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Jf seudomoduiar lattices and continuous matroids 

A. BJÓRNER*' and L. LOVÁSZ 

Dedicated to the memory of András Huhn 

0. Introduction 

If (E, Jl) is a linear matroid (i.e., represented by a subset of vectors in a linear 
space) then (E, M) can be embedded in the full linear matroid (the matroid formed 
by all vectors in that linear space) in a natural way. The most significant property 
of the full linear matroids is that the lattice of their flats is modular. (In fact, apart 
from direct sums, loops and parallel elements and the non-desarguesian projective 
planes, this property characterizes full linear matroids.) 

Other classes of matroids like graphic, algebraic and transversal matroids also 
have natural "full" members, which are, however, non-modular. For the case of 
full algebraic matroids, INGLETON and MAIN [7] proved that the following property 
(strictly weaker than modularity) still holds: any three lines such that any two 
are coplanar, but all three are not coplanar, have a point in common. LINDSTROM 
[11]—[13] observed that this fact is a basic property of full algebraic matroids, 
and used it to prove that several other geometric results on projective spaces, e.g. 
Desargues's Theorem, also carry over to full algebraic matroids. 

DRESS and LovÁsz [4] proved various generalizations of the Ingleton—Main 
Lemma, and showed that one of them suffices to extend the minimax formula for 
matchings in linear matroids (LovÁsz [14]) to algebraic matroids. It was observed 
that full graphic matroids (or, equivalently, partition lattices) and full transversal 
matroids also have this property. Another related property, the existence of "pseudo-
intersections", was established for the full algebraic matroids. 

Modularity of the subspace lattice of linear spaces also plays a crucial role in 
a contraction, due to VON NEUMANN [16], of "continuous geometries". To obtain 
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these, one embeds the subspace lattice of the n-dimensional linear space over some 
field F in the subspace lattice of the ng-dimensional linear space over the same 
field, so that any flat x of rank r(x) is mapped onto a flat of rank q • r(x). Such a 
"stretch embedding" which preserves meet and join can be constructed using the 
modularity of the lattices. 

A construction of a "continuous partition lattice" based on stretch embeddings 
was given by BJORNER [2]. This construction depends on the fact that partition 
lattices have sufficiently many modular elements. A general scheme to obtain con-
tinuous analogues of sequences of geometric lattices was also outlined: the scheme 
depends on the existence of "stretch embeddings" between these lattices. 

The main result of this paper is that the existence of "pseudointersections" in 
suitable sequences of geometric lattices can be used to construct stretch embeddings 
and thereby continuous analogues. In particular, we construct continuous transversal 
geometries, continuous algebraic geometries over any field, and obtain a new theo-
retical explanation for the existence of the continuous partition lattice. 

Semimodular lattices with pseudointersections, which we call pseudomodular, 
seem to be worth studying even without an eye on continuous geometries. We shall 
show that such lattices arise in the study of antimatroids (abstract convexity spaces). 
In fact, an antimatroid with Caratheodory number 2 has a pseudomodular lattice 
of feasible sets. 

1. Pseudomodular lattices 

In this paper we shall assume some modest familiarity with lattices and matroids. 
For details concerning these notions see BIRKHOFF [1] and WELSH [17], respectively. 

Let L be a semimodular lattice. We assume without further mention that all 
semimodular lattices considered have finite rank. Let r{x) denote the rank function 
of L. For each x, y£L, we set 

Px,y = {z^y: r{xVz)-r(z) = r ( x V j ) - r ( » } . 

Note that it would suffice to require that r(x\/z)—r(z)^r(xVy)—r(y) in this 
definition, since the reverse inequality is always true by the submodularity of the 
rank function. 

This set lies in the interval [xAy,y]. To see this, let z£Px y. Then z^(x\Jz)Ay 
and hence by the submodularity of the rank function, 

r(z) ^ r((xV z)Ay) ^ r(xVz)+r(y)-r((xVz)Vy) = 

= r(xVz)+r(y)-r(xVy) = r(z). 

So z=(xVz)Ay^xAy. 
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Clearly, Px>y is a filter in the interval [xA_y,y], i.e., if z£PXiy and z^u^y 
then u£PXiy. 

If the set Pxy has a unique least element then we call this the pseudointersection 
of x and y and denote it by x~]y. The lattice L is called pseudomodular if every pair 
of its elements have a pseudointersection. 

Note that in general x~\y^ylx (cf. Lemma 1.1 below). Furthermore, the 
existence of a pseudointersection is not a symmetric relation. For an example of 
this, take three pairwise parallel lines in affine 3-space, not all in a plane. Let y 
denote one of these lines and x, the plane spanned by the other two. Then in the 
geometric lattice formed by the points of these lines, x~\y exists but y~[x does not. 

The relationship between the pseudointersection and the (ordinary) intersec-
tion of two lattice elements is illuminated by the following lemma. 

Lemma 1.1. For any two elements x and y in a semimodular lattice L, the 
following are equivalent: 

(i) x and y form a modular pair, i.e., r{x\Jy)-\-r{x!\y)=r(x)+r(y). 
(ii) x~\y exists and x~\y^x. 

(iii) x~]y exists and x~\y=xAy. 
(iv) xAy£Px,y. 

Proof . All implications (i)—(iv)— (iii)-(ii)—(i) are straightforward. 

The following lemma gives some means to verify the existence of pseudointer-
sections. 

Lemma 1.2. For any two elements x and y of a semimodular lattice L, the 
following are equivalent: 

(i) x~\y exists, i.e., Pxy has a unique least element. 
(ii) Px y is closed under meets. 

(iii) If u, v, z£PXiV and z covers u and v, then uAv£PXif. 

Proof . The only non-trivial implication is that (iii)-(i). To verify this, assume, 
by way of contradiction, that a and b are distinct minimal elements of Px,y, and 
choose a and b so that a\!b is as low in the lattice as possible. Let u be an element 
in the interval [a, a\jb] covered by a\Jb and let v be an element in the interval 
[b,a\Jb] covered by a\Jb. Then by (iii), uAv£PXiy. Let c be a minimal element 
of PXiy below uAv, then a\Jc^Su^a\Jb and b\JcSv<a\Jb. Since c is distinct 
from at least one of a and b, this contradicts the choice of a and b. (This lemma in 
fact holds for any filter in any interval of any lattice of finite length.) 

It will be useful to remark that the assertion (iii) in Lemma 1.2 holds auto-
matically if u, v is a modular pair, i.e., if u covers uAv. For, by submodularity 

i* 
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and the definition of Px,y, we have the following: 
1 = r(u)—r(uAv) r(wVx)—r((nAi;)Vx) ^ 

£ r ( z V x ) - r ( W x ) = r(z)-r(v) = 1. 

So equality must hold throughout, and equality in the first inequality means just 
that uAv£PXty. 

Lemma 1.3. Let L be a geometric lattice and x,y(LL. If x~\y exists then 
it is equal to the meet of all z£L such that y covers z and x\Jy covers x\/z. 

Proof . Let ; = A{z: y covers z and y\Jx covers z\'x). Note that the second 
condition on z is equivalent to z£PXty. Hence t£Px y and thus t^x~[y. On the 
other hand, the interval y]=Px,y is a geometric lattice and hence its bottom 
element is the meet of its coatoms. This proves that t=x~[y. 

The existence of pseudointersections can be characterized by the non-exist-
ence of certain configurations in the lattice. Such a result is stated in the following 
theorem. 

T h e o r e m 1.4. Let L be any semitnodular lattice. Thai the following are equiv-
alent : 

(i) L is pseudomodular. 
(ii) Let a,b,c£L, and assume that r(a\Jc)—r(a)=r{b\Jc)—r(b)=r(a\Jb\/c) — 

—r{a\Jb). Then r({a\Jc)A(b\Jc))-r(aAb)=r(a\jc)-r(a). 
(iii) Let x, y, z£L and assume that x covers xAz and y covers yAz. Then 

r{xAy)-r(xAyAz)^\. 
(iv) Let x, y, z, u£L, and assume that u covers x, y and z, and z covers xAz 

and yAz. Then r{xAy)—r(xAyAz)^\. 
(v) Let x, y, z, u£L, and assume that u covers x and y, z^u, and z covers 

xAz and yAz. Then r(xAy)—r(xAyAz)^r(u)—r{z). 

Remark . Property (ii) has the following consequences. Since c^(a\Jc)A(b\Jc), 
it implies that r(c)—r(aAb)Sr(a\/c)—r(a). Also, it follows that a and (a\/c)A(b\/c) 
form a modular pair and aA(a\Jc)A{b\/c)=aAb. Hence, aAc=aA(a\/c)A(b\Jc)A 
Ac—aAbAc. Similarly, bAc=aAbAc. It also follows that aAcSaAb. 

Proof , (i)—(ii): Let d=(a\/c)A(b\Jc). Then a£PdaVb since a\fc=a\Jd and 
a\/b\/c—a\/b\/d, and so r(ayd)-r{a)=r(a\Jb\/d)-r(a\Jb) by the hypothesis 
in (ii). Similarly b£Pi aSlb and hence by the pseudomodularity of L, aAb£Pd oV6. 
This means that r(aAb)\/d)-r(aAb)=r(ayb\Jd)-r(a\Jb). Since (aAb)\Jd-dand 
a\/b\/d—a\/byc, this implies the assertion of (ii). 

(ii)—(iii): We may assume that z=(xAz)\J(yAz); if this is not already the 
case we can just let (xAz)\J{yAz) play the role of z without changing the situation. 



Pseudomodular lattices' and continuous matroids 299 

We may also assume that xAy^z (since otherwise xAy—xAyAz), and that 
x?£y. It follows that xAz^yAz, and x=(xAz)y(xAy), y=(yAz)\J(xAy). Also, 
r(z)<r(zy(xAy))sr(z\Jx)^r(z)+r(x)—r(zAx)=r(z) + l. Hence, z\J{xAy) covers 
z. Now letting a=xAz, b=yAz and c—xAy in (ii), assertion (iii) follows. 

(iii)-(iv) An easy special case. 
(iv)-<-(v): We prove this by induction on r(u)—r(z); (iv) is just the special 

case of (v) when this difference is 1. We may assume that xAyAz^xAy. Let p 
be an element of the interval [xAyAz,xAy\ covering xAyAz. Then clearly p^z 
and so p-^xAz and p^yAz. Hence v=z\Jp covers z by submodularity and 
similarly, (zAx) \Jp covers zAx and {zAy)\Jp covers zAy. Clearly (zAx)V/>= 

and hence vAx=(zAx)\Jp. Hence vAx is covered by v and similarly, 
vAy is also covered by v. Applying (iv) with v, vAx, vAy and z in place of u, x, y 
and z we obtain that 

r(xAyAv)-r(xAyAz) ^ 1. 

Applying the induction hypothesis with u, x, y and v in place of w, x, y and z we 
obtain that 

r{xAy) — r(xAyAv) ^ r(u)—r(v) = r(u)—r(z)— 1. 

This proves (v). 
(v)-(i): We verify Lemma 1.2(iii). Let u,v, z£Px<y, where z covers both u 

and v. Then by the definition of Px,y, z\Jx covers u\jx and v\Jx, and zA(u\/x)=u, 
zA(v\Jx)=v. So (v) can be applied with u\Jx, v\/x, z and z\/x in place of x, y, z 
and u, and we obtain that 

r((ttV*)A(»V*))-r((«V*)A(pVx)Az) ss r (zV*)- r (z) . 

Since, as remarked, (u\Jx)A{v\/x)Az—uAv , this implies that 

r((uAv)Vx)-r(uAv) r((u\lx)A{vMx))-r(uAv) r(zMx)~r(z), 

which proves that uAv£PXty. 

LINDSTROM [13] proved the following generalization of the Ingleton—Main 
Lemma for full algebraic matroids: if a, b and c are three flats such that r{a)— 
=r(b)=r(c)=n, r(ayb)=r(a\lc)=r(b\Jc)=n +1 and r(a\Jb\Jc)=n+2 then aAZ>=' 
=aAc=bAc=aAbAc and r(aAbAc)=n—\. This follows immediately from prop-
erty (iv) in the above theorem. He conjectured that if a, b and c are three flats in 
an algebraic matroid such that r(a)—r(b)=r(c)=n, r{a\Jb)—r{a\jc)=r(b\/c)= 
=n+k and r(a\Jb\/c)=n+2k then aAb=aAc=bAc—aAbAc and r{aAbAc) = 
=n—k. This conjecture follows from the inequality in (ii) easily. 
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2. Examples of psendomodnlar lattices 

In this section we discuss some classes of semimodular lattices which have 
pseudointersections. We start with two obvious examples: 

Example 1. Modular lattices. 

Example 2. Semimodular lattices of length at most 3. 
Next we discuss three families of geometric lattices, (i.e., matroids) which have 

pseudointersections. These are "full" members in their own class (algebraic matroids, 
graphic matroids, transversal matroids) in a very natural way. The "full" linear 
matroids, i.e., linear spaces, have a modular subspace lattice and hence they are 
covered by Example 1. It would be important to understand the structure of those 
classes of matroids which have natural "full" members and why these full members 
tend to be pseudomodular. 

Example 3. Full algebraic matroid lattices. These can be described as fol-
lows: let F and K be algebraically closed fields and FczK. Then the algebraically 
closed subfields of K containing F form a geometric lattice, which we denote by 

The fact that JSP (F, K) has pseudointersections was shown by DRESS and 
LovAsz [4]. For the sake of completeness, we describe the simple construction of 
the operation "1. So let Zand Ybe two algebraically closed fields with FczX, Yc.K. 
Let {*!, ..., xm} be a transcendence basis of X over F. Consider the ideal / of all 
polynomials over Y in m variables which are satisfied by (x l5 ..., xm), and a basis 
g±, ..., qN of this ideal. We may assume that each qt has at least one coefficient 
that is equal to 1. Then the algebraically closed subfield T of Y generated by the 
coefficients of qx, ..., qN is the pseudointersection of X and Y. 

Example 4. Partition lattices, i.e., circuit matroids of complete graphs. We 
show that the lattice of partitions of a set E has pseudointersections, using 
Lemma 1.2(iii). Assume that u, v aLd z are three partitions in PXiy, and that z covers 
both u and v, i.e., both u and v arise from z by splitting a partition class into two. 
The fact that u,v,z£Pxy implies that r{x\Jz)—r{z)—r{x\/u)—r{u)—r{x\lv) — 
—r(v)=r(xyy)—r(y), and hence r(x\/u)—r(x\/v)=r(x\/z)—l. We want to show 
that r(x\/it)-r(x\/(u\/vj)=r(u)-r(uAv). 

By the remark after Lemma 1.2, the only non-trivial case to consider is when 
u and v do not form a modular pair, i.e., when they arise from z by splitting the 
same class A in two different ways A'U\JA^ and A'VUA^ so that the intersections 
£1=A'unA'v, B2 = A'ur\A", B3=A';f]A'v and B^A"UC\A"V are all non-empty. So 
r(u)—r(uhv)=2, and submodularity implies that r(x\/u)—r(x\/(uAv))^2. Now 
if r(x\/u)—r(x\/(uAv))^i then the sets Z?l5 B3 and Bt cannot belong to dif-
ferent classes in x\](uAv) and hence there exists a sequence ..., xk of elements 
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of 2? such that x^B^ xnZBj (i^j), no other member of the sequence belongs to A, 
and any two consecutive members of the sequence are either in one class of x or 
in one class of ut\v. Without loss of generality we may assume that BiCiA'u and 
BjCiA". But then Bt and B} must belong to the same class of x\Ju, which is a 
contradiction. 

Example 5. Full transversal matroids. The full transversal matroid 5~Ji(r) 
of rank r is defined as follows. First we construct a bipartite graph G. Let S be a 
set with r elements; this will be one of the color classes. For each subset S'QS, 
we take denumerably infinitely many new vertices and connect them by edges to 
the vertices in S'. The set T of these new vertices will be other color class. Now 
STJH?') is defined as the transversal matroid induced by G on T. So a set T'QT 
is independent iff G contains a matching covering T'. 

Using Konig's Theorem, it is easy to show that the flats in 2TJi(r} have the 
following structure: take a set AQS, and also a set BQT such that every non-
empty subset B'QB has at least 15'! +1 neighbors in S—A. Let Q(A) denote 
the set of points X in Tsuch that all neighbors of x are in A. Then F(A, B) = Q(A){JB 
is a flat of rank in STJt(r), and every flat is of this form. 

The pseudomodularity of full transversal matroids (in fact, of a much larger 
class of transversal matroids) will follow from the results in the next section. 

Example 6. Antimatroids with Caratheodory number 2. Antimatroids were 
introduced by EDELMAN [5] and JAMISON-WALDNER [8] as combinatorial abstractions 
of convex sets. For our purposes, the following definition will suffice. Let E be a 
finite set and IF, a family of subsets of E with the following properties: 

a) if X<i& and Y f ^ then XU Y<i&\ 
b) if Xi.'F, then there exists an element x£X such that X—x$.!F. 
Then the pair (E, 3F) is called an antimatroid. The members of ¡F are called 

feasible sets, their complements are called convex sets. Since the family of convex 
sets is closed under intersection, we can define the convex hull of any subset X of 
E as the intersection of all convex supersets of X. These notions share many of 
the combinatorial properties of convex sets in the usual sense. We shall need the 
following two elementary facts: (I) if X and Y are feasible and Y<tX, then there 
exists an element y€ Y—X such that X\Jy is feasible; (II) p is in the convex hull 
of G if and only if every feasible set containing p has a non-empty intersection 
with G. 

We define the Caratheodory number of an antimatroid as the least integer k 
with the following property: whenever an element p is contained in the convex hull 
of a set G, it is also contained in the convex hull of some subset G'czG with \G'\^k. 
In the language of KORTE and LovAsz [9], the Caratheodory number is one less 
than the maximum size of a circuit of the antimatroid. For various properties of 
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antimatroids, see also EDELMAN and JAMISON [6], KORTE and LOVÁSZ [10], BJÓRNER, 

KORTE a n d LOVÁSZ [3]. 

The feasible sets of an antimatroid of form a semimodular lattice £C(E, ár) 
under ordinary inclusion. More strongly, £f(E, J5") is locally free (i.e., the elements 
covering any given element generate a Boolean subalgebra) and every locally free 
semimodular lattice has a unique representation as the feasible set lattice of an 
antimatroid (EDELMAN [5]). The rank of any element X^SF in this lattice is just 
its cardinality. 

It was proved by KORTE and LOVÁSZ [9] that if the Caratheodory number of 
an antimatroid is 1 then its feasible sets are the ideals of a poset and hence the lattice 
is distributive (and therefore modular). Conversely, it is easy to see that for all 
other kinds of antimatroids, the lattice ¿£(E, is non-modular. 

We now prove that if (E, ¿F) has Caratheodory number at most two then 
¿£(E, is pseudomodular. 

Let X and Y be any two feasible sets. Then by the definition of the rank and 
of Px y, we have that 

pX Y = (Ze^": XC[Y c Z c T } . 
To show that X and Y have a pseudointersection, it suffices to verify the following 
(by Lemma 1.2(iii)): let Z, Z—u and Z—v be feasible sets with Xf)YaZ—u, 
Z—v and Z<zY, and let W be the largest feasible subset of Z—u—v; then 
XCi Fez W. Suppose that this is not the case, then there exists an element 
pe(Xf)Y)-W. Let G={geE- W: WU{g}e^}. Then p is in the convex hull 
of G (this follows from properties (I) and (II) of antimatroids) and hence, by the 
definition of the Caratheodory number, we have a pair {q, r}czG such that p is 
in the convex hull of {q, /•}. Since p is an element in the feasible set Z—u, it fol-
lows that one of q and r must belong to Z—u. But none of q and r can belong 
to Z—u—v since this would contradict the choice of W. Hence v must be one of q 
and r. Similarly, u must be one of q and r. But then X is a feasible set containing p 
but not q and r, which is a contradiction. 

There are several important classes of antimatroids with Caratheodory num-
ber 2. We mention just a few: 

Example 6a. Let E be any poset and let the convex sets be those sets which 
contain, along with any two comparable elements x, y, the whole interval [x, j>]. 

Example 6b. Let E be the vertex [edge] set of any tree T and let the convex 
sets be the vertex [edge] sets of subtrees. 

Example 6c. Let E be any finite set in R2 and let the convex sets be those 
subsets which contain, along with any two elements x and y, every point of E in 
the region of the plane bounded by the segment xy and by semilines pointing "up-
wards" from x and y. 
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3. Constructions preserving pseudomodularity 

We show that some standard operations on semimodular lattices preserve 
pseudomodularity. 

3.1. Direct product. 

3.2. Truncation. For a semimodular lattice L and integer fcsl, let Lk— 
= {xdL: r(x)<k or x= l} . Then the truncated lattice Lk is again semimodular, 
and it is easy to see that pseudomodularity is also preserved. The pseudointersection 
xlky 0 ^ 1 ) in Lk is given by 

_ i x l y , if r(x\/y) ^k in L, 
k y ~ Iy, otherwise. 

A less trivial operation preserving pseudomodularity is the following: 

3.3. Principal extension. Let I be a semimodular lattice and w£L— {0}. The 
principal extension of L with respect to w is defined on the set 

L' = L{J{y+p\ y£L, r(jVw) ^ r ( j )+2}. 

Here y+p denotes a new element associated with the old lattice element y. The 
ordering is defined as before on the old elements, and by 

x ^ y + p iff x ^ y , 

x + p ^ y + p iff x ^ y , 

x + p ^ y iff x V w ^ ^ 

for x, y£L. In particular it follows that 0+/j , which we denote shortly by p, is 
an atom and more generally, x is covered by x+p whenever the latter exists. One 
can verify that L\ with this partial ordering, is a semimodular lattice, containing 
£ as a sublattice. 

(This construction is best known for a geometric lattice, i.e., the lattice of flats 
of a matroid. Then the principal extension of L with respect to w means creating 
a new point p of the matroid which is "in general position" on the flat w.) 

Theorem 3.4. A principal extension of a pseudomodular lattice is again pseudo-
modular. 

Proof . The proof is more-or-less straightforward; nevertheless, we include it 
here for completeness. Let L be a pseudomodular lattice and w£L—{0}. Let V 
be the principal extension of L with respect to w.. Observe that the class of "new", 
elements is closed under intersection: (x+p)A(y .+p)=(xAy)+p , and so is of 
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course the class of "old" elements. Further, if x is "old" and y+p is "new" then 
jcA(y+p)=xAy if p£x, and xA(y+p)=(xAy)+p if p^x. 

We verify that condition (iv) of Theorem 1.4 holds for L'. Let x, y, z and u 
be elements of Li as in (iv). We may assume that they are distinct and that xAyAz^ 
?±xAy. The argument will be divided into several cases depending on the distribu-
tion of "new" elements among x, y, and z. 

Case 1. x, y and z are "old". Then u also must be "old", and we know that 
(iv) is valid in L. 

Case 2. x=x0+p, y—y0+P and z=z0+p are "new" elements. Then condi-
tion (iii) applied to x0, y0 and z„ within L, implies (iv) for x, y and z. 

Case 3. z=z0+p, and x, y are "old". Then we have the following subcases. 

Subcase 3.1. p^x, y. Then xAz is an "old" element covered by z and hence, 
xAz=z 0 . Similarly, yAz=z0 and the assertion is obvious. 

Subcase 3.2. p^x but p^y (say). Then as before, j A z = z 0 and hence 
xAyAz—xAz0. Since xAz=(xAz0) +p, it follows that 

r(xAy) s r ( x ) - l = r(xAz) = r(xAz0) + l = r(xAyAz) + l, 

which proves (iv). 

Subcase 3.3. p^x,y. Then zAx=(z0Ax)+p is covered by z=z0+p by 
hypothesis, and hence z0Ax is covered by z0. Similarly, z0Ay is covered by z0. 
Since x is an "old" element above p, and u covers x, u must also be "old". Hence 
u, x, y and z0 are elements of the old lattice L satisfying the conditions of Theo-
rem 1.4 (v), and hence by the pseudomodularity of L, we obtain that 

r{xAy)-r(xAyAz0) s r(w)-r(z0) = 2. 

Since xAyAz=(xAyAz0)+p, again (iv) follows. 

Case 4. x=x0+/>, and z is "old". By symmetry this also handles the case 
when y is "new" and z is "old". 

Subcase 4.1. p^z. Then xAz is an "old" element covered by x and hence 
xAz=x0. So xAyAz=x0Ay. Now xAy is either x0Ay or (x0Aj) +p, which 
proves (iv). 

Subcase 4.2. pS.z and y is "old". Then xAz=(x0Az)+p is covered by x=x0+p 
by hypothesis, and hence x0Az is covered by x0. We can apply Theorem 1.4 (iii) 
to the "old" elements x0, y and z and obtain that r(x0Ay)—r(x0AyAz)^l. Now, 
if p^y then xAyAz=(x0AyAz)+p and xAy=(x0Ay)+p-, if p^y then xAyA 
Az=x0AyAz and xAy=x0Ay. In either case, (iv) follows. 
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Subcase 4.3. p^z and y—y0+p. Then, as in the preceding case, x0Az is 
covered by x0. Similarly, y0Az is covered by y0. Apply (iii) to the elements x0, y0 

and z, and obtain that r(x0Ay0)—r(x0Ay0Az)^l. Now, xAyAz—{x0Ay0Az)+p 
and xAy=(x0Ay0)+p, and we are done again. 

Case 5. x=x0+p, z=z0+p, and y is "old". By symmetry this also handles 
the case when x is the only "old" element. 

Subcase 5.1. p^y. Then yAz is an "old" element covered by z, hence 
yAz—z0, and xAyAz=xAz0=x0Az0. Since x covers xAz=(x0Az0)+p, we get 
r(x)-r(x0Az0)=2. So, r(xAy)^r(x)— 1 =r(xAyAz) + l, and (iv) follows. 

Subcase 5.2. p^y. Since xAz=(x0Az0)+p and yAz=(yAz0) +p, we have 
that r(x)=r(x0) + l=r(z0) + l=r(x0Az0)+2=:r(yAz0)+2. We may assume that 
x0Az0^y (else xAzSy and xAyAz=xAy). Choose t£L so that yAz0<t<y. 
Since (x0Az0)\/y=u covers y and (x0Az0)y(yAz0)=z0 covers yAz0, it follows 
by semimodularity that z' =(xtiAz0)\Jt covers t. Clearly z'£L, r(z')=r(y) = 
= r ( 0 +1, and yAz' = t. 

First, suppose that x0^z'. Then x0Az' =x0Az0, which is covered by x0. 
Applying Theorem 1.4 (iii) to the "old" elements x0, y, z\ we obtain that r(x0Ay)— 
-1 i§r(x0Az' Ay)=r(x0Az0Ay). 

Second, suppose that x 0 — S i n c e t covers tAz0=yAz0, we may apply 
Theorem 1.4 (iii) to the elements x0, t andz0 . This yields r(x0At)—l^r(x0Az0At) = 
=r(x0Az0Ay). But x0At=x0Az'Ay=x0Ay. 

We have shown that in either case r(x0Ay)—r(x0Az0Ay)^l. Since xAy= 
= (x0Ay)+p and xAyAz=(x0Az0Ay)+p, this proves (iv). 

Observe that full transversal matroids, as defined in the previous section, can 
be obtained from Boolean algebras by principal extensions (infinitely often with 
respect to each flat). Hence the pseudomodularity of these matroids follows by an 
easy compactness argument. More generally, every matroid which can be obtained 
by principal extensions from Boolean algebras is pseudomodular. These matroids 
are all transversal, and can be represented as follows. Let G be a bipartite graph, 
and assume that one of its color classes S has r elements (the other may be finite 
of infinite). Also assume that for each s€ S, the other color class T contains an 
element which is connected only to s. Then the transversal matroid on T induced 
by G (in which a subset T'QT is independent iff G contains a matching covering 7") 
is pseudomodular. 

On the other hand, not every transversal matroid is pseudomodular: let 
S = {1, 2, 3, 4}, T= {a, b, c, d, <?,/}, V(G) = SU T, and E(G) = {2a, 3b, 4c, Id, 2d, le, 
3e, 1/, 4/}. Then the transversal matroid induced by G on T is not pseudomodular 
(the flats abde, acdf and beef violate condition (iv) of Theorem 1.4). 
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The fact that partition matroids are pseudomodular can be restated so that 
the Dilworth truncation of a Boolean algebra is pseudomodular. It is an interesting 
problem to find a broader class of lattices whose Dilworth truncations are pseudo-
modular. 

4. Stretch embeddings and continuous matroids 

We prove here the key theorem which will enable us to construct "stretch 
embeddings" and thereby continuous analogues of some classes of geometric lattices. 
This theorem generalizes a well-known result for modular lattices, see BIRKHOFF [1], 
pp. 73—74. 

Theo rem 4.1. Let L be a pseudomodular lattice and a l 5 ..., ak elements of L 
such that r{ax)+... +r(ak)—r{a1\j ..,y ak). Then the sublattice generated by the inter-
vals [0, aj is isomorphic to the direct product of these intervals. 

Proof . Obviously, it suffices to consider the case k = 2 . Note that the sub-
modularity of the lattice and the hypothesis that r(a1)+r(a2)=r(a1ya2) imply that 
r (x x )+ r (x 2 )= (x jyx 2 ) for all ijSfl,-. 

Let L' be the sublattice generated by the intervals [0, a,]. Define the mapping 
<p(xi, X2)=X1V*2- It is easy to see that this is an injection of [0, a j x [ 0 , a j into 
L', and that this injection preserves joins. We will show that it also preserves meets. 
This will then also imply that the mapping is bijective. 

Let ^¡»^i^tO, a j and set p=(x1yx2)A(y1yy2), q=(x1Ay1)y(x2yy2). We want 
to show that p—q. It is obvious that p^q. To show that equality holds, we show 
that p and q have the same rank. Clearly, r(q)=r(x1Ay1)+r(x2Ay2). 

To estimate r(p), let a=xt, b—y\ and c=x2yy2yp in Theorem 1.4 (ii). 
Then trivially aybyc=x i Ayi s Jx 2 yy 2 and hence 

r(aVbVc) - rCc1Vj>1) + Kx2V;>'2). 
Similarly we can compute that 

r(aVb) = r(x1Vj1), r(aVc) = r f eHrCxoV^) , r(byc) = r(y1)+r(x2yy2). 

This shows that a, b and c satisfy the conditions in Theorem 1.4 (ii), and hence by 
the pseudomodularity of L, we have 

r(c) ^ r(aAb) + r(ayc)-r(a), 
or, substituting, 

r(x2yy2yP) == r f o A j i H r f e V ^ ) . 

Interchanging the subscripts, we obtain 
r ( X l y y i y p ) ^r<x2Aj2)+r(x1V;>1)-
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Hence by submodularity, 
r(p) ^ r(p\JXiVyi)+r(pVy2)-r(Xl\/yiVx^Vy2) == 

= r(*iAyi) + r(x2Aj>2) = r(q). 
This proves the theorem. 

It takes a little time to see that this theorem does not hold automatically in 
every semimodular or geometric lattice. Let and I 2 be two disjoint planes in a 
rank 6 projective space, and let et and be two lines in r,-. Construct a matroid 
by deleting the intersection point of e1 and ft as well as the intersection point of 
e2 and / 2 from the space. Then in the lattice of flats of this matroid, e1Af1=e2Af2=0, 
but ( ^ V ^ ) A (A V ^ ^ O . This shows that at least the trivial mapping cp used in 
the proof above does not work. In fact, it is easy to see that this gives a counter-
example. 

The previous theorem enables us to construct "stretch embeddings" for vari-
ous classes of matroids. Let L^, L2, ... be a sequence of pseudomodular geometric 
lattices such that L„ has height 11. Assume that for each such that m\n, 
there exist in Ln n/m elements at, ...,an/m of rank m such that a^...\fan/m — l 
and [0, a/\=Lm. We call these elements the representatives of Lm in L„. 

It is now easy to define a stretch embedding of Lm in L„, i.e., a lattice embedding 
(p=(p"m: Lm^L„ such that r(<p(xj)=(n/m)r(x) for each x£Lm. For, let Lm— 
—[0, at] (i = 1, ..., n/m) be any isomorphism, and define (p(x)—(p1(x)\/...\Jq>„/m(x). 
Theorem 4.1 implies that this is indeed a stretch embedding. 

In the paper of BJORNER [2], a similar construction was described under the 
hypothesis that the elements a1, ..., a„/m are modular. Since we assume the exist-
ence of pseudointersections for all pairs of elements, the construction in this paper 
is neither stronger nor weaker than that. 

To construct the "continuous limit" of this sequence of geometric lattices, 
we have to assume that the mappings <p¡¡, form a directed system, i.e., if k\m and 
m\n then <?&=<?>£. One may assure this by compatibly choosing the representa-
tives. This was done for the partition lattices in BJORNER [2]; we describe below 
how such a choice can be made in the special families of matroids mentioned 
before. 

Continuous algebraic matroids. Let F be an algebraically closed field. For each 
1, let K„ be an algebraically closed field extension of F of transcendence degree 

n, and let Ln=£?(F,Kn). Let {JCx, ..., x„} be a transcendence basis. Let At be 
the algebraically closed subfield of Kn generated by {x f i_1)m+1,..., xim} (i = l, ..., n/m). 
Then Ax, ..., A„/m are appropriate representatives of Lm in L„, and it is easy to 
check that the induced mappings form a directed system. 

Continuous transversal matroids. Let Ln=9~Jl{n) be the full transversal matroid 
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of rank n, constructed in Section 2. Let 5'={x1 , . . . , xn}. Assume that m\n and let 
£i={*(i-i)m+i> •••> *im} for i = l , n/m. Then Í2(5,-) is a flat in Ln and these 
flats can be chosen as representatives of Lm in L„. It is straighforward to check that 
the induced mappings form a directed system. 

Now as in BJÖRNER [2], we can construct the direct limit of the system 
{Lk, <p™} and its completion L „ , obtaining thereby continuous algebraic and trans-
versal matroids. The study of these objects is, however, left to another paper. 
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Non-Arguesian configurations in a modular lattice 

ALAN DAY1) and BJARNI JÓNSSON2) 

To the memory of András Huhn 

1. Introduction. In [1] we showed that if L is non-Arguesian, then there exist,, 
in the ideal lattice of L, elements pa, a£5[2], and qp, /?£5[3], that are related to 
each other in a manner similar to the ten points and ten lines in a non-Arguesian 
configuration in a projective plane. In the lattice case, however, each px is a point in 
a plane Pa, and each is a line in the plane with all of these planes being inter-
vals in the ideal lattice of L. Actually our construction yielded thirty two intervals 
Ifi—ujz^, and it was shown that, with at most two exceptions, these intervals 
are non-degenerate projective planes. The exceptional intervals, /„ and 7S, were 
shown to be projective geometries of dimension three or less. 

Our present objective is to describe in greater detail how the various intervals 
fit together. The notation and terminology of [1] will be in effect. A non-Arguesian 
perspectivity configuration (or PC), d, will be called prime if d covers d̂  in PC(JL). 
These PC's and their associated intervals I ^ u j z ^ , fiQ5, will be the primary 
objects of our investigation. To simplify the notation, we write 7f for 7{i}, I ; J for 
7{y}, 7n i for 7sx{i}, etc. 

It is easy to see that if, (-< means "is covered by"), then the planes 
7„ and 7V are either transposes of each other (possibly equal) or else they are con-
nected by a two dimensional gluing (either loose or tight). Much less is known 
about the intervals 70 and 7S. In the examples that have been constructed so far,, 
these too are non-degenerate projective planes, but we do not know if this is 
always the case. We do however show that, if 70 is either 2 or 3 dimensional, then 
it is non-degenerate. By duality, the same holds for I s . 
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There are two further technical conditions that apply to PC's. A PC, d, is called 
stable if, whenever two intervals of the form It and ItJ are transposes of each other, 
they are equal. This supposed restriction causes no real loss of generality since we 
will show that, for every non-stable d, there exists a stable prime e with e<d. A PC, 
d, is called Boolean if the two functions ¡i—z„ and fi-^u^ of 2s into L are both 
lattice homomorphisms. Clearly, if d is Boolean, then L':= U {/„: nQ5} is a 
sublattice of L of finite length. A fundamental result states that, if d is both 
Boolean and stable, {/„: f i ^ 5 } consists of 2r planes where 0 ^ r S 3 . In this 
case the length of L' is at most 9, and each simple subdirect factor of L' has length 
6 or less. 

Much less is known about the case when d is stable but not Boolean. We do 
show however that in this case the twenty planes, /„, are distinct from 
each other and from the planes of the form or /-,;. Hopefully this case will 
be broken down eventually into subcases for which reasonable descriptions can 
be found. 

Some examples of the above cases can be found in [3]. 

2. The gluings. Throughout this section we work with a fixed prime PC, d, in 
a modular lattice, L. 

Lemma 2.1. For distinct i,jd5, zlzj=ze. 

Proof . By definition, ze is the meet of all the entries in the matrix d. Since 
each diagonal entry is the meet of all entries in its row (or column), it follows that 
za is the meet of the diagonal entries in d. For distinct i,j, k£5, we have 

z i z j = (d*i,-d*ik)(d*ijd*jk) = d*ikd*jk = zk-

Consequently zlzj=za. 

Lemma 2.2. For all n,vQ5, 
(1) z„+zv = z„Uv, if nDv^O; 
(2) z„zv = z„n v , if p U v ? i 5 ; 
(3) Mm+Mv = M„Uv, if IJ.CIv?i0; 
(4) w„Hv=w„nv, if fiUv?i5. 

P roof . Statement (1) and its dual (4) are, respectively, parts (2) and (1) ol 
{1; Lemma 5.2]. It therefore suffices to prove (2). Moreover we may assume that 

/ i f l v c v , and | / tUv|=4. We consider four cases: 
(A) | / i |=2; |v |=3; |//Plv| = l . Wemay assume n = {i,j} and v = {/, k, m). Then 

ziizv djf.im) d^i Z; ZpCw 

(B) | / i |=3; |v |=3; | ^ f lv |=2 . We may assume n = {i, j,k) and v = {/,/, m). 
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Then" 
ziizv = (¿¿.¡J+d^ jk) (d^ j + Jm) = d ^ j — z^ = z ( ,nv . 

(C) |/x|=2; |v| = 2 ; |/iPlv| =0. We may assume n={i, j ) and. v = {A:, m}. Then 

ZpZv — d*ijd*km = d*ij(d*ik + d*im)d*km(d*ik + d*jk) — d*ud*kk = zizk = za> 

by 2.1. 
(D) |^| = 1; |v| = 3* |/zflv|=0. Wemay assume fi={i} and v={j,k, m}. Then 

zuzv = ziZijZjkm = zi Zj = z„, 
by (A) and 2.1. 

L e m m a 2.3. For 5, the four elements, dijui with j^i, are four points in 
general position in the plane I¡. 

Proo f . Let i,j, k, m, n be the distinct members of 5. Then, by computing with 
intervals, 

duujzi = duuikmldijuikm(dik+dim) s= (duuikm+dik + dim)l(dik + dim) = 

(by transposition) 

= (du + dik+dim) uikJ(dik+dim) = uikJ(dik + dim). 

Now dik+dim is a line in Iikm, and is therefore covered by uikm. Thus zi-<ydijui 

for each yV i- To see that the four points are in general position, we compute 

(dy ui + dik M,) dim Uf (du + dik)dim -• du = z^ 

T h e o r e m 2.4. If fi and v are non-empty proper subsets of 5 with p-^v, 
then either 

z„ -< m„zv and (w„+zv) -< mv, 
or 

z„ = UpZy and (W/1 + ZV) = MV. 

Proo f . The intervals /„ and 7V are of the same length and have comparable 
upper and lower endpoints. Consequently, zlt^<.ultzv if and only if (K^+Z,)-^,,, 
and zM=M / tzv holds just in case (M / J +Z V )=M v is true. Therefore we need only show 
that for each /i-<v, at least one of the four conditions holds. By duality, we need 
only consider |/t| = 1 or 2. 

Assume that / i={/}.and v={i,j}. By 2.3, z ^ u ^ j whence «¡Zy must equal 
one of those two elements. Thus z ^ u ^ z y or z ^ u ^ z y 

Assume now that n={i,j) and v={/ , / , k}. By the Main Theorem of [1], the 
element q=diJ+dik is a line in the plane /„, and qu^ is a line oh the point dtJ in 
Now z^su^zy^qup. This last inequality must be strict since 

dy zut = du (zy+zik) = +du zik = ztj+zi = zi} <du. 

2 
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Therefore the length of u^zjz^ is at most 2 and one of our relations must 
again hold. 

Lemma 2.5. For all i£5, ugZi either covers-or equals ze. 

P r o o f - For distinct i, j, k, m in 5, 

u0z, = ZiUiUJkm - ZiUJkm, and za = z^j = z,i/lV(iiJt + i/7ra) = Zi(dJk + djm). 

Since (djk+djm)~<.Ujkm, the conclusion follows. 

Lemma 2.6. Any four of the five elements, zh i£5, are independent over ze. 

Proof . If i,j, k,m£5 are distinct, then 

Zi(Zj + Zk + Zm) si ztzJkm = zB. 

Theorem 2.7. The following conditions are equivalent: 
(1) The five elements, z;w0, 5, are points in general position in /„; 
(2) Ia is a non-degenerate 3-space; 
(3) length ( / J = 4 ; 
(4) zB<z iwa, for all i£5. 

Proof . Now [1; Theorem 5.4] gives us that length (7„)s4. Thus (1)=>(2) 
and (2)=>(3) are. trivial. If za=ziua, for some /£5, then / ^ f o + w j / z ; , a sub-
interval of a length 3 lattice. Therefore (3)=>(4). Finally if (4) holds, then the z;w0 

are five points in IB by 2.5. By 2.6, any four of these points are independent. From 
length (/„)=4, we deduce (1). 

Coro l l a ry 2.8. If the conditions of the theorem hold, then for each iÇ.5, It 

transposes down onto the interval ujziua and uB=^(zsua: s^i). 

Theorem 2.9. If length (/D)=3, then at least two of the intervals It transposé 
down onto Ia. Thus in this case as well, Ie is a non-degenerate projective space (i.e. 
a plane). 

Proof . Since any four of the elements zfw0 are independent, at least one out 
of each four must be z a . Therefore at least two of the five such elements must be 
z0. But this forces, for these i, to transpose down onto Ia since both intervals arë 
the same length. 

Theorem 2.10. The duals of 2.7,2.$, arid 2.9 also hold, In particular, iflsis of 
length 3 or 4, it is a non-degenerate projective space. 

• y, 3. Boolean configurations. The definition of a Boolean configuration in Section 1 
contains redundancies; We already know, for instance, that whenever 
z ( J+zx=z / i n y holds .for any PC-In this section we. wiU reduce the number of con-
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ditions needed to be checked in order to show that a PC, d, is. Boolean. As before, 
we assume that d is a prime PC in a modular lattice, L. 

Recall that a subset UQL is called distributive if it generates a distributive 
sublattice of L. A 3-element subset U = {a, b, c} is distributive if either (a+b)c= ' 
=ac+bc or (a+c)(b+c)=ab+c. 

Lemma 3.1. The following conditions on a prime PC are equivalent: 
(1) z^+z^z^ for all n, vi5; 
(2) z^+zv=z ( l U v for some /i, with /xflv=0, and / iUv^5 ; 
(3) {ztJ, zik, zjk} is distributive for all pairwise distinct i,J, k£ 5; 
(4) {zy, zik, zJk} is distributive for some pairwise distinct i,j,k£5; 
(5) {d23, d2i, dM} is distributive. 

Proof . By 2.2, (1) is equivalent to z,,+zv—zmUv with'the added condition that 
/land v are disjoint. By noting that z2=d23d2i, z3=d23d3l, and z2Z=d23(d24+d3i), 
(5) is equivalent to z f l+zv=z ( l U v with // = {2} and v = {3}. By using the special 
automorphisms of PC(L), we get that (5) is equivalent to z

fl-j-zv—zliUv with the 
added constraint that p, and v are disjoint singletons. This last property and 2.2 
however easily imply that z^—^iz^.i^ii) for all / iQ5 and this implies (1). There-
fore (1) is equivalent to (5). 

A priori, (1) implies (2). Conversely, assume that (2) holds with ji or v a non-
singleton. If n={i} and v ¡2 {j, k), then . S 

Zij = Z ;J (Z ( L +Z V ) = Z ; + ZYZV = Zi + Z j . 

If // — {/', j } and v = {k,m), then 
zijk — zijk(zp + zv) = Zij + ZijkZv = Zij + Zk. 

Thus this case reduces to the previous one. Therefore (l)<t»(2)-»-(5). 
Now for distinct /',./, k£ 5, {z;j-, zik, zjk} is distributive if and only if 

zij (zik + zjk) = ZijZik + ZijZjk. 
The left side of this equation is ztj, and the right side is zt+Zj. Thus (4) implies 

(2) and (1) implies (3). This completes the proof. , • ; . r 

Lemma 3.2. For a PC, d, the followingare equivalent: 
(1) z(,zv=z(,nv for all n, ' V • '' 
(2) zMzv=zMnv for some p., with juUv=5 ana pOvyi): . 
(3) {ziJk, zijm, zijn} is distributive for all distinct i,j, k, w£5; 
(4) {zijk, ziJm, ziJn} is distributive for some distinct i,j,k, /w£ 5. ,, 

P roof . In considering (2), we may assume that The possible values* 
for s=\fi\ and /=Iv|. are therefore . . • .. . 

(s, i) = (4, 4), (3, 4), (3, 3), and (2, 4). . 

2» 
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For each of these four ordered pairs, (s, t), we define: 

(Va) z„z„ = z„nv for all n, v with ^Uv = 5, \p\ = s, and |v| = t; 
(3 a) ZpZv = z„nv for some n, v with ¿iUv = 5, |/i| = s, and |v| = t. 

We claim that (3), (4), and each of the eight statements above are equivalent to 
each other. 

Assume that /, j, k, m, n are all distinct in 5, and consider the equation 

(*) zijkmzijkn = zijk ' 
This can be rewritten as 

(Zijk + Z ¡jm) (Zijk + Zj jn) = ZiJk 

and since ziJm zijn=ztj ^ z i j k , this is equivalent to 

( * *) {ziJk, zf Jm, ziJn} is distributive. 

Since (* ) is {/, j, ^symmetr ic and ( * *) is {k, m, «}-symmetric, it follows that both 
conditions are invariant under all symmetries of the indices. Therefore (3), (4), 
(V44), and (344) are equivalent. 

If (V44) holds, then 
zijk zijmn Zijkm Zijkn Zijmn Zijm zijn Zij 5 

and thus (V34) holds. On the other hand if (B34) holds, say z,vtz,7mn=zy, then 
zijkm Zijmn Zim zijk zijmn Zim zij Zijm 

and (344) holds. Consequently, (V44) is equivalent to both (334) and (V34)-
If (V34) holds, then 

zijkzimn ~ zijk zikmn zijmn ~ zijzik ' ziji 
and thus (V33) holds. On the other hand if (333) holds, say zljkzimn—zh then 

Zijk Zijmn = zij + zijkzimn = Zij + Zi ~ Zij 

and (333) holds. Consequently, (V44) is equivalent to both (333) and (Vss)-
A similar argument shows that each of the statements (324) and (V24) is equiv-

alent to (V44)- Therefore (2), (3), and (4) are equivalent. 
To obtain (2) implies (1) we need only consider complementary subsets of 5. 

Assuming (2), we obtain 
zizJkmn = zijzikzjkmn = z]zk = zei and ZjyZ^ = ZiJkZiJmZkmn = ZkZm ~ Za. 

Thus (2) implies (1) and the proof is complete. 

C o r o l l a r y 3.3. I f , for some non-empty proper subsets, /JCvg|S, z / i=zy , then 
d is Boolean. 
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Proof . The inclusion ficzv implies that u^uv, and since and 7V are both 
projective planes we get equality here as well. Now let x=v\ji and A=5\J<= 
= ( 5 \ v ) U fi. We compute 

Zpux — zv = zv+zx = zfl+zx, and zvnx = z„ = z^z^ — zvzx. 

By Lemmas 3.1, 3.2 and their duals, it follows that d is Boolean. 
The above argument works in general to produce: 

Theo rem 3.4. A PC, d, is Boolean if and only i f , for some distinct i, j£5, 

zi + zJ = zlj, and zli + z1J = zltJ, and ui + uj=uiJ, and u^ + u-^j = ulu. 

4. Stable configurations. We still assume that d is a prime PC in a modular 
lattice, L. 

T h e o r e m 4.1. Let d be prime and stable. Then d is either Boolean or satisfies 

(***) For all 5, if 0 c ^ « < v c 5 , then z^u^z^ and u^+Zy^u,. 

Proof . Let d be stable, and take 0 c r ^ < v c 5 . By 2.4 we must have /„ trans-
posing up to 7V, or Zp^ZyU,, and wM+zv-<wv, If the first property holds, then let 
{ /}=v\ / i and take j£fi. Now 

UjZtj = Uj Zij Up Zv = UjZ^Zij = z,. 

Since d is stable, this implies 7U=7,, and hence d is Boolean by 3.3. 

L e m m a 4.2. Let Abe a prime PC. For any x£d02/z0, there exists a unique PC, 
e, such that 

e<>i = d01(x+d12), e„2 = x, eiz - d12(x + d0l), 

and for {F,7>={0, 1> and 3 ,4}, 

eik = dik(djk + e01). 

Moreover if x is not less than or equal to z02, then e is non-Arguesian. 
Proof . The uniqueness of e is obvious for, by [1; Theorem 3.2], every PC in 

L is completely determined by the elements listed above. Thus we are left with 
showing the existence. This however also follows from [1; Lemma 2.4] and the 
quoted theorem. If e were Arguesian, then and 

X = e02 — C ^ . 0 2 — = Z 0 2 -

L e m m a 4.3. If d is not stable, then there exists a prime PC, e < d that is both 
stable and Boolean. 
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Proof . If d is a prime PC that is not stable then there exists 5 such that 
Ii transposes up to /l7 but is not equal to 7iy. Thus for these i and j we have 

zu uJ = 2J > zu + "¡ = uJ > a n d 2' < 2i • 

By using the special automorphisms of PC(L), we may assume that i=0, and j=2. 
Using x=d02u0 in the previous lemma, we obtain a non-Arguesian PC, e, with 
e<d and e02=dt)2un. To see that e is prime, we note that z0=z0(d)^z02(e)<e02 

(and that z0<e02). Therefore z0=z0(e)=z02(e)^é»02. 
That e is Boolean follows from 3.3 and the fact that z0(e)=z02(e), but e may 

not be stable. What this e has done is replace the transpose 70(d) up to /02(d) with 
the equality/0(e)=/02(e). But for all i£5, direct calculations show that 

z,(d) - z;(e) S z¡j(e) ^ z>v(d). 

Therefore this e preserves all equalities of the form /¡(d)=7,y(d). This means that 
after finitely many steps (at most 52) all transpositions are replaced by equalities and 
the resultant PC is both Boolean and stable. 

Thus if L is a non-Arguesian modular lattice, we can find, in the lattice of 
ideals of L, a prime (non-Arguesian) PC, d. If d is stable, then d is either Boolean 
or satisfies ( * * * ) . If d is not stable, we can find a smaller PC, e, that is both stable 
and Boolean. Therefore every non-Arguesian variety of modular lattices contains 
a non-Arguesian lattice with a stable (non-Arguesian) PC. The Boolean case has 
a nice finite solution which we present in the next section. By [3], there exists infinitely 
many distinct stable PC's satisfying ( * * * ) , and these authors at least have found 
no classification of them. Our only general result is the following. 

Theorem 4.4. Let A be a stable non-Boolean PC. Then the twenty planes, 
are distinct from each other, and from the planes, I¡ and 7-|¡, i£5. 

Proof . Let satisfy: 

1 — \lA> M — 4, min {\p\, |v|} ^ 3, and max |v|} ^ 2. 

We wish to show that the assumption, z(1=zv, leads to a contradiction. We obtain 
this contradiction by producing a covering pair of subsets, with zx—z^, and 
invoking ( * * *). 

If fiOv^Q, then z/t+zv=zMUv, and we may choose * to be the set of smallest 
cardinality and A to be any cover contained in p U v. This produces our contradiction 
on (* * *). Therefore we may conclude that 

[0] /iflv = 0. 

Therefore there exists i£(i\v. But now we have for all i£fi 

ZVU{¡} — Zvl){i} + Zv = 2vU{i} + ZM = Z,,Uv 
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To avoid conflict with ( * * * ) , we must have: 
implies [1] /iUv = 5 and 4^vU|{i} | , or 

[2] /iUv = vU{i}. 

We also have j£v\ji and the trick above can be applied again to produce 

j€v implies [3] ¡.tUv = 5 and 4 s |»U{/}|,. or 

[4] n\Jv = ti\J{j}. • 

Now [0] makes [2] equivalent to n = {i}, and [4] equivalent to v = {./}. Thus [1] 
and [4] are incompatible as well as [2] and [3]. Our initial assumptions deny the con-
junction of [2] and [4], so we must have [1] and [3]. But this forces 3s |v | and \p\ 
which contradicts [0]. This concludes the proof. 

5. Stable Boolean configurations. Throughout this section, d will be a prime, 
Boolean, and stable PC in a modular lattice, L. The lattice homomorphisms, 

z, u: 2s — L, 

produce Boolean congruences on 2s which are, of course, determined by their respec-
tive ideals, Id (z) and Id (u), of subsets congruent to 0. Now {i'}€ld (z)-e>z{= 
=za<=>for all jVi , z i j = z j o f o r all yVi, uiJ=uJ<^ut=uB<^{i}^ld(u). Therefore 
Id (z)—Id (M), and by factoring out this ideal we produce, for some r with 
lattice embeddings 

z', u': 2r - L. 

Our first result shows that this r can be further restricted. 

Lemma 5.1. If A is Boolean and stable, then the set {/„: /f!=5} consists of 2r 

planes for some r, 

Proof . Let i,j, k, m, n be distinct members of 5, and assume that for all s^n, 
zs„>z„. From 2.3 and stability, this implies that for all s^n, unzsn—undsn. 2.3 
also says that {u„dsn: s^n) are points in general position in /„. But d is Boolean, 
and therefore 

M;„ ^ uizi„(ujzjn + ukzkn + umzm„) is zinzJkmn = zn. 
This is a contradiction. 

Thus for every w£5, there exists an s ^ n such that zOT=z„. Again since d is 
Boolean this implies that for every «65, there exists an s^n such that zs=za. 
Elementary counting now produces two distinct s£5 with z,=z0. 

We may therefore replace 5 by r for and assume that we have lattice 
monomorphisms, 

z, u: 2X — L, 
that satisfy: 
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(1) Ip := ujzp is a non-degenerate projective plane for all p Q i; 
(2) For all z„wv-<i» and «(1+zv-<«J. 
We define L':= U {/„: pQt}. Clearly Li is a sublattice of L of finite length. 

Lemma 5.2. L' is simple if and only if for all r, zi^uli. 

Proof . If our condition fails, then, for the offending i£r, L' is the disjoint 
union of the filter, fz,- and the ideal, i«n i . Thus L' is not simple. 

Conversely, assume the condition holds. We proceed by induction on r. If 
r—0, then L' is a non-degenerate projective plane and hence simple. If 0</ -^3 , 
take a prime quotient q/p in 7/, and let 9 be the congruence it generates. Since 
L' = tZjUlw-ü and z ^ M ^ , we must have this quotient in \z( or in \u-ii. By induc-
tion, 9 collapses either the filter or the ideal. Since z^u^, induction applies also 
to the other part and 0 collapses all of L'. Therefore L' is simple. 

Theorem 5.3. Suppose V is a variety of modular lattices and assume that there 
exists a Boolean, prime PC in some member of V. Then there exists in V a simple non-
Arguesian lattice of length 3 +r, with and a Boolean, stable, prime PC, 
d, in L with the following properties: 

(1) L is generated by {du: i ^ j in 5}; 
(2) The set {Iß: ¡xQ5} consists of precisely 2r planes. 

Proof . By 4.3. there exists in some member L of V a PC, d, that is prime, 
Boolean, and stable. By 5.1, the set {7 :̂ / ¡^5} consists of 2r distinct planes for 
some r, with We may assume without loss of generality that L is gen-
erated by the PC and is therefore the union of the planes Iß . 

Since L is obviously of finite length, we may assume that its length is as small 
as possible. We claim that in this case L is simple. To see this, we consider a homo-
morphism q>: L^-S, where S is simple and (p does not identify d01 and d^01. Clearly 
q>(d) is a (non-Arguesian) PC in S and in fact also prime and Boolean (since 
(pfepiify^z^tpiii)) and similarly for the u's). The length of S therefore cannot be 
less than that of L. This makes q> an isomorphism and L simple. 
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Complete congruence relations of concept lattices 

KLAUS REUTER and RUDOLF WILLE 

To the memory of András Huhn 

1. Introduction. Although complete lattices have been a main subject of lattice 
theory for a long time, complete congruence relations of complete lattices have 
only rarely been studied. In this paper we describe a general approach to complete 
congruence relations generalizing ideas introduced in [3]. In our approach we under-
stand complete lattices as concept lattices. This enables us to establish a one-to-one 
correspondence between complete congruence relations and compatible saturated 
subcontexts of suitable contexts. The use of this correspondence is demonstrated 
by proving that every distributive complete lattice in which each element is the 
supremum of v-irreducible elements is isomorphic to the lattice of all complete 
congruence relations of some complete lattice. The question remains open which 
complete lattices are isomorphic to such lattices of complete congruence relations. 
Examples are given that they need not be distributive. 

2. Compatible and saturated subcontexts. A subcontext of a context (G, M, I) 
is understood as a triple (H, N, IC\(HXN)) with H<gG and NQM\ we often 
write (H, N) instead of (H, N, If](HxN)). Throughout this section, (G, M, 1) 
will be a context and (H, N) a subcontext of (G, M, I). For g£G and m£M, 
g' and m stands for {g}' and {m}', respectively. By n(H, N)(A, B):=(AC\H, BC\N) 
for any concept (A, B) of (G, M, I), we define a map it(H, N) from ©(G, M, I) 
into where, in general, ^(S1) is the complete lattice of all subsets 
of a set S. The subcontext (H, N) of (G, M, I) is said to be compatible if the 
following conditions are satisfied: 

(la) For all h£H and m£M\h' there exists an n£N\h' with rí m'; 
(lb) for all n£N and g€G\n' there exists an h£H\n' with / i ' i g ' . 
The notion of a compatible subcontext is the same as in [3] which follows from 

Proposition 1. 

Received January 28, 1987, and in revised form April 17, 1987. 



320 К. Reuter and R. Wille 

P r o p o s i t i o n 1. (H, N) is compatible if and only if n(H, N) is a complete 
lattice homomorphism from 5B(G, M, I ) onto 93(Я, N, IC\(HXN)). 

P r o o f . Let (H, N) be compatible. By the basic theorem in [2], it must only be 
shown that (АПН, BC\N) is a concept of ( i f , N, / П ( # Х Л 0 ) for (A, B)e<B(G, M, I). 
Let h£H\A. Then there is an m£B with (h, m)$I, i.e. m£M\h'. By (la), there exists 
an n£N\ti with n'^m'. Hence и£ЯП W and so h$(Br\N)'. It follows that Af\H= 
=(Bf]Nyr\H and dually that ЯПЛГ=(ЛП#) 'ГШ. Thus, (ADH, BC\N) is a 
•concept of [H, N, 1ПНХЮ). Conversely, let (АПН, BC\N)£iB(H, N, 1C\(HXN)) 
for all (A, B)£<B(G, M, I). Now, let h£H and m£M\h'. Since (m'DH, mT\N) 
is a concept of (H, N, IC\(HxN)) and there exists an n£m"(~)N with 
ih,n)$I, i.e. n£N\h' and n' m'. Hence ( # , N) satisfies (la). Dually we obtain 
i(lb). Thus, (H, N) is compatible. 

Let &(H,N) be the set of all pairs of concepts (A, B) and (C, D) of ( G , M , I ) 
such that n(H, N)(A, B)—n(H, N)(C, D), i.e. @(H,N) is the kernel of n(H, N). 
If (H, N) is compatible, Proposition 1 yields that 0 (H, N) is a complete con-
gruence relation on » (G, M, I) and that » ( # , N, / П ( # Х Л 0 ) = ® (G, M, I)/0(H, N). 
Let us recall that a complete congruence relation of a complete lattice L is an equiv-
alence relation 0 on L satisfying ( Д xА О ( Д у.-) and ( V x j ) ® ( V У,) if Xj @У,-

j£J j£J JiJ JiJ 
for all jdJ. 

The question arises how to reconstruct the compatible subcontext (H , N) 
from the complete congruence relation 0 ( H , N). By the following definition, a 
complete congruence relation 0 of S(G, M, I) is naturally transformed into a 
subcontext of (G, M, I ) : 

G(0) := {g€G|yg := (g", g') is the smallest element of a ©-class}, 

M(0) := {m£M\pm := (m', m") is the greatest element of a ©-class}. 

To obtain (H, N) from &(H, N) via this definition, (H, N) has to be saturated, 
i.e. (H, N) must satisfy the following conditions: 

(2a) For g<EG and XQH, g'=X' implies 
(2b) for meM and YQN, m'=Y' implies m£N. 

P r o p o s i t i o n 2. Let (H, N) be compatible. Then (H, N) is saturated if and 
•only if H=G(Q(H, N)) and N=M(&(H, N)). 

P r o o f . First we assume that (# , N) is saturated. Let h£H and 
(A, B)€93(G, M, I). Then h"C\H=AC\H implies he A a n d so h"QA; hence 
heG(Q(H, N)). Now, let g £ G ( 0 ( # , N)). Since yg is the smallest element of a 
<=>(#, A^-class, it follows that yg=((Hr\g'T, (Hilg")') and therefore g'=(HOg")'. 
Hence g € # by (2a). 
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This proves that H=G(®(H, N)) and dually N=M(&(H, N)). Let us assume 
these equalities for the opposite direction of the proof. Now we use that for a com-
plete congruence relation 0 of a complete lattice L the set of the smallest elements 
of the (9-classes is closed under suprema and the set of the greatest elements of 
the 0-classes is closed under infima. Let s'—^' for g£G and XQH=G(®(H, N)). 
Then, by the basic theorem in [2], yg= V yx and so g£G(Q(H, Nj)=H. In 

x £ X 

this way we obtain (2a) and dually (2b). Thus, (H, N) is saturated. 

The next proposition clarifies the nature of the complete congruence relation 
&(H, N). In the formulation we use the notation [z] 0 for the equivalence class of 
0 represented by z. 

P ropos i t ion 3. Let & be a complete congruence relation of 8(G, M, I). 
Then (G(0), M(0)) is a compatible and saturated subcontext of (G, M, 1) sat-
isfying 0 = 0(G(0) , M(0)) if and only if {[y/i] & \ li£G(&)} is a supremum-dense 
and {[[m]0 \n£M(&)} is infimum-dense in 5B(G, M, I)/0. 

Proof . Assume that (G(0), M(0)) is a compatible and saturated sub-
context of ( G , M , I ) satisfying 0 = 0 ( G ( 0 ) , M(0)). By Proposition 1, 
{(/TT)G(0), h'f)M(0)) | A€G(0)} is supremum-dense in ®(G(0), M(0), 
/n (G(0)XM(0))) . Since 0 is the kernel of n(G(0), M(0)), it follows that 
{[yh]0 | h£G(0)} is supremum-dense in 2?(G, M, I)/0 and dually that {[firi]0 | 
n£M(0)} is infimum-dense in 23(G, M, I)/0. Let us assume these properties for 
the opposite direction of the proof. First we show that (G(0), M(0)) is compatible. 
Let h£G(0) and m£M\h'. Then [yh]0^[¡im]0. Since {[nn]0 \ n£M(0)} is infi-
mum-dense in S(G, M, /), there exists an n£M(0)\h' with /xrzS îm, i.e. n ' 2 m ' . 
This proves (la) and dually (lb). From the fact that the smallest and greatest elements 
of the ©-¡classes are closed under suprema and infima, respectively, it follows that 
(G(0) ,M(0)) is saturated. Now, let (A, 2?)€®(G, M, / ) and let (A_,B_) and 
(A~,B~) be the smallest and greatest concept in the 0-class containing (A, B). 
Then yg^(A, B) for g£G(0) implies yg^(A_,B^). Therefore Af)G(0)= 
=A-DG(0) and dually BDM(0)=B~ f W ( 0 ) . Hence (A, B)0 (C, D) implies 
v4 f lG(0)=CnG(0) andf inM (0 )=I>nM (0 ) , i.e. (A, B) 0 (G(0) , M(0)) (C, D). 
Thus, we have 0 g 0 ( G ( 0 ) , M(0)). The equality follows from (A_,B_)= 
=y(Af)G(0)) and ( .4 - ,5 - )= / i ( .BfW(0) ) . 

For subcontexts (H1, Nj) and (H2, N2) of ( G , M , I ) we define (H1, N±) ^ 
S ^ i . ^ ^ g ^ and N ^ N 2 . The set of all compatible and saturated sub-
contexts of (G, M, / ) together with this order relation is denoted by <S(G, M, /). 
For the complete lattice of all complete congruence relations of a complete lattice 
L we use the notation <f (L). From Propositions 1, 2, and 3 we obtain the following 
theorem: 
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Theorem 4. Let (G, M, I) be a context such that, for all complete congruence 
relations 0 o/®(G, M, I), {[уй]0 | h€G(0)} issupremum-dense and {[рп]0 | n£M(@)} 
is infimum-dense in SB(G, M, 1)10. Then ®<-*(G(0), M(0)) describes an anti-
isomorphism from C(»(G, M, I)) onto <5(G, M, I). 

For the study of C(L) it is interesting to find suitable contexts (G, M, I) with 
Lsi5B(G, M, I) satisfying the assumption of Theorem 4. Obviously, (L, L, Ш) 
will do, but it would be better to find smaller contexts. The following lemma serves 
us with one method recognizing such contexts. Another method is given by Lemma 7. 

Lemma 5. Let {yg | g£G}U{(M', M)} be an order ideal and let {pm | mZM) U 
U{(G, G')} be an order filter of S(G, M, I). Then {{yh]0 \h<iG(0)} is supremum-
dense and {[/ги]0 | n£M(0)} is infimum-dense in 5B(G, M, I)/0 for each complete 
congruence relation 0 of S (G, M, I). 

Proof . For a complete congruence relation 0 of 2?(G, M, I) let (A, B) e 

be the smallest concept in the 0-class containing the concept (A, B). It can be 
easily seen that (A, B)>->(A, B)e describes a V-preserving map from S (G, M, I ) 
into itself. From ( A , B ) = V yg we obtain (A, B)e= \J (yg)e and so [(A, B)]0 = 

в(.л дел 
= V [(yg)e]0- since (yg)e=yh for all g€G with ( y g ) e ^ ( M ' , M ) by assump-
tion, the first assertion follows (and dually the second). 

3. Closed subcontexts. After establishing the correspondence between complete 
congruence relations and compatible saturated subcontexts, the question arises how 
to construct compatible and saturated subcontexts. In general, this question seems 
difficult to answer. But there is a method which can be successfully applied in 
special cases. This method is based on the relations / and / of a context (G, M, / ) 
which have been introduced in [3] as follows (g£G, ш€М): 

g/m:-t>(g,m)$I and m' is maximal in «CA/\g'}, 

g/m : o ( g , m)$I and g' is maximal in {h'\h^G\m'}. 
It has been useful to fill in the arrows in the cross-table describing the given con-
text. An example is shown in Figure 1. A subcontext (H, N) of (G, M, I) is called 
(arrow-) closed if h/m implies m£N for h£H and m£M and if g/n implies 
g£H for g£G and n£N. For example ({1,4}, {a, d}) is a closed subcontext of 
the context described in Figure 1. A context (G, M, 1) is called doubly founded 
if for all ( g , m ) £ G x M \ I there exists h£G and n£M with g/n, n' m' and 
h/m, h'^g' (cf. [4]). 

Lemma 6. A compatible subcontext of a context (G, M, I) for which gi=g'& 

implies gx=g2 for gi,g2£G and m[—m'2 implies m1—m2 for n\,m£M, is 
closed. Conversely, a closed subcontext of a doubly founded context is compatible. 
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a b c d e 
1 X* X X X X 

2 jr • X X* X IF 

3 X X* X JR 

4 X 
* * 

*r 

Figure I 

Lemma 6 is an immediate consequence of the definitions. Let us recall that 
a context (G, M, I) is said to be reduced if g'=X' implies g£X for g£G, XQG 
and if m'=Y' implies Y for m£M, YQM. Observe that each subcontext 
of a reduced context is saturated. A complete lattice L is called doubly founded if, 
for every pair x<y in L, there exists a minimal element s£L with s^y and 
s ^ x and a maximal element /€L with x=t and y^t. Such minimal and maximal 
elements are just the V-irreducible and A-irreducible elements of L, respectively, 
and every element of L is the supremum of V-irreducible elements and the infimum 
of A-irreducible elements of L. If J(L) denotes the set of all V-irreducible elements 
of L and M{L) the set of all A-irreducible elements of L, then L ^ ® (/(L), Af(L), s ) 
by the basic theorem in [2], and (/(L), M(L), s ) is a reduced context. For a doubly 
founded lattice L, (/(L), M(L), s ) is a doubly founded context; but the con-
cept lattice of a doubly founded context need not be doubly founded (take 
(N, N, S)) . 

Lemma 7. Let L :=S(G, M , / ) be doubly founded and let 0 be a com-
plete congruence relation of L. Then {[yh]0 \ h£G(0)} is supremum-dense and 
{\jiri]0 | n£M(0)} is infimum-dense in L/0. 

Proof . Suppose there is a concept (A,B) with [ V y ( ^ n G ( 0 ) ) ] 0 < [ ( ^ , B)]0. 
Let ( I , B) and (C, B) be the greatest element in [(A, B)]0 and [ V y ( ^ n G ( 0 ) ) ] 0 , 
respectively. Because of ( C , D ) < ( A , B ) , there exists a minimal concept (E, F) 
in L with (E, F)S(A, B) and (£, D). Since (E, F) is V-irreducible in 
L, there is a g£G with yg=(E, F). Moreover, (E, F) must be the smallest element 
of [(£, F)]0 and so geA(~}G(Q). This contradicts y g $ V y ( ^ n G ( 0 ) ) . Thus, 
the first assertion is proved and dually the second. 

Lemmas 6 and 7 together with Theorem 4 yield the following theorem: 

. T h e o r e m 8. For a doubly founded complete lattice L, C(L) is antiisomorphic 
to the complete lattice of all closed subcontexts of (/(L), M(L), S). 

Notice that the supremum and infimum of closed subcontexts (Hk, Nk) with 
kZK are just given by ( U Hk, U Nk) and ( f | Hk, f l Nk). *6K *£K kOC k€K 
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Coro l l a ry . For a doubly founded complete lattice L, (£(/.) is completely dis-
tributive. 

4. Lattices of complete congruence relations. It is a challenging problem to de-
termine the class of all complete lattices which are isomorphic to some <£(L). Up to 
now, no complete lattice is known which does not belong to this class. As a positive 
result we prove that every distributive complete lattice with enough v-irreducible 
elements is isomorphic to some (E(L). 

T h e o r e m 9. Let D be a distributive complete lattice in which each element 
is a supremum of v-irreducible elements. Then there exists a complete lattice L with 
D^H(L). 

Proof . Let J(D) be the set of all v-irreducible elements of D (notice that 
0$/(D)). The following construction of a context (G, M, / ) was stimulated by an 
(unpublished) idea of E. T. Schmidt: 

G: = J(D) X {1, 2, 3}, M := J(D) X {4,6}\JD X {5}, 
and 

/ : = (J(D) X {1}) X(J(D) X {4}) U (/(£>) X {2}) X(Z) X {5}) U (J(D) X {3})x(/(/)) X {6}) U 

U{((SX , i), (S2, j))|Sl, S2£J(D), Sl * s2, (i, J ) € { ( 2 , 4), (3, 4), (1, 6), (2, 6)}}U 

U{((s, i), (x, 5)) |s£J(D), x€L>, s x, i£{l, 3}}. 

For a concept (A, B) of the context (/(£>),!), = ) we define 

g(A, B) := (¿X{1, 2, 3}, l x { 4 , e j U ^ X ^ } ) 

where A:=J(D)\A. We shall show that q is an antiisomorphism from 
»(/(£>), A ==) onto <2(G, M, I) which leads to DssG(®(G, M, /)) using Theo-
rem 4 and the fact that D s=® (/(£>), Z), s ) . Figure 2 visualizes the foregoing 
definitions. • . . ; 

J(P)x{4} , Z?x{5} J(P)*{6} 

D 
<7 (D) x{ 1} 

- X 

• 

• . < 

1 

+ 
JW) , A JW)*{ 2} 

1 . 

JW) , A < t • 
JW)*{ 2} t . * 

B• i ' / ' - ' J(0) x(3} 
1 

- - - . J * 

4= 
. 1 . 

< •>< 
J f. 1 1 Figure 2' • • .!-•'/ 
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Let (A, B) be a concept of (J(D), D, S ) . First we show that the subcontext 
(A,B) of (J(D), D, . satisfies the conditions (la) and (2b). Let he A and 
m€D\h'. Then yh^(A, B) and yh^/xm. Since yh is v-irreducible and since 
S( / (D) , D, s ) is distributive, it follows that yh^(A, B)vfim. Hence there exists 
an n£B\h' with n'3m ; this proves (la). Let m^D and YQB with m'=Y 
As AQ Y' we get mdB and so (2b). Now we shall verify the conditions (lb), (2a), 
(la), and (2b) for the subcontext g(A, B) of (G, M, I). Define (H, N):= g(A, B). 
For geG and m£M we write g1 and in1 instead of g' and m', respectively, to avoid 
confusion; the prime symbol is used in this proof with respect to the context 
(J(D), D, S ) . Because of G\n'QH for all n£N, (H, N) satisfies (lb). (2a) fol-
lows from the fact that g[^g[ implies gx=g2 for all g!,g2(iG. For h£H we 
have M\hr<^NUDx{5}. Therefore (la) holds because (A, B) satisfies (la) in 
(7(7>), D, S ) as shown above. Since tn[ ZDm'2 for m l 5 m 2 £M and '«I^OD , 5) 
implies mi,m2e_Dx{5}, (H, N) satisfies (2b) because this condition holds for 
(A, B) in (7(D), D, Thus, (H, N) is a compatible and saturated subcontext 
of (G, M, I). 

Now we shall show that a compatible and saturated subcontext of (G, M, / ) 
equals q(A, B) for some (A, 5)£S(7(D), D, s ) . It can be easily seen that g/M 
fo r al l (g , m)eGxM\T a n d g / m f o r al l (g, m ) 6 G x ( / ( D ) X { 4 , 6 } ) \ I . By 
Lemma 6, a compatible subcontext of (G, M, / ) must be of the form (CX{1, 2, 3}, 
Cx{4, 6}U5X{5}) with CQJ(D) and BQD; in addition, s^x has to be hold 
for all sdC:=J(D)\C and x£B. It remains to show that (C, B) is a concept 
of (7(D), D, M) if (CX{1, 2, 3}, CX {4, 6}U5X {5}) is a compatible and saturated 
subcontext of (G, M, I). Suppose there is an s£C with s£B'. Because of s'^D, we 
can choose an x£D\s'. By (la), there exists a 0'» i)£Cx{4, 6}U5x{5}\(i", l) r 

with (y, iY^(x, 5)1. This implies y£B which contradicts s£B'. Thus, C=B' 
is shown. Let x£D with CQx'. For each g£G\(x, 5)' we have g £ C x { 1,2,3} 
and (x, 5 ) £ M \ g J . Hence, by (la), there exists an ag£(CX{4,6}U5x{5}) \g f 

with (xgY^(x, 5)'. It follows that ag€Bx{5} and (x, 5)' = (a(G\(x, 5)1))1. Now 
(2b) yields x£B and therefore B=C'. . 

Since (AI, B])^(A2, B2)oq(A1, B1)^G(A2, B2), it is shown that D is anti-
isomorphic to <5(G, M , / ) . We apply Lemma 5 to" see. that (G, M, I) satisfies 
the assumption of Theorem 4. Obviously, {yg | g£G} U {(M', M)} is an order ideal of 
5B(G, M, I). Let NM^(A,B) for M^M and (A, B)€&(G, M, 7)\{(G, G')}. Then 
5=i?X{5} and so n(A§, 5)=(A, B). Hence {/¿m \ m£M} U{(G, G')} is an order 
filter of ®(G, M, J). Finally, Theorem 4 yields D ^ K ( » ( G , M, I)). 

The assumptions of Theorem 9 are fulfilled by distributive dually continuous 
lattices [1; p. 69] and, in particular, completely distributive complete lattices [1; p. 58]. 
Since the construction in the proof yields a finite context for a finite lattice D, the 
assumption of distributivity is unavoidable for this kind of construction. Nevertheless, 
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there are non-distributive lattices <E(L) for certain infinite complete lattices L where 
G(L) might even be finite. This we show by two examples. 

Example 1. Let Z be the set of all integers and let E and O be the set of all 
•even and odd integers, respectively. We define a context (G, M, I) as follows: 

G : = Z X {1,2,3}, M:= Zx{4,5 ,6} , 

/ : = {((*> 0. (y,j))\x, yeZ, (i, № {(1, 4), (2, 5), (3, 6)}}. 
Now, we consider the following subcontexts: 

JVj):= (ZX{1}U EX{2}UOX {3}, Zx{4}UOX {5}U E x {6}), 
(H2, N2):= (OX{1}UZx{2}U Ex{3}, Ex{4}UZx{5}UOx{6}) , 
(.H3,N3):= (EX{1}U0X{2}UZX{3}, 0X{4}UEX{5}UZX{6}). 

It can be easily checked that (//,, Nt) is a compatible and saturated subcontext of 
(G,M,I) for i = l , 2, 3; furthermore, the subcontexts (0, 0), (H^ N,), (H2, Ns), 
(H3, N3), and (G,M) form a sublattice of <S(G,M,I) isomorphic to M3. This 
shows that K(»(G, M, /)) is not distributive. 

Example 2. Let Ln be the complete lattice described by Figure 3. 

Figure 3 

The lattice Z has only two non-trivial complete congruence relations. It fol-
lows that « ( L J s J ^ ) " © ! . For n s 2 , £(L„) is not distributive. Let us remark 
that £(£.„) is antiisomorphic to the face lattice of an «-cube. The diagram of (£(¿2) 
is shown in Figure 4. 

Figure 4 
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Mal'cev conditions for varieties of subregular algebras 

JAROMÍR DUDA 

Although every congruence uniquely determines anyone of its blocks, the 
converse apparently does not hold in general. This trivial fact has given origin to 
various definitions of congruence "regularity" or "nice" congruences or "a good 
theory" of ideals etc. Recall from the literature that an algebra 91 is called regular 
if every congruence on 91 is uniquely determined by anyone of its blocks; an algebra 
9t with miliary operations c l5 ..., cn is called weakly regular (with respect to c l5 ..., c„) 
whenever every congruence «P on 91 is uniquely determined by its blocks 
[c j {P, ..., [c„] W. A natural continuation of these two concepts was introduced by 
J. TIMM, [12]. We write A, B, ... for the universes of algebras 91,58, ... . 

D e f i n i t i o n 1. An algebra 91 is said to have subregular congruences (briefly: 
91 is subregular) if every congruence W on 91 is uniquely determined by its blocks 
[b]W, b£B, for any subalgebra 58 of 91. 

It is already known that varieties of regular algebras and varieties of weakly 
regular algebras are definable by Mal'cev conditions, see [1, 2], [15] and [7] for the 
details. The objective of this note is to prove that also varieties of subregular algebras 
form Mal'cev class. We give here the explicit Mal'cev condition, see Theorem 1, 
since the characterizing identities enable us to prove that any variety of subregular 
algebras is congruence modular and «-permutable for some «>1 . In addition 
we discuss the relationship between subregularity of tolerances and subregularity 
of congruences on algebras from a given variety. As a result of these considerations' 
a simple Mal'cev condition for permutable varieties of subregular algebras is obtained. 

Two lemmas will be needed in the sequel. 

Lemma 1. Let 58 be a subalgebra of an algebra 9Í, 3* a congruence on 521. The 
following conditions are equivalent: 
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(i) f is uniquely determined by its blocks [ft] Y, b£B; 
(ii) f = 0 ( U ({feJX^j,)) for some subsets B0QB and AbQA, b£B0. be. Bo 

P r o o f . (i)=>(ii): I f ( i ) holds then ! P = 0 ( ( J (MS /X[J]!P)). Using an evident 

fact that 0 ( | J ([6]!PX[6]!P)) = 0 ( U (>}X[6]V)) the desired conclusion (ii) read-
ies b£B 

ily follows. 
(ii)=»(i): Conversely, suppose (ii). Then [J ((b}xAb) which gives that 

be B0 
[b]YX[b]'F^{b}XAb for every b£B0. By forming suitable set unions we obtain 
W= (J ( M ! P X M 5 0 i U ( M f X t & m i IJ {WPXWV)^ (J {{b}XAb). Hence b£A b£B biB0 b£B0 
f 3 0 ( U ([¿]S /X[ft]!P)) i0( u i e . ¥=&{(J ([b]'FX[b]'F)), b£B beBo beB 
as required. 

R e m a r k 1. Evidently, the subsets BQ and Ab, b£B0, from the previous lemma 
can be taken finite whenever W is compact (=finitely generated). 

H. A. THURSTON has given a useful criterion for varieties of regular algebras 
in [13]. Lemma 2 shows that an analogue result holds for varieties of subregular 
algebras. 

L e m m a 2. For a variety V the following conditions are equivalent: 
(i) Every 9t£V has subregular congruences; 

(ii) a congruence on 9l£V is trivial whenever it is trivial on a subalgebra S o/" 91. 

P r o o f . The implication (i)=Kii) is obvious. 
(ii) =>(i): Let 8 be an arbitrary subalgebra of 9l£V. We have to prove that 

any congruence iP on 91 is uniquely determined by blocks [i>] f , b£B. To do this 
take the congruence ¥ " = © ( U ( [ 6 ] T X [ b ] ¥ ) ) on 21. Clearly, the subset [B]XP= b£B 
= U [ft]IP is a subalgebra of 91, moreover, the equality [5] 91=[5] W follows 

b£B 
from the construction of ¥". Since W ^ V we can consider the congruence W/W 
on the quotient algebra 9l/!P'€V. Apparently, !P/!P' is trivial on the subalgebra 
[5] T ' / T ' f l p ] !P'X[5]!P') of 91/5" hence, by hypothesis (ii), W is trivial 
on the whole algebra 9l/iP'. In other words we have W=IP' which was to be 
proved. 

Now we state the promised Mal'cev condition for varieties of subregular alge-
bras (announced in [4] at first). 

T h e o r e m 1. For a variety V the following conditions are equivalent: 
(1) every 9l£V has subregular congruences; 
(2) there exist unary polynomials ult..., u„, ternary polynomials px, ...,p„ and 
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A-ary polynomials slt ..., s„ such that 

x = y, z, i/iiz)) 

Si{x, y, z, Pi(x, y, z)) = s i + 1(x, y, Z, W; + i(z)), 1 s i < If, 

y = S„(x, y, z, pn(x, y, z)) 

"i(z) = />;(*, z), 1 = i = n, 
hold in V; 

(3) /Aei-e ex/jf i/nary polynomials ux, ...,«„ and ternary polynomials p1, ...,p„ 
such that 

(M,(Z) = p f c , y , z ) , 1 = ^ 

holds in V. 

P r o o f . (1)=>(2): Take 9l=3?v(x, y, z), the free algebra in V on free gen-
erators x, y and z. Choose the subalgebra 53 = g v (z) of 21 and consider the principal 
congruence 0(x, y) on 91. Since 91 is subregular, Lemma 1 (see also Remark 1) 
yields 

(*) &(x, y) = ©(<&!,«!>,.... <ibm)am]» 
for some elements b1, ...,bm£B and ax, ..., am£A. Applying the binary scheme, 
see [5, Thm. 1], to the congruence on the right hand side we get that 

* = 0"l ("l,Pl), 

<*i(Pi» ".) = <ri+1(ui+1,pi+1), 1 S i < «, 

y = VniPn, "„), 

where o^, ..., <r„ are binary algebraic functions over 91 and 

Using the fact that 9 l = g v ( x , y, z) and 93 = 3iv(z), the above equalities can be 
rewritten in the form 

x = sx(x, y, z, Ui(z), p^x, y, z)), 
Si(x, y, z, pi(x, y, z), i/i(z)) = si+1(x, y, z, ui+1(z), pi+1(x, y, z)), l s i < n, 

y = S„(x, y, z, p„(x, y, z), un(z)), 
for some unary polynomials ux, ...,u„, ternary polynomials px, ...,pn and 5-ary 
polynomials sx, ..., sn of V. Moreover ( * ) implies the identities ul(z)=pi{x, x, z), 
l^z'Sw. Now one can easily verify that the ternary polynomials qY, ..., q„ defined 
by qi(x, v, z)=Sj(x, z, z,pi(y, z, z),pi(x, y, z)), l^i^n, satisfy the identities 

x = q^x, z, z), 
qt(x, x, z) = qi+1(x, z, z), 1 i < n, 

z = q„(x, x, z), 
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ensuring the (n+l)-permutability of V, see [9, 10] or [8, p. 353]. Then, by [5, Thm. 2], 
unary scheme can be used to describe the congruence 0((px, a¿), ..., (bm, am}). In 
this way we obtain the same identities as above with an additional information 
that the polynomials s l t ...,s„ do not depend on the last variable. Hence we have 

x = sx(x, y, z, «!(z)), 

s¡(x,y,z,p¡(x,y,z)) = si+1(x,y,z,ui+1(z)), 1 S i < / i , 

y = sn(x, y, Z,pn(x, y, z)), 

"¡00 = Pi(x, x, z), l s i s n, 
as desired in (2). 

The implication (2)=>(3) is clear. 
(3)=>(1): Let SB be a subalgebra of 2Í£V, P a congruence on 21. Assume that 

[d] W= {d} for every d£B. Apparently <w¡(c), p¡(a, b, c))=(p¡(a, a, c), pi(a, b, c))€ Y, 
/=1, ..., 7?, hold for any (a, b)£ lF and c£B. Since u¡(c)£B, i=l, ...,n, we have 
further u¡(c)=p¡(a, b, c), i = l, ..., n. Then the hypothesis (3) gives a=b proving 
the triviality of Ü7. Lemma 2 completes the proof. 

R e m a r k 2. Putting MJ (z)= . . . = M „ ( Z ) = Z (u1(z)—c1,...,un(z)=cn for miliary 
operations clt ..., c„ of V) in Theorem 1 (2), (3) we immediately get the well-
known Mal'cev conditions for varieties of regular (resp. weakly regular) algebras. 

We have already proved 

Coro l l a ry 1. Any variety of subregular algebras is n-permutable for some n > 1. 

Furthermore, the identities from Theorem 1 (2) yield 

Coro l l a ry 2. Any variety of subregular algebras is congruence modular. 

Proof . Define 4-ary polynomials m0, ..., m2 n + 1 by m0{x,y, z,w)—x, 
fri2i-i(x,y, z, w, w, Mj(w)) (1 —i—ti)9 mn(x, y, z, w)=i ;(x, w, w,p¡(y, z, w)) 
(1 Si 'Sn) and m2n+1(x, y, z, W) = w. Then m2i_X(AT, y, y, w)=s¡(x, W, w, u¡(W)) = 
=s¡(x, w, w, pi(y, y, w)) = m2i(x, y, y, w) (1 =Si=S«), m0(x, x, w, w)=x= 
=s1(x, w, w, u1(w))=m1(x, x, w, w), m2i(x, x, w, w)=5f(x, w, w, p¡ (x, w, w)) = 
=si+1(x, w, w, ui+1(w))=m2i+1(x, x, w, w) (l^i<n), m^x, x, w, w) = 
=sn(x, w, w,p„(x, w, wj) = \v=m2n+1(x, x, w, w) and m¡(x, y, y, x)=x, 
since x, x, u^x))—...—s„(x, x, x, un(x)). Thus m0, ..., m2„+l are the Day 
polynomials and the desired result follows from [3] (see also [8, p. 355]). 
^ As we have already seen in Corollary 1, the subregiilarity of congruences implies 
the n-permutability of a given variety. Considering further the subregularity of 
tolerances or the subregularity of compatible reflexive relations something more 
can be stated. Simultaneously, an application of general compatible relations enable 
us to derive Mal'cev condition for permutable varieties of subregular algebras in a 
very simple form. First it will be convenient to make 
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D e f i n i t i o n 2. An algebra 2Í is said to have subregular tolerances (subregular 
compatible reflexive relations) if every tolerance (compatible reflexive relation, 
respectively) T on 21 is uniquely determined by subsets {x£A: (b, x)£ T}, b£B, 
for any subalgebra S of 21. 

It is a routine to paraphrase Lemma 1 for tolerance and for compatible reflexive 
relations. On the other hand Lemma 2 is redundant for the proof of our Theo-
rem 2. 

T h e o r e m 2. For a variety V the following conditions are equivalent: 
(1) every 2I€V has permutable and subregular congruences; 
(2) every 2I£V has subregular compatible reflexive relations; -•-•'• 
(3) every 2l£V has subregular tolerances; 
(4) there exist unary polynomials wl5 ..., k„, ternary polynomials p1, ...,p„ and 

(3+n)-ary polynomial s such that 

x = s(x, y, z, u^z), ..., u„(z)) 

y = s(x,y, z,Pi(x,y, z), ...,pn(x,y, z)) 

"¡(z) = Pi(x, x, z), 1 ^ i ^ n, 
hold in V. 

P roo f . The implication (1)=>(2) is a direct consequence of Werner's theorem 
[14]; (2) =>(3) is trivial. 

(3) =>-(4): Analogously as in the proof of Theorem 1 we take 2[=<5v(x, y, z), 
8 = g f v ( z ) and T(x,y) the smallest tolerance on 21 containing the pair (x, y). 
Then the hypothesis (3) (here a modified version of Lemma 1 is used) gives 

(* *) T(x, y) = T((«i, />i>, (un,p„)) 
for some elements ux, ...,un£B and px, ...,pn£A. Consequently there is a 2n-ary 
algebraic function a over 21 such that 

x = a(u1, ...,«„, plt ... p„), 

y = a(p1,-..,pn, «!,...,«„). 

Since 2í=3rv(x, y, z) and 23 = gv(z) , the above two equalities can be expressed as 

x = s{x, y, z, uj.(z), ..., un(z), p:(x, y, z), ...,pn(x,y,z)), 

y = s(x, y, z, Pt(x, y, z), ..., p„(x, y, z), ux(z),..., un(z)) 

for some (3+2n)-ary polynomial s, unary polynomials uu ...,un and ternary poly-
nomials pi,...,p„. Identities ui(z)=pi(x, x, z), lSi 'Sw, follow directly from (* *) . 
From all the above identities one gets Mal'cev polynomial p by p(x, y, z)= 
=s(x,z,z,p1(y,z,z),...,pn(y,z,z),p1(x,y,z),...,pn(x,y,z)). Hence V is per-
mutable and, again by [14], tolerances can be replaced by compatible reflexive rela-
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tions in (* *). Then 
x = s(x, y, z, u^z),..., u„(z)), 

y = s(x, y, z,p1 (x, y, z), ...,p„(x, y, z)), 
"¡(z) = Pi(x, X, Z), 1 — ' — 

as required. 
(4)=>(1): Ternary polynomials pi,...,p„ satisfy condition (3) from Theorem 1, 

i.e. every algebra in V has subregular congruences. Permutability of V is ensured 
by Mal'cev polynomial p(x, y, z)=s(x, z, z, pt(y, z, z), ..., p„(y, z, z)). 

R e m a r k 3. We have just proved that congruence permutability is implicit 
in subregularity of tolerances or in subregularity of compatible reflexive relations. 
The same phenomenon holds for regularity and weak regularity, see the earlier 
paper [6]. 
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On some generalizations of Boolean algebras 

J. PLONKA 

0. We shall consider only lattices and algebras of the type T0=(2, 2, 1) with 
fundamental operations + , • , w h e r e -I- and • are binary a n d ' is unary. Algebras, 
of type T0 are often studied mainly as generalizations of Boolean algebras, e.g. 
pseudocomplemented lattices, Stone algebras (see [1], [3]—[6]). 

In [4] we introduced the notion of a locally Boolean algebra as follows. An 
algebra (A; + , • , ' ) is called a locally Boolean algebra if (A; +, •) is a distribu-
tive lattice and there exists a congruence R of (A; + , • , ' ) such that any con-
gruence class of R is a Boolean algebra with respect to the operations + , •, and ' 
restricted to this class. 

We use a similar idea in this paper. In Section 1 we introduce a special con-
gruence ~ in a lattice + , •) and by means of it we construct a new algebra. 
SL of type (2, 2, 1). We show that all algebras 21^ form a variety (Theorem 1).. 
In Section 2 we prove that if 9i is distributive then it is isomorphic to a subdirect 
product of a Stone algebra and a distributive lattice with an additional constant 
operation ' whose value is the greatest element to this lattice. 

1. Let '21=(A; + , •) be a lattice. A congruence ~ of 91 will be called a b.u.-
congruence of 91 if it satisfies the following conditions (a)—(c): 

(a) 91/~ is a Boolean lattice; 
(b) in any congruence class [x] of ~ there exists a greatest element m ([*]);: 
(c) for any x, y£ A we have: 

"(M+M) = u([x})+u{{y}), u([x] • [y]) = «([*]) • u([y]). 
E x a m p l e 1. If 91 is a finite chain then any congruence of it having two con-

gruence classes is a b.u.-congruence. In fact a congruence class of a lattice must be 
convex. . 

If a lattice 91 has a b.u.-congruence ~ then we can define a new algebra of 
type T0 by putting 91 ̂ ,=(A; + , - , ' ) where the operations + and • coincide in 91 

Received October 4, 1984. 
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and 21^ and the operation ' is defined by the formula x/=w([x]°) where [x]° is the 
complement of the congruence class [x] in the lattice 21/ 

We have 
(i) any b.u.-congruence ~ of a lattice 21 is a congruence of 21^ such that 2 1 J ~ 

is a Boolean algebra. 

Lemma 1. Any algebra 2 l ^ = ( A ; • , ' ) satisfies the following system of 
identities: 
•(1) x+x = x, x-x = x, 

(2) x+y = y+x, x-y = y-x, 

<3) (x+y)+z = x+(y+z), (x-y)-z = x-(y-z), 

(4) x • ( x + y ) = x = x + ( x • y), 

(5) ((xy)' = x\ 

(6) ix+y)' = x' • y', (x • y)' = x'+y', 

(7) *+(* ') ' = (*')', 

(8) x'+(x'Y = / + ( / ) ' , 
(9) x'+(y'-z') = (x'+y')-(x'+z'). 

Proof . The proof follows easily from (a)—(c). We prove for example (8). 
¡Let us denote x"=(xj. Let x£A. Then 

x ' + x " = W([x]°)+«([x']°) = w([x]°+[x']°) = u([x]°+|>([x]0)]0) = 

= « ( M ° + ( M 0 ) » ) - K ( [ X ] 0 + [ X ] ) . 

But the element w([x]°+[x]) is the greatest element of the greatest class of 21 so 
it is fixed and consequently (8) holds. 

Lemma 2. Let 2 l=(A; - f , •,') be an algebra satisfying (1)—(9). Then there 
exists a b.u.-congruence relation ~ in the lattice (A) +, •) such that 21 is identical 
with the algebra (A; +, •)-• 

Proof . Let us put for x, y£A 

x~y «=> x' — y'. 

Obviously ~ is an equivalence. If ai~a2 and b^~b2 then by (6) we have (ax+btf— 
=dl-b'1=a^-b2—(a2-\-b.^', so ~ satisfies the substitution law for + . Analogously 
~ satisfies the substitution law for • and so ~ is a congruence in 21 and con-
sequently in (A;+, •). 

To prove (a) it is enough to show that 21/~ is a Boolean algebra. However 
by (5) we have x " ~ x for any x£A, so the identity x " = x holds in 2I /~ . By 
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(6), (5) and (8) we have 

(x+xj = (x'+x'J = (y'+y'J = (y+yj 

for any x,y£A. So the identity x+x'=y+y' holds in 9I/~. By (6) and (9) the 
distributive law 
(10) x-(y+z) = x-y+x-z 

holds in 9 1 / s o 91/~ is a Boolean algebra. 
To prove (b) we shall show that the element x" is the greatest element in the 

class [*]. We have already shown above that x"~x for any x£A, so x"£[x]. If 
x~y then x'=y' and x"=y". Now by (7) x"=«([x]). 

The condition (c) follows at once from (5) and (6). 
Finally u ( [ x ] 0 ) = w ( [ x ' ] ) = ( x ' ) " = s o the operations ' in (A~, + , • ) - and 

91 coincide. 

Let us denote by L* the class of all algebras of the form for some lattice 91 
and a b.u.-congruence ~ of 91. By Lemmas 1 and 2 we have 

Theo rem 1. The class L* is a variety defined by the identities (1)—(9). 

Let us denote by D* the class of all algebras 91^ where 91 is a distributive lattice. 

Co ro l l a ry 1. The class D* is a variety defined by the identities (1)—(8) and (10). 

This follows from Lemmas 1 and 2. 

2. Let us denote by L± the variety of algebras of type T0 satisfying (1)—(4) 
and the following two identities: 
(11) x+y' = xT, 
(12) x' = 

We denote by Dx the variety of algebras of type r0 defined by (1)—(4), (11), (12) 
and (10). Thus the algebras from Lx and £>x are lattices with unit defined by an 
additional operation '. 

The construction of algebras 9t^ can suggest that any algebra from L* is iso-
morphic to a subdirect product of a Boolean algebra and an algebra from Lj_. This 
however is not true even for the variety D* as it is shown by the following example. 

Example 2. Let us consider an algebra S=({a , b, c}; + , • , ' ) where 
({a, b, c}; + , •) is a lattice in which a < b < c and a'=c, b'=c'=a. Then the 
equivalence relation ~ with two classes {a} and {b, c} is a b.u.-congruence in the 
lattice ({a, b,c};+, •) such that S=({a , b, c}; + , • (see the definition of ~ in 
Lemma 2). However S neither is a Boolean algebra nor belongs to Dx, and it is 
subdirectly irreducible since ® is a subdirectly irreducible Stone algebra (see [3]). 
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This example is not accidental. In fact, the next theorem shows that for algebras 
from D* we always have a subdirect decomposition. 

Let Bx denote the variety of Stone algebras of type T0 (see [1]). We have that 
(ii) the identities (1)—(8), (10) and 

form an equational base for the variety of Stone algebras. 
In fact the identity (13) together with the identities x-(x-x')'=x, (x-xr)"= 

—x-xf, x-(x-y)'=x-y', x,+x"—(x-x')' form an equational base for Bt. Using 
subdirectly irreducible algebras from Bx (see [3]) it is easy to check that these two 
systems of identities are equivalent. 

For a variety V of algebras of type T0 we denote by Id (V) the set of all identities 
of type r0 satisfied in V. For two varieties Vx and V2 we denote by V^JV2 the join 
of V1 and V2, and by V1®V2 the class of all algebras isomorphic to a subdirect 
product of two algebras 2Ij and 9l2 where 9IX€ Vx and 9I2£ V2 • 

Let 91=(A; + , • , ' ) be an algebra of type T0. 

Theo rem 2. The following four conditions are equivalent: 
(1°) 9I£D*, 
(2°) M Z B ^ D l , 
(3°) 91 e ^ V f l i , 
(4°) 91 satisfies the identities (1)—(10). 

To prove Theorem 2 we need some lemmas. In the next six lemmas we assume 
that the algebra 91=0,4; + , ' ) belongs to £>*, so it satisfies (1)—(10) by Corol-
lary 1. 

Lemma 3. 91 satisfies the following identities: 

Proof . By (6), (5), (3) and (8) we have x'x"=(x"+x')'={y"+y')'=y'y". 
By (7) and (2) we have xx'=xx"x'=xx' x". By (14) we can denote by e the con-
stant element of A with e=x'x" for any x f A . By (15) and (10) we have 

(x+yXx+j;)' = (x+j)(x+7)'(x+^)" = (x+y)-e = x-e + y-e = 

= xx'x"+yy'y" = xx'+yy'. 

(13) x • x' = y • y' 

(14) 

(15) 

(16) 
(17) 

x'.x» = y'.y'\ 

JC * i JC JC * * ̂ C } 

(x+y)(x+y)' = xx'+yy', 

(x-y)(x-y)' = xx'-yy'. 
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Finally 

(x • y)(x • y)' = (x • • y)'(x • y)" = xye = xyee = xe - ye = xx' • yy'. 

We define in 21 two relations Rx and R2 by putting for a, be A 

aRib <=> a+a'a" = b + b'b", aR2b o aa' = bb'. 

Lemma 4. The relation Rr is a congruence in 21. 

Proof . Obviously R1 is an equivalence. If aR^ax and bRxthen (a+b)+ 
+(a+by(a-hby' = (a+b)+e = a+e+b+e = a1+e+b1+e = (a1+b1)+e=(a1+b1)+ 
+(a1+b1)' - ( a x S o i?! satisfies the substitution law for + . To show the sub-
stitution law for • we use the distributivity of + with respect of •. If aRtb then 
by (6) and (4) we have (a+a'a")'=(b+b'b")', hence ¿(a'+a")=b'(b'+b"), so 
a'=b', and consequently d R1b'. 

Lemma 5. R2 is a congruence of 21. 

Proof . Obviously R2 is an equivalence. The substitution law for + , for • and 
for ' follows at once from (16), (17) and (14), respectively. 

Lemma 6. R1C\R2=:co where a> is the diagonal. 

Proof . If aR^b and aR2b then 

a = a+aa' = a+(a-a")-a' = a+(aa')-(a'a") = a+{bb')(b'b") = 

= a + bb'b" = a + be = (a + i>)(a+e) = (a + b)-{a + e)(a+e) = 

= (a + b)(a+e)-(b+e). 

Analogously, we can prove that b=(b+a) • (b+e) • (a+e). So by (2) a=b. 

Lemma 7. 21/2?! is a Stone algebra. 

Proof . We shall show that for any x, y£A we have (x-x/)R1(y-y/). In fact 
(xx')+(xx'y(xxT = xx'+(x'+x")x'x" = xx'+x'x" = 

= x'(x+x") = x'x" = e. 

Analogously (yy')+(yy')'(yy')"=e. So xx'R1yy'. Thus the algebra WRi satisfies 
(13) and by (ii) it is a Stone algebra. 

Lemma 8. 2l/R z belongs to D±. 

Proof . By (11) and (12) we have to prove that for any x£A we have (x+x')R2x' 
and for any x, y£A we have xf R2y'. In fact 

( x + * 0 ( * + * T = (*+*') • = xx'x"+x'x" = x'x" = x'(xj. 

Further x,(x,y=e=y'(y,y. 
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Proof of Theorem 2. By Corollary 1 condition (1°) is equivalent to (4°). 
Obviously B1®DxczB^jD1, so (2°)=>(3°). Further B1VD1aD* since each of the 
identities (1)—(10) belongs to Id (BJ by (ii), and each of the identities (1)—(10) 
belongs to Id (Z>i). So any of (1)—(10) belongs to Id ( ^ f l l d (DJ. Thus (3°)=>(4°). 
To complete the proof it is enough to show that (l°)=>-(20) i.e. any algebra 9l£Z)* 
is isomorphic to a subdirect product of a Stone algebra and an algebra from . 
However, this follows from Lemmas 4—8 and the decomposition theorem (see 
[2], Theorem 2, p. 123). 

R e m a r k 1. The distributive law (10) in Theorem 2 is an essential assumption, 
i.e. we cannot omit this identity in condition (4°) and substitute D* by L* and Dx 

by Li in conditions (1°)—(3°). 
In fact, we have the following: 
(iii) the variety L* is essentially larger than the variety . 
Indeed, by Theorem 2 we have B1czD*czL*. Further Id (L*)cId (Z^), as it 

is easy to check. So Z^cL*, and consequently 51VZ acL*. Let us take the lattice 
JV6=({a, b, c, 0, 1}; + , •) where 0 < a < Z x l , 0 < c < l , the elements a and c are 
incomparable and the elements b and c are incomparable. We consider in N5 an 
equivalence ~ with two equivalence classes {0, a, b) and {c, 1}. Obviously ~ is 
a b.u.-congruence in N5 where m({0, a, b})=b and u({c, 1})=1. Hence the algebra 

belongs to L*. However does not belong to B^/Li, as the identity 

(d) x+y .y' = (x+y) •(*+/) 

belongs to Id (BJ 0 Id ( L J = I d ( B ^ L ^ , while (2VS)_ does not satisfy (d) since 
a+c-c'=a+c-u({0,a, b})=a+c-b=a and (a+c) • ( a+c ' )=(a+c) • (a+b)=b. 

Let B0 denote the variety of Boolean algebras of type T„ . 

Coro l l a ry 2. B0\/Dl=B0iS)D1 and BQ\/Dl is defined by the identities (1)— 
(10) and 
(18) x+x' = y+y'. 

Proof . Let us denote by K the variety of algebras of type T0 defined by (1)— 
(10) and (18). Obviously B^D^B^JD-l and B^D^K, since Id (K)cz 
c ( l d (B0)HId (DJ). If then 91 £Z>*, since Id (Z)*)cld (K). So by Theo-
rem 2 91 is isomorphic to a subdirect product of two algebras 9lx and 9I2 with 9I1Cfi1 

and 91 a€Di- But 91 satisfies (18), so also does. Thus 9IX satisfies (1)—(10), (13) 
and (18), whence it is easy to show that 9IX is a Boolean algebra. This completes 
the proof. 

Example 3. Let A' be a set. Put Y={(A,B): A,B£2X, AczB}. We define 
an algebra S 0 of type T0 by putting 930=(y; + , - , 0 where + = U, • = fl and 
( (A,B) ) '= (X\A, X). 
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By Corollary 2 and Theorem 2 91 belongs to D* since it is a subdirect product 
of a Boolean algebra 9I1=(2X; 11 , (1 ,0 and an algebra 9I2=(2X; U, f l , 0 where 
Z'=X for any ZczX. If 1*1 = 1 then S 0 has only 3 elements: <0; 0>, <0, X) and 
(X, X). But ©o neither is a Stone algebra nor belongs to D1. So S 0 is not a direct 
product of a Stone algebra and an algebra from Dx. This shows that Theorem 2 
cannot be strengthed to direct product. 

R e m a r k 2. We can obtain results dual to those of this paper by assuming 
the existence of a least element o([x]) in (b), and by substituting u by o in (c). Then (7) 
must be substituted by x+x"=x, and so on. 
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Square subgroup of an abelian group 

A. M. AGHDAM 

Given an abelian group G, we call R a ring over G if the additive group R+=G. 
In this situation we write R=(G, *), where * denotes the ring multiplication. The 
multiplication is not assumed to be associative. Every group G can be provided 
with a ring structure in a trivial way, by defining all products to be 0; such a ring is 
called a zero-ring. In general, we call a group G a nil group if there is no ring on G 
other than the zero-ring. 

Suppose that H is a subgroup of G. G is called nil modulo H if G*G^H for 
every ring (G, *) on G. It is clear that if G is nil modulo both and H2 then G 
is nil modulo fiyClHo, this suggests the following definition of the square subgroup 
• G of G: 

• G = f\{H G|G is nil modulo H}. 

Clearly QG is the smallest subgroup with the property that G is nil modulo DG* 
For the first time the square subgroup was studied in [1] by A . E . STRATTON 

G 
and M . C . WEBB. The basic question about the square subgroup is whether 

• G 
is a nil group? If this is not true in general then under what conditions it is true 
and why it fails? 

In this note we are investigating the square subgroup of an abelian group. 
We will show that the square subgroup of a torsion reduced group is equal to itself 
and we will prove that 

where D is the maximal divisible subgroup of G and N is the reduced part of G; 
also, if G is a non-torsion group then 

G _ N 
• G ~ ON ' 
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By an example we will show that the square subgroup of a torsion-free group, 
in general, is not a direct summand of the group. 

All groups considered in this paper are abelian, with addition as the group 
operation. 

P r o p o s i t i o n 1. If G is cyclic (finite or infinite) then • G=G. 

Proof . Let (x) be a cyclic group, define a ring on (x) by (mx)(nx)=mnx. 
In this ring x is the neutral element of (x), so, (x)=(x)2 and hence 

• <*> = <*>• 

P r o p o s i t i o n 2. A=B®H implies that UB^UA. 

Proof . Suppose that there is a ring (B, *) over B. We can define a ring (A, o) 
by putting 

(b + h)o(b'+h') = b*b', 

this implies that AoA—B*B, hence OA. 

Theorem 3 ([2], page 288). A p-group G is a nil group if and only if it is 
divisible. 

Theorem 4 ([2], page 287). A multiplication p. on a p-group A is completely 
determined by the values aj) with a,, as running over a p-basis of A. Moreover, 
any choice of p(at, aj)£A with a{, as from a p-basis of A subject to the sole condi-
tion that 

o(n("i, aj)) == min (o(af), o(aj)) 

extends to a multiplication on A. 
Lemma 5. The reduced part of a p-group G has unbounded order if and only 

if any p-basic subgroup of G has unbounded order. 

Proof . Let G=D®N, D is the maximal divisible subgroup of G. Let B be a 
p-basic subgroup of N. If B has bounded order then J? is a direct summand of G, 

G 
hence G=D®B®N' and by the definition of B, N' should be 

B 
divisible, a contradiction, that is N'=0. Consequently N—B and is of bounded 
order. This concludes that N has unbounded order if and only if B has unbounded 
order. 

Lemma 6. Let G be a p-group. If the reduced part of G has unbounded order 
then n G = G . 
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Proof . Suppose that G is a /»-group and the reduced part of G has unbounded 
order. Let B=© (at) be a /7-basic subgroup of G. Let g be an arbitrary element 

i€/ 
of G with o(g)=pn. By Lemma 5, B has unbounded order, hence there is aK such 
that <?(%) >/>". In accordance with Theorem 4, a multiplication ^ on G is uniquely 
determined if we put 

, fO if either i ^ K or j ^ K, 
fi(al,aJ)= ( g ,f j = i = 

hence g€ QG, that is, mG=G. 

Lemma 7. Let G be a reduced p-group, then • G=G. 

Proof . If G has bounded order then G= © (*,), and by Propositions 1, 2, 

• G=G. If G has unbounded order then, by Lemma 6, DG=G. 

Theorem 8. Let G be a reduced-torsion group, then DG=G. 

Proof . G = © Gp, Gp is a /?-group. If G is reduced then Gp is reduced for all p 

prime p. By Lemma 7 • G p = G p . Therefore DG=G. 

R e m a r k 1. Let G be a group. Let R=(G, t]) be a ring on G, then 
f/€Hom(G®G, G) and ri(g1<8>g^)=g1g2, that is, G2=Im tj, therefore 

• G = (Imf/|f;6Hom (G<8>G, G)>. 

Note. A ®B means the tensor product of A and B. 

P r o p o s i t i o n 9. Let G be a non-torsion group, then 

<Im 9\0€Hom(G, z(p))) = Z(p). 

Proof . Z(p)=(c1, c2, ..., c„, ...\pcx-0, pc2=c1, ...,pc„=cn.x, ...). Let x be 
in G and the order of x be infinity, then the map f{ri)=nx {n£Z, the set of 
integer numbers) defines a short exact sequence: 

0 G — M — 0 

which induces the short exact sequence: 

0 - Horn (M, Z(p)) - Horn (G, zQ)) Horn (Z, Z(p)) - 0, 

the sequence being right exact because Ext (M , Z(p))=0. 
The definition of the m a p / * is given by f*(0)=6f for all 0£Hom (G, Z(p)). 

Now given y£Z(p) there is >7 € Horn (Z, Z(p)) such that t](l)=y. Since f* is 
epic there is 06Horn (G, Z(p)) such that f*(&)=t\, hence y=t1(l)=(f*(Q))(l)^ 
= 9(f( 1)), yielding the result. 

4* 
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Theorem 10. Let G be a group, G=D®N where D is the maximal divisiblesub-
G D N 

group ofG. Then —— = —®——, where • D^T^D. If G is a non-torsion group, 
• G T • N 

G N 
then ——^ . 

• G • N 

Proof . G®G^(D®D)®(D®N)®(N®D)®(N®N). Since N is reduced and 
D®D, D®N, N®D are divisible, Horn (D®N, 7V)=Hom (N®D, N)= 
=Hom (D®D, N)=0. Hence 

Horn (G®G, G) ^ Horn (D ®D,D)® Horn (D ® N, D) 

(1) ©Horn (N®D, D)®Uom(N®N, N) 

©Horn ( N ® N , D ) . 
G D 

So, by remark (1), UG=T@nN where UD^T^D. This implies ^ — © 
• G T 

N 
ON 

Suppose that G is a non-torsion group. If the group of rational numbers is a 
subgroup of D, then D=H@K, where H is a direct sum of the groups of rational 
numbers and K is a direct sum of quasicyclic groups. Hence D®D=H®H is a 
direct sum of the groups of rational numbers. 

Horn (.D®D, D)=Hom (.H®H, # ) © H o m (H®H, K), 

because of (Im 0|0£Hom (Q, Q))=Q (Q is the group of rational numbers), by 
Proposition 9 and Remark 1 nD—D and nG=D@nN. 

If D is a torsion group, then D is a direct sum of quasicyclic groups and 
N is a non-torsion group, hence N®N is non-torsion, too. By Proposition 9 
(Im >/|>/€ Horn (N®N, D))=D. 

Consequently by (1) nG=D® • N, this concludes that 

w G 
. DG ON 

R e m a r k 2. Let G=Z(p)@Z(p), then we have G®G^Z{p)®Z(j>)^Z(p). 
Horn (G®G, G) ^ Horn (Z(p) ®Z(p), Z(p)) © Horn (Z(p) ®Z(p), Z(p)). By remark 
(1) UG=(c1)®Z(p). We deduce that DG is not a pure subgroup of G, con-

G Z(p) 
sequently QG IS not a direct summand of G. =— , that is (2) is not true 

• G (Ci) 
G 

in general when G is a torsion group. But is a nil group. 
• G 
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The following example shows that the square subgroup of a torsion-free 
group, in general, is not a direct summand. 

Example . Let A be the subgroup of Qxx©Qx2 generated by the set 

f 1 1 1 1 \ ~ p X l ' ~ ^ X i + y X 2 p !S running over 7ij 

where n is the set of all prime numbers. — x ^ A implies x1=p(—x1\£A, hence, 
P > 

(3) hp(xj S 1 for all p£n. 

Suppose that x1f_q2A for some prime q, then 

where ij/ is a finite set of prime numbers; 

lpe<l> v p p ) p i 

Since {jcl5 x2} is an independent set of A, this implies 
pe\t p 

We deduce l = o s y. this implies q £ s o , by (4) 
Pi<l>\ p p* J 

(4) PP = 0 (modp) for all p ^ . 

P P2 

(5) ftq = 0 (mod q). 
Let t h e n 

1 K q <7 / pfjol p p2) pfi° V P P2) 

this implies y f — i s an integer, therefore /? = 1 (mod q) a contradic-
pe<i>° \ p p2 J 

tion by (5). Consequently x^q2A. By (3) ht(x1)=l for all p£n. Hence, t(x1) = 

=(1, 1, ..., 1, ...). Let Z _ = 4 r X1+-TX2 then p6Z=psx1+x2, and since hJx1)=1, 
p2 pb 

hp(x2)=4 for all pin. Hence i(x2)=(4, 4, . . . , 4, ...) and i(x2)>-t(x1). i(xj and 
t(x2) are not idempotent, that is any ring R=(A, *) over A satisfies x\— 
=x2x1=x%=0, a is a rational number. 
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Let y=uxl+vx2, w=ftx1+yx2 then, yw=aufix2, this implies A2^(x2)* ((x2)* 
is a pure subgroup of A generated by x^). Since (A, *) was arbitrary, 

(6) OA S <*2>*. 

L e t a = l , then yw=fiux2, and by the structure of A, ¡hix2£A. Hence A is not 
a nil group. We claim that A2=(x2)*. For the proof it is enough to show that 

-i-*26 A2. 
P 

Let Z = — — - x 2 , then Z2=—x2, so — x2€A2 for all p€n. By (6) 
p2 p* p* p* 

OA=(x2)*. Let U={u£Q\uxx+vx2£A for some v£Q}. If • A is a direct 
summand of A, then 

A = (x2)*®B, t{B) = t [ 7 ^ ) = t(uy, 

by the structure of A, t(U)=(2, 2, ..., 2,...). This implies t(xJ)<t(B)<t(x2) but 
this is impossible, since r(A)=2 ([2], page 112, Ex. 10). 

Consequently • A is not a direct summand of A. 
A 

Note. Since is of rank one and its type is not idempotent, it follows that 
OA 

A • is a ml group. 
OA 
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Concrete characterization of partial endomorphism semigroups 
of graphs 

V. A. MOLCANOV 

Algebraic and elementary properties of partial endomorphism semigroups of 
graphs were studied by L. M. POPOVA [1,2], Ju. M. VAZENIN [3] and A. M. KAL-
MANOVIC [4—6]. For these semigroups it is interesting to study the concrete char-
acterization problem [7]: under which conditions is a partial transformation semi-
group E equal to the partial endomorphism semigroup E(G) of some graph G1 

In the present paper we investigate this problem. The necessary and sufficient 
conditions for a partial transformation semigroup E to be equal to the partial endo-
morphism semigroup E(G) of some graph G will be obtained in Theorem 2. We 
construct all kinds of such graphs in Theorem 1. At the end of the paper we apply 
our results to describe (in Theorem 3) graphs with equal partial endomorphisms 
and to investigate (in Theorem 4) the question: how are graphs determined by their 
partial endomorphism semigroups? Numerous other applications of Theorems 1 
and 2 are briefly stated in [8]. 

1. Definitions, preliminary results 

Let X be an arbitrary set with l-X] >1, and let q be a binary relation on X, 
x£X,Ac:X. We put X2=XxX; 

q~1 = {(x, y): ( j , x)€ e}; dom q = {x: ( 3 y ) £ e } ; 

qx = {y: and qA = {y\ 
A one-valued binary relation fczX2 is called a partial transformation of X 

(shortly p. transformation). If xGdom/, then f x denotes the image of x under f . 
A p. transformation / i s called 3-bounded, if | do m/ |< 3 . We write > if 

dom f={a, b) and fa — c, fb = d. The Cartesian power / 2 of / is the p. trans-

Received May 27, 1983. 
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formation of XZ such that f2(x, j> )=(fx , f y ) for x,y£domf The identity trans-
formation of a set A is denoted by AA. We denote by W(X) the symmetric semi-
group of all /».transformations on a set X. 

By a graph we mean a structure G=(X, e), where X is a non-empty set and 
gcz X2. The elements of X and q are called vertices and edges, respectively. The 
edge (x, x)£g is called a loop. We denote G~1=(X, q'1). 

A p.transformation / of X is called a partial endomorphism (shortly p.endo-
morphism) of the graph G, if /2q(zq, i.e. (x, y)£g implies ( f x , f y ) £ e for any 
x, j>gdom/. The /j.endomorphisms of G form a semigroup E(G) (under the com-
position), which is called the p.endomorphism semigroup of the graph G. E3(G) 
denotes the 3-bounded /».endomorphism semigroup of G. 

Let £ be a /».transformation semigroup on a set X. The canonical relations of 
E are defined by the formulas: 

T £ u {/:/€£}; P £ U{/ 2 : f£E}; 

A {x€X: X2 c p-^x, x)}; B £ X\A; 

P^ABU{(x,y)€X'\Ax: txXry a p(x, >>)}; 

R M: JAU{(x, y)£X*\Ax: ( r ' x x i ~ l y ) \ A x c p^ix, y)}; 

Z = P(~)R; Q' £X*\(PUR) 
and 

Q^OPQ'^RMiP-'Q^P). 
The intersections of any binary relation a on A" with the relations A2, (.¿X.B)U 

U (BxA) and B2 are denoted by the same symbol but with indices 1, 2 and 3, respec-
tively, i.e. cr1=a(~)A2, cr^ai]((AXB)U(BxA)) and a3=aDB2. 

We denote { /££ : |dom/ |<3} by E s . 
In the following lemmas the canonical relations of /».transformation semi-

groups will be investigated. 

Lemma 1. If E contains all 3-bounded identity p. transformations of X, then 
(i) T is a quasi-order1) on X, (ii) p is a quasi-order on X2 and (iii) the canonical rela-
tions of E and E3 are equal. 

Lemma 2. If (Q3=Z3=&), then P1(Ra) is non-empty. 
Lemma 3. If ia=X for all a£B then the following conditions hold: 

(i) if J M 0 and Zl7±Q then R^A2, P1^As\Aa and P2UQ2^0; 
(ii) if Z 2 * 0 then P2=R2=(AXB)\J(BXA)\ 

(iii) if and Z3?i& then Pa=B\ R3=B*\AB and R2DQ.2^0. 

>) A quasi-order on A" is a reflexive and transitive binary relation on X. 
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The proofs of these lemmas easily follow from the definitions. 
Now suppose that E—E(G) for some graph G—(X, q). Then , the canonical 

relations of E satisfy the following properties. 

L e m m a 4. Let G be a graph such that E(G)^W(X). Then 

(ii) 
(iii) q 0 d x = Aa 

and 
(iv) ficieNe-^UGT1^). 

P r o o f , (i)—(iii) are obvious. It follows from the definition of Q that PC\Q'— 
=RClg'=0. Hence e ' c ( e \ 0 - 1 ) U ( e ~ 1 \ e ) - Let (x, y)£Q. By definition there 

exists a (u,v)£Q' such that either y^E and (x,.y)$P or £ £ and 

( x , T h e n either ^ is a p.endomorphism of G and (x, y)€i?Ui>_1 or 

(x a P• er>domorphism of G and (x, Since (u, v)d(o\Q~1)V> 
U (q~v\q), the vertices x, y are joined by one edge of G. Therefore Qc (q\q~*) U 

U G r N e ) , i.e. (iv) holds. 

L e m m a 5. If the canonical relations of E=E(G) satisfy Z1—Q (resp. Z 3 =0J then 
Ri=(Q^Q'x)i and P=X*\(q{Jq-1) (resp. R=qHe"1 and PA=(X*\(Q\J q~%). 

P r o o f . Suppose that Z x = 0 . By Lemma 2, 2 ^ 0 or P l 5^0. If (x, 
then, by Lemma 4, x and y are joined by one edge of G. If (a, b)^.P1 then, by the 

definition, ^ a ] ^ - On the other hand, (a, whence ^ for some 

u,v£X. Then (a, Therefore (x,j>)<ieU if (x,y)£P, and (x, y)£qD 
f i g - 1 , if (x, y)£Ri. Using Lemma 4, we obtain that P i = ( i ? n e _ 1 ) i and 
P = A r 2 \ ( g U ¿>-1). By the analogy the second statement of the lemma is proved. 

L e m m a 6. If the canonical relations of E=E(G) satisfy i M 0 and Z2=Q=& 
then the following conditions hold: 

(i) if Z 1 ? i 0 then R1=(Qf)Q-1)1 and either P2=(XZ\(q\Jq-% or P 2 = 
= ( ( e \ e " 1 ) U ( r 1 \ e ) ) 2 ; 

(ii) if Z3?i0 then PS={X*\(qUq~% and either / ^ ( t e N e ^ M e " 1 ^ ) ) * 
or Rz=(ene-\. 

P r o o f . Suppose that g = Z 2 = 0 and B, Then, by Lemma 3, P 2 ^ 0 . 

Let (a, b)£Pr\(AXB). Hence (a,b)$R and, by the definition, (* for 
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some xÇT~1a and yÇ.t~1b. Then (a, ÎO^eHe -1» whence (a, 6 ) € ( e \ e - 1 ) U 

Ufo-'Xe) or (a, &)<£(? Uf?"1. Since J ) , £ fyiE for any (c,d)£PCl(AxB), 

we obtain by Lemma 4 that either P a = ( ( 0 \ e - 1 ) U (e _ 1 \£) )z or P2=(X2\(q U e_1))2 • 

Moreover, (x,y)$P and, by Lemma4, (*, j>)€eUe_1. Since ^j, ^ Ç.E for 
any (u,v)£Rlt we obtain that /?i=((?n£>-1)i- Thus (i) holds; (ii) can be proved in 
the same manner. 

2. Main results 

Let E be a /».transformation semigroup on a set X. Using the canonical rela-
tions of E we define the following conditions Uk and binary relations Dk l on E: 

U^(A = X & Z ^ 0); 
i=l 

U3 ¿L(Q3 * 0); Ut £(Q3 = 0 & Qx * 0); 

U6 = z3 = 0 & (Z2 * 0 V = 0)); 

C / 7 ^ ( g = Z1 = 0 & Z 2 ? i0 ) ; 

PS = ( Z , * 0 & G = Z I = Z2 = 0); 

U9 £(.Zx * 0 & A^X & Q = Z2 = Z3 = 0); 

tfio = ( Ô = Z2 = 0 & Z t 0 & Z3 jt 0); 

l \ i = 0 , 

A . 1 = ^ ; D ^ î L à x x , 

D^^Dll-, D2,5£x*\B\ D2>6£X*\Ab-, 

Da.1=P(a,b) and Z> 3 , 2=A7 Ï for (a,b)€Q3; 

Diyl ={(R\Q)yjb))\P and for ( a , * » ) ^ ; 

I>5,i=(Jî\i>)Uiî(a,b)U (T and Z)s,2 =2>i7Î for (a, 

and either a=P(d,c), if there exists (c,d)6(ôn04X-B))\J?(a, &), or cr=0 other-
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wise; 

D6.1 = *; DBi1£R\B\ d8>2 ^R\(BXX), 

Da,3=r>f,l; Z>9,1 =R, D„,22L(AXX)VR, 

Ao,3=^(^004X2?)), AO,4 = A-0Î2, AO,5 = ^ 3 -
The sufficient conditions for a 3-bounded p . transformation semigroup to be 

equal to the 3-bounded p . endomorphism semigroup of some graph will be given in 
the following 

Theorem 1. Let E be a 3-bounded p. transformation semigroup on a set X 
and let the canonical relations of E satisfy the following conditions: 

(Tl) for any aÇB and x£X; 

(T2) "¡J, (J ^ E imply (x,y)ÇP or (u, v^R; 

and 

(fe ïH-Ê ft* 
for any (Xi,y,)€Q 0"=1,3) such that (xk, xk+1), 0>*, yk+(k=U 2). 

Then the following conditions hold: 
(i) E satisfies the one of the conditions Uk ( l^fcSlO); 

(ii) if E satisfies Uk, then the equality 

(1) E = EZ(G) 

holds if and only if G=(X, Dkil) for some number I. 

Using the canonical relations of p.transformation semigroups we obtain thè 
following concrete characterization of the p . endomorphism semigroup of a graph. 

Theorem 2. Let E be a p.transformation semigroup on a set X. Then E is 
equal to the p. endomorphism semigroup of some graph if and only if E is the left 
idealizer2) of its subsemigroup Ez in the symmetric semigroup W(X) and the canonical 
relations of E satisfy the conditions (TO—(T3). 

a) If S is a subsemigroup of a semigroup T, then the left idealizer of S in X is the largest sub-
semigroup LoîT such that S is a left ideal of L. 
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Before drawing up our main results we verify five lemmas which make the 
proof of the theorems easier. Let E be a /».transformation semigroup on a set X 
satisfying (Tx)—(T3). In the following propositions we collect some properties of 
the canonical relations of E. 

Lemma 7. E contains all 3-bounded identity p. transformations of X and the 
canonical relations of E satisfy (x, y)£f}(x, y), ra=A, t~1b=B and t~la=Tb=X 
for any x,y€X, a£A, b£B. 

Proof . By the definitions of A and (Tj), for any x£X. Consider 

distinct elements x,y£X. Clearly, (x, x), y)£r. If (x, y)€PUR, then, by the 

definition, j j € E . If (x, y)£Q then j J £ E by (T3). We show that 0£E. 

Since | A ' ] 1 , there exist two distinct elements x,y£X. Then the /».transforma-

tions , and 0=(j)°(j) belong to E. So E contains all 3-bounded identity 

p. transformations of X. It follows from the definitions of yS and A that (x, (x, y) 
and ia=A, r~*b=B, %~1a=xb=X for any x, y£X, a£A, b£B. 

Lemma 8. The canonical relations of E satisfy the following conditions: 

(0 Qi = Qi, 

(ii) Qz = Q'z, 

fiift (RO'W R = lQ'> if Q's==0> (ill) |(p{(a,b),(b,a)})\fl, if there is («, 6)€fii; 

(iv) (B-W')\P = iQ'> if & = ( v ^ to?"1««, b), (b, a)})\P, if there is (a,b)£Qi. 

Proof . Suppose that (x ,y)£Q 1UQ 3 . Then, by Lemma 7, x,y£zx—Ty and, 
by the definition of Q, there exists a (u, v)£ Q' such that either (x, and 

V^E or ^ £E and (x,y)$P. We prove that (x,y)£Q'. Suppose the 

contrary. Let (x,y)£P\JR. It follows that by the definitions of P and R. 

Then, by (T2), either (u,v)£P or (u,v)£R, which both contradict the assump-
tion. Consequently, (x,j>)$PU.R, ( x ,y )£Q and Q!lV)Q!3=Ql\JQz. Hence (i) and 
(ii) are satisfied. 

Suppose now that Q3=0. By Lemma 7, Q'a(fiQ')\R. Conversely, let 
(x,y)HPQ')\R. Clearly, (x,y)£Q. If (x, y)6 Qx then (x,y)eQi^Q'. Suppose 
that (x,j>)$<2i. Then (x, y)<zQ2, since Q3=Q3=0. Let, for example, (x,y)EAxB. 
According to ( x , y ) £ ( f i Q ' ) \ R , there exists an (a,b)£Q ' such that (x, JOC-R and 
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T h e n 0> t>KQ[UQ'2 since Q'3=0. By Lemma 7, (a , b )£AxB . If it 

were (x, y)dP, then, by definitions, (a, b)£P, which would contradict PC\Q'=0. 
Hence (x, y)£X*\(PU R)=Q'. Thus Q3QJ\R=Q', if 63=0. Suppose now that 
there exists an {a, b)£Q3. By Lemma 7, xa=xb=X. If (x, y)£(fiQ')\RcQ then, 

by (T3), one of the ^.transformations ^ and ^ belongs to E, i.e. 
(x, y)€(P{(a, b), (b, a)})\R. On the other hand, it is easy to see that (a,b)£Q3 

implies (P{(a,b),(b,a)})\Rc:(J}Q')\R. Therefore Condition (iii) is satisfied. The 
latter condition can be proved in a similar way. 

Lemma 9. The canonical relations of E satisfy the following conditions: 

(i) if (x,y)ZA*\JB\ then (x,y)£Q i f f ( j 

(ii) if (x,y), (u,v)£Q and x,y£B or u, v£A, then one and only one of the 

p. transformations and belongs to E. 

Proof . Let (x,y)€AzUB\ By Lemma 7, ^ y^E. Using (T2) and the defini-

tions of P and R, we obtain that the condition (x, y)£P\JR is equivalent to ^ -^Jdis. 

Since Q'=X\(PUR) and, by Lemma 8, Q1UQ3=Q^UQ3> the first statement 
of the lemma follows. Suppose now that (x, y), (u, v)€Q and x,y£B or u,v£A. 
We may assume that x,y£B. Then, by Lemma 7, TX=Ty = X and, by Lemma 8, 

(x-y)eQ*=&,(x,ynJP. By (T3), one of the p. transformations j j j ) and j j 

belongs to E. Suppose that ^ ^ j , ^jdi i . Then, by (T2), (w, v)£R since 

(x, P. Hence, by the definition of Q, (w, v)£(P~1Q')\P, i.e., by Lemma 8, 

there exists an (a, b)(LQ[ such that («, v)$P and This implies 

(a a n d ' b y (a'b^R o r a contradiction. Con-

sequently, one and only one of the p. transformations ^ and ^ belongs 

to E. For u, v£A the proof is analogous, therefore it is omitted. 

Lemma 10. If <2 = 0 and Z , ^ 0 then one of the relations Z1, Z3 is non-
empty. 

Proof . If 0 = 0 , Z2?=£0 and Z i = 0 then, by Lemmas 2 and 3, P2=R2= 
—(AxB)U(BxA), P^Q and Let (x,y)£R3 and (u,v)^Pi. Then for 

any (a ,b )£AxB we have £ j , ^ and ^ y ^ E . Since, by the definition 

of P, we obtain y ^ E and, by (T2), (x,y£P. Consequently, Z 3 ^ 0 . 
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Later we will use the following 

L e m m a 11. Let G and A be binary relations on X. Then QCZ <X, QC\Q~1=OC\O~1 

and Ql)e-1=oU(j-1 imply g=a. 
The proof follows from the relations: 

ff = ((<r u a - 1 ) \< r _ 1 ) U (o- n <7-1) C ( ( E U E - ^ X e - O U i e n e - 1 ) = E . 

Now we turn to the main theorems of the paper. 

P r o o f of T h e o r e m 1. It is easy to see that (i) follows from Lemmas 2, 3 
and 10. 

Suppose now that E satisfies Uk ( l ^&SlO) . We prove that (1) holds for the 
graphs G=(X, Dk l) and only for them. Note that it is sufficient to verify (1) for 
one of these graphs with mutually converse relations, since they have equal p . endo-
morphisms. Clearly, 0 is a p . cndomorphism of any graph and, by Lemma 7, 06is. 
Thus for the proof of (1) we must show that a non-empty 3-bounded p . transforma-
t i o n o f X is a p. endomorphism of a graph G iff f£E. We investigate the 
following ten cases concerning E. 

Case 1. Let E satisfy C/x, i.e. A=X and Then, by Lemma 3, R=X2 

and E consists of all 3-bounded p. transformations of X. One can easily see that 
E is equal to E3(G) for all graphs G=(X, D M ) ( /=1,3) . On the other hand, if a 
graph G=(X, q) satisfies (1), then either g=X2=D1>3 (if 0X4*^0 ) or g=AX= 
= D 1 i 2 (if 0^GC=AX) o r Q=9=D1A. 

Case 2. Let E satisfy U2, i.e. (/ = 1,3). Then, by Lemma 3, E consists 
of all 3-bounded /».transformations of X which map no elements of A into B. One 
can easily see that E is equal to E3(G) for all graphs G=(X,D2l) (I—1,6). On 
the other hand, let a graph G=(X, g) satisfy (1). Then for any distinct elements 

a,b£B, by Lemma 3 ^ ^j6i?(G). Therefore either (a, fy^gClg'1 (and in this 

case Q=X*\A„=D2i9) or (a, fy^gUg-1 (and hence gczX^B2). In the latter 

case ^ $E(G) for any ( a , b ) £ A X B . Then either (a, fyigClg'1 (and in this 

case, Q=X2\B2—D2,5) or (a, b)(:Q\g~1 (and hence Q=AXX—D23) or 
(a, i> )6e _ 1 \ e (and hence g=XxA=D2ii) or (a, fy^gUg^1 (and hence gaA2). 

In the latter case, by Lemma 3, ^ for any distinct elements a, b£A. 

Then either (a ,b)^Qf\g~ 1 (and in this case q = A 2 = D 2 i 2 ) or {a, i»)({i?Ui? 1 (and 
hence g=AA=D2il). 
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Case 3. Let E satisfy C/s, i.e. (a, b)£Q3 for some a, b£B. We prove (1) for 
the graph G=(X, g) with g=D3fl=P(a,b). By Lemma 7, (a, bjegXg-1. If 
L=f}(a, b)Uf}(b, a) then, by the definitions of R and Lemma 8, RUQczL and 
X2=P{jL. Hence any pair (x, y)£X2 belongs to one of the relations P\L and L. 
If ( x , y ) ( L P \ L then, by the definition, (x, v)$(?U@_1 and, by Lemma 7/belongs 
to both E and E3 (G). Let (x,y)£L, and for example, (x, y)£fi (a, b). If (x, P (b, a), 

then and ^ j , ^ b^E by the definition of p. Hence, from 

f£E, it follows that ^ ^ j , ^ ^ E and (u, v^gDg'1, whence/ i s a p.endo-

morphism of G. Conversely, if f£E3(G), then (u, V)£Q(~)Q~1 and by the definition 
o f G ' £ v) ' (w L e m m a 8> f r o m t h e equality Q3=Q'3 and (T2) it fol-

lows that ( u , v ) £ R , f £ E . Suppose now that (x, y)$P(b, a). In this case (x, y)€Q, 

(J b^E and ( x . j K e X e - 1 . If f £ E then ^ b^E and (u, v)£g. H e n c e / i s 

a p . endomorphism of G. Conversely, let f£E3(G). Then (w, v)£g=p(a, b). If 

^ b^E then (u, v)£R and f£E by Lemma 8 and (T2). If ^ b^E then (u, v)$R 

and («, v)£Q by the definition of Q. In this case ^ ^ j^ i? and, by Lemma 9, 

/<=£. So (1) holds for the graph G. 
Conversely, let a graph G=(X, q) satisfy (1). Then, by Lemma 4, 

(a ,6 )€(e \<r 1 )U((T 1 \ e ) - If (a, b)£g then P(a,b)ag, and P(a, b)cz g-1 other-
wise. By Lemma 5, R=eC)g-1. If («, v)eP\(RUQ) then ^E(G) 
and (u, v)$gUg~1. Using Lemma 4 we obtain that £?U£>_1=.RUQ. From Lemmas 8, 
9 it follows that the relation a=p{a,b) satisfies aC\a~1=R and <7U<r_1=JRU6-
Then, by Lemma 11, either g=P(a, b)=D3il or g=p(b, a)=Ds>2. 

Case 4. Let E satisfy C/4, i.e. Q3=Q and (a, b)^Qi for some a,b£A. We 
prove (1) for the graph G=(X, g) with g=Di,l=((R\Q)Up~1(a,b))\P. Since 
Z 2 = ( P \ ( P U g ) ) U P U g , any pair (u, v)£X2 belongs to one of the relations 
R\(PUQ), P a n d Q\P. If (u, v)eR\(PUQ) then (u, v^gilg'1 and/belongs 
to both E and E3(G). Suppose that (u,v)£P . Then (u, T>)$I?UI?-1 and, by the defini-
tion of P, either u£B (if u=v) or ^ V^E (if u^v). Let / £ £ . Then, 

by (T2), (x, y)£P since RC\AB = RC\Q'=Q. Consequently, (x, yHglig'1 and 
/ i s a p. endomorphism of G. Conversely, if f£E3(G), then (x, y)$gU (x, y)£P 
and / € £ . Further, suppose that (u,v)dQ\P. By Lemma 9, there is a unique 

mapping of {u,v} onto {a,b}. Let, for example, It follows that («, g. 

I f / € £ , then ^ and either (x, y)£P or (x,y)£Q. Consequently, either 
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(x, y)$gU Q'1 or (x, >>)£ Q\Q~1- Hence / is a p. endomorphism of G. Conversely, let 
f£Ea(G). Then either (x, )>KeUe - 1 or (x, y)£g\g~1. From the definition of G it 
follows that either (x, y)£ P or (x, y)£ Q\P. In the former case f£E by the definition 

of P. In the latter case, by (T2), ^ $E since ^ , V^E. Then, by Lemma 

9, f£E. Thus (1) holds for the graph G. 
Conversely, let a graph G=(X, q) satisfy (1). Then, by Lemma 4, 

(« ,&)€(eNiT^Ufe -Ne) . It follows that (P~1(a, b))\Pczg, if (a, b)€g, and 
( i?- 1^, ^ V c e " 1 otherwise. By Lemma 5, P=X^\{g\Jg~1). If (x, y)£R\(PVQ) 

then ^ ^ §E and, by (1), (x, jOC^ne"1 . Thus, by Lemma 4, g D g - ^ 

=R\(P{JQ). From Lemmas 8 and 9 it follows that the relation CT=((/?\Q)U 
UjB~1(a,b)) \P satisfies ffflff-^.RXCPUQ) and aUa-^X^P. Hence, by 
Lemma 11, either g = o=D4il or g = <T~1=Di 2-

Case 5. Let E satisfy U6, i.e. Q—Q2 and (a,b)£Q for some a£A, bdB. 
We prove (1) for the graph G=(X, g) with Q=D5<1=(R\P){jp(a, b)U a where 
a=P(d, c), if there exists a (c, d)£(QC\(AxB))\P(a, b), and cr=0 otherwise. By 
£/6and Lemma 8, Q=Q'. Since X2=(P\(Rt U R2)) U (R\P3) U Q, any pair (x, y)£X2 

belongs to one of the relations P^R^RJ, R\P3 and O. If (x, 
then, by the definition of G, (x, y X e U e - 1 and /be longs to both E and ES(G). 
Suppose that ( x , y ) £ R \ P 3 . This implies (x, yXeflg» - 1 . If f€E then (u, v)$P3 

since (x ,y )£P 3 otherwise. We show that (u,v)£R . If x,y£B then by Q—Q2 

and, Lemma 9, ^ ^j^-E and, by (T2), (u,v)£R. Now suppose that one of the 

elements x and y belongs to A, for example, x€A. Since / £ £ , u£A. It follows 
that either u,v^A or ( u , v ) £ A x B . In the former case, by Q2=Q'^0, (T2) and 
Lemmas 3 ,9 , (u, v)£R. In the latter case (x,y)£R2 and f£E imply (it, v)£R2. 
So (u, v)£gf]g~1 and / i s a endomorphism of G. Conversely, if f£E3(G) then 
(M, and, by the definition of G, (u,v)£R\P3. Thus fdE. Now suppose 

that (x,y)£QD(AXB). Then either ^ b^E or In the latter case, 

by (T3), ^ We may suppose that ^ €-£". Then (x, y)£g\g~1. Assume 

that feE. It follows ueA and ^ If v£A then, by Q=Q2 and Lemma 9, 

V^E. Consequently, ^ b^E and, by (T2), (u,v)^Rx. If v£B then (u,v)iP2 

since (a, b)(i P2 otherwise. Hence (u, v) belongs to Rz or Q2. Moreover, in the 
latter case (u,v)£P(a,b). So (u, v^gHg'1 or (u, v)£g\g~1, whence f£E3(G). 

Conversely, let f€E3(G). If [ x ^ ^ ( G ) then (u, v^gf^g-1. By the definition of G, 



Partial endomorphism semigroups of graphs 359 

(u, v)£R\P3. Then by the definition of R, f£E. If ^ y^iE3{G) then (u, v)€ 

€ ( e \ e _ 1 ) U ( e _ 1 \ e ) - It follows from the definition of G that (u, v)^QC\(AxB) 

and since ^ b^E. Then, by Lemma 9, f£E. Thus (1) holds for the 

graph G. 

Conversely, let a graph G—(X, g) satisfy (1). Then, by Lemma 4, 

( « . ^ ( c N e - ^ U i r N c ) - If (x,y)^P3 then and are p.endo-

morphisms of G, and (x, gVg'1. If (x, y)eP2n(AxB) then £ j j e ^ a n d ^ J j 

<££, whence (x, yHgUg'1. Moreover^ J ] , ^ € £ 3 ( G ) for (x,y)£Rl and j j 

<=£, ^ j j i ^ f o r In these cases (x, y)£ gflg-1. If (x, y)€ P^Rj. 

then ^ b^E and, by Lemmas 8 and 9, whence (x, ;>>)$£ U^"1 . If 

(x,y)<=R3\P3 then ^ y^E and, by Lemmas 8 and 9 ^ ^ E , whence (x, y)egf) 
Dg- 1 . So Z 2 \ ( e U 0 - 1 ) = P \ P 1 and o f l e - ^ P W MoreoVer, p(a,b)czg, if 
(a, and P(a, fyczg'1 otherwise. Let there exist a (c, d)e{QC\(AXB))\P(a, b). 
Then, by Lemma 4, (c, d) belongs to ( e \ e _ 1 ) U ( e _ 1 \ g ) . It follows that either 
(d, c)£g, if (a,b)£g, or (d,c)^g~1 otherwise. Consequently, f}(d,c)c:g, if 
(a, ¿)€g, and P(d,c)czg~1 otherwise. So the relation a=(R\P)Ufl(a, b)Ufi(d, c) 
satisfies the conditions: af](T-1=R\P3=gr\g~1, oU<j-1=X!\(P\R1)=g\Jg-i 

and either ffcg or «rcg - 1 . By Lemma 11, g=a=Dbtl or g=a~1=D5<2. 

Cases 6 and 7. If E satisfies U6 (or U7), then it is easy to verify that (1) holds 
for the graph G=(X, g) with g=R=De>1 (or g=R1=D71). On the other hand, 
if a graph G=(X, g) satisfies (1), then by Lemmas 4 and 7 g=R=De i (or g=Rl — 

Case 8. Let E satisfy Us, i.e. Q=Z1=Zt=0 and Z 3 ^ 0 . We prove (1) for 
the graph G=(X, g) with g=DBfl (and g=DSi2). If (x,y)£P then (x, g - 1 

and / belongs to both E and E3(G). Suppose that (x, y)£R\P. Then (x, y)$B2 

since U8 and Lemma 3 imply B2<z P. If (x, y)£_A2 then (x, }0€i?ri£)-1 and, by 

Lemma 9, ^ E. Hence / £ £ implies j* y^E and, by (T2), (u, v)£R. It 

follows that (w, f)€i»ri£i_1 and / i s a p. endomorphism of G. Conversely, if f£E3(G), 
then («, » ) € e f l e - 1 and, by the definition of G, (u, v)£R1. Thus / £ £ . Let(x, y)$A2. 
Without loss of generality, we can assume that ( x , y ) £ A x B . For the graph G 
with the relation D8>1 (or D8I2), it follows (x ,^ )egDe _ 1 (or ( x , y ) ^ g \ g ~ 1 ) . If 
fiE then, by the definition of R and (T2), («, v)£Rx\JRt. Hence (u, v^qOq-1 

5 
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(resp. («, or (w, e n f o r the graph G with the relation Ds>1 

(resp. Z>8<2). It follows tha t ' / is a /?.endomorphism of G. It is easy to verify that 
f£E3(G) implies f£E. So (1) holds for the graph G with any of the relations D8)I 

' ( /=1,3) . Conversely, let a graph G=(X, g) satisfy (1). Then, by Lemmas 5 and 6, 
P=X\(QUQ-1), i? 1=(er i0- 1 ) 1 and either H^teD«?-1)« or u 

U(e - 1 \0) )2- Since ^ for any (a, b), (c, d)^R2C\(AxB), the relation g 
equals one of the relations, DBL ( I s / S 3 ) . 

1 Case 9. Let E satisfy U0, i.e. A^X, Z^Q and Q-Z2=Z3=0. We prove 
(1) for the graph G=(X, g) with e=A>,i (and q=D9>2). If (u,v)£R\(P2U P3) 
then (u, v^gOg'1 and/belongs to both E and E3(G). If (u, v)£P3 then (u, v)$gl) 
Ug'1 and f€E is equivalent to (x,y)£P3, i.e. ( x ^ ^ e ^ e - 1 . The latter is equiv-
alent to f£E3(G). Suppose that (u, v)£P2C\(AXB). Then (M, (or 
(w, i>)£i?U Q-1) for the graph G with the relation D9)2 (or Z>0il). Let f^E. If x, y£B 

then, by Q=Q and Lemma 9, j j H e n c e ^ y^E and, by (T2), (x, y)£P3. 

It follows that (JC, g"1 and / i s a p.endomorphism of G. If (x, y)iB2 then 
(:U,V)£P2 and f£E imply ( x , y % P 2 C \ ( A X B ) . Thus (x , j> )ee \e _ 1 (or (x,.y)ii?U 
U g - 1 ) for the graph G with the relation Z>9>2 (or D9I1). Therefore/ is a /».endo-
morphism of G. Conversely, if f£E3(G) then (x, U g - 1 . Hence, by the definition 
of G, either (x, or (x,y)£P2; moreover, in the latter case, (x, j > ) € e \ £ _ 1 

for the graph G with the relation Z>91. It follows that (x, y) belongs to P3 or 
P2D(AXB), whence, by the definition of P, f£E. Thus (1) holds for the graph G 
with each of the relations £>9i, ( /= 1,3). 

Conversely, let a graph G—(X, g) satisfy (1). Then, by Lemmas 3 and 

.5, RX=A\ R= gCig-1 and P3=(X\(QU q~%. Since ^ b^<LE for any 

(a, b), (c, d)£P2r\(AxB), from Lemma 6 it follows that the relation g equals one 
of the relations X>9>, (1S/S3) . 

Case 10. Let E satisfy U10, i.e. g = Z 2 = 0 and Z l 5 Z3^&. We prove (1) for the 
graph G=(X, g) with g=Dw,{ (/=173). By U10 and Lemma 3, P3=B2 and 
RX=A2. If (x,y)£B2 or (u,v)£A2 then, by the definition of G, (x,y)$gUg"1 or 
(u, v)egOg~1, respectively. It follows that/belongs to both E and E3 (G). If (x, y)£A2 

and /belongs to E or E3(G), then by Lemmas 4 and 9, (u, v)£A2. Analogously, 
(x,y)£Bs if (u, v)£B2 and/belongs to E or E3(G). Suppose now that (x, y)iB2 

and (w, v)$A2. Hence (x, y) and (u,v) belong to (AxB)U(BxA). Let, for 
example, ( .x,y)£AXB. If / € £ then ( u , v ) £ A x B and, by the definitions, the 
following condition holds: 

(2) 
/either (x ,y) , (u,v)£P2, or (x ,y) , (U,V)£R2, 
(o r (x,y)eP2 a n d (U, V)CR2. 
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It follows that / is a p . endomorphism of G for any D10j, ( /=1,3). Conversely, if 
f£E3(G), then («, v)£AxB and, by the definition of G, (2) is satisfied. Hence, 
by the definition of P and R, f£E. So (1) holds for the graph G with any of the 
relations D10>, ( /=1,5). 

Conversely, let a graph G=(X, q) satisfy (1). Then, by Lemmas 3 and 6, P3= 
=(jr«\(<?U Q-%=B2 and ^ ( e n ^ - 1 ) ! ^ 2 . Moreover, either P 2 = ( ( e \ e _ 1 ) U 
U(e _ 1 \ e ) )2 and R2=(eOQ~1)2 , or / >

2 =(^ 2 \ (0Uo- 1 ) ) 2 and one of the following 
equalities holds: R2=(qC\q~\ or i ? 2 = ( ( 3 \ 0 - 1 ) U ( e _ 1 \ e ) ) 2 . We show that other 
cases are impossible. By Lemma 3, there exist (a, b) and (c, d) in AxB such 
that (a,b)£P2 and (c, d)£R2. Using Z 2 = 0 and the definition of P and R, we 

obtain that ^ b^E and ^ \E. Clearly, ^ if (x , j ) and (U, V) 

belong to P2f}(AXB) (or R2C\(AXB)). It follows that the relation g equals one 
of the relations D10il ( l s / ^ 5 ) . The proof is complete. 

P roo f of T h e o r e m 2. Let E—E(G) for some graph G={X, g). From the 
definition of a p.endomorphism it follows that £ is a left idealizer of its subsemi-
group E3=E3(G) in the symmetric semigroup W{X). We prove (Tj)—(T3). Clearly,-
these conditions hold for E=W(X). Suppose that E^W(X). Then, by Lemma 4, 

a vertex a£X has no loop iflf a£B. Thus is a p.endomorphism of G for any 

a£B and x£X, i.e. (Tx) holds. Consider now (Xj, j ; ( /=1,3) such that 
(xk, xk+1), (yk,yk+i)£r (k= 1,2). Then, by Lemma 4, (x„ j>,)€(e\e - 1)U (e~\e) 

and (T3) is satisfied. Suppose that £ ^ j , ^ ^J are p. endomorphisms of G. Then 

(x, j ^ g U e - 1 or (u, v)£gf)g~1, whence, by Lemma 4, (x,y)£P or (u,v)£R. 
Thus (T2) holds. 

Conversely, let a /».transformation semigroup E satisfy the conditions of Theo-
rem 2. Then the semigroups E and E3 are determined by each other and, by 
Lemmas 1 and 7, their canonical relations are equal. Moreover, E3 satisfies (Tx)—(T3). 
By Theorem 1, E3=E3(G) for some graph G. Then E=E(G) since E(G) is the left 
idealizer of E3(G) in W(X). Theorem 2 is proved. 

Remark . The conditions (Tx)—(T3) are independent. 

3. Applications 

Two graphs, G and G' are called ¿-equivalent, if E(G)=E(G'). 
As an application of Theorems 1 and 2 we describe ¿-equivalent graphs and 

graphs with isomorphic or elementarily equivalent [9] p. endomorphism semigroups. 

Theorem 3. The graphs .G—(X, g) and G' = (X, gr) are E-equivalent i f f either 

5* 
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Q=Q' or Q=E'~1 or Q, Q' simultaneously belong to one of the following classes: 

K(A) £ {Aa, A\AXX, XXA, X*\B\ jr»VU; 

K(A, a, y) = { a U y , a l l f r n ^ X * ) ) , aU(y O ^ X / i ) ) } ; 

K(A, Ô, 0 = {¿2U5U£, (^XJOUiUC, (*X,4)USUÇ}; 

K(A, y) ¿L{A2Uy, A2U(y(1(^4x5)), A 2 U(yO(f lX,4)) ,04xWy,(XX,4)Uy}, 

for some proper subset Acz X, B=X\A and symmetrical relations a, Ç, y, Ô such 
that JAca<gA\ 0^ÇaBs\AB, y, Sc(AxB)U(BxA) and y^Q. 

The proof follows from Theorems 1 and 2. 
Denote by 21 the class of all p . endomorphism semigroups of graphs. The 

signature Q of Ul consists of the single symbol • for the binary semigroup ooera-
tion. A «-place predicate ..., x„) is called formular in 21 if there exists a 
formula F(x1, ..., xn) of the signature Q such that for every semigroup 5Ç9Î and 
for every xx, ..., xn£S, F(x1,...,xn) is true iff ..., x„) is true. Consider 
the following formulas : 

(3) Q(x) £ (\/y)(x -y = y x = x); 7 ( x ) i ( l O ( x ) 8 . * ^ = x); 

Let G=(X, e) be a graph, and let E=E(G). We write x = for x£X. Clearly, 

x^-x (x£X) is a one-to-one mapping of X into E. Then any relation a on X is 
mapped onto the relation a on E, and any condition U on the relations <7; on X is 
transformed into the condition U on the relations on E. Using (3) we can prove 
that the relations X, q, Dkil and the canonical relations of E are mapped onto the 
relations X, q, Dkil and so on, which are determined by formular predicates in 
21. For example, X and t are determined by the formulas M(x) and T(x, y), 
resp. Denote by Fk and Rkit the formulas that determine the conditions Uk and 
the relations Dkfl, resp. Clearly, Fk is a proposition and Rk l a two-place predicate. 

Theorem 4. Let G and G' be graphs, and let E=E(G), £ ' = £ ( G 0 . Then the 
following holds: 

(i) if E and E' are elementarily equivalent then G is elementarily equivalent to a 
graph that is E-equivalent to G'; 

(ii) Eand E' are isomorphic i f f G is isomorphic to a graph that is E-equivalent to G'. 

J{x) £ (/(x) & (Vy)(f(y) & x • y = y =» y - x = x)); 

M{x) =(J(x) & (Vy)V(y) & y - x ^ x ^ O i x - y ) ) ) ; 

Tix,y) £ ( M ( x ) & Miy) & (3z)(~lO(y- z-xjj). 



Partial endomorphism semigroups of graphs 363 

Proof . If ¿ and E' are elementarily equivalent and E satisfies Uk then Fk is 
true for E and E'. Therefore, by Theorem 1, the relations of G and G' are equal 
to Dk l and DKm for some / and m. Consider the graph Gx with the vertex-set of 
G' and the relation Dkjl for the semigroup E'. By Theorem 1, E(G')=E(G1). Thus 
the formulas M{x) and PkA{x, y) determine the graphs G (on E) and Gx (on E') 
such that G=G and G1=G1. On the analogy of [3] we obtain that G is elementarily 
equivalent to one of the graphs G, and S f 1 . So G is elementarily equivalent to a 
graph that is ¿-equivalent to G', i.e. (i) holds. 

Now suppose that ¿ ^ ¿ ' . Then the semigroups are elementarily equivalent. 
Using the previous reasoning, we can prove that an isomorphism of E onto E' 
determines the isomorphism of G onto one of the graphs Gx and Gf 1 . Hence G is 
isomorphic to a graph that is ¿-equivalent to G'. Theorem 3 implies the converse 
assertion. Thus (ii) holds. This completes the proof. 

Consider a graph G with a reflexive (or antireflexive) relation Q such that 
AX, XS. One can easily see that the ¿-equivalence class of G consists only of the 
graphs G and G - 1 . Hence Theorem 4 yields the results of [2, 3] on /».endomorphism 
semigroups of reflexive graphs. 
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The analytic behavior of the holiday numbers 

L. A. SZÉKELY 

1. Introduction 

Investigating Hilbert's fourth problem Z. I. SZAB6 [7] introduced the holiday 
numbers. In my previous paper [8] many combinatorial and algebraic properties 
of these numbers were treated. These properties are close to those of the Stirling 
numbers of the second kind. The aim of the present paper is to investigate the 
analytic behavior of the holiday numbers. We follow the main ideas of HARPER 

[1], who investigated the analytic behavior of the Stirling numbers of the 
second kind. 

We recall from [8] two possible definitions of the holiday numbers. The holiday 
numbers of the first kind are i¡/(m, i) (of the second kind (pirn, /)), where 

» m 
(1) 2 № 0 2 <K™> W = ( l / / l—2z)exp t ( l / f T ^ - l ) , 

m = 0 fc=0 

(10 2 № ! ) 2<p(m, k)tk = (1/(1 — 2 z ) ) e x p { t ( \ j ] f \ ^ 2 z ~ 1)). 
m=0 k=0 

The second definition is 

(2) il/(m, k) = (2m+k-l)\l/(m-l, fc) + ^ ( m - l , fc-1), 

>1/(0, 0) = 1, ^ ( 0 , i) = 0 f o r t ^ 0, 

(2') q>(m, k) = (2m+k)<p(m-l, k)+<p(m-l, fc-1), 

<p(0, 0) = 1, <p(0, t) = 0 for t ^ 0. 

We use the notations ij/m=2 "Kw> k) and <pm=2 ^C771» k). 

Received October 23,1984. 
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2. Results 

S t a t e m e n t 1. The holiday numbers are strongly logconcave in the following 
sense: for Osfc^n, 

i]/(n, k)2 il/(n, k- l)il/(n, k+1), (p(n, kf ><p(n,k-\)(p(n,k+1). 

The statement is a special case of KURTZ'S theorem [2]. It follows that the 
holiday numbers are of unimodal distribution, for any n their maximum value is 
attained at most two times. The statement is important to get the corollaries of our 
theorems. 

T h e o r e m 2. \j/n and (p„ admit asymptotic expansions in the powers of TJ1'3 in 
the following way: 

(3) ^„~(n!27e Y37t)e2~' /3 , s '"1/3(n~ l i2+a1n~5,6+a2n~7,6+...), 

(30 ^n~(«!2n + 1 / 3 /e/3n)e2" , / 3 - 3 ' "1 / ,(n_ 1 / 8+i>1 .»;_ 1 / 2+62n - 5 / 6+.. .) . 

We have also 

tn+ilfa = 2n+(2«) 1 / 3 +0( l ) , cpn+ll<pn = 2n+(2/i)1 / 3+0(l) , 

(4) 

(40 <Pn2{— Pn+1 +<Pn<Pn+2—2<Pi> < ¡ " > 1 + 1 — <Pn} ~ (2/3) (2n)1/3. 

T h e o r e m 3. The holiday numbers are asymptotically normal in the following 
sense: 

(5) lim (1/<A„) ZHn, j) = ( 1 / ^ ) / e~ ,!/2 dt, 

(50 lim (1/ft) j ? 9(n, ; ) = (l/»/2^) fe-'l2dt, 

where 

(60 yn = (Pn+ihn-(2n + 3) + (y/q>n) { - <p2
+1 + <p„ <pn+2 - 2<p„ <pn+! - cplY'2; 

or 

(6'0 xB = (2n)1/3+x ((2/3) (2/j)1'3)1 '2, y„ = (2n)1/3+y ((2/3) (2«)1/3)1/2. 

C o r o l l a r y 4. t/j/wg the definitions of x„, y„ in (6), (60 or (6'0 we toe 
M - (l/]f2n)e~x'l2, 

<P^{-<PZn+i+<Pn<P»+2-2<Pn<P„+i-tiY,2<p(n, b„]) - (1 l/2n)e-*2, 
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i.e. 

t("> M~(«!2-'"«¡en)ez-'*-3"1/3n~2'3, 

<P (n, b J ) ~ («! 2"" 5161 en) e2-!'1-3'»1'ir'/3r^> 

C o r o l l a r y 5. Suppose, for i=I„ the maximum value of \l/(n, i) (for i=J„ 
the maximum value of <p(n,i)) is attained. Then for every e > 0 there exists N 
such that for n^-N 

|/„ - (2«)1/3I < en1'«, \J„ - (2«)1 '3! < en1'«. 
C o r o l l a r y 6. 

max (p(nJ)^(2Ti)- l l2(p2
n{-(pl+1+(p„<pn+2-2(pn(pn+1~(pl}-1l2, 

i.e. 

MAx <K«, j)~(N!2N-7/6/E7T)¿i~,"'z'nX'3n~2lz, 

max<p(n, j)~(n!2"-5>6/e7t)e2",/3'3"',/3«-1/3. 

The corollaries follow from the fact, that the convergence in Theorem 3 is uniform 
behind the integrals. Its reason is Statement 1, and the proof goes on the same way 
as in Harper's paper. 

3. The proof of the theorems 

In order to prove (3) and (3') we have to give the asymptotic expansion of the 
coefficients of 

(1 /}fl — 2z) exp (l/yi -2z-1) and (1 / (1 -2z ) )exp( l / /T^2 i" -1 ) 

(cf. (1), (1')). It is given in [6], in 25.3, in formula 25.35, in terms of Bessel—Wright 
functions. The asymptotic expansion of Bessel—Wright functions is given in [5], 
in 21.5, in formula 21.107. Comparing them we get (3) and (3'). By the theorem 
concerning the ratio of functions expanded in asymptotic power series ([4], 4.4, 
Thm. 5—6) we have the following expansions in the powers of n1'3: 

~ 2n+2l!3nll3+c1 + ..., cpn+ll<pn ~ 2n+21/3n1/3+d1 +.... 

Now (4) and (4') follow easily. 
In order to prove Theorem 3 we recall a well-known theorem from probability 

theory and prove an easy lemma. 
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Lemma. The polynomials 

Pm(t) = 2 Hm, k)t* and Qm(t) = J <p(m, k)tk 

k=0 k=0 
have m distinct, real, negative roots. 

Proo f of the lemma. We prove the statement by mathematical induction. 
It holds for P 0 ( 0 = 2o(0 = l- By (2) and (2') we have 

(7) Pm(x) = (2m - 1 +*)P m _ 1 (*)+xP;_ 1 (x) , 

(7 ') Qm(x) = (2m +x)Qm.l(x)+xQ'm_l(x). 

Let the roots of Pm^(x) be z 1 < z 2 < . . . < z m _ 1 < 0 by hypothesis. There are m—2 
roots of Pm by Rolle's theorem in (zx, zm_l). There are two other roots by 

= and PJO) = (2m-1) ! ! (see (2)), 

and 

sign Pm(zj) = sign z^P'm_i(zj) = -s ign P'm.i(- = - s ign Pm(-

A similar method applies for Qm. 
We continue the proof of Theorem 3. Let the roots of P„(x) be {—yBk: 

k=l,..., n}, the roots of Q„(x) be {—x„t: k=\, ..., n). We define the independent 
random variables Y*k and X*k by 

= 0) = yj(\+ynk), P(Y:k = 1) = 1/(1 +ynk), 

P(X„*k = 0) = x j ( 1 +xnk), P(Xn*k = 1) = 1/(1 

Let Z*N=2 Y*, S:=£X*, Fnk and Enk the distribution function of X*, Y*. 
k k 

Using (7), (7') we have 

1=1 XP„(x) x=l 

E(St) = q>n+1l(pn-(2n + 3), 

(8) - £ ( * - * < W = | ( t T ^ - o o t ) = 

_ P'Áx) ÍTOÍI _ -rn+i + ^n+2-2M„+1-rn 

Pn(x)*\Pn(x))\x=1 pm 

(we used (7) twice), 

(8') DHS*) = E(S*-E(S*ff = (-<pl+l + <pn<pn+z-2<pn<pn+l- . 

P'Áx) 
P»(x) 
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Let us define 

(9) Z„ = (l/D(Z*)){Z*—E(Z*)) = 2 (1 ID(Z:)){x:k-E(Xti), 
k 

(9') = (I ¡D (,S*)) [S*—E (S*)) = 2 {l/D(SZ))(Y:k~E(Yn\)). 
k 

From (4), (40, (8), (80 we get £>(Z*)-«>, We are in a position to apply 
the Lindeberg—Feller Theorem ([3], p. 295) for Z* and S*, since 

\X;k-E(X:k)\ S 1, | y * t - £ ( 0 S 1, 

and for a number n large enough 

2 fx*dFnk(x) = 0 , 2 " f x*dEnk{x) = 0. k |x|se k |*|se 

Since the generating function of a sum of independent random variables is the 
product of the generating functions, 

TT  X ~)~ Xnk Pn(x) ¿r X + y n k Q„(x) 

kí\l+xnk PB( 1) ' kL\ l + j „ t Q„( 1) ' 

we have P(Z*=a)=\p(n, P(S*=a)=<p(n, a)/<pn. Now the theorem is proved 
by (9), (90-
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/7-algebras with Stone congruence lattices 

T. KATRINAK and S. EL-ASSAR 

1. Introduction. In [12] we have described by means of subdirect factorization 
congruence distributive algebras A whose congruence lattices Con (A) are atomic, 
Boolean, or Stonean. The purpose of this paper is to give an intrinsic characteriza-
tion of those quasi-modular /»-algebras whose congruence lattices are atomic, Stonean 
or relatively Stonean. To obtain this we use the representation of congruence rela-
tions of quasi-modular /»-algebras in terms of congruence pairs. That means (see [11]), 
that every congruence relation a£Con (L) of a quasi-modular /»-algebra L can be 
uniquely represented by a congruence pair (aB, aD), where aB is a (Boolean) con-
gruence relation of B(L) and aD a (lattice) congruence relation of D(L). 

We start with a description of congruence pairs corresponding to (relative) 
pseudocomplements in the lattice Con (L) (Theorem 1). By way of application, 
we characterize those quasi-modular /»-algebras with atomic congruence lattices 
(Theorems 2, 3 and 4). As a second application we provide a characterization of 
(rejative) Stone congruence lattices of quasi-modular p-algebras (Theorems 5, 6 and 
11): Analogous, but deeper results, are obtained for distributive /»-algebras (Theo-
rems 7, 8 and 12). 

2. Preliminaries. A (modular, distributive) p-algebra or pseudocomplemented 
lattice is an algebra (L ; V, A, *, 0,1) in which the deletion of the unary opera-
tion * yields a bounded (modular, distributive) lattice and * is the operation of 
pseudocomplementation, that is, xSa* if and only if aAx=0. A /»-algebra is said 
to be quasi-modular if it satisfies the identity 

[{xKy)V = (xAjOV(z**Ax). 

The variety of quasi-modular /»-algebras properly contains the class of modular 
/»-algebras and is properly contained in the class of /»-algebras satisfying the identity 

x = x**A(x\/x*). 

Receivde May 25,1984. 
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If, for any /»-algebra L, we write 

B(L) = {x£L: x = x**} and D(L) = x* = 0} 

then (B(L)\ V, A,*, 0,1) is a Boolean algebra (of closed elements) when a\fb 
is defined to be (a*/\b*)*, for any pair a, b£B(L), and D(L) is a filter in L (of 
dense elements). By a congruence relation of a /»-algebra we mean a lattice con-
gruence of L preserving *. The relation y of L defined by a=b(y) if and only if 
a*=b* is a congruence relation of L, called the Glivenko congruence of L, and 
L/y=B(L). The lattice Con (L) of all congruence relations of a /»-algebra L is 
algebraic and distributive, which implies that Con (L) is a distributive /»-algebra. 
The least and greatest elements of Con (L) will be denoted by A and V, respectively. 

A distributive /»-algebra L in which the identity 

x*Vx** = 1 

holds is called a Stone algebra (lattice). A relative Stone algebra (lattice) is a dis-
tributive lattice in which every interval [a, b\ is a Stone lattice. 

A double /»-algebra is an algebra (L; V, A, *, 0, 1) in which the deletion 
of + gives a /»-algebra and the deletion of * gives a dual /»-algebra, that is aVx—1 
if and only if x^a+. The relation $ of L defined by 

a = b{$) if and only if a* = b* and a+ = b+ 

is a congruence relation of L, called the determination congruence. It is known that 
a double /»-algebra is regular (that is, any two congruence relations of L having a 
class in common are the same) if and only &=A (see [16]). 

A special class of distributive /»-algebras is formed by the Heyting algebras 
(L; V, A, *, 0, 1), where (L; V, A, 0, 1) is a bounded lattice and xAySz if and 
only if y^x*z. Then . \*=x*0 plays the role of a pseudocomplement of x. It is 
easy to verify that Con (L) of a /»-algebra L is even a Heyting algebra. 

A lattice with 0 is called atomic, if for every a^0 there exists an atom pSa. 
We refer to [1], [8] or [10] for the standard results about /»-algebras and to [1], 

[9] or [16] for the standard results about double /»-algebras. For general lattice-
theoretic terminology, notation and results we follow G. Gratzer [6]. 

3. Congruence pairs. Let (L; V, A, *, 0, 1), henceforth simply L, be a quasi-
modular /»-algebra. Let Con (L) denote the lattice of congruence relations of L. 
Since Con (L) is a Heyting algebra, there exists a complete Boolean algebra 
2?(Con (L)) of closed elements (congruences) and the filter of dense elements (con-
gruences) Z>(Con (L)). We shall also consider Con (B(L)), the lattice of (Boolean) 
congruence relations of B(L) and Con (D(L)), the lattice of (lattice) congruence 
relations of D(L). , - • 
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Having 0€Con (L), the restrictions 0B=©\B(L) and 0D=0\D(L) are 
congruence relations of B(L) and D(L), respectively. Hence, there exists an isotone 
map 0>-*(0B, 0D) from Con (L) into Con (B(L))xCon (D(L)). The following 
definition is crucial (see also [11], [4]). 

A pair ( 0 l 5 02)€Con (B(L))XCon {D(Lj) is said to be a congruence pair of 
L if the following condition holds: a£B(L), u^D(L), u^a in L, and 0 = 1 ( 0 ^ ) 
imply that i / s 1 (02). 

T h e o r e m A (see [11, Theorem 1]). Every congruence relation 0 of a quasi-
modular p-algebra L determines a congruence pair (0B, 0D) and, conversely, every 
congruence pair ( 0 l 5 0 2 ) of L determines a unique congruence relation 0 of L 
having the property that 0B=01 and 0 f l = 0 2 . Moreover, x~y(0) if and only if 
x*=y*(01) and хЧх*=уЧу*(02). 

In what follows we shall often identify 0€Con(L) with the corresponding 
congruence pair (0 B , 0D) . If there is no danger of confusion, we shall omit the 
subscripts in notation of some congruence pairs, e.g. A=(A,A), V=(V, V), (A, a). 

Clearly, having a^Con (B(L)), there exists Ker ct=JfJ(B(L)) (= the lattice 
of all ideals of B(L)) such that a = 0[J]. Similarly, for /?€Con (Z)(L)), Ker/? = 
= {x£D(L): x=\(P)} is a filter of D(L), i.e. Ker p<iF{D(Lj). 

Given a quasi-modular p-algebra L, there is a map (p(L): B(L) — F(D(L)) 
defined as follows: 

a<p(L) = {x£D(L): x ^ a*} = [а*)ГШ(£). 
This map proved instrumental in characterizing the quasi-modular /»-algebras (see 
[13]). We shall need the following result. 

T h e o r e m В (see [13, Theorem 3]). In a quasi-modular p-algebra L, the map 
<p{L): B(L)-"F(D(L)) is a {0, 1, \l}-homomorphism. 

Now, we can reformulate the definition of a congruence pair. 

L e m m a 1. Let L be a quasi-modular p-algebra and let ( 0 l s 02)€Con (B(L))x 
XCon (D(L)). Then ( 0 1 ; 0 2 ) is a congruence pair if and only if J<p(L):= U 
U(a(p(L): a 6 / ) i K e r 0 2 , where J = K e r 0X. 

Proof . Clearly, a£J=Ker 0X if and only if а*=1(0!) . Therefore, J<p(L)Q 
g K e r 0 2 if and only if (0 1 ? 0 2 ) is a congruence pair. 

From Lemma 1 we see that for every 0 г €Соп (B(L)) with J = K e r 0X there 
exists a smallest S(01)^Con(D(L)) such that J(p(L)^Ker ¿(0J. That means, 
( 0 l 5 0 2 ) is a congruence pair of L if and only if 02^<5(0i). Dually, for every 
0 .6Con (£>(£)) there exists a largest ideal Jfj(B(L)) such that Jcp(L)Q,Ker02, 
1.e. ( 0 [ / ] , 0 2 ) is a congruence pair. Notation: т (0 2 ) = 0 [ / ] . Evidently, ( 0 l 5 0 2 ) 
is a congruence pair of L if and only if т ( 0 2 ) ^ 0 2 . 
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An abstract description of the lattice of all congruence pairs of quasi-modular 
/»-algebras can be found in [4]. In the next theorem we give a description of (relative) 
pseudocomplements in Con (L) by means of congruence pairs. 

Theorem 1. Let L be a quasi-modular p-algebra and let a, PdCon (L). Then 
(<*bVPb><XdVPd)> (aBA/?B, ctDApD) and (aB*PBAz(ctD#pD),<xD*pD) are congruence 
pairs of a.\jp, ai\P and a*P, respectively. In particular, 

(«SAT(aD),aS) and ((flSAr(«S))*AT(«J*)f „**) 

are congruence pairs of a* and a**, respectively. 

Proof . Clearly, (a\lP)B^aB\jpB and ( a \ jP ) D ^a D \ j p D . Assume a=b(a\/P) 
for a,b£B(L). Then there exists a finite sequence a=z0,..., zn=b such that 
z i - i= z i («) o r zi-i=zi(P) for every /=1, . . . , n. Therefore z**T=zf*(a) or zf*x= 
=z**(P), which implies a=b(aB\JPB). Hence (aVP)B=aB\/PB. A similar argu-
ment yields (a\/P)D=a.D\J PD, (<xAP)B=aBAPB and (aAP)D=txDAPD. 

It is easy to verify that (aB*pBAi(aD*PD) , aB*PD) is a congruence pair of L. 
Clearly, 

(ocB, aD)A(<xB*pBAx(ctD*pD), aD*pD) (j?B, PD). 

Assume (aB, <xD)A(t]B, t]D)^(PB, PD) in Con(Z,). Therefore, t]B^aB*PB and 
t]D^aD*pD. Since (riB,t]D) is a congruence pair, we have tiB^x(tiD)^T(<xD*P„). 
Hence (riB,riD)s(xB*PBAi:(<xD*PD),<xD*pD). The last part of Theorem can be 
established in the same way because (AB , AD)*=(UB, OLD)*(A, A). 

Coro l l a ry 1 (see [1, Theorem 2]). Let L be a quasi-modular p-algebra. Then 
Con (D(L))=[A, y], where y is the Glivenko congruence. 

Proof . Consider the map a2i-+(A, a2) from Con (D(L)) into Con (L). Since 
y=(A, V), we see that this map is an isomorphism between Con (D(L)) 
and [A, y]. 

Coro l la ry 2. Let L be a quasi-modular p-algebra. Then Con (fi(L))s[y, V]. 

Proof . Consider the map a1i-»(a1,V) from Con (B(L)) into Con (L). This 
map is an isomorphism between Con (B(L)) and [y, V]. 

4. Atomic congruence lattices. In [12] we have! extended Tanaka's result [15, 
Theorem 1]. 

Theorem C. Let A be a congruence distributive algebra. Then the following 
conditions are equivalent: 

(i) Con (A) is atomic; 
(ii) D(Con (A)) is a principal filter; 
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(iii) J? (Con (A)) is atomic and every dual atom of J3(Con (A)) is completely 
meet-irreducible in Con (A); 

(iv) Con (A) satisfies the (infinite) identity 

AO**: /€/) = (A(*,: /€/))**. 

Lemma 2. Let L be a quasi-modular p-algebra. Then a=(a B , aD) is an atom 
of Con (L) if and only if 

(i) aB=A and aD is an atom of Con (D (L)) 
or 

(ii) aD=A, aB^r(A) and aB is an atom of Con (B(Lj). 

P roo f . Suppose that (aB ,aD) is an atom of Con (I,). Two cases can arise: 
aD9iA or aB=A. In the first event (A, aD)Mx, whence a=(A, <xD) and aD is 
an atom of Con (D(L)). In the second case we obtain (ii). The converse is trivial. 

T h e o r e m 2. Let L be a quasi-modular p-algebra. Then Con (L) is atomic 
if and only if 

(i) Con(D(jL)) is atomic 
and 

(ii) {a£B(L): acp (L)=[l)} is an atomic ideal of B(L), i.e. it is an atomic lattice. 

P roo f . Assume that Con (L) is atomic. Therefore, [A,y] is atomic as well. 
By Corollary 1 of Theorem 1 we obtain (i). Take 0 ^ a ^ B ( L ) with aq>(L)=[ 1). By 
Lemma 1, (©[(«]], J)^Con(L). There exists an atom a 6 Con (L) with a = ( a B , a D ) S 
s (0 [ ( a ] ] , A). Hence <xD=A,aB^x(A) and aB is an atom of Con (B(L)) (Lemma 2). 
Thus KeraB=(£] and b is an atom of B(L) with b(p(L)=[l). 

Conversely, assume (i) and (ii). Take A^oc=(aB, aD) from Con (L). Two 
cases can occur: a ^ A or aD=A. In the first case, there is by (i) an atom 
/36Con (D(L)) with Hence (A, ft) is by Corollary 1 to Theorem 1 an 
atom of Con (L) and (A, /?)S(aB, <xD). In the second case, A?±CIbST(A). There 
exists an atom a£J=Ker aB by (ii). Hence (0[(a]], A) is an atom of Con (L) 
(Lemma 2) and ( 0 [(a]], A) S a. 

L e m m a 3. Let K be an ideal of a Boolean algebra B and let K be an atomic 
sublattice of B. Let J be the ideal of B generated by all atoms of K. Then J*=K* 
in the lattice 1(B) of all ideals of B. 

P roo f . Clearly JQK. Therefore, J*^K*. Take be J*. If (6]PlA:^(0], then 
there exists an atom a£K such that a^b. Hence aC/fl/*=(()] , a contradic-
tion. Thus, ATfV*=(0], which implies J*QK*. So, J*=K*. 

T h e o r e m 3. Let L be a quasi-modular p-algebra. Then (fi1, /?2)6Con (L) is 
the smallest element of Z>(Con (L)) if and only if 

6 
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. . . (i) is the smallest element of D(Con (D (L))) 
and 

(ii) the ideal K={a£B(L): aq>(L)=[ 1)} of B(L) is atomic and ft =©[ . / ] , 
where J is the ideal of B(L) generated by all atoms of K. 

P r o o f . Let ( f t , ft)6Con (L) be the smallest element of Z>(Con (L)). It is 
easy to verify that (T(^), a)€Con (L)for every A^Con (D(L)). Moreover, (T(^), a)* = 
= A if and only if a£Z)(Con (D(L))). Therefore, ( f t , p2)^(z(A), a) for every 
a€-D(Con (D(L))). Thus ft is the smallest element of D(Con (D(L))) and ft^t(d). 
Since A = ( f t , P2)*—(PxAz(A), A), we see that p*Sz(A)*. But P^x(A) implies 
Pt^z(Af. Hence p*=z(A)*. Clearly, p1 = 0[M] and z(A) = 0[K], where M is an 
ideal of B(L) and MQK. According to Theorems C and 2, K is atomic. Without 
difficulties one can check that M contains all atoms of K, as Pl=z(A)*. L e t / 
denote the ideal of B(L) generated by all atoms of K. Lemma 3 yields P*=z(A)* = 
= ©[/]*. Now, (©[/] , ft)* = (PIf\t(A), PI)=A implies P^0[J]. Eventually, 
p1 = 0[J]. 

Conversely, let L satisfy (i) and (ii). Take PL = 0[J] from Con (B{Lj) and 
P2£Con(D(L)) as defined in (i) and (ii). Clearly, ( f t , ft) € Con (L), as ft^rOd). 
By Lemma 3, Pt=z(A)*. Therefore, ( f t , f t ) * = z l ; that means ( f t , ft)€D(Con (L)). 
Consider (<*!, a2)£D(Con (L)). Since a%=A, we have ftsa2. In addition, a^A 
Az(A)=A. Hence o$Sz(A)*=P*. Clearly aX = 0[M] for some ideal M of B(L). 
We claim that M^J. Really, if J%M, then there exists an atom a£J—M and 
a£M*. That means 6>[ ( a ] ] s a*Af t=J , a contradiction. Therefore, JQM, as 
claimed. Hence ft^cti, and ( f t , ft) is the smallest dense congruence relation of L. 
The proof is complete. 

L e m m a 4. Let L be a quasi-modular p-algebra. Let a£B(L) with aq>(L)=[ 1). 
Then (0[(a]] ,J)€ JB(Con(L)). 

P r o o f . Since 6>[(a]] r(zd), weseethat (€>[(«]], <d)£Con (L). By Theorem 1, 
(6>[(a]], A)**=(0[{c$\**Ax(A),A). Since 0[(a]]** = 0[(a]] , the proof is complete. 

T h e o r e m 4. Let L be a quasi-modular p-algebra. Then B(Con (L)) is atomic 
if and only if 

(i) 2? (Con (D(L))) is atomic 
and 

(ii) {a£B(L): acp(L)=[l)} is an atomic ideal of B(L). 

P r o o f . Assume that B(Con(L)) is atomic. Let A ^ a €-6 (Con (D(L))). There-
fore, (id, a)£Con (L). Clearly, (A, a)**=(t(a*)* Az (a), by Theorem 1. By 
assumption there exists an atom ( f t , p2) of 5(Con (L)) such that ( f t , ft)s 
^(z(a*)*Az(cc),a). Evidently, p%*=p2 in Con (D{L)). Hence ft Sot. We claim 
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that p2 is an atom of 5(Con (D(L))). First we show that p2?±A. Assume to the 
Contrary that p2=A. Hence ftst(A). Since r(zl)St(a*), we get 
•St(A)*. Therefore PX=A, a contradiction. Thus p2^A. Take A?ir)£B{Con (D(L))) 
with Therefore A^(A, implies (A, tj)**=(p1, p2), as ( f t , p2) 
is an atom of B(Con (L)). But (A, n)** =(z(n*)* At (ril M). Hence n=J?2 and j?2 

is an atom of B (Con (D(L))), as claimed. The second part of Theorem follows from 
Lemma 4. 

Conversely, let L satisfy (i) and (ii). Consider A a2)€/?(Con (£)). Clearly 
ct2=a2* in Con (D(L)). If a2=A then and 0 [J], where J is an 
ideal of {a£B(L): aq>(L)=[ 1)}. By (ii) there exists an atom a£J. Put P1=6[(a\] 
in Con (B(Lj). Clearly ( f t , A)** =(ft, A)^(ax, A), using Lemma 4. Thus ( f t , 4) is 
an atom of B (Con (L)). Assume a2^A. Then there exists an atom P2=<x2 in 
2? (Con (D(L))) by (i). Since (A, j82)s(a1? a2), we see that 

(A,p2T* = (r(P^*Ar(p2),p2)s(oc1,a2) = (a1,cC2r*. 

It remains to verify that (A, p2)** is an atom of B(Con (£)). Really, suppose that 
there exists A ̂ (»h, t]2)£B(Con (L)) with (>h, i]2)^(A, P2)**. Two cases can arise: 
t]27±A or t}2=A. But rj^A implies P2=r]2- Moreover, (A, P2)^(th, >/2)s 

A,p2)** implies (t]t, %)**=(%, r]2)=(A, ft)**. Assume rj2=A. Therefore, rj^ 
ST(J)ST(/?2). Similarly as above, rh^T(p 2)*^T(A)*, which implies >h=A, a 
contradiction. Thus, (A, p2)** is an atom of B(Con (£,)) and the proof is complete. 

5. Stonean congruence lattices. 

L e m m a 5. Let L be a Stone lattice and a£L. Then [0, a] is also a Stone 
lattice. 

The proof is straightforward (see [8, 2.11]). 

T h e o r e m 5. Let L be a quasi-modular p-algebra. Then Con (L) is a Stone 
lattice if and only if 

(i) Con (D (L)) is a Stone lattice, 
(ii) if (a l t a2)£Con (L) then Ker (a*AT(a2))=(a] for some a£B(L), 

(iii) if a€Con {D(L)) then T(a**)^(r(x)*Az(«*))*. 

P r o o f . Suppose that Con (L) is a Stone lattice. The condition (i) follows 
directly from Lemma 5 and Corollary 1 to Theorem 1. Take now (ax, a2)€Con (L). 
By Theorem 1 and the hypothesis, 

V = (a1; a2)*V(al5 <x2)** = (aiAt(a*), a|)V((ajf AT(a|))*AT(a2*), a2**). 

Therefore, 
(A? A T (A2)) V [ ( A ? A t (A|))*A T ( A £ * ) ] - V. 

6« 
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Consequently, (a?Ar(a2))V(a*Ar(a|))*=V. Hence, (a*AT(a|))* is a complement 
of a*Az(oc*) in Con (B(L)), and (a*Ar(a^))*=(<^Ar(a*))*Az(x**). Thus T(CC**)̂  
^(a*AT(a*))*. As (z(a), a)6Con (L) for every a from Con (D(L)), this yields (iii). 
The condition (ii) follows from the fact that a* A r ia l ) = <=>[/] and (a*A"r(a|))* = 
= 0[J*] for some J£I(B(L)). By the hypothesis, J* is a complement of J in 
J{B{L)). It follows that J=(a\ and J={a"\ for some a£B(L) (see [5] or [7]). 

Conversely, suppose that L satisfies (i)—(iii). Take (a l5 a2)6Con (L). Clearly 
(a1} a2)s(r(a2) , a2). By Theorem 1 and the hypothesis, 

(al5 a2)*V(ai, a2)** = (aiAr(a2), ^)V(((ai AT(a2*))*AT(«r), a f ) = 

= (0[(a]],a|)V(0[(a*]],«**) = V, 

because (a^ AT(af))*^(T(a2)*Ai:(a|))*. The proof is complete. 

C o r o l l a r y . Let L be a quasi-modular p-algebra and let Con (L) be a Stone 
lattice. Then for («j, a,) 6 Con (L) we hate 

(i) (a**, «DC Con (L), 

(ii) (a l5 a2)** = (at*, <£*)** = ((^Atfe*))*, a**) 

and 

(iii) ag Con (£>(£)) implies z(a**) S T(a)++Vt(a+)+-

P r o o f , (i) Since, by Theorem 5, we have (a?*, a|*)£Con (Z,). 
(ii) and (iii) follows from Theorems 1 and 5. 

In [12] we have also investigated algebras whose congruence lattices satisfy 
the (infinite) identity 
(1) V ( * r : i€/) = (V(*,: ¡6/))**. 

T h e o r e m 6. Let L be a quasi-modular p-algebra. Then Con (L) satisfies the 
identity (1) if and only if 

(i) Con (L) is a Stone lattice 
and 

(ii) 5 (Con (£,)) is finite. 

P r o o f . Assume that Con (L) satisfies the identity (1). Then by [12, Lemma 2], 
Con (L) is a Stone lattice and B(Con (L)) is atomic. Moreover, [12, Theorem 9] 
says that L has an irredundant discrete subdirect factorization with finitely sub-
directly irreducible factors. Let {«¡: /£/} denote the set of all dual atoms of 
5 (Con (L)). Then by [12, Theorem 2], (L/a;: i t I ) is the subdirect factorization 
of L in question. Therefore, every element x£L can be represented as (X(),€/, 
where x^L/a-, for every i£F. Take now the elements u = 0 and u = 1 from L, 
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i.e. the smallest and the largest elements of L, respectively. Since the factoriza-
tion of L is discrete, there exists a finite subset such that {¿6/: ul?*vi}=I1. 
Moreover, O s x s l implies ui=xi=vi for every 71. But the factorization 
(L/a;: i£7) is irredundant that means A (a¡: j£l, i ^ j ^ A for every id I. Hence 
I = I i is finite. 5 (Con (£,)) is an atomic and complete Boolean algebra. Therefore, 
¿(Con (£)) is finite. 

Conversely, assume that L satisfies (i) and (ii). Therefore, Con (L) satisfies 
theidentity VOtf*: i€/)=(V(xf: /€/))** for every finite 7. According to (ii), Con (L) 
enjoys the identity (1) for arbitrary I. The proof is complete. 

Deeper results can be obtained for distributive p-algebras. First we recall two 
results. 

T h e o r e m D. Let L be a distributive lattice with 0. Then L can be embedded in 
a generalized Boolean lattice B such that every congruence relation of L has one and 
only one extension to B, that means Con (L)=Con (B). 

For the proof see [6, Lemma 11.4.5]. 

T h e o r e m E ([10, Theorem 2]). Every distributive p-algebra can be embedded 
in a Hey ting algebra H of order 3 (i.e. D{H) is relatively complemented) such that 

(i) every congruence relation of L has one and only one extension to H, i.e. 
Con (L)==Con (H), 

(ii) B(L)=B(H) 
and 

(iii) D(H) is an extension of D{L) such that Con (Z>(L))s=Con (D(H j). 
For the proof of (ii) and (iii) see the proof of [10, Theorem 2]. 

T h e o r e m 7. Let L be a distributive p-algebra. Then Con (£) is a Stone lattice 
if and only if 

(i) D(L) is relatively complemented, 
(ii) the dual lattice L is a Stone lattice 

and 
(iii) B(L) is a complete Boolean algebra. 

Proo f . Let Con (L) be a Stone lattice. Then there exists a Hey ting algebra 
H of order 3 such that L is a subalgebra of the p-algebra H and Con (L)sCon (H) 
(Theorem E). It is well known that Con (H)^F(H), that means, every congruence 
relation of H is uniquely determined by a filter of H. Hence F(H) is a Stone lattice. 
Now we can apply [7, Satz 9]. Therefore, (a) the dual lattice H is a Stone lattice and 
(b) B(H) is a complete Boolean algebra. Evidently, B(H)QB(H) =B(L) (Theorem E). 
Take a£L. There exists a dual pseudocomplement a+£B(H) of a in H, i.e. a\fx=\ 
if and only if As B(H)QB(L), a+€L and L is dual pseudocomplemented> 
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that means L is pseudocomplemented. Moreover, L is a Stone lattice by (a). Again, 
B(L)QB(H)<^B(L) implies B(L)=B(H). Hence, B(L) is a complete Boolean 
algebra by (b). We have established (ii) and (iii). 

Now we shall prove (i). Using (a) we see that H is a double /»-algebra. Moreover, 
by the hypothesis, D(H) is relatively complemented. Therefore, H is a regulár 
double /»-algebra (see [9, Theorem 2]). Above we have shown that L is a subalgebra 
of the double /»-algebra H (see also Theorem E). But the regular double /»-algebras 
form a variety (see [9, Theorem 2] or [16]). Hence, again by [9, Theorem 2], L is 
also regular and this implies that D(L) is relatively complemented. 

Conversely, let L satisfy (i)—(iii). Then L is a distributive double /»-algebra. 
By [9, Theorem 2], L is a regular double /»-algebra, because D (L) is relatively com-
plemented. According to [9, Theorem 1], L forms a (double) Heyting algebra H. 
But every congruence relation of L is also a Heyting algebra congruence relation, 
that means Con (L) = Con (H ) (see [10, Lemma 1]). Therefore, Con (L) = F(H) = 
—F(L). Now, conditions (ii) and (iii) imply by [7, Satz9] that F(L) is a Stone 
lattice. Thus, Con (L) is a Stone lattice and the proof is complete. 

For the next Theorem we need the following 

L e m m a 6. Let L be a distributive lattice with 0. Then B(Con(L)) is finite 
if and only if L is finite. 

Proo f . By Theorem D there is an extension K of L such that K is a generalized 
Boolean lattice and Con (L) = Con (K). Every congruence relation of K is uniquely 
determined by its kernel, that means Con (K)^I(K). By assumption, B(l(K)) 
is finite. Take a£K. We claim that (a]£B(I(K)). Really, if JO(K), then J* = 
= {x£K: xAy=0 for every y£J}- Consider (a]* and (a]**. It suffices to show 
that (a]**={d\. Clearly (a]g(a]**. Choose ¿>€(<2]**. Take c=a\/b and observe 
(c]£l(K). (c] is a Boolean lattice. Since (a]V((a]*A(c])=(c], we see that b^a and 
(a]=(a]**€5(/(AT)), as claimed. Hence K is finite, as B(I(K)) is finite. Consequently, 
L is finite. The converse implication is trivial. , 

T h e o r e m 8. Let L be a distributive p-algebra. Then Con (L) satisfies the 
identity (1) if and only if 

(i) Con (L) is a Stone lattice, 
(ii) D(L) is finite , 

and 
(iii) {a£B(L) : a<p(Z,)=[l)} is finite. 

P r o o f . Lét Con (L) satisfy the identity (1). The condition (i) follows froiö 
Theorem 6. Again from Theorem 6 we know that 5 (Con (L)) is finite. Hence, 
5(Con (L)) is atomic.-With regard .to Theorem 4, £(Con (D(L))) is also atomic 
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and the set of all atoms of jB(Con (Lj) comprises 

{{A, a)6Con (L): a is an atom of .B (Con (D (£)))} 
and 

{(©[(a]], A)€Con (L): aq>(L) = [1) and a is an atom of B(Lj). 

This and Lemma 6 imply (ii), because 2? (Con (L)) is finite. Now we shall establish 
(iii). Again by the hypothesis the set of atoms a£B(L) such that acp(L) = [ 1) is 
finite. Observe b£B(L) with b<p(L)=[ 1). We claim that b=a1V...Van, where 
a,<p(Z.)=[l) and at is an atom of B(L) for every i = l , .. . ,«. Let a£B(L) be a 
join of atoms a ; of B(L) with a^b, i.e. a=a1V-- V<2„- Therefore, asb. Then 
there exists c£B(L) such that aAc—0 and b=aVc. Hence bcp(L)=a<p(L)\j 
Vc(p(L)=[l) (see Theorem B). Consequently, c<p(L)=[ 1). If i S c and t is an 
atom of B{L) then by assumption t^ a. This implies c=0. Thus b=a, as claimed. 
Now it is easy to show that {a£B(L): acp(L)=[ 1)} is finite. 

Conversely, let L satisfy (i)—(iii). By Theorem 4, B (Con (Lj) is atomic and 
the set of all atoms of fi(Con (Lj) is finite. Therefore, the Boolean algebra 
2?(Con (L)) is finite. The rest follows from Theorem 6. 

Before closing this section we shall generalize Beazer's [1, Theorem 6] (see 
also [2]). We shall characterize those finite /»-algebras, which have the same con-
gruence lattices as the finite distributive /»-algebras. 

Having an (arbitrary) finite /»-algebra L, then Con (L) is a finite distributive 
lattice, and thus, Con (L) can be considered as a finite double /»-algebra. In this 
case we introduce the ideal D(Con (L)) of dual dense elements from Con (L), 
that means, a?5(Con(L)) if and only if a + = V . 

T h e o r e m 9. Let L be a finite p-algebra. Then the following statements are 
equivalent: 

(i) there exists a finite distributive p-algebra L' such that Con (L) s Con (L'); 
(ii) Z>(Con (Lj) is a Boolean lattice; 

(iii) D (Con (L)) is a Boolean lattice; 
(iv) Con (L) is a regular double p-algebra. 

Proof . By assumption, Con (L) is finite and distributive. Now the equiv-
alence between (ii)—(iv) follows from [9, Theorem 2]. Assume (i). Then there exists 
a finite Heyting algebra H of order 3 with Con (H)=Con (L). Since H is finite, 
we see that i i is a double p-algebra. Eventually, H is regular, because H is of order 3. 
The same is also true for the dual lattice H. But Con (H) s F(H) ^ H. Hence 
His Con (L), and (iv) is true. Conversely, assume (iv). Let H denote the dual lattice 
of Con (L). Clearly, H is also a regular double /»-algebra. By [9, Theorem 2] H is 
in fact a Heyting algebra of order 3. Let L' be H considered as a /»-algebra. Then 
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Con(L')^F(H), by [10, Lemma 1]. Since H is finite, we see that 
ssCon (L), and (i) is established. 

L e m m a 7. Let L be a finite quasi-modular p-algebra. Then 5(Con (L)) = 
—[A, y] (that means that the Glivenko congruence is the largest dual dense element 
of Con (L)). 

P r o o f . We know that y=(A, V). Take a = ( a l 5 a2)£Con (L) with V=yVa. 
Therefore, a 1=V. As (aA, a2) is a congruence pair, we see that a 2 =V. Now, 
assume a S y for some a£Z)(Con (L)). Corollary 2 to Theorem 1 says that 
V^a€[y, V]=Con (B(L)). But Con (B(L))^B(L), as L is finite. Take the com-
plement a ' of a in [y, V]. But a V V is impossible, because Z)(Con (L)). Hence 
a '=V, which implies a=y . 

T h e o r e m 10. Let L be a finite quasi-modular p-algebra. Then there exists a 
finite distributive p-algebra L' such that Con (L)=Con (£/) if and only if Con (Z>(L)) 
is a Boolean lattice. 

P r o o f . Corollary 1 to Theorem 1 and Lemma 7 imply that 5(Con (Lj) = 
=[A, y]sCon (D(L)). Hence, by Theorem 9, Con (D(L)) is a Boolean lattice 
if and only if there exists a finite distributive lattice L' such that Con (Z,)=Con (£•')• 

C o r o l l a r y (see [1, Theorem 6]). Let L be a finite modular p-algebra. Then 
there exists a finite distributive p-algebra L' such that Con (L)s=Con (L '). 

P roo f . D(L) is a finite modular lattice. It is well known that the congruence 
lattice of a finite modular lattice is Boolean. Hence Con (D (L)) is a Boolean lattice. 
The rest follows from Theorem 10. 

6. Relative Stone congruence lattices. We start with general results. 

L e m m a 8. Let L be a distributive lattice with 1. The following statements are 
equivalent: 

(i) L is relative Stone; 
(ii) for every a£L, \a, 1] is a Stone lattice; 

(iii) for every asb in L, [a, b] is a relative Stone lattice; 
(iv) L is a Brouwerian lattice (i.e. relatively pseudocomplemented) satisfying 

the identity x*yVy*x = 1. 

P r o o f . The equivalences between (i), (ii) and (iii) follow from Lemma 5. The 
equivalence between (i) and (iv) can be found in [8, 2.10]. 

Lemma 9. Let L be a Hey ting algebra. Then L is a relative Stone lattice if 
and only if 

(i) Lis a Stone lattice 
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and 
(ii) D(L) is relative Stone. 
For the proof see [8, 2.13]. 

L e m m a 10. Let L be a quasi-modular p-algebra and let B(L) be finite. Then 
(<*i> a2)6Z)(Con (Z,)) if and only if 

(i) a*=A, i.e. a26Z)(Con (D(L))) 
and 

(ii) CCiSTCd). 

P r o o f . Assume (a l5 a2)£D(Con (£)). Then, by Theorem 1, A=(a1 , a2)* = 
=(aJtAT(J), A). So, a \ = A . Moreover, A=a£Ax(A) in Con(B(L)). Since B(L) 
is finite, we have 5 ( L ) s C o n (B(L)). Hence a=a** for every agCon (B(L)). 
Now, A=<x*Ar(A) implies = a 1 ^ t ( A ) proving (ii). Conversely, (i) and (ii)-
imply (a l5 a2)*=(a£Ax(A), A)=A, as a*St (A)* . 

L e m m a 11. Let B be a Boolean algebra. Then Con (B) is a relative Stone 
lattice if and only if B is finite. 

P r o o f . Let Con (B) be a relative Stone lattice. This is equivalent to the fact 
that I(B/J) is a Stone lattice for every J£l(B) (Lemma 8). But 1(B) is a Stone 
lattice if and only if B is complete (see [5] or [7, Satz 9]). By [3, Theorem 4.3] every 
infinite complete Boolean algebra contains an ideal J such that BjJ is not com-
plete. That means I(B/J) is not a Stone lattice. Hence B is finite. The converse is 
trivially true. 

T h e o r e m 11. Let Lbe a quasi-modular p-algebra. Then Con (L) is a relative 
Stone lattice if and only if 

(i) Con (L) is a Stone lattice, 
(ii) B(L) is finite, 

(iii) Con (D(L)) is a relative Stone lattice 
and 

(i\) for any <x, feCon (D(Lj) with a s f t 0<=D(Con (D(L))) and 
it is true that x (a * ft* ST ((a * P) * P). 

P r o o f . Let Con (L) be relative Stone, (i) follows from Lemma 9. Corollary 2 
to Theorem 1 says that Con (2?(L))s[y, V]. Using Lemma 8 we see that [y, V] 
is also relative Stone. Hence Con (B(L)) is relative Stone. By Lemma 11, B(L) is 
finite and (ii) is established. The condition (iii) follows from the hypothesis and 
Corollary 1 to Theorem 1. Eventually we shall prove (iv). Lemma 9 and the hypoth-
esis imply that D(Con (L)) is relative Stone. Take a 2 = a and ft =/? from Con (D(L)) 
with a s f t PeD(Con (D(L))) and x(P)^x(A). Since (T(J), a2), (r(J), ft) 6 Z) (Con (L)) 
(see Lemma 10), there exist (a l5 a2), ( f t , ft)€D(Con (L)) with (a l5 cc2)^(Pl, ft). 
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By the hypothesis, [(ft, ft), V] is a Stone lattice (Lemma 8). The pseudocom-
plements of elements in this interval can be calculated using Theorem 1. Therefore, 

(<*!, a 2 )*( f t , ft) = ( a ^ f t A - r ^ f t ) , a 2 * f t ) 

and 

{(«i, <*£*(fii, P2))*(fii, Pz) = (<*i*Pihx(a2*p2), a 2 * f t ) * ( f t , f t ) = 

= (((ai*0i)Ar(a2*ft))*ftAT((a2*ft)*ft), (ft*ft)*ft). 
By the hypothesis 

(«i, <h)*(fii, &)V((al5 a2)*(ft, ft))* (ft, p2) = V. 
Since B(L) is finite, we have Con (B(L))=B(L). This implies that in Con (B(L)) 
pseudocomplements are complements (i.e. a*=a') and oc*/?=a'Vft Bearing this 
in mind we see that ((ax*ft)Ar(a2*ft))*ft is the complement of a 1 *ftAr(a 2 *f t ) 
in [ft,V]. Therefore, 

((â  * ft) A r(as * p2)) * ft = (a1*plf\Jx(a2*p2fypi t((a2*ft)*ft) 
and consequently, x (a2 * ft)* S x ((a2 * ft) * p2). 

Conversely, suppose that L satisfies (i)—(iv). With regard to (i) and 
Lemma 9 it suffices to show that Z)(Con (L)) is a relative Stone lattice. Take 
(fiit ft)££>(Con (L)). By Lemma 10, J3*=J and x(p2)^x(A). We want to show 
that [(ft, ft), V] is a Stone lattice (Lemma 8). Take (aa, a 2 ) ^ ( f t , ft) in Con (L). 
Evidently, (<*!, a2) * ( f t , ft) and ((aL, a2) * ( f t , ft)) * ( f t , ft) is a pseudocomple-
ment of (a l5a2) and (o^, a2) * ( f t , ft), respectively, in [(ft, ft), V]. By Theo-
rem 1, 

(ft, ft) = (als a2) * (ft, ft)V((al5 a2)*(ft, ft))* (ft, ft) = 

= ((«i * ft A t (a2 * ft))) V (((ax * ft A t (a2 * ft)) * ft A t ((a2 * ft) * ft)), a2*ftV 

V(a 2 *f t )*f t ) . 
Condition (iii) implies a 2 *f tV (« 2 *f t )* f t=V. Clearly, a 2 S ( a 2 * f t ) * f t yields 
fts«1^t((a2*ft)*ft). The last condition, (ii) and (iv) imply 

* ft A T (A2 * ft)) * ft = (aiAft*)VT(a2*ft)*Vft S T ( ( « 2 * F T ) * F T ) . 

Now, it is easy to see that ( f t , ft)=V. Thus Con (Z) is relative Stone and the 
proof is complete. 

Before establishing the last theorem we need a concept. A lattice L is said to be 
locally finite if all intervals in L are finite. 

Lemma 12. L be a Stone lattice. Assume that B(L) is finite. Let J£I(L). 
77*«? JdD(I(L)), i.e. J*=(0], if and only if Jf)D(L)^Q. \ 
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Proof . Assume that J€D(l(Lj). Assume to the contrary that JOD(L)—0. 
It is well known that there exists a prime ideal P£l{L) such that JQP and 
Pf)D(L)=0. Note that a£P implies a**£P, as a*Aa**=0. Let a£B(L) be 
the join of all elements from Pf)B(L). Since B(L) is finite and L is a Stone lattice, 
we have (a]=P. Evidently Hence (fl*]s/*, a contradiction. Thus JC\D(L)^Q. 
The converse statement is trivially true. 

T h e o r e m 12. Let L be a distributive p-algebra. Then Con (L) is a relative 
Stone lattice if and only if 

(i) B(L) is finite, 
(ii) D(L) is locally finite and relatively complemented, 
(iii) the dual lattice L is a Stone lattice 

and 
(iv) the ideal of dual dense elements D(L) (i.e. D(L)=D(L)) is locally finite 

and relatively complemented. 

Proof . Suppose that Con (L) is a relative Stone lattice. Combining Lemma 9, 
Theorem 7 and Theorem 11 we get (i), (iii) and that D(L) is relatively complemented. 
In other words, L is a regular double /;-algebra (see [9, Theorem 2]). Again by this 
theorem we get that D(L) is also relatively complemented. By Theorem 11 
Con (D(Lj) is a relative Stone lattice. But Con (D(L))s=F(D(L)). Take a£D(L). 
Then [[1), [a)] is an interval in the lattice of all filters F(D(L)). Since [a) is a Boolean 
lattice and [[1), [a)] = F([a)), we see that [a) is finite, as [[1), [a)] is a relative 
-Stone lattice (see Lemma 11). Thus D(L) is locally finite and (ii) is completely 
established. It remains to prove the locally finiteness of D (L). Since every congruence 
relation 0 6 Con (L) is also a Heyting algebra congruence relation of L ([10, 
Lemma 1]), we see that Con (L)^ f (L) . Take b£D(L), i.e. b+ = 1. Evidently, 
(6] is a Boolean lattice and F((b]) [[6), [0)]. By assumption [[6), [0)] is a relative 
Stone lattice. Therefore, by Lemma 11, (¿] is a finite Boolean lattice. Thus D(L) 
is locally finite, and of course, relatively complemented. 

Conversely, suppose that L satisfies (i)—(iv). Theorem 7 says that Con (L) 
is a Stone lattice. According to Lemma 10 it suffices to prove that D (Con (L)) 
is a relative Stone lattice. This follows from the fact (Lemma 9) that for every 
<x£D(Con(Lj), [a, V] is a Stone lattice. Again [9, Theorem 2] and [10, Lemma 1] 
imply that Con (L)=F(L). Let K e r a = K £ F ( L ) . With regard to Lemma 12, 
KC\D(L)?i0. Take b£KC\D(L). By (iv), (b] is a finite Boolean lattice. Thus Con (L) 
is a relative Stone lattice and the proof is complete. 
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Structure-filters in equality-free model theory 

P. ECSEDI-TOTH 

Using a natural definition of (finite) meets of structures and that of the lattice 
ordering induced by the meet, we introduce the concept of filters on the similarity 
class of structures. Our main problem here is to answer the question whether 
the theories of such filters are characterizable by purely syntactical means. Restricting 
our considerations mostly to equality-free first order languages, we provide an 
affirmative solution to this problem. 

1. Finite meet of structures has been introduced as a simple set theoretic con-
struction in [3], where we have proved the following 

Theorem 1.1 ([3], Theorem 2.14). Let T be an equality-free first order theory. 
Then the two assertions below are equivalent: 

(i) T has a set of universal equality-free Horn axioms; 
(ii) T is preserved under finite meets (cf. Definition 3.6, below). 

It was shown, too, that this theorem fails for theories containing equality; 
more precisely, (ii) does not entail (i) if the equality is present, while the converse 
implication (i)=>-(ii) holds in general. 

Our starting point in the present work is that, disregarding some set theoretic 
difficulties, the class of all similar structures forms a weak partial meet-semilattice. 
It is well-known, that the lattice ordering is uniquely determined in weak partial 
meet-semilattices. By means of the lattice ordering, filters are definable in the 
traditional way, and so the following natural questions arise: 
(1) Which sentences (theories) are preserved under the lattice ordering induced 

by the meet? 
(2) Which sentences (theories) have a class of models that forms a filter in the 

weak partial meet-semilattice of structures? 

Received April 19, 1984. 
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We shall give here a complete answer to question (1) (cf. Corollary 4.4, Theo-
rems 4.5, 4.6, 4.7), and a partial one to question (2) (cf. Theorems 5.3 and 5.5), in 
the sense, that we restrict our attention to equality-free languages, only. 

It would be natural, too, to introduce and investigate the duals of these con-
cepts; i.e. the join of structures and ideals of structures. These notions, however 
cannot be treated analogously to the meets and filters. For example, the meet of 
structures can be defined without any restrictions on thé universes of structures 
(cf. Definition 3.1, below), nevertheless, a similar definition of the join would involve 
either the assumption that the universes of all structures in question are the same, 
or the permission for partial structures (in which functions may be partial). Beyond 
this definitional difficulty, some of our results do not have analogous dual forms. 
Thus, it seemed better to deal with these dual question in a separate paper. 

2. Some of our assertions refer explicitly to proper classes, and so, in order 
to avoid set theoretic difficulties, the choice of the underlying set theory is important; 
in fact, our considerations could be carried out e.g. in the Bernays—Gôdel set 
theory. We shall, however, present the material informally; the formal set theoretic 
development would be rather tedious. 

By a similarity type t we shall mean an ordered quintuple t=(0t, SF, ta, t^), 
where M, <ii are pairwise disjoint sets, < ^ 0 , ta: co — {0}, t^: J5"—a> — {0}. 

By a structure of type t, we mean an ordered quadruplet 

21 = <|2I|, <R<">)ria, ( / ^ W , <Ci«>>c€*>, 

where |2I| is a nonvoid set, the universe of 21; for each r^Sk, f(i2F and cÇ_(€, R^1S) 

is a fa(r)-ary relation, F{p is a t^(f)-ary function and C(
c
a) is a constant on the set 

|2I|, respectively. 
From now on, we shall keep an arbitrary similarity type t be fixed. The class 

of all structures of type t will be denoted by SOZ* ; we shall denote the elements of 
by German capitals, 2i, S , (£, T>, maybe with indices. 
We shall use the standard notions and notations of [2]. Additionally, we need 

some supplementary facts, collected together in the rest of this section. 
First, we mention the equality-free version of the well-known Los—Tarski 

preservation theorem (cf. [2], Theorem 3.2.2, p. 124). 

Theorem 2.1 ([3], Lemma 2.10). Let T be an equality-free first order theory. 
Then, the following two assertions are equivalent: 

(i) T is preserved under substructures; 
(ii) T has a set of universal equality-free axioms. 

Analogously, one can prove without major difficulty the dual form of this 
theorem. .: 
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. T h e o r e m 2.2. Let T be an .arbitrary equality-free first order theory. Then, the 
two assertions below are equivalent: > 

. (i) T is preserved under extensions; 
(ii) T has a set of existential equality-free axioms. 

The following concept has been introduced also in [3]. 

D e f i n i t i o n 2.3 ([3], 2.4). Let Xbe an arbitrary set and consider the absolutely 
free algebra gr (XU&) of type t generated by the set X\J<£ (cf. [5], Definition 
0.4.19(i), Remarks 0.4.20, pp. 130—131). Let 9l€9Jt'. It is well-known, that for 
arbitrary h: such that for all h(c)=Cf> holds, there exists 
a unique homomorphism h from gr (XW&) into 91 for which hQh (cf. [5], 
Definition 0.4.23, Theorem 0.4.24, Theorem 0.4.27(i), pp. 131—132). We define the 
free structure 91 induced by h over 91 as follows: 

(i) let |gt f c i t | = |0ft(ArUif)|; 
(ii) for every tgt(r)=n+1 and for arbitrary elements a0, ..., a „ £ | 9 t | , let. 

<a„, ..., ~ (iHa0,), ..., h(an))ZR™, 

where h is the unique extension of h to a homomorphism from gr (XUtf) 
into 91; 

(iii) for e v e r y s u c h that t^(f)=n+1 and for arbitrary a0, ..., a„£\9I|, 
let 

tf (a„, ..., a„) — fif (a0,...,a„), 

(iv) finally, for all let 

— . 

It was shown in [3], that 91 is correctly defined and is of type t, provided 
9ie2RI. We shall need the following 

Theo rem 2.4 ([3], Lemma 2.5). Let 916991' and X be a set, h: Z U ^ - ^ f 
such that h(c) = C<*s> for all c^S. If his onto, then 91 and gr,,9l are elementarily 
equivalent for equality-free sentences. 

The next assertion is, on the one hand, a particular case of a well-known result 
of Shoenfield (cf. [2], Theorem 3.1.16, p. 118) in two respects: firstly, it concerns 
equality-free languages only, and secondly, it is restricted to the lowest levels of 
the quantifier hierarchy. On the other hand, however, it is a generalization of the 
mentioned result, since it is about theories instead of single sentences. Our proof,, 
presented here, is purely model theoretic in character and differs from the one given, 
in [2], p. 118. 
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Theorem 2.5. Let T be an equality-free first order theory. Then, the following 
assertions are equivalent: 

(i) T has both a set of universal equality-free and a set of existential equality-
free axioms; 

(ii) T is preserved under both substructures and extensions; 
(iii) T has a set of quantifier-free (i.e. IJ0—I0=A0) equality-free axioms. 

Proof , (i) and (ii) are equivalent by Theorem 2.1, and Theorem 2.2. Also, 
(iii) implies (i) trivially, since every quantifier-free (and equality-free) sentence can 
be considered as a universal, as well as an existential (equality-free) sentence. To 
complete the proof, we show that (ii) entails (iii). 

First, we prove the following fact. 
(3) Let 21, 936 9JF, and assume that for any quantifier-free and equality-free sen-

tence STN^oSNi / ' . Then 211= T-«=>2? 1= T. 
Let X be an arbitrary set with cardinality large enough such that the onto 

mappings h: XWtf—|2l| and g: exist. Consider the free structures 
grA2l and gr9© and let us denote by 21' and S ' those substructures of grA2t 
and 0fr923 which are generated by the set of constants, respectively. (By assumption, 
there exist constants in grA2l and gr9SB, so 21' and S ' exist.) 

We claim that 21'=S' . 
Indeed, by Definition 2.3, we see that 

(4) = |0ft f»|, 

and for every c a n d 

(5) C®1"90 = 

(6) F f ^ = Ffx°*\ 

From (4), (5) and (6), it follows that |91'| = |®'I and Cf">=Cf'\ Ff' )=F}®' ) , 
for every 

Finally, let a0,...,a„£|2l'| and r^Sk, such that ta(r)=n+1. By the defini-
tion of 21', there are closed terms T0, ..., T„ such that 

L0 — M0> •••» N — "ID 

(where t f ° denotes the "value of T; in 21"', cf. [2], 1.3.13, p. 27). Hence 

< A „ , . . . , A N ) 6 / ? W > ~ ( T F ) , . . . , O 2 L ' N r ( R 0 , . . . , T„). 

Since T0, ..., T„ are closed, 21'N/-(T0, ..., T„) implies that grA2it=r(T0, ..., T„). 
By Theorem 2.4, 21(=/-(T0, ..., T„). According to the assumption of (3), 
® N / - ( T 0 T„), from which G T 8 S | = / - ( T 0 , . . . , T„) and ®'N/-(T0 , . . . , T„) follow, 
again by Theorem 2.4 and by the closedness of T0, ..., T„. 
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:: This, however, means that <4®°, ..., ) arid so, using the fact that for 
all i ( 0 s i s / i ) , xfr)=ab which follows from (5) and (6), we obtain: (a0,..., a„)€i^®'). 
Hence, l ^ c J f . The converse implication tf^c/?^ can be established 
similarly. Thus and, r being chosen arbitrarily, we have 9 l ' = S ' . 

If 91 NT, then by Theorem 2.4, gr A 9i t=r , and since T is preserved under 
substructures, 9 l ' l= r . So, 93't=7\ But T is preserved under extensions, too, hence 
S X f S N r , whence we obtain S N T , by Theorem2.4. The converse implication 
93l=r=>-9It=77 can be seen in an analogous way. 

Thus (3) is proved. 
If T is inconsistent, then the set {r(c, c , . . . , c), ~]r(c, c,..., c)}, where 

ta(r)=n+1 and are arbitrary, is an axiom system for T in the required form, 
(in fact, speaking on equality-free languages, we may assume that for other-
wise no formula exists; on the other hand, by assumption.) 

Let us suppose that T is consistent and set T0={(p\(p is a quantifier-free equal-
ity-free sentence and Tt=<p}. Then, T\=T0 and so T0 is consistent. 

Let (£ t= T0 be arbitrary. We claim that there is a structure such that T>t=T, 
and for every quantifier-free equality-free sentence ij/, GN^<=>I)|=I¡i. 

Indeed, let I— {(p\q> is a quantifier-free equality-free sentence and (£(=<?}. 
Then EUT is consistent. For if IUJ were inconsistent, then we could find a finite 
subset {(T0, ..., <7m}cZ such that 7,t=l(ff0A...A(Tni)- But the sentence ~l(cr0A...Affm) 
is itself a quantifier-free equality-free sentence and so it is in T0, hence 
£N~|(ff0A...Acrm). Nevertheless, GN<70A...A<7m, by the definition of X. This con-
tradiction indicates that Z U T is consistent. 

Let D be a model of T U T and let ip be an arbitrary equality-free quantifier-
free sentence. If (£t=ij/, then ij/£Z and so 2>Ni¡f. If G^i/f, then and so 
"li¡/£S, hence , S ( = ~ I i . e . 

Thus, G and © satisfy the condition of (3), and <i\=T follows from DNI 7 , 
by(3). • 

3. D e f i n i t i o n 3.1 ([3], 1.2). Let ta, t?) be a similarity type 
and let 

% = (|9ij|, (R^Uz, <Cf<>>c€*> 

be structures of type t for / < « + 1 , where n£a>. We define the set theoretic meet 
of 9l;, / < « + 1 as follows: 

n % = ( n № l , < n n n < < £ % « > icn + l i-in + l i-=n + l «<B + 1 '«n + 1 
where the meets on the right hand side of the equation are meant in the sense of 
set theory (i.e. the meet of functions is taken as the meet of sets of pairs representing 
those functions; the meet of sequences of constants is defined again as the meet of 
ordered sets). 

7 
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If Pi 2lf693l', then i t is called the model theoretic meet (from now on, simply, ><B+1 
the meet) of 21,-, / < « + 1 . We shall use the infix notation 2 l 0 n 2 i 1 n . . . n 2 I „ for 
the meet of 21,-, / '<«+1. 

Clearly, P| 21, always exists as a tuple. The meet of the structures 21;, i<n+l 
f 1, however, is a partial operation: it may well happen, that the meet of 2i ;, 

/</1+1 does not exist even if H 121^0. We shall use synonymously the fol-
¡<II+I 

lowing two expressions: 

" f l 2li€9M"' and "2I 0 n2I 1 n. . .n2I I I exists". 
i<B+l 

The meet, if exists, is very close to the set theoretic meet. In particular, it pos-
sesses the following familiar properties. 

Lemma 3.2. Let 21, ®, G69JI' be arbitrary. 
(i) 2Ifl2I=2l, hence 210216931'. 

(ii) If 2inSG9K', then 9302162)1', and 2 I n ® = ® n 2 I . 
(iii) If 2 inS62K' and ®nG:69Jt', then (a) and QS) below are equivalent and 

any of them implies ( 2 l n ® ) n £ = 2 I n ( ® flG): 

(a) (2in®)H £6 931', 

05) 2in(®n£)693i'. 

P roof , (i) and (ii) are trivial. 
(iii): Assume that 2IDS6931', 930(16931'. If (a) is true, i.e. (210®) 066931', 

then consider 2in(®f)(£:). By the associativity of the set theoretic meet, which is 
immediate by Definition 3.1, we have ( 2 i n ® ) n £ = 2 i n ( ® fid) , hence ($) is true 
and (21 n ®) f l G=21 n (® H G) holds. The converse can be established similarly. • 

An immediate consequence of this lemma is the following 

Theorem 3.3. Let t be a fixed similarity type. Then, the class of all structures 
of type t forms a weak partial meet-semilattice. 

D e f i n i t i o n 3.4. Let us define the binary relation s on 931' by the item: 
for any 21, S69M', 2IS® iff 2 I n ® exists and 21fl®=21. 

If 21s®, then we say that "21 is a weak substructure of ®", or equivalently, 
that " S is a weak extension of 21". 

The next assertion collects some useful facts about the relation s . The proof 
is an easy verification or can be readily obtained from the general theory of lattices [4]. 

Lemma 3.5. Let 21, S , C69W. 
' (i) S is a partial ordering on 931'. 

(ii) If 21 n ® exists, then 
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(a) ' « n 8 s 2 1 and S l n S s S ; 
(fi) and imply that 1 

(iii) 7/" 21c:23 then 2 t s S (where c stands for the traditional concept of 
substructures). The converse implication is not true in general. 

(iv) 21^23 i f f | 2 I | c |S | and the identity mapping i: | 2 I | - | S | , definedby i(a)=a, 
is a homomorphism in the model theoretic sense. 

The clause (iii) of this lemma justifies the adjective "weak" in the naming of 
weak substructures. 

D e f i n i t i o n 3.6. Let T be an arbitrary first order theory. We say that 
(i) T is preserved under weak substructures (resp. under weak extensions) iff 

for all 21, 2369Jt', if 21 NT- and 93s=2I (resp. 2 l s®) , then 
(ii) T is preserved under finite meets iff for all 2I0,2I l5 ..., 2l„693i', if 

2I0 N T, 2lx 1= T, ..., 2IB N T and 2I0n 2lx n • • • n 2In exists, then 2l0n2Ii f l . . £12I„ 1= T. 
The next assertion is a slight strengthening of Lemma 3.5(ii), (iii), and is true 

for arbitrary first order languages. 

Theorem 3.7. Let T be an arbitrary first order theory. 
(i) If T is preserved under weak substructures, then T is preserved under finite 

meets. 
(ii) If T is preserved under finite meets, then T is preserved under traditional 

substructures. 
(iii) None of these implications in (i) and (ii) can be reversed in general. 

Proof , (i): Let us suppose that T is preserved under weak substructures; let 
2l0,2li, ..., 2In£9Jt', and assume that for all / < « + 1 , % t = T and the meet 
2t0 f l 2lx n . . . f l 2t„ exists. By Lemma 3.5 (ii) it is easily seen that 2T0 f l 2Ii f l . • • f l 2ins2i0 

and so, 2 I 0 f l2 I 1 n . . . f l2 I n t= r , because T is preserved under weak substructures. 
(ii): Let T be such that T is preserved under finite meets. Let 21 NT, 23 c 21. 

We define the structure 21' as follows. First set |2l'| = |S|U(( |2l |- |S|)X{|2I |}); 
then define h: |2I | - |2l ' | by the item 

Obviously, h is one-to-one and is onto. For all let Cf)=h(Cf>). For 
every t#(f)=n+1 and for arbitrary elements a'Q,..., a^ |2I ' | , let 

FfHa'0,..., a'n) = h{F^(h-Ka'o) h^(a'n))). 

Finally, for every ta(r)=n+1 and elements |2T|; let 

<<4 ..., a'B)£lt™ o (h-Ha'o), .... h~Ha'B))eR<*>. 

i• 
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Then 91' is correctly defined and 9I'€9DF, provided 916951'. Moreover, 91' 
is isomorphic to 91 by h. Thus 91'\=T. By the construction, 91 f l 91'=93 and so, 
T being preserved under finite meets, S1= T. 

(iii): Let us consider the (equality-free) theories 

T t = {(Vx)r(x)}, r 2 = {(V*)(K*)V ?(*))}, 

where r and q are distinct unary relation symbols of an appropriate particular simi-
larity type t. a 

By Theorem 2.1, T2 is preserved under traditional substructures but, according 
to Theorem 1.1, is not preserved under finite meets. 

Similarly, Theorem 1.1 shows, that 7\ is preserved under finite meets. Never-
theless, Tx is not preserved under weak substructures as the following counter-
example indicates. (This follows also from Theorem 4.7, below.) 

Obviously, 7\ is consistent; let 91 be a model of Tx. Let us define the structure 
C as follows. First set |£| = |9I|. Then, for every and put 
and Cf>=Cf). Finally, for every rd®, let Rf>=0. 

Trivially, G ^ T j and (£091=5, i.e. G<91. C 

The "dual" of this theorem is simply a reformulation of Lemma 3.5 (iii) in 
terms of preservation properties. 

Theorem-3.8. Let T be an arbitrary first order theory. If T is preserved under 
weak extensions, then T is preserved under (traditional) extensions. The converse fails 
in general. 

Proof . Trivial by Lemma 3.5(iii). • 

Co ro l l a ry 3.9. Let T be an arbitrary first order theory. 
(i) If T is preserved under weak substructures or under finite meets, then T has 

a set of universal axioms. I f , in addition, T is equality-free, then it has a universal axiom 
system which is equality-free. 

(ii) If T is preserved under weak extensions, then T has a set of existential axioms, 
which are equality-free, provided T is such. 

Proof , (i): In contrary to the assertion, let iis suppose that T has no universal 
axioms. Then T is consistent. By the well-known Lo§—Tarski preservation theorem 
([2], Theorem 3.2.2, p. 124), we can find a model 91 of T and a substructure 8 of 
91, such that S l ^ T . By Theorem 3.7, T is preserved under neither weak substruc-
tures nor finite meets. If T is equality-free, then using Theorem 2.1 in place of the 
Lo§—Tarski theorem, the same argument applies. 

(ii): Similar. • 

4. This section is devoted to answering the question (1). 
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D e f i n i t i o n 4.1. Let us suppose that q> is an arbitrary first order formula. 
By predicate logic, q> is equivalent to a formula \p of the form 

(7) 

where n,m£co; for all /', l s / ^ m , j\, sit kt, l£co, (pa, ..., q>ih, \l/a, ..., xj/^ are 
proper atomic formulae of the form r(z0, ..., T„) for some r£i%, t#(r)=v+1 and 
terms r0 , ..., T„; and e(1, ..., sIjtj, t)n, ..., rj^ are equations of the form 1 0 = ^ , 
for some terms T0, T^ and finally, for all z, 1 S z S « , <2Z£{V, 3}. 

We say that i¡1 (of the form (7)) is an equationally-augmented negative (resp. 
positive) formula, an EAN-formula (resp. EAP-formula), for short, iff for all /', 
l s / ^ m , (resp. jt=0). 

L e m m a 4.2. Let T be an arbitrary first order theory. IfT has a set of existential 
EAV-axioms, then T is preserved under weak extensions. 

P r o o f . It will suffice to prove, that every existential EAP-sentence <p is pre-
served under weak extensions. We shall proceed by induction. 

First we observe some trivial facts. Let 91, 93 € SOI', and S s 9 I . We shall 
denote the set of variables by V. 

(8) If k: V—|23|, then k: K—|9l|; that is, every assignment relative to SB can 
as well be regarded as an assignment relative to 91. 

(9) For every r i ® , Rf><zRf>, by Lemma 3.5(iv). 

(10) If z is a term in the variables xt, ...,x„, then for all k: x(S)[A;] = 
= T ( A ) [ £ ] , by (8) and by Lemma 3.5 (iv). (Here T(B)|VC] (resp. x(5°[£]) stands for 
"the value of z in SB (resp. in 91) at k"; cf. [2], 1.3.13, p. 27). 

Now, let us suppose, that <p = (Bx1...3x„)i//, where ifr is an atomic formula 
in the variables x1}...,x„, and let © N <59. Then there is an assignment k: F-*-|93|, 
such that 
(11) 93l=^[fc]. 

Recalling that is in one of the following three forms: n(i0—Ti) and 
r(z0, ...,ze), we see that, in any case, 9lt=i¡)[k] is immediate from (11) by (8), (9) 
and (10). 

The induction trivially passes over all the remaining cases, hence the assertion 
is proved. • 

The converse of this lemma holds, too. 
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T h e o r e m 4.3. Let T be an arbitrary first order theory. If T is preserved under 
weak extensions, then T has a set of existential EAP axioms. 

Proof . If T is inconsistent, then the set {(3x)~l(x=x)} is an axiom system 
for Tin the required form. Hence we may assume, that T is consistent. Let r = {<p\<p 
is an existential EAP sentence and T\=q>). Then, obviously, T t = r and f is con-
sistent. We shall prove that r\=T. 

Let 911= r . First we show, that there is a structure 23 such that 8 ( = r , and 
every existential EAP sentence holding in S holds in 91. To see this, let 1= {~\(p\q> 
is an existential EAP sentence and 91 (=1«?}. We claim that I\JT is consistent. 
Indeed, i f r U T w e r e inconsistent, then we could find a finite subset {~l<x0, ..., ~\(Tm}(zZ 
such that r t= l (n<x 0 A. . .A~lO- But l(l<T0A...A_]om) is equivalent to an exis-
tential EAP sentence, say o, and thus T\=o implies that cCF, hence 91 t=<r, that 
is 911= (~1 CT0A... A <rm). This, however, contradicts to the assumption that 
911= ~]c70, ..., 91N ~~\crm. So 2JUT is consistent. Let SB be an arbitrary model of 
EUT and suppose that x is an existential EAP sentence which is true in 23. Assume 
that 91 i.e. 21 \=~\x- Then "Ix^r which entails that 23 N a contradic-
tion. Thus 9lt=j(. 

Next we show that if 93 is such that 23 N T" and every existential EAP sen-
tence holding in 23 holds in 21, then there are structures 2i', 23' for which we have 
9I<9I' , 93 's2l ' and 23' is isomorphic to 23. (Here -< stands for the traditionally 
defined concept "elementary submodel", cf. [2], p. 107.) 

Let ca and db be new constant symbols for every a£|9I| and i>£|23|, respec-
tively, thus forming the diagram languages of 91 and 23 (cf. [2], p. 108). Make sure 
that {ca |a€|9I|}nK|&el©l}=0. Let r m be the elementary diagram of 91 (cf. [2], 
p. 108). Let be the set of all positive atomic sentences and all negated equa-
tions in the diagram language of 23 which hold in the diagram expansion (23, ¿Oteisi 
(cf. [2], p. 108). (That is, J £ e a is a proper subset of the diagram Am of 93, cf. [2], p. 68, 
obtained from by omitting all elements of the form ~\r(xQ, ..., rm).) 

We claim that raiLM<Jea is consistent. Let us suppose the contrary: r ^ U z l g ^ 
is inconsistent. Then we can find a finite subset {50, ..., <5m}cA£ea, such that 

~I05<)A---A(5m). Since the elements of {i//,|&6|93|} do not appear in r m , we 
can treat them in ~l(<50A...A<5m) as free variables. It follows from the universal 
Closure Theorem of predicate logic, that for an appropriately large n£co, 

A, N (Vxi...Vx„n(<50(*i, xn)A...A5m(Xl,..., *„)). 

In par tic alar, (91, a)aim HVxi...Vxn)~l(50(xi, •••. *n)A...A<5m(*i, ..., x„)), and so 

(42) 911= ( V X i . - . V ^ n ^ o f e , . . . , xJt\...A8m(Xl,..., xn)) 

bccausc in elements of {c0|a£|2l|} appear in the sentence 

X = (yx1...Vx„)-|(<50(*i, ...,xm)A...ASm(x1, ...,x„)). 
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On the other hand, however, (SB, b)bimt=80A...A5m, and so 

93 N (3x1..3xJ(80(xu ..„xJA.-.ASJx!,...,x„)). 

But the sentence {Sxl..3x^{5a(xl, ...,x^t\...A5m(xlt ..., x j ) is an existential EAP 
sentence, hence, by assumption 

91 N (SXi- . -Bx^oCx!, ..„x^A.-.ASJx^ ...,x„)), 

which contradicts to (12). Thus r ^ U J ^ 6 3 is consistent, indeed. 
Let (91', i/, fc')a6isi|,b€i®i t>e a model of r a L M ^ e a (where a' and b' denote 

the interpretations of the new constant symbols ca and db for every a£|9I| and 
respectively). We may assume that for all a£|9l|, a'=a; i.e. |9l |c |9I ' | . Then 
91-<9T, because (9T, a, b')ael<a|1b€¡si l=rai- Let us define the mapping g: | S | - | 9 l ' | 
by the equation g(b)—b'. Since (W, a, b')aim bl:mt=A£e!l, it is easily seen that 
g is an isomorphism in the algebraic sense (leaving relations out of consideration) 
and that g is a model theoretic homomorphism (when relations are considered, too). 
By Lemma 3.5 (iv), there is a weak substructure 23' of 91', such that SB' and SB are 
isomorphic by g. 

Now, SB t= T implies SB' I= T. T is preserved under weak extensions, hence 
91'NT. By 9I-<91', we have 91 NT, which was to be proved. • 

C o r o l l a r y 4.4. Let T be an arbitrary first order theory. Then, the two asser-
tions below are equivalent: 

(i) T is preserved under weak extensions; 
(ii) T has a set of existential EAP axioms. 

Proo f . Immediate by Lemma 4.2 and Theorem 4.3. • 

The dual of Corollary 4.4 has a somewhat simpler proof; in fact, we need 
the compactness property only, and we shall not use elementary submodels. 

T h e o r e m 4.5. Let T be an arbitrary first order theory. Then the two assertions 
below are equivalent: 

(i) T is preserved under weak substructures; 
(ii) T has a set of universal EAN axioms. 

P r o o f . (i)=*(ii): We may assume that T is consistent for otherwise the set 
{(Vx)~l(x=x)} shows that (ii) is true. 

Let T={(p|q> is a universal EAN sentence and TN<p}. Then T N T and f is 
consistent. 

Let 91 N T and consider the set (defined in the very same way as 
zl+ea was defined in the proof of Theorem 4.3, but, of course, SB replaced every-
where by 91). 
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We claim that A ^ U T is consistent. To see this let {<50,..., ¿ J c J j 6 ® . Then, 
the sentence 

X = ( 3 x 1 . . . 3 x n ) ( < 5 0 ( x 1 , j c J A - . A ^ i * ! , ...,*„)) 

lis true in 21 for an appropriate n£co. But x must hold in some model of T, since 
otherwise (when x is false in every model of T), we would have because 
~ix is a universal EAN sentence, and so, we would arrive to the contradiction 
2I|="Ix- Thus, {<50,..., 5m) is consistent with T and, by compactness, A^\JT is 
consistent. 

Let (©, </)fl€ ¡a, be a model of (where d stands for the interpreta-
tion of the newly added constant symbol ca for each a€|2l|). Let g: |2I|—|©l be 
defined by the item g(a)=a / . Since (93, a^eiiai it is easy to see that g 
is an isomorphism in the algebraic sense (relations dropped) and is a homomorphism 
if we consider relations, too. It follows from Lemma 3.5 (iv) that there cis a weak 
substructure 93' of S such that 21 is isomorphic to 93'. 

T is preserved under weak substructures, hence © ' N T follows from S(= T 
and 2 l ' s S . Thus, 21 NT, i.e. f is an axiom system for T. 

(ii)=>(i): It suffices to prove that every universal EAN sentence <p is preserved 
under weak substructures. This can be done by a simple argument; details are 
omitted. • 

The statement of Theorem 4.5 is a slight strengthening of a result due to 
H. ANDREKA, I. NEMETI and I. SAIN (cf. [1], § 6. Theorem 1; [6], Theorem 1, Theo-
rem 3). Their proof, however, is purely category theoretic in character and works 
only if T is assumed to be universal. By Theorem 3.7, the assumption that T is 
universal, does not mean the loss of generality; nevertheless, this is not clear from 
the category theoretical framework. 

For equality-free languages we prove 

Theorem 4.6. Let T be an equality-free consistent first order theory. Then, the 
following two assertions are equivalent: 

(i) T is preserved under weak extensions; 
(ii) T has a set of existential positive equality-free axioms. 

Proof . (i)=>(ii): Let r={(p\q> is an existential positive equality-free sentence 
and Tt=<p}. T is assumed to be consistent, hence r is consistent, because T\=T. 
We shall prove that n=T. 

Let 2 l t=r . Just as in the proof of Theorem 4.3, we see that there is a struc-
ture S , such that ©NT, and every existential positive equality-free sentence 
holding in S holds in 21. Let 21 and S be fixed in the rest of this proof. 

For every fc€|©|, let db be a new constant symbol and form the diagram lan-
guage of S (the language constructed from the non-logical symbols of t and the 
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new set of constant symbols {db\b£ |S|}). Let A%et be the set of all (positive) atomic 
sentences of the form r(x0,..., x„), where ta(r)=n-\-\ and x0, ...,T„ are 
terms in the diagram language of ©, which are true in (©, fc)6e|S|. Let I be the 
set of all equality-free sentences (of the original language) which hold in 91. 

Following closely the way the consistency of •Ts llM®ea is established in the 
proof of Theorem 4.3, one proves that is consistent. 

Let (G, b \ i m be a model of (where, as usual, b' denotes the inter-
pretation of db for each i>€|93|). First we show the following statement is true: 

(13) For every equality-free first order sentence q>, 

91 |= q, o G |= (p. 

Indeed, if 9l\=(p, then <pdZ and thus (G, b')bem \=q>, from which Gl=q> 
follows, because the elements of the set {db\b£ |S |} cannot appear in (p. On the 
other hand, if 9lN<?>, i.e. 91l="l<p, then ~\(p£Z, and so G !="]<? is obtained. 
Thus (13) is proved. 

Let X be an arbitrary set such that card Aboard |G|. Let h: A ' U | © | } — 
- | £ | and g: K|i>6|93|}H®l be two onto mappings, such that for all 2>€|93|, 
h(db)=b' and g(db)—b. Such mappings h and g exist. Let us form the free struc-
tures G'=gr fc(G,&')6€ | iB | and 93' = grg (SB, b)bem. By Theorem 2.4, G' i=ILM+ e f 

and © ' l = r U J £ e f . We shall show that S ' ;§G'. Obviously, |© ' |c |G ' | , and for 
all 6<E|S| 

(14) c £ > = C ™ 

is immediate by Definition 2.3. Similarly, for every tp(f)—n+1, and 
b0, . . . ,ft„€|S' | , we have 

(15) F^(b0,...,bn) = Ff>(b0,...,bn). 

It follows from (14) and (15), that for any closed term x in the diagram lan-
guage of S , the equation 
(16) i W = 
holds. 

Let ta(r)=n+\, b0, ..., By the definition of 93', we can find 
closed terms T0, ..., x„ of the diagram language of 93, such that b0=x^'), ..., b„— 
=xf'\ Hence, the following chain of implications is obtained: 

(K, ..., bn)iRW => ..., T<»'>>€*<»'> =>» ' != r(T0, ..., xn) =» 

=>-r(T0, ...,T„)€J+ef =>(G, fc')*€|®l t= r(x0, ...,x„). 

Using Theorem 2.4 again, we can continue: 

«5» b\tm ^ K t o , O => G't=r(r0 , . . . , x„) => <xf >,..., T 
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from which (b0,..., b^S^ follows. 
By Lemma 3.5 (iv), we see that S ' s C . 
Since B ' ( = r and T is preserved under weak extensions, we have £'N7", 

and by Theorem 2.4, E | = r . By (13), 91 \=T, which was to be proved. 
(ii)=>(i): Immediate by Lemma 4.2. • 

Using a similar (but somewhat simpler) argument, one can prove the dual of 
this theorem 

Theo rem 4.7. Let T be an equality-free consistent first order theory. Then, the 
following assertions are equivalent: 

(i) T is preserved under weak substructures; 
(ii) T has a set of universal negative equality-free axioms. 

5. This section is devoted to answering question (2) in the particular case 
when equality is excluded from the language. 

D e f i n i t i o n 5.1. Let R a f f l . 
(i) K is said to be closed under finite meets iff for arbitrary 9t0, ..., 91n£K, if 

2 t 0 n . . . n9 t „ exists, then 9 I 0 n . . .n9 i„€£ . 
(ii) K is closed under extensions (weak extensions) iff for arbitrary 9t€/£ and 

©£$№, 9 l c © (91SS) entails © € K 

Obviously, if T is an arbitrary first order theory and "OPERATION" stands 
for one of the following items: "finite meets", "extensions", and "weak extensions", 
then the assertion "T is preserved under OPERATION" is equivalent to the asser-
tion "K is closed under OPERATION where K= {U(|9t N T}". 

D e f i n i t i o n 5.2. By a filter of structures we shall mean a nonvoid class Kc 9JI' 
such that K is closed under both finite meets and weak extensions. 

The following assertion characterizes filters of structures from a model theoret-
ical point of view. 

Theo rem 5.3. Let T be an arbitrary equality-free first order theory and let 
K be the class of all models of T. Then tlte following two assertions are equivalent: 

(i) T has a set of quantifier-free atomic equality-free axioms; 
(ii) K is a filter of structures. 

Proof . First we note that both (i) and (ii) imply that T is consistent. 
(i)=>(ii): It is obvious that every equality-free quantifier-free atomic sentence 

can be considered as an existential positive equality-free sentence and as a universal 
equality-free Horn sentence, simultaneously. Thus, T is preserved under both weak 
extensions and finite meets by Lemma 4.2 and Theorem 1.1, respectively; whence 
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iTis closed under both weak extensions and finite meets; i.e. K is a filter of structures 
(for K^Q). 

(ii)=>(i): Let us suppose, that K is a filter of structures, i.e. that K is closed 
under finite meets and weak extensions. It follows that T is preserved under finite 
meets and weak extensions. 

Let r = {(p\cp is an equality-free, quantifier-free atomic sentence, T\= cp}. Obvi-
ously, 7 > r . We shall prove that r t = T . 

Let Gl=T be arbitrary and set Z={~\G\O is an equality-free, quantifier-free 
atomic sentence such that £ t = > } . 

Let o£Z be arbitrary. Then {"I a} U T is consistent, for otherwise we would 
have r i = l ( l f f ) , i.e. T\=a, and so o^T; from which the contradiction GNff 
would follow. 

Let (l<70, ..., 1 crm}d, and for every i, OSi'Sm, let S,- be a model of 
{iffiJUT. Let X be any set such that card Z s c a r d |930|U...Ucard | 8 J , and 
let gi: XU&-* 193,-1 be an onto mapping for each i, O s i ^ m . Let us consider the 
free structures OSi'Sm, It is immediate by Definition 2.3, that 
®=gr 9 o ® 0 n . . . ng r a m ®,„ exists; moreover, for any gt f f |8,N {"lo-.-JUT, 
by Theorem 2.4. Since T is preserved under finite meets, and at is atomic, we have 
for every i, O^i^m that ©1= {~lff;}Ur, i.e. ® t= {~|<x0, ..., l < r J U r . By com-
pactness, EUT is consistent. 

Let S be a model of IUT. If i// is an arbitrary equality-free, quantifier-free 
atomic sentence such that G^i/^, then "1 ij/H, hence Q^ip . It follows that for 
any equality-free, quantifier-free atomic sentence \j/, £>NiA implies GNiA-

Let Y be an arbitrary set such that card ard |G| Ucard |35| and let 
hx: YUV^W, h2: Y b e two onto mappings for which h1(c)=Cf\ and 
K(c)=C£C), for any cf/d. Considering the free structures gr^G and gr^X) 
we still have for any equality-free, quantifier-free atomic sentence ij/, that g r^ X) N ij/ 
entails g r ^ G N ^ . By Definition 2.3 and Lemma 3.5 (iv), g r ^ S S g r ^ G . But 

T)t=T (by Theorem 2.4) and T is preserved under weak extensions, hence 
g r^GNT. By Theorem 2.4, G \=T. • 

From a purely formalist point of view one may adopt the following notion: 

De f in i t i on 5.4. By a quasi-filter of structures we mean a class K<z.W such 
that K is closed under finite meets and ordinary extensions. 

The analogue of Theorem 5.3 for this concept reads as follows. 

Theorem 5.5. Let T be an arbitrary equality-free first order theory and let 
K be the class of all models of T. Then, the following two assertions are equivalent: 

(i) T has a set of quantifier-free equality-free Horn axioms; 
(ii) K is a quasi-filter of structures. 
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Proof . Similar to the proof of Theorem 5.3. • 

We note that none of Theorems 5.3 and 5.5 generalize for theories with equality. 
Let us consider for example the theory T={c1=d1Vcz=d2}, where c2, dlt d2 

are constant symbols. It is trivial that T is preserved under finite meets and weak 
extensions, by definition. Hence, K, the class of all models of T, is a filter of struc-
tures. T, however, has neither an atomic nor a Horn set of axioms in general, thus 
Theorem 5.3 is not true for this theory. Since every filter of structures is a quasi-
filter of structures, Theorem 5.5 is false for T, too. 
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A classification of the set of linear functions in prime-valued logic 

IVAN STOJMENOVlC 

1. Introduction 

Let Pk= U { / I / : E^Ek), where £"*={(), 1,..., fc-1}; i.e. Pk denotes the 

set of all ¿-valued logical functions. A subset G of Pk is said, to be closed if it is closed 
under superposition (e.g. see [4]). 

Let H<zPk be a fixed closed set. If FQH then we say that 
(i) F is complete in Ho every element of H is obtained from F by superposition; 

(ii) F is H-maximal <=> F is closed and no G exists such that FczGczH (proper 
inclusion) and G is closed; 

(iii) F is a base in HoF is finite and complete in H and no complete subset of 
F exists; 

(iv) F is a pivotal set in H<*F is finite and for every f£F there is an //-maximal 
F' such that f$F' but F-{f}QF'. 
From these definitions it follows that a base is a complete pivotal set of functions. 
The rank of a base (pivotal set) is the number of elements of the base (pivotal set). 
Let m be the cardinality of the set of all //-maximal sets and suppose that 

this set is well-ordered. There exist closed sets H for which m is not finite ([5]). If 
m is finite then a subset F of H is complete in H iff F is not contained in any //-maxi-
mal set ([4]). 

If / € / / , then the class af determined by / i s an element of (0, l}m such that 
at-0 iff fCMt, where at is the z'-th component of af and Ht is the i-th //-maximal 
set (lSz'^zn) in the well-ordering mentioned above. For FQH, one can define 
the class aF determined by F as the union of classes determined by the elements 
of F. Therefore, if F={f1, ...,f3} then aF = {afi, ...,af }. This set aF can be 
represented as an element a'p of {0, l}m such that aF = S/(afi,..., afJ, where bitwise 
OR operation V is defined in the following way: the z'-th component dp of a'e is 
equal to 0 iff the z'-th component of all classes af/ (1 s j ^ s ) is equal to 0. 

Received March 20,1984. 



404" I. Stojmenovic 

From this definition it follows that the set F is complete iff a'p = lm. Also, 
we infer that F is a pivotal set if a ^ a ^ M / j ) f ° r a " h 1 ^ j S s . From these con-
siderations one can remark that if F is complete (pivotal set, base), f,f'£F and 
af=ar (i.e. / and / ' are functions of the same class) then F U { / ' } \ { / } is 
complete (pivotal set, base) and flF^FUf/OM/v 

All P2-maximal sets and maximal sets of P2-maximal sets are described in [10]. 
P3-maximal sets are determined in [4], and maximal sets of P3 -maximal sets are 
exhibited in [7] and other papers. 

All different classes af for the set P2 are investigated in [6], and for P3 in [8], 
[9] and [11]. 

Let us recall some well-known closed sets in Pk. 
The set Lk of linear functions is defined in the following way: 

Lk = {a0+ ^¡Xiimod k)\a0£Ek, a£Ei, l S i S n , n£w, where Ek - ^XjO}}. 

n 
Let a= 2 ai- It is well-known that Lk is a Pk -maximal set iff A: is a prime 

i = l 
number ([4]). 

The set Sk of selfdual functions is defined as follows: 

Sk = {f\f(xi+l,*„+1) = / ( * i , * „ ) + 1 (mod k), « = 1,2,...}. 

T( = { f \ f ( j , ...,j)=j} is the set of functions preserving j (O^j^k — l). 
Let X=Lk\X for each X(zLk. The intersection of the sets Z l 5 . . . , Lk 

will be denoted by X1...Xi. 
From the results in papers [1], [2], [3] it follows 

T h e o r e m 1. Let p£co be an arbitrary prime. Then there are p+2 L-maximal 
sets. These are: 

(i) LJ=L„Tl, for every j, j=0, 1, ...,p-1, 
n 

(ii) Lp=LpSp={a0+ 2 oiXi\a=l (mod p)\, the set of linear selfdual func-
i — 1 

tions, 
(iii) Lw={afi+aix\ao, a^Ep), the set of unary linear functions. 

Let 0' denote the sequence 00...0, and 1' denote 11... 1. 
i t 

In this paper we prove that there exist 2/>+4 different classes determined by 
functions of Lp. The number of different classes determined by bases in Lp is 

an<* the number of different classes determined by pivotal noncomplete 

sets of Lp is p J 4 J - 2 . 
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2. Classification of Lp 

T h e o r e m 2. Let p£co be an arbitrary prime. Then there are 2p+4 different 
classes (denoted by c l 5 c2, ..., c 2 p + J of functions in Lp. These classes and the 
corresponding sets of functions are: 

L°L1... LP~1LPLW, ct = 0P+2; 

L°L1...Lp-1LpD1\ c2 = 0P+11; 

L°L1...Li~iLi~3Li~2...LpLw, Ci = l ' - ' C + ' - ' O , where 3 S i =§/>+3; 

L0L1...ZJ-p-5LJ-p-iLJ-p-3...L"Lll\ cj = iJ-p-4012p+s--i
> 

where p+4^sj^2p+4. 
n n 

Proof . Let / ( x j , ..., x „ ) + ^ aixi (modp) and ^ at=a. Consider the 
>=i ¡=i 

equation a0+aj=>>. 

Case a) Let a 0=0, a = l . Then the equation is y=y which is satisfied by 
every y. This implies that f^LPD...Lp. The function / ( x ) = x is in the set Lm, 
and it is a function of the class c1. The function a1xl + ...+anxn where a=1 and 
ws2 is in the set L(1), and so it is a function of the class c2. 

Case b) a=1. Then we obtain ¿ro=0, so it has no solution. Hence, the 
function/is in the set L°D...LP~1LP. The function a 0 + x for OQ^O is in the set 
L(1) and it is a function of the class c p + 3 . The function a0+a1x1+...+anxn (mod p) 
for ao^0 and a=l, ns2 is in the set L(1\ and it is a function of the class c2p+i. 

Case c) a^l. y19iy2 implies ( a — l ) ^ ? ^ — l ) j 2 . From this it follows that 
(a— 1)/ takes on p different values, when y ranges from 0 to p—1. It follows that 
there exists exactly one jo such that (a—1)>>0=—fl0, i-e. 00+^0=^0- This implies 
that the function / i s in the set Z>, and it is not in the sets L' for iV>'o, l ^ i = p — l -
Since a^ 1, / i s not in the set LP. The function / = / (constant) is in the set L(1), 
and it is a function of the class c j + 3 . The function f—i+ax1+(p—a)x2 (a^O) 
is in the set L(1) and it is a function of the class cp+4+i. 

Theorem is proved, because all possible cases have been considered. 
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3. Classes determined by bases of Lp 

T h e o r e m 3. Let p£co be an arbitrary prime. Then the number of different 
classes determined by bases in Lp and the number of different classes determined 
by pivotal noncomplete sets in L„for each rank are shown in the following table: 0 

rank bases pivotal noncomplete sets 

1 0 2p+3 

'pi') piV?> 
m 

5 4 0 0 

Proo f . From the definitions it is easy to see that the class cx =0P + 2 is not includ-
ed in any pivotal set, and there is no base of rank 1. The classes c2, c3, ..., c2 p + 4 

are different from 0P+2 and l p + 2 . Hence, these classes define the classes determined 
by pivotal noncomplete sets of rank 1 of Lp. 

We begin the investigation of bases and pivotal noncomplete sets of rank s 2 
by the following remarks: 

V(cj, cj) = l p + 1 0 for 

V(ci5 cj) = lp+2 for. p + 4 s i J s 2p + 4; . 

V f e . c . - H f e , ^ , lp+2} for + 

V(c2, c.) = a for p + 4 i 2p + 4; . 

V(c,, Cj) = l p + 2 for p + 3 , p + 4 == 2p+4 and ; ^ i + p + l ; 

V(c;, c,-+p+1) = c i + p + 1 for 3 i ^ p + 3; 

V(c2, c,, Cj-) = l p + 8 for 3 i < ; p+3 . . • 

From these remarks it follows that bases of rank 2 may contain any two func-
tions of classes c, and Cj, where / and /sat isfy the condition p + 4 ^ i < / ' s 2 p + 4 , 
or the conditions 3SIS/7+3, p + 4 ^ / s 2 p + 4 and j V / + p + l. 

Also, one can infer that pivotal incomplete sets of rank 2 consist either of two 
functions of classes c, and Cj, 3 ^ / < / ^ p + 3 , or a function of class c2 and a func-
tion of class ct, 3S/'^p+3. 

From the remarks above it follows that no pivotal set of rank § 3 exists which 
contains a function of class Cj for p + 4 s i s 2 p + 4 . Hence, pivotal sets of rank S 3 
may contain only functions of the class c2 and classes ct for 3 s z ' s p + 3 . But, from 
the first remark we conclude that Vfo-,, c^, . . . , cij) = V(cii, c^) = l p + 1 0 for 
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3Si j , ...,is^p +3. Hence, a pivotal set cannot contain functions from more than 
two classes c; for 3 s i ^ p + 3 . Therefore, no base or pivotal set of rank s 4 exists. 
From \f(c2, Cj, Cj) = l p + 2 (3Sz'<./S/>+3) we conclude that pivotal sets of rank 3 
are complete. Thus, no pivotal noncomplete set of rank 3 exists and a base of rank 3 
consists of a function of class c2 and two functions of the classes and c}, where 
3Sz</9=/7 + 3. 

From the above considerations the theorem follows. 

C o r o l l a r y 1. The maximal rank of a base of the set Lp is 3, and the maximal 
rank of a pivotal noncomplete set is 2. 

C o r o l l a r y 2. There is no base of rank 1 (i.e. Sheffer function) in the set Lp. 

C o r o l l a r y 3. The number of different classes determined by bases in Lp(p prime) 

C o r o l l a r y 4. The number of different classes determined by pivotal noncom-

plete sets of Lp (p prime) is ^ +1 j + 3p+4=^ + 4 j - 2. 

The number of w-ary linear functions of class c( ( lS /S2/?+4) will be denoted 
by t„(i). 

T h e o r e m 4. t0(i)=l for 3 s / S / ? + 2 , / 0 ( / ) = 0 otherwise; ^(1)=!, t1(p+3) = 
=p-l, t1(i)=p-2 for 3^iSp+2, /1(i')=0 otherwise; /„(2)=((p — 1)"—(— l)")/p, 
/ „ (2p+4)=( /? - lK(2) ; tn(i)={(p-rr+1H-l)n)/P for p+4^2p+3, tn(i)= 0 
otherwise (nS2). 

Proof . The statement follows easily from considerations in the proof of Theo-
rem 2. For n=0 and n = 1 the assertion is obvious. For «>-1 /„(2) is equal to 
the number of sequences a1,...,a„ which satisfy the condition a1 + ...+an = 
= 1 (mod/?). If + +a„_i = l (mod/?), then no solution of the equation 
fl1 + ...+fl„ = 1 (mod/>) exists (since a^O, l s / s n ) . If at +...+a„_19i 1 (mod/?), 
then there exists exactly one solution of the equation at +... +a„ = l (modp). It 
follows that t„(2)=(p—l)"~1 — t„-i(2), tz(2)=p-2. By induction on n it is easy 
to prove that (2)=((/?—1)"—(— 1)")//». If />+4=§zS2/7-f3, then from *„(/) = 
=(p-iy-t„(2) we obtain tn(i)=((p-iy+i+(-iy)/p. 

The number of functions of the class ct which depend on at most n variables 
is denoted by tSn(i). 

From Theorem 4 the following theorem is easily derived. 

8 
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Theorem 5. W O = 'o(Oi ' « ( 0 = 'o(0 + ' i (0 ; 

f s , ( l ) = l, t*n(i) = p-l for 3^i^p+3; 

ta2) - ((p - l)n+1 -(P- i f ) / ( p -2) -((-1)" +1)12)/p; 

tSm&p+4) = (p-l)tSa(2y, 

' s . ( 0 = ( ( / > - l ) 2 ( ( p - l ) " - l ) / ( p - 2 ) + ( l + ( - l ) " ) / 2 ) / p /or p+4^i^2p + 3. 
Let and P" denote the number of bases and the number of pivotal incom-

plete sets of rank i which consist of functions depending on at most n variables. 
From Theorems 2, 3 and 5 it is easy to prove the following 

Theorem 6. 

(P+4)+ (2) t%n(P+4)+Pt*n(P + 3)t gn(P + 4)+ 

+P^n(2p+4)tSn(3)+t^n(p + 3)iSn(2p+4)+p2t^n(3)tgl,(p+4); 

Bl = tSn(2) ( ^ „ ( / 7 + 3 ) ^ ( 3 ) + ( f ) / |„(3)); 

PJ = t^n(2)+tSn(p+3)+t^(2p+4)+ptSn(3)+pt^(p+4y, 

PI = ^ n ( 2 ) ( ^ „ ( p + 3 ) + p i S n ( 3 ) ) + / > ^ „ 0 + 3 ) / S n ( 3 ) + ( f ] /^,(3); 

B\ = BL = B% = ...= PI = PI =...= 0. 
Analogously one can obtain the numbers of bases and pivotal noncomplete 

sets which contain functions depending on exactly n variables. 

4. Classification of Lp-maximal sets 

We may assume further that p^3 (prime number). The properties of L2-
maximal sets follow immediately from Post's lattice ([10]). 

Let us define some familiar closed sets in Lp: L(0) = {0, 1, ...,p — 1}, Ls0=LpL° = 
= {a1x1 + ...+anx„\a=l, n = 1,2,...}, Lf>=LmLi={a0+a1x\a0+aii=i, a0,a^Ep} 
for O s i s p - l , Lf=LmL"={x,x+l, ...,x+k-1}. 

We shall mean by the multiplicative order of a£Ep the least integer r(a) = 
=r^l for which d = 1 holds. If p— 1 is divisible by j, then E'p has <p(j) elements 
of order j (cp(j) denotes Euler's (^-function). Let aM+atL(1)\L(0), i ^ l , 
r(a i)=r i. Let us denote by 1cm (r l5 r2 , ...) the least common multiple of the num-
bers r1, r2, ... • 

Let the number p— 1 have the decomposition to powers of primes p—1 = 
with all primes, a,i=l,/>,=(/?-1)/?, and L(x-° = 

= {a 0 +a*k(a)(Sl ) divides />,}, /=1, 2, ..., u. 
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The maximal sets for all Lp -maximal sets are determined by Demetrovics 
and Bagyinszki ([2]). 

Theo rem 7 ([2]). There are exactly two U-maximal sets for O^i^p (p is a 
prime number): Ls0 and L f . 

T h e o r e m 8. If 1 then there are exactly four different classes determined 
by functions in L', two different classes determined by bases of L' (one for both of 
ranks 1 and 2) and two different classes determined by pivotal noncomplete sets in V 
(both of them are of rank \). 

Proof . The function x belongs to the set Ls0Llp and the function 2 x + ( p — l ) y 
is in the set Ls0LfK The function x + 1 is an element of the set Ls0 L^ and the func-
tion 2x—i is in the set L^L'p for lsz 'sp—1. Base functions x+y+(p—i) and 
2 x + ( p - l ) j + l ([2]) belong to the sets L ^ L f for Osz'sp—1 and Ls0L(p respect-
ively. Thus all four possible classes determined by the functions in L' are non-
empty. The other parts of the theorem follow immediately. 

We are going to investigate classes determined by functions in L m . 

T h e o r e m 9 ([2]). The following « +/> +1 sets are L(1) -maximal: 

£(i,0UjL«» i = \,2,...,u, 

L^UZ-W i = 0, 1, ...,p — l, 

L (1)\L (0). 

The next three lemma's are useful for the classification of La\ 

Lemma 1. For the elements of L(1) we have: 
(a) a0+x£L™ iff a0=0, for z=0,1, ...,p-\\ 
(b) If a>\ then for each i (Osz's/?—1) there exists exactly one a0for which 

a0+axeLlp; 
(c) a^L? iff a0=i. 

The proof is omitted. 

Lemma 2. L^Lf^ix) for 0Sz<y 'S/?- l . 

P roof . From a0+a1i=i and «o+ a i7=i it follows that a1=1 and a0=0. 
Lemma 3. Let tt be a sequence such that ti—qi or tt=1 for each /=1,2, ..., u, 

t=(p—l)/(t1... lu) and a is a number for which r(a)=t. If we define the sets At 

(1 S i 'Sm) such that A^U1'^ for /¡ = 1 and ^ ¡ = L ( 1 , i ) for ti=qi then the function 
f=a0+ax is in the set A1A2-.-Au. 

Proof . If /¡=1 then pt is not divisible by r(a). Hence ao+axt lP - ' ^Ai . 
If ti=qi then r(a) divides pt. Thus a0-t-ax€L(1,i)=/4;. 

8» 
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T h e o r e m 10. The number of different classes determined by functions in Z,(1) 

is р2"+Ъ if p—\^qxq2...qu and р(2и—\)+Ъ otherwise. 

P r o o f . Suppose that the L(1)-maximal sets are ordered as in Theorem 9. 
0"+pl is the class determined by the functions in the set LP. The (w+/> +1)-
component of all other classes is 0. From Lemmas 1—3 we infer that the class 0" + p + 1 

is determined only by the function x and the class 0" l p 0 is determined by functions 
a 0 +j t for а0?±0. We may assume further that f=a0+ax and a > 1. From Lemma 2 
it follows that exactly one component among the components u+1, u+2, ..., u+p 
is equal to 0. We derive from Lemma 3 that all the-2" possible classes with respect to 
the first и Lm-maximal sets are nonempty. But, if p—1 =qx--qu for (1 ^ / ^ w ) 
we get t=a=1 in Lemma 3. It follows from Lemma 1 (b) and Lemma 2 that each 
of these classes with respect to the first и L(1)-maximal sets can be supplemented 
to a class determined by functions in Z,(1) in p different ways. 

The proof is complete. 

Coro l l a ry 5. Each base of Z,(1) contains a constant. 

C o r o l l a r y 6. For p=3 there are exactly 6 classes determined by functions in 
L(1): 05,041,0130, 10110,11010,1300. 

T h e o r e m 11 ([2]). The cardinality of the bases of L(1) is ^ 3 . 

T h e o r e m 12. The maximal rank of classes determined by bases in is u+2. 

Proof . Each base of L(1) contains a function of the class' 0" + p l . There is a 
subset of the base containing no more than и functions for which bitwise OR gives 
the value 1" with respect to the first и components. From Lemmas 1 and 3 we obtain 
that no more than one component among components и+1, ..., u+p has the 
value 0. Hence, except the u + l functions considered above, this base may con-
tain at most one function. Thus, each base of L(1> consists of at most u+2 functions. 

T h e o r e m 13. If p—\ =q\x (for example, if р=Ъ or p=5) then each base 
in L(1) contains exactly three functions. 

Proo f . In the case p—\=сЦ1 we have i/ = l and so this theorem is proved 
by using Theorems 11 and 12. 

Acknowledgement. The author is thankful for the comments given by the referee 
which have certainly improved the readibility of the paper. 
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On snperalgebras of the polydisc algebra 

RAUL E. CURTO*, PAUL S. MUHLY* TAKAHIKO NAKAZI«* and T. YAMAMOTO** 

Let T be the unit circle and, for w s l , let A„ be the uniform closure in C(T2) 
of the algebra of polynomials in zkwl, where k and / are integers, / s 0 , and k^0 
whenever Os / sn—1. Each A„ contains the polydisc algebra and the intersection 
of the A„ is the polydisc algebra. In this paper we give a characterization of the 
subspaces of L2(T2) which are invariant under multiplication by the functions in 
A„. The characterization is somewhat complicated, as one would expect, since for 
n > 1, A„ is not a Dirichlet algebra. In fact, for w>l , the point in the maximal 
ideal space of A„ represented by Lebesgue measure on T2 has an infinite dimensional 
set of representing measures. Nevertheless, as a result of our analysis, we find that 
each simply invariant subspace of L2(T2) for A„ is finitely generated and the number 
of generators required is s n . Examples can be constructed where n generators are 
necessary. Our analysis enables us to extend results of the third author and to 
parametrize the weak- * closed superalgebras of A„. 

1. Introduction 

Let X be a compact Hausdorff space, let C (X) be the space of complex-valued 
continuous functions on X, and let A be a uniform algebra on X. For (p£MA, the 
maximal ideal space of A, set A0={f£A: <p(/)=0}. 

De f in i t i on 1.1. Let <pdMA, let a be a representing measure (on X) for 
<p, and let 9JI be a (closed) subspace of L2(X, c). Then 931 is said to be simply invariant 
(for A) if /49Mc9Jl, but [^„9Jl]2?i9K (where [ ]2 denotes L2-closure). 

Let dA denote the Shilov boundary of A and N9 denote the set of representing 
measures for <p€MA whose support is contained in dA. Note that N9 is a weak-* 

* Supported in part by a National Science Foundation grant (U.S.A.). 
** Supported in part by Kakenhi (Japan). 
Received July 10,1984; revised May 20,1985. 
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compact convex set of probability measures on dA . The general theory of simply 
invariant subspaces is known only in the case when N^DL1 (X, a) is finite dimen-
sional. For instance, if A is a Dirichlet algebra then N^C\L}(X, a) = {a}, and the 
simply invariant subspaces of L2(X, a) have been characterized (cf. [2, p. 132]). 
In particular, Beurling's theorem can be derived from that characterization (the 
disc algebra, after all, is a Dirichlet algebra on the unit circle T). 

In this note we focus our attention on the following class of function algebras, 
A„, « S i , contained in C(T2). The general theory of invariant subspaces does not 
apply to these algebras. Nevertheless, as we shall show, it is possible to give a fairly 
complete and concrete description of their invariant subspaces. 

D e f i n i t i o n 1.2. Let T2 be the 2-torus and let n be an integer, « s i . By A„ 
we shall denote the uniform algebra on T2 of all continuous functions on T2 that 
can be uniformly approximated by polynomials in zkwl, where / s 0 , and &S0 when 

Equivalently, An may be described as the set of all functions / in C(T2) such 
tha t / i s supported in the upper half-plane and, in the second quadrant , / is supported 

eo 
on or above the line y=n. We have A1^A23--- and f ) An=Aoa, the polidisc 

n = l 
algebra. Observe that A„ is a Dirichlet algebra precisely when H=1. Let a be the 
Haar measure on T2 and define 

<Pn(f)= J f d a (ftAn). 
T ! 

Clearly, <p„ZMAn and crfEA^ for all «. Also note that dA„=T2 for all n. How-
ever, N9 DUij2, a) is not finite dimensional for n s 2 , as may be seen quite 
easily. 

Our hope is that an understanding of the A„'s will help us understand better 
the polydisc algebra A„. After all, in one obvious sense, A„ is the limit of the A„. 
In another somewhat more vague sense, as we shall see, it appears that the lattice 
of invariant subspaces of A„ is approximated by the invariant subspace lattices 
of the A„. The following proposition, however, shows that in still another sense 
all the A„, «<<=•=, are similar to Ax. Observe that for w"~1A1c:A„ and 
therefore, | 4 J = Mil. where \An\={\f\: f^An). However, \Am\^\Ax\. Since 
AttcAx, there is a natural embedding g„ of MAi into MA , given by restriction. 
Similarly, q„: Ma^Ma is an embedding. 

P r o p o s i t i o n 1.3. For each finite n, ,g„: MA -*MA is surjective, while 
g„- MA^-*MA is not surjective. 

Proof . Let (p£MAn. There are two possibilities: |<p(z)| = l or |<p(z)|< 1. 
In the first case, define <p(zkw')=(p(z)k(p(w)1 (ZcSO, / S i ) . Then and 
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<p\A=<p. If l<p(z)|<l then <p(w")=(p(zk)<p(zkwn) for all k^O, so that 
q>(z)\k (all k), which implies that (p(w)=0. By [1, Theorem 5], cp has a unique 

extension $ to Alt and (p£MA^. Therefore, Q„((p)='p- For the second assertion, 
observe that the proof just given shows that if <p^MAi and |<p(z)|<l then cp(w)=0. 
It clearly follows that gm cannot be onto because MA can be identified with the 
bidisc DXD. 

Def in i t i on 1.4. We shall let stf, S), and denote the following subalgebras 
of C(T2): 

i) si is the uniform closure of the polynomials in the first variable z; 
ii) is the uniform closure of the polynomials in z, z, and w; 

and 
iii) is the uniform closure of the polynomials in z and z. 
Observe that: 

i) si is isomorphic to the disc algebra; 
ii) <6 is isomorphic to C(T); 

iii) S8 is isomorphic to the tensor product of the disc algebra and C(T); 
OO 

iv) is also the uniform closure of U zkA„ (all n); 

v) A g a (all n); 

vi) H zkAn=wn@ (all n); 
k = 0 

vii) %={2 ®wl(#)®wn@ (all n); and 
1 = 0 n-i 

viii) A„=( y ®-wlsi)®w"38 (all«). 
/=o 

De f in i t i on 1.5. The closure in L2(a) of A„, [A„]2, will be denoted and 
the closure of 38 in L2(a) will be denoted H2. Likewise, we define and 
H 0 0 ^ ^ ] * , where [ denotes weak-* closure in L°°(p). For p—2, we set 
H p

0 = { f € H p \ J f d a = 0 ) . Finally, we define .5?2=[<ii]2, =[#]„, and 
MT=[<*]*• 

Observe that for p=2, «>, and are spaces of functions in the first 
variable, z, only, while the splittings described above yield the decompositions 

H" = ("z ®wl&>)®wnH" (all n), 
1=0 

and 

Hg = ( " z ®w ' j e p )®w n №. 
1 = 0 

These decompositions are crucial to our analysis. In Section 2 we use them to 
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describe completely the non-simply invariant subspaces of L2(<r), and in Section 3 
we use them to describe the simply invariant subspaces of L2(a). Finally, in 
Section 4, we use them to determine the structure of the weak- * closed superalgebras 
of 

2. Non-simply invariant subspaces 

For n < H2 is a simply invariant subspace (for A„) while H2 is not. The 
following proposition gives an easy criterion to determine when an invariant 
subspace is simply invariant. First, we list some important properties of the 
algebras A„y. 

(i) A1>0=zA1, and 
(ii) A„f0=zA„+[w, w2 , . . . , H»"-1], where [ ] denotes linear span. 

P r o p o s i t i o n 2.1. Let 93i be an invariant subspace of L2(a). Then 931 is simply 
invariant for A„ if and only if z93t^93t. 

P roo f . If n = l , [ ¿ ^ o S J q ^ M j a R ] , , so that if Mli093t]2=93l, then z9M=93l. 
Conversely, if z93i=93l, then [^1z9Jl]2=[^12«]2=9K. If n^ 1, [/*„,<, ®i]2 = 
=[z9M+w93t + ...+u>',-193?]2, by (ii) above, and therefore 0aii]2=[zSD?VM'9W]2. 
Hence if 931 is simply invariant, then z93tEg90t. Assume now that [^n>09Jl]2=9Ji. 
Then from what we have just seen, [zSOl+w9Jl]2=9Ji. Consequently, [z9M+wn93i]3 = 
= [ z ( 9 3 t + w - ^ ) + wn9W]2=[z9K + w^izW.+w93t)]2=[z93l+w"-19«]2. 

By repeating this argument, we find that [z93i+vv"93l]2=:[z93t+tv93l]2=93i. But 
zw"eAn, so 931=[z93i + w" 93t]2=z [931+zw>" 93l]2=z93i, as desired. 

C o r o l l a r y 2.2. Let 931 be an invariant subspace of L2(a). Then 931 is not simply 
invariant if and only if 

W = xElqW®XEiL2{<r), 

where xE and xE denote the characteristic functions of two measurable sets Et and 
Ei, Z E . ^ . Z E ' + ^ S I , and \q\ = l a.e. (<r). 

P roo f . The sufficiency is clear. If z93t=93t, then 931 is invariant under ¿8. 
Since SS contains the Dirichlet algebra At on which a is multiplicative, we may 
apply [6, First example, p. 165] to conclude that 931 is of the form 93i=x£<7[Z)]2, 
where D={f£L°°: /931 c901}, q is unimodular, and xE^D - By [5, Example 3.(1)], 
D has the form D=XFW+(\—XF)L°°, where x f€H°°. Letting XE =XEXF and 
ZE,=Zb(1—XF)> we see [5] that and 931 has the desired representation. 

An alternate proof of this result may be based on [4] as follows. Since z93i=9K, 
9K is invariant under H°°. But H°° may be viewed as the non-self-adjoint crossed 
product determined by the identity automorphism of L°°(T). Hence the result 
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follows from the analysis in Section 3 of [4] (see in particular Theorem 3.3 and 
Proposition 3.4). 

Before we proceed, we need a definition. 

De f in i t i on 2.3. Let 901 be an invariant subspace of L2(A). Then we define 
9Jt_«, to be [ U z*9Jl]a and 991«, to be [ f | z*99l]2. JtgO k£ 0 

Clearly 9JtooC9Jtc9Jl_„. Moreover, both 9Ji„ and 9Jl_<*> are non-simply 
invariant. By Corollary 2.2 we can describe both 951«, and 90t_„. However, if 9JI is 
simply invariant, more can be said. 

P ropos i t i on 2.4. Let 9Ji be a simply invariant subspace. Then %fl-a>=ql H2 

and 9M„=£2H2, where qx and q2 are unimodular. 

Proof . By Proposition 2.1, z9Mg9H, so 95l„g95t§991_<». By Corollary 2.2, 

2K-« = M H 2 © / E 2 L a , with XEi+XE2 ^ 1, \qi\ = 1, 
and 

= X,xftH ,©ZFiL» f with XFi+XF2^U Ifel = 1. 

Since 9Jl„c95lc9Jl_0„, it follows that XF I+XF,-XE +7-E XF -XE • Since 
zkw"eA„ for all ¿SO and AnWl(zSJl, we see that V c 951 for all' kSO. There-
fore, H>"9Jl_«,c95i, thus w"9Jt_00 = w"zt93t_00cz,I95l for all fcsO, so wn9Jl_«,c 
c f ) zi95l=95l«>. Consequently, iv" YE L2 <z Y_F L2, and so XE —XF- Likewise, k%0 i t i s 
ZE =ZF,> because H>" xEi H2 c H2. Thus we find that 9Jt_TC©9Jtot> = 
=XE ( ? iH 2 0i 2 H 2 ) which, in turn, is contained in XE ?i(H2©vv"H2), since 
w"fflL»c®i». Set 9Ji0=»ie93ioo. Then since z95L,=9Jt~, 'but z9K§9Ji, it fol-
lows that z95l0^93l0. I f / i s a nonzero function in 95l0©z95i0, then for all A:>0, 
we have 0=(f,zkf)=ff\f(ele,eiv)\2e-ike d9 d(p. Since | / | is real, this implies 

T» 
that J | f(ew, ei<p)\2 dq> is constant, a.e., in 9. Since / is nonzero and XE, is a func-

T 1 

tion of 9 alone, we conclude that x£ = l . Thus 95l_„=g1H2 and 93to°=?2H2, 
as promised. 

R e m a r k 2.5. When 95t=#2 , we see that 9J1_„=H2 while 9Jl«,=w"H2. 

3. Simply invariant subspaces 

P Suppose that 91 is a simply invariant subspace such that w 'H 2 =9i 0 „c9lc 
c 9 l _ „ = H 2 where 1 ^ / S n . Then applying Lax's generalization of Beurling's 
theorem, we find that 91 has a very special form. Specifically, using [3, VI.3, p. 60], 
we see that there is a jsl and there are functions l ^ / s y , Os&s/— 1, 
such that 
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1 - 1 
a) 2 f u f m k = 8im, l ^ i , m s j , a n d . . 

k=0 

b) 9t = [z; / , ]2©w'H2 

i - i 
where /¡=2 fikWk, 1 and where [z; U, . . . ,/.]2 denotes the smallest subspace 

k = 0 

containing / l s / 2 , . . . , f j that is invariant under multiplication by z. For instance, 
it is clear that 

Hf = [z; 1, w, ..., w ' - ^ e w ' H 2 and = [z; z, w, ..., w ' - ^ e w ' H 2 . 

If, now, F i s a unimodular function and if 9Ji=F9i, where 9t is of the above form, 
then 9M is easily seen to be simply invariant, but of course, 9JZ need no longer be 
nestled between some iv'H2 and H2. Our goal, Theorem 3.2, is to show that every 
simply invariant subspace can be expressed in this way as F9t. 

P r o p o s i t i o n 3.1. Let 9Jt be a simply invariant subspace for A„ and (for n ^ 2) 
assume that cfSOi. Then 9Jt=F9t where F is a unimodular function on T2 

and 91 is a simply invariant subspace such that 9ilo==w"H2 and 9?_„=H 2 . 

P roo f . By Proposition 2.4, 9Ji_00=91H2 and 932„=^2H2, where |<7il = |g2l = l-
Since ^ f f c ^ H 2 , we must have q, q2£H'2 and q1q2w"iH2 (recall that w"9Ji_„cz 

n 
ciWioo). Set q=qxq2, so that q£H2 and H2. Therefore q= 2 ckwk> where 

*=o n 
ck£JS?2. Since |<?| = 1, we have q= 2 aklE wk> where each ak is a function of z 

*=o k 
n 

alone, |ak| = l a.e. on Ek, O^k^n, and 2 XE
 sinie ^ i ^ c a K c ^ H 2 , 

k-0 k 

we see that X ^ t f i H ^ ^ ^ H 2 c / ^ a R c j ^ H 2 , and therefore, Z£()9K = 
=X£09I?H2C^19H2=9K« j . Now we may assume that X£o^l> for otherwise 9Jl=9Jl„ 
and so 9Ji is not simply invariant. Moreover, /£()9Jic9Ji and, if then it 
is easy to see that z93ic93i, so that 931 is not simply invariant. (Indeed, on the basis 
of the Wold decomposition for an isometry, it is straightforward to show that if 
a subspace 93i is invariant for a unitary operator U and if 93? is also invariant for some 
nontrivial spectral projection of U, then 931 reduces U. In our special situation, 
XE is a spectral projection for multiplication by z since xE is a function of z alone.) 
Thus xE= ^ D = {f£L": /9Kc93i}. Then and qWczD, since 
qW9K¿qxqW=H2 c 93t. Hence and (since akxE€H°°) wxE&°° are both 
contained in D. Since is isomorphic to £°°(T) with №°° corresponding to H°°(T), 
it follows that if then = But then H>JS?°°<=Z> and 
H"czD. Thus ^ a w c a i i , a contradiction. Thus, XE = 0 . One shows similarly 
that = = 0 and X£n = l. Therefore, q = w"a„\ Set F=qx and 91=^931 
to complete the proof. 
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Theorem 3.2. Let M be a simply invariant subspace for A„. Then 2JÎ = F9t 
for some unimodular function F and a simply invariant subspace 91 such that 9l_o==H2 

and 91oo = H'H2 for some I, l^l^n. Moreover, <mf]Fwl'-1H2 = Fwl~1qH2, where 
q is a unimodular function in JS?~. 

Proof . Let/ , i m l ^ n , be the smallest integer such that /i(iIicsJJi. Proposi-
tion 3.1 then establishes the first part of the theorem. Now, 2Jtn.Fw'_1H2= 
=FCJinu' '-1H2), and ,Hir]w l-1H2=qM?2w l-1®w'H\ because ^ ( ( S l i n w ' - ' f f j e 
Qw'H2)) is a simply invariant subspace of i f 2 under multiplication by z. Therefore 
the second part of the theorem follows. 

The following corollary is of course well known since A1 is a Dirichlet algebra. 
However, our methods provide an alternate proof. 

Coro l l a ry 3.3. If 72 = 1 andWl is a simply invariant subspace, then <3Si = FHl 
for some unimodular function F. 

Proof . Obviously, I must be 1 in this case, so that 9 l=9inH 2 =#. i f 2 , which 
implies that 9R = F9t = /7/2 . 

Co ro l l a ry 3.4. Let M be a simply invariant subspace for An. Then 
dim ($RQz9ft) = l if and only if 9JÎ = FH\ for some unimodular function F. 

Proof. The sufficiency is cl,ear. By Theorem 3.2, 9R=F9l for some uni-
modular function F and a simply invariant subspace 91 such that 9t_co=H2 and 
gi^^vv'H2 for some /, 1 ë / â n . We claim that /=1. This will give the desired 
result, as in the proof of the previous corollary. Since dim (®î©z$î) = l, we also 

have dim (91©z9l) = l, so that 9l©z9t=[C/]2 for some function / = 2 k w\ 
*=o 

where fkÇ.&2 (0 Sk^l). Since 9Î ZD = w'H2, f must be orthogonal to wl and there-
fore / ,=0 . Moreover, fw'-1=f0wl-1 + w'g, where geH2, so that / 0w'- 1e91©9U. 
Now, 9l©9lco=[U z ' / ] 2 =[z ; / ] 2 , and there exists a sequence such 
that gm /-*/0w'_ 1 in L2. By projecting onto w ' - 1 i f 2 we get: gmf-i~*f0- Assume 

that />1. Then gm z"fkwk~gm(f—fi-1 w' ~x) — 0, and in particular, gmf0*0. 
k = 0 

However, by the second part of Theorem 3.2 we must have /0w' -1Ov , _1<7#i, or 
f^w1*1 — wl_1 qh, where \q\ = \, and hitf2. Therefore \f0\=\h\ a.e. If 
/ 0 = 0 a.e. then 91_00c>fH2, so that | / 0 | >0 on a set of positive measure. That 
forces \h\ >0 a.e. and then | /0 | > 0 a.e. If {g„ } is a subsequence such that gm./0—0 
a.e., the previous observation implies that gm— 0 a.e., so that gm tf-x—0 a.e., 
or fv=0 a.e.. This contradiction establishes the original claim and completes 
the proof. 
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4. Weak- * closed snperalgebras 

The following theorem generalizes [5, Theorem 4] (see [5, Example 3.(1)]). 

T h e o r e m 4.1. Let B be a weak-* closed subalgebra of L" containing 
Then either BeH°°, or 5 = x £ H ° ° + ( l — xE)L°°, for some measurable set E with 

If ficH" then D zkB=wlW° for some I, 1 ?=/=§«. 

Proo f . Put and B „ = f \ ^ B . Then By 
tgo »go 

[5,Lemma 1] and Corollary 2.2, B „ w h e r e X E i & m , X E + X E = 1, 
and B_„=/F q2Uc°+xFiL°°, with a n d ZF1+XF !=1- a S in the case 
of invariant subspaces of L2, w"B_„czB„. Thus w" x^E" <zxElE°°, and this 
implies fo = z F , because yEL°aC-xFL"'. Since B_m is also an algebra and 

co, we get q2B_„czB^oa. Thus B_„cq.2B_„. This implies that xEB_^cz 
c ^ X i j ^ H " =xi;JH0°. In particular, xE l

B c zXE lH~. Put D = x E B + x E H " . Then 
D is a weak-* closed superalgebra of H" and Z)cH™. We shall consider two 
cases: 

Case 1: 5c t H°°. In this case xE Consequently (as in the proof of Prop-
osition 3.1) = We have °°c:B, hence D D ^ + z ^ r , 
and so DZDJ?™. This implies Z)DH°°, which yields Z>=H°°. Now y.E B= 
=X E l

D =X E P°°- O n ^ other hand, X E L m = X E B m c y . E B c x E B ^ c x E L ~ -
Consequently XEtB=XEtL°°, and so we can conclude B=xEH°° 

Case 2: BeH°°. In this case * £ j = 0. Since w"H°°c5cH°° and Boa=q1W, 

q x = Z x s y , where zs€JS?~, O ^ j ^ n , and Z x S f = l - If then S = H ~ 
j=0 J ' j=0 1 0 

because Xs —<hXs and zBczB. If k is the first integer such that Xs then 
B^wkH°a"aad B~=wkH~. For, if ^ = 1 then B=>wkW trivially. If ys^l 
then fiDiv'H* because wk/Sk€B and zBczB. By the hypothesis on k, ql = wk 

and therefore Bm—wkWa. 
When n=2 in the above theorem, more can be said about B. 

T h e o r e m 4.2. Let B be a weak-* closed subalgebra of H°° containing H2, 
and assume that f | z*5=w2H~. Then B=J^m @wq^f°° ®w2H", where q is an 

0 

inner function. 

Proof . Consider B^BH^C". B0 is a weak-* closed subalgebra of 
containing ; moreover, if B0=J£f™ then ¿ " ° c f | zkB, a contradiction. There-

Jig o 
fore B0=JV°°, i.e., Let Px be the orthogonal projection from H2 onto 
w3V2. Since D r*5=w 2 H~ and 34?°° cB, it follows that PXB:= (P x / : f£B}cB, 

tgo 
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and that Jf 0 0 ©PjjB© waH~. Moreover, P15=w2R1, where 9 ^ : = {/<E S": wfiB) 
is an ^f°°-submodule of S£°°\ SOlj is, therefore, of the form 9 J f o r some 
unimodular function Since we easily get that q is inner. Thus, 
P1B = wq3#,c°. 
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An extension of the Lindeberg—Trotter operator-theoretic 
approach to limit theorems for dependent random variables 

II. Approximation theorems with O-rates, 
applications to martingale difference arrays 

PAUL L. BUTZER, HERIBERT KIRSCHFINK and DIETMAR SCHULZ 

This is Part II of the paper [10]. The contents of Part I, particularly the nota-
tions and preliminary results, are assumed to be known. References are in alpha-
betical order in each part, a few of the basic papers of Part I being recalled here. 
The sections are numbered consecutively. 

Whereas Par t i is concerned with convergence assertions without as well as 
with o-rates for dependent r.v.'s, all established with the help of the conditional 
Trotter operator first defined there, the purpose of Part II is to deal with O-error 
estimates, not only for convergence in distribution but also for the uniform con-
vergence of distribution functions. The specializations to martingales carried out in 
Section 8 enable one to compare the results with those of other authors. Firstly 
some modifications and corrections are made to Part I. 

3. A generalization of the Trotter-operator for dependent r.v.'s. — A revisit. 
Let us recall the definition of the generalized Trotter operator in terms of the con-
ditional expectation given in Section 3. 

D e f i n i t i o n 1. Let X£Q(£2, 21, P) and © be an arbitrary sub-c-algebra of 21. 
The conditional Trotter operator Vx{<5: C B - C B x ( 3 ( G , ©)) of X relative to © is 
defined for f£CB by 

J W O O - inf E[f(X+x)\<$>] (yeR) x€Aa(y,f) 

for an a > 0 with a£ Q (=set of rationals), where Aa ( y , f ) Q; f(x) >f(y), y£ Bxx}, 
Bax:={y£R1, | x - y \ ^ a } . Again, ( V m f ) ( y , oj)~{Vx[<sf(y))(oj). 
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In comparison with Definition 1 of [10] the present version has been modified 
by the introduction of the infimum. This will assure that assertions to be derived 
with this operator theoretical approach are valid almost surely in cog (2 not only 
for each fixed j>£R but uniformly in The space R1 endowed with the usual 
topology has a countable base, namely ©:={.#,„; a, x£Q, z>0}. Such spaces, 
namely complete, separable metric spaces are called "Polish spaces"; they are in 
particular Borel spaces. Now it is well known that each finite Borel-measure p. on a 
Polish space is a regular measure (see e.g. [16, p. 373]). This ensures the existence 
of a regular distribution Px|0 which is in particular ©-measurable for each fixed 
J?£$ as well as a measure on S for each fixed co£ Q. Therefore the integral repre-
sentation of the conditional expectation (2.12) of [10] holds. In view of these con-
siderations, the above infimum is taken only countably often for all j>£R, so uni-
formly for all The condition "/(x)>/0>)" assures that the conditional 
Trotter operator will coincide with the classical one in case 21 (X) is independent of ©. 

Under this modification Lemma 2 and Corollary 1 of [10] is readily seen to be 
valid, Lemma 3 is superfluous, and Lemmas 4 (the case n=2 of La. 5) and 5 are 
to be replaced by 

Lemma 5. Let (Xn)n€N be a sequence of r.v.'s from 2(Q, 91, P), (©„)„eN a 
sequence of sub-o-algebras from 91 for which ©0:={i2, 0}c©1c©2cz. . .cz©„<=.. . . 

a) For each f£CB one has 

VX^XV^(-VXN\KF{ )...))G>, CO) = 

= (K* l l^Kx1 |V . .Kx jvO(y,<B) = (Ks j« I / ) (y ,o) a.s. (y€R; n€N). 

I f , in particular ©1=©0, then 

(yx№l-VXn\*nf)(y,a>) = VsJ(y,co) a.s. 0>£R; b€N). 

b) If (Z„)„€N is a further sequence from 2(Q, 91, P), it being assumed that 
the Z„ are independent amongst themselves as well as of the X„, then for each f£CB, 

W s j ^ f - V n . f\\ ^ 2 Wx^J-VzJW («6N). 
Z ^t k=l 

If in particular, ©*=©„, all N, then 

WsJ-Vn / I s 2 \\VXJ-VZJ\\ («6N). 
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P r o o f , a) First take n=2 . Noting (2.7) and (2.11) of [10], the latter being 
valid only for © c ©', one readily has 

( K x . L . K ^ / j O ' , ©) = {_ in/ £ [ / № + * ( • ) ) 1 6 2 ] } ) ^ co) = > X T 

= inf {ElfiX.+X2+x)I®1]((0)} = f ( y , CO). 

The general result follows by induction, the particular case by Lemma 2e) of [10]. 
b) The proof follows immediately by Corollary 1 and Lemmas 1 and 2e) of 

[10], as well as by the following result: Let Ult ..., U„, ... and Vlt ..., V„, ... be 
contraction endomorphisms of CB such that UJUj is only defined for i^j, but 
the Vt may commute amongst themselves, and UiVj—VjU; for any i,j. Then for 
each /€C B 

IIU1...U„f-V1...Vnf\\^ 2\\Ukf-Vkf\\ (n€N). 
k=1 

6. O-approximation theorems for convergence in distribution 

6.1. General theorems. In the proofs of the O-estimates of Section 6 the hypoth-
eses of the corresponding o-convergence theorems of Section 5 may either be weak-
ened or partially dropped entirely. Thus Lindeberg conditions are not needed either 
for the sequences (y*)k€N or (Z t ) t € N ; the conditional moments of ther.v.'s Xk rela-
tive to &k need only coincide with the moments of Zk up to the order r—1 (com-
pare (6.2)). 

T h e o r e m 7. Let №)*£N be a sequence of (possibly) dependent r.v.'s from 
&(Q, 91, P), let (©fc^gN be a sequence of sub-a-algebras of 91 with ©0:={i2, 0 } c 
c©!cr (S 2 cr . . . c :© n cr . . . , and Z be a (p-decomposable r.v. with decomposition com-

ponents Zk, k£N. Assume that for an r £ N \ { l } 

(6.1) E[\Xk\'\<5k)^Mk,r a.s. (keN) 

for some constant MktT> 0 as well as E[\Zk\r]<.<*=. If furthermore 

(6.2) E[Xi\ ©,] = E[ZJ] a.s. (k, N; l s / ^ r - 1 ) , 

then there holds for f£CB 

(6.3) \\VM<zJ-Vzf\\ ^ 2C2„CO, M^) ] 1 ' ' ; / ; CB), 

where 

(6.4) M(n):= 2(Mk,r+E[\Zk\']), 
*=1 

c2 r being the constant of (2.1) in [10]. 
9« 
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: 'Proof. In view of (2.7) and (2.8) one has for /£C B and any g€CB, 

(6.5) l x f M / ) E [ f ( v ( n ) S a + x ) l ( B 1 ] - E t / < Z + y ) ] l ^ 

— 2||/—g|| + | inf E f e f r M S i + x l l G j - E M Z + y ) ] ! . 

Further, in view of Lemma 5b, 

A 

(6-6) II 'Wje.g - Vzg\\ ^ 2 II V9WXk\<5K g - V<p(*)zkg\\ • 

Furthermore, there holds the estimate 

(6.7) |xeinf j E l g i c p m + x ^ D - E W v W Z t + y y H S 

S sup {| £ [g (<p (n) Xk+x)\ ©k] - E [g (<p(*) Zk+x)]|}. 
xiAJy.g) 

On account of the integral representation (2.12), and Taylor's formula applied to 
g(u+x) twice, 

| E [g(<p(n)Xk+x) | ©t]-E[g(q>(n)Zk +x)]| = 

= \ f g(u+x)dFyMXk(u\<5k)(a))- Jg(u + x)dF,in)Zk(u)| s§ 

- I/Ho T g°)(x)}®*)- W>(«))| + 
/ (7^2)! I / 0 - i Y - 2 { g " - 1 ) ( x + t »)-g ( r - 1 ) (x)}u r - 1 dt] ¿F„ (n )X)>|© t)| + 

+ 1 / ( ^ 2 ) ! [ / 0 - g ^ W K " 1 dt] dF9(n)Zk(u)\. 

Since geC7B, g ( r_1)£Lip (1; 1; CB) with Lipschitz constant L9=||g(r) | |. So for 
0 < / s l , lU^" 1 »(x+/«)-g^v(*)} i / - 1 ! ^ | | | « | r . In view of (6.2) and (6.1) there 
holds 

(6.8) 2}Elg(cp(n)X k +x) \^-Elg{cp(n)Z k +x)- \ \^ 

~Jf gU)(x) { fu'd[F9in)Xk(u\©t)-iv(n)zt(«)]}! + j. R 'I 

i ^ L J f\u\'d[F,(n)Xk(u\<5k) + F,WZk(u)]\ ^ 

% ¿ ( M ^ e u z ^ I = | g « | -^%M(n). 

k=1 
n r - 1 

t=iy=o 

s lgwll 
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All in all, noting (6.5), (6.6) and (6.7), 

This gives (6.3) in view of (2.1). 
The proof of the following result is immediate, noting La. 2e. 

T h e o r e m 8. a) If the hypotheses in Theorem 1 are satisfied, and if in particular 
©!=©„, then 

(6-9) \K{n)sJ-Vzf\\ ~§L 2c2>ra>r([(^j- Mi«)] ' / ; CB) . 

b) If further / € Lip (a; r, CB), then the left side of (6.9) has the bound 

(6.10) 2 citrLf(p(n)'M(n)*lr. 

R e m a r k 1. The basic condition (6.2) of Thm. 7, which together with the 
assumed monotonicity of the © t is the only condition upon which the dependency 
structure of the r.v.'s Xk in question is subjected, could be replaced by the much 
weaker order condition 

(6.2)* J \E[Xi\ &k)-E[Zi] | = O ( - ^ f - M(«)} a.s. ( l s j â r - l ; « - ) . 

This will also insure the estimate (6.8) as does condition (6.2). 
A comparable weaker version is given in [9] or [5] in the case of a weak invari-

ance principle for dependent random functions. A further paper [6] deals in more 
detail with conditions like (6.2)*, called pseudo-moment conditions (with orders). 

R e m a r k 2. Concerning the proofs of Theorem 1, and analogously of 
Thms. 2—6 of [10], it should be mentioned that they have to be modified and cor-
rected by taking the definition of the conditional Trotter operator in the form given 
here and by using likewise the arguments involving inequalities (6.6) and (6.7) of 
the proof of Thm. 7. This will assure results comparable to Thms. 7 and 8 for "little-
o-rates" when assuming Lindeberg conditions provided (©„)„eN is additionally 
assumed to be a monotone non-decreasing sequence. In fact, assertion (2.11) needed 
here is only valid if © C © ' . In regard to GOVINDARAJULU , cited in [10], the authors 
cannot follow the proof of his main Theorem 3.1, in particular the step involving 
the norms on p. 1016, since the conditional expectations occurring there only hold 
for each fixed j>£R a.s. in co££2. 
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6.2. The CLT and WLLN with O-rates. The following statements dealing with 
the CLT are applications of Theorems 7 and 8, the usual specialisations being 
carried out. 

T h e o r e m 9. Let (Xk)kiN, ((5 t)kÇN be given as in Theorem 7, and let X* be a 
standard normally distributed r.v. Set Var [Xk], k£N and ^n—Zn

k=l <7̂ , and assume 
that E\\Xk\'\<S}^\^MktT a.s. for some constant Mkir>0 as well as that 

(6.11) E[X{\<5t\ = olE[X*>] a.s. (fc,j€N, 1 S j ^ r ) . 

a) Under these hypotheses one has for any fÇ.CB 

(6.12) | | ^ - 1 S n | m J - V x , f \ \ C B S 2 c 2 , r f t ) r ( [ ^ Ç l r M(«)] ' ; / ; CB), 

where M{n)~rk=1 {Mk>r+<fkE[\X*\']). 
b) If /6Lip (a; r; CB), 0 < a ^ r , and ©,.=©„, then 

(6.13) Ws-xSnf-Vx*flcB — 2c2,rLfs-°M(nT". 

Concerning the proof, just as in that of Theorem 2 condition (2.4) is satisfied 
with Zk=okX*, <p(n)=s~x. Since [|Ar+n<c«, r£N, and so assertion (6.12) fol-
lows from (6.3), assertion (6.13) follows from (6.10). 

In the case of the following WLLN with "0"-rates the basic moment condi-
tion, in this case (6.2) for r > 2 , must, for the same reasons as in Theorem 6, be 
weakened (see (6.15)), whereas for r=2 (6.10) reduces to the non-trivial require-
ment (6.17). 

T h e o r e m 10. Let (XJk€N, (©*)*gN> Zk with P{Zk=0)=1, k£N be defined as 
in Theorem 7. 

a) If for some r € N \ { l } 

(6.14) E[\Xk\r\(Sk]sMk,r a.s. (fee N) 

and if there exist constants Cj such that 

(6.15) <p(«y 2 № l ® * ] l ^ Cj<p(nf 2Mk,r a.s. ( O S ; 3 r —1; „€N), 
*=i t=i 

then for / 6 Lip (r ; r; CB), 

(6-16) I K ( n ) S „ № / - / | | C B ^ 1 Mk„ 

with cf:= Z'jZlcjWf^WcJjl. 
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b) If r=2, one has for f£C%, provided E[XK|©J=0 a.s. W 
a.s., N , 

(6.17) l i n - ' s n / - / l i c B ^ 2 c 2 , 8 L / « - 2 

k=l 

Proof . Condition (2.4) is satisfied for independent r.v.'s Zk with Pz^=PXa for 
all &€N. Since E[\X0\J]=0 forany 1, a Taylor expansion up to the order r—1 
yields, similarly as in the proof of Theorem 7, 

(6.18) \ v ç W X k ^ f ( y , « O - K ^ / M I â 

- 0 ) ï \\fU)\\cBE[\m ©*] +Lf Mk„. 

Assertion (6.16) now follows by using condition (6.15) in formula (6.18). Part b) 
is the particular case of Theorem 8b) for r = a = 2 and q>(ri)=n~1, noting that 
Pz = PXo-

7. O-approximation theorems for convergence in distribution. Just as in the case 
of martingales (cf. [5], [6]) it is possible to transfer our results concerned with rates 
for the weak convergence of the distributions P^s to Pz to those for strong con-
vergence. This is possible by applying a result contained implicitly in ZOLOTAREV [18], 
formulated explicitly in e.g. [5]. Using this result one can deduce from Theorem 7 
the following theorem, noting that conditions (7.1) and (7.2) yield, for f£CB, 

\\VçWSnf-Vzf\\CB = 0(ncp(riy) (« -co). 

Theorem 11. Let (Xk)kçN, (©¿)igp, Zk, kÇ.N, be defined as in Theorem 7, 
let the limiting r.v. ZÇ£(Q, 91, P), with distribution function Fz, satisfy condition 

|fz(*i)--Fz(*2)l ^ Mz\xi-x2\ (Xl, x2(ER) 

for some constant Af z>0, and assume that for rÇN\{ l} 

(7.1,2) E[\Xk№k]^Mr a.s., E[\Zk\'] < M* (k£N), 

Mr, M* being positive constants, independent of k. If further (6.2) holds, then 

(7.3) sup|i<p(B)Sn(x)-Fz(x)| = 0(<?)(«)'/('+1)«^+1>) 
* € R 

If one applies Theorem 11 to the r.v. Z:~X*, one obtains the following 
Berry—Esséen type estimates for dependent r.v.'s. 

Theorem 12. Let the assumptions of Theorem 9 be satisfied. If there exist two 
positive constants m, M such that m<a\<M, one obtains 

(7.4) sup|i^-i s (x) —Fx.(x)| = 0(s; / ( r+1)/j1 / ( r+1)) ( « - « , ) . -i-D n " 
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If the r.v.'s Xk and Zk, k£N are identically distributed, and a^—1, all then 
for r=3 

(7.5) sup |F. - , A S i i (*)- f z . (*) | = 0(«-1 '«) ( « - - ) • 
X € R 

Setting (p(n)=j"1 one can show, just as in the proof of Theorem 9b, that 
(7.4) follows from (7.3). Estimate (7.5) is a result of (7.4) since s ^ n " 1 ' 2 for 
o J= l . 

8. Applications to martingale difference arrays. Whereas the dependency struc-
ture of the r.v.'s in question has so far been very general, it will be concretized 
in this section. The particular type of dependency to be considered will be that defined 
by a martingale difference array (MDA). A MDA is a double indexed array ( X ^ ) ^ ^ , 
/16N of r.v.'s from 2(Q, 91, P) that is connected with a scheme C&„k)0skiskn, 

N of sub-«7-algebras of 91 in such a form that the following three conditions are 
satisfied: 

i) the sequence C5„k)0sksk is monotone non-decreasing in k for each w£N, 
ii) Xnk is measurable with respect to for 

iii) £ [ j r j g - I » _ 1 ] = 0 a.s. for n£N. 

The general convergence theorem of this paper, Theorem 1, may be applied 
to MDA, as well as that supplied with o-rates, namely Theorem 4. But in order to 
avoid repetitions in the formulations we shall just consider the applications of 
Theorem 7 and 12 to yield 

Theorem 13. Let (X„k)lskskn, N, be a MDA, (5nlt)0sks) t( i, «6N, the 
associated array of sub-o-algebras of 91 (non-decreasing in k per definition) with 
3no={0> i2} for all and let Z be a cp-decomposable r.v. with decomposition 
components Znk, 1 . 

Assume further that for an r £ N \ { l } 

(8.1) a.s. (1 ^ k ^ fc„; n€N) 

for some constant Mn t j r> 0, as well as 

(8.2) ( l s f c s f c , ; / I € N ) 
together with 

(8.3) g,,».!] = E[Zi] a.s. ( l i f c s k„; n£ N; l ^ j S r - 1 ; j€ N). 

Then for any /€Lip (a; r; CB), 0 < a there holds for Tnkn:=<p(kn)Zk
k»=1X„k 

the estimate 

(8.4) ||VTnk f—Vzf\\ ^ 2c2irL fcp(»k)' 2 (Mnk„ + E[\Znk\']) 
" * = 1 

with c2>l. and Lf from Theorem 8. . 
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If for each n£N the r.v.'s Xnk and Znk are in particular identically distributed 
for all and if there holds 

a-®. ( I S k i t n i N ) 
where Mn>T is a positive constant independent of k, as well as (8.2) and (8.3), then 
for fiC'B 

(8.5) \WTnkJ-Vzf\\ s Lf ^ ^ kn(M„„+E[\Znkn). 

Proof . Assertion (8.4) is a direct application of Theorem 8b), replacing the 
Xk by and the (5k by noting that © l =g n > o ={0, i2}, and that the distrib-
ution Pz of the limit r.v. Z can, for each natural k„, be representated as P z = 
= P^kn)Zk

k"^Z„k, whereby the independent decomposition components Zk of (2.4) 
have here been written in the preciser form Znk. Inequality (8.5) follows by (6.8) 
in the proof of Theorem 7. 

Now to the application of Theorem 12 to MDA; it is the CLT with rates for 
MDA. 

T h e o r e m 14. Let (Xnk)lskskn, n£N and CS„k)oskskn, «€N be defined as 
in Theorem 13. Let m'n«r*k:=Var (Xnk)<M^, M£N. Assume further that 
for r € N \ { l } 

a.s. (1 S k S k„, «€N), 

M„tT being positive constants, independent of k, as well as 

= °LE[X*J] a.s. (1 ^ k ^ k„, N€ N; 1 s j r-1; J€ N). 

Then one has for ¿ „ . ^ f e ^ ) 1 ' 2 , 

(8.6) s u p l F ^ t„ (x)-Fx,(x)\ = („-«,). sn,kn,Z Xnk = 1 
I f , in addition, for each n£N the r.v.'s X„k are identically distributed for all 1 
and <xlk = 1 for «£N, then for r=3 

(8.7) sup |F (x)-Fx.(x)\ = 0(k~^) («--). 
*6R K1'* 27 X„k k \ 

The proof of this theorem consists in a consequent application of Theorem 12, 
using the special case of MDA with <5fc=«5„tfc_1. 

If one would take k„=n in Theorem 14, then the rate in (8.7) reduces to 0(n~118), 
one which was also attained by HEYDE and BROWN [14], CHOW and TEICHER [11 p. 
314] as well as by ERICKSON, QUINE and WEBER [12]. Improvements of this rate 
were achieved by HALL and HEYDE [13 p. 84] , namely with 0(n - 1 / 4 logw), by 
MUKERJEE [17] with 0(n~114), KATO [15] with 0(«~1/2(log n f ) as well as by BOLT-
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HAUSEN[3] with 0(n~m log n), whereby the better rates of convergence by Kato 
and Bolthausen are restricted to uniformly bounded r.v.'s. If one just assumes the 
boundedness of the third absolute moments of the r.v.'s Xnk as well as the "near 
constancy" of the partial sums of the conditional variances, here expressed in the 
form 

(8-8) 1 in probability 
*=i 

then the rate 0(/i - 1 '4) is the best that has been obtained so far. It should be noted 
that condition (8.6) for j=2 implies (8.8); however, an assertion comparable to 
Theorem 14 could also be deduced by means of the conditional Trotter operator 
under the weaker assumption (8.8). 

It must further be mentioned that the rates of Theorem 13, deduced from 
Theorem 7, dealing with rates for dependent r.v.'s, are just as good as those obtained 
in [4], [1], [2], [8], [9] and [5] for independent r.v.'s, MDS or MDA by means of 
the strongly modified Dvoretzky-method of proof mentioned in the introduction 
of [10]. But the conditional Trotter operator introduced in Section 3 allows one 
to prove the fundamental limit theorems equipped with rates in a unified way not 
only for various types of dependent r.v.'s but also for independent r.v.'s. It should 
be added that the definition and proofs involving the conditional Trotter opera-
tor and its properties also make use. of set functions. So this operator theoretic 
approach stands in contrast to the more intricate "measure-theoretic" approach 
dealt with in most papers concerned with stochastic processes, in particular Markov 
processes. 

It may be observed that the conditional Lindeberg—Trotter operator approach 
even makes it possible to deal with general limit theorems for Markov processes 
equiped with rates, see [7]. Similar results would be possible for inverse martingales 
or other dependency structure types. 

The research of the third named author was supported by DFG grant Bu 
166/37—4. The authors would like to thank a DFG-referee for pointing out an 
error in Part I of this paper, corrected in this part. They are also indebted to Dr. Diet-
mar Pfeifer, Heisenberg Professor, Aachen, for suggesting the use of "Polish spaces" 
to overcome the difficulty as well as for his critical reading of the manuscript. 
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On asymptotic Toeplitz operators 

JOSÉ BARRÍA 

A symbol map is constructed for the C*-algebra generated by the Toeplitz 
and compact operators on the space H2(I) associated with a semigroup £ of a 
locally compact abelian group. As a consequence it follows that the essential range 
of the symbol is contained in the essential spectrum of the corresponding Toeplitz 
operator. 

Let G be a locally compact abelian group with dual group ô, and let I denote 
a fixed sub-semigroup of G which is a Borel subset of ô. Let p. and (t be the nor-
malized Haar measures on G and G, respectively. Let L2(G) and L2(G) be the cor-
responding Hilbert spaces of square-integrable functions. The Fourier transform 
SF is an isometry from L2(G) onto L2(G). We denote by H2(S) the subspace of 
L2(G) consisting of the functions / for which !Ff is in L2(E), that is 

H2(S) = {f£L2(G): is supported on I}. 

Let P denote the orthogonal projection of L2(G) onto H2(I). If q> is a bounded 
measurable function on G, write Mv for the multiplication operator defined on 
L2(G) by 

MJ= (pf 

and Tq for the compression of M9 defined on H2(Z) by 

T„f= PM<pf= Picpf). 
The operator T9 is called a Toeplitz operator with symbol (p. 

The semigroup I induces a partial order s on G in which a s / ? if jSa-1 is 
in I . With this partial order, G and I are directed sets. Furthermore, if aÇl and 
a s f i , then P£Z. 

An operator T on H2(Z) is called an asymptotic Toeplitz operator if the net 
{T*TTa: a£27} converges strongly. The class of all asymptotic Toeplitz operators 
on H2(I) will be denoted by (AT). 

Received September 13, 1984. 
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In case G is the unit circle group T, G is the integers Z, and Z is the semigroup 
Z + of non-negative integers, then 7" is an asymptotic Toeplitz operator if the sequence 
{U*nTU"}°converges strongly (here U is the unilateral shift on H2). In [1] this 
asymptotic notion was defined and used to assign a symbol to any operator in 
the C*-algebra generated by the Toeplitz and Hankel operators. In this paper the 
construction of the symbol map is carried out in the more general setting of locally 
compact abelian groups. As a consequence, it follows that the spectrum of M 9 is 
contained in the essential spectrum of Tv. 

Toeplitz operators on locally compact abelian groups were first studied by 
L. A. COBURN and R. G. DOUGLAS [2]. One of their concerns was the C*-algebra 
generated by the Toeplitz operators with symbol in the algebra of almost periodic 
functions. They proved that this algebra of operators modulo its commutator ideal 
is * -isomorphic to the algebra of almost periodic functions. Our results show that 
the C*-algebra generated by all Toeplitz and compact operators is *-homomorphic 
to L°°(G), and the kernel of this homomorphism is the ideal of operators T (in 
the algebra) such that T*TTx-~0 (a£Z) strongly. 

The following elementary facts about Toeplitz operators will be useful: 

Taf = of if a is in Z. 

For the rest of the paper we make the following assumptions: p. and fl are 
<r-finite measures, fi(Z)>0, G is generated by I (i.e. G=ZZ~1), Z is not dense 
in G. 

From [2] we have that a^M^), the spectrum of M9, is contained in a(Tv), and 
l | r j = | M I - for cp in L~(G). 

Lemma 1. If K is a compact operator on H2(Z), then £€(AT) and KTa-~0 
(a 61) strongly. 

Proof . It is enough to prove the last assertion. For this, l e t / be fixed in H2(Z). 
Since K is a compact operator, and KTxf=K(af), we only need to show that 
the net {a/: a€1} converges weakly to zero. For g in H2(Z) we have fg^L^iG), 
and therefore 

(g,«f)= f gtfdn = ^ ( /g ) (a ) 
a 

for all a in Z. By the Riemann—Lebesgue's Lemma ([4], Remark 28.42), given e > 0 
there exists a compact set F in G such that 

\^(fg)(a)\ < £ for all a in G\F. 

Next we show that aZ g G\F for some a in Z. If this is not the case, then aZ fl /-V • 
for all a in Z. Since ax a2 Z Q af Z for aj , a2 in Z, it follows that the family {aZ fl F: a€ Z} 
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has the finite intersection property. Hence there exists a0 in the closure Z~ of Z 
such that a0£<xZ~ for all a in Г, therefore and so a0GQZ~. This is 
a contradiction because a0G—G and Z is not dense in. G. 

So far we have proved that there exists a in Z such that \&r(Jg)(o)\ for 
аН 'ст in aZ. This shows that l(g,7?/)i<e for all ft in £ such that 

Lemma 2. [2] If E is a compact subset of 6, then there exists a in Z such that 
aEQZ. 

Proof. See [2], §2. 

Lemma 3. Let A be an operator on H2(Z) such that T*ATX=A for all а 
in Z. Then M* APMa-*Mv (а£1) weakly, and A = TV for some <p in L°°(G). Further-
more, M*PM —7 (а£Г) strongly. 

Proof. Let / b e in Lr(G) such that !Ff has compact support E in G. From 
Lemma 2 there exists a0 in Z such that ccEQZ for а ё а 0 . If a£G\Z and аёа„ , 
then o t -^e&xE, and so ^(а/)(ст)=(^/)(а-1

<т)=0. Hence а/€Я2(1) and 
M*APMJ=M*A(af). If A is the identity, we conclude that M*PMJ=f for 
а ^ а 0 . This completes the proof of the last assertion of the lemma. 

Let ВЯ~М*АРМХ for a in Z. Let g be in L2(G) such that has support 
contained in E. If а ^ а 0 , from above we have 

(Д./. g) = (A(a/), ag) = (AT^'(*0f), Г«.-(«о«)) = 

= a0g) = (A(<x0f), a0g) 

because аа¿¡"Х€Г. Hence there exists an operator В on L2(G) such that Ba—B 
(a£Z) weakly. 

For a in Z we have 

(M*Bf g) = lim (M:M:APMxf g) = lim (M*aAPM^M*f g) = (BM*f, g). а a 

Therefore MaB=BM„ for all о in 6. Since the subspace spanned by G is weak* 
dense in L~(G) ([4], Lemma 31.4), it follows that M^B—BM^ for all ф in L~(G). 
Since the algebra of multiplication operators is maximal abelian, then B=MV 

for some cp in L°°(G). Finally, it is easy to see that (T9f g)=(Af g) for f g in 
Я2(1). 

Corol la ry 4. If T is an asymptotic Toeplitz operator on H2(Z), then Г*2Та—T9 

(a€Z) strongly, for some q> in L°°(G). 

Proof . If T*TTX-A (a61) strongly, then T*ATa=A for all a in Z. Now 
the result follows from Lemma 3. 
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We define the map (AT)—L°°(G) by <P(T)=q> where r * 7 T , - r „ {(til) 
strongly. The function q> is called the symbol of T. Lemma 1 shows that <P(AT) = 0 
if K is a compact operator. 

Coro l l a ry 5. The class of asymptotic Toeplitz operators is a norm closed sub-
space. The map $ is a linear contraction. 

Proof . Let AT) and &(T)=<p£L°°(G). Then 

l!Tp/|i = i i m | | T * r r a / | ! s | | r | j | | / i | . X 
Hence 

m n \ = imu = \\TJ s in. 

Let r„€(AT) be such that | | r - r j | - 0 . Let <pn£L°°(G) be such that 
HTn)=<Pn- Since 

\\cpn-cpm\U = №Tn-TJ\\^\)Tn-Tm\\, 

there exists <p in L°°(G) such that \\(p„—<p|U — 0. Now we have 

\T*TTaf-T9f\ ^ \\T-Tn\\Wf\\+\\T:TnTaf-TpJ\\+\\cpn-cpUlf\\, 

therefore T€(AT) and <P(T)=q>. 

Coro l l a ry 6. If K is a compact operator on H*(Z), then | |TJ ==|]r„+/q 
for <p in L°°(G). Therefore the subspace {T^+K: (p£L°°(G), K compact} is norm 
closed. 

Proof . By Lemma 1, <P(Tip+K)~cp. Since $ is a contraction, 

IIrj = M- = m^+K)]] ^ \\T9+K\\. 

Coro l la ry 7. Ifq> is in L°°(G) and H<p=P±M9\H2(Z), then H^T^Q (ai£S) 
strongly. 

Proof . F o r / i n H2(Z) and a in I we have 

Hq,Taf= P±(a(pf) = PxMx(q>f). 

Therefore WH^TJW =\\M*P^M^(pf)\\^0 (a<El) by Lemma 3. 

Lemma 8. Let 7 = 7 ^ 7^ . . . 7 ^ with <p£LT(G). Then T is an asymptotic 
Toeplitz operator and <P(T)=(pl<p2-..(pn-

Proof . For q> in L°°(G) and H9 as defined in Corollary 7 we have 
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with respect to the decomposition L2 ( G ) = # 2 (£) © # 2 (£) -1. If cp and \j/ are in 
L°°(G), then M^ = M^ M9 and therefore (multiply matrices and compare upper 
left comers) T^—T^T^AH^ for some operator A. Applying this last equality 
to the telescoping sum 

~^~TQ>1T(P:L(TLL,ZT(PI (I)N—T<PA(Q>I (Pn))+... +.T<PLTQ,2 T<PN_2(TQ>N_1TRPN—TF!,N_ 

we conclude that each of the n — 1 summands on the right can be written as BH9 

for some operator B and some q> in U° (G). From Corollary 7 we have that BH^Ta —0 
(a€i ) strongly. Therefore ( T - T ^ ^ ^ J T ^ O X a e Z ) strongly. From this it fol-
lows that r£(AT) and <P(T)=<p1(p2...q>n. 

T h e o r e m 9. Let si be the C*-algebra generated by the Toeplitz and compact 
operators on H2(I). Then si is contained in the class of asymptotic Toeplitz operators. 
Furthermore, the restriction of $ to si is a * -homomorphism. 

Proof . Let si'0 be the linear manifold generated by the compact operators 
and all the finite products of Toeplitz operators. Clearly si0 is an algebra which is 
closed under the operation of taking adjoint, and the norm closure of s/0 is equal 
to s/. Since (AT) is a subspace, from Lemmas 1 and 8 it follows that s/0 is contained 
in (AT), and the restriction of <P to sia is clearly a *-homomorphism. Since (AT) 
is norm closed, then s i £ (AT), and the proof is complete. 

Remark . In general, (AT) is not an algebra, it is not even closed under adjoin-
tion (cf. [1]). 

C o r o l l a r y 10. If cp is in L°°(G), then the spectrum of is contained in the 
essential spectrum of T9. 

Proof . Since the spectrum of M^ is the essential range of <p, it will be enough 
to show that if T^ is a Fredholm operator, then (p has an inverse in U° (G). Let si 
be the C*-algebra defined in Theorem 9. If K is the closed ideal of compact operators 
on H2{I), then si/K is a C*-algebra. If T9 is Fredholm, then [7^] is invertible 
in sijlL, so there exists S in si such that T^S—lis compact. Therefore <P(TtpS—I)=0. 
Since <i> is a homomorphism on si, cp - <P(S) = 1 a.e. [//]. Since <P(S) is in L°°(G), 
then <p is invertible in L°°(G). 

Remark . In Corollary 10 it is actually proved that the spectrum of M^ is 
contained in the intersection of the left essential spectrum and the right essential 
spectrum of T^. 

Remark . From Theorem 9 we have that TS—ST is in ker $ for any S and 
T in si. Therefore the commutator ideal of si is contained in ker <P. For Toep-
litz operators on the unit circle this inclusion is an equality [1]. Is this true in general? 

10 
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Ideals and Lie ideals of operators 

C. K. FONG and G. J. MURPHY 

1. Introduction 

Let § denote an infinite dimensional (complex) Hilbert space and 3&($j) the 
algebra of all (bounded, linear) operators on We say a linear manifold ££ in 
J>(§) is unitarily invariant if U*^CUQ !£ for all unitaries U in &(§>). If £? is such 
a manifold and R is another Hilbert space of the same dimension as then we 
can "transport" JSf to a unitarily invariant manifold of operators acting on it by 
taking any unitary transformation W from § onto ft and setting 
That is unitarily invariant, and that its definition is independent of the choice 
of W, follow from the fact that JS? is unitarily invariant. In particular, if we con-
sider the case when then is a unitarily invariant manifold of 
operators which can be expressed as 2X2 operator matrices with entries in 
Thus we can define the following two manifolds in $?(§): 
(* ) 

= {Tlseo: = {A£®(*>): ^ j e ^ s e s for some B, C,Z)£^(§)}, 

(**) = (J 
It was shown in [5] that is an ideal in &(&), and that JS?^ 

This fact covers a part of the following theorem, also proved in the 
same paper. 

Theorem 1 ([5]). Let JSP be a linear manifold in &(§>). Then the following con-
ditions are equivalent: 

(1) & is unitarily invariant; 
(2) JS? is a Lie ideal in 38(9)); 

Received January 29,1984. 
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(3) there exists an ideal £ in 38(5)) such that 
[0(5) , J \ I. 

(The above results are shown in [5] only in the case where is separable; but, 
in fact, everything works in the non-separable case too. See remarks following 
Theorem 2.) 

For a unitarily invariant manifold S£ in the ideal J of the condition (3) 
above is uniquely determined by (shown in Section 2), and will be called the 
associate ideal of i£. Among other results in Section 2, we show that ¡£c (defined 
by (*)) is either or I. A consequence, shown in Section 3, is the fol-
lowing useful characterization of ideals in & (f>): a linear manifold ¡£ in 88 
is a proper ideal if and only if S£ is unitarily invariant, 7$ jSf and J§?cg ££. Several 
applications of this result (or its variant) are given in Section 3. 

In Section 4 we give some characterizations of ideals in C*-algebras satisfying 
a certain condition, viz., we show that the ideals are precisely the linear manifolds 
JS? for which PJ^PQ for all projections in the algebra.. 

The proof of Theorem 1 previously mentioned in [5] uses the following weaker 
form of a theorem of Fillmore: 

Theorem 2 ([3]). Every operator in &(§>) is a linear combination of projections. 

The original proof of this result is quite complicated. We include an appendix 
to this paper in which we prove Theorem 1 in such a way that, not only do we obtain 
it without Theorem 2, but the latter theorem actually drops out as a bonus in the 
•process. To generalize Theorem 1 for Hilbert spaces not necessarily separable, we 
need to extend a theorem of Calkin [1] to the non-separable case. Since this exten-
sion is by no means straightforward, we also include its proof in the appendix. 

: We use standard notation: denotes the Hilbert—Schmidt class and (p >0) 
the ideal of operators such that ( J * r ) p / 4 6 ^ 2 ; If i f , ! f are linear manifolds in 
3ft(§), we write OfST (resp. for the linear span of all operators of the form 
ST(resp. [S,T] = ST~TS) where S£Sf and T£3T. All Hilbert spaces are assumed 
to be infinite dimensional, but they are not required to be separable unless other-
wise stated. " 

2. The associate ideal of a Lie ideal in 38(§>) 

Let JS? be a unitarily invariant manifold in 3$($)). As mentioned in the introduc-
tion, the set . . . 

^ = (J 
forms an ideal. We call the associate ideal of S£ or the ideal associated with . 
There are several ways to describe this ideal, as the following proposition shows. 
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! P r o p o s i t i o n 3. Let S£ be a unitarily invariant manifold and J be an ideal in, 
& Then the following conditions are equivalent: 

(1) J is the associate ideal of JSP ; 
(2) [<%(§), + 
(3) [#(§) , and 
(4) J is the largest ideal among those ideals # satisfying Q jSf; 
(5) £ is the smallest ideal among those ideals $ satisfying 2? Q/+CI; 
(6) J is the ideal generated by [&(&), 
(1) S+ei={T£!%($): №($>), T)g &}. 

For the proof of the above proposition, we need the following lemma. 

Lemma 4. Let si be an algebra with identity I and &=J/2(si) be the algebra 
of all 2X2 matrices with entries in si. Then, for two ideals Jx and «/2 ' n 

[¿¡8, [J1, g Ji implies Z j i / j . 

Proof . Let ^ Then 

• [p.ttig.iign-e^-
Hence (g p j ^ i a n d k suffices to show that ^ Now ^ ^ = 

= ^ ^ and, by using the same computation as above, we obtain ^ ^ j £ ,/2 . 

Hence 

(o j>) = (2 o)(? • 
Proof of P r o p o s i t i o n 3. (1)=>(2) follows from Theorem 1. (2)=>(3) is obvi-

ous. To show (3)=>(6), let / be the ideal generated by [3S{§>), Then we have 
and hence ( § ) , . / ] ] £ [ J1 ( § ) , - ^ l i / - It follows 

from Lemma 4 (since and are isomorphic algebras) that 
Therefore Similarly we can show that (3)=>(4) and (2)=>(5). Since the ideal 
$ described by either (4), (5) or (6) is unique and since the associate ideal fits into 
each of these descriptions, we have (4)=>(1), (5)=>-(l) and (6)=>(1). Thus conditions 
(1) to (6) are equivalent. 

Finally, let JQ be the ideal associated with JSf and 

l@i*>),T] g JS?}. 

Then it is easy to see that £f is unitarily invariant and ^.Sf. Let # be the associate 
ideal of i f . Since 
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it follows from Lemma 4 that Therefore we have +C1. 
Hence and £f=<f+CI=S0+CI. We have proved (1) =>(7). Conversely, 
if y = S + C I , then S+CI=S0+CI and hence • /=• /„ . Therefore (7)=»(1) 
follows. • 

For brevity, in the rest of this section, we replace the term "unitarily invariant 
linear manifold in 0 ( 5 ) " by its synonym "Lie ideal in 0 ( 5 ) " . 

By definition, the associate ideal / of a Lie ideal i f in 0 ( 5 ) is obtained by 
taking the upper right corners of 2 x 2 matrices in i f g ( B g . The next result says, if 
we take the upper left corners instead, then either J or ¿ f + C I is produced. 

P ropos i t i on 5. If i f is a Lie ideal and J is its associate ideal, then either 
<ge=J or sec=j+ci. 

Proof . From Theorem 1, we have ¡ ¿ ^ . J + C l . It is elementary that if £ 
is an ideal in 0 ( 5 ) , then / c = / . Hence we have ££C(ZJC+CI=J+CI. 

Now we show J<^£ec. Let Then ^ ^ - ^ g e g - Let W be the unitary 

operator on § © 5 given by the matrix ^ . Then, since if&®§ is unitarily 

invariant, we have 
2 ^ * ( o To\w = [-T - r j e t f w « 

and hence T€ i f c . 
We have shown that J Q S?c<g S + C I from which it follows that either 

or I. • 

Now we consider some "permanence properties" of Lie ideals and their associate 
ideals. First we state the following obvious fact without proof in order to put it 
into record. 

P ropos i t i on 6. If {Sfj} is a family of Lie ideals in 0 ( 5 ) , then the intersection 
Pi i f , and the sum y. SP, are Lie ideals also. I f , furthermore, is the associate 
j J 
ideal of for each j, then the associate ideals of P| J j f j and 25 are D and 

J j j 

2 ¿j respectively. 
The next "permanence property" is less obvious and more interesting. 

P ropos i t i on 7. If i f l 5 JS?2 are Lie ideals in 0 ( 5 ) with ./,, J2 as their associate 
ideals, then [Sflt St?2] is a Lie ideal with as its associate ideal. 

Remark . It is easy to check that is a n ideal in 0 ( 5 ) . Since every ideal 
in 0 ( 5 ) is self-adjoint, we have 



Ideals and Lie ideals of operators 445! 

. Proof . It is easy to check that [J5CX, SC2] is a Lie ideal. Let J be the ideal 
associated with \££x, JS?2]. From & j Q j ? j + C I U = h 2) we have [JSfx, &2]QJxJ2->rCI. 
Hence, by (l)<=>-(5) in Proposition 3, we have Next, suppose that A f i J j 
( /=1 ,2 ) . Then we have 

(o oj = ( / o) j o 02) ( / oj^"2^*®® 

and hence 

[ A t -A2A) = [(o 01)' (X -^J«®«-

Therefore it follows from Proposition 5 that AxA2£<f. • 

Remark . In case S£x and S£2 actually are ideals, i.e. Z£x=£x and Z£2=£2, 
we have an easier proof as follows. We have to show [0(§) , -^ l i l 
QJXJ2+CI. The second inclusion is obvious. The first follows from the identity 
[T, AB]=[TA, B]+[BT,A}. 

Example . Let <£x denote the set of trace class operators on § of trace zero. 
Then, by using some properties of the trace function, we have 
G . WEISS [17] has shown that " G Y ^ ^ 0 . Using this result, it is observed in 
[5, Remark 1] that [0(5) , Now we claim that for no Lie ideal <£ do 
we have i?°=[0(§), SC] or &]. Since, if the associate ideal of JSC is J , 
the associate ideals of [0(§) , £?] and [&, ¡e\ are J and J 2 respectively, 

JSf] would imply that J = < t x and <€[=[&, would imply S 2 = V 1 , 
i.e. . / = # 2 , both contradictory to the results previously mentioned. We do not 
know whether we can have J ] for distinct ideals J and 

3. A characterization of operator ideals and its applications 

We now turn our attention to the main theme of this paper: characterizations 
of operator ideals. 

P ropos i t i on 8. A linear manifold J£? in 0(§) is either an ideal or S+CI 
for some ideal J if and only if & is unitarily invariant and 

Proof . Suppose that JS? is a unitarily invariant manifold in 0 ( 5 ) and 
It follows from Theorem 1 that JS? is a Lie ideal and & Q J + C I where J is its 
associate ideal. From Propositions, we have Now we have 
Q&QS+C/. Hence either SC=J or S?=J+CI. 
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For the proof of the "only if" part, ii suffices to note that, if J is an ideal in 
then </gg'8. consists of all 2 x 2 operator matrices with entries in J . • ' 

The following immediate consequence of the above proposition is a useful 
characterization of ideals in 

P r o p o s i t i o n 9. A linear manifold ¡£ in &(£>) is a proper ideal if and only if 
it is unitarily invariant, <£ and 

Remark . The "if" part of Proposition 9, under the additional assumption 
that !£ contains all Hilbert—Schmidt operators, was obtained by SOUROUR [16]. 

Next we give a few applications, labelled as examples, of the above two propo-
sitions. In many cases, it is convenient to think of S£c in the following way. Take 
any subspace 9JJ in § with dim 9Jl=dim 93lx(=dim §) and let 

JSP® = {compression of T. to 93i: 

Then JSP® is a unitarily invariant manifold and (J5?TO)S=J2'C. Thus, roughly speaking, 
J2?C can be obtained by taking the compression of JS? to a subspace 93? with dim 931= 
=dim 9311 and then transporting it back to 

Example 1. Let if be a linear manifold of numerical sequences converging 
to zero. We consider the set J of those operators T such that, for each orthonormal 
sequence {e„} in the sequence {(Ten, e„)}~=1 is in i f . Then it is easy to see that 
J is a unitarily invariant manifold which does not contain I. By the obvious fact 
that an orthonormal sequence in a subspace is also an orthonormal sequence in the 
whole Hilbert space, one can see the validity of the inclusion J C < ^ J . By Proposi-
tion 9, it follows that J is an ideal. 

If we take £"=/p , the set of all numerical sequences such that 
oo 

2 then the corresponding ideal J turns out to be the '¿'"-class of opera-
i=i oo 
tors. If 7ij is a sequence of positive numbers decreasing to zero such that 2 7 1 j — °°> 

R=I OO 
and if if is the set of numerical sequences {Xj} satisfying 2 nj 1^1 then the 

j=i 
corresponding ideal J is GK which is defined in [7]. 

Example 2. An operator T in (here $ is assumed to be separable) is 
said to be universally absolutely bounded if, for every orthonormal basis {e„} in 
the matrix 

' 1 ( 7 ^ , ^ 1 1 ( 7 ^ , ^ 1 - ' 

\(Tei,eJ\ | (re a ,e2) | ... 

represents a bounded operator on I2. Let % be the set of all universally bounded 
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operators. Clearly Ql is a unitarily invariant manifold, and, for an infinite 
dimensional subspace of each operator in is also universally absolutely 
bounded. Hence it follows from Proposition 8 that -CI for some ideal </. 
In fact, HALMOS and SUNDER [10] showed that ^ = ^ ¿ + € 1 . Our discussion here 
can be used to shorten their proof. 

Example 3. For p>0, let % be the set of all those operators 
(§ is separable) satisfying the condition that the matrix 

'\(TelteJ\> \(Te2, e{)\p... 
{(Te^e^o |{Te%,eJ\>... • 

represents a bounded operator on l2 for every orthonormal basis {<?„} of §>. From 
the inequality (a+b)p^2p(ap+bp) (a, ft SO) we see that % is a linear manifold. 
It is easy to check that 1fp is unitarily invariant, and <U p ^l p . Hence, by 
Proposition 8, % p = J p + C l for some ideal J p . For 2, it follows from a classical 
result of Schur (which says, for two nXn matrices (akJ) and (bkJ), \\(akjbkJ)\\S 
s||(<3Ty)|| 11(^)11; see [15]) that % = & ( § ) . As we have mentioned in Example 2, 
4 ^ = ^ + 0 / . We do not know how to describe J p in an explicit way when l«=/?<2 
or 0< /?< l . 

Example 4. Let be the set of all those operators in 3S(§>) ( § is separable) 
which, in any matrix representation, allow triangular truncation. More precisely, 

if and only if, for an arbitrary orthonornal basis {e„} in the triangular 
matrix 

\TelteJ (Te2,ei) (Te^e,)...' 
0 (Te2, e2) (Tc3, e2) ... 
0 0 (Te»eJ... 

\ • 4 

represents a bounded operator on I2. Then it is easy to see that is a unitarily invari-
ant manifold and A little reflexion on forming submatrices reveals that 
Src<^z2T. Hence it follows from Proposition 8 that 9~=J+CI for some ideal J . 
It follows from a result of MACAEV (see [7]) that J contains all those operator T 

GO 
with their j-numbers {sn(r)} satisfying 2, n ~ l s n(T) < c a -

n = l 

Example 5. Let (X, m) be a separable c-finite measure space which is not 
purely atomic. We say that an operator T on § = £?2(X, m) is an integral operator 
if Tx(s)=J k(s, t)x(t) dm(t) a.e. (*€§) for some measurable function k on 
XxX. Proposition 8 can be used to give a simplified proof of a result due to KOROT-

KOV: if U*TU is an integral operator for every unitary U, then T D ^ + C / . For 
details, we refer to SOUROUR [16]. 
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4. Characterization of ideals in certain classes of C*-algebras 

In the present section, we give some characterizations of ideals in certain gen-, 
eral C*-algebras which share some "noncommutative" features with 

For the next two results, we consider those unital C ""-algebras st which satisfy 
the following condition: 

(C) Every unitary element in si can be expressed as a product of a scalar and 
several symmetries (i.e. hermitian unitaries) in si. 

That satisfies condition (C) is a consequence of the following result of 
HALMOS a n d KAKUTANI [9] : 

Theorem 10. Each operator on an infinite dimensional Hilbert space is a product 
of four symmetries. 

This result was generalized by FILLMORE [3] to properly infinite von Neumann 
algebras. Note that if si is a commutative C ""-algebra and dim si^2, then condi-
tion (C) fails. 

The notion of unitarily invariant manifolds in 0 ( § ) can be extended to gen-
eral C*-algebras in a straightforward manner: in a C*-algebra si, a linear mani-
fold i f is unitarily invariant if and only if U*SPU^S? for all unitary elements U 
in si. The following result characterizes unitarily invariant manifolds in a C *-alge-
bra satisfying condition (C). 

P ropos i t i on 11. A linear manifold in a C*-algebra si satisfying (C) is 
unitarily invariant if and only if ( / — J S f for all projections P in srf. 

Proof . Suppose that is unitarily invariant. Let P be a projection in si 
and T^Se. Then both U=I-2P and V=P+i(I-P) are unitary and hence 

Tx=^(T-V*TU)i& and 

(I-P)TP = j{Tx-iV*TxV)Z&.. 

Conversely, suppose that (I~P)<£P<^L£P for all projections P. Let 5 be a symmetry 
in si. Then S=2P—I for some projection P. Hence, for 

STS = T-2(PT(I-P)+(I-P)TP)££e. 

By condition (C) we see that jSf is unitarily invariant, since si is linearly spanned 
by unitaries. • 

P ropos i t i on 12. A linear manifold in a C*-algebra si satisfying (C) is 
an ideal if and only if PSfPQ <£ for all projections P in si. 
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Proof . Suppose that P i f P ^ i f for all projections P. Let i f and S be 
a symmetry so that S=2P—I for some projection P. Then 

STS = 2 (PTP+(i-P)T(r-p))-T^se. 

Hence, by condition (C), i f is unitarily invariant. Therefore, by Proposition 11, 
(I—P)3?PQ& for all projections P in si. Now, for a symmetry S=2P—I and 
TGif, we have 

TS = 2 (PTP+(I-P)TP)-T<i&. 

By condition (C) again, we have TT/gif for each TCif and each unitary U. 
Since unitary elements span si linearly, we have i f s i Q i f . In the same way we 
can show that . s / i f g i f . Hence i f is an ideal of si. O 

A linear manifold i f in a C *-algebra si is said to be a Jordan ideal if AX-1-
+XA<i£e for all and X^si. It is shown in [5, Theorem 3] that Jordan 
ideals in 0 ( 5 ) are just associative ideals. This result can be generalized for a class 
of C*-algebras wider than 0 ( 5 ) : 

Coro l l a ry 13. If i f is a Jordan ideal in a C*-aIgebra si which satisfies condi-
tion (C), then i f is an associative ideal. 

Proof . Let P be a projection in si and T £ i f . Then 

P(PT+TP)+(PT+TP)P = 2PTP+(PT + TP)€ & 

and hence PTPZ.SP. Now the corollary follows from Proposition 12. • 

Sourour has informed the authors that, in case si=&(§>), Proposition 12 can 
be deduced in the following way. Assume that i f is a linear manifold such that 
p s e p ^ s e for all projections P. For T£if and a projection P we have TP+PT= 
=T+PTP-(I-P)T(I-P)£Se. By the fact that projections span 0 ( 5 ) linearly 
(Theorem 2), we see that i f is a Jordan ideal. Now it follows from [5, Theorem 3] 
that i f is an associative ideal. 

The condition (C) in Proposition 12 is essential. For example, if s/—C[0, 1], 
then there is no proper projection in si and hence the inclusion P3?PQ i f is 
automatically satisfied for every linear manifold i f in si; but of course there are 
linear manifolds in si which are not ideals. 

In the next result, we let 0 be a C*-algebra with the identity /, si = 

and P0 be the projection in si given by the matrix ^q o) ' 

P ropos i t i on 14. A linear manifold i f in si is an ideal if and only if i f is 
unitarily invariant and P 0 i f P 0 Q i f . 
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Proof . Suppose i f is unitarily invariant and Let 

If U is a unitary element in 38 and B^J, then 

(I 0 W 0 5 H 7 0) (0 BU) ^ 
№ E / J l p o j^o t / j - io 0 

and hence BU and LIB are in J. Since unitary elements in ^ span the whole algebra 
3&, we see that J is an ideal in Now let J be the set of all 2 x 2 matrices with, 
entries in J. Then £ is an ideal in si. 

Let p j be an element in i f . We are going to show that For 

this purpose, we introduce the following unitary elements in si: 

" - (i IIL- -Co)' » = 

Then we have 

and 

Hence, B, C^J. We also have 

2W*P0TP0W = (J 2W*P(I(JTJ)POW=[Q 

By the previous argument, we have A, D^J. 

Next we show that / g i f and let T = ^ ^ j^J^ . From the definition o f / 

we know A, B, C and D are in J, or, in other words, 

c _ (0 A s _ (0 A _ (0 c-j _ (0 D\ 
^ - lo o j ' ^ - ( p o j ' 3 — (o 0 J ' ^ - ( o 0) 

are in i f . We have to show that 

T - ( A T - A T - I° T - (° 

are in i f . This can be seen from the following identities : 

7 \ = 2 P 0 ( J F S 1 » ' * ) P o , T2 = S2, T3=JSZJ, T, = 2J(P0WSIW*P0)J, 

where J and W are the unitary operators previously defined. • 
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Ideas similar to those in the above proof appear in [12]. 

Coro l l a ry 15. If P0 is a projection in 0 ( 5 ) with dim P 0 5=d im (/—P0)§ and 
if i f is a unitarily invariant manifold in 0 ( § ) satisfying P0£PP0Q i f , then i f is an 
ideal in 0 (5) -

Proof . This follows from the previous proposition and the fact that 0 ( 5 ) 
and . / /2(0(§)) are isomorphic C*-algebras. • 

Example. Let i f ^ J f (§) be an ideal in Jf (5), i.e., for and 
A^g, we have XA<i i f and AX£ i f . In general, i f is not necessarily an ideal 
in 0 ( 5 ) . Among other things, it was shown in [6] that if i f is also a Lie ideal and 
i f is countably generated as an ideal of X ( § ) , then i f is also an ideal of 0 ( 5 ) . 
This result can be proved in the following alternative way. 

Let J be the linear span of operators of the form XAY, where and 
X, Y€3f(§>). It is easy to see that J is an ideal in 0 ( 5 ) and On the other 
hand, it follows from a lemma in [6] that there is a projection P0 in 0 ( 5 ) such that 
dim i>05=dim ( / - ? „ ) § and P0S, SP0£J? for all S in ¿P. Notice that each element 
S in i f can be expressed as a finite sum: 

S = D+Ij (ttj Aj+Bj Xj+Yj Cj) 

where 0Cj€C; Aj, Bj, Xj, Yfitfi,5) and For such a sum, we have 

P0SP0 = PoDPo+ZjixjPoiAjPJHPoBJXPo + PoYjiCjPo))^ 

since J is an ideal in 0 ( 5 ) and the operators D, AjP0, P0Bj, CjP0 are all in J. 
Now it follows from Corollary 15 and J^ i f that i f is an ideal in 0 ( 5 ) . 

Finally, we have the. following characterization of ideals in 0 (5) -

Propos i t i on 16. If i f is a unitarily invariant manifold in 0 ( 5 ) consisting of 
compact operators and if T€if implies |T |= ( r*T) 1 / 2 € i f , tf,en <£ ¡s an ideal. 

Proof . Again, let J be the ideal of those operators B such that ^ q j^ -^ses-

Then, from Theorem 1, we have i f g j r . Next we show that Since every 
ideal in 0 ( 5 ) is linearly spanned by its positive elements, it suffices to show that 

positive elements in are in i f S f f i S . So let T= ^ be a positive element 

in Then A, B, C and D are in J . Hence 

(c o) = (o o) + (/ o) (o o)(? o)^©6> 

(o 3 = |(o (p o) = |(/ o)(o o)(/ o)|e 

Hence we obtain T€ifS f f l S . • 
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Appendix 

In this appendix we give a transparent proof of Theorem 1 and Theorem 2 
based on an idea in [4]. The main tool we use in this proof is Halmos—Kakutani's 
Theorem (Theorem 10): every unitary operator can be expressed as a product of 
not more than four symmetries. This theorem can be deduced constructively by 
the following three short steps: first express it as a direct sum of countably many 
blocks such that each block has the same dimension as the Hilbert space; then, 
using this expression, write the operator as a product of two bilateral shifts (of 
infinite rank); finally, write each bilateral shift as a product of two symmetries. 
(For details, we refer to [9].) From this argument we see that the symmetries involved 
can be chosen in such a way that their eigen-subspaces have the same dimension as 
the underlying Hilbert space. 

In order to reveal the essential part of our argument in proving Theorem 1, 
we consider a more general situation. We let <% be a unital C*-algebra, si =MZ{28) 

and i f be the set of all those symmetries of the form — w ^ e r e ^ ' s 

the identity in OS and U is a unitary element in si. We consider the following con-
dition : 

(C') each unitary element in si is a product of finitely many elements in £f and 
a scalar. 

It follows from our previous remark that for si=&(§>), condition (C') is 
satisfied. 

In the following three lemmas, we always assume that si is the C*-algebra 
described in the previous paragraph and condition (C') is satisfied. Furthermore, 
we assume that i f is a unitarily invariant manifold in si, 

/ = { * * : (2 o M 
and 

J = si\ A, B, C and D are in / } . 

By using the same argument as that in the proof of Proposition 14, we see that # 
is an ideal in £¡8 and J is an ideal in si. 

Lemma A. With the above assumption, we have [J, s/]Q i f . 

P roof . It suffices to show that [J, t / ] g if for all unitary elements U in si. 

First we note that if ^ t ' i e n 

[(¿3. (i -ofiH((2 -o£M? 9(2 S)G 
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since i f is unitary and B, Now if T O and S ^ I F * ^ WZST (W is 

unitary), then 

[T, S] = W* ^VTW*, _°7]]^if. 

Now we consider an arbitrary unitary element U ins/ and show that [T, £/]6-Sf. 
By condition (C), U can be written as a product XS1S2...S„ where 5 1 ; ..., SnOf 
and A€C. We proceed by induction on n. Let V=S2S3...Sn. Then 

[T, U] = A[rSx, V]+X[VT, SJ. 

Since and TS^J, we have [VT, S ^ i f by our previous argument and 
[TS1} K]eif by our induction assumption. Therefore [T,U]€£C. • 

Lemma B. The linear span of £f includes [si, si]. 

Proof . Let i f 0 be the linear span of SP. Then i f 0 is unitarily invariant. Let 
and J 0 be the ideals defined from i f 0 in the same way as J defined from i f . Since 

y ( / i ) ^ 0 ' WC s e e t h a t a n d h e n c e (Q / j ^ 0 ' T h e r e f o r e Thus, 
by Lemma A, [si, si]=[si, . / 0 ] c i f 0 . • 

Lemma C. [ i f , [si, st]\ QSOSC. 

Proof . It follows from Lemma B that it suffices to show [ i f , Sf\g Jflif. 

If ^ i f , then, by an argument similar to that in the proof of Proposition 14, 

we can show that ^ ^ j and ^ Q| are in J DSC and hence 

[(¿¿Mi-^He-O'w. 
If W<iSf, where W is unitary, and if J € i f , then 

[T, s] = w* [iVTW*, (0
7 ^ J j ^ e ^ n if. • 

Proof of Theorem 2. Apply Lemma B to the case si=@(f)) and note that 
0 ( 5 ) ] = * ( $ ) , (see [8]). • 

Proof of Theorem 1. By Halmos—Kakutani's Theorem and Theorem 2, we 
can easily deduce the equivalence of (1) and (2). (For details, see [5].) That (3) implies 
(1) is obvious. It remains to show (1)=>(3). By Lemma A, Lemma C and the fact 
that we have [&(§), and i f ] g . / . 

Now Theorem 1 follows from the following theorem of CALKIN [1]: 

o 
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Theorem D. If J? is a proper ideal in 38(§>), T£38(%) and if [T, 
then T£S+CI. 

Calkin only showed this-theorem for the case when § is separable. Now we 
prove this theorem under the assumption that § is nonseparable. 

Let M (9>) be the unique maximal ideal in 38(9)). (Thus, for an operator S 
• on S£J( (§) if and only if there exists a projection Em 38 (§) such that ESE=S 
and dim ¿¿§<dim §.) Let ^(9>) be the "Calkin algebra" 38(9))Ui(9)). Let t be 
the canonicali mage of T in <<?(&). 

Since y is self-adjoint, with no loss of generality, we may assume T=T*. 
Let T=J X dEx be the spectral decomposition of T. Note that X£o(t) if and 
only if, for all e>0, dim E(X-E, A+e)§ = dim 9>. 

First we demonstrate that o(t) is a singleton. Assume the contrary: we have 
X.lrA2^o(t) with X^X 2 . Choose. £>0 such that the intervals [Ai—a, Aj+e] and 
[A2—£, X2+E] are disjoint. Let 9)~E[LJ-E, XJ+E]§> ( J = l , 2 ) and 5 \ = § Q ( § 1 © § 2 ) . 

Then dim §!=dim § 2 =d im Let U be a imitary transformation from § onto 
£ © S © t f such that J/S^SffiOffiO, C/§2=0ffi§ffi0 and {/f t=0©0©ft . Then 

\T1 0 
U~1TU = 0 T2 

* / 

for some hermitian operators and T2 in 38(9)) with disjoint spectra. ,By a well-
known result of ROSENBLUM [14], there exists an operator A in 38(9)) such that 
T1A—AT2=I. Let | 

0 A 
X= Ù 0 0 | U-1 

0, 
Then 

0 I 
TX-XT = u 0 0 

o ] 

and hence IT J . Therefore J=3S(§), a contradiction to our assumption that J 
is proper. 

We have T=S+XI for some AÇC and self-adjoint operator S in M (?>). 
Choose a projection E in 38(9)) such that ESE—S and dim £ § = d i m ( /—£)§ . 
Let W be a unitary transformation from 9) onto § © § such that W(E9>)=$)®0 

and W((I-E)$)=0hf>. Then W S W " 1 ^ 0 for some S^38(9)). Let 
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V=W-FQ W. Then we have 

and hence Therefore S i J . • 

By using the above three lemmas, Fillmore's extension [3] of Halmos and 
Kakutani's Theorem and the fact that [si, si] = si for a properly infinite von Neu-
mann algebra [13], we can show the following two results. 

Theorem Y. Let i£ be a linear manifold in a properly infinite von Neumann 
algebra. Then the following conditions are equivalent: 

(1) S£ is unitarily invariant; 
(2) Se is a Lie ideal in si, i.e., [J5?, si] g 
(3) there is an ideal J in si such that [si, and [si, 

Theorem 2' [13]. Every element in a properly infinite von Neumann algebra 
is a linear combination of projections. 

As in Section 2, in a properly infinite von Neumann algebra, we can define 
the associate ideals of Lie ideals. Also we can show that conditions (1), (3), (4), (6) 
in Proposition 3 are equivalent in this general situation. 
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A note on Schmiidgen's classes and 91" of pairs generated 
by Toeplitz operators 

V. VASYUNIN*) 

1. K. SCHMUDGEN [1] introduced the following class of pairs of (unbounded)' 
self-adjoint operators. 

D e f i n i t i o n 1. Let A, B be self-adjoint operators on a Hilbert space M'. The 
pair {A,B} belongs to the class if there exists a dense linear manifold S in 
3V such that 

(i) 3Q Dom (AB)flDom (BA) and ABf=BAf for all f£3), 
(ii) A\2> and B\3> are essentially self-adjoint. 
Schmudgen gives the following criterion for a pair {A,B} to be in 9t,. (In 

what follows •) means "range of".) 
T h e o r e m 0 (Theorem 1.7 in [1]). Suppose { ^ ^ J e S d i , ai~R\a(A) and 

/36R\f f (B) . Then the operators X = (A-a)"1 and Y = (B-P)~X satisfy the 
following conditions: 
(1) Ker X = Ker Y = {0}, 

(2) &([X, Y])n@(X) = 3t([X,Y])C\m{Y) = {0}. 

Conversely, if X and Y are bounded self-adjoint operators satisfying (1) and (2), 
then {Z^+a, for all a, j8€R. 

The main method in [1] to construct pairs belonging to 9lx is to consider pairs 
of the form {(Re T)~\ (Im T) - 1 } for certain operators T. Among others Toeplitz 
operators with analytic symbols have been investigated in [1]. It was shown that 
Toeplitz operators with symbols which are cyclic for the backward shift do not 
generate a pair in 9lx ([1], Proposition 3.3). Moreover, the polynomials q> for which 
{(Re Tp)- \ (Im r , , ) - 1 } ^ ! are characterized in [1]. 

*) Research supported by Naturwissenschaftlich-Theoretisches Zentrum (Karl-Marx-Uni-
versität, Leipzig). 
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The aim of this note is to show that Schmiidgen's method works in fact for 
Toeplitz operators with arbitrary analytic (or antianalytic) symbols. 

Suppose <p€H™. Let be the multiplication by (p on H2. Let X = ReT„ 
and Y = lm.T9. As usual, S* is the backward shift, P+ is the orthogonal projec-
tion of L? onto H2 and P_=T—P+ is the projection onto Ht and V{-.} denotes 
the closed linear span of {...}. 

Lemma 1. @([X, Y]) = V{(S*)"<p: n^ 1}. 

Proof . First note that, for any h£H2, [T*,Tç]h={P+(p(p-(pP+(p)h = 
=P+<pP_<ph=H^H^h, where H-: H2*H2_{H^h=P_<ph) is the Hankel operator 
with symbol <p. Hence we have âê([X, Y])=âg([T*, (H$H„)=3t{H$) = 
= P+(pH! = V{P+zn<p: n s l } . Now the assertion follows. 

According to Beurling's theorem, the 5*-invariant subspace V{(S*)"<p: 1} 
has the form H2Q0H2 with a certain inner function 0 or 0 = 0 . We introduce the 
bounded analytic functions cp+ and <p_ by 

V±{z) = j0(z)(<p(z)±^(z)) for \z\ = 1. 

0q> is indeed analytic, because (ç>0, z")=(0, (S*)ncp)=0 for n ^ l . 

Theorem 1. {(Re (Im Z'<p)_1}€9ll1 if and only if cp+ and q>_ are non-
zero outer functions. 

Proof . Let us note at first that for 0 = 0 we have by Lemma 1 2£([X, 7]) = H2, 
i.e. condition (2) in Theorem 0 is not fulfilled. Hence we may assume that 0 is a 
non-zero function. Since the only bounded self-adjoint Toeplitz operator with non-
trivial kernel is the zero operator, the conditions X^O and I V 0 imply Ker X= 
=Ker y={0}, i.e. condition (1) in Theorem 0. 

We show that (H2e0H2)C\m{X) = {0} iff cp+ is outer. Since Xf= 

= — P+{cp+(p)f= P+ 0cp + / , we have 

P+0Xf= P +0P+0<p+f = i>+<p+/ = T*J. 
Therefore, 

(H2Q0H2)n&(X) = { X f . Xf±0H2} = {Xf: P+0Xf= 0} = 

= xKeTT*+=x(H2emf^j) = x(H2e<pi
+H2), 

where <p'+ is the inner part of cp+. Since Ker X={0}, (H2Q0H2) f)@(X) = {0} if 
and only if ç>+ is outer. Similarly it follows that (H2Q0H2)C\@(Y) = {O} if and 
only if <j£>_ is outer. By Theorem 0, this completes the proof of Theorem 1. 

Coro l l a ry 1. If q>£H~ is S*-cyclic, then {(Re J^) - 1 , (Im J 1 , , ) - 1 } ^ ! . 
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Pro.of. Note that q> and S*(p are 5*-cyclic simultaneously. In this case 0 = 0 
and (p+ =(P- =0. 

Lemma 2. If \j{(S*)"(p: n^l}=H2Q0H2, then 0<p and © have no common 
inner divisor. 

Proof . Let 9 be a common inner divisor of 0<j> and 0 and let 0' ^05. Then 
0'<p£H2 and ((S*)>, 0'f)=(znf, 0'y)=O for n s i and f£H2. Therefore, 0'H2Q 
C 0 № , i.e., 3=00'£H2 and 3 is a constant function. 

If 0 is a finite Blaschke product, then cp is meromorphic in C, the function <p 

defined by q>(z)=q>(\/z) is meromorphic too, and (p±(z)=~ 0(z)(q>(z)±q>(z)) 

for | z | s l . 

Coro l l a ry 2. Let 0 be afinite Blaschke product. Then, {(Re TJ-1, (Im r , , ) - 1 } ^ 
if and only if <p2(z)^^2(z) for every z€ C, \Z\T±\. 

Proof . Suppose that <p2(z)=92(z) for some zÇC, | z |^ 1. Since <p2(l/z) = 
=(p2(z)=<p2(z)=<p2(l/z), we can assume without loss of generality that |z|-=l. 
Hence (p+(p- has a zero inside the unit circle. Therefore it is not outer. 

Suppose now that q>+ (or q>J) is not outer. Then it has a zero, say z0, inside 
the unit circle (see the remark just before Corollary 2). According to Lemma 2, 
0(zo)?i0 and therefore <p(z0)+<p(z0)=0 (or ç>(z0)—ç(z0)=0, resp.), i.e. 
<p\z0)=y2(z0). 

2. In [2] the study of commuting unbounded self-adjoint operators was con-
tinued. The more general classes 9lrs are introduced in [2]. Here we only need the 
class 91". 

D e f i n i t i o n 2. Let A, B be self-adjoint operators on a Hilbert space 
The pair {A, B} is in the class 91" if there exists a dense linear manifold 3! in 
such that 

(i)' 2>gDom (AJBk)PiDom (BkAJ) and AjBkf=BkA'f for all / 6 0 and all 
j, k=0, 1, ...; 

(ii)' Ak\3) and Bk\3> are essentially self-adjoint for all k^l. 
For polynomial symbols it was shown in [2, Theorem 4.1] that all pairs 

{(Re Tç)~\ (Im r9)~1}6911 are in fact in the class 91~. Using the same method as 
in [2] we prove this assertion for arbitrary analytic symbols. 

Theo rem 2. For arbitrary q>€Hm the following are equivalent: 

(3) {(Re7;) - \ (Im7;)-1}€9l1, 

(4) (Re ï ; ) - 1 , ( I m g - 1 } ^ : . 
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Lemma 3. Qrs = y{m{Xj Yk[X, y]): j^r, k^s}=H2Q0,+'~1H2. . 

Proof . Since the subspace H2Q0H2 is invariant under the operator T*, it is 
sufficient to show that > 

\/{m(Tk[X, Y]): k < n) = H2Q0nH2. 

We prove this assertion by induction. By Lemma 1 this is true in case n = 1. 
Suppose that 

\'{®{Tk[X, y]): k < n) = H2e0nH2 = Kn. 
Then 

V{®{niX, Y}): k < n+1} = V {T^Kn, K„). 

If /JL V{T^Kn, K^, then f=0"g and P+<pf=0nh, for some g£H\ h£H2. Hence 
0h = 0n~iP+(p0ng=0n-i(0(p)0n-lg=(0<p)g. According to Lemma 2, 0 p and 0 
have no common inner divisor. Thus g£0H2 and f£0n+1H". Therefore, 
Kn + 1QV{TvKn,Kn}. On the other hand, (fpKn, 0n+iH2)={K„,0n{0cp)H2) = 0. 
Hence \/{TvKn, Kn}=Kn+1 which completes the induction proof. 

Proof of Theorem 2. Since (4)=>(3) is obvious by definition we only have 
to prove the implication (3)=>(4). Suppose that (3) is fulfilled. Then, by Theorem 1, 
<p+ and <p_ are outer. To prove (4), we apply Corollary 1.9 in [2]. By this Corollary, 
it is sufficient to verify the following two conditions: 

"00 XfiQ r+i ,s=>fiQrs for all r ^ O , s £ 0 and all fdH\ 

(y) YfeQr,s+1=>ftQr,s for all r s 0, s S O and all fiH\ 
Let Xf£Qr+hs = H2e0nH\ n=r+s, i.e., Xf=P+0v+f±0nH2. Hence 

0 = ( P + 0 ( p + f , 0 n H 2 ) = ( f , < p + 0 n - 1 H 2 ) . Therefore, since <p+ is outer, f£H2Q 
Q0"~1H2=Qrs. In a similar way we see that (y) is satisfied if q>_ is outer. This 

. completes the proof. 
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Non-atomic measure spaces and Fredholm composition operators 

R. K. SINGH and T. VELUCHAMY 

1. Introduction. Let (X, SP, A) be a sigma-finite measure space and let T be 
a measurable nonsingular (XT~1(E) =0 whenever A(£)=0 for trans-
formation from X into itself. Then the composition transformation CT on L2(X) 
is defined as CTf=foT for every f£L2(l). If the range of CT is in L2(A) and CT 

is bounded, then we call CT the composition operator induced by T. It has been 
proved that a nonsingular measurable transformation T induces a composition opera-
tor CT if and only if there exists a constant M > 0 such that XT~1(E)^MX(E) 
for every E££f. Hence the induced measure XT'1 is absolutely continuous with 
respect to the measure X. Let f0 denote the Radon—Nikodym derivative of the 
measure XTwith respect to X. 

The main purpose of this paper is to study Fredholm, essentially unitary and 
essentially normal composition operators on L2(X) when the underlying measure 
space is non atomic. In case X is the unit interval of the real line and X is the 
Lebesgue measure on the Borel subsets X it turns out that the composition operator 
CT on L2 (X) is Fredholm if and only if CT is invertible [2]. We prove here that the 
above result is true for a general non-atomic measure space. We also prove that 
the set of essentially unitary composition operators on L2(X) coincides with the set 
of unitary composition operators on L2{X) and the set of essentially isometric com-
position operators coincide with the set of isometric composition operators on 
L2(X). It is also proved that when CT has dense range, CT is essentially normal if 
and only if CT is normal. Note that a measure space (X, y, X) is said to be non-
atomic if for every nonnull E^y, there exists a nonnull F^y such that FaE 
and X(F)<X(E). 

. D e f i n i t i o n s . Let B(H) denote the Banach algebra of all operators on a 
Hilbert space H and C(H) denote the ideal of compact operators on H. Let n be 
the natural homomorphism from B(H) to the Calkin algebra B(H)/C(H). An 
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operator A£B(H) is said to be Fredholm, essentially unitary, essentially normal, 
an essential isometry or an essential coisometry according as n (A) is invertible, 
unitary, normal, an isometry-or a coisometry, respectively. It has been proved that 
A is Fredholm if and only if A has closed range, and the kernel of A and the kernel 
of A* are finite dimensional. A is called quasiunitary if A* A—I and A A*—I are 
finite rank operators [2]. 

2. Fredholm composition operators. If CT&B(L2(X)), then we know that 
C$CT=Mfo [3]. So, ker C r = k e r C*CT=ker Mf=L2(X0), where j r o = { x : / o W = 0 } . 
The following theorem computes the kernel of which is useful in proving the 
main theorem of this section. 

Theorem 2.1. Let CT£B(L\X)). Then 

ker Ci = {/: /<EL2(A) and f fdX = 0 for all E . 
T-'(E) 

Proof . Let f£L2(X). Then / 6 ker C^ if and only if the inner product ( f g)=0 
for every g£ (ker C£)x=Ran CT. Since the span of the characteristic function 
{XT.I(E): IT^IE)*^ co and E^Y} is dense in R a n C r , we conclude that /6ker 
if and only if J fdX=0 for every E ^ y . Hence the proof is completed. 

T - 1 (£) 

Def in i t ion . If (X, Y , A) is a measure space, then the sigma-algebra T~1(£F) = 
= {T~1(E): E^Y) is said to be essentially all of Y if for every E^Y there exists 
T-^F^T-^Y) such that X(EA T~1{F))=1{(E\T-1(F))U(T-1(F)\E)}=0. 

It has been proved by WHITLEY [6] and SINGH and KUMAR [4] that CT has 
dense range if and only if J - 1 ^ ) is essentially all of y . This we can conclude from 
the above theorem also. 

Coro l l a ry 2.1. No characteristic function belongs to ker Cj. In fact, no posi-
tive function belongs to ker Cj. 

Coro l la ry 2.3. If CT£B(L2(X)), then ker C T c k e r C? implies that CT is an 
injection. 

Theorem 2.4. Let CT be a normal composition operator on L2(X). Then CT is 
Fredholm if and only if CT is invertible. 

Proof . Since every normal composition operator on Z.2(A) is an injection [4], 
the result follows. 

The above theorem is not true in general as evident from the following example: 

Example 2.5. Let I2 denote the Hilbert space of all square summable sequences 
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of complex numbers. Define the operator A: I2—I2 by 

(Ax)(n) = { 0 if n = 1 
x„ if n =» 1 

for * = { x . : n£N} in I2. Then A=A* and hence A is normal. Also dimker A= 
=dim ker A* = l and the range of A is closed. Hence A is a normal Fredholm 
operator. But clearly, A is not invertible. 

From now on we assume that the measure space (X, i f , A) is non-atomic. 
The following theorem shows that the set of Fredholm composition operators and. 
the set of invertible composition operators on L2(X) coincide. 

T h e o r e m 2.6. Let CT£B(L2(X)). Then CT is Fredholm if and only if CT is 
invertible. 

Proof . Suppose C r is Fredholm. Then kerC T and ker are finite dimen-
sional and CT has closed range. But ker CT=L2(X0), where JV0={x: (x)=0} 
and A is non-atomic implies that ker CT is {0}. Hence to prove that CT is invertible 
it is enough to prove that CT has dense range. Suppose CT does not have dense 
range. Then there exists a measurable set G in if such that G is not in T - 1 ^ ) . 
We can find a measurable set E such that T^iE) DC. Let T~1(E)=GUF. Then 
F is a nonnull measurable set and Fdoes not belong to T~x(if). If we partition E 
into countable disjoint measurable sets, then at least one set among those partitions, 
say E1, will be such that r _ 1 (£ ' 1 ) contains nonnull measurable subsets G1 of G~ 
and F1 of F where G1 and F1 are not in T ' 1 ^ ) and ACE1)-^. Again partition 
E\ Then we get at least one E2 such that l ( F 2 ) < l / 2 and T_1{E2) containing 
nonnull parts of G and F which are not in T_1(if). Repeat this process. If at each 
stage of partition, there is exactly one measurable set En such that r _ 1 ( F " ) con-
tains nonnull parts G" of G and F" of F such that G" and F" are not in T~X(E), 
then E" can be made to approach a null set, since l{E")-^\ln. This will imply that 
G and Fare in T~1(£f ) which is a contradiction. Hence we can get a disjoint sequence 
{E„: n€N} of measurable subsets of E such that for every n, T~1(E„)=GttUF„. 
where Gn(zG and F „ c F and G„ and F„ are not in Now consider the 
sequence {G„: «€N}. This is a disjoint sequence and G„ does not belong to T~x(Sf) 
for every ?J€N. Also GiUGaU... UGfc does not belong to T ~ \ i f ) for every N. 
For, if G 1 U G 2 € r - 1 ( y ) , then there is a measurable set KdE}(JE2 such that 
T~1(K)=G1UG2. Hence T ' - 1 ( ^ n F 1 ) = G 1 which implies that G^T^iSP) which 
is a contradiction. 

Now, since Gx does not belong to there is a function f in L2(X) such 
that J fxdk=0 for every Eiif and f fdX^O. For, if not, then k e r C ^ c 

R-I(E) C! 
c(A'o1)J" a n d hence (Ar

c ) -L XcRan CT. This implies that XG ^anCT which is a. 
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contradiction since Gx does not belong to T~x(£f). Again, there is a function / 2 in 
L?(X) such that f fi_dX=0 for every E^Sf and ff2dX=0 but f fdX^O. 

T-L(E) CI C4 

For, if not, then (ker C ^ i X ^ c z i X ^ . Hence ( A y - ^ c s p a n {Ran CT, XG}. 
This implies that XG=f+ <xxCt for some / in RanC T and a£C. Hence f—XG — 
—aZCi and this' will imply t h a t / is not measurable with respect to the sigma algebra 

which is a contradiction. Proceeding like this we will get a sequence 
{/„ : «£N}cker such that J f„dX is not equal to zero for k=n and is zero 

Gfc 

for k<n . Hence, no two functions in {/„: w£N} are linearly dependent and hence 
dim ker = 00 which is a contradiction. Hence the theorem is proved. 

3. Essentially unitary and essentially normal composition operators. First we 
shall characterise essentially isometric and essentially coisometric composition oper-
ators on L2(A). 

Theo rem 3.1. Let CTdB(_L2(X)). Then CT is an essential isometry if and only 
if CT is an isometry. 

Proof . Let CT be an essential isometry. Then n(CT)*n(CT)=n(/) which 
implies that C%CT—I is compact. But CjCT—I~Ms—I is compact on L2(X) 
if and only if f0 = 1 a.e. [5]. This implies that CT is an isometry and hence the proof 
is completed. 

T h e o r e m 3.2. Let CT€B(L2(Aj). Then CT is an essential coisometry if and 
only if it is a coisometry. 

Proof . Let CT be an essential coisometry. Now, it is clear that CT is an essential 
coisometry if and only if CTC^—I is compact. But 

* r_jMfoOT.1 on Ran CT C T C T Q n k e r C i 

Since r anC r and ker are invariant under CTC%—I, CTC^—I is compact 
if and only if M{t>aT_x is compact on ranC x and —I is compact on k e r C y . 
But —I is compact on ker if and only if ker is finite dimensional which 
further implies that ker = {0}. Hence CT has dense range and Af / ( j 0 r_ 1 is 
compact on ran CT=L2(1) if and only if /Oo T= 1 a.e. This implies that CT is a 
coisometry and hence the theorem is proved. 

Theorem 3.3. Let CT£B(L2(X)). Then CT is essentially unitary if and only if 
CT is unitary. 

Proof . CT is essentially unitary if and only if CT is essentially an isometry 
and essentially a coisometry. Hence the theorem follows from Theorems 3.1 and 3.2. 
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Coro l l a ry 3.4. Let CT£B(L2(X)). Then CT is quasiunitary if and only if CT 

is unitary. 

Theorem 3.5. Let CT be a composition operator on L2(k) with dense range. 
Then CT is essentially normal if and only if CT is normal. 

Proof . CT is essentially normal if and only if CyCT—CTCj is compact. 
But when CT has dense range, C^CT—CTC^ =Mfa_foOT and hence Mfa_f^T 

is compact on L2(A) implies that / 0 =/ 0 o T a.e. and this further implies that CT is 
normal. Thus the theorem is proved. 
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Best approximation of a normal operator in the trace norm 

RICHARD BOULDIN 

1. Introduction. A problem that has received considerable attention is the clas-
sification of operators that have a unique best approximation among the nonnega-
tive operators (a unique positive approximant) in one norm or another. For the 
operator norm this was done in [4] and, consequently, it solved a problem posed 
in [8]. Those results were generalized in [5], [9], [2] and other papers. The problem 
of approximation in trace norm was specifically excluded in [2], and it was noted 
how the methods given there failed in the case of the trace norm. This paper gives 
a characterization of those normal operators with a unique positive approximant 
in the trace norm. The result is a striking contrast to the characterizations given 
previously for other norms. 

We are concerned throughout this paper with (bounded linear) operators on 
a separable Hilbert space For any operator T we use the associated operator 
\T\=(T*Tf'2 and the Caratesian decomposition T=B+iC with B=(l/2)(T+T*) 
and C=(l/2i)(T— T*). We refer to B as re T and to C as im T. For a compact 
operator T we let ^(T) , s2(T), ... denote the eigenvalues of 12] in nonincreasing 
order repeated according to multiplicity. If we have 

then we say that T is trace class and the preceding sum is the trace norm, denoted 
lirilx- If T is not trace class then || J l ^ is defined to be infinity. 

For a self-adjoint operator B we define B+ to be ^-(\B\+B) and B~ to be 

^(\B\-B)\ wenotethat B=B + -B~ and \B\=B + +B~. If JE(-) is the spectral 

measure for B then it follows from the usual operational calculus that B + =B1s([0, 
and B~=BE{{— 0]). If T is a given operator and P is a nonnegative operator 
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such that o o l i r - P H i and | | r - i ? | | 1 S | | r - i > | | 1 for every nonnegative operator R 
then we say that P is a trace class positive approximant of T. 

We shall frequently use the following inequality for the trace class operator 
T where {e,} is some orthonormal set: 

grili S 2 \{TeJt e})\. j 

This follows from the Corollary on p. 40 of [10]. 

2. Preliminary results. Of course, not all operators can be approximated by 
a nonnegative operator using the trace norm. The next theorem gives convenient 
conditions for recognizing when a given operator can be approximated. 

Theorem 1. For a given operator T—B+iC, B* = B, C*=C, the following 
conditions are equivalent: 

(i) there exists a nonnegative operator P such that T—P is trace class; 
(ii) the operator C is trace class and the spectrum of B, denoted a(B), not in the 

interval [0, <=o) consists of isolated eigenvalues, say {Xj} repeated according to multi-
plicity, such that 2 I A,-1 < 00 

j 
(iii) the operator (T—B+) is trace class. 

Proof , (i) implies (ii): Let D be the trace class operator T—P and note that 
B=P+ve D, C=imD. According to Weyl's Theorem B and P have the same 
Weyl spectrum. (See [1], for example.) For any normal operator A the Weyl spectrum 
coincides with the points of o (A) that are not isolated eigenvalues with finite multi-
plicity. (See [3, Theorem 3] or [1, Theorem 5.1].) It is elementary that re D and 
im D are trace class operators. 

Let {A;} be an enumeration of the negative eigenvalues of B, repeated 
according to multiplicity, and let {ej) be an orthonormal sequence of eigenvectors 
with ej corresponding to Ay. Note that \\xe DW^WP-BW-^2 \((P-B)ej, ej)\ = 

= 2 «Pej, e j ) - l j ) ^ 2 - l j = 2 j j j 
(ii) implies (iii): Let {Xj} and {ej} have the same meaning as given in the first 

part. If D is defined by D = 2 <• > ej)*jej then 11 / )^=£ |Ay|. Note that B=B ++D, 
j J 

since B~ =BE((—«>, 0]) where E( •) is the spectral measure for B. We note that 
T—B + =D+iC; which proves (iii). 

(iii) implies (i): This is obvious. 
Next we show that if an operator can be approximated in trace norm by a 

nonnegative operator then it has a trace class positive approximant. 

Theorem 2. If the operator T satisfies one of the conditions in Theorem 1 then 
T has a trace class positive approximant. 
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, Proof . Recall that the conjugate space for the Banach space of compact oper-
ators on the underlying Hilbert space § is the space of trace class operators on 
(See [10, p. 48], for example.) Recall that any closed sphere in the conjugate space 
is compact in the weak star topology. (See [6, p. 424], for example.) Let R be a non-
negative operator such that (T—R) is trace class and let 38 denote the set of operators 

{T-P: P^ 0, ¡ r - P l l i 35 i r - ^ H i } . 

In order to show that 38 is weak star compact it suffices to show that 38 is weak 
star closed. 

Let {T—Ra: x€A} be a net from 38 that converges to T—P in the weak 
star topology; thus, lim tr (T—Rx)X=tr (T— P)X for every compact operator X. 

tit 

It suffices to show that (T—P) belongs to 38. Let positive s and compact operator 
X b e given. Note that 

| t r ( T - P ) Z | = | t r [ ( r - P ) - ( r - 2 ? J + ( r - / ? I ) ] Z | S 

^,+ lT-RUXl 

provided GO/? where p belongs to A and depends on £ and X. It follows from the 
preceding inequalities that 

l i r -PI I , e + | | r - H | | a 

for the arbitrarily chosen e. Hence, (T—P) belongs to 3d and, thus, 38 is weak 
star compact. 

From elementary topology we know that any lower semicontinuous function 
defined on a compact set assumes its infimum. Thus, it suffices to show that 
f(A) = ||.¿iHx is lower semicontinuous on the space of trace class operators. Note that 

||/4||1 = sup {|tr(/4.Y)|: X is a compact contraction}. 

Since the supremum of any collection of lower semicontinuous function is lower 
semicontinuous, we conclude that f(A) is lower semicontinuous on the compact set 38. 
This completes the proof. 

Theorems 1 and 2 might lead the reader to conjecture that B + is always a trace 
class positive approximant for T=B+iC, B*=B, C*=C. Such a conjecture is 
false, as we demonstrate. Define T by 

'-[i-iHi] 
and note that B+ qJ. It is routine to determine that the spectrum of \T—B+\ 

is {((3 + y1")/2)1/2,((3-}/5)/2)1/2} and, consequently, I I T - 5 + H ^ t r ! 
Since ||7'||1=2, we see that the zero operator is closer to T than B+ is. 
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3. Main results. Note that T in the counterexample at the end of the preceding 
.section is not a normal operator. If T is normal then there is a simple trace class 
positive approximant. 

T h e o r e m 3. If A—B+iC, B*—B, C*=C, is a normal operator satisfying 
•one of the conditions in Theorem 1 then B+ is a trace class positive approximant 
for A. 

P r o o f . It is clear that —B~+iC=A—B+ is a normal operator, and by 
Theorem 1 it is trace class. Clearly B~ and C are commuting self-adjoint trace 
•class operators and there is an orthonormal basis, say {ej}, that diagonalizes both 
operators. Let Zj be the eigenvalue of —B~+iC corresponding to the eigenvector 
•e3 for each j. Since B + —BE([0, where E( •) is the spectral measure for 
B, it is routine to see that B+ej=0 for every j. Thus, we have (Aej, ej) = 
.= ((-B-+iC)ej,ej)=ZJ. 

For any nonnegative operator R we note that 

WA-Rh ^ 2 \((A-R)ej, ej)\ = 2 l<-Jte^>+z,l ^ 2 = \A-B+ 
J j 

The preceding inequality proves that B + is a trace class positive approximant of A. 
It follows from the main theorem in [2] that B + is the unique positive approxi-

mant in the Schatten p-norm ||-||p, with p=2, for the normal operator A=B+iC, 
B*=B, C*=C. The next lemma shows that no statement like the preceding is true 
when the norm used is || • ||i. 

L e m m a 4. Let a, jS, y and 5 be positive numbers and define A by 

_ ("a+iy 0 1 
A ~ [ 0 fi-iSJ-

Two trace class positive approximcmts of A are 

( r e ^ ) + = [ o fi] a n d R = [e ft] 

where e is chosen to satisfy y(5se2>0 and a/J^e2. 

Proo f . By Theorem 3 we know that (re A)+ is a trace class positive 
approximant; thus, the || • ||x-distance between A and the nonnegative 2X2 
matrices is 

M - ( r e ^ | | 1 = ||[3; = y+d. 

Thus, it suffices to show that \\A—JiHiSy+i. Straightforward computations show 
that the spectrum of M - ^ ^ K ^ - i ? ) * ^ - ^ ) ] 1 ' 2 is 

{2 - 1 / 2 (52+y2+2e2 ± ((¿2+y2+2f2)2—4 [(y2+e2) (¿2+e2)—e2 (y -I- ¿)2])1/2)1/2}. 
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It follows that' 

M - J ? [ i = (tr|i4-Jl|)« = <52+y2+2fi2+^4[(y2+e2)(52+e2)-e2(y+<5)2] = 

= <52+y2+2y<5 = (<5+y)2. 
This proves the lemma. 

Theorem 5. Let A be a normal operator satisfying one of the conditions in 
Theorem 1. If the eigenvalues of A include z=tx+iy and w=fi—i5 with a, y, /?, 
then A does not have a unique trace class positive approximant. 

Proof . Write A as an orthogonal direct sum A0@At such that the spectrum 
of A0 is the set {z, vv}. Clearly the direct sum of. trace class positive approximants 
of A0 and Ax, respectively, is a trace class positive approximant for A. It follows 
from Lemma 4 that we can construct multiple approximants for A0 and, hence, 
for A. 

Before we are done we shall prove the converse of the preceding theorem. 
First, we must accumulate some appropriate basic results. The next lemma gives 
another circumstance in which (re T)+ is a trace class positive approximant of T. 

Lemma 6. Let T=B+iC, B*=B, C*—C, be an operator satisfying one of 
the conditions in Theorem 1. If B^O then B is a trace class positive approximant 
for T. 

Proof . Let {ej} be an orthonormal basis of eigenvectors for C and let Xj be 
the eigenvalue corresponding to ej for each j. If R is any nonnegative operator 
then we have 

ll^lli S 2 \((T-R)ej, ej)| = 2 l(((B-R)ej, e,»^]1'2 S j j 

£ 2 = 1CIK = «r-511,. ] 

This proves the lemma. 
By strengthening the hypothesis of the preceding lemma we get a uniqueness 

result. 

Theorem 7. Let T=B+iC, B*=B, C*=C, be an operator satisfying one of 
the conditions of Theorem 1. If B^O and Cs0 then B is the unique trace class 
positive approximant for T. 

Proof . Choose {ej} and l j as in the proof of Lemma 6, and note that B is a 
trace class positive approximant of T according to that lemma. For R any trace 
class positive approximant of T we have 

\\T-R\h §= 2 I(i.T-R)ej, ej)\ S |2 ((T-R)ej, ej)\ = 
j J 

= | 2 ({B-R)ej, ej)+i 2 ^ 2 h = HCfli = \\T-R\W. 
j i J 

12 
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Since equality must hold throughout the preceding inequalities, we have 

Hr-J?Dx = 12" ((T-R)ej, ej)| = | t r ( r - J ? ) | . j 

By the last part of Theorem 8.6 of [7, pp. 104—105], we conclude that e~w(T-R) 
is a nonnegative operator for 0=arg tr (T—R). The equality of the third and fourth 
lines in the earlier inequalities shows that tr (T—R)=iZ^j- Thus, we know that 

j 
— i(T—R)=—i(B—R)+C is a nonnegative operator. This implies that B—R—0, 
which is the desired conclusion. 
i The next theorem gives another situation where (re T)+ is the unique trace 
class positive approximant for T. 

Theorem 8. Let A=B+iC, B*—B, C*=C, be a normal operator satisfying 
one of the conditions in Theorem 1. If 0 then the zero operator 0 is the unique 
trace class positive approximant of A. 

Proof . Let {ej} be an orthonormal basis consisting of eigenvectors of A and 
let Zj be the eigenvalue corresponding to es for each j. Note that re zjS 0 for each j. 
If R is any nonnegative operator then we have 

№-.R| | s Z m-R)ej, e j ) | = £ I { z j - W J , <>j)I = j j 

= Z ej)-re Zjf+(im ztfY'* s j 

£ Z Kre Zj)2+(im ZjW = Z Ujl = 1MIU-
i 1 

This proves that 0 is a trace class positive approximant of A. 
Furthermore, if R is any trace class positive approximant of A then equality 

holds in each of the preceding inequalities. It follows that (Re}, e^)=Q for each j 
and hence, R must be 0. The uniqueness is proved. 

Before we can exploit Theorems 7 and 8 we need an elementary observation 
about matrices of operators. 

Lemma 9. If is a nonnegative operator on § 0 © § i Men B^O 

and D=0. 

Proof . Assume that there exists some / in such that Df^O, and define 
e by e={—y/\\Df\\2)Df where y is an arbitrary positive number. Note that 

This contradicts the nonnegativity of R and, thus, it shows that D—0. 
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Since 

for any / i n § l s it is clear that 5 ^ 0 . 
Using the results of 7, 8 and 9 we can prove a partial converse for Theorem 5. 

Theorem 10. Let A=B+iC, B*=B, C*=C, be a normal operator satisfying 
one of the conditions in Theorem 1. If the spectrum of A, denoted a (A), is contained 
in {z: either im z^O or re zs.0} then B + is the unique trace class positive approxi-
mant for A. 

Proof . Let E(-) be the spectral measure for A and define E0, Ex, A0 and At 

by E0=E({z: re zs=0}), Ey=E({z: rez^O, imzsO}), A0=AE0, A1=AE1. The 
hypothesis concerning a (A) shows that A=A0® Ax. According to Theorem 8, 
0 is the unique trace class positive approximant of A0; according to Theorem 7, 
the unique trace class positive approximant of Ax is (re Ax). It suffices to show 
that Z? + =0©re Ax is the unique trace class positive approximant for A. 

We use Theorem 8.7 of [7, pp. 105—106] in the first inequality below. If JR is a 
nonnegative operator then we have 

\\A-RW, S \\E0(A-R)E^1 + \\El(A-R)E1\\i = 

= \\A0-E0 HEy| ^ 

^\\A0\\1+\\A1-reA1\\1 = \\A-B+\\1. 

The preceding computation shows that B+ is a trace class positive approximant 
for A. Furthermore, if R is any trace class positive approximant for A then E0RE0=0, 
E1RE1= re A1 by the uniqueness of the approximants of A0 and Ax. It now follows 
from Lemma 9 that R=0©re A1=B+, which proves the theorem. 

Using Theorems 5 and 10 we characterize the normal operators that have a 
unique trace class positive approximant. 

Theorem 11. Let A=B+iC, B*=B, C*=C, be a normal operator that sat-
isfies one of the conditions in Theorem 1. There is a unique trace class positive approxi-
mant for A if and only if a (A) is contained in one or the other of the two sets 
{z: either i m z s O or rez^O}, {z: either imz^O or rez^O}. 

Proof . If o(A) is contained in the first set then it is immediate from Theo-
rem 10 that B+ is the unique trace class positive approximant of A. If a (A) is con-
tained in the second set then <r(A*) is contained in the first set and B + is the unique 
trace class positive approximant of A*. For any nonnegative operator R we have 
H ^ - ^ l l ^ l l ^ - ^ l l ! (by Lemma 8 of [10, p. 39], for example). It follows that B+ is 
the unique trace class positive approximant for A. 

12* 
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If A has a unique trace class positive approximant then Theorem 5 shows that 
A does not have eigenvalues in each of the sets {z: im z<0} and {z: imz>0}. 
Thus, the eigenvalues of A are contained in one or the other of the two sets 
{z: either i m z s O or rezsO}, {z: either i m z s O or rezsO}. According to Theo-
rem 1, A—B+ is trace class and so A is a compact perturbation of B+, that is 
A=B ++(A—B+). By Weyl's theorem A and B+ have the same Weyl spectrum. 
For each of these normal operators the Weyl spectrum consists of the points that 
are not isolated eigenvalues with finite multiplicity. Clearly the Weyl spectrum of 
B + (and, hence, the Weyl spectrum of A) is contained in the interval [0, Since 
both the Weyl spectrum of A and the eigenvalues of A are contained in one of the 
desired sets, we conclude that <r(A) is contained in one or the other of the sets indicated 
in the statement of the theorem. 
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Contractions weakly similar to unitaries. II 

LÁSZLÓ KÉRCHY 

In this paper we continue the study of contractions, weakly similar to unitaries, 
begun in [9]. Here we consider the case, when the characteristic function is not 
isometric a.e. on the unit circle, and prove the reflexivity of such contractions under 
a general assumption. Our paper is organized as follows. After giving the necessary 
definitions and notations in Section 0, we introduce the notion of weak similarity 
in Section I. Our main result is proved in Section 2, while in Section 3 we make 
some concluding remarks. The theory of contractions, elaborated by B. SZ.-NAGY 
and C. FOIA§ will be applied, the main reference is their monograph [12]. 

0. Definitions and notations 

If § is a (complex, separable) Hilbert space, then JSf (§) denotes the set of all 
(bounded, linear) operators acting on For an arbitrary subset si<z&(%i), Lat si 
stands for the lattice of invariant subspaces of si, while for an arbitrary set S of 
(closed) subspaces of Alg S is the algebra of operators which leave invariant 
each element of S. A subalgebra is called reflexive, if Alg Lat si=si 
(cf. [5]). 

For an operator Alg T denotes the weakly closed algebra generated 
by T and the identity. It is clear that Lat T= Lat Alg T. T is called reflexive, if 
Alg T is reflexive, i.e. Alg Lat T=Alg T. {T}' and {T}" denote the commutant 
and bicommutant of T, respectively, and Lat" T:=Lat {T}", Hyplat 2T:=Lat {T}'. 
If T is a completely non-unitary (c.n.u.) contraction, then 

H~(T):= {w(T): w£H~}, 

where H°° denotes the Hardy class of bounded analytic functions, and the Sz.-Nagy, 
Foia§ functional calculus is applied for T. 

Received November 19, 1984. 
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The contraction T££f($j) belongs to the class C u or C10, if for every non-zero 
vector we have 

lim JT"A| jt 0 * lim 
f|-»00 B-*» 

or 
lim \T"h\ jt 0 = lim ||r*nfc||, B—. oo o - w 

respectively. If T is a C u -contraction, then 

L a t x r : = {2R6Latr: r |2R€C u } 

is a lattice under set-inclusion as partial ordering, in which the greatest lower bound 
(i) 

" f | " is generally different from the intersection " D " . Hyplati r :=La t x Tf] 
fl Hyplat T is a sublattice of Latx T (cf. [8]). 

D will denote the open unit disc of the complex plane, C its boundary, 
and m the normalized Lebesgue measure on C. For a contraction TdSf (<£>), 
® r : = ( ( / - r * r ) § ) - and : = ( ( / - 2 T * ) S ) " denote its defect spaces, and 
(0 r(A), 35T, ®r*} its characteristic function in the sense of Sz.-Nagy and Foia§, 
i.e. A alters in D and 0 r(A)€JS?($ r , 35r,) is defined by 

0 T ( A ) = [ - 7 , + A ( / - 7 , 7 , * ) 1 / 2 ( / - ^ * ) ~ 1 ( ^ - R * R ) 1 / 2 ] | S R . 

Moreover, AT stands for the operator-valued function defined on C by the formula 

AT(eu) = [I-0T(eu)*0T(eu)}112-

( 0 T has radial limit a.e. on C.) 
If r e S " € . S f ( f t ) , then J(T, S) denotes the set of intertwining oper-

ators : 
S{T, S) = ft): XT = S*}. 

We say that T can be injected into S, and write T<S, if J(T, S) contains an 
injection; T is a quasi-affine transform of S, if S(T, S) contains a quasi-affinity, 
i.e. an injection with dense range; and T, S are quasi-similar, if they are quasi-affine 
transforms of each other. 

A system {§„}„ of subspaces of § is called to be basic, if §)„ + ( y §*) = § , 

for every n, and f l ( V (cf- I1!)-
n ksa 
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1. Weak similarity 

We begin by introducing the notion of contractions, weakly similar to unitaries, 
in a bit more general setting than in [9]. Namely, we give the following 

D e f i n i t i o n 1. The operators and are called weakly simi-
lar, if there exist basic systems {§„}„ and {ft,},, in § and ft, respectively, such that 
§„6 Hyplat T, St„€Hyplat S, and T\9)n is similar to for every ». 

is weakly similar to unitary, if Tis weakly similar to a unitary operator. 

R e m a r k 2. Weak similarity is clearly a weaker relation than similarity, but 
stronger than quasi-similarity. In fact, let P„ and Q„ denote the projections onto 
the subspaces §„ and St„ with respect to the decompositions § = § „ + ( V §*) 

k*n 
and ft=$i„+(V respectively. Now, choosing intertwining affinities 

k*n 
AniJ(T\$on, S\R„), for every n, and sequences {a„}„ and {/?„}„ of positive numbers 
such that 

Z<U4 . ! I I I -PJ<~ and 2MA^WWQnW n It 
we can define intertwining quasi-afflnities X£J(T, S) and J(S, T) by the 
equations 

Xf = 2 * n A n P n f ( /€§) and Yg = 2 P „ A ^ Q n g (gefl). 
n a 

The operator occurring in [9, Proposition 2] provides an example for a Cu -con-
traction which is not weakly similar to unitary. Since every Cu -contraction is quasi-
similar to a unitary operator, we obtain that weak similarity, is an actually stronger 
relation than quasi-similarity in the class of Cu-contractions. (Quasi-similarity was 
characterized in the class C u in terms of decomposibility by C. APOSTOL [1].) 

R e m a r k 3. In [9] a contraction T£JS?(§) is called weakly similar to unitary, 
if there exists a basic system {§„}„ consisting of hyperinvariant subspaces of T 
such that r | § „ is similar to a unitary operator U„££?(${„), for every .«. How- , 
ever, we can define a unitary operator U acting on the space S t = © as the 

n 
orthogonal sum Z7=© U„. Constructing an intertwining quasi-affinity X£J(T, U) 

n 
as in the preceding remark, an application of [8, Proposition 6] shows that 

=(X&„)~ € Hyplat U, for every n. Therefore, T is weakly similar to U, i.e. T is 
weakly similar to unitary in the sense of our present definition too. Hence the two 
definitions coincide. 

We recall that by [9, Theorem 4] a contraction T is weakly similar to unitary if 
and only if T is of class C u and its characteristic function 0 r is (boundedly) in-, 
vertible a.e. on the unit circle C. 
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We finish the discussion of weak similarity by the following 

P r o p o s i t i o n 4. Weak similarity is an equivalence relation in the class of 
C^-contractions. 

Proof . We have to verify only transitivity. So let us assume that T^ i f (£j), 
•Si i f (ft) and RaS? (2) are Cu-contractions such that T is weakly similar to S 
and S is weakly similar to i?. Then, there exist basic systems {§„}„ and {ftB}„ con-
sisting of hyperinvariant subspaces of T and S, respectively, such that c^(T|§„, 5|ftB) 
contains an affinity A„, for every n. Similarly, we can find basic systems {ft^}„ and 
{£„}„ formed by hyperinvariant subspaces of S and R, respectively, such that 
«/(S|ft^, i?|S„) contains an affinity B„, for every n. Since each of the above sub-
spaces is Cu -invariant, and the Cu-hyperinvariant subspace lattice of any C u -
contraction is countably distributive (cf. [8, Proposition 2]), we can easily verify 
that the subspaces 

u (1) 

K = V (ft,- n ftn+1-HyplatxS, n = 1 ,2, . . . , 
¡=i 

form a basic system in ft. (Cf. also [9, Lemma 7].) 
It follows immediately that the system 

R (1) 

{ « = v / r 1 ^ - n 

will be basic in Taking into account that the commutant {5}' splits into the direct 

sum { S y ^ S l f t J ' + i S I V we infer that ft,- nftR+^iCHyplati (5|ft,). This 
<i)' 1 

implies that yif^ft,. f | ft^^^Hyplati (r |§,) , and in virtue of the splitting {T}'= 
(i) 

= { W + { T | V we conclude ¿ r ^ i f l ftiUi-j)£HyPlati T. Since this holds j*> 
for every 1 S/ 'Sn, we obtain that §^£HyplatXT, for every n. 

n (1) 

Similarly, we can prove that the subspaces 2'„= V -8|(ft.n ftn+i-O^Hyplat! R, 
i = l 

n=1,2, . . . , form a basic system in 2. Since T\§>'n is obviously similar to for 
every n, we get that T and R are weakly similar. 

2. Reflexivity of contractions, weakly similar to tinitaries 

Our main result is the following 
Theorem 5. Let T be a c.n.u. contraction which is weakly similar to unitary. 

If there exists a function f€(ATL2(£>T))- such that 

(1) / l o g | |0T (e u ) f (e u ) | | dm(/) 
c -



Contractions weakly similar to unitaries. II 479 

then 
(i) ZT~(T)=Algr^{r}" , 

(ii) Lat T^La t , T, and 
(iii) T is reflexive. 

This theorem is a generalization of Wu's results (cf. [15, Theorem 3] and [16, 
Theorem 3.8]), who considered c.n.u. Cu-contractions with finite defect indeces, 
and is a counterpart of [9, Theorem 9], which is connected with contractions whose 
characteristic function is isometric on a subset of positive measure of the unit circle. 

The assumption J log || 0T (eu)f(eu)\\ dm (t) > - ( f e (A T L\T>T)) occur-
c 

ring in our theorem, implies that f(eu)^0 a.e. on C. Hence rank AT(e")^l, i.e. 
0T(eu) is not isometric a.e. on C. 

Conversely, let us assume that, for the c.n.u. Cu-contraction T, 0T(e") is 
not isometric a.e. on C. It follows that rank J r ( e ' ' ) = l a.e., and so the operator 
R of multiplication by eu on the space (ATL?(T>T))~ is unitarily equivalent to an 
operator of the form © M, , where C = a , r } a 2 3 . . . are Borel subsets of C and B 
M^ denotes the multiplication operator by eu on the space L2(a„, m). (Cf. [7, 
Lemma 1].) This implies that we can find a vector f£(ATL?(t>T))~ such that 
JR| V R"f£Cio- Then we infer by Lemma 9 to be proved later that 

(ISO 

/logll/fe'OII dm(t) 
c 

Let us assume in addition that 0 r has a scalar multiple. On account of [12, 
Proposition V. 7.1] this happens exactly when 

y*log 1II dm(t) <®. 
c 

Hence, taking into account that 

l | 0 T ( e W ) l l £ 
we obtain 

/ l o g I! ©r(e")/(e")ll dm(0 > - o = . 
c 

Since in virtue of [9, Remark 5] T is in particular weakly similar to unitary, the 
assumptions of our theorem are fulfilled. 

Therefore, taking also into consideration [9, Theorem 9 and Corollary 12] and 
that the question of reflexivity can be reduced to the case of c.n.u. contractions (cf. 
the proof of [2, Theorem 5]), we obtain the following 

Coro l l a ry 6. If T is a C^-contraction whose characteristic function ©T has 
a scalar multiple, then T is reflexive. If we assume in addition that T is c.n.u. and 
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0T(ei') is not isometric a.e. on C, then 

H°°(T) = Alg T ^ {T}" and Lat T ^ La i t T, 

while if 0T(e") is isometric on a set of positive measure, then 

H°°(T) ^ Alg T = {T}" and La tT = Lat t T. 

The proof of Theorem 5 follows the general outline of Wu's proof in [15]. 
The framework is the functional model of c.n.u. contractions. So we are starting 
by recalling some basic facts on model-operators. Since we are interested only in 
Cn-contractions we may restrict attention to contractive analytic functions whose 
values are operators acting in one Hilbert space. 

So let us given a purely contractive analytic function {0(A), G, (£}, where (E 
is a separable Hilbert space and 0(A)€JS?((S) for every A6D. The model-operator 
associated with 0 is defined in the following way. Let A denote the measurable 
operator-valued function defined by A(eu)=[I— 0(e")*0(e")]1 /8 , and let us con-
sider the Hilbert space 

= H2m®{AL2(f£))~ 

of vector-valued functions. The operator F£<S?(/72(G), Vw=0w®Aw 
(w£H2(<S$) will be an isometry, and the subspace VH2((E) of will be invariant 
under the operator i / + of multiplication by e" in . Then the model-space is by 
definition 

and the model-operator T~S(0) is the compression of U+ onto § : 
T=P6U+ 

where P& denotes the orthogonal projection of onto §>. 
U+ will be the minimal isometric dilation of T. The subspace 9?=(J L2 ((£))" 

reduces U+ to a unitary operator R= £/+|9?, called the residual part of T. Since 
FiT2((E)€Lat U+, it follows that P&U+ = TP6, and so the operator 
(2) Y=Pb 19? (=CP»|S)*) 
intertwines R and T: Y£J(R, T). Moreover, on account of [12, Proposition II.3.5] 
Y is a quasi-affinity if T is a Cn-contraction. 

By the Lifting Theorem there is a close connection between the commutants 
of U+ and T (cf. [12, Theorem II.2.3] and [13]). Namely, let us denote by {C/+}q 
the set of those operators in the commutant of U+ which leave invariant the sub-
space VH2(<&): {C/+}o={^€{C/+}': QVH2(<£)<zVH2(<&)}. Then the Lifting Theo-
rem says that the mapping 

7T:{U+y0~{T}', nQ = P6Q\% (26{C/+}i) 

will be a well-defined, contractive, surjective, algebra-homomorphism. 
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, Let us consider the matrix of an arbitrary operator $€{C/+}i with respect to 
the decomposition =#2((£)®9l: 

: Since Q commutes with U+, it follows that D£J{R, U+\H2(<£)). Taking into 
account that R is unitary and f | C/+#2(G)={°}> we deduce that D=0, i.e. 

1JS0 

9t€Latg. The relation QVH2(<&)czVH2(<&) implies that P 6 £=<2P 6 , where 
Q=nQ. Hence, considering restrictions onto the subspace 5R, we obtain 

(3) YC = QY, 
where C commutes with R. 

Now we prove a lemma on the model-operator T introduced above. 

Lemma 7. Let us given and Q=nQi{T}'. If T is a Cn-

contraction, then Q=0 is equivalent to C=0, and C£ {R}" implies Qi{T}". 
Moreover, ifT is weakly similar to unitary, then C€ {R}" and {7*}" are equivalent. 

Proof . If Tis a Cu-contraction, then the operator Y defined in (2) is a quasi-
affinity. Hence the intertwining relation (3) yields that Q and C are equal to zero 
simultaneously. 

Let us assume that C£ {/?}", and let us consider an arbitrary operator Q'€ {J}'. 
A' Since the mapping n is surjective, we can find an operator Q '= 

such that nQ'=Q' . In virtue of our assumption {#}" it follows that the operator 
Q":=QQ'~Q'Q£ {U+}'0 has a matrix of the form 

B' 

\A" 0 1 fA" 01 
[B" CC'-CC\-[B'' oj-

Therefore, on account of the first part of our lemma, proved before, we conclude 
that 7tg"=0. However, n being an algebra-homomorphism this yields that 0=7tg"= 
-QQ'-Q'Q, i.e. Q commutes with Q'. 

Let us assume now that T is weakly similar to unitary, Q(L {T}", and let us 
consider an arbitrary operator C'd {/?}'. On account of [9, Theorem 4] T belongs 
t6 Cn and 0T(e") is boundedly invertible a.e. on C. Let a „ c C be the measurable 
set a„={e": || «}> f ° r every n. Then {(*„}„ forms an increasing sequence 
such that m ( C \ ( U a , ) ) = 0 . Consequently, if xx denotes also the operator of 

n B 

multiplication by the characteristic function x of a„, then the sequence }„c {!?}" 
tends to the identity operator 7W in the strong operator topology. 
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For every n,, let Q„£{U+}' denote the operator whose matrix in the decom-
position ft+=i72(<S)©9l is the following 

A _ r . 0 0 1 
Q " - [ - C ' ( x , J 0 - 1 ) X*C'l 

Here xXn4 stands for the operator of multiplication by the bounded, measurable, 
operator-valued function Since for every w£H2((£) we have 

Q„Vw = QB(0w®Aw) = 0 ®(-C'xx„A0-10w+x,nC'Aw) = OffiO, 

it follows that QB€{U+Y0. Hence Qn=nQn<i{T}\ and so Q„Q=QQ„, for every n. 
In virtue of the first part of our lemma we conclude that 

z J C ' C ) = (X,„C')C= C(xXn CO = X.JCC') 

holds, for every n. Taking into account that {xa }„ converges to the identity, we 
obtain that 

C'C=CC'. 

Therefore, C belongs to {/?}", and so the proof is completed. 

In order to formulate our second lemma on the model-operator T we introduce 
the operator-valued function A+ (eu)=[I~ 0 (eu) 0 (e'')*]1/2. Then the operator R^, 
called the * -residual part of T, is defined as the multiplication by eu on the Hilbert 
space SR:t;=(id:)tL2(CE))~. The following lemma, which is a generalization of [16, 
Lemma 3.4] (cf. also [11]), is proved in [10]. 

Lemma 8. If T is a Cn-contraction, then the mapping 

(4) X(u®v)=-A*u+0v (u©u€§>), 

is a (well-defined) quasi-affinity, belonging to J(T, R*). Moreover, its product 
Z=XY£S(R, RJ with the operator Y, defined in (2), acts as a multiplication by 
0, i.e. 

(Zy)(e") = 0(e")v(eu) 

holds a.e. on C, for every v£ SR. 

Finally, we need two lemmas concerning absolutely continuous unitary 
operators. 

Lemma 9. Let U be the operator of multiplication by e" on the space 
where g is a Hilbert space, and for any non-zero vector h£Sk let Sth denote the invari-
ant subspace $ib= V V"h. Then the restriction C/|itA belongs to the class C10 if 

nsO 
and only if 

f !IMe")il dm(t) >-«. 
c 
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Proof . Let 5^,0 denote the linear manifold Rh:0={p(U)h:p(X) is.a complex 
polynomial}, and let us define the mapping V0: $th0—L2(C, m) by iyo(p(U)hj)(eit)= 
=P(eu)\\Heit)h- It is immediate that VQ is a (linear) isometry (hence well-defined), 
and so it can be extended to an isometry V(!Ji?(Rk, L2(C, m)). Since we evidently 
have V0(UIXh>0)=MV0, where M denotes the operator of multiplication by eu in 
L2(C, m), it follows that 

V(U\St„) = MV. 

This yields that ran Lat M and is unitarily equivalent to M|ran V. 
Therefore belongs to the class C10 if and only if so does the operator M|ran V. 
However, taking into account that 

r a n F = V M"\\h\\, 
nS 0 

we conclude that M|ran V£C10 holds exactly when 

f log \\h(e")\\ dm( i )> -<~ . 
c 

(Cf. the Szego—Kolmogoroff—Krein theorem in [6].) 

Lemma 10. Let be an absolutely continuous unitary operator, and 
let us consider an operator C€ {U}". If C leaves invariant a non-zero subspace 
9Jt£Lat {7 such that C/|9Jt£C10, then C is of the form C=8(U), where 8 is a func-
tion from 

Proof . Since C£ {{/}", we infer by the spectral theorem (cf. [4]) that C has 
the form C=8(U) with an appropriate function S£L°°(m). 

The assumption i/|93t£C10 implies that f/|9Jl is a unilateral shift. Consequently, 
the subspace fi=93i©C/9Jl is wandering for U, i.e. the sequence { { 7 " c o n -
sists of pairwise orthogonal subspaces. Let us consider the subspace 

9W = © U" 2, 
n= — oo 

which clearly reduces U. Taking into account that C€ {U}" we conclude that 
9Jl€LatC and 

Hence, we obtain that 
(5) <5(C/|2R)2Rc2R. 

Let us consider now the Fourier-representation of 9W, i.e. the unitary map 

tf>: 9JJ-L2(S), (4>( © U'ha))(e*) = £ eitnha 
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(h„£2, for every n). $ intertwines with the operator M€i?(L2(£)) ofmulti-
phcation by e": 4>(U\W)=M4>. This yields the relation 

(6) = S(M)$. 

Consequently, on account of (5) and (6) we infer 

8(M)H2(2) c H2(2), 

which implies that 5(LH°°, and the proof is finished. 

Now we are ready to prove our main theorem. 

Proof of Theorem 5. It is enough to show that Alg Lat T<zH°°(T). Indeed, 
then on account of the relations H°° (T)cAlg TcAlg Lat T it follows that 

H°°(T) = AlgT = Alg Lat T, 

hence T is reflexive. Moreover, in virtue of [9, Corollary 12] we obtain Alg TV {T}'\ 
and taking into consideration that Alg Latx T= {T}" (cf. the proof of [9, Proposi-
tion 13]) we conclude Lat TVLatxT. 

So let Alg Lat T be an arbitrary operator. We shall show that Q£H°°(T). 
On account of [12, Theorem VI.2.3] we may assume that T is a model-operator 
T=S(0), where {0(2), (£, (£} is a purely contractive, analytic function, outer 
from both sides. 

Since Q clearly belongs to Alg Lat" T, we infer by the reflexivity of {T}" 
(cf. [14]) that 

On account of the Lifting Theorem there is an operator ^ J i {U+}'0 

such that Q=nQ. An application of Lemma 7 gives that 

Ci{R}". 

In order to be able to apply Lemma 10 we have to show that C9Jlc2Jt for a non-
zero subspace SR€Lat R such that /?|9fl€C10. 

By the assumption there exists a vector /691 such that 

/log llg(e''')ll dm(t)>-~ 
c 

for the function g= Of. Now, on account of Lemma 8 we know that g is contained 
in 91*. Moreover, applying Lemma 9 we obtain that 

(7) *J9t„.,€Ci o, 
for the subspace 9 1 ^ = V R^. Then the intertwining relation R. X= XT, 

ni 0 
where X is the operator defined in (4), implies that the subspace fi=A'-191+.9 is 
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invariant for T. Since, by Lemma 8, X is injective, we see that T|fl can be injected 
into J?J5R*i9: 
(8) T \ Q < R ^ , g . 

We conclude by (7) and (8) that the operator T |£ is also of class C10. 
An analogous argumentation yields that the subspace 

a r t ^ y - i f i , 

where Y is defined by (2), is invariant for R and 

R\mcM. 

Since the non-zero vector / clearly belongs to 9Ji, it follows that 9JI is non-zero. 
On the other hand, ££Lat T and Alg Lat T imply 

£ € L a t g . 

Hence, the intertwining relation (3) yields that 

5016 Lat C. 

Now, we can apply Lemma 10 to obtain that C has the form C=5(R), with 
a suitable function 3 

Since the operator Y intertwines R and T too, we infer 

8(T)Y = Y8(R) = YC. 

Comparing this equality with (3) we conclude that 

<5 CT)r = QY. 

Consequently, taking into account that Y is a quasi-affinity we obtain 

Q - 5(T). 
The theorem is proved. 

3. Concluding remarks 

Under more general assumptions we are able to prove the following weaker 
version of part (i) of Theorem 5. 

P ropos i t i on 11. If T is a c.n.u. Cn-contraction such that 0T(e") is not iso-
metric a.e. on C, then 

H~(T) = Alg^r, 

where Alg* T denotes the algebra generated by T and the identity, and closed in the 
ultraweak operator topology. 



486 L. Kerchy 

Proof . First of all we note the elementary fact that if an operator S is similar 
to a normal operator N, then HSH s||iV||. Indeed, similarity preserves the spectrum, 
so if rs, rN denote the spectral radii of S and N, respectively, then we can write 
m=rH=r8*m. 

Let us assume now that is a c.n.u. Cu-contraction such that ©T(e") 
is not isometric a.e. on C. We can find an absolutely continuous unitary operator 
t / e i f (ft), which is quasi-similar to T(cf. [12, Proposition II.3.5 and Theorem II.6.4]). 
By a result of APOSTOL (cf. [1]) there are basic systems {§„}„ and {ft,,},, in § and ft, 
respectively, such that Lat T, ft„€Lat U and T\9y„ is similar to t7|ft„, for 
every n. Moreover, it can be achieved that the subspaces {ftn}„ are pairwise orthogonal, 
i.e. the decomposition ft=©ft„ reduces U. 

n 

Let us given an arbitrary function Since w(r|§„) is similar to the 
normal operator w(J7|ft„), we infer that 

1KDII S I K T m i l = |]w(r|§„)|l s Il»v(i7|ftn)|! = [lw(C/)|ft„||, 
for every n, hence 

||w(r)|| ssup||w(C/)|ft„| | = \\w(U)l n 

However, 0T(e") being not isometric a.e. on C, it follows by [7, Corollary 1] and 
[12, Proposition II.3.4] that a(U)=C, and so ||w(C/)|| = ||w||=. Therefore, we 
conclude that | |W(T)||S1|H>||co. Since the opposite direction always holds (cf. [12, 
Theorem III.2.1]), we obtain that 

MT)II - IMU, 

for every i.e. the Sz.-Nagy, Foia§ functional calculus is an isometry. But 
then on account of [3, Theorem 3.2] we get that 

H°°(T) = Alg+ T, 
and the proof is finished. 

It is left open whether the statements of Theorem 5 remain true under the 
assumption of Proposition 11, even in the case when T is weakly similar to unitary. 
The following example illuminates where difficulties arise. 

Example 12. Let {a„}"=1 be a sequence of pairwise disjoint Borel subsets of 
the unit circle C such that m(a„)»0, for every n, and 2 w(a„)=l. Let us choose 

n 
an arbitrary sequence {c„}7=i of positive numbers, where c„<l for every n, and 
for each n let us define a (scalar-valued) outer function 9„ by the boundary con-
dition 

I9„(e''0l = ^ ( e ' - ' H z c N ^ " ) a.e. 
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Let us consider a separable, infinite dimensional Hilbert space (£, and an ortho-
normal basis {e„}„ in <£. Then .{0(A), G, (£} will stand for the contractive, operator-
valued^ analytic function, whose matrix is 

[0 (A)] — diag (9„ (A)), A<=D, 

in this basis. We shall examine the model-operator 

T = 5(0) , 

which, of course, depends on the choice of sequences {<xn}n and {c„}„. 
Since 0 is outer from both sides, it follows that T is of class C u . Moreover, 

the identity 
IW)-1!! = 2 xXn(e»)c-\ n 

being valid a.e. on C, implies that T is weakly similar to unitary (cf. [9, Theorem 4]). 
Since (<dL2 ((£))" splits into the orthogonal sum (J L2 ((£))- = © (J,,Ls(gn))-, R 

where (£„ is the one-dimensional subspace of (£ spanned by e„, A„(e") acts on (£„, 
and An(eu)e„=(l-\9n(eu)\8)1/2e„, it follows easily that relation (1) in Theorem 5 
is satisfied with a vector f£(AL2((£))~ if and only if 0 has a scalar multiple, i.e. if 

oo> f log I©(e11)-1! dm(t) = 2 Cog c^)m(an) 

holds. Hence, Theorem 5 can be applied exactly when 

(9) 2 ^ ( a j l o g c , - 1 

n 

Let us examine now what the spectrum <R(T) of T is like. We know by [12, 
Theorem VI.4.1] that a point n of the unit disc D belongs to the spectrum if and 
only if 0 (n ) is not invertible, which is equivalent to the condition 

suplfy.GOl-1 

Taking into account that 

e x p j - ^ l o g c ^ . m i o o ] S \9M\~1 = exp[ / P r ( c p - t ) l o g c ; l d m ( t j \ s ; 

S E X P F I I J ^ - L O G C R - ^ M I A , , ) ] , 

where n=rei">, and PR denotes the Poisson-kernel, we infer that H£<T(T) exactly 

13 
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when the equality 
(10) sup [m (a„) log c"1] = 

n 

independent of //, holds. Since a(T) always includes the whole unit circle C (cf. [12, 
Theorem VI.4.1]), we obtain that a(T)=D~ or a(T)—C according to the case 
when (10) is fulfilled or not. 

Taking into consideration that the essential spectrum cre(T) of the Cu-con-
traction T coincides with its spectrum, we conclude that <re(T) is dominating in D, 
i.e. T is a (BCP)-operator (cf. [2]) if and only if (10) holds. But then [2, Theorem 1] 
also yields that the statements of Theorem 5 are true. (Cf. also the beginning of the 
proof of Theorem 5.) _ 

Summerizing, we have obtained that the statements (i)—(iii) of Theorem 5 
are valid if (9) or (10) are fulfilled, i.e. either if the sequence {m (a„) log c"1},, tends 
to zero fast enough or if it is unbounded. The intermediate case remains open. 

Added, in proof (December 10, 1987). In a subsequent paper, appearing in 
Acta Math. Hung. 50 (1987), further developing the methods of this work we 
succeeded in answering the question raised above. 
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Integral manifolds, stability and decomposition of singularly 
perturbed systems in Banach space 

V. A. SOBOLEV*) 

1. Introduction. This paper is dealing with the study of infinite dimensional 
singularly perturbed systems near an integral manifold. 

Consider the system 
x = f(t, x, y, e) 

(1.1) 
ey = Ay+sg(t, x,y,e) 

where x and y are elements of Banach spaces X and Y with norms || • ||, A is a con-
stant linear bounded operator in Y, and 

/ : 2 ? x X x r x [ 0 , e 0 ] - Z , g: RXXxYX[0,c0l - Y 

are continuous nonlinear operator functions. Using the method of integral mani-
folds [1,2] we shall study the stability problem for (1.1) and the problem of decom-
position of (1.1) by transforming it to the form 

(1.2) u = F(t, u, e), 

(1.3) sv = Av+sG(t, u, v, e). 

Then we shall apply this method for investigation of linear singularly perturbed 
systems. 

2. Slow manifold. We first recall the definition of an integral manifold for 
the equation x=X(t, x) where x is an element of a Banach space. A set S is said 
to be an integral manifold if for (t0, x0)£S, the solution (/, x(t)), x(tQ)=x0 is in 
S for t£R. If (/, x(t))£S only at a finite interval, then we shall say that S is a 
local integral manifold. 

*) This research was completed while the author was visiting the Department of Mathematics 
at the Budapest University of Technology. 

Received August'2,1984,.andin revised form August 4,1986. 
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Let Br={yiY, | | S r } , /^=[0, e0], Q = R X X x B r X l H - Assume that / and 
g are bounded and satisfy the Lipschitz condition in x, y on Q: 

(2.1) 1/0, x, y, 8)1 =S M, II g(/, y, 8)1 M, 

II f i t , X, y, e) - / ( / , X, y, e)|| =S/(lx-x||-H!>>-y||), 
(2.2) 

|g( ' , X, y, e)-g(t, x, y, 8)1 =5• J ( | * - x | + 

where M and / are positive constants. 
Assume that the spectrum a (A) of the linear bounded operator A satisfies 

the inequality Re a(A)^ — 2a<0. Then there exists a positive number K such that 

(2.3) S Ke—, t s 0. 

We shall say that the integral manifold of system (1.1) is a slow manifold if 
it can be represented of form y—h(t, x, e), where h is a continuous operator-func-
tion. If e0 is sufficiently small then for each e€(0, e0) the system (1.1) has an integral 
manifold (slow manifold) represented of form y—eh(t, x, e) (see [1], p. 438). Here 
A is a continuous and bounded operator-function defined on Q ^ R X X X I ^ and 
satisfies the Lipschitz condition in x: 

(2.4) \\h(t,x,e)-h(t,x,e)\\^A\\x-x\\, A>0. 

Moreover, if / and g are continuously differentiate on Q to k order and their -
derivatives are bounded and Lipschitzian in x, y then h is continuously differentiable 
on to k and its derivatives are bounded and Lipschitzian in x. In this case the 
operator-function h can be represented as asymptotic expansion eh=eh1(t, x) +... 
...+^hk(t, x)+hk+1(t, x,e) where hk+l=0(ek+1). The coefficients ht of this 
expansion can be found from the equation 

„ dh dh . 
(2.5) x> Bh>£) = A h + g ( i . *> eft. e)-

For finite dimensional systems this method of approximating slow manifolds 
was essentially used in [3]. The method of approximation used in [4] can .be gen-
eralized to infinite dimensional problems in an obvious way. 

The flow on a slow manifold is governed by the reduced equation (1.2), where 
F(t, u, e) = / ( / , u, eh(t, u, e), e). 

It is well-known for finite dimensional spaces X that the condition f(t, 0,0, e) =0, 
g(t, 0,0, e)=0 implies h(t, 0, e)=0 and if the zero solution of (1.2) is stable (asymp-
totically stable, unstable) then the zero solution of (1.1) is stable (asymptotically 
stable, unstable). We shall prove below this statement for infinite dimensional X. 

3. Integral manifold for auxiliary system. Let us suppose that / and g are con-
tinuously differentiable on Q and their derivatives are bounded and Lipschitzian 
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in x, y and introduce new variables u, z and xx by the formulae z=y~eh(t, x, e), 
xx=x—u where u satisfies (1.2). Consider the following auxiliary differential system 

u = F(t, u, e) 

ez = Az+eZ(t, u, xx, z, e), 

where fx =f(t, u+xx, z+eh(t, u+xx,e), e ) - F ( t , u,e), 

Z = g(t, m+XI, z+eh(t, u+xx, e), e ) - g ( i , u+xx, eh(t, «H-^, e), e ) -

- e | j ( i , u+xi, e)[ / ( i , u+xx, z+sh(t, u+xx, e), e)-/(/, u+xx, eh(t, u+xx, e), e)]. 

By means of our assumptions it is easy to show that there exists a constant 
0 such that fx and Z satisfy the following inequalities 

=S + ll^ll + ||z||] [ | |z-z| | + (1 +11*11) И * - хЛ ч-СИхжВ + Ы ) 1И-ЙЩ, 

(3.7) \\Z(t,u,xx,z,e)-Z(t,ü,xx,z,e)\\^N[\\z-n + \\zmu-ü^ + lxx-xxm, 

where t£R, и, й£Х, xx,xx£X, z,z£Bri, 0<r1Sr. 

We shall show that the system (3.1) has an integral manifold represented of 
form xx = sH(t, u, z, e), where H is an operator-function defined and continuous 

on Q2 = R x X x B e X l e , 0 < e S £ 0 l and H satisfies the inequalities: 1 K. 

(3.8) \H(t,u,z,z)\\ =M|z[l, 

(3.9) IIH(t, u, z, e ) - H ( t , u, z, e)| S b\z-z\\, 

(3.10) WHO, u, z, e)—H(t, й, z, e)|l c||z|| • | |ы-й||, 

with a,b,c>0 for t£R, и,й£Х, z,z£Bt, e€/£ l . 

The flow on this manifold is governed by reduced equations (1.2), (1.3), where 
F=f(t, u, eh(j, и, с), e), G=Z{t, u, sH(t, u, v, e), v, e). 

(3.1) = / i ( í , U, xx, z, e) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

ll/lO» "> Xx, Z, 8)|| S iVdl*! +I|z||), 

\Z(t,u,xx,z,B)\\^N\z\\, 

1 / l C , U, XX, Z, ¿ ) - f x ( t , U, XX,Z, 8)11 ^ ( l ^ - x j + llz-zl), 
\\Z(t, U, XX, Z, 8) -Z(t, u, xx, z, e)|| á N(\\xx - x j + | |z-z| | ) , 

\\fi(t, U, xx, z, e ) - f x ( t , й, xx, z, 8)11 S 
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Moreover, every solution of (1.1) with ^y(Q-zh{ t 0 , л(/0), е) | |ёо can be 
represented of form 

x = u+eH(t, u, v, e), 
(3.11) 

у = v+eh(t, x, e) = v+eh(t, u+sH(t, u, v, e), s), 

where u, v is the corresponding solution of (1.2), (1.3). 
Our proof of this statements is modelled on KELLEY [5]. 
Let 5 be the set of operator-functions sH: Q2-*X such that H is continuous 

and satisfies (3.8)—(3.10). Let d be a metric on 5" defined by 

d(eH, EH) = sup{-|i | -ei#(r, u, z, e)-H(t, u, z, s)|], t£R, u£X, z€£ e } 

for each E€(0, e j , EH, EH£S and note that S is a complete metric space with 
respect to d. 

For each SH£ S, we consider the system 

(3.12) й — F(t, u, e), 

(3.13) ez = Az+sZ(t, u, sH(t, u, z, s), z, e), 

with solutions denoted by и—Ф(1, i0, u0, S), z=W(t, t0, u0, z0, E\H) where 
«К'О.'О. "О. Е)=«О> У(h, 'о, "О. zo> s\H)=zQ. The operator-functions F(t,u,e), 
Z(t, u, EH(t, u, z, e), z, г) are uniformly bounded on their domains, hence, any 
solution of (3.12), (3.13) is defined for all t. 

As usually, (see [1,2,5]) the equality Xi=eH(t, u, z, e) describes an integral 
manifold for (3.1) if and only if the operator-function sH is a solution of the equation 

ЕЕ 

(3.14) еН(т, и, z, E) — — J Л(/, ФИ, т, и, е), £#(/, Ф(/, т, и, Е), 
т 

У( t , т, и, z, Е\Н), е), ¥(t, т, и, z, е |Я), E)dt. 

Let </;(?)=Ф(г, т, и, е), — т, и, z, г\Н) then by the "variation of constants" 
formula 

t 
ф(0 = e(im(t-r)z+ J e( i /£)A(,-s)Z(S j ^ ^ ^ d s 

t 

By (2.3), (3.3) and (3.8) there holds for all - < ~ < т | | z | | s e , e€(0, e j : 

t 
№(01 - [jzl + / tfe-(a/£)('-s>iV|]«Ks)|| ds. 

X 
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Therefore, by Gronwall's Lemma, we obtain 

(3.15) - » < t S / < » , 

where ct l=a—EKN^y^'0 for sufficiently small ea. 
Mow define an operator T on S by setting 

oo 

(3.16) T(H)(r, u,z,e) = - I A(t, 4>(/), eH(t, (p(t), (i), e), Ф(t), e) dt. 
T 

The improper integral here converges by virtue of (3.2), (3.8) and (3.15). It is clear 
that T[H) as defined in (3.16) is continuous on Q2. Also, by (3.2), (3.8) and (3.15) 
we obtain 

00 NK 
\\T(H)(T, U, Z, e)|| ^ f N( 1 +ea)Ke-(*>||z[| dt = e — ( 1 + s a ) ||z||, 

/ «1 

NK 
and therefore T(H) satisfies the boundedness condition required by (3.8) if < 1 

«i 
NK If NK\ 

and as= /11 —e 1. 
«1 / v ; 

To prove that T(H) satisfies the conditions, required by (3.9), (3.10) we reason 
as follows. Let u f X , z,z€Be, ф^Ч'О, т, и, z, е|Я). Then, by (3.5), (3.9), (2.3) 
a:nd by the "variations of constants" formula we have 

t 
Н(1)~ФЛ')1 / Ke~^l^-s)N(l + eb)j|ф(s)-фг(s)|j ds. 

t 

Therefore, by Gronwall's Lemma, we obtain 

(3.17) UiO-MOW K e - ^ W - ^ W z - z l , — t § / < 

a2 = tx-eKN(l+eb). 

Then, by (3.4), (3.9) and (3.17) 
oo 

|Г(Я)(т, и, z, e) — T(H) (T, u,z,e)|| S / N(l +eb) H^(0-^xC0il dt 
t 

S e ( l+£b) | |z -z | | a 2 
It is clear that for sufficiently small % a constant b can be choosen such that oc2>y 

K2N 
and (1+е г£)^6. From this inequality it follows that T(H) satisfies the 

«2 
Lipschitz condition required by (3.9). 

In exactly the same way by the inequality 

I Ф(/, т, и, Е) — Ф ( / , т, w,.e)|| S — »< т Ё/<ОО 
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and (3.10), (3.7) and (3.6) it is easy to show that for some c > 0 and sufficiently 
small Ej the operator-function T(H) satisfies the condition (3,10). Now, let eH, eH£ S, 
ij/z(t) = 4>(t, т, u, z, e\H). Then by (3.4) and (3.9) 

(3.18) | |Г(Я)(r, u, z, e)—T(H)(x, u, z, e)| S 
CO 

^ / iV[(l +eb) \\Ф0)—ФЖ)\\ +e | | # ( i , <р(г), Mt), e)-H(t, <p(t), фг(t), e)||] dt s 
X 

oo 
S / iV[(l +eb) U(t) - ф М \ + Ке-Ы*'-* || z|| d(EH, EH)] dt. 

Z 

Using (3.5) and (3.9) we find that 

11^(0-^2(011 ^ 
t 

25 / Ke~(ot/£){'~z)N[(l +eb)\\ijj(s)—ij/2(s)l +Ke~^t-3)\z\d(EH, eH)]dt. 
t 

Substitution of this into (3.18) yields 

y L ЦГ(Я)(т, и, z, e) - Г ( Я ) ( г , и, z, e)|| S £ — f ( l +ЕЬ) l l d(sH, EE). 
||z|| у I a2-y J 

From this last inequality it easily follows that T is a contraction mapping if ег is 
sufficiently small. 

Thus, Г is a contraction mapping of 5 into itself and so, by the known Banach 
Contraction Principle, T must have a unique fixed point EH^S. The operator-
function eH is a solution of (3.14) and, therefore, the equality xx=EH(t, и, z, e) 
represents an integral manifold for (3.1). The flow on this manifold is governed by 
(1.2), (1.3) where 

F=f(t, u, eh(t, U,E), E), G = Z(t, u, eH(t, u, v, E), v, e). 

4. Decomposition and stability. Our next object is to obtain the representation 
(3.11). Let x-x(t), y=y(t) be a solution of (1.1) with X ( / 0 ) = A ' 0 , y(to)=y<» 
| |^0-£/i(i0 , xQ, e)|| ̂ Q. We shall show that there exists a solution u=u(t), u(t0)=uQ, 
v=v(t), v(tQ) = v0 of (1.2), (1.3) such that 

x(t) = u(t)+sH{t, u(t), v(t), E), 
(4.1) 

y(t) = v(t)+eh{t,x(t), £). 

It is sufficient to show that (4.1) holds for t=t0. Substitution t=ta into 
(4.1) yields 

= u0+EH(t0, u0, v0, £), y0 = v0+eh(ta, x0, E) 
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and, therefore, v0=y0—eh(t0, x0, e). For u0 we obtain the equation 

(4-2) x„ = u0+eH(t0, u0,y0-eh(t0,x0,e), e). 

This last equation can be represented of form 

"о = P(u0 , e) = х 0 - е Я ( / 0 , m0, y0-eh{t0, *o>£), «)• 

From (3.10) it is easy to obtain that for each £6(0, EJ and fixed x0, y0 such that 

||y0—£Й(?0,ХО5£)11 — » P is a contraction mapping of X into itself and so, SyC 
by the Banach Contraction Mapping Principle, P must have a unique fixed point 
u0€X which is the required solution of (4.2). 

Now, we consider the stability problem for (1.1). Using (4.1) we obtain that 
every solution x=x(t), y=y(t) with |]>-0—е/г(/0, x0, s)|| SQ can be represented as 

x(t) = uiO+cp^t), 
(4-3) 

y(t) = eh(t,u(t),e) + (p2(t), 

where (u( t ) , eh(t, u(t), s)) is a solution lying in the manifold y=eh(t, x, e); <pL= 
= sH{t, m(0, v(t), e),cp2 = v(t)+eh(t, u(t)+eH(t, u(t),v(t),e), s)-eh(t, u(t), e). This 
and (2.4), (3.8) and (3.15) allow us to write 

1^(01 еаКе-ЫМ-^Ы, 
(4.4) 

11 (̂011 s (1 +е*аА)Ке-Ы*'-'о>\\ио1 

«€(0,«!], ts=t0, v0 = y0-eh(t0,x0, E). 
Assume that f(t, 0,0, £)=0, g(t, 0,0, E)—0; then h(t, 0, E)=0 and F(t, 0, E)=0. 
By (4.3) and (4.4) we obtain 

| |x(0|| 'S |]и(0|| 

ЦЯ011 Si eA ||И(0|| +(1 +£2аЛ)*е-<^<'- 'о>к| | , i S i 0 . 

From this last inequalities it easily follows that if the zero solution of (1.2) is stable 
(asymptotically stable) then the zero solution of (1.1) is stable (asymptotically stable). 
It is obvious that the instability of the zero solution of (1.2) implies the instability 
of the zero solution of (1.1). 

Now, we can summarize our results in the following 

T h e o r e m 4.1. Let f and g in (1.1) be continuous, bounded and satisfy (2.1), 
(2.2) w j RXXxBrXl^: let us assume that the spectrum of the linear bounded oper-
ator A satisfies Re a{A)^ — 2 ж 0 . Then theie exist numbers sx and Qx such that 
the following assert at ions are true: 
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(i) For each c€(0, e j , g£(0, gx) and t0 there exists for (3.1) an integral manifold 
represented by an equation of form xx=eH(t, u, z, e) where H is an operator-function 
defined and continuous on RXXXBeXlCi and, moreover, H satisfies (3.8)—(3.10). 

(ii) Every solution x=x(t), y=y(t) of (1.1) with x(t0)=x0,y(t0)=y0, 
li^o-£Й('о> ;r0, can be represented of form (3.11), where u = u(t), u(t0)=u0 

is a solution of (1.2), u0is asolution of (4.2); v—v(t) is a solution of'(1.3) with u = u(t), 
v(t0)=v0=y0-Eh(t0,x0,e). 

(iii) If f(t, 0, 0, e)=0, g(t, 0, 0, £)=0 and the zero solution of (1.2) is stable 
(asymptotically stable, unstable), then the zero solution of (1.1) is stable (asymp-
totically stable, unstable). 

Note, that in the proof of this theorem we did not use the boundedness of A. 
So, Theorem 4.1 can be extended onto the system (1.1) with an unbounded operator 
A, if A is the generator of a strongly continuous linear semigroup S(t) such that 
| |S'(/)||^*e-M, t s 0 . 

It should be observed that similar problems for systems with unbounded oper-
ators were studied in [2, 6]. 

The next result shows that, in principle, the operator-function H can be approxi-
ЪН 

mated to any degree of accuracy with respect to e. Let D(eH)=e—— 
at 

дН &H 
Fit, u, e)+—{Av+eZ(t, u, sH, v, i))-fx(t, u, cH, v, e). If Z ) (еЯ) -

= 0 ( e * + 1 ) then \\H-H\\ = 0(t*). 
The^idea of the proof of this statement is very simple. Let us introduce a new 

variable^x2 =x1 — sH(t, u, z, e); then for u, x2, z we obtain the following system 

" = f0, u, £ ) , 

*2 =fi(t,U,X2,Z,E), 

EZ = Az+eZ(t, u, X2+EH, Z, E), 

dH where fx=fx{t, u, x2+EH, z, £)-fx(t, и, EH, Z, £ ) -£ — - [Z(t, u, X2+EH, Z, £ ) -
oz 

—Z(t,u,eH,z,e)], EH=eH(t,u,z,E). This last system has an integral manifold 
x2=eHk+x(t, it, z, s) such that Ht+J=0(£). It means that the system (3.1) has 
the integral manifold xx=EH(t, u, z, ¿)=eH{t, u, z, £)+0(e*+1). 

In many problems, Я can be found as asymptotic expansion 

£ Я = £Я1(/, и, v) + ... +Е*Я*(/, U, v) + 0(Ek+1) 

from the equation £>(еЯ)=0. Note, that u0 can be found as asymptotic expansion 

"o = "o(e) = »o+^o+.- .+^Ko+O^" 1" 1 ) 
from (4.2). It is easy to see that u\= — Hx(t0, xa, y0). 
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5. Linear systems. Consider the following system 

*1 = ^11*1+^12*2+/l, 
(5.1) 

£X2 — /421*1+^22*2-1"^» 

where Xi, fi=fi(i,B) vary in the Banach space Xt, and Au=Ai}(t,e) are operator-
functions Au: Xj—Xiii, J =1,2). Assume Au and ft to have high order continuous 
and bounded derivatives with respect to t and e, for t£R, e£[0, e0]. Therefore, they 
can be represented as asymptotic expansions 

AtJ = Ai? (t)+eAtf (/) + ... +ekAtf (/)+0(ek+1), 

ft = fim 0)+e/i(1) (0+• • • + ekfi(k) (0+O (ek+1) 
with smooth and bounded coefficients. 

Let us suppose that the family Aj$(t), t£R, is compact, the spectrum c(A<$) 
of A(

22(t) satisfies the inequality 
(5.2) Re e(A$) ^ - 2 a < 0, t£R 
and there exists bounded operator t ^ ] - 1 . Under such assumptions there exists a 
transformation 

Xi = u+eH(t, e)v, 

x2 = v+L(t, e)x1 + l(t, e) = (/+sLH) v+Lu + l(t, e), 

analogous to (3.11) for the linear case. The new variables u, v satisfy the equations 
(5.3) u = (A11+A12L)u+f1+A12l, 

(5.4) ev = (A22-eLA12) V. 
The operator-functions L, H and the function I can be found from the equations 
(5.5) £l+£Z,(^u+/41 2L) = A21+A2SL, 

(5.6) sH+H(A22-eLA12) = e(A11+A12L)H+Ali, 

(5.7) el+eLf1 = (A22-eLA12)l+f2 

as asymptotic expansions L=Lm(t)+eLm(t) + ... +ekLik)(t) + 0(ek+1), 
H = Hw(t)+eH™(i) + ...+£k-1H(-k-i'>(t)+0(f!1), 

I = /«» (t)+ei(1) (0+• • • + e*/(k) (t)+0 (e*+1). 

It is a straightforward computation to obtain expressions for L(0, H{i), /(i) from 
(5.5)—(5.7). 

Note that L is a bounded solution of the Riccati equation (5.5) on R and, there-
fore, satisfies the integral equation 

2 * L(t, e) = — f U(t, s, e)[^2l(s, e)-eL(s, e)(/4u(s, e) + Aia(s, e)L(s, £))] ds, 
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where U is the evolutional operator of the equation EX2—A 22 x2. Using (5.2) and 
the compactness of A$( t ) we obtain 

(5.8) || U(t, s, e)|| 2= Ke-Wt)U~s\ - <*=< s t < 

For H and I we have the exact expressions 

j ~ • 
H = f V(t,s,e)A12(s,e)JV(s,t,e)ds, 

e J 

1 ' 
l = — J W(U S, S ) [ / 2 ( S , E) - eL(s, еШз, £)] ds, 

— 0 0 

where V is the evolutional operator of the equation x1=(A11 + A12L)Xl and W is 
the one of the equation ЕХ2=(А22—ЕЬА12)хг. The improper integrals here con-
verge by virtue of (5.8). As earlier, the stability of (5.3) is equivalent to the stability 
of (5.1). 

In conclusion it should be noted that the stability and decomposition problems 
for finite dimensional systems were considered in [7]. 
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Erratum to "A generalization of a theorem of Dieudonne 
for /c-triangular set functions"1) 

E. PAP 

The following unfortunate mistakes appeared in this note. 
1. Lemma 1 is true in the given form only for A:Si (what is sufficient for the 

proof of Theorem 2). In the case 1 only 

A i ( U Z K O j ) j=1 y=2 

holds instead of 

j=i j=i 

consequently the proof also needs some appropriate modifications. 
2. The last two sentences of the proof of Theorem 2 on the page 165 should 

be replaced by "Applying the preceding proof for k > 1 we can verify Theorem 2 
for this case, too." 

3. On the page 165, 10th row from below, "\v(A)-v(A')\^e" should be 
replaced by " |n(A)-n(A' ) \<e" . 

4. On the page 162, in Lemma 2, should be replaced by 
"| |xu | |>0". 
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Bibliographie 

Donald J. Albers—G. L. Alexanderson—Constance Reid, International Mathematical Congresses. 
An illustrated History 1893—1986, Revised Edition, 64 pages, Springer-Verlag, New York—Ber-
lin—Heidelberg, 1987. 

This is a nice picture book covering the "World Congress" in Chicago, 1893, and all the Inter-
national Congresses of Mathematicians beginning with the first in Zürich, 1897, and ending with 
the latest, the twentieth one in Berkeley, 1986. Each congress receives two pages (plus, in connec-
tion with his famous address in Paris, 1900, Hilbert himself an extra two) with three to five photos 
or drawings of illustrious mathematicians, alone or together, who played outstanding roles at the 
given congress or of characteristic buildings. It is the pictures that make the book nice. Not much 
can be said about the text. Using (sometimes fragmentary and irrelevant) citations, it tries to give 
a "feeling" of the given congress. The aspect of "the first American" of the three American authors 
pops up in an inordinate frequency. There are nine pages with the photographs of all Fields Medalists 
and a list of all the plenary lectures from 1893 to 1986. 

The original edition of the book has been distributed during the Berkeley Congress. As it 
is made clear in Czeslaw Olech's Opinion [The Mathematical Intelligencer 9 (1987), 36—37], the 
present revised edition has become necessary mainly because of protests, including his own in 
the same Opinion, against "an unfair description of the previous Congress in Warsaw" in the original 
edition. 

Sándor Csörgő (Szeged) 

Hans Wilhelm Alt, Lineare Funktionalanalysis. Eine Anwendungsorientierte Einführung (Hoch-
schultext), IX+292 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. 

The material of this book is based on the lectures in linear functional analysis held some 
years ago at Bonn University for students in the fifth semester. The book consists of an introductory 
part, ten chapters and three supplements. The text gives an introduction to the study of Banach 
and Hilbert spaces, linear functional and the most important classes of linear operators. The sup-
plements deal with measures, integrals and Sobolev spaces.-At the end of the book the spectral 
theory of compact normal operators can be found. All of the chapters end with exercises and their 
solutions. 

The book is highly recommended to students who are interested in functional analysis and its 
applications in physics. 

L. Geher (Szeged) 

14 
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Analytic Theory of Continued Fractions, Proceedings Pitlochry and Aviemore, Scotland, 1985. 
Edited by W. Y. Thron (Lecture Notes in Mathematics, 1199), HI+299 pages, Springer-Verlag, 
Berlin—Heidelberg—New York—London—Paris—Tokyo, 1986. 

In the last decades special attention is paid to the new results in the theory of continued frac-
tions. The success of the workshop held in Loen, Norway in 1981 speaks for itself. Therefore a 
second workshop was arranged in Pitlochry and Aviemore, Scotland in 1985. This proceedings 
volume is thus the successor of Lecture Notes in Mathematics, Vol. 932. 

This volume contains a survey article entitled "Schur fractions, Perron—Carathéodory frac-
tions and Szegő polynomials" by W. B. Jones, O. Njástad and W. J. Thron and thirteen original 
research papers. The introduction of the survey article presents historical comments with a limited 
list of references. Two main topics are treated in the research papers. The first one is the convergence 
theory of continued fractions, the second one is the investigation of various types of continued 
fractions useful in solving Stieltjes, Hamburger and trigonometric moment problems. In general 
the articles give applications from different branches of mathematics. Perhaps the volume would 
have been more interesting if some of the papers had contained open questions or conjectures in 
explicit form. 

L. Pintér (Szeged) 

D. F. Andrews—A. M. Herzberg, Data: A Collection of Problems from Many Fields for the 
Student and Research Worker (Springer Series in Statistics), XX+442 pages, Springer-Verlag, 
New York—Berlin—Heidelberg—Tokyo, 1985. 

The ultimate aim of Statistics is to provide methods and tools for the analysis of real data. 
In this very useful book the authors collected a great number of concrete real data sets. There are 
seventy-one concrete problems presented in the book with data sets given in 100 tables and 11 
figures. For each data set the source or sources of the data are given with a description by the authors 
or by a contributor who supplied the data. No direct reference to any particular type of analysis 
is given: the student or researcher may try his/her arsenal of tools for the analysis. Some of the data 
sets are well known, such as the last century data on the number of deaths by horsekicks in the 
Prussian Army (the name of L. von Bortkiewicz, to whom the horsekicks belong, is written all 
four times erroneously as Bortkewitsch: the authors did not always go back to the original source), 
the Fisher Iris data (with which the collection starts), the Canadian lynx trappings data, tlje coal-
mining disasters data, the Federalist Papers data, or the Stanford heart transplant data. The majority 
of the data sets, however, is relatively new and unknown to a wider statistical public and is very 
interesting. The authors have invested a great care into the organizational work and the uniformiza-
tion of the presentation. The result is a splendid volume of great interest, completely unique in 
its kind and a great service to the international statistical community. 

Sándor Csörgő (Szeged) 

Astrophysics of Brown Dwarfs. Proceedings, Fairfax, 1985, Edited by M. C. Kafatos, R. S. Har-
rington and S. P. Maran, 276 pages, Cambridge University Press, Cambridge—London—New 
York—New Rochelle—Melbourne—Sydney, 1986. 

This book includes the scientific papers presented at a Workshop, held at George Mason 
University, Fairfax, Virginia, in 1985. 

The term "brown dwarf" is a boundary class of stars that are partially supported by nuclear 
burning and partially by thermal cooling. These objects, "super-Jupiters", bridge the range of 
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masses between planets and normal stars. The mass of the brown dwarfs is less than 0.08 solar 
mass, and their surface temperatures are expected to be 1000—2000 K. 

The book consist of two parts. In the first one the experimental works are presented. The 
observation of brown dwarfs is very difficult, owing to the faintness of these objects, and only one 
definite object has been found so far. The articles about the systematic search for a very nearby 
solar companion ("Nemezis" or "Shiva") are especially interesting. In the second, theoretical part 
aspects of planetary interior physics are extended to higher densities and pressures. The brown 
dwarfs are of great importance in the stellar evolution theory. 

Presently, in the topic of the brown dwarfs there are more theories than objects. However, 
with the help of space telescopes and infrared techniques the detection of numerous stars of this 
kind are likely to be discovered soon. 

K. Szatmary (Szeged) 

Werner Ballmann—Michael Gromov—Viktor Scbroeder, Manifolds of Nonpositive Curvature 
(Progress in Mathematics, Vol. 61), 263 pages, Birkhauser, Boston—Basel—Stuttgart, 1985. 

This book is based on four lectures given by Mikhael Gromov in February 1981 at the College 
de France in Paris. The presentation is due to Viktor Schroeder who made a coherent text by writing 
down all the proofs in complete detail. He also added some background material to Lecture I and 
exposed the basic facts on symmetric spaces needed for Lecture IV. The articles included in this 
book summarize the recent progress of the theory of manifolds of nonpositive curvature. The lectures 
are: I. Simply connected manifolds of nonpositive curvature, II. Groups of isometries, III. Finiteness 
theorems, IV. Strong rigidity of locally symmetric spaces. The further papers are: Manifolds of 
higher rank (by W. Ballmann); Finiteness results for nonanalytic manifolds, Tits metric and the 
action of isometries at infinity, Tits metric and asymptotic rigidity, Symmetric spaces of non-
compact type (by V. Schroeder). 

Peter T. Nagy (Szeged) 

J. L. Berggren, Episodes in the Mathematics of Medieval Islam, 97 figures and 20 plates, IX+197 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986. 

Many people know today that some mathematical terminologies have their origin in the 
medieval Islamic (or Arabic) civilization, such as algebra and algorithm. It is also well known 
that several ancient Greek mathematical and philosophical works became known for the Renaissance 
Europe via Arabic translations, but we know very little about the original Islamic mathematics: 
"no textbook on the history of mathematics in English deals with the Islamic contribution in more 
than a general way" as the author writes. This is unfortunate because they made important con-
tributions to the development of decimal arithmetic, plane and spherical trigonometry, algebra 
(e.g. solving cubic equations) and interpolation and approximation of roots of equations. 

The aim of the present book is to make an attempt to fill this gap. In spite of that it is not 
and cannot be a "General History of Mathematics in Medieval Islam", we are sure that this volume 
is a very important contribution to the subject. 

In an introductory chapter the reader gets acquainted with the Islam's reception of foreign 
science, the four most famous Muslim scientists: Al-Khwarizmi, Al-Biruni, 'Umar al-Khayyami 
and Al-Khashi, and the most important sources. The other chapters deal with arithmetic, geometrical 

14» 
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constructions, algebra, trigonometry and spherics. Each chapter is followed by a set of exercises 
and a bibliography. 

We recommend this book primarily for students and teachers of mathematics, but everybody 
interested in the history of mathematics can read this well-illustrated book with joy. 

Lajos Klukovits (Szeged) 

Arthur L. Besse, Einstein Manifolds (Ergebnisse der Mathematik und ihrer Grenzgebiete, 
3. Folge, Bd. 10), XII+510 pages, Springer-Verlag, Berlin—Heidelberg—New York—London— 
Paris—Tokyo, 1987. 

This book is intended to be a complete reference book of the differential theory of Einstein— 
Riemannian manifolds. In the author's opinion the Einstein metrics are the best candidates for 
nicest geometric structures on a given manifold which are very natural generalizations of Euclidean 
and classical non-Euclidean spaces. These manifolds have close relations with the geometries of 
constant curvature, but they have non-necessarily transitive isometry groups and thus their geometric 
properties can reflect characteristic non-homogeneous features. The indefinite semi-Riemannian 
analogies of these spaces are of basic importance in the modern physical space-time theory. 

The book .provides a self-contained treatment of many important topics of Riemannian geom-
etry presented in a textbook for the first time, such as Riemannian submersions, Riemannian func-
tional and their critical points, the theory of Riemannian manifolds with distinguished holonomy 
group and Quaternion-Kahler manifolds. The central chapters of the book are devoted to the 
study of questions related to the Calabi conjecture made in 1954, whose solution given by S. T. Yau 
and T. Aubin in 1976 yields a large class of non-homogeneous compact Einstein manifolds. Cor-
responding to this conjecture the main problems treated in this book are related to the existence 
and uniqueness questions and principally to finding interesting examples of Einstein metrics. The 
book contains the formulation of the main open problems of this theory. 

This excellent book is warmly recommended to everyone interested in Riemannian geometry 
and its applications in mathematical physics. 

Peter T. Nagy (Szeged) 

J. Bliedtner—W. Hansen, Potential Theory, An Analytic and Probabilistic Approach to 
Balayage (Universitext), XIII+434" pages, Springer-Verlag, Berlin—Heidelberg—New York— 
Tokyo, 1986. 

Recently much attention has been paid to stochastic processes in modern analysis. The classical 
example is potential theory. Suppose we want to solve Dirichlet's problem in a domain U with 
smooth boundary dU, and / : dU—R is the continuous function we want to extend to U to a har-
monic function. If {-Jf'*'} is a two-dimensional Brownian motion starting at U and t]—t}(co) 
is the first time when {¿'/"(co)} hits dU, then u(x)=E(f(X<

n
x>)), the expectation of the random 

variable / (^ (¿ ) (®) ) . solves the problem. In fact, it follows from the Markov property of {X,} 
that u possesses the mean value property in U and it is clear that if x£ U is close to y€dU then 
{X?x)} will hit a fixed neighbourhood (on dU) of y with high probability, so «'-has/as its boundary 
function. 

The same idea works in many other classical problems. The book under review is devoted 
to the study of general balayage theory which is at the heart of these applications. The central objects 
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are the so called balayage spaces which are certain closed function cones with the property that if 
u, j f , if are in the space and uSo'+t", then u has a representation u=u'+u", u'Sti', u" 
These spaces occur in different chapters in different equivalent forms as families of harmonic kernels, 
sub-Markov semigroups and aS'Hunt processes (regularized Markov-processes). 

The authors .were very careful.to.;clarify the abstract notions and results through concrete 
examples such as classical potential theory, Riesz potentials,- discrete potential theory, translation 
on R and heat conduction in Rn. These relax the abstract setting; still one may-encounter the usual 
drawbacks of too much generality when trying to use the book as a "Universitext". I feel that it 
is more appropriate to recommend this work to those who have past experience with both classical 
potential theory and stochastic processes. Then the new examples and different approaches of the 
book can be refreshing. 

For further orientation here is a characteristic list of section headings: Classical Potential 
Theory, Function Cones, Choquet Boundary, Laplace Transforms, Supermedian Functions, Semi-
groups and Resolvents, Hyperharmonic Functions, Harmonic Kernels, Minimum Principle and 
Sheaf Properties. Markov Processes, Stopping Times, Balayage of Functions and Measures, Dirichlet 
Problem, Partial Differential Equations, Bauer Spaces, Semi-Elliptic PDE, Elliptic-Parabolic Dif-
ferential Operators. - . . ' • . 

' . Vilmos Totik (Szeged) 

Umberto Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler 
to Weierstrass, 332 pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris— 
Tokyo, 1986. 

It was just 300 years ago that Newton published his monumental work Principia mathematica 
philosophiae naturalis, in which he founded differential and integral calculus and revolutionized 
the science of functions, mathèmatical analysis. Thereafter an enormous development had started 
in this area of mathematics, whose summit was reached in the 19th century, often mentioned in 
the history of mathematics as the century of analysis. This excellent book gives a detailed account 
of the history of this splendid period!' 

Can a book on the history of mathematics be interesting for wide circles of readers? Having 
read Bottazzini's book it is easy to answer: yes, it can. The author does not restrict himself to dull 
reviewing the results but acquaints the reader with the outstanding mathematicians of the area as 
people with emotions. For example, we can read the letter of a 24-year-old mathematician to his 
old teacher written after his arrival at Paris in 1826: "Up to now I have only made the acquaintance 
of Legendre, Cauchy, and Hachatte, plus a few secondary but very able mathematicians,... Legendre 
is an extremely amiable man, but unfortunately "as old as stones". Cauchy is crazy and there is 
nothing to be done with him, even though at the moment he is the mathematician who knows how 
mathematics must be done. His works are excellent, but he writes in a very confusing way. At first 
I understood virtually nothing of what he wrote, but now- it goes better... Poisson, Fourier, Ampère, 
etc. etc. occupy themselves with nothing other than magnetism and other physical matters... Every-
one works by himself without interesting himself-in others. Everyone wants .to teach and no one 
wants to learn. The most absolute, egoism reigns everywhere,',' (Th?se are,rather hard words, but 
the young man was named Abel. Nevertheless,- the book is ¡written rnainly about mathematics 
itself and gives the milestones of the history of;such big.problems.as_ the solution.of the equations 
of vibrating string and of heat diffusion,- expansion of functions ipto trigonometric series, the founda-
tion of the theory of complex-functions,-:etc.j Special attention, is ¡paid to the development of the 
concept of a function. Who could think without reading the history of mathematics that the con-
temporary definition of a function, which is tought in every elementary school today and seems 
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born with us like our instincts, is a result of a long process of thinking and debates, and that Euler 
still defined a function as follows: "A function of a variable quantity is an analytic expression com-
posed in any way from this variable quantity and from numbers or constant quantities." 

This well-written book will be a very valuable and enjoyable reading not only for students 
and experts of the history of mathematics, but for every student learning calculus and for every 
researcher in mathematics, since Poincaré is absolutely right when saying: "The true method of 
foreseeing the future of mathematics is to study its history and its actual state." 

L. Hat van i (Szeged) 

César Camacho—Alcides Lins Neto, Geometric Theory of Foliations, 205 pages, Birkháuser, 
Boston—Basel—Stuttgart, 1985. 

The theory of foliations is a part of differential topology investigating the decompositions 
of manifolds into a union of connected, disjoint submanifolds of the same dimension. The origin 
of this subject is the geometric theory of differential equations that has begun with the works of 
Painlevé, Poincaré and Bendixson in the last century. The authors say in the introduction: »The 
development of the theory of foliations was however provoked by the following question about the 
topology of manifolds proposed by H. Hopf in the 1930's: "Does there exist on the Euclidean sphere 
5 s a completely integrable vector field, that is, a field X such that A"-curl ̂ =0?" By Frobenius' 
theorem this question is equivalent to the following: "Does there exist on the sphere 5 s a two-dimen-
sional foliation?"« 

The present book which is a translation of the original Portuguese edition published in Brasil 
in 1980 has the purpose to give an introduction to the subject. The first four chapters treat the 
basic notions and properties of foliations (Differentiable Manifolds, Foliations, The Topology of 
Leaves, Holonomy and the Stability Theorems). Chapter V discusses the relations between folia-
tions and fiber bundles. Chapter VI is devoted to the proof of Haefliger's theorem about analytical 
foliations of codimension one. Chapter VII contains the proof of Novikov's theorem on the existence 
of a compact leaf of a C2 codimension one foliation on a compact three-dimensional manifold 
with finite fundamental group. Chapter VIII deals with foliations induced by group actions. There 
is an appendix containing the proof of Frobenius' theorem. 

The book is highly recommended to anyone interested in differential topology and familiar 
with the material of standard courses on analysis, topology and geometry. 

Péter T. Nagy (Szeged) 

Leonard S. Charlap, Bieberbach Groups and Flat Manifolds (Universitext), X+242 pages, 
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986. 

The theory of the Euclidean space form problem, treated in this book, is originated from 
Hilbert's famous 18th problem about the classification of discrete Euclidean rigid motion groups 
with fundamental domains, or what is the same, of crystallographic groups. The early solution of 
this problem, given by L. Bieberbach in about 1910, can be summarized in modern language in 
the following way. The fundamental group of a compact flat Riemannian manifold is a Bieberbach 
group, i.e. a torsionfree group having a maximal abelian subgroup of finite index which is free 
abelian. The manifolds with isomorphic fundamental groups are affinely equivalent, the number of 
their equivalence classes is finite. 



Bibliographie 509, 

The author of this book has developed the classification theory of Euclidean space forms 
based on the description of the linear holonomy group of flat Riemannian connections in the early 
1960's. The purpose of the present treatment is to give a selfcontained introduction and at the same 
time a reference book on this topic. Chapter I contains the presentation of Bieberbach's classical 
theory. Chapter II gives an elementary introduction to Riemannian geometry including the notion 
and fundamental properties of linear holonomy groups. There is given a formulation of Bieber-
bach's results in the language of differential geometry. Chapter III deals with the algebraic classifica-
tion of Bieberbach groups. It is finished with the proof of the Anslander—Kuranishi theorem saying 
that any finite group is the holonomy group of a compact flat manifold. Chapter IV is devoted to 
the author's principal results about the space forms whose holonomy group has prime order. Chap-
ter V discusses the properties of automorphism groups of flat manifolds. 

The general results are illustrated with many examples. Open problems, conjectures, counter-
examples and results related to the theory of nonflat manifolds are formulated throughout. This 
very nice book is really interdisciplinary, it uses tools of differential topology and geometry, alge-
braic number theory, cohomology of groups and integral representations. 

Péter T. Nagy (Szeged) 

Coherence, Cooperation and Fluctuations, Edited by F. Haake, L. M. Narducci and D. F. Walls 
(Cambridge Studies in Modern Optics, 5), VIII+456 pages, Cambridge University Press, Cam-
bridge—London—New York—New Rochelle—Melbourne—Sydney, 1986. 

In 1963 Roy Glauber laid down the fundamentals of quantum optics by introducing the 
quantum concept of coherence and the coherent states of the radiation field. This fact, which is 
already a part of the history of physics, justifies the decision to devote one of the volumes of the 
Cambridge Studies in Modern Optics to the works honouring the 60-th birthday of R. Glauber. 

In spite of the series title, besides optics, there are papers on statistical physics and nuclear 
physics too, as Glauber himself contributed also to the development of the latter fields with essential 
and fundamental results. Among the authors of the invited papers we find L. Kadanoff, J. Langer, 
H. Feshbach, F. T. Arecchi, N. Bloembergen, S. Haroche, L. Mandel, R. Pike, M. O. Scully. The 
majority of the 33 papers deal with quantum optics, and reading them one may really learn what 
is in focus at present time in the field of optical coherence, cooperation and fluctuations. The two 
other topics are treated less comprehensively in this volume. To have at hand the roots of the ideas 
presented in the book, the editors included the reprints of the 4 classic papers of R. Glauber: the 
two about quantum coherence, the time dependent statistics of the Ising model and the one about 
the optical model of nuclear reactions. 

The book is recommended mainly for research workers in the areas of nonrelativistic field 
theory and quantum optics. 

M. G. Benedict (Szeged) 

M. Crampin—F. A. E. Pirani, Applicable Differential Geometry (London Mathematical Society 
Lecture Notes Series, 59) 385 pages, Cambridge University Press, Cambridge—London—New 
York—New Rochelle—Melbourne—Sydney, 1986. 

Traditional courses in differential geometry contain first the elementary theory of curves 
and surfaces in a Euclidean space and thereafter the notion of a dififerentiable manifold and the 
theory of differential geometric structures on it. Such an approach has the disadvantage that the 
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notion of fibre bundles and the general theory of connections and Lie group actions can be treated 
only in lecture courses for final year graduate or postgraduate student audiences. But these tech-
niques are needed in the modern applications of differential geometry in the foundation of mechanics, 
gauge field theories and gravitation theory. 

The present book gives an introduction to these methods of differential geometry on the 
level of beginning graduate students. "The essential ideas are first introduced in the context of 
afiSne space; this is enough for special relativity and vectorial mechanics. Then manifolds are intro-
duced and the essential ideas are suitably adapted; this makes it possible to go on to general rela-
tivity and canonical mechanics. The'book ends with some chapters on bundles and connections 
which may be useful in the study of gauge fields and such matters." The treatment is illustrated 
with many examples motivated by the applications in mathematical physics. Each chapter is con-
cluded with a brief summary of its contents. 

The reviewer thinks that this excellent introduction will be especially useful if it is supplemented 
with parallel courses on analytical mechanics and relativity theory. 

Peter T. Nagy (Szeged) 

Luc Devroye, Non-Uniform Random Vallate Generation, XVI+ 843 pages, Springer-Verlag, 
New York—Berlin—Heidelberg—Tokyo, 1986. 

The importance of this comprehensive work can hardly be overemphasized. A large amount 
of today's research in statistics, operations research- and computer science depends upon large 
scale Monte Carlo computer simulation. Also, this is almost the;sole means of investigation in 
certain applied, fields in engineering, experimental and even theoretical-physics and chemistry, 
the life sciences and technology,, but such "esoteric pure mathematics" as number theory is not 
devoid of Monte Carlo .experimentation either. Yet all these depend upon-sequences of numbers 
or vectors generated, on the computer which are to be viewed as independent realizations of a ran-
dom variable or vector with a prescribed distribution. Then you apply one of the greatest things 
of Nature (or, put it with less euphemism, a trivial fact of probability theory), the law of large num-
bers, and, modulo the problem at hand, you are done. 

Now,'borrowing some expressions from the characteristically lively language of Devroye, 
the "story has two halves". Any machine that can be called a computer nowadays sports with a 
random number generator, that is claimed to be capable to produce sequences of independent ran-
dom variably uniformly distributed, on. (0,1). This will of course never be ¿he case, and the theo-
retical and practical-aspects of this problem belong to the circle of the deepest, common puzzles of 
probability theory and algorithm theory. However, that machines do indeed have such generators 
is becoming more and more reasonable an assumption together with another, theoretically impossible 
assumption that the computer can store and manipulate real numbers. 

Based on these two assumptions, the book is about "the second half of the story": how to 
generate random numbers with a prescribed non-uniform distribution most efficiently? The effi-
ciency of a procedure is measured by the complexity of the algorithm which produces one such 
number. This notion is achieved by the author's third assumption that the fundamental operations 
in the computer (addition,'multiplication,.division; compare, truncate, move, generate a uniform 
random variate, exp, log, square root, arctan, sin and cos) "all take one unit of time, and the com-
plexity is simply the required time. The algorithms themselves are then investigated by providing 
lower and upper -bounds for- the their expected complexity or for the tails of their distribution. 

Following an introduction' into' a' few 'basic probabilistic facts, Chapters 2 and 3 present the 
general principles of randdrii number'generation such as the inversion, the rejection, the composi-
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tion, the acceptance-complement, alias and table look-up methods and their various combina-
tions, while Chapters 4 ,5 , 8 and 14 describe a bewilderingly vast amount of specialized algorithms. 
The procedures are then applied in Chapters 7, 9 and 10. for the generation of random numbers 
from the most important continuous and discrete parametric families of distributions or from large 
families of distributions given by a qualitative property of the density such as log-concavity, monot-
onicity, or unimodality. The whole Chapter 11 is on random vector generation and Chapter 6 is 
devoted to the generation of .the'Boisson and related random processes: Só these two chapters create 
special dependence structures already, and Chapters 12 and-13; go on'further in this direction, to 
the generation of various sampling without replacement- plans and to the generation "of random 
permutations, binary and frée.treá, partitions and graphs. Finàlly, Chapter 15 presents the Knuth-
Yao theory.of discrete distribution generating trees in a random bit model in which, instead of 
Uniform (0,1) random numbers; Binomial (1,1/2) random numbers are available. 

The hundreds of generation algorithms in the book áre all written as PASCAL programs 
and are intelligible without knowing anything special âboiit this language. In fact, the book is 
completely independent: of/ today's' computer and programming technology and I am sure that 
the author's hopes that "the'text will 'be as interesting in 1995 as in 1985" are entirelly well-de-
veloped. 

The author outlines a course in computer science and another one in statistics that can be 
based on the book, moreover he proposes a "fun reading course on the development and use of 
inequalities". My own random fun reading course turned out to be most gratifying and enjoyable. 
Wherever opens, it is difficult.to put down the book which is bound to become to be the basic ref-
erence in non-uniform randóm number génération. It contains a good number of new results and 
an enormous amount of knowledge'from probability and statistics, computer science, operations 
research and complexity and algorithm theory, blended and arranged by masterly scholarship. 
Congratulations Luc! 

Sándor Csörgő (Szeged) 

Differential Equations in Banach Spaces, Proceedings of a Conference held in Bologna, July 
2—5, 1985. Edited by A. Favini and E. Obrecht (Lecture Notes in Mathematics, 1223), VIII + 
299 pages, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1986. 

When modelling the 'evolution in time of a physical system we have to decide how to describe 
the position of the system át an instant of time. For example, for a finite system of particles in clas-
sical mechanics a position is á point of Rn, while in the model o.f'the' vibrating string or the heat 
conduction problem we use to this end functions in C2([0, /]; R). Respectively, the model equation 
will be a system of ordinary differential equations and a partial differential equation. However, 
partial differential equations can be also considered as ordinary ones of the from u=Au which 
are written in the Banach space C2([0, /]; R) as a state space, and A is a differential operator in 
this space. This unification was inspired by the fact that the basic concepts and methods of the 
theory of ordinary differential.equations (eigenvalue, Jordan form, exponents of a matrix, spectral 
theory, calculus of functions) have been developed for operators in Banach spaces by linear (and 
recently nonlinear) functional analysis. As it is also shown by these proceedings, "the approach 
to differential equations as abstract equations in Banach spaces is a fruitful and. very rapidly devel-
oping field. Among the,topics discussed at the Conference, are: regular apd. singular evolution 
equations, both linear and nonlinear, of parabolic and hyperbolic type,-,integço-differential equa-
tions, semi-group theory, control theory, wave equations,- transmutation methods 'and fuchsian 
differential equations. • ' • ' • • • • ' • 

• • I ; L. Hatvani (Szeged) 
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B. A. Dubrovin—A. T. Fomenko—S. P. Novikov, Modern Geometry — Methods and Applica-
tions: Part II. The Geometry and Topology of Manifolds, 430+XV pages, Springer-Verlag, New 
York—Berlin—Heidelberg—Tokyo, 1985. 

This is the English translation, by Robert G. Burns, of the original Russian edition, Nauka, 
Moscow, 1979. The present book is the second volume of a whole series in which the authors' main 
aim is the modernization of the teaching of differential geometry at universities. From this point of 
view this work can be considered as one of the best texts which acquaints the readers with a large 
part of modern differential geometry in a very clear and didactical style. 

This second volume is devoted mainly to differential topology. After the elementary study 
of real and complex manifolds, Lie groups, homogeneous spaces, the exposition turns to the Sard 
theorem and related fields such as Morse theory, embeddings and immersions, the degree of mappings 
and the intersection index of submanifolds. Furthermore two chapters deal with the fundamental 
groups and homotopy groups of manifolds. After these the theory of fibre bundles, connections, 
foliations and dynamical systems is developed. The last chapter deals with general relativity and 
also with Yang—Mills theory whose comprehensible survey has been absent from the literature. 

This well-written excellent monograph can be highly recommended to students, mathemati-
cians and users interested in modern differential geometry. 

Z. / . Szabo (Budapest) 

Sir Arthur Eddington, Space, Time and Gravitation. An outline of the general relativity theory 
(Cambridge Science Classics Series), XII+218 pages, Cambridge University Press, Cambridge— 
London—New York—New Rochelle—Melbourne—Sydney, 1987. 

This classic book on the general theory of relativity was published first in the exciting days 
of 1920, soon after the first objective tests of the new theory assumed historico-scientific values. 
The reader can understand how Sir Arthur Eddington, the creative participant of the development 
of this theory in mathematics, physics and philosophy, saw the problems of space, time and gravita-
tion. This new reprint, which is the twelfth in a sequence, includes a foreword by Sir Hermann 
Bondi, describing the place of this book in its historical and scientific context. He says: "How does 
his writing strike us now, some sixty years after it first appeared in print? The beautiful English 
is as good as ever, the subject matter, the theories of relativity and gravitation, have not suffered 
relegation to the backburner, but are as integral a part of physics as in his day. Thus his book is 
still very good and very relevant." Everyone interested in the development of new ideas and view-
points in the sciences will enjoy this book. 

Peter T. Nagy (Szeged) 

K. J. Falconer, The Geometry of Fractal Sets (Cambridge Tracts in Mathematics, 85), XIV + 
162 pages, Cambridge University Press, Cambridge—London—New York—New Rochelle— 
Melbourne—Sydney, 1986. 

From the introduction of the author: "Recently there has been a meteoric increase in the 
importance of fractal sets in the sciences. Mandelbrot pioneered their use to model a wide variety 
of scientific phenomena from the molecular to the astronomical.... Sets of fractional dimension 
also occur in diverse branches of pure mathematics." 

This widespreading applicability aroused both scientists' and mathematicians' interest in 
fractals. The aim of this book is to give a rigorous mathematical treatment of the geometrical prop-
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erties of sets of both integral and fractional HausdorfF dimension, and the author unites into a 
theory the complete collection of these results, which have previously been available only in tech-
nical papers. 

The first chapter contains a very good general measure theoretic introduction, the definition 
of Hausdorff measure and dimension and basic covering results. There is an emphasis on the Vitali 
covering theorem which will be often used. In some "simple" cases the Hausdorff dimension and 
measure are calculated. The next three chapters discuss the density properties and existence of 
tangents. The notion of local densities are similar to the Lebesgue case but there is no analogue 
of the Lebesgue density theorem. It is proved that only the integral dimensional sets can be regular 
and in the integral case the regular "curve-like" sets and irregular "dust-like" sets are characterised. 
In the fifth chapter a very useful tool, comparable net measures, is presented and applied to con-
struct a subset with finite ¿-measure of a set with infinite s-measure, and to calculate the Haus-
dorff measure of Cartesian products of sets. In the sixth chapter two fruitful theories from analysis, 
potential theory and Fourier transforms are applied to investigate the projection properties of 
s-sets. The next chapter discusses the interesting problem of Kakeya of finding a set with zero meas-
ure containing a line segment in every direction. It is demonstrated that the previously descrised 
theory is related by duality to Kakeya sets. The final chapter contains miscellaneous examples of 
fractal sets. Methods for constructing curves of fractional dimension and generating self-similar 
sets are presented and applications to number theory, convexity, dynamical systems and Brownian 
motion are shown. 

Each chapter contains a problem set which complete the topics and may help the reader in 
understanding the basic methods. The book is recommended to pure mathematicians, but it may 
be useful to anybody interested in the application of fractals. 

J. Kineses (Szeged) 

D. J. H. Garling, A Course in Galois Theory, VIII+ 167 pages, Cambridge University Press, 
Cambridge—London—New York—New Rochelle—Melbourne—Sydney, 1986. 

This book deals with Galois theory at a level or somewhat higher than it is customarily pre-
sented for undergraduates of mathematics. In fact, the book grew out of a course of lectures the 
author gave for several years at Cambridge University. Pages 1 trough 36 give a concise account 
on the necessary prerequisites like groups, vector spaces, rings, unique factorization domains and 
irreducible polynomials. The rest of the text is devoted to the theory of fields and Galois theory. 
Besides the classical topics including the problems of solvability the general quintic and geometric 
constructibility, some extra material, rarely discussed in teaching activity, is also added. For example, 
Lüroth's theorem, the normal basis theorem and a procedure for determining the Galois group 
of a polynomial is included. The reader is challenged by more than 200 exercises. 

This book is warmly recommended mainly for instructors and students and also for every-
one interested in its topic. 

Gábor Czédli (Szeged) 

Geometrical and Statistical Aspects of Probability in Banach Spaces. Proceedings, Strasbourg 
1985. Edited by X. Fernique, B. Heinkel, M. B. Marcus and P. A. Meyer (Lecture Notes in Mathe-
matics, 1193), 11+128 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986. 

The volume starts with a short description of the significant work of the young Strasbourg 
probabilist Antoine Ehrhard, who died less than two weeks before the meeting, by C. Borell. 
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A short note by S. Guerre deals with almost exchangeable sequences, another one by 
M. B. Schwarz with mean square convergence of weak martingales. B. Heinkel is on the strong 
law of*large numbers in smooth Banach spaces, while M. Ledoux and M. B. Marcus are on the 
almost sufe uniform convergence of .Gaussian and Rademacher infinite Fourier, quadratic forms. 
The papers by M. Ledoux and J. E-. Yukich present results for the central limit theorem in a Banach 
space in-two different directions. .The-paper of P. Doukhan and J. R. Leon deals, with the central 
limit theorem-for empirical processes indexed by functions based on stationary, strongly,mixing 
random elements and for the local time of Markov processes with an application .to testing uni-
formity on a ccpmpact Riemannian manifold, while the comprehensive 37-page article by P. Massart 
is on the rate of convergence in the centraMimit theorem for general empirical processes indexed 
by functions satisfying certain entropy conditions. 

: , . Sándor Csörgő (Szeged) 
. . . 1 . - , i ' * . 

Mikhael Groraov, Partial Differential Relations (Ergebnisse der Mathematik und ihrer Grenz-
gebiete, 3. Folge; Band 9), IX+363 pages, Springer-Yerlag, Berlin—Heidelberg—New York— 
London—Paris—Tokyo, 1986. ' . . . 

The purpose of this book is to give a systematic and selfcontained treatment ~of analytical, 
topological' and' differential geometric methods of the theory of undetermined partial differential 
equations or differential relations and of its applications to imbedding and immersion problems 
of Riemannian and symplectic manifolds. This theory has been developed in the last 20 years mainly 
by the author's initiatives and activity. 

Part 1 contains a survey of the basic problems and results giving the most important motiva-
tions for the theory. Part 2 is devoted to the study of a construction method which is a homotopic 
deformation of a jet-section solution into a differentiable map satisfying the differential relation. 
Part 3 deals with the investigation of C°° isometric immersions of Riemannian, Pseudo-Riemannian 
and symplectic manifolds. 

,The author writes in the Forward: "Our exposition is elementary and the proofs of ths basic 
results are selfcontained. However, there is a number of examples and exercises (of variable diffi-
culty), where the treatment of a particular equation requires a certain knowledge of pertinent facts 
in the surrounding, field." But in the reviewer's opinion the reader is presupposed to be familiar 
with the techniques of singularity theory, differential operators, differential geometry and topology 
on higher than an elementary level. > 

The book includes many new results and yields a good overwiew of this developing field of 
mathematics. • • • • ; 

, Péter T. Nagy (Szeged) 

John Guckenheimer—Philip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields (Second Printing, Revised and Corrected; Applied Mathematical Sciences, 42), 
XVI+459 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. 

At the early stage of the history of mechanics the oscillations were studied as "small oscilla-
tions". It means that one considers .the linearized equations of motion around the equilibrium 
or the periodic orbit investigated. But .these linear equations can describe the behaviour of the 
motions only locally. For example, within this theory it is impossible to handle the interaction 
between two or more isolated equilibria or .cycles, .which are, very common in differential equation 
models.. The global description of trajectories demands the study of the original nonlinear models. 
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However, the theory of nonlinear differential equations, as contrasted with that of linear equations, 
is far from being complete. Here the qualitative approach is the most important and fruitful, which 
has been developed by marrying analysis and geometry. 

Over the past few years there has been increasing a widespread interest in the engineering and 
applied science communities in such phenomena as bifurcations, strange attractors and chaos. 
The rigorous study of these phenomena needs a wide and deep mathematical background and 
this is provided by the modern theory of dynamical systems. This book gives an excellent introduc-
tion to this fairly sophisticated theory for those who do not have the necessary prerequisites to go 
directly at the research literature. 

Chapter 1 provides a review of basic results in the theory of dynamical systems and differential 
equations. Chapter 2 presents four examples from nonlinear oscillations: the famous oscillators 
of van der Pol and Duffing, the Lorenz equations and a bouncing ball problem. By the aid of these 
examples the reader can get acquainted with the chaotic behaviour of solutions and the concept 
of the strange attractor: an attracting motion which is neither periodic nor even quasiperiodic. 
Chapter 3 contains a discussion of the methods of local bifurcation theory, including center mani-
folds and normal forms. Chapter 4 is devoted to the method of averaging, perturbation theory 
and the Kolmogorov—Arnold—Moser theory. In Chapter 5 the famous horseshoe map of Smale 
is discussed in a nice and intelligible way. Chapter 6 is concerned with global homoclinic and hetero-
clinic bifurcations. In the final chapter the degenerated local bifurcations are treated. 

It is easy to understand that the second edition of this valuable text-book had become nec-
essary. It has to be on the bookshelf of every mathematician and of every user of mathematics 
interested in the modern theory of differential equations, dynamical systems and their applications. 

L. Hatvani (Szeged) 

James M. Henle, An Outline of Set Theory (Problem Books in Mathematics), VIII +145 pages, 
Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1986. 

Set theory is full with charming exercises, brilliant constructions and problems which some-
times challenge even the experts. Henle's book misess them all and this is all the more unfortunate 
that there is no good published collection of (solved) problems in set theory (one should not count 
those feeble attempts that every now and then appear on the scene with completely trivial exercises). 

More proper justice should however be given to this worthy book because its aim is different. 
I feel neither the "Problem Books" series nor the title are appropriate for this work, for this is not a 
problem book in the ordinary sense, nor it is about Set Theory. More appropriate title would be 
something like "Construction and properties of numbers", all sorts of numbers such as naturals, 
integers, rationals, reals, ordinals, cardinals, infinitesimals. The spirit is set theoretical and ulti-
mately this is why I would rank very high Henle's book. 

It introduces an outstanding pedagogical system: so called projects are assigned to students. 
These contain proofs, discoveries of theorems and concepts etc.; under the guidance of the teacher 
the students work alone, and through these projects they explore the field step by step like "real" 
researchers. They "experience the same dilemmas and uncertainties that faced the pioneers". Accord-
ingly, the book consists of three parts, hints and solutions occupy the second and third ones. 

In my opinion every good exercise book (cf. Polya—Szego's, Halmos's, Lovasz's) should be 
based on similar principles; here however the method is applied to the very foundation and exposi-
tion of the subject. I saw the same method efficiently working at Ohio State University where selected 
high school students participated in university summer shools. Although I doubt that the ordinary 
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math major would succesfully complete the projects in the book, the system is certainly applicable 
to the better ones. 

It is unfortunate that the author mostly restricted himself to the dullest part of set theory: 
construction of numbers and operations between them (I must add, however, that due to J. von 
Neumann and A. Robinson, the construction of ordinals and infinitesimals is definitely an excep-
tion). This may be so because set theory is not too well adequate for the above method (after all 
infinite sets are not objects that you can experience with); number theory, geometry, elementary 
algebra etc. certainly are more suitable. 

The main advantage of the book is that without disturbing formalism the author gets the 
students think and work in a way as a logician should do, and the presentation is extremely "clean" 
and accurate. For this reason I warmly recommend that every math major read the book even if 
they have already completed a course in set theory. The material can also be valuable for lecturers 
on set theory and logic. 

There is one more reason for this strong recommendation, and this is the Goodstein—Kirby— 
Paris theorem discussed in the last chapter (it is about an extraordinary number theoretical itera-
tive process that seemingly produces larger and larger numbers but somehow it always reaches 0; 
and this can be proved only using infinite numbers). In the style of the quotations in the book: 
All's Well that Ends WeU. 

Vilmos Totik (Szeged) 

Homogenization and Effective Moduli of Materials and Media. Edited by J. L. Ericksen, D. Kin-
derlehrer, R. Kohn and J.-L. Lions (The IMA Volumes in Mathematics and its Applications, Volume 
1), X+263 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. 

At the Institute for Mathematics and its Applications the year 1984—1985 was dedicated to 
the study of partial differential equations and continuum physics. This volume, the first one in a 
series, contains research papers presented at a workshop on homogenization of differential equa-
tions and the determination of effective moduli of materials and media. This up-to-date theme is 
interesting for mathematicians, physicists and for engineers equally well. The papers are well-
organized. In general they contain the origin and the history of the investigated problem and after 
the discussion open questions are presented. The style is well-characterized by the following sentence 
taken from Luc Tartar's paper: "This mathematical model of some physical questions involving 
different scales will of course be questioned by some; it is natural that it be so but I hope that criti-
cism will be made in a constructive way and so improve my understanding of continuum mechanics 
and physics (and maybe of mathematics)." 

The titles of the papers are: Generalized Plate Models and Optimal Design. — The Effective 
Dielectric Coefficient of a Composite Medium: Rigorous Bounds From Analytic Properties. — 
Variational Bounds on Darcy's Constant. — Micromodeling of Void Growth and Collapse. — 
On Bounding the Effective Conductivity of Anisotropic Composites. Thin Plates with Rapidly 
Varying Thickness and their Relation to Structural Optimization. — Modelling the Properties 
of Composites by Laminates. — Wares in Bubbly Liquids. — Some Examples of Crinkles. — 
Mikrostructures and Physical Properties of Composites. — Remarks on Homogenization. — 
Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric. 

L. Pintér (Szeged) 
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Mark Kac—Gian-Carlo Rota—Jacob T. Schwartz, Discrete Thoughts: Essays on Mathematics, 
Science, and Philosophy. Edited by Harry Newman (Scientists of Our Time), XII+264 pages; Birk-
háuser, Boston—Basel—Stuttgart, 1986. 

the reason people so often lie 
is that they lack imagination: 
they don't realize that the truth, too, 
is a matter of invention. 

This is how Rota starts the volume in his preface, translating nicely a three-line poem of Machado 
which summarizes the "prophetical warning" of the philosopher Ortega. 

This fine composition of twenty-six essays should be read by every mathematician, statistician 
and computer scientist. It would be a little bit better still if every physicist, economist and historian 
of science could also read it, and the world, scientific or otherwise, would surely improve a trifle 
if in fact the whole intelligentsia read it. It is not just that three "grifted expositors of mathematics" 
came together as the jacket says, but these three illustrious thinkers really want to tell the truth, 
if not the whole truth, but nothing but the truth. And the world usually betters by telling the truth. 

There are as many readings of such a text as readers. In the reviewer's reading the frame of 
this composition is constituted by the seven brilliant writings of the late Professor Kac (he died 
in the fall of 1984). These are: Mathematics: Tensions (essay No. 2), Statistics (4), Statistics and 
its history (5), Mathematics: Trends (8), Academic responsibility (13), Will computers replace 
humans? (18), Doing Away with Science (25). Heavier building blocks are brought by the six 
essays of Schwartz: The pernicious influence of mathematics on science (3), Computer science (7), 
The future of computer science (9), Economics, mathematical and empirical (10), Artificial intel-
ligence (16), Computer-aided instruction (19) and by Rota's essay'Combinatorics (6). The cohesion 
of and the paint on the structure is provided by Rota's shorter bookreviews and sketches: Com-
plicating mathematics (11), Mathematics and its history (12), Husserl and the reform of logic (14), 
Husserl (15), Computing and its history (17), Misreading the history of mathematics (20), The 
wonderful world of Uncle Stan (21), Ulam (22), Kant (23) and Heidegger (24) and his Chapter 1 
(Discrete thoughts) and Chapter 26 (More discrete thoughts). 

The depth of thought, charm, experience and characteristic wit of Kac, the vehement cool 
logic of Schwartz and the broad knowledge and aphoristic penetration of Rota harmonize beauti-
fully. The selection and ordering of the essays (presumably the work of the editor) to achieve the 
non-formalizable rythm of thought in the book, a composition instead of a collection, will not be 
possible for any artificial intelligence. The whole thing is more continuous than discrete. 

No, Uncle Mark, computers will never replace a man like you were. 

Sándor Csörgő (Szeged) 

Serge Lang, Linear Algebra. Third edition (Undergraduate Texts in Mathematics) IX+285 
pages, Springer-Verlag, New York—Berlin—Heidelberg—London—Paris—Tokyo, 1987. 

The text is divided into twelve chapters. The first four chapters introduce vector spaces over 
subfields of complex numbers, the space of matrices, matrices of linear equations, the notion of 
linear operators and show the connection between matrices and linear operators. In Chapter 5 
scalar products and orthogonality are defined; and applications to linear equations, bilinear and 
quadratic forms are given. Chapter 6 is devoted to give the notion and elementary properties of 
determinants. Chapter 7 studies the important special cases of linear operators, symmetric, Her-
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mitiau and unitary operators. Chapter 8 defines eigenvalues and eigenvectors, the characteristic 
polynomial, and gives the method of computing eigenvalues by finding the maximum and the mini-
mum of quadratic forms on the unit sphere. In Chapter 9 polynomials of matrices and linear opera-
tors are defined. The main purpose of Chapter 10 is to prove the existence of triangulation of linear 
operators and especially of the diagonalization of unitary operators. Chapter 11 deals with the 
factorization of polynomials and as an application of this concludes the Jordan normal form of 
linear operators. Chapter 12 is devoted to the study of convex sets and proves the finite dimensional 
case of the ICrein—Milman theorem. At the end of the book an Appendix can be found dealing 
with complex numbers. 

The book can be used as a handbook for learning linear algebra. 
L. Gehér (Szeged) 

Lás/Jó Lovász—Michael D. Plummer, Matchlug Theory (North-Holland Mathematics Studies), 
XXXIII+ 544 pages, Akadémiai Kiadó, Budapest and North-Holland, Amsterdam, 1986. 

Matching theory consists of only a part of graph theory, but one of its deepest and hardest 
parts. The history of matching is related to the four color problem, and sincc then it has been a 
focus of interest. Most of the general questions and methods of combinatorics are considered in 
matching theory, and many have a nice solution or application. Because of its complexity, matching 
theory really has the right to bear the title of theory. 

The book starts with the most classical results. The first two chapters contain the very basic 
and very important results on bipartite graph matching and flow theory. The next three chapters 
deal with the structure of general graphs related to matching. The main result in this territory is 
the Edmonds—Gallai structure theorem which shows that from the point of view of matchings, 
every graph is built of several different kind of "bricks". These bricks are well known, thanks to 
the two authors' previous works. The next four chapters illuminate matching problems from dif-
ferent perspectives. The first one discusses the graph-theoretical consequences. The next chapter 
shows the very important connection with linear programming. The book discusses the description 
of a matching polytope, its facets and the dimension of the perfect matching polytope. This sectioh 
includes the effect of the ellipsoid method on combinatorial optimization. There is one chapter on 
the related enumeration problems. Besides the basic results on permanents, pfaffians, and matching 
polynomials, there are some interesting applications of these results. One other chapter covers 
the algorithm-theoretic aspects of matchings, containing not only the important algorithms, but 
also their implementation. The final three chapters consider the generalizations of the question of 
matchings in graph theory and matroid theory. These discuss the problem of/-factors, vertex packing, 
hypergraph matching and matching of 2-polymatroids. 

The book contains all of the important results which are in or related to matching theory. 
The many applications of this subject in other parts of combinatorics, and the wide variety of methods 
used ensure that the reader will not only learn about matching theory, but about most of the impor-
tant parts of combinatorics. There are discussions of matroid theory, polyhedral combinatorics, 
enumerations, algorithm theory, and data structures. The corresponding chapters are not only 
good introductions to the fields but contain some of the most important results of current research. 
Sometimes the flow of results is interrupted by "boxes". These boxes contain remarks which go 
beyond the scope of the book or sketch a main underlying idea. These parts are very useful to under-
stand how to fit the actual results or methods into the main stream of research. The cited references 
are a big help to the reader whose appetite has been whetted. These short guides are also very helpful 
for the reader who is untrained in combinatorics. If the reader takes the effort and studies mathe-
matics by solving problems (this is harder but more rewarding), then there are a lot of exercises 
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inserted in the text. Solving these exercises adds a lot of fun to the reading and gives good practice 
for the methods. If the reader requires more of a challenge, there are many open problems in the 
book. Both authors live and breathe matching theory, As a consequence, the chapters frequently 
suggest the most important directions of research, and the reader easily can find problems to think 
about. 

Matching theory is only a small part of combinatorics. This might lead an outsider to think 
that this book is too specialized. (A very narrow, specialized subject gets no interest outside a small 
group.) This is not the case with this book. The relations between combinatorics and the classical 
fields, and the applications of combinatorics are an undiscovered part of the science. This book 
gives many examples of applications of combinatorics to other areas of mathematics and the 
physical sciences, Here are just some of them for appetizers: engineering, chemistry, physics, measure 
theory and topology. 

Finally, the physical appearance of the book is pleasing, as it was typeset with the TEX system. 
The book is very important to any specialist in combinatorics. It is highly recommended to any-
body who is interested in this new part of mathematics or who is working in a field which applies 
combinatorial methods. 

Peter Hajnal (Szeged and Chicago) 

New Developments in the Theory and Applications of Solitons, Proceedings of a Royal Society 
Meeting, London, 1984 November. Edited by Sir Michael Atiyah, J. D. Gibbon and G. Wilson, 
(Reprint from the Philosophical Transactions of the Royal Society, Ser. A. Vol. 315, p. 333—469), 
The Royal Society, London, 1985. 

The exponential growth of the number of papers about solitons has become somewhat less 
steep in the last few years, nevertheless they are still the subject of intensive study. Over and over 
again new delicate details of soliton theory are discovered by pure mathematicians, and the sudden 
appearance of solitons is not a rare event in any field of physics. 

This situation is well documented in the introductory lecture of these proceedings: "A survey 
of the origins and physical importance of soliton equations" given by J. D. Gibbon. Here past and 
present of solitons are outlined, and this is the lecture that can be recommended both to the beginner 
and to the specialist, in order to see how wide this field really is. More detailed investigations of 
some of the branches of mathematics and physics, where solitons play important role can be found 
in the other 8 papers of this volume. Half of them have purely mathematical character, and show 
the connection of soliton theory with such classical problems as the integrability of ordinary dif-
ferential equations, as well as with modern fields like algebraic geometry and Kac—Moody algebras. 
The rest of the articles communicate on experiments and applications of soliton theory in laser 
physics, biomolecules, magnetic monopoles, fluid dynamics etc. 

M. G. Benedict (Szeged) 

New Directions in the Philosophy of Mathematics: An Anthology, Edited by Thomas Tymoczlco, 
XVII+ 323 pages, Birkhauser, Boston—Basel—Stuttgart, 1985. 

The philosophy of mathematics has played an important role in philosophy going back to 
the ancient Greeks. This discipline has been radically changed about the turn of the century. The 
new dominant question (or the new paradigm, according to T. Kuhn's terminology) was: what is 
the foundation of mathematics? 

15 
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Now, in the latest decades, as R. Hersh wrote: "We are still in the aftermath of the great 
foundationalist controverses of the early twentieth century. Formalism, intuitionism and logicism, 
each left its trace in the form of certain mathematical research program that ultimately made its 
own contribution to the corpus of mathematics itself." 

In Part I, entitled Challenging Foundations, we can read five essays on the major perspectives 
on the philosophy of mathematics written by R. Hersh, I. Lakatos, H. Putnam, R. Thom and 
N. D. Goodman. They strongly criticize the foundationalist approach to the philosophy of mathe-
matics. This part is followed by an interlude containing two writtings of G. Polya, who was the 
forerunner of quasi-empiricism in mathematics. The essays in the second part demonstrate quasi-
empiricism which is an increasingly popular approach to the recent philosophy of mathematics. 

Part II deals with the reexamination of mathematical practice. It contains three sets of essays. 
The first set explores some general issues in mathematical practice, starting with the concept of 
informal proof. The authors are: Hao Wang, I. Lakatos, Ph. J. Davis and R. Hersh. The second 
set of essays focuses on the growth of mathematical knowledge, the development or change in the 
essential aspect of informal proof. The authors are: R. L. Wilder, Judith V. Grabiner and Ph. Kitcher. 
The final set continues the theme of informal proof and discusses the change due to the use of com-
puters in mathematical research. The authors are: T. Tymoczko, R. A. de Millo, R. J. Lipton, A. J. 
Perlis and G. Chaitin. 

All essays of the second part argue the philosophical relevance of mathematical practice. 
According to the editor's view: "The crucial step in approaching them is our willingness to con-
ceive of mathematics as a rational human activity, that is, as a practice." 

Each part and almost all essays have an introduction written by the editor which helps the 
reader in better understanding and offers a short summary. 

As a recommendation we cite the closing paragraph of the editor's Introduction: "Although 
this anthology does not completely represent the philosophy of mathematics, it does, I belive, 
gather together some of the more exciting essays published recently in the field. In this instance, 
the whole really is greater than the sum of all its parts; each essay reinforces the others. One purpose 
in bringing these essays together is to demonstrate their collective force. The collection will have 
succeeded if it stimulates the reader — mathematician or philosopher, professional, apprentice 
or amateur — to rethink his or her conception of mathematics." 

Lajos Klukovits (Szeged) 

N. K. Nikol'skii, Treatise on the Shift Operator: Spectral Function Theory. With an Appendix 
by S. V. HruSSev and V. V. Peller. Translated from the Russian by Jeak Petree (Grundlehren der 
mathematischen Wissenschaften 273), XI+491 pages, Springer-Verlag, Berlin—Heidelberg—New 
York—Tokyo, 1986. 

The title of the Introductory Lecture (chapters are called lectures) is: "What this book is 
about." A short, and thus by no means exhaustive, answer can be: about non-classical spectral 
theory in Hilbert space. The discussion is essentially based on the functional model for contrac-
tions due to Sz.-Nagy and Foiaj. This approach makes possible to use more function-theoretic 
tools, namely many properties of functions in Hardy classes, as in classical spectral theory. The 
central role of the shift operator in this model makes at once understandable why this work can 
be considered (again, not in its totality) as a "treatise on the shift operator". 

. Besides the introductory one the book contains eleven lectures. In the first parts of these 
lectures the shift operator in question appears as multiplication by the independent variable in 
the Hardy space H* of scalar valued functions on the disc. These parts can be considered as an 
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introduction in an elementary fashion to the second ones, entitled "Supplements and Bibliographical 
Notes". These second parts contain more advanced studies extending the first parts in various 
directions and are written more condensedly and to a certain extent sketchily. Each lecture is ended 
by "Concluding Remarks" where a review of the literature and hints for unsolved problems com-
plete the discussion. 

It is hopeless to even try to sketch the rich contents of this book, the "Bibliography" lists 
about five hundred items! It may be informative to mention that the Carleson corona theorem 
plays a central role in the discussion. Another interesting method is the introduction of special 
Hankel and Toeplitz operators when studying the model operators. 

The present book is not simply a translation of the original Russian one but it is an improved 
and considerably enlarged edition. Some parts have been revised and moreover, while the Russian 
original has contained only a single Appendix on the spectral multiplicity of operators of class C0 

tlie present edition contains four more ones. Appendix 2 presents the proof of all assertions on 
Hardy classes which are used in the text. Appendix 3 contains the modern proof of the Carleson 
corona theorem and its operator theoretic generalisation. Appendix 4 is devoted to Toeplitz and 
Hankel operators connected with the general orientation of the book. Appendix 5 entitled "Hankel 
operators of Schatten—von Neumann class and their application to stationary processes and best 
approximations" has been written by S. V. HruSiev and V. V. Peller. "List of Symbols", "Author 
Index" and "Subject Index" complete the book. 

The reader needs to be familiar only with standard material in mathematical analysis taught 
usually in undergraduate courses. Because of the many interesting methods and the large material 
covered in this book, it can be warmly recommended to everybody who is interested in its topic. 
The special two-level structure of the discussion certainly helps the reader to orient himself. It is 
worth to glance trough this edition even for those who know the Russian original well, because of 
the improvements and Appendices mentioned above. 

E. Durszt (Szeged) 

Optimization and Related Fields, Proceedings of the "G. .Stampacchia International School 
of Mathematics" held at Erice, Sicily, September 17—30, 1984, Edited by R. Conti, E. De Giorgi 
and F. Giannessi (Lecture Notes in Mathematics, 1190), VIII+419 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York—Tokyo, 1986. 

To find extreme values of functions is perhaps the most important problem of mathematics 
derived from practice. It is the simplest case of this problem when the maximum or minimum of a 
smooth function of several variables in a domain is to be found. But loking for the extreme values 
of smooth functions on a closed set with a piece-wise smooth boundary, which is common e.g. 
in econometrics already requires a lot of special methods that constitue mathematical (nonlinear) 
programming. Similarly, in the calculus of variations some new problems have appeared recently 
in which the control parameters vary on closed sets with boundaries. These problems gave rise 
the "new calculus of variation", control theory or the theory of optimal processes. As it has turned 
out, functional analysis is suitable for investigating the deep common roots of these optimization 
problems seemingly independent at the first glance. 

These lecture notes contain the invited talks of the meeting above, whose aim was to give an 
opportunity for promoting the exchange of ideas and for stimulating the interaction among various 
branches of optimization. The reader can find articles among others on gradient methods, homo-
genization problems in mechanics, Lagrange multipliers, equilibria in the theory of games, recent 
progress in the calculus of variations and optimal control problems and stability analysis in opti-
mization. 

L. Hatvani (Szeged) 

16* 
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Oscillation Theory, Computation, and Methods of Compensated Compactness. Edited by Con-
stantine Dafermos, J. L. Ericksen, David Kinderlehrer, and Marshall Slemrod (The IMA Volumes 
in Mathematics and Its Applications, 2), IX+395 pages, Springer-Verlag, New York—Berlin— 
Heidelberg—London—Paris—Tokyo, 1986. 

This volume is the proceedings of the Workshop held under the same title in the Institute 
for Mathematics and its Applications (University of Minnesota). The Workshop was an integral 
part of the 1984—85 IMA program on Continuum Physics and Partial Differential Equations. 
The subject-matter of the conference was the treatment of nonlinear hyperbolic systems of con-
servation laws, which is the most important problem of continuum mechanics. Both the analytical 
and numerical sides were emphasized, and special attention was paid to the new ideas of compensated 
compactness and oscillation theory. The proceedings contain articles among others on the non-
linear Schrodinger equation, total variation dimishing schemes, the weak convergence of dispersive 
difference schemes, the Korteweg de Vries equation, nonlinear geometric optics, commutation 
relations, and the interrelationship among mechanics, numerical analysis, compensated compact-
ness and oscillation theory. 

L. Hatvani (Szeged) 

Pappus of Alexandria, Book 7 of the Collection, Edited with translation and commentary by 
Alexander Jones, in two Parts, with 308 Figures (Sources in the History of Mathematics and Phys-
ical Sciences, 8), X+748 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. 

Pappus of Alexandria flourished about 320 A.D. and had the opportunity to read all the books 
of the preceding ages in the liberary. To help the forthcoming generations in studying the works 
of the famous Greek mathematicians and astronomers, he has written detailed commentaries. If 
he thought a proof of a theorem too difficult, then he inserted a lemma to make it easier, and if an 
author considered only one of the possible cases, then Pappus supplied with similar proofs the 
remaining cases. We know the content of several Greek works from his commentaries only. 

One of his most famous works is the Collection, which contains eight books and preserved 
in a tenth-century manuscript, Vaticanus gr. 218. This is defective at the beginning and end. We have 
lost (in Greek) Book 1, the first part of Book 2, and the end of Book 8. The Collection has often 
been regarded as a kind of encyclopedia of Greek mathematics, a compendium in which Pappus 
attempted to encompass all the most valuable accomplishments of the past. 

Book 7 of the Collection is a companion to several geometrical treatises, which were supposed 
to equip the geometer with a "special resource" enabling him to solve geometrical problems. More 
precisely, they were to help him in a particular kind of mathematical argument called "analysts", 
which is a kind of reversal of the usual "synthetic" method of proof and construction. 

In Parti we can read an Introduction: Pappus and the Collection, containing historical and 
textological remarks, an Introduction to Book 7, and the Greek text of Book 7 with a fresh English 
translation due to the editor. 

Part II contains three essays on lost works that Pappus discusses: The Minor Works of Apol-
lonius, Euclid's Porisms and The Loci of Aristaeus, Euclid and Eratosthenes. This part contains a 
general and a Greek index and the figures to the text. 

We warmly recommend this valuable work to everybody who is interested in ancient mathe-
matics. 

Lajos Klukovits (Szeged) 
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H.-O.Peitgen—P. H. Richter, The Beauty of Fractals, XII+ 199 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York—Tokyo, 1986. 

The theory of fractals is a rapidly developing part of mathematics nowadays. Mandelbrot's 
work indicated the turning point and his famous book aroused both scientists' and nonscientists* 
interest in fractals. The theory, besides the theoretical interest in itself has practical importance 
and the computer-generated colour pictures of fractals have aesthetic value. The authors aim was 
to unite these three aspects of fractals. 

The book starts with the essay "Frontiers of Chaos" which, without any mathematical rigour, 
explains the background to the non-specialist. This is followed by eight special sections, each of 
which corresponds to a part of the essay and completes the topic considered there. 

In the first special section the authors analyse the Verhulst dynamics which is a population 
growth model with one controlling parameter: x„ + l =( l +r)xn—rx'. Depending on the choice 
of the parameter r, the system may be convergent, periodic or, surprisingly, "chaotic". This "deter-
ministic chaos" has become an important idea and directed the attention to aspects of complex 
analytical dynamical systems. Fatou and Julia extensively studied these processes during the first 
World War. In the second special section the definition and basic properties of Julia and Fatou 
sets are collected without proofs but with complete references for the interested readers. The works 
of Julia and Fatou "remained largely unknown, even to mathematicians, because without com-
puter graphics it was almost inpossible to communicate the subtle ideas". They characterized 
the Julia set, which is the set of initial values for which the process behaves chaotic, in two ways. 
These results make the computergraphical generation of Julia sets possible and their properties 
become easy by looking at these pictures. This enables us "thinking in pictures" and the experi-
mental computer results can help in arriving at new discoveries and conjectures. The philosophical 
contents of this kind of unity of science and art is discussed in detail in the essay. The third special 
section contains Sullivan's famous classification theorem of the components of the Fatou set. The 
authors give several examples from physics, biology and other fields to show that the quadratic 
dynamical systems have special importance. (From the dynamical point of view these are equiv-
alent to the processes generated by the polynomials p<J(z)=za+c). From the general theory of 
Fatou and Julia it follows that the Julia set in this case is either connected or a Cantor set. Mandel-
brot defined and investigated the set of c values for which the corresponding Julia set is connected. 
This strange set is named after him today. The fourth special section is devoted to the Mandelbrot 
set and an up-to-date list of known results and related problems are presented. When c is wandering 
in a component of the interior of the Mandelbrot set then the corresponding Julia set does not 
change topologycally but at branch points qualitative changes occur and crossing the boundary 
yields the most dramatic one, the Julia set becomes a Cantor set. This "transition from order into 
chaos" phenomenon is one of the central questions treated in the essay. In the fifth section the rela-
tionship between two-dimensional electrostatistics and quadratic processes are discussed. Potential 
theory is applied to obtain additional information about the structure of fractals. The maps con-
tained in the book were coloured by calculating equipotential lines. Calculation of field lines is 
usually hard but in the case of the Mandelbrot set an efficient method, the Hubbard trees, is pres-
ented. In the next three special sections the Newton method for the complex and for the real case 
and a discrete Volterra—Lotka system are analyzed from the dynamical point of view. Surprisingly, 
the pictures of fractals in the complex and real cases are different. In the authors opinion the former 
are in baroque style and the latter are more modern shapes, and they state that something must be 
hidden behind this fact. 

The second essay "Magnetism and complex boundaries" is an intuitive outline of a possible 
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explanation of phase transition on the ground of the fractals. The next two special sections contain 
the physical and mathematical details. 

The book contains papers of four invited contributors, the most distinguished experts of 
the field. B. Mandelbrot reports on the way that has led him to the discovery of the Mandelbrot 
set. A. Douady presents an outline of the known results and unsolved questious. The physicist 
G. Eilenberger describes the symbolic meaning of what the authors' pictures may have within 
the changing comprehension of nature. H. W. Franke, one of the pioneers of computer graphics, 
reports on his own experiences and draws a number of inferences from them. 

There is a "Do it yourself" section at the end of the book. This contains some hints for interested 
readers who want to try to generate pictures on their own computer. The presentation of the book 
is nice, it contains 88 really beautiful pictures. The book is recommended to anybody, from pure 
mathematicians to the layman, who is interested in fractals. 

J. Kineses (Szeged) 

R. Michael Range, Holomorphic Functions and Integral Representations in Several Complex 
Variables (Graduate Text in Mathematics), XIX+386 pages, Springer-Verlag, New York—Berlin— 
Heidelberg—Tokyo, 1986. 

"The subject of this book is Complex Analysis in Several Variables. This text begins at an 
elementary level with standard local results, followed by a thorough discussion of the various fun-
damental concepts of" complex convexity "related to the remarkable extension properties of holo-
morphic functions in more than one variable. It then continues with a comprehensive introduc-
tion to integral representations, and concludes with complete proofs of substantial global results 
on domains of holomorphy and on strictly pseudoconvex domains in C", including, for example, 
C. Fefferman's famous Mapping Theorem." 

The book, written in a lucid style and offering the reader a wealth of material, is excellent for 
courses and seminars or for independent study. Much of this material was not readily accessible 
and the inclusion of such topics greatly enhances the value of the book. The most important pre-
requisities are: calculus in several real variables, complex analysis in one variable, Lebesgue measure 
and the elementary theory of Hilbert and Banach spaces and some basis facts of point set topology 
and algebra. 

A good book has some characteristic features which run through it. In this work integral 
representations are the principal tools in developing the global theory. This presentation has several 
advantages. For example, as the author writes, it helps to bridge the gap between complex analysis 
in one and in several variables, it directly leads to deep global results and concrete integral representa-
tions lend themselves to estimations. The work presents the main developments of the last twenty 
years concerning integral representations. One of the other characteristic features of the book is 
the constant presence of historical comments. In the light of these comments the new notions and 

' results become more natural and understandable. This is the most attractive peculiarity of the 
book for the reviewer. (One of the particularly valuable gems can be found at the end of Ch. IV. 

• on the history of integral representations.) A further remarkable feature of this book is that it con-
tains a relatively large number of exercises ranging from the routine to the very advanced ones. 
This is particularly important since the subject abounds in abstract theorems and has only a few 
worked examples. 

L. Pintér (Szeged) 
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Patrick J. Ryan, Euclidean and non-Euclidean Geometry. An Analytic Approach, XVII+215 
pages, Cambridge University Press, Cambridge—London—New York—New Rochelle—Mel-
bourne—Sydney, 1986. 

Teachers of geometry can find nowadays some good text-books on Euclidean and non-Euclidean 
plane geometry which can serve as an introduction to combinatorial, algebraic or topological theo-
ries of transformation groups, to direct methods of non-Euclidean spaces and of the differential 
geometry of homogeneous manifolds. Since computational-analytical aspects of geometric theories 
have increasing importance in the applications in mathematical physics and computer graphics, 
there is a demand on an up-to-date analytical introduction to plane geometry. The present book 
gives a very well-written and useful treatment of this topic. It contains the fundamentals of 
Euclidean, spherical, elliptic and hyperbolic plane geometry using the methods of isometric, affine 
and projective transformation groups. At the same time it provides an arsenal of computational 
techniques and a certain attitude toward geometrical investigations. It aims to give an appropriate 
background for teachers of high school geometry and to prepare students for further study and 
research. 

The book is self-contained for upper-level undergraduate mathematics students, the nec-
essary knowledge is summarized in appendices. Only a familiarity with linear algebra and ele-
mentary transcendental functions is expected from the reader. The material is illustrated with many 
exercises, requiering specific numerical computations or supplying proofs that have been omitted. 
Some of them extend the results proved in the text. 

The first main part is, of course, Euclidean plane geometry (Historical introduction, Plane 
Euclidean geometry, Affine transformations in the Euclidean plane, Finite groups of isometries 
of £'-). The second part contains: Geometry on the sphere, The projective plane P2, Distance geom-
etry on P2. The last chapter is: The hyperbolic plane. 

The book gives a very good basis for high school geometry teaching and a good introduction 
for graduate work in differential geometry or computer graphics. 

Peter T. Nagy (Szeged) 

Lewis H. Ryder, Quantum Field Theory, X+443 pages, Cambridge University Press, Cam-
bridge—London—New York—New Rochelle—Melbourne—Sydney, 1985. atzu 

For a long period, quantum field theory had meant only the quantum theory of electromagnetic 
fields. Other forces of nature as the weak and strong nuclear interactions resisted the formalism 
that proved to be so successful in the description of electromagnetism. The principle of local gauge 
invariance has overcome the difficulties, and the prominent achievements of gauge field theories 
of the seventies have reached the textbook level by now. 

To find a good balance however, in a single book, between the several parts of this huge sub-
ject is not an easy task. This is the more so if among the author's aims is that the presentation should 
be intelligible by a graduate student. The Quantum Field Theory by L. Ryder has solved this problem 
succesfully. To read this volume it is enough to be familiar with quantum mechanics and special 
relativity. The text leads us with great pedagogical skill, step by step from elementary field theory 
to the «normalization of gauge fields. The emphasis of the presentation is on the path integral 
method. Besides introducing the fundamentals of quantum field theory, the author acquaints the 
reader with some modern mathematical tools as well. One may regret that certain more recent 
concepts (e.g. supersymmetry) are not found in the book, but the author probably wanted to include 
only those results that have more or less experimental basis. 

The book is very well suited for teaching and studying this subject, and brings even the beginner 
close to present day field theory. 

M.G. Benedict (Szeged) 
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M. Shirvani—B. A. F. Wehrfritz, Skew Linear Groups (London Mathematical Society Lecture 
Note Series, 118), 253 pages, Cambridge University Press, Cambridge—New York—Mel-
bourne, 1986. 

Skew linear groups arise naturally as a generalization of linear groups, by omitting the require-
ment of the commutativity of the corresponding field. One of the main problems in passing from 
linear groups to skew linear groups is that, at least presently, division rings are rather difficult to 
handle. The investigation of skew linear groups is a fairly young branch of algebra, in comparison 
with the theory of linear groups, however, in recent years it has expanded very rapidly. This book 
is the first monograph providing a systematic treatment of a number of results that were available, 
till now, in research papers only. 

In Chapter 1 the basic concepts such as irreducibility, absolute irreducibility and unipotence 
are reviewed in the context of skew linear groups, and some groups with faithful skew linear repre-
sentations are constructed. Chapter 2 discusses finite (and locally finite) skew linear groups, including 
the description of finite subgroups of division rings of characteristic zero, and the theorem that 
finite skew linear groups over division rings of characteristic zero have large metaabelian normal 
subgroups. Chapter 3 is devoted to skew linear groups over locally finite-dimensional division alge-
bras, with the emphasis laid on nilpotence and solubility. In Chapter 4 the authors consider skew 
linear groups over division rings generated by a central subfield and a polycyclic-by-finite sub-
group. Chapter 5 contains a detailed study of normal subgroups of absolutely irreducible skew 
linear groups. In Chapter 6 the book concludes with an application showing how the theory of 
skew linear groups may shed light on some known results on group rings. 

To help the reader, the authors give a list of prerequisites for each chapter, a detailed notation 
index, and author and subject indices. This monograph is warmly recommended as a textbook 
for those wishing to get acquainted with the subject, and as a reference book as well. 

Agnes Szendrei (Szeged) 

Michael Shub, Global Stability of Dynamical Systems, XII+150 pages, Springer-Verlag, New 
York—Berlin—Heidelberg—London—Paris—Tokyo, 1986. 

The most characteristic property of an equilibrium position in a mechanical system is its 
stability or instability. The equilibrium position is stable if during its motion the system remains 
arbitrarily near the equilibrium state provided that it was near enough at the initial moment. Obvi-
ously, only the stable equilibria can be realized in practice, so the research for conditions of stability 
have started at the early stages of mechanics and mathematics. Later on the investigations have 
been extended to general dynamical systems and have created the Lyapunov Stability Theory. 
In this theory it is always assumed that the system itself is under ideal circumstances, i.e. it cannot 
be disturbed by outside effects. However, each system is under the action of certain small undefinable 
perturbations. Therefore, it is clear that one can expect only those properties of the model to be 
realized in reality which are not too sensitive to small changes in the model. In 1937 Andronov 
and Pontryagin introduced the concept of robustness or roughness of a system (nowadays it is 
called structural stability), which means that the topological structure of the trajectories does not 
change under small perturbations of the system. If we observe the trajectories only in a neigh-
bourhood of a point then we talk about local stability. If the trajectories are observed on the whole 
manifold then the stability is global. 

The central objective of the modern theory of Dynamical Systems is the description of the 
orbit structures of vector fields on a differentiable manifold. There exist, however, fields with 



Bibliographie 527, 

extremely complicated orbit structures, thus one has to restrict the study to a subset of the space 
of vector fields. It is desirable that this subset should be open and dense, or as large as possible, 
and it should consist of structurally stable vector fields with simple enough orbit structure so that 
one could classify them. Due to the celebrated Hartman—Grobman Theorem, this program has 
been completely solved if the stability and the equivalence are ment locally. 

To complete the above program in the global sense is much more difficult. As it was proved 
by Smale, on manifolds of dimensions higher than two the structurally stable fields are not dense, 
and the structure of the trajectories and their limit sets even for the stable fields can be extremely 
complicated. Their description is still an active area of research. 

Shub's book gives an excellent account on the results of this area, most of which were available 
only in articles so far. The reader can get acquainted the central concepts, theorems and examples 
of the global theory of dynamical systems such as filtration, hyperbolic invariant sets, change recur-
rence, stable and center manifold theorems, Smale's Axiom A, symbolic dynamics, Markov parti-
tions, i2-stability theorems, Smale's horseshoe and the solenoid. It is highly recommended to any-
one interested in dynamical systems and stability theory. 

L. Hatvani (Szeged) 

Gábor J. Székely, Paradoxes in Probability Theory and Mathematical Statistics (Mathematics 
and its Applications), XII+250 pages, Akadémiai Kiadó, Budapest and D. Reidel Publishing 
Company, Dordrecht, 1986. 

This book is very unusual and, as far as I know, is unique in its kind. It endeavours "to show 
how the rapidly progressing and widely used branch of knowledge of the mathematics of random-
ness has developed from paradoxes". While this is a bit too much to be hoped for as it flaunts, and 
would be the greatest paradox of all had the author succeeded in doing so, his paradoxical vision 
is certainly a valid one and interesting. The result is a most enjoyable reading which is worth much 
more then two dozens of half-thought dishonest "introduction to probability and statistics" books 
published in so great a number nowadays. 

Chapter 1 contains the discussion of 12 paradoxes or families of paradoxes from classical 
probability theory, while Chapters 2, 3 and 4 expose and treat 12, 6 and 12 paradoxes or families 
of paradoxes in mathematical statistics, the theory of stochastic processes and the foundations of 
probability theory, respectively. The discussion of each paradox is devided into five parts: the 
history, the formulation and the explanation of the paradox, remarks and references. Further-
more, the four chapters end, respectively, with 15, 16, 8 and 8 of what the author calls quickies 
which either did not fit into the main line of thought of the book to be discussed in such detail as 
the numbered paradoxes, or are adjecant curiosities, strange facts, gems. 

The history and remark sections and the quicky passages contain á lot of interesting historical 
and cultural information, narrated in the easy, chatting style of the author, together with stories, 
anecdotes and gossip. Instead of fooling around for pages on end to say the same thing politely, 
for example, he is not afraid of very simply stating that "R. A. Fisher hated K. Pearson". Or, while 
discussing the paradox of the almost sure eventual extinction of a critical Galton—Watson process, 
he proposes an interesting system for the inheritance of family names to avoid the replacement of 
"nice old family names" by "more common dull ones like Smith, etc." 

The book makes an easy and recreational reading but can be used more seriously as a sup-
plementary reading to almost any course in probability and statistics. In fact, my math major stu-
dents like the original Hungarian edition, of which the present English one is a revised and updated 
version. 

Sándor Csörgő (Szeged) 
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Audrey Terras, Harmonic Analysis on Symmetric Spaces and Applications I., 341 -I- XII pages. 
Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1985. 

Harmonic analysis is one of the most useful areas of mathematics which made a deep influence 
on several other fields of mathematics and physics. The book demonstrates exactly this usefulness 
by presenting many applications in number theory, statistics, medicine, geophysics and quantum 
physics. This is the first volume of a series dealing with the harmonic analysis of the three classical 
geometries (euclidean, spherical and hyperbolic). 

Besides the standard development of euclidean Fourier analysis we learn in the first chapter 
how to use this theory to the solution of the heat equation, to the examination of crystals, as well 
as zeta functions of algebraic number fields. In Chapter 2 spherical Fourier analysis is applied 
for the study of the hydrogen atom, for the sun's magnetic field and also for group representations 
and Radon transforms. The last chapter is devoted mainly to the fundamental domains of discrete 
subgroups of hyperbolic isometries, the Reolche—Selberg spectral resolution and the Selberg 
trace formula. 

We recommend this excellent text-book to every mathematician, engineer, scientist and applied 
mathematician who is interested in harmonic analysis and in its applications. 

Z. I. Szabó (Budapest) 

The Craft of Probabilistic Modelling: A Collection of Personal Accounts, Edited by J. Gani 
(Applied Probability. A Series of the Applied Probability Trust), XIV+313 pages, Springer-Verlag, 
New York—Berlin—Heidelberg—Tokyo, 1986. 

This is the first volume of the new series in the braces above with series editors J. Gani and 
C. C. Heyde. The beginning is indeed very nice. The volume contains nineteen essays from leading 
probabilists who, among other things, have distinguished themselves in applied probability model 
building. Each of the essays are preceded by a short biography. Some of the essays concentrate 
on the models themselves that the authors have built, others are entirelly autobiographical, while 
the rest is a combination of the two. Some of the writings are very dry, some are exceptionally 
lively. I don't single out any of the essays for special mention here because more then half of them 
are very close to my heart for one reason or other. In the grouping of the editor, the contributors 
are the following. Early craftsmen: D. G. Kendall, H. Solomon, E. J. Hannan, G. S. Watson; 
The craft organized: N. T. J. Bailey, J. W. Cohen, R. Syski, N. U. Prabhu, L. Takács, M. Kimura, 
P. Whittle, R. L. Disney; The craft in development: M. F. Neuts, D. Vere-Jones, K. R. Parthasa-
rathy, M. Iosifescu, W. J. Ewens, R. L. Tweedie. 

The book is a very enjoyable reading. 
Sándor Csörgő (Szeged) 

John B. Thomas, Introduction to Probability (Springer Texts in Electrical Engineering), X+247 
pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. 

This is a textbook designed for an introductory one-term course for undergraduate or beginning 
graduate students majoring in engineering, the social sciences or business administration. The 
only prerequisite is a solid standard calculus course. Contrary to the practice followed by dozens 
of texts' with the same aim, the present one introduces the basic notions arid formulates the cor-
responding theorems with very great care and rigour. Of course, not all the proofs can be given 
by formal arguments in this framework. These are someties substituted by very nice heuristic explana-
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tions. There is a great number of well-chosen, illustrative examples and the eight chapters (Introduc-
tion and preliminary concepts, Random variables, Distribution and density functions, Expecta-
tions and characteristic functions, The binomial, Poisson, and normal distributions, The multivariate 
normal distribution, The transformation of random variables, Sequences of random variables) 
each end with a good set of homework problems. The trend is towards engineering applications. 
Six short appendices on integration and matrix theory help the student. Instructors of courses of 
the type noted above will like the book. A clean and honest work. 

Sándor Csörgő (Szeged) 
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