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Pseudomoduiar iattices and continuous matroids
A. BJORNER® and L. LOVASZ

Dedicated to the memory of Andrds Huhn

0. Introduction

If (E, #) is a linear matroid (i.e., represented by a subset of vectors in a linear
space) then (Z, .#) can be embedded in the full linear matroid (the matroid formed
by all vectors in that linear space) in a natural way. The most significant property
of the full linear matroids is that the lattice of their flats is modular. (In fact, apart
from direct sums, loops and parallel elements and the non-desarguesian projective
planes, this property characterizes full linear matroids.)

Other classes of matroids like graphic, algebraic and transversal matroids also
have natural “full’” members, which are, however, non-modular. For the case of
full algebraic matroids, INGLETON and MAIN [7] proved that the following property
(strictly weaker than modularity) still holds: any three lines such that any two
are coplanar, but all three are not coplanar, have a point in common. LINDSTROM
[11]—[13} observed that this fact is a basic property of full algebraic matroids,
and used it to prove that several other geometric results on projective spaces, e.g.
Desargues’s Theorem, also carry over to full algebraic matroids.

Dress and LovAsz [4] proved various generalizations of the Ingleton—Main
Lemma, and showed that one of them suffices to extend the minimax formula for
matchings in linear matrofds (LovAsz [14]) to algebraic matroids. It was observed
that full graphic matroids (or, equivalently, partition lattices) and full transversal
matroids also have this property. Another related property, the existence of ‘“‘pseudo-
intersections”, was established for the full algebraic matroids.

Modularity of the subspace lattice of linear spaces also plays a crucial role in
a contruction, due to voN NEUMANN ({16], of ‘‘continuous geometries”’. To obtain
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these, one embeds the subspace lattice of the n-dimensional linear space over some
field F in the subspace lattice of the ng-dimensional linear space over the same
field, so that any flat x of rank r(x) is mapped onto a flat of rank ¢-r(x). Such a
“stretch embedding” which preserves meet and join can be constructed using the
modularity of the lattices.

A construction of a ““continuous partition lattice” based on stretch embeddings
was given by BIORNER [2]. This construction depends on the fact that partition
lattices have sufficiently many modular elements. A general scheme to obtain con-
tinuous analogues of sequences of geometric lattices was also outlined: the scheme
depends on the existence of “‘stretch embeddings” between these lattices.

The main result of this paper is that the existence of “pseudointersections” in
suitable sequences of geometric lattices can be used to construct stretch embeddings
and thereby continuous analogues. In particular, we construct continuous transversal
geometries, continuous algebraic geometries over any field, and obtain a new theo-
retical explanation for the existence of the continuous partition lattice.

Semimodular lattices with pseudointersections, which we call pseudomodular,
seem to be worth studying even without an eye on continuous geometries. We shall
show that such lattices arise in the study of antimatroids (abstract convexity spaces).
In fact, an antimatroid with Caratheodory number 2 has a pseudomodular lattice
of feasible sets.

1. Pseudomodular lattices

In this paper we shall assume some modest familiarity with lattices and matroids.
For details concerning these notions see BIRKHOFF [1] and WELSH [17], respectively.

Let L be a semimodular lattice. We assume without further mention that all
semimodular lattices considered have finite rank. Let »(x) denote the rank function
of L. For each x, ycL, we set

P ,={z=y:rxV2)-r(2) = r(xVy)-r()}.

Note that it would suffice to require that r(xVz)—r(z)=r(xVy)—r(y) in this
definition, since the reverse inequality is always true by the submodularity of the
rank function.

This set lies in the interval [xAy, y]. To see this, let z€P, ,. Then z=(xVz)Ay
and hence by the submodularity of the rank function,

r(z) s r(xV2)Ap) =r(xV2)+r()-r((xV2)Vy) =
=r(xV2)+r()—r(xVy) = r(2).
So z=(xV2)Ay=xAy.
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Clearly, P,,, is a filter in the interval [xAy,y], i.e., if z€P,, and z=u=y
then ucP, .

If the set P, , has a unique least element then we call this the pseudointersection
of x and y and denote it by x7y. The lattice L is called pseudomodular if every pair
of its elements have a pseudointersection.

Note that in general x7y##y1x (cf. Lemma 1.1 below). Furthermore, the
existence of a pseudointersection is not a symmetric relation. For an example of
this, take three pairwise parallel lines in affine 3-space, not all in a plane. Let y
denote one of these lines and x, the plane spanned by the other two. Then in the
geometric lattice formed by the points of these lines, x7y exists but y7x does not.

The relationship between the pseudointersection and the (ordinary) intersec-
tion of two lattice elements is illuminated by the following lemma.

Lemma 1.1. For any two elements x and y in a semimodular lattice L, the
Jfollowing are equivalent:

(1) x and y form a modular pair, i.e., r(x\Vy)+r(xAy)=r(x)+r(y).
(ii) x71y exists and xy=x.
(iii) x7y exists and x7Jy=xAy.
(iv) xAy€P, ,.

Proof. All implications (i)—(iv)—(iii)—~(ii) ~(i) are straightforward.

The following lemma gives some means to verify the existence of pseudointer-
sections.

Lemma 1.2, For any two elements x and y of a semimodular lattice L, the
Jollowing are equivalent:

(i) x71y exists, i.e., P, , has a unique least element.
(ii) P, is closed under meets.
(i) If w,v,z€P, , and z covers u and v, then ulhveP, ,.

Proof. The only non-trivial implication is that (iii) ~(i). To verify this, assume,
by way of contradiction, that a and b are distinct minimal elements of P, ,, and
choose a and b so that aVb is as low in the lattice as possible. Let # be an element
in the interval [a, aVb] covered by aVb and let v be an element in the interval
[b, avb] covered by aVvb. Then by (iii), uAvEP, ,. Let ¢ be a minimal element
of P, , below uAv, then aVc=u<aVb and bVc=v<aVb. Since ¢ is distinct
from at least one of a and b, this contradicts the choice of a and b. (This lemma in
fact holds for any filter in any interval of any lattice of finite length.)

It will be useful to remark that the assertion (iii) in Lemma 1.2 holds auto-
matically if u, v is a modular pair, i.e., if u covers uAv. For, by submodularity

1*
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and the definition of P, ,, we have the following:
1 =r()—r(uAv) = r(uVx)—r((uAv)Vx) =

=zr(zVx)—r(wVx) =r(z2)—r() = 1.

So equality must hold throughout, and equality in the first inequality means just
that uAvEP, .

Lemma 1.3. Let L be a geometric lattice and x,y€L. If x7y exists then
it is equal to the meet of all z€L such that y covers z and x\'y covers x\z.

Proof. Let t=A{z: y covers z and yVx covers z\Vx}. Note that the second
condition on z is equivalent to z€P, ,. Hence (CP,, and thus ¢=x7y. On the
other hand, the interval [x7y, yY]=P, , is a geometric lattice and hence its bottom
element is the meet of its coatoms. This proves that z=x7y.

The existence of pseudointersections can be characterized by the non-exist-
ence of certain configurations in the lattice. Such a result is stated in the following
theorem.

Theorem 1.4. Let L be any semimodular lattice. Then the following are equiv-
alent :

(1) L is pseudomodular.

(ii) Let a,b, ccL, and assume that r(aVc)—r(a)=r(bVc)—r(b)=r(avbVc)—
—r(avb). Then r((aVcNBV))—r(aAb)=r(aVc)—r(a).

(iii) Let x,y,z€L and assume that x covers xAz and y covers yNz. Then
r(xAy)—r(xAyAz)=1.

(iv) Let x,y,z,ucL, and assume that u covers x, y and z, and z covers xN\z
and yAz. Then r(xAy)—r(xAyAz)=1.

(v) Let x,y,z,ucL, and assume that u covers x and y, z=u, and z covers
xNz and yAz. Then r(xAy)—r(xAyAz)=r(u)—r(z).

Remark. Property (ii) has the following consequences. Since c=(aVc)A(bVc),
itimplies that r(c)—r(aAb)=r(aVc)—r(a). Also, it follows that aand (aVc)A(BVc)
form a modular pair and aA(aVc)A(dVc)=aAb. Hence, aAc=alA(aVc)ABVc)A
Ac=aAbAc. Similarly, bAc=aAbAc. It also follows that aAc=alb.

Proof. (1)—~(i): Let d=(aVc)A(bVc). Then acP,,y, since aVc=aVyd and
aVbVc=aVbVd, and so r(aVd)—r(a)=r(aVbVd)—r(aVb) by the hypothesis
in (ii). Similarly b€P,,y, and hence by the pseudomodularity of L, aAbeP, ,y,.
This means that #(aAb)Vd)—r(aAb)=r(aVbVd)—r(aVb). Since (aAb)yd=d and
avbVd=aVbVc, this implies the assertion of (ii).

(ii)-~(iii): We may assume that z=(xAz)V(yAz); if this is not already the
case we can just let (xAz)V(yAz) play the role of z without changing the sitnation.
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. We may also assume that xAy=z (since otherwise xAy=xAyAz), and that
x#y. It follows that xAz=yAz, and x=(xA2)V(xAy), y=(A2)V(xAy). Also,
r(@)<r(zV(xAy)=r(zVx)=r(z)+r(x)—r(zAx)=r(z)+1. Hence, zV(xAy) covers
z. Now letting a=xAz, b=yAz and c¢=xAy in (ii), assertion (iii) follows.

(iii)—~(iv) An easy special case.

@iv)~(v): We prove this by induction on r(u)—r(z); (iv) is just the special
case of (v) when this difference is 1. We may assume that xAyAzz=xAy. Let p
be an element of the interval [xAyAz, xAy] covering xAyAz. Then clearly p=%z
and so p%xxAz and p=xyAz. Hence v=zVp covers z by submodularity and
similarly, (zAx)Vp covers zAx and (zAy)Vp covers zAy. Clearly (zAx)Vp=
=vAx<v and hence vAx=(zAx)Vp. Hence vAx is covered by v and similarly,
vAy Is also covered by v. Applying (iv) with v, vAx, vAy and z in place of , x, y

and z we obtain that
r(xAyAv)—r(xAyAz) = 1.

Applying the induction hypothesis with u, x, ¥y and v in place of u, x, y and z we

obtain that
r(xAy)—r(xAyAv) = r(w)—r@) = r@w)—r(z)—1.

This proves. (v).

(v)—->(@): We verify Lemma 1.2(iii). Let u,v,z€P, ,, where z covers both u
and v. Then by the definition of P, ,, zVx covers uVx and vVx, and zA(uVx)=u,
zA(wVx)=v. So (v) can be applied with uVx, vVx, z and zyx in place of x, y, z
and u, and we obtain that

r((uVX)A@V %)) —r(@VINOVX)AzZ) = r(zVx)—r(2).
Since, as remarked, (uVx)A(@VYx)Az=uAv, this implies that
r((uAv)Vx)—r@uAv) = r((uVx)A@V x)) -7 (uAv) = r(zVx) ~1(2),
which proves that uAveP, .

LinpsTrROM [13] proved the following generalization of the Ingleton—Main
Lemma for full algebraic matroids: if @, b and ¢ are three flats such that r(a)=
=r(b)=r(c)=n, r(avb)=r(aVc)=r(bVc)=n+1 and r(avbVc)=n+2 then aA\b=
=alNc=bAc=aAbAc and r(aAbAc)=n—1. This follows immediately from prop-
erty (iv) in the above theorem. He conjectured that if @, b and ¢ are three flats in
an algebraic matroid such that r(a)=rd)=r(c)=n, r(aVb)=r(ayc)=r(bVc)=
=n+k and r(aybVc)=n+2k then aAb=aAc=bAc=aAbAc and r(aAbAc)=
=n—k. This conjecture follows from the inequality in (ii) easily.
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2. Examples of pseadomodular lattices

In this section we discuss some classes of semimodular lattices which have
pseudointersections. We start with two obvious examples:

Example 1. Modular lattices.

Example 2. Semimodular lattices of length at most 3.

Next we discuss three families of geometric lattices, (i.e., matroids) which have
pseudointersections. These are ““full”’ members in their own class (algebraic matroids,
graphic matroids, transversal matroids) in a very natural way. The “full” linear
matroids, i.e., linear spaces, have a modular subspace lattice and hence they are
covered by Example 1. It would be important to understand the structure of those
classes of matroids which have natural “full’’ members and why these full members
tend to be pseudomodular.

Example 3. Full algebraic matroid lattices. These can be described as fol-
lows: let F and K be algebraically closed fields and Fc K. Then the algebraically
closed subfields of K containing F form a geometric lattice, which we denote by
Z(F,K).

The fact that & (F, K) has pseudointersections was shown by Dress and
LovAsz [4]. For the sake of completeness, we describe the simple construction of
the operation 7. So let X and Y be two algebraically closed fields with Fc X, YcKX.
Let {x;, ..., x,} be a transcendence basis of X over F. Consider the ideal I of all
polynomials over Y in m variables which are satisfied by (x;, ..., x,,), and a basis
¢, ---, gy of this ideal. We may assume that each g; has at least one coefficient
that is equal to 1. Then the algebraically closed subfield 7T of Y generated by the
coeflicients of ¢y, ..., gy is the pseudointersection of X and Y.

Example 4. Partition lattices, i.e., circuit matroids of complete graphs. We
show that the lattice of partitions of a set E has pseudointersections, using
Lemma 1.2(jii). Assume that u, v ard z are three partitions in P, ,, and that z covers
both u and v, i.e., both u and v arise from z by splitting a partition class into two.
The fact that wu,v,zcP,, implies that r(xVz)—r(z)=r(xVu)—r(u)=r(xVv)—
—r(@)=r(xVy)—r(»), and hence r(xVu)=r(xVv)=r(xVz)—1. We want to show
that r(xVu)—r(xVuVv))=r(w)—ruAv).

By the remark after Lemma 1.2, the only non-trivial case to consider is when
u and v do not form a modular pair, i.e.,, when they arise from z by splitting the
same class A in two different ways A,UA4; and A,UA, so that the intersections
B,=A.NA4,, B,=A4,N4,, By=A4,NA, and B,=A,NA, are all non-empty. So
r(u)—r(uAv)=2, and submodularity implies that r(xVu)—r(xV(uAv))=2. Now
if r(xVu)—r(xV(uAv))=1 then the sets B, B,, By and B, cannot belong to dif-
ferent classes in xV(uAv) and hence there exists a sequence x, ..., x; of elements
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of E such that x,€B8;, x,€B; (i#j), no other member of the sequence belongs to 4,
and any two consecutive members of the sequence are either in one class of x or
in one class of uAv. Without loss of generality we may assume that B;C 4, and
B;c 4. But then B; and B; must belong to the same class of xVu, which is a
contradiction.

Example 5. Full transversal matroids. The full transversal matroid 7.4(r)
of rank r is defined as follows. First we construct a bipartite graph G. Let S be a
set with r elements; this will be one of the color classes. For each subset S’'S S,
we take denumerably infinitely many new vertices ahd connect them by edges to
the vertices in S’. The set T of these new vertices will be other color class. Now
TA(r) is defined as the transversal matroid induced by Gon T. So aset T"CT
is independent iff G contains a matching covering 7”. '

Using Ko6nig’s Theorem, it is easy to show that the flats in J4(r) have the
following structure: take a set AS .S, and also a set BS T such that every non-
empty subset B’CB has at least [B’|+1 neighbors in S—A4. Let Q(A4) denote
the set of points x in T'such that all neighbors of x are in 4. Then F(4, B)=Q(4)UB
is a flat of rank |A4|+|B| in Jo#(r), and every flat is of this form.

The pseudomodularity of full transversal matroids (in fact, of a much larger
class of transversal matroids) will follow from the results in the next section.

Example 6. Antimatroids with Caratheodory number 2. Antimatroids were
introduced by EpELMAN [5] and JAMISON-WALDNER [8] as combinatorial abstractions
of convex sets. For our purposes, the following definition will suffice. Let E be a
finite set and &, a family of subsets of E with the following properties:

a) if X¢& and Y¢F then XUYeF;

b) if X¢&F, X+#0 then there exists an element x€X such that X—x€&F.

Then the pair (E, &) is called an antimatroid. The members of & are called
feasible sets, their complements are called convex sets. Since the family of convex
sets is closed under intersection, we can define the convex hull of any subset X of
E as the intersection of all convex supersets of X. These notions share many of
the combinatorial properties of convex sets in the usual sense. We shall need the
following two elementary facts: (I) if X and Y are feasible and Y ¢ X, then there
exists an element y¢ Y—X such that XUy is feasible; (II) p is in the convex hull
of G if and only if every feasible set containing p has a non-empty intersection
with G.

We define the Caratheodory number of an antimatroid as the least integer k
with the following property: whenever an element p is contained in the convex hull
of a set G, it is also contained in the convex hull of some subset GG with |G'|=k.
In the language of KorTe and LovAsz [9], the Caratheodory number is one less
than the maximum size of a circuit of the antimatroid. For various properties -of
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anttmatroids, see also EnELMAN and JamisoN [6], KorTe and LovAsz [10], BJORNER,
KortE and LovAsz [3].

The feasible sets of an antimatroid of & form a semimodular lattice % (E, %)
under ordinary inclusion. More strongly, £ (E, &) is locally free (i.e., the elements
covering any given element generate a Boolean subalgebra) and every locally free
semimodular lattice has a unique representation as the feasible set lattice of an
antimatroid (EDELMAN [5]). The rank of any element X¢Z in this lattice is just
its cardinality.

It was proved by KortE and LovAsz [9] that if the Caratheodory number of
an antimatroid is 1 then its feasible sets are the ideals of a poset and hence the lattice
is distributive (and therefore modular). Conversely, it is easy to see that for all
other kinds of antimatroids, the lattice Z(E, %) is non-modular.

We now prove that if (F, #) has Caratheodory number at most two then
L (E, F) is pseudomodular.

Let X and Y be any two feasible sets. Then by the definition of the rank and
of Py y, we bave that

Pyy={Z2cF: XNY cZcCY}

To show that X and Y have a pseudointersection, it suffices to verify the following
(by Lemma 1.2(iii)): let Z, Z—u and Z—v be feasible sets with XNYCZ~u,
Z—v and ZcY, and let W be the largest feasible subset of Z—u—v; then
XNYc W. Suppose that this is not the case, then there exists an element
pEXNY)—W. Let G:{gEE—— w: WU{g}Eg"}. Then p is in the convex hull
of G (this follows from properties (I) and (II) of antimatroids) and hence, by the
definition of the Caratheodory number, we have a pair {g,7}CG such that p is
in the convex hull of {g,r}. Since p is an element in the feasible set Z—u, it fol-
lows that one of ¢ and r must belong to Z—u. But none of g and r can belong
to Z-~u—v since this would contradict the choice of W. Hence v must be one of ¢
and r. Similarly, # must be one of g and r. But then X is a feasible set containing p
but not ¢ and r, which is a contradiction.

There are several important classes of antimatroids with Caratheodory num-
ber 2. We mention just a few:

Example 6a. Let E be any poset and let the convex sets be those sets which
contain, along with any two comparable elements x, y, the whole interval [x, y].

Example 6b. Let E be the vertex [edge] set of any tree T and let the convex
sets be the vertex [edge] sets of subtrees.

Example 6¢c. Let E be any finite set in R? and let the convex sets be those
subsets which contain, along with any two elements x and y, every point of E in
the region of the plane bounded by the segment xy and by semilines pointing ‘‘up-
wards™ from x and y.



Pseudomodular lattices and continuous matroids 303

3. Constructions preserving pseudomodularity

We show that some standard operations on semimodular lattices preserve
pseudomodularity.

3.1. Direct product.

3.2. Truncation. For a semimodular lattice L and integer k=1, let L,=
={x€L: r(x)<k or x=1}. Then the truncated lattice L, is again semimodular,
and it is easy to see that pseudomodularity is also preserved. The pseudointersection
xT,y (p#1) in L, is given by

xTy, if r(xVy)=k in L,

Xy = { ¥, otherwise.

A less trivial operation preserving pseudomodularity is the following:

3.3. Principal extension. Let L be a semimodular lattice and we L—{0}. The
principal extension of L with respect to w is defined on the set

L' = LU{y+p: y€L, r(yVw) = r(»)+2}.

Here y+p denotes a new element associated with the old lattice element y. The
ordering is defined as before on the old elements, and by

X=y+p iff x=y,
xt+tp=y+p iff x=y,
X+p=y iff xVw=y

for x, y€L. In particular it follows that 0+p, which we denote shortly by p, is
an atom and more generally, x is covered by x-+p whenever the latter exists. One
can verify that L’, with this partial ordering, is a semimodular lattice, containing
L as a sublattice.

(This construction is best known for a geometric lattice, i.e., the lattice of flats
of a matroid. Then the principal extension of L with respect to w means creating
a new point p of the matroid which is “‘in general position” on the flat w.)

Theorem 3.4. A principal extension of a pseudomodular lattice is again pseudo-
modular.

Proof. The proof is more-or-less straightforward; nevertheless, we include it
here for completeness. Let L be a pseudomodular lattice and weL—{0}. Let L’
be the principal extension of L with respect to w. Observe that the class of “new”,
elements is closed under intersection: (x+p)A(y+p)=(xAy)+p, and so is of
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course the class of ““‘old’’ elements. Further, if x is “old’” and y+p is “new” then
xAN(y+p)=xAy if p£x, and xA(y+p)=(xAy)+p if p=x.

We verify that condition (iv) of Theorem 1.4 holds for L’. Let x, y, z and u
be elements of L’ as in (iv). We may assume that they are distinct and that xAyAzs
#xMAy. The argument will be divided into several cases depending on the distribu-
tion of “new” elements among x, y, and z.

Case 1. x, y and z are “old”. Then u also must be “old”’, and we know that
(iv) is valid in L.

Case 2. x=xy+p, y=yo+p and z=z,+p are “new’ elements. Then condi-
tion (iii) applied to x,, ¥, and z, within L, implies (iv) for x, y and z.

Case 3. z=zy+p, and x, y are “old”. Then we have the following subcases.

Subcase 3.1. p£x,y. Then xAz is an “old” element covered by z and hence,
xAz=z,. Similarly, yAz=z, and the assertion is obvious.

Subcase 3.2. p=x but p=y (say). Then as before, yAz=z, and hence
xAyAz=xAz,. Since xAz=(xAzy)+p, it follows that

rxAY) =r(x)—1=r(xA\z2) = r(xAzp)+1 =r(xAyA2)+1,

which proves (iv).

Subcase 3.3. p=x,y. Then zAx=(z,Ax)+p is covered by z=z,+p by
hypothesis, and hence zyAx is covered by z,. Similarly, z;Ay is covered by z,.
Since x is an “‘old’’ element above p, and u covers x, u must also be ““o0ld”’. Hence
u, x, y and z, are elements of the old lattice L satisfying the conditions of Theo-
rem 1.4 (v), and hence by the pseudomodularity of L, we obtain that

r(xAY)—r(xAyAzp) = r(u)—r(zy) = 2.
Since xAyAz=(xAyAzy)+p, again (iv) follows.

Case 4. x=x,+p, and z is “old”. By symmetry this also handles the case
when y is “new” and z is “old”.

Subcase 4.1. p#%z. Then xAz is an “old” element covered by x and hence
xNz=x,. So xAyAz=x,Ay. Now xAy is either xeAy or (x,Ay)+p, which
proves (iv).

Subcase 4.2. p=z and y is ““old”. Then xAz=(x,Az)+p is covered by x=x,+p
by hypothesis, and hence x,Az is covered by x,. We can apply Theorem 1.4 (iii)
to the “old” elements X, y and z and obtain that r(xeAy)—r(xAyAz)=1. Now,
if p=y then xAyAz=(x,AyAz)+p and xAy=(x,Ay)+p; if pEy then xAyA
Az=x,AyAz and xAy=x,Ay. In either case, (iv) follows.
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Subcase 4.3. p=z and y=y,+p. Then, as in the preceding case, x,Az is
covered by x,. Similarly, y,Az is covered by y,. Apply (lii) to the elements x4, y,
and z, and obtain that r(xgAy,)—r(xAp,Az)=1. Now, xAyAz=(x;Ay,Az)+p
and xAy=(x,Ay,)+p, and we are done again. .

Case 5. x=x9+p, z=zy+p, and y is “o0ld”. By symmetry this also handles

19

the case when x is the only “old” element.

Subcase 5.1. pZ£y. Then yAz is an “old” element covered by z, hence
yAz=2z,, and xAyAz=xAzy=x,Azy. Since x covers xAz=(xoAzy)+p, we get
r(x)—r(x,Azg)=2. So, r(xAy)=r(x)—1=r(xAyAz)+1, and (iv) follows.

Subcase 5.2. p=y. Since xAz=(xeAzy)+p and yAz=(yAzy)+p, we have
that r(x)=r(x)+1=r(zy)+1=r(xAzo) +2=r(yAzy)+2. We may assume that
xoAzo£y (else xAz=y and xAyAz=xAy). Choose t€L so that yAzy<t<y.
Since (xpAzo)Vy=u covers y and (x,Azp)V(¥Azg)=z, covers yAz,, it follows
by semimodularity that z’=(xyAz)Vt covers r. Clearly z'¢L, r(z’)=r(y)=
=r(t)+1, and yAz' =t

First, suppose that x,%£z’. Then x,Az’=x,A\z,, which is covered by x,.
Applying Theorem 1.4 (iii) to the “‘old” elements x,, y, z’, we obtain that r(x,Ay)—
—1=r(eA\z’ Ay)=r(x,Azo\y).

Second, suppose that x,=z’. Since ¢ covers (Az,=yAz,, we may apply
Theorem 1.4 (iii) to the elements x,, ¢ and z,. This yields r(x,At)—1=r(x,AzoA\t)=
=r(x,AzoAp). But xoAt=x,Az' ANy=xyAy.

We have shown that in either case r(x,Ay)—r(xpAzoAy)=1. Since xAy=
=(xAy)+p and xAyAz=(xyAzsAy)+p, this proves (iv).

Observe that full transversal matroids, as defined in the previous section, can
be obtained from Boolean algebras by principal extensions (infinitely often with
respect to each flat). Hence the pseudomodularity of these matroids follows by an
easy compactness argument. More generally, every matroid which can be obtained
by principal extensions from Boolean algebras is pseudomodular. These matroids -
are all transversal, and can be represented as follows. Let G be a bipartite graph,
and assume that one of its color classes S has r elements (the other may be finite
of infinite). Also assume that for each s€S, the other color class T contains an
element which is connected only to s. Then the transversal matroid on T induced
by G (in which a subset T”C T is independent iff G contains a matching covering T7)
is pseudomodular.

On the other hand, not every transversal matroid is pseudomodular: let
S={1,2,3,4}, T={a,b,c, d, e,f}, V(G)=SUT, and E(G)={2a, 3b, 4c, 1d, 2d, le,
3e, 1f, 4f}. Then the transversal matroid induced by G on T is not pseudomodular
(the flats abde, acdf and beef violate condition (iv) of Theorem 1.4).
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The fact that partition matroids are pseudomodular can be restated so that
the Dilworth truncation of a Boolean algebra is pseudomodular. It is an interesting
problem to find a broader class of lattices whose Dilworth truncations are pseudo-
modular.

4. Stretch embeddings and continuous matroids

We prove here the key theorem which will enable us to construct ‘“‘stretch
embeddings” and thereby continuous analogues of some classes of geometric lattices.
This theorem generalizes a well-known result for modular lattices, see BIRKHOFF [1],
pp. 73—74.

Theorem 4.1. Let L be a pseudomodular lattice and a,, ..., a, elements of L
such that r(a)+... +r(a)=r(ayy ...V a,). Then the sublattice generated by the inter-
vals [0, a;] is isomorphic to the direct product of these intervals.

Proof. Obviously, it suffices to consider the case k=2. Note that the sub-
modularity of the lattice and the hypothesis that r(a,)+r(a.)=r(a,Va,) imply that
r(x)+r(x)=r(x;Vxy) for all x;=aq,.

Let L’ be the sublattice generated by the intervals [0, a;]. Define the mapping
@ (x1, x2)=x,Vxp. It is easy to see that this is an injection of [0, 4,]1X][0, a,] into
L’, and that this injection preserves joins. We will show that it also preserves meets.
This will then also imply that the mapping is bijective.

Let x;, y:€[0, @] and set p=(x;Vx)A(y1Vy2), 4=(x1Ay))V(x2Vys). We want
to show that p=gq. Itis obvious that p=g. To show that equality holds, we show
that p and g have the same rank. Clearly, 7(g)=r(x;Ay;)+r(x:Ay2).

To estimate r(p), let a=x;, b=y, and c¢=x,Vy,Vp in Theorem 1.4 (ii).
Then trivially aVbVe=x, Ay,Vx:Vy. and hence

r(aVbVe) = r(xVy) +r(x:V o).
Similarly we can compute that
r@Vb) =r(xVy), r(aVe)=r@x)+rxVyy), r®Ve)=r)+rixVyy.

This shows that @, b and c¢ satisfy the conditions in Theorem 1.4 (ii), and hence by
the pseudomodularity of L, we have '

r(c) = r(aAb)+r(aVec)—r(a),
or, substituting,
r(x:VyVp) = r(xAy)+r(x:Vy,).

Interchanging the subscripts, we obtain
rGaVyVp) = rlxeAy)+r(aVy).
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Hence by submodularity,
r(p) = r(pVxVy)+r(pVxVy) —r(x;Vy VXV y,) =

= r(eAy)+r(xAy) = r(g).
This proves the theorem.

It takes a little time to see that this theorem does not hold automatically in
every semimodular or geometric lattice. Let Z; and X, be two disjoint planes in a
rank 6 projective space, and let e; and f; be two lines in Z;. Construct a matroid
by deleting the intersection point of e, and f; as well as the intersection point of
e, and f, from the space. Then in the lattice of flats of this matroid, e;Af;=e,Af;=0,
but (e;Ve)A(f1V/f:)7#0. This shows that at least the trivial mapping ¢ used in
the proof above does not work. In fact, it is easy to see that this gives a counter-
example.

The previous theorem enables us to construct “stretch embeddings™ for vari-
ous classes of matroids. Let L, L,, ... be a sequence of pseudomodular geometric
lattices such that L, has height n. Assume that for each n, m=1 such that m|n,
there exist in L, n/m elements a,, ..., a,,, of rank m such that a,V...Va,;,=1
and [0, g]=L,. We call these elements the representatives of L,, in L,.

It is now easy to define a stretch embedding of L,, in L,, i.e., a lattice embedding
o=¢n: L,~L, such that r(go(x))=(n/m)r(x) for each x€L,,. For, let ¢;: L,—~
-[0, @] (i=1, ..., n/m) be any isomorphism, and define ¢ (x)=@,(x)V...V@,m(x).
Theorem 4.1 implies that this is indeed a stretch embedding.

In the paper of BIGRNER [2], a similar construction was described under the
hypothesis that the elements a, ..., 4,,, are modular. Since we assume the exist-
ence of pseudointersections for all pairs of elements, the construction in this paper
1s neither stronger nor weaker than that.

To construct the ‘““continuous limit” of this sequence of geometric lattices,
we have to assume that the mappings ¢} form a directed system, i.e., if k|m and
‘min then @007 =¢;. One may assure this by compatibly choosing the representa-
tives. This was done for the partition lattices in BIORNER [2]; we describe below
how such a choice can be made in the special families of matroids mentioned
before.

Continuous algebraic matroids. Let F be an algebraically closed field. For each
nz1, let K, be an algebraically closed field extension of F of transcendence degree
n, and let L,=%(F, K,). Let {x,...,x,} be a transcendence basis. Let 4; be
the algebraically closed subfield of K, generated by {X_1ym+15 ++-» Xim} (=1, ..., nj/m).
Then 4,, ..., 4,,, are appropriate representatives of L, in L,, and it is easy to
check that the induced mappings form a directed system.

Continuous transversal matroids. Let L,=J4#(n) be the full transversal matroid
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of rank n, constructed in Section 2. Let S={x;, ..., x,}. Assume that min and let
Si={X(i—1ym+1s -+» Xim} for i=1,...,n/m. Then Q(S;) is a flat in L, and these
flats can be chosen as representatives of L, in L,. It is straighforward to check that
the induced mappings form a directed system.

Now as in BJORNER [2], we can construct the direct limit L., of the system
{L., ¢§} and its completion L_, obtaining thereby continuous algebraic and trans-
versal matroids. The study of these objects is, however, left to another paper.
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Non-Arguesian configurations in a modular lattice
ALAN DAY?") and BJARNI JONSSON?)

To the memory of Andrds Huhn

1. Introduction. In [1] we showed that if L is non-Arguesian, then there exist,.
in the ideal lattice of L, elements p,, a€5%, and g;, Be5F, that are related to
each other in a manner similar to the ten points and ten lines in a non-Arguesian
configuration in a projective plane. In the lattice case, however, each p, is a point in
aplane P,, and each g, is a line in the plane Q,, with all of these planes being inter-
vals in the ideal lattice of L. Actually our construction yielded thirty two intervals
I,=u,jz,, pn<S5, and it was shown that, with at most two exceptions, these intervals
are non-degenerate projective planes. The exceptional intervals, I, and I, were
shown to be projective geometries of dimension three or less.

Our present objective is to describe in greater detail how the various intervals I,
fit together. The notation and terminology of [1] will be in effect. A non-Arguesian
perspectivity configuration (or PC), d, will be called prime if d covers d, in PC(L).
These PC’s and their associated intervals I,=u,/z,, p &S5, will be the primary
objects of our investigation. To simplify the notation, we write I, for I, I; for
Lijys 1+ for I ., ete.

It is easy to see that if, 9£u<v=5 (< means ‘““is covered by”), then the planes.
I, and I, are either transposes of each other (possibly equal) or else they are con-
nected by a two dimensional gluing (either loose or tight). Much less is known
about the intervals I, and I;. In the examples that have been constructed so far,
these too are non-degenerate projective planes, but we do not know if this is
always the case. We do however show that, if I, is either 2 or 3 dimensional, then.
it is non-degenerate. By duality, the same holds for I5.

Received August 25, 1986.
1) Research supported by NSERC Operating Grant A-8190.
2) Research supported by NSF Grant DMS 860251.
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There are two further technical conditions that apply to PC’s. A PC, 4, is called
stable if, whenever two intervals of the form I; and I;; are transposes of each other,
they are equal. This supposed restriction causes no real loss of generality since we
will show that, for every non-stable d, there exists a stable prime e with e<d. A PC,
4, is called Boolean if the two functions p—z, and p-u, of 2°into L are both
lattice homomorphisms. Clearly, if d is Boolean, then L:=U{l,: uS5} is a
sublattice of L of finite length. A fundamental result states that, if d is both
Boolean and stable, {I,: puS5} consists of 2" planes where 0=r=3. In this
case the length of L’ is at most 9, and each simple subdirect factor of L’ has length
6 or less.

Much less is known about the case when d is stable but not Boolean. We do
show however that in this case the twenty planes, I,, 2=|u|=3, are distinct from
each other and from the planes of the form I; or I;. Hopefully this case will
be broken down eventually into subcases for which reasonable descriptions can
be found.

Some examples of the above cases can be found in [3].

2. The gluings. Throughout this section we work with a fixed prime PC, 4, in
a modular lattice, L.

Lemma 2.1. For distinct i, j€S, z;z;=z,.

Proof. By definition, z, is the meet of all the entries in the matrix d. Since
each diagonal entry is the meet of all entries in its row (or column), it follows that
z, is the meet of the diagonal entries in d. For distinct i,j, k€5, we have

Ziz;= (d*ijd*ik)(d*ijd*jk) = d*ikd*jk = z.

Consequently z;z;=z,.

Lemma 2.2. Forall u,vCSs,

(D) zy+z, = 2,4y, if uNv#P;
(2) Zuzvzzynv, l.f NUV#S;
3) u,tu,=u,y,, if pulv=0;
@ wu,=u,,, if pUvs=5.

Proof. Statement (1) and its dual (4) are, respectively, parts (2) and (1) ot
{1; Lemma 5.2]. It therefore suffices to prove (2). Moreover we may assume that
=], pNvcv, and |uUv|=4. We consider four cases:
(A) lul=2; Iv|=3; luNv|=1. Wemay assume pu={i,j} and v={i, k, m}. Then
zpzv = d*ij(d*ik+d*im) = d*ii.= = zpﬂv'

(B) lul=3; |v|=3; |uNv|=2. We may assume u={i,j,k} and v={i,j, m}.
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Then i . ;
Z,2y = (d*ij+d*jk)(d*ij+d*jm) = d*ij = Zij = Zpnyee

©) |ul=2; [v|=2; |luNv|=0. We may assume p={i, j} and.v={k, m}. Then
d*ud*km = d*-ij(d*ik'l'd*im)d*km(d*ik"*' d*]k) ='d*iid*kk = ZiZp = Zo,

by 2.1. ‘ _
(D) lul=1; |v|=3; |uNv|=0. We may assume p={i} and v={j, k, m}. Then

, 202y = Z3ZijZjm = ZiZj = Zos
by (A) and 2.1. ‘ :

Lemma 2.3. For i€5, the four elements, dju; with j=i, are four points in
general position in the plane.I;.

Proof. Let i, ], k, m, n be the distinct members of 5. Then, by computing with
intervals,

dijuiz; = dijtpedi;uam(dy+dip) 22 (@it +di+ dig)(di+diy) =
(by transposition)
= (du + d:k + dm) ulkm/ (dlk + d;m) - utkm/ (dlk + d:m)

Now dy+d,, is a line in I, and is therefore covered by uy,,. Thus z;<dju;
for each j=i. To see that the four points are in general position, we compute

(dijus+dgu)dipu; = (dy;+dy) di = dyy = 2;.

Theorem 2.4. If u and v are non-empty proper subsets of 5 with u<v,
then either
z, < 4,z, and (u,+2,) < u,
or
z,=u,z, and (u,+z,)=u,.

Proof. The intervals I, and I, are of the same length and have comparable
upper and lower endpoints. Consequently, z,<u,z, if and only if (u,+2z,)<u,,
and z,=u,z, holds just in case (u,+z,)=u, is true. Therefore we need only show
that for each u<v, at least one of the four conditions holds. By duality, we need
only consider |u|=1 or 2.

Assume that p={i} and v={i,j}. By 2.3, z;<u,d;; whence u,z‘j must equal
one of those two elements. Thus z,<u,z, or z,=u,z,

Assume now that u={i,j} and v={i,j, k}. By the Main Theorem of [1], the
element g=d;;+dy is a line in the plane I,, and qu, is a line on the point d;; in 1.
Now z,=u,z,=qu,. This last inequality must be strict sinee

dijzijp = dij(zij+ z) = zy+dyyza = zi+ 2= z;; < dye
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Therefore the length of u,z,/z, is at most 2 and one of our relations must
again hold. :

Lemma 2.5. For all i€5, u,z; either covers. or equals z,,.
Proof.. For distinct i, j, k, m in 5,
UpZ; = ZiUiUjp = z,ul,m,, and z,=zz; =z d,,(d_,k-i-d,,,,) = z,(dﬂ‘-l-d im)
Since ( +d;)<ujym, the conclusion follows.
Lemma 2.6. Any four of the five elements, z;, i€S, are independent over z,.
Proof. If i,j, k, m€S are distinct, then |
2(z;+ 2+ 2,) = 2, Zjum = Zo.

. Theorem 2.7..The following conditions are equivalent: i
(1) The five elements, z;u,, i€S, are points in general position in I,;
(2) 1, is a non-degenerate 3-space;
(3) length (7,)=4;
@) z,<zu,, for all ic5. .3

Proof. Now [1; Theorem 5.4] gives us that length (7,)=4. Thus (1)=(2)
and (2)=(3) are. trivial. If z,=zu,, for some ic5, then I,=(z;4+u,)/z;, a sub-
interval of a length 3 lattice. Therefore (3)=(4). Finally if (4) holds, then the z;u
are five points in I, by 2.5. By 2.6, any four of these pomts are independent. From
length (I)=4, we deduce (1) '

Corollary 2.8. If the condztzons of the theorem hold then for each t€5 I
transposes down onto the interval u,jz;u, and u, _2' (z5u,: s£1).

Theorem 2.9. If length (1,)=3, then at least two of the intervals I, transpose
down onto I,. Thus in this case as well, I, is a non-degenerate projective space (i.e.
a plane).

Proof. Since any four of the elements z;u, are independent, at least one out
of each four must be z,. Therefore at least two-of the five such elements must be
z,. But this forces, for these i, J; to-transpose down onto I, smce both mtervals are

the same length

"Theorem 2.10. The duals of2 7, 2 8 and 29 also hold In parttcular szs is of
Iength 3 or 4, it is a non- degenerate prcyectwe space

3. Boolean conﬁguratlons. The definition of a Boolean conﬁguratlon in Section’l
contams redundancies.- We -already  know, for instance, that. whenever ufv20;

z,+2,=z,n, holds for any PC. In this section we. will reduce the number of con-
- s et IR E Moot Tl AR
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ditions needed to be checked in order to show that a PC, 4, is.Boolean. As before,
we assume that d is a prime PC in a modular lattice, L. : .

Recall that a subset UC L is called distributive if it generates a dlstrlbutwe
sublattice of L. A 3-element subset U={a, b, ¢} is distributive if either (a+b)c_"'
=ac+bc or (a+c)(b+c)y=ab+c. : y ‘ :

Lemma 3.1. The following conditions on a prime PC are equwalem
M) z,+z,=z,y, forall p,v<S5;

() z,4+2z,=2,y, for some p,v=0 with p\v=9, and qu#S

€)) {zl i Zixs Zjg} 18 distributive for all pairwise distinct i, j, k€S;

@) {z;j, zu, zjx} is distributive for some pairwise distinct i, J, kES
(5) {dss, das, dss} is distributive.

Proof. By 2.2, (1} is equivalent to z,+z,=2z,, with the added condition that
upand v are disjoint. By noting that z,=dy3d,y, z3=dp3dsy, and z,g3=ds3(ds,+ds,),
(5) is equivalent to z,+z,=z,,, with pu={2} and v={3}. By using the special.
automorphisms of PC(L), we get that (5) is equlvalent to z,+z,=z,,, with the,
added constraint that u and v are disjoint singletons. This Iast property and 2.2.
however easily imply that z,=2 (z;: i€u) for all pS5 and this implies (1). Tl_lere-
fore (1) is equivalent to (5).

A priori, (1) implies (2). Conversely, assume that (2) holds with g or v a non-
singleton. If p={i} and v2{j, k}, then C R

Zi' = ij(Zu+Zv) = Zi-l.—z,-jzv = Z,+Z_, :
If u= {z j} and v={k, m}, then . ‘
Zuk - Zuk(z +Zv) - Zu+zukz = Zu+zk

Thus this case reduces to the previous one. Therefore (1)&(2)«=(5).
Now for dlstmct i,J, kes, {zijs zus Jk} is dlstrlbutlve 1f and only 1f

ZU (Zlk+zjk) - Zu sz+Zu ij
The left side of this equation is z;;, and the right side is” z, +z Thus (4) implies
(2) and (1) implies (3). This completes the proof.y i - . BN R

Lemma 3.2. For a PC, d, the followmg are equwalent S L
() z,2,=2,q, for all u, vCs; o -
() z,z,=z,q, for some’ 1, V=5 with pUv=5 ané uﬂv;éﬂ

3 {zuk, iim> Zijny 1S distributive for all distinct i, j, k, mes;

W {ziji> Zijm» Zijn} - U5 distributive for some distinct: i, j, k, me5: ..

Proof. In considering (2), we may assumé¢ that /|j}=|v|.> The possible-values
for §= Iul and t—|v| are therefore . . T :
6,8 = (4 4), 3, 4), G, 3) and (2, 4).

C o,

bid
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For each of these four ordered pairs, (s, t), we define:

V) 2,2, = 2,q, for all g, v with uUv =35, .|;1| =s, and |v|=1¢;

G 2zuz,= 2z, for some u,v with pUv=35, |ul=s, and || =1

We claim that (3), (4), and each of the eight statements above are equivalent to

each other.
Assume that i, j, k, m, n are all distinct in S, and consider the equation

() Z;jkm Zijkn = Zijk -
This can be rewritten as

@it zim) @ije ¥ 2ij) = zip
and since z;,2;;,=2;;=2;y,, this is equivalent to

('* *) {Zijk’ Z; jms Zijll} is distributive.

Since (*) is {i,J, k}-symmetric and (* %) is {k, m, n}-symmetric, it follows that both
conditions are invariant under all symmetries of the indices. Therefore (3), (4),
(Va), and (3,,) are equivalent.

If (V4) holds, then

Zijk Zijmn = ZijkmZijkn Zijmn = ZijmZijn = Zij»

and thus (Vs) holds. On the other hand if (33,) holds, say z;;z z;;, then

ijmn=—<ij>
Zijkm Zijms = Zim+ Zijk Zijmn = Zimt Zij = Zijm
and (34,) holds. Consequently, (V) is equivalent to both (3,,) and (V;,).
If (V3,) holds, then

Zijk Zimn = Zijk Zikmn Zijmn = ZijZik = Zij>
and thus (V33) holds. On the other hand if (333) holds, say z,;z;,,=z;, then
Zijk Zijmn = Zijt ZijeZimn = 23+ 2 = 24

and (333) holds. Consequently, (V,4) is equivalent to both (3 ;) and (Vss).

A similar argument shows that each of the statements (3,4) and (V,,) is equiv-
alent to (V,,). Therefore (2), (3), and (4) are equivalent.

To obtain (2) implies (1) we need only consider complementary subsets of 5.
Assuming (2), we obtain ’

ZiZjkmn = Zij Zik Zjimn = 212 = Zos B0 2y;Zinn = Zijk Zipm Zamn = ZpZm = Zo-
Thus (2) implies (1) and the proof is complete.

Corollary 3.3. If, for some non-empty proper subsets, pCvsS, z,=z,, then
d is Boolean.
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Proof. The inclusion pcCv implies that u,=u,, and since I, and I, are both
projective planes we get equality here as well. Now let x=v\g and A=5\x=
=(5\v)Uu. We compute

Zyux = 2, = z,+2, = z,+2z,, and z,ny =2, = 2,2; = 2,2;.

By Lemmas 3.1, 3.2 and their duals, it follows that d is Boolean.
The above argument works in general to produce:

Theorem 3.4. A PC, d, is Boolean if and only if, for some distinct i, jeSs,
Z,-+Zj = Zjj, and Z'],'+Z—]j = Z9ij» and ui+u_,- = Ui, and u—,,-+u-|j = Unq;j.

4. Stable configurations. We still assume that d is a prime PC in a modular
lattice, L. .

Theorem 4.1. Let d be prime and stable. Then d is either Boolean or satisfies
(**%) Forall n,vsS, if 0cu<vcs, then z,<u,z, and u,+z,<u,.

Proof. Let d be stable, and take dcu<vcS. By 2.4 we must have I, trans-
posing up to J,, or z,<z,u, and u,+z,<u,, If the first property holds, then let
{i}=\u and take jeu. Now

szij = ul‘zijuﬂzv = sznzij = Zj.
Since d is stable, this implies J;;=1;, and hence d is Boolean by 3.3.

Lemma 4.2. Let d be a prime PC. For any x€dyyfz,, there exists a unique PC,

e, such that
e = du(x+di), e =2x, e=dy(x+dy),

and for {i,j}={0,1} and ke€{3, 4},
€ix = dik(djk'*‘em)-
M oreover if x is not less than or equal 1o zqy, then e is non- Arguesian.

Proof. The uniqueness of e is obvious for, by [1; Theorem 3.2], every PC in
L is completely determined by the elements listed above. Thus we are left with
showing the existence. This however also follows from [l; Lemma 2.4] and the
quoted theorem. If e were Arguesian, then e=e,, and

X = gy = €,00 = dyop = Zpa-

Lemma 4.3. If d is not stable, then there exists a piime PC, e<d that is both
stable and Boolean.
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Proof. If d is a prime PC that is not stable then there exists i, j€5 such that
I, transposes up to I;; but is not equal to I;;. Thus for these i and j we have

Z,-ju_,-:Z_,-, Z,'j'*‘u,':uj, and Z; < Z;.

By using the special automorphisms of PC(L), we may assume that i=0, and j=2.
Using x=dy1, in the previous lemma, we obtain a non-Arguesian PC, e, with
e<d and eyp=dy,u,. Tosee that e is prime, we note that zy=zy(d)=z,(e)<ep
(and that zo<e;). Therefore zy=2z,(e)=z,(e)<eys.

That e is Boolean follows from 3.3 and the fact that z,(e)=zy,(e), but e may
not be stable. What this e has done is replace the transpose Iy(d) up to J,(d) with
the equality Jy(e)=/,,(e). But for all i€5, direct calculations show that

z(d) = z;(e) = z;;(e) = z;;(d).

Therefore this e preserves all equalities of the form I;(d)=1I;;(d). This means that
after finitely many steps (at most 5%) all transpositions are replaced by equalities and
the resultant PC is both Boolean and stable.

Thus if L is a non-Arguesian modular lattice, we can find, in the lattice of
ideals of L, a prime (non-Arguesian) PC, d. If d is stable, then d is either Boolean
or satisfies (* % % ). If d is not stable, we can find a smaller PC, e, that is both stable
and Boolean. Therefore every non-Arguesian variety of modular lattices contains
a non-Arguesian lattice with a stable (non-Arguesian) PC. The Boolean case has
a nice finite solution which we present in the next section. By [3], there exists infinitely
many distinct stable PC’s satisfying (% % %), and these authors at least have found
no classification of them. Our only general result is the following.

Theorem 4.4. Let d be a stable non-Boolean PC. Then the twenty planes, I,,
2=|u|l=3, are distinct from each other, and from the planes, I, and 1;, i€5.

Proof. Let u=vCS5 satisty:
1=y, v/ =4, min{y),lv]} =3, and max {Ju,|v]}=2.

We wish to show that the assumption, z,=z,, leads to a contradiction. We obtain
this contradiction by producing a covering pair of subsets, x<A4, with z,=z,, and
invoking (# % %). . '

If pNv#0, then z,+z,=z,,,, and we may choose x to be the set of smallest
cardinality and A to be any cover contained in pUv. This produces our contradiction
on (* *x *x). Therefore we may conclude that

[0] pNv=49.
Therefore there exists i€u\v. But now we have for all icu

Zyugy) = Zyu@+ 2y = Zyu t+ 2, = Zpuy-
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To avoid conflict with (* % %), we must have:
icp implies [1] pgUv=5 and 4= le{1}|

21 uUv =vU{i}.
We also have jév\u and the trick above can be applied again to produce
jév implies [3] puUv=S5 and 4= l,',LU{]}I, or
[4] uUv=pU{)

Now [0] makes [2] equivalent to u={i}, and [4] equivalent to v={j}. Thus [1]
and [4] are incompatible as well as [2] and [3]. Our initial assumptions deny the con-
junction of [2] and [4], so we must have [1] and [3]. But this forces 3=][v| and |u]
which contradicts [0]. This concludes the proof.

5. Stable Boolean configurations. Throughout this section, d will be a prime,
Boolean, and stable PC in a modular lattice, L. The lattice homomorphisms,
zyu: 25~ L,

produce Boolean congruences on 2° which are, of course, determined by their respec-
tive ideals, Id(z) and Id (u), of subsets congruent to 8. Now {i}€ld (z2)ez;=
=z ofor all j=i, z;=z;efor all j#i, w;=u;eu=u,o{i}cId (). Therefore
Id (z)=1d (1), and by factoring out this ideal we produce, for some r with 0=r=35,
lattice embeddings

z,u': 2~ L.
Qur first result shows that this » can be further restricted.

S

Lemma 5.1. If d is Boolean and stable, then the set {I,: £S5} consists of 2"
planes for some r, O0=r=3.

Proof. Let i, j, k, m, n be distinct members of 5, and assume that for all s=n,
Zy,>2,. From 2.3 and stability, this implies that for all s#n, u,zg=u,dy,. 2.3
also says that {u,d,,: ssn} are points in general position in J,. But d is Boolean,
and therefore

uldm =1y zm( 1 Jn+ukzkn+u zmn) = Zmzjkmn = Zy.

This-is a contradiction. _

Thus for every n€5, there exists an s#n such that z,,=z,. Again since d is
Boolean this implies that for every. nes, - there exists an ssn .such that Zy=2,
Elementary counting now produces two distinct s€5 with z,=z,

We may therefore replace 5 by r for 0=r=3, and assume that we have lattlce
monomorphisms,

w2~ 1,

that satisfy:
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(1) I,:=u,jz, is a non-degenerate projective plane for all uCr;
(2) For all S u<vEr, z,u,<z, and u,+z,<u,.
We define L':=U{l,: uSr}. Clearly L’ is a sublattice of L of finite length.

Lemma 5.2. L’ is simple if and only if for all i€y, z;=u-,.

Proof. If our condition fails, then, for the offending i€r, L’ is the disjoint
union of the filter, {z; and. the ideal, ju.;. Thus L’ is not simple. -

Conversely, assume the' condition holds. We proceed by induction on r. If
r=0, then L’ is a non-degenerate projective plane and hence simple. If O<r=3,
take a prime quotient g/p in L’, and let 0 be the congruence it generates. Since
I’=1‘z,-U;u.,,- and z;=u-;, we must have this quotient in tz; or in ju;. By induc-
tion, @ collapses either the filter or the ideal. Since z;<u-;, induction applies also
to the other part and 6 collapses all of L’. Therefore L’ is simple.

Theorem 5.3. Suppose V is a variety of modular lattices and assume that there
exists a Boolean, prime PC in some member of V. Then there exists in V a simple non-
Arguesian lattice of length 3+r, with 0=r=3, and a Boolean, stable, prime PC,
d, in L with the following properties:

(1) L is generated by {d;;: i#j in 5};

(2) The set {I,: pS5} consists of precisely 2" planes.

Proof. By 4.3. there exists in some member L of V a PC, d, that is prime,
Boolean, and stable. By 5.1, the set {I,: uS5} consists of 2" distinct planes for
some r, with 0=r=3. We may assume without loss of generality that L is gen-
erated by the PC and is therefore the union of the planes 1,.

Since L is obviously of finite length, we may assume that its length is as small
as possible. We claim that in this case L is simple. To see this, we consider a homo-
morphism ¢: L—S, where S is simple and ¢ does not identify d,; and d,q, . Clearly
¢(d) is a (non-Arguesian) PC in S and in fact also prime and Boolean (since
¢(z,(0))=z,(¢(d)) and similarly for the ’s). The length of S therefore cannot be
less than that of L. This: makes ¢ an isomorphism and L simple. '
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Complete congruence relations of concept lattices
KLAUS REUTER and RUDOLF WILLE

To the memory of Andrds Huhn

1. Introduction. Although complete lattices have been a main subject of lattice:
theory for a long time, complete congruence relations of complete lattices have:
only rarely been studied. In this paper we describe a general approach to complete
congruence relations generalizing ideas introduced in [3]. In our approach we under-~
stand complete lattices as concept lattices. This enables us to establish a one-to-one

_correspondence between complete congruence relations and compatible saturated
subcontexts of suitable contexts. The use of this correspondence is demonstrated
by proving that every distributive complete lattice in which each element is the
supremum of v-irreducible elements is isomorphic to the lattice of all complete:
congruence relations of some complete lattice. The question remains open which
complete lattices are isomorphic to such lattices of complete congruence relations.
Examples are given that they need not be distributive. -

2. Compatible and saturated subcontexts. A subcontext of a context (G, M, I)
is understood as a triple (H, N, IN(HXN)) with HEG and NSEM; we often
write (H, N) instead of (H, N, IN(HXN)). Throughout this section, (G, M, I)
will be a context and (H, N) a subcontext of (G, M, I). For géG and méM,
g’ and m’ stands for {g}’ and {m}’, respectively. By n(H, N)(4, B):=(4ANH, BON)
for any concept (4, B) of (G, M, I), we define a map n(H, N) from B(G, M, I)
into WH)XP(N) where, in general, PB(S) is the complete lattice of all subsets
of a set S. The subcontext (H, N) of (G, M, I) is said to be compatible if the
following conditions are satisfied:

(la) For all h¢ H and me M\ there exists an n€ N\J} with n’'2n’;

(1b) for all nc N and g€G\n’ there exists an h¢ H\n’ with k' 2g’.

The notion of a compatible subcontext is the same as in [3] which follows from
Proposition 1.
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Proposition 1. (H, N) is compatible if and only if n(H, N) is a complete
dattice homomorphism from B(G, M, I) onto B(H, N, IN(HXN)).

Proof. Let (H, N) be compatible. By the basic theorem in [2], it must only be
shown that (ANH, BNN) is a concept of (H, N, IN(H X N)) for (4, BYB(G, M, I).
Let he H\ A. Then there is an m¢ B with (h, m)¢1, i.e. me M\J'. By (1a), there exists
an n€ N\W with n’ 2m’. Hence n¢ BN N and so h¢(BNNY. It follows that ANH =
=(BNNYNH. and dually that BANN=(ANHYNN. Thus, (4NH, BNN) is a
«concept of (H, N, INHXN)). Conversely, let (ANH, BNN)EB(H, N, IN(HXN))
for all (4, B)¢B(G, M, I). Now, let he H and me M\J. Since (m'NH, m"NN)
is a concept of (H, N,IN(HXN)) and h¢nm’, there exists an n€m”NN with
(h,n)¢1, i.e. ne N\} and n’'2m’. Hence (H, N) satisfies (1a). Dually we obtain
(1b). Thus, (H, N) is compatible.

Let ®(H, N) be the set of all pairs of concepts (4, B) and (C, D) of (G; M, I)
such that n(H, N)(4, B)=n(H, N)(C, D), i.e. ®(H, N) is the kernel of n(H, N).
If (H, N) is compatible, Proposition 1 yields that ©(H, N) is a complete con-
gruence relation on B(G, M, I) and that B(H, N, IN(H X N))=B(G, M, I)/®(H, N).
Let us recall that a complete congruence relation of a complete lattice L is an equiv-
alence relation @ on L satisfying (j/e\.l xj)@(j/e\.l y;) and (j\€/1 x;) @ (j\€/J y;) if x; Oy;

for all jeJ.

. The question arises how to reconstruct the compatible subcontext (H, N)
from the complete congruence relation @(H, N). By the following definition, a
complete congruence relation @ of B(G, M, I) is naturally transformed into a
subcontext of (G, M, I):

G(0):={gcGlyg:=(g”, g’) is the smallest element of a O-class},
M(O):={meM|um:= (m’, m”) is the greatest element of a O-class}.

To obtain (H, N) from ®(H, N) via this definition, (H, N) has to be saturated,
ie. (H, N) must satisfy the following conditions:

(2a) For g€G and XS H, g’=X’ implies g€ H;

(2b) for méM and YS N, m=Y’ implies mEN.

Proposition 2. Let (H, N) be compatible. Then (H, N) is saturated zfand
only if H=G(®(H, N)) and N=M(®(H, N)).

Proof. First we assume that (H, N) is saturated. Let h¢H and
(4, B)¢B(G, M,I). Then W"NH=ANH implies h€A and so h"SA; hence
h¢G(O(H, N)). Now, let gcG(®(H, N)). Since yg is the smallest element of a
©(H, N)-class, it follows that 'yg ((H ﬂg "y, (H ﬂg’)) and therefore g=H ﬂg")
Hence g€ H by (2a). :
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This proves that H=G(®(H, N)) and dually N=M(®(H, N)). Let us assume
these equalities for the opposite direction of the proof. Now we use that for a com-
‘plete congruence relation @ of a complete lattice L the set of the smallest elements
of the @-classes is closed under suprema and the set of the greatest elements of
the ©-classes is closed under infima. Let g’=X" for g¢G and XS H=G(©(H, N)).
Then, by the basic theorem in [2], yg= V yx and so g€G(®(H, N))=H. In

this way we obtain (2a) and dually (2b). Thus (H, N) is saturated.

The next proposition clarifies the nature of the complete congruence relation
O(H, N). In the formulation we use the notation [z] @ far the equivalence class of
-© represented by z.

" Proposition 3. Let @ be a complete congruence relation of B(G, M, |).
Then (G(O), M(@)) is a compatible and saturated subcontext of (G, M, 1) sat-
isfying ©@=0(G(0), M(0)) if and only if {[yh] © | h¢G(O)} is a supremum-dense
and {[un] © | nE M(@))} is infimum-dense in B(G, M, I)/6.

Proof. Assume that (G(©), M (@)) is a compatible and saturated sub-
context of (G, M,I) satisfying ©=0(G(0), M(©)). By Proposition 1,
{(w"'NG(6), K NM(O)) ] hEG(@)} is supremum-dense in B(G(O), M(O),
IN(G(O)XM(O))). Since O is the kernel of n(G(@), M(0)), it follows that
{[yh1© | heG(®)} is supremum-dense in B(G, M, I)/© and dually that {{un)® |
ne M(®)} is infimum-dense in B(G, M, I)/O. Let us assume these properties for
the opposite direction of the proof. First we show that (G(®), M(®)) is compatible.
Let h¢G (@) and me M\F'. Then [yh]O® £[um]@. Since {[un]O | nc M(O)} is infi-
mum-dense in B(G, M, I), there exists an n€ M(O)NHK with un=um, ie. n’'2m’.

- This proves (1a) and dually (1b). From the fact that the smallest and greatest elements
of the @-classes are closed under suprema and infima, respectively, it follows that
(G(©), M(0©)) is saturated. Now, let (4, B)éB(G, M,I) and let (4_,B_) and
(A=, B~) be the smallest and greatest concept in the @-class containing (4, B).
Then yg=(4,B) for gc€G(O) implies yg=(A4A_, B_). Therefore ANG(O)=
=A_NG(O) and dually BNM(O)=B- NM(O). Hence (4, B) ® (C, D) implies
ANG(©)=CNG(O)and BNM(0)=DNM(O),i.e. (4, B) ®(G(0), M(©)) (C, D).
Thus, we have @S O(G(O), M(O)). The equality follows from (A.,B_)=
=p(4NG(O)) and (4-, B~)=u(BNM(O)).

- For subcontexts (H,, N;) and (H,, Ny) of (G, M, I) we define (Hy, N))=
=(H,, Ny):=>H,SH, and N,SN,. The set of all compatible and saturated sub-
contexts of (G, M, I) together with this order relation is denoted by &(G, M, I).
For the complete lattice of all complete congruence relations of a complete lattice
L we use the notation €(L). From Proposmons 1 2, and 3 we obtain the following
theorem: :
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Theorem 4. Let (G, M, 1) be a context such that, for all complete congruence
relations © of B(G, M, I), {[yh]© | h¢ G(O)} is supremum-dense and {{un}© | nc M(©)}
is infimum-dense in B(G, M, 1)/®. Then ©@—(G(©), M(PO)) describes an anti-
isomorphism from €(B(G, M, I)) onto €(G, M, I).

For the study of €(L) it is interesting to find suitable contexts (G, M, I) with
L=B(G, M, I) satisfying the assumption of Theorem 4. Obviously, (L, L, =)
will do, but it would be better to find smaller contexts. The following lemma serves
us with one method recognizing such contexts. Another method is given by Lemma 7.

Lemma 5. Let {yg | g€ GYU{(M’, M)} be an order ideal and let {um | me M} U
U{(G, G")} be an order filter of B(G, M, I). Then {[yh)O |hcG(O)} is supremum-
dense and {[un]@ | n€e M(O)} is infimum-dense in B(G, M, I)/© for each complete
congruence relation @ of B(G, M, I).

Proof. For a complete congruence relation @ of B(G, M,I) let (4, B)g
be the smallest concept in the @-class containing the concept (4, B). It can be
easily seen that (4, B)—(4, B), describes a V-preserving map from B(G, M, I)
into itself. From (4, B)= V yg we obtain (A4, B)g= V (72)e¢ and so [(4, B)]®@=

V {(y2)e]©@. Since (yg)e yh for all geG with (yg)8 (M’, M) by assump-

tlon the first assertion follows (and dually the second).

3. Closed subcontexts, After establishing the correspondence between complete
congruence relations and compatible saturated subcontexts, the question arises how
to construct compatible and saturated subcontexts. In general, this question seems
difficult to answer. But there is a method which can be successfully applied in
special cases. This method is based on the relations ” and ,/ of a context (G, M, )
which have been introduced in [3] as follows (g€G, meM):

g/ m:= (g, m¢I and m’ is maximal in- {n'|n€EM\g’},

g/ m:= (g, m)¢l and g is maximal in {h'|hE€G\m’}.
It has been useful to fill in the arrows in the cross-table describing the given con-
text. An example is shown in Figure 1. A subcontext (H, N) of (G, M, I) is called
(arrow-) closed if h,/m implies mé N for h¢ H and m€M and if gf/n implies
g€H for gcG and néN. For example ({1, 4}, {a,d}) is a closed subcontext of
the context described in Figure 1. A context (G, M, 1) is called doubly founded
if for all (g, m)eGXMN\JI there exists h€G and neM with g n, W 2m’ and
h/m, K 2g" (cf. [4]).

Lemma 6. A compatible subcontext of a context (G, M, 1) for which g{=g,
implies g,=g, for g,8€G and mi=m, implies my=m, for m,, meM, is
closed. Conversely, a closed subcontext of a doubly founded context is compatible.
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albleldle

1| »~ x X X X

21> | x| 1 x|~

3 x »| | x x

4 X X - X
Figure 1

Lemma 6 is an immediate consequence of the definitions. Let us recall that
a context (G, M, I) is said to be reduced if g’=X’ implies geX for gcG, XSG
and if m'=Y’ implies meY for méM, YS M. Observe that each subcontext
of a reduced context is saturated. A complete lattice L is called doubly founded if,
for every pair x<y in L, there exists a minimal element s€L with s=y and
- s%Xx and a maximalelement t€ L with x=¢t and yz¢. Such minimal and maximal
elements are just the V-irreducible and A-irreducible elements of L, respectively,
and every element of L is the supremum of V-irreducible elements and the infimum
of A-irreducible elements of L. If J(L) denotes the set of all \-irreducible elements
of L and M(L) the set of all A-irreducible elements of L, then L=~%®B (J(L), M(L), =
by the basic theorem in [2], and (J(L), M(L), =) is a reduced context. For a doubly
founded lattice L, (J(L), M(L), =) is a doubly founded context; but the con-
cept lattice of a doubly founded context need not be doubly founded (take
(N, N, =)).

Lemma 7. Let L:=9B(G, M,I) be doubly founded and let © be acom-
plete congruence relation of L. Then {[yh)® | h€G(O)} is supremum-dense and
{[un]® | ne M(O)} is infimum-dense in L/O.

Proof. Suppose there is a concept (4, B) with [Vy(4NG(0))]O<[(4, B)]6.
Let (4, B) and (C, D) be the greatest element in [(4, B)]@ and [Vy(4NG(O))]6,
respectively. Because of (C, D)<(4, B), there exists a minimal concept (E, F)
in L with (E, F)=(4, B) and (E, F)%(C, D). Since (E, F) is V-irreducible in
L,thereisa g€G with yg=(E, F). Moreover, (E, F) must be the smallest element
of [(E, F)]® and so gcANG(O). This contradicts ygxVy(4NG(O)). Thus,
the first assertion is proved and dually the second.

Lemmas 6 and 7 together with Theorem 4 yield the following theorem:

. Theorem 8. For a doubly founded complete lattice L, €(L) is antiisomorphic
to the complete lattice of all closed subcontexts of (J(L), M(L), =).

~ Notice that the supremum and infimum of closed subcontexts (H, N,) with
k€K are just given by (U Hy, U N;) and () Hy, (} Ny).
k€K kEK kK keK
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Corollary. For a doubly founded complete lattice L, €(L) is completely dis-
tributive.

4. Lattices of complete congruence relations. It is a challenging problem to de-
termine the class of all complete lattices which are isomorphic to some €(L). Up to
now, no complete lattice is known which does not belong to this class. As a positive
result we prove that every distributive complete lattice with enough v-irreducible
elements is isomorphic to some €(L).

Theorem 9. Let D be a distributive complete lattice in which each element
is a supremum of v-irreducible elements. Then there exists a complete lattice L with
D=€(L). '

Proof. Let J(D) be the set of all v-irreducible elements of D (notice that
0¢J (D)). The following construction of a context (G, M, I) was stimulated by an
(unpublished) idea of E. T. Schmidt:

G:=J(D)x{1,2,3}, M:=JD)x{4,6}UDX{5},
and

I'= (JD)X {1} X (JD) X FHU (I (D) X 2} X (D X {SHU(J(D) X {3}) x(J(D) X {6}) U
U{((s15 s (525 1)) 515 526 T (D), 51 5 52, (3, )IE{2, 4), 3, 4), (1, 6), 2, 6)}}U
U{(Gs, ), (x, 9))|s€J(D), x€D, s = x, i€{1, 3}}.

For a- concept (4, B) of the context ), D, = ) we define
o(4, B) := (A><{1 2,3}, A><{4 6}UB><{3})

where - A:=J (D)\A. .We shall sﬁow that ¢ is an antiisomorphism from
B(J(D), D, =) onto, ‘@(G, M, I) which leads to D=€(B(G, M, I)) using' Theo-
tem 4 and the fact that D= !B(J(D) D; <) _Figure 2 visualizes the foregomo
definitions.

R ". : . Joxtar - dx(s)  J@)xls} |
M . N . . — T -
Joyx{1 b~ hooo i i
; . bl S 4
: o N b - . ___3. e _J 1.7
R A P g yx(3fi-s * . -‘.,---'u's t -.>< b

S L
dtee b Figure 27
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Let (4, B) be a concept of (J(D), D, =). First we show that the subcontext
(4, B) of (J(D), D, =), satisfies the conditions (la) and (2b). Let h¢4 and
meD\HK. Then vyh=%=(A4,B) and yh*um. Since 7yh is v-irreducible and since
B(J(D), D, =) is distributive, it follows that phz(4, B)vum. Hence there exists
an néB\J with n’'2m’; this proves (la). Let méD and YCSB with m’'=Y"
As ACY’ we get mEB and so (2b). Now we shall verify the conditions (1b), (2a),
(1a), and (2b) for the subcontext o(4, B) of (G, M, I). Define (H, N):=0(4, B).
For g€G and mcM we write g' and m' instead of g’ and n?’, respectively, to avoid
confusion; the prime symbol is wused in this proof with respect to the context
(J(D), D, =). Because of G\n'SH for all néN, (H, N) satisfies (1b). (2a) fol-
lows from the fact that g/2Dg! implies g,=g, for all g,,2,6€G. For heH we
have M\/W' S NUDX{5}. Therefore (la) holds because (4, B) satisfies (la) in
(J(D), D, =) as shown above. Since mjomj for my, myeM and m#=(1p, 5)
implies my, my€ DX{5}, (H, N) satisfies (2b) because this condition holds for
(4, B) in (J(D), D, =). Thus, (H, N) is a compatible and saturated subcontext
of (G, M, I).

Now we shall show that a compatlble and saturated subcontext of (G, M, I}
equals o(4, B) for some (4, B)¢B(J(D), D, =). It can be easily seen that g/ m
for all (g, mEGXMN\I and g/m for all (g, mEGX(J(D)X{4,6})\]. By
Lemma 6, a compatible subcontext of (G, M, I) must be of the form (C x{1, 2,3},
Cx{4,6}UBX{5}) with CSJ(D) and BSD; in addition, s=x has to be hold
for all s€C:=J(D)\C and x€B. It remains to show that (C, B) is a concept
of (J(D), D, =) if (Cx{l,2,3},CX{4,6}UBX{5}) is a compatible and saturated
subcontext of (G, M, I). Suppose thereis an s€C with s€B’. Because of s"2 D, we
can choose an x€D\s'. By (la), there exists a (y, ))€CX {4, 6}UBX{5}\(s, 1)f
with (y, i)' 2(x, 5)'. This implies y€B which contradicts s¢B’. Thus, C=B’
is shown. Let x€D with CSx’. For each geG\(x,5)' we have geCx({l,2,3}
and (x, 5)€M\g'. Hence, by (la), there exists an ag€(CX{4, 6}UBX {5)h\g’
with (ag)'2(x, 5). It follows that ag€BX {5} and (x, 5)'=(x(G\(x, 5)"))". Now
(2b) yields x€B and therefore B=C". )

Since (A4,, B)= (Aa,Bz)og(Al,BI)Zg(Az, By), 'it is shown that D is anti-
1somorph1c to G(G M, I).- We apply Lemma 5 to- see. that . G, M, 1) satisfies
the assumption of Theorem 4. Obviously, {yg|g€G}U{(M’, M)} is an order ideal of
B(G, M, I). Let um<(4, B) for méM and (4, B)eB(G, M, IN{(G, G")}. Then
B=BX{5} and so u(AB,5)=(4, B). Hence {um|mecM}U{(G, G")} is an order
filter of B(G, M, I). Finally, Theorem 4 yields D=C(B(G, M, I)).

The assumptions of Theorem 9 are fulfilled by distributive dually continuous
lattices [1; p. 69] and, in particular, completely distributive complete lattices [1; p. 58].
Since the construction in the proof yields a finite context for a finite lattice D, the
assumption of distributivity is unavoidable for this kind of construction. Nevertheless,
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there are non-distributive lattices € (L) for certain infinite complete lattices L where
€ (L) might even be finite. This we show by two examples.

Example 1. Let Z be the set of all integers and let E and O be the set of all
even and odd integers, respectively. We define a context (G, M, 1) as follows:
G:=7Zx{1,2,3}, M:=ZX{4,5,6},
I:={((x, 1), 0, )| x, ¥€Z, x = y, (i, {1, 9, (2, 5), 3, )}

Now, we consider the following subcontexts:

(Hy, NyY):= (ZX{IJUEX{2}UOX {3}, ZX {4}UO X {5}UEX{6}),

(Hy, Np):= (OX {1IJUZX{2JUEX {3}, EX{4}UZX {5}U0 X% {6}),

(Hs, Np):= (EX{I}UOX {2}JUZ X {3}, OX {4}UEX {5}UZ X {6}).
It can be easily checked that (H;, N;) is a compatible and saturated subcontext of
{G, M, I) for i=1,2,3; furthermore, the subcontexts (@, #), (H,, N,), (H,, N,),
(H;, N3), and (G, M) form a sublattice of &(G, M, I) isomorphic to M,. This
shows that €(B(G, M, I)) is not distributive.

Example 2. Let L, be the complete lattice described by Figure 3.

n times

Figure 3

The lattice Z has only two non-trivial complete congruence relations. It fol-
lows that G(L,,)E[O\{o]"eal. For n=2, €(L,) is not distributive. Let us remark

that €(L,) is antiisomorphic to the face lattice of an n-cube. The diagram of €(L,)
is shown in Figure 4.

Figure 4
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Mal’cev conditions for varieties of subregular algebras

JAROMIR DUDA

Although every congruence uniquely determines anyone of its blocks, the
converse apparently does not hold in general. This trivial fact has given origin to
various definitions of congruence ‘“‘regularity” or ‘“‘nice” congruences or “‘a good
theory” of ideals etc. Recall from the literature that an algebra % is called regular
if every congruence on U is uniquely determined by anyone of its blocks; an algebra
A with nullary operations ¢, ..., ¢, is called weakly regular (with respect to ¢y, ..., ¢,)
whenever every congruence ¥ on U is uniquely determined by its blocks
[a]Y, ....[c,]¥. A natural continuation of these two concepts was introduced by
J. TimM, [12]. We write A, B, ... for the universes of algebras 2, B, ... .

Definition 1. An algebra U is said to have subregular congruences (briefly :
W is subregular) if every congruence ¥ on . is vniquely determined by its blocks
[b]P, bEB, for any subalgebra B of U.

It is already known that varieties of regular algebras and varieties of weakly
regular algebras are definable by Mal’cev conditions, see [1, 2], [15] and [7] for the
details. The objective of this note is to prove that also varieties of subregular algebras
form Mal’cev class. We give here the explicit Mal’cev condition, see Theorem 1,
since the characterizing identities enable us to prove that any variety of subregular
algebras is congruence modular and n-permutable for some n=1. In addition
we discuss the relationship between subregularity of tolerances and subregularity-
of congruences on algebras from a given variety. As a result of these considerations’
a simple Mal’cev condition for permutable varieties of subregular algebras is obtained.’

Two lemmas will be needed in the sequel.

Lemma 1. Let B be a subalgebra of an algebra N, ¥ a congruence on W. The
Jfollowing conditions are equivalent:

-Received July 10, 1984.
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(1) Y is uniquely determined by its blocks [b] ¥, bEB;
(i) ¥= @( U ({6} X 4,)) for some subsets B,SB and A,S A4, bEB,.

Proof. (i)=(ii): If (i) holds then ¥= @(U ((5)¥ Xx[b] ?)). Using an evident
fact that @( U (b1 P X[b]P)) = @( U ({b} ><[b] T)) the desired conclusion (ii) read-

ily follows.
(ii)=(i): Conversely, suppose (ii). Then Y2 |J ({b}X4,) which gives that
bEB

[B1P X[b)¥ 2 {b} X 4, for every bEB,. By forming ;uitable set unions we obtain
Y= U ([b]Wx[b]Y’)D U (D1 X[b)¥)2 U ([b]Wx[b]W)D U ({b} X 4,). Hence

‘I’D@(U([b]Y’x[b]W))D@(U({b}xAb)) Y, ie Y= @(U([b]q’x[b]q’))
asrequlred

Remark 1. Evidently, the subsets B, and 4,, béB,, from the previous lemma
can be taken finite whenever ¥ is compact (=finitely generated).

H. A. THursTON has given a useful criterion for varieties of regular algebras
in [13]. Lemma 2 shows that an analogue result holds for varieties of subregular
algebras.

Lemma 2. For a variety V the following conditions are equivalent:
(i) Every WeV has subregular congruences;
(ii) a congruence on WEV is trivial whenever it is trivial on a subalgebra B of .

Proof. The implication (i)=(ii) is obvious.

(ii)=>(i): Let B be an arbitrary subalgebra of A€V. We have to prove that
any congruence ¥ on U is uniquely determined by blocks [b]¥, b¢B. To do this
take the congruence SI”=@("LEJ‘9 (51 P x[b]¥?)) on U. Clearly, the subset [B]¥="

= J [b]¥ is a subalgebra of A, moreover, the equality [B]U=[B]¥" follows
bEB

from the construction of ¥’. Since ¥ 2%’ we can consider the congruence ¥/¥’
on the quotient algebra W/¥'€V. Apparently, ¥/¥’ is trivial on the subalgebra
[B1Y’ /¥ N([B]¥’ X[B]¥") of W/¥P’ hence, by hypothesis (ii), ¥/¥’ is trivial
on the whole algebra W/¥’. In other words we have ¥Y=%" which was to be
proved.

" Now we state the promised Mal’cev condition for varieties of subregular alge-
bras (announced in [4] at first).

Theorem 1. For a variety V the following conditions are equivalent:
(1) every W€V has subregular congruences;
(2) there exist unary polynomials u,, ..., u,, ternary polynomials p,, ...,p, and
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4-ary polynomials s,, ..., s, such that
x = 5(x,, 2, u,(2))
s,-(x, ¥ 2, Bi(X, ¥, z)) = s,-+1(x, s 2, ui+1(z))9 l=i<n,
¥ = 8,(%, ¥, 2, pa(, ¥, 2))

u(z) = pi(x,x,2), 1=i=n,
hold in V; :
(3) there exist unary polynomials u,, ...,u, and ternary polynomials p,, ..., p,
such that
(ui(z) =pxy,2,1=i= n) ox=y
holds in V.

Proof. (1)=>(2): Take A=Fy(x,y, z), the free algebra in V on free gen-
erators x, y and z. Choose the subalgebra B=gy(z) of A and consider the principal
congruence @(x,y) on U. Since A is subregular, Lemma 1 (see also Remark 1)
yields '

(%) O(x,y) = by, a1), ..., {bms am)
for some elements b, ..., b,€B and a, ..., a,€A. Applying the binary scheme,
see [5, Thm. 1], to the congruence on the right hand side we get that
x = 01(u1, P1),
0:(pis ) = 6101 (Ui41, Pig), 1=i<n,
Y = 6,(Py> ty),

where o, ..., 6, are binary algebraic functions over 2 and

. <u1,P1>, Mt <uns pn>E {<b1, 01>, T <bma am)}-

Using the fact that U=y (x, y,z) and B=§,(z), the above equalities can be
rewritten in the form

X = Sl(x9 Vs 2, ul(z)s pl(x> Vs Z)),

Si(x’ ¥, 2, pi(%, ¥, 2), ”i(z)) = 5i+1(x’ s 2, ti41(2), pira (%, ¥, Z)), Il=i<n,

¥ = 8,(%, ¥, 2, (%, p, 2), u,(2)),
for some unary polynomials 1w, ...,u,, ternary polynomials p,, ...,p, and 5-ary
polynomials s, ..., s, of V. Moreover (*) implies the identities wu;(z)=p;(x, x, 2),
1=i=n. Now one can easily verify that the ternary polynomials q,, ..., g, defined
by ¢:(x, v, 2)=s:(x, z, z, p;(, 2, 2), pi(X, ¥, 2)), 1 =i=n, satisfy the identities

x = q,(x, 7, 2),
qi(xa X, Z) = qi+1(xa 2, Z)s l=i< n,

z= q"(x’ x’ z)’
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ensuring the (n+ 1)-permutability of V, see [9, 10] or [8, p. 353]. Then, by [5, Thm. 2],
unary scheme can be used to describe the congruence O((by, ay), ..., (bn, an)). In
this way we obtain the same identities as above with an additional information
that the polynomials s,, ..., s, do not depend on the last variable. Hence we have
X = sl(xa Y, z" ul(z)),
s,-(x, Y, Z, pi(x’ Ys Z)) = si+1(x’ Y, 2, ui+l(z))’ l=i< n,
¥ = 5.(%, 3, 2, (%, , 2)),

ui(z) = pi(x: X5 Z), Il=i= n,
as desired in (2). ' )

The implication (2)=(3) is clear.

(3)=(1): Let B be a subalgebra of AV, ¥ a congruence on A. Assume that
[d)¥ ={d} for every d€B. Apparently (u;(c), p;(a, b, ¢))={p:(a, a, ¢), p;(a, b, c))€ ¥,
i=1, ...,n, hold for any {(a, b)¢¥ and c€B. Since z(,-(c)EB, i=1,...,n, we have
further wu;(c)=p;(a, b, ¢), i=1, ...,n. Then the hypothesis (3) gives a=b proving
the triviality of ¥. Lemma 2 completes the proof.

Remark 2. Putting #,(2)=...=u,(2)=z (m(2)=cy, ..., u,(z)=c, for nullary
operations ¢y, ...,c, of V) in Theorem 1 (2), (3) we immediately get the well-

known Mal’cev conditions for varieties of regular (resp. weakly regular) algebras.
We have already proved

Corollary 1. Any variety of subregular algebras is n-permutable for some n=1.
Furthermore, the identities from Theorem 1 (2) yield
Corollary 2. Any variety of subregular algebras is congruence modular.

Proof. Define 4-ary polynomials my, ..., my,.; by my(x, y, z, w)=x,

myi_1(X, ¥, z, W)=s;(x, w, w, ;(w)) (1=i=n), my(x, y, z, w)=s;(x, w, w, p:(y, z, w))
(I=i=n) and my,(x, y,z, wy=w. Then my_,(x,y,y, w)=s;(x, w, w, u;(W))=
=5,(x, w, w, pi(y, ¥, W))=my(x, y, y, W) (1=i=n), my(x, x, w, w)=x=
=5(x, w, w, (W) =m, (x, x, w, w), my(x, x, w, W)=s;(x, w, w, p;(x, w, w)) =
= i+1(xa w, w, ui+1(w))=m2i+1(x, X, W, W) (1§l<n)a mzn(x: X, W, W)=
=s,,(x, w, w, p,(x, w, w))=w=m2,,+1(x, x,w,w) and m;(x, y,y, x)=x, 0=j=2n+1,
since x=s,(x, x, x, 4, (x))=...=5,(x, x, x, 14,(x)). Thus mq, ..., m,,,, are the Day
polynomials and the desired result follows from [3] (see also [8, p. 355]).
j  As we have already seen in Corollary 1, the subregularity of congruences implies
the n-permutability of a given variety. Considering further the subregularity of
tolerances or the subregularity of compatible reflexive relations something more
can be stated. Simultaneously, an application of general compatible relations enable
us to derive Mal’cev condition for permutable varieties of subregular algebras in a
very simple form. First it will be convenient to make
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Definition 2. An algebra 2 is said to have subregular tolerances (subregular
compatible reflexive relations) if every tolerance (compatible reflexive relation,
respectively) T on U is uniquely determined by subsets {x€A: (b, x)€T}, b€B,
for any subalgebra B of UA.

It is a routine to paraphrase Lemma 1 for tolerance and for compatible reflexive
relations. On the other hand Lemma 2 is redundant for the proof .of -our Theo-
rem 2.

Theorem 2. For a variety V the following conditions are equivaleni.‘

(1) every A€V has permutable and subregular congruences; -

(2) every WEV has subregular compatible reflexive relations; =~ -+

(3) every UEV has subregular tolerances; N,

(4) there exist unary polynomials u,, ..., u,, ternary ponnomzals Dis --es Pp and
(3+n)-ary polynomial s such that

X = S(x: Y, z, ul(z)’ eecy un(z))
y = s(x, y’ Z:pl(x’ y’ Z), LR ] pn(x, .}’: Z))
ui(z) = pi(xs X, Z), l=i= n,
holdin V.

Proof. The implication (1)=(2) is a direct consequence of Werner’s theorem
[14}; (2)=(3) is trivial.

(3)=>(4): Analogously as in the proof of Theorem 1 we take U=gy(x, y, 2),
B=Fy(z) and T(x,y) the smallest tolerance on A containing the pair (x,y).
Then the hypothesis (3) (here a modified version of Lemma 1 is used) gives
(* '*) T(x> y) = T(<u1’p1>’ eeey <unspn>)
for some elements u,...,u,6B and p,, ..., p,€ 4. Consequently there is a 2n-ary
algebraic function ¢ over U such that

X =0y, ..., Uys D1y - Pn)s
y = 0'(p1, '-"pns Upy -oes un)'
‘Since A=Fy(x, ¥, z) and B=Fy(z), the above two equalities can be expressed as
X = s(x, Vs 2, ul(z)a A ll,,(Z), pl(xs ¥, Z), "'9pn(x: Y, Z)),
y = s(x, 3,2, p1(x, ¥, 2), ..., Pa(x, ¥, 2), t1(2), .., u,(2))
for some (3+2n)-ary polynomial s, unary polynomials #,, ..., u, and ternary poly-
nomials p,, ..., p,. Identities u,(z)=p,(x, x, z), 1 =i=n, follow directly from (* ).
From all the above identities one gets Mal’cev polynomial p by p(x,y, 2)=

=S(x’ z, 2, P1(y: z, Z)’ R pn(ys Z, Z)» pl(xa ¥, Z), seey pn(x’ Ys Z))' Hence V is per-
mutable and, again by [14], tolerances can be replaced by compatible reflexive rela-
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tions in (* *). Then

x =s(x, y, z, u3(2), ..., 4,(2)),

y= s(x, Y.z, pl(x’ Y, Z), Mt ] Pn(xs s Z)),

u(2)=pi(x,x,2), 1=i=n,

as required.
(4)=(1): Ternary polynomials p,, ..., p, satisfy condition (3) from Theorem 1,

i.e. every algebra in V has subregular congruences. Permutability of V is ensured
by Mal’cev polynomial p(x,y, z)=s(x, z, z, p,(¥, 2, 2), ..., pa(}» 2, 2)).

Remark 3. We have just proved that congruence permutability -is implicit
in subregularity of tolerances or in subregularity of compatible reflexive relations.
The same phenomenon holds for regularity and weak regularity, see the earlier

paper [6]. . .
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On some generalizations of Boolean algebras

J. PLONKA

0. We shall consider only lattices and algebras of the type 7,=(2,2, 1) with:
fundamental operations +, -,’, where + and - are binary and ” is unary. Algebras.
of type 7, are often studied mainly as generalizations of Boolean algebras, e.g.
pseudocomplemented lattices, Stone algebras (see [1], [3]—{6]).

In [4] we introduced the notion of a locally Boolean algebra as follows. An
algebra (4; +, -,”) is called a locally Boolean algebra if (4; +, -) is a distribu--
tive lattice and there exists a congruence R of .(4; +, -,”) such that any con--
gruence class of R is a Boolean algebra with respect to the operations +, -, and ~
restricted to this class. '

We use a similar idea in this paper. In Section 1 we introduce a special con~
gruence ~ in a lattice W=(4; 4, -) and by means of it we construct a new algebra.
A of type (2,2, 1). We show that all algebras A form a variety (Theorem 1)..
In Section 2 we prove that if U is distributive then it is isomorphic to a subdirect.
product of a Stone algebra and a distributive lattice with an additional constant:
operation * whose value is the greatest element to this lattice.

1. Let A=(4; +, -) be a lattice. A congruence ~ of U will be called a b.u.-
congruence of U if it satisfies the following conditions (a)—(c):

(a) A/~ is a Boolean lattice;

(b) in any congruence class [x] of ~ there exists a greatest element u([x])s:

(c) for any x,y€A4 we have:

u(lx)+0]) = w(@D)+u()),  w(ix]- 1)) = u(lx]) - «(¥]).

Example 1. If 9 is a finite chain then any congruence of it having two con--
gruence classes is a b.u.-congruence. In fact a congruence class of a lattice must be
convex. . < .

If a lattice 2 has a b.u.-congruence ~ then we can define a new algebra 2 of
type 7, by putting A_=(A4; +, -,”) where the operations + and - coincide in U

Received October 4, 1984.



336 J. Plonka

and U, and the operation  is defined by the formula x’=u([x]°) where [x]®is the
<complement of the congruence class [x] in the lattice A/~.

We have

(i) any b.u.-congruence ~ of a lattice 2 is a congruence of U such that A _/~
is a Boolean algebra.

Lemma 1. Any algebra N._=(A; +, -,’) satisfies the following system of
identities:

1) x+tx=x, x-x=Xx,

2 x+y=y+x, x-y=y-Xx,

) @t z=x+0+2), xp)-z=x-(y-2),
(4) x-(x+y)=x=x+(x-y),

) Yy =x,

() x+yY=x"-y, (x-y)=x"+y,

0 x+(xY = (xY,

@®) X+&Y =y +0GY,

9) X+ 2) =@ +y) (X' +2).

Proof. The proof follows easily from (a)—(c). We prove for example (8).
Let us denote x”=(x’Y. Let xé 4. Then

X +x" = u([xP)+u(xT) = u((xI°+[*'P) = u((xI+[u(x])]°) =
= u([x]°+(xI°)) = u((x]°+[x]).
But the element #([x]°+[x]) is the greatest element of the greatest class of A so
it is fixed and consequently (8) holds.

Lemma 2. Let A=(4; +, -,’) be an algebra satisfying (1)—(9). Then there
exists a b.u.-congruence relation ~ in the lattice (A; +, -) such that N is identical
with the algebra (A; +, -)...

Proof. Let us put for x, y€4
x~yex =y

‘Obviously ~ is an equivalence. If a,~a, and b, ~b, then by (6) we have (a,+b) =
=aj-bj=a;-bj=(a,+b,), so ~ satisfies the substitution law for +. Analogously
~ satisfies the substitution law for - and ’, so ~ is a congruence in U and con-
sequently in (4; +, -).

To prove (a) it is enough to show that A/~ is a Boolean algebra. However
by (5) we have x"~x for any x€A4, so the identity x”=x holds in %A/~. By
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(6), (5) and (8) we have
(e +xY = +x7Y = (' +y") =O0+yY
for any x, y€A. So the identity x+x’=y+y’ holdsin %/~. By (6) and (9) the

distributive law
(10) x-(y+z)=x-y+x-z

holds in A/~, so A/~ is a Boolean algebra.
. To prove (b) we shall show that the element x” is the greatest element in the
class [x]. We have already shown above that x”~x for any x€4, so x"€[x]. If
x~y then x’=y’ and x"=)". Now by (7) x"=u([x]).

The condition (¢) follows at once from (5) and (6).

Finally u([x]°)=u([x"])=(x')"=x’, so the operations ” in (4; +, -). and
A coincide.

Let us denote by L* the class of all algebras of the form U for some lattice A
and a b.u.-congruence ~ of U. By Lemmas 1 and 2 we have

Theorem 1. The class L* is a variety defined by the identities (1)—(9).

Let us denote by D* the class of all algebras U where % is a distributive lattice.
Corollary 1. The class D* is a variety defined by the identities (1)—(8) and (10).
This follows from Lemmas 1 and 2.

2. Let us denote by L, the variety of algebras of type 7, satisfying (1)—(4)
and the following two identities:

an x+y =x,
(12) x =y

We denote by D, the variety of algebras of type 7, defined by (1)—(4), (11), (12)
and (10). Thus the algebras from L, and D, are lattices with unit defined by an
additional operation ’.

The construction of algebras 2 can suggest that any algebra from L* is iso-
morphic to a subdirect product of a Boolean algebra and an algebra from L,. This
however is not true even for the variety D* as it is shown by the following example.

Example 2. Let us consider an algebra B=({a,b,c}; +, -,’) where
'({a, b,c¢}; +, -) is a lattice in which a<b<c and &'=c, b’=c"=a. Then the
equivalence relation ~ with two classes {a} and {b, ¢} is a b.u.-congruence in the
lattice ({a, b, c}; +, -) such that B=({a, b, c}; +, -).. (see the definition of ~ in
Lemma 2). However B neither is a Boolean algebra nor belongs to D,, and it is
subdirectly irreducible since B is a subdirectly irreducible Stone algebra (see [3]).
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This example is not accidental. In fact, the next theorem shows that for algebras
from D* we always have a subdirect decomposition.

Let B, denote the variety of Stone algebras of type t, (see [ 1]) We have that

(ii) the identities (1)—(8), (10) and 1

(13) x-x'=y.y

form an equational base for the variety of Stone algebras.

In fact the identity (13) together with the identities x-(x-x")Y=x, (x-x)"=
=x-%, x-(x-yY=x-y, X+x"=(x-x’Y form an equational base for B,. Using
subdirectly irreducible algebras from B, (see [3]) it is easy to check that these two
systems of identities are equivalent.

For a variety ¥ of algebras of type 7, we denote by Id (V') the set of all identities
of type 7, satisfied in ¥. For two varieties ¥, and ¥, we denote by V,V¥, the join
of ¥, and V,, and by V;®V, the class of all algebras isomorphic to a subdirect
product of two algebras U, and A, where W, €V, and W,€V,.

Let A=(4; +, -,”) be an algebra of type 1,.

Theorem 2. The following four conditions are equivalent:
(1°) AWeD*,.
(2°) AeB,®D,,
(3°) UEBVD;,
(4°) U satisfies the identities (1)—(10).

To prove Theorem 2 we need some lemmas. In the next six lemmas we assume
that the algebra W=(4; +,") belongs to D*, so it satisfies (1)—(10) by Corol-
lary 1.

Lemma 3. U satisfies the following identities:

(14) X ex" =y

(15) x-x =x-x-x"
(16) (x+»)(x+y) = xx"+yy’,
an (- P)G-y) =xx"-yy".

Proof. By (6), (5), (3) and (8) we have x'x"=(x"+xY=("+y)=yy".
By (7) and (2) we have xx’=xx"x"=xx"x". By (14) we can denote by e the con-
stant element of 4 with e=x"x" for any x€A4. By (15) and (10) we have

x+y)x+y) = x+p)(x+y) (x+y)" =(x+y)-e=x-e+y-e=

S W

=xx'x +yyy = xx'+yy’.
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Finally
(- PG yY = (x-y)(x-yY (x-y)” = xye = xyee = xe- ye = xx"- yy’.
| We deﬁﬁe in A two relations R, and R, by putting for a,bcA4
aRb e a+a’a”=b+b'b", aRyb < aa’ = bb'.
Lemma 4. The relation R, is a congruence in .

Proof. Obviously R, is an equivalence. If aR,q; and bR,b, then (a+b)+
+(@+b) (a+b) =(a+b)+e=a+e+b+e=a,+e+b +e=(a,+b)+e=(a;+b)+
+(a,+by) - (@, +b,)”. So R, satisfies the substitution law for +. To show the sub-
stitution law for - we use the distributivity of + with respect of .. If aR,b then
by (6) and (4) we have (a+4a’a")Y=(b+b'b"Y, hence d'(a’+a”)=b'(b’+b"), so
a'=b, and consequently &' R;b’".

Lemma 5. R, is a congruence of U.

Proof. Obviously R, is an equivalence. The substitution law for +, for - and
for * follows at once from (16), (17) and (14), respectively.

Lemma 6. RN R,=w where w is the diagonal.
Proof. If aR;b and aR,b then
a=a+aa’ =a+(a-a")-a’ = a+(aa’)-(a’a”) = a+(bb)(b'b") =
=a+bb’b” =a+be =(a+b)(at+e) =(at+b)-(ate)(ate)=
= (a+b)(a+e)-(b+e).
Analogously, we can prove that b=(b+a)-(b+¢€)-(a+e). So by (2) a=b.
Lemma 7. /R, is a Stone algebra. '
Proof. We shall show that for any x, y€¢4 we have (x-x")R,(y-y"). In fact
xx)+(xx)Y (xx7) = xx'+ (X +x)x' %" = xx'+x'x%" =
=x(x+x)=x'x"=e. .
Analogously (»)+(yY(»y) =e. So xx’R,yy’. Thus the algebra /R, satisfies
(13) and by (ii) it is a Stone algebra.
Lemma 8. A/R, belongs to D, .

Proof. By (11) and (12) we have to prove that for any x€ 4 we have (x+x")Ryx’
and for any x,y€4 we have X’R;y". In fact

(x+x)x+X)Y = (x+x)-x'x" = XXX +X X =% = X (K.
Further x'(x’Y=e=y'()’Y.
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Proof of Theorem 2. By Corollary 1 condition (1°) is equivalent to (4°).
Obviously B;®D,cB,vD,, so (2°)=(3°). Further B,yD,cD* since each of the
identities (1)—(10) belongs to Id (B,) by (ii), and each of the identities (1)—(10)
belongs to Id (D,). So any of (1)—(10) belongs to Id (B,)N1d (D;). Thus (3°)=(4°).
To complete the proof it is enough to show that (1°)=(2°) i.e. any algebra ¢ D*
is isomorphic to a subdirect product of a Stone algebra and an algebra from D,.
However, this follows from Lemmas 4—8 and the decomposition theorem (see
[2], Theorem 2, p. 123).

Remark 1. The distributive law (10) in Theorem 2 is an essential assumption,
i.e. we cannot omit this identity in condition (4°) and substitute D* by L* and D,
by L, in conditions (1°)—(3°). '

In fact, we have the following:

(iii) the variety L* is essentially larger than the variety B,VL;.

Indeed, by Theorem 2 we have B,cD*c L*. Further Id (L*)cId (L,), as it
is easy to check. So L,c L*, and consequently B,VL,CL*. Let us take the lattice
N:=({a, b, ¢, 0,1}; +, -) where O<a<b<l, O<c<1, the elements a and c are
incomparable and the elements b and ¢ are incomparable. We consider in N; an
equivalence ~ with two equivalence classes {0, a, b} and {c, 1}. Obviously ~ is
a b.u.-congruence in N; where #({0, a, b))=b and u({c, 1})=1. Hence the algebra
(N;).. belongs to L*. However (N;).. does not belong to B,VL,, as the identity

(@) x+y-y' = x+y)-(x+y)
belongs to Id (B,)NId (L,)=Id (ByVL,), while (N;). does not satisfy (d) since

atc-c’=a+c-u({0,a,b})=a+c-b=a and (a+c)-(a+c)=(a+c)-(a+b)=b.
Let B, denote the variety of Boolean algebras of type z,.

Corollary 2. ByyD,=B,®D, and B\/D; is defined by the identities (1)—
(10) and
(18) x+x" =y+y.

Proof. Let us denote by K the variety of algebras of type 7, defined by (1)—
(10) and (18). Obviously B,®D,cByD, and B\D,cK, since Id(K)c
c(Id (B)NId (Dy)). If UEK then WeD* since Id (D*)cId(K). So by Theo-
rem 2 U is isomorphic to a subdirect product of two algebras %, and U, with A,€B,
and W€D, . But U satisfies (18), so also A; does. Thus U, satisfies (1)—(10), (13)
and (18), whence it is easy to show that %, is'a Boolean algebra. This completes
the proof.

Example 3. Let X be a set. Put Y={(4, B): A4, Bc2*, AcB). We define-
an algebra B, of type 7, by putting B,=(Y; +, -,”) where +=U, =N and
(4, BYY =(X\4, X).
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By Corollary 2 and Theorem 2 U belongs to D* since it is a subdirect product
of a Boolean algebra A,=(2%; U, N, ’) and an algebra A,=(2%; U, N, ") where
Z’=X forany ZcX. If |X|=1 then B, has only 3 elements: (9; 8), {§, X) and
(X, X). But B, neither is a Stone algebra nor belongs to D;. So B, is not a direct
product of a Stone algebra and an algebra from D,. This shows that Theorem 2
cannot be strengthed to direct product.

Remark 2. We can obtain results dual to those of this paper by assuming
the existence of a least element o([x]) in (b), and by substituting u by o in (c). Then (7)
must be substituted by x+x”=x, and so on.
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Square subgroup of an abelian group

A. M. AGHDAM

Given an abelian group G, we call R a ring over G if the additive group R*=G.
In this situation we write R=(G, %), where * denotes the ring multiplication. The
multiplication is not assumed to be associative. Every group G can be provided
with a ring structure in a trivial way, by defining all products to be 0; such a ring is
called a zero-ring. In general, we call a group G a nil group if there is no ringon G
other than the zero-ring. '

Suppose that H is a subgroup of G. G is called nil modulo H if GxG=H for
every ring (G, *) on G. It is clear that if G is nil modulo both H, and H, then G
is nil modulo H,NH,, this suggests the following definition of the square subgroup
OG of G:

0OG =N{H = G|G is nil modulo H}.

Clearly G is the smallest subgroup with: the property that G is nil modulo OG.
For the first time the square subgroup was studied in [1] by A. E. STRATTON

. . ) G
and M. C. WeBB. The basic question about the square subgroup is whether =ve

is a nil group? If this is not true in general then under what conditions it is true -
and why it fails?

In this note we are investigating the square subgroup of an .abelian group.
We will show that the square subgroup of a torsion reduced group is equal to itself
and we will prove that

D_N
—_— — = =
7oy BP=T=D

where D is the maximal divisible subgroup of G and N is the reduced part of G;
also, if G is a non-torsion group then :

R

G
0OG

Received August 29, 1983, and in revised form January 29, 1985.
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By an example we will show that the square subgroup of a torsion-free group,
in general, is not a direct summand of the group.

All groups considered in this paper are abelian, with addition as the group
operation.

Proposition 1. If G is cyclic (finite or infinite) then QOG=G.
Proof. Let {(x) be a cyclic group, define a ring on {x) by (mx)(nx)=mnx.
In this ring x is the neutral element of (x), so, {x)=(x)* and hence
O = <x)-
Proposition 2. A=B®H implies that (1B= O A.

Proof. Suppose that there is a ring (B, ) over B. We can define a ring (4, o)
by putting
(b+h)o(b'+h)=bx*b,

this implies that AoA=B=* B, hence OB= (4.

Theorem 3 ([2], page 288). A p-group G is a nil group if and only if it is
divisible.

Theorem 4 ([2], page 287). A4 multiplication u on a p-group A is completely
determined by the values u(a;, a;) with a;, a; running over a p-basis of A. Moreover,
any choice of u(a;, a;)€ A with a;, a; from a p-basis of A subject to the sole condi-
tion that

o(u(a;, a;)) = min (o(a)), o(ay))

_ extends to a multiplication on A.

Lemma 5. The reduced part of a p-group G has unbounded order if and only
if any p-basic subgroup of G has unbounded order.

Proof. Let G=D®N, D is the maximal divisible subgroup of G. Let B be a
p-basic subgroup of N. If B has bounded order then B is a direct summand of G,

G
hence G=D®B®N’ and —EEDGBN’; by the definition of B, N’ should be

divisible, a contradiction, that is N’=0. Consequently N=B and is of bounded
order. This concludes that N has unbounded order if and only if B has unbounded
order.

Lemma 6. Let G be a p-group. If the reduced part of G has unbounded order
then OG=G.
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Proof. Suppose that G is a p-group and the reduced part of G has unbounded
order. Let B=@ (a;) be a p-basic subgroup of G. Let g be an arbitrary element
€1

of G with o(g)=p". By Lemma 5, B has unbounded order, hence there is ag such
that o(ag)=p". In accordance with Theorem 4, a multiplication u on G is uniquely
determined if we put

0 if either i =K or j#K,
ula;, ap) =

g if j=i=K;
hence g€ OG, thatis, OG=G.

Lemma 7. Let G be a reduced p-group, then [G=G.

Proof. If G has bounded order then G= @ (x;), and by Propositions 1, 2,
O0G=G. If G has unbounded order then, by L;rllima 6, OG=aG.

Theorem 8. Let G be a reduced-torsion group, then NOG=G.

Proof. G=@ G,, G, is a p-group. If G is reduced then G, is reduced for all
prime p. By Lem;m 7 OG,=G,. Therefore OG=G.

Remark 1. Let G be a group. Let R=(G,n) be a ringon G, then
n€Hom (G®G, G) and 1n(g,®g.)=g.8,, that is, G*=Im#, therefore

0G = {Imn{n€Hom (GG, G)).
Note. A®B means the tensor product of 4 and B.
Proposition 9. Let G be a non-torsion group, then

(Im 8|6 Hom (G, Z(p))) = Z(p).

Proof. Z(p)={(c1, Cgy «+. Cn» - |pc1=0, pca=cy, ..., PCy=Cn-1, ..y. Let x be
in G and the order of x be infinity, then the map f(n)=nx (n€Z, the set of
integer numbers) defines a short exact sequence:

0-ZL-G-M~0
which induces the short exact sequence:
0 —~ Hom (M, Z(p)) -~ Hom (G, Z(p)) £~ Hom (Z, Z(p)) - 0,

the sequence being right exact because Ext (M, Z(p))=0.

- The definition of the map f* is given by f*(8)=6f for all 8¢ Hom (G, Z (;))
Now given y€Z(p) there is n€Hom (Z, Z(p)) such that n(1)=y. Since f* is
epic there is ¢ Hom (G, Z(;)) such that f*(6)=n, hence y=n(1)=(/*())(1)=
=0(f(1)), yielding the result.

4%
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Theorem 10. Let G be a group, G=D& N where D is the maximal divisible sub-

D N
group of G. T’ h_e'n —e EFQH, where DD§T§D. If G is a non-torsion group,
, N
then ~—
OG ON

Proof. GRG=(DRD)®(DRN)D(N®D)DS(N®N). Since N is reduced and
D®D, D®N, NQ®D are divisible, Hom (D®N, N)=Hom (N®D, N)=
=Hom (D®D, N)=0. Hence :

Hom (G®G, G) = Hom (D®D, D)®Hom (D® N, D)
) . ®Hom (NQD, D) Hom (N® N, N)
®Hom (N® N, D).

NS

G
So, by remark (1), OG=T®ON where OD=T=D. This implies —I—:I—Gz

N
EB-D—]\_I’

Suppose that G is a non-torsion group. If the group of rational numbers is a
subgroup of D, then D=H®K, where H is a direct sum of the groups of rational
numbers and K is a direct sum of quasicyclic groups. Hence DQD=HQ®H is a

direct sum of the groups of rational numbers.

Hom (D®D, D)~=Hom (H®H, H)Y®Hom (H®H, K),

b

because of (Im 0]§c¢Hom (Q, Q))=Q (Q is the group of rational numbers), by
Proposition 9 and Remark 1 OD=D and OG=D® ON.

If D is a torsion group, then D is a direct sum of quasicyclic groups and
N is a non-torsion group, hence N®N is non-torsion, too. By Proposition 9
(Im nlne Hom (N® N, D))=D.

Consequently by (1) OG=D@ ON, this concludes that

G N
@ T¢ BN
Remark 2. Let G=Z(p)®Z(p), then we have GRG=Z(p)R®Z(p)=Z(p).
Hom (G®G, G) = Hom (Z(p)®Z(p), Z(p)) ®Hom (Z(p) ®Z(p), Z(p)). By remark
(1) OG={(c)®Z(p). We deduce that OG is not a pure subgroup of G, con-

G Z(p
sequently £1G is not a direct summand of G. EET(I;—), that is (2) is not true
: o

in general when G is a torsion group. But oG is a nil group.
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The following example shows that the square subgroup of ‘a' torsion-free
group, in general, is not a direct summand. :

Example. Let 4 be the subgroup of Qx,®Qx, generated by the set

1 1 1 :
{;xi,—gxi-!-sz p Is running over 1':}

1 L 1 - '
where r is the set of all prime numbers. — x,€4 implies x,=p [— xI)EA, hence,
p p

©) hy(v)=1 foral pem

Suppose that x,€4%4 for some prime g, then

x =q* Z’ x1+ﬂ,,[ x1+l )]

where  is a finite set of prime numbers;

m 3 (BB 3 2]

pEY
Since {x;, x,} is an independent set of A4, 2’ z" 0, this implies
)] B, =0 (modp) forall pey.
We deduce 1=¢q pezw ( %) this implies g€y, so, by (4)4
®) B, =0 (mod q).

Let y°=y —{q}, then

1=¢ [ ﬁ“)+q22(p ﬁ”)—qaq+ﬁq+q Z’( ﬂé’)’

peyo pEYO P

this implies > (ﬁ +£§) is an integer, therefore f,=1 (modgq) a contradic-
peEYON D D
tion by (5). Consequently x,¢g24. By (3) h,(x;)=1 for all p€n. Hence, #(x)=

1 1 .
=(1,1,...,1,..). Let Zp=? x1+? X, then p*Z,=p%x,+x,, and since h,(x,)=1,

h,(x;)=4 for all pcn. Hence 1(x;)=(4,4,...,4,..) and ((xp)>1(x;). t(x,) and
1(xz) are not idempotent, that is any ring R=(4, %) over A satisfies x>=ax,, x;x;=
=x,x%,=x3=0, a is a rational number.
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Let y=ux,+vxs, w=Px,+7x; then, yw=aupfx,, this implies A2={xy)* ((xg)*
is a pure subgroup of A generated by x,). Since (4, *) was arbitrary,

©) 04 = (xp)*

Let a=1, then yw=pfux,, and by the structure of A4, Pux,€ A. Hence 4 is not

a nil group. We claim that A4%2={x,)*. For the proof it is enough to show that

1
—“xze Az.

1 1
Ixt Z’,—-——p—2 x1+‘175'

1 1
X, then Zi=—x,, 50 — x,€4? for all p€xn. By (6)

4 p
O4={x;)". Let U={ucQ|ux,+vx,cA for some v€Q}. If OA is a direct
summand of 4, then

A = (x)*® B, —A;— ~B, tB)= t(—A—*—J = (U);
€% (xz)
by the structure of 4, ¢(U)=(2,2, ...,2,...). This implies 7(x;)<t?(B)<t(x;) but
this is impossible, since r(4)=2 ([2], page 112, Ex. 10).
Consequently (14 is not a direct summand of A.

A
Note. Since T4 is of rank one and its type is not idempotent, it follows that

— s il
1S a nul group.
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Concrete characterization of partial endomorphism semigroups
of graphs

V. A. MOLCANOV

Algebraic and elementary properties of partial endomorphism semigroups of
graphs were studied by L. M. Poprova [1, 2], Ju. M. VAZENIN [3] and A. M. KarL-
MANOVIC [4—6]. For these semigroups it is interesting to study the concrete char-
acterization problem [7]: under which conditions is a partial transformation semi-
group E equal to the partial endomorphism semigroup E(G) of some graph G?

In the present paper we investigate this problem. The necessary and sufficient
conditions for a partial transformation semigroup E to be equal to the partial endo-
morphism semigroup E(G) of some graph G will be obtained in Theorem 2. We
construct all kinds of such graphs in Theorem 1. At the end of the paper we apply
our results to describe (in Theorem 3) graphs with equal partial endomorphisms
and to investigate (in Theorem 4) the question: how are graphs determined by their
partial endomorphism semigroups? Numerous other applications of Theorems 1
and 2 are briefly stated in [8].

1. Definitions, preliminary results

Let X be an arbitrary set with [X|>1, and let g be a binary relation on X,
x€X, AcX. We put X:=XXJX;

07t ={(x,y): (»,x)€g}; dome = {x: @y)(x,y)Ea};
ox = {y: (x,y)ce} and o4 = {y: @xcA)(x, y)a}.

A one-valued binary relation fc X? is called a partial transformation of X
(shortly p.transformation). If xé¢dom f, then fx denotes the image of x under f.
A p.transformation f is called 3-bounded, if |dom f|<3. We write f=(Z'Z , if
dom f={a, b} and fa=c, fb=d. The Cartesian power f* of f is the p.trans-

Received May 27, 1983.
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formation of X2 such that f2(x, y)=(fx, fy) for x, ye¢domf. The identity trans-
formation of a set 4 is denoted by 4,. We denote by W (X) the symmetric semi-
group of all p.transformations on a set X.

By a graph we mean a structure G=(X, g), where X is a non-empty set and
0C X2 The elements of X and ¢ are called vertices and edges, respectively. The
edge (x, x)€g is called a loop. We denote G—'=(X, ¢~ ?).

A p.transformation f of X is called a partial endomorphism (shortly p.endo-
morphism) of the graph G, if f?gcyg, ie. (x,y)€g implies (fx,fy)€g for any
x, yedom f. The p.endomorphisms of G form a semigroup E(G) (under the com-
position), which is called the p.endomorphism semigroup of the graph G. E,(G)
denotes the 3-bounded p.endomorphism semigroup of G.

Let E be a p.transformation semigroup on a set X. The canonical relations of
E are defined by the formulas:

t L ULS: fEE); BEU{f™: feE);
4X {x€X: X*c B~'(x,x)}; B ¥ \4;
P S 43U {(x, ))EXNdy: X1y C B(x, »));
RE A,U{(x, y)EX™Ndyx: (72Xt p)Ndx C B71(x, »)};
: ZLPNR;, ¢ Lx™N(PUR)
and-
2 Z((BOINR)U((B*QIN\P).

The intersections of any binary relation ¢ on X with the relations 42, (AXB)U
U(BX A4) and B2 are denoted by the same symbol but with indices 1, 2 and 3, respec-
tively, i.e. g,=0N4% a,=0cN((AXB)U(BXA4)) and o3=cNB2

We denote {f€E: |domf|<3} by E,.

In the following lemmas the canonical relations of p.transformation semi-
groups will be investigated.

Lemma 1. If E contains all 3-bounded identity p.transformations of X, then
() 7 is a quasi-order") on X, (ii) B is a quasi-order on X* and (iii) the canonical rela-
tions of E and E; are equal.

Lemma 2. If Q1=2Z,=0 (Q;=2Z;=0), then P,(R;) is non-empty.
Lemma 3. If ta=X for all acB then the following conditions hold.:
() if B#0 and Z,#0 then R,=A% P,=AN\Ad, and P,UQ,=0;
(i) if Z,=0 then P,=R,=(AXB)U(BXA);

(iii) if A=0 and Z,#0 then P,=B? R;=B™\ 4z and R,U Q,=0.

1) A quasi-order on X is a reflexjve and transitive binary relation on X.
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The proofs of these lemmas easily follow from the definitions.
Now suppose that E=E(G) for some graph G=(X, ¢). Then the canonical
relations of F satisfy the following properties.

Lemma 4. Let G be a graph such that E(G)#=W (X). Then

@ X™(eUe™) c P;
(i) eNe™cR;
(i) oNdxy =4,
and
(i) @ c(e\e™HU(e™\0):

Proof. (i)—(iii) are obvious. It follows from the definition of @’ that PNQ'=
=RNQ’=0. Hence Q'c(o\o HU(e~™\0). Let (x,y)€Q. By definition there

exists a (u, v)EQ’ such that either (’u‘ {)]EE and (x, y)¢P or (; ;)EE and

(x, Y)4R. Then either (;c 31; ) is a p.endomorphism of G and (x,y)€gUpe™! or
(; ;’] is a p.endomorphism of G and (x, y)§eNe~". Since (u, v)€(e\o~HU
U(e~™\g), the vertices x, y are joined by one edge of G. Therefore Qc(o\ o~ HU
U(e~™\9), i.e. (iv) holds.

Lemma 5. If the canonical relations of E=E(G) satisfy Z,=9 (resp. Z,=0) then
Ri=(eNe¢™Y), and P=X\(eU¢™") (resp. R=¢Ng™" and P;=(X\(eU ¢ ")s)-

Proof. Suppose that Z;=0. By Lemma 2, @, or P;=0. If (x,y)€0;
then, by Lemma 4, x and y are joined by one edge of G. If (g, b)€ P, then, by the

definition, [g z)EE. On the other hand, (a, b)¢R,, whence (Z ;)’JQE for some

u,v€X. Then (a, b)¢§oUp~2. Therefore (x, y)§doU oY, if (x, y)€P, and (x, y)€oN
No~Y if (x,y)€R,. Using Lemma 4, we obtain that R,=(oNg™ %), and
P=X™(¢Ue™"). By the analogy the second statement of the lemma is proved.

Lemma 6. If the canonical relations of E=E(G) satisfy B#90 and Z;=Q=0
then the following conditions hold:

() if Z,#9 then Ry=(oNg~Y), and either P,=(XN\(¢Ug™ ), or P,=
=((e\e DU (e"™\2)e;

(i) if Z;#0 then Py=(X\(eUg™Y)s and either R;=((e\e )U(e""\\0)):
or Ry=(eMNg™Y,.

Proof. Suppose that Q=Z,=0 and B, Z,#9. Then, by Lemma 3, P,=0.
Let (a,b)cPN(AXB). Hence (a,b)¢R and, by the definition, (jj {)QE for
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some x€t~'a and y€t~1b. Then (g, b)¢oNo~Y, whence (g, b)e(g\ o~ HU

U™ or (@ 8)¢eUe™ Sinee (2 J), (0 §)e& for any (e dyePn(ax),

we obtain by Lemma 4 that either P,=((e\.¢~ ) U (¢~*\@)); or Po=(X\(eUo™Y);.
Moreover, (x, )¢ P and, by Lemma 4, (x,y)€oUg~. Since [* 7 ] {x i)EE for

u v’
any (u, v)ER;, we obtain that R,=(¢MNeg™"),. Thus (i) holds; (ii) can be proved in
the same manner.

2. Main results

Let E be a p.transformation semigroup on a set X. Using the canonical rela-
tions of E we define the following conditions U, and binary relations D, ; on E:

3
L(Ud=X& Z#0); U, Z(A 2z =90);
i=1

Us L0 #0); U, L(Q:=9 & 0, = 9);

U L@ =0, & 0 #0);
UsL(Q=2,=0 & (Z, %0 V Z, = 0));

U, L2Q0=2,=0 & Z, = 0);
U L(Z, =90 & Q=2Z,=Z,=0);
Uy L(Z, %0 & A= X & Q=2Z,=2Z,=90);
U LQ=2,=0 & Z, #0 & Z, = 0);
D11 L9, D, L4y, D, Ex2
Dor EL A4 Dy X A2, Dy LAXX,
Doo ED;Y; D, £XNBY, Dy LXN4y;
D, & B(a,b) and D,, iDg} for (a, b)€Qs;
Dy Z(R\QUB(a, b))N\P and Dy, ED;} for (a,b)c0;;

D51 Z(R\P)UB(a,b)Uo and D;, LD;t for (a,b)eQN(AXB)
and eithér o=p(d, ), if there exists (c, d)€(QN(4XB))\B(a,b), or =0 other-



Partial endomorphism semigroups of graphs 353
wise;
Do 1 L R; D,y £R;; Dyy £R\B?, Dy, L R\(BXX),
Dy s £D73; Dy LR, Dy, L(AXX)UR,
Dys D% Dioy ZRUR,y, Dy s E(AXX)UR,,
Dyo,5 i—f“Rlu(Rz N(4XB)), D, —'d=fD1_o,12, Dy, 5 d=fD1_o.ls-

The sufficient conditions for a 3-bounded p.transformation semigroup to be
equal to the 3-bounded p.endomorphism semigroup of some graph will be given in
the following )

Theorem 1. Let E be a 3-bounded p.transformation semigroup on a set X
and let the canonical relations of E satisfy the following conditions:

(T) (i)eE Jor any a€B and x€X,

X1 N1 X1 N - (x2 Yo
(Ty) ((x2 yz]GE < (x3 ys]EE] = [xs ya)e E

Xy N1 Xz Ve X1 N
((xa }’3)EE® (xs .V:a]EE] = (xz J’2)EE
Sor any (x;,y)€Q (i=1,3) such that (x, X¢41), (V> Yus1)ET (k=1, 2).
Then the following conditions hold:

(i) E satisfies the one of the conditions U, (1=k=10);
(ii) if E satisfies U,, then the equality

(1) E = E4(G)
holds if and only if G=(X, D,,,) for some number l.

and

Using the canonical relations of p.transformation semigroups we obtain the
following concrete characterization of the p.endomorphism semigroup of a graph.

Theorem 2. Let E be a p.transformation semigroup on a set X. Then E is
equal to the p.endomorphism semigroup of some graph if and only if E is the left
idealizer®) of its subsemigroup E; in the symmetric semigroup W (X) and the canonical
relations of E satisfy the conditions (T,)—(Tj).

%) If S is a subsemigroup of a semigroup 7, then the left idealizer of S in T'is the largest sub-
semigroup L of T such that S is a left ideal of L.
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Before drawing up our main results we verify five lemmas which make the
proof of the theorems easier. Let E be a p.transformation semigroup on a set X
satisfying (T,)—(T3). In the following proposmons we collect some properties of
the canonical relations of E.

Lemma 7. E contains all 3-bounded identity p.transformations of X and the
canonical relations of E satisfy (x, y)EB(x,y), ta=A, 1™'b=B and 1 *a=tb=X
Sor any x,y€X, ac A, b€B.

Proof. By the definitions of 4 and (T,), (;)EE for any x€X. Consider
distinct elements x, y€X. Clearly, (x, x), (y, ¥)€1. If (x,»)€ PUR, then, by the
definition, ( ]eE If (x,5)€Q then (; yJEE by (T,). We show that O¢E.
Since |X|=1, there exist two distinct elements x, y€X. Then the p. transforma-
tions [x] [y] and 0= ( ) ( ) belong to E. So E contains all 3-bounded identity
p.transformations of X. It follows from the definitions of § and 4 that (x, y)€f(x, y)
and ta=A4, v 'b=B, 1 la=1b=X for any x, y€X, ac A4, bcB.

Lemma 8. The canonical relations of E satisfy the following conditions:

O =01

(i) Qs =0s, :

, _Jo, if Q3=29,
@) BeNR= {(ﬂ{(a, b), (b, OYNR, if there is (a, H)EQS;

. PV (-2 if 01=9;
(iv) BT'ONP = {(ﬁ‘l{(a, b), (b, )Y)\P, if there is (a, b)€Qj.

Proof. Suppose that (x, y)€Q,UQ;. Then, by Lemma 7, x, y€tx=1y and,
by the definition of Q, there exists a (v, v)€Q’ such that either (x, y)¢R and

(; ;)EE or (z QEE and (x,y)¢P. We prove that (x,y)€Q’. Suppose the

contrary. Let (x, )¢ PUR. It follows that (i i)EE, by the definitions of P and R.

Then, by (Ty), either (v, v)éP or (u,v)¢R, which both contradict the assump-
tion. Consequently, (x,»)§ PUR, (x, »)€Q’ and Q;UQ;=0,UQ,. Hence (i) and
(ii) are satisfied.

Suppose now that Q;=0. By Lemma 7, Q'c(BQ)\R. Conversely, let
(%, Y)E(BQIN\R. Clearly, (x,»)€Q. If (x,)€Q, then (x,y)€QjcQ’. Suppose
that (x, »)¢Q,. Then (x, y)€Q., since Q;=0Q;=9. Let, for example, (x, y)€AXB.
According to (x, y)€(BQ)\R, there exists an (a, b)€ @’ such that (x, y)¢ R and
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(fc ;’,)eE. Then (a,b)cQ,UQ; since Q,=9. By Lemma7, (a,B)cAXB. If it
were (x, p)€P, then, by definitions, (a, b)eé P, which would contradict PNQ’'=90.
Hence (x, y)EXDN(PUR)=Q’. Thus (BQ')\R=0’, if Q;=0. Suppose now that
there exists an (a, b)€Q;. By Lemma 7, ta=tb=X. If (x, y)€(BQ)\RcQ then,
by (T;), one of -the p.transformations (; f}) and [; JI;) belongs to E, ie.
(x, )e(B{(a, b), (b, a)})\R. On the other hand, it is easy to see that (a, b)E 0Q;
implies (B{(a, b), (b, @)})\R<(BQ")\R. Therefore Condition (iii) is satisfied. The
latter condition can be proved in a similar way.

Lemma 9. The canonical relations of E satisfy the following conditions:

@) f ()EAUB, then (5,)eQ iff (5 2)eE:

@) if (x,¥), (u,v)€EQ and x,yEB or u,vEA, then one and only one of the
p-transformations (z i ] and (i i; ) belongs to E.

Proof. Let (x, y)¢ 42U B% By Lemma 7, (ﬁ ﬁ]EE Using (T,) and the defini-

tions of P and R, we obtain that the condition (x, ¥)€ PUR is equivalent to (; i J €E.

Since @’=X"(PUR) and, by Lemma 8, Q,UQ;=0Q;UQ;, the first statement
of the lemma follows. Suppose now that (x, y), (u, v)€Q and x, y€B or u, v€A.
We may assume that x, yéB. Then, by Lemma 7, tx=ty=X and, by Lemma 8§,

(x. )EQ3=0;, (x, y)¢ P. By (T3), one of the p.transformations (z ﬁ J and (; u]

belongs to E. Suppose that (; sz ], [;C i ]EE. Then, by (T:), (u,v)€ER since

(x,5)¢ P. Hence, by the definition of Q, (u, v)€(B~1Q')\ P, ie., by Lemma 8,
there exists an (a4, b)CQ, such that (u,0)¢P and (Z z]EE This implies

(z *Z), g{; )EE and, by (Ty), (a,b)¢R or (x,y)€P, a contradiction. Con-

sequently, one and only one of the p.transformations (;c i ) and (f 'Z ] belongs

to E. For u,v€ A the proof is analogous, therefore it is omitted.

Lemma 10. If Q=0 and Z,#0 then one of the relations Z,, Z; is non-
empty.

Proof. If Q=#, Z,=0 and Z,=@ then, by Lemmas 2 and 3, Pzzkgz
=(AXB)U(BXA), PP and R;=0. Let (x,y)€R; and (u, v)cP,. Then for

any (a, b)€ AXB we have (2 ;;), (Z I;]EE and (z ﬁ )EE. Since, by the definition

of P, [:: 3]EE, we obtain (f iJEE and, by (T,), (x, y€P. Consequently, Z,=0.
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Later we will use the following

Lemma 11. Let g and ¢ be binary relations on X. Then o< o, gNo~'=0cNo~?
and gUp *=0Uo™! imply o=0.
The proof follows from the relations:

¢ = ((6UoHN\o)U(eNo") < ((eUe MN\eHU(eNe™) = o.
Now we turn to the main theorems of the paper.

Proof of Theorem 1. It is easy to see that (i) follows from Lemmas 2, 3
and 10.

Suppose now that E satisfies U, (1=k=10). We prove that (1) holds for the
graphs G=(X, D) and only for them. Note that it is sufficient to verify (1) for
one of these graphs with mutually converse relations, since they have equal p.endo-
morphisms. Clearly, 8 is a p.endomorphism of any graph and, by Lemma 7, 0¢F.
Thus for the proof of (1) we must show that a non-empty 3-bounded p.transforma-

tion. f= (:: i } of X is a p.endomorphism of a graph G iff f€ E. We investigate the

following ten cases concerning E.

Case 1. Let E satisfy U,, i.e. ' 4=X and Z30. Then, by Lemma 3, R=X?2
and E consists of all 3-bounded p.transformations of X. One can easily see that
E is equal to E;(G) for all graphs G=(X, D, ;) (I=1,3). On the other hand, if a
graph G=(X, g) satisfies (1), then either ¢g=X%=D, 5 (if o\dx=0) or g=dx=
=D, , (if 92gC4dy) or ¢g=0=D, ;.

Case 2. Let E satisfy U,, ie. Z;=0 (i=1,3). Then, by Lemma 3, E consists
of all 3-bounded p.transformations of X which map no elements of 4 into B. One
can easily see that E is equal to E3(G) for all graphs G=(X, D, ) (I=1,6). On
the other hand, let a graph G=(X, g) satisfy (1). Then for any distinct elements

a, beB, by Lemma 3 (g 2]EE(G). Therefore either (a, b)€eNg~' (and in this

case ¢g=XN4dp=D,¢) or (a,b)¢eUp™! (and hence gc X B?%. In the latter
case [g 2)¢E(G) for any (a, b))¢ AXB. Then either (g, b)€pMNg~' (and in this
case, g=X\B?=D,;) or (a,b)co\e ! (and hence ¢=AXX=D,;) or
(a, b)€g~*\¢ (and hence ¢=XXA=D,,) or (a,b)§eUe ™" (and hence o< 4.

In the latter case, by Lemma 3, (g Z)EE(G) for any distinct elements a, b€ A.

Then either (a, b)€eMNg~! (and in this case ¢=A4%=D,,) or (a, b)§eUp~ ! (and
hence ¢=4,=D,,).
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Case 3. Let E satisfy Uy, ie. (@, b)¢Q; for some a, béB. We prove (1) for
the graph G=(X,¢) with ¢=D;;=p(a b). By Lemma7, (a,b)co\e¢ . If
L=B(a, b)UB(b, @) then, by the definitions of R and Lemma 8, RUQcL and
X2=PUL. Hence any pair (x, y)€X? belongs to one of the relations P\ L and L.
If (x,y)e P\ L then, by the definition, (x,)¢oUe~! and, by Lemma 7 f belongs
to both E and E,;(G). Let (x, y)¢ L, and for example, (x, y)€B(a, b). If (x, y)EB (D, a),

then (x,y)€eNeo~! and [z f}), [; z]EE by the definition of B. Hence, from
JEE, it follows that (Z z), (z Z €E and (u,v)€eNg~%, whence fis a p.endo-
morphism of G. Conversely, if f€E;(G), then (u,v)€9Ng~" and by the definition

of G, (Z 2. [jj P)¢E. By Lemma 8, from the equality Q,=0; and (T,) it fol-

lows that (u, v)€R, fE€E. Suppose now that (x, »)¢B(b, a). In this case (x, y)€Q,
(g ﬁ)EE and (x,y)€o\o~ ' If fE€E then (Z Z)EE and (4, v)€¢. Hence fis
a p.endomorphism of G. Conversely, let fE€E;(G). Then (u,v)€o=pf(a,b). If

[g 2)eE then (u, v)€R and f¢E by Lemma 8 and (T,). If [‘; z]QE then (u, )¢ R

and (4, 5)€Q by the definition of Q. In this case (jf Z)QE and, by Lemma 9,

fEE. So (1) holds for the graph G.
Conversely, let a graph G=(X,g) satisfy (1). Then, by Lemma 4,
(a, BE(e\e HU(e"™\0). If (a,b)€q then B(a,b)ce, and B(a, b)c ¢ other-

wise. By Lemma 5, R=oNg~% If (u,0) P\(RUQ) then (5 z) (5 fj)ezE(G)

and (4, v)§oU o~ '. Using Lemma 4 we obtain that U ¢~ '=RUQ. From Lemmas 8,
9 it follows that the relation o=p(a, b) satisfies 6No~ =R and cUs '=RUQ.
Then, by Lemma 11, either ¢=p(a, b)=D;, or o=p(b, a)=Dy ,.

Case 4. l.et E satisfy U,, i.e. Q;=9 and (g, b)cQ, for some a,bcA. We
prove (1) for the graph G=(X, g) with ¢=D,=((R\Q)UB*(a, ))\\P. Since
X:=(R\(PUQ))UPUQ, any pair (u,v)€X? belongs to one of the relations
R\(PUQ), Pand O\P. If (u, )é R\(PUQ) then (u,v)€eMNg~' and f belongs
to both E and E,(G). Suppose that (u, v)€ P. Then (u, v)¢oUe~" and, by the defini-

tion of P, either u€B (if u=v) or (Z g) , Z Z]EE (if u=#v). Let f€E. Then,
by (T, (x,y)€P since RNAz=RNQ'=9. Consequently, (x,y)¢deUe™' and
fis a p.endomorphism of G. Conversely, if f€E;(G), then (x, y)¢oU o™, (x, y)EP
and f¢E. Further, suppose that (v, v)EQ\P. By Lemma 9, there is a unique
mapping of {u, v} onto {a, b}. Let, for example, (Z Z €E. It follows that (u, v)€ 0.

If fCE, then (ﬁ {)EE and either (x,y)cP or (x,y)eQ. Consequently, either
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(x, ¥)§oUo~? or (x, y)€o\ ¢~ . Hence fis a p.endomorphism of G. Conversely, let
f€E4(G). Then either (x, y)dgUo™ ! or (x,y)€e\eo~'. From the definition of G it
follows that either (x, )€ P or (x, )€ @\ P. In the former case fc E by the definition

of P. In the latter case, by (T,), ;‘ ﬁ ) ¢E since (x y ) (u 2’]EE. Then, by Lemma

a bj’\abd
9, f€E. Thus (1) holds for the graph G.
Conversely, let a graph G=(X, g) satisfy (1). Then, by Lemma 4,
(a, b)e(e\e™HU(e"*\o). It follows that (B~1(a, H))N\Pcpe, if (a, b)€o, and
(B *(a, b)) \Pc ¢~ otherwise. By Lemma 5, P=X™\(¢U¢™ ). If (x, »)ER\(PUQ)

then (j; ) ,(;j ’;]eE and, by (1), (x,y)€eNeo™'. Thus, by Lemma 4, gNp~'=

=R\(PUQ). From Lemmas 8 and 9 it follows that the relation o=((R\Q)U
UB~*(a, ))\P satisfies ¢No~1=R\(PUQ) and o¢Uc '=X?\P. Hence, by
Lemma 11, either g=0=D,, or ¢g=0"'=D,,.

Case 5. Let E satisfy U;, i.e. 0=Q, and (a, b)€Q for some acA, bEB.
‘We prove (1) for the graph G=(X, ¢) with ¢=D;,;=(R\P)UPB(a, b)Uc where
6=B(d, ¢), if there exists a (c, d)(QN(AXB)\B(a, b), and ¢=0 otherwise. By
Us and Lemma 8, Q=Q'. Since X*=(P\ (R, UR;))U(R\ P,)UQ, any pair (x, y)€ X*®
belongs to one of the relations PN(R,UR,;), R\P; and Q. If (x, y)¢ PN\(R,UR,)
then, by the definition of G, (x,y)¢eUe~? and f belongs to both E and E.(G).
Suppose that (x, yY)€ R\ P;. This implies (x, p)€oNg~1. If fEE then (v, v)§Ps
since (x, y)€ P, otherwise. We show that (u,v)éR. If x, yéB then by Q0=0Q,

and, Lemma 9, (;c 'Z ]EE and, by (T,), (u,v)€R. Now suppose that one of the

‘elements x and y belongs to A, for example, x€A. Since fCcE, ucA. It follows
that either w,v€A or (u,v)€ AXB. In the former case, by Q,=Q %0, (T,) and
Lemmas 3, 9, (», v)ER. In the latter case (x,y)€R, and f€E imply (u, v)ER,.
So (u,v)€eNg~? and fis a p.endomorphism of G. Conversely, if f€E,(G) then
(u, V)€eN ™! and, by the definition of G, (u, v)€ R\ P;. Thus f€E. Now suppose

that (x, y)€QMN(AXB). Then either (; f))EE or {z f})e{E In the latter case,
by (Ty), [; :]EE. We may suppose that (; Jl:]eE Then (x, y)€o\ o~ Assume
a

that fCE. It follows ued and (% PJeE. If ve4 then, by 0=0, and Lemma 9,

(: Z]EE. Consequently, (Z z]EE and, by (Ty), (v, v)€ER,. If v€éB then (v, v)¢ P,
since (a, b)€ P, otherwise. Hence (u,v) belongs to R, or Q,. Moreover, in the

latter case (u, v)€f(a, b). So (u,v)€oNg* or (u,v)co\e~', whence f€E,(G).
Conversely, let feEy(G). If [j ﬁ) € E,(G) then (4, v)€ oM g~. By the definition of G,
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(1, )6 R\ P,. Then by the definition of R, f¢E. If (jf J;)&Es(G) then (u, v)€
€(e\e™HU(e"™\o). It follows from the definition of G that (u, v)€@N(AXB)

and [Z ’;)EE, since (Z g)eE. Then, by Lemma 9, f¢E. Thus (1) holds for the

graph G.
Conversely, let a graph G=(X, ¢) satisfy (1). Then, by Lemma 4,

@, b\ HU(e™™N\o)- If (x,y)€P; then (zi and (;: "VJ are p.endo-

morphisms of G, and (x, y)¢ eUg L. If (x, y)€ P,N(4 X B) then (z ;;]G E and (a b

xy
- b b
4 E, whence (x, y)¢ 0 U o~ ". Moreover (z f}), ; x)EEa(G) for (x, y)€R, and (; y]
¢E, (;‘ Y)4E for (x, y)E R(AX B). In' these cases (x, y)€@Ne™ If (x, 7)€ PRy
then (z ﬁ)e{E and, by Lemmas 8 and 9, (; i ]€E, whence (x,y)¢doUp™t If
(x, )€ R\ P, then (z %)&E and, by Lemmas 8 and 9 (; i )GE, whence (x, y)€gN

No~'. So XN (eUe Y=P\R, and ¢Ng =R\ P,. Moreover, B(a, b)Cp, if
(a, b)€ o, and B(a, b)c o~ otherwise. Let there exista (¢, d)€(QN(A4XB))\B(a, b).
Then, by Lemma 4, (c,d) belongs to (g\ o HU(¢7*\g). It follows that either
(d,c)€o, if (a,b)cg, or (d,c)co~! otherwise. Consequently, B(d,c)cg, if
(a, b)€g, and B(d, c)cg~* otherwise. So the relation e=(R\ P)UB(a, b))UB(, c)
satisfies the conditions: oMo~ =R\ Py=¢Ng~}, cUs 1=XN(P\R)=0Up™?
and either 6cg or g~ !. By Lemmall, g=0=D;, or g=0¢"1=D;,.

Cases 6 and 7. If E satisfies Uy (or Uj), then it is easy to verify that (1) holds
for the graph G=(X, ¢) with ¢=R=Dg, (or ¢=R,=D, ;). On the other hand,
ifa graph G=(X, o) satisfies (1), then by Lemmas 4and 7 ¢=R=D;, (or g=R,=
=D7,1)-

Case 8. Let E satisfy U, ie. Q=Z,=Z,=0 and Z,>=0. We prove (1) for
the graph .G=(X, g) with ¢=D;, (and ¢=Ds ;). If (x, y)EP then (x, y)¢§eUo™?
and f belongs to both E and E;(G). Suppose that (x, y)¢ R\P. Then (x,y)¢B?
since Uy and Lemma 3 imply B*c P. If (x,y)€A® then (x,y)ceNeg~! and, by

"Lemma 9, (; i )EE. Hence f¢E implies (;c 'Z ]EE and, by (Ty), (4, v)ER. It
follows that (u, v)€@Ng~! and fis a p.endomorphism of G. Conversely, if f¢ E;(G),
then (u, v)€@Meo~! and, by the definition of G, (v, v)€R,. Thus fEE. Let (x, y)¢ 4%
Without loss of generality, we can assume that (x, y)¢4XB. For the graph G

with the relation Dg; (or Dy ), it follows (x,p)eégNe~! (or (x,y)eo\e~Y). If
fEE then, by the definition of R and (T,), (4, v)éR,UR,. Hence (u,v)coNg~?

5
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(resp. (u,v)€E@\e~* or (4, v)€gNo~") for the graph G with the relation Dg,
(resp. Dy, ). It follows that'f is a p.endomorphism of G. It is easy to verify that
' feE,(G) implies f¢E. So (1) holds for the graph G with any of the relations Dg,
‘(I=1, 3). Conversely, let a graph G=(X, g) satisfy (1). Then, by Lemmas 5 and 6,
P=XN(eVUe™"), Ry=(eNe™"), and either R,=(eNg™"):. or R,=((e\e HU

U(e~*\g@))a. Since (z S]EE for any (g, b), (¢, d)€ R,N(AXB), the relation o

equals one of the relations, Dy, (1=l/=3).

i Case9. Let E satisfy Uy, ie. A#X, Z;%8 and Q=Z,=Z,=0. We prove
(1) for the graph G=(X, ¢) with o=D,, (and @=D,,). If (1, v)€ R\(P,U Py)
then (u, v)€@Ng~" and f belongs to both E and E;(G). If (u, v)€ P, then (u, v)§oU
Ue~?! and f€E is equivalent to (x, y)€Ps, ie. (x,¥)§eUg~". The latter is equiv-
alent to f€E;(G). Suppose that (u,v)€ P,N(4XB). Then (u,v)€o\e~* (or
(u, v)§oU ¢~?) for the graph G with the relation Dy, (or D, ). Let f€E. If x, y€B

then, by 0=0 and Lemma 9, (; i ]eE. Hence (;C IJ; ]EE and, by (T,), (x, y)€ P;.

It follows that (x, y)¢oU ¢~ and fis a p.endomorphism of G. If (x, y)¢ B2 then
(u, V)€ P, and fEE imply (x, y)€ P,N(AXB). Thus (x, y)€eN\e™" (or (x, »)¢eVU
Ug™?) for the graph G with the relation Dy, , (or D, ;). Therefore f is a p.endo-
morphism of G. Conversely, if f€ E5(G) then (x, ¥)¢oU ¢~*. Hence, by the definition
of G, either (x,y)¢P; or (x,y)¢P,; moreover, in the latter case, (x,y)€o\o~*
for the graph G with the relation D, ,. It follows that (x, y) belongs to P; or
P,N(AXB), whence, by the definition of P, f€E. Thus (1) holds for the graph G
with each of the relations Dy, (I=1, 3).

Conversely, let a graph G=(X, ¢) satisfy (1). Then, by Lemmas 3 and

.5, Ri=4%, R=¢Ng™* and P=(X\(¢Ug™"),. Since (" Z]EE for any

(@, b), (c, d)€ P,N(AXB), from Lemma 6 it follows that the relation ¢ equals one
of the relations Dy, (1=1=3).

Case 10. Let E satisfy Uyy, i.e. Q=Z,=0 and Z,, Z;=0. We prove (1) for the
graph G=(X, 0) with ¢=Dy, (I=1,3). By Uy and Lemma3, P,=B® and
Ry=A% If (x,y)€B® or (u,v)cA® then, by the definition of G, (x, y)§oUo~? or
(u, v)€ 0N g~?, respectively. It follows that f belongs to both E and E,(G). If (x, y)c A
and f belongs to E or E(G), then by Lemmas 4 and 9, (u, v)€ A%. Analogously,
(x, y)EB® if (u, v)€B? and f belongs to E or E3(G). Suppose now that (x, y)¢B?
and (u,v)§A42. Hence (x,y) and (w,v) belong to (AXB)U(BXA). Let, for
example, (x,y)€AXB. If fcE then (u, V)EAXB and, by the. definitions, the
" following condmon holds:

) {enther x, ), W, v)€EP,, or (x,¥), (u, V)ER,,

@ . or (x,y)€P, and (u,v)ER,.
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-1t follows ‘that f is a p.endomorphism of G for any Dy, ; (I=1,3). Conversely, if

J€E;(G), then (u,v)eAXB and, by the definition of G, (2) is satisfied. Hence,
by the definition of P and R, fcE. So (1) holds for the graph G with any of the
relations Dy, (=1,5).

Conversely, let a graph G=(X, @) satisfy (1). Then, by Lemmas 3 and 6, P;=
=(XN\(eUg™));=B? and R,=(¢Ng~Y),=4% Moreover, either P,=((e\ g 1)U
U(e~™\\0)): .and Ry=(¢Ng™ "), or P,=(X?\(eUg™?)), and one of the following
equalities holds: Ry=(¢N¢g™ "), or R,=((e\e HU(e™*\0)).. We show that other
cases are impossible. By Lemma 3, there exist (a,b) and (c,d) in AXB Such
that (a, b)¢P, and (c, d)€ER,. Using Z,=0 and the definition of P and R, we

. d): ;
obtain that (Z Z)EE and [Z b)‘QE' Clearly, (z {7 ]EE if (x,y) and (u,0v)

“belong to P,N(AXB) (or R,N(4XB)). It follows that the relation ¢ equals one
of the relations Dy, (1=I=5). The proof is complete.

Proof of Theorem 2. Let E=E(G) for some graph G=(X, ¢). From the
definition of a p.endomorphism it follows that E is a left idealizer of its subsemi-
group E,=E,;(G) in the symmetric semigroup W (X). We prove (T;)—(T;). Clearly;
these conditions hold for E=W (X). Suppose that E=W (X). Then, by Lemma 4,

a vertex a€X has no loop iff a€¢B. Thus (Z) is a p.endomorphism of G for any

a¢B and xcX, ie. (T, holds. Consider now (x;,y;)€Q (i =1,3) such that
(Xes Xet1)s (V> Pier)€T (k=1,2). Then, by Lemma 4, (x;, y)€(eN\e U (e""\0)
and (T,) is satisfied. Suppose that [z 'Z ], [;c i are p.endomorphisms of G. Then
(x,»)¢oUpo™* or (u,v)€eNg~", whence, by Lemma4, (x,y)€P or (u,v)ER.
Thus (T,) holds.

Conversely, let a p.transformation semigroup E satisfy the conditions of Theo-
rem 2. Then the semigroups E and E; are determined by each other and, by
Lemmas 1 and 7, their canonical relations are equal. Moreover, E; satisfies (T;)—(Tj3).
By Theorem 1, E,=FE,(G) for some graph G. Then E=E(G) since E(G) is the left
idealizer of E;(G) in W (X). Theorem 2 is proved.

Remark. The conditions (T,)—(T,) are independent.

3. Applicatfons

Two graphs, G and G’ are called E-equivalent, if E(G)=E(G’).- A
As an application of Theorems 1 and 2 we describe E-equivalent graphs and
graphs with isomorphic or elementarily equivalent [9] p.endomorphism semigroups.

~ Theorem 3. The graphs G=(X, ¢). and’ G'=(X, o) are E-equivalent iff either

5«
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o=0" or g=¢~! or o, o simultaneously belong to one of the following classes:
Ko £{9, 45, X?);
K(4) £ {4,, 423 AXX, XX 4, X™\B%, X\4z};
K(4,a,7y) g{aUy, «U(¥N(4XB)), aU(yN(BXA))};
K(4, 8, ) £ {4206UL, (AXX)USUL, (XX A4)UUL);
K(4, y) £{42Uy, £2U(yN(AXB)), A22U(yN(BXA)), (4XX)Uy, (XxA)U7},

for some proper subset AC X, B=X\A and symmetrical relations a, {, y, 6 such
that A,caG A% D#{CBANds, 7, 6C(AXB)U(BX A) and y#0.

The proof follows from Theorems 1 and 2.

Denote by U the class of all p.endomorphism semigroups of graphs. The
signature © of U consists of the single symbol - for the binary semigroup ooera-
tion. A n-place predicate &(x,, ..., x,) is called formular in A if there exists a
formula F(x,, ..., x,) of the signature Q such that for every semigroup S€¥U and
for every Xy, ..., X,€8, F(xy, ..., x,) is true iff @(x,,...,x,) is true. Consider
“the following formulas:

©) 0N LW y=y-x=x); Ix E£(10() & x-x = x);
J6) £(I0) & (YNUG) & x-y=y=y-x=x);
M) L£(J(x) & (WIUG) & y-x = x=0(x-p));
T(x, ) L (M() & M) & @2)(10(-z- ¥))).

Let G=(X, o) be a graph, and let E=E(G). We write x:(i] for x¢X. Clearly,

x>X (x€X) is a one-to-one mapping of X into E. Then any relation ¢ on X is
mapped onto the relation ¢ on E, and any condition U on the relations ; on X is
transformed into the condition U on the relations &; on E. Using (3) we can prove
that the relations X, g, D;,; and the canonical relations of E are mapped onto the
relations X, @, D,,; and so on, which are determined by formular predicates in
A. For example, X and 7 are determined by the formulas M(x) and T(x, y),
resp. Denote by F, and R, ; the formulas that determine the conditions U, and
the relations Dy, resp. Clearly, F; is a proposition and R, ; a two-place predicate.

Theorem 4. Let G and G’ be graphs, and let E=E(G), E’=E(G’). Then the
Jollowing holds:

(i) if E and E’ are elementarily equivalent then G is elementarily equivalent to a
graph that is E-equivalent to G’;

(ii) Eand E’ are isomorphic iff G is isomorphic to a graph that is E-equivalent to G'.
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Proof. If E and E’ are elementarily equivalent and E satisfies U, then F, is
true for E and E’. Therefore, by Theorem 1, the relations of G and G” are equal
to D,, and D, , for some / and m. Consider the graph G, with the vertex-set of
G’ and the relation D, ; for the semigroup E’. By Theorem 1, E(G")=E(G,). Thus
the formulas M(x) and P, ,(x, y) determine the graphs G (on E) and G, (on E’)
such that G=G and G,=G,. On the analogy of [3] we obtain that G is elementarily
equivalent to one of the graphs G, and G;*. So G is elementarily equivalent to a
graph that is E-equivalent to G’, i.e. (i) holds.

Now suppose that Ex~E’. Then the semigroups are elementarily equivalent.
Using the previous reasoning, we can prove that an isomorphism. of E onto E’
determines the isomorphism of G onto one of the graphs G, and G;'. Hence G is
isomorphic to a graph that is E-equivalent to G’. Theorem 3 implies the converse
assertion. Thus (ii) holds. This completes the proof.

Consider a graph G with a reflexive (or antireflexive) relation ¢ such that 0+#0,
Ay, X2 One can easily see that the E-equivalence class of G consists only of the
graphs G and G—*. Hence Theorem 4 yields the results of [2, 3] on p.endomorphism
semigroups of reflexive graphs.
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The analytic behavior of the holiday numbers

L. A. SZEKELY

1. Introduction

Investigating Hilbert’s fourth problem Z. I. SzaB6 [7] introduced the holiday
numbers. In my previous paper [8] many combinatorial and algebraic properties
of these numbers were treated. These properties are close to those of the Stirling
numbers of the second kind. The aim of the present paper is to investigate the.
analytic behavior of the holiday numbers. We follow the main ideas of HARPER
[11, who investigated the analytic behavior of the Stirling numbers of the
second kind. .

We recall from [8] two possible definitions of the holiday numbers. The holiday
numbers of the first kind are Y (m, i) (of the second kind ¢(m, i)), where

o) S ("fm) kzm W (m, k)i = (1)yT=2z)exp 1(1/)T—2z~1),

1) mgo (z"/m?) kgn:') o(m, k)t = (1/(1—22)) exp (1(1/¥1-2z-1)).

The second definition is

2 Y(m, k) = Cm+k—-1)y(m-1,k)+¢y(m—1,k-1),
v(©0,00=1 ¥(©0,H5=0 for t+#0,
2" @(m, k) = 2m+k)o(m—1, k) +o(m—1,k-1),

¢0,00=1, ¢0, =0 for ¢t=0.
We use the notations ¥, =2 y(m, k) and (p,,,=%' o(m, k).
k

Received October 23, 1984.
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2. Results

Statement 1. The holiday numbers are strongly logconcave in the following
sense: for O0=k=n,

U, kP = Y(n, k=D (n, k+1), @ (n, K = @(n, k—1)g(m, k+1).

The statement is a special case of Kurtz’s theorem [2]. It follows that the
holiday numbers are of unimodal distribution, for any » their maximum value is
attained at most two times. The statement is important to get the corollaries of our
theorems.

Theorem 2. ¥, and ¢, admit asymptotic expansions in the powers of n*® in
the following way:

3) : Yo~ (n12"e Vg)ez""'a'"‘/’(n‘”z-i—aln‘s/"-l-azn‘7/6+ )y
(3) @a~(n127+18)e Y 3m) €2 Vo3 0 (=16 L p =112 b, p=5I8 ),
We have also

Vsl = 20+ QNIBHO(),  @paafg, = 2n+(2n)P+0(1),
“) Vi =Vt VaVnss — 2 ¥n s — ¥}~ (2/3) 2053,
@) Pa = Oh 1t PnPnia— 200 Pnr1— O3} ~(2/3)2)"5.

Theorem 3. The holiday numbers are asymptotically normal in the following
sense:

® o Jim (A 20 o )= (V3R [ evreds
*) tim 1100 3 00, 1) =(¥2) [ et
where =

(6) Xp = ‘l’n+1/¢n —(21’1 + 2) +(x/¢n){— l//12|+1 + 'l/n ¢n+2 —2% ¢n+1 - W.}l/z,

6) In = 0nsr/0n—(2n+3) + (/@)= P2 41+ O Oni2— 20,0y 11 — 2}V2;
or

(6" x, = (234 x((2/3)2n) 22, y, = (2m)3+ y((2/3)(2m)3)1,
Corollary 4. Using the definitions of x,, y, in (6), (6’) or (6”) we have

U (=it YaVasa— 2 ns 1 —VEIV2Y (1, [x,]) ~ (1)) 27)e-0,

05— 0hs1t PaPura =20, 0031~ 02 20(n, [y,]) ~ (1/V27) e,
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ie.
U, Dol ~ (11277 em) et 9-02 =23 o=,

0 (7, L) ~ (1125 em) >t = o=,

Corollary 5. Suppose, for i=I, the maximum value of Y(n, i) (for i=J,
the maximum value of ©(n,i)) is attained. Then for every &=0 there exists N
such that for n=N
|1, —@2n)'?| < en'®, |J,—(@2n)"3| < en'l®.
Corollary 6.

m;‘.lx Y (n, j)~Qr) 2=yl L+ Vs e — 20,1 — Y}V,

max o(n,j)~Q2r) 2@~ Qi1+ PnPri2— 205 Ppir— @2} 2,
ie.
max y (n, J)~(n12n=08er) er=*3-n 0y =213,

max ¢ (n, j)~(n'2r—5/8/ex)2~*/*-3-n1/2y—1/3,

The corollaries follow from the fact, that the convergence in Theorem 3 is uniform
behind the integrals. Its reason is Statement 1, and the proof goes on the same way
as in Harper’s paper.

3. The proof of the theorems

In order to prove (3) and (3’) we have to give the asymptotic expansion of the
coefficients of

(1/¥T=2z)exp (1/YT=2z—1) and (1/(1-22)exp(1/y1—2z—1)

(cf. (1), (1)). It is given in [6], in 25.3, in formula 25.35, in terms of Bessel—Wright
functions. The asymptotic expansion of Bessel—Wright functions is given in [5],
in 215, in formula 21.107. Comparing them we get (3) and (3"). By the theorem
concerning the ratio of functions expanded in asymptotic power series ([4], 4.4,
Thm. 5—6) we have the following expansions in the powers of n'/%:

Vnr1ln ~ 20+ 280 B eyt s @uia/@p ~ 24223014 dy ...

Now (4) and (4’) follow easily.
In order to prove Theorem 3 we recall a well-known theorem from probability
theory and prove an easy lemma.
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Lemma. The polynomials

Pul) = S Um0 and 0,() = 3 o(m, k¥

have m distinct, real, negative roots.

Proof -of the lemma. We prove the statement by mathematical induction.-
It holds for Py(1)=Q,(¢)=1. By (2) and (2") we have

) Pp(x) = @m—1+X)Pp_1(x)+xPp_, (%),
™) On(x) = @M +x) Q-1 (%) + 301 (x)-

Let the roots of P,_;(x) be z;<z,<...<z,_;<0 by hypothesis. There are m—2
roots of P, by Rolle’s theorem in (z,, z,_,). There are two other roots by

Po(Zn-) = Zu1 Pp(2,-1) <0 and P,(0) = (2m—D!! (see (2)),
and .
sign Pp(z;) = sign z, P, _1(zy) = —sign Pp,_y(— =) = —sign Pp(— ).

A similar method applies for Q,,.

We continue the proof of Theorem 3. Let the roots of P,(x) be {—yu:
k=1, ...,n}, the roots of Q,;(x) be {—x,: k=1, ...,n}. We define the independent
random variables Y, and X} by

P(Yi =0) = yul/(A+yu), P(Yu=1) = 1/(1+yu),

P(X5 = 0) = xu/(1+x0), P(Xg=1)=1/(1+xy).
Let Z;=23 Yy, Sy=2 X%, Fu and E, the distribution function of Xy, Y.
Using (7), 27’) we have *

e 1P| Poa(®-Qn+1+x)P,(x)
E(Z") N %' 1+ynk B Pn(x) lx=1 B XP,,(X) x=1 N
= Ypr1/¥n—(2n+2),
E(S:) = (Pn+1/(Pn—(2n+3)’
1 1
® Dz = Bz - B2 = 3 (1o~ ) =
_ P +(P;(x)]’ _ VRt VnVss—2a Vs — V2
Pn(x) Pn(x) x=1 .plzl ’

(we used (7) twice), '
(8’) D2(S:) = E(S:_E(S:)2)2 = (-(P3+1+(pn(pn+i_2¢n(pn+l_(Pﬁ)/(pﬁ'
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Let us define
) Z,=(1/D(Z))(ZS—E(Z)) = ; (1/D(Z) (X~ E(XD),
) S, = (UD(SHN(Ss—E(SD) = %(I/D(S:))( e~ E(Y )
From (4), (4'), (8), (8') we get D(Z})—~<o, D(S})—~<=. We are in a position to apply
the Lindeberg—Feller Theorem ([3], p. 295) for Z; and S}, since
m—EQGII =1, |[Yi-E(Y)l =1,
and for a number n large enough

> [ #dFu(0 =0, 2 [ x*dEu(x) = 0.

lezz |x|=e

Since the generating function of a sum of independent random variables is the
product of the generating functions,

i x+xnk Pn(x) i x+ynk . Qn(x)
I, "m0 L1, ~ o0

we have P(Zr=a)=y(n, a)ly,, P(Si=a)=¢(n, a)/p,. Now the theorem is proved
by 9, (9). -
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p-algebras with Stone congruence lattices

T. KATRINAK and S. EL-ASSAR

‘1. Introduction. In [12] we have described by means of subdirect factorization
congruence distributive algebras A4 whose congruence lattices Con (4) are atomic,
Boolean, or Stonean. The purpose of this paper is to give an intrinsic characteriza-
tion of those quasi-modular p-algebras whose congruence lattices are atomic, Stonean
or relatively Stonean. To obtain this we use the representation of congruence rela-
tions of quasi-modular p-algebras in terms of congruence pairs. That means (see [11]),
that every congruence relation a€Con (L) of a quasi-modular p-algebra L can be
uniquely represented by a congruence pair (g, op), where ap is a (Boolean) con-
gruence relation of B(L) and oy a (lattice) congruence relation of D(L).

We start with a description of congruence pairs corresponding to (relative)
-pseudocomplements in the lattice Con (L) (Theorem 1). By way of application,
we characterize those quasi-modular p-algebras with atomic congruence lattices
(Theorems 2, 3 and 4). As a second application we provide a characterization of
(relative) Stone congruence lattices of quasi-modular p-algebras (Theorems 5, 6 and
11): Analogous, but deeper results, are obtained for distributive p-algebras (Theo-
rems 7, 8 and 12).

2. Preliminaries. A (modular, distributive) p-algebra or pseudocomplemented
lattice is an algebra (L; V, A, *, 0,1) in which the deletion of the unary opera-
tion * yields a bounded (modular, distributive) lattice and * is the operation of
pseudocomplementation, that is, x=a* if and only if aAx=0. A p-algebra is said
to be quasi-modular if it satisfies the identity

[(xAPV ¥ Ax = (xAY)V(Z**AX).

The variety of quasi-modular p-algebras properly contains the class of modular
p-algebras and is properly contained in the class of p-algebras satisfying the identity

x = x*A(xVx*).

Receivde May 25, 1984.
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If, for any p-algebra L, we write
B(L) = {x¢L: x=x**} and D(L)= {xcL: x* =0}

then (B(L); V., A,* 0,1) is a Boolean algebra (of closed elements) when aVb
is defined to be (a*Ab*)*, for any pair a, b€ B(L), and D(L) is a filter in L (of
dense elements). By a congruence relation of a p-algebra we mean a lattice con-
gruence of L preserving *. The relation y of L defined by a=b(y) if and only if
a*=b* is a congruence relation of L, called the Glivenko congruence of L, and
Ljy=B(L). The lattice Con (L) of all congruence relations of a p-algebra L is
algebraic and distributive, which implies that Con (L) is a distributive p-algebra.
The least and greateét elements of Con (L) will be denoted by 4 and V, respectively.
A distributive p-algebra L in which the identity

x*vx** — 1

holds is called a Stone algebra (lattice). A relative Stone algebra (lattice) is a dis-
tributive lattice in which every interval [a, ] is a Stone lattice.

A double p-algebra is an algebra (L; V, A, *, *,0,1) in which the deletion
of * gives a p-algebra and the deletion of * gives a dual p-algebra, that is aVx=1
if and only if x=a*. The relation @ of L defined by

a=b(®) if and only if &* =5* and at* =b*

is a congruence relation of L, called the determination congruence. It is known that
a double p-algebra is regular (that is, any two congruence relations of L having a
class in common are the same) if and only =4 (see [16]).

A special class of distributive p-algebras is formed by the Heyting algebras
(L; V, A, %,0,1), where (L; V, A,0,1) is a bounded lattice and xAy=z if and
only if y=x#%z. Then x*=xx%0 plays the role of a pseudocomplement of x. It is
easy to verify that Con (L) of a p-algebra L is even a Heyting algebra.

A lattice with 0 is called atomic, if for every a0 there exists an atom p=a.

We refer to [1], [8] or [10] for the standard results about p-algebras and to [1],
[9] or [16] for the standard results about double p-algebras. For general lattice-
theoretic terminology, notation and results we follow G. Gritzer [6].

3. Congruence pairs. Let (L; V, A,*, 0, 1), henceforth simply L, be a quasi-
modular p-algebra. Let Con (L) denote the lattice of congruence relations of L.
Since Con (L) is a Heyting algebra, there exists a complete Boolean algebra
B(Con (L)) of closed elements (congruences) and the filter of dense elements (con-
gruences) D(Con (L)). We shall also consider Con (B(L)), the lattice of (Boolean)
congruence relations of B(L) and Con (D(L)), the lattice of (lattice) congruence
relations of D(L). .
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Having ©@¢Con (L), the restrictions Op=@|B(L) and O,=0O|D(L) are
congruence relations of B(L) and D(L), respectively. Hence, there exists an isotone
map @—(Op, @) from Con(L) into Con (B(L))XCon (D(L)). The following
definition is crucial (see also [11]}, [4]).

A pair (0,, 0,)¢Con (B(L))XxCon (D(L)) is said to be a congruence pair of
L if the following condition holds: a¢B(L), u€ D(L), u=a in L, and a=1(0,)
imply that u=1(6,).

Theorem A (see [11, Theorem 11). Every congruence relation © of a quasi-
modular p-algebra L determines a congruence pair (O, @p) and, conversely, every
congruence pair (0, @,) of L determines a unique congruence relation @ of L
having the property that @g=0, and Op=0,. Moreover, x=y(0O) if and only if
x*=y*(0,) and xVx*=yVy*(O,).

In what follows we shall often identify ©@€Con (L) with the corresponding
congruence pair (@g, @p). If there is no danger of confusion, we shall omit the
subscripts in notation of some congruence pairs, e.g. 4=(4, 4), V=(V, V), (4, «).

Clearly, having a€Con (B(L)), there exists Ker a=J€I(B(L)) (=the lattice
" of all ideals of B(L)) such that a=@[J]. Similarly, for p€Con (D(L)), Ker f=
={xeD(L): x=1(B)} is a filter of D(L), i.e. Ker ¢ F(D(L)).

Given a quasi-modular p-algebra L, there is a map ¢(L): B(L)~F(D(L))
defined as follows: ’

ap(L) = {xeD(L): x = a*} = [a*)ND(L).
This map proved instrumental in characterizing the quasi-modular p-algebras (see
[13]). We shall need the following result.

Theorem B (see (I3, Theorem 3]). /n a quasi-modular p-algebra L, the map
¢(L): B(L)~F(D(L)) is a {0, 1, V}-homomorphism.

Now, we can reformulate the definition of a congruence pair.

Lemma 1. Let L be a quasi-modular p-algebra and let (0,, ©,)¢Con (B(L))X
XCon (D(L)). Then (O,, O,) is a congruence pair if and only if Jo(L):=U
U(ap(L): acJ)SKer O,, where J=Ker 0.

Proof. Clearly, ac¢J=Ker 0, if and only if a*=1(0,). Therefore, Jo(L)S
CKer @, if and only if (O,, @,) is a congruence pair.

From Lemma 1 we see that for every ©,€Con (B(L)) with J=Ker O, there
exists a smallest 6(@;)€éCon (D(L)) such that Jp(L)SKer 6(0,). That means,
(©,, @,) is a congruence pair of L if and only if @,=6(0,). Dually, for every
0,6Con (D(L)) there exists a largest ideal JEI(B(L)) such that Jo(L)S Ker. O,
ie. (O[J], ©,) is a congruence pair. Notation: 1(@,)=@[J]. Evidently, (0,, ©,)
is a congruence pair of L if and only if 7(0;)= 0,.:
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An abstract description of the lattice of all congruence pairs of quasi-modular
p-algebras can be found in [4]. In the next theorem we give a description of (relative)
pseudocomplements in Con (L) by means of congruence pairs.

. Theorem 1. Let L be a quasi-modular p-algebra and let a, Bc¢Con (L). Then
(a5V B> 2pVBp), (agABg, apABp) and (“B*BBAT(“D*BD)r ap*Pp) are congruence
pairs of a\/B, aAB and axp, respectively. In particular,

(5At(xp), ap) and ((@bAT(ap))*At(ad®), ap
“are congruence pairs of o* and o**, respectively.

Proof. Clearly, (aVB)s=azVBs and (aVB)p=apVh,. Assume a=b(aVf)
for a, b€B(L). Then there exists a finite sequence a=z,, ..., Z,=b such that
z;_y=z)(t) or z;_,=z;(p) for every i=1, ..., n. Therefore z}* =z}*(a) or z;* =
=z;*(B), which implies a=b(xzVps). Hence (aVp)z=azVPhp. A similar argu-

ment yields (xVB)p=apV Bp, (@AB)p=0azABp and (aAB)p=apABp.

It is easy to verify that (o % BAT(0p* Bp), ap* Bp) is a congruence pair of L.
Clearly,
(55 ap) A\ (xp* BaAT(ap* Bo), tp* Bp) = (Bg, Bp)-

-Assume (otg, ap)A(g, 1p)=(Py, Bp) in Con(L). Therefore, nzy=ay*py and
np=ap*f,. Since (ng,1p) iS a congruence pair, we have ng=1(np)=t(0tp* fp).
Hence (np, np)=(op*BsAt(op* Bp), ap*Pp). The last part of Theorem can be
established in the same way because (&g, ap)* =(ag, op) * (4, 4).

Corollary 1 (see {1, Theorem 2]). Let L be a quasi-modular p-algebra. Then
Con (D(L))=[4, y]l, where y is the Glivenko congruence.

Proof. Consider the map ag—(4, a;) from Con (D(L)) into Con (L). Since
y=(4,V), we see that this map is an isomorphism between Con (D(L))
and [4,7].

Corollary 2. Let L be a quasi-modular p-algebra. Then Con (B(L))=[y, V1.

Proof. Consider the map «;—(2,,V) from Con(B(L)) into Con (L). This
map is an isomorphism between Con (B(L)) and [y, V].

4, Atomic congruence lattices. In [12] we have extended Tanaka’s result [15,
Theorem 1).

Theorem C. Let A be a congruence distributive algebra. Then the following
conditions are equivalent:
(i) Con (4) is atomic;
(ii) D(Con (A4)) is a principal filter;
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(iii) B(Con (4)) is atomic and every dual atom of B(Con (4)) is completely
meet-irreducible in Con (4);
(iv) Con (A) satisfies the (infinite) identity

ANGFE: D) = (A i€D)*.

Lemma 2. Let. L be a quasi-modular p-algebra. Then a=(ag, ap) is an atom
of Con (L) if and only if
' () ag=4 and oy is an atom of Con (D(L))
or

(i) ap=4A, ag=t(4) and ag is an atom of Con (B(L)).

Proof. Suppose that (g, &p) is an atom of Con(L). Two cases can arise:
oap#d4 or ap=A. In the first event (4, ap)=ca, whence a=(4,cap) and o is
an atom of Con (D(L)). In the second case we obtain (ii). The converse is trivial.

Theorem 2. Let L be a quasi-modular p-algebra. Then Con (L) 'is atomic
if and only if

(i) Con (D(L)) is atomic
and

(ii) {acB(L): ap(L)=[1)} is an atomic ideal of B(L), i.e. it is an atomic lattice.

Proof. Assume that Con (L) is atomic. Therefore, [4,y] is atomic as well.
By Corollary 1 of Theorem 1 we obtain (i). Take 0=2acB(L) with ap(L)={1). By
Lemma 1, (©[(a]], 4)¢Con (L). There exists an atom «€Con (L) with a=(ag, 2p)=
=(0[(d]], 4). Hence ap=A4, az=1(4) and ayis an atom of Con (B(L)) (Lemma 2).
Thus Ker az=(b] and b is an atom of B(L) with be(L)=[1).

Conversely, assume (i) and (ii). Take Adsa=(ugz,®p) from Con (L). Two
cases can occur: ap#A4 or ap=A. In the first case, there is by (i) an -atom
BcCon (D(L)) with B=a,. Hence (4,pB) is by Corollary 1 to Theorem1 an
atom of Con (L) and (4, f)=(ug, p). In the second case, A=az=1(4). There
exists an atom a€J=Keray by (ii). Hence (O[(al], 4) is an atom of Con (L)
(Lemma 2) and (O[(d], 4)=«.

Lemma 3. Let K be an ideal of a Boolean algebra B and let K be an atomic
sublattice of B. Let J be the ideal of B generated by all atoms of K. Then J*=K*
in the lattice I(B) of all ideals of B.

Proof. Clearly JS K. Therefore, J*2K*. Take beJ*. If (B)NK5(0], then
there exists an atom acK such that a=b. Hence acJNJ*=(0], a contradic-
tion. Thus, KNJ*=(0], which implies J*SK*. So, J*=K*. :

Theorem 3. Let L be a quasi-modular p-algebra. Then (fy, B;)€¢Con (L) is
the smallest element of D(Con (L)) if and only if

6
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- (i) B is the smallest element of D(Con (D(L)))
and : .
(ii) the ideal K={acB(L): ap(L)=[1)} of B(L) is atomic and B,=0OJ],
where J is the ideal of B(L) generated by all atoms of K.

Proof. Let (B,,B,)€Con (L) be the smallest element of D(Con (L)). It is
easy to verify that (t(4), )€ Con (L) for every a€ Con (D (L)). Moreover, (z(4), &)* =
=4 if and only if acD(Con(D(L))). Therefore, (B,,B,)=(t(4),a) for every
«€D(Con (D(L))). Thus B, is the smallest element of D(Con (D(L))) and ,=1(4).
Since A=(B,, Bo)* =(B;A1(4), 4), we see that B} =1(4)*. But f,=1(4) implies
B =1(4)*. Hence Bf=1(4)*. Clearly, ;=0 [M]and t(4)=O[K], where M is an

.ideal of B(L) and M S K. According to Theorems C and 2, X is atomic. Without
difficulties one can check that M contains all atoms of K, as fy=1(4)*. LetJ

.denote the ideal of B(L) generated by all atoms of K. Lemma 3 yields ff=t(4)*=
= O[J]*. Now, (O[], B)*=(BiA1(4), p;)=4 implies B, =O[J]. Eventually,
Br=0U). |

Conversely, let L satisfy (i) and (ii). Take p,=@[J] from Con (B(L)) and
B:€Con (D(L)) as defined in (i) and (ii). Clearly, (B;, B)€Con (L), as B,=t(4).
By Lemma 3, ff=1(4)*. Therefore, (B,, B,y =4; that means (B,, B,)€ D(Con (L)).
"Consider (%, a)€ D(Con (L)). Since o3=4, we have f,=a,. In addition, afA
At(d)=4. Hence of =1(4)*=p;. Clearly o, =O[M] for some ideal M of B(L).
We-claim that M2J. Really, if JE M, then there exists an atom a€J—M and
acM*. That means O[(a]]=ofAB;=4, a contradiction. Therefore, JE M, as

-claimed. Hence B;=wa,, and (B,, B,) is the smallest dense congruence relation of L.
The proof is complete. -

Lemma 4. Let L be a quasi-modular p-algebra. Let ac B(L) with ap(L)=][1).
Then (@ [(a]], 4)€B(Con (L)).

Proof. Since O[(a]] =1(4), wesee that (O[(a]], 4)€Con (L). By Theorem 1,
(@[(a]], 4y*=(0O[(al]**At(4), 4). Since O[(a]]**=0©[(a]], the proofis complete.

Theorem 4. Let L be a quasi-modular p-algebra. Then B(Con (L)) is atomic
if and only if

(i) B(Con (D(L))) is atomic
and

(ii) {a€B(L): ap(L)=[1)} is an atomic ideal of B(L).

Proof. Assume that B(Con (L)) is atomic. Let 4sa€B(Con (D(L))). There-
fore, (4,2)€Con (L). Clearly, (4, a)**=(t(¢*)*At(x), ®)#4, by Theorem 1. By
assumption there exists an atom (B, f;) of B(Con(L)) such that (B,,B,)=
=(t(«*)*At(a), o). Evidently, B3*=pB, in Con (D(L)). Hence p,=a. We claim
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that B, is an atom of B(Con (D(L))). First we show that Bos24. Assume to the
contrary that -f,=A4. Hence f,=t(4). Since t(d)=1(x*), we get f=1(@*)*=
=1(4)*. Therefore B, =4, a contradiction. Thus f, 4. Take 45n€B(Con (D(L)))
with n=p,. Therefore 4(4, n)=(B;, B) implies (4, n)**=(By, B=), as (By, B2)
is an atom of B(Con (L)). But (4, n)*=(z(n*)*At(n),n). Hence n=p, and B,
is an atom of B(Con (D(L))), as claimed. The second part of Theorem follows from
Lemma 4.

Conversely, let L satisfy (i) and (ii). Consider 47 (a,, ;)€ B(Con (L)). Clearly
ay=a3* in Con(D(L)). If az=4 then a,=1(4), and o,=0O[J], where J is an
ideal of {a€B(L): ap(L)=[1)}. By (ii) there exists an atom acJ. Put B,=6{(d]]
in Con (B(L)). Clearly (B, 4)** =(B,, 4)=(x,, 4), using Lemma 4. Thus (8, 4)is
an atom of B(Con (L)). Assume o;4. Then there exists an atom f.=o, in
B (Con (D(L))) by (i). Since (4, fs)=(o,, a), we see that

4, ,32)** = (T(ﬂ;)*/\f(ﬁz), ﬁz) = (g, 02) = (o1, )™

It remains to verify that (4, f,)** is an atom of B(Con (L)). Really, suppose that
there exists 4y, 7,)€B(Con (L)) with (1:, 7:)=(4, fo)**. Two cases can arise:
o524 or n,=A4. But n,%d4 implies f,=#n,. Moreover, (4, f)=(1,n)=
=(4, Bo)** implies (1, 7.)** =(11, n2)=(4, B)**. Assume n,=A4. Therefore, n,=
=1(4)=1(B;). Similarly as above, n,=t(f3)*=t(4)*, which implies n,=4, a
contradiction. Thus, (4, B,)** is an atom of B(Con (L)) and the proof is complete.

5. Stonean congruence lattices.

Lemma 5. Let L be a Stone lattice and acL. Then [0, a] is also a Stone
lattice.
The proof is straightforward (see [8, 2.11]).

Theorem 5. Let L be a quasi-modular p-algebra. Then Con (L) is a Stone
lattice if and only if
(i) Con (D(L)) is a Stone lattice,
(i) if (ay, 2%)€Con (L) then Ker (af A1(a3))=(d] for some acB(L),
(iii) if a€Con (D(L)) then t(a**)z=(r(0)*At(a®))*.
Proof. Suppose that Con (L) is a Stone lattice. The condition (i) follows

«directly from Lemma 5 and Corollary 1 to Theorem 1. Take now (2, a;)€ Con (L).
By Theorem 1 and the hypothesis,

= (o, )"V (o, o)™ = (arAr(az), a;;«)v((a;ma;'))*ma;*), )

t.

‘Therefore,
: (FAT(@))V[(oF AT (a;‘))* At(@g®)] = V.

6*
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Consequently, (a3 At(e3))V(afAt(23))*=V. Hence, (afAt(e3))* is a complement
of «fAt(af) in Con(B(L)), and (afAt(d))* =(af At(a}))* At(ed*). Thus (a}*)=
:(a’l"/\r(ocg))* As (1(x), ®)€Con (L) for every « from Con (D(L)), this yields (iii).
The condition (i) follows from the fact that afAt(ef)=0[J] and (afAz(e3))*=
=0[J*] for some JEI(B(L)). By the hypothesis, J* is a complement of J in
I(B(L)). It follows that J=(a] and J=(a*] for some acB(L) (see [5] or [7]).

Conversely, suppose that L satisfies (i}—(iii). Take (a;,;)€Con (L). Clearly
(a;, a2) =(7(ap), @). By Theorem 1 and the hypothesis,

(ala 0(2)*\/((11, a2)** = ((1 /\t(a )’ aZ)v(((a At(a ))*AT(a *) a *) -
= (0[(al], )V(O[(a"T], ) = V,
because (of At(ed))*=(t(e)*A1(03))*. The proof is complete.

Corollary. Let L be a quasi-modular p-algebra and let Con (L) be a Stone
lattice. Then for (o, 0,)€Con (L) we have

(@D (g™, az®)eCon(L),
() (o, )™ = (a7*, 3®)** = ((aik/\f(“;))*, a’zk*)
and .
(i) a€Con(D(L)) implies t(@™*) = t(a)™*Vr(a*)*.

Proof. (i) Since, by Theorem 5, of*=1(e;*), we have (oc1 , a3 ¥)ECon (L).
(ii) and (iii) follows from Theorems 1 and 5.

In [12] we have also investigated algebras whose congruence lattices satisfy
the (infinite) identity
4)) V(xF*: i€l) = (V(x;: i€ D)™,

Theorem 6. Let L be a quasi-modular p-algebra. Then Con (L) satisfies the
identity (1) if and only if

(i) Con (L) is a Stone lattice
and

(ii) B(Con (L)) is finite.

Proof. Assume that Con (L) satisfies the identity (1). Then by [12, Lemma 2],
Con (L) is a Stone lattice and B(Con (L)) is atomic. Moreover, [12, Theorem 9]
says that L has an irredundant discrete subdirect factorization with finitely sub-
directly irreducible factors. Let {a;: i€I} denote the set of all dual atoms of
B(Con (L)). Then by [12, Theorem 2], (L/;: icI) is the subdirect factorization
of L in question. Therefore, every element x€L can be represented as (xp);cy,
where x;€L/a; for every icl. Take now the elements v=0 and =1 from L,
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i.e. the smallest and the largest elements of L, respectively. Since the factoriza-
ition of L is discrete, there exists a finite subset ;&1 such'that {icl: u;>v,}=1,.
Moreover, 0=x=1 implies u;=x;=v; for every i€cI—1I,. But the factorization
(L/o;: i€I) is irredundant that means A(a;: jEI, i#j)=A4 for every icl. Hence
I=1, is finite. B(Con (L)) is an atomic and complete Boolean algebra. Therefore,
B(Con (L)) is finite.

Conversely, assume that L satisfies (i) and (ii). Therefore, Con (L) satisfies
theidentity V(x}*: i€I)=(V(x;: i€I))** for every finite I. According to (ii), Con (L)
enjoys the identity (1) for arbitrary I. The proof is complete.

Deeper results can be obtained for distributive p-algebras. First we recall two
results.

Theorem D. Let L be a distributive lattice with 0. Then L can be embedded in
a generalized Boolean lattice B such that every congruence relation of L has one and
only one extension to B, that means Con (L)=Con (B).

For the proof see [6, Lemma I1.4.5].

Theorem E ([10, Theorem 2]). Every distributive p-algebra can be embedded
in a Heyting algebra H of order 3 (i.e. D(H) is relatively complemented) such that

(i) every congruence relation of L has one and only one extension to H, i.e.
Con (L)=Con (H),

(i) B(L)=B(H)
and

(iii) D(H) is an extension of D(L) such that Con (D (L))=:Con (D(H)).

For the proof of (ii) and (iii) see the proof of [10, Theorem 2].

Theorem 7. Let L be a distributive p-algebra. Then Con (L) is a Stone lattice
if and only if
(1) D(L) is relatively complemented,
(ii) the dual lattice L is a Stone lattice
and
(iii) B(i) is a complete Boolean algebra.

Proof. Let Con (L) be a Stone lattice. Then there exists a Heyting algebra
H of order 3 such that L is a subalgebra of the p-algebra H and Con (L)=Con (H)
(Theorem E). It is well known that Con (H )=z F(H), that means, every congruence
relation of H is uniquely determined by a filter of H. Hence F(H) is a Stone lattice.
Now we can apply [7, Satz 9]. Therefore, (a) the dual lattice H is a Stone lattice and
(b) B(H)is a complete Boolean algebra. Evidently, B(H)C B(H)=B(L) (Theorem E).
Take acL. There exists a dual pseudocomplement a*€B(H) of ain H,i.e. aVx=1
if and only if x=a™*. As B(I? Y& B(L), at€L and L is dual pseudocomplemented,
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that means L is pseudocomplemented. Moreover, L is a Stone lattice by (a). Again,
-B(i)gB(fI YE B(L) implies B(L)=B(H). Hence, B(L) is a complete Boolean
algebra by (b). We have established (ii) and (iii).

Now we shall prove (i). Using (a) we see that H is a double p-algebra. Moreover,
by the hypothesis, D(H) is relatively complemented. Therefore, H is a regular
double p-algebra (see [9, Theorem 2]). Above we have shown that L is a subalgebra
of the double p-algebra H (see also Theorem E). But the regular double p-algebras
form a variety (see [9, Theorem 2] or [16]). Hence, again by [9, Theorem 2], L is
also regular and this implies that D(L) is relatively complemented.

Conversely, let L satisfy (i}—(iii). Then L is a distributive double p-algebra.
By [9, Theorem 2], L is a regular double p-algebra, because D (L) is relatively com-
plemented. According to [9, Theorem 1], L forms a (double) Heyting algebra H.
But every congruence relation of L is also a Heyting algebra congruence relation,
that means Con (L)=Con (H) (see [10, Lemma 1]). Therefore, Con (L)=F(H)=
=F(L). Now, conditions (ii) and (iii) imply by [7, Satz 9] that F(L) is a Stone
lattice. Thus, Con (L) is a Stone lattice and the proof is complete.

For the next Theorem we need the following

Lemma 6. Let L be a distributive lattice with 0. Then B(Con (L)) is finite
if and only if L is finite.

Proof. By Theorem D there is an extension K of L such that X is a generalized
Boolean lattice and Con (L)=xCon (K). Every congruence relation of K is uniquely
determined by its kernel, that means Con (K)~I(K). By assumption, B(I(K))
is finite. Take a€K. We claim that (a]€B(I(K)). Really, if J€I(K), then J*=
={x€K: xAy=0 for every y€J)}). Consider (a]* and (a]**. It suffices to show
that (4]**=(g]. Clearly (@]S(a]**. Choose b&(a]**. Take c=aVb and observe
(cleI(K). (c]is a Boolean lattice. Since (a]V((a]* A(cl)=(c), we see that b=a and
(al=(a]**€B(I(K)), as claimed. Hence KX is finite, as B(/(K)) is finite. Consequently,

L is finite. The converse implication is trivial. \

Theorem 8. Let L be a distributive p-algebra. Then Con (L) satisfies the
identity (1) if and only if
(i) Con (L) is a Stone lattice,
(ii) D(L) is finite
and
_ (iii) {a€B(L): ag D)=} is ﬁmte

Proof. Lét Con (L) satisfy the identity (1). The condition (i) follows from
Theorem 6. ‘Again’from ‘Theorem 6 we know that B(Con (L)) is finite. Hence,
B(Con (L)) is atomic.-With regard to Theorem 4, B(Con (D(L)))- is also atomic
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and the set of all atoms of B(Con (L)) comprises

{(4, ®)¢Con (L): « is an atom of B(Con (D(L)))} .
and :
{(@[(d]], 4)cCon (L): ap(L) =[1) and a is an atom of B(L)}.

This and Lemma 6 imply (ii), because B(Con (L)) is finite. Now we shall establish
(iii). Again by the hypothesis the set of atoms acB(L) such that ap(L)=[1) is
finite. Observe bCB(L) with be(L)=[1). We claim that 5=a,V...Va,, where
a,0(L)=[1) and q; is an atom of B(L) for every i=1,...,n. Let a€B(L) be a
join of atoms q; of B(L) with a;=b, ie. a=aV...Va,. Therefore, a=b. Then
there exists c€B(L) such that aAc=0 and bd=aVc. Hence bo(L)=ap(L)V
Vep(L)=[1) (see Theorem B). Consequently, co(L)=[1). If 7=c and ¢ is an
atom of B(L) then by assumption 7=a. This implies ¢=0. Thus b=a, as claimed.
Now it is easy to show that {a€B(L): ap(L)=[1)} is finite.

Conversely, let L satisfy (i)—(iii). By Theorem 4, B(Con (L)) is atomic and
the set of all atoms of B(Con (L)) is finite. Therefore, the Boolean algebra
B(Con (L)) is finite. The rest follows from Theorem 6.

Before closing this section we shall generalize Beazer’s [1, Theorem 6] (see
also [2]). We shall characterize those finite p-algebras, which have the same con-
gruence lattices as the finite distributive p-algebras.

Having an (arbitrary) finite p-algebra L, then Con (L) is a finite distributive
lattice, and thus, Con (L) can be considered as a finite double p-algebra. In this
case we introduce the ideal D(Con (L)) of dual dense elements from Con (L),
that means, «€D(Con (L)) if and only if at=V.

Theorem 9. Let L be a finite p-algebra. Then the following statements are
equivalent:
(i) there exists a finite distributive p-algebra L’ such that’ Con (L) =Con (L’)
(ii) D(Con (L)) is a Boolean lattice;
(iiiy D(Con (L)) is a Boolean lattice;
(iv) Con (L) is a regular double p-algebra.

~ Proof. By assumption, Con (L) is finite and distributive. Now the equiv-
alence between (ii)—(iv) follows from [9, Theorem 2]. Assume.(i). Then there exists -
a finite Heyting algebra H of order 3 with Con (H)=2Con (L). Since H is finite,
we see that H is a double p-algebra. Eventually, H is regular, because H is of order 3.
The same is also true for the dual lattice H. But Con (H)=F(H)=H. Hence
H=Con (L), and (iv) is true. Conversely, assume (iv). Let 'H denote the dual lattice
of Con (L). Clearly, H is also a regular double p-algebra. By [9, Theorém2] H-is
in fact a Heyting algebra of order 3. Let L’ be H considered as a'p-algebra. Then
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Con (L')=F(H), by [10, Lemma 1]. Since H is finite, we see that F(H)= H=
2Con (L), and (i) is established.

Lemma 7. Let L be a finite quasi-modular p-algebra. Then D(Con (L))=
=[d4,v] (that means that the Glivenko congruence is the largest dual dense element
of Con(L)).

Proof. We know that y=(4,V). Take a=(oy, a,)€Con (L) with V=yVa.
Therefore, o«;=V. As (a;,,) is a congruence pair, we see that «,=V. Now,
assume o=y for some a€D(Con(L)). Corollary 2 to Theorem 1 says that
V#a€ly, V]=Con (B(L)). But Con (B(L))=B(L), as L is finite. Take the com-
plement ¢’ of a in [y, V]. But &’V is impossible, because acD(Con (L)). Hence
o’ =V, which implies a=7.

Theorem 10. Let L be a finite quasi-modular p-algebra. Then there exists a
finite distributive p-algebra L’ such that Con (L)2Con (L’) if and only if Con {D(L))
is a Boolean lattice.

Proof. Corollary 1 to Theorem 1 and Lemma 7 imply that D(Con (L))=
=[4, yY]=Con (D(L)). Hence, by Theorem 9, Con(D(L)) is a Boolean lattice
if and only if there exists a finite distributive lattice L’ such that Con (L)=Con (L").

Corollary (see [l, Theorem 6]). Let L be a finite modular p-algebra. Then
there exists a finite distributive p-algebra L’ such that Con (L)22Con (L').

Proof. D(L) is a finite modular lattice. It is well known that the congruence
Iattice of a finite modular lattice is Boolean. Hence Con (D(L)) is a Boolean lattice.
The rest follows from Theorem 10.

6. Relative Stone congruence lattices. We start with general results.

Lemma 8. Let L be a distributive lattice with 1. The following statements are
equivalent:
(i) L is relative Stone;
(ii) for every a€L, la, 1] is a Stone lattice;
(iii) for every a=b in L, [a, b] is a relative Stone lattice, 7
(iv) L is a Brouwerian lattice (i.e. relatively pseudocomplemented) satisfying
the identity x*yVy*x=1.

‘ Proof. The equivalences between (i), (ii) and (iii) follow from Lemma 5. The
equivalence between (i) and (iv) can be found in [8, 2.10].

Lemma 9. Let L be a Heyting algebra. Then L is a relative Stone lattice if
and only if :
(i) L is a Stone lattice
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and .
(ii) D(L) is relative Stone.
For the proof see [8, 2.13].

Lemma 10. Let L be a quasi-modular p-algebra and let B(L) be finite. Then
(o, 2e)€ D(Con (L)) if and only if

(i) af=4, ie. a€D(Con (D(L)))
and

(i) oy =1(4).

Proof. Assume (a;,)€D(Con(L)). Then, by Theorem 1, A=(a;,x)*=
=(afAz(4), 4). So, ay=A. Moreover, A=ojAt(4) in Con(B(L)). Since B(L)
is finite, we have B(L)=Con (B(L)) Hence a=ao** for every a€Con (B(L)).
Now, d=0ofA7(4) implies of*=a;=1(4) proving (ii). Conversely, (i) and (ii)
imply (o, 0,)*=(ef At(4), 4)=4, as of =t(d)*.

Lemma 11. Let B be a Boolean algebra. Then Con (B) is a relative Stone
lattice if and only if B is finite.

Proof. Let Con (B) be a relative Stone lattice. This is equivalent to the fact:
that I(B/J) is a Stone lattice for every JeI(B) (Lemma 8). But I(B) is a Stone-
lattice if and only if B is complete (see [5] or [7, Satz 9]). By [3, Theorem 4.3] every
infinite complete Boolean algebra contains an ideal J such that B/J is not com--
plete. That means I(B/J) is not a Stone lattice. Hence B is finite. The converse is
trivially true.

Theorem 11. Let L be a quasi-modular p-algebra. Then Con (L) is a relative

Stone lattice if and only if
(i) Con (L) is a Stone lattice,

@i) B(L) is finite,

(iii) Con (D(L)) is a relative Stone lattice
and

(@iv) for any a, peCon(D(L)) with a=p, peD(Con (D(L))) and z(B)=t(4)
it is true that t(a* B)*=t((ox* B)* B).

Proof. Let Con (L) be relative Stone. (i) follows from Lemma 9. Corollary 2.
to Theorem 1 says that Con (B(L))=[y, V]. Using Lemma 8 we see that [y, V]
is also relative Stone. Hence Con (B(L)) is relative Stone. By Lemma 11, B(L) is.
finite and (ii) is established. The condition (iii) follows from the hypothesis and
Corollary 1 to Theorem 1. Eventually we shall prove (iv). Lemma 9 and the hypoth-
esis imply that D{Con (L)) is relative Stone. Take &, =a and B,=8 from Con (D(L))
with = p, pe:D(Con (D(L))) and t(B)==1(4). Since (z(4), ap), (t(4), )€ D(Con (L))
(see Lemma 10), there exist (o, az), (B;, B2)€D(Con (L)) with (a;, ap)=(By, Bo)-
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By the hypothesis, [(B;, B2), V]I is a Stone lattice (Lemma 8). The pseudocom--
plements of elements in this interval can be calculated using Théorem 1. Therefore,

(a1, %) % (B4, B2) = (“1*ﬁ1/\17(°‘2*52), “z*ﬁz)

and
((‘11 , ) % (B, ﬁz))* (B, B2 = (“1 * By AT (0g % B), oo % ﬁz) *(B1, B2) =
= (((“1 * BOAT(z % ) % By At (o * B2) % Bo), (By % Bo) % ﬁz)
By the hypothesis

(“1, az) * (By, ﬂz)v((“n ag) % (B, ﬁz))*(ﬂl, B)=V

Since B(L) is finite, we have Con (B(L))=B(L). This implies that in Con (B(L))
pseudocomplements are complements (i.e. a*=a«’) and axf=a«"Vf. Bearing this
in mind we see that ((ot; % ;) At (o % B;)) * B, is the complement of a; % B At (oty % Bo)
in [B,, V]. Therefore,

((al*ﬂl)/\’f(“z*ﬂz))*ﬁl = (a* ) V(op* )"V = T((“z*ﬁz)*ﬁz)

and consequently, T(atg* B)* =7((atz % B2) * Bo).

Conversely, suppose that L satisfies (i))—(iv). With regard to (i) and
Lemma 9 it suffices to show that D(Con (L)) is a relative Stone lattice. Take
By, B)€D(Con (L)). By Lemma 10, Bf=4 and t(B,)=t(4). We want to show
that [(B,, Bs), V] is a Stone lattice (Lemma 8). Take (o, a)=(8,, f,) in Con (L).
Evidently, (o, a)*(By, Bs) and ((ay, 00)* (By, B2))*(By, Bs) is a pseudocomple-
ment of (o, a,) and (o, %) * (B, Bs), respectively, in [(B,, Bs), V]. By Theo-
rem 1,

(61, 09) = (og, &) % (B4, ﬂz)v((av ap) * (By, ﬁZ))*(ﬁl? Bs) =
= ((al*ﬂ1/\f(°‘2* ﬁz)))v(«al * BiAT(ap % B2)) * B1AT((ax % Bo) % B2)), o % BV
V(g * Ba) * B2).

Condmon (iil) implies oy * BV (z* By} % B,=V. Clearly, o,=(as* ;)% B> y1elds
Bi=a; =t((otg % B) * B;). The last condition, (ii) and (iv) imply

(“1*ﬂ1/\7(°‘2*ﬁz))*l31 = (ABDVT(op* f)* VB = T((“z*ﬁz)*ﬁz)'

Now, it is easy to see that (d;, d;)=V. Thus Con (L) is relative Stone and the
proof is complete.

Before establishing the last theorem we need a concept A lattice L is said to be
locally finite if all intervals in L are finite.

. Lemma 12. Let L be a Stone lattice. Assume that B(L) is ﬁmte Let Jel (L)
Then JED(I(L)) ie. J*=(0), if and only if JND(L)#0. )
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Proof. Assume that JeD(I(L)). Assume to the contrary that JND(L)=0.
It is well known that there exists a prime ideal P€I(L) such that JS P and
.PND(L)=P. Note that acP implies a**¢cP, as a*Aa**=0. Let acB(L) be
the join of all elements from P(B(L). Since B(L) is finite and L is a Stone lattice,
"we have (a]=P. Evidently a 1. Hence (¢*]=J*, a contradiction. Thus JN.D(L)>0.
The converse statement is trivially true.

- Theorem 12. Let L be a distributive p-algebra. Then Con (L) is a relative
"Stone lattice if and only if

() B(L) is finite,

(ii) D(L) is locally ﬁmte and relatwely complemented,

(iii) the dual lattice [, is'a Stone lattice -
and '

- (iv) the ideal of dual dense elements D(L) (i.e. D(L)y=D(L)) is locally finite

and relatively complemenied.

Proof. Suppose that Con (L) is a relative Stone lattice. Combining Lemma 9,
Theorem 7 and Theorem 11 we get (i), (iii) and that D(L) is relatively complemented.
In other words, L is a regular double p-algebra (see [9, Theorem 2]). Again by this
theorem we get that D(L) is also rélatively complemented. By Theorem 11
Con (D(L)) is a relative Stone lattice. But Con (D(L))=F(D(L)). Take acD(L).
“Then [[1), [@)] is an interval in the lattice of all filters F(D(L)). Since [a)is a Boolean
lattice and [[1), [4)]=F([a)), we see that [q) is finite, as [[1), [@)] is a relative
-Stone lattice (see Lemma 11). Thus D(L) is locally finite and (ii) is completely
established. It remains to prove the locally finiteness of D(L). Since every congruence
relation @€¢Con (L) is also a Heyting algebra congruence relation of L ([10,
Lemma 1]), we see that Con(L)=~F(L). Take b<¢D(L), i.e. b*=1. Evidently,
(b] is a Boolean lattice and F((b])=[[p), [0)]. By assumption [[5), [0)] is a relative
Stone lattice. Therefore, by Lemma 11, (8] is a finite Boolean lattice. Thus D (L)
is locally finite, and of course, relatively complemented.

Conversely, suppose that L satisfies (i)—(iv). Theorem 7 says that Con (L)
is a Stone lattice. According to. Lemma 10 it suffices to prove that D(Con (L))
is a relative Stone lattice. This follows from the fact (Lemma 9) that for every
a€D(Con (L)), [, V1 is a Stone lattice. Again [9, Theorem 2] and [10, Lemma 1]
imply that Con (L) F(L). Let Kera=Ke€F(L). With regard to Lemma 12,
KND(L)=0. Take b¢ KND(L). By (iv), (b] is a finite Boolean lattice. Thus Con (L)
is a relative Stone lattice and the proof is complete.
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Structure-filters in equality-free model theory

P. ECSEDI-TOTH

Using a natural definition of (finite) meets of structures and that of the lattice
ordering induced by the meet, we introduce the concept of filters on the similarity
class of structures. Our main problem here is to answer the question whether
the theories of such filters are characterizable by purely syntactical means. Restricting
our considerations mostly to equality-free first order languages, we provide an
affirmative solution to this problem.

1. Finite meet of structures has been introduced as a simple set theoretic con-
struction in [3], where we have proved the following

Theorem 1.1 ([3), Theorem 2.14). Let T be an equality-free first order theory.
Then the two assertions below are equivalent:

() T has a set of universal equality-free Horn axioms;
(ii) T is preserved under finite meets (cf. Definition 3.6, below).

It was shown, too, that this theorem fails for theories containing equality;
more precisely, (ii) does not entail (i) if the equality is present, while the converse
implication (i)=-(ii) holds in general.

Our starting point in the present work is that, disregarding some set theoretic
difficulties, the class of all similar structures forms a weak partial meet-semilattice.
It is well-known, that the lattice ordering is uniquely determined in weak partial
meet-semilattices. By means of the lattice ordering, filters are definable in the
traditional way, and so the following natural questions arise:

(1) Which sentences (theories) are preserved under the lattice ordering induced
by the meet?

(2) Which sentences (theories) have a class of models that forms a filter in the
weak partial meet-semilattice of structures?

Received April 19, 1984.
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We shall give here a complete answer to question (1) (cf. Corollary 4.4, Theo-
rems 4.5, 4.6, 4.7), and a partial one to question (2) (cf. Theorems 5.3 and 5.5), in
the sense, that we restrict our attention to equality-free languages, only.

It would be natural, too, to introduce and investigate the duals of these con-
cepts; i.e. the join of structures and ideals of structures. These notions, however
cannot be treated analogously to the meets and filters. For example, the meet of
structures can ‘be defined without any restrictions on thé universes of structures
(cf. Definition 3.1, below), nevertheless, a similar definition of the join would involve
either the assumption that the universes of all structures in question are the same,
or the permission for partial structures (in which functions may be partial). Beyond
this definitional difficulty, some of our results do not have analogous dual forms.
Thus, it seemed better to deal with these dual question in a separate paper.

2. Some of our assertions refer explicitly to proper classes, and so, in order
to avoid set theoretic difficulties, the choice of the underlying set theory is important;
in fact, our considerations could be carried out e.g. in the Bernays—Godel. set
theory. We shall, however, present the material informally; the formal set theoretic
development would be rather tedious.

By a similarity type ¢ we shall mean an ordered quintuple t=(®, F, ¥, ts, t5),
where &, #, € are pairwise disjoint sets, €#0, t5: Z+~w—{0}, ty: F-w—{0}.

By a structure of type ¢, we mean an ordered quadruplet

A= <|QI|, <R$Q')>rea, <F}m>f€§, <C§m)>cefe>,

where |2 is a nonvoid set, the universe of U; for each r€R, f€F and cc¥, R®
is a t5(r)-ary relation, F{ is a t4(f)-ary function and C” is a constant on the set
||, respectively.

From now on, we shall keep an arbitrary similarity type ¢ be fixed. The class
of all structures of type ¢ will be denoted by M'; we shall denote the elements of
M by German capitals, A, B, €, D, maybe with indices.

We shall use the standard notions and notations of [2]. Additionally, we nced
some supplementary facts, collected together in the rest of this section.

First, we mention the equality-free version of the well-known Eo§—Tarski
preservation theorem (cf. [2], Theorem 3.2.2, p. 124).

Theorem 2.1 ([3), Lemma 2.10). Let T be an equality-free first order theory.
-Then, the following two assertions are equivalent:

(i) T is preserved under substructures;

(ii) T has a set of universal equality-free axioms.

Analogously, one can prove without major difficulty the dual form of this
theorem. ‘
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. Theorem 2.2. Let T be an.arbitrary equality-free first order theory Then, the
two assertions below are equivalent: 3
. (1) T is preserved under extensions;
(ii) T has a set of existential equality-free axioms.

lhe followmg concept has been introduced also in [3].

Definition 2.3 ([3], 2.4). Let X be an arbitrary set and consider the absolutely
free algebra Fr (XU®) of type ¢z generated by the set XU% (cf. [5], Definition
'0.4.19(i), Remarks 0.4.20, pp. 130—131). Let AcM’. It is well-known, that for
‘arbitrary h: XU%—~|U|, such that for all c€%, h(c)=C™ holds, there exists
a unique homomorphism i from Fr(XU%) into A for which hCSh (cf. [5],
Definition 0.4.23, Theorem 0.4.24, Theorem 0.4.27(i), pp. 131—132). We define the
Jfree structure §r, W induced by h over U as follows: '

@ let |Fr, A=|Fr (XUDB)|;
(i) for every r€Z, t4(r)=n+1 and for arbitrary elements a,, ..., a,€|Fr, A, let.

{aq, ...,‘a,,)éRf"""m) < (h(ay), ..., h(a,))c R,

where h is the unique extension of 4 to a homomorphism from Ft (XU%)
into U;
(iit) for every f€ &, such that ¢, (f)=n+1 and for arbitrary ay, ..., a,€|Fr, U,
let
F}"""q')(ao, , a,) = F}ﬁ'(xug»(ao, e @)

(iv) finally, for all c€%, let

CEND . CEXUN)

It was shown in [3], that §r, A is correctly defined and is of type ¢, provided
Ac M. We shall need the following

Theorem 2.4 ([3], Lemma 2.5). Let AcWM and X be a set, h: XU¥~|U}
such that h(c)=C% for all c€%. If his onto, then W and Fr, WA are elementarily
equivalent for equality-free sentences.

The next assertion is, on the one hand, a particular case of a well-known result.
of Shoenfield (cf. [2], Theorem 3.1.16, p. 118) in two respects: firstly, it concerns
equality-free languages only, and secondly, it is restricted to the lowest levels of
the quantifier hierarchy. On the other hand, however, it.is a generalization of the
mentioned result, since it is about theories instead of single sentences. Our proof,.
presented here, is purely model theoretic in character and differs from the one given
in [2], p. 118.
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Theorem 2.5. Let T be an equality-free first order theory. Then, the following
assertions are equivalent:
(i) T has both a set of universal equality-free and a set of existential equaltty-
_free axioms;
(ii) T is preserved under both substructures and extensions;
(iii) T has a set of quantifier-free (i.e. II,=Z,=4,) equality-free axioms.

Proof. (i) and (i) are equivalent by Theorem 2.1, and Theorem 2.2. Also,
(iii) implies (i) trivially, since every quantifier-free (and equality-free) sentence can
be considered as a universal, as well as an existential (equality-free) sentence. To
-complete the proof, we show that (ii) entails (iii).

First, we prove the following fact.

(3) Let A, B, and assume that for any quantifier-free and equality-free sen-
tence ¥, Ay =BEyY. Then A=ToBE=T. _

Let X be an arbitrary set with cardinality large enough such that the onto
mappings h: XUZ—|A| and g: XU¥—~|B| exist. Consider the free structures
&5 A and Fr,B and let us denote by A’ and B’ those substructures of Fr, A
-and §r,B which are generated by the set of constants, respectively. (By assumption,
there exist constants in §r, A and Fr,B, so A and B’ exist.)

We claim that A’'=%®’.

Indeed, by Definition 2.3, we see that

1C) |&, Ul = |Fr, B,
and for every c€¥ and feZ,

(5) . Cc(i’yr,,ﬂl) — Cgﬁxgss)
© FP™® = FF®.

From (4), (5) and (6), it follows that |['|=|B’| and CT'=C®), F=F®),
for every c€%, f€&.

Finally, let a,, ..., a,€|%| and r€Z, such that t4(r)=n+1. By the defini-
‘tion of A/, there are closed terms g, ..., T, such that

79 = ay, ..., T = a,,
(where ) denotes the ‘““value of 7; in A, cf. [2], 1.3.13, p. 27). Hence
(@gy --0» GYERT) & (Z{T), ., tONERW) & Wi r(to‘, ey Tp)-

Since 1, ..., 7, are closed, W k=r(z, ..., 1,) implies that Fr, Al=r(z,, ..., T,)-
By Theorem 24, Wk=r(z,...,1,). According to the assumption of (3),
BEr(t, ..., 1), from which &r,Bl=r(z,...,7,) and B'E=r(t, ..., 1,) . follow,
.again by Theorem 2.4 and by the closedness of o, ..., ,.
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. ‘This,- however, means that ({2, ..., 7®)¢ R®? and so, using the fact that for
all i (OSzSn) {®)=a,, which follows from (5) and (6), we obtain: (g, ..., a,y¢ R®.
Hence, R®CR®. The converse implication R®cR®™ can be established
similarly. Thus RS"" R® and, r being chosen arbitrarily, we have A =%’

If A=T, then by Theorem 2.4, &5, A =T, and since T is preserved under
substructures, A’ =T. So, B’k=T. But T'is preserved under extensions, too, hence
&, B=T, whence we obtain B=T, by Theorem 2.4. The converse implication
BE=T=AE=T can be seen in an analogous way.

Thus (3) is proved.

If T is inconsistent, then the set {r(c,c,...,¢), r(cc, ..., c)}, where re®,”
te(r)=n+1 and c€% are arbitrary, is an axiom system for T in the required form.
(In fact, speaking on equality-free languages, we may assume that %9, for other-
wise no formula exists; on the other hand, ¢=0 by assumption.)

Let us suppose that T is consistent and set Fy={p|p is a quantifier-free equal-
ity-free sentence and T'=¢}. Then, T=T, and so T, is consistent.

Let €=T, be arbitrary. We claim that there is a structure D, such that D=7,
and for every quantifier-free equality-free sentence ¢, CEy oD =y.

Indeed, let Z={p|e is a quantifier-free equality-free sentence and C=o}.
Then ZUT is consistent. For if ZUT were inconsistent, then we could find a finite
subset {gy, ..., 6,y CZ such that Ti="1(ooA...Ad,). But the sentence “[(goA...Aq,)
is itself a quantifier-free equality-free sentence and 'so it is in T,, hence
C="T(ooA...Aa,,). Nevertheless, €k=a,A...Ac,,, by the definition of X. This con-
tradiction indicates that YUT is consistent.

. Let D be a model of XUT and let i be an arbitrary equality-free quantifier-
free sentence. If €=y, then Y€X andso DE=y. If €y, then €=T¢¥ and so
TIYEZ, hence D= Ty, ie. Di=y.

Thus, € and D satlsfy the condition of (3), and C=T follows from D=T,

by(3). O

3. Definition 3.1 ([3], 1.2). Let ¢= (9? F,¥€ g, tf) be a similarity type
and let

Uy = (UL, R ey (FF)rers (Cecs)

be structures of type ¢ for i<n+1, whete ncw. We define the set theoretic meét
of A;, i<n+1 as follows:
N WA= ( ﬂ |2, ( ﬂ R(%)>r63:< w‘)>fe9', ﬂ (Cg]’) cee)

D i<ntl

where the meets on the right hand side of the equation are meant in the sense of
set theory (i.e. the meet of functions is taken as the meet of sets of pairs representing
those functions; the meet of sequences of constants-is defined again as the meet of
ordered sets).

7
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If N WeW, then-it is called the model theoretic meet (from now on, simply,
i<n+1

the meet) of A;, i<n+1. We shall use the infix notatlon AnU,N...NAYU, for
the meet of UA;, i<n+1. ,
Clearly, [ U; always exists as a tuple The meet of the structures Q[,,

. i<n41
i<n+1, however, is a partial operation: it may well happen, that the meet of U;,

i<n+1 does not exist even if () IQI,KI#!D We shall use synonymously the fol-

i<n+l

lowing two expressions:

“ M WM™ and “UNWL,N...AN, exists”.

i<n+l

The meet, if exists, is very close to the set theoretic meet. In particular, it pos-
sesses the following familiar properties.

Lemma 3.2. Let W, B, €CcM* be arbitrary.
(i) ANAU=A, hence AN A< W'.
(i) If ANBEW, then BNUCWM, and ANB=BNA.
(iil) If ANBWM* and BNCEW, then («) and (B) below are equivalent and
any of them implies (ANB)NE=AN(BNCE):

@ (ANB)NLW,
B ANBNL)CW.

Proof. (i) and (ii) are trivial.

(iii): Assume that ANBe WM, BNCc W', If (a) is true, i.e. (QIF]SB) NEeM,
then consider AN(BNE). By the associativity of the set theoretic meet, which is
immediate by Definition 3.1, we have (ANBV)NEC=AN(BNE), hence (B) is true
and (ANB)NE=AN(BNE) holds. The converse can be established similarly. O

An immediate consequence of this lemma is the following

Theorem 3.3. Let t be a fixed similarity type. Then, the class of all structures
of type t forms a weak partial meet-semilattice.

Definition 3.4. Let us define the binary relation = on MM’ by the item:
for any U, Be P, A=B iff ANB exists and ANB=A.

If A=Y, then we say that “W is a weak substructure of B”, or equivalently,
that “$B is a weak extension of U”.

The next assertion collects some useful facts about the relation =. The proof

is an easy verification or can be readily obtained from the general theory of lattices [4].

Lemma 3.5. Let A, B, CcW'.
| (i) = is a partial ordering on W’
(ii) If ANB exists, then
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@) ANB=U and ANB=B;
B) €=U and €=V tmpIy that €=ANSB.
(iii) If UCB then U=V (where C stands for the tradmonal concept of
substructures). The converse implication is not true in general.
(iv) A= iff |U|C|B| and the identity mapping i: |A|—~|B|, defined by i(a)=a,
is @ homomorphism in the model theoretic sense.

The clause (iii) of this lemma justifies the adjective “weak” in the naming of
weak substructures.

Definition 3.6. Let T be an arbitrary first order theory. We say that

(i) T is preserved under weak substructures (resp. under weak extensions) iff
for all A, VP, if U=T and B=YU (resp. U=B), then V=T ' '

(i) T is preserved under finite meets iff for all Ay, A, ..., W, W, if
WU=T, W =T, ..., W, =T and U NA; N ... N Y, exists, then A,NA;N... AU, =T

The next assertion is a slight strengthening of Lemma 3.5(ii), (iii), and is true
for arbitrary first order languages.

Theorem 3.7. Let T be an arbitrary first order theory.
(i) If T is preserved under weak substructures, then T is preserved under finite

meets.
(i) If T is preserved under finite meets, then T is preserved under tradmonal

substructures.
(iii) None of these implications in (i) and (ii) can be reversed in general.

Proof. (i): Let us suppose that T is preserved under weak substructures; let
Wy, Ay, ..., W VY, and assume that for all i<n+1, U=T and the meet
AN AN ... N, exists. By Lemma 3.5(ii) it is easily seen that A, N A N... AU, =U,
and so, A,NA,N...NA, =T, because T is preserved under weak substructures.

(ii): Let T be such that T is preserved under finite meets. Let A=T, B<A.
We define the structure U’ as follows. First set |A’|=|B]U((A]~[BNX{IA});
then define A: [A|—~|2| by the item

‘ iff ac)B)
hia) = {< ) i ac|2r] ||,

Obviously, A is one-to-one and is onto. For all c€¥, let C™=h(C®™). For
every f€ Z, tz(f)=n+1 and for arbitrary elements ay, ..., g,€||, let

F@(a, ..., al) = h(F® (h=(a}), ..., h=1(a})).
Finally, for every 7€, tg(r)=n+1 and elements aj, ..., a,€[W[; let
(@b ey ALYER) & (h1(ap), ..., h=H(a))ERID.

7‘
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Then A’ is correctly defined and eI, provided - UCW'. -Moreover, W
is isomorphic to A by h. Thus W =T. By the construction, ANA'=VB and so,
T being preserved under finite meets, B=T.

(iii): Let us consider the (equality-free) theories

T ={(¥0)r(®}, Te={(V)(r(x)VeX)}

where r and ¢ are distinct unary relation symbols of an appropriate particular simi-
larity type . > '

By Theorem 2.1, T, is preserved under traditional substructures but, according
to Theorem 1.1, is not preserved under finite meets.
~ Similarly, Theorem 1.1 shows, that T, is preserved under ﬁn_ite' meets. Never-
theless, T, is not preserved under weak substructures as the following counter-
example indicates. (This follows also from Theorem 4.7, below.)

Obviously, T, is consistent; let 2 be a model of T;. Let us define the structure
€ as follows. First set |€|=||. Then, for every fc#, and c€¥, put FO=F®
and C®=C®. Finally, for every ré%, let R®=0.

Trivially, €T, and CNU=E, ie. €<A. L[

The ““dual” of this theorem is simply a reformulation of Lemma 3.5(iii) in
terms of preservation properties.

Theorem-3.8. Let T be an arbitrary first order theory: If T is preserved under
weak extensions, then T is preserved under (traditional) extensions. T he converse fails
in general. : : :

Proof. Trivial by Lemma 3.5(iii). O

Corollary 3.9. Let T be an arbitrary first order theory.

() If T is preserved under weak substructures or under finite meets, then T has
a set of universal axioms. If, in addition, T is equalzty free then it has a universal axiom
system which is equality-free.

(ii) If T is preserved under weak extenszons then T has a set of existential axloms,
which are equality-free, provided T is such.

Proof. (i): In contrary to the assertion, let its suppose that T has no universal
axioms. Then T is consistent. By the well-known £o§—Tarski preservation theorem
(12, Theorem 3.2.2, p. 124), we can find a model U of T and a substructure B of
A, such that BT. By Theorem 3.7, T is preserved under neither weak substruc-
tures nor finite meets. If T is equality-free, then using Theorem 2.1 in place of the
E.o§—Tarski theorem, the same argument applies.

(ii): Similar. O '

4. This section is devoted to answering the question (1).
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~Definition 4.1. Let us suppose that ¢ is an arbitrary first order formula
By predicate logic, ¢ is equivalent to-a formula i -of the form -

M-
! m
¥ =(01%1...0:%) A (9aV...V o VPaV... Vi VeV Ve Vi V.. Vi),
i=1 -

where n,m€w; for all i, 1=i=m, ji, s, ki, €0, @y, .. 9, Vars s Yy, a1€
proper atomic formulae of the form r(z, ..., 7,) for some r€#, ty(r)=v+1 and
terms Tg, ..., T,; and g, ... &> Mixs --or My, ATE equations of the form t1,=7,,
for some terms 1,, ,; and finally, for all z, 1=z=n, Q,€{V,3}.

We say that  (of the form (7)) is an equationally-augmented negative (resp.
positive) formula, an EAN-formula (resp. EAP-formula), for short, iff for all i
1=i=m, 5;=0 (resp. j,=0). :

Lemma 4.2, Let T be an arbitrary first order theory. If T has a set of existential
.EAP-axioms, then T is preserved under weak extensions.

Proof. It will suffice to prove, that every existential EAP-sentence ¢ is pre-
served under weak extensions. We shall proceed by induction.

First we observe some trivial facts. Let U, B, and B=UA. We shall
denote the set of variables by V.

(8) If k: V—-|B|, then k: V—|U|; that is, every assignment relative to B can
as well be regarded as an assignment relative to 2.

9) For every ré#, R®cR™, by Lemma 3.5(iv).

(10) If 7 is a term in the variables x, ..., x,, then for all k: V—|B|, 1®[k]=
=1[k], by (8) and by Lemma 3.5(iv). (Here P[] (resp. ©™[k]) stands for
“the value of 7 in B (resp. in A) at k”; cf. [2], 1.3.13, p. 27).

Now, let us suppose, that ¢=(3x;...3x,)Y, where ¥ is an atomic formula
in the variables x, ..., x,, and let B=¢@. Then there is an assignment k: ¥V —~[B|,
such that .
(11) - B Eylk]

Recalling that ¢ is in one of the following three forms: 74=1;, 1(1,=7,) and
F(ty, ..., T,), WE see that, in any case, k=y[k] is inmediate from (11) by (8), (9)
and (10).

The induction trivially passes over all the remaining cases, hence the assertion
is proved. [0

The converse of this lemma holds, too.
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Theorem 4.3. Let T be an arbitrary first order theory. If T is preserved under
weak extensions, then T has a set of existential EAP axioms.

Proof. If T is inconsistent, then the set {(Ix)7(x=x)} is an axiom system
for T in the required form. Hence we may assume, that T is consistent. Let I'={p|¢
is an existential EAP sentence and T=¢}. Then, obviously, T=I" and I is con-
sistent. We shall prove that I'=T.

Let A=T. First we show, that there is a structure B such that B=T, and
every existential EAP sentence holding in 8 holds in . To see this, let 2= {T¢|¢p
is an existential EAP sentence and Uk="¢}. We claim that ZUT is consistent.
Indeed, if ZUT were inconsistent, then we could find a finite subset {7 gy, ..., 10,}CZ
such that T="1(0,A...A16,). But 1(g,A...AT0o,,) is equivalent to an exis-
tential EAP sentence, say o, and thus Tk=o¢ implies that ¢€I’, hence Wi=o, that
is AE=T(ToeA...ATo,). This, however, contradicts to the assumption that
A="T0y, ..., U=To,. So YUT is consistent. Let B be an arbitrary model of
2UT and suppose that x is an existential EAP sentence which is true in 8. Assume
that Wicy, ie. AE="1y. Then 71y€X which entails that B="Ty, a contradic-
tion. Thus AE=y.

Next we show that if B is such that B=T and every existential EAP sen-
tence holding in B holds in , then there are structures U’, B’ for which we have
AU<W, B'=A" and B’ is isomorphic to B. (Here < stands for the traditionally
defined concept “‘elementary submodel”, cf. [2], p. 107.)

Let ¢, and d, be new constant symbols for every a€|¥| and be|B|, respec-
tively, thus forming the diagram languages of % and B (cf. [2], p. 108). Make sure
that {c,|a€|U[}N {d,|b€|B|}=0. Let I'y be the elementary diagram of A (cf. [2],
p- 108). Let 45 be the set of all positive atomic sentences and all negated equa-
tions in the diagram language of B which hold in the diagram expansion (B, b), ¢ g
(cf. [2], p. 108). (That is, 45°* is a proper subset of the diagram 4y of B, cf. [2], p. 68,
obtained from 4y by omitting all elements of the form r(z,, ..., Tw)-) '

We claim that I'yUA44®* is consistent. Let us suppose the contrary: I'yUAg®
is inconsistent. Then we can find a finite subset {dy, ..., 6,}C 43, such that
g="T1(8A...AS8,). Since the elements of {d,|b€|B|} do not appear in I'y, we
can treat them in 77(JA...AJd,) as free variables. It follows from the universal
Closure Theorem of predicate logic, that for an appropriately large ncw,

Lo = (V%15 %) (8 (ens ooy XA o A (s .oy X))
In particalar, (U, @),¢jaq = (VX1.. ¥ X)W (X15 -vos X)A ... ASH (x5 ...y X)), and so
(12) A = (VX1 V%) TG (Xqs oo XDA e AS Xy ees X))
bacause no clements of {c,|a€|A|} appear in the sentence
1= (7x Y x)0(86(x1s oy XA e AS (x5 -ens X))
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On the other hand, however, (B, b),¢ 5 F0A...AJ,, and so
B = (Axy... 3x) (G0 X1y -5 XA AGH (X1, -oos X))

But the sentence (3x;...3x,)(8p(X15 -+0s X)A ... Ay (%), ..., X,)) is an existential EAP
sentence, hence, by assumption

A = (3x;---3x) (G0 (ers ooos XA . A8 (X1, -y X)),

which contradicts to (12). Thus I'yUAZ® is consistent, indeed..

Let (W, d, b )¢, b1 be @ model of I'yUAE®™ (where ' and b denote
the interpretations of the new constant symbols ¢, and d, for every a<|¥| and b€|B],
respectively). We may assume that for all a€|¥|, a'=a; ie. [U[c|W|. Then
A< W, because (W, a, b'),c oy, peim =a- Let us define the mapping g: B[]
by the eqiiation g(b)=>b'. Since (', a, V) i peim =42, it is easily seen that
g is an isomorphism in the algebraic sense (leaving relations out of consideration)
and that g is a model theoretic homomorphism (when relations are considered, too).
By Lemma 3.5(iv), there is a weak substructure B’ of U, such that B” and B are
isomorphic by g.

Now, BT implies B =T. T is preserved under weak extensions, hence
WET. By A<W, we have =T, which was to be proved. O

Corollary 4.4. Let T be an arbitrary first order theory. Then, the two asser-
tions below are equivalent: :
(i) T is preserved under weak extensions;
(i) T has a set of existential EAP axioms.

Proof. Immediate by Lemma 4.2 and Theorem 4.3. O

The dual of Corollary 4.4 has a somewhat simpler proof; in fact, we need
the compactness property only, and we shall not use elementary submodels.

Theorem 4.5. Let T be an arbitrary first order theory. Then the two assertions
below are equivalent:

(i) T is preserved under weak substructures,

(ii) T has a set of universal EAN axioms.

Proof. (i)=>(ii): We may assume that T is consistent for otherwise the set
{(Vx)1(x=x)} shows that (ii) is true.

Let I'={¢|e is a universal EAN sentence and T=¢}. Then T=I and I is
consistent.

Let A=I and consider the set 43°* (defined in the very same way as
45 was defined in the proof of Theorem 4.3, but, of course, B replaced every-
where by ).
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We claim that 42UT is consistent. To see this let {6y, ..., 6,} <45, Then,

the sentence

1= (3. 3x)(60(X15 s XDA ... ABp (X215 oy X))
is true in U for an appropriate n€w. But x-must hold in some model of 7, since
otherwise (when y is false in every model of T), we would have y€I’, because
Ty is a universal EAN sentence, and so, we would arrive to the contradiction
A="y. Thus, {Jy, ..., d,} is consistent with T and, by compactness, 45*UT is
consistent,

Let (B, d),¢ be a model of 45UT (where @’ stands for the interpreta-
tion of the newly added constant symbol ¢, for each a¢|Ul). Let g: |A|—~|B| be
defined by the item g(a)=a’. Since (B, a),cq =45 it is easy to see that g
is an isomorphism in the algebraic sense (relations dropped) and is a homomorphism
if we consider relations, too. It follows from Lemma 3.5(iv) that there®s a weak
substructure B’ of B such that U is isomorphic to B’.

T is preserved under weak substructures, hence B'=T follows from B=T
and W=B. Thus, AT, ie. I is an axiom system for 7.

(if)=(1): It suffices to prove that every universal EAN sentence ¢ is preserved
under weak substructures. This can be done by a simple argument; details are
omitted. [

The statement of Theorem 4.5 is a slight strengthening of a result due to
H. ANDREKA, I. NEMETT and I. SAIN (cf. [1], § 6. Theorem 1; [6], Theorem 1, Theo-
rem 3). Their proof, however, is purely category theoretic in character and works
only if T is assumed to be universal. By Theorem 3.7, the assumption that T is
universal, does not mean the loss of generality; nevertheless, this is not clear from
the category theoretical framework.

For equality-free languages we prove

Theorem 4.6. Let T be an equality-free consistent first order theory. Then, the
Jollowing two assertions are equivalent:

(i) T is preserved under weak extensions;

(ii) T has a set of existential positive equality-free axioms.

Proof. (i)=(ii): Let I'={¢ple is an existential positive equality-free sentence
and Ti=¢}. T is assumed to be consistent, hence I' is consistent, because T'=T .
We shall prove that I'=T.

Let A=TI. Just as in the proof of Theorem 4.3, we see that there is a struc-
ture B, such that BE=T, and every existential positive equality-free sentence
holding in B holds in U. Let A and B be fixed in the rest of this proof.

For every be€|B|, let d; be a new constant symbol and form the diagram lan-
guage of B (the language constructed from the non-logical symbols of ¢ and the
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new set of constant symbols {d,|b€|B|}). Let 43 be the set of all (positive) atomic
sentences of the form r(ty, ..., 7,), where r¢&, ta(r)=n+1 and <, ..., 7, are
terms in the didgram language of B, which are true in (B, b),¢ |y Let X be the
set of all equality-free sentences (of the original language) which hold in 2.

Following closely the way the consistency of  I'y, U4 is established in the
proof of Theorem 4.3, one proves that XUA4Z* is consistent.

Let (G, b'),¢ s be a model of ZUAE®" (where, as usual, b’ denotes the inter-
pretation of d, for each be|B|). First we show the following statement is true:

(13) For every équality-free first order sentence ¢,
A=gpoCEo.

Indeed, if A=¢@, then @€Z and thus (G, b), =@, from which C=¢
follows, because the elements-of the set {dy|b€|B|} cannot appear in ¢. On the
other hand, if Ak, ie. WET¢@, then Jp€ZX, and so €="¢ is obtained.
Thus (13) is proved.

Let X be an arbitrary set such that card X=card |€|. Let h: XU {d,|bc|B|}~
~|€| and g: {d,}b€|B|}~|B| be two onto mappings, such that for all b¢|B|,
h(d,)=b" and g(d,)=b. Such mappings h and g exist. Let us form the free struc-
tures € =g, (€, )¢\ and B =Fr, (B, b),¢ - By Theorem 2.4, €' =3U4F
and B’ =TUAS". We shall show that B’=C’. Obviously, |®8’|c|E’|, and for
all b¢|B|

(14) - ¢’ =cy’
is immediate by Definition 2.3. Similarly, for every f¢ &, to(f)=n+1, and
by, ..., b€|B’|, we have
(15 F®) (b, ..., b,) = F{€) (by, ..., b,).
| It follows from (14) and (15), that for any closed term 7 in the diagram lan-
guage of B, the equation : :
(16) ®) = 7(©)
holds. '
Let 7€, tz(r)=n+1, by, ..., b,€|B’|. By the definition of B’, we can find
closed terms 1, ..., 7, of the diagram language of B, such that by=1, ..., b,=
=1®), Hence, the following chain of implications is obtained:
(bgs - by)ERE) = (2B, .., TBNER®) = B’ = r(1q, -, T,) =
=1 (Tqs -5 Tp)EAFE = (€, b )y 1wy = 1 (Tgs -oes Ty)-

Using Theorem 2.4 again, we can continue:

(€, By =1 (T0s o 0r T) = € =1 (7, ..oy 1) = (255, L., TEDE RS
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from which (b, ..., b,)¢ R follows. .

By Lemma 3. 5(1v), we see that B'=C".

Since B’=T and T is preserved under weak extensions, we have 0:’}=T
and by Theorem 2.4, €=T7. By (13), Y =T, which was to be proved.

(ii))=(i): Immediate by Lemma 4.2. 0[O

Using a similar (but somewhat simpler) argument, one can prove the dual of
this theorem

Theorem 4.7. Let T be an equality-free consistent first order theory. Then, the
Jollowing assertions are equivalent:

(i) T is preserved under weak substructures;

(ii) T has a set of universal negative equality-free axioms.

5. This section is devoted to answering question (2) in the particular case
when equality is excluded from the language.

Definition 5.1. Let K.

(i) K is said to be closed under finite meets iff for arbitrary A, ..., W€K, if
UpN...NYA, exists, then U,N.. NAUELK.

(ii) K is closed under extensions (weak extensions) iff for arbitrary U€K and
Ve DY, AcCB (A=B) entails BeK.

Obviously, if T is an arbitrary first order theory and “OPERATION” stands
for one of the following items: “finite meets”, “‘extensions”, and “weak extensions”,
then the assertion “T is preserved under OPERATION?” is equivalent to the asser-
tion “K is closed under OPERATION where K={U|A=T}".

Definition 5.2. By a filter of structures we shall mean a nonvoid class KW'
such that K is closed under both finite meets and weak extensions. )

The following assertion characterizes filters of structures from a model theoret-
ical point of view.

Theorem 5.3. Let T be an arbitrary equality-free first order theory. and let
K be the class of all models of T. Then the following two assertions are equivalent:

(1) T has a set of quantifier-free atomic equality-free axioms;

(i) K is a filter of structures.

Proof. First we note that both (i) and (ii) imply that T is consistent.

(i)=(i): It is obvious that every equality-free quantifier-free atomic sentence
can be considered as an existential positive equality-free sentence and as a universal
equality-free Horn sentence, simultaneously. Thus, T is preserved under both weak
extensions and finite meets by Lemma 4.2 and Theorem 1.1, respectively; whence
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K is closed under both weak extensions and finite meets; i.e. K is a filter of structures
(for K>=0).

(ii)=(i): Let us suppose, that K is a filter of structures, i.e. that K is closed
under finite meets and weak extensions. It follows that T is preserved under finite
meets and weak extensions.

Let I'={¢plo is an equality-free, quantifier-free atomic sentence, Tk=¢}. Obvi-
ously, T=I. We shall prove that I'=T.

Let Ci=I be arbitrary and set X={Tlo[c is an equality-free, quantifier-free
atomic sentence such that €= TJo}.

Let Ja€Z be arbitrary. Then {T6}UT is consistent, for otherwise we would
have T+=7(T0), ie. TE=o, and so ¢€I'; from which the contradiction €=o
would follow.

Let {70 ..., To,4CZ, and for every i, O=i=m,; let B; be a model of
{T6}UT. Let X be any set such that card X=card [B,|U...Ucard [B,|, and
let g;: XU%—~|B,| be an onto mapping for each i, O=i=m. Let us consider the
free structures &, B;, O=i=m. It is immediate by Definition 2.3, that
B=gr, BoN...NJr, B, exists; moreover, for any i, 0=i=m, Fr, B;k= {Te}UT,
by Theorem 2.4. Since T is preserved under finite meets, and g; is atomic, we have
for every i, O0=i=m that B&={1¢}UT, ie. B={1g,, ..., 16,}UT. By com-
pactness, ZUT is consistent.

Let ® be a model of TUT. If  is an arbitrary equality-free, quantifier-free
atomic sentence such that €k, then TYeZ, hence D=y It follows that for
any equality-free, quantifier-free atomic sentence ¥, D=y implies €.

Let ¥ be an arbitrary set such that card ¥Y=card |€|Ucard |D] and let
hy: YU% |G|, hy: YU%—~|D] be two onto mappings for which h,(c)=C®, and
hy(c)=C®, for any c¢€%. Considering the free structures r, € and Fr, D
we still have for any equality-free, quantifier-free atomic sentence y, that §r, D=y
entails §r, €=y. By Definition 2.3 and Lemma 3.5 @(v), &r, D=§r, €. But
&1, D=T (by Theorem 2.4) and T is preserved under weak extensions, hence
g1, C=T. By Theorem 24, C=T. O

From a purely formalist point of view one may adopt the following notion:

Definition 5.4. By a quasi-filter of structures we mean a class K<k such
that K is closed under finite meets and ordinary extensions.
The analogue of Theorem 5.3 for this concept reads as follows.

Theorem 5.5. Let T be an arbitrary equality-free first order theory and let
K be the class of all models of T. Then, the following two assertions are equivalent:

(1) T has a set of quantifier-free equality-free Horn axioms;

(ii) K is a quasi-filter of structures.
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Proof. Similar to the proof of Theorem 5.3. O

We note that none of Theorems 5.3 and 5.5 generalize for theories with equality.
Let us consider for example the theory T={c,=d,Vc,=d,}, where ¢, ¢;, d,, d;
are constant symbols. It is trivial that T is preserved under finite meets and weak
extensions, by definition. Hence, K, the class of all models of 7, is a filter of struc-
tures. T, however, has neither an atomic nor a Horn set of axioms in general, thus
Theorem 5.3 is not true for this theory. Since every filter of structures is a quasi-
filter of structures, Theorem 5.5 is false for T, too.
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A classification of the set of linear functions in prime-valued logic

IVAN STOJMENOVIC

1. Introduction

Let P,,- {flf E}—~E,}, where Ek—{O 1, ...,k—1}; ie. P, denotes the

set of all k-valued logical functions. A subset G of P, is said to be closed if it is closed
under superposition (e.g. see [4]).
Let Hc P, be a fixed closed set. If FS H then we say that
(i) Fis complete in H< every element of H is obtained from F by superposition;
(ii) Fis H-maximal < F is closed and no G exists such that FCGcH (proper
inclusion) and G is closed;
(iii) Fis a base in HeF is finite and complete in H and no complete subset of

F exists;

(iv) Fis a pivotal set in H« F isfinite and for every fc¢F there is an H-maximal

F’ such that f¢F” but F—{f}CSF’.

From these definitions it follows that a base is a complete pivotal set of functions.

The rank of a base (pivotal set) is the number of elements of the base (pivotal set).

Let m be the cardinality of the set of all H-maximal sets and suppose that
this set is well-ordered. There exist closed sets H for which m is not finite ([5]). If
m is finite then a subset F of H is complete in H iff F is not contained in any H-maxi-
mal set ([4]).

If f€H, then the class a, determined by f is an element of {0 1}” such that
a,=0 iff f¢H,, where g; is the i-th component of g, and H; is the i-th H-maximal
set (1=i=m) in the well-ordering mentioned above. For FS H, one can define
the class ap determined by F as the union of classes determined by the elements
of F. Therefore, if F—{fl,. .Jf,} then a,—{af » - dg }. This set ap can be
represented as an element ap of {0, 1}™ such that ap= V(a, s -5 4y ), Where b1tw1$e
OR operation V is defined in the following way: the i-th component aP of a is
equal to 0 iff the i-th component of all classes a, (I=j=s) is equal to 0.’

Received March 20, 1984.
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From this definition it follows that the set F is complete iff ar=1". Also,
we infer that F is a pivotal set if a,,#ap\u) for all j, 1=j=s. From these con-
siderations one can remark that if F is complete (pivotal set, base), f, f'€ F and
a,=a, (ie. f and f’ are functions of the same class) then FU{f"\N{f} is
complete (pivotal set, base) and ap=ag s} -

All P,-maximal sets and maximal sets of P,-maximal sets are described in [10].
P;-maximal sets are determined in [4], and maximal sets of P;-maximal sets are
exhibited in [7] and other papers.

All different classes a, for the set P, are investigated in [6], and for P; in [8],
[9] and [11].

Let us recall some well-known closed sets in Py.

The set L, of linear functions is defined in the following way:

L = {a0+ 2" a,-xi(mod k)|ao€E;, a,€El, 1 =i=n, n€éw, where E; = Ek\{O}}.
i=1

Let a= 2’ a;. Tt is well-known that L, is a P,-maximal set iff k is a prime

number ([4]).
The set S, of selfdual functions is defined as follows:

= {f1fGrt1, e %o+ 1) = (15 oor x)+1 (mod k), n=1,2, ...},

Ti={f11, ....j)=j} is the set of functions preserving j (0=j=k—1).

Let X=L\X for each XCL,‘ The intersection of the sets X, ..., X;CL,
will be denoted by X;...X,.

From the results in papers [1], [2], [3] it follows

Theorem 1. Let pcw be an arbitrary prime. Then there are p+2 L-maximal
sets. These are:
() ’=L,T}, for every j, j=0,1,...,p—1,
(i) LP=L,S,={a,+ %a,-x,-la:l (mod p)}, the set of linear selfdual fimc-
tions,
(i) L™ ={ay+a,x|a,, a,€E,)}, the set of unary linear functions.
Let 0 denote the sequence 00...0, and 1f denote 11-...1.

\— e’ Nt !

In this paper we prove that there exist 2p+4 different classes determined by
functions of L,. The pumber of different classes determined by bases in L, is

4(p '2*' 1 , and the number of different classes determined by pivotal noncomplete

sets of L, is (p-2i-4)_2'
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2. Classification of L,

Theorem 2. Let pcw be an arbitrary prime. Then there are 2p-+4 different
classes (denoted by c¢,,Cy, ..., Copsy) of fumctions in L,. These classes and the
corresponding sets of functions are:

Lopr, I[P LPLY), ¢, = QP+E;
LOL,. LP-1LPLM, ¢, = 0P+,
Loy, . [i-4L-3L0-2 [ [PLW, ¢, = 1!-30P+3-1), where 3 =i=p+3;
Lo[r.. . [i-p-Spi-p=4[i-p=3 JPLW, ¢; = P-P-4012P+5-),

where p+4=j=2p+4.

n n
Proof. Let f(x;,....,x,)=a,+ > a;x; (modp) and 3 a,=a. Consider the
i=1 i=1
equation ay+ay=y.

Case a) Let a,=0, a=1. Then the equation is y=y which is satisfied by
every y. This implies that fcL°L!...L”. The function f(x)=x is in the set LY,
and it is a function of the class ¢;. The function a,x,+...+4a,x, where a=1 and
n=2 is in the set L, and so it is a function of the class c,.

Case b) a,#0, a=1. Then we obtain 4,=0, so it has no solution. Hence, the
function f is in the set L°L*...LP~* L. The function agy+x for a;#0 is in the set
L™ and it is a function of the class c,.s. The function 4+, x;+...+a,x, (mod p)
for a,=0 and a=1, n=2 is in the set L™, and it is a function of the class ¢p,4.

Case ¢) a=l. y;#y, implies (a—1)y,#(@a—1)y,. From this it follows that
(a— 1)y takes on p different values, when y ranges from 0 to p—1. It follows that
there exists exactly one y, such that (a—1)y,=—a,, i.e. a,+ay,=y,. This implies
that the function fis in the set L%, and it is not in the sets L’ for i#y,, 1=i=p—1.
Since a1, fis not in the set L?. The function f=i (constant) is in the set L®,
and it is a function of the class ¢;.5. The function f=i+ax,+(p—a)x, (a=0)
is in the set L'V and it is a function of the class ¢, 4+

Theorem is proved, because all possible cases have been considered.
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3. Classes determined by bases of L,

Theorem 3. Let pcw be an arbitrary prime. Then the number of different
classes determined by bases in L, and the number of different classes determined
by pivotal noncomplete sets in L, for each rank -are shown in the following table:

e

rank - bases pivotal noncomplete sets
1 0 2p+3
+1 +1
p+1
3 ’3) 0

=4 -0 o 0

Proof. From the definitions it is easy to see that the class ¢; =0°+? is not includ-
ed in any pivotal set, and there is no base of rank 1. The classes ¢,, 3, ..., Capsa
are different from 07+2 and 17*2. Hence, these classes deﬁne the classes determined
by pivotal noncomplete sets of rank 1 of L,.

We begin the investigation of bases and pivotal noncomplete sets of rank =2
by the following remarks:

" V(e e) =17+10 for 3 =i,j §'p+.3.;' ‘

Ve, ¢) = 1742 for p+4=i,j=2p+4;.

Ve, €) ¢ {cs, ¢;, 17%2} for 3 =i=p+3;

V(es, ) =¢; for p+d=i=2p+4; ,

Ve, ¢)=17*% for 3=i =p+3, p+4 SJ =2p+4 and JEi+p+1;

V(Cu cl+p+1) = c:+p+1 » for 3=i <P+3

“Vifegs €55 ¢j) = 1742 for 3= <] <p+3

From these remarks it follows that bases of rank 2 i_:nay contain any two func-
tions of classes ¢; and ¢;, where i and j satisfy the condition p+4=i<j=2p+4,
or the conditions 3=i=p+3, p+4=j=2p+4 and j=i+p+l.

Also, one can infer that pivotal incomplete sets of rank 2 consist either of two
functions of classes ¢; and c;, 3=i<j=p+3, or a function of class ¢, and a func-
tion of class ¢;, 3=i=p+3.

From the remarks above it follows that no pivotal set of rank =3 exists which
contains a function of class ¢; for p+4=i=2p+4. Hence, pivotal sets of rank =3

may contain only functions of the class ¢, and classes ¢; for 3=i=p+3. But, from
the first remark we conclude that V(¢ ,cy,...,¢)=V(c, ci:)=1"+10 for
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3=i,...,i;=p+3. Hence, a pivotal set cannot contain functions from more than
two classes ¢; for 3=i=p+3. Therefore, no base or pivotal set of rank =4 exists.
From V(c,, ¢;, ¢;)=17*? (3=i<j=p+3) we conclude that pivotal sets of rank 3
are complete. Thus, no pivotal noncomplete set of rank 3 exists and a base of rank 3
consists of a function of class ¢, and two functions of the classes ¢; and ¢,, where
3=i<j=p43.

From the above considerations the theorem follows.

Corollary 1. The maximal rank of a base of the set L, is 3, and the maximal
rank of a pivotal noncomplete set is 2.

Corollary 2. There is no base of rank 1 (i.e. Sheffer function) in the set L,.

Corollary 3. The number of different classes determined by bases in L, (p prime)
, p+1
is 4 [ 5 ) .

Corollary 4. The number of different classes determined by pivotal noncom-

plete sets of L, (p prime) is (P'zf'lj +3P+4=(P'?f_'4) -2,

The number of n-ary linear functions of class ¢; (1=i=2p+4) will be denoted
by 2,().

Theorem 4. 1,({)=1 for 3=i=p+2, t,({)=0 otherwise; t,(1)=1, t,(p+3)=
=p—1, 1,({)=p—2 for 3=i=p+2, ,(i)=0 otherwise; t,(2)=((p—1)"—(-1)")/p,
L) =0~ D12 L,O=((p- D+ p for p+A=i=2p+3, 1,()=0
otherwise (n=2).

Proof. The statement follows easily from considerations in the proof of Theo-
- rem 2. For n=0 and n=1 the assertion is obvious. For n>1 ¢,(2) is equal to
the number of sequences g, ...,q, which satisfy the condition a,+...+a,=
=1 (modp). If a+...+a,_;=1 (modp), then no solution of the equation
a,+...+a,=1 (mod p) exists (since a;=0, 1=i=n). If a,+... +a,_,=1 (mod p),
then there exists exactly one solution of the equation a;+...+a,=1 (mod p). It
follows that 7,(2)=(p—1)""1—1,_,(2), £:(2)=p—2. By induction on # it is easy
to prove that 1,(2)=((p—1)"—(-1)")/p. If p+4=i=2p+3, then from 1,(i)=
=(p—1)"—1,(2) we obtain 7,(i)=((p—1)"**+(~1)")/p.

The number of functions of the class ¢; which depend on at most » variables
is denoted by 7, (7).

From Theorem 4 the following theorem is easily derived.
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Theorem 5. 15o()) = to(i); 1=1() =1()) + 11(i);
t<,(D=1, tg,()=p—1 for 3=i=p+3;
15(2) = (2= 1" = (- 1)/(p —2) (- 1)+ 1)/2)/p;
‘ 13n(2P+4) = (P—D15,(2);
tsn() = (P—D*(p— 1Y =DN(p=D+A+(=1))2)[p for p+4=i=2p+3.
Let B} and P} denote the number of bases and the number of pivotal incom-

plete sets of rank i which consist of functions depending on at most n variables.
From Theorems 2, 3 and 5 it is easy to prove the following

Theorem 6.
B = p1 5, 0o+ )1an(+ O+ () o+ 04 p1g 0+ D 150+ O+
+Ptsn(p+A) a3+ 12 (P+3)t <, 2P+ + PPt (Bt sa(P+4);
B = 15,0 (pta 0+ 91,0+ (3) 2.0);
P} =15, +15,(p+3)+15,2p+ D+ pt (D +pt<a(p+4);
P = 15,0)(tan(P+ ) P1an @) 4 210+ ) 12 3+ (§) a3

Bl=Bl=Bl=..=Pl=Pl=..=0.

Analogoué]y one can obtain the numbers of bases and pivotal noncomplete
sets which contain functions depending on exactly n variables.

4. Classification of L,-maximal sets

We may assume further that p=3 (prime number). The properties of L,-
maximal sets follow immediately from Post’s lattice ([10]).

Let us define some familiar closedsetsin L,: L®={0,1, ..., p—1}, L,=L° L=
={ax+...+a,xla=1, n=1,2, ...}, [P=LOL'={ay+a,x|ay+a,i=i, a,, a,€E,}
for O0s=i=p—1, LP=LOLP={x,x+],..,x+k—1}.

We shall mean by the multiplicative order of acE, the least integer r(a)=
=r=1 for which a"=1 holds. If p—1 is divisible by j, then E, has ¢ (J) elements
of order j (¢(j) denotes Euler’s ¢-function). Let a;,+a;x€LONL?, i=l,
r(a;)=r;. Let us denote by lem (r,, 7;, ...) the least common multiple of the num-
bers ry, 75, ... .

Let the number p—1 have the decomposition to powers of primes p—1=
=ghgh...q% with all ¢;=2<g,<...<g, primes, o;=1, p;=(p—1)/q; and L&"=
={a,+ax|r(a)(=1) divides p;}, i=1,2, ..., u.
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The maximal sets for all L,-maximal sets are determined by Demetrovics
and Bagyinszki ([2]). '

Theorem 7([2]). There are exactly two L'-maximal sets for 0=i=p (p isa
prime number): Ly, and LP.

Theorem 8. If 1=i=p then there are exactly four different classes determined
by functions in L', two different classes determined by bases of L' (one for both of
ranks 1 and 2) and two different classes determined by pivotal noncomplete sets in L'
(both of them are of rank 1).

Proof. The function x belongs to the set Ly L™ and the function 2x-+(p—1)y
is in the set L, L. The function x+1 is an element of the set Ly LY and the func-
tion 2x—i is in the set Ly L® for 1=i=p—1. Base functions x+y+(p—i) and
2x+(p—1)y+1 ([2]) belong to the sets L,LM for 0=i=p—1 and L,L respect-:
ively. Thus all four possible classes determined by the functions in L* are non-
empty. The other parts of the theorem follow immediately.

We are going to investigate classes determined by functions in L®.

Theorem 9 ([2]). The following u+p+1 sets are L®-maximal:
LODYLO, =12, .., u
LOUL®, i=0,1,..,p—1,
Lu)\L(").
The next three lemmas are useful for the classification of LW,

Lemma 1. For the elements of L™ we have:

(@) ag+xcLP iff a,=0, for i=0,1,...,p—1;

(b) If a=1 then for each i (0=i=p—1) there exists exactly one a, for which
ay+axc LYV;

(©) a LY iff ag=i.

The proof is omitted.

Lemma 2. LPLP={x} for 0=i<j=p—-1.

Proof. From ay+a,i=i and a,+a,j=j it follows that a,=1 and q,=0.

Lemma 3. Let t, be a sequence such that t;=¢q; or t;=1 for each i=1,2, ..., u,
1=(p—Dj(t,...1,) and a is a number for which r(@)=t. If we define the sets A,
(I1=i=u) such that A,=L% for ;=1 and A;=L"" for t,=gq, then the function
Jf=a,+ax isin the set Ay A,...A4,.

Proof. If #,=1 then p; is not divisible by r(a). Hence ay+axcL®"=4,.
If 1,=q; then r(a) divides p;. Thus a,+axcL®?=4;.

8*
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Theorem 10. The number of different classes determined by functions in L™
is p2*+3 if p—1#4,9,...q, and p(2"°—1)+3 otherwise.

Proof. Suppose that the L®-maximal sets are ordered as in Theorem 9.
0“*?1 is the class determined by the functions in the set L®. The (u+p+1)-
component of all other classes is 0. From Lemmas 1—3 we infer that the class 0**?+1
is determined only by the function x and the class 0170 is determined by functions
a,+x for a;0. We may assume further that f=a,+ax and a>1. From Lemma 2
it follows that exactly one component among the components u+1, u+2, ...,u+p
is equal to 0. We derive from Lemma 3 that all the-2” possible classes with respect to
the first ¥ L®-maximal sets are nonempty. But, if p—1=q,...g, for t;=g; (1=i=u)
we get r=a=1 in Lemma 3. It follows from Lemma 1 (b) and Lemma 2 that each
of these classes with respect to the first ¥ L®-maximal sets can be supplemented
to a class determined by functions in LW in p different ways.

The proof is complete.

Corollary 5. Each base of LY contains a constant.

Corollary 6. For p=3 there are exactly 6 classes determined by functions in
L®: 0°,0%1, 0130, 10110, 11010, 1200.

Theorem 11 ([2]). The cardinality of the bases of L™V is =3.
Theorem 12. The maximal rank of classes determined by bases in LD is u+2.

Proof. Each base of L™ contains a function of the class' 0**71. There is a
subset of the base containing no more than u functions for which bitwise OR gives
the value 1" with respect to the first # components. From Lemmas 1 and 3 we obtain
that no more than one component among components u+1,...,u+p has the
value 0. Hence, except the w41 functions considered above, this base may con-
tain at most one function. Thus, each base of L™ consists of at most »+2 functions.

Theorem 13. If p—1=gfr (for example, if p=3 or p=5) then each base
in LD contains exactly three functions.

Proof. In the case p—1=¢g3 we have u=1 and so this theorem is proved
by using Theorems 11 and 12.

Acknowledgement. The author is thankful for the comments given by the referee
which have certainly improved the readibility of the paper.
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On superalgebras of the polydisc algebra

RAUL E. CURTO*, PAUL S. MUHLY*, TAKAHIKO NAKAZI** and T. YAMAMOTO**

Let T be the unit circle and, for n=1, let A4, be the uniform closure in C(T?)
of the algebra of polynomials in z*w', where k and [ are integers, /=0, and k=0
whenever 0=/=n—1. Each 4, contains the polydisc aigebra and the intersection
of the A4, is the polydisc algebra. In this paper we give a characterization of the
subspaces of L2(T?) which are invariant under multiplication by the functions in
A,. The characterization is somewhat complicated, as one would expect, since for
n>1, A, is not a Dirichlet algebra. In fact, for n>1, the point in the maximal
ideal space of A, represented by Lebesgue measure on T? has an infinite dimensional
set of representing measures. Nevertheless, as a result of our analysis, we find that
each simply invariant subspace of L2(T2) for A, is finitely generated and the number
of generators required is =#n. Examples can be constructed where n generators are
necessary. Our analysis enables us to extend results of the third author and to
parametrize the weak-* closed superalgebras of 4,,.

1. Introduction

Let X be a compact Hausdorff space, let C(X) be the space of complex-valued
continuous functions on X, and let A be a uniform algebra on X. For ¢€M,, the
maximal ideal space of A4, set Ay={fc4: ¢(f)=0}.

Definition 1.1. Let @€M,, let ¢ be a representing measure (on X) for
¢, and let M be a (closed) subspace of L%(X, ¢). Then M is said to be simply invariant
(for A) if AMcM, but [4,M],=M (where [ ], denotes L-closure).

Let 9, denote the Shilov boundary of 4 and N, denote the set of representing
measures for €M, whose support is contained in 9. Note that N, is a weak-#

* Supported in part by a National Science Foundation grant (U.S.A.).
** Supported in part by Kakenhi (Japan).
Received July 10, 1984; revised May 20, 1985.



414 R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto

compact convex set of probability measures on d,. The general theory of simply
invariant subspaces is known only in the case when N,NL(X, ¢) is finite dimen-
sional. For instance, if 4 is a Dirichlet algebra then N,NL'(X, 6)={c}, and the
simply invariant subspaces of L2?(X, o) have been characterized (cf. [2, p. 132]).
In particular, Beurling’s theorem can be derived from that characterization (the
disc algebra, after all, is a Dirichlet algebra on the unit circle T).

In this note we focus our attention on the following class of function algebras,
A,, n=1, contained in C(T?). The general theory of invariant subspaces does not
apply to these algebras. Nevertheless, as we shall show, it is possible to give a fairly
complete and concrete description of their invariant subspaces.

Definition 1.2. Let T? be the 2-torus and let # be an integer, n=1. By A4,
we shall denote the uniform algebra on T? of all continuous functions on T2 that
can be uniformly approximated by polynomials in z*w', where /=0, and k=0 when
O0=l=n-1.

Equivalently, 4, may be described as the set of all functions fin C(T?) such
that f'is supported in the upper half-plane and, in the second quadrant, f is supported

on or above the line y=n. We have AlgAz?Dﬁ... and ﬁ A,=A., the polidisc
n=1

algebra. Observe that 4, is a Dirichlet algebra precisely when n=1. Let 6 be the
Haar measure on T2 and define

@)= [fdo (fc4,).
'rl

Clearly, ¢,€M, and o€N, for all n. Also note that d4,=T* for all n. How-
ever, Nq,"ﬂLl(T?, o) is not finite dimensional for n=2, as may be seen quite
easily.

Our hope is that an understanding of the 4,’s will help us understand better
the polydisc algebra A... After all, in one obvious sense, 4. is the limit of the A4,.
In another somewhat more vague sense, as we shall see, it appears that the lattice
of invariant subspaces of A. is approximated by the invariant subspace lattices
of the A,. The following proposition, however, shows that in still another sense
all the 4,, n<oo, are similar to A,. Observe that for n<eo, w"'4,c 4, and
therefore, |4,|=|4,|, where [4,|={|f|: f€4,}. However, |4.|S|4,|. Since
A4,C 4,, there is a natural embedding g, of M, into M, , given by restriction.
Similarly, ¢-: M, —~M,_ is an embedding.

Proposition 1.3. For each finite n, g, M, ~M, s surjective, while
.- M A,"M 4 IS not surjective.

Proof. Let ¢cM, . There are two possibilities: |p(z)]=1 or |o(z)|<l.
In the first case, define G(ZFw)=0@E@)pWw) (k=0,/=1). Then GeM 4, and
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Pls =0 If |p(z)|<! then o(W")=@(Z)@(*w") for all k=0, so that |p(w)|*=
=|@(2)* (all k), which implies that ¢(w)=0. By [1, Theorem 5], ¢ has a unique
extension @ to A4,, and €M, . Therefore, 0,(¢)=¢. For the second assertion,
observe that the proof just given shows that if €M, and |@(z)|<1 then ¢(w)=0.
It clearly follows that g. cannot be onto because M, can be identified with the
bidisc DXD. -

Definition 1.4. We shall let &, 8, and % denote the following subalgebras
of C(T?:
i) f is the uniform closure of the polynomials in the first variable z;
i) 4 is the uniform closure of the polynomials in z, z, and w;
and
iii) € is the uniform closure of the polynomials in z and Zz.
Observe that:
i) & is isomorphic to the disc algebra;
il) € is isomorphic to C(T);
i) 4 is isomorphic to the tensor product of the disc algebra and C(T);
iv) 4 is also the uniform closure of kGO 24, (all n);
V) 4,S# (all n);

vi) ﬁ *4,=w"# (all n);
k=0
n—1
vii) B=(3 eow'@)ow'# (all n); and
=0
n—1
vii) 4,=(5 ewS)ew'Z (all n).
=0
Definition 1.5. The closure in L2(s) of A4,, [4,]., will be denoted H? and
the closure of # in L?*(c) will be denoted H2. Likewise, we define H;°=[4,], and
H”=[4%],, where [ ], denotes weak-* closure in L>(0). For p=2, -, we set
H,{0={f€H,f|ffda=0}. Finally, we define #%=[%),, £~ =[¥],, #*2=[«],, and
H={A],.

Observe that for p=2, =, #? and H#? are spaces of functions in the first
variable, z, only, while the splittings described above yield the decompositions

. n—1
H? = (3 owgr)ew'H? (all n),
=0
and

n—1
HP = (3 @w#)owH?.
1=0 :

These decompositions are crucial to our analysis. In Section 2 we use them to



416 R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto

describe completely the non-simply invariant subspaces of L2(os), and in Section 3
we use them to describe the simply invariant subspaces of L2(s). Finally, in
Section 4, we use them to determine the structure of the weak-* closed superalgebras
of H.

2. Non-simply invariant subspaces

For n<e, H? is a simply invariant subspace (for 4,) while H? is not. The
following proposition gives an easy criterion to determine when an invariant
subspace is simply invariant. First, we list some important properties of the
algebras 4, ¢:

(i) 4,,0=24,, and

(ii) 4,,0=2A,+[w, w? ..., w"'], where [ ] denotes linear span.

Proposition 2.1. Let M be an invariant subspace of L*(6). Then M is simply
invariant for A, if and only if zZMGM.

Proof. If n=1, [4; (M)y=[z4,M),, so that if [4, (M],=M, then zM=9.
Conversely, if z@M=M, then [4,2M,=[4,WM=M]M. If n=l, [4,, ML=
=[z2M+w+...+w" M), by (i) above, and therefore [, oM],=[zIM + wiR],.
Hence if M is simply invariant, then 2MSM. Assume now that [A, (Di],=M.
Then from what we have just seen, [z+wi],=IM. Consequently, [zMN+w"M], =
=[z(D+w" 1) + w" M, =[zM + w* L DM+ w)], =200 + w1 M,

By repeating this argument, we find that [zt +w"M], =[zVt +w],=PVt. But
Zw"e 4,, so M=[zZM+w"M);=z[M+zw"WM],=2zM, as desired.

Corollary 2.2. Let M be an invariant subspace of L*(¢). Then M is not simply
invariant if and only if
M = yg, WD x5, L*(0),

where yg and yg denote the characteristic functions of two measurable sets E, and
Ey, % €27, Xg, +X5,=1, and |g|=1 ae. (0).

Proof. The sufficiency is clear. If zt=TM, then M is invariant under A.
Since & contains the Dirichlet algebra 4; on which ¢ is multiplicative, we may
apply {6, First example, p. 165] to conclude that M is of the form M=y.q[D].,
where D={fcL”: fRcM}, g is unimodular, and x €D. By [5, Example 3.(1)],
D has the form D=y H”+(1—xz)L™, where xpcH™. Letting Xg,=XgXr and
Xg,=Xz(1—xp), we see [5] that y; €™ and M has the desired representation.

An alternate proof of this result may be based on [4] as follows. Since zIM =R,
I is invariant under H™. But H™ may be viewed as the non-self-adjoint crossed
product determined by the identity automorphism of L*(T). Hence the result
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follows from the analysis in Section 3 of [4] (see in particular Theorem 3.3 and
Proposition 3.4).
Before we proceed, we need a definition.

Definition 2.3. Let 9 be an invariant subspace of L?*(¢). Then we define
M_.. to be [U z*aMM], and M.. to be [ﬂ Z*M],.

Clearly 9JI CMcM_o. Moreover, both M.. and M_.. are non-simply
invariant. By Corollary 2.2 we can describe both M., and M_... However, if M is
simply invariant, more can be said.

Proposition 2.4. Let M be a simply invariant subspace. Then M._..=q,H?
and M..=q, B2, where q, and g, are unimodular.

Proof. By Proposition 2.1, zGM, so M.SMSM_... By Corollary 2.2,

4 M_o = xe, 1 2Dy, L% with yg+xp, =1, g =1,
an .
M. = Xquzm@XFsz with xp,+xr, =1, lgd = 1.

Slnce M.cMcM_.., it follows that yx, +ng_xE +xE and g =yg. Since

w"€ A, forall k=0 and A4,TMcM, wesee that z w"SmcEUk for all k>0 There-
fore, WM _cM, thus w'M_w=w"z*M_.cz*M for all k=0, so w'M_..C
c 0 Z*M=M... Consequently, w"y; L*C Ze, L% and so xp =y Likewise,

k20

X5, =XF,» because w" XE, q,.H? Cxr, g.H2. Thus we find that M_.oM.=
=X, (q1H2eq2H2) Wthh in turn, is contained in xe, i (HEPOW"H?), since

W R_.cM... Set My=MOM.... Then since zM..=M.., "but ZMSM, it fol-
lows that zSJ?(,C‘.IRo If f is a nonzero function in M,©2zM,, then for all k=0,
we have 0=( f, )= f f | (e, e)|2e~™* df dp. Since [f| is real, this implies

that f | (", €°)2 do 1s constant, a.e., in 6. Since f is nonzero and g is a func-

tion of 6 alone, we conclude that y; =1. Thus M_.=¢,H* and M.=q,H?,
as promised.

Remark 2.5. When M=H?, we see that M_.=H? while D.=w"H2

3. Simply invariant subspaces

W8 Suppose that 9t is a simply invariant subspace such that w'H2=R.c%Rc
cR_.=H? where 1=I/=n. Then applying Lax’s generalization of Beurling’s
theorem, we find that M has a very special form. Specifically, using [3, VI.3, p. 60],
we sec that there is a j=/ and there are functions f;€.%2 1=i=j, 0sk=l-1,
such that
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-1 __

a) 2 f;.lfmk = 6im’ 1= i, m §j9 and
k=0

b) N=[z; fi,.., f;LLOWH?

-1
where fi= 3 fuw", 1=i=j, and where [z; f;, ..., f;]; denotes the smallest subspace
k=0 -

containing f;, f;, ..., f; that is invariant under multiplication by z. For instance,
it is clear that

Hi=[z; ,w,..,w",6wH? and H},=[z; z, w, ..., w1, DOwH

If, now, Fis a unimodular function and if M=F N, where N is of the above form,
then M is easily seen to be simply invariant, but of course, M need no longer be
nestled between some w'H? and H2 Our goal, Theorem 3.2, is to show that every
simply invariant subspace can be expressed in this way as F9t.

Proposition 3.1. Let M be a simply invariant subspace for A, and (for n=2)
assume that A, ;MG M. Then M=FN where F is a unimodular function on T?
and N is a simply invariant subspace such that N.=w"H? and N_..=H?>.

Proof. By Proposition 2.4, M_..=q,H% and M..=q,H2, where |g;|=[g,|=1.
Since g,H2Cgq,H?, we must have g,¢,6H? and ¢,g,w"€¢H? (recall that w"M_..C

n
cM.). Set g=7,q,, so that gcH? and w"gcH?2. Therefore g= > c,w*, where
k=0
€ L% Since |q|=1, we have g= Zakxka", where each a; is a function of z
k=0

alone, |4)=1 a.e. on E,, 0=k=n, and Zn’xE =1. Since gq,qH*cMCq,H?,
k=0 ¥

we see that xqu1H2=xququ2choimconquz, and therefore, xEint=
= xququchqu2=Wl.,.. Now we may assume that xEozl, for otherwise M=M.,
and so M is not simply invariant. Moreover, 1, MM and, if yp #0, then it
is easy to see that ZIMCIM, so that M is not simply invariant. (Indeed, on the basis
of the Wold decomposition for an isometry, it is straightforward to show that if
a subspace M is invariant for a unitary operator U and if M is also invariant for some
nontrivial spectral projection of U, then M reduces U. In our special situation,
X, 1S @ spectral projection for multiplication by z since Xk, is a function of z alone.)
Thus 7, =0. Put D={fcL”: fRcM}). Then H;ScD and gH”CD, since
gH" Mg, qH? =g, H2CIR. Hence wi#™ and (since ﬁkxElEH“’) wxE‘.?“ are both
contained in D. Since £~ is isomorphic to L (T) with ##* corresponding to H = (T),
it follows that if yg 70, then [#=+y, ™), =% But then w¥~CD -and
HrcD. Thus A4,_, MM, a contradiction. Thus, %g,=0. One shows similarly
that yg =...=xg _ =0 and y; =1. Therefore, g=w"a,. Set F=g¢, and N=q,M
to complete the proof.
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Theorem 3.2. Let M be a simply invariant subspace for A,. Then M=FN
for some unimodular function F and a simply invariant subspace R such that N _.,=H?
and R.=w'H? for some I, 1=I=n. Moreover, MN Fw'*Hz=Fw'"1qHE, where
q is a unimodular function in L.

Proof. Let I, 1=/=n, be the smallest integer such that A,S!JIC&UL Proposi-
tion 3.1 then establishes the first part of the theorem. Now, MMM Fw' 'H2=
=FMNw'~'H2), and RNw " H2=g#2w' "' w'H?, because w1 (RNw'THY)O
ew'Hz)) is a simply invariant subspace of #2 under multiplication by z. Therefore
the second part of the theorem follows. :

The following corollary is of course well known since 4, is a Dirichlet algebra.
However, our methods provide an alternate proof.

Corollary 33. If n=1 and M is a simply invariant subspace, then M= FH}
for some unimodular function F.

Proof. Obviously, / must be 1 in this case, so that R=NNH2=gH?Z, which
implies that M =FN=FH_.

Corollary 3.4. Let MM be a simply invariant subspace for A,. Then
dim (Mo :zM)=1 if and only if M=FHE for some unimodular function F.

Proof. The sufficiency is clear. By Theorem 3.2, M=FN for some uni-
modular function F and a simply invariant subspace 9 such that %_..=H? and
N..=w'H2 for some /, 1=/=n. We claim that /=1. This will give the desired
result, as in the proof of the previous corollary. Since dim (MozM)=1, we also

have dim (MOzMN)=1, so that NSzN=[Cf], for some function f_kaw ,

where f,€ %2 (0=k=/). Since ® >N..=w'HZ, / must be orthogonal to w and there—

fore f,=0. Moreover, fw' '=fw'"'+w'g, where gcH? so that fyw' '€ NON..

Now, RONR.=[U z'f].=[z;fl., and there exists a sequence {g,}Cs#= such
iz0

that g, f—~fow' ™ in L2 By projecting onto w'™ %2 we get: g, fi_1~/f,. Assume
that /=1. Then g,,,Z'fk wr=g (f—fi.iw' -0, and in particular, g, f,—0.

However, by the second part of Theorem 3.2 we must have fyw'~le¢w'~*qH} or
fow'"t=w'"1gh, where |q|=1, g¢ £= and hes#?. Therefore |f,|=|h a.e. If
fo=0 a.e. then N_..cwH? so that |f]=0 on a set of positive measure. That
forces |A]=>0 a.e. and then [fy|=0 a.e. If {g,,,i} is a subsequence such that 8m, fo—0
a.e., the previous observation implies that g, —~0 ae., so that g, fi_,~0 ae,
or fy=0 a.e.. This contradiction establishes the original claim and completes
the proof.
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4, Weak-x closed superalgebras

The following theorem generalizes [5, Theorem 4] (see [5, Example 3.QD))).

Theorem 4.1. Let B be a weak-* closed subalgebra of L™ containing H,>.
Then either BCH™, or B=y;H”+(1—3g) L™, for some measurable set E with
€ L. If BCH™ then () z*B=w'H* for somel, 1=I=n.

k20

Proof. Put B_ w—[U zZ*B], and Bw=() z*B. Then B.cBcB_... By

k20

[5, Lemma 1] and Corollary22 Bo=xg,q: H™ + 5, L=, where 1k, €F= s Xg, T XE, = =1,
and B_o=xp ¢.H”+1p L7, with Xpﬁg and x,,l—i-sz—-l As in the case
of invariant subspaces of L?, W"'B_oCB.. Thus w"yp L™ CygL™, and this
implies Ag,=Xr,, because yp L™Cyp L% Since B._. is also an algebra and
g:€B_, we get goB_.CB_.. Thus B_..C3,B_.. This implies that Xg,B_C
C‘?zXE,42H°°=XE,H°°- In particular, xp BCyx; H”. Put D=y; B+x; H”. Then
D is a weak-* closed superalgebra of H;> and DcH®™. We shall consider two
cases:

Case 1: BCH™. In this case xp #0. Consequently (as in the proof of Prop-
osition 3.1) [#=+yxp 7], =Z7. We have #~CB, hence DOH"+y, L=,
and so D> . This implies D>OH™, which yields D=H". Now X, B=
=xE‘D=xElH°°. On the other hand, XE’LOO=XEZB°°CXE,BCXEZB—-“'CXE,LN'
Consequently XE,B=XE,L°°, and so we can conclude B=xE1H°°+(l—z£‘)L°°.

Case 2: BCH™. In this case xg,=0. Since w"H*cBcH®” and B..=¢,H”,
q = Z"'xswj where xse.?“ 0=j=n, and Z’xs=1. If x5,#0, then B=H"

because Xs, =N Xs, €B and zBcB. If k is the ﬁrst integer such that s, #0 then
Bow'H™ ‘and B..=w*H". For, if x5, =1 then BOw*H™ trivially. I s, #1
then Bow*H™ because w*ys €B and “.BCB. By the hypothesis on k, ql_w"
and therefore B..=w"H>.

When n=2 in the above theorem, more can be said about B.

Theorem 4.2. Let B be a weak-x closed subalgebra of H> containing H,,
and assume that [\ z*B=w?H”. Then B=X#" O wis>dw*H™, where q is an
k20
inner function.

Proof. Consider B;=BN%#*". B, is a weak-% closed subalgebra of ¥~

containing #*; moreover, if B,=%~ then £*c () z*B, a contradiction. There-
k20

fore B,=4", i, H#~CB. Let P, be the orthogonal prOJectlon from H2 onto

wi#?. Since () Z*B=w?H™ and #~CB, it follows that P,B:={P, f: fcB}CB,

k20
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and that B=3¢* @ P, Bd®w*H>. Moreover, P, B=will;, where M, := { f€c ¥~ : wfc B}
is an J##*~-submodule of #; M, is, therefore, of the form IM;=gs#=, for some
unimodular function g€ #*=. Since #“cCM,, we easily get that g is inper. Thus,
P, B=wg#".
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An extension of the Lindeberg—Trotter operator-theoretic
approach to limit theorems for dependent random variables

I1. Approximation theorems with O-rates,
applications to martingale difference arrays

PAUL L. BUTZER, HERIBERT KIRSCHFINK and DIETMAR SCHULZ

 This is Part II of the paper [10]. The contents of Part I, particularly the nota-
tions and preliminary results, are assumed to be known. References are in alpha-
betical order in each part, a few of the basic papers of Part I being recalled here.
The sections are numbered consecutively.

Whereas Part1 is concerned with convergence assertions without as well as
with o-rates for dependent r.v.’s, all established with the help of the conditional
Trotter operator first defined there, the purpose of Part II is to deal with O-error
estimates, not only for convergence in distribution but also for the uniform con-
vergence of distribution functions. The specializations to martingales carried out in
Section 8 enable one to compare the results with those of other authors. Firstly
some modifications and corrections are made to Part L.

3. A generalization of the Trotter-operator for dependent r.v.’s. — A revisit.
Let us recall the definition of the generalized Trotter operator in terms of the con-
ditional expectation given in Section 3.

Definition 1. Let X¢2(Q, U, P) and & be an arbitrary sub-c-algebra of 9.
The conditional Trotter operator Vyq: Cp~CpX(3(2, ®)) of X relative to © is
defined for fcCy by

Vaof0)i= _ jof ELf(X+I6] (€R)

for an a >0 with a€ Q (=set of rationals), where 4,(y, f):={x€Q; f(x)>f(»), y€ B,,}
B, :={y€RY, |[x—yi<a}. Again, (Vyef)(y, @):=(Vye f(»))(@). ' ‘

Received July 18, 1984, and in revised form December 23, .1986.
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In comparison with Definition 1 of [10] the present version has been modified
by the introduction of the infimum. This will assure that assertions to be derived
with this operator theoretical approach are valid almost surely in w€Q not only
for each fixed y€R but uniformly in y€R. The space R! endowed with the usual
topology has a countable base, namely B:={B,.; a, x€Q, x=0}. Such spaces,
namely complete, separable metric spaces are called ““Polish spaces’; they are in
particular Borel spaces. Now it is well known that each finite Borel-measure y ona
Polish 'space is a regular measure (see e.g. [16, p. 373]). This ensures the existence
of a regular distribution Py which is in particular G-measurable for each fixed
BeB as well as a measure on B for each fixed wée Q. Therefore the integral repre-
sentation of the conditional expectation (2.12) of [10] holds. In view of these con-
siderations, the above infimum is taken only countably often for all y€R, so uni-
formly for all y€R. The condition “f(x)=f(y)” assures that the conditional
Trotter operator will coincide with the classical one in case A (X) is independent of .

Under this modification Lemma 2 and Corollary 1 of [10] is readily seen to be
valid, Lemma 3 is superfluous, and Lemmas 4 (the case n=2 of La. 5) and 5 are
to be replaced by

Lemma 5. Let (X,),.n be a sequence of ru.s from £(Q,U, P),(6,), . a
sequence of sub-c-algebras from W for which G,:={Q,0}c®,cG,c...cG,c....
a) For each feCy one has

VXIIIB,(VX,I(!;,(---Vx,,lls,,f( ), 0) =
= (Vx,16,Vx,6, - -Vx,16, 1), ©) = (Vs,16, )0, ®) as. (y€R; neN).
If, in particular ®,=G,, then
Vx,8,---Vx,16, ) w) = Vs,.f(}’, w) a.s. (yER; neN).

b) If (Z,),cn is a further sequence from L(R2,U, P), it being assumed that
the Z, are independent amongst themselves as well as of the X,, then for each fcCpg,

Wssof=V 3, f1= 3 W f~Vafl (€N,
k k=1

If, in particular, ©,=6,, all kEN, then

x=1 K

Ws.f=V 3, 115 ZWaf~Va Sl (neN.
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Proof. a) First take : n=2. Noting (2.7) and (2:.11) of [10], the latter being
valid only for & ®’, one readily has

(Vx,lm,Vx,le,D(V, (0) (Vx,m{ lﬂf E[f(X2+x( ))|032]})(}’ 0) =
= inf {ELf(X1+X2+x)I(51](w)} Vaysxlo, f0, ).

XEA GV Xilﬁ,

The general result follows by induction, the particular case by Lemma 2e) of [10].

b) The proof follows immediately by Corollary 1 and Lemmas 1 and 2¢) of
[10], as well as by the following result: Let U, ..., U,,... and V3, ...,¥,, ... be
contraction endomorphisms of Cz such that U;U; is only defined for i=j, but
the ¥; may commute amongst themselves and UV;=V,;U; for any i, j. Then for
each feCy

Vs Unf =V Vaf | 2 SNS-Vef] (neN).

6. O-approximation theorems for convergence in distribution

6.1. General theorems. In the proofs of the O-estimates of Section 6 the hypoth-
eses of the corresponding o-convergence theorems of Section 5 may either be weak-
ened or partially dropped entirely. Thus Lindeberg conditions are not needed either
for the sequences (X,),cn O (Zy);cn; the conditional moments of ther.v.’s X, rela-
tive to ®, need only coincide with the moments of Z, up to the order r—1 (com-
pare (6.2)).

Theorem 7. Let (X,),.n be a sequence of (possibly) dependent r.v.’s from
£(2, U, P), let (6),n be a sequence of sub-c-algebras of W with &,:={Q, B} <
c6,c6,c...c6,c..., and Z be a @-decomposable r.v. with decomposition com-
ponents Z,, keN. Assume that for an re N\ {1}

(6.1) E[X["[G] = M,,, as. (keN)
Jor some constant M, =0 as well as E[|Z,|"| <. If furthermore
6.2) E[X{|®]=E[Z}] as. (k,jEN; 1=j=r-1),

then there holds for fcCp

r 1f/r
(6.3) llV¢(ﬁ)Sn|ﬁlf_VZfll = 2¢5,,0, ([( (nl))' Mm| ; f; CB]s
where
(6.4) M= 3 (M, +ENZ),

C,,, being the constant of (2.1) in [10].

9%



436 P. L. Butzer, H. Kirschfink and D. Schulz

“ 'Proof. In view of (2.7) and (2.8) one has for f€C, and any g€Cj,

6.5 | iof | ELS(e(m)5,+2)] 6 J-Ef(Z+y)| =

=2(f~gl+| inf E[g(0(nS,+x)|6,]-Ele(Z+ )]

Further, in view of Lemma 5b,

1

6.6) Wows08 =28l = 3 Wowryo,8~Vowsetl-

Furthermore, there holds the estimate

©n | i {E[e(eMXit D6 -ElelomZi+y)] =
= s {E[e(e Xt 2)i 6]~ E[elo(m Zi )]}

On account of the 1ntegra1 representation (2.12), and Taylor s formula apphed to
g(u+x) twice,
IE [2(o(n) X+ x)| 6] —E[g((/’(n)zk ‘I‘x)]I:

= I fg(u+x)d o, (4] G) (@) — fg(u-l-x)d (n)zk(”)l

= I f —g(” (x)}d(F (n)Xk(uI(ﬁk) F, (u)Z,‘(u))

,f = [ f (=0 =2{g"=V (x4 1u) — g~V ()} =" dt] dF iy, (uG,)| +

lf(r )Y [f A -ty gV (x+1u)— gV ()}~ 1dt]d oz ()] -
Since g€Ch, g“V€Lip (1;1;Cp) with Lipschitz constant L,=[g®|. So for

0<t=1, |{g" V(x+1) —g<'-1>(x)} W |=1g®) lul". In view of (6. 2) and (6.1) there
holds

(6.8) g |E[e(0 () X +x)1 6] - E[g(0(m Z,+x)] | =

= ; > l— 82 [ 0 A1y, 418~ Fpy ) +

1)| 2", fl " d[Fomyx, (4] Bp) + Fomyz, (W] =

(”) 161 -2 pp(m.

=le -1

| Z(Mk r+E[|Zkl’])
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All in all, notmg 6. 5), (6. 6) and (6.7),

oy
(r—D!

Pas, JOY O =2 ot i {17-a1 415901, 2 men) =

21*((3)( l))' M(n); f; Caa CBJ

This gives (6.3) in view of (2.1). . .
The proof of the following result is immediate, noting La. 2e.

(A

Theorem 8. a) If the hypotheses in Theorem 1 are satisfied, and if in particular
®1=(50, then

» 1/r
©9) Wawrsa S~V 11 = 200,00, ([ 225 M]3 13 6.

b) If further fcLip (a;r, Cg), 0<a=r, then the left side of (6.9) has the bound
(6.10) 2¢,,, Lo (n)* M (n)*.

Remark 1. The basic condition (6.2) of Thm. 7, which together with the
assumed monotonicity of the &, is the only condition upon which the dependency
structure of the r.v.’s X, in question is subjected, could be replaced by the much
weaker order condition

62" ZIEMAG)-EZ{) =0 Rt M(n)) as. (1=j=r—1; noe).

This will also insure the estimate (6.8) as does condition (6.2).

A comparable weaker version is given in [9] or [5] in the case of a weak invari-
ance principle for dépendent random functions. A further paper [6] deals in more
detail with conditions like (6.2)*, called pseudo-moment conditions (with orders).

Remark 2. Concerning the proofs of Theorem 1, and analogously of
Thms. 2—6 of [10], it should be mentioned that they have to be modified and cor-
rected by taking the definition of the conditional Trotter operator in the form given
here and by using likewise the arguments involving inequalities (6.6) and (6.7) of
the proof of Thm. 7. This will assure results comparable to Thms. 7 and 8 for “little-
o-rates” when assuming Lindeberg conditions provided (6,),.x is additionally
assumed to be a monotone non-decreasing sequence. In fact, assertion (2.11) needed
here is only valid if & c ®’. In regard to GOVINDARAJULY, cited in [10], the authors
cannot follow the proof of his main Theorein 3.1, in particular the step involving
the norms on p. 1016, since the conditional expectatlons occurring there only hold
for each fixed ycR a.s. in weQ. :
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6.2. The CLT and WLLN with O-rates. The following statements dealing with
the CLT are applications of Theorems 7 and 8, the usual specialisations being
carried out. '

Theorem 9. Let (X\)en»> (G)icn be given as-in Theorem 1, and let X* be a
standard normally distributed r.v. Set o;=Var [X,), k€N and s:=Z}_, o3, and assume
that E[|X,|'|®,J=M,,, a.s. for some constant M, >0 as well as that

(6.11) E[X!|6,)=0{E[X*] as. (k,jeN, 1=j=r).
a) Under these hypotheses one has for any f€Cy
1fr

61D WS Vefle = 20,025 )| 3 1 o),

where M (n):=Z;_, (M, ,+ o, E[|1X*|']).
b) If feLip («;r; Cp), O<a=r, and &,=6,, then

(6.13) Wiors, f—Var fllcy = 2¢o,, Lpsy *M (n)*".

Concerning the proof, just as in that of Theorem 2 condition (2.4) is satisfied
with Z, =g, X*, @ (n)=s;'. Since [|[X*|]<cw, réN, and so assertion (6.12) fol-
lows from (6.3), assertion (6.13) follows from (6.10).

In the case of the following WLLN with O -rates the basic moment condi-
tion, in this case (6.2) for r=2, must, for the same reasons as in Theorem 6, be
weakened (see (6.15)), whereas for r=2 (6.10) reduces to the non-trivial require-
ment (6.17).

Theorem 10. Let (X)en»> (O ien> Zi With P(Z,=0)=1, k€N be defined as
in Theorem 1.
a) If for some reN\{1}

(6.14) E[IX /"G, =M, as. (kEN)
and if there exist constants c; such that
©.15) o > |ELX| 6]l = ;0 (n) 2 Mue as. O=j=r-1; neN),
then for feLip (r;r; Cp),
L,
(6.16) WaosioS~flen = (er+ 25 ooy 2 s,

with Cf Ocj“-f(j)"CB/J'
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b) If r=2, one has for fe€C%, provided E[Xgl®]=0 a.s. and E[X;|®,}<M,,
as., kEN,

(6.17) Vrss, f~S e = 2ensLyn™ 3 M.

Proof. Condition (2.4) is satisfied for independent r.v.’s Z, with P, =Py, for
all k¢N. Since E[|X,]']=0 forany j=1, a Taylor expansion up to the order r 1
yields, similarly as in the proof of Theorem 7,

(6.18) V. (n)x,‘w,‘f (y, w)— (n)z,‘f "l =

3 o(n n
= 3 2O 1O BN 6+ 1, 2O
Assertibn (6.16) now follows by using condition (6.15) in formula (6.18). Part b)
is the particular case of Theorem 8b) for r=a=2 and ¢@(n)=n"?, noting that

PZ=PXD'

7. O-approximation theorems for convergence in distribution. Just as in the case
of martingales (cf. [5], [6]) it is possible to transfer our results concerned with rates
for the weak convergence of the distributions P,,s to Py to those for strong con-
vergence. This is possible by applying a result contained implicitly in ZOLOTAREV [18],
formulated explicitly in e.g. [S]. Using this result one can deduce from Theorem 7
the following theorem, noting that conditions (7.1) and (7.2) yield, for feCg,

ll V(p(n)S,.f_' sz"cs = 0("("(”)') (n —<).

Theorem 11. Let (Xp)iens> (Oicp, Zi» kKEN, be defined as in Theorem 1,
let the limiting rv. Z€L(Q, N, P), with distribution function F, satisfy. condition

| Fz(x) — Fz (X))l = Mz1x,—xs| (%1, X2€R)
for some constant M, >0, and assume that for ré N\{1}

(7.1,2) ENX /6] < M, as., ENZ|]<M? (kEN),
M,, M} being positive constants, independent of k. If further (6.2) holds, then
(7.3) sup | Fpimys, () = Fz ()] = O(@(m) e+ D ptC+D) (1 —~ o).

If one applies Theorem 11 to the r.v. Z:=X* one obtains the following
Berry—Esséen type estimates for dependent r.v.’s.

Theorem 12. Let the assumptions of Theorem 9 be satisfied. If there exist two
positive constants m, M such that m<aoi;<M, one obtains

(7.4) Sup |F,-15 (%)= Fe(®)| = O(/C+OR1C+D) (1 +c0).
IQR n n .
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If the rv’s X, and Z,, k€N are identically distributed, and o}=1, all k€N, then
Jor r=3 .

(7.5) sgg | Fy-1n25, (x) — Fxe ()] = O(n™Y8) (1 — o).

Setting @ (n)=s,' one can show, just as in the proof of Theorem 9b, that
(74) follows from (7.3). Estimate (7.5) is a result of (7.4) since s;'=n"'2 for
oi=1.

8. Applications to martingale difference arrays. Whereas the dependency struc-
ture of the r.v.’s in question has so far been very general, it will be concretized
in this section. The particular type of dependency to be considered will be that defined
by a martingale difference array (MDA). AMDA is a double indexed array (X <y, »
nEN of rv’s from 2(Q, U, P) that is connected with a scheme (Fudozs=r,-
neN of sub-g-algebras of U in such a form that the following three conditions are
satisfied:

i) the sequence ({s-,,,‘)oékékn i1s monotone non-decreasing in k for each nEN,

ii) X, is measurable with respect to &, for 1=sk=k,,

iii) E[X|&,_1]=0 as. for l=k=k,, neN. -

The general convergence theorem of this paper, Theorem 1, may be applied
to MDA, as well as that supplied with o-rates, namely Theorem 4. But in order to
avoid repetitions in the formulations we shall just consider the applications of
Theorem 7 and 12 to yield

Theorem 13. Let (Xu)iksk,» N€N, be a MDA, (Fudosi=r» NEN, the
associated array of sub-c-algebras of W (non-decreasing in k per definition) with
Tao=1{0, Q} for all nEN, and let Z be a @p-decomposable r.v. with decomposition
components Z,,, 1=k=k,.

Assume further that for an re N\ {1}

®.1) E(| Xl | &nx-1) < My, as. (1 =k =k,; neN)
Jor some constant M, =0, as well as
8.2) EfZ,l'1 < (1=k=k,; néN)

together with
(8.3) E[X4|®.x-1]= E[Z]] as. (1=k=k,;neN; 1 =j=r-1; jeN).

Then for any f<Lip (a;r;Cg), O<a=r, there holds for T, =@ (kp)Zin Xk
the estimate . . _ .
. i,
(84) llnnknf~VZf!! = 202,7Lf¢(nk)a kzi (Mnk,r+E[|an|'])
with ¢,,, and L, from Theorem 8. ’ '
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- If for each neN the rv.’s X,, and Z,; are in parttcular identically distributed
Jor all 1=k=k,, and if there holds

E[IXnkl |%nk 1]<Mnr a.s. (‘l Skskn’ nEN)

where M, , is a positive constant independent of k, as well as (8 2) and (8.3), then
Jor fECy
o(k,) r

(8.5) Wiy, S~V = L 5 kM EDZ0l ).

Proof. Assertion (8.4) is a direct application of Theorem 8b), replacing the
X, by X, and the G, by &, ;-1, noting that &,=§, ,={0, Q}, and that the distrib-
ution Py of the limit r.v. Z can, for each natural k,, be representated as P,=
=P yZin1Zu, Whereby the independent decomposition components Z; of (2.4)
have here been written in the preciser form Z,,. Inequality (8.5) follows by (6.8)
in the proof of Theorem 7.

Now to the application of Theorem 12 to MDA; it is the CLT with rates for
MDA.

Theorem 14. Let (X)) s=i» NEN and (Fudozk=k,» NEN be defined as
in Theorem 13. Let m,<a2, :=Var (X )<M,, 1=k=k,, ncN. Assume further that

Jor reN\{1}
EUXnkIr,:}n,k—I] < Mn,r a.s. (1 = k kﬂ, nEN),

M,,, being positive constants, independent of k, as well as
E[X}|&n1-1] = 6KE[X*] as. (1=k=k, neN; 1 sj=r—1; jeN).
Then one has for s, , =(Z,0; 22,

(8.6) sup IF k)= Fu(@) = 0GR/ (n>).

Sn, k"k~1 nk

If, in addition, for each n€EN the r.v.’s X, are identically distributed for all 1=k=k,,
and o%, =1 for 1=k=k,, ncN, then for r=3
(C) SUPIF by, O~ Fre)l= O(k; %) (n—<2).
nk
k

x€R k7Y

The proof of this theorem consists in a consequent application of Theorem 12,
using the special case of MDA with &,=%§, ,_1-

If one would take k,=n in Theorem 14, then the rate in (8.7) reduces to O (n~*%),
one which was also attained by HEYDE and BrowN [14], CHow and TEICHER [11 p.
314] as well as by EricksoN, QuUINE and WEBER [12]. Improvements of this rate
were achieved by HALL and Heype [13 p. 84], namely with O(n~logn), by
"MuUKERIEE [17] with O(n~%), KaTo [15] with O(n~2(log n)®) as well as by BoLT-
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HAUSEN [3] with O(n~'2logn), whereby the better rates of convergence by Kato
and Bolthausen are restricted to uniformly bounded r.v.’s. If one just assumes the
boundedness of the third absolute moments of the r.v.’s X, as well as the “near
constancy” of the partial sums of the conditional variances, here expressed in the
form

k'l
@.8) Sib, 2 E[X3|§,uca] = 1 in probability (n—e),
k=1

then the rate O(n~/%) is the best that has been obtained so far. It should be noted
that condition (8.6) for j=2 implies (8.8); however, an assertion comparable to
Theorem 14 could also be deduced by means of the conditional Trotter operator
under the weaker assumption (8.8). '

It must further be mentioned that the rates of Theorem 13, deduced from
Theorem 7, dealing with rates for dependent r.v.’s, are just as good as those obtained
in [4], [1], [2), [8], [9] and [5] for independent r.v.’s, MDS or MDA by means of
the strongly modified Dvoretzky-method of proof mentioned in the introduction
of [10]. But the conditional Trotter operator introduced in Section 3 allows one
to prove the fundamental limit theorems equipped with rates in a unified way not
only for various types of dependent r.v.’s but also for independent r.v.’s. It should
be added that the definition and proofs involving the conditional Trotter opera-
tor and its properties also make use. of set functions. So this operator theoretic
approach stands in contrast to the more intricate ‘‘measure-theoretic”” approach
dealt with in most papers concerned with stochastic processes, in particular Markov
processes.

It may be observed that the conditional Lindeberg—Trotter operator approach
even makes it possible to deal with general limit theorems for Markov processes
equiped with rates, see [7]. Similar results would be possible for inverse martingales
or other dependency structure types.

The research of the third named author was supported by DFG grant Bu
166/37—4. The authors would like to thank a DFG-referee for pointing out an
error in Part I of this paper, corrected in this part. They are also indebted to Dr. Diet-
mar Pfeifer, Heisenberg Professor, Aachen, for suggesting the use of “Polish spaces”
to overcome the difficulty as well as for his critical reading of the manuscript.
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On asymptotic Toeplitz operators

JOSE BARR{A

A symbol map is constructed for the C*-algebra generated by the Toeplitz
and compact operators on the space HZ(Z) associated with a semigroup ¥ of a
locally compact abelian group. As a consequence it follows that the essential range
of the symbol is contained in the essential spectrum of the corresponding Toeplitz
operator.

Let G be a locally compact abelian group with dual group G, and let X denote
a fixed sub-semigroup of G which is a Borel subset of G. Let u and fi be the nor-
malized Haar measures on G and G, respectively. Let L2(G) and L%(G) be the cor-
responding Hilbert spaces of square-integrable functions. The Fourier transform
F is an isometry from L2(G) onto L2(G). We denote by H2(Z) the subspace of
L*(G) consisting of the functions f for which &f is in L?(Z), that is

H?(2) = {feL*(G): Zf is supported on Z}.

Let P denote the orthogonal projection of L2(G) onto H2(Z). If ¢ is a bounded
measurable function on G, write M, for the multiplication operator defined on
L*(G) by

M,f=of

and T, for the compression of M, defined on H?(Z) by

T, f = PM, f = P(¢f).

The operator T, is called a Toeplitz operator with symbol ¢.

The semigroup X induces a partial order = on G in which a=g if fa~1is
in £. With this partial order, G and ¥ are directed sets. Furthermore, if a€X and
oa=pf, then BeZ.

" An operator T on H?(Z) is called an asymptotic Toeplitz operator if the net
{T}TT,: acZ} converges strongly. The class of all asymptotic Toeplitz operators
on H2%(Z) will be denoted by (AT).

"Received September 13, 1984.



436 | . . J. Barria

In case G is the unit circle group T, G is the integers Z, and X is the semigroup
7.* of non-negative integers, then T is an asymptotic Toeplitz operator if the sequence
{U*"TU™}=., converges strongly (here U is the unilateral shift on H?). In [1] this
asymptotic notion was defined and used to assign a symbol to any operator in
the C*-algebra generated by the Toeplitz and Hankel operators. In this paper the
construction of the symbol map is carried out in the more general setting of locally
compact abelian groups. As a consequence, it follows that the spectrum of M, is
contained in the essential spectrum of T,.

Toeplitz operators on locally compact abelian groups were first studied by
L. A. CoBurN and R. G. DoucGLASs [2]. One of their concerns was the C*-algebra
generated by the Toeplitz operators with symbol in the algebra of almost periodic
‘functions. They proved that this algebra of operators modulo its commutator ideal
is *-isomorphic to the algebra of almost periodic functions. Our results show that
the C*-algebra generated by all Toeplitz and compact operators is *-homomorphic
to L=(G), and the kernel of this homomorphism is the ideal of operators T (in
the algebra) such that 7 77T,—~0 (a€ZX) strongly.

The following elementary facts about Toeplitz operators will be useful:

Tosy = To+ Ty, Tg=T5,

@

T,f=of if «isin .

For the rest of the paper we make the following assumptions: pu and i are
o-finite measures, A(Z)=0, G is generated by X (i.e. G=2XZ"1), X is not dense
in G.

From [2] we have that ¢(M,), the spectrum of M, is contained in ¢(T,), and
1Tl =llelle for ¢ in L=(G).

Lemma 1. If K is a compact operator on H*(X), then K&(AT) and KT,—0
(x€X) strongly.

Proof. Itis enough to prove the last assertion. For this, let f be fixed in H2(X).
Since K is a compact operator, and KT, f=K(af), we only need to show that
the net {of: a€Z} converges weakly to zero. For g in H*(Z) we have fgc L1(G),
and therefore )

(&) = [gafdu=F(Jo)(
G

for all « in Z. By the Riemann—Lebesgue’s Lemma ([4], Remark 28.42), given ¢>0
there exists a compact set F in G such that
|Z(f2)(0)l <& for all ¢ in G\ F.

Next we show that o2 S G\ F for some « in Z. If this is not the case, then aZNF#
for all a in X. Since a0, 2 S a; X for o, &, in Z, it follows that the family {«Z  F: a€ 2}
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has:the finite intersection property. Hence there exists o, in the closure £~ of £
such that a,caZ~ for all « in X, therefore ¢, *S X~ and so «,GSX~. This is
a contradiction because 2,G=G and Z is not dense in. G.

So far we have proved that there exists a in T such that |% (fg)(o)|<¢ for
all o in af. This shows that |(g, Bf)|<e for all B in X such that f=a.

Lemma 2. [2] If E is a compact subset of G, then there exists a in X such that
aECZ.

Proof. See[2], §2.

Lemma 3. Let A be an operator on H*(Z) such that TfAT,=A for all a
inX. Then M} APM,~M ,(acZ) weakly, and A=T, for some ¢ in L=(G). Further-
more, M;PM —I (acX) strongly.

Proof. Let f be in L2(G) such that Ff has compact support E in G. From
Lemma 2 there exists o, in £ such that aEC X for a=a,. If 6€G\Z and a=a,,
then o« '6€G\E, and so £ (af)(0)=(Ff)(2"16)=0. Hence afc H*(Z) and
MXAPM, f=M}A(af). If A is the identity, we conclude that M)PM,f=f for
a=a,. This completes the proof of the last assertion of the lemma.

Let B,=M;APM, for a in X. Let g be in LZ(G) such that &g has support
contained in E. If a=a,, from above we have

(Bafa g) = (A (af)a “g) = (AT“o_l(aof)’ T“;‘(aog)) =
= (T;;‘ ATaa; (2 f), o508) = (A (@01, aog)

because aay'€X. Hence there exists an operator B on L?(G) such that B,—B
(2€2) weakly.
For ¢ in X we have

(M Bf; ) = lim (M MIAPM, £, g) = lim (M, APM,, Mf, &) = (BM3; 9).

Therefore M,B=BM, for all ¢ in G. Since the subspace spanned by G is weak*
dense in L”(G) ([4], Lemma 31.4), it follows that M,B=BM, for all  in L~(G).
Since the algebra of multiplication operators is maximal abelian, then B=M,
for some ¢ in L”(G). Finally, it is easy to see that (T, f, 8)=(A4f,g) for f, g in
"H%(Z).

Corollary 4. If T is an asymptotic Toeplitz operator on H*(X), then T;TT,~T,
(a€X) strongly, for some ¢ in L™(G). '

Proof. If T}TT,—~A (x€X) strongly, then T}AT,=A for all « in Z. Now
the result follows from Lemma 3.
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- We define the map &: (AT)~L"(G) by &(T)=¢ where T;TT,~T, (2€X)
strongly. The funt_:tion ¢ is called the symbol of 7. Lemma 1 shows that #(K)=0
if K is a compact operator.

Corollary 5. The class of asymptotic Toeplitz operators is a norm closed sub-
space. The map © is a linear contraction.

Proof. Let T¢(AT) and &(T)=¢cL=(G). Then
IT, /I = lim T TT, £] =|T1IA). -

Hence
el = lels = 1Tl =ITI.

Let T,6(AT) be such that [T—-T,[—~0. Let ¢,£L*(G) be such that
&(T,)=e¢,- Since

. ) "(pn (pmnw - nQ(Tn_Tm)“ = "Tn—Tm“’
there exists ¢ in L°°(G) such that [@,—¢ll.—0. Now we have

N \TXTT, T, fl = | T-TI A +ITE T, T f =T, £l + 0. — ol-111,
therefore T€(AT) and ®(T)=¢.

Corollary 6. If K is a compact operator on H*(Z), then |T,|=|T,+K]
Jor @ in L=(G). Therefore the subspace {T,+K: @€L”(G), K compact} lS norm
closed.

_Proof. By Lemma 1, &(7T,+K)=¢. Since @ is a contraction,
IT5] = lolle = |2(To+K)| = |T,+K].

Corollary 7. If ¢ is in L*(G) and H,=P*M_,\H*Z), then H,T,—~0 (2€X)
strongly.

Proof. For fin H%(Z) and « in £ we have
: H,T, f= PL(agf) = P+ M, (¢f).
Therefore [ H,T,f| =|M*P* M,(¢f)|~0 (€Z) by Lemma 3.

Lemma 8. Let T=T, T T with @,€L=(G). Then T is an asymptotic
Toeplitz operator and cb(T) qol<p2

Proof For ¢ in L*(G) and H,, as defined in Corollary 7 we have

(T *]
M"'—(H‘,* .
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with respect to the decomposition L2(G)=H*(Z)® H®(Z)L. If ¢ and ¢ are in
L=(G), then M,,=M,M, and therefore (multiply matrices and compare upper
left-cornefs) Ty, T,T,=AH, for some operator A. Applying this last-equality
to the telescoping sum

T—T,00...0 TtmT:pz on " Toron.. ¢..)'f‘T1\‘mT¢s o0 Tosos..om) T
+T¢P1T0’z( ?3 W “@n T¢a(¢4...¢n))+""+T¢xT¢z T% B(T¢n—1T¢n T'Pn l‘?‘n)

we conclude that each of the n—1 summands on-the right can be written as BH,
for some operator B and some ¢ in L*(G). From Corollary 7 we have that BH, T, —»0
(a€X) strongly. Therefore (T— To0,.. )T ~0 (x€ZX) strongly. From this it fol-
lows that T€(AT) and @(T)=¢,¢;..

Theorem 9. Let 7 be the C*-algebra gener__ated by the Toeplitz ‘and compact
operators on H2(Z). Then o is contained in the class of asymptotic Toeplitz operators.
Furthermore, the restriction of ® to & is a *-homomorphism.

Proof. Let &, be the linear manifold generated by the compact operators
and all the finite products of Toeplitz operators. Clearly <, is an algebra which is
closed under the operation of taking adjoint, and the norm closure of &7, is equal
to 7. Since (AT) is a subspace, from Lemmas 1 and 8 it follows that &7, is contained
in (AT), and the restriction of @ to &7, is clearly a *-homomorphism. Since (AT)
" is norm closed, then & C(AT), and the proof is complete.

Remark. In general, (AT) is not an algebra, it is not even closed under adjoin-
tion (cf. [1]).

Corollary 10. If ¢ is in L™(G), then the spectrum of M, is contained in the
essential spectrum of T,.

Proof. Since the spectrum of M, is the essential range of ¢, it will be enough
to show that if T, is a Fredholm operator, then ¢ has an inverse in L*(G). Let &
be the C*-algebra defined in Theorem 9. If K is the closed ideal of compact operators
on H3*(Z), then &/K is a C*-algebra. If T, is Fredholm, then [T,] is invertible
in &#/K, so thereexists S in &/ such that T, S— 1 is compact. Therefore &(T,S—1)=0.
Since @ is a homomorphism on &/, ¢-®(S)=1 a.e. [u]. Since #(S) is in L~ (G),
then ¢ is invertible in L=(G).

Remark. In Corollary 10 it is actually proved that the spectrum of M, is
contained in the intersection of the left essential spectrum and the right essential
spectrum of T,.

Remark. From Theorem 9 we have that TS— ST is in ker & for any S and
T in &f. Therefore the commutator ideal of & is contained in ker #. For Toep-
litz operators on the unit circle this inclusion is an equality [1]. Is this true in general?

10
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Ideals and Lie ideals of operators

C. K. FONG and G. J. MURPHY

1. Introduction

Let $ denote an infinite dimensional (complex) Hilbert space and %($) the
algebra of all (bounded, linear) operators on $. We say a linear manifold % in
B(9) is unitarily invariant if U* 2US ¥ for all unitaries U in Z(9). If & is such
a manifold and R is another Hilbert space of the same dimension as $, then we
can ““transport” % to a unitarily invariant manifold of operators acting on & by
taking any unitary transformation W from $ onto & and setting FL=WZW*.
That %, is unitarily invariant, and that its definition is independent of the choice
of W, follow from the fact that % is unitarily invariant. In particular, if we con-
sider the case when R=9®9H, then Lg,g is a unitarily invariant- manifold of
operators which can be expressed as 2X2 operator matrices with entries in #(9).
Thus we can define the following two manifolds in Z(9):

(»)
#° = (Tlgor: T¢Zs05) = {4€H®): (& )¢ Zoos for some B, ¢, Dea(®)},

(x %) 5o ={Bea): (J )e Zsos)-

It was shown in 5] that %, is an ideal in #(9), and that [B(9), LS LS
ESF,+CI. This fact covers a part of the following theorem, also proved in the
same paper.

Theorem 1 ([5]). Let £ be a linear manifold in B($). Then the following con-
ditions are equivalent:

(1) £ is unitarily invariant;

(2) & is a Lie ideal in (D),

Received January 29, 1984.
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(3) there exists an ideal 5 in B(9) such that
2(9),F1€S L cs+CL

(The above results are shown in [5] only in the case where $ is separable; but,
in fact, everything works in the non-separable case too. See remarks following
Theorem 2.)

For a unitarily invariant manifold % in 2(9), the ideal & of the condition (3)
above is uniquely determined by % (shown in Section 2), and will be called the
associate ideal of &. Among other results in Section 2, we show that & (defined
by (%)) is either S, or $,+CI A consequence, shown in Section 3, is the fol-
lowing useful characterization of ideals in #(9): a linear manifold & in Z(9)
is a proper ideal if and only if & is unitarily invariant, I¢.¥ and £°S.%. Several
applications of this result (or its variant) are given in Section 3.

In Section 4 we give some characterizations of ideals in C*-algebras satisfying
a certain condition, viz., we show that the ideals are precisely the hnear mamfolds
& for which P¥PC Z for all projections in the algebra

The proof of Theorem 1 previously mentioned in {5] uses the followmg weaker
form of a theorem of Fillmore:

a Theorem 2 ([3]) Every operator in B(9) is a linear combindtion of projections.

The original proof of this result is quite complicated. We include an appendrx
“to this paper in which we prove Theorem 1 in such a way that; not only do we obtain
it without Theorem 2, but the latter theorem actually drops out as a bonus in the
process. To generahze Theorem 1 for Hilbert spaces not necessarily separable, we
need to extend a theorem of Calkin [1] to the non-separablé case.-Since this exten-
sion is by no means straightforward, we also include its proof in the appendix.

: We use standard notation: €, denotés the Hilbert—Schmidt class and €, (p>0)
the ideal of operators such that (T*T )"/46% If &, 7 are lmear mamfolds in
B(9), we write £ T (resp. [¥, T]) for the linear span of all operators of the form
ST (resp. [S, T]=ST~TS) where S€& and Tc¢J". All'Hilbert spaces are assumed
to be infinite dimensional, but they are not requlred to be separable unless other-
wise stated ’ :

2. The associate ideal of a Lie ideal in Z(9)

Let Phea unitarily mvanant mamfold in 9«?(55) As mentloned 1n the introduc-
tion, the set

Jz—{BE-@(ﬁ) [0 0]63565}

forms an ideal. We call £, the associate ideal of & or the ideal associated with &.
There are several ways to describe this ideal, as the following: proposition shows.
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Proposition 3. Let % be a unitarily invariant manifold and #.be an ideal in.
.93(5) Then the- foIIowmg conditions are equwalent -

(1) J is the associate ideal of & ;
Q) [B(9), FlIc S F+CI;
(3 [#8(9), LIS Z and [B(9), L1 S:
(4) F is the largest ideal among those ideals § satz.s;fymg [Q(ﬁ) FlIS ¥,
.. «5) £ is the smallest -ideal among those ideals ¢ satt.sfymg & Cf +ClI;
(6) S is the ideal generated by [%B(9), L], . ;
(1) F+CI={TeR(): [B(5), TIC.Z).

For the proof. of the above proposition, ‘we need the following lemma. .

Lemma 4. Let o be an algebra with identity I and B= M,(4) be the algebra
of all 2X2 matrices with entries in sf. Then, for two ideals .9'1 and S, in B,
[8, (8, £1]1]1S #: implies S, . o

A B
Proof. Let [C D)efl. ‘Then

[lo0)- s o). (& 2)]] - (c d)esins

Hence (‘g D]Gf and it suffices to show that ( |€F. Now (A 8} ((I) é]=
- (g g]\ #, and, by using the same computatlon as above, we obtain (g g)Efz-

Hence

A0 0 A\(0 I

(0 D] =\ 0] (1 o]Efz 0

- Proof of Proposition 3. (1)=(2) follows from Theorem 1. (2)=(3) is obvi-

ous. To show (3)=(6), let # be the ideal generated by [#(9), £]. Then we have
[2(9), £1SFSF and hence [Z(9),[#(9), FIIS[2(9), LIS #. It follows
from Lemma 4 (since #($) and #,(#(9)) are isomorphic algebras) that S S £.
Therefore S=_#. Similarly we can show that (3)=(4) and (2)=(5). Since the ideal
F described by either (4), (5) or (6) is unique and since the associate ideal fits into
each of these descriptions, we have (4)=(1), (5)=(1) and (6)=>(1) Thus conditions

(1) to (6) are equivalent.
Finally, let %, be the ideal associated 'with % and

F={Tc#9): [2(9),T]1S £}.

Then it is easy to see that & is unitarily invariant and ,C%. Let ¢ be the associate
ideal of &. Since

[2(5), 12(5), £1] S [4(5), Y1 S £ S S, +CI
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it follows from Lemma 4 that FE S,. Therefore we have FSAHSL S F+CL
Hence #=J, and &¥=_4¢+CI=5,+CI. We have proved (1)=(7). Conversely,
if $=5+CI, then S+CI=S+CI and hence S=J,. Therefore (7)=(1)
follows. O

For brevity, in the rest of this section, we replace the term “unitarily invariant
linear manifold in #($)” by its synonym “Lie ideal in Z(9)”. :

By definition, the associate ideal  of a Lie ideal & in #(9) is obtained by
taking the upper right corners of 2X2 matrices in %;44. The next result says, if
we take the upper left corners instead, then either S or 4 +CI is produced.

Proposition 5. If & is'a Lie ideal and $ is its associate ideal, then either
F=F or L°=5+CL

Proof. From Theorem 1, we have £ C.#+CI It is elementary that if ¢
is an ideal in #(9), then #°=_¢. Hence we have ¥°S ¥+ CI=5+CL.
Now we show S E ¥°. Let T¢.#. Then (8 0 €Z505- Let W be the unitary

. o Lerr . N
operator on HHPH given by the matrix ﬁ [_ I IJ‘ Then, since Z4 ¢ is unitarily

invariant, we have
) 0 T T T

, 2+ (o o)W = (LT _7)eLses
and hence T€.#°.

We have shown that # S £°C S+ CI from which it follows that either =4
or ¥°=44+CIl. O

Now we consider some ““permanence properties’ of Lie ideals and their associate
ideals. First we state the following obvious fact without proof in order to put it
into record.

Proposition 6. If {&}} is a family of Lie ideals in (%), then the intersection
ﬂ %, and the sum Z’ %, are Lie ideals also. If, furthermore, 5 is the associate
zdeaI of &, for each j, then the associate ideals of ﬂ %, and Z %, are ﬂ S; and
.9} respectively.
The next “permanence property” is less obvious and more interesting.

Proposition 7. If 4, &, are Lie ideals in B(9) with S, S, as their associate
ideals, then [%,, %) is a Lie ideal with #,%, as its associale ideal.

Remark. It is easy to check that Jl.fg is an ideal in Z($). Since every ideal
in Z(9) is self-adjoint, we have S, 4=45
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Proof. It is easy to check that [%, %] is a Lie ideal. Let ¥ be the ideal
associated with [%;, %,). From %, € #,+CI(j=1, 2) we have [%,, £] S 4, S+ CL
Hence, by (1)«<(5) in Proposition 3, we have J <S4, J,. Next, suppose that 4;€.5,
(j=1,2). Then we have '

0 S)eczises. (4, 0) = (7 0)(0 )7 o)ecsns

4,4 0 04 00
( b : —A2A1) = [ 0 0l ’ (Az 0]]6[31: Zilses-

Therefore it follows from Proposition 5 that 4,4,¢.4. O

and hence

Remark. In case %, and %, actually are ideals, ie. # =4, and &=,
we have an easier proof as follows. We have to show [#(9), ASLIE[S, AIS
C A #+CIL The second inclusion is obvious. The first follows from the identity
[T, AB]=[TA4, B]+[BT, A).

Example. Let % denote the set of trace class operators on § of trace zero.
Then, by using some properties of the trace function, we have [%,, %,]S%).
G. Waiss [17] has shown that [&,, %,]=%?. Using this result, it is observed in
[5, Remark 1] that [#(9), €]=%). Now we claim that for no Lie ideal £ do
we have 4)=[%(9), ¥] or ¥;=[%L, &]. Since, if the associate ideal of & is 7,
the associate ideals of 47, [#(D), Z] and [, &] are %,, F and S? respectively,
E)=[2(9), £] would imply that F=%, and ¥)=[%, £] would imply S2=%,,
ie. F=%,, both contradictory to the results previously mentioned. We do not
know whether we can have %;=[#, #] for distinct ideals # and #.

3. A characterization of operator ideals and its applications

We now turn our attention to the main theme of this paper: characterizations
of operator ideals.

Proposition 8. A linear manifold & in B(9) is either an ideal or F+CI
for some ideal # if and only if & is unitarily invariant and FL°S &#.

Proof. Suppose that & is a unitarily invariant manifold in £(9) and ¥°C £Z.
It follows from Theorem 1 that % is a Lie ideal and ¥ & #+CI where £ is its
associate ideal. From Proposition 5, we have £ S .%°. Now we have J S ¥°C
C ¥ S F+Cl Hence either =4 or L=5+CL
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- For the proof -of the ““only if” part, it suffices to note that, if £ is an ideal in
Q(ﬁ), then S, Consists. of all 2><2 -opefator matnces with entries in . O

" The following 1mmed1ate consequenoe "of the above proposmon is a useful
characterization of ideals in Z(9).

Proposition 9. 4 linear mamfold £ in B(9) is a proper zdeal if and only if
it is umtarlly invariant, ‘€% and IQ.S? '

Remark. The “if” part of Proposition9, under the additional assumption’
that % contains all Hilbert—Schmidt operators, was obtained by SOUROUR [16].

Next we give a few apphcatlons labelled as examples, of the above two propo-
sitions. In many cases, it is convenient to think of #¢ in the following way. Take
any subspace M in § with dim M=dim M (=dim $) and let

#® = {compression of T.to M: TeL}.

Then %% is a unitarily invariant manifold and (£™),=%°. Thus, roughly speaking,
¢ can be obtained by taking the compression of % to a subspace M with dim M=
=dim M+ and then transporting it back to $.

Example 1. Let & be a linear manifold of numerical sequences converging
to zero. We consider the set S of those operators T such that, for each orthonormal
sequence {e,} in 9, the sequence {(Te,, €,)},—, is in &. Then it is easy to see that
J is a unitarily invariant mamfold which does not contain 1. By the obvious fact
that an orthonormal sequence in a subspace is also an orthonormal sequence in the
whole Hilbert space, one can see the validity of the inclusion S°S.#. By Proposi-
tion 9, it follows that £ is an ideal. i

If we take &=I°, the set of all numerical sequences {A;} such that

S’ |4;/P<<o, then the corresponding ideal # turns out to be the #”-class of opera-
Jj=1

tors. If z; is a sequence of positive numbers decreasing to zero such that 2’ ;= oo,

and if & is the set of numerical sequences {4;} satisfying 2 ;|A;l<ee, then the
corresponding ideal # is ¢, which is defined in [7].
Example 2. An operator T in £(9) (here $ is assumed to be separable) is

said to be universally absolutely bounded if, for every orthonormal basis {e,} in $,
the matrix

(Tes, e)l (Tey, el ...
l(TeI’ ez)| I(Tez, eg)! ‘oo

represents a bounded operator-on /2. Let % be the set of all upiversally bounded
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operators. Clearly % is a unitarily invariant manifold, 7é% and, for an infinite
dimensional- subspace M of H, each operator in #™ is also universally absolutely
bounded. Hence it follows from Proposition 8 that #=#+CI for some ideal 4.
In fact, HALMOS and SUNDER[IO] showed that U=%, +CI Our dlscussmn here
can be used to shorten their proof. - -

Example 3. For p>0 let %, be the set of all those operators TcA(9)
(9 is separable) satisfying the COl'ldlthl’l that the matrlx

|(Te19 el I(Tez, e1)|”
(Tey, el” [(Te, ez)l’---

represents a bounded operator on {2 for every orthonormal basis {e,} of $. From
the inequality (a+b)?=27(a"+b") (a,b=0) we see that %, is a linear manifold.
It is easy to check that %, is unitarily invariant, 1601! and U SU,y- Hence, by
Proposition 8, #,= 4, +C1 for some ideal #,. For p=2, it folIows froma classical
result of Schur (whxch says, for two nXn matrices (ay;) and (b)), Il(a,‘,b,q)llS
=@ )l IG5 see [15]) that %,=2B(9H). As we have mentioned in Example 2,
U,=%,+Cl. We do not know how to describe %, in an explicit way when 1<p<2
or O<p=<l. ' .
Example 4. Let 7 be the set of all those operators in 2($) ($ is separable)
-which, in any matrix representation, allow triangular truncation. More precisely,
T¢7 if and only if, for an arbltrary orthonornal basxs {e,,} in H, the trlangular
matrix

(Tey, e) (Tey,e)) (Teg,e)...

0 (Teg, e5) (Tes,e5) ...

0 0 (Te;, e3) ...

represents a bounded operator on /2. Then it is easy to see that 7 is a unitarily invari-
ant manifold and I€¢J. A little refiexion on forming submatrices reveals that
J°S . Hence it follows from Proposition 8 that 7 =#+CI for some ideal ..
It follows from a result of MACAEV (see [7]) that  contains all those operator T

with their s-numbers {s,(z)} satisfying 2 n=1s,(T)<eo,

Example 5. Let (X, m) be a separable o-finite measure space which is not
purely atomic. We say that an operator T on $=%2(X, m) is an integral operator
if Tx(s)= f k(s, )x(t)dm(t) a.e. (x€$) for some measurable function k on
XX X. Proposition 8 can be used to give a simplified proof of a result due to KoroT-
kov: if U*TU 1is an integral operator for every unitary U, then TE%’ +CI. For
details, we refer to SOUROUR [16]). -
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4. Characterization of ideals in certain classes of C*-algebras

In the present section, we give some characterizations of ideals in certain gen-,
eral C*-algebras which share some “‘noncommutative” features with Z($).

For the next two results, we consider those unital C*-algebras &f which satisfy
the following condition:

(C) Every unitary element in & can be expressed as a product of a scalar and
several symmetries (i.e. hermitian unitaries) in /.

That #(9) satisfies condition (C) is a consequence of the following result of
HarMos and KAKUTANI [9]:

Theorem 10. Each operator on an infinite dimensional Hilbert space is a product
of four symmetries.

This result was generalized by FILLMORE [3] to properly infinite von Neumann
algebras. Note that if o is a commutative C *-algebra and dim &/ =2, then condi-
tion (C) fails.

The notion of unitarily invariant manifolds in #($) can be extended to gen-
eral C*-algebras in a straightforward manner: in a C*-algebra &, a linear mani-
fold & is unitarily invariant if and only if U*2UCS Z for all unitary elements U
in &f. The following result characterizes unitarily invariant manifolds in a C*-alge-
bra satisfying condition (C).

" Proposition 11. A4 linear manifold &% in a C*-algebra o satisfying (C) is
unitarily invariant if and only if (I—P)ZPS & for all projections P in .

Proof. Suppose that 2 is unitarily invariant. Let P be a projection in &
and T¢%. Then both U=I—2P and V=P+i(I—P) are unitary and hence

1
I,= —2—(T—-U*TU)E.¥’ and."
(I-P)TP = %(Tl—iV*TlV)E,S?..

Conversely, suppose that (I~ P) # P< % for all projections P.Let Sbea symmetry
in &/. Then S=2P—1I for some projection P. Hence, for T¢ .2,

STS = T —2(PT(I-P)+(I-P)TP)c %.

By condition (C) we see that % is unitarily invariant, since &/ is linearly spanned
by unitaries. O

Proposition 12. A linear manifold & in a C*-algebra of satisfying (C) is
an ideal if and only if PYPS Y for all projections P in .
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Proof. Suppose that PLPS ¥ for all prbjections ‘P.Llet T€e¥ and S be
a symmetry so that S=2P—I for some projection P. Then

STS = 2(PTP+(I;P)T(1—P))—TG$.

Hence, by condition (C), % is unitarily invariant. Therefore, by Proposition 11,
(I-P)PPS ¥ for all projections P in &. Now, for a symmetry S=2P-I and
Tc ¥, we have

TS =2(PTP+(I-P)TP)-Tc¥.

By coﬁdition (C) again, we have TUc% for each T€¢.# and each unitary U.
Since unitary elements span & linearly, we have L/ S . In the same way we
can show that S £ C ¥. Hence & is an ideal of &/. OO

A linear manifold £ in a C*-algebra &/ is said to be a Jordan ideal if AX+
+XAc P for all Ac¥ and Xcof. It is shown in [5, Theorem 3] that Jordan
ideals in #($) are'just associative ideals. This result can be generalized for a class
of C*-algebras wider than #($):

Corollary 13. If. & is a Jordan ideal in a C*-algebra s which satisfies condi-
tion (C), then & is an associative ideal.

Proof. Let P be a projection in & and T€.%. Then
P(PT+TP)+(PT+TP)P =2PTP+(PT+TP)}EYZ

and hence PTPc¥. Now the corollary follows from Proposition 12. O

Sourour has informed the authors that, in case «/=%(%), Proposition 12 can
be deduced in the following way. Assume that % is a linear manifold such that
P PS Z for all projections P. For T€% and a projection P we have TP+ PT=
=T+ PTP—(I-P)T(I-P)c¥. By the fact that projections span #($) linearly
(Theorem 2), we see that & is a Jordan ideal. Now it follows from [5, Theorem 3]
that % is an associative ideal.

The condition (C) in Proposition 12 is essential. For example, if «/=C[0, 1],
then there is no proper projection in & and hence the inclusion P¥LPS & is
automatically satisfied for every linear manifold % in «/; but of course there are
linear manifolds in &/ which are not ideals.

In the next result, we let & be a C*-algebra with the identity I, o&f = #,(%)

and P, be the projection in 7 given by the matrix (é 0).

Proposition 14. A linear manifold & in of is an ideal if and only if & is
unitarily invariant and Py L P,S &.
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Proof. “Suppose % is unitarily invariant and Py £ P,S #. Let

- fon s}

If U is a unitary element in & and B€#, then
' . (I 0Y*(0 BY(I © 0 BUY .
(O_U (0 o](o.u]=(o 0)65‘"
U 0Y(O B\(U O\ (0 UB
(096 o) ) = T)ez.

and hence BU and UB are in . Since unitary elements in 4 span the whole algebra
A, we see that £ is an ideal in 8. Now let # be the set of all 2X2 matrices with.
entries in #. Then £ is an ideal in /.

Let T= g g) be an element in £. We are going to show that T¢€ # .- For

this purpose, we introduce the following-unitary elements in &/ :

R N e

Then we have

o= (2 Hes, Lo = F)e
S"E(T U*TU) = c 0 €Y, —2—(S—1V SV) = 00 £¥
and ‘
l . _[0 C]
3 J(S+iV*SV)J = 00 [

Hence, B, C¢f#. We also have

4 A D D

By the previous argument, we have A, D¢.#.
A BJef. From the definition of #

Next we show that #C % and let T= C D

we know 4, B, C and D are in #, or, in other words,
0 A4 0 B 0C 0D
51=[0 o]’ Sz:(o o)’ s,,=[0 o)’ Se= o 0]

are in %. We have to show that

A0 0 B 00 00
Tl=(0 0)’ T2=(0 0]"T3=(c 0)’ T4=[0 D)

are in %. This can be seen from the following identities:
T, =2P(WSiWH Py, To=S,, Ty=JS;J, T,=2J(P,WSW*Py)J,

where J and W are the unitary operators previously defined. 0O



Ideals and Lie ideals of operators .4'51

Ideas similar to those in the above proof appear in [12).

Corollary 15. If P, is a projection in B(9) with dim P,H=dim (I—Py)$ and
if % is a unitarily invariant manifold in B(9) satisfying Py, L Py %, then & is an
ideal in B(9).

- Proof. This follows from the previous proposition and the fact that #(9)
and #,(B(9)) are isomorphic C*-algebras. [J.

Example. Let £ S (H) be an ideal in A (9), ie., for X€A(H) and
Ac ¥, we have XAc ¥ and AXcZ. In general, & is not necessarily an ideal
in #($). Among other things, it was shown in [6] that if .Z is also a Lie ideal and
Z is countably generated as an ideal of ' (9), then & is also an ideal of Z(9).
This result can be proved in the following alternative way.

Let # be the linear span of operators of the form XAY, where A% and
X, Ye A (H). Itis easy to see that . is an ideal in Z(9) and F & .Z. On the other
hand, it follows from a lemma in [6] that there is a projection P, in #($) such that
dim Py$=dim (I—P,)$ and P,S, SP,£F for all §in &. Notice that each element
S in & can be expressed as a finite sum:

S=D+Z;(0;A;4+B; X;+Y;C)
where «;€C; 4;, B;,C;€%; X;, Y;€4(9) and DeS. For such a sum, we have
PySPy = PyDPy+Z;(ot; Po(A; P))+(PoB)) XPy+ Py Y;(C; Pp))EF
since £ is an ideal in Z(9) and the operators D, 4; P, PyB;, C; P, are all in' £.
Now it follows from Corollary 15 and F S & that & is an ideal in #(9).
Finally, we have the following characterization of ideals in #($). =~
Proposition 16. If & is a unitarily invariant manifold in #($9) consisting of
compact operators and if T implies |T|=(T*T)"?*¢ %L, then ¥ is an ideal.

Proof. Again, let 4 be the ideal of those operators B such that (8 OB)E 3’555'

Then, from Theorem 1, we have % S.#. Next we show that S S .#. Since every

ideal in Z(9) is linearly spanned by its positive elements, it suffices to show that
positive elements in S, ¢ are in Lgq . So let T= (’é g) be a positive element

in S5eq. Then 4, B, C.and D are in 4. Hence

L H=05+0 HE IO et
(0.5) =16 Dezses. (5= J[ o)z )!%%

Hence we obtam TG‘.Q’MN3 =
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Appendix

In this appendix we give a transparent proof of Theorem 1 and Theorem 2
based on an idea in [4]. The main tool we use in this proof is Halmos—Kakutani’s
Theorem (Theorem 10): every unitary operator can be expressed as a product of
not more than four symmetries. This theorem can be deduced constructively by
the following three short steps: first express it as a direct sum of countably many
blocks such that each block has the same dimension as the Hilbert space; then,
using this expression, write the operator as a product of two bilateral shifts (of
infinite rank); finally, write each bilateral shift as a product of two symmetries.
(For details, we refer to [9].) From this argument we see that the symmetries involved
can be chosen in such a way that their eigen-subspaces have the same dimension as
the underlying Hilbert space. :

In order to reveal the essential part of our argument in proving Theorem 1,
we consider a more general situation. We let 9 be a unital C*-algebra, o =.4,(%)

and & be the set of all those symmetries of the form U *[(I) 0 ]U where [ is

the identity in # and U is a unitary element in o/. We consider the following con-
dition:

(C’) each unitary element in & is a product of finitely many elements in & and

a scalar.

It follows from our previous remark that for &/=%(9), condition (C") is
satisfied.

In the following three lemmas, we always assume that s is the C*-algebra
described in the previous paragraph and condition (C’) is satisfied. Furthermore,
we assume that & is a unitarily invariant manifold in &,

/={B€.‘B: [?, ﬁ]ez’}

S = {’ég)ed ABCandDaremf}

and

By using the same argument as that in the proof of Proposition 14, we see that #
is an ideal in & and £ is an ideal in .

Lemma A. With the above assumption, we have [£, 1S &.

Proof. It suffices to show that [#, U]& # for all unitary elements U in .
First we note that if C D}ef then

(656 022 )26 )6 D6 I e
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since & is unitary and B,Cc #. Now if T€# and S=W"* (6 _OI) Wes (W is
unitary), then
S (T, S] = W* [WTW*, ((I, _01)]We.~z’.

. Now we consider an arbitrary unitary element U in & and show that [T, U]€ .
By condition (C’), U can be written as a product 4S5,8S,...S, where Sy, ..., S,€%
and A€C. We proceed by induction on n. Let ¥=S§,S;...S,. Then

[T, Ul= A[TS,,V]+A[VT, Sy.

Since ¥T¢# and TS,€4, we have [VT, §,]€ % by our previous argument and
ITS;, V1€ £ by our induction assumption. Therefore [T, Ulc¥. O

Lemma B. The linear span of & includes [, ].

Proof. Let %, be the linear span of &. Then %, is unitarily invariant. Let #,
and £, be the ideals defined from %, in the same way as #, £ defined from .#. Since

1¢11 1 0
[ JE.%, we see that I€_#, and hence (0 IJEJO. Therefore #,=./. Thus,

PRV

by Lemma A, [, o]=[, £]c%. O
Lemma C. [&,[«, H]JSFNEL.

Proof. It follows from Lemma B that it suffices to show [£,#]S#FNZL.

If (é g)e %, then, by an argument similar to that in the proof of Proposition 14,

we can show that (8 g] and (((;) 8} are in S£NY¥ and hence

[(é g]’ ((I) —01)] = 2(((); _OB]GJO,Z’.

10 }We.sf’, where W is unitary, and if T¢.%, then

1f S=W*(0 2

T, §]=W* [WTW*, (é _()I]]anza O

Proof of Theorem 2. Apply Lemma B to the case &/=%(9) and note that
[8(9), B(D))=R(9), (see [8]). O

Proof of Theorem 1. By Halmos—Kakutani’s Theorem and Theorem 2, we
can easily deduce the equivalence of (1) and (2). (For details, see [5].) That (3) implies
(1) is obvious. It remains to show (1)=(3). By Lemma A, Lemma C and the fact
that [Z(9), Z(9)]=2(9H), we have [#(9), FISZ and [#(9), L] S.

Now Theorem 1 follows from the following theorem of CALKIN [1]:
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Theorem D. If 5 is a proper 1deaI in #(9), Te%(ﬁ) andxf [T, (NS A,
then T¢ £ +CIL. .

Calkin only showed this-theorem for the case when $ is separable. Now we
prove this theorem under the assumption that § is nonseparable. ‘

Let #($) be the unique maximal ideal in #($). (Thus, for an operator S
‘on 9, SEAA(9) if and only if there exists a projection E in () such that ESE=S
and dim EH<dim $.) Let €(H) be the ““Calkin algebra” &(9)/ A (5) Let t be
the canonicali mage of T in- 4(%).

Since . is self-adjoint, with no loss of generality, we may assume T=T*
Let T= f AdE, be the spectral decomposmon of T. Note that Aco(r) if and
only if, for all >0, dim E(1—e¢, Ate)H= dim §.
. First we demonstrate that o(¢) is a singleton. Assume the contrary: we have

M1, 2s€0(t) with A,7%1,. Choose. >0 such that the intervals -[4,—¢, A, +¢&] and

[22—¢, Ap+e] are disjoint. Let §;=E[4;—¢, 1;+¢€]H (j=1,2) and K=HS(H:99Hy).
“Then dim $,=dim $,=dim $. Let U be a unitary transformation from $ onto
HOHOK such that U331=35@0®o 052_0@55@0 and USK=060&K. Then

Ut = |0 To|
L. 1 %

“for some hermitian operators T, and T, in 93(53) with disjoint spectra. By a well-
‘known result-of ROSENBLUM [14], there exists an operator A in 93(33) such that

0 4
i X=0)9 0y Ju-:
Then o . s L §
07
TX-XT =UJ0 0 0 0] |Ues .
. il il .

and hence I€5. Therefore J B(D), a contradlctlon to-our assumptlon that J
is proper.

We have T=S+AI for some A¢C and self-adjoint operator S in ($).
Choose a projection E in #($) such that ESE=S and dim E$=dim (/—E)$.
Let W be a unitary transforma'tion from sj onto $H$ such that W(EH)=5D0

and W((I-E)9)= 05%9. Then WSW-1= %" O]: for some S,cZ(9). Let
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0

V=W“1[0 0 W. Then we have

SV-VS = W-l(o S°)W6f

and hence S,€.#. Therefore Sc.. O

"By using the above three lemmas, Fillmore’s extension [3] 'of Halmos and
Kakutani’s Theorem and the fact that [«/, &/]=«f for a properly infinite von Neu-
mann -algebra [13], we can show the following two results.

Theorem V. Let & be a linear manifold in a properly infinite von Neumann
algebra. Then the following conditions are equivalent:

(1) Zis unitarily'invariant;
2 ZPisalLieidealin o, ie., [, 1S E;
(3) there is an ideal S in of such that [ A, FIC ¥ and [, L] S.

Theorem 2’ [13]. Every element in a properly infinite von Neumann algebra
is a linear combination of projections.

As in Section 2, in a properly infinite von Neumann algebra, we can define
the associate ideals of Lie ideals. Also we can show that conditions (1), (3), (4), (6)
in Proposition 3 are equivalent in this general situation.
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A note on Schmiidgen’s classes 9%, and R of pairs generated
by Toeplitz operators

V. VASYUNIN®)

1. K. ScuMUDGEN [1] introduced the following class of pairs of (unbounded)”
self-adjoint operators.

Definition 1. Let 4, B be self-adjoint operators on a Hilbert space J#. The
pair {4, B} belongs to the class N, if there exists a dense linear manifold % in
J such that

(i) 2<S Dom (AB)NDom (BA) and ABf=BAf for all f€9,

(ii)) 4|2 and B|2 are essentially self-adjoint.

Schmiidgen gives the following criterion for a pair {4, B} to be in %,. (In

what follows 2(-) means ‘“‘range of™.)
Theorem O (Theorem 1.7 in [1]). Suppose {d4,B}eRN;, «€R\a(4) and
BERN\o(B). Then the operators X & (A—a)™ and y¥ (B—Pp)~* satisfy the

Jollowing conditions:

4} Ker X = KerY = {0},
) (X, Y)N2(X) = (X, Y)N2(Y) = {0}

Conversely, if X and Y are bounded self-adjoint operators satisfying (1) and (2),
then {X 4o, Y 1+B}eR, for all o, BER.

The main method in [1] to construct pairs belonging to R, is to consider pairs
of the form {(Re T)~%, (Im T)~'} for certain operators T. Among others Toeplitz’
operators with analytic symbols have been investigated in [1]. It was shown that
Toeplitz operators with symbols which are cyclic for the backward shift do not
generate a pair in 9, ([1], Proposition 3.3). Moreover, the polynomials ¢ for which
{(Re T,)~%, (Im T,)"1}€R, are characterized in [1]..

*) Research supported by Naturwissenschaftlich-Theoretisches Zentrum (Karl-Marx-Uni-

versitit, Leipzig). )
Received October 16, 1984.
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The aim of this note is to show that Schmiidgen’s method works in fact for
Toeplitz operators with arbitrary analytic (or antianalytic) symbols.

Suppose @€H™. Let T, be the multiplication by ¢ on H? Let X & Re T,
and ¥ ¥m T,. As usual, S* is the backward shift, P, is the orthogonal projec-
tion of L2 onto H?and P_=I—P, is the projection onto H? and V{...} denotes
the closed linear span of {...}.

Lemma 1. Z([X, Y])=V{(S*"p: n=1).

Proof. First note that, for any AhcH? [T, T h=(P,Pp—@P,p)h=
=P, oP_ph=H}Hh, where H,: H*—~H? (H;h=P_@ph) is the Hankel operator
with symbol @. Hence we have Z([X,YDN=2(T;, T ))=%(H;Hz)=R(HZ) =
-=P,oH?2 =V{P,Z"¢: n=1}. Now the assertion follows.

According to Beurling’s theorem, the S*-invariant subspace V{(S$*)"¢: n=1}
has the form H2© @ H? with a certain inner function @ or @ =0. We introduce the
bounded analytic functions ¢, and ¢_ by

p(d) = 5 00 Lp@) for |z =1.

O@ is indeed analytic, because (§0O, 2%)=(0, (5*)"¢)=0 for n=I.

Theorem 1. {(Re T,)~%, (Im T,)"'}¢N, if and only if ¢, and @_ are non-
zero outer functions.

Proof. Let us note at first that for @=0 we have by Lemma 1 Z([X, Y])= H?,
i.e. condition (2) in Theorem 0 is not fulfilled. Hence we may assume that @ is a
non-zero function. Since the only bounded self-adjoint Toeplitz operator with non-
trivial kernel is the zero operator, the conditions X0 and Y0 imply Ker X=
=Ker Y={0}, i.e. condition (1) in Theorem 0.

We show that (H*©O@H)NA(X)={0} iff ¢, is outer. Since Xf=

1
=3 P.(¢p+@)f=P.O¢, f, we have

P,@Xf=P,0P,0¢0,f=P,p.f= T;,,f-
Therefore, .

(H:© OHHNA(X) = {Xf: X LOH?) = (Xf: P,OXf=0} =
= XKer T}, = X(H*© (T,,)) = X(H>© ¢, H?),

where ¢, is the inner part of ¢, . Since Ker X={0}, (H20OH})NA(X)={0} if
and only if ¢, is outer. Similarly it follows that (H2© @H*)NR(Y)={0} if and
only if ¢_ is outer. By Theorem 0, this completes the proof of Theorem 1.

Corollary 1. If @€ H™ is S*-cyclic, then {(Re T,)~*, (Im T,)~"}¢N,.
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Proof. Note that ¢ and S*¢ are S*-cyclic simultaneously. In this case @ =0
and ¢, =¢_=0.

Lemma 2. If V{(§*)"¢: n=1}=H*©OH?, then ©% and © have no common
inner divisor.

Proof. Let 8 beacommon inner divisor of @3 and @ andlet @’ £ ©J. Then
O’'@cH® and ((S*)" @, O'f)=(z"f, ©’'P)=0for n=1and fe H%. Therefore, @ H*S
COH? ie., 3=0O’c¢H? and 9 is a constant function.

If @ is a finite Blaschke product, then ¢ is meromorphic in C, the function ¢

= _— ; 1 _
defined by ¢(z)=¢(1/Z) is meromorphic too, and ¢, (z) =—2— O(2) (qo @+o(2)
for |z]=1.

Corollary 2. Let O be afinite Blaschke product. Then, {(Re T,)~, (Im T,) 2} R,
if and only if ©®(z)#=@%(z) for every z€C, |z|#]1.

Proof. Suppose that ¢2(z2)=¢%(z) for some z€C, |z|#1. Since @%(1/2)=
. =0%(2)=¢*(z2)=0%(1/Z), we can assume without loss of generality that |z|<I.
Hence ¢, ¢_ has a zero inside the unit circle. Therefore it is not outer.

Suppose now that ¢, (or ¢_) is not outer. Then it has a zero, say z,, inside
the unit circle (see the remark just before Corollary 2). According to Lemma 2,
O(z)»#0 and therefore @(z20)+9(z)=0 (or @(z)—@(zo)=0, resp.), ie.
0*(20) =0*(2o)-

2. In [2] the study of commuting unbounded self-adjoint operators was con-
tinued. The more general classes M, are introduced in [2]. Here we only need the
‘class M.

Definition 2. Let 4, B be self-adjoint operators on a Hilbert space .
The pair {4, B} is in the class 92 if there exists a dense linear manifold 2 in #
such that

(Y 2<SDom (4 B*YNDom (B*4) and A'B* f=B* A’ f for all f¢2 and all

S k=0,1,...;

(i)Y 4%2 and B¥2 are essentially self-adjoint for all k=1.

For polynomial symbols it was shown in [2, Theorem 4.1] that all pairs
“{(Re T, (Im T,)"1}e€RN, are in fact in the class NZ. Using the same method as
in [2] we prove this assertion for arbitrary analytic symbols.

Theorem 2. For arbitrary @€ H™ the following are equivalent:
6) {(ReT,)™, Im T,)"1}eN,,
) {ReT,)™, (ImT,)"}eN=.
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def

Lemma-3. Q,, = V{2(X’ Y*[X, Y]): j<r, k<s}=H*©O"**'H2

Proof. Since the subspace H*© ©H?* is invariant under the operator T, it is
sufficient to show that .

V{®(TE(X, Y]): k <n}= H*©O"H™

We prove this assertion by induction. By Lemma 1 this is true in case n=1.
Suppose-that :
V{R(TL(X, Y)): k <n} = H20O0"H* ¥K,.

"Then oo
V{R(TEX, Y)): k <n+1} = V{T,K,, K,}-

If /1 v{T,K,,K,}, then f=0O"g and P.@f=0O"h, for some g€ H? h< H2. Hence
Oh=0""'P,pO0"g=0""1(0p)O" 'g=(0p)g. According to Lemma 2, @% and O
‘have no common inner divisor. Thus gc¢©@H? and fcO"**H2. Therefore,
K,+1S V{T,K,,K,}. On the other hand, (¢K,, @"*H%=(K,, 0"(0F)H?)=0.
Hence V{T,K,, K,}=K,,, which completes the induction proof.

Proof of Theorem 2. Since (4)=(3) is obvious by definition we only have
to prove the implication (3)=(4). Suppose that (3) is fulfilled. Then, by Theorem 1,
¢+ and ¢ _ are outer. To prove (4), we apply Corollary 1.9 in [2]. By this Corollary,
it is sufficient to verify the following two conditions:

“(x) Xf€Q, 41, =0€0,, forall r=0, s=0 andall fcH?
) YfeQ, .1 =0€Q,, forall r=0, s=0 andall feH2

Let Xfe€Q,.,,,=H20O"H?, n=r+ts, ie., Xf=P,0p,f1O"H? Hence
0=(P,0%, f, O"H)=(f, 9. O" *H?). Therefore, since ¢, is outer, fEH?*Q

©0" 'H?=Q,.. In a similar way we see that (y) is satisfied if ¢_ is outer. This
. completes the proof. .
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Non-atomic measure spaces and Fredholm composition operators

" R. K. SINGH and T. VELUCHAMY

1. Introduction. Let (X, ¥, 1) be a sigma-finite measure space and let T be
a measurable nonsingular (/IT‘l(E)=0A whenever A(E)=0 for Eéy) trans-
formation from X into itself. Then the composition transformation Cr on L%*(1)
is defined as Crf=foT for every feL2(1). If the range of Cy is in L2(4) and Cy
1s bounded, then we call C; the composition operator induced by 7. It has been
proved that a nonsingular measurable transformation T induces a composrtlon opera-
tor Cy if and only if there exists a constant M=0 such that AT~ 1(E)SMA(E)
for every E€&. Hence the induced measure AT~ U s absolutely continuous ‘with
respect to the measure A. Let f; denote the Radon—Nikodym derivative of the
measure A7~ with respect to A.

The main purpose of this paper is to study Fredholm, essentially unitary and
essentially normal composition operators on L?(4) when the underlying measure
space is non atomic. In case X is the unit interval of the real line and A is the
Lebesgue measure on the Borel subsets X it turns out that the composition operator
Cr on L?(A) is Fredholm if-and only if C; is invertible {2). We prove here that the
above result is true for a general non-atomic measure space. We also prove that
the set of essentially unitary composition operators on L?(4) coincides with the set
of unitary composition operators on L2(2) and the set of essentially isometric com-
position operators coincide with the set of isometric composition operators on
L2(2).-1t is also proved that when Cy has dense range, Cy is essentially normal if
and only if Cy is normal. Note that a measure space (X, &, 1) is said to be non-
atomic if for every nonnull Eésf’ there exxsts a nonnull Fe& such that FCE
and A(F)<A(E)

. Definitions. Let B(H) denote the. Banach algebra of all operators on a
Hllbert space H and C(H) denote the ideal of compact operators on H. Let © be
the natural homomorphism from B(H) to the Calkin algebra B(H)/C(H). An

“~ Received September 10, 1984.



-462 R. K. Singh and T. Veluchamy

operator ACB(H) is said to be Fredholm, essentially unitary, essentially normal,
an essential isometry or an essential coisometry according as n(4) is invertible,
unitary, normal, an isometry-or a coisometry, respectively. It has been proved that
A is Fredholm if and only if 4 has closed range, and the kernel of 4 and the kernel
of A* are finite dimensional. 4 is called quasiunitary if A*4—71 and AA4*—TI are
finite rank operators [2].

2. Fredholm composition operators. If C;€B(L?(1)), then we know that
C;‘CT=M10 [3]. So, ker Cr=ker C7Cr=ker M, =L*(X,), where X,= {x: fo(x)=0}.
The following theorem computes the kernel of CJ which is useful in proving the
main theorem of this section.

Theorem 2.1. Let C;€B(L*()). Then

ker Cf = {f: feL*() and [ fdi =0 for all Ec%}.
T-YE)

Proof. Let feL?*(1). Then fcker C; if and only if the inner product { f; g)=0
for every gé(ker Cf)*=RanCy. Since the span of the characteristic function
{Xr-1g): AT(E)<eoand E€EZ} is dense in RanCy, we conclude that fcker Cf
if and only if f fdi=0 for every EcS%. Hence the proof is completed.

T-1E)

Definition. If (X, &, 1) is a measure space, then the sigma-algebra 7 ~1(¥) =
={T~Y(E): E€%)} is said to be essentially all of & if for every E€¥ there exists
T~YF)ETX(¥) such that A(EA T YF)=2{(E\T (F)U(T-(F)\E)}=0.

It has been proved by WHITLEY {6] and SINGH and KUMAR [4] that C; has
dense range if and only if 7~1(&) is essentially all of &. This we can conclude from
the above theorem also.

Corollary 2.1. No characteristic function belongs to ker C}. In fact, no posi-
tive function belongs to ker Cj.

Corollary 2.3. If C;€B(L*(A)), then ker CycCker C} implies that Cy is an
injection.

Theorem 2.4. Let Cy be a normal composition operator on L2(A). Then Cy is
Fredholm if and only if Cy is invertible.

Proof. Since every normal composition operator on L2(4) is an injection [4],
the result follows.

The above theorem is not true in general as evident from the following example:

Example 2.5. Let /2 denote the Hilbert space of all square summable sequences
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of complex numbers. Define the operator A4: I2—+I* by

0 if n=1

for x={x,” n€N} in I2 Then A=A* and hence A4 is normal. Also dim ker 4=
=dim ker 4*=1 and the range of 4 is closed. Hence 4 is a normal Fredholm:
operator. But clearly, A is not invertible.

From now on we assume that the measure space (X, %, 1) is non-atomic..
The following theorem shows that the set of Fredholm composition operators and.
the set of invertible composition operators on L2?(1) coincide.

Theorem 2.6. Let Cp€B(L*(A)). Then Cy is Fredholm if and only if Cy is-
invertible.

Proof. Suppose Cy is Fredholm. Then ker C; and ker C; are finite dimen-
sional and Cr has closed range. But ker C;=L%*(X,), where X,={x: f,(x)=0}
and A is non-atomic implies that ker Cy is {0}. Hence to prove that Cr is invertible
it is enough to prove that Cy has dense range. Suppose C; does not have dense
range. Then there exists a measurable set G in & such that G is not in T7}(&).
We can find a measurable set E such that T-1(E)DG. Let T-(E)=GUF. Then
Fis a nonnull measurable set and F does not belong to 7 ~1(&¥). If we partition E
into countable disjoint measurable sets, then at least one set among those partitions,
say E*, will be such that T-1(EY) contains nonnull measurable subsets G* of G
and F! of F where G and F* are not in T-1(¥) and A(EY)<1. Again partition
E. Then we get at least one E2 such that A(E%)<1/2 and T-'(E? containing.
nonnull parts of G and F which are not in T-1(¥). Repeat this process. If at each
stage of partition, there is exactly one measurable set E” such that 7-*(E") con-
tains nonnull parts G" of G and F" of F such that G” and F" are not in T~Y(E),
then E” can be made to approach a null set, since A(E™)<1/n. This will imply that
G and Fare in T (&) which is a contradiction. Hence we can get a disjoint sequence
{E,: neN} of measurable subsets of E such that for every n, T-YE,)=G,UF,.
where G,cG and F,cF and G, and F, are not in T~'(%¥). Now consider the
sequence {G,: n¢N}. This is a disjoint sequence and G, does not belong to T~1(S)-
for every n¢N. Also G,UG,U...UG, does not belong to T-(¥) for every k€N.
For, if G,UG,eT~1(¥), then there is a measurable set KcE,UE, such that
T-Y(K)=G,UG,. Hence T*(KNE,)=G, which implies that G,€T~*(&¥) which
is a contradiction. ’

Now, since G, does not belong to T-1(¥), there is a function f; in L2(1) such
that f f1dA=0 for every E€¢¥ and f f1dA£0. For, if not, then ker Cfc

T-1(8) G
c(Xg)* and hence (X;)*+cRanCy. This implies that X; ¢Ran Cy which is a.
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contradiction since G, does not belong to T ~1(%¥). Again, there is a function f; in
L*(2) such that [ f,d2=0 for every E€S and f fod2=0 but f fodd#0.

T-1(E)

For, if not, then (ker C7)N(Xg )t (X5 )*. Hence (XG )*+1cspan {Ran Cr, Xg }.
This implies that X =f-+axg for some fin RanC; and a€C. Hence f=X; —
—azXGl and this will imply that f is not measurable with respect to the sigma algebra

T-1(¥) which is a contradiction. Proceeding like this we will get a sequence
{ j;, neN}cker C} such that f f,dA is not equal to zero for k=n and 1s zero

for k<n. Hence, no two functlons in {f,: n€N} are linearly dependent and hence
dim ker Cf =< which is a contradiction. Hence the theorem is proved.

_ 3. Essentially unitary and essentially normal composition operators. First we
shall characterise essentially isometric and essentially coisometric composition oper-
ators on L3(2).

Theorem 3.1. ,L'et Cr€B(L*(%)). Then Cy is an essential isometry if and only
if Cy is an isometry.

Proof. Let C; be an essential isometry. Then #(Cp)*n(Cr)=n(I) which
implies that C;Cr—1I is compact. But C;Cr—I=M; —1I is compact on-L*(1)
if and only if f;=1 a.e. [5). This implies that C is an isometry and hence the proof
is completed.

Theorem 3.2. Let CTGB(B(/I)) Then C. is an .essential coisometry if and
only ifitis a cozsometry

Proof. Let C; be an essential coisometry. Now, it is clear that C,. is an essentxal
coisometry if and only if C Cy—I is compact. But

M on RanC
*_ 7 fooT-1 T
CTCT I { —I on kerC§.

Since ran CT and ker C; are invariant under C;Cy—I, C;Cy~1I is compact
if and only if M fpoT~1 is compact on ranCy and =17 is compact on ker Cj.
But —17I is compact on ker Cy if and only if ker Cy is finite dimensional which
further implies that ker C;y={0}. Hence C; has dense range and M fooT—1 1S
compact on ran ranCy=L%(A) if and’ only if froT=1 ae. This implies that C is a
coisometry and hence the theorem is proved. o

Theorem 3.3. Let CTGB(Lz(A)) Then CT is essentmlly unitary 1f and only if
C is unitary.

"Proof. Cy is essentially nnitaxy if and only if Cy is essentially an. isometry
and essentially a coisometry. Hence the theorem follows from Theorems 3.1 and 3.2.
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Corollary 3.4. Let Cy€B(L*(3). Then Cy is quasiunitary if and only if C
is unitary.

Theorem 3.5. Let Cr be a composition operator on L*(J) with dense range.
Then Cy is essentially normal if and only if Cy is normal.

Proof. Cy is essentially normal if and only if C;C;—C;C; is compact.
But when C; has dense range, C;CT_—CTC;‘=MIO_I‘,°T and hence M, _. . r
is compact on L2(4) implies that fy=f,oT a.e. and this further implies that C; is
normal. Thus the theorem is proved.
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Best approximation of a normal operator in the trace norm

RICHARD BOULDIN

1. Introduction. A problem that has received considerable attention is the clas-
sification of operators that have a unique best approximation among the nonnega-
tive operators (a unique positive approximant) in one norm or another. For the
operator norm this was done in {4] and, consequently, it solved a problem posed
in [8]. Those results were generalized in [5], [9], [2] and other papers. The problem
of approximation in trace norm was specifically excluded in [2], and it was noted
how the methods given there failed in the case of the trace norm. This paper gives
a characterization of those normal operators with a unique positive approximant
in the trace norm. The result is a striking contrast to the characterizations given
previously for other norms.

We are concerned throughout this paper with (bounded linear) operators on
a separable Hilbert space $. For any operator T" we use the associated operator
|T)=(T*T)"? and the Caratesian decomposition T=B+iC with B=(1/2)(T+T*)
and C=(1/2i)(T—T*). Werefer to Bas re T and to C as im T. For a compact
operator T we let s,(T), s5(T), ... denote the eigenvalues of |T| in nonincreasing
order repeated according to multiplicity. If we have

j=1

then we say that T is trace class and the preceding sum is the trace norm, denoted
ITll,. If T is not trace class then ||T|; is defined to be infinity.

1
For a self-adjoint operator B we define B+ to be 3 (|1B{+B) and B~ to be

1
—2-(lB|—B); we notethat B=B*—B~ and |B|=B*++B~. If E(.) is the spectral

measure for B then it follows from the usual operational calculus that B + =BE([0, «))
and B~ =BE((—<,0]). If Tis a given operator and P is a nonnegative operator

—
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such that co=||T—P|, and [[T—R|,=||T—P|, for every nonnegative operator R
then we say that P is a trace class positive approximant of T.

We shall frequently use the following inequality for the trace class operator
T where {e;} is some orthonormal set:

iTh, = %' KTeja el

This follows from the Corollary on p. 40 of [10].

2. Preliminary results. Of course, not all operators can be approximated by
a nonnegative operator using the trace norm. The next theorem gives convenient
conditions for recognizing when a given operator can be approximated.

Theorem 1. For a given operator T=B+iC, B*=B, C*=C, the following
conditions are equivalent:

(i) there exists a nonnegative operator P such that T—P is trace class;

(ii) the operator C is trace class and the spectrum of B, denoted ¢(B), not in the
interval [0, «) consists of isolated eigenvalues, say {A;} repeated according to multi-
plicity, such that 3 |A;|<oo;

(iii) the operatjor (T—B) is trace class.

Proof. (i) implies (ii): Let D be the trace class operator T—P and note that
B=P+r1e D, C=im D. According to Weyl’s Theorem B and P have the same
Weyl spectrum. (See [1], for example.) For any normal operator A the Weyl spectrum
coincides with the points of ¢(A4) that are not isolated eigenvalues with finite multi-
plicity. (See [3, Theorem 3] or [1, Theorem 5.1].) It is elementary that re D and
im D are trace class operators.

Let {4;} be an enumeration of the negative eigenvalues of B, repeated
according to multiplicity, and let {¢;} be an orthonormal sequence of eigenvectors
with e; corresponding to 4;. Note that |re D||1=[|P—-B]|1§;' [{(P—B)e;, ep)|=

=;’ (Pe;, e,-)—l,-)g%’—lj:;' 4,1

(ii) implies (iii): Let {1;} and {e;} have the same meaning as given in the first
part. If D is defined by D=2 (-, e;»A;e; then I Dll,=2'14;|. Note that B=B*++D,
since B~ =BE((— <, 0]) where E(-) is the spectral 1;1easure for B. We note that
T—B*+=D+iC; which proves (iii).

(iii) implies (i): This is obvious.

Next we show that if an operator can be approximated in trace norm by a
nonnegative operator then it has a trace class positive approximant. ‘

Theorem 2. If the operator T satisfies one of the conditions in Theorem 1 then
T has a trace class positive approximant.
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Proof. Recall that the conjugate space for the Banach space of compact oper-
ators on the underlying Hilbert space $ is the space of trace class operators on H.
(See [10, p. 48], for example.) Recall that any closed sphere in the conjugate space
is compact in the weak star topology. (See [6, p. 424], for example.) Let R be a non-
negative operator such that (T—R) is trace class and let & denote the set of operators

{T—P: P=0, |[T—P|, = |T—Rly).

In order to show that # is weak star compact it suffices to show that & is weak
star closed. -

‘Let {T—R,: a€ A} be a net from £ that converges to T—P in the weak
star topology; thus, lign tr (T—R)X=tr (T—P)X for every compact operator X.
It suffices to show that (T—P) belongs to #. Let positive ¢ and compact operator
X be given. Note that

tr (T —P)X| = tr[(T—P)—(T —R)+(T —R}X | =
=t (T—=P)X—tr (T —R)X|+1tr(T—-R)X| <= e+|T—R,J. | X]| =
=e+|T —R|,|X]

provided a=>pf where f belongs to A and depends on ¢ and X. It follows from the
preceding inequalities that
IT—P|; = e+|T—RI,

for the arbitrarily chosen &. Hence, (T—P) belongs to # and, thus, # is weak
star compact. '

From elementary topology we know that any lower semicontinuous function
defined on a compact set assumes its infimum. Thus, it suffices to show that
f(A)=| 4|, is lower semicontinuous on the space of trace class operators. Note that

| 4], = sup {|tr (4X)): X is a compact contraction}.

Since the supremum of any collection of lower semicontinnous function is lower
semicontinuous, we conclude that f(4) is lower semicontinuous on the compact set 2.
This completes the proof.

Theorems 1 and 2 might lead the reader to conjecture that B* is always a trace
class positive approximant for T=B+iC, B*=B, C*=C. Such a conjecture 1s
false, as we demonstrate. Define T by

1 01],.[01
r=o 2+t o
and note that Bt = [(I) g] It is routine to determine that the spectrum of |T—B 7|

is {((3+l/§)/ 2)2, ((3—V5 )/2)?} and, consequently, ||T—B*|,=tr |T—B*| =V5.
Since ||T];=2, we see that the zero operator is closer to T than B% is.
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3. Main results. Note that T in the counterexample at the end of the preceding
:section is not a normal operator. If T is normal then there is a simple trace class
_positive approximant. :

Theorem 3. If A=B+iC, B*=B, C*=C, is a normal operator satisfying
-one of the conditions in Theorem 1 then B* is a trace class positive approximant
Jor A.

Proof. It is clear that —B~+iC=4—B* is a normal operator, and by
"Theorem 1 it is trace class. Clearly B~ and C are commuting self-adjoint trace
«class operators and there is an orthonormal basis, say {e;}, that diagonalizes both
operators. Let z; be the eigenvalue of —B~+iC corresponding to the eigenvector
.; for each j. Since B*=BE([0, <)) where E(.) is the spectral measure for
B, it is routine to see that B*e;=0 for every j. Thus, we have (de;, e;)=
=({(—B~+iC)e;, e;)=z;.

For any nonnegative operator R we note that

lA—R|, = ; I«A_R)ej’ ej)l = ? |<"Rejej>+2j| = 2 |2j| = I|A—B+“1-

“The preceding inequality proves that B * is a trace class positive approximant of A.

It follows from the main theorem in [2] that B+ is the unique positive approxi-
mant in the Schatten p-norm | -|,, with p=2, for the normal operator 4=B+iC,
B*=B, C*=C. The next lemma shows that no statement like the preceding is true
‘when the norm used is |- ;.

Lemma 4. Let a, B, y and 6 be positive numbers and define A by
_fetiy O
4= [ 0 B—ié]'
Two trace class positive approximants of A are
(re A)* =[g g] and R=[Z 8
where ¢ is chosen to satisfy yé=e*>0 and af=e

Proof. By Theorem 3 we know that (re A)* is a trace class positive

approximant; thus, the [ -|;-distance between A and the nonnegative 2X2
matrices is
e o =
Ja~e e =[[¢ %], =r+e

Thus, it suffices to show that || 4—R[j,=y+4. Straightforward computations show
that the spectrum of |A—R|=[(4A—R)*(4—R)'? is

{2 -1/2 (52 + .),2 + 22 + ((52 + ,yz + 282)2 -4 [(‘))2 + 82) (52 + 82) —g? G + 5)2])1/2)115}.
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It follows that'
l4—RIi = (tr [A—R[)? = 8+ 72+ 22+ V4[(y* +2) (0 +¢%) —e2(y + 0)*] =
= 8% +y*+2y6 = (6+7)

This -pro'ves the lemma.

- Thebrem 5. Let A be a normal operator satisfying one of the conditions in
Theorem 1. If the eigenvalues of A include z=a+iy and w=8—id with a,y, §,6=0
‘then A does not have a unique trace class positive approximant.

‘Proof. Write 4 as an orthogonal direct sum A4,® 4; such that the spectrum
of A, is the set {z, w}. Clearly the direct sum of trace class positive approximants
of 4, and A4,, respectively, is a trace class positive approximant for A. It follows
from Lemma 4 that we can construct multiple approximants for 4; and, hence,
for A. ' '

Before we are done we shall prove the converse of the preceding theorem.
First, we must accumulate some appropriate basic results. The next lemma gives
another circumstance in which (re T)* is a trace class positive approximant of T.

Lemma 6. Let T=B+iC, B*=B, C*=C, be an operator satisfying one of

the conditions in Theorem 1. If B=0 then B is a trace class positive approximant
for T. ’

Proof. Let {e;} be an orthonormal basis of eigenvectors for C and let A; be
the eigenvalue corresponding to e; for each j. If R is any nonnegative operator
then we have

I7-Rly = 3 KT —Re;, el = 3 [(B=Rey, e +2]" =
= 2 Wl =Cly = |7 ~Bl.. |

This Aproves‘the lemma.
By strengthening the hypothesis of the preceding lemma we get a uniqueness
result.

Theorem 7. Let T=B+iC, B*=B, C*=C, be an operator satisfying one of
the conditions of Theorem 1. If B=0 and C=0 then B is the unique trace class
positive approximant for T. )

Proof. Choose {e;} and A; as in the proof of Lemma 6, and note that B is a
trace class positive approximant of T according to that lemma. For R any trace
class positive approximant of T we have

IT-Rl, = 12_ (T —Rye;, e;) = l; {T-R)e;, ej)| =

=13 (B-Re;, ey +i Z 4| = 54, =1CL =T ~Rl,.

12
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Since equality must hold throughout the preceding inequalities, we have
IT—R[, = L;' (T —Ryey, e)| = ltr (T —R)I.

By the last part of Theorem 8.6 of [7, pp. 104—105], we conclude that e~* (T-R)
is a nonnegative operator for §=arg tr (T—R). The equality of the third and fourth
lines in the earlier inequalities shows that tr (T—R)=i %’ 2;. Thus, we know that
—i(T—R)=—i(B—R)+C is a nonnegative operator. This implies that B—R=0,
which is the desired conclusion.

The next theorem gives another situation where (re I')* is the unique trace
class positive approximant for 7.

Theorem 8. Let A=B+iC, B*=B, C*=C, be a normal operator satisfying
one of the conditions in Theorem 1. If B=0 then the zero operator 0 is the unique
trace class positive approximant of A.

Proof. Let {¢;} be an orthonormal basis consisting of eigenvectors of 4 and
let z; be the eigenvalue corresponding to e; for each j. Note that re z;=0 for each j.
If R is any nonnegative operator then we have

l4-R) = 3 (A4 Byej, el = 3 Kz ~(Rey, e)) =
= 2 [((Rey, ej)—1e z;)*+(im z))*]/2 =

= ;’ [(re z)p*+(im 2’12 = ;’ lz5l = [4[;.

This proves that 0 is a trace class positive approximant of A.

Furthermore, if R is any trace class positive approximant of A4 then equality
bolds in each of the preceding inequalities. It follows that (Re;, e;)=0 for each j
and hence, R must be 0. The uniqueness is proved.

Before we can exploit Theorems 7 and 8 we need an elementary observation
about matrices of operators.

Lemma 9. If R=(DO* g) is a nonnegative operator on 9,99, then B=0

and D=0.

Proof. Assume that there exists some f in &, such that Df#0, and define
e by e=(—7/IDf||*)Df where y is an arbitrary positive number. Note that

(- 5[5, ) ==+ cann

This contradicts the nonnegativity of R and, thus, it shows that D=0,
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RCRAVIEL

for any fin §,, it is clear that B=0.
Using the results of 7, 8 and 9 we can prove a partial converse for Theorem 5.

Since

Theorem 10. Let A=B+iC, B*=B, C*=C, be a normal operator satisfying
one of the conditions in Theorem 1. If the spectrum of A, denoted 6(A), is contained
in {z: either im z=0 or re z=0} then B™ is the unique trace class positive approxi-
mant for A.

Proof. Let E(-) be the spectral measure for 4 and define E,, E;, A, and 4,
by Ey=E({z: rez=0}), E;=E({z: rez=0, imz=0}), 4y=A4E,, 4,=AE,. The
hypothesis concerning o(A4) shows that A=A4,9 4,. According to Theorem 8,
0 is the unique trace class positive approximant of A4,; according to Theorem 7,
the unique trace class positive approximant of A4, is (re 4;). It suffices to show
that BT =0¢re 4, is the unique trace class positive approximant for A.

We use Theorem 8.7 of [7, pp. 105—106] in the first inequality below. If Ris a
nonnegative operator then we have

|4—R|, = |Eo(4—R)Ey|l; + [ Ey(A—R)E,; =
= | 4o—Eo REy|s+ |4, —E, RE\|, =
= | Aol + 141 —r1e Ay, = |A—B*|,.

The preceding computation shows that B+ is a trace class positive approximant
for A. Furthermore, if R is any trace class positive approximant for 4 then E,RE;=0,
E,RE,=t1e A, by the uniqueness of the approximants of 4, and 4;. It now follows
from Lemma 9 that R=0®re 4,=B ™", which proves the theorem.

Using Theorems 5 and 10 we characterize the normal operators that have a
unique trace class positive approximant.

Theorem 11. Let A=B+iC, B*=B, C*=C, be a normal operator that sat-
isfies one of the conditions in Theorem 1. There is a unigue trace class positive approxi-
mant for A if and only if a(A) is contained in one or the other of the two sets
{z: either im z=0 or re z=0}, {z: either im z=0 or re z=0}.

Proof. If ¢(4) is contained in the first set then it is immediate from Theo-
rem 10 that B+ is the unique trace class positive approximant of 4. If a(A) is con-
tained in the second set then ¢(4*) is contained in the first set and B * is the unique
trace class positive approximant of 4*. For any nonnegative operator R we have
|4*—Rl;=A—R|, (by Lemma 8 of {10, p. 39], for example). It follows that B* is
the unique trace class positive approximant for A.

12*
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If A4 has a unique trace class positive approximant then Theorem 5 shows that
A does not have eigenvalues in each of the sets {z: imz<0} and {z: im z>0}.
Thus, ‘the eigenvalues of A4 are contained in one or the other of the two sets
{z: either im z=0 or re z=0}, {z: either im z=0 or re z=0}. According to Theo-
rem 1, A—B™* is trace class and so A4 is a compact perturbation of B*, that is
A=B*+(A—B*). By Weyl's theorem 4 and B+ have the same Weyl spectrum.
For each of these normal operators the Wey! spectrum consists of the points that
are not isolated eigenvalues with finite multiplicity. Clearly the Weyl spectrum of
B (and, hence, the Weyl spectrum of A) is contained in the interval [0, «). Since
both the Weyl spectrum of A and the eigenvalues of A are contained in one of the
desired sets, we conclude that o(4) is contained in one or the other of the sets indicated
in the statement of the theorem.
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~ Contractions weakly similar to unitaries. II

LASZLO KERCHY

In this paper we continue the study of contractions, weakly similar to unitaries,
begun in [9]. Here we consider the case, when the characteristic function is not
isometric a.e. on the unit circle, and prove the reflexivity of such contractions under
a general assumption. Our paper is organized as follows. After giving the necessary
definitions and notations in Section 0, we introduce the notion of weak similarity
in Section 1. Our main result is proved in Section 2, while in Section 3 we make
some concluding remarks. The theory of contractions, elaborated by B. Sz.-NAGY
and C. Foiag will be applied, the main reference is their monograph [12].

0. Definitions and notations

If $ is a (complex, separable) Hilbert space, then £ ($) denotes the set of all
(bounded, linear) operators acting on . For an arbitrary subset &/ 2 (9), Lat o
stands for the lattice of invariant subspaces of &, while for an arbitrary set S of
(closed) subspaces of $, AlgS is the algebra of operators which leave invariant
each element of S. A subalgebra &/ Z(9) is called reflexive, if Alg Lat of =of
(cf. [5])-

For an operator T€ .2 (9), Alg T denotes the weakly closed algebra generated
by T and the identity. It is clear that Lat T=Lat AlgT. T is called reflexive, if
Alg T is reflexive, ie. AlgLatT=AlgT. {T}Y and {T}” denote the commutant
and bicommutant of T, respectively, and Lat” T:=Lat {T}”, Hyplat T:=Lat {T}.
If T is a completely non-unitary (c.n.u.) contraction, then

H=(T):= {w(T): weH=},

where H> denotes the Hardy class of bounded analytic functions, and the Sz.-Nagy,
Foias functional calculus is applied for T.

Received November 19, 1984,



476 L. Kérchy

The contraction T¢.Z(9) belongs to the class Cy, or Cy, if for every non-zero
vector h€¢$ we have
Hm [7°h) = 0 '}im | T*h|,

or
lim [7"h] # 0 = lim | T*"h],

respectively. If T is a C,,-contraction, then

is a lattice under set-inclusion as partial ordering, in which the greatest lower bound

“(lﬂ)” is generally different from the intersection (. Hyplat, T:=Lat, TN
NHyplat T is a sublattice of Lat, T (cf. [8]).

D will denote the open umnit disc of the complex plane, C its boundary,
and m the normalized Lebesgue measure on C. For a contraction T€.2(9),
Dr=(-T*T)9)- and Dy :=(I~-TT*)$H)~ denote its defect spaces, and
{@;(2), D5, Dy} its characteristic function in the sense of Sz.-Nagy and Foias,
ie. A altersin D and O (D)€L (D, Dye) is defined by

Or(A) = [T +2A(I-TTHV(I-AT*)"Y(I-T*T)"?}]| Dy.
Moreover, 4; stands for the operator-valued function defined on C by the formula -
Ar(e") = [I-O7(e")* O ()]

(O, has radial limit a.e. on C.)
If TeZ (), ScZ(R), then S (T, S) denotes the set of intertwining oper-

ators: .
F(T, S) = {Xc£($, K): XT = SX).

We say that T can be injected into S, and write TkS, if S(T,S) contains an
injection; T is a quasi-affine transform of S, if (T, S) contains a quasi-affinity,
i.e. an injection with dense range; and T, S are quasi-similar, if they are quasi-affine
transforms of each other. :
.- A system {9,}, of subspaces. of § is called to be basic, if 55,,-i—(k¥ 9)=9,
n

for every n, and O (k\E/u $)={0} (cf. [1]).
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1. Weak similarity

We begin by introducing the notion of contractions, weakly similar to umtarles 5,
in a bit more general setting than in [9]. Namely, we give the following

Definition 1. The operators Teg’(.ﬁ) and S€¥(8) are called weakly simi-.
lar, if there exist basic systems {§,}, and {&,}, in $ and K, respectively, such that
9.€Hyplat T, & €¢Hyplat S, and T|$, is similar to S|{,, for every n.

Tc Z(9) is weakly similar to unitary, if T is weakly similar to a unitary operator.

Remark 2. Weak similarity is clearly a weaker relation than similarity, but
stronger than quasi-similarity. In fact, let P, and Q, denote the projections onto
the subspaces §, and K, with respect to the decompositions H=H,+(V Hy)

k#n

and K=8,+(V K), respectively. Now, choosing intertwining - affinities
k#n

A€ H(T|9,, S|K,), for every n, and sequences {x,}, and {B,}, of positive numbers
such that
Z %, | 4, | Pt <o and Z' Ball A 1Qnll <o,

we can define intertwining qu351-aﬂin1t1es XcAHT,S) and Ye#(S,T) by the
equations

Xf = 2 ty APy f (f€$5) and Yg= 2 B AT*0ng  (g€R).

_ The operator occurring-in [9, Proposition 2] provides an example for a C,,-con-
traction which is not weakly similar to unitary. Since every Cy, -contraction is quasi-
similar to a unitary operator, we obtain that weak similarity.is an actually stronger
relation than quasi-similarity in the class of Cy, -contractions. (Quasi-similarity -was

characterized in the class Cy, in terms of decomposibility by C. ApostoL [1].)

Remark 3. In [9] a contraction T€.£($) is called weakly similar to unitary,
if‘the;e exists a basic system {$,}, consisting of hyperinvariant subspaces of T
such that T|$, is similar to a unitary operator U, % (R,), for every .n. How--
ever, we can define a unitary operator U acting on the space {K=@ K, as the

n
orthogonal sum U= U,. Constructing an intertwining quasi-affinity Xe¢.# (%, U)

as in the preceding remark, -an application of [8, Proposition 6] shows that
R,=(X9,)~€Hyplat U, for every n. Therefore, T is weakly similar to U, i.e. T is
weakly similar to unitary in the sense of our present definition too. Hence the two
definitions coincide.

We recall that by [9, Theorem 4] a contraction T is weakly snmlar to unitary if”
and only if T is of class Cy, and its characteristic function @; is (boundedly) in- .
vertible a.e. on the unit circle C. '
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We finish the discussion of weak similarity by the following

Proposition 4. Weak similarity zs an equivalence relation in the class of
C,,-contractions.

Proof. We have to verify only transitivity. Sb let us assume that Te.Z(9H),
Se£(R) and REZ(L) are C,y-contractions such that T is weakly similar to §
and S is weakly similar to- R. Then, -there exist. basic systems {$,}, and {&,}, con-
sisting of hyperinvariant subspacesof T and S, respectively, such that #(T|9,, S|K,)
contains an affinity 4,, for every n. Similarly, we can find basic systems {.}, and
{8,), formed by hyperinvariant subspaces of S and R, respectively, such that
F(S|K’, RIL,) contains an affinity B,, for every n. Since each of the above sub-
spaces is Cy;-<invariant, and the Cj,-hyperinvariant subspace lattice of any C,,-
contraction is countably distributive (cf. [8, Proposition 2]), we can easnly verify
that the subspaces

B (¢)]
K=V (& N K41-:)€Hypla, S, n=1,2, ..,
i=1

form a basic system in K. (Cf. also [9, Lemma 7].)
It follows immediately that the system

n Q)
{55,'. = _\_/lAi_l(Ri N Ry’-n-i)}n
will be basw‘ in §. Taking into account that the commutant {SY} splits into the direct
sum {SY={S|K} +{s1 v .R,} we mfer that ®; ﬂﬁ,,H_ €Hyplat, (S|R). This

implies that A47(K; ﬂ R; +1-1)€Hyplat, (T|5 ), and in virtue of the splitting {T} =
={T|$:} +{T| V $;} we conclude A4;7'(8; ﬂ K;.1_;)€Hyplat, T. Since this holds
for every l<1<n, we obtain that $.€Hyplat, T, for every n

Similarly, we can prove that the subspaces £;,= V Bi(%; ﬂ K1 )e Hyplat, R,

n=1,2, ..., form a basic system in 2. Since T|9H, is obv10u51y similar to R|Q,, for
every n, we get that T and R are weakly similar.

2. Reflexivity of contractions, weakly similar to unitaries

Our main result is the following . _
Theorem 5. Let T be a c.n.u. contraction which is weakly similar to unitary.
If there exists a function fe(A;L*(Dy))~ such that :

m Slog101(e)f (€M) dm(p) = — o=,
) c
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then
() H=(T)=Alg T=({T}",
(i) Lat T=<Lat, T, and
(ii1) T is reflexive.

This theorem is a generalization of Wu’s results {(cf. [15, Theorem 3] and {16,
Theorem 3.8]), who considered c.n.u. Cy;-contractions with finite defect indeces,
and is a counterpart of {9, Theorem 9], which is connected with contractions whose
characteristic function is isometric on a subset of positive measure of the unit circle.

The assumption f log || @1 (€M) f(eMl dm(t)> — o (fe(4; L} (Dy))~), occur-

ring in_our theorem, 1mp11es that f(e®*)0 a e. on C. Hence rank AT(e")Zl, ie.
6,(e") is not isometric a.e. on C.

" Conversely, let us assume that, for the c.n.u. C,,-contraction T, @r(e") is
not isometric a.e. on C. It follows that rank A,(e*)=1 a.e., and so the operator
R of multiplication by & on the space (ATLz(DT))‘ is unitarily equivalent to an
operator of the form EB n where C=a;Da,D... are Borel subsets of C and

M, denotes the multlpllcatlon operator by e on the space LZ2(x,, m). (Cf. [7,
Lemma 1].) This implies that we can find a vector fc(4,L*(Dy))~ such that
R}V R"f€Cy. Then we infer by Lemma 9 to be proved later that

n=0 .

[logll &)l dm(t) > —
[

Let us assume in addition that @; has a scalar multiple. On account of [12,
Proposition V.7.1] this happens exactly when

Slog [0r() 7 dm () <.

Hence, taking into account that
1@1(e)f(e")] = |07~ ("),
[log 1@ (ef(eM] dm () > — .

we obtain
Since in virtue of [9, Remark 5] T is in particular weakly similar to unitary, the
assumptions of our theorem are fulfilled.

Therefore, taking also into consideration [9, Theorem 9 and Coroilary 12} and
that the question of reflexivity can be reduced to the case of c.n.u. contractions (cf.
the proof of [2, Theorem 5]), we obtain the following

Corollary 6. If T is a Cy,-contraction whose characteristic function ©r has
a scalar multiple, then T is reflexive. If we assume in addition that T is c.n.u. and
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©.,(¢") is not isometric a.e. on C, then
H=>(T)=AlgT # {T}" and LatT #Lat,T,
while if ©@1(e") is isometric on a set of positive measure, then
H>(T)= AlgT = {T}" and LatT =LayT.

The proof of Theorem 5 follows the general outline of Wu’s proof in [15].
The framework is the functional model of c.n.u. contractions. So we are starting
by recalling some basic facts on model-operators. Since we are interested only in
Cy;-contractions we may restrict attention to contractive analytic functions whose
values are operators acting in one Hilbert space.

So let us given a purely contractive analytic function {@(1), €, €}, where €
is a separable Hilbert space and @A) Z(€) for every A€D. The model-operator
associated with @ is defined in the following way. Let 4 denote the measurable
operator-valued function defined by 4(e*)=[I—0O(e")* O(")]"? and let us con-
sider the Hilbert space
’ K, = HX(C)®(4L3(€))~
of vector-valued functions. The operator VEZL(H(E), &,), Vw=O0wdAw
(we H%(€)) will be an isometry, and the subspace VH?*(€) of K, will be invariant
under the operator U, of multiplication by ¢” in &, . Then the model-space is by
definition

$H =K, 6VHG),
and the model-operaior T=S(8) is the compression of U, onto $:
T = PsU.,|9,
where Pg denotes the orthogonal projection of &, onto $.

U, will be the minimal isometric dilation of 7. The subspace R=(4L*(E))~
reduces U, to a unitary operator R=U,|R, called the residual part of T. Since
VH*(€)cLat U,, it follows that P;U,=TPg, and so the operator
)] Y = Ps|R(= (Pa|H)*) .
intertwines R and T: Y€#(R, T). Moreover, on account of [12, Proposition I1.3.5]
Y is a quasi-affinity if T is a Cy;-contraction.

By the Lifting Theorem there is a close connection between the commutants
of U, and T (cf. [12, Theorem I1.2.3] and [13]). Namely, let us denote by {U.};
the set of those operators in the commutant of U, which leave invariant the sub-
space VH*(E): {U.)Y;={0¢{U.): QVH*(€)cVH?(€)}. Then the Lifting Theo-
rem says that the mapping

m: {UsYo = {TY, 710="Ps09 (0c{U.))

will be a well-defined, contractive, surjective, algebra-homomorphism.
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. Let us consider the matrix of an arbitrary operator Qc{U,); with respect to
the decomposition K, =H2(€)OR:
AD
2=|3 cJ

Since 0 commutes with U, it follows that DES(R, U, |H?(€)). Taking into
account that R is unitary and ﬂ UL H3(€)={0}, we deduce that D=0, ie.

ReLat Q. The relation QVH 2((6): VH?(€) implies that PgQ0=0P,, where
Q=n0. Hence, considering restrictions onto the subspace R, we obtain

©) YC=07%,

where C commutes with R.
Now we prove a lemma on the model-operator T introduced above.

Lemma 7. Let us given Q=[g COJE (U.Y, and Q=nQc{TY. If Tisa Cy-

contraction, then Q=0 is equivalent to C=0, and CEc{R}" implies Q€{T}".
Moreover, if T is weakly similar to unitary, then C€{R}" and Q€{T}" are equivalent.

Proof. If T is a C,,-contraction, then the operator Y defined in (2) is a quasi-
affinity. Hence the intertwining relation (3) yields that Q and C are equal to zero
simultaneously.

Let us assume that C€ {R}”, and let us consider an arbltrary operator Qe{Ty.

Since the mapping = is surjective, we can find an operator @’ —[ B C ]E{UJ,}0

such that #0’=0’. In virtue of our assumption C¢ {R}” it follows that the operator
Q QQ Q 0¢c{U.), has a matrix of the form

A” 0 All 0
BII CCI — CIC B” .

Therefore, on account of the first part of our lemma, proved before, we conclude
that Q”=0. However, 7 being an algebra-homomorphism this yields that 0=n0"=
=00'—-0'Q, ie. Q commutes with Q’.

Let us assume now that T is weakly similar to unitary, Q€ {T}", and let us
consider an arbitrary operator C’€ {R}. On account of {9, Theorem 4] T belongs
16 Cy, and ©.(e") is boundedly invertible a.e. on C. Let a,cC be the measurable
set a,={e": [|@(")~Y|=n}, for every n. Then {a,}, forms an increasing sequence
such that m(C\(U a,))=0. Consequently, if X, denotes also the operator of

multiplication by the characteristic function x, of «,, then the sequence {y, },<{R}”
tends to the identity operator I in the strong operator topology.
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-For every'n, let- 0,€{U.Y denote the operator whose matrix in the decom-
position K, =H2(E)DR is the followmg

_ 0
0.=|_ ¢y 07y ke &
Here y, 4@~ stands for the operator of multiplication by the bounded, measurable,
operator-valued function X, 4071 Since for every weH?*(€) we have
0.Vw = 0,(OwB4w) = 08(~C’y, 4010w+, C’4w) = 080,

1t follows that Q,¢€ {U+}(',; Hence Q,=n0,c{TY}, and so Q,0=00,, for every n.
In virtue of the first part of our lemma we conclude that

%2,(C'C) = (%2, €") C = C(1,,C") = 1,,(CC")
holds, for every n. Taking into account that {y, }, converges to the identity, we
obtain that
Cc’'C=CC".
Therefore, C belongs to {R}”, and so the proof is completed.

In order to formulate our second lemma on the model-operator T we introduce
the operator-valued function 4, (e")=[I—-0(¢") ©(¢")*]/2. Then the operator R, ,
called the *-residual part of T, is defined as the muitiplication by " on the Hilbert
space R, =(4,L*(€))~. The following lemma, which is a generalization of [16,
Lemma 3.4] (cf. also [11]), is proved in [10].

Lemma 8. If T is a Cyy-contraction, then the mapping
(4) X: 5.3 - m*, X(“®U) =_A*u+60 (u@vég),

is a (well-defined) quasi-affinity, belonging to S(T, R,). Moreover, its product
Z=XYE¢F (R, R,) with the operator Y, defined in (2), acts as a multiplication by
0O, ie.

(Zv)(e") = O(eM)v(e")
holds a.e. on C, for every vESR.

Finally, we need two. lemmas concerning absolutely continuous unitary
operators.

Lemma 9. Let U 'be the operator of multiplication by " on the space K= L*(§),
where § is a Hilbert space, and for any non-zero vector hé R let &, denote the invari-
ant subspace K= V0 U™h. Then the restriction U|SR, belongs to the class Cyy if

n=

and only if .
flog |h(e®)] dm(t) = —=.
c
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. Proof. Let &, , denote the linear manifold K, ,={p(U)h: p(4) is.a complex
po]ynomlal} and let us define the mapping ¥,: &, o—~L2(C, m) by (Vo(p(U)h)) (€)=
=p(e™)|h(e")]z- It is immediate that ¥ is a (linear) isometry (hence well-defined),
and so it can be extended to an isometry VEL(8,, L*(C, m)). Since we evidently
have Vo(U|R,,0)=MV,, where M denotes the operator of multiplication by é* in
L¥{(C, m), it follows that
V(UIR,) = MV.

This yields that ran V€Lat M and U|R, is unitarily equivalent to Miran V.
Therefore U|8K, belongs to the class Cy, if and only if so does the operator M|ran V.
However, taking into account that

ran¥ = V M"|h|,
n=0

we conclude that M|ran V¢C,, holds exactly when
flog |h(e™)| dm(£) > — .
C

(Cf. the Szeg6—Kolmogoroff—Krein theorem in [6].)

Lemma 10. Letr Uc ¥ (K) be an absolutely continuous unitary operator, and
let us consider an operator Ce{U}'. If C leaves invariant a non-zero subspace
- MeLat U such that U\MEC,,, then C is of the form C=86(U), where § is a func-
tion from H”.

Proof. Since C¢{U}”, we infer by the spectral theorem (cf. [4]) that C has
the form C=§(U) with an appropriate function §€ L*(m).

The assumption U[MMeC,, implies that U[M is a unilateral shift. Consequently,
the subspace L=IMO UM is wandering for U, i.e. the sequence {U"8};> _. con-
sists of pairwise orthogonal subspaces. Let us consider the subspace

M= p UL,

which clearly reduces U. Taking into account that C¢{U}” we conclude that
MeLatC and
C|M = 5(U)|M = s(UIM).
Hence, we obtain that
©) S(UITHM < M.

Let us consider now the Fourier-representation of M, ie. the unitary map

®: D - L2(Q), (@( @ U"h,))(e") = 2 einh,
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(h,e8, for every n). @ iAntertwines U [t with the operator Mc 2 (L4(2)) of multi-
plication by €&”: ®(U|M)=Md. This yields the relation
© ‘ 4 &5(U|M) = (M) .
Consequently, on account of (5) and (6) we infer
S(M)H?*(8) c H*(2),
which implies that € H*, and the proof is finished.
Now we are ready to prove our main theorem.

Proof of Theorem 5. It is enough to show that Alg Lat TCH=(T). Indeed,
then on account of the relations H*(T)cAlg TcAlg Lat T it follows that

H=(T)=AlgT = AlgLatT,

hence T is reflexive. Moreover, in virtue of [9, Corollary 12] we obtain Alg T {T}”,
and taking into consideration that Alg Lat,T={T}” (cf. the proof of [9, Proposi-
tion 13]) we conclude Lat T'>Lat,T.
So let Q€AlgLat T be an arbitrary operator. We shall show that Qe H=(T).
On account of [12, Theorem VI1.2.3] we may assume that T is a model-operator
T=S8(0), where {©(}), €, €} is a purely contractive, analytic function, outer
from both sides.
Since Q clearly belongs to AlgLat” T, we infer by the reflexivity of {T}”
(cf. [14]) that
Qe(T}".
On account of the Lifting Theorem there is an operator Q=[‘; g]E {U+}
such that Q=n0. An application of Lemma 7 gives that
Ce{R}".
In order to be able to apply Lemma 10 we have to show that CIRcIR for a non-
zero subspace McLat R such that R|MeC,,.
By the assumption there exists a vector f€R such that

[loglg(e)] dm() ==
[+

for the function g=@6f. Now, on account of Lemma 8 we know that g is contained
in R,. Moreover, applying Lemma 9 we obtain that

M R,|R,,€Cyo,

for the subspace R, ;= V RlgcLat R,. Then the intertwining relation R _X=XT,
n=0

where X is the operator defined in (4), implies that the subspace €=X"1R®, , is
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invariant for T. Since, by Lemma 8, X is injective, we see that T|€ can be injected
into R,[R, ,:

®) TI2XR,I%,,.

We conclude by (7) and (8) that the operator T|2 is also of class Cy,.
An analogous argumentation yields that the subspace

M=Y1Q,
where Y is defined by (2), is invariant for R and
letE Clo .

Since the non-zero vector f clearly belongs to 9, it follows that I is non-zero.
On the other hand, 2¢€LatT and Q¢fAlgLatT imply

LelatQ.
Hence, the intertwining relation (3) yields that
McLat C.

Now, we can apply Lemma 10 to obtain that C has the form C=dJ(R), with
a suitable function S€H™.
Since the operator Y intertwines R and T too, we infer

(MY =Y6(R) =
Comparing this equality with (3) we conclude that
8(T)Y = QY.
Consequently, taking into account that Y is a quasi-affinity we obtain

Q = 5(T).

The theorem is proved.

3. Concluding remarks

Under more general assumptions we are able to prove the followmg weaker
version of part (i) of Theorem 5.

Proposition 11. If T is a c.nu. Cy -contraction such that @, (e") is not iso-
metric a.e. on C, then
H>(T)=Alg,T,

where Alg, T denotes the algebra generated by T and the identity, and closed in the
ultraweak operator topology.
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Proof. First of all we note the elementary fact that if an operator S is similar
to a normal operator N, then ||S| =] N|. Indeed, similarity preserves the spectrum,
so if rg, ry denote the spectral radii of S and N, respectively, then we can write
[N|=ry=rs=|S]. )

Let us assume now that T€£($) is a c.n.u. Cy,-contraction such that O, (")
1S not isometric a.e. on C. We can find an absolutely continuous unitary operator
U€ #(R), whichis quasi-similar to T'(cf. [12, Proposition I1.3.5 and Theorem I1.6.4]).
By a result of ArostoL (cf. [1]) there are basic systems {$,}, and {&,}, in $ and &,
respectively, such that $.cLatT, K,cLat U and T|$, is similar to U|K,, for
every n. Moreover, it can be achieved that the subspaces {,}, are pairwise orthogonal,
i.e. the decomposition K= 69 &, reduces U.

Let us given an arbltrary function weH™. Since w(T|9,) is sumlar to the
normal operator w(U|R,), we infer that

(D] = W51 = IWTIS] = Iw IR = [wO) IR,

for every n, hence _
Iw(D)| = sup [w) K, = [w(D)].

However, @,(¢") being not isometric a.e. on C, it follows by [7, Corollary 1] and
[12, Proposition I1.3.4] that ¢(U)=C, and so [w(U)|=|wl-. Therefore, we
conclude that |lw(T)l=|wll-. Since the opposite direction always holds (cf. [12,
Theorem I11.2.1]), we obtain that

Iw(D = [wl»

for every w€H™, ie. the Sz.-Nagy, Foias functional calculus is an isometry. But
then on account of [3, Theorem 3.2] we get that

H=(T) = Alg, T,
and the proof is finished.

It is left open whether the statements of Theorem 5 remain true under the
assumption of Proposition 11, even in the case when T is weakly similar to unitary.
The following example illuminates where difficulties arise.

Example 12. Let {o,}>, be a sequence of pairwise disjoint Borel subsets of
the unit circle C such that m_(a,,)>0 for every n, and 3 m(e,)=1. Let us choose

an arbitrary sequence {c,}=., of positive numbers, where ¢,<1 for every n, and
for each n let us define a (scalar-valued) outer functlon 3, by the boundary con-
dition

18, (€M) = €, 2, (€") + Xena, (€9 - ae.
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Let us consider a separable, infinite dimensional Hilbert space &, and an ortho-
normal basis {e,}, in € Then {O(4), €, €} will stand for the contractive, operator-
valued, analytic function, whose matrix is

in this basis. We shall examine the model-operator
T = S(0),

which, of course, depends on the choice of sequences {,}, and {c,},.
Since O is outer from both sides, it follows that T is of class C,;. Moreover,
the identity
[0 = 3 o (ei?

being valid a.e. on C, implies that 7" is weakly similar to unitary {cf. [9, Theorem 4]).
Since (4L*(€))~ splits into the orthogonal sum (4L%(€))-=@ (4,L*(E,)",

where €, is the one-dimensional subspace of € spanned by e,, 4,(¢") acts on €,,
and 4,(¢")e,=(1—[9,(c")[®)?,, it follows easily that relation (1) in Theorem 5
is satisfied with a vector f€(4L*(€))~ if and only if © has a scalar multiple, i.e. if

o> [log|@(@) | dm() = 3 (og c;)m(@)
(o] n

holds. Hence, Theorem 5 can be applied exactly when
()] > m(a)logey?t <eo.

Let us examine now what the spectrum ¢(T) of T is like. We know by [12,
Theorem VI.4.1] that a point u of the unit disc D belongs to the spectrum if and
only if ©(u) is not invertible, which is equivalent to the condition

| sup |9, ()]~ =eo.
Taking into account that

exp[ H_{“' log ¢+ m(a,)] = 19,001 = exp f P,(p—1)logertdm(y)] =

exp[ 1+M loge;?t m(cz,,)]
where p=re'®, and P, denotes the Poisson-kernel, we infer that uca(T) exactly

13
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when the equality
(10) : sup [m(a,) log c;7] = o=,

independent of g, holds. Since 6 (T) always includes the whole unit circle C (cf. [12,
Theorem VI.4.1]), we obtain that ¢(T)=D~ or o(T)=C according to the case
when (10) is fulfilled or not.

Taking into consideration that the essential spectrum ¢,(T) of the Cn-con-
traction T coincides with its spectrum, we conclude that ¢,(T) is dominating in D,
i.e. T is a (BCP)-operator (cf. [2]) if and only if (10) holds. But then [2, Theorem 1}
also yields that the statements of Theorem 5 are true. (Cf. also the beginning of the
proof of Theorem 5.) )

Summenzmg, we have obtained that the statements (i)—(iii) of Theorem 5
are valid if (9) or (10) are fulfilled, i.e. either if the sequence {m(,)logc;'}, tends
to zero fast enough or if it is unbounded. The intermediate case remains open.

. Added. in proof (December 10, 1987). In a subsequent paper, appearing in
Acta Math. Hung. 50 (1987), further developing the methods.of this work we
‘succeeded in ‘answering the question raised above.

<.
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Integral manifolds, stability and decomposition of smgularly
perturbed systems in Banach space '

V. A. SOBOLEV*)

‘1. Introduction. This paper is dealing with the study of infinite dimensional
singularly perturbed systems near an integral manifold.
Consider the system
%= f(t, x, y, )
(1.1
ey = Ay+eg(t, x,, €

where x and y are elements of Banach spaces X and Y with norms |- ||, 4 is a con-
stant linear bounded operator in Y, and

f: RXXXY X[0, 6] ~ X, g: RXXXY X[0, 6] ~ Y

are continuous nonlinear operator functions. Using the method of integral mani-
folds [1, 2] we shall study the stability problem for (1.1) and the problem of decom-
position of (1.1) by transforming it to the form

(1.2) u=F(@,u,z¢),
(1.3) eb = Av+eG(t, u, v, &).

Then we shall apply this method for investigation of linear singularly perturbed
systems.

2. Slow manifold. We first recall the definition of an integral manifold for
the equation %X=X(#, x) where x is an element of a Banach space. A set S is said
to be an integral manifold if for. (f, xo)€S, the solution (¢, x(2)), x(f)=x, is in
S for t€R. If (t, x(1))€S only at a finite interval, then we shall say that § is a
local mtegral mamfold

*) This research was completed while the author was visiting the Department of Mathematics
at the Budapest University of Technology.
Received August'2, 1984, and in revised form August 4, 1986.



492--% AP . . V. A. Sobolev

Let B,={ycY, yl=r}, I =[O, &l Q=R><XXB,><I,‘. Assume that f and
g are bounded and satisfy the Lipschitz condition in x, y on Q:

@1 Ift, syl =M, lgtxyel=M,
"f(t: X Yy 8) _f(t) f, f9 6)“ = I(HX—fﬂ +“y_y")v

"g(ta X, Y, e)—g(t, X, j’-’ 8)“ = l(“x_f“ +“y—)7“),

where M and [ are positive constants.
Assume that the spectrum o(A4) of the linear bounded operator A satisfies
the inequality Re g(A)= —2x<0. Then there exists a positive number K such that

2.3) le*] = Ke=®, t=0.

We shall say that the integral manifold of system (1.1) is a slow manifold if
it can be represented of form y=*h(t, x, &), where 4 is a continuous operator-func-
tion. If ¢, is sufficiently small then for each £€(0, g,) the system (1.1) has an integral
manifold (slow manifold) represented of form y=eh(t, x, £) (see [1], p. 438). Here
h is a continuous and bounded operator-function defined on Q;=RXX X1, and
satisfies the Lipschitz condition in x:

4 Ih(t, x, ) —h(t, %, &)] = A[x~%], 4=0.

Moreover, if f and g are continuously differentiable on Q to k order and their -
derivatives are bounded-and Lipschitzian in x, y then # is continuously differentiable
on , to k and its derivatives are bounded and Lipschitzian in x. In this case the
operator-function 4 can be represented as asymptotic expansion eh=eh,(t, x)+...
v 4R, X)+hy i1 (1, X, 8) where k., =O(e*Y). The coefficients #; of this
expansion can be found from the equation

ok
i

. - For finite dimensional systems this method of approximating slow manifolds
was essentially used in [3]. The method of approximation used in [4] can be gen-
eralized to infinite dimensional problems in an obvious way.

. The flow on a slow manifold is governed by the reduced equation (1.2), where
F(t, u, e)=f{¢, u, eh(t, u, &), ¢).

" It is well-known for finite dimensional spaces X that the condition f(¢, 0, 0, £)=0,
2(1,0,0, e)=0 implies A(z, 0, )=0 and if the zero solution of (1:2) is stable (asymp-
totically stable, unstable) then the zero solution of (1.1) is stable (asymptotically
stable, unstable). We shall prove below this statement for infinite dimensional X.

2.2)

2.5 +e& g—;}:.f(t’ x, ch,e) = Ah+g(t, x, &h, €).

3. Integral manifold for anxiliary system. Let us suppose that fand g are con-
tinuously differentiable on Q and their derivatives are bounded and Lipschitzian
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in'x, y and introduce new variables u, z and x, by the formulae z=y--gh(s, x, &),
x,=x—u where u satisfies (1.2). Consider the following auxiliary differential system

u = F(t,u,c)
3.1 % =filt,u, x1,2,8)
ez = Az+eZ(t, u, X, 2, &),
where fi=f(t, u+x,, z+eh(t, u+x,,6), e)— F(t, u, &),
Z = g(t, u+x,, z+eh(t, u+x,, ), &) —g(t, u+x,, eh(t, u+x,, €), &) —

—e%—(t, u+xy, [ f(t, u+xy, z+eh(t, u+x,,€), 8)~f(t, u+x,, eh(t, u+x,,¢), )]

By means of our assumptions it is easy to show that there exists a constant
N=0 such that f; and Z satisfy the following inequalities

(3.2 A u, %1, 2, )] = N(|xa +12]),

(3.3) |Z(t, u, x,, z, &) = Njz|,

34 1A, u, x4, 2, €)—f1(t, 4, %1, 2, )] = N(|x,—%,] +1z—2]),
(3.5 |Z(t, u, %15 2, ) —Z(t, u, X1, Z, &) = N(|xy =%, +]z—Z2[),
(3.‘6) 1A, u, %1, 2, 8)—f1(8, 4, Xy, Z, 8)|| =

= N1+ x|+ 2011z =2} + 0+ [x21) [ = Xy [} + (2] + ) 2])) s —aa]]],
B NZ(t, u, %1, 2, )—=Z(t, &, %1, 2, &) = N{lz—Z] + 2] (|lu—#] + % — %],
where t€R, u,t€X, x,%€X, z,Z¢B,, O<r=r.

We shall show that the system (3.1) has an integral manifold represented of
form x;=cH(t, u, z,¢), where H is an operator-function defined and continuous

r
on Q,=RXXXB,XI,, 0<g<? 0O<e=g,, and H satisfies the inequalities:

(3.8) lH(t, u, z, ¢)| = alz],
(39 - NH(t, u,2,)—H(t,u, 2, 8)] = b]z—Z],
(3.10) |H(t, u, z, ) —H(t, 4, z, )] = c|z] - [u—d,

with a, b, c=0 for 1€R, u,ucX, z,Z€B,, e€1,,.

The flow on this manifold is governed by reduced equatlons (1 2), (1.3), where
F=f(t,u,ch(t,u, 8),¢), G=Z(t,u, eH(t, u, v, ), v,€).
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Moreover, every solution of (L.1) with |[|y(t))—eh(f,x(%), ]| =0 can be
represented of form
x = u+teH(t, u,v,¢),
(3.11)
y = v+eh(t, x, &) = v+eh(t, u+eH(t, u, v, ), &),

where u, v is the corresponding solution of (1.2), (1.3).

Our proof of this statements is modelled on KELLEY {5].

Let S be the set of operator-functions eH: Q,—~ X such that H is contipuous
and satisfies (3.8)—(3.10). Let 4 be a metric on § defined by

d(eH, eH) = sup{"—;“-sﬂH(t, u, z,e)—H(t, u, z, )|, t€R, ueX, ZEBQ}

for each £€(0,¢,], eH, eH¢S and note that S is a complete metric space with
respect to d.
For each eHeS, we consider the system

(.12) i = F(t, u, &),
(3.13) g2 = Az+eZ(t, u, eH(t, u, z, €), 2, &),

with solutions denoted by u=®(1, 1, uy,8), 2=" (¢, ty, Uy, Z4, £|H) where
D(ty, ty, Uy, E)=Uy, W(to, to, Uy, Zg, E|H)=2,. The operator-functions F(¢, u, €),
Z(t,u, eH(t,u, z,€), 2, &) are uniformly bounded on their domains, hence, -any
solution of (3.12), (3.13) is defined for all .

As usually, (see [1, 2, 5]) the equality x,=eH(t,u,z, &) describes an integral
manifold for (3.1) if and only if the operator-function eH is a solution of the equation

(3.19) eH(r, u,2,8) = — [ fi(t, 8(, 7, u,8), eH(, B(1, 7, 4, ¢),

Y(t,1,uz¢|H) ), P 1, u,z ¢|H), ¢)dt

Let o(#)=®(t,7,u,¢), Y (@)=Y, 7, u, z, ¢l H) then by the “variation of constants”
formula

t
Y(0) = A=z 4 [ LA Z(s, o(s), eH s, 0 (5), Y (5), &) ds.
By (2.3), (3.3) and (3.8) there holds for all —eo<t=t<oo, |z]=p, £€(0, &,]:

@l = Ke—(cle)(t—r)ﬂzﬂ+ f Ke‘(“")“-’)N{]tﬁ(s)ﬂ ds.
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Therefore, by .Gronwall’s Lemma, we obtain
(3.15) W] = Ke-@0-9)z], —w<t=1<co,

where oy =0¢—eKN=y=0 for sufficiently small ¢,.
Now define an operator T on S by setting

GO TG w20 =— [ £t o), eH, 0, (0,0, (1), &) dr.

The improper integral here converges by virtue of (3.2), (3.8) and (3.15). It is clear
that T'(H) as defined in (3.16) is continuous on £,. Also, by (3.2), (3.8) and (3.15)
we obtain : -

\T(H)(z, u, 2, 8)| = fw N(1+ea)Ke= @)= 7] dt = s——]%(l-l-sa) Izll,

. - : - NK
-and therefore T(H ) satisfies the boundedness condition required by (3.8) if g —=<1
2

NK NK !
and a=—r (l—s ——]

o oy

To prove that T(H) satisfies the conditions, required by (3.9), (3.10) we reason
as follows. Let ucX, z,2z¢B,, Y,=¥(t,1,u, Z,¢|H). Then, by (3.5), (3.9), (2.3)
and by the ‘“‘variations of constants” formula we have

W @)=y ()] = Ke=©9¢-9)z—z] + | ' Ke-ta-ay (1+eb) [ ()= ()] ds.

Therefore, by Gronwall’s Lemma, we obtain

3.17) W) =1 ()] = Kem @99z 3], —cocr=1<en,
@, = a—eKN(1+¢eb).

Then, by (3.4), (3.9) and (3.17)

TG, 1, 2,0)~TH)E w5 0] = [ N(+eb) WO —ba O] de =

=e XY (14eb)lz—2|

It is clear that for sufficiently small ¢; a constant b can be choosen such that o,>y

o

and (1+¢&b)=b. From this inequality it follows that T(H) satisfies the

Lipschitz condition required by (3.9).
In exactly the same way by the inequality

8@, 7, 4, ) —D(t, 1, 4,8)| = O+ DI u—it], —w<r=t<e
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and (3.10), (3.7) and (3.6) it is easy to show that for some ¢=0 and sufficiently:
small g, the operator-function T(H) satisfies the condition (3.10). Now, let eH, ¢eHE S,
V(1))=Y 7, u, z, el H). Then by (3.4) and (3.9)

(3.18) IT(H)(z, 4,2, ) —T(H)(t, u, 2, &)| =
= f N{(1+eb) ¢ () -y ()] +8||H(’, o (1), ¥o(1), &) —H(t, (1), (1), 8)”] dt =

= f“ N[(1+2b) [y () Y= ()] + Ke=0=¢=9 2| d(eH, eH)] dt.

Using (3.5) and (3.9) we find that
(@) —de(0)] =
= [ Ke"SO-DNI(L4eb) |y (9 —pals)] + Ke 193] 2] d s, D) .

Substitution of this into (3.18) yields

ToT " —T(H)(z, u, z, &) =T(H)(z, 4, z, e)| = e———[(1+ b) 1] d(eH, eH).
From this last inequality it easily follows that 7 is a contraction mapping if ¢; is
sufficiently small.

Thus, T is a contraction mapping of § into itselt and so, by the known Banach
Contraction Principle, T must have a unique fixed point e¢H¢S. The operator-
function ¢H is a solution of (3.14) and, therefore, the equality x,=c¢H(t, u, z, &)
represents an integral manifold for (3.1). The flow on this manifold is governed by
(1.2), (1.3) where

F=f(t,u,eh(t,u,e),¢), G= Z(t, u, eH(t, u, v, €), v, €).

4. Decomposition and stability, Our next object is to obtain the representation
(3.11). Let x=x(t), y=y() be a solution of (l.1) with x(t))=xo, ()=,
Vyo—eh(tys Xo, &)l =0. We shall show that there exists a solution u=u(?), u(t,)=u,,
v=0v(t), v(t)=v, of (1.2), (1.3) such that

x(f) ~= u(f)+eH(t, u(®), v(2), €),
y(8) = v(O)+eh(t, x(2), ¢).

It is sufficient to show that (4.1) holds - for r=t#,. Substitution z=¢, into
(4.1) yields

4.1

Xo = Ug+eH(ty, uy, vy, €), - Yo = vo+eh (2, X, €)
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and, therefore, vy,=y,—eh(ty, x,, £). For u, we obtain the equation
| (‘}:2) ' Xo = uy+eH(to, tg, yo—&h(ty, Xo, €), ).
This last equation can be represenied of form
uy = P(uy, &) = xo—eH(ty, 11y, yo—€h(ty, Xy, £), £).
From (3.10) it is easy to obtain that for each £€(0, &) and fixed x,, yo such that
lyo—eh(ty, xp, s)||§g<-£—c-, P is a contraction mapping of X into itself and so,

1
by the Banach Contraction Mapping Principle, P must have a unique fixed. point

1#,€X which is the required solution of (4.2).
"~ Now, we consider the stability problem for (1.1). Using (4.1) we obtain that
every solution x=x(z), y=y(t) with ||y,—eh(t,, x,, €} =¢ can be represented as

x(t) = u(®)+o.(0),
y(0) = eh(t, u(1), &)+ @a (1),

where (u(t), eh(z, u(t), &) is a solution lying in the manifold y=eh(t, x, &); ¢, =
=¢eH(t, u(t), v(t), £), po =0(t)+eh(t, u(t) +eH(t, u(t), v(t), ¢), ¢)—eh(t, u(t), €). This
and (2.4), (3.8) and (3.15) allow us to write

4.3)

4 lox(D] = eake=@¢=10 g,
(4.4)
920l = (1-+%ad) Ke=HO=1]o],

e€(0,¢], t=t,, vy=y,—eh(ty, x,,¢).

Assume that f(¢,0,0,¢)=0, g(1,0,0,¢)==0; then A(20,e)=0 and F(t,0, £)=0.
By (4.3) and (4.4) we obtain

X)) = Ju()] +saKe= =1y
[y = ed[u(@)] +(1+e*ad) Ke= -], 1= 1.

From this last inequalities it easily follows that if the zero solution of (1.2} is stable
(asymptotically stable) then the zero solution of (1.1) is stable (asymptotically stable).
It is obvious that the instability of the zero solution of (1.2) implies the instability
of the zero solution of (1.1).

Now, we can summarize our results in the following

Theorem 4.1. Let f and g in (1.1) be continuous, bounded and satisfy (2.1),
(2.2yon RXXXB,XI,; let us assume that the spectrum of the linear bounded oper-
ator A satisfies Re o(Ay=—22-0. Then there exist numbers &, and ¢, such that
the following assertations are true:
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(i) For each €€(0, ¢,), 0€(0, 0,) and t, there exists for (3.1) an integral manifold
represented by an equation of form x,=eH(t, u, z, &) where H is an operator-function
defined and continuous on RXX XB X1, and, moreover, H satisfies (3.8)—(3.10).

(ii) Every solution x=x(t), y=y(t) of (1.1) with x(t))=xy, y(te)=Vo,
liyo—2eh(ts, xo, E) =0 can be represented of form (3.11), where u=u(t), u(ty)=u,
is a solution of (1.2), u is a solution of (4.2); v=v(t) isa solution of (1.3) with u= u(t),
v(t))=vy=Yo—&h (1, Xo, €).

@in) If f(1,0,0,e)=0, g(1,0,0,e)=0 and the zero solution of (1.2) is stable
(asymptotically stable, unstable), then the zero solution of (1.1) is stable (asymp-
totically stable, unstable).

Note, that in the proof of this theorem we did not use the boundedness of 4.
So, Theorem 4.1 can be extended onto the system (1.1) with an unbounded operator
A, if A4 is the generator of a strongly continuous linear semigroup S(¢) such that
1Sl =Ke™*, 1=0.

It should be observed that similar problems for systems with unbounded oper-
ators were studied in [2, 6].

The next result shows that, in principle, the operator-function H can be approxi-

. : oH
mated to any degree of accuracy with respect to & Let D(eH):e—at—+

+6%§ F@,u, s)+%g(Av+aZ(t, . eH,v,6))— f1(¢, u, cH, v,8).  If D(eH)=

=0(**) then |H—H|j=O0(").

The:idea of the proof of this statement is very simple. Let us introduce a new
variable x, =x,—¢H(t, u, 2, ¢); then for u, x,, z we obtain the following system
u=f(t,uye),

Xg =.f2(t: U, X, 2, 8),
e2= Az+eZ(t,u, x,+¢H, z, ¢),

oH -
where f,= fi(¢, u, xo,+¢H, z, &)— f,(t, u, eH, z, &)— 8—52_[2(” u, x,+¢eH, z, &)~

—Z(t,u,eH, z,¢)), eH=c¢H(t, u,z,€). This last system has ap integral manifold
Xo=¢Hy1(t, u,2,€) such that H,,,=O(e"). It means that the system (3.1) has
the integral manifold x;=¢H(t, u, z, &)=eH(t, u, 2, &)+ O (1),

In many problems, H can be found as asymptotic expansion

eH = eH,(t,u, v)+... + & H, (1, u, v) + O (k+Y)
from the equation D(eH)=0. Note, that u, can be found as asymptotic expa'mion
Uy = uy(e) = ud+eu+... + ek + O (F+Y)
from (4.2). Tt is easy to see that ul=x,, uy=—H;(t, Xo, ¥o)-
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5. Linear systems. Consider the following system

%y = Apx,+Asexatfi,
.1

Ex.g = Amxl'l"Aggxz'i‘_fz,
where x;, fi=f,(t, &) vary in the Banach space X;, and A4;;=A4;;(t, &) are operator-
functions 4;;: X;~X; (i,j=1,2). Assume 4;; and f; to have high order continuous
and bounded derivatives with respect to ¢ and g, for 7€R, e€[0, g]. Therefore, they
can be represented as asymptotic expansions

Ay = AP O +eAP () +...+&AP (D + 0 (Y,
f;. = fl_(O) (t) +8ﬂ(1) (t) +... +8kf;-(k) (t) + 0(8k+1)
with smooth and bounded coefficients.
Let us suppose that the family AQ(¢), ¢€R, is compact, the spectrum ¢(4%)
of AQ(t) satisfies the inequality
(5.2 Reo(AY) =—-2a <0, 1€R
and there exists bounded operator [AQ]~2. Under such assumptions there exists a
transformation
x, = u+eH(t, €)v,
Xy = v+L(t e)x,+1(t, &) = (I+eLH)v+ Lu+1(t, €),

analogous to (3.11) for the linear case. The new variables v, v satisfy the equations

(5.3) = (An+ApL)ut+fi+ 45l

(5.4) &0 = (Ay—€LA;5)0.

The operator-functions L, H and the function / can be found from the equations
(5.5) el +eL(Ay+AL) = Ay +ApL,

(5.6) eH+ H(Agp—eLAyy) = e(Ay+ Ay LY H+ Aj5,

&X)) el+eLlfy = (Agg—eL A+ 12

as asymptotic expansions L=L®(r)+eL®(¢)+... +&FLO() + O (Y,
H=HOW)+eHV(0)+...+&LH* V() +0(e"),
I =190 +elV@) +... +&IB (D + O ().
It is a straightforward computation to obtain expressions for L®, H®, [® from
(5.5—(5.7).
Note that L is'a bounded solution of the Riccati equation (5.5) on R and, there-
fore, satisfies the integral equation

L(t,e) = —1— f ‘ U(t, s, &)[ A (s, &) —eL(s, €)(Ani (s, €) + Asa(s, ©)L(s, 8))] ds,
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where U is the evolutional operator of the equation ex,= Ay x,. Using (5.2) and
the compactness of 4 (¢) we obtain

(5.8) UG, s, &) = Kem@90=9,  —coc 51 <o,

For H and I we have the exacl expressions

H= —% f V(t,s,€)Aw(s, W (s, t,8)ds,
14

1= % jt W(t, s, &)[ (s, &) — eL(s, &) fi(s, €)] ds,

where V is the evolutional operator of the equation Xx;=(4;+ 4;,L)x; and W is
the one of the equation eX,=(Ax—€LAp)x.. The improper integrals here con-
verge by virtue of (5.8). As earlier, the stability of (5.3) is equivalent to the stability
of (5.1).

In conclusion it should be noted that the stablhty and decomposition problems
for finite dimensional systems were considered in [7].
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Erratum to A generalization of a theorem of Dieudonné
for k-triangular set fanctions™)

E. PAP

The following unfortunate mistakes appeared in this note.
1. Lemma 1 is true in the given form only for k=1 (what is sufficient for the
proof of Theorem 2). In the case O<k<1 only

#(U,0) =10 +k 3 u(0)

holds instead of

w(0,0)=k 3 u0);

consequently the proof also needs some appropriate modifications.

2. The last two sentences of the proof of Theorem 2 on the page 165 should
be replaced by “Applying the preceding proof for k=1 we can verify Theorem 2
for this case, too.”

3. On the page 165, 10th row from below, *““|v(4)—v(A4")|<¢” should be
replaced by “ju(A)—u(4)|<e”.

4. On the page 162, in Lemma 2, “|x;[=0=>0" should be replaced by
“llxgell =07.
INSTITUTE OF MATHEMATICS

ILIJE DJURICICA 4
21000 NOVI SAD, YUGOSLAVIA

Yy Acta Sci. Marh., 50 (1986), 159—167.






Acta Sci. Math., 51 (1987) 503—529

Bibliographie

Donald J. Albers—G. L. Alexanderson—Constance Reid, International Mathematical Congresses.
An illustrated History 1893—1986, Revised Edition, 64 pages, Springer-Verlag, New -York—Ber-
lin—Heidelberg, 1987.

This is a nice picture book covering the “World Congress” in Chicago, 1893, and all the Inter-
national Congresses of Mathematicians beginning with the first in Ziirich, 1897, and ending with
the latest, the twentieth one in Berkeley, 1986. Each congress receives two pages (plus, in connec-
tion with his famous address in Paris, 1900, Hilbert himself an extra two) with three to five photos
or drawings of illustrious mathematicians, alone or together, who played outstanding roles at the
given congress or of characteristic buildings. It is the pictures that make the book nice. Not much
can be said about the text. Using (sometimes fragmentary and irrelevant) citations, it tries to give
a “feeling” of the given congress. The aspect of “the first American” of the three American authors
pops upin an inordinate frequency. There are nine pages with the photographs of all Fields Medalists
and a list of all the plenary lectures from 1893 to 1986.

The original edition of the book has been distributed during the Berkeley Congress. As it
is made clear in Czestaw Olech’s Opinion [The Mathematical Intelligencer 9 (1987), 36—37], the
present revised edition has become necessary mainly because of protests, including his own in
thesame Opinion, against “an unfair description of the previous Congress in Warsaw” in the original
edition.

Sdndor Csérgd (Szeged)

Hans Wilhelm Alt, Lineare Funktionalanalysis. Eine Anwendungsorientierte Einfithrung (Hoch-
schultext), IX 4292 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985.

The material of this book is based on the lectures in linear functional analysis held some
years ago at Bonn University for students in the fifth semester. The book consists of an introductory
part, ten chapters and three supplements. The text gives an in_troduction to the study of Banach
and Hilbert spaces, linear functionals and the most important classes of linear operators. The sup-
plements deal with measures, integrals and Sobolev spaces.- At the end of the book the spectral
theory of compact normal operators can be found. All of the chapters end with exercises and their
solutions. o

The book is highly recommended to students who are interested in functional analysis and its
applications in physics. :

L. Gehér (Szeged)

14
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Analytic Theory of Continued Fractions, Proceedings Pitlochry and Aviemore, Scotland, 1985.
Edited by W. Y. Thron (Lecture Notes in Mathematics, 1199), III +299 pages, Springer-Verlag,
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1986.

In the last decades special attention is paid to the new results in the theory of continued frac-
tions. The success of the workshop held in Loen, Norway in 1981 speaks for itself. Therefore a
second workshop was arranged in Pitlochry and Aviemore, Scotland in 1985. This proceedings
volume is thus the successor of Lecture Notes in Mathematics, Vol. 932.

This volume contains a survey article entitled “Schur fractions, Perron—Carathéodory frac-
tions and Szegb polynomials” by W. B. Jones, O. Njdstad and W. J. Thron and thirteen original
research papers. The introduction of the survey article presents historical comments with a limited
list of references. Two main topics are treated in the research papers. The first one is the convergence
theory of continued fractions, the second one is the investigation of various types of continued
fractions useful in solving Stieltjes, Hamburger and trigonometric moment problems. In general
the articles give applications from different branches of mathematics. Perhaps the volume would
have been more interesting if some of the papers had contained open questions or conjectures in
explicit form.

L. Pintér (Szeged)

D. F. Andrews—A. M. Herzberg, Data: A Collection of Problems from Many Fields for the
Student and Research Worker (Springer Series in Statistics), XX +442 pages, Springer-Verlag,
New York—Berlin—Heidelberg—Tokyo, 1985.

The ultimate aim of Statistics is to provide methods and tools for the analysis of real data.
In this very useful book the authors collected a great number of concrete real data sets. There are
seventy-one concrete problems presented in the book with data sets given in 100 tables and 11
figures. For each data set the source or sources of the data are given with a description by the authors
or by a contributor who supplied the data. No direct reference to any particular type of analysis
is given: the student or researcher may try his/her arsenal of tools for the analysis. Some of the data
sets are well known, such as the last century data on the number of deaths by horsekicks in the
Prussian Army (the name of L. von Bortkiewicz, to whom the horsekicks belong, is written all
four times erroneously as Bortkewitsch: the authors did not always go back to the original source),
the Fisher Iris data (with which the collection starts), the Canadian lynx trappings data, the coal-
mining disasters data, the Federalist Papers data, or the Stanford heart transplant data. The majority
of the data sets, however, is relatively new and unknown to a wider statistical public and is very
interesting. The authors have invested a great care into the organizational work and the uniformiza-
tion of the presentation. The result is a splendid volume of great interest, completely unique in
its kind and a great service to the international statistical community.
Sdndor Csorgd (Szeged)

Astrophysics of Brown Dwarfs. Proceedings, Fairfax, 1985, Edited by M. C. Kafatos, R. S. Har-
rington and S. P. Maran, 276 pages, Cambridge University Press, Cambridge—London—New
Y ork—New Rochelle—Melbourne—Sydney, 1986.

This book includes the scientific papers presented at a Workshop, held at George Mason
University, Fairfax, Virginia, in 1985,

The term “brown dwarf” is a boundary class of stars that are partially supported by nuclear
‘burning and partially by thermal cooling. These objects, “super-Jupiters”, bridge the range of
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masses between planets and normal stars. The mass of the brown dwarfs is less than 0.08 solar
mass, and their surface temperatures are expected to be 1000—2000 X.

The book: consist of two parts. In the first one the experimental works are presented. The
observation of brown dwarfs is very difficult, owing to the faintness of these objects, and only one
definite object has been found so far. The articles about the systematic search for a very nearby
solar companion (“Nemezis” or “Shiva”) are especially interesting. In the second, theoretical part
aspects of planetary interior physics are extended to higher densities and pressures. The brown
dwarfs are of great importance in the stellar evolution theory.

Presently, in the topic of the brown dwarfs there are more theories than objects. However,
with the help of space telescopes and infrared techniques the detection of numerous stars of this
kind are likely to be discovered soon.

K. Szatmdry (Szeged)

Werner Ballmann—Michael Gromov—Viktor Schroeder, Manifolds of Nonpositive Curvature
(Progress in Mathematics, Vol. 61), 263 pages, Birkhduser, Boston—Basel—Stuttgart, 1985.

This book is based on four lectures given by Mikhael Gromov in February 1981 at the College
de France in Paris. The presentation is due to Viktor Schroeder who made a coherent text by writing
down all the proofs in complete detail. He also added some background material to Lecture I and
exposed the basic facts on symmetric spaces needed for Lecture IV. The articles included in this
book summarize the recent progress of the theory of manifolds of nonpositive curvature. The lectures
are: I. Simply connected manifolds of nonpositive curvature, II. Groups of isometries, III. Finiteness
theorems, IV. Strong rigidity of locally symmetric spaces. The further papers are: Manifolds of
higher rank (by W. Ballmann); Finiteness results for nonanalytic manifolds, Tits metric and the
action of isometries at infinity, Tits metric and asymptotic rigidity, Symmetric spaces of non-
compact type (by V. Schroeder).

Péter T. Nagy (Szeged)

J. L. Berggren, Episodes in the Mathematics of Medieval Islam, 97 figures and 20 plates, IX +197
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986.

Many people know today that some mathematical terminologies have their origin in the
medieval Islamic (or Arabic) civilization, such as algebra and algorithm. It is also well known
that several ancient Greek mathematical and philosophical works became known for the Renaissance
Europe via Arabic translations, but we know very little about the original Islamic mathematics:
“no textbook on the history of mathematics in English deals with the Islamic contribution in more
than a general way” as the author writes. This is unfortunate because they made important con-
tributions to the development of decimal arithmetic, plane and spherical trigonometry, algebra
(e.g. solving cubic equations) and interpolation and approximation of roots of equations.

The aim of the present book is to make an attempt to fill this gap. In spite of that it is not
and cannot be a “General History of Mathematics in Medieval Islam”, we are sure that this volume
is a very important contribution to the subject.

In an introductory chapter the reader gets acquainted with the Islam’s reception of foreign
science, the four most famous Muslim scientists: Al-Khwérizmi, Al-Birtini, ’'Umar al-Khayyami
and Al-Khashi, and the most important sources. The other chapters deal with arithmetic, geometrical

14*
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constructions, algebra, trigonometry and spherics. Each chapter is followed by a set of exercises
and a bibliography.

We recommend this book primarily for students and teachers of mathematics, but everybody
interested in the history of mathematics can read this well-illustrated book with joy.

Lajos Klukovits (Szeged)

Arthur L. Besse, Einstein Manifolds (Ergebnisse der Mathematik und ihrer Grenzgebiete,
3. Folge, Bd. 10), XII+510 pages, Springer-Verlag, Berlin—Heidelberg—New York—lL.ondon—
Paris—Tokyo, 1987.

This book is intended to be a complete reference book of the differential theory of Einstein—
Riemannian manifolds. In the author’s opinion the Einstein metrics are the best candidates for
nicest geometric structures on a given manifold which are very natural generalizations of Euclidean
and classical non-Euclidean spaces. These manifolds have close relations with the geometries of
constant curvature, but they have non-necessarily transitive isometry groups and thus their geometric
properties can reflect characteristic non-homogeneous features. The indefinite semi-Riemannian
analogies of these spaces are of basic importance in the modern physical space-time theory.

The book provides a self-contained treatment of many important topics of Riemanman geom-
etry presented in a textbook for the first time, such as Riemannian submersjoné, Riemannian func-
tionals and their critical points, the theory of Riemannian manifolds with distinguished holonomy
group and Quaternion-Kahler manifolds. The central chapters of the book are devoted to the
study of questions related to the Calabi conjecture made in 1954, whose solution given by S. T. Yau
and T. Aubia in 1976 yields a large class of non-homogeneous compact Einstein manifolds. Cor-
responding to this conjecture the main problems treated in this book are related to the existence
and uniqueness questions and principally to finding interesting examples of Einstein metrics. The
book contains the formulation of the main open problems of this theory.

This excellent book is warmly recommended to everyone interested in Riemannian geometry
and its applications in mathematical physics.

Péter T. Nagy (Szeged)

J. Bliedtner—W. Hansen, Potential Theory, An Analytic and Probabilistic Approach to
Balayage (Universitext), XIII-+434" pages, Springer-Verlag, Berlin—Heidelberg—New York—
Tokyo, 1986.

Recently much attention has been paid to stochastic processes in modern analysis. The classical
example is potential theory. Suppose we want to solve Dirichlet’s problem in a domain U with
smooth boundary U, and f: dU—~R is the continuous function we want to extend to U to a har-
monic function. If {X{™} is a two-dimensional Brownian motion starting at x€ U and n=7(w)
is the first time when {X! ()} hits U, then u(x)=E(f(X{™)), the expectation of the random
variable f(X;¢z) (@), solves the problem. In fact, it follows from the Markov property of {X;}
that u possesses the mean value property in U and it is clear that if x€ U is close to y€8U then
{X} will hit a fixed neighbourhood (on U) of y with high probability, so «-has f asits boundary
function, ' '

The same idea works in many other classical problems. The book under review is devoted
to the study of general balayage theory which is at the heart of these applications. The central objects
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are the so called balayage spaces which are certain closed function cones with the property that if
u, ¥, v are in the space. and ‘u=v'+¢”, then u has a representation u=u'+u", u'=v', u"=1".
These spaces occur-in different chapters in different equivalent forms as families of harmonic kernels,
sub-Markov semigroups and as-Hunt processes (regularized Markov-processes).

The authors .were very careful to:clarify the abstract notions and results through concrete
examples such as classical potential theory, Riesz potentials, discrete potential theory, translation
on R and heat conduction in R". These relax the abstract setting; still one may-encounter the usual
drawbacks of too much generality when trying to use the book as a “Universitext”. I feel that it
is more appropriate to recommend this work to those who have past experience with both classical
potential theory and stochastic processes. Then the new examples and different approaches of the
book can be refreshing.

For further orientation here is a characteristic list of section headings: Classical Potential
Theory, Function Cones, Choquet Boundary, Laplace Transforms, Supermedian Functions, Semi-
groups and Resolvents, Hyperharmonic Functions, Harmonic Kernels, Minimum Principle and
Sheaf Properties, Markov Processes, Stoppmg Times, Balayage of Functions and Measures, Dirichlet
Problem, Partial Differential Equatlons Bauer Spaces, Semi-Elliptic PDE, Elhptlc-Parabohc le-
ferential Operators.

Vilmos Totik (Szeged)

Umberto Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler
to Weierstrass, 332 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—
Tokyo, 1986.

It was just 300 years ago that Newton published his monumental work Principia mathematica
Dhilosophiae naturalis, in which he founded differential and integral calculus and revolutionized
the science of functlons, mathematlc‘al analysis. Thereafter an enormous development had started
in this area of mathematics, ‘whose summit was reached in the 19th century, often mentxoned in
the history of mathematic§ as the centiry of analysis. This excellent book gives a qetalled account
of the history of this splendxd period.’

Can a book on the hlstory of mathematlcs be mterestmg for wide circles of readers? Having
read Bottazzini’s book it is easy to answer: yes, it can. The author does not restrict hxmself to dull
reviewing the results but acquaints the reader w1th the outstanding mathematicians of the area as
people with emotions. For example, we can read the letter of a 24-year-old mathematician to his
old teacher written after his arrival at Paris in 1826: “Up to now I have only made the acquaintance
of Legendre, Cauchy, and Hachatte, plus a few secondary but very able mathematicians, ... Legendre
is an extremely amiable man, but unfortunately “as old as stones”. Cauchy is crazy and there is
nothing to be done with him, even though at the moment he is the mathematician who knows how
mathematics must be done. His works are excellent, but he writes in a very confusing way. At first
I understood virtually nothing of what he wrote, but now- it goes better... Poisson, Fourier, Ampere,
etc. etc. occupy themselves with nothing other than magnetlsm and other phys1ca1 matters... Every-
one works by himself without interesting himself in-others. Everyone wants to.teach and no one
wants to learn. The most absolute egoism reigns everywhere.” These are.rather hard words, but
the young man was named Abel. Nevertheless; the book is ;written mainly about mathematics
itself and gives the milestones of the history of:such big problems:as; the solution of the equations
of vibrating string and of heat diffusion, expansion of functions inte trigonometric series, the founda-
tion of the theory of complex:functions, :etc.’ Special attention, isjpaid-to-the development of the
concept of a function. Who could think without reading the histery-of mathematics that the con-
temporary definition of a function, which is tought in every elementary school today and seems
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born with us like our instincts, is a result of a long process of thinking and debates, and that Euler
still defined a function as follows: “A function of a variable quantity is an analytic expression com-
poséd in any way from this variable quantity and from numbers or constant quantities.”

This well-written book will be a very valuable and enjoyable reading not only for students
and experts of the history of mathematics, but for every student learning calculus and for every
researcher in mathematics, since Poincaré is absolutely right when saying: “The true method of
foreseeing the future of mathematics is to study its history and its actual state.”

L. Hatvani (Szeged)

César Camacho—Alcides Lins Neto, Geometric Theory of Foliations, 205 pages, Birkhauser,
Boston—Basel—Stuttgart, 1985.

The theory of foliations is a part of differential topology investigating the decompositions
of manifolds into a union of connected, disjoint submanifolds of the same dimension. The origin
of this subject is the geometric theory of differential equations that has begun with the works of
Painlevé, Poincaré and Bendixson in the last century. The authors say in the introduction: »The
development of the theory of foliations was however provoked by the following question about the
topology of manifolds proposed by H. Hopf in the 1930’s: “Does there exist on the Euclidean sphere
S? a completely integrable vector field, that is, a field X such that X.curl X=0?" By Frobenius’
theorem this question is equivalent to the following: “Does there exist on the sphere S? a two-dimen-
sional foliation?”«

The present book which is a translation of the original Portuguese edition published in Brasil
in 1980 has the purpose to give an introduction to the subject. The first four chapters treat the
basic notions and properties of foliations (Differentiable Manifolds, Foliations, The Topology of
Leaves, Holonomy and the Stability Theorems). Chapter V discusses the relations between folia-
tions and fiber bundles. Chapter VI is devoted to the proof of Haefliger’s theorem about analytical
foliations of codimension one. Chapter VII contains the proof of Novikov’s theorem on the existence
of a compact leaf of a C? codimension one foliation on a compact three-dimensional manifold
with finite fundamental group. Chapter VIII deals with foliations induced by group actions. There
is an appendix containing the proof of Frobenius’ theorem.

The book is highly recommended to anyone interested in differential topology and familiar
with the material of standard courses on analysis, topology and geometry.

Péter T. Nagy (Szeged)

Leonard S. Charlap, Bieberbach Groups and Flat Manifolds (Universitext), X-+242 pages,
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986.

The theory of the Euclidean space form problem, treated in this book, is originated from
Hilbert’s famous 18th problem about the classification of discrete Euclidean rigid motion groups
with fundamental domains, or what is the same, of crystallographic groups. The early solution of
this problem, given by L. Bieberbach in about 1910, can be summarized in modern language in
the following way. The fundamental group of a compact flat Riemannian manifold is a Bieberbach
group, i.e. a torsionfree group having a maximal abelian subgroup of finite index which is free
abelian. The manifolds with isomorphic fundamental groups are affinely equivalent, the number of
their equivalence classes is finite. ‘
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The author of this book has developed the classification theory of Euclidean space forms
based on the description of the linear holonomy group of flat Riemannian connections in the early
1960°s. The purpose of the present treatment is to give a selfcontained introduction and at the same
time a reference book on this topic. Chapter I contains the presentation of Bieberbach’s classical
theory. Chapter II gives an elementary introduction to Riemannian geometry including the notion
and fundamental properties of linear holonomy groups. There is given a formulation of Bieber-
bach’s results in the language of differential geometry. Chapter IIT deals with the algebraic classifica-
tion of Bieberbach groups. It is finished with the proof of the Anslander—XKuranishi theorem saying
that any finite group is the holonomy group of a compact flat manifold. Chapter IV is devoted to
the author’s principal results about the space forms whose holonomy group has prime order. Chap-
ter V discusses the properties of automorphism groups of flat manifolds.

The general results are illustrated with many examples. Open problems, conjectures, counter-
examples and results related to the theory of nonflat manifolds are formulated throughout. This
very nice book is really interdisciplinary, it uses tools of differential topology and geometry, alge-
braic number theory, cohomology of groups and integral representations.

Péter T. Nagy (Szeged)

Coherence, Cooperation and Fluctuations, Edited by F. Haake, L. M. Narducci and D. F. Walls
(Cambridge Studies in Modern Optics, 5), VIII4-456 pages, Cambridge University Press, Cam-
bridge—London—New York—New Rochelle—Melbourne—Sydney, 1986.

In 1963 Roy Glauber laid down the fundamentals of quantum optics by introducing the
quantum concept of coherence and the coherent states of the radiation field. This fact, which is
already a part of the history of physics, justifies the decision to devote one of the volumes of the
Cambridge Studies in Modern Optics to the works honouring the 60-th birthday of R. Glauber.

In spite of the series title, besides optics, there are papers on statistical physics and nuclear
physics too, as Glauber himself contributed also to the development of the latter fields with essential
and fundamental results. Among the authors of the invited papers we find L. Kadanoff, J. Langer,
H. Feshbach, F. T. Arecchi, N. Bloembergen, S. Haroche, L. Mandel, R. Pike, M. O. Scully. The
majority of the 33 papers deal with quantum optics, and reading them one may really learn what
is in focus at present time in the field of optical coherence, cooperation and fluctuations. The two
other topics are treated less comprehensively in this volume. To have at hand the roots of the ideas
presented in the book, the editors included the reprints of the 4 classic papers of R. Glauber: the
two about quantum coherence, the time dependent statistics of the Ising model and the one about
the optical model of nuclear reactions.

The book is recommended mainly for research workers in the areas of nonrelativistic field
theory and quantum optics.

: M. G. Benedict (Szeged)

M. Crampin—F. A. E. Pirani, Applicable Differential Geometry (London Mathematical Society
Lecture Notes Series, 59) 385 pages, Cambridge University Press, Cambridge—London—New
York—New Rochelle—Melbourne—Sydney, 1986.

Traditional courses in differential geometry contain first the elementary theory of curves
and surfaces in a Euclidean space and thereafter the notion of a differentiable manifold and the
theory of differential geometric structures on it. Such an approach has the disadvantage that the
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notion of fibre bundles and the general theory of connections and Lie group actions can be treated
only in lecture courses for final year graduate or postgraduate student audiences. But these tech-
niques are needed in the modern applications of differential geometry in the foundation of mechanics,
gauge field theories and gravitation theory.

The present book gives an introduction to these methods of differential geometry on the
level of beginning graduate students. “The essential ideas are first introduced in the context of
affine space; this is enough for special relativity and vectorial mechanics. Then manifolds are intro-
duced and the éssential ideas are suitably adapted; this makes it possible to go on to general rela-
tivity and canonical mechanics. The book ends with some chapters on bundlés and connections
which may be useful in the study of gauge fields and such matters.” The treatment is illustrated
with many examples motivated by the applications in mathematical physics. Each chapter is con-
cluded with a brief summary of its contents. .

The reviewer thinks that this excellent introduction will be especially useful if it is supplemented
with parallel courses on analytical mechanics and relativity theory.

Péter T. Nagy (Szeged)

Luc Devroye, Non-Uniform Random Variate Generation, XVI- 843 pages, Springer-Verlag,
New York—Berlin—Heidelberg—Tokyo, 1986.

The importance of this comprehensive work can hardly be overemphasized. A large amount
of today’s research in statistics, operations research- and computer science depends upon large
scale Monte Carlo computer simulation. Also, this is almost the:sole means of investigation in
certain applied, fields in engineering, experimental and even theoretical .physics and chemistry,
the life sciences and technology,.but such “esoteric pure mathematics” as number theory is not
devoid of Monte Carlo .experimentation either. Yet all these depend upon- sequences of numbers
or vectors generated on the computer which are to be viewed as independent realizations of a ran-
dom variable or vector with a prescribed distribution. Then you apply one of the greatest things
of Nature (or, put it with less euphemism, a trivial fact of probability theory), the law of large num-
bers, and, modulo the problemat hand, you are done.

Now,: borrowmg some expressions from the characteristically lively language of Devroye,
the “story has two halves”. Any machme that can be called a computer nowadays sports with a
random nuprer generator that is clalmed to be capable to produce sequences of independent ran-
dom variables uniformly dnstrlbuted on,(0, 1). This will of course never be the case, and the theo-
retical and practxcal -aspects of this problem belong to the circle of the deepest common puzzles of
probablhty theory and algorithm theory However, that machlnes do indeed have such generators
is becoming more and more reasonable an assumption together with another, theoretically impossible
assumption that the computer can store and manipulate real numbers.

Based on these two assumptions, the book is about “the second half of the story”: how to
generate random numbers with a prescribed non-uniform distribution most efficiently? The effi-
ciency of a procedure is measured by the complexity of the algorithm which produces one such
number. This notion is achieved by the author’s third assumption that the fundamental operations
in the computer (addition,” multiplication,.division, compare, truncate, move, generate a uniform
random variate, exp, log, square root, arctan, sin and cos) all take one unit of time, and the com-
plexity is simply the required time. The algorithms themselves are then investigated by providing
lower and upper-bounds for-the ‘their éxpectéd compléxity or for the tails of their distribution.

Following an introductiory info’a few ‘basic probabilistic facts, Chapters 2 and 3 present the
general principles of randbm number genération such as the inversion, the rejection, the composi-
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tion, the acceptance-complement, alias and table look-up methods and their various combina-
tions, while Chapters 4, 5, 8 and 14 describe a bewilderingly vast amount of specialized algorithms.
The procedures are then applied in Chapters 7, 9 and 10 for the generation of random numbers
from the most important continuous and discrete parametric families of distributions or from large
families of distributions given by a qualitative property of the density such as log-concavity, monot-
onicity, or unimodality. The whole Chapter 11 is on random vector generation and Chapter 6 is
devoted to the generation of the'Roisson and related raridom processes: So these two chapters create
special dependence structures already, and Chapters 12 and:13:go on 'further in this direction, to
the generation of various sampling without replacement. plans and to the genération of random
permutations, binary and free.tress, partitions and graphs. Finally, Chapter 15 presents the Knuth-
Yao theory.of discrete distribution generating trees in a random bit model in which, instead of
Uniform (0, 1) random numbers; Binomial (1, 1/2) random numbers are available.

The hundreds of gereration algorithms in the book ‘are all written as PASCAL programs
and are intelligible without 'knowing anything special dbout this language. In fact, the book is
completely independent: 0f toddy’s” computer and programming technology and I am sure that
the author’s hopes that “the text will® be as interesting in 1995 as in 1985” are entirelly well-de-
veloped. ..

The author outlines a course in computer science and another one in statistics that can be
based on the book, moreover he proposes a “fun reading course on the development and use of
inequalities”. My own random fun reading course turned out to be most gratifying and enjoyable.
Wherever opens, it is difficult to put, down the book which is bound to become to be the basic ref-
erence in non-uniform randém’ number generatlon It contains a good number of new results and
an enormous amount of knowIedge fl;om probability and statistics, computer science, operations
research and complexity and algOrlthm theory, blended and arranged by masterly scholarship.
Congratulations Luc!

Sdndor Csorgd (Szeged)

Differential Equations in Banach Spaces, Proceedings of a Conference held in Bologna, July
25, 1985. Edited by A. Ez}vgni and E Obrecht (Lecture Notes in Mathematics, 1223), VIII+
299 pages, Springer-Verlag, Berlin-Heide1berg—New York—London—Paris—Tokyo, 1986.

‘When modelling the evolutlon in time of a physical system we have to decide how to describe
the position of the system at an 1nstant of time. For example, for a finite system of partlcles in clas-
sical mechanics a position is 4 point of R", while in the model of phe vibrating string or the heat
conduction problem we use to this end functions in C%({0, /}; R). Respectively, the model equation
will be a system of ordinary differential equations and a partial differential equation. However,
partial differential equations can be also considered as ordinary ones of the from &=A4u which
are written in the Banach space C2([0,/]; R) as a state space, and A4 is a differential operator in
this space. This unification was inspired by the fact that the basic concepts and methods of the
theory of ordinary differential. equatlons (eigenvalue, Jordan form, exponents of a matrix, spectral
theory, calculus of functlons) have been developed for operators in Banach spaces by linear (and
recently nonlinear) functional analysis. As it is also shown by these proceedmgs ‘the approach
to differential equations as abstract equations in Banach spaces is a fruitful and very rapidly devel-
oping field. Among the topics discussed at the Conference are: regular and singular evolution
equations, both linear-and nonlinear, of parabolic and hyperbolic type,-integro-differential equa-
tions, semi-group theory, control theory, wave equatlons transmutatlon methods and fuchsian
differential equations. ‘ T

: : L. Hatvani (Szeged)
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B. A. Dubrovin—A. T. Fomenko—S. P. Novikov, Modern Geometry — Methods and Applica-
tions: Part II. The Geometry and Topology of Manifolds, 430+ XV pages, Springer-Verlag, New
York—Berlin—Heidelberg—Tokyo, 1985.

This is the English translation, by Robert G. Burns, of the original Russian edition, Nauka,
Moscow, 1979. The present book is the second volume of a whole series in which the authors’ main
aim is the modernization of the teaching of differential geometry at universities. From this point of
view this work can be considered as one of the best texts which acquaints the readers with a large
part of modern differential geometry in a very clear and didactical style,

This second volume is devoted mainly to differential topology. After the elementary study
of real and complex manifolds, Lie groups, homogeneous spaces, the exposition turns to the Sard
theorem and related fields such as Morse theory, embeddings and immersions, the degree of mappings
and the intersection index of submanifolds. Furthermore two chapters deal with the fundamental
groups and homotopy groups of manifolds. After these the theory of fibre bundles, connections,
foliations and dynamical systems is developed. The last chapter deals with general relativity and
also with Yang—Mills theory whose comprehensible survey has been absent from the literature.

This well-written excellent monograph can be highly recommended to students, mathemati-
cians and users interested in modern differential geometry.

Z. I. Szabé (Budapest)

Sir Arthur Eddington, Space, Time and Gravitation. An outline of the general relativity theory
(Cambridge Science Classics Series), XII+218 pages, Cambridge University Press, Cambridge—
London—New York—New Rochelle—Melbourne—Sydney, 1987.

This classic book on the general theory of relativity was published first in the exciting days
of 1920, soon after the first objective tests of the new theory assumed historico-scientific values.
The reader can understand how Sir Arthur Eddington, the creative participant of the development
of this theory in mathematics, physics and philosophy, saw the problems of space, time and gravita-
tion. This new reprint, which is the twelfth in a sequence, includes a foreword by Sir Hermann
Bondi, describing the place of this book in its historical and scientific context. He says: “How does
his writing strike us now, some sixty years after it first appeared in print? The beautiful English
is as good as ever, the subject matter, the theories of relativity and gravitation, have not suffered
relegation to the backburner, but are as integral a part of physics as in his day. Thus his book is
still very good and very relevant.” Everyone interested in the development of new ideas and view-
points in the sciences will enjoy this book.

Péter T. Nagy (Szeged)

K. J. Falconer, The Geometry of Fractal Sets (Cambridge Tracts in Mathematics, 85), XIV +
162 pages, Cambridge University Press, Cambridge—London—New York—New Rochelle—
Melbourne—Sydney, 1986.

From the introduction of the author: “Recently there has been a meteoric increase in the
importance of fractal sets in the sciences. Mandelbrot pioneered their use to model a wide variety
of scientific phenomena from the molecular to the astronomical .... Sets of fractional dimension
also occur in diverse branches of pure mathematics.”

This widespreading applicability aroused both scientists’ and mathematicians’ interest in
fractals. The aim of this book is to give a rigorous mathematical treatment of the geometrical prop-
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erties of sets of both integral and fractional Hausdorff dimension, and the author unites into a
theory the complete collection of these results, which have previously been available only ig tech-
nical papers.

The first chapter contains a very good general measure theoretic introduction, the definition
of Hausdorff measure and dimension and basic covering results. There is an emphasis on the Vitali
covering theorem which will be often used. In some “simple” cases the Hausdorff dimension and
measure are calculated. The next three chapters discuss the density properties and existence of
tangents. The notion of local densities are similar to the Lebesgue case but there is no analogue
of the Lebesgue density theorem. It is proved that only the integral dimensional sets can be regular
and in the integral case the regular “curve-like” sets and irregular “dust-like” sets are characterised.
In the fifth chapter a very useful tool, comparable net measures, is presented and applied to con-
struct a subset with finite s-measure of a set with infinite s-measure, and to calculate the Haus-
dorff measure of Cartesian products of sets. In the sixth chapter two fruitful theories from analysis,
potential theory and Fourier transforms are applied to investigate the projection properties of
s-sets. The next chapter discusses the interesting problem of Kakeya of finding a set with zero meas-
ure containing a line segment in every direction. It is demonstrated that the previously descrised
theory is related by duality to Kakeya sets. The final chapter contains miscellaneous examples of
fractal sets. Methods for constructing curves of fractional dimension and generating self-similar
sets are presented and applications to number theory, convexity, dynamical systems and Brownian
motion are shown.

Each chapter contains a problem set which complete the topics and may help the reader in
understanding the basic methods. The book is recommended to pure mathematicians, but it may
be useful to anybody interested in the application of fractals.

J. Kincses (Szeged)

D. J. H. Garling, A Course in Galois Theory, VIII+167 pages, Cambridge University Press,
Cambridge—London—New York—New Rochelle—Melbourne—Sydney, 1986.

This book deals with Galois theory at a level or somewhat higher than it is customarily pre-
sented for undergraduates of mathematics. In fact, the book grew out of a course of lectures the
author gave for several years at Cambridge University. Pages 1 trough 36 give a concise account
on the necessary prerequisites like groups, vector spaces, rings, unique factorization domains and
irreducible polynomials. The rest of the text is devoted to the theory of fields and Galois theory.
Besides the classical topics including the problems of solvability the general quintic and geometric
constructibility, some extra material, rarely discussed in teaching activity, is also added. For example,
Liiroth’s theorem, the normal basis theorem and a procedure for determining the Galois group
of a polynomial is included. The reader is challenged by more than 200 exercises.

This book is warmly recommended mainly for instructors and students and also for every-
one interested in its topic.

- Gdbor Czédli (Szeged)

Geometrical and Statistical Aspects of Probability in Banach Spaces. Proceedings, Strasbourg
1985. Edited by X. Fernique, B. Heinkel, M. B. Marcus and P. A. Meyer (Lecture Notes in Mathe-
matics, 1193), I1+128 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986.

The volume starts with a short description of the significant work of the young Strasbourg
probabilist Antoine Ehrhard, who died less than two weeks before the meeting, by C. Borell.
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A short note by S.- Guerre deals with- almost exchangeable sequences, another one by
M. B. Schwarz with mean square-convergence of weak martingales, B. Heinkel is on the strong
law of*large numbers in smooth Banach spaces, while M. Ledoux and M. B. Marcus are on the
almost suge uniform convergence of .Gaussian and Rademacher infinite Fourier quadratic forms.
The papers by M. Ledoux and J. E: Yukrch Dpresent results for the central limit theorem i in a Banach
space in two drﬂ'erent dlrecuons The- -paper of P. Doukhan and J. R. Leon deals, with the central
limit theorem-for empmcal processes mdexed by functlons based on statlonary, strongly mrxmg
random elements and for the local time of Markov processes with an apphcatron to testing uni-
formity on a compact Riemannian mamfold whr]e the comprehensive 37-page. artlcle by P. Massart
is on the rate of convergence in the central limit theorem for general empirical processes indexed
by functions satisfying certain entropy conditions. .
S . L e .Sa’ndar Csérgé (Szeged)

y .

c '

Mikhael Gromov, Partial Differential Relations (Ergebnisse der Mathematxk und ihrer Grenz-
gebiete, 3. Folge ‘Band 9), IX+363 pages, Springer-Verlag, Berlrn—Hexdelberg—New York—
London—Parrs—Tokyo 1986.

The purpose ‘of this book is to give a systematic and selfcontained treatment:of analytical,
topological and- differéntial geometric methods of the theory of undetermined partial differential
equations or differential relations and of its applications to imbedding and immersion problems
of Riemannian and symplectic mamfolds This theory has been developed in the last 20 years mainly
by the author’s initiatives and activity.

Part 1 contains a survey of the basic problems and results giving the most important motiva-
tions for the theory. Part 2 is devoted to the study of a construction method which is a homotopic
deformation of a jet-section solution into a differentiable map satisfying the differential relation.
Part 3 deals with the investigation of C*™ isometric immersions of Riemannian, Pseudo-Riemannian
and symplectic manifolds.

The author writes in the Forward: “Our exposition is elementary and the proofs of ths basic
results are selfcontained. However, there is a number of examples and exercises (of variable diffi-
culty), where the treatment of a particular equatlon requires a certain knowledge of pertinent facts
in the surround;q_g ﬁeld But in the reviewer’s opinion the reader is presupposed to be familiar
with the techniques of singularity theory, drfl’erentral operators dlﬂ'erentral geometry and topology
on higher than an elementary level. ‘.

The book .includes many new results and yrelds a good overwiew of this developing fizld of
mathematics. - -+ ! o

. . Péter T. Nagy (Szeged)

1
f

John Guckenheimer—Philip Holmes, Noniinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields (Second Printing, Revised and Corrected; Applied Mathematical Sciences, 42),
XVI+459 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. ’

At the early stage of the history of mechanics the oscillations were studied as “small oscilla-
tions™. It means that one considers the linearized equatlons of motion around the equilibrium
or the periodic- orbit mvesugated But .these lmear equatlons can describe the behaviour of the
motions only locally. For example, within this theory it is impossible to handle the interaction
between two or more isolated equilibria or.cycles,.which are very common in differential equation
models. The global description of trajectories demands the study of the original nonlinear models.
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However, the theory of nonlinear differential equations, as contrasted with that of linear equations,
is far from being complete. Here the qualitative approach is the most important and fruitful, which
has been developed by marrying analysis and geometry.

Over the past few years there has been increasing a widespread interest in the engineering and
applied science communities in such phenomena as bifurcations, strange attractors and chaos.
The rigorous study of these phenomena needs a wide and deep mathematical background and
this is provided by the modern theory of dynamicai systems. This book gives an excellent introduc-
tion to this fairly sophisticated theory for those who do not have the necessary prerequisites to go
directly at the research literature.

Chapter 1 provides a review of basic results in the theory of dynamical systems and differential
equations. Chapter 2 presents four examples from nonlinear oscillations: the famous oscillators
of van der Pol and Duffing, the Lorenz equations and a bouncing ball problem. By the aid of these
examples the reader can get acquainted with the chaotic behaviour of solutions and the concept
of the strange attractor: an attracting motion which is neither periodic nor even quasiperiodic.
Chapter 3 contains a discussion of the methods of local bifurcation theory, including center mani-
folds and normal forms. Chapter 4 is devoted to the method of averaging. perturbation theory
and the Kolmogorov—Arnold—Moser theory. In Chapter 5 the famous horseshoe map of Smale
is discussed in a nice and intelligible way. Chapter 6 is concerned with global homoclinic and hetero-
clinic bifurcations. In the final chapter the degenerated local bifurcations are treated.

1t is easy to understand that the second edition of this valuable text-book had become nec-
essary. It has to be on the bookshelf of every mathematician and of every user of mathematics
interested in the modern theory of differential equations, dynamical systems and their applications.

L. Hatvani (Szeged)

James M. Henle, An Outline of Set Theory (Problem Books in Mathematics), VIIL + 145 pages,
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986.

Set theory is full with charming exercises, brilliant constructions and problems which some-
times challenge even the experts. Henle’s book misess them all and this is all the more unfortunate
that there is no good published collection of (solved) problems in set theory (one should not count
those feeble attempts that every now and then appear on the scene with completely trivial exercises).

More proper justice should however be given to this worthy book because its aim is different.
I feel neither the “Problem Books’ series nor the title are appropriate for this work, for thisisnot a
problem book in the ordinary sense, nor it is about Set Theory. More appropriate title would be
something like “Construction and properties of numbers”, all sorts of numbers such as naturals,
integers, rationals, reals, ordinals, cardinals, infinitesimals. The spirit is set theoretical and ulti-
mately this is why I would rank very high Henle’s book.

It introduces an outstanding pedagogical system: so called projects are assigned to students.
‘These contain proofs, discoveries of theorems and concepts etc.; under the guidance of the teacher
the students work alone, and through these projects they explore the field step by step like “real”
researchers. They “experience the same dilemmas and uncertainties that faced the pioneers”. Accord-
ingly, the book consists of three parts, hints and solutions occupy the second and third ones.

In my opinion every good exercise book (cf. POlya—Szegd's, Halmos’s, Lovasz’s) should be
based on similar principles; here however the method is applied to the very foundation and exposi-
tion of the subject. I saw the same method efficiently working at Ohio State University where selected
high school students participated in university summer shools. Although I doubt that the ordinary
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math major would succesfully complete the projects in the book, the system is certainly applicable
to the better ones.

1t is unfortunate that the author mostly restricted himself to the dullest part of set theory:
construction of numbers and operations between them (I must add, however, that due to J. von
Neumann and A. Robinson, the construction of ordinals and infinitesimals is definitely an excep-
tion). This may be so because set theory is not too well adequate for the above method (after all
infinite sets are not objects that you can experience with); number theory, geometry, elementary
algebra etc. certainly are more suitable.

The main advantage of the book is that without disturbing formalism the author gets the
students think and work in a way as a logician should do, and the presentation is extremely “clean”
and accurate. For this reason I warmly recommend that every math major read the book even if
they have already completed a course in set theory. The material can also be valuable for lecturers
on set theory and logic.

There is one more reason for this strong recommendation, and this is the Goodstein—Kirby—
Paris theorem discussed in the last chapter (it is about an extraordinary number theoretical itera-
tive process that seemingly produces larger and larger numbers but somehow it always reaches 0;
and this can be proved only using infinite numbers). In the style of the quotations in the book:
All's Well that Ends Well.

Vilmos Totik (Szeged)

Homogenization and Effective Moduli of Materials and Media. Edited by J. L. Ericksen, D. Kin-
derlehrer, R. Kohn and J.-L. Lions (The IMA Volumes in Mathematics and its Applications, Volume
1), X +263 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986.

At the Institute for Mathematics and its Applications the year 1984-—1985 was dedicated to
the study of partial differential equations and continuum physics. This volume, the first one in a
series, contains research papers presented at a workshop on homogenization of differential equa-
tions and the determination of effective moduli of materials and media. This up-to-date theme is
interesting for mathematicians, physicists and for engineers equally well. The papers are well-
organized. In general they contain the origin and the history of the investigated problem and after
the discussion open questions are presented. The style is well-characterized by the following sentence
taken from Luc Tartar’s paper: “This mathematical model of some physical questions involving
different scales will of course be questioned by some; it is natural that it be so but I hope that criti-
cism will be made in a constructive way and so improve my understanding of continuum mechanics
and physics (and maybe of mathematics).”

The titles of the papers are: Generalized Plate Models and Optimal Design. — The Effective
Dielectric Coefficient of a Composite Medium: Rigorous Bounds From Analytic Properties. —
Variational Bounds on Darcy’s Constant. — Micromodeling of Void Growth and Collapse. —
On Bounding the Effective Conductivity of Anisotropic Composites. Thin Plates with Rapidly
Varying Thickness and their Relation to Structural Optimization. — Modelling the Properties
of Composites by Laminates. — Wares in Bubbly Liquids. — Some Examples of Crinkles. —
Mikrostructures and Physical Properties of Composites. — Remarks on Homogenization. —
Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric.

L. Pintér (Szeged)
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- Mark Kac—Gian-Carlo Rota—Jacob T. Schwartz, Discrete Thoughts: Essays on Mathematxcs,
Science, and Philosophy. Edited by Harry Newman (Sc1entlsts of Our Time), X1I+264 pag&s, Birk-
hauser, Boston—Basel—Stuttgart 1986.

the reason people so often lie

is that they lack imagination:

they don’t realize that the truth, too,
is a matter of invention.

This is how Rota starts the volume in his preface, translating nicely a three-line poem of Machado
which summarizes the “prophetical warning” of the philosopher Ortega.

This fine composition of twenty-six essays should be read by every mathematician, statistician
and computer scientist. It would be a little bit better still if every physicist, economist and historian
of science could also read it, and the world, scientific or otherwise, would surely improve a trifie
if in fact the whole intelligentsia read it. It is not just that three “grifted expositors of mathematics™
came together as the jacket says, but these three illustrious thinkers really want to tell the truth,
if not the whole truth, but nothing but the truth. And the world usually betters by telling the truth.

There are as many readings of such a text as readers. In the reviewer’s reading the frame of
this composition is constituted by the seven brilliant writings of the late Professor Kac (he died
in the fall of 1984). These are: Mathematics: Tensions (essay No. 2), Statistics (4), Statistics and
its history (5), Mathematics: Trends (8), Academic responsibility (13), Will computers replace
humans? (18), Doing Away with Science (25). Heavier building blocks are brought by the six
essays of Schwartz: The pernicious influence of mathematics on science (3), Computer science (7),
The future of computer science (9), Economics, mathematical and empirical (10), Artificial intel-
ligence (16), Computer-aided instruction (19) and by Rota’s essay Combinatorics (6). The cohesion
of and the paint on the structure is provided by Rota’s shorter bookreviews and sketches: Com-
plicating mathematics (11), Mathematics and its history (12), Husserl and the reform of logic (14),
Husserl (15), Computing and its history (17), Misreading the history of mathematics (20), The
wonderful world of Uncle Stan (21), Ulam (22), Kant (23) and Heidegger (24) and his Chapter 1
(Discrete thoughts) and Chapter 26 (More discrete thoughts).

The depth of thought, charm, experience and characteristic wit of Kac, the vehement cool
logic of Schwartz and the broad knowledge and aphoristic penetration of Rota harmonize beauti-
fully. The selection and ordering of the essays (presumably the work of the editor) to achieve the
non-formalizable rythm of thought in the book, a composition instead of a collection, will not be
possible for any artificial intelligence. The whole thing is more continuous than dlscrete

No, Uncle Mark, computers will never replace a man like you were.

Sdndor Csorgd (Szeged)

Serge Lang, Linear Algebra. Third edition (Undergraduate Texts in Mathematics) IX-+285
pages, Springer-Verlag, New York—-Berlin—Heidelbe‘rg—Londop—Paris—Tokyo, 1987.

The text is'divided into twelve cliapte;s. The first four chapters introduce vector spaces over
subfields of complex numbers, the space of matrices, matrices of linear equations, the notion of
linear operators and show the connection between matrices and linear operators. In Chapter 5
scalar products and orthogonality are defined; and applications to linear equations, bilinear and
quadratic forms are given, Chapter 6 is devoted to give the notion and elementary properties of
determinants. Chapter 7 studies the important special cases of linear operators, symmetric, Her-
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mitign and unitary operators, Chapter 8 defines cigenvalues and eigenvectors, the characteristic
polynomial, and gives the method of computing cigenvalues by finding the maximum and the mini-
mum of quadratic forms on the unit sphere. In Chapter 9 polynomials of matrices and linear opera-
tors are defined. The main purpose of Chapter 10 is to prove the existence of triangulation of linear
operators and especially of the diagonalization of unitary operators. Chapter 11 deals with the
factorization of polynomials and as an application of this concludes th¢ Jordan normal form of
lincar operators. Chapter 12 is devoted to the study of convex scts and proves the finite dimensional
case of the Krein—Milman theorem. At the end of the book an Appendix can be found dealing
with complex numbers.
The book can be used as a handbook for learning linear algcbra.
L. Gehér (Szeged)

Lis#Aé Lovasz—Michael D. Plummer, Matchiug Theory (North-Holland Mathematics Studies),
XXXIII 4 544 pages, Akadémiai Kiado, Budapest and North-Holland, Amsterdam, 1986.

Matching theory consists of only a part of graph theory, but one of its deepest and hardest
parts. The history of matching is related to the four color problem, and sincc then it has been a
focus of intercst. Most of the general questions and methods of combinatorics are considered in
matching theory, and many have a nice solution or application. Because of its complexity, matching
theory really has the right to bear the title of thcory.

The book starts with the most classical results. The first two chapters contain the very basic
and very important results on bipartite graph matching and flow theory. The next three chapters
deal with the structure of general graphs related to matching, The main result in this territory is
the Edmonds—Gallai structure theorem which shows that from the point of view of matchings,
every graph is built of several different kind of “bricks”. These bricks are well known, thanks to
the two authors’ previous works. The next four chapters illuminate matching problems from dif-
ferent perspectives. The first one discusses the graph-theoretical consequences. The next chapter
shows the very important connection with linear programming. The book discusses the description
of a matching polytope, its facets and the dimension of the perfect matching polytope. This sectioh
includes the effect of the ellipsoid method on combinatorial optimization. There is one chapter on
the related enumeration problems. Besides the basic results on permanents, pfaffians, and matching
polynomials, there are some interesting applications of these results. One other chapter covers
the algorithm-theoretic aspects of matchings, containing not only the important algorithms, but
also their implementation. The final three chapters consider the generalizations of the question of
matchings in graph theory and matroid theory. These discuss the problem of ffactors, vertex packing,
hypergraph matching and matching of 2-polymatroids.

The book contains all of the important results which are in or related to matching theory.
The many applications of this subject in other parts of combinatorics, and the wide variety of methods
used ensure that the reader will not only learn about matching theory, but about most of the impor-
tant parts of combinatorics. There are discussions of matroid theory, polyhedral combinatorics,
enumerations, algorithm theory, and data structures. The corresponding chapters are not only
good introductions to the fields but contain some of the most important results of current research.
Sometimes the flow of results is interrupted by “boxes”. These boxes contain remarks which go
beyond the scope of the book or sketch a main underlying idea, These parts are very useful to under-
stand how to fit the actual results or methods into the main stream of research, The cited references
are a big help to the reader whose appetite has been whetted. These short guides are also very helpful
for the reader who is untrained in combinatorics, If the reader takes the effort and studies mathe-
matics by solving problems (this is harder but more rewarding), then there are a lot of exercises
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inserted in the text. Solving these exercises adds a lot of fun to the reading and gives good practice
for the methods. If the reader requires more of a challenge, there are many open problems in the
book, Both authors live and breathe matching theory, As a consequence, the chapters frequently
suggest the most important directions of research, and the reader easily can find problems to think
about.

Matching theory is only a small part of combinatorics. This might lead an outsider to think
that this book is too specialized. (A very narrow, specialized subject gets no interest outside a small
group.) This is not the case with this book, The relations between combinatorics and the classical
fields, and the applications of combinatorics are an undiscovered part of the science. This book
gives many examples of applications of combinatorics to other areas of mathematics and the
physical sciences. Here are just some of them for appetizers: engineering, chemistry, physics, measure
theory and topology.

Finally, the physical appearance of the book is pleasing, as it was typeset with the TxX system,
The book is very imporiant to any specialist in combinatorics. It is highly recommended to any-
body who is interested in this new part of mathematics or who is working in a field which applies
combinatorial methods,

Péter Hajnal (Szeged and Chicago)

New Developments in the Theory and Applications of Solitons, Proceedings of a Royal Society
Meeting, London, 1984 November. Edited by Sir Michael Atiyah, J. D. Gibbon and G. Wilson,
(Reprint from the Philosophical Transactions of the Royal Society, Ser. A. Vol. 315, p. 333—469),
The Royal Society, London, 1985,

The exponential growth of the number of papers about solitons has become somewhat less
steep in the last few years, nevertheless they are still the subject of intensive study. Over and over
again new delicate details of soliton theory are discovered by pure mathematicians, and the sudden
appearance of solitons is not a rare event in any field of physics.

This situation is well documented in the introductory lecture of these proceedings: “A survey
of the origins and physical importance of soliton equations” given by J. D. Gibbon. Here past and
present of solitons are outlined, and this is the lecture that can be recommended both to the beginner
and to the specialist, in order to see how wide this field really is. More detailed investigations of
some of the branches of mathematics and physics, where solitons play important role can be found
in the other 8 papers of this volume. Half of them have purely mathematical character, and show
the connection of soliton theory with such classical problems as the integrability of ordinary dif-
ferential equations, as well as with modern fields like algebraic geometry and Kac—Moody algebras.
The rest of the articles communicate on experiments and applications of soliton theory in laser
physics, biomolecules, magnetic monopoles, fluid dynamics etc.

M. G. Benedict (Szeged)

New Directionus in the Philosophy of Mathematics: An Anthology, Edited by Thomas Tymoczko,
XVII+323 pages, Birkhduser, Boston—Basel—Stuttgart, 1985,

The philosophy of mathematics has played an important role in philosophy going back to
the ancient Greeks. This discipline has been radically changed about the turn of the century. The
new dominant question (or the new paradigm, according to T. Kuhn’s terminology) was: what is
the foundation of mathematics?

15
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Now, in the latest decades, as R. Hersh wrote: “We are still in the aftermath of the great
foundationalist controverses of the early twentieth century. Formalism, intuitionism and logicism,
each left its trace in the form of certain mathematical research program that ultimately made its
own contribution to the corpus of mathematics itself.”

In Part I, entitled Challenging Foundations, we can read five essays on the major perspectives
on the philosophy of mathematics written by R. Hersh, 1. Lakatos, H. Putnam, R. Thom and
N. D. Goodman. They strongly criticize the foundationalist approach to the philosophy of mathe-
matics. This part is followed by an interlude containing two writtings of G. Polya, who was the
forerunner of quasi-empiricism in mathematics. The essays in the second part demonstrate quasi-
empiricism which is an increasingly popular approach to the recent philosophy of mathematics.

Part II deals with the reexamination of mathematical practice. It contains three sets of essays.
The first set explores some general issues in mathematical practice, starting with the concept of
informal proof. The authors are: Hao Wang, I. Lakatos, Ph. J. Davis and R. Hersh. The second
set of essays focuses on the growth of mathematical knowledge, the development or change in the
essential aspect of informal proof. The authors are: R. L. Wilder, Judith V. Grabiner and Ph. Kitcher.
The final set continues the theme of informal proof and discusses the change due to the use of com-
puters in mathematical research. The authors are: T. Tymoczko, R. A. de Millo, R. J. Lipton, A. J.
Perlis and G. Chaitin.

All essays of the second part argue the philosophical relevance of mathematical practice.
According to the editor’s view: “The crucial step in approaching them is our willingness to con-
ceive of mathematics as a rational human activity, that is, as a practice.”

Each part and almost all essays have an introduction written by the editor which helps the
reader in better understanding and offers a short summary.

As a recommendation we cite the closing paragraph of the editor’s Introduction: “Although
this anthology does not completely represent the philosophy of mathematics, it does, I belive,
gather together some of the more exciting essays published recently in the field. In this instance,
the whole really is greater than the sum of all its parts; each essay reinforces the others. One purpose
in bringing these essays together is to demonstrate their collective force. The collection will have
succeeded if it stimulates the reader — mathematician or philosopher, professional, apprentice
or amateur — to rethink his or her conception of mathematics.”

Lajos Klukovits (Szeged)

N. K. Nikol’skii, Treatise on the Shift Operator: Spectral Function Theory. With an Appendix
by S. V. Hru¥ev and V. V., Peller. Translated from the Russian by Jeak Petree (Grundlehren der
mathematischen Wissenschaften 273), XI+491 pages, Springer-Verlag, Berlin—Heidelberg—New
York—Tokyo, 1986.

The title of the Introductory Lecture (chapters are called lectures) is: “What this book is
about.” A short, and thus by no means exhaustive, answer can be: about non-classical spectral
theory in Hilbert space. The discussion is essentially based on the functional model for contrac-
tions due to Sz.-Nagy and Foias. This approach makes possible to use more function-theoretic
tools, namely many properties of functions in Hardy classes, as in classical spectral theory. The
central role of the shift operator in this model makes at once understandable why this work can
be considered (again, not in its totality) as a “treatise on the shift operator”.

. Besides the introductory one the book contains eleven lectures. In the first parts of these
lectures the shift operator in question appears as multiplication by the independent variable in
the Hardy space H? of scalar valued functions on the disc. These parts can be considered as an
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introduction in an elementary fashion to the second ones, entitled “Supplements and Bibliographical
Notes”. These second parts contain more advanced studies extending the first parts in various
directions and are written more condensedly and to a certain extent sketchily. Each lecture is ended
by “Concluding Remarks” where a review of the literature and hints for unsolved problems com-
plete the discussion.

It is hopeless to even try to sketch the rlch contents of this book, the “Bibliography” lists
about five hundred items! It may be informative to mention that the Carleson corona theorem
plays a central role in the discussion. Another interesting method is the introduction of special
Hankel and Toeplitz operators when studying the model operators.

The present book is not simply a translation of the original Russian one but it is an improved
and considerably enlarged edition. Some parts have been revised and moreover, while the Russian
original has contained only a single Appendix on the spectral multiplicity of operators of class C,
the present edition contains four more ones. Appendix 2 presents the proof of all assertions on
Hardy classes which are used in the text. Appendix 3 contains the modern proof of the Carleson .
corona theorem and its operator theoretic generalisation. Appendix 4 is devoted to Toeplitz and
Hankel operators connected with the general orientation of the book. Appendix 5 entitled “Hankel
operators of Schatten—von Neumann class and their application to stationary processes and best
approximations” has been written by S. V. Hru¥¢ev and V. V. Peller. “List of Symbols”, “Author
Index” and “Subject Index” complete the book. '

The reader needs to be familiar only with standard material in mathematical analysis taught
usually in undergraduate courses. Because of the many interesting methods and the large material
covered in this book, it can be warmly recommended to everybody who is interested in its topic.
The special two-level structure of the discussion certainly helps the reader to orient himself. It is
worth to glance trough this edition even for those who know the Russian original well, because of
the improvements and Appendices mentioned above.

E. Durszt (Szeged)

Optimization and Related Fields, Proceedings of the “G. Stampacchia International School
of Mathematics” held at Erice, Sicily, September 17-—30, 1984, Edited by R. Conti, E. De Giorgi
and F. Giannessi (Lecture Notes in Mathematics, 1190), VIII+419 pages, Springer-Verlag, Ber-
" lin—Heidelberg—New York—Tokyo, 1986.

To find extreme values of functions is perhaps the most important problem of mathematics
derived from practice. It is the simplest case of this problem when the maximum or minimum of a
smooth function of several variables in a domain is to be found. But loking for the extreme values .
of smooth functions on a closed set with a piece-wise smooth boundary, which is common e.g.
in econometrics already requires a lot of special methods that constitue mathematical (nonlinear)
programming. Similarly, in the calculus of variations some new problems have appeared recently
in which the control parameters vary on closed sets with boundaries. These problems gave rise
the “new calculus of variation”, control theory or the theory of optimal processes. As it has turned
out, functional analysis is suitable for investigating the deep common roots of these optimization
problems seemingly independent at the first glance.

These lecture notes contain the invited talks of the meeting above, whose aim was to give an
opportunity for promoting the exchange of ideas and for stimulating the interaction among various
branches of optimization. The reader can find articles among others on gradient methods, homo-
genization problems in mechanics, Lagrange multipliers, equilibria in the theory of games, recent
progress in the calculus of variations and optimal control problems and stability analysis in opti-
mization.

L. Hatvani (Szeged)

15¢
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Oscillation Theory, Compatation, and Methods of Compensated Compactness. Edited by Con-
stantine Dafermos, J. L. Ericksen, David Kinderlehrer, and Marshall Slemrod (The IMA Volumes
in Mathematics and Its Applications, 2), IX+395 pages, Springer-Verlag, New York-—Berlin—
Heidelberg—London—Paris—Tokyo, 1986.

This volume is the proceedings of the Workshop held under the same title in the Institute
for Mathematics and its Applications (University of Minnesota). The Workshop was an integral
part of the 1984--85 IMA program on Continuum Physics and Partial Differential Equations.
The subject-matter of the conference was the treatment of nonlinear hyperbolic systems of con-
servation laws, which is the most important problem of continuum mechanics. Both the analytical
and numerical sides were emphasized, and special attention was paid to the new ideas of compensated
compactness and oscillation theory. The proceedings contain articles among others on the non-
linear Schrodinger equation, total variation dimishing schemes, the weak convergence of dispersive
difference schemes, the Korteweg de Vries equation, nonlinear geometric optics, commutation
relations, and the interrelationship among mechanics, numerical analysis, compensated compact-
ness and oscillation theory.

L. Hatvani (Szeged)

Pappus of Alexandria, Book 7 of the Collection, Edited with translation and commentary by
Alexander Jones, in two Parts, with 308 Figures (Sources in the History of Mathematics and Phys-
ical Sciences, 8), X+748 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986.

Pappus of Alexandria flourished about 320 A.D. and had the opportunity to read all the books
of the preceding ages in the liberary. To help the forthcoming generations in studying the works’
of the famous Greek mathematicians and astronomers, he has written detailed commentaries. If
he thought a proof of a theorem too difficult, then he inserted a lemma to make it easier, and if an
author considered only one of the possible cases, then Pappus supplied with similar proofs the
remaining cases. We know the content of several Greek works from his commentaries only.

One of his most famous works is the Collection, which contains eight books and preserved
in a tenth-century manuscript, Vaticanus gr. 218. This is defective at the beginning and end. We have
lost (in Greek) Book 1, the first part of Book 2, and the end of Book 8. The Collection has often
been regarded as a kind of encyclopedia of Greek mathematics, a compendium in which Pappus
attempted to encompass all the most valuable accomplishments of the past.

Book 7 of the Collection is a companion to several geometrical treatises, which were supposed
to equip the geometer with a “special resource” enabling him to solve geometrical problems. More
precisely, they were to help him in a particular kind of mathematical argument called “analysis”,
which is a kind of reversal of the usual “synthetic” method of proof and construction.

In Part I we can read an Introduction: Pappus and the Collection, containing historical and
textological remarks, an Introduction to Book 7, and the Greek text of Book 7 with a fresh English
translation due to the editor.

Part 11 contains three essays on lost works that Pappus discusses: The Minor Works of Apol-
lonius, Euclid’s Porisms and The Loci of Aristaeus, Euclid and Eratosthenes. This part contains a
general and a Greek index and the figures to the text.

We warmly recommend this valuable work to everybody who is interested in ancient mathe-
matics.

Lajos Klukovits (Szeged)
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H.-O.Ifeitgen—P. H. Richter, The Beauty of Fractals, XII 1199 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York—Tokyo, 1986.

Y.

The theory of fractals is a rapidly developing part of mathematics nowadays. Mandelbrot’s
work indicated the turning point and his famous book aroused both scientists’ and nonscientists’
interest in fractals. The theory, besides the theoretical interest in itself has practical importance
and the computer-generated colour pictures of fractals have aesthetic value, The authors aim was
to unite these three aspects of fractals.

The book starts with tli‘é essay “Frontiers of Chaos” which, without any mathematical rigour,
explains the background to the non-specialist. This is followed by eight special sections, each of
which corresponds to a part of the essay and completes the topic considered there.

In the first special section the authors analyse the Verhulst dynamics which is a population
growth model with one controlling parameter: x,,,=(1+4r)x,—rx,. Depending on the choice
of the parameter r, the system may be convergent, periodic or, surprisingly, “chaotic”. This “deter-
ministic chaos” has become an important idea and directed the attention to aspects of complex
analytical dynamical systems. Fatou and Julia extensively studied these processes during the first
World War. In the second special section the definition and basic properties of Julia and Fatou
sets are collected without proofs but with complete references for the interested readers. The works
of Julia and Fatou “remained largely unknown, even to mathematicians, because without com-
puter graphics it was almost inpossible to communicate the subtle ideas”. They characterized
the Julia set, which is the set of initial values for which the process behaves chaotic, in two ways.
These results make the computergraphical generation of Julia sets possible and their properties
become easy by looking at these pictures. This enables us “thinking in pictures” and the experi-
mental computer results can help in arriving at new discoveries and conjectures. The philosophical
contents of this kind of unity of science and art is discussed in detail in the essay. The third special
section contains Sullivan’s famous classification theorem of the components of the Fatou set. The
authors give several examples from physics, biology and other fields to show that the quadratic
dynamical systems have special importance. (From the dynamical point of view these are equiv-
alent to the processes generated by the polynomials p,(z)=z%+c). From the general theory of
Fatou and Julia it follows that the Julia set in this case is either connected or a Cantor set. Mandel-
brot defined and investigated the set of ¢ values for which the corresponding Julia set is connected.
This strange set is named after him today. The fourth special section is devoted to the Mandelbrot
set and an up-to-date list of known results and related problems are presented. When ¢ is wandering
in a component of the interior of the Mandelbrot set then the corresponding Julia set does not
change topologycally but at branch points qualitative changes occur and crossing the boundary
yields the most dramatic one, the Julia set becomes a Cantor set. This “transition from order into
chaos” phenomenon is one of the central questions treated in the essay. In the fifth section the rela-
tionship between two-dimensional electrostatistics and quadratic processes are discussed. Potential
theory is applied to obtain additional information about the structure of fractals. The maps con-
tained in the book were coloured by calculating equipotential lines. Calculation of field lines is
usually hard but in the case of the Mandelbrot set an efficient method, the Hubbard trees, is pres-
ented. In the next three special sections the Newton method for the complex and for the real case
and a discrete Volterra—ILotka system are analyzed from the dynamical point of view. Surprisingly,
the pictures of fractals in the complex and real cases are different. In the authors opinion the former
are in baroque style and the latter are more modern shapes, and they state that something must be
hidden behind this fact.

The second essay “Magnetism and complex boundaries” is an intuitive outline of a possible
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explanation of phase transition on the ground of the fractals. The next two special sections contain
the physical and mathematical details.

The book contains papers of four invited contributors, the most distinguished experts of
the field. B. Mandelbrot reports on the way that has led him to the discovery of the Mandelbrot
set. A. Douady presents an outline of the known results and unsolved questious. The physicist
G. Eilenberger describes the symbolic meaning of what the authors’ pictures may have within
‘the changing comprehension of nature. H, W. Franke, one of the pioneers of computer graphics,
reports on his own experiences and draws a number of inferences from them.

Thereisa “Do it yourself” section at the end of the book. This contains some hints for interested
readers who want to try to generate pictures on their own computer. The presentation of the book
is nice, it contains 88 really beautiful pictures. The book is recommended to anybody, from pure
mathematicians to the layman, who is interested in fractals.

J. Kincses (Szeged)

R. Michael Range, Holomorphic Functions and Integral Representations in Several Complex
"Variables (Graduate Text in Mathematics), XIX +386 pages, Springer-Verlag, New York—Berlin—
Heidelberg—Tokyo, 1986.

“The subject of this book is Complex Analysis in Several Variables. This text begins at an
elementary level with standard local results, followed by a thorough discussion of the various fun-
damental concepts of” complex convexity “related to the remarkable extension properties of holo-
morphic functions in more than one variable. It then continues with a comprehensive introduc-
tion to integral representations, and concludes with complete proofs of substantial global results
on domains of holomorphy and on strictly pseudoconvex domains in C", including, for example,
C. Fefferman’s famous Mapping Theorem.”

The book, written in a lucid style and offering the reader a wealth of material, is excellent for
courses and seminars or for independent study. Much of this material was not readily accessible
and the inclusion of such topics greatly enhances the value of the book. The most important pre-
requisities are: calculus in several real variables, complex analysis in one variable, Lebesgue measure
and the elementary theory of Hilbert and Banach spaces and some basis facts of point set topology
and algebra. '

A good book has some characteristic features which run through it. In this work integral
representations are the principal tools in developing the global theory. This presentation has ssveral
advantages. For example, as the author writes, it helps to bridge the gap between complex analysis
in one and in several variables, it directly leads to deep global results and concrete integral representa-
tions lend themselves to estimations. The work presents the main developments of the last twenty
“years concerning integral representations. One of the other characteristic features of the book is
the constant presence of historical comments. In the light of these comments the new notions and
“results become more natural and understandable. This is the most attractive peculiarity of the
"book for the reviewer. (One of the particularly valuable gems can be found at the end of Ch.IV.
- on the history of integral representations.) A further remarkable feature of this book is that it con-
“tains a relatively large number of exercises ranging from the routine to the very advanced ones.

"This is particularly important since the subject abounds in abstract theorems and has only a few
worked examples.
: L. Pintér (Szeged)
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Patrick J. Ryan, Euclidean and non-Euclidean Geometry. An Analytic Approach, XVII+215
pages, Cambridge University Press, Cambridge—London—New York—New Rochelle—Mel-
bourne—Sydney, 1986. . :

Teachers of geometry can find nowadays some good text-books on Euclidean and non-Euclidean
plane geometry which can serve as an introduction to combinatorial, algebraic or topological theo-
-ries of transformation groups, to direct methods of non-Euclidean spaces and of the differential
geometry of homogeneous manifolds. Since computational-analytical aspects of geometric theories
have increasing importance in the applications in mathematical physics and computer graphics,
there is a demand on an up-to-date analytical introduction to plane geometry. The present book
gives a very well-written and useful treatment of this topic. It contains the fundamentals of
Euclidean, spherical, elliptic and hyperbolic plane geometry using the methods of isometric, affine
and projective transformation groups. At the same time it provides an arsenal of computational
techniques and a certain attitude toward geometrical investigations, It aims to give an appropriate
background for teachers of high school geometry and to prepare students for further study and
research.

The book is self-contained for upper-level undergraduate mathematics students, the nec-
essary knowledge is summarized in appendices. Only a familiarity with linear algebra and ele-
mentary transcendental functions is expected from the reader. The material is illustrated with many
exercises, requiering specific numerical computations or supplying proofs that have been omitted.
Some of them extend the results proved in the text.

The first main part is, of course, Euclidean plane geometry (Historical introduction, Plane
Euclidean geometry, Affine transformations in the Euclidean plane, Finite groups of isometries
of E?). The second part contains: Geometry on the sphere, The projective plane P2, Distance geom-
etry on P2. The last chapter is: The hyperbolic plane.

The book gives a very good basis for high school geometry teaching and a good introduction

for graduate work in differential geometry or computer graphics.
Péter T. Nagy (Szeged)

Lewis H. Ryder, Quantum Field Theory, X 4443 pages, Cambridge University Press, Cam-

bridge—London—New York—New Rochelle—Melbourne—Sydney, 1985.

= For a long period, quantum field theory had meant only the quantum theory of electromagnetic
fields. Other forces of nature as the weak and strong nuclear interactions resisted the formalism
that proved to be so successful in the description of electromagnetism. The principle of local gauge
invariance has overcome the difficulties, and the prominent achievements of gauge field theories
of the seventies have reached the textbook level by now.

To find a good balance however, in a single book, between the several parts of this huge sub-
ject is not an easy task. This is the more so if among the author’s aims is that the presentation should
beintelligible by a graduate student. The Quantum Field Theory by L. Ryder has solved this problem
succesfully. To read this volume it is enough to be familiar with quantum mechanics and special
relativity. The text leads us with great pedagogical skill, step by step from elementary field theory
to the renormalization of gauge fields. The emphasis of the presentation is on the path integral
method. Besides introducing the fundamentals of quantum field theory, the author acquaints-the
reader with some modern mathematical tools as well. One may regret that certain more recent
concepts (e.g. supersymmetry) are not found in the book, but the author probably wanted to include
only those results that have more or less experimental basis. .

The book is very well suited for teaching and studying this subject, and brings even the beginner

close to present day field theory.
M., G. Benedict (Szeged)
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M. Shirvani—B. A. F. Wehrfritz, Skew Linear Groups (London Mathematical Society Lecture
Note Series, 118), 253 pages, Cambridge University Press, Cambridge—New York—Mel-
bourne, 1986.

Skew linear groups arise naturally as a generalization of linear groups, by omitting the require-
ment of the commutativity of the corresponding field. One of the main problems in passing from
linear groups to skew linear groups is that, at least presently, division rings are rather difficult to
handle, The investigation of skew linear groups is a fairly young branch of algebra, in comparison
with the theory of linear groups, however, in recent years it has expanded very rapidly. This book
is the first monograph providing a systematic treatment of a number of results that were available,
till now, in research papers only.

In Chapter 1 the basic concepts such as irreducibility, absolute irreducibility and unipotence
are reviewed in the context of skew linear groups, and some groups with faithful skew linear repre-
sentations are constructed. Chapter 2 discusses finite (and locally finite) skew linear groups, including
the description of finite subgroups of division rings of characteristic zero, and the theorem that
finite skew linear groups over division rings of characteristic zero have large metaabelian normal
subgroups. Chapter 3 is devoted to skew linear groups over locally finite-dimensional division alge-
bras, with the emphasis laid on nilpotence and solubility. In Chapter 4 the authors consider skew
linear groups over division rings generated by a central subfield and a polycyclic-by-finite sub-
group. Chapter 5 contains a detailed study of normal subgroups of absolutely irreducible skew
linear groups. In Chapter 6 the book concludes with an application showing how the theory of
skew linear groups may shed light on some known results on group rings.

To help the reader, the authors give a list of prerequisites for each chapter, a detailed notation
index, and author and subject indices. This monograph is warmly recommended as a textbook
for those wishing to get acquainted with the subject, and as a reference book as well.

Agnes Szendrei (Szeged)

Michael Shub, Global Stability of Dynamical Systems, XIT +150 pages, Springer-Verlag, New
York—Berlin—Heidelberg—London—Paris—Tokyo, 1986.

The most characteristic property of an equilibrium position in a mechanical system is its
stability or instability. The equilibrium position is stable if during its motion the system remains
arbitrarily near the equilibrium state provided that it was near enough at the initial moment. Obvi-
ously, only the stable equilibria can be realized in practice, so the research for conditions of stability
have started at the early stages of mechanics and mathematics. Later on the investigations have
been extended to general dynamical systems and have created the Lyapunov Stability Theory.
In this theory it is always assumed that the system itself is under ideal circumstances, i.e. it cannot
be disturbed by outside effects. However, each system is under the action of certain small undefinable
perturbations. Therefore, it is clear that one can expect only those properties of the model to be
realized in reality which are not too sensitive to small changes in the model. In 1937 Andronov
and Pontryagin introduced the concept of robustness or roughness of a system (nowadays it is
called structural stability), which means that the topological structure of the trajectories does not
change under small perturbations of the system. If we observe the trajectories only in a neigh-
bourhood of a point then we talk about local stability. If the trajectories are observed on the whole
manifold then the stability is global.

The central objective of the modern theory of Dynamical Systems is the description of the
orbit structures of vector fields on a differentiable manifold. There exist, however, fields with
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extremely complicated orbit structures, thus one has to restrict the study to a subset of the space’
of vector fields. It is desirable that this subset should be open and dense, or as large as possible,
and it should consist of structurally stable vector fields with simple enough orbit structure so that
one could classify them. Due to the celebrated Hartman—Grobman Theorem, this program has
been completely solved if the stability and the equivalence are ment locally.

To complete the above program in the global sense is much more difficult. As it was proved
by Smale, on manifolds of dimensions higher than two the structurally stable fields are not dense,
and the structure of the trajectories and their limit sets even for the stable fields can be extremely
complicated. Their description is still an active area of research.

Shub’s book gives an excellent account on the results of this area, most of which were available
only in articles so far. The reader can get acquainted the central concepts, theorems and examples
of the global theory of dynamical systems such as filtration, hyperbolic invariant sets, change recur-
rence, stable and center manifold theorems, Smale’s Axiom A, symbolic dynamics, Markov parti-
tions, Q-stability theorems, Smale’s horseshoe and the solenoid. It is highly recommended to any-
one interested in dynamical systems and stability theory.

L. Hatvani (Szeged)

Gabor J. Székely, Paradoxes in Probability Theory and Mathematical Statistics (Mathematics
and its Applications), XII+250 pages, Akadémiai Kiad6, Budapest and D. Reidel Publishing
Company, Dordrecht, 1986. :

This book is very unusual and, as far as I know, is unique in its kind. 1t endeavours “to show
how the rapidly progressing and widely used branch of knowledge of the mathematics of random-
ness has developed from paradoxes”. While this is a bit too much to be hoped for as it flaunts, and
would be the greatest paradox of all had the author succeeded in doing so, his paradoxical vision
is certainly a valid one and interesting. The result is a most enjoyable reading which is worth much
more then two dozens of half-thought dishonest “introduction to probability and statistics” books
published in so great a number nowadays.

Chapter 1 contains the discussion of 12 paradoxes or families of paradoxes from classical
probability theory, while Chapters 2, 3 and 4 expose and treat 12, 6 and 12 paradoxes or families
of paradoxes in mathematical statistics, the theory of stochastic processes and the foundations of
probability theory, respectively. The discussion of each paradox is devided into five parts: the
history, the formulation and the explanation of the paradox, remarks and references. Further-
more, the four chapters end, respectively, with 15, 16, 8 and 8 of what the author calls quickies
which either did not fit into the main line of thought of the book to be discussed in such detail as
the numbered paradoxes, or are adjecant curiosities, strange facts, gems.

The history and remark sections and the quicky passages contain a lot of interesting historical
and cultural information, narrated in the easy, chatting style of the author, together with stories,
anecdotes and gossip. Instead of fooling around for pages on end to say the same thing politely,
for example, he is not afraid of very simply stating that “R. A. Fisher hated K. Pearson”. Or, while
discussing the paradox of the almost sure eventual extinction of a critical Galton—Watson process,
he proposes an interesting system for the inheritance of family names to avoid the replacement of
“nice old family names” by “more common dull ones like Smith, etc.”

The book makes an easy and recreational reading but can be used more seriously as a sup-
plementary reading to almost any course in probability and statistics. In fact, my math major stu-
dents like the original Hungarian edition, of which the present English one is a revised and updated
version. '

Sdndor Csirgd (Szeged)
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Audrey Terras, Harmonic Analysis on Symmetric Spaces and Applications I., 341 + XIT pages,
Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1985.

Harmonic analysis is one of the most useful areas of mathematics which made a deep influence
on several other fields of mathematics and physics. The book demonstrates exactly this usefulness
by presenting many applications in number theory, statistics, medicine, geophysics and quantum
physics. This is the first volume of a series dealing with the harmonic analysis of the three classical
geometries (euclidean, spherical and hyperbolic).

Besides the standard development of euclidean Fourier analysis we learn in the first chapter
how to use this theory to the solution of the heat equation, to the examination of crystals, as well
as zeta functions of algebraic number fields. In Chapter 2 spherical Fourier analysis is applied
for the study of the hydrogen atom, for the sun’s magnetic field and also for group representations
and Radon transforms. The last chapter is devoted mainly to the fundamental domains of discrete
subgroups of hyperbolic isometries, the Reolche—Selberg spectral resolution and the Selberg
trace formula.

We recommend this excelient text-book to every mathematician, engineer, scientist and applied
mathematician who is interested in harmonic analysis and in its applications.

Z. I. Szabé (Budapest)

The Craft of Probabilistic Modelling: A Collection of Personal Accounts, Edited by J. Gani
(Applied Probability. A Series of the Applied Probability Trust), XIV 4313 pages, Springer-Verlag,
New York—Berlin—Heidelberg—Tokyo, 1986.

This is the first volume of the new series in the braces above with series editors J. Gani and
C. C. Heyde. The beginning is indeed very nice. The volume contains nineteen essays from leading
probabilists who, among other things, have distinguished themselves in applied probability model
building. Each of the essays are preceded by a short biography. Some of the essays concentrate
on the models themselves that the authors have built, others are entirelly autobiographical, while
the rest is a combination of the two. Some of the writings are very dry, some are exceptionally
lively. I don’t single out any of the essays for special mention here because more then half of them
are very close to my heart for one reason or other. In the grouping of the editor, the contributors
are the following. Early craftsmen: D. G. Kendall, H. Solomon, E. J. Hannan, G. S. Watson;
The craft organized: N. T. J. Bailey, J. W. Cohen, R. Syski, N. U. Prabhu, L. Takacs, M. Kimura,
P. Whittle, R. L. Disney; The craft in development: M. F. Neuts, D. Vere-Jones, K. R. Parthasa-
rathy, M. Iosifescu, W. J. Ewens, R. L. Tweedie. ;
The book is a very enjoyable reading.
Sdndor Csorgd (Szeged)

John B. Thomas, Introduction to Probability (Springer Texts in Electrical Engineering), X +247
pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. ’

This is a textbook designed for an introductory one-term course for undergraduate or beginning
graduate students majoring in engineering, the social sciences or business administration. The
only prerequisite is a solid standard calculus course. Contrary to the practice followed by dozens
of texts with the same aim, the present one introduces the basic notions and formulates the cor-
responding theorems with very great care and rigour. Of course, not all the proofs can be given
by formal arguments in this framework. These are someties substituted by very nice heuristic explana-
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tions. There is a great number of well-chosen, illustrative examples and the eight chapters (Introduc-
tion and preliminary concepts, Random variables, Distribution and density functions, Expecta-
tions and characteristic functions, The binomial, Poisson, and normal distributions, The multivariate
normal distribution, The transformation of random variables, Sequences of random variables)
each end with a good set of homework problems. The trend is towards engineering applications.
Six short appendices on integration and matrix theory help the student. Instructors of courses of
the type noted above will like the book. A clean and honest work.

Sdndor Csorgd (Szeged)
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