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On the Riesz summability of eigenfunction expansions 

S. A. ALIMOV and I. J 0 6 

Dedicated to Professor Bela Szokefalvi-Nagy on the occasion of his 70th birthday 

Let Q be an arbitrary bounded domain in R" (N Ss3) having C°°-smooth 
boundary, and q an arbitrary non-negative function from the class L2(Q). Consider 
the Schrodinger operator 

L = L{x, D) = — A + q { x ) •. 

Denote L an arbitrary positive selfadjoint extension of the operator L from the 
domain C~(i2) with discrete spectrum. According to a theorem of K. O. Friedrichs 
[1,2] there exists such a selfadjoint extension. Let ... denote the 
sequence of the eigenvalues of the operator L and let {w„}" be the complete ortho-
normal system of the corresponding eigenf unctions in L^Q). For any s and 
/£Z,3(i2), consider the ,v-th Riesz means of the spectral expansion of / : 

Eif(x) = 2 f l - 4 ) (/>"») 

It is assumed in this work that the potential q is spherically symmetric. Namely, 
let be a non-negative function satisfying 

(1) *V*>(0| ^ CS-1 (t > 0; 7c = 0, 1 ..., [N/2]) 

for some x>-0. If N=3, then it is assumed that x >-1/2. In particular, we have 

(2) a{t) ^ (t > 0). 

The constant Cz depends only on %. Now assume that the potential q has the form 

where x0€l ¿2 is an arbitrary but fixed point. Received December 15, 1981, and in revised form November 28, 1982. 
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Denote by L'p(Q) the set of those elements of -Lp(R") for which supp fcQ. 
It is well known that C ~ ( i 2 ) is dense in L'p(Q) with respect to the norm of L'p(RN) 
(cf. [14], 4.3.2/l(b)). 

We shall prove the following theorems. 

Theo rem 1. Let p^l, s^O, 1^0, l+s^(N-l)/2, pi>N. Then for any 
f£L'p(Q), 
(3) jim £ ! / ( * ) = / (*) , x£Q. 

Theorem 2. Let jssO, /&0, l+s^ (AT-1)/2. Then for any f£L'2(Q), 

(4) lim E% f{x) = 0, x€ i2\supp f 
CO 

Remark . For q = 0, Theorem 1 was proved in [10] and it was extended in [5], 
for an arbitrary elliptic operator with smooth coefficients. Earlier, the case of 
q = Q, s=Q, when / is an integer was settled by V. A. I L ' I N [8]. In [10] it is proved 
that if l+s<(N-l)/2,p=°° and q=0, then (3) does not hold for any f£L'p(Q). 

For the proof of the Theorems we have to estimate the eigenfunctions «„. 
We use the method of V. A. I L ' I N [9] and to this we need a mean value formula 
for the functions un. Thereafter, the theorems follow by applying H O R M A N D E R ' S 

Tauber type theorem [7]. To this it is necessary to estimate the Fourier coefficients 
of functions from Liouville classes using interpolation theorems and to estimate the 
resolvent of the operator L outside of an angular domain, which contains the 
spectrum {A„}. 

1. The mean value formula and its application 

Define 

W{t, r) = j^-^r^I/^-^Orjv/.-iW-rw/i-iW^/.-iCr)], 

o>(i) = min (1, f( i -W), 

where Jv and Yv denote the v-th Bessel and Neumann function [6], respectively. 

Lemma 1.1. The estimate 

r 

(1.1) r1-"'2 f co(tn)\fV(tn, riOI^-VM dt S Cx/t-^C/ir) 
o 

holds for every r=-0 and / i>0. 
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Proof . Using well known asymptotic formulas (cf. [6], 7.2.1 (2), (4); 7.13.1 
(3), (4)) it follows 

(i.2) if t ^ i , 
ytr 

(1.3) \W{t,r)\^C0
 1 , if 0 < i S l s r , 

tN 12-1 j/,. 

(-.N/2-1 

^J , if 

If r n ^ l then, by (1.4), it follows 

/ S C0 / a(i) dt ^ C0Ct / i - i dt s= ̂  r* si ^ / i - T a > ( r n ) , 
o o T T 

where I denotes the left hand side of (1.1). If r/i > 1, then we use the decomposi-
l/f r 

tion I — J + J = h+h and apply to the estimation of Iy and /2 , (1.3) and (1.2), 
0 l/it 

respectively. It follows 

i If i i//i 
A == Cor1""'2 / foi)1-wa-7= i " ' 2 - 1 « « di - CoM«1-*)'8 / a(i) rf? s 

o K rA< o 

C0r1~N/2 f ( t f i I _ tNl2-ia{t)dt = 
i/T, ^ ) V 

= C o M ^ - ^ d / ^ ) f ^ d ^ ^ i r , ) f t-i+'dt^Z&ii-'tDirn). 
i/n 1 T l/M 1 T 

Lemma 1.2. For every r>0 , ^„>C2 , 

(1.5) / + = w„(x0)[Q(r/O1
 t ( r /O + a0-, //„)], 

e 
(1.6) |a(r, ¿¿„)| -== const n~1 ©(77O, 

u>/?£re n„^YT„,CN=2N'2-1r(N/2). Here ff(xo+r0)d0 denotes the integration with 
e 

respect to the normalized Lebesgue measure over the sphere of radius r and centred 
in x0. 
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Proof . Recall the mean value formula of E . C . T ITCHMARSH (cf. [13], p. 2 3 2 ) 
stating 

f un(x0+rO)dO = un(x0)CN(rfi„y-N'*JN/2_1(rtO+ 
e 

+ / ( / q (*o +tO)un (x0 + tO) dO) (t/ryi* -i tW((fin, r/i„) dt. 

o a 

In the case of our spherically symmetrical potential we get 

J Un(x0+r6)de = u„(x0)CN{rfiny-Nl2JN/2-10/O+ e 
T 

+ rl~m f ( /uAx«+t8)dO)W(tnn ,rnn)t«l*-ia{i)dt , 
o e 

i.e., the function v*{r, fin)= Jun(x0+rd)d6 satisfies the integral equation 
e 

v*(r,fin) = un (x0) CN (rUn)1 - N,2JN/2-i(rn„) + 

+ ri-w J v*{t) ^ w ^ rfi„)tNI2~1a(t)dt 
o 

of Volterra type (cf. [2]). Define 

Voir, Un) = "n(*o) CNM1 -Nl2JN/^1(rp), 

vk(r, fi) = r1-*/2 fvk-At, mWCm, rfi)tN^a(t)dt. 
o 

The estimates \pk(r, /¿)l =const co(rii)[cJnT]k (/->0, /x>0) follow by induction on k. 
On the other hand, it is easy to see that 

v*(r, / 0 = un(x0)v0(r, iO + "n(*o) 2 vk(r, fi„). k = 1 

Hence (1.5) and (1.6) follow for the function 

ct(r,n)= 2vk(r,n). 
k = 1 

Lemma 1.3. We have 

(1.7) 2 k(*0)l2 = Qa**-1 0 ^ 1 ) -

The constant C3 does not depend on fi. 
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Proo f . We use the method of V. A. IL'IN [8, 9]. Consider the function 

m W ^ ) i f R < r < 2 R 

d ( r ^ ) = | o if r < j ( * , 2 i a 

where 0<2/?<dist (x0, dQ), r= |x—x0|, / i>0. Calculate the Fourier coefficients 
of d(r, n) with respect to the system {«„}. Taking into consideration (1.5), we obtain 

d« = d„(fi) = f dx = 
Q 

= f ^ m - ^ {fun(xo+re)dey->dr = e 

->N/ 2-1 t/W 

It is proved in [8] that 

2R j , \ 2R 
^un(x0)[CN f A / 2 - x M N%[:r rdr+ f JHJi_1(rn)a(r,nJrr"*dr]. 

R "« R 

2 R j 

if and n is large enough, where the constant c does not depend on fi. 
Hence 

^ c - |w„(x0)|, 

r i 

if —//n| = 1 and n=fi0- On the other hand, using (1.6),- we obtain 2R 2R 
I f JNI2-l(rn)oc(r, n„)rN/2 dr\ 3S const Mn

_ t | / JN,2-1(r^)a(r^n)rNl2 dr\ s 
R R 

2R X 1 s 

S const = 

Summarising our estimates, we get 

\dn(ji)\ & const |wn(x0)l[l + O ^ j ] sr const |k„(*o)I, 
if \ f i n — a n d fi is large enough. Hence the desired estimate (1.7) follows 
by applying the Parseval equality and the relation 

/\d(\x-x0\,fi)\*dx = O(iiN-i). 
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2. Estimates for the Fourier coefficients of functions from LiouvOle spaces 

Lemma 2.1. Let k be a natural number and a={a1, ..., <xN) a multiindex 
such that 0s\<x\<kSN/2. Then for every e>0, there exists a constant C4 = C4(e) 
for which 
(2.1) l l l*-*o | £ - ( t - W ) £ a / (*) l l M i l ) ^ Qll / lk 'cn) 

holds for all f£W\{Q). 

Proof . The estimate follows immediately using classical imbedding theorems 
and the Holder inequality. 

Lemma 2.2. For every natural number k, Os/c =N/2, the estimate 

(2.2) l|£* /2/L2 ^ C511/11 w i 

holds for every fd№\(Q). The constant C5 does not depend on f . 

P r o o f . According to the spectral theorem, we have to prove the estimate 

(2.3) const \\f\\wu. 
n=i 2 

By definition, W&Q) is the closure of Cg{Q) in the space Wk
2(Q). Hence it is 

enough to prove (2.3) for functions from the class CJ°(i2). If k=2m, then we have 

2W,»n)\2= m - 4 r m 
n = l 

for every /£CJ°(i2). In this case we use Lemma 2.1 and the following simple facts: 
for any natural number 1 Sm SN/2, we can write 

(2.4) (A-qT = Am+ 2 C„lia{x)D\ 
|a|s2m-2 

where the functions Cm Jx) belong to C°°(i2\{x0}) and (for each multiindex /?) 
we have 
(2.5) \D>Cn,.{x)\ == const | * -* 0 | ' « l + , - I " - " l . 

These facts follow easily by induction on m. For the sake of simplicity, in this 
section we assume x 0=0. In the case k=2m, (2.3) follows immediately. If 
k =2m +1, then we have 

(2.6) 2 W> "Jl2 = W^-gT/Wl-Wig^-grfWl.. 11 — 1 

For the estimation of the first term on the right hand side we use (2.4): 

V (A — q)mf = VAm/+ 2" t(VCm, x)D*f+ Cm<xVD°f], 
\x\S2m-2 
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so it is enough to prove the estimate 

|||x| |a |-* + I£>7'||Ls ^ const \\f\\Wk, 

for every natural number k, 0 = ksNj2, but this is the statement of Lemma 2.1. 
To estimate the second term on the right hand side of (2.6), we use (2.4). It follows: 

]/q{ A - qf'f =iqAmf+ 2 fk C^ETf. 
|z| S2m-2 

Hence, taking into account the trivial estimates 

Am/)(*)| si const |x | - 1 + r / 2 |Am /WI ^ const 2 M t / 2 - ( * - N ) W ( * ) | 
[a| =2 m 

and 
\{fq Cm^Dxf){x)\ S const |x|-1+t/2 |x| |0 , i+r-2m |£>° I/(x)| si const IjcI3®'»— 

the desired result follows by applying Lemma 2.1. 

Lemma 2.3. For any real number s, O^s^ N/2, we have 

(2.7) \\LsIV\\L3 ^ C6 | | / | |£ . 

for every f£Ls
2(Q). The constant C6 does not depend on f 

Proof . We use Lemma 2.2 and apply Theorem 4.3.2/2 of [14] for 3f=L2(Q), 
W =tff / 2 1( i2), A = LW2]I2. Using the notations of [14], we obtain (Z,2, 
for I =[N/2], s=0l. (Here Ae = Lsl2, Le

2'=Ls
2.) Hence (2.7) follows. 

Lemma 2.4. There exists a>-N/4 such that 

(2.8) C~(i2)cdom (La). 

P roof . Let m = [N/4]. Applying (2.4) we have 

f f = Am /+ ^ Cm.aWf, fiC~(Q), 
|a|S2m-2 

and 
\Lmf(x)\ si const |x| r-2m, \WLmf(x)\ S const l*!1-2"1-1. 

Hence, VlmfeLp if ( t - 2 m - 1 ) / » - N , i.e., N/p>2m-T + ]. It follows LmfcW\ 
if /€C~(i2). By the classical imbedding theorem if S-N/2 = l-N/p 
(cf. [12],Ch. 6). It follows: LmfeL{ forevery <5<7V/2-2m + T. Thus, using Lemma 
2.3, we get Lm+s'2fdL2, i.e., /(Edom (Lm+S'2) for every fiC~(Q). Choose 
S= Nj2—2m + r — e, where £>0 is small enough; then m+5/2 = m+N/4—m + 

def + t /2 — e/2 = iV/4 + (t — e)/2, and if e<t , then we have o=m + 5/2>N/4. 
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3. Estimation of the Green function 

Let R(l,L) denote the resolvent of the operator L, i.e., R{k, L) — {L—?J)~1 

and G(I=/?(//2, L) = (L—fizI)~1. Let 0<e0<7t/2 be an arbitrary small real number 
and define 

Z0 = {z6C: e0 Hs arg z s 7r-e0}. 

Set ii=i~X with Im^O, i.e., Osarg ¿i^n. 
The aim of the present paragraph is to investigate (estimate) the Green func-

tion of the operator L—XI, i.e., the kernel function of the resolvent (¿—A/)-1. 
Using the method of E . E . LEVI (cf. [7 ] , [ 1 3 ] ) first we construct a fundamental solu-
tion E(x,y,fi) of the operator L—Xl, i.e., a function for which 

(—A + <7(x) • -fi2l)E(x, y, fi) = d(x-y) (x, y£Q). 

In case of q=0, the fundamental solution E0(x, y, fi) which decreases exponentially 
for Im /¿=-0 is the following: 

E0(x, y, fi) = CN(fi/r)*12_x(r/j.) 

(cf. [13], (13.7.2)). Here H^\z) denotes the v-th Hankel function of first order. 
Obviously, the exponentially decreasing fundamental solution E is the solution 
of the integral equation 

E(x, y, fi) = E0(x, y,n)~ f E0(x, u, fi)E(u, y, fi)q(u) du. 
a 

Now define 
Ek(x, y, n) = E0(x, y,fi)~ f E0(x, u, f^E^u, y, fi)q(u) du, 

° x 

F0(x, y, fi) = E0(x, y, fi), Fk(x, y, fi) = Ek(x, y, fi)-Ek^{x, y, fi) (k = 1, 2, ...), 

and fe0= [(#— 2)/r]. Obviously, 
oo 

(3.1) E(x, y, fi) = 2 Fk(x, y, fi) 

k=0 

if the series is uniformly convergent. Furthermore, 

(3.2) Fk(x, y, fi) — — JE0(x, u, fi)Fk_1 (u, y, fi) q(u) du. n 
Our first aim is to prove that the series (3.1) has good convergence properties. To 
this we must estimate the functions Fk. If p>Nj(N—2+t), then p'<N/(2—i) 
(l/p+l/p'=l) and hence, taking into account that, according to our assumption 
on q, 

q{x) = aGx-XoDlx-Xol-1 ^ ct|x-x0|-2+^Z,p.(i2), 
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we obtain the following estimate for Fk : 

(3.3) |F t(*, y, f i ) ^ \\q\\lp. f |£o(*, u, n)\"\Fk^(u, y, n)\> du 
Si 

for every p>N/{N— 2 + t). 

Lemma 3.1. If k^k0, then for any ¿6(0, T), 

(3.4) |F k(x , y, fi)I ^ C7lx-yp-K+ue-'l'-'IM (x, y£Q, /i€Z0). 

Here C7 and a are positive constants not depending on x, y and ft. 

Proof . For k=0 we have F0=E0, and (3.4) follows from 

(3.5) \E0(x,y,n)\^CM~"\x-y\2-x-Ne-x\x-3'M (x, y£Q\ 0 S ^ 2 ) . 

Here C7 and a are positive constants, n£Z0 . This estimate is immediate from 
[6] (7.2.1 (2) and (5); 7.3.1 (1)). Suppose, (3.4) is fulfilled for k-1 in place of k. 
Using(3.3) and the fact that \x-y\^\x-u\ + \u-y\ implies 

w e obtain by the induction hypothesis that 

|F t(x, y,n)\> ^ conste-"'*-'»*' f du ^ 

S const e - ^ x - y ^ p \ x — 

Thus (3.4) follows by induction. 

Lemma 3.2. If k>k0, then for every *6(0, t), 

(3.6) \Fk(x, y, aOI ̂  (x, y^Q', n£ZJ. 

The constants Cs and C* do not depend on x, y and ¡1. 

Proof . Let k=k0+l. Choose ¿6(0, t) such that A^—2<(A:0+1)<5. Accord-
ing to the definition of k0, this is possible. Then choose p (>JV/(iV—2 + T)) so that 
l/p=(N—2)1 N+8/N, apply (3.3) and (3.5) for x=0 and (3.4) for k=k0, re-
spectively. Using the notation (N—2—k0d)p=e it follows that 

\Fk{x, y,n)S const e-^-yl l f lp f \x-u\f5~N\u-y\-e du. 
si 

According to the definition of k0, we have k0z^N—2~<(k0+ l)t and hence 
k06<N—2, i.e., 6>0. Furthermore, according to the choice of <5 we have 
e=(N-2-k05)p=p5((N-2)/S-k0)<pd(k0+l-k0)=pd. A result of Titchmarsh's 
book ([13], 22.1) states that, in this case, 

f \x-u\gi-N\u-y\-e du < CO. 
a 

Thus (3.6) is proved for k=k0+1. Then (3.6) follows by induction on k. 
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It follows from (3.6) that the series in (3.1) converges for every x, y£Q, if p. is 
large enough, and hence shifting the spectrum of the operator L we obtain 

Lemma 3.3. For any x,y££2 and /i€Z0, we have the estimate 

(3.7) |£(x, y, e£ 

Let £'(x, y, //)=£(>', x, /<) (the formal adjoint of E). A standard calcula-
tion shows that for any f^Wz

p{Q) with p>N/2 and s u p p / c i 2 , the equality 

/E'(x, у, ц)[Ь{у, D)-p2]f(y) dy = / (x ) , x£Q 
a 

holds. Let Q0 and be two domains in R*' for which x0£i20, and 
GjCi}. Let ri£C~(Q) be such that q(x)=l if xi i2x . Define 

H (x, y, /¡) = E'(x, у, и)-П (У) 
and 

K(x,y, 2(V,r,(y))VyE'(x, y, ti) + iAyr,(y))E'(x, у, p). 
Obviously, 

(L(y, В)-ц2)Н(х, y, //) - r,(y)(L(y, D)-p2)E'(x, y, /<)-

-2(Vrj)VyE'(x, у, А0-(Аn)E'(x, у, ц). 

Furthermore, K(x, y, fi)—0 if y£Q and hence, using (3.7), we get 

(3.8) |K(x, y, /i)| S const e-cl"l (x£O0, У H £ Z 0 ) . 

It is easy to verify that for every f£lV2
p'loc(Q) (p> N¡2) the equality 

(3.9) [ / / ( L - / r / ) / ] ( x ) = [f-Rf}(x), x€i20 

holds, where the operation ~ is defined by 
(ФЛ(х) = f (p(x, y)f(y)dy. 

n 

On the other hand, for any /€C~(G) we have (L-XI)'1/^ 0^ |OC(O) if p >N¡2 
and q£Lp(Q). Now apply (3.9) for (L -Д / ) " 1 / (/€C~(i2)) instead of / . It follows 

Hf(x) = GJ(x)-l<GJ(x) (feC0°°(Q), xeQ0) 

and hence, by continuous extension we get 

Lemma 3.4. For every /££2(i2), 

(3.10) ^ / ( х ) - Я / ( х ) = ^ Л х ) , x£Q0. 

Using the equality (3.10) and the estimates (3.7) and (3.11) we obtain by an easy 
calculation 
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Lemma 3.5. Let and 0SE<I /2. Then for any feL'^Q) 
for which f(x) = 0 whenever |x—x0| = r we have 

j.l-N/2, 
(3.11) |G„/ (x 0 )N c o n s t - ^ e - ^ ( r \ n \ y \ \ f \ \ L , 2 (/i€Z0). 

Lemma 3.6. Let a>N/4. Then for any f£L2(Q) and on each compact set 
KaQ we have the estimate 

(3.12) Wl-'fWLuv ^ C1 0(^) | | / | | l 2 ( n ) . 

P roof . First remark that the following fact is easily proved by induction 
on k: Let N/4 = m+5, where m is a natural number and 0^<5<1 (i.e. ¿ = 0, 1/4, 
2/4,3/4). Then for every /£L 2(Q) and O^k^m (k is a natural number) we have 

(3.13) \\L~kf\\Lpkw 3= const n /n^a) (Q' c c Q, l/pk = 1 / 2 - 2 k / N ) . 

Thereafter, we prove (3.12) for some ¿-=£<1 if a = m+e. Define 

^ « s i n ™ f f - . # i d t ; 
71 o 

then, using 
sin ne L" = L~ — f t-*{L+tI)-lL~m dt 

n J 

([14], 1.15.1 (1)) we obtain L-"=H E L- m +R E L- m . Obviously, 

^ const | |/[| t2(n) 
and 

|H(x, y, A)| S const | x - y \ i - N e - * \ x - y \ N , 

hence \HE(x, y)|^const j|2e_iV. By Holder's inequality 

^ const llgll^o., ( ^ c f l ' c c f l , g = L~mf) 

if l/p<2s/N, i.e., e>N/2p; on the other hand, by (3.13), 

l | £ - m / l l M i n ^ const H/ll^o), 1 lp = ill -2m/N. 

But £><5 = N/4 — m = (N/2)(1/2—2m/N) = (iV/2)(l/p), i.e., s>N/2p. 

C o r o l l a r y 1. For every oN/4 the estimate 

(3.14) x t K 
n=1 

holds uniformly on every compact subset KcQ. 
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Proof . By the spectral theorem, for any feL^O) we have 

/ 1 = 1 

and hence, using Lemma 3.6, the estimate 

2 ( / > « > „ ( * ) ¿,7 ^ const r ~ Y'2 
{ 2 U K ) \ 2 ) 

follows, which implies the statement. 

Coro l l a ry 2. For any a>N/4 and /£dom (La), the series 

(3-15) 2 ( / » „ ( * ) 
n=1 

converges absolutely and uniformly on every compact set Kc Q. 

Proof . Using (3.14) the statement of Corollary 2 follows from the estimates 

\ 1 / 2 ( - + P \112 

_ U k*K(*)I = I 2 ' U uk)\ 
k=n 

v l / 2 

n+p (n+p Y ^ i n + p yl* 

2 I i f , uj«t(x) I ̂ \ 2 U uk)\24°] 2 ktol'lH 
k=n V*=n / Vt=n > 

(n+p 
COnSt 2 U Uk)№"\ - 0 in, P - co). 

VFC=„ / 
Coro l l a ry 3. For every /£C^(i2) the spectral expansion EJ\x) /o 

/(x) as A—uniformly on every compact set K<zQ. 

Proof . This follows immediately from Corollary 2, using Lemma 2.4. 

4. Localization and convergence of the Riesz means 

In this section we prove Theorem 1 only, because the proof of Theorem 2 goes 
on by the same argument. 

Lemma 4.1. Suppose 0^1 S[N/2], /¡=-0, />0 . Then we have 

(4.1) \(p[it+h)2]-(pit2)\ S C12 | | / | |£ ,(l + fh)it+hyN-V'2-> 
where 

<K0 = EJix«) = 2 (f K„K (*O), / € - % ( « ) • 

Proof . (4.1) follows from Lemma 1.3 immediately. 
Using the method of [4] and the estimate (4.1), the following statement follows 

by applying Hormander's Tauber type theorem (cf. [7]). 
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L e m m a 4.2. Suppose 0^/<JV/2, feL[(Q) and f(x) = 0 if \x-x0\^r. Then 
we have the following estimate for every i = 0: 

(4.2) |£//(*„)l ^cons t | | / | | i , ; u /2 )W 2 -o ( i + r / I ) - i / 2 - , . 

L e m m a 4.3. Let j ^ O , 1^0,p>\ and 

(4.3) s + l = {N-l)/2, 0 < l-N/p ^ 1. 

Then for every f€L'p(Q), 
(4.4) |-EI/(*o)l = const ll/H^. 

P roo f . 1°. First suppose that f£Ll
p(Q) issuchthat / (x„)=0. Let 0S(p£C~(i2) 

be a function for which supp <pc(l/4, 1) and <p(t/2)+<p(t)=[ ( l / 2 < / < l ) . Taking 
into consideration that Q is bounded, there exists a natural number k* such that 
for any f£.Ll(Q) and x£Q we have 

Ax) = f(x) 2 <p(2"r), >• = \x-x0\. 
k = -k* 

Denote 

fk(x) = f(x) cp (2kr)€l'p(Q) (k £ - k*). 

Obviously fk(x)=0 if \x—xu\^c2~k, and by Lemma (4.2) it follows 

|£!A(x0)| const | | / t | | i , ;a/2«N/2-o. ( 1 + 2_* 

Hence, using (4.3) and the estimate ||/ fc |l4=iconst2-™<1/2-1 'p) | |/| | ij ; (cf. [4], 
Lemma 1.1) we obtain 

|£lA(*o)l ^ const ^ C Q n s t 2-k«-N"»\\f\\Llp. 

Consequently 

| £ I / ( x 0 ) N const | | / | |M. 2 2 ~k('~Nlp) ^ const | | / | | £ i . 
p k = -k* p 

2°. Now suppose f(x0)^0. Let g£C~(Q) such that g(x0)= 1. Denote 
fi(x)=f(x)—f(x0)g(x). According to 1° we have 

(4.5) [£ I / i (*„ )N const | | /[ |L , . 

By Corollary 3 of Lemma 3.6, the expansion Elg(x0) is bounded, and hence 
\EsJ(x0)g(x)| ^const |/(x0)|. Using the imbedding theorem L'p<^Lm if l-N/p>-0 
we get 
(4.6) |£JC/(*d)g(*))| = const \\f\\LV 

From (4.5) and (4.6) we obtain (4.4). Thus Lemma 4.3 is proved. 
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Proof of Theo rem 1. Theorem 1 follows from Lemma 4.3, using the facts 
that, according to Corollary 3 of Lemma 3.6, it is true for every and the 
set Cg(i2) is dense in L'p. 

P roof of Theo rem 2. This theorem follows from Lemma 4.2 by the same 
argument as that of the proof of Theorem 1. 
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An inequality between symmetric function means 
of positive operators 

T. A N D O 

Dedicated to Professor B. Szokefalvi-Nagy on his seventieth birthday 

1. There are various methods of averaging of an «-tuple A=(Ai, ..., A„) 
of bounded positive (semi-definite) operators on a Hilbert space. The most basic 
are the arithmetic mean ( A + ••• +An)/n and the harmonic mean n(A^1+...+A~1)~1 

(provided all Al are invertible). ANDERSON and TRAPP [2] called (A~1 + ...+A~1)~1 

the parallel sum of the «-tuple A, and denoted it by A^. ... :A„, or in short JJ: Av 
¡=i ' 

Further they gave a variational description for parallel sum; 

(1) (x, ( / 7 : A^ = i n f { J <x;, A,x,) x = J xf}, 

where (x, y) denotes the inner product of the vectors x and y. Formula (1) was 
then used to define the parallel sum for a general «-tuple of positive operators. 

For an «-tuple of positive numbers, a= (a 1 ; ...,a„), MARCUS and LOPES [5] 
defined symmetric function means (or Marcus—Lopes means) Ekn{a) by 

(2) = fU*L> k = l,2,...,n 
ek-l,nW 

where ek„(a) is the normalized £>th elementary symmetric function of a = 
=(<*!, ...,a„), that is, 

k • 
2 n«ij 

e0,n& = 1 and ek,n(S) = I S ' . - - - ' ^ » ^ 

(3 
Using an equivalent version of definition (2), ANDERSON, MORLEY, and TRAPP [3] 
introduced two kinds of symmetric function means for an «-tuple A = ( A 1 , ..., A„) 

Received June 24, 1982. 
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of positive operators; 

"»l.nC?) = ( . Z ^ ; ) / " (arithmetic mean), 

s«,n(^) = n [ i l - (harmonic mean), 

and 
s |{(dhr4 Ml' = 2' '» 

n 

¡=1 

where denotes the («—l)-tuple ..., Ai_i, Ai+1, ...,A„). By definition both 
6t>„(^4) and sk n(A) are invariant under permutations of Ax, ..., A„, and the 
maps A~<ZKn(A). and A>-—s,k n(A) are positively homogeneous and monotone 
with respect to coordinatewise ordering. If all At are invertible, then 

= *n-k+i,n(A), k = l, ..., n, 
where A*1 = (A{~1, ..., A'1). For any «-tuple A 

Si,„(i) = ©i,„(i) and ©„,„ 6*) = sB> „(,?). 

Besides the easily proved inequalities 

not much is known about the order relation among <BJn(A) and s k>n(A), j , k =2 , ... 
...,n — 1. If all Ai are scalars, that is, A=a, then both <5M(a) and skn(a) 
coincide with the Marcus—Lopes mean Ek n{a). Therefore it follows via spectral 
theory that if A is a commuting «-tuple then 

The equality <5ktn(A)=skn(A), k—2,...,«— 1 is not valid in general for a non-
commuting «-tuple. 

'ANDERSON, MORLEY, and TRAPP [3] asked if the inequalities 

S/t.nOi) = <Sk+1>„(A), k = 2, ..., n —2 
(or equivalently 

s*.n(^) = St+i,nU)> k = 2, . . . , n - 2 ) 
and 

Sk,„(A) ^ sk>n(A), k = 2, ..., n —1 

are valid for every «-tuple A. They mentioned, without proof, that in case n=3 
the inequality <32i304)£s2j3(/i) could be derived via electrical network consideration. 
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The purpose of the present paper is to give a mathematical proof to the in-
equality S 2 > 3 ( i )Ss 2 j 3 ( i ) . 

2. Our proof is based on a solution of an extremal problem, due to F L A N D E R S [4]. 

Lemma. Given two set of vectors Xi, ..., xm and yx, ..., y„, define a functional 
i¡/(A) for an invertible positive operator A by 

m n 
t(A) = 2 <*., Axt)+ 2 (yj» A-'yj)-

¡=i • j=i 

Then inf \l/(A)=2\\[(xi,yj)]\\1, where ||[(x;, y})]||! is the trace norm of the mXn 
matrix [<x;,jy>]. 

See [1] and [4] for a proof. 

T h e o r e m . For any triple A = (A1, A2, A3) of positive operators 

(3) S 2 , 3 ( i ) S H 3 ( A ) . 

P roo f . All Ai can be assumed invertible. Since S2j3(-4)=S2 3 ( Y | - 1 ) - 1 , and 

operator inequality (3) is equivalent to 

< x , ® 2 , 3 ( A ) x y i * . ( y , < 5 2 , 3 ( A - i ) y y * ^ \ ( x , y ) \ for all x, y, 

which is equivalent, in view of the arithmetic-geometric means inequality, to 

(4) < x , S 2 , 3 a ) x > + < 3 ; , 8 2 , 3 ( i - i ) 7 > s 2 K x , j > | for all x, 
Since 

= j {Ai: (A2 + A3)+A2: (Aa + A,) + A3: (Ax+A2)}, 
formula (1) gives 

<x, <52>3(A)x) = 
(5) 1 3 

XV xt' x3 £ ¡ = 1 

where Xj=Xj_3 for 7 = 4 , 5 , and similarly 

(y, &*i3(A-*)y) = 
(6) 1 3 

= inf T 2 {(y+yi, AfHy+ydy + i y i ^ A ^ y ^ + iy^Ar^y^)}, 
y\*yi»y3 ^ /=3 
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where y } = y j - z for / = 4 , 5. Then Lemma yields, for fixed x, x1, x2 , x3, y, ylt y2, 
and ya, 

(x+xi, ^¡(x+xi)>4-<x1.+1, AiXi+1)+(xi+2, AiX^ + iy+yi, Ar1(y+y,))+ 
(7) 

+ ( Y I + I , ^ R ^ + i ) s 2115,-11!, i = 1, 2 , 3, 

where 
(x+x . - . j + .y,) <x+Xi , j i + i ) <x+x i 5j; i+2> 

= (xi+1 ,y + yt) <Xi+1,yi + 1> <XI + 1,J>I + 2> 
.<*.+2, Ji> < x i + 2 , >' i+1> (xi+2,yi+2) 

Now according to (5), (6) and (7), the inequality (4) will follow from 

(8) 2 ||S,||i s 2 | < * , y)\. 
i=1 

To see (8), consider a 3X3 Hermitian matrix 

2 - 1 - l " 

- 1 - 1 2 

- 1 2 - 1 

Since T has —3, 0 and 3 as its eigenvalues, | | r | | „ , the operator norm of T, is 
3 

equal to 3. Easy computation shows 2 ir(SiT)=6(x, y). Then 
¡=i • 

l i i s . - i u ^ l i i i s . - i k - i m u ^ l ¡ = 1 J ¡ = 1 -> 
2 t r ( 5 ; r ) 
>=i — 2|<x, 

This completes the proof. 
The method in the above proof can be used to prove <»2,nG4)=sn-i,n0?) 

for every «-tuple A. But the inequality <Sk n(A)^sk n(A) stands still open. 
Added in proof. In the revised version of [3] a different proof is presented. 
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Round-off error propagation in the integration of ordinary 
differential equations by one-step methods 

MÁTYÁS ARATÓ 

Dedicated to Professor Béla Szökefalvi-Nagy on his 70-th birthday 

The connection between round-off errors in the integration of a system of 
ordinary differential equations by one-step methods and stochastic differential 
equations with respect to a wide sense Wiener process is examined. The generaliza-
tion of RADEMACHER'S [8] and HENRICI'S theorems [5] is given using Ito's integral. 
Under some weak conditions on the behavior of local round-off errors one can 
calculate the mean value and variance of the propagated round-off error. It turns 
out that to any system of differential equations a stochastic system of equations is 
related which describes the round-off error propagation. 

The distribution of the propagated round-off error, rx, depends on the distri-
bution of local errors; the conditions of Gaussiannes are also given. This is a sharpen-
ing of a special result of Henrici. We take advantage of the optimal filtering equations 
to give the expected value and variance of round-off error. This problem was studied 
earlier for the best approximate solutions óf linear algebraic systems (see TIHONOV 
[9], [10], LIPTSER and SHIRYAEV [6]). The natural question on the distribution of 
max | | R J , in O ^ x ^ b , is also examined and using some recent results of NOVIKOV [7] 
we answer it in the one-dimensional case. The description of stochastic equations 
in multistep methods and especially in predictor-corrector methods remains open. 

1. Introduction. Let us consider the following first order vector initial value 
problem 
(1) y' to = f(x, y (x)), y to) = y (0), 0 < x < b, 

where y and f are column vectors 

M i f 1 ) 

y = 
J,2 p 

f J 

Received April 5, 1982. 
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(The superscripts always denote indices and asterisk indicates the transposition of 
a matrix or vector; e.g. y* means a row vector ..., j^).) If v is a vector 
with real or complex components the norm is given by ||v|| ̂ I P 1 ^ . . . + 

A one-step method for the solution of the initial value problem is defined by 
the formulas 
(2) y„ = y(0), y„+1 = y„+hd>(x, y„; h), h>0, 

where fl>(x, y; h) is called the increment function and is chosen so as to approximate 
(y(x+h) —y(x))/h as well as possible. We assume that ®(x, y; h) is continuous 
and that there exists a constant Lx such that 

(3) y; h)-0(x, y; h)|| ^ Afly-yl l , 

for all points (x, y; h) and (x, y;/i), /¡</i0 (hn is fixed). 
The discretization error e„ is defined as 

(4) en = y„-y(x„) 

where y(x„) denotes the solution of the initial value problem at x„. 
The round-off error r„ is defined as the difference between y„ and its numerical 

approximation y„, i.e., 
^/1 yn yn 5 

and it depends on the local errors and the kind of arithmetic used in computer. 
r„ fulfils a stochastic difference equation, depending on ®(x, y; h) (see (12)). 
Under some weak conditions on the continuous function rx of x is a solution 
of the stochastic differential equation (19) (see below), which we call the related 
stochastic equation to (1). The investigation of equation (19) is the main goal of 
this paper as in earlier papers only approximations and estimations were given 
(see HENRICI [5]). 

As a new and natural aspect we exercise the distribution of max ||r.J, which nSjcSb 
is an effective measure of the error behavior. Theorem 4 gives the answer in the one 
dimensional case, with sharp bounds instead of the estimation of the mean, as it is 
used in the literature. 

2. Derivation of the related stochastic equation. Using Euler's method, i.e., 
0>(x, y)=f(x, y), it is easy to prove that 

(5) e n + 1 = en+h[i{xn, y(x„))-f(x„, y „ ) ] + y y " © , 
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and this gives, assuming and ||f(x, y)—f(x, y)||<Z,||y—y||, the following 
estimation (see e.g. HENRICI [5]) 

hK 
(6) 

Let Y„ denote the numerical approximation of y„. The local error E„ at step 
n is induced by computer round-off (or chopping) and the inherent error by in-
accuracy of evaluation of function <&(x„, y„; h). 

Instead of equation (2) we have 

(?) y„+i = y n + /i®(x„,y„; h)+zn+1, 

and the accumulated round-off error r„=yn—y„ fulfils the equation, subtracting 
(7) and (2) 
(8) r„+1 = r„+fc[®(x„,y„; h)—<b(x„, y„; h)]+en+1. 

This means that the accumulated round-off error is not simply the sum of local 
round-off errors. It depends on the kind of arithmetic used in computer, the way 
in which the machine rounds, the order in which the arithmetic operations are 
performed and on the numerical procedures being used. As over an extended interval 
the loss of accuracy may be serious, it is desirable to obtain estimates by making 
some statistical assumptions on the behaviour of local round-off errors s„ . 

It is known that by double precision the possible gain in accuracy can be very 
significant, but we have a loss in performance and efficiency. 

A crude bound for the accumulated round-off error r„ can be obtained from (8) 
if we assume that 
(9) I l i J I^e , " = 1 ,2 , . . . ; 
namely, using (3) we get 

(10) Hr.ll [eM*n-*o>-l]. 

Comparing (10) and (6) we see, as the accuracy of numerical integration depends 
upon the discretization error and the accumulated rounding error, that it is impossible, 
to keep both of the errors small. To keep the discretization error small, we will 
normally choose the stepsize h small. On the other hand, the smaller h is taken, 
the more integration steps we shall have to perform, and the greater the rounding 
error is likely to be. An optimum value of the stepsize h must exist but it seems 
difficult to find it in practice. 

In order to obtain realistic statements concerning the behaviour of the propagated 
round-off errors, from here we shall assume that the local round-off errors s„ are 
random variables. In the simplest case e„ is a white noise process, i.e., cov(e„, em)=0, 
if n ^ m . 
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Let us assume further that \in=Ezn for which 

(U) 
A 

where n(h)/h-*n, h\0, and n is a constant and p(x) is a known vector function 
with components which are smooth functions of x. Let 

[Bi(xn)h if n - m , 
if n m. 

And assuming the smoothness of <b let 

[Bi 
(12) cov (8n, e J = E(sn-n„)(sm-timT = j 0 

(13) 0 (x„ ,y n ; h)-<S>(xn,y„; h) = G(x„)rn+Qnh, 

where the matrix G(xn) can be expressed by the derivatives of O (see [5]). Then 
(8) can be rewritten in the form 

(14) r n + 1 = ( /+/ lG(x„))rN+EN + 1 

where £„=£„+QJt, or 
(140 rn+1-in = hG(xn)r„+Li(hMxn+1)+Bl'2(xn+1)£0

n+1, 

where En+1-/i('«)p(^»+i)=-Bi /V»+i)«2+i. w i t h COV(E®, E£)=/J / . Now approximating 
the process E®+1 by a wide sense Wiener process (see the definition in LIPTSER— 
SIRYAEV [6] Section 15) we get that r„=r(x„) has the stochastic differential 

(15) d rx = G (x) rx dx+ n p (x) dx + By* (x) dw (x), r0 = 0, 

where w(0)=0, Ew(x)=0, jE,w(x1)w*(x2):=/min (xx, x2). It is clear that any Wiener 
process is a wide sense Wiener process at the same time. 

Equation (15) can be considered as the linear equation 
X X 

(16) r , = f Uip(u) + G(u)ru]du+f Bl'\u)dw(u), r0 = 0, 
0 0 

with the unique continuous solution (in mean square) 
(17) 

r* = Mx) { / («f0(s))-Vp(s) ds + f {<P0(s))~iBimS) dw(s)}, r0 = 0, 
0 0 

where <£0(x) is the fundamental matrix 

(18) UsQ- = G(x)*0(x), $o(0) = Ikxk, 

i.e., 
X 

(180 <P„(x) = exp { / G{u)du}. 
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From the smoothness assumption on p(x) and G(x) it follows that 
b b b 

f |p''(x)|c/x f |g0(x) | i /x<°°, f bu(x)dx <=°, 
(19) o o o 

i, j = 1, 2, ..., k. 

The following statement immediately follows from Theorem 15.1 in [6], where 

(20) ETX = m (x), B (x, u) = E(rx - m (x)) (r„ - m (it))*. 

Theorem 1 (see HENRICI [5]). Suppose that the conditions (19) hold and rx 

fulfils the stochastic differential equation (15) with a wide sense Wiener process w(x). 
Then the vector m(x) and the matrix B(x) are solutions of the differential equations 

(21) = fip(x) + G(x)m (x), 

(22) ^ ^ = G (x) B(x) + B (x) G*(x) + Bw (x). 

The matrix B(x, u) is given by the formula 

x)B(u), u = x, 
( 2 3 ) B(X> " ) = W ) ( i > ( x , «))*, u^x, 
and 

t>(u, x) = 4>0(x)(<P0(u))-\ u x" 

Proof . Taking expectations of both sides in (16) we get (21) and from (17) it 
follows that 

X 

(24) m(x) =4>o(*){/(# 0("))- 1«> («)<*"}' m ( 0 ) = 

o 

Let r,—m(x)=rx, then from (17) and (24) one can get 

(25) rx = <i>0(x){f (<Pa(u))-WJHu) dw(u)} -
o 

and 

(26) E(rxn) = f o (x) E { / (<f0 (u))" \B^(u) dw (k) • 
o 

• [/(*o(«»"WOOdv(u)]*}4>„*(x) = <t>0(x) f (^(«»"^(^(^¿"H«))*du<P*0(u). 
o o ^ 

By differentiating and taking into account (18) one can get (22). 
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To establish (23) let x ^ u . Then 
X X 

Erj: = <¡>0 (x)E{¡0oHu)BH\ü) dw(u) [ f x(u ^ s)*¿l(s)B%*(s) dw(s)])*' 
0 0 

(27) 
U 

•(*„(«))* = Í.W^oM { / <P0~1(S)Bw(S)(<!>^(S)Y ds] <P*(u) = 4>(u, x)B(u), 
o 

which proves the theorem. 
The following reverse statement is also true. 

T h e o r e m 2. Let r^=(r¡., ..., rx), OSx^b, be a random vector process with 
given first two moments 

(28) m(x) = Erx, B{x, u) = E(Tx-m{x)){tu-m{u))*. 

Assume that Bw(x) is nonnegative definite and the following assumptions are satisfied: 
a) The elements of the vector p(x) and the matrices B(x), Bw(x) are Lebesgue 

integrable. 
b) The matrix B (x) = B (x, x) has continuous elements and 

X X 

(29) B(x)= f [G{u)B(u) + B(u)G* {u)]du + f Bw(u)du, B{0) = 0, 
0 0 

c) m(x) has continuous components and 
X (30) m(x) = f [pp(u) + G(u)m(u)]du. 

0 

Then there exists a wide sense Wiener process W+(X) = (H'1(X), ..., wk(xj) such that 
for all x, O^xSb, 

(31) r x = / [/;p(w) + G («) r j du + / B^ («) d* (u) 
0 0 

The proof immediately follows from Theorem 15.2 in [6]. 

3. The distribution of the maximum of round-off error. The interpretation of the 
results in Section 2 is the following. If Ezn=n„=/¿/ip(x„), then we have 

(32) Er„ = (m (xn) + 0(h)), 

where m(x) is the solution of the initial value problem 

(33) m'(x) = G(x)m(x)+/xp(x), 

with the assumption that the matrix G(x) is given by 

(34) ®(x„, y„; h)-*(xK, y„; h) = G(xn)(y„-y„) + £0n , 8 > 0, | | 0 J < 1. 
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The process rx is stationary if G(x) = A and in this case B'x—0 and Bx = B0 is 
the solution of the equation (see [1], [2]) 

(35) AB0+B0A=-BW, 

i.e., rx has a normal distribution with parameters (0, B0). Note that if It is small, 
B ^ B J x and from (35) we see that 

B0~j(Bt + O(h)), (see (10)). 

In many cases we are interested in the behavior of the round-off error on the 
whole interval, i.e., in the values 

P{ sup IIrJ 3= s}, P{| | rJ ^g(x), O^x^ b}, 
0 SxSb 

which gives a better estimation than (32). For simplicity let us consider the one 
dimensional case and we assume p(x)=0. Let G(x) be given by 

where m(x) is a positive continuous function for xSO. 
We prove the following statements. 

Lemma. Let w(x) be the standard Wiener process, w(0) = 0, Ew(x) = 0, 
Ew\x) = x, and let m(x) be a positive continuous function, and let G(x) be defined 
by (36). Then 

X 

(37) rx = m(x) f m-H^BllH^dwiu), 
0 

where 

(16') drx = G(x) rx dx + B]i2(x) dw(x). 

Proof . By Ito's formula it is easy to get from (37) that 

(38) drx = ^ ^ rx dx+Bit2 (x) dw (x), 

and comparing with (16') one can get the statement. 

Theorem 3. Let rx be the process defined by (16), where p{x) = 0, and further 
let m(x) be a positive function with continuous ni'(x) (x^O). Then for all 0 

(39) ^ ^ P{|RX | ^ km(x), 0 SxSb} E X P { ^ / m^(x)Bw{x)d^ =S I . 
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Proof . From the Lemma it follows that 

X 

PflrJ si km(x), 0 S x S b} — P^f m _ 1 

(40) 

.= P{|it>(«)| S fc, O^u^ f m~2(u) Bw (u) du}, 
o 

where \v(u) is a new Wiener process obtained by the "time" change 

X 

(41) u = f m~2(s)Bw(s) ds 
0 

x 

from the stochastic integral J m~\s)B]^\s) dw{s), (see [4]). But for the Wiener 
o 

process the following representation is well known ([3], p. 330) 

(42) PflwOOl ^ O ^ c j ^ J ^ e x p [ - ( 2 « + i r - g ] -

In (42) on the right side there is an alternating series and we have the following 
estimates 

¥ [ e x p ( - ¿ C ) - J e x p " />{|W(M)I - 0 - M - c } -
(43) 

which together with (40) gives (39), and this proves the statement. 

R e m a r k 1. In the case m(x) = ax+b, a>0, 5 = 0, and Bw = a2 we have 

i e x p [ - W - T I j - ^ + B ] ) *skmi° ^ » * 
(44) 

1 L j L i ]) 

-7iexpl 8k2'all ^b + b\)-

R e m a r k 2. Let m(x)=a(x+l)112, a > 0 and Bw=a2, then 

o n! g-
_ i_ ( l + 6) s g ^ kaO+x)1'2, O^x^b}^ 
in (45) , , 

4 _ J E l . I L 
g _ ( l + i,) 8 wm 
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This formula gives the following asymptotic result for the stopping time 

T = inf {x: |RX| s km (x)}, 

P(t > b) = /»{1^1 == km(x), 0 x S b) ~ c0(l + b) c0, q > 0, 

where 

R e m a r k 3. Estimates for the probability that the process rx will not exit to 
a one-sided moving boundary can be handled in the same way (see NOVIKOV [7]). 
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О вычислении энтропийных функционалов и их минимумов 
в неопределённых проблемах продолжения 

Д. 3. АРОВ и М. Г. КРЕЙН 

Посвящается академику Б. Секефальви-Надь к его семидесятилетию в знак 
глубокого уважения и самых лучших чувств 

Введение 

Для измеримых при \1\ = 1 матриц-функций (сокращённо — м.-ф.) / (£ ) 
порядка тХп, таких, что / * ( 0 / ( О =1„ п. в. (/£КтУп) в настоящей работе 
рассматриваются функционалы 

а 

(1) .• ( / ; * ) = - / 1п [/„ - Г ( 0 / ( 0 1 1 ^ 1 (И -= !)• 
ч п |;|=1 ^ 

Функционал г( /)==г(/ ; 0) имеет следующий энтропийный смысл. Условие 
/ * / равносильно неравенству 

Поэтому [1] для / из КтХп м.-ф./(е'") можно интерпретировать как смешанную 
спектральную плотность Д „ (/¡) двух стационарных и стационарно-связанных 
гауссовских случайных процессов £ = {£,(/с)}™=1 и ч = {г!](к)}"=1 с дискретным 
временем A:(gZ) (размерностей /и и и со спектральными плотностями = 
=1 т и /ч>ч00=/„*)). Согласно формуле Пинскера [2] величина г'(/) может быть 
проинтерпретирована как скорость передачи информации /(£, у) одним из про-
цессов £ и // о другом. В силу этого функционалы г ( / ; г) мы называем энтропий-
ными. 

Поступило 22 июля, 1982. 
*) Последнее условие означает, что гауссовы случайные величины ¡¡(к) (и незави-

симы при различных { О) или к и имеют единичную дисперсию. 

з 
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В настоящей статье вычисляются значения / ( / ; z) и минимума г ( / ; z) 
для решений/(С) следующей проблемы продолжения и других проблем, свод-
ящихся к ней (задача Шура, би-касательная задача Неванлинны—Пика и др.). 

Задача N(m; п). Найти м.-ф. / ( ( ) из КтХп с заданной «главной частью» 
сю 

её разложения в ряд Фурье: / (С)~ 2 УкС~к + ••• • 
1 

Ещё в 1957 г. Не хари [3] в скалярном случае (т=п = 1) получил критерий 
разрешимости такой проблемы продолжения. Позже авторы совместно с 
В. М. А д а м я н о м [4а] получили критерий того, когда множество 91 решений этой 
проблемы содержит более одной функции и формулу (2), дающую в этом слу-
чае параметрическое описание множества 21. Эти и другие результаты в даль-
нейшем были обобщены на случай, когда значениями / ( Q являются матрицы-
операторы, действующие из С" в Ст [4с] (определённая часть результатов сох-
ранила силу и на случай операторов в бесконечномерных гильбертовых прост-
ранствах). 

В этот же период стало ясно, что к задаче N(m; п) легко сводится ряд ин-
терполяционных задач таких, как задача Неванлинны—Пика, Шура, Карате-
одори—Фейера и др. и их матричные обобщения, а также появившаяся к тому 
моменту задача С а р а с о н а [5]. Один из авторов (М. Г. Крейн) совместно с 
Ф. М е л и к - А д а м я н о м выполнил исследование [6], в котором был рассмот-
рен матрично-континуальный аналог задачи N(n; п) и установлена связь такой 
задачи с задачей рассеяния для канонических систем. 

Таким образом, имеется довольно широкий круг задач, в которых в так 
называемом вполне неопределённом случае описание решений получается по 
формуле (2). В основу вычисления энтропийных функционалов i ( f ; z ) и их 
минимума для решений / (£) задачи N(m;n) в настоящей работе положена 
именно эта формула. 

В нашей заметке [7] сформулированы полученные на таком же пути анало-
гичные результаты для родственных задач продолжения в классе голоморфных 
при [z[ < 1 м.-ф./(г) с Re/(z) а 0, где вместо /„—/*(£)/(£) рассматривается 
R e / ( Q (ICI — !)• После опубликования этой заметки авторам стали известны 
статьи Р. ÜEWiLD'a и Н. DYM'a [8], где, в частности, на том же пути применения 
формулы пописания всех решений задачи указано решение с минимальной энтро-
пией для специальной задачи продолжения. Статья [8Ь] передана в печать в один 
и тот же день с нашей заметкой [7] и в ней рассмотрена задача вычисления 
минимума энтропии для матрично-значной касательной проблемы Неванлинны 
—Пика с конечным числом узлов интерполяции. Она явилась дальнейшим раз-
витием предыдущей работы тех же авторов [8а], где была рассмотрена такая 
задача в скалярном случае. 
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За недостатком места мы не имеем возможности подробно остановиться 
на связях, существующих между результатами настоящей статьи и нашей за-
метки [7], где, кстати, указана дополнительная литература, имеющая отноше-
ние к рассматриваемому циклу исследований. Отметим только, что настоящая 
статья является подробным раскрытием содержания п. 5 заметки [7]. Развёр-
нутое изложение остальной части заметки [7] будет нами дано в другом месте. 

1. Некоторые положения об энтропийных функционалах 

1. Напомним, что через КтХп обозначается класс измеримых при |£| = 1 
матриц-функций/(Q порядка тХп с | | /(£) | |sl (/*(£)/|С1 =Q п. в. Через 
ВтХ" обозначим класс голоморфных при |z| < 1 м.-ф. <o(z) порядка т Х " с 
| | * (z ) | | s l . По теореме Фату для $(£) из BmXn существует п.в. при |(| = 1 гра-
ничное значение <?(С)(=Нш «?(/•())• Для м.-ф. <S{Q имеем S{Q^KmXn и 

esssup||<f(í)|| = sup | |í(z)| |(= ||<f|U). 
I?l=1 |z|cl 

Переходом от ${z) к S(Q осуществляется естественное вложение ВтХ" в КтХп. 
В этом параграфе центральным объектом будет семейство QÍ (А) = 

= {/у. <?еВтХ"} м.-ф. /¿(Q из КтХп, являющееся образом В т Х п при инъектив-
ном дробно-линейном преобразовании 
(2) /ДС) = [ М 0 < П 0 + М 0 Н М С К ( 0 + я 2 2 ( 0 ] - \ <^€BmXn, 
переводящем сжимающие матрицы в м.-ф. fg(Q из ктХп и изомет-
рические матрицы S (£*£—1п) в изометрическизначные м.-ф. /¿,(0 (предпола-
гается, что п ^ т ) . Известно [9, 10], что дробно-линейное преобразование яв-
ляется таковым, когда его измеримая м.-ф. коэффициентов A{Q=[aik(Q]\ ум-
ножением на некоторую измеримую скалярную функцию может быть сделана 
у-унитарной с 

В дальнейшем будем предполагать, что уже сама матрица А (О является 
у-унитарной, т. е. Л* (£)/4 (£)=./ п. в., |(| = 1. Поблочная запись этого ра-
венства означает, что 

я Ш М О - а ^ Л О М О - 4 , я* ( О М О - я & Ю М О = 0, 
аШ)а1г(0-аШа22(0=-1п. 

Так как вместе с А (0 является ./-унитарной и матрица А* (С), то из системы ра-
венств (3) вытекает: 

а21 (С) «21 (0 — а22 (0 Я22 (0 — — 4 • 

3* 
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Отсюда видно, что матрица а 2 2(0 обратима, так что можно определить 

(4) у.(0й=-0^(0^(0, 
и что для м.-ф. у (() имеем 

(5) ^ ( O f e W = 1„-х(0хЧ0, 

(6) i(*) = J - f ln|deta22(Ç)\\dQ. 
2 n iei=x 

Будем в дальнейшем предполагать, что м.-ф. у(С) удовлетворяет следую-
щим дополнительным условиям: 

(О 1) Z€B«xm ; 2) 

Во всех представляющих интерес конкретных задачах, приводящих к семейству 
91 (А), м.-ф. х(0 удовлетворяет условиям (!). Напоминаем, что включение 
Х£В"Хт означает, что х(0 — граничное значение м.-ф. x(z) из BnXm. 

2. Т е о р е м а 1. Пусть A(Q — (aik(Q)j •—м.-ф., принимающая j-унитарные 
значения п.в. при |Ç| = 1, и пусть определённая по формуле (4) м.-ф. у (О удовлет-
воряет условиям (!). Тогда для м.-ф. fg из семейства И(А), определённых по 
формуле (2), имеем: 

(7) i ( f s ) = i(X) + W + ln |det [ / -*(0K(0)] | . 

В 91 (A) существует и притом единственная м.-ф./0.т[п{§, на которой функцио-
нал i ( f ) принимает наименьшее значение. М.-ф. /0;min(О получается по 
формуле (2) при постоянной м.-ф. ё({) — у*ф), так что 

(8) 1 (/о; mi„) = i (у) + (1/2) ln det [/„ - х (0) (0)]. 

Если, в частности, х (0 )=0 т Х п , т о : / 0 ; m i n = a 1 2 а " 1 , 

(9) i ( f g ) = i(l) + i (<?), i (/* mi„) = i С/)-

Д о к а з а т е л ь с т в о . Пользуясь системой равенств (3), получаем 

in-томо = 

= KV ю п к - * ( î k ю г т е - ^(о(О](/„ - х ( о в (О]-1 «¿21 (О-

Для х(€#п х ш) условие i(x) < «> равносильно следующему 

f ln( l - | | z (0 | | ) |dÇ| . 
ICI=i 

Поэтому ||х(011 < 1 п. в. Из принципа максимума для м.-ф. из Вп Х т вытекает, 
что ||/(z)|| < 1 при |z| < ï . Поэтому для любой м.-ф. <a(z) из В т Х" определена 
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и голоморфна при | z |< l м.-ф. [/„— x(z)$(z)] 1. Более того, In—x(z)£(z) 
— внешняя м.-ф. (см., например, [11], лемма 3.1), т. е. 

In |det[/„-*(0K(0)]| = ¿ г fin | de t [ /„ -z (0^(0] | K l -
2 к ici =i 

Это равенство вместе с (6) и (10) дают (7). Остаётся показать, что величина 

i (<f) + ln |det [/„ — х(0)S(0)]| («Г€В»х») 

принимает наименьшее значение тогда и только тогда, когда <f (£) = /*(0). 
Это очевидно, когда х(0) =0„Х т , ибо i(S')=sO и i{$) = 0, если S(Q = 0 т Х п и только 
в этом случае. Пусть х(0)^0„Х т . Тогда рассмотрим дробно-линейное преоб-
разование 

*Л0 - [ ¿ i l + 

с постояннойу'-унитарной матрицей коэффициентов Â = (âik)l, отображающее 
¿?(О=Х*(0) В ^ ( С ) = о т х „ , 

~ У-а-ХоХ*о)112Хо Vn-XoXt)-112 Г 

Применяя для семейства 21 (Â) уже доказанную формулу (7), получаем: 

'(А) = i(Хо) + i(£) + ln [det [/„-Z(0)g(0)J1, 

где хо(0 = хо = х(0)- Таким образом, равенство (7) можно переписать в виде 

Остаётся заметить, что =0 и i(S1)=0 тогда и только тогда, когда 
^ ( 0 = 0, т. е. когда (О = Г*(0). При такой м.-ф. <?(£) получается/0;min (О 
с '(/о; min)='(z)—'(/о)> ч т о равносильно формуле (8). Теорема доказана. 

Замечание 1. Нетрудно показать, что каково бы ни было число с, боль-
шее, чем i(f0.min), существует постоянная м.-ф. S(Q такая, что i ( f g ) = c. 

3. Для f(iKmX" и | z |< l рассмотрим функционал i ( f ; z ) , определённый 

формуле (1). Очевидно, что если / £К т Х п , то / z ( 0 = / j j ^ | r j — м.-ф. 

из КтХп и / ( / , ) (=/( / г ; 0)) = /(/ ; z). Положим: 

f ^ o - 4 - Щ ^ ) -

Тогда x2(0)=z(z), i(Xz)=i(y, Z), i(fgrZ)=i(fg; z) и, применяя теорему 1 к 
семейству W(AZ) = {fStZ}, получаем, что справедлива 

по 
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Теорема 2. Пусть м.-ф. А (С) удовлетворяет условиям теоремы 1. Тогда 
при каждом фиксированном z (\z¡ < 1) : 

1) для м.-ф./g из 91(/4) имеем 

(И) ¿(Л; z) = i(r, z) + i(S- z)+ln |det [I„-l{z)S{z)]\-

2) в 41 (А) существует единственная м.-ф. fz mia{0, па которой функционал 
i ( f ; z) принимает наименьшее значение; 

3) м.-ф. fz¡mm(Q получается по формуле (2) при постоянной м.-ф. <?(£) = 
= у* (z), так что 

(12) i'(/z,rain! = ¿(x; 2)+ (1/2)ln det[/„-x(2)^(z)]. 

Замечание 2. Если x(z) — произвольная м.-ф. из B"Xm такая, что 7m — 
— п - в - (|С1 = 1)> то существует измеримая при |С| = 1 м.-ф. /1 (0 = 
= [(aik(Olí. принимающая^'-унитарные значения п. в. и такая, что a22

1(C)a2í(0 = 
= — х(0- М.-ф. А (О можно определить по у (С) точно так же, как при доказатель-
стве основной теоремы 1 была определена А по Хо • Из теоремы 2 следует, что 
при |z| < 1 

- J ln det [Im~x*{z)x(z)] S / ln det [/m-**(Oz(í)] № 

Это неравенство означает, что в левой его части стоит субгармоническая функ-
ция (впрочем, в этом можно убедиться и непосредственно). В правой части не-
равенства стоит её наилучшая гармоническая мажоранта. Согласно теореме 2, 
разность между наилучшей гармонической мажорантой субгармонической при 
| z |< l функции — (1/2) lndet [/m—z*(z)/(z)] и самой этой функцией имеет 
теоретико-информационный смысл: она равна наименьшему значению вели-
чины / ( / ; z) (( = /(/.)), когда / пробегает множество (Я). 

2. Матричное обобщение энтропийного неравенства 

1. Как известно, д л я / и з КтХп условие г ( / ) < ° » является необходимым и 
достаточным для существования внешней м.-ф. ф f такой, что 

Ф т м о = 1 п - г ( о л о п. в. ( i c i - i ) 

[ф ,€В»x- , ln |de t^(0) | = ^ - / l n |de t^ (0 | | dC | ) . 
v ¿ n |С] =3- > 

М.-ф. 1¡ff определяется по / с точностью до постоянного левого унитарного 
множителя, а при нормировке i/^(0) > 0 — однозначно. Очевидно, что / ( / ) = 
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= — In |det 1/^(0)1. Поскольку предполагается, что г < , то существует фх (z). 
Из равенства (5) следует, что 

(13) а22(С) - Ь(09~Ч0, 
где b(Q — унитарно-значная м.-ф., а i]/(z) — внешняя м.-ф. такая, что 

(14) Н0ч>40 = 1п~х(0х*(0-

Имеем: i(x)— — In |det^.j(0)| = — In jdet îf C0)|. Совершая замену переменной 
£>->-(£+z)/(l+z(), получаем: 

(15) i ( / ; z) = - I n |det i!>f(z)|, i(X; z) = - I n |det cp(z)| 

Введём в рассмотрение м.-ф. B0(z): 

(16) B0(z) ^(рЧгЖ-хШЧ*)]-1^)-

Тогда равенство (12) можно записать в виде 

- I n | d e t ^ > m l n ( z ) | = - ( l /2 ) lnde t J ß 0 ( 2 ) 

так что для fg из 91 (А) имеем: 

(17) In det Ще(2)Фге (z)] In det B0(z). 

В этой оценке достигается равенство точно тогда, когда <g(Q=x*(z). 

2. Если предположить, что в представлении (13) функция b(Q является 
скалярной, то получается значительно более сильное утверждение, чем нера-
венство (17). 

Теорема 3 (матричное неравенство). Пусть для м.-ф. A(() = [aik(£ 
выполняются условия теоремы 1 и её блок а22(О допускает факторизацию (13) 
со скалярной унимодулярной функцией b(Q. Тогда при каждом фиксированном 
z ( |z |<l) для семейства м.-ф. fg(Q, определённых по формуле (2), выполняется 
неравенство 
(18) 

где B0(z) определяется по формуле (16). Знак = здесь достигается точно тогда, 
когда *(С) = х*(г). 

Д о к а з а т е л ь с т в о . Из равенства (10), учитывая (в существенном) единст-
венность решения задачи факторизации неотрицательно-значной м.-ф. в классе 
внешних м.-ф. и то, что согласно условию теоремы в представлении (13) функ-
ция Ь(О является скалярной, получаем: 

Фг/z) = ие xj/g (z) [/„ — х (z) (f (z)] ~г<р (z), 
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где ие — постоянная унитарная матрица. Докажем сначала утверждение тео-
ремы для г=0 . Если / ( 0 ) = 0 л Х т , то имеем ф/а(0)=иефг(0)ф(0), £0(0) = 
— <р*(0)<р(0) и остаётся учесть, что ф^(0)ф^(0) = 1п и ф#(0)фа(0)=1п лишь когда 
<? (С) = 0 т х „( =/*(0)). Случай, когда х(0)^0 п Х т , рассматривается так же, как в 
аналогичной ситуации в доказательстве теоремы 1. Для семейства *И(А) м.-ф. 

имеем 

где — постоянная унитарная матрица. Следовательно, 

•МО) = и^фв1(0)[1п-х(0}х*(0)]-^-ср(0). 

Остаётся здесь учесть, что и8ь*е — унитарная матрица, Фа (0)фе и 
Ф*1(Щг1Ф) = 1п тогда и только тогда, когда ^1(С) = 0гаХ„, т.е. когда <?(£) = 
= ;у*(0). Утверждение теоремы для произвольной точки г ( | г |<1 ) получается 
из уже доказанного для г = 0 путём замены переменной: <-((+2)/(1 +гС). 

Замечание 3. Можно показать, что при выполнении условий теоремы 
3 при каждом фиксированном для любой матрицы с (г) такой, 
что 0<с ( г )^5 о ( г ) существует постоянная м.-ф. (с) = £ с , при которой 

3. Важным для приложений является случай, когда а2,(() является гранич-
ным значением мероморфной при |г| < 1 м.-ф. При этом такими же будут 
а и ( 0 и м.-ф. ¿ ( 0 в представлении (13), так что 

(Р(?) = с/221(г)Ь(г), х(г) = -а^^а^г), 

В0 (г) = Ь*(г) [а 22 (г) а*22 (г) - а21 (г) (г)] Ъ (г). 

Пусть А(г) = [а<к(г)]2 —произвольная /-внутренняя м.-ф., т.е.: 1) А (г) — * 
мероморфная при \г\ < 1 м.-ф., 2) в каждой точке голоморфности при \г\ < 1 
она принимает /-сжимающие значения (Л*(г)уА(г)^ /), 3) она имеет /-уни-
тарные граничные значения А (0 п. в. 

Такой м.-ф. А (г) отвечает дробно-линейное преобразование (2), инъектив-
но отображающее ВтХ" в себя так, что внутренним м.-ф. ё(г)(8£9!пУ-п, £*(£)&(£) = 
= 1„ п. в.) отвечают внутренние м.-ф. /е(г). Это свойство является характерис-
тическим: произвольная мероморфная при | г |<1 м.-ф. А (г), обладающая этим 
свойством, лишь мероморфным скалярным множителем отличается от /-внут-
ренней м.-ф. [10]. 

Для /-внутренней м.-ф. А (г) условия (!) выполняются автоматически. 
Действительно, вместе с А (г) матрица А* (г) также является /-сжимающей. 
Поэтому: 

-а22(г) а22(г) + а21 (г)а* (г) ё - /„. 
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Отсюда вытекает, что: «¡¡1€В"Хш. Из последнего включения следует, 
что правая часть в формуле (5) является конечной, т. е. i(x) < Из него также 
следует представление а22(0

 в в иД е (13), где b~1(z) — внутренняя м.-ф. Поэто-
му из теорем 2 и 3 вытекает 

Теорема 4. Пусть A(z) = [aik(z)]l — произвольная j-внутреняя м.-ф. 
Тогда для семейства Ч1(А) м.-ф. fe{z), определяемых по формуле (2), справед-
ливы утверждения теоремы 2. Если при этом в факторизации (13) блока a22(z) 
функция b(z) является скалярной, то для 21 (А) справедливы утверждения 
теоремы 3. 

3. Применение к задаче N(m; и) 

1. Остановимся на применении результатов § 1—2 к задаче N(m; и). На-
помним некоторые положения, полученные в [4с] при исследовании задачи 
N(m; п). 

По коэффициентам ук (к — 1, 2, ...) заданной «главной части» 2 Ук£~к 

1 
м.-ф. / (О строится блочно-ганкелева матрица и рассматривается 
определяемый ею ганкелев оператор Г, действующий из /2(С") в / 2 ( С ) по 
формуле: 

= г, = {>Ь}Г, r,j = 2 yJ+k-£ = 
i 

Задача N(m; n) имеет решение тогда и только тогда, когда I—Г*ГйО (||Г|| ^ 1). 
Если ||Г||<1, то множество 91 описывается формулой (2), т.е. 21 = 21(Д), где 
/4(C)=[aifc(C)]i удовлетворяет условиям теоремы 2 и а22(С) — внешняя м.-ф., 
так что в представлении a22{Q в виде (13) имеем b(()=/, а22(.С)=<р~1(О- Та-
кое же описание решений получается и в более общем, так называемом вполне 
неопределённом случае, когда для подпространства векторов £ = с 

£ к =0 при к > 1 имеем 

(20) с: ( / -ГТ) 1 / 2 / 2 (С") . 

Это включение равносильно следующему 
с (/-ГГ*)1 / 2 /2(Ст), 

где sJt2 — подпространство в /2(СШ) векторов ц = с цк — 0 при к > 1 . 
Для А(0=[а ш (0]1 имеем: 

(21) flu(0 = а12(О = a 2 i ( 0 = £ + (0, «22(0 = » Ш 

где и 3, + (С) вычисляются с помощью следующих процедур. 



42 Д. 3. Аров и М. Г. Крейн 

Пусть сначала [|Г|| < 1. Обозначим через а положительную матрицу по-
рядка лХл такую, что 

((/-Г*Г)-Ч, «) = ( а ~ Н £ -
Соответствующий этой матрице оператор а в 91х определяется по формуле 

а = [Р9,1(7-Г*Г)-1|911]-1/2. 

Рассмотрим оператор (I—Г*Г)_1а, действующий из С"(=^] ) в /2(С"). Он 
определяется последовательностью матриц порядка и х л: 
¿idC". Точно так же определяется оператор 2,=Т(1—Т*Т)~1а и вводится соот-
ветствующая последовательность матриц {qk}~ порядка т Х п . М.-ф. (z) и 
£ + (z) определяются по формулам 

= 2 я+(0=2дкСк. 1 1 
М.-ф. (С) и (С) вычислятюся аналогично: следует в формулах, записанных 
для получения ЗР+ (() и (Q, заменить Г на Г*, Г* — на Г и £ — на С-1. 

Если ||Г|| = 1, то во вполне неопределённом случае м.-ф. ¿Р± (С) и -2±(Q 
получаются как пределы при ßtl м.-ф. и отвечающих Г(е) = дГ 
( 0 < е < 1 ) (см. [12]). 

Итак, для семейства 21 решений задачи N(m;n) во вполне неопределён- • 
ном случае применима теорема 2. Учитывая, что а22(0 — ̂ >+(0 — внешняя 
м.-ф., для В0(С), определённой по формуле (19), получаем 

(22) B0(z) = ( z ) - ü + ( z ) <2*+ (z)]-1. 

Для м.-ф. x(z) имеем 
( 2 3 ) X ( 2 ) = - ^ ( z ) £ + ( Z ) 

и, таккак 1+ (0)=0, то х(0)=0. Легко видеть, что &>+(0)=а~1, так что В0(0) = 
=а2 , где а — положительная матрица порядка пХп, определяемая уже ра-
венством 

| ( / _ г + г ) _ 1 / 2 а | 2 = | | a i /2^||2 ; ^ = ß j - g ^ . 

Предложение . Пусть задача N(m;n) является вполне неопределённой, 
т. е. для неё выполняется условие (20), и, значит множество всех её решений 
описывается формулой (2), где м.-ф. A(() — [aik(()]l вычисляется по формулам 
(21). Тогда для всех решений fs(Q этой задачи справедливо матричное неравен-
ство (18), где B0(z) и x(z) определяются по формулам (22) и (23) и в (18) имеем 
место знак равенства тогда и только тогда, когда (£) = X*(z)- При нормировке 
i/fy (0) > 0, в частности, для всех решений fg(Q: 

ф Г в ( 0 i { f / > ) = — In det а, 
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причём равенства здесь имеют место тогда и только тогда, когда (С) = 0, т. е. 
когда /,«)=£-(С)^1®-

2. К задаче И(т\ п) сводятся задачи Шура, Неванлинны—Пика и другие. 
Напомним, что в задаче Шура требуется описать множество 21 всех м.-ф. / ( ¿ ) 
класса ВтХ", имеющих заданные первые р коэффициентов разложения 
/ ( г ) в ряд Маклорена 

/(г) = а0 + агг+...+ар.1г'"1+.... 

Задача Шура сводится к задаче Ы(т; п) рассмотрением граничных значений 
м.-ф. При этом получаем ук=ар_к при 1 ^к^р и ук=0 при к>р. 
Для такой задачи Ы(т; п) будем иметь рк=0 и ^ = 0 при к>р, так что 
и — многочлены с матричными коэффициентами степени не выше р — 1 
и р соответственно. В рассматриваемом случае вместо бесконечной блочно-
ганкелевой матрицы Г в формулах для и &± (г) можно писать конечные 
блочно-ганкелевые матрицы Гр, 

У1 У-2. • • УР] Др~1 Яр-2 • . а0 

ГР = 
У2 Уз- . 0 

= 
Ор-2 ар-з • . 0 

0 . . 0 
/ > 0 

• 0 

Заметим, что ГР = УТР, где Тр — блочно-теплицева матрица, V — симметри-
ческая ортогональная матрица: 

¡Ур 0 . • 0 1 а0 0 .. 0 1 Го 0 . . 0 /"1 

II Ур-х Ур- . 0 
— 

«1 «0 .. 0 
, У = 

0 0 . . I 0 

У2 • •Ур. ар.! Яр-2 .. а0 I 
\ 

0 . . 0 0 
/ 

Очевидно, что 1-Г*рГр=1-Т;Тр, 1-ГрГ*р = У(1-ТрТ;)Г. М.-ф. ^ . ( г ) и 1 ( г ) 
— многочлены относительно г - 1 с матричными коэффициентами, степени не 
выше р — 1 и р, соответственно. Поэтому г р и 2р2._(г) —многочлены от-
носительно г степени не выше р. 

Итак, задача Шура имеет решение тогда и только тогда, когда 1—Т*Тр^0. 
Эту задачу назовём вполне неопределённой, если 1—Т*Тр>0. В этом случае 
множество решений описывается по формуле (2), т. е. 21=21 (А), где 

М.-ф. А (г) здесь является многочленом с матричными коэффициентами степени 
не выше р. Ниже будет показано, что она является у'-внутренней. Многочлены 
ЗР+^г) и получаются по блочно-теплицевой матрице Тр следующим об-
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, разом. Рассматриваются матрицы X и Y порядков трХтр и пр Хпр соот-
ветственно, являющиеся решением системы 

(X+TpY = О, 

Пусть Хк и Yk(l ^kSp) их блоки порядков тХт и яXи. Тогда рк= YkY^112, 
qk=Xp-k+iYrlß> т а к ч т о 

(*) = 2 Y k Y ^ z k - \ J + ( z ) = Í JVp-k+1Yrll2zk-
i l 

Подобным же образом определяются многочлены zp^_(z) и zpJ_(z). 

3. Задача Шура является частным случаем следующей обобщённой задачи 
Неванлинны—Пика. Пусть заданы две внутренне м.-ф. bl (z) и b2(z) соответствен-
но порядков тХт и пХп. Требуется описать множество 21 всех м.-ф. / ( z ) 
класса BmXn таких, что b~1(z)/(z)b~1(z) имеют граничные значения с заданной 
«главной частью» у(() разложения ряд Фурье: 

7 ( 0 = КЧОДО^ЧО = 2 укС-к+.... 
1 

Для / (0 имеем задачу N(m;n), у которой заданная главная часть y(Q 
удовлетворяет условию: b1(()y(Qb2(0 имеет нулевую «главную часть», т. е. 
разлагается в ряд Фурье по неотрицательным степеням В задаче Шура имеем 
b1(z)=zpIm, b2(z) = In. Случай, когда bl(z)=b(z)Im, b2(z) = Tn, где b(z) — про-
извольная скалярная внутренняя функция, был ранее рассмотрен в [4Ь]. Если, 
в частности, b(z) —произведение Бляшке с простыми нулями zk (\zk\ < 1 , 1 Sk < 
< N ^ + то имеем задачу, к которой сводится задача Неванлинны—Пика для 
м.ф. / (z) класса вшХ" с узлами интерполяции zk: описать множество 21 м.-ф. 
/(z)(£BmXn) с заданными значениями fk=f(zk) (1 +=<=) (при N=+ 

предполагается, что 2 — lzkl)<00)- Как известно, впервые нескалярный ва-
1 

риант классической задачи Неванлинны—Пика," и даже не для м.-ф., а для опе-
ратор-функций, изучался методами теории расширения изометрических опе-
раторов в работе В. SZ.-NAGY И A . KORÁNYI [13]. 

Если b2(z)=In, a b^z) — конечное или бесконечное матричное произве-
дение Бляшке—Потапова [14], то имеем задачу, к которой сводится касатель-
ная задача Неванлинны—Пика, исследованная в работах [16]. Если же не только 
bL(z), но и b2(z) — произведения Бляшке—Потапова, то приходим к более об-
щей задаче, нежели касательная (би-касательной задаче), в которой в интерпо-
ляционных данных одновременно фигурируют величины, связанные с / (z ) 
И f*(z). 
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В случае, когда обобщённая задача Неванлинны—Пика является вполне 
неопределённой, множество 51 её решений описывается формулой (2), т. е. 
91 = 21 (А), где 

А ( п = (Ьг(0 О U*_(0*-(01 
I о ь^(0){£>+(0 &лоУ 

М.-ф. 0>±(О и J ± ( 0 определяются по у (С) по указанным ранее формулам. По-
кажем, что рассматриваемая в этой задаче м.-ф. А (С) является граничным зна-
чением /-внутренней м.-ф. Действительно, А (() принимает /-унитарные значения 
и 

S u ( 0 = «и(0-а 1 2 (0я 2 - 2 Ч0« 2 1 (0 = ь,(от © Г е в — 

s » ( 0 = ^ ( О а й Ч О = / о ( О е в - х " , 

s2i(C)= - ^ Ч О М О = - . ^ Ч О ^ М О е в 1 " " " , 

s * ( 0 = айЧО = .ПЧОМСКв»*". 

По основной лемме из [11] получаем, что A(z) = [aik(z)]l /-внутренняя м.-ф. 

4. Континуальные аналоги 

1. Будем теперь рассматривать вместо единичной окружности веществен-
ную прямую, а вместо единичного круга — верхнюю полуплоскость. 

Через В™х" обозначим класс голоморфных при lm z>-0 м.-ф. S(z) порядка. 
тХп с \\£(z)\\tk\ при l m z > 0 . Для S'(z) из В'"х" существуют п. в. гранич-
ные значения <?(x) = lim S(x-\-iy), — + причём ess sup |[<?(х)|| = 

= sup ||«f(z)||(=||«r|U). 
1 Ш 2 > 0 

Замена переменной 
(24) z ~ ( z - 0 / ( z + Q, 

отображающая замкнутую верхнюю полуплоскость на замкнутый единичный 
круг, биективно переводит В™х" на ВшХ", а класс К"'х" измеримых сжимающих 
на вещественной прямой м.-ф./(z) порядка т Хп — на класс КтХп. При этом 
функционал i(f;z), определённый по формуле (1), переходит в функционал 

(1+) / ( / ; z) = ~ f Indet [ /„- /*(*)/(*)] (lm z > О, % 

так что 

(1'+) 1 ( f ) d= / ( / ; 0 = ~ f° In det [ /„- /*(*)/(*)] . 
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Для м.-ф. A(x)=[aik(x)]l, принимающей п. в. на вещественной прямой 
у-унитарные значения, будем рассматривать 

(6+) Х(х)=-ай1(х)а1а.(х) 

и предполагать, что для м.-ф. х(х) выполняются условия 

( U ) 1) x W , 2) / ( * ) « = 

Путём замены переменной (24) из теоремы 2 получается 

Теорема 2+ . Пусть м.-ф. A(x) = [aik(x)]\ принимает j-унитарные значе-
ния п. в. на вещественной прямой и м.-ф. х(х)> определённая по формуле (6+), 
удовлетворяет условию (!+). Тогда справедливо утверждение, отличающееся от 
утверждения теоремы 2 лишь тем, что в нём следует писать вместо перемен-
ных £ с |{| = 1 uzc \z\ < 1 переменные х с 1шх=0 и z c l m z > 0 , вместо функ-
ционала i ( f ; z ) — функционал I ( f ; z) и вместо класса В т Х" — класс В"х". 

Аналогичным образом из теоремы 3 получается её континуальный аналог 
— теорема 3 + . 

2. Теоремы 2+ и 3+ применимы, в частности, к задаче N+ (/я; п), являю-
щейся континуальным аналогом задачи N(m; п). При её формулировке в пол-
ной общности возникают дополнительные трудности, связанные с тем, что 
преобразование Фурье от ограниченной м.-ф. является обобщённой функцией 
медленного роста и приходится, таким образом, использовать определённые 
факты из теории обобщённых функций. 

Во избежание этих трудностей ограничимся рассмотрением следующей 
задачи №+(т; п), являющейся по существу частным случаем задачи N+(m; п), 
однако важной тем, что она имеет прямое отношение к теории рассеяния ка-
нонического дифференциального уравнения вида 

(25) j*L = XY + V(r)Y (О^т•< + -), J = J ) 

с суммируемым потенциалом У=¥*(^Ц"х 2 п(0; +°°)) [6] и её решение опи-
рается на теорию классических интегральных операторов. 

Пусть задана суммируемая м.-ф. Го(еЬ™Хп(0; + °°)) порядка тХп. Тре-
буется описать множество 21 всех м.-ф. S(x) из К"Хп таких, что 

S(x) = f e-ixT0(t) сИ+Ф(х), , 
о 

где Ф(х) — граничное значение некоторой ограниченной при l m z > 0 м.-ф. 
Ф(г). 
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Для формулировки условия разрешимости этой задачи N+ (т ,п ) и опи-
сания множества 91 рассматривается вполне непрерывный гаикелев оператор 
Гв в пространстве L"xl(0; определяемый по формуле 

(ГоОСО = 7 Г 0 ( ' + * ) £ ( * ) ds, £ 6 l S x l ( 0 ; - ) . 
о 

Задача п) имеет решение тогда и только тогда, когда /—Г^ Г0 ^0 . Она 
является вполне неопределённой, если ||Г0||<1. Именно к этому случаю при 
т—п приводит задача рассеяния для канонической системы (25) с суммируе-
мым потенциалом [6]. В этом и только этом случае существует решение задачи 
ЭДс | |S|L<1. 

Замечание 4. Для задачи N+(m;n) в множестве решений существуют 
такие S(x), которые представимы в виде 

S(;t) = S0 + f eUx Г (t) dt, 

где S0 — постоянная матрица, а Г ( — + Более того, S(x) допус-
кает указанное представление тогда и только тогда, когда соответствующая 
ей в формуле (2+) параметрическая м.-ф. S(z) допускает представление 

g(z) = SQ+ f eh,i(t)dt, Lf
 xn

(0; 
о 

В частности, такими являются решения задачи 7V" (т; п), дающие минимум 
функционалов I(S; z) (Im z >0), ибо для них соответвующие м.-ф. являются 
постоянными. 

При выполнении условия ||Г0 | |<1 описание множества 91 получается по 
формуле (2+), отличающейся от (2) лишь тем, что £ с = 1 заменяется на х 
с lmx=0, a Bm X n—на В+х". Для м.-ф. A(x)=[aik(x)]l получаются формулы 
(21+), отличающиеся от (21) тем, что £ заменяется на х. Рассматриваемые в 
(21+) м.-ф. (х) и (х) определяются следующим образом: 

• М * ) = - Т * Т 0 ) - 1 П } ( Х ) . 

Здесь использовано обозначение 

{G} (х) = f eixtG (0 dt, G6 L\*" (0; 
о 

М.-ф. 9_(х) и 2,-(х), рассматриваемые в (21+), получаются по таким же фор-
мулам, что и 0>+(х) и £1+(х): следует в них заменить Г0 на Гц, на Г0, Г0 на 
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Г*, Гд на Г и л* на —х. Для получаемой в итоге м.-ф. A(x) — [aik(x)]\ выпол-
няются условия теорем 2+ и 3+ ; здесь a22

1(x) = áö^1(x) —внешняя м.-ф. класса 
тапХл . 

3. Точно так же, как ранее была решена задача Шура S(m; и), сводящаяся 
к задаче N(m; п), рассматривается её континуальный вариант—задача S\ (т; п): 
описать все м.-ф. F(z) из В™х" 

F(z) = f eh,C(t)dt + eizT<P(z), 
о 

где C(t)(£L™x"(0; Г)) — заданная м.-ф., a <P(z) — ограниченная голоморф-
ная при lm z > 0 м.-ф. Она сводится к задаче 7V" (т; и), поставленной для 5(дг) = 
= e~'xTF(x) по заданной м.-ф. ía(t), 

Í0 при t>T, 
l U lc(r-f) при 0 < / -t < Т. 

Так как 
, . _ г 10 при ( > Г 

>7(0 = Г0£ = J г-» 
I / C(T-t-s)£(s)ds при 0 < í < 7 \ 

то условие /—Г„Г0&0 существования решения задачи можно переписать 
в виде 1—8£8Т^0, где 8 Г —теплицев оператор, действующий из £"х 1(0; Т) 
в Ц?Х1(0; Т), определяемый по формуле 

г 

о 

Условие полной неопределённости задачи 8°+(т;п) записывается в виде I— 
•^-8£8Г>0. Формулы для и £1± (х) можно переписать, заменяя ганкелев 
оператор Г0 теплицевым оператором 8 Т . Описание всех решений F(z) задачи 
Б°+(т; п) получается по формуле (2+), в которой м.-ф. А(г) = [а1к(г)]1 — у'-внут-
реняя при 1т г >0, 

Ал (г) = (г), а22(г) = 0>+ (г). 

Все блоки а1к (г) в рассматриваемой задаче оказываются м.-ф. из НгХ" © еНТНгХ" 
(г=т, п) и поэтому это целые м.-ф. Таким образом А (г) целая /внутренняя 
м.-ф. и к ней применима теорема 4+ — континуальный аналог теоремы 4. 

Для задачи Б°+(т; п) справедливо замечание такое же, какое было сде-
лано ранее для задачи № + ( т ; п). 
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Приведенные нами результаты об описании множества решений задач 
№+(т; п) и 5° (m; ri) заимствованы из рукописи М. Г. Крейна и Ф. Э. Мелик-
А д а м я н а (где предполагалось т = п), краткое извлечение из которой опуб-
ликовано в работе [6]. Следует отметить, что работа [6] была первым матрич-
ным и притом континуальным аналогом работы [4а]. 
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The modulus of variation of a function 
and the Banach indicatrix 

V. O. ASATIANI and Z. A. CHANTURIA 

Dedicated to Professor Beta Szokefalvi-Nagy on his 70th birthday 

It is well known that the notion of variation of a function was introduced by 
C . JORDAN in 1881 in the paper [12], devoted to the convergence of Fourier series; 
In 1924 N . WIENER [22] generalized this notion and introduced the notion of /"-varia-
tion. Finally, L . YOUNG [23] introduced the notion of ^-variation of a function. 

De f in i t i on 1 (see [23]). Let <Z> be a strictly increasing continuous function 
on [0, and 0(0)—0. / will be said to have bounded <£-variation on [a,b], 
or if 

v 0 ( f ) = sup J *(!/(**)-/(**-i)l) < 
It k=1 

where TI — { a ^ x ^ x ^ . . . is an arbitrary partition. 
If <P(u)=u, then V0 coincides with the Jordan class V and when $(«)=«", 

p > 1, it coincides with the Wiener class Vp. In 1973 Z . A . CHANTURIA [5] introduced 
the notion of the modulus of variation of a function. 

D e f i n i t i o n 2. Let / be bounded'on [a, b]. The modulus of variation of the 
function f is the function v(n,f) defined by u(0,/) = 0 and for n^l, 

n — 1 
u(n, /) = sup 2" l/(^2t + l)-/(^2t)| , nn t=0 

where i7„ .is an arbitrary system of disjoint intervals (x2k, x2k+1), k = 0,1, ... n — 1, 
of the interval [a, b\. 

The modulus of variation o(n, f ) is non-decreasing and convex upwards 
([5], [19]). Such a function will be called a modulus of variation. If a modulus of 
variation o(n) is given then the class of functions / , given on [a, b], for which 
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o(n, f)=0(o(ri)) when w — w i l l be denoted by V[v]. It is known that if $ is 
convex and <P(u) u *) on [0, <5] then V0c:F[w#_1(l/»)] ^ a strict inclusion ([5], [8]). 

In 1925 S. BANACH [3] introduced the function N(y,f) for continuous func-
tions / : for every + N(y,f) is equal to the number (finite or infinite) 
of solutions of equations f(x) = y. Following I . P . NATANSON [16] (p. 112) N(y,f) 
will be called the Banach indicatrix. BANACH [3] proved that a continuous function 
/ belongs to V if and only if N(y,f) is summable on [m(f), M(/)] , where 
#n( / )= inf / (*) and AT(/)= sup f(x). 

S. M . LOZINSKI [14] generalized the notion of the Banach indicatrix for bounded 
functions which have only discontinuities of the first kind. Denote this class by 
W(a, b). S . M . LOZINSKI [13] showed that the Banach theorem is valid without 
assuming the continuity of / . 

One can obtain the class W(a, b) from C(a,b) by a monotone transforma-
tion of the argument, as it follows from the following theorem of O. D. TSERETELI [20] 
(p. 42) and [21] (p. 131): Let f£W(a,b). Then there exist functions / and F satis-
fying the following conditions: x increases on [a,b], F is continuous on \x(fl), '/.(b)] 
and f(x) = F(X(x)). 

The definition of Lozinski is equivalent to the following 

D e f i n i t i o n 3 . Let f£W(a, b). The Banach indicatrix of / is defined by 
N(y,f):=N(y, F), where F is determined by the relation f(x)=F(z(x)). 

Since the variation of a function does not vary for monotone transformations 
of the argument, thus by virtue of Tsereteli's theorem, Lozinski's result is a con-
sequence of Banach's theorem. 

T . ZEREKIDZE [24] proved the analogue of Banach's theorem for the classes Vp : 
If -feW(a, b) and p> 1 then from the condition 

f [N(y, fW'" dy < -
— OO 

it follows that fíVp. The converse does not hold. 
The purpose of the present paper is to study the relationship between the degree 

of summability of the Banach indicatrix and the modulus of variation of the func-
tion in question. The results obtained are then applied to some problems of the the-
ory of Fourier series. 

Let Q be an increasing concave function on [0, Í2(0)=0, lim Í2(x)=°°, 

lim —LJ-—0. The following theorem holds. 
x 

*) <P(M)~!P(K) on [a, b] if there exist positive constants A and B such that A&(u)< 
~zW(u)~zB$(u), when «€[0,6]. 
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Theorem 1. Iff£W{a,b) and 
M(/) 

( 1 ) f Q{N{y,f))dy<~, 

the modulus of variation v(n,f) of f satisfies the following relation 

(2) 2l2Q(n)-Q(n-1)-Q(n +1)]d(n, f ) < co. 
n=1 

The proof is based on the following lemma. 

Lemma 1. If f£W{a,b), then 
M ( f ) 

»(*, / )=§ 3 J N n ( y , f ) d y , 
" • ( f ) where 

N (v f \ = \ N { y ' f ) Wflm N(y' f ) ~ n> 
U when N(y, f ) > n. 

Proof . By virtue of Tsereteli's theorem it suffices to prove the lemma for 
f£C{a, b). By the definition of the modulus of variation of a function, for any 
£ > 0 one can find 2n points {x j^}^ 1 such that 

a 4£> < x^ ^ ... s= < b 
and 

v{n, f ) s= | / ( x ^ + 1 ) - / ( x ^ ) l +£• 
Jfc = 0 

Introduce the function 

gn(x) = 

Let 

f(x(
k
ty) when x = xĵ >, k = 0, 1, ..., In -1, 

/(*oE)) when x = a, 
f(x2n-i) when x = b, and 
linear for all other x€[a, b]. 

mk = min {f{x?>), / ( * & ) } , Mk = max {/(x«) , / ( x ^ ) } -

Then on any segment [x££), x ^ J the equation g„(x) — y, y£[mk, Mk], has a 
unique solution, whereas the equation f{x) = y has at least one solution, i.e., for 
any y, N(y, g„)^N(y,f). On the other hand, N(y, g„)^2n + \. Therefore 

(3) N{y, g„) ^ min {7V(j;, / ) , 2n +1} 35 3 min {N(y, / ) , n} = 3Nn {y, f ) . 

Let us estimate the variation of the function g„. We have 

2n-l 

k = 1 
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whence by virtue of Banach's theorem and relation (3), 
M<0„) M(/) 

v(n,f)^v(gn)+e= f N(y,gn)dy+e^ 3 / 
rn(g„) m( / ) 

Since e is arbitrary, the lemma is proved. 

P r o o f of T h e o r e m 1. Introduce the notations 

<r(n) = [Q(n)-Q(n-l)]n, en = {y, N(y,f) = n}, 

En= U ek = {y; 1 s N{y,f)^n), £„ '= U ** = {y\ N(y, f ) > «}. 
k=1 t=n+l 

It is easy to see that by the properties of Q we have 
1) <7 (n)3=i2(n), n = 1,2, . . . , 

2) i = l , 2 , — n n+1 
Using these relations and Abel's transformation, we get 

M ( f ) M ( f ) 

f Q(N(y,f))dy ^ f o(N(y, f))dy — 

In virtue of Lemma 1, 

M(f) 
U(n, / ) ^ 3 / iV.O', / ) dy = 3 / t f Q,, / ) + 

From here and (4) it follows that 
M ( f ) 
f Q{N(y,f))dys 

- T.I J^i 
+ ̂  J N(y> f ) d y — 

- t h — r r H D ( f c ' — " » ( « , / ) • 
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But since 
k\iEk - (k-1)nEk_ 1 = \iEk_j - kfiek 

thus 
M(/) , „ 
/ Q(N(y,f))dy^T 2№{k)-Qik+l)-Q{k-l)]o(k,f) + 

+ 2 <r(k)nek- 2 ^ n E ^ . 
Jt = l k = 1 k 

From the latter relation it follows that 
M(/) 

»=1 m{S) *=1 k 
M ( f ) 

= 3 7 ' / ) ) d > + 3 2 ^ ( 2 
m(/) J=1 u = i J ) 

M(/) „ M(/) 
= 3 / a ( i v o > , / ) ) ^ + 3 2 S 6 / Q ( i v c , / » < o o . 

m(/) * = 1 m(/) 

Theorem 1 is proved. 
We give some corollaries of Theorem 1. 

Co ro l l a ry 1. If f£W(a,b) andfor oc>0, 
M ( f ) 

(5) / In* (N(y, f ) dy < 

then 
- I n ' - ^ n + l) , « 

2 - j » ( « , / ) < n=l w 
Proof . Like before, we may assume that f£C(a,b). Then for J>€[»i(/), Af(/)], 

therefore (5) is equivalent to 

M(f) 

Take now i2(x)=ln" (1 +jt). Then 

2i2(n)-i2(n + l ) - i 2 ( n - l ) > c + 

whence by virtue of Theorem 1 we obtain the statement of Corollary 1. 

Coro l l a ry 2. If few (a, b) andfor p> 1, 
Af(/) 
/ NV&fidy^-, 

m(f) 
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then 
~ u ( n j ~ ) 
> — - oo . 

„2-1 /p 
n=l " 

In fact, for the proof it is sufficient to take i2(x)=x1/p. 
Theorem 1 cannot be converted since Theorem 2 holds. 

Theorem 2. Let Q satisfy the above conditions. Then there exists a function 
fa£C(a, b) for which (2) is valid, but (1) is not fulfilled. 

Proof . Let us show first that there exist an increasing sequence of integers 
{fik}~=0 and a sequence of positive numbers {bk}^=l such that 

(6) 
t = i 

and 

(7) z a i i h - K - d b t = - . 
4=1 

Let 

Since the function i2_1 is convex and can be represented as 

fl"1(*)= J Pit) dt, 
o 

where P(Ot on [0, and since 

x-<*> X 

we have 
lim Pit) =oo. 

Taking into account the above facts we have 

•^+1-№ = i3-1(k+l)-i3-1(fc)-2afc+1-2at-l ^ f P(t)dt-5, 
k +1 

i.e., nk+i—°° when k-*<x>; thus {fik}™=0 increases, beginning with some 
number k0. It will be assumed without loss of generality that k0=0. 

Since Q is convex upwards, i2ix—y)s£2ix) — i2iy) for hence 

Qink+1)-Q(jik) Q(Q-\k+l)-2ock+1)-Q(Q-\k)-2ak-i) s 
(o) 

k + l - Q i Q - i i t y + Q Q ) = l+i2(3). 
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Denote Xk=Q{jik—fik-^). It is obvious that A*-*-00, k—°°. 
oo 

We shall divide the set of natural numbers N into subsets N = H N t in the 
*=i 

following way: N ^ {1}. If the sets N l5 ..., N t are already constructed, then 
k 

Nk + 1 is constructed as follows: Let N f c = N \ l J N; and Ak= min then 
i=l >€Nt 

N I + 1 = { « ; 2Ak). 

If |N£ + 1 | ^ |N t | then we put N t + 1 = N ^ + 1 and if | N £ + 1 | < t h e n to the set 
we add |N4| —|N£+1| natural numbers successively, beginning with the maximal 

term of the set |N£+1|. The obtained set will be N k + 1 . 
In virtue of the construction, 

(9) 1) | N 4 + 1 | S | N » | a n d 2) Ak+1^2Ak. 

Suppose 

= W h e n 'm€Nk' . 
It is clear that by virtue of (9), bm^bm+1. Then we have 

oo oo | °° 1 oo ^ 

2 bm = 2 2 T^JJ- = 2 ~ r = Ai 2 ^ ^ °°> 
m=1 k=l M£NFC L̂ FCL k = 1 ^k k=l 

whence, applying (8), we get 

k = 1 

On the other hand, 

OO OO
 00 1 

2 ^mK = 2 2 t-mK = 2 A k ~ 7 ~ = 
m=1 k=lm£N„ k=1 Ak 

Thus, the required sequences are constructed. 

Let 2 b i = y k a n d rnk=nk—nk-i- Note that mk is an odd number. Let us 
j=k 

construct the function / 0 in the following way: divide the segment [l/2fc, 1/2*1-1] 
into mk parts by means of points 

{ * № i + 1 , l/2fe = *<*> < *<*> < ... < < > < = 1/2*-1 

and let 

j {>' / i+Jk+i)+(-l) i( j ; t -Jt+i)} when x = x[k), i = 1, ..., mk + l, 
/ o ( x ) = |linear when jcetxf*, x«\], 

lo when x = 0. 
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Since _yt->-0 when fc—thus f0 is continuous on [0,1]. Further, N(y, /0)=mk 

when y€(yk+i,yk), hence, using (7), we get 
M ( f ) j>t 

f O(N(y,f0))dy= 2 f Q(N(y,f0))dy= 2 bkQ(mk) = »(/> k = 1y lt + , * = 1 

oo 

= 2 bkQ(pk-nk-i) = 
k = 1 

Next we show that 

(10) 2 [2« ( n ) - Q (n +1) - Q (n -1)] v {n, /„) < 
n=i 

Consider two auxiliary functions 

fyk+1 when x6[l/2k, l/2k~r), k = 1, 2, ..., 
when x = 0, 

and f2—f0—f. Then, it is obvious that 

( 1 1 ) v(n,f0) 3 u(n,/i) + »(n,/2). 

In virtue of the monotonicity of the function f , for all n, 

(12) < n , f j = y 2 = 2 b-,. 
i = 2 

Let us estimate now the modulus of variation of the function f2. For a natural 
n we choose the number k such that 

fc-i k 

Hk-i = 2 n = 2™i = A V 
¡=1 i=1 

Then v(n,f2) — v(n — l,f2)=bk whence, according to (7), 

2 [Q(n)-Q(n-1)][v(n, f2)-o(n-1, M = 
(13) 

= 2 2 [Q(n)-Q(n-I)]bk = 2 [^(nk)-^(^'k-l)]bk = 
fc = l n=(/k_, + l k=1 

Using the relations (11), (12), and (13) we have 

2[2Q(k)-G(k+l)-Q(k-l)]o(k, f J ^ 2№(k)-Q(k+l)-Q(k-l)]v(k,f1) + 
Jt=i t = i 

+ J [G(/c) — Q(k— 1)][o(k, f2)-v(k-1, /2)] + [i2(n)-i3(« + l)]u(H :/2)== 

^ ^2[i2(l) + i2(«)-i3(n + l)] + 5 ^ Q(l)y2+B, 

whence the validity of relation (10) follows. Theorem 2 is proved. 
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The following theorem states the dependence between the degree of summability 
of the Banach indicatrix and the classes V0. 

Theorem 3. Let 0 be a continuous increasing convex function on [0, =»), 

4>(0) = 0, l i m - ^ - = 0 , and let u-0 u 

(14) fl(*) = 
r 1 

¿ l ^ { f ) d t w h e n ^ t 1 ' 0 0 ) ' 
0 when x€[0, 1). 

If f£W (a, b) and (1) is fulfilled, then /£ V0. 

For the proof of this theorem two lemmas are needed. 

Lemma 2 (see [11], p. I l l or [19], p. 160). Let 0saj,0sbn\, and let the 
k k 

relations 2ai — 2 be true for k=\,2,...,m. Then for convex functions <P 
¡=1 ¡=i 

the inequality 
m tit 

i=l i = 1 holds. 

Lemma 3. Let and let 0 be a convex increasing function on [0, 
and <f>(w)>0 for u> 0. Then 

(15) i *<«.>--. 

Proof . Since is convex, therefore <£(m)/w increases, and hence w/tf>_1(w) 

also increases, i.e., the sequence { }., , . 1 decreases. Starting from this, by [n^il/n) J 
virtue of Cauchy's theorem on numerical series, the convergence of the first series 
under (15) is equivalent to that of the series 

( 1 6 ) kam*=km-
From the convergence of series (16) it follows that there exists a natural number 
«o such that a2„<i>-1(l/2") for Since u/$(u)l, from the latter inequality 
we obtain 

a2„ ^ $-1(1/2") 
<P(a2„) ~ <P(<i>-\\l2n)) 2"$-1(l/2") when n n0, 

or 

2»<P(a2n)^a2n 0-1(1/2„y n>n 0. 
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From this relation and from the convergence of series (16) we obtain that 

¿ 2 "4>(a2n) and ¿<P(a„) 
n=l n=l 

converge. The lemma is proved. 

Proof of Theorem 3. Let us show first that Q satisfies the conditions of 
Theorem 1. In fact, we have 

1) lim = lim — f ^ . dt = .'lim — f ^ , N dt = ' X x-~ X Jx t ^ i f ) X— X J i ^ - ^ l / i ) 

= lim = 0, 
H I / * ) 

2) lim i2(x) -• lim f J**,. & lim f . lim — • ,„, . * „ = 

3) the function Q is convex upwards, since Q'(x)=—, },, , is a decreasing 
x# _ 1 ( l /x ) 

function. 
Since all the conditions of Theorem 1 are fulfilled, thus (2) is also satisfied. 

We will show that (2) implies the relation 

(17) l [ f l ( n ) - i 2 ( « - l ) ] [ » ( « , / ) - » ( « - ! , / ) ] < 
n=l 

To this end it is sufficient to prove that 

(18) l im[ f i (n ) - f l (n - l ) ]o (n , / ) = 0. 
n-*-oo 

By virtue of the convergence of series (2), for any e > 0 one can find an n such that 
for any m>n the relation 

m 
2 [2Q(k)—Q(k+i) — Q(k— l)]»(fc, f ) < e 

holds, whence, by virtue of the monotonicity of v(n,f ) and the fact that i2(m+l) — 
-i2(m)—0, m—<=°, we get 

m 
e>v(n,f) 2 [2Q(k)-Q(k + l)-Q(k-l)] = 

k=n 

= o (« , / ) [0 (n ) - i2 (» i - l ) + Q(m)- i2 (m+l ) ] S j » ( n , / ) [ i 2 ( n ) - Q ( n - l ) ] . 

Thus (18) is proved and it proves also (17). 
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But then, since 

o ( i , ) - f l ( « - i ) = JiW^m * 

we have 

and this, by virtue of Lemma 3, gives 

(19) j ? * 0 > ( n , / ) - o ( n - l , / ) ) < o o . 
n=l 

We may now show that / € V&. Let us take an arbitrary partition 77= 
= {a ̂  x0 < Xj < . . . < xm ̂  ¿}; without loss of generality it may be assumed that 

S | / (x k + 1)-/(x f c) | . 

For every « = 1,2, ...,m we have ' 

2 \f(xk)-f(xk-d\ s V(n, f ) = 2 (»(*, f)-v(k-1, /))• *=1 ft=1 

Therefore, if we take a* = |/(x*)~ / ( x ^ ) ) and bk = v(k, f)—v(k—l,f), and apply 
Lemma 2 and relation (19), we have 

m m 

2 <KI/(**)-/(**-i)l) ^ 2 * ( » ( / < , / ) ) ^ 
k=1 k=l 

Thus, as it was required, we proved that / € F®. 

C o r o l l a r y 3. [24] Let f£W(a,b), and for p> 1, 

M ( f ) 

f [N(y,f)Y»dy^~>. 
Mf) 

C o r o l l a r y 4. /€W(a , b), and for a > l , 
MC/) 

Then f£Vv, where 4>(x)=exp ( - x 1 / ( 1 - a ) ) in (0, <5), <5>0. 

We shall show that Theorem 3 cannot be converted. 
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T h e o r e m 4. Let the function $ satisfy the conditions of Theorem 3, and let 
Q be defined by (14). Then there exists a function fo£V0 which does not satisfy 
relation (1). 

Proo f . In virtue of Theorem 2 there exists a function / 0 which satisfies rela-
tion (2) and does not satisfy relation (1). But the previous theorem shows that from 
(2) it follows /„€ V0. 

The results obtained will be applied to some problems of the theory of Fourier 
series. 

1. By the well-known Jordan theorem, if a 27r-periodic continuous function 
/ has bounded variation, then its Fourier series o ( f ) converges uniformly ([12]). 
This theorem was generalized by WIENER [22] for the class C f l V2, by MARCINKIEWICZ 
[15] (p. 4 0 ) for the class C f l K p , by L . YOUNG [23] for the class CDV0, where 
$(w)=exp (—u~"), 0 < a < l / 2 . SALEM [18] obtained the most general condition 
on 4>, providing the uniform convergence of Fourier series of the class C D V 0 , 
whiclTreads as follows: Let $ be a convex increasing function, and let f be 
a function, complementary in the sense of Young*) to the function <P\ if f£CC\V0 

and 

(20) 
then a ( f ) converges uniformly. 

K. I. OSKOLKOV [17] proved that (20) is equivalent to the condition 

f In . du<°°. J 4(u) 

A . M. GARSIA and S. SAWYER [9] proved that if /<EC(0,27r) and 

A Hi) 
( 2 1 ) / \nN{y,f)dy^~, 

then a ( / ) converges uniformly. 
From Corollary 1 it follows that if (21) is satisfied then 

( 2 2 ) K I ^ O ^ - ' 

But if /€C(0,2n) and (22) holds true, then as it was proved in [6], the Fourier 
series of the function / converges uniformly, i.e., the theorem of Garsia—Sawyer 
is the result of Corollary 2 from [6]. 

») ¥/(«)=max {uv- <P(v)}. 
DSO 
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2 . V . O . ASATIANI [1] obtained the analogue of condition ( 2 2 ) for (C, —a)-

summability ( 0 < a < l ) of Fourier series. He proved that if /£C(0, 27r)fl F[u], 
and for 0<oc< 1, 

- v{k) 
k = 1 K 

then a i f ) is uniformly (C, — a)-summable to / . From this result and Corollary 2 
we have 

T h e o r e m 5. Let f£C( 0,2n) and assume that for 0 < a < l , 

M(f) 
f N'(y,f)dy^«>. 

m(/) 

77ie/i <r(/) /'.v uniformly (C, — x)-summable to f 

3. Wiener's criterion on the continuity of functions of bounded variation is 
well known: Let 

(23) m i n { f ( x - 0 ) , fix + 0)} ^ fix) ^ max{ / (x -0) , / ( x + 0)} 

for any x, and let ak and bk be the Fourier coefficients of the function / , 
Qk=Vak+bk. If f£V[0,2K] then for / to be continuous, each of the following 
conditions is necessary and sufficient: 

(24) ¿ * 2 e i = o(n), 
k= 1 

(25) ikgk = o{n). 
k=l 

S . M . LOZINSKI [14] showed that instead of conditions ( 2 4 ) or ( 2 5 ) one may take 

(26) 2 8k = o(ln "). 

( 2 7 ) 

B . I. GOLUBOV [10] applied these results to the classes Vp when 1 < / > < 2 , and 
showed that for the classes Vp with p^2 a similar theorem does not hold. Z. A. 
CHANTURIA [7] (see also [8]) proved a theorem containing all of the previous results: 
If / satisfies condition (23), and its modulus of variation satisfies the condition 

(28) 2 "a— • 
n = l n 
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then for the function / to be continuous, each of conditions (24)—(27) is necessary 
and sufficient. 

From the theorems ofWiener and Banach—Lozinski it follows thatif f€W(0,27i) 
satisfies condition (23) and its Banach indicatrix is summable then each of conditions 
(24)—(27) is necessary and sufficient for the continuity of the function / . We shall 
now prove a theorem which is much stronger and is in certain sense best possible. 

T h e o r e m 6 . If f£W(0,2n) satisfies condition (23) and its Banach indicatrix 
satisfies the condition 

М(Л 
(29) / N^(y,f)dy^~>, 

m(/) 

then each of conditions (24)—(27) is necessary and sufficient for the continuity of f . 

Proof . It suffices to prove that (29) implies (28). By virtue of Corollary 2, 
(29) yields 

(30) 2 —372-<oc-/» = 1 n 

Since the general term of the last series decreases monotonically, we have 

n^ Ы ' 
or и(и,/)^си1 , : . Therefore 

I> ~ с ~ 
„ 3 / 2 

The latter inequality and the convergence of series (30) imply the convergence 
of (28), which was to be proved. 

We shall now show that Theorem 6 is, in a certain sense, best possible, namely, if 
we take an integral class wider than (29) then Theorem 6 does not hold; more exactly, 
the following statement is true. 

The orem 7. Let Q be a convex upwards increasing function. If 

(31) M ^ = o, u~ oo yu 

then there exists a function /o£C(0,2n) for which 

M(f) 

m(/) 
but (24) and (27) do not hold. 
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Proof . By virtue of (31) we may choose an increasing sequence of even natural 
numbers 1 such that n k + 1 /n k Sq> 1 and 

(32) 2 < 
*=i 

CO J 
Let c* = 2 77=; then 

c j (»»-»t- i ) = f Z - - A - ] 2 ( n n - n * - i ) ^ - ¿ - (n*-« t - i ) = 1 - - V 1 1 = 1 > \i=k yrii ) nk nk q 
i.e., 

(33) ' 2 4 ( r i k - r i k - 1 ) = ~ -

Take now n 0=0 and choose the sequence {£„}"=1 with Bn — ck, when 
n / t - j l ^ n ^ n j l . It is clear that Bn\0, and in virtue of (33), 

(34) 2Bl ="• 
n=l 

Following the scheme of [8] we construct the function / 0 as follows: 

Bk when x^I2k+1, fc = l , 2, ..., 

/ « w = o when 2TTJ U [O, YJ, 

linear for all other x from [0, 27r], 

where Ik is a specially chosen sequence of segments such that Ik lies to the right 
of 

The fact that if (34) is fulfilled then /„ does not satisfy conditions (24) and 
(27), but 

M(f) 
f Q(N(y,f0))dy <», 

m(/) 

is proved in [8]. In fact, using (32) we have 

M(/) „ ck 
f Q(N(y,f0))dy= 2 f Q{N(y,f0))dy=. 

m (/) k = 1 ck + 

Theorem 7 is proved. 
It should be noted, finally, that some of the results of the present paper were 

published without proof in [2]. 
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Quasisimilarity and properties of the commutant 
of Cu contractions 

HARI BERCOVICI and LÁSZLÓ KÉRCHY 

Dedicated to Professor Béla Szőkefalvi-Nagy on his 70th birthday 

An operator T acting on the complex Hilbert space § is said to have property 
(Q) if r |ke r X and (T*|kerX*)* are quasisimilar for every X in the commutant 
{TY of T. This property was introduced by UCHIYAMA [11] in connection with 
a conjecture of SZ.-NAGY and FOIA§ [8]. 

We say that T has property (P) if kerA"* = {0} for every operator X in 
{T}' such that kerZ={0}. 

In this note we prove that a weak C n contraction has property (Q) whenever 
it has property (P). None of the assumptions of this result can be omitted. Indeed, 
there are weak C u contractions (even unitary operators) that do not have property 
(P) and we will show that there are C n contractions having property (P) but 
not property (Q). Since (P) is a quasisimilarity invariant in C n (cf. [4]) and, 
as we shall see, for unitary operators (P) and ( ® are equivalent, we obtain in 
particular that the property of being a weak contraction and property ( 0 are not 
quasisimilarity invariants in C u . 

These examples show that the results of [2] concerning weak C0 contractions 
and [1] concerning C0 contractions with property (Q) cannot be extended to the 
class of Cu contractions. 

It is easy to see that our Theorem 2.7 extends (via [4]) the result of Wu [12] 
concerning completely nonunitary C u contractions with finite defect indices. 

We note that every C^ contraction with property (P) is the direct sum of 
a singular unitary operator and an operator on a separable space. (Cf. [4, Corollary 5].) 
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1. The residual part of a contraction 

Let T be a contraction acting on the Hilbert space § and let U+ acting 
on be the minimal isometric dilation of T, that is U+ is an isometry, 
T*=Ul\^) and « + = V Un

+9). Let 5t+=9tf©9? be the Wold decomposition of 
N S O 

«+ with respect to U+, with 9i= f | 
ISO 

Def in i t i on 1.1. The unitary operator /? r=f/+ |5R is called the residual part 
of T. (Cf. [9, ch. II. 2].) 

It is obvious that RVSlT=V(BRT whenever V is a unitary operator. 
Sz.-Nagy and Foia? proved the following (cf. [10, Theorem 1.3]): 

P ropos i t i on 1.2. If the contractions T and T' are similar, then RT and 
RT, are unitary equivalent. 

Let us recall that a contraction T acting on § is said to be of class C n if 
lim \\T"h\\ = 0 or lim||r*"/!| |=0 implies h=0. The following result is proved 

n OO a OJ 

in [9, Proposition II. 3.5]. 

P ropos i t i on 1.3. Any C n contraction T is quasisimilar to RT. 

It follows by [9, Proposition II. 3.4] that in the class C u RT is a quasisimilarity 
invariant and even a quasiaffine invariant. Therefore RT is the unique unitary 
operator (up to unitary equivalence), quasisimilar to the operator T of class C u . 

We do not know whether RT is in general a quasisimilarity invariant. It is 
easy to see that RT is not a quasiaffine invariant; indeed, if 5 denotes the uni-
lateral shift on H2, we have S<S* [7] and Rs^Rst. 

The following result follows from [9, Chapter VII, §1]. 

Lemma 1.4. If T is a completely nonunitary contraction on § and is 
an invariant subspace for T, then RT=RT, © RT., where T'—T[§' and 
T"=(T* ise§')*-

The following two results will help us extend this lemma to arbitrary contrac-
tions. The first of them is proved in [5, Lemma 2], while the proof of the second 
one is essentially the same as that in [5, Lemma 1]. 

Lemma 1.5. Any absolutely continuous unitary operator is similar to a completely 
nonunitary contraction. 

Lemma 1.6. Let U be a singular unitary operator and let T be a completely 
nonunitary contraction. Every invariant subspace 951 of U@T has the form 
where 91 is invariant for U and ^ is invariant for T. 
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Theorem 1.7. Let T be any contraction acting on Sj' an invariant sub-
space for T. Thenwehave RT = Rr®RT,, where T' = Tand T" = (T*\9)©§')*• 

Proof . Let T1 be another contraction acting on and X: an 
invertible operator such that TlX=XT\ set Then T' and T" are 
similar to Ti = Tj |§i and ^ ^ ( r f l ^ G ^ i ) * , respectively. This shows by Propo-
sition 1.2 that in proving the theorem we may replace T by a similar operator. 
It follows then from Lemma 1.5 that we may assume T = t /© 7\ , where U is 
a singular unitary operator and Tx is completely nonunitary. (Cf. also [9, Theorem 
I. 3.2].) Now Lemma 1.6 shows that we can further reduce the proof to the cases 
where T is a singular unitary or completely nonunitary. If T is completely non-
unitary the proposition follows by Lemma 1.4. In turn, if T is a singular unitary 
operator, then every invariant subspace of T reduces T (cf. [6, Proposition 1.11]) 
and so the statement becomes obvious. The proof is complete. 

2. C n contractions with property (P) 

The following result was proved in [4]. 

P ropos i t i on 2.1. A contraction T of class Cn has property (P) if and only 
if RT has property (P). 

Now, unitary operators having property (P) are easily characterized in terms 
of properties of their commutant. 

Lemma 2.2. A unitary operator T has property (P) if and only if the commutant 
{T}' is a finite von Neumann algebra. 

Proof . Assume first that {T}' is not finite. Then there exists a nonunitary 
isometry U in {T}' \ in particular U is one-to-one but ker U* ̂  {0} so that 
T does not have property (P). 

Conversely, if T does not have property (P), there exists X in {T}' such 
that ker X= {0} and ker X V {0}. If X = UP is the polar decomposition of X, 
we have Ud {T}' (cf. the proof of [9, Proposition II. 3.4]), ker C/ = ker X= {0} 
and ker £/*=ker X V {0} so that {T}' is not finite. The lemma is proved. 

It follows from the results of [3] that unitary operators having property (P) 
also have the following "cancellation" property: if T®U is unitarily equivalent 
to T®V for some unitary operators T,U and V, and T@U has property (P), 
then U and V are unitarily equivalent. 

P ropos i t i on 2.3. Let T be a Cn contraction having property (P). For every 
X in {T}' the operators Pr|kerx anc^ P(T*|kerx*)* are unitarily equivalent. 
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Proof . By Theorem 1.7 we have Rr^^Tikcrx^^(T*i(kcrX)±)*^^Ti(ranx)-® 
©-R(r*|kerx*)*- The operators (T*|(ker X)-1-)* and T|(ran X)~ are of class C n 

(cf. [5, Lemma 5]) and they are quasisimilar (cf., e.g., [12, Corollary 3.4]), so that 
(̂T*|(k«rX)J-)* and ¿?r|(ranX)- a r e unitarily equivalent. The proposition now 

follows from the cancellation property described above. 

An obvious consequence of Proposition 2.3 is the following. 

Coro l l a ry 2.4. Let the C u contraction T be such that T |ke rZ and T*|kerZ* 
are of class C u for every X in {T}'. Then T has property (0) if and only if it 
has property (P). 

The hypothesis of the preceding Corollary can be weakened ; to do this we need 
some definitions from [5]. For a C n contraction lati T denotes the set of those 
invariant subspaces 9JÎ for T such that r|9JÎ is of class C n . For every invariant 
subspace SOI for T there exists a largest subspace in la^ T contained in S0Î , 
this subspace (the C^-part of 9JÎ) is denoted by 9Jl(1). For a subspace 9JI in 
lat T* we set îK-Li=(aR-L)(1). 

Let us say that the Cu contraction T has property (R) if ker XÇ. latt T for 
every X in {T}'. 

P r o p o s i t i o n 2.5. Let T be a C n contraction having property (P). Then 
T has property (R) if and only if T* has property (R). 

Proof . By [5, Lemma 5] a subspace 3)1 is in la^ T* if and only if it has the 
form (ker X)x for some X in {T}'. It follows that T has property (R) if and 
only if Ç lat! T for every 9Ji in lat 1T*. 

Let us assume that T has property (R) and S0i£ latx T; it follows from [5, Prop-
osition 2] that (9K-L«)J-,=9K. Now, 9Jl±iÇlat1 T* and T has property (R) 
so that (9JlJ-')-L€lati T. Consequently (9KJ-0-L=(®i-Ll)J'1=®î and therefore 
9jj±1==9jjj.) that is ÏR-Lçlat! T*. We proved that T* has property (R). 

By [4, Corollary 4] T has property (P) if and only if T* has property (P). 
Thus the proof is completed by the same argument applied to T* instead of T. 

Now we can reformulate Corollary 2.4 as follows. 

T h e o r e m 2.6. Let T be a Cu contraction having property (P). Then T has 
property (Q) if and only if T|ker X is of class C u for every X in {T}'. 

Proof . The sufficiency obviously follows from Corollary 2.4 and Proposition 
2.5. Conversely, if T has property (Q) and Xe {T}', then T\ktr X is of class C1. 
and (r*|kerZ*)* is of class C.^, it follows that both operators are of class C u 

since they are quasisimilar. The theorem is proved. 
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Let us recall that a contraction T is said to be weak if I—T*T is a trace class 
operator and XI—T is invertible for some X with |A|<1. 

Theo rem 2.7. A weak C u contraction has property (P) if and only if it has 
property (Q). 

Proof . It is enough to prove that a weak C n contraction T having property 
(P) also has property ( 0 . By virtue of Theorem 2.6 it suffices to show that, if 
T is a weak Cti contraction then T\kcv X is of class C u for every X in {71}'. 

It is clear that I-(T\ker X)* (T\ker X) = PkcrX(I-T*T)\keT X is a trace 
class operator. By [9, Theorem VIII. 2.1] T is invertible. Since X commutes 
with T~x, we have that T_1(ker X)c:ker X, and so T\ktv X is also invertible. 
Therefore T |ke rZ is a weak contraction of class Cx., and so by [9, Theorem 
VIII. 2.1] it is of class C u . The theorem follows. 

C o r o l l a r y 2.8. A unitary operator has property (P) if and only if it has 
property (0. 

3. Examples 

It is known [9, Ch. VI. 4.2] that there exist C u contractions whose spectrum 
coincides with the closed unit disk. The following result shows that there are C n 

contractions having property (P) whose spectrum covers the unit disk. 

P r o p o s i t i o n 3.1. Let U be an absolutely continuous unitary operator. There 
exists a C u contraction T such that er(T)= {/.: |/. | ^ 1} and RT is unitarily equiv-
alent to U. 

Proof . It suffices to prove the proposition in the case U is the operator of 
multiplication by e" on L\o), where cc:[0, 2n] has positive Lebesgue measure. 
Choose pairwise disjoint subsets an of a of positive measure such that [J an~a 

«so 
and choose a sequence {e„}nS0 of positive numbers less than 1. For each n there 
exists an outer function 9„ (uniquely determined up to a constant factor of modulus 
one) such that |9„(^')| = 1 if t$<r„ and \3n(ei')\=s„ if t^an. It is clear by [4, 
Corollary 1] that the functional model T corresponding with the characteristic 
function 0(A) = diag (90(A), 9j(/l), ...) satisfies the condition RT=U. 

If the numbers s„ satisfy the relation lim \o„\ loge„= —» (where |cr„| 
CO 

denotes the Lebesgue measure of <J„) we have lim 9„(A)=0 for every X, |/|<], 
OO 

and by [9, Theorem VI. 4.1] this implies that a ( T ) ^ {2: ¡¿) 1}. The proposition 
follows. 

It is obvious that the operator T constructed in the preceding proof is not 
a weak contraction; in particular, a C1L contraction with a cyclic vector is not 
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necessarily a weak contraction. Let us also note that if T is of class C u then 
T and T* cannot have eigenvalues of absolute value less than 1. Thus, if T is 
a C u contraction and /.£a(T), |A|<1, then II—T is one-to-one and has non-
closed, dense range. 

In the sequel we will identify a vector / of the Hilbert space § with the 
operator C—§ defined by C ^ h — t h e adjoint f* is then defined by 
/ * ( * ) = ( * . / ) ^ ¿res-

L e m m a 3.2. Let S be an injective contraction acting on § such that SSj^ S-
There exists a vector /€§ such that the operator ( S , f ) : S j f f i C —§ defined by 
(S, f)(h © A) =Sh + If is an injective contraction. 

P r o o f . It is clear that OS,/) is injective if and only if f$S9>. Let us set 
/=u — SS*u, where u$S§> and ||w||2Sl/2. Then clearly and 

(3.1) | | M | | 2 + | | / P ^ H I 2 + I M I 2 ^ 1 . 

We only have to prove that ( S , f ) is a contraction. Indeed, let / i f f i / .€§© C; 
~ we have (using the notation D = ( I - S * S ) 1 ' i ) 

WSh+XfW* si ||Sft||2+2|A||(5/i, / ) | + |A|2||/||2 = 

= | | S f c r + 2 | A | | ( ( / - « ) | + | W I I S = \\ShP + 2\X\\(SDDh, k)| + |A|2||/||2 ^ 

^\\Shr- + 2\X\\\u\\\\Dh\\ + mf\\2. 

Using the inequality 2ab^a2+b2 in the middle term we get 

= l|/i | |2+l^l2(ll«ll2+||/ | |2)^| |/ I | |2+|A|2 

by (3.1). The lemma follows. 

T h e o r e m 3 . 3 . There exist C u contractions having property (P) but not 
property (Q). 

P r o o f . Let T' and T" be two noninvertible 
Cu contractions acting on 

¡5' and respectively. By Lemma 3.2 we can choose vectors and 
such that ( T ' , f ) and (T"*,g) are injective contractions. It is then easy to see that 
the operator T defined on § ' © C © § " by the matrix 

T' f 0 
0 0 g* 
0 0 T" 
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is a C u contraction. Let us note that the invariant subspace § ' © C for T is 
not in lat! T, while its orthocomplement obviously belongs to la^ T*; by 
the proof of Proposition 2.5 and by Theorem 2.6 we infer that T does not have 
property ( 0 . 

By Theorem 1.7 we have R T ^ R T . ® R 0 ® R T ^ R T , @ R T „ , so that T has 
property (P) whenever T' and T" have property (P) (cf. Proposition 2.1 and 
[4, Lemma 5]). The theorem follows by Proposition 3.1. 

R e m a r k 3.4. Proposition 3.1 shows in fact that the operator T in the preceding 
proof can be chosen so that RT is unitarily equivalent to a given absolutely con-
tinuous unitary operator with property (P). In particular RT could be chosen so 
that all its invariant subspaces are reducing (a reductive operator). This shows that 
the property "latx !T=lat T " , generalizing reductivity, is 'not a quasisimilarity 
invariant in the class of C u contractions or even in the class of Cn contractions 
having property (P). 

R e m a r k 3.5. Let us choose T'=T" in the proof of Theorem 3.3; in this 
case we can produce an operator X in {T}' for which r jker X and (T*|ker X*)* 
are not quasisimilar. Such an operator is defined by the matrix 

0 0 / 
0 0 0 , 
0 0 0 

where I denotes the identity operator on = 

R e m a r k 3.6. Finally we note that we have got by Theorems 3.3, 2.6 and by 
the proof of Proposition 2.5 that the Cu-orthogonal complement fi-1-1 of a sub-
space fi^latxT, where T is a C u contraction with property (P), does not generally 
coincide with the orthogonal complement £-*- of fi. 
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A proof of the spectral theorem for /-positive operators 
J. BOGNÁR 

Dedicated to Béla Sz.-Nagy on the occasion of his 70th birthday 

A Krein space is a Hilbert space with the usual (positive definite) inner product 
( / , g) and a non-degenerate (in general, indefinite) /-inner product [ f , g]=(Jf, g), 
where / is a symmetry: / * = / and / 2 = / . A Krein space with one (or both) 
of the eigenspaces of J having finite dimension is called a Pontrjagin space. 

Let A be a bounded or unbounded linear operator in the Krein space §>. 
If J A is selfadjoint (in the Hilbert space sense), then A is said to be /-selfadjoint. 
If J A is positive, that is, [Af,f] =(J Af, f ) ̂  0 for every / in the domain of A, 
then we say A is /-positive. Further, if there is a non-zero polynomial p such that 
p(A) is /-positive we say A is /-positizable. 

In 1963, M . G . KREIN and H . LANGER [1] proved a spectral theorem for/-self-
adjoint operators with real spectrum in a Pontrjagin space. The proof made use, 
among other things, of the /-positizability of these operators. LANGER [2] gener-
alized the theorem to /-positizable /-selfadjoint operators with real spectrum in 
a Krein space (see also [3]—[5] for statement of the result). Proofs for the bounded 
/-positive case have also been given by M . G . KREIN and Ju. L . SMUL'JAN [6], T. ANDO 
[7], and for further generalizations by B. N. HARVEY [8] and P. JONAS [9]—[10]. 

In our opinion, the spectral theory based on these results has not gained the 
popularity it deserves. The situation can perhaps be improved by reducing the 
machinery required in the proofs. ANDO [7] has already made the decisive step in 
this direction. 

Our proof below was inspired by a paper of C. S. WONG [11] and is hoped to be 
a further step in eliminating unnecessary tools. Restricted to the bounded/-positive 
case, it uses only the basic facts of Hilbert space spectral theory as treated by B. SZ.-
NAGY [12] and the elements of Krein space theory [13]. In particular, neither an 
auxiliary space nor complex variables are needed. 

Received October 14, 1982. 



76 J. Bognár 

Theorem (Krein, Langer). Let A be a bounded J-positive operator on the 
Krein space Then to every real number AT^O there is one and only one J-self-
adjoint projection Ex on § such that the function ),^EX has the following properties: 

1. If ). = n, then EfE^E^E^E). 
2. 7 / A < ^ < 0 , then [Exf,/] ^[E,, f , f ] ; if then [ E x f f ] ^ [ E J , f ] 

for every /€§. 
3. / / —Mil, then Ex=0; if A>|MII, i/ien £¿=7. 
4. If A 0 , i/ie« the strong limit E;_+0 exists and Ex+0—Ex. 
5. If T is a bounded linear operator on § such that TA = AT, then TEX=EXT 

for every A. 
6. The spectrum (r(A\Ex9)) is contained in the interval ( — A ] , while 
|(/—£";)§) is contained in [A, 
Moreover, 

Mil 
/ vdEv 

- I M I I - 0 

is a strongly convergent improper integral with singular point 0, and 
Mil 

S:=A- f vdEv 
- I U I I - O 

is a bounded J-positive operator such that S 2 ~ 0 , S E x = E x S — 0 if A<0, whereas 
S ( I - E x ) = ( I - E > ) S = 0 i f A > 0 . 

Proof . The positive operator B:=JA satisfies 
(1) A = JB. 
The operator 
(2) C := B1/2JB11'-
is selfadjoint and 
(3) CB112 = B1,2A. 

Since ||C|| = Mil, the spectral decomposition of C can be written in the form 
IMII 

(4) C = f vdFv, 
- I M I I - 0 

where {F;}"= _ ̂  is the right-continuous spectral family of C. We set 
(5) CX:=C\FX$ for A < 0, 
(6) CX:=C\(I-FX)9> for A > 0 
and 
(7) Ex := JBL/2CX

1 FXB112 for i < 0 , 
(8) I—Ex := 7fi1/2 C j 1 ( / - F J B1/2 for A > 0. 
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Clearly, Ex is a bounded operator on § for every real number A^O. Further, 
if / < 0 then CX

1FX is selfadjoint and therefore E* =JEXJ, which is equivalent 
to Ex being/-selfadjoint. If / > 0 , the/-selfadjointness of I—Ex and hence the 
same property of E, follow similarly. Thus 

(9) E* = JEXJ for every A ^ 0, 

a relation needed later on. 
Let Then from (7), (2), and the relation 

(10) CCX
1FX = Fx {X < 0) 

(see (5)) we obtain Similarly, if 0 < / == ¿i then (8), (2), and the relation 

(11) C C i - 1 ( / - F ^ = I-Fx (A>0) 
(see (6)) yield ( I - E x ) ( I - E t l ) = I - E f i , that is, EXE„=EX. Finally, in the case 
A<0</i from (7), (8), (2) and (11) we get Ex(I-E,) = 0 and therefore ExEt=Ex 

again. The relation E)tEx=Ex follows by taking adjoints and applying (9). Thus 
Property 1 is valid. Choosing 2=/i we see that Ex is a projection. 

Let us prove Property 2. If 0, then by (7), (5), and (4) 

[EJ, f ] — [Exf, f ] = (C^F.B^f, B1/2f) — {Cx
 1FX Bll2f, B ^ f ) = 

• = / - d ( F v B ^ - f , B ^ f ) ^ 0 
x v 

for every /€£>. On the other hand, if 0<A</i then by (8), (6), and (4) 

IE J , f ] — [Exf, f ] = [(I-Ex)f, /]-[(/-£,)/ / ] = 

= (Cx
 1(I—FX) B1/2f, B1,2f) — (C,71 (/— F„) Bll2f, Bll2f) = 

= j - d ( F v B ^ f , B ^ - f ) ^ 0, 
( v 

as required. 
Property 3 is a simple consequence of (7), (8) and (4). 
To prove Property 4, first let 0. Then 

WEJ-EJW2 = || JB1'2(C-1 F „ - C x
 1 F>)Bll2f\\2 3= 

||2?|| J d(FvBll2f, B1/2f) 3= \\B\\ -^WiF^-FJB^fW2, ^ v ^ 

and the last member tends to 0 as n~~X + 0. Therefore EX+0=EX if A<0. A similar 
reasoning applies in the case A>0. 

Next assume that T is a bounded linear operator which commutes with A, 
i.e., TA=AT. To prove TEX=EXT consider the case A<0 first. 
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By (7), (5), and (4) 

Ex = JB1'2 f — dFv • B1,z (A < 0). 
- M U - O 

Choose a sequence of polynomials {/>„}" which is bounded on [—\\A\\, ||/4||] and 
satisfies the relation 

fl/v if - I M H s v s A , 

JS*«<v> = i o if ¿ < V S | 4 

Then JB1,2pn(C)B1/2^Ex strongly. Hence it is sufficient to prove that T commutes 
with JB1/2CmB1/2 for m = 0 ,1 ,2 , . . . . But 

jB^CB1'2 = Am+1 (m = 0, 1, 2, ...), 

as one can verify by induction with the help of (1) and (3). This completes the proof 
of Property 5 for A<0. 

If A>0, we start from the relation 
IIAII 

1-EX = JB1'2 f ldFv • B1'2 (A > 0) 

obtainable from (8), (6), and (4), and conclude as above that T commutes with 
I-Ex-

Just as in Hilbert space, from the consequence AEX=EXA of Property 5 it 
follows that the subspaces Exi) and (I—Ex)§> are invariant under A. 

As to Property 6, we first note that the relations (1), (7)—(8), (2) and (10)—(11) 
imply 
(12) AEX = JB1/2FXB112 (A jt 0), 
(13) A (I-Ex) = JB1''2 ( / - F;) B1'2 (A ^ 0). 

Since o-(J ,
1r2)c{0}uo-(r2J'1) for any pair Tx, T2 of bounded linear operators 

(see [14], Problem 61), from (12) and (2) we obtain a(AEx)cz {0}u a(CFx). Therefore 
o(A\Ex§)<^{0}uo{C\Fx$>) and, in view of (4), 

aiA\Ei.S) c {0}u (— A]. 
We have to prove that if A<0 then 0 does not belong to o(A\Ex$))-

Let A<0 and assume that AExf„-+ 0 ( « — f o r some sequence { / „ } " c § . 
Then also Bx'2AExfn-~0 or, by (12) and (2), CFxB1/2fn-*0. Since, according to 
(4) and the assumption A<0, the value 0 is regular for C\FX§>, it follows that 
FxBl/2fn^0. Applying the operator JBy2Cjx and using (7) we obtain EJn-~0 

Thus 0 belongs to neither the continuous nor the point spectrum of A\EX5). 
But A\EX&, being a selfadjoint operator on the "negative Hilbert space" Ex9) 
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(cf. Properties 2—3 as well as [13], Theorems II. 3.10 and V. 3.5), has no residual 
spectrum. This proves one half of Property 6. The proof of the other half is similar. 

Assume that (A real, A^O, E'k a /-selfadjoint projection on §) is also 
a function with the properties 1—6. Let A</i<0. Obviously 

E', = EiE^E'dl-E^). 
By Property 5, E'k and E^ commute with A and with each other. In particular, 
E'- il—Ey) is a /-selfadjoint projection which commutes with A. 

Similarly to the case of a selfadjoint projection, if E is a /-selfadjoint projection 
and AE=EA then 

<x(A) = а(А\ЕЪ)клу(А\{1-Е)Ь) 3 о(А\ЕЪ). 
Indeed, the ^-invariant subspaces E§> and (I—E)§> are orthogonal with respect 
to the/-inner product; therefore [13], Theorem V. 3.5, implies that they are orthogonal 
also in a Hilbert space with norm equivalent to the original one. 

Applying this fact to the Krein spaces (cf. [13], Theorem V. 3.4) E';§>, (1—Ец)§>, 
and using Property 6 we obtain 

а{А\Е'к{1-Е,)Ь) с a(A\E'xb)^o(A\(I-Et)b) с ( - - , A]n[/i, = 0. 
But the spectrum of a selfadjoint operator on the "negative Hilbert space" 
E ' x { I -E^b^E ' k b can be empty only if the space is zero. Thus Ек(1-Ец)=0, 
(14) Ei = ВД. 

(14) remains valid if 0<A<ju, the only difference in the proof being that 
E ' l i l—E^&ci l—EJb now are ordinary Hilbert spaces. Letting ju^A + 0, from 
(14) and Property 4 we conclude that E'X=E'XEX. Similarly, Ex=ExE'k. Therefore, 
in view of Property 5, E'k=Ek. 

The existence of the strong integral 
— e 

f vclEv, 
-II /111-0 

where e=»0, follows by reading the next relations from the right to the left (see 
(7), (5), and (4)): 

— e '— £ 

f v dEv = JB1/2Cz] f v dFv • B1'2 = JB1/2Cz\C_,F_cB112 = JB1'2F_eB1'2. 
— II -411 — 0 - I M I 1 - 0 

Similarly, from (8), (6), (4), and (1) 
II/III I M I I I M I I 

f vdEv=- f v d (I—Ev) = -JBll2C~x f vd(I-Fv) • B1'2 = 
С £ С 

IMI I 

= JB^Cr1 f V dF.-B1'2 = JB112 C^1 Ce(I— Fe) B112 = 
e 

= JB1/2(I— Fe)B112 = A — JBll2FeB1/2. 
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Thus 
ii/<11 

(15) f v dEv = A — JB1'2 (F0 - F. 0) B1/2 

- I I / 4 1 1 - 0 

as a strong improper integral. 
The operator S:=JB1/2(F0— F_0)£1/2 appearing in (15) is obviously bounded 

and /-positive. Further S2=0, since according to (2) and (4) 

B»2Jßi'2(F0-F_ o) = C(F0 — F_0) = O. 

By the same reason, SEx=ExS=0 if />.<0, and S(1-E,)=(I-EX)S = 0 if 

The proof is complete. 
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The random martingale central limit theorem and 
weak law of large numbers with o-rates 

PAUL L. BUTZER and DIETMAR SCHULZ 

Dedicated to Professor Béla Szőkefalvi-Nagy on the occasion of his 70th birthday 
on 29 July 1983, in friendship and great respect 

1. Introduction 

Although the central limit theorem (CLT) for randomly indexed sums of 
random variables (r. vs.) has been quite a popular field of research in the past 
30 years or so in the case of independent r.vs., the situation is quite different in the 
more difficult case of "dependent" r.vs. This convergence theorem has been equipped 
with large-0 rates in a variety of papers (for the independent case see, e.g., [24], [26], 
[16], [23], and for the dependent case [25], [11]) as well as with little-o rates, however 
much less so; see [4], [23] in the independent case or [6], [18], [8], [22], [10], [19], [20] 
in the (classical) nbn-random case. 

On the other hand, the random weak law of large numbers (WLLN) seems 
hardly — with the exception of MOGYORÓDI [17] and CSÖRGŐ and RÉVÉSZ [13] — 
to have been considered before, even when the r.vs. are independent. For historical 
comments concerning random limit theorems without rates see [1], [12], [15], and 
with rates [11]. 

The purpose of this paper is to consider a comprehensive theorem on o-rates 
of convergence for normalized randomly indexed sums of not necessarily independent 
r. vs. which will include both the CLT and WLLN. The type of convergence to be 
considered will essentially be weak convergence. A particular type of "weak de-
pendency" will be assumed, just as in [11], namely the situation of martingale differ-
ence sequences (MDS). 

More concretely, this means the following: Let (Xi)ieN be a sequence of real 
valued r. vs. defined on a probability space (Q, sé, P), and let (^¡) i g P (P:=NU {0}) 
be an increasing sequence of sub-tx-algebras of si such that Xi is ^"¡-measurable 

Received April 14, 1982. 
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for each i£N. Then (A,
|.,JE

i)I.eP, X0:=0, is called a MDS if 

(1.1) E[Xt | * i - J = 0 a.s. (i€N). 

Let us further recall the concept of a randomly indexed sum of r. vs. Let Nx, AgR+ , 
be an N-valued r.v. defined on (Q, si, P) that is independent of the r.v. Xt, N 
for each A€R+, and let in probability for A — T h e normalized random 
sums to be considered in this paper are of the form 

(1-2) TN> := cpiN^S^ 
where SN := 2 > an<^ where <p: N—R+ is a positive, normalizing function. The A ¡=i 
weak convergence concerns the o-rate with which E[f(TN _)]—£[ f(Z)] tends to 
zero for A—oo. Here the limiting r.v. Z is assumed to be ^-decomposable. This 
means that for each N there exist independent r.vs. Z,, Z , = Z i n , I s i ^ n , 
such that the distribution Pz of Z can be represented as 

(1.3) PZ = P - • 
<pW E z , 

With these preparations the general theorem of this paper may be stated roughly 
-as follows: If ( X ^ ^ ^ p is a MDS, Z a ^-decomposable r.v. with zero mean 
such that the /--th absolute moments of the r.vs. /£N, and the decomposition 
components Zh i£N, are finite for some r€N, and both sequences (JQ i eN , (Z/)ieN 
satisfy a generalized, random Lindeberg condition of order r (see (2.6)) and are 
related by 

+ V W _ r J ? I E W — E[Z/]|| -0 

for A—°° and each l ^ j ^ r , then 

\E[f{TNj\~E[f{Z)\\ = of [e [((p(7V,)X J £[|X,r] + £[|Z;r]]} 

for for all /£CJ,(R) (see definition (2.1)) provided an additional boundedness 
condition (see (3.4)) is assumed. 

By specializing the limiting r.v. Z and the normalizing function cp the random 
sum CLT as well as the random WLLN, both equipped with o-rates, will be deduced 
as particular cases of this general theorem. , 

The results of this paper generalize those known in the area in several respects. 
It contains those of BUTZER and HAHN [7], [8] for the case of independent r.vs. 
and classical (non-random) sums since a sequence of independent r.vs. with zero 
means builds a MDS. It also includes a result of A. K. BASU [3] on the CLT for 
"dependent" r.vs. as well as of Z . RYCHLIK and D. SZYNAL [23] on the random CLT 
with o-rates for independent r.vs. The fact that the moments of Xt and Z ; coincide 
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up to the order r, a condition needed in [23] and which would correspond to con-
dition (3.7) of this paper, is now replaced by the weaker hypothesis (3.5). 

Concerning the proofs, they are based upon a modification of the Lindeberg— 
Trotter operator approach tailored to the situation of not necessarily independent 
r.vs. as well as of randomly indexed r.vs. Xt which are independent of the index 
variable Nx, ¿ £ R + , as already applied in BUTZER—SCHULZ [11]. This time the 
proofs are more difficult than for the large-0 theorems of [11] not so much because 
of their length but since they use further basic concepts of probability such as the 
random Lindeberg condition. So in this sense the equipment of convergence asser-
tions with little-o rates is a more typical generalization than that with large-0 rates. 

Section 2 is concerned with questions of notation as well as with the definitions 
of generalized Lindeberg and Liapounov conditions of given order and connection 
between these and the Feller condition in the case of random sums. Section 3 is 
devoted to the general theorem of the paper stated above, and Sections 4 and 5 to 
the random CLT and WLLN, respectively. 

2. Notations; Generalized random Lindeberg and related conditions 

In the following, CB=CB(R) will denote the class of all real valued, bounded, 
uniformly continuous functions defined on the reals R, endowed with norm 
| | / | | c : = s u p | / ( * ) | . For r€P={0,1 , 2, . . .} we set 

(2.1) C°B := CB, C'B := {/€Cf l; / ' , / " , ..., / «€C B } , 

the semi-norm on Cr
B given by IglcvHIg^'llc,,- Lipschitz classes of index rgN 

and order a, will also be needed. These are defined for /€C B by 

Lip (a; r; CB) := {/£CB; ojr(f, f\ CB) L f f , t > 0}, 

where Lf is the Lipschitz constant, and 

oir(t- /; CB) := sup 
I 

2(-iy-k\k\f(-+kh) 

denotes the r-th modulus of continuity. 
The concept of <p-decomposability, defined in (1.3), can be extended to randomly 

indexed r.vs. since the range of the index r.v. Nx is a subset of N. In fact, for any 
decomposable r.v. Z one has by (1.3) 

(2.2) 

6« 
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If the decomposition r.vs. Z , ; / £N , are independent of Nx for each A£R+ , which 
will be assumed in the sequel, the usual rules for conditional expectations yield 

where pn=pn(X):=P{OJ; NX(CO)=n}. This implies that for the expectation of Z, 

E(Z) = ZPnE\<p{n) Z z \ . 
n = 1 L i=l J 

Another relation that will often be used in the following is 

(2.4) E[f(Z)] = £ [/ (p (Ay J 2 , ) ] = J Vn E [ / [q> (#i) J Z,)] (/£ Q ) , 

valid in view of (2.2) and (2.3); and analogously for the r.vs. TN j (recall (1.2)), namely 

(2-5) E[f(TNj)]= 2PnE[f(Tn)]. 
n=1 

The following generalization of the well-known Lindeberg-condition will play 
an important role in the proofs of this paper. 

D e f i n i t i o n 1. Let (X ;) i eN be a sequence of real valued r.vs. having finite 
moments of order s, 0< i<oo . Then ( ^ ¡ g N is said to satisfy the generalized 
random Lindeberg condition of order s, if for every ¿ > 0 , 

(2.6) A , ( < 5 ) E 
' 2 f WsdFXl(x) 1=1 

"A 

ze[ m 
0 for X 

¡=i 
_, I o In case r=2 and cp(Nx):=sNwhere sN^.= y2E[Xf\\ , one obtains the 

usual random Lindeberg condition (cf. RYCHLIK [21]). 
If the parameter A is a positive integer n and if, for every ;?, the r.v. Nx 

takes the value n with probability one, and if <p(ri):=sn, then (2.6) reduces to the 
Lindeberg condition of order s, introduced in [6], a definition which has in the 
meantime been taken over and used effectively by PRAKASA RAO [18], RYCHLIK and 
SZYNAL [22], [23] and BASU [3]. The reader should recall that there are various 
(different) generalizations of the Lindeberg and Liapounov conditions (see, e.g., 
BROwn [5], BASU [2], [3]). 

The following lemma relates Lindeberg conditions of different orders. It will 
be shown that under an additional assumption a Lindeberg condition of higher 
order implies one of lower order. 
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Lemma 1. If the generalized random Lindeberg condition of order r+e, rÇ_N, 
0<eSl, is satisfied, then that of order r holds provided there exist constants 
Af, R+ such that 

(2.7) 
2Em+e] i=1 

(<pm)-zmm 
i=1 

M a.s. (X s ¿o). 

Proof . Because \x\^5/cp(Nx) implies \x\rJrC^\x\r(S/(p(Nx))B, one has for 
arbitrary e > 0 according to (2.7) 

<5\3 / \x\rdFXi(x) 

Nx 
{<p{Nx)Y 2 E№r+£] 

& E 
0*2 J I x\rdFXt(x) 1=1 \x\^il<p(NA) 

m 2 E[m 

The Liapounov condition of order r, introduced in [8], can also be extended to 
the situation of random sums just in the same manner as the Lindeberg condition. 

Def in i t ion 2. Let (^¡) i€N be a sequence of real valued r.vs. for which the 
r-th order moment ( 0 i s finite. Then CJQi£N is said to satisfy the gen-
eralized Liapounov condition of order r, if there exists an e>0 such that 

lim E 
2E[ 
¡=i = o. 

Just as in the classical case (cf. [8]) the following lemma holds. 

Lemma2 . If a sequence satisfies the generalized random Liapounov 
condition of order r, then it also satisfies the random Lindeberg condition of order r. 

Proof . Since \x\^5l(p(Nx) implies \x\r+°^\x\r(5/(p(Nxj)c for each £>0, 
one has 

En AS) si E 
2 f I x\'+*dFXi{x) 

1 = 1 |x| S S I v i N J 

z ¿ i m 

¡=1 

<5£(<PW.))-£ 2E№n ¡=i 
Since ¿ > 0 is arbitrary, the assertion follows. 
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It was Z. RYCHLIK [21] who extended the Feller condition to the situation of 
random sums. It states 

D e f i n i t i o n 3 . A sequence of real valued r.vs. (A",)/6N with 0<£[A'f]<°° 
is said to satisfy a random Feller condition, if 

(2.8) lim E\ max 1 = 0. 

The well-known connection between the Lindeberg and Feller conditions 
remains also valid in the random case. 

Lemma 3. If a sequence (X^g N of r.vs. with 0<£ ,[Z?]<°° satisfies condi-
tion (2.6) for s=2 and (p(N;)=s^,\ then (2.8) is satisfied. 

Proof . For arbitrary t>>0 and 1 one has 

E[XF] = J x 2 d F X i ( x ) ^ S 2 s l ^ + 2 ' f x*-dFXi(x) a.s. 
R i = 1 Ixlsfa^ 

This implies that 

f ^dFXl(x) a.s. 

Taking expectations of both sides yields the assertion. 

3. General convergence theorem for MDS with o-rates 

The following main approximation theorem for MDS for random sums with 
"little-o" rates will be established by the Lindeberg—Trotter operator-theoretic 
approach as tailored to the situation for MDS in [14], this time however modified 
to the instance of o-rates. For this purpose; additional assumptions are necessary, 
namely a generalized random Lindeberg condition of order r which is needed not 
only for the r.vs. Xit /6N, but also for the decomposition components Z ; , z£N, 
as well as a type of boundedness condition upon the higher order moments of X, 
and Z, (cf. (3.4)) in association with the ^»-function. 

Theorem 1. Let be a MDS, Z a (p-decomposable r.v. with 
E[Z] = 0 such that 
(3.1/2) C r ; i : = £ [ | ^ n < c o , f r > l : = £ [ | Z , n ^ o o (i£N) 
for some /•£ N. Set 

(3-3) M(n):='J (£„, + £„,) (n€N). 
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Further assume that 

(3.4) (q>(NJYM(N,) = 0{E[(<p(Nx)yM(Nx)]} a.s. (A — 

a) If the sequences of r.vs. (A'1)IiA, as well as of decomposition components 
satisfy the generalized random Lindeberg condition (2.6) of order r and 

further the condition 

(3.5) £ 2 I ^ W I ^ - J - ^ t Z / J l ] = o(l) 

for A — °° for each l ^ j ^ r , one has for each f(LCr
B, 

(3.6) \£[f(TNj))-E[f(Z))\ = 0 / { £ [ ( < P ( ^ , ) ) ' M ( ^ ) ] } (A — 

If instead of (3.5) the stronger condition 

(3.7) = E[Z{] a.s. (i£N, l ^ j ^ r ) 

is satisfied, then the estimate (3.6) again holds. 
b) If the r.vs. Xi as well as Zv, /£N, are identically distributed such that 

assumption (3.7) holds, and if the normalizing function (p satisfies the conditions 

(3.8) <7>(JV;.) = o(l) d.s. (A-oo), 

(3.9) cp(N>) = o{E[(p(N>)]) a.s. ( A - - ) , 

then f£Cr
B implies 

\E[f(T„j\-E\f(Z))\ = ^{^[(^(^^(C^ + ̂ .O]} (A —)• 

; - i n 
P r o o f , a) Setting R„ti'.= 2 + 2 l—k^n, «£N, an application of 

k =1 k = i+1 
Taylor's formula up to the order r to both /((p(n)R„ ;+cp(n)Xi) and f{'P(n)RnJ+ 
+<p(n)Z,) for f£Cr

B yields 

= 2 2^TT^{fU)(<p(n)R„.dxi-f(JK<P(»)Rn,i)z/}+ V ,=i / i=ij=i J-

+ 2 ^ / (1 - ty ~l{fir) (<P (n)Rn,, + t<p (ri) X){<p (n)Xty -

—fir> (<P («) i){<P (n) +/(r) {<p (n) Rn,t + t(P (") Z,)(<p (n)Zj)r— 
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If one divides both sides of this equation by (<p(ri))rM(n), and then takes the 
expectations of both sides; one deduces 

(3.10) [f(Tn)-f[cp(n) ¿ Z ; ) ] } | s 

S ( M ( n ) ) " i { | E [ J Д (<?(«)Rn,,)ЛГ/-/(Л(Hn)R„.,)Z/}]| + 

+ E [ i "(731)7 / (i - 0 r - 4 | / ( r ) (<? 00 Rn,i+^(n) x.) x\ -/<-> (<p («) 0 + 

+1/м (<p (n) R„, t + t<p (n)Zi)Zr - / « («Р („) Дл> ¡)Zf|} d i]}. 

Since f€Cr
B, / ( г ) is uniformly continuous on R, i.e., to each s > 0 there exists 

a <5=<5(s)>0 such that 

(3.11) \ f i 4 v ( n ) B e i t + t<p{n)X1)-fr>{<p{n)R.wt)\^e (i€N) 

if \tq>(n)Xi\^5, thus if |Х,|<(5/<р(и) since O ^ i ^ l . Likewise one has an estimate 
corresponding to (3.11) when Xt is replaced by Z,. 

However, the Cr,i and %r>i are finite by hypothesis. So 

(3.12) ^ [|{/(,)(<P С») i + ^ (") ̂ i) (") ̂ л,,) = 

= E[\fV(<p(n)Rn., + tcp(n)X,)-fl'>(q>(n)R„,,-)[ + ^ 

3S sCr<i + 2\f\Cr f |x\'dFXi(x). 
\x\sSI<p(n) 

Here 1A denotes the indicator function of the set AcQ. Analogously one obtains 
an estimate corresponding to (3.12) when Xi is replaced by Z£ and j by 

By applying the same arguments concerning conditional expectations as were 
used in the proof of the associated "large-O" theorem ([11, Theorem la)]), one has 
for 

(3.13) 

ZE[fU\<p{n)RnJ{Xt-Zl)i = J £[/">{<p{n)Rn<(ВД| _ J - i - [Z/ ] ) ] 
i=l I i=l 

— moiEix/^.j-Eizm]. 

Let us now form the inequality (3.10), this time the sum M(n) weighted with the 
probabilities p„ of (2.3). On account of (2.4), (2.5) and the inequalities (3.13), 
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(3.12) and its counterpart for Z ; , this yields 

(3.14) [(«»(iVJ)—(Af(iV.0)-i{y(rwJ-y (JVJ j p , ) } ] | S 

- ¿ [ ( ^ M ) - 1 j f i { ( < P ( ^ ) ) j " f \fU)\cB\E[Xl I J - £[Z/]|}] + e + 

+ 2 | / | c J ( M ( ^ ) ) - i [ £ f 2 f \ x \ - d F X l ( x ) ] + E \ z J | x r d F Z i ( x ) l ] l . 
I v U = 1 |x|siMJVA) i l ' = 1 \x\sil<i>(NA) JJi 

In view of the Lindeberg conditions for the r.vs. Xi and Zf as well as (3.5) the 
right side of the foregoing inequality can be made arbitrarily small for 2 — °°. 

Now on account of condition (3.4) there exist c l5 A0£R+ such that 

W ^ W i ) ) ! " 1 s ^ [ ^ ( ^ X M C ^ J j - i a.s. 
for each A>A0. Since the left side of (3.14) vanishes for A-*-<», this implies that 

\E[f(TNJ-f(cp(Nx) Jjz,)]| = (A 

Because of (2.2), this gives the desired estimate (3.6). 
It is obvious that (3.7) is sufficient for (3.5) to hold. 
b) The proof of part b) follows from a) provided one can show that assumption 

(3.9) implies the random Lindeberg conditions for the Xt and Zf for N. Since 
the Xi are now identically distributed, the Lindeberg condition for Xt reduces to 

(3.15) l i m £ [ f |x| ri/fXl(x)] - 0 (<5>0). 
\x\milrtNj 

Because of condition (3.9), (3.15) is satisfied if 

(3.16) lim f |*|rdJ?Xl(;c) = 0 ( ¿ > 0 ) . 

But in view of assumption (3.8) one has E[cp(iVA)]=o(l) for A — T h e r e f o r e 
the range of integration in (3.16) approaches the empty set for A — a n d so the 
Lindeberg condition for X{ follows from the absolute continuity property of the 
Lebesgue integral. Since one can show in the same way that the assumptions of 
part a) are satisfied for the decomposition components Z,-, the proof of the theorem 
is complete. 

R e m a r k 1. Concerning the possible fulfilment of assumption (3.4), the left 
side of (3.4) is constant a.s. and so trivially true for usual sums, thus for A=«€N 
when the r.vs. N„ take on the value n with probability 1. A sufficient condition 
for the validity of (3.7) and so also for (3.5) in the case of identically distributed 
r.vs. (^X-g/v is the requirement E[X[}= EiZ^, 1 S j^r, since then E[X{\$?0] =E[X{], 
where i2}. 
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Remark 2. It is not possible to deduce «-estimates for the strong convergence 
of the r.vs. TN i towards the r.v. Z comparable to that in [11] with the help of the 
modification of a lemma of V . M . ZOLOTAREV [27] given in [11]. For the application 
of this lemma includes an estimate of the metric sup |F r (t) — FJt)\ from above 

t£R N* 
by sup\E[f(TN ) ] -£ [ / (Z ) ] | , where D:={f£Cr

B\ | / ( r ) | s l } . But since the uniform 
fiD *• 

continuity of / ( r ) is used in the proof of Theorem 1, in order to deduce a reasonable 
estimate the latter supremum would have to be taken over a class of functions the 
r-th derivatives of which are equicontinuous. In this respect one should also recall 
[9] concerned with connections between the rates of weak and strong convergence 
in the particular case of the CLT. 

4. The random CLT for MDS with o-rates 

We now wish to apply our general Theorem 1 to a concrete limiting r.v. Z, 
namely to the Gaussian distributed r.v. X* with mean zero and variance 1. However, 
the resulting random CLT is not a direct application of Theorem 1 since here the 
random Feller condition is only needed for the r.vs. Xh i£N. Together with the 
random Lindeberg condition for the sequence ( X ^ ^ it implies just the random 
Lindeberg condition for the r.vs. Zt. Furthermore, it is not necessary to assume 
in part b) of the theorem condition (4.3) which corresponds to the requirement (3.4). 
The special form of the normalizing function cp(n) now makes it possible to deduce 
(4.3) from (4.6). 

Theorem 2. Let (Xt, be a MDS such that (3.1) holdsfor some rÇN, r^2, 
let X* be a Gaussian distributed r.v. with mean zero and variance 1, and let (a,){eN 

be any sequence of positive reals with A ( N* .A1'2 

a) Assume that the sequence (Xf)iiN satisfies the random Lindeberg condition 
(2.6) of order r with cpiN^^A^1, as well as a random Feller-type condition, namely 

(4.1) 

If additionally 

(4.2) E 

lim EI f max = 0. LXSÍSJVA ANJ 

Z\E[X{\!Fi_1]-a'iE[X*1]\ 
i=l 

2(tr,i+ariE[\X*\r}) >=i 

o(l) ( I S j S r ) 

for 

(4.3) 

as well as 

tr,i = O ^ a.s. (A — 
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then one has for each f£Cr
B, 

(4.4) 

\£[f(A^SNj)]-E[f(X*)]\ = О,\Е\А^ 2(£,., + ( ^ —)• 

If instead of (4.2) the stronger condition 

(4.5) E[X/\rt_J = a{E[X*J] (>€ N, 1 S j S r ) 
is satisfied, then the estimate (4.4) again holds. 

b) If the r.vs. are identically distributed, a,= 1, N, and if condition (4.5) 
as well as 
(4.6) N-1'2 = 0{E[N~^2]} a.s. (A — ) 
hold, then f£C'B implies for 
(4.7) - £ [ / ( J T ) ] | = [JVJM" (Cr>1 + £[|A"|1)]}. 

Proof , a) The r.v. X* is ^-decomposable for each into n independent, 
normally distributed r.vs. Z ; , l S / S n , namely Z — a ^ * . Moreover, one can 
ensure as in [11, Theorem 1] that the Z,, Nx, / € R + , as well as the 
sub-c-algebras i£ N, are all independent. So X* can be decomposed in the 
form (2.3). Since E[Z{]=a(E[X*J] for N, assumptions (3.4) and (3.5) are 
satisfied on account of (4.3) and (4.2). Furthermore, the random Lindeberg condi-
tion for the X{ and the Feller-type condition (4.1) yield the random Lindeberg 
condition for the Z ; (cf. [23]). So Theorem 1 may be applied since the moments 
(3.1/2) exist here, too. 

b) Setting Z ; :=Z*, /£N, and <p(7V;J:=./VrI/a in Theorem lb), then as-
sumptions (3.7) and (3.9) reduce exactly to conditions (4.5) and (4.6), whereas 
condition (3.8) is satisfied because Nx--°° for A — I t just remains to show that 
condition (4.6) suffices for the requirement 
(4.8) N?-'»* = 0(E[Nf-r^2}) a.s. (A — 
namely for (3.4) with <p(Nx)—Nx

112. In case r—2 there is nothing to prove, and 
(4.6) coincides with (4.8) for r=3. For r^4 one has 

£[#Г1/2] S (E[Nx
<r~2)/2])1/(r~2> 

by Holders inequality. This yields that (4.6) follows from (4.8). So assertion (4.7) 
is a consequence of Theorem lb). 

5. The random WLLN for MDS with o-rates 

The final application of Theorem 1 will be the WLLN with o-error bounds for 
random sums in a version adapted to the applicability of this theorem. Thus instead 
of being concerned with the usual stochastic convergence of the r.vs. TN towards 
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zero, namely of 
(5.1) lim P({ |^ A | ^ e}) = 0 (e > 0), 

we plan to estimate the o-rate with which converges weakly to the degenerate 
limiting r.v. X0; namely of 

(5.2) lim \E[f(TNJ\ -E[f(X0)]| = 0 (/€ CJ), 
oo 

any As a matter of fact, the convergence definitions (5.1) and (5.2) are equiv-
alent. Indeed, (5.1) implies (5.2), by standard arguments, and the converse holds 
since the limiting r.v. X0 is a constant a.s. 

Since E[f(X0)] = Jf{x)dPxpc)=f{0) for all f£Cr
B, the following formulation 

R 
of the WLLN with o-rates is feasible. 

Theorem 3. Let ( A ^ J ^ p be a MDS, and let r£N. 
a) If the sequence (X,)l€N satisfies (3.1) as well as the random Lindeberg con-

dition (2.6) of order r, and if 

(5.3) 
"A. 

ZCr.i 

= o(l) 

¡=1 

for A—oo5 as well as 

( 5 . 4 ) ( c p ( N j y Z Cr,i = o { e [(<?(N;)Y Z Cr,.]} (A -

then one has for each f£Cr
B , 

\E[f(TNj\-E[f{XQ)}\ = of [e[(<p(^))r f £,.i]} (A ). 

b) If the sequence (A^N satisfies the random Lindeberg condition of order 1 
with ç)(Ar

;):= Wj1 , as well as (5.4) for r= 1, and if 

(5.5) ZE[\Xi\] = 0(NJ a.s. (A — oo), 
¡=1 

then 
(5.6) lim E[f(SNJNJ] = / (0 ) . 

c) If the r.vs. Xi, /£N, are identically distributed, Ci<co and 

(5.7) Nj1 = 0{E[N^}} (A 

then the random WLLN in the form (5.6) again holds. 
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Proof , a) If one chooses the decomposition components Z,- such that 
OO 

PZ=PX for all i£N, then P X o ~ 2 P»P („) rn
 z '•> and part a) follows from 

' 0 0 n=1 1 ' 
n 

Theorem 1 a) since here the sum M(n), defined in (3.3), reduces to and 
>=i 

therefore conditions (5.3) and (5.4) are special cases of assumptions (3.5) and (3.4). 
b) Part b) follows from a) with r= 1 and (p(N>)=Nx

1, because condition 
(5.5) implies assumption (3.1), whereas (5.3) is fulfilled because of the definition (1.1) 
o f a M D S . 

c) Setting (jj(Ar
;):= part c) turns out to be a special case of Theorem lb) 

if one considers that condition (3.7) is fulfilled for r= 1 because of (1.1) and that 
(3.9) reduces to assumption (5.7). 

It is an open question whether the convergence assertions (5.1) and (5.2) are 
still equivalent to another under suitable conditions if they are equipped with rates. 
This is generally not the case in the corresponding situation for the CLT, see again 
BUTZER—HAHN [9]. 

The authors would like to thank Prof. M. Csörgő, Ottawa, Canada, for his 
generous help in connection with the literature. 

The research of the second named author was supported by DFG grant 
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Analytic generators for one-parameter cosine families 
IOANA CIORÁNESCÜ and LÁSZLÓ ZSIDÓ*' 

Dedicated to B. Szőkefalvi-Nagy on the occasion of his seventieth birthday 

One parameter cosine families of linear operators have been recently used in 
several papers on operator algebras ([6], [7], [13]). Some technical results of these 
papers suggested us to develop here a general theory of the analitic generator of 
one-parameter cosine families similarly to that presented in [3] for one-parameter 
groups. It is proved, that a one-parameter cosine family of 0 exponential type is 
uniquely determined by its analytic generator and explicit formulas are given. 

We remark that the theory developed here can be used to give intrinsic 
characterizations for the analytic generators of one-parameter groups of auto-
morphisms of operator algebras; this is due to the fact that while the analytic 
generator of such a goup frequently has "bad" spectral properties [4], the analytic 
generator of its "cosine part" has always a "thin" spectrum. 

1. Analytic extensions of cosine families 

Let us first specify the frame in which cosine families are to be considered. 
We cáll a dual pair of Banach spaces any pair (X, SF) of complex Banach spaces, 

together with a bilinear functional 

Xx^3 (x, q>) - <x, <p)€C, 
such that 

(i) M = sup q>)\ for any xgX; 
II «>11 s i 

(ii) Ml = sup \(x, (p)I for any J*'; 
IIXII SI 

(iii) the convex hull of any relatively <x(X, #")-compact subset of X is relatively 
<T(X, J^-compact; 
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(iv) the convex hull of any relatively c(SF, X)-compact subset of SF is relatively 
G(JF, X)-compact. 

If (X, J5") is a dual pair of Banach spaces, then (SF, X) endowed with the 
same bilinear pairing, is also a dual pair of Banach spaces. We note that if X is 
a complex Banach space and X* its dual, then the pairs (X, X*) and (X*, X), 
endowed with the natural pairing between X and X*, are dual pairs of Banach 
spaces. We recall that if (X, !F) is a dual pair of Banach spaces, then the uniform 
boundedness principle holds in X with respect to a(X,iF) ([8], Th. 2.8.6); in 
particular, the analyticity of X-valued mappings of complex variable does not 
depend on the topology considered on X ([8], Th. 3.10.1). On the other hand 
quite general X-valued mappings, defined on a locally compact space endowed 
with a Radon measure, are <r(X, ^-integrable ([2], Prop. 1.2; [3], Prop. 1.4.). 

If (X, J5") is a dual pair of Banach spaces and T is a cr(X, Jr)-densely defined 
linear operator in X, then one can define the adjoint T^ of T in !F by 

(<p, t/0 € graph = (T(x),<p) for all x£2>T. 

T y is always X)-closed. If moreover T is a(X, #>closed, then T y will 
be o(3F, X)-densely defined and ( T * ) X = T holds ([11], IV. 7.1). Denote by £^(X) 
the Banach algebra of all a(2F, X)-continuous linear operators on X. For 
we have 

Ty(q>) = q> oT, (p€$r and 

If (X, 2F) is a dual pair of Banach spaces and T is a a(X, #>closed linear 
operator in X, then the resolvent set of T is 

Q(T) = {A<= C; l-T is injective and (X — r ) - 1 £ ( X ) } , 

and the spectrum of T is a ( T ) = C\g(T). The standard power series argument 
shows that Q(T) is open in C, thus a(T) is closed. If T is also c(X, ^ -dense ly 
defined, then a ( T ) = a ( T W e note that if &r = X* or X ^ * , then, by the 
closed graph theorem, the Banach—Smulian theorem on the weak continuity of 
linear functionals, and the Alaoglu theorem, we have 

Q(T) = {A6C; X-T is bijective}. 

Let (X, ¿F) be a dual pair of Banach spaces; a one-parameter cosine family 
C in %(X) is a mapping C : R - ^ ( X ) such that 

C 0 = / x , where 7X is the identity map of X; 

Cs+t+Cs-,—2CsC, for all j , i6R. 

It follows directly from this definition that 

C, = C_,, R and C,CS=CSC„ s, t£R. 



Analytic generators for one-parameter cosine families 97 

C is called a(X, ^-continuous if for each x£X the mapping R3/—C ((x)€X 
is a(X, ¿^-continuous. In this case one can define the dual cosine family C^ in 
38X{2P) by Cf={Ctf, i€R, and C^ is , X)-continuous. We note that 
a quite complete infinitesimal generator theory for strongly continuous one-para-
meter cosine families is done in [12]. 

Let C be a o(X, ^ -cont inuous one-parameter cosine-family in 
For z6C, denote by Dz={CeC; ImC-Imz^O, |Im |Im z|}. Suppose that for 
some x£X, the mapping R3i->-Ct(x)£X has a cr(X, ^-cont inuous extension 
on Dz which is analytic on its interior; such an extension will be called <r(X, 2F)-
regular. By the symmetry principle ([1], Ch. V, 1.6) it follows that this extension 
is uniquely determined. Thus we can define a linear operator C, in X by 

(x, j>) g graph CZ-<=>R 3 t-+Ct(x)£X has a c(X, ^ - r egu la r extension 
on D, whose value at z is y. 

Cz is called the analytic extension of C at z. 

L e m m a 1.1. Let (X, 3F) be a dual pair of Banach spaces and C a CT(X, SF)-
continuous one-parameter cosine family in Then 

CZ = C_Z, z€C, 

Cs+z + Cs-z = 2CSCZ cr 2CZCS, s€R, z^C. 

P roof . Let z€C. For each the mapping C_{(;c)£X is 
cr(X, ^ - r egu la r and extends C_ f(x)=C t(x)€X, hence xe3>D__, C_z(x)= 
=Cz(x). Thus C , c C _ z and changing z with —z, one gets also the converse 
inclusion. 

Let further and z£ C. For each x ( i = Q>c — 3)c the mappings 

C i + t (*) + C,_{(je)€X, D ^ Z -2C s C ; (x )EX 

are CT(X, Jr)-regular extensions of 
R - Cs+t(x) + Cs.,(x) = 2CsCt(x) = 2CtCs(x)£X; 

thus 
C s + 2(x)+C s_ z(x) = 2 CsCz(x) = 2C,Cs(x). 

Therefore Cs+z+Cs_z=2CsCzc2CzCs. 

According to Lemma 1.1 and to the symmetry principle, for each z£C, it holds 

(x, y) € graph Cz<=>R3i-^Ct(^)€X has a cr(X, Jr)-regular extension on the strip 
{CeC; |Im = |Im z|} whose value in z is y. 

In particular, if z£C, I m z ^ O and , then by [8], Th. 3.10.1, we have that 
R3i-^C,(x)6X is norm-continuous. 

7 
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Lemma 1.2. Let (X, ¿F) be a dual pair of Banach spaces and C a er(X, 
continuous one-parameter cosine family in Then we have: 

(i) for each z£ C and x€ 3)c_ 

I IQWIl s sup ||C{(x)||. 2 \\Ck\\l 
| R e C | s l t g Z 

(ii) for each e>0 and x£Q)c c. = @cct 

lim i l n sup | |C,(x)| |^ EE i-ln||C,| | = Gm -^ln ||CJ ^ In (1 + 2UQU). 
S — + CC 0 | R e z | s 5 f — + ~ T Z 3 i — + <» K. 

\lmz\mc 
Proof , (i) Let a£R and x£3)c , and denote for convenience 

c = sup ||C5+ai(x)||. 
| s | S l 

We prove by induction, that for n g l , 

\\Ct+ai(x)\\ ^ C 2 IICJ for \ t \ S n . 
k g Z 

Indeed, the above statement holds obviously for n = 1. Assuming that it holds 
for some /z£l and that //-= + we successively get by Lemma 1.1 

Q+«(•*) = +sign(i)Xi{x) = 2C„ C|,| _n+sign(()aii(j:) — C„_(|,| -„j-signcoiiW = 

= 2C„Csign(I)(|(| _„)+ili(x) — C_s!gn (,)(„-(|, | _„))+3I,•(:*;), 

IIct+«,(*)|| 2IICJ • c + c• 2 \ \ c k \ \ = c - 2 WQll• 
\k\Sn-l |fc|Sn 

(ii) Again by induction, it is easy to verify that 

| |CJ^(1+2 | |C 1 | | ) 1 for k i s l . 

Now one can easily complete the proof. 
We note that, if / : R — C is a Lebesgue-measurable function with 

f \f(t)\ea^dt < + 

where co> fiin —ln||C,||, then there exists 
t 

+ oo 
C f = j fO)c,dte^(x) 

uniquely defined by 

<( f MC,dt)(x),(p)= f f(t)(C,(x), cp)dt, x e x , (ptsr 
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([2], Prop. 1.2; [3], Prop. 1.4). For each J^R, we have: 

Cf Cs = CsCf= f f(t) CsC, td = f f i t ) \ (Cs+t + Cs_,) dt = 
2 

= / /(f-s)Y(~f+s) c.dt. 
— OO 

Thus, if / is additionally even, then 

CfCs = CsCf= J f(t—s)C, dt, s€R. 

Lemma 1.3. Let (X, J5") be a dual pair of Banach spaces and C a a(X, SF)-
continuous one-parameter cosine family in 33^(X). Let us denote 

nr 
/ , ( ' ) = = }ne~S'2' 

Then 
C / t ® c n ® c f , <5-0, z6C 

Cf6C. c CZCU = f 1P^e-«<-*r-Ctdt£!%sF(X), <5>0, zeC, 
— OO ' 

a(X,$r)- lim CfAx) = x, x£X. 
4-00 

Proof . Let ¿>0 . Since 

f dt-c + oo, z iC, co > 0, 

the integral 

/ ^e-se-^Qdt^iX), zeC 

exists. It is easy to see that the mapping 

>-00 ' 

is analytical and extends 

R } s — CfCs = CsCf = f 1 e - W - ^ 1 C, dte@<? (X). 
— 00 • ^ 
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It follows that 
C

f i
( X ) с П , 

Г€С 

CuCzczCzCfi = f 1 / - R ^ ' Q D / ^ I X ) , 26 C. 
— oo ' 

Now let jc€X be arbitrary; for each (p^SF and ¿ , £ > 0 the following holds: 

\(Cft(x)-x,<p){ = f l^e-f'-(C,(x)-x, <p)dt\ s 
— oo * 

= fVJe-*!№(x)-x,<p)\dt+ f]iIe-'"\(Ct(pc)-x,<p)\di^ 

=§ sup |<C,(*)-*, ф>| + / 1 Д " е - й , ( 1 | С , | | + 1)ЛИ*И1к11-

Hence 

Пт \(С/л(х)-х, <p)\ ^ inf sup |<C,(*)-*, cp)| = 0. 

We can now give 
P r o p o s i t i o n 1.4. Let (X, ¡W) be a dual pair of Banach spaces, С a a(X, J7)-

continuous one-parameter cosine family in &p(X) and z£ C. Then Cz is <т(Х; 
densely defined and <x(X, ¡F)-preclosed. Moreover, we have 

= C , | n З с " - ^ = (Cf)X . 
"Чес ' ! 

P r o o f . By Lemma 1.3 it is clear that Cz and C f are <j(X, J^), resp. o(SF, X)-
densely defined. For each x£@c and the functions (C^(x), cp) and 

;,Cf(cp)) defined on the strip {££C; |Im = |Im z\}, are regular extensions 
of the function 

R} t - (Ct(x), cp) = <x, C f (<?)>, 

hence (C2(x), q>)=(x, C f (<?)). It follows C z c ( C f ) x . In particular, Cz is a(X, .¥)-
preclosed. 

To end the proof, we have only to prove that the domain of ( C f ) x is contained 
in the domain of C z | p | QsD Let x be in the domain of (Cf ) x . By Lemma 1.3, 

cec c 

for each ¿ > 0 we have C f C f c C f C f ^ , thus 

CSi ( C f f = ( C f D f f с (Cf6 C f f = ( C f f C/s. 
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Again by Lemma 1.3, it follows that 

C€C 

a(X, J O - lim C,_Cf({x) = <r(X, lim {C?)*Cu(x) = 

= <r(X,JP)- lim Cfi(C?)X(x) = (Cf)*(x). 
O— + oo 

<t(X i^) Consequently x is in the domain of Cz\f\S>c ' . 
cec 5 

In the sequel we shall denote C f x , s r ) and c<?a(sr ,x> simply by Cz, respectively 
C f . We call C ~ C _ ( the analytic generator of the cosine family C. 

2. Spectral properties of the analytic generator of cosine families 

Let (X, IF) be a dual pair of Banach spaces and C a CT(X, ^ -cont inuous 
one-parameter cosine family in ^(X). We recall that by Lemma 1.2 (ii) 

lim l l n | | C , | | = Em -r-ln HQH < + . f—+ ~ t + « K 

On the other hand, if X^{0}, then 

Hm -ilnllC.il SO. t-*-+<*> t 

Indeed; we have for each /£R 

1 = ||C„|| = | | 2 C , C ( - C J ^ 2||C,||2+||C2i|| s 3 max {||C,||2, ||C2(||} 
so that 

0 — lim - i - l n l s i Em m a x j i In ||C,||, | | C j ) =• lim -i ln | |C, | | . 

t-»+oo Zl f"» +» I t It J «-» + oo t 

We say that C is of 0 exponential type if 
Em i l n | | C ( | | S O 

«-*+««> t 
that is, if X^{0}, 

m i l n ||C,|| = 0. t Co I 
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Let / i € C \ ( - ° ° , 0 ] . We denote 

arg n=8 where n=\n\eie, |0|<7r; In / i=ln \n\+iO. 

Then C3z-»/ i z =e z l n "€C is an entire function. The next lemma is the main technical 
result of this paragraph. 

Lemma 2.1. Let (X, be a dual pair of Banach spaces, C a <r(X, 3 - y 
continuous one-parameter cosine family of 0 exponential type in ^ ( X ) , C \ ( — <=o, 0] 
and X — (n2+l)/2 ¡1. Then the function R —C, defined by 

H li'—n'" n 

sin int sh 7It 

depends only on X, the integral 

p2-\' siniut i(M
2-1) ' shrri # Z 1 ^ 1 ' 

it t if n = 1 

c 9 , = f gl{t)Ctdt&,№ 
— oo 

exists and CgX?.+C.i)c:(X+C^i)Cg^ /x. 

Proo f . Since the roots of the equation A=(w2+l)/2w are /i and and 

fl 1 /i 1 

gA depends only on A. 
Choosing some co with 0<a)<7r — |arg we have 

f I g j i W I < + and to > Ilm —ln||C,|| = 0. 
f— -f oo £ 

— OO 

By our remarks after Lemma 1.2 it follows that Ca is well defined and 
CgjOs—CsCgA. Let x^C-i be arbitrary. Since the mapping 

is <7(X, ^ - r egu la r and extends 

R3S - CBxCs(x) = CsCgJx)(=X 

we have Cgfx)£3c and C _ ,Cg£x)=CgC _ ¡(x). Consequently (X+C_i)CgJx)= 

Finallygwe show that CgC_¡(x)=x-XCg,(x), that is C 9 A ( A + C _ I ) ( X ) = X . 
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Let us first assume f i ^ l and fix some. 0 < e < 1. Since by Lemma 1.2. (ii) 

K j l n sup ||Cc(*)|| SO, 
llmilsSl 

using Lemma 1.1 and the Cauchy integral theorem, we get 
+ « IT _ IT - n n" —fl " 

2(/i2—1) sin int СвхС-1(х)= f —JL—.VL.Jp-ct_i(x)dt+ , w J 2(u2— n sin int t ' 

+ f ->/• 2 n'1'- — Ct+i(x)dt = 2(n2—l) sin mi 

= _ l 2(д2 —1) sin in(f + ie) C , - ( | - I , i W ' i i + 

У /г ^ ( Л А 1 

2(/i2—1) sin in(t-ie) C'+(1-)iWrf'-
Defining the curves Г_ and Г + by 

r _ ( i ) = i - ( l - £ ) i , r _ ( i ) = 1+(1-B)i, i€R, 
we obtain 

/
и u'z~1 u~'z+i 

r 2(^2 —1) sin(inz —7t) 

/
II ll'z + 1 II —ir—1 
, 14 • • ** ч СГ(JC)dz = 

_ 2(a2 — l l s in (urz + 7rl 1 4 7 
2(n2— 1) sin(i7tz+7c) 

= J 2 0 ^ 1 ) sin ITTZ C:(x)dz + rf 2(^rT) I I ^ T " C«(*> 
Further, the residue theorem gives 

2(|i2—1) sin I7TZ ^ 2(/i2—1) SINI7TZ V 7 

so that, using again the Cauchy integral theorem, we conclude 

Cg C - I ( x ) = X+ f y C = 9A 2(/i2 —1) s i n i n *v y 
' + 

r 2(/i2—1) siniTiz i + 

= x-A f " Cz{x)dz = x-kCgAx). 
r

J u — 1 s i n IJIZ * + 

For n = 1 the proof is completely similar. 
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Theorem 2.2. Let (X, OF) be adualpair of Bcmach spaces and G a <r(X, i^)-
continuous one-parameter cosine family of 0 exponential type in Then 
<7(C()c[l, +oo). Moreover, for each A e C \ ( — — 1 ] the roots of the equation 
A = V + l ) / 2 / i belong to C \ ( - ° ° , 0 ) and 

( A + C . , ) - ^ 

f L^—Cidt if t1*1 
' 0* 2 - 1) Sh 711 

f -j—ctdt if X = 1. J sh 71/ J 

Proof . Let — 1] be arbitrary. If one of the roots of the equation 
say jil5 belonged to (— 0], then, taking in account that the 

other root is ju^1, we would have 

, _ v-i+nr1 _ _ j £ i l ± N l l - s _ 1 
2 2 ~ " 

Now let / i € C \ ( - ° ° , 0 ] be arbitrary, with A=(/za+l)/2/i, define gx: R - C as 
in Lemma 2.1. Then by this lemma C f l ; i(A+C_ l)c:(A+C_ i)C f i=/x holds, 
and this implies that C (A+.C_i)c:(A+C_,)Ci4. On the other hand, since 
( X + C 7 I ) C G J @ C = C 9 A ( A + C _ , ) C : / x , and ( is <r(X, ^>den'se in X, one 
gets easily that (A+C_ f)C f fA=/x. Consequently A+C_ ; is invertible and 
(A+cTT) - 1 = c g x t ^ ( X ) . 

A first consequence of Theorem 2.2 is the following unicity result; 

Coro l l a ry 2.3. Let (X, J^) be a dual pair of Banach spaces and C and D 
two o(X, ^-continuous one-parameter cosine families of 0 exponential type in 

If~cZi<zD7l, then C=D. 

Proof . By Theorem 2.2 we have for each J£R— {0} 

/ e 2 s + l r " e" 
2e? + - ' ) = 1 W ^ ) ' shTrf C ' d t ' 

that is, 

Similarly, 
2e> { 2e> + 'J _l shut 

e2s—1 / e25+1 — - r 1 sin is 
2e® 1 2e® 

„ -\ /• sin is ^ , „ 
/ — CO. 
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(e^+l — T 1 i^'+l r 1 . 

Since C . j C D . j implies I ^ + C - i J ^ +Z)-,J for every j€R, 

the above considerations yield 

4- OO + OO . 

/• sin /5 _ , r Sin is _ , 
^ sh7ti sh7T/ — oo —oo 

Using the inequality |sin a—sin J?|, a, /?€Rj and the Lebesgue dominated 
convergence theorem, it is easy to see that one can differentiate with respect to s 
under the sign of integration and we get 

f costs C.dt = f cos t s—r—D.dt . J sh7it ' J sh Kt ' — oo — oo 

In other words, for each x£X and the integrable continuous even functions 

R z > t - + - ^ { C t { x ) , < p ) and R 3t-~-l-(Dt(x),<p) 

have equal Fourier cosine transforms, so they coincide. Consequently C,=Dt; f£R. 

By Corollary 2.3, C_( determines C uniquely.. A second consequence of 
Theorem 2.2 is an in variance result: 

Co ro l l a ry 2.4. Let (X, 2F) be a dual pair of Banach spaces, C a <r(X, 2?)-
continuous one-parameter cosine family of 0 exponential type in 38^(X) and Y 
a ff(X, ¿F)-closed linear subspace of X. If there exists some A 0 £ C \ ( — — 1] 
with (A 0 +C~) - 1 YcY then C.YcY, /<=R. 

Proof . If A€C and lA-^MKAo+c")" 1 ! !" 1 , then (A+C~) _ 1 exists and 

(A+C~) - 1 = ¿ ( A - A 0 ) k ( ( A 0 + C ~ ) - t - 1 ^ ( X ) , > 
* = 0 

where the series converges in the operator norm. Thus, for such A, we have 
( A + C _ ; ) _ 1 Y C Y . Let yeY be arbitrary and such that (z, <p)=0; z£Y. 
By the first part of the proof, the analytic function 

C \ ( - o ° , - l ] 3 A - <(A + C~)- iO0, <P> 

vanishes on some neighbourhood, of A0, hence it vanishes identically. Using 
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Theorem 2.2 similarly as in the proof of Corollary 2.3. we get successively 

^{C,{y),cp)dt = 0, s6R, 
— oo 

t 
f costs-^(ct(y),(p)dt = 0, s(ER, 

— oo 

(C,(y), <P.) = 0, i€R. 

By the Hahn—Banach theorem we conclude that C ,YcY, 7£R. 

C o r o l l a r y 2.5. Let (X, 2F) be a dual pair of Banach spaces, C a <r(X, 
continuous one-parameter cosine family of 0 exponential type in and Y and 
Z two o(X,&)-closed linear subspaces of X. If ( C ~ ) _ 1 Y c Z , (C_,)_ 1 Y c Z , 
then Y = Z . 

P r o o f . Let x<i®c ^. By Lemma 1.1 2CSC_¿x)=C s + i(x)4-C s_¡(x) , .v^R, 
so that the mapping 

{C€C; |IMC| ^ 1}3C - C ^ I W + C ^ . - W I X , 

which is (T(X, ^ - r egu la r , extends 

Thus C_t(x)£Sc t,2C_iC_l(x)=x+C_2i(x), that is / x + C _ 2 i c 2 ( C _ , ) 2 c 2 ( C ~ ) 2 . 
But (C~)2 is <r(X, J^-closed, hence 7 x + C l ^ c 2 ( C ~ ) 2 and ( / x + C T ^ ) - ^ 
= 2 - 1 ( C _ i ) - 2 . From the last equality, we get 

( / x + c Z d ~ l y * = 2 - 1 ( C ~ ) - 2 Y c 2 - 1 ( C ~ ) - 1 Z c Y, 

( h + C ^ d ^ Z = 2 - * ( C ~ ) - 2 Z c 2 - i ( C ~ ) " 1 Y c Z. 

Since C_2 i is the analytic generator of the cosine family 

by Corollary 2.4 it follows that C,YcY, C,ZcZ, f£R. In particular, by Lemma 1.3 
we have 

= Y, © c . ( nz < , ( X - ? ) = Z. 

Using now the invariance of Y under the action of C and the Hahn—Banach 
theorem, we deduce successively that C_,-0>)€Y and y=(C_¡)~1C_i(y)€(C_,)_1YcZ 
holds for each y£@c_{HY. Thus 

Y = ® c_ fD c: Z. 

One obtains similarly also the inclusion Z c Y . 
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3. Connections with one-parameter groups of operators 

Let (X, !F) be a dual pair of Banach spaces. We recall that the analytic 
extension U, of a CT(X, !F)-continuous one-parameter group 

U:RЭt 
at z£ C is defined by 

(x, graph has a <T(X, ^ - r e g u l a r extension 
on the strip Dz whose value at z is y 

and Uz is a a(X, ^ - c l o s e d and a(X, ^ -dense ly defined linear operator in X 
([3], Section 2). £/_; is called the analytic generator of U and provided that U 
is of 0 exponential type, that is, 

lira i , | | lnt / ( | | 0, 

it uniquely determines U ([3], Section 4). 

P r o p o s i t i o n 3.1. Let (X, J^) be a dual pair of Banach spaces and U a 
<T(X, &)-continuous one-parameter group in Then the formula 

defines a <r(X, ¿F)-continuous one-parameter cosine family in and 

Proo f . It is easy to verify that C is a a(X, ¿F) one-parameter cosine family 
in ^ r (X) . 

From the definition of the analytic extensions of U, respectively C, it follows 
immediately that ( l / 2 ) ( i / , + i / _ 2 ) c C . . Thus, it remains to prove only the inclusion 

Let be arbitrary and ¿ > 0 , /£R; then, by Lemma 1.3, we have 

CfiCz(x) = /" e-*«-*Ct(x) dt = 
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Since 

C 3 C - j" | f ^ e - W - W U M d t & L 

is an entire extension of 
R S i - t f . c ^ w e x 

where 

it follows that 

CfiCz{x) = j(Uz + U.z)ft(x), <5>0. 

Finally, since 

<r(X, lim Uit(x) = x, a(X,^)- lim C/aCz(x) = Cz(x), 

we conclude that x belongs to the domain of (1 /2) (Uz + U _ z f X ) and that 
(1 /2)(Uz+U_zfX'*\x)=Cz(x). 

In particular, if U is of 0 exponential type, then by Corollary 2.3, 
U_i + Ui uniquely determines the "cosine part" t—U,+ U-, of V. The "cosine 
part" of U has the advantage that the spectrum of its analytic generator is always 
included in [1,+°°), while the spectrum of £/_; is quite frequently=C (see [4]); 
this motivates the interest of cosine families in handling one-parameter groups of 
operators. 

Concerning applications, we restrict ourselves to a proof of the following result 
(see [9] and [5], Th. 4.1): 

Theo rem 3,2. Let H be a complex Hilbert space and C a weakly continuous 
one-parameter cosine family of 0 exponential type of self-adjoint linear operators on H. 
Then there exists an injective, positive, self-adjoint operator B in H such that 

C, = j(Bi, + B-") = cos(t\nB), /6 R. 

Proof . By Theorem 2.2, < x ( C ~ ) c [ l , a n d 

(C~)-' = / , 1 ; Ctdty . 
JL + 

thus C~ is self-adjoint and C l > / H . It follows that B = C ~ + ( ( C ~ ) 2 - / H ) 1 / S 

is an injective, positive, self-adjoint linear operator in H and 

= c ~ - ( (C~) 2 - /H)1/2e a ( H ) . -

(see, for example, [10], Section 128). 
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Now, the formula Ut=B", tÇ. R defines a strongly continuous one-parameter 
group of unitaries on H and U-,=B ([3], Th. 6.1). By Proposition 3.1 the cosine 
families C and R3 i—(l/2)(i/ (+i/_,) have equal analytic generators, so by Cor-
ollary 2.3 

Ct = j(Ut + U-t), te R. 
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Three-element groupoids with minimal clones 
B. CSÁKÁNY 

To Professor Béla Szőkefalvi-Nagy on his seventieth birthday 

A set of finitary operations on a set M is called a clone on M if it is closed 
under composition and contains all projections. The clones on a finite set M form 
an atomic lattice whose atoms are called minimal clones. The set of all term func-
tions (polynomials in the terminology of [5]) of any algebra (M\ F) is a clone on M. 
In this paper we give a complete list of those essentially distinct three-element 
algebras with one essentially binary operation whose clones of term functions are 
minimal. 

The lattice of all clones on a finite set M is also coatomic, and the coatoms 
are called maximal clones. The knowledge of all maximal clones on M provides 
a method for deciding whether an algebra (M; F) is primal. The maximal clones 
on a two-element set, on a three-element set, and on any finite set have been deter-
mined in [9], [6], and [11], respectively. By the Galois connection between operations 
and relations on a finite set (see [4], [1]), the knowledge of all minimal clones on 
M enables us to decide whether a set of (finitary) relations on M generates all 
relations on M (in the sense of [1]). The minimal clones on a two-element set are 
determined in [9]; however, for sets consisting of more than two elements the problem 
of listing the minimal clones ([10], Problem 12) is open. 

Our result may be considered as a first step towards the solution of this problem. 
Indeed, the complete description of the maximal clones on a three-element set 
suggests how the maximal clones on a finite set can behave in general, and the same 
may be expected for minimal clones. On the other hand, it is known ([10], p. 115) 
that any minimal clone on a three-element set is generated by an essentially at most 
ternary operation. The unary case is trivial, and here we settle the binary case. 

Throughout this paper, n denotes the set {0, 1, ..., n— 1}. For the sake of 
simplicity, we consider operations on the base set 3 only and, for brevity, we call them 
functions. The symbol [ / ] stands for the clone generated by the function f (i.e., 

Received June 30, 1982. 



112 B. Csákány 

consisting of all term functions of <3;/)). Instead of #£[ / ] we write also /— g; 
we say in this case that / produces g. Projections will often be referred to as trivial 
functions. 

We start with two basic observations (see [10], Ch. 4.4): 

(a) A clone C is minimal i f f it contains a non-trivial function, and f-*g for 
any non-trivial f , gdC. 

(P) An essentially at least binary function f generating a minimal clone is idem-
potent (i.e., fix, ...,x)=x holds identically). 

By (/?)> w e have to consider idempotent functions only. Such a functions has 
a Cayley table of form 

- 0 1 2 

(.) . J 2 

0 W5 « 4 

«3 1 n2 

n 1 "o 2 

where «¡€3 O'=0, ..., 5). The function defined by ('*) will be denoted by the integer 
5 

£ 3'/ij. Thus, the functions we study will be numbered by 0, 1, ..., 728. E.g., 
¡=0 
44 is the first binary projection (i.e., the function fix, j>)=x), and 424 is the second 
one. We shall denote our functions multiplicatively, with a subscript indicating the 
number of the considered function; e.g., we shall write ((xy)x)728 instead of 

For / , g€729, f=g or f^ag means that <3; / ) and <3; g) are 

0(3) 17 48 94(6) 130 (6) 
1 21 49 95 132 
3 22 50 96 135 (6) 
4 23 52 (6) 97 136 
5 24 57(6) 104(3) 138 
6 25 58 105 139 
7 26(6) 59 106 140 (6) 
8 30 67 108 141 

10(6) 31 68(6) 109 (6) 142 
11(6) 32 76(6) 110 144 
12 33(6) 84(6) 111 (6) 150 (4) 
13 34 85 113 156 (6) 
14 35 86 126 178 (2) 
15 39(6) 87 127 624 (1) 
16 44(2) 88 129 

Table i 
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isomorphic or anti-isomorphic, respectively. The functions / and g are said to be 
essentially distinct if neither f=g nor f=ag holds. In other words, the permutations 
of 3 and the dualization of functions generate a 12 element permutation group 
A on 729, and / is essentially distinct from g iff they belong to distinct orbits of A. 

For our aim, it is sufficient to study one representative from each orbit as the 
property of generating minimal clone is preserved under isomorphism and anti-
isomorphism. We represent each orbit by its least element. In Table 1 we list the full 
system of representatives; the number in parentheses is the number of functions in 
the represented orbit if it does not equal 12. 

Now we are ready to formulate the result announced above. 

T h e o r e m . Every three-element groupoid with essentially binary operation 
having a minimal clone of term functions is isomorphic or anti-isomorphic to exactly 
one of the following twelve groupoids: 

<3;/> with f£M2={0, 8, 10, 11, 16, 17, 26, 33, 35, 68, 178, 624}. 

P r o o f . A three-element groupoid with the properties in the Theorem is, 
by (/?), idempotent, and hence is isomorphic or anti-isomorphic to exactly one 
<3; / ) where / is an entry of Table 1. Therefore it is sufficient to prove that the 
functions listed in the Theorem genérate minimal clones on 3 while the remaining 
functions in Table 1 do not. The second job is mainly of computational character, 
and we shall do it at first. We apply the following simple fact: 

(y) For any function f , if there exist a clone C and a non-trivial function g£C 
such that f^C and f-*g, then [/] is not minimal. 

Put / = 3 and let C y be the clone of all functions preserving the set {/, ,/} = 3. 
Then 3$C0 2 and 3—((XJ)J)3=0€C02. Thus, by (}>), [3] is not minimal. The same 
consideration (with C02 and (xy)y) is applicable also for the functions 4 (((xy)_y)4 = 1) 
5 (2), 12 (9), 13 (10), 14 (11), 21 (18), 22 (19), 23 (20), 57 (33), 58 (34), 59 (35), 67 (43), 
76 (52), 84 (9), 85 (10), 86 (11), 87 (15), 88 (16), 104 (182), 105 (186), 106 (187), 
108 (36), 109 (37), 110 (38), 126 (207), 127 (208), 129 (210), 132 (213), 135 (9), 136 (10),. 
138 (42), 139 (43), 141 (69), 142 (70), and 156 (213). Similarly, by the help of x(xy) 
we can settle the functions 30 ((x(xy))30=37(EC02), 31 (8), 39 (37), 48 (47), 50 (53), 
95 (17), 96 (17), 97 (16), 111 (37), and 140 (26), and by {xy)x the function 150 (178). 
Further, C12 and x{xy) take care of 15 (17), 24 (26), 34 (43), while C12 with x(yx) 
and {xy)y settles 32 (40) and 113 (41), respectively. Finally, taking C0i and (xy)y, 
we can cast off also 144 (90). 

A binary function satisfying the identity (xy)(uv) = (xu)(yv) is called medial. 
If / is medial and /— g, then the function g is also medial (cf. Prop. III. 3.2 in [2]). 
Thus, if>a non-medial g produces a non-trivial medial f then [g] is not minimal 
by (a). This is the case for g=49 and f=41=(x(yx))49 as ((12)(02))49=l5¿2 = 

8 
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=((10)(22))49 while one can check the mediality of 41 immediately. Therefore, 
[49] is not minimal. 

In order to show that [ / ] is not minimal for / = 1 , 6 , 2 5 , we apply (a) as 
follows. Observe that l-«-0, namely, ( (xyjxj^O; on the other hand, the binary 
term functions of <3; 0) are 44, 424, and (xy)0=0, i.e., 0 does not produce 1. 
Further, (.x(xy))8=8, but not 8—6, as the binary term functions of (3; 8) are 
44, 424, 8, and 180. Similarly, (x(yx)) 25=17, but the binary term functions of 
<3; 17) are only 44, 424, 17, 181. 

Clearly, [ / ] is not minimal if there exists a non-trivial g such that / —g 
and [g] is not minimal. Hence it follows that [ / ] is not minimal for / = 7 , 9 4 , 
and 130. Indeed, ((xy)x)7=6, ((xy)y)w=9\^a\3, {{xy)y)Ki)=2U^aA9, and we have 
already shown that [6], [13], and [49] are not minimal. 

[44] is the clone of all projections. Thus it remains to show that [52] is not 
minimal. Put q(x, y, z) = ((xy)(zx))52. Then 5 2 a n d q is not trivial, as 
g(l,0, 0)=1 and q( 1,2, 0)=2. However, 52 is not valid, since q{x,x,y) = 
= q(x, y, x) = q(x, y,y)=x and hence [q] contains no essentially binary function. 
Now, by (a), [52] is not minimal. 

Next we prove that the functions in M2 generate minimal clones. Their Cayley 
tables can be seen here: 

0 0 0 0 0 0 0 0 0 0 0 0 
0: 0 1 0 8: 0 1 0 10: 0 1 1 11: 0 1 1 

0 0 2 2 2 2 0 1 2 0 2 2 

0 0 0 0 0 0 0 0 0 0 0 0 
16: 0 1 1 17: 0 1 1 26: 0 1 2 33: 1 1 0 

2 1 2 2 2 2 2 2 2 2 0 2 

0 0 0 0 0 0 0 0 2 0 2 1 
35: 1 1 0 68: 2 1 1 178: 0 1 1 624: 2 1 0 

2 2 2 1 2 2 2 1 2 1 0 2 
The functions 0 and 10 are semilattice operations, hence they generate minimal 

clones (cf. [10], 4.4.4). It was proved by Plonka that 624 ( = 2 ^ + 2 ^ mod 3) gen-
erates a minimal clone (see [8]). Demetrovics, Hannák and Marcenkov proved that 
[178] is also minimal ([3]; for a proof, see [7]). 

Now we can prove that for each /£M 2 any non-trivial binary g£[/]%>roduces / . 
We do this by establishing the following property of any function in M2: 

A. It produces no essentially binary function except itself and its dual. 

Indeed, a trivial computation shows that x(xy), x(yx), (xy)x, (xy)(yx)£ 
£ {JV, y, xy, yx} whenever multiplication means anyone of the functions in M2 • 
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Hence gd {x, y, xy, yx) follows by induction on the depth of the shortest /-term 
representing g. Thus g-*f provided g is not a projection. 

It remains to prove that, for each /€M 2 , anon-trivial g(L[f] of arbitrary arity 
does produce / . In view of the preceding paragraph it is enough to show only that 
g produces a non-trivial binary function. For the cases /=8 ,11 ,16 ,17 ,26 (and 
also for the known cases /=0 ,10 ,178) this can be done by the following argument. 
The restriction of / to 2={0,1} is the minimum function A', hence any term 
function g of <3y /> has the form x1/\---hxk when restricted to 2. Identifying 
all variables but one of g we obtain a binary function which is not a projection 
because its restriction to 2 is the minimum function again. 

Our final task is to prove that 33, 35, and 68 generate minimal clones, too. 
First we check that each of them enjoys also the property 

B. It turns into a projection when restricted to a suitable two-element set. 

The two-element set in B is {0,1} for 33 and 35, and it is {1,2} for 68. 
A function is called a semi-projection if it is not a projection and it turns into 

the same projection when any two of its variables are identified. 

Lemma. An idempotent function with properties A and B generates a minimal 
clone provided it produces no ternary semi-projection. 

Indeed, suppose that / has properties A and B, but [ f ] is not minimal. Then 
there exists a non-trivial function which does not produce / . The idempotence 
of / and A imply that g is at least ternary. We show that g produces an essentially 
ternary function. A well-known theorem of iswierczkowski ([12]; see also [5], p. 206) 
asserts that an at least three-element algebra with independent base set has only 
trivial operations. Hence it follows that any non-trivial function on 3 produces 
an at most ternary non-trivial function (cf. also [9], 4.4.7). In particular, g produces 
such a function h, which is, again by the idempotence of / and property A, 
essentially ternary. Let us identify two variables of h; then, by. A, we always 
obtain a projection. Assume that two different identifications of variables furnish 
different projections; then the same is valid for the restriction of h to the two-
element subset of 3 in property B. But this is impossible, as for a function composed 
from projections any identification of two variables gives the same projection. 
Hence h turns into the same projection under identification of any two of its 
variables, and, as it is not a projection, it has to be a semi-projection. We proved 
that / produces a semi-projection, which was needed. 

In virtue of the lemma, it is enough to prove that none of 33, 35, and 68 does 
produce a ternary semi-projection. In these proofs, the actually considered function 
will be denoted as multiplication (no subscript will be used); we write pqr instead 

8* 
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of {pq)r\ finally, we write f ( x l , ..., xfc)=x,-... to indicate that x ; is the first-
from-left entry in the term / . In this case f ( x l , ...,xk) can be uniquely written 
in. the form x ; • / i (x 1 ; ..., x^...f„[xi, • ••, xk). We shall use the Cayley tables of the 
studied functions without further reference. 

Case of 33. We need the following identities of <3; 33): 
(1) XX = x(xy) = x(yx) = X, (xy)x = (xy)(yx) = (xy)y = xy. 
Suppose that f(x, y, z) is a ternary 33-term of minimal length among those which 
are semi-projections: let f{x,x,y)=f{x,y,y)—f{x,y,x) = x and f(a,b,c)^a 
for suitable a, b, c€ 3. First suppose a=0. Let f(x, y, z)=f(x, y, z) • /2(x, y, z); 
then by (1), f1(x,x,y)=f1(x,y,y)=f1(x,y,x)=x, and, by the minimality of / , 
identically f1(x,y,z)=x, i.e. f(x, y, z) — x • f2(x,y, z), whence f(a,b,c) = 
0-f2(a,b,c) = 0=a, a contradiction. Therefore, a^O. 

Let, e.g., a=l, b = 2, c=0. Now / is a 33-term with 

(2) . . . f(x,y,y) = y, / ( 1 , 2 , 0 ) ^ 1 . 
We shall be ready if we prove that for any 33-term g satisfying the requirements 
in (2) there exists a shorter 33-term also satisfying (2). Observe that g(x,y,z) — 
= x..., otherwise (1) implies g(x,y, y) = y or g(x,y,y)=yx. Thus g(x,y, z) = 
= x • di(x, y,z).. .d„(x, y, z), and g(x, y,y)=x-d1(x, y, y)...dn(x,y,y). Hence, by (1), 
di(x,y,y)7iy for every /. On the other hand, g(l, 2, 0)= 1 • ̂ ( l , 2, 0)...d„(l, 2, 0)^1, 
showing that dj( 1,2,0) = 2 for at least one /'. Now, dj(x,y, z)=y...=y -h^x, y,z)... 
...hm{x,y,z). Using (1), we infer the existence of a k with hk(x,y,y) = x. As 
2-hy(\, 2, 0).../im(l, 2, 0)—dj(\, 2, 0) = 2, we have /j,<1, 2, 0 )^ 1 for every /. In 
particular, hk(l, 2, 0 )^ 1, i.e. hk is the 33-term we required. For (a,b,c)=( 1,0,2), 
the same argument works. As (12) is an automorphism of (3; 33), we do not have 
to deal with the case a—2 separately. 

Case of 35. The two-variable identities of <3; 35) are 
(3). xx — x(xy) = x, x(yx) = (xy)x = (xy) y = (xy) (yx) = xy. 

As in the preceding case, we obtain that if / is a ternary 35-term which is 
a semi-projection of minimal length, and f{x,y,y)=x,f{a,b, then f{x,y,z) — 
— x • f2{x,y, z), and a= 1. Furthermore, we have / 2 = /2 1 • /22 and f21(a, b, c) = 2. 
Let, e.g., (a,b,c) = ( 1,2,0). Then f21(x,y, z)=y • gx{x, y, z)...g„(x,y, z). From 
f21(2, 0, 0) = 0 • gl(2, 0, 0)...g„(2, 0, 0) = 0 it follows f21(x, y, y)=y or f21(x, y, y)=yx. 
Thus, fax,y,y) equals y-f22.(x,y,y) or y • x •/22(x, y, y), hence f2{x,y,y)=y 
or f2(x,y,y) = yx by (3). In both cases, / ( x , y, y) = xy, a contradiction. If 
(a, b, c) = (\, 0,2), then f21(x, y, z) = z... follows, and we can proceed similarly. 

Case of 68. Again we need the two-variable identities of (3; 68): 
(4) xx = x{xy) = (xy)y = {xy)(yx) = x, x(^x) = (x j )x = xy. 
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Let / be a ternary 68-term which is a semi-projection; let f(x, y, y) = x and 
f(a,b,c)r±a. From / ( 1 , 0 , 0 ) = 1 it follows f(x,y,z) = x-f1(x,y,z)...fn(x,y,z). 
This implies a^O; so first suppose, e.g., (a,b,c) = ( 1,0,2). Now (1 0,2) = 
= 1... =2. At the same time, /(1, 0 ,2 )= 1- / (1 , 0,2).../„(l, 0, 2). Hence there 
exists an odd number of / ' s such that / ( 1 , 0 , 2) = 0. The last equality means 
/¡{x, y,z)=y..., therefore there is an odd number of /¡'s whose first letter is y. 

On the other hand, / ( x , y , z ) = x - / ( x , y, x).../„(x,y, x). The identities (4) 
show that there exists an even number of f f s with / ( x , y, x)=y or / ( x , y, x)=yx. 
Observe that / , ( x , y , z)=y... implies fj(x,y,x) = y or fj(x,y,x)=yx, and 
fj(x,y,z) = x... or fj(x,y,z)=z... implies / (x , y, x) = x or f(x,y,x) = xy by (4). 
Hence we have an even number of f / s with first letter y. This contradiction refutes 
(a, b, c) = (l, 0,2). Assuming (a,b,c) = ( 1,2,0), we obtain a similar contra-
diction for the number of / ' s with first letter z. As (12) is an automorphism of 
(3; 68), we have also settled the case a=2. Theorem is proved. 

Acknowledgements. The author is grateful to P. P. Pálfy for providing the proof 
of non-minimality of [52], to K. Dévényi for his programming lessons, and to the 
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on the local time 
E. CSÁKI and P. RÉVÉSZ 

Dedicated to Professor B. Szokefalvi-Nagy on the occasion of his 70th birthday 

1. Introduction 

Let {W(t); /SO} be a Wiener process and introduce the notations 
M(t) = sup W(s), Y(t) = M{t)-W{t) 

oms^t 
and for any Borel set A let 

H(A, t) = A{s: W(s)£A} 

be the occupation time of W where X is the Lebesgue measure. It is well-known 
that H(A, t) (for any fixed t) is a random measure absolutely continuous with 
respect to X with probability 1. The Radon—Nikodym derivative of H is called 
the local time of W and it will be denoted by t] i.e. t](x, t) is defined by 

H{A,t)= fr,(.x,t)dx. 
A 

Finally let ^(0, t) = >/(/)• 
A celebrated result of P. Lévy reads as follows (see for example KNIGHT [7], 

Theorem 5.3.7). 

Theo rem A. We have 

{F(0, M(t);' = 0} == {\W(t)\, r}(t); t ^ 0} 

i.e. the finite dimensional distributions of the vector valued process {(Y(t), M(t)); t £ 0} 
are equal to the corresponding distributions of {(^(Z)!, r]{t j)\ t SO}. 

A natural question arises: what is the analogue of Theorem A in the case of 
random walk. In order to formulate our problem precisely introduce the following 
notations. 

Received April 19, 1982. 
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Let X1,X2,... be a sequence of i.i.d.r.v.'s with P(AT1 = 1)=P(A'1 = — 1) = 1/2 
and let 

S(0)=0, S(n) = X1+Xt+...+Xu (n = 1, 2, ...), 
m(ri) = max S(k), y(n) = m(ri) — S(n), 1 ̂ k^n 
¿(0, n) = f(n) =JT{k: k^n, S(k) = 0} 

where JV{- } is the cardinality of the set in brackets. Now our question is: does 
Theorem A remain true if we replace W(t), Y(t), M(t), t](t) by S(n); y(ri), m(n), 
£(«) respectively (and n runs over the integers). The answer of this question is 
negative. This fact can be seen from the following well-known 

Theorem B. 

P{£(2n) =k} = ^ - k ( 2 n ~ k ) (k = 0, 1, 2, ..., h) 

(¿ = 0 , 1 , 2 , . . . » . 

and 
n 

P M n ) = k} = 1 

In spite of this disappointing fact we prove that Theorem A is "nearly true" 
for random walks. In fact we have 

Theorem 1. Let X1,XS,... be a sequence of i.i.d.r.v.'s with P(A^ = I) = 
= P ( X j = — l ) = l / 2 defined on a probability space {i2, S, P}. Then one can define 
a sequence Z l 5 Z2 , ... of i.i.d.r.v.'s on the same probability space {i2, S, P} such that 
P(Z 1 =1)=P(Z 1 = - l ) = l / 2 and 

n-v*-d((y{n) , m{n% (|5(«)|, an)) ) - 0 a.s. 
for any e>0 where 
S(0) = r(0) = 0, S(n) = X1+X2+...+X„, T(ri)=Z1+Z2+..:+Zn (n = 1,2, . . . ) , 

£(n) = jV{k\ k^n, S(k) = 0}, m(n) = max T(k), y(») = m(n)-T(n) 

and d is the Euclidean distance of the vectors i.e. 

d((fli, a2), (blt b2)) = + 
The proof of this Theorem is very elementary and will be presented in Section 2. 

In Section 3 we show that Theorem A can be obtained as a simple consequence of 
Theorem 1. 

In Section 4 we show that replacing the number of roots of the random walk 
S(n) of Theorem 1 by the number of crossing points of that walk we can obtain 
a much better rate than that of Theorem 1. In Section 5 as an application of Theorem 
A (or that of Theorem 1) we prove a Strassen-type law of iterated logarithm for 
local time. 



Combinatorial proof of a theorem of P. Lévy 121 

2. Proof of Theorem 1 

Using the notations of Theorem 1 we also introduce the following notations : 

= min {/: / > 0, St = 0}, 

Q2 = min {i: i > glt Si = 0}, 

q, + 1 = min {¿: / > gt, Si = 0}, ..., 

if l ^ j S j h - 1 , 
-Xei+1Xj+2 if 

- ^ , + 1 ^ + i + i if <?/-(/-1) S ; si e ,+!-( / +1), 
Zj=\ 

The following lemma is immediately clear by the above definitions. 

Lemma 1. 

1°. Z l 5 Z 2 , ... is a sequence of i.i.d.r.v.'s with P(Zl = + l) = P(Z t = - l)=J/2. 

2°. T(k)-T{Ql-l) = 2 = j=e,-d-1) 
k 

= — + i 2 Xj+i + i 
— 0 if ¡ ? , - ( / - l ) S / c S ft + 1 - / - 3 , 
= 0 if k = g, + 1-l-2, 
= 1 if k=Ql+1-(l +1). 

3°. i (e l + i ) = = 7Xi?1+11 ( '+ ! ) ) = = i a ( e / + i - f ( e i + i ) ) 
0 = 0, 1, 2,.. .). 

4°. For any Ő/+1 — w e have 

Qt+i-QÍQi + i) = n-ÉOO = 0/ + 2-íte/+2) + l, 
hence 

and 

i.e. 

and 

Z(n) = Z(Q,+J) = == m(n-€(n)) 

£00 = f (ö /+2)- l = w ( e í + 2 - ^ ( e , + 2 ) ) - l 

| í (n ) - / f t (« - í (» ) ) | S I (n = 1,2,••••)• 

So i|S(fc +1)|-1 if l S f c ^ - 2 , 
n } l0=|5(fc)|-l if k = Ql-1 

; lo = |S(fc + / - 1 ) 1 - 1 if k — Qi~l. 
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The following strong laws are known: 

Lemma 2. 

(21) (2n log tog n)112 = 1 ^ 
( c f . KESTEN [6]). 

(2.2) lim sup —— - — ^ 21'2 a.s. 
«-» ( , n x1'2 

( « „ l o g - ) 

(cf. CSÖRGŐD-RÉVÉSZ [4], Theorem 3 .1 .1) where an=((2+e)n loglog n)1'2, esO. 

,• | 5 ( « + / ) | - | ^ ( » ) | ' (2.3) lim sup max — - — ,,„ = 1 a.s. o=sl36„ / , , n V'2 

(cf. CSÖRGŐ—RÉVÉSZ [4], Theorem 3.1.1 and Remark 3.1.1) where bn=n1/2 loglog n. 
Consequently 

(2 4) lim sun - £ ( " ) ) s 21/2 a. j. 
- JLup (2n loglog n)1/4 (log n)1/2 

Further we have 
(2.5) lim inf 4 (n~2 loglog n) g„ = 1 a.s. 

n—oo 

(c f . MIJNHEER [9], p . 5 3 a n d RÉNYI [10] p . 236) . 

Remark . Theorem 3.1.1 of Csörgő—Révész [4] states that 
lim sup sup — = 21'2 a.s. 

0SsS»„ < n x1'2 

(űJOgt) 
what easily implies (2.2). Applying Theorem A, CSÁKI—CSÖRGŐ—FÖLDES—RÉVÉSZ [1] 
also proved that 

m(n) — th(n-a„) 
h ^ i u p - r — = 1 a s-rlogid 

(2.4) of Lemma 2 and 4° of Lemma 1 together imply 

. \£(n)—m(n)\ /-• Lemma 3. lim sup .. , , — t t j t = \2 a.s. 
(2« loglog n)1/4 (tog ra)1/2 
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For any positive integer k let I=l(k) be defined by Qi-i—(l— — Then 
by (2.5) of Lemma 2 we have 

L e m m a 4. lim = 0 a.s. n loglog n 

5° of Lemma 1, (2.3) of Lemma 2 and Lemma 4 together imply 

L e m m a 5. hmsup n l / 4 ¿ o g n ) ( l o g l o ^ ) ) 1 / 2 S ft 

Lemmas 3 and 5 together prove Theorem 1. 

3. Proof of Theorem A 

The proof of Theorem A is based on Theorem 1 and the following invariance 
principle 

T h e o r e m C (RÉVÉSZ [11]). Let {W(t); t^0} be a Wiener process defined on 
a probability space {Í2, S, P}. Then on the same probability space £2 one can define 
a sequence Xx,X2,... of i.i.d.r.v.'s with P(X1 =+ 1)=F(X1 =-l)=i/2 such that 

lim n~1/4-£|(j;(n) —>/(n)| = 0 a.s. 
n~* CO 

and 
lim n - ^ - ' I S i n ) - ^ » ! ) ! = 0 a.s. 

oo 
for any £>0. 

In order to prove Theorem A it is enough to prove 

L e m m a 6. 

A = {r(tj, 7 ( 0 , ..., 7 ( 0 , M(4), M(Q, ..., M(/„)} = 

= {№)I, \wm .... \w(t„)I, n(tl), ti(tj,..,, 1,(0} = B 

provided that 0 < t^ i 2 <. . . < /„ s 1. 

Applying the well-known formula . {W{t)-, t^O} (for any c > 0 ) 
I f c J 

one gets 

L e m m a 7. For any T>0 we have 

, gíY&T) Y(t2T) Y(tnT) M&T) M(t2T) M(tnT)\ A — | yl/2 ' yl/2 ' yl/2 ' yl/2 ' yl/2 ' y 1/2 J 
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and 
n3[\W{ttT)\ \W{.hT)\ \W(tnT) | rj(t1T) n{t2T). n(tnT)y 

l f f ' f f " " f f ' f f ' f f " "' f f ' . J 

By Theorem C we have 

Lemma 8. One can define a random walk 5(1), 5(2),... on the probability 
space of W such that 

W i n n = W W u t (/ = 1,2, , . . ,») 
f f iT 

and 
n^fiX = MIß. + 0 ( T - ^ ) (/ = 1, 2, ..., „). f f f f 

Applying Theorem 1 we have 

Lemma .9. Given the random walk of Lemma 8 one can define another random 
walk T(l), T(2), ... such that 

. m n = M t £ ) _ + o i T _ m + s ) ( i = 1 2 ; 

f r iIT 
and 

= + ( / = 1 , 2 , ...,„). 
f r f f 

Applying again Theorem C we get 

Lemma 10. Given the random walk T{\),T{2), ... of Lemma 9 one can define 
a Wiener process { W(t)\ t >0} such that 

HUT) = Y{t£) +o(r-1/4+0 (/ = 1)2j ...,„) 
f f f f 

and 
m j t j ) = m i T ) + l i + c ) = 

ir it 
where 

M(t)= sup W(s) and Y{t) = M(i)—W(t). 
OSSSf 

Lemmas 8 and 10 together imply 

Lemma 11. 

• i s f o p i 15(^)1 |5(f . r ) | UhTy ^ c(/2T) gt„T) 
f f ' ' ÍT ' f f ' iT ' f f ' f f 

= b(T)^>B as T — °o 
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and 
HhT) y{t2T) y{tnT) m(t\T) m(/.,T) m{t„T)\ _ 

f r ' f f ' iT ' j/r ' f f 

= a(T)^-A as 

By Lemma 9 the limit distributions of a(T) and ¿(7) cannot be different. 
Hence we have Lemma 6, and hence Theorem A. 

4. Roots and crossings 

Theorem 1 says that the vector (jS(/;)|, £(«)) can be approximated by the 
vector (y(n), m(n)) in order TJ1/4+£ while Theorem C says that the vector (t](n),W(n)) 
can be approximated by the vector (£(/;), S(n)) in the same order H1/4+£. It is 
natural to ask whether this order is the best possible or not. Unfortunately we do not 
know the answer of this question. However we can show that considering the number 
of crossings 9(n) instead of the number of roots c{n) better rates can be 
achieved in Theorems 1 and C.. 

Let 
(4.1) 6(n)=Jr{k:k^n,S(k-l)S(k+i)<0} 

be the number of crossings. Then we have 

T h e o r e m 2. Let X1, X2, ... be a sequence of i.i.d.r.v.'s with P(Xl = 1) = 
= P(A\ = — l ) = l / 2 defined on a probability space {i2, S, P}. Then one can define 
a sequence Z l 5 Z 2 , . . . of i.i.d.r.v.'s on the same probability space {Q, S, P} such that 
P ( Z 1 = l ) = P(Z l = — 1)= 1/2 and 

(4.2) . \m(n) — 20(n)\ si 1, 

(4.3) |.v(«)-|S(«)| | 
for «=1,2, ..., where 

s(0) = r(0) = o,. S (h) = T(n) = z1+zi+:..+z„ 

(n = 1,2, . . . ) , 

m(n) = max T(k), y(n) = m{n) — T{n). Osic^ti 
P r o o f . Let 

x1 = m i n { / : / > 0 , S ( / - 1 ) S ( / + 1) < 0}, 

t2 = min {¡': / > Tj, S(i -1 )S(i +1) < 0}, 

t, + 1 = min{/: i > t,, S(/ —1)S(/ + 1) < 0), 
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and 
—-^í-^O+i if l S j S t ! , 

if T i + l ^ j ' S T , , 

+
 + 1 if T, + l S j S T , + 1 

This transformation was given in CSAKI and VINCZE [3]. The following lemma 
is clearly true. 

L e m m a 12. 

1°. Z l 5 Z 2 , . . . is a sequence of i.i.d.r.v.'s with P(ZX = + l ) = P ( Z j = - 1 ) = 1/2. 

2° T{k) — 7"(t,) = J Z, = ( - l J = 
j=t,+i j=t,+i 

= 1 / / k = r l + 1 - l , 
= 2 / / fc = r , + 1 . 

5°. { , 

3°. 20(T,)=2/ = r(r l)=m(T (), / = 1 ,2; . . . . 
4°. For T( = w<T|+1 u'£? have @(n) — /, 2 / ^w(w)=2 /+1 , consequently 

J 2 / + 1 —|S(fc + l)| / / T, + l ^ f c ^ T l + 1 - l , 
. 2 / + 2 - | S ( k ) | / / fc = r ( + 1 , 

therefore 
y(k) = m(k) — T(k) |S(fc + l)| |S(fe)| + l 

and 

y(k) = m(k)-T(k) £ \S(k+1)|-1 £ |S(fc)| —2. 

This proves Theorem 2. 
C o r o l l a r y . On a rich enough probability space {i2, S, P} one can define 

a Wiener process {W(t)\ t ^0} and a sequence X1,X2,... of i.i.d.r.v.'s with 
P(ZX = +l )=P(A' 1 = - l ) = l / 2 such that 

(4.4) | |5(n)| - |W(«)|| = 0(log n) a.s. 
and 
(4.5) |20(n) — »7C">| = 0(log n) a.s. 

where S(ri)=Xx + X2 + ...+X„, 0(n) is defined by (4.1) and i]( •) is the local time 
at zero of W(-). 
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Proof . Let us start with the random walk X±,X2, ... . Then construct a 
random walk Z l 5 Z 2 , . . . according to Theorem 2. Then by the theorem of KOMLÓS, 
MAJOR and TUSNÁDY [8] one can construct a Wiener process W-^t) such that 

(4.6) sup |J(fc)—^(k)! = 0(log n) a.s. 
ksn 

where T(k)=Z1+...+Zk. Put Ml(t)= max W^s). Then according to Lévy's 
theorem (Theorem A), 1^(01=Af1(/) — W^t) is the absolute value of a Wiener 
process whose local time r\{t)=M1(t). Now 

\r,(n)-2d(n)\ == |M1(n)-w(n)| + |/«(n)-20(n)|, 

where m(n)= max T(k). (4.5) follows from (4.2) and (4.6). Furthermore 

| | s ( n ) | - № l | ^ H ^ i - ^ ^ l + i / f i W - M . w i + i r i n ) - ^ ^ ) ! , 

where y(n)—m(n) — T(n). (4.4) follows from (4.3) and (4.6). 

5. A Strassen-type law of iterated logarithm 

Let {W(t); t SO} be a Wiener process and let 

wT(x) = W(x) = b^WixT) (0=2*^1) 
where 

bT = (2T log log T)1/2 (T > e). 

Further let y c C ( 0 , 1 ) be the set of absolutely continuous functions (with respect 
to the Lebesgue measure) for which 

i 
/(0) = 0 and / {f'{x)fdx ^ 1. 

o 
The celebrated Strassen's (functional) law of iterated logarithm says: 

Theorem D. [13] The net {fVT(x); O á x á l } is relatively compact in C(0,1) 
with probability 1 and the set of its limit points is Sf. 

It is an interesting question to characterize the limit points of t](x, T) as T— 
DONSKER and VARADHAN [5] solved this problem. Here we intend to present a result 
characterizing the limit points of the net 

yT(x) = y(x) = br1t](0,xT) (O^x^l). 

Since yT(x) (OSx^ l ) for any fixed T is a non-decreasing function, its limit points 
must be also non-decreasing. Introduce the following 
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D e f i n i t i o n . Let be the set of non-decreasing elements of S f . 

Then we formulate our 

T h e o r e m 3. The net {»(.v); O^.vS 1} is relatively compact in C(0, 1) 
with probability 1 and the set of its limit points is Jl. 

Proof . This result is a trivial consequence of Theorems A and D. 

It looks more interesting to characterize jointly the limit points of the vectors 
{ivr(X)> J r W ; 0 = x = 1} (T— Intuitively it is clear enough that yT(x) must be 
constant in an interval where wT(x)¿¿0. Hence in order to characterize the set of 
possible limit points it is natural to introduce the following 

D e f i n i t i o n . Let J f be the set of those two-dimensional vector valued func-
tions h(x) = ( f ( x ) , g(x)) ( O ^ x ^ l ) for which 

(i) / and g are absolutely continuous in (0, 1) with respect to the Lebesgue-
measure, 

(ii) /(0) = g(0) = 0, 
(iii) g is non-decreasing, 
(iv) f(x)g%x) = 0 ( 0 < x < l ) , 

(v) j(f'(x)+g'(x)fdx^\. 
0 

Now we have 

T h e o r e m 4. The net {it'r(.\-j, yr(x)', O^.v^ 1} (T— is relatively compact 
in C( 0,1)XC(0, 1) with probability 1 and the set of its limit points is J f . 

This Theorem is agáin a simple consequence of Theorems A and D. Theorem 4 
clearly implies the following interesting 

Consequence . The net {wT(l), yT(l)}={b-1W(T), b ' 1 ^ ^ ) } is relatively 
compact in the plane R2 with probability 1 and the set of its limit points is the triangle 

T= {(x,yy. -1 

which, in turn, also implies 

limsup b^irii0, T) + \W(T)\) = 1 a.s. 

Remark . Theorem 1 shows that our Theorems 3 and 4 as well as the above 
Consequence remain true if we investigate the properties of the random walk 
5(1), 5(2), ... of the introduction instead of a Wiener process. The invariance 
principles of CSÁKI—RÉVÉSZ [2] and RÉVÉSZ [12] shows that these results can be 
extended for more general random walks. 
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Semigroups of continuous functions 
ÁKOS CSÁSZÁR 

To Professor Béla Szökefalvi-Nagy, to our Master, to my Friend 

0. Introduction. Let X be a topological space and C{X) denote the set of all 
continuous, real-valued functions defined on X. C(X) is a ring under pointwise 
addition and multiplication of functions. A classical theorem [2] states that the iso-
morphy of the rings C(X) and C(Y) implies the homeomorphy of X and Y 
provided X and Y are compact Hausdorff spaces. Somewhat surprisingly, A. N. 
MILGRAM [7] has shown that the same is true if one replaces the isomorphy of the 
rings C(X) and C(Y) by the isomorphy of the multiplicative semigroups of C(X) 
and C(Y). 

Another generalization was furnished by E. HEWITT [5]; he replaced the condi-
tion for X and Y to be compact by that of being realcompact (but kept the ring 
isomorphy of C(X) and C(Y)). As to the concept of a realcompact space, let us 
recall the following definitions. 

In a topological space X, denote 

(1) Z ( / ) = {x£X: f(x) = 0} 
for fiC(X), 

(2) Z(X) = {Z ( / ) : f£C(X)}. 

A subset 3 czZ(X) is said to be a z-filter iff 

(3.a) 0 * 3 * Z(X), 
(3.b) Zj£3, Z2ÇZ(X), Z1czZ2 implies Z2Ç3. 

(3.c) Zx, Z263 implies Z1i)Z2e3. 

A z-filter 3 is said to be fixed iff 0 3 ^ 0 , maximal iff 3'=3 for every z-filter 3 '33, 

and real iff Z„£ 3 (n^N) implies C\Zn£ 3. Now X is said to be realcompact iff it is 
1 

a Tychonoff space such that every real maximal z-filter is fixed. 

Received May 7, 1982. 
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It is a natural question whether these two generalizations can be unified. In 
fact, the paper [8] contains the following statement: 

Theorem A. If X and Y are realcompact spaces such that the (multiplicative) 
semigroups C(X) and C(Y) are isomorphic then X and Y are homeomorphic. 

However, the proof in [8] of this statement is rather long, goes through arguments 
concerning the lattices G(X) and C(Y), and seems to contain some gaps. There-
fore it is desirable to have a short proof operating directly with the semigroup 
structure of C(X) and C(Y). This is desirable also because, as it was shown in [4], 
Theorem A implies 

TheoremB. If X and Y are arbitrary topological spaces, then the isomorphy 
of the semigroups C(X) and C(Y) implies the isomorphy of the rings C(X) and 
C(Y). 

The proof of Theorem B is based on Theorem C below. In order to formulate 
it, we have to recall one more definition. Let X be a Tychonoff space, and denote 
by vX the set of all real maximal z-filters in X, equipped with the topology for 
which the sets 

(4) B{Z) = {tfvX: Zis} (ZeZQO) 

constitute a closed base; vX is realcompact and is called the Hewitt realcompactifica-
tion of X (see the monograph [3] for more details). 

Theo remC. If X and Y are Tychonoff spaces such that the semigroups 
C(X) and C ( r ) are isomorphic then vX and vY are homeomorphic. 

Theorem C contains Theorem A because vX is homeomorphic to I if I 
is realcompact. 

One of the purposes of the present paper is to present a method furnishing 
a simple proof of Theorem C. However, our method furnishes essentially more. 
Firstly, we can consider, instead of real-valued functions, functions with values in 
suitable topological semigroups. Secondly (which is more important), the condition 
of semigroup isomorphy can be replaced by an essentially weaker condition. 

I . ¿-mappings and ¿/-ideals. Let S be a semigroup. For f,g£S, we introduce 
the notation gof iff / is a right divisor of g, i.e., iff there is h£S such that 
g=hf. The relation t> is transitive; it is reflexive (i.e. a preordering) if S contains 
a left unity element. 

If Sx and S2 are semigroups with the respective relations and o 2 , we 
say that a mapping <p :Si—S2 is a d-mapping iff / , g€S1,go1f implies <p(g)o2<p(/)-
A bijective mapping <p:Si—S2 such that both <p and <p-1 are ¿/-mappings will 
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be called a d-isomorphism; Sx and S2 are said to be d-isomorphic iff there exists 
a ¿/-isomorphism from S^ onto S2. If 5"i and S2 are semigroup isomorphic 
then they are clearly ¿/-isomorphic but the converse is false; e.g., two groups of the 
same cardinality are always ¿/-isomorphic (because gx>f holds for any two elements 
/ , g of a group S). 

A subset D of a semigroup S will be a called a d-ideal iff 

This is a special case of the general Definition 1.2 in [6]. A ¿/-ideal is (by (1.2)) 
a left semigroup ideal. 

Lemma 1. If the semigroup S contains a right unity element e, and eof 
then f cannot belong to any d-ideal D. 

Proof . Clearly gx>e for every g£S, hence /€Z) would imply D=S. • 

A ¿/-ideal D is said to be maximal iff D'=D holds for every ¿/-ideal D'z>D. 
By the Kuratowski—Zorn lemma, in a semigroup with right unity element, every 
¿/-ideal is contained in a maximal ¿/-ideal. For a ¿/-isomorphism cp: Si—S2 and 
DcSx, <p(D) is a (maximal) ¿/-ideal in S2 iff D is a (maximal) ¿/-ideal in S±. 

2. Quasi-real semigroups. Let R denote the real line, R+ the subset (0, + 
and Rq the subset [0, + Both R + and Rj" are semigroups (the first one even 
a group) under the multiplication of real numbers, and also topological spaces as 
subspaces of R equipped with the usual topology. 

A set S will be called a quasi-real semigroup iff 
(2.1) S is a semigroup; 
(2.2) S contains R,J~ as a subsemigroup; 
(2.3) 0£R+ is a zero element in S (i.e., 0 ^ = a - 0 = 0 for a£S); 
(2.4) l£R,f is a unity element in S (i.e., 1 -a=a- l=a for S); 
(2.5) For ¿z6S, a^O, there is b£S such that a -b~b- a= 1 (such a b is clearly 

unique and will be denoted by I/a); 
(2.6) S is a topological space; 
(2.7) R+ is a subspace of S; 
(2.8) The mappings (a,b)>-+a-b and a>—l/a are continuous from SXS into 

S and S —{0} into S, respectively; 
(2.9) There is a continuous mapping a^ \a \ from S into R^ such that \a-b\ = 

= |a|'|6|, \a\=a for 
(2.10) Thesets Fe={;c£S: |x|<e} (e>0) constitute a neighbourhood base of 0 in S. 

By (2.5) and (2.9), |a |=0 iff ¿i=0. 

(1.1) 

(1.2) 

(1.3) 

® D S, 
feD, geS, g o / implies g£D, 

f , gdD implies the existence of h£D such that f o h , gc=-h. 
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As examples of quasi-real semigroups, we can mention the semigroups R,^, R, C 
(=the complex numbers) with the usual multiplication, topology, and absolute value, 
further many subsemigroups of C, e.g., those composed of the numbers with 
arguments 2nr where r£Q, or r=m/n where n£N is fixed and m£Z. These 
examples are commutative; a non-commutative one is furnished by the real quater-
nions with the usual multiplication, absolute value and the topology inherited 
from R4. 

We obtain further examples from 

T h e o r e m 1. Let G be a topological group that contains R + as a (topological) 
subgroup; suppose there is a continuous homomorphism a: G—R+ such that a{a)=a 
for a£R + . Let S = GU{ci>} where co$G, and define 

a • co = at • a = co (a£G), ca-oj = a>, a(<a) = 0. 

Equip S with a topology in the manner that G be a subspace of S and the sets 
Ue U (a)}, where 

Ut = {x£G: a(x) < e} (e 0), 

constitute a neighbourhood base of co. After having identified w with the real 
number 0, S will be a quasi-real semigroup {with \x\=a{pcj). 

Conversely, every quasi-real semigroup can be obtained from a topological group 
G with the help of this construction. 

Proof . S fulfils (2.1)—(2.5) with the identification of ca and 0. The continuity 
of a implies that every Ue is open in G; therefore there is a topology on S such 
that G is a subspace of S and the sets UeU{a>} constitute a neighbourhood base 
of (o (see e.g. [1], (6.1.2)). Such a topology is unique because G is necessarily open 
in S; indeed, if co belonged to every neighbourhood (in S) of a point a£ G, then 
the filter base {Ue: e>0} would converge to a in G, which is in contradiction 

{ a.(a) "I 
xgG:«(x)> ^ | is a neighbourhood of a. For this topology 

(and |x|=a(x)), (2.6)—(2.10) are evidently true. 
Conversely, if S is a quasi-real semigroup, define G=S—{0}. By (2.1)—(2.5), 

G is a group containing R + as a subgroup; by (2.6)—(2.8), it is a topological 
group, and R + is a topological subgroup of G. By (2.9), a(x) = |x| defines a 
continuous homomorphism a: G—R+ , and, by (2.10), all requirements are fulfilled 
for co=0. • 

E.g., let G be the set of all non-singular, real, quadratic matrices of order 
m (for a given m€N) with matrix multiplication and the topology inherited from 
Rm \ The diagonal matrices with all elements in the diagonal equal to the same 
c > 0 constitute a topological subgroup isomorphic to R + ; after having identified 
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this matrix with c, define a(M)=|det M|1/m in order to obtain a group G satisfying 
the hypotheses of Theorem 1. 

Many examples can be obtained from 

Theorem 2. Let T be an arbitrary topological group with unity element e. 
Then the direct product G = T X R + satisfies the hypotheses of Theorem 1 provided 
the elements (e, y) are identified with y > 0 and oc(x,y) = y. • 

Observe that Theorem 1 furnishes examples that are not contained in Theorem 2. 
E.g., let G be the multiplicative group of all non-singular, real, quadratic matrices 
of order 2 with the topology inherited from R*. Identify the matrix 

(S 9 
with the number x, and define a(Af)= idet M\. If G were of the form T x R + 

then T would be isomorphic to the subgroup of G consisting of the elements 
M such that a(M)= 1. However, this is impossible because, e.g., 

G 0(o 3 - (o % !)• 
3. ¿-ideals of S(X). Let X be a topological space, S a quasi-real semigroup, 

and denote by S(X) the set of all continuous functions from X into S. S(X) 
is a semigroup under pointwise multiplication of functions. Our purpose is to show 
that the ¿-ideals of the semigroup S(X) are connected to the z-filters in X in the 
same manner as the ideals of the ring C(X) are (see [3]). 

For f£S(X), define 
(3.1) Z ( f ) = {x£X: f(x) = 0}, 

(3.2) l/l(*) = l/(*)| 

Lemma 2. f£S(X) implies \f\<^C(X). Conversely, g£C(X), gSO implies 
giS{X). • 

Lemma 3. For f£S(X), we have Z ( / ) = Z ( | / | ) ; consequently 

{Z(f): f£S(X)} = Z(X). • 

Lemma 4. Z(fg)=Z(f){JZ(g) for / , g£S(X). • 

Lemma 5. If D is ad-ideal in S(X), then 

(3.3) 
is a z-filter in X. 

Zip) = {Z i f ) : feD} 
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Proof . By Lemma 3, Z ( D ) c Z ( I ) . ZM0 implies Z(Z>)?i0. On the other 
hand, since the constant function 1 is a unity element in S(X), and f£S(X), Z(f)=& 

1 1 
implies 1 = — . / for —dS(X), where, of course, 

(3.4) ( x € n 

/€£> is impossible by Lemma 1. Therefore 0(£Z(£>). 
If Z^Z{D), Z2tZ(X), Z 2 c Z 2 , say Z , = Z ( / ) , f e D , Za=Z(g), g£S(X) (cf. 

Lemma 3), then, by Lemma 4, g/€D implies Z2=Z2{JZl=Z(gf)£Z(D). 
Now let Z lsZ2eZ(Z>), say Z l = Z ( / ) , Z2 = Z(g),f g£D. By (1.3), there is 

/i£D such that / o / i , g>l i . By Lemma 4, Z ( / )nZ( / i ) , Z(g)^>Z(h), hence 
Z ^ Z g D Z i / O e Z p ) . Thus Zif lZaeZiD) because Z(Z) is a lattice ([3], 1.10) 
so that Z ^ Z ^ Z { X ) . • 

Lemma 6. If 3 is a z-filter in X, then 

(3.5) Z-*(3) = {/65(Z): Z ( / )€ 3 } 

is a d-ideal in S(X). 

Proof . 0^3 implies 1 $Z_1(3), and 3^0 implies Z _ 1 (3 )^0 by Lemma 3. 
If .feZ-Hz), giS(X\ gx^f then Z ( g ) 3 Z ( / ) by Lemma 4 so that Z(g)£3 , 
gZZ-\3). 

Now let f g £ Z - \ i ) . Define 

h(x) = (|/(x)| + |g(*)l)1/2 (*€*)• 

Then h£S(X) by Lemma 2, and Z(h)=Z(f)HZ(g) implies h£Z-\z). We 
show fc=-h. 

For this purpose, define 

k(x) = 0 if x€Z(f), 

' v - m i f 

Then k£S(X). In fact, k is obviously continuous at the points of X—Z(f). 
The equality 

| t w l = r / ( i i X ) r - | / ( J [ ) | 1 ' ' 

shows by (2.10) that the same holds at the points of Z ( / ) . Finally f—kh is obvious. 
We prove g> l i similarly. • 
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Lemma 7. If D is ad-ideal in S(X), 3 a z-filter in X, then 

(3.6) Z'\Z{D))^D, Z(Z-*(3)) = 3- • 

Lemma 8. If D is a maximal d-ideal, then Z(D) is a maximal z-filter, and 
D=Z~1{Z(D)). 

Proof . For a z-filter 3'DZ(Z)); we have by (3.6) Z - \ i ) ^ Z ~ \ Z { D ) ) r D D , 
hence Z-\^)=Z~\Z{D))=D, and ¿=Z(Z-\f))=Z(D). • 

Lemma 9. If 3 is a maximal z-filter, then Z~x(3) is a maximal d-ideal. 

Proof . For a ¿-ideal D'z)Z~\i), we have by (3.6) that Z(D')z>Z(Z-\i))=i, 
hence Z(Z>')=3, and D' ^Z~\z)=Z-l{X{p'))^D' so that D'=Z~\z). • 

Lemma 10. The formulas 

(3.7) 3 = Z(D), D = Z - H 3) 

establish a bijection from the set of all maximal d-ideals D In S(X) onto the set 
of all maximal z-filters 3 in X. • 

4. Construction of vX. Let X be a Tychonoff space. Our purpose is to show 
that DX or, more precisely, a space homeomorphic to vX can be constructed as 
soon as we know the relation o in S(X) (not necessarily the semigroup structure 
of 

In fact, the knowledge of this relation permits us to determine all ¿-ideals, 
hence all maximal ¿-ideals in S(X); thus we have, by Lemma 10, a set from which 
a bijection goes onto the set of all maximal z-filters in X. In order to know vX as 
a set, we have to select those maximal ¿-ideals D for which Z(D) is a real z-filter. 

Lemma 11. If / , g£S(X), then Z(f)czZ(g) holds i f f g belongs to every 
maximal d-ideal containing f 

Proof . If D is a maximal ¿-ideal, /£Z>, and Z ( / ) c Z ( g ) , then Z(f)£Z(D), 
hence Z{g)£Z(D) by Lemma 5, and g£D by Lemma 8. 

Conversely, if x£Z(f)-Z(g), then 3 ={Z£Z(X): x£Z) is a maximal z-filter 
([3], 3.18) such that Z(/)€3, Z(g)i3, hence Z ~ \ i ) is a maximal ¿-ideal (by 
Lemma 9) such that g i Z ~ \ i ) . • 

Lemma 12. For a maximal d-ideal D, Z{D) is a real maximal z-filter i f f 
fn£D (n£N) implies the existence of g£D such that Z(g)czZ(f„) for n£N. 

Proof . If Z(D) is a real z-filter, and f£D for «£N, then . 

z 0 = nz(/„)ez(z>), 1 
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hence Z„=Z(g) for some g£D. Conversely, suppose /„€•£>, g£D, Z(g)<^Z(f„) 
for every «£N. Then Z0 defined as above belongs to Z{X) ([3], 1.14), and Z ( g ) c Z 0 

implies Z0€Z(D) by Lemma 5. • 

By Lemmas 11 and 12, the knowledge of t> permits to determine those maximal 
¿-ideals D for which Z(D)£vX. For f€S(X), Z=Z(f), the set B(Z) defined 
by (4) is composed of all Z(D)£DX for which /££> (Lemma 8). Hence we obtain 
a space homeomorphic to OX by defining the points to be those maximal ¿-ideals 
D that fulfil the condition formulated in Lemma 12, and by choosing for a closed 
base the system of the sets B ( f ) consisting of those points D for which fdD 
{ f e s ( X ) ) . 

5. Main results. We get as an immediate consequence of the argument above: 

Theorem3. Let X and Y be Tychonoff spaces, Si and S2 quasi-real semi-
groups. Define SX(X) and S2(Y) to be the semigroups of all continuous functions 
f: X-*S! and g: r-<-S2, respectively. If S^X) and S2(Y) are d-isomorphic, 
then X and Y are homeomorphic. In particular, X and Y are homeomorphic 
provided they are realcompact. • 

We obtain Theorem C as a corollary because R is a quasi-real semigroup and 
semigroup isomorphy implies ¿-isomorphy. One can, of course, prove this theorem 
directly, without making use of the definitions and results in Section 2; the state-
ments concerning S quoted in Section 3 are obvious in the case S = R . 

Moreover, the argument applied in [4] leads to the following sharper form of 
Theorem B: 

Theorem 4. For arbitrary topological spaces X and Y, if the multiplicative 
semigroups C(X) and C(Y) are d-isomorphic, then the rings C(X) and C(Y) 
are isomorphic. • 

6. The case S=R. I f S = R then S(Z)=C(A'). If we agree in calling ¿-ideals 
of a ring A the ¿-ideals of the multiplicative semigroup of A, Lemmas 8 and 9 
imply, according to [3], 2.5: 

Theorem 5. The maximal d-ideals of the ring C(X) coincide with the maximal 
ideals. • 

It is a natural question whether there is some connection between ¿-ideals 
and ideals of C{X) in general. 

Lemma 13. Every d-ideal D of a ring A is a left ideal in A. 

Proof . It suffices to prove that f,g£D implies f—giD. Now there is h£D 
such that f=fih, g=gji for some f , g^A, hence / - g=(fx-gdh£D. • 
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In particular, every ¿-ideal of the (commutative) ring C(X) is an ideal. The 
converse is not true in general. In fact, let X= R, 

(6.1) fo(x) = max (x, 0), g0(x) = min (x, 0) (x£X), 

and let / be the ideal generated by {/0, g0}> ¡-e-> 

(6-2) I — {ffa+ggo'- f , g£C(X)}. 

Suppose h£l,f0oh, g0t>h. Then 

(6-3) fo=fxh, g0 = gA A , g l € C ( n 

hence Z(h)czZ(f0)C)Z(g0)= {0}. Consequently 

(6.4) (— 0) c Z(/ j ) , (0, + » ) c Z ( & ) . 

Select / , g£C(X) such that h=ff0+gg0; then (by (6.3)) 

(6.5) h = ( f f 1 + ggl)h 
so that 
(6.6) /(*). / i(x) + g(x)g l(x) = l 

for x^O and, by continuity, for x=0, too. The first member of the left-hand side 
of (6.6) vanishes for the second one for x > 0 (see (6.4)), hence both vanish 
for x=0: a contradiction. 

The ideal I in the preceding example was generated by a subset of cardinality 2. 
For 1 instead of 2, we have the following obvious 

L e m m a 14. Every proper left ideal generated by an element of a ring A with 
unity element is a d-ideal. • 

For another result in the same direction, let us recall that an ideal I of C(X) 
is said to be a z-ideal iff / = Z _ 1 ( Z ( / ) ) (with a notation analogous to (3.3) and (3.5)). 

Lemma 15. Every proper z-ideal of the ring C(X) is a d-ideal. 

Proo f . By [3], 2.3, Z ( / ) is a z-filter for every proper ideal I of C(X), hence 
Lemma 6 furnishes the statement. • 

On the other hand, a ¿-ideal of C(X) need not be a z-ideal. Again for Z = R , 
the ideal I generated by {/J„}, where h0(x)=x for X, is a ¿-ideal by Lemma 14, 
but fails to be a z-ideal ([3], 2.4). 

We can summarize our results as follows: 

T h e o r e m 6. We have the following implications in C(X): 

proper z-ideal => d-ideal =>• proper ideal, 
and none of them can be reversed in general. • 
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On how long interval is the empirical characteristic 
function uniformly consistent? 

SÁNDOR CSÖRGŐ and VILMOS TOTIK 

In honour of Professor Béla Szökefalvi-Nagy on his seventieth birthday 

Introduction, results, and discussion 

Let X1;X2, ... be a sequence of independent identically distributed ¿-dimen-
sional random vectors, d S1, defined on a probability space (£2, si, P), with 
common distribution function F(x), Rd, and characteristic function 

C( / )= f e>«'*> dF(x), / = (/!,..., 06R", 
R« 

where < •, • > stands for the inner product of Rd. The nth empirical characteristic 
function of the sequence is 

CM = -J- ie«'-xJ> = f €'<••*> dF„(x), t = (/T, ..., OCR", n j=i ¿d 

where Fn(x), x£Rd, denotes the empirical distribution function of .... X„. 
By any advanced form of the strong law of large numbers, lim C„(t)=C(t) almost n-* CO 
surely at each fixed Rd, but more than this is still trivial. Indeed, the ¿-variate 
Glivenko—Cantelli theorem for F„ and the ¿-variate continuity theorem of Lévy 
readily imply that 
(1) lim sup |C„(0-C(0 | = 0 

n—<*> \t\mT 

almost surely for any fixed positive oo, that is, in statistical terminology, C„ 
is a strongly uniformly consistent estimator for C on any fixed bounded subset 
of R". 

Received May 24, 1982. 
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On the other hand, C„(0 is a ¿-variate almost periodic function for each n, 
at each Q where it is defined, and hence if 

An = sup|C„(/)-C(i)| 
f € R d 

converges to zero at only one single co£Q, then by Satz X X V I of BOCHNER [1] the 
limiting function C(t) must be almost periodic. But then, by a simple extension 
of the corresponding univariate result (Corollary 1 of Theorem 3 .2 .3 of LUKACS [5]; 
here we use the Eindeutigkeitssatz (Satz X X X V I I ) of BOCHNER [1] instead of the 
corresponding univariate uniqueness theorem of Bohr), C(t) must belong to a purely 
discrete F, i.e., it is of the form 

C(t) = Z gt^O-V, qkS 0, 2<lt=U 
k k 

with a finite or infinite sequence of vectors Xk. That A„ does converge to zero almost 
surely in such a case was pointed out by FEUERVERGER and MUREIKA [4] for uni-
variate characteristic functions, i.e., for discrete real random variables, and later 
b y CSÖRGŐ [3] f o r d ^ l . 

So if we wish to say more than (1) in the general case, then we are lead to 
considering the quantities 

A„{T,) = sup [C„(/)-C(/)| 
l'|3-r„ 

for some sequence {T,,} of positive numbers converging to infinity. This has been 
first done by FEUERVERGER and MUREIKA [4] in the univariate case, who showed 
that if d = 1 and the singular part of C vanishes at infinity, then lim An (T„) = 0 

almost surely whenever R„=o((/7/log «)1/2). This result was improved by CSÖRGŐ 

[2, 3] (d = l and d^l, respectively) who showed that lim An(T„)=0 almost surely OO 
for any characteristic function whenever T„=o((n/log log w)1/(2d)). The latter 
result is in fact an easy consequence of Kiefer's well-known rf-variate extension of 
the Chung—Smirnov univariate law of the iterated logarithm for F„. This familiar 
rate has made us think for a longer time that it was perhaps best possible, although 
its dependence on the dimension appeared strange. It is in fact very far from being 
best possible, and the final solution presented below is rather surprising. 

T h e o r e m 1. For any d-variate characteristic function C, if lim (log Tn)/n = 0 It-* CO 
then lim A„(T„)=0 almost surely. 

It-* OO 

T h e o r e m 2. If lim |C(/ l 5 . . . , tk, i d ) |=0 for some k, l^k^d, and if 

lim (log T„)/n> 0, then there exists a positive e such that n— OO 

JmT P{MT„) § £ } > 0 . 

\ 
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We see that the rate T„=exp (o(n)) is not only best possible in general for 
almost sure convergence, but if we take any faster sequence T„ then even stochastic 
convergence cannot be retained for any characteristic function vanishing at infinity 
along at least one path. 

The proof of Theorem 2 implies that if log Tn^ynk, k=1,2, ..., for a sub-
sequence {«*} of the natural numbers and some y>0, then for any subsequence 
{mk} of {«*} the sequence 

sup |C r a f c (0-C(0 | 
I'l *Tmk 

does not converge to zero in probability. Since the topology of stochastic convergence 
is metrisable, and since for every T > 0 

P { s u p | C , „ K 0 ) - C ( I ) | > £ T ( R ) } > 0 
| t | s r 

with some ek(T)> 0 (the opposite could only occur in the case when C(t)= 
=exp (i(t, X)) with some vector X, i.e., when the distribution is degenerate at X, 
but this case is excluded under the hypothesis of Theorem 2), the following some-
what sharper form of Theorem 2 is also true: If lim |C(/1? ..., tk, ..., / d ) |=0 for 

some k, l^k^d, and if log Tn^ynk, k= 1 ,2, . . . , for a subsequence {wfc} of 
positive integers and some y > 0 , then there is a positive e such that 

P{ sup | C „ f c ( 0 - C ( 0 | S e } s £ 
If I ^ T 

is satisfied for all k. "k 

The proof in the positive direction is quite straightforward. Essentially it 
imitates that of the easier half of the continuity theorem in conjunction with the 
exponential inequality of Bernstein. Exactly the same approach was taken in [2, 3] 
for handling the much harder problem of weak convergence, or strong approxima-
tion of the process n1/2(C„(-)—C(-)). It was not realised then that this approach 
is also suitable for the easier problem of uniform consistency on long intervals. 
On the other hand, the proof of Theorem 2 shows that the behaviour of A„(T„) 
is intimately connected with an old number-theoretic problem. Indeed, our starting 
point will be Dirichlet's classic result in diophantine approximation. 

Having Theorems 1 and 2 above, further questions can be posed which may be 
irrelevant from the statistical point of view but are interesting as purely probabilistic 
problems. Set Lk= Em |C(i l5 ..., tk,..., k=\,..., d. Can Tn be faster than 
exp (o(n)) if L—min (£•!,..., £ d ) > 0 but the distribution is not purely discrete? 
In the positive direction we do not have anything more than Theorem 1. In the 
negative direction the hardest subcase seems to be the one when L= 1. Otherwise 
a slight modification of the proof of Theorem 2 below also gives the following result: 
/ / 0 < L < 1 and lim (log T„)/n >log (In/arc cos L), then lim P{A n{Tn)^£}>0 n-+ oo Tt->oo 

with some positive e. 
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Proofs 

Theorem 1. Let £>0 be artbitrarily small, and choose K=K(s, F) 
so large that 

J d F (x) S 

Ms* 8 " 

Writing D„{t)=B„(t)-B{t), we have 

sup |Z 
l'|sr„ 

with the truncated integrals 

J„(rn)=g sup ID,(r)|+ sup 1 ^ , ( 0 - ^ ( 0 1 + sup | f i ( 0 - C ( 0 | 
| < | s r „ |<| ST„ | ( | S T „ 

B(t) = f dF(x), 
|*|sK 

Bn(t) = f dF„(x) = | ± el<t'x>Wji ^ *), 
W¿K " i=i 

where /(A) denotes the indicator of the event A. The second term is 

1 
— sup 
n l'lsr„ 

1 -A 
2 EWX(\XJ\ > K) - 2X(\XJ\ > K), n 

and these bounds converge almost surely to J dF(x) which is also a bound for the 
H=>K 

third term. 
Let us cover the cube [-T„,Tn)d by Nn=(l($Kd3'2Tn)/s] + ]y disjoint small 

cubes AX, ..., AN , the edges of each of which are of length e/(4A"i/a/2), and let 
t 1 , . . . , t N be the centres of these cubes. Then 

" n 

sup |A,(0l = max |A,(A)I+ max sup \Dn(t)~Dtt(tk)\ s max \Dn(tk)\ + ^~, 

for 

^ - 2 \(s-t, XjM\Xj\ S K)+ f \(s-t, x)\ dF(x) s2dK\s-t\, s, idR". 
n J=i I*Isa: 

(In fact, the finer almost sure upper bound 

4 . / 
• (s-t,x) sin-1— - dF{x) 

can be given here, but this is irrelevant in the present context, yielding the same 
result). Summing up, 

(2) 
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almost surely for large enough n, the threshold depending on a>. Now 

s mt>- - tMTIJH - IB 
with some constant M = M ( e , F,d), where the random variables 

Rj{t) = (cos </, XJ))X{\XJ\ K)- f cos (t, x)dF(x), j = 1, ..., n, 
IxtSK 

are independent, |/?y(0l=2, ERj(t)-0, and 

v2 (/) = ER) (t) = f cos2 (t, x) dF(x) - ( f cos (t, x) dF(x)f S 1. 
1*1 SK 1*1 SK 

The random functions Ij(t), j = 1, ..., n, are defined with the cosine function 
replaced by the sine, and hence these are also independent and identically distributed 
with | / / i ) l = 2 , £ 7 , ( 0 = 0 and £/?(/) = 1- Therefore the Bernstein inequality 
([6], Chapter X, §1, Lemma 1) gives 

i l l " e l f2e 32, 
in I j f i 4J 1ilJw 

if e S 2v2(t), 

2e 64»2«, if e^2v2(t). 

Since v2(i)= 1 and the probability- in question is not greater than 
2 exp (—£2n/64), and the same holds for the other one with the J/s. Thus 

p„ ^ 4MT?,e 64 . 

Let ¿<e2/(64c/). Then for large enough n, T„^exp(Sn), and hence 2 / ' « < c o -
n = l 

The Borel—Cantelli lemma and (2) give the desired result. 

T h e o r e m 2. Since 
sup IC, ,^ , . . . , td)-C{h,...,td)\ s 

I C , <d) l a r „ 

S sup |C,,(0, ..., 0, lk, 0, ..., 0) —C(0, ..., 0, tk, 0, ..., 0)|, 
-TnStkST„ 

where C„(0, ..., 0, tk, 0, ..., 0) is the empirical characteristic function of the ktb 

components of Xx,...,Xn and C(0, ..., 0, tk, 0 , . . . , 0) is the common charac-
teristic function of these components, it is clearly enough to prove the theorem in the 
univariate case. We assume therefore that d = 1, i.e., that X— {X1, X2, ...} are 
independent real random variables with common characteristic function C(t), 
-CO<Z<<X,, with lim ]C(0 |=0. 

10 
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Let 

Sn(t) = Sn(f, X) = 2 ei,x'-

Then C„(t)=n~1S„(t), and the theorem will easily follow from the following propo-
sition of independent interest, in which there is no assumption whatsoever on the 
common characteristic function, or distribution, of the independent variables 

P r o p o s i t i o n . If JV= {H*}~=1 denotes an arbitrary nondecreasing sequence of 
natural numbers and if 

p.C/f) = sup inf Dm P\ sup i ^ t M . a m } 

then pa(jV)>0 for every a > l . 

Indeed, taking for granted the validity of this Proposition, Theorem 2 can be 
proved as follows. By assumption there is a y > § such that T n ^ e y " k for some 
subsequence {nk} of the positive integers. On applying the Proposition with 
a = e y > l , we obtain an M > 0 and a ¿ > 0 such that 

\s»M Pi s u p J * * « ! s A f U a 
iKSISei"« J 

for every K >0. Choosing K so large that \C(t)\<M/2 be satisfied for t^K 
and then putting s—M/2, we obtain 

Jim P{ sup \C„k(t) - C(/)| > e} ^ Em P{ sup |C„fc(0| fe Ai\ S 5, 
l|(|aTnfc J I K s t s e y n k } 

which is the desired result. 

In order to prove the Proposition, define 

PW = inf {a: > 0}. 

What we have to show is that P i ^ ) — 1. First we establish the following properties 
of 1 

(i) P f o r every JT, 
(ii) if J{= {mt}~=1 is another sequence of positive integers with 

(3) nk-mk = 0( 1), k 
then P(JT)=P(Jf) . 

(iii) if 2Jr={2n k }^ 1 then (0(2 
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The proof of (i) is based on Dirichlet's theorem (see e.g. §2 of [7]) stating that if 
yi , ...,y„ are arbitrary real numbers, K > 0 and a > l , then there is an integer 
t£[K, Kctn] such that with appropriate integers Vi, ..., v„ the inequalities 

\tyj-vyl<7> j = U-,n, 

are satisfied simultaneously. Applying this with a=5 and yj=x ¡/2tz, j=l, ..., n, 
we get that for arbitrary real numbers xt, ...,x„ and K > 0 there is an integer 
t,K^tsK5", such that 

lit 
.cos — 2 e"xJ ^ R e i ^ e " ^ } = ¿ R e e ' ^ j - ^ V s J Re e' 5 = n< 

j=i i;=i ) j=i j=i 
Since for every fixed K, we have K5"<6" for all sufficiently large n, it follows that 

i n f I I 5 / > j sup M S C 0 S M = 1 . 
W a s » * »* 5 J 

This means that p6(Jr)=1, and hence (i) is proved. 
Now suppose (3) and let a>~fHJf). If we choose in between, fl{J r)<ct i<a., 

then there exist an 0 and a ¿ > 0 such that 

inf lim P[ sup 
I Kstsx^ K J 

But (3) implies that for all large enough k, a ^ g a j ' and 

\s„M _ I S J O I - k - m J ^ 1 I S J 0 I ^ r J L l 

and so 
mk nk+\nk-mk\ 2 nk 

inf lim P J sup J S s W L ^ U 
lKa(sam fc HI* 3 J -

s inf lim p[ sup M a M\ = D > 0. 
1 1 nk I 

This means that pa{Ji)>0. Since this is true for all we can conclude that 
/?(«//) ̂ ( . /K) . Reversing the role of Jf and Ji, we obtain the opposite inequality, 
and hence (ii) is also proved. 

Turning now to the proof of (iii), we introduce the following subsequences of 
the original X sequence: 

= {-^i» X<], X10, ...}, X^ = {X2, X5, Xs, ...}, 

y^1' = {x2, X3, X5, X6, Xs, Xq, Xh, X12, •••}, 

Y® = {^i, X3, Xi,Xi, X1, X10, Xxi, ...}, 

10* 
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and 

YW = {XI, X2, XT, , XJ, XG, X10, XN, ...}. 

Let For each k, 
S^it; Y™)=Snk(t; X^+S^t; 

whence 

P r . < 2 J f ) = lim lim fimp\ sup l 5*--^ y(3))l ^ M ] 

^ lim lim Rm [ p \ sup J M ^ I L s + 

+ P ( S U P J & C Y J A * " } ) * 

^ lim lim 115 p / sup ^ M U 
\KStSt-k nk J 

+ lim lim Dm p / sup l ^ S J ^ l ^ M1 = 0 + 0 = 0, . 
M J O K — J 

where, at the last step, we used a</?(yF). Thus a.<fi(jV) implies / a ^ / ? ^ ^ ) . 
Therefore I J f ^ f . 

Now let a<jS(2^). Clearly, 

Hence, similarly as above, 

<0 = lim lim lim P\ sup * (1>) l 

" t o * - - * - - w* J 

^ lim lim lim ipi sup J ^ L Z ^ + 

+ P i sup ^ y ( 3 ) ) l SUP i ^ M l ^ M n . 

l i ^ s A 2n* 3 J 2w* 3 JJ 

= 0+0+0 = 0, 
i.e., a<)J(2J/") implies a T h e r e f o r e the opposite inequality (/?(2JT)fS: 
^P{J f ) also follows, and hence we have (iii). 
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Having now the three properties of the proof of our Proposition is 
easy. For a positive integer m, set 

Since for fixed m, 

2m[^]-nk = 0(l), co, 

we obtain by property (ii) that 

and, by an w-fold application of property (iii), that 

Thus, by property (i), 
i 

and since this holds for any integer m s l , the equality P(JV)=1 follows. 
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Série de Poincaré et systèmes de paramètres 
pour les invariants des formes binaires 

J. DIXMIER 

Pour le 70-ième anniversaire du Professeur Béla Sz.-Nagy 

1. Introduction. Soient G un groupe, V un espace vectoriel complexe de 
dimension finie, C[F] l'algèbre des fonctions complexes polynomiales sur V, 
Q une représentation linéaire de G dans V, C[V]G la sous-algèbre de C[F] formée 
des éléments £>(G)-invariants. Soient C[V]G l'ensemble des éléments de C[V]G 

qui sont homogènes de degré n, et d„=d\m C[V]G. La série de Poincaré de l'algèbre 
graduée C[V]G est F(z) = 

N Ë O 

Supposons désormais que G soit un groupe algébrique réductif et que la 
représentation Q soit rationnelle. Soit (plt pr) un système de paramètres 
homogènes dans C[V]a (il en existe). Alors C[K]G, considéré comme module sur 
C[/71; ...,pr], admet une base (q1=], q2, qs, •••, q^) formée d'éléments hor^op^-s 
(cf. par exemple [7]). Si l'on pose degPi=di, deg qj=ei, on a donc 

„ zei + ze«+. .. + ze* F(z) = 
( l - z " i ) ( l - z d O . . . ( l - z d r ) • 

Réciproquement, supposons que F{z) se mette sous la forme 

zei +ze» + ... +ze< F(z) = 
( l - z r f i ) ( l - z ^ ) . . . ( l - z < ) 

où e[, ..., e't, d[, ..., d'T sont des entiers > 0 (r est nécessairement l'ordre du pôle 1). 
Existe-t-il un système de paramètres homogènes de degrés d[, ..., d'rl Un contre 
exemple a été obtenu par R . STANLEY [7], 3.8, dans lequel G est un groupe fini. 
Nous allons construire un contre-exemple dans lequel G = SL(2, C). 

Avec les notations ci-dessus, la borne inférieure de s pour tous les systèmes de 
paramètres homogènes de C[V]G a été appelée dans [2] la complexité de C[F]°; 
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ce nombre fournit une manière de mesurer la «distance» de C[V]G à une algèbre 
de polynômes. Dans le contre-exemple annoncé, nous calculerons cette complexité. 

Désormais, on prend G=SL(2, C). Soit Vt l'espace des formes binaires 
de degré d à coefficients complexes, dans lequel G opère canoniquement par une 
représentation irréductible Qd (on a dim Vd=d+1). Soit cd la complexité de 
C[FJ°. T. A. SPRINGER a obtenu [6] l'évaluation C J Ë A D - 9 ' 2 2 d où a est un nombre 
=-0 indépendant de d. La démonstration de Springer utilise des calculs assez 
délicats concernant la série de Poincaré; mais, concernant les degrés despj, Springer 
n'utilise que l'inégalité évidente degPj=2\ en conservant la méthode de Springer, 
mais en évaluant ces degrés de manière plus détaillée, nous prouverons que, si 
A est un nombre < 1/2, on a c ^ e x p (Ad log d) pour d assez grand. La démonstra-
tion utilise un théorème sur la répartition des nombres premiers. 

Première partie 

2. Soient V — © , Q=Qb®Qi- La décomposition V—V&®VX définit 
une bigraduation (C[K]° de C[Vf- Soit am„=dim C[F]«„. La série 
de Poincaré de l'algèbre bigraduée C[V]G est <P(z, z') = am„zmz'". Comme 

m, nmo 
C[F]c s'identifie à l'algèbre des covariants d'une forme binaire de degré 5, on trouve 
la valeur de z') dans [8], p. 224. 

Comme dans l'introduction, graduons maintenant C[V]G par le degré total. 
Sa série de Poincaré est F(z)=$(z, z). Utilisant [8], on trouve 

_ 1 ~ + + - 3z1 0+3z1 2- 5z14 - z16+z20 - z22 

( Z ) ~ (1 - z2) (1 - z4)2 (1 - z4)2 (1 - z8) 

Le numérateur est divisible par 1 — z2, d'où 

_ 1 + z6 + 6z8 + 3z10 + 6z12 + z1*+z20 

n z ) ( l - z 4 ) 2 ( l - z 6 ) 2 ( l - z 8 ) 

On vérifie facilement que l'écriture (1) est la forme irréductible de F(z). Comme 
tous les coefficients du numérateurs sont ^0 , cette forme de F(z) est du type 
considéré dans l'introduction. Comme elle est irréductible, c'est l'unique écriture 
minimale de F(z) au sens de [2]. 

3, Lemme. Soit cp—ax5+5bxiy+l0cx3y2+l0dx2y3+5exyi+fy5 une forme 
binaire de degré 5. Soit i¡/ le transvectant ((p, <p)4. On a 

(2) i-i/r = (ae—4bd+'ic2)x2+(af— 3be+2cd)xy+(bf— 4ce + 3 d2) y2. 
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Les conditions suivantes sont équivalentes: 
(i) cp a une racine d'ordre S 4 en x/y ; 

(ii) 0 = 0 . 

La formule (2) est très facile. Pour prouver (i)=>(ii), on peut, par action de 
SL (2, C), se ramener au cas où (p=ax&+5bxiy; alors \¡/=0 d'après (2). Supposons 
maintenant 0 = 0 , et prouvons (i), qui est d'ailleurs un casparticulier de P. G O R D A N , 

Vorlesungen über Invariantententheorie, 1885, p. 204. 
Par action de SL(2, C), on se ramène au cas où / = 0 . La condition 0 = 0 

se traduit alors par ae—4bd+3c2= —3be+2cd = —4ce+3d2=0. Si e=0, on 
trouve d—0, c=0, donc (i) est vérifié. Supposons e?±0. Par action de SL (2, C), 
on peut, sans perdre les conditions précédentes, supposer que d = 0 . Alors, on 
trouve c=0, 6=0, a=0 , donc (i) est encore vérifié. 

4. Soit (cp, (p')eVr,® V1=V, avec 

(p=axa+5bxiy+ 10CAT3>' Î+ \0dx*y3+5exyi+fy!', q>'=a'x+b'y. 

L'algèbre C[V]a s'identifie à l'algèbre des covariants de <p. On a donc en [4], 
p. 131, une table de générateurs de C[V]G. Posons 

•Ai = y(<7>. 9)^6:2,0, <p2 = y (<P> 4*3 = (<P, W i i ^ 3,O-

(La notation coÇ.Vi;Jtk signifiera que co est une forme homogène de degré i en 
x et y, dont les coefficients sont homogènes de degré j en a, b, . . . , / , et de degré 
k en a',b'.) Alors (i¡s2, ^2)2 est un scalaire qui dépend de cp, disons p^cp), où 
Px est une fonction polynomiale homogène de degré 4 de a,b,...,f. On a />i£C[Fs]®. 
Nous considérerons px comme une fonction polynomiale bihomogène sur V, 
de bidegré (4,0): 

Définissons de même />2ÇC[K]°0 et />3£C[K]f20 par 

P2 W) = OA2. We. P3 (<P) = («AI, Ç>2)io • 

Les fonctions pi,p2,p3 s'identifient à 3 invariants fondamentaux de <p de degrés 
4, 8, 12. Définissons encore />4€C[F]£5, p5£C[V]G

i2, A , € C [ K ] « 6 , p&C[¥]£„ par 

PÁ<P, <P') = (<P, <P'%, PÁ(P, <P') = (^2, <P'2)2, Pe = ("Ai, <P'\, Pi = ("As, <P'\ • 

5. Théorème, (i) Les éléments Pi,Pi, pt, p2+p6, P3+P7 de C[ V]a sont 
homogènes pour la graduation totale, de degrés 4, 4, 6, 8, 12. 

(ii) L'ensemble {/?1; p5, Pi, p2+pe, Pz+Pi) est un système de paramètres 
pour C[V]G. 

(iii) La complexité de C[V]G est 38. 
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(iv) Il n'existe pas de système de paramètres homogènes de C[V]° correspondant 
à l'écriture (1) de la série de Poincaré. 

(i) est évident. 
(ii) Supposons que p1} p6, Pi, Pî+Pt, Pz+Pi s'annulent pour (cp, <p'). On va 

prouver que (cp, <p') est instable. Comme le degré de transcendance de C[K]c 

sur C est 5, cela établira (ii). 
Supposons d'abord [¡/¡¡=0, donc p2=0. D'après le lemme 3, on se ramène 

au cas où cp=ax5+5bxiy. Alors 

fa = (ax3+3bx2y)-0-(bx?)2 = -b2x\ p6=-b2b'\ Pi = ab'5-5ba'b'\ 

Les conditions p^ip, (p')=(p2+p^(<p, <¡»0=0 donnent ab'5—5ba'b'i=b2b"s—0. 
Si b'=0, (cp, cp') est instable d'après le critère de Hilbert—Mumford. Supposons 
b'^O. Alors, 6=0, puis <2=0, donc (p=0 et il est clair que {<p,<p') est instable. 

Supposons désormais ij/^ 0. Puisque 0=py((p, cp')—1/^)2 > ^2 admet 
une racine double en x/y, et, par action de SL (2, C), on peut supposer que cette 
racine est 0. D'après le lemme 3, on a alors 

(3) ae—4bd+3c2 * 0, 

(4) af—3be + 2cd = 0, 

(5) bf—Ace + 3d2 = 0. 

Par ailleurs, 0=pi(q>, <p')=(ae—4bd+ 3c2)b'2 donc, compte tenu de (3), 

(6) b' = 0. 

Supposons d'abord a'=0. Alors pe et p7, qui sont de degrés >0 en (a',b'), 
s'annulent pour (cp, (p'). Donc 0=p1(<p)—p2((p)=p3,((p) de sorte que cp est instable 
dans Vb. Alors (cp, (p')=(cp, 0) est instable dans V. 

Supposons désormais a'^0. On a 0=pi(cp, (p')=((p, <p'5)5= —fa'" donc " 

(7) f= 0. 
Comme 1¡/\ est proportionnel à x10, la condition (7) entraîne que (1ç> 2 ) i 0 =0 , 
d'où p3((p, <p')=0. Alors, p7(<p, (p')—0, c'est-à-dire (1¡/3, <p'\=0. Comme 
(p'i=a'9xi, le seul terme de qui intervient dans le calcul de (t/^, (p'9\ est le 
terme en j>9. Il nous suffit donc de considérer les termes en xy* et y5 dans <p, 
en xy5 et y6 dans 1/̂ : 

cp = ... + 5exy4+fyi = ... + 5exy*, 

fa = (... + dy3)(... + 3exy2)-(... + 3dxy2+eys)2 = . . . - 3 edxyb-e2ys, 

fa = (... + e / ) (... - e 2 / ) - (... + 4exy3) [... - 1 edy4). 
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Le terme en y9 de \j/3 est donc —e3y9, d'où 0=(\j/3, <p'9)9=eV9. Comme aVO, 
on en déduit que 
(8) e = 0. 

Les conditions (5), (7), (8) donnent d—0. Comme b'=0, {<p, <p') est instable dans 
V d'après le critère de Hilbert—Mumford. 

(iii) et (iv). Soit (q1, q2, q3, qb) un système de paramètres homogènes 
de C[F]c. Soit ¿ ; =deg (e/,-). On peut supposer que ¿ ^ < / 2 = 4 = ^ = 4 - Montrons 
que 
(9) d . d M d , S 210 • 32. 
On a 

A(z) F(z) (1 - Z'i) (1 - zd*) (1 - z'a) (1 - zd4) (1 - zdi) 

où les coefficients du polynôme A(z) sont ^0 . Nous allons imiter le raisonnement 
de [2], §2. D'après la forme irréductible (1), F{z) admet — 1 comme pôle d'ordre 
5, ]/— 1 comme pôle d'ordre 3, (l + j/ —3)/2 comme pôle d'ordre 2. Donc les 

sont tous pairs, trois d'entre eux sont divisibles par 4, deux d'entre eux sont 
divisibles par 6. Le développement en série de F{z) commence par 1 +2z4 + 3z6. 
Comme les coefficients de A(z) sont ëO, on voit que les d¡ sont tous S4, et 
que, si l'on note a (resp. 0) le nombre de d¡ égaux à 4 (resp. 6), on a oc^2, 0 ^ 3 . 

Supposons a = 0 . Les ¿¡ sont ^ 6 . Trois d'entre eux sont divisibles par 4, 
donc trois d'entre eux sont ^ 8 . Donc /^¿¡ =83 • 6 2 =2 U • 32. Supposons a = l . 
Alors dx — 4. Les entiers ¿2 , d3, ¿4 , ¿5 sont = 6 et deux d'entre eux sont ë 8 , 
donc JJd^A-82 • 62,=210 • 32. Supposons a=2 . Alors dx—d2=4. Distinguons 
plusieurs cas. Supposons 0 = 0 . Alors ¿ 3 =8. Comme deux des d¡ sont divisibles 
par 6, deux des d¡ sont isl2, donc JJd¡^42 • 8 • 122=2U • 32. Supposons 0 = 1 . 
Alors î/3=6, ¿4=È8. Comme deux des d¡ sont divisibles par 6, on a ¿ 5 ^12, 
donc JJ^i—42• 6• 8 • 12=210-32. Supposons 0=3 . Alors ¿ 3 = ¿ 4 = ¿ 5 = 6 , ce qui 
est impossible puisque trois des d¡ sont divisibles par 4. 

Reste le cas 0=2 . Alors ¿ : )=¿4 = 6, ¿5 = 8. Comme trois des d¡ sont divisibles 
par 4, on a ¿¡€{8,12,16,...}. Si ¿5& 16, on a /7 '¿ is42-62- 16 = 210-32. On va 
enfin montrer que les cas ¿ 5 =8, ¿5 = 12 sont impossibles. Supposons ¿ 5 =8. 
On aurait donc un système de paramètres homogènes de degrés 4, 4, 6, 6, 8. Les 
conditions q^cp, 0) = q2((p, 0 )= ...=qs((p, 0) = 0 doivent entraîner l'instabilité de cp. 
Or C[V5]a ne contient que deux éléments homogènes algébriquement indépendants 
de degré ^ 8 , et l'annulation pour (p de deux tels invariants ne peut entraîner 
l'instabilité de <p puisque C[V5]° a pour degré de transcendance 3. Supposons 
d5= 12. On aurait donc un système de paramètres homogènes de degrés 4, 4, 6, 6, 12. 
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Considérons leurs restrictions à V5. Comme C[K5]g=0 et que dim C[VB]° = l, 
on obtient une contradiction comme dans le cas précédent. 

On a donc prouvé (9). Comme le produit 4S • 62 • 8=2® • 32 correspondant 
à l'écriture (1) de F(z) est <210 • 3*, on en déduit (iv). D'autre part, l'écriture de 
F(z) correspondant au système de paramètres trouvé en (ii) donne JJd— 
=42 • 6 • 8 • 12=210 • 3S, et fournit donc la valeur minimale de JJdt pour tous les 
systèmes de paramètres homogènes; dans cette écriture, le numérateur A(z) se 
déduit du numérateur de (1) en multipliant par 1 +z 8 ; la somme des coefficients de 
A(z) est alors 

2(1 + 1+6 + 3-1-6+1 + 1) = 38 
ce qui prouve (iii). 

6. Il reste à savoir si l'on peut obtenir un contre-exemple analogue à 5 (iv) quand 
on considère une représentation irréductible de SL (2, C). Cela est intéressant 
puisque les séries de Poincaré ont alors été calculées explicitement jusqu'à la 
dimension 17. 

7. Le système de paramètres construit en 5 (ii) n'est pas bihomogène. En fait, 
il résulte de [1] qu'il n'existe aucun système de paramètres bihomogènes de C[F]°. 

Deuxième partie 

8. Lemme. Soient n et p des entiers tels que p^n. On considère une 
forme binaire de degré n en x et y du type suivant: 

f(x,y) = a0xn-''yu+a1*,-u-pyu+p + a2xn-u-2pyu+2l'+... + asxa-u-"'yu+sp 

où a0, alt ..., On suppose f instable. Alors f(x,y) admet 0 ou <=° comme 
racine en x/y de multiplicité >n/2. 

Posons g{X,Y)=aQX,+aiX,-1Y+a2X°-2Y2+...+asY'. On a f(x, y) = 
=xn~u~spy"g(xp, yp). On considère les racines en X/Y de g(X, Y), à l'exclusion 
de 0 et oo; soient Oj, ..., œr ces racines, deux à deux distinctes; la somme de 
leurs multiplicités est Alors les racines en x/y de f(x, y), à l'exclusion de 0 
et sont 

« p , CUVpexp (2in/p), ..., (o)lp exp (2in(p — i)/p) ( j = 1, 2, ...,r). 

Comme coj ̂  0, oo pour tout j , chacune de ces racines est de multiplicité ^ s . 
Or u+sp^n, donc Comme / est instable, / admet une racine en 
x/y d'ordre >«/2. D'après ce qui précède, cette racine est O o u « . 

9. Lemme. Soient n,b des entiers S i . Soit p un nombre premier tel que 
n/(2b — l)>/7ën/(2è + l). Soit (P1, P2, ..., P„-2) un système de paramètres homo-
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gènes pour les formes binaires de degré n. Soit ôj = deg Pj. Alors p divise ôj pour 
au moins b indices j. 

Toute forme binaire de degré n s'écrit a0x"+a1xn~1y+...-\-any". Chaque 
P j est un polynôme en ot0, a1( ..., ct„. Nous supposerons que <51( ..., ôr sont 
divisibles par p et que <5r+1, ..., sont non divisibles par p. Il s'agit de prouver 
que r^b. Distinguons 4 cas suivant que n/(2b—l)^-p^n/2b, p=n/2b, n/2b>-p> 
>n/(2b+l),p=n/(2b+l), 

Dans le 1 er cas, on a 

(10) 0 < p < 2p < . . . < ( f e - l ) p < n/2 (b + l)p (2b-l)p^ n. 

Considérons une forme binaire du type suivant: 

/(*, y) = a0xn + 7.pxn-pyp+a2p x" " 2 V + • • • + oc(2i, - 1)p -<2i- -1»_1)p-

Supposons Pr+1(f)9i0. Alors P r + i contient, avec un coefficient non nul, un 
monôme de la forme 

„H ~Pp „Plp„»(.U> - l)p a 0 ap 2p (2fc— l)p • 

D'après [3], p. 32, on a 2(pfip+2pn2p+...+(2b-l)pp(_2b_1)p)=n8r+1. Comme 
p est premier et ne divise pas n, p divise <5r+1, ce qui est absurde. Donc, 
Pr+i(f)=0. De même, Pr+2(f)=...=Pn_2(f)=0. 

Dans PU...,P„ remplaçons ak par 0 toutes les fois que p ne divise pas k. 
On obtient des polynômes homogènes Qi,---,Qr en a0 , ap, ..., oc(2b_1)p. Les 
conditions 

(11) ô l (a 0 , ..., Z(zb-l)p) = Ô2(«0, •••> «(26-1 )p) =• • •= Qr(?0, •••> «(26-1)P) = 0 

entraînent que P1(f) = ...=Pr(f)=0. Par ailleurs, P r + 1 ( / ) = . . . = P n _ 2 ( / ) = 0 
comme on l'a vu. Donc f est instable. D'après (10) et le lemme 8, on a aQ=ap=... 
. . .=a(6_i)P=0, ou <xbp=aib+1)p=...=<x(2b_1)p=0. Ainsi, les équations (11) définis-
sent dans C2b un cône algébrique de codimension ^b. Donc r^b. 

Dans le 2ème cas, on a 

1 < p+1 < 2p+l (b-l)p+l < n/2 < bp+1 < 
(12) 

Considérons une forme binaire du type suivant : 

f(x, y) = cc1^~1y+ap+1x?'~p~1yp+1 + ...+a(2b_1-)p+1xn~i2b~1)p~1y<-2b~1)p+1. 

Si P r + 1 ( / ) ^ 0 , on voit comme dans le 1er cas qu'il existe des entiers ¡ij tels que 

2(fi1+(p+l)np+i+(2p+i)nip+1+ ...+((2b — i)p + i)piib-1yp+1) = nôr+1 = 2 bpôr+1, 

lil + flp+l + fi2p + l+ •••+H(2b~l)p + 1 ~ ^ r + l 
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d'où ppp+1+2pp2p_l.1+ ...+(2b-l)pp(2b_1)p+1=(bp-l)ôr+1. Donc p divise <5r+1, 
ce qui est absurde. Donc Pr+i(f)=Pr+2(f)=... = Pn-2(f). 

Dans Px, ...,Pr, remplaçons <xk par 0 toutes les fois que p+\,2p+\,... 
..., (26 —1)/J+1}. On obtient des polynômes Qlt ..., Qr dont l'annulation entraîne 
l'instabilité de / . D'après (12) et le lemme 8, on a r ^ b . 

Dans le 3ème cas, on a 

0 < p < 2 p <...< bp < H / 2 < ( b + l)p < (b + 2)p <...< 2 b p < n. 

On considère a0x"+apx"~pyp+...+a2bpxn~2bpy2bp et l'on raisonne comme dans le 
1 er cas. 

Dans le 4 ème cas, et si />> 2, on a 

1 < p+1 < 2p+l <...< bp+l < n/2 < (6 + l ) p + l < . . . < 26p + l < n. 

Raisonnant comme dans le 2 ème cas, on a cette fois 

2 (/'i +(P+1)/<P+1 + • • • + (2bp +1 ).u2bp+1) - (26 + l)p<5r+1, 

d'où 2(pi_ip+!+2pfi2p+1 + ...+2bpn2bp+1)=((2b +\)p-2)ôr+1. Comme p>2,p divise 
<5r+1 et l'on termine comme plus haut. Supposons p=2, donc «=2(26+1). On 
revient à la méthode du 1 er cas, en écrivant 

0 < 2 < 4 < . . . < 26 -< «/2 < 26+2 < . . . < 4 6 + 2 = n, 

f(x, y) = oc0xJ' + oi2x"-2y2 + a4x"-y+...+«„/•. 

Si Pr+i(f)^0, on a 2(2^2+4/I4+ . . .+«//„)=2(26+l)5 r + 1 donc 2 divise <5,+1, 
ce qui est absurde. On trouve même, dans ce cas, que p divise ôj pour au moins 
6 + 1 indices j. 

10. Théorème . Soit A un nombre <1/2. Alors c„^exp (An log n) pour 
n assez grand. 

Soit pi>p2>... la suite décroissante des nombres premiers Soit a=a„ 
le plus petit entier tel que n/(2a+1)<2. Définissons des entiers sx, s2, ..., sa par 

n >p2 = »13 

"/3 > PS1+1 > PS1+2 >•••> Psi = "15 

n/5 > p ï 2 + 1 > pS2+2 pS3 S n\l 

«/(2a —1) > P S a . l + 2 > • • •>&„ ^ "/(2a +1) 

(certaines lignes de ce tableau peuvent ne contenir aucun /?,). 
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Pour p=pSb i+1,pSb i+2, ...,pSb, pb divise <5I<52...<5„_2 (lemme 9). Par suite, 

¿i<>2 ••• «Va = PiP2 ••• PS1P\ + iPÎt+2 ••• P% ••• Pt-t+iPsa-i + z ••• 
ou 

<Ms ••• ¿n-2 = (PlP-2 ••• Psa)(Psl + lPs1 + 2 ••• PsJ ••• (Psa-i+lPsa-i + 2 ••• PsJ-

Soit & l'ensemble des nombres premiers. Pour x réel tendant vers 
on a log [J p~x ([5], th. 413 et 434). Choisissons des nombres A', A" tels que 

2A<Â'<A'Soit d=d„ le plus petit entier tel que 2d— 1^/j/ logn. On a, 
pour n assez grand, 

]J P — e x P (A'ri), ïï P^expU n P^expi/l'-îi-) pfâ> pe» v JJ \ ¿a — i/ i>eâ> P i » V - > ' p € i 
p ^ n p « n / 3 p c n / ( 2 d - l ) 

donc 

M 2 ... ¿„-2 ^ exp ( ¿ ' „ ( 1 + 1 + 1 + ... + _ ! _ ) ] . 

Quand on a d~n/2 log n, donc 

, 1 1 1 1 , n 1 , 
1+-T + T + ••• —T ~ "T l o8i ~ "T l 0 S" ' 3 5 2a — 1 2 log n 2 

Par suite, pour n assez grand, on a 

(13) ô1ô2 . . . <5„_2 S e x p ( l y i " « l o g « j . 

Si le système de paramètres (Plt ..., Pn_2) est choisi convenablement, on a 

(14) cJ(S1ô2...ô,1_2)^Bn-^ 

où B est une constante > 0 ([6], 3.4.12). Le théorème résulte de (13) et (14). 

11. R e m a r q u e . Il est probable qu'en fait la croissance de c„ est encore plus 
rapide. 

12. R e m a r q u e . En considérant dans le lemme 9 des puissances de nombres 
premiers, on peut améliorer légèrement la conclusion de ce lemme. Mais cela ne 
permet pas d'améliorer le théorème 10. 
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On contractive ^-dilations 
E. DURSZT 

Dedicated to Professor B. Sz.-Nagy on the occasion of his seventieth birthday 

Let T be a (bounded linear) operator on a Hilbert space § and Q a positive 
number. We say that W is a o-dilation of T if W is an operator on a Hilbert 
space and 
(1) T"h = qPW'h (h€§>, n = 1,2, ...) 

where P denotes the orthogonal projection of ft onto C6Q denotes the class 
of those operators which have unitary g-dilations. 

The study of unitary ^-dilations and c6e classes was initiated by B . SZ.-NAGY 
and C. FOIA§ [4] and continued by a number of authors. (See [3] also for further 
references and [2], [5], [6] for some recent results.) 

Studying operators of c€e classes, sometimes (non-unitary) contractive g-dila-
tions can be succesfully used [1]. So the dilation space and the ^-dilation themselves 
remain "near enough" to the initial space and operator, respectively. In this note 
we show that, for any there exists a contractive 0-dilation with certain 
additional properties. Moreover, any other contractive (especially unitary) ^-dilation 
of T is a 1-dilation of a contractive ^-dilation of T with such properties. 

Theorem. Let and let W be any contraction satisfying (1). Introduce 
the notations 

a + = V £ = SV(W|ft l)*S «=0 

and define the contraction C on 2 by C = Q(fV\2), where Q denotes the orthogonal 
projection of onto fi. Then W is a l-dilation of C; C is a Q-dilation of T; 
and 
(2) C2h = CTh (/KES), (2*) C*2h = C*T*h 

(3) £ = S V C § , (3*) £ = § V C * § . 

Received June 30, 1982. 
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Proof . We introduce the notation 

(4) V=W\$t+ 

For ft, g6 5 and »=0, 1, 2 , . . . (4) and (1) imply that 

(y*(V*-T*)h, Wng) = (h, Wn+2g) — (T*h, Wn+1g) = 0. 

This fact, (4) and the definition of S\+ show that X+±(y*2-V*T*)h£St+ and 
consequently 
(5) V*2h = V*T*h (/»€§). 

So (4) and the definition of £ show that £ is an invariant subspace of V*. 
Now we are going to prove by induction that W is a 1-dilation of C, i.e. 

(6) C"h = QWh (h£2, n = 1, 2, ...). 

For n = l , (6) is clear from the definition of C. If (6) is true for some positive 
integer /J, then for h,g£2 we have 

(QW+1h, g) = (VWh, g) = (fV% V*g) = (QWh, V*g) = 

= (C'h, V*g) = (fVC'h, g) = (QfVC'h, g) = (C"+1h, g) 

and this proves (6). 
For and n = l , 2 , ... we have PCnh=PQW"h=PfVnh = (llQ)Tah, thus 

C is a g-dilation of T. 
If h, g£2, then by (6) and (4) 

(C*h, g) = (h, Cg) = (h, Wg) = (h, Vg) = (V*h, g). 

Since 2 is invariant for V*, we have 

(7) C* = V*\2. 

This fact, (4) and the definition of £ show that (3*) is true. Moreover, (5) and (7) 
imply (2*). 

For h, g€§> and « = 0 or 1 we have 

(C2h — CTh, C*ng) = (Cn+ih-Cn+1Th, g) = ( l /Q)(T n + 0-h-T"+ 2h, g) = 0, 

and so by (3*), C-li-CTh±2 (h£f>), consequently (2) is true. 
In order to prove (3), suppose that g£2, g±§> and g±C$>. In this case, 

by (2), g±C§> for « = 0 , 1 , . . . . Now for every we have 

(g, W"h) = (g, QWh) = (g, C'h) = 0, 

consequently, by the definition of This implies g = 0 . So the 
proof is complete. 

The following two remarks show that the dilation space £ is "not too large". 
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R e m a r k 1. £ = § if and only if g = l or r 2 = 0 . 

P roof . If £=§>, then Cg={lle)Tg (g€|>) and so we have for every 

(i/g)T2h = PC2h = PC(l/g)Th = P(ilq2)T2h = (1 /e2)T2h. 

This implies that p i or T ! = 0 . 
In order to prove the converse implication, suppose first that Q = l. In this 

case for / , g£ § we have 

(Ch — Th, g) = 0, (Ch—Th, C*g) = (C 2h - CTh, g) = 0. 

Thus,by (3*) and(3), &±Ch-Th£2, consequently C\% = T; and so by (3), £ = § . 
Suppose now that T2=0. In this case for h, g£§> we have 

((c-(i/e)T)h, C*g) = (C% g)-(i/eXCTh, g) = ( l / e ) ( T % g ) - ( i / g 2 ) ( r % g) = o. 

This means that (C-(l/g)T)h±C*$. Since (C-(l/g)T)h±§> is also true, so by 
(3*), (C-(l/g)T)h±£, consequently Ch=(l/g)Th and now (3) implies £ = § . 

R e m a r k 2. For every h(i§>, Th — 0 implies Ch = 0 and T*h = 0 implies 
C*h = 0. 

Proof . If Th=0 then for every g£g> 

0 = (Th, g) = g(PCh, g) = g(Ch, g) 
and using (2) 

0 = (Th, C*g) = (CTh, g) = (C% g) = (Ch, C*g). 

These mean that Chj_§ and Ch±C*9>, so by (3*), Ch±2 and consequently 
Ch = 0. 

The second implication can be proved in the same way, by using T* in place of 
T and C* in place of C. 

References 

[1] E. D u r s z t , Factorization of operators in ^ classes, Acta Sci. Math., 37 (1975), 195—199. 
[2] E . D u r s z t , Eigenvectors of unitary g-dilations, Acta Sci. Math., 39 (1977), 347—350. 
[3] A . RÁcz, Dilatári unitare strimbe, Stud. Cere. Mat., 26 (1974), 545—621. 
[4] B. S z . - N a g y — C. F01A5, On certain classes of power-bounded operators in Hilbert space, 

Acta Sci. Math., 27 (1966), 17—25. 
[5] K . O k u b o — T . A n d o , Constants related to operators of class cSe, Manuscripta Math., 16 (1975), 

385—394. 
[6] K. Okubo—T. A n d o , Operator radii of commuting products, Proc. Amer. Math. Soc., 

56 (1976), 203—210. 

BOLYAI INSTITUTE 
ARADI V É R T A N Ú K TERE I 
6720 SZEGED, H U N G A R Y 

II* 





Acta Set. Math., 45 (1983), 165—149 

A note on unitary dilation theory and state spaces 
CIPRIAN FOIAÇ and ARTHUR E. FRAZHO 

Dedicated to the 70th anniversary of Professor B. Sz.-Nagy and to the 30th anniversary 
of his unitary dilation theorem 

1. Introduction and préliminaires 

The major breakthrough in dilation theory for contractions on a Hilbert space 
was the existence of a minimal unitary dilation obtained in 1953 by B . SZ.-NAGY [15]. 
Lately, the emphasis of dilation theory for contractions has been mainly on minimal 
isometric dilations (functional models, characteristic functions, intertwining lifting 
theorems, etc.). However, the natural abstract framework for certain problems in 
theoretical engineering (Markov realizations of wide sense stationary Gaussian 
random processes [6, 9 — 1 4 ] ) are intimately related to unitary dilations of contrac-
tions. In this way very interesting and new problems arise, in which the emphasis 
lies entirely on unitary dilations. Here we present a solution to one of these problems. 

We follow the notation and terminology in [17]. In particular by a dilation 
we mean a strong (or power) dilation in [8]. Throughout U is a unitary operator 
on i>\ and is a subspace of 5\ such that 

(1.1) ^ = V un§>. 

For a subspace ï of fi we denote by Tx the compression of U to 3Ê, that is 
TX—PXU|3£. A state space X (for §) is a subspace of 5\ such that and 
U is the minimal unitary dilation for Tx. An operator Tx is a state space operator 
if X is a state space for A state space X is minimal if X contains no strictly 
proper state space. Our problem is to obtain a classification of all minimal state 
spaces for This problem is equivalent to certain problems which naturally occur 
in engineering and Markov processes [6, 9—14]. There dilation theory is mentioned 
but not exploited. Here we shall fully exploit dilation theory to obtain all minimal 
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state spaces. It is shown that the minimal state space problem is deeply related 
with infinite-dimensional Jordan model theory [1, 18—21] and the notion of 
property (P) in [3]. In this way new results will be given in Sections 3 and 4 and 
many known results will be derived in a simple manner in Section 2. 

To complete this section some further notation is established. If 5DZ is a sub-
space then St-1 is its orthogonal complement. For a subspace X in ft we define 
3E+ and 3t_ by 

Let T be an operator in X; is cyclic for T if 3E= V T"i). A subspace 2B 

is semi-invariant [4] for T if 2B=9l©S>2 where STCgW, and 9Î are both 
invariant subspaces for T. Obviously ©91-1-. Therefore 20 is semi-
invariant for T if and only if 2B is semi-invariant for T*. Finally, the following 
lemma is needed. Its proof follows from Proposition 1.3 in [4] and the geometry 
of dilation theory [17]. A proof is given in [6]. 

Lemma 1.1. Let U be a unitary operator on ft and X a subspace of ft. 
The following statements are equivalent: 

(a) U is a dilation of Ts. 
(b) ï is semi-invariant for U. 

In this section we develop a basic geometric structure for state spaces. The 
results in this section are not new. In a different form they are more or less contained 
in [9—14] and elsewhere. The proofs are presented for two reasons: first, for 
completeness; secondly and more importantly, to demonstrate the power of our 
approach. That is to demonstrate how minimal unitary dilation theory can be used 
to obtain simple proofs of these results. The following identities will be useful. 
If 9JI, 91 are subspaces then 

(1.2) X+ := V U"X and := V 

(c) Ps X+=PxX+=X. 
(d) Px+X_=PxX_= X. 

2. Basic geometric results 

(2.1) = ( A m ^ e c m r r n j - ) . 

If U is the minimal unitary dilation for Tx then 

(2.2) 

Equation (2.2) follows from (2.1) and Lemma 1.1. It is also a consequence of the 
geometry of minimal unitary dilation theory, [17], Ch. II. 
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Let X be a state space for Following [9—14], X is observable [constructible] 
if X = Px&+ [3£=P3E§_], respectively. From the dilation property X is observable 
[constructible] if and only if § is cyclic for Tx [7^], respectively. The observable, 
respectively constructible part, of X is the subspace defined by 

(2.3a) X0 := V = = ^¡TsT, 
«SO 

(2.3b) Xc := V- Tt § = t ^ w : = P^JI. 
NFEO 

Since X0 is an invariant subspace for Tx and §>^X0 it follows that U is the 
minimal unitary dilation for Tx . Obviously Xg is an observable state space. 
In a similar manner it follows that Xc is a constructible state space. The observable 
and constructible part of X is 

(2.4) Xoc := (X0)c := V = ÎÇJZ. 
nso 

By construction 3E0C is a constructible state space. Using the observability of X0 

and the fact that Tx is a dilation of Tx , it is easy to verify that Xoc is observable. 
Decomposing: X=Xa®Xd and -£o=3E0iffi£0C where X5,Xoe are the appropriate 
orthogonal subspaces yields: 
(2.5) X — 

Equation (2.5) implies that all state spaces contain a constructible and observable 
state space Xoc. In particular, a minimal state space is constructible and observable. 
If not, one could use (2.5) to obtain a smaller state space. Note X—Xoc if and only 
if X is observable and constructible. This proves half of 

P r o p o s i t i o n 2.1. [14] Let X be a state space. Then X is constructible and 
observable if and only if X is minimal. 

P r o o f (only if). Assume X is constructible and observable. Let 2B be a state 
space contained in X. Lemma 1.1 implies Tx is a dilation for T^. Since 
and thus 2B, is cyclic for Tx we have TWPW=PWTX. (This fact is well known 
[16], p. 1.) This identity implies SIB is an invariant subspace for Tx. Hence 
T*=r*!2B. The constructibility of X yields 

X = V T*nÇ> Q V T*n 9B i 2B. 
«SO nso 

Using 333gï gives 3£=2B and completes the proof. 
As noted earlier Proposition 2.1 is not new [14]. Ruckebusch's proof depends 

upon splitting subspaces and some results in [9]. Here this result was derived 
directly from dilation theory. 
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Let I be a state space. Equation (2.5) demonstrates that Xoc is a minimal 
state space. In a similar manner 3EC0 := (3£c)0 is a minimal state space. From any 
state space X we can obtain possibly two different minimal state spaces, Xoc and Xco. 
Obviously ft is a state space. The minimal state spaces P̂ and g are defined by 
<P:=ftC0 and g :=f t o c . A simple calculation shows that and 
g = P g . Notice that $ [g] is the minimal state space for § contained in the 
past [future §+] of § respectively. Here as in [9—14] the spaces and 
g play an important role in our theory. 

P r o p o s i t i o n 2.2. If X is an observable [a constructive] state space then 
X+ [3E_Qg_], respectively. In particular, if X is minimal then X+ Q 
and 3E_gg_. 

P roof . Assume X is observable. Equations (2.1) and (2.2) give 

So (^ + ) J - = §_n(§+)- L . This, and the observability of X (i.e., 3E=$S$+ 
by.(2.3a)) implies that X is orthogonal to 0P+)-1-. Hence and X+Qty+. 
A similar argument proves the other part. 

The following will be useful. 

P r o p o s i t i o n 2.3. Let X be a state space and Xc [3EJ its constructible 
[observable] part, respectively. Then 3Ec+=3£+ and X0_—X_. 

Proof . Decomposing X=3Ec©3£g with (2.2) gives: 

(2.6) X+ =ic©3£ s©(3£_)^ and Xc+ = Se©(3e_)J-. 

Using XC+QX+ implies: 
(2.7) (Xr..y Q X-c@(X_y. 

To prove £C+=3E+ it is sufficient to show that we have equality in (2.7). Assume 
x is in (£_)-*- and x is orthogonal to (3EC_)X. Clearly x is in Xc_. Using 
Xc_ Q places x in X . Hence x is in Xe. This and (2.3b) verifies that x is 
orthogonal to Since x is in 3£g, (2.6) shows that x is orthogonal to Xc+. 
Combining: 

* _ L ( § - V £ c + ) i ( S - V § + ) = ft. 

Therefore x = 0 and there is equality in (2.7). The other part follows by duality. 
One can easily derive Propositions 2.2 and 2.3 directly from the Lifting Theorem 

(Theorem 2.3 p. 66 in [17]). Let us show this for Proposition 2.3. 

A l t e r n a t e p r o o f of P ropos i t i on 2.3. Since Xc is an invariant subspace 
for T£ we have T^Q* = Q*T^ . Here Q* is the operator mapping Xc into 
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X defined by Q*:=PX\£C. Obviously QTX=TXQ and Q=Px\X. Notice that 
U is the minimal unitary dilation for both Tx and Tx . By the Lifting Theorem 
there exists a contraction R on ft such that 

Q = i ^ i ? !* , RX+ Q Xc+ and UR = RU. 

Note Qh=h for all h in Thus Rh=h for all h in Since U commutes 
with R we have R=I, the identity. Hence X+ §X C + and X + = X C + . 

The following will be useful. Similar results are given in [14] and elsewhere. 

P ropos i t i on 2.4. If X is a constructive [an observable] state space such that 
X+ £ [X_ ^ 5_] then Tx [Tg] is a quasi-affine transform of T^ [TJ, respectively. 
In particular, if X is a minimal state space then Tx is a quasi-affine transform 
°f Ty [r^], respectively. 

Proof . Assume X is constructible and Applying Lemma 1.1 gives 
(for all /¡£§ and n^O), 

(2.8) PxT%"h = PXPV+ U*"h = PxU*"h = T£nh and PxT%T$"h = TiPxP^"h. 

Let Q be the operator mapping into X defined by Q.= Px\ty- Equation (2.8) 
and the construcfibility of implies QT^=TXQ. This, the constructibility of 
X and Qh=h for all h in § shows that Q has dense range in X. Obviously 
TyQ*=Q*Tx where Q*=P^\X,. This, the observability of $ and Q*h=h for 
all h in § shows that Q* has dense range in Thus Q is a quasi-affinity. 
This completes the first part. The second part follows by a similar argument. 

3. Consequences of general dilation theory 

In this section we list several results which are trivial consequences of the 
previous section and unitary dilation theory [17]. Some of these results have not been 
noted before and would be difficult to obtain without dilation theory. Others 
(namely (1), and part of (2)) were previously obtained without consulting dilation 
theory. 

(1) Let X be a state space for Then Tn
x^0 [T%n - 0 ] in the strong 

operator topology as «-<*> if and only if f | £/*"X_ = {0} [ f | i/"X+={0}], 
neo nso 

respectively. 
(2) Assume X is a state space and Tx is a completely nonunitary contraction. 

Then Tx is a C.0 , C0., C . l 5 C±. contraction if and only if its characteristic function 
is inner, *-inner, outer, *-outer, respectively. 

Parts (1) and (2) are trivial consequences of [17], ch. II and ch. VI. Parts (3) 
and (4) follow from Propositions 2.1, 2.2, 2.4 with [17] ch. II. 
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(3) ([14]) The set of all minimal state spaces are of the same dimension. In 
particular, admits a finite-dimensional state space if and only if or g is 
finite dimensional. 

(4) Assume that Tv [Ty is a C.0 [C0.] contraction and X is a minimal state 
space; respectively. Then Tx is a C.0[C0.] contraction respectively. In particular 
if r<p is a C. o and is a C0. contraction then Ts is a C00 contraction. 

From [17] ch. VI sec. 5 we have 
(5) Assume § is finite dimensional and there exists a Cqq contraction for 

a state space operator. Then all minimal state space operators are C0 contractions 
with finite defect indices. 

Our final remark follows from Section 2 and the Jordan model theory in [1, 
18—21] (see also Lemma 4.1 below). 

(6) Assume that there exists a C0 contraction for a state space operator, then 
all minimal state space operators are C0 contractions, quasi-similar, and have the 
same Jordan model. 

4. Minimality and property (P) 

The results in the rest of this paper are believed to be new. In this section we 
obtain a classification of all minimal state spaces when T^ is a C0 contraction 
with property (P) [3]. An example is given to demonstrate that the C„ assumption 
is natural to the problem. Our approach depends heavily on the infinite Jordan 
model theory in [1, 18—21] and C0 contractions with property (P) [3]. Throughout 
we follow the notation and terminology established there. If m is an inner function 
then $>(m):=H2QmH2 and S(m) is the operator on §(/«) defined by S(m)f— 
= P s ( m ) e " / where /£ §>(m). A contraction T on X has property (P), if A on 
I is any injection such that AT=TA then A is a quasi-affinity.[3]. We begin with 
some results in [1, 3, 18—21], which we shall need. 

Lemma 4.1. Let T on X be a C0 contraction and T on X be any contraction. 
I) The following statements are equivalent: 

a) T is a quasi-affine transform of f . 
b) T is a quasi-affine transform of T. 
c) T is a quasi-similar to f . 
d) f is a C0 contraction and t has the same Jordan model as T. 

II) If any of a), b), c) or d) is valid and T has property (P) then T is a C0 

contraction with property (P). 
III) T has property (P) if and only if T* has property (P). If 2B is semi-

invariant for T and T has property (P), then Tm(:=PwT |2B) is a C„ contraction 
with property (P). 
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IV) T has property (P) if and only if given any semi-invariant subspace SB for 
T such that Tw and T have the same Jordan model then 2B = X. 

Proof . Part I follows from [1, 18—21]. Parts II and III are in [3]. Now for 
part IV. Assume T has property (P) and Tw has the same Jordan model as T. 
Let 9B = 5Di©9t where 9Pi and are invariant subspaces for T. Since is 
invariant for Tw we have = |2B. Let 

© 5 (m;), © S(md, © S(oji), © S(<5,-) 
I I I I 

be the Jordan models for respectively. Clearly T£tX=XT%B 

where X is the identity operator injecting 2B into 93i. Proposition 2 in [18] or 
[20] implies c5, divides m; for all i. Furthermore, TY=YTW where Y is the 
identity operator injecting 2)1 into X. Consulting Proposition 2 of [18] or [20] 
again implies mt divides tOj for all /. Combining, <u, = H7; for all i. Therefore 
T, Tm and Tw all admit the same Jordan model. By Lemma 4.1.1 there exists 
a quasi-affinity A mapping X into 9JI such that AT=TmA = TA. Since T has 
property (P): X = AX = iSl and 2B = 3E©9il is invariant for T*. There exists a 
quasi-affinity B mapping X into 2B such that BT* = T^B = T*B. By Lemma 
4.1.Ill, T* also has property (P): consequently 3£=J5X = 9C. This completes 
half the proof of part IV. 

The other half follows by contradiction. Assume that T does not have property 
(P). Then there exists an injection A on X such that TA—AT and AX^X. 
Notice that AX is invariant for T. Lemma 4.1.1 implies that T\AX and T have 
the same Jordan model. Since AX^X the proof is complete. 

We begin with 

Theorem 4.1. Let § admit a state space 2B such that Tw is a C0 contrac-
tion with property (P). Then a state space X is minimal if and only if Tx is a C0 

contraction and has the same Jordan model as T~ or T^. In this case, all minimal 
state spaces Tx are C0 contractions with the same Jordan model as T~ or T^. 

Proof . First it is shown that T^ is a C0 contraction with property (P). 
Equation (2.5) shows that 2B contains a minimal state space 2B0C which is semi-
invariant for Tw. Lemma 4.1.UI implies Tm is a CQ contraction with property 
(P). By Proposition 2.4, Tw is a quasi-affine transform of T^. By Lemma 4.1 .II 
Ty is a C0 contraction with property (P). 

Now assume X is a minimal state space. Proposition 2.4 implies Tx is a quasi-
affine transform of T^. By Lemma 4.1.1 and the preceeding paragraph, Tx is 
a C0 contraction and has the same Jordan model as . 
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Assume Tx is a C0 contraction with the same Jordan model as . Lemma 
4.1.1 implies Tx is a C0 contraction with property (P). Equation (2.5) shows 
that X contains a minimal state space Xoc semi-invariant for Tx. Proposition 2.4 
assigns the same Jordan model to both and Tv. Hence Ts and Tt 

have the same Jordan model. Lemma 4.1.IV gives X=Xoc and completes the proof. 
Our classification of all minimal state spaces is given in 

Theorem 4.2. Let § admit a state space such that T is a C0 contraction 
with property (P). Then there is a one to one correspondence between the set of all 
minimal state spaces for § and the set of all invariant subspaces © [3] for U [£/*] 
such that 
(4.1) g © g <p+ [<p_ g 3 i 0r-L 

respectively. In this case, the set of all minimal state spaces for § are {Pffig)_ } [ {P3§+}] 
where ©[3] is an invariant subspace for U [U*] satisfying (4.1), respectively. 

Proof . Assume X is a minimal state space. Obviously X+ is an invariant 
subspace for U. Proposition 2.2 implies that © = X + satisfies (4.1). By constructi-
bility £ = P i + § _ = P ^ § ~ 

Now assume © is invariant for U and satisfies (4.1). Let £ = P S 5 _ . Notice 
that © is a state space and X is its constructible part. Proposition 2.3 gives 
3E+= ©+ = ©. Proposition 2.4 implies Tx is a quasi-affine transform of T^. 
Ty is a C0 contraction with property (P) (see the proof of Theorem 4.1). Thus 
T j is a C0 contraction, and by Lemma 4.1.1 and Theorem 4.1, X is a minimal 
state space. Hence the correspondence 3£«© (X=P ( 5§_) is bijective. This 
completes the proof of the first part. The second part follows in a similar manner. 

Lemma 4.2. Let T on X be a C0 contraction. If any one of the following 
statements holds then T has property (P): 

(a) T is a weak contraction; 
(b) T has finite multiplicity; 
(c) T has finite defect indices. 

Lemma 4.2 follows from [2, 3,21]. Recall that (c) implies (b) and (b) implies (a). 
Lemma 4.2, Theorem 4.2 and (5) in Section 3 gives 

Coro l l a ry 4.2. The conclusion of Theorem 4.2 is valid if any one of the following 
statements is true for any state space operator Tx. 

(i) Tx is a weak C0 contraction; 
(ii) Tx is a C0 contraction with finite multiplicity; 

(iii) Tx is a C0 contraction with finite defect indices; 
(iv) T£ is a C00 contraction and § is finite dimensional; 
(v) § is finite dimensional and T„ or Ts is a C0 contraction. 
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Obviously (v) <=> (i v) (iii) => (ii) => (i). 
The following shows that one cannot remove the C0 assumption in Theorem 4.2. 

E x a m p l e 4.1. Here we will construct a system U, ft and © such that 
© is an invariant subspace for U satisfying (4.1) and X=Pm9j_ is a not a minimal 
state space. To this end, let z:=e" and U be the bilateral shift on £ 2 = f t . 
(Here L2=L\0,2n) and Uf=zf for / in L2) It is easy to see that TR=U has 
the property (P) (cf. [8], Problem 115). Let § equal the one dimensional space 
spanned by ez. The space © will be defined later. Finally 

(4.2) U+:=U\H2 and K2:= L2Q(zH2). 

We begin the proof of our counter example. Since ez is outer: 

(4.3) = g + = H2 and ft = L2 = V U"9>. 

Consulting [5] implies ez is cyclic for U*+. A simple calculation gives: 

(4.4) g := = V Ufe* = H2. 
nSO 

Therefore Recall §+ • Note ez has an inverse in Lr. 
Hence § - = V K 2 = e z K 2 . 

Obviously We claim . 

(4.5) y = = e*K2. 

Let ezh* be any element in that is orthogonal to Sp. (Here h is in H2 and 
h* is its complex conjugate.) Using S$=Ps> H2 shows that ez is orthogonal 
to hH2. Hence ez is orthogonal to hfl2 where ht is the inner part of h. Equiv-
alently ez is in H2&hiH2. Since ez is cyclic for U* and H2QhtH2 is invariant 
for U* we have h=0. Therefore ezh*=0 and (4.5) holds. 

Equation (4.5) gives ^3+=Z,2. Let ij/ be any nonconstant inner function. 
Let ffi=ij/*H2. Then H2=$+Q®Qy+=L2. Consulting [5] implies ipez is also 
cyclic for U*. A calculation gives: 

X = M l = PrH*ezK2 = iii*(PH,4>ezK2) = V U%"(^e*)] = "A*H2. 
nm o 

Hence X=<5=i¡/*H2. Obviously X is not a minimal state space. It strictly contains 
the minimal state space g = / f 2 . The example is now complete. 

R e m a r k 4.1. In Example 4.1 the space § only admits two minimal state 
spaces and g. 
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Classifications of all minimal state spaces are given in [9, 10, 13, 14] and else-
where. It was shown in [11] that the proofs given there were not correct. In fact, 
Example 4.1 can be used to demonstrate that these results are not valid for certain 
infinite dimensional vector spaces. Recently [11] corrected some of the proofs in 
[9, 10, 13, 14] and showed that the classification of all minimal state spaces in [9, 10, 
13, 14] (and elsewhere) were indeed valid for certain § and U. It turns out that 
the results in [11] are equivalent to Corollary 4.2 part (v). However the methods in 
[11] do not extend to the general case Theorem 4.2. Here we have shown that property 
(P) plays an important role in obtaining all state spaces. Property (P) also plays 
an important role in deterministic systems theory [6] and other problems in operator 
theory [3, 21]. 

References 

[1] H . Bercov ic i , C. Foiaç and B. S z . - N a g y , Compléments à l'étude des opérateurs de classe 
C„. Ill, Acta Sci. Math., 37 (1975), 313—322. 

[2] H . B e r c o v i c i and D . Vo icu lescu , Tensor operations on characteristic functions of C„ 
contractions, Acta Sci. Math., 39 (1977), 205—231. 

[3] H . Bercov ic i , C0-Fredholm operators. I I , Acta Sci. Math., 42 (1980), 3—42. 
[4] R . G . D o u g l a s , Canonical models, in: Topics in Operator Theory (Ed. C. Pearcy), Mathema-

tical surveys, No. 13, American Mathematical Society (Providence, 1974), pp. 
161—218. 

[5] R . G . D o u g l a s , H . S. Shapiro and A . L . Shields , Cyclic vectors and invariant subspaces 
for the backward shift, Ann. Inst. Fourier (Grenoble), 20 (1971), 37—76. 

[6] A. E. F r a z h o , On stochastic realization theory, Stochastics, 7 (1982), 1—27. 
[7] P. A. F u h r m a n n , Linear Systems and Operators in Hilbert Space, McGraw Hill (New 

York, 1981). 
[8] P. R . Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, 1967). 
[9] A . L i n d q u i s t and G. P icc i , Realization theory for multivariate stationary Gaussian proces-

ses I : State space construction, in : 4th International Symposium on the Mathematical 
Theory of Networks and Systems, Delft Holland (1979), pp. 140—148. 

[10] A . L i n d q u i s t and G. Picci, Realization theory for multivariate Gaussian processes I I : 
State space theory revisited and dynamical representations of finite dimensional 
state spaces, in: Proceedings of the Second International Conference on Information 
Sciences and Systems (Patras, Greece, 1979), D. Reidel Publ. Co. (Dordrecht, 
1980), pp. 108—129. 

[11] A . L i n d q u i s t and G . Picci, On a condition for minimality of Markovian splitting subspaces, 
Systems and Control Letters, to appear. 

[12] A. L i n d q u i s t , M. P a von , and G. Picci, Recent trends in stochastic realization theory, in: 
Harmonic Analysis and Prediction Theory, (V. Mandrekar and H. Salehi, eds.) 
North-Holland (Amsterdam, 1983), to appear. 

[13] A . L indquis t , G . P i c c i and R . R u c k b u s c h , On minimal splitting subspaces and Markovian 
representations, Math. Systems Theory, 12 (1979), 271—279. 

[14] G . Ruckebusch , Théorie géométrique de la représentation Markovienne, Ann. Inst. Henri 
Poincaré, X V I / 3 (1980), 225—297. 



Unitary dilation theory and state spaces 175 

[15] B. S z . - N a g y , Sur les contractions de l'espace de Hilbert, Acta Sei. Math., 15 (1953), 87—92. 
[16] B . S z . - N a g y , Unitary Dilations of Hilbert Space Operators and Related Topics, American 

Mathematical Society (Providence, 1974). 
[17] B. S z . - N a g y and C. Foiaç, Harmonie Analysis of Operators on Hilbert Space, North-Holland 

(Amsterdam, 1970). 
[18] B. S z . - N a g y and C . Foiaç, Modèle de Jordan pour une classe d'opérators de l'espace de 

Hilbert, Acta Sei. Math., 31 (1970), 91—115. 
[19] B. S z . - N a g y and C. Foiaç , Compléments à l'étude des opérateurs de classe C 0 , Acta Sei. 

Math., 31 (1970), 287—296. 
[20] B . S z . - N a g y and C . Foiaç, Jordan models for contraction of class C.0, Acta Sei. Math., 

36 (1947), 305—322. 
[21] B. S z . - N a g y and C . Foiaç , On injections, intertwining operators of class Cc, Acta. Sei. 

Math., 40 (1978), 163—167. 

(C. F.) (A. E. F.) 
DEPARTMENT OF MATHEMATICS DEPARTMENT OF AERONAUTICS A N D ASTRONAUTICS 
INDIANA UNIVERSITY PURDUE UNIVERSITY 
BLOOMINGTON, INDIANA 47401, U.S.A. WEST LAFAYETTE, INDIANA 47907, U.S.A. 





Acta Sci. Math., 45 (1983), 177—187 

On a representation of deterministic frontier-to-root 
tree transformations 

F E R E N C G g C S E G 

To Professor B. Sz.-Nagy on his 70th birthday 

In [8] M. STEINBY introduced the concept of the product of tree automata (the 
product of universal algebras, if we disregard the initial vectors and final states), 
and gave an algorithm to decide for every finite system of algebras whether or not 
it is isomorphically complete with respect to the product. So far, no similar result 
has been proved for homomorphic completeness. Moreover, by the knowledge of 
the author, there are no investigations concerning a system K of algebras which 
is complete for a system L of tree transformations in the following sense: every 
transformation from L can be induced by a tree transducer built (in an obvious 
way) on a product of algebras from K. 

In this paper we introduce special types of products which are the tree automata 
theoretic generalizations of «¡-products of finite automata introduced in [3]. More-
over, we shall study a weaker form of the last-mentioned completeness (to be called 
m-completeness) with respect to the product and the «¡-products for the class of all 
deterministic tree transformations. 

1. Notions and notations 

By an operator domain we mean a set I together with a mapping r: I—N0 

which assigns to every £ an arity, or rank r(cr), where N0 is the set of all non-
negative integers. For any mSO, Im= E\r(a) = m} is the set of the m-ary operators 
(or operational symbols). If- I is finite then it is called a ranked alphabet. In the 
sequel we shall generally omit r in the definition of an operator domain I. More-
over, we shall suppose that if an operator belongs to more than one operator domain 
then it has the same rank in all of them. 
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A finite subset RQN0 is a rank type. It is said that the rank type of a ranked 
alphabet I is R if r(I)=R; that is R consists of all m£N0 for which Im^0. 

The set of I-trees over Z (or I-polynomial symbols with variables from Z) 
will be denoted by F^Z). Moreover, for every m^O, FJ(Z) is the set consisting 
of all trees p£FE(Z) with h(p)^m, where h(p) is the height of p. 

In the sequel we shall use the terms "node of a tree" and "subtree at a given 
node of a tree" in an informal and obvious way. Moreover, relabeling of nodes 
of a tree will mean that every label of a tree which is an operator is replaced by an 
arbitrary operator of the same rank. 

The symbol X will stand for the countable set x2, ...} of variables, and 
for every « ^ 0 , X„= ..., .*„}. 

Let R be a rank type. Take an operator domain I of rank type R and 
a tree p^F^X^) for some Consider another operator domain Q of rank 
type R (not necessarily different from I ) and a tree Fn(X„). We say that q is 
similar to p if the following conditions are satisfied: 

(i) there exist relabelings of the nodes of p and q such that the resulting trees 
coincide, 

(ii) if at two nodes dl and d2 of p the subtrees coincide then q also has 
the same subtree at d1 and d2 • 

The class of all trees similar to p will be denoted by [p]. 
Take a class S of trees. We say that S is a shape of rank type R if there 

exist a ranked alphabet I of rank type R, a non-negative integer w^O and a tree 
pe FAXn) such that S =[/;]. The height h(S) of S is h(p). A shape S is trivial 
if S — { x j for some xfcX. Otherwise S is called nontrivial. If we want to 
emphasize that all the frontier variables occurring in trees from S belong to X„ 
then we write S{n) for S. 

Let I be an operator domain. A ¿'-algebra si is a pair consisting of a non-
empty set A and a mapping that assigns to every operator <761 an m-ary operation 
cra:Am—A, where m is the arity of a. The operation is called the realization 
of a in stf. The mapping will not be mentioned explicitly, but we write 
$i={A, I). The I-algebra si is finite if A is finite and I is a ranked alphabet. 
Moreover, stf has rank type R if I is of rank type R. Finally, if p is a T-tree 
then the realization of p in will be denoted by p^. If there is no danger of 
confusion then we omit sd in a** and p^. 

A frontier-to-root IX„-recognizer or an FIX „-recognizer, for short, is a system 
A = (si, a, X„, A') where 

(1) si=(A, I ) is a finite ^-algebra, 
(2) a = (a(1), ..., a(n))£An is the initial vector, 
(3) A'QA is the set of final states. 
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If I and X„ are not specified then we speak about an F-recognizer. Moreover, 
let us note that in [7] we use a mapping a: XK-*A instead of an initial vector. 

Next we recall the concept of a tree transducer. To this we need one more set 
of variables Y = {yx, y2, ...}, and let Y„= ..., for every n^O. Moreover, 
E= {£ls ...} is the set of auxiliary variables, and S„={^1, ...; £„} for arbitrary 
«SO. 

A frontier-to-root tree transducer (F-transducer) is a system $[ = (.£, Xn, A, Q, 
Ym,P,A'), where 

(1) I and Q are ranked alphabets, 
(2) X„ and Ym are the frontier alphabets, 
(3) A is a ranked alphabet consisting of unary operators, the state set of 91. 

(It is assumed that A is disjoint with all other sets in the definition of 91, except A'.) 
(4) A'QA is the set of final states, 
(5) P is a finite set of productions of the following two types: 
(i) x~aq {x£Xn, a£A, q€Fn(YJ), 

(ii) a(at, ..., Q (a£2„ /ssO, a1,...,al, a£A, ..., 
eF f i(ymus,)). 

The transformation induced by 91 will be denoted by Tm. Moreover, deter-
ministic totally defined F-transducers will be called T>1¥-transducers, too. One can 
easily show, that for every deterministic F-transducer 91 there is a DTF-trans-
ducer © with TH=Ti8. Accordingly, in this paper we deal transformations induced 
DTF-transducers. 

To a DTF-transducer 9I=(Z, Xn, A, Q, Ym, P, A') we can correspond an 
Fl^-recognizer a, Xn, A') with s4—(A,Z) and a=(a (1), ..., aw), where 

(1) a ( I ) =a if Xi—aq£P for some q (1 = 1,..., «), and 
(2) for arbitrary / ^ 0 , It and alt ..., at£A, Vs*(ax, ..., at)=a if 

<7(^1,..., a^—aqiP, for some q. 
This uniquely determined recognizer will be denoted by rec (91). 
Now take an FZA^-recognizer A = ( j / , a ,X„ ,A ' ) with s/=(A,X) and 

a=(a(1>, ..., a(n>). Define an F-transducer M=(Z, X„, A, Q, Ym, P, A') by 

P = {*, - aVqV\q«KFn(Ym), i = 1, ..., «}U 

U{ff(alt a,) - o*(alt..., a,) 

I ¡= 0, au ..., a,€A, q<»•«. " ' ' ^ « ( ^ U S , ) } , 

where the ranked alphabet Q, the integer m and the trees in the right sides- of the 
productions in P are fixed arbitrarily. Obviously, 91 is a DTF-transducer. Denote 
by tr (A) the class of all DTF-transducers obtained in the above way. It is easy 
to see that for arbitrary DTF-transducer 91 the inclusion 9l£tr (rec (91)) holds. 
Therefore, we have 

1 2 * 
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Sta tement 1. For every DTF-transducer 91 there exists an F-recognizer 
A such that SI^TR (A). 

Before recalling the definition of products of algebras, we note that in the sequel 
if a is an «-dimensional vector then prf (a) ( l ^ / S n ) will denote its /th component. 
Moreover, we suppose that every finite index set / = {/1, • • •, ik} is given together 
with a (fixed) ordering of its elements. Furthermore, for arbitrary system {a^ifi l}, 
(at \ij£l) is the vector (a^, a^, ..., alk) if . . . i s the ordering of I. 

From now on we shall deal with a fixed rank type R. To exclude trivial cases, 
it will be assumed that for an m>- 0, m£R. 

Let Z, Z1, ..., Zk be ranked alphabets of rank type R, and consider the Z'-
algebras s/t=(A„ Z') (i = 1, ..., k). Furthermore, let 

t = (A1X...XAkrxZm~Z1
mX...XZkJtn£R} 

be a family of mappings. Then by the product of si^, ..., sik with respect to i/> we 
mean the I-algebra 

ij,(st1,...,sik,Z) = si = (A,Z) 

with A = A1X...XAk and for arbitrary m€R,o£Zm and a 1 ; . . . ,a m £A, 

i , - , O = « ' (pr iOO, •••. Pri(am))> pr*(am))), 
where (<7l5 ..., o k ) = ^ J a i , • ••, am, <r). 

(Sometimes we shall consider tJ/m to be an (mk-|-l)-ary function in an obvious 
sense.) 

Consider the above product ipisii, .... sik, Z)=si, and define the mappings 
>//': AnXFI(Xn)-»Fp(X„) (i = l, ..., k; n^O) in the following way: for arbitrary 
a=(a l 5 . . . ,an)€An and piFs{Xn) 

(1) if p=xj (l^j^n) then ip\a,p)=Xj, 
(2) if p = aip1,...,pj (ff€ ZJ then ^i(a,/7)=<7i(^i(a, P l), ..., r(n,Pm)), 

where ( ^ , ..., ak)=ipm(pf(a), (a), <r). 
One can easily see that the equation 

a) = (^(a, pY'ipr^a,), ..., pr^a j ) , ..., ^ ( a , p)^(pr t(a l), prfc(a„))) 

holds. Moreover, for arbitrary / ( ls /^Ar) , a£A" and p^Fx(Xn), i//'(a, /?)€[/?]• 
We now define special types of products. First of all let us write t¡/m in the 

form where for arbitrary a 1,...,am£A and <r£Zm, 

^m(ai> am, a) = (î m) ( a i , •••, am, a), ..., ^ ( « i . am, <7)). 

We say that si is an af-product (/ =0, 1, ...) if for any j (1 ̂ j ^ k ) and m£R, ¡¡t^ 
is independent of its uth components if (v—l)k+j+i^u^vk(v=l,...,m). (Here 
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ip^ is considered an (mk +1 )-ary function.) In the case of an arproduct in ip^ 
we shall indicate only those variables on which i m a y depend. For instance, 
we write ip^fa) for i / ^ W ..., am, CT) if / = 0. 

By the above definition, si is an a rproduct if for arbitrary j (] ^ j ^ k ) and 
m£R,ip(£ is independent of component algebras siu with i+j^u^k. If / '=0 
then we speak about a loop-free product, too. Moreover, if for every m£R, ipm 

may depend on its last variable only then si is a quasi-direct product. If in addition, 
... = stk=g/& then we speak about a quasi-direct power of 38. 

One can see easily that the formation of the product, a0-product and quasi-
direct product is associative. (This is not true for the arproduct with /=-0.) 

Let $l=(S, Xu, A, Q, Yv, P, A') and » = (1, Xu, B, Q, Yv, P', B') be two 
DTF-transducers and m^O an integer. We write T9,= Ts if t^(p) = r^(p) f° r 

every peF?(Xtl). 
Take a class K of algebras of rank type R. We say that K is metrically 

complete (m-complete, for short) with respect to the product (arproduct) if for 
arbitrary DTF-transducer Xu, A, Q, Yv, P, A') and integer m s 0 
there exist a product (arproduct) 38—(B, I ) of algebras from K, a vector bCB" 
andasubset B'^B such that t 0 = t 9 for some 236tr(B), where B—(B,b,Xu,B'). 
(The name metrical completeness comes from the fact that such systems are the tree 
automata theoretic generalizations of metrically complete systems of finite automata 
introduced in [1].) 

Let ¿4= (A, I ) be an algebra, «SO an integer and a£A" a vector. For 
arbitrary m&0, set A(^= {p^(a)\p<i F™(Xn)}. The system (si, a) is called m-free 
if |^im)| = |^(Z„) | , i.e., p^q implies p(*)^q(a) whenever p, F™(Xn). 

Now let si-(A, I), 38= (B, E) be algebras, «, mSO integers and a£An,b£Bn 

vectors. We say that (38, b) is an m-homomorphic image of (si, a) if there is a 
mapping <p of A(

a
m> onto B(

b
m) such that 

(1) <p(pr;(a)) = pr;(b) for all ¿ = 1, ...,«, 
(2) <p((T^(alf ..., a,)) = ffm((p(a1), ..., (p(at)) for arbitrary l£R, I , and 

If in addition <p is one-to-one then we speak about an m-isomorphic image, or we 
say that (si, a) and (¿8, b) are m-isomorphic, in notation (si, a) sr (38, b). 

We obviously have the following statements. 

S ta tement 2. Let si=(A,I) and 38~(B,Z) be algebras. Take two integers 
m, n^O and two vectors a£A", b^B". If (si, a) is m-free then 

(i) (38, b) is an m-homomorphic image of (si, a), and 
(ii) for arbitrary ~R=(38,b,X„,B') and ®€tr(B) there exist A = (si,z, X„, A') 

and 2i£tr(A) such that r2I= . 
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Sta tement 3. Let s/=(A, I ) and 3§—(B,I) be algebras. Take two integers 
m,n£0 and two vectors a£A", b£B". If (si, a) and (88, b) are m-free then they 
are m-isomorphic. Conversely, if (si, a) is m-free and m-isomorphic to (SS, b) then 
(8$, b) is also m-free. 

Let (si, a) (s/=(A, I), a£A") be a system, 3S=(B, I ) an algebra and m £ 0 
integer. We say that (si, a) can be represented m-isomorphically by 38 if there 
exists a b£Bn such that (si, z)=k(@, b). 

Finally, we say that the af-product and the a-product (i,7=0) are metrically 
equivalent (m-equivalent) if a system of algebras is m-complete with respect to the 
a ¡-product if and only if it is m-complete with respect to the a7-product. The m-equiv-
alence between an (¡¡¡-product and the product is defined similarly. (Let us note 
that in [4] the term "metrical equivalence" is used in a stronger sense.) 

For notions not defined here we refer the reader to [5] and [6] or [7]. 

2. Metrically complete systems of algebras 

In this section we shall give necessary and sufficient conditions for a system of 
algebras to be m-complete with respect to the a,-products (i=0, 1, ...) and the 
product. It will turn out that all the «¡-products are m-equivalent to each other and 
they are m-equivalent to the product. 

First we prove 

Theorem 1. A system K of algebras of rank type R is m-complete with 
respect to the a ¡-product (product) if and only if for arbitrary m, n^O and ranked 
alphabet I of rank type R every m-free system (si, a) with si=(A, I ) and a £A" 
can be represented m-isomorphically by an 0Cj-product (product) of algebras from K. 

Proof . The sufficiency is obvious by Statements 1 and 2. 
To prove the necessity take an m-free system (si, a) with s/=(A, I ) and 

z—(am,...,aw), where si is of rank type R. Moreover, let Q be a ranked alphabet 
such that for every l£R, Consider the DTF-transducer 31= 
= ( I , X„, A, Q, X„, P, A), where P consists of the productions 

(1) (i = l,...,n), 

(2) (7(0!, ..., a,) ..., a,)(o(^,..., Q (<r£i;,,co£Qt, alt ..., a£A, ISO) 

such that n+IHfffo,..., al)-*asi(a1, ..., a,)co(..., a1, ..., {p^(a)\pi 
£ F™(Xn)} }| = ¡F™+1(X„)I. (Since (si, a) is m-free, by our assumptions about the 
cardinality of Q, P can be chosen thus.) 
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Now let 8&=(B, I ) be an a rproduct (product) of algebras from K,b= 
=(bm, ...,bw)£Bn a vector and suppose that for some B=(88, b, X„, B') and 
DTF-transducer © =(Z, X„,B, Q, X„, B')Ztr (B) the relation T ^ 1 ^ holds. 
We shall show that (s/, a) =¿(88, b). To this, by Statement 3, it is enough to prove 
that (88, b) is m-free. 

Suppose that for two trees Pi,p2£F™(X„) we have p1?ip2 and pf(b)=pf(b). 
For an l£R with / =-0 take a T, and arbitrary r2,..., rt£F"(Xn). Set t1 = 
= °(Pi, r2, ..., r,) and t2=o(p2, r2, ..., r,). Then the trees qx and q2 obtained 
by ^=>-3 tf(b)q1 and t2^-^tf(b)q2 have the same label at their roots. Moreover, 
by the derivations tf(a)q1 and t2=>^ 'f(a)<72 hold, too. Thus, 
by the choice of P, qx and q2 should have distinct labels at their roots, which is 
a contradiction. This ends the proof of Theorem 1. 

Next we give necessary conditions for a system of algebras to be m-complete 
with respect to the product. 

T h e o r e m 2. Let K be a system of algebras of rank type R which is m-complete 
with respect to the product. Then for arbitrary integers m, nsO and nontrivial 
shape S(n) with rank type R and height less than or equal to m, there is an algebra 
si = (A,Z)(iK, a vector a€A", a tree a(p1, ..., p^SClF^Xj and an 
operator cr'gl, such that a(p1(a), ..., pl(a))9ia'(p1(a), ...,pt(a)). 

P roo f . Assume that there exist integers m , « £ 0 and a nontrivial S(n) with 
h(S(n)) = k (OiSk^m) such that for arbitrary si=(A, Z)£K, aeA" and 
°(Pi> • • • > Pt)> c'iPiPi)£S(n)PIFs(Xn) (a, o'£ I ,) the equation a(/?i(a),... 
...,pl(a))=a'(p1(a),..., pt(a)) holds. Consider a A>free system (88—(B, i2), b), 
where the ranked alphabet Q has rank type R, |£2,|s2 and b=(6 (1 ) , ..., b(n)). 
We show that (88, b) cannot be represented /c-isomorphically by any product of 
algebras from K. Indeed, let 

be an arbitrary product and c=(c 1 ; ..., c„)£C" a vector. Take two trees q= 
— u>i(<h, <?/) and q'= o)2(q1, ...,qt) such that 0)1, 032^Ql,a)17i032 and 
q,q'dS(n). Then we have 

q(c) = (coi(gj(pri(Ci), ..., prjCcJ), ..., ^(pr^Cj), ..., pr,(c,,))), ... 

«iC^Cprvfe), ..., prr(c„)), ..., ^(pr^Cj), ..., prr(c„)))) 
and 

q'(c) = (cv), ..., p r ^ c j ) , ..., c/Hpr, (c,), ..., pr, (c,,))), ... 

..., of2(q\(pr^cj, ..., prr(c„)), ..., <7,r(p>',.(c/h ..., pr r(cj))), 
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where q{ = ̂ J(c1, ..., c„, q,) (i = l, . . . , /; j = \,...,r), (wj, ...,cui) = i/'/(<?i«), ... 
..., q,(c), GJi) and (a)\, ..., cor

2) = \l/,(q1(c), ..., qt(c),(o2). By our remark following 
the definition of {¡/'(a, p), the inclusions a>{(q{, ..., q{)£S(ri) hold for all z ' (= l ,2) 
and 7 (= 1, ..., r) . Therefore, q(c)=q'(c), i.e., c) is not fc-free. Since c) 
was chosen arbitrarily, by Theorem 1 and Statement 3, this contradicts the assumption 
that K is w-complete with respect to the product, ending the proof of Theorem 2. 

We shall show that if a system of algebras satisfies the conclusions of Theorem 2 
then it is m-complete with respect to the loop-free product. To this two lemmas are 
needed. 

In the next lemma I will be a fixed ranked alphabet of rank type R such that 
for every IdR, I , is a two-element set: I , = {ah a't). 

Lemma 3. Let K be a system of algebras with rank type R satisfying the 
conclusions of Theorem 2. Then for, arbitrary m, n^O, every m-free system (si, a) 
(si=(A, I), a£A") can be represented m-isomorphically by an a0-product of algebras 
from K. 

Proof . We proceed by induction on m. 
Let m=0. It follows from our assumptions that in K there is an algebra with 

at least two elements. Moreover, if 0£R then this algebra can be chosen in such 
a way that it has at least two distinct 0-ary operations. One can easily show that 
a quasi-direct power of this algebra O-isomorphically represents (si, a). 

Now suppose that Lemma 3 has been proved for every k ^ m . Let (¿%, b) 
be an m-free system, where £%=(B, I ) and b=(by, ..., bn)dBn. Take the index 
set l = {(p, q)\p, p^q, h(p) = m+1, h(q)^m+l}. Consider a pair 
(p,q)£I, and let p=St(p1, pt) where <5, is a, or a\. Then by our assumptions, 
there is a ^ (P)=(C ( ' ' ), I w ) in K, an /¡-dimensional vector c=(c l 5 ..., c„) with 
components from C(p), a p' — oj(p[, ...,/>,') (a>£Z\p>) and an co'£ l\p) such that 
p'£[p], and co(p[(c), ...,p;(c))?ia/(/?;(c), ...,p',(c)). Define an a0-product si(p'q) = 
= (A(p-q), Z)=iJ/(p-9)(@, I ) in the following way: take an arbitrary node 
d of p different from its root. Let t =5r(t\, •••, tr) be the subtree of p at d, 
and i '=aj r(<, . 0 the subtree of p' at d. Then ^"'«)(2)(/f(b), ..., tf(b), d,)=cor. 
In all other cases, except </^'«)(2)(/?f(b), ...,/?f(b), 5t), (s£R) is given 
arbitrarily in accordance with the definition of the a„-product. Moreover, 
is the identity mapping on Es for every R. Finally, let 

(b), P f (b), S,) = 
CO if q(a*"'«) = (b, c) ' 

and c ^ <u(pi(c), ..., pi(c)), 
to' otherwise, 
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where a<-p-q)=((b1, cj, ..., (bn, c„)). (q(a(p-9)) ia> defined since p^q and (88, b) 
is m-free.) 

By the m-freeness of (88, b) and the choice of (eS(p), c), siiP'q) has the following 
properties: 

(i) if t and / ' are distinct trees from F™(Xn) then /(a(p' /'(a(p-q)) since 
they differ at least in their first components, and 

(ii) p(a<p' qy)7±q(a(p'q)) since they differ at least in their second components. 
Afterwards form the direct product &=(D, E)=^(si^-^Kp, q)£l) and the 

vector d€£>" with pr7 (d)=(pr,. (¿p-q>)\(p, q ) £ l ) ( j = \,...,n). Obviously, the 
system (3i, d) is (m+l)-free. Since the quasi-direct power is a special a0-product 
and the formation of a0-products is associative this, by Statement 3, ends the proof 
of Lemma 3. 

Lemma 4. Let E be a ranked alphabet of rank type R such that for every 
KR, |£/|s2. Moreover fix an KR and take the ranked alphabet El with Z ¡[J 
U {ff} and El

k=Ek if k^l. If for certain m,n^0 and class K of algebras an 
m-free system (si, a) with si=(A, I ) and can be represented m-isomorphically 
by an ̂ -product of algebras from K then every m-free system (88, b) with 88— (B, El) 
and b£B" can be represented m-isomorphically by an cc0-product of algebras from K. 

Proof . Let (si, a) be an m-free system with si=(A, E) and a = (a(1), ..., a(n))C 
€ A" which can be represented m-isomorphically by an a0-product of algebras from K. 
Take two different fixed elements ox, c2€ Define two (one-factor) a„-products 
six = (A, El) = if/(si, E') and s/2 = (A, El) = ij/(si, E1) in the following way: 
(i) №(cj) = W>(a) = a ( c e Z k , k ^ l ) , 

{ a if a 5, 

« if rr-n ax it a = a 
and 

if a ^ <x, 
if a = a. 

One can easily see that in six the operator a is realized as al in si, and 
in si2 the operator 6 has the same effect as <r2 in si. Moreover, all other operators 
have the same realizations in si, six and si2. 

For every p£FP(Xn) let Px=V(a^\ ..., a<">, p) and p2=^(a(1\ p), 
that is Pi (/ = 1,2) is obtained by replacing every occurrence of the label a in 
p by (Tj. Obviously p^'(a) = pf(n) and ps*'(a) = pf(a). 

We show that the system (88, b), where 88 is the direct product 
and b=((a(1), a w ) , ..., (a'"\ a'"')), is m-free. Since the direct product is a special 
a0-product and the formation of the a0-product is associative this, by Statement 3, 
will complete the proof of Lemma 4. 

(iii) = r 
I 02 
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Take two different trees p, qd F™,(X„), and let us distinguish the following 
three cases. 

(1) None ofthe nodes of p and q is labelled by 5. Then pa(b)=(p^(a), /^(a)) 
and differ in both of their components. 

(2) One of p and q, say p, has a node labelled by a and none of the nodes 
of q is labelled by d. If Pi=q(=qi=q^) then p^q^ since Thus, /?(b) 
and #(b) differ at least in one of their components. 

(3) Both p and q have nodes labelled by a. If px—q\ then p^q-i since 
p^q. Again />(b) and #(b) differ at least in one of their components. 

Now we are ready to state and prove 

Theorem 5. A system of algebras is m-complete with respect to the product 
if and only if it is m-complete with respect to the a0-product. 

Proof . Obviously, if a system of algebras is m-complete with respect to the 
a0-product then it is m-complete with respect to the product. 

Conversely, let K be a system of algebras of rank type R which is m-complete 
with respect to the product. Then, by Lemma 3, for arbitrary m, w^O and Z of 
rank type R with |r,| = 2 (IdR) every m-free system (si, a) (si=(A, I ) , a £ A " ) 
can be represented m-isomorphically by an a0-product of algebras from K. From 
this, by a repeated application of Lemma 4, we get that the previous statement is 
valid for arbitrary ranked alphabet I of rank type R if ¡ r , | s 2 (IdR). Moreover, 
if we omit an operation in an algebra belonging to an m-free system then the resulting 
system is m-free, too. Therefore, by Theorem 1, K is m-complete with respect 
to the a0-product, which ends the proof of Theorem 5. 

From the above theorem we directly get 

C o r o l l a r y 6. For arbitrary i, j = 0 the a.rproduct is metrically equivalent 
to the a.¡-product. 

Since there exists a one-element system of algebras which is isomorphically 
complete with respect to the product ([5], [8]) and for arbitrary m, n^O and ranked 
alphabet I there is an m-free system (si, a) (si=(A, I ) , ad A") such that si is 
finite, we have 

Co rol lary 7. There exists a one-element system of algebras which is m-complete 
with respect to the a0-product. 

Finally, we give an m-complete system consisting of two algebras which is not 
isomorphically complete. 

Let R be a rank type with 0£R and I the ranked alphabet of rank type 
R fixed for Lemma 3. Consider the Z-algebras a2}, I ) and ^ — ({bl,b2}, I ) 
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where 
<T0 = ax, (T0 = a2, 

and 
af(ci, ..., c,) = a(ci, ..., c() = ai (/ > 0; ci, ..., ct£A) 

a 'St . 
o o = Co = »1, 

a f (ci, ..., c() = bi (/ > 0; ci, ..., C/€B), 

,m f i>2 if Cj = . . . = c, = blt 
a, (ci, = o t h e r w . s e ( / > 0 ; c l f 

The system £ = obviously satisfies the conclusions of Theorem 2 
(by s i for the only nontrivial shape of height 0 and by SM if the given shape is 
higher than 0). Therefore, K is m-complete with respect to the a0-product. More-
over K is not isomorphically complete since for arbitrary l^R with />0, none 
of the equations af(a2,...,a2) = a2, a',^(a2, ..., a2) = a2, af(b2, ..., b2) = b2 and 

..., b2)=b2 holds. 
It follows from Theorem 1 in [2] that if a finite system of automata is m-complete 

with respect to the a0-product then it always contains an automaton forming a simple 
system which is m-complete with respect to the a0-product. One can easily see that 
neither {si} nor {84} is m-complete with respect to the a0-product, showing that 
the existence even of a 0-ary operator (in addition to unary operators) alters the 
conditions of m-completeness. 
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Analytic operator valued functions with prescribed 
local data 

I. GOHBERG and L. RODMAN 

Dedicated to B. Sz.-Nagy on the occasion of his seventieth birthday 

This paper contains the operator generalization of the classical theorems of 
Mittag—Leffler and Weierstrass concerning construction of an analytic function 
with given local data which does not have additional singularities. The obtained 
results generalize earlier results of the authors on the finite dimensional case. 

1. Introduction and main results 

Let Q be a domain in the complex plane C. Consider the class <P of all 
operator valued functions of the form A(X) = 1+K(X), where K(X) is an 
analytic (in £2) operator valued function whose values are compact operators acting 
in a Banach space B, with the additional property that at least one value of A(A) 
is an invertible operator. In particular, for every A(/.)£ <P the spectrum o(A) = 
= {k£Q\A(X) is not invertible} consists of isolated points in £2. For any of these 
points A0£cr(A), in its deleted neighborhood the function A(A)~1 admits the form 

( i . i ) a = 2 a - A 0 V M , , 
j = - s 

where i > l is an integer and the operators M_s, M_s+1, ..., M_x are finite 

dimensional (see [7]). Denote by SP A~1(/.n) the singular part 2 
j= - s 

of the Laurent series (1.1). 
In this paper we shall solve the following problem: construct a function A(X)£ <P 

given its spectrum and the singular parts at each point of spectrum. The solution 
of this problem is given by the next theorem which is the main result. 

Received February 9, 1982. 
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T h e o r e m 1.1. Let /.lt ?.2,... be a sequence (finite or infinite) of different points 
in a domain i2cC with limit points (if any) on the boundary f of Q. For each 

i' = l,2,..., let be given a rational operator function of the form 

M,-(2) = 2 (l — li)~JMij, i = 1, 2, . . . , 
J = I 

where M{J are finite dimensional operators acting in B. Then there exists an analytic 
operator function A(?.)£ <t> such that (t(A) — A2, ...} and S? A~\X^)=Mi(X), 
i —1,2,.... Moreover, A(X) can be chosen so that A(X) — L£Z for every 
where Z is the algebra of all operators acting in B which are limits (in norm) of 

finite dimensional operators. 

Theorem 1.1 is a generalization of Theorem 4.4 from [5], which in turn may be 
regarded as a generalization of the classical Mittag—Leffler theorem. The proof 
of Theorem 1.1 is given in the next section. It uses a theorem on triviality of co-
cycles (see [1, 4]). Note that using this theorem it is not difficult to construct a mero-
morphic function with given singular parts of Laurent series, as in Theorem 1.1. 
However, it requires additional work to ensure that this meromorphic function is 
the inverse of an analytic function, and this is the bulk of the proof of Theorem 1.1. 

In the course of the proof of Theorem 1.1 we obtain also the following far-
reaching generalization of Weierstrass' theorem (which states the existence of a scalar 
analytic function with prescribed zeros and prescribed multiplicities). 

Theorem 1.2. Let /2, ... be a sequence (finite or infinite) of different points 
in a domain Q c C with limit points (if any) on the boundary f of Q. For every 

kJ . 
let be given an operator polynomial of the form Fj(?.)=J+ ^ ).1Pi}, where 

i=0 
Pij are finite dimensional operators, such that a(Pj) = {!,•}. Then there exists an 
analytic (in Q) operator valued function A(X) such that A(X) — I€.I for all 
a(A)= {/l5 /2, ...}, and for every j= 1 ,2 , . . . the quotient A(/.)Pj(?.)~l is analytic 
and invertible at Aj. 

As before, I stands for the algebra of norm limits of finite dimensional 
operators. 

The above mentioned Weierstrass' theorem is obtained by taking B = C and 
Pj{).)=(/.—).j)kj in Theorem 1.2. Theorem 1.2 will be deduced from Theorem 1.1. 
The finite dimensional version of Theorem 1.2 was proved in [5]. 

Observe that in Theorem 1.2 one could replace the condition that Py are finite 
k 

dimensional by the compactness of P¡j. Indeed, a polynomial T(X) = I+ ^ I'Ti 
¿=o 
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with compact Tf and a(T) = {A0} can be factored as follows: 

with finite dimensional Pt and everywhere invertible T0(X) (see Theorems 3.1 and 
3.2 below). This allows us to reduce the problem to the case considered in 
Theorem 1.2. 

2. Auxiliary results 

In this section we shall prove Lemma 2.1 which will be used in the proof of 
Theorem 1.1, and is also of independent interest. As in Theorem 1.1, Q stands for 
a domain in C with boundary T, and I denotes the algebra of all norm limits 
of finite dimensional operators acting in the Banach space B. 

L e m m a 2.1. Let Xly ... be a sequence (finite or infinite) of points in Q 
with limit points (if any) in r. Let Yj0, Y n , ..., YJ kj i , / = 1 , 2 , . . . , be given 
operators from I . Then there exists an analytic operator valued function Y(X) (A€ Q) 
with Y(X) — l(i I for all and such that 

(2.1) Y(Xj) = I+YJ0, j = 1 , 2 , . . . 

and 
(2.2) 7 = YJk, k = l , . . . , k j - \ , ¿ = 1,2, . . . . 

I f , in addition, I+Yj0 is invertible for all j=l,2,..., then the analytic operator 
function y(A) can be chosen with the additional property that Y(X) is invertible 
for all Q. 

We need some preparations for the proof of Lemma 2.1. A set M c C is 
called finitely connected if M is connected and C \ M consists of a finite number 
of connected components. We shall use later the fact that there is a sequence of 

OO 

finitely connected compacts Q[c:Q'2c.. . such that Q = IJ £2-. The proof of this 
¡=i 

fact is not difficult and can be found in [4], Lemma 2.1. 
The following lemma can be viewed as a local analogue of Lemma 2.1. 

L e m m a 2.2. Let Q, and let £20 be a finitely connected compact in Q such 
that 10 lies in the unbounded component of C\Q0. Let X0,Xx,...,Xk be given 
operators from the algebra I . Then for every s > 0 there exists an analytic (in Q) 
operator valued function L(l) such that L(/.)£ I for all and 

(i) UHh) = X, i = 0, ..., k, 
(ii) ||L(A)|| =£ e for 
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Proof . Put M ( / ) = j ? 4 r A ' i ( A - ; . 0 ) i , then M°XX0)=Xh /=0, ..., k, and 
¡=o ' ! 

M(A)£Z for all /.£(2. Let a = max||M(A)||. There exists a scalar polynomial 

<p(X) such that 
(2.3) \<p(?)\ ^ ex'1 for A£Q0, 

r l , / = 0 

Indeed, we seek for <p(A) in the form 

(2.5) <?(/) = i - ! > ( / ) ( ; - ¿ o f . 

Let QgCC be a simply connected compact such that Q0cQ'0 and A0(£ Q'0. By 
Runge's theorem, there exists a polynomial I/*(A) with t/>(A0)=0 and \\p(X) — 
- ( A - A o ) - * ^ ® * - ^ - 1 , where /?=max {|l-A0i't}. With this tj/(X) in 

(2.5), the conditions (2.3) and (2.4) hold true. Now put L(X) = cp(X)M(A) to satisfy 
(i) and (ii). 

P r o o f of Lemma 2.1. We shall seek for Y(X) in the form of an infinite 
product 

(2.6) Y(X) = JJ (l+Lj(X)). 
i 

Choose a non-decreasing sequence Q[<zQ'„cz... of finitely connected compacts 
whose union is Q, and such that XfcQ'j for / = 1, 2, ...,_/—1, but Xj lies in the 
unbounded component of C\Qj. Let <pj(X) be a scalar function analytic in Q 
with the following properties: q>j(Xj) = 1; <pf(Xj)=0 for k = l, ..., k j - l , (pf\Xt)=0 
for k=0. ..., kj — 1 and Put ctj=max\(pj(X)\. By Lemma 2.2 there exist 

A £ flj 
analytic operator functions (even operator polynomials) Mj(X), j = \,2, ..., such that 
Mj(X)£ I for all A£ Q and 

MW(Xj) = Yjk, k = 0, ..., kj-1, ||M,(A)|| =§ ejai1 for XiQ'j, 

where 8, is any sequence of positive numbers for which the product JJ (1 + ek) 
k = 1 

converges. Define Lj(?.)=(pj(X)Mj(X), j=\,2, ...; with this definition of Lj(X) 
the product (2.6) converges uniformly in every Q'}, and consequently Y(X) is 
analytic in Q. Moreover, Lf{Xj) = Yjk for k = 0, ..., k j - l , and Lf{X^ = 0 for 
k=0,...,kj — l and i ^ j . Consequently, equalities (2.1) and (2.2) are satisfied. 

Suppose now that I+YJ0 is invertible for all y' = l ,2 , .... In this case we shall 
look for Y(X) in the form 

(2.7) r(A) = exp (X,(A)) • exp (*2(A)) • exp (X3(l)) ..... 

We shall construct the operator functions Xm(X) by induction on m. 
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Choose a sequence of finitely connected compacts Q[a Q'2a... with (J = 
. ¡=i 

and denote by Eml,...,EmiP the bounded connected components of C\Q'm. 
We shall assume that each Emp, p = 1, ...,pm, contains a point fimp not belonging 
to Q (otherwise consider Q'm U Emp in place of Q'm). We shall assume also that 
/(.•;</» for every i such that /.;£ (this can be arranged because the set of points 

with fcjSm is either empty or finite). 
We construct now X^X). Put Z ; i = In (/+y i 0), where the branch of the loga-

rithm is chosen so that In 1=0; then Xa££. Let Xx(X) be a Z-valued analytic 
function such that 

. X1W) = Xa, i = 1 ,2 , . . . 

(such Xx(X) exists in view of the already, proved part of Lemma 2.1). Let <p10(A) 
be an analytic (in Q) scalar function with only zeros at {/.,, X,, ...}, which are 
simple. In particular the function — ^ ( A ) - 1 is analytic in therefore there 
exists a rational function iK(A) with poles (if any) in pn, ..., such that 

max |<MA)+<p10(A)"1! ^ In (l+£i){max |p10(A)|}-i{max »^(A)«}"1. 
leni Agnj ' uenj ' 

Put Z 1(A)=(1+ IA 1(AM0(A))^)- Then X1Oi)=Xn, i = 1 , 2 , ; . „ and №№11^ 
^ ¿ ! = ln (1-t-Ej) for Here is a sequence of positive numbers 
chosen in advance. 

Suppose I-valued analytic functions Xx(X), ..., Xn(X) are already constructed, 
with the following properties for / = 1, . . . ,«: 

(2.8) Xf(?H) = 0, k = 0, ...J-2, i = 1, 2, ...; 

(2.9) yf,y_1 = [exp(Z1(A))...exp(JO(A))]jti>, 

(2.10) II-SO№11 ^ 5j for 

(For 7 = 1, replace Yi0 in (2.9) by I+Yi0.) By the already proved part of Lemma 
2.1, there exists a I-valued analytic function Xn+1(l) in Q such that ^+i(A,) = 0 
for A:=0, . . . , n - l ; and if k ^ n + l, then X™1(.Ai)=Xiin+1 (/ = 1,2, . . .) , where 
the operators A'lj„ + 16 X are chosen in such a way that 

Yin = [exp (Xl (A)) exp (X2 (/))... (exp (X„ (/)) (exp (£, + x (/.)))] 

for every A( with k ^ n + i . A computation (using (2.8)) shows that one can put 

= [exp (Xx(/.,))... exp (Xn(A,))] • 

•{Yln- Z [exp (A))] i*^.. . [exp(A"„ (/.))] 
A+...+A„=N 

i,S0 
Now put Xn+1(X)=(pn+l(X)2(X) where <pn+j(A) is suitably chosen (as in the con-
struction of .30(A)) scalar analytic function so that (2.8)—(2.10) hold also for j= n +1. 

13 
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The condition (2.10) ensures uniform convergence of the infinite product (2.7) 
in every compact set in Q, provided <5„ are chosen to tend sufficiently fast to zero. 
Equalities (2.8) and (2.9) ensure that 7(A) defined by (2.7) satisfies (2.1) and (2.2). 
Finally, for A£ Q'„ we have 

||exp(^„(A))-1—/|| ^ ||/-exp(Zn(A))|| • ||exp (Z„(A))|| ^ (e*—1)«*., 

and (assuming dn tend sufficiently fast to zero) the infinite product exp (Z„(A))_1 • 
•exp(Ar1I_1(A))_1...exp(A'1(A))_1 converges (necessarily to 7(A) - 1 ) uniformly in 

every compact set in Q. So 7(A) is invertible. 
Lemma 2.1 is proved completely. 
Note that Lemmas 2.1 and 2.2 remain true if the algebra I is replaced by 

the algebra of all compact operators. 

3. Local spectral data of an analytic operator function 

In this section we shall present some facts about local spectral data of an analytic 
function A(/.')£ <P which are relevant to the proof of Theorem 1.1. As for the case 
of matrix functions (see [5]), one can define the local spectral data of A(l)£ <P in 
several forms: one-sided (right and left eigenpairs, local divisors and singular sub-
spaces) and two-sided (the singular part of the Laurent expansion of A(X)~1). The 
results concerning the relationship between the various kinds of spectral data are 
the same as in the finite dimensional case, with essentially the same proofs (see [5] 
for details). So we shall focus on the kinds of spectral data which will be used in 
the proof of Theorem 1.1. 

Let A(A)e<P, and let A(X)~X = j ? (A-A0)JMy be the Laurent series of A(X) 
j=-s 

in a deleted neighbourhood of X0£o(A). The finite dimensional subspace 

0 ... 0 
... 0 

M-1 M_2 ...M-, 

is called the (right) singular subspace of A(X) at A0. (Sometimes in this definition 
oo 

it is convenient to consider A(X)~1= 2 (A—A0)J with s'>s and = . . . 
s' 

J + 1 = 0 ; so the singular subspace becomes a subspace in Bs.) An operator 
k 

polynomial of the form P(A)=/+ ^ A ' i ^ , where P f are finite dimensional opera-
¡ = 0 

tors, is called a (right) local divisor of A(X) at A0, if o(P)= {A0} and the operator 
function A(A)P(A)~l is analytic and invertible at A0. The local divisor of A(X) 



Analytic operator valued functions with prescribed local data 195 

at A0 is unique up to multiplication from the left by an everywhere invertible 
operator polynomial 5(A) such that S(A) —/ is finite dimensional for all A. 

The next result provides the relationships between singular subspaces and local 
divisors. We need the following definition of a special left inverse (cf. [6]). Let 
Bf be a finite dimensional vector space, and let Z:Bf->-B, T: Bf—Bf be linear 
operators such that for some s the operator 

is left invertible. A left inverse of QS(Z, T) is called special if its kernel is of the 
form {(;q, x^efi* PTj, i = l , j } , where fV1 Z) W23... z> Ws is a non-
increasing sequence of (closed) subspaces in B. If T is invertible, a special left 
inverse always exists. Indeed, since dim Bf<<*=, one works in the proof of existence 
of a special left inverse with subspaces which have a finite dimensional complement, 
and then the proof given in the finite dimensional case (dim B-̂ °=>) applies (see 
Lemma 2.1 in [6]). 

T h e o r e m 3 . 1 . The singular subspace R of an analytic operator function A(l)d <P 
at A0;^0 determines a local divisor i>(A) of A(X) at A0 by the formula 

where Z : R—B is the projector on the last coordinate in R<zBs, T: R—R is 
definedby the formula T(x±, ..., x5) = (A0x1, A0x2+:x:i, ..., ¿o-Ks+xs-i), ..., xs)£R, 
and [V1-.-Vs] is a special left inverse of 

QS(Z, T) = 

Z 
def ZT : Bf - Bs 

Z T s - l 

P(A) = I-ZT-s(y1Xs+V2Xs-i+... + VsX), 

z 
ZT-1 

Conversely, if P(X) is a local divisor of A(X)£<P at A0, then 

P Q - o) 
P'tt o) 

0 

Pßo) 
...0 

...0 

(3.1) Ker 

^ I ) T P ( S " 1 ) ( A o ) 7^32)7 -

is the singular subspace of A(A) at A0. 

13* 
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The proof of Theorem 3.1 is the same as the proof of Theorem 2.4 in [5]. Note 
that T is invertible in view of the condition X0^0. Note also that T maps R 
into R, as easily seen from, the definition of the singular subspace R. The case 
A0=0 can be easily reduced to the case X0^0 by considering A(X+a) in place 
of A(X), for some C\{0}. 

The number s in (3.1), which is the least positive integer such that (A—A0)S>4(>1)-1 

is analytic at A„, is determined by the local divisor i'(A) as follows: 

s = min { j > 0|dimKer>J = dimKer^J+ 1} 

where J^ is the matrix in (3.1) with j in place of s. 
A function A(X)£ <P is a right divisor of a function B{X)£ $ if B(X)=C(X)A(X) 

for some C(A)£#. The description of divisibility in terms of singular subspaces 
and local divisors is given by the following Theorem, the proof of which is analogous 
to the proof of Theorems 1.4 and 2.5 in [5]. 

T h e o r e m 3.2. The following statements are equivalent: 
(i) A(X)£ <P is a right divisor of 2?(A)€<£; 

(ii) G(A)CZO(B), and for any X0£A(A) the local divisor of A (A) is in turn 
a right divisor of a local divisor of B(X) at A0; 

(iii) o(A)cza(B), and the singular subspace of A(X) at any X0£o(A) is contained 
in the singular subspace of B(X) at A0. 

In particular, A(X)d <P and B(X)£ <P are right divisors of each other if and only 
if o(A) = a(B), and A(X) and B(X) have the same local divisors at each ?,0£a(A), 
or equivalently, if the singular subspaces of A(X) and B(X) at each X^a(A) = a{B) 
coincide. 

Let us remark (this remark will not be used in the proof of Theorem 1.1) that 
Theorems 3.1 and 3.2 can be also stated in terms of Jordan chains of a function 
A(X)£<P corresponding to A0. By definition, the vectors y0, ...,yk ~i£B form 

k 1 ° 
a Jordan chain of A(X) corresponding to A0 if -rr^ ( ' )(A0)^_ i=0, k=0, ..., A:0— 1. 

>=o ' ' 

The q Jordan chains ..., j = 1, ...,q, of A(X) corresponding to A0 are 
said to be a canonical set if the eigenvectors y^, ..., y^ are linearly independent 

4 
and the sum maximal possible (cf. [7]). Every Jordan chain yQ, ...,yt -x 

p=i . . • 
of A(X) corresponding to A0 is a linear combination of the canonical set: namely, 

ym= Z^y^* m = 0, ..., fe0-l, for some tXjZC. 
J=1 

As in the finite dimensional case (see Theorem 2.4 in [5]) one can prove that each o f 
the three local characteristics of an analytic function A(X)£$ at A0 — singular 
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subspace, local divisor, canonical set of, Jordan chains — determines the other two. 
In fact, a canonical set of Jordan chains appeared implicitly in Theorem 3.1. Name-
ly, there exists an invertible operator S: R—U such that (in the notation of Theo-
rem 3.1) the operators ZS~X: Cr->-B and STS C - C r have the following struc-
ture, in the standard orthonormal basis in C r : 

where J^» •••> J ^ - i . 7 = 1, is a canonical set of Jordan chains of A (A) 
corresponding to A0; STS'1 ©.. .©/,, where Jt is the Jordan block of size 
kiXkf with eigenvalue 

4. Proof of the main theorem 

The following result, which will be used in the proof of Theorem 1.1, is a partic-
ular case of Theorem 2.1 in [4], see also [1], and may be regarded as a theorem on 
triviality of cocycles. Given a compact set Q0czQ, we denote by GLs(i20) the 
set of all operator valued functions G(k) which are analytic and invertible in some 
neighborhood UG of Q0 (the neighbourhood depending on the function) and such 
that G ( A ) - / £ I for every UG. 

P r o p o s i t i o n 4.1. There exists a sequence of compacts i 2 1 c i 2 2 c . . . c £ 3 , 

(J Qi = Q with the following property: For every sequence of analytic operator functions 
i = l 

(7m(A)£GLs (Qm), m=l, 2, ..., there exists a sequence Z>m(A)6GLs (Qm) such that 

(4.1) Gm(X) = (Dm+1(X))~1Dm(X), A€i2m, m = 1 , 2 , . . . . 

We are ready now to prove Theorem 1.1. 
P r o o f of T h e o r e m 1.1. We shall break the proof into two steps, 
a) Let Rk czBk' be the singular subspace determined by M,(A): 

0 0 

Rk. = Im Ml^-L MUki .. 0 

Ma Mi2 .. Mt 

We shall construct first an analytic operator function A(X) with a(A)= {Al5 ...} 
and corresponding singular subspaces Rk ,Rkt,..., and such that A(X)—I€Z 
for every Q. 

Let Q1C:Q2C: ... be the sequence of compacts as in Proposition 4.1. Observe 
that each Qm contains only a finite number of A;'s; let Sm be the (finite) set of 
indices i such that m = 1 ,2, .... It is not difficult to see that there exists 
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a finite dimensional subspace Bm<zB and,a direct complement B'm to Bm in B 
such that MiJBmaBm and MuB'm=0 for j = l, ..., kt and i£Sm. Using Theorem 
4.1 of [5], for every m = 1,2, ... construct an analytic (in fl) operator function of 
the form AJX)=l+Km(X), where Km(X)Bm<zBm and Km(X)B'm=0 for every 
A£i2, such that a(Am(X))—{Xi\i^.Sm}, and Rkt is the singular subspace of Am(X) 
corresponding to A(, for every /'6Sm. Let Gm(X)=Am+1(X)(Am(?.))~1\ Theorem 3.2 
ensures that Gm(X) is invertible in Qm, m=\, 2, ... . Applying Proposition 4.1, 
find a sequence Dm{X)£GLs (Qm), m — l, 2, ..., with the property (4.1). Then 
Dm(X)Am(X)=Dm+1(X)Am+1(X), X£Qm; so in fact the function A{X)=Dm{X)Am{X) 
(A6i2m) is defined"and analytic in Q. Clearly, A(X)—I£X for every X£Q; more-
over, a(A)={X1, X2, ...} with corresponding singular subspaces Rk , Rkt... . 

b) We construct A(X) in the form A(X)=X(X)A(X), where X(X) is an every-
where invertible analytic (in Q) operator function such that X(X)—IdX for all 
A€ and A(X) is the operator valued function constructed in the part a). 

For a fixed Xh there exists an operator function A^X), analytic in a neigh-
borhood Ui of Xi, with the properties that Ai(X)—I is finite dimensional for 

X£U: and S ? l r \ X i ) = Z i X - X J - W u (see Theorem 4.4 in [5]). Then the 
_ j=i 

singular subspaces of A(X) and At(X) corresponding to A; coincide. By Theorem 

3.2, the operator function Zi(X)=Ai(X)A(X)~1 is analytic and invertible in 
Moreover, Z ; ( A ) - / 6 l , Agi/,. Write Zl(X)= ¿ ( A - A ^ Z y , and let X(X) b e a n 

j=o 
everywhere invertible analytic (in Q) operator function such that X(X)—Id X, X£Q, 
and 

j X ^ i X ^ Z t j , j = 0, k,, i = 1 , 2 , . . . . 

The existence of such X(X) is ensured by Lemma 2.1. Now put A(X)=X(X)A(X). 
Let us check that the requirements of Theorem 1.1 are satisfied with this choice 

of A(X). Indeed, 

A(X) — I = X(X) (A (A) -1)+X(X) - It X, 

for all A€ Q. For every A;, in a neighbourhood of A; we have 

A(X) = X(X)A(X) = X W i Z ^ - i . Z ^ A i X ) . 
Now because ofthe choice of X(X) we obtain Zi(A)(^(A))-1=(A-Ai) ,c'+1C/i(A)+/ 

for some operator function C/;(A) which is defined and is analytic in a neighborhood 
of Xj. Hence 

SP^4-1(A,) = 2 (X-Xt)~JMij, i= 1, 2, ..., 

and Theorem 1.1 is proved completely. 
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Finally, observe that in view of Theorem 3.1, the part a) of the proof of Theorem 
1.1 provides the proof for Theorem 1.2. 

In conclusion let us remark that Theorem 1.2 can be stated also in terms 
of singular subspaces, as well as in terms of canonical set of Jordan chains, in 
the same way as in the finite dimensional case (see [5]). We state it in terms of cano-
nical set of Jordan chains: Let X2, ... be a sequence as in Theorem 1.2, and for 
every let be given a set of vectors in B : 

(4.2) Jo l , Jk.,-1,1, ?02, •••, Jfcji-1,2, yoq, •••, ykq,-\q 

(q depends on /) with linearly independent vectors . . . , y^. Then there exists 
an analytic (in Q) operator valued function A(A) such that A(X) — for all 

c (^)={Ai , A2, ...}, and for every / = 1 , 2 , . . . , the set (4.2) is a canonical 
set of Jordan chains of A(X) corresponding to . The proof of this statement is 
obtained immediately from Theorem 1.2, taking into account the remark at the 
end of Section 3. 
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The RKNG (Rellich, Kato, Sz.-Nagy, Gustafson) 
perturbation theorem for linear operators 

in Hilbert and Banach space 
KARL GUSTAFSON 

Dedicated to Professor Bela Szokefalvi-Nagy on the occasion of his 70th Birthday 29 July 1983 

In this paper I wish to discuss, including some hitherto unpublished comments, 
observations, and results, a fundamental perturbation theorem for linear operators, 
which I shall state as follows: 

T w o of the most important instances of this theorem are for the properties : 
(1) selfadjointness in a Hilbert space; 
(2) contraction semigroup generator in a Banach space. 

The former is a special case of the latter. 
Throughout I will assume, unless specified to the contrary, that B is a regular 

perturbation of A, that is, that D(B)z>D(A). In general, I will not consider form 
versions. Nor, except for a few comments, will I consider closure (e.g., the versions 
with b=1) versions. 

Theorem ( * ) for the selfadjointness property (1) usually goes by the name of the 
Rellich—Kato (sometimes, Kato—Rellich) Theorem. It is due originally to Lord 
Rayleigh and E. Schrodinger in their calculus of perturbations, which involved the 
formal assumption that an analytic perturbation A(s) of A yields analytic trans-
formations of the eigenvalues and eigenvectors as well. A rigorous proof was first 
found by F. RELLICH [1]. The theorem was employed by KATO [2] in a fundamental 
way in an application to quantum mechanics. 

Received July 1, 1982. 

has the same property. 

1. Some history 
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It is generally less well known that SZ.-NAGY [3] made an original contribution 
to this theorem (see the discussion below for more details). I made the extension 
to Banach space in [4], and with the apology that four letter theorems are now all 
the RAGE — you must know REED—SIMON [5] to understand this pun — I have 
here labeled it the R K N G Theorem. 

I remember reading when I was young a newspaper account of an interview 
with a Nobel Prize winner, and his comment that (roughly) "we are all just brick-
layers in the temple of science, some of us happen to arrive at the right time to turn 
the corners". Certainly that is also the case even with any theorem, be it four letter 
or not. Thus there are many many aspects of the R K N G Theorem that I will not 
elaborate on at all. Most of these related facts are available from the books 
REED—SIMON [5] and KATO [6] or from the recent literature, see for example the 
recent review by SOHR [7]. 

It should be pointed out that the initial workers and users of these theories 
were not primarily interested in the R K N G Theorem in its final "clean" form, but 
were instead motivated by its appearance in important problems in quantum physics, 
boundary values problems, and elsewhere. 

Rigorous proofs of convergence eventually became of interest and Rellich 
managed to accomplish this in a series of papers [8] including the case of unbounded 
operators. For the case of bounded operators his results may be described as follows. 
For a convergent series depending on a real perturbation parameter e, 

A(e) = A0 + sAl + £2A2 + E3A3+..., 

A(E) will be a bounded selfadjoint operator with eigenvalues /1(e) depending on e. 
If the unperturbed operator A0 has an isolated eigenvalue A(0) of finite multiplicity, 
so will A(E), these will be close to 1(0) and of the same multiplicity, provided that 
e is small enough. Moreover the eigenvalues 2(s) and the associated eigenvectors 
can be expanded in series in terms of the eigenvalues of A and the AT. 

In particular, then, Rellich showed that if A0 is an isolated eigenvalue of 
finite multiplicity N of a selfadjoint transformation A0, then there exists an ^neigh-
borhood of the origin and real valued functions A(1)(e), ..., A(n)(e) and Hilbert space 
elements /(1)(e), . . . , / ( n ) (e ) such that l w (0)=A o , Aw(E) and fw(e) are the eigen-
values and eigenvectors, respectively, of A(S). In addition (for all values of e), 
the elements f(k}(e) form an orthonormal sequence and, apart from the points 
Aw(e), no member of the spectrum of A(E) lies in the neighborhood of A0. 

This result applies only to isolated eigenvalues of finite multiplicity and is in 
general not true for those of infinite multiplicity. We shall return to this point in 
describing below Sz.-Nagy's results. 

KATO [2, 9] employed this theory to establish the selfadjointness of the basic 
(Schrodinger) operators of quantum mechanics and to study their spectral properties. 
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This work is sufficiently extensive and well documented elsewhere in the physics 
and mathematics literature that I shall not attempt any comprehensive account here. 

It is interesting, however, that one may illustrate and demonstrate this important 
scientific result for the case of the Hydrogen atom operator H = — (1/2)4 — l/r 
quite readily from the fundamental theorem ( * ) plus a basic inequality (Sobolev) of 
potential theory 

||u/r|| s2||gradii||, 

the norm here being that of L?(R3). For A = —(1/2)4 it suffices to show that the 
perturbation B — — l/r is relatively small with respect to A (that is what the norm 
inequality condition in ( * ) is called). For functions u in Cg(Rs) using the Sobolev 
inequality one has for any e>0 

||«/r|| S2||grad M|| Se-MMI-UMKll 

and thus the selfadjointness of the full Hamiltonian H from that of the bare Hamil-
tonian A. The selfadjointness of the latter is easily established by Fourier transform 
to a multiplication operator. We also used an integration by parts and the arithmetic-
geometric mean inequality (the details may be found in [10]). 

Finally I would like to mention that Kato employed ( * ) (and the Sobolev in-
equality) in [2] not only for the nonrelativistic Schrodinger operators but also to 
establish the selfadjointness of the Dirac operator. 

As mentioned above, although certainly known to specialists, it is not generally 
known that SZ.-NAGY [3, 11] made important contributions to this theory. Let us 
describe them here. The main result, in [3], Theorem I there, treats the behavior 
of an arbitrary, but isolated, part of a spectrum. Then in [3, Theorem III], Rellich's 
results for an isolated eigenvalue of finite multiplicity are reobtained. Also [3, 
Theorem II] estimates convergence conditions for the power series representation 
of the perturbed eigenvalues and eigenfunctions, the estimates obtained being 
somewhat sharper than those obtained by Rellich. Further, the approach of Rellich 
required the heavy function theory of Puiseux Series and the Weierstrass Vor-
bereitungsatz on zeros of a function of several variables. 

In particular, SZ.-NAGY [3] showed the following. Let A0 be selfadjoint and 
Ak, k=1,2,3,..., be symmetric regular (D(Ak)z)D(A0)} perturbations satisfying 

\\Akf\\Spk-\a\\f\\+b\\Af\\). 

Then for — / > - 1 < £ < p - 1 the series A(s)=A0+EAi+s2A2+... is selfadjoint for 
— M o r e o v e r if an interval ju1<A</i2 contains an isolated 
part of A0's spectrum, then the constantness of the spectral family E^e) for A(s) 
follows from that of £¿(0) for A0 for —(p+a)'1 <£<(/7+b)~x near the ends of 
the (jii, Hi) interval, and in a neighborhood interior to the interval (n t, n2) the 
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reduced perturbed operator A^IE^J^—E (e)] has power series expansion 

A0(Ellt(e)-Elli(ej)+B0+eB1+e2B2+... where the coefficients satisfy 

• (constant1)(/>+constant2)'i~1. 
Sz.-Nagy's approach in [3] uses the theory of the resolvent operator R, and 

the associated spectral representations in the complex plane. In [11; first citation] 
he applies the theory to the ordinary differential equation boundary value problem 
—py"=k(\+eo)y, j ( 0 ) = y ( l ) = 0 . In [11, second citation], some extensions to the 
theory of closed operators in Banach space are made, including several original 
ideas on the extending of the theory from bounded operators to relatively bounded 
ones. In [11, third citation] one finds a translation of the original paper [3]. 

I would not have known of these papers had not Professor Sz.-Nagy given them 
to me on a visit to Szeged in 1972. 

My contribution [4] to the R K N G theorem came about in an indirect way. 
I was finishing my doctoral work in partial differential equations with L. E. Payne 
at the University of Maryland. Payne had already taken a position at Cornell 
University, and as I had some free time I was attending the lectures of S. Goldberg 
on operator theory. Goldberg was stuck at 1/2 in a proof of the following basic 
defect index lemma. 

L e m m a [4, Lemma 1]. Let T and B be linear operators with domains in 
a normed linear space X and ranges in a normed linear space Y. Suppose that T has 
a bounded inverse and that B is bounded with II ^^11T 1|| \ b~< 1. Then 
dim (Y/R(r)) = dim ( Y / R ( T + B ) ) . 

Inasmuch as this lemma was desired by Goldberg for a proof of the basic index 
perturbation theorem that states that the full index of an operator is preserved 
under relatively small perturbations, I became interested and proved the above 
lemma, which also appears in the book [12] as Corollary V 1.3. Believing that the 
technique of proof should have wider value, upon stumbling onto Nelson's paper [13], 
Nelson also being stuck at 2x1/2, I published [4] with its R K N G result for semi-
group generators. Because Nelson was working in Banach space; so did I. 

T h e o r e m [4, Theorem 2]. Let A be the infinitesimal generator of a contraction 
semigroup on the Banach space X, and let B be a dissipative operator with 
D(B)ZDD(A). If there exist constants a and b, 6< 1, such that for all x in D{A), 
||5x|| =£z||x|| then A+B is the infinitesimal generator of a contraction 
semigroup. 

In [14, first citation] I tried to place the doubling technique in a proper context 
with respect to the general Fredholm theory of linear operators in normed (not 
necessarily complete) spaces and in so doing gave a number of extensions of [4]. 
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I also noted as an example of the method the following extension from ¿<1/2 to 
¿»<1 of a theorem of KATO [6, Theorem 3.4] on perturbation of sesquilinear forms. 

T h e o r e m [14, first citation, Theorem 4.1]. Let t[u,v] be a densely defined 
closed sectorial form with Re (t[u, and let b[u, v] satisfy 

\b[u,u]\^a\\uP + bRe(t[u,u]\ ¿<1, 

and Re (b[u, - Re (t[u, u\) for win D(t)aD(b). Then the resolvent Rx(Tt+b) 
for the associated form operator exists for Re / < —ab'1 and 

\\R,(Tt)-Rx(Tt+b)\\ * nb(b„-b)-i(-ReA)"\ 

where n is chosen such that ft <£>„ = (2"—1)/2". 

It should be noted that in extending the previous version from 1/2 to 2 x 1 , 
I made an additional assumption that Re (t+b)^0. Also for the record let me 
correct here two minor typographical errors: [14, p. 286, the last line] reads 
||(1—c„)i?„+i|| <2 - ( n + 1 )}>(r) = . . . and [14, p. 287, the first line] reads ... is a 
for T+c„Bn+1, ... . 

Shortly afterward, while on the faculty of the University of Minnesota, I attended 
a lecture by Ken-iti Sato who was visiting from Japan. Sato, who was chiefly 
interested in applications to probability and who, although there already for several 
months, I had not met, had proved the following theorem for ¿<1/2. 

T h e o r e m [14, second citation, Theorem 2.1]. Let A be the infinitesimal 
generator of a nonnegative contraction semigroup on a Banach lattice 3$, and let the 
perturbation B satisfy \\Bf\\t*a\\f\\+b\\Af\\, 2>< 1 for all f in D(A)czD(B). If 
A+B is (ct+fS)-weakly dispersive, then A+B also generates a nonnegative contraction 
semigroup. 

During his lecture I wrote down the following "lemma": a weakly dispersive 
operator B is dissipative in at least one semi-inner-product, and based upon that 
assumption, immediately noted the extension to ¿ < 1 that is stated in the above 
theorem. Unfortunately, the just mentioned "lemma" resisted our efforts at its proof, 
causing the. proofs in [14] to be longer than otherwise would have been necessary. 
Although the "Lemma" is true in a wide variety of cases and under many additional 
assumptions, its general validity or nonvalidity for all Banach lattices is to my know-
ledge not known. 

A few years later a recent student of F. Browder in Chicago, B. Calvert from 
New Zealand, spent a postdoctoral one half year with me at the University of Colo-
rado. Calvert had done his doctoral work on nonlinear semigroup generators in 
Banach lattices. Here is a nonlinear version of the R K N G theorem, which we needed 
lor application to questions of multiplicative perturbation of generators. 
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T h e o r e m [14, third citation, Lemma 1]. Let A be m-accretive (<p) in a 
Banach space X, let B be single-valued with D(B)~z>D(A) such that A+B is 
accretive (\p) such that ip(u,v, x+Bu, y+Bv) = cp(u,v, x£Au, yZAv). Suppose 
there exist constants a and b such that, for xx and x2 in L)(A), 

l l ^ - ^ l l =s a\\x1-x2\\+b\Ax1-Ax2\, b < 1. 

Then A+B is m-accretive (ip). 

Here <p and ip may be different duality maps and IS1] is the infinium of ||j|| 
for all s in a set S. In the nonlinear case the technicalities in the statements cause 
some loss of interest in the results. We refer to BROWDER [15] for further information 
on the nonlinear semigroup literature. 

For extensive treatments of the R K N G Theorem, selfadjoint operators, forms, 
and related matters, we point out, in addition to the books [5] and [6] already 
mentioned, two books almost totally devoted to such questions, FARJS [16] and 
CHERNOFF [17]. 

2. The real Hilbert space case 

The usual proofs of the R K N G Theorem utilize the defect index theories. In 
particular, for the instance of preservation of selfadjointness, it is interesting to ask 
if a direct proof can be worked out for real Hilbert space without employing the 
Von Neumann R(A+B±i!) = H complex defect-zero criteria. A direct proof of 
the R K N G theorem for real spaces was worked out with my doctoral student 
D. K . Rao about ten years ago, and I would like to give it here since I have never 
seen it anywhere else. 

T h e o r e m ( R K N G Theorem in real Hilbert space). Let A be selfadjoint 
in a real Hilbert space and let B be a symmetric operator with D(B)z>D(A) and 
\\Bx\\^a\\x\\+b\\Ax\\, b<\. Then A+B is selfadjoint. 

P r o o f . It suffices to first prove the theorem for 1/2. Then the doubling 
technique allows extension to ¿ < 1 . Since A+bB is closed and symmetric, it 
thus suffices to prove that for + M | , b< 1/2, one has D((A+bB)*)ci 
cD(A+bB). 

Let y£D((A+bBf). Then 

\{(A + bB)*y, Ax)+k*(y,x)\ s(||(>l + fc2i)^B + llj'll)IWI1 

where (x, y\=(Ax, Ay)+k%x, y) is the inner product on HA=D{A) with the 
yi-norm. It will be advantageous to choose k such that k>2ab(\ —b)~l. The linear 
functional y* on HA induced from y via 

y{(x) - ((A + bBTy, Ax) + k2(y, x) 
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is bounded and hence there exists some y* in D(A) such that y%(x)=(y*, x\= 
=(Ay*, Ax)+k\y*, x). We now claim, remembering that k>2ab{\ —b)"1, that 
B may "inserted" so that one has the representation, for some y*B in D(A), 

yt(x) = ( y \ = ((A + bB)y*B, Ax) + k*(y*B, x). 

Accepting this for the moment, for all x in D(A2) we then have 

(y-y*B,{(A + bB)A + k2)x) = 0. 

For k^labil-b)'1 and ¿<1/2, the operator {A+bB)A + k2 = (A2 + k2) + bBA 
is onto because A2+k2 maps onto and bBA is a small perturbation. Accepting 
also this latter statement for the moment, we thus have y in D(A) and thus 
D{(A+bBf) c D(A+bB). 

There are several ways to verify the two details in the above. 
For the first, from y*(x)=(Ay*, Ax)+k\y*, x) we may "insert" the ( b B y B , A x ) 

term as follows. The linear functional — (bBz 0 ,Ax ) induced by any vector z0 in 
D(A) is bounded on HA immediately by Schwarz's inequality and the fact that B is 

-small with ab<k(\ —b)/2. Thus there exists zx in D(A) such that ( - bBz0, Ax)= 
1 +b 

=(z1,x)1 and HzjI^c——¡ZoUx. Repeating this with z1 we are led to the sequence 

z„ given by {zn+1,x)1——{bBz„, Ax). Thus we may write the "telescoped sum" 

(*o, *)i = 2 [ ( ( A + bB)zm, Ax) + k*(zm, x)] + (zn + 1 , x\. m=0 

Let ' Z z m - z , and note that 2'||zm||< 2,(2-1(l+fc))m||z0||1, which guarantees 
m = 0 m = l m — 1 

absolute convergence (for ¿ < 1) of both 2 zm a n d 2 ^ z m . By the relative 
m=0 m=0 oo n 

boundedness 2\\(A+bB)zm\\ is similarly seen to converge and hence 2(^+bB)zm 
m=0 m=0 n 

converges to ( A + b B ) z because z and A+bB is closed. Letting y* be 
m=0 

z„ and yB be z we thus have shown that (y*, x)1=((A+bB)yB, Ax)+k2(yB, x). 
For the second detail, we note that the perturbation bBA satisfies the relative 

bounds 
b\\BAz\\ ^ ab\\Ax\\+b2\\A2x\\ == (abk-^-^ + b^W^ + k^xW 

^ ((l-b)2- 3
/

2 + 62)||042 + /c2)x||. 

Because the coefficient of the right hand side is less than one for ¿<1/2, the sur-
jectivity of A2+k2 implies that of A2+k2+bBA by the basic defect index lemma 
of [4] mentioned in the section above; more precisely and quickly, by its unbounded 
version [14, first citation, Theorem 2.4]. 



208 K. Gustafson 

There are no doubt shorter and sharper versions of the proof given above for 
the R K N G Theorem for Real Hilbert Space, perhaps also a proof by complexifying 
and using the complex version. The latter was not evident to us at the time and in 
any case the proof given above holds as well for the complex case. We did not 
investigate the above proof in any generality (e.g., Banach space, nonlinear versions). 

Although the important quantum mechanical application occurs in a complex 
Hilbert space setting, there are a number of suppositions that go into that choice of 
scalars, and the issue is not completely settled. See my remarks in [18]. Along 
these lines it would perhaps be interesting to have the R K N G theorem for the quater-
nion field, perhaps also for the Clifford algebra. 

3. Regular positive perturbations 

One would like to have a specialized R K N G theorem of the form: if B is • 
a symmetric regular positive perturbation of positive selfadjoint A, then A+B 
is selfadjoint (or at least essentially selfadjoint). The idea is that the regularity of 
B with respect to A means that B is ^-bounded, and that even though the relative 
bound b may be greater than one, it doesn't matter. There also are a number of 
compelling physical examples for such a theorem. I conjectured in 1972, in some 
discussions with K. Jorgens who was visiting me in Boulder for the year, that such 
a result should hold, and spent some time on it that year. 

By translation the question is equivalent to that for the more general situation 
of two semibounded selfadjoint operators, one regular with respect to the other, 
and also equivalent to the more special case of A and B both bounded below by 
one, D(B)^>D(A). One can write down lots of operator-theoretic conditions for 
the selfadjointness (better: essential selfadjointness) of A+B. For example, for 
strongly positive selfadjoint A and B, the latter a regular perturbation, D(A1/2)cz 
<zD(By2) by forms so that 

A +B = All2[f+A~1/2B112 • Bll2A~ll2]A1/2 = All2[I+TT*]A1/2. 

Note that T=A~y2Bv2 is a densely defined bounded operator and that C=I+TT* 
is a strongly positive essentially selfadjoint bounded densely defined operator. One 
has then the situation 

A + B c A1/2CA112 c (A + B)* 

where the middle term A1/2CA112 may be seen to be the Friedrichs extension of 
A+B. Thus A+B is selfadjoint iff C maps D(A1/2) onto itself iff Z)(04+£)*)n 
№)(A1/2) is contained in D(B), and A+B is essentially selfadjoint iff A1/2C=A1,2C 
iff (A+B)2 is densely defined. 

s. 
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Unfortunately the general proposition is false, and in this final section I want 
to discuss why, and present some counter examples. These were obtained in May 
1979 during visits with J. Weidmann in Frankfurt and with T. Kato, who provided 
the coup de grâce, in Paris. They are important to have, and as far as I know, are 
not in the published literature. 

But before I conclude, I would like to mention some ways in which such questions 
were, and in some cases may be, avoided. 

The usual dodge is to accept form sums. Then for example if A and B are 
positive selfadjoint and D(AV2)P\D(B1/2) is dense, the "form sum" A+B is 
selfadjoint. One does not even need a regular perturbation. But that is the point: 
one also does not in general get a "regular" sum selfadjoint on D(A). 

A second dodge is to invoke a positivity assumption on the product term 
(Ax, Bx) rather than on A and B. For example, for A selfadjoint and B a 
symmetric regular perturbation, the condition R e ( ^ x , B x ) ^ 0 implies (OKAZAWA 
[19]) that A+B is selfadjoint. An extension of this result is that one needs 
(GUSTAFSON and REJTO [20]) only Re (Ax, Bx-(a\\x\\2+b\\Ax\\ ||£x||) for ¿>< 1 
to conclude A+cB selfadjoint for all csO. Further discussions of these methods 
may be found in [7]. 

A third set of variations involves closure assumptions. For example, for a 
regular perturbation B the selfadjointness of A+cB fails only when the closure 
of A+cB fails. 

Let us conclude with some counter examples. 
First, it is not sufficient that just A and the sum of A+B be positive. Consider 

any closed symmetric positive nonselfadjoint operator T, let A=\T| and 
B=T—\T\. Then B is a regular symmetric perturbation of positive selfadjoint A, 
with relative bound 2, A +B is closed symmetric positive but not selfadjoint. 

Second, a version of the result mentioned above from [20] is: for A essentially 
selfadjoint and B a symmetric ^-bounded regular perturbation of A, if the set 
of values (Au, Bu) for all u in D(A) is contained in some half-plane not containing 
( — <=0,0] then A+B is essentially selfadjoint. To see that,the half line ( — 0 ] 
must be excluded, let Ay=-y" in L2(Q, with D(A)={y£L2(0, such that 
y and y' are absolutely continuous, =°),>-(0)=0}, and let By=y"+iy' — y 
on D(A). A is essentially selfadjoint and A +B has no selfadjoint extensions at all. 
It is easy to verify that (Au, Bu) values lie in the second quadrant. 

Counter examples to A and B positive essentially selfadjoint operators, one 
regular with respect to the other, yet A+B not essentially selfadjoint, may be 
obtained as follows. Consider Ay= — (py')\ B = (—qy')', with p(x)=x4+sin2 ( 1 /x) 
and #(x)=x4+cos2 (1/x) for 0 < x < 1 and continued smoothly to 1 as x— 
A and B are essentially selfadjoint in L2(0, on the domain CJ°(0, but 
A+B fails to be essentially selfadjoint on that domain. One may use other p and 

14 
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q and also one can replace the oscillatory parts by such discretized oscillating func-
tions such as j ( x ) = 1 for (2« + l ) - 1 = x < ( 2 n ) _ 1 , 0 otherwise, c(.v)=1 —s(x). 

The idea is that the wave functions must go to zero as x—0 so well for A and 
B to accomodate the oscillation, whereas for A+B, in which the oscillation has 
cancelled itself, the wave functions need not be so good and A+B will need a larger 
domain of selfadjointness. 
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Von Neumann's coordinatization theorem 
ISRAEL HALPERIN 

In Honour of Beta Szokefalvi-Nagy on his 70th birthday 

1. Notation. L denotes a complemented, modular lattice with homogeneous 
basis a1,...,aN, TVS4 [2, Part II, Def. 3.1]; AJ=a1\/...\/aj; ab means a/\b; 
a\jb means a\jb if ab=0; L}i={b£L:b\Ja—a^a}). 

If Si is a ring and m^N, then 8%N(m) denotes the right 52-module ((ax, ..., aN): 
all «.£3% and a f = 0 for m ^ i ^ N ) ; (a l5 ..., am) is an abbreviation for 
(a l 5 . . . ,a m , 0, . . . ,0 )£@ N (m) ; AT); L{St\m))"denotes the set of finitely 
generated submodules of !%N(m), ordered by inclusion. 

2. Von Neumann's theorem. In each L^ (yV/), addition and multiplication can 
be defined so that: 

(2.1) The Lji become regular rings with unit, isomorphic to a common regular 
ring 01 [2, Part II, Theorem 9.2]. 

(2.2) For each j the sublattice (b(LL: b^aj) is isomorphic to L{M), the 
lattice of principal right ideals of 01 [2, Part II, Theorem 9.2]. 

(2.3) L is isomorphic to L(3tN) [2, Part II, Theorem 14.1]. 

3. Outline of von Neumann's proof. (3.1) Choose clj=cJ1, 2 s j s N , so that 
6-J! V a j = cn \/a1 =aj V ¿/J; set cJt=(CJ:L V ¿'LIX*2; V «¡) f o r i , / , / all different. 

(3.2) Call a family a = ( a j ^ L ^ : an ¿-number if (txjlVcJk)(akV«,)=<xki 

and (ajt\/cik)(ajVak)=ajk. Note: For every there exists a unique ¿-number 
a with a J t = b [2, Part II, Lemma 6.1]. 

(3.3) Let denote the set of 1,-numbers with operations: 

( « + % = ( « ( F T , V A4)(AY.V C I T))(AYV A ; ) , 

= ( a ^ V f e X ^ V a ; ) . 

(3.4) For each oc and 1 = /=TV, define the reach of a into ay by 
=(ayjV a,)^ (does not depend on i , i ^ j ) . 

Received August 20, 1981. 

*) A sketch of this paper appeared in C. R. Math. Rep. Acad. Sci. Canada, 3 (1981), 285—290. 
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(3.5) Prove: ay=jS has a solution y if and only if (holds for all 
j if for some j ) [2, Part II, Lemma 9.4] or [1, (3.2) with multiplication reversed]. 

(3.6) Prove: For each b^aj:b=eip for some'idempotent [2, Part II, 
Theorem 9.3]. 

(3.7) Deduce: Parts (2.1), (2.2) of the theorem hold [2, Part II, Theorem 9.2]. 
(3.8)m Prove: For lSmSiST there exists an isomorphism 

q>m\ (b£L: b 3= Am) - L{MN(m)) with ^ c < p 2 c . . . c cpN. 

Note: (pN establishes Part (2.3) of the theorem. The outstanding difficulty in von 
Neumann's proof is to establish the <pm. 

4. Von Neumann's strategy to prove (3.8)m. (4.1) Call b an m-element if 
(i) m = 1 and or (ii) 2 S m ^ N and b</Am-1^Am. 

(4.2) For each m-element b define q>(b), a submodule of L(3$N(m)), as 
follows: 

(i) If define cp(b)=(e, 0, ..., 0)^ with e idempotent and e[r)=b. 
(ii) If 2 S w S i V define <p(b) = ( —a!, ..., —.am_i, with e idempotent 

and e^=(Am-1yb)am, with b'Ve%=am and ( ^ ^ ( b y b'\J ai+1\J... 
...Va«-i)(fliVflJ-

Note: (p(b) is determined uniquely by b though e, b', and the a ; may not be; 
also (a,) (Am~1\/b) = (b\/Ai-1\/ai+1V...\/am-1)(ai\/am). 

N 
(4.3) For each x£ L and decomposition x= V * ; w ' th an /-element, 

¡=1 
(such decompositions exist for all x), assign to x the submodule <p(x1)+...+<p(xN). 

(4.4)m Prove: the set ((p(Xl)+... + (p(xm): x^Am)=L(@\m)). 
m m 

(4.5)m Prove: For decompositions x=\Jxt, y= \J y{\ if and only 
¡=i ;=i m m m 

if 2<P(xi)^ 2<p(yd. Note: (4.5)m implies that <pm(x)= 2(p{x{) has the same 
¡ = 1 i = l 1 = 1 

value for all decompositions of x; then (4.4)m, (4.5)m establish (3.8)m. 

Von Neumann established (4.4)m without difficulty [2, Part II, Theorem 11.2]; 
(4.5)x follows immediately from (3.5), (3.6). But von Neumann's proof of (4.5)m, 

[2, Part II, pages 168—208], is a virtuoso demonstration of mathematical 
technique. 

5. A new proof of (4.5)m, We use direct lattice calculations (for the 
case m = 2, in particular) and reduce part of the case m (to the case m — 1) when 

We require the following properties of ¿-numbers. 

(5.1) (x-P)J k = ( a j ,V( a t V^,)( a j Vc i t ))( a j .Va t ) [1, (2.3)3, 
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hence 

(5.2) ( a - P ) P = (x jMjdci j , 

(5.3) («+fo)ji = (PjkV(ZjiVak)(ykiVaJ))(ajVai) 
[1, (5.2) with multiplication reversed]. 

6. Proof of (4.5)2. We assume x2V«i=«2Vfli, y2\! ax^a2M 
and we need to prove: 

(6.1) XiV*2=yiV;>2 if and only if + ( p ( x 2 ) ^ ^ ( j i ) + (p(y2)- Because of 
modularity we need consider only the case x x =0, (p(x1)=0 (use (4.5)!). 

Now the inequality ^ ( x ^ ^ ^ y ^ + ^ y 2 ) is equivalent, in turn, to each of: 

(6.2) (~<xi(jxje(xj, e(x2))N = (e(jj), 0 ) N f t + ( -a 1 ( j 2 ) e (y 2 ) , e(y2))Nf$2 

for some ft, 

(6.3) e(y2)eix2)=e(x2) and {^{y^eix^-a^eix^fp == (e(^))ir); 

(6.4) (a!V^2K = («xVj2)«2 and, (use (5.2)), 

( a i ^ e ^ X s V i a ^ j ^ e ^ X a ) « ! S j i j 

(6.5) (i) a1V*2^«iVj>2 and 
(ii) ( a ^ ^ K ^ X a = y-L V ((ai(j2>(x2)),3. 

The inequality (6.5) (ii) is equivalent to each of: 

(6.6) ((«iC^izV (e(*2))23)(aiVa3) = JiV ( ( ^ ( j ^ V (e(x2))23), 

(6.7) ((ai(*2))12V (e(x2))23)(ai Va3V (e(x2))23) ^ JiV(a1(j2))12V(e(jc2))23, 

(6.8) (*2))i2(«iV(«3V(e(x2))23)a2) . V i V M J ^ W 

(6.9) (« i (^^(aiVi f l iV (e(x2))21)a2) ^ y ^ ( ^ ( y 2 ) ) u , 

(6.10) (oti(^))i2(aiVx2) ^ J i V M ^ -

Now (6.5) (i) and (6.10) together are equivalent to: 

(6.11) ^ J ' l V . P l , 

which establishes (6.1), i.e. (4.5)2. 

7. Proof of (4.5)m assuming (4.5)m_1; 3 g m S i i . We assume x1SAm~1, y ^ 
SA"-1, x2VAm-1^Am, y2VAm~1^Am and we must prove 

(7.1) x^x^yiVya if and only if <pm-1(x1) + q>(x2)^<pm_1(y1) + <p(y2) where 
<pm-1 is the isomorphism on A1"-1 determined by cp (existing since (4.5)m_1 is 
assumed to hold). We may assume that x1 = y1 (=z, say). 
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We recall that [2, Part II, Lemma 13.2] states: if a^b then every x can be 
expressed as (x\Ja)(x\Jc) for some c with a\Jc=b. Repeated application of this 
lemma shows that our z can be expressed as z (1 ) Az(2) A -Az ( m - 1 ) where, for each 
j<(m—l): z(J)Vfly=y4m-1, and z ( 

It is clearly sufficient to establish (7.1) with z replaced by za),j = l, ..., m—l. 
Thus, in (7.1), we need consider only: 

case (I): z^Am~2, and case (2): z\Jaj=Am~1 for some y < ( m - l ) . 

T h e p r o o f of (7.1) f o r case (1). We use lattice calculations as in the 
proof of (4.5)2 in §6. With the present z, x2,y2, 

= H 1^ + ... + Mm_2<%+ 

where Uj is the vector in with y'-th component 1 and all other components 0, 
and g is an idempotent with (g)^)_1=zom_1. 

Let 

<?(**) = •••» ~«m-i, Ihet*. y(y2) = ( - f t , ..., fim—i> 

Then the last inequality of (7.1) is equivalent to each of the following: 
(7.2) (i) ef=e and (ii) ( p ^ - z ^ e i g ® , 
(7.3) (i) (x2VAm-1)amS(y2VAm~1)am, i.e., x2\J Am~1^y2y Am-\ and 

(ii) { { f i m ^ - o i m ^ ) e f t ^ z a ^ . 
Choose any k^N with k different from m—l, m. Then (7.3) (ii) is equiv-

alent to each of the following: 

(7-4) ( O C i ^ . ^ V ^ e ) ^ J a r a _ 1 ^ z a m _ 1 ; 

(7-5) (am-ie)m-i>fc ^ 

(7.6) (am_1)m.ljm(am_ 1Vakyemk) s zam_1V(Pm-i)m.1>mVemk; 

(7.7) == zam_iV (/?m_i)m_ 1>m« • 

The left hand side of (7.7) equals 

( « m - i ) m . l i m ( f l m - i V a = ( a m - i L . ^ V ^ - 1 ) = (x2V;4m-2)(amV 

In the presence of (7.3) (i), the right hand side of (7.7) may now be replaced by each of 

(zam-iV(^m-i)m_lm)(j2V^"'~1), zam-1V(y,VA*-*)(amVam.1), 

(j2V^m-2Vzam_ 1)(amVam . 1), (y2V z)(amV a ^ ) , y2V z, 
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so (7.4) (ii) is equivalent to each of 

(x 2 V^ m - 2 )(a m Va m _ 1 V4 m - 2 )S7 2 Vz, Am~* ^ zVyM. 

Thus (7.4) is equivalent to: x2^z\Jy2 and this establishes (7.1) for case (1). 

The p r o o f of (7.1) for case (2). Choose so that zm-x\Jza~ 
=z(ajyam.1). Then: zm_1Va~am_1VflJ-; z ^ y Am~*=z\/A^^A"1-1-; 
and (¡om_1(zm_1)=9(^m-1)=(0,..., -P, 0, ..., \)Nm with - j 3 in the y-th place 
and 1 in the (m — l)-th place. 

Set x2=(x2Vzm-0(Am-2\/am), y2=(y2Vzm^)(Am-2VaJ. Then x2Am~1=0= 
=y2Am~1; z\Jx2=z\Jx2, zyy2=z\Jy2 and so the inequality z\Jx2^z\Jy2 can be 
expressed as: z y x2-^z\l y2. 

If (p(x2)=(-cc1, ..., —am_a> ~«m-i. and cp(y2)=(-Pi, ..., ~Pm-2, 
1 ) w / « then (use (5.3)): 

9(xd = ( - < * i . •••> -<*j-i> -<*J-P<*m-1>-<*j+i, • • • > - O m - 2 , 0 , \)Ne3i, 

<p(y2) = (~/»l, -Pj-1, -Pj-PPm-1, -Pj +1, .... Pm — 2 > 0, 

so the inequality 

can be expressed as: 

(use: (0, ..., 0, —/?, 0, ..., l)iv(/Jm-i —am-i)e, with —p in they-th place and 1 in the 
(m—l)-th place, is in <pm~i(z)). 

Thus we need only prove (7.1) in case (2) with z, x2,y2 replaced by z, x2, y2 

respectively. We may now also replace z by z=zAm~a. Then we observe that all of 
z, x2, y2, ^Am~2\Jam. Hence we can apply (4.5)m_! with a1; ..., am_2, am_x replaced 
by ay, ...,am_2, am (replacing (ax, in ®N(m-\) by (a1} ..., am_2, 0, 
am_1)JV in £%N(m)); this replacement is permitted because it preserves the order of 
the aj, and the functions q>, <pm-2. This establishes (7.1) for the case (2) and 
completes the proof of (4.5)m. This completes the proof of von Neumann's theorem. 

8. Supplementary remark. Call a l5 . . . , % , i V s 3 a Desarguesian basis for 
a complemented modular lattice L if for some c\j, j > 1: 

(i) (Bjarni Jonsson) ai is perspective to some bt^a1 for i S 2 with b2=bi=a1, 
(ii) a2ax=as(a2V £i)=0 and a1\/...\/aN=l, and ' 

(iii) the formulae (3.3) make Si a regular ring if, in the definition of ¿-number, 
i,j are restricted to {1, 2, 3}. 

If such a Desarguesian basis for L exists, then the at, /=*• 3 can be altered 
so that {al3 ..., aN} becomes an independent basis for L and, with some changes, 
the above proof of von Neumann's theorem holds; the condition (iii) can be replaced 
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by certain Desarguesian-type lattice conditions (K. D . FRYER and I. HALPERIN, 
Acta Sci. Math., 17 (1956), 203—249; B. J6NSSON, Trans. Amer. Math. Soc., 97(1960), 
64—94). 

The proof is simplified when, in the definition of ¿-number, the i, j are further 
restricted to but then the use of e ^ in (4.2) above and (e(x))21 in (6.9) above, 
and the use of k ( < m — 1 ) in (7.5) above (when m=N) must be (and can be) adjusted. 
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On partial asymptotic stability and instability. I 
(Autonomous systems) 

L. HATVANI 

Dedicated to Professor Beta Szokefalvi-Nagy on his 70th birthday 

1. Introduction 

Ljapunov's direct method is the most powerful tool for establishing also partial 
stability properties, i.e. stability properties regarding some variables only [1]—[3]. 
One finds, however, that in many applications it is very complicated to construct 
an appropriate Ljapunov function. For example, the derivative of the total mechan-
ical energy of a holonomic mechanical system under the action of dissipative 
forces is negative definite with respect to velocities only, thus it cannot be used in 
the basic theorems to establish asymptotic stability or instability with respect to 
the generalized coordinates. The method of BARBASHIN and KRASOVSKI! [4], [5] 
and LASALLE'S invariance principle [6] enable us to get asymptotic stability or 
instability by Ljapunov functions with semidefinite derivative. These methods have 
been extended to the study of partial stability [1], [7], [8]. However, in comparison 
with the stability investigations concerning all variables, a new difficulty appears: 
the extensions require the boundedness of all the uncontrolled coordinates along 
every solution. As it was shown in [9] by an example, this condition cannot be 
omitted. Our purpose is to replace this condition by such ones which can be checked 
directly, i.e. without a priori knowledge of the solutions. 

We first study what we can state after having dropped the condition of bounded-
ness of the uncontrolled coordinates. This allows us to locate the limit set of the 
vector function whose components are the controlled coordinates of a solution. 
Then we can find additional conditions on the Ljapunov function which assure the 
zero solution of an autonomous system to be partially asymptotically stable or 
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unstable. Starting from the localization result mentioned above, in the continuation 
[10] of the present paper we give some additional conditions on the right-hand side 
of the system which imply the same properties. We apply our results to study 
stability properties of mechanical equilibrium in the presence of dissipative forces. 
As special cases we study motions of a material point along certain surfaces in a 
constant field of gravity. 

2. Notations, definitions. Preliminaries 

Consider the system of differential equations 

(2.1) x = X(x, t), 

where t€R+=[0, and x=(x1, ...,x*) belongs to the space Rk with a norm |x|. 
Denote by Bk(g) the open ball in Rk with center at the origin and radius £>>0, Bk(g) 
its closure in Rk. Let a partition x=(y, z) (y£Rm, z£Rn\ l s m ^ f e , n=k—m) be 
given. Assume that the function X is defined on the set Fy\ 

Ty = GyxR+ (Gy = Bm(H)XR"; 0 

it is continuous in x, is measurable in t, and satisfies the Carathéodory condition 
locally (i.e. for every compact set KczRk there is a locally integrable h: R+—R+ 

such t h a t ' ^ ( x , 01—^(0 for all (x, t)£KXR+), so the local existence of solutions 
of initial value problems is assured, and every solution has a maximal extension. 
We denote by x(t)=x(t-, x0, t0) any solution with x(/0)=x„. If (2.1) is autonomous, 
i.e. X does not depend on t, we use the notation x{t\ x0)=x(/; x0, 0). We always 
assume that solutions are z-continuable [2], i.e. if x(0=CK0> z (0) ¡ s a solution 
of (2.1) and \y(t)\^H'<H for t£[t0,T), then x(t) can be continued to the 
closed interval [i0, T̂l-

The zero solution of (2.1) is said to bé: 
y-stable if for every e>0, t0£R+ there exists a 3(e, t0)>0 such that |x0|<c5(e,r0) 

implies |>>(í;x0, i0)|<e >for 
asymptotically y-stable if it is ^-stable, and for every t0dR+ there exists a 

<t(/0)=-0 such that |x0|<<t(/0) implies x0, f0)|—0 as i— 
uniformly asymptotically y-stable if it is ^-stable so that the number ¿(e, t0) 

can be chosen independently of t0, and there exists a CT>0 such that \y(t\ x0 , f0)| —0 
uniformly in x0£Bk(cr) as f— 

y-unstable if it is not .y-stable. 
Let x=q>(t)=(ip(t), %(t)) be a solution of (2.1) defined on an interval [i„, 

(t0£R+; \¡/\[/„, °°)-i im , [/0, °°)-Rn). A point q€Rm is a y-limit point of the 
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solution x—(p{t) if there exists a sequence {f,} such that °° and iKh)-**! 
as The partial limit set Qy(q>) of x=cp(t) with respect to y is the set of all 
its j-limit points. It is easy to see that if \j/ is bounded then Qy(q>) is non-empty, 
compact, connected and is the smallest closed set approached by i j / ( t) as 

The complete trajectory y(q) of (2.1) belonging to a non-continuable solution 
£:(<x,ß)+Rk is defined by y(|) = {¿(i): oc<i</?}. It is known [11] that if (2.1) is 
autonomous then the set E=Qx((p)C[Gy is semiinvariant with respect to (2.1), which 
means that for every x0£E the equation (2.1) has a solution £ suchthat ^(0)=x0 

and y(^)c:E. 
A continuous function V : r'y-*R, r'y—GyXR+ (G'y=Bm{H')XR"\ 0 < / / ' < / / ) 

is a Ljapunov function of (2.1) if V(0, t)=0, V is locally Lipschitzian and 

H x t 0 = limsupV(x+hXix,t)t+h)-V(x,t) ^ 0 

ä-O+ h 

for all (x, t)£r'y. The function V is called the derivative of V with respect to (2.1). 
We say that a function a: R+—R+ belongs to the class Jf if it is continuous, 

strictly increasing and a(0)=0. A function V : T'y-*R is said to be positive definite 
in y or positive y-definite if there exists a function suchthat a(\y\)^V(y,z,t) 
for all (y,z,t)£r'y. 

Let us given a continuous function W : LXRqXR+-+R, where L<zRp is 
open, p = l, q=0 are integers. Following LASALLE'S notation [6], for cdR we 
denote by H/~1[c, the set of the points u£Rp for which there is a sequence 
{(«,, vt, i;)} suchthat u^u, — W ( « i 5 A;, ?;)—c as If W: L—R 
(i.e. q=0 and W does not depend on t), then W~l[c, is the inverse under 
W of c and is denoted by W - 1(c) as usual. 

We say that a function x = (y, z): R+-<-Rk is z-bounded if z: R+—R" is 
bounded for /^0. 

Now we can cite the following extensions of the Barbashin—Krasovskii theorem 
to partial stability, which contain the original theorems as special cases 0>=x). 

T h e o r e m A (A . C. OZIRANER [9]). Suppose that every solution of the autonomous 
system 
(2.2) x = X(x) 

starting from a sufficiently small neighbourhood of the origin is z-bounded. 
I. If there exists a Ljapunov function V : G'y-*R such that 
(i) V is positive y-definite and F(0)=0; 

(ii) the set {x: F(x)>0}DF_1(0) contains no complete trajectory of (2.2), 
then the zero solution of (2.2) is uniformly asymptotically stable. 

IT If there exists a Ljapunov function V : Gy->-R such that 
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(i') K(0) = 0, and every neighbourhood of the origin contains a point x with 
F(x)<0; 

(ii') the set (jc: K ( i ) < 0 } n K _ 1 ( 0 ) contains no complete trajectory of ( 2 . 2 ) , 

then the zero solution of (2.2) is y-unstable. 

In [12] J. P. LASALLE pointed out that the essence of the Barbashin—Krasovskil 
method consists in the location of the limit sets and formulated it in his "invariance 
principle": If V\G'y—R is a Ljapunov function of ( 2 . 2 ) , and <p: R+—Rk is 
a solution of the same equation such that | < p ( O I — f o r t SO, then 
G ^ v O c K - H O j n K - K c ) with some c£R. 

3. Theorems on general differential systems 

First of all we have to locate the partial limit set of solutions of 

(3.1) i: = X(x) 

with the knowledge of boundedness only of controlled coordinates. An easy but, 
so it appears, useful generalization of LaSalle's invariance principle is 

L e m m a 3.1. Suppose that V : G'y-*R is a Ljapunov function of (3.1) and 
let x=<p(t) = ty(t),x(t)) be a solution of (3.1) such that \\J/(t)\^H"<H' for t£R+. 
Then either a) ¡/(Ol -*00 as t—°° or b) v(t) = V((p(t))-*v0 as t—<*>; the set 
Qx((p) is not empty and is contained in V -1(0) Pi V-I(v0). 

P r o o f . Assume that a) is not satisfied. Then, because of the boundedness 
of ip, there exist q£Rm, r^R", vQ£R and a sequence {if} such that ti-*°°,ip(tl)-<-q, 
x(td-»r and v(ti)^v0 as /— Since &x(<p) is semi-invariant with respect to (3.1), 
there exists a solution x(t) = x(t\q,r) of (3.1) for which y(x)ci2x((p). Let 1£R+ 

be fixed. Then there exists a sequence {?,} such that (i/»(?,), ^(f,))—x(f; q, r) 
and v(ii) — V(x(i; q, r)) as / - » . Since v is decreasing, V(x(l; q, r))=v0, which 
completes the proof. 

Denote by Py: Rk-+Rm the orthogonal projection from Rk into Rm, i.e. 
P(x)=y. 

L e m m a 3.2. Let V,q> satisfy the conditions of Lemma 3.1 and assume, in 
addition, that V is bounded from below. Then 

Qy(q>) c Py{Qx(<p))U F~1 [i;„, H, 

where v0 is defined by v(t)=V(<p(t))^»v0 as f—°o. 

P r o o f . Introduce the notations L=Qy((p), M=Py(Qx(cp)), N=L\M. Ob-
viously, M<zL\ therefore, it is sufficient to prove that N a V ' ^ V o , »]. If q£N, 
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then there are a sequence {/,} and v0£R such that /¡ — q , — 
v(t;)—v0 as z — i . e . q£ V^Vq, H - Since v is nonincreasing, v0 is independent 
of q, thus J V c K " x K . • 

The lemma is proved. 

T h e o r e m 3.1. Let V : G'y—R be a positive y-definite Ljapunov function of 
(3.1) such that for every o 0 the set V~1(0)C)V _1(c) contains no complete trajectory. 
Then the zero solution of (3.1) is y-stable and for every solution x(t) = (y(t), z(t)) 
starting from a sufficiently small neighbourhood of the origin either a) V(x(tj)-+0 
(and, consequently, |y(/)| — 0) or b) |z(/)| —°° as 

P r o o f . Since V is positive j-definite and V(x)^0, the zero solution of (3.1) 
is ^-stable (see [11], p. 15) and, a fortiori, every solution starting from some neigh-
bourhood Bk(g)(e> 0) of the origin is ̂ -bounded. Let x=(p(t)=(\jj(t), %(t)) be such 
a solution. Suppose |x(0l"t-

°° as t°°. We have to prove that in this case v(t) = 
— V(<p(t))-*0 as t— 00. By Lemma 3.1, v(t)-~v„SO, and there is a point p£Rk 

such that /76i3x(^>)cK-1(0)nK-1(fo)- The set Qx((p) is semiinvariant with respect 
to (3.1); consequently, K ' ^ f l F " 1 ^ » ) contains a complete trajectory of (3.1). By 
the assumptions this implies v0=0. 

The proof is complete. 
Theorem A.I in the previous section is a corollary of Theorem 3.1. Indeed, 

by Theorem 3.1, the conditions of Theorem A.I imply that the zero solution of 
(3.1) is .y-stable and V(x(t; x0))-*0 as t — °° for all x0£Bk(<7) with some <r>0. 
Application of the classic covering theorem of Heine—Borel—Lebesgue gives that 
this convergence is uniform in x0£Bk(p) (see [9]), which implies uniform asymptotical 
j-stability because V is positive ̂ -definite. 

The following two theorems show how to make use of the alternative given in 
Lemma 3.1 and Theorem 3.1 for getting sufficient conditions for partial asymptotic 
stability of the zero solution of an autonomous system. 

Theorem3.2 . Let the assumptions of Theorem 3.1 be satisfied. Suppose, 
in addition, that V(y, z)—0 uniformly in y£Bm(H') as V (y, z) 0 and \z j 
Then the zero solution of (3.1) is uniformly asymptotically y-stable. 

P r o o f . In view of Theorem 3.1 and the remark following its proof, it is suf-
ficient to prove that the function V tends to 0 along every solution starting from 
some neighbourhood of the origin. Denote by (p(t)=(\j/(t), /(/)) an arbitrary 
solution of (3.1) with \il/(t)\^H"<H' (/€/?+) and let v(t)=V(<p(t))-~v0 as 
Since v(t)=V(<p(t))s0 for all t£R+ and the function v is bounded from below, 
there exists a sequence {?,} such that and K((p(i;))—0 as / — B y 
Theorem 3.1 either v0—0 or the sequence {z;=/(/,)} diverges to infinity in norm as 
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/ — oo, in the latter case we have z,)—0, |z,| — and, simultaneously, 
V(ip(ti), z?)—v0 as i—oThe last assumption of the theorem implies wo=0, 
which completes the proof. 

It may be pointed out that Theorem 3.2 improves certain results which can be 
obtained by the application of some basic theorems on partial uniform asymptotic 
stability (see [2, 13]) to autonomous systems. To illustrate this fact let us recall 
a theorem o f K . PEIFFER and N . ROUCHE [13, T h . IV] . F o r (3 .1) it says that i f 

there exists a positive ^-definite Ljapunov function V : G'y-*R such that F(x)—0 
uniformly in x£Gy as F(x)—0, then the zero solution of (3.1) is uniformly asympto-
tically ^-stable. This obviously follows from Theorem 3.2. In fact, Theorem 3.2 
improves this corollary as it is shown by the following example. 

Consider the system 

(3.2) x1 =-x: 1 ( l+(^ 3 ) 2 ) , x 2 = - x 2 , x3 = x 3 - ( x 3 ) 3 

and let j>=(x\x2), z=x3. The function V(x\ x2, x3)=(x1)2+(x2)2+(x2)2(x3)2 is 
positive (x1, x2)-definite, its derivative with respect to (3.2) reads F(xx, x2, x 3 )= 
= -2(x1)2(l+(x3)2)-2(x2)2-2(x2)2(x3)4. If F—0 then 

(3.3) x1 — 0, x2 — 0, (x2)2(x3)4 - 0, 

which do not imply that F—0; therefore, the theorem of Pfeiffer and Rouche 
cannot be applied to this case. On the other hand, |x3| —-» and (3.3) together 
already imply V—0 and Theorem 3.2 can be applied. 

C. RISITO [7] proved that the statements of Theorem A (without uniformity) 
remain true if instead of (ii) and (ii') one requires the following: the set {(y, z): y=0} 
is invariant and the region F - 1 ( 0 ) \ { ( j , z): j = 0 } contains no complete positive 
semi-trajectory. Lemma 3.2 allows us to extend this result to the case when the 
uncontrolled coordinates are not supposed to be bounded. 

Theorem 3.3. Let V:Gy—R be a positive y-definite Ljapunov function of 
(3.1). Suppose that for every c>0 

(i) if the set F-1(0) fl F -1(c) contains a complete trajectory then this trajectory 
is contained also in the set {(y, z): y=0}; 

(ii) V~\c, ~]c{0}. 
Then the zero solution of(3.1) is asymptotically y-stable. 

Proof . As it was shown in the proof of Theorem 3.1, the zero solution starting 
from some, neighbourhood of the origin is ^-bounded. Let x=q>(t)=(ijj(t), /(>)) 
be such a solution. We have to prove that |«K0|—0 as t— i.e. Qy(cp)= {0}. 
The function v(t) = V(<p(t)) is nonincreasing and nonnegative, hence 
If v0=0 then the statement is true because F is positive ^-definite. Assume that 
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v0>0 and there exists a q such that 0T±q£Qy((p). By Lemma 3.2 and condition (ii) 
there is an r£R" such that p=(q, r)£Qx(<p). The set £2x(<p) is semiinvariant, hence 
there exists a solution f : ( — R k of (3.1) for which £(0)=p and >>(£)cr 
<zQx(cp). In view of Lemma 3.1 y{£) is contained also in the set F J(0) (~1 V 1(w0). 
On the other hand, q^ 0; therefore y(£) is not contained in the set {x: ^=0}, 
in contradiction to condition (i) of the theorem. This means that either v0=0 or 
Qy((p)=0, which completes the proof. 

Corollary 3.1. Let condition (i) in Theorem 3.3 be satisfied. Suppose, in 
addition, that there is a number such that 0<[y|<i> implies 

(3.4) lim V(y, z) = oo. 
y-y.M-oo 

Then the zero solution of (3.1) is asymptotically y-stable. 

The alternative given in Lemma 3.1 can be used also for getting sufficient con-
ditions for the instability of the zero solution of (3.1). 

Theorem 3.4. Suppose that there is a Ljapunov function V: Gy->-R of (3.1) 
satisfying the following properties: 

(i) for every <5>0 there exists xa(8)£Bk(5) with F(x„(d))<0; 

(ii) there is an e0 (0<e0<//') such that for every c<0 the set 

(3.5) F - 1 (0) H F _ 1 (c) H (Bm (e0) X R") 

contains no complete trajectory. 
Then for every 8 (0<<5<£0) either a) every curve yy(x0(5)): t<—y(f, x0(<5)) 

(t£R+) leaves the ball Bm(eQ) in finite time, or b) |z(i; x0(<5))|->-°° as t—° 
Proof . If the statement is not true, then for some <5„ (0<<50<£0) there exists 

a solution 
(3.6) <p{t) = (>K0, lit)) (q>(0) = x0(c>0)) 
such that 

(3.7) | « K 0 l ^ o 0€i?+); v(t) = V(cp(t)) -1>0 < 0 (t - ~)> 

the limit set Qx{(p) is not empty and is contained in the set (3.5) for c—Vq. On the 
other hand, £2x(<p) is semiinvariant, thus (3.5) contains a complete trajectory in 
contradiction to condition (ii) of the theorem. 

The proof is complete. 

Corollary 3.2. Let the conditions of Theorem 3.4 be satisfied. Suppose, in 
addition, that 
(3.8) lim inf V(y, z) ^ 0 

uniformly in y£Bm(s0). Then the zero solution of (3.1) is y-unstable. 

15 
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Theorem 3.5. Let the conditions of Theorem 3.4 be satisfied. Suppose, in 
addition, that the Ljapunov function V is bounded from below on the set Bm(e0)XRn, 
and 
(3.9) lim inf V{y, z) & 0 

uniformly in ydBm(e0). Then the zero solution of (3.1) is unstable with respect to y. 

P r o o f . We shall prove that for all ¿ > 0 every curve defined in 
Theorem 3.4 leaves the ball Bm(s0). If it is not true then for some S0 (0<<50<e0) 
the solution (3.6) possesses properties (3.7), and, by Theorem 3.4, |x(0l~*"°° a s 

t—oo. Similarly to the proof of Theorem 3.2 it can be proved that (3.9) implies 
v0—0. This contradiction completes the proof. 

4. Applications to mechanical systems 

Consider a holonomic mechanical system of r degrees of freedom with time-
independent constraints under the action of potential and dissipative forces. The 
Lagrangian equations of motions are 

.... d BT dT dP 
(4"1} dtW~H=-di+Q' 

where the following notations [11] are used: the column vectors q,q£Rr consist 
of generalized coordinates and velocities, respectively (vT denotes the transposed 
of v£Rr); the potential energy P:q>—-P(q)£R is continuously differentiate, 
P(0)=0; T = T(q, q) = (\¡2)qTA{q)q is the kinetic energy, where the symmetric 
matrix function A: q*-*A(q)€Rr*r is continuously differentiable; the continuous 
function Q - ( q , q)>-<-Q(q, q)£Rr is the resultant of non-energic and dissipative 
forces with complete dissipation, i.e. there exists a function c£Jíí such that 
QT(q, q)q=—c(\q\) for all q, q£Rr. Assume that q = q—0 is an equilibrium of 
(4.1) and the motions starting from a neighbourhood of this equilibrium depend 
continuously on the initial coordinates and velocities. 

L. SALVADORI [11] proved that if the equilibrium at q=0 is isolated then it is 
asymptotically stable if P has a minimum there, and unstable if P has no mini-
mum there. By means of a simple example with one degree of freedom K. PEIFFER [14] 
showed that this theorem would be false without the condition that the equilibrium 
at q—0 is isolated. Applying our results we give sufficient conditions for asymptotic 
stability and instability of the equilibrium at q—0 (possibly non-isolated) with 
respect to velocities or some generalized coordinates. 
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For qd Rr denote by X(q) (A(q)) the smallest (largest) eigenvalue of the sym-
metric matrix A(q). We can estimate the kinetic energy as follows 

(4.2) jX{q)\q\* T(q, q) i A(q)\q\* (q, q£R'). 

For every q£Rr the matrix A(q) is positive definite (i.e. A(q)>Q) (see [11], 
p. 362); therefore, (4.1) can be rewritten into the equivalent normal form 

x = X(x) (x = col (q, q))._ 

As is known (see [11], p. 358), the derivative of the total mechanical energy H = T+ P 
with respect to (4.1) is H(q, q) — Q(q, q)q^0\ consequently, H is a Ljapunov 
function of (4.1). The dissipation is complete, hence for arbitrary c£R we have 

H-^O^H-^c) = {col(q, q): P(q) = c, q = 0}; 

therefore, the complete trajectories of (4.1) contained in this set are the equilibria 
q = q0, q=0 for which P(q0) = c. 

Sometimes we shall use a partition q=co\ (q, q) of the vector of generalized 
coordinates, where q£Rs, q£Rr~s, O^s^r ( i f s=0 then q=q, and the conditions 
and statements concerning q are to be dropped). 

In his first paper on partial stability, V. V. RUMJANCEV [1] proved that in the 
absence of any potential forces the equilibrium q = q=0 of (4.1) is asymptotically 
^-stable provided that there are some constants A0, A0 such that 

0 < == X(q) S A(q) sS A0. 

The following two corollaries generalize this result to the case of the presence of 
potential forces. 

C o r o l l a r y 4.1. Suppose that the potential energy P(q, q) is positive ¿¡-definite 
and the region {q: P(q)^~ 0} contains no equilibria. If for some H' 

(4.1) . Iim }„{q,q) = c0 

uniformly in qPBs(H'), then the equilibrium q = q=Q of (4.1) is asymptotically 
q-stable. 

P r o o f . We will apply Corollary 3.1 to equation (4.1) and Ljapunov function 
H with y=q. Condition (4.3) and inequality (4.2) imply that H is positive ^-definite 
as well, hence the equilibrium is ^-stable (see [11], p. 15) and we can assume that 
q belongs to a bounded set. Consequently, in (4.3) we can change — °° into 
\q\and, in view of (4.2), we have T(q,q)->-c° as \q\-~ °° for every q^O. 
This means, that all conditions of Corollary 3.1 are fulfilled. 

15* 
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C o r o l l a r y 4.2. If 
(i) P ( 9 ) s 0 (qZR'); 

(ii) the set {q. P(q)>0} contains no equilibria; 
(iii) (0<;.0=const.)/ 
(iv) lim exists; 

(v) there are ddtf and H'>0 such that 

(4.4) Q(q,q)q^-d(T(q,q)) (q£Rr, \q\^H% 

then the equilibrium q = q=0 of (4.1) is asymptotically q-stable. 

P r o o f . If P(cf)-*-°° as |<?l->'0°5 
then the generalized coordinates are bounded 

along every motion, and the statement follows from Theorem A in Section 2. 
Suppose the limit of P is finite. By Theorem 3.1 the equilibrium q=q=0 is 
^-stable, and for every motion (q(t), q(t)) starting from some neighbourhood of 
<7 = 4=0 either h(t)=H(q(t), q(t))-*0 or \q(t)\ — °° as In the second case 
P{q{t)) has a finite limit, thus T(q(t), q(t))-*T0 as i-«>. If r 0 > 0 , then by 
condition (v) jh{i) = Q(q(t), q(tj)q(t)^-d{T0) < 0 (i£i?+), 

which is impossible, because h is non-negative. Therefore, in both cases 
T(q{t), q{t))-*Q t-+». According to (iii) and (4.2) this implies |<?(0|-*0 as t-~ 
which completes the proof. 

Condition (iv) is rather restrictive, but if we know more of the behaviour of gen-
eralized coordinates we can weaken it, as its only role is to assure the existence of the 
(finite or infinite) limit of the potential energy along motions. For example, if 
P(q, q) is positive ^-definite then we can assume that q£Bs(H') with some constant 
H'. Suppose that P(q, q)-~P*(q) as — If P*(q) is constant then (iv) is 
satisfied. The case of changing PJ4) c a n be treated by the application of the 
further development of the Barbashin—Krasovskil method in another direction [10]. 

As to condition (v), it is obviously fulfilled if there is a A0 such that A(q)^A0 

for all q£Rr (namely, d(u)=c(ujA0)). 
If we know a priori that the generalized coordinates are bounded, then con-

ditions (iii)—(v) can be dropped, and the statement is a consequence of Oziraner's 
theorem (Theorem A in Section 2). But it is worth noticing that the conditions of 
Corollary 4.2 can be satisfied even if the generalized coordinates are not bounded. 
This can be shown by the system of one degree of freedom described by the equation 

q+q3 = 0 (q,q£R) 

found by K. PEIFFER (see [11], p. 115) in order to prove that complete dissipation does 
not imply stability in case P(q)^0. 
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Applying Corollary 3.1 to equation (4.1) and Ljapunov function H with 
y—q we obtain 

C o r o l l a r y 4.3. If 
(i) P is positive q-definite; 

(ii) the set {q:q?±0} contains no equilibria; 
(iii) for every q0^0, lim P(q, q) = 

then the equilibrium q—q—0 is asymptotically q-stable. 

Assuming that the equilibrium q=0 is isolated with respect to the region 
{q : /•(<?) <0} and P has no minimum there, W. T. KOITER [15] proved that the 
equilibrium is unstable. The special case q = q of our following corollary shows that 
it is, in fact, ^-unstable. 

C o r o l l a r y 4.4. Suppose that for some H',e0,l0 (0<eo<7/', A0>0) the 
following conditions are satisfied: 

(i) for every S (0<<5<e0) there is a qa(5)£Br(S) with P(q0(<5))<0; 
(ii) l(q, 0 (\q\^H\ q£Rr~s); 

(iii) the region {q: P(q)<0, e0} contains no equilibria. 
Then for every 5 (0<<5<e0) either a) the curve y^'(q0(S), 0): t^-q(t\ q0(S), 0) (t£R+) 
leaves the ball Bs(s0) in finite time, or b) | q(t\ 0̂(<5), as /-<». 

Proof . We can apply Theorem 3.4 with V = H,y=q, observing that condition 
(ii) precludes the possibility of \q(t')\ — without \q(t)\-*°° as 

Now, Corollary 3.2 yields 

C o r o l l a r y 4.5. Let all conditions of Corollary 4.4 be satisfied. Suppose, in 
addition, that 

(iv) lim inf P(q, q) ^ 0 uniformly in q£Bs(H'). 
|4| — 

Then the equilibrium q = q = 0 of (4.1) is q-unstable. 

Examples . Finally, in order to illustrate the results of this section we study the 
stability properties of the mechanical system of two degrees of freedom introduced 
and investigated by K. PEIFFER and N. ROUCHE [13]. Consider a point of mass 
equal to 1 moving in a constant field of gravity in the inertial frame of reference 
Oxyz; Oz directed vertically upward. Suppose the point is constrained to move 
on a surface of equation z=(1/2)j>2(1 + ; t 2 ) and furthermore, that it is subjected to 
viscous friction. The total mechanical energy is H = T+P where 

T = J X2 + J y2 + J y2 [y (1 + X2) + xxy}2, /> = / (1 + X3) 
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and g is the acceleration in the gravity field. Let the dissipative forces be defined 
by the formulas 

(4.5) V — W & = 

By Rumjancev's theorem ([1], see also [11], p. 15) the equilibrium x = y = x = 0 
is (y, x, _y)-stable, but the coordinate x may be even unbounded. Therefore, 
although the system is autonomous, the earlier theorems of Barbashin—Krasovskii 
type cannot be applied to establish asymptotic stability with respect to (y, x, y). 
Peififer and Rouche proved that the stability is asymptotic with respect to x. 
Applying Corollary 4.3 with q=y we obtain that the equilibrium is asymptotically 
^-stable even under arbitrary nonlinear friction with total dissipation (the special 
form (4.5) of the dissipative forces is not needed). 

Note that by the use of the Ljapunov—Malkin theorem on the critical case of 
the stability investigations by first approximations (see [16], p. 113) one can prove 
that the equilibrium is stable with respect to all variables, the stability is asymptotic 
with respect to ( y , x, y), and for every motion starting from some neighbourhood 
of the equilibrium x(t)-+x0=const, as 

Our theorems allow us to investigate the general case when the point is con-
strained to move on a surface of equation z=f(x,y) (/(0, 0)=0). Corollaries 4.3 
and 4.5 yield conditions on the potential energy P =gf(x, y) assuring the equilibrium 
x=y=0 to be asymptotically ^-stable or ^-unstable. We illustrate this by two 
simple examples. 

Let 

_ i ( l/2)j 2 ( l+x 2 )+e~ 1 / | ; t | sin2(l/x2) (x ^ 0) 
n X ' y ) lO (x = 0). 

By Corollary 4.3, the equilibrium x = y = x = j > = 0 is asymptotically j-stable in 
spite of the fact that the region {(x, y): P(x, y ) > 0 } contains equilibria (see con-
dition (ii) in Theorem A in Section 2). 

A s Corollary 4.5 shows, in the case of / ( x , y)=y3l(l +x 2 ) the equilibrium 
x=y=x=y=0 is ^-unstable. 

Acknowledgement. The author is very grateful to Professor K . Peiffer for many 
useful discussions. 
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The behavior of the Riesz representation theorem 
with respect to order and topology 

J. HORVATH 

Dedicated with admiration to Beta Sz.-Nagy on the occasion of his 70th birthday 

The celebrated representation theorem of Frederick Riesz, the revered teacher 
of both Bela Sz.-Nagy and myself, can be stated in the following form: every Radon 
measure on an open interval of the real line is the derivative in the sense of distri-
butions of a function which is locally of bounded variation. In the present note 
I want to. give some precisions about how this correspondence between functions 
locally of bounded variation and Radon measures behaves with respect to the 
topologies and the order structures on the two spaces involved. 

1. Let I be a non-empty open interval ]a, b[ of the real line R, which may 
be finite or infinite, i.e., — ° W e shall only consider real-valued func-
tions and real measures in this note. We denote by the vector space of all 
functions / : /—R whose total variation 

cjM) = sup 2 IfixJ-fixj-Jl A } = 1 

is finite on every compact subinterval [a, jSJ of I ; here the least upper bound is 
taken with respect to all subdivisions 

(1) A: a = x0 x, = /? 

of [a, /?]. Each is a semi-norm. We consider "^{I) equipped with the non-
Hausdorff locally convex topology defined by the family (qxp) of semi-norms, 
where [a, p\ varies in I. 

A preorder compatible with the vector space structure of ' f ( I ) is defined if 
we take for the cone P of positive elements the set of all increasing functions. 
Then P P l ( — P ) consists of the constants and is, incidentally, also the closure of {0} 

Received July 5, 1982. 
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in the topology defined above. Every is the difference of two increasing 
functions, i.e., r(I)=P-P, and therefore f{x—0) and /(x+0) exist at every 
x(íl. Any two elements /, gd 1^(1) have a least upper bound sup (/, g) which is 
determined up to an additive constant. In particular the positive variation <P = 
= v a r + / = s u p ( / , 0) of /£1^(1) is defined up to an additive constant; it is an 
increasing function such that <P—/ is increasing and such that, whenever g is an 
increasing function for which g—f is increasing, then g— <P is increasing; it is 
given explicitly by the formula 

* ( 0 ) - * ( a ) = sup ¿ m a x ( / ( * , . ) - / ( * , _ 0 , 0 ) , 
A i=i 

where and the least upper, bound is taken with respect to all sub-
divisions (1). Similarly, the negative variation !P=var ~/=sup (—/, 0) is defined, 
and F = <P+!P=var/=sup(/, —/) is the absolute variation of /. 

Since each / € f ( 7 ) is locally integrable, we can associate with it the Radon 
measure Tf which has density / with respect to Lebesgue measure, i.e., which is 
given by 

(Tf,q>) = fcp(x)f(x)dx 
i 

for all functions (p belonging to the space Jf(/) of continuous functions with 
compact support in /. 

With we can associate a second Radon measure, the Stieltjes measure 
S f , defined by the Stieltjes integral 

(Sf,cp)= f <p(x)df(x) 
i 

for all (p£X(!). The inequality 

(2) \(Sf,<p)\^qlfi(f).max\<p(x)\, 

valid for all with Supp <pc[a, /?], shows that Sf is indeed a Radon 
measure. Clearly, f*-+Sf is a linear map from y ( I ) into the space Jt(l) = 
of all Radon measures on /. For we have 

PD =Afi~0)-/(a+0), S,([a, p]) = / 0 ? + 0 ) - / ( a - 0 ) , 

SfQi, P\) =/0?+0)-/(a+0) , Sj([a, p¡) = / ( / J - 0 ) - / ( « - 0 ) . 

The integration by parts formula 

/ q>(x) df(x) = - / <p'(x)f(x)dx 
i i 
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holds in particular for all <p belonging to the space 3>{I) of all infinitely differ-
entiate functions with compact support in I. Rewriting it in the form 

we see that Sf is the derivative 8Tf in the sense of distributions of T f . 
The representation theorem of Frederick Riesz now states that the map f<-*Sf 

is surjective from " f ( I ) onto. Ji{l) [2]. It follows from the formulas (3) that Sf=0 
if and only if there exists a constant C€R such that / ( x — 0 ) = f ( x + 0 ) = C 
at each x£7. It follows furthermore from (3) that if ¡J. is a positive measure, 
one can find an increasing function f^i^(I) for which It is obvious that, 
conversely, if / is increasing, then Sj- is positive. 

2. If n=Sf, we do not have necessarily \fi\ = S w f . Indeed, take 1=R 
and let f ( x ) = 0 for x^O and /(0) = 1. Then v a r + / is the Heaviside function 
Y, var ~f is the function taking the value 0 for i s O and the value 1 for x=-0, 
and 

Thus Sn,f=26 but 5'/=|S'/|=0. The situation improves if we suppose that 
f(x) is between /(x—0) and /(x+0): 

T h e o r e m 1. 7//€ir(/), then 

If we assume furthermore that f ( x ) is between f ( x — 0) and /(x+0) for every 
x£l, then the sign of ¡equality is valid in the three inequalities. 

P r o o f . Set $ = v a r + f !P=var~f and F = v a r / . Both $ and / are 
increasing functions, hence 5 * ^ 0 and S 0 ^ S f , i.e., S ^ s S ^ . One sees similarly 
that S ^ S J . Thus SP=S*+Srs=Sf+Sj = \Sf\. 

Assume next that / is continuous and let n be a positive measure on I such 
that nSSf. There exists an increasing function g such that Sg=n. It follows 
from the above remarks that we can find an increasing function h such that Sh~ 
= H — S f = S g _ f and which satisfies 

(S„<p)=-(Tf,<p') = (dTf,<p), 

0 if x < 0, 
var/ = 1 if x = 0, 

2 if x > 0 . 

(4) Hx-0) = g ( x - 0 ) - / ( x ) , h(x+0) = g(x+0)-/(x) 

at every x£7. Since g is increasing, we have 

(5) g ( * - 0 ) - / ( * ) si g(x)-/(x) s g (x+0)-/(x) 
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at each x£[. Formulas (4) and (5) imply that g—f is an increasing function. 
It follows from the definition of v a r + f that g—<P is increasing. Hence fi = Sg^S0, 
and so is indeed the measure =sup ( S f , 0). One can prove in exactly the 
same way that Sv=Sj=sup i ~ S f , 0). Thus we have also SF=SCl+Sv= 
=S} + SJ = \S,\. 

Consider now a pure jump function f £ V ( I ) . Such a function is determined by 
two families (/x)xS/, (rx)x i I of real numbers such that for every compact subset 
K of I we have 2 and 2 K H 0 0 - Writing jx=lx+rx and taking 

x£K x£K 
<2<a</?<6, the function / is given up to an additive constant by the formula 

m - m = ra+ 2 L+h-2 fi 

One has f(x)—f(x—0)=lx,f(x+0)—f(x)=rx, i.e., / is the pure jump function 
with left jump lx and right jump rx at x. If we define lx = max (lx, 0), l~ = 
=max ( — l x , 0), and similarly for r~, then <P=var+/ is the pure jump 
function with jumps lx,r+, f = v a r ~ / is the pure jump function with jumps 
lx, r~, and F = v a r / is the pure jump function with jumps |/J, The corresp-
onding Stieltjes measures are Sf = 2 jx&x> S9= 2 Sy— 2 Ux+rx)^x 

x£I x£I xil 
and 5 F = ^ ( | / X | +1^1)5,. On the other hand, |S/-| = 2 IaI^X- If we assume that 

x i l x£I 

f i x ) is between fix—0) and /(x+0), then L/xl̂ KxI + kxl and so S'f.= |S'/[. 
Every function feVil) can be decomposed into a sum f = f c + f j of a con-

tinuous function /C<EV(/) and a pure jump function and this decomposi-
tion is unique up to an additive constant. If / satisfies the condition that f i x ) 
is between f(x+0) and fix—0), then so does f j since / has the same jumps 
as f j . The measure S f j is concentrated on the countable set of points where the 
jumps of f are non-zero, i.e., S f j is atomic. By virtue of (3) the measure S f c 

of every countable set is zero, i.e., S f c is diffuse. It follows from what has been 
said above and from [1], Chap. V, §5, n° 10, Proposition 15 that 

(6) IS,I = |S/C| + \Sfj\ = Svar/c + Svar/,. 

Since the functions v a r f c — fc and var f j — f j are increasing, so is var / c + v a r f j — f 
and therefore also var/ c+var/y—var/. Thus 

(7) ^var/c '̂̂ var/j- — "Svar/ = SF . 

Combining (6) and (7) we obtain The opposite inequality has already 
been proved as the first assertion of the theorem, hence |Sy| = SF. 

Finally we have S9=(lJ2)(SP+Sf)=(l/2)(\Sf\+Sf)=S} and Sv= 
= (l/2)iSF—Sf)=(l/2)(\Sf\ — S f ) = SJ. 

3. To conclude, I want to show that the map f>--Sf behaves in the best possible 
way with respect to the topologies involved. I announced this result earlier ([2], 
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Theorem 2) with a somewhat terse proof. The "good" proof is based on the following 
simple, general observation: 

T h e o r e m 2. Let X be a locally compact, paracompact topological space. 
The semi-norms /¿>-*-|/i|(K), where K runs through the compact subsets of X, define 
on the space Jt(X) of Radon measures the strong topology FS(Jt(X), J f ( X ) ) . 

P r o o f . Let us denote by the topology defined by the semi-norms (K). 
(a) Let V be a neighborhood of 0 for the topology ST. We may assume that 

V is of the form {p.£Jt(X): where £>0 and K is a compact subset 
of X. Let L be a compact neighborhood of K. The set 

B = {(p<E$r(X): Supp <p c L, |<p(x)| 1/e} 

is bounded in J f ( X ) . Consider an arbitrary fi in the polar B° of B. If cp is 
a positive function in B and \j/£Jf(X) is such that \\j/\^<p, then \j/ also belongs 
to B, and it follows from [1], Chap. Ill , § 1, n° 5, formula (9) that 

< H <p) = sup (ji, i l / ) s l . 
|iWs? 

tzxrm 

By [1], Chap. Ill, § 1, n° 2, Lemme 1 there exists <p£B such that XK—E(P• Thus 

and therefore n£V. We have proved that V contains the strong neighborhood 
B° of 0. 

(b) Conversely, let W be a strong neighborhood of 0. We may assume that 
W =B° where B is a bounded subset of Since X is paracompact, by [1], 
Chap. Ill , § 1, n° 1, Proposition 2 (ii) there exists a compact set K<zX and a number 
y>0 such that Supp (pczK and for q>(LB, x£X. The set 

is a ^"-neighborhood of 0. If ii£V and (pZB, then \<p\^y*/_K and therefore 

\(p, cp) I == |<M, M>| ^ 7- Wxk) = y\n№ == 1. 

Thus and we have proved that VaW. 
If (Kv) is a family of compact subsets of X such that each compact subset 

of X is contained in some Kv, then the strong topology on J((X) is also defined 
by the family of semi-norms [u—-\n\(Kv). 

If X is locally compact but not paracompact, then the semi-norms n>-*\n\(K) 
define the quasi-strong topology ([1], Chap. Il l , §1, Exerc. 8) on J((X). 

4. "We are now ready to prove the result referred to above. 
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T h e o r e m 3. The surjective linear map f>-+Sf from onto Jt(l) is a 
strict morphism if we equip M ( I ) with the strong topology. 

P r o o f , (a) We first prove that the map is continuous. Let B be a bounded 
subset of Jf(7). There exists a compact subinterval [a, /?] of / and a number 
y > 0 such that Supp <p(z[a, /?] and for (p£B, x£I. Define a neigh-
borhood of 0 in TT(7) by 

V= { f z r { J ) : ^ ( / I s l / f } . 

If /ÇV and <p£B, then by inequality (2) we have K^y, <p)|Sl, i.e., Sf belongs 
to the neighborhood B° of 0 in Jt{I). 

(b) Now we prove that the map is open. Let F be a neighborhood of 0 in 
which we may assume to be of the form 

V={fíV{iy. qap{f) ^ £}, 

where K=[a, )8]c7 and e>0. Let W be the neighborhood {p£Jt(l):\p\(K)^£} 
of 0 in J({1). Given p€fV, we want to find an / in V such that n=Sf; then 
we will have proved that the image of V contains W. 

The existence of such an / is implicit in the proof of Theorem 1 of [2] but we 
can also proceed as follows. Let ¡x=p+—p~, then \n\=p++p~. There exist 
increasing functions g and h such that p+= SB, p~=Sh. Then by virtue of the 
formulas (3) 

qxP(g) S g(p+0)-g(a-0) = p+(K) 

and similarly qxP(h)^n~{K). Setting f=g-h we have Sf=Sg-Sh=p+—p~=p 
and 

M / ) ^ **(«)+ft* Ü0 = N+(K)+p-(K) = \P№ ^ E, 
i .e . ,/€F. 
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On the representation of distributive algebraic lattices. I 
A. P. HUHN 

Dedicated to Professor Bela Szökefalvi-Nagy on his 70th birthday 

E. T. SCHMIDT [4] proved that every distributive lattice is isomorphic with the 
lattice of all compact congruences of a lattice. The analogous question for distri-
butive semilattices is a long-standing conjecture of lattice theory. In this paper 
we prove a theorem which can be considered as a further evidence to this conjecture. 
Our result is based on a theorem of P. Pudläk. Motivated by Schmidt's result, 
PUDLÄK [3] discovered another method suitable to attack the problem. He first 
proved that every distributive semilattice is the direct limit of its finite distributive 
subsemilattices. This reduces the conjecture to the following 

P r o b l e m . Consider the category of finite distributive lattices where the 
morphisms are the one-to-one O-preserving V-homomorphisms. Is there any functor 
R of this category to the category of finite lattices (with lattice embeddings) such 
that the following hold? 

(a) For any distributive lattice D, there is an isomorphism <pD: D=Cor\(R(D)). 
(ß) Whenever has a one-to-one O-preserving V-homomorphism S to D2, 

then i?(Dx) has a lattice embedding R(8) to R(D2), such that 
(y) R(S12<523) = R(ö12)R(ö2S) for all öM: Dl-^D2 and ¿23: D2^D3 satisfying 

the stipulations in (ß), and, 
(<5) if we denote by Con (R(S)) the mapping of Con (RiDJ) to Con (R(D2)) 

induced by R(S) (that is, the one, which maps &l£Con (R(DL)) to the congruence 
generated by {(aÄ(<5), W?(<5))eÄ(Z>2)2|(a, b ) ^ } ) , then the following diagram is 
commutative 

I'D, 

Con (R(Dj)) 

s 

Con(Rffl) 

1>DT 

Con (R(D2)) 

Received August 4, 1982. 



240 A. P. Huhn 

In case of an affirmative answer the conjecture would follow. Indeed, for any 
distributive semilattice D, we can choose a directed set {D y} y 6 r of finite distributive 
subsemilattices approaching to D. By (y) and (<5), the Con (R(Dy))'s form the same 
directed set (up to commuting isomorphisms). Therefore; the direct limit of this 
set is D, too. On the other hand, the R(Dy)'s, too, form a directed set, and the 
semilattice of all finitely generated congruences of their direct limit is the direct 
limit of the Con (/?(£>y))'s. 

Pudlak carried out a modification of this program, namely, he proved the anal-
ogous statement for distributive lattices and 0-preserving lattice embeddings in the 
place of distributive semilattices and 0-preserving V-embeddings, and obtained 
a new proof of Schmidt's theorem. We are interested in the question how much 
of Pudlak's theorem can be proved without imposing the restriction that the 
embeddings be lattice embeddings. It will be shown that two finite distributive 
semilattices with 0 have a simultaneous representation (that is, a representation 
satisfying (a), (/?) and (<5)), provided one of them is a O-subsemilattice of the other. In 
Part II of this paper we shall derive Pudlak's theorem from this result as well as Bauer's 
result on the representability of countable semilattices. 

The main result of this part is the following 

T h e o r e m . Let Dy and D2 be finite distributive lattices, and let <5: d^d + 

be a one-to-one 0-preserving \/-homomorphism of into D2 • Then there exist 
lattices L1 and L2 such that 

(ax) Z) ;=Con (/.,), / = 1 , 2 (these isomorphisms will be denoted by ( p j , 
(fix) L1 can be embedded to L2 (by a one-to-one lattice isomorphism, to be 

denoted by ?.), 
(<50) every congruence of LyX can be extended to L2, and, therefore the mapping 

y: Con (Z.1)-»Con (L2), taking each 0 6 Con (Lx) to its smallest extension, that is, 
to the congruence generated by {(aA, bX)\(a, b)£0}, is also a one-to-one 0-preserving 
V-homomorphism, furthermore 

(Sj) for all d£Dh / = 1,2, <5 maps dx to d2 if and only if y maps d1cp1 to 
d2q>2. In other words, y represents S. 

1. P r o o f o f (aj). We define Lx (see E. T. SCHMIDT [5], pp. 82—87) as follows. 
Let be the Boolean lattice generated by D1. Let M1 consist of all triples 
(x,y,z)£B\ satisfying x/\y=x f\z=y/\z. Let L1 be the set of all triples in Mx 

also satisfying x£DL. Then Lx is a lattice, too, under the ordering of B\. It is 
proven in E. T. SCHMIDT [5] that D^Con (Li). For further purposes we shall 
recall the proof here. We need a description of the operations of Ll. The meet 
operation is the same as in B\. However, the joins in B\, Mx and Lx are different. 
They will be denoted by V, VM>VL5 respectively (or by V, VMl>Vx.t, where 
necessary). To describe them we introduce the following operators, (x, y, Z)K— 
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>->-(x, y, z) acts on B\ and maps (x, y, z) to the smallest element of Mx above 
(x, y, z). XI-+X acts on and maps x to the smallest element of Dx above x. 
Finally, (x, y, z)i-*(x, y, z)" acts on Mx and maps (x, y, z) to the smallest 
element of above (x, y, z). Now we have (see [5]), 

(x, y, z)\JM(x', / , z') = (xVx', yVy', z\J z')~, 

(x, y, z)VL(x', / , z') = (xVx', yVy', zVz')~~, 

(x, y, z)~ = (xV(jAz), jV(xAz) , z V ( x A j ) ) for (x, y, z)£B\, 

(x, y, z)~ = (x, j>V(xAz), zV(xAj>)) for (x, y, z)£M1. 

Now consider any congruence a of Lt. We shall prove that a is generated by 
a pair ((0,0,0), (x,0,0))€Z,*. (Then x£D1, and hence D1^Con(L1).) To prove 
this claim, let (x, y, z) a (x', y', z'). Then, forming the meets with (1,0, 0), (0, 1, 0) 
and (0, 0,1), respectively, we obtain 

(x, 0, 0) a (x', 0, 0), (0, y, 0) a (0, / , 0), .(0, 0, z) a (0, 0, z'). 

Hence (x, 0,0) Vl(0, 1,0)=(x, 1 , 0 ) " = (x, 1, x)"=(x, 1, x), and (x\ 0,0)VL(0,1,0)= 
= (x', l ,x ' ) , thus (x, 1, x) a (x', 1, x'). Forming the meet of both sides 

with (0, 0,1), we get (0, 0, x) a (0, 0, x'). Similarly, (0, 0, y) a (0, 0, / ) . Thus the 
congruence generated by ((x, y, z), (x', y', z')) contains the pairs 

((0, 0, x), (0, 0, x')), ((0, 0, y), (0, 0, /)), ((0, 0, z), (0, 0, z% 

It is also generated by them. Indeed, under the congruence generated by these three 
pairs the following pairs are also related: 

((x, 0, 0), (x', 0, 0)), ((0, y, 0), (0, 7', 0)), ((0, 0, z), (0, 0, z% 

(We have to compute as above.) Hence, computing modulo a, 

(x, y, z) = ((x, 0, 0)V(0, y, 0)V(0,0, z ) ) " = 

= (x, 0, 0)Vx(0, y, 0)VL(0, 0, z) = (x', 0, 0)VL(0, / , 0)VL(0, 0, z') = (x', y', z'). 

The elements of the form (0, 0, t) constitute a Boolean sublattice, thus the congruence 
generated by ((x, y, z), (x', y\ z')) is generated by an ideal of {(0, 0, 
Hence a is also generated by a pair ((0, 0, 0), (0, 0, tx)) or, equivalently, by 

((0, 0, 0), (0, 0, O)VL((0,1, 0), (0, 1, 0)) = ((0, 1, 0), (tx, 1, -Q), 
or by 

((0, 1, 0), (I., 1, U)A((1, 0, 0), (1, 0, 0)) = ((0, 0, 0), (tx, 0, 0)), 

as claimed. (For more details see [5].) Now consider the lattice of Figure 1. Let 
this lattice be denoted by L2. We show that £>2=Con (£2). First, however, let us 

t 

16 
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give a more accurate description of this lattice. For a finite distributive lattice D let 
M(D) (respectively, L{D)) denote the lattice formed from D analogously as Mx 

(respectively, Lx) is formed from Dx. Furthermore, whenever D is a distributive 
lattice, let B(D) denote the Boolean extension of D. 

1 

0 

Figure 1 

Finally, whene\er D,D' are distributive lattices, DQD', and the 0 and 1 
of D are the same as those of £>', then let M(D', D) consist of all triples (x, y, z)£ 
6 { D ' f satisfying x\J{yf\z)=y\J{xr\z)=z\J(x\y) and let L(D',D)= {(x, y, z)\x£D, 
(x, y, z)6M(£)', £»)}. Now the meaning of L(DX/D2), M(DX/D2), L(DX/D2,D2) 
and B(Dx/D^XD2 of Figure 1 is clear. For the definition of Dx/D2, see [3]. 

As to how they are glued together note that L(DX/D2) contains an ideal 
isomorphic with Dx/Dz (the set of elements (x, 0, 0), and M(DX/D2) 
contains such a dual ideal. The mapping which is identical on the Z>,'s maps the 
ideal of L(DX/D2) in question isomorphically to this dual ideal of M(DX/D2). 
Further isomorphism maps an ideal of L{DX/D2, D2) to another dual ideal of 
M{DX/D2). If we identify the elements corresponding to each other under these 
isomorphisms we get a partial lattice (the union of [0, u] and [0,«] on Figure 1). 
It can be made into a lattice by inserting a B(D1/D2)X.D2 to the top of the Figure, 
and making analogous identifications. (5(£)1/'Z>2)XD2 has an ideal isomorphic 
with B(DX/D2). This will be identified with the dual ideal of L(Dly/D2) consisting 
of all those elements which are greater than or equal to all elements used in the 
identification between L(DX/D2) and M(DX/D2). B(DX//D2)XD2 also has an 
ideal isomorphic with D2 , to be used for the identification with the corresponding 
dual ideal of L{DX/D2, D2).) We show that Z>2=Con (L2). Consider any two 
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elements of L2. The congruence generated by them is obviously a join of four 
congruences a,, i = 1 , 2 , 3 , 4 where ax (respectively, a 2 , a 3 , a 4 ) is generated by 
a pair of elements in L(D1/D2) (respectively, M(D1/D2), L{D1/D2, D2), 
B(D 1 yD 2 )XD i i ) . If we prove that all of these congruences are generated by sub-
intervals of [q, t] containing q, then we are done. Now the same calculations that 
proved that Con (L1)^D1 show that is generated by a subinterval of [p, J] 
containing p\ the same computations in M(DX/D2) and in L(D1/D2, Z)2) 
yield that ax is generated by a subinterval of [q, j] containing q as well as by 
a subinterval of [q, /] containing q. a2 can also be generated by elements of 
L ( p x / D £ ) which reduces the case of a2 to that of The case of a3 can be 
reduced to that of a2, and, finally, the case of ot4 follows from the cases of ax 

and a3. 

2. P r o o f of (ft). Preparing this proof it turned out that Theorem 1 of [3], which 
was intended to be used in the proof of (ft), is still not general enough. We have to 
prove a stronger result (Lemma 1). The proof of this result goes along the lines 
of [3], Theorem 1, for completeness' sake, however, we repeat part of the details. 

Let BiPx/Di) be the Boolean lattice generated by Dx/D2. Let B, be the 
Boolean lattice generated by D,-, / = 1,2. Denote by B\ the Boolean lattice gen-
erated by D\, where D\ denotes the lattice A U {1} with 1 for all x£Dx. 
Now we know from [3] that Dt/D2 is the lattice obtained from D\*D2 (the 
0—1 -free product) by factorizing by the congruence generated by all pairs (d\J d+, d+) 
ddDx- Now factorizing B\*B2 by this congruence we get a Boolean lattice generated 
by D^/Dz. This Boolean lattice will be denoted by B\/B2. Clearly B\/B2= 
=B(D1/'D2). It also contains Bx, the smallest Boolean lattice generated by Dx. 
This follows from [3], Theorem 1, for D\/D2 contains Dy. (Of course Bt, like 
£>!, does not contain the upper bound of B\/B2.) 

In Section 1 we defined the operator x>-+x mapping the Boolean algebra B(D) 
generated by the distributive lattice D to D by associating the least upper bound 
x in D with the element x£B. Now Bt is embedded to B\/B2. Therefore, 
for elements of there are two possibilities to define x ^ x , namely within 
Bx as the least upper bound of an element in Dx, and within B\/B2 as the least 
upper bound of an element in D 1 / D 2 . We are going to show (and this is the 
crucial point of the proof) that these two definitions coincide. 

This statement includes the main theorem of [3]. Indeed, from [3], Theorem 1 
it follows that the smallest Boolean lattice generated by Dx in B\/B2 intersects 
D x / D 2 in DX. (This is not evident, we have to use GRATZER [1], Corollary 10.9., 
or more exactly a slight generalization of this Corollary as the units of Z)x and D2 

do not coincide, however, it can be proved.) The converse is also true: [3], Theorem 1 
follows from the fact that the intersection of B(Dx) and Dl/D2 in B\/B2 is Dj . 

16* 
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(This is evident.) Now consider any element X of B(DX) in D1/D2. Then 
x formed in Dx/D2 is x. Now applying B(D1)f)(D1/'D2)=D2, that is, using 
[3], Theorem 1 we have that x formed in D« is x, too. This shows that the state-
ment whose proof we promised is, indeed stronger than [3], Theorem 1. Now let 
x be the least upper bound of x£Bx in Dl and let x be the least upper bound 
of x in D1/"D2. Obviously x = x. 

Lemma 1. For all x£Bx, x^x. 

Before proving Lemma 1, we have to solve the word problem of B1/D2, 
where Bx/D2 denotes the lattice generated by B1[JD2 in B\/B2. A solution 
will be given in the following lemma. 

Let 0 denote the congruence generated by the pairs (d+, d\/d+), d£Du in 
BX/D2. Let Qi denote the set of atoms of BX. Let J{k) be the subset {j\k ^ y'+} of 
Qx, if k is an irreducible of D2. (There is a homomorphism of Qx to Px correspond-
ing to the embedding DX-*BX. For any k, J(k) goes to an ideal of Px under this 
homomorphism; P, denotes the set of join-irreducibles of £>,, / = 1 ,2 ; 
j+ denotes j + . ) 

L e m m a 2. For arbitrary elements f , g^B1/D2, f=g (mod 0) i f f , for all k, 
f{k)=g{k) (mod 0 { J ( k f j ) where 0(J(k)) is the congruence generated by the ideal 
J{k). 

The proof is analogous with that of [3], Theorem 2, and it will be omitted. 
Now we go on to prove Lemma 1. We have to show x S x . As in [3], elements 

of Bx/D2 will be represented by antitone functions from P2 to Bx. It is enough 
to show that for all b£Bx,fbSf implies in Bx/D2 where fb (respectively, 
fB) is the function identically b (respectively, B) and f£Dx/D2. It suffices to show 
this statement for b irreducible, as the operation b^h preserves joins. 

Now let j be irreducible and assume that f j S f (mod 6). Then, for all k, 
j ^ f { k ) (mod Q(J{k))). Hence, we have either j ^ f ( k ) (and then also j ^ f ( k ) as 
f ( k ) is in A ) or j ~ j / \ f ( k ) (mod B(J{kj))j^f(k). In the latter case j/\f(k)=0, 
thus y = 0 (mod 0(J(kj)), that is, whence that is, ] = 0 
(mod 6{S(kj)). In either case ]rsf(k) (mod 8(J(k))), whence /,==/ (mod<9) 
completing the proof of Lemma 1. 

Now we return to the proof of (ft) and show that L(DX) is a sublattice of 
L(D1/D2). Consider the elements (x, y, z) of L(DX/D2) with x, y, z£Bx (hence 
x€Di, by [3], Theorem 1). These triples form a A-subsemilattice of L(DX/D2). 
But, because of Lemma 1, the join of two such triples is the same as their join in 
L(DX): 

(*, y> z)V t ( D 0(x' , /> O = (*Vx', y\Jy', z V z ' ) " ^ c . » 

(x, y, z)VWDi){x\ / , z') = (xVx', yVy', z V z y ' W S W 
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Now the operation does not depend upon, in which lattice the triple is con-
sidered, and Lemma 1 shows that the same is true for 

3. P r o o f of (<5„) and (¿i). (<50) is a consequence of (<5X), thus we need only 
prove (¿j). Let (¿1) says that d8(p2=dq>1y. Now, d(px is the congruence 
generated by ((0, 0, 0), (d, 0, 0)) in L^. A takes this pair to the interval [p,r\. Let 
these elements there be denoted by (0, 0, 0)[p r] and (d, 0, 0)[p r] (Figure 1). Then 
the congruence dcp̂ y is generated by this pair. With analogous notations, it is 
also generated by ((0,0, 0)[9>s], (0, 0, d\q s]). (L(D1/D2, D2) was defined such 
that the first component must be in D2. Therefore, when we glue it by a Dx/D2 

to the third (or second) component must denote the elements used in 
the gluing. That is [q,s] is the interval [(0,0,0), (0,0,1)] of L{D1/D2,D2). 
Omitting the subscript [q, .y], let us meet the pair ((0, 0,0), (0, 0, d)) with (0, 1, 0) 
and join the result with (1,0,0); so we get 

(0, 1, 0) = (3, 1, 3) (mod dcpiy), (0, 0, 0) = (3, 0, 0) (mod d^y), 

and both pairs generate d<pfl, where 3 denotes the least upper bound of ddD^ 
(QD1//D2) in D2(%Dl/D2). On the other hand, d5=d+, thus ddq>2 is generated 
by ((0,0,0), (d+,0,0)). We only have to prove 3=d+ in Dx/D2 for all d<LDx. 
Recall that 3 denotes the least upper bound of d in D2. It suffices to show that 
d^d2 (di^Di,i = 1,2) implies dx=d2. Besides, if we prove it for dx irreducible, 
then it is true for arbitrary d t . This follows from the fact that + preserves joins. 
Now assume that f d = f i r (mod©) that is, for all k£P2 

where f d i represents the element dx, that is, /dj takes the value dx identically 
and f d i is the characteristic function of d2: 

is congruent with fd(Jc) modulo &(J(k)). Now let us go out to B1/B2 and form 
the meet with 

d, = fdz (k) (mod 0(/(fc))), 

1 if k == d2, 
0 otherwise. 

Now dx V fd(Jc) = f t j j c ) means that for all k, the value of the function 

otherwise; 
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then we obtain that for all k^d2, k£P2, 

d1 = 0 (mod 0 (/(*))), 

that is, dxtSQc), in other words k£d+. Thus {k\k£P2, k^d+}Q{k\k€P2, k^d2). 
Hence d l ^ d 2 , as claimed. 
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Sur la structure circulaire des ensembles de points limites 
des sommes partielles d'une série de Taylor 

JEAN-PIERRE KAHANE 

Pour le 70-ième anniversaire du Professeur Béla Sz.-Nagy 

On considère une série de Taylor 

Zcjz-i 
0 

sur le cercle unité |z| = l , et on pose z=e'x, x réel. Les sommes partielles sont 

Sn(x) = Z Cje'J*. 
o 

On suppose que, pour xÇ_F, ensemble mesurable de mesure de Lebesgue |F| =^0, 
la série est sommable au sens (C, 1) vers une somme a(x), c'est-à-dire que les 
sommes de Fejér 

~ n 
ont une limite 

lim <r„(x) = ff(x) (xÇF). 
lt-*oo 

Un célèbre théorème de Marcinkiewicz et Zygmund dit que presque partout sur F 
l'ensemble des points limites des S„(x) est réunion de cercles (de rayons ^0) 
centrés en a(x) : c'est la «structure circulaire» ([1], p. 178). Le but de cet article 
est de préciser un peu la distribution des S„(x). 

Nous considérerons que les S„(x) prennent leurs valeurs dans C, le plan 
C complété par un cercle à l'infini ; la convergence d'une suite complexe z„ dans 

2 

C équivaut à la convergence de la suite ^ ^ dans C. A une suite complexe 

z„ et à un compact KczC nous allons associer un nombre d((zn), K) qu'on pourra 

Reçu le 13 septembre, 1983. 
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interpréter comme la densité supérieure des z„ au voisinage de K ; la définition 
précise fait intervenir des blocs 5mcrN, affectés de coefficients bm, comme nous 
allons le voir un peu plus loin. Enonçons les résultats. 

Théorème. Pour presque tout x£F, on a 

d{(Sn(x)), K) = d{(Sn(x)), K') 

pour tout couple de compacts K et K' de C obtenus l'un à partir de l'autre par 
rotation autour de o(x). 

Coro l l a i r e 1. Pour toute suite d'entiers « y — l ' e n s e m b l e des points limites 
dans C des Snj(x) a presque partout la structure circulaire (c'est-à-dire invariant 
par les rotations de centre 0). 

Coro l l a i r e 2. Pour presque tout x£F, on a 

d((S„(x)-am À) ë-jLrfftS^x)), C) 

pour tout compact (.(angulaire» A = , <p j de C, défini par z = 0 ou |argz — 

(N entier s i , <p réel). 

Complément. Soit r un compact de C ayant la structure circulaire de centre 
0. Pour presque tout xÇ_r, on a 

d((Sn(x)-a(x)), AHr) *ad ( (S . (x ) - t r ( x ) ) , r), 

pour tout compact «angulaire» A=A(oc, <p) de C défini par z = 0 ou |arg z—q>\^Tza 
(OëaSl, q> réel). 

Déf in i s sons d((z„), K). On donne une suite de parties de N, soit (Bm), 
telle que inf Bm— «>, et une suite (bm) strictement positive (les cas les plus intéres-
sants sont é m = l , et ¿>m=card Bm). Pour chaque partie infinie de N, soit A, on pose 

. . . . ,. card (Bm fl A) d (A) = lim sup . m-~> bm 

Si èm=card Bm, on a 1)^1 et rf(N)=l. Si 6 m =card5 m et Bm=[0, m], 
d(A) est la densité supérieure de A au sens ordinaire, c'est-à-dire 

card ([0, m] H A) d(A) = h m sup - . m-* oo TK 

Si 6m=card Bm=\ et Bm={nm) ( limnm=°°), d(A) égale 1 ou 0 suivant que A m-»« 
contient une infinité ou un nombre fini de points nm. Dans le cas général, on a 
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Pour un ouvert G de C, on pose 

d{(zn), G) = ¿({n€N|z„€G}). 
On pose enfin 

d((zn),K)= mîKd((zn), G) 

la borne inférieure étant prise pour tous les ouverts G contenant K. On peut 
interpréter d((z„), K) comme la borne supérieure des d(A) pour toutes les A telles 
que les points limites de (z„)„€A se trouvent dans K, et il est facile de voir que cette 
borne supérieure est atteinte. Dans le cas èm=cardi?m , on a 

0^d{{zn),K)^d{{zn),C) = \. 
Dans le cas général, on a 

0^d((zn), d((zn), K) c d((zn), K') si KczK', 

d((z„), KUK') S d((zn), K) + d((zn), K'). 

La dernière inégalité donne tout de suite le corollaire 2 à partir du théorème. Dans 
le cas bm=card Bm — 1 et 5m={/zm} (lim nm=<*>), on a d((zn), K)= 1 ou 0 suivant 
que la suite (z„ ) admet un point limite dans K ou non. Le théorème dit alors 
que pour presque tout x£F l'ensemble des points limites de la suite (S„ (.v)) est 
invariant par les rotations autour de o(x) ; c'est le corollaire 1. 

Le complément se démontre comme le corollaire 2 quand est entier. Pour 

le cas général, on a besoin d'une variante des définitions et du théorème, que voici. 
Si g est une fonction continue sur C, on pose 

d((zn), g) = l imsup-^- 2 g(z«)-

Si k est une somme finie de fonctions indicatrices de compacts, on pose 

d((zn), k)= mf.d((zn), g). 

On a, pour presque tout x£F, 

d{(S„(x)-ff(x)), k) = d(S„(x)-<r(x), k') 

pour tout couple de fonctions k, k' obtenues l'une à partir de l'autre par rotation 
de centre 0: c'est la variante du théorème dont on a besoin. Nous laissons au lecteur 
le soin de vérifier cet énoncé (qui se démontre comme le théorème) et d'en déduire 
le complément. 

D é m o n t r o n s le théorème. La clé est une formule de Marcinkiewicz et 
Zygmund, dont nous indiquerons rapidement la démonstration pour la commodité 
du lecteur. 
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Lemme fondamen ta l . Si xÇF et 

o 
Preuve. On peut supposer x = 0 et <r(0)=0, et poser a„=— (/?=/?„=0(1)). 

La formule à prouver est 

2 Cj(e>J«~-e"l) = o( 1) 
o 

soit 

¿ 0 , ( 1 ^ ( 4 4 ) ) ) = < , ( 1 ) . 

Or l'hypothèse 0 £ F et cr(0)=0 signifie 

2cj<p{i) = o( 1) 

pour <j5(ac)=inf (1— x, 0), donc, de façon uniforme, pour toutes les fonctions <p(x) 
bornées sur R + , convexes, et tendant vers 0 à l'infini. Or la fonction 

1 - exp (ip (1 - jc)) = 1) 

est une combinaison linéaire de telles fonctions <p, soit 

<K*) = <Pi (x)-ç2 (x)+i>3 (x) - i(Pi (x) 
avec sup <p/x)=0(l) si /3=0(1). La formule est donc établie. 

En vue d'énoncer une proposition d'où le théorème se déduira aisément, voici 
encore quelques notations: 

AX(D) = {n|S„ (*)€£}, 
E(D, d, v) = {x | Vm S v card (Bm fl Ax (D)) ^ dbm), E(D, d) = (J E(D, d, v). 

V 

Ainsi x$E(D, d) signifie qu'il existe une suite «jy—°° telle que card (Bm H/1X(Z)))> 
>dbm/ 

Propos i t ion . Soit D un ouvert dans C, d e t v entier ^1 . Si x (x€F) 
est un point de densité de E(D, d, v) et si D' est un ouvert tel que, par une rotation 
convenable de centre o(x), D' (adhérence de D' dans C) soit appliqué dans D, 
alors x£E(D',d). 

Preuve. C'est la même que dans [1]. Soit /? l'angle d'une rotation de centre 
a(x) appliquant D' dans D. Comme x est point de densité de E(D, d, v), il 
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û / 1 \ 
existe une suite a„=—I-o (—I telle que x+an£E(D, d, v). Le lemme fondamental n ^/ i j 
montre que x$E(D',d) entraînerait x$E(D, d), ce qui est impossible puisque 
x£E(D, d, v). 

Achevons la démonstration du théorème. 
Les disques «rationnels» et les angles «rationnels» forment une base dé-

nombrable d'ouverts de €. Prenons désormais pour D une réunion finie de 
disques rationnels et d'angles rationnels, et posons 

S = S{(Bm\(bm))= u (£ (A d, v)-®(£(£>, d, v))) 
D.d.r 

où D parcourt les ouverts en question, d les rationnels SO, et v les entiers ë l , 
et où ) désigne l'ensemble des points de densité. Comme la réunion est 
dénombrable, ê est un ensemble de mesure nulle. 

Montrons que si xÇ. F et x (£ S on a la conclusion du théoreme. En effet, si 
la conclusion était en défaut, on aurait 

d((Sn(x), d((Sn(x)), K') 

avec d rationnel, K et K' compacts transformés l'un dans l'autre par une rotation 
de centre o(x). On pourrait alors choisir un Dz)K et un D'z>K' vérifiant les 
hypothèses de la proposition, et tels que 

d((S„(x)),D)^d^d((Sn(x)),D'), 
c'-est-à-dire 

d(Ax(D)) d(Ax(D% 
d'où 

x£E(D, d), x$E(iy,d) 

ce qui est impossible d'après la proposition. Le théorème est démontré. 
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On arithmetic functions with regularity properties 
I. KATAI 

Dedicated to Professor Bela Szokefalvi-Nagy on his 70th anniversary 

1. We shall say that an additive function /(«) is of finite support if f(p")—0 
whenever p is a large prime. Let 

P(z) = a0+at1z+ ...+akzk, ak=l, a0 ^ 0 

be an arbitrary polynomial with complex coefficients. The operators E,A,I are 
defined by the following relations: 

Ex„ — x„+i, Axn = xn+1—x„, Ix„ = x„. 

We are interested in the following problem: What is the set of additive func-
tions f(n) satisfying the relation 

(1.1) P(E)f(n) — 0 (n — ) . 
This question was raised in [1]. Recently we solved it for completely additive func-
tions. Namely, from a famous result of E. Wirsing we deduced that if a completely 
additive function f(n) satisfies the relation 

(1-2)
 P i

f
) f ( n ) 

log n 

then f(n) is a constant multiple of log«; f(n)=c logn satisfies (1.2) with c^O 
only if i ' ( l )=0 . In the same paper we proved that for a completely additive func-
tion f(ri), 

(1.3) 1 Z\P(E)f(n)\ - 0 ( x — ) 
X J S , 

implies that f(n)=c log n. The method used there cannot be applied without 
change to additive functions. Now we shall show how we can modify the method 
so as to be suitable for additive functions. 

Received January 27, 1982. 
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T h e o r e m 1.1. If (1.3) holds for a complex valued additive function f(n), then 
f{n)=c log n+f(ri) where f(ri) is an additive function of finite support satisfying 
the recursion 
(1.4) ¿ W i ( « ) = 0 (n = 1, 2, ...). 
If P{ 1)^0, then c = 0. 

T h e o r e m 1.2. If f(n) is a complex valued additive function satisfying the 
linear recursion 
(1.5) P(E)f(n) = 0 (n = 1,2, . . . ) , 
then 

1) f(pa) = 0 for every prime power p* satisfying p>k+\, 
2) f(pr+1)=f(py) if Py+1-Py>k+1, 
3) / («) is periodic with B where B— Hp1' and yp is the smallest integer 

psk + l 
satisfying py'+1—p',p1. 

A modification of Theorem 1.2 was proved earlier by L. LovAsz, A. SARKOZY 
and M. SIMONOVITS [2]. We shall deduce it immediately from Theorem 1.1. 

P r o o f of T h e o r e m 1.1. If the relation 

(1.6) ^ 2\HE)Kn)\-0 (JC-CO) 
X n^a 

holds for a polynomial k(z) then it holds for any other polynomial K(z) that is 
k 

a multiple of k(z). Let P(z)= JJ {z—Q^), and for a fixed integer m > 1, let 
¡=i 

Qm{zr)= n i z r - O T ) . Since P{z) divides QJz"), therefore 
i=i 

^ 2 \Qm(Em)f(n)\ - 0, * llSj 
and so 

(1.7) ^ 2 \Qm(Em)f(nm)\^0. X mn^x 

Let Qm(z)=p0+p1z+... +pkzk (pk= 1); A{m, ri)= 2 Pj{f(Hn+j))--/(»+/)}• Then 
j=o 

(1.8) A (w, n) = Qm(Em)f(nm) -Qm(£)/(«). 

Applying the operator P(E) and taking into account that P(E)\P(E)Qm(E), we 
yet that 

i 2 \P(E)A(m, «)| s 1 2 \P(E)Qm(Em)f(nrn)\ + ^ 2 \P(E)Qm{E)f(n)\, 
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whence 

(1.9) lim — 2 \P(E)A(m, n)| = 0. 
X n S x 

Let now P>2k+\ be a prime, and let n run over the set satisfying Py\\n 
with v S l fixed. Then 

A(P, n) = Po{f(Pv+1)-f(Pv)}+(Pi + -+Pk)AP) = 

= p0{f(py+i)-xn-m}+Qm(mp), 
A(P,n+h) = f{P)Qm (1) (0 < h ^ 2k). 

Consequently 

(1.10) P(E)A (m, n) = P(i)Qm(i)AP)+«oMAPv+1)-APv)~AP)}-

Observing that the set of n's has a positive density, we get that 

(1.11) P(Wm(X)AP)+«oPo{APv+1)-APv)-AP)}-
Let now n run over the integers = 1 (modP) . Then we have A(P,n+h) = 

=AP)Qm(\) (0=h^2k), and so P(E)A(m, n)=P(l)Qm(l)f(P). Repeating the 
above argument we get P( l )0 m ( l ) / (P)=O. Since P ( 1 ) ^ 0 implies that g m ( l ) ^ 0 , 
we have / ( P ) = 0 provided P(1)^0 . From (1.11) we get that 

APv+1)-APy)~AP) = 0 (v = 1, 2, ...), 
and hence f(Pv)=vf(P) ( v s l ) . 

Let P be an arbitrary prime, and let y0 be so large that Py°>2k+l. Let 
%, . . . , e2)c be fixed nonnegative integers such that Py°\\n and Pe'\\n+i (i = 1, ..., 2k) 
hold for at least one n. Let Ay denote the set of those n's for which Py\\n and 
Pe'\\n+i (i = 1,. . . , 2k). The following assertion is obvious: Ay is nonempty for 
ySy0 and it has a positive density. 

Clearly P(E)A(n,P) is constant if n runs over the elements of Ay, therefore 
it equals 0 on Ay. Hence 

P(E)A(nltP)-P(E)A (n2,P) = 0 

if n1£Ay+1, n2£Ay (ySy„)- Consequently 

«o MAPy+2)~APy+1)} = «Jo{APy+1)-AP% 
and from aopoy^O we get that 

(1-12) = ( y s y 0 ) , =APy+1)-APy)-
Now we write / («) as fi(n)+f2(n) where f2(n) is a completely additive function 
defined as follows: / 2 0 H =/(/"") if P>2k+2. Then f1(Pa)=Q if P>2k+2. 
For a smaller prime P we put f2(P)=Zy , which implies by (1.12) that f1(Pi+1)= 
=MPJ) i f y s y 0 . 
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Now we have shown that /i(/i) is a function of finite support, and it is periodic 
with a period Consequently 

P(£)(£«—/)/ 1 (n) = 0. 

Taking into account the relation 

CE°>-I)P(E)f(n) = P{E){E*>-1)fMHEB>-I)P{E)Mn) = (£«.-/)P(£)/2(n), 

we have 

(1.13) ^ 2 P * ' - I ) P ( E ) M n ) \ - 0. 
X n S x 

From the theorem cited above we get that f2(n)=c log n. Earlier we have proved 
that f(P)=fa(P)=0 for every large P, provided P(l)^0. This implies that f2(n) =0; 
furthermore, from the periodicity of /i(n) and from (1.3) we get that P(E)f1(n)=0 
(n = 1,2,...). 

Assume now that P(1)=0. Then P(E) clog«—0, whence (1.3) yields that 

T 2 \P(E)fM\ - 0 (* -X nSx 

Using the periodicity of /i(w) we get that P(E)f1(n)=0 («= 1,2,...). This finishes 
the proof of Theorem 1.1. 

Proof of Theorem 1.2. Since (1.5) implies (1.3), we get that f(n)=f1(n) + 
+clogn, P(E)Mn)=0-, moreover, by (1.5), P(E)c\ogn=P(E)(f(n)-f1(n))=0, 
which is impossible for Therefore we have that /(«)—/i(M) is of finite support. 
Then there exists a K such that f(p*)=0 for each prime p>K. For an integer 
n let AK(n) denote the product of all prime factors of n not greater than K. Let 
S(n) be the exact exponent of p in n:pi(n)\\n, and set A'K(n)=p~i(n)AK(n). 

Let be chosen so that ¿(«J^ySO, n1=py (modpy + 1), and let y be so large 
that py+1—py>k+1. Then we can find an integer n2 satisfying the following 
relations: ¿(/j2)=y+l, A'K(n1)=A'K(n2), AK(n1+j)=AK(n2+j) ( j = l,...,k). Taking 
into account the equality / (n )= f(AK(n)), we get from (1.5) that 

0 = P(E)f(n2)-P(E)f(n2) = oo {f(P*+1)-f(P% 

which by a 0 ^ 0 implies that /(P J + 1)=/(P5 ' ) . 
Thus 1) and 2) are proved; 3) is an immediate consequence of them. 

Remark. The assertion of Theorem 1.1 remains true if (1.3) is replaced by 

(1.3)' lim inf 2 = 0. log X nSx n 
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2. Theorem 2.1. Let f be a completely additive real valued function, and let 
P be a nonzero polynomial with rational coefficients satisfying the relation 

(2.1) ' APP(E)f(n) = 0 (modi) 

with a suitable integer Ap^O. Then there exists an integer B such that f(n)=g(n)/B, 
where g(n) is an integer valued additive function. 

First we prove the following 

L e m m a 2.1. If Akf(ri)=0 (mod 1) («= 1, 2, ...) for a ksl, and f(ri) is 
completely additive, then /(w) = 0 (mod 1). 

P roof . Let us assume that k=\. Then summing the congruences f{n+\) — 
— f (n )=0 (mod 1) for n=pu,...,qu— 1, we have f(q) — f(p)=0 (mod 1) for 
each pair p,q which by q=np gives that f(n) = 0 (mod 1). 

Now we use induction on k. Assume that our lemma is true for k, and consider 
the condition Ak+1f(n)=0 (mod 1). Starting from 

N£ Ak+1f(n) = Akf(N)-Akf( 1) = 0 (mod 1), 
n=i 

we get 
Akf(N) = c (mod 1), c = Akf( 1). 

If Q is an arbitrary polynomial with integer coefficients, then 

(E-I)kQ(E)f(N) = cQ( 1) (modi). 

Let Q(z)=QJz)==(l+z+...+zm-i)k. Then (E-l)kQm(E)=(Em-l)\ 

consequently 
(Em — I)kf(mN) = cQJ\) (modi); 

furthermore; 
(Em - I)kf(mN) = ( E - I f f { N ) = c (mod 1), 

whence c (0 m ( l ) - l )=O (mod 1). Since Qm(\)=mk, we get c{mk-\)=Q (mod 1) 
(m=2,3, . . . ) . Therefore c is a rational number. Let c=A/B, where A, B are 
coprime integers. If B?± 1, then by choosing m=B, we get c(Bk—\)=Q (mod 1), 
c = 0 (mod 1), which is a contradiction. This completes the proof of the lemma. 

Proof o f T h e o r e m 2 . 1 . Let A be the set of all polynomials P with rational 
coefficients for which 

APP(E)f(n) = 0 (mod 1) 

holds with a suitable integer AP. Then A is an ideal in Let P(z)= 
k 

= TJ (z—0j)£A. From the fundamental theorem of symmetric polynomials it follows 
j=i 

17 
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that 
' k am 

;=l Z - t i j 

has rational coefficients; consequently 

Furthermore, Rm(Em)f(nm)=Rm(l)f(m)+Rm{E)/(«). Let F be an integer such 
that FRm(Em)f(n)=0 (mod 1). Then we have 

FRm(l)f(m) + FRm(E)f(n) = 0 (mod 1). 

If 7?m(l)=0, then Rm€A. If /?m(l)^0, then applying the operator A we get that 

FRm{E)Af{n) = 0 (modi), 
whence Rm(z)(z—l)dA. 

Let P be the generator element of A, that is, a polynomial of minimum degree 
in A. Let deg P=k. From (2.1) we get that A is not empty. If k=0, then our 
theorem is obviously true. For k ^ l assume first that P(1)=0. Then 
(2.2) ¿(z) = (P(z), Rm(z))eA, 
implying deg 5(z)=k, i.e., Rm(z)=P(z), 
(2.3) {ft, ..., 6k} = {0f, ..., 0j?} (m = 2, 3, ...), 
whence it follows that 0 1 = . . . = 0 t = l , P ( z ) = ( z - 1 ) \ Assume now that P(l)^0. 
Then 

8(z) = (P(z), Rm(z)(z-1))£A, 

consequently deg S(z)=k, and from (z— 1, P(z))=l we get that P(z)=Rm(z) 
(m=2,3, . . . ) , which implies (2.3), and so 01 = . . . = 0 t = l , which is impossible. 

Thus we have proved the following assertion: If (2.1) holds with a suitable 
P then there exists an integer i V O and an integer /c=»0 such that 
(2.4) FAkf(n) = 0 (mod 1). 

Using Lemma 2.1 with Ff(n) instead of f(n) we get that Ff(n) is an integer for 
every n. This finishes the proof of the theorem. 

3. Con jec tu re . Let P(z) = \+cc1, z+...+akzk (ksl) be a polynomial with 
at least one irrational coefficient. If a completely additive function f(n) satisfies 
the relation P(E)f(n)=0 (mod 1) (n= l , 2, ...) then /(«) is identically zero. 

Theo rem 3.1. The conjecture is true for k=2. 

Proof . Let {=/(2) , ri=f(3). From P(E)f( 1)=0 we get that 

(3.1) a ^ = - a 2 r j (modi), 
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and from P(E)f(2)=0 that 

(3.2) (2a2 + l)f+<xit] = 0 (modi). 

Similarly, by considering P (£ ) / (« )=0 (mod 1) for n—1 and «=6, and taking 
into account (3.1) we deduce: 

/ ( 7 ) = - a 1 / ( 8 ) - a a / ( 9 ) = - 3 a 1 ^ - 2 a 2 r , (modi), 

(3.3) /(7) = (modi), 

<*i/(7) = —/(6)—a2/(8) (modi), 

(3.4) a i / ( 7 ) = - ( 1 + 3 ait)!;-« (mod 1). 
Similarly, 

(3.5) a 1 / ( 5 ) = - ( 2 + a 2 ) i - a 2 > 7 (niod 1) (n = 4). 

Starting from P(£) / (14)=0 (mod 1) we get 
(^ + 4a 2 a+ / (7 )+a 1 / ( 3 )+a 1 / ( 5 ) = 0 (modi). 

Substituting (3.3) and (3.5) into the left hand side, we get (1 +4a2)^+a2ij+aLr/ -
—(2+a2)^—x2t]=0 (mod 1), whence — ̂ +3a 2^+a 1 j /=0 (mod 1), and, by (3.2), 

(3.6) = (modi), 
(3.7) w = - 5 < T (modi). 
For «=26 and «=13 we have 

/ ( 2 • 13)+a1 / (33)+a2 / (22 • 7) = 0 (modi) 
/ ( 1 3 ) + a i / ( 2 - 7 ) + a 2 / ( 3 . 5 ) = 0 (modi), 

where by subtraction we get 
(3.8) a2 /(7) = ^ - I r j - l a . ^ (modi). 
Considering «=5 and taking into account (3.8) we get 
(3.9) /(5) = a 1 ^ - a 1 / ; - 3 ^ + 2>, (modi). 
Putting now «=25 and «=12 we get that 

/ ( 5 2 )+a j / (2 • 13)+a2/(33) = 0 (modi), ; 

/ (12)+ a i / (13)+a 2 / (14) = 0 (mod 1). 
Subtracting them and by using (3.8), (3.9) we deduce that 

(3.10) 5 ^ - 3 ^ + 2 « ^ = 0 (modi). 
From « = 3 we get 

(3.11) ^ / ( 5 ) = - i / - 2 a ^ (modi). 

Putting now «=48 we have 

/ (2 3• 3)+a!/(7 2)+a 2 / (5 2• 2) = 0 (modi), . 

17» 
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and by (3.11) and (3.4) we get 
(3.12) . 9£ + 3f/+4<x1£ = 0 (mod 1). 
Since / (2 3 )+a 1 / (3 2 )+a 2 / (2)+a 2 / (5)=0 (mod 1), we get that 

«¡¡/(5) = - 5 ^ - 2 « ! (modi) 
(see (3.6), (3.7)) which implies by (3.11) that 
(3.13) ij + 5£+2a1g = 0 (modi). 
Now from (3.10), (3.12), and (3.13) we infer that 

7£-7i/ = 0 (modi) and 4 q - 8 £ = 0 (modi), 
which proves that £ and ц are rational numbers. Assume now that £ ^ 0 and 
t]7±0. Then (3.6) and (3.7) show that аг and a2 are rational numbers, and the 
proof is finished. Let £ = 0 and q^O. Then by (3.7) and (3.1) we get that ax and 
a2 are rational numbers. In the case t]=0, £¿¿0 we use (3.6) and (3.1) to derive 
the same result. 

Finally, let us assume that <ü=0, >7=0, and P is the smallest prime for which 
/ ( P ) ^ 0 . Since P >3, therefore P + l is a composite number, / ( P + 1 ) = 0 , and 
so a x / ( P + 1 ) = 0 (mod 1). Let us consider the relation 

(3.14) / ( P ) + a 1 / ( P + l ) + a 2 / ( P + 2 ) = 0 (modi). 
If P+2 is a composite number then / ( P + 2 ) = 0 , and so / ( P ) = 0 (mod 1). Using 
that a i / (P )=0 (mod 1), a 2 / (P )=0 (mod 1), and that / ( P ) ^ 0 , we deduce that 
ax and ot2 are integers. Assume now that P+2 is a prime number. If f(P+2)=0 
then we are done as before. Let / ( Р + 2 ) ^ 0 . Then 

/(Р+2)+А1/(Р+3)+ССГ/(Р+4) = 0 ( m o d 1), 

and P+3,P+4 are composite numbers with prime factors smaller than P, whence 
it follows that f(P+3)=f(P+4)=0 and / ( P + 2 ) = 0 (mod 1). Since 

Д Р + l ) + a , / ( P + 2 ) + a 2 / ( P + 3 ) = 0 (mod 1), 
we have oc1/(P+2)=0 (mod 1), and so ax is a rational number. (3.14) implies 
that a2 is also rational. The proof is complete. 
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Upper estimates for the eigenfunctions of higher order 
of a linear differential operator 

V. KOMORN1K 

Dedicated to Professor Bila Sz5kefalvi-Nagy on the occasion of his 70th birthday 

In several problems of the spectral theory of non-selfadjoint differential opera-
tors it occurs the need to estimate the eigenfunctions of higher order of these operators 
(cf. [3], [4], [5], [7], [8], [11]). These results were proved in general by the application 
of the mean value formulas of TITCHMARSH [2], MOISEEV [6] and Jo6 [7]. For the case 
of the Schrodinger operator, exact estimates were obtained in [7]. However, in 
case the differential operator is of order n ^ 3 , the mean value formula^ becomes 
rather complicated (see [6]), and it seems to be hard to obtain exact estimates by 
its application. In this paper, we choose another approach: using the method of 
variation of constants instead of the mean value formula, we trace the difficulties 
back to the investigation of some concrete determinants. As the result of these 
considerations, we obtain the formula of Theorem 1. This formula actually equals 
the mean value formula in case of the Schrodinger operator, but differs from it in 
general. 

Using this formula, we extend the upper estimates of [7] to the case of an ar-
bitrary linear differential operator. We obtain estimates not only for the eigen-
functions, but also for their derivatives. These results are formulated in Theorem 2. 

Let GczR be an arbitrary open interval and consider the formal differential 
operator 

Lu = H<">+p1M<"-1>+...+pBM, 

^ Pi, ...,/>„€Lf^G) are arbitrary complex functions. 

Let A be a complex number. The function u ^ : G—C, M_1=0 is called an 
eigenfunction of order — 1 of the operator L with the eigenvalue A. As it is usual, 
a function ut: G-*C, u^O (i=0,1, ...) is said to be an eigenfunction of order 
i of the operator L with the eigenvalue A if ut, together with its first n— 1 
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derivatives is absolute continuous on every compact subinterval of G and if for 
almost all x£G the equation 

(Lut)(x) = AuiM+iii^ix) 

holds, where i/,_1 is an eigenfunction of order i— 1 with the eigenvalue A. 
We shall prove the following result: 

T h e o r e m 1. Given any pair of integers msO, there exist entire functions 
ffJik,hj(js=0,0^i<n,l?sk^N=(m+i)n) with / ( z ) ^ 0 for |z|<7t" such that the 
following formulas are valid: 

Given any eigenfunction um of order ^m of the operator (1) with the eigen-
value A€C, introducing for j<m the functions 

(2) u y . G ^ C, Uj = L u J + 1 - X u j + 1 , 
we have that 

fantJn+iuj».j(x)= 2fM^n)um(x+kt) + 
k=l 

^ N m n *+*< 

+ Z f j i k m 2 2 / (x+kt-T)"<'+1)_1/IR(A(X+FEI-T)»)ps(T)U<*Z?(T)dx 
• ft=l r = 0 1=1 J 

for all y'sO, and for all x£G with x+Nt£G. 
The functions foak are multiples of f and therefore if j = i = 0, this formula 

can be simplified by ./. 

Consider now the special case 

(4) Lu = M ( n ) + p 2 " ( , , _ 2 ) + G c R is a bounded open interval. 

It is well-known that the eigenfunctions of the operator (4) can be extended to absolute 
continuous functions on G (see [1]). Using Theorem 1 we shall prove the follciwing 
estimates: . . 

T h e o r e m 2. There exist constants -

JiTm = Xm(n, |G|, W k , . .^ l lp j ! ) , wi — 0,1, ..., 

(|G| denotes the length of G) such that given any eigenfunction um of order m of 
the operator (4) with the eigenvalue AgC, we have 

(5) " l l u i ' l y l U ^ ^ l + l ^ l V ' " ^ ^ ' ^ « « . ! ! , : 

for all OS/Sm, and 1 ^r^ 
Moreover, if p2, •••, pn£Lp(G) for some 1 then there exist constants 

J f * = Win, |G|, ||p2||p, ,.., | |p j p ) , m =0,1, ...j ; > 
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such that, putting q = (l — l/p) 1, 

(6) ii « £ M , s + m r + i w u j q 

for all 0== j=m and 

In the first section of this paper we prove Theorem 1 for the case G = R , 
P\—Pi— -= />n=0- In its full generality Theorem l is proved in Section 2. Finally, 
Theorem 2 will be proved in Section 3. 

1. Some properties of the operator LQv=v'"\ G=R. In this section vm will 
denote an arbitrarily fixed eigenfunction of order s m -of the operator L0 with 
the eigenvalue X=Q" and, for J<M, we introduce the functions VJ=V<-"11—XVj+1. 
We shall also use the notation 

2ni -f 

QP= Qe " , P = 1, 2, ..., n. 

The following assertion is obvious: 
Lemma 1. vm has the form 

(7) vm(x) = 
2 2 arp(ePx)reV if /1^0, 

r= 0 p-1 

2 2<*rPx"'+p~1 if * = o, 
p = 0 p = l 

with appropriate constants arpdC. 

For any R, we define the determinant D(gt) of type NxN in the following 
way: let the (ra+/>)-th entry of the &-th row O ^ r s m ) be 

(8) rl 
One can see easily that D is an entire function with isolated roots. A more thorough 
investigation shows (cf. [12]) that 

m(m +1) 
(9) D(et) = C(Qt) 2 [ n (e'p'-e'4t)Ym+1)' 

1— 

with some constant C ^ 0. Let us denote the subdeterminant of D(gt), correspond-
ing to the element (8) by Dkpr(gt), and define formally Dkpr(Qt)=0 for r>m. 

Lemma 2. There exist numbers Cjis£C, independent of the choice of vm, 
such that for all 0, 0^i<n and x, f£R, 

N (jn+i n n ( 0 ( \ V 
(10) v<Hj(x) = 2 \ 2 CjisZ 

*=1 lp=i p=i U\Qt) ) 
whenever D(et)^ 0. : ' 
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P r o o f . By (7) and (9), for any l ^ k ^ N we have 

" m (kn iV 
( 1 1 ) vm(x+kt) = 2 2 - ^ p - wpJW, 

p=l s=0 S! 
where 

m r \ 

wp,(x) = 2 arp ( r _ 5 ) , (e P xy- 'e 'p* . 

Hence for all 1 S p ^ n , O ^ s ^ m , ( 1 2 ) wp,(x) = J ^ M ^ + f c i ) . 

(12) is formally true also for s > m if we put wp s=0. It follows directly from the 
definition of q p s that for all l ^ p n , iSO, i SO, xgR, 

(13) w « ( * ) = Q'P ¿ I ' W . + 4 ( * ) , 
q=0\(]/ 

and hence 

(14) = A J M Wp>s+4(x). 
«=1 W ' 

In the light of (12), our assertion (10) can be written in the form 

n jn+i 
(15) v«lj(x) = V 2 e'P 2 cjisWps(x). 

p=1 s=j 

First we prove it for i=0, by induction on j. For j=0, (15) follows from (11) 
with C 0 0 0= 1- Suppose the formula is true for some / s 0 ; then it is true also for 
y '+l . Indeed, we have by (14) and the inductive hypothesis that 

••vm-J-1(x) = X> 2 2CjoAw№(x)-Xwps(x)] = V 2 2 CJOsA ¿ln)wpt+,(x) = 

n (j+l)n f min(n,r—j) ( n \ I 
= v + 1 2 2 \ 2 c A r l w , w . p=lr=7 + l l«=max(l,i—./n) \ q > ) 

Thus (15) is true for all j~0, i=0. Hence the general case follows by (13): 

v«Lj(x) = P 2 2 Cjo^Hx) = xJ 2 2 cJOsQl
p 2 i ' K..+,(*) = 

n jn+i ( min(i,r-j) ( I \ 1 

= V 2 e ' P 2 \ 2 L\cJ0.,-q\wp,(x). 

The lemma is proved. 
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Now we introduce some special eigenfunctions of the operator L0 which will 
also be used in Section 2. Define the functions Km: C x R — C in the following way: 

Km(Q,x)sO if m < 0 ; 

k 0 ( q , x ) = 

Z ^ e ' P * if 
P=I NX (A = Q") 

if Q = 0; l ( » - l ) ! 
X 

Km(e,x) = f K 0 ( g , x t ) d t if m > 0 . 
o 

L e m m a 3. For any pair of integers m and 0 

(16) Dl+iKm{Q,x) = Wi
iKm{Q,x)+D{Km^{Q,x)t 

(17) 7 )^ m ( i , ( 0) = {J if
Qt 

m = 0 and i = n — 1, 
otherwise. 

Moreover, there exist entire functions hl
m such that h'JO)=1 and 

yjim+n-1 — i 
(18) + 

Consequently, for any m^O, 0^z'<n and C, Dl
2Km(Q, •) is an eigenfunction 

of order m of the operator L0 with the eigenvalue X=Q". 

P r o o f . For m = 0 , (16)—(18) can be shown by easy computation, using the 
identity 

" . _ inX if i = n, 
A Q p lO if 0 S i < n ; 

for 0 they are obvious. Suppose they are true for some m^O, and we shall 
conclude from this their validity also for m + 1 . It suffices to show (16) and (18) 
for i '=0. In fact, the cases i > 0 of (16) and (18) hence follow by repeated deriva-
tion and (17) is a consequence of (18). Using the definition of Km+l and the inductive 
hypothesis, 

d" x 

DlKm + 1(Q, x) = - y - f K0(e, X-t)Km(Q, t)dt = 
0 

= "Z DJMQ,0)DRL-JKM(Q,X)+ F D»MQ,X-t)KM(Q,t)dt = 
J=0 0 

* 

= KM(Q, x)+F XK0(Q, x-t)KM(Q, t) dt = XKM+1(Q, x)+Km(e, X), 
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and (16) is proved. To show (18), we use the explicit forms 

(19) h%z) = 2 I w n m\=0, ai = 1, j = 0, 1, ..., m. 
л=о 

We can write 
? f v _ A"-l » ¡nm+n-l a> 

( 2 0 ) = / Ц у г 2 « £ ( « ( * - o r ( n w + „ _ 1 ) ; 2 0 " P i e t y dt = 

oo oo l / i г\л —1+k/i znm + n — l+rn 

.t=or=o * V (n — 1)! (nm + n - 1 ) ! 

^Jifm + l j + n - l 

(n(m + l) + n — 1)! s=o ' 
where 

s * Л1 Е\л — l + л * K i r n i + n - l + ( s - l i ) n 

(21) = (i»(m + l ) 1 ) ! 2 4ar-k/ ^ j p - %w + n_1)! 

hence, in view of (19), we easily obtain 

(22) «o+ 1 = 1 and lim VlapM = 0 k-*oo 

(to deduce the first equality, we integrate by parts n — 1 times). (22) shows the 
legality of the demonstration of (20). Finally, (20) and (22) yield (18). 

Lemma 4. Given any eigenfunction vm of order S m with some eigenvalue A, 
there exists a sequence vkm such that vkm is an eigenfunction of order S m with 
the eigenvalue Xk^X, Xk-*X, and for all j = m, and xdR, we have 

Proof . For X^0 this is a direct consequence of Lemma 1. For A=0, it 
follows from Lemmas 1 and 3 (see (18)). 

Now we prove Theorem 1 for L=L0. All the following formulas will be taken 
for all j SO, and x, /£ R. Introducing the entire functions dJik by the 
formulas 

jn+i n 
(23) dJikiet) = 2 Cj* ZiePt)ln+iDkps(dt), k = 1, ...,jv 

s=j p=1 

(see (10)), we have the identities 

(24) Diet)t»+lv«lJix)= 2djikie0vmix + kt) 
k = 1 

whenever Let /i denote the smallest multiplicity of the root 0 in the 
functions dJik. We claim that fi is greater than or equal to the multiplicity of the 
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root 0 in D. Indeed, in the opposite case, dividing both sides of (24) by (gt)" 
and putting 0—0, x = 0 , t = \, we would obtain from Lemma 4 for some j, i that 
the identity . a 

2d%vm(k) = 0 
k=0 

holds for all eigenfunctions of order g m with the eigenvalue 0, i.e., for all poly-
nomials of degree <iST with some coefficients d*ik, at least one of which differs, 
from zero. But this is impossible because putting vm(x)=xr, r=0, 1, ..., N— 1, the 
resulting system of linear equations has the only solution. dja=dji2= ...=dJiN=0. 

Assume D(qî)?±0. Then taking into account also (9), we can divide (24) by 

m(m-f 1) 
C(gt)"~^~\_ n (Qpt-8Mm+1)*> 

l^p ..-
and we obtain the identities 

(25) rte0tJ"+'v2>-j(x)= Zfh(et)vm(x+kt) 

where f*,f*ik are suitable entire functions with the properties 

(26) /*(0) = 1 and 0 if |z| < n. 

It follows from the construction of / * and f*jk that 

2 ni 2ni 

f*{Qte •>) = /* (Qt) and nk(Qte-)=f%k(ôt); 

therefore there exist entire functions such that 

(27) P(Qt) =f(h") and f*ik(gt) =fjik(h«). 

From (25)—(27) the formulas (3) of Theorem 1 follow whenever Z)(ei)^0. How-
ever, this last condition can be eliminated with the aid of Lemma 4. The first part 
of Theorem 1 is proved. To prove the second part of the theorem, it suffices to 
show that 

dWk(Qi) = Cooo 2DkPo(et), k = 1, ..., N 
P=l 

is a multiple of 
• m(m + l ) 

(CO"-*"" [ II (e',,-e^P<)Уm+»i; 
XSpcq^n 

this can be shown similarly to (9). Theorem 1 for L0 is proved. 
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2. Proof of Theorem 1. Using the notations of Theorem 1, introduce the func-
tions 

(28) M(uj_r,t) = (.LuJ.r)(t)-u]"2r(t)= ¿ A ( / ) « j "_-/>(/), 
3 = 1 

(29) Vj(x) = Uj(x) + 2 f K(e, x-t)M(uj_„ t) dt, 
r~° a 

for 0 t , x £ G where a is an arbitrarily fixed point of G. First we show that 

(30) v(f> (x) = ««)*-1- 2 f&iKie, x~t)M(uj_r, t) dt ( ; s m, 0 ^ i < n), 
' = « a 

(31) vj = -¿Vj+i 0 ' < m ) , u_! = 0. 

Indeed, using (29) and (17), we get that for any j^m, 0 ^ / S n , 

vPix) = "i°(x)+¿-¿- /Kr(e, x-t)M(uj.r, t)dt = 

= u(p (x)+D'flK0(e, 0 ) M ( u j , x)+ 2 ¡DMe, x-t)M(uj_„ t) dt. 
r=o i 

For this implies (30) in view of (17). Now let i—n. Using also (29), (2), 
(28) and (16), we conclude that 

vf(x)-X «,,(*) = 

= «$»>(*)-A«J(*) + M(ttJ,*)+ 2 f[DiKr(e,x-t)-XKr(e,x-i)]M(Uj_r, t)dt = 

j - i * 
= «^(xH 2 / *r((?, X-t)M(Uj.,.r, t)dt, 

r = 0 0 

whence the first part of (31) follows, is obvious by (29). wm being the restric-
tion of an eigenfunction of order ^m of the operator L0 with the eigenvalue 
A (by.(31)), we can apply Theorem 1 for vm. Using also (30), we obtain the identities 

fmtJn+i[u«lj(x)+ 2 f Di
iKr_J(Q,x-T)M(um_r,z)dx} = 

N t m x t k t \ 
= 2fj*W)\um(x+kt)+ 2 f K(e,x+kt-z)M(um-„r)dx\ 

for all y s O , x£G and x+Nt£G. By (18) and (28) this identity would 
coincide with (3) if we could replace the lower bound a in all the integrals by x. 
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But this is allowed by the following remark: Kr(Q, •) is an eigenfunction of order 
r of L0 with the eigenvalue X (Lemma 3), and therefore we have 

/{XW+'BLKr-jie, x-z) = 2 fjikWKie, x-r+kt) 
k=l 

for any y s O , O^i'-cw and x , t, t £ R . Furthermore, D'2Kr-j=0 for any 
Thus Theorem 1 is proved. 

3. Proof of Theorem 2. Using the notations of Theorem 1, let us fix a constant 
C such that for all O^j^m, and l^k^N, 

(32) \fjik{z)\ C\f(z)\ if |z| ^ 1 
and 
(33) \hj(z)\ £ C if \z\ S NN. 

Assume p2; ...,p„£Lp(G) (1 and define the numbers e, R, Mq (where 
p~1+q~1= 1) follows: 

(34) e = (4iV)_1(i—A)-1 '4 (G = (a, b)), 

(35) H = m i n j J - , min{ ] / c n ^ M , : 

(36) Mq = max {^"+'11 « « J 4 : m, O s / < n } . 

Using (3), (32), (33), (35), and (36), for any a ^ s ^ and 

O ^ t ^ R we can write 
N m n 

i J"+ i |«m-jWI ^ C 2 \um(x+kt)\ + NC2 2 ^ ( W + ̂ - ' l l p J I p l l ^ l l , = 

fc=l r = 0 s = 2 

N m n = c 2 \um(x+kt)\+NNc2 2 2(RS~1\\Ps\\p)(Rrn+"~s\\"m-r)\\q) ^ 
* = 1 r = 0 5 = 2 

^ c 2 \um(x+kt)\ + eM9, 
k= 1 

i.e., 

(37) t^W-jW] S C 2 \um(x + kt)\+eMq. 
k=1 

First we prove (5) {q= Applying the operation 
' R 

NR~1 f -dt 
o 
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to both sides, we obtain 
<v « . 

RJm+,\u<P-j{x)\ * NCR-1 2 f \um(x+kt)\dt + NeM„. 
k=1J 

Using the Holder inequality, one can easily see that 
R 

R-i f \um(x + kt)\dt^ R-V'WuJr, 
o 

and therefore 
S N2CR~llr|| HJ|, + NeM„. 

a + b 
This is true for all flgjg , but one can quite similarly prove it for all 

a + b — — S i ^ i ) , too. Hence 

RJn+i\\u«lj\\„S NtCR-V'WuJl + NeM^, 

and in view of (34) and (36), % 

M„ ^ N*-CR-*'\\um\\r + ^Mm, 

A/«, i": 2N2CR~llr\\um\\r. 

Hence (5) follows by (34), (35) and (36): 

To prove (6), put t—R in (37) and take the Lq^a, ~ ~ n o r m of both sides: 

NC\\uJq+(b-ay>eMq. ' 

A similar estimate can be obtained for ||t/21,-||£„^+fc 6 j , too. Therefore, .in view 

of (36) and (34), 

Mq^2NC\\uJq + jMq, 

Mq^4NC\\uJq. 

Hence (6) follows by (34), (35) and (36). 

R e m a r k . For n=2 the functions fjik, hj in Theorem 1 have some special 
properties. Using these properties, one can show with the method of the paper [7] 
the following stronger form of (5): 

I I k W J - ^ ^2,m(l + + |Re / X | y + 1 / , | | u j | r . 

Just this result was proved in [7]. 
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On the homotopy type of some spaces occurring 
in the calculus of variations 

A. KÓSA 

Dedicated to Professor B. Sz.-Nagy on the occasion of his 70th birthday 

1. Let H€N and let D c R x R " be an open region. Suppose ¿̂ CR" 
are given such that (0, £0), (1, Denote by M(D) the class of continuous 
functions JC: [0, l]-«-R" such that 

(1) x(0) = £„, x(l) = fx, and r(x):= {(í, *(0)|*€[0,1])} c D. 

The space of Revalued continuous functions over [0,1] will be denoted by C„[0,1]. 
Thus M(D) is a subspace of C„[0,1]. Endow M(D) with the relative topology 
of C„[0,1]. 

The global methods of the calculus of variations (see [1], [3], [5] and [6]) lead 
us to the following problem: how can the homotopy type of M(D) be described 
from that of D1 In this paper we establish a connection between the homotopy 
types of the spaces D and M(D) for a rather wide class of regions D. We shall 
define a class of admissible regions and for this class we shall prove the following 
theorem. 

Theorem. Suppose D c R x R " is an admissible region and its homotopy 
type is the one point union S*i\/Sr*\¡ ...\¡S*k of the spheres Sr' of dimension 
(/ = 1,2, . . . , k). Then the homotopy type of M(D) is the one point union 
S"-i-iV5 r«-1V-VST"-1 of the spheres 5 r ' - 1 (i = l, 2,. . . , k). 

2. In this section the necessary definitions and constructions will be given. 

Def in i t ion 1. The regions Dlt fi2cRn+1 satisfying (1) will be called r-in-
variantly homeomorphic, if there exists a uniformly continuous homeomorphism 
<p:Di^-D2 such that 

a) <K(Uo) = «Uo)> = 

Receidev October 19, 1982. 
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b) the diagram 

<p: Di — D2 

R 
is commutative where prx: R'XR"—R1 is the projection of the space R l X R " 
onto the first factor. 

n 
Denote by / „ cR" the n-dimensional open unit interval XK*> '[• Let k,i 

¡=i 
(i=k) and r (r^n) be positive integers and <5£]0, l/2[ a real number. For the 
ordered quadruple (k, /', r, ¿) define the set Q(k, i, r, c5) as the product 

( k m i x . i : 

Now, suppose that the positive integers n,k are given. Let r2, r(l)€N t 

for i = 1, 2, ..., k), a, p, 5£Ik. Suppose that for all / = 1,2, 
and 2d£Jk. The set D(k, r, a, P, ¿ ) c R X R " will be given in the following manner: 

D(k, r, a, p, 8) := {(/, *KRxR n | / € [0 , 1], x£i„, . and. if *£[<*„ p,] then 

x$Q(k, i, rt, <5,)}. 

D e f i n i t i o n 2. A region Z>cR"+ 1 is said to be admissible if there exist 
*€N,.r€N* (r^n, / = 1,2, ..., k), a, p, 5ak.(*i^P„ / '=1 ,2 , ..., k, 28<iln),.. such that 

k 
the intersection T l K ' f t t ¡ s nonempty, and D and D(k, r, a, p, 8) are' /-in-

¡=1 • 
variantly homeomorphic regions. 

. . R e m a r k : It can be easily seen that the homotopy type of the regions 
D(k, r, a, p, 8) (and,thus that of D) is the one point union S'y\]S'*\/...\JST*. 

Now, choose real numbers <x0, p0,a.', P', t0 such that 0 < a ' < a 0 < / 0 < / ? 0 < / r < T . 
Define the function / : [0, 1] —[0, 1] in the following way: 

/€[0, a']U[P', 1],. 

te[p0, Pi-

rn :={ 

t - a ! 

a „ - a - C o - a O , 

to, 

>o+4^r(p'~t0i P -P0 
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The restriction of / to the set [0, a0]U]/?o> U is invertible and the inverse also can 
be easily given: 

t, i Ç ^ a l U D S M ] , . 

( / l [0 ,a 0 ]U ] / î „ , l ] ) 1 ( 0 = 

/—a 
a ' + r («0-oO> , tÇ[oc', /„], 

Q a 

P - to 

Let N, /-iN" ( r ^ n , / = 1 , 2 , f c ) , a', J3'€]0,1[ ( a ' c f t ) , <5eRk (2<5<E/*) 
be given. Define the subspace M(k, r, a', /T, <5)cC„[0,1] as follows: 

M(/c, r, a', P', §) .:= {x£ C„[0, 1] | * | [ s , . n const., | (x) = : x(a'), . 

Z(x)(LIn\nQ(k, i, r, d), x(t) = £O+4-(£(*)-£O) ('€[0, a']), 
¡=i a 

*(O = ax)+-^r(Ql-ax)) ID}. . 

Finally, denote by j the identity map of [0, 1]. 

3. We start with a simple observation. 

L e m m a 1. If the regions D1,D2czR"+1 satisfying the condition (1) are ^in-
variant ly homeomorphic, then M(DX) and M(D2) are homeomorphic. 

P r o o f . Let <p\Dx-+D2 be a /-invariant homeomorphism (in this case, ob-
viously, the inverse <p-1: D2—DX is also a /-invariant homeomorphism). Define 
the desired homeomorphism <P: M(D1)-~M(D2) as follows: 

(*(*)) (0 :=,pr2<p (/,*(/)) (/£[0,1]), . 

where pr2: R ^ R " — R " is the projection of the product space R1XR" onto the 
second factor. From the /-invariance of the homeomorphism <p it follows im-
mediately, that <P is a homeomorphism. It is also clear that <P~1 has a form similar 
to that of 

($-1(x))(/) = pr2<? )-1(i,x(0) (/€[0,1]). 

From Lemma 1 it follows that it is sufficient to determine the homotopy type 
.of; the spaces M(D{k, r, a, /?, <5)). We now turn to the calculation of the homotopy 
type of the space M(k, r, a.', ft', 5). For this purpose we shall prove the following 

L e m m a 2. The homotopy type of the space M(k, r;a.', P', 5) is the one point 
union 5 ' ' - 1 V5 r «- 1 V. . .V5 r " - 1 of the spheres S''"1 (/ = 1,2, ...,k). 
J . > • • 

"' . P roo f . It is obvious that the space M(k, r, a ' , P', <5) is homeomorphic to the 
n 

n-dimensional region 7 „ \ (J Q(k, i, r, 3). The desired homeomorphism W can be 
¡=i 

18« 
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given by (£ |Af(t,r,a',p',i))-\ where ^ is the function from the end of the 2nd 

k 
point. Now, by the definition of the sets Q(k, i, r, 5) the region / „ \ U U r-> 

>=i 
is homotopically equivalent to the one point union S T i - 1 V iS T i " 1 V . . .VS"* - 1 

of the spheres S*"'-1 (i = 1 ,2 , . . . , Ac). 
* 

Choose numbers t0£ f ) ]a(, ft[ and a0 , ft; a', ft£]0, 1[ such that the inequalities 
<=i 

0 < a' < a0 < mm {«¡} < max {ft} < ft, < ft < 1 

are satisfied. 

L e m m a 3. The space M(k, r, a', ft, 5) is a deformation retract of the space 
M(D(k, r, a, ft <5)). 

P r o o f . A homotopy 

F: [0,1 ]XM(D(k, r, a, ft <5)) - M(D(k, r, a, ft 5)) 
is defined by 

_ f x o ( 2 t / + ( l —2x)j), t€[0, 1/2], 
F(x, x) : - | ( 2 _ 2 t ) ; c o / + (2T—1) !F(x(r0)), T€[1/2, 1], 

where r]/ is the function from the preceding proof. 
The restriction of X<-+F(T, X) to M(k, r, a', ft, <5) is the identity, because the 

elements of M(Jc, r, a.', ft', <5) are constant over [a', ft] and linear over the rest 
of [0,1], consequently 

xo(2T/+( l -2T)/ ) | [ a , , , , ] = £(*) = x \ [ a , < n , 

o(2t/ + (l —2T)/)|[o,a'juw,i] = * o (2r/+ (1 - 2T)j) j[0i x>]ulir,1} = X^.^uwm]» 

for x€[0,1/2], and 

[ (2—2x)x of+ ( 2 T — 1 ) !P (X ( I 0 ) ] [A ' , / ) ' ] = ( 2 - 2 T ) X ( / 0 ) + ( 2 T - 1 ) X ( / 0 ) = x | [ a , , r ] > 

[(2—2t) x o / + (2T—1) (x (/0)] [o, A- ] u w Ml = [(2-2T)X+(2T-1)X]|[0,C[.]l,[p..1i = 

for T6[l/2, 1]. 
The function xt—F(0, x) is the identity over M(D(k, r, a, ft <5)). The function 

XH-F(1,X) is a retract of M(D(k, r, a, ft <5)) onto M(k,r,u', p',5). The proof 
of Theorem follows immediately from Lemmas 1—3. 

If n=2 and the region D is 73 \{(i , 1/2, 1/2) | /€[0,1]}, furthermore 
eo 

=(1/2, 1/3), then the homotopy type of M(D) 
is the one point union V S® 

i= — » 
of infinitely many 0-dimensional spheres. There are as many spheres as there are 
different ways to wind the graphs of the functions around the omitted segment. 
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Dilation theory and one-parameter semigroups 
of contractions 
ISTVÁN KOVÁCS 

To Professor Béla Szőkefalvi-Nagy on his 70th birthday 

In the frame of the dilation theory, a classification of contraction operators, 
briefly contractions, T on a Hilbert space according to the. behavior of their 
powers T" and T*n as H — was given in [2], Chap. II in terms of the classes CxP= 

•p (a, ¿3=0, 1). Analogously, we may consider classes of one-parameter 
semigroups of contractions (T,), i.e., representations t>-*T, of the additive semi-
group R+ of the non-negative reals by contractions T, of defined as follows: 

SC0. = {(Tt)\ Ttx - 0 for ail x€ 5}, 
SC.0 = {(Tt) : T,*x - 0 for all x€§), 
SCj. = {(rt): Ttx - 0 for x = 0 (*€§) only}, 
SC.! = {(T,): T,*x - 0 for x = 0 (*€§) only}, 

whenever Furthermore, set SCxP=SCx.OSC.fi (a, JS=0,1). 
It might be an interesting question to know to what extent results and facts 

derived for the elements of CxP would hold true for the elements of SCaP, for 
instance in the sense that is shown by the following observation. 

One of the consequences of the paper [1] is that a contraction T which is an 
element of a finite-type von Neumann algebra si (cf. [3], Chap. V) is a unitary 
operator if and only if it belongs to the class Cx.. According to the above con-
siderations, a result analogous to that one might sound like this. 

Theorem. A one-parameter semigroup of contractions (Tt) the elements of 
which belong to a given finite-type von Neumann algebra si can be extended to a 
one-parameter group of unitary operators (U,) of si if and only if (T,)£ SCt.. 

Proof . The necessity part of the proof is evident. To show that the condition 
is also sufficient, consider the family of operators F =(T*Tt)tiR+- This family 

Received May 18, 1982. 
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is evidently bounded from below and is also decreasing as f—«>. In fact, if s ^ t 
then as (f—J)>0 and t=(t—for every *) we have 

0 S (Tt*T,x\x) = (T,x\Ttx) = (Tt.sTsx\Tt.sT,x) ^ ||r t_J2(7>|Z;*) =L (T*Tsx\x). 

So F has a strong cluster point S in si which is self-adjoint and positive: 

Moreover, S is invertible in the more general sense: x£Sx—0 imply 
This follows from the fact that v 

which gives that x=0 by the condition of the theorem. Furthermore, for every 
J£R+ we have T*STs=S. This is immediate by the definition of S. Then for 
every finite normal trace <p on si we have <p(S)=cp(T*STs)=<p(S1/2TsT*S1/2), 
from which we may conclude 

(/ is the identity operator of §). As S1'\l-TsT*)S1/2^0 and (p is arbitrary, (* ) 
implies Sv\l-TsT*)S1,z=0. Now, with S its square root S1'2 is also invertible 
and its inverse is densely defined. Therefore, S1'\l—TsT*)S1/2=0 implies 
I—TsT*=0, i.e., T* is an isometric operator. But si is of finite-type, thus 
T* and hence Ts are both unitary operators. To complete the proof, set 

[1] C. Foia§—I. KovÄcs, Une caractérisation nouvelle des algèbres de von Neumann finies, 
Acta Sei. Math., 23 (1962), 274—278. 

[2] B. S z . - N a g y — C . Foiaç, Analyse harmonique des opérateurs dans l'espace de Hilbert, Akadé-
miai Kiadô (Budapest, 1967) et Masson (Paris, 1967). 

[3] M. Takesak i , Theory of Operator Algebras. /, Springer-Verlag (Berlin—New York—Heidel-
berg, 1979). 
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UNIVERSITY OF SOUTH ALABAMA 
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*) is the underlying Hilbert space of si and the operators under consideration. 

S = liming T* T, as t -

lim ||7>||2 = lim (777>|*) = (Sx\x) = 0, 

<p(Sll2(I— Ts T*)S112) = 0 

References 
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On measurable Hermitian indefinite functions with a finite 
number of negative squares 

H. LANGER 

Dedicated to Professor Béla Szőkefalvi-Nagy on his 70th birthday 

1. Introduction and main result 

1. Let x be a nonnegative integer and 0 W e denote by ^Px;<1 the 
set of all complex functions / defined on the open interval (—la, 2a) with the 
following properties: 

( i ) / ( 0 = 7 W ) ( - 2 a < / < 2 a ) ; 
(ii) the (Hermitian) kernel Hf defined by 

Hf(U s) :=f(t-s) ( - a < s, t < a) 
has x negative squares; 

(iiie) / is continuous on (—2a, 2a). 
We denote by the set of all complex functions / on (—2a, 2a) satisfying 

(i), (ii) and 
( i i i j / is measurable and locally bounded on (—2a, 2a). 

The aim of this note is to prove the following 

Theorem. The function admits a unique decomposition 

(1) fit) =fc(t)+fs(t) ( - 2 a < t < 2a) 

such that and fs(t)=0 a.e. on (-2a, 2a). 

For x = 0 this theorem was proved by M. G. KRE IN [1], see also [2]. In this 
case it implies the classical result of F. RIESZ [3] stating that an arbitrary function 

ő;~ coincides almost everywhere with some In connection with 
the paper [1] M. G. Krein asked for a generalization of his result to functions with 
x negative squares. The Theorem above gives an affirmative answer to this question. 

The proof of the Theorem will be given in section 4. Also for x = 0 it is different 
from the proof of the corresponding theorem in [1]. As a main tool we use a result 
about the continuation of generalized functions with x negative squares from 
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a bounded interval to the whole real axis, which is perhaps of some interest in its 
own (see 3). In particular, it seems to be new even for x=0. Then it extends a clas-
sical result of M. G. Krein to positive definite generalized functions. 

We mention that the decomposition of a positive definite measurable function 
/ on R" into the sum of a continuous positive definite function fe and a positive 
definite function fs on R", which vanishes almost everywhere, was proved by 
M . M . CRUM [12] , the corresponding fact for measurable positive definite functions 
on a locally compact group was proved by J . VON NEUMANN and I . E . SEGAL, see [ 1 3 ] . 

A survey and a bibliography about positive definite functions and their genera-
lizations can be found in [4]; continuous functions with a finite number of negative 
squares were considered, e.g., in [5] and [6, Parts I, IV]. 

2. In this section the function / is supposed to satisfy the conditions (i) and (ii). 
If >c=0, then an arbitrary (even nonmeasurable) function / of this kind is bounded: 

1/(01 =/(0) (—2a < t < 2a). 

If x > 0 and / is continuous, then it may be unbounded at infinity (in case a=°°). 
This holds, e.g., for x—l if / has a representation of parabolic or hyperbolic type 
see [6, Part IV]. If / is not measurable and x>0, then it may be unbounded at 
zero. To see this we choose a (nonmeasurable) solution a of the functional equation 
a(t+s)=<x(t) • a.(s), a(0) = 1, which is not locally bounded, and consider the following 
function / : 

/ ( 0 := ya (0+fa (0 _ 1 ( - 2 a < t < 2a) 

for arbitrary 0 T h e relation 

2 A t i - W i T j = y J«(',)£• i W d t i ' i,j=1 i = l J=1 ¡=1 j = l 

shows that the kernel Hf has one negative and one positive square. 
However, it is an open question if a measurable function / satisfying (i) and 

'(ii) can be unbounded on some compact subinterval of (—2a, 2a). Thus, we do not 
know whether the boundedness condition in (iiim) should be imposed. ' ' 

2.7rK-spaces associated with elements of 

1. Let / be a complex function on (—2a, 2a) satisfying the conditions (i) 
and (ii). We associate with / a 7rx-space n„(f) as follows. Consider the linear 
set i?0 of all complex functions u:s—u(s) on (—a, a) that are different from 
zero only in a finite number of points s, and equip JS?0 with the scalar product 

. . [«,»]:= 2 f(is)u(sMt) (u,vd#o). 



Measurable Hermitian indefinite functions 283 

The conditions (i) and (ii) imply that this scalar product is Hermitian and has x 
negative squares on £f0 . Thus c a n be canonically embedded into a 7rx-space, 
which we shall denote by n x ( f ) . The element of I I x ( f ) corresponding to a func-
tion w6i?o will also be denoted by u. Moreover, we introduce the functions 

— as follows: 

. . 11 if s = t 
e ' ( s ) : = io if a * t 

Evidently, the elements e, —a</-<iz, generate the space IJ x ( f ) and we have 

Let w1; ..., ux be elements of JS?0 such that 

tUj, uk] = -5jk, j, k = 1, 2, ..., x. 

We consider the Hilbert norm 

11*112 := 2 \[x, uj]\2+[x+ 2 [x, Uj]Uj,x+ j? [x, uj] J = ' ~ 
(2)

 1 J = 1 J 

= [X, x] + 2 2 it*, Uj]I2 (xenx(f)) 
on IJx(f). 

L e m m a 1. If the function f satisfies (i) and (ii), and is locally bounded on 
( — 2a, 2a), then the function ( —a<i<a) is locally bounded. 

Indeed, we have from (2) 

Ikll2 = + 2 2 Ik, "/ll2 =f(P) +2 2 2f{t-s)Uj{t), j=i t j=i 

and the statement follows from the local boundedness of / on (—2a, 2a) if we 
observe that both summations on the right hand side are finite. 

2. Now let /€^3™.a• Then, besides TIx(f), a space n c ( f ) can be defined as 
follows. Let Ca be the linear set of all continuous complex functions cp on (—a, a) 
which vanish outside of some compact subinterval of (—a, a). We define a scalar 
product on Ca by the formula 

a a 

(3) [<p, Mc •= f f f(t-s)cp(s)W)dsdt (<p,^tca). 
— a ~a 

It will be shown in this section that the factor space of Ca modulo the isotropic 
subspace i f^ of Ca with respect to the scalar product [ •, • ] c can be identified 
with some linear manifold in nx(f). 
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To this end, for a given (p£Ca we define a linear functional on J£?0 by 

F9(H):= f f ( t - s ) H f ) d t (u£SC0). 
* —a 

Let (un)cz&0 be a sequence which converges to the zero element of TIx(f) if n— 
Then we have 

s 

The right hand side in this relation tends to zero if n — and according to Lemma 1 
this convergence holds locally uniformly with respect to *€(—a, d). This implies 
Fj(u„)-*-0 ( n — T h e r e f o r e Fv is continuous and can be extended by continuity 
to all of n x ( f ) . Hence there exists an element <p£llx(f) such that 

Fv{x) = [x,<p] (xenx(f)). 
In particular, 

a a 

(4) [e,, < ? > ] = / f ( t - s ) < p ( t ) dt, [u, <p]= f [u, e,]<p(t) dt ( s€( -a , d), «6.S?„). 
—a —a 

Next we show that the scalar product of two such elements (p, ¡p£llx(f) co-
incides with (3). Indeed, if (p£Ca, then there exists a sequence (q>n)<zHf0 such that 
(pn-~q> in n x ( f ) . This implies that 

[(Pn, <A] -* [<P> <A] (« - °°)> [<Pn, eJ - 1<P> eJ (« - °°)> 

and the latter convergence holds locally uniformly with respect to /€(—a, a). Thus 
we get 

a 

[q>, ip] = lim [<p„, ip] = lim f [<pn, e,]ip(t) dt = H-* oo tt—oo *f —a 
a a a 

= f[(p,et]W{i)dt= f f f(t-s)<p(s)\pjt)ds dt, 
—a —a —a 

that is 
[<p, xp] = [cp, ip]c. 

The factor space CJJ?£ can be identified with some linear manifold in i 7 x ( / ) . 
In particular, the scalar product (3) has only a finite number x', O S z ' S x , of 
negative squares. The completion of will be denoted by n c ( f ) . It is 
a 7Rx.-space for some OSx 'Si i , and can be identified with some (non-degenerate*) 
subspace of n x ( f ) . Later we shall see that actually x'=x. 

R e m a r k 1. Instead of Ca we could have started from the space Ka of those 
elements of Ca which have derivatives of arbitrary order. If we again define the 
scalar product [<p, ip]c for <p, \p£Ka by the relation (3); it is easy to see that the 



Measurable Hermitian indefinite functions 285 

completion of the factor space KJJZji coincides with 77c(/); here denotes 
the isotropic subspace of Ka with respect to the scalar product [ •, • ] c . 

Remark 2. If the function / is continuous; that is / € •Px;a' then the spaces 
n x ( f ) and n c ( f ) coincide. Indeed, if s£(-a,a), let (5™), n=l,2, ..., be a 
¿s-sequence of elements of Ca. Then it is easy to see that Si")—es if n—°°, and 
the inclusion i 7 x ( / ) c i 7 c ( / ) follows. Thus the spaces n x ( f ) and i7 c ( / ) are 
identical. Obviously, in this case the space FIx(f) is separable. 

3. Generalized functions with * negative squares 

1. We denote by the set of all generalized functions F on (—2a, 2a) 
over the space K^ with the following properties: 

(i') (F,cp)={F,(p*) {cpiK^-, (P*(t):=<?(-/)); 
(ii') the kernel HF on KaXKa defined by 

HF(<p, «/0 := (F, <¡9°*^) (<p, <p°(t)-.= <p(-t)) 
has x negative squares. 

The generalized function F£tyx.a induces a scalar product 
(5) [cp, .\>\K := (F, q>° * $) (cp, >peKa) 
on Ka with x negative squares. The corresponding 7rz-space will be denoted by 
i7*(F). 

Recall ([7, §4]) that a family (T,), 0 o f bounded linear operators 
in a Banach space 36 is a generalized semigroup, if it has the following properties: 

(a) 9(T,) = :9, is a closed subspace of and we have 

9, cr 9,, if 0 St' ^t, |J 9, = 

(b) T0=I,Tt+t,=TtTr{t,t'm\ 
(c) if i0>0, and Osf, t'^t0 then Jim T,,x=Ttx. 

The infinitesimal generator A0 of the generalized semigroup (Tt), is 

defined as follows: 9(A0) is the set of all x£ (J 9, such that the limit lim^-(7V;e —x) hi° in 
exists and 

A0x := l i m ^ ( T h x - x ) 9(A0)), 

see [7, §4]. 
If taR1, we denote by V, the shift operator in Ka: (p£S(Vt) if either (p—0, 

or <p£Ka and f+supp <pc( —a, a), and if e.g., />0, 

^ k H O ^ " 0
 I ::r.V_7+, <*»«». 
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It is easy to see that the operators V, preserve the scalar product (5) on Ka. If 
|/ | is sufficiently small then 9(V,) contains a ^-dimensional negative subspace 
(with respect to (5)). Therefore, for these t the operator V, is continuous in the 
norm topology of n*(F) ([8, IX. 3]). The relation Vt+t.=V,Vt., sgn r=sgn t', 
implies that all the operators V,, R1, are continuous. Thus they can be extended 
by continuity to the closure 9(V,) in 77*(F). As a result we get a generalized 
semigroup of bounded isometric operators in i7*(F); which will also be denoted 
by (K)> Its infinitesimal generator is the operator 

, . d A 0 = i J r 

Evidently, Kac9(A0) and A0Ka<zKo. Moreover, the operator A0 in i7*(F) 
is 7r-Hermitian (this either follows easily from the fact that the operators V, are 
7r-isometric, or can be checked directly). As it is real with respect to the involution 
<p-+<p* in Ka, its defect numbers are equal, and it is not hard to show (cf. [6, Part IV; 
§ 2]) that they are either = 0 or = 1. 

Moreover, if a— <=°, then the operators V,, tdR1, form a group of 7i-unitary 
operators. In this case the operator A0 is 7r-self-adjoint. 

2. P ropos i t i on 1. If there exists at least one generalized function 
Fc^. M which extends F to the whole real axis. 

Proof . We consider the operator A0 in 77*(F). It admits at least one 7t-self-
adjoint extension A in 77*(F). Denote by (0,), t^R1, the. group of 7r-unitary 
operators in II*(F) generated by A, that is, ¿7,:= exp (it A) (t^R1). Then, if <p£Ka, 
we have (0,<p)(s)=(p(s—t) for sufficiently small |/|. In fact, 0, is a 7t-unitary 
extension of the operator V,. * 

An extension F of F can now be defined as follows. Let cp, \¡/£Km be such 
that their supports are contained in closed intervals of length <2a, say, 

(6) s u p p ( p c ( t ' - a , t'+a), s upp tpa( t "—a , t "+a) 

for some t', t"£R1. Then, if V, denotes the shift operator in .K«, defined by 

(V,cp){s) := <p(s — t) ((p£Km, s, /?!), 

we have V_,.q>, V_t„\p£K0. The scalar product [• , • ]K can be extended by the 
relation 

It is not hard to see that this definition is correct, that is, on K0 it gives the scalar 
product already defined, and it is independent of the choice of t'. and t" if only 
the translations V_t, and V_r map (p and \p, respectively, into Ka. 
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If (p, \j/£K„ do not satisfy conditions of the form (6), we choose a resolution 
of the identity (e,), / = 1,2, . . . , such that e^K^, supp ejcz(tj—a, tj+a) for some 
t j £R\ 7 = 1,2, ..., and 2 e / s ) = i Writing = and 

j j j 
applying the considerations of the last paragraph to the functions (pej, $e}, we 
define a scalar product on K„ by 

[<P, iM := 12 L Z GtjV.tJ(fej)]K: 
J j 

It is not hard to show that this is a continuous bilinear functional on which is 
invariant under translation. Therefore, according to [9, II, §3.5], it is of the form 
(F, (p° t̂ ) with some generalized function Ft tyd

x. „ which extends F to the real 
axis. The proposition is proved. 

Remark . It ¿an be shown that there is a one-to-one correspondence between 
all continuations ~ °f a to the whole real axis and all generalized 
resolvents of the operator A0, cf. [6, Part IV]. 

3. The generalized functions Fdtyx . a
 a r e "conditionally positive definite" 

in the following sense *): There exists a polynomial p of degree =x such that 

(7) [ p ( i § P ( i ^ F , 9 ° * c p ) ^ 0 

cf. [10]. If p is chosen monic (that is, the coefficient of the term with greatest 
exponent is 1) and of minimal possible degree, it is unique if and only if the operator 
A0 is jr-self-adjoint in i7*(F), cf. [6, Part IV, §2]. 

The generalized function M admits an (essentially unique) integral 
representation by means of a "spectral measure" ¡i of exponential growth at infinity, 
see [10]. This representation has the same structure as that appearing in [9, II, §4, 
Theorem 3]. We decompose the integral into the sum of two integrals. One of 
them is taken over a bounded interval containing all singularities of the "spectral 
measure" fi (in [9, II, §4, (25)] the only such singularity of fi is at zero, while in 
general the singularities may appear at eigenvalues of A0 with nonpositive eigen-
vectors). The second integral without the "regularizing term" defines a positive 
definite generalized function, whereas the first integral (over the bounded interval) 
and those terms which are given by the nonreal spectrum correspond to. a gene-
ralized function induced by a continuous function. Thus the following proposition 
has been-proved. 

*) In [9] . the generalized function F on R1 is called "conditionally positive definite" if 
(7) holds with a homogeneous polynomial p. 
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Propos i t ion 2. The generalized function m can be decomposed as 
F=F1+F0, where „ is a continuous function and ~ w a positive 
definite generalized function. 

Combining Propositions 1 and 2 we obtain: 

Coro l l a ry . The generalized function F&can be decomposed as F= FX + F0, 
where F ^ . , and F0£%a. 

4. Proof of the Theorem 

1. We start with the following lemma (cf. [11, IX. 2]). 

Lemma 2. Let f0 be a function on (—2a, 2a) which is locally bounded, measur-
able and positive definite as a generalized function.**) Then it admits a representation 

(8) /o(0 = feu,dfi0(A) for almost all t£(-2a,2a) 
Rl 

with a bounded nonnegative measure p0 on R1. 

Proof . The positive definite generalized function / 0 has an extension /0€^Po;~> 
see Proposition 1. Then / 0 is the Fourier transform of a nonnegative polynomially 
bounded measure p0 on R1. In particular, 

(fo,<P) = f HQ dp0(A) (<peKa), 
— oo 

where 0(A) := jem<p(t)dt (kdR1). 
—a 

a 

Let feKco be such that j^O, J j(t)dt = 1, suppy"c(-a,a) and for 
—a 

define the functions 
№ := e-1 Hte-1) (t^R1). 

Then 
oo 

/ \JcW\idp0(X) = ( f 0 , j M ^ sup |/o(20|. 
_oo <€suppj 

On each compact subset of R1 the functions jc tend uniformly to 1 if ejO. Hence 

/ d¡1,(1) ^ sup |/0(2/)|, 
tesuppj 

**) In [11, IX, 2J a bounded function on R1 with this property is called weakly positive 
definite. 
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and, since j can be chosen to have arbitrarily small support, it follows that 

/ dna(X) ^ Iim |/0(/)|. j 11 o 
The lemmaT is proved. 

2. Now let / 6 ^P"; a • Then / can be considered as a generalized function, and 
since we have 

a a 
[<PA]K = if,<P°*$)= f f f(ts)cp{s)Jit)dsdt, 

— a —a 

according to the results of section 2.2 this scalar product has x', OSx 'Sx , negative 
squares. By the Corollary to Proposition 2 the generalized function / can be 
decomposed as 
( 9 ) / = / I + / 0 , 

where /IC^P*-; a , and the equality holds in the sense of generalized func-
tions. Evidently, / 0 = f — f i can be considered as a locally bounded measurable 
function. Thus, by Lemma 2, it admits a representation (8) with some bounded 
measure fi0. The continuous function 

(10) / c ( 0 : = / x ( 0 + / e i X ' d n 0 ( A ) ( | f | < 2a) 
— CO 

belongs to some class and the relations (8), (9) and (10) imply 

fit) =fci.t)+m (1*1 < 2a), 

where fs(t)=0 a.e. on (—2a, 2a). We show that the function fs is positive definite. 
To this end we first prove the following 

Lemma 3. Let g be a complex function on (—2a, 2a) such that g(t)=g(—t) 
and g(t)=0 a.e. on (—2a, 2a). On the linear set Jz?0 (see section 2.1) we consider 
the scalar product 

[«,»]:= 2 g(t-s)u(s)i^i) (u, y€JS?0)-
- f l < S , t < f l 

If there exists a such that [u0, w0]<0 then we can find a set Lsa£P0 with 
the following properties: 

a) c a rdL s >« 0 , 
b) [u, u\ = - 1 , [u, i>]=0 if u,v£Ls,u?±v. 

n 
Proof . Let -M0= 2aiEt >[Mo, "ol = — 1- Wechoose ¿ > 0 so that i,±<5£(—a, a) 

19 
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for j = \,2, ..., n. Then 

[Vau0, V„u0] = [«o, w0] = - 1 for all |a| < 5. 

The set J 0 : = { i : | i |<2a , g(y)=0} has Lebesgue measure X(A0)=2a. 
We denote by G the family of all nonempty sets f such that r c ( - 5 , 5), and 

the relations a, t g r , CT^t imply a — x+(tj — tk)£A0 for j, k=\, 2, ...,n. Then 
G is not empty. Indeed, for arbitrary a,\cr\<5, define 

A
Jk
(a) := (ff+ S), j, k = 1, 2 , . . . , n. 

Then X(AJk(<r))=28, which implies p| AJk(a)^=25, hence f ) AJk(a)yi0. 

For an arbitrary r^a which belongs to this intersection we have {a, t }£G. 
The family G is partially ordered by inclusion, and each of its totally ordered 

subfamilies has an upper bound. We show that the maximal elements of G are 
not countable. Indeed, assume that a maximal element r m a x of G is countable: 
r m a x = { i v : v = l , 2,...}. Consider the set A := P| <djt(jv). Then we have again 

X(A)=25, and therefore J \ r m a i ^ 0 . If t £ A \ r ' m a t , then rm a xU{r}€G, which 
contradicts the maximality of r m a x . 

Now let r 0 6G, card r 0 > K 0 and put Ls:={Vau0: a£r0}. Then we have 

[Vau0, Vau01 = [m0, w0] = - 1 , 

[Ktw0, Vau0] = 2 = 0 if ^ t . J,k=1 
The lemma is proved. 

Now we show that fs is positive definite. Assuming the contrary we find a subset 
Ls of with the properties a), b) of Lemma 3 for g=fs. Denote the elements 
of Ls by uy,y£.r0. The space nx,(fc) is separable. Hence there exists a countable 
subset of r 0 such that the elements uy, y^Tj, form a total set in the subspace 
of nx.,{fc) generated by uy, y£r0. Choose and mutually different elements 
.M1,..., which do not belong to y^T^. Then, if | |- | |c denotes a Hilbert 
norm on Ilx..(fc) which corresponds to some fundamental decomposition; then 
to each uj there exists a finite sum 2 \ s u c ^ f ° r yJ:=uJ— 2 

we have 

j = 1.2, 

On the other hand, denoting by [ •, • ]s the scalar product on £C0 corresponding 
to fs, we find 

n r , 
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2 „ 

J=1 

Hence, for arbitrary complex numbers t]lt ..., r\„ it follows that 

wnjyTc ^ {¿\ij\m c j ^ ^ i № 

\ 2 n j y } > Z n A = - ¿ t o / - 2 I ZWrij 

1 j=1 Js J=1 yirxlj=l 
and we get finally 

However, this is impossible, since the scalar product on the left hand side has at 
most x negative squares on J$f0- This contradiction implies that fs is positive 
definite, and the Theorem is proved. 

3. The decomposition (1) can be written in a more geometric form. To this 
end we first observe that in (3) the right hand side can be replaced by 

a a 

f f fc(t-s)<p(s)<P(t) dsdt, 
— a —a 

and the space n c ( f ) can be identified with nx(fc). Therefore it is also a 7tx-space 
and we shall write I I x ( f ) instead of i l c ( / ) . As a nondegenerate subspace of 
nx(J), it is the range of a ^-orthogonal projector P in 77x(/), and we have a de-
composition ' 

n x ( f ) = nc
x(f)®n0(f), 

where i70(/) is a Hilbert space with respect to the scalar product [• , •]. 
Further, if (p£Ca, then (4) yields 

a a ' 

[«.,?] = f f(t-s)q>(tjdt = f fc(t-s)W)dt (|s|-< a), 
—a —a 

and if (<5[n)), n—1, 2, ...s is a ¿,-sequence of elements of C a , then we find 

(11) [Bs, ¿¡«] - / c ( i - s ) (n — ; |s|, M < a). 

Moreover, for arbitrary t¡/£Ca we have 

["A, <5,(n)] - [>A, e j )• 

This relation implies <5t
(n)--Pet (n->°°) in the weak topology of I I x ( f ) or i l x ( / ) , 

and.from (11) we get finally that 
[ e s , P £ ( ] = / c ( i - S ) ( | s | , | i |<a) . 

Thus the decomposition (1) can be written as 

/(2i) = [Pe_„ £,]+[(/—P)e_(, £,] (|r| < a). 

19* 
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On the strong and extra strong approximation 
of orthogonal series 

L. LEINDLER and H. SCHWINN 

In honour of Professor Bila Szokefalvi-Nagy on his seventieth birthday 

1. Let {<?„(*)} be an orthonormal system on the finite interval (a, b). We 
consider the orthogonal series 

(1) Zc„<p„(x) with 
•»1 B=1 

By the Riesz—Fischer theorem the series (1) converges in L2 to a square-integrable 
function f . Let us denote the partial sums of (1) by s„(x). 

In [1] the first author proved that if 0 < y < l and 

(2) 
n=1 

then 

i i&(x)-f(x)) = ox(n-y) n *=1 

almost everywhere (a.e.J in (a, b). 
G. SUNOUCHI [8] generalized this results to strong approximation, and his 

result was generalized by one of us ([2]) to very strong approximation as follows: 

Theorem A. Suppose that a>0 , 0 < y < l , and that (2) is satisfied. 
Then 

[ i n IP 
(3) Cn(f, a, p, {mk}; x) := — 2" Alz\\smk(x)-f(x)\A = ox(n->) 

An k=0 ' 

holds a.e. for any increasing sequence {mk}, where 

This theorem with mk=k reduces to that of Sunouchi. 

Received October 29, 1981. 
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Recently the first author [3] showed that in the special case a = 1 the restriction 
y < l can be omitted, i.e. if y>0 and 0</7<y - 1 , then (2) implies that 

(4) { - ^ Y i I v W - Z W I " } 1 " ' = ox(n-y) 

holds a.e. in (a, b) for any increasing sequence {mt}. 
In the present work, among others, we prove that the restriction y < l from 

the assumptions of Theorem A can be omitted for any a > 0 and not only for 
a = l alone. 

Namely we have 

T h e o r e m l . If a and y are positive numbers and 0 < />y< 1 then condition 
(2) implies that (3) holds a.e. in (a, b) for any increasing sequence {mk}. 

We mention that Theorem 3 of [6] made a moderate step towards this result, 
namely it states that (3) holds for any positive y if a>py. 

Two further generalizations of (4) were given in the papers [4] and [5], from them 
we can unify the following -' " ~~" 

Theorem B. Suppose that y>0, 0<py~=:ß, and that (2) holds. Moreover if 
(i) j?s2 or ß>2 but at least either y < l or p^2\ 

(ii) ps=2 and 2 c2
nn**+1-2lp<°°; 

n=1 
then 

r n 1 l/p 
(5) K ( f , ß, P, W ; x) := (« + 1)"" 2 (* + l ) " " 1 ! ^ (*)-/(*)!" = ox(n~*) 

y k=0 J 

holds a.e. in (a, b) for any increasing sequence• {mk}. 

To help the lucidity of fulfilment of the assumptions we define certain, ranges 
of the positive parameters p and y. Let us denote by A(j3) the range of the positive 
parameters p and y determined by the condition py<ß, i.e. 

A(ß) := {p, y\p > 0 , y > 0 and py < ß), 
moreover let 

Biß) := {p, y\p > 2, y s l and py < ß}. 

Theorem B shows that if (/?, y)£A(ß)\B(ß) then (2) implies (5), but if (p, 
£B(ß) then we can only prove (5) under an additional condition. 

This phenomenon is curious, and we have had the conjecture (see [4]) that con-
dition (2) implies (5) for any (p,y)£A(ß). Now we shall verify this conjecture, 
namely we prove 
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T h e o r e m 2. If y > 0 and 0 < t h e n condition (2) implies (5) a.e. in (a,b) 
for any increasing sequence {mk}. 

In connection with the extra strong approximation we shall improve the following 
theorems given in [3] and [6]. 

T h e o r e m C. Suppose that 0 a n d p=2, that a>p max (1/2, y)\ 
or if p=2 then a S l ; moreover that (2) holds. Then 

( 1 » l1 / p 

(6) Cn(f, a, P, K } ; *) := I T 2 An~lK(x)-/WIP = ox(n->) 
*=o J 

holds a.e. in (a,b) for any (not necessarily monotone) sequence {j^} of distinct 
positive integers. 

T h e o r e m D. Suppose that y>0, p^2, and that /?y<min (a, 1). Then 

( 7 ) £ C 2 „ 2 , + l - ( 2 / p ) m i n ( a , l ) ^ ^ 
n = 1 

implies (6) a.e. in (a, b) for any sequence {/xk} of distinct positive integers. 

The next two theorems are certain analogues of Theorems C and D with the 
means hn(f fi,p, {pk}\ x). 

T h e o r e m C'. Suppose that y >0, 0 < p ^ 2 and py<mm (ft 1), moreover 
that (2) holds. Then 
(8) K(f,fi>P. K > ; x) = ox(n~y) 

holds a.e. in (a, b) for any sequence {fik} of distinct positive integers. 

We mention that this theorem is a collected form of Theorem 1 and Proposition A 
of [6]. 

T h e o r e m D'. Suppose that y>0, p^2, and that py<min (ft 1). Then 

(9) 
n = 1 

implies (8) a.e. in (a, b) for any sequence {pk} of distinct positive integers. 
Our two new theorems including these results read as follows: 

T h e o r e m 3. If y > 0 and 0</>y<min (a, 1) then (2) implies (6) a.e. in (a,b) 
for any sequence {nk} of distinct positive integers. 



296 L. Leindler and H. Schwinn 

T h e o r e m 4. If y > 0 and 0 < ^ v < m i n 0?, 1) then (2) implies (8) a.e. in (a, b) 
for any sequence {pk} of distinct positive integers. 

2. In order to prove the theorems we require some lemmas. 

L e m m a 1 ([2], Lemma 5). Let {A„} be a monotone sequence of positive numbers 
such that 

m 2 2 2 X.2" — KX2m. ) 
n = l 

Then the condition 

n = l 

implies that 
s2 «(x)-f(x) = ox(k2n) 

holds a.e. in (a, b). 
oo 

L e m m a 2 ([7], Lemma 2). If 2cl< °° then for any positive a and p 
n = 0 

ri ( I " \1/P12 

/ I sup b r 2 dx s A(a, p) 2 

where a^-^ik + l)'12s,{x). 
i = 0 

L e m m a 3 ([5], Lemma 3). Let and {A„} be an arbitrary sequence of 
positive numbers. Assuming that the condition 

(2.D i U l 4 * < c o 
n=1 U=n > 

implies a "certain property 7 ,=7 ,({j„(x)})" of the partial sums of (1) for 
any orthonormal system, then (2.1) implies that the partial sums smpc) of (1) also 
have the same property T for any increasing sequence {m*}, i.e. 

if (2.1)=>r({i-n(x)}) then (2.1)=>-r({jmt(x)}) for any increasing sequence {mj. 

L e m m a 4. We have for any positive p and m ^ l 

b f 1 2m + 1—1 I 2 ' ' 2m + 1 

(2.2) f \ 4 r 2 \sk(x)-s^(x)-oUx)n dx ^ K(p) 2 4, 
; k = 2m ) n=2m + l 

denote positive constants not necessarily the same at each occurrence. 
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where 

<(x) = 
CoVo(x) if n = 0, 

1 
n-2m ~ 2 («*(*)-«*»(*)) if 2m n < 2m+1; m = 0,1, .... 

P roof . Using Lemma 2 with a=l for the following partial sums and (C, 1)-
means 

fO if O s n ^ 2m~\ 
(2.3) 5 " ( * ) : = t s , + * - i ( * ) - s * . ( x ) if 2—1 < n < 2 m + 1 -2 m - 1 ; 
and 

(2.4) = if O S i l S 2m-1, 
(x) if 2m _ 1 < 7» < 2m+1—2m_1, 

where m is an arbitrary fixed natural number, we obtain (2.2) immediately, which 
completes the proof. 

Lemma 5. Let y>0, and p^2. Then under condition (2) we have that the sum 

CO 2m + 1 — l 

ti(*):= 2 2 (fc+l)py-1|s*(*)-V-(*)-<r**(*)lp 
m=1 k=2m 

£y finite a.e. in (a, b). 

Proof . By /?S2 and Lemma 4 we have that 
b b „ 2 m + l _ l 2 lp 

f(r1(x)Y"'dx^K1f 2 2m2y \2~m 2 K(*)-V-(x)-<7**(x)|'l dx*> 
; ; m=o L t=2m J 

OO 2 m +
 1 s o 

m=0 k = 2 m + 1 n = l 

whence by B. Levi's theorem the.statement of Lemma 5 follows. 

Lemma 6. Let y >0 and /?s2. Then condition (2) implies that 

t=i 
o.e. in (a, ¿). 

Proof . An elementary consideration shows that 
fc » OO , 2 m + 1—1 ->2/P 

(2.5) / (t a ( x ) Y » d x * K f 2 2 ^ 2 - ^ K(*)IP 

a „ m=0 l fc=2m J 

-
^K f 2 22my{ max >**(x)|2}dx. ' 
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If 2 m <) t<2 m + 1 then 

^(*) = t4s=t. 2 (k+l-i)ci(Pi{x)= 2 [ l - ' - ^ ^ A c ^ i x ) K — Z I = 2 m 4 - 1 i = 2 m + l v K — z / 

and o2m(x)=0, so using the following simple estimation 

max >**0)l 2 = max , !<£(*)-<£.(*)|" =S 
P i t * ! ™ * 1 2 m 5*-=2" 1 + 1 

• •> 

/ 2 m + 1 - l \ Z 2m + , - l 

Vfc=2 m +1 ' fc=2m+l we obtain that 

j yn 2m + 1—1 * 
2„ maxm t i K w p } i i x ^ - ^ j t ; ( / - 2 - - l ) 2 c 2

 S ; 

2 m + 1 — 1 
S 2 S 2 Cf. 

>=2m + l 
Hence, by (2.5), we get that 

b oo 2m+l co ^ 
/ ( t • (*))»"<& ^ 2 22n"' c 2 ^ A i c * n 2 y < o o , . 
; m = 0 n = 2 m + X n = l 

and this proves Lemma 6. 

L e m m a 7. Condition (2) with any positive y implies that 

(2.7) a*(x) = ox(n~*) 
holds a.e. in (a, b). 

P r o o f . Using .estimation (2.6) we immediately obtain that 

/ j o i 2 " r - S S - i K W D 2 ^ = K> J C«"2y ^ ~> 

whence (2.7) follows, which ends the proof. 

L e m m a 8. Let y > 0 , / ? s 2 and py< 1. For a given sequence {fik} of distinct 
positive integers we define another sequence {mk} asfollows: mk=2m if 2m^pk<2m+1. 
Then (2) implies that the sum 

fh(x) := 2 1)"'-1 K(x)-smk(x)-o*k(x)\^ 
*=o 

wfinite a.e. in (a, b). 
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Proof . Choosing q such that 1<<7<(1 — py)~l and applying Holder's in-
equality with this q and q'=ql(q — 1) we obtain that 

№(*)= 2 2• (fc+ir -1 |sMt (X) - smk (x) - < (x)|p == 
m = 0 2" ,=5 i,k«=2m + 1 

s 2{ 2 21 |s,k(x)-Smk(*)-<(*)lpT8'^ 
m = 0 2" l 3/ i k -e2" , + 1 2 m S ( i k < 2 m + 1 

oo ( 2 m - j l / 9 f 2 m , " - 1 - l 2 kM-s^w-arwr == m = 0 tfc = l > I i=2m ' 
oo f2m + 1 —1 lW 

2 h (*) - s*» (x) - at (x)\"' . 
m = 0 t i = 2 m J 

Hence, by Lemma 4 and p^2, we get that 
6 OO 2m + 1 

f (fi^yiP dx ^ K2 z 2m2i 2" <i < 
0 m=.0 n=2", + l 

which proves Lemma 8. 

Lemma 9. y>0, p=2 and py-^l. Then, for any given sequence {¡ik} 
of distinct positive integers, the sum 

k=0 
is finite a.e. in (a, b) if (2) /¡o/i/j. 

Proof . In a similar way as in the proof of Lemma 8 we obtain with Holder's 
inequality — />y)-1 and l/<?+l/g'= l) that 

f(Mx))2/pdx^ j 2{ 2 (k + iy/-1Kk(x)\pyipdx^ 
a a m= 0 2mSpfc-=2"' + 1 

6 oo f 2 m + 1 - l •|2/P9/ 

f 2 2" K W r j dx%i 
/ m=0 t i = 2 m J 

oo * f 1 2m + 1 - l •»2/p4/ 

^ 2 2^ f y 2 \<{x)r'\ dx. 
m = 0 / k = 2m > 

From this step we can continue the proof as in Lemma 6, and so we obtain the 
conclusion. 

3. P roof of Theo rem 1. Putting 

C„0) := Cn(f, a, p, {k};x), 
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and if 2ms=H<2m+1 (ms2) holds, then 

(r 1 2--1 \UP 
(3.1) C „ ( i ) s i [ j - k2Alz\\sk(x)-f{x)\*\ + 

+ i =: K(C«(x)+Cn<2>(*)). 
l ^ n * = 2 m " 1 + l •> J 

Here the first term C^\x), by (4); has the order ox(n~y), namely it is known 
Ae 

that for any /?> - 1 , 
nr 

Next we estimate C®(;c) as follows : 

/ r 1 2m—1 ix/p 
(3.2) C f W i i — 2 + 

{1 2 " , - i > I 1 / ? ( | „ - | l / p 

• A n k = 2 m " 1 + l J fc = 2 m J 

2 2 ^^^KWI"}1'! =-.K 2DiHx). 

k=2m J fc=2m-1+l J / ¡=1 

An easy consideration shows in view of Lemma 1 and Lemma 7 that 
(3.3) Dp(x)+Dp(x)+Dp(x) = ox(n~y). 

To estimate D^\x) and we use again Holder's inequality with such 
a q to be chosen so that q>\ and (a — — 1 . Then 

1 f 2 m — 1 " | l / P i f 2 m —1 - | 1 / P 9 ' 

\An) U = 2m-1 + 1 > U = 2m-1 + 1 ) 

{1 2 m - l I 1 tPf 

^ 2 |s»(x)-s2m-i(x)-ai(x)r =: D*(x), 
i- k=2m~l i 

whence by Lemma 4 we obtain that 

CO £ CO 2 m 

(3.4) 2 f ( 2 m y K ( x ) ) 2 d x s K , 2 22my 2 c2 < =o, 
m = l „ m = 1 n = 2 m " 1 + l 

which implies that 
(3.5) D(V(X) = ox(n-v) 
also holds a.e. in (a, b). 
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Similarly 
1 f n -|1/P4( „ ll/p«' 

- ^ - p \ k 2 m (A*ziy\ [k2m sg 

{1 2m + 1—1 ll/P«' 

^r+T k2m k t o - ^ W - ^ W r j =D*+1(x), 
and so 
(3.6) i)W(*) = ox(n~y) 
also holds a.e. in (a, b) by (3.4). 

Collecting the estimates given under (3.1), (3.2), (3.3), (3.5) and (3.6) we obtain 
that 

C„(/, P, W; x) = ox(n~y) 

a.e. in (a, b). Hence, using Lemma 3 with x=l, X„=n2y~1 and r d ^ ( * ) } ) : = 
:=C„(f, a, p, {A:}; x)—o(n~r), the statement of Theorem 1 follows obviously. 

The proof is complete. 

P r o o f of T h e o r e m 2. Denote 

K(x) := K ( f , P, P, {fc}; x). 
By Theorem B we can assume that p>2, namely otherwise (5) holds. Then with 
2 m S « < 2 m + 1 

{ m 2 v + ! - 1 1 1 / P 

n-> 2 2 fcM*(*)-/(*)l'[ S 
» = 0 k=2v ' 

V I v = 0 k=2V J 

{ m 2V + 1—1 I1/? f 2m + ! l!/P\ 

n-K 2 2 k"-i\sAx)-f(.x)\>>\ + n-' 2 ^ K M I " = v = 0 fc = 2 v > l k = 1 > ' 

Ki 2 d(
nHx). 

1 = 1 

By Lemma 1 and P>py it is easy to show that d^\x)=ox(n~y), namely 

{m "I VP 

n~> 2 2"pox(2~np)\ = ox(n~y). v = 0 J 

But if we observe that Lemma 5 and Lemma 6 imply that, as m— 

2 m +1 

i = 2m 

and 
2m + 1 

2 - ( „ - i , 2 K*(*)lp = 0,(1) 
k = 2m 
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hold a.e. in (a, b), then by the use of these estimates we can easily verify that 

also holds a.e. in (a, b). 
Indeed; by P>py, we have that 

f m l 1 / p 

</«(*) = \n~' 2 2 v ( P - 1 )o I(2 v ( 1 - p , , )) | = o x (n -0 
I v=0 J 

and similarly 
f m 2V + 1 "I1/'' 

d(»(x) ^ {n-e 2 2 lp = 
l v = 0 fc=2v J 

Summing up our partial estimations we get that 

M/> a> A x) = ox(n~y), 

whence Lemma 3, as in the proof of Theorem 1, conveys the assertion of Theorem 2. 

P r o o f of T h e o r e m 3. At first we prove the special case a = l . Then, for 
0 < / ? s 2 , Theorem C gives (6), so we assume that 2. Next {mk} denotes the 
sequence defined in Lemma 8. Using this notation we have 

(3-9> + {̂ T ¿0 Wl'f+{«tt A|s- w
 ~ f ( x ) l T ) = 

Lemma 8 and Lemma 9 prove that 

№ ( x ) = ox(n-y) and №{x) = ox(n-y) 

a.e. in (a, fc). 
To prove the same estimation for nf\x) we define a new sequence {Nn(m)}. 

Let Nn(m) denote the number of pk lying in the interval [2m;2",+1) and k ^ n + 1 . 
It is obvious that 

Nn(m) S min (« +1 , 2m) and 2 N*(.m) = » + 1-
m = 0 



On the strong and extra strong approximation of orthogonal series 303 

If 2 ' " 1 ё л < 2 ' , then we obtain with the aid of Lemma 1 and py< 1 that 

W3)(*))" = zbr 2 <>XW) = -J-r 2 Nn(rn)ox(2~mpy) = /1+1 *=0 /1 + 1 m—0 

= J - { 2 2mox(2~mpy) + 2 (« + = ox(2~lpy) = ox(n~py), 
Л + 1 lm=0 m = I J 

which proves 
- ox(n-y), 

and thus by (3.9) 
f 1 " l1 /p 

(3.10) — r 2 = ox(n~y) 
l/J+I k=0 > 

holds a.e. in (a, b). 
If c o l then (6) is an immediate consequence of (3.10) because of the relation 

If 0 < a < 1 we can choose q such that zn><—<a. Then with q'——the 
Ч Я~ 1 

inequality (a—l)q' > — 1 is fulfilled. 
Now using Holder's inequality we obtain that 

С i „ "|1 Ipi'r n -tVpi 
Cn{f,«, P, Ы;*) ^ {щ*к2(¿xn-l)q'\ \2o М*)-Д*)1И) ^ 

f 1 „ ¡pa 

Hence, by pqy<\, using (3.10) we get the assertion of Theorem 3. 

P r o o f o f T h e o r e m 4 . The case /?=1 is identical with the special case 
a = 1 of Theorem 3. The cases 1 and 0< /?< 1 may be proved similarly to 

the cases a > l and 0-=a< 1 above, choosing q such that py < /? for /?< 1. 
4 

We omit the proof. 
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Представление функций в выпуклых областях 
обобщенными рядами экспонент 

А. Ф. ЛЕОНТЬЕВ 

Посвящается академику Б. Секефальви-Надь к его семидесятилетию 

Пусть D — конечная выпуклая область. Известно (см. [1]), что любую 
функцию F(z), аналитическую в D, можно представить рядом экспонент 

F(z)= 2Аяе>»*, zÇD. 
П = 1 

Показатели А„ зависят лишь от области D, имеют конечную верхнюю плот-
ность, ряд в области D сходится абсолютно, а внутри — равномерно. 

Здесь будет приведен класс А функций f(z) экспоненциального типа, об-
ладающих свойством: любая функция Ф(г), аналитическая в выпуклой области 
D (0 Ç D), представляется в D равномерно сходящимся внутри D рядом 

*(*)= 2Bnf(Kz), zZD. n=i 
° ° а 1. Опеределение класса А. По определению функции f(z)= 2 ~т2" ПРИ" 

п=о п\ 
надлежит классу А, если 0 (л^О) и функции 

Ч(0=1т5г, mit) = 2 - ^ п=0 » л=0 "л> 

регулярны вне отрезка [0,1] вещественной оси. 
Классу А принадлежит функция ez, в этом случае 

vit) = mit) = j? * =_!_. n=0 » l — 1 

Поступило 5-ого апреля 1982 г. 

18 
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Имеем 
Л п / 4 

G S / K l ^ l , Em | / 
со л —оо F 

откуда следует, что существует lim i/|aJ = l. Следовательно, / (z) — целая 
Л—оо 

функция экспоненциального типа равного единице. 

Отметим, что ^(i) — функция, ассоциированная по Борелю с /(z) . 

2. Достаточный признак принадлежности функции классу /4. 

Теорема 1. Пусть ап=ср(п), —=q>1(n), n^N, где a>(z) и <px{z) — функ-ап 

ции, аналитические в полуплоскости Re z^N и 

(1) \<p(z)\<es,zl, \(pi(z)| < e'W, Re z ^ N, |z| > r0(e), \/e > 0. 

Тогда f(z)£A. TZ Доказательство . Возьмем (Ро^^Щ^-^ и нецелое p^N. Пусть q — 

точка пересечения луча arg z=(p0 с прямой Rez=p. Обозначим Г контур, 
составленный из лучей [q, ^el,Pa), [q, <х>е~"Ро) и отрезка [q, q]. Положим 

(2) т = \ : r { z ) e ~ T ' d z • 

2i J sin nz 

На лучах, входящих в состав Г, в силу (1), 
(3) 

(p(z) 
sin nz 

Отсюда следует, что интеграл (2) сходится и представляет собой аналитичес-
кую функцию в угле В(ср0), одна сторона которого проходит через точку т 

под углом ^ к вещественной оси, а другая сторона симметрична первой 

стороне относительно вещественной оси. 
п Оценка вида (3) остается справедливой на дугах |г| —гт=тп+— (т = 

= 1,2, ...), Поэтому, если Гт — замкнутый контур, составленный 
из части Г, лежащей в круге | г | ^ г т , и дуги \г\=гт, | а г § т о для / из 

угла -<?о 

И т - 1 2 ( - 1 У ф ( » ) е - . т~ - 2 / / ыплг „ГР • 
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Отметим теперь, что 

1 г ср (z)e~zl dz 
(4) = 2 7 / 2i _ J .sin nz R e r = p 

Этот интеграл сходится в полосе | 1 т / | < я . Значит, ip(t) — функция, аналити-
ческая в этой полосе и в полуплоскости Re i 0. Отсюда получаем, что и функ-
ция 

М')= 2 (—1Уапе~п' л=0 

— аналитическая в полосе |Im t \ < n и в полуплоскости Re />0 . В силу этого, 
функция r\(t) — аналитическая вне отрезка [0,1]. 

Также доказывается, что и r\x(t) регулярна вне [0,1]. Поэтому f(z)£Ä. 

Замечание. Из представления (4) следует, что 

(5) < С\е~р% |Imi| < л—8, 8 > 0. 

Отсюда вытекает, что вне угла |argi|<<5 (при 0) 

(6) I f i O H ^ p r (С = С(8)). 

3. Обращение теоремы 1. 

Теорема 2. Пусть функции r\(t) и t]t(t) регулярны вне отрезка [0,1] и вне 
каждого угла |argf|-=<5 удовлетворяют условию (6). Тогда имеются функции 
cp(z) и <Рг(г), аналитические при Re z^N и удовлетворяющие условию (1), 

такие, что an = <p(ri), —=cp1(n), n^N. 
"в 

Доказательство . Положим 

(7) <К0 = 

Согласно условиям теоремы, эта функция регулярна в полуплоскости Re />-0 
и в полосе- |Im t\ < и, причем в меньшей полосе |1ш t\ <п—8 (при t——°°) 
она имеет оценку (5). При I— в полосе |Im f|<7z—S 

(8) №(01 < C\e~t\,
 P l

>
P
. 

Рассмотрим интеграл 
oo + ic 

(9) = Г dt, -n^c^n. 
71 —tic 

20* 
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В силу (5) и (8) ой сходится для z из полосы: p < R e и значение не зависит 
от параметра с. Имеем 

ç { z ) = f , p ( t ) e " d t + ^ f 4i(i)e-dt = cp^ + cp^z). 
71 * Я Z СО 0 

Функция «Pi(z) регулярна в полуплоскости Re z>p , причем q>1(n)=0, п>р. 
Функция ç>2(z) регулярна в полуплоскости Re 

71 Возьмем ср0, 0 < Ф о ^ у • Имеем 

ee'fa • сое'^о , ч sm nz р , / ч ,„ , sm яг г . , . . sin яг 
Mz) = 1 ^We'2 dt+ f iP(t)e'*dt = — — ф3 (z) + ç>4 (z). 

71 J Я У 71 0 ce'̂ o 
Функция ç»3(z) — целая экспоненциального типа не выше е. Изучим функ-

цию <p4(z). Когда argz=ç> удовлетворяет условию: -у получаем 
оое'Ч'о 

71 

втяг ..„ , а„е-со" = e v У ( - 1 ) ~ — , е0 = ее"?». 
71 „tfp Z-П 

Правая часть — целая функция экспоненциального типа, в точке z=n она 
имеет значение равное а„. Кроме того, 

|<р4(*)| < е2" х>х0(е). 
В итоге функция <p(z) регулярна и экспоненциального типа в полуплоскости 
Rez>p , причем <р(п)=а„ (п>р) и 

(10) |<р(х)| < еех, х > Xj(e), Ve > 0. 

Пусть z=p2+iy, p^Pz^Pi. Из (9) получаем 

|<p(z)| < M|sinrczle-^, — 71 < с < п. 

Выбирая для j > 0 величину с близкой к я, а для — близкой к —я, 
лолучим, что • 

\(р(z)| z = p2+iy, \fe > 0. 

Отсюда и из (10) вытекает, что 

\<p(z)\ < е*'*1, Re z ^ р2, |z| > r0(e), Ve > 0. 

Функция cp(z) обладает всеми необходимыми свойствами. Также доказьшается 
наличие нужной функции <Pi(z). 
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4. Два примера. В первом примере 

f{z) = ez+aeqi, 0 < q < 1. 
Здесь 

= í+aq"' = TTaq"' v ( z ) = 1 + aeZ}D9> = \ + aezlnq <ln ? < 

Видим, что функции <p(z) и (px(z) обладают нужными свойствами и потому 

Во втором примере 

Дг) — «„ = ! + ( - (п ^ 0). 
л = 0 

Имеем 

Ч С 0 ~ + Д ' 4 1 W ~ í - 1 _
я =о ( l + í - l ) " * - " » ) ^ 1 " 

Ряды сходятся при всех i^O. Поэтому у rj(t) п rh(t) только две особенности 
í = 0 и t=1, значит, f(z)£А. Отметим, что при 0, когда f<0 , функция 

стремится к °° быстрее любой степени ^-j-j . В силу этого не существуют функ-

ции cp(z) и <p2(z) с указанными выше свойствами. 

5. Преобразование М. По определению преобразование М переводит функ-

цию Fiz) = 2 Anz" в функцию 
л = 0 

ф(2) = M(F) = 2 Bnz\ Вп = апА„ (п S 0). 
л = 0 

° ° а 
Теорема 3. Пусть f(z)= У—^z" принадлежит классу А. Если функция 

п=о и! 
Fiz) регулярна в области Е, звездообразной относительно начала координат, 
то и функиия 0(z)=M(F) регулярна в Е, причем если К — компакт из Е, а 
С — замкнутый контрур, лежащий в Е, охватывающий компакт К и звездооб-
разный относительно начала координат, то 

(И) |Ф(г)| < iVmax |7Г(/)|, 
t £ С 

где постоянная N не зависит от Fiz). 
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Доказательство. Рассмотрим функцию 

(12) = 

где С — звездообразный относительно начал координат замкнутый контур, 

лежащий в £ , и г лежит внутри С. Точка не может попасть на отрезок 

[0,1], поэтому ф(г) —функция, аналитическая внутри С. Но С — произвольный 
контур из Е, значит, функция ф(г) регулярна в области Е. 

Пусть а /6С. Тогда ^Л^ и из (12) следует 

\гф(г)\ ^ тах |/•"(/)! 
»С V 

(/ — длина контура С). Можно считать, что К содержит в себе некоторый круг 
|г|ёс5. Тогда 

(второе неравенство справедливо, в силу принципа максимума модуля). Таким 
образом, 

\ф(г)\ N тах |^(/)|, 

Осталось доказать, что ф(г) = Ф(г). Пусть \г\ достаточно мал. Тогда 

ш - ¿ " - ( - ш / ^ У - -

Аналогично устанавливается, что если Ф (г) регулярна в Е, то фикция 
Р(г)=М~г(Ф) также регулярна в £ и 

(13) ЛГ1шах|Ф(0|, ^ К . I € С 
Отметим следующие свойства преобразования М: 
1. 
2. М(сР)=сМ(Е); 
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3. Пусть функции F„(z) (ws l ) регулярны в области Е (звездообразной 
относительно начала координат) и (F„(z)} равномерно сходится внутри Е к 
F(z). Тогда внутри Е равномерно M(Fn)-~M(F)\ 

4. Если функции Ф„(г) регулярные Е и {Фп(г)} равномерно сходится внутри 
Е к Ф(г), то внутри Е равномерно М~1(Ф„)->-М~1(Ф); 

5. M(eXl) = f(kz). 
Свойства 3 и 4 вытекают на основании оценок (11) и (13). 

6. Разложение в ряд. Как было указано в начале статьи, каждую функцию 
Ф(г), аналитическую в конечной выпуклой области D, можно представить 
в виде 

(14) F(z) = 2 zíD 
п = 1 

(показатели зависят только от области D, сходимость —равномерная внутри D) 

Теорема 4. Пусть D — конечная выпуклая область, О и f(z)£А. 
Тогда каждую функцию Ф(г), аналитическую в D, можно представить в виде 

(15) ф(2)= 
Л = 1 

(сходимость внутри D —равномерная). 

Доказательство. Положим F(z)=M - 1 ($) . Функцию F(z) представим 
рядом (14). Тогда 

Ф(г) = M(F) = м{2 Апе*Л = 2 А.Ще^) = 2 AJ(Xnz), z£D. 
1 ' л = 1 п=1 

7. Формулы для коэффициентов. Пусть A(D) — класс функций, аналитичес-
ких на замыкании D. В случае, когда F(z) 6 A (D), имеются формулы для оп-
ределения коэффициентов Ап в разложении (14). Именно, пусть Ь(Х)— целая 
функция экспоненциального типа и вполне регулярного роста с индикатрисой 
роста h(<p)=K(—<p) (К(ср) — опорная функция области D) и простыми нулями 
К = 1 Л , к г " п (w = l) , Причем 

Тогда в разложении (14) в качестве показателей можно взять нули А„ этой функ-
ции L(X), а в качестве коэффициентов — величины 

/ - = • • ¿ • / ^ ( 0 ^ ( 0 Л ( f i s 1), . 
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где (/'„(О — функции, ассоциированные по Борелю с функциями 

¿(Я) 
(Я-Д п)Ь'(Хп) 

(они регулярны вне Б), а С — замкнутый контур, охватывающий I), на кото-
ром и внутри которого /••(/) — аналитическая функция. 

Имеем 

- 4 . ' = = (т) 

Здесь Сх — замкнутый выпуклый контур, охватывающий контур С, на котором 
и внутри которого Ф(и) — аналитическая функция. Поменяв порядок интег-
рирования, получим 

(16) Л. = /уп(и)Ф(и)<1и (и ^ 1), 
с« 

где 

Функции у„(и) регулярны вне I) и уп(°°)=0. Заметим, что 

•^¿УпШМЛи = *„(0 е О А = ¿„т. 

Таким образом, {у„(ы)} —система, биортогональная системе {/(Я„г)}. С помо-
щью ее коэффициенты в разложении (15) определяются по формулам (16) 
(при условии Ф (г) £ Л (£>)). 

8. Пример функции /(г), когда теорема 4 не имеет места. Положим / (г)= 
=ех+е"х. Тогда 

, . 1 1 
1-1 

Если 9$[0,1], т о / ( г ) не принадлежит классу А (при д€[0,1] она принадлежит 
классу А). Покажем, что в этом случае существуют выпуклые области Б (06И), 
в которых представление произвольной аналитической в X) функции Ф (г) ря-
дом (15) невозможнло. 

Имеем 

2 2( 
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Лемма 1. Вне окрестностей г ^ 
кп—п/2 1 

( ¿ а 1,ос>0) и | г |>1 

Доказательство. Вне указанных окрестностей 

|сов Яг| > рг; ехр {|1т (Яг)|}, В > 0. 

Пусть 2 лежит вне этих окрестностей. В случае 1т (Яг) получаем 

|/(7)| > А ехр {Яе (цг)+1т (Яг)}. 

Но (/¿=/Я+<?) 

Яе О г ) + 1 т (Яг) = Яе (?г)+Яе (¿Яг) + 1 т (Яг) = Яе (?г). 

Кроме того (/: = 1 — г'Я) 

Яе {рг)+1т (Яг) ^ Яе (рг) = Яе г - Я е (¿Яг) = Яе 2 + 1 т (Яг) ё Яе г. 

Отсюда и следует неравенство (17). 
В случае 1т(Яг) < 0 имеем 

В этом случае (р = 1 — г'Я) 

Яе (/¿г) - 1т (Яг) = Яе г - Я е (¿Яг)-1т (Яг) = Яе г 

и, кроме ТОГО (/х=г'Я+д), 

Яе (//г)—1т (Яг) :: Яе {рг) = Яе ( д г ) - 1 т (Яг) ^ Яе (?г). 

ОПЯТЬ получаем (17). 

л ~ 

Лемма 2. Пусть Пт — < °° и ряд УА„/(Я„г) сходится в окрестности 

|г—г0|<(5 (г0^0). Тогда в некоторой окрестности [г—г0| <<50<<5 сходятся ряды 

|/(2)| > ^ ехр {Яе (рг) - 1т (Яг)}. 

(18) 2 4,«*"*. 2 Апе^. п=1 

Доказательство. Вне кружков 

( 
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согласно лемме 1, имеет место оценка 

(19) |/(Япг)| > max 

Пусть 0<r< |z o | — <5<|z0| +<5<R. Кружки Cl"\ которые имеют общие 
точки с окрестностью К: \z—z0|.<<5, таковы, что при л>л0 

А;я 

. '1У Отсюда и, значит, сумма диаметров Ск \ имеющих общие 
я я 

точки с окрестностью АГ, не превосходит величины 

R\U 2 _ а 
г\*п\У № ' 

Сумма диаметров указанных кружков, когда п меняется от N до не превос-
ходит 

~ 1 
"я = а 2 7715- N - ж, а>1. п=ЛГ 

Пусть а^^д. Тогда найдется окружность 12—гй\ = 51, 0<(^<<5, которая не 
пересекается с рассматриваемыми кружками и на ней, следовательно, выпол-
няется оценка (19) при пВозьмем на этой окружности точки ух, у2, у3 

так, чтобы они образовывали треугольник Е, внутри которого лежит точка 
г0. Согласно условию 

|Л„ЯЛ,Ул>1 ^ М = 1, 2, 3). 
Отсюда, на основании (19), получаем 

Учтем еще, что, в силу неравенства а>0 , ¿>0 , О^х-^1, для 
точек х отрезка [гх, г2] вьшолняется соотношение (2=Ргх + (1 —Р)г2, 1) 

\ех*г\ ё |еА"21|+ |ед-г«|. 

Поэтому на границе треугольника Е, а, следовательно, и внутри него 

(20) \А„е^\ ^ ЗМх\Хп\\ \А„ея^\ ^ ЪМх\Х„\*. 

Возьмем внутри Е окружность | г — г0\ = д и для точек этой окружности запишем 



Представление функций обобщенными.рядами экспонент 315 

Пусть |z-z„| = e, arg(z—z0)= —arg Xn. Тогда, в силу (20) 

\А„ех«?о\ ^ ЪМ^е-ч^, n^N. 

Значит, первый из радов (18) в точке z0 сходится. Аналогично убедимся, что и 

второй ряд в точке z0 сходится. Итак, из сходимости ряда (Я„г) в круге П = 1 
\z—z0|<<5 вытекает сходимость рядов (18) в центре круга. Но тогда, в силу 
этого, ряды (18) сходятся в некоторой окрестности |z—z0| <<50. 

Л е м м а 3. Пусть D — область сходимости ряда (15), а G и Gq — области 
сходимости рядов (18). Тода D = GC\Gq. 

Доказательство, в силу леммы 2, очевидно. 
Пусть/) — прямоугольник: |Rez |<e, —A^Imz</ i 2 , h 2 >h 1 >0. Возьмем 

функцию Ф(г)= . Допустим, что имеет место разложение (15). Если zg Д 
z — 6 

то z£G и qz£G. Когда z пробегает Д в это время точка qz будет пробегать пря-
моугольник Dq, получаемый из D растяжением в \q\ раз и поворотом вокруг 
начала координат на угол <p0=arg q. Считаем, что \q\ = 1 и <р0?±0. Пусть 
(ро^п. Так как область сходимости ряда Дирихле — выпуклая, то, значит, 
область G содержит в себе выпуклую оболочку прямоугольников D и Dq. Вы-
пуклая оболочка содержит в себе круг |z|<i?, радиус R которого зависит от 
q, hx и е, причем при г—0 этот радиус, убывая, стремится к некоторому пре-
дельному значению Ä0>0. Видим, что область G содержит в себе круг Е0: 
\z\ <R0. Но тогда и Gq~z>E0. Отсюда вытекает, что ряд (15) сходится и пред-
ставляет собой аналитическую функцию Ф(г)= в круге Е0. Но этого не 

Z — E 
может быть, если Е мало. Еще проще доводится до противоречия и случай, 
когда (Ра—п. Итак, прямоугольник малой ширины и не симметричный отно-
сительно точки z = 0 не может служить областью Д в которой любая аналити-
ческая функция разлагалась бы в ряд (15). 
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Self-dual polytopes and the chromatic number 
of distance graphs on the sphere 

L. LOVÁSZ 

Dedicated to Professor Béla Szökefalvi-Nagy on his 70th birthday 

0. Introduction 

Let S""-1 denote the unit sphere in the »-dimensional euclidean space and let 
0 < a < 2 . Construct a graph G(n, a) on the points of S"1-1 by connecting two of 
them iff their distance is exactly a. We shall study the chromatic number of the 
graph obtained this way and prove that this chromatic number is at least n. This 
answers a question of ERDŐS and GRAHAM [ 2 ] , who conjectured that this chromatic 
number tends to infinity with n. 

Let us modify the definition of the graph and construct another graph B(n, a) 
by connecting two points of 5"1-1 if and only if their distance is at least a. The 
graph B(n, a) obtained this way is often called Borsuk's graph because a classical 
theorem of BORSUK [1] implies (in fact, is equivalent to) the result that B(n, A) 
has chromatic number at least n+1. Since, however, G(n, a) is a proper subgraph 
of B(n, a), Borsuk's theorem has no immediate bearing on the chromatic number 
of G(n, a). 

If a is larger than the side of a regular simplex inscribed in the unit ball, then 
it is easy to describe an (n+l)-coloration of B(n, a) (and so, a fortiori, of G(n, a)). 
Let R be the regular simplex inscribed in S"-1 and use the facet of R intersected 
by the segment OX as the "color" of XtS"-1. Hence if x>^2{n+ l)/n then 

Z ( G ( M ) ) S ] [ ( i ( M ) ) = » + l . 

It is easy to see that the colors of the vertices of R can be chosen different, and 
hence this is also true for oc=^2(n +1)/«. 

In this paper we apply a lower bound on the chromatic number of a general 
graph, derived in [4], to an appropriate subgraph of G(n, a). It is interesting to 
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remark that to prove this lower bound in [4], Borsuk's theorem was used. Thus in 
this sense we do establish a connection between the chromatic numbers of B(n, a) 
and G(n, a). 

In section 1 we define, construct and study certain polyhedra called strongly 
self-dual. It seems that these polyhedra merit interest on their own right. In sec-
tion 2 we state the general lower bound on the chromatic number mentioned above 
and apply it to prove our main result. In section 3 we discuss the question of 
sharpness of our results. 

1. Strongly self-dual polytopes 

Let P be a convex polytope in R". We say that P is strongly self-dual if the 
following conditions hold. 

(1) P is inscribed in the unit sphere S"~l in R" (so that all vertices of P lie 
on the sphere Sn _ 1) ; 

(2) P is circumscribed around the sphere S' with center 0 and radius r 
for some 0 < r < 1 (so that S' touches every facet of P); 

(3) There is a bijection a between vertices and facets of P such that if v is 
any vertex then the facet o(v) is orthogonal to the vector v. 

If n—2 then the strongly self-dual polytopes are precisely the odd regular 
polygons. If n S 3 then there are strongly self-dual polytopes with a more compli-
cated structure. 

Let us start with proving some elementary properties of strongly self-dual 
polytopes. 

Le mma I. If v1,v2 are vertices of a strongly self-dual polytope P and 
is a vertex of the facet o(v2) then v2 is a vertex of the facet a(vi). 

Proof . Let v be any vertex of P. The inequality defining o(v) is v-x^—r. 
For v=v2, the vector x=vt lies on the facet a(v2), and so v2-v1 = —r. But by 
interchanging the role of v± and v2, we obtain that v2 lies on <r(i>i). 

Call a diagonal of a strongly self-dual polytope principal if it connects a vertex 
v to a vertex of the facet o{v). The proof of Lemma 1 implies: 

Lemma 2. Every principal diagonal of a strongly self-dual polytope is of the 
same length. 

This length a will be called the parameter of P. Clearly a = / 2 + 2r. As r > 0 , 
we have a > / 2 . This trivial inequality can be improved. We show that the least 
possible value of the parameter of a strongly self-dual polytope in a given space 
is the side length of the regular simplex inscribed in the unit ball: 
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Lemma 3. Let P be a strongly self-dual polytope in R" with parameter a. 
Then a sV2(n+ l ) /n . 

P roo f . We prove more generally that if a polytope P is inscribed in S"~l 

and contains the origin, then it has a pair of vertices at a distance at least f / 2(n+1 )/n 
apart. Since the principal diagonals of a strongly self-dual polytope are obviously 
its longest diagonals, this will imply the Lemma. 

Observe further that we may assume that P is a simplex, since if a polytope 
contains the origin then some of its vertices span a simplex which also contains it. 

So let P be a simplex inscribed in S"1-1 and containing the origin. Let P' 
be its facet nearest 0, and let z be the orthogonal projection of 0 on P'. It is 
easy to see that P' contains z. Let t=\z\. We claim that t s l/n. In fact, let 
v0, ...,v„ be the vertices of P. Then since 0 is in P, we can write 

2 AjO, = 0 with Xi ^ 0, 2 h = 1-
1=0 . ¡=0 

We may assume without loss of generality that A 0 ^l / (n+l ) . Consider the point 

wo = 2-j—rvi — ¡=1 1— ¿0 l—^o 

This point is on the boundary of P. Furthermore, |w0|=A0/(l— A0)=l/«- Hence 
the facet of P nearest to the origin is at a distance at most l/n, which proves that 
t^l/n. 

By induction on n, we may assume that the facet P' contains two vertices 
whose distance is at least 

This proves the Lemma. 

We do not know which values of a can be parameters of strongly self-dual 
polytopes, except in the trivial case n=2. But the following result will be sufficient 
for our purposes. 

T h e o r e m 1. For each n^2 and a x < 2 there exists a strongly self-dual polytope 
in R" with parameter at least . 

Proof . We give a construction by induction on n. For n = 2 the assertion 
is obvious. 

Let /7^3 and let P0 be a strongly self-dual polytope in dimension n—1 such 
that the parameter a0 of PQ satisfies a 0

> a i - Thus the radius r0 of the inscribed 
ball of P0 satisfies r^rx=tx 1/2 — 1. 
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We begin with an auxiliary construction in the plane. Let C be the unit circle 
in R2 and let E be an ellipse with axes 2 and 2r0, concentrical with C. Thus 
E touches C in two points x and y. Choose any t with r^t^-r^ and let 
C, denote the circle concentrical with C and with radius t. It is clear by a continuity 
argument that t can be chosen so that we can inscribe an odd polygon Q= 
=(x0=x,..., x2t+i=x) in E so that the sides of Q are tangent to Ct. Let a be 
an orthogonal affine transformation mapping E on C and let y0=x0,yi, •••, J ^ + i — 
=x0 be the images of •••,x2k+1 under a. 

Consider C as the "meridian" of S w i t h x as the "north pole". Let 
Sn~2 be the "equator" and suppose the P0 is inscribed in the "equator". Let, 
for each vertex v of Pa, Mv be the "meridian" through v (so Mv is a one-
dimensional semicircle). Let Lt denote the "parallel' through yt (/ = 1, ..., k). 
We denote by u(v,i) the intersection point of Mv and Lt. Further, let u(v,0)=x 
for all v. We define the polytope -

P = conv {u{v, i): vf V(P0); i = 0, ..., k}. 

(Here V(P0) denotes the set of vertices of Pa.) We prove that P is a strongly 
self-dual polytope with parameter l /2+2r>a 1 . 

Claim 1. The facets of P are 

conv {u(v, k): vZV(P0)} 
and 

f°> = conv {«(»,»): i£{j,j+l}\ 

where F is a facet of P0 and O^j^k — 1. 

Proof . Consider the affine hull A^ of the points u(v, j) (v£V(F)). Then 
Ap* and A^+r> -are parallel affine (n—2)-spaces (1S j ^ k — l ) and so they span 
a unique hyperplane For j = 0 , let B ^ denote the hyperplane through the 
affine (n—2)-space A^ and x. We denote by H(/} the closed halfspace bordered 
by B ^ and containing the origin.. Clearly PczH^. 

Let, further, B0 be the affine hull of the points u(v, k) (vg V(P<$) and let H0 

be the closed halfspace bordered by B0 and containing the origin. Again, PczH0. 
It is easy to see that 

p = nnBpnH0. . • , 
F j=0 

This proves the Claim since each as well as B0 are spanned by the vertices 
of P. 

Claim 2. The ball concentrical with Sn~1 and with radius t touches every 
facet of P. 
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Proof . This is clear for the facet B0. Consider B^K Let N be the 2-dimen-
sional plane through 0 and x, and orthogonal to B^; without loss of generality 
we may assume that N intersects S n _ 1 in the circle C featured in the auxiliary 
construction. Then since P0 is a strongly self-dual poly tope with inscribed ball 
radius 7-0, it follows that N intersects A^ and A^+1) in the points x} and 
JCj+1, respectively. Thus it intersects B(f in the line through Xj and xJ+1. Since 
by construction, the,circle C, touches this line, it follows that the ball about 0 
with radius t touches the hyperplane B^. 

Claim 3. B0 is orthogonal to the vector B(p~j) is orthogonal to the 
vector u(v,j), where Fv is the facet of P0 opposite to the vertex v 

Proof . The first assertion is trivial. To prove the second, we use induction 
on j. Let w be any vertex of P0. First we show that u(w,k) is orthogonal to 
B f \ This follows easily on noticing that the plane D through x, 0 and u(w, k) 
is orthogonal to A^ by the hypothesis that P0 is strongly self-dual, and since 

, it followsWthat D is .also orthogonal to Bf^- Since A:)|=a= 
= f l + 2t, considering this plane D we see easily that u(w, k) is orthogonal to 

Consequently, u(w, k) is at a distance a from all vertices of the facet 2?®. 
We can repeat the same argument to show that u(v, 1) is orthogonal to 

and'then the same argument can be used to show that u(v,k— 1) is orthogonal 
to BjP, etc. This proves Claim 3 as well as Theorem 1. 

2. The chromatic number of distance graphs 

We now use the existence of strongly self-dual polytopes to derive lower bounds 
on the chromatic number of Gin, a), the graph obtained by connecting all pairs of 
points on the unit sphere S" - 1 at distance a apart. 

In [4] the following lower bound on the chromatic number of a graph was 
proved. Let G be a finite graph, and define its neighborhood complex N(G) as 
the simplicial complex with vertex set V(G), where a subset A Q V(G) forms 
a simplex if any only if the points of A have a neighbor in common. 

Theo rem A. Let G be a graph and suppose that N(G) is k-connected (k^O). 
Then xiG)^k+3. 

The main result of this section is the following. 

Theo rem 2. The graph formed by the principal diagonals of a strongly self-
dual polytope in R" has chromatic number n+1. 

One half of this Theorem follows immediately from Theorem A and the next 
Lemma. 

21* 
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Lemma 4. Let P be a strongly self-dual poly tope and let Gp be the graph 
formed by its vertices and principal diagonals. Then N(GP) is homotopy equivalent 
to the surface of P. 

Proof . Let N(GP) denote the geometric realization of N(GP). Consider the 
natural bijection <p from the vertex set of N(GP) onto the vertex set of P, and 
extend (p affinely over the simplices of N(GP). This results in a continuous mapping 
<p: N(GP)-*dP since by the definition of the neighborhood complex and of GP, 
each simplex of N(GP) is mapped into a facet of P. 

On the other hand, let i//=<p_1. Subdivide each facet of P into simplices 
without introducing new vertices, and let K denote the resulting simplicial complex. 
Then dP may be viewed as a geometric realization of K. Extend i¡/ affinely over 
the simplices in K, to obtain a continuous mapping dP—N(GP). 

Now (po\ji—idbp. Further, ipocp is a simplicial map of N(GP) into itself 
such that (¡¡¡o(p)(S)US is contained in a simplex of N(GP), for every simplex 
5 of N(GP). Hence ¡J/oip is homotopic to id j^r^, and the Lemma follows. 

To complete the proof of Theorem 2, it suffices to remark that GPQG(n, cc)Q 
QB(n,a), and even B(n, a) is (« +l)-colorable as («+ l)/n - by Lemma 3. 

C o r o l l a r y 1. If there exists a strongly self-dual polytope in R" with parameter 
a, then x(G(n,a)) = n + l. 

To treat the values a which are not parameters of strongly self-dual polytopes, 
we need a simple lemma. 

Lemma 5. Let a</?<2. Then G(n—l,/}) is isomorphic to a subgraph of 
G(n, a). 

Proof . Consider a hyperplane at distance \ l — a2//?2 from 0. This intersects 
the unit sphere in an (n—2)-sphere with radius a//?, and hence the restriction of 
G(n, a) to this hyperplane is isomorphic with G(n— 1, /?). 

By Theorem 1 and Lemma 5 we obtain the following. 

Coro l l a ry 2. For any a<2 , x(G(n, a ) ) sn . 
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3. Concluding remarks 

To determine the chromatic number of G(n, a) exactly appears to be a difficult 
question. For small values of a, %(G(n, a)) grows probably exponentially fast 
with n; a similar result for euchdean spaces was proved by FRANKL and WILSON [ 3 ] . 

The situation is simpler when a is large; in this paper we have shown that for 
a>j/2(n + l)//i, 

n^x(G(n,<x)) s n + 1, 

where the upper bound is attained by infinitely many values of a. If n=2 , then 
the lower bound is attained for every a which is not the length of a diagonal of a regu-
lar odd polygon. We do not know if the lower bound is ever attained for 
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Necessary and sufficient condition for the maximal inequality 
of convex Young functions 
J. MOGYORÓDI and T. F. MÓRI 

Dedicated to Professor B. Szőkefalvi-Nagy on his 70th birthday 

1. Young functions 

Let <p(t) be a non-decreasing and left-continuous function defined on [0, 4-
such that (p(Q)=0 and lim <p(t)= + F o r x s O define 

X 

$(x) = f (p(t)dt. 
o 

Then <P is non-decreasing, continuous and convex. 0 is called a Young function. 
The conjugate Young function is defined as follows: for 0 put i p ( t ) = 

=sup {x>0: (?(*)</} and let <f/(0)—0. One can show that ip satisfies all the 
properties imposed on (p. Further, we trivially have 

(1) *(?(*)) *(?(*) +0). 

The Young function 

V(x) = J^{t)dt 
o 

is said to be conjugate to <t>. 
The pair of mutually conjugate Young functions satisfies the following 

inequality of Young: 

xy ^ <P(x)+ f (y) for arbitrary x s 0, y s 0. 

Equality holds if and only if y£[<p(x), ^ ( X + 0 ) ] or j c ^ O O » •AO'+O)]. 
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We say that $ satisfies the moderated growth condition if one of the following 
three equivalent conditions is met: 

(2) lim sup ^ f a x ) < + oo for some constant cx => 1, 
X - + oo ( P W 

/•» y j 
(3) lim sup ^ ,2. < + °° for some constant c2 > 1, 

X<p(x) (4) /, = h m s u p w < + ^ 

In this note the quantity p is referred to as the power of <P. The power q of the 
conjugate Young function W is defined similarly. One can easily prove that 

(5) l i m i n f ^ = _ i T . y $(x) q— 1 

(Here and in the sequel let + ^ -^ -=1 , —i—= 0 by definition.) Further, for v U + + ° ° 

arbitrary constant o l we have 

(6) c«3! s lim i n f * * " ? ^ lim sup S c". 

The above assertions and further information about the theory of Young functions 
can be found, e.g., in [4] and in [8]. 

We prove the following 

Lemma . Let (<P, W) be a pair of conjugate Young functions. In order that the 
power q of W be finite it is necessary and sufficient that the condition 

(7) l i m s u p - L - f ^ d t = p ^ + ~> 

be satisfied. 

P r o o f . Integrating by parts yields 

( 8 ) _ L _ f ^ l d t = w _ £ ( i ) i / f « ^ , ; 

<p(x)J . t . x(p(x) <p(x) <p(x)J t(p(t) t 

Combining Uiis with (5) we obtain that for arbitrary e > 0 

holds, hence fi^q — l. Thus the growth condition implies (7). -. 
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Conversely, let y denote ij/(2x). Recalling (1) we can write 

<¡»00 
1 

From this it follows that 

thus (7) implies the growth condition. 

2. The maximal inequality 

Def in i t ion . We say that for the Young function <P the maximal inequality 
is valid with some constants a, b^O depending only on 4> if for arbitrary non-
negative submartingale (Xn, J^), n s l , with the maximum X*= max Xk we have 

Several papers have been devoted to such type of inequalities, e.g., [1], [3], [7]. 
The main purpose of the present note is to characterize all the Young functions 

<P for which the maximal inequality is valid. 

Theorem 1. Let (<P, W) be a pair of conjugate Young functions. In order 
that $ satisfy the maximal inequality in the above sense it is necessary and suf-
ficient that the power q of "F be finite. 

Proof . Although the sufficiency part of the present assertion is already known 
(cf. [7]), for the sake of completeness we present here a proof to it. Suppose that 
V obeys the growth condition. Then for arbitrary b>q one can find a constant 
a^O to satisfy the inequality x\j/(x)^a+b'F(x) for all xsO. We prove that the 
maximal inequality is valid for 4> with the same constants a and b. To this end we 
recall the following inequality due to Doob: 

Here / ( • ) stands for the indicator of the event in the brackets. For any c > 0 
define Xk=mm (Xk, c) and set 

(9) E($(X$) ^ a+E($(bX„)) n = 1, 2, .... 

IP{X* ^ 1) E(XnI(X* = 1)) for X SO. 

X** = max Xk = min (X* c). " lSSfcSn " " 

On the basis of the Doob inequality we have 

XP(Xn** s X) ^ E{X„I{X** S X)). 
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Integrating this on [0, + with respect to the measure generated by <p(/.) we get 

f XE(l(xr S A)) dip (I) S f E(X„I{X** S A)) dcp(X). 

o o 
Applying the Fubini theorem to both sides we obtain 

E[f A d(p(X)) S E(X„(p(X**)). 
o 

By partial integration 
X X 

f X dcp(X) = x<p(x)~ J <p (A) dX = x<p(x)-<P(x) = W(<p(x)), 
0 

whence 

E{V(<p(X:*))) ^ i E(bXncp(Xn**)). 
b 

Using the Young inequality on the right-hand side yields 

E{V(<p(,X:*)j) S | [E{*(bXj)+E(<P(cp(Xr)))l 

From this it follows that 

(b-l)E(>r(cp(X:*)j)^E(HbXn)), 

since X** is bounded by c. Now by the assumption 

*(*) = x(p(x)-T(<p(x)) S <p{<p(x)+0)(p(x)-V(<p(x)) ^ aHb-W(<P(x)), 
from which it follows that 

E(0(Xn) S a+E{<P(bXa)). 
Let c tend to + then X**-»X* and the monotone convergence theorem 
completes the proof of the sufficiency part of our assertion. 

Necessity. Suppose that the maximal inequality is valid for <P with some 
constants a, b. We can set ¿S1 . Let us define a sequence {*„} of numbers with 
the following properties: 

Xx — 1, xn < xn+1 < 2xn for n = 1,2, . . . , lim x„ = + °° 
and 

(10) l i m s u p ^ - _ T ^ - d t = lim s u p f ^ d t . 
n^oo (p(bxn) J t x„ + J(p(x)J t 

Let Q be the set of the positive integers and let si be the ofield of all subsets 
of Q. On the measurable space (Q, si) we define the probability P by the formula 

*({»}) = « = 1 , 2 , . . . . 
n xn + l 
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Let SFn be the tr-field generated by the partition 

({1}, {2}, . . . , { « - l } , { n , » + l , ...}). 

Clearly we have i ^ c ^ c . . . . Further, for n = l , 2, ... define the random variable 
by 

X„((o) = x„I(o) s x„), (o£Q. 

It is easy to see that (X„, J^) is a nonnegative martingale and that 

(xm, if co < n 
U„, if o) = n. 

In virtue of the maximal inequality we have 

(11) " ¿ < p ( X k ) ( l — - J _ ] + -!<*>(*„) ^ a + ^ r H b x n ) . 

k = l \Xk xk + l' Xn x„ 

The sum of the left hand side of (11) can be estimated as follows: 
«-i M l ) »-i l *"Jl/2 l 1 V 2 <p(t) 
k=1 \Xk + 1 / t = i Z xJ2 I Z « I 

Integrating by parts we obtain 

hence (11) implies 
^ x Xn On the other hand, 

j f ^ - d t ^ ^ < p ( b x n ) \ o % 2 b , 
*n/2 

consequently 
1 ><P0) 2a i2b <P(bxn) n 

<p(bxn) J t <p(bxn) bxn(p(bxn) 

Keeping in mind the property (10) of the sequence {*„} we conclude 

lim sup —7-7 log 2b, x- + <*>r <p(x) J t 

thus by our Lemma f fulfils the growth condition. 
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3. Estimates for the best constants in the maximal inequality 

Denote by b* the infimum of the constants b the maximal inequality is 
valid with, b* appears to measure somehow the rate of growth of the Young func-
tion <P: the faster $ grows, the smaller b* is. Hence it would be of interest 
either to find the connection between b* and the quantities introduced while 
formulating the growth condition, or to give some estimates at least. The assertion 
proved below may be regarded as the first step in this direction. 

Theorem 2. Let f ) be a pair of conjugate Young functions with powers 
p and q, respectively. Then 

P 
p-1 

Proof . The upper estimate for b* follows immediately from the proof of 
the sufficiency part of Theorem 1. 

For the lower estimate suppose the maximal inequality is valid for <P with 

some constants a 5 0 and b < — . From this we derive a contradiction. In view 
P~ 1 

of Theorem 1 the case p=1 may be left out of consideration. 

Define i2={l, 2, ...,«}, let si be the a-field of all subsets of Q and let 

P({co})=-^-, eo(|i2. On the probability space ( Q , s i , P ) define the nonnegative 

martingale ( X k , k=1, ..., n, as follows: let ^ n + 1 - k be the «7-field generated by 
the partition 

({1,2,...,*}, {fc+1}, ...,{«}) 
and let 

C(Q~1/p, i f ft) > k 

if <asifc, /C ¡ — i 

where c=<t> \n)jb. 
Clearly, (Xk, has the martingale property. One can easily see that 

from which we have 

X*(OJ) > b(l+S)X„((D) f o r ft)Sfc0, 

where e > 0 satisfies b(l +e)-g J* ^ and the threshold k0 does not depend on n. 
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Hence 

£(*(*„*)) s - 2 E(<P(b(l+s)Xn(a>)))^(l+e)± J E(<P(bX„(co))) s n o>=k0 n to=ka 

+s)[E(0(bXn))-^-<P(bc)] = (1 +E)[E(<P(bXn))-k0]. 

Applying the maximal inequality to the martingale (Xk, J2^) we obtain 

(12) a+E{HbXn)) S ( l + e ) [ F ( f ( ^ „ ) ) - f c 0 ] . 

Now let n tend to infinity. Then from (6) it follows that 

lim i n f - $(bX„(co)) = lim inf S — „-<» n v ' <P(bc) CO 

for arbitrary fixed positive integer co. Consequently, 

lim E(<P(bXn)) = + » 
N-»- oo 

which contradicts (12). 

4. Remarks 
l 

(i) Convexity inequality. We say that for the Young function !P the convexity 
inequality is valid with some constants a, b^O, if for arbitrary sequence {Z„} 
of nonnegative random variables and increasing sequence of er-fields 

¿^(¿¿(Z.-I^jj ^ a + ^ ^ J z , ) j , n = 1,2, ... 

holds. By the duality theorem of [6] the maximal inequality is valid for a Young 
function $ if and only if the convexity inequality holds for the conjugate 
to 0. So Theorem 1 of the present note affords also a necessary and sufficient 
condition for a Young function to satisfy the convexity inequality, namely, 
that W should meet the growth condition. 

(ii) An open problem. Denote 

l i m . <p{x) -(x) J t 

by a. Returning to (8) we can see that a £ y ( l + a ) , thus otS p ^ \ ' ^ W e r e" 

write this into the form 

— = = a + l = S j 3 + l 
P~ 1 
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the following problem arises. Is it true that 

(13) a + 

holds for every Young function <t> the conjugate of which has a finite power? 
If i> itself also satisfies the growth condition, another proof of the maximal in-
equality shows that (see [5]). Since fi + l ^ p f i always holds, the upper 
bound in (13) seems to be rather sharp if not false. 
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Extension of Banach's principle for multiple sequences 
of operators 

F. MÓRICZ 

Dedicated to Professor Béla Sz.-Nagy on his 70th birthday 

1. Introduction 

Let (X, be a measurable space with a positive finite measure /¿. Denote 
by S = S(X,@r) the set of the a.e. finite real-valued functions on X measurable 
with respect to SF. As is well-known, X endowed with the distance notion 

is a complete metric space (a so-called Frechet space), and the convergence notion 
induced by d is equivalent with the convergence in measure. 

Let B be a Banach space and let T: B-»S be an operator. As usual, T is 
said to be subadditive if 

and positive homogeneous if 

(ii) \T(af)(x)\ = \aTf(x)\ a.e. on X for every aSO and f£B. 

We shall deal only with subadditive and positive homogeneous operators 
T on B (sometimes these operators are said to be convex, too) for which the follow-
ing condition is also satisfied: 

(iii) T is continuous in measure, i.e. if fn, f£B and 11/, — /||-*-0 as 
then for every s > 0 we have 

(i) | r ( /+£)M|S |77(x) |+ |7£(x) | a.e. on Z for every / , g£B, 

p{x: \Tfn(x) — Tf(x)\ > e} - 0 as n -

Received August 4, 1982. 
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In certain cases we shall need a further property of the operators T, namely 

(iv) \Tf(x)-Tg(x)\sx{\T(f-g)(x)\ + | T ( g - / ) 0 ) | } a.e. o n * for every / , g£B, 

where x is a positive constant. 

It is clear that if T is a linear operator, then (iv) is satisfied with x —1/2. 
Another example is the following: If T is an operator with properties (i) and 

(v) T is positive, i.e. Tf(x)^0 a.e. on X for every f(LB, 

then T possesses property (iv). In fact, now 

Tf(x) = T(f-g+g)(x) ^ T(f-g)(x)+Tg(x) 
and similarly 

Tg(x) ^ T(g-f)(x) + Tf(x), 

whence (iv) follows with x=1 . 

We note that if we replace property (ii) by 

(ii) \T(a.f)(x)\ = \oLTf(x)\ a.e. on X for every real number a and f£B, 

then we can replace property (iv) by 

(iv) | T f ( x ) - T g ( x ) \ ^ 2 x \ T ( f - g ) ( x ) \ a.e. on X for every / , gdB. 
Now, it is not hard to check that (iv) in the special case 2x = 1 implies property (i). 

So, if (ii) and (v) are satisfied, then properties (i) and (iv) with 2x = 1 are equivalent 
to each other. 

2. Banach's principle for single series 

Given an ordinary sequence {Tn: «=1 ,2 , ...} of operators, we shall put, for 
every f£B, 

• T*f(x) = s u p \ T J ( x ) \ . 
ni 1 

It is obvious that if the sequence {T„f(x)} is convergent a.e. on X for every f£B, 
then a fortiori we also have that 

(1) r * / ( x ) < °° a.e. on X for every f£B. 

The following results are well-known (see [1] and also [2, pp. 1—4], where the 
operators T„ are supposed to be linear, but the proofs apply, after some simple 
modifications, to the more general operators indicated in Section 1). 
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T h e o r e m 0. Let the operators T„ possess properties (i)—(iv). If condition (1) 
is satisfied, then the set of those f£B for which the sequence {Tnf(x)} is a.e. con-
vergent is closed. 

This immediately yields 

Coro l l a ry . Let the operators Tn possess properties (i)—(iv). If condition (1) 
is satisfied and the sequence {T„f(x)} is a.e. convergent for a set of f£B which is 
dense in B, then {Tnf(x)} is a.e. convergent for every ff_B. 

The next lemma plays a decisive role in the proof of Theorem 0 and sometimes 
is called Banach's principle in a strict sense. 

• Lemma 0. Let the operators T„ possess properties (i)—(iii). If condition (1) 
is satisfied, then there exists a positive, nonincreasing function C(A), defined for 
2 > 0 and tending to zero as such that 

p{x: T * / ( * ) > A | | / | | } S C ( A ) for every A > 0 and feB. 

A simple consequence is the following 

Coro l la ry . Let the operators T„ possess properties (i)—(iii). If condition (1) 
is satisfied, then T* is continuous in measure, even uniformly in f . 

3. Extension to multiple sequences using the convergence notion 
in Pringsheim's sense 

Let J f d be the set of all ¿-tuples k=(/c l5 ..., kd) with positive integers for 
coordinates, where d 'S 1 is a fixed integer. As usual, put 

k = (/q, ..., kd) {mi, ..., md) = m iff k}^m} ( j = l,...,d), 

k±m = (/cximi, ..., kd±md), km = (/qmj, ..., kdmd), and 1 = (1, ..., 1). 

We recall that a ¿-multiple sequence {/m: m£jVd} of real numbers is said 
to be convergent in Pringsheim's sense if for every e>0 there exists an M=M(e) 
so that [fk—im|<e whenever 

(2) min (fcj, ..., fcd) s M and min (m1, ..., md) ^ M. 

We consider a ¿-multiple sequence {Tk: kajV1} of operators having prop-
erties (i)—(iii) or (i)—(iv) enumerated in Section 1. It is a simple fact that the 
sequence {T^fix)} is convergent a.e. on X in Pringsheim's sense for a given f£B 
if and only if 

lim sup \Tkf(x)-Tmf(x)\ = 0 a.e. on X, 
under(2) 
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or equivalently, for every e>0, 

(3) n{x: sup \Tkf(x)-TJ-(x)\>e}~Q as M —. 
under(2) 

On the other hand, it is clear that if {rk /(x)} is convergent a.e. on X in 
Pringsheim's sense for every f£B, then we also have 

(4) 
T*f(x) = inf sup \Tkf (JC)| < a.e. on X for every f£B. 

M=l,2 , . . . min(*, k a ) s M 

For the sake of brevity, we write 

W ( * ) = sup |rk /(x) | ( M = 1,2,. . .) . mini*, kd)sM 

The basic fact is again that condition (4) itself already implies the continuity 
of the operator T* in measure, uniformly in / . Vice versa, it will be also seen that 
in certain cases such a continuity property for T+ is all that is needed to establish 
the a.e. convergence of the ¿/-multiple sequence {rk /(x)} in Pringsheim's sense for 
every f€B. 

The following theorem extends Theorem 0. 

Theo rem 1. Let the operators Tk, possess properties (i)—(iv). If 
condition (4) is satisfied, then the set of those f£B for which the d-multiple sequence 
{Tkf(x)} is a.e. convergent in Pringsheim's sense is closed. 

This implies the next 

Coro l l a ry 1. Let the operators Tk possess properties (i)—(iv). If condition (4) 
is satisfied and the d-multiple sequence {Tkf(x)} is a.e. convergent in Pringsheim's 
sense for a set of fdB which is dense in B, then {Tkf(x)} is a.e. convergent in 
Pringsheim's sense for every f£B. 

The continuity property of T* mentioned above is expressed in the following 

Lemma 1. Let the operators Tk, possess properties (i)—(iii). If con-
dition (4) is satisfied, then there exists a positive, nonincreasing function C(A), defined 
for 1>0 and tending to zero as such that 

(5) 
p{x: sup \Tkf(x)\ > ;.||/||} C(A) for every A > 0 and f(¿B. 

min( k 1 , . . . , k a ) ^ X 

This immediately yields ¡i{x : T'+/(x)>A||/||}^C(A), which can be reformulated 
as follows: 

Coro l l a ry 2. Let the operators Tk possess properties (i)—(iii). If condition (4) 
is satisfied, then T^ is continuous in measure, even uniformly in f . 
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P r o o f of L e m m a 1. It is modelled upon the proof of Lemma 0 (see in 
[2, pp. 2 -3 ] ) . 

By (ii), we need only establish (5) for | | / | | = 1. Let an £ > 0 be given. Owing 
to (4) for every f£B there exists an M, possibly depending on e and / , such that 

n{x: T ^ f ( x ) > M) ^ e. 

In other words, this means that 

B= 0 {/: /*{*: T,Mf(x) > M) e}. 
M = 1 

We shall show that each set on the right of the last equality is closed. To this • 
effect, observe that for each M, 

(6) { / : n{x: W ( x ) > M) ^ e} = f ) {/• = T*MNf(x) > M) =s e}, 
N=M 

where 
' T,MNf(x) = max | r k / ( x ) | (M, N = 1, 2, ...; M ^ N). 

Smax(fc[ kd)^N 

By (i), for. every / and g in B we have 

\T*MNfix)-T^MNg(x)\ ^ r*M f fc/--g)(*) + r + M W (g - / ) (* ) . 

Consequently, for every ¿ > 0 , 

\T*MNf(x)-T*MNg(x)\ > <5} si 

^ k 2 M - k 2 M I W - * ) ( * ) | > 4 } + / l { x : > 4 } ] -

Since each operator Tk is continuous in measure (property (iii)), hence it follows 
that the operators T*MN are also continuous in measure. Therefore, each of the sets 

{/: n{x: T,MNf{x) > M) e} 

is closed, and thus so is the set in (6). 
Now we apply the Baire category theorem and conclude that one of the sets 

in (6) contains a closed ball, say with some center f0£B and radius 0. This 
means that if f£B and \\f— f0\\ = Q, then 

H {x: T*Mf(x) > M) « e. 

In other words, if g£B and then 

fi{x: T*M(fa+eg)(x) > M) e. 

22 
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This yields 

(7) 

fi{x: T,Mg(x) > tk n{x: r* M ( / 0 + gg)(x) > M} + pi{x: T*Mf0(x) > M) 2c 

for every g£B, ||g|| S 1. 

It is not hard to verify that (7) already implies (5) to be proved. In fact, put 

C(A) = sup n{x: 7. [ A ] /(x) >A}, 
nail s i 

whereby [A] we denote the integral part of A>0. Inequality (7) shows that C(A)^2e 
if A^max (M, 2M/Q). Thus we have 

(8) ]im C(A) = 0 

and our assertion is proved. 

P r o o f of T h e o r e m 1. Denote by ^ the set of f £ B for which the ¿-multiple 
sequence { T k f ( x ) } is a.e. convergent in Pringsheim's sense. We are to show that 
if for a given fdB it is true that for every s > 0 there is a g ^ such that | | /—g| |<£, 
then as well. 

By (iv), 

\Tkf(x)-TJ-(x)\ § |rk/(x)-Tkg(x)| + |rkg(x)-Tmg(x)\ + |rmg(x)-Tmf(x)\ ^ 

3= x[\Tk ( / - g ) M | + | r k ( g - / ) ( x ) | + | r m (g - / ) (x ) | + | r m ( / -g ) (x ) | ] + \Tkg(x)-Tmg(x)\. 

Thus, for every A>0 and M ^ 1, 

(9) fi{x: sup \Tkf(x)-Tmf(x)\>X\\f-g\\}^ 
under (2) 

n { x : w / - g ) ( * ) ^ A n z - g i i J + ^ J ^ ; F * M ( g - / ) ( * ) > - A . ||/-,g||} + 

+ Jx: sup | r k g(x) -r m g(*) | > i | | / - g | | } . 
I under (2) J J 

Let us fix a ¿ > 0 and an e > 0 . In virtue of (5) and (8) we get 

M{x: r*M(f-g)(x) > M\\f-g\\} ^ C(M) ^ 

if M is large enough, say M^.MX, independently of Taking A=5xM1 ; 
hence it follows 

(10) 

+ f i { x - . n M ( g - f ) ( x ) ^ ~ \ \ f - g \ \ } ^ ~ for M ^ M X . 
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Now let us choose g d ^ in such a way that /—gU^e. Due to (3), there exists 
an M2 such that 

(11) Jx: sup | r k g ( ; t ) - r m g ( * ) | > 4 l l / - s l l } ^ 4 f o r M = 
<• under(2) J J J 

Collecting together (9)—(11), we can infer 

n{x: sup \Tkf(x)-Tmf(x)\ > e } for M S max(Mx, M2). 
under (2) 

Since 5 and e are arbitrary, we obtain relation (3). But this is equivalent to the 
a.e. convergence of the ¿-multiple sequence {^ / (x )} in Pringsheim's sense. 

4. Extension to multiple sequences using the notion of regular convergence 

Following HARDY [ 3 ] (cf. [ 5 ] , where this kind of convergence was rediscovered 
and called "convergence in a restricted sense") we say that a ¿-multiple series 

2 K = 2 ••• 2 bkl kd 

of real numbers is regularly convergent if for every £>0 there exists an M=M(e) 
so that 

ni nd 
2 ••• 2 bkl kd fc1=ml kd=md 

(12) I 2 bk\ 

whenever 
(13) max (mj, ..., md) s M and n m. 

It is a trivial fact that the regular convergence of series (12) implies the con-
vergence of the rectangular partial sums 

sm= 2 bk (m£ jVd) lSkim 
in Pringsheim's sense. 

Given a ¿-multiple sequence {/m: m£J r d } of real numbers, first we define 
the "total" finite differences Atm as follows 

Atm= 2 - ¿(-1 
</l = 0 >id=0 

with the agreement that tk^ kd is taken to equal 0 if kj=0 for at least one j, 
l ^ j ^ d . Then we consider the ¿-multiple series 

(14) 2 ¿tm, 
me^1 

22* ' 
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whose rectangular partial sums coincide with the tm. Now we say that the ¿/-multiple 
sequence {/m} is regularly convergent if series (14) is regularly convergent. In other 
words, this requires that for every e>0 there exists an M=M(e) so that 

2 ••• Z (-1),i+-+'MWi -n)n >», = 0 It,1 = 0 
n = Oh, id), 

whenever (13) is satisfied. For brevity, denote by Am ntk the expression between 
the absolute signs. 

After these preliminaries, consider again a ¿-multiple sequence {Tk: k £ J r d } 
of operators possessing properties (i)—(iv). The a.e. regular convergence can be 
characterized as follows. The ¿-multiple sequence {Tk/(x)} is regularly convergent 
a.e. on X for an f£B if and only if 

lim sup \Am,nTkf(x)\ = 0 a.e. on X, 
M — ~ under(13) 

or equivalently, for every £>0, 

(15) n{x: sup \Am>nTkf(x)\ > £} - 0 as M — 
under(13) 

It is obvious that if {rk /(x)} is regularly convergent a.e. on X for every fdB, 
then a fortiori we also have that 

(16) T*f(x) = sup |Tk/(x)| <oo a.e. on X for every f£B. 
k<iSd 

The fundamental fact is again that condition (16) itself already implies that the 
operator T* is continuous in measure, uniformly in / . Indeed, both Lemma 0 
and its Corollary are plainly true for the set {T"k: k£^Vd} of operators under prop-
erties (i)—(iii) and condition (16). 

The extension of Theorem 0 reads as follows. 

Theorem 2. Let the operators Tk, possess properties (i)—(iv). If 
condition (16) is satisfied, then the set of those f£B for which the d-multiple 
sequence {^/(x)} is a.e. regularly convergent is closed. 

An immediate consequence is that if the a.e. regular convergence of {Tkf{x)} 
is established when / belongs to some special class which is dense in B, then the 
a.e. regular convergence of {rk/(x)} for every f£B is completely equivalent to 
the fulfilment of inequality (16). 

P roo f of Theo rem 2. We have to prove that if f £ B is such that for every 
£>0 there is a g f o r which ||/— g\\<e, then f ^ as well. To this end, we 
prove (15). 
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A simple estimation shows that 

H{x: sup M m , n r u / ( x ) | > A | | / - g [ | } s 
under(13) * 

s J x : sup M m , o r k / ( x ) - J n l , I i r k g ( x ) | > 4 l l / - ^ } + 
<• under(13) L J 

+ Ax: sup M m , n r k g ( x ) | > A | | / - g | | } . 
I under(13) L > 

As to the first term on the right, we illuminate the situation in the particular case d=2: 
\Am,aTkf(x)-AmiaTkg(x)\^ | r n i„ 2 / (x)-r n i„ 2g(x) | + | rm i„ 2 / (x)-Jm i n 2g(x) | + 

+ \T„imJ(x)-Tnim2g(x)\+ \TmimJ(x)-TmiI111g(x)\ 

^ K[\Tnini<J-g)(x)\ + \T„in^g~f)(x)\+ •••] ^ 4x[T*(f-g)(x) + T*(g-f)(x)]. 

So, it can be easily seen that 

(H) 4 x : sup M m , n T k / ( x ) | > A | | / - g | | } ^ 
under(13) 

T*(f-g)(x) > ^ i - | | / - g | | } + / i{x: T*(g-f)(x) > ^ l f ~ «ll} + 

+ti\x: sup Mm ,nrug(*)| > A | | / _ g | | } . 
I under(13) L > 

Owing to Lemma 0, applied this time to {Tk: kf we obtain 

(18) /*{*: T*(f-g)(x) > ^ I I / - gll} ^ , 

independently of gC/3. By choosing A = l/ee1 and taking \\f— g | , where 
£!>0 will be chosen later on, we get from (17) and (18) that 

(19) fi{x: sup Mm ,nTk/(x)| 
under(13) 

By (8), the first term on the right tends to zero as fij—0. Given a <5>0, we 
can fix £!>0 so that this term does not exceed <5/2. Then using the fact that gi'i?, 
the second term on the right-hand side of (19) can be made less than 5/2 by choosing 
M sufficiently large, say M ^ M0. To sum up, we conclude that 

n{x: sup \Am,nTkf{x)\ 5 for M ^ M0. 
under(13) 

The proof of Theorem 2 is complete. 
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5. Application to a problem of summability of multiple orthogonal series 

Let $ = {<pk(;t); be an orthonormal system (in abbreviation: ONS) 
on X. We shall consider the ¿-multiple series 

(20) 2 ckcpk(x), 
k iJT* 

where {ck: kdjV1} is a ¿-multiple sequence of real numbers (coefficients) for which 

(21) 2 4 < kê t"1 

By the Riesz—Fischer theorem the sum of series (20) exists in the sense of the mean 
convergence in L2(Z)-metric. In the following we shall be interested in the point-
wise summability of series (20). 

Let si={amk: m, k b e a given "¿-multiple matrix" of real numbers with 
the following two properties: 

(22) am k — ak as min(m1 , . . . , md) oo for every k^Jfd 

and this convergence is regular in the sense of Section 4, and 
(23) 2 < , k < M for every m^Jf*. 

ke^f" 

The so-called j^-means of series (20) are formed as follows 

tm(x) = 2 a
m,kck<Pu(x) (m£jr<>), kĝ T" 

which results in a series-sequence transformation. By (21) and (23), the si-means 
exist in the sense of L2(Ar)-metric. Now, series (20) is said to be si-summable 
(regularly or in Pringsheim's sense) if {tm(x): m£jfd} as a ¿-multiple sequence is 
(regularly or in Pringsheim's sense, respectively) convergent. 

We need the modified Lebesgue functions <P; x) of the system with 
respect to the summation method si defined in the following way. We set 

Km(si,<P;x,y) = 2 amik<pk(x)<pk(y) (m^"). kes* 

Again by (23), the kernel Km{si, <P; x, y) as a function of y exists in the sense of 
L2(Ar)-metric for almost every x. Consequently, the integral 

L*M(si, <P;x) = /(max(mmaxmd)^M \Km(st, 4>; x, y)|)d^y) (M = 1, 2, ...) 

exists for almost every x and even belongs to L%X). 
Now we are ready to state 

Theo rem 3. Suppose that $={<pk(x): k£^d} is an ONS on X, {ck: ke^d} 
is a sequence of coefficients satisfying condition (21), and {am k: m, k£J/"1'} 
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is a matrix of real numbers satisfying conditions (22) and (23). If 

(24) L - = f { SUP L*M(si,1>-,x)ydn(x)^^, 

then series (20) is regularly si-summable a.e. on X. 

This theorem in the special case d = 1 is due to T A N D O R I [ 6 ] . 

First we prove the following 

Lemma 2. Under the conditions of Theorem 3, except (22), we have 

( 2 5 ) / ( sup \tn(x)\)dii(x) S { 2 L 1 / 2 + ( sup 2 4 } 1 / 2 -
x me/" kiSd 

P r o o f of Lemma 2. It will be done b y a modification of the well-known 
classical method (see, e.g. [4] and also [6]). 

For every positive integer M and x£X define M ( x ) = ( M 1 ( x ) , . . . , M/x^jV1 

in a unique way such that 1 for each j = 1, ...,d and 

' m w W = , max im(x) ( M = 1,2, . . . ) . maxCm, md)SM 
Using the representation 

' m m M = / ( 2 Ck<PkO0)( 2 (x)(pn(y))dtx(y), x k£Jfd 

Fubini's theorem and the Schwarz inequality imply that 

f'm(X)(x) dfi(x) = f{( 2 ck(Pk(y)) f 2 aM(xha(pa(x)<pn(y) dn(x)} dn(y) 
X X X 

- \B2dam,Bcpa(x)cpa(y)\)d^x)}d^y) = 

= / | 2 ckcpk(y)\Lti(^,<P;y)dfi(y)^{L 2 4}1/2> 

x k t s d k e ^ 

the last inequality is b y (24). Applying Beppo Levi's theorem, hence it follows that 

/ { s u p tm(x)}dn(x)^{L 2 el}112-
Repeating this argument for — tm(x), which corresponds to the system 

{ — (pk(x): we obtain 

/ { sup {-ta(x))}dn(x) S {L 2 4 } 1 / 2 -£ mE/" k£Sd 

Now, the wanted inequality (25) follows from the elementary relation 

sup | / M ( X ) | =§ sup I M ( * ) + sup (-*„(*))+l'I(*)l-
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Proof of Theo rem 3. We recall that the set / o f those ¿/-multiple 
sequences c = {ck: k£jVd} for which condition (21) is satisfied, endowed with the 
usual vector operations and Euclidean norm, is a Banach space. The operators 

c - Tmc(x) = tm(x): l2(JTd) - L\X) (meJ">) 

are clearly linear and continuous in L2(X)-metric, a fortiori in measure. The conti-
nuity in L\X)-metric is shown by the estimate 

f t l ( x ) d ^ x ) = 2 ( m a x < k ) 2 4 -

Due to Lemma 2, for every c£l2(Jrd), 

(26) T*c(x) = sup |tm(x)[ < °° a.e. on X. 
m ZJT* 

For every c£l2(Jrd) and M = 1,2, . . . define c ( M )={4M ) : keJri) as follows 

c(m> = Jck i f m a x > • • •> kd) = M, 
k lO otherwise. 

It is also clear that'these "finite sequences" c(M) constitute a dense subset in l2(jVd). 
Furthermore, (22) yields 

MM M M 
Tmc<M>(x) = 2 - 2 am,kckq>k(x) - 2 - 2 akck<pk(x) 

(27) fc,=1 kd=1 *,= 1 ka=1 
as min(m1; ..., wd) — oo for every M = 1, 2, ... 

and even this convergence is regular in the sense of Section 4. 
On the basis of (26) and (27), Theorem 2 is applicable and results that the 

¿/-multiple sequence Tmc(x) = tm(x) is regularly convergent a.e. on X for every 
c € / V * ) . This finishes the proof of Theorem 3. 

On closing, we formulate a slight generalization of Theorem 3. To this effect, 
let A — {Ak: k£J r d } be a ¿/-multiple sequence of positive numbers, which is non-
decreasing in the sense that whenever k s m . Denote by the system 
{<P k (*)№ T h e n 

M ^ W ' x ) = / ( - d ^ n H ' - W ' x 4 d K y ) ( M = 1 ' 2 > 

where 

U x,y) = 2 
I \A ) ktJT* ¿k 

The following theorem can be proved analogously to as Theorem 3 is proved. 

\ 
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Theorem 4. Suppose that $ = {<pk(x): k^jV1} is an ONS on X, A = {Ak} 
is a twndecreasing sequence of positive numbers, {ck} is a sequence of coefficients 
satisfying the condition 
(28) 

k ê rd 

and sd— {am k} is a matrix of real numbers satisfying conditions (22) and (23). If 

$ 

¡ U i i M ^ w ' ' * ) } d K x ) 

then series (20) is regularly si-summable a.e. on X. 
Here we have to consider the set PA(-drd) of those ¿-multiple sequences c= 

= {ck: for which condition (28) is satisfied. Introducing the usual vector 
operations and the norm 

MA = { 2 44}1/2> k€-<Kd 

becomes also a Banach space. 
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Non-horizontal geodesies of a Riemannian submersion 
P. T. N A G Y 

Dedicated to Professor B. Szókefalvi-Nagy on his 70th birthday 

1. Introduction. For Riemannian manifolds M and P, a submersion n:P—M 
is a smooth mapping of P onto M which has maximal rank and preserves the 
length of horizontal vectors. A tangent vector to P at x is called horizontal if 
it is orthogonal to the fiber n~1on(x) through x, vertical if it is tangent to the 
fiber. The fundamental concepts of a Riemannian submersion were introduced by 
B. O'NEILL [2]. The horizontal geodesies of P were studied in [3]. 

Our aim here is to investigate the non-horizontal geodesies of P and to charac-
terize them with their "projections" on the basic manifold M and on the fibers 
through their points. As an application we shall get a stability property of some 
fibers with respect to the geodesic flow of a class of Riemannian submersions. 

We use the method of moving frame; for the notation and the basic relations 
of the invariants of a submersion we refer to [1]. 

The paper is organised as follows. Section 2 is devoted to the basic concepts 
of a Riemannian submersion. In Section 3 we discuss the translation of fibers, 
along a curve of M defined by the horizontal subspaces and the relation of this 
translation to the Riemannian parallel translation. In Section 4 we treat the equation 
of geodesies as we need. In Section 5 we apply our result in a special class of Rie-
mannian submersions where the translation of fibers is homothetic transformation. 
Finally in Section 6 we investigate the stability of fibers with respect to the geodesic 
flow in the above discussed class of submersions. 

Throughout this paper the indices i,j,k, ...,a,b,c, ... and a, /?, y, ... will 
run from 1 to n+k, form 1 to n and from « + 1 to n+k, respectively, where 
n=dim M, M+/c = dim P. The summation convention will be adopted. 

The author expresses his sincere thanks to Professor A. M. Vasil'ev (Moscow 
State University) for his valuable suggestions. 

Received August 11, 1982. 
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2. Adapted frames. Let {L(P) , p, P} and {L(M), q, M} denote the principal 
fiber bundle of linear frames of P and M, respectively. The bundle of adapted 
frames {LM(P),p, P) over P of the submersion n :P-*M is defined as a sub-
bundle of {L(P),p, P} consisting of frames {x; ex, ..., en+k}£Lx(P) such that 
the vectors ex, ...,en are horizontal and the vectors en+1,..., en+k are vertical. 
The structure group of the adapted frame bundle is isomorphic to the group GL(n)X 
X GL(k) c GL(n + k). 

Let <w and <p denote the R"+k-valued canonical form and the gl(«+k)-valued 
Riemannian commection form on L(P). to and (p satisfy the structure equation 

dco = —(pA(a or dco* = — (p'kAcok 

where co1 and (p'k are the components of the forms a> and <p with respect to the 
canonical bases of R"+k and gl(«+/c). 

The fundamental tensors of the submersion are of the form 

A = Ae"cea®(op®af, T = Tp"yea<g>o/ <gKWy 

where {et, ..., en+k) is an adapted frame and {co1, ..., a>n+k} is its dual coframe. 
The Riemannian metric tensor of P can be written as 

g = gabtoa®(ob+gC[fco'®o/ 
on the adapted frame bundle. The metric tensor of the basic manifold is 
g=gab&" ®a>b, where (o"=n*a>". The Riemannian connection form f of M 
defines a form on LM(P) in a natural way whose components are denoted also by t . 

P ropos i t i on 1. The fundamental tensors A, T of the submersion and the 
Riemannian connection forms of P and M are related by the equations 

(1) <pi = rb+(m)Ay\m\ 
(2) cpi = (1/2) Ap"c of + (1/2) Tp"y ojy, 

(3) <Pl = -(ll2)A%ca><-(l/2)T*by(0y, 
where 

git A °'be — gabAfi'c, g*0 TX
by — gab Tpa

y , 

and the tensors A and T satisfy 
(4) Ayab + Ayba = 0, Tp"y = Ty

a
b, 

Proof . The more detailed description of the adapted frame bundle and the 
proof of equations (1), (2), (4) can be found in [1], pp. 155—158 (orthonormed 
frames are used). 

To prove the equation (3) we note that the Riemannian metric tensor satisfies 

dgij-<Phkj-<Pjgik = o. 
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Since gap=0, we have 
0 = dgap = gacVp+gpyVa-

Using (2) we get 

g,r<Pl=-8ac<Pe
f=-gac(.№(Af°iri> + Tll

e
ia]P) = -gfl{l l2)(A?adCDd + T?aSCDS). 

This completes the proof. 

3. Translation of fibers. Let be given a curve y(t) of the basic manifold M 
defined on an open interval i £ / c R . If X0£TI 1(j;(io))> there is a unique 
horizontal curve x(x0, t) (t£I) of P satisfying x(x0, t0)=x0 and nox(x0, t) = y(t). 
These curves define a 1-parameter family of maps r, 7r_ 1(j(i)) 
along the curve y(t),t£l, such that 

This map is called translation of fibers along the curve y(t) of M. The derivative 
map xt u induces a translation of vertical vectors along horizontal curves. A verti-
cal vectorfield Z on P is constant with respect to this translation if and only if 
the Lie derivative ¿?yZ=[Y,Z]=0, where Y is a horizontal vectorfield defined 
in a neighbourhood of 7c_1(j(i)) ( '€ / ) satisfying 7 ( X ( / ) ) = X ( / ) for the horizontal 
lifts x(t) of y(t). Here the dot denotes the derivation by t. 

P r o p o s i t i o n 2. If Y~ Yaea and Z =Z"ea are horizontal and vertical vector-
fields on P then the expression VyZ—Jz?yZ is a (1,1 )-type tensorfield satisfying 

VYZ-SeYZ = (1/2) Ay
a
cY°Zyea — (1/2) T*cy YcZyea. 

Proo f . We fix a point x0£P. Let UczM be a neighbourhood of y0=Tz(x0)€M, 
and t£l^+y(t)£M is a curve in U such that J(/0)=J>0 (t0dl) and y(to)=n*Y(xo)-
Let Y be a horizontal vectorfield defined on a neighbourhood of X0 such that 
Y(x(t))=x(t) for horizontial lifts x(t) of y(t). Let be given a frame field 
{A(>0, ^n(j)} on U and an adapted frame field {ex(x), ...,en+k(x)} on a 
neighbourhood of X0 such that ni:ea{x)=ea(ii(xj). For a smooth function / on 
P we denote the components of its differential with respect to the adapted coframe 
{«'} dual to {<?;} by d j , i.e., df=(dJ)co'. We can write for Y=Y"ea 

VYZ-SeYZ = VZY= ((dy 7")Z' + <p° (Z) Y<)eu + <p°c(Z) Ycea. 

Since the components Y" are constant on the fiber we have dyY"=0. By Proposi-
tion 1 we get 

V7Z-SCYZ = V Z F = # ( Z ) F e « a + # ( Z ) 7 e e . = (i/2)Ay
a
cZyYcea-(il2)Tx

cyZyYcea, 

since the forms t¡/ac are lifted from a form on L(M) and therefore \j/a
c(Z)=0. 

At the point x0 , y(x0)=F(x0) , and the proof is complete. 
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4. Equation of geodesies. Let x(s) be an arc-length parametrized curve 
in P, is its projection curve in the basic manifold M and z(s)= 
=tSi ax{s) is its development in the fiber 7i~1(>'(Jo)). s^I. Comma denotes the 
derivation by s. The tangent vector x'(V) can be written as x(s)=Y(s)+Z(s), 
where Y(s) is its horizontal part and Z(s) is its vertical part. The curve x(s) 
is a geodesic if and only if the equations 

Y-' + tfWY' + v'WZy = 0, Z" + (p'c(xn)Yc + (p"y(jS)Zy = 0 

are satisfied, where Y = Y"ea, Z=Z*eaL for an adapted frame field along 
x(y). By Proposition 1 these equations can be written in the form 

(5) Y"' + ipa
c(Y)Yc + Ap"cZfiYc+(il2)Tpa

yZfiZy = 0, 

(6) Za' + <p^x')Zy-OI2)Ax
icYbYc-(,íl2)T%pYcZ^ = 0. 

We know • A"bcYbYc=0 by the skew symmetry of A. The tangent vector y' of 
the projection curve has the components Y" with respect to the frame ea=nifea 

hence the equations (5) are equivalent to 

(7) V , / - ^(Aí¡
a

cZ''Yc + (\/2)Tl¡%Z'!Zy)ea. 

From the equations (6) and (7) it follows immediately that the horizontal lifts of 
geodesies of M are geodesies of P (in this case Z'=0). 

It is also clear that if a geodesic x(j) of P is horizontal at s0£l then it is 
horizontal for all s£J. 

We investigate here the non-horizontal geodesies of P. If is a non-
horizontal curve then (rs JC(J))'?*0 for all s£I. Let us denote by xa(s) the hori-
zontal lift of y(s)=7iox(s) through x(a) that is xa(p)=x(p) Let Y(x) 
be a horizontal vectorfield defined in a neighbourhood of the curve such that 
y(x„(j))=3c^(j) for all a, s£l. Let Z(x) be a vertical vectorfield defined in a 
neighbourhood of the curve x(s) such that Z ( X < J ( J 1 ) ) = T S J s^Z(xa(s2)) is satisfied 
for all s1,si£I, where is the translation n^1 ( J>(JI))—7t(y(s2)) along X^)-
From the definition of the vectorfields Y and Z we get ££YZ=0. It follows from 
(6) that 

0 = {dbZ')Yh + qfy(Y)Z* + {d,Z^Z> + (ft(,Z)Zi-{ll2)T?aZ>Ye. 
Since 

((dbZ*)Y» + <p*y(Y)Zy)ea = WrZ—<py(Y)Zyea, 

and by Proposition 2, 

V Y Z = JÍFY Z + ( l / 2 ) A r
a

c Y°Zyea — (1/2) T*cy YcZyea, 

which together with ¿¡?rZ=0 imply 

{{dpZ*)Zl>+(p*y(Z)Zy)ea-<p°y(Y)ZyeaHm)Ay°cYcZyea-T«cyYcZyea = 0. 
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By Proposition 1 <p°(Y)Zy=(\l2)Ay
a
cYcZy, we find 

(8) (dpZx)Zp + (p'y(Z)Zy = Tx
cyYcZy. 

Now, we fix a parameter s0£I. If we map the fibers onto J r - 1 ^ ^ ) ) 
using the translation T along y(s), we get the curve Z ( J ) : = T X ( I ) on 
7r_1(j(j0)). The vertical vectors {e„+1(j),..., £„+*(.?)} of the adapted frame field 
{^¡(i)} are mapped into the vertical frame field eJs):=Ts ^ea(s) along z(s); the 
vertical vectors Z(x(s)) and Z(z(s)) have the same components with respect 

* 

to the corresponding frames. Thus the left hand side of the equation (8) is (Vsz')O0), * 
where Vs is the induced covariant derivation along z(.v) on the submanifold 
7t_1(j(Jo)) defined by the induced Riemannian connection form <p*(Z). 

We can summarize the obtained results. 

Theo rem 1. Let x(s), s£I, be an arc-length parametrized curve in P. It is 
a geodesic of P if and only if 

(i) the projection curve y(s) = nox(s) satisfies 

V s / = -n*[A (x')x' + ai2)T(x\ x')] = — [Apa
cZpYc + (1/2)Tp"yZ^Zy]ea 

where Vs is the covariant derivative in the basic manifold M; 
(ii) for all s0£I the development z(s) = xs sx(s) of x(s) in the fiber 7c_1(^(i0)) 

satisfies 

Vsz'= T*cilY<Zi>ex at s = s0, 

where Vx is the induced covariant derivative in the fiber 7r-1(j>(j0)). 

P roof . We have proved already that the conditions (i) and (ii) are necessary 
for a geodesic x(s) of P. The sufficiency follows from the fact that the conditions 
(i) and (ii) give a second order differential equation for x(s), it has for all initial 
points and tangent vectors a unique solution which has to be the same curve as 
the geodesic with this initial point and tangent vector. 

5. Homothetic fibers. Here we give a more detailed discussion of the case 
which can be obtained from a Riemannian submersion whose fibers are totally 
geodesic submanifolds by a bundle-like homothetic deformation with a positive 
smooth function defined on the basic manifold (cf. [1]). 

If gab<»a®<»b+g<lpof®(D? is the metric tensor of the submersion {P, n, M) 
with totally geodesic fibers (i.e., Tp"y=0 and the translation of the fibers is iso-
metry), the submersion with the metric tensor 

gab caa®ojb + exp ( - (?) gxfi of <g> cop, 
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where g: M—R is a smooth function, is a Riemannian submersion such that the 
translation of the fibers is homothetic map. In this case the second fundamental 
tensor of the fibers is of the form 

(9) Tpay = gaexp(-g)gPy, where dg = gnco". 

(cf. Corollary of Theorem 2 in [1], p. 161.) 

Theo rem 2. Let {P,n,M} be a Riemannian submersion satisfying (9). The 
curve x(s) (s(il) is an arc-length parametrized geodesic if and only if 

(i) the projection curve y{s) — nox(s) satisfies 

V , / = — 7t*[A (V)x'] — (c/2) grad (exp e(y(s))) 

for a positive constant c; 
(ii) the development z(s)~rs s x(.y) in the fiber 7r~1(>'(i0)) is a geodesic para-

metrized with the speed [|z'|| = / c • exp o(j>(.s)), where the constant satisfies in an 
initial point s0dl, 

| |/(s0)||2 + c-exp 2g(y(s0)) = 1. 

Proof . The conditions (i) and (ii) of Theorem 1 give the equations 

(10a) V , / =-n,A (x')x' — (\/2)(grad Q)<Z',Z'>, 

(10b) Vsz' = Q'Z'. 

The equation (10a) can be obtained immediately by substitution of (9). For the 
proof of (10b) we note that in our case the translation of fibers T is homothetic 
and consequently affine map, thus for all s2£I the developments zx{s) and 

£ 
z2(s) in the fibers 7T _ 1 (> ' ( I ' I ) ) and 7 R _ 1 ( J ( I ' 2 ) ) , respectively, satisfy xs s *(Vszi) — * 
= Vsz2. It follows that the condition (ii) of Theorem 1 can be considered in a fixed 
fiber 7r-1(j»(Jo)) (Jo€/) for all s£f. The right hand side of the equation (10b) can be 
obtained by (9) 

Vsz' = Tx
cp YcZ^ex = z'(gcYc) = z'g'. 

The equation (10b) means that the curve z(s) is a geodesic in re_1(j(j0)), 
its speed can be computed as follows: 

' * * 

V s(exp(-e)z ' ) = —Q' exp( —g)z' + exp( —g)Vsz' = 0, 
that is 

(z', z') = exp( — Q) • c exp 2g = c • exp g, c = constant. 

We substitute this in equation (10a): 

Vs_y' = —ti*A (x')x' — (1 /2) (grad g)c • exp g = — n* A (x')x' — (c/2) grad (exp g), 
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and the necessity of the conditions of Theorem 2 is proved. But they are sufficient 
since for all initial points and tangent vectors these two second order equations have 
the same unique solution. 

Coro l l a ry 1. A vertical curve in a fiber n~1(y0) is a geodesic of P if and 
only if it is a geodesic in the submanifold 7t_1(j>0) and (grad o)(_y0) = 0. In this case 
the fiber n~1(y0) is a totally geodesic submanifold. 

Coro l l a ry 2. The function $(y, y'): TM—R defined by <f>(y, y') = 
= (] \c){y', y ) + exp Q(y) is constant along a projection curve of a geodesic. 

Proof . By Theorem 2 we have for a geodesic 

1 = <y, = < / , / > + c • exp Q = c • <P(y, / ) . 

Remark . The constant c along a geodesic x(s) can be expressed by the 
angle 9 between the geodesic x(s) and the fiber: 

c = exp (— e)(l — ( / , / ) ) = exp (— o) cos2 9. 
Thus the statement that / c=exp (—(l/2)g) cos 9 is constant is a generalization • 
of Clairaut's Theorem on surface of revolution. 

Co ro l l a ry 3. If {P,n,M} is a Riemannian submersion with totally geodesic 
fibers, the curve x(s) is a geodesic of P if and only if the following conditions are 
satisfied: 

(i) let a denote the arc-length parameter of the projection curve y = nox, 
the first vector of curvature is 

^ dy (dx\dx 

(ii) the development z(s) = xs sx{s) of in the fiber 7t_1(j(j0)) is a constant 
speed geodesic. 

Proof . Theorem 2 implies in the case g>=constant | | / | | 2 = 1 — ||z'||2=constant, 
therefore a is proportial to s. It follows 

= i i / I I - 2 V s / ( £ ) £ . 
Example . Let us consider the Hopf bundle 7i: S2m+1-+CP(m) of the unit 

sphere over the complex projective space equipped with the Fubini—Study metric. 
It is a Riemannian submersion with totally geodesic fibers (cf. [2], p. 466). 

Its tensor A can be expressed in the form A(Z)Y=(Z,N)JY, where J is 
the almost complex tensor on Cm+1, N is the tangent unit vectorfield of the fibers 
defined by JM for the unit normal vectorfield M of S2m +1, Z and Y are ar-
bitrary vertical and horizontal tangent vectorfields of S2m+1. 
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We get that the curve x(s) is a geodesic of S2m+1 if and only if 
(i) the first vector of curvature of y(s) is expressed by 

a do ~ *>J da ' 
dx 

where a is the arc-length parameter of ^(i) and the vertical part Z of — 
da 

is Z=CN. We have 

M da) J ° do da' 

that is the curve y(s) is a r e a l 2-plane curve in CP(w) of curvature — £ contained 
in the complex projective line (2-sphere) spanned by y' and Jy'. 

(ii) C=constant, that is the fiber curve Z(O)=T<t a x(o) is of the speed 
dz do £ 
— = z ' : — = L : || v'|| = with respect to the arc-length parameter a of the 
da ds |/1 
basic curve y(a), which is a circle of curvature — £ in a complex projective line in 
CP(m) ( - 1 < C < 1 ) . 

6. Stable fibers of the geodesic flow. As we observed in Corollary 1 of Theorem 2 
if y0£M is a critical point of the function g: M—R, n~1(y0) is a total geodesic 
submanifold of P, or equivalently the tangent bundle T[n~1(y0)) is an invariant 
submanifold of TP with respect to the geodesic flow on TP. 

The fiber 7r-1(j>0) is called stable (with respect to the geodesic flow) if for any 
£>0 it is possible to find a <5=<5(e)>0 such that if an arc-length parametrized 
geodesic X(J) satisfies the initial conditions 

d(nox(s0), jo) <= <5, | | i i ( so) | | <5 

then the inequalities d(jiox(s), y0)<s, ||7r+x'(y)|| hold for any where 
d is the distance on M. (For simplicity we suppose that the manifold P is complete 
and the geodesies of P are defined for all J€R.) 

Theo rem 3. If the function g: M-~R has at the point j0£Af strict local 
minimum, the fiber n~1(y0) is stable with respect to the geodesic flow. 

Proof . Since the function exp g has at y0 strict local minimum, the strict 
inequality exp e0>)>exp e(j0) if y^yo, is true in a neighbourhood V<zM. If y'^0 

/ ) = (1 A0</, / > + e x p g(y) > exp e ( j ) S exp g(y0) 
for y£V, that is the function <P(y,y') has a strict local minimum at {_y0, 0}£TM. 
Let be given an £>0 such that the ^neighbourhood of y0 is contained in V. 
We consider the values of $ on the boundary of the neighbourhood defined by the 
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inequalities d(y,y0)<e, || j>|| <e. The function # reaches its minimum <P* on 
this compact set (if £ is sufficiently small) and $*>exp We can find a 
neighbourhood d(y, ||j'||<<5 in TM such that here <P(y, y')< <P*. If the ini-
tial point and tangent vector of J ( J ) = 7 : O J C ( J ) satisfy the inequalities 
ll/(Jo)ll«5 then B u t b y Corollary 2 of Theorem 2<P 
is constant along y(s)=nox(s) if x(i) is a geodesic of P, consequently 
4>(y(s), y'(s))<<!>* for all I£R. Therefore the curve (J(J), /(J)}={^OX(J), n^} 
cannot attain the boundary of the ^neighbourhood of {j>0, 0}, because there would 
be 

This completes the proof. 

Coro l la ry . If {P,n,M} is a submersion with i-dimensional fibers, then at 
the strict minimum point y0£M of the function Q: M— R the fiber geodesic 7r-1(_y0) 
is stable. 
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On a Paley-type inequality 
F . S C H 1 P P 

Dedicated to Professor B. Szokefalvi-Nagy on his 70th birthday 

In this paper a new space similar to the dyadic Hardy spaces is investigated. 
This space is defined by a shift-invariant norm and it is proved that for 1 «= / x 
this norm is equivalent to the //-norm. 

1. Introduction 

The spaces LP=LP(0,1) (l</?-=°°) are considered as real Banach spaces 
of real-valued functions with the usual norms || ||p. The "dyadic Hardy spaces" 
are denoted by №\ The spaces Hp ( l^/?<oo) coincide with the space of all L1 

functions, quadratic variations of which belong to LP. The quadratic variation 
Q(f) of the function fdV is defined by 

0 ) Q ( f ) - = i i M „ ( / ) l 2 ] 1 / 2 
v n = 0 / 

where A„(f)=En(f)—E„-1(f) ( n -0 ,1 , . . . ) , E^f=0 and £„(/') denotes the 
2"-th partial sum of the Walsh—Fourier series of / . The operator E„ is equal 
to the conditional expectation with respect to the <r-algebra generated by the intervals 
[k2~n, (k+1)2_") (k=0, 1, ..., 2"— 1). The dyadic Hp-norm of the function / is 

( 2 ) ¡II/IIHP • : = | | F I ( / ) | | , ( 1 § ? < - ) • • 

It was proved by R . E. A . C. PALEY [1] that for l < / x a > there exist constants. 
cp and cp depending only on p such that 

(3) c'p\\f\\p^\\Q(f)\\p^cp\\f\\p (1 -=/><-), 

i.e., for 1 < / ) « » the Xp-norm'and the Hp-norm are equivalent. In the case p = 1 
the inequality ( 3 ) is not true. B . DAVIS [ 2 ] has proved (in a more general form) that 
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the ff-norm of / is equivalent to the Z.1-norm of the dyadic maximal function 
E*(f) of / : HQC/lLHI^COIl! where £ * ( / ) = s u p \En(f)\. Furthermore, it is 
known that 

(4) l|£*(/)llP ~ \№f)h ~ / IInf\ x)\\„dx (l ^ p <•) 
0 

where 

T(f ; x): = Zr„(x)An(f) 
1 1 = 0 

and r=(r„, n£N) (N:={0,1, 2, ...}) denotes the Rademacher system. A special 
case of (3) is the well-known Khintchine inequality: 

( - ) 1 / 2 

[2ai\ 
Vn=o / 2 a«rn (1 < p <»). 

The //-norms are invariant with respect to the dyadic shift operators 
sn(f):=fF„ (n£N), where the 'P„-s are the Walsh—Paley functions, i.e., | | / ! l p= 
= \\fVB\\p (1 n£N). The ff-norm has not this property. An easy computation 
shows that for the functions 

r2", if 0 ^ j c < 2 ~ n , 
D A X ) = l o , if 2 - ^ 1 < " € N ) 

we have 

(5) lie(A")l|1>3-1/2n, lie (fa»-Da") 111 = 1. 

We introduce the following shift-invariant norm: for 1 oo let 

WfWn; •= Ilsupec/^IU 

and denote by H* the set of L1 functions / , for which | | / | | H * < c o - Obviously, 
H*QH p . By means of (5) a function / 0 can be constructed such that ||/0|| J J J-C oo 

and II/¿11 h? — I" [3] it was proved that the sublinear operator 

e*(/) = sup g(/<?„) (/¡el1) n 

has weak type (2, 2), i.e., there exists a constant C independent of / such that for 
every ^ > 0 , 

mes {xe[0, 1): Q*(f){x) > y) < C « / | | t / ^ . 

In this paper we give the following generalization of the above result. 

T h e o r e m . «1. For l < / ? < ° ° the H*-norm is equivalent to the LP-norm: 
(6) \\Q*(f)h ~ 11/11» (l </><-). 
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2. There exists a function in Hx with infinite H*-norm. 

The first part of Theorem is a consequence of the following 

L e m m a 1. The operators 
(N-1 \!/2 

(7) • Qlif)= sup 2 M „ ( / f J I 2 {.mN) 
m«=2w V/1=1 / 

are of restricted weak type (p, p) for every 1 </>< i.e., for every measurable 
set Hi[0,1), 

(8) mes {x: Q* (x„)(x) > y} < Cp ||Zh|| >/y> (y > 0), 

w/iere w //¡e characteristic function of the set H and Cp is a constant depending 
only on p. 

It is easy to see that for every /6Z.1 there exists a linear operator Lf: L1-*/.1 

such that 
( 9 ) i ) L , ( f ) = Q % ( f ) , i i ) \ L f ( g ) \ ^ Q * ( g ) ( g i V ) 

hold. Indeed, for x£[0, 1) let 0 ^ M ( x ) < 2 N be such a number for which 

/JV-l 
Q % ( f ) ( x ) = [ 2 K i / ^ W M ! 2 ] . 

Furthermore, let 
JV-l 

Ls{g)(x) = 2 ^(x)AJg'FM<x))(x), 
n = l 

where 

£ra(x) = s ignzl m (/^wX^/f 1 4 . ( / ^ W l 2 ) ' ( l ^ m ^ N ) . 

It is obvious that for the linear operator Lf (9) is satisfied, and by (9) ii) it is 
also of restricted weak type (p,p) for 1 < / > < » . Applying the Stein—Weiss 
interpolation theorem (see, e.g., [5], p. 191) we get that the operator Lf\ Lp—L" 
( l< /?<°° ) and consequently on the basis of (9) i) the operators U-+LP 
(1 </?<«>) are also uniformly bounded. 

Since 
/ . 1̂/2 

Q*(f) ^ sup |£0(/f,„)|-f sup ^ K ( / f J I 2 = SUP I W O I + 1 ' ™ Q*Af), m wt * n = 1 ' in /V — co 
we have 

iie*coii, 3? cp*n/n, (i 

and by the Paley-inequality, 

c ; i i / n P < i i e ( / ) i i P ^ ! i r ( / ) i i P . 
This proves (6). 
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Let us introduce another shift-invariant norm by means of the maximal function 

E**{f) := sup \En(fTm)\ 
M,N( N 

as follows: let 
\\f\\*P ••= WE**coil, (i 

Since E*(f)mE**(f)^E* (\f\), the Doob-inequality (see [4]), implies that 
ll/llp~ll/llp ( l ^ / x 0 0 ) * i-e-, for l < p < o o the Hp-norm is equivalent to the || Hp-
norm. We do not know whether the Hj-norm and the || ||*-norm are equivalent 
or not. 

2. Two lemmas 

Let 
JN := {[k2n, (fc +1)2"): 0 S n < N, (fc + l)2" < 2N, k, n€N"}, 

and for an interval I = [k2n, (/fc+l)2n) we set m(I) = k2", | / |=2" and 

E i ( f ) = 2 { f fVndx}Ytt. 

Then, £ ,„(/)=£ [ 0 j 2„ )(/) and for all j f j = [k2n, (k+l)2n) we ha \e EI(J)=En(f¥J)TJ. 
By means of the intervals of JN the function Q^(f) can be written in the form 

QW) = sup (Z Mi(/)l2)1/2, 

where A,(f)=E, ( f ) — E , ( f ) and I+ denotes the interval for which / c / + and 
| /+ |=2 | / | hold. 

To estimate Q%{f) we use an elementary observation with respect to series, 
in which the indices of the terms are the elements of . We need the following 

L e m m a 2. Let g,: [0, 1) —R (/€ -fN) be a sequence of functions and 2?,c:[0, 1) 
{ld.fN) a sequence of increasing sets (i.e., implies B,QBj). Further let 
A,=B,\C\ Bj. Then 

jci 
(10) sup{| Z /, S C : = 2 sup yAj sup | 2 8j[ 1} 

IQJCK ickiqjizk 

Proo f . To prove (10), let a£[0, 1) and SIK = I Z 1B 8 I- We show that 
¡'¿Jag. J J 

S1K(x)^G(x). 
If SIK(x)^0, then the (linearly ordered) set {/£ JN: IQJczK, xiBj} is not 

empty. Denote by I the minimum element (with respect to the ordering Q ) of 

/<= K means that JQK and J^K. 
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this set. If / c J , then by the definition of I we have that for x $ B j . 
Let I* be such an element of the set J ~ {/€ JN: Jczl, x£Bj} (V0), for which 
| /* |=min ( | / | : / € • / } • From the definition of I* it follows that for every Jczl* 
we have / ( £ . / . Thus, for such J's, x$Bj and consequently x£A,t. From these 
we get 

|S«(*)| = \SIK(X)\ = \S,*K(x)-SltI(x)\ Eg 

/»gJcK /»gJcK 

and (10) is proved. 
Let 

f > / = sup { |£ j ( / ) | : J a I, 2 | / | = |/|} ( / e ^ , | / | s 2), 

(11) = \Ej(f)\ (/€•/*, |/| = 1), 

F f f = sup {Fjf : J g /}, F* / = sup {Fj*/: /€ A}-

The (T-algebra generated by the intervals [fc2-\ (Jk + 1)2-") (k=0, 1, ..., 2 " - l ) 
will be denoted by (H€N) and for | / |=2", set sd I=s4„. The sequence 
( £ , ( / ) , / € A ) is predictable. Indeed, since EI{f)=El,(f)+Er,{f) ( / = / ' U I " , 
/ / D / " = 0), F / / is _^measurable and \E,(f)\-<2F*f. 

For let 

B^ = {x€[0,1): (F*f){x) > v}, ¿ J = U 
(12) 

C/ = {x€[0, 1): (F*f)(y) ^ ey). 

Then the following statement is true. 

L e m m a 3. For every y>0, 

(13) 2 / | f f d x . 
N y (F*f>y) 

Proo f . On the basis of the definition of A$ and B\ it is obvious that 
(F,f)(x)>y if x£Ayj. Let 

D»r = {xtA*: \E,.(f){x)\ > v}, D»r = A»r\D»r, 

where 1'czl, 7 " = / \ / ' and 2 | / ' | = |/ | . We set 

Pi = -/^¡.EI' + Xdj.E,,. 

Since EIEJ= 0 if I(~)J=&, and XA%ZA$=0, if IcJ, on the basis of the 
^-homogeneity of E, (which means E,(Xf)=XEjf, if X is ¿¡//-measurable) we get 
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that the P / s are orthogonal projections, i.e., PIPJ=8JJPJ (I,J£SN). Thus 

\\x{F*i>y)f\\\ ^ || 2 = 2 WPJWl = 

= 2 f\Erf\'dx+ f \Er.f\2dx s y2 2 mes^J, 
D,- DJ" IZ'N 

and Lemma 3 is proved. 

3. Proof of Lemma 1 
Let 

( 1 4 ) £ ' = 7 *<a = 7 *c / + Cy =- °>-

Then ej is ^-measurable and 

( / s*Jdy)AIf=AIf. 
0 

Using this, the quadratic variation can be estimated as follows: 

Q„(f) = ( 2 M//l2)1/2 = ( 2 J W i f d y 

2 W t W d y , 0 ne/e^N 
and by Lemma 2 we have 

G s ( f ) ^ f sup WJdy, 
0 't'N 

where 

2 l^//l2)1/2, i g j i s N 
and consequently 

A 

(15) X{F*f<vQ*N(fi ^ f sup Ä J d j . 
0 tZ^N 

Using Abel's transformation, an easy computation shows that 

1 2 

thus by the Paley-inequality we get 

Wx^RX ̂  cp\\ 2 ZMfXA*)||p = 
(16) ' S ' e ' w 
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Let first />>2. Then by (13) and (15), 

x 
( 

0 J«-*« 
WXVWQNWLP^ / ( 2 №f\\U)ll2pdy^ 

X A 
^ 2(4eC 2 p f p f ( Z mes A^" dy =g C'p f ( / \f\°-/y2 dx)^p dy 

0 J6J,w 0 {F*/=>y} 

= C'p{fy~U2 dy)if (F*/r-2\f\Adx)l,2p ^ ic;x^(f \F*f\f2". 
0 0 0 

Using the maximal inequality ||F*/||r^(r/(/-— l))||/ | | r (/">!) we get 

Apmes {QUf) > A, F*f C; | | / | |p , 

and on the basis of the maximal inequality (8) follows for every /£LP (pS2). 
Let now and f~Xn- By a simple integral transformation (15) can be 

written in the form 

sup dt, 
0 It*» 

and since sup R f f =X{F*f=~?.t} syp R j ' f , by F*f^l we have 

(17) X { F * f s n Q W ) < f sup Rj'fdt, 

where A1=min The condition t^ ) . " - 1 yields 
thus by (13), (16), and (17) with q=2((2-p)/(p-l)+2) we have 

\ \ y . { F * f < ; . n Q ' U f ) l l ^ X / ( 2" I I W I I I ) 1 ^ ^ 
o 

^ X C q J ( 2 mes A j ' y i q dt «= (mes H)llqXCq J (Xt)~2lq dt 
0 0 

1 
is C q ) } ~p,q (mes H ) 1 / q f l ~ l l 2 d t = 2C?A1-p/i(mes H ) l l q . 

0 
From this we obtain 

Ap mes {Q*N Ap} S C p mes H. 

This and the maximal inequality gives (8). 
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4. Proof of the second part of Theorem 

Let 

/ = ¿ 2 
n = 0 

Since ||Da»||i = l (?€N), this series is absolute convergent a.e. and fZL1. It is 
obvious that 

11 = 0 

and consequently E*f£L}-, i.e., | | / | | H i < ~ . On the basis of Q(r2nf)^2-n ,2Q(D2v>) 
we have 

IIQ*(f)h ^ W Q i ^ J ) ^ ^ 2 - ^ m D ^ ^ (n€N), 

thus | | / | | H i = oo. 
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Moment problem for dilatable semigroups of operators 
ZOLTÁN SEBESTYÉN 

Dedicated to Professor Béla Szökefalvi-Nagy on the occasion of his 70th birthday 

0. Introduction 

The Main Theorem in the dilation theory of operators on Hilbert space due 
to SZ.-NAGY appeared in the Appendix to the third edition of [1]. The applications 
presented also in [1] show its central role in opérator theory. At the same time 
SXRNESPRING [11] described the so-called completely positive (linear) maps between 
C*-algebras as (in a general sense) dilatable operator valued (linear) functions. 
It is also a generalization of Neumark's theorem (see [1]) on the dilatability of 
positive operator measures, a source of dilation theory. 

On the other hand, Sz.-Nagy proved (see [1]) a moment theorem for self-adjoint 
operators generalizing a result of R. V. Kadison concerning a Schwarz-inequality 
for operator valued functions. Although it is also a consequence of the Main 
Theorem we think it has a more general character. Namely, given a ^-semigroup 
in a C*-algebra and an operator valued function on this ^-semigroup, a moment 
theorem for the existence of a (completely positive) linear operator-function on the 
whole C'-algebra can be formulated. This generalizes also Stinespring's theorem. 
Moreover we treat the moment problem for operators in the general case, when 
we assume only that the restrictions of the operators in question to some given 
subset (not assumed to be a subspace) of the Hilbert space are given. It is a new 
aspect for the existence of a single positive (hence for a self-adjoint) operator on 
Hilbert space and a self-adjoint semibounded operator also. The familiar Krein 
and Friedrichs extension is thus generalized and joined to moment and dilation 
problems. 

The scalar valued case gives also a new insight into the classical Hausdorff 
moment problem, giving a solution analogous to that of the trigonometric moment 
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problem by Riesz and Fejér. In any case, our solution differs from those of Haus-
dorff and Riesz—Fejér. 

We give a new characterization of subnormal operators, too, along the lines 
of our argument. 

For other applications, e.g., factorization questions for operators, moment 
problems for contraction and subnormal operators and their generalizations, see 
[4, 5, 2, 3, 10]. 

The author is deeply indebted to Professor Béla Szőkefalvi-Nagy for his 
advices. 

1. Main problems and results 

Given a *-semigroup G, a subset X of a Hilbert space H, and a function 
f : GxX-*H, it is natural to seek an operator valued function F on G assuming its 
values in B(H), the C*-algebra of all bounded linear operators on H, such that 

(1) F(g)x = f(g, x) (g€C, xeX) 
holds. In this case F is called an operator representation of / . 

We shall treat only the case when F in (1) is dilatable (in a general sense), 
i.e., when there is a Hilbert space K with a continuous linear operator V: K-+E 
and a ^-representation S of G on K such that 

(2) F(g) = VS{g)V* (g€G). 

Here F is strongly dilatable if V satisfies VV*=IH. A C*-seminorm p on a 

^-semigroup G is a. submultiplicative function p: G —R+ with p(g*g) — p(g)z 

implying p(g*) = p(g) (g€G). 

Theo rem 1.1. A given H-valued function f on GXX has a dilatable operator 
representation F if and only if there exist Ms0 and a C*-seminorm p on G 
such that 
(3) 112" c„.xAh, x)||2 SM z 2 chtXck,y{f{k*h, x), y) h,x h,x k,y 
holds for each finite sequence of complex numbers indexed by elements of 
GXX, and 
(4) (f(g*g,x),x)sMp(gnx\\* (g€G; x£X). 

Theorem 1.2. Assume that G has an identity e and that the function f on 
GXX satisfies 
(5) f(e, x) = .r (xiX), 

(6) V{/(g,*): g€C, x£X} = H. 
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This function f is of the form(l) with strongly dilatable F if and only if there is an 
H-valuedfunction <p on GXf(GXX) such that 

(7) <p(g, f(e, x)) = cp(e,f(g, x)) = / ( g , x) (g£G; x£X), 

(8) |\<p(g>f(g'> *))|| ^ P(g)Wf(g', *)ll (g. g'ZG; x£X) 

for some C*-seminorm p on G, and 

(9) 112"c„.tq>(h' «II2 ^22Ck.&.Mk*h> o,i) 
h,i h.ik.r, 

for each sequence {ch>i} of complex numbers indexed by elements of G X f ( G X X). 

Let now G be a (multiplicative) *-semigroup in a given C*-algebra A. In this 
case a B (H)-valued operator function F on G is A-dilatable if there is a ^repre-
sentation S of the C*-algebra A on some Hilbert space K with a continuous 
linear operator V: K-*H such that (2) holds. In other words F has a completely 
positive (linear) extension to the whole A (hence a "moment" F is given for this 
completely positive map). We shall treat a more general setting by restricting the 
data to a subset of the Hilbert space. 

T h e o r e m 1.3. Let G be a (multiplicative) * -semigroup in the C*-algebra 
A whose linear span is norm dense in A. An H-valued function f on GXX is of 
the form (1) with an A-dilatable operator function F if and only if there is a constant 
AfgrO such that 

|| 2ch,xf{h, x)||2 ^M 2 2 ch,xckM(k*h> *). y)> 
(10) 

2 2 chck(f(k*h> *)• *) ^ MM2\\2 chh\\2 (x€X) 
h k h 

hold for each finite sequence {¿¿-J or {c,,} of complex numbers indexed by elements 
of GXX and G, respectively. 

T h e o r e m 1.4. Assume that 4 has an identity e such that the *-subsemigroup 
G of A which spans A, contains e too. An H-valued function f on GXX with 
(5)—(6) is of the form (1) with a strongly A-dilatable operator function F if and only 
if there is an H-valued function <p on GXf(GXX) with (7) and such that 

II2c„,Mh> OlM 2 2 ck.iCkin(cp(lc*h,0,10, 
(11) 

2 2 chck(cp(k*h, 0 S UW2\\2 c„h\\* (zefiGxx)) 
h k h 

hold for any finite sequence {c/li or {cA} of complex numbers indexed by elements 
of GXf(GXX) and G, respectively. 
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P r o o f of the necess i ty . (1.1) Assuming that the //-valued function / 
on GXX has form (1) with dilatable operator function F on G, we have, for 
any finite sequence {c,,*} Qi^G ,x^X) of complex numbers, 

I I Z c „ ! X f { h , c f = 112" clhXF(h)x\\* = \\V 2 ch,xS(h)V*x\\* ^ 
h,x h,x k,x 

s \\vf 2 2 c„,xckty(VS(k*h)V*x,y) = \\Vf 2 2 c„,xck,y{f(k*h' *)>y)-
h,x kry h,x k,y 

Moreover, 
(f(g*g. x), x) = (F(g*g)x, x) = (VS(g*g)V*x, x) = 

= l|S(gF**ll2 si | | S ( g ) | H i n i 2 M 2 = | i m i S ( g ) I I W 

holds for each g€G, x£ X. This yields (4) with the C*-seminorm p on G defined 
(by the ^representation 5 of G on the Hi (bert space K) as p(g):= ||S(g)ll (g€G). 

(1.2) Defining q> on GXf(GxX) by 

(12) <p(g,/(g', x)) := F(g) / (g \ x) (g, g '€C; x$X) 

we deduce (7) and (8) from (5) and (1) as follows: 

<p(g, / 0 , x)) = F(g)f(e, x) = F(g)x = / ( g , x), 

<p(e, fig, x)) = F(e)f(g, x) = VS(e)V*f(g, x) = VV*f(g, x) = / ( g , x), 

\\<p{gj\g', *))|| ^ ||F(g)||||/(g', *)|| ^ ||K||||5(g)||||K*!|||/(g', x)\\ ^ ||S(g)||| |/(g', x)||. 

To prove (9), let {cA>i} be any finite sequence of complex numbers indexed by 
elements of GXf(GxX). We have then 

| | 2 c h , M k > c)||2 = | | 2 c*.{i-(/«){||2 = \ \ v 2 c h , sS(h)v*zf s 
h,Z h,( k,i 

^ WW2 2 2 c„,{cki,(vs(k*K)v*z, n) = 2 2 ch,,ckfn{cp(k*n), q), n). 
k,t] h,i k,ti 

(1.3) Assuming that F is ^-dilatable, we know that 5 is a ^representation of 
the C'"-algebra A. Hence | | S | | S l . From (1.1) we see furthermore 

T ¡ L I I 2 <*.,/(*, x)||- s 2 2 ch,xck,,{/(k*h, x), y), 
II" II h,x h,x k,y 

2 2 c„ck(f(k*h, X), x) =§ \\2chS(h)V*x\\ = | | S ( 2 c„h)v*x\f == 
h k h h 

S l l s p ^ ^ h i n i W ^ \\xF\\2 chhf 
h h 

for any x£H, whence (10) follows. 
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(1.4) Applying <p defined above in (12) we have by (12) and by the relations 
||K|| = 1 , | | S | | s i that 

| |2c,„Mh> all2 s 2 2 0, ti), 

2 2 c,M<P(k*h, a c) = \\2 chS(h)V*c\\* = \\S(2 c„h)V*ZII2 ^ 
h k h h 

s ll^pll^c^llKli^pgH^c,,/!!!2^!!2 (^ / (Gxi ) ) . 
h h 

Proof of the suff ic iency. (1.1) Let / be an //-valued function on GXX 
satisfying (3) and (4) with a C*-seminorm p on G. Further let K0 be the linear 
space of all finitely supported complex valued functions on GXX. Each element 
of K0 has the form 2 ch x$(h, x), where ¿(It, x) denotes the function assuming 

h.x 
the value 1 in ( l t , x )£GxX and 0 otherwise, and {c;, (/i€G, x£X) is a finite 
sequence of complex numbers. With this notation we can define two operations 
on K0, the first of which is the linear map V into H given by 

(13) V(2c„,xS(h, x)) := 2 ch,xf(h, X), 
h,x hyX 

and the second one the translation operation on K0 by elements of G, defined for 
any g in G by 
(14) S(g)(2ch,x5(h,x):= 2 c„.x5(gh, x). 

h,x li,x 

Remark also that the map g>-*S(g) constitutes an endomorphism of G. Lastly, 
we define a semi-inner product ( • , •) on by 

(15) ( 2 c>tXS(h, x), 2 dk,y5(k, y)\ 2 2 Ca, *). y\ 
li,x k,y h,x k,y 

Observe the nonnegativity of the right hand side in (5) in view of (3). Now we are 
in a position to construct a Hilbert space K with a continuous linear map V: K-*H 
and a ^representation S of G on K such that (1) holds with F satisfying (2), 
too. We obtain a pre-Hilbert space by factorizing K0 with respect to the null 
space N:= { { 6 ^ : (£, O^O} a r |d by taking the induced inner product on K0/N. 
The completion of K0/N is a Hilbert space, say K. For simplicity, denote also 
by S(h, x) the image of S(h, x)dK(l in K under the factorization. Thus K„ is 
viewed as a norm dense subset of K and V is a densely defined bounded (cf. (3)) 
linear operator from K into H. Thus V has a unique continuous extension to 
K which is denoted naturally also by V. Lastly we have to show that S(g)(g£G) 
induces a bounded linear operator also denoted by S(g) on K such that S*= 
= S(g*) for any g in G. To this end let £, = 2ch X<>(h,x) be taken from a dense 

h,x ' 
subset of K and we show 

(16) ||S(g)il| S/>(g)ll£ll (g€G) 

24 
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which is enough for our purpose. Indeed, we have 

l|S(g)£P = | | 2 ct.x5(gh, x)||2 = 2 2 Ch,xCk,y(f(k*g*gh, x), y) = 
h,x h,x k,y 

= ( s ( g * g ) t , o ^ n s (g*gwi ie i 
and hence, by induction on n, 

II 5(g) ill2" ^ lis((g*g)2""!)£ll2ll£ir~2 = llill2"~2||2 cA.x (̂g*g)2"~2/'> *)||2 ^ 
h,x 

^ H\r~z{z Kx\mg*gT-2h, *)«)« = *sr-1h, x), s 
h,x h,x 

s m2"-K2\cHjM^p((g*gr-!h)\\x\\ys ( b y ( 4 ) ) 

h,x 

. ^ Hill2"-2Mp(gFp(fc)2(2 \chJ\\x\\y (n = 1, 2, ...). 
h,x 

This implies (16) for w — 
Now S{g)* = S(g*) follows for any g in G by observing 

(17) < W ) £ , = S(g)»i> for each 

Indeed, if £ = 2 c / i x ) , rj = 2 dk_y5(k, y), then both sides of (17) are equal to 
h,x k,y 

22chAy{nk*S*h,x),y). 
h,x k,y 

To complete the proof of (1.1) we show 

(18) VS(g)V*x=f(g,x) (g€G; x€X). 
By (13), it suffices to see that S(g)V*x=S(g, x). But 

(S(g)V*x, 2 dk,yd(k, y,)> = (x, VS(g*)(Z dk,yS(ky))) = 
k,y k,y 

= ( * , V { 2 dk.yS(g*k, y))) = (x, 2 dkJ(g*k, y)) = (5(g, x), 2 dk,y5(k, y)) k,y k,y k,y 
holds for any 2 dk y$(k, y)£K0, verifying our assertion. 

(1.2) We shall adopt the argument used in the proof of (1.1) by replacing 
X by f(GXX) and / by (p. (9) is a translation of (3) into the new situation and 
(4) implies (8) with M = 1 since 

||<Kg,/(g', *))||2 ^ 0?>(g*g,/(g'. x)), /(g-, ^ 
s I\<p(g*g,f(g\ *))|| | |/(g', *)|| ^ P(g)2 | | /(g', xW 

for any g, g'dG, x£X. Now we define V, S, ( , ) by 

(130 V(2cH.tS{h, a ) := 2ch,q>(h, 0, 
h.i h,i 

(140 S(g)(2 c„.tS(h, a ) := 2 cM.<S(gh, a 
h.i h,i 

(150 <2 cMliS(h, 0 , 2 d k . n S ( k , t f f ) := 2 ! 2 cKi2k,n{<p{k*h, 0 , r,). 
*.{ k.q h,{-Jc, ij 
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In consequence, we have a ^representation S of G on some suitable Hilbert 
space K with a continuous linear operator V: K^-H such that 

(19) VS(g)V*f(g\ x) = cp(g,f(g', x)) (g, g'€G; *€*)• 

By (3) and (7) this implies (18) since 

VS(g)V*x = VS(g)V*f(e, x) = <p(g, f(e, x)) = / ( g , x) (g€G; xtX). 

Finally, since S(e) = IK, by (7) we have 

VV*f(g, x) = rS(e)V*f(g, x) = cp(e, f(g, x)) =f(g, x) (g£G; x€X) 

proving VV*=JK (cf. (16)). 
(1.3) First of all (10) implies (4) if we take the C*-(semi)norm p on G defined 

in terms of the norm || • || of A as /?(£•) = ||g|| (g€G) since 

(f(g*g, *), x) S M||x|H|g||2 (g£G, x€X). 
As a consequence of the proof of (1.1), we have a ^representation of G on a suitable 
Hilbert space K such that (18) holds true. This proves (1) for a dilatable operator 
function F satisfying (2). But we need the ^-dilatability of F. The key step is at 
hand: we shall prove the extendibility of S from G to A. To this end we have 
only to show 
(20) | | 2 ^ ( s ) N I | 2 M | 

9 9 

for each finite sequence {A9} of complex numbers indexed by elements of G 
(because G spans A). Putting a—?} ¿gg^^, £ chx5(h,x)£K we have for 

S(a) = 2i.S(g) 
||S(a)§||* = <S(«*aK, 0 ^ l|S(a*flK|| l|{||, 

and thus by induction, for any n = 0, 1,2, ..., 

h, x 

= mr-2\\2 Z chtXls5(gsh, *)||2 S mr-*{Z ||2 ch,xKS(gsh, x)||)2 = 
h,x s x h,s 

= ur-"-2{2 (2 2c„,xckM{f(k*gtgsh, x), s 
x h, s k,t 

^ m2"-2(2M^\\x\\\\2ch,xXsgsh\\f == \\i;r-*M{2 M\\2cH,xh\\y\\2¿sgs\\2 = 
x hyS x h s 

= \\(a*a)^na2"-2M(2\\x\\\\2chrXh\\y = M H | £ | F r 2 M ( 2 11*111|2 ch,xh\\f. 
X h x h 

By passing to /7—°o we see that HS^HS||a|| [|£||, which proves (20). Here the 
notation (a*cif" = 21-sgs was used for a= 2 Xgg. 

s g 

24« 
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(1.4) Similarly as before we adopt the preceding argument for our purpose 
such that X is replaced by f(GxX) and / b y (p. (11) is then a simple translation 
of (10) into the new setting. The definitions (13'), (14') and (15') yield a ^repre-
sentation of A on a suitable Hilbert space K with a continuous linear operator 
V: K—H such that (19) holds also true. The proof of (18) and VV*=IH is the 
same as in (1.2). 

2. Applications 

(i) Let G be the trivial semigroup G = {e). A familiar identification GXX^X 
implies the following results. 

Theo rem 2. 1. Let f be an H-valued function given on a subset X of the 
Hilbert space H. There exists a self-adjoint operator F on H with mIHsFSM1H 

and extending f if and only if 

(21) cx{f{x) - mx)||2 == (M- m)(Z cx (/(*) - mx), 2 cxx) 
X X X 

holds for any finite sequence {cx} (x£X) of complex numbers. 

Proof . Since a self-adjoint operator F is bounded by m and M from below 
and above, respectively, ifandonlyif 0sF—mIH and \\F—mIH\\SM—m, we have 
the assertion by Theorem 1.1. Indeed, (3) is the same as (21) ((4) is immediately 
satisfied with p(e) = 1 if M—m is replaced by M) for f—mlx. 

Coro l l a ry 2.1 (KREIN (see [1])). Let f be a symmetric and bounded linear 
operator from a linear subspace X of the Hilbert space H. Then there exists a self-
adjoint operator F on H extending f and with the same norm. 

Theorem2.1.1. Let b be an H-valued function given on a subset Y of the Hilbert 
space H with norm dense linear hull in H. There exists a semi-bounded self-adjoint 
operator B with bound 1 from below and extending b if and only if 

(22) \ \ 2 c x x \ \ ^ { Z C x X , Z c x b ( x ) ) 
X X X 

holds for each finite sequence {cx} F) of complex numbers. 

Proof . The necessity of (22) is evident so we omit the proof. To prove the 
sufficiency of (22) let / be the inverse map of b (the existence of which is an easy 
consequence of (22)). Since (22) is the same as (21) with m=0, M = 1 we have 
by Theorem 2.1 a positive operator F with norm s i which extends / Hence 
F has an inverse B = F~l too. B is the desired operator. The proof is complete. 
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C o r o l l a r y 2.1.1 (FRIEDRICHS (see [1])). Let b be a symmetric operator 
bounded from below by 1 defined on a dense linear subspace Y of the Hilbert space H. 
Then there exists a self-adjoint operator B bounded from below by 1, and 
extending b. 

(ii) If H is a one dimensional Hilbert space, Theorem 1.3 (with the usual 
identifications B(H) ^ C, X={1}) gives us a new solution to the classical Hausdorff 
moment theorem differing also from Riesz' solution. 

T h e o r e m 2.2. Let G be a (multiplicative) *-semigroup of a C*-algebra A, 
spanning a norm dense *-subalgebra in A. A complex valued function f given on 
G has a (necessarily unique) positive linear extension to A if and only if there is 
a constant M> 0 for which 

(23) (W)\2 cj(g) I2 ^ 2 2 ctckf(h*g) M\\2 
9 9 * 9 

holds for each finite sequence {cg} (g€G) of complex numbers. 

C o r o l l a r y 2.2.1. Let f be a complex valued function on a C*-algebra A. 
f is a positive linear functional on A if and only if (23) holds with G=A. 

C o r o l l a r y 2.2.2. Let Q be a compact subset of the real line and let {/¿„}~=0 

be a given sequence of complex numbers. There is a positive (bounded) measure 
p on Q such that 

ft"dp = n„ for n = 0 ,1 ,2 , . . . 
n 

if and only if 
(24) 2 2 cm Cn Hm+n S //„ max | 2 c„ t" |2 

m n ' ̂ 12 n 

holds for each finite sequence {C„}„BO of complex numbers. 

Coro l l a ry 2.2.3. Let Q be a compact subset of the complex plane and let 
{lln,n}m, n=o be a given double sequence of complex numbers. There is a (necessarily 
unique) positive (bounded) measure p on Q such that 

f (l)mX"dn{k) = nm>n for m,n = 0 ,1 ,2 , ... 
Q 

if and only if 

(25) 0 si 2 2 CjCknmj+nk,mk+„. //„,„ max 1 2 Cj(Iyi}"M 
j k 11« j 

holds for each finite sequence {c'j}jgo of complex numbers. 
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3. Operator problems 

Theorem 3.1. Let G be a (multiplicative) *-semigroup in a C* -algebra A 
generating a norm dense *-subalgebra of A. An operator valued function f:G—B(H) 
is A-dilatable if and only if there is a constant M such that 

(26) \\2 / (g) *9||2 2 2 (f(h*g)xg, xh) 
9 9 h 

and 
(27) 2 2 cech(f(h*g)x, x) ^ M\\xV\\2 cgg\\2 (xZH) 

9 * 9 

hold for every finite sequence {xg}gfa and {c9}96C in H and C, respectively. 

Sketch of the p roof (for details see [9]). The following function / on GXX 
given by 

/(g.*)=/(g)* (g€G; 

where X = H, produces (26) and (27) along (10) with xg = 2cg,xx• The necessity 
X 

of (26) and (27) thus follows. For the proof of the sufficiency we have to change the 
argument used in the proof of Theorem 1.3 replacing K0 by the linear space of 
//-valued functions on G with finite support, that is, 5g is replaced by Sgxg with 
xB£H for g£G. An easy analysis of the proof of the sufficiency part of Theorem 1.3 
shows our statement. 

Corol lary3.1.1. Let G be a (multiplicative) *-semigroup in a commutative 
C*-algebra A generating a norm dense *-subalgebra in A. An operator valued 
function f : G^B(H) is A-dilatable if and only if there is a constant M >0 such that 

(28) 

cg{f(g)x, x)|2 S M* 2 2 cgch(f(h*g)x, x) * M||x||"||2 C9g||2 (x£H) 
9 9 A 9 

holds for each finite sequence {cg}gf G of complex numbers. 

Proof . Since (26) and (27) imply (28) (by setting xg = cgx for g€C, xCX), 
the necessity of (28) is obvious. For the sufficiency, the function g>-*{f{g)x, x) 
on G has a (unique) positive linear extension by Theorem 2.2 for any fixed x in H. 
The norm of this extension is ¿M 1 ' 8 M 2 . Hence we obtain a positive linear extension 
F of / to the whole of A. But a result of STINESPRING [ 1 1 , Theorem 4 ] ensures 
that F is automatically ^-dilatable. 

The next result solves the operator moment problem of Sz.-Nagy in a new way. 

Coro l l a ry 3.1.2. Let Q be a compact subset of the real line and let 0 

be a sequence of operators on a Hilbert space H. There is a positive (bounded) 
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operator measure F on (2 such that 

f f(F(dt)x, x) = (A„x, x) for n = 0, 1, 2, ...; x£H 
a 

if and only if 

(29) 0 ^ 2 2 cmc„(Am+nx, x) Moll ||x||2 max \2 c„tf (*€//) 
m it ' ̂  ii 

holds for any finite sequence {c„}nfe0 of complex numbers. 

Proof . (29) is a version of (28) for G={i"}~=0 (t£(3) and A=C(£2) with 
f(t")=A„ (n=0, 1,2, ...). Thus Corollary 3.1.1 implies the statement. 

Co ro l l a ry 3.1.3. Let Q be a compact subset of the complex plane and let 
{^m.n)^ ,,=0 be a double sequence of operators on a Hilbert space H. There is a 
positive (bounded) operator measure F on Q such that 

j(l)mk" (F(dt)x, x) = (Am„x,x) (in, n = 0, 1, 2, ...; x£H) 
n 

if and only if 

(30) 
c}ck(Am]+nk,mk+njx, x) =§ Mo.oil ||x||2 max 2 c / X ) » ^ 1 (x£H) 

j k j 

holds for any finite sequence {c^}^ of complex numbers. 

Proof . (30) is a version of (28) for G= {(I)m;."}~ n=o (A£Q), A=C(Q) with 
f{(l)mX")=Am>n (m,n = 0,1,2, . . . ) . Thus Corollary 3.1.1 implies Corollary 3.1.3. 

It follows a new characterization of subnormal operators (for the definition 
see [1]). 

Coro l l a ry 3.1.4. Let B be an operator in B(H) for a Hilbert space H. 
B is subnormal if and only if 

(31) 0^2 2 ckJcmtl,(B^+">Bl+-x, x) == llxf max 1 2 cm,„ (I)mA f (x(,H) 

holds for any finite double sequence {cm>„} nS0 of complex numbers, where Q de-
notes the spectrum of B. 

Proof . B is subnormal if and only if the function 

(l)mXn B*mB" (m,n = 0, 1, 2, ...; l£Q) 

is C(i3)-dilatable (for details see [9]). But this is equivalent to (31). 
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On the overconvergence of complex interpolating polynomials. II 
Domain of geometric convergence to zero 

J. SZABADOS and R. S. VARGA 

To Professor B. Szokefalvi-Nagy on his seventieth birthday 

1. Introduction. We continue here with developments concerning extensions 
of Walsh's Theorem on the overconvergence of sequences of differences of inter-
polating polynomials. As the title suggests, we are interested in determining precisely 
those domains in the complex plane for which (cf. [1]) the sequence 

(1.1) {Pn-Z,f)-Qn_hl(z, f))~=l 

converges geometrically to zero for all f£Ae, where Ae is the set of functions 
analytic in the circle |z |<g and having singularity on |z| = i? ( e> l ) . Here 

oo 

^„^(z, Z , / ) is the Lagrange interpolating polynomial of f(z)— degree 
fc = 0 

Sn—1 based on the nodes determined by the nth row of the infinite triangular 
matrix Z = {zfc>n}t"=ln"=1, and 

(1.2) Q n - U ^ f ) •= S T 2 Q = !>2> •••)• 
*=o \j=0 > 

2. Constructions. As for Z, we now assume the stronger hypothesis (than 
that used in [1]) that there exists a real number Q' with 1 for which 

(2.1) I S | z j s e ' < e (fc = 1, 2, ..., n; n = 1, 2, ...). 

As in [1], we set 

(2.2) ft>H(t, Z) := n <f-zk.„) (« = 1, 2, ...), 
k = 1 

and 

(2.3) Gl(z, *) = Gi(z, * , Z ) := Em { ^ l - t - ' ^ - ^ ^ f , 

Received June 25, 1982. 
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for any R>Q' and any complex number z. We also set 

(2.4) 

With these definitions, we first establish 

G,(z, g) := > f G,(z, R). Q ' - R Q 

P r o p o s i t i o n 1. For any complex number z ^ l and any positive integer I, 
there holds 

(2.5) 
max{ |z | ; l} . , „ 

Gt(z, R) S ¿}+I' f (z TÍ 1 ,R> Q'). 

P r o o f . From the techniques of [1], we see, via the maximum principle, that 

max 
1*1 —* 

n t - > " \ z " - 1 œ " ( z ' z ) 
K } f-1 a>m(t,Z) 

= max 
| r | = * 

( t0-1) + fi-m + . . . + 1 ) ( Z » _ 1 ) ^ ( , , Z ) - i i n ( z , Z) 

= max 
| ( |=R 

t"'0Jn(t, Z) 
( , ( l-i)„ + / ( i - 2 , n + + Z)-/ '"tó„(z, Z) 

_,„ l(z"- !>„ (0 , Z)I | z n - l | 

as |<wn(0,Z)|sl from (2.1) and (2.2). Thus from the definition of G,(z, R) in 
(2.3), (2.5) immediately follows. Q. E. D. 

Now define 

(2.6) A,(z) = J,(z, Q,Z) := sup lîïïï ^ ( z , Z, f)~Qn-,j(z, f)\1"' 

for any complex number z. Then we have 

P r o p o s i t i o n 2. For any z with 

(2.7) G1(Z,Q)^A1(Z)^G1(Z,Q). ; 

P r o o f . Let £' denote the matrix of nodes of interpolation formed from the 
roots of unity. Then for any f(LA0 and e>0, we have by [1, (1.9)] 

| p ^ z , Z, n-Qn-iAz,f)\ ^ |Pn-i(z, Z,f)-pn-y(z, E,f)\+\p„_^z, E , f ) — 

— 6 n - l , i ( Z > / ) l — 2 n 
rf(t)(íQn(z,Z) z " - h I / |z| y 

MfR | z " - l aJ„(z,Z)| 
— — m a x I——: „ ; + ( M | z | - / ? | ' l= .*U n - l co„(t, Z) 
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where r={f.\t\ = R), Mf = max\f(z)\, provided /iS/70=»0(e). Hence by Propo-
sition 1, 

Gm |pn^(z, Z, f)-Ql}-ul(z, f)\1/n S max 

S max 

{(7, (z, R) + e, - + e 

But here e > 0 and R (Q'<R<Q) were arbitrary. Thus again by Proposition 1 

ÏÎE |p„-i(z> f)~Qn-,j(2, f)p'" S , inf G,(z, R) =: G((z, o). n-* OO Q «C Q 

As this inequality holds for all fdAe, this gives from (2.6) that 
A,(z) S 6,(z, g), 

the desired first inequality of (2.7). 
Next, for any u with |w| = g and with f„(z):=(u—z)~1£Ae, a direct computa-

tion gives that 

(2.8) p„ -1 (z, Z, /„ ) - £„ _ i,, (z, / , ) = + « - " ] • 

Now by Proposition 1, G,(z, g)>g~l ( lz |>e). Thus we may choose an e > 0 with 

(2.9) iT ' + e < G,(z, g) (|z| > g). 

Further let {«,•},7= i be an infinite sequence of positive integers with »i<«i<••• 
(dependent on z) such that 

Z"J-1 A (z, Z) max 
l'l = e 

(1 (G,(z, 0 ) - £ )» , (7 = 1,2, . . . ) 
V ' j - l (o„.(t, Z) 

(cf. Definition (2.3)). Now, choose with |wy| = e (which is also dependent on z) 
so that 

(2.10) 

U 1 J )i,»jJ-1 ®nj.(Wy,Z) 

= max 
|t| = e 

(G,(z, ¡?)-e)"J 

for each / = 1, 2, ... . With «=«,• and t /=i/ j , it follows from (2.8) and (2.10) that 

1 
liV,-i(z> Z fUj)-Qnj-u M + e 

{(Gj(z, i?)-e)"J-o-'">}, 

for all ./ = 1,2, ... . Now, following the construction of [1], there is an / (dependent 
on z) in Ae for which 

(2.11) IP n j_ x{z, Z , / ) - e n j _ M ( z , / ) | s 3 ( [ z | | g ) n _ { ( G , ( z , ^ - s ) » , - ^ « . , } 
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for all 7 = 1 , 2 , . . . . Thus, by (2.9) 
HE | p n - Á z , Z j ) - Q n _ l t l ( . z , ? ) Y i " ^ G,(z, g)-e, 

and as / is some element in Ae, then from the definition in (2.6), 
J,(z) £ G,(z, e)s. 

But, as this holds for every e > 0 with Q~1 + E<G,(Z, Q), then 
A,(z) £ Gt(z, Q), 

the desired last inequality of (2.7). Q. E. D. 

As an obvious consequence of (2.7) of Proposition 2, we have 

C o r o l l a r y 3 . Let z be any complex number with \z\ for which Gt(z, <?)< 1. 
Then, the sequence (1.1) converges geometrically to zero for each f£At. 

As a consequence of the proof of Proposition 2, we further have 

Coro l l a ry 4. Let z be any complex number with \z\ >Q for which Gt(z, £>) > 1 . 
Then, there is a function / (depending on z) in Ae for which the sequence (1.1) 
(with f replaced by J) is unbounded. 

Proof . If G,(z, g) = l+2t] where ?/>0, choose e > 0 sufficiently small 
so that Gt(z, e)—e>1+^>1. Then, (2.11) directly shows that the sequence (1.1) 
(with / replaced by / ) is unbounded. Q. E. D. 

Obviously, Corollary 4 and Proposition 1 imply that the sequence (1.1) is 
necessarily unbounded for some / in Ae, whenever |z| The same conclusion 
was deduced in [1]. 

Open ques t ions . 1. Is Gt(z, Q)=G1(Z, Q)? 
2. Assuming the answer is "yes" for the previous question, then ©:= 

:= {z: Gj(z, f?) = l} divides the complex plane into sets where either one has 
geometric convergence to zero for all / in Ae or unboundedness of the sequence 
(1.1) for some / i n At. What does © look like? 

3. In general, one would not suspect that © is a circle, even though this is 
the case for all examples treated in the literature. Can one construct cases (i.e. 
matrices Z) where indeed © is not a circle? This suggests considering Z={zk n} 
where { z k a r e not uniformly distributed, as 
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On symplectic actions of compact Lie groups 
with isotropy subgroups of maximal rank 

J. SZENTHE 

Dedicated to Professor B. Szokefalvi-Nagy on his 70th birthday 

Let (M , (a) be a symplectic manifold, G a connected Lie group and 
<P: GXM—M a symplectic action. Iftheaction <P has a momentum map [i\M-+ g*, 
where g* is the dual space of the Lie algebra g of G, then there is an action 
f : GXg*—g* such that p. is equivariant with respect to the actions <P, W. In 
this setting are derived the results of A. A. Kirillov, B. Kostant, J. M. Souriau and 
of others concerning Hamiltonian systems with symmetries ([1], pp. 276—311). 
Restriction to the case where G is compact offers a situation with peculiar features, 
a subject which seems to deserve special concern. A result pertaining to the above 
case is presented below. In fact, it is shown that if G is compact and the isotropy 
subgroups of 0 are of maximal rank then all the orbits of 0 are equivariantly 
isomorphic. 

The concepts and results applied subsequently are in conformity with those 
laid down in the work of R. ABRAHAM and J . E. MARSDEN [ 1 ] , however, in the 
notations there are some deviations. 

The following lemma presents a simple but for the subsequent results essential 
observation. 

Lemma 1. Let (M,co) be a symplectic manifold, G a connected Lie group 
and 0: GXM—M a symplectic action with a momentum map p: Af—g*. Then the 
kernel of the tangent linear map Tzfi: TZM-*T^Z)g* is given by 

Ker Tzti = (TzG{z)Y 

where the orthogonal complement is taken with respect to the symplectic form oo. 

Proof . Let Z€TzM and <p\I-M a curve with <p(0)=z, <p'(0)=Z. Then 
the following holds for any fixed X£g according to the definition of the momentum 
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map: 

¿ < / I ( * ( T ) ) , * > | R = 0 = Z(n(x), X) = d{(p(x), X))(Z) = ( I ( A » ( Z ) = co(X, Z) 

where X is the infinitesimal generator of the action <P corresponding to the element 
X of the Lie algebra g of G. On the other hand, the following is obviously valid: 

±(„(<p(T)),X)\t=0 = (,ioT:vZ,X) 

where TVg*—g* is the canonical isomorphism at /¿(z). Consequently, the 
following is obtained: 

(ifoT. pZ, X) = m (X, Z) for X£ g. 

Therefore Z£Ker T.ji if and only if Z^{TzG(z))L holds, since T.G{z) is spanned 
by the values of I at z as Ji runs through g. 

Let now (M, co) be a symplectic manifold and < , ) a Riemannian metric 
on M. Then there is a unique tensor field A of type (1, 1) on M such that 
co(X,Y) = (AX,Y) holds for any vector fields X, Y£#~(M). Moreover, since 
co is non-degenerate, Az : T.M-^T.M, the value of A at the point z£ M is an 
automorphism of the tangent space. Consider now with respect to the inner product 
( , )z the polar decomposition A:~S,oJ: of A., then the symmetric tensor 
S, and the orthogonal tensor Jz are uniquely defined since A. is injective ([2], 
pp. 169—170). Thus, tensor fields S, J are obtained on M. Moreover, the tensor 
field J is an almost complex structure on M and (X, Y) = a>(JX, Y) holds for 
arbitrary vector fields X, according to a basic result ([1], pp. 172—174). 

The tensor field J is called the almost complex structure defined by the symplectic 
form co and by the Riemannian metric ( , ). 

The following corollary is a consequence of the preceding lemma and of the 
above mentioned facts. 

Coro l la ry . Let (M,co) be a symplectic manifold, G a connected Lie group 
and <P: C X M - M a symplectic action with a momentum map More-
over, let there be a Riemannian metric ( , ) on M which is left invariant by the 
action $ and let J be the almost complex structure defined by co and ( , ). Then 
the kernel of the tangent linear map T.fi is given at any point z£M by 

Ker T-j.i = J.(N,G(z)) 

where N,G(z) is the orthogonal complement of the tangent space T.G(z) with respect 
to the inner product ( , )2. 
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Proo f . According to the above mentioned relation of (o, ( , ) , and / the 
following inclusions obviously hold: 

J{NZG{£J) c {TZG{Z)Y, J~I((T:G(z)±) c NZG(z) 

for z£M. Consequently, the Corollary follows directly from the preceding lemma. 

The following lemma which is again a consequence of the relation of co, ( , ), 
and / , is essential for the subsequent results. 

The lemma concerns the induced action on the tangent bundle. In fact, if an 
action # : 6 X M - M is given, then by <Pg(z)=<P(g, z), z£M, a diffeomorphism 
$g: M-+M is defined for any g£G. Consequently the tangent linear map 
T$g\ TM^TM is a transformation of TM for gdG. Thus an action of G on 
TM is obtained which is called the induced action of G on TM. 

L e m m a 2. Let (M, co) be a symplectic manifold, G a connected Lie group, 
<P: GXM-+M a symplectic action, and ( , ) a Riemannian metric on M which is 
left invariant by the action <P. Then the almost complex structure J defined by 
co and ( , ) is equivariant for the induced action of G on TM; in other words, 
T<PgcJ=JoT<Pg is valid for any element g of G. 

P r o o f . Let A be the tensor field defined by co and ( , ) on M and S,J 
those obtained by the polar decomposition of A. The in variance of co and ( , ) 
yields that the following is valid for arbitrary vector fields X, and g£G: 

(T<P~1 oA oT4>GX, Y> = (A OT<PGX, T4>gY> = 
= co(Td>GX, T<PgY) = CD{X, Y) = (AX, Y). 

But then A = T<P~1oAoT<Pg holds for g£G. Consequently, the following is 
valid, too: 

A = soj^{T0g
xoSomg)o{m;xojoT0g), geG. 

But, then T$~1oSoT<Pg, TQ^oJoT^g yields a polar decomposition of A for 
gCG, since the Riemannian metric ( , ) is left invariant by the action <P. Since 
A,, z^M, is injective, its polar decomposition is unique, as mentioned before. 
Consequently, the validity of 

j = m^ojomg, gee 

. is obtained which yields the assertion of the lemma. 

In order to state a corollary of the preceding lemma the introduction of a concept 
is convenient. In fact, let 4>: GXM-+M be a smooth action of a connected Lie 
group G. Then 

RZ = {X\TZ$GX= X for g<EG: where XET.M} 

is a subspace of the tangent space TZM at any point 2 of the manifold M. 
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Corol la ry . Let (M,co) be a symplectic manifold, G a connected Lie group, 
<P: GXM-^M a symplectic action and ( , ) a Riemannian metric on M which is 
left invariant by the action <P. If J is the almost complex structure defined by OJ 
and ( , ) then JZ(RZ) = R. holds at any point z£M. 

Proof . If X£R: then Tz4>g(J ,(X)) =JZ(TZ<PZ{X)) =JZ{X) holds for g£Gz, 
and this implies the assertion of the corollary. 

In case of a smooth action of a compact connected Lie group there is a standard 
classification of the orbits of the action and accordingly principal, exceptional and 
singular orbits are distinguished. As a result of R. PALAIS [5] shows the above 
classification can be introduced in case of isometric actions of connected Lie groups 
so that almost all the fundamental results concerning smooth actions of compact 
Lie groups remain valid. Therefore, if M is an isometric action of 
a connected Lie group on a Riemannian manifold M then there are points z£M 
such that G(z) is a principal orbit; moreover, if in this case 

T.M = T.G(z)@ NzG(z) 
is the orthogonal decomposition with respect to the Riemannian metric ( , ), then 
NzG(z)<zRz holds. 

For the formulation of the next lemma the introduction of the following concept 
is convenient. Consider a smooth action <£: GXM-^M of a connected Lie group 
G on a differentiable manifold M and a non-zero tangent vector X£TzG(z), z^M; 
it is said that X is an isotropy fixed tangent vector for the action <P provided that 
the following is valid: 

X=Tz4>gX for g£Gz. 

Some results concerning basic properties of the above concept will be given else-
where. 

Lemma 3. Let (M, a>) be a symplectic manifold, G a connected Lie group, 
<£: GXM-^M a symplectic action with a momentum map p\M-~g* and ( , ) 
a Riemannian metric on M which is left invariant by the action <P. If the action 
<P has no isotropy fixed tangent vectors then 

Ker T.p = NzG(z) 

holds at any point z£ M such that G(z) is a principal orbit of the action. 

Proof . Let z£M be such that G(z) is a principal orbit and consider the 
orthogonal decomposition 

T2M = T.G(z) © N,G(z) 

with respect to the Riemannian metric ( , ). Let X£ R and 
X=X' + X", X'£T:G(z), X"£NzG(z) 
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its corresponding decomposition. Then both X' and X" are left fixed by the 
action Tz$g\TzM^TzM, g(LGz. Thus, the assumption that <t> has no isotropy 
fixed tangent vectors implies that X' = 0 holds. Consequently, R.czNzG(z) is 
valid. On the other hand, the assumption that G(z) is a principal orbit implies 
that NzG(z)aRz holds. Thus, NzG(z)=Rz. Now, the corollaries to Lemma 1 and 
to Lemma 2 as well as the preceding assertion yield that 

Ker Tzfi = Jz{NzG(zj) = JZ(RZ) = Rz = NzG{z) 

holds. Thus, the assertion of the lemma is proved. 

The following theorem presents the result already mentioned at the beginning. 
The rank of compact Lie groups occurring here is taken in the usual sense given 
in terms of the maximal tori or of the Cartan subalgebras. 

Theorem. Let (M,co) be a symplectic manifold, G a compact connected 
Lie group and GXM-+M a symplectic action with a momentum map. If the 
isotropy subgroups of 0 are of maximal rank then all the orbits of 0 are equi-
variantly isomorphic. « 

Proof . Since the group G is compact, there is a Riemannian metric ( , ) 
on M which is left invariant by the action The assumption that the isotropy 
subgroups of 0 are of maximal rank implies that 0 has no isotropy fixed tangent 
vectors. In fact, assume that there is a V£TzG(z) for some zdM which is an 
isotropy fixed tangent vector of Consider now the maps 

TTz: G - G/Gz, ez: GIGZ-G(z), 

which are the canonical projection and the canonical equivariant isomorphism, 
and fix a reductive decomposition g = g®m. where gzc:g is the subalgebra of 
the Lie algebra g corresponding to the isotropy subgroup G,. Then with the 
usual identifications TeG=g, TeGz=gz, a restricted map 

T„ £, ° Te n,: mz - Tz G (z) 

is obtained where o = n, (e), and this restricted map is a vector space isomorphism 
which is equivariant for the following actions: 

Ad (g): m2 - , TZ<P0: TZG(z) - Tz G(z), g€ Gz. 

Now, the existence of the vector V€ TzG(z) yields an element X of the Lie algebra 
g such that 

XOu-{0} and [g,, = 0 

are valid. Since GzczG is of maximal rank, there is a Cartan subalgebra f of 
g included in gz. But then [f, Jif]=0 holds, and therefore X is in the normalizer 
of f. Since X$ f is valid, a contradiction is obtained with the definition of Cartan 

25 
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subalgebras. Therefore, the action <P has no isotropy fixed tangent vectors. Let 
now p: M—9* be a momentum map of the action <£. Then the preceding lemma 
applies and yields that 

Ker Tzp = NzG(z) 

is valid for z£M provided that G(z) is a principal orbit of the action <i>. 
Fix now a z£M such that G(z) is a principal orbit of <P and consider the 

component F. containing the point z of the following set 

{x|</>(g, x) = x for g£Gz, where x£M). 

Then, F. is a totally geodesic submanifold of the Riemannian manifold M 
according to a fundamental result ([4], pp. 59—61) and Fz intersects every orbit 
of the action [6]. Let F'.cF. be the set of points x£Fz such that G(x) is 
a principal orbit. Then, F'_ is an open, everywhere dense subset of Fz inconsequence 
of the Principal Isotropy Type Theorem. Moreover, observations made in the proof 
of the preceding lemma imply that 

TXFZ = NxG(x) 

holds for x£ F'_. Therefore, the assertion of Lemma 3 yields that 

Ker T,Ai = TXFZ 

is valid for x£F'z. But then p(F'_) is a single point and consequently p(Fz) is 
a single point too. Consider now the action !P: GXg* — g* on the dual space g*, 
which is associated with the action $ ([1], pp. 276—294). The image of p is a single 
orbit of the action 'F, owing to the facts that p is equivariant for <P and V, 
that Fz intersects every orbit of <P, and that p(Fz) is a single point. 

The restriction of Txp to TxG(x) is injective provided that G(x) is a principal 
orbit of <£, as Lemma 3 implies this. Therefore, the action <P cannot have singular 
orbits, since the image of p is a single orbit of f as observed above. Thus, p 
restricted to an orbit of '!> is a covering map. Let now z£M be such that G(z) 
is a principal orbit. Then Fz is intersected the same number of times by any principal 
orbit of <P. Since in any neighbourhood of an exceptional orbit there are principal 
ones, F, is intersected the same number of times by an exceptional orbit of $ as 
by the principal ones. Therefore, the existence of exceptional orbits and properties 
of the momentum map p imply the existence of different intersecting totally geodesic 
submanifolds Fz. But the fact that two different ones among such submanifolds 
intersects entails obviously the existence of singular orbits. Consequently, the action 
<J> has no exceptional orbits either. Thus, the action 0 has only principal orbits; 
and this fact implies the assertion of the theorem. 

As its following corollary shows, the preceding theorems has consequences 
concerning the structure of the symplectic manifold as well. 
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C o r o l l a r y . Let (M,(0) be a symplectic manifold, G a compact connected 
Lie group and GXM—M a symplectic action with a momentum map. If the 
isotropy subgroups of the action 0 are of maximal rank, then M is the total space 
of a differentiable fibre boundle, where the base manifold is the orbit space of the action 
0 and the fibers are diffeomorphic to a finite covering of a fixed orbit of the coadjoint 
action Ad*:GXg*-g*. 

P roo f . Since G is compact, there is a momentum map {L:M-*Q* of the 
action 0 such that the associated action !?:GXg*—g* is equivalent to the co-
adjoint action of G. In fact, let n:M—g* be a momentum map of $ and a: G—g* 
the coadjoint cocycle associated to p; then the associated action f is given as 
follows: 

«P(g,a = Ad*(g-1)^+<7(g) where (g, $)£GXQ*. 

Since the group G is compact, the action W must have a fixed point £€9* and 
therefore 

V ( g , 0 = Ad* (g-1){+ff(g) = C 

holds for every g£G. Consequently, the associated action W is given as follows: 

f ( g , a = A d " • ( g - ^ K - O + C where (g,£)€GXg*. 
According to the preceding theorem fi maps to a single orbit of W and is a covering 
map on each orbit of 0 which are all of the same type. Consequently, the orbits 
of 4> are diffeomorphic to a finite covering of a single orbit of the coadjoint action. 
Since the orbits of <£ are all of the same type, the assertion of the corollary follows 
now by a basic theorem on the union of orbits of the same type of smooth actions of 
compact Lie groups ([3], pp. 6—9). 

Added in proof. The author is indebted to Professor J. E. Marsden for the 
information that Lemmas 1, 2 and 3 are partially contained in the paper Symmetry 
and bifurcations of momentum mappings, Comm. Math. Phys., 78 (1981), 445—478 
by J. M . ARMS, J..E. MARSDEN and V. MONCRIEF. Moreover, the author is thank-
ful to Professor J. J. Duistermaat for acquainting him with conjectures that some 
results of the paper such as the Corollary to the Theorem can be developed fur-
ther. A detailed account of the above observations together with further related 
results will be presented in a forthcoming paper. 

25* 
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Some weak-star ergodic theorems 
JOSEPH M. SZŰCS 

Dedicated to Professor Béla Szökefalvi-Nagy on his 70th birthday 

0. Introduction. Let M be a von Neumann algebra and let G be a group 
of * -automorphisms of M. It is proved in [3] that if the family of (/-invariant normal 
states is faithful on M (i.e., M is G-finite), then for every t£M, the w*-closed 
convex hull of {gt:g£G} contains exactly one G-invariant element: In the present 
paper we prove the converse of this theorem in the case where M is c-finite and 
G is abelian. We present our results in the more general setting of arbitrary Banach 
spaces. 

1. Results. Throughout this paper B denotes a Banach space and B* its 
dual space. We denote by Lwt(B*) the space of tv*-continuous linear operators 
in B*, equipped with the topology of pointwise vv+-convergence. Every element 
g of Lwt(B*) is a bounded operator in B* such that there exists a unique bounded 
linear operator gM in B for which (giF)* = g. Throughout this paper G will 
denote a bounded commutative semigroup GczLwt(B*). We shall study the implica-
tions of the following condition: 

(U) For every t£B*, the w*-closed convex hull of the orbit {gt: g^G) 
contains a unique G-invariant element, which will be denoted by tG. 

(The fact that this closed convex hull contains at least one G-invariant element 
follows from the Kakutani—Markov fixed point theorem (cf. [2], V. 10. 6), in view 
of the ^'-compactness of the unit ball of B*.) 

Theorem 1. Suppose that condition (U) is satisfied and either B is a separable 
Banach space or G is a separable topological subspace of Lwt(B*). Then the mapping 
t-~t° (t£B*) is a bounded linear projection P acting in B*. We have gP=Pg=P 
and P is the limit, in LK,(B*), of a sequence of elements of the convex hull of G. 

Theorem 2. Suppose that either B or G is separable. If condition (U) is 
satisfied and B is weakly complete, then the mapping t—tG(t£B*) is a w*-continuous 
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linear projection P such that gP=Pg=P. The operator P belongs to the sequential 
closure, in Lwt(B*), of the convex hull co G of G. Moreover, for every v0£coG 
and every w*-neighborhood N of zero there exists v^coG such that — 
for every v£coG and t£B* such that | | i | |Sl . 

P ropos i t i on 1. The hypotheses of Theorem 2 are satisfied if: 
(a) B=L\X, S, m), where {X, S, m) is a positive localizable measure space 

(then B*=L°°(X, S, m)); 
(b) G is a bounded commutative semigroup of w*-continuous linear operators in 

L°°(X, S,m), satisfying condition (U); 
(c) Either L\X, S, m) or G is separable. 

P r o p o s i t i o n 2. The assertions of Theorem 2 hold if: 
(a) B* is a W*-algebra M; 
(b) G is a bounded commutative semigroup of w*-continuous linear mappings 

of M into itself, satisfying condition (U). 
(c) Either M is o-finite or G is separable. 

Coro l la ry . Let M be a von Neumann algebra and let G be a commutative 
group of *-automorphisms of M, satisfying condition (U). If M is a-finite or G is 
separable, then M is G-finite (for this notion, cf. [3]). 

2. Proofs. For the proof of Theorem 1 we need the following two lemmas. 

Lemma 1. Let G= {gl5 g2, ...} be countable and let B be separable. Suppose that 

condition (U) is satisfied. Then for every t£B*, the sequence 2 ¿ i i 1 - 4 
I " ¡, ¡„=i J«=i 

w*-converges to tG. 

Lemma 2. Let be a G^-invariant closed subspaCe of B, i.e., let g^(p£Bx 
for cp£B1. Furthermore, let B^ = {t: {<p, t) = 0 for all (p(zBj} and let the 
dual space B* of be identified canonically with the quotient space B*/Bx. If 
G acting on B* satisfies condition (U), then G acting on B* also satisfies con-
dition (U). 

1 " P roo f of Lemma 1. Let vn=— 2 gi-- S'„n and let t£B*. We have n i i =i n f . 

to prove that the sequence {v„t} w*-converges to t . To prove this, we show that 
every subsequence {vnkt} of {v„t} contains a subsequence {vnkt} which ^ - con -
verges to tG. Since the sequence {»„?} is a bounded sequence in B* and every 
closed ball in B* is metrizable compact in the iv*-topology (cf. [2], V. 4.2, V. 5.1), 
this will imply that r„t--tG in the w*-topology as =». Let {vnkt} be a sub-
sequence of {vnt}. Since {v,ikt} is a bounded sequence, it contains a w*-convergent 
subsequence {vnkt} (by the above remark). We have to prove that the limit of 
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{vnkt} is tG. Since the limit of {vnkt} obviously belongs to the »v*-closed convex 
hull of {gi: g£G}, we only have to prove that it is G-invariant. Pick a positive 
integer s. Let n^s. Then gs appears in v„. By the commutativity of G we have: 

1 " . . . . . 1 " . 
"Til 2 Sg ••• Ss,— iSss "Sss+i ••• Sn^ 3> 2 ••• n <•„=! n '•,.•••.¡„=1 

-„ 2 (gil ••• g i - i ^ r 1 ^ ! 1 • • • - g i ' . . . gKvgki1 • • • giro n 'l + l 'n = l 

where ||G|| =sup {||g||: g£G}. If now n=mH and / — t h e n nk, — °°, and con-
sequently, Hgsfl,̂  t—v„k 11| 0 by the above. Hence gsv„kt-*\imv„kt. On the 
other hand, by the w*-continuity of gs we have gsv„ t-*gs lim v„, t. Consequently, Kf I-*- oo 

gs lim v„. t = lim v„ t. Since gs was an arbitrary element of G, we have proved 
/-»-CO «J I-*- oo 

that lim v„. is G-invariant, and consequently, 
oo K| 

lim v. "k 

Proof of Lemma 2. Since GB^cB^, the semigroup G acts on B* = 
=B*/BX, and Lemma 2 makes sense. Let f£B* and let /„ be a G-invariant 
element of the ii>*-closed convex hull of {gf: g£G}. There exists a net v„ of ele-
ments of coG such that »„/—/<> in the w*-topology of B*. The element f£B* 
is canonically identified with a coset t+Bj- (t£B*) and for every g£G, the element 
gf is identified with gt+Bx. The convergence relation vf-+f0 means that for 
every (p£Bx, ((p,vnt) converges, the limit being (<,p,f0). For every <pZBx, g£G 
we have (g^cp, /„) = (cp, g*/0) = (<p, gf0) = (cp, /„). Consequently, f0 is a G*-invariant 
bounded linear form on Bx. 

Since closed balls are iv*-compact in B*, there is a subnet vx of the net v„ 
for which vxt converges in the w*-topology of B*. Let us denote the limit by t0. 
The element t^B* belongs to the w*-closed convex hull of {gt: g£G} and 

(<P, to) = (<p,fv) for <p£Bx. 

Since G acting on B* satisfies condition (U), there is a net wk in co G such that 
*t in the w*-topology of B*. For <p£Bx we have: (<p, t )-= lim ((p, wkt0) = k 

= lim (wk*(p, t0) = lim (wk*(p,/0) = lim (cp, f0) = (cp, f0). (Here the next to the last 
equality holds because f0 is G^-invariant on Bx and the equality before the next 



392 J. M. Szucs 

to the last equality holds because of ( * ) and the G^-invariance of B1.) Consequently, 
(<¡5, tG)=((p,f0) for (p^By, i.e., / 0 is the restriction of tG to B±. Since / 0 was an 
arbitrary element in the M>*-closed convex hull of {gf: g£G}, the lemma is proved. 

P r o o f of T h e o r e m 1. Throughout this proof we assume that condition (U) 
is satisfied for G acting on B*. 

(1) First we assume that B is separable. This implies the separability of G. 
Indeed, let {<p„}"=1 be a dense sequence in the unit ball of B. Let T be the set 
of 5-valued sequences bounded by ||G|| =sup {||g||: g£G}. If a, P£T, we define 
g(a, P) by the equality 

r - v 1 1K-/UI 

Then q is a metric on T. We have a(t)— a in this metric if and only if af,**—an 

(k oo) for every n — 1,2, .. . . Since B is separable, so is T. Let g 6 G and let 
us define an element a9 of T by the equalities («= 1, 2, ...). The mapping 
g—a.9 is a homeomorphism of G* onto a subset of T if G^ is considered with 
the topology of pointwise strong convergence on B and T is considered with the 
topology induced by the metric Q. Since T has a countable dense subset, we may 
infer that so does G^ (because of the metrizability of T). Since taking adjoints of 
operators is a weak—weak* continuous operation, G contains a countable subset 
G0 which is dense in G in the topology of Lwt(B*). 

Now let G0 be a countable dense subset of G in the topology of Lwt(B*). 
Then the G0-invariant elements of B* are the same as the G-invariant elements 
of B* and for every t£B*, the tv*-closed convex hull of {gt: g€G0} coincides 
with the >v*-closed convex hull of {gt: g£G}. Consequently, if in addition, we choose 
G0 to be a subsemigroup of G (for example, we replace G0 by the subsemigroup 
generated by G„), then G satisfies condition (U) if and only if G„ does. 

Now we can apply Lemma 1 to the separable Banach space B and countable 
semigroup G0. We obtain that there exists a sequence {«„}"=l in coG0 such that 
for every t£B*, vnt^tG° = tG in the w*-topology as Consequently, the 
mapping t—tG is a bounded linear projection, to be denoted by P, acting in B*. 
Since (gt ) a =gt G = tG for g£G, t£B*, we have: gP=Pg=P. This completes the 
proof of Theorem 1 in case B is separable. 

(2) Suppose G is separable, i.e., there exists a countable subset G0 of G 
which is dense in G in the topology of LW,{B*). We may assume that G„ is a sub-
semigroup of G. The first part' of the proof shows that it is sufficient to prove the 
theorem for G0. However, we cannot apply Lemma 1 because B may not be 
separable. Consequently, we also have to appeal to Lemma 2. Let g1; g2, ••• be all 

1 " different elements of G0 and let v„=— 2 g^'--- g'„"- We are going to prove that 
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for every t£B*, v„t->-tG in the w*-topology of B* as n — A l l the assertions 
of Theorem 1 will follow from this in the same way as in part (1) of this proof. 

Let (pQ be an arbitrary element of B. Let us denote by Bx the Banach sub-
space spanned by the elements g2*<p••• • The subspace B± is G0+-invariant. 
We may apply Lemma 2 and obtain that G0, acting on B*=B*/B^, also satisfies 
condition (U). Since B± is separable and G0 is countable, Lemma 1 may be applied. 
We obtain that for every f£B*, vnf-»f° in the w*-topology of 5* as ;?-•<=o. In 
view of the identification B*=B*/B^, this implies that for every t£B*, the sequence 
{(cp0, «,/)},7=i is convergent. (It may be seen directly that it converges to (<p0, tGa); 
however, we choose another way of proving this, which we think is easier to follow.) 
Since cp0 was an arbitrary element of B and \\v„t|| S||G|| • ||/||; we obtain that 
for every t£B*, the sequence {«y}7=i w*-converges to an element Pt of B*. 
It is easy_ to see that Pt is G0-invariant. Therefore, Pt=tG<> (~tG). 

Proof of Theo rem 2. The hypotheses of Theorem 1 are. satisfied. Con-
sequently, there is a sequence {«„}7=i i n coG such that for every t£B*, vnt^tG 

in the w*-topology of B* as n — Now let (p£B be given. For every t£B*, 
we have («„*<?— t )=(<p, (v n —v m ) t ) -»0 as n, m — Consequently, the sequence 
ivn*(p}7=i is a weak Cauchy sequence in B. Since B is assumed to be weakly 
complete, there exists an element of B, to be denoted by Pt<p, for which (vni<p, ?)--
•—(P*<P> t) (n—oo) for every t£B*. It is easy to see that P* is a bounded linear 
operator in B. As n — oo, we have: (cp, vnt) — {vnif(p, t)—(P^(p, t) = (<p, P%t) for 
<p£B, t£B*. Consequently, vn-+P* in Lwt(B*) as n — Since P* is obviously 
w*-continuous, we obtain the assertions of Theorem 2 (except the last assertion) 
if we put P=P$-

The last assertion of Theorem 2 may be proved as follows. First we prove that 
for every <p£B, the closed convex hull of {g^<p: g^G^) contains exactly one 
G+-invariant element (namely, P^p). Here we may take either weak or strong 
closure, because the strong closure of a convex subset of a Banach space coincides 
with its weak closure (cf. [2], V. 3.13). Let (p£B and let <p be a G^-invariant 
element in the closure of (coG*)<p. Then there exist wn£coG+ such that wn(p—<p 
strongly as n—oo. We have P^w/p^P^ip. Here PJrwn<p=PJr(p (because P^g^—P^ 
for g(zG) and Plrq> = q> (because P^ is a weak limit of elements of coG* and 
(p is G+-invariant). Therefore, 0=P^(p. On the other hand, if g€G, then P ĉp = 
= P*(p, i.e., PM(p is G^-invariant. Therefore, P¥(p is the unique G+-invariant 
element in the closure of (coG+)<p. Since this is true for every (p£B, the following 
holds according to [1]: For every cp£B, every and every v0^coG^ there 
exists v^ZcoG^ such that — P^(p\\^e. This inequality is equivalent 
to the following: {([v^v^v^-PJip, i ) |<£ for all t£B* such that . | | i | |Sl or 
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\(q>, [vv^a-P]t)\^e for all t£B* such that The last assertion of Theorem 2 
follows immediately from this. 

P r o o f s of P r o p o s i t i o n s 1,2 and the co ro l l a ry of P r o p o s i t i o n 2. In 
Proposition 1, L\X, S, m) is weakly complete (cf. [2], IV. 8.6); consequently, 
the hypotheses of Theorem 2 are satisfied. In Proposition 2, the predual of M is 
weakly complete (cf. [4], Proposition 1); consequently, the hypotheses of Theorem 2 
are satisfied. The corollary to Proposition 2 is simply a special case of Proposition 2. 

3. Remarks and problems. 

Remark 1. It follows from the author's other results (to be published) that 
even if G is not commutative and G and B are not separable and condition (U) 
is satisfied, then the mapping t—tG (t£B*) is a bounded linear projection contained 
in the closure, in LW*(B*), of the convex hull of G. 

Remark 2. It follows from the author's other results (to be published) that 
even if B is not weakly complete and condition (U) is satisfied, then a weaker 
version of the last assertion of Theorem 2 holds. 

P rob l em 1. Is Theorem 2 true without the hypothesis that B is weakly 
complete? 

P rob l em 2. Is Theorem 2 true without the hypothesis of separability of B 
or G? (In this case we can only expect P to be in the closure of coG, instead of 
the sequential closure of coG.) 

P rob lem 3. Are the results of this paper true without the hypothesis that 
G is commutative? 
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Random walk on a finite group 
LAJOS TAKACS 

Dedicated to Professor Beta Szokefalvi-Nagy on the occasion of his seventieth birthday 
July 29, 1983 

1. Introduction. This paper has its origin in a study of random walks on regular 
polytopes. Regular polytopes in two dimensions (regular polygons) and in three 
dimensions (regular polyhedra or Platonic solids) have been known from ancient 
times. Four- and higher-dimensional polytopes were discovered by L. SCHLAFLI [12] 
before 1853. For the theory of regular polytopes we refer to the books of H. S. M. 
COXETER [5], P . H . SCHOUTE [13] a n d D . M . Y . SOMMERVILLE [16]. 

Let ip be a regular polytope with a vertices whose rectangular Cartesian 
coordinates are x0, x l 5 ..., x„_1. Denote by q the number of edges emanating 
from each vertex of We define two distance functions on the vertices of 
The distance D(xr,xs) is the number of edges in a shortest path joining xr and xs. 
The distance ||xr—xs|| is the Euclidean distance between xr and xs. 

Let us suppose that in a series of random steps a traveler visits the vertices 
of The traveler starts at a given vertex and in each step, independently of the 
past journey, chooses as the destination one of the neighboring vertices with 
probability 1 ¡q. Denote by v„ (n = l, 2, ...) the position of the traveler at the end 
of the 77-th step, and by v0 the initial position. An important problem in the theory 
of probability is to determine p(n), the probability that the traveler returns to the 
initial position at the end of the nth step. By symmetry we can choose any vertex, 
say x0, as the initial position and thus 

(1) P(n) = P{\n = x0\\„^x0} 

for all /7^0. 
Since {v„; /7^0} is a homogeneous Markov chain with state space {x0, x l5 ... 

...jX^.i}, the problem of finding p(n) has a straightforward solution. We determine 
the incidence matrix of the graph of the polytope, form its 71th power, and any diagonal 
element divided by q" yields p(n). 
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However, we can also find p(n) in another way. Divide the a vertices of 
ty into disjoint sections S0,S1,...,Sm such that S0 contains only a single vertex, 
say x0, and define a sequence of random variables {t„; n^O} so that 

(2) c„ = j if y„£Sj. 
In terms of <;„ (n==0) we can write that 

(3) P(«) = P { ^ = 0|Í„ = 0}. 

We would like to define S0, Sx, ..., Sm so that the sequence {<!;„; /¡^0} forms 
a Markov chain, and its state space {0,1, ..., m} contains fewer states than' that 
of {v„; «SO}. This can be done in each case and consequently it is more advantageous 
to use (3) than (1) for the determination of p(ri). 

If ^ is any regular polytope other than the four-dimensional 24-cell, 600-cell 
and 120-cell and if 
(4) Sj = {xr: D(xr, x0) =j} 

for j=0, 1, ...,m where now 0,1, .. . ,m are the possible values of D(xr, x0) 
(/•=0, ..., a— 1), then the sequence 0} defined by (2) is a homogeneous 
Markov chain. 

If P̂ is any regular polytope other than the four-dimensional 120-cell, and if 

(5) Sj = {xr: ||x,-x0!l = dj} 

for . /=0, 1, ..., m where now d0,d1,...,dm are the possible values of ||xr —x0|| 
( r=0,1 , ...,ff—1) arranged in increasing order of magnitude, then the sequence 
{£„; wSO} defined by (2) is a homogeneous Markov chain. 

However, if ^ is a four-dimensional 120-cell and if Sj is defined by (4) or 
(5), then is not a Markov chain. Since the distances Z)(xr,xs) and 
| |x r—xj remain invariant under rotations and reflections of we expect that 
in the general case the definition of the sections of should be based on the rota-
tions and reflections of that is, on the symmetry group G of 

If g£G and if g carries xr into xs, then we write xrg=xs. Let H be the 
stabilizer of x0, that is, 

(6) H={g:x0g = x0 and g<EG}. 

For any g£G define the double coset 

(7) C(g) = HgH = {hlgh2: h^H and h2£H}. 
Any two double cosets C(g¡) and C(g2) are either disjoint or identical. Denote 
by C0,Ci, ...,Cm all the disjoint double cosets of type (7). In particular, let C0=H. 
The double cosets C0 , C l 5 ..., Cm determine a partition of G. 

Now define 
(8) Sj = {xr: xr = x„g and g£Cj} 
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for j = 0, 1, ..., m. We can check that if Sj is defined by (8), then for each regular 
polytope the sequence {£„; «SO} defined by (2) is a Markov chain and m is much 
smaller than a. 

Since D(x,g,xsg)=D(xr,xs) and | |x rg-x sg| | = | |x r-x s | | for all g£G, every 
vertex xr belonging to Sj, defined by (8), has the same distance D(xr, x0) from x0, 
and the same distance ||xr — x0|| from x0. Thus (8) reduces to (4) and (5) in the 
indicated particular cases. 

We can generalize the random walk discussed above by assuming that the 
traveler in each step, independently of the past journey, chooses a vertex at random 
as the destination, and the transition probability P{v„=xs |v„_1=x r} depends 
either on the distance D(x,,xs), or on the distance | |x r—xj, or more generally, 

(9) P{v„ = x j v , , ^ = xr} = pv 

if xs=xrg and g£Cv (v = 0, 1, ..., in). If S} (./'=0, 1, ..., m) is defined by (8) and 
if is defined by (2), then in this more general random walk too, the sequence 
{£„; «SO} forms a homogeneous Markov chain. 

In this paper we shall consider a generalization of the random walk discussed 
above. Specifically, we shall be concerned with a random walk on a finite group 
and give a general method for the determination of the «-step transition proba-
bilities. 

2. Random walk on a group. The random walk described in the Introduction 
is a particular case of the general model defined in this section. 

Let G be a finite group which is partitioned into nonempty disjoint subsets 
C0 , Ci, ..., Cm such that C0 contains e, the identity element of G. The number 
of elements in C0 is denoted by N(C0)~co. The index set of the partition is 
/ = {0, 1, ...,m}. 

Let }>0, }>!, ...,y„, ... be a sequence of mutually independent random elements 
each belonging to G. A sequence of discrete random variables £0, ..., £„, ... 
is defined such that 
(10) c„ =./ if T„V, ... y„fCj. 

The sequence {£„; defines a random walk on the group G, or more precisely, 
on the partition {C0,C!, ...,Cm}. 

In what follows we assume that for /?=1,2, . . . the probability P{y„=g} 
does not depend on the particular g, it depends only on the class Cv (v£/) which 
contains g. 'We write 
(11) P {"in = g} = PJOJ 

for « S i and g(LCv. However, the distribution P{yu— g}> may be chosen 
arbitrarily,; 
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Our first aim is to find a condition which guarantees that the sequence {£„; n^O} 
is a Markov chain. It is easy to see that if the following Condition (i) is satisfied, 
then {£„; «SO} is a homogeneous Markov chain with state space / = (0, 1, ..., m). 

Condi t ion (i). For any gi€C; the number of ordered pairs (g2, g3) for 
which g2dCv, g3€Cj and gig2=gs is independent of the particular choice of gl5 

and is equal to coaiJV for i,j, v£/. 

We define the matrices 
02) Av = [ a i h ) . . u 

for v£/. 
We use the notation I=[<5y]. for an (m + l)X(m + l) unit matrix. Here 

and throughout this paper <5denotes the Kronecker symbol, that is, 

(i3) < 5 , = { ; if i = j, 
if t j. 

Let us define cr0, a l f ..., am such that the number of elements in Cv is iV(Cv) = 
=<7V<» for vÇJ. Obviously, cr0=l, and the order of G is N(G)=aco where 

m 
( 1 4 ) < T = 2 " < V 

v = 0 

It follows immediately from the definition of aijv (/,./, v£/) that a0jv = (7jôjv 

for j, v£7 and that 
m 

(15) 2 aiJv = <TV 
;=o 

for any /£/. 
We shall frequently use the diagonal matrix 

( 1 6 ) D - [ < 5 0 . < T f ] , , . 6 , 

where the square root is positive. 
Since the sum of the probabilities (11) for all gZG is necessarily equal to 1, 

the parameters p0,pi, •••,P,„ should satisfy the requirement 

m 
( 1 7 ) 2 " f f v P v = 1 -

v = 0 

According to the above consideration if Condition (i) is satisfied, then {£„; nSÛ} 
is a homogeneous Markov chain with state space / = {0, 1, ..., w}. The transition 
probabilities 
(18) P { ç „ = j | ç „ - i = i}=P,7 ( h K D 
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are given by 
m 

(19) Pij = 2aijvPv 
v = 0 

If we use the notation (12), then the transition probability matrix 

(20) rt = [ P l j } . j e i 

can be expressed in the following way 
m 

(21) n = Z P v K -
v = 0 

The «-step transition probabilities 

(22) P { L = j \ ^ = i} = p j f 

for / , / 6 / and « s 0 can be determined as the elements of the matrix 

(23) «" = [ P & \ , e / . 

In particular, we have 

(24) J>(n) = Pt t„ = 0|£0 = 0} = pJg> 
for nSO. 

The main problem is to determine the n-th power of it defined by (21) and (12). 
Since the elements of Jt depend on the parameters p 0 , p \ , •••,pm, at first sight 
it seems we should determine n" separately for each choice of the parameters 
Po,Pi, •••,pm- However, we shall demonstrate that if the partition {C0, C1, ..., Cm} 
satisfies also Condition (ii) stated below, then we can derive a general formula for 
JI" which is valid for any choice of the parameters Po,Pi, •••,pm-

C o n d i t i o n (ii). For any v£I there is a v'£/ such that gZCv implies that 
g-^Cr. 

Condition (ii) implies that if v '=v, then Cv contains the inverse of each of 
its elements. If v '^v , then Cy. consists of the inverses of the elements of Cv . 
Obviously, 0v=<tv for all v£/. The integers 0', 1', . . . ,m' form a permutation 
of 0, 1, ..., m.' Always, 0 '=0 . We define the corresponding permutation matrix A by 

(25) A = [ < M , , € i 

where <5¡/ is defined by (13). We have A'=A where A' is the transpose of A, 
and A 2 =I where I is an (m + l )X(w+1) unit matrix. 

Since 0v=ffv for all v£/, we have also 

(26) DA = AD 
where D is defined by (16). 
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Finally, we note that if Cv denotes also the sum of the elements of G which 
belong to Cv , then we can interpret C0 ,CX , . . . ,C n as elements of the group 
algebra (Frobenius algebra) of G. If C0 , Cx, ..., Cm satisfy Condition (i), then 
the elements C 0 , C l 5 ..., Cm form a basis of a subalgebra si of the group algebra 
of G. The elements of si are KqCq+0C1C1 + . . . •+• <xmCm where ofo, ®i, •••><*m are 
complex numbers. If in addition C0,C1, ...,Cm satisfy Condition (ii), then si 
reduces to a so-called Schur algebra. See D . E . LITTLEWOOD [ 1 0 , pp. 2 4 2 , 2 5 7 ] , 

[9, p p . 2 2 , 43] , I. SCHUR [15], H . WIELANDT [21], [22] , O . TAMASCHKE [18], [19] , [20] , 

F . ROESLER [11] a n d M . BRENDER [2]. 

3. Examples. Here are a few examples for partitions of finite groups satisfying 
Conditions (i) and (ii). 

Example 1. Let H be a subgroup of a finite group G. For each g£G let us 
form the class 

Any two classes C ( g J and C(g2) are either disjoint or identical. Denote by 
C0 ,C1 , . . . ,Cm all the disjoint classes of type (27). Then the partition {CcC^ ...,Cm} 
satisfies Conditions (i) and (ii), and {£„; 0} defined by (10) is a homogeneous 
Markov chain. In this case C n = {e}, a>= I and aijv (/, /, vdl) are nonnegative 
integers. 

If, in particular, H=G, then C0, C 1 ; ..., C,„ are the conjugacy classes of Gy 

and the problem of finding it" leads in a natural way to the definition of group-
characters. (See F . G. FROBENIUS [7], W. BURNSIDE [3], [4] and I. SCHUR [14].) 

E x a m p l e 2. Let H be again a subgroup of a finite group G. For each gÇG1 

let us form the double coset 

Any two classes C(gx) and C(g2) are either disjoint or identical. Denote by 
C 0 , C 1 ; . . . , C m all the disjoint classes of type (28). Then the partition {C0,C l5 ...,Cm} 
satisfies Conditions (i) and (ii), and {<!;„; nsO} defined by (10) is a homogeneous 
Markov chain. In this case C0=H, co is the order of H, and Űíjv (/,/ , v£7) are 
nonnegative integers. 

If G is the symmetry group of a regular polytope and if H is the stabilizer 
of a given vertex of then {<?„; « ^ 0 } defines a random walk on the vertices-
of (See J. S. FRAME [6] and L. TAKÁCS [17].) 

Example 3. Let G be the automorphism group of a distance-transitive finite 
connected graph. A graph is distance-transitive if for any four vertices x l 5 x2, yi, y^ 

(27) C(g) = {hgh~l: h£H}. 

(28) C(g) = HgH = {hlght: htÇH and h2£H}. 
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satisfying -DCxj, x2)=D(y1, y2) there is an automorphism gdG such that y ^ x ^ 
and y2 = x2g. Let 
(29) C, = {g: Z>(x0g,x0) = ; } 

for j = 0, 1, ..., m where in is the diamater of the graph and x0 is a fixed vertex. 
Then the partition C0,Clt ...,Cm satisfies Conditions (i) and (ii), and {£„; «50} 
defined by (10) is a Markov chain. (See D. G. HIGMAN [8] and N. BIGGS [1].) 

4. The matrices A0, Ax, ..., A,„. If a partition {C0, Cx, ...,Cm} of a finite 
group G satisfies Conditions (i) and (ii), the elements of the matrices Av (v£/) 
defined by (12) can be determined by the direct use of Condition (i). However, 
the elements of the matrices Av (v£J) also satisfy remarkable relations, and our 
next aim is to prove these. 

In what follows we assume that {C„, C1 ; ..., Cm} is a partition of a finite group, 
that Conditions (i) and (ii) are satisfied, and that Av (v€/) is defined by (12). 

T h e o r e m 1. We have 
(30) ff.-tf/yv = <JjaJiv. 
and 
(31) 0,-jv = 

for all i,j, v£J. 

Proof . By Condition (i) the number of triplets (gj., g2, g3) satisfying the 
requirements giiCh g2eCv, g3£Cj and gxg2=g3 is o^afl,^. Since gxg2=gz 

if and only if g3g2
1 = g1 or gi1gi=g2, and since now by Condition (ii) 

and g i 1 £ C v , therefore we have 

(32) = Ojciji,,. = <Tiarvj. 
This proves (30) and (31). 

Equations (30) and (31) can conveniently be expressed in matrix notation. 
By (30) we have 
(33) D2AV = A;D 2 

for vg/ where the prime means transposition and D is defined by (16). By (33) 

(34) D A v D i = D- i A;,D = (DAv.D-1)'. 

Accordingly, if v' = v, then DAVD_1 is a real symmetric matrix. 
By (31) we obtain that 

(35) K ' J , - , = A k - 4 v £ / = AAy 

for / £ / where A is the permutation matrix defined by (25). 

26 
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If we interpret C0,Cl, ...,Cm as elements of the group algebra (Frobenius 
algebra) of G, and Cv is the sum of all those elements of G which belong to Cv , 
then by Condition (i) and (30) we can write that 

m 
(36) C ,C T = 0) 2AJ,,.CJ 

j=0 
for any i£I and v£7. 

If we arrange the products C;CV ( /=0 ,1 , ..., m) in the form of a row vector, 
then by (36) we get 

(37) [C0CV, CXC„ ..., CmCv] = co[C0, Cu ..., CJAV , 

for v£7, and by (31) and (36) 

(38) [QC0 , CTCLT ..., C f C J = co[C0, C l5 ..., CJAA,A 

for /€/• By (35) and (36) it follows that 

(39) [CjCJ,. ,« = J -£- (D«AA ) C j . 
j=o Oj 

Theorem 2. We have 
m (40) A fA,.= 

v = 0 

for all i,j£I. 

Proof . By (36) and (37) 
m 

[COCJQ, CXCJC,, CMCJCJ = a) AVJI [Q)Cv> ••*> CJ = 

(41) 
M 

= ft>2[C0, C l 5 ..., CJ Av. 
v=0 

On the other hand by the repeated applications of (37) we get 

[CVCJCj, C1CJCL, . . . , C m C J .C i ] = [ C 0 C j , C1CJ, ..., C . C y J C , = 

(42) = cu[C0, C l5 ..., C J A,. C, = «[C0 C,, QC,-, ..., Cm CJ A,- = 

= a)2[C0, C l5 ..., CJAj.Ay.. 

A comparison of (41) and (42) shows that 
m 

(43) A rA,, = 2 « * j r K 
v = 0 

for all »6/ and If in (43) we replace i,j, v by /', / ' , v' respectively and take 
into consideration that av,ri=avlj., then we get (40). 
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Theorem 3. The matrices AA;A and Av commute, that is 

(44) AA,.AAV = AvAAj-A 
for all j£l and v£I. 

Proof . If vdl is fixed, then by (37) 

(45) [ Q Q C J . ^ , - [(ClCv)Ck]. kéI = coK[QCk]i kèI 

and by (38) 
(46) [CiCvCJ.jJk€i = [C, (CvCk)]. ke} = coiQCJ. t € J AAVA. 

If we put (39) into (45) and (46), and compare the coefficients of C} in the two 
expressions, then we obtain that 

(47) A;, D2 A Aj = D2 AA; AAV A 
or 
(48) D2AVAA, = D2AAjAAvA 
which proves (44). 

Theorem 4. If 
(49) CjCv = CvCJ 

for all jd / and vÇ /, or equivalently, if 

(50) aijv, = aivJ, 

holds for all i,v,j£l, then the matrices A0, A l5 ..., Am commute in pairs. 

Proof . First, we observe that (36) implies that (49) holds if and only if (50) 
holds. By (33) we can express (50) in the following equivalent form 

(51) Av. = AAVA 

for all v£ i where A is defined by (25). If we make use of (51), then (44) reduces 
to the equation 

(52) Ay.Av = A„Aj-

which is valid for all jÇ.1 and vÇ/. This proves that 
(53) Aj-Av — AvAj 

for all / € / and v€7. 
The converse of Theorem 4 is obvious. If (53) holds for all / £ / and v£/, 

then by (40), (50) necessarily holds and this implies (49). 
Wenotethatif v'=v forall v£l, then (50) is satisfied because by (31) aijv—alvj. 
If we consider a Schur algebra with basis C„, C1 ; ..., Cm, then by the above 

results we can make several conclusions. If we put 2=0 or v=0 in (36), then we 

26» 
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obtain that C0/co is the unit element of the Schur algebra. The matrix representa-
tions Tx and T2 defined by 

(54) T,(CV) = (o[aivj,]uiI = <oAAvA 
and 
(55) T2(CV) = с0[a j i v .] i j a = <oA'v. = wD*AvD = 

are the right regular matrix representation, and the left regular matrix representation 
respectively. Accordingly, the matrix representation defined by 

(56) T(CV) = со Av 

for v£7 is equivalent to the regular matrix representation of the Schur algebra. 
The Schur algebra is commutative if and only if (50) is satisfied. 

5. The determination of n". We suppose again that {C0, C±, ...,Cm} is a par-
tition of a finite group G and that this partition satisfies Conditions (i) and (ii). 
Our aim is to determine the wth power of the matrix 

m 
(57) it= 2Pv A V , 

»=o 
where the matrices Av (v€/) are defined by (12) and p0, px, ...,pm are arbitrary 
real or complex numbers. If p0,pi, •••,pm are nonnegative real numbers satisfying 
(17), then (57) reduces to the transition probability matrix of the Markov chain 
{£„; nsO} defined by (10). 

We observe that if py and pv. are complex conjugate numbers for every v£ I 
then the matrix DnD - 1 is a Hermitian matrix, and consequently the eigenvalues 
of n are real numbers. This follows from the identity 

(58) i 
Д . Л _ (Pv + Pv') ~ j (Pv — Pv') iK . А Л , ^ (Pv Pv') ft Л(-Л . .A 4 Pv Av+pv ' Av. = (Av+Av.) -I (1 - I)(AV +1 Av.) 

and from (34) which implies that 

(59) D(Av + Av.)D-i 

is a real symmetric matrix for all v£/, and 

(60) (1 — i)D (Av+¿Av.) D 
is a Hermitian matrix for all v£I. 

If Po>Pi, a r e real numbers satisfying the requirements pv-=pv for all 
v£/, then DnD - 1 is a real symmetric matrix. 

We shall use the following method for the determination of it". For all v£7 
let us define 
(61) Tv = X - i D A . D ^ X 



Random walk on a finite group 405 

where D is given by (16) and for the time being X is any nonsingular (m + l )X 
X(/n +1) matrix. 

T h e o r e m 5. The matrices r v (y£I) defined by (61) satisfy the following 
equations 

m 
(62) r ; r , = 2 «vu- r v 

v = 0 

for all i£l and jdl. The coefficients avij. are defined by (12). 

P roo f . If we multiply (40) by X _ 1D from the left and by D _ 1 X from the 
right, then we get (62). 

Form (34) it follows immediately that 

(63) r v , - r ; 

for all vÇ/. If, in particular, v = v', then Fv is a symmetric matrix. 
Usually, if we calculate r v for a few values of v by (61), then we can easily 

determine r v for all vÇ.1 by (62). If every r v (v£J) is known, then by (61) 

(64) Av - D - ' X r . X - ' D 

for v£/, and (57) can be expressed in the following form 

(65) « = D - 1 x i J / > ï r v ) x - 1 D . 
Vv=0 ' 

Thus 

(66) N" = D- 1 XI,F/>,R V ) X- !D 
Vv = 0 t 

for all « S 0. 
We shall use (66) for finding n" for all n^O. In what follows we shall show that 

we can chose the matrix X in such a way that the matrices Tv (v£l) are all block-
diagonal matrices of the same type. The determination of n" by (66) is particularly 
simple if each r„ (v£l) is a diagonal matrix. 

To find a suitable X let us consider the matrix 
m 

( 6 7 ) M = 2 c v A v 

v = 0 

where c\ (v£I) are real numbers satisfying the requirements cv-=cv for all vÇ/. 
Since (59) is a real symmetric matrix for v£7, therefore DAMAD -1 is also a real 
symmetric matrix. Consequently, there exists a real orthogonal matrix X such that 

(68) DAMAD"1 = XLX' 

where L is a diagonal matrix whose diagonal elements are the eigenvalues of M. 
Let us suppose that the columns of X are arranged in such a way that the diagonal 
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elements of L form a nonincreasing sequence. If M- has r distinct eigenvalues 
with multiplicities m1,m2,...,mr respectively, then the diagonal elements of 
L form r blocks containing m1,m2,...,mr identical numbers. 

T h e o r e m 6. If X is an orthogonal matrix satisfying (68) and if L isadiagonal 
matrix whose diagonal elements form r blocks containing mx, m2, ..., mr identical 
elements, then each Tv (v£7), defined by (61), is a block-diagonal matrix containing 
r blocks such that the i-th block is an m,Xmt matrix (i = 1, 2, ...,/*). 

P r o o f . By Theorem 3 the matrices DAMAD - 1 and DAVD - 1 commute. 
Thus by (64) and (68) we have 
(69) L r v = TVL 

for all v£/. Let us form the (i, /c)-entry of both sides of (69). Since L is a diagonal 
matrix, we can conclude from (69) that the (/, &)-entry of Tv is necessarily 0 if 
the /-th and A>th diagonal elements of L are distinct. Consequently, each Tv is 
a block-diagonal matrix of the type specified in Theorem 6. This completes the 
proof of Theorem 6. 

If the matrix M defined by (67) has only simple eigenvalues then by Theorem 6 
the matrices Tv (v£7) defined by (61) are diagonal matrices. We can prove that if 
for some choice of the real numbers c0, clt ..., cm the matrix M defined by (67) 
has only simple real eigenvalues, then A = I ; that is, v '=v for all v£7. In this 
case A0, A1 ; ..., Am commute in pairs. In any other case the matrix M has multiple 
eigenvalues and our aim is to choose cv (v£7) in such a way that the sum of the 
squares of the multiplicities of the eigenvalues of M be as small as possible, that 
is, in Theorem 6 the sum m\+m\ + b e as small as possible. Usually we 
attain the minimum if M=A V for some v=v'. 

From Theorem 6 we can conclude that if T is a matrix representation of the 
algebra si with basis C0,C1,...,Cm and if T(CV)=a»rv for v€7, then T is 
equivalent to the regular matrix representation of si and T can be expressed as 
the direct* sum of r matrix representations of si. Actually, fey a footnote of 
H . WIELANDT [ 2 1 ] (p. 3 8 6 ) the algebra si is semi-simple and consequently it is 
completely reducible, that is, si is the direct sum of simple matrix algebras over 
the field of complex numbers. 

Examples for the application of the method developed here will be given in 
another paper. Now we would like to mention only briefly the case of a random 
walk on a four-dimensional 120-celI. We shall use the same notation as in the Intro-
duction. A 120-cell has «7=600 vertices and from each vertex q—4 edges emanate. 
Let us consider the random walks {v„; n^O} and {£„; 0} defined in the Intro-
duction. Now {v„;/7^0} is a Markov chain and the state space contains 600 
states. If we define the sections of the 120-cell by (4) then m = l5, but {£„; n s O } 
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is not a Markov chain. If we define the sections by (5), then m=30, and {£„;«£0} 
is still not a Markov chain. However, if we define the sections by (8), then {<!;„; n^O} 
becomes a Markov chain and m=44. Now the transition probability matrix n is 
given by (21) and Tv is defined by (61). By an appropriate choice of X we can 
achieve that each Tv becomes a block-diagonal matrix containing 15 one by one, 
6 two by two, and 6 three by three matrices. If Tv (v£7) and X are known nume-
rically, then we can determine the «-step transition probabilities explicitly by (66). 
The numerical data are used only to determine certain integers. First, we can deter-
mine explicitly the eigenvalues of Tv (v£/) by solving quadratic and cubic equations 
with integer coefficients. The coefficients of these equations are determined by 
the traces of the first two or three powers of the block-matrices in each Tv and all 
these traces are integers. The eigenvalues of n can also be obtained by solving 
quadratic and cubic equations whose coefficients are quadratic and cubic forms of 
Po,Pi, •••, Pa and depend only on the traces of the first two or three powers of the 
block-matrices in I\, (v€/) and on aiJv ( i , j , v£ I ) . The numerical values of the 
elements of the matrix X are used only to determine certain integers which are the 
coefficients of the «-th powers of the eigenvalues of it in the expression for 600p\">. 
Since the numerical calculations are used only to determine certain integers, no high 
precision is needed. The expressions for the «-step probabilities are straightforward, 
but lengthy because of the large number of parameters p0,pi, •••,pii-

References 

[1] N . B iggs, Algebraic Graph Theory, Cambridge University Press ( 1 9 7 4 ) . 
[2] M. Brender , A class of Schur algebras, Trans. Amer. Math. Soc., 248 (1979), 435—444. 
[3] W. Burnside , On group-characteristics, Proc. London Math. Soc., 33 (1901), 146—162. 
[4] W. Burnside, Theory of Groups of Finite Order, Second edition, Cambridge University 

Press (1911). [Reprinted by Dover (New York, 1955).] 
[5] H . S. M . Coxeter, Regular Polytopes, Third edition, Dover (New York, 1973) . 
[6] J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc., 47 (1941), 458—467. 
[7] F. G. Frobenius, Über Gruppencharaktere, Sitzungsberichte der Königlich Preussischen 

Akademie der Wissenschaften zu Berlin (1896), pp. 985—1021. [Reprinted in: 
Ferdinand Georg Frobenius, Gesammelte Abhandlungen, Band III, Springer-
Verlag (Berlin, 1968), pp. 1—37.] 

[8] D . G . Higman, Intersection matrices for finite permutation groups, J. Algebra, 6 ( 1 9 6 7 ) , 
22—42. 

[9] D. E. L i t t lewood, The Theory of Group Characters and Matrix Representations of Groups, 
Oxford University Press (1940). 

[10] D. E. L i t t lewood, A University Algebra. An Introduction to Classic and Modern Algebra, 
Second edition, Dover (New York, 1970). 

[11] F. Roesler, Darstellungstheorie von Schur-Algebren, Math. Z., 125 (1972), 32—58. 
[12] L. S c h l ä f l i , Theorie der vielfachen Kontinuität, Denkschriften der Schweizerischen natur-



408 L. Takács: Random walk on a finite group 

forschenden Gesellschaft, 38 (1901), 1—237. [Also in: Ludwig Schläfli (1814—1895), 
Gesammelte Mathematische Abhandlungen, Band I, Verlag-Birkhäuser (Basel, 
1950), pp. 167—387.] 

[13] P . H . SCHOUTE, Mehrdimensionale Geometrie. Teil II. Die Polytope, Sammlung Schubert 
XXXVI (Leipzig, 1905). 

[14] I. SCHUH, Neue Begründung der Theorie der Gruppencharaktere, Sitzungsberichte der 
Königlich Preussischen Akademie der Wissenschaften zu Berlin (1905), pp. 406—432. 
[Reprinted in: Issai Schur, Gesammelte Abhandlungen, Band I, Springer-Verlag 
(Berlin, 1973), pp. 143—169.] 

[15] I. SCHUR, Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte der 
Preussischen Akademie der Wissenschaften zu Berlin (1933), pp. 598—623. [Re-
printed in: Issai Schur, Gesammelte Abhandlungen, Band III, Springer-Verlag 
(Berlin, 1973), pp. 266—291.] 

[16] D. M. Y. SOMMERVILLE, An Introduction to the Geometry of N Dimensions, Methuen 
(London, 1929). [Reprinted by Dover (New York, 1958).] 

[17] L . TAKÁCS, Random flights on regular polytopes, SIAM J. Alg. Discrete Methods, 2 ( 1 9 8 1 ) , 
153—171. 

[18] O. TAMASCHKE, Ringtheoretische Behandlung einfach transitiver Permutationsgruppen, 
Math. Z., 73 (1960), 393—408. 

[19] O. TAMASCHKE, S-rings and the irreducible representations of finite groups, J. Algebra, 
1 (1964), 215—232. 

[20] O. TAMASCHKE, On the theory of Schur-rings, Ann. Mat. Pura Appl. (4), 81 (1969), 1—43. 
[21] H. WIELANDT, Zur Theorie der einfach transitiven Permutationsgruppen. II, Math. Z., 

52 (1949), 384—393. 
[22] H . WIELANDT, Finite Permutation Groups, Academic Press (New York, 1964) . 

DEPT. OF MATHEMATICS AND STATISTICS 
CASE WESTERN RESERVE UNIVERSITY 
CLEVELAND, OHIO 44106, U.S.A. 



Acta Sci. Math., 45 (1983), 4 0 9 — 3 8 0 

Über einen Zusammenhang zwischen der Grössenordnung 
der Partialsummen der Fourierreihe und 

der Integrabilitätseigenschaft der Funktionen 
KÁROLY TANDORI 

Herrn Professor Béla Szőkefalvi-Nagy zum 70. Geburtstag gewidmet 

Es sei $ die Klasse der Funktionen cp mit <p(0)= 1, die im Intervall [0, 
zweimal differentierbar, monoton wachsend und von unten konkav sind, und für die 

cp (x) ar Cl log log X (x€ [0, <*>)), (p (x) = o (log x) (x - ») 

erfüllt sind. (c1; c2, ... bezeichnen positive Konstanten.) Für eine q>£<P sei Lq>(L) 
2K 

die Klasse der meßbaren Funktionen / mit J \f(x)\(p(\f(x)\)dx~^^. Die n-te 
o 

Partialsumme der Fourierreihe der Funktion /€£(0, 27t) bezeichnen wir mit s„(f; x). 
In dieser Note werden wir den folgenden Satz beweisen. 

Satz. Es sei <p£ <P. Gibt es eine Funktion f£ L(0, 2n) derart, daß 

(1) M ^ i a / x ^ O 

in einer Menge vom positiven Maß gilt, dann für jede positive Zahl e (< 1) gibt es eine 
meßbare Funktion F mit 

2k 
f \F(X)\(pi-°(\F(x)\)dx 
o 

daß die Fourierreihe von F fast überall divergiert. 

Betreffs des Satzes bemerken wir folgendes. Nach einem bekannten Satz 
(s. z. B. [6], Vol. I., S. 66.), im Falle f£L(0, 2n) gilt s„(f; x) = o(logn) fast überall. 
Weiterhin, nach einem bekannten Satz (YUNG-MING CHEN [4]), für jede positive, 

Eingegangen am 5. November 1981. 
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monoton wachsende Folge <p(n) mit (p(n) = o (log log n) gibt es eine Funktion 
/ €£ (0 , 2?t), für die (1) fast überall gilt. 

Andererseits hat P . SJÖLIN [ 2 ] bewiesen, daß im Falle f£L(log+ X)(log+ log+Z.) 
die Fourierreihe von / fast überall konvergiert. (a+ bezeichnet den positiven Teil 
von a.) Weiterhin, nach einem bekannten Satz (s. z. B. YUNG-MING CHEN [5]) für 
jede positive Zahl e(< 1) gibt es eine Funktion f£L (log+ log+ L)1 derart, 
daß die Fourierreihe von / fast überall divergiert. 

Aus dem Satz folgt die folgende Behauptung. 

Gibt es eine Funktion <pt <t> mit der Eigenschaft, daß aus fdLcp(L) die Konvergenz 

fast überall der Fourierreihe von f folgt, dann gilt lim .?„(/; x) = 0 für jede 

£>0 und für jede f£L(0, 2n) fast überall. 

Beweis des Satzes . Es sei Zk die Menge der positiven ganzen Zahlen n, 
für die 2*3s<p(/i)<2*+1 (Är = 0, 1, ...) gilt. Auf Grund der Definition von <£ gibt 
es eine nichtnegative ganze Zahl k0, daß im Falle A'=/r0 Z t ^ 0 ist; die Elemente 
von Zk bezeichnen wir in natürlicher Anordnung mit nk, nk+1, ..., nk+1— 1 
(k—k0, k0+1, ...). Weiterhin, auf Grund der Definition von 4> gibt es eine nicht-
negative ganze Zahl ky (=k0), daß n k + 1 / n k ^ q > l (k=kx, kx+l , ...) auch besteht. 

Auf Grund der Voraussetzung des Satzes gibt es eine positive Zahl m und eine 
meßbare Menge E( Q (0, 27t)) mit mes E > 0 derart, daß 

(2) J i m - ^ y |s„(/; *)'| m (x£E) 

gilt. Es sei 

Ek = {*€(0, In): max ¡s„(f; x)| > (k = k,, ^ + 1 , ...). 
(. «fcs"-="k+i (p{n) 2 j 

Dann ist 

(3) 2 m e s Ek = 
k=kl 

Im entgegengesetzten Falle existiert nähmlich für fast jeden x eine von x abhängige 
positive ganze Zahl m(x) mit 

woraus 

I x Is„(/; *)l = - y (» = «(*)), 
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fast überall folgt, was (2) widerspricht. Weiterhin aus (3) folgt, daß es eine nicht-
negative ganze Zahl i* ( 0 s / * ^ 2 ) derart existiert, daß 

(4) 2 mes£3 i + i* = co 
i=i** 

gilt, wobei /** die kleinste positive ganze Zahl bezeichnet, für die 3/**+i*sA"x 

besteht. 

Wir setzen für i = i**, z** + l, ... 

wobei im Falle n < m 
m ( Je n\ 

K, ,„ (/; x) = s„ ( / ; x )+ 2 1 - ~ TT (ak ( / ) cos kx + bk ( / ) sin kx) fc=„+iv m—nj die verallgemeinerte de la Vallée Poussinsche Mittel der Fourierreihe 
a ( f\ °° 

fix) ~ + 2 («* ( / ) cos kx + bk ( / ) sin kx) 
^ k=i 

bezeichnet. Die n-te (C, 1)-Mittel dieser Fourierreihe bezeichnen wir mit o„(f ; x). 

Da im Falle V„>m(f; x)= am_1(f; <r„_x(/; x) ist, und im 

Falle /€£(0, 2TT) a„(f), b„(f)=o( 1) (»-=<»), weiterhin 

2lt 2it 
f |tr„(/; x)| dx^c2f | /(x)| rfx (n = 1, 2, ...) 
0 0 

bestehen (s.z. B. [6], Vol. I., S. 52., bzw. S. 137.), auf Grund der Definition von 
nk und Tt(x) ergibt sich : 

2(t 
(5) / | r i (x) i (^( |7 ' i (x) | ) ) 1 - i /x^ 

o* 

< T W ( f• x)-V ( f• x)\ dx 

- (23i+i*y 

Aus (4), auf Grund eines bekannten Satzes (s. z. B. [6], Vol. II., S. 165.) gibt es 
eine Folge {x,}~ von reellen Zahlen derart, daß für die Menge 

F, = {x+x f : x€£3 i + i .} (i = /**, i** + l , . . . ) 

(6) mes Ilm F{ = 2n ¡-.CO 
ist. 
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Es sei 

(7) Z r ^ T ^ x - x d , 
i = i»* 

wobei /•,(/)=sign sin 2'n t die /-te Rademachersche Funktion bezeichnet. Die 
«-te Partialsumme der trigonometrischen Reihe (7) bezeichnen wir mit R„(x, t). 
Aus (5) folgt 

~ t 
2 f V - ^ U x - x ^ r ^ T ^ x - x ^ - ' d x ^ c, Z 7T3i+7»\7 °°> 

•-•** 0 i = i** ) 

woraus wegen cp(x) s 1 (x^O) erhalten wir, daß die Reihe (7) bei jedem t fast 
überall zu einer Funktion f,(x)£L(0, In) konvergiert, und die Reihe (7) die Fourier-
reihe von ft(x) ist. 

Wir werden eine bekannte Methode anwenden. (S. [3].) Es sei <J>c(x)=x((p(x))'L~e 

und IA£(X)= $c{fx) (x^O). Man kann leicht zeigen, daß ij/e(x) auch eine von unten 
konkave Funktion in [0, ist. Durch Anwendung der Jensenschen Ungleichung 
und auf Grund der Voraussetzungen über <p ergibt sich 

27t 1 

f f +!.+.(*. 0-*„3il+i,-i(*> Ol) dxdt = 
0 0 

2TI 1 

= I + t)\)dt)dx = 
0 0 
271 1 

= f t)f)dt)dx -
o o 

27t 1 

s / Uf(R"si,+i*+*(x> 0fdt))dx = 
0 0 

2ti ( i t \ i 

= f ^AZTKx-xMdx^ 2 f ipe(T?(x-Xl))dx = 
0 V , = i » ' i = i l 0 

'« 2? 't 1 1 
= Z / ®e(\Ti(x)\) dx ^ C4 2 J^rny ^ c5 ̂ y T ('1 < h) 

auf Grund (5). Für z'2->-°° erhalten wir 
27t 1 -

/ / ^ ( l / . W - ^ ^ - x ^ t)\)dxdt^ cs^äiyT O'i = ?*> i** + 1' -)• 

Daraus folgt 
27t 

/ * . ( ! / , ( * ) - * n 3 l i + i * - i ( * > O l ) ( i x - ~ ) 
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bei fast jedem t. Wegen <Pe(2x)sc6 <t>c(x) (xsO) ist Rn^^^ix, t)iL((p(L))l~c 

für jedes t, auf Grund von (5), und so gilt bei fast jedem t. 
Es gibt also eine Zahl t0 derart, daß die Reihe (7) im Falle t = t0 die Fourierreihe 
einer Funktion F(x)=ft(x) ist, und F^.L(q>(L))1~c besteht; wir können auch 
'"¡(O^O 0 '= /**, /'** +1, ...) annehmen. 

Auf Grund der Definition von F gilt für i = i**, i**+1, ... 

max |s„ (F; x) - s„ . (F; x)| = 
"3i+i* S n < "3i + i*+l 

(f;x)-Snai+lt(f;x)\-

^ K (/;*)! <p{n) \snzi+iXf\x)\ 
~ n3i + i*Sn^n3i + i*+1 <p(n) (p(n3i + i*) <P{n3i + l*) 

Da n3 ( i + 1 ) + i»/«3 i + i*£#> 1 (i = i**,i** +1, ...) gilt, auf Grund eines Satzes von 
R . A . HUNT [1] 

s«3i+1*(/; *) = O(loglogn3l+i») = o((p(n3i+i*)) 

fast überall besteht. Daraus, und aus (2) erhalten wir, daß im Falle lim Ft 

max |s„(F; x)-s„ ,+1-i(F; x)\ s ^—ox( 1) 

für unendlich vieles i erfüllt ist. Daraus und aus (6) folgt, daß 

I m | s„(F;x)-s ,„(F;x) | > 0 
n,m~* oo 

fast überall besteht. 
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Solutions to three problems concerning the over convergence 
of complex interpolating polynomials 

V. TOT1K 

To Professor B. Szokefalvi-Nagy on his seventieth birthday 

The aim of this note is to solve the problems raised in [1] by J. SZABADOS and 
R. S . VARGA. We keep the notations of [1]. 

The answer to the first problem is positive: Gt(z, g)=Gt(z, Q). By the definition 
of G,(z, Q) it is sufficient to show that for fixed z, G,(z, Q) is a monotonically 
decreasing continuous function of Q. By Hadamard's three-circle-theorem 

|,| = e
v > f - 1 tt„(r,Z) /„(<?) log 

is a convex function of loge on the interval (Q', The proof of [1, Proposition 1] 
and a trivial estimate yield 

(1) Ki log ^ /„ (q) s K2 log J £ ! ± £ , 
hence 

log G, (z, Q) = lim sup /„ (Q) 
tl—oo 

is also a convex function of log Q and thus it is continuous in Q. Since by (1) 

lim log G,(z, Q)=-o— ~ 

the convexity of log Gt(z, o) implies its decrease on (Q', «>) as was stated above. 
After these the results of [1] imply the formula 

(2) At(z, Q, Z) = G,(z, e) = max (M g(z, e ) ; JfL] (|z| > e)f * k t: * 

Received September 3, 1982. 



416 V. Totik 

where 
, N Q v J a>„(z, Z)|\1 /n 

g (z, Q) = T-T lim sup i max —— 7—— f = 
|z| „_„Fl|«|=<> f - l o)„(t, Z) IJ 

i L G>„ (z, Z) f - 1 n1/n 
= hmsupimax 1 ^——1—;—— f . 

n-oo ll'l=e I z — 1 a>„ (/, Z) |J 

Now turning to the second and third problems of [1] we may assume that 
(geometric) overconvergence takes place at least at one point z0, |z0|><?, because 
these problems have interest only from the point of view of the overconvergence. 
In this case we prove the following rather surprising (see [1]) result. 

Theorem. If A,(z0, p, Z)< 1 for some |zo |>0 then 

<5= {z|J,(z, Q,Z) = 1} 

is a circle with center at the origin, At(z, Q, Z ) < 1 inside and At{z, e, Z ) > 1 outside 
this circle. 

P r o o f . Let 

g„(z, i) = 1 -
con(z,Z) f - l 

z " - l c«„(i,Z) 
and 

f I f-1 [1/B 

h (e) = lim sup i max 1 -—— > . 
«— Ll»l—« I con(t,Z)\) 

First we prove the equality 
(3) g(z,e) = h(e) ( | z | s 0 > e ' ) 

provided either side is less than one. 
Suppose g(z, {?)<<?< 1. Then for some n0 and nS« 0 we have 

(4) gn(z,t)^q- (kl = e, 
This yields 

co„(z,Z) f-1 1 -q" 

and so for any |fj| = \t \ = Q, 

z " - l con(t, Z) 
+ q" (|r| = e), 

(5) 1 -Kqn ^ 
f - l I tl-l ' 

con(t,Z)l <on(tltZ) £ 1 +Kqn. 

For fixed t the function inside the absolute value marks is homomorphic for 
1̂ 1 >f? without zeros and with removal singularity at ti — ^ , so we obtain from the 
maximum modulus principle that (5) holds for all Letting — w e get 

f - l 1 -Kqn^ (o„(t,Z) l+Kq- (]t\ = Q). 
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Again by the maximum modulus principle this is true for every \t\ = Q, so specially 

z " - l 
(6) 

(4) and (6) yield 

(7) 

for every | 
it follows 

1-Kq- s co„(z, Z) 

f - 1 

^ 1 + Kq". 

^ Kqn 

co„(t,Z) (on(h,Z) 
tx\ = g and hence also for every ^^g^t^. Letting here °o 

1-
t"-l 

=g Kq" (|/| = g, n n0) con(t,Z) 
by which h(g)^q. Since g(z, <7-= 1 was arbitrary, we obtain that h(g)^g(z, g). 

Now let us suppose conversely that h ( g ) < q < \ . Then for some n0 we have 

f-1 1 — 9" (|/| = e, « & «o) 
o)„(i,Z) 

Applying the maximum modulus principle once more we obtain that 
z " - l 

by which 
con(z,Z) 

-c0„(z, Z) 
z n - 1 

l+e„(z), |e„(z)| = q", \z\^g, 

1 +r}„{z), \nn(z)\^Kqa-

Multiplying this by 
f - 1 

= l+e„(0, | e n ( i ) N i " , = Q a>n{t,Z) 
it follows readily that 

g„(z, t) ^ tfg"' (|i| = g, |z| fee. » = «0), 

and the inequality g(z, g)^h(g) can be deduced as the opposite inequality above. 
Let 

, , (h(e) 1 1 

So far we have proved (see (2) and (3)) the formula 

(8) Al(z,g,Z) = \z\<p(e) ( |z |>i?) 
under the assumption min(q>(Q), AI(Z)/\Z\)<1/Q, and by the first part of our paper 
here (p(g) {Q>Q') is a monotonically decreasing convex function of Q with bounds 

1 / ^ 1 
n+r = = — -Q 

The Theorem follows immediately from (8). 

27 
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Remarks . 1. We have proved somewhat more, namely for a g > g', (geometric) 
overconvergence occurs if and only if 

lim sup max rt— M I't"*? 1 — 
C0„(t, Z) 

and in this case the "overconvergence radius" is 

1 

1 In 

1, 

<P(Q) 
= min n' + l - Q 

lim sup max 
n—\t\ = e 

1 
<o„(/,Z) 

1 In 

2. The Theorem does not hold without the assumption "At(z0, g,Z)<l for 
some Indeed, if the points zk„(l^tc^n) are "very near to (—1)"" 
then the interior of the set 

{ 2 | j l ( z , e , Z ) < l } 

is the common part of the discs | z — 1 and |z + l | < g —1 and © is on 
its boundary. 

3 . The formula ( 8 ) yields very easily the following result of J . SZABADOS and 
R . S . VARGA (see [ 2 , Theorem 2 , 3 ] ) : If 

lim sup (/ max \zk „ —exp 2nik¡n\ S ¿ < 1 
then 

A,(z, g, Z) g -^-max ¿j . 

Indeed, for any e > 0 we have for large n 

t"-1 J/" = L JJ t-exp2nik/n\v" 
• t-z, 

and so h(g)^S. 

con(t, Z) 

u=iV Q — Q > 1 
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One-sided convergence conditions for Lagrange interpolation 
based on the Jacobi roots 

P. VÉRTESI 

To Professor B. Szokefalvi-Nagy for his 70tli birthday 

1. Indroduction. We investigate the Lagrange interpolation for continuous 
functions on the Jacobi abscissas. By conditions of new type uniform convergence 
theorem will be established on the whole interval [ — 1, 1]. 

2. Notations and preliminary results. Let a , / ? > —1, say, a is/?, and let 

tz. IJ I _ X,) + l j „ < Xnn < Xn _ ] _ „ X2„ Ain < -*0|| — 1 

be the roots of the Jacobi polynomial (n= 1, 2, ...; see e.g. G. SZEGO [3]). 
Let us denote by 

(2.2) £(« '«( / , x) = 1/(*£»)/&»(*), n = 1, 2,..., 
k = l 

the Lagrange interpolatory polynomials of degree based on the nodes 
(2.1), i.e., /¡^'"'(A) is the £>th fundamental polynomial of the Lagrange inter-
polation (n= 1,2, . . .) . If / £ C ( / is continuous on [ - 1 , 1]) then L^'"\f,x) ge-
nerally do not tend uniformly to f ( x ) in [ — 1, 1] (if/7—°°). However, if we suppose 

•roflln r 1 ) if - 1 <0(3=-1 /2 
a ) a , ( / ' 0 = i o ( ^ ) if - 1 / 2 - a - 1 / 2 

when t-+0, or 
b) f£BC if - l < a < l / 2 , 

then 
(2.3) lim WLjf'^if, x)—f{x)\\ = 0 

(see [3], 14.4 and P. VERTESI [4], respectively). Here a>(f, t) is the modulus of 
continuity of / in [ — 1, 1], BC={f ;f£C and is of bounded variation on [ — 1,1]} 
and ||g(x)||[0j6]= sup |g(x)|; || • || stands for || • He-!,!]. 

arnx^b 
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In this note a general convergence criterion is proved, from which, among 
others, the above mentioned theorems can be deduced. 

3. Results. 3.1. We say that / £ C satisfies the one-sided Dini—Lipschitz 
condition (shortly f£sDL) if 

(3.1) - l ^ x ^ x + h ^ l , 

where e(/i)s0 (/*=0) and lime(/j)=0. This definition was introduced by G. P. 
N E V A I [ 2 ] . He proved that for any fixed a, /?> — 1 and [a, b] cz (— 1 , 1 ) , 

lim | W ' « ( / , x ) - / ( x ) | | [ o , 6 ] = 0 if fesDL. 
n - * CO 

3 . 2 . According to ( 3 . 1 ) and L . V . ZIZIASVILI [ 7 ] we shall define the next ¿-modulus 
for a bounded function defined on [ — 1, 1] as follows: 

(3.2) ö(f t) — sup [f(x+h)-f(x)], t^O. 
OSfiSt 

- L S J I I + L S L 

It is easy to see the next properties. 
1) 0^ő(fit)^a>(f,t), 
2) 5 { f t ) ^ ö { f T ) if O^t^T, 
3) lim <5(/, 0 = 0 if /¡EC, 
4) ő(f,i)=0 for any 0 S Í S Í 0 (/„>0) if / €C , and is monotone decreasing, 
5) 5(fnt)^nő(f t), ő(f = 1)<5(/, 0 where n is a positive integer, 

). is a positive real number, 
6) ¿ ( / x + / 2 , 0 ^ ^ ( / l , 0 + < 5 ( / 2 , 0 -

Moreover, by definition 

(3.3) f{x)-f(x+h) + ó{fit)^0, O^h^t. 

Finally, illustrating 1) let us remark that, e.g., for g(x) = (x +1)1/2 — (x+1)1 / 4 

we have c^SÖifi / ) s c 2 ( 1 / 2 but C 3 / 1 / 4 ^ C Ü ( / , í ) Á C / ' 4 . 

3.3. By these definitions we can prove 

Theorem 3.1. — l < y = max (a, /?)<l/2 be fixed. If f£C and 

( 3 . 4 ) * C / , 0 = { O ( , , + I / I ) I F _ 1 / 2 < ? < 1 / 2 

then 
(3.5) l i m | | L ^ " ) ( / , x ) - / ( x ) | | = 0 . 

/1—CO 

3.4. To obtain (3.5) from 2a) we remark that from 2a) (by 3.2.1)) we get 
(3.4); moreover if ftBC then f = f — f where f and/ 2 are monotone decreasing, 
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i.e., <5(/i, t)=d(f2, i )=0. Hence by Theorem 3.1 we have (3.5). These mean, 
Theorem 3.1 includes the statements of 2, indeed. 

3.5. If 7^1/2, (3.4) generally does not involve (3.5) even if <5(/, / )=0 . More 
exactly if n=mm(oc,P) then we have 

T h e o r e m 3.2. If y>1/2 or, if 7 = 1/2 and ¡x=]/2, then there existsa contin-
uous monotone decreasing function g for which (3.5) does not hold. 

3.6. Remarks , a) Theorems corresponding to Theorems 3.1 and 3.2 can be 
obtained for continuous monotone increasing functions g considering that now 
(—g) is monotone decreasing. 

b) It is worthwhile to state the next 

C o r o l l a r y 3.3. If — l < 7 < l / 2 then for any fd.BC we have (3.5). On the 
other hand, if y >1/2 or, if y S 1/2 and ¡1=1/2, then (3.5) does not hold for a certain 
g€BC. 

c) It is easy to prove Theorem 3.1 if — l S j 3 ^ a < l / 2 . Further, we can prove 
the corresponding theorems if we consider the Lagrange polynomials based on 
{4a/}}t=o. {x<kn^}ktl or {x^/Tfcii ' respectively. Omitting the details we refer to 
[4] and [6]. 

4. Proofs. 4.1. P roof of T h e o r e m 3.1. By f=f(x),fi=f(xi) and /¡ = /;(x), 

2 [/(x)-£<*•">(/, x)] = 2 ¿ [ / ( x ) - / ( x , ) ] 4 ( x ) = 
t=i 

(4.1) 

= (f-A)h+ 2 (/-/№+>*«)+ "2 (fk-/k+i)h+i+(f-f„)in. k=1 k=1 

To estimate the sums first we prove 

Lemma 4.1. Let — l < a , ft and £,t}>0 be fixed. If i s J I / , , — 
then for any x£[ — 1+fj, 1] we have 

k 1 " + -(4.2) i / f r « ( x ) + / f t t » . w i = « I « ? « w i [ j . ( / c + J - ) ( | k _ J l + i ) j 

uniformly in x and k. Here j/fc(x)| = max (\lk(x)\, |4+i(x)j), and M1 depends 
on a and 

To obtain (4.2) we shall use the next relations. If 
O â f c S n + l (with x 0 = l , x n + 1 = — 1), then 

(4.3) fc = 0, ! , . . . , « ; 

(4.4) l ^ ' H * ) ! ~ IB-SjlSj-*-''2}!1 '2 ~ ¡x —xJ-|,9J"i!"3/2ii1/2 
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uniformly in x € [ - l - M , 1]; moreover, with P^-p\x)=Pn(x), 

(4.5) 
2 ( S , N F ) (COS ~ f ] 

9 N 0 + 3 / 2 

uniformly in k if k^M0 and — e, 

(4.6) |^(.v,)| ~ k—"*n'+\ Tt-e, 

(4.7) P ^ » ( x ) = (-l)"P<''-«>(-*). 

(Here Xj=cos Sj is the nearest root to x (j—j(nj); for the symbol which 
may depend on a, /?, e and rj, see [3], 1.1; the sources of (4.3)—(4.6) can be found 
in [4]; (e>0 and r}> 0 are arbitrary fixed values).) 

If _/|>l, we can write 

(4.8) lk(x) + lk + 1(x) = P„ (x) {[P'n (xk) (x - xt)] - 1 + [P'„ (xk + J (x - x t + J ] -1}-

It is easy to see that 

K(xk) + P'„(xk+,) 
{•••} =-57 

xk xk +1 
= h+h-K (Xk) P'n(xk +,)(x - xk + i) ( x t ) ( x - x t ) ( x - x t + ,) 

, ^ « + 3 / 2 , $ N 0 + 3 / 2 

If k^M0, &k^n-e, then by(4.5) and K(9)=2 sin — I c o s ~ 2 | we obtain 

after a simple calculation, that 
[ I + O (k-i)] K(9k+0 - [1+O (fe •-1)] tf(Sk) Ín 

kK(9k) ' 

if k is big enough. I.e., if and ¡}k^n—E then ^ ^ [ k P ' ^ x ^ x — x / ()]-1. 
On the other hand, by (4.3), | ( x t - x , + 1 ) / ( x - x k + 1 ) | ~ k [ ( k + j ) ( \ k - j \ + l)]~\ so 
/, ~k{[(£ +7)(|A:-y | +1)]I^.XxJ| -x t | } - 1 . Now, using (4.8), we obtain (4.2) if 
\k-j\>l, ksM^ 9kSK-e. (We used that № * ) ( * - * » ) | ~ № t + 1 X * - * * + i ) | . ) 
The statement is obvious if \k— 

By (4.2) we get as in [4]: If î  = min (2; 1.5-a), then 

(4.9) "¿(f-fk)0k + lk+1) 
" ( . sin 9 . ¿ M l 

uniformly in x£[—1 + /7, ,1] 

(see, e.g., [4], 4.10, where 2\f~fk\ (which, by (4.2), is analogous to 
2\f~fk\ 14+4+rl) is estimated). 
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4.2. By (3.3) the second sum of (4.1)can be written as follows (Sk=5(f, xk—xk+1), 
lk=fk=0 if 2, ..., n): 

n-1 
2 ( f k ~ / k + l)h + l 

k=l 
21 (fk-fk-i-tk)\ik+i\ 

k=1 
+ 2 ^ 1 4 + i N 

k=1 

n—1 I n—1 j+m—1 

2 (A~A+i)l^+i l + 2 2 ôk\h+i\ ^ 2 (fk-fk+i)\h+i\ 
k=l I k=1 k=j-m+1 

+ 

+ 

' l ^ i c / i - Z i + j l d i ^ i l - ^ ^ l ) 
i = l l / = l J 

2 f 2 O Î - / l + i ) l ( | / t + i l - | / * + . D 
k=j+m*-i=j+m ' 

+ 2 ( f i / i + l) 
1 = 1 

+ I'„I 2 (f i-f i+1) 
i=j+m 

+ 

+ 

+ 

where l ^ f f l = m ( n ) ^ n will be determined later. 
4.3. To estimate Kx we need 

(4.10) 

L e m m a 4.2. Let — l < a , j3 j j>0 be fixed. Then 

j+m 

2 № P ) ( x ) \ = O (l)[ln 2m + ma+1/2] 
k=j—m 

uniformly in — 1+//, 1] and m, I S m S « . 

If n=0(m), (4.10) is well known ([3], 14.4). So let m=o(n). 
a) If j ^ m , we obtain 

j + m j / 2 2j 2m 

2 ^ 2 + 2 + 2 = / i + / 2 + / 3 . 
k=j-m k-1 k=jl 2 k = 2j 

/ b [6] x 
Here and later 2 stands for 2 • 

I. k=a k = [a] ) 

By (4.3)—(4.6), lk(x)=0(l)ka+3l2[r+ll\lc+jX\k-j\ + l)]-1, which imphes 
7 1 = 0 ( 1 ) , / 2 = 0 ( 1 ) In 2 / = 0 ( l ) In 2m and 7 3 = 0 ( l ) ( m / / T + 1 / 2 = 0 ( l ) ( l + m a + 1 / 2 ) . 

b) If mi_/'<2m, we have 
7 + m 3 m 

2 ^ 2 , 
k=j—m k^2j 

which can be estimated as above. 
c) Finally, if j ^ 2 m , we have 

• • j + m j+m 

2 \Ux)\ = oa) 2 ( | f c - ; | + l ) - 1 = 0(ln2m). 
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4.4. So by Lemma 4.2 we have 

(4.11) Kx = 0 |ta -i-jj (In 2m + ma+1/2). 

4.5. To estimate K2 and K4 we prove 

Lemma 4.3. Let — 1<a, ft and //>0 be fixed. Then 

(4.12) ¿ 1 /&«(*) + / № ( * ) ! = 0(1) + 

(4.13) z " | /fi-"(*)+/ftf>.Wl = 0 ( l ) f l + ^ ^ ) , 
k—j—m \ J ' 

(4-14) Z " |/&"»W + /<-f>„(x)| = 0 ( 1 ) ^ , 
t=i m 

(4.15) Z I ' ^ M + ' f t f t t o l = + 
k=j+m \ m J J 

uniformly in —1+?/, 1] aw/ wj, 1 =»? = «. Here 

. if u* 1/2, 
r ( M ' u ) = iln „ If u = 1/2. 

A. Indeed, to prove (4.12) we write the sum as follows: 

n M 4 —1 c/i n 
2 - = z ••• + Z •••+ 2 ... = / ! + / , + / 3 ( o < c < i ) . 

t=l Jk = Ai, *=cn+l 

By (4.2)—(4.6), if then 

IF« +1/2 (,<1+5/2 (4.16) |/»(*) +Z t+1(*)| = 0 ( 1 ) — ^ — — _ _ - + 

i.e., J1=0(j~"~s/2). For /2 we can write (if, say, 2/'<cw), 

/2 
j'/2 2j cn f ] r/-a 

= 2 + 2 + 2 = o ( D | + i + ^ . 

t=M, l=;/2 + l *=2j + l W J J 

If, say, t]=2s, then by (4.7), 

n 1-0 + 1/2 n"~112 

.1 fc=l " J 
By these estimations we obtain (4.12). Similar arguments apply for the other cases 
including the estimation of the n-th term. Now we sketch the remaining three 
formulae. 
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B. To prove (4.13), we write 

j + m j j + m 
2 = 2 . + 2 = Ji+'t. k=j—m k=j — m k~j +1 

2J 

Here 2 ' which can be estimated by 0(1) (see 72, above). Now, by (4.12), 

we can suppose that m = o(n). To estimate J2, we proceed as follows. j + m (1 + o)j 
a) First let m^2j. If n = 0(j), then 2 — 2 f ° r arbitrary g > 0 if n is 

k=j k=j 
big enough. But this sum can be estimated by 0(1), if Q is small enough. On the 

j + m 3 j 
other hand, if j=o(n), then 2 — 2 which again can be estimated by 0(1). 

k = j k = j J + m 2 J m 
b) If m^2j, then we have 2 — 2 + 2 > which can be estimated by 

k-j k = j k = 2j 
0(1)(1+Ka> m)j~*~112) (see the previous estimations for 72 and 73). 

j — m j/2 j—m 
C. To obtain (4.14), we argue as follows. If m^j/2, then 2 — 2 + 2 > • * = 1 k = 1 k = j/2 

which can be estimated by 0 ( / _ 1 In 2j) = 0(m~l In 2m) (see (4.16) and the above 
considerations). On the other hand, if j > m > j r / 2 , we can estimate as follows: 

J2 < 5 = °(J~l) = 0(m->) (see (4.16)). K = 1 k — 1 

n 
D. Now we estimate £ . 

k = j+m 
a) First let 7/7^2/. Then, if, say, 3j<cn ( 0 < c < ! ) , we can write 

n 3 j n 
2 = 2 + 2 =J3+JA-k=j + m k=j + m t = 3j' + l 

Here / 3 = O ( 7 (In 2y — In 2m))=0(m~l In 2m) (see (4.16)), moreover / 4 = 
= 0(r(a, n)j~"~1/2) (see the corresponding parts of /2 and 73). 

b) If m>2/ , then 

n 2 m It 
2 ^ 2 + 2 =Ji + J*-k—j+m k=m k=2m 

By (4.16), Ji = 0(mx~1,y-'"112). Further, if, say, 3m<cn ( 0 < c < l ) , w e can write 
cn n 

J« = 2 + 2 =Ji + h- Here by (4.16) J7 = 0(r(<x, m)j-* moreover using 
k-2m k = cn + l 

the estimation for 73, finally we get (4.15). 
The remaining cases can be treated analogously. Thus we have proved 

Lemma 4.2. 



426 P. Vértesi 

4.6. Let us estimate K2. By 4.2 and (4.14), using the fact that \\a\-\p\\^\a+p\, 
we get 

(4.17) K2 k = l 

j — m — 1 

2 \/k + l~fi\ + + 

J-™-1 fin 2m 1 
— 211/11 2 |/*+i + /4+.l = 11/110 {=•]• 

t=i.. \ m ) 
Similarly, 

(4.18) a ; ^ 2 | | / | | 2 \lk+i + lk+2\ = \\f\\0(i)[l-^ + r-^$). 
k=j+m \ rn J / 

4.7. To estimate Ks and K5 we remark that for any a > — 1, |/*(x)| = 
= 0(l)/c!I+3/V_I_1/2(A:-|-y)_1(|A;—y| + l ) _ 1 if x^[-l+t], 1] and 9k^n-e, which 
can be obtained using the above arguments. I.e., if 2, we have 

(419) K cm 0-™>'+3/2 if f ' I-OWII/II 

If 0 s y - w < 2 , then K3 = 0(\)j-x-3'2m-1(o(f,n-2) = 0(l)\\f\\m-1. For K5 we 
have by (4.7) 

(4-2 0) 5 = 0(1) ,X+U2 \J„-Jj+m\ = —¿m—• 

4.8. Now we estimate |[/(JC) —/(JCJ)]/,.^)! = (see (4.1)). By Ik(x) = 
= 0(l)k*+3>2[f+V2(k+j)(\le-j\ + l)}-\ 

(4.21) K7 = 0(i)co(f, = 0(l)co(f, = 0 ( 1 ) 0 , ( / j L ) . 

Using similar estimations we get that 

(4-22) l / t o - / ( * „ ) I |/„tol = 0{n~^). 

4.9. Summarizing the estimations (4.1), (4.9), (4.11) and (4:17)—(4.22), we have 
that for x£[-\+t], 1] and - l < a < l / 2 , 

(4.23) 

№"•»(/> * ) " / t o l = 0 ( l ) [ j > ( / , - i ) | ) ( l n 2m + m" +1/2+n"_1/2) + 

Here 0(1) does not depend on / . Now let m(n) tend to infinity (with n) so that, 
/ 1 \ 1 " 

say, limrnio — =0 . Using that for o t > - —, 2 l4WI = 0(n"+1/a) and that 
\n) Z = 1 
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<5^/,—j=o(l/n i t+1/2), we obtain the statement for x £ [ - 1 +r], 1] in virtue of 

J '<» ( / ,—) / -^=¿ . (1 ) (see [4], 3.2). If - l < a s = - 1 / 2 , we can use the relations 

2 |4(x) |=0(ln n) and ô(/, l /n)=o(l/ln «). Now by (4.7) we obtain the theorem 
k = 1 • • •: 

for the whole interval [ — 1,1]. 

4.10. P r o o f of T h e o r e m 3.2. First let a = l / 2 + 2 g , and 
say. Furthermore, let co(/) be a modulus of continuity with l̂im^ w(/)f_ 1 = 
œ2{t):=tca(t), and C(CO2) = { / ; / € C and co(f, t)Sa(f)œ(t)}. We quote P. VÉRTESI 
[5], Theorem 8.1: There exists a function h£C(a>2) for which . ; 

(4.24) Em 1 ) ~ f t ( 1 ) | s i for any a , / i > - l . ... 
n*+ll2co. 

If iw2(/)='1+e, then by (4.24), \L„(h, ])-h(\)\^n1+2en-i-Q=ne (M=Wi,H2, ...) 
i.e., lim |L„(/i, 1)| = oo. On the other hand, /16 Lip 1, from Where h£BC, i.e., h—hi w2, 
where and are monotone decreasing. But then, say, lim ¡/.„(/¡i, 1)| = °°. ft~*"00 

4.11. Now let tx=p = l/2. To obtain Theorem 3.2, we use the next statement 
(seeH. HAHN[1]): If for the arbitrary fixed interpolatory matrix {xk„}(k = \,2,...,n\ 
n=1,2, ...) in [—1,1], the interpolatory polynomials L„(f,x) converge for every 
function / of bounded variation at any point where / is continuous, then if 
*€[ —1, 1] and differs from the nodes xk„, we have 
(4.25) lim 2 lkn(x) = 0 if t < x 

(4.26) lim 2 hn(x) = 0 if t > x. 

We shall see that, e.g., (4.25) does not hold if a = / J = l / 2 , x = l and t—0. 
Indeed, if n—4s, then by [3], (4.1.7) and x = c o s 9 , 

y H i / 2 , i m ( u = y \ ( l V t- i sin (» + 1)3 sin«a t 1 
/ x^koV ' ( n + l ) s i n 9 (cos —cos5t)Ja=o 

= 2 ( - +x f c )=(x 2 s + 1 -x 2 s + 2 ) + (x2_,+3 —x23+4)+... +(x4s_, — x4J > 1 xs = 

S7t 2 —1/2 
= °S 4s+T 

I.e., there exists an f£BC for which (3.5) does not hold. As in 4.10, we get the 
proper monotone decreasing function. 

4.12. Finally, if a = l / 2 and j8=-l/2, then by (4.7) and the argument of 4.10 
we obtain the statement. 



428 P. Vértesi: Convergence conditions for Lagrange interpolation 

References 

[1] H . HAHN, Über das interpolations Problem, Math. Z., 1 ( 1 9 1 8 ) , 115 . 
[2] G. P. NEVAI, Remarks on interpolation, Acta Math. Acad. Sei. Hungar., 25 (1974), 123—144. 

(Russian) 
[3] G. SZEGŐ, Orthogonal Polynomials, Coll. Publ., XXIII., Amer. Math. Soc. (Providence, 

R. I., 1974). 
[4] P. VÉRTESI, Lagrange interpolation for continuous functions of bounded variation, Acta 

Math. Acad. Sei. Hungar., 3 5 ( 1 9 8 0 ) , 2 3 — 3 1 . 

[5] P. VÉRTESI, Lower estimations for some interpolating processes, Studio Sei. Math. Hungar., 
5(1970), 401—410. 

[6] P. VÉRTESI, On Lagrange interpolations, Period. Math. Hungar., 12 (1981), 103—112. 
[7] L . V . ZIZIASVILI, F o u r i e r ser ies , Mat. Sb., 1 0 0 (142) ( 1 9 7 6 ) , 5 8 1 — 6 0 9 . ( R u s s i a n ) 

MATHEMATICAL INSTITUTE 
O F THE H U N G A R I A N ACADEMY OF SCIENCES 
REÁLTANODA U. 13—15 
1053 BUDAPEST, H U N G A R Y 



Acta Sci. Math., 45 (1983), 429—380 

Asymptotically commuting finite rank unitary operators 
without commuting approximants 

DAN VOICULESCU 

Dedicated to Professor Bita Szokefalvi-Nagy on the occasion of his 70th birthday 

The following is an old unsolved problem: Given selfadjoint operators A„, Bn{\ ' 
eSCiJO, dim ,?fn<<=° («=1,2, . . . ) , such that s u p ( M J + | | 5 J ) < ° ° and 
lim \\[An, J?„]|| =0, do there exist selfadjoint operators A'„,B'n^Se(Jf„) so that 
[A'„, and lim {\\An-A'J + \\Bn-B'J)^01 We present in this note an 

fj-*-oo 

example showing that the answer to the corresponding question for unitaries instead 
of selfadjoints is negative. 

We shall take Ji^n=^2(Z/nZ) consisting of functions ¿ : Z / H Z - * - C and consider 
the unitary operators 

(U„0(k + nZ) = i(k-l + nZ), " 
(k = 0, 1, ..., n —1). 

(V„0(k + nZ) = exp (2kni/n)c(k + nZ) 

Propos i t i on . Let U„, V„ be the unitary operators defined above. Then we 
have lim ||[{/„, V„]\\ =0, but there do not exist unitary operators U'„, V'n£f2(Z/nZ) 
such thai [U', V'n]—0 and lim (\\Un-U'J+\Wn-V'n\\)=Q. 

Proof . We have U„V„=exp (-2iii/n)V„Un, which implies ||[C/„, F„] | | -0 
as n—°°. Assuming the existence of the commuting approximants U'n, V'n we 
will reach a contradiction. 

Consider on the unit circle T={z<EC||z| = l} the arcs r , f , r " , &(1\ i>(2) 

given respectively by 

„ rc 471 271 3k . r : y ^ a r g z < — , T : — ^ argz < — , T": 0 S argz < n, 

2K 37E 4>(1): 0 S arg z < — , tf>(2): — s arg z < n. 

Received October 8, 1982. 
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Let En be the spectral projection of V'n corresponding to r and let E'n, Ff 
be the spectral projections of V„ corresponding to f , F", $ ( 2 ) , respectively. 
Note that EZ=E'n + F?+Ff\ Also, since [V'n, U'n]=0, we have [U'n,En]=0 
and hence 
(1) | | [ t / n , i s j - 0 as n - c°. 

We shall use the following folklore-type fact. If Nn, N'n are normal operators, 
||iVn—iVj—0, | | iVJ<C and Pn, P'n are spectral projections of N„, respectively 
N'n, corresponding to Borel sets Q, Q' such that QCiQ'=0, then we have 
M l — 0. This gives, in particular, 

lim \\{I-E!)En\\ = lim | | ( / - W | | = 0. 

It is also easily seen that lim HF^^^F^H =0 . So we find selfadjoint projections 00 

• £„ such that E'^LE^E'^. and lim ||is„—itj = 0. One may define En for instance 
as follows. Let Xn=E'n+F^e"??1) + F^EnF^ so that \\Xn-En\\-0 and hence 
\\X*-Xn\\—0. Define En (for n big enough) as the spectral projection of Xn 

for the interval [1/2, 2]. Remark also that S ^ F ^ + E ^ + F ™ where .F„(1)S 
are selfadjoint projections. 

Consider 
now the projection E^ — and assume from now on 

n^ lO . We have 
(2) " e: s K 
and 

(I-E:)Un 7™ = (I-Ft) UnFP = 0, 
so that 

cI-Et)U„E: = (I-E;)Ujn = (I-E:XI-£„)UnEn. 

Since, by (1), lim \\(I-£n)Un£n\\=0, we infer that n 00 

(3) . lim 11(7- E*)U„E*\\ = 0 . Tt-+ oo 

. Define the isometric operator W„: <f2(Z/«Z)-/2(ZS0), by 

l£(fc + nZ) if 0 s f e < n . 

Then for P+ = WnE+W* and the unilateral shift S on ^2(Z i 0) , we have . 

wn(i-E^unE*w:=wn(i-E;)w:wnunw:w„En+w: = 

since, by (2), (WnUnW*„-S)P+=0. and {I-WnW*)SP+=0. Thus we have 
rank P+ < s-lim P„+=7 and, using (3), lim [|(7-7>+)S*P+|| =0 . This contra-
diets the non-quasitriangularity of the unilateral shift [1] and hence concludes the 
proof. 
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R e m a r k . The approximation problems for selfadjoint and unitary operators 
can be interpreted in terms of singular extensions (see [2], [3]). Consider the C*-
algebra 

* = {(T„)r I sup II r j < co} n 

and the ideal of sequences (T )T such that lim | |7J =0. Then the approxi-It — o© 

mation problem for selfadjoint operators amounts to the question whether every 
*-homomorphism can be lifted to a *-homomorphisms 
where X=[0 , 1]X[0,1] and the problem for unitary operators to the same question 
for X = T 2 , the 2-torus. In connection with this we should mention that from our 
strong non-splitting result in [4] for the singular extension in the C*-algebra of the 
Heisenberg group one can construct a *-homomorphism C0(R2)—«s//./ which 
does not lift (here C0(R2) denotes the continuous functions on R2 vanishing at 
infinity). Adjoining a unit to C0(R2) one gets a C*-algebra isomorphic to C(S2), 
where S 2 is the two-sphere, and hence the answer to the lifting problem is negative 
also for X = S2. Like [0,1] X[0, 1], the spaces T2 and S2 are two-dimensional, 
but it seems that the counterexamples for T2 and S2 are not due only to the di-
mension of these spaces but rather to their non-zero two-dimensional cohomology 
and hence it seems improbable that these examples will have a direct bearing on the 
problem for selfadjoint operators. 
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J. P. Bickel—N. El Karoui—M. Yor, Ecole d'Eté de Probabilités de Saint-Flour IX—1979, 
IX + 280 pages; 

J. M. Bismut—L. Gross—K. Krickeberg, Ecole d'Eté de Probabilités de Saint-Flour X—1980, 
X + 313 pages; 

Edité par P. L. Hennequin (Lecture Notes in Mathematics, 876, 929), Springer-Verlag, Berlin— 
Heidelberg—New York, 1981, 1982. 

These are the two new volumes of the now traditional Saint-Flour summer school series. 
Both volumes contain three longer survey articles of a subject area in probability or mathematical 
statistics. Bickel (72 pages) describes the recent nourishment of robust estimation theory concentrating 
in a very welcome way on the mathematical technique and not only on motivation as most authors 
do on this field. El Karoui (166 pages) gives a precise and unified account on stochastic control 
theory, represeting many results of various authors in the last three decades in the language of the 
French general theory of stochastic processes. Yor (42 pages) investigates a general stochastic 
filtration equation which containes most such equations in the literature. Bismut (100 pages) 
provides a shorter preliminary description of his "mecanique aléatoire" than in his later mono-
graph (same Lecture Notes, 866, to be reviewed in the next volume of these Acta) which has 
come out earlier. Gross (104 pages) covers equilibrium thermodinamics, equilibrium statistical 
mechanics and random fields. Finally, Krickeberg (109 pages) overviews the statistical theory of 
point processes. 

Sándor Csörgő (Szeged) 

J. Bourgain, New Classes of jSf'-Spaces (Lecture Notes in Mathematics, 889), V+143, 
Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

For normed linear spaces E and F let 

d(E, F) = inf {IinI HT"1!! I T: E - F is an onto isomorphism} 

(in case E and F are not isomorphic, take d(E, F) = If and then 
a Banach space X is called a Jiff-space provided for any finite dimensional subspace E of X 
there is a finite dimensional subspace F of X satisfying EQF and d(F, /p(dim Now 
a J5?p-space is a space for some 

This concept has turned out to be very useful in the local investigation of Banach spaces, 
although it has also many consequences on the global structure of the space. 

In the book the author provides new constructions for j£?p-spaces which solve several open 
problems in the negative. The examples of J*?p-spaces (1 -=/>-=«>) and JS?'-spaces are related and 
are constructed using trees on the integers. 

Familiarity with the theory of Banach spaces, measures and universal algebras is necessary 
when reading the book, which is designed especially for research workers in this topic. Several open 
problems are also mentioned, so that Bourgain's work well illustrates the goal of the "Lecture 
Notes" program: "new developments in mathematical research and teaching-quickly, informally 
and at a high level". 

V. Totik (Szeged) 

28 
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K. L. Chung, Lectures from Markov Processes to Brownian Motion (Grundlehren der mathe-
matischen Wissenschaften, 249), VIII+239 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1982. 

This book begins at the beginning with the Markov property, followed quickly by the intro-
duction of optimal times and martingales. These three topics in the discrete parameter setting are 
fully discussed in an earlier book of the author: A Course in Probability Theory (Academic Press, 
1974, second edition). The Course may be considered as*a general background. But apart from the 
material on discrete parameter martingale theory cited in § 1.4! the book is self-contained. 

Chapter 2 serves as an interregnum between the more concrete Feller processes and Hunt's 
axiomatic theory. Strong and moderate Markov properties of a Feller process are established with 
certain measurability properties. Chapter 3 contains the basic theory as formulated by Hunt, 
including hitting times, recurrent and transient Hunt processes and the characterization of the 
hitting (balayage) operator. Properties of the Brownian motion are discussed in Chapter 4; the 
treatment of Schrodinger's equation by the Feynman—Kac method is new. In the last chapter 
a. number of notable results in classical potential theory are established by the methods developed 
in the earlier chapters. 

Each chapter ends with a section of historical remarks and a number of regrettably omitted 
topics are mentioned. The book contains a lot of exercises as proper extensions of.the text. Graduate 
students and professional mathematicians will benefit from the clear, uncluttered treatment empha-
sizing fundamental concepts and methods. 

Lajos Horváth (Szeged) 

Combinatorial Mathematics VIH. Proceedings of the Eighth Australian Conference on Combi-
natorial Mathematics, Held at Deakin University, Geelong, Australia, August 25—-29, 1980, 
XIV+359 pages. Edited by Kevin L. McAveney (Lecture Notes in Mathematics, Vol. 884) Springer-
Verlag, Berlin—Heidelberg—New York, 1981. 

These conference proceedings contain two expository papers, nine invited papers and twenty 
contributed papers. A great part of papers investigate symmetric combinatorial structures (vertex-
transitive graph, finite projective plane, two-distance set, latin square, design). ívíany of the authors 
belong to the Australian school of combinatorics. The titles of expository papers are: R. G. Stanton 
and R. C. Mullin, Some properties of ^-designs; R. G. Stanton and H. C. Williams, Computation 
of some number-theoretic coverings. The titles of invited papers are : B. Alspach, The search for 
long paths and cycles in vertex-transitive graphs and digraphs; C. C. Chen, and N. F. Quimpo, 
On^strongly hamiltonian abelian group graphs; R. L. Graham, Wen-Ching Winnie Li ánd J. L. Paul, 
Monochromatic lines in partitions of Z"; J. S. Hwang, Complete stable marriages and systems of 
I—M preferences; P. Lorimer, The construction of finite projective planes; R. C. Reád, A survey 
of graph generation techniques; J. J. Seidel, Graphs and two-distance sets; J, Sheehan, Finite 
Ramsey theory is hard; R. G. Stanton, Further results on covering integers of.the form 1 +kl" 
by primes. 

L. A. Székely (Szeged) 

Combinatorics and Graph Theory. Proceedings of the Symposium Held at the Indian Statistical 
institute, Calcutta, February 25—29, 1980, VII+500 pages. Edited by S. B! Rao (Lecture Notes 
in Mathematics, Vol. 885), Springer-Verlag, Berlin—Heidelberg—New York, Í98L "" 

These proceedings consist of 9 invited papers and 36 contributed papers: Eight of them in-
vestigate the degree sequence of several graphs. One can find many papers concerning designs, 
association, schemes and enumeration problems. 
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The list of invited addresses is: C. Berge, Diperfect graphs; P. Erdős, Some new problems and 
results in graph theory and other branches of combinatorial mathematics; E. V. Krishnamurty, 
A form invariant multivariable polynomial representation of graphs; L. Lovász and A. Schrijver, 
Some combinatorial applications of the new linear programming algorithm; K. Balasubramanian 
and K. R. Parthasarathy, In search of a complete invariant for graphs; D. K. Ray-Chaudhuri, 
Affine triple systems; F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs; 
S. S. Shrikhande and N. M. Singhi, Designs, adjacency multigraphs and embeddings: a survey; 
G. A. Patwardhan and M. N. Vartak, On the adjungate of a symmetrical balanced incomplete 
block design with A = l. 

L. A. Székely (Szeged) 

E. B. Dynkin, Markov Processes and Related Problems of Analysis. Selected Papers (London 
Mathematical Society Lecture Note Series 54), VI-i-312 pages, Cambridge University Press, 
Cambridge—London—New York—New Rochelle—Melbourne—Sydney, 1982. 

It is widely acknowledged that Professor Dynkin's work in the last two decades has given 
a new shape to the theory of Markov processes. And as the role and importance of this theory 
within the whole theory of stochastic processes and in various appled branches cannot really be 
overemphasized, this is not a small thing. According to his own preface, Dynkin's new approach 
to Markov processes, and especially to the Martin boundary theory and the theory of duality, has the 
three distinctive features that the general non-homogeneous theory precedes the homogeneous one, 
that all the theory is invariant with respect to time reversion, and that the regularity properties of 
a process are formulated not in topological terms but in terms of behaviour of certain real-valued 
functions along almost all paths. This collection contains nine influential papers by him. The first 
seven of these, from I960, 1964, 1969, 1971, 1972, 1973 and 1975, were originally published in the 
Uspehi Matematicheskih Nauk and translated into English in the Russian Mathematical Surveys, 
the eighth is his 1978 Annals of Probability paper, and the last one appeared in the Transactions 
of the American Mathematical Society in 1980. The author has revised the entire text of the English 
translations and corrected a few slips in the originals. Workers in Markov processes will find it 
very useful to have these papers in one volume. 

Sándor Csörgő (Szeged) 

P. D. T. A. Elliott, Probabilistic Number Theory I, Mean-Value Theorems, II, Central Limit 
Theorems (Grundlehren der mathematischen Wissenschaften 239, 240), XXXIII+ 359 pages, 
XXX1V + 341 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979, 1980. 

This monograph gives an excellent introduction to probabilistic number theory and summarizes 
its fundamental results. The first volume begins with some necessary results from measure theory 
and the theory of probability. The greatest part of these theorems are proved in the first chapter 
and the proofs of the remaining theorems can be found in every monograph on probability and 
measure theory. 

After a discussion on the Selberg sieve method and the forms of the prime number theorem 
the author studies certain finite probability spaces, paying particular attention to a model of Kubilius 
which plays a crucial role in some later chapters. Chapter 4 contains the Túrán—Kubilius inequality 
and its dual, and their connection with the inequality of the large sieve. New proofs of the classical 
Erdős and Erdős—Wintner theorems on the distribution of the values of additive arithmetic func-
tions are presented. The first volume ends with the Halász method and the study of multiplicative 
arithmetic functions. 
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In the second volume the author studies the value distribution of arithmetic functions, allowing 
unbounded renormalisations. The methods involve a synthesis of probability and number theory, 
sums of independent random variables playing an important role. In particular, he investigates 
to what extent one can simulate the behaviour of additive arithmetic functions by that of suitably 
defined independent random variables. Subsequent methods involve both Fourier analysis on the 
line and the application of Dirichlet series. 

Many additional topics are considered, a problem of Hardy and Ramanujan, local properties 
of additive arithmetic functions, the rate of convergence to the normal law and the arithmetic 
simulation of all stable laws. A number of conjectures is formulated in Chapter 17 and a list of 
unsolved problems is given in Chapter 23. The historical background of various results is discussed, 
forming an integral part of the text. The reader gets acquainted with further results on each topic 
and the references cover broad parts of the literature. 

These very nice books may be recommended for everybody who is interested in probabilistic 
number theory. A graduate course may be based on a selection of results from the first volume. 

Lajos Horváth (Szeged) 

T. M. Flett, Differential Analysis, Vll l + 359 pages, Cambridge University Press, Cambridge— 
London—New York—New Rochelle—Melbourne—Sydney, 1980. 

The book is concerned with the differential calculus of functions taking values in normed 
spaces. 

In the first chapter such basic results on functions of one variable are treated as the mean value 
theorems, the increment inequality and monotonicity theorems. The second chapter is a good 
survey on the modern existence, uniqueness and continuation results in the theory of differential 
equations and inequilities even for infinite-dimensional systems. The third chapter deals with the 
Fréchet differential, which forms the basis of the calculus of functions of a vector variable. There 
are two other types of differentials for this purpose. The Gâteaux (or directional) differential is 
commonly discussed in the literature for this case. In the last chapter the author gives a detailed 
account also on the Hadamard differential which can be required for certain considerations in tangent 
spaces and in aspects of the theory of differential equations (for example, "differentiation along the 
curve"). 

A large part of the book is devoted to applications. Besides ordinary differential equations 
and inequalities, the author studies extremum problems for functions of a vector variable, Ljapunov 
stability, geometry of tangents, the Newton—Kantorovich method, etc. A great number of examples 
and exercises can be found in the book. 

The chapters are concluded by very interesting long historical notes. For example, at the end 
of the first chapter the reader finds the adventurous history of the mean value and monotonicity 
theorems with the original proofs and methods. (It is interesting that Ampère, a pupil of 
Lagrange who later achieved fame for his researches in electricity and magnetism, attempted to 
show that every real-valued function has a derivative everywhere, and Chauchy's treatment of the 
mean value theorem stemmed from this paper.) 

This nicely presented book is not only a very good monograph but also an excellent textbook 
in advanced calculus. 

L. Hatvani (Szeged) 
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Functional Analysis in Markov Processes. Proceedings of the International Workshop held at 
Katata, Japan, August 21—26, 1981, and of the International Conference held at Kyoto, Japan, 
August 27—29, 1981. Edited by M. Fukushima (Lecture Notes in Mathematics, 923), V+307 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

This volume comprises 15 original research papers based on lectures given at the above joint 
meetings. The first three longer papers (S. Kusuoka, Analytic functionals of Wiener process and 
absolute continuity; Y. Le Jan, Dual markovian semigroups and processes; M. Tomisaki, Dirichlet 
forms associated with direct product diffusion processes) are based on the main three-hour lectures 
and represent the main features of the meetings. The authors of the 12 shorter papers are Albeverio 
and Hoegh—Krohn (2 papers), Fukushima, Getoor and Sharpe, Guang Lu and Minping, Gundy 
and Silverstein, Itö, Kanda, Kotani and S. Watanabe, Oshima, Pitman and Yor, and Stroock. 
Some of these papers apply the functional analytic theory of Markov processes to various branches 
of physics. 

Sándor Csörgő (Szeged) 

Azriel Levy, Basic Set Theory (Perspectives in Mathematical Logic), XIV+ 391 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1979. 

The value of a good textbook on a subject can hardly be overestimated. I consider Levy's 
book such a good elementary-advanced work on a discipline which has just entered into the maturity 
age. The goal is to present basic set theory but the material is fairly up to date, several results from 
the late seventies are also incorporated. Many routine proofs are left to the reader but this only 
increases the legibility of the book. Also, a lot of exercises are presented — these range from almost 
trivial ones to advanced problems. 

Basic Set Theory consists of two independent parts. The first one is devoted to the development 
of pure set theory. Here the material is common with many other books; the framework is with 
von Neumann's classes. Constructibility and forcing is excluded but the last chapter deals with 
the versions of the axiom of choice. 

The second part is best named as selected topics. Although only a few topics are selected 
— the elements of description set theory; Boolean algebras and Martin's axiom and some infinite 
combinatorics — these enable the reader to get a sight of current research let alone their usefulness 
and applicability in other mathematical disciplines. 

I recommend Levy's book both to lecturers on set theory and to students who may get acquainted 
with this challenging field through this well-written work. 

V. Totik (Szeged) 

Logic Symposia. Proceedings, Hakone 1979, 1980, Edited by G. H. Miiller, G. Takeuti and 
T. Tugué (Lecture Notes in Mathematics, 891), XI + 934 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1981. 

Two symposia on the foundations of mathematics were held at Göra, Hakone, in Japan, on 
March 21—24,1979 and February 4—7, 1980 mainly with Japanese participants. This book contains 
15 papers read at these symposia. M. Hanazawa writes about Aronszajn trees, S. Hayashi about 
set theories in toposes, K. Hirose and F. Nakayasu about Spector second order classes, Y. Kakuda 
about precipitousness of ideals, T. Kawai about axiom systems of nonstandard set theory, S. Meahara 
about transfinite induction in an initial segment of Cantor's second number class, T. Miytake about 
proofs in recursive arithmetic, N. Motohashi about definability theorems, K. Namba about Boolean 
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valued combinatorics, H. Ono and A. Nakamura about the connection of the undecidability of 
certain extensions with finite automata, I. Shinoda about sections and envelopes of type 2 objects, 
G. Takeuti and S. Titani about Heyting valued universes of intuitionistic set theory, S. Tugue and 
H. Nomoto about the independence of an elementary analysis problem, T. Uesu about intuitionistic 
theories and, finally, M. Yasugi writes about the Hahn—Banach extension theorem. Let us record 
here the result of S. Tugue and H. Nomoto: There are sets AQR for which the statement 
"For any sequence {ak} of real numbers, if lim e2*'V = 1 f o r e v e r y t h e n {ok} converges to.0" k-* oo 

is independent of the axioms of ZFC. 
V. Totik (Szeged) 

Péter Major, Multiple Wiener—Itö Integrals. With applications to limit theorems (Lecture 
Notes in Mathematics, 894), VII +127 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

This monograph is about some recent and very deep results on the asymptotic behaviour of 
partial sums of discrete and generalised, "really" dependent random fields suggested by some 
important problems in statistical physics and in the theory of infinite particle systems. A modified 
version of multiple Wiener—Itö integrals, a notion originally designed for the study of nonlinear 
functionals over Gaussian fields, have proved to be a useful tool in the investigation of this renorma-
lisation limit problem of random fields. Almost all results and proofs in this area are related to 
these integrals. This fact is what necessitated this clearly and elegantly written monograph. The 
section headings are: 1. On a limit problem, 2. Wick polinomials, 3. Random spectral measures, 
4. Multiple Wiener—ltd integrals, 5. The proof of Itö's formula. The diagram formula and some 
of its consequences, 6. Subordinated fields. Construction of self-similar fields, 7. On the original 
Wiener—Itő integral, 8. Non-central limit theorems. The last, ninth section gives the history of the 
problems and poses a number of unsolved problems. 

The volume is a self-contained exposition and is indispensable for anyone interested in the above 
problems and generally in self-similar processes. 

Sándor Csörgő (Szeged) 

Mathematics Tomorrow, Edited by L. A. Steen, 250 pages, Springer-Verlag, New York— 
Heidelberg—Berlin, 1981. 

Three years ago the Joint Projects Committee on Mathematics and the Conference Board 
of Mathematical Sciences (USA) prepared a volume of essays: Mathematics Today: Twelwe 
Informal Essays. Mathematics Tomorrow continues the theme of Mathematics Today. It is written 
by individuals and it contains opinions and predictions about the direction that mathematics 
— research and education — should take in the future. 

Mathematics Tomorrow is divided into four parts: What is Mathematics?; Teaching and 
Learning Mathematics; Issues of Equality and Mathematics for Tomorrow. N o doubt, the most 
exciting section is the first one which tries to determine the relationship between "pure" and "applied" 
mathematics and the effect of this on mathematics teaching. Here some authors argue for radical 
reform, others express their concern because of the pragmatic trend in recent projects. Let us present 
here some valuable opinions: 

"Pure mathematics can be practically useful and applied mathematics can be artistically 
elegant" (P. Halmos). 

"Applied mathematics cannot get along without pure, as an anteater cannot get along without 
ants, but not necessarily the reverse" (P. Halmos). 
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"If the habit of understanding is lost at an elementary level, or never learned, it will not re-
appear when the problems become more complicated" (T. Poston). 

"The new core for the mathematics major might consist of only one year calculus, one semester 
of linear algebra, a:nd one semester of real analysis. ... we should even consider the extreme case 
that the new core might be the empty set" (W. F. Lucas). 

"...if the overall enrollment decline in higher education reaches a point of serious cuts in 
departmental sizes, then many other groups will decide that they too can teach their own mathema-
tics series courses. ... On the other hand many golden opportunities still exist... The choice is up 
to the mathematics cummunity, but it must act quickly and in a meaningful way" (W. F. Lucas). 

"The applications enthusiasts hold all the cards. They have behind them the power and 
influence of the natural organizations and commissions. They are reshaping the mathematics 
curriculum in their own image ... But I ask for a favor. Let one course, just one, remain pure ... And 
one day when the wind is right I'll do the Cauchy Integral Formula for the last time ... and the 
students will see the curve and the thing inside and the lazy integral that makes the function value 
appear as suddenly as my palm when I open my hand. They will see pure mathematics ... And 
we owe Paul Halmos a chance to see that some mathematics students know that his subject exists." 
(J. P. King). 

V. Totik (Szeged) 

N. H. McCIamroch, State Models of Dynamic Systems, VIII+ 248 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1980. 

It often happens that results of pure mathematics do not come to applications even in such 
cases when they are undoubtedly applicable in general. This may be caused by the difficulties of 
synthetizing the physical argumentation and mathematical formalism. The first step toward this 
synthesis is finding an appropriate mathematical model for the dynamical system investigated. 
The model gives a bridge between the reality and the mathematical theory. Modeling is a very 
complicated phase of the investigation: it requires the knowledge not only of means of mathematics 
but also the proper theory of the object to be modelled. The book gives an excellent glance into this 
art. Its sub-title really characterizes its style: it is "a case study approach". At the beginning of 
every chapter there is a short abstract of the necessary concepts and results from system theory, 
which is followed by special cases of a very wide spectrum: temperature in a building, electrical 
circuits, DC motor, vertical ascent of a deep sea diver, automobile suspension system, magnetic 
loudspeaker, liquid level in a leaky tank, spread of an epidemic, continuous flow stirred tank chemical 
reactor, motion of a rocket near Earth, etc. The models are classified according to two independent 
points of view: linear-nonlinear and first order — higher order models are distinguished, respectively. 

In many cases a detailed mathematical analysis is not possible for some reason or other. Then 
a computer simulation, based on the state equations may be required. To make it easier the book 
presents a special purpose simulation language (Continuous System Modeling Program). 

We can recommend this excellent book for undergraduate students, users of mathematics, 
and for everybody interested in applications of mathematics. 

L. Hatvani (Szeged) 

Padé Approximation and its Applications. Proceedings, Amsterdam 1980, Edited by M. G. 
de Bruin and H. van Rossum, (Lecture Notes in Mathematics 888), VI + 382 pages, Springer-Verlag, 
Berlin—Heidelberg—New York, 1981. 
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The book contains 29 papers delivered at the conference on "Padé and Rational Approxima-
tion, Theory and Applications" held at the Institute voor Propedeutische Wiskunde of the Uni-
versity of Amsterdam, October 29—31, 1980. This conference was the sixth in a series of con-
ferences on the above subject in Europe (Canterbury 1972, Toulon 1975, Lille 1977 and 1978, 
Antwerp 1979), which well illustrates the interest in Padé approximation and related subjects. 

The four invited lectures were: C. Brezinski: The long history of continued fractions and Padé 
approximants; P. R. Graves—Morris: Efficient reliable rational approximation; H. Werner: Non-
linear splines, some applications to singular problems; and L. Wuytack: The conditioning of the 
Padé approximation problem. 

V. Totik (Szeged) 

N. U. Prabhu, Stochastic Storage Processes. Queues, Insurance Risk, and Dams (Applications 
of Mathematics, 15), VI-t-140 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

The main classes of stochastic models investigated in this book are queueing, insurance risk 
and dams. The stochastic processes underlying these models are usually (but not always) Markovian, 
in particular, random walks and Levy processes. In order to answer important questions concern-
ing these models we have to study various aspects of these processes such as the maximum and 
minimum functionals and hitting times. 

The Introduction contains the definitions of single-server queueing systems, inventory models, 
storage models, insurance risk and continuous time inventory and storage models.. The book is in 
two parts. In part I the author presents the theory of single-server queues with the first come, first 
served discipline. This part is based on the close connection between random walks and queueing 
problems. In the first three sections of Chapter 1, the author proves some important theorems 
on ladder processes, renewal functions and the maximum and minimum of random walks. The 
results described here provide answers to most of the important questions concerning this general 
system, but in special cases of Poisson arrivals or exponential service time, or systems with priority 
queue disciplines, there still remain some questions. These latter are more appropriately formulated 
within the framework of continuous time storage models, which is developed in part II. 

In part II the author considers a model in which the input is a Levy process and the output 
is continuous and is at a unit rate except when the store is empty. In spite of its simplicity, the 
concepts underlying this model and techniques used in its analysis are applicable in a wide variety 
of situations, for example, in insurance risk and queueing systems with first come, first served 
discipline, or priority disciplines of the static or dynamic type. 

The book is clearly written, supplied with exercises at the end of sections, but the references 
are old and not enough to orient in recent developments in stochastic storage processes. It is re-
commended for every graduate student who has a background in elementary probability theory and 
wishes to begin studies in this part of applied probability. 

Lajos Horvath (Szeged) 

Recent Results in Stochastic Programming. Proceedings, Ober'wolfach 1979, Edited by P. Kali 
and A. Prekopa, Lecture Notes in Economics and Mathematical Systems, VI+237 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1980. 

This volume contains the papers presented at a meeting on stochastic programming, held at 
Oberwolfach, January 28—February 3, 1979. It is divided into two parts. 
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The first, theoretical part consists of the papers by Bereanu, Bol, Brosowski, Groenewegen and 
Wessels, Heilmann, Haneveld and Rinott about the topics: (stochastic-) parametric programs, 
multi-stage SLP, minimax rules for SLP, convexity problems, ctc. 

The second part is devoted to the applications concerning water resources, portfolio selection, 
asphalt mixing, network planning, etc. Here the authors are: Deák, Dupacová, Kall, Kallberg and 
Ziemba, Karreman, Kelle, Marti, Prékopa. 

An important note from the preface of the volume: "during the last two decades knowledge, 
theoretical and computational, on stochastic programming, and practical experience with it, have 
been developed so far, that neglecting a priori the stochastic nature of parameters ... can no longer 
be justified." 

V. Totik (Szeged) 

Robert B. Reisel, Elementary Theory of Metric Spaces (A Course in Constructing Mathema-
tical Proofs), 120 pages, Universitext, Springer-Verlag New York, Inc., 1982. 

It is only the second goal of this book to teach the elementary theory of metric spaces, the 
first goal is to teach an understanding of proofs and their constructions on an appropriate field 
of mathematics. 

The book is offered to junior students having a level of mathematical maturity, e.g. a complete 
course in calculus. The author requires a lot of self-contained work from his students', he gives all 
the definitions (including the set-theoretical ones), shows examples, states theorems and leaves 
proofs to the reader. A number of hints is given and the more difficult proofs can be found in an 
appendix. He says "I think that the best way to use this book is in a seminar ... it could, however, 
be used in a lecture course where many of the proofs would be assigned to the students. It would be 
suitable as the text or a supplementary text in courses in general topology, real analysis or advanced 
calculus." A solitary student studying this book needs a teacher who criticizes his proofs. 

The material of the book worked well in the author's seminar at Loyola University of Chicago 
in the past fifteen years. 

L. A. Székely (Szeged) 

S. H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces (Applied Mathematical 
Sciences, 37), V1I + 474 pages, Spriger-Verlag, New York—Heidelberg—Berlin, 1981. 

Since 1927, when G. D. Birkhoff published his classical monograph on dynamical systems 
the so-called topological dynamics has given a framework for the qualitative theory of solutions 
of differencial equations of certain types. Nowadays many attempts have been made to extend 
results of this theory to new types of equations. 

As is known a dynamical system is formed by a group of transformations of a Hausdorff 
topological space into itself. The family of solutions of an autonomous system of differential equa-
tions forms such a group of transformation, but the more general systems (nonautonomous ones, 
functional-differential equations etc.) do not have this property. But some representations of solu-
tions can be embedded into an appropriate function space where they generally form no longer 
a group but only a semigroup, in other words, a semidynamical system. Typically the space is 
not locally compact. The author makes it clear which properties of dynamical systems can be 
generalized to semidynamical ones, and what special kinds of properties the semidynamical sys-
tems have. 

Titles of the chapters describe well the topics involved: T. Basic definitions and properties, 
II. Invariance, limit sets and stability, III. Motions in metric space, IV. Nonautonomous ordinary 
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differential equations, V. Semidynamical systems in Banach space, VI. Functional differential 
equations, VII. Stochastic dynamical systems, VIII. Weak semidynamical systems and processes. 

Each chapter is followed by exercises, notes and comments, and an extensive bibliography. 
Most of the source material is from the 1960's and 1970's and was previously available only in 
journals. 

This book will be very useful for both mathematicians and users of mathemtics interested in 
the qualitative theory of differential equations and its applications. 

L. Hatvani (Szeged) 

Vjaíeslav V. Sazonov, Normal Approximation — Some Recent Advances (Lecture Notes in 
Mathematics, 879), VII+ 105 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

Although there are many central themes in modern probabilistic research, the historically 
first such theme, the central limit theorem, will undoubtedly always remain one. These notes, 
based on a series of lectures the author gave in 1979 at the University of California, Los Angeles, 
and at Moscow State University, are devoted to the study of the rate of convergence in the central 
limit theorem for independent and identically distributed random elements in finite dimensional 
Euclidean spaces and in real separable Hilbert spaces. The aim of the monograph is to outline the 
main directions and methods in the recent progress of the field. There are basically two main methods 
here. Quite naturally the author has chosen to emphasize the direct method of convolutions, 
initiated by Bergström and developed by the author himself, rather than the method of characteristic 
functions. 

Sándor Csörgő (Szeged) 

Séminaire de Probalilités XV, 1979/80. Avec table générale des exposés de 1966/67 à 1978/79, 
IV+ 704 pages; 

Séminaire de Probabilités XVI, 1980/81, V + 622 pages; 
Séminaire de Probabilités XVI, 1980/81. Supplément: Géométrie Différentielle Stochastique, 

111+285 pages; 
Edité par J. Azéma et M. Yor (Lecture Notes in Mathematics, 850, 920, 921), Springer-Verlag, 

Berlin—Heidelberg—New York, 1981, 1982, 1982. 

These three volumes of the traditional seminar notes, centred originally in Strasbourg and 
now, beginning with the volume XIV, in Paris, show the French school of probability in its best 
again. The main theme is of course the traditional "general" theory of stochastic processes, but 
there are many other topics dealt with. It would be impossible to list these here since there are 
altogether 109 papers in the three volumes (27 in English), but almost everybody working in sto-
chastic processes will find at least one indispensable for him. Even so, the martingale approach 
to some Wiener—Hopf problems in a two-part longer paper by London, McKean, Rogers and 
Williams in volume XVI deserves special mention. It is a great help for the readers of this series, 
and especially for those who do not travel often enough to France, that volume XV contains a 
complete list of contents of the first fourteen volumes with editorial notes on the correction, recti-
fication, extension, or improvements of many papers in subsequent volumes. The supplement 
volume on stochastic differential geometry, containing six longer papers by Schwartz, Meyer, Emery, 
Darling and Azencott, appears to be very important. It provides "the present state of art" of a new 
and vigorously developing branch of stochastics. 

Sándor Csörgő (Szeged) 
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E. B. Dynkin—A. A. Yushkevich, Controlled Markov Processes (Grundlehren der mathemati-
schen Wissenschaften, 235), XVII+ 289 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1979. 

Optimal control of a stochastic process means the optimal choice of some free parameters 
influencing the future evolution of the underlying random process, in order to achieve optimal 
dynamics (minimal costs or maximal rewards). The selection of the control parameters is made on 
the basis of observations of the past of the process. Evidently this model describes the situation in 
many engineering and economic problems. Hence stochastic control is by right considered as an 
applied mathematical discipline. 

The original Russian version of the present book was written in the time (1975) when the 
authors, both of them outstanding mathematicians, worked with the Central Institute of Mathema-
tical Economics in Moscow. They accomplished a work, very rare in the literature, which is equally 
exciting for mathematicians and specialists motivated by economics. The volume actually deals 
with the optimal control of discrete-time Markov chains, or, in other terminology, with multi-stage 
Markov decision problems. In this respect the title is somewhat misleading as the theory of contin-
uous-time processes, where entirely different mathematical problems arise, is not included. Neither 
are considered computational aspects of the determination of the optimal strategy. 

Presenting the material the authors approach step by step from simpler to more advanced 
problems, always keeping an eye on applications. This way the reader never looses contact with 
practice, and the necessity of each step towards increasing abstraction is sufficiently motivated. 
As prerequisites only basic probability and measure theory are required. 

Summing up, the present book can be recommended both to mathematicians wishing to culti-
vate applied probability and to economists intending to solve their problems by mathematical 
methods. The level of applied mathematical literature would considerably increase if everyone 
cast a glance at Dynkin and Yuskevich's presentation before sitting down to write his own monograph. 

D. Vermes (Szeged) 

N. V. Krylov, Controlled Diffusion Processes (Applications of Mathematics, 14), XII+308 pages, 
Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

What can hope a mathematician moving from discrete models to continuous ones? Gain 
on conformity with reality? More aesthetic simplified theory? Challenging new difficulties? The 
step between optimal control theory of discrete-time random processes and their continuous-time 
analogues can offer all the three sorts of rewards. The author seems to prefer confrontation of 
difficulties to conformity and simplicity. For him the theory of continuous-time stochastic processes 
is a source of hard enough mathematical problems most of which he masters triumphally. 

The general object of stochastic control theory was outlined in the previous review. In order 
to understand the particularities of continuous-time control problems, the origins and the practical 
motivations of their theory and to estimate correctly the arising difficulties, the non-specialist 
should first consult the excellent introduction: W. H. Fleming and R. W. Rishel, Deterministic, 
and Stochastic Optimal Control (Springer-Verlag 1975). Together with the monograph under 
review, the two books constitute indeed an excellent, high-level presentation of the control theory 
of continuous processes. 

Roughly speaking the determination of the optimal strategy for a controlled diffusion process 
is equivalent to the solution of a possibly degenerated non-linear parabolic PDE with non-continuous 
right-hand side — the so-called Bellman equation. But in what sense does this equation have solu-
tions and in what class of functions is there a unique solution? These are the central questions of 
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the theory and once the author answers them, he arrives at a unified theory of classical calculus of 
variations and of the control of continuous deterministic and stochastic processes. But the technical 
machinery yielding this theory is not less significant. Some techniques of estimation will perhaps 
find as much applications in mathematics itself as the whole theory will do in practice. 

The style of the book resembles an extended research article on a vividly developing field 
rather than an explanation of an applications-oriented mathematical theory. In order to make 
the author's important results available to English reading specialists in a shortest possible time, 
Springer-Verlag translated the Russian original without any change. (Not even bibliographical 
hints to meanwhile published proofs of stated results were included.) 

The chapter-headings are: 1. Introduction; 2. Auxiliary propositions; 3. General properties 
of a playoff function; 4. The Bellman equation; 5. The construction of e-optimal strategies 6. Con-
trolled processes with unbounded coefficients; Appendices, Notes, Bibliography, Index. As "auxiliary 
propositions" the author presents Lp estimates for stochastic integrals, existence of diffusions 
with measurable coefficients, Markov property and parameter dependence of solutions of stochastic 
equations, Ito's formula in Sobolev spaces. 

D. Vermes (Szeged) 

I. I. Gihman—A. V. Skorohod, Controlled Stochastic Processes, V1I+237 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1979. (Translated from the Russian by S. Kotz.) 

Is it necessary to recommend to readers the most recent monograph of the well-known authors 
of 12 previous volumes covering most of the theory of stochastic processes, initiators of several 
important mathematical theories? The 13lh of their books shows once again the brilliant talent 
of its authors as, seemingly without any serious reading of the existing literature on stochastic 
control theory, they arrive with a single blow at the proximity of the results achieved in the last 
decade on this rapidly developing field. Specialists, familiar with the alternative ways leading to 
the same results, will find interesting the authors' approach via weak approximation which has 
several advantages as pointed out in H. J. Kushner, Probability Methods for Approximation in 
Stochastic Control and for Elliptic Equations (Academic Press, 1977). 

As prerequisites, rudiments of measure theory and functional analysis and a knowledge of 
the theory of stochastic processes are supposed, the latter at the approximate level of the three-
volume treatise by the same authors. Besides specialists of stochastic control theory the book 
will turn out to be useful to any mathematician learning Russian. As the English translation preserves 
the typically Russian structures and English terms are chosen much nearer to their Russian ori-
ginals than the commonly used English terminology, the text suits ideally to translation exercises 
(from English to Russian). 

D. Vermes (Szeged) 
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