of Theorem 4.1. S is the subcategory of Mwr ¢G defined this way:
an object of S is any pair (Gc, P) where ¢ is an object of C and P: Gc—~M is a
functor in ®,. An arrow (Gf,7): (Gc, P)—~(Gd, Q) has f: ¢—+d in C and y any
function from the objects of Gc to the arrows of M with the properties that for each
object x of G,

(5.1) yx: Px - Q(Gf.x),
(5.2) T(Lc.x) C KPx,

(5.3) T (Ff(Le.x)) c KQ(Gf.x), and
(5.4) K(yx)|T (Lc.x) = T (Ff|Lc.x).

There may not be such a y for a given £, P, and Q as above, but for a given fand P
there isa Q in @, for which there is at least one such y. That follows from CS—1 and
CS—2.

The functor H: S—C is defined by

(5.5) H(Gf,v) = 1.

It is necessary to see that H is well-defined. Because T(Lc . x) is naturally isomorphic
to Lc. x, (5.4) says that the arrows which make up y determine the effect of Ff on
the categories Lc . x. Because (Gf, Ff) is a morphism in F°, Lemma 2.1 says that y
and Gf determine Ff. That determines f because F is faithful. 1t is clear that H is
triangle lifting.

To show that FoH is a subfunctor of the restriction of K wr I; requires several
steps. In the first place

/Gc
Ac/ \pl
/ AN
Fe—X SD°(Lc)
(.6) Jos
Ff /Gd (GS.Ff)
1 Ad 1 2
AN
Fa-X SD°(Ld)

commutes, where I, is the natural isomorphism defined by #,.,=(idg.,I.) as in
Section 2, and p, is first projection (representing the elements as ordered pairs as in
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Section 2). This follows because (Gf, Ff) is an F°-morphism and SN°(A°(Fc))=
=SD°(Lc) and SN°(A°(Gf, Gf))=(Gf, Gf).

Because T is a typing functor, there are natural isomorphisms t¢, 7d making
this diagram of functors and natural transformations commute. The component of
tc at x is 7(Lc . x), T as in the definition of typing functor.

Le=-~ ToLc
(5.7 46, ml lA°(Gf. TF)

Ld T TOLd.

By (2.13)° and (2.14)°, the left vertical arrow is a . Ff and the right one is T(« . Ff).
Applying these functors at an object x of Gc and using (2.14)° yields

Le.x -0, T(Lc.x)

(5.8) lFf Lex lr(m Le.x)

(the right arrow is also TFf|T(Lc . x)). The point is not to prove that (5.8) commutes,
which is easy, but to see for later use that (5.8) is (5.7) evaluated at x.

By definition of S there is an arrow (Gf, y): (Gc, P)—(Gd, Q) of S for which by
(5.4) the following diagram commutes. The horizontal arrows are the inclusions of
5.2).

T(Le.x) > KP.x
( 5 .9) lT(Ff |Le.x) lK(yx)

T(Ld.Gf.x) > KQ.Gf.x

By (2.14)°, AGYf, Ff)=(Gf, ap;) (2 Scat-morphism from Lc to Ld), where
app: Lc—~LdoGf is a natural transformation whose component at an object x of
Lcis app . x=Ff|Lc.x. Then putting (5.8) and (5.9) together yields a commutative
diagram

Le>—"< . KoP
(5.10) Jees [
Ldon>W> KoQoGf

of functors and natural transformations with 7., 7, monic. This yields a Scat-diagram

Lc > (idac"c) KOP
(5.11) IA“(GI. Ff) I(Gf, Ky)

Ld >-——>(Mad. 3 KoQ.
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Applying the functor SD° then yields a diagram of categories and functors whose left
vertical arrow is SD°(A%(Gf, Ff N=(Gf, Ff): SD°(Lc)~SD°(Ld), the same as
the right vertical arrow in (5.6). Pasting the front face of (5.6) and (5.11) together
yields ’

Fc >+ SD°(KoP)

(5.12) . Ffj fsm(af. Ky
14

Fd >~ SD°(KoQ).

Now to complete the proof of Theorem 4.1. By (5.5), the left vertical arrow in
(5.12) is (FoH)(GY, v). By the definition of wreathing functors in Section 3 (warning
— the G there is I; here, the fthere is Gf), the right vertical arrow is SD%(Gf, Ky)=
=SD°(R(Gf, y))=K wr 15(Gf, ). Thus FoH is isomorphic to a subfunctor of the
restriction of Kwr I; to S, as required.

6. Applications of coordinate systems. If the actions in Theorem 4.1 are discrete
(F and G are set-valued), there is no requirement on A except that it be a natural
transformation. Then the category Fib(1) has only arrows corresponding to the hori-
zontal arrows in (4.1). In any case, if A is split, Fib(2) itself, with K=T the inclusion
of Fib(4) into Cat, is a coordinate system; in CS—1, &.={Lc} where Lc is the
splitting, and in CS—2, m=Ff. Thus we have the following corollary, in which I
is the inclusion of Fib(1) in Cat and I; the inclusion of Im G in Cat.

‘Corollary 6.1. If F: C—~Cat is faithful, G: C—~Cat, and A: F-G a
split natural transformation, then there is a subcategory S of Fib(2) wr G for which
F is isomorphic in Scat fo the restriction of I wr I to S.

Corollary 6.2. If F: C—~Set, G: C—~Set and A: F—~G is any natural trans-
formation, then the conclusion to Corollary 6.1 holds. '

The preceding corollary, when C is a group, could be called the natural Kalouj-
nine—Krasner theorem. It embeds C into a groupoid. The Kaloujnine—Krasner
embedding into a group is obtained by constructing an unnatural typing functor

* which identifies all the fibers with one by noncanonical isomorphisms.

If F, G are set-valued one can always construct a coordinate system which is
minimal (in states) but excessively large in transitions this way : let y be any set whose
cardinality is the supremum of the cardinalities of all the sets Lc . x, and the typing
functor T a collection of injections of Lc¢ . x into Y. Let M be Trans Y, the monoid
of all transformations of ¥, with K its natural action. This yields

Corollary 6.3. If F, G, A are as in Corollary 6.2, then there is a subcategory S
of Trans Y wr'® G and a triangle-lifting functor H: S—~C for which FoH is iso-
.morphic to a subfunctor of K wr I, where K is the action of Trans Y on Y.
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A more complicated construction leads to a decomposition via a subfunctor
instead of a quotient functor; nevertheless it is an application of Theorem 4.1.

Some concepts are necessary. A functor F: C—Cat is separated if for distinct
objects ¢, ¢’ of C, c is not an object of Fc and FcNFc¢’ is empty. Every functor |
F: C—Cat is isomorphic in Func (C, Cat) to a separated one. (In mathematical
practice people commonly assume implicitly that set-valued functors are separated.)
A transversal of a separated functor F: C—Cat is a function ¥ with domain the
objects of C such that Yc is an object of Fc. Any separated functor has a transversal
by the axiom of choice.

If D is a subcategory of Cat, the constant completion of D, denoted D°, is the
category whose objects are the objects of D and whose arrows are the arrows of D
plus all constant functors KJ: A-B, where A4, B are objects of D and y is an object
of B.

Let F, H: C—~Cat be functors with H a subfunctor of F. H is isolated in F if
for each object ¢ of C, Hc is the union of one or more connected components of Fe.
Thus if u: x—y in Fc and either x or y is an object of Hc then u is an arrow of He.
Note that if F, H are set valued then H is automatically isolated.

If H is isolated in F and F is separated then F/H: C~Cat is the functor defined
by .

6.1) (FIH)c = (Fc—Hc){c} for ¢ an object of C

(remember {c} is the trivial category with object ¢), and for f: c—~c’in C,
¢ if x=c or Ffx isin Hc
F.fx otherwise. :

(6.2) (F/H)f.x={
There is a natural transformation 1;: F—F/H, easily seen to be split, defined by

_Je if y isin He
(6.3) Aac-y —{y otherwise.

Proposition 6.4. Let F: C—~Cat be a separated functor with isolated sub-
functor H. Then there is a subcategory S of (Im H)® wr'(F/H) and a triangle-lifting

Sfunctor H: S—C for which HoF is isomorphic to a subfunctor of J wr I, where J is
the inclusion of (Im H)® in Cat and I the inclusion of Im (F/H) in Cat.

Proof. The objects of Fib(1y) are (a) the categories Hc for object ¢ of C, and
(b) the categories {x} where x is an object of Fc not in Hc. Arrows are of the form
(@) Hf: Hc—~Hd for arrows f: c—d in C, and (b) {x}—{y}—{Ff.y} where
u: x—y is an arrow of Fc not in Hc and f: ¢—~d in C. Arrows of type (a) do not
compose with arrows of type (b) in either order. Thus Lc.c=Hec, Lc. x= {x} for



318 . C. Wells

x an object of Fc— Hec, and for f: ¢—~d, (Lc.f)e=Hf, (Le.NHu={Ff.x}~{Ff. y}
for u: x—+y in Fc—

Define a typing functor T as follows. For objects Hc of Fib(4y), T(Hc) He.
For objects {x} where x is an object of Fc—Hc, T{x}={Yc}. For arrows Hf:
Hc—~Hd, T(Hf)=Hf. For arrows g: {x}-{y}—={Ff.y} where u:x—-y in
Fc—Hc and f: ¢+d in C, Hg={Yc}—~{Yd)}.

Then ((Im H)%,J, T) is a coordinate system. For CS—I, let & ={K{/™-}.
For CS—2, let f: ¢—~d in C and x be an object of (F/H)c. If x=c set m=Hf:
Hc~Hd. If x¢Fe—Hc and Ff.x isin Fd—Hd, set m=K} If Ff.xisin Hd,
set m=K¥¢. It is straightforward to verify that CS—2 holds for this definition.
The proposition now follows from Theorem 4.1. '
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Wreath product decomposition of categories. IT*)

CHARLES WELLS

1. Introduction. In this paper, I prove a theorem which shows how to decom-
pose a functor F: C—Cat into the wreath product of two functors, given a right
ideal and a ““wide” subcategory of C which together generate C (this is made precise
in Section 2). ' A

The decomposition is in the sense of Krohn—Rhodes theory: the functor F
is not embedded in a wreath product, but rather a subfunctor of the wreath product
maps onto F, like a covering space. This is in contrast to the decomposition theorem
of WELLSs [4], although of course any embedding is an example of decomposition
in the present sense. The theorem in this paper actually generalizes one of the de-
composition techniques used in proving the Krohn—Rhodes Theorem (KROHN—
RuopEs [2], EiLENBERG [1], WELLS [3]), although it works just as well for infinite
categories. Note that one of the corollaries of the decomposition theorem in WELLS
[4] generalizes another of the techniques used in proving the Krohn—Rhodes
Theorem.

My hope is that the decomposition techmques described here and in WELLS [4]
will be useful in developing a theory of “state-transition systems with structured,
typed states”. This is discussed in WELLS [4] so I will say no more about it here.

The present paper is self-contained except for the terminology developed in
Section 2.3 of WELLS [4].

I am grateful to the Forschungsmstltut fiir Math., E.T.H. Zurxch where I was

a guest while these results were (in part) obtained.

2. Statement of the theorem. If C, D are categories and x an object of D, the
constant functor K€ takes all objects of C to x and all arrows to 1,. The constant
completion of a subcategory A of Cat consists of the subcategory of Cat consisting
of everything in A and all constant functors K2 where a is an object of A and x is an
"object of some object of A.

Received August 7, 1935.
*) Supported in part by DOE contract DE—AC01—80RA5256.
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If C is a small category, the global hom functor C,: C—Cat takes an object ¢
to the set of all arrows into ¢, and f: ¢—~d to the function from C,c to C d which
takes x: a—~c to fox. C, is set valued, regarded as a dlscrete-category-valued
functor.

The constant completion of a small category C, denoted C¢, is the constant com-
pletion in the sense defined earlier of the image of C,. C, is injective, and I shall
identify C with its image, so that C,f: C,c~C.d is f: c~d. 1 shall write K¢
for KS*. This has the following notational consequences:

a) KS: ¢c—~d where x is an arrow with codomain d. (The notation does not
determine dom x.)

b) If K: c~d and g: d—e then goK =K ..

©) If KS: c~d and h: b~c then K{oh=K}.

d) If it is defined, KJoK{=Kg.

The inclusion C,: C‘—» Cat is denoted d.

A subclass I of arrows of a category C is a right ideal if for any arrow f of C and
gof I, if gof is defined then it is in 1. An example of a right ideal is any Grothendieck
topology on C. If I is a right ideal (which need not be a subcategory of C), I* denotes
the subcategory consisting of all objects and identity arrows of C and all arrows of I.

A subcategory D of C is wide if it has the same objects as C. If C=Dol for some
subcategory D and right ideal I then C is generated by D and I. A functor H: A—B
lifts triangles if for all arrows f of A and h, k of B for which Hfoh and koHf are
defined, there are arrows u, v of A for which fou and vof are defined and Hu=h,
Hy=k. The motivation for requiring this property in wreath product decompositions
is discussed in WELLS [4, §4].

Theorem. Let C be a small category and G: C—Cat a functor. Let D be a
wide subcategory and I a right ideal which generate C. Then there is a subcategory S
of I wr D¢ (action by Jp), a triangle-lifting functor H: S—~C and a surjective natural
transformation

8: W -~ GoH where W ={(G|IY)wr Jp]S.

Note. This theorem cannot be strengthened to make GoH a subfunctor of W,
even when G is set valued and the categories are all monoids.

3. Proof of the Theorem. For an object ¢ of C, let §°: D c~1I* be the function
taking an arrow to its domain, and i°: D, c—~I' the function taking an arrow to the
identity arrow of its domain.

Define S as follows. An object of S is any pair (c, 6°) for any object ¢ of C.
Arrows are of the following two forms.

(3.1) (f, ®):(b, 8°) = (¢, 69
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for all arrows f: b—c¢ in D, and
(3.2) (K5, C hID, c):(c, 6°) - (e, 69
for all h: ¢c~d in I' and g: d—~e in D.

Let’s check that (3.2) makes sense ((3.1) is easier). An arrow of /! wr D¢ must by
definition be of the form (f, 1): (¢, P)—(d, Q) where f: ¢c~d, P: D, c-~1I!, Q:
D,d—~1', and A: P~QoJyf is a natural transformation (note that D, is discrete
so there are no commutativity conditions for natural transformations here). Here,
K¢: D,c~{g}cD,e. Foran object f: b—~c of D,c the component of the natural
transformation must be an arrow from §%=b to (6°0KJ)f=d°%=d. This works
because C_h.f=hof: b—d.

Define the functor H: S—~C by H(f,i*)=f and H(K{, C ,h)=goh.

We have the following formulas for composition of arrows in S, which prove
that H is a functor. H is bijective on objects, so lifts triangles.

(3.3) (g, 89)o(f, 8*) = (gof, 8"

for f: b>c, g: c+d in D ’

(.49 (Ks, C h)o (f, 8% = (K:, C, (hof))

for f: b—~c, h: c~d, g: d~e in D.

3.5) (g, 8%o(K2L, C k) = (K:om, C.k)

for k: b—c in I, m: c~d, g: d—e in D.

(3.6) (KS, Cum)o (K5, C, b) = (Kg, C,(mogoh))

for h: c~d, m: e~p inl, g: d—+e, n: p—~q in D.

To simplify notation in the definition of 8, the component of  at an object
(b, %) of S will be denoted 6b. First note that for each object b, W (b, 8°) is the dis-
joint union of categories Ga indexed by all arrows f: a—b of D. This follows from
the definition of the wreath product of functors in WELLS [4, §3]: An object of
W (b, 8% is a pair (f; x) with f: a—b (some a) and x an object of Ga. An arrow has
to look like (f;r): (f,x)~(f,y) where r: x—y in Ga, f: a~b in D, since Db
is a set (discrete category).

Now, to define the component 0b: W (b, 6°)~GoH (b, 8°)=Gb, set

(3.7 0b.(f, r) = Gf.r,
for f: a—~b in D, r an arrow of Ga.
To prove that 8 is a natural transformation requires (after applying the defini-
tion‘of H) proving the following diagrams commute.
W (b, 6*) 2~ Gb
(3.8) W) Jes
W (¢, 6) =~ Gec,
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for g: b—~c in D, and
W (b, "2~ Gb
W(KY, Cih) o
(3.9) | |ewen
W (c, 6°) 5~ Gc

for h: b->c in I and g: ¢—~d in D.

These facts follow from an easy application of the definitions. Given f: a—b
in D and starting at the upper left corner of (3.8), the northeast route gives (f, #)—
—(Gf) . r—~(GgoGf) . r and the southwest route gives (f, r)—{(gof, r)—~G(gof).r.
For (3.9) the corresponding chases are (f, r)—Gf. r—(G(goh)oGf).r and (f, r)—
(g, G(hof) . r)—(GgoG (hof)) . r.

This proves the Theorem.
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‘On a geometric problem concerning discs

A. P. BOSZNAY and B. M. GARAY

Introduction

Let (X, || - Il) be an n-dimensional real normed linear space, and let d be a metric
defined on By(0, 1)={x€X: ||x||=1} with the following properties:
(i) d is topologically equivalent with | - |,
() d(xg, xo)=|x1— x| for all 1=l|lx,||=|x.l.
At first glance, one can- conjecture that there will exist an y*€By(0, 1) such that
3 *
er?,:(o,l)d(y ,X)= 1.
In case of n=1, this is an easy consequence of the triangle inequality.
The aim of this paper is to show that in general, this is not the situation. For
arbitrary n=2, we construct an example d and (X, | - |) for which
yE DA 1) xE Sy, 40, %) < 1.
On the contrary, we prove that
1

ma X 2—
yEBx(Ol)xESx(OI) d(y, )

Results

Example. Let n=2. Then there exists a metric d on the n-dimensional eucli-
dean unit ball E(0, 1) such that 4 has properties (i) and (ii), and
d(y,x) < 1.

max min
Y€ E(0,1) x€S(0,1)

Received April 11, 1985.
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Contsruction of d. Let us recall first that there exists a norm || - || on R"® R with
the following properties (here | -| denotes the euclidean norm in R"):

(a) l(x,0)] =ix] forall x€R”
()] o, D) =14 for all A€R,
(c) for any projection P: R°"®R—R" onto, there holds
| P} = sup{|P(x, A)|: x€R", AR, |(x, D] =1} = 1+,
for some fixed §,>0.

Several types of such norms can be constructed. For example, the existence of
such a norm is a consequence of [1].
We shall define now the metric d, on the set E(0, 1). For y,, y,€¢E (0 1), let

4,01, y2) = [h.0) - kG0
where h,: R*>R"@R is defined by

(. ) if |yl=e

and the contant O<a<1 is to be specified later. Clearly, d, has the desired proper-
ties (i) and (ii).
We shall show now that for all y€E(0, 1)

(1) - min_d,(y, x) < 1

x€ 5(0,1)
provided that « is sufficiently small.

Firstly, let |y|=>a. For x._ﬁ, there holds |x]=1 and
Y

40,9 = 1)1 = (572 1-0) (- o)

[0, -ai—l(l—lyl))-l-(l_ﬁ) O, o)ll =

=12 a-b+{gr- o= 2 <1

Secondly, let |y|=a. We have a P: R*"®@R—+R" onto projection for which
Ker P = {A(y, 1): A€R}.
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By (c), there exists an (x, c)éR"@R satisfying '
2 el =1, [PCx, o) = 1+5,.
Clearly we have P(x, c)=(x—cy,0), so

€)) I(x=cp,0)] = |x—cy| = 1+6,.

—c
For z=— a4 there holds |z|=1 and
|x— eyl

da(z’ y) = “ha(z)—ha(y)“ =

(252 0)-0n0

- o)l -

|- s ts e o)
| ¢ c |x—cy|
SLIN c—|x—cyle| '
fel 14

At the last step, we have used (2).

Incase of O<a<

, we have by (3)

lx—eyl

o lc—lx—cyla] [x—cy|—1 o

—+___._=1———- <1_6 —

lc] lcl [c] ®Jel
S0

—x+cy o

4 <1=0y—.
@ T—ol "I

Pick a f>0. By elementary compactness arguments, x€R” and c€R (satisfying
condition (2)) can be chosen so that

® a<|cl<c and |x—cy| <y,

for some fixed ¢, ¢z, cs=0 whenever |y|=§.
It is clear that (5) implies (1) provided that

a < min {8, ¢;/cs}.
Theorem. Let (X, -|) be a real ri-dimensional linear space, d a metric on

By (0, 1) with properties (i) and (ii). Then there exists an y*€Bx(0, 1) such that

1
* —
d(y,x)_zn.

min
X€By(0,1)
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We shall need the following two lemmas.

Lemma 1. Let (X, -|) and (X, -Ily) be n-dimensional real normed linear
spaces. Then there exists a T: X—~X, linear onto operator such that |T7Y =1,
and |T||=n.

Lemma 2. Let (Z, || -Il.) be the n-dimensional 1, space, Y,CBx(0, 1) and let
us assume we have a nonexpansive mapping g: Y,~{z€Z: |z|=r} (r>0 arbitrary).
Then there exists a nonexpansive

g: Bx(0,1) ~ {z€Z: |z) =1} with glg,o =g

(A special case of [2] p. 48. Theorem 11.2.)

Now, let us prove the theorem. First, by Lemma 1, there existsa T: X—~Z
linear onto mapping such that ||T| =n, ||T~'=1. Let us introduce now the metric
d* on Bx(0, 1) as follows: '

©) d*(y1, y2) = n-d (s, yo)-

Cleatly T=g restricted to the set Sx(0, 1) is nonexpansive from (Y;, d*) to Z,=
={z€Z: 1=|z|_=n}. So, using Lemma 2, we have a

g: Bx(0, 1) ~ {z€Z: | 2] = n}

nonexpansive extension of g.

Since T-1F maps B(0, 1) into itself and 7§ restricted to Sk (0, 1) is the iden-
tity, it follows from Borsuk’s nonrecractibility theorem that 0x-€¢ 77§ (Bx(0, 1)).
Consequently, 0z€g(Y). Clearly, '

g [0z~zle =1,
" s0, for arbitrary element y* of §-1(0), there holds

ngg d*(y*, g_l(zl)) = 1)
and this implies T

min d*(y*, 2) = 1.
<in * 2)

Using (6), we obtain the desired result.

Remark 1. Instead of ‘1/n we can write 1 in the Theorem provided that

X N-D=Z | -1o)

, Remark 2. Considerations similar to the ones used in the paper play an in-
teresting role in the theory of Liapunov functions [3], and of metrics of Liapunov

type [4].
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Remark 3. The infinite dimensional analog of the Theorem does not hold. -
There exist examples d with
' inf * x) =0,
xeslg(o,l)_ys,g%d(y - )
for arbitrary (X, | - ||} real, infinite dimensional, normed linear space, where d has
properties (i) and (ii).
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A note on D, spaces

ILIJA KOVACEVIC

In a recent paper [3] the author has introduced a new class of topological
spaces, called D, spaces. The purpose of this paper is to obtain some new characte-
rizations of D, spaces.

1. Preliminaries. Throughout the present paper, spaces will always mean top-
ological spaces on which no separation axioms are assumed unless explicitely stated.

Definition 1.1. A space X is paracompact iff every open covering of X has
an open locally finite refinement, [1].

Definition 1.2. Let X be a space and A4 a subset of X. The set 4 is a-para-
compact iff every X-open cover of A4 has an X-open X-locally finite refinement which
covers A, [8]. )

Definition 1.3. A subset A of a space X is &-regular iff for any point acA4
and any X-open set containing a there exists an X-open set ¥V such that
acvcvcl, [4].

Definition 1.4. A space X is D, iff there exists an a-paracompact subset 4
such that A=X, [3].

Theorem 1.1. ([3]) Let X be a D, space such that there exists a dense a-regular -
a-paracompact subset A. Then, every open covering of the set A has a closed locally
finite refinement, hence every open covering of X has a locally finite closed refinement.

Theorem 1.2. ([3]) Let X be a space such that there is a dense a-regular subset
D. If every X-open covering of D has an X-locally finite refinement which covers D,
then every X-open covering of D has a closed (in X) X-locally finite refinement.

Received May 13, 1985.
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Theorem 1.3. ([3]) Let X be a space such that there exists a dense a-regular
subset D. Then if every X-open covering of D has an X-locally finite refinement which
covers D, then D is a-paracompact, i.e. X is paracompact.

Definition 1.5. An open cover % is even iff there exists a neighbourhood
V of diagonal in XXX such that for each x€X, V(x)cU (V(x)={y: (x, »)€V})
for some U€c%, [2].

Theorem 1.4. ({2]) If the open covering ”Zl has a closed locally finite refinement,
then % is even.

Theorem 1.5. ([2]) Let X be a space such that each open cover is even and let
o be a locally finite (or a discrete) family of subsets of X. Then, there is an open neigh-
bourhood V of the diagonal in XX X such that the family of all sets V (A) (V(A)__
=U{¥V(x): x€A)}) for Ain o is locally finite (respectively discrete).

Theorem 1.6. ([2]) If every open covering of a space X is even,
then any open cover of X has an open g-discrete refinement.

Definition 1.6. Let o be a family of subsets of a space X. The star of a point

x€X in o is defined to be the union of all members of &7 which contain x. A family

- o of subsets of a space X is said to be star refinement of another family 2 of subsets

of X iff the family of all stars of points of X in & forms a covering of X which refi-
nes 4.

Theorem 1.7. ([2]) Every open covering of a space X is even iff every open
covering has an open star refinement.

Definition 1.7. A family < of subsets of a space X is called closure preserving
iff for every subfamily &/* of &/ we have U{d: Acf'}=U{4: dc"}, [5].

Theorem 1.8. ([6]) Let X be a space such that every open covering of X has
a closure preserving closed refinement. Then:

a) X is normal;

b) Every open covering of X has a o-discrete open refinement.

Theorem 1.9. ([2]) If every open covering of a space X has a o-locally finite
open refinement then, every open covering of X has a locally finite refinement.

2. Main results.

Lemma 2.1. Let D be any dense a-regular subset of a space X. If every X-open
covering of D has an X-locally finite refinement which covers D, then every open
covering of X has an open c-discrete refinement.
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Proof. By assumption it follows that every open covering of D is open covering
of X, hence by Theorem 1.4 it follows that every open covering of X is even. The result
follows from Theorem 1.6.

Lemma 2.2. Let D be any dense a-regular subset of a space X such that every
open covering of D is open covering of X. Then, if every open covering of X has a o-
locally finite open refinement, then every open covering of X has a locally finite refine-
ment, hence D is a-paracompact and X is paracompact.

Proof. The result follows from Theorems 1.9 and 1.3.

Theorem 2.1. Let D be any dense a-regular subset of a space X such that every
open covering of D is open covering of X. Then, the following are equivalent:

a) X is paracompact; ' '

b) D is a-paracompact;

c) every open covering of X has a locally finite closed refinement;

d) every open covering of X has a locally finite refinement;

e) every open covering of X is even; ,

f) every open covering of X has an open star refinement;

g) every open covering of X has a o-discrete open refinement;

h) every open covering of X has a a-locally finite open refinement.

Proof. a)eb): Obvious.

b)=<c): It follows from Theorem 1.1.
c¢)=d): Obvious.

d)=c): It follows from Theorem 1.2.
d)=a): It follows from Theorem 1.3.
c)=¢): It follows from Theorem 1.4.
e)of): It follows from Theorem 1.7.
e)=g): It follows from Lemma 2.1.
g)=>h): Obvious.

h)=a): It follows from Lemma 2.2.

Corollary 2.1. For a regular space, the following are equivalent:
a) X is paracompact; '

b) every open covering of X has a locally finite closed refinement;
c) every open covering of X has locally finite refinement;

d) every open covering of X is even;

e) every open covering of X has an open star refinement;

f) every open covering of X has a o-discrete open refinement;

g) every open covering of X has a o-locally finite open refinement.



334 1. Kova&evié

The assumption “Every open covering of D is open covering of X’ in Theorem
2.1 can not be dropped as can be seen from the following example.

Example 2.1. Let X={a, b, a;, b;: i=1,2,...}. Let each point g, be isolated.
Let the fundamental system of neighbourhoods of a be the set

{V"(a@): n=12,..} where V*(a)= {a,aq;:i=n}
Let the fundamental system of neighbourhoods of b be the set
{{B}UV"a): n=1,2,..}.
Let the fundamental system of neighbourhoods of b; be the set
{U*(b): n=1,2,..} where U"(b)= {b;,a;: j=n}.
Let D={a;: i=1, 2, ...}; Dis a-regular. X is not regular at a, hence X is not regular.
The subset D is not a-paracompact. X is not paracompact, since the family consisting

of the sets
V*(a), {b}UV"(a), U'(b;) for all i and all {a;}

is open covering of X which admits of no locally finite open refinement. The family
consisting of the sets {g;} for all i is an X-open covering of D, but it is not open co-
vering of X. Let

U = {U: icl}

be any open covering of X. There exists n such that
{b}UV™(a) c U,
for some U e%. Let ¥{ be the family consisting of the sets

{p}UV*(a), {a;}, {as}, ..., {Gn-1}-

For any b;, there exists n(b) such that U"*cU,,, for some i(b)€l.
Let
V= {9, U®: i=1,2,..}.

¥ is o-locally finite open refinement of %, but X is not paracompact i.e. D is not a-
paracompact.

Lemma 2.3. Let X be a space and D be a dense a-regular subset of X. If for
every X-open covering U of D there exists a closure preserving family ¥~ which refines
U and covers D, then for every X-open covering & of D there exists a closed closure
preserving family # which refines o and covers D.

Proof. Let #={U;: icI} be any X-open covering of D. Since D is a-regular,
for each point x€D, there exists an open set ¥, such that x¢¥,cV,c Uy, for
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some i(x)€L Let ¥ ={V;: x€D}. By assumption, there exists a closure preserving
family
H= {Hj : j € J},

which refines ¥~ and covers D. Then {H;: j€I} is a closure preserving closed
family which refines % and covers D.

From this lemma it follows that every open covering of D is an open covering
of the space X.

Definition 2.1. A subset 4 of a space X is T; iff every point of 4 is closed in X.

- Lemma 24. Let D be a dense T, subset of a space X such that every X-open
covering of D has a closed closure preserving refinement. Then, D is a-paracompact i.e.
X is paracompact.

Proof. From Theorem 1.8. it follows that X is normal i.e. D is a-regular.
From Theorem 1.8 it follows that every open covering of X (by assumption it fol-
lows that every open covering of D is open covering of X) has a a-discrctcuopen
refinement. Now, the result follows from Theorem 2.1. '

Theorem 2.2. Let D be a dense a-regular subset of a space X. Then, the follow-
ing are equivalent:

a) D is a-paracompact; ]

b) every open covering of D has a closure preserving open refinement;

c) every open covering of D has a closure preserving refinement;

d) every open covering of D has a closure preserving closed refinement.

Proof. a)=b): Every locally finite family is closure preserving.
b)=c): Obvious.

¢)=d): It follows from Lemma 2.3.

d)=a): It follows from Lemma 2.4.

Corollary 2.2. ([6]) For a regular space X, the following are equivalent:
a) X is paracompact;
b) every open.covering of X has a closure preserving open refinement;
c) every open covering of X has a closure preserving refinement;
d) every open covering of X has a closure preserving closed refinement.

Corollary 2.3. Let D be a dense a-regular a-paracompact subset of X. Then,
X is normal. ,

Proof. From Theorem 2.2 it follows that every open covering of D (hence of X)
has a closure preserving closed refinement, hence by Theorem 1.8 it follows that X
is normal.
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There exists a space with the properties as in Theorem 2.2 which is not regular.
The following example will serve the purpose. :

Example 2.2. Let X={a,b,a;: i=1,2,...}. Let each point ag; be isolated.
Let {V'"(a@): n=1,2, ...} be the fundamental system of neighbourhoods of a where
Vi(a)={a, a;: i=n}.

Let {U%b): n=1,2, ...} be the fundamental system of neighbourhoods of &
where '

U"(b) = {b,a,a;: i =n}.

Let D={b,q;: i=1,2,...}; Dis adense T, (a-regular) a-paracompact subset of X.
X is normal, X is not T;. X is not regular at a, hence X is not regular.

Theorem 2.3. Let D be a dense T, a-paracompact subset of a normal space X.
If fis a closed and continuous mapping of the space X onto a space Y, then Y is para-
compact.

Proof. Let D be a dense T; a-paracompact subset of a normal space X. Y is
normal. Since f(D)=f(D)=Y, it follows that f(D) is the dense T} (hence a-regular)
subset of the normal space Y. Let % ={U;: i€]} be any open covering of f(D). Let
W={f"YU,): Ug€%}, itis the open covering of D (hence it is open covering of X).
It follows that every open covering of f(D) is an open covering of Y. #” has a closure
preserving closed refinement & ={4;: jeJ}.

Then, f()={f(4,): j€J} is the closure preserving closed refinement of %,
hence Y is paracompact.

Corollary 2.4. ([6]) The image of a Hausdorff paracompact space, under a
continuous closed mapping, must be paracompact. :
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Interval filling sequences and additive functions

ZOLTAN DAROCZY and IMRE KATAI

1. Introduétioﬁ. Interval filling sequences have been defined in our paper [1].
Let A denote the set of all real sequences, for which the conditions 1,>2,,,>0

(n€N) and L:=§')u,,<oo hold.
n=1

Definition 1.1. We call the sequence {1,}€A interval filling, if for any
x€[0, L} there exists a sequence {g,}, &,€ {0, 1} (n€N), such that

(LD . x= 2 gh,.

We have the following result ([1]):
- Theorem 1.2. The sequence {l Ye A is interval filling if and only zf

(12 e = 3
i=n+l
for any nEN. ’ ’
Let {4,}¢A be an 1nterval ﬁllmg sequence. For x€[0, L} we define by induc-

tion on n
1 if Zs(x)l+l = x,

:
II
...

(1.3) V g,(x):=

0 if &(x) A+ 4, > x.
i=1
It is known ([1]) that
(1.4)° S x= 36
. n=1

We call the representation (1.4) of the number x the regular expansion of x.

Received December 2, 1985.
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Definition 1.3. Let {A,}€A be an interval filling sequence and a,6C such
that S’la,,|<oo. Then we call the function
. n=l

(1.5) F(x):= g",; e.(¥)a, (x€lo, L])

additive (with respect to the interval filling sequence {A,}€ 4), where ¢,(x) denotes
the digits (0, 1) determined by algorithm (1.3). ‘

In this paper we give an exact description of the set of those points in which an
additive function is continuous. Following this, with the help of quasiregular expan-
sions we give a criterium for the continuity in [0, L] of additive functions. Thus we
generalize our results obtained in [2] which referred to special interval filling se-
quences

,1";=i (1<g=2).

As to further properties of continuous additive functions, we refer to our result
in [2], according which there exist an interval filling sequence and a function F con-
tinuous and additive with respect to it, such that this function is nowhere differentiable
in [0, L]. ’ 4
In this paper {1,}€ A will denote an arbitrary but fixed interval filling sequence,
even if we do not emphasize it explicitely.

2. Finite numbers. Finite numbers will play a fundamental role in the sequel.

Definition 2.1. Let {1,}€ 4 be an interval filling sequence. We call the num-
ber x€[0, L] finite, if there exists NEN such that g,(x)=0 for n>N. If x is finite
and ¢,(x)=1 moreover ¢,(x)=0 for n>m, then we say that x has length m, and
write h(x)=m. We define h(0)=0, ie. x=0 is also a finite number.

-Let NeN and

(¢R)) - W= {t1#€[0, L}, h(z) = N}

the set of finite numbers having length not greater than N. For O<x=L we put
2.2) by(x):= max {t|t€Vy, t < x}

and call this number the left neighbour of x in V.

Lemma 2.1. Let O<x=L be arbitrary. Then for any by(x)<y<x we have

(2°3) ) sn(y) = en[bN(x)] lf n=N.
Proof. If by(x)<y<x then let

y= ZaWht 3 a0l
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Clearly
N
SN(y) = Zi 8n(y) A’nEI/)'V

The inequality by(x)<Sy(¥)=y<x is impossible by the definition of by(x). Thus
Sy(¥)=by(x). Now Sy(¥)<by(x) implies the existence of a first index k€{l,2, ...
..., N} such-that &(y)=0 and ¢[by(x)]=1. From this, by algorithm (1.3),

b= 3 albu@lth = 3 a0V hth =y

follows, a contradiction. Thus Sy(y)=by(x), and this implies (2.3).
3. Additive functions.

Theorem 3.1. Let F: [0, L]+~C be an additive Sunction. Then F is continuous
at every nonfinite point x.

Proof. Let O0<x<L be a nonfinite number. Let ¢>0. Then there exists
NoEN such that

2 5 |a <e.

n=Ny+1
N
Let N>N, be such that x< 3 1,6V and put
n=1

jn(x):= min {t|t€Vy, x < 1}.
Then x<j~ (x). We assert that
3.1 byljn(¥)] < x < jn(x).

As a matter of fact, by[jy(x)]#x because x is nonfinite, and x<by[jy(x)] would
contradict the definition of jy(x).
If by[in(®)]<p<jn(x) (ie. if y is in the neighbourhood (3.1) of x), then by
Lemma 2.1
e, () = e, {bylin(x))} = &,(x) for n=N,
whence

IFC)=FO) = | S e a,— 2 eda] =

= l Z-" [en(x)_an(y) anl =2 5' Ia,,| < g,
®=N+1 a=N+1

ie. F is continuous at x.
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We still have to consider the case x=L (L is a nonfinite number). Here we must
prove continuity from the left. Now

. N
by(L) = max {t|tcVy,t <L =x}= 3 1,.
n=1

Hence, if by(L)<y<L then by Lemma 2.1 ¢,(y)=1 for n=N. This implies

FO-FO)l =| 5 l-a@la]=2 3 laj<e

for N>N,, i.e. Fis left continuous in x=L.

Theorem 3.2. Let F: [0, L]~ C be an additive function. Then F is right conti-
nuous at every finite point x€[0, L].

Proof. Let x be finite and m=h(x). Then for any &¢=0 there exists N=m
such that

o0
> ol <e.

n=N+1

Now x€Vy. We have by definitions by[jy(x)]=x. Hence by Lemma 2.1 fof any
x = bylinx)] <y < jy(x)

8,,(}’) = en{bN[jN(x)]} = 8n(x) (n = N)

the relation
holds. Hence
N . N P
IF(x)_F(y)I = ‘%sn(x)an_ Z;.en(y)anl =

=l 2 sn(y)anlé 2 |an|<8:
n=N+1

n=N+1
i.e. F is right continuous in x.
4. Examples.

Example 4.1. Let {1,}€4 be an interval filling sequence. Let moreover
a,=a,=1 and a,=0 for n>2. The additive function determined by the sequence
a,is "

0 for 0 =x<4,,
F(x)=11 for A, =x<2A+4,,
2 for ML+A=x=L.

Clearly, this function is not continuous at the finite points ,, 4,+1,. On the basis
of this the question arises, how exact are Theorems 3.1 and 3.2. The answer is given
by the following example.
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.Example 4.2. There exists with respect to the interval filling sequence
1
{i,,:=§}€A an additive function F which is noncontinuous at every finite point
x=0.

. = 1
Proof. We have L:= Z’§=l and the algorithm (1.3) yields the unique
n=1
i
dyadic respresentation of the numbers x¢[0, 1]. The numbers 5;(0%1 <27

. . . 1 .
and only these are finite, any other number is nonfinite. Let a,:=— for which
n
2 .

=1 =
2—2 I and let

F(x):= ,,is,f—f)

for any x€[0, 1]. Let still x€]0, 1[ be finite and h(x)=m=1. Then

_ St g(x)
x—ngi 7 +2m.
Let N=m and
_omol g () 0 1 1
4.1 xN.="g; > +2_M+F+—1+"‘+F'

Since the right hand side of (4.1) is a regular expansion of xy, we get

&,(x) 1 1

4.2) Foy =5 eyt

n=1 n2

If F were continuous in x, then xy—x would imply F (xN)»F (x) (N—<).
However from (4.2) we get

. _msteg(x) w1 1
A Fo) = 5 =t T T T
and this would imply
m-—-1
Fx)= > = (x) +—— = lim F(xy),
n=1
i.e.
1 _=_1__1
m2~ 6 1277 m?’

which is a contradiction, because #2 is not rational.
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5. Quasiregular expansions. Let {1} A be an interval filling sequence.,For
x€[0, L], by induction on n, let

n—1
1 for Z‘ gX) A4+, < x,

5.1) g(x):=
) for 2’ M)A+, = x.

Theorem 5.1. For any x€[0, L] we have

(5.2) : = S,

"[\48

Proof. (i): For x=0 and x=L (5.2) is trivially valid. (ii): If O<x<ZL and
¥ (x)=0 for infinitely many values of n, then Ny:={n|n€N, &;(x)=0} is an infinite
set. If n€N, then

0=x— Zaf(x)l, =x— Z_' g4 =4,

i=1

whence by 1,~0 (#EN,, n—o) (5.2) follows. (iii): If O<x<L and &i(x)=0
holds only for finitely many values of n, then let N be the greatest index, for which
ey(x)=0 (ie. &(x)=1 if n>N). Then

N—-1 o oo
x=2 g@h=ly=s 2 k= J @4
i=1 i=N+1 i=N+1
whence
x= 3 oGk,
i=1
ie. (5.2) holds.
Definition 5.2. We call the representation (5.2) the quasiregular expansion of x.
Lemma 5.3. If O<x=L then &}(x)=1 for infinitely many values of n.

Proof. Suppose the contrary, and let N be the largest index with ey(x)=1.
Then

x= Z'ei ()4 = Z' & (x) 2+ Ay

i=1
and so by (5.1) &y(x)=0, a contradiction.

Lemma 5.4. If O<x=L is a nonfinite number, then ¢,(x)=¢,(x) for every
nEN, ie. the regular and quasiregular expansions coincide.
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Proof. Suppose the contrary, and let k be the first index for which g (x)>
#e¥(x). By the definitions of ¢ (x) and &;(x) then we have g (x)=1 and & (x)=0.
Heice

: k-1 .
2 e h+4 =x
i=1
and
k—=1
D gx@)h+h=x.
i=1 .

Now ¢&(x)=¢/(x) for i=1,2,...,k—1; hence the previous inequalities yield
k—1
x= 2 g(x) 4+,
i=1

i.e. x is finite,.a contradiction.

Quasiregular expansions make it possible to determine for a number 0<x=L
its left neighbour by (x) (see Definition 2.1), and to describe exactly the regular ex-
pansion of the latter. This we formulate in the following statement.

Theorem 5.5. If O<x=L then

(5.3) by (x) = .g"le:(x)z;,

where the right hand side is the regular expansion of by(x), i.e.
(5.4) e by(X)]=¢er(x) for n=12,..,N.

Proof. Suppose that, contradicting our assertion, there exists z€¥; such that
by(x)<z<x.
(1) If x is nonfinite, then its regular and quas1regular expansions coincide. Let

Cx= Zs,,(x)l Then by(x)= Z’z-:,,(x)/l Let z_Z'a,,(z)A Since by(x)<z,

there ex1sts a first index k€{1,2, ..., N} suchthat g, (x)#s,‘ (z). This is on]y possible
if g(2)=1 and ¢/(x)=0. Hence

k=1 N
= i=2; (@D h+h+ 2 a@@h=

i=k+1

k-1

k-1
= 3 @Atk = 3 a(X) b+ >x,
<1 i

a contradiction.
(i) If x is finite, then let h(x)=m=1, ie.
m-—1

x= 2 e,,(x)l + A

n=1
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Then
I = §: EOd= 3 04

i=m+1

because &;(4,)=0 for i=1,2,...,m. Hence
(5.5) x = 2' e,(x) A, + 2’ e A
i=m+1

Clearly, the right hand side of (5.5) is the quasiregular exparsion of x, i.e.

g,(x) for n=1,2,..,m—1,
(5.6) & (x) =10 for n=m, , .

(A, for n=m+1l,m+2,...

N

If m=N then the proof is the same as in (i). If m<N, then let z= Z’s @)4,.

Now by by(x)<z there ex1sts a first index m<k=N such that ek(z) 1 and
&;(x)=0. Hence

k=1 N
z= 2 (@) hi+h+ 2 &)=
i=1 i=k+1

= 3 a@hth= 3 d@ith=x

and this contradicts the condition z<x.
. 6. Quasiadditive functions. The notion of quasiadditive function will be defined

in analogy to that of additive function.
Definition 6.1. Let a,€C and Zla |<<. The function F: [0, L]—»C

is sa1d to be quasiadditive if

6.1) FG) = 3 e(@a,
n=1
for any x€[0, L], where &, (x) denotes the digits 0, 1 determined by algorithm (5.1).

Remark. If a,6C (fla,,l<oo) then this sequence determines an additive
n=1

function (say F;), and a quasiadditive function (say F,). By Lemma 5.4. F,(x)=
=F,(x) holds for any nonfinite x€[0, L], and trivially also for x=0 and x=L.
Hence, in general, the two functions differ only at the finite points 0<x<L.

Definition 6.2. We call the function F: [0, L]—~C biadditive, if it is both
additive and quasiadditive.
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‘Lemma 6.3. The additive function F: [0, L]~C determined by the sequence
a,cC ( 2°'° |a,|< <) is biadditive if and only if ‘
n=1 .

6.2) = 3 &0)a

i=n+1

" is satisfied for every nEN. .
.Proof. (i): If F is also quasiadditive, then '

W= 3 0N
i=n+1
implies
g, =Fl)= 3 dW)a
. ) i=n+1
i.e. (6.2) holds. (ii): If (6.2) is valid, then by the foregoing it suﬁicgs to show that 6.1).
holds for every finite number O<x<ZL. Let h(x)=m=1 and

m—1 m—1 oo .
X = 2 8,, (x) ln+j'm = Z 8,, (x) j'n'i' 2’ 8? (lm) li'
i=m+1

n=1 n=1
Then by (5.6) we know the quasiregular representation of x, hence using (6.2) we gei
F(x) = Z g,(x)a, +a
n=1

m—

= F aWa+ 3 *(Am)qi=".§e:(x)an,

i.e. (6.1) holds.

Lemma 6.4. If F: [0, L]-C is additive and continuous in [0, L], then F is
quasiadditive (i.e. F is biadditive).

Proof. The function F is left continuous at every 4,, where

b= 3 O A,

i=n+1
Let N>n and : .
63 B = 3 HGh

8'
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Then by Theorem 5.5 the right hand side of (6.3) is a regular expansion and by (4,)—~4,
(for N—<), hence by continuity

a,=F(i) = lim Flby(1,)] =

N>n

N <o
=lim 3 da= 3 g@)a
lzvv:: i=n+1 i=n+1
for every neN, i.e. (6.2) holds. From Lemma 6.3. it follows immediately that F is
quasiadditive (i.e. biadditive).

Remark. By Lemma 6.4 quasiadditivity is a necessary condition for the conti-
nuity of an additive function F; also, by Lemma 6.3 it is necessary that for the

sequence a,cC (f la,|< <) the difference equations (6:2) (n=1,2,...) should
n=1
be valid.

7. Continuous additive functions.

Theorem 7.1. An additive function F: [0, L}]~C is continuous in [0, L] if
and only if it is quasiadditive (i.e. biadditive).

Proof. By Theorems 3.1—3.2 and Lemma 6.4. it will be sufficient to show that
if F is also quasiadditive then it is left continuous at every finite point 0<x<L.

For the sequence a,6C determining the additive function F it is clearly true
that for any &>0 there exists N, such that N> N, implies

-]
2 3 la)<e

n=N+1

Let x be finite and hA(x)=m=1, i.e.

x= 3 () At .

i=1

If N>m then
-1

m N
by(x) = X &(x);+ Z_‘-ls};(lm)li

i=1 i=m
is aregular expansion (Theorem 5.5), and in case by(x)<y<x we have by Lemma 2.1

() = e,,.[bN(x)] (n=12,..,N).
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Hence by the quasiadditivity of F we get from (6.2)

|FGx)— FO)| = llzfll (%) ay+ apm—

-FaWa- 3 dtaa- 3 a0)al=

=m+ =N+

=| 3 EUD-ala]=2 3 lal<s
i=N+1 d=N+1 )

1.e. F is left continuous at x.

' Corollary. Let a,£C (fla,,|<w) and F: [0, L]->C the additive function
n=J

determined by the Sequence a,. Then for the continuity of F in [0, L) it is necessary
and sufficient that the difference equations (6.2) should be valid for every n€N.

Remark. For 1<g<2 and 1,:=1/g" the previous statement has been proved
in [2].
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| Absolute summability of double orthogonal series

F. MORICZ and I. SZALAY

Dedicated to Professor B. Sz.-Nagy on his 75th birthday

1. Introduction: Summability of numerical series

We consider a quadruply infinite matrix
T={3:ikmn=0,1,..}

of real numbers such that

(1.1) i‘Z' |(f1] <o (myn=0,1,..).
=0
Condition (1.1) is trivially satisfied if the matrix T is such that for each m and n there
exists an integer x,, with the property that 7;"=0 whenever max (i, k)>%,,. In
this case T is called generalized triangular. In particular, T is called triangular if for
each m and n we have #j;"=0 whenever at least one of the relations i=m and k>n
is satisfied. ‘
With every double series

(1.2)

It

M3

k

Mg
Ms

Uik
i

It
o

k

I
=)

of real numbers, we associate a double sequence {6,,,} given by

(1.3) Cpn = S’ Z”' Uy, (mn=0,1,..),
i=0k=0

provided the double series on the right converges in the sense of Pringsheim. This is
the case if (1.1) is satisfied and the terms u;, of series (1.2) are bounded. We note that
in this case the series on the right (1.3) is even absolutely convergent.

The authors are indebted to the referee for valuable hints. -

Received April 12, 1985.
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If 6, tends to a finite limit s as min (m, n)—c> we say that series (1.2) is T-
summable to the sum s. The o, are called the T-means of (1.2).

We introduce the following notation:
(1‘4) Amn = O~ Om=1,n—Om,n-1FO;m-1,n-1
with the agreement that .
(1.5) 0'_1,', = om,—l = 0'..1' -1= 0 (m, n= 0, 1, ...).

We say. that series (1.2) is absolutely T-summable (shortly: |T|-summable) if

(1.6) mﬁ 5 14y] <oo.

Clearly, |T|-summability implies T-summability. In addition, |T|-summability
also implies that o,,, converges as n— o foreach m=0, 1, ... and that o, converges
as m-o for each n=0, 1, ..

2. Main results: Summability of orthogonal series

Let o={pu(x): i, k=0, 1, ...} be a real-valued orthonormal system (in abbre-
viation: ONS) defined on a positive measure space (X, &, p). We consider the double
orthogonal series

'(2- 1) ‘ § Ay Pulx),

"MR

where {a,:i, k=0,1,...} is a double sequence of real numbers such that

af <o,

Ms
M3

2.2)

-
I
e
x
[
]

The T-means of series (2.1) are defined according to (1 3):

o,,,,,(x) = 2 2 :’Ilcnaxk(/’tk(x) (m’ n=0,1, )

If conditions (1.1) and (2.2) are satisfied, then ¢,,,(x) is well défined p-a.s. for
each m and n. In fact, it follows from (2.2), via B. Levi’s theorem, that

lim  ayou()=0 pas,

max (i, k)-»co

and, a foriori, the terms a; ¢, (x) are bounded p-a.s.
We introduce the following notation:

(23) t:‘:ﬂ = ﬂ"—tﬂ-l'"—tﬂ‘"-l-}-tﬂ_l'"_l
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with the agreement that _
24 = l=13b"1=0 3, k, m,n—O 1 ...).
Theorem 1. If conditions (1.1), (2 2) are satzsﬁed and

2.5

n[\43
"[\48

5 { =S' mn]z a?k}llz <oo,

then series (2.1) is |T|-summable p-a.e. on X.

The surprising fact is that condition (2.5), under a mild assumption on T, is
not only sufficient but also necessary for the p-a.e. {T|-summability of series (2.1)
if all ONS ¢ are taken into consideration. 7

To be more specific, let (X, &, p) be the familiar unit square

U={x=(x,x):0=x;=1. for j=12}

with the Borel measurable subsets as & and with the planar Lebesgue measure as p.
We remind that the ordinary one-dimensional Rademacher system {r;(x,)} is defined
as follows

ri(x,) = sign sin (2nx,) (i=01,..;0=x,=1)

(see, e.g. [1, p. 51] or [15, p. 212)).
Theorem 2. Assume that conditions (1.1), (2.2), are satisfied and
(2.6) g; ;’)Irm <o (L,k=0,1,..)
If condition (2.5) is not satisfied, then the two-dimensional Rademacher series

oo

2.7 | S 2 ageri(x1) 1y (x2)

i=0 k=

(-]
(=]

is not |T|-summable a.e. on U.
Putting Theorems 1 and 2 together, we obtain the following

Corollary 1. Assume that conditions (1.1), (2.2), and (2.6) are satisfied. Then
series (2.1) is |T'|-summable a.e. for every double ONS ¢ defined.on U if and only if
condition (2.5) is satisfied.

The corresponding results for single ONS defined on the unit interval
I={x;: 0=x,=1} were proved by LEINDLER and TANDORI [8].

As an application, we will conclude a number of results on |C, «, f|-summability
of double orthogonal series for a>—1 and f>—1. As is known, (C, a, f)-sum-
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mability is defined by means of the triangular matrix T={/}"}:

Af,,_, A,,_k for i=0,1,....m;k=0,1,...,n
2.8) mr = T4, AP ) mn=0,1,..;
0, otherwise.
Here
4 = (a+m] _ e+ (e+2)...(a+m)
Som m m!

(m=0,1,..; a>-1)

is the binomial coefficient.

3. Proofs of Theorems 1 and 2

Similarly to (1.4) and (1.5), we set
(€RY By (X) = Gpn(X) = 01,0 (%) = Opn, -1 (%) + 01,51 (%)
with the agreement that
oy (X)) =0y 1(x) =0_;,1;(x) =0 (myn=0,1,..)
for every x in X.

Proof of Theorem 1. By Minkowski’s mequahty, orthogonality, and (2.5),
we get in turn that

{12 ZMutlduf = 3 3{ [ st du}” =

2 [ Paf!/? <o

k=0

l
Mg
Ms
DM

{

E]
1l
©
E]
il
-]
-
I
©

This means that

|A,,,,,(x)|eL2(X Z, 1)

]
-3

Ms
“[\48

and, in particular, series (2.1) is |T|-summable p-a.e.
The proof of Theorem 1 is complete.
In the proof of Theorem 2 we need the following auxiliary result proved in [9].

~Theorem A. Given any measurable set E (CU) of positive measure, then ’
there exist an integer n, and a constant C,=>0 such that for every finite sum

Plx,, x,) = 2 Z ayr;(xy) ()

i=mk=n
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with max (m,n)=n,, M=m=0 and N=n=0 we have

ff |P(xys X0)} dxy dx2 =G 2 2 af .

i=mk=n

We note that this is an extension of a result due to OrLicz [10] from the one-
dimensional Rademacher system to the two-dimensional one.

Proof of Theorem 2. We will prove that if series (2.7) is {T|-summable on
a subset of U with positive measure,. then condition (2.5) necessarily holds.

To realize this goal, then by Egorov’s theorem there exist a constant C, and a
subset E (cU) of positive measure such that

(32) Z Z IAmn(xl, xz)| = C2 fOI' (xla x2)€E9
m=0 n=0

where this time' 4,,,(x,, x;) is defined by (3.1) in the case of the two-dimensional
Rademacher functions and x=(x;, X5).

We are going to apply Theorem A formulated above. To this effect, we must get
rid of the functions r;(xy), r,(x;) in the definition of 4,,(x,, x,) for which
max (i, k)<ny. Therefore, we set

. {a,-k if max(i, k) = n,,
% =10 if max(, k) < n;

and denote by 4,,(x;, x,) the corresponding difference of the T-means for the
“truncated” double series

(33 2 3 ar(e) rx).

Since |r;(x;)r.(x2)|=1 for every x;, x,, an elementary estimation shows that

2 2 IAmn(xl’ x2)|_ é' Z Igmn(xla xﬂ)l

m=0 n=0
min (m, ny—1) min (a1, n,—1)
= 22X 2 [t aul =
max (m, n)=n, i=0 k=0

ng-1 ny—1 np—1 oo

=32 |a.k|{2 S+ §§_+ S Y=

m=i n= =ny m=m0n=no

ny—1 ny—1

=35 5 lad 3 3l <o

the last inequality is due to (2.6). Consequently, the |T|-summability of series (2.7)
and (3.3) are equivalent for every x;, x,.
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So, we may assume without loss of generality that a;,,=0 in (2.7) for i, k=
=0,1, ..., ny—1, and use the notations a; and 4,,(x,, x2) rather than &, and
Apn(%1, X5). On the one hand by (3.2),

(3.4) ,Ea ?{, S Va1, %2)| dxydx, = Cop(E),

1 being the plane Lebesgue measure here. On the other hand, applying Theorem A
yields

(3.5) S 2 [f 1m(rs, x| drydry =
0n=0"g R

=a 3 5(5 Suwrap

=0 k=0

Combining inequalities (3.4) and (3.5) results in (2.5) to be proved.

4. Application of Theorem 1: Sufficient conditions
for |C, o, B|-summability of orthogonal series

The next seven theorems will be consequences of Theorem 1. We make the
following convention: by 2! we mean O in this paper.

Theorem B. If a=1/2, f=>1/2, and

w e 9P—1 29—

@.1) S35 Sape<s,

Pp=04g=0 i=2P-1f=29-1

then series (2.1) is |C, &, B|-summable p-a.e.

This theorem was proved in [9] by the first named author, extending the relevant
results of TANDORI [14] (@=1) and LEINDLER [5] (¢>1/2) from single to double
orthogonal series. The proving method in [9] is a direct one. Nevertheless, it is ins-
tructive to present here how Theorem B can be deduced from Theorem 1. Since the
same technique will be used in the proofs of Theorems 3—8 below, we enter into
full details.

Proof of Theorem B. We will prove that condition (4.1) implies (2.5), and
a fortiori, Theorem 1 implies Theorem B.

To this end, we introduce the notations
4.2
and

43 A ={ Sg” [CRai} (m,n=0,1,..).

21 if g=1,2, ..,
" “{o if g=0;
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'fhus, the left-hand side of (2.5) can be rewritten as follows

(4'4) {2; g mnlz 2}1l2 = d00+ 2d0n+ deo'*' 2 den

m=1 n=1

||[\43
||[\48

According to this, the proof is divided into four parts.
Part 1. By (2.3), (2.4) and (2.8)

4.5) =1 and ¥ = 0 otherwise,
whence
(4-6) . doo = ldool-

Part 2. By definition, for n=1,2, ...

A Ay

T A7 if k=0,1,...,n—1;

if k=n;

and =0 if i>0 or k>n. Using the relevant estimates in [5], we have, for
ﬂ -= ls

Op(kn=t2(n+1-k)f-1) if k=0,1,...,n
“7n U= { - o .
0 if i=0 or k>n (n=1,2,...).

By the Cauchy inequality,

LTS n

Sdw= {2 P} = 3 > {Z[hPd)r=
n=1 n=1 k=0 4=0n=n_+1 k=0

oo Ba+1 n
= 2 {(nq+1_nq) 2 [18;]2 agk}l/2 =
q=0 n=n_+1k=0

had LT n—1 )
=0(1) J {(nge1—n,) l 2 KEn~*-2(n—k)¥-2g3 112 +
q=1 n= 1 k=0

+om = {(nger—n) 3 n#ag} = O(1)(5,+5,), say.
q= n-=n¢+1

Since-
(4.8) Ngri—n,=n, (g=1,2,...),

it immediately follows from (4.1) that Z,< eo.
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Now we turn to Z;. A simple computation gives that

> LPFeY q min(n, ,,,n)—1 .
= 2 {(nq,,1 -n) 2 2 > kzn'”"z(n—k)”‘?a%,‘}l/? -
=1 n=n,+1 r=0 k=n, : . ) -
"r+l_1 LRy

M-ﬁ

= qg; {(nq+1 —n,) k2n—28-2(p _k)2ﬁ—2a(2’k}1/2 =

r=0 k=n, n=max(n,k)+1
—2 M 41—l Pauy

o q
= 3 (=) S ken 2 (n— k)P -2al e 4

r=0 k=n, n=n_+1

+2(nq+1—n)1/2n" AP R A e
=q—1 n=max(ng, k)+1

= 211+212, say.
It is easy to see that

4.9 'gl (n—k)*—2 = O(n2¥-1)

n=max (n,k)+1
. y 1}
f n_,=k<ny [q =1,2..:8 >5)'
Consequently, (4.1) and (4.8) yield Xj,<co,
Now we treat Z,,. It is not hard to check that
4.10 (n—k)¥=2 = 4(n,—n,,)*?

if npg<n=ngyn=k<n,;

r=0,1,..,9g-2;9g=23,...; B >%.
Using this inequality together with '

(uto+.. M2 =u2ro24+ ... (uz=0,0v=0,..),
we find that

ol Maer @—=2 8411
Zu= 3 {(n1-n) kzn'”"z(n—k)z”‘?aﬁk}‘/z =
q=2 n=n,+1r=0 n=n. .

h]

oo

= 2 (g1 —n )2 ng P {(ng1—ny) qz_' (n,—nyp)?P2 2 k2 2 = '
< 2

S q--2 n..=-1 '
= 0(1) qz; (nq+1_nq) n;ﬂ—l Z:) nr(nq—nr+1)p~l{ IcZ a(z)k}l/2 =
= r= =n,

—O(I)Zn,{ 2 aOk}lfz Z (=) N(n—m = 5, say.

r=0
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It is easy to see that K
@.11) (1= 1r42)P =2 = O(nf ™)

1
if g=r+2;r=0,1,...; /3>7.

Using this, (4.1) and (4.8) we can conclude that

i L hd eo  Npyy—1 . :
@1 =om a3 ayr 3 =00 3{'S apn <o
r=0 k=n, q=r+2 r=0 k=n,

r

Consequently, Z;<oo, Z;<eoo, and

(4.13) Sy, <

n=1

357

Remark. A careful examination of the method used just above shows that if

{C,: k=0, 1, ...} is a sequence of nonnegative numbers, then

where O,(1) does not depend on {C,} and as before n,=2""1.

In a similar way, we can obtain that for every sequence {B;: i=0,1, ..

nonnegative numbers we have

4.15) g {. ;"; [15'50]53,.}1/2 - 0,(1)2; {:;2"‘_1 BY-.
Part 3. According to (4.15), ,

(4.16) ' ,,.ZZ Ay <.

Part 4. It remains to prove that

4.17) S Sty <o
m=1 n=1
To this end, first we observe that
(4.18) =1 (GLk=0,1,...;mn=12..).

In particular, this implies that

=0 if i>m or k>n
Then setting

(4.19) Co= 5[mPal, (k=0,1,..)
i=0 .

.} o.f'
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and
R4yl

(4.20) Bl' = Z a,g,, (i == 0, 1, ...),
k=n,

we can proceed as follows

mgi'l ng. ‘dmn - mgi'l ng. {1=2"(: kg"(') mo 8212 i }l/ 2 g {kgn' Ton]zc }1l2 -
. o oo By—1 m & o m
- Oﬁ(l 2 Z{ =20v[ 0243 k}l/z = 0,,(1) g;'g(; {,=Z0' m0]2B}1/2 =

=0,0.0 3 3 { =2 2’ <

—n

the last inequality being (4.1). This proves (4.17).
Combining (4.4), (4. 6) (4.13), (4.16) and (4.17) completes the proof of Theo-

rem B.
Now we introduce the following notations:

{2Vﬁ if ¢g=12,..,
m =

4.21) 0 if g=0;
4.22) i, =pY¢=" if p=0,1,..;
(4.23) k,=q¥20) if ¢=0,1,...
We agree that if u and v are real numbers, u=v then by Zv' we mean the sum

n=u
extended for all integers n such that u=n=o.

Theorem 3. If

pu -1 Mas1™ -1
(4.24) 2 Z’ 2 a,?,‘}l/2 < oo,
p=0 4= i= m k=mg,

then series (2.1) is |C, 1/2, 1/2{-summable p-a.e.
Theorem 4. If 0=a<1/2, 0=f<1/2, and

$pe=1 kg yy—1
{ P e }1/2<‘._,°
ik )

iSi, k=k,

Ms
M3

(4.25)

0q

[
)

p

then series (2.1) is |C, a, B|-summable p-a.e. -

Theorems 3 and 4 are the extensions of the corresponding theorems of LEINDLER
and SCHWINN [7] from single to double orthogonal series.

Conditions (4.26) and (4.27) below imply the fulfilment of conditions (4.24)
and (4.25), respectively, through an appropriate grouping and the Cauchy inequality
(cf. [6]). In this way we obtain the following two corollaries.
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Corollary 2. If

(4.26) 2 =Zm{(p+1)(q+l) _;llktg‘ak}"2<“

then series (2.1) is |C,1/2, 1/2|-summable p-a.e.
Corollary 3, If 0=a<1/2, 0=8<1/2, and

o 2P—-1 29-1
Z {zp(l—za) 24(1—28) 1-; %*_l k_é'-n a'?k}llz < oo,

(4.27)

u[\/_lg

then series (2.1) is |C, a, B|-summable p-a.e.

Corollaries 2 and 3 as well as Theorem 5 below are the extensions of the cor-
responding theorems of LEINDLER [5] from single to double orthogonal series.

‘Theorem 5. If —l<a<0, —1<f<0, and condition (4.27) is satisfied, then
series (2.1) is |C, a, Bl-summable p-a.e.

Proofs of Theorems 3 and 4. We follow the scheme of the proof of
“Theorem B, changing it only at the reference numbers indicated by % or # %. Ins-
tead of (4.1), (4.2), (4.8)—(4.12) we have to take (4.24), (4.21), (4.8*)—(4.12*) and
(4.25), (4.22)—(4.23), (4.8**)—(4.12**), respectively, and the proofs run along the
same line as the proof of Theorem B. The % estimates below are valid for f=1/2,
while the * % estimates are valid for 0=f<1/2, but some of them remain valid for
p=—1 too.

The appropriate estimates are the following:

* L m, )
(4.8%) Mgsy—my = 0 (log o
and :

(4.8*%) kys1—k, = Oy(k2#)

(this latter estimate holds true for B> —1);

(4.9% - nmx(ém oy (1R = 000gm)
and *

| kqﬂ
49%) (n—K)?=2 = 0,(1);

n=max(k°.k)+1

(4.10%) (n—k)=(m—m, )"
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and
(4.10**) - (n—ky#-2 = (kq—kr+l)2p_2;
2ri4(g—1—r)""2mE if r42s=g=sr4rh,
(4.11%) (mg—m, )72 S{Zm—llz . £ i g
and
(4.11%%) (k,—k, )P {Oﬂ(l) (q—1-rfkBEL-Y if ri2=g=2r+],
‘ g~ Rr+1 =

Oz(1) k&1 if 2r+1<gq;
finally, for f=1/2, ,

oo m, -1 oo
4.12% z=0Q1) > m,{ 2> aﬁ,‘}l’2 2’ mg P (m,—m, ) M2 log™im, =
r=4 k=m, q=r

4rife

oo m, =1
— 0(1) 2 r1/4m}/2{ 2 aOk 1/2 2' m—l/z(q l_r)—llzlog—lm +
r=4 k=m,

m, -1

=Z'm adJ? 3 mllog7im, =

k=m, a=r+rt/141

+0(1)'§ m, {

o Zrn {3 apr s gy

._.m’

+o) Sm S a3 mytlogm, <o,
r=4 k=m_ g=r+1
while for 0<f<1/2,

[ kr4q—1
(4.12**) 5= O,,(l) 2 kr{ 2 a2 }1/2 kﬁ l(k —k +1)ﬁ—1 —
r=1 k=k, ‘1—-'
had kr-&l =1
= 0y(1) J KEGE-D{ 3 af i 2 (q 1-ryf14
r=1 k=k, g=r+
©o "r-n—l ©o
+05(1) S k{2 aft 3 k<
. r=1 k=k, q=2r+2
and for B=0,
(4.13*%) S o= 2 {go 82 ag 2= 2 lag] <.

These inequalities completes the proof of Theorems 3 and 4.

Proof of Theorem 5. We use notation (4.2) and follow the pattern of the
proof of Theorem B again. By (4.8) and (4.27),

fg+1

oo "q+l . hind
Iy= 2 {(nﬁl_nq) 2 n—ZFagn}llz =2 {(nq+1 n)ngif a‘z’"}llz =
q=0 n=n,+1 q=0 n=n,+1

o 29
= 0p() 3 {20070 5 ag}i<e
q=0

n=2a-141
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and
hoid Pas1 g min(n, ,,n)~1
L =2 {(”q+1—‘ ng) 2 2 kz”'-ﬁ-z(”—k)w_zagk}ll2 =
q=1 n=n,+1 r=0 k=n,

= 0,(1) Z’ {2-eu+2p Zq- "'2' - ka, }"' (n—kyP=2jise =

r=0 k=n, n=max(ng,k)+1

-1

Prs 27
= 0,1 3 {2 S5 a3 (nery-iny
n=29-141

r=0 k=n,

+0ﬂ(1)2{2—q(1+2ﬂ) Z' 224 Z aOk}1/z-

k=n,

b 9-2 Ppya—1
= O,,(l)(l +3 {2—«(1+2ﬁ) > > a(z,izq(aﬁ—l)}lla) =
q=2 r=0 k

oo n -1 ©o
= Op(l)(l +'§o 2'{*_2"' aﬁk}”" 42 2_') < oo,

These calculations show that (4.13) is satisfied.
In the above manner (cf. Remark in the proof of Theorem B), we can conclude
that if {C,: k=0, 1,...} is a sequence of nonnegative numbers, then

(4.14*) ”g { é" [ng]z Ck}1/2 —_ Oﬁ(l) 'é') {zr(l—zﬂ) :rg_ Ck}llg

and if {B;: i=0,1,...} is a sequence of nonnegative numbers, then
e m : o LS Tt
(.15 3 { SErBY = 0,1 3 (e 5 By,
m=1 "i=0 _ r=0 i=n,

The latter inequality implies the fulfilment of (4.16).
As to the fulfilment of (4.17), we use notation (4.19) and set

Byl
(4.20%) B= 3 K% (=01..).

We proceed as follows (cf. (4.18))

né; .é; Fn = ...Z:; ,.g {é’ [ Z [Pag ) =
= 0,(1) 3 3 {2 A Paj e =
m=1 ¢q=0 [y %o

Q

= Oﬂ(l) Z 2 {Z’ [xpo)e 1“2"—1 k-2 ga e =

m=1 =0 ng
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n, 1
= 0,,(1)0 1 2 2 {2P(1—2a) 2 92 k128 g2 }1/2 =
=n, k—nq P

" p=04=0

g41—1
= 0,(1)0,(1) 2 Z'{zp(l za)2q(1 ) 2 2' GANR <o,
i= l‘lp q

completing ‘the proof of Theorem 5.
The following three theorems cover the so-called “mixed” cases. We remind

notations (4.2), (4.21)—(4.23).
Theorem 6. If a=>1/2, B=1/2 ‘and

npyy—1 mq+l_1

Sd=ny

(4.28) g j’-{ G2 < oo,
p=0 4=0 " i=n, k=m.ff S
or if a>1/2, 0=p<1/2 an
b Ll 2t ~1 kq+171 o : ., c
(4.29) Z 2{ 2 Z ajn<e
p=0 4=0 " i=n, k kq ) ‘ o
orif a>1/2, —1<p<0 and '
' . o - co PpaiTl B y— )
. (4.30) Z Z{un 2B) 2 2' 2}1/2 < oo,

then series (2. l) is |C, a, Bl-summable p-ae
Theorem 7. If a=1/2, 0=0<1/2 and
(431) ' S 3(5 S apyn<e,

or if a=1/2, —1<B<0 and

(4.32) 2 2{2«1 o) 2‘ -

then series (2.1) is |C, a, B|-summable p-a.e.
Theorem 8. If 0=a<1/2; —1<f<0 and .

ip41—1 "q+1"‘1 . )
azk}llz < oo,

w 3 Som

then series (2.1) is |C, «, ﬁl-summable p-ae.

i=i, k=n,-

Combining the proofs of Theorem B and Theorems 3—5 yrelds Theorem 6,
combining those of Theorems 3 and 4 yields Theorem 7, whrle combmmg those of
Theorems 4 and 5 yields Theorem 8. . . I
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As an example, we sketch the proof for the case «>1/2 and f=1/2. Similarly
to (4.14), for any sequence {C,: k;Oz 1, ...} of nonnegative numbers we have

(4.14**) \ ' S { 2 [10;;_]2 c,‘}lfv2 = oﬂ(l)'{:‘g_ c,,_}llz..

Furthemore we have (4.15).
Assume (4.28) is satisfied. First, setting C,=aj, and B =a?, we can derive

(4.13) and (4.16). Second using notation (4.19) and setting

mq,H -1 A
(4.20**) a?,‘

k=m : .
we can conclude (4.17). So, applying Theorem 1 prov1des the first statement in Theo-
rem 6. : :
The next two corollaries of Theorems 6 and 7 can be deduced via the Cauchy
inequality.

Corollary 4. If oc>1/2, B=1/2 and

2P—1 20—1

4.34) Z’ Z’{(q+1) 2’ Z' 2}1/z<°°

p=04d=0

orif a=>1/2, —1<B<1/2 and condition (4 30) is satisfied, then series (2 1)is IC o, Bl-
summable p-a.e.

Corollary 5. If a=1/2, —~1<pBf<1/2 and

2P—1 29-1

(4.35) g’ g{(p+1)2q(1—zn)' > 3 ai)r<e,

=2P~1 g=29-1

orif —l<a<1/2, —1<p<1/2 :and condition (4 27) is satisfied, then series (2.1) is
IC, a, B|-summable u-a.e.

Corollaries 4 and 5 as well as Corollaries 2 and 3 Were'pro§/ed by PONOMA-
~ RENKO and TimMaN [11] for the two- dimensional trigonometric system. :
We remind that a'double sequence {4;: i, k=0,"1, ...} of numbers is said to
be nondecreasing if
Ay = min {'1-+1 ks At ka1)
-and ‘to be nonincreasing if »
dig = ma‘)‘(v{.li+1,k’ li,.k+1} (i,k=0,1,..).
In Corollaries 6 and 7 below, let {4} be a nondecreasing sequence of positive numbers
such that
oo oo 1
4.36 —_——————— <oo,
(436) 2% GF DG+ D

i=0k=0
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or equivalently,

Applying the Cauchy inequality to series (4.1), (4.26), (4.27) and then to series (4.34),
(4.30) and (4.35) results in the following two corollaries.

Corollary 6. If a=>1/2, B=>1/2 and

._2:”‘% af Ay <oo,
or if a=1/2, B=1/2 and
é’)kzc" ahdalog(i+2)log (k+2) <o,

or if —l<a<1/2, —1<p<1/2 and

"l\dﬂ

S a8 A i+ 125 (k4 11728 < oo,

then series (2.1) is IC, o, ﬂl-summable u-a.e.

Corollary 7. If a>1/2, =1/2 and

u[\43

j a2, log (k+2) <o,

or if a=1/2, —1<ﬂ<1/2 and

nMs

i ab (ke + 1) < oo,

or if a=172, ;1.<ﬂ<1/2 and

llMg

2”, ajy Ak + 1)1—” log (i+2) <,

then series (2.1) is IC, o, ﬂl-summable u-a.e.

Corollary 6 is the extension of the corresponding results of UL’JANOV [15, pp.
46—37 and 51—52] from single to double orthogonal series.
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5. Application of Theorem 2: Necessary conditions
for |C, a, f]-summability of orthogonal series

The sufficient conditions (4.24), (4.25) and (4.27)—(4.32) are the best possible.
To see this, we consider the special case where the double sequence {ayl:
i, k=0, 1, ...}° is nonincreasing. Then (4. 24) is equlvalent to (4.26), and both are
equlvalent to the condition

(5.1 Si= 3 Z(p+1)"2(q+1)1’22”’22‘”2[02» 21 <oo3

p=0g=0

while (4.25), (4.27) and (4.33) are also equivalent to each other, and each of them is
equivalent to the condition '

(5.2) S; 2 22a-9200-B) |y | <o (—1 <, B < 1/2).
p=0d= .

* Similarly, in the special case where {|a,|} is nonincreasing in k for each fixed i
both (4.28) and (4.34) are equivalent to the condition

(5.3)

||[\43

g'(q+l)1/224/2{ Z' az }1/2<°°

i=2pP-1

while both (4.29) and (4.30) are equlvalent to the condition

. oP 1 .
(5.4) = 3 Sa0n ¥ @ <e (—1<f<1]2),
p=04= o i=_zP-1 ’
Furthermore, in the special case where again the double sequence {|a,|} is -
nonincreasing, each of the conditions (4.31), (4.32) and (4.35) is equivalent to

(5.5) Z Z(p+1)1/22p/22q(1 Plags, gl < oo (—1 <f<1/2. ©

p=04=0
" As an illustration, we show the equ1valence in two cases.

Case 1. The equivalence of (4.24), (4.26) and (5.1). We remind notation (4.21).
First, we show that (4.26) implies (4.24) without any restriction. By the Cauchy
inequality,

mp+l_1 mq+

>{ gyn=2 3 2(m+1)1/2(n+1)1/z><

9=0 " i=m, k—m m—o n=0

Ms

I
<

p

mpeq—1 Mmyyq—1

x{ = > 2 al ),

p:2m-iz=m <2m q:on-l=n <2® i=m, k=m,
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since for every m=1,2, ... the number of those integers for which 2"~1=m,<2"
is less than 2m. Taking into account that the quadruple sum in the last square root
does not exceed the double sum

gm+i_1 on+i_)

2
Aiks
i=2m=-1 g=2n-1

we get implication (4.26)=(4.24).
Second, if we use the monotonicity of {|a,[} we can immediately see that

2 g{(ﬂ'*'l)@‘l'l) :2:1 242_' atk}llzs

= S' 2”' (p+1)2(q+1)V22P12 292 |ggp s gq-1],
p=0 9=0

which shows implication (5.1)=(4.26).
Third, we show implication (4.24)=(5.1) in the monotonic case. Again by the
Cauchy inequality,

2P—-1 29-1

=00 F 3 3 3 lamlx

0m=2P-1 p=29-1

X(m+1)"Y2(n+1)"12]log"2(m+2) logl’z(n+2) =

=0(1) 2 Z’la,,,,,l(m+1) l/2(n+1)"1/"’log1/2(m+2)logl/z(n+2)—

- 1 1 o
e oo Mp=kmg,,—
=oH 2 > 2 |l X
p=0g=0 m=m, n=m, -

X(m-+1)"V2(n+ 1)~Y2log!2 (m+2) log!/2(n +2) =

67 ’ © oo Mpu—lm,,,—1
=0 3 >{ A PRy
where by (4.8%),

mpyy—1lmg -1

= { . (m+ 1)'1(n+'1)-1 log (m+2) log (n+2)}1/2 =

m=m, n=mg
= {(mp+1 _'mp) (mq+l q) (m + 1)—1(m + 1)_11’1/2 q1/2}1/2 0(1)
This proves implication (4.24)=(5.1).

Case 2. The equivalence of (4.29), (4.30), and (5.4). This time we use notation
(4.23).
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First, we show that (4.30) implies (4.29) without any restriction. By the Cauchy

inequality,
2P—1 kg1

oo o0
Sa=2 2 { > 2. aj )t =
p=01n=0 @:2"~I=k <2 "i=20-1 k=k,
o oo 2P—1 kq“ -1
2 1/2X 1/2.
é';{ —é’ 2nizplk k, a} { 2"-lsk<2” }

Since the number of those integers ¢ for which 2*~1=k,<2" is 0,(2"*~*) thus

P—_1 on+l_3]
Se=0,(1) 2 2{2"‘1 w > Vs af 2.
=0 n=0 i=2P-1 g=2n-1

This proves implication (4.30)=(4.29).
Second, using the monotonicity of {|a,|} we can easily get 1mp11cat10n G.9H)>
(4.30) as follows

Z Z {24(1 28) .

1}1/2
29-
p=0q= i= 2P-lk 2¢-1

Third, we show implication (4 29)=(5.4) in the monotonic case. By the Cauchy ine-
quality again, :

91

22 a2 = 2 5’24(1—11){

i= 2P-1 %

291

S' S*zq(l—ﬁ){ 21‘12 }1/2 0,,(1)2 2 k- ﬂ{ Z a2}1/2._.
p=04=0 i=2P- 0 k= 2'1—1 =27-1
e oo oo oo kgiq—1 2P —1
=0(1) 3 > k*{ S ayr=o,m 3 35S k{3 ahpir=
p=0k=0 i=2P-1 P=04=0 k=k, - i=gP-1
kq+1_1 P—-1 kq+l_1
=0, 3 {5 kwpn{ > S aye.
p=0g=0 " k=k, =2P-1 k=k,

Since (4.8**) holds true for f=>—1 we have

kgyr—1
kg k= = (kg42— q)k;zp = 04(1),
. proving implication (4.29)=(5.4).

After these preliminaries, the point is that if {|a,|} is nonincreasing in a certain
sense indicated above, then conditions (5.1)—(5.5) are not only sufficient, but also
necessary for the a.e. |C, «, f|-summability of series (2.1), for a fixed pair of @ and
in the appropriate domain, if all ONS ¢ are considered.

To go into details, the case min (o, §)=1/2 was studied in [9] without any
additional restriction on {|a;|}. Theorem C obtained there extends the corresponding
results of BILLARD [2] (#=1) and GREPACHEVSKAJA [4] (a=>1/2) from single to double
orthogonal series.
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Theorem C. If a=1/2, B=1/2 and condition (4.1) is not satisfied, then the
two-dimensional Rademacher series (2.7) is not |C, a, B|-summable a.e.

The following theorems cover various cases in the domain —~1<min (¢, )=1/2.

Theorem 9. If the double sequence {|ay|} is nonincreasing and condition (5.1)
is not satisfied, then series (2.7) is not |C, 1/2, 1/2|-summable a.e.

Theorem 10. If —l<a<1/2, —1<p<1/2, the double sequence {layl|} is
nonincreasing, and condition (5.2) is not satisfied, then series (2.7) is not |C, «, B|-
summable a.e.

Theorems 9 and 10 are the extensions of the corresponding results of GRE-
PACHEVSKAJA [4] from the one-dimensional Rademacher system to the two-dimen-
sional one. Theorem 10 for two-dimensional trigonometric series was proved by
PoNOMARENKO and TiMAN [11], assuming that {a;} is a nonincreasing sequence of
nonnegative numbers.

~ Serving as a pattern, we present here the proof of Theorem 9. In this case, /5"
is defined by (2.8) for a=p=1/2.

First, we check that condition (2.6) is satisfied. This is simple by the means of
estimates (4.18), (4.7), and the corresponding estimate on 70 all applied in the case

a=f=1/2.

Second, we verify that condition (2.5) is not satisfied. Thus, we can apply Theo-
- rem 2 and conclude the statement of Theorem 9. In fact, again by (4.18), (4.7) and its
symmetric counterpart as well as by the monotonicity of {ja,l},

(5.6)  Su= 3 3202 plagilg,, o) =
. p=14g=1
o oo 2P—1 29-1
=03 3 3 3 lamim i 172 logh2(m + 1) log2(n+ 1) =
= g=1m=2P-1 p= 29-1

o) 3 2|a A m=V2n=12logt2(m+ 1) log3(n+ 1) =

m=1n=1

= 0(1)2 2 |@al M~%2 0 '3’2{ Z' #(m+1—i)7? 2‘ kz(n-l—l—k)—1}1/2~

=1n=1

=0( Z:' g{zzn;'znvak,z "3(m+l—i)'1)(

XKn=3nt1-k) e =00) 3 3 o,

m=1 n=1

(cf. notation (4.3)).
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Similarly, we can obtain that

(5.7) Su= 2 29212 |a, 0| = O(1) 2, o
q= n=
and .
(5.8) S10= 2;2"/2P1/2|02P,o| = 0(1) 21 Ao
p= Com=

Collecting (5.6)—(5.8) we find that

Sy = |agel + So1+S10+ S = o) Z Z‘Q{mn

m=0 n=0
(see also (4.6)). Since, by assumption S;=c= condition (2.5) cannot be satisfied
either. Applying Theorem 2 gives the statement of Theorem 9. .
The last two theorems in this Section are concerned with the “mixed’ cases.

Theorem 11. Assume that the sequence {|a;|} is nonincreasing in k for each
fixedi. If a=>1/2, B=1/2 and condition (5.3) isnot satisfied, or if a=1/2, —1<f<1/2
and condition (5.4) is not satisfied, then series (2.7) is not |C, a, B|-summable. a.e.

Theorein 12. If a=1/2, —1<p<1/2, the sequence {la,|} is nonincreasing,
and condition (5.5) is not satisfied, then series (2.7) is not |C, a, p|-summable a.e.

Theorems 10—12 can be proved in a similar fashion to as Theorem 9 is proved
above on the basis of Theorem 2.

6. Generalized |C, o, f|,-summability of orthogonal series

Let /=1 be a real number. Following FLETT [3], series (2.1) is said to be
IC, «, Bl;-summable at x if

S S(m+1)- Hn+ 1) AL <o,

m=0 n=0 :
where 4% (x) is defined in (3.1) with the matrix given by (2.8). The case /=1 gives
back the ordinary |C, «, f|-summability. Using the same techniques which occur in
the proofs of Theorems 3—12 and Corollaries 2—7, we can derive both necessary
and sufficient conditions on the a.e. |C, a, f],-summability of series (2.1). Here we
present only three samples of these extensions. We use the notation m,=2°~"""",

Theorem 3* If 1=/=2 and

. @ oo m‘,“ =1mgy—1
(6.1) 2 2 { T ah)n <o,
p=0 4= k=m

q

then series (2.1) is |C, 1/2, l/2|,-summab1e p-a.e.
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Corollary 6* Let 1=I/=2 and {A;} be a nondecreasing. sequence of positive
numbers satisfying the condition

= o 1
©2 B EEDEIDE =
If a=1/2, f=1/2 and

=2: S'a?kltgk—'<

i k=0

or if a=1/2, f=1/2 and

<"=Ms

2 a% A% log (i+2) log (k+2) < oo;

orif —l<a<1/2, ~1<B<1/2 and

!':Ma

3t e Y <,

then series (2.1) is |C, a, B|,-summable p-a.e.
We note that in case /=2 condition (6.2) can be dropped.

Theorem 9*. Let 1=I/=2. If the sequence {|ay|} is nonincreasing and condi-
tion (6.1) is not satisfied, then series (2.7) is not |C,1/2, 1/2|-summable a.e.

Theorems 3*, 9* and Corollary 6* are the extensions of the corresponding theo-
rems of the second named author [12] and SpEvakov [13], respectlvely, from single
orthogonal series to double ones.

On closing, we mention that our results.can be extended in a natural way to d-
multiple orthogonal series with 4=3, too.
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O nojacucTeMax CXOaMMOCTH IPON3BOIHLHOH
OPTOHOPMMPOBAHHON CHCTEMBI

I'. A. KAPATVJISAH

H3BectHa criefylomas Teopema, noka3aHHas B 1936 r. HesaBucmmo [. E.
MenpmioBeIM U 1. MapnuHKeBUYEM:

Teopema A. (cwm. [1], [2]). Haa 10601 opmonopmupogantoii cucmemuvi (OHC)
{p.(¥)}2,, x€(0,1) cywyecmeyrom nomepa my<n,<... maxue, ¥mo nOOCUCHEMA
{@n ()}iz, n6a8emCA cucmemoii cxodumocmu (OHC {Y,(x)};, Hazvieaemcs cuc-
memoii CxXo0uMoCmul, ecau 8CAKUL pad -

S a0, 3at<e .

n=1
cxo0umca noumu 6crooy).

IIo aromy moBomy B pa6ote [3] I. BerHeTOM OBUT IOCTaBICH CieAyIOLIMit
BOIIPOC: CyLLECTBYET JIM MOCIEAOBAaTENbHOCTD uceN {r};-., Takaf, 9ro u3 Jinlboi
OHC {¢,(x)};2, MoxHO M3BNEUs TOxCHCTEMY CXOmMMOCTH {@, (X)}i;, AnA

o oqe o Tk
koTopo#t lim —=07?
kv co rk

B pabote [4] b. C. KamuHBIM OaH MONOXHUTENbHLIE OTBET Ha 3TOT BOIPOC.

B meii chopMmynupoBaHa cileayromias.

oo

Teopema B. H3z npoussoavnoii OHC {¢,(x)}7, MoocHo uzgseuv nodcucmemy
cxooumocmu {qo,,k(x)},‘f=1 cn<R, (k=1,2,..), 20e Ri=3, R.,;=R)! (k=1,2,...).

B Toit ke pabote ([4]) b. C. KamnH moctaBun cnenylonmi‘fl BONPOC: MOXHO JIH
B dopMynupoBke TeopeMsl B ycrnosre n, <R, 3aMeHUTh HA m,<k'*® (k=1,2,..)
s moboro &=07?

B macrosmeit pabote ycmiieH pe3yabTaT Teopeme! B. TouHee, noka3bBaeTcs -

cnemyromas

ITocrynmiro 16 aBrycra 1985.

i
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Teopema. Jua awboii OHC {¢,(x)}:.,, x€(0,1) u mobozo B=0 cywecm-
8yem nodcucmema cxooumocmu {go,,k(x)},‘f=1 ¢ ycaosuem

n =1, 22+ )k -1)log, (k—1) . n = 2(2+ f)klog, k k=273,..)

Jemma 1. Hycmoy {o () }i_;, x€(0, 1) xoneunas OHC u {E}", cemeiicmso
usmepumvix muoxncecms u3 (0, 1). Tozda cywyecmeyem yeaoe uucao 1=k=n maroe,

umo
1 m
—_ D =) sy P L2
u(E) L,,j o n- min u(E) P

(u-mepa Jlebeza na (0, 1)).

JMokazatenbcTBo. IlpeanonoxuM obpaTHoe, 4TOo M Jioboro 1=k=n
CYLIECTBYeT, 3aBucalLlee OoT k, yucao 1=p(k)=m T1akoe, 41O

: m
(“) | qok(t)dtl >|/ W (1=k=n).

Torma nerko yGemmTcsi, YTO JUIsi HEKOTOporo 1=g=m pasenctBo p(k)=q BH-

M

Epiey

- n
MOJIHAETCS IPA HEKOTOPHIX PasnuuHbX k=k,, k,, ..., Kk, tne l=—. U cueno-
m

BaTeJbHO, VI 3Toro g umeeM (cm. (1))

@ 2wt nd) = 2l [ o)
(k)

>IU n- min #(E)] =k —n_' min_ ﬂ(Ei) #( AN

C npyroii CTOpoHbI, HCHONBL3ys HepaseHcTBo Beccens ana OHC {(pk (x)¥_,, umeem

(ki))

3 2(-#(17) [ 00 d’r-s—T#(—lE)]—z"XEq”i!(o,l) ( 5-
i=1 7 E, q

N3 (2) u (3) monyuntcs npoTHBopeure. CleNOBATENbHO, HANIe HPEATONOXEHHE
HeBepHo. Jlemma 1 poxa3sana.

Hycte {EM™, icQ™}, m=1, 2, ..., tne 0™ (m=1) koHeYHOE HIM CHET-
HOE MHOXECTBO MHJEKCOB i, CeMEHCTBa M3MEPHMBIX MHOXecTB u3 (0, 1), ynosner-
BOPAIONIAX CIEAYIOIHAM YCIOBHAM:

@ Du( U Em)=1, wEm)=>0, i€0™, m=12,..,
iegtm

(5 2) E,("')ﬂEl(-'") =@ mpm i=j (i,jeQ™),
(6) 3) ecnta EMNEM %8 (nzm), 10 EM < E™.
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Torma mMeeM, 4TO MHOMKECTBO

E=N (U E™

m=1 i¢Q(m

uMeeT TonHyro Mepy Ha (0, 1). Obasmavas EM™=EMNE, nerxo y6emurcs, uTo
BBUIOJHAIOTCA WISAYIOIIAE YCIOBHA:

1) U )E‘m) —E upE™) >0, ic0™, m=12, ..,
tegtm

2°) EMNEM =8 mpu i) (i,jeQ™),

39 ecie EMNEM™ %0 (nz=m), To EMcEM.

Hycrs T, (m=1) — g-anrebpa nopoxaéHHas U3 MHOXecTB8 EM, icQMm, Torma
mmeeM T, T, (m=1,2,..)). OueBngno, uyro ecim g€L'(0, 1), To mocnemosa-
TEJILHOCTD (DYHKIHI ' '

[ e@®adt, x€E,

8n(x) = _T—‘“' g(n)dr —'—,,,—
#(E&De) E(m)f REGD ) )

™ (x)

rae E{th,, ects MHOXeCTBO M3 cemeiictBa {E(™, ic O™} (mzl) cooziepxaiiee B
cebe Touky x€E (B cuny ycnosuii 1° u 2°, oueBuaHO, 4T0 s aroboro x€E. Taxoe
MHOXECTBO CyIIECTBYeT M €IMHCTBEHHO), 0bpasyeT MApTHHTaJl OTHOCHTETbHO
ceMeiicTBa g-anre6p T, (m=1) H ymOBIETBOPSAET YCIOBHIO  SUp f lg,,,(t)l dt <oo

15m<co
(onpenenenne MapTuHrana cM. Hamp. [5] crp. 103). ,
Torpa, ucnons3ys u3BecTHBIH (akT (cM. [5] cTp. 112) o ToM, uTo NKOGOH Map-
Tunran {f, (x)};r_, (oTHOCHTENLHO HEKOTOPOTO cemetictsa g-anrebp T,,(7,,C T, 1)
YAOBNETBOPSIOIMIA YCIOBHIO sup f | fu(D]dt <oo, cxomuTcs TIOYTH BCHOAY,

HMeeM, YTO CYLIECTBYET Ipees
M lim g, () = lim ——— [ 2()dt=g(3), (gWELO, D)
- p(Eieng) e : ‘
,'(m)(x) - -
m.B. Ha E, u cnegosatensHO, m.B. Ha (0, 1) (goo(x) -— HeKoropaﬂt II.B. KOHEYHAsA
dynxuns Ha (0, 1)).
Hcnonb3ys 310T (PakT, HOKaxeM CIEAYIOLIYIO JIEMMY:

Jlemma 2. Hyeme  {o, (X)), x€(0,1) opmonopmuposannas cucmema u
{E™, icQ™}, m=1,2, ..., 20e Q™ (m=1) ecmv xoneunoe usu cuémmoe mio-
JHcecmeo unoexcos i, cemeticmea mHuoxncecms yoogaemgopaowux ycaosuam (4),  (5)
u (6). Ipeonosoxncum, umo cnpasedugel caedyrougue’ COOMHOUEHUA:

10
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1) Jaa mobozo m=1,2, ... cywecmsyem nodmuoxcecmso undexcosa G™c Q™
maxoe, umo

() | é;l [1-p( ) E)] <=
u.

1
©) Q) la, [ 9 di| <,
npu

l=k=n-1, icG®W (n=z=2),

20e y, (n=2) maxue wucaa, umo
2) dan mobozo k=1,2,... cnpasedauso pageHcmeo

(1)  lim

m—>oco

f (D) dt— o (x)

_— =0 odaanse. x€(0,1),
R(Ef ) £ €D

(m)(x)

3) Haa awoboii mouku x uz MHOMCECMEA

(12) E=U N[ U E™]

k=lmz=k i€Gim
cywecmeyem, 3asucauee om x nocmosmnoe c¢(x) maxoe, 4mo
. f (1) dt — @i (x)
HED) £

m)(x)

m 2
(13) > <c(x), m=1,2,...

k=1

Toz0a {¢,(x)}r, nsasemca cucmemoii cxodumocmu.

Hoxa3aTtenscTBo. IIpeanonaras

(14) 2 al% < 0o,
. k=1
HMeeM, YTO PAf
(15) a0 (x)
k=1

cxomuTest B MeTpuke L*(0,1) Kk HekoTopoil (QyHKIHM f(€EL*(0, 1). Torma mns
mroboro m3MepuMoro MHoxectBa Fc (0, 1), mpowssens mpeaenHblil mepexol MOX
3HAKOM HHTErpajia, uMeeM

(16) [fyat= [ 3 apndi= 3 a [oy0).
P F k=1 k=l p
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B cuny (7), cnpaBennuso PaBeHCTBO

an Tim —;TE‘I’"_’S_ [ fdt=fu() mams. x€Q, 1)
@) g,

Ut HeKOTOpo#l m.B. KoHeyHOM ¢yHKUuH f., (X).

IlycTs A 1 B MHOXecTBa TakUX X, IJIST KOTOPBIX BBHITOJIHSIOTCS, COOTBETCTBEH-
Ho, paBeHcTBa (17) u (11). Toroa oHu uMeroT nosHble Mephl. U3 (8) cnepyet, uTo
MHOxecTBo E (cM. (12)) Toxe uMeeT mosHyio Mepy. CnenosaTenbso, 0Go3HAYHB

(18) ' D = ANBNE,

umeeM u(D)=1. Torpma, Ans moka3aTenbCcTBa cXOAuMocTH I.B. paaa (15), mocra-
TOYHO JOKa3aTh €€ CXOAMMOCTL Ha MHOXectBe D.

Htax, mycts Touka x€D d¢ukcupoana. U3 (16) mns moboro m=l1,2,.
uMeeM

(19) 5 oL [ oupdr=—— [ fdr m=.

E E{
H(ERD o) o o H(Eitne) e

Ilycte £¢=>0 nekoTopoe uucio. B cuny (14) cymectByeT yucio M Takoe, 4TO

(20) (3 o) = of(2VeGa)

Hcnone3ys (10), (11), a Taxxke Brarouenne x€Dc B (CM. (18)), rae B ompeneneHo
BbIle, AN 3Toro M nHaipércs yucno N=>M Takoe, 4TO OQHOBPEMEHHO BBILOJIHS-
JIMCh HEpaBEHCTBA ’

co

(21 2 ,nax la) -y < /4
k=N-+1 had
%4 .
M 1
(22) > lal = [ o(ddt—g(x)| <¢/4 npa m > N.
k=1 H(Eim) Ky

Toraa, ucnonb3ys HepaBeHCTBO I'€nbaepa u BknrodeHue x€DCE (CM (18)) npu
m=>N=>M umeem (cm. (13), (20), (21), (22))

- Fo [ o] -

G
1(Eiln) e

[ o)+

HESDG) o
T BB

= ‘k;M; a (%(x)

10*
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[ oundi)-

m),
( (x)) E(‘m( ))(x)
ak

[ oal =

(;
k=m+1 #(Ei:nn?)(x)) )
i("')(x)

= 2 lay] f @ () dt— ()| 4

w(E; ({""')’(x)) £,

H 3 a2 (;, [ oo+

k=M+1 =M+1 #(Eg(m)(x)) E('(")) o
i(m)

+ Z’ max la)| -7 = a/4+e }/c(x)/(2 Ve()+el4 =e.

k=m+11=l<
‘WU cnegoBatenbHO, MOTydaeM

: . a,
23) "lll_{n (Z a; 9 (x) — gm ({n’,)l‘{-( )(pk(t)dt} =- 0.

W3 (17), (19) 1 (23), umes BBuAy BKtoyeHne x€Dc A (cm. (18)), rme 4 onpeneneno
BLHIIIE, MEEM "lli_{r; k;m; a, Pk (x) =fu(x). -

JlemMa 2 gokxasaHa.

JemmMma 3. Jus moboix m=1,2, ..., k=m u a=>1 [2 cywecmeyem cemeiicmeo

NOAYOMKDHIMbLX UHMEPBANOS {A("')(k), zEZ} (Z-mHo2cECMB0 YeablX uuce/z) y008-
AEMBOPAIOWUX CACOVIOWUM YCAOBUAM:

1) U A™(ky=R' npu aobrix m=zkz=1 (R1=(—°°, +°°));

2) A"")(k)ﬂA""’(k) 0 npu i=j (m=kzl);

3) ecou m=zn=k u A""’(k)ﬂA‘"’(k)#ﬂ mo A (k)yc 4P (k);

4) 048 mobozo k=1,2, ... cnpasedaugo paserncmeo
(24) lim [sup d(4{™ (k))] =0,

';‘;;: icZ
20e d(A{™(k)) — dauna unmepsasa AT (k); .
5) npu mobeix mz=k=1 cyu;ecmsylom KOHeuHble NOOMHOIICECNEA YeablX Yucea

G™ (k) maxue, umo

(25) [k, (k) = ach AmEK) (mz=kz=1),

™)

(26) d(4(m (k) é%;; m=k=1,

ma
166("3((&)
20e [k*} — yesan uwacmo uucaa k*;
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6) 0aa mobvix m=k=1 cywecmsyrom Koneunvie NOOMHONCECMBA YEABIX YUCEA
L™(k) maxue, umo

VX)) [=m2+e), mi+e) = ) AM™((k) (mzk=1),
ic L{m)(k)

(28) [L™K) =4m>* (m=k = 1),

(29) . L™ (k) o G™Mk) (m=k=1),

20e uepez |LY™ (k)| obosnauaemca xoauuecmeo 3aemenmos muoxcecmea L™(k).
5 ‘ ‘

JloxasaTenbCTBO. Jlus ompenenenus Muoxects A™(k), i€Z (m=k=1)
o6o3HaYuM .

(30) ' T = [[a———i—] logzm] wpr m=z=1,

.3 T = [%logzm] mpu mz=k=1

. Tenepb, ucnoan3ys 3T 0003HAYEHHUS, IS QHKCHPOBAaHHBEIX m=k=1 ompemenum
mHOXecTBo A™(k) (i€Z) paBHBIM

(32) [i/257, i+ 1)/2%™) mpu —[k]- 257 =i < [k 2%,
s La 1,(‘"') 'm . _ ],("") —9m . .
(33) [l L ](22, 2"7) , it [k“;f2 2 )] npr i = [k 257,

P[5 =2 i+ [k (25~ 2
2""‘ > 2rm

Jnsi paneHeMIIMX pacCyxIeHMH 3aMeTHM, 4To rpynna (32) maTepBanoB AM™(k)

(upu ¢urcupoBaHHHX m=k=1) npencraBisgeT cobol0 pa3OHEHHe MHOMXECTBA

(34) [ ] mpE i < —[kq. 25",

[ —[%%1, [£°]) Ba HemepecekaloIMMECS MONYOTKDHITHIE HHTepBaNbl JJIHBAMH —a
. . . : 20

a rpynnst (33) u (34). npencrasnsiror co6oro COOTCTBEHHO pa3bUEHHE MHOXECTB
[k, +2) B (—oo, —[k]) #2 Hemepecexaloluecs LONYOTKPHITHIE HHTEPBAJbI
: ,

JAJIUHAMH -

m

Toraa, oueBnaHa BBIMOJNHHMOCTb yciosuii 1) m 2). OueBnano Taxxke 3), ecmm
3aMETHTh, 4TO HpH dukcuposanHoMm k=1, /™ u r,, Hey6GLIBAIOT OTHOCHTENBHO M
(em. (30), (31)).

Y3 Toro xe (axra crexyer
sup d(4{™ (k)) = max {1/2"?"’, 12 (m=zk=1),
i€z :

H clefoBaTenbHo, uMes BBuay (30) m (31), mMmeeMm (24).
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O6o3nauuM
(35) G (k) = {ieZ, —[k]-2%” =i <[k]- 2%} m=kz=1)

Torma, oueBHIO, YTO MIIOXKECTBA As“’)(k), i€G™ (k) mpencCTaBIAIOT MITEPBAJIEL
u3 rpyunsl (32), v CeJoBaTENbHO, B CUITY 3aMevallis CACTANIOro BhIIIE, uMeeM (25).
BoinonmumMocTh ycnosnst (26) Toxe ouesmamno. HedicTBurennno, umeeM (cM. (31),

(32), (39) 1
(Ai(m) (k)) == 1/21;‘3") - ]/2[’5' loB;m] =22 --IOB.m - "/;/m.

11 c“lX
1€6™(w)

O603HaunmM
(36) L0 (k) = {i€Z; —[mAP+e]. 2" [k 27 - 2™) =
= i < [mb+e]. 2 K] QK" — 2"}

Torma, u3 (35) u (36), c yuéroM HepaBeHCTBa m =k, Jierko nojyqutsb (29). Jlerko
yOeaUThCS, TakxKe, B CIPaBeLINBOCTH cooTHOMmEHNs (27). TTokaxeM BHIIOIHUMOCTD
HepasencTea (28). Mcrons3ys HepasenctBa m=k m o>1/2 mmeem (cm. (30), (31),
(36))

L )] = [+ 2% 4 [k — 2

— (= [+ 2m [ (2K — 2m)) =
= 2"+ 2+ K] (2"%'"’—2"")) =

=) 2
= 2(m1/2+a-2(“‘”2") BT k.07 ) =
= 2(m*+m*+1%) < 4m?,

JIemma 3 poxasaHa.

Hoxa3zaTtenbcTBo Teopemsl IIpexae, 4eM BBIAEIUTD HOACHCTCMY {(,o,,k(x)},‘?=1
YIOBJICTBOPSIOIIYIO TPEOOBAHMSM TEOPEMBL, IIPEATIOJIONKUM ¢€ U3BECTHHIM ¥ BBCIEM
HexoTopele o6o3maveHus. OGo3HauuM uepes A™ (m=1) MHOXECTBO BCEBO3-
MOXHBIX MYJbTUHHIACKCOB I=(i1, g, ..oy ), THE Iy, g, ..., &y LeENBle umcna. JIiust
xaxgoro m=1,2,... obo3BaYNM

m (m) ~ . m; m
37 B" = B, = N %5 on ()4 (O} mpu TeA™,

rne AM™(k) (i€Z, m=k=1) HHTepBaNBl YHOBICTBOPSIOLIME BCEM YCIOBHSAM
1

Jlemmer 3 npu a== +—§ (B — 3apmannoe B Teopeme umcio). Iycts QM c . A™

(m=1) MHOXECTBO TeX MYJLTHUHICKCOB, IJII KOTOPHIX HMEEM

(38) p(B™ >0 mpu 1€Q™ (m = 1).
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OGo3HAYUM
(39)
B™ = {1 = (iy, iy ..ey i); 1ELM (L), i€ LM (), ..., iy, EL™ (M —1), i, G™ (M)},

rme L™ (k) u G™ (k) (m=k=1) — vmoxecTsa u3 JlemMs! 3. OueBuzHo, 4To (CM.

(28), (29)
40)  |B™| = LMD LW Q). L™ (m—1)] - |G™ (m)]| = 4" - m*™,

Yepes G™ (m=1) 0603HAYMM MHOXECTBO TeX MyJbTHHHAECKCOB w3 B™), mus
KOTOPBEIX HMEEM

(41) p(EM) = 1/(m? - 4m . 2emiorym)  ppy 1€ G < B,

Torpa u3 cooTHomeHu#t G < B™ u (40), cnenyer

42) |G™| = |B™| = 4m . m2em

H, CIICIOBATEIbHO, UMECM

“3) 1G] = m- 4m. miem,
k=1

Temeps HPUCTYIIUM K IOCTPOCHHIO HOMepoB n, (k=1,2,...). IToctpoum mx
TaKWMM, YTOOBI BBIIOJHSIIACE CIICHYIOLIUE YCIOBHS:

(44) n =1, 2(2+p)(k—1)log, (k—1) = 2(2+ pkiogyk npu k=2,

(45) l j‘ @ () dtl ((k—1)*. 1641 /2((k-—1)log’(k—1))/5)1/2

(E"">)

mpu 1€G™, m=1,2,.,k—1 (k=2),

rge G™ (mz=1) ompenenns Bhume (cm. (41)).

CroenmaeM 3TO METOJOM MaTeMaTudeckod wHpyknuu. Ompemesium ny; =1,
TIpeAmoNoXyM, YTO ONPEJENCHE HOMEPA My, My, ..., 1, TAKHE, YTO CIPABCIJIMBEL
ycnosus (44) u (45) npu k=1, 2, ..., p. Onpesenum 4ucio n,,. Mcnonssys Jlemmy
1 mms mmoxects E®, 1€G®, k=1,2,..,p (XOTHIECTBO KOTOPBIX PABHO

p
316¥) u dymuuit g,(x), 20PN <jZ)EHNIDIRCI, airgy way-
k=1

palIbHOE YHCII0, KOTOpOe 0003HAYNM YEPE3 My 1, TAKOE, UTO

(46) 2@+Mplog,p _ Hppqg = 202+ B(p+Dlogy (p+1)
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U BBINOJIHAJIOCH HCPABCHCTBO

) —] fq),,pﬂ(t) ai| <

(E‘“’)

?
(m)| [(2(2+ BY(p+1)logy(p+1) _ 5(2+B)plog, p 3 (mh\1/2
<(2 16™/e B2 7 min, p(E™)e,
1=m=p
€eG®, k=1,2,..,p
C apyroit CTOpoHBI, HCIIOJIB3Ysl OYEBUAHOE HEPAaBEHCTBO

48 2@+BP+ Do, (P+1) _ (3 +APlog,p = Y2 +Aplog,p  (p = |)
1
H PaBeHCTBO a=—2-+-§, umeem (oM. (41), (43), (48))

(49) (3 1G] [(2e2+)p+1)iog, 041 _ p(2+)plog, ) min, w(E)e =
. m=1 ’ . ' ;

1=m=p
= (( p-4r- p2aP)/ 2(2+p)pl‘_’8,t'(1/(p2 4P, zup)))m (( 8- 16 265plog, ) 22+ Poplos, i
= (p3 . 161’/2(1’103’ p)/5)1/2.

W3 (46), (47) u (49) cnenyroT HepaseHcTBa (44) M (45) mpn k=p+1. e

WiTak, Mbl NOCTPOMIIA IOACHCTEMY {(p,,k(x)},':"=1 YIOBJIETBOPSIOLIYIO YCIOBHSIM
(44) u (45) npu k=1,

MokaxeM, 4TO OHA €CTh CHCTEMA CXOAMMOCTH. [{na 3Toro ,aocra'roqno LOKa-
3aTh, YTO OHA YNOBJNETBOPSET BCeM TepOGOBaHUAM JIEMMBI 2 BMECTE C BHILLE OIpe-
NEeJeHHBIMA MHOXecTBamu  E™ (1€Q™) m G™ (m=1,2,..). Bemonaumocts
ycnouit (4), (5) u (6) HemoCpeACTBEHHO CIEAYeT M3 ompedeneHus EM™ (ie QU™
m=1,2,..) (cm. (37), (38)), ecnu yumThiBaTH yosaonus 1)—3) Jemmet 3. OGo3Hauus

V= ((k— 1)3 . 16k-1/2((k_1) log’(k-—l))/s)llz’
umeeM (10). Toraa u3 (45) Henocpenci'nem{o crenyeT HepaBeHCTBO (9) g CHCTEMBI

{@n )}y Temeps noxaxem (8). Tax xax G™c B™ (cm. (41)), To mmeem

(50) u(, U E")= #(l U E™)- —#( - E™) (m=1).

€ B(m)\(;(m)

U3 ompepenenus G™ (cm. (41)) caemyer, 4To

(51) u(E™) < mpr IEBNG® (m = 1).

m?.4m . e
U, crenoBaTenbHO, HMEEM (cm. (40))
(mN_G(m) C gm,
) < BMNG™ 4" mPm 1

(52) u(

,gg(m)\é(m) [ me. 4m. mem T 2. 4m o peam T me "
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-

IToxaxxem CJ'ICI[)’IOII.ICC PaBCHCTBO!

(53) U (m) {x (Pn,‘(x)e[ [ml/2+a] [ml/2+a])

i¢ B(m)
mpr k=1,2,...,m—-1, ¢, (x)€ [— [m?], [m“])}.
JIns 3TOro MOKaXeM JKBHBANEHTHOCTh CIEAYOLX MpeAOKeHHI:
@ x€ U E""’

(i) X€EMdy, the i™(x) = (i (x), if™ (%), ..., i{™ (x))eB™;
(iii) @, (¥)€AiDy(k), tme i (x)eL™(k), mpr k=1,2,..,m—1
" i,(x)€G™ (m);
(iv) @ ()E[—[m"**e], [m*2*+]) mpm k=1,2,...,m—1
B @, ([ [me], [m*]); , ,
() xe{x @ ()]~ [m”““] [m'2+2]) mpm k=1,2,..,m—1
0 ou [l ).

SKBUBAJIEHTHOCTD ycioBuit (i) m (i) oueBuaHo. DxBUBaNCHTHOCTH (ii) m (iii) JIeTKO
cienyeT u3 onpeaenesuiit E{™ u B™ (m=1) (cMm. (37), (39)). Uz (25) u (27) crmenyer
3KBHBaNEHTHOCTD (iii) u (iv). DxBuanentHocTh (iv) m (V) Toxe odeBmaHo. WTak,.
umeeM, 4To ycnosus (i) u (V) 3KBUBAJIEHTHBL, OTKy#a ciemyeT (53).

O6o3na4as

Dy, ={x; @ (X)e[—[m=**2], [m*+*2])} mpu k=1,2,..,m—1,
D,, = {x; @, (x)€[~[m?], [m"])}

", ucuonb3ys (53), jerko y6enm'cx q9T0

(54) U E;(’”) = m D, ':(m =1).
Iemm)

BOCIIOJIb3yHCB HEPaBEHCTBOM I-IerrmeBa " OpTOHOpMHpOBaHHOCTb}O B L2(0,1)
dynxumit {o, (x)},‘ 1, HMeeM

1
#(Dk)—[.,—+1,2]—2 opn k=1,2,. ,m—l u pu(Dy) < [m“]w
roe Di=(0, )\ D;, u, caemoBaTelbHO
p(N DY =1-pu[(N DJ]=1-p(U D) >
k=1 . k=1 k=1

m—1 - 1

>1- [+ 1R - [mE
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Orcroza, menomssysa (54), ameeM ~

m—1 1

55) E™
(55) u(ley"" ) 1/2+a]z [moe "
Ipumenus (50), (52) u (55) mony4aeM

E™ 1 1
9 M L B) = |~ G~ o

1
WNwmes BBHAYy HEpaBEHCTBO a>3, nerko ybenmthcsa, 4TO

(57) 1 ) o

[m1/2 +¢]2 [mG]Z

U3 (56) u (57) cnenyer (8)

Hoxaxem paserctso (11) mis cucremst {g, (x)},‘a=1 Jnst 3TOTO, HCIOJB3YA
onpezenenue MHOXecTB E{™ (cM. (37)), 3aMeTum, 4To ecnd X, t€E{™ s Hexo-
Toporo i=(iy, iz, ..., &y) (m=1), TO

@5 (1), 0, (X)EA™ (k) (k = m),
H CJICIIOBaTeJIbHO, NMOJYYHUTCA

|0n, (2) = @ ()] = d(4A{m (k) = SUpd(A("') k) (m=k=1).

Hcnonb3ya nmocnenuee, HMeeM
R

q’nk (t) dt— (Pnk (X)
(EI(""(:)) £

m)(x)

= I__}___— f ((Pnk (t) (Pn,‘(x)) di| =

(EI(""(x)) E\m

= supd(4§™ (k)).
i€z

M3 nocneanero, ¢ yuétom (24), nonydaem (11) mst cucremsl {(p,,k(x)};;l. Ocrainochk
Ioka3aTh HepaBeHCTBO (13) s cucTeMBL {(p,,k(x)};;l. Ilycte ¢puxcmpoBano x€E=

=U N[ U  E™]. Torma cymectByeT nenoe yucio M(x) Takoe, 4T0
k=1 mzk leGW™ - '

x€ U E™ npu m> M(®x).
leG\m)

Tocnennee o3HavyaeT, 4YTO
(58) 1™ (x) = (i{™ (x), i{™ (x), ..., i™ (x))€G™* mpu m > M(x)

rae I™ (x) — magexc u3 Q™ s kotoporo E{f,, conepxkuT 3 cebe Touky x. Tenepb
nyctb pz=k=>M(x) ¢uxcupoBarb. Torma, MCHONB3ys ONMpeAENECHHE MHOXECTB
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E{™ (cm. (37)), umeem

(59) (p,,k(E;((’i))(x)) = {(p,,k(x); xe E ((kk))(x)} [ Af(k)(x)(k)

Wcnons3ys (58) mpn m=k (k=M(x)) nonyuaem i®(x)eG®. Torna m3 G B®
(cm. (41)) cmenyer i®(x)€ B®. CnenoBaTenbHO, HUNOb3ys ONpeeNeHHe MHOXECT-
Ba B® (cM. (39)), umeeM iP(x)€G® (k). Otcrona, npumenus Takxe (59) u (25)
npu m=k nojydaeM

(60) O (Eey) < [ k7, [K)).

U3 p=k, BBHAY TOTO, 4TO MHOXeCTBa Eif) D 1 E,(k)(x) FIMEIOT O6IIy0 TOUKY X,
mmeeM  EB) ,C E{d ., (cm. (6)), u crenosatenbno, monyunm (cM. (60))

(61) Pu () < [— k7], [K4])
B cuny (37) umeem '
(62) qonk(E D) © A8y ().

Torna, npumenus (61) u (62), monyyaeM, 9TO MHOXECTBA A‘(,,,(x)(k) u [ [k, [k])

uMeroT obune Touxu. CregoBaTenbHO, UCTIOJBL3Yd yuwioBHe 2, JleMMEI 3, a Takke
paseHCTBO (25) (pu m=p) uMeeM

P)(x)(k) C[ [k, [ka])
OTcpna, u3 (25) crenyet
(63) i ()G (k).
U3 (26), (62) u (63) monyyaem

|00 (D=0 () = 2/Vp mpr  x, t€ Bl
U cnenoBatebHO, HMEEM

1
< (64 —— WD dt—o,,
69y #(E&)m) f«p (1) dt— @, (x)| =

1
S — ()= 0p ()] dt =2 =k=
(D) E(mf )"” O=¢n@Ndi =2)fp (p=k=me0).

C npyroit croponst, u3 (11) (mis cucteMst {(p,,k(x)},‘zll) (BBIOJIHKMOCTh  3TOTO
YCJIOBHS Y€ JOKa3aHa) CIeAyeT

m(x) 1

65 —
©9) ﬂ(E(&’(x))

f(pnk(t)dt qD,,k(X) S(:'1("‘.)’
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rae Cy(x) 3aBacAT TobKo oT x. Mcnons3sys (64) u (65), umeem (p=> M(x))
i

—— (pm‘ (t) dt Q’nk (x)
u (El"”(x)) E(?)f

1 [ en0)d o
. Pl E1=0n ) +
< #(E;((‘l,a)’(x)) ngg)(x)

2
— On (N dt—@, (x)| =
ﬂ(El(&))(x)) E(l,g')/(- )

M(x)

P

2
k=M(x)+1

_2:]2 = cl(x)+—4pﬂ - C().

= G (x)+ (
k=M@+1\}p

I/ITaiE: BBINOJIAAMOCTDL ycioBusa (13) nmnsa cucreMsr {(p,,k(x)},‘:"=1 TOXe JHoKa3aHa.
CriemoBaTeIbHO, HCHOMNB3YA JleMMy 2, ©MeeM, 9TO {(p,, (x)}e=, ABIACTCA CUCTEMOI
cxoguMocTu. Coeimass 3TOT dakt c (44), nonyqaeM YTBEPXK/ICHHE TEOPEMBI.
Teopema nokasaHa.
B zaxmioueHMe Bhipaxkaio OsaromapHocTh mpodeccopy A. A. Tanansny,
[0 PYKOBOJCTBOM KOTOPOTO BHIIOJNHEHA HACTosmas pabora.
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On some inequalities for Walsh—Fourier series

JUN TATEOKA

Let f(x) be a distribution on [0, 1] and its Walsh—Fourier series be
5 fmyW,(x), f()=(f, W,). The Littlewood—Paley function g(f)(x) is defined
n=0
by

{2 n(orns SO - au S Pa,

n—1 k
where o, f(x)= > (1 ——) Ff&)W,(x) and {a,} is a sequence of positive constants .
k=0 n

s e S L. @ .
satisfying some conditions. The Marcinkiewicz multiplier operator M is given by

Mfe)~ 2 20T COW, ),

where {1(k)} is bounded and varies boundedly over each dyadic block.
We shall show some inequalities for g(f)(x) and Mf(x) using Zygmund’s
inequalities.

Let ro(x)=sgnsin 2nx, and r,(x)=r,(2"x). The Walsh—Paley functions are
defined as follows: :

wo(x)=1; w,(x)=r,(x).r,(x), if n=2"+...42% n>nm=>.>n=0.

The collection {w,(x); n=0, 1, 2, ...} forms a complete orthonormal system for L?
over the unit interval O=x=1. ‘

Let S be the collection of Walsh polynomials, and S’ be the space of distribu-
tions on O0=x=1. If fcS’, the Fourier coefficients {f(n)}:>, are given by f(n)=
=(f, w,), where (f, w,) denotes the action of f€S” on w,€S. The Fourier series is

Received April 24, 1985.
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given by f{(x)~ Z°'° fyw,(x). Write
n=0

S0 = Z 10w, o= Z (1-2) 10w,

d, f(%) = Spr f(¥) = Spp-1f(x), dof(x) =](0), and Sf(x) = (2” \d, F(x)I2)2.

For O<p<oo, let H? be the space of f€S’ whose Sf(x)€L” with the HP-norm

INAITE
Let f€S’, and the Littlewood-Paley function be

8N = { 2 1,01 S0 =0, S}

. . . n
where {a,} is a sequence of positive constants satisfying C‘"§k2 a,=C-n and
: =1

2+l
> (@) 1=C-2" for all n and some positive constans ¢ and C. As special cases,
k=2" .

if we take a,=1 for all n, theﬁ

86 = { 3 (0041 /05) = Syoa SO

and if we take a,=n (n=2%—1), 0 (otherwise), then -

g0 = { 3 (S f5) —ow S}

By ¢, C and C, we always denote a positive constant that may be different on various
occasions. We can prove the following theorem.

Theorem 1. (1) If feH' and A=0, then
m({x€[0, 1]: g(/)(x) > 4}) = C||flu/2
() If feH!, then |[g(Nw=C,lflm O<p=<1).
(3 If SfeL'log* LY, then |g(f)lw = C|Sf]|rr1og+ 1+ C.
@If fO =0 and g(f)cL, then |flue=Clg(Nlu (O <p=<1).

To prove Theorem 1 we need the following. Let F(x)={f,(x), fa(x), ...} be
a /2%-valued function of x€[0, 1] and measurable in the Bochner sense. Write |F(x)| =

=(k§i [f()[A)V2. Similarly let N={n(k)} be an arbitrary sequence of integer-

valued function of k, and write Sy(F)(x)={S,q)(f1)(x), Sue(£)(x), ...}. Using
.this notation, analogue of Zygmund’s inequalities can then be stated as
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Lemma. (1) For any >0,
m({x€[0, 11: ISy (F)()| = 1)) = [IF(x)] dx/A,
©) - [Isv(PY®)IPdx = C,([IF®)| dx), O <p<D),
(3) J1Sx(F)@)l dx = C f|F(x)|log* |F(x)] dx+c.

(1) is due to G. SunNoucHi [3]). (2) is due to W. R. WADE [4]. Proof of (3) is
_the same as (2), using the inclusion L'dog* L'c H'c L', Khinchin’s inequality
and Paley’s decomposition. ‘

Proof of Theorem 1. By an identity due to E. M. StEIN [2, p. 114],
Op+1f(x)—0, f(x) =
1 [logen] | n
= —n(n—-l-l) [ jg(; (27-1) djf(x)+"Sn+1(d1+[xog,n]f)(x) _kg; ekSk(dj(k)f)(x)]’

where j(k) is an appropriate integer-valued function of k¥ and e, is 0 or 1. Then

£ = (5 amtor 07 B @ - e

+( 2 a,,(n+ 1)-1ISn+1(d1+[loggn]f)(x)lz)l/2+

n=1

o

+( 2 aynH(n+1)7 |k§; e, Se(dja NP2 = A(¥)+B(x)+C(x).

n=1

| "For 0<p<2, by Khinchin’s inequality,

41 = C|f| 2 @ n (3 @ =D o]

~ From |[If|l.=If |>| y»» HOlder’s inequality and the condition on {a,},
(418 = C f dt f {Jé:') 2 ('é;’(an. n=32r, (D)(d, f(fx))z}p/z dx =
=C f dx { f jé’) 22] (dj f(x))”v (”gl (a,- n"’)lﬂ "n(t))z d,}p/a =

=cf {g 2(d; f )y g; (@, n=9))P2 dx = C||Sf|3.

Thus, [|4]l.»=C|fllg-- By the condition on {a,}, we have

B(x) = C(,,‘g 1Sn+1(d1+ 10gsm S,
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and
C(x) = (é; ISk(dj(k)f)(x)lzné" a,-n"t=C (é Sk (d 0 ) C)IE)M2.

We can now prove part 1 of Theorem 1, by using the above estimates for 4, Band C,
and Lemma (1). For if fe H', then we have

m(—{xE[O, 1]: g(NHx) > /1}) =
= m({x: A(x) > 4/3))+m({x: B(x) > /3})+m({x: C(x) > 4/3}) =

= Clflutm({x: (3 15002 NG = C-4/3})

+m({x: (ng 1S, (A0 ) G2 > 2/3}) = Cllf /A

Similarly we can easily prove part 2 and 3 of Theorem 1. To prove part 4 of Theorem 1,
write

Sf(x) = (,,g | Szne1 (%) = Syn f(X)[2)H2 =

=2 (’g |82 f(x) —0r fOIP) /2 + (’é logn v £(X) — 0 F(X)[2)2.

By the condition on {a,} and Schwartz’s inequality,

oan+1._1

o f@)—0rf(R) = 3 |01 f(¥)—0u f(x)] =

on+i1_1

= { Z k(o'k+1f(x) ""t:f(x))za"}ll2

Hence

(';1 lganea f(x) =02 fOI)2 = g(f) ().
On the other hand, it is eVider_lt to see

(3150 /)= SO = (3 2—2"',-2;_1 w2 =

oo 9N+I__

=c(3 3 "a,k l(k-l-1)—2|Sz"(j§k;jf(j)Wj(x))lz)]m’

Thus, by Lemma (2), for O<p<1; |SfllZ,=Clig(f)5:. This completes the proof of
Theorem 1. '
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Remark. It is easily verified that f~g(f) is strong type (2.2). Therefore, by
Theorem 1 (1) and interpolation argument, we have |g(Nll-=C, |, (I<p<eo).
On the other hand f—g(f) is not weak type (1, 1) for L. See S. IGari [1].

Next we study Marcinkiewicz multiplier theorem. Let {1(k)} be a sequence of
constants such that

of+1

1 ' ’
sup k) =C, sup 3 kldi(k)|2=C, where A4Ai(k) = A(k—1)—A(k),
. J k=24

1

. and consider the linear transformation M, defined by

M)~ SARTOW ) for S~ ZFERw).

Theorem 2. Under the assumption made above,

[ m({x€[0, 11: S(Mf)(x) > 23) = C|f|ml4,
(2) “Mf”HP = cjp”f""l ) (0 =p< 1),
3 IMf{lm = C|Sf|Lriog+ L1+

"Proof. By summation by part,
. of—-1
dj(Mf)(?‘) = k_%’_‘l(k)f(k)wk(x) =

= k;z:d A2(K) Se(d; N)x)+ 127 = 1) d, f(x).
Then, by Schwartz’s ineqﬁality and assumption of {i(k)},
S(Mf)(x) = (Sd;(Mf)(x)|B)V2 =
={Z(Z K@D 3 kIS NS I, [P =
7 k=2l"141 k=2I-141 7
= C(;Zk' 1Sk(d; HGE2+ CSF(x).

Thus Theorem 2 is proved by the Lemma.

Remark. The same argument works for double Walsh—Fourier series and
Vilenkin—Fourier series.

1
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On the integral of fundamental polynomials
of Lagrange interpolation

P. VERTESI

1. Introduction. Let X={x,,}, n=1,2,...; 1=k=n, bea triangulaf interpola-
tory matrix in [—1, 1], i.e. '

(1.1) ~l=x, <X p<.<x,=1 n=12, ..

If, sometimes omitting the superfluous notation,

wm=%%ﬂ=£&ﬁun=hhw

-

l then
12 L) = ln(X, %) = —-200)

———, k=1,2,..,n,
o (¥ (x =)

are the corresponding fundamental polynomials of Lagrange interpolation. It is
well known that the so called Lebesgue function and Lebesgue constant

(1'3) )'u(x) = j'n(A,’ x_) = 2 IIt(x)l’ An = An(X) = —-Il'ngaxxgl A,,(X)

k=

are of fundamental importance considering the convergence and divergence proper-
ties of the Lagrange interpolation. Many important properties can be found in [1]—
[7] and in their references.

One of them is as follows.

There exists a constant ¢,>0 such that we have for arbitrary X.

1

(149 / g’l (X, )] dx > ¢, log n.

-1

Received December 1, 1985.
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This statement, proved by P. ErDSs and J. SzaBaDOs [3]V, was explicitly formu-
lated, perhaps first, in P. Erdds [2, p. 242], where he also stated (without proof) that

To every &>0 there exists a 6=>0 so that the number of indices k, 1=k=n,
for which

(1.5) J @)l dx <

dlogn
n

is less than en, and the number of k’s for which.

N .
f 1()ldx < ~cnﬁ is less than &I&n—.
-1

2. Results.

2.1. From (1.5) one could easily obtain (1.4). The first result in this paper gives
another statement by which we can get again (1.4).
Let x0u= 1’ xnn= - l’ lOn(x)=In+l, n(x) = 0;

@.1) Jo = [gsrm %) 0=k = n.
751
First a remark. If for a fixed k, 0sk=n, |Jyl>5, -:=—°§l, then
n

f A,(x) dx=4n (n=n,) which s even stronger than (1. 4) (see [3 case 1] and [3, (5)];

the last formula shows that |J,,|=251log A,/n if k#0, n; but it can easily be proved
for J, and J,, too).

Le. the real problem is to settle those so called “short” mtervals Jins for whrch
I‘] Iml = 5

The short interval J,,, is said to be exceptzonal iff for a glven sequence &= {a,,},, —1s
0-~< g,= 2, :

22) f (uk(x)|+uk+1(x)|) dx <.ce,logn -

IJ,,|

(where ¢ can be taken as 71680). Further let k€K, iff J, is exceptional Wef prove

Theorem 2.1. If e={e,} is given then for any fixed n the total measure of inter-
vals for which (2.2) is valid, could not exceed ¢,, or which is the same, -

(2.3) ' S Ml se n=12, ..
o2 Ml = _

1) (1.4) is an easy consequence of another statement in [1 Theorem 2] which was proved by.
P. Erdds and P. Vértesi (cf. [6] and [7]). P T SRt
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Now let us suppose that for a fixed n all the mtervals Jy. are short. Then, using
Theorem 2.1 with &, _1 we can wr1te

f Iy dx = = f 2 (uk(x)|+llk+1(x)|) dx =

k¢K

n -

1 .
’ ’ L. C . . ‘ Cc

[ L@+l () dx = 5-logn 3 [l = 5 logn,

1 o ' k&K,

i.e. we obtain (l 4). "

2.2. The next theorem gives information on both short and long mtervals
The interval J,, is-bad iff for ‘a given >0

.- . 8 -, T logn . .
(2.4) S f (LGN Hlly () dx < 1(0) EL, nzne),
where n(e) can be choosen as (10%- 14336)~ 2.2 ‘Further, let k€T, iff Jy; is bad.
Then we prove . -

Theorem-2.2.. By the prevzous notatzons :

(2.5) IS & k-GZT'",lenl é g if-n= no(s)

2.3. Finally we remark that én,alogdus results can be proved for a fixed interval
[a, b]c[—1, 1]. We omit the details. = -

3. Proof. B _
53,1, Proof of Theorem 2.1. If for a*fixed n, 0=, <(clogn)~Y ‘thén by
(3.1 LG+l =1 i 264y k=01, .m nzl,
(cf. [4; Lemma 4] .for . k=0, n; if k=0 (or n) .(3.1) comes from Il(x)ZI XZX)

(or 1,(x)=1, xSx,,)) we get

f(llk(x)|+|lk+l(x)l)dx> f( )>|Jk| IJklcs Togn, ie.

there is-no except10nal ‘interval. That means from NOW On We can suppose
clogn’.

6y

._'uv: :

n= 2,3

"3) Instead of'e; we can choose a sequence {e.} which would give n(e,) in (2.3). I hint with a
finer argument the relation #(g,)=cs, can be proved. :
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We introduce the following notations
(3.3) Ji(@) = Jin(@) = e sr+ gl xe—qlAl]l (0 =k <n),
where 0=¢=1/2. Let z,=2,,(g) be defined by

(3.4) lwa(z)l = min Jo,(x)l, k=0,1,..,n

x€4,(9)
finally let
Wi il = max (Ix;.—xil, [Xes1—xil) (0 =i, k= n).

In [5, Lemma 4.2] we proved
Lemma 3.1. If 1sk,r<n then for arbitrary 0<q=1/2

: NP G I/ I \
(3'5) ‘lk(x)l+|lk+l(x)l q2 Iw (zk)l I"raka‘ ’,f xe"r(q.)'

Later we shall also [6, Lemma 3.2]:
Lemma 3.2. Let Ik_[ak,bk], 1=k=t, t=2, be any t intervals in [~1, 1]
4 .
with |[LNI|=0, (k#)), L= (1=k=1), kz \Ll=p. Supposing that for certain
=l

integer R=2 we have p=2Rp, there exists the index s, 1=s=t, such that

t ) _ R
3.6 : Si= k —
(36) DT e

I, will be called accumilation interval of {I\};.,-

(Here and later mutatis mutandis we apply the: previous notations for arbitrary
intervals.)
‘Note that we do not require- b, =ay;.
Let 2 [yl :=pn, where K:=K,\{0;n}. If for a fixed n=ny(c,), - u,=¢,/2,
kEK
(2.3) holds true. So wé. 1nvest1gate those n=ny(e) p,=e,/10, say.
We now apply Lemma 3.2 for the exceptional J,,’s with p=p,, ¢=4, and

R= [log n'")+1, n€N, nz=ny(e) (shortly nEN).

Denote by M,=M,, the accumulation interval. Dropping Ml, we apply Lemma
3.2 again for the remaining exceptional intervals with p=p,—|M,|>u,/2 and the
above g and R, supposing u,=o"*! whenever n€N,. We denote the accumulation
interval by M,. At the i-th step (2=i=y,) we drop M,, M,, ... M, ; and apply-

. Lemma 3.2 for the remaining exceptional intervals with p=p,— IZ M, using the.
same @ and R
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Here ¥, is the first index for which
¥t Un >
(3.7) ’ 2 !M,l = -2— but 2’ |Ml > -—, nEN,.
fm=1 i=1

If we denote by My 1, My sz, s M, the remaining (i.e. not accumu]étion)
exceptional intervals, by (3.6) we can write

S M Uplogn .
(3.9 kgf A =1 if 1sr=y, (nEN,.

Now we have

(3.9) “2’,; j(llk(x)|+|lk+1(x)l) dx = 2 Z f(llk(x)l+|lk+l(x)l) dx =¥

k=1r=1

L w@)| M
3{5 (=2 M\g* | S Tar 2y =

2(1—2q) % [[w(z,) lw(fk)l] MM
= 2 k=1r I(D(Zk) |w(2r)l |MraMk| o

% M, wlogn - 1
2(1 — =7
=g (1 2q) Z' My Z’ M, M, 16-2-2-112 =3

(see (3.5), (3.7) and (3.8); we used that x+x"1=2).
On the other hand, by (2.2)

A . : .
S [ (L +lhaa @) dx <ce,logn 3 1] = cepalogn
EEK, _1 k€K,

ie. pllogn<7168 ce,p,logn, from where by p,=e, /10 1<71680c, a contra-
diction if ¢=(71680)"! and n=n,.
If n=ny, by (3.1) we have for arbitrary k, 0=k=n,

f (LI +ll 1 () dx = / () = | = [ 2clog ny = |yl ce, log n

whenever 2clogn,=1. Cons1dermg, that if no—10“° 2clogny=1, indeed. But
then for n=ny(e), K,=#, which gives the statement for arbitrary n=2.

3.2. Proof of Theorem 2.2. If |J,|=J,, then by @3.1)

f (U + U2 () dx = FISLELE Tologn,

3) We denote the fundamental polynomials corresponding to M, by A(x) and 4., ,(x), the
corresponding minimums are |w(Z)].
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i.e. a long interval could not be bad. Considering the short intervals, again we. sup-
pose that u,:= > |/,,|=¢/10 to get a contradiction. Then, as above, we obtain
kET, . - .

that for n=ny(e)

pilogn : -
Hoe =2 (e +Hh () dwi= P

By (2.3), P=<|T,In() log n =2(e)log n, ie.

g2logn wlogn
107068 = 7168~ 1 =2n@logn,

a contradiction, if (e)=(10%- 14 336)7%%, n=nq (o).
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Comparison theorems and convergence properties .
for functional differential equations with infinite delay

J. HADDOCK?*), T. KRISZTIN and J. TERJEKI

Dedicated to Lajos Pintér on his 60th birthday

1. Introduction -

In the general area of stability theory for functional differential equatlons
Lyapunov functions (Lyapunov-—-Razumikhin or — Krasovskii functions) often are
employed instead of Lyapunov functionals [8, 12]. The derivative of such a function
with respect to the equation under investigation is estimated from above on some
appropriately chosen subset of the underlying solution (phase) space. The method
requires a comparison theorem (or theorems) since the Lyapunov function in ques-
tion usually is compared to a solution of a certain ordinary differential equation.

The technique of comparison theorems has been thoroughly investigated for
functional differential equations with finite delay. (See, for example, [2, 6, 9].) For
infinite delay cases DRIVER [1] obtained the first results, and his technique has been
generalized in several directions and applied to examine various notions of stability. -
For instance, KATo [7] and ZHICHENG [13] have obtained results for general “admfs-
-sible” phase spaces, while PARROTT [11] developed her work in terms of certain .
(exponentially weighted) C, spaces. In a recent paper of the authors [3], this method
was applied for general C, spaces, but the comparison differential equation was only
a trivial one.

In the present paper we examine the technique of comparison results from several
points of view. In Section 2 we formulate general comparison theorems in terms. of .
arbitrary real functions and then apply the theorems (in Section 3) to obtain various
convergence results for these functions. Among the consequences of Section 3 there
is a generalization of the main convergence result of [4] for semigroups on a special
function space.

*) Supported in part by the US National Science Foundation under Grant MCS-8301304.
Received June 28, 1985.
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As may be surmised from the title, one of our primary motivations has been
to generate convergence theorems for solutions of functional differential equations
with infinite delay. This is accomplished in Section 4 with the aid of the work in
Sections 2 and 3. The main thrust in Section 4 is to compare convergence prop-
erties of certain functionals W (=W (, x,)) to corresponding properties of related
Lyapunov functions ¥ (=V (t, x(1))).

The paper is concluded with several examples given in Section 5.

2. Comparison theorems

Let w: R*XR*—-R* be a continuous function, ¢, #4,€ R* and let u(r) be
the maximal solution of

W {u'(t)=cu(t, u(®) (t=t)

u(te) = uy

‘on an interval [ty, @) (fp,<a=). Let f: R*~R* g: R—R*, and let g be conti-
nuous on [fy, ).

Theorem 1. ff for all t€[ty, a) the inequalities

A | () = 1),

(B f0) = max{_max g(t+s), ft—n)} (rel0, 1=,
are fulfilled and if for t¢ [tt;, a)

(C) 0<g(®=f(

implies ' :

D) D*g(n) = w(t, g()),

then f(to)=u, implies f()=u(t) (t€t,, a)).
Proof. First we remark that (A;), (B,) imply

@ liminf f(t—h) = f() (1€ (to, @), .
ON limsup f(i+h) = f(1) (t€[t, a)).

Let >0 and define the function

F(r) =max{sup f(s),e} (t=1). |

to= st
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Clearly F is monotone nondecreasmg So, (2) and (3) imply F is continuous. Ob-
viously

4) g =fD=F@) (=1)
and
(5) F() = max{ _sup_ f(s), F¢—nr)} =

=max{ sup max{ max_g(s+u), f(t—r)}, F(t—r)} §.

t—r=s=t t—r—s=uz0
= max {_r'néas»);o g(t+s), F(t—n)} (1 = 1, r€[0, t—1,)).
If g(t)< F(¢), then by the continuity of g there is a >0 so that orgla}a git+s)=<
< F(t). Hence by using (5) -
F(t+h) = max {orgiléxa g(t+s), F(1)} = F(?)
whenever O0<h=4. So, g(t)<F(¢) implies D*F(t)=0.

Assume g(t)=F() and D*F(t)=0. Then there exists a sequence {,} such
that 6,>0, §,-0 as n—+o, F(t+4,)>F(@) and

D*F() = h»“lw'

From (5) it follows that for any » there is a y,, 0<v,=4,, such that

g(t+y,) = F(t+4,).
Using (4) and (D,;) we have

F_(tj___é)_F_(). = lim sup

5 "o

g(t+va)— g(t)

DYF() = }Lm
=Dtg() = w(t,"g(t)) = o(t, /() = o(t, F(1)).
Since w is a nonnegative function, we obtain
D*F() = o(t, F(1)) (t€lto, a)).

By using this inequality, the continuity of F, F(t;)=max {u(t,), ¢} and a well-known
differential inequality [9, vol 1, pp. 15] we get

SO =F@)=u(t) on [1,a,),
where u,(¢) is the maximal solution of ‘
{¢m=w@mm)azm
u,(ty) = max {u,, &}

on [t, a,). If ¢+0+, then ag,~a and u,(¢)-u(f) uniformly on every compact
interval of [¢,, a). This completes the proof.
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Corollary 1. Let (A)), (By) hold and suppose that (C)) implies
(Do D*g() = 0.
Then f(t) is a monotone non-incredsing Sfunction on [t,, a).

Theorem 2. Suppose that a=e<o, (A,), (B,) are satisfied and (C,) implies (Dy),
moreover w(t, u) is nondecreasing in u and the solutions of equation (1) are bounded on
[ty, =) for every uy. Then !Ll’g J(t) exists.

Proof. Since'f is bounded below,-it is enough to prove that V*f<eo, where
V*f denotes the positive variation of fon [#,, e). Let () be the maximal solution of
(1) on [ty, ) with #(t))=f(f,). Theorem 1 implies f(¢z)=idi(t) for tZ=t,. From
w(t,u)=0 and the boundedness of u(t) it follows that @’¢ Li([t,, oo)) If 0< f(t)_
=g(t), then

D*g(t) = o(t, g(t)) = o(t, f()) = o(t, u(t)) =) (= k).

That is Theorem 1is applicable with w(z, u)=a’(z).
Obviously the maximal solution of

{u’(t),: @, t=1
u(ty) = flt)

is u(=f(t)+ f @ (s) ds=f(t,) +i(f)—ii(t). Replace ¢, by ¢t, and apply Theorem 1
3% . .

to get -
S = f)+a@—da@) forall =1 =t

Using that #(¢) is nondecreasing on [t,, =), this inBQuali;y' gives ¥ *f<eo. This
completes the proof.. ‘

Remark 1. Theorem 1 is an extensmn of Dr1vers result [1, Lemma 1]. He -
examined the case f(¢)= sup g(s), —oo<oz5t0 and g is continuous on [a, @)."
a=s=t

Remark 2. Theorem 2 may b§ false if w(z, u) 1S decreasmg in u. For example,
let - ' ' '
3—u if u=3

ol “)={0 i u=3,

and put f(t)=g(t)=sin¢. Then all the assumptions of Theorem 2 are satisfied
except the monotonicity condition on w(t, 4) and ¥1»n°1° f(t) does not exist.

Further on, we need a sharper version of Theorem 1. Namely, inequality (D,)
will be required only on.a subset of the set of the points of [¢,, @) where (C,) is satis-
fied. In order to give this subset we introduce the following notation.
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Let us suppose a(t, 7), p(¢, r), h(z, r) are continuous functions on [r, =) X R*,
where 7=0 is a constant, p(¢, r) is nondecreasing in r, a(¢, r)<r for all r=0,
t=0. Suppose that t=h(t,r), p(t,r)=t for all r=0, t=t. Let o(t,r)=
=sup {s: p(s,r)=r}. It is not difficult to see that o(¢, r) is nonincreasing in r,
o(f,r)=t and if fis a locally bounded function on [z, <), o(r,r)<o for-all
r=>0, then there is O<uy(=uy(f, 7)) such that f(t)=u, on [1,0(t, up)]. For
r>0, 0=z=s=t define the function

gz s ¢ r)={D+g(s) if a(t,r)<g(), fl)=r forall ve€[z,s]
1T 0 otherwise.

'fheorem 3. Suppose g is continuously differentiable on [z, ), (A;), (B,) are
satisfied on [z, =) and that '

. . t
(E) ' _ ’ f g*(z, s, t,r)yds <r—a(t,r)

for all r=0, t=a(x,r) t=z=h(t,r). Moreover, if the inequalities

(C) : {0 <g =10, p(t, [O) =+,
2 a(t, f() < g) = f) = f(1) for all ve[h(t, f(1), 1]

imply (D,), then - .
f@ =uy for all velr, o(r, up))

SO = u@) (t€lo(z, uy), a)),

where u(t) is the maximal solution of (1) on [t,, a) with ty=a(t, ).

implies

Proof. Define t,=o(t, u,) and for z=¢,
G(1) = max(g(1), u,), F() = : sup max (f(s), t)-
' . =S =t R

Then in the same way as ‘in the proof of Theorem 1 we can see that
| GO =F@) (t=1t),
- F( §max{~£r;a;§0G(t+s), F(t—r)} (t= ¢, rel0, t—1,)),
G(t)<F(¢) implies D*F(t)=0, and if G(¢)=F(t), D*F(t)>0 then D*F(t)=
=D*G(t). It is easy to see that in the case (=¢,, G(t)=F(t), D*F(t)>0 the
following relations are true: F(t)=f(1)=G(t)=g(t)=u,, %g(t):DfG(t). We

want to show that in this case D*G(t)=w(z, G(?)) is fulfilled, too. This would be
sufficient to the completeness of the proof by using Theorem 1.

Since F(t)=f(r) implies f(s)=f(¢) -for all ve[h(z, £(?)), ], by the conditions
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of Theorem 3 it is enough to prove that a(r, f(r)<g(v) for all ve[h(s, f(2)), 1].
Suppose the contrary, that is there exists a z€[h(t, f(¢)), ¢] such that a(z, f(1))<g(v)
for all v€(z, 1), a(r, f(1))=g(z). Then g*(z,s,1,f(1))=D*g(s) for all s€(z,?).
Therefore, by inequality (E;) one gets

S —a(t, /) = e—g(D = [ g*(z s, 1, [O) ds < f@)—al(t, fO)),

which is a contradiction, thereby completing the proof.
We can extend Theorem 2 in a similar way:

Theorem 4. Suppose that a=-<o, (A,;), (B,), (E,) are satisfied and (C;) implies
(Dy), moreover w(t, u) is nondecreasing in u and the solutions of equation (1) are

.bounded on [t,, =) for every u,. Then krg (1) exists.

If we analyse the proof of Theorem 3 we can find that the differentiability pro-
t
perty of function g(z) is used only in relation g(r)—g(z)= f g*(z, 5,1, f(t)) ds,

where z€[h(1, f(t)), t]. So,if h(t, r)=t, then it is sufficient for g to be continuous.
Therefore, a J. KaTo and W. ZHICHENG type comparison theorem [7, 13] can be
deduced from Theorem 1. We shall formulate it in the next

Corollary 2. Assume =0, g: [r, °)=R* is a continuous function and

pitg®) =1, 0<g()= -g(s)

Pt alyBsst
imply :
_ D*g(t) = o1, g(1).
If there is uy=0 such that o(t, uy)< <, g(t)=u, on [1, 6(z, uy)l, then g(t)=u(r)
Sor all - t€[o(z, u), a), where u(t) is the maximal solution of (1) on [t,, a) with ty=
=01, ).

Proof. Define h(t,r)=¢, and f(tf)=maxg(s) for “t=t,. If p(s, f@))=1,
O0<g(t)=f(t), then g(t)= max g(s), consequently g(t)—w !m)éss'g( 5),
therefore (D,) is fulfilled, and the assertion follows from Theorem 3.

- Z. MixoLasskaA [10] used a comparison result analogous with the special case
p(t, r)=1,. This caseis stated in the following corollary. The proof is omitted because
it is similar to that of Corollary 2. '

Corollary 3. Suppose 1=ty, g: [r, °)=R* is continuously differentiable,
(E,) is satisfied for all r=0, t=t,, t>zah(t r). If h(t ry=z for all r=0, t=t,,
and if t=1,,

a(t,g(D)< min _g(s)= max g(s)=g(®)

h(t, g(e))=s=¢ k(t,g(1))=s=t¢

imply (D,), then 3;‘3;5., g(8)=u, implies g(t)=u(t) for all 1=t,.
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A

3. Convergence properties of real functions

In the previous chapter sufficient conditions on functions f and g were given to
guarantee the existence of the limit of fas 7—+oc. Now, we show that it is possible to
modify condition (B,) such that the existence of }im f() implies that of }im g(®).

Lemma 1. Suppose (A,) for t=t, and that there exists a function
h: R*XR*—~R* such that

(Fp) limh(t-r, =0 (r=>0),
(Bo) f)= _max g(t+9)+h(r, 1) (¢ = to, r€[0, 1)),

Then lim sup g() = lim sup (). |

Proof. (A,) implies lxm 15up g(t)Shm 1 sup f(t). On the other hand, if
c= ]1msupg(t)<oo then for all e>0 there is a T=T(e)=t, such that g(z)=

=c+¢ for t=T. By (B;) we have f(t)=c+e+h(t—T,¢) for all t=T. Using
(Fy), we obtain hm 1sup f(¢)=c+e. Since £>0 is arbitrary, the theorem is proved.

Theorem 5. Suppose g is uniformly continuous on [t,, =), (A,) is satisfied for
t=t, and there exist functions h, ki, ky: R*XR*~R* such that (F,) is fulfilled,
ky(r, u), ky(r,u) are monotone nondecreasing and continuous in u for all réR*,

k,(0,u) = 'ygrl k(r,u)=u .(u=0),
ky(ryuy<wu forall r,u=0, k,0,u)=u and
(Bs) () = max {k(r, ;g;as)étog(t+s)), ky(r, _max gt+s)}+h(r, D
| (t = t5, T€[0, 1—1,), r€[0, 7)) | |
Then !ln.l g(®)=c if and only if Iirgf(t)=c.
Proof. If }ln.l g(t)=c, then according to (A,), (B;) with r=0 and Lemma I

c= lim °i"nf g(n = li?l Lnf NOE lirtri sup f(1) = lir}l sup g =c

ie. lim f(0) = c. '

Now, assume ]1m f(t) c. Itis enough to prove that 11m mf g(t)=c. Sup-
pose the contrary, i.e. 11m mf g(t)<c. Let cle(hm inf g(¢), c) From the uniform
continuity of g there is a 5>0 such that 1, t,=¢,, |t —t,|<5 imply |g(#)—g(t)l<
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<(c—¢)/4. Define a seciuence {t.} such that t,~e as n—e and g(t,)=c¢, for
n=1, 2, .... Then

max g(l,+s) = _max (g(t,+s)—g(t))+g(t) =

—d=5s=

c—¢, _ ct3e
= 2 +c¢ = 2 . ‘
Let r€(0,6) be chosen such that k,(r, (c+3¢)/4)=(c+c)/2. Choose &=0,
T=T(e)=1t, such that k,(r,c+e)<c and g(t)=c+e¢ for t=T. From (B;) we
obtain

@) = max {k;(r, _max g(i,+5)), ky(r, ,_max gt +s)}+

ctey
2

+h(-T, 1) = max{ et ol h (T, 1)

for t,=T. Using tlitg h(t,—T,1,)=0 we get the contradiction
c= lir:'l_.sup f(t) = max {(c+c,)/2, ky(r, C+8)}/ <c.

This completes the proof.

4. Applications for functional differential équatidns

Let X be a Banach space with the norm | . [y and let B be a space of functions
mapping R~ into X with a semi-norm | . ||. For a function x: (—eo,d)~X and
for t€(—o,a) define x, as a function from R~ into X by x,(s)=x(t+s), s€R".
For t¢R* define B, as the set of @€B such that ¢,€B for each #€[—r, 0] and
¢ (s)is continuous on [—7, 0}. Let DcB andlet /1 R*XD—X be a given function.
Consider the functional differential equation

() x(t) = f(t, x).

A solution of equation (6) on [t,, @), ty<a=-< is a function x: (—eo, @)—~X such
that x,€D for t€[ty, a), x(t) is continuous on [t,, a), differentiable on (¢, a)
and- x(¢)=f(¢, x,) on (t,, a). .

Let ¥V: RXX—R™* be a locally Lipschitzian function. -

Suppose that there exists a function W: R¥*XD-R* such that

(AV) V(to@)=W(,¢) (ERY, pED)
and :
(BV) W(t, ¢) = max {_g&:éo V(t+s, @(s), W(t—r, ga_,.)}“

(t€R*, rg[0, 1], p€B,).
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If x(¢) is a solution of (6), then g(¢r)=V(z, x(¢)) and f(t)=W(t, x,) satisfy
conditions (A;) and (B,). So, we may apply Theorem 1, when the derivative of
¥ (1, x(¢)) has an appropriate estimate on the set’ V' (¢, ¢ (0))=W(t, o).

If W(t, @)= sup . V(t+s, ¢(s)), t€R*, then we get a RAZUMIKHIN type com-

parison result [6, 12]. One may put

() W(t,¢) = sup V(t+5, ¢(5))
or .
®) W(t, ¢) = sup I(s, ¥ (t+s, 9()

where I: R~ XR*—R* is a continuous function such that I(s;, v))<I(S,, v,)<v,
for all s;<s,<0, 0=v,<v, and supposing that the supremums on the right-hand
side of (7) and (8) exist for all ¢p€D. If I(s, v)=€"v for a =0, then we obtain the
case examined by M. ParrOTT [11]. ’

Let k: R——~R* be a measurable function such that k(s,)=0 implies k(s)=0
for all s=s,, for each r=0 ‘

(N esssup k(s —r)

1}
_— k(s)ds =1
seR-, k>0 k(s) +_,'[ () ds

[ X . R
holds and f k(s)V(t+5, (s))ds exists for all 1=0, @€D. Then one can choose

(10) W(t, @) = max {V (t 9(0)), f k(s)V (t+s, @(s)) ds.

We remark if k is continuous then (9) implies k(s)=Me* for all SE(— o=, 0]
where M, y=0. On the other hand, (9) is true if k(s)=Me*™ such that y=M=0.

Our comparison results are useful to prove stability, uniqueness and continuous
dependence of the solutions (see e.g. [1]). In this paper we deal with the convergence
properties of solutions as ¢-<o. From Theorems 2 and 4 we get the following results.
The derivative of ¥ with respect to (6) is defined by

V(t, ) = limsup (V(t+h, 9(O)+hf(t, o)~ 9O

Corollary 4. Suppose (AV), (BV,) and

(DV) V{t, 0) = ot V (1, 0(0))
whenever
(CVy) 0 <V(t, p(0) =W(t, 9)

Jor tER*, @eD, where w: R*XR*—~R* is continuous, nondecreasing in its se-
cond variable and the solutions of the equation u(1)=w(t, u(t)) are defined and bounded

12
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on R*. Then for each solution x(t) of (6) defined on [0, =) the limit lim W, x)
exists. _

Corollary 5. Let a(t, r), p(t, r), h(t, r) be the same functions as in Theorem 3
and for r=0, 0=z=s=t define ‘

g*(Z, s, 8 r) = SUP{V(Sa (P) a(t’ r) < V(U, §0(U—S)),
W(v, @,-5s) = r for all v€[z, s]}.

Suppose V (t, x) has continuous partial derivatives, (AV), (BV,), (E,) are fulfilled
and (DV) is true whenever (CV,), p(t, V (t, ¢(0)))>0 and for all. z€[h(z, V (¢, 9 (0))), 1]
. the inequality

a(t, V(t, 9(0) < V(z, 9(z—1) =W (2, 9,-) SW (1, 9))

is satisfied. Then for each solution x(t) of (6) that is defined on [0, =), the limit
}.ij{‘, W, x,) exists.

Generally, the existence of the limit }1}2 W(t, x,) gives little information about
the asymptotic behavior of solutions. For example, if W(t, p)=sup V(t+s, @(9)),

. SER™

then the existence of lim W(z, x,) means the boundedness of V (1, x(t)) on [t, =)

only. Using Theorem 5 we may obtain conditions for W(z, ¢) to guarantee the
existence of }ir;_l° V (1, x(¢)), which gives much more information about x().

Corollary 6. Suppose that all conditions of Corollary 4 (or 5) are satisfied
and there exist functions ki, ky: R*XR*—~R* and h: Rt XR*XD—~R* such that
ki(r, u), ky(r,u) are monotone nondecreasing and continuous in u for all ré R+,
'l_l.l’("l“l*_ ky(r,uy=u for all u>0, ky(r,u)<u for all r,u>0, k5 (0, uy=u for all

u=0, h(t—r,t, )0 as t—oo for all r=0, @&D, moreover
(BVy) w(t, @) = max{k,(r, _max V(t+s, ¢(s)), :

kz(", _trgsasx_’ V(t+s’ (P(s)))}"f'h(‘f, t: (P-t)

for all t¢R*, €[0,1], r€[0, 7], ¢€B_.ND. Then lim V (1, x(t)) exists for every
solution x(t) of (7) which is defined on [0, =) and for which V (¢, x(t)) is uniformly
continuous on [Q, o).

If W(t, ¢) is defined by (8), where I(s,v)~0 as s—-—o for every v=0,
V(t+s,¢(s)) is bounded on R, then (BV,) is true with k,(r, w)=u, ky(r,u)=
=I(—r,u) and h(r,1, (p)=ssup I(s, V(t+s, 9(s). If W(t, ¢) is defined by (10),

0
f k(s)V(t+s, o(s)) ds<o for all @¢D and t€R*, k(s) is nondecreasing,
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0 .
[ k(s)ds=1, then (BV,) is true with
. 0 [}
ky(ry ) = u(1+( [ k(s)ds)*— [ k(s)ds) ™",
o ,
ky(r,u)=u (1+( f k(s)ds)z]_l,

h(t, t, ) = fok(s—t)V(t+s—r, o(s)) ds.

We get an important special case if
(11) D = B, V(ta x) = ”.x"Xs W(t’ (P) = H(P][B

Then (AV), (BV,) and (BV,) are axioms for these norms as it is used generally in
functional differential equations with infinite delay.

These axioms resemble axioms of admissible phase spaces in which the estima-
tion
(12) ule@ix = llols = K(r) sup_ |I‘P(S)”x+M(")lI§0 s

—rss

is true with p>0 and some continuous functions K, M: R*—~R* [71. If u=1 and
K@)+ M(r)=1 then (12) implies (AV) and (BV,) in the case (11). So (AV) and
(BV,) are true in special admissible phase spaces. In case (11) property (BV,) cannot
be compared to (12).

In case of several phase spaces used in theory of functional differential equations
with infinite delay we may define a norm such that (AV), (BV,) and (BV,) are ful-
filled. So, in the special case (11), if

a) B=BC is the space of bounded continuous functions on (—ee, 0] into X

with norm
[elsc = sup lo)lx

then (AV) and (BV,) are fulfilled but (BV,) is not statisfied. If we put
ol = sup P& le®lxs

where p: R~—R*, p(s))<p(s;)<l1 for all 5;<s,<0, p(0)=1 and s_l.ir_na° p(s)=0,
then (AV), (BV;) and (BV,) are fulfilled.

b) B=C, (y€R") is the spaze of continuous functions (p on (— o, 0] such that
11m e"]lgo(s)]] x exists and

lolc, = sup e”*[@(s)lx,
s€R'~

12¢
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then for y=0 (AV), (BV,) and (BV,) are fulfilled. For y=0 (AYV), (BV,) hold, but
(BV,) does not.
¢) B=L?, p=1 is the space of measurable functions on R~ such that

[ k@ leG)|?ds <o,

, 0 0
where k: R™—R* is measurable, fk(s)ds:l and fk(s)ds>0for all r=0

then (AV) and (BV,) are true with the norm

ol = max (lo@lx, ( [ kO lo©l%ds)"?).

If (9) is valid for all =0, then (BV,) is fulfilled, too.

S. Examples

1. Consider the equation

(13) () =H(tx@)~ [ k(s)x(¢+s)ds).

Here H: R*XR-R is continuous, H(t,w)u=0 for all #€R*, ucR;

sup |H(t, u)|<< for every compact set KCR; k: R~+R* is nondecreas-
tcR+,u€K

0
ing, measurable, f k(s)ds=1. So, for each constant ¢, x(¢t)=c is a solution of

equation (13). Let us choose L, as a phase space for (13). Then the existence and
continuity of a solution through every €L, is insured, further, if a solution x(¢)
is bounded, then it can be continued as f-»co,

Assertion. If (9) is fulfilled then every noncontinuable solution of (13) has a
Sinite limit as t—eo,

In order to prove this assertion, we define the following functions for r€R*,
e<Li. (1, 9(@)=|e(0)l,

w(t, ) = max (e, [ k()lo(s)lds).

If x(t) is a noncontinuable solution of (13) on [#,, a) through ¢, then g(t)=V (1, x(t))
and W(t, x,) satisfy the assumptions of Corollary 1 with w(¢, u)=0. So, we have

lx()] = max (Ix(@), [ k()Ix(t+5)| ds)
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for fé[to, a). Consequently, x(¢), X(¢) are bounded, and a=co, the'refore we may
apply Corollaries 4 and 6 with V(1, 9(0)), W(t, ), which implies the assertion.

Assertion. If k(s) is dz}j"erentiable and k'(s)=k(0)k(s) for sc¢R~, then
every bounded solution of equation (13) has a finite limit as t— oo,

Indeed, let x(¢) be a bounded solution of (13) on [¢,, =) and put g(¢)=V (¢, x()),
f(@)=W({, x) where V and W are defined above.
We want to estimate the derivatiye D*f(¢). We have three cases:

0
2) @l = [ k@x(+s)lds.
Then f(t)=g(z) and (13) implies %wan_s.o.

b) k@l < [ k@)lx(t+3) ds.

In this case A
SO = [k@x@+s)ds= [ k(s—1)lx(s)lds,

so using the inequality

(14) % [ k@Ix@+s)lds = k@Ix(@)— [ K (s=1)lx(s)l ds =
skOIx@— [ K@Ix@+s)ds=

=k©) (Ix@l~ [ k@)|x(t+3)|ds)
we get —%— J(H=0.
©) Ix()l = [ k@)lx(t+s)l ds.

Then using the case a) and inequality (14) we have

D*f() = D* x| +D* [ k(s)|x(t+3s)|ds =

0
= DHix(O+k©O) (Ix())- [ k@)Ix(t+s)ids) =o0.
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Therefore D*f(1)=0 for all €[z, =), so }'If.l f({t) exists. Consequently,
Theorem 5 implies our assertion.

2. These results may be extended to the equation

(15) x(f) = H(t, x(9), h(1, x))),
where : )
H: R*_'XR"XR"—-R", h: R* Il -~ R,

ol = [ kOlo@lds,  swp G uw ol <=

u,vEK, L€

for every compact set KcR® and

sup (H(t, u, v), u) = p(1)]ul?
Boll=ul

where (.,.) means the inner product in R, and p: R*—R%, f p(s)ds< oo,
- [}
We may put V(t, x)=|x||=(x, x)* and

0
wt, 9) = max{le©)l, [ k)o@ ds},
and we assert that }1:2 llx ()] exists for every solution of (15), if k satisfies the same
properties as in Example 1. ‘
3. Let us examine the equation
(16) x(t) =—p(Ox(®)+q(O)x(t—o(®)-

Let p,q, 0: R*—R be continuous, bounded functions; o(t)=0 for t€R*. Choose
BC as a phase space for (15).

Put V(t, x)=x W(t, @)= sup e¥|p(s)|’, where y=>0 is a constant. Then
sER-
V(t, 9) = =2p()¢*(0)+29() ¢ (0) o (— (),
therefore, if W(t, 9)=V (¢, ¢(0)), i

=20 |p(— o (D) = ¢*(0), and lq(t)le"“’Sp*(t)

V(t, 0) ==20()0*(0) +219()] 962 0) = 2=V (1, 9(O)

then

where and in the sequel, for any a€R, a*,a” are defined by a*=max {0, a},
a~=max {0, —a}, respectively. Similarly to Example 1, the existence of solutions
for all large ¢ and their boundedness together with the derivative can be proved.
Therefore, Corollary 6 gives: ' '
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Assertion. If p~€L' and there exists y=>0 such that |q(t)| e*®=p*(r)
for all t€R™*, then x(t)—constant as t— for every solution of (16).

4, Consider the equation

an (1) = g x(t—o(®),

where ¢, o: R¥—R are continuous, g is bounded, ¢(¢)=0 for ?¢R*, and there
exists a T=>0 such that 1—g()=0 for all r=7. Choose BC as a phase space.

Assertion. Suppose that there exists a striétly increasing continuous function
g(s) on R~ such that sli£n g(5)=0,

[ la@l/g(=e@)ds <1

t—o()

for all. t=T and .
J " @Olse@)dt <.
Then for every solutionbx(t) of equation'(17) the limit }352 x(t) exists.
Put V(,x)=lxd, W, @)=sup g@lo@h 2. N=0, ht,n=(-e()",
t

att,y =~ (1= [ la@)lg(-e)ds).

t—o(D)

i

Then ]
V(s 9) = g(s)¢(— (s)) sgn ¢ (0)

for‘ éll fpéBC, ‘so we have
, q*(z, 5,1, 1) = rlq(2)/g(~ e (2)),
therefore (E,) is fulfilled for ¢=T. If t=T, O<|p(0)|=sup g(s)|e(s)] and
a(t, lp@)) < 0@ = sup gls+2)le(s+2)] = sup gle ()
for all z€[—(r—o())*, 0], then sgn ¢(0)=sgn @(—¢(¢)) and therefore

Vvt 9) = g+ )V (5, 0(0))/g(~ ().

The boundedness of solutions and their derivatives can be proved similarly to Example
1. So, we can apply Corollary 6.
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Banach—Steinhaus theorems of locally convex spaces based
on sequential equicontinuity and essentially uniform boundedness

W. H. HSIANG

The main purpose of this paper is to construct locally convex spaces which
satisfy the Banach—Steinhaus theorems for sequentially continuous or essentially
bounded, linear functionals and maps as naturally as barrelled spaces satisfy these
theorems for continuous, linear functionals and maps. For this purpose, we consider
the sequential and bornological extensions of a locally convex space and consider the
equicontinuous subsets of the duals of these extensions. Such equicontinuous sets
are called sequentially equicontinuous and essentially uniformly bounded subsets,
respectively. We prove some basic properties of these sets. The required spaces
mentioned above are called strictly sequentially barrelled spaces and locally convex
spaces satisfying the strict condition of ess-uniform boundedness. The basic proper-
ties and Banach—Steinhaus theorems of these spaces are also proved.

I. Introduction . .

The generalization of Banach—Steinhaus theorems from normed linear spaces
to locally convex spaces (abbrev. by LCS) has been thoroughly discussed (e-g. [1]
and [10]). These theorems of LCS are originated in the discussion of barrelled spaces
and the main notion in the proofs.is equicontinuity of linear functionals or maps. In
this paper, we will construct LCS satisfying Banach—Steinhaus theorems for se-
quentially continuous (or essentially bounded) linear functionals and maps as natu-
rally as barrelled spaces satisfy these theorems for continuous, linear functionals and
maps. The notions for the proofs are sequential equicontinuity (or essentially uni-
form boundedness) of linear functionals and maps. Some notations will be introdu-
ced in this section.
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Let L be a linear space over K (K=R or K=C) and L* be its algebraic dual.
If p is a semi-norm on L, then L, is the semi-normed linear space defined by p.
For any collection P>® of semi-norms on L, let Lp be the projective limit of {L,,:
pEP} in the sense that Ly is with the weakest, locally convex topology for any pecP

to be continuous. Thus the collection {iél ¥, 0, ¢) (or él ¥, 0,8): ncZ,, p€P for

i=1,2,...,n and s>0} is an open (or closed) base of neighborhoods of 0¢€Lp
(Examples 2 and 4, [3]), where ¥,(0, &) (or V,(0, &) is the set {x€L: p(x)<e (or
p(x)=e)}. If Lisa LCS and L’ is its topological dual, then the space L,,=(L, o(L, L")
is the projective limit of {L(p y: @€L’}, where p,=|p| on L.

If L,, L, are LCS over K *and P(L,, L,) is the linear space of all linear maps
from L, into L, then we have the following linear subspaces of £ (L,, Ly).

() B(L,, Ly)={pc £ (L, L,): ¢ is continuous on L,}. -

(i) If pe(Ly)™ and {p(x,): n=1,2,...} converges to ¢(x) for any sequence
{x,: n=1,2, ...} converging to x, then ¢ is called sequentially continuous (abbrev.
by s-continuous) at x. Let #%(L,, L,) be the linear space of all s-continuous, linear
maps from L, into L,.

(i) If @€(Ly)™ and ¢(4) is bounded in L, for any bounded subset 4 of L,,
then ¢ is called essentially bounded (abbrev. by ess-bounded) on L,. Let #°(L,, L)
be the linear space of all ess-bounded, linear maps from L, into L,. Hence
B(L,, LYS BH(Ly, L) S HB°(L,, Ly). If Ais a bounded subset of L, and p is a con-
tinuous seminorm on L,, then the function T ,: B°(L,, Ly)~[0, + =) defined by
@—sup {p(¢(x)): x€A} is a semi-norm (since p~*([0, 1]) is a neighborhood of
0¢L,). If w0 is a collection of bounded subsets of L; and P,={T, ,: A€w
and p is a continuous semi-norm on L,}, then we let 4% (L,, L,) be the projective
limit of {.43(,. L1, Ly): Ty ,€P,) In particular, if o={{x}: x¢L,} (or
w={A4: Ais a bounded subset of L)), then we write % (L,, Ly) (or B4(L,, Ly))
for % (L,, L,). If w={A4: Ais a precompact subset of L,}, then we wrlte.% (L, Ly)
for .%b (L,, L,). If L is a LCS, then we write L* and L’ for #+(L, K) and gab (L, K),
respectively.

The following general result will be frequently applied later.

Theorem 1. Let L,, L, be LCS over K, w0 be a collection of bounded sub-
sets of L, and ASH(L,, L,).
(i) A is equicontinuous on L, iff A;="A(A;) is an equicontinuous subset of L;
for any equicontinuous subset Ay of L.
(ii) A is bounded in B,,(L,, L,) iff A,="'A(A43) is bounded in (L,),, for any equi-
continuous subset A, of L.

We note that *A(4)={oW)EL;: p€A and YE€A4;}, where ‘p is the contl-
nuous transpose of ¢ on L; (Definition on p. 254, [1]). :
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Proof. (i) If A is equicontinuous on L, and A4; S L; is equicontinuouson on L,,
then A; S W° for some closed, convex, balanced neighborhood W of 0€L, (Pro-
position 3.4.5, [1]), where W° is the polar of W in L;. By assumption, there is a neigh-
borhood V of 0€L, with o(V)SEW for p€A. We can check A;='A(4)SVC.
Hence A is equicontinuous on L,. Conversely, if W is a closed, convex, balanced
neighborhood of 0€L,, then *A(W°)S¥° for some neighborhood V of 0¢L,.
Hence if x€V and @€d4, then |y(o(x)|=[¢W(x)|=1 for any yeW°. This
implies @ (x)€°(W°)=W (Proposition 35.3, [10]) for x€V and ¢@€A. Hence A
is equicontinuous on L1

(i) If A is bounded in B,,(L,, L,) and A, and W are defined in (i), then the Min-
kowski functional p(y) associated with W on L, is a continuous semi-norm and
W=p~([0, 1]) (Lemma 5.1, [8]). If B€w, then we can check A;='A(d4;)SaB®
for some «=0. Hence A4; is bounded in (L,),. Conversely, if Ty ,€P,, then
W=p~Y([0, 1]) is a closed, convex, balanced neighborhood of 0¢L,, and *A(W°)
is bounded in (L,);. Thus ‘A(W°)SaB® for some «=>0. This implies ASVr
(0, @), and 4 is bounded in %,,(L,, L;). ”

Lemma 1. Let L be a linear space and M* be a linear subspace of L*. If
L,=(L,6(L, M*)), then (L)) =M*.

II. Sequential and bornological extensions of locally convex spaces

By applying the projective limit construction of LCS, we can have various ex-
tensions of a given L.CS. Before presenting two typical examples of such extensions,
we consider another extension of a Hausdorff, linear topological space which is
totally irrelevant to the construction in L

If X is a Hausdorff, topological space, then the collection 1x,s of all s-neighbor-
hoods of any x€X 4(Deﬁnition in §11, [4]) is a filter on X (Definition on p. 75, [1)
and 7,={V SX: x€V=V¢n, } is a topology of X which contains all open subsets
of X, and has a base of neighborhoods of any x€X consisting of members of #,
(Propositions 1 and 2, [4]). Hence if X, is X with the topology 7,, then X, is called
the sequential extension.of X. X and X have the same convergent sequences Xis
called sequential if X, =X. Hence X= X iff any Hausdorff topology of X which
has the same convergent sequences as the orlgmal topology of X is contained in the
original topology.

Lemma 2. Let X be a topological space and D£AZSX, then A is closed in
X, iff the limit of any convergent sequence (in X} of points in A is in A (Proposition

3, 4.
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Corollary 1. If X is a first countable, topological space, then X is sequential
(Corollary 3, [4]), and has the same neighborhoods and s-neighborhoods.

Lemma 3. Let X; and X, be topological spaces.

(i) Let f: X,~X, be a map, then f is s-continuous on X, iff f: (X)), > (Xo),,
is continuous (Theorem 2 (i), [4]).

(i) If (Xy),, (i=1,2) has the filter of all neighborhoods of any x,£X; consisting
of all s-neighborhoods of x; (Corollary 1 and Remark (ii), [4]), then (XX X)), =
=(X1),, X (Xz),,, where both sides of the identity are with the product topology.

Proof. (i) We note (X}), X(Xz), S(X;XXy),, (Theoreni 1 (i), [4]), where
“C” means the set-containment between two topologies of X;XX,. Conversely,
we note that W is a s-neighborhood of (x;, x;)€X; XXz iff W=UXV for some
s-neighborhoods U of x; and V of x,.

For the topological background of this paper, we refer [7].

If L is a linear topological space and 7, ; is the filter of all s-neighborhoods of
0L, then n,,=x+ny for any x€L.

Theorem 2. If L is a linear topological space over K such that n, , is the filter
of all neighborhoods of 0€L, , then L, is linear topological space and (L,) =L*.

Proof. Since LXL with the product topology is a linear topological space
(p. 118, [1]), we have (LXL),3=L,SXL,S by Lemma 3 (ii) and (KXL), =KXL,
by Corollary 1. The vector addition LXL—L defined by (x, y)v—+x+y’ is conti
nuous, and hence s-continuous. Thus L,SXL,’—»L,’ defined by (x, y)—~x+y is
continuous, i.e. the vector addition of L is continuous w.r.t. 7,. This is also the case
for scalar multiplication of L. Hence L, is a linear topological space. The identity
(L)Y =L* is clear.

Corollary 2. If L,, L, are linear topological spaces over K with the condition
of Theorem 2 satisfied, then B*+(Ly, Ly)=B((Ly), , (Ls),)=B((Ly), , L,). Hence
A is a sequentially equicontinuous subset of B%(L,, L,) (Definition 1 in the following)
ifif A is an equicontinuous subset of B((Ly),,, L.)-

Proof. These resulfs are clear since AS % (L,, L,) is s-equicontinuous on L,
iff N{e~'(W): p€A} is a s-neighborhood of 0€L, for any neighborhood (or
s-neighborhood) W of 0cL,.

Corollary 3. If L is a linear topological space with the condition of Theorem 2
satisfied, then any s-equicontinuous subset of L* is relatively compact ((d), p. 144, [1])
in L} =(L*,a(L*, L)) (by Corollary 2 and Theorem 3.4.1, [1]).

Since the sequential extension L, of a linear topological space L is not neces-
sarily a linear topological space (Remark (iv), [4]), we now consider a special kind of
sequential extension of LCS such that the resulting spaces are indeed LCS.
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If Lis a LCS, and P, and #, ., are the collections of all s-continuous semi-
norms on L and all convex, balanced s-neighborhoods of 0€L, respectively, then
p=py€P, and p~Y[0, D)SVSp~I([0,1]) for any Veénm,, (Lemma 5.1, [8]),
where py(x) is the Minkowski functional associated with ¥ on L. Conversely,
V =p~ Y0, 1))€n,, s for any p€P,. Wecan check that the map P,—~n,, ., defined
by p—V, is injective, and Py=Pry ={py: V€N, cs)- °

Since 1y, is closed under finite intersection and positive multiple, 7 ,; can
be a base of neighborhoods of 0¢ L w.r.t. some locally convex topology of L (Pro-
position 2.4.5, [1]). L with this unique topology is denoted by L, . Thus L, =Lp
and (L, )’ =L*. :

We can check that P, (or #, ) is the collection of all continuous seminorms on
L, (or all convex, balanced neighborhoods of 0€L, ). (Cf. Example (ii) after Thm.
7 (or Corollary 7), [3]).

For any LCS L, we have the set-containments LgL,ugL,'. Hence L, is
called the c-sequential extension of L, and has the same convergent sequences as L.
If Lis first countable, then L=L, =L, , and L must be metrizable (Theorem 2.6.1,
).

We now give the definition of sequential equicontinuity (abbrev. by s-equxcon-
tinuity).

_ Definition 1. Let L;, L, be LCS over K and AZS(Ly)™. If {o(x,): n=
=1, 2, ...} converges to ¢(x) uniformly in @€ A for any sequence {x,: n=1,2, ...}
converging to x€L,, then A is called s-equicontinuous at x. If 4 is s-equicontinuous
on L, and AS¥(L,, L,), then ASH*(L,,L,). For a LCS L, A*SL* is s-
equicontinuous on L iff limsup {|o(x,)!: @€A*}=0 for any null sequence {x,:
n=1,2, ...} in L. This notion was introduced by 4. Grothendieck and was called
limited subsets of L* in [11].

Hence equicontinuity of linear maps implies s-equicontinuity. The reason for
this terminology is clear from the proof of Corollary 2. Other characterizations of
this terminology are the following: (i) for any neighborhood (or s-neighborhood)
W of 0cL,, U{p(V): o€ A}YSW for some s-neighborhood ¥ of 0¢L,; and (ii)
for any neighborhood W of 0¢L,, U{p(V): ¢€ A}S W for some convex, balanced
s-neighborhood ¥ of 0¢L,.

If L is a LCS and ASL such that, for any convex, balanced s-neighbor-
hood ¥V of 0¢L, there exist x;, X5, ..., X,€4 with AE U (x;+V), then A is

called s-precompact in L. Hence A4 is precompact and bounded in L (Proposition
2.10.7, [1]). If L,, L, are LCS over K, then we let & " (Ly, L) be the projective limit
of {.QZ(T )(Ll, L,): A is a s-precompact subset of L, and p is a continuous
semi-norm on L,}.
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Lemma 4. If L, L, are LCS over K, then B*(L,, L)=%((Ly),, ,Lz)_
=ﬂ((L1),c , (Ly), ) Hence A is a s-equicontinuous subset of B*(L,, L,) ﬁ” A s
an equicontmuous subset of .43((L1),c’, Ly).

By Lemma 4, we can easily prove properties of s-equicontinuity of linear maps.

(i) Let L be a LCS, then A*SL* is s-equicontinuous on L iff A* is equiconti-
nuouson L 1ﬁ" A*CV°= {<pE(L ) le(x)|=1 for xeV'} for some neighborhood
V of OEL (i.e. a s- nexghborhood of 0€L), Proposition 3.4.6, [1], where ¥V°
is the polar Of ¥ in (L., ) =L*. Hence V°=V°+, the polar of ¥ in L*. In this
case, A* is relatively compact in (L), o((L, s L))=(L* o(L*, L))=L} (Theo-
rem 3.4.1, [1]) and bounded in Lj; _(L+ B(L*, L)) (and sois in L} for any collec-
tion w of bounded subsets of L)

(i) Let L;, L, be LCS over K and AE ¥(L,, L,) be s-equicontinuous on L.
Hence A is an equicontinuous subset of @((Ll)tu, L,) and bounded in .%,((Ll),“,
L,)=%; (L, L,) (since (L), and L, have the same bounded subsets). Also, the
closure of A in ((Ly)™), is an equicontinuous subset of B((Ly),,, > Ls) by Proposition
32.4, [10], and hence a s-equicontinuous subset of #+(L,, L,), where ((L,)™), is
the projective limit of {L<T : x€L, and p is a continuous semi-norm on L,}
and T, ,: L=(L,)"~[0, +oo) is defined by (p»—»p((p(x)) (p- 117—119, [1], Theo-
rem 5, [3] and p. 280, [7]).

(iit) If L,, L, are LCS over K, then 4 is a s-equicontinuous subset of 2+ (L,, L2)
iff A is an equicontinuous subset of B((L,),_, L. ) iff Af ='A(4;)={"p (W)E((Ll),c ):
@€A and Y€ 4;} is an equicontinuous subset of ((Ll) ) for any equlcontmu(;us
subset A, of L; iff A} is a s-equicontinuous subset of LJr (by Theorem 1). *¢ is
called the s-continuous transpose of ¢ on L} . Similarly, for a given collection w of
bounded subsets of L;, 4 is a bounded subset of B}(L;, L,) iff Af ='A(4;) is
bounded in (L,)} for any equicontinuous subset A, of L.

(iv) Let L,, L, be LCS over K, then #+(L,, L2)=.@((Ll),“, L) If 4 is a
s-equicontinuous subset of @B+(L,, L,), then A is an equicontinuous subset of

" B((Ly).,,» Ly). Thus the relative topologies of Ainduced by %} (L, L,)=%, ((Ly),,.»
L,) and B3 (Ly, L)=%B,((Ly),,, L) are identical (Proposmon 32.5, [10]).

A LCS L is called c- sequentlal if L, =L. Hence L=L, iff convex s-neigh-
borhoods of 0¢L are neighborhoods of 0¢L (Theorem 1, [9]) In this case, we
have L'=(L, ) =L".

Let L be a LCS, then barrels (or quasibarrels) of L_ are called c-sequential
barrels (or quasibarrels) of L. If c-sequential barrels (or quasxbarrels) of L are neigh-
borhoods of 0€L, then L is called c-sequentially barrelled (or quasibarrelled).
Hence L is c-sequentially barrelled (or quasibarrelled) iff L is c-sequential and barrel-
led (or quasibarrelled) in the sense of Definition 3.6.1 (or 3.6.2), [1].

Example 1. If L is a complete, metrizable LCS, then L is first countable and
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barrelled. Thus L=L, =L and L is c-sequentially barrelled (and quasibarrelled

since L is also quasxbarrelled) .

We now consider the external construction of L., and another characteriza-
tion of c-sequential LCS. .

If Lisa LCS and A is a s-equicontinuous subset of L™, then T,.: L-+[0, + )
defined by x—sup {lo(x)|: p€A4*} is a semi-norm. Let L, , be the projective
limit of {Lr,,): A" is a s-equicontinuous subset of L*}. Since the collection of all
these subsets A+ of L is closed under finite union and positive multiple, the collec- -
tion {°(4%): A* is a s-equicontinuous subset of L*} is a base of neighborhoods of
0cL, ., where °(A+) is the pre-polar of 4% in L. By Lemma 4 and Proposition
347,00, L,_=L,_.. .

An analogy of L . is the following: If Lisa LCSand L,  isthe projective
limit of {L(T g A is a s-equicontinuous subset of L'}, where Ty: L—+[0, + )
is the semi-norm defined by x—>sup {{p(x)|: @€A4’}, then the collection {°(4’):
A’ is a s-equicontinuous subset of L'} is a base of neighborhoods of 0¢L, . Since
¥° is a s-equicontinuous subset of L" and ¥V =°(V°) for any closed, convex "balanced

neighborhood ¥V of 0€L, we have LEL

Tes+

' Theorem 3. 4 LCS L is c-sequential iff L’=L* and L=L

Tes+

Proof. If L is c-sequential, then L=L, =L, , and L’=L*. Hence
Conversely, L’=L* implies L, =L, ,. Hence L=L,_ =

Test tc’+ cs4

_Lr r *

An mteresting question is to find (L,m)’. Since equicontinuity implies s-equi-
continuity, we have L’ g(L,m)’. However, L, . ng implies (L,m)’ cLt.
But the ““=""sign is generally not true, otherwise we will be led to the following para-

dox which can be considered as a consequence -of Theorem 3.

Corollary 4. A LCS L is c-sequential iff L=L, . Hence L, =L, ,
and L’ and L* have the same s-equicontinuous subest of for any LCS L.

Proof. If L is c-sequential, then L=L, . Conversely, L=L, implies

=(L,, ) =L* and L is c-sequential. Hence L, is the pro;ectlve limit of
{L(T ) “4’ is an equicontinuous subset of (L, ,) _L+——(L ..y} which is the
space L, (Proposition 3.4.7, [1).

At the end of this section, we consider another extension of LCS.

If Lis a LCS, and P, and n,, are the collections of all ess-bounded seminorms of

L and all convex, balanced bornivores of L, respectively, then the similar properties
as those between P, and #,, ., can be obtained for P, and 5. Hence 7., can be a base
of neighborhoods of 0€ L w.r.t. some locally convex topology of L which is denoted
by 7. Thus L, =Lp and (L) =L’

For any LCS L, the set-containments LEL, &L, are clear. Hence L,
is called the bornological extension of L, and has the same bounded subsets as 1.
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Definition 2. Let L;, L, be LCS over K and A€(Ly)* such that ¢(4) is
uniformly bounded (in L,) in @€ A for any bounded subset A of L,, then A is called
essentially uniformly bounded (abbrev. by ess-uniformly bounded) on L,..If
ASZ(L,, L), then ASHBYL,, L;). ForaLCS L, A*SL* is ess-uniformly bound-
ed iff sup {lo(x)|: xéB and ¢@€A4*}<+ < for any bounded subset B of L.

Hence equicontinuity of linear maps implies ess-uniform boundedness. If
ASZ(L,, Ly), then the characterizations of ess-uniform boundedness of 4 can be
obtained by replacing s-neighborhoods of 0€L, and 0¢€L, in those of s-equicon-
tinuity of A which are stated previously with bornivores of L, and L,.

Lemma 5. If L,, L, are LCS over K, then &*(Ly, Ly)=%((Ly),,, L,)=
=B((Ly).,, (L,).,). Hence A is an ess-uniformly bounded subset of B*(L,, L;) iff A
is an equicontinuous subset of ‘%((Ll)rb’ L,).

We can similarly define b-precompact subsets of a LCS L, i. e. precompact
subset of L, . Hence, for LCS L, and L, over K, we have %; (Ly, L,)=%,((L,),,, L),
where .@f{b(Ll, L,) is the projective limit of {.%(TA”)(LI,LZ): A is a precompact
subset of L, and p is a continuous semigroup on L,}.

Similarly, we can prove the following properties of ess-uniform boundedness of
linear maps.

(i) Let L be a LCS, then 4*CL* is ess-uniformly bounded on L iff 4*ZV°b
for some bornivore ¥ of L, where ¥ is the polar of ¥ in L®. Thus 4* is relatively
compact in L) =(L’ o(L* L)) and bounded in L,=(L’ B(L’, L)).

(i) Let L;, L, be LCS over Kand A& ¥ (L,, L,) be ess-uniformly bounded on
L,, then A is bounded in %;(Ly, L,)=%B4((Ly),,, L,) since L, and (L,),, have the
same bounded subsets. Also, the closure of A in ((Ly)™), is an ess—uniformly boun-
ded subset of #°(L;, L,). :

(iii) Let L,, L, be LCS over K, then ‘A is an ess-uniformly bounded subset of
B(Ly, Ly) iff A2="A(A))={oW)ELL: o€ A and Y€ A}} is ess-uniformly bounded
on L, where ‘¢ is called the ess-bounded transpose of ¢ on L?. Similarly, for any
collection w of bounded subsets of L,. A is bounded in %% (L,, L,) iff A2="A(4})
is bounded in (L,)?, for any equicontinuous subset A; of Lj.

(iv) If L,, L, are LCS over K and A is an ess-uniformly bounded subset of
B°(L,, L), then the relative topologies of A induced by #°(L,, L,) and &5 (Ly, Ly)
are identical.

A LCS Lis bornological if L=L_. Hence L=L, iff convex bornivores of L
containing 0€L are neighborhoods of O¢L. In this case, L’=L". In particular,

., 15 bornological.

A bornological barrel of a LCS L is a barrel of L, . L is called bornologically
barrelled if any bornological barrel of L is a neighborhood of 0¢L. Hence L is
bornologically barrelled iff L is bornological and barrelled.
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Example 2. If L is a complete, metrizable LCS, then L is barrelled and borno-
logical (Proposition 3.7.3, [1]). Hence L is bornologically barrelled.

At the end of this section, we will give another characterization of bornological
spaces, and the external construction of L, for a LCS L.

First, it is clear that L, is the projective limit of {L ,): A? is an ess-uniformly
bounded subset of L%}, where Tp: L—[0, + <o) is the semi-norm defined by x—
—sup {l¢(x)|: p€A’}, by Lemma 5 and Proposition 3.4.7, [1]. Let L, be the
Mackey extension of L which is the projective limit of {Ly ,: 4" is a (closed)
convex, balanced, compact subset of L.}, then a Hausdorff LCS L is bornological
iff L’=L" and L=L, (Proposition 3.7.3, [1]).

An analogy of L, is the following: If Lis a LCS and L, is the projective limit
of {L(TA,,): A% is a convex, balanced, compact subset of L}, then the collection

{N°(4): 47 is a convex, balanced, compact subset of L for i=I,2,...,n}
i=1

is a base of neighborhoods of 0€L_.. Since compact subsets of L, are compact in
L, we have L, GLg.

Theorem 4. A Hausdorff LCS L is bornological iff L=L,.

Proof. If L is bornological, then L'=L" and L=L, =Las. Conversely, since
(LsY =(L,)=L" by Lemma 1, where L,=(L, (L, L"), we have L'=L". Also,
L=L,2L, 2L implies L=L, . Hence L is bornological.

Corollary 5. For any Hausdorff LCS L, L, =L..

Proof. Since L, is bornological, we have (L,)»=L, . We can easily check
(LY=L’ and (L,),=L} since L and L, have the same bounded subsets. Hence
(L)o=Lgs.

For the next application of Theorem 4, we need a technical lemma.

Lemma 6. Let L be a linear space, M* be a linear subspace of L* and M} =
=(M*, o(M*, L)). If A* is bounded in M}, then A=°(A¥) is convex, balanced,
absorbing in L and P4(x)=T4(x) for any x€L, where p,(x) is the Minkowski
functional associated with A on L and T,,: L—[0,+<0) is the semi-norm defined
by x—sup {lp(x)|: p€4*}.

Corollary 6. Let L be a Hausdorff LCS and M* be a linear subspace of L®,

(i) If A" is a convex, balanced, compact subset of L}, then °(4°) is a bornivore
oj L. i

(ii) If AP (or A*) is a convex, balanced, relatively compact subset of L), (or M}),
then ©(AP) (or °(4*)) is a bornivore of L.

13
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Proof. (i) Since A4 is bounded in L}, A=°(4") is barrel of (L, a(L, LY),
and Tp(x)=p,(x) for x€L. T,, and so is p,, is a continuous seminorm on
L, =L,,. Hence p, is ess-bounded on L. Thus p3 ([0, 1)) is a bornivore of L, and
s0 is A.

(ii) The closure A% of A® in L? is convex, balanced, compact in L2. Thus °(4?)
is a bornivore of L, and so is °(4®). If A* is the closure of A*is M *, then A* is convex,
balanced, compact in M}, and so is in L?. The case of °(4*) is also proved.

Corollary 7. Let L be a Hausdorff LCS and M* be a linear subspace of L".

(i) If A® is a convex, balanced, compact subset of L;, then A® is boundedin Lj,.

(i) If A® (or A*) is a convex, balanced, relatively compact subset of L? (or M),
then A® (or A*) is bounded in L} (or My=(M*, B(M*, L))).

If Lisa LCS and Vén,, then WSV for some closed We¢n, may not be
true for the following reason: If this were true and L is quasibarrelled, then L, <
EL., =L implies L, =L, where L., is the quasibarrelled extension of L (Defini-
tion after Lemma 7). Thus bornological spaces and quasibarrelled spaces are identi-
cal. This is a contradiction. Similarly, it is not true that any V€, ., satisfies WSV
for some closed Weng, .

II1. Special subclasses of c-sequential locally convex spaces
and bornological spaces

In this section, we will consider some special subclasses of c-sequential LCS and
bornological spaces, which have the properties as nice as those of barrelled spaces
and quasibarrelled spaces. The generalizations of these classes will also be considered.

If LisalLCS and L,=(L,o(L,L*)), then the collection {°(4%): A* is a
finite subset of L+*} is a base of neighborhoods of 0¢L,, and (L,)'=L* by Lemma 1.
A barrel (or quasibarrel) of this L,, is called strictly sequential barrel (or quasibarrel),
abbrev. by strict s-barrel (or s-quasibarrel), of L. Since o(L, L'YSo(L,L*) on L,
and (L, ¢(L, L)) and L have the same closed, convex subsets and bounded subsets
(Proposition 3.4.3, 1] and Theorem 36.2, [10]), bounded subsets of (L, a(L, L*))
are bounded in L, and barrels (or quasibarrels) of L are strict s-barrels (or s-quasi-
barrels).

Lemma 7. Let L be a LCS.
(i) L and (L, o(L, L*)) have the same bounded subsets.
(1) L, and (L, o (L, L*)) have the same barrels and quasibarrels.
(iii) The same conclusions as (i) and (ii) can be obtained if L, _is replaced by L,
and (L,o(L, L%)) by (L, o(L, L%).
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Proof. All the results follow directly from (L, ),=(L, o(L, (L, )))=
(L,o(L,L*)) and (L,),=(L, a(L, L").

A Hausdorff LCS L is called strictly s-barrelled (or s-quasibarrelled) if strict
s-barrels (or s-quasibarrels) of L are s-neighborhoods of 0¢ L. In this case, barrels
(or quasibarrels) of L are s-neighborhoods of 0¢ L. Also, strictly s-barrelled spaces are
strictly s-quasibarrelled. We note that L is strictly s-barrelled (or s-quasibarrelled)
iff L, is barrelled (or quasibarrelled).

IfLisa LCS, then we let L;,_(or L., ) be the projective limit of {L(tu): Aisa
barrel (or quasibarrel) of L} which is called the barrelled (or quasibarrelled) exten-
sion of L since LEL,, (or LEL.) and L is barrelled (or quasibarrelled) iff
L=L, (or L=L;,). Also, a semi-norm p on L is called c-sequentially lower
semi-continuous if {x€L: p(x)=a} is closed in L, for any acR. The following
characterizations can be obtained.

Theorem 5. Let L be a LCS, then the following statements (i)~(iv) are equi-
valent (by applying Lemma 7 (i) and (ii)):
(i) L is strictly s-barrelled (or s-quasibarrelled);
(i1) bounded subsets of L} (or L}) are s-equicontinuous on L;

(i) (Lo =L, (or (L, )ee,=L._);

(iv) (ess-bounded) c- sequenually lower semi-continuous semi-norms on L are
s-continuous on L.

If L, is a LCS over K, then we have the following: , _

(v) L, is strictly s-barrelled (or s-quasibarrelled) iff for any ILCS L, over K,
bounded subsets of B} (Ly, Ly) (or B7 (L, Ly)) are s-equicontinuous on L, (by apply-

ing (ii) and Theorem 1).
For more refined characterization, we need the following lemma.

Lemma 8. Let Lbea LCS, §#ACSL and A°* (or A®) be the polar of A in
L* (or LY.

@) If M** is a linear space with (LY SM**S(L})* and (A°*)°* is the polar
of A°F in.M**, then °((A°*)°*)=A°*, where the pre-polar is taken in L*.

(i) If M** is a linear space with (LY SM** S(LJ)*, then the above identity
is also true.

(iii) If M** is a linear space with (LLY SM**S(LY)*, then °((A°°)*)=A",
where the pre-polar is taken in L".

Proof. For any x€L, the evaluation map %£: L*—~K defined by ¢ (x)
isin (L}) (and hence in (L;)'). Since (L}) SM**, A°* is closed, convex, balanced
in (L*, ¢(L*, M**)). The conclusion of (i) follows from Theorem 3.3.1, [1].

13*
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Proposition 1. A LCS L is strictly s-barrelled (or s-quasibarrelled) iff for
any linear space M** with (L}Y SM*S(L}) (or (LjYSM*S(L}F)), the
identity —(M™**, e*(M**, LY))=(M**, B(M**,L})) (or (M*™, e*(M**,L*))=
=(M**, B(M**, L}))) is true, where (M** e*(M**, L") ((M**, (M**, L}))
or (M**, B(M**, L}))) is the projective limit of {M& .y AY is a s-equicontinuous
(or bounded) subset of LY (L} or L)} and T4.: M**—~[0, + o) is the semi-norm
defined by yr—sup {[Y (9)|: peAd*}.

Proof. Since the indicated collections of subsets of L* are closed under finite
union and positive multiple, {(4+)°*: A* is a s-equicontinuous (or bounded) subset
of L* (L} or L;)} is a base of neighborhoods of 0€ M** w.r.t. e*(M*, L*)
(B(M™**, L}y or B(M**, L})), where (4*)°* is the polar of A% in M™*. The set-
containment e*(M**, LY)SH(M**, L}) (or e*(M**, LY)SH(M**, L})) on
on M** is clear. If L is strictly s-barrelled and 4+ is bounded in L}, then A% is
s-equicontinuous on L. Hence B(M™*, LT)Se*(M**, L*) on M™**. This proves
et (M**, L*)=f(M**, L}) on M**. Conversely, if 4 is bounded in L}, then (4*)°*
is a neighborhood of 06 M™** wur.t. B(M™*, L})=et(M**, L*), and (B+)°*S&
C(A1)°* for some s-equicontinuous B+ S LY, If V=°(B*) is the pre-polar of B+
in L, then V€nq ., and B¥*S(3(B*))°*=V°*. Hence AT S(4*)°*)S((B*)*) &
Co((V°+)y°*)=V°* by Lemma 8 (i), and A* is s-equicontinuous on L.

The generalizations of the above classes are now given.

Remarks. (i) For a LCS L, c-sequential barrels and strict s-barrels of L are
identical. Thus L is c-sequentially barrelled (or strictly s-barrelled) iff barrels of
(L, o(L, L*)) are neighborhoods (or s-neighborhoods) of 0€L — the usages are
intended to be consistent with the conventional definitions of various classes of barrel-
led spaces, e.g. L is barrelled (or quasibarrelled) iff barrels (or quasibarrels) of L are
neighborhoods of 0€L.

(11) Let L be a LCS and o be a collection of bounded subsets of L covering L.
L is called strictly s,,-barrelled if bounded subsets of L} are s-equicontinuous on L
w.r.t. the original topology of L. This class can be characterized by directly modifying
those of strictly s-barrelled spaces except that (iii) and (iv) are replaced by “L,_
is w-barrelled (Definition 2.2 (i), [6])” and “the semi-norm p satisfies sup {p(x):
x€A}< +e for A€w”, respectively. The classes in Theorem 5 are those w.r.t.
o={{x}: x€L} and w={4: A is a bounded subset of L}, respectively.

Example 3. (i) A complete, metrizable LCS L must be strictly s-barrelled
and s-quasibarrelled by Example 1.

@) If L and L,=(L,0(L, L)) have the same convergent sequences, then
(Ly).,=L, . If Lis also strictly s-barrelled (or s-quasibarrelled), then so is L.

(iii) If L is a c-sequential, Montel space (Definition 3.9.1, [1]), then L is strictly
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s-barrelled and s-quasibarrelled, and so is L,=(L, ¢(L, L") since L, L, have the
same convergent sequences (Corollary 3.9.2, [1]).

If LisaLCSand L,=(L,o(L,L%), then {(4%): A*SL’ is ﬁnlte} is a
base of neighborhoods of 0¢L, and (L,) =L’ Hence bounded subsets of
(L, 6(L, L)) are bounded in L, and barrels (or quasibarrels) of L are barrels (or
quasibarrels) of (L, a(L, L")).

A LCS L is said to satisfy the strict condition of ess-uniform boundedness if
barrels of (L, 6(L, L*)) are bornivores of L. Hence barrels of L are bornivorous in L.
The counterpart of this class of spaces is void since quasibarrels of (L, a(L, L")
are always bornivorous in L. Hence L satisfies the strict condition of ess-uniform
boundedness iff L, is barrelled. o .

Let Lbea LCS thena semi-norm p on L is called -bornologically lower semi-
continuous if {x€L: p(x)=a} is closed in L, for any a€R.

Theorem 6. (i) The characterizations of LCS satzsfymg the strict condition of
ess-uniform boundedness can be obtained from those of strictly s-barrelled spaces by
replacing s-equicontinuity with ess-uniform boundedness, c- sequentlally with bornologi-
cally, L* with L®, and L, with L,

(1) A LCS L, over K satzsﬁes the strict condition of ess-uniform boundedness iff
for any LCS L, over K, bounded subsets of %°(L,, L) are ess-uniformly bounded
on L.

Proposition 2. The characterization of a LCS L satisfying the strict condition
of ess-uniform boundedness can be obtained from Proposition 1 by replacing LY with
L, (M**, B(M**, L})) with (M*, B(M**, L)), and (M**,e*(M**, L*)) with
(M**, Q*(M**, L)) which is the projective limit of {M{f ,: A® is an ess-umformly
bounded subset of LP}. .

The similar remarks as Remark (i) can be made for this class of spaces.

Example 4. (i) A complete, metrizable LCS must satisfy the strict condition of
ess-uniform boundedness. _ '

(i) If L is a bornological, barrelled space, then L and L, =(L, ¢(L, L’)) have
the same bounded subsets and satisfy the strict condition of éss-uniform bounded-
ness. : o
We now consider other properties of the space in this section.

Corollary 8. Let L, L, be LCS over K.

(1) If L, is strictly s-barrelled, then all the s-equicontinuous subsets of B*(L,, L),
all bounded subsets of B (L,, Ly) and all bounded subsets of B (L,, L,) are identical.

(i) If L, satisfies the strict condition of ess-uniform boundedness, then the conclu-
sion in (1) is true if s-equicontinuity is replaced with ess-uniform boundedness, and all
B*(Ly, L,) with B°(L,, Ly).
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More stringent results are in the following.

Corollary 9. Let L be a LCS.

(i) Let L be strictly s-barrelled, then A* is a s-equicontinuous (or bounded)
subset of L+ (L} or L) iff A* is relatively compact in L} .

(i) Let L satisfy the strict condition of ess-uniform boundedness, then the conclu-
sions in (i) are true if s-equicontinuity is replaced with ess-uniform boundedness, all
At with A%, and all L+ with L.

Proof. (i) If A*SL* is s-equicontinuous on L, then A* is relatively compact
in L}. The converse is clear since relative compactness implies boundedness.

Corollary 10. If L is a strictly s-barrelled space (or LCS satisfying the strict
condition of ess-uniform boundedness), then L and (L, B(L, L})) (or (L, B(L, L2)))
have the same bounded subsets.

Proof. Bounded subsets of (L, B(L, L})) are bounded in (L, ¢(L, L*)), and
so are in L. If L is strictly s-barrelled, then bounded subsets of L are bounded in

(L, B(L, LY)).

In Lemma 7, we proved that L, (L, o(L, L*)) and (L, a(L, L%)) have the same
bounded subsets. A generalization is in the following.

Lemma9.IfLisa vLCS and M* is a linear space with L' SM* 1>, then L,
(L, o(L, M*)) and (L, B(L, M})) have the same bounded subsets, where Mj;=
=(M*, B(M*, L)).

We have the following permanence properties of the spaces constructed in this
section (cf. Theorem 3, [2] and Theorem 8, [5]).

" Theorem 7. Let {L,: y€T'} be anon-empty collection of LCS and L be a Haus-
dorff LCS over K such that ¢,: L,~L is a linear map for any y€r.

(1) If L, is strictly s-barrelled (or s-quasibarrelled) for any y€I', and L is the
inductive limit of {(L,), : y€T'}: induced by {g,: y€I'} (p. 157, [1]), then L is
strictly s-barrelled (or s-quasibarrelled).

(i) If L, satisfies the strict condition of ess-uniform boundedness for any yel
and L is the mductwe limit of {(L,).,: v€l }s then L satisfies the strict condition of
ess-uniform boundedness.

Proof. If L, is strictly s-barrelled for any y€I', then (p, (L,),,,~L is conti-
nuous, and s-continuous. Hence ¢,: (L), ((L,),ﬂ),ﬂ ., 1S continuous by.
Lemma 4. If V' is a strict s-barrel of L, then ¥ is a barrel of L _,and ¢;'(¥V) is a
barrel of (L,), which is a neighborhood of 0¢ (L,),,, for any yEI‘ Thus V isa



Banach—Steinhaus theorems of loca]ly convex spaces 429

neighborhood of 0¢L (p. 157, [1]), and a s-neighborhood of 0¢ L. Thus L is strictly
s-barrelled.

Corollary 11. Let L, be a LCS over K for any y€r.

(i) If L, is strictly s-barrelled (or s-quasibarrelled) for any y€I, then so is
Il (L)), , the locally convex, direct sum of {(L,), : y€I'}.
761- s cs

(i) If L, satisfies the. strict condition of ess-uniform boundedness for any y€T,
then so does [[ (L), .
- ¥€r

Corollary 12. Let L be a LCS and M be a linear subspace of L with the quotient
map w: L—L/M.
(i) If L is strictly s-barrelled (or s-quasibarrelled), then so is L, /M which is
the inductive limit of L, induced by =.
- (i) If L satisfies the strict condition of ess-uniform boundedness, then so does
L /M.

The following theorem is on the mapping properties (cf. Theorem 4, [2]).

Theorem 8. Let L,, L, be LCS over K and ¢€%B(L,, L,).

(i) If L, is strictly s-barrelled (or s-quasibarrelled) and ¢: (Ll) ~(Ly),,
almost open (Definition 3. 171 [11), then L, is strictly s-barrelled (or s-quas:bar—
relled).

(ii) If L, satisfies the strict condition of ess-uniform boundedness and ¢: (Ll),b
—(Ly)., is almost open, then L, satzsﬁes the strict condition of ess-uniform boundedness.

We now consider the p0551b111ty of constructing the permanence propertles of
strictly s,,-barrelled spaces.

Remarks. (iii) A LCS L is said to satisfy the strict condition of w-uniform
boundedness if bounded subsets of L?, are ess-uniformly bounded on L (w.r.t. the
original topology of L), where w is a collection of bounded subsets of L covering L
with L >L}. We can check that Theorem 8 and Corollary 11 have no analogies
for this class of spaces and strictly s, -barrelled spaces. )

(iv) Let L,, L, be LCS over K and ¢: L,~L, be a surjective, continuous,
linear map such that ¢: (Lo, ,~(Ly).,, is almost open. If o, is a collection of boun-
ded subsets of L, covering L,, then w,={p(4): A€w,} is a collection of bounded
subsets of L, covering L,. If L, is strictly s,,-barrelled (or satisfies the strict condition
of w,-uniform boundedness), then so is L, (or so does L,). _

" (v) Let L be a LCS, M be a linear subspace of L and o be a collection of boun-
ded subsets of L covering L. If L is w-barrelled (or w-countably barrelled — Defini-
tion 2.2 (ii), [6]), then L/M is w,-barrelled (or w,-countably barrelled) since = is an
open map, where ,={n(4): Acw}. .
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The following result is actually used in Remark (iv): Let L, L, be LCS over K,
; be a collection of bounded subsets of L, and ¢: L,—~L, be a s-continuous (or
ess-bounded), linear map. If {y,: y€I'} is a bounded subset of (L,); (or (L.)}, s
then {y,09: yer}="o({y,: y€I}) is a bounded subset of (LyJ (or (Ly)} )
where @w,={p(4): A€w,}.

1V. Banach—Steinhaus theorems based on s-equicontinuity
and ess-uniform boundedness

In this section, Banach—Steinhaus theorems of LCS which concern the conti-
nuity of the limiting function of a sequence of continuous, linear maps on a given
space will be considered. These theorems of barrelled spaces have been proved
(Proposition 3.6.5 with its corollary, [1], and Theorem 33.1 with its corollary, [10]).
These theorems of other classes of barrelled spaces, e.g. countably barrelled, boun-
dedly barrelled and convergently barrelled spaces, have also been obtained (Theorems
3 and 7, [5]; and Theorems 7 and 8 with Corollary 9, [2]). We first prove the filter and
sequence versions of Banach—Steinhaus theorems for continuous (s-continuous or
ess-bounded) linear maps and linear functionals on LCS. We then examplify how
these theorems can be applied to the classes of spaces constructed in III. Auxiliary
results will be led to Banach—Steinhaus theorems of generalizations of these classes
of spaces, and also of ¢-sequential LCS, bornological spaces and special subclass of
Montel spaces. ’

Theorem 9. Let L be a LCS.

() {o,: YET} is an equicontinuous (s-equicontinuous or ess-uniformly bounded)
subset of L’ (L™ or L") iff there is a continuous (s-continuous or ess-bounded) semz-
norm p on L with |¢,(x)|=p(x) for x€L and ye€T.

() If {¢,: n=1,2, ...} is an equicontinuous (s-equicontinuous or ess-uniformly
bounded) sequence in L' (L* or L) such that ".l.iinm Q. (X)=0@(x) exists for any
X€EL, then Qo€ L’ (po€L* or @o€L?) and {p,: n=1,2,...} converges to ¢, in
L, (Lf or L}).

fii1) If {p,: O<n<a} is an equicontinuous (s-equicontinuous or ess-uniformly
bounded) subset of L’ (L* or LP) such that lim 0 (X)=@o(x) exists for any x€L,

then @o€L’ (p,€L* or (poéL”) and {p,: 0<11<oz} converges to @, in L, (L} or
I%) as n—-0+.

Proof. The first case will be proved. The others can be derived from Lemmas 4
and 5.,
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(i) If {p,: y€I'}SL’ is equicontinuous on L, then {p,: y€I'}SV° for some’
open, convex, balanced neighborhood ¥V of 0¢L, where the polar is taken in L.
Let p(x) be the Minkowski functional associated with ¥ on L, then p is a continuous
semi-norm on L and ¥=p~*([0, 1)). The rest of the proof is similar to Theorem
7 (1), [2]. For the converse, there is a convex, balanced neighborhood ¥V of 0¢L with
p(x)=1 for x¢V. Hence {¢,: y€I'}SV° and {o,: y€I'} is equicontinuous on L.

(ii) The proof is similar to Theorem 7 (ii), [2] with application of (i).

(ii1) The proof is similar to Theorem 7 (iii), [2].

For an application of Theorem 9 (i), we need the following lemma.

Lemma 10. Let L be a LCS and M be a linear subspace of 'L with the relative
topology induced by L.

(i) If V is a convex balanced neighborhood of 06 M, then V=WNM for some
convex, balanced neighborhood W of 0¢L. '

(i) If p is a continuous semi-norm on M, then p=qly for some continuous semi-
norm q on L.

Proof. (i) Let W be the absolutely convex hull of UUV in L, where Uis a
convex, balanced neighborhood U of 0€L with UNMEV, then W is a convex,
balanced neighborhood of 06L and V=WNM by the similar proof as Lemma
2.12.1 (1), [1].

(ii)y V'=p~([0, 1)) is a convex, balanced neighborhood of OEM andV=WNM
for some convex, balanced neighborhood W of 0€L. The Minkowski functional
q(x) associated with W on L satisfies the required properties.

Corollary 13. Let L be a LCS and M be a linear subspace of L with ihe
relative topology induced by L. If {@,: y¢I'YEM’ is equicontinuous on M, then
there is an equicontinuous subset . {y,: yEI'} of L’ with |y=¢, for y€I.

Proof. There exist continuous.semi-norms p on M and g on L with |o,(x)|=
=p(x) for x€M and y€I, and gly=p. Hence thereis an ,€L* with ¥,|y=0,
and |lp,(x)|<q(x) for x¢L (Theorem 3.1.1, [1]). Hence tpyEL’ for any yerI, and
{,: yeI'} is equicontinuous on L.

We can generalize the results of Theorem 9 to linear maps.

Theorem 10. Let L, L, be LCS over K and L, be Hausdorff.

() If {@.: n=1,2, ...} is an equicontinuous (s-equicontinuous or ess-uniformly
bounded) sequence in B(Ly, Ly), (B*(Ly, Ly) or %Ly, Ly)) such that {o,:
n=1,2, ...} converges to ¢, pointwise on L,, then @, is in B(Ly, Ly) (B+(L,, Ly) or
ALy, Ly)) and {p,: n=1,2,...} converges to ¢, in #B,(L,, L,) (.%,t(Lll, L) or
B, Ly, L),
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(i) If {@,: O<n<a} is an equicontinuous (s-equicontinuous or ess-uniformly
bounded) subset of B(L,,L,) (BH(Ly, L) or B°(Ly, Ly)) such that {p,(x):
O<n<o} converges to @o(x) as 1—~0% for any x€L then ¢, is in B(L,, Ly)
(BH(Ly, Ly) or B°(L,, Ly)) and {@,: 0<n<a} converges to @, in B,(L,, L)
(-%Z(Llst) or ‘%ib(Ll:LZ)) as n--0%*.

(i) If & is an equicontinuous (s-equicontinuous or ess-uniformly bounded) filter
on B(Ly, Ly) (B+(Ly, Ly) or B°(L,, L)) such that & (x) converges to ¢,(x) for any
x€L,, then g is in B(L,, Ly) (B+(L,, Ly) or B°(L,, Ly)) and F converges to ¢, in
BLy, L) (BE(Ly, L) or B (Ly, L)

Proof. We only prove the first case.

() o€ L (L,, L,) by the similar proof as Lemma 3.6.1, [1]. If W is a closed,
A oo 1
convex, balanced neighborhood of 0€L,, then V=) ¢, 1[—Z-W) is a neighbor-
n=1

hood of 0€L,, and @, (V)SEW. Thus @, £B(L,, Ly) and {¢,: n=1,2, ...} con-
verges to ¢, in 8, (L,, L,) by the similar proof of Theorem 7 (ii), [2]).
- (1i) The proof follows the same pattern in the proof of Theorem 7 (iii), [2].
(iil) o€ Z(L,, L) is clear. If & is equicontinuous on L, and W is a closed,

1
convex, balanced neighborhood of 0¢L,, then V= ﬂ{go‘l(-:z— W): goeﬂ'} is a

neighborhood of 06L; and ¢o(V)SEW. Hence @,€#(L,, L,) and & converges
. 10 @y in B, (L, L), and so does in 8, (Ly, L,) (cf. Corollary 33.1, [10]).
The following remarks consider some generalizations of Theorems 9 and 10.

Remarks. (vi) Let L be a LCS and w be a collection of bounded subsets of L
covering L. If {¢,: n=1,2, ...} is a sequence in Theorem 9 (ii) which converges to
@, uniformly on any A€w, then @, isin L’ (L* or L*) and {¢,: n=1,2, ...} con-

verges to ¢, in L,, (L} or L?). Similar generalization of (iii) can be made.
' (vii) We can make the similar generalizations (as those in (vi)) for Theorem
10 (i), (ii) and (iii). :

We now prove Banach—Steinhaus theorems of spaces in III.

Theorem 11. Let L be a strictly s-barrelled space (or LCS satisfying the strict
condition of ess-uniform boundedness).

() If {o,: ¥€T} is a subset of L* (or L®) such that {¢,(x): y€I'} is bounded in
K for any x€L, then {¢,: y€I'} is a s-equicontinuous (or ess-uniformly bounded)
subset of L* (or L), and there is a s-continuous (or ess-bounded) semi-norm p on L
with |@,(x)|=p(x) for x€L and ycI.

(i) If {@n: n=1,2, ...} is asequence in L* (or L?) which converges to ¢, point-
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wise on L, then @, L (or @o€L%) and {¢,: n=1,2,...} is a s-equicontinuous (or
ess-uniformly bounded) sequence in Lt (or L) which converges to @, in L} (or L) L)
(iii) If {@,: O<n=<a} is a subset of L* (or L?) such that 11m go,,(x) q)o(x)

exists for any x€L, then @€ L* (or @,€L%) and {p,: O<n< oc} converges 10 9,
in L (or L) as n—~0%.

(1v) If & is a bounded filter on L} (or L%), i.e. & contains a bounded subset of
L7 (or L2), such that & (x) converges to @y(x) for any x€L, then @€ L* (or @o€L")
and &F is a s-equicontinuous (or ess-uniformly bounded) filter on L* (or L*) which con-
verges to @, in L} (or Lj).

) If & is afilter on L+ (or L) with a countable base {A; (or A%): n= _-1 2,. .}
such that F (x) converges to @(x) for any xCL, then @,cL* (or @,€£L% and F
converges 10 @, in L (or L}).

Proof. Since bounded subsets of L} (or L?) are s-equicontinuous (or ess-uni-
formly bounded) on L, (i) and (ii) follow from Theorem 9 (i) and (ii). The proofs of
(iii) and (v) are similar to Theorem. 7 (iii) and Corollary 9, [2].

Remark. (viii) All the statements of Theorem 11 with proper modifications
(e.g. the set {¢@,: yeI} in (i) should satisfy sup {|p,(x)|: x€4 and yeI'}<+<
for any A€w; and the convergence is uniform on A€w) are Banach—Steinhaus
theorems of strictly s, -barrelled spaces and LCS satisfying strict condition of w-
uniform boundedness, and in particular, are these theorems of strictly s-quasibarrelled
spaces when w={A4: 4 is bounded in L}.

Corollary 14. Let L be a c-sequential LCS (or bornological space) over K.

() If {o,: y€T'} is a s-equicontinuous (or ess-uniformly bounded) subset of L’
such that {p,(x): y€I'} is bounded in K for any x€L, then {p,: y€I'} is equicon-
tinuous on L and there is a continuous semi-norm p on L w:th lp, () =p(x) for any
. x€L and ve€r. :

(1) If {p,: n=1,2, ...} isas-equicontinuous (or ess-uniformly bounded) sequence
in L’ converging to @, pointwise on L, then @¢L’ and {p,: n=1,2, ...} is an equi-
continuous sequence in L’ converging to ¢, in L.

i) If {p,: O<n<ua} is a s-equicontinuous (or ess-uniformly bounded) subset
of L’ such that ”l.i.rt}l O (X)=0(x) exists for any x€L, then €L’ and {o,:
O<n<a} corverges to ¢y in L; as n—~0*. '

(iv) If & is a s-equicontinuous (or ess-uniformly bounded) filter on L’ such that
F (x) converges to @y(x) for any x€L, then ¢,€L’ and & is an equicontinuous filter
on L’ converging to ¢, in L.

Proof. These are clear since L=L, , L'=L*, L;=L] (or L=L,, L'=L’,
 L,=L}) and Lemma 4 (or 5). ‘
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Corollary 15. Let L be a c-sequential, Montel space and L, =(L, (L, L")).

(i) All the statements of Theorem 11 (or Corollary 14) are the sequence and filter
versions of Banach—Steinhaus theorems for s-continuous (or - continuous), linear
Sunctionals on L.

(it) All the statements of Theorem 11 with all the L* replaced by (L,)* are the
sequence and filter versions of Banach—Steinhaus theorems for s-continuous, linear
Junctionals on L,,.

Proof. These are clear since L and L,, are strictly s-barrelled by Example 3 (iii).
We now generalize the results from Theorem 11 to Corollary 14 to linear maps:

Theorem 12. Let L, be a strictly s-barrelled space (or LCS satisfying the strict
condition of ess-uniform boundedness) and L, be a Hausdorff LCS over K, then the
conclusions of the statements (i)~ (v) in Theorem 11 are true if the given assumptions
in the indicated statements can be modified verbatim and properly. For example, if
{o.: n=1,2, ...} is a sequence in B*+(Ly, Ly) (or B°(L,, L,)) converging 10 ¢, point-
wise on L, then @q is in B¥(Ly, Ly) (or B°(Ly, Ly), {@,: n=1,2, ...} is s-equiconti-
nwous (or ess-uniformly bounded) on L, and converges to ¢g in B (Ll Ly)(or
% ’b(Ll, L,)).

Proof. For (ii), we can prove that {¢,: n=1,2, ...} is bounded in #}(L,, L,)
(or #8(L,, Ly)), and hence s-equicontinuous (or ess-uniformly bounded) on L,
by Theorem 5 (v) (or 6 (v)). The conclusions thus follow from Theorem 10 (iii). The
proofs of (iii), (iv) ard (v) are clear.

The similar remark as Remark (viii) can be made for Theorem 12.

Corollary 16. Let L, be a c-sequential LCS (or bornological space) and L, be a
Hausdorff LCS over K, then the conclusions of the statements (ii)~(iv) in Corollary
14 are true if the given assumptions in the indicated statements can be modified ver-
batim and properly. For example, if {@,: n=1,2, ...} is a s-equicontinuous (or ess-
uniformly bounded) sequence in %B(L,, L;) converging to @, pointwise on Ly, then
Qo€ B(Ly, Ly), {p,: n=1,2,...} is equicontinuous on L, and converges to. ¢, in
B, (Ly, Ly). |

Proof. These are clear since L1=(L1)rc’, B(Ly, L))=RB+(L,, Ly), B,(L,, Ly)=
=B (L1, Ly) (or Ly=(Ly).,, B(Ly,L)=%"(L1, Ly), B,(Ly, L)=%; (L, Ly))
and Lemma 4 (or 6).

Corollary 17. Let L, be a c-sequential, Montel space and L, be a Hausdorff

LCS over K. Let (L)), =(L,, o(Ly, Ly)).

(i) All the statements of Theorem 12 (or Corollary 16) are the sequence and
filter versions of Banach—S'teinhaus thearems Sfor s-continuous (or continuous ), linear
maps from L, into L,.
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(ii) -All the statements of Theorem 12 with B+(L,, L,) replaced by B+((L,),,, Ls)
are the sequence and filter versions of Banach—Steinhaus theorems for s-continuous,
linear maps from (L,),, into L,.

This completes the main purpose of this paper mentioned in the beginning of
§ I and the auxiliary purpose, namely, the construction of Banach—Steinhaus theo-
rems for continuous, linear functionals and maps on c-sequential LCS, bornological
spaces, and c-sequential, Montel spaces.

The author is grateful to the referee for his valuable suggestions on the presen-
tation of this paper.
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Compact and Fredholm composite multiplication operators

R. K. SINGH and N. S. DHARMADHIKARI

1. Introduction. Let X be a nonempty set and ¥ (X) be a vector space of complex
valued functions on X under the pointwise operations of addition and scalar mul-
tiplication. Let 7 be a mapping of X into X such that foT is in ¥ (X) whenever f
is in ¥V (X). Define the composition transformation Cr on ¥V (X) as Cyf=foT for
every fin V(X). If V(X) has a Banach space structure and Cy is bounded, then C;

is called the composition operator on V' (X) induced by T. Let 6: X—C be a func- *

tion such that M,, defined as M, f=0-f for every f in V' (X) is a bounded linear
operator on ¥ (X). Then the product MyCy which becomes a bounded operator on
V(X) is called a composite multiplication operator.

The study of composite multiplication operators becomes significant and inter-

esting due to the fact that the class of composite multiplication operators includes - -

composition operators, multiplication operators, weighted composition operators.
LamBERT and QUINN [4] initiated the study of weighted composition process on
Li-space, having resemblence with composite multiplication operators. HADWIN,
NORDGREN, RaDjavi and ROSENTHAL [2] proved that there exists on operator be-
longing to the class of composite multiplication operators, which does not satisfy
Lomonosov’s hypothesis [5] pertaining to the wellknown invariant subspace problem
in operator theory.

In this paper the necessary and sufficient conditions for M,Cr€B(L?(1)) to
be a compact operator and a Fredholm operator are obtained in case V' (X) is an
Lzspace of a sigma-finite measure space.

By #(9), we mean the Banach algebra of all bounded operators on a Hilbert
space . If (X, &, A) is a measure space and T: X—X is a measurable transforma-
tion such that Cr€4%B(L%A)), then the measure AT, defined as AT YE)=
=A(T~YE)) for every E in &, is absolutely continuous with respect to the measure A
[7]. Let f; denote the Radon—Nikodym derivative of AT~ with respect to 4. If
Cr€B(L2(A)), then C3Cr=M fo [7]. The symbols Ker 4 and Ran A denote the

Received July 5, 1985 and in revised form September 26, 1986.
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kernel and the range of the operator A€ #($H) and ZJ denotes the closed subspace
of L2(/) consisting of all those functions which vanish outside X, d={xcX llH(x)| =6}
By Z,, we mean the set {x€X|6(x)=0} and Z, is the complement of Z,. In this
paper we consider (X, &, 1) to be a o-finite measure space.

2. Some basic results. In this section we present some essential results which
are often used in the presentation of this paper.

Theorem 2.1. Let Cr€%B(L*(A)). Then Cy has dense range if and only if
CTCT "'Mf oT*

Proof. Suppose that Cr has dense range. Then for every f in L2(2) we have
a sequence {f,} with f=lim Crf, and we get

CrCif = li'r'n CrCiCrfo = li'r'n CrM; 1= li'r'n Cr(fo- fo) =
= lim (/oo T)(f,0T) = lim Myo01Cr f, = MpporCr f.

Hence CrCr=M, .

Conversely, let C;Cf=M (ot Then since fpoT#0 [11], we can conclude
from Lemma 1.2 of [9] that M . is an injection. Hence C7 is an injection. So the
fact that {0}=Ker C}=(Ran Cr)* proves that C; has dense range. Hence the
proof is complete.

Theorem 2.2. Let MyCr€B(L*(1)). Then MyCr=0 if and only if 0 vanishes
on T~YE) almost everywhere whenever A(E)< oo,

Proof. In case 6 vanishes on T7YF) a.e. whenever A(E)< o, we get My=0.
Hence My,Cr=0. For the converse suppose MyC=0. Since X is o-finite measure

space, we can write X= J E;, where {E;} is the sequence of disjoint sets such that
i=1 '

A(E)<eo for each i, 1=i<e. Now MoCTXE,=0, ie. MeXT—!(E,)=0- Hence
=0 on T-Y(E) foreach i,1=i<oo

3. Compact composite multiplication operators. Let us recall that an operator
ACRB(H) is compact if {4f: f€H and [|f| <1} is a precompact subset of §. A
measure 4 is called atomic if every element E of & with A(E)0 contains an atom.
A subalgebra o7 of #(9) is transitive if & is weakly closed, contains the identity
operator and Lat &/={0, 9} where Lat & = g Lat 4.

Theorem 3.1. Suppose CpcB(L*(A)) has dense range. Then M,C 1€ B(L2(A))
is compact if and only if Z["fo°T is finite dimensional for every §=0.
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Proof. The operator MyC, is compact if and only if (M,Cy)(MCr)* is
compact. So by using the Theorem 2.1, the operator M;Cr becomes compact if and
only if MI,,W . is compact. Hence by the Lemma 1.1 of [10], M,Cy is compact if
and only if Z"’l Jo°T s finite dimensional for every 6=0.

Corollary 3.2. Let T: N~N be an injection. Then MyCrE€B(I*(N)) is
compact if and only if ZP" is finite dimensional for every §>0.
Proof. Since T is an injection, Cr has dense range [8] and f,oT=1. Hence

the proof is immediate.
The main theorem on compact composite multiplication operator on /2(N) is

given below.

Theorem 3.3. Let M,Cr€B(I3(N)). Then MyCy is compact if and only if
{0(m)}—+0 as n—co.

Proof. Suppose MOCT is compact. Let {¢™} be the sequence defined by
e™(m)=4,,, the Kronecker delta. Since e™ -0 weakly and (M,Cy)* is compact
we have

(M, Cr)*e®™| = 10(m)i [ CFe™] ~ 0.
Since [[CFe™| =]le”™™| =1, we get {#(m)}—~0 as n—co.

The converse is trivial.

Corollary 34. If «f is a transitive algebra of B(1?) containing MyCr such
that {§(m)}~0 as n—oo, then =R(?.

Proof. Since & is a transitive algebra of #(/?) and contains the compact oper-
ator MyCr, =%(?, [6].
Example 3.5. Let X=N and A be the counting measure. Define T: N—N as

T(n)={::’_ L 1 7=1 and define 6: N~C as 0(n)=1/n". Then MyCre ()

is compact by an application of the Theorem 3.3.

Theorem 3.6. Suppose (X,%,2) is a nonatomic measure space and
Cr€B(L2(A)) has dense range. Then . MoCr€B(L*(2)) is compact if and only if
0=0 on Z}oor.

Proof. Let M,C; be compact. Then in view of the Theorem 2.1

(MRCr)Cr(= M,,_,oT) is compact. Thus 6-f0cT=0 a.e. by a theorem of [10].
If 620 on Z, o1 then fooT=0 on Z, .7+ Hence fooT'=0 a.e. This is a contra-
diction to the fact that f,oT#0 a.e. for CTEQZ(LZ(A)) [11]. Hence 6=0 on Z; oT

Conversely, if 6=0 on Zfor, then |0]2f0T=0 a.e. Hence the operator

Mge; o 1(=(MoCr) (MyCr)*)

is compact. This proves that M,Cy is compact.

14
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Theorem 3.7. Let 06¢L>(2) be such that |0|=1 ae. and M,Cr€B(L2(%)),
Then MyCy is an injective compact operator only if X is an atomic measure space.

Proof. Since C7Cr=M,, [7], we get Ker MyCr=Ker (M,Cr)*(MyCr)=
=Ker M for Also the operator M,Cr is compact if and only if (MyC)*(MCp)
(=M, ) 1s compact. Since M,Cr is an injective compact operator, we get M s, to be
an mjectlve compact multiplication operator. Then by a result of [10], we conclude
that X is an atomic measure space.

Theorem 3.8. Let 0¢cL=(A) be such that |0|=1 a.e. and suppose
M,Cr€B(L*(2)). Then the following are equivalent:
(1) M,Cy is compact,
(i) Cy is compact,
(ili) Z{o is finite dimensional for every §=0.

Proof. Obvious.

4. Fredholm composite multiplication operator. Let € ($) be the ideal of compact
operators in #($) and = be the natural homomorphism from #(9) into ZB(H)/%(9)
~which is known as the Calkin algebra. Then an operator A€Z%($9) is said to be a

Fredholm operator if z(A4) is 1nvert1b1e in Z(9)/%(9H).

Atkinson Theorem. [1] If § is a Hilbert space, then TEQ«?(ﬁ) is a Fredholm
operator if and only if the range of T is closed, dim ker T is finite and dim ker T*
is finite.

Theorem 4.1. Let 0€L™(1) be bounded away from zero and C%., the adjoint
of Cr€B(L2(2)) be a composition operator. Then MyCr€B(L2(2)) is a Fredholm
operator if and only if Cy is a Fredholm operator .

Proof. Since Ker M,Cr=Ker C; and Ker (M,D;)*=Ker C*T‘, in the light
of Atkinson’s theorem it is enough to prove that MyC has closed range if and only
if C; has closed range. For this, suppose MyC has closed range. Let f€RanCy.
Then there exists a sequence {f,} in L?(A) such that Crf,—~f. Hence MyCr f,~M,f.
Since M,C has closed range, M,Cr f,—~M,Crg for some g in L2(1). Hence M, f=
=M,Crg. Since M, is invertible, f=Crg. This proves that C; has closed range.

The converse can be proved similarly.
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A note on local spectra and multicyclic hyponormal operators

PENG FAN

0. Introduction. For a compact subset E of the complex plane, R(E) denotes the
set of rational functions with poles off E. An operator A4 acting on a Hilbert space $
is said to be m-multicyclic if there are n vectors g, ..., £,€9, called generating
vectors, such that $=V {r(4)g;: r€R(¢(4)), 1=i=n}. The following theorem of
BERGER and SHAW [1] is very well known. '

Theorem A. Let ACB(D) be hyponormal, with n-multicyclic generating vec-

tors g, ..., 8, Then
tr[4%, 4] = (n/m)o(a(4)),

where [A*, A]=A*A— AA*, and w denotes the planar Lebesgue measure.
The purpose of this paper is to sharpen this theorem as follows:

Main Theorem. Let AC€RB(9)- be hyponormal, with n-multicyclic generating
vectors gy, ...,8n- Then

tr[4*, 4] = (1/m)[w(04(gD) + ... + 0 (0.4(gn)];
where o,(g), i=1,2,...,n, are local spectra of A.
This formulation is d.ue to the consideration of the operator A=T, BT,
defined on H2(ypw) ® H*(ypw) by multiplication by z and z/2 respectively, where

D is the unit disk. It is clear that A is a 2-multicyclic hyponormal operator, with
generating vectors g;,=1®0 and g,=0&41, and

tr[47, 4] = (1/m)[w(D)+(D)/4] = (1/m)[w(o4(2)+w(04(22)]-

This shows that our Main Theorem is sharper then Theorem A. As for the proof, it is
carried out by “localizing” that given in [1].

Remark. In [5], D. VoicuLescu has extended Theorem A to cover also oper-
ators whose self-commutators possess trace-class negative parts..Since these oper-

Received April 9, 1985.
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ators may not satisfy property (C) (defined below) even when they are cyclic (sample:
the backward shift), it seems to be difficult to sharpen this generalized version accord-
ing to our scheme.

Throughout this paper, all operators are bounded, acting on complex separable «
Hilbert space of infinite dimension.

1. Preliminaries. The following notions and lemmas come from Dunford and
Schwartz [2], p. 2171. :

Definition. Let A€ #(8K). For each x€& the symbol [x] will be used for the
closed linear manifold spanned by all vectors (AI—A)~x with 1€o(4); (o)
denotes the set of all x whose spectrum is contained in the set 6: 0,(x)Co.

Note here that if 4€#(R) is an n-multicyclic operator, with generating vectors

815 --+s 8n> then R [gI]V V[gn]

Lemma A. x€[x] and f(A)[x]c[x] for f¢ F(o(A)), where F (a(A)) denotes
the set of all complex functions which are single valued and analytic on an open set
containing o (4).

- Lemma B.’ If A has property (C) (i.e., M(a) is closed when o is closed), then-
for x€R we have o(A|)=0,4(x), the local spectrum of A at x.

The next theorem is due to StamprLI [4] for o(A4)=0c(A), the continuous spec-
trum of A4; RADIABALIPOUR [3] put the finishing touch by showing that it remains
valid for o(4)#oc(4).

Theorem B. If A is a hyponormal operator then A satisfies property (C).

Combining Lemma B and Theorem B, one sees immediately that if 4 is hypo-
normal then ¢(A4|))=0,(x). This observation makes possible the *“localization”
of the Subspace Dominance Lemma of BERGER and SHAW [1]. Indeed, due to the
observation, it makes sense to introduce the following notation for hyponormal ope-

rators:
[x; A, E]=V {(AI—A’)‘lxIM{E}, -

where A’=Al;,; and EDo,(x) (=0(4"). At the same time, it is crucial to notice
that [x]=[x; 4’, 6(4")]. (Proof: [x]D[x; 4’, 6(4")] is obvious since 4’ is an operator
from [x] to [x]. The reverse inclusion can be established by observing that x¢[x]
and (AI—A)"x=(A/—4")"x for all 1€¢(4).)

To end this section, we list lemmas from [1], which are needed in the proof of
the Main Theorem.

Structure Lemma. Let T and A be hyponormal operators on $ and R respecti-
vely, and let W: H—~K be airace class operator with dense range, such that WT = A W
Then tr[A*, A=t [T*, T1]. :
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Intertwining Lemma. Let (U, k,, x) be an analytic evaluation for T€ B(H)
and suppose that x is a 1-multicyclic vector for T. If uc$, let i(z)=(u,k,), for
z€U. Let A€B(RK) such that 6(AYCU and let yER. Deﬁne W. 9~ R Wu=
=ii(A)y. The WT=AW and W lies in trace class.

For convenience, we copy the definition of analytic evaluation: here from [1].

Let T€A(9). Suppose there is 2 map z—k,, from the open set U to $, which is

conjugate analytic as a map into § in the strong topology, and such that there is a

vector x€$ satisfying (r(T)x, k,)=r(z) for all rational functions with poles off

a(T ), and all z€ U. Then the triple (U, k,, x) will be called an analytic evaluation for
T, if T*k,=zk, for all z€U.

Second Computational Lemma. Let U,, ..., U, be open sets with disjoint
closures, each bounded by finitely many disjoint smooth Jordan curves. Let U= U U;

and $=R*(yy-w) (the closure of R(xy-) in L*(xy-w)). Then T, on $ satzsﬁes
tr [T*, T,]=n"'0(U).

2. Proof of the main theorem. To start with, it is necessary to “localize” the
Subspace Dominant Lemma in [1].

Lemma. Let AcB(9H) be an n-multicyclic hyponormal operator, with generating
vectors gy, ..., 8- Thus H=[gilV..VIg]=[81; A1, 0 (4)IV...VIgs; 4y, 6(4)),
where A,=Al[gd. Let E; be a compact set containing o 4(g;) ( =o(A,-)) Jfor
i=1,2,...,n, and let B=[g,: A;, E\IV...VIg,; 4., E,). Then B is.an invariant
subspace for A, Alg is hyponormal, o-(A,.llg‘;ApEi])CE,- for i=1,2,..,n Ay
is n-multicyclic with generating vectors g,, 8z, ..., &, and tr [A*, Aj=tr [(4]g)*, Alg).

Proof. Assume tr[(4|g)*, Alg]l<e<-. Let {a;};=, be a sequence of points in
E;—o4(g;) which land densely in each component of ¢,(g;)¢ which lies entirely
in E;. Let

Fim(2) = 17 (z—a,)~

Let 2;mll_rlm(‘Ai)[gn An Ei], 23l()_[gn Au Ei] and let i; = V %im Clearly

B,+120 8B, rank (B,,,.,—B,)=n and B,t9H strongly. The rest of the proof is
identical to that of Berger and Shaw’s and thus omitted.

Proof of the Main Theorem. Let U,, for i=1, ..., n, be open sets bounded
by a finite number of disjoint smooth Jordan curves such that ¢,(g)c U, and
o(U)—w(o(g)), i=1,..,n, are small. Let R be the subspace spanned by
[g1; 41> Ur)s .-y [84s 44, U] Let A"=A|g. A’ is hyponormal, o(4ly, 4.v5)C
cU; for i=1,..,n, and {g;} is a set of n-multicyclic vectors for 4’. Now let
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T= Zn,'eaT, acting on H= ‘EGBR’(XU,- o). It is enough to establish:
=1

i=sl
tr[d* Al s tr[4™*, A'] = te (T, T] = (/n)w(U)+... +0(U)].

The first and the third inequalities are due to the “local” subspace dominance
lemma and the Second Computational Lemma, respectively. The second inequality
can be claimed by producing an intertwining map between T and A’ satisfying the
conditions of the Structure Lemma. _

R*(xy; w) has reproducing kernel k, at each z€U,, for i=1,...,n. The
maps z—k, are strongly conjugate analytic, and the triples (U;, k,, 1), i=1, ..., n,
are analytic evaluations. Thus the map W;: R¥(xu-w)—[g:; 4, U] defined
by W.f=f(4})g, lies in trace class and W,T,=A;W, where A =Allig; a,u5 1
Define W: 3@ R*(xv; w)~K’ by W=Z'W,-. W lies in trace class and WT'=A"W.
Indeed,

WT(i®...0f) =W 1®...0T,f) = A /14D a1+ ... + 4, [ (4) 2.,
AW(fi®..aef) = A’[fl(Al)gl-'-:"_*'fn(Al,l)gn] = Aifx(Ai)gx'i‘ +Ar’l,fn(Ar’t)gr.'

The last equality holds because f;(4))g,€lg;; 4, U] for i=1, ... n. Cléarly the
rang= of W is dense in !’. The proof is complete.
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The asymptotic log likelihood function for a class
of stationary processes

SANDOR VERES '

The study of the weak consistency of maximum likelihood (ML) estimators for
stationary processes in the scalar case was initiated by WHITTLE [7). The strong con-
sistency of the ML estimates for parameters of ARMA processes has intensively
been dealt with by some authors. HANNAN [5] and DunNsmMuIR and HANNAN [2] have
given the strong laws of large numbers and the central limit theorem for ML esti-
mates of ARMA processes. RISSANEN and CAINES [6] constructed the likelihood func-
tion via the innovation process. They proved the uniform P a.s. convergence of the
log likelihood function over a compact set of parameters with fixed McMillan
degree or Kronecker indices. A similar problem has been investigated by ARATO [1]
in the continuous time case. These results show that one of the possible methods for
proving the strong consistency of ML estimators is to show the P a.s. uniform
convergence of the log likelihood function to the asymptotic one.

Our main aim in this paper is to extend the earlier results on the P a.s. uniform
convergence of the log likelihood function. In a natural parameter domain the cor-
responding set of spectral densities would contain a sequence of spectral densities of
stationary processes approaching to nonstationary processes, which is not allowed
here. However we have that (i) the convergence holds not only over a special compact
set of parameters, but on an arbitrary compact set of spectral densities, (ii) the con-
vergence is shown for a wider class of processes then the ARMA processes.

1. Introduction. We shall consider discrete time r-dimensional stationary proc-
esses having exponentially bounded covariances. For 0<K, 0<a<1, let S(K, o)
denote the set of spectral densities ®(w), w€[—n, n] such that the sequences of
covariance matrices

ki3

C = fdi(co)e"“dw, Ct = f(b(w)'le"“’dw, teZ

-7
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are uniformly bounded by the powers of «:

(1.1 IC] = Kol |CH| = Kl 1eZ

where ||v|2=vi+...+v2 is the norm of a vector v=(vy,...,v,)’ and [4|%=
= sup [ Au|? for a matrix A. The transpose of 4 will be denoted by A’. Let

flull =1

= U S, oa).
K>0,a<1

The log likelihood function is defined as usual. by

(12) L,(» @) = log det I, (@) + 5 yiTn(#) 13,
where
— o G
‘ rolea Gecn
C“-n+1 CO
is the Toeplitz matrix (see GRENANDER and SzEGG [3]) composed from the autocova-

riance matrix sequence C,, ?€Z. In the following —2- denotes convergence in

probability. Convergence with probability 1 will be written as P a.s.
2. Convergence of the log likelihood function. Introduce on & the metric ¢

0(®, P)=esssup sup [P, (0)-¥;(w) @, ¥Pe.

w€[—-n,n]1sj,ksSr

Theorem 1. Let SES(K, «) be compact. If y,, t€Z is a Gaussian stationary
process with spectral denszty D, S then with probability 1

@ L,,(y,,,di)—»% j [log det &{w)+ tr &~() &y(w)] deo

as n-—oo, umformly for &cS.
Proof. The proofi is based on some lemmas and propertles of Toeplitz matrices.

Lemma 1. With the above notations
ed  Ligaer,@ - [ tog det (w)do
. —log . e og w)dw

as n—oo uniformly for <15€S.

Proof. This statement is an extension of Szegd’s classical theorem and we refer
to GvYIRES [4] for its proof.
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Lemma 2. For each $€S holds the convergence.

I OS T
(23) G el LR OLACL

where &, is the spectral density of y;, t€Z.

Proof. The proof of this lemma is a straightforward modification for the vec-
torial case of a result of GRENANDER and SzeG6 [3] in Section 11.5.

It will be proved by Lemmas 3.1-—3.5 that y, converges P a.s. uniformly to some
function, then by Lemma 2 the limit function is the right hand side of (2.3) P a.s.

The proof of Theorem 1 will be based on an approximation of the matrix I',
with another matrix L, defined in the following way. Let U, be an orthogonal matrix
of order nr composed from the r-order matrices

(U = n~V2e2 ] . pov=12,..,r,
where I, is the r-order identity matrix. We define @, by
: S |V| ivx |
P,(ix)= > s C,e", x€[-n,mn), p=12,...
4 . .
Let D, be an nr-order matrix with the r-order matrices [D,),,=®,(2niv/n) in
the diagonal and O everywhere else, i.e. [D,],,=0, if p=v.
Now we define L, by L,=UfD,U, and C, is given by C,=(1—|v|/p)C, if
jv|<p and C,=0 if |v|=p. :

Lemma 3.1. Let p be in the above definition of L, p=p(n)=[n'***], where
1/A<g<1/2 is a once for all fixed, but arbitrary number. Then for all natural numbers k

%y;(l“n"—L:)y,, -0

as n—0 uniforrhly over' S P a.s.
Proof. For the proof we shall consider the matrices X, defined by
[Kn]uv = Qv—'u for V, L= la 2: cees By

and the convergence. of the sequences

(24 %y,’.(Lﬁ—-KJ‘) Vn
and :
2.5) | L KE- Ty,

will be examined.
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First we show the convergence of (2.4). Using the notations
W, = Li 4+ LK, + ...+ KF?

and
M = sup esssup [P (x)]
DES X€[—m, 7]
we have
2.6) ol = -t

because of the inequalities
|Ll = sup ll<15 (i0)] = esssup o) = M

x€[-mn x€(—n, 7]
and- »
1K= sup [&,(ix)] = esssup|P(x)].
x€[—n,n} x€[—m, 7]
Introduce the notation z,=W, yn; then the expression in (2.4) takes the form
(27) ) _%y:l(Ln—Kn)Zn'

Since the process {y,, n€Z} is stationary and ergodic so is the scalar process
{lty.l2: n€Z}. This implies that the averages

n (P DelP 4+ D) = 27 g2

converge P a.s., and therefore the sequence {n=1|y,l?: n€N} is bounded P a.s. by
a number K(w), which depends on the elementary event . This implies that the
sequence n~Yz,[|?,, n€N is bounded P as., indeed

n7z,|® = n W) < k- M¥ M g2 = k- M*R{w).

The r-order matrix block of L, at place (v, u) can easily be computed as

m= —oo,

1z o
Lidw =7 2 e"I] &, Qmijjm)e L, = 3 Coptmn-

Now we deduce the following sequence of inequalities

1
(2.8) l;y;(Ln—Kn)Zn -
1., p ’
= —n‘(ylgp—-lzn—p+1+y2_C_'p-12n-p+2+"'+ypgp—lzn)+
1 ’ ’ 1 ’
+7(ylgp—2zn—p+2+"'+yp—lgp-22n)+"'+;ylgozn+

l ’ ’ ’
+';'(yn—p+lgl-pzp+yn—p+2g1—pzp—l+ +J’ngn—pz1)‘*j
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Lo, ¢ L,
+Tl'(yn-p+2g2—pzp—1+"'+yrllg2—pzl)+“' +';l"}’ngozl =

‘ = n Gl Il zn- paal + 172l hzn-paall oo+ 1yl 122D +
+07Cp -l (Il | Zapael 4o+ 1yp-sl 2D+ + 072 Coll Il 2all +
+n MG Un-peal 2]+ 1vn-paall 1 zpoal + oo pall | 20] +
+1HCo | (I¥n-pal 1Zp-al + - A [l [ 22D+ . 27 HCol pal [ 2] =

= (P PIC,p—al P72yl 072 (| 20— paP+ o H a2+
+(@Im P Comal P72 Y p-al (|20 sl + o+ 20 DV2
-+ (/W Col 2| yol n T2 2, +
(P Coo ) 2 (| Yo paalP 4+ 13l 2] +
@R Coll a2y T 21 =

= (@I (Z ICH K@ Ko@)+

HEn( 3 CD K@ K@)

P as., where the notation K,(w)=k- M*~' was used. The last inequality follows
from the simple relations :
P (| zgopuil+ 2D = Ko@), i=12,..,p

and _
R ([ Ya-psil®+ o+ 2nl?) = K@), i=1,2,....p.

But Zc’o IC,ll<< and therefore both summands in (2.8) converge to 0 as

V= ~=co

n— o= P a.s. which implies that the expression in (2.7) converges to 0 P a.s. which was

to be proved.
For proving (2.5) the following lemma can be applied, which glves an approx1-

mation of the powers of Toeplitz matrices.
Lemma 3.2. For each k=1
(2.9) [Kf—T%| ~0 as n—eco.
Proof. Define the norm |-| for m-order symmetric matrices I’ by‘ ITj2=

1 .
=— > I} ;. Using the inequality |I'|=|I| it follows that
ni

\K,—L|* = 2n~1 Z(vzlpz)(n ICP+2n71 Z(n -NIGP =

v=p

=2.p-? 2v2||C,|l2+2n—1(n—P) Sic

v=p
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In the last sum

S| <~ and 3 [C,|? = 0(@?).
v=1

. v=p . \
Thus 7 S
|Kn-rn|2 = 0(n‘2'_1)+0(a[”'/’“])’ . )

from which we can conclude that
IKn_rn| = o(n—ll2)°

Denote the cigenvalues of the matrix ¥,=n"1(X, F) by AP, ..., X", Then

(2.10) w2 .= — 2 (A2 = —[IVﬂz

nr i=1

and by the preceding inequality

(2.11) Vol = o(m—32). -
By (2.10) and (2.11)

212) - 17l = o(n™).
 Since |KJ=M and |[J=M
nHKi—Ii] = n~ K, =L, - k- M*=* = [V k- M*-L.
Finally it follows from (2.11) and (2.12) that
In=2(Ki =T = o(n™?)
and therefore Lemma 3.2 can be concluded. Applying (2.9) we have
@13) IR (KE- Tyl = IpalPo(n™) = n-1]y,Po(2).

But n71)y.l<K(w) P as., and by the inequality (2.13) it yields
Vo erk_ i
’;y::(Kn _Fn)yn -0,

as n—o P a.s., and this was to be proved. :
This means that both expressions in (2.4) and (2.5) tend to 0 as n~< P a.s. and
this completes the proof of Lemma 3.
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For later proofs we introduce the term
N N S .
Cn,j) = - Z 2’“1”/”¢1,(,,)(27tl.v/n), n=12,.. j=0,=+1,..,

which plays an important role in the theory of Toeplitz matrices and the following two
statements are valid.

Lemma 3.3. Using the previous notation for p(n) there is an Ly=>0 such that

1C(n, DIl = Lo(2p (W)~
holds.

‘Lemma 3.4. There are numbers A and B, which do not depend on n or j silch that

, ICGH)-C, Pl =A4-p(n)~*+B-jn?
holds, where .

Cl) = o= [ P e ™do, j=0,£1,22, ...

The proofs of Lemma 3.3 and Lemma 3.4 can easily be given using the defini-
tions of C(n,j) and C(j). '

Lemma 3.5. The sequence
"—l ’Lk n=12
.Yn nl)m y Ly e

converges as n— oo uniformly over S P a.s..

Proof. Taking into consideration the previous definitions

nn n
(2.14) Lyitty =L 3 3 orwion-vuny; 0t mivjn) y, =
n n mi=1v=1 1
1 n,n 1 n—1 f , .
= '; . C(n’ l m)ym - Z Z yvC(n, ])yv+j9
L, I=1 n Jj=—n+1 v=a

where the notations a=max (1, —j+1) and f=min (n—j, n) were used.
Using the stationary and ergodic property of {y,: n€ Z} and Lemma 7 for
fixed j, with the notation y;=tr I';C(j) :

S
215) o S AC D vy~ EGICDI) =y

holds uniformly over S P as..
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To prove this convergence we show that taking in (2.14) C(j) in place of C(n, j)
we have uniformly the same limit P a.s.. This comes from

@ | F ety B ZACU =
=1 2 SlICE)-COll =

1A
=|v—

T

L2 S IICe D=0l +

2 ZICE DIICOD I =

:I'—

= 2' p(n, j)n? leyvllz+ Z 2Lo(2p(n))" - "'—- Z’lly I* =

I1=—j(n)

= (2j(n)+1)p(n, j)-

P as. for all elementary events, where the notation p(n, j)=Ap(n)~1+Bjn~! was
used. Now we choose j(n) so that j(n)/p(n)—~0 as n—. Let e.g. j(n)=[n*"%2].
The on the right hand side of (2.16) both expressions tend to 0. Indeed, the conver-
gence of the first term is obvious, and the convergence of the second easily follows
from '

p(r)s—1a M 0, as 5 oo,

Now choose an arbitrary fixed j,>1 and take the limit of the first 2j,+1 terms
in '
n—1
2.

@.17) | < K CWYyr =

= 2' Zyvc(l)yv+l+ng% Z yvC(l)yv+l

1==J, R v=a L]

The second term can be majorized with the aid of (1.3)

(2.18) > = ZyvC(l)ym

nzll[>j,  v=a

Then it follows by (2.15), (2.17) and (2.18) that

= 2Wado(1 —a) " K(w).

Jo
2 1—=V(j,) = lim, EE 2 ZYvC(l).VvH zj 7+V (jo)

I=—j, n-co N i=—pt1lv=a
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uniformly over S P a.s. forall j,>1, where the notatlon V{jo)= 2V{,a’°(l —a) K (w)
was used. This implies by (2.16) that

l
lim y,,L’,jy = lim — 2 Zyvc(l)yv+l 2 Vi

n—oo e N |="p+lv=a l=—co

uniformly over SP a.s., which completes the proof of the lemma.

' 1 "
Lemma 3. — y.I';'y, converges uniformly over S P a.s. as n- oo,
n

Proof. By Lemma 3.1 n~'y,I'*y, has the same limit as n~1y, L}y, unifofﬁﬂy
over S P as.. Therefore

2.19) — paly=el )y,

converges uniformly P a.s. as n— o, too. Here I, denotes the unit matrix of order
nr. We shall choose ¢>0 so that

(2.20) l—cl@l <1 n=1, 2, ...

be valid with a fixed 0<y<1 over S. The existence of such ¢=0 will be assured by

O<m€m ess sup lldi(x)|[<m?x ess sup [@(x)]. Indeed,

x€[—m,n] x€[-=m,m
N, —cl,] = max \u'(I,—cl)ul =
et — - 1 4 - ’ —_— _— c
=max {1—c min o' T, ¢ max u'T,u 1} = 25(P)
and therefore it is enough to choose c¢=c, so that

o gesmax O] -1<1

be valid.
It follows that there is a fixed y<1 such that

1£a—co- Ta(@)] = 23(P) < x

-uniformly over S for all n=1,2, ....
Now we can apply a natural expansion of I';!:

I""—l = co(l,,-l—.(f,,—cor,,)-l—(f,,,—_COI‘")2+_._).
Thus we get the series

Y : 1 ’ - 21 ’
(221) n .ann ]yn =6 Z .Yn(ln—corn)kyn'
k=0 1

15
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Using Lemmas 3—6 we conclude that the terms in the series (2.21) converge uni-
formly P a.s., an can be evaluated by

9

(222) e Y = — 3 Ikt = K@)t

v=1

By the previous convergence results we may use the notation
(2.23) r(k) = Sim %y,’,(l,,—col",,)"y,, P as. k=1,2,....

Then by (2.21), (2.22) and (2.23) for all fixed k€N

ko I
n

" k=0 n-co

ko

= > r(k)+K(@)yre(l—p

k=0
holds uniformly over S P a.s.. This implies
(2249 fim — Y r @)y = 2 r(6)
Lo k=0

where the convergence is uniform over S P a.s., completing the proof of Lemma 3
and thus the proof of Theorem 1 too.

3. Strong consistency. As a consequence of Theorem 1 the following con-
sistency theorem can be concluded for processes with exponentially stable covar-
iances.

Theorem 2. Let SCS(K,«) be a compact set of spectral densities and let
Vi, tEZL be a Gaussian stationary process with spectral density ®,€S. Then for the
estimates &, obtained by minimizing L,(y,, ®) over S

(3.1) @~ @,

P a.s. as n—o<o, where the convergence is considered in metric ¢ of the uniform con-
vergence on S.

Proof. The proof follows by a standard argumentation from Theorem 1 and
the following lemma.

" Lemma 4. L(®, ) is continuous with ® as a variable on S and attains its
minimum value over S only at &= @,.

Proof. For all x€[—m, n] the matrices @(x) and @4(x) are positive definite.
Therefore the matrix ¢~'®,(x) must have positive eigenvalues 4,(x), A,(x), ...
vy Ap(x), although &~1dy(x) is not necessarily symmetric.
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By the inequality logA=i-—1, i1=>0 we have

(.2) g log 2,(x)— 2 () +r =0

and thus _
logdet @71 P, (x)—tr [@-1Py(x)]+r =0

that can be written in the form
r+log det o(x) —(log det ®(x)+tr [P~ ®,(x)]) = 0.
Taking the integral of both sides over [—x, z] we have
L(Dy, By) = L(P, y)

and equality‘is here only if equality holds in (3.2) for all x¢[—mn, =], which implies
MAx)=4(x)=...=4(x)=1, x€[~—n,n] and this is equivalent to @ (X)=P,(X),
xe[—m, m).

Remark. Assume that the topological space @ is a parametrization for statio-
nary processes with exponentially bounded covariances, i.e. there is an injective
continuous map t: & ~S(K, o) such that the process with parameter @€ O has
spectral density t(@). Let ©°S O be a compact subset of parameters. If the observed
process y,, t€Z has parameter @€ O° then by Theorem 2 the estimates computed
by minimizing L,(y,, 7(®P)) over O©° are strongly consistent.
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One-dimensional perturbations of singular unitary operators

N. G. MAKAROV

Introduction and results. Let T denote the unit circlé and m be the normalized
Lebesgue measure on T. Recall that a closed subset e of T is said to be a Carleson
set if

[log [dist (¢, &)] dm ({) > — e

These sets arise as sets of nonuniqueness for functions analytic in the unit disc and
smooth up to the boundary, see [1]. Also we introduce the class (C,) consisting of all
countable unions of Carleson sets.

This class plays a crucial role in the description of point spectrum of almost uni-
tary operators acting on a separable Hilbert space. It was proved in [3) that il U is a
unitary and K is a trace class operators, then

o,(U+ K)NTE(C,).

In the opposite direction, given e€(C,), there is a one-dimensional perturbation of
the shift operator f(z)~-zf(z) on L?=L2(m) with point spectrum equal to e.

It is not immediatly clear from the proof whether the appearing of an uncoun-
table point spectrum relies on the absolutely continuous properties of the unitary
operator. The question seems also natural from the viewpoint of spectral analysis
of general noncontractive operators (cf. [4]), and it was stated in [2] p. 120 as a reseach
problem. In the present paper we give an answer to this question.

A unitary operator is said to be singular if its spectral measure is singular with
respect to the Lebesgue measure.

Theorem 1. Let e€(C,). There exist a singular unitary operator U and an
operator K of rank one such that ecae,(U+K) and, moreover, each point { in e is
an eigenvalue of U+K having infinite multiplicity (i.e. for any positive integer n,

ker (U+K—{I)"+! = ker (U+ K—{I)").

Received April 24, 1985 and in revised form May 21, 1986.
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As an application, we consider a question concerning inner functions. By z
we denote the identity mapping of the unit disc and by H? the standard Hardy space.
Let ¢, and ¢, be two nonequal inner functions. On which subsets e of T can such
functions “coincide” in the sense that (z—{) (¢, —¢,)¢H® for all {ce? As it
follows from Theorem 2 in [3), e has to be of class (C,). On the other hand, e is at
most countable if, for instance, ¢,=1. One possible way to see this is as follows.

Assume, for simplicity, that ¢(0)=0, ¢=¢,. Let P denote the orthogonal
projection in H? onto H2©@H?. The point (€T is an eigenvalue of the unitary
operator

[ Pzf+{f, Zp)1

acting on H?Q¢H? if and only if (z—{)~'(¢—1)€ H2 Hence, the set of all such
points is at most countable.
By similar reasoning, we shall obtain from Theorem 1 the following result.

Theorem 2. Let e€(C,). There exist two nonequal inner functions ¢, and @,
such that for any {€e and any integer n, the function (z—{)7"(¢,—¢@,) belongs to H2.

At the same time, the author does not dispose of any explicit construction of
such functions. ’

The proof of both theorems appeals to some properties of almost unitary ope-
rators, and thus this work could be considered as an illustration to the theory pre-
sented in [4].

Proof of Theorem 1. Fix e€(C,). There exists a bounded analytic function h,
h(0)=—1, satisfying (z—{)~"h€ H? for all integer n and (€e. In case e is a
Carleson set, for h, one can take an infinitely smooth up to the boundary analytic
function which vanishes on e together with all its derivatives. For an arbitrary e€(C,),
one can consider an appropriate product of smooth functions, see [3] for a detailed
proof.

Let w=h+h and the operator Ly be defined on L? by the equality

Lof = zf+{f, D)w.
If {€e and nEN, then wg,=(z—{)""wecL? and

o = (e D ) = (o nza

{0, n=1
We n-1> n=2

Therefore,

Lo—E{Dwen =

and { is an eigenvalueé of infinite multiplicity. Remark that the operator L, is invertible,
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since otherwise the origin would be an eigenvalue of L, and hence (w,1)=—1;
on the other hand, by construction, (w, 1>_—2

Let E=span {ker (L,—{I)": {€e, ncN)}. Itis a hyperinvariant subspace of L.
Consider - the imbedding j: E—~L? and define the operator L on E by L=j*L,].
Obviously, L is invertible and any (€e is its eigenvalue of infinite multiplicity.
Also consider the one-dimensional operator K=(.,a)b with

¥z L*1g
T A VT
(Note that j*z#0 because {w;,,Z)=—1 for {€e and so Z is not orthogonal to
E) Let U=L—K. We shall prove that U is a unitary operator and that it is singular.
_If f€E, then '

Uf = L(f—{f, @)a)+(f, a)|L*'a| ' L*a.
Observe that the terms on the right are orthogonal. Hence
1UF 2 = ILU—{f, ey @)*+KKf, a)? =
= |f={f, al*+ (S, D> = | fI*

Since U is a Fredholm operator of index zero, it is unitary.
. To prove the singularity of U, it suffices to verify that for all fand g in E,

M (U= f—(U—-rnD)7f,g) -0 as r~1 forae €T,

cf. Proposition 6.7 and Remark 6.10in [4]. Let A¢o(L)UT and R, denote (L—AI)~%
Direct calculation gives (R;b,a)#1 and

(U—=A1)"1 = Ry+{-, Ra)(1—(R;b, a)) *R;b.

Consequentiy, (1) follows from the corresponding fact concerning L. But the latter
is obvious since linear combinations of root vectors of L are dense in E and for
feker (L—LI)°, (R,f,g) is a polynomial in (A—{)™.

Proof of Theorem 2. By Theorem 1, given e€(C,) there exists ‘an operatbr L,
one-dimensional perturbation of a singular unitary operator, such that any point
in e is its eigenvalue of infinite multiplicity. Without loss of generality, we can
assume that L is completely nonunitary, i.e. it has no reducing subspaces on which it
is unitary. (Otherwise, L is the direct sum of a unitary and a completely nonunitary -
operators, and we can take the latter instead of L. Obviously, all the required proper-
ties would persist.) Such an operator admits a representation

L=T+QAQ*
where T is a completely nonunitary partial isometry with two-dimensional defect
subspaces D=im (/-T*T) and D,=im (I-TT*), Q: C*~»D and Q. C*-D,
are some unitary operators and A is a (2 X2)-matrix, cf. [4] §3.

’
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Let @ denote the characteristic function of T. Sincé T is a finite-dimensional
perturbation of a singular unitary operator, @ is an inner function, see [4] §§ 5 and 6.
Since T'is partially isometric, ©(0)=0. Weshallreplace T by its functional model [5].
Thus we shall assume that T acts on Kg=H?(C*)© OH?*(C? by the formula Tf=
=Pzf where P is the orthogonal projection in H2(C?) onto Kg. In this model repre-
sentation, L is given by

() Lf = zf—(@—A)x,, x;={(zO*f, 1)€C=

Lemma. Let the operator L be defined on Ko by (2). If (€T, n€N and
ker (L—L{I)Y*=ker (L—{I)""Y, then ,

3) . (z—{)~"det (O —A)EH™.

Proof. If f#0 is in ker (L—{[I), then (z—{)f=(0@—A4)x, for some xl.;éO
in C2% Hence, (z—{)~Y(O@—A)x; =fc H3(C?). If fcker (L—{I)*\ker (L—{I), then,
for some x,, x,€C?,

z=0f—(O0—-A)x, = (L-IDf=(z-)"H(O-A)x, x #0,
(@ -D(z-072x,+(z -7 x,]€ HA(CY).

and

Proceeding by induction, we obtain
| O@—-Dz-D7"x+...+(z=)7'x,J€HX(C), x #0.
Let ¥V be an analytic matrix-function such that V(0 —A)=[det (@ —A4)]I. Then
(z=0)"det (O —A)[x+... +(z—0)""x,]€ HE(C?).

Because of x;#0, we have (3).

Now we are able to complete the proof of Theorem 2. Let §; denote det (@ — A4).
By the established lemma, the function (z—{)~"J, belongs to H? for any {€¢,and
neN. Fix a positive number C greater than sup |d,]. Then h,=8,4+C is an outer
function. Let 6 denote the inner function det @ and h the function det (I—A*@)+C5.
We have h,=6h. Consider the inner-outer factorization h=~hh, of the function h.
Since |hy|=|hol, we can assume that h,=h,. Hence 6h;'=h,h{* and

6—h; = hhi1(5,—-0y).

Therefore, (z—{)~"(6—h;) isin HEfor all {€e and n€N. It remains to observe that
dh;. Indeed, if it were not so then the last equality would imply that &,=const
(#0) and (z—{)"26,¢ H? for any (€T. The assertion now follows with ¢,=4 and
02=h;.

Acknowledgement. The author expresses his gratitude to the referee for many
useful remarks. A ‘ '
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Addendum to <The lattice variety DoD”

DAVID KELLY and GEORGE GRATZER

In our paper, this Journal, vol. 51 (1987), pp. 73—280, the Corollary to Theo-
rem 4 in Section 3 (referred to in the Introduction) was inadvertently left out.

Corollary. Let P be a set of odd pr'ime numbers. Let My denote the set of all
modular lattices not containing any finite projective geometry over GF(p) as a sub-
lattice where pcP. Then M, is a lattice variety closed under gluing. There are con-
tinuumly many distinct varieties of the form Mp. Thus, there are continuumly many
lattice varieties V such that VoD is a variety.

Proof. R. Freese (see reference [1] in our paper) proved that, in the class of
modaular lattices, any finite projective geometry over GF(p) is projective. It follows
immediately, that Mj is a variety, and M, obviously determines P.

M; is closed under gluing. Indeed, if L is formed by gluing 4¢M, and B¢M, °
over S (S is a dual ideal of A4, and an ideal of B) and L contains the finite projective
geometry G, then we can assume that the zero, 0, of G is in 4— B while the unit,
1, of G is in B—A. If two of the atoms of G are in B, then so is their meet, 0, a
contradiction. So all but one of the atoms of G must be in A4, and then so is their
join, 1 a contradiction. Thus M, is a lattice variety closed under gluing, and by
Theorem 4 of our paper, MpoD is a variety. This completes the proof of the Cor-
ollary.

We would like to point out a misprint: in Section 4 (p. 80), “Theorem 4” should
read “Theorem 5”. '

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MANITOBA
WINNIPEG, MAN. R3T 2N2
CANADA
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Amorphous Polymers and Non-Newtonian Fluids, Edited by Constantine Dafermos, Jerry
L. Ericksen and David Kinderlehrer (The IMA Volumes in Mathematics and its Applications,
Volume 6), XII+195 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—
Tokyo, 1987.

This, and the preceding IMA Volumes 2 and 4 are in part proceedings of a series of IMA
workshops held during 1984—85 on Continuum Physics and Partial Differential Equations. The
book includes 10 separate papers, clustered mainly around concepts, models and mathematical
problems in the theory of viscoelastic flow of polymers. There is a brief introduction to the kinetic
theory of polymeric liquids in order to show the kinds of differential equations that arise for .the
configuration-space distribution functions. The aim of the second paper is to study Lagrangian
concepts which can be of use in the finite element simulation of viscoelastic flows. The main result
of the paper on Solutions with Shocks for Conservation Laws is contained in a proposition, which
states that when the “memory” response is appropriately dissipative then the total variation of
the solution is bounded independently of the variation of the initial data. The initial value problem
of the motion of linear and nonlinear viscoelastic materials aré discussed with special emphasis
on the development and smoothing of singularities.

This monograph level book is of interest to mathematicians and physicists interested in the
continuum physics and the applications of partial differential equations.

I. K. Gyémdnt (Szeged)

Automata, Languages ahd Programming (Proceedings, Karlsruhe, 1987). Edited by T. Ott-
mann (Lecture Notes in Computer Science, 267), X+ 565 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1987.

This book contains the presentations of the 14th International Colloquium on Automata,
Languages and Programming (ICALP 87) held at the University of Karlsruhe, from July 13 to
July 17, 1987.

ICALP 87 is a broadly based conference covering all aspects of Theoretical Computer Science
including topics like Algorithms and Data Structures, Automata and Formal Languages, Com-
putability and Complexity Theory, Semantics of Programming Languages, Program Specification,
Transformation and Verification, Theory of Data Bases, Logic Programming, Theory of Logical
Design and Layout, Parallel and Distributed Computation, Theory of Concurrency, Symbolic
and Algebraic Computation, Term Rewriting Systems, Cryptography and Theory of Robotics.

These proceedings consist of three invited papers and 46 contributed ones. The list of invited
addresses is: J. Karhumaki: On Recent Trends in- Formal Language Theory; J. T. Schwartz and
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M. Sharir: On the Bivariate Function Minimization Problem and its Applications to Motion
Planning; L. G. Valiant: Recent Developments in the Theory of Learning.
This well edited volume presents the state of art in Theoretical Computer Science. It is recom-
mended for everybody interested in the latest results of the field.
S. Vdgvolgyi (Szeged)

E. Behrends, MaB und Integrations theory (Hochschultext), VII4-260 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

The text is divided into five chapters. Chapter 1 is concerned with the basic concepts of meas-
ure and integral theory. The theorem on measure extension is proved and at the end of the chapter
the integral is defined. Chapter 2 deals with the fundamental theorems of measure and integral
theory. The convergence theorems, the Radon—Nikodym theorem are proved. Also the product of
measures, the Fubini theorem, and the Hahn and Jordan decompositions are given. Chapter 3
introduces the Lebesgue—Stieltjes measures in R" and characterizes the functions which are
integrable in Riemannian sense. Chapter 4 is devoted to the description of the LP spaces and their
dual spaces. The final Chapter 5 deals with measures in topological spaces, contains the Riesz
representation theorem and characterizes the dual space of the space of continuous functions defi-
ned on a compact space. Two short Appendices are concerned with the analytic sets and with the
projections of Borel sets.

LaszIo Gehér (Szeged)

B. Benninghofen—S. Kemmerich—M. M. Richter, Syétems of Reductions (Lecture Notes in
Computer Science, 277), VII+265 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1987.

Recently there has been considerable interest in rewriting systems because of their applica-
tions to theorem proving, specifications of abstract datatypes, algebraic simplification, etc.

Most of the results in these notes were obtained in the years after 1978 at the Technical Uni-
versity of Aachen. The last part of this book was written by F. Otto, the material is a part of his
Habilitationsschrift at the University of Kaiserslautern.

“There are two main lines of research here. On the one hand one studies the completion algo-
rithm and searches for criteria which ensure its termination. As the completion algorithm in many
(one is tempted to say ‘most’) cases fails to terminate this leads to the investigation of infinite sys-
tems. In many cases these can be finitely described and are as useful as finite systems.

The other type of investigations is concerned with the use of complete systems. A complete
system certainly provides an answer to the word problem but unravels much more of the struc-
ture of the algebra under investigation. This turns out to be most apparent in the case of groups.”

Titles of the chapters describe well the topics involved: I. General Concepts from Universal
Algebra; II. Finite Sets of Reductions; IIL Infinite Sets of Reductions; IV. Automata and Reduc-
tions; V. Deciding Algebraic Properties of Finitely Presented Monoids.

This nice book may be recommended to everybody interested in rewriting systems.

S. Vdgvdlgyi (Szeged)
Jénos Bolyai, Appendix, The Theory of Space, 239 pages, Akadémiai Kiado, 1987.

The bimillennial hope to deduce Euclid’s Fifth Postulate from the remaining part of his founda-
tions vanished ultimately when, in the twenties of the last century, J. Bolyai, Lobachevsky, and
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Gauss simultaneously and independently “have created another world, a new world of nothing”:
the world of non-Euclidean geometries, the Fifth Postulate is not valid in.

The words between quotation marks are taken from a letter written by J4nos Bolyai, a 21 year
old Hungarian military engineer. The youngest of the great trinity, who started to elaborate his
new geometry in 1823, and, although he lived further 37 years, his fate is commensurable with
that of Evariste Galois. Really, during his life, his discovery received no appreciation, and he died
with the dreadful sense of complete indifference and incomprehension from the side of his native
country and of scientific community.

This book is a facsimile edition of J. Bolyai’s pioneering work, which appeared as an appendix-
to his father’s mathematical textbook in 1832. It contains also the English translation of the Latin
original, and, in a compact and well-readable form, the most important information on the history
of Euclid’s Fifth Postulate including summaries on the related results of Gauss and Lobachevsky,
as well as concise comments on each paragraph of the Appendix. Furthermore, the book comprises
a part on how J. Bolyai’s work is reflected by subsequent research and how large influence it had on
the evolution of mathematics in our century. These additional chapters are written by Prof.
F. Karteszi. .

Finally, the reader can also  appreciate a supplement due to Prof. B. Széndssy, painting a
colorful historical and biographical background to this wonderful scientific breakthrough.

The book is recommended to everybody interested in geometry or history of mathematics.
It can also serve as a base for a university course on the foundations of geometry.

Rozdlia Juhdsz (Szeged)

I. Borg—J. Lingoes, Multidimensional Similarity Structure Analysis, X1V <390 pages, Springer- -
Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987.

Multidimensional similarity structure analysis (SSA) comprises a class of models that represent
the similarity among entities (for example, variables, items, objects, persons, etc.) in multidimen-
sional space to permit one to more easily grasp the interrelations and patterns present in one’s data.

The book is divided into the following chapters: Construction of SSA Representations; Ordinal
SSA by Iterative Optimization; Monotone Regression; SSA Models, Measures of Fit, and Their
Optimization; Three Applications of SSA; SSA and Facet Theory; Degenerate Solutions in Ordinal
SSA; Computer Simulation Studies on SSA Multidimensional Unfolding; Generalized and Metric
Unfolding; Generalized SSA Procedures; Confirmatory SSA (1); Confirmatory SSA (2); Psysical
and Psychological Spaces; SSA as Multidimensional Scaling; Scalar Products; Matrix Algebra
for SSA; Mappings of Data in Distances; Procrustes Procedures; Individual Differences Models.

“The book is oriented to both researchers who have little or no previous exposure to data
scaling and have no more than a high school background in mathematics and to investigators who
would like to extend their analyses in the direction of hypothesis and theory testing or to more
intimately understand these analytic procedures. The book is replete with examples and illustra-
tions oOf the various techniques drawn largely, but not restrictively, from the social sciences, with a
heavy emphases on the concrete, geometric, or spatial aspect of the data representations.”

J. Cs;’rik (Szeged)
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N. Bourbaki, Topological Vector Spaces (Chapters 1—5), VII4-364 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

This is the English translation of the original Frerch edition. In the first chapter the notion
of topological vector spaces over a valued division ring is introduced, linear varieties and sub-
spaces are defined and properties of metrisable topological vector spaces are given. In Chapter 2
locally convex spaces are considered over the field of real numbers. Here the Hahn—Banach theo-
rem in algebraic and geometric forms can be found, the dual space and weak topologies are intro-
duced and the Krein—Milman theorem is proved. The last paragraph of this chapter deals with
topological vector spaces over the field of complex numbers. Chapter 3 introduces the notion of
bornology in topological vector-spaces, investigates the spaces of continuous linear mappings.
The Banach—Steinhaus theorem and Borel graph theorem are also proved. Chapter 4 is devoted
to the study of the duality in topological vector spaces, to the topologies compatible with duality,
and the bidual and reflexive spaces and gives compactness criteria. In an appendix fixed points of
groups of affine transformations are considered. Chapter 5 contains the elementary theory of Hil-
bert spaces and some classes of operators in Hilbert spaces. At the end of all chapters a rich collec-
tion of exercises can be found.

Ldszlo Gehér (Szeged)

Nigel P. Chapman, LR Parsing, Theory and Practice, VIII+228 pages, Cambridge University
Press, Cambridge—New York—New Rochelle—Melbourne—Sydney, 1987. ’

Linear time deterministic parsing methods have been widely used in syntax analysis. LR
parsing, initiated by D. E. Knuth in the mid 60’s, seems to be appropriate for most practical prob-
lems. This volume successfully brings together the theory and pracuce of LR parsing with emphasis
on parser construction and implementation.

The book consists of ten chapters, the first one is providing an introduction with historical
notes. Chapter2 contains the necessary elements of formal languages and automata, including
right linear grammars and finite state machines, as well as context free languages and pushdown
automata. Chapter 3 is a good introduction to LR(0) and SLR(1) parsing. Chapter 4 starts with
a parser oriented definition of LR(k) grammars and provides necessary and sufficient conditions
on a grammar to be LR(k) for a given integer k. After discussing the canonical LR(k) parser con-
struction, it culminates in a brief discussion on the relation of LR(k) languages to deterministic
context free languages, the complexity of LR(k) parsing, as well as the inefficiency of the canonical
LR(k) parser construction. This motivates the need for defining LALR(k) grammars in Chapter 5,
an intermediate class between SLR(k) grammars and LR(k) grammars. After a brief account of
some aspects of the definition, the second part of Chapter 5 deals with practical LALR parser con-
structions and a general method for LR parser construction.

Chapters 6 to 10 are concerned with more or less practical matters, such as data structures,
optimization of parser tables, the relation of LR parsers to other system components, semantic
actions during LR parsing, error handling, some extensions of the LR technique, and automatic
generation of LR parsers. Algorithms for computing the reflexive transitive closure of a relation
are exploited in the Appendix.

The Bibliography contains more than 100 items relevant to LR parsing and gives a good
source for further reading. A carefully compiled Index helps guide the reader in looking up notions
and notations. )

The book is written in a nice style. Numerous examples are worked out. It can be recommended
to graduate students and computer scientists with interest in formal languages and/or compiler

techniques. Z. Esik (Szeged)
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Aleksei A. Dezin, Partial Differential Equations (An Introduction to a General Theory of
Linear Boundary Value Problems), XII+163 pages, Springer-Verlag, Berlin—Heidelberg—New
York—London—Paris—Tokyo, 1987.

One often hears that generalization by abstraction in analysis “does nothing really new and
finds no new results”. Although there is a valid basis behind this opinion, we can find such generaliza-
tions which contain originally new things. As an example we recommend this book.

It is well known that mathematical physics, the study of boundary value problems of partial
differential equations is the source of some new notions of analysis. Usually the authors in this
branch of mathematics investigate restricted classes of equations. In the wide range of applications
new and new problems arise which do not belong to the known types. These suggest the necessity
of the more general way of putting the question. Briefly summarizing, this book studies the depend-
ence of the solvability of given linear partial differential equations from the choice of the bound-
ary conditions by using the methods of functional analysis especially the theory of linear operators
in Hilbert space. The first two chapters give a concise, clear summary of the main notions and
theorems of functional analysis which are necessary in the further study. This was a hard, master’s
work. The most important part of the book is Chapter 4—6 titled Model Operators; First-Order
Operator Equations; Operator Equations in Higher Order. The investigated problems are of funda-
mental importance and the results are remarkable. The discussion is carried out with elegance and
it is a striking example of the interplay between partial differential equations and functional analysis.
In order to put the case more clearly several remarks — introductory and concluded ones at the -
beginning and at the end of some chapters, respectively — make the difficulties, the importance
of the theorems clear and constitute a very good reference source for further study.

Nothing can prove better the success of the method applied in this book than the Appendix 2,
in which the translater R. P. Boas sums up some results having been achieved in this theme since
the first publication of this book in Russian. For experienced reader R. P. Boas’ name can be a
guarantee as well that this is a good book, otherwise it is not likely that he would have undertaken
the translation. )

Lajos Pintér (Szeged)

Differential Geometry, Proceedings, Lingby, 1985. Editedbby V. L. Hansen (Lecture Notes |
in Mathematics, 1263), X+288 pages, Springer-Verlag, Berlin—Heidelberg—New York—Lon-
don—Paris—Tokyo, 1987.

This volume contains the lectures held at the Nordic Summer School that took place at the
Technical University of Denmark in Lingby: P. Braam, Quantum field theory: the bridge between
the mathematics and the physical world; J. P. Bourguignon, Yang—Mills theory: the differential
geometric side; F. Burstall, Twistor methods for harmonic maps; J. Rawnsley, Twistor methods;
J. L. Kazdan, Partial differential equations in differential geometry; K. Grove, Metric differential
geometry; R. Greene, Complex differential geometry. “The main reason for choosing differential
geometry as the subject for the 1985 Nordic Summer Schoo! in mathematics was that the last two
decades have witnessed a new strong interaction between mathematics and field theories in physics”
-— the editor writes in the Preface. The lectures have introductory character and present important
mathematical tools and results necessary for making research into the applications of differential
geometry in physics. ' .
Péter T. Nagy (Szeged)

16
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Differential Geometry and Differential Equatlons, Proccedings, Shanghai, China, 1985. Edited
by Gu Chaohao, M. Berger and R. L. Bryant (Lecture Notes in Mathematics, 1255), XII+4 243
pages, Springer-Verlag, Berlin—Fleidelberge—New York—London—Paris—Tokyo, 1987.

The Sixth Symposium on Diflcrential Geometry and Diffcrential Equations was held from
June 21 to July 6, 1985 in Fudan University, Shanghai, China. This volume contains thc proceedings
of this conference. The topics cover a wide range of differcntial geometry: global submanifold theory
of Riemannian manifolds, extremal surfaces in Minkowski spaces, the imbedding problems of
symmeltric spaces, the geometric theory of harmonic maps, Lie transformation groups, gauge theory,
spectral gcomctry, etc.

The book gives a good overview of some important fields of differential geometry and makes
us acquainted with the scientific activity of high level in this traditional subject in China.

Péter T. Nagy (Szeged)

Z.. Ditzian—V. Totik, Moduli of Smoothness (Springer Series in Computational Mathematics,
9), IX+4225 pages, Springer-Verlag, New York-—Berlin—Heidelberg—ILondon—Paris—Tokyo,
1987.

The subject of this book is the introduction and application of a very useful new type of moduli
of smoothness of functions. As the theorems included in the book prove this new measure of smooth-
ness gives a better tool to deal with the rate of best approximation, inverse theorems and imbedding
theorems. The fundamental feature of this new modulusis the replacement of 4 in @' (f; )=
= sup |43 f1l by h-p(x) to obtain wp(f; £)p= sup llde, fliL» where the choice of ¢(x) is

O<h=t O<h<t

depending on the problem that has to be solved.

Here we pick up just three advantages of this new modulus. The first one is that it can easily
be used to characterize the particular class of functions for which more smoothness is required
inside theinterval than near its endpoints (see especially the cases of weighted polynomial approxima-
tion in Ly,). The new modulus furthermore is suitable to solve some basic problems in approxima-
tion theory related to the characterization of the class of functions defined by the rate of approxima-
tion by known operators (for example by the Kantorovich operators). The third fact that should
be noted is that this new modulus plays very important role in the theory of interpolation spaces
(for example in the problem of characterization of K-functionals introduced by J. Peetre for investiga-
tion of interpolation spaces between two Banach spaces). The book is divided into two parts and
thirteen chapters. In Part I the following investigations are included: equivalence relation of the
new modulus with the K-functional; the introduction of the main-part modulus and its relation
to w},; the extension of all important properties of the classical modulus to the new one; weighted
moduli of smoothness. Part II contains the applications for the best polynomial approximation
on [—1,1]; for the rate of convergence of various operators; for the best weighted polynomial
approximation on R; for the best polynomial approximation on simple polytopes.

The book is well organized, its style is clear. The results are new and complete proofs are
given. Certainly this book will be very useful for researchers interested in approximation theory.

Jozsef Németlh (Szeged)
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Functional Analysis IT (with contribution by J. Hoffmann—J@rgensen et al.), Edited by S, Ku-
repa, H. Kraljevié¢ and D. Butkovi¢ (Lecture Notes in Mathematics, 1242), VII+432 pages, Springer-
Verlag, Berlin—Heidelberg—New York—London—Tokyo, 1987,

This volume contains seven papers. Four of them, essentially lecture notes, arc as follows:
A. Dijksma, H. Langer and H. de Snoo, Unitary colligations in Krein spaces and their role in the
extension theory of isometries and symmetric linear relations in Hilbert spaces; S. Kurepa, Quad-
ratic and sesquilinear {orms. Contributions to characterizations of inner product spaces; J. Hoff-
mann—Jargensen, The general marginal problem; Z. R. Pop—Stojanovié, Energy in Markov
processes.

The corresponding four series of lectures were given at postgraduate school and conference
on Functional Analysis held from November 3 to November 17, 1985 at the Inter-University Center
of Postgraduate Studies, Dubrovnik, Yugoslavia.

The remaining three papers, namely: S. Suljagié, Invariant subspaces of shifts in quaternionic
Hilbert space; D. Butkovié, H. Kraljevi¢ and N. Sarapa, On the almost convergence; N. Elezovié,
p-nuclear operators and cylindrical measures on tensor products of Banach spaces; are connected
with one-hour lectures presented at the same school and conference.

As the titles of the papers already show, this collection deals with several branches of func-
tional analysis, operator theory and their applications. Beside its expository content it contains
also some new results with proofs.

The volume can be useful for postgraduate students, and first of all for researchers interested
in one or more topics discussed in it.

E. Durszt (Szeged)

Johan Grasman, Asymptotic Methiods for Relaxation Oscillations and Applications (Applied
Mathematical Sciences, 63), XIV+221 pages, Springer-Verlag, New York—Berlin—Heidelberg—
London—Paris—Tokyo, 1987,

Relaxation oscillations are present in various fields of chemistry and biology. In a typical
relaxation oscillation some of the variables may vary rapidly during a short time interval and the
others fluctuate regularly. The differential equation models contain a “small parameter”. The solu-
tion of the reduced system (the system with e=0) gives the regular approximation, which gives a
good impression of the qualitative behaviour of the solution apart from the rapid variation during
the short time interval. For the purpose of making a quantitative approximation, expansions with
respect to the small parameter are necessary. In this book the author shows that the method of
matched asymptotic expansions makes it possible to describe quantitatively phenomena such as
chaotic dynamics of physical and biological systems.

In the Introduction examples for phenomena of relaxation oscillation are presented. In Sec-
tion 2 the definition of a relaxation oscillation and a review of the proofs of existence of periodic
solutions of singularly perturbed systems are given, and an asymptotic analysis of the Van der Pol
oscillator and of the Volterra—Lotka equations are made. A chaotic relaxation oscillator is con-
structed, as well. In Section 3 a rigorous theory for the existence of entrained solutions for systems
of coupled relaxation oscillators, and interpretation of entrainment phenomena in biological systems
are given, In Section 4 asymptotic approximations are constructed for the Van der Pol oscillator
with sinusoidal forcing term, and equivalence between solutions and iterates of an interval mapping
is established.

16*
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Appendices and appropriate references to most recent results complete this book, which is
warmly recommended to mathematicians, physicists and biologists interested in applications of
the theory of dynamical systems.

1. K. Gyémidnt (Szeged)

Hydrodynamic Behavior and Interacting Particle Systems, Edited by George Papanicolaou
(The IMA Volumes in Mathematics and Its Applications, Volume 9), VI+215 pages, Springer-
Verlag, New York—Berlin—Heidelberg—ILondon—Paris—Tokyo, 1987.

This is the third IMA volume (out of four) with papers presented at a workshop on Stochastic
Equations and Their Applications. The workshop was held in 1986 at the Institute for Mathematics
and Its Applications at the University of Minnesota. Research of several different directions are
contained in these papers. The table of contents: 1. R. E. Caflisch: Stochastic Modelling of a Dilute
Fluid-Particle Suspension. 2. P. M. Chaikin, W. D. Dozier and H. M. Lindsay: Experiments on
Suspensions of Interacting Particles in Fluids. 3. D. A. Dawson: Stochastic Models of Parallel
Systems for Global Optimization. 4. R. Figari, G. Papanicolaou and J. Rubinstein: Remarks on
the Point Interaction Approximation. 5. K. F. Freed, S. Wang and J. F. Douglas: Renormaliza-
tion Group Treatment of the Hydrodynamics of Polymer Chains in the Rigid Body Approxima-
tion. 6. J. Fritz: On the Hydrodynamic Limit of a Scalar Ginzburg—Landau Lattice Model: The
Resolvent Approach. 7. J. Goodman: Convergence of the Random Vortex Method. 8. L. G. Go-
rostiza: Supercritical Branching Random Fields. Asymptotics of a Process Involving the Past.
9. D. E. Loper and P. H. Roberts: A Simple Mathematical Model of a Slurry. 10. H. Osada: Limit
Points of Empirical Distributions of Vorticies with Small Viscosity. 11. S. Ozawa: Mathematical
Study of Spectra in Random Media. 12. J. Rubinstein: Hydrodynamic Screening in Random Media.
13. H. Spohn: Interacting Brownian Particles: A Study of Dyson’s Model. 14. A. S. Sznitman:
A Propagation of Chaos Result for Burgers’ Equation. 15. H. Tanaka: Limit Distributions for One-
Dimensional Diffusion Processes in Self-Similar Random Environments.

Introduction to modern mathematical methods is contained in papers 6 and 13. Analytical
methods currenty used in the physics and chemistry literature are presented in paper 5. The con-
tinuum limit of boundary value problems in regions with small inclusions is analyzed in 4, 11 and
12. In papers 3, 8 and 15 the probabilistic aspects of particle systems on random media are discussed.
The vortex method is treated in 7 and 10.

This monograph level book is of interest to researchers in applied mathematics, engineering,
and physics.

’ 1. K. Gyémidnt (Szeged)

I. M. James, Topological and Uniform spaces (Undergraduate Texts in Mathematics), IX4-163
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987.

The book is divided into 13 chapters. The text starts with a preliminary chapter dealing with
certain aspects of the theory of sets. The first two chapters are concerned with some basic axioms,
with continuity and with topological product. Also the topological groups are introduced. Sub-
spaces and quotient-spaces are considered in Chapter 3. Chapter4 deals with functions which
are structure preserving in the direct image sense. Specifically open and closed functions are con-
sidered. In Chapter 5 the notion of compactness is introduced and the characterization of compact
spaces in terms of filters is given. Chapter 6 is concerned with the separation axioms and the basic
properties of Hausdorff regular and normal spaces are established. Chapter 7 and 8 contain the
definition of the uniform spaces with illustrations taken from topological groups and metric spaces,
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and introduce the uniform continuity of functions and discuss the Cauchy condition both for se-
quences and for filters. Chapter 10 deals with the two countability axioms. Also g-compactness,
sequential compactness, Lindeléf property and separability are considered. Chapter 11 returns
to the separation axioms, furthermore introduces the complete regularity and shows that this
property is necessary and sufficient for a topological space to be uniformisable. At the end of this
chapter the Urysohn theorem is proved. The last chapter is concerned with completeness and com-
pletion of metric and uniform spaces.

Ldszlo Gehér (Szeged)

J. Lindenstrauss—V. D. Millman, Geometrical Aspects of Functional Analysis (Lecture Notes
in Mathematics, 1267), 212 pages, Springer-Verlag, Berlin—Heidelberg—New York—ILondon—
Paris—Tokyo, 1987.

The book contains 16 papers the material of which are based on lectures held in the Israel
Seminar on Geometrical Aspects of Functional Analysis between October 1985 and June 1986.
Most of the papers are based on original research which have not been published elsewhere, the
others are of expository nature. The basic topics are: imbedding problems, extension of Lipschitz
maps and the study of convex sets in R” and Banach spaces, which play a central role in the subject.

The book is highly recommended to researchers interested in the Banach space theory.

LdszIé Gehér (Szeged)

Moshe S. Liviic—Leonid L. Waksman, Commuting Nonselfadjoint Operators in Hilbert Space
(Lecture Notes in Mathematics, 1272), 114 pages, Springer-Verlag, Berlin—Heidelberg—New York—
London—Paris—Tokyo, 1987.

The text consists of two independent parts. The first one is written by Liv8ic, and the second
one by Waksman. The first part investigates operator colligations and collective motions of open
systems. It turns out that a deep connection between the theory of commuting nonselfadjoint oper-
ators and the problem of wave equations can be found. The second part deals with harmonic anal-
ysis of multi-parameter semigroups of contractions. Firstly the strongly continuous isometric rep-
resentations of multi-parameter semigroups Kc R" in Hilbert space are considered, and then
multi-parameter semigroups of contractions admitting dilations are investigated. In the Appendix
triangular models of pairs of commuting operators are given.

Ldszlé Gehér (Szeged)

Mathematical Ecology. An Introduction, Edited by Thomas G. Hallam and Simon A. Levin
(Biomathematics, 17), XII+457 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1986.

“The study of ecology has its roots in the basic investigations of naturalists, who seek to under-
stand the ecological and evolutionary relationships among species and their relationships to their
environment. These studies usually have been retrospective, aimed at understanding how the universe
we observe came to be. To explain why we see what we see, we must imbed our studies in a broader
context, encompassing both what is and what is not. We must abstract and imagine, and construct
a feasible world much bigger than reality; only then can we explain why evolution has taken the
course it has ... Studies of this sort have been the mainstays of theoretical ecology, and occupy a
major portion of this book.”
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- These lecture notes reflect a nucleus of the material from the lectures presented during the
first weeks of the Autumn Course on Mathematical Ecology, held at the International Centre for
Theoretical Physics, Miramare—Trieste, Italy, November—December 1982.

First of all the ecological and mathematical foundations of the areas of physiological, popula-
tion, community and ecosystem ecology are introduced in detail in this book. Moreover, some
past and current problems are presented in the important fundamental topics. Speculations on
possible directions for future research are also contained. Not only the theoretical aspects are ex-
plained but also some applied fields are developed.

The book is divided into five parts. Part [ contains an overview on ecology by L. J. Gross.
Two introductory papers by L. J. Gross on physiological and behavioral ecology are given in Part I1.
Papers in Part IIT (by T. G. Hallam, R. M. Nisbet, W. S. C. Gurney, J. C. Frauenthal, S. S. Levin
and L. M. Ricciardi) are concerned with the dynamical and stochastic approach to population
ecology. Part IV is devoted to the theory of communities and ecosystems. Here the authors are:
T. G. Hallam, A. Hastings, S. A. Levin, M. Turelly and R. R. Lassiter. Two topics (resource manage-
ment and infectious diseases, epidemiology) from applied mathematical ecology are developed
and discussed by J. M. Conrad and R. M. May in Part V.

These very well written lecture notes will certainly be interesting and useful for both researchers
. in these areas and those interested readers wanting to understand the foundations and the basic
problems of mathematical ecology.

' T. Krisztin (Szeged)

Vladimir A. Marchénko, Sturm—Liouville Operators and Applications (Operator Theory:
Advances and Applications Vol. 22), XI+367 pages, Blrkhauser Verlag, Basel—Boston—Stutt-
gart, 1986.

-In the various branches of mathematics there exist ever-living problems, inexhaustible sources
(see for example the various problems of prime numbers, the solution of equations etc.). In the
theory of differential equations such an eternal question is the now so called Sturm—Liouville
equation: y”+q(x)y=zy and the allied Sturm—Liouville operator L= —d?*/dx?+q(x). The first
results concerning this equation go back to D. Bernoulli and L. Euler. Since then this equation
has been constantly presented in the literature. In the middle of this century the transformation
operators appeared in the theory of the Sturm—Liouville equation. As the results of e.g. A. Ya.
Povzner, I. M. Geifand, B. M. Levitan, B. Ya. Levin and V. A. Marchenko show, this tool became
more and more important. In the Preface the author says: “The main goal of this monograph is
to show what can be achieved with the aid of transformation operators in spectral theory, as well
as in its recently revealed untraditional applications.” The chapter headings are: The Sturm—
Liouville equation and transformation operators; The Sturm—Liouville boundary value problem
on the half line; The boundary value problem of scattering theory; Nonlinear equations.

Unfortunately sometimes it happens that mathematicians in the West or mathematicians in
the East don’t know the results of each other (e.g. language difficulties occur etc.). This book con-
tains such questions in the theme in which the major part of the theorems belong to Soviet mathe-
maticians. Often the original publications are not easily acceSsible. Perhaps this book helps to solve
a part of these problems.

At last I’d like to mention the interesting examples and thelr hints which in some sense rermnd
the reviewer of the examples being in the world famous book of Pélya and Szeg6.

Lajos j’inté_r (Szeged).
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J. M. Montesinos, Classical Tessalations and Three-Manifolds (Universitext), XIII+230 pages,
Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987.

This book is devoted to a self-contained study of the interaction between the classical geometry
of tessalations in euclidean and non-euclidean spaces and the topology of 3-manifolds. The origin
of this relationship is the construction of a non-classical homological 3-sphere given by H. Poincaré
in addition to the formulation of his famous conjecture in 1904 about the identity of homological
and geometric spheres in higher dimensions. The homological 3-sphere can be interpreted as the
manifold of positions of a dodecahedron inscribed in a 2-sphere. Similarly, the configuration spaces
of platonic solids give interesting examples of other 3-manifolds. As the author says: “This is the
type of topic we deal with in this book, only that instead of restricting our attention to the dodeca-
hedron, we also consider the remaining platonic solids, and the euclidean and hyperbolic tessala-
tions for which analogous constructions of three-manifolds can be developed in a similar way.
At this stage one might also ask what can be considered new here. In fact, there is nothing new
except the point of view. What I had in mind in writing this book was to use these constructions as
a “pretext” for talking about three-manifolds and teaching geometrical intuition, which is crucial
in forming our students to be able to make new discoveries in mathematics.”

Really, the original and new view-point and entertaining style of this very nice book with
numerous exercises, problems and illustrations yield a very good introduction to the intuitive geom-
etry and topology. It can be highly recommended to graduate students and researchers interested in
these fields. )

Péter T. Nagy (Szeged)

V. V. Nikulin—I. R. Shafarevich, Geometries and Groups (Umversnext), VI+251 pages Sprin-
ger-Verlag, Berlm——Heldelberg—New York—London—Pans-—Tokyo, 1987.

The expression “geometrical” is used everywhere in both the theoretical and applied sciences
without a well-defined sense. It means something visuable thing having analogue with the structure
of the.physical space. But different models of physical space are formulated using various mathe-
matical notions: classical axiom systems of elementary geometry, discrete and continuous transfor-
mation group theory, classical differential geometry, manifold theory, surface topology etc. This
excellent book, which is a translation of the Russian edition (Nauka, Moscow, 1983), gives an
elementary introduction into intuitive geometry, based on a unification of the above approaches
from the view-point of modern mathematics.

In Chapter I the authors formulate the main problems and illustrate them by the Euclidean
description of the geometry on the sphere, cylinder and torus. Chapter II contains the classification
of 2-dimensional locally Euclidean geometries: the plane, cylinder, torus, twisted cylinder and
Klein bottle. The proof uses the description of uniformly discontinuous motion groups on the plane
and an elementary introduction into the covering space construction. Chapter III is devoted to the
space geometry and the crystallographic group theory. In the final Chapter IV there is given a
treatment of lattice geometry and an introduction into Bolyai—Lobachevsky geometry using com-
plex numbers and some modular group theory.

The book contains many exercises, hystorical remarks, very good illustrative figures and
references for further study. Only familiarity with the knowledge of school mathematics is supposed.
Certainly this book is very interesting and useful for mathematicians (both students and teachers)
and non-mathematicians interested in the development of the sciences.

Péter T. Nagy (Szeged)
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D. H. Pitt—A. Poigné—D. E. Rydeheard, Category Theory and Computer Science (LNCS, 283),
V + 300 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1937.

This volume is the proceedings of the Conference on Category Theory and Computer Science
held in Edingburgh, September 7—9, 1987. Most papers reflect the fact that logical aspects of cat-
egory theory have become the main issue in category theory applied to computer science.

Contributions are: G. Rosolini: Categories and Effective Computations; A. M. Pitts: Poly-
morphism is Set Theoretic, Constructively; Th. Coquand, Th. Ehrhard: An Equational Presenta-
tion of Higher Order Logic; S. Kasangian, A. Labella, A. Pettorossi: Enriched Categories for Local
and Interaction Calculi; D. B. Benson: The Category of Milner Processes is Exact; G. Winskel:
Relating Two Models of Hardware; D. E. Rydeheard, J. G. Stell: Foundations of Equational
Deduction: A Categorical Treatment of Equational Proofs and Unification Algorithms; T. Hagino:
A Typed Lambda Calculus with Categorical Type Constructors; L. S. Moss, J. Meseguer, J. A. Go-
guen: Final Algebras, Cosemicomputable Algebras, and Degrees of Unsolvability; G. Bernot:
Good Functors ... are Those Preserving Philosophy; C. Beierle,”A. Yoss: Viewing Implementations
as an Institution; S. Martini: An Interval Model for Second-Order Lambda Calculus; E. Robinson:
Logical Aspects of Denotational Semantics; M. Proietti: Connections Between Partial Maps Cat-
egories and Tripos Theory; S. Vickers: A Fixpoint Construction of the p-adic Domain; J. M. McDill,
A. C. Melton, G. E. Strecker: A Category of Galois Connections.

The volume will be useful to specialists interested in category theory or categorical aspects of

computer science.
Z. Esik (Szeged)

W. Purkert—H. J. Iigauds, Georg Cantor (Vita Mathematica 1), 262 pages, Birkhauser Verlag,
Basel—Boston—Stuttgart, 1987.

This new series “Vita Mathematica” of the Birkhduser Verlag is in some sense a continuation
of the 16 “supplements” to the journal Elemente the Mathematik published by the Birkhduser
Verlag between 1947 and 1980. The difference from the supplement is not only formal (considerably
greater length in book form). The aim of the new series is to present technical biographies of great
mathematicians from antiquity to modern times, taking into account relevant research carried out
in recent decades. In the forthcoming volumes we will read on Pascal, Dirichlet, Felix Klein and
Euler among others.

The last (the sixth) part of Cantor’s fundamental work “Uber unendliche lineare Punktmannich-
faltigkeiten” appeared in the Mathematischen Annalen about 100 years ago. This was the birth
of Set Theory with an essentially hew approach to the infinity in mathematics which was embodied
in the theory of transfinite numbers. D. Hilbert described it as “the most marvellous flower of the
mathematical spirit and really one of the highest achievements, pure reasonable human activity”.

In the two first (and short) chapters of the book (written in German) we can read on Cantor’s
childhood and his studies in Ziirich, Gottingen and Berlin. The third and main chapter is the “Gen-
esis der Mengenlehre” (The Genesis of Set Theory). In the subsequent chapters we can read on
Cantor’s illness, on his personality and philosophy, on the antinomies and his final years.

A subsequent chapter deals with researches due to Zermelo, Hilbert -and others which were
striven to avoid the antinomies.

The book ends with numerous documents (letters to and from Cantor), a chronology and a
detailed bibliography.
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Finally, we cite the last paragraph of the Editorial of the book: “May the series Vita Mathe-
matica help to promote interest in the history of science in our time when consciousness of -history
is deficient and decline in the use of language is evident. Thereby we may contribute in a small
way to our culture.”

We hope that the forthcoming volumes of this series will serve this aim as good as the first
excellent one. : -

Lajos Klukovits (Szeged)

H. Riesel, Prime Numbers and Computer Methods for Factorization (Progress in Mathematics,
57) XVI+464 pages, Birkhiuser, Boston—Basel—Stuttgart, 1987 (revised and corrected second
printing).

Applications of number theory have growing interest nowdays. It can be used in several areas
of science and engineering, e.g., in communications, coding theory and cryptology.

In number theory there are several easily formulated problems, solutions of which are rather
advanced. The author’s aim is to write a book on this topic suitable for mathematically inclined
layman, as well as for a more advanced student. For this reason not all results are proved, but there
are detailed bibliographical references to serve the readers interested in the proofs. There are ref-
erences to recent original works as well.

The main text has six essentially independent chapters. The Number of Primes Below a Given
. Limit; The Primes Viewed at Large; Subleties in the Distribution of Primes; The Recognition of
Primes; Factorization, Prime Numbers and Cryptography.

While number theory is a small part of the basic mathematical courses only, the book has six
additional chapters (appendices) which contain all the algebra and number theory (basic concepts
in higher algebra and arithmetic, quadratic residues, arithmetic of quadratic fields, continued frac-
tions, algebraic fractions) required for the main text. There are another three appendices, two on
computational ‘questions (muliiple-precision arithmetic, fast multiplication of large integers) and
one on the Stieltjes integral. .

For those readers who have accesses to computers, the author has provided computer programs
written in the high-level programming language PASCAL for many of the methods (and algo-
rithms) described in the text. _

At the end of the book a large amount of results are collected in 34 tables, e.g., primes below
12 553 and between 10" and 10" 41000 (n=35, 6, ..., 15), factors of Fermat numbers and of Mersenne
numbers, factors of integers of types a”+b" for some small a and b, quadratic residues.

‘This carefully written and excellently printed book will be enjoyed by both mathematicians
and non-mathematicians, everybody who are interested in number theory and its applications.

Lajos Klukovits (Szeged)

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations (Universitext),
. IX+208 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987,

This book grew out of lectures held by the author at various universities. Recently the homotopy
index theory has become a useful tool in perturbation problems involving ordinary differential
equations. The homotopy index generalizes the Morse index, it was developed by Ch. Conley' for
twosided flows on compact spaces. It was a natural thing to try the application of the theory for
partial differential equations as well. But this problem requires further extension of the homotopy
index theory. This was done by the author who published it previously in several papers. This book
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is a clear presentation of the results written not only for experienced researchers but for readers
having only modest knowledge of algebraic-topology. : .

The book consists of three chapters. In Chapter 1 the author presents the main concepts
of the categorial Morse index and the homotopy index. This chapter is especially useful for beginners
in this field. Several examples make the introduced notions more understandable. In Chapter 2
applications are given on parabolic partial differential equations and on functional differential
equations. The third, relatively brief, chapter contains selected topics.

This is an interesting book on the application of a modern notion promising further new
results.

Lajos Pintér (Szeged)

Masahiro Shiota, Nash Manifolds (Lecture Notes in Mathematics, 1269), VI+223 pages,
Springer-Verlag, Berlm—Heldelberg—New York—London, 1987.

The purpose of this book is to construct a theory of real manifolds equ1pped w1th ‘algebraic”
structures. The fundamental ideas are the following: -
A semialgebraic subset of R" is by.definition a finite union of sets of the form

{X€ER™ 1(x) =...= f() = 0, gy (x) = 0, ..., gy (x) = 0},

where f, ...,/f;, g; are polynomials. (For example a compact polyhedron in R™.) A C" map between
two semialgebraic subset of R" and R™ is C" Nash-map if its graph is semialgebraic in R*X R™. "
A C" manifold with a finite system of coordinate neighbourhoods {w;: U;—~R™} is a C" Nash-
manifold of dlmenswn m if for each 7 and j, y;(U;NU /) is an open semialgebraic subset of R™
and the map y jov/ is a C" Nash-diffeomorphism.

The main result of this subject has been proved by Nash Namely he showed that a compact
€' manifold M can be imbedded in a Euclidean space R" and such a C Nasli-manifold structure
on M is unique up to C® Nash-diffeomorphism. Hence we can endow a compact C*' manifold
with “algebraic” properties, which appears to contribute to differential topology Really, there are
several applications of this result.

This book is clearly and accurately written. Certainly it will be mterestmg for researchers
working in differential topology, PL topology or Nash-manifold.

Arpsd Kurusa (Szeged)

Trends, Techniques, and Problems in Theoretical Computer Science (Selected Contributions,
Smolenice, Czechoslovakia, 1986), Edited by A. Kelemenova and J. Kelemen (Lecture Notes in
Computer Science, 281), VI+213 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1987.

This volume contains a selected collection of papers presented at the scientific programme of
the Fourth International Meeting of Young Computer Scientists IMYCS 86) held at Smolenice
Castle Czechoslovakia, October 13—17, 1986. .

“Qrganized biennially since 1980, the meetmgs are intended to stxmulate the scientific activity
of beginners in computer science, mainly that of both university students in the final years of their
studies and of graduates. Therefore, the scientific programme of the meetings include tutorials
-and more invited lectures than it is usual at conferences.”

In this book the texts of the tutorial of IMYCS 86 as well as the texts of all invited talks are
included together with some selected short communications presented during the meeting’s regular
and informal evening sessions. Thematically, the volume-is divided into four chapters:
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Chapter 1. VLSI and Formal Languages: J. Hromkovi¢: Lower bound techniques for VLSI

" algorithms; J. Karhumiki: The equivalence of mappings on languages; J. Sakarovitch: Kleene’s

theorem revisited; Z. Tuza: Some combinatorial problems concerning finite languages.

Chapter 2. Theory of Formal Grammars: E. Csuhaj—Varju: A connection between descrip-
tional complexity of context-frée grammars and grammar form theory; H. C. M. Kleijn: Basic
ideas of selective substitution grammars G. Paun: Some recent restrictions in the derivation of
context-free grammars.

Chapter 3. Biologically Motivated Structures: V. Aladyev: Recent results on the theory of
homogeneous structures; M. Kral’ova: A note on the ratio function in DOL systems; A. Linden-
mayer: Models for multicellular developmem: Characterization, inference and complexity of
L-systems. '

Chapter 4. Artificial Intelligence: J. Kala§: A formal model of knowledge-based systems;
F. N. Springsteel: Basic complexity analysis of hypothesis formation; P. Szeredi: Perspectives of
logic programming.

We warmly recommend this interesting volume to everybody who works in Theoretical Com-
puter Science.

S S. Vigvdlgyi (Szeged)

W. Van Assche, Asymptotics for Orthogonal Polynomials (Lecture Notes in Mathematics,
1265), VI+201 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—
Tokyo, 1987.

Recently there has been a great deal of interest in the theory of orthogonal polynomials.
The number of books dealing with the subject, however, is limited. This monograph contains some
results on the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity.
Only a basic knowledge of real and complex analysis is assumed. In Chapter 1 the asymptotic

" behaviour of orthogonal polynomials on a compact set is discussed. Results are given for orthogonal

polynomials on the interval [—1, 1] especially those belonging to the Szegd class. In Chapter 2
among others recurrence relations are given for the orthogonal polynomials in the case when the
recurrence coefficients are asymptotically periodic. In Chapter 3 a new method based on well-known
theorems of probability theory is given to,obtain asymptotic formulas for sequences of polynomials.
Chapter 4 is devoted to study the orthogonal polynomials on infinite intervals. The results involve
the zero distribution for orthogonal polynomials with exponential weights (asymptotic results for
the largest zeros, for the leading coefficient are given). Chapter 5 deals with some consequences
of the existence of the asymptotic zero distribution. In the final Chapter 6 some applications -of
the theory given in the previous chapters can be found. .
The book is warmly recommended to both researchers and graduate students interested in

approximation theory, orthogonal polynomials and mathematical physics.
: : Jozsef Németh (Szeged)

Joachim Weidmann, Spectral Theory of Ordinary Differential Operators (Lecture Notes in
Mathematics, 1258), Vi+303 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—
Paris—Tokyo, 1987.

This volume presents a general and rather complete spectral theory for selfadjoint ordinary
differential operators with motivations and some applications in physics. The generating differential
expressions are of order n, operate on C™-valued functions (1, m¢N), and are sufficiently general
in order to cover the “classical” cases. :
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The selfadjoint realizations in certain L? spaces of the considered differential expressions
are based essentially on the notion of quasi derivatives and a quite general existence and uniqueness
theorem for first order systems. The discussion of the induced selfadjoint operators starts with the
determination of the maximal and (closed) minimal ones (denoted by T and Ty, respectively). Then
the deficiency indices and the selfadjoint extensions of T are studied, mainly by means of the bound-
ary conditions of the solutions of (zr—2)u=0 (z is the generating differential expression). For these
extensions a spectral theory is developed: the general forms of the resolvent, the spectral representa-
tion and the spectral resolution ‘are studied, the spectral multiplicity and the absolute continuous
spectrum is discussed. Attention is paid to differential operators with periodic coefficients. An
oscillation theory is developed for Sturm—Liouville operators and Dirac systems, and this is applied
in studying their spectral properties. Finally explicite solutions are given for some problems con-
cerned with special cases of Sturm—Liouville operators and Dirac systems.

Mathematicians or physicists, postgraduate students and researchers will certainly find the
generality of the treatise as well as the many-sided discussion to be of interest. The book contains
also new results; its method is functional analytic whenever possible. The reader has to be familiar .
with basic facts of analysis and needs some knowledge of the abstract theory of selfadjoint operators.

E. Durszt (Szeged)

Marisa Venturi Zilli, Mathematical Models for the Semantics of Parallelism (Lecture Notes
in Computer Science, 280), IV+231 pages, Springer-Verlag, Berlin—Heidelberge—New York,-1987.

The volume contains eight papers from the material presented at the Advanced School on
Mathematical Models for the Semantics of Parallelism, Rome, September 24—OQOctober 1, 1986.
The papers discuss diverse approaches to concurrent systems.

Table of contents:

L. Aceto, R. De Nicola and A. Fantechi: Testing equivalences for event structures, p. 1—20.
Three extensional models of concurrency are defined in the common framework of event struc-
tures. These models correspond to different kinds of observations: sequences of actions, sequences
of multisets of actions, and partial orderings of actions. Some basic relationships are established.

P. America and J. de Bakker: Designing equivalent semantic models for process creation,
p. 21—80. This long paper provides a detailed analysis of certain models for concurrent languages
with process creation. The languages fall into four categories according to their uniform/nonuniform
and static/dynamic nature. The models are defined in metric structures involving either linear or
branching time semantics.

E. Astesiano and G. Reggio: An outline of the SMoLCS approach, p. 81—113. The paper
elaborates a methodology for the specification of concurrent systems and languages. The methodology
has both algebraic and denotational flavour.

M. Broy and T. Streicher: Views of distributed systems, p. 114—143. This is a rather informal
paper on the various issues on distributed systems, focusing around the notion of a process, se-
quentiality, functionality, and some aspects of semantics. ’

P. Degano, R. De Nicola and U. Moatanari, CCS is an (augmented) contact free C/E system,
p. 144—165. It is shown how Milner’s CCS can be modeled by a class of Petri nets in a way which
corresponds to the original interleaving semantics. '

J.-Y. Girard: Linear logic and parallelism, p. 166—182. An informal paper on the relevance
of a kind of intuitionistic logic to concurrent computations.

A. Labella and A. Pettorossi: Universal models in categories for process synchronization,
p. 183—198. Processes are defined as objects of a category with morphisms labelled by the elements



Bibliographie 483

of a free monoid. The notion of synchronization is then captured by that of a functor. The category
of (synchronization) trees is related to behaviours of processes.

G. Mirkowska and A. Salwicki: On axiomatic definition of Max-model of concurrency,
p. 199—230. The admissible parallel executions of a concurrent program are shown to provide
an optimal Kripke model of a set of model formulas determined by the program itself.

The volume can be recommended to eraduate students and researchers with interest in con-

currency.
Z. Esik (Szeged)






Livres recus par la rédaction

G. M. Adelson-Velesky—V. L. Arlazarov—M. V. Donskoy, Algorithms for games, X+ 197 pages,
‘Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988. — DM 108,—.

Approximation Theory, Tampa. Proceedings, 1985—1986. Edited by E. B.- Saff (Lecture Notes in
Mathematics, Vol. 1287), V+228 pages, Sprmger-Verlag, Berlm—Heldelberg—-New York—
" Tokyo, 1987. — DM 35,—.

Automata, Languages and Programming. 14th International Colloquium Karlsruhe, Federal Republic
of Germany, July 1987. Proceedings. Edited by T. Ottman (Lecture Notes in Computer Science,
“Vol. 267), X+565 pages, Sprmger-Verlag, Berlm—Heldelberg——New York———Tokyo, 1987.
— DM 72,—.

J. L. Balcazar—J. Diaz—J. Gabarro, Structural complexity I (EATCS Monographs on Theoretical
Computer Science, Vol. 11), IX+ 191 pages, Springer-Verlag, Berlin—Heidelberg—New York—
Tokyo, 1988. — DM 54,—. ’

B. A. Barsky, Computer graphic and geometric modeling using beta-splines (Computer Science Work-
bench), IX+ 156 pages, Springer-Verlag, Berlin—Heidelberg—New York—-Tokyo, 1988. —
DM 78,—.

E. Behrends, Mass- und Integrationstheorie (Hochschultext), XII4-260 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York—Tokyo, 1987. — DM 39,50.

B. Benninghofen—S. Kemmerich-——M. M. Richter, Systems of reductions (Lecture Notes in Computer
Science, Vol. 277), X+ 265 pages, Sprmger-Verlag, Berlm—-Heldelberg—New York—Tokyo,
"1987. — DM 40,50. :

M. Berger—B. Gostiaux, Differential geometry Manifolds curves, and surfaces (Graduate Texts
in Mathemaucs, Vol. 115), X11+474 pages, Sprmger-Verlag, Berlm—Heldererg—-New York—
Tokyo, 1988. — DM 98,—.’

K. H. Borgwardt, The simplex method. A probablllstic analysis (Algorlthms and Combinatorics,
Vol. 1); XI+268 pages, Sprlnger-Verlag, Berlm—Heldelberg—New York—-—Tokyo 1987. —

" DM 68,—.

N. Bourbaki, Topological vector spaces Chapters 1—5. Elements of mathematlm Translated from
the French by H. G. Eggleston, S. Madan. VII+ 364 pages, Springer-Verlag, Berlin—Heidel-
berg—New York—Tokyo, 1987. — DM 148 —. '

CAAP ’88, 13th Colloquium on Trees in Algebra and Programming, Nancy, France, March 21—24,
1988. Proceedings. Edited by M. Dauchet, M. Nivat (Lecture Notes in Computer Science,
Vol. 299), VIII+304 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988.
— DM 45,—.

G. S. Campbell, An introduction to environmental biophysics (Heidelberg Science Library), XV + 159
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987.

Category Theory and Computer Science. Edinburgh, UK, September 7—9, 1987. Proceedings.
Edited by D. H. Pitt, A. Poigne, D. E.-Rydeheard (Lecture Notes in Computer Science, Vol.
283), V4300 pages, Springer-Verlag, Berlm—Heldelberg——-New York—Tokyo, 1987 — DM
45,—. . .



486 Livres regues par la rédaction

Classic Papers in Combinatorics. Edited by Ira Gessel, Gian-Carlo Rota. X 4489 pages, Birkhiuser
Verlag, Boston—Basel—Stuttgart, 1987. — Sfr, 98,—.

C. Dafermos—J. L. Ericksen—D. Kinderlehrer, Amorphous polymers and non-Newtonian fluids
(The IMA Volumes in Mathematics and its Applications, Vol. 6), XII+195 pages, Springer-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 48,—.

A. A, Dezin, Partial differential equations. An introduction to a general theory of linear boundary
value problems. Translated from the Russian by R. P. Boas (Springer Series in Soviet Mathe-
matics), X114 165 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. —
DM 148,—.

Z. Ditzian—V. Totik, Moduli of smoothness (Springer Series in Computational Mathematics, Vol. 9),
I1X +227 pages, Springer-Verlag. Berlin—Heidelberge—New York—Tokyo, 1987. — DM 108,—.

U. Dudley, A budget of trisections, XV +169 pages, Springer-Verlag, Berlin—Heidelberg—New
York—Tokyo, 1987. — DM 58,—.

Dynamic of Infinite Dimensional Systems. Fdited by S.-N. Chow, J. K. Hale (NATO ASI Series F:
Computer and Systems Sciences, Nr.-37), IX+ 514 pages, Springer-Verlag, Berlin—Heidelberg—
New York—Tokyo, 1987. — DM 168,—.

H. Edelsbrunner, Algorithms in combinatorial geometry (EATCS Monographs on Theoretical Com-

puter Science, Vol. 10), XV +423 pagw, Springer-Verlag, Berlin—Heidelberg—New York—
Tokyo, 1987. — DM 98,—.

F. Forgd, Nonconvex programming, 188 pages, Akadémiai Kiad6, Budapest, 1988.

Foundations of Logic and Functional Programming. Workshop, Trento, Italy, December 15—19,
1986. Proceedings. Edited by M. Boscarol, L. C. Aiello, G. Levi (Lecture Notes in Computer
Science, Vol. 306), V+218 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo,
1988. — DM 36,—.

Foundations of Software Technology and Theoretical Computer Science. Seventh Conference, Pune,
India, December 17—19, 1987. Proceedings. Edited by K. V. Nori (Lecture Notes in Computer
Science 287), IX+ 540 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987.
— DM 66,—.

Functxonal Analysis II. With contributions byJ Hoffmann-Joergensen. Edited by S. Kurepa, H. Kral-
jevi¢, D. Butkovi¢ (Lecture Notes in Mathematics, Vol. 1242), VII+432 pages, Springer-
Verlag, Berlin—Heidelberg—New York——Tokyo, 1987. — DM 65,—.

S. Gallot—D. Hulin—J. Lafontaine, Riemannian geometry (Universitext), XI+248 pages, Springer-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 48,—.

Geometrical Aspects of Functional Analysis. Israel Seminar, 1985—86. Edited by J. Lindenstrauss,
V. D. Milman (Lecture Notes in Mathematics, Vol. 1267), VII+212 pages, Springer-Verlag,
Berlin—Heidelberg—New York—Tokyo, 1987. — DM 35,—.

M. Goresky—R. MacPherson, Stratified Morse theory (Ergebnisse der Mathematik und ihre Grenz-
gebiete, 3. Folge, Band 14), XIV+272 pages, Springer-Verlag, Berlin—Heidelberg— New
York—Tokyo, 1988. — DM 148,—.

M. Gickeler—T. Schiicker, Differential geometry, gauge theories, and gravity (Cambridge Mono-
graphs on Mathematical Physics), X11+230 pages, Cambridge University Press, Cambridge—
London—New York—New Rochelle—Melbourne—Sydney, 1987. — L 30.00.

J. Grasman, Asymptotic methods for relaxation oscillations and applications (Applied Mathematical
Sciences, Vol. 63), XIII+ 321 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo,
1987. — DM 56,—.

M. Gritschel—L. Lovisz—A. Schrijver, Geometric algorithms and combinatorial optimization (Algo-

_rithms and Combinatorics, Vol. 2), XII+362 pages, Spinger-Verlag, Berlin—Heidelberg—
New York—Tokyo, 1988. — DM 148,—.



Livres regus par la rédaction 487

L. T. Grujic—A. A. Martynyuk—M. Ribbens-Pavella, Large-scale systems stability under structural
and singular perturbations (Lecture Notes in Control and Information Sciences, Vol. 92),
XV + 368 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 84,—.

A. Gut, Stopped random walks. Limit theorems and applications (Applied Probability, Vol. 5), IX+ 199
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988. — DM 88,—.

M. Hofri, Probabilistic Analysis of algorithms. On computing methodologies for computer algorithms
performance evaluation (Texts and Monographs in Computer Science), XV +240 pages, Sprm-
ger-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 88,—.

1. M. James, Topological and uniform spaces (Undergraduate Texts in Mathematics), IX+ 163 pages,
Springer-Verlag, Berlin—Heidelberg—-New York—Tokyo, 1987. — DM 74,—.

J. L. Kelley—T. P. Srinivasan, Measure and integral, Vol. 1 (Graduate Texts in Mathematics, Vol.
116), X+ 150 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988. — DM
79,—.

A. Kertész, Lectures on Artinian rings (Disquisitiones Mathematicae Hungaricae, Vol. 14), Edited
by R. Wiegandt. 427 pages, Akadémiai Kiadd, Budapest, 1987.

J. C. Kiefer, Introduction to statistical inference (Springer Texts in Statistics), VIII+334 pages,
Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1987. — DM 98,—.

N. Koblitz, A course in number theory and criptography (Graduate Texts in Mathematics, Vol. 114),
VIII+208 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM
74,—.

H. Krishna, Computational complexity of bilinear forms. Algebraic coding theory and applications
to digital communication systems (Lecture Notes in Control and Information Sciences, Vol. 94),
XVII+ 166 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM
44—,

F. Kroger, Temporal logic of programs (EATCS Monographs on Theoretical Computer Science,
Vol. 8), VIII+ 148 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987, —
DM 68,—.

S. Lang, Undergraduate algebra (Undergraduate Texts in Mathematics), IX+256 pages, Springer-
Verlag, New York—Berlin—Heidelberg—Tokyo, 1987. — DM 84,—.

S. Lang, Calculus of several variables, 3rd edition (Undergraduate Texts in Mathematics), XII+590 .
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 116,—.

M. S. Liv8ic—L, L. Waksman, Commuting nonselfadjoint operators in Hilbert space. Two independent
studies (Lecture Notes in Mathematics, Vol. 1272), III + 115 pages, Springer-Verlag; Berlm— :
Heidelberg—New York—Tokyo, 1987. — DM 23,—.

R. Mane, Ergodic theory and differentiable dynamic. Franslated from the Portuguese by S. Levy
(Ergebnisse der Mathematik und ihre Grenzgebiete, 3. Folge, Band 8), XtI+ 317 pages, Springer-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 148,—.°

B. Maskit, Kleinian groups (Grundlehren der mathematischen Wissenschaften, Bd. 287), XIII+326
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988. — DM 128,—.

Mathematical Ecology. An introduction (Biomathematics, Vol. 17), Edited by T. G. Hallam,
S. A. Levin, XII+457 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986.
— DM 168,—.

Mathematical Foundations of Programming Language Semantics. 3rd Workshop Tulane University,
New Orleans, Louisiana, USA, April 8—10, 1987. Proceedings. Edited by M. Main, M. Mislove,
D. Schmidt (Lecture Notes in Computer Science, Vol. 298), VIII+ 637 pages, Springer-Verlag,
Berlin—Heidelberg—New York—Tokyo, 1988. — DM 84,—.

Mathematical Models for the Semantics of Parallelism. Advanced School Roma, Italy, September
24—Qctober 1, 1986. Proceedings. Edited by Z. Venturini (Lecture Notes in Computer Science,

17



438 Livres regus par la rédaction

Vol. 280), V+231 pages, Sprmger-Verlag, Berlin—Heidelberg—New York—Tokyo 1987. —
- DM 36,—.

R. Mm&s—-F Richman—W, Rmtenburg, A course in constructive algebra (Universitext), XI+ 344
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988. — DM 68,—.

J. M. Montesinos, Classical tesselations and three-manifolds (Universitext), XVII+ 230 pages, Sprin-
ger-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. -— DM 58,—.

V. V. Nikulin—I. R. Shafarevich, Geometries and groups (Universitext), VIII+251 pages, Sprmger-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 58,—. -

Namerical Analysis. Proceedings of the Fourth IIMAS Workshop held at Guanajuato, Mexiko,
July 23--27,-1984. Edited by J.-P. Hennart (Lecture Notes in Mathematics, Vol. 1230), X+234
pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1986. — DM 35,—.

Numerical Méthods for Partial Differential Equations. Proceedings, Shanghai 1987. Edited by Y. Zhu,
B. Guo (Lecture Notes in Mathematics, Vol. 1297), XI 4244 pages, Sprmger-Vcrlag, Berlin—
" Heidelberg—New York—Tokyo, 1987. — DM 42,50,

T. 0da, Convex bodies and algebraic geometry. An introduction to the theory of toric varieries (Ergeb-
nisse der Mathematik und ihre. Grenzgebiete, 3. Folge, Vol. 15), VIII+212 pages, Sprmger-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 148,—.

G. Papanicolaou, Hydrodynamic behavior and interacting particle systems (IMA Volumes i m Mathe-
matics and its Applications, Vol. 9), XI+210 pages, Springer-Verlag, New York—Berlin—
Heidelberg—Tokyo, 1987. — DM 46,—.

Particle Physics — A Los Alamos Primer. Edited by N. G. Cooper and G. B. West, XI+ 199 pages,
Cambridge University Press, Cambridge—London—New York—New Rochelle—Melbourne—
Sydney, 1988. — L. 9.95.

S. J. Patterson, An introduction to the theory of Riemann Zetafunctions (Cambridge Studies in Ad-
vanced Mathematics, Vol. 14), XIIT+ 156 pages, Cambridge University Press, Cambridge—
London—New York—New Rochelle-——Melbourne—Sydney, 1988. — £ 20.00.

W. Peters, Counting for something. Statistical principles and personalities (Springer Texts ini Statistics),
XVIII+275 pages, Spnnger-Verlag, Berlm——Heldelberg—New York—-Tokyo, 1987. — DM
72,—.

Probability Theory and Mathematlcal Statistics. Proceedings of the Fifth Japan—USSR Symposium,
held in Kyoto, Japan, July 8—14, 1986. Edited by S: Watanabe Y. V. Prokhorov, VIII+589

" pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1988, — DM 93,—. =

Probability Theory and Mathematical Statistics with Applications. Proceedings of the 5th Pannonian
Symposium on Mathematical Statistics; Visegrad, Hungary, 20—24 May, -1985. Edited by
W. Grossmann, J. Mogyorodl I. Vincze, and W. Wertz. XIII+457 pages, Akadémiai Kiad6,
Budapest, 1988. '

Recent topics in Theoretical Physncs Proceedings of the First Nishinomiya—Yukawa Memorlal
Symposium, Nishinomiya, Japan, November 8—9, 1986. Edited by T. Takayama (Springer
Proceedings in Physics, Vol. 24), IX+ 129 pages, Sprmger Verlag, Berlm—Heldelberg—New
York—Tokyo, 1988. — DM 89,—.

S. 1. Resnick, Extreme values, regular variation, and point processes (Applied Probability, Vol. 4),
XI1+4320 pages, Sprmgcr-Verlag, New York—Berlm~Heldelberg—Tokyo 1987. — DM
145, —.

P. Ribenboim, The book of prime number records, XXIII+476 pages, Sprmger-Vcrlag, Berlin—
Heidelberg—New York—Tokyo, 1988. — DM 98,—.

M. Roseau, Vibrations in mechanical systems. Analytical methods and applications. Translated from
the French by H. L. S. Orde; XIV 4515 pages, Springer-Verlag, Berlm—Heldelberg—New
York—Tokyo, 1987. — DM 124,—.



Livres regus par la rédaction . 489

K. P. Rybakowski, The homotopy index and partial differential equations (Universitext), XII+ 208
pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 69,—.

J. L. C. Sanz—E, B. Hinkle—A. K. Jain, Radon and projection transform-based computer vision.
Algorithms, a pipeline architecture, and industrial applications (Springer Series in Information
Sciences, Vol. 16), VIII+123 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo,
1988. — DM 59,—.

M. Shiota, Nash manifolds (Lecture Notes in Mathematics, Vol. 1269), V14223 pages, Sprmger-
Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 35,—.

K. T. Smith, Power series from a computational point of view (Universitext), VIII 4132 pages, Sprin-
ger-Verlag, Berlin—Heidelberg—New York—Tokyo, 1987. — DM 45,—.

J. Song—J. Yu, Population system control, XI4286 pages, Sprmger-Verlag, Berlin—Heidelberg—
New York—Tokyo, 1988. — DM 138,—.

STACS 88. 5th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France,
February 11—13, 1988. Proceedings. Edited by R. Cori, M. Wirsing (Lecture Notes in Com- .
puter Science, Vol. 294), IX+404 pages, Springer-Verlag, Berlmeeldelberg—New York—
Tokyo, 1988. — DM 55,—.

Trends, Techniques, and Problems in Theoretical Computer Science. 4th International Meeting of
Young Computer Scientists, Smolenice, Czechoslovakia, Qctober 13—17, 1986. Selected
contributions. Edited by A. Kelemenova, J. Kelemen (Lecture Notes in Computer Science,
Vol. 281), VI+213 pages, Springer-Verlag, Berlm—Heldelberg—Ne\a York—Tokyo, 1987. —
DM 36,—.

E. Zeigdler, Nonlinear functional analysis and applications. Part 4. Applications to mathematical -
physics. XXIII+975 pages, Springer-Verlag, Berlm—Heldelberg— New York—Tokyo, 1988.
— DM 298,—.

17*






TOMUS LII—1988—52. KOTET

Barany, L., On the minimal ring containing the boundary of a convex body ........... 93—100
Bepman, J. JI., 06 o1H0M HHTEPHONALUMOHHOM Ipouecce DpmuTa—oeliepa mpH . yib

TPACHEPYTECKAX Y3TAX + ¢ v v v vnvsenannnosnsnssssresesososassasanncossssnas 93—100
Bosbach, B., Lattice ordered binary SyStems .. .ovvvvvererruinsvesreeesnaincerasanes 257—289
Bosznay, A. P.—Garay, B. M., On a geometric problem concerning discs ............. 325—329

- Bysanm, K.—Kpayc, T., Onucanue CKpElEHHLIX TPYONOBBIX anreGp Hajx KOHEYHBIMH

TIOMAMEI .o o uuevvnensesnoneesncecsesnseionsassossnsssnasss P resesans 291—-302
Chajda, 1., Examples of local uniformity of CONgruences ...........cveveveneiennnnss 81—84
Daréczy, Z.—Kitai, 1., Interval filling sequences and additive functions............... 337347
Denecke, K., Varieties and quasivarieties, generated by two-element preprimal algebras,

cand their equUIVAlENCES .. .iiriniii it iiieirraoneneseressasnasancassocsnas 69—179

Dharmadhikari, N. S.—Singh, R. K., Compact and Fredholm composite multiplication

OPETALOTS & v v v v v v ve e e auunnnnessoeeonsoacesoosssasssassnsassosnnnanssanses 437—441
Einmahl, J. H. J.—Ruymgaart, F. H.—Wellner, J. A., A characterization of weak con-

vergence of weighted multivariate empirical processes.............. o iereeeeae 191—205
Fakhruddin, S. M., On te category of S-POSetS ....icveriesrreerscennncenierocnenans 85—92
Fan, P., A note on local spectra and multicyclic hyponormal operators ............... 443—446
Finet, C., Sur un théoreme de J. GOUrgain ....cevviivrrnrierrrvssanasesnsecsonses 171—178
Fried, K., Rare bases for finite intervals of integers .......ccvoeviieiereiannennnnnns 303—305
Garay, B. M., ¢f. Bosznay, A. P. ... ittt eiiiiiitiiiiieaatiaanns 325-329
Griitzer, G.—Kelly, D., Addendum to “The lattice variety DoD” ..........ccouvnunnn 465
Haddock, J.—Krisztin, T.—Terjéki, J., Comparison theorems and convergence prop-

erties for functional differential equations with infinite delay ................... 399—414
Hsiang, W. H., Banach—Steinhaus theorems of locally convex spaces based on sequential

equicontinuity and essentially uniform boundedness .............coiiiiiiis, 415—435
Huhn, A. P., On non-modular n-distributive lattices I. Lattices of convex'sets.......... 3545

Isidro, J. M., On the group of analytic automorphism of the unit ball of J *.algebra ... 165—170
- Kaparyasa, I. A., O moacycteMax CXOARMOCTH IPOHM3BOIBHOM OpPTOHOPMAapOBaHHOH

CHCTEMBI 4ot ovvenrannsnnnconasansonsnncanonns thesatesecsesacntoantanennn 373—386
Katai, L, cf. DaroCzZy, Z. . ..ottt iiitntrintaasasstsnsseesassnsscasianans 337—-347
Keller, H.-D., Large deviations of the empirical characteristic function ............... 207214
Kelly, D., cf. GIAtzZer, G. ....vuiettriiiiiiiiinteesiiseeiessoncosseeioccasennnans 465
Kilgore, T., A note on optimal interpolation with rational functions ................. 113—116
Kovalevi€, L, A NOLE 0N Dy SPACES - ... uuneeeeeeenennssnnertsesseserieseessenans 331—336
Krasner, M., Abstract Galois theory and endotheory. II ..........ccovveiiiiiiiann, 231255
Kpayc, T., cf. By3amm, K. ... .. cieieoineeiiaeinoaeataseescsnencaneannnns 291302
Kristof, J., Commutative G/ *-algebras .......coiiiviiiiiiiiieiiiereniinneanenes 145—155

Krisztin, T., cf. Haddock, J.—Terjéki, J. ............... erarereeerereaes RN 399—414



492

Maeda, S.—Thakare, N. K.—Manjarekar, C. S., Abstract spectral theory. II. Minimal

characters and minimal spectrums of multiplicative lattices ................... 53—67
Makarov, N. G., One-dimensional perturbations of singular unitary operators ......... 459—463
Manjarekar, C. S., cf. Maeda, S.—Thakare, N. K. ........ ..o, 53—67
Meldrum, J. D. P., Group theoretic results in Clifford semigroups ................... 3—19
Moéricz, F.—Smiay, 1., Absolute summability of double orthogonal series ............ 349371
Pondgli¢ek, B., Principal tolerance trivial commutative Semigroups . ..........evuennn. 29—-33
Pulmannova, S., Free product of ortholattices ................. e ierer e 47—52
Ptak, V.—Vrbova, P., Operators of Toeplitz and Hankeltype ............covevev.n.. 117—140
Ruymgaart, F. H, cf. Einmahl, J. H. J.—Wellner, J. A. ........ ... ... ..ot 191—-205
Schwarz, 8, Semigroups with a universally minimal leftideal............c........... 21—28
Simon, L., On perturbations of boundary value problems for nonlinear elhptlc equations

on unbounded dOmMaINS. . ...ttt iie ettt ianatierraena it 179—190
Singh, R. K., cf. Dharmadhikari, N. S. ...ttt iiieiiiia e aanans 437—441
‘Szalay, L, cf. MOTICZ, Bt i i ettt i iaranssecaarceransnnes 349371
Sziics, J. M., Normalcy is a superfluous condition in the definition of G-finiteness..... 141—144
Szyszkowski, J., The invariance principle for functionals of sums of martingale differences 157—163
Tateoka, J., On some inequalities for Walsh—TFOUTIer SEFieS. « .o vvvrrinnreenrrnnrenns 387—392
Terjéki, J., cf. Haddock, J.—Krisztin, T. .....ciiiiiiiitiieiiiiinrerreenennionns 399—414
Thakare, N. K., cf. Maeda, S.—Manjarekar, C. S. .......ciiiiiirirtiiiiniinsnrnnns 53—67

Veres, S., The asymptotic log likelihood function for a class of stationary processes. ... 447—457
Vértesi, P., On the integral of fundamental polynomials of Lagrange interpolation. 393—398

Vibova, P., Cf. Ptak, V. . ittt ittt ittt tai e eneareenarnsanonnaannn 117—140

Wellner, J. A., cf. Einmahl, J. H. J—Ruymgaart, F. H. ...................cooiiane. 191—205

Wells, C., Wreath product decomposition of categories, I ............c.covviviean 307—319

Wells, C., Wreath product decomposition of categories, IL. .............c.coiiiiaan. 321—324
Bibliographie

R. H. ABraHAM—C. D. SHAW, Dynamics. — A. N. ANDRIANOV, Quadratic Forms and
Hecke Operators. — M. BERGER, Geometry [—II. — T. BETH—D. JUNGNICKEL—
H. Lenz, Design Theory. — B. BoLLoBAs, Combinatorics. — Detection of Changes
in Random Processes. — D. BraAEtss, Nonlinear Approximation Theory. —
W. DitTrRICH—M. REUTER, Selected Topics in Gauge Theories. — B. ECKMAN,
Selecta. — A. T. FoMENko—D. B. Fucus—V. L. GuTeMAcCHER, Homotopic
Topology. — G. K. FraNcis, A Topological Picturebook. — F. R. GANTMACHER,
Matrizentheorie. — M. B. GreeN—J. H. ScHwaARz—E. WITTEN, Superstring :
Theory, Vol. 1—2. — E. HAIRER—S. P. NoRSETT—G. WANNER, Solving Ordinary
Differential Equations I. — A. JONEs—A. GBAY—R. HuTtTtoN, Manifolds and
Mechanics. — H. Kocak, Differential and Difference Equations through Com-
puter Experiments. — J. L. KoszuL, Lectures on Fibre Bundles and Differential
Geometry, — J. P. La SALLE, The Stability and Control of Discrete Processes. —
T. Marorcst, A Concept of Mathematical Physics. — K. MuURoTA, Systems
Analysis by Graphs and Matroids, Structural Solvability and Controllability, —
S. Pokorskl, Gauge Field Theories. — G. POLya, The Pdlya Picture Album:
Encounters of a Mathematician. — L. AacH, A Guide to Statistical Methods



Bibliographie - 493

and to the Pertinent Literature. — R. I. SOARE, Recursive Enumerable Sets and
Degrees. — R. J. TRupEAU, The Non-Euclidean Revolution. — J. Woutka, Partial
Differential Equations. — H. P. Yap, Some Topics in Graph Theory........... 215230

Amorphous Polymers and Non-Newtonian Fluids. — Automata, Languages and Pro-
gramming, — E. BesreNDS, MaB und Integrations theory. — B. BENNINGHOFEN—
S. KEMMERICH—M., M. RICHTER, Systems of Reductions. — J. BOLYAI, Appendix,
The Theory of Space. — I. BorG—J. LiNGoEs, Multidimensional Similarity Struc-
ture Analysis. — N. BourBakl, Topological Vector Spaces. — N. P. CHAPMAN,
LR Parsing, Theory and Practice. — A. A. DEzIN, Partial Differential Equations.
— Differential Geometry. — Differential Geometry and Differential Equations.
— Z. Ditzian—V. ToTtIk, Moduli of Smoothness. — Functional Analysis II.
— J. GrasMmaN, Asymptotic Methods for Relaxation Oscillations and Applica-
tions. — Hydrodinamic Behavior and Interacting Particle Systems. — I. M. JAMES,
Topological and Uniform Spaces. — J. LINDENSTRAUSS—V. D. MIiLLMAN, Geo-
metrical Aspects of Functional Analysis. — M. S. Liviic—L. L. WAKSMAN,
Commuting Nonselfadjoint Operators in Hilbert Space. — Mathematical Ecology.
— V. A. MARCHENKO, Sturm—Liouville Operators and Applications., —
J. M. MonrtEsinos, Classical Tessalations and Three Manifolds. V. V., Niku-
LiN—I. R. SHAFAREVICH, Geometries and Groups. — D. H. PitT—A. POIGNE—
D. E. RypededrD, Category Theory and Computer Science. — W. PURKERT—
H. J. ILcaups, Georg Cantor. — H. RIeseL, Prime Numbers and Computer
Methods for Factorization. — K. P. RyBakowskl, The Homotopy Index and
Partial Differential Equations. — M. Suiota, Nash Manifolds. — Trends, Tech-
niques, and Problems in Theoretical Computer Science. — W. Van ASSCHE,
Asymptotics for Orthogonal Polynomials. — J. WEIDMANN, Spectral Theory of
Ordinary Differential Operators. — M. V. ZiL1, Mathematical Models for the
Semantics of Parallelism. .......... ... 467—483

Livres recus par la redaction ......... e e et e e 485-—489



INDEX — TARTALOM

M. Krasner, Abstract Galois theory and endotheory. IT ..........ccoovviiiienninnnennannn 231
B. Bosbach, Lattice ordered binary Systems............c.cciiuueerneiriinneinineriiancions 257
K. bysawu—T. Kpayc, Onucanue CKpEIICHHBIX I'DYNNOBHIX a/me0p HAJl KOHCYHBIMH HOAAMH 291
K. Fried, Rare bases for finite intervals of integers ..........ccciieveiierriniiennieenenns 303
. C. Wells, Wreath product decomposition of categories. I............coviiniiiniiniennnnn, 307

C. Wells, Wreath product decomposition of categories. IL.........coiiiiee i, 321
A. P. Bosznay, B. M. Garay, On a geometric problem concerning discs .............cooven. 325
1. Kovalevié, A note on Dp SPACeS .. .v.vvvrrneriinertonreneaereiurnerocnesasornecsen, 331
Z. Dardczy, 1. Kdtai, Interval filling sequences and additive functions ..................... 337
F. Méricz, I. Szalay, Absolute summability of double orthogonal series.................... 349
I'. A. Kapazyaan, O 0OACACTEMAX CXONMMOCTH OPOH3IBOBHON OPTOHOPMAPOBAHHOMA CHCTEMEI 373
J. Tateoka, On some inequalities for Walsh—FOurier Series .. .....oovvveeeenannneennens. 187
P. Vértesi, On the integral of fundamental polynomials of Lagrange interpolation........... 393 -
J. Haddock, T. Krisztin, J. Terjéki, Comparison theorems and convergence properties for func-

tional differential equations with infinitedelay .................... ..o ol 399
W. H. Hsiang, Banach—Steinhaus theorems of locally convex spaces based on sequential equi-

continuity and essentially uniform boundedness ...........ccviiiiiiiiiiiieien, 415
R. K. Singh, N. S. Dharmadhikari, Compact and Fredholm composite multiplication oper-

1) <~ O 437
P, Fan, A note on local spectra and multicyclic hyponormal operators .................... 443
S. Veres, The asymptotic log likelihood function for a class of stationary processes........ 447
N. G. Makarov, One-dimensional perturbations of singular unitary operators ................ 459
D. Kelly, G. Gratzer, Addendum to “The lattice variety DoD”. .............ccvvvvvnnn.. 465
Bibliographie

ACTA SCIENTIARUM MATHEMATICARUM
SZEGED (HUNGARIA), ARADI VERTANUK TERE 1

On peut s’abonner 2 ’entreprise de commerce des livres et journaux
,»Kultira” (1061 Budapest, 1., F6 utca 32)

ISSN 0324-6523 Acta Univ. Szeged
ISSN 0001 6969 Acta Sci. Math.

| moEx:26024 |
88-2102—Szegedi Nyomda — FelelSs vezetS: Surdnyl Tibor igazgatéd

FelelGs szerkeszt§ és kiad6: Leindler Liszlé Példdnyszidm: 1000. Terjedelem: 23,1 (A/S) iv
A kézirat a nyomddba érkezett: 1988. dprilis 4. Késziilt mondszedéssel, ives magasnyoméssal,
Megjelenés: 1988. november az MSZ 5601-24 és az MSZ 5602-55 szabviny szerint




