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Strong subband-parcelling extensions of orthodox semigroups 

MÁRIA B. SZENDREI 

The notion of subband-parcelling and strong subband-parcelling congruences 
on orthodox semigroups was introduced in [4] by generalizing the common properties 
of congruences appearing in a number of structure theorems concerning orthodox 
semigroups. For a list of such structure theorems the reader is referred to [4]. In 
particular, the concept of strong subband-parcelling congruences in'cludes the idem-
potent separating congruences and the least inverse semigroups congruences on 
orthodox semigroups which play singificant roles in the theory of orthodox semi-
groups. 

An orthodox semigroup T is said to be a strong subband-parcelling extension 
of the semigroup S if there exists a strong subband-parcelling congruence x on T 
such that T/x is isomorphic to S. 

The aim of the present paper is to describe all strong subband-parcelling exten-
sions of orthodox semigroups. All strong subband-separating extensions of orthodox 
semigroups are characterized in [5]. It is worth dealing with this special case separa-
tely because a much simpler construction is needed than in the general case. On the 
other hand, in the class of all inverse semigroups every subband-parcelling congru-
ence is subsemilattice-separating. 

In Sections 2 and 3 we introduce the construction which will be used in Section 
4 to describe the strong subband-parcelling extensions of orthodox semigroups. At 
the end of this section we apply our results to characterize an orthodox semigroup 
as an extension of an inverse semigroup by the least inverse semigroup congruence. 
Thus we obtain a structure theorem for orthodox semigroups which describes ortho-
dox semigroups by means of their bands of idempotents and greatest inverse semi-
group homomorphic images as it was done also by Y A M A D A ( [ 7 ] ) . However, our 
construction seems to be easier to apply in certain cases than the quasi-direct product 
used by him. 

The notions and notations of [1] and [2] are used. 

Received on September 4, 1980. 
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1. Preliminary notions and results 

The concept of a subband-parcelling congruence on an orthodox semigroup was 
introduced in [4] as follows. 

Let B be a band. Suppose ¿ is a congruence on B with b^<2) and B is a subband 
in B with the property that B is a union of ¿-classes. For brevity, if B and ¿ satisfy 
these conditions then we say that B, 5 is an associated pair in B. Let T be an orthodox 
semigroup with band of idempotents B. 

Def in i t i on . The congruence relation x on T is called (B, 8)-parcelling if the 
following conditions are fulfilled: 

(dx) 5Qx\B, 
(d^ every x-class containing an idempotent element contains an element of B, 

and 
(d3) the elements of B belonging to a x-class form a ¿-class which is the greatest 

one in this x-class. (By the order of ¿-classes we mean the natural order of B/S.) 

In particular, if ¿ is the identical congruence then x is called B-separating. 
In this case (dx) is satisfied trivially and (d3) means that every element of B is the 
greatest idempotent in the x-class containing it. 

The following proposition characterizes the subband-parcelling congruences. 

P ropos i t i on 1.1. Let T be an orthodox semigroup with band of idempotents B. 
The congruence relation x on T is subband-parcelling if and only if there exists a grea-
test ¡¿-class in the band of idempotents of each idempotent x-class and their union is 
a subband in B. 

Proo f . Suppose first that B, ¿ is an associated pair in B and x is a (B, ^-par-
celling congruence. Let A: be an idempotent x-class in T. Since 7"is regular ^contains 
an idempotent element and hence, by (d2) and (d3), there exists a greatest ¿-class in 
the band of idempotents E of K and this ¿-class is just Bf]E. Since 5Qx\B by 
(di), 6 \E^S) e is implied by Therefore ey3)E^e23>E follows from ^ ¿ s 
^e2<5 for every pair elt e2 in E which shows that Bf)E is the greatest ^-class in E. 
Clearly, the union of these ^-classes for all ar-classes is just E. 

Conversely, assume that x. is a congruence on 2" with the properties that the band 
of idempotents of each idempotent x-class contains a greatest ®-class and their union 
is a subband B in B. Consider the congruence S=x\Bil^B on B. Then the greatest 
i^-class in the band of idempotents of an idempotent x-class is the greatest ¿-class 
and B, 5 is an associated pair in B. One can easily see that x is a (B, ¿)-parcelling 
congruence. The proof is complete. 

The most important properties of subband-parcelling congruences proved in 
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[4] are drawn up in the following results. If B, 8 is an associated pair in B then S is 
used to mean 8\B. 

Theorem 1.2 ([4] Theorem 2.5). Suppose T is an orthodox semigroup with bandof 
idempotents B and B, 5 is an associated pair in B. If there exists a (B, S)-parcelling 
congruence x on T then B is a band B/S of the bands Fx= {beB:b8^x and bb-^.y 
implies x^y for every y in B/S} (xzB/S) with greatest 8-class x. The x-class con-
taining the 5-class x is an orthodox subsemigroup in T with band of idempotents Fx: 

Remark . Fx is given in [4], Theorem 2.5, in a slightly modified form. The equi-
valence of these characterizations can be easily checked. 

Lemma 1.3. Suppose T is an orthodox semigroup with band of idempotents B 
and B, 5 is an associated pair in B. Assume that T has a (B, S)-parcelling congruence. 
Let t and t* be inverses of each other in T such that tt*eFx and t*tiF^. Then, for 
every x andy in B/S with xSkx andyS£y, there exists an inverse t' of t such that tt'£Fx 

and t'tiFy. 

Theorem 1.4 ([4] Theorem 2.9). Let T be an orthodox semigroup with band of 
idempotents B and B, 8 an associated pair in B. Suppose T to have a (B, 8)-parcelling 
congruence. Then SB= {tiT:eMt^ff for some e, f in B} is an orthodox subsemigroup 
in T. The band of idempotents in Ss is B and the inverses of the elements in SB belong 
to SB. 

The subsemigroup SE plays a significant role in the case of strong subband-
parcelling congruences. 

Def in i t i on . The (B, 5)-parcelling congruence x on the orthodox semigroup 
T i s called strong if every ^-class contains an element of SE. 

Obviously, the (B, 5)-parcelling congruences are strong for SB=T. 
The following result is important in describing the strong subband-parcelling 

extensions of orthodox semigroups. 

P ropos i t i on 1.5 ([4] Theorem 2.10). Assume that T is an orthodox semi-
group with band of idempotents B and B, 8 is an associated pair in B. Let x be a strong 
(B, S)-parcelling congruence on T. Consider two elements t and t' in T which are inver-
ses of each other. Then there exist elements s and, s' in SB with sxt and s'xt' such that 
s and s' are inverses of each other. 

i 
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2. Semidirect product of a partial left band and 
a right orthodox partial semigroup 

The structure of completely regular semigroups was characterized among others 
by W A R N E in [6]. We will apply his result in the special case of bands. 

Let y be a semilattice and /„ a left zero semigroup for every a in Y. A partial 
groupoid on / = U {/5,:a6 Y) is called a lower associative semilattice Y of left zero 
semigroups Ia(a£Y) if (i) IaC\Ip= • whenever a^/?, (ii) the product of elements 
a in Ia and b in is defined if and only if a^fi, (iii) if a s / ? then and 
(iv) if and c£ly then a(bc)=(ab)c. The notion of an upper 
associative semilattice of right zero semigroups is obtained dually. 

Let / be a lower associative semilattice Y of left zero semigroups /„ (a£ Y) 
and J an upper associative semilattice Y of right zero semigroups Ja (a€ Y). For 
every u in J, let Au be a transformation of / and, for every a in I, let Ba be a trans-
formation of J such that aAu£Iap and uBa€Jap provided a£Ia and u^Jp. More-
over, let the following conditions be fulfilled: 
(Wl)if a£Ia, b€lp with a^P and u£J then 

(a) uBob=uBaBb, 
(b) (ab)Au=aA„-bAuBa; 

(W2) if u£Ja, v£Jfi with a^fi and at I then 
(a) aA„=aAvAu, 
(b) (uv)Ba=uBoAv-vBa. 

A pair A, B satisfying these conditions is termed an (/, J)-pair. 
Define a multiplication on the set E— U {IaXJa'. <x£Y} by 

(a, u)(b, v) = (a- bAu, uBb • v). 

One can show that E is a band with respect to this multiplication. This band is 
called a semidirect product of I and J and is denoted by J ; A, B). 

Theorem 2.1 ( W A R N E [6]). Every band is isomorphic to a semidirect product of 
some I and J where I is a lower associative semilattice Y of left zero semigroups and J 
is an upper associative semilattice Y of right zero semigroups for some semilattice Y. 

First we generalize the notion of an upper associative semilattice of right zero 
semigroups by introducing the notion of a right orthodox partial semigroup. We 
need the definition of the spined product of partial groupoids. The notion of spined 
product of semigroups is due to K I M U R A [3]. 

Let both S and T be partial groupoids which are semilattices Y of full sub-
groupoids Sa and Ta (a£ Y), respectively. By the spined product S®YT of S andT 
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over Y we mean the subdirect product of S and T whose underlying set is 

U{S«xr . : a€ l r }-

Let F be a semilattice. Let J be an upper associative semilattice F of right zero 
semigroups J 5 (agF). For every a in F, suppose Ys (agF) to be a semilattice with 
identity a. Assume that Y is a semilattice F of semilattices Ks (a eF) such that F 
is a subsemilattice in Y. Let / be a partial groupoid with respect to the operation 
denoted by " •". We say that an element a in / is idempotent if a • a is defined and 
a-a=a. Suppose J= U {J{'.(j, a ) e J ® y F } where j\C\j]= • provided 
( j , fi). Introduce the following notation: for every a in 75 , let Ja= 
= U UijiJa}- Assume that there exists a unary operation " " ' on J such that the 
following hold: for arbitrary elements Q in J\, O in J\ and T in J] with £>'€/,-, 
o'tJp-, and t ' U y we have 

(Bl) a and a ' are contained in the same YS and Q"£JX; 

(B2) Q-O is defined in J if and only if A'^p and, in this case, Q-<T€JI'1 and 
(e-o-ye/ j for some £ with Z^P ' ; 

(B3) if ot '^P and fi'^y then (g • a) • i = q • (<r • t); 
( B 4 ) Q-Q'-Q=Q a n d Q'-Q-Q'=Q'-, 

(B5) the idempotents in form a right zero semigroup for each a in Y; 
(B6) if g and a are idempotents with a S y and fi^y' then (g • if and only 

Note that both sides of the equality in (B3) are defined by (B2). Parentheses 
are not needed in (B4) by (B3). Moreover, Jx contains an idempotent for every a 
in Y as Q^JA implies by (B4) and (B2) that Q • Q' is an idempotent in /„. In property 
(B2) the product ] • E is defined in J since a€ Ys, /?€ imply a ' e Y i whence it fol-
lows by a ' ^ P that a^ f i . Since g and a are idempotent in (B6), we have a ' ^ a 
and P '^P- Thus the products in (B6) are defined.. 

A partial groupoid / fulfilling the above conditions is termed a right orthodox 
partial semigroup over J®yY. Dually, one can define a left orthodox partial semi-
group I over some I®yY where / is a lower associative semilattice Y of left zero semi-
groups. The duals of properties (Bl)—(B6) will be referred to as (Bl)*—(B6)*. If 
the elements of / or J are idempotent then we call them a partial right band and a 
partial left band, respectively. 

Suppose QiJa and e'^J^- An element <riJp with o'tJp, is called an inverse 
of Q provided a'^p, P'~a and q<tq = q, oqo=o. Property (B4) means that the 
operation " " ' picks out an inverse of each element. Observe that Q • O and A • Q are 
idempotent provided q and a are inverses of each other. 

In what follows we draw up the basic properties of a right orthodox partial 
semigroup J in several lemmas. For brevity, introduce the following notations. If 
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a^P in Y then we denote this fact also by Ja=Jp- If then J (a) is used to 
mean Ja. 

. Lemma 2.2. If gUa, g\ and a'U^ then (g-o)'£Ja~. 

Proo f . By (Bl) and (B2), the product g' • (g • a) is defined and J((e' • (g • <x))')= 
• a)'). On the other hand, (B3) ensures that (g' • Q) • O=Q' • (g • a). Moreover, 

the product g • ((Q' • Q)-O) is also defined by (B2) and properties (B3), (B4) imply 
it to be equal to q-o. Again by (B2), we have J((g • a)')^J((g' • (g • o))'). Hence 
we obtain that J((g • a)')=J{((g' • g) • o)'). It follows from (B2), (B3) and (B4) 
that g' • g and a' -a are idempotents in Ja. and Ja-, respectively. Thus, by (B6), we 
have J((IQ'-e) •<*)')=as ^P'-O')-A')'=(J"AAL., by (B4) and (Bl). Hence 
J((q • o)')=Ja» which was to be proved. 

Lemma 2.3. If g£Ja, g'€Jx>, and a.'^P then 
implies a' = p. 

Proof . By (B2), Q-O<LJa. Thus (g' • (g • <r))' = ((g' • g) • by Lemma 
2.2. Since g'-QiJX ' , o'-<r£jp and they are idempotent property (B6) ensures 
((a' - a ) - a ' ) ' ( L J O n the other hand, (Bl) and (B4) imply {{a ' -a ) -a ' ) '=a"U i l . 
Hence a ' = p . 

Lemma 2.4. If g and g* are inverses of each other in J then J{g)—J{g*') and 
J{q*)=J{q')- In particular, J(e)=J(e') provided e is idempotent. 

Proof . By definition, J(g')^J(g*), J(g*')^J(g) and g-g*-g = g, 
g* • g • g*=g*.- Lemma 2.3 implies that J((g • Q*)')=J(Q). On the other hand, by 
(B2), we have J((g • g*)')^J(g*'). Thus J(E)=J(E*L whence we conclude the 
equality J(g)=J(g*'). Similarly, starting with the equality g* • g • g* = g*, the 
equality J(g*)=J(g') yields. 

This lemma shows that in the case of partial right [left] bands the operation 
can be chosen to be the identity transformation. In what follows, the operation 

" " ' is always assumed to be identical in the case of partial right [left] bands. 

Lemma 2.5. The inverses of the idempotent elements in J are also idempotent. 

Proof . Suppose e€/a is idempotent and £ is an inverse of s. By Lemma 2.4, 
and £,<!;'€/„. Since E-E-E we have • e • £=(£ • E) • (e-£). Here 

and E • £ are idempotents in Ja. Thus, by (B5), their product is also idempotent. 

Lemma 2.6. Let g* and g** be two inverses of g£Ja. Then g* = g**-e for 
some idempotent element e in Ja. 

Proof . Assume that g'€Ja.. Then, by Lemma 2.4, g*, g**eJa> and 
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g*',g**'€Ja. Moreover, the elements g* • g and g** • g are idempotents in 
(B5) implies (g* • Q) • (g** • g) = g** • g. On the other hand, we obtain by (B3) that 
(g* • g) -(g** • g)=g*-(g • g**- e)—g* • g whence we have g* • g=g** • g. Thus 
g*=g* • g • g* = g** • (g • g*) where g • g* is an idempotent element in Ja. 

Lemma 2.7. If cr€Ja, cr'€/a- and g=a-e for some idempotent e in Ja. then 
any inverse a* of a is an inverse of g. 

Proo f . By Lemmas 2.2 and 2.4 we have (o-e) '^Ja . . Moreover, a* • a is an 
idempotent element in Ja. since o* iJa, by Lemma 2.4. Thus (B5) ensures e • (<r* • a) —. 
=a*-a . By applying (B3) we obtain that 

Q-a*.Q = (a • e) • o* • (a • e) = o • (e • (a* • u)) • e = (a* • a) • e = a • 6 = g 

and 

a* • g - a* — o* • ( c • e) • a* = (tr* • a) • e • (o* •CT)'<T* = (a* • a) • (a* • a) • a* = a*.-

The proof is complete. 

Define a relation on / by <7~T if and only if there exists a common in-
verse of o and T in J. 

Lemma 2.8. (i) The relation ~ is an equivalence. 
(ii) Let Then r if and only if J(c)=J(x), J(a')=J(z') and there 

exists an idempotent e in J (a') with a-x-e. 
(iii) Let o,x(_J. Then <r~ x if and only if the sets of inverses of a and x are 

equal. 

Proof , (ii) and (iii) immediately follow from Lemmas 2.6 and 2.7. Statement 
(i) is clear by (iii). 

Lemma 2.9. Suppose g£Ja, g'i.Ja- with a'^ct and o€Jx. Then g-a = a 
if and only if g is idempotent. 

Proof . If g is idempotent then a ' = a by Lemma 2.4. Since a • o'€Ja is also 
idempotent we have g • (<r • <j')=cr • <j' by (B5). Consequently, (B3) and (B4) imply 
Q • <T= (g • (ct • <J')) • o=a • a' • a—<s. Conversely, suppose g,a£ja, g'€/„>, <r'e Jß, 
and a 'Sa . Let 

(1) g-o = (x. 

Then {g- a)'=a' iJß'. Thus a ' = a follows from Lemma 2.3. Since g'• g and 
a • a' are idempotents in property (B5) implies the equality (a • a') • (g' • g) = g' • g. 
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By applying (1) and (B3) we obtain that 

Q = Q-Q'-e = e - ( ( f f - f f O - ( e ' - c ) ) = e-o-(<r'-(e'-Q)) = •*)) = 

= (*-<0-(e'-e) = e'-e-

Hence Q is, in fact, idempotent. 

Lemma 2.10. Lei Q,AU with J(Q)=J[P'). Then a* • Q=O** • g holds for 
arbitrary inverses a*, a** of a. 

P r o o f . By Lemma 2.6, o*=o** • e for some idempotent e in /(a')- Since 
E-Q=Q by Lemma 2.9 we infer that A* • g=A** • E • Q=G** • g. 

Lemma 2.11. If g~a and T is a common inverse of g and a then g • t • a=a. 

Proo f . Clearly, g-z€J(g)=J(o) is idempotent. Hence Lemma 2.9 immedia-
tely implies the required equality. 

In [6] W A R N E has introduced the concept of a semidirect product of a lower 
associative semilattice Y of left zero semigroups and an upper associative semilattice 
Y of right groups. We gave the definition before Theorem 2.1 for the special case of 
right zero semigroups instead of right groups. We generalize this concept by defining 
a semidirect product of a partial left band over I<g>TY and a right orthodox partial 
semigroup over J® 7 Y. 

Suppose we are given a semilattice F, a lower associative semilattice F of left 
zero semigroups / s (a €F) denoted by I and an upper associative semilattice F of 
right zero semigroups Js (a€F) denoted by J. Moreover, let Y- be a semilattice with 
identity a for all a in F. Suppose Y is a semilattice F of semilattices Ys (SeF) such 
that F is a subsemilattice in Y. Let 7be a partial left band over I®yY and J a right 
orthodox partial semigroup over J<g>YY. Suppose that A, B is an (I, J)-pair. 

Assume that A = {AA:OIJ} is a system of transformations of 7 and 
B= {Ba:a£l} is a system of transformations of J such that the following are valid: 

(CI) if aal, gU\ and g'£j„. then 
( a ) a A e a [ A ] , gB.O1*1 and (gBJ'Ux, where a^p and a ^ a , i i i 
(b) a i=a i=aP provided g is idempotent, 
(c) gBa~g whenever <x=P', 
(d) if a</?' then ax is the element of Y for which (e • g')'£Jx holds provided 

£€/„ is idempotent; 
(C2) if aOa, belp with aSjS and geJ then 

(a) gBab=gBaBb, 
(b) (a-b)Ae = aAe-bAeBa; 
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(C3) if g£Jx, <T£JP with a^P and ail then 
(a) aAe.„ = aA„At, 
(b) (g-<r)Ba = QBaA/aBa. 

The pair A, B with these properties is called an (/, J)-pair over A, E. 
Note that ajCY^ in (CI) (a) provided a£YS and as IA}<Ll0 and 

jBjeJjg. The idempotent e in (CI) (d) can be chosen arbitrarily in Jx for 
((£i • q'Y )=J ( fe • £?')' ) by (B6) provided and e2 are idempotents in Jx. More-

over, one can easily check by (CI) (a) that the right hand sides of the equalities in 
(C2) (b) and (C3) (b) are defined in I and J, respectively. 

Let us define a multiplication on the set U{/ a X/, :a6F} by 

(2) (a, g) (b, a) = (a • bAe, eB„ • a). 

Suppose aUa,Q£ja and b£lp,o<iJp. Then, by (CI) (a), we have bAt£lx , gBbzJXi 

and (gBb)'eJp where a ^ a and Pi^P- Therefore the products a-bAe and 
gBb• a are defined in I and J, respectively, and we have a• bAe£lXi, gBb-o£JXi by 
(B2). Thus (2) is, in fact, a multiplication on the required set. The groupoid thus 
defined is called a semidirect product of I and J and is denoted by S( / , J; A, B). 

Before proving that ©(/, J; A, B) is an orthodox semigroup we verify six lemmas 
for the (I, /)-pairs. 

Lemma 2.12. If azlx and gZJp, g'zJp with fi'^a. then gBa~g. 

Proof . By property (C3) (b), we have 

(3) gBa = (g • (g' • g))Ba = gBaAe, e • (g' • g)Ba. 

Since g'-gzJp is idempotent we have aAe..e€lp,, (g' • g)Ba£jfi. and ((g'• g)Ba)' 
by (CI) (b). Thus gBaAe, e ~ g follows from (CI) (c). Moreover, owing to (B2), we 
have a-aAg'.e£lp. Hence (CI) (c) ensures both (g' • g)Ba •aA > ^ 

g' • g and 
{g • g)BaBaAg, Q~{Q' • g)Ba. Making use of Lemma 2.8 (i) we obtain by (C2) (a) 
that g'• g~(g'• g)Ba. Then Lemma 2.5 implies (g'-g)Ba to be an idempotent in 
J p.. We have seen that gBaAe, Applying Lemma 2.8 (ii) one can easily infer 
that (3) implies gBa~g. Lemma 2.13. Let azlx and g€Jp, g'^Jp- Suppose gBaUx . If / T ^ a then 

Proof . In the equality (3) which clearly holds by (C3) (b) now we have 
aAa . . tO„f, and (g' • g)Ba£jxfi. where ajS'</T as By (B2), we obtain from 
(3) that Jai—J(gBa)=J(gBaA, ). Hence, owing to property (CI) (d), we have 
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J a = J ( { £ • q')') where e€/ap. is idempotent. (Bl), (B2) and Lemma 2.3 ensure 
that c t^f i . 

Lemma 2.14. Let ax,a2,p and fi'tY such that a Assume that 
and Then 

(i) I{a1Ae)^I{a2A^) provided a^I^ and a2Oa . 
(ii) J((Ef q ' ) ' ) ^ J - g'Y) provided ex and e2 are idempotents belonging to 

JXi and respectively. 

Proof . The product a2-a1 is defined in / by (B2)* and a2• Therefore 
properties (CI) (a), (c) and (d) imply l((a2 • a1)Ae)=I(a1Ae). However, we have 
(a2-a1)Ae=a2Ae-a1AeBa by (C2) (b) whence it follows by (B2)* and (CI) (a) that 
/((a2 • a1)Ae)=/(a1AoB )^I(a2Ae). Thus (i) is verified. Taking into consideration 
(CI) (c) and (d) statement (ii) is an immediate consequence of (i). 

Lemma 2.15. Let azla, QiJp and Q'U? such that as/?' . If gBa£jx 

and E is an idempotent in Jx^ then E-Q~QBG. 

Proof . If QBa£Jai then a ^ / 3 and hence e • q is defined. Moreover, aAezIx . 
Thus EB.A ~£ by (CI) (c). Hence we infer by Lemma 2.5 that SBAA is idempotent. a e 
Then Lemma 2.9 ensures that sBaA • &Ba= oB„. Therefore, by (C3) (b), we have Q 
(e- Q)Ba—QBa. Properties (CI) (c) and (d) imply that (i-e'YiJ^ provided i is an 
idempotent in JA. By (B6), this implies (e • Q)'£ JX. Thus, in consequence of (CI) (c), 
we have (s-Q)Ba~s-Q which ensures that QBQ~E- Q. 

Lemma 2.16. Let E and t] be idempotents in Ja and Jp, respectively, where 
oc^p. Moreover, let a£lx. Then t]Ba and a • rj are also idempotents in Ja. 

Proof . If <x=p then the statement immediately follows from (CI) (c), Lemma 
2.5 and (B5). Assume that a<j6 and (e • rf)'£jy. Then, by (B2) and Lemma 2.3, 
we have y<jS whence we can see by utilizing (B6) and (CI) (d) that t]BaeJa provi-
ded a € / r Thus Lemma 2.15 implies that E-ti~t]Ba. By (C3) (b), we obtain the 
equality r\Ba=(t] -r\)Ba=r\BaA t]Ba whence it follows on the one hand, that 
r\BaA iJx and therefore e • r\ ~i]BaA by Lemma 2.15. On the other hand, Lemma 2.9 
ensures t\BaA to be idempotent. Thus, since t]BaA ~ E • tj ~ f]Ba we conclude by Lem-n n 
mas 2.5 and 2.8 (I) that both s-rj and tjBa are idempotent. Hence a=y as 
(E-t])'£Jx=Jy. The proof of the lemma is complete. 

Lemma 2.17. If Q1 , Q2 and A1,A2U with the property that and 
g1~(72 and, moreover, Qx • a1 is defined then Q2 • a2 is also defined and • cr1~ Q2 • a2. 

Proof . One can see immediately by (B2) and Lemma 2.8 (ii) that qx • a1 is defined 
if and only if Q2 • <s2 is defined. Suppose Q[, Q2£JX. and Then, again by 
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Lemma 2.8 (ii), there exist idempotents e and t] in and respectively, such that 
Q2=Qi-e and <72=o-1-jj. Hence g2-g2=(q1 • e)-(o"! • t])=g1 • (e • a-J • tj by (B3). 
Assume that (e • Then, by (B2), y^/T and we can see by (B6) and (CI) (c) 
or (d) that oxBaiJa- provided aOr Thus Lemma 2.15 implies a1Ba~E-o1~ 
~(i?i • i?i) • Hence we obtain by Lemma 2.8 (ii) that e-o1—(g'1- g1)-o1-rj for 
some idempotent element f j in J ((e • ffi)'). Therefore g2 • <r2=gx • ({>i • • oi • »7 • — 
= g1-ol-(rj-rj). Here J {{q-I- Gi)')=J {{{q[- Qi) • Oi)') • is implied by Lemma 2.2 
whence it follows that / ( (g i • o-1) ')=/((e • tr1) ')=/(^). Since ij-ri is an idempotent 
in J (if) by Lemma 2.16 we conclude by Lemma 2.8 (ii) that g2 • cr2 ~ gt • ax which 
was to be proved. 

Now we can turn to verifying that 93(7, A, B) is an orthodox semigroup 
which is a band £8(1, J; A, B) of orthodox semigroups. 

L e m m a 2.18. 23(7, A, B) is a semigroup. 

Proo f . A straightforward calculation shows that the operation defined in (2) 
is associative. We have to apply properties (C3) (a)—(b), (CI) (a), (B3)*, (B3) and 
(C2) (a)—(b). 

L e m m a 2.19. In the semigroup S ( 7 , A , B) the elements (a, g) and (b,o) 
are inverses of each other if and only if g and a are inverses of each other in J. 

Proof . By definition, (a, g)(b, o)(a, g)=(a, g) and (b, a) (a, Q)(b, a)=(b, a) 
hold if and only if the following four equalities are satisfied in 7 and J. 

(4) a-bAe-aA„AeBb = a, 

(4)' b-aAa-bAeAaBa = b, 

(5) gBb-aAa -<rBa-g = g, 

(5)' <yBa.bAQ • gBb- o = a. 

Suppose first that (a, g) and (b, a) satisfy the equalities (4), (4)', (5) and (5)'. By 
(CI) (a), we have1 l(d)^I(bAe)s=I(aAaAeB). The equality (4) implies by (B2)* 
that I(aAaAeB)=I(d). Hence I(a)=I(bA"e)=I(aAaAeB). Similarly, by (4)', we 
have I(b)=I(aAa)—I(bAeAaB). Since 1(a) and 1(b) are left zero semigroups the 
equalities a-bAe=a and b • aAa~b are valid. In the equality (5) we have J(Q) = 
=J(gBb)=J(£,) where £ = gBb • <rBa. On the one hand, this implies by Lemma 2.13 
that J(g')^J(o) and hence, by Lemma 2.12, we conclude that gBb~g. On the 
other hand, applying Lemma 2.9 we obtain that f is an idempotent element in J(g) 
andtherefore gBb=£-gBb=gBb-oBa- gBb since J(gBb)=J(g) by Lemma 2.8 (ii). 
In the same way, we can deduce from (5)' that oBa^o and oBa=oBa - gBb-oBa. 
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Thus the elements gBb and oBa are inverses of each other in J. Consequently, Lemma 
2.8 (iii) ensures q and a to be inverses of each other in / which was to be proved. 

Conversely, assume that aGx, QtJx, b€lx-, o€Ja- and g and a are inverses of 
each other in / . Then we have gBb~g and oBa~a by (CI) (c). This implies by 
(CI) (a) that bAe€lx and aAaZlx- whence, in the same way, we obtain that 
aAaAeB^Ia and bAeAaB^Ix.. Since both Ia and Ix. are left zero semigroups the 
equalities (4) and (4)' follow. Moreover, we have b-aAa—b and abAe=a in (5) 
and (5)', respectively. Then the equalities (5) and (5)' are implied by the relations 
gBb~g and oBa~o by making use of Lemma 2.11. Thus (a, g) and (b, a) are inver-
ses of each other. 

Lemma 2.20. S( / , J; A, B) is an orthodox semigroup with band of idempotents 

(6) B = {(a, e): aOx and e is an idempotent in Ja for some aey} . 

Proof . By (B4), every element in / has an inverse which implies by Lemma 2.19 
that© (7, J; A, B) is regular. We show first that the set B defined in (6) is the set of all 
idempotents in ©(/, / ; A, B). Suppose that (a, e) is an idempotent element. Then, 
by definition, we have 
(7) a • aAc = a 
and 
(8) e50.e = e. 

The equality (7) ensures by (B2)* that I(aAe)=I(a). Then J(eBa)=J(e). On the 
other hand, we have / ( (e5 a ) ' )^ / (e ) by (CI) (a). Thus Lemma 2.9 implies by (8) 
that eBa is an idempotent in /(e). From J(eBa)=J(e) we infer by Lemma 2.13 that 
J(e')^J(e) which implies by Lemma 2.12 that zBa~e. Hence we obtain by making 
use of Lemma 2.5 that e is idempotent. Conversely, if a£ l a and e is an idempotent 
in Jx then we have aAtOx by (CI) (b) and eBa~s by (CI) (c). The former relation 
implies (7) as Ia is a left zero semigroup while the latter one, taking into consideration 
Lemma 2.5, ensures that eBa is an idempotent in Jx. Hence (8) follows by (B5). 
Thus we have verified that (a, s) is an idempotent element in S (7, / ; A, B). Owing 
to Lemma 2.5, the inverses of the idempotents in / are idempotent. Therefore we 
obtain by Lemma 2.19 that the inverses of the elements in B are contained in B. 
This completes the proof of the fact that S(7, / ; A, B) is orthodox. 

Lemma 2.21. The band of idempotents B of 23(7, / ; A, B) is a semilattice Y 
of rectangular bands 

Da = {(a, e): a€lx,B is an idempotent in /a} (a€ Y). 

Proof . By applying Lemma 2.19 we see that the set of all inverses of an ele-
ment {a, e) in B with aOx and e£Jx is just Da, that is, the ^-classes in B are the 



Strong subband-parcelling extensions of orthodox semigroups 197 

sets D„(a€ Y). If foe^D,, and (b, OeD„ then (a, E)(b, Q=(a-bAt, eBb • C)€D^ . 
For we have bAeOx^ and eBb£jxf by (CI) (b). This implies a-bAteIxfi and 
£Bb-CtJxp by (B2)* and (B2), respectively. Thus we have D a D p g D a P which was to 
be proved. 

Consider the following subset in the band B: 

(9) B = {(a, E): a£Js and E is an idempotent in Jx for some a€Y}. 

Since F is a subsemilattice in Y Lemma 2.21 implies B to be a subband in B with the 
property that B is a union of some ^-classes of B. For every element (l,J) in the 
band 3 S ( J , J \ A , B ) , let us define a subset in 23(7,/; A, B ) as follows: if 
j U x with a in F then put 

(10) F 0 jj = {(a, g): aOx, for some a in rg}. 

L e m m a 2.22. The semigroup 93(7, J; A, B) is a band A, B) of the 
orthodox semigroups F a j ) ( ( / , J )6^(7, J ; A, B)). For every (J, J) in £8(1,3; A, B), 
the greatest ¡¿-class of idempotents in F^ j) is Fq ^DB. 

Proof . Let (a, e)€F a j} and (b, <r)£Fa n . By definition, we have 
(a, g)(b,o)=(a-bAe, QBb-o) where bAt^J and QB^/'** by (CI) (a). Thus 
(B2)* and (B2) imply a -bA e €l l ^ A ] and QB^OU1*1^ respectively, whence we 
infer (a, o)(b, &)£F(jjwjy This shows that the equivalence relation on 23(7, A, B) 
defined by (a,g)x(b,a) if and only if (a, g), (¿, <r)€F(,j) for some (I, J) in 
£8(1, J ; A, B) is compatible. The second assertion of the lemma immediately follows 
from Lemma 2.21. Thus the congruence relation x is subband-parcelling by Pro-
position 1.1 whence we conclude by Theorem 1.2 that F 0 ^ is an orthodox semi-
group for every (I, J) in £8(1, J; A, B). The proof is complete. 

The following theorem sums up the most important properties of a semidircct 
product of a partial left band and a right orthodox partial semigroup. 

T h e o r e m 2.23. Let Y be a semilattice, I a lower associative semilattice Y of 
left zero semigroups Is (a € F) and J an upper associative semilattice Y of right zero 
semigroups Js (a 6 Y). For every a in Y, consider a semilattice Ys with identity a. 
Let Ybe a semilattice Y of semilattices Ys ( aeF) such that F is a subsemilattice in Y. 
Let I be a partial left band over I <g>TY and J a right orthodox partial semigroup over 
J®TY. Suppose A, E is an (I, J)-pair and A, B is an (7, J)-pair over A, B. Then the 
semidirect product SB(7, A, B) of I and J is an orthodox semigroup with band of 
idempotents B defined in (6). The subset B in B defined in (9) is a subband in B. More-
over, 23(7, J; A, B) is a band 38(1, J; A, E) of the orthodox semigroups F a ^ ( 0 J ) £ 
e£?(I,J; A, E)) defined in (10) where the greatest Qt-class of idempotents in F a } ) is 
F a j ) n B . 
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3. The construction 

In this section we introduce the construction which will be applied in the next 
section to describe the strong subband-parcelling extensions of orthodox semigroups. 

Let F, I, J, A, B, Y, I, J, A and B have the properties required in Theorem 2.23. 
Suppose that 

(C4) for every a in Y, idempotents ia and ja in /„ and Ja, respectively, are distinguished 
such that aAj and aB{ provided a, fizY with aSj? and 
aOx>o'dJa. 

If a e F then denote by ls the element I in I for which holds. Similarly, by ] s 

we mean the element j in J with the property that By (CI) (a), it follows from 
(C4) that lAjy = and JB^—j-j^ provided a, fitY with a ^ f i and i€ / 5 , JeJ 5 . 

Let S be an orthodox semigroup with band of idempotents E=SS(J,J\ A, B). 
The band E is a semilattice F of the rectangular bands Es=IaXJs (aeF). For every 
s in S we denote by r(s) [/(s)] the element a in F which has the property that E^ss* 
[ £ j f o r some inverse s* of s. If seS then there exists a unique inverse s' of S 
such that (lKs),jr(s))^s'^(ilis),]Hs)). 

For every element s in S, let Ts be an isomorphism of r(s)Y onto l(s)Y. Suppose 
that rs*=T~1 provided s* is an inverse of s and s*EssQEsu whenever s* is an 
inverse of s and a e F with aSr (s ) . Since Y is a semilattice F of the semilattices 
Ys (a e F) with identity a such that F is a subsemilattice in Y it is not difficult to verify 
that Y 5 t s c Y i t j for every a e F with aS r ( j ) . 

Let us be given mappings hs: U {/„: a i / ( s ) } - U {/„: «S r ( i ) } and 
ys: U {Jx: a^r(s)}— U ^ : for each s in S and constants yi>s in 7/(sS) for each 
pair of elements s, s in 5 such that the following conditions are satisfied: 

(Dl) (a) if a all with iel5 and a^l(s) then ah,al-» where s(i,Ji)(s(i,]a))'= 

(b) if cUi with ]£JS and a^r(s), a' Ua. then ay^j\z with 
( ( W » ' ( W > = ( W 0 and fa,)' 

(D2) (a) if «€/. , bUp with / ( s ) ^ ^ i then ahs-bh={a-bAjaz;lx)hs, 
(b) if ee / a , Q'Ua. and <re/p with a ' s j ? £ r ( i ) then QXs-axs={QB^xy a)xs\ 

(D3) if ae/ a with a s / ( j ) and a U f with P ^ r ( s ) then 
(a) aA a xh s=in zh s-ah sA a , 
(b) aBaK xs = axs Ba i Xs; 

(D4) (a) if ae/„ with a^/(ss) then ahjis=c • aAys hss for some c in I,isS), 
(b) if e e / a with ccSr(ss) then ( j « s S - y s J • QXsX-s=QBcXs-s-for s o m e c 
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(D5) if a^l(ss) then (j.-y,JtJ„-it t ; 
ss s s 

(D6) if s,s,seS then '7s,f i• U « ^ ' 
(Dl) (a) if etE, a^r(e)=l(e) and aOa then ahe=c-aA.u ^ for some c in 7r(e), 

(b) if eiE, cc^r(e) = l(e) and qUa then Q'/.e = eBc-yetC for some c in 7r(c); 
(D8) ys s* is idempotent whenever sfS is idempotent or s is not an inverse of itself, 

and s* is an inverse of s in S. 

If h, x and y fulfil these conditions then we call them an (S, I, J)-triple. 
Note that ax'1 and axs are defined in (Dl) (a) and (b), respectively, as <xeYs, 

imply a^l(s) and, similarly, ctiYs, a^r(s) imply a^r(s). It is not dif-
ficult to check that it follows from conditions (CI) (a) and (Dl) that both sides of 
the equalities in (D2), (D3), (D4) and (D7) are defined. Similarly, (D5) ensures that 
both sides of (D6) are also defined. 

Before introducing the construction by means of which we descrite the strong 
subband-parcelling extensions of orthodox semigroups we prove some lemmas con-
cerning (S, 7, J)-triples which make the computations easier. 

L e m m a 3.1. If E is an idempotent in Ja and siS with a^r(s) then sxs is 
idempotent. 

P r o o f . By definition, i„ hsOx and hence, by (CI) (c), we have EB, h ~e. 
s  a T

s
 s  

Therefore Lemma 2.5 ensures eBisah to be also an idempotent in Jx, that is, 
eBix HS-£=E by (B5). Consequently, (D2) (b) implies that which was 
to be proved. 

L e m m a 3.2. If QZJa and Q* is an inverse of Q contained in Ja> and, moreover, 
seS with a^r(s) then a'^r(s) and QXs and Q*Xs are inverses of each other in J. 

Proo f . If aeYs then a ' e f o l l o w s from Lemma 2.4 and (Bl). Since r(s)eY 
the relation a ^ r ( s ) implies a ^ r ( s ) . Thus a ' s a ^ r ( j ) whence we obtain that 
both QXs and e*Xs are defined. By definition, i„hs£la and /„.t /ise7a,. Moreover, 
we have /„ hsA0*ila. by (CI) (a), (c) and Lemma 2.8 (ii). Since 7a- is a left zero 
semigroup the equality ia>t hs-iaT hsAe*=ix.z hs holds. On the other hand, we have 
QBia,t H s ~q and e*Bix_ by (CI) (c). Therefore we can see by applying the 
equality (D2) (b) twice and making use of properties (C3) (b), (C2) (a) and Lemma 
2.11 that 

QXs • e*Xs • QXs=(QBia.zhs • Q*)xs • exs= {(eBix,^„s • e*)Biax^s • e)xs= 

v ' e*B'*rs
hs • e^=(eBia.z/s • • e)Xs=6Xs-

Dually, one obtains Q*XS • QXS • 6*Xs—E*Xs which completes the proof. 
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Lemma 3.3. If s,stS then 

Proof. By definition, y s > i( .Jm and therefore j ,m-yS t i=y3 i S by Lemma 
2.9. Thus we have Y\-SEJK,# by (D5) as 1(SS)X~\T-s=I(SS). 

Lemma 3.4. Let ailx, criJx andseS with ccsl(s). Then we have ah, • bAahs= 
= (a • bAa)hs for every b in I. 

Proof . By (CI) (a), we have bA„Z.Iai where o^Sa. Thus both sides are 
defined. Taking into consideration (D2) (a), it suffices to verify that bAa=bAaAJaz.1Xs. 
In consequence of Lemma 3.1, is an idempotent in Ja. Hence G = a 

by Lemma 2.9 and therefore (C3) (a) implies the equality required. 
The following lemma is dual to Lemma 3.4. 

Lemma 3.5. Let aOx, AEJX andsiS with ct^r(s). Then we have QB„Xs - O%S= 

= {gBa-o)xs for every g in J. 

Proof . Suppose that oc£Ys and g£jfi with /}ei^. By (CI) (a), we have 
QBaeJ„ and (eBaYtJ^ where a ^ j S and a^Sa. The remark after the definition 
of an (/,/)-pair ensures that a^a i€Y s p. Since a S r ( i ) follows from a S r ( j ) 
we have a1, cc'1^r(s). Thus both sides of the equality are defined. It suffices to 
prove by (D2) (b) that gBaBixr ^ = gBa. Here iaThs€lx. Since Ix is a left zero semi-
group we have a-ixchs—a whence the equality to be proved follows immediately 
by making use of (C2) (a). 

Lemma 3.6. If s and s* are inverses of each other in S then yss*s and ys>s*s are 
idempotent elements in Jl(sy 

Proof. By definition and Lemma 3.3, we obtain that both yM*>s and y'ss*s belong 
to / I ( s ). Moreover, by (D6), we have 

7sS*,S ' Or (s) * yss*,ss*)xs y SS*, S ' y SS*,S' 
Here jr(s) • yss*,ss*=yss*,ss* is an idempotent in Jr(s) by (D8) and hence, by Lemma 3.1, 
C/r(S) • Vss*,ss»)Xs€//(s) is also idempotent. Thus Lemma 2.8 (ii) implies that s ~ 
~Vss*,»*yss*.s» that is, ySs*,s-yss*,s=yss*,s-£ for some idempotent e in Jl(s}. Multiply-
ing this equality on the right by the idempotent element y^* s • s in J,(s) and apply-
ing (B5) we obtain that y«*,s-yss*>J=7s^,s, that is, is, indeed, idempotent. 
A similar argument shows that ys<s*s is also idemdontent. 

Let us define a groupoid S=<5(S,1, J; h, x, y) in the following way. The un-
derlying set of S is 

S = {(a, s, &): s£S, a£li and where 

aeYr(s), ss'= ( i j , ( t ) ) and s's=(Jl(s), J)} 
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and the operation is defined by 

(11) (a, s, a)(a, s, a) = (a •aA„hs, ss, (jPzs. • ys,s) • a) 

where ft is the element of Y with the property that aA„hseIfi. 
We have to show that the products occurring in (11) are defined in I and J and, 

moreover, that the set S is closed under the multiplication defined in (11). Suppose 
that azllaal, oUi,s and where ss'=(i,jr(s)), ss'=(1,]^), s's=(il(s),J) 
and s's=(ll(i),j). By (CI) (a) we have aAaU\*j and aB s £j i* ' . As we have seen, 
a i€F/(J)KS) since a € Y^ and <y.xs € Yl(s). Thus ¿ ¡ ^ / ( i ) and ax^/-(s). Therefore 
aA„hs and <jBsXs are defined and aAJi,a£lX-1, oBsx-swhere,by(D1)(a), we 
have s(iAj, ]l(s)r(s)) (s( lAj , J /( l)r(i)))' = (U,7(,WKS))tj-i) and ((i/(j)r(s), )' (</(sW5), jB})s = 
=(*</«*»»V Here ( ^ M ^ f c 7 1 = r ( s s ) and (l(s)r(s))x-=l(ss). Hence P= 
=a 1 T7 1 €l r

f W ) and 0TiS€7/(sS). Property (D5) implies that • y s J ' U p ^ s where 
fixsTs=a1Ts. Lemma 3.2 implies that (oB-)'xs is also defined and it is an inverse of 
((tBs)/~s. Thus we obtain by (Dl) (b) and Lemma 2.4 that ( < r B s x s ) ' t pro-
vided (cBgYtJ s / . Since o i ^ a i s and a i ^ a we have y?=a1r71=a, O.1Xs=PTsXs and 
a.[xs^ocT-s. Thus we see that the products a • aA„hs and (y i t •?*,§) • <*Baxs •& in (11) 
are defined and a - a A „ h s ( j ^ • ysS) • oB-i-• oUf^'J where fi<E YKsS) and 
JfiTsS' ys,sf~Jji!s-- Here x€J/(jS) and /eJ /(jS) whence we infer that x-l=l. All we 
have to verify is that ss(ss)'—(i • k, ]r(sS)) and (ss)'ss= ( l ^ , 1 • ]). We will show 
the first equality. The second one follows dually. In the band 38(1, J; A, B) we 
have 

(S'S)(5S') = (lHs), j)(l, J r (s )) = ('l(s) -iAjjE',-j,(s)). 

Taking into consideration the remark after (C4) we obtain that 

(s's)(ss') = (iAjAJm, jBjBj^). 

Since y'eJ,(j) and I e/r(i) where J /(s) is a right zero semigroup and /r(5) a left zero 
semigroup we infer by (Wl) (a) and (W2) (a) that 

(s's)(ss') = (lAj, jBd@(Uj,jns)rai). 

Similarly, by applying the remark after (C4) and the fact that Jr(5) is a left zero semi-
group one sees that 

(iJr(!.))(k> Jr (ss)) ~ (i ' (s) > Jr(s)B]i •Jr(Ss)) = 

= (i • K(s) • k> Jr(s)Bi •Jr(si)) = (i • £) Jr(s)B]i •Jr(ss)) — 0 • k> Jr(ss))-
i 
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In the last step we have utilized that and is a right zero semigroup. 
Now we can easily check that 

0 • Jr(sa) = (ss%s(JAj, }ns)rls)))(s(lAj, J,(s)f (S)))' = 

= s(lAj,]lU)r(s))(x(¡Aj, j,(s),(5)))' @s(lAj,]l(s)r(s))s'@s(s's)(ss')s' = sssY<%ss(ss)' 

hold in the semigroup S. On the other hand, ss(ss)'£C(i- R , b y the definition 
of (JS)'. This completes the proof of the fact that (ss)(ss)' = (1 • Jc, J ^ ) -

By applying the technique used in Lemmas 3.1, 3.2, 3.4, 3.5 and 3.6 one can 
prove the following lemmas. 

L e m m a 3.7. S is a semigroup. 

L e m m a 3.8. Let (a,s,a)£S with aUa, o'Ua.. Then (a', s', a*zs.-£)eS 
and the equality 
(12) {a, s, s', a*xs- • ( A r ; 1 ' K ' £Xa> s> a) = (a> s> a) 

holds for every inverse a* of a, for every a' in and for every idempotent e in 
J'^Jl- Consequently, S is regular. 

Since the proofs need rather long and complicated calculations we left them to 
the reader. 

Observe that the relation (£ defined on S by 

(13) (a,s,g)(£(a,s,g) if and only if s=s 

is a congruence relation. The idempotent ([-classes are 

Ce = {(a, e, Q): (a, e, Q) <= S}, (e£E). 
L e m m a 3.9. The mapping <p: U { C e : e € £ } - S ( / , / ; A, B) defined by 

(a, e, o)(p=(a, q) is an onto isomorphism. 

Proo f . <p is one-to-one and onto since if (a, g)€23(/, J; A, B) with a ill, 
Q£j{ then e=(i,j) is the unique idempotent element in S such that (a, e, g)€ S 
and, obviously, we have (a, e, g)cp=(a, Q). A straightforward calculation shows 
that ((a, e, a)(a, e, a))cp=(a, e, a)cp, (a, e, a)q>, that is, <p is an isomorphism. 

Lemma 2.20 shows that S(7, J\ A, B) is an orthodox semigroup. Hence 
U {Ce:etE} is also an orthodox semigroup which implies that the idempotents in 
S form a subsemigroup. Since S is regular by Lemma 3.8 S is also orthodox. More-
over, Lemma 2.22 ensures by the proof of Proposition 1.1 that the congruence rela-
tion £ defined in (13) is (C, C)-parcelling where, by using the notations of (6), (9) 
and Lemma 2.22 we define C=B<p~1 and to be the congruence relation on the 
band of idempotents of S corresponding under < p t o the congruence on B. 
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Theorem 3.10. Let Y,I,J, A, B, Y, I, J, A and В have the properties required 
in Theorem 2.23. Suppose that (C4) holds for A and B. Let S be an orthodox semi-
group with band of idempotents 38(1, J ; A, B). Moreover, let h, у be an (S, I, J)-
triple. Then S=<5 (S, I, J; h, x,y) is an orthodox semigroup and the relation (£ 
defined in (13) is a strong subband-parcelling congruence on S such that the factor 
semigroup S/(£ is isomorphic to S. 

Proof . The reasoning carried out before stating the theorem shows that all we 
have to prove is that £ is strong. We verify that, for every s in S, there exists 
(a, s,a) 6 S with a€/ r (s) and erfE//(J) idempotent such that (a, s, a) is i f - and 
^-equivalent to idempotents in C. By Lemma 1.3 and Theorem 1.4, we can restrict 
ourselves to elements s with (ir(s), jr(s))iiis^C (l1(s), j!(s)). These are precisely those 
elements for which s=s" holds. Suppose that s fulfils this property and a€/J/(<j>. 
Then (a, s,jl(s)) eS and we have seen in Lemma 3.8 that (a', s',jl(s)xs> • (yr(5) • ?s,s0)€S 
and (16) holds with a=jl(s) and e=ySjS,-y's>s, for any Since jl(s)xs- is an 
idempotent in / r ( s ) by Lemma 3.1 and the idempotents in / r ( s ) form a right zero 
semigroup we have y ' ; ( s ) z s ' T V - T h u s 

(a, s, j ; (s)) (a', s', y's,„')(a, s, ; l ( s )) = (a, s, jHs)) 

where one can easily check that (a, s,jl(s))(a', s', y's^)=(a, ss', ys>s, -у^ОеС. Since 
s=s" a similar argument shows that (a, s,Q£S with C=ys,s' Xs'y's-^'jits) and 

( f l s , Q(a', s\ y's>s) = (a', s', 

Here by Lemma 3.6 and (D6). Thus we 
have i~ys,s's-(ys\s-y's',s)-ji<.s) by Lemma 2.17. Since is idempotent by 
Lemma 3.6 and, clearly, both (ys<>s-)V>s) and yi(s) are idempotents in / / ( s ) we ob-
tain that This implies that С is also idempotent and, since we 
infer that C=7,(s). 
Since (a', s', y's^)(a, s, jKs))=(a', s's, jl(s)) € С we conclude that (a,s,jl(s)) and (a', s', y'ss) 
are inverses of each other in S and therefore (a, ss', ySi s> • y's (a, s, 7i(s))^f 
Z£(a', J'J,7I(s)). Thus we have proved the theorem. 

4. The main result 

In this section we prove that any strong subband-parcelling extension of an 
orthodox semigroup S is isomorphic to some semigroup S(S, 7, J\ h, x, y)-

An orthodox semigroup T is said to be a strong subband-parcelling extension of 
the orthodox semigroup S if S is isomorphic to T/x for some strong subband-par-
celling congruence x on T. 

2* 
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Before drawing up our main result we verify two lemmas which make the proof 
of the theorem easier. 

Lemma 4.1. Let T be an orthodox semigroup whose band of idempotents is a 
semilattice Y of rectangular bands Ea (a 6 Y). Let t and u be elements in T such that, 
for some inverses t' and u' of t and u, respectively, we have E{tt')^E(u'u). If 
xdE{tt') and ziE(uxu) then zuxt=zut. 

Proof . By assumption, we have E(z)=E(uxu')=E(uxttV)=E(uttV). Mo-
reover, tt'u'utt'=tt' as E(tt')^E(u'u). Thus we obtain that 

zuxt = zux(tty = zux(tt')u'u(tt')t = z(uxtt'u')(utt'u')ut — zutt'u'ut = zut. 

Lemma 4.2. Let T be an orthodox semigroup with band of idempotents B. 
Suppose E, ö is an associated pair in B. Let x be a strong (E, 5)-parcelling congruence 
on T. Let T/x be denoted by S. Then there exists a cross-section :sdS, usx—s} 
of the x-classes contained in SB such that ueíB whenever e is idempotent and, fur-
thermore, us and Ms* are inverses of each other and usus*=uss* provided s is idem-
potent or s is not an inverse of itself and s* is an inverse of s in S. 

Proof . Let the band of idempotents in S be E which is a semilattice Y of 
rectangular bands Ea (a € 7). Let us choose and fix an element ea in Ex for every a 
in Y. Moreover, choose and fix an element ix of B in each «-class ea. If e2A,ex in S 
then we have i j x j and iJ3tia for every element j of the «-class e contained in E. 
For exe=e implies ixjxj, the equality ia(ixj)=ixj trivially holds and (iaj)ix=ia 

follows from the fact that x\E=ö\B^3> whence we infer (ixj)ia@ix by 
((ixj)ix)x=ea. Thus we have seen that every «-class e with eMex contains an element 
itB such that it%ix. The dual assertion holds for the x-classes e with eS£ex. Now lét 
us choose and fix an element i*tB in every «-class e with eMex or e<£ex such that 
i*e0lix and itZ£ia, respectively. In particular, it is clear that i*^=ix. If fSlex then 
there exist uniquely determined elements e1 and e2 in E such that ex0tf&e2 and 
eiSeex®e 2 . Then e1e2 —f Define if to be it • it. Since, for each a in Y, 
Bn{jtB:jx=f for some fiE with f@ea} is a rectangular band the set {if:f2ie^ 
forms a subband in it and therefore {i}: f@ex} is also a rectangular band. Let us 
define ue to be ¡'* for every e in E. 

Now let s be a non-idempotent element in S such that ep for some ci, /? 
in 7. Let s' be the inverse of s with eJ£s'Skep. Proposition 1.5 ensures the existence 
of elements t,t' in SB which are inverses of each other and tx=s, t'x—s'. If s=s' de-
fine us=iatip. Now consider the case when s^s'. Since both tt' and t't belong to 
B and (tt')x=ea, (t't)x=efi the elements us=ijip and us,=ipt'ix are also in 
SB, they are inverses of each other and usus.—ia, us.us=ifi. Clearly, we have usx=s 
and us.x—s'. Thus we have defined us for those s in S for which exMs&ef for 
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some a, /?6 Y. Finally, let s be any element in S. Assume that efflsSCf where eaEx and 
fiEp. Then s=easep satisfies exMs^ep. Define us to be u-s=i*usi*f. Obviously, we 
have u-x=s. The idempotents i* (e€E) are chosen such that the definition of us is 
independent of the choice of e and / . If s and s' are inverses of each other in S such 
that s is not an inverse of itself and ss'=e£Ex, s's=fdEp then s^eje^ 
¿¿efis'ex=s'. Thus u- and ur are inverses of each other in SB and we have usur=i*, 
uru-s=i}. Thus the required conditions are fufilled by the cross-section {us:s€S, 
Msx=i} which completes the proof of the lemma. 

Now we turn to the main theorem of the paper. 

Theorem 4.3. Suppose T is an orthodox semigroup and x is a strong subband-
parcelling congruence on T. Denote Tjx by S. Then there exist F, I, J, A, B, Y, I, J, A, B 
satisfying the conditions of Theorem 2.23 and (C4) and there exists an (S, I, J)-triple 
h, x, y such that T is isomorphic to <3 (S, 7, J; h, x, y). 

Proof . Assume that x is a (B0, ¿>)-parcelling congruence on T where B0,S 
is an associated pair on the band of idempotents B0 in T. Denote the semilattice 
BJ3) by Y. One can easily see by Theorem 1.2 that Y=B0/@ is a subsemilattice in Y 

and r i s a semilattice F of semilattices Y- with identities a in F. Since x is a strong 
(B0, <5)-parcelling congruence the band of idempotents E in S is isomorphic to 
BJS. Thus E is a semilattice F of rectangular bands EX(OL£Y). Let us choose and fix 
an element es in every ^-class ES. Moreover, for every a in Y, select an element ia 

in the ^-class a such that ixx=es provided a£Fa . This can be done by Lemma 1.3. 
If aeF then let IS and JS stand for the -class and ^2-class, respectively, in ES 

containing es. If a€T then denote by IX the ¿'-class in B0 containing ix and let JX 

be the set of all elements cr in 7" for which ax is idempotent and ijfta. Suppose the 
transformation "" ' on J— U {JX:CTIY} assigns an inverse to each element. Clearly, 
such a transformation exists on J. Define a partial operation " - " o n J = U {/s: 
aeF} as follows: if a(J-, bcj^ then a b is defined if and only if as/? and if this 
is the case then A-B means their product in E. It is clear that A• that is, 
a-balp. With respect to this partial operation / is a lower associative semilattice 
F of the left zero semigroups I s (aeF). Analogously, one can define a multiplication 
on the set 1= U {IX: a € Y} with respect to which I becomes a lower associative 
semilattice Y of the left zero semigroups IX (a e Y). For every I in I, denote by F 
the set {iel:ix=i}. The elements ix (aeY) are chosen such that J is a disjoint 
union of the subsets I1 (l€/). Let L\=FLC\IA provided a €YS and l€/5. By Lemma 
1.3, these subsets are non-void and, since x is a congruence, one can immediately 
see that 7= U { I X : ( I , a)e7<g>ry} and 7 is a partial left band over I<2)YY. Let us 
define J dually to I. Obviously, J is an upper associative semilattice F of the right 
zero semigroups J s (a £Y). Finally, define a partial operation on / in the following 
way: if QiJx, q'£Jx-, oZJp, o'aJp. and a 's /S then let q -<j mean the product of q 
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and <7 in .T and, in the opposite case, let Q • a be undefined. Clearly, we have g • oMia 

and hence g-o£ja. Denote by J1 the set {j€J:jx=j). Similarly to the case of / 
one can see that J— U {JJ:]U}. Moreover, if (J, a)(.J®YY then j{=J'C\Ja 

is non-void and, since « is a congruence we have g -aiP'1 provided giJ\ c 6 / E 

and their product is defined in J. Since (g • o)'~o'g' in T where ~ is used to mean 
the least inverse semigroup congruence on T and (O'O)<F'Q'=O'Q' we have 
J((g • o)')^J{o' • o)=J(<j'). This proves (B2). Properties (Bl), (B3), (B4) and (B5) 
trivially hold in J. As far as (B6) is concerned, if g and a are idempotents in Ja and 
Jp, respectively, and x€Jy, x'zJy. with a ^ y , P^y' then x'gxQio holds in B0 if 
and only if xax'Slg. Thus we have shown that / is a right orthodox semigroup over 

For every element s in S, let s' stand for the inverse of s satisfying er(s) . 
Let us choose a cross-section {¿A,:seS, u,x=s} of the «-classes possessing the 

properties required in Lemma 4.2. The proof of Lemma 4.2 ensures that this cross-
section can be chosen such that ue,=is for every a in F. Denote by u's the in-
verse of us fulfilling ir(s) Z£u's £%ii{s). Clearly, we have usx=s. 

Let xs be the isomorphism of r ( i ) F onto l(s)Y which corresponds the element /? 
with usixus3iip to every a in r(s)Y. Clearly, xe is the identity automorphism of r(e)Y= 
=l{e)Y provided e€7s. Moreover, if s and s* are inverses of each other in S then 
Ts»=T7\ If a e F and a g r ( i ) then s 'E ssQES r s . 

Now we verify that every element t in T is uniquely represented in the form 
t=ausa where s=tx€S, a€ls/ and o€J*'zs for some a in Fr(s). Let ttT and denote 
tx by s. Let a be an element in 7 which is ^-related to t. Obviously, such an a exists 
and is unique. Suppose that a£l a and 

otZY .̂ Then s—tx3i(tx^es, that is, oz—r(s) 
and On the other hand, we have <r=4 : u'siSHat u'saus3iiaz as u'saus€ccxs. 
Since ax=er(s)r s's=s's we obtain that We can easily see that ausa= 
=ausi„ u'st=a(usi„ u^at=at=t as afflt and a, usi„ u's£tx. As far as the uniqueness 
of this representation is concerned, observe that if s£S and a t l f , aZJxx

s with 
a € 7r(s) then (ausa)x=ss'ss's=s and au,a3iausaa'usa=a. Therefore if an element t 
is represented in both of the forms ausa and ausa then s=s and a—a. From the 
latter equality a = a follows where and a O s . Multiplying the equality 
au,G=aus<f by iax u's on the left we conclude a=a. Put 

S = {(a, s, <r): siS, aelf and for some a in yr(s)}. 

We have shown in this paragraph that the mapping & : T-~ S which assigns (a, s, a) 
to t=ausa is one-to-one and onto. In the sequel we give an (S, 7, /)-triple h, x, y 
such that <P becomes an isomorphism of T onto <5(S, I, J; h, x, y)-

First we deal with the idempotent «-classes. If tx=e€£ then t=aueo= 
=aixueiaa=aiaawhere aefx. For a s r ( e ) = / ( e ) and ue is an idempotent 



Strong subband-parcelling extensions of orthodox semigroups 207 

element in T with ue2iHe). If a all and oaJl then (aa)x=ij. Therefore every 
element t in T with the property that tx is idempotent is uniquely representable in 
the form ao where aalx and craJx for some a in Y. Now we will use this represen-
tation for the elements of the idempotent ^-classes. Let laIs,jaJp and otaYi, 
paYp. Assume that a all and oajj, a'a J p.. Then (<ra)x=Ji and thus era is uni-
quely written in the form alcr1 where al and t71€/iJI)(J5). Let us denote ax 

by aA„ and o^ by oBa and, moreover, (JO GO' by IA} and (Ji)'(JT) by JBV Clearly, 
iAjaltf and JBjfJap. Observe that aaa'aa.x. Moreover, (oBa)'aJ,x[ if and only if 
ao'oaaa'i. Thus x^P and a^a immediately follow. If a is idempotent then 
aix=a\=a.p. Suppose a=p'. Then oao'=oo' whence a1=p. Furthermore, 
aBa=4 a a—aa=aa=aix~a. However, if a</?' then we clearly have {ixayaJXi 

as oixo'Q)aao'. Thus we have verified that the families A — {Aa\aaJ) and B= 
= {Ba:aaI} of transformations of I and J, respectively, satisfy (CI). 

Now let aalx, balp with a s / ? and a a J. By definition, we have 

(14) <xab = <r(a-b) = (a-b)Aa-<jBa.b, 

where (a-b)A„aIXi and oBa.baJXi. On the other hand, 

(14') (rab = (cra)b = (aA„ • aBJb = aAa(aBa • b) = (aA„ • bAaBJ • aBaBb, 

where the product a A, • bAaB is defined in I as it was noted after the definition of an 
(/, 7)-pair. Since aab is uniquely representable in the form aQa0 with a0aIXo, (r0^JXo 

for some a0€ Y we infer that (14) and (14') imply (C2) to be valid. Dually, one can 
prove that (C3) also holds. Since x is a congruence relation (C2) and (C3) show by the 
definition of A and B that (Wl) and (W2) are fulfilled by A, B. This completes the 
proof of the facts that A, B is an (I, J)-pair and A, B is an (I, J)-pair over A, B. 
(C4) trivially holds for A, B with ix=jx, aaY. 

Let s be an element in S. Define the mapping hs: U {/a:as/(s)}— 
U by 

ahs = usau's ixt-1 

provided a all and a s l(s). Similarly, let U { / a : « S r ( j ) } - U {Jx:a^l(s)} 
be the mapping for which 

aXs = ' i t , " > " s 

whenever aaJ\ with P^r(s). Clearly, ahsalx^}' and <TXs£Jp{syis as usau'saax~\ 
(ahs)x=sls'eST-1=sl(siy and u'sous0lu'sipusap%s, (<rzs)x=e^s'js = respecti-

vely. Here a€Ys and PaY$. It is obvious that a s / ( s ) and p^r ( s ) . Therefore 
(Dl) (a) and (b) are satisfied by h and x, respectively. After the properties ,(D2)— 
(D8) we have noted that both sides of the respective equalities are defined. Thus we 
must check only that the equalities are valid. 
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In order to prove (D2) (a) assume that aela,b£lp and By defini-
tion, we have 

ahs-bhs3&usa{u's ixx.ius)bu's = usa{ixu's iax.ius)bu's = 

= usa(i„-ixs)bu's = us(a-bAiaz.1Xs)-i„-iXsBbu's. 

Here bA,^_1x,Bb in the band B0 whence we obtain that 

a ' ' bAi„:*xs' ^XsBb-
Thus 

ahs• bhs3%usa • bA-,xx-iXsu's(9t(a • bAi„-iXs)hs 

and, since both ahs bhs and (a-bAixt.lx^)hs belong to / ^ - i , they are equal. For 
(D2) (b), suppose that g€Jx, g'£Jx-, and a ' S ^ r ( i ) . Then we have 

QXs-OXs = lark's e"sieuU'^aUs = l«ts
 u's Q (us bzs U's h)ffUs = 

= ixtsu's hsAe)(gBifih)ffus. 

Here iPxJisAe^ixSigB i f izht whence it follows by Lemma 4.1 that 

QXs-aXs= i„ ys(eBhTb,-c)us = (gBhThs-a)xs. 

Now we check that property (D3) is satisfied. Assume that a€lx with a ^ l ( s ) 
and ot.Jp with psr(s). Suppose that aA„xOx^ and aBahiJp^. Then, by defini-
tion, we have 

(15) aAaxhs = us(aA„x)u'siXl^i = = 

= us ifr, u'saus a u's a* us iXi u's t-1, 

where a* and (axs)* are arbitrary inverses of a and o-/5, respectively. Since usipx us,ep 
and o£jp we have 

(16) usipxysous = usipxysipcus = ipXshs • ffus. 

On the other hand, aA„x €ax which implies ousau'so*ы^1. Thus 

(17) (ousau's<r*)(usiXiu's)iXiXri = (crusau'so*)iXiX-i. 

Since ou,au'sa*3Ha • ahs- a* the equality 

(18) (<rusau'sa*)iXiX-i = a-ahs-a*iXiX-i = ahsA„ % 
yields. The equality in (D3) (a) follows from (15) by applying (16), (17) and (18). 
Moreover, observe that this equality ensures ^ J =a 1 r f \ As far as the dual property 
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(D3) (b) is concerned, one can see by definition that 

oBohJ.s = bir^si^ahs)^ = ip.rji's'p^iah^u,. 
Since oBah aJPt we have o(ahs)o* efii- Therefore Lemma 4.1 implies 

aBah.X, = HIRS
US^(ahs)us. 

Furthermore, WjO'(aAs)c7*Hs€i91Ts=a1 whence we obtain that and hence 

oBaKxs = \ipi:ysa(ahs)us= ousau'siaix-ius = i^-a%s-au's i„-ius. 

Utilizing that both a and usi„-^us are contained in a it follows that 

aB a h z s = iXi • o x • ai«K ¿«J»"s = \-oXs-a- = °XsBa• ht^X* 

which was to be proved. 
Now we define constants cs - and ys<s for each pair of elements s, s in S. Since 

(usu^x=ss=usSx there exist uniquely determined elements cs S in / f ^ and ys5 

in such that a€Yr(sS) and 

= cs,sussVs,s-
Here t/ jJ s£S s whence we infer that a=r(ss) and arS3=l(ss). This implies yStS— 
=Ksu*us a s T h u s ys,seSB0' t h a t is> i s a l s o contained in 
If a s / ( i s ) then 

y's,sixys,s ~ "S W« ix WIS MS MS € ATSL1 TS TS 

which proves (D5). If i, s, SeS then we have 

£ = 7iS,l • ('i-(sSs) TJ5 • s)zs = 7jS,s 'r(sss) TiS t| us Or(ssf) TJS • ?J, s) = 

= Usss Uss Us U(sii) Ms ' R T VS WJS 11$ Us. 
H e r e and hence w ^ ^ u f ) • /K^ ) t i i<€r(iss) . Therefore 
we obtain that ^ = u's^usu-sws. On the other hand, ys>iV y-sj=u'sfsususu^u-su=^^ 
in the semigroup T and thus in / , too. This verifies (D6). If s is idempotent or s is 
not an inverse of itself and s* is an inverse of s in S then, by definition, ySjS*=-
= usstusus*=uss*uss». Hence ys,s* is idempotent which shows (D8). 

In order to verify (D7) suppose that e£E, aSr(e) and fl€/a, QiJx. Then 
ue=ce eye e as ue, ce_e and ye>e belong to r(e)=l(e). Thus, on the one hand, we have 

ahe = ueau'Jx,-i = ueaix = ueay'eeix = ce eye eay'e e\x = ce eaAy^ . 

On the other hand, 

6Xe = hze
u'eQue = lzQUe = i*QCe,e ' 7e,e = „ " 7e, e 

which shows that (D7) also holds. 
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Finally, we prove (D4). Let s,stS and a£la with a^l(ss). Utilizing that both 
ususau'su's and usi„7ius are contained in a r ^ r j 1 one sees that 

ahsh„ = us(u-sau'-iax-i)u's iaT-itJi = usu-3aus u's usi„-^u's („->,;• = 

= u i a u ' i < i ^ ^ c s r s u s S y s < i a y ' s -u'sSi„-ix;^csrsusSys My'srsip 

where y H o w e v e r , the latter element is S£-related to i „ - i t - i as well as 

ahjis. Thus we obtain that 

ahihs = cs, S uss {is, ¡ay's, s b) "ss iatr1
t;1 = cJiS • aAr^ha, 

that is, (D4) (a) is fulfilled. Now let s,seS and QtJa with cc^r(ss). Applying 
Lemma 4.1 we infer that 

QXs'h = i*TS.su'si*xu'sQusu-s = i„sTsu'su'sQusus. 

Here usu3=csSus-sysS and usus~y'ssu'ss whence it follows that U'SUSQUSU-S® 

Kusus^y's,susics,susiV,,S®y's,s!4Qcs,sussys,s- Consequently, we have 

QXsXs = iizsi-sy's,sU'ss8Cs,sUssYs,s-

(D5) ensures (i„ -y ) ' € / „ . and therefore (B6) implies that (i„ . •y' =)'€/„, . ss s, s s s S S ' ss 
Thus we can deduce from the last equality that 

('atss ' Vs, s) ' BXs Xs 'atjj " 7s, s lxxs TJVS, s "ss Q^s, s "ssVs, s ~ 

= »«sSU'ssiiQCs,-sUssys,-s = QBcStJ.ss-ys,s 

as Qcs -{%Q8/tia. This shows (D4) (b) which completes the proof of the fact that 
h, x, y is an (5, I, y)-triple. 

All that remained to be proved is that the one-to-one and onto mapping <P 
defined above is an isomorphism of Tonto <5(5, /, / ; h, x, y). Let t and t be elements 
in T with t<P=(a,s,o) and t<P=(a, s, a), respectively. This means that t=ausa 
and t=ausa where at i f , and a i l f , for some a in Yr(s) and 
a in YKi), respectively. Suppose that aAaeIXi and <rBaeJa. Here a x 6 Y K m s ) 

by (CI) (a). Thus we have a i t f 1 ^ 7KjS) and «iTs€ F / ( j i ). (D5) and (B6) ensure that 
T M S t ^ l ^ v ; 1 ^ and u s 5y sJ^ t / ^ i " ^ ^ ® ! ^ 1 - H e nce it follows that 

Vj'Cj.sHssrs.s'ajts " V / 1 " ^ , * ' * ^ = 1 «ss**,t,"11 z^s.s\V 
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Applying this equality one can see that 

(auso)(au-s&) = aus-aAa • oBs • u-sa = aus •aA„ • iXl • oBs • u-sa = 

= aus-aA„ • (u's ¿^t-1 us)(ust_u's) i ̂  • oBs • usa = 

= a{Us-aAau's T-US(t_U'S • <TB5-Us)G = 

(19) = a • dAahs • cSy-susSys>s • oBsxs • a = 

= a • aAahs(iv-ics>-sussys,siv-)<TBaXs • ° = 

= a-aA„hs(i^z-iusSr -i ys>r.)aBsxs • a = 

= (a • aA„hs)usS ( O ^ ; 1 ^ • ys,s) • <rBsx-s • a). 

This proves that $ is a homomorphism and therefore an isomorphism. The proof of 
the theorem is complete. 

As an application of Theorem 3.10 and 4.3 we describe the structure of orthodox 
semigroups by means of their bands of idempotents and greatest inverse semigroup 
homomorphic images. An alternative structure theorem was given by Y A M A D A [7]. 
However, our construction is more economic as it makes use of structure mappings 
in a single variable only. 

Let S be an inverse semigroup with semilattice of idempotents Y. For every a 
in Y, let Ix and Jx be a left zero semigroup and a right zero semigroup with distingui-
shed elements ix and jx, respectively. Let 7 be a lower associative semilattice Y of the 
left zero semigroups Ix (a € Y) and J an upper associative semilattice Y of the right 
zero semigroups Jx (a€ 7). Assume that A, B is an (7, /)-pair satisfying the property 
that 

(C4)' aAj^ip-a and oB^ = a-jp provided a , /?€F with a s / ? and fl€7a, 
<7€/a. 

Let hs: U {Ix: ass^s}-* U {/,: a s « " 1 } and ys: U {/.: a s ^ " 1 } - U {/„: a S i ^ s } 
be mappings such that fah sQI s x s-i for <xSs~ys, JxX.s'==Js-ixs for a S s s - 1 and the 
following conditions are fulfilled: 

(D2)' (a) if aOx,biIp with then ahs-bhs = (a-bAjsxs-iXs)hs, 
(b) if q U x , a t Jp with a S j S s j i - 1 then QXs-̂ Xs = (QBis. lfshs-a)xs; 

(D3)' if ae l x with a s j - i j and with /?Sss_ 1 then 
(a) aAaxhs = is-ipshs • ahsAa, 
(b) <?Bahsxs = axsBa -jsxs-ixs; 

(D4)' (a) if a£lx with a S ( j s ) _ 1 j s then ah§hs = c • aAyhsS for some c in IsKii)-i 
and y in Jw.la, 
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(b) if QIJA with a^ss(ss)-1 then QXSX-S = EBCXSS-Y for some С in IlSisS)-i 
and у in / ( jS )-.„; 

(D7)' (a) if a€/„ and a s / ? then ahp — c-aAy for some с in Ip and у in Jp, 
(b) if QTJA and a s / ? then QXP = QBC• У for some С in IP and У in JP. 

A pair of mappings h, x possessing these properties is called a reduced (S, I, J)-pair. 
Let us define a multiplication on the set 

S - {(a, s, a): s£S, a€/„-», i j 
as follows: 

(a, s, A)(a, s, a) = (a -aAahs, ss, <TBSXj). 

If the constant у in (D4)' can be chosen such that it depends on s and s only 
and, moreover, (D7)' holds with the у corresponding to the pair (/?, /?) then the reduc-
ed (S, 7, 7)-pair h, x can be easily extended to an (S, I, J)-triple. Then Theorem 3.10 
immediately implies that S forms an orthodox semigroup with respect to this multi-
plication whose band of idempotents is isomorphic to 3$(I, J; A, B) and whose grea-
test inverse semigroup homomorphic image is isomorphic to S. However, as с is not 
needed to be independent of the choice of a and g in properties (D4) and (D7) since 
Ia is a left zero semigroup for every a in Y, we need not assume this property for у 
if Jx is a right zero semigroup for each a in Y. Therefore the conclusion for S drawn 
up above holds for any reduced (S, 7, /)-pair. The orthodox semigroup obtained in 
this way will be denoted by © (S, I, J; h, y). 

Conversely, if T is an orthodox semigroup with band of idempotents E then its 
least inverse semigroup congruence is clearly a strong (E, ^-parcelling congruence. 
The second part of the following theorem immediately follows from Theorem 4.3, 
one has to observe only that, in this special case, the constants ys s can be eliminated 
in (D4) (b) and (19) as well as the contants cs ~ can in (D4) (a) and (19). 

Theorem 4.4. Let S be an inverse semigroup with semilattice of idempotents Y. 
For every a in Y, let Ix be a left zero semigroup and Jx a right zero semigroup with 
distinguished elements ix and jx, respectively. Suppose I to be a lower associative semi-
lattice Y of the left zero semigroups Ix (a €7) and J an upper associative semilattice 
Y of the right zero semigroups Jx (a€ Г). Let А, В be an (7, J)-pair satisfying (C4)'. 
Assume that h, x is a reduced (S, I, J)-pair. Then 1, J; It, x) is an orthodox semi-
group with band of idempotents isomorphic to SS (J, J\ A, B) and with greatest inverse 
semigroup homomorphic image isomorphic to S. 

Conversely, if T is an orthodox semigroup with band of idempotents E which is a 
semilattice Y of rectangular bands then E is isomoprhic to 38(1, J; A, B) for some 
I, J, A and В which fulfil the conditions required above. Moreover, denoting by S the 
greatest inverse semigroup homomorphic image of T, there exists a reduced (S, I, /)-
pair h, x such that T is isomorphic to 2>(S, I, J; h, /). 
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Inner injective transextensions of semigroups 

M. DEMLOVA, P. GORALcfK and V. KOUBEK 

1. Introduction 

Consider an extension A of a semigroup B, that is to say, a surjective homomor-
phism cp: A —i?. The multiplication in A naturally appears as determined by B up 
to the extension congruence Ker <p. If we succeed in localizing elements in each of 
the blocks of Ker cp (e.g. by an assignment of some kind of coordinates to them) then 
we can refine the multiplication modulo Ker (pin A up to the multiplication of indi-
vidual elements. These may be represented as couples (<p(a), A (a)), where <p(a) is 
the label of the block containing a and X(a) is the secondary label (coordinate) by 
which a can be located within its block. 

The secondary labels are taken from some suitable auxiliary set X and assigned 
to the elements of A by a function k: A —X, which we call a localizer and require 
(for this purpose) to be injective on each block of Ker <p. Identifying A with a subset 
SQBXX by at—(q>(a),l(a)), we can determine a unique function f : SXS-*X 
such that 

for every (b, m), (c, n) € S. 
The set S together with the multiplication given by (1) is thus a semigroup iso-

morphic to A by the isomorphism a: A-~S with ct(a) = {<p(a), k(a)), the first 
projection n:S-~B:(b, m)t—b is a surjective homomorphism onto B and the diagram 

commutes. For this reason, we say that n: S—B is a semiproduct right equivalent 
to the extension <p: A-»B, or a semiproduct representing <p: A^-B. 

(1) (b, w)(c, n) = {be J(b, m, c, «)) 

A 
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It is clear that every extension can be represented by a right equivalent semi-
product, thus we can construct various extensions of a given semigroup B also in 
this form. The general problem of finding all extensions of B can thus be reduced, 
from this point of view, to special kinds of completions of partial semigroups accord-
ing to the following 

Extens ion scheme: Let a partial semigroup P be given together with a homo-
morphism <p: P-*B onto a semigroup B. Complete P to a semigroup A with the 
same underlying set by turning it into a semiproduct in such a way that q>: P->-B 
becomes the projection <p: A of the semiproduct. 

In the special case when no product is defined in P one has to choose, according 
to this extension scheme, a localizer k: P—X and to find a function/making the 
multiplication defined by (1) associative. 

The classical group extensions easily come under the above extension scheme: 
P appears here as a partial group divided into blocks of equal size by a homomorphism 
cp of P onto a group B, the block which is mapped onto the identity of B is a sub-
group C of P, and all products ca, ac for cSC, a(_P, are defined in such a way that 
the action of C on each block is simply transitive. 

Namely, the simply transitive action of C on the blocks of Ker cp was used by 
Schreier to build up a most natural localizer: if we choose in a block a reference 
point x0 then we get a bijection X between the block and the group C by setting A (x)=c 
iff cx0=x. 

In this paper we want to carry over Schreier's idea to semigroup extension sche-
mes, in which in the partial semigroup P to be completed we have only the products 
ax for a single left cancellable element aeP and for all xeP defined, and the sur-
jective homomorphism <p:P-*B takes a to a left identity <p(a)=e of B. In this case 
the blocks of Ker q> are just the connected components of the graph with edges 
(x, ax), xeP, and since the action of a is injective on each block it is only natural 
to use integers Z (or integers modulo some m) to coordinatize the blocks. 

Although the idea is very simple, the detailed elaboration which follows is far 
from being so. We would like to acknowledge our thanks to L. Márki who helped 
us to put right a number of technical items. 

2. ./-transextension scheme 

Our basic category will be the category of pointed groupoids (G, a), a£G, 
with morphisms ft: (G, a)—(H, b) respecting both multiplication and points (con-
sidered as miliary operations). The subcategory of of pointed semigroups will be 
denoted by if*. 
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Given a pointed groupoid (G, a), we can define its left connectedness to be the 
equivalence ~ 0 on G defined by 

* ~ ay ** 3 m, n • x = (f • y) 

where c f ^ a - a " 1 ' 1 for 

2.1. D e f i n i t i o n . An extension <¡9: (T, a)— (S,e) in is called an inner in-
jective transextension or shortly an J-extension, if a is left cancellative and the left 
connectedness ~ a is a congruence on T such that ~ a = K e r <p. Then e is a left ident-
ity in S called the left identity of the extension. 

Each ./-extension cp: (T, a)-*(S, e) determines an assignment x>-~<f/x= 
=(Tx,fx), Tx=(p~1(x), of unary algebras °UX to elements x of S, with one injective 
connected operation fx coinciding with the left inner translation by a restricted to 
<p-i(x). 

Let Jf denote the semiring iVU of non-negative integers completed by a 
greatest element, where m • <*> • m=°° for all m^O, 0 • • 0=0 . We assign 
to every injective connected unar ( X , f ) an element of J f , denoted Type (J), as 
follows: 

Type i f ) = min {n; 0 = and f ( x ) = x for all x£X) if such n exists, 
Type ( / ) = 0 iff f~1(x)=® for some x£X, 
Type ( / ) = °° otherwise. 

The semiring Jf is lattice ordered by the divisibility relation. We denote by 
V and A the lattice operations of the least common multiple and the greatest common 
divisor, respectively. 

We have the following easy statement readily obtained from the results of 
NOVOTNY [ 5 ] on commuting transformations. 

2.2. S t a t e m e n t . Let ( X , f ) and (Y, g) be injective connected unars. There exists 
a homomorphism h: (X,f)—(Y, g), hf=gk, i f f Type (g) divides Type( / ) in J f . 
If Type ( / ) ^ 0 , then h must be surjective. The unars ( X , f ) and (Y, g) are isomorphic 
i f f Type ( / )=Type (*). 

Returning to the ./-extension (p: (T, a)—(S, e), we can describe the assignment 
xi—^ up to isomorphism by a type function r: S—Jf\ jn—Type ( f x ) . On the other 
hand, we can start with (S,e), e a left identity of S, and a function r: S-~Jf:x>-+r(x) 
as a sort of "plot" for the construction of an ./-extension of (S, e) in the form of an 
¿¡•-semiproduct, using the ring Z of integers as an auxiliary algebra. We form SxZ 
and identify (x, m)=(y, n) iff x=y and m=n (modr(jc)) for 0<r( ;c)< 
m=w otherwise. With the aid of an initialization function i: 5—Z: x>-+i(x) we 
cut out of SxZ/= a unar (P,f) with P={(m, n)dSxZ\m^i(x) if r(jc)=0}/= 
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and f(x,m)=(x,m+1). To turn P into a groupoid we introduce two additional 
functions k: S—Z and /: 5 x 5 — Z and prescribe a multiplication formula 

(M) (x, m)(y, n) = {xy, m + /c(x)n + l(xfx, y)) 

where fi=n(y, n)=e if r(y) #0 , or r (y)=0 and n^i(y), p. is the empty symbol 
if r ( j ) = 0 and n=i(y). The sixtuple (S, e, r, i, k, I) sets up an J-extension con-
struction scheme, or shortly an J-scheme. If (M) correctly defines a multiplication as 
a function PxP-~P, we say that the ./-scheme is &-correct. A ^-correct ./-scheme 
turns the unar (P,f) into a groupoid satisfying f(uv)=f(u)v for all u,v£P. If mo-
reover there exists an a a P of the form a= (e, m), for some m£Z, and such that 
f(t)=at for all taP, then we call the ./-scheme «P-correct. A ^°-correct ./-sche-
me (5, e, r, i, k, /) determines a unique semiproduct 

7i: (P, a) — (S, e): (x, m) >->- x 

in and we write in this case (P, a)=J(S, e, r, i, k, I). 
It will be our immediate task to find the conditions for an ./-extension scheme 

(5, e, r, i, k, I) to be ^-correct. This done, we shall next be most interested in the 
"associative" ./-schemes determining ./-extensions in Sf° — the -correct ./-exten-
sion schemes. These found, we investigate how large a class of ./-extensions in 
can be optained by the class of all ^°-correct ./-schemes. We shall prove that all 
./-extensions in ¡ f ° can thus be obtained. Then we shall clear up a technical point 
when two ./-schemes determine right equivalent ¿»-semiproducts, in order to get 
possibly simple semiproduct representatives of ./-extensions in We shall also 
state, in a number of statements, conditions under which an ^-cor rec t ./-extension 
scheme determines an ./-extension in the category of pointed 

— semigroups with identity (or "monoids"), 
— commutative (=abelian) semigroups, 
— right cancellative semigroups, 
— left cancellative semigroups, 
— right reductive semigroups, 
— groups. 

In particular, in the case of group ./-extensions our theory comes to a strong resem-
blance with the theory of extensions of P. A. GRILLET [2]. 

Our final point will be to show the role of ./-extensions in in a larger class 
of transextensions. 
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3. 5"°-correctness of ./-schemes 

3.1. S ta tement . An J-scheme (S, e, r, i, k, /) is ̂ -correct i f f the following three 
"correctness conditions" hold for any x,y€.S: 

(CI) r ( ^ ) = 0 => k(x)r(y)=0, and i(x)+k(x)i(y)+min {/c(x)+/(xe, y), 
l(x, J)}S / (XJ) , (r(y)^0^i(x) + l(xe, y)^i(xy)), 

(C2) r(xy) divides r(x) in JV, 
(C3) r(y)7i^=>k(x)r(y)=0 (mod r(xy)). 

Proof . Assume that (x, m)(y, n)iP for all (x, m), (y, n) € P. If r(xy)=0, 
then r(x)=0. Indeed, if r(x)^0 we can, for a given (y,n)zP, choose ( x , m ) € P 
for which m+k (x)n+max {/(x, y), I (xe, y)}< i(xy), thus (x, m) (y, n) $ P. Like-
wise, if r(xy)=0 and at the same time /c(x)-cO or k(x)r(y)^0, then for some 
(y ,ri)£P , where (y, n) ^ (y, i(y)) or r(y)^0, we have i(x)+k(x)n+l(xe, y)< 
<i(xy), thus (x, i(x))(y, ri)$P, a contradiction. So if r(xy)=0, then k(x)^0 
and k(x)r(y)=0. Now if r(xy)=0=r(y), we must have both 

i(x)+k(x)(i(y) + \) + l(xe,y) a i(pcy) 
and 

i(x)+k(x)i(y)+l(x,y) i(*j/). 

If r(xy)=0^r(y), then k(x)—Q and it must be i(x)+l(xe,y)^i(xy). We have 
proved (CI) under the assumption that (x, m)(y, ri)€P for any (x, m), (y,n)(.P. 

Assume now (CI) and that r(x^)=0 implies r(x)=0, and let (x, m), (y, n) € P. 
If r(xy)j£ 0 then clearly (x, m)(y, n)£P. Let r(xy)=0. Then r(x)=0, hence 
m £ i ( 4 If further r(_y)=0, then also n^i(y), and since k(x)^0, k(x)n^k(x)i(y). 
Therefore, for n>i(y), 

m+k (x)n + /(xe, y) Sr i(x)+k(x) ( i (y)+l)+l(xe , y) is i(xy), 

for n=i(y), 

m+k(x)n+l(x,y) is i(x)+k(x)i(y)-f-l(x,y) == i(xy), 

hence (x,m)(y,n)eP. If r(y)^0, then A:(x)=0, 

m+k (x)n + /(xe, y) ^ i(x)+1(xe, y) £ i(xy), 
hence again (x, m)(y, n)€P. 

We conclude that (CI) holds and r(xy)=0 implies r(x)=0 iff P is closed un-
der the (multivalued) multiplication given by (M) for a given ./-scheme. Notice that 
(C2) and r(xj>)=0 imply r(x)=0. 

Assume next that 

(1) (x, m)(y, n) -- - (x, m')(y, n) whenever (x, m) = (x, m'). 

4* 
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Then for (x, m) with and any (y,n), 

(x, m+r(x))(y, n) = (x, m)(y, n), 

hence r(x) =0 (mod r(xy)), which means that r(xy) divides r(x) in J f . If r(x)=°° 
then r(xy)?±0 by the above, hence again r(xy) divides r(x) in J f . We have proved 
(C2) under the assumption (1). Conversely, assume (C2) and let (x, m)=(x, m'). 
Then for any (y,n)tP, {x,m)(y,n)=(x,m')(y,n). Indeed, if r(jc)=0 or » then 
m=m'. If 0<r (x) < co, then m=m' (mod r(x)), thus m=m' (mod r(xy)) by 
(C2), therefore 

m+k (x) n+/(xfi, y) = m'+k (x) n+I (xp, y) (mod r (xy)). 

Assume finally that (JC, m)(y, ri)=(x, m)(y, «') whenever (y, n)=(y, n'). Then 
for (y, n) with r(y)^°° and any (x,m)eP , (x, m)(y, n + r(y))=(x, m)(y, n), 
hence ¿(x)r(y)=0 (mod r(xj)). We have proved (C3) under the assumption. 
Conversely, assume (C3) and let (y, n)=(y, n'). Then for any (x ,m)eP , 
(x, m)(y, n)=(x, m)(y, ri). This is clear for r ( j ) = 0 or «>, since then n—n'. For 
0<r(>>)< °° we have by (C3) 

m+k(x)n+l(xe, y) = m+k(x)n'+l(xe, y) (mod r(xy)) 

since n=n' (mod r( j ) ) . 
We conclude that (x, m)(y, ri)=(x, m')(y, n') whenever (x, m) =(x, m') and 

(>', «) =(y,n') iff both (C2) and (C3) hold. 

3.2. S ta tement . A ^-correct J-scheme (S, e, r, i, k, I) is "if-correct i f f the fol-
lowing three „inner translativity" conditions hold for any xaS: 

(IT1) k(e) = 1 (modr(e)), 
(IT2) l(e, x) = l(e, e) (mod /•(*)), 
(IT3) r(e) = 0 =>• 1 -l(e, e) i(e). 

The unique a in P for which n: (P, a) —(5, e): (x, m)<-+x is an J-extension in 
<S° is then a = (e,l-l(e,e)). 

Proof . Call a a P an admissible point if the ./-scheme yields an ./-extension 
n: (P, a)— (S, e): (x, m)>—-x in with a(x, m)=f(x, m)=(x, m+1). Assume that 
a=(e,p)£P is admissible. Then (e,p+2)~(e,p)(e,p+ l)=(e,p+k(e)+k(e)p+ 
+l(e, e)), (.e,p+l)=(e,p)(e,p) = (e,p+k(e)p+l(e, e)), hence 

p+k(e)p+k(e)+l(e, e) = p+2 (mod r(e)), 

p+k(e)p +l(e, e) = p+\ (mod r(e)). 
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Subtracting the two congruences we get (IT1). Since r(x) divides r(e) by (C2), (IT1) 
is equivalent to \fx (k(e) = l (mod r(x))), therefore for any (x, m)aP, 

(x, m + \) = (e, p)(x, m) = (x,p+m+l(e, x)), 
hence 

p+l(e,x) = 1 (mod r(x)). 
In particular, 

p+l(e, e) = 1 (mod r(e)) 

whence the uniqueness of an admissible aeP. By (C2) again, the latest congruence 
implies 

p + l(e, e) = 1 (mod r{x)) 
hence we get (IT2). 

If r(e)=0 then p=\-l(e,e)^i(e) gives (IT3). 
Conversely, if the three conditions hold, then (e, 1— l(e, e))eP and 

(e, 1 -lie, e))(x, m) = (x, 1 -l(e, e) + k(e)m + l(e, x)) = (x, m +1) 

for any (x,m)£P. 

3.3. S ta tement . Let (S, e, r, i, k, I) be a <S-correct J-scheme with Sasemigroup. 
Then P is a semigroup i f f the following "associativity conditions" hold: 

(AO) k(x)k(y) = k(xy) (mod r(xye)), 
(Al) l(xe, y) + l(xye, z) = k(x)l{ye, z) + l(xe, yz) (mod r(xyz)), 
(A2) if r(y) = 0 and (r(yz) = 0 = k(y) => i(y)+l(ye, z) > i(yz)), then 

l(xe,y) = l(x,y) (mod r(xyz)), 
(A3) if r(y) = 0 = r(yz) and i(y) + k(y)(i(z)+l) + l(ye, z) = i(yz), then 

l(xe, y)-l(x,y) = l(xe, yz)—l(x, yz) (mod r(xyz)), 
(M) if r(z) = 0, then l(xye, z)—l(xy, z) = k(x){l(ye, z)-l(y, z)) (mod r(xyz)), 
(A5) if r(y) = r(z) = r(yz) = 0 and i(y)+k(y)i(z)+l(y, z)=i(yz), then 

l(x, y) + l(xy, z) = k(x)l(y, z)+l(x, yz) (mod r(xyz)), 
(A6) if r(y) = r(yz) = 0 = k(y) and i(y) + l(ye, z) = i(yz) then 

l(xe,yz) = l(x,yz) (mod r(xyz)). 

Proof . For arbitrary (x,m),(y,n), (z,p)eP, 

(1) [(x,m)(y,n)\(z,p) = 

= (xyz, m + k(x)n + k(xy)p +1(xfi(y, n), y) + l(xyn(z, p), z), 

(2) (x,m)[(y,n)(z,p)] = 

= (xyz, m+k(x)n+k(x)k(y)p+k(x)l(yn(z,p), z)+l(x^((y, n)(z,p)), yz)). 
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We see from these expressions that the consideration of the equality 

(3) [(*, m)(y, n)](z,p) = (x, m)[(y, n)(z,p)] 

will depend on the triple 

P(y, n, z,p) s (n(y, ri), n(z,p), n((y, n)(z,p))) 

which will be referred to as the pattern of the couple ((>>, ri), (z,p))tPxP. 

From the correctness conditions (CI) and (C2) of 3.1 it follows immediately 

(4) fi(y, ri) = e => n((y, ri)(z, p)) = e. 

Indeed, if r(y)^0 then by (C2) also r(yz)^0. If r(>>)=0 and n>i(y), then 

(y, n)(z,p) = (yz, n+k(y)p+l(yn(z,p), z)). 

If r(yz)^0 then there is nothing to prove. Supposing r(yz)=0 we have by (CI) 

n+k(y)p+l(yn(z,p),z) > /(j)+A:(>')i(z)+min {k(y)+l(ye, z), l(y, z)} ^ i(yz). 

By (4) the number of possible patterns is reduced from eight to six listed as 

P1 = (e,e, e), P2 = (l,e,e), Ps = (l,e,l), 

P4 = (e,l,e), />. = (1,1,1), Pe = ( 1,1, e). 
To each triple ((x, m), (y, ri), (z, p)) of elements of P we associate an equation 
(modulo =) 

Cj(x, y, z): l(xn(y, ri), y)+l(xyfi(z,p), z) = 

== k{x)l{yn(z, p), z)+l(xfi((y, n)(z,p)),yz) (mod r(xyz)) 

if the corresponding pattern is P(y, n, z,p)=Ps, j= 1, ..., 6. Written in full, the 
six equations are 

CY: l(xe, y)+l(xye, z) = k(x)l(ye, z)+l(xe, yz) (mod r(xyz)) 

C2: l{x, y)+l{xye, z) = k(x)l(ye, z)+l(xe, yz) (mod r(xyz)) 

C3: l(x, y)+l(xye, z) = k(x)l(ye, z)+l(x, yz) (mod r(xyz)) 

C4: l(xe, y)+l(xy, z) = k(x)l(y, z)+l(xe, yz) (mod r(xyz)) 

Cs: l(x,y)+l(xy,z) = k(x)l(y,z)+l(x,yz) (mod r(xyz)) 

Q : l(x,y)+l(xy,z) = k(x)l(y,z)+l(xe,yz) (mod r(xyz)) 

Assume that P fulfils (AO). Then we see from (1) and (2) that (3) holds iff 
the equation corresponding to P(y, n, z,p) is true. Since ez—z we get by (C2) that 
r(z) divides r(e) and (AO) implies k(x)k(y)=k(xy) (mod r(xyz)) for any zeS. 
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Thus if one shows that the condition (A) of associativity of P implies (AO) then we 
can express it as 

(5) (A) (AO) and \/y, z,j(3n,p(P(y, n, z,p) = P}) => \/x (C,(x, y, z) holds)). 

To show that (A) implies (AO), note that we can always choose n, piZ to y, ZÇ.S 
so that P(y,n,z,p)—Pl, and that then also P(y,n,z,pr)=Pl for every p'^p. 
Comparing (1) and (2) for p and p replaced by p +1 we get immediately (AO), as well 
as (Al). It remains to consider the situations under which the patterns P2, ..., P6 

occur, in order to get (A2)—(A6). The scheme for (A/), j=2,..., 5, is 

3«, p(P(y, n, z, p) = Pj) => \fx(C'j{x, y, z) holds) 

where C'5=C5 and C'j=C1—Cj (this is meant to symbolize that C) is obtained by 
subtracting Cj from the always true equation Cu hence C) is equivalent to CJt but 
somewhat simpler) for j=2,3,4. 

0 = 2 ) : We have P(y,n,z,p)=Pz iff (r(y)=0 and n=i(y)) and (r(z)=0=> 
=>p>i(z)) and (r(yz)=0=>i(y)+k(y)p+/(ye, z)^i(yz)), therefore it follows that 
3«, P (P(y, n, z, p)=P2)or(y)=0 and (r(yz)=0=k(y)=>i(y)+l(ye, z)^i(yz)) 
since for r(yz)=0?±k(y) we have by (CI) that &0>)>0 and r(z)=0, hence for 
some p,p>i(z), it is i(y)+k(y)p+l( ye, z)^i(yz). 

0 = 3 ) : P(y,n,z,p)=Ps*>(r(y)=0 and n = i(y)) and (r(z)=0=>/»/(z)) 
and (/-(jz)=0 and i(y)+k(y)p+l{ye, z) = i(yz)), therefore 3 n , p ( P ( y , n , z , p ) = 
=P»)*>(r{y)=0=r(yz)) and Qc(y)=0=>i(y)+I(ye,z)=i{yz)) and (k(y)>0=> 
=>i(y)+k(y)(i(.z) + l)+l(ye,z) = i(yz)) since for k(y)^0 it is r(z)=0 by (CI) 
and p=i(z)-1-1 is the least possible choice for p to get the pattern. Putting together, 
3 n,p(P(y, n, z, p) = P3)or(y)=0=r(yz) and i(y)+k(y){i(z)+l)+l(ye, z) = i(yz). 

0 = 4 ) : P(y,n,z,p)=Pi**(r(y)=0^-n>i(y)) and (r(z)=0 and p=i(z)) 
and {r(yz)=Q^n+k{y)i{z)+liy,z)>i(yz), therefore 3n,p(P(y,n,z,p)=Pi)o 
o r ( z )=0 . 

0 = 5 ) : P(y,n,z,p)=P5<*(r(y)=0 and n=i(y)) and (r(z)=0 and p=i(z)) 
and (r(yz)=0 and i(y)+k(y)i(z)+l(y, z)=i(yz)), therefore 3 n , p ( P ( y , n , z , p ) = 
P5)or(y) = r(z) = r(yz)=0 and i{y)+k(y)i(z) + l(y, z) = i(yz). 

To conclude the proof we show that (Al)—(A6) and P(y, n, z, p) = Pe imply 
Ce, and that C6 and (Al)—(A5) imply (A6). We have 

P(y, n, z,p) = Ps <=> (r(y) = 0 and n = i(y)) and (r(z) = 0 and 

p=i(z)) and (r(yz) = 0 => f(y)+k(y)i(z)+/(y, z) > i(yz)). 

If r(yz)=Q^k(y) then i(y)+l(ye, z)ari(jz), thus by (CI), P(y, n, z, p+2)=P2. 
Since P(y,n+l,z,p)=Pt, C2 and C4 hold by 0 = 2 ) and 0 = 4 ) . Subtracting 
Cx from C 2 +C 4 we get C6. If r(yz)-0=k{y) and i(y)+l(ye, z)=i(yz) then 
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P(y, n, z,p+l)=P3, hence we get C3 and C4 by 0 = 3 ) and 0 = 4 ) . Subtracting Q 
from C3+Ct we get 

C'6: /(x, y)+l(xy, z) = k(x)!(y, z)+l(x, yz) (mod r {xyz)) 

Now C6 holds iff (A6) holds. 

3.4. Coro l l a ry . If (S, e, r, i, k, I) is a <S-correct ^-scheme and e is a two-
sidèd identity of S then P is associative i f f 

(i) k(x)k(y) = k(xy) (mod r(xy)), 
(ii) l(x, y)+l(xy, z) = k(x)l(y, z)+l(x, yz) (mod r(xyz)). 

Proof . Straightforward. 

3.5. Remark . Statements 3.1, 3.2 and 3.3 jointly characterize 5^°-correct J-
schemes by conditions (CI)—(C3), (IT1)—(IT3), (AO)—(A5). It is easy to satisfy 
all these conditions by a particular choice, e.g., &(x) = l (modr(e)) for all x£S, 
K x >y) = Q = i ( x ) for all x,y£S and r(x)=rijV for all x£S, however, we are far 
from being able to describe all ^-correc t ./-schemes, even under the tremendous 
simplification indicated by 3.4. 

4. Universality of ./-schemes for y ° 

Let a be a left cancellable element of a semigroup T. In order to facilitate some 
of the further calculations, we introduce partial injections J— T: w—cfou, m€Z, 
as follows 

amu if m > 0, 
u if m = 0, aou = • v if m < 0 and a~mv = u, 
0 if m < 0 and there is no v in T with a~mv = u. 

The following lemma states some easy calculation rules. 

4.1. Lemma. If cfou^Ç), then for any vaT and m£Z it holds 
(a) <fo(uv) = (a"ou)v, 
(b) cToicfou) = om+noM. 

Proof , (a) is clear for n^O. Assume « < 0 and denote w=cf ou. Then 
a~"w=u, hence a~"wv—uv, hence ano(uv)=wv=(anou)v. 

(b) clearly holds if and n s 0 , as well as in the case m=0 or n=0. 
We shall consider in detail the three remaining cases. 

Assume 0 and «<0, denote w=a"ou. If m+n>0, then a m o(a"oa )= 
=a m w=a r a + ' ' a _ "w=a m + n u=a r a + n ou. If m + n < 0 , then u=a~"w=a~"~mamw, 
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hence am+nou=amw=amo(c?ou). If m+n=0, then amo(a" ou)=amw=a-"w= 
= u=am+nou. 

Assume /n<0 and «>0 . If m + n > 0 , then a~mam+"u=a"u, therefore 
flmo(fl"o«)=fl™ o(a"«)=fl"+"ii=ir+°oM. If m + « < 0 and am+nou^&, say 
if+"ou=v, then a~m~"v=u, hence a~mv=cTu, hence am+n ou=v-(fo (cfu)= 
=amo(o"ow). If m+n<0 and (f o ( a"ou)^0 , say a m o(a n oi / )=a m o(a"u)=w, 
then a~mw=(fu, hence fir~"1_nw=« by the «-fold cancellation of a on the left, 
therefore am +"ow=H'=flmo(a"ou). If m+n=0, then a~mu=anu, therefore 
amo(cC ou)=cfo((fu)=u=am+"ou. 

Assume m < 0 and «<0 . If am+nou^0, say am+ttou=v, then a'm-"v= 
=a~"a~mv=u, hence cfou=a-mv and a™ o(a" ou)=v=am+n ou. If amo(cfou)^ 
?i0, say flm o (cf ou) — w, then a~mw=(f ou, hence a~"a~mw=u=a~n~mw and 
(f+no u-w=ef o (a" ou). 

4.2. T h e o r e m . Every J-extension q>: (T, a)— (S, e) in Sf° is right equivalent 
with some semiproduct n: (P, a)— (<S, e): (x,m)i-»x determined by a suitable Sf°-
correct J-scheme (S, e, r, i, k, I). 

Proo f . Let cp: (T,a)-*(S,e) be an ./-extension in Sf0. Then we have, for 
any u, v € T, 
(1) (p(u) = <p(v) o 3maZ (cfou - v). 

The type function r : S-«-./f/":x>-«-Type ( f x ) , fx: <p-1(x) — ¡¡i>_1(x): u>—au, associated 
with this ./-extension satisfies by 2.2, 

(2) r(xy) divides r(x) in Jf for any x, yaS 

since Qlx is taken homomorphically to °Uxy by the multiplication on the right by any 
element w€(p~l(y). 

Further we construct a mapping S—T (not necessarily a homomorphism) 
selecting one point from each a-component, i.e., (p\j/ = \ s , as follows: 

(3) if r(x) = 0, then a~lo^(x) = 0, 

(4) if r(x) ^ 0 and xe = x, then <l/(x)a(p~1(x) is arbitrary, 

(5) if r(x) ^ 0 and xe ^ x, then \//(x)a = \j/{xe)a, 

(this is possible since multiplication by a on the right takes <p-1(x) onto cp~1(xe), 
as it follows, e.g., from 2.2). 

Define a function i: S-*Z by 

(6) dM oil/(xe)a = tj/(x)a and (r(xe) 0, °°=>- 0 s /(x) < r(xe)). 
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It follows from (4) and (5) that 

(7) i(x) = 0 if r(x) ^ 0, or r(x) = 0 and x = xe. 

A localizer A: r—Z is defined by 

(8) <!*«-««»» O^>(M) = u and (r(cp(u)) ^ 0, - => 

=> 0 =i A(»)-i(<p(w)) < r(<p(«))). 

A function k: 5—Z is defined by 

(9) oij/(xe) = ij/(xe)a and (r(xe)^0, °=> => 0 ^ k(x) < r(xe)). 

Replacing x by xe in (9), we get a*(*e) oi]/(xe) = i¡>(xe)a, therefore 

(10) A:(xe) = A:(x) (mod r(xe)). 

Finally, a function /: SXS—Z is defined by 

(11) /(x, jO = l(4>(x)iP(y))-i(x)-k(x)i(y). 

We shall show that 

(12) if a ^ o ^ i y ) ^ 0, then /(xe, >>) = /(x, y) (mod r(xy)). 

Indeed, we have then \j/(y)=au, for some ueT, furthermore, by (a) and (6) 

a"-x)o^(xe)ij/(y) = ai^oil/(xe)au = (ai(j° o $ (xe)a) u = ip(x)au = i]/(x)ij/(y), 

therefore 
WMMy)) = k(ilf(xe)<P(y)) + i(x) (mod r(xy)), 

hence by (11) 

i(x)+k(x)i(y)+l(x,y) = i(xe)+k(xe)i(y) + l(xe, y)+i(x) (mod r(xy)). 

By (2), r(xy)=r(xey) divides r(xe), hence by (10), k(xe)=k(x) (mod r(xy)). 
By (7), /(xe)=0, hence we get (12). 

Let u, v be arbitrary elements of T with cp(u)=x, cp(v)=y. We shall show that 

r k(u) + k(x)X(v) + l(xe, y) if a " 1 ov ^ &, 
(13) ^m)=\X(u) + k(x)k(v)+l(x,y) if fl-io» = 0. 

By (8), 
(14) uv = (ax(u) ~ o \j/ (*)) (aX(v) - i(>> o t/r ( y)). 

We split the consideration of this expression into three cases : 
I. Assume AOO^/Cy). Then, taking into account (6) and (9) we have 

uv = aHu)-iMo\l>(x)aXM-iiy)\l/{y) = a*(u) ~<x) o (a1 <x) o i/f (xe) (">-'<*> ̂  (_>,)) = 

_ ax(u)+k(xHHv)-i(y)) o ¡j, (xe) ¡j, (y). 
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By (8), = a ^ ^ ' ^ - ' ^ o i j / i x y ) , hence 

uv = aX(u)+k(xHX(v)-i(y))+M'l'(x')'l'w)-i(xy)o>l/(xy). 

From this we get by (8), 

X(uv) = X(u)+k(x)),(t>)-k(x)i(y)+1 (i>(xe)ij/( >>)) (mod r(jty)), 

hence by (II), 

X(uv) = l(u)+k(x)X(v) -k(x)i(y) + i(xe) + k(xe)i(y)+l(xe, y) (mod r(xy)), 

hence by (7) and (10) we get finally 

X(uv) = l(u) + k(x)?,(v) + l{xe,y) (mod r(jtj)). 

Since ).{v)>-i{y) means that a~1ov9£0, we have proved (13) under the assumption. 

II. Assume A(t>)=/(.y)- Then (14) becomes 

uv = ax(u)-Kx)oij/(x)*P(y) = a^-'^+^^-^oiPixy), 

hence by (8) and (11), 

(15) X(uv) = A(u)-i(x) + i(x)+k(x)i(y)+l(x,y) (mod r(xy)), 
which proves (13) in case a - 1 ou=0. However, if a - 1 ov^Q, then by (12), / (x , y) = 
=l(xe,y) (mod r(xy)) and (15) gives (13) also in this case. 

III. Assume A(v)<i(y). Then by (3) and (8), r(y) = °°! hence by (7), ¡ 0 0 = 0 , 
and by (12), l(x,y)=l(xe,y) (mod r(xy)). By (9) we get 

ct^ua = / « a ^ - ^ o ^ H ) ^ 

=aX(ua)-Kxe)<fix)oil/(xe)=aX(Utt)-*xe)oil/(xe)a = uaa, 

hence for all niZ, ucf=a~Kx)i(v)ua"+A(0). Now an easy calculation yields 

a~k(-x)Mv)ouv = a-klxWv)ou(ao(a-1ov)) = ua~m ov = uip(y) = 

= am-Kx)o*l/(x)ij/(y) = a ^ W - ' W + ^ W W ^ W - ' ^ o ^ ^ ) , 
hence 

X(uv) = X(u)-i(x)+k(x)X(v) + i(x)+k(x)i(y)+l(x,y) = 

= X(u)+k(x)X(v)+1(xe, y) (mod r(xy)), 

which proves (13) under A(u)<i(y). 
We have Type (fx)=r(x), hence by (3), (4), (5), (6), and (8), the assignment 

u*-~(cp(u), A(«)) is a bijection establishing by (13) a right equivalence between 
<p: (J , a)—(5, e) and the semiproduct n: (P, a)—(5, e) determined by (5, e, r, i, k, I), 
whence the latter must be in 5"°. 
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5. Morphisms of ./-extensions 

Let n: (P, a)-*(S, e) and n: (P\ a')-~(S', e') be two ./-extensions in 
determined by two ./-schemes (S, e, r, i, k, I) and (S", e, r', /", k', I'), respectively. 
By a morphism of n into n' we understand a couple (h, x) of ^°-homomorphisms 
h: (P, a)—(P', a'), x- (S,e)~(S',e0 making the diagram 

(P,a)^ (S,e) 

1 i* 
(F, a')-^(S\ e') 

commutative. A morphism (h, y): n—n' is injective (surjective, bijective) iff both 
h and x are so. 

For a given ^°-homomorphism x- (S, e)^-(S',er) we shall try to find "com-
panion" ^°-homomorphisms h: (P, a)-~(P', a') such that (h, x) is a morphism of n 
into n'. If such an h exists then it can always be expressed in the form h=hp, 

(l) hp(x,m) = (x(x), m+p(x)), (x,m)<LP, 

with the aid of a suitable "parameter" function p : 5—Z. The next theorem relates 
the properties of possible parameter functions to x and the two ./-schemes. 

5.1. T h e o r e m . Let x- (S,e)-*(S',e') be an Sf°-morphism. Then p: S-Z 
determines a mapping hp: P—P' by (1), such that (hp, x) is a morphism of the J-
extension it: (P, a) -*(S, e) determined by (S, e, r, i, k, / ) into the extension n': 
(P\ a')—(S', e') determined by (S\ e', r', i', k', /'), i f f the following conditions are 
satisfied for all x,y£S: 

(HI) r'(x(x)) divides r(x) in JV, 
(H2) 
(H3) k(x)=k'(X(x)) (mod /•'(*(*))), 
(H4) l(xe,y)+p(xy)=p(x)+k(x)p(y)+l'{x(xe),x(y)) (mod r'(x(xy))), 
( H 5 ) i f r(y) = 0=r'(x(y)) and i(y)+p(y) = i'(x(y)), then l(xe, y)-l(x, y) = 

= l'{x(xe), X(y))~l'{l(x), XOO) (mod r'(X(xy))), 
(H6) if r0>)=0 and (r'(X(y))*0 or i(y)+p(y)*i'(x(y))), then l(xe,y) = 

=l(x,y) (mod r'(x(xy))). 

Moreover, (hp, / ) is injective i f f x is so and 

(H7) r(x)=r'(X(x)) for r(x)*0, r'(X(x))=0 or ~ for r(x)=0, 

and (hp, x) is surjective i f f x is so and 

(H8) if r(x)=0 then r'(X(x))=0 and i(x)+p(x)=i'(y(x)). 
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Proo f . Clearly, the formula (1) defines a function hp from P to P ' iff both 
(HI) and (H2) hold. Hence we shall further assume that hp: P—P' is a mapping. 

It is also clear from (1) that the couple (hp, x) is a morphism of n into n ' iff 
hp: P-*P' is an ^-homomorphism, that is 

(2) hp((x, m)(y,«)) = hp(x, m)hp(y, n) for all (x, m), (y, n)dP. 

So (to prove the theorem) we have to prove (2) is equivalent with (H3)—(H6). 
Assume (2). If n>i(y), n+p(y)>i'(y(y)), then (2) becomes 

(3) (x(xy),m+k(x)n+l(xe,y)+p(xy)) = 

= (X(*)XOO> m+p(x)+k'(X(.x)) ()n+p(y))+l'(x(x)e\ z(y))). 

If we compare (3) as it is and (3) with n replaced by «+1 , we get (H3); (H3) and (3) 
imply (H4). If r(y)=0=r'(x(y)) and ¡(j')+/>(>0='"(x(j>)), then (2) becomes, 
for n=i(y), 
(4) (x(xy),m+k(x)n+l{x, y)+p(xy)) = 

= (xtoxOO, m+p(x)+k'(x(x)) (n+p(y)) + l'(x(x), *00)), 

hence by (H3), 

l(x, y)+p(xy) = p(x)+k(x)p(y)+/'(X(x), x(y)) (mod r'(x(xy))). 

Subtracting this equality from (H4) we get the equality of (H5). If r(y)=0, but 
r'(x(y))^0 or ¿(y)+p(y)^i'(x(y)), then for n=i(y), (2) becomes 

(5) {;x{xy), m+k(x)n+l(x, y)+p(xy)) = 

= m+p(x)+k'(x(x))(n+p(y))+r(x(x)e', X(y))), 
hence 

l(x,y)+p(xy) =p(x)+k(x)p(y)+l'(x(x)e',x(y)) (mod r'(X(xy))), 

which together with (H4) yields the equation of (H6). 

To prove (2) from (H3)—(H6), we have to consider four cases: 

(6) (r(y) * 0 or n > i(y)) and (r'(x(y)) * 0 or n+p{y) > i'{x(y))), 

(7) (r(y) = 0 and n = i(y)) and ( r ' ( xW) = 0 and n+p(y) = i'(x(y))), 

(8) (r(y) = 0 and n = i(y)) and (r'(X(y)) * 0 or n+p(y) > i'(xOO)), 

(9) ( r O O ^ O or n > i(y)) and ( r ' ( ^ ) ) = 0 and n+p(y) = i'(xOO)). 

Now, under (6), (2) is equivalent to (3) and the latter follows from (H3) and (H4). 
Under (7), (2) is equivalent to (4), while this follows from (H3), (H4), and (H5). 
Under (8), (2) is equivalent to (5), and this follows from (H3), (H4), and (H6). Case 
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(9) cannot occur since by (HI), r'(%(y))=0 implies r(y)=0, hence n>i(y), 
while by (H2), n+p(y)>i(y) +p(y)^i' (x(y))• 

The rest of the theorem concerning injectiveness and surjectiveness of (hp, x) 
is obvious. 

Let us call two ./-schemes (S, e, r, i, k, I) and (S\ e', r', /', k', 10 Sf°-equivalent 
if they yield equivalent ./-extensions in if°. The above theorem has the following 
straightforward 

5.2. Coro l la ry . Two J-schemes (S,e,r,i,k,l) and {S',e',r',i',k',l') are 
equivalent i f f there exist an y°-isomorphism (S, e)—(£', e') and a function 

p: S-*Z, such that 

(El) r(x) = r'(X(x)), 
(E2) r(x) = 0 => i(x)+p(x) = i'(x(x)), 
(E3) k(x) = k'{x(x)) (mod r(x)), 
(E4) l(xe,y)+p(xy) = p(x) + k(x)p(y) + l'(x(xe), x(y)) (mod r(xy)), 
(E5) r(y) = 0 => l(xe,y)-l(x,y) = l'(x(xe), x(y))~l'(x(x), x(y)) (mod r(xy)). 

Proof . We get (El) and (E2) by replacing (HI) and (H2) by the stronger (H7) 
and (H8), (E3)—(E5) are obvious modifications of (H3)—(H5), and a version of (H6) 
is omitted since its assumption cannot occur here. 

6. Special properties of ./-extensions 

6.1. S ta tement . An J-scheme (S, e, r, i, k, /) determines an J-extension 
n: (P,a)—(S,e) in the category of semigroups with identity i f f 

(Ml) S is a semigroup with identity e, 
(M2) if r{xy)=0 then k{:c)^0 and k(x)r(y)=0 and i(x)+k(x)i(y)+l(x, y) a 

i(xy), 
(M3) r(xy) divides r(jc) in J f , 
(M4) if r(y) oo then k(x)r(y) = 0 (mod r(xy)), 
(M5) k(e) = 1 (mod r(e)), 
(M6) l(e, x) = l{e, e) (mod r(x)), 
(M7) if r(e) = 0, then i(e)= -l(e,e), 
(M8) k(x)k(y) s k(xy) (mod r{xy)), 
(M9) l(x, y)+l(xy, z) = k(x)l(y, z)+l(x, yz) (mod r(xyz)). 

Proof . The condition (Ml) is clearly necessary. If it is satisfied, then (M2)— 
(M4) restates (CI)—(C3) of 3.1 (slightly simplified by (Ml)), (M5), (M6) are exactly 
(IT1), (IT2) of 3.2. The condition (M7) is stronger than (IT3) of 3.2, its necessity fol-
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lows from the fact that the identity (e, m) of P must be (e, i(e)) in the case r(<?)=0. 
Indeed, we have die, m)=a, where a = (e, 1 —lie, e)) by 3.2, whence m= —lie, e), 
thus z'(e)= —lie, e). Now, if (<?, —lie, e)) is not the "endpoint" (e, /(e)), then i'(e)< 
< — l(e, e) and there is an element b=(e, —l(e, e) — l ) in P. But then also b"= 
= (e, —lie,e)—n) is in P for all 1, which is a contradiction with r(e)=0. 

The conditions (M8), (M9) are exactly (i), (ii) of 3.4. We have proved the ne-
cessity of (Ml)—(M9). 

Assume now (Ml)—(M9) fulfilled. Our ./-scheme is then clearly y°-correct 
and the only thing we have to show is that (e, —lie, e)) is the identity of P: 

(e, -lie, e))(x, m) = (x, -lie, e) + k(e)m+l(e, x)) = (x, m) 

by (M5) and (M6), 

ix, m) (e, -lie, e)) = (x, m-k(x)l(e, e)+l(x, e)) = (x, m) 

since l(x, e) =k(x)l(e, e) (mod r(x)) by (M9). 

6.2. R e m a r k . An ¿'"-correct ./-scheme (5", e, r, i, k, I) determines n: (P, a) — 
- ( S , e) with (P, a) finite iff S is finite and 0 < r ( x ) < °° for all x€S. If P has an 
identity, then each a-component °lix of type r(x), xaS , decomposes into cycles of 

length q(x)= of the right inner translation of P by a. The integer 
fc(x)Ar(x) 

kix)qix) kix) 
r(x) divides k(x)q(x), hence pix) = — — = — — is an integer and 

r(x) kix)Arix) 
kix) r(x) 

= 1. If, for some ytS, we have qiy)=qix) 

and xy=y or yx=y, then kix)k(y) =k(y) (mod r(>>)), and using &(x) = 
P{x)rix) Pix)rix) piy)r(y) piy)r(y) 

we get kix)kiy)-kiy)= — — ——-=p(y)r(y)x 
g(x) qix) qiy) qiy) 

X f ^ W z l M ] = o (mod riy)). It follows that piy) f Z i ^ Z ^ l is an L q\x) J L qix) J 
, w s Pix)rix)~lix) . integer, and since piy)Aqiy) = \, is an integer, too. 

q\x) 
pix)rix) — q(x) 

Conversely, if is an integer, then for arbitrary riy), piy) with 
? w 

p(y)Aq(y)=l, and ¿00=——^—— it holds 
i ( * ) 

kix)kiy)-kiy) = Piy)riy) (mod riy)). 
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This property has been used in [3] and [4] for a special kind of constructions of mo-
noids, starting with S a left zero semigroup with an identity 1 adjoined, q£N+ 

and r,p: S — N + (N+ means the positive integers) such that r(x) divides r(l) , 

q divides r(x), qAp(x) = 1, and — - is an integer, for all x£S. These 

constructions amount to those of ./-extensions determined by (S, e, r, i, k, I) with 

e = l , /(x)=0, k(x) = ^ ^ - and l{x,y) =0, for all x .yeS. 
Q 

6.3. S ta tement . An correct J-scheme (S, e, r, i, k, I) determines an J-
extension n: (P, a)-~(S, e) with (P,a) commutative i f f 

(AB1) S is commutative, 
(AB2) l(x, y) = l(y, x) (mod r(xy)), 
(AB3) k(x) = 1 (mod r(x)). 

Proof . If (AB1)—(AB3) hold, then e is an identity in S and the two products 

(1) (x, m)(y, n) = (xy, m+k(x)n+l(x, y)) 

(2) {y, ri)(x, m) = (yx, n+k(y)m + l(y, x)) 

are equal for any (x, m), (y, n)£P. 

Conversely, if (1) and (2) are equal for any (x, m), (y, h)€P, then (AB1) holds, 

(3) m+k(x)n+/(x,y) = n+k(y)m+/(y, x) (mod r(xy)), 

and also, replacing n by n+1, 

(4) m+k(x)n+k(x)+/(x, y) = n + 1 +k(y)m+/(y, x) (mod r(xy)), 
hence subtracting (3) from (4) we get k(x) = 1 (mod r(xy)), for any y 6 S, which is 
equivalent to (AB3). By (3) and (AB3) we get (AB2). 

6.4. S ta tement . Let (S, e, r, i, k, I) bean -correct J-scheme. The semigroup 
(P, a)=J(S, e, r, i, k, I) is right cancellative i f f 

(RC1) 5 is right cancellative, 
(RC2) (r(x) jt 0 ^ r(xy) = r(x)) and (r(x) = 0 =• r(xy) = 0 or «). 

Proof . (RC2) means that right inner translations of P take each a-component 
SUX into another component injectively, (RC1) ensures that distinct «-components 
are taken to distinct a-components. 
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6.5. S ta tement . For an -correct J-scheme (S, e, r, i, k, I), the semigroup 
(P, a) = ̂ (S, e, r, i, k, I) is left cancellative i f f 

(LCI) S is left cancellative, 
(LC2) if some r(y) TÎ 1, then k(x) ^ 0 for all xiS, 
(LC3) if 0 < r(xy) < cc, then k(x)r(y) = k(x)Wr(xy), 
(LC4) if r(y) = 0, then for every n ^ i(y), 

k(x)i(y)+l(x, y) k(x)n+l(xe,y) (mod r(xy)). 

Proof . If P is left cancellative, then so is its quotient S. Under (LCI), P is left 
cancellative iff 

(5) (x, m)(y, nj = (x, m)(y, nj => ( j , «,) = (y, 

Under the assumption that 
(6) r(y) or i(y) *n2, 
(5) is equivalent to 

(7) k(x)(n1—na) = 0 (mod r(xy)) =>• (n1—n2) = 0 (mod r(y)). 

Since the difference nx—n2 ranges over the whole Z, (5) is equivalent to 

(8) k(x)n = 0 (mod r(xy)) => n = 0 (mod r(y)), 
for all neZ. 

We shall prove (8) to be equivalent to the conjunction of (LC2) and (LC3). 
Assume (8). If k(x)=0 for some xeS, then from (8) it follows that r(_y)= 1 

for all y€S, thus (LC2) holds. 
Of course, if r (y )= l for all yiS, the ./-extension is improper, P=S, so we 

further exclude this case from our consideration. If 0<r(xy)< then also 0 < 
<r(y)<°° , since under r(_y)=0 or =» it would be n = 0 (mod r(y)) iff n=0, 
while k(x)n ~ 0 (mod r(xy)) for n=r(xy)^0, a contradiction to (8). By (C3) of 

3.1, /•(*>>) divides k(x)r(y), hence k(x)Vr(xy) divides k(x)r(y). If = 
k(x)Vr(xy) 

r(y) r(xy) 
then r(y) does not divide n= = - , while r{xy) divides 

P k(x)hr(xy) 
k(x)r(xy) 

k(x)n= - , again a contradiction to (8). Thus (8) implies (LC3). 
k(x)Ar(xy) 

Conversely, assume (LC2) and (LC3). If k(x)=0 then by (LC2) we have 
r(y)=1 for every yeS and (P, a) is isomorphic to (S, e), and by (LCI), P is left-
cancellative. Let us therefore assume that kix)^0 for every xzS. If r(xy)=0 
or °° then k(x)n=0 (mod r(xy)) iff «=0, hence we get n= 0 (mod r(y)) trivi-
ally. If 0<r(x>>)<°° then by (LC3), k(x)r(y)= > whence r(xv)= k(x)Ar(xy) 
4 
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k(x) =r(y)(k(x)Ar(xy)). Thus r(xy) divides k{x)n iff r(y) divides ' 
k(x)Ar(xy) 

Since r(;)A x = . , A , „ A , , N . , = 1, r(y) dividing v ' 
k(x)Ar(xy) k(x)Ar(xy) k(x)Ar(xy) k(x)r(xy) 

must divide n. Assuming r(j>)=0 and i(j ' )=n1 or n2, we have that (5) is equi-
valent to n?±i(y)=>(x, m)(y, n) ^(x, m) (y, i(y)), which is equivalent to (LC4). 

Recall that a semigroup P is called right reductive if, for any x, y € P, 

(RR) \jzaP (xz = yz) => x = y, 

i.e., the family of the right inner translations of P separates points. 

6.6. S ta tement . For an -correct J-scheme (S, e, r, i, k, I), the semigroup 
(P, a)=S(S, e, r, i, k, I) is right reductive i f f 

(RR1) (r(x) 0 => r(xe) = r(x)) and (r(x)=0 => r(xe) = 0 or 
(RR2) if x?ty, xe —ye, and k(x)=k(y) (mod r(x)) for x, yeS, then for every 

qaZ there exists ziS such that either 

or 
l(x, z)—l(y, z) yL q (mod r(xz)) and r(z) = 0, 

l(xe, z)—l(ye, z) ^ q (mod r(xz)). 

Proof . Assume P right reductive. If {x, m^ pi(x, m^ then, for some (z,p)eP, 
(x,m^(z,p)^(x,m^(z,p). Hence if m1^m2 (modr(x)), then also m1^m2 

(mod r(xz)), and since r(xz) divides r(xe), m1^m2 (mod r(xe)). The condition 
(RR1) follows. 

Let now X9±y, xe=ye, and k(x) = k(y) (mod r(x)). It is r(x)—r(y), by 
xe—ye and (RR1). For any qiZ, there are (x, m), (y,n)zP with n—m=q. 

Since (x, m) ^(y, n), there exists (z,p)£P such that (x, m)(z,p)^(y, n)(z,p). 
This means that either 

or 
q = n—m ^ l(x, z)-l(y, z) (mod r(xz)) 

q = n—m ^ l(xe, z)—l(ye, z) (mod r(xz)), 

according to whether or not, r(z)=0 and p=i(z). This proves (RR2) necessary. 
Assume now (RR1) and (RR2). Let (x, m)^{y, n). If x=y, then by (RR1), 

(x,m)a?*(y,n)a, where a=(e, l-l(e, e)). If xjty and xe^ye, then again 
(x, m)a pi (y, n) a. Let x^y, xe=ye, and assume that (x, m) (z, p)=(y, n) (z, p) 
for all (z,p)dP. It follows that n—m = (Jc(x)—k(y) )p+i (xe, z)—I {ye, z) (mod r(xz)) 
for all p>i(z), hence k(x)=k(y) (mod r(xz)) for all z€S. Therefore 

n—m = i(x,z)-/(y, z) (mod r(xz)), for r(z) = 0 and p = i'(z), 
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and 
n—m = L(xe, z)—l(ye, z) (mod T(XZ)) otherwise, _ 

a contradiction to (RR2). 

6.7. S t a t emen t . For an Sf°-correct J-scheme (S, e, r, i, k, /), the semigroup 
(P, a)=J(S, e, r, i, k, /) is a group i f f 

(Gl) S is group, 
(G2) r(e)^0. 

Proof . The necessity of the conditions is obvious. Assume next (Gl) and (G2). 
We show that (e, —l(e, e)) is an identity of P in the same way as in the proof of 
6.1. By (Gl) and (C2) of 3.1, r(x)=r(e) for all xeS. The proof will be completed 
by showing that 

( X , M ) - 1 . = ( J C - 1 , — / ( E , e)—k(x~1)m—l(x~1, JC)). 

First, since by (G2) and (C2) we have r(x) there exists an element of this form 
in P. By (AO) and (IT1), k(x)k(x_1)=fc(e) = l(mod r(ej), and 

(JC,m)(x,m)~1 = (e, m—k(x)/(e, e)—k(x)k(x~1)m—k(x)l(x~1, x)+/(x, x'1)) = 

= (e, -k(x)/(e, e)-k(x)l(x~\ x)+l(x, x'1) = (e, -l(e, e)), 

since by (Al) of 3.3, 

l(x,e)=k(x)l(e,e), l(x, x'1) +l(e, x) = k(x)l(x~\ x)+l(x, e), 

and thus by (IT2) of 3.2, 

-!(x,e)-k(x)l(x-1,x)+l(x,x~1) = -l(e,e). 
Finally, 

(x, m)~\x, m) = (e, -l(e, e)-k(x~1)m-l(x~1, x)+k(x~1)m+I(x-1, x)) = 

= (e,-l(e,e)). 

7. Transextension in monoids factorize through ^-extensions 

The aim of this concluding section is to show that every transextension in the 
category Ji° of pointed semigroups with identity factorizes through some ./-exten-
sion and that there is a biggest one among such ./-extensions. Thus ./-extensions 
form, in this category, an important intermediary step in the constructions of trans-
extensions, to be followed by an extension of a different kind using the decomposition 
of connected components of a translation into levels. 

4* 
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Unfortunately, we cannot do the same in the assumption of the presence of 
an identity in T cannot be relaxed as is shown by the example following the statement. 

7.1. Statement. Let T be a semigroup with identity 1. If for some aiT, the 
a-connectedness 

x ~ y o 3m,riaJf{ffx = cTy) 

is a congruence on T, then so is its refinement 

x ^ yo 3maJT(<fx = d"y), 
and the quotient a/%) is the biggest J-extension of (T/~,a/~) extendable 
to T. 

Proof. Let ~ be a congruence on T, let xtT. From 1 ~ a we get x~xa, 
hence for some k=k(x)^0, we have either ctx^xa or x^cfxa. We next show 
that if ctx^xa and x~y, then also cfy ^ya. Indeed, let us have, say, apakx= 
f=.apxa and amx-a"y. Then apanya=apamxa=amapxa=amapakx=apakamx = 
—apc^(fy, hence cty-^ya. Similarly we show that if x^cfxa, then also y^akya 
for any y~x. For, if apx=a"a*xa and amx=any, then apcfy—apamx=amapx= 
=(Fapdtxa=a?cit(fya=ap<fdiya, hence y % akya. 

The equivalence as well as is clearly a right congruence. We prove % 
to be a left congruence as follows. Take some ztT and assume first akz%za, for 
some fcsO. Then we have apkz % za" for all p g 0. If x^y, say apx=a"y, then 
apkzx%zapx=zapy%apkzy, hence zx^zy. Assume now z^ctza, for some &S0. 
Then z^apkza" for all 0. Again, if x^y, say apx=apy, then zx^apkzapx= 
=apkzapy^zy. 

The last assertion of the statement follows from the fact that a; is obviously 
the least congruence o n T making a/% left cancellable in J / « . 

7.2., Example. Consider the semigroup S 

a b c d f g h k m n p q 

a b a d c g f k m k P n q 
b a b c d f g m k m n P q 
c g f q q q q n n P q q q 
d f g q q q q P P n q q q 
f g f q q q q P n P q q q 
8 f g q q q q n p n q q q 
h <1 q q q q q q q q q q q 
k 1 q q q q q q q. q q q q 
m q q q q q q q q q. q q q 
n q q q q q q q q q q q q 
P q- q 4 q q q q q q q 9 q 
q q q q q q q q q q q q q 
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An easy computation gives that a-connectedness is a congruence on S. On the other 
hand, x^y iff either x—y or {x, y}={h, m). Further c• h=n, c-m=p and 
n Thus « is not a congruence on S. 
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Idempotent distributive semirings. I 

F. PASTIJN and A. ROMANOWSKA 

0. Introduction 

(0.1) 

(0.2) 

A semiring (S, + , •) is an algebra of type (2,2) where 

(S, + ) is a semigroup 

(S, •) is a semigroup 

(0.3) (a+b)c = ac+bc and a(b+c) = ab+ac for all a, b, ciS. 

We shall always write ab instead of a • b, and we suppose that • links stronger than + ; 
with this assumption we can omit brackets. 

The semiring (S, + , •) is idempotent if 

i.e. the reducts (S, + ) and (S, •) are bands. We say that the semiring (S, + , •) is 
distributive if 

(0.5) ab+c = (a+c)(b+c) and a+bc = (a+b)(a+c) for all a, b, ciS. 

The purpose of this paper is to clarify the structure of idempotent distributive semi-r 
rings which henceforth will be called ID-semirings. 

We refer the reader to [6], [7] for a construction and a classification of bands. We 
shall assume that the reader is acquainted with the definition of the Plonka sum of 
a semilattice ordered system of algebras [8]. 

We shall now list diverse examples which supply the motivation for our investi-
gations. 

Resu l t 1 ([1], Corollary 8):Let (/, •)and(A, •) be any semigroups. On lxA=S 
we define an addition and a multiplication in the following way. For all (i, A), (J, fi)€S, 
let 

(0.4) a+a = a = aa for all azS, 

(0.6) (¿, A) + 0', H) = 0, V), and (i, A)(j, n) = (ij, Xp). 

Received October 21,1980. 
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Then (5, -f , •) is a semiring for which the additive reduct is a rectangular band; 
conversely, every semiring for which the additive reduct is a rectangular band is iso-
morphic to a semiring constructed in this fashion. 

We give a direct proof for the sake of completeness. 

Proof . Let 5 be a semiring for which the additive reduct is a rectangular band, 
and let us introduce the relations ^ and if on S in the following way: 

adtb if and only if a+b=b and b+a=a, 

a&b if and only if a-\-b=a and b+a=b. 

It should be evident that (ft and i f are equivalence relations and that i f 001 is the 
equality. Let S/&=I and S/@=A, and for any aiS, let / a e 5 / i f = / denote 
the if-class of a, and XaaS\0t=A the S?-class containing a. By the foregoing the 
mapping <p: S—IXA, a—(i„, Xa) is an injective mapping. Let (i, X) be any element 
of IX A. Then i—ia and X=Xb for some a,beS; since (S, + ) is a rectangular 
band it follows that ia=ib+a and Xb=Xb+a. We conclude that 

(', = Oa, ¿b) = 0>+a, ¿b+J = (b + a)tp. 

Thus the injection (p is in fact a bijection onto IXA. 
From (0.3) it follows that i f and Si are congruence relations. From the above 

we then have S^S/&XSI@=IXA by <p. 
We consider the semiring 7=S / i f . Let ia, ib be any elements of I. Then 

1 a~)~lb = la+b = lb 

since (a+b)+b=a+b and b+(a+b)=b. Hence the additive reduct of I is a right-
zero semigroup. Analogously, the additive reduct of A is a left-zero semigroup. 
We conclude that every semiring for which the additive reduct is a rectangular band 
may be constructed as stated above. 

The direct part is obvious. 

Coro l l a ry 1. Let (S, +, •) be a semiring for which the additive reduct is a rec-
tangular band. Then (S, +, •) is distributive if and only if (S, +, •) is idempotent. 

Obviously the semiring (S, + , • ) = ( I X A , + , •) of Result 1 is an ID-semiring 
if and only if the semigroups (/, •) and (A, •) are bands. 

We shall say that an ID-semiring is a rectangular [normal, left-zero, ...] semiring 
if and only if both the reducts are rectangular [normal, left-zero, ...] bands. A nest 
(S, +, •) is an algebra of type (2,2) which satisfies 

(0.7) a+b = b 
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and 
(0.8) ab = a 

for all a,b£S[2] [18]. It is easy to see that a nest is necessarily an ID-semiring where 
the additive reduct is a right-zero band and the multiplicative reduct a left-zero band. 
Using the notations of Result 1 we can state that any nest is of the form (Ix A, +, •) 
where | / | = 1 and where (A, •) is a left-zero band. A dual nest (S, + , •) is an ID-
semiring where 
(0.9) a+b = a 
and 
(0.10) ab = b 

holds for all a,beS. With the notations of Result 1 we have that a dual nest is of 
the form (IXA, + , •) where |/1| = 1 and where (I, •) is a right-zero band. A left-
zero semiring is of the form (IX A, + , •) where \A\ = l and where (I, •) is a left-
zero band, whereas a right-zero semiring is of the form (IX A, + , •) where | / | = 1 
and where (A, •) is a right-zero band. 

C o r o l l a r y 2. A semiring is rectangular if and only if it is the direct product of 
a left-zero semiring, a right-zero semiring, a nest and a dual nest. 

Proof . Let (S, + , •) be a rectangular semiring. Since the additive reduct is a 
rectangular band, (S, + , -)=(IxA, + , •) can be constructed as in Result 1, 
where (I, •) and (A, •) are rectangular bands. It follows that (I, •) is of the form 
(hXh, •)> where 

k)(ji,j2) = (h,jz) 

for all (t\, z2), (ji, A) € A X /2 , whereas (A, •) is of the form (A^XA2, •)> where 

(¿ i , A2)0i1( fl2) = ( l i , fi2)-

Therefore the rectangular semiring (S, + , •) must be isomorphic to (IyXhXAyX 
XA2, + , •)» where 

O'i, h, h , ¿2) + 0 i J 2 . Hi, H2) = 0i> h, Hi, Hi), 

O'i. h, Ai> A2)0i>72J Hi, HZ) — (h,ji, Hi) 

for all hJiS.Ii, ¡2, € /2, Ai,/ZjS/li.'and A2, ¿i26/l2. Hence (S, + , •) is isomorphic 
to the direct product of the left-zero semiring /x , the right-zero semiring A2, the nest 
A1 and the dual nest /2 . Conversely, any such direct product must yield a rectangulan 
semiring. 

Let us consider the variety N of nests, ZW of dual nests, LZ of left-zero semirings 
and RZ of right-zero semirings. Since all the equivalence relations of algebras in these 
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classes are congruence relations, all subdirectly irreducible algebras contain exactly 
two elements. Hence the varieties LZ, RZ, N and DN are atoms in the lattice of varie-
ties of rectangular semirings. It is easy to see that an arbitrary algebra in a join of 
some of the varieties N, DN, LZ and RZ is a direct product of algebras in the compo-
nent varieties. This follows from [11] Theorem 1 (the suitable polynomials are just 
xy or x+y). Hence any subdirectly irreducible algebra in a join of some of the varie-
ties N, DN LZ and RZ belongs to one of the component varieties. These remarks 
imply the following description of the lattice of varieties of rectangular semirings. 

Coro l l a ry 3. There are exactly 16 varieties of rectangular semirings. They form 
a Boolean lattice. 

The variety LZV RZ\J NV DN is equal to the variety of rectangular semirings. 
Each one of the "join" subvarieties of the variety of rectangular semirings is defined 
by the identities for rectangular semirings and by one additional identity: 

LZMRZ 
LZMN 
LZVDN 
RZyN 
RZVDN 
NVDN x+y - yx 

xy+x — x 

x+yx = x 

x+xy — X 

yx+x = X 

x+y = xy 
xy = X 

x+y = X 

x+y = y 
xy = y 

LZVRZVN 
LZ\f RZVDN 
LZ\JN\JDN 
RZVNyDN 

LZvRZvNvDN 

T 



Idempotent distributive semirings. I 243 

Proof . The first part of the corollary is clear from the previous remarks. The 
second part can be easily proved using standard methods. Let us show for example 
that the variety LZV RZ is defined by the identities for rectangular semirings and 
the identity x+y=xy. If the ID-semiring (5, + , •) belongs to the variety Z.ZV RZ, 
it is a product of a left-zero semiring and a right-zero semiring. So it is easy to see 
that the identity x+y=xy is satified. Conversely, if a rectangular semiring (S, + , •) 
satisfies this identity, then by Corollary 2, we conclude that it is in fact isomorphic to 
the direct product of a left-zero semiring and a right-zero semiring. 

Let us again consider the semiring (S, + , -) = (lxA, + , •) of Result 1. Then 
(5, + ) is a left-zero [right-zero] band if and only if |/1| = 1 [|/ | = 1], and if this is 
the case then (5, + , •) may be identified with (/, + , •) [(A, + , •)]• It follows 
that any semigroup may be represented as the multiplicative reduct of a semiring. 
In particular, any band may be represented as the multiplicative reduct of an ID-
semiring. This fact has been observed by many authors (see e.g. [20] Example 2.3.4). 

A semiring (S, + , •) is called a mono-semiring if 

(0.11) a+b = ab 

holds for all a,bzS, that is, if the two operations -I- and • coincide. If (S, +, •) 
is an idempotent semiring which is also a mono-semiring, then (S, 4-) and (S, •) 
must be normal bands, and (S, + , •) needs to be distributive. Conversely, any nor-
mal band is the additive (or multiplicative) reduct of an ID-mono-semiring ([20], 
Theorem 4.4.2). Left-zero semirings and right-zero semirings need to be mono-semi-
rings. A rectangular mono-semiring is the direct product of a left-zero semiring and 
a right-zero semiring. An ID-mono-semiring is the Plonka sum (in the sense of [8]) 
of a semilattice ordered system of rectangular mono-semirings [19]. 

An idempotent semiring (S, + , •) where the reducts (S, + ) and (S, •) a.re semi-
lattices has been called a --distributive bisemilattice in [4][12][13][14], If moreover 
(S, + , •) is distributive, then (5, + , •) is called a distributive bisemilattice [15] 
(distributive quasilattices in [9]). Here the distributive lattices form the main example. 
Another particular case consists of the mono-semirings where the two reducts are 
semilattices: they will be called mono-bisemilattices. We remark that mono-bisemi-
lattices could as well be identified with semilattices. A distributive bisemilattice is the 
Plonka sum of a semilattice ordered system of distributive lattices [9]. 
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1. Normal semirings 

In this section we investigate the structure of normal semirings, i.e. semirings 
satisfying the identities 
(1.1) xyzw = xzyw, 

(1.2) x+y+z+w = x+z+y+w. 

We shall see later (Theorem 2.3) that any ID-semiring can "in principle" be construct-
ed from normal semirings. 

First, let (5, + , •) be any ID-semiring. On S we introduce the equivalence 
+ + 

relations i f , M, i f , !% which are given by 

+ 

(1.3) a£?b if and only if a+b — a and b+a = b 

+ 

(1.4) aStb if and only if a+b = b and b+a = a 

(1.5) akb if and only if ab = a and ba = b 

(1.6) a&b if and only if ab = b and ba = a. 
Obviously !%, £ o < k = 0 l o £ = g i and <£, M, & o 0 t = 0 t o & = ® are the usual 
relations of Green for the bands (S, + ) and (S1, •) respectively [7]. It is easy to see 
that i f and 0t are congruence relations on the reduct (S, + ) [1]. Hence 9> is a con-
gruence relation on the reduct (S, +). On the other hand 2> is the least congruence 
on (S, •) for which (S/$i, •) is a semilattice. Thus, Qi is a congruence relation on 
the ID-semiring (S, +, •) and it is in fact the least congruence on the semiring 
(S, +, •) for which the quotient has a multiplicative reduct which is a semilattice. 

+ By interchanging the role of + and • we can state a similar result for Q}. Consequently 
+ 

By 2 is the least congruence on the ID-semiring (5, + , •) for which the quotient 
is a distributive bisemilattice. 

T h e o r e m 1. Everynormal semiring(S, +, •) isasubdirectproduct of (i) a nor-
mal semiring Sl which has a left normal additive reduct and a right normal multi-
plicative reduct, (ii) a left normal semiring S2, (iii) a normal semiring S3 which has a 
right normal additive reduct and a left normal multiplicative reduct and (iv) a right nor-
mal semiring S4, where S, Sx, S2, S3 and S4 have the same greatest bisemilattice ho-
momorphic image. 
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+ + 
Proof . Since (S, + ) is a normal band, 01 and J5f are congruences on (5, + ) 

+• + + + 
[6] [19]. Therefore 01 and J5f are congruences on S, and since 0tC\Z£ is the equality, 

+ 
we have that S is a subdirect product of the normal semirings V=S/@ and 

W=S/J?. Since 0t<gg>\l® and it follows that S, V and W have the 
+ + + . . 

same greatest bisemilattice homomorphic image. Let 0ly, Qsv, <£v, 3tv, 9)v 
+ + + . . . 

and 0lw, Q>w, 0tw, 2W be the corresponding relations of Green for the 
+ + + 

normal semirings V and W respectively. Since ££'v=3>y, and 01 v is trivial, we know 
that the additive reduct of V is a left normal band. Dually, the additive reduct of 
W is a right normal band. Again, ¿V a n d are congruences on V. Putting 
Vjiy and S2=V/$v, we have that V is a subdirect product of and S2) where 
V, S1 and S2 have the same greatest bisemilattice homomorphic image, and where 
Sx and iS*2 are as stated in the theorem. On the other hand, W is a subdirect product 
of S3=W/®w and Si = W/&w, where W, S3 and 54 have the same greatest bise-
milattice homomorphic image, and where S3 and 54 are as stated in the theorem. 

T h e o r e m 2. An ID-semiring (S, +, •) is left [right] normal if and only if S 
divides the direct product of (i) a left-zero [right-zero\ semiring 7\, (ii) the greatest 
bisemilattice homomorphic image T2 of S, (iii) a normal semiring T3 for which the 
additive reduct is a left-zero [right-zero] band and the multiplicative reduct a semilatti-
ce, and (iv) a normal semiring Tt for which the additive reduct is a semilattice and the 
multiplicative reduct a left-zero [right-zero] band. 

Proof . Let us suppose that S is a left normal semiring. 
1. Let (V, + , •) be the semiring where V— S, such that the additive reduct 

(V, + ) coincides with the additive reduct (S, +), and such that for all a, b€S=V, 
ab—a in (V, •). Clearly V is a normal semiring for which the additive reduct is 
a left normal band and the multiplicative reduct a left-zero band. 

¿=3) is the least congruence relation on S for which the multiplicative reduct 
of the quotient is a semilattice. Hence W=S/££ is a normal semiring for which 
the additive reduct is a left normal band and the multiplicative reduct a semilattice, 
and the greatest bisemilattice homomorphic image of W is exactly the same as the 
greatest bisemilattice homomorphic image of S. For every x€S, let Lx denote the 
¿-class containing x. From [6][19] it follows that for any a, x€S, we have L x ^ L a 

in (W, •), that is Lx=LxLa=LaLx, if and only if x = x a in (S, •) or, if and only 
if xSPax. In this case ax is the only element of Lx which commutes with a. 

Let us consider the semiring VxW, and the subset R of VY.W which is given 
by R= {(a, Lx)\Lx^La in S/&}. Let (a, Lx) and (b, Ly) be any elements of R. 
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Since LxLy^LxsLa, we have (a, Lx)(b, Ly)=(a, LxLy)—(a, Lxy)zR. From xa=x 
and yb—y, we have (x+y)(a+y)=xa+y=x+y and (a+y)(a+b)=a+yb—a+y, 
thus Lx+y^La+y^La+b, and so (a, Lx) + (b, Ly) = (a+b, Lx+Ly) = (a+b, Lx+y)aR. 
We conclude that R is a subsemiring of VxWi 

We now introduce the mapping <p: R—S, (a, Lx)—ax. This mapping is well-
defined, since ax is the unique element of Lx which commutes with a. Further, cp 
is surjective, since (x, Lx)eR for all xiS, and (x, Lx)q>=x. Again, let (a, Lx) 
and (b, Ly) be any elements of R. Since axiLx and byeLy, we have ax+by a 

=Lx+y. Further, ax+by—a(ax)+by—(a+by)(ax+by)— (a+b(by)) • 
• (ax+by)=(a+b)(a+by)(ax+by) from which it follows that ax+by is the. unique 

element of Lx+y which commutes with a+b. Thus (a+b, Lx+y)(p=ax+by, and so 
(a, Lx)cp+(b, Ly)q>=ax+by=(a+b, Lx+y)(p = ((a, Lx)+(b, Ly))(p. Since yb =y, we 
have by the left normality of (S, •) that (a, Lx)q>(b, Ly)q>=axby-axyb=axy= 
=(a, Lxy)(p = ((a, Lx)(b, Ly))(p. We conclude that <p is a homomorphism of R onto S. 
Hence, S divides the direct product of V and W, where the greatest bisemilattice 
homomorphic image of V is trivial, and where S and W have the same greatest bise-
milattice homomorphic image. 

2. By interchanging the role of + and •, and using the same method as in 1, 
we can now show that V divides the direct product of a left-zero semiring T± and a 
normal semiring T4 for which the additive reduct is a semilattice and the multiplica-
tive reduct a left-zero band. Here 7\ is the left-zero semiring with carrier S=V, 
and T4 is the normal semiring for which the additive reduct is the semilattice + + 
(Yl&v, , + ) and the multiplicative reduct the left-zero band on the set 

+ + 
F/JS%=S)S£. Similarly, W divides the direct product of a normal semiring T3 for 
which the additive reduct is a left-zero band and the multiplicative reduct a semilattice, 
and a normal semiring T2 which is actually a distributive bisemilattice. Here the addi-
tive reduct of T3 is the left-zero band on the set S/J£, whereas the multiplicative re-

+ 
duct of T3 coincides with the semilattice (S/SC, •); on the other hand Tz=QVj£?w)= + . + 
=s SI(Z£\l!£), where Sj(3?\Ji£) is the greatest bisemilattice homomorphic image of S. 
We conclude that S divides the direct product of the semirings Ts and Tx. 

3. The semirings T^,T2,T3, T4 mentioned in the theorem are all left normal 
semirings. Therefore every semiring which divides their direct product must also be 
left normal. 

In a similar fashion we can prove the following theorem. 

Theorem 3. An ID-semiring (S, +, •) has a right [left] normal additive reduct 
and a left [right] normal multiplicative reduct if and only if S divides the direct product 
of (i) a nest [dual nest] 7\, (ii) the greatest bisemilattice homomorphic image T2 of 
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S, (iii) a normal semiring T3 for which the additive reduct is a right-zero [ileft-zero] 
band and the multiplicative reduct a semilattice, and (iv) a normal semiring T4 for 
which the additive reduct is a semilattice and the multiplicative reduct a left-zero [right-
zero] band. 

By Result 0.1, Corollary 0.2, Theorems 1.1, 1.2 and 1.3, we can now conclude 
to the following division theorem for normal semirings in general. 

Theorem 4. An ID-semiring (S, +, •) isnormal if and only if S divides the direct 
product of (i) a rectangular semiring 7\, (ii) the greatest bisemilattice homomorphic 
image T2of S, (iii) a normal semiring T3for which the additive reduct is a rectangular 
band and the multiplicative reduct a semilattice, and (iv) a normal semiring T4for which 
the additive reduct is a semilattice and the multiplicative reduct a rectangular band. 

It should be remarked that the components TX,T2, T3 and can be constructed 
in terms of sets, semilattices and distributive lattices (Result 0.1, Corollary 0.2, 
[9])-

Lemma 5. The greatest bisemilattice homomorphic image of a normal semiring 
(S, +, •) is a distributive lattice if and only if S satisfies the identity 

(1.7) = x. 

Proof . A distributive bisemilattice which satisfies (1.7) must be a distributive 
lattice [9]. Therefore the greatest bisemilattice homomorphic image of a normal se-
miring satisfying (1.7) must be a distributive lattice. Let us conversely suppose that 
the greatest bisemilattice homomorphic image of the normal semiring (S, +, •) 
is a distributive lattice. By the foregoing theorem we know that 5 divides the direct 
product of 7i, r 2 , T3 and r 4 , where 7\, T3 and Tt are as stated in Theorem 4, and 
where T2 is a distributive lattice. One easily checks that 7\, T2, T3 and JT4 satisfy 
(1.7). Thus S satisfies (1.7). 

Theorem 6. An ID-semiring (S, +, •) is a normal semiring if and only if S is 
the Plonka sum of a semilattice ordered system of normal semirings that satisfy the 
generalized absorption law (1.7). 

Proof . Let E be the set of all equations which hold for all normal semirings for 
which the greatest bisemilattice homomorphic image is a distributive lattice. Let 
R(E) denote the set of equations which are consequences of E and which are regular. 
Let KE and KR(E} denote the equational classes defined by E and R(E), respectively. 
Since (1.7) belongs to E we have from Theorem 1 of [10] that KR(E} consists of those 
algebras which are the Plonka sum of a semilattice ordered system of algebras 
which belong to KE. Evidently the algebras which belong to KE are exactly the normal 
semirings satisfying (1.7), and since the equations (0.1), (0.2), (0.3), (0.4), (0.5), 
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(1.1) and (1.2) are all regular, it is obvious that KRiE) consists of normal semirings. 
The normal semirings 7\, T3 and which appear in Theorem 4 all belong to KE 

since their greatest bisemilattice homomorphic image is trivial. It follows from [9] 
that distributive bisemilattices belong to KR(E). Thus the normal semirings T1 ; T2, 
T3 and r 4 of Theorem 4 all belong to KR(E). Since KR(E) is an equational class it 
follows from Theorem 4 that every normal semiring belongs to KR(E). 

Remark . If we restrict ourselves to mono-semirings, then Theorem 6 is equi-
valent with the result of [19] which states that every normal band is the Plonka sum 
of a semilattice ordered system of rectangular bands. Our Theorem 6 also generalizes 
Plonka's decomposition of distributive bisemilattices [9]; this latter generalization 
goes in another direction than Padmanabhan's generalization of Plonka's result: 
we keep distributivity but abandon commutativity, Padmanabhan keeps commuta-
tivity but abandons distributivity [5]. 

It will be manifest for the reader that we actually used [19] and [9] in our proofs 
towards Theorem 6. We could have given a direct proof by showing that for every 
normal semiring (S, + , •) 

/ : S 2 - S , (x, > ' ) - * ( * + j + x ) x 

is a partition function of (5, + , •) (in the sense of [8]). Our procedure via Result 
0.1, Corollary 0.2, Theorems 1 to 4, has the advantage that it gives insight in part of 
the lattice of subvarieties of the variety of normal semirings. 

In the next section we generalize Theorem 6 for arbitrary ID-semirings. 

2. A decomposition of ID-semirings 

+ 
Let (S, + , •) be any ID-semiring. Then Sj@> and S/2i are ID-semirings where 

+ 
one of the reducts is a semilattice. Our first result here states that S/3> and S/S> must 
be normal semirings. 

Theorem 1. Let (S, - f , •) be an ID-semiring where (S, +) is a semilattice. 
Then (S, •) is a normal band. 

Proof . Clearly 3i is the least congruence on (S, + , •) for which the quotient is 
a distributive bisemilattice. For any a a S we denote the ©-class containing a by a. 
The distributive bisemilattice • T= is the Plonka sum of a semilattice ordered 
system of distributive lattices 

[9]. 
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Let a and b any elements of S, such that ab=ba=b. Clearly aB—Ba=B in 
the distributive bisemilattice T, and so a£Ta,BzTp for some a, with a. 
We distinguish two cases: L ct=P, and 2. a>/?. 

1. If tx.—ji, then a and E belong to the same distributive lattice Ta. Let x b e 
any element of B which satisfies xa—ax=x. Then x+a—a+xia+B=a. One 
readily checks that. also bx+b€b, and (bx+b)a=a(bx+b)=bx+b, and so 
bx+b+a=a. Consequently b=ba=b(bx+b+a)=bx+b and dually b=xb+b. 
If we interchange the role of x and b we also have x=xb+x=bx+x. Further, 
xb+bx = (xb+bx)2=(xbf+(xb) (bx)+(bx) (xb)+(bxf = xb+x+b+bx = (b+xf = 
=b+x and so b=b+xb+bx=xb+bx—xb+bx+x=x. We conclude that b is 
the only element of its ^-class which is a solution of xa—ax=x. . . 

2. Let us now suppose that a>/?. From ab=b it follows that (aq>xp)B=aB=B, 
where a(pa^, BiTp. Since Tf is a distributive lattice, we also have a+B=a(px>p+B=. 

and consequently a+bia<pxp. One can see that (a+b)a=a(a+b)—a+b. 
Let y be any element of a(pXtP which satisfies ya=ay—y. Clearly y+a=a+yeaq>xp, 
and since a(px>p forms a multiplicative rectangular band, we have a+y=y+a= 
=(a+y)y(a+y)=(a+y)(ya+y2)=(a+y)y=ay+y2=y. Similarly y(a+b), (a+b)y£ 
iaq>Xtp and a+y(a+b)=y(a+b), a+(a+b)y-(a+b)y: 

Therefore, 

a+b '= (a+b)y(<z+b) = (a+b)y((a+b) + a ) = (a+b)y(a+b)+(a+b)y = 

= (a+b)+(a+b)y = (a+b)(a+y)= (a+b)y = (a+(a+b))y = 

= y+(a+b)y = y(a+b)y+(a+b)y = (y+a)(a+b)y = y(a+b)y = y, 

and we conclude that a+b is the only element of the -class acpXip. which is a solu-
tion of ya=ay=y. Let x be any element of B which satisfies xa=ax=x. Again 
a+x€aq>Xtp and a(a+x)=(a+x)a—a+x, and so by the foregoing we have a+x= 
=a+b. Furthermore b=(a+b)b=b(a+b), x=(a+x)x = (a+b)x=x(a+x) = 
—x(a+b), where x,btB, and where B and a+b belong to the same distributive 
lattice Tfi. By 1. we conclude that b—x. Therefore, b is the only element of its ^-class 
which is a solution of ax=xa=x. 

From 1. and 2. we conclude that aB—B in S\3) implies; that with every a€a 
there corresponds a unique b 65 which is a solution of ax=xa=x. Therefore 
(S, •) is a normal band [6]. . ;. • r 

Theo rem 2. For an ID-semiring (S, +, •) the following are equivalent. 
. + . 

(l) is the equality, 
(ii) (S, + , •) satisfies 

(2.1) xy+yx = yx+xy, 

5 
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(iii) (5, + , •) is a subdirect product of ID-semirings for which one of the reducts 
is a semilattice, 

(iv) (S, + , •) divides the direct product of (1) a distributive bisemilattice, (2) 
a normal semiring for which the additive reduct is a rectangular band and the multi-
plicative reduct a semilattice, and (3) a normal semiring for which the additive reduct 
is a semilattice and the multiplicative reduct a rectangular band. 

Proof . Let (S, + , •) be an ID-semiring which satisfies (i). Then (S, + , •) 
+ 

is a subdirect product of S/S) and S/©, where the multiplicative reduct of S/2D is 
+ 

a semilattice, and the additive reduct of S/© is a semilattice. Thus (i) implies (iii). 
It follows from Theorems 1.1 to 1.4 that (iii) implies (iv). Let us now suppose that 
(S, + , •) satisfies (iv). Clearly the normal semirings listed in (iv) all satisfy (2.1), 
and so (5, + , •) satisfies (2.1): consequently (iv) implies (ii). Let us suppose that 

+ 
(S, + , •) satisfies (2.1). We know that the © fl ©-classes are rectangular. On the + 
other hand, the ©fl©-classes form subalgebras which satisfy (2.1). It is an easy 
matter to check that a left-zero semiring, a right-zero semiring, a nest or a dual nest 
can only satisfy (2.1) if they are trivial. From Corollary 0.2 we conclude that the + 
©fl©-classes of (S, + , •) must be trivial. Thus (ii) implies (i). 

Let K be a fixed class of algebras of finite type and Kx, K2 subclasses of K. 
The product o K2 is the class of all algebras A from K on each of which one can 
find a congruence 9 such that A/9eK2 and such that all 0-classes form subalgebras 
which belong to K t [3]. 

Theorem 3. The variety of ID-semirings is the product of the variety of rectan-
gular semirings and the variety of ID-semirings which satisfy the equivalent conditions 
of Theorem 2. 

•. + 
Proof . The canonical homomorphism 9: S—S/@XS/@ induces the con-

+ . + 
gruence relation © f l © on S. Clearly satisfies the equivalent condi-

+ 
tions (i) to (iv) of Theorem 2, and the (©D©)-classes form rectangular semirings. 

Remark that we can construct rectangular semirings and the semirings which 
appear in (iv) of Theorem 2 in terms of sets, semilattices and distributive lattices by 
our results of Section 0. We now give a decomposition for arbitrary ID-semirings; 
we use Theorem 1.6, and we shall generalize it. 

Lemma 4. The greatest bisemilattice homomorphic image of an ID-semiring 
(5, + , •) is a distributive lattice if and only if S satisfies the generalized absorption 
law (1.7). 

Proof . It should be clear that the greatest bisemilattice homomorphic image 
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of an ID-semiring which satisfies (1.7) must be a distributive lattice. Let us now sup-
pose that the greatest bisemilattice homomorphic image of the ID-semiring ( £ , + , • ) 

. + + . + • • + . . + 
is a distributive lattice S/9V&. Since © n © Q © V ^ , we have that ©V©,/©D© 

+ 
is the least congruence on S/©fI© for which the quotient is a bisemilattice, and' 

(S/© fl fl ©) = is a distributive lattice. By Theorem 1 and 
+ 

Theorem 3 we know that S/©r1© is a normal semiring, and so by Lemma 1.5 we 
+ 

may conclude that the normal semiring .£/©0© satisfies (1.7). Let a and b be any 

elements of S. We denote the ©fl©-class containing a and b by a and E respectively. 
+ 

Then a(a+b+a)a£a(a+E+a)a=a since 5 / © f l © satisfies (1.7). Then a, 
a(a+b+a)a€a, and since the multiplicative reduct of a is rectangular we have 
a(a+b+a)a=a. Thus (S, + , •) satisfies (1.7). 

Theorem 5. Every ID-semiring is the Plonka sum of a semilaitice ordered 
system of ID-semirings which satisfy the generalized absorption law (1.7). 

Proof . Let (5, + , •) be any ID-semiring, and let us consider the normal semi-
+ _ _ 1 + 

ring 5 / © f l © = S . For any a£S, a will denote the ©fl©-class containing a. It 
follows from Theorem 1.6 that S is the Plonka sum of a semilattice ordered system of 
normal semirings satisfying (1.7) 

(2-2) (Y,(Sx)xir,((pXtfi)0Sa.Xtfi iY)-

For any a 6 Y, let Sa={cr|aeSa}. 
Let a€5 a , and let in Y. Let x be any element ota<patfi, aind consider 

b=axa. Then axaeaxa=a<pa p, and so b is an element of a(p„tP which satisfies 
ab=ba=b. Then a+bia+E=d(pa>e, and so a+b=Ca+b)b(a-\-b)=ia+b)(ba+b2)= 
=(a+b)b=ab+b2=b, and similarly b+a=b. By symmetry we may conclude 
that an element b of d(pXifi is a solution of ay=ya=y if and only if b is a solution 
of a+y—y+a=y. Let b and b' be any elements of a<pXtf such that ab=ba=b 
and ab'=b'a—b'. Since a<px,p forms a rectangular semiring, we have from the 
foregoing 

b = (b+b')+b = (b+b')+aba = (b+b'+a)(b+b'+b)(b+b'+d) = 

= (b+b')b(b+b0 = b+b' = (b+b')b'(b+b') = 

= (a+b+b'W+b+b'Xa+b+b') = ab'a+(b+b') = b'+b+b' = b'. 

Hence a+y=y+a—y has a unique solution in aq>Xtfi, and this solution coincides 
with the unique solution of ay=ya=y in a(pXtfi. We define the mapping 
Sx-*Sp by the requirement that for every a€Sa, a^/Xifi is the imique solution in 

5« 
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a<pXtP of the above considered equations. It follows from our considerations that 
ipXtP is well-defined. 

Let u$ consider the system 

(2-3) , . ( Y , ( S . \ s r , <}!>,. 

It should be obvious that for every a 6 Y, Sa and Sa have the same greatest bisemi-. 
lattice homomorphic image which is a distributive lattice. Therefore Sx is an ID-
semiring which satisfies (1.7) for all aeY. Evidently SaC\Sp=0 if a ¿¿ft since 
S . n 3 , = 0 in'that case. 

.. Let <z, P€Y, with fi^a, and let us suppose that a, a'eSa. Then b=aijja:p, 
b'=a'4ix-p£Sp, and bb' €EE'=dq>XtPa'(paP=aa'(p!liP. Further, 

. ' bb' = (b+aW+if) = bb'+ba'+ab'+aa' 

implies that bb'+aa'=bb', and similarly aa'+bb'=bb'. Hence bb'={acT)\liatP, 
and so, (aaO^, a - ( # « , ¡¡) («'•/'a, p) • Analogously (a+a,)lAcr, „ = ? + a V«, p • We 
conclude that. (il/a?p)psa.,a,pzr a family of homomorphisms. It should be obvious 
that for every a€T, ij/a,x is the identity mapping on Sa. Further, let y^fi^a in Y, 
and let a€Sx. Let us put ai//XtP=b and b\pPty~c. Then bed(pxP, and c$.E<pPy= 
==a(pot^(pPy=d(pxy. Further ab—ba=b and bc=cb=c imply ac=ca=c, and 
so c=a\J/x y: Thus il/xP\]/Pty=i]/xy. We conclude that (2.3) is a semilattice ordered 
system of ID-semirings which satisfy the generalized absorption law (1.7). 

Finally, let a£Sx and beSp, and put mj/x<xP=a' and bi//PiXP=b'. Then 
a'b' ea'E'=a<pXt!lpEq>pxp=ah=ab, hence a'b' and ab belong to the same rectangular 
semiring a'b'-ab. Further, a'b' = (a'+a) {b'+b)=a'b'+a'b+ab'+ab and so 
a'b'+ab=a'b'. Similary ab+a'b'^a'b', and thus ab=ab+a'b'+ab=a'b' We.con-
clude that ab=(d4/aixp)(b\pp ap) and by symmetry, a+b=(a^xixp)+(b\j/fiap). Con-
sequently, (S, + , •) is the Plonka sum of the system (2.3). 

The reader may check that for any a, j8eF, with and azSx , we have 
afyXtP—b if and only if a(a+b+a)a=b. Thus we can conclude to the following. 

Coro l la ry 6. For any ID-semiring (S, +, •), 

. /: S2 - S, (x,y) - x(x+y+x)x 
is a partition function. 

Proof . Immediate from the proof of the foregoing and from [8]. 

Problem. Let (S, + , •) be an ID-semiring where (S, + ) is a semilattice. 
By. Theorem 2.1 (S, •) must be a normal band. Characterize the normal bands which 
can be realized in this way. Remark that [16] and [17] give information about the 
norrrial band? (5, • ) where (5, + , •) is an ID-semiring for which {S, +.) is a chain: 
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Definable principal congruence relations: Kith and kin 

JOHN T. BALDWIN and JOEL BERMAN 

This paper has two aims. Firstly, it seeks to illumine the way in which principal 
congruence relations are constructed. To this end, a hierarchy of "definability" of 
congruences is presented. Notions both weaker and stronger than (first order) 
definable principal congruences (dpc) are considered. Secondly, it attacks the problem 
posed by BURRIS and LAWRENCE [ 1 3 ] , "If K is a class of algebras and if the quasiva-
riety generated by K, Q(K), has definable principal congruences must the variety 
generated by K, F(K), also have dpc"? These two aims are linked by several results 
of the following form, "If F(K) has (some weak notion of) definable principal con-
gruences and Q(K) has definable principal congruences, then F(K) has definable 
principal congruences." 

The discussion of the hierarchy mentioned above includes a survey of the litera-
ture on such notions and it attempts to connect these properties with others of a 
quite different nature. For example, several levels of the hierarchy are linked with 
n-permutability of (principal) congruence relations. 

We acknowledge a number of very helpful communications with Peter Kohler 
in connection with this paper. 

1. Definitions and notation 
/ i 
In general, we denote algebras by A, B, and C while K denotes a class of alge-

bras of some fixed similarity type. The variety generated by K is F(K); and Q(K) 
denotes the quasivariety generated by the class JL A class of algebras is said to be 
locally finite if every finitely generated algebra in the class is finite; the class is uni-
formly locally finite if there exists a function / such that for all n every «-generated 
algebra in the class has cardinality at most f(n). 

If A is an algebra, and if x and y are elements of A, then the principal congruence 
relation generated by x and y is the smallest congruence relation on A for which x 

Received May 29, 1980. 
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and y are congruent. It is denoted by Q(x, y). For a given algebra A of some simila-
rity type T, Malcev has provided a description of the principal congruence generated 
by the elements a0 and ax solely in terms of the polynomials of the algebra A, e.g. 
[23] or [16, p. 54]. Namely, 

bo^bi 0(flo , at)** 3n3Pi, PnBsSzj., ..., z„ such that 

(M) b0 = Pi(as(1), Zj), ^(«!_,(,), z,) = p i + iK ( i + i ) , z i+1) for and 

h = Pn(al-s(n)> O 

where n is a positive integer, the p, are kraty polynomials of type r, s is a switching 
function, i.e. s: {1,-2, ..., w}— {0, 1}, and z, are kt — 1 tuples from A, for I S i S / j . 
Each fixed instance of the polynomials p{ and the switching function s is called a 
Malcev formula. 

. We write ip(a0, ax, b0, 6 l 5 ..., p„, s, z l5 ...,zn) for the last 2 lines of (M). 
Note that the integer n is implicit in this formula. Also observe that 3z l s ..., z„ ip 
is a positive existential formula. Such a formula was called a congruence formula 
in 13]. 

There is an easy abstract form of this result which is implicit in [25]. (Also see 
[26] for a nice application;) Let Diag+(/4)={i?(z)| R is atomic, A\=R(z)}. Note 
that Diag+ (A) is in a language L(A) which has names for all members of A. 

Lemma 1.1. (Folklore) If a, b, c, d are in A and c=d 0(a, b), then there is a 
positive existential Lrformula S(x,y,u,v) such that 

i) 1= S(x, y, u, u) implies x—y, 
ii) A\=S(c,d,a,b). 

Proof. Note Y>mg+(A){J(a=b)KJ{c?±d) is consistent if and only if there is 
a homomorphic image of A which identifies a with b but does not identify c with d. 
Thus if c=d 0(a,b) then (= A {/?f(c, d, a, b, e)|l S /Sm}&(a=6) implies (c=d) 
for some finite set Rlt ..., Rm bf atomic formula's. But then 

• |=\/x, y, u, v(3 w{A{Ri(x, y, u, v, w)|l S / S w})& (u = «)) 

implies x=y and thus" At= 3wA {^¡(c, d, a,s/gm}. 

. Either of these characterizations allow us to "define" principal congruences in 
the language~L(co1, co) i.e. the language which extends first order logic by allowing 
infinite disjunctions. Namely c~d 0(a, b)~- V{S(c, d; a, b)\S£P} where P is the 
collection of positive, existential formulas satisfying S(x,y,u,u)-+x=y (or the 
collection, of Malcevrformulas). Although some information.can be obtained from 
this weak definability of principal congruences (cf. [2]), in this paper we want to dis-
cuss various stronger notions of definability. The first formalization of this kind 
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occurred as follows in [3]. A class K is said to have definable principal conguences if 
there is a 4-ary first order formula cp in the language of K such that 

\M€K, V.flo» K, b^A, (bo^bj, 6(a0, a,) ** (p(a0, als b0, ¿i)). 

For further details on definable principal congruences see [3] and sections 2 and 5 
below. 

Our earlier work on definable principal congruences focused on varieties. How-
ever, [12] shows the advantages of dealing with more general classes. Thus in the 
following we define these notions for arbitrary classes of algebras. Occasionally it 
will be necessary to assume that such a class satisfies the compactness theorem. Of 
course any elementary class satisfies this condition. For this reason many of our 
results have a dual character, we first describe the effect of a property on a specified 
algebra and then note the effect on algebras in a variety satisfying this condition. 
We call the former a local result, and the latter a global one. 

Since a disjunction of all possible ij/ describes the principal congruences in any 
class K of algebras, it follows from the compactness theorem that if a class K which 
satisfies the compactness theorem has definable principal congruences, then this de-
fining formula is equivalent to some finite disjunction of the ift, i.e. 

(p(a0, a±, b0, f>i)«V ;i/r(a0, a l 5 b0, blt p[, ..., ..., z'), 

where i ranges over some finite index set. Note there is a uniform subscript n in this 
formula. This is possible since the diagonal elements are in any principal congruence 
relation, i.e. w=w 0(x, y) allowing the "padding out" of formulas ijt having dif-
ferent lengths to one uniform length. 

2. DPC and its relatives 

In this section we discuss first some weakenings and then some strengthenings 
of the notion of a definable principal congruence relation. These arise in a natural 
way via a reshuffling of the quantifiers. That is, we require that certain of the existen-
tially quantified variables in (M) do not depend on the particular a0, a1:b0, and bt. 

We start with Malcev's characterization of principal congruences. For any 
algebra A in the class K, and for all a0, ax, b0, b± in A, 

b0 = fcj 0(ao, 3n3Pi, •••,P„3s3z1, ..., z„ 
ai> bo> blt Pt, ...,p„, s, Zj, ... ,z„). 

We proceed to pull out existential quantifiers from the right side of this expression. 
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A) There is a bound n on the number of steps in determining principal con-
gruences for all algebras in K. In this case we say K has n-step principal congruences. 
By previous remarks we can, without loss of generality, assume all principal congru-
ences can be described using a Malcev formula with the same fixed n. Formally, 
this gives 

3n such that \/A€K Va0, a„ b0, b1£A 

(b0 = bx 0(ao, aO— 3Pi, ...,/>„3532!, ...,%„ 

il>(a0, ax , b0, blf plt ..., p„, s, zx, ..., z„)). 

Note that this is not as strong as definable principal congruences since the polyno-
mials which are to be used are not specified (and the language does not allow varia-
bles having polynomials for values). But, by restricting n in this way there are only 
finitely many choices for the switching functions, i.e. the 2" functions from {1, . . . ,«} 
to {0, 1}. Algebras with n-step principal congruences are discussed in section 3. 

B) The class K has n-step principal congruences and there is a specified list of 
switching functions for determining all principal congruences of algebras in K. This 
becomes in the notational pattern we have adopted: 

3n, 3sl5 ..., sk such that \M£K \fa0, a l 5 b0, b^A 

(b0 = bi 0(a0, flj) — , ..., Pn 3/3^, ..., z„ 

4/(a0,a1,b0,b1,p1,...,pn,si,z1,...,znj). 

We will be mainly interested in the case that k=1. Results concerning this situation 
will be given in section 4. 

C) The class K has «-step principal congruences with a specified list of switching 
functions, and there is a specified list of polynomials to be used for determining prin-
cipal congruences of all the algebras in K. This is of course, definable principal con-
gruences. Thus it formally becomes: 

3n, 3s l5 ..., sk3p[, ..., p'n (1 ^i^k) such that K \fa0, a1 ; b0, b^A 

(b0 = b! © ( a c a O — 3 i 3z1 , . . . ,z„ ij/(a0, a l s b0, bu p[, ..., pi, s,-, z l5 ..., z„)). 

A discussion of definable principal congruences in this context is found in section 5. 

D) The class K has n-step principal congruences with a single switching function 
s and a specified list of polynomials px, ...,p„ to be used for determining principal 
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congruences in K. Formally this becomes: 

3n, 3s, 3p i , . . . , p„ such that \M€K \fa0, alt b0, b^A 

(i>0 = bx 0(ao, aj** 3z1, ...,z„ i a l t b0, bl,p1, ...,p„, s, 

If (p defines principal congruences for a class K then q> is a finite disjunction of Mal-
cev formulas. In D) there is only one disjunct (this is exactly the distinction implicit 
in [3] between the congruences being defined by a weak congruence formula or a 
congruence formula). This notion is now called "K has a uniform congruence sche-
me" and has been investigated in [15], [7], [8], [21]. In particular, [15] shows uniform 
congruence scheme is equivalent to their notion of equationally definable principal 
congruences. 

We thus have a hierarchy of properties A), B), C) and D). It is a natural question 
to investigate how this hierarchy behaves in the presence of other properties the class 
K may possess. These questions will not figure in the remainder of this paper; so we 
briefly mention them at this point. FRIED and Kiss [33] have also considered related 
questions. 

One possibility is to restrict the variables zf to take on values from {a0, ax,b0, bi}. 
By a result of DAY [14] this is equivalent to the congruence extension property. 
(For details on the congruence extension property see [17] or [16].) If this restriction 
on the is added to condition A) and if K also is uniformly locally finite (or at least 
4-generated algebras in K have bounded cardinality), then K has definable principal 
congruences, and the defining formula can be made quantifier free as discussed in 
[3]. Moreover, if in D) all zf£ {a0, ait b0, b^, then this gives the restricted uniform 
congruence scheme discussed in [15], [9], [10], [21] and [22]. 

Another possible restriction is to place a bound m on the possible arities of the 
polynomials which appear. In this case, if K is also uniformly locally finite, then con-
ditions A) and B) both collapse to C). This is similar to the property CEP„ discussed 
in [21]. This also has some bearing on the notion of P0-principal congruence relations 
which are defined in the next section. BAKER [31] considers restrictions on the poly-
nomials for varieties of lattices. 

If K is a variety with distributive congruence lattices, then it is shown in [15] 
that conditions C) and D) are the same. We do not know how this affects conditions 
A) and B). 

3. Bounded number of steps 

In this section we investigate condition A) for a class K of algebras. We provide 
some curious examples, pose some questions, and deal with some work of Burris and 
Lawrence on definable principal congruences. 

The simplest example of a class of algebras having a finite bound on the number 
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of steps required in principal congruence relations is provided by sets, i.e. algebras 
with no fundamental operations. For sets, the only polynomials are the projection 
operations. If A is a set, then for x,y£A, the principal congruence relation 0(x,y) 
consists of the ordered pairs (x, y), (y, x), and (w, vv) for áll w£A. It is easily seen 
that these three cases can be handled with polynomial projection functions; but 
both possible switching functions are required, and two different projection functions 
are needed. This simple example is instructive since it shows that condition A) is 
not preserved under extension of varieties, and hence is not a Malcev condition. 
(For details on Malcev conditions see [16], [27], and [3].) This is to be contrasted with 
some of the results in section 4. 

An instance of the significance of n-step principal congruences may be found 
in the work of BURRIS and LAWRENCE [ 1 2 ] , [ 1 3 ] on definable principal congruences in 
groups and rings. In the second of these two papers, they define the notion of P0-
projective principal congruences for a class K of algebras. Essentially this is condition 
A) with « = 1 and with the added stipulation that the polynomials which are to be 
used are drawn from some class PQ of polynomials. They posed the following problem: 

P r o b l e m 1. (Burris and Lawrence) Let K be a class of algebras such that 
Q(K) has definable principal congruences. Does V(K) also have definable principal 
congruences? 

They prove the following in [13]: 

T h e o r e m 3.1. (Burris & Lawrence) Let K be a class of algebras such that 
Q(K) has definable principal congruences and such that F(K) has P0-projective princi-
pal congruence relations for some set P0. Then F(K) also has definable principal con-
gruences. 

For an arbitrary class K of algebras, the class <2(K) and the class ISP(K) of all 
algebras isomorphic to subalgebras of products of members of K need not be the 
same. For example [4] and [5] contain a discussion of this. However, for any class 
K, HQ(K)=HSP(K)=V(K) and the following variant on Problem 1 is possible. 

P r o b l e m la . Let K be a class of algebras such that SP(K) has definable prin-
cipal congruences. Does F(K) also have definable principal congruences? 

We now present a generalization of Theorem 3.1 which answers Problem 1 and 
la for certain classes K of algebras. 

T h e o r e m 3.2. Let K be a class of algebras such that K has definable principal 
congruences and such that H(.K) has n-step principal congruences for some integer n. 
Then H(K) also has definable principal congruences. 

P r o o f . Let <p be any positive 4-ary formula defining principal conghiences for 
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the class K, and suppose H(K) has «-step principal congruences. We claim H(K) 
has definable principal congruences given by 

(•*)'• bo^ .bi 0(ao, ax) iff 3 w0, ..., wn 

(w0 = b0, w„ = bt, and q>(a0, alf w,_i, w{) for 1 z S « ) . ' 

To verify this claim consider B£H(K), A£ K, and a homomorphism h from A onto B. 
Let bij=b1 0 (a0, at) in B. So B models the formula 

for some choice of Pj,s, and Zj, where the p j are kj-ary polynomials. Arbitrarily 
choose a't£A and kj — 1 tuples z) with h(ai)=ai and h(z'J)=zJ. Note that 
h(pj(ai,Zj))=pj(ai,Zj). Also, in the algebra A it is the case that Pj{aa, z'j) = 
=PJ(ai,Zj) 0(ao, a[) for 1 Hence A\=(p(a'0, a'u pj(a'0, z'j),pi(a[, z'j)) and 
since (p is positive and h is a homomorphism B^=(p(a0,a1,pJ(a0,Zj),pJ(a1,Zj)). 
Moreover, in B, Pjia^^, Zj)=pJ+1(asU+1), zJ+1). So choosing w0=p1{asm,z1), 

and Wi=pi+1(asii+1), zi+1) with 1T§/<H. shows (*) holds in B. 

C o r o l l a r y 3.3. Let K be a class of algebras such that the class Q(K) has defin-
able principal congruences and the class K(K) has n-step principal congruences for 
some integer n. Then F(K) also has definable principal congruences. Moreover, this 
result holds if Q is replaced by SP. 

Because of Theorem 3.2 and because the formula \j/ is positive, it would be tempt-
ing to conjecture that «-step principal congruences is preserved under homomor-
phism. The following shows this is not the case. 

E x a m p l e 3.4. Let A have universe consisting of the positive integers and sup-
pose for each positive integer i there is a unary operation gt such that 

g i ( 1) = 2/+1, g l(2) = 2/4-2, and gi(k) = k for all k > 2. 

Then A satisfies condition A) with n=2, but A has a homomorphic image B which 
does not satisfy condition A) for any n. In order to verify this, first observe that there 
are only four types of principal congruences on A (we list the nontrivial blocks): 

0 (1 ,2 ) = 1,2/3,4/5,6/.. . , 
0 (1 , k) = /k, odds/, (k > 2) 
0(2 , k) = /k, evens/, (k > 2) 
0(k, m) = \k, ml (k, m > 2). 

It is easily seen that the first and last of these congruences can be done in one step, 
while for the others, two steps will suffice. Define a homomorphism h of A so that h 
has kernel consisting of Vj0(2/, 2/+1) as z ranges over all /=»1. Then in the algebra 
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h(A), the principal congruence relation 0(/i(l), h(2)) will require an arbitrarily 
large number of steps. 

P rob l em 2. Let A be an algebra that satisfies condition A) for its principal 
congruences with n= 1. Does every homomorphic image of A also have this prop-
erty? 

We now present another approach to Problem 1. If A is an algebra, and if h is 
a homomorphism of A and if 0 is some congruence relation on A, then the image of 
0 under the homomorphism h, denoted h(0), will consist of {(h(x), j>(/i))|(x, >>)€ 0}. 
Note that in general, because of transitivity, h{0) need not be a congruence in h(A). 
We say that the homomorphism hpreserves the congruence 0 if h(0) is a congruence 
relation of h(A). Consider the following property for an algebra A: 

(* *) For any homomorphism h of A any principal congruence relation 
0(h(x), h(y)) of the algebra h(A) is the image of some principal congruence 
relation of A. 

Note that if h preserves 0(x, y), then 0(h(x), h(y))=h(0(x, y)). Thus if every 
homomorphism of A preserves every principal congruence relation of A, then A has 
(* *). In section 4 we investigate the condition that a given homomorphism preserve 
a given congruence relation. Our interest in ( * * ) stems from the following. 

Theorem 3.5. Let Kbe a class of algebras with definable principal congruences, 
and suppose each algebra in K has property (* *). Then H(K) also has definable prin-
cipal congruences. 

Proof . Let K have definable principal congruences given by some positive 
formula (p. Consider A£K and some homomorphism h of A onto an algebra B. 
If u=v 0(x, y) in B, then by property (**) , there are u', v', x', y' in A such that 
h(0(x',y'))=0(x,y) and h(u')=u, h(v')=v, and u'=v' 0(x', y'). Hence, 
A N= <p (x', y', u', v'), and since q> is positive, it follows that B\=(p(x, y, u, v). Thus <p 
serves to define principal congruences in B. as well. 

We can relate property (* *) to our hierarchy by the following observation. If 
K is a class of algebras for which the class H(K) satisfies condition A) with n= 1, 
then every algebra A in K has property (* #). The proof of this is immediate since 
transitivity will not be violated. This observation gives Theorem 3.1 as a corollary 
of Theorem 3.5. 

We note that condition (* *) is not trivial. 

Example 3.6. There exist finite algebras A and B and a homomorphism h 
from A onto B such that the algebra B has a principal congruence relation that 
is not the image under h of any principal congruence relation on A. For example, 
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let .¿ = {1 ,2 ,3 ,4 ,5 ,6} and let A have two unary operations / and g given by: 

1 2 3 4 5 6 

/ 3 4 3 4 5 6 
g 5 6 3 4 5 6 

Let h be the homomorphism of A which identifies only 4 and 5. The principal con-
gruence 0 (/i(l), h(2j) in the algebra h(A) is not the image under h of any principal 
congruence of A ; for if it were, a simple argument shows it would be the image of 
the congruence 0(1, 2), but the image of this relation under the homomorphism h 
is not transitive. 

We conclude this section by discussing the relation between «-step principal 
congruences and n-permutability of principal congruences. This is motivated, in 
part, by work of MAGARI [ 2 2 ] . 

If R and S are binary relations on the same set, then the composition of them, 
denoted RoS, consists of all pairs (x, j ) for which there is some z such that 
(x,z)£R and (z,y)<£S. Let R0R0...0R with « factors be denoted by R". Also, 
R~1=z {(j, The equivalence relations R and S are said to be «-permut-
able if 

RoSoR... = SoRoS..., each side having n factors. 

Thus 2-permutable is the usual permutable: RoS=SoR. If jR and S are «-permut-
able then 

RMS = R0S0R... (n factors). 

T h e o r e m 3.7. Let A be an algebra such that A and every homomorphic image of 
A has n-step principal congruences. Then the principal congruences of A are 2 « + l 
permutable. 

Proo f . We will prove a slightly stronger result: If 0 is any principal congruence 
relation, 0 = 0(tfo , flj), and if I is any congruence relation, then 

0V21 = í o 0 o l o . . . o í (2«+l factors). 

To this end, let (0V£) . So there exists a sequence of elements /„, t u . . . , tk 

such that t0=b0, tk=b1, t2i = t2i+1 0 , and í2¡+1 = /2¡+2 I. Let h be a homomor-
phism with kernel I. So h(t2i+1)=h(t2i+2) and h(t2í)=h(t2í+1) 6(h(a0), h(a¿¡). 
Therefore, h(t0)=h(tk) 0{h(ao),h(a1)). By hypothesis h(A) has «-step principal 
congruences, so there exist polynomials pt and elements z¡, 1 Si 'Sn, and a switch-
ing function s to establish that h(t0)=h(tk) 0 (h(a0), h(ax)) in h(A). But then in 
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A, > I(a1_s{0,z I.)=Jp1+i(aJ( i+1),z I+1) I and p¡(a0, z¡) 0 . Therefore, the 
chain b0=t0, p¡(asa), z j , z j , p2(as(2), z2), ..., i„=&i, establishes the 
claim. 

Note that the algebra ^ = <{0,1,2, ...},/> where f(f)=i-1, and / ( 0 ) = 0 
has permutable congruences as do all its subalgebras and homomorphic images; 
but principal congruences in A require an arbitrary number of steps. Hence Theorem 
3.7 has no natural converse in this local form. However, a reasonable converse for 
the global version might be: 

P r o b l e m 3. If a variety K has the property that there is some m for which 
all principal congruences are m-permutable, does K have «-step principal congruences 
for some «. 

4. Bounded steps and specified switching 

We next investigate condition B) for a class K of algebras. This general problem 
has not received much attention in the literature. However, if K is a variety and if 
only one switching function is allowed, and if this function is a constant function, 
then such K have been studied in some detail, although from a different point of 
view. For the remainder of this section we confine ourselves to classes K satisfying 
condition B) and having only one switching function s. 

As in section 2, the easiest example is furnished by sets. For if K is the variety 
of sets, then all principal congruences in K can be obtained using only 2 steps and 
with a switching function j ( l ) = 0 and s(2)=l. Note of course that several dif-
ferent polynomials will be required in the different cases. One consequence of this 
example is that condition B), even with only one switching function, is not a Malcev 
condition. This has also been observed by P. Kohler. However, compare this with 
Theorem 4.2 below. 

In [ 2 2 ] M A G A R J considers the notion of a good «-family for a class K of algebras. . 
In the case of « = 1 this reduces to K having m-step principal congruences for some 
integer m and some fixed switching function s, with all of the z¡^{a0, als bo,.^}. 
He shows in the proof on pp. 695—696 that if an algebra has this property then if 0 
is any principal congruence relation and I is any congruence relation, then 

0 o Z o 0 o . . . o 0 Q Z o 0 o í o . . . o í (2m+l factors in both). 

It follows then that in K principal congruence relations are 2m+1 permutable. 
We have shown in Theorem 3.7 that this result of Magari does not depend on 

fixing a particular switching function. In fact, by specifying the switching function 
(to be a constant) and working, in a global setting, an even stronger result can be 
obtained. 
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We now consider varieties with «-permutable congruences. The following is 
d u e t o HAGEMANN a n d MITSCHKE [19] a n d HAGEMANN [18]. 

Theorem 4.1. For a variety K of algebras, thé following are equivalent: 
(i) The congruence relations of every algebra in K are n-permutable. 

(ii) There exist ternary algebraic operations qit ...,qa on K such that 

<li{x, y, y) = x, q¡-i(x, x, y) = q¡(x, y, y) and qn-i(x, x, y) = y. 

(iii) For any A in K and any reflexive subalgebra R of A2, R~1QR"~1. 
(iv) For any A in K and for any reflexive subalgebra R of A2, Rn=Rn~1. 

The following is implicit in HAGEMANN and MITSCHKE [19] and is an unpublished 
result of H. Lakser. Also see CHAJDA and RACHUNEK [32]. 

Theorem 4.2. For a variety K of algebras, the following are equivalent: 
(i) K has n +1 permutable congruence relations. 

(ii) There is a constant function s: {1, ...,«}->-{0, 1} such that all principal 
congruences of algebras in K can be done in n steps using s as the switching function. 

Proof . To show (i)-(ii) let A£K and suppose c=d 0{a,b) in A. Define a 
relation R={(p(a, z),p(b, z))| p is any k-ary polynomial and z is any k— 1 tuple 
of elements of A, k= 1,2,...}. We wish to show (c, d)£R". Note that the relation 
R is reflexive and is a subalgebra of A2. Also, by Malcev's lemma, there éxists an m 
such that (c,d)£RxoR2o... oRm, where each R¡ is either R or R'1. By Theorem 
4.1 R^QR", so (c, d)£R' for some t^m. But again by Theorem 4.1, R%R", 
and hence (c, d)€ R" as desired. 

For the opposite direction, assume, without loss, that s(i)=0 for all i. Let F 
be the free K algebra on the three free generators a, b, and c. Note b=a ©(a, b). 
So there exist polynomials px, ...,p„ such that 

b = px(a, Zi), p¡(b, z¡) = pi+1(a, zi+1), a = pn(b, z„). 

Each z¡ is a sequence of elements of F, and each element of F is itself a polynomial 
in the variables a, b, and c. Denote this sequence of polynomials by z¡(a, b, c). Fi-
nally, defining q¡(x, y, w)=p¡{y, z¡(w, x, w)) gives the desired polynomial identities 
of Theorem 4.1. 

Combining Theorem 4.2 with Theorem 3.2 we have: 

Coro l l a ry 4.3. If the variety V has n-permutable congruences for some n, 
K g V , and Q( K) has definable principal congruences, then V(K) has definable prin-
cipal congruences. 

Coro l l a ry 4.4. (Burris and Lawrence) 7 /K is a class of groups or rings and 

6 
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Q (K) has definable principal congruences, then V(K) has definable principal congru-
ences. 

P r o b l e m 4. Can the condition that K is a variety in Theorems 4.1 or 4.2 be 
relaxed in some way? 

P r o b l e m 5. Are there any results, analogous to Theorem 4.2, for switching 
functions s that are not constant? Observe that the argument using the free algebra 
can still be used to produce polynomial identities. 

With regard to Problem 5, Peter Köhler has observed that the variety of distri-
butive lattices has a restricted uniform congruence scheme with /7=4 and j (1 )= 
=J (3 )=0 and J(2)=J(4)=1, but by a result of WILLE [29, p. 79], distributive latti-
ces are not m-permutable for any integer m. 

We conclude this section by exhibiting a few curiosities concerning 3-permuta-
bility. It is easily seen that if an algebra A has principal congruences that are 2-per-
mutáble (i.e. permutable), then all congruence relations of A are permutable. This is 
not the case for 3-permutability; witness e.g., sets have all principal congruences 
3-permutable, but congruences in general for sets are not. Indeed, congruences on 
sets are npt n-permutable for any n, since a constant switching function will not suf-
fice for generating them. 

If a class K has the property that //(K) has 2-permutable congruences, then by 
Theorem 4.2 and by the remarks following the proof of Theorem 3:5, it follows that 
every algebra in K has property ( * *). A similar result is possible for 3-permutability 
as well. In [29, Satz 6.19] WILLE proved that a variety K has the property that arbit-
rary homomorphisms preserve congruence relations iff K has 3-permutable congru-
ences. We now present a local version of his result, via a similar proof, and thereby 
give another sufficient condition for ( * *). 

T h e o r e m 4.5. Let A be an arbitrary algebra. A congruence relation © of A 
is preserved by á homomorphism h i f f 0oker(h)o0Qker(/¡) o 0 o ker (/¡). 

P r o o f . To show h preserves 0 , it suffices to show /i(0) is transitive. So let 
(h(w), h(x)) and (h(y), h(z)) be in h{0), with h{x)=h{y). Then there exist w', x /, y', 
andz ' in ^-such that h(w')=h(w), h(x')=h(x), etc. with (w',x') and (y',z') in 0. 
Note h(x')=h(y'). By hypothesis, 3M, V£A such that h{w')=h{u),h{z')=h(v), and 
(w, V)£0. Hence h(W)=h(u), h(z)=h(v), and (h(u), h(v))eh(0). So (h(W), h(z))£h(0) 
as desired. 

Conversely, let (w, x), (y, z)6 0 with h(x)=h(y). Apply h to give 
(h(w), h(x))£h(0), (h(y), h(z))ih{0). So there exist w', z'^A such that h(w')= 
=h(w), h(z')=h(z) and (w',z')£0. This gives (w, z)i ker (h) o 0 oker (A) as de-
sired. > 
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Note that the variety K of 1-unary algebras in which f ( x ) =f (y) for all x and y 
has the property that any homomorphism preserves principal congruences, but not 
arbitrary congruence relations. 

A specialized version of Theorem 4.5 gives the next result. The proof is an easy 
modification of the proof of 4.5. 

T h e o r e m 4.6. Let K be a class of algebras. The following are equivalent; 
(i) every homomorphism of an algebra in K preserves principal congruences; 

(ii) principal congruences are 3-permutable for algebras in K. 

5. Definable principal congruences 

The notion of definable principal congruences was introduced in [3] in an attempt 
to describe the behavior of subdirectly irreducible algebras in a variety. Interest in 
the concept has continued, not only for its own sake, but also as a crucial hypothesis 
for other theorems in universal algebra and equational logic. One direction of re-
search has been to classify varieties by whether or not they have definable principal 
congruences. This was done in [3] and has continued with the previously cited work 
of BURRIS and LAWRENCE [12], [13] for groups and rings, and by BAKER [1] for groups. 
Negative results have also been obtained by BURRIS [11] who exhibited a 4-element 
algebra that generates a variety without definable principal congruences (but which 
does have distributive congruence lattices); by MCKENZIE [24] who »showed that 
every nondistributive variety of lattices fails to have definable principal congruences; 
and by TAYLOR [28] who showed that the variety of commutative semigroups satis-
fying the law xy=uv (which is generated by a 3-element semigroup), does not have 
definable principal congruences. In [6] it is shown that every 2-element algebra 
generates a variety with definable principal congruences. A useful theorem of 
MCKENZIE [24] states that if a variety V of finite similarity type has definable princi-
pal congruences and if there is a finite bound on the cardinality of subdirectly irre-
ducible members of V, then V has a finite basis for its polynomial identities. (Also 
J6NSSON [20] has a similar result.) This was used, for example, in [30] to show that a 
certain variety of upper bound algebras is finitely axiomatizable. Several strengthened 
versions of definable principal congruence relations have been given in the literature ; 
some of these were discussed in section 2. Recently TULIPANI [34] has shown that if 
a variety has definable principal congruences, then for any n there is a first order 
formula for describing the join of n principal congruence relations. 

One possible way to obtain a positive solution to Problem 1 would be to show 
that whenever an algebra A has definable principal congruences with defining for-
mula q>, then every homomorphic image of this algebra also has its principal congru-

6» 
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ences defined by <p. We now present another example to show that this is not the case. 
Note that we cannot use Example 3.4 since the algebra in that example did not have 
definable principal congruences. 

Example 5.1. There exists a groupoid A and a homomorphic image B of A 
such that A has definable principal congruences and B does not. 

Let the groupoid A have universe {0,1, 2, ...} and define ffi on A by 

l © x = xffil = x Vx, 
0©0 = 0, 
x©.y = x Vx,y => 1, 
Offix = xffiO = x Vx = 3 /± l , / > 0 , 

0©3/ = 3 / - l V / > 0, 
3/©0 = 3 / + l V/ > 0. 

The principal congruence relations of A are listed below, where only nontrivial 
blocks are given and x, 1. 

0(0,1) =/0 ,1 /2 , 3,4/5,6,7/.. . 
0(O,x) = /O,2, 3, 4, . . . / 
0(1, x) = /0,1,2, 3,. . . / 
0(x, y) = /x, yj X , y ^ 0 (mod 3) 

0(x,y) = / x—1,x ,x+1 , j / x = 0(mod3), j>=£0(mod3) 
0 ( x , y ) = /x-l,y-l/x,y/x + l,y+l/ x,y = 0(mod3). 

All of these principal congruences can be achieved in at most six steps using unary 
algebraic polynomials of the form g(x)=z4ffi(z2ffi(xffiz1)©z3) where the zt are in 
A. Thus, A has definable principal congruences. Let 0 denote the congruence rela-
tion 

0 = V i0(3/ + l ,3/+2), i = l , 2 , . . . ; 

Let h be any homomorphism with kernel 0 and let B=h(A). Consider the principal 
congruence relation 0(/i(O), /i(l)) in B. x=y 0(0, 1) in the algebra A implies 
h(x)=h(y) 0(/i(O),/i(1)). So the block of 0(h(O), h(l)) includes {h(3i-1), /i(3/), 
/i(3/+1)}, for all />0. Thus 0(/i(O), h(l))=/h(0), h(\)/ the rest of B\. But for 
any polynomial p, 

{p(h(0), /i(z)), p(h( 1), h(z))} i h{{p(0, z'),p(l, z')| z- = z 0}) ^ 

i / i ( { 3 ( / - l ) - l , 3 ( / - l ) , 3 ( / - l ) + l , 3 / - l , 3 / , 3 / + l ) } ) 

for some /, and so an arbitrarily large number of steps are required. 
With regard to Example 5.1, note that SP(A) does not have definable principal 
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congruences. For let C be the subalgebra of A" generated by {3, 4, 6, and tl (1 ^i^n)}, 
wehre k is the «-tuple of all k's, and tl consists of all 8's, except for /J=0. We leave 
it to the reader to verify that 4 = 6 0(3, 6) in the algebra C, and that polynomials 
of arity n + 1 are required. 
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Rectangular bands in universal algebra: Two applications 

M A T T H E W G O U L D 

The concept of rectangular band, well known in semigroup theory (see, e.g., 
CLIFFORD and PRESTON [5]), has been utilized, implicitly or explicitly, in a few con-
texts in universal algebra, for example by CHANG, J6NSSON, TARSKI [4] , FAJTLOWICZ 

[7], GOULD [12] , PLONKA [23] , NEUMANN [22] , and TAYLOR [26] . In this note we employ 
rectangular bands to obtain two results concerning automorphism groups of universal 
algebras. The first of these results is a new proof of E . T . SCHMIDT'S [24] theorem esta-
blishing the abstract independence of the concepts of automorphism group and sub-
algebra lattice. Although Schmidt's result has been re-proved and generalized in 
several ways (as in GOULD and PLATT [14] , FRIED and GRATZER [9] , LAMPE [21], and 
STONE [25]), the present proof is, in the author's view,, simpler than the others and 
yields a stronger result in the finite case, namely the following: 

Given a finite group G and a finite, non-trivial lattice L, there is a finite algebra 
91 of three binary operations, such that Gs*Aut9l and L ^ Sub 91. Moreover, the 
three binary operations may be replaced by a single quaternary operation without 
altering the automorphisms or subalgebras. 

Our second result is concerned with automorphism groups of direct products. 
It establishes, in a somewhat stronger form, the following statement : 

Given a group G, there exist multi-unary algebras 51 and SB, each having a trivial 
automorphism group, such that G = Aut (Six®). Moreover, 91 and S are finite if G 
is finite. 

Concepts and notations of universal algebra used here are taken from GRATZER 

[16], except for the notations End 91, Aut 91, Sub 91, Con 91, respectively denoting 
the endomorphism monoid, automorphism group, subalgebra lattice, and congruence 
lattice of a universal algebra 91. Moreover, for sets A and B and an element xtAxB, 
the respective components of x will be denoted x0 and x b that is, x=(x 0 , xx). The 
projections 7r0: AXB-»A and 71!: AxB-*B are then given by XTZ~xiy for 
i=0, 1. 

Received July 25, 1980. 
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1. Automorphism groups and subalgebra lattices. Given sets A and B, define 
a binary operation on A X B by x * y=(x0, ^j). The resulting groupoid is a semigroup 
known as the rectangular band on A XB. In KIMURA [20] the following conditions on 
a semigroup S are proved to be equivalent: 

(i) S satisfies the identities xyz=xz and x2—x. 
(ii) S satisfies the identity xyx=x. 

(iii) There exist sets A and B such that 5 is isomorphic to the rectangular band 
on AxB. 

A semigroup satisfying any of these equivalent conditions is called a rectangular 
band. (A generalization to Cartesian products of finitely many sets was introduced 
by PLONKA [ 2 3 ] and termed diagonal algebra; see also FAJTLOWICZ [ 7 ] . ) 

When A and B are endowed with operations of the same similarity type, the 
imposition of the rectangular band operation on the direct product of the algebras 
results in an algebra whose endomorphisms, subalgebras, and congruences readily 
decompose. Specifically, we have the following lemma, in which the notation L0®LX 

denotes, for algebraic lattices L0 and Lly the lattice obtained by adjoining a zero to 
the partial sublattice of L q X ^ given by {x^L^XL^ | ̂ ^ O ^ X i } . (The lemma con-
tains a statement about congruence lattices that is included only for the sake of 
completeness, as it will not be used in the sequel. It was essentially noted by TAYLOR 

[26] and is a ready consequence of results of FRASER and H O R N [8].) 

L e m m a 1.1. Let %=(A\F) and '¡B = (B; F) be universal algebras of the same 
similarity type, let (AxB; F) denote their direct product, and let * be the rectangular-
band operation on AxB. Then the algebra &=(AxB; FU{*}) has the following 
properties. 

(1.1.1) End (E = End Six End 23, and likewise for automorphisms. 
(1.1.2) Sub E s Sub 91X Sub 23 if F contains nullary operations. 
(1.1.3) Sub GC= Sub 21® Sub 33 if F contains no nullary operations. 
(1.1.4) Con C^ConSTxCon®. 

P roof . As all parts of the lemma are proved in a very straightforward manner, 
we prove only (1.1.1) in detail and note that a common proof of (1.1.2) and (1.1.3) 
is achieved by verifying that Sub {UxV\ C/eSub 91 and FeSub S}. The dis-
tinction between (1.1.2) and (1.1.3) arises from the convention that 0€Sub 91 if 
and only if 91 has no nullary operations. 

Given a € End 91 and /?€EndS, define y: AxB—AxB point wisely: xy = 
= (x0<x,x1i8) for all X€AXB. Obviously ye End (21x23). Moreover, (x *y)y = 
=(x0,y1)y = (x0x,yip)=(x0a,xip)*(y0<x,yip)=xy*yy for all x,yiAxB, and 
therefore y€End C. Writing y=ctXfi, we thus see that {a XP \ agEnd 91, 0€End S } 
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is a submonoid of End (£, and is obviously isomorphic to End 91X End S . Hence, 
to prove (1.1.1) it suffices to show that every endomorphism of (£ belongs to this sub-
monoid. 

Let </>€End£. Fixing utAxB, define maps <p0: A-*A and (p^. B-+B by 
aq>0=(a,u^)<pn0 and ¿<P1=(M0, b)^^ for all (a,b)zAxB. If we can show that <p0 

and (pi are independent of the choice of u, it will follow that <p0 and <px are endomor-
phisms of 91 and © respectively and that <p = (p0X<pl. Now, for vzAxB and 
a,b,u as above, we have a(p0=(a,u1)(pn0=({a,v1)*u)(pn0=({a,v1)(p*u(p)7t<) = 
= ({a,v1)q>n0,u(pn1)ii0=(a,v1)<pTi0, and likewise 6<p1=(t;0, A)<j9 

We can now prove the main result of this section. 

T h e o r e m 1.2. Let L be an algebraic lattice of at least two elements and let G 
be a group. 

( 1 . 2 . 1 ) ( E . T . SCHMIDT [24] ) There is an algebra whose subalgebra lattice is iso-
morphic to L and whose automorphism group is isomorphic to G. 

(1.2.2) If G is at most countable and each compact element of L contains at most 
countably many compact elements, then there is an infinite groupoid meeting the require-
ments of (1.2.1). 

(1.2.3) If G and L are finite, there exists a finite algebra of three binary operations 
meeting the requirements of (1.2.1); there is also such a finite algebra having only a 
single quaternary operation. 

Proof . By classical results of BIRKHOFF and FRINK [3] and BIRKHOFF [2] 
there exist algebras 91 and © having no nullary operations, such that Sub 91 ̂ L , 
Aut © = (7, and Sub © = 2 , the two-element lattice. (For the sake of completeness 
we may specify that 91= (A; {fa\ aeA} U {V}>, where A is the set of non-zero com-
pact elements of L, the operation V is the join inherited from L, and the unary op-
erations fa are given by f„(x)=a if « S x and fa(x)=x otherwise. Moreover, we 
may take S = (G; {Ag\gtG}), where Xg(x)=gx for all xtG.) 

Unfortunately, 91 may have non-trivial automorphisms, and hence must be modi-
fied to eliminate such automorphisms without altering the subalgebras. To this end, 
let Q be a well-ordering of A and define a binary operation fB on A by setting 
ft{x,y)=x if xqy and fc(x, y)=y otherwise. Adjoining fe to the operations of 91 
we obtain an algebra 9le whose subalgebras are precisely those of 91. Moreover, any 
automorphism of 9lB is an automorphism of the well-ordered set (A, Q) and hence 
must be identity. 

Although 9lB and S need not be of the same similarity type, the difference 
is, for our purposes, purely superficial. We can increase operational rank (e.g., 
by substituting for an n-ary operation / the (n+l)-ary operation / ' given by 
/ ' (*! , ..., x„+i)=/(*i> •••> *n)) and introduce projection operations (such as 
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p(xli ..., x„)=JCi) as needed in order to convert Strand S into algebras 91' and SB' 
sharing a common similarity type and maintaining the desired properties: Sub 91'= 
= Sub 9Ic=Sub 9IS£Z, and Aut 9I' = Aut 9IC={1^}; while Sub 23' = Sub 23 = 2 
and Aut 93'=Aut 95^6 . . As neither 91' nor 23' has miliary operations,. the above 
lemma gives an algebra (£ satisfying Aut GsC7 and Sub whereupon 
(1.2;1) is proved., • : . ' • . . - • • 

• To prove ( 1 . 2 . 2 ) and ( 1 . 2 . 3 ) we assume the-hypotheses of ( 1 . 2 . 2 ) and begin by 
choosing the above 91 and 23 to be groupoids, of cardinality at most \L\ and |G| re-
spectively. By a result of . H A N F [17] , such a groupoid <&={A',f) with Sub 91 S I , 

indeed exists: essentially as noted by WHALEY [27] (see also J6NSSON [19 ] ) it suffices 
to take A to be the set of non-zero compact elements of L and to fix for each xeA 
an enumeration {x0, ..., x„,...} of the set {y£A\ySx} in such a way that x~Xj 
implies xi+1=xJ+1. The required binary operation / can then be defined by 
f(x, y)=xn+1 if y=xn for some n, and f(x,.y)—x\J y otherwise. 

In GOULD [10] , a groupoid 23 satisfying Aut B ^ G was defined on the set G as 
follows. First, choose: an enumeration {g0 , . . . , g„, ...} of G satisfying g 0 = 1 and 

whenever gi=gj. Then define the binary operation / by f(x,y) = 
=g„+ix, where g„=yx~1. Setting 23 = <G; / ) we note that Sub 23^2. Indeed, 
it suffices to show that each xeG generates (in 23) the entire set G. Since goX=x and 
f(x, g„x)=gn+1x for all n, it follows by induction that x generates {gnx\n~^(a}= 
= Gx=G. 

Starting with these groupoids 91 and 23, we obtain as in the proof of (1.2.1) an 
algebra .C with Sub GsZ. and A u t d ^ G . Note that (Ehas precisely, three oper-
ations, all of them.binary, and that the cardinality of (£ is at most \L\ • |G|. By a result 
of JEZEK [18], given any algebra (C; F) having at most countably many oper-
ations and no miliary operations, there is a groupoid (£' of cardinality equal to 
ft* • |.C j, such that . End G ' s End £ and Sub G'siSub (£. Applying this result to the 
£ given above, we have proved (1.2.2). . 

If L and G are finite, the above (E suffices to establish the first statement of (1.2.3). 
To prove the second statement, we distinguish two cases. 

Case 1. Supposing |G| = 1, we in fact obtain a ternary operation with the 
required properties. Recall the algebra 91 e=(A; f , f e ) , and define a ternary oper-
ation / 'by setting t(x, y, z)=f(x, y) if y=z and t(x, y,z)=fQ(x, y) if y^'z. It is 
easily verified that Sub (A ; />=Siib (A; f ) ^ L and Aut (A; t)=Aut (A;/„>= 
= {1 a} = G. \ 

, , Case. 2. Supposing \G\^l, we note that the groupoid. 23 = (5; / ) defined 
above has no one-element subgroupoids. It follows that in the direct product 
21x23 = 04X-6; / ) there are.no one-element subgroupoids. Passing to the algebra 
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G above, we may write ( £ = ( C ; / 1 ( / 2 , / 3 ) where C=AxB and / 1 = / Now define 
a quaternary operation q on C by 

q(x, y, z, w) = 
fi(x, y) if y = z = w, 
A(x, y) if y = z w, 
fa(x, y) if y ^ z . 

It is readily verified that Aut <C; ^>=Aut C s G and that Sub GgSub <C; q). 
To verify the reverse inclusion, let A'sSub (C; q). As the empty set belongs to 
Sub (£, we assume AV0. Since / i is a polynomial of (C; q) it follows that X is closed 
under fx and therefore contains more than one element. Thus, given x,y€X we 
may choose weX with w^y, whereupon f2(x,y)=q(x, y,y, w)eX and f3(x,y)== 
-q(x, y, w, w)eX. Hence Sub (C; g)=Sub d^L and the theorem is proved. 

We close this section with some remarks concerning the above theorem. First, 
the hypothesis is obviously justified by the fact that an algebra with only 
one subalgebra can have only one automorphism. Second, the hypothesis in (1.2.2) 
concerning the compact elements is necessary because in the subalgebra lattice of 
any algebra of at most countably many operations, the compact elements are the 
finitely generated subalgebras, each of which is at most countable. The other hypo-
thesis in (1.2.2), namely |G| S cannot in general be dispensed with. For example, 
if the unit element of L is compact, then every algebra having L as its subalgebra 
lattice must be finitely generated. Given an algebra 2 L = ( A ; F ) generated by a 
finite set S, the mapping that associates with each automorphism of 91 its restriction 
to 5 is a one-to-one function of Aut 91 into AS. As above, if F is at most countable, 
the fact that 91 is finitely generated implies that A is at most countable, whereupon 
the same holds for AS and hence for Aut 91 as well. 

Finally, we note that the second statement in (1.2.3) improves a result of the 
author [11] establishing the existence of a finite algebra with the desired properties 
that has only one operation. We ask whether the rank of this operation can be reduced 
to two, thereby combining, in the finite case, the nicest features of (1.2.2) and (1.2.3). 
Precisely stated: given a finite group G and a finite lattice L, does there exist a finite 
groupoid 91 satisfying Gss Aut 91 and L^ Sub 91? We conjecture that the answer is 
affirmative. (In this conjecture and in (1.2.2), "groupoid" is best possible in the sense 
that an algebra whose operations all have rank less than two must have a distributive 
subalgebra lattice.) 

2. Automorphism groups of direct products. Given sets A and B, a binary oper-
ation * is readily defined on the set of all functions of AXB into itself: for two such 
functions a and /?, simply define a*/?: A X B — A X B to be the map that sends each 
X(LAXB to (x:a7r0, x/tei). Straightforward calculation shows that * is an associative 
operation satisfying the rectangular-band identities (i) cited in the previous section. 
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Moreover, it is readily observed that composition of mappings is left-distributive 
over * in the sense that a(P*y)=(a/?)*(ay) for all transformations a, /?, y of AXB. 

If now A and B are the carrier-sets of algebras 91 and © respectively, of the same 
similarity type, it is readily observed that End (91X©) is closed under *. Thus, we 
enrich the endomorphism monoid of 91X© to form the endomorphism system 
^/ (9 lX©)=(End(9IX©); *, 1), an algebraic system of type (2 ,2 ,0) in which 
• denotes composition of mappings and 1 is the identity endomorphism, here 
regarded as a nullary operation on End (91X ©)• 

. The following lemma shows that the aforementioned equational properties of 
.//(91 x S ) actually characterize such endomorphism systems. Here and in the sequel, 
expressions of the form x-y will be written as xy, and (xy) *(xz) will be written as 
xy*xz. 

Lemma 2.1. Let Jl= (M; •, *, 1) be an algebraic system of type (2 ,2 ,0) . 
The following conditions are jointly equivalent to the existence of algebras 9i and © 
such that Ji^Jt(91X©). 

(2.1.1) (M; •, 1) is a monoid; 
( 2 . 1 . 2 ) (M; *) is a rectangular band; 
( 2 . 1 . 3 ) x(y*z) = xy*xz for all x,y,ziM. 

Moreover, given ( 2 . 1 . 1 ) — ( 2 . 1 . 3 ) the algebras 91 and © can be chosen to have unary 
operations only and to be finite if M. is finite. 

Proof . Having noted the converse, let us suppose that ( 2 . 1 . 1 ) — ( 2 . 1 . 3 ) hold. 
By the result of KIMURA [ 2 0 ] quoted in the previous section, there exist sets A and B 
such that (M; *) is isomorphic to ( A x B ; *), the rectangular band on AxB. As 
the other operations in ^fcan be transferred to A XB by means of this isomorphism, 
we have a system M'—(AxB\ •, *, 1 ) satisfying ( 2 . 1 . 1 ) — ( 2 . 1 . 3 ) and isomorphic 
to J L 

Now define a multi-unary algebra Ci = (AxB; {fJueAxB}) in which fu 

denotes left multiplication by u, that is, fu maps each xeAxB to ux. It readily 
follows (asin BIRKHOFF[2] or ARMBRUST and SCHMIDT [ 1]) that End <S.= {QU\U£AXB}, 

where XQU=XU, for all xeAXB. The map U-*QU is an isomorphism of (AxB; - , 1 ) 
onto End G. 

By (2.1.3) each fu is in fact an endomorphism of ( A x B ' #), whence it follows as 
in Lemma 1.1 that for each u there exist maps f„A: A-*A and /„B: B—B such that 
fu((a,b))=(fu

A(.a),fu
B(b)). for all (a,b)iAXB. Hence £ = 9 I x © , where 91= 

= (4; { / • / V ^ X f i } ) and © = <5; {fu
B\ufAxB}). To conclude that the map 

m—qu is an isomorphism of J f onto Ji(91X©), it remains only to note that 
Qu*v~Qu*6v for all u,viAxB. Indeed, XQU%V=X(U*V)=XU*XV = ((XU)TZ0, (xv)n1)= 
= (xQ„n0, XQDn1)=x(gu*gv) for all xeAXB, whereupon the lemma is proved. 
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Before stating the main result of this section, we borrow from EHRENFEUCHT 

and GRZEGOREK [6] the following definition. Given sets A and B, a function 
a: AXB-*AxB is said to be axial if either are0 = 7r0 (left axial) or a7r1 = 7i1 (right 
axial). Clearly a is left axial if and only if 1 * a = a , and right axial if and only if 
a * l = a . 

We now show that an arbitrary group can be realized as the automorphism group 
of the direct product of algebras whose automorphism groups are trivial. In fact, 
we have the following stronger result. 

Theorem 2.2. Given a group G, there exist multi-unary algebras 21 and 23, 
both finite if G is finite, such that G^Aut (21x23) and 91x23 has no axial automor-
phisms other than the identity; thus Aut 21 and Aut SB are both trivial. 

Proof . By the above lemma, it suffices to construct a system (M; *, T) 
satisfying (2.1.1)—(2.1.3) and an isomorphism g— g of G onto the group of units of 
(M ; •, 1), such that no g € G \ { l } satisfies \*g=g or g*l = g. To this end, set 
M=GXG, and for each geG set g=(g, g). Define multiplication in M by: 

and let (M; *} be the rectangular band on GxG. It is evident that I is an identity 
element with respect to multiplication, and that the map g-*g is an isomorphism 
of G onto the group of invertible elements of (M; •, I). Moreover, if an element 
g€G satisfies it follows that (g, g)—(l, g), whence g= 1; likewise 

implies g— 1. Thus, (2.1.3) and the associativity of multiplication are all 
that remains to be proved. 

Let x,y,zzM. If x0=xx we have x(y*z)=x• (y0, z1)=(x0y0, x0z1)= 
= (xoJ'oi x0y1)*(x0z0, x0z1)=xy*xz, while if x07ixl we have simply x(y*z) = 
=x=x*x=xy*xz, whence (2.1.3) is proved. As for associativity, first note that 
XQ^X! implies x(yz)—x—xz—(xy)z. Thus, we now assume x 0=x 1 . If y0=yl 

we then have x(y'z)=x •{y0z0,y^1)={x0y0z0, x0y0z1)=(x>')z. If it follows 
that x0y07ix(syl, whence x(yz)=xy = (x0y0, x ^ ) = (x0j'0, x ^ ) • z= (xy ) z . Thus 
associativity is proved and Lemma 2.1 now gives the desired direct product hav-
ing no non-trivial axial automorphisms. As a non-trivial automorphism of either 
factor would obviously give rise to a non-trivial axial automorphism of the direct 
product, the theorem is proved. 

We close this section by remarking that the finiteness of the algebra constructed 
above, in the case where G is finite, stands in striking contrast to the author's con-
struction in [12] establishing the fact that any group having an element of order two 
is isomorphic to Aut (21x21) for some multi-unary algebra 21 having only the trivial 

xy = Í (X<>y0, Xoj'x) 
[ x otherwise 

if X0 — Xi, 
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endomorphism: if the group has more than two elements the algebra 91 in that con-
struction will be infinite. However, a different construction given in [12] (and subse-
quently generalized to Aut (91") by the author and H. H. JAMES in [ 1 5 ] ) produces a 
finite 91 in the case where the given finite group retracts onto a two-element subgroup. 
One can easily verify that both constructions are free of non-trivial axial automorr 
phisms. „ 

. The fact that finiteness is preserved in Theorem 2.3 makes it plausible that a 
finiteness-preserving construction can be found for Aut (91x91) as well. By a result 
of the author in [13], representing a group as Aut (91x91) for finite 91 is equivalent 
to representing it as Aut 23 for a finite algebra S that is free on a two-element basis. 
Moreover, it is sufficient to allow only unary operations in the former case and binary 
in the latter. In view of the retraction theorem quoted above, the cyclic group of 
order four is the first group for which the question of such a representation is open. 
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Note added August 31, 1981. At the Symposium in Honor of Professor Bjarni 
Jönsson (Vanderbilt University, August 4—7, 1981), Ralph McKenzie announced 
a result that implies an affirmative solution to the conjecture stated at the end of §1. 
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On derivations in generalized matroid lattices 

M. STERN 

1. Introduction. The notion of a generalized matroid lattice (GML for short) 
was introduced in [8]. A GML is a finite lattice L which satisfies the property that for 
each join-irreducible element U<LL and for each element beL the transposed inter-
vals [uAb, u] and [b, u\Jb] are isomorphic. The name "generalized matroid lattice" 
stems from the fact that many properties of matroid lattices (=geometric lattices= 
finite atomistic lattices with covering condition) can be proved in the original form 
or in a somewhat modified form also for GMLs. For results in this direction we refer 
to [8] and [2]. Similar results in a somewhat more general context appear in [7]. 

In the present paper we shall have a closer look on the uniquely determined lower 
cover u of a join-irreducible element m(V0) in a GML. This lower cover u' will be 
called the (first) derivation of the join-irreducible element u. Concerning derivations 
of join-irreducible elements, we generalize in Section 3 some results of [6]. In the fol-
lowing Section 2 we deal with some basic facts which will be used in the sequel. 

Acknowledgment. The author thanks the referee for his helpful remarks. 

2. Some basic facts. By x<y we mean that x is a lower cover of y. 
Dealing with finite lattices, we define an element u to be join-irreducible if it 

has exactly one lower cover u' < u. In this context the least element 0 is not considered 
as join-irreducible. The uniquely determined lower cover u' of a join-irreducible 
element u will also be called the (first) derivation of u. By the /z-th derivation uw 

of a join-irreducible element u we mean the element (w(n_1))'. The element t/(n) 

exists exactly if the elemente u, u', u", ..., uin~X) are all join-irreducible. By J(L) we 
mean the set of all join-irreducible elements of a finite lattice L. 

We restrict ourselves now to the abovementioned class of generalized matroid 
lattices. 

Def in i t ion , (cf. [8]) Let L be a finite lattice and denote by J(L) the set of all 
joinirreducible elements of L. We call L a generalized matroid lattice (briefly: 
GML) if the following isomorphism property (I) is satisfied: 

Received January 19, 1981, and in revised form March 16, 1982. 
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(I) For all uiJ(L) and for all biL the transposed intervals [uAb, w] and [b, u\Jb] 
are isomorphic. 

The isomorphism indicated by this definition will be denoted by [uAb, w]s= 
[b, uVb\. The isomorphism property 0) implies (upper) semimodularity in the sense 
of [11. 

Lemma 1. [8, Theorem 3] A generalized matroid lattice is upper semimodular, 
that is, the implication 

aAb < a => b -< aVb 
holds true. 

By Lemma 1 the Jordan-Dedekind chain condition holds in a GML, i.e. all 
maximal chains of an interval [x, y] have the same length (or dimension) which will 
be denoted by d[x, >>]. This uniquely determined nonnegative integer d[x, y] is called 
the length (or dimension) of the interval [x,y]. 

Using arguments concerning the lengths of intervals, we show now that in a GML 
arbitrary join-irreducible elements and arbitrary elements form modular pairs in the 
sense of the following 

Def in i t ion . Let a, b be elements of a lattice L. We say that (a, b) is a modular 
pair, and we write (a, b)M, if the implication 

c ^ b => (cVa)Af> = cV(aAfc) (c€L) 
holds in L. 

Lemma 2. Let L be a generalized matroid lattice. Then (u, b)M holds for each 
join-irreducible element uU(L) and for each biL. 

Proof . We show that the implication 

c S b (cVu)f\b = cV(uAfc) 

holds in L. By [3, Lemma 1.4] it is sufficient to show that (u, b)M holds in the interval 
[uAb, uVb]. We may therefore assume that uAb^c^b. By the isomorphism prop-
erty (I) we have 

[uAb, w] = [«Ac, u] s= [c, c\lu\, 
which implies 

(1) d[c,cVu] = d[uAb,u]. 

By the isomorphism property (I) we have moreover 

[uAb, u] = [uA{bA(c\/u)}, u] = [AA(CVM), wV{M(cVw)}] 
which yields 
(2) d[bA(cVu), «V {¿>A(cVu)}] = d[uAb, «]. 
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Furthermore we have 
( 3 ) c ^ ¿>A(CVM) S HV { ¿ A ( C V « ) } S i / V c . 

The relations (1), (2), and (3) together imply now wV {bh(c\l u)}=u\J c and 
c=6A(cVw). This latter equality together with the trivial c=c\J(uf\b) implies 
the assertion. 

We remark that Lemma 2 has also been proved by other methods in [8] and [2]. 
Finally we shall need 

Lemma 3. Let L be a generalized matroid lattice, u£j(L), a€L and u'\/a-<. 
<u\/a. Then u'\la<u\la. 

Proof . From u'Va<uMa it follows that u-^u'Ma. Hence it follows that 
MA(M'Va)=u'<u. By the isomorphism property (I) we have then 

[«', u] = [uA(u'Va), «] ~ [u'Va, uV(u'Va)] = [u'\Ja, u\Jd\, 

that is, u'\]a<uVa. 

3. Properties of derivations. In this section we generalize some results of 
[6]. For other properties of derivations in a generalized matroid lattice we refer to [8]. 

T h e o r e m 4. Let L be a generalized matroid lattice, and let u, ux, ..., uk be 
join-irreducible elements of L. Moreover, let u S ux\l ...\/uk where the join 
ux\J... V«jc is (without loss of generality) assumed to be irredundant, and suppose 

u^u1y...yui_1Wu'i\/ui+1y...\Juk 

holds for all i (1 sSiSA:). Then 
u' 3= «;v ...Vuk. 

Proof . If we had 
U I V H 2 V . . . V W * = u^u^M ...Nuk 

then it would follow that 

u =§ « I V W A V . - . V « * = « I V « 2 V . . . V W T , 

contradicting the assumptions of the theorem. Hence we have 

UIMU^M . . . V W F C < «XVWGV . . . V W T . 

By Lemma 3 we obtain now that 

( 4 ) M I V « 2 V . . . V « L K - < « I V M 2 V . . . V M T . 

Moreover, u $ t/iV"2V...VM* implies by the isomorphism property (I) that 

[ K A ( « I V " 2 V . . . V « * ) , u] ^ [ U ; V « 2 V . . . V W * , K 1 V M 2 V . . . V H * ] . 

T 
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Because of (4) we obtain from this that 

(5) wA(wiVw2V...ViO -< u. 

But u is join-irreducible and has therefore exactly one lower cover u'. Hence (5) 
yields 

u' = MA(«iV«2V...VM») S u\Mu2y ...yuk. 

Similarly, one shows that also 

- ... M'S M1V...VMy_1V«;VMJ+1V...V«)t 

holds for j = 2, ...,k. Thus we get 

(6) u'm A (u1V...\/uJ_1Vu'l\Juj+1\/...Vuk). 
j=i 

We show now that 

(7) A (u1V...Vuj_1Vu'J\/uJ+1V...\/uk) = u[\J ...\Ju'k i 

holds. Because of (6) this already implies the assertion of the theorem. In order to 
prove (7) we define for the sake of brevity 

_ def 
u m = u1V...VMm_1VMm+1V...VM(i. 

According to the assumptions of the theorem we have umV um. Applying 
again Lemma 3 we get 

U m V U m < "lV ...VW*. 

From this we obtain by the isomorphism property (I) that 

V u 

holds. Since um is join-irreducible, we have therefore 
(8) umA(u1V...Vum_1\/u'mVum+1\/...Vuk) = u'm. 
We now define 

* m = "iV...VMmVM;+1V«ni+2V...VMk, zm = um+1, 

ym= MiV. . .vw ;v«m + 2v. . .v« t 

with m = \, . . . , k - \ . Since we have ym^xm, Lemma 2 implies (zm, xm)M. This 
means that we have 
(9) . . (ymVzm)Axm = ymV(zmAxm). 
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According to the definitions of zm and xm we get from (8) the equation ••. 

(10) zmAxm = um+1. 

Substituting (10) in (9), by the definition of ym we obtain the relation 

(ymVzJAxm = u^ ...Vu'mVum+1Vum+2\/...\Zuk. 

This implies in particular 

( t tVzJAx! = (MiV«2VM3V...VMk)A(«1VM2Vw3V...VMk) = 

= MiVM2V3V--.Vwfc = y2Vz2. 

Hence we obtain 

(y*VzJAxt = («I V «2 V1/3 V... V uk)A (WX V M2V u3M W4V ... V H*) = 

= U^U^U^UiM ...\]uk. 

Continuing this procedure, we obtain finally (7) and the theorem is proved. 
Now we consider as a special case those GMLs in which every join-irreducible 

element is a cycle. (By a cycle we mean a join-irreducible element z for which the in-
terval [0, z] is a chain). To these lattices we apply the preceding theorem in order to 
obtain an estimation for the dimension (=length) of a cycle. We remark that other 
properties of these special GMLs are considered in [4] and [5] in a slightly more 
general setting. 

Coro l l a ry 5. Let L be a generalized matroid lattice in which every join-irre-
ducible element is a cycle. If z,zx, ..., zk are cycles of L and if z ^ zxM ...\lzk, then 

d[Q, z] == max d[0, Zj] (1 7 == k). 

Proof . By Lemma 1 the lattice L is upper semimodular. Hence the interval 
[0, zxV ...Vzfc] is also upper semimodular. The function dintroduced in the preceding 
section is therefore a dimension function on the interval [0, z1V ...Vzt]. Thus we have 

d[0, z] ^ d[0, ZjV... Vzfe] s J d[0, Zj]. 
j=1 

Without loss of generality we may assume that no z c a n be replaced 
by a cycle yj-^Zj in such a way that 

z s z1V...VzJ._1VjJ-VzJ.+1V...Vzt 

also holds. This yields in particular that every derivation zfy (n= 1,2, ...) of Zj 
satisfies the relation 
(11) z $ z1V...Vz;_1Vzj">Vz;+1V...Vz t. • . . , 
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Moreover, the join representation zx\!...y zk must be irredundant. Otherwise we 
would have a relation 

z si z,V...Vz,._1Vzy+1V...Vz t 

contradicting (11) since there exists a natural number m with z(f=0. 
Hence all assumptions of Theorem 4 are satisfied. Since all join-irreducible 

elements are cycles, Theorem 4 can be applied repeatedly. This yields for the /i-th 
derivation 
(12) z(n) S Zin)V...Vz^n). 

Putting f=max d[0, Zj] (1 sjsk) we have zf=0 (ISj '^fe). Because of (12) we 
obtain therefore 

z(,) S Zi'V-.-Vz»0 = 0, 

that is, z ( o=0. This implies d [0 , z ]^ t which proves the corollary. 
We remark that Theorem 4 and Corollary 5 were proved in [6] for the special 

case of modular lattices (of finite length) in which every join-irreducible element is 
a cycle. It should also be remarked that our proofs carry over without alteration to 
the case of lattices of finite length with isomorphism property (I). 
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The finite interpolation property for small sets of classical 
polynomials 

ARTHUR KNOEBEL 

0. Introduction 

LAGRANGE'S [7] interpolation formula tells us that an arbitrary operation on the 
real numbers may be matched at a finite number of points by some polynomial, that 
is, by an operation composed solely from addition, multiplication, and constants. 
Let us abstract the essence of this definition. Following FOSTER [3] and PIXLEY [9], 
we shall say that such a collection F of operations over a set 5 has the finite interpo-
lation property if any other arbitrary operation can be matched at an arbitrary 
finite set of arguments by some composition of the operations of F together with 
constants of S. In other words, any partial operation defined on a finite subset of S 
can be extended to a composition of operations of FUS, defined on all of S. 

The formulation of this concept immediately provokes the question of whether 
there are apparently weaker sets of operations which nevertheless have the finite 
interpolation property. For example, in KNOEBEL [4 ] , less was required when the 
finite interpolation property was established over the reals for the set {+, 2}, where 
"2" is the operation of squaring. More generally, {+, 2 } has the finite interpolation 
property in any field not of characteristic 2. Similarly for multiplication, it was proven 
in KNOEBEL [5] that the set {X, s} has the finite interpolation property in any field 
where s is unit translation: j ( x ) = x + 1 . 

The object of this article is to generalize these two results by replacing squaring 
and translation by rather arbitrary classical polynomials. We investigate in this 
paper four settings determined by two dichotomies: multiplication or addition over 
the complex or real numbers. In each of the four cases, we characterize those poly-
nomials of one argument which together with the given binary operation yield the 
finite interpolation property over the given set. 

The specific results are these. If p is a polynomial of degree at least two over the 
complex numbers C, then the set {+, p) has the finite interpolation property over C, 
and conversely. Restricting the operations to the real numbers R, we find that p 

Received January 5, 1981, and in revised form April 8, 1982. 
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must also be of even degree or of odd degree with the leading coefficient negative 
for the set {+,/?} to have the finite interpolation property over R. 

To describe the situation with multiplication, we shall say that a polynomial is 
cyclic of order k if it is of the form 

P(x) = C0(xi-Cl)(xk-C2)...(xk- Cj) 

for some constants c0, cx, ...,Cj; the polynomial p is cyclic if it is cyclic of some order 
2. Then the set {X,/?} has the finite interpolation property over C if, and only if, 

the polynomial p is not cyclic and not constant, and p(0)^0. Over R, we need only 
to avoid p being cyclic of order 2, but p should cross the x-axis. 

The order of presentation is in order of increasing difficulty of the proofs. The 
method of proof applies standard results about classical polynomials to the theorems 
found in KNOEBEL [5], [6]. Numerous examples will illustrate the tightness of the 
hypotheses. Three open problems close the paper. 

Needed in the sequel are certain definitions. By polynomial we mean a polyno-
mial function in one variable in the classical sense, that is, a one-place function 

p(x) = <x.X+<i«-iXn-1+..-+(to-
on R or C, composed from addition, multiplication and constants. The degree of p 
is abbreviated 'deg/?'. An operation to on a set S is any «-place function co:Sn-~S 
for some finite n. If F is a family of operations on a set S, then by an F-polynomial 
we understand a composition of operations from F together with constants from S. 
For example, overR, a {+, X }-polynomial is just a classical polynomial of R[x]; 
a {+}-polynomial is a multilinear operation. With a little effort one can show that 
a {+, 2}-polynomial over R or C is any monic polynomial whose degree is a power 
of 2. We say that a family F of operations on a set S has the finite interpolation prop-
erty, if, for every positive integer n, for every finite subset TQS" and for every 
function / : T-*S, there is an F-polynomial a> such that / agrees with at on T, that 
is,/=co|7\ Briefly, we say that F has the f.i.p. over S. 

A highly restricted version of this concept is that of (m, n)-transitivity, where 
m and n are positive integers. We say our family F of operations is (m, n)-transitive 
oyer S if, for every subset Tm<ZS of m elements, for every subset T„QS of n ele-
ments and for every function / : Tm—Tn, there is a composition a>:A-~A of ope-
rations in F such that f=co]Tm. Oftentimes, we wish to obtain (m, «)-transitivity 
by means of constants as well; this is most easily accomplished by the phrase, ' F U S 
is (m, n)-transitive.' 

To prove that in our theorems the conditions on polynomials are tight enough 
and really necessary, we introduce the idea of preservation of properties. Let P be 
a property, that is, a finitary relation on S, say . PQ Sm. We say P is preserved by 
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an operation ( o : S " ^ S if, whenever 

(s}, s], ..., sJ)£P (for all j = 1, ..., n), 
and 

s'o = co(si, si, ..,,s'„) (for all i = 1 , . . . , m), 
then 

(s0; s0) •••> S™)€/>. 

Clearly, preservation passes through composition; that is, if P is preserved by « + 1 
operations co0,co1, ..., co„ where co0 is n-ary and coi, ..., <u„ arep-ary, then P is preser-
ved by the composition a>0(a>i, ..., OJ„). Typically, we apply this to show that a parti-
cular constraint is necessary for the f.i.p. by finding a property P which is preserved 
by all operations of F (and constants) and yet is not preserved by every conceivable 
operation needed to establish the f.i.p.. 

Some historical comments are in order. To gain more information on the origins 
and subsequent development of Lagrange's interpolation formula, one should start 
by looking in the index of GOLDSTINE [4]. Robin McLeod has pointed out to me that 
the finite interpolation property has acquired a meaning in contemporary universal 
algebra different from that in numerical analysis; see DAVIS [2] for the classical 
definition. Infinite universal algebras with the finite interpolation property are called 
'functionally complete in the small' by FOSTER [3]. Each such algebra generates, in 
a natural way by the subextension of identities, a class of algebras each of which is 
isomorphic to a bounded subdirect power of the generating algebra. This theorem 
of Foster (Theorem 19 .1 , loc. cit.) is an infinite analog of STONE'S [12] representation 
theorem for Boolean algebras. For related work on the finite interpolation property, 
the interested reader should consult the recent surveys by KNOEBEL [6], PIXLEY [9] 

QUACKENBUSH [10] a n d ROSENBERG [11]. 

1. Multiplication 

In this section we give necessary and sufficient conditions, over both the real 
and complex numbers, for the set { X , / ? } to have the f.i.p.. Needed to prove these is 
the following result from an earlier paper. 

Theorem 1 .0 (KNOEBEL [5]). If FUS is (2,2)-transitive over S, and there is a 
binomial X in F with a null element 0 and a unit element 1 in S, that is, 0Xs=0= 
= J X 0 , 1 X I = J = I X 1 (s£S), then F has the finite interpolation property over S. 

With this we can prove the next theorem. 

Theorem 1 .1 . Let / ? £ C [ X ] . Then { X , / ? } has the finite interpolation property 
over C i f , and only i f , 
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(i) p is not constant, 
(ii) p (0)^0, and 

(iii) p is not cyclic. 

Proof . => Let F={X,p}. By way of contradiction first assume p(0)=0. 
Then any non-constant F-monomial composed from X,p and constants will have 
the same property, and thus we do not even have (l,l)-transitivity. 

Similarly, if p is cyclic of order k, let Pk be the binary relation holding for pairs 
(a, b) in C2 whenever there is a c in C such that a and b are both roots of zk—c, i.e., 
b=ae2n,J/k for some integer j. Clearly p, as well as multiplication and constants, 
preserve Pk, so F is not (2,2)-transitive. 

<= In view of Theorem 1.0, we need only to establish the (2,2)-transitivity of 
FU C. To this end, let a and b in C be distinct with A and B also in C ; we are looking 
for a {X,/>}-polynomial q such that q(a)=A and q(b)=B. Without loss of genera-
lity, assume a^O. We claim such a q can be found in the form 

q(z) = yXp(0Xp(ocXz)), 
br 

where a, fi, y are constants to be determined. Let r be a root of p such that — is 
b (b\2 a 

not also a root. Such a root always exists, since otherwise r,—r,\—\r,... must all 
fl {a) fb\k 

be roots. Since a polynomial has a finite number of roots, this must imply that I — I = 1 

for some k^2, and therefore p is cyclic, a contradiction. 
Now a goes into A and b goes into B by the following sequence of polynomial 

transformations : 

a r • 0 • 0 p(0) • A 

£ x < > P ( > uxo p ( ) J ^ x o 

The last multiplication is possible since p(0)^0. We may choose 

n 
br (Bp(0)\ Bp( 0) 

since — is not a root; by p 1 we mean a fixed root z„ of p(z) =0 , 
a \ A ) A 

which always exists over the complex numbers. The foregoing does not work when 
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A=0. In this case choose 

and finish two steps earlier 

For example, the set {X, x 2 + x + l } has the f.i.p. over C, but {X, x 2 + l } does 
not. Similarly, {X, x + 1 } has the f.i.p., whereas {X,x®+1} does not. 

When C is replaced by R, the conditions must be formulated differently, but the 
proof is similar. By the phrase ' / crosses the x-axis' we mean that there are a and b 
in R such that 

/ ( f l ) < 0 </(&). 

Note that this is a stronger condition than merely saying that / h a s a real root. 

Theo rem 1.2. Let /J€R[X]. Then {X,/>} has the finite interpolation property 
over R i f , and only i f , 

(i) p is not constant, 
00 P(0)*0, 

(iii) p is not cyclic of order 2, and 
(iv) p crosses the x-axis. 

Proof . => We show the contrapositive. If p(0)=0, then 0 cannot be taken 
into a nonzero element by any { x , />}-polynomial. 

If p does not cross the x-axis, then it is all of one sign, and consequently no poly-
nomial in X and p can take two numbers of the same sign into numbers of opposite 
sign. More precisely, letting P—{(a, b)\ab^0}, we see that all operations of 
{X./>}UR preserve P\ hence, e.g., x + 1 is not a (X,p}-polynomial in this case. 

If p is cyclic of order 2, that is, 

P(x) = ro (*2 - ' i ) - r2) • • • (x2 - rj), 

and also a=—b?±0, then any {X,/?}-polynomial q will give \q(a)\ = \q(b)\. Thus, 
for example, 1 and — 1 cannot be taken into 1 and 2 respectively. The preservation 
relation in this case is P={(a, ±a)|a€R}. 

<= We need only modify the proof developed in the complex case. We assume 
that the reader now has before himself the sequence of polynomial transformations 
of the previous proof. Note that the only real roots of unity are r= ± 1 and there-
fore, for the proof to work over R, we need only rule out polynomials which are 

r 
cyclic of order 2 in the first transformation of multiplying by —. 

a 

P = 
B 

•(f)' 
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The only other steps that might be different for the real, case are the third and 
fourth, which depend on finding a root of 

Such a root may not exist when p is of even degree. In such an eventuality, certainly 

Bp( 0) Pix) = — 
A 

has a root, since p crosses the x-axis. Using this root instead, we will end up with 
(a, b) going to (A, —B). However, redefining the third transformation as multiplica-
tion by — P will rectify this unwanted sign. 

By way of example; notice that if p{x)=x2+\ or x2+x+.l, then {X,/?} does 
not have the f.i.p. over R, but if p(x)=x+1 or 1, then it does. 

2. Addition 

We now turn to addition to see which polynomials achieve the f.i.p.. The proofs 
now are more complicated; we do the complex case first since it is simpler than the 
real. Both depend on the following theorem. 

Theorem 2 . 0 (KNOEBEL [6]). If FUS is {3,2)-transitive over S, and there is a 
binomial •+ in F with a unit element 0 in S, that is, 0 + J = s — J + 0 (s£S), 
and such that s+s ^ 0 for some s£S, then F has the finite interpolation property over S. 

Theorem 2.1. Let p^C[z], Then {+,/>} has the finite interpolation property 
over C if and only i f , p is of degree at least two. 

Proof . => Let jF= {+,/?}. On the contrary if d e g p ^ 1, then p is constant or 
linear, in which case only linear operations are obtainable by composition from + , 
p and elements of C. 

. <= Let us show (2,2)-transitivity first. Because we have sums and constants, 
translations are available for use anywhere. If we wish to take a to A and b to B, 
it suffices to find a z0 such that 

p(z0+.6)-p(z0) = A •• 

where 8=a—b and A=A-B. Since degp^2 , the left side has degree at least 1. 
Among the complex numbers there is a solution z0 to this difference equation. Hence 
{+,p}UC is (2,2)-transitive. 
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For (3,2)-transitivity, let us prove that for any distinct a,b, and c in C there 
must be a { + ,/?}-polynomial q for which q(a)=q(b)^q(c). By repeated addition, 
Nz is a {+}-polynomial for any positive integer N. Consider the family of polyno-
mials indexed by N£N: 

qt(z)=p(z+X) + Nz. 

We claim one of these will do the trick. For each positive integer N there is a root 
XN in C of the equation 

p (a+XN)+Na = p (b+XN)+Nb 

since deg/7^2. Thus qxJa)=<lxN(b) for all positive integers N. If for some N, 
l l ^ ^ q l ^ c ) , we are finished. 

If not, we will reach a contradiction. For in this worst case, we would have for 
all positive integers N, 

< / ! » = < 7 Î » = < ( c ) -

In terms of p, this is the infinite family of equations 

p(a+XN)+Na = p(b+XN)+Nb = p(c+XN)+Nc. 

From these, upon eliminating N, we derive 

p(a+XN)-p(b+XN) _ p(b+XN)-p(c+XN) 
a—b b—c 

for all positive integers N. But each side is a polynomial agreeing with the other side 
at an infinite number of points. Since a nonzero polynomial has a finite number of 
zeros, they must agree at all points: 

p(a + z)-p(b + z) _ p(b+z)-p(c+z) 
a—b b—c 

Hence the coefficients of z" - 2 on each side are equal: 

where the a„ come from />(z)=a„zn+a„_1zn~1 + . . . . Therefore, a=c, a contradic-
tion to the distinctness of a and c. 

The preceding paragraph, together with the (2,2)-transitivity proven earlier, 
establishes the (3,2)-transitivity of {+, p}UC. From Theorem 2.0 follows the 
f.i.p. of {+,/>}. 
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By the way of illustration, note that {+,/?} has the f.i.p. over C when p(x)= 
=x*+l, x*+x+\ or JC®+1, but not when p(x)=x+l. 

T h e o r e m 2.2. Let R[JC]. Then {+,p} has the finite interpolation property 
over R i f , and only i f , 

(i) degp^l, and 
(ii) deg p is even, or when deg p is odd, the leading coefficient a„ of p is negative. 

P r o o f . => As in Theorem 2.1, condition (i) cannot be dropped. 
Now if p satisfies the first condition but fails the second, it must be that p is 

a nonlinear polynomial of odd degree with positive leading coefficient. For suffi-
ciently large differences between a and b,p will magnify this difference, and thus 
there is no way in which such a large difference may be decreased. In more detail, 
one can find a positive real number m such that p(a)—p(b)>m whenever a—b>m. 
Let P={(a,b)\b—a>m). Then P is preserved by both 4- and p. Hence {+,/>}UR 
is not (2,2)-transitive, and consequently {+ ,p} does not have the f.i.p.. 

<= Let us consider only the case of a polynomial of odd degree at least 3 with 
negative leading coefficient: 

P(x) = <xX+ — +*o 

with a„<0 and n odd and n^3. The case of a nonconstant polynomial of even 
degree is similar but less complicated, and so the necessary modifications will be left 
to the reader. Notice that, with addition and constants appropriately composed, all 
translations and their inverses are available. By suitable translations on both the x-
and ^-coordinates, we may thus, without loss of generality, safely assume that 

(i) p(0) = 0, 
(ii) p(x) > 0 if x < 0, 

(iii) p"(x) > 0 if x s o . 

We first show the (2,2)-transitivity of {+ ,p}UR. Then later the argument will 
be modified to accommodate (3,2)-transitivity by showing that in any triple the first 
two numbers may be identified by some polynomial which keeps the third one distinct. 

Assume a,b,A,B£S and a>b\ we will try to find, a {+ , p}-polynomial / 
such that f(a)=A,f(b)=B. Set 6=a—b and A =A —B. Again by the use of trans-
lations, we would be finished if we could find a X in R such that 

p(X+5)-p(X) = A. 

The required polynomial/would be f(x)=p(x+X—b)— p(X+5)+A. Such a root A 
would exist if p were of even degree, since then the difference is of odd degree and 
always has a root in R. 
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However, when p is of odd degree, this won't work in general, but it can be made 
to work with the following modifications. Remember thatiVx is a {+}-polynomial for 
any positive integer N. Set 

??(*) = p(x+X)+Nx. 

To obtain (2,2)-transitivity now with ql instead of p, the constant X should be chosen 
to be a root of 

qUa)~qUb) = A. 
In terms of p, this is 
(*) p(a+X)-p(b+X)+N5 = A. 

Whether such a X exists depends on the value of N. Now p{a+X)—p(b+X) 
has leading term mn(a—b)X"_1 with negative coefficient and even exponent. Since 
a>b, the equation (* ) will have a root X if N is chosen sufficiently large. But N can 
be any positive integer, so this is always possible. Hence {+,/>}UR is (2,2)-transitive. 

To establish (3,2)-transitivity, we argue as follows. Still assuming p to be a poly-
nomial of odd degree satisfying conditions (i) to (iii), we will take a and b both to 0 
(possible by the (2,2)-transitivity just established), but we will do it carefully enough 
so c goes to a nonzero real number. First of all, the ordering on a, b, and c may be 
reversed by translating to the left beyong 0 and applying p. Therefore, without loss 
of generality, we may assume a > b > c or a > c > b . Secondly, in the next para-
graph we need X+a to be negative. By choosing N sufficiently large — perhaps 
larger than before — we may guarantee X+a to be negative. 

Proceeding as before with (2,2)-transitivity, we transform both a and b into 0 
by the {+,/>}-polynomial 

q(x) = q?(x)-qN
x(a) 

where X+a^O, and N>0. Set C=q(c) and y=q^(a). Thus 

0 = q(d) = p(a+X)+Na-y, 
0 = q(b) = p(b + X) + Nb-y, 

C = q(c) = p(c+X)+Nc-y. 

Notice that the arguments of p are all negative. Recall that p"(x)>0 when x<0 , 
and hence this is also true for q. If by some fluke C=0 , we would have a concave 
segment agreeing with a straight line at three points, which is nonsense. Thus 
{+,/>}UR is (3,2)-transitive. 

We make two comments. This convexity argument for (3,2)-transitivity using 
three points in the real case could be replaced by the argument using an infinite num-
ber of points in the complex case. Secondly, as an illustration, notice that both 
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{ + , * + ! } and l + j ^ + l } can be shown not to have the f.i.p. over R by directly 
observing that both functions are monotonically increasing, and so all compositions 
must have this property. On the other hand, the sets {+, x2-f 1}, {+, x 2 + x + l } 
and {+, - ^ + 1 } all have the f.i.p.. 

3. Open problems 

We close with three open problems suggested by the theorems of this paper. 
1. The set {+, cosh} can be shown to have the f.i.p. over R by arguments simi-

lar to those used in this paper since the hyperbolic cosine is shaped like a parabola. 
The problem is to find an appropriate definition of 'polynomial-like' so that the results 
of this paper are still true for functions which are not polynomials but similar to them 
in behavior. 

2. Replace addition or multiplication by an arbitrary polynomial in k variables, 
and give necessary and sufficient conditions for the set {/?, q) to have the f.i.p. when 
q is a polynomial in one variable. More generally, which sets F of polynomials in 
any number of variables have the f.i.p. over C or R? Probably for most polynomials 
p of two or more arguments, {p} by itself has the f.i.p. The evidence for this is 
MURSKII 'S [8] theorem that on a finite set, the proportion of two-place operations 
with the f.i.p. to all two-place operations approaches 1 as the cardinality of the set 
increases without bound. Compare this with the result of DAVIES [1] that the propor-
tion of two-place Sheifer operations to all two-place operations approaches 1/e as 
the size of the finite set increases without bound. (An operation is Sheffer if all other 
operations are obtainable from it by composition without the help of constants.) 
Most likely, algebraic geometry will be needed to settle the exceptional cases. 

3. Extend these results beyond R and C to more general structures, say, all 
fields. 
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Additive functions with regularity properties 

L КАТА! 

1. Recently J. L . MAUCLAIRE and L E O M U R A T A [1] proved that a multiplicative 
function g(ri), satisfying the conditions 

|g(n)| = l (n = 1, 2,...), 
and 

•7 2 lg(n + l ) -g (n ) l - 0 ( * — ) " X nsx 

has to be completely multiplicative. For a real z let ||z|| denote its distance from the 
nearest integer. Their theorem is equivalent with the following assertion: If / is 
additive and 

(1.1) i 2 | | / ( n + l ) - / ( n ) | | ~ 0 
X n s x 

then / is completely additive. 
I conjecture that the following assertion is true: I f / i s an additive function satis-

fying (1.1), then f(n)=clog n+g(n), where g(n) is an integer valued additive func-
tion. 

In [2] the following simple assertion was proved: If f(n) is additive and 
л| | /(и+1)-/(и)| | = 0(1), then f(n)=с log n+g(n), where g(n) is an integer valued 
additive function. Now we prove the following stronger 

Theo rem 1. If f(n) is additive and 

(1.2) л||/(п+1)-/(и)11 = ООО . ' • • ' • / / Л " . 

with a constant y<l, thenf(n)=clogn+g(n), where g(n) is integer valued. 

Proof . By the cited result of Mauclaire and Murata, we may assume t h a t / i s 
completely additive. Let /„ be the nearest integer to (/(и+1)—/(л)), arid <г(л)= 

= (f(n+l)-f(n))-In. Then we have < 7 ( n ) e [ - i j ] , and from (1.2), n\o(n)\ = 

=0(ny) . Let 
T(x) = max m |<r(m)|. ffl^X 

Received October 1, 1981. 
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We shall prove step by step the following assertions: 

(1) The assertion is true if T(x)=0( 1) 
(2) If T(x) = 0(xr), y < l , then T(x)=0(logx). 
(3) If T(x)-~ oo, then the fractional parts of mo(m) are everywhere dense 

[0, 1). 
(4) Completion of proof. 

We start from the identity 

/ ( ( n + l ) 2 - l ) - / ( ( « + 1)2) = f(n) -J(n +1) +f(n+2) -J(n+1), 

which by <r(n)—0 implies that 

(* ) ff(n+l) = o(n)-o((n+\y-\) if / !>/ !„ . 

Applying this identity for n + 1, ..., n+H— 1 instead of n, we get 

o(n+H)-tr(ri)= 2\<r(n+j+l)-<r(n+j))=-2a({n+jy-l), 
J=o j=l 

so that 

J?o(n+H)-Ro(n)=-R£a((n + /)2—l)(/?—/) (n > nQ). 
ffS« 1=1 

Let n=mR and observe that 

(1.3) V °(mR+H) = J(mR+R)-J(mR) - *£ ImR+H = 
h=O . H=O 

= <r(m) + (Im-Z /mR+fl). 

The absolute value of the left hand side of (1.3) is not greater than 

RT((m + l)R) r((m + l)fl) 
mR m 

that is, less than 1/2 provided m>m0, and R is not too large. Consequently it 
a(m); therefore 

(1.4) ff(m)-Ra(mR) = - ff((m*+l)2-l)(l?-l), 
1=1 

if r ( ( i n + l ) / ? ) < y . The right hand side of (1.4) is majorated by 

IPT((m + iyR2) 
m2R2 

hence 

(1.5) \ma(m)—Rma(mR)\ + 
m 
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Assume now thflt T(x) is bounded, Putting wi—Afi, r—JVj, and 
m=N2, R=Nl into (1.5) and using the triangle inequality we get 

for every large NltN2. This shows that Na(N) is a Cauchy sequence, consequently 
No(N)-»A. 

A e Let a(m)=—h-7, em—0. Furthermore, let p and q be arbitrary integers m A 
satisfying the relations: l^q/p, A log q/p<1/2. Consider the relation 

qU-l qV-l 
№ - f ( p ) = 2 (/(n+ !)-/(»))= 2 °{n)+J(U), n=pV n=*pU 

where J(U) is an integer depending on U. The sum on the right is 

as U— Hence 

qU-l 1 qU-l Fm „ 

m=*pu m m=pv m q 

f(q)-f(p)-A log J- = /(£/)+%( 1), 

which shows that J (U) is constant for U>U0(p, q). Consequently for t/— <=° we 
get that f(q)—f(p)—A log qjp is an integer, which immediately implies our 
assertion. 

Assume now that T(x)=0(xy), T(x)>Kxy. Using (1.4) with R=2 we get 

(1.6) 2ma(2m) = ma(m)+mo((2m+\f-l). 

Furthermore, from (*) we get 

(1.7) (2m+l)tr(2m + l) = [ m + y ) « r ( m ) - ^ t l < r ( ( 2 m + l ) i ! - l ) . 

Let x>x0 and assume that T(2x)>T(x). The maximum of \ncr(n)\ in [1, 2x] 

is reached in x j . If the maximum is taken for even n, then from (1.6), 

T(2x)^T(x)+ max m|<r( (2m+l) 2 - l ) | . 

Since (2/M+1)2-1=(2/M)(2OT+2)S2X(2X+2)=4X(X+1), the last term is majorated 
by x" 1 T(4x(x+l ) ) , therefore 
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Assume that the maximum is reached for 2 m + 1 e(x, 2x\. Applying (1.7), as earlier, 
we deduce ' -

Since Ax(x+ l )<8x 2 , 2 ( x - l ) > x for large x and T(x)/x— 0, we have 

7X8*) S r (x) + I ^ + e j t , 

T(x) ' 
where e, = — 0 . . 

x 
Assume that y >1/2. Then 

— < x2y 1, ex « x2y 1, 

so that 

(1.8) , T(2x) r W + c x 2 ' - 1 

for x ^ x 0 . Putting ^ = 2 ^ 0 (&=0, 1, 2, ..., JV—1), we deduce that 

(1.9) T(2NXo) Z T(x0)+c2 x?-1 <<(2%) 2 ' " 1 . 

By the monotonity of T, we have T(x)=0(x2y~1). So we have proved the following 

assertion: If -j«=y«=l, and T(x)<zx?, then T(x)<scx2y-h _ Repeating this argu-

ment for y=yi,2y1 — l=y2,..., in finitely many steps we get an exponent yt €(0,1/2) 

such that Tixj^x^^zx1'2. Assume now that y = l/2. Then (1.8) holds, i.e. 

T(2x)^T(x)+c, and instead of (1.9) we get 

T(2Nx0) ^ T(x0) + O(N). 

Consequently r (x ) = 0(lpg x). Since for >»< 1/2 we have T(x)<zxy ^x112, there-
fore we have 7'(x)=0(Iog x) whenever T(x)«xy, 1. 
.Now let mx,m2 be chosen so that 

T((mi+l)m 2 ) < | m 2 , T( (m 2 +l)ro , ) «= 

This implies (1.4). From (1.5) we deduce that 

(1.10) \ml<r(jn1)-m2(T(m^\ s AT(log m ^ a ) ( — + — ] 

•• • ••• •• < i . V Wj W2/ v-."': V" ' 

holds with a suitable constant K for every pair mlt m2 satisfying 

(1.11) ( c ^ W j < m2 < e"m' 
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with a small positive constant a, and a)positiye constant c i ; From (1,10) we get 

m2 . m1m2 , 

for 7Mi,m2 satisfying (1.11), where B is a bounded variable. 
Now let m1 = U and- m2 run over the interval [U, 2U— 1]. Then we have 

2t;-i j HoeC/l * : : 
(1.12) / (2 ) = J(U)+A(U)U 2 ^ R + O • 

M,= V WL2 \ U J 

From (1.12) we get immediately that mo(m) varies slowly. Consequently, if ma(m) 
is not bounded then the set of the fractional parts of mo(m) is a dense subset in [0, 1). 
Let a€[0, 1) be chosen so that . {/(2)}^ {a log 2}. Let Uj be an infinite sequence 
such tha t{ f f ( £/;)£/,}—a. Putting U—UJ into (1.12), and taking into account that 

•• Wj-l ' .• . 

, 2 l/m2 - log 2, 

we get that {/(2)}= {a log 2}, which contradicts our assumption. 
The proof of our theorem is complete. 

2. Let f(n) be a completely additive function, Ar
1-=Ar

2<... an infinite sequence 
of integers, JV+(2+e))/N], and e>0 a constant, , 

Theorem 2. If • . , 

(2.1) /(«) = ctj (mod 1) for nUNj ( j = 1, 2, ^ 

where a l f a2, ... are arbitrary real numbers, then? a 1 = a 2 = . . . = 0 and f(n) takes on 
integer values only. 

P r o o f , The method of proof is almost the same as that,used in [3]. First we 
prove the following 

Lemma. Let 1 vlyv. be constants. Assume that f(x)=a (mod i) 
in the interval J N = [ N , V N ] . Then for every N^N0(vltv) we have 

/(«) = 0 (mod i), n < (v-vJN. 

Let p,q be arbitrary integers satisfying the conditions . 

(2.2) p rc q < vip, q < (v-vJN; 

For = + 1 we get 
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consequently for every pair p, q satisfying (2.2), 

/(P) =f(n + l) (modi), n€ ( " j ~ y > (»-»OAT-l ) . 

Let f(rt)=y (mod 1). Let n be chosen so that (i^ —l)~2-e:/i2-<(» —oJJV—1. Then 
/(n2)=y (mod 1), and so y=0. Hence 

J (n) = 0 (modi), — n ^ i v - v j N - l . vi~ l 

It remains to prove that f(k)=0 (mod 1) f o r ^ s ^ —1)_1. Putting m = ^ ^ j j -f-1, 

and letting N to be large, we have f(km)=0 (mod 1), and / ( m ) = 0 (mod 1)* 
implying that f(k) = 0 (mod 1). This proves the Lemma. 

Now we prove the theorem. Let Nj=N be temporarily fixed. For an integer k let 

r \N N ^ ^ 

If the intervals Ik,Ik+1 contain a common integer element m, then f(k)=f(k+1) 
(modi). Indeed, mk, m(k+l)zJN, and (2.1) holds. 

There is a common element m, if 

N+(2+e)]fN A T . 
k+1 T~°' 

i.e., if k2-((2+e)Y~N-l)k+N^0. This inequality holds in the interval 
fc2], where 

(2.3) k, = 1 {(2 + e) Y N - 1 } - 1 / { (2 + e) f R - 1}8-4AT, 

(2.4) k2 = i { ( 2 + e) ^ - l } + y] /{(2 + e ) ^ V - l } 2 - 4 N , 

and so 
f(k) = yj (modi), ke[kx, fej. 

It is obvious that k ^ k ^ N ) as N = N j - * ^ . Furthermore, in view of (2.3) and £ 
(2.4), jr—1 +£i> e x > 0 . f o r every large N. Now we may apply the Lemma with 
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kx=N, t;=(l+e1), Putting N=NS we deduce that / ( n ) s 0 (mod 1) 

for rt^-^Nj, i.e., for every n. 

This completes the proof. 
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Beitrag zu den Arbeiten 
"Bemerkung zu einem Satz von S. Kaczmarz" und 

"Über einen Satz von Alexits und Sharma" 

KÄROLY TANDORI 

1. Für ein System <p = {<pk(x)}~ der Funktionen (pk(x)£L(0, 1) sei 

In der Note [1] haben wir den folgenden Satz bewiesen. 

Satz A. Ist a={ak}~ dann gibt es ein orthonörmiertes System <p in (0,1) 
mit L*n(<p\x)=0(l) (x€(0, 1); n= 1 ,2, . . . ) derart, daß die Reihe 

in (0,1) überall divergiert. 

Mit der in [1] angewandten Methode kann man die folgende, schärfere Be-
hauptung beweisen. 

Satz I. Ist dann gibt es ein orthonormiertes System q> in (0,1) mit 

derart, daß die Reihe (1) in (0,1) überall divergiert. 

Beweis des Satzes I... .Es .sei 0 = « ( l ) ^ . f . < « ( / ) < . . . eine Indexfolge, mit der 
Eigenschaft 

(3) ; Af= 2 fljs 4' (/ = 2, 3,...). i=n(T=l)+l , 

Mit bezeichnen wir die Indizes k, für die ak=0 ist. Es sei Z(/) 
die Menge der Indizes k mit n(l-\)<k^n(l) und ak?±0 (1=2,3, ...). 

(1) 2ak(pk(x) 

(2) 

Eingegangen am 16., Oktober 1981 
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Es seien weiterhin Ik(l),Jk(l) (k£Z(I); 1=2,3, ...),/,• (/ = 1,2,. . .) Teilinter-
valle von (0,1) mit den Eigenschaften (für /, llt 4 = 2 , 3 , ...) 

4 , ( 0 n / * , ( 0 = 0 (fei, fe2€Z(0, fex * k2), U 4 ( 0 = (0, 1), 
*€Z<0 

mcsIk(l) = aHAf (fe€Z(0), 4 ( 0 0 7 , ( 0 = 0 (fc<EZ(Q), 

/ J ü n v ü = 0 (k^ZUJ, fc2€Z(/2), ( f e j - f e ^ + i / i - y 2 * 0), mes y t (0 = mes 4(0/ ' 2 (fc€Z(0), A ^ r 0 C'i, '2 = 1, 2, ..., ^ * i,). 

Unter den obigen Bedingungen kann man solche Intervalle leicht angeben. 
Es sei 4»={<Pt(x)}r ein orthonormiertes System von Treppenfunktionen in 

(0,1) mit den Eigenschaften 

' AJ\ak\l, *€/»(Q,' 
|%(*)l = ' (1 — l/l2)1/2/Ymes Jk(l), xiJk(I), (feez(0), 

0 sonst 

l« /vM — i l / V m . e s x e / f , } . . . 
0 sonst} O " 1 ' 2 ' - ) -

Ein solches System kann leicht angegeben werden; man hat die Gruppe der Funktio-
nen (pk(x) (k£Z(l)), (pk^S*) durch Rekursion zu definieren. 

Es sei x£(0, 1). Auf Grund der Definition der Intervalle Jk(l),Jt und der 
Funktionen <pk(x) gibt es einen Index /0 derart, daß 

* < f ( Ü U A ( / ) ) u ( u Jt). V[=[ k€Z(0 / v i ' *,=-»(/„-1) 

Ist /= / 0 , dann gibt es auf Grund von (3) und der Definition von cpk(x) einen Index 
k(x, l)eZ(l) mit 

n(i) 

2 ak<Pk(x) * = H(I-1) + 1 = = AJI * 2'//. 

Daraus folgt, daß die Reihe (1) im Punkt x divergiert. 
Es sei jc€(0, 1). Auf Grund der Definition der Intervalle Ik(l), Jk(l), Jt und 

der Funktionen <pk(x) gibt es für jedes / einen Index k(x, l)£Z(l) mit x£IkiXti}(l); 
weiterhin eventuell existiert einen Index k0(x, /0)€Z(/„) mit x£Jk^x ,j(l0), bzw. 
einen Index /„ mit Dann gilt 

co 00 

2 l<z>k(*)<M0l = 2 Ii»«*.!) (*)<?«*,o(OI+ 

+ bv^ .vWvv« . '« )^ ) ! + \n,(x)(pki(t)\. 
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(Wenn solcher Index k0(x, /„), bzw. z'0 nicht existiert, dann ist der zweite, bzw. dritte 
Glied an der rechten Seite gleich mit Null.) Auf Grund der Definition der Funktion 
(pk(x) ergibt sich dann 

1 oo 

/ 2\<pk(x)<pMdt = S *=1 

= .ZilWMJt./ji*)! J I <Pk(x,D 

+ I«Pmx.Zo)WI / l%oU./o)(0l dt+\(pkoix,lo)(x)\ f \<pko(x,io){t)\dt + 

+ \<Pkio(x)\ f\q>kio(t)\dt = 
\ 

= 2 f A' mes Ik(x n (/) + A ' f 1 - - i 1 mes JHx n (ol + 

+ i 1 i/ / i i, m e s + l /gj Vmes Jko(x,lo)(l0) \ako(x,lo)\l0 

" ¿ ' ( T + i 1 - ! » ? T l + i ' - t f + t 1 - * ) * 1 " * — 

Damit haben wir bewiesen, daß (2) für das System <p erfüllt ist. 

2. Es sei A={A,jr eine monoton nichtabnehmende Folge von positiven Zahlen 
mit oo). Ohne Beschränkung der Allgemeinheit können wir vor-
aussetzen. Für jede positive ganze Zahl / bezeichnet Z(/) die Menge der positiven 
ganzen Zahlen k, mit 2 '<A t^2 '+ 1 . Es seien -=... < / 4 . . . diejenigen Indizes, für 
die Z(J i )^0 ist; die Elemente von. Z(/) seien in der natürlichen Anordnung 
v(z')+l,..., v(z+l). Für eine reelle Zahlenfolge a= {a*}r setzen wir 

v(i+l) 
¿1= 2 «IK 0 = 1,2,...). k=v(i)+l 

In der Arbeit [2] haben wir den folgenden Satz bewiesen. 

Satz B. Gilt 

(4) 
¡ = 1 
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dann gibt es ein System (p = {<Pt(x)}T von reellen Funktionen in L(0,1) derart, daß 

(5) L*a(<p*) S 16A„ (xe(0, 1); n = 1,2,...) . ' . 

besteht, und die Reihe (1) in (0,1) überall divergiert. 

Mit der in [2] angewandten Methode kann man die folgende schärfere Behaup-
tung zeigen. 

Satz II. Gilt (4), dann gibt es ein System <p = {<Pk(x)}T von reellen Funktionen 
in L(0,1) derart, daß 

i n 
/ 2\<Pk(x)<Pk(f)\ dt rs 16A„ (*€ (0,1); « = 1,2, . . . ) 

0 k=l • 

besteht, und die Reihe (1) in (0,1) überall divergiert. 

Beweis, des Satzes II. Für jede positive ganze Zahl i seien 7,(i) ( i = v ( 0 + l , . . . 
..., v ( i+l ) ) disjunkte Intervalle mit 

v(i+l) / v(l+l) 
U . 7,(0 = (0, 1), mes/ s(0 = a? / 2 5 = »(i) + l . / * = v(i) + l 

wenn und / , ( 0 = 0 , wenn as=0. Für einen Index s mit v ( i ) < i S v ( / + l ) 
und <7,7*0 setzen wir 

\AJas, xO.Q), 
sonst; 

im Fälle ö ä =0 sei <ps(:c)=0. 
Sei i0 eine positive ganze Zahl und sei x€ (0, 1). Dann gibt es für jede positive 

ganze Zahl / ( l s / s / 0 ) einen lndex s(x,i) (v(i)<s(x, / )Sv( /+ l ) ) mit x£lHxJ)(i). 
Man hat dann ' 

'»(¡0+1) ¡0 
2 ak <Pk (*) = 2 as(X, o <pS(x..) (*)• , k—1 ¡=1 

Daraus, auf Grund der Definition der Funktionen <pk(x) folgt 
, ' • v(<0+i) ' V - • • ' 

2 *k<Pk(*) = 2 A, (*€ (0,1); ¡0 = 1, 2,...). t=i ¡=i 
Daraus und aus (4) ergibt sich, daß die Reihe (1) in (0,1) überall divergiert. 

Es sei i eine positive ganze Zahl, v(i)<«Sv.(i'+l) und x£(0,1). Dann gibt es 
einen Index s(x, f ) (v(/)<i(x, I ) S V ( I + 1 ) ) mit x£Is(Xti)(i), und so gilt 

J 2 \<Pk(x)(Pk(t)\dt S / |<PS(X,0 W^i(x,i)(0l dt = 

° A2 

= meS h(x, I) (')• as(x,l) 

*.(*) = ( 0 
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Daraus folgt, auf Grund der Definition von Ai und v(i) 
} 

(6) / 2 \<PÁx)vM dt 2A„ (x€ (0, 1); v(i) < n s v(i+1); i = 1, 2, ...)• 

Es sei n eine beliebige positive ganze Zahl. Dann gibt es einen Index /'„ mit v(/0)< 
<nSv( / 0 +l ) , und gilt 

} " 'o-1 } v(i + 1) } " 
/ 2\<PÁx)<Pk(t)\dt^ 2 f 2 \<Pk(x)(pMdt+ f 2 \<Pk(x)<Pk(t)\dt ^ 

Ó7 *=i ¡=0 0 *=v(i)+l 0 t=v((„)+l 
S 2(; .v ( 2 )+.. .+Av ( i 0 )+;j S 4(22+.. .+2 i o + 1) S162'» S 16AV(0+1 á m „ , 

für jedes 1), auf Grund von (6). Damit haben wir bewiesen, daß (5) erfüllt ist. » 
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The stability of d'Alembert-type functional equations 

L. SZÉKELYHÍDI 

In this paper we deal with the following problem: i f f , g, h, k are complex valued 
functions on the Abelian group G with the property, that the function (x, y)-» 
-f(x+y)+g(x—y)—h(x)k(y) is bounded, what can be said about the functions 

f,g, h,kl Obviously, this problem is a generalization of the well-known functional 
equations 
(0) f(x+y)+f(x-y) = 2f(x)g(y), 

(1) f(x+y)+g(x-y) = h(x)k{y). 

Special cases of this problem has been treated by many authors. The special 
case k=1 is of "additive type" and can be reduced to the problem: if (x, —• 
-*f(x+y)-f(x) —f(y) is bounded, what can be said about / ? The problem in this 
form is treated in [2], [4], [5], [6], [8]. The special case g = 0 and h=k—f is treated 
in [3], and the case g = 0 and h—f is treated in [9]. Further, the special case where 
f=g=h and k—2f is treated in [3], and the case where f=g=h is treated in [10]. 
In this paper we completely solve the above problem. 

First we make a simple observation: evidently, if / , g, h, k is a solution of the 
functional equation (1) and a, b are arbitrary bounded complex valued functions 
on G, then the functions f+a,g+b,h,k solve our problem. Our main result is the 
following: if f,g,h,k are unbounded functions, then essentially this is the only 
solution of our problem. 

In the sequel we shall use the following notation and terminology: C denotes 
the set of complex numbers. If G is a group and M:G—C is a function for which 
M(x+y)=M(x)M(y) holds for all x,y in G, then we call M an exponential. The 
function A.G-+C is called additive, if A(x+y)=A(x) + A(y) holds whenever 
x, y is in G. If F:G—C is a function, then Fe and F0 denotes the even and the odd 
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part of F respectively, that is, 

FA*) = f»W = j (F(x)-F(-x)) 

for all x in G. 
In what follows we suppose, that G is a fixed Abelian group in which the map-

ping x—2x is an automorphism. 
We shall use the following theorem: 

Theorem 1. If f , g: G—C satisfy (0), then there are an exponential M: G — C, 
an additive function A: G—C and a, /? constants such that we have the following pos-
sibilities: 

(i) / = 0, g is arbitrary, 
(ii)f=A+a, g= 1, 

( i i i ) / = <xMe+pM0, g = Me. 

The proof of this theorem can be obtained by the method of [1], using the results 
of [7]. 

Lemma 2. Let f g, h:G—C be functions for which the function (x, y) — 
-f(x+y)—g(x)h(y) is bounded. Then there are an exponential M.G—C, abounded 

function a: G—C and a, fi constants such that we have the following possibilities: 
(i) f is bounded, h is arbitrary, g=0, 

(ii) / is bounded, h = 0, g is arbitrary, 
(iii) / , g, h are bounded, 
(iv) / = afiM+a, g = <xM, h = fiM. 

Proof . The first three cases are trivial, hence we may suppose that f , g, h are 
unbounded. Let a=g(0), P=h(0) and a=f—fig. Obviously, a is bounded, and 
the identity 

f(x+y)-g(x)h(y)-a(x+y) = pg(x+y)-g{x)h(y) 

implies that /M0, and the function (x, y)~*g(x+y)—g{x)f}-lh(y) is bounded. 
By [9], it follows (iv). 

Lemma 3. Let f,g: G—C be functions for which the function (x, y)—f(x+y)+ 
+f(x—y)—2f(x)g(y) is bounded. Then there are an exponential M: G—C, an 
additive function A: G—C, a bounded function a: G—C and a, /? constants such 
that we have the following possibilities: 

(i) / = 0 , g is arbitrary, 
(ii) / , g are bounded, 
( i i i ) / = A+a, g = 1, 
(iv) / = a.Me+a.M0, g - Me. 
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Proof . The first two cases are trivial. We may suppose that / i s unbounded. 
This implies that g?£0. If g = 1, then by [8], (iii) follows. Suppose that g?£ 1. Let 
F{x, y)=f(x+y)+f(x-y)-2f(x)g(y) for all x,y in G. By [10] and Theorem 1, 
there is an exponential M: G—C for which g—Me, in particular g is even. Now 
consider the identity 

. 2g{z)F(x, y) = F(x,y + z)+F(x, y-z)-F(x+y, z)-F(x-y, z), 

which shows that either g is bounded, or F = 0 . Suppose, that g is bounded, and ob-
serve that the following identities hold: 

(2) fe(y)six)-fe{x)g{y) = J {F(x, y)-F(y, x)+F{-x, -y)-F(-y, - x ) ) , 

(3) /o(*+j) - / 0 (*)gOO-/„OOg(*) = 

= j(F(x, -y)-F(-y,x)-F(-x,y) + F(y, -x)). 

By (2) we obtain that fe is bounded, and by (3) we see that the function 
x —/0 (x+y) —/„(x)g(y) is bounded for all fixed y in G. Since f0 cannot be bounded, 
by [9] it follows that g is an exponential. As g^0, we have g (0 )= l , and for all x 
in G, 

l = g(0) = g ( | ) g ( - i . ) = g ( | ) g ( f ) = : g ( x ) , 

a contradiction. Hence g is unbounded and F=0, that is, (iv) follows by Theorem 1. 

T h e o r e m 4. Let f,g,h,k: G—C be functions for which the function (x, y) — 
-^f(x+y)+g(x—y)—h(x)k(y) is bounded. Then there are an exponential M: G-~C, 
an additive function A:G-*C, bounded functions a,b,c:G-»C, and constants 
a, /?, y, 5 such that we have the following possibilities: 

(i) / , g, h, k are bounded, 
(ii) f , g are bounded, h=0, k is arbitrary, 

(iii) f,g are bounded, h is arbitrary, k=0, 
(iv) / is bounded, g = a f i M + b , h — a M , k -
(v) f = afiM+a, g is bounded, h - txM, k — pM, 

(vi) / = ^-aA+a, g=-^-ccA+b, h = a, k = A+c, 

(yii)f=jPA+a, g = ±pA+b, h = A+c, k = p, 

(viii) f — J<xPA2+j(ccS+py)A+a, g = —~«0A2 + j (oi8-py)A+b, 

h = <xA+y, k = PA+3, 

9» 
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( i x ) / = j (ay+fig)M t +j(<zd+f iy )M„+a, h = *Me+pM0, 

8 = \ ( a y - p 5 ) M e ~ ( a < 5 - P y ) M a + b , k = yMe+5Ma. 

Proof . The first three cases are trivial, and i f / o r g is bounded, then by Lemma 
2 we have (iv) or (v). Now we may suppose that / , g are unbounded, and h^O, 
k^O. Let h(x0)^0, k(y0)^0, and we introduce the new functions: 

F(x) = h (*0) ~ ̂  (y0) ~ Xf(x++y0), G(x) = hix^kiy^gix + xo-yo), 

H(x) = hix^hix+x 0), K(x) = k(y0)-^k(x+y0). 

We have that F, G are unbounded, H(0)=K(0)= 1, and the function D 
defined by 
(4) D(x,y) = F(x+y)+G(x-y)-H(x)K(y) 

is bounded. First we present some simple identities concerning F, G, H, K, D, 
which we shall need in the sequel: 

(5) H(x+y) + H(x-y)-2H{x)Ke{y) = 

= D{x,y)+D{x, -y)-D(x+y, Q)-D(x-y,Q), 

(6) H.{y)K0{x)-H.{kx)K0(y) = ± (D(x, y) — D(y, x)-D(x, -y) + 

+ D(-y, x)+D(-x, -y)-D(-y, -x)-D(~x,y)+D(y, -x), 

(7) H(x+y)K0(x-y)-H(x)K0(x)+H(y)K0(y) = 

= - {D(x, x)-D(x, -x)+D(y, —y) — D(y, y)+D(x+y,y-x)-D(x+y, x-y)\ 

(8) H0(x+y)K0{x-y)-H0{x)K0{x) + HSy)K0(y) = 

= j (D(x, x)+D(-x,-x)-D(x, -x)-D(-x, x)+D{y, -y)+D(-y, y)-

-D(y,y)-D(-y, -y) + D(x+y,y-x)+D(-x-y,x-y)-D(x+y,x-y)-

-D(-x-y,y-x)), 

and finally, if H0—0, that is, H is even, then 

(9) K{x+y)+K(x-y)-2K(x)H{y) = 2D(y, x)-D(0, x+^)-Z)(0 , x-y)-

X-¥M=¥- ^ M ^ ^ M ^ 
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These identities can be checked by an easy computation and they show, that the 
expressions on the left hand sides are bounded. Finally, we shall need the relations 

(10) = 

G(X) = H{±)K(-$+D(±, - i ) - G ( 0 ) . 

Now we assume that H is bounded, and show that (vi) follows. By (5) Ke is 
bounded, and if H is not even, then by (6) K0 is bounded, too, which is impossible 
by (10). Hence H is even, and then by (9) and Lemma 3 either K=A+a and H= 1, 
or K= Me + PM0, H=Me. In the latter case Me is bounded, and by the identity 
Me(x+y)—Me(x—y)=2M0(x)M0(y) the function Ma is bounded, too, that is, K 
is also bounded, which is impossible by (10). This means that H= 1 and K=A+a, 
where A: G—C is additive, and a: G—C is bounded. By (10) and by the definition 
of F, G, H, K we have (vi). 

Hence we may suppose in the sequel, that H is unbounded. 
From (5) by Lemma 3 we have two cases. In the first case Ke=1, H=A+c, 

where A:G-~C is additive and c: G—C is bounded. Here A^0 and H^0, 
hence by (6) K0—aA+d, where d: G—C is odd and bounded, and a is a constant. 
If a=0 , then by (6) either H0 is bounded, which is impossible, or ^„=0, that is 
K=Ke=l and from (10) we obtain (vii) using the definition of F, G, H, K. 

Let a then we substitute H0 and K0 into (6) and we have that the function 

(x, y) - A{x) (ac„(y)-d(y))-A(y) (d(x)~ac0(x)) 

is bounded. If there is a y in G, for which d(y)^ac0(y), then A=0, which is im-
possible. Hence d=ccc„, and H=A+c0+ce, K=xA+txc0+l. Substituting into (8) 
we have that the function 

(x, y) - A(x) (c„(x+y)+c0(x-y)-2c0(x))-A(y) (c0(x+y)-c0(x-y)~2ca(y)) 

is bounded. Substituting x+y for x and x—y for y, we have that the function 

(11) (x, y) - A(x+y)c0(x+y)-A(x-y)c0(x-y)-A(y)c0(2x)-A(x)c0(2y) 

is bounded. Let p(x)=A(x)c0(x) and P(x, y)=p(x+y)—p(x—y)-A{x)c0(2y), 
then (11) implies the boundedness of x-*P(x, y) for all fixed y in G. On the other 
hand, the identity 

P(x+y, z)+P(x y, z) P(x, y+z)+P(x, y-z) = 

^ A(x) (c0(2y+2z) -c9(2y -2z) -2c?(2z)) 
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shows, that for all fixed y, z in G the function x—A(x) (c0(2y+2z)—c0(2y—2z) — 
—2c0(2z)) is bounded, and hence 

c0(2y+2z)-c„(2y-2z) = 2c„(2z) 

holds for all y, z in G. Interchanging y and z, we have that c„ is additive and as it is 
bounded, co=0, H=A + ce, K=aA +1. Substituting into (7) we get that the 
function 

(x, y) - A(x) (ce(x+y)-ce(x))-A(y) (c,(x+y)-c.(y)) 

is bounded. Writing x+y for x and x—y for y we obtain that the function 

(12) (x,y) - A (x+y)ce(x +y) - A (x-y)ce(x-y) - 2 A (y)ce(2x) 
is boimded. Let p(x) = A(x)ce(x) and P(x, y)=p(x+y)-p(x-y)-2A(y)ce(2x), 
then (12) implies that P is boimded. On the other hand, the identity 

P(x+y, z)+P(x -y, z) - P(r, y+z)+P(x, y - z) = 

= -2A(z) (ce(2x+2y) + ce(2x — 2y) — 2ce(2x)) 

shows that the functional equation 

- • ce(2x+2y)+cc(2x-2y) = 2ce(2x) 

holds. Interchanging x and y we get that ce is constant. Since H(0) = 1, therefore ce — \ 
and H=A +1, K—aA +1. Using (10) and the definition of F, G, H, K we obtain 
case (viii). 

Finally, we have to return to the second case at (5), where by Lemma 3, 
H=Me+aM0, Ke=Me. Here M: G—C is an exponential, and a is a constant. Of 
course Ma=0 is impossible, and so (6) implies K0=fiM0+a, where a: G—C is 
bounded and /? is a constant. Hence by (10) we have for all x in G that 

F(x) = + a [ j } + d(x), 

G(x) = ^ Me(x)-^- Ma(x)-[j)+aM0 a[ j ) + e(x), 

where d,e: G—C are bounded functions (we have used that a is obviously odd). 
Substituting into (4) and using that D is bounded, we have that the function 

(13) ( , , , ) a ( ^ ) - t f ( ^ ) a { ^ ) - H ( x ) a ( y ) 

is bounded. Let p ( x ) = # j y j a j y ] and P{x, y)-p(x+y)-p(x-y)-H(x)a(y). 
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Then (13) implies that P is bounded. On the other hand, using that H is unbounded, 
we infer from the identity 

P{x+y,z)+P{x-y,z)+P(x,y-z)-P(x,y+z) = 

= H(x)(a(y+z)-a(y-z)-2Me(y)a(z)) 

that the functional equation 

a(y+z)-a(y-z) = 2Me(y)a(z) 

holds. If a T̂ O, then Me, and consequently H is bounded, which is impossible. 
Hence a=0, and we obtain case (ix). The theorem is proved. 

Remark . Theorem 4 shows that for unbounded functions f,g,h,k: G-*C 
the only possibility for (x, y)-*f(x+y)+g(x—y)—h(x)k(y) to be bounded is that 
f+a, g+b, h, k be a solution of (1) with some bounded functions a,b: G—C. 

Remark . The proofs of the above theorems and lemmata show that the main 
result can be generalized for other functional analytic function properties instead of 
"boundedness". More precisely, let W be a complex linear space of complex valued 
functions on GxG with the properties: 

(i) if F belongs to W, then (x, >>)—F(x+u, y+v) belongs to If, 
(ii) constant functions belong to W, 

(iii) if F belongs to W, then all the functions 

(x, y) - F(y, x), (x, y) - F(x, -y), 

(x, y)-F(x +y,x-y), (x, y)-F(x+y, 0), (x, y)-F(x-y, 0) 

(x, y) - F(x, x), (x, y) - F(2x, 0), 

and for all z in G, (x, y)—F(x, z) belong to W, 
(iv) if for a function / : G - C the function (x, y)^f{x+y)-\-ftx-y)-2f(x) 

belongs to W, then there is a function A:G-~C such that A(x+A(x—y)= 
- 2A (x) holds for all x, y in G, and (x, y)~*f(x)—A(x) belongs to W. 

Then Theorem 4 holds, if we set everywhere "belongs to W" instead of "boun-
ded". For instance, if W=(0), then we obtain from Theorem 4 the general solution 
of (1). As less trivial examples, "boundedness" can be replaced by "almost periodi-
city", or in the cases G=R (the real line) or G compact Abelian, by "continuity", 
provided the mapping x—2x is a homeomorphism. 
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Existence and uniqueness of random solutions 
of nonlinear stochastic functional integral equations 

JAN TURO 

1. Introduction. Stochastic or random integral equations arise quite often in 
the engineering, biological, chemical, and physical sciences (see, e.g., [1], [8] and [6]). 

The object of the present paper is to study a nonlinear stochastic functional 
integral equation of the type 

9(0 
(1.1) x{t, co) = F(t, f ft(t, s, x(s, co), co)ds, 

o 
9«) 
f fi{t, s, x(s, co), co) dw(s, co), x(h(t), co), co) = (Ux)( t , co), 
o 

where 

(i) i €-R+=[0, +=»), and coe£2, the supporting set of a complete probability 
measure space (£2, J5", P); 

(ii) x: R+XSi—R is the unknown random function; 
(iii) F: R+XR3XQ-R and /}: AxRxQ-R, 7=1,2 , are given random 

functions, where A={(t, s): 
(iv) g, h: R+ —R+ are given scalar functions; 
(v) w: R+XQ—R is a Wiener process. 

The first integral of the stochastic equation (1.1) is to be understood as an ordi-
nary Lebesgue integral, while the second integral is an Ito stochastic integral. We 
shall give sufficient conditions which will ensure the existence and uniqueness of a 
random solution, a second order stochastic process, of the above stochastic functio-
nal integral equation. The tool which we utilize to obtain these results is the compari-
son method. This method is based on the convergence of successive approximations 
produced by a comparison operator associated with the operator U. The abstract 
form of the comparison method was introduced by W A Z E W S K I [ 1 1 ] in the case of 
deterministic equations. 
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Almost all authors use the well-known Banach fixed point theorem or the con-
cept of admissibility theory, [1], [8] and [6], in proving the existence and uniqueness 
of results for cases similar to equation (1.1). Unfortunately these methods involve a 
strong condition concerning the function F. By the comparison method this condi-
tion can be slightly weakened. Consequently in this paper conditions involving some 
relation between the Lipschitz constants of the function F and the estimations im-
posed on the functions g and h appear. 

Equation (1.1) is a generalization of equations considered by MANOUGIAN, R A O 

and TSOKOS [6] (if F(t,u1,u2,x,oS)=h(t,x)+ui+u2, f j ( t , s, x, (x>)=kj(t, s, <o) • 
•(pj(s,x) and g(t) = t, h{t)=t), TURO [10] (if F(t, ult u2, X, co)=F(t, ult x, coj), 

GIHMAN and SKOROHOD [3], and DOOB [2], among others. 

2. Preliminaries. We introduce a family !F„ t£R+, of c-algebras of subsets of 
i2 with the following properties: 

(i) J ^ c J ^ , for i1<?2 , J^cJ*" tiR+; 
(ii) for every t, w(t, co) is !Ft-measurable; 

(iii) for AsO, the increments w(t+A, co) — w(t, co) are independent (in the pro-
babilistic sense) of J5",. 

D e f i n i t i o n 2.1. We shall denote by C(R+,L2) the space of all continuous 
maps x: R+ ~+L2{Q,SFt, P) with the topology of uniform convergence on compacta. 

It may be noted that C(R+, L2) is a locally convex space whose topology is de-
fined by the following family of seminorms: 

||*||, = sup oOl2]}1'2 

osrsn 

where E denotes the expected value of the random process. 

D e f i n i t i o n 2.2. A sequence { x j of elements of the space C(R+, Z,2) will be 
called a Cauchy sequence if for every e>0 and n there exists an N such that for 
k > N and />iV we have ||xt—x,||„<e. 

It is clear that the space C(R+,LJ) is complete, that is, every Cauchy sequence 
of its elements has a limit in C(R+,L2). 

D e f i n i t i o n 2.3. We shall call x a random solution of the stochastic functional 
integral equation (1.1) if xeC(R+, L^) and satisfies equation (1.1) P-a.e. 

With respect to the functions appearing in equation (1.1) we shall assume the 
following : 

(i) F(t, M1,M2,X, •) is -measurable fo r each t£R+, uly ut, xzR, and is 
continuous in t uniformly in mx, w2, x; 
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(ii) fj(t,s,x, •), j= 1,2, are ^-measurable for each (f, X€R, and are 
continuous as maps from A into L2(Q, P) \ 

(iii) g, h: R+—R+ are continuous and g(i) = ', h(t)^t, t£R+. 
3. Somme lemmas. Let us define 

9(0 
(Kü)(t)= k(t) f u(s)ds, t£R+, 

o 

(L«i)(0=/(0«(fc(0), 
df °° 

Put Su= £ with the pointwise convergence of the series in R+, where 
n-o 

Ln=ZX"_ 1 , « = 1,2,. . . , L°=7 is the identity operator in C(R+,R+), the class 
of all continuous and nonnegative functions defined on R+. 

From the definition of the operator L it follows that 
(L"u)(t) = ln(t)u(hn(t)), 

where 
h0(t)=t, hn+1(t)=HK(t)), n = 0 ,1 , . . . , t£R+, 

/„(0=i, /„+i(0= nKh(t)), n = 0 ,1 , . . . , t£R+. k = 0 
Lemma 3.1. ([9], [5]) Assume that 
(i) k,l,g,h,raC(R+,R+) and g(t), h(t)<í[0,t], tiR+; 
(ii) s=Sr<°°, s* = Sk*<°°, where k*(t)=k(t)g(t)\ 

s*(t) (iii) s, s €C(R+, R+) and sup 
* + * Then 

(a) there exists w0eC(/?+, R+) which is a unique solution of equation 
(3.1) u=SKu+Sr 
in the class Z,)oc of all non-negative and locally integrable functions on R+; 

(b) the function u0 is the unique solution of the equation 

(3.2) u = Ku + Lu+r 
in the class L|OC(m0)= {«: u€Lloc, ||«||o<°°}, where ||«||0=inf {c: u^cu0, c€R+}; 

(c) the function u = 0 is the unique solution of the inequality 
(3.3) u^Ku+Lu 
in the class Lioc(u0). 
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P r o o f . First we prove (a). We note that if utLioc and is the solution of equa-
tion (3.1), then utC(R+, R+). Thus we shall prove that equation (3.1) has a unique 
solution in C(R+, R+). We shall obtain a solution first on an arbitrary closed, 
bounded interval [0, ri\. Let C([0, n], R) be the space of all continuous functions on 
[0, ri\, where we introduce a norm || • ||+ in the following way: 

||M||* = sup C~a ' |«(/)|, where 
re to,«] t 

Now we can prove that the operator SK is a contraction in C([0, ri\, R), i.e., 
||SK||1. Indeed, from the inequality e"— 1 ^ a e ' for ae[0, 1], teR+, we have 

0(*„(O) 

\\SKu\\* S sup e-A< 2 h m ( h n ( 0 ) / sup |h(s)| ds s [0,n] n —0 g [0,n] 

Hence it follows that ||5J5T||<1. Now from the Banach fixed point theorem it fol-
lows that equation (3.1) has a unique solution woeC([0, n], R+). Since n is arbit-
rary, w0 is a unique solution of equation (3.1) on R+. 

Now we prove (b). It is obvious that the function u0 satisfies equation (3.2). 
Next we prove that in the class Lloc (w0) the function u0 is the unique solution of equa-
tion (3.2). 

Indeed, if u€Lloc(u0) is a solution of (3.2) then by induction we get 

u = "z Llh + "z L'Ku + Lnu. 
¡=0 ¡=0 

Because U€L1oc(M0), there exists c€R+ such that u^cu0, hence L"u^cL"u0. 
We easily find that L"u0— 0 since «„ is the solution of equation (3.1). As a conse-
quence of this L"u~*0, and we infer that ii satisfies (3.1). In view of the uniqueness 
proved for this equation we conclude u=u0. 

Finally we prove (c). If M€L1oc(W„) is the solution of inequality (3.3) then we 
have L"u—0, n—and by induction we get 

n—1 
MS Z L'Ku+L'u, n = 0 , 1 , . . . , 

( = 0 
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Letting n — °o we get u^SKu, hence we conclude that 0, and the lemma is 
proved. 

R e m a r k 3.1. Now we give some effective conditions under which assumption 
(ii) of Lemma 3.1 is fulfilled. 

a) If we assume that 

(3.4) k(t) = const, / (0 ^ I = const, g(t) ^ gt, h(t) S Rt, g, Re[0, 1], 

and r(t)Srt, t€R+, for some r£R+, then assumption (ii) of Lemma 3.1 is satis-
fied provided IR< 1. 

b) if k(t)^n, I(t)rslt, g(t)^gt, h(t)^Rt, r{t)^rt, K,l,ftR+, g€[0, 1] and 
/x€[0, 1), teR+, then assumption (ii) of Lemma 3.1 is satisfied. 

c) Finally, if we suppose (3.4) and r(t)Srtp, t£R+, for some r,peR+, then 
(ii) of Lemma 3.1 is satisfied provided 1RP< 1. 

We construct a sequence as follows: 

(3.5) u„+1 = Kun+Lun, n = 0,1, . . . , 

where u0 is defined in Lemma 3.1. 
Lemma 3.2. [4] If the assumptions of Lemma 3.1 are satisfied, then 

and u„=t 0 for n — where the sign =t denotes uniform convergence in any compact 
subset of R+. 

Proof . Relation (3.6) we get by induction. The convergence of the sequence 
{«„} is implied by (3.6). The limit of this sequence satisfies the inequality (3.3), and 
by Lemma 3.1 it must be equal to zero identically. The uniform convergence of {«„} 
follows from Dini's theorem. 

4. Main results. In order to prove the existence of a solution of equation (1.1), 
we define the sequence {*„} of random functions by the relations: 

(3.6) 0 w„+1 = un, n = 0, 1, 

(4.1) *»+i = Ux„, n = 0, 1 

where U is defined by (1.1) and x0 is an arbitrarily fixed element of C(R+, L^-
We introduce the following 
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A s s u m p t i o n H. We assume that 

(1) there exist functions Jcj, ¡£C(R+, R+), j=\, 2, such that 

2 

|F(f, Ui, «2, X, C0)-F(t, Mj, u2, .x, co)| s= 2 Kj(t)\Uj-üj\ + l(t)\x-x\, 
J-1 

|fj(t, s, x, ca)-fj(t, s, x, co)| | x - x | , 

for t£R+, s^t, Uj,üj,x,x£R, j= 1,2; 

(2) F(t, 0,0,0, -)eL2{Q,^t,P) foreach and fj{t,s, 0,-)dL2(Q, FS,P) 
for each (/, s)e<d. 

R e m a r k 4.1. We note that from condition (1) of Assumption H we obtain the 
following estimates: 

|F(t, ux, u2, x, o>)|2 ^ 4 ^ ( í ) | W l | 2 + 4 ^ ( 0 | « 2 | 2 + 4 ; 2 ( í ) k | 2 + 4|F(í, 0, 0, 0, cu)|2 

and 
|fjit, s, X, G))|2 ^ 2Fj i t ) |x |2+2 \ f j ( t , s, 0, (O)I2 

for t£R+, s=.t, Uj, xiR, 7=1, 2, coiG. 
Put 

k(t) = 6№it)m)g{t)+k\(t)ki(t)i 
(4.2) 

lit) = 6P{t), r(t) = 2E[\{Ux0){t, cj)-x0(t, to)|2]. 

T h e o r e m 4.1. If Assumption H and assumptions (ii) and (iii) of Lemma 3.1 
are satisfied with k, I and r defined by (4.2), then there exists a random solution 
x€C(R+, L2) of equation (1.1) such that 

(4.3) E[\x{t,a>)-xn{t,o>)\*} u„{t), 7i = 0 , l , . . . , tiR+. 

The solution x is unique in the class L*ac(u0)= {x: xíL*^, E[\x(t, a) — x0(t, a))|2]g 
6LIoc(M0)}, where L*^ is the class of all locally integrable random functions defined 
on R+ with range in L2(Q,&„ P), and Lioc{u0) is defined in Lemma 3.1. 

P roof . From the assumptions of the theorem, Cauchy's inequality, and the 
properties of the stochastic integral ([3], [7]) it follows that the integrals in equation 
(4.1) exist for each n (see Remark 4.1) and x„£C{R+, L¿), n=0,1, .... 

To prove the existence of a solution of equation (1.1) we first prove the follow-
ing estimates 

(4.4) £[|x„(f,a>)-x0(/,<»)|2] u0{t), n = 0 ,1 , . . . , t€R+, 

(4.5) E[\xn+m{t,w)-xn{t,co)\z]^un{t), n,m = 0, 1, ..., teR+. 

It is clear that (4.4) holds for n=Q. If we suppose that (4.4) holds for some n > 0 , 
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then from (x+y)2^2(x2+y2) and (x+y+z)2^3(x2+y2+z2), an application of 
Cauchy's inequality and the properties of the stochastic integral we have 

E[\xn+1(t, co)-x0(i, co)|2] =S 
S 2E[\(Ux„)(t, (o) — (UXf,)(t, <o)\2] + 2E[\(Ux0)(t, co)-x0(t, co)|2] 

9(0 
. si 6U2(t)E [|/ (A(/, 5, xn(s, co), <o)-fx{t, s, x0(s, co), co)) ds|2] + 

0 
9(0 

+ 6E| (t)E [| f ( f 2 (t, s, x„ (s, co), co) - f 2 (t, s, x0 (s, co), co)) dw (s, co)|2] + 
o 

+ 6Ht)E[ \ x n (h ( t ) , co)-x0(h(t), co)|2] + 2£[|(t/x0)(r, a)-x0(t, co)|2] ^ 
9(0 

^ (6/c?(i)^(0g(0 + 6^1(0^(0) / E[\xn(s,CO)-X0(s,CD)\Z)ds + 
o 

+ 6l*{t)E[\xn(h(t), co)-x0(h(t), co)|2] + 2£[| t/(x0)(i, co)-x0(t, co)|2] ^ 
9(0 

S k(t) J u0(s)ds + l(t)u0(h(t)) + r(l) = u0(t). 
o 

Now (4.4) follows by induction. 
It follows from (4.4) that (4.5) holds for «=0 , m=0, 1, .... Now the inequality 

(4.5) follows from 

£[ |x„+ m + 1(/ , a>)-xn+1(t, co)|2] ^ (Kun)(t) + (Lun)(t) = Mn+1(i), t£R+, 

and by induction. 
Since w„=t0 for n —oo (see Lemma 3.2) and from (4.5) it follows that {x„} 

is a Cauchy sequence (see Definition 2.2) in C(R+, L2). Now, since C(R+, L2) 
is a complete space, there exists an xdC(R+, L2) such that x„ —x. If /w — 
then (4.5) yields estimation (4.3). By the estimation 

E[\x(t, co)-(Um, ">)l2] ^ 

^ 2E[\x(t, co) xn(t, co)|2]+2£[|(f/xn_1)(?, co)-{Ux)(t, «)l2] ^ 

S4w„(0, n = 0, 1, ..., tiR+, 

it follows that the random function x satisfies equation (1.1). 
The uniqueness part of the theorem follows immediately from assertion (c) of 

Lemma 3.1. Indeed, if we suppose that there exists another solution x of equation 
(1.1) belonging to L*oc(u0) then we easily infer that i2(i)=.E[|x(/, co)—x(t, co)|2]e 
6L)oc(M0), and uSKii+Lu. Hence and from (c) of Lemma 3.1 it follows that 
E[\x(t, co)—x(t, co)|2]=0. This completes the proof of the theorem. 
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Remark 4.2. By using the Banach fixed point theorem or the concept of ad-
missibility theory it is easy to prove that there exists a unique random solution of 
stochastic equation (1.1) if Assumption H is fullfiled and 

(4.6) * ( 0 * ( 0 + / ( ' ) < 1, ' € * + , 

where k and I are defined by (4.2). 

The following theorem, which follows from part c) of Remark 3.1 and Theorem 
4.1, shows that condition (4.6) is more restrictive than the assumptions of Theo-
rem 4.1. 

Theorem 4.2. If Assumption H, assumption (iii) of Lemma 3.1 and condition 
(3.4) are satisfied and if r(f) = rip, t£R+, for some p, r€i?+ , then the assertion of 
Theorem 4.1 holds provided Itip<l. 
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Attractors of systems close to autonomous ones 

M. FARKAS 

1. Introduction. Most of the papers on stability theory of non-autonomous 
systems of differential equations start with the non generic assumption that x = 0 
is a solution of the system x=f(t, x), i.e. f(t, 0)=0. (The reason of this is that this 
state of affairs is achieved in case, originally, another system is given with a known 
solution and the system for the variation of the solutions is formed.) Now, clearly, 
in the generic case the solution л: of the equation /( / , x)=0 will depend on t and will 
not be a constant. The method of averaging helps us to get rid of the above mentioned 
assumption by substituting the original non-autonomous system by the averaged 
autonomous one (see, e.g., [4], [5]). The cases successfully dealt with by the method 
of averaging are the most important ones, still, these are special cases in which it is 
assumed that the original system is periodic, almost periodic, asymptotically almost 
periodic, etc. These assumptions make it possible to say something about the stable 
solution of the original system that emanates from the stable equilibrium of the ave-
raged autonomous one. 

In this paper these assumptions will be dismissed apart from the assumption 
that the system is close in a certain simple sense to an autonomous one. An asympto-
tically stable equilibrium of the latter system gives rise to an attractor of the original 
non-autonomous system. This attractor is, in general, not the integral curve of a 
single solution but an invariant set which is the thinner the closer the two systems 
are to each other. The existence of this attractor is ensured by theorems due to Yo-
SHIZAWA [7], [8]. 

We are giving an explicit upper estimate of this attractor and a lower estimate 
to its region of attractivity. We omit here the proof of the estimates since it is similar 
to the proof of the theorem of paper [1]. As an example, the results are applied to 
van der Pol's equation under bounded perturbation in case time tends to minus in-
finity. 

The problem treated here is connected with the problem of structurally stable 
("rough"=грубые in the Soviet literature) properties of systems (see., e.g., 
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Sections 18 and 19 in [2]). However, in our case the majorant function is a constant 
and so the perturbation need not disappear at the equilibrium point of the unpertur-
bed system. What could be considered here as a "structurally stable property" 
is the perseverance of an attractor whose character may change. The problem is also 
connected to the concept of practical stability (see [3] Section 25) and the result can 
be considered as a method to estimate the "region of practical stability". 

2. The attractor and the region of attractivity of a non-autonomous system close 
to an autonomous one. Assume that QczR" is an open set containing the origin, 

fzC°[R+XQ,Rn], /;eC°[^+Xi2, R"\ g£C2[Q,Rn], 

and for any compact QcQ, \fx\ is bounded over R+xQ where i ? + =[0 , 
and x=co l (x 1 , ...,X„)€R". Consider the systems of differential equations 

(1) x=f(t,x) 
and 

(2) * = * ( * ) 

where dot denotes differentiation with respect to tf R + . Assume further that there 
exists an / />0 such that 

(3) \fU,x)-g(x)\<r1, (t,x)tR+xQ. 

Without loss of generality let g(0)=0, and assume that the real parts of all the eigen-
values of the matrix g'(0) are negative. 

Under these conditions, as it is well known, one can find a positive definite 
quadratic form w(x)=xTWx where xT denotes the transpose of the column vector 
x, such that the derivative of w with respect to system 

(4) y=g'(0)y 

is negative definite. Moreover, there exist constants e 2 > 0 such that 

(5) Uei = {xtR": |x| < <?i} c Q, and w(2)(x) ^~Q 2 W (X ) for x€ Utl. 

Let us denote the eigenvalues of the positive definite matrix W by A,, / = 1, 2, ..., n, 
and let Clearly, 

(6) A J M 2 S w ( x ) á kn\x\\ xZRn. 

Finally, let us introduce the notations 

(7) An = {xeR": w(x) ^ M-WIQIK), 

(8) B= {x<iRn: w(x)<Ali?
2}. 

We are now in the position to state the following 
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Theorem. Under the conditions imposed upon systems (1), (2) and (4), if :, • 

(9) 0 < >/ < AI0W2A„, 

then the set R+xAn is a uniform asymptotically stable invariant set of system (1) 
and its region of attractivity contains the set R+xB. 

The proof is similar to the proof of the Theorem in [1]. 

3. Van der Pol's equation under bounded perturbation. It is well known (see e.g. 
[6]) that for van der Pol's equation 

(10) diuldxi+m{ui-\)duldx+u = 0, w > 0 

the origin of the phase plane (u, dujdi)=(0, 0) is an asymptotically stable equilibrium 
in the past, i.e. j for r — — whose region of attractivity is the open region inside the 
path of the single non-constant periodic solution. Substituting t=— x equation 
(10) turns into 
(11) ii+m(l-u2)u + u = 0, m > 0 

where dot denotes differentiation with respect to t. For equation (11) the origin 
(w, u)=(0, 0) is asymptotically stable (in the future) with a bounded region of attrac-
tivity. 

We are going to consider (11) under a bounded non-autonomous perturbation. 
First of all a Liapunov function will be constructed to the; system 

(12) X l - x2, x2 - -x1-mx2+mxfx2 

which is equivalent to (11): x1=u. The linearized system is 

(13) Xj = x2, x2 = —x1 — mx2. 

The latter system is, clearly, asymptotically stable and, thus, it is easy to find a positive 
definite quadratic form whose derivative with respect to system (13) is negative defi-
nite. For instance, the quadratic form 

m 2+2 1 
(14) vv(x) = — xl + x1x2 + — x! 

zm m 

is positive definite and vv(13)(x)= —(xl+xl). Moreover, 

(15) vv(13)(x) 5=-aw(x) 

if 0 < a S m ( l — wj/(»j2+4)1/2). The derivative of w with respect to the system '(12) is 

(̂18) (x) = - (xf^+ x|)+xf (mXl x2+2x|). 
10» 
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Introducing the notation 
(16) g2 = m(l-m/(m2+4y'2)-S 

where 0<£</n( l— mJ(m2+4)112), we are going to determine g j^O so that 
W(w)W —— eiW(x) should hold for In the expression 

- w(i2) (•*) - 8zw ( x ) (mxi x2 + 2*D + W - Ki3) (x) + m(l-m/(m2+4)1'2) w (x)] 

the quadratic form in square brackets is negative semidefinite in view of (15). Thus, 
the whole expression is non-negative provided that 

(17) <5H>(*)-*f(mx1;c2+2xi) = (S - 2**) x2 + (<5 - m x \ ) x 2 a 0. 

In case XjX2-=:0, if 

t m2+2 
2m 

then 

—2j& a 0 and 2 •(¿('• -̂'»«r-'—'-i 
-(('-^-«r^iir-j • 

- ~~2m~~**+"mx* + ^ ~ ~ • 

In case Xj-XaSO, (17) holds provided that 

m24- 2 
2xf S O and 6-mxf a 0. 

2m 

A simple calculation yields that in both cases (17) holds if 

„ , d . (. m2+4\ 

We can summarize the result in the following way. Let us define the function 

r(m2+4)/8m if 0 < m s 2 
r 2 ( m ) = t l / m if 2 < m . 

If |x|<r(m)<51/2 then w(12)(x)^ — g2w(x) where g2 is given by (16). Thus, our 
Theorem can be applied to the equation 

u+m(l-u2)u+u = F(t, u, u), 

if F, F'u, F? are continuous functions and \F(t,u,it)\<kIQ1Qil2k2 for t€R+, 
(w2+ii2)1/2<0i where Q1=r(m)d112, q2 is given by (16) and O c ^ c ^ are the easily 
computable eigenvalues of the quadratic form (14). Instead of giving the details in 
general, we are presenting a numerical example setting m=0.20. 
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Consider the equation 

(18) w+0.20( l -u*)u+u = F(t, u, «). 

The quadratic form (14) is now 

VV(JC) = 5 . 1 * i + x i * 2 + 5 . 0 x 2 -

^2=0.18-^, r2(0.20)=2.5, g1=1.6<51/2 and the eigenvalues of the quadratic form 
are A1=4.6, A2=5.6. It is assumed that F satisfies \F(t, xx, x2)\^t] for t€R+, 
|x |< 1.6<51/2. The value of tj will be specified later. The projections of the attractor 
and its region of attractivity to the x-plane are, by (7) and (8), 

A = {x£R2: w(x) s »7227/(0.18—¿)2}, B = {x£R2: w(x) < 11<5}, 

respectively. According to (16), <5 can be chosen arbitrarily between 0 and 0.18. We 
want to minimize the attractive set An and maximize its region of attractivity B at 
the same time. A way of doing this is to maximize the ratio 

2 7 / ( 0 1 1 8 % 2 

One easily gets that the maximum of this ratio in the interval [0,0.18] is achieved at 
<5=0.060. 

Substituting this value of S into the formulae we get 

A„ = {x£R2: w(x) r§ r\21900}, B = {x£R2: w(x) < 0.66}. 

Thus, if JJ<(0.66/1900)1/2=0.019 and \F(t, Xl, x2)\^ri for tdR+, |x|<0.39, 
then R+xAn is a imiform asymptotically stable invariant set of the equation (18) 
and the set R+ XB is contained in its region of attractivity. The Figure below shows the 
projection of these sets into the (u, u)=(xu x2) plane in case //=0.01. 

<i 

Aamy&fr \ 

\ 1 1 u 

/ 

y, 

Figure 
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Polynomials over groups and a theorem of Fejér and Riesz 

A. LEBOW and M. SCHREIBER 

1. Introduction 

A theorem of L. Fejér and F. Riesz asserts that every non-negative trigonometric 
polynomial is the absolute square of another trigonometric polynomial.1) In this note 
we show that the theorem does not hold in several variables. 

We discovered this in the course of seeking a theorem of Fejér—Riesz type as a 
statement about polynomials over groups. The idea of polynomials over a group G 
is adequately expressed, it seems to us, by the discrete complex group algebra C[G] 
of G. This algebra is the set of complex valued functions on G of finite support, en-
dowed with functional addition and convolution multiplication. It has an involution 
and a scalar product which fulfill the H* axiom of AMBROSE [3]. In such an algebra 
one can define the positivity dual 'A of a subset AaC[G\, this being the set of 
elements having non-negative scalar product with all elements of A. We consider the 
subset S(C[G]) of hermitian squares ff* of elements of C[G] and, if G is abelian, the 
subset P(C[G]) of positive elements, these being the elements with non-negative Fou-
rier transform. Interpreting these subsets for the group Z of integers one sees that 
the Fejér—Riesz theorem is equivalent to the relation P ( C [ Z ] ) = S ( C [ Z ] ) . Accor-
dingly we say, for any discrete abelian group G, that the extended Fejér—Riesz the-
orem holds for G if P(C[G])=S(C[G]), "positive equals square". 

For the class of discrete abelian groups we find, by positivity-duality and har-
monic analysis, that S C P = ' P = ' S , so that P = S if and only if ' S = S , which is 
to say that a necessary and sufficient condition for the truth of the extended Fejér— 
Riesz theorem over a discrete abelian group is the self-duality of its set of hermitian 
squares. 

For any finite group, abelian or not, we find by pure algebra (the Wedderburn 
theorem) that always 'S=S, and therefore in particular that S is a cone. If one de-

Received May 14, and in revised form November 6, 1981. 
*) According to Fejér's account of the matter, he conjectured the result and Riesz gave the 

first proof. Fejér gives that proof in his paper [1] of 1916. A more accessible reference is Pólya and 
Szegő [2], Sechster Abschnitt, Problem 40. 
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fines P for finite groups in terms of a natural operator-valued Fourier transform one 
gets also the Fejér—Riesz relation P = S . 

In the investigation of the extent of validity of the self-duality ' S = S , or equi-
valently in the abelian case the Fejér—Riesz relation P = S , the next case after Z 
to check is Z © Z . Here we find, by essentially algebraic means, a class of counterex-
amples to the result, and this shows also that the Fejér—Riesz theorem does not hold 
for trigonometric polynomials in several variables. By the same methods we also 
find that S(C[Z©Z]) is not a cone. 

It is a pleasure to thank Dr. D. Petz (Budapest) for a number of helpful sugges-
tions. 

Let G be a group, thought of as multiplicative. By the discrete complex group 
algebra C[G] of G one means the set of all complex valued functions / : G—C of 
finite support, endowed with functional addition and convolution as multiplication. 
We write /£C[G] as f—Ef(x)x, regarding / (x )£C as the coordinates o f / relative 
to the elements of G as a Hamel base of C[G]. Then f+g=Z (f(x)+g(x))x, fg= 
= {^f(x)x){lg(y)y)=l(If{xy~1)g(y))x, all sums being automatically finite. With' 
the scalar product ( f , g)=Zf(x)g(x) the algebra is a pre-Hilbert space. It admits 
the involution f—f*=Zf(x~1)x. This involution and the two products (scalar and 
algebra) are related by the H* law of AMBROSE [3], 

where f,g, /¡£C[G]. This may be proved at once by checking it on group elements 
viewed as members of the algebra, observing that x*=x~1 for x£G. C[G] is not 
a normed algebra unless G is the trivial group. 

By the positivity dual 'A of a subset AcC[G] one means {g(EC[g]: (g,f)^0 
for all f£A}. The positivity dual resembles in its simplest properties the commutor 
of a set of elements, and the notation "prime before" is intended to suggest the re-
semblance. In particular we have 

(2) A c B implies 'Be.'A. 

We denote by S(C[G]) the set { f f * : /€C[G]} of hermitian squares in C[G], We 
have 

2. Discrete group algebra 

(1) <fg,h) = (g,f*h) = (f,hg*) 

(3) S(C[G]) c 'S(C[G]) 

by (1), as follows. If f,g£S, say f=uu*, g=vv*, then (f,g)=(uu*,w*)= 
= («*, u*w*)=(u*v, U*v)s0. 
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A linear operator T£L(H) on a pre-Hilbert space H is operator-positive, in 
symbols TsO, if (Tcp, <p)=0 for all cp£H. We denote by the left regular repre-
sentation of C[G] (thus ^(f)g=fg for / ,g€C[G]), by A(C[G]) the set {/: A + ( / )S 
^0} of elements of C[G] which go over into positive operators in the left regular 
representation, and by PD(C[G]) the set of positive definite elements of C[G].2) We 
have 
(4) PD(C[G]) = 'S(C[G]) = A(C[G]), 

as follows. For any /,g(=C[G], IIf(xy-v)^(x)g(y) = IIf(t)^(ty)g(y) = 

= If(t)Ig{ty)g{y)=(f gg*)\ and since the generic g€C[G], a function of finite 
support, determines the generic finite subset {Cj}czC, the equation proves that 
PD= 'S . Since also (AJf)g, g)=(f gg*), we h a v e / 6 ' S if and only if 
or 'S=A, and the proof is complete.3) 

3. Discrete abelian groups 

For a discrete abelian group G the following facts are well known [5]. The set 
of characters of G forms a compact group G; each /£C[G] has a Fourier transform 
/: G—C defined as f(x)=^x(x)f(x), /€G; / is continuous on G; f*=/;fg=/g; 
and (f,g)= ff(x)g(x)dx for all f,giC[G]. 

G 
We call positive those elements /£C[G] such that and we denote by 

P(C[G]) the set {/: / s 0} of positive elements of C[G]. The relation (3) has for 
discrete abelian groups the following refinement: 

(5) S(C[G]) cz P(C[G]) c 'P(C[G]) c 'S(C[G]). 

For if f=gg*es then f=gg^0, so / € P ; and if / € P then for any g£P we have 
(f,g)= f f ¿ = f f g ^ O so ft'P. Thus S c P c ' P . And S c P entails ' P c ' S by 

G G 
the duality relation (2). 

Theorem 1. For any discrete abelian group G we have P(C[G])='S(C[G]). 

Proof . We treat G as a locally compact abelian group. For such groups it is 
a consequence of the L1 inversion theorem that an integrable positive definite func-

«) We adhere to the usual sense of this term: / € C[G] is positive definite if H f ^ x j " 1)c lCjs0 
for all finite subsets (x,}cC and {c,}cC. 

*) Therelation P D = ' S has a general form valid over locally compact groups. See [4], #13.4.4, 
page 256. 
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tion has a non-negative Fourier transform.4) This may be expressed (in an abbreviated 
notation) as follows: 
(6) I> D PD c P. 

Since in C[G] all elements have finite support we have in fact PD(C[G])cP(C[G]); 
in combination with (4) this yields the relation 'S (C [<7]) c P (C [G]); and this together 
with (5) yields the asserted equality, completing the proof. 

Taken together with. (4), Theorem 1 asserts that in C[G] for any discrete abelian 
group G the set of positive definite elements is equal to the set of elements with non-
negative Fourier transform, PD(C[G])=P(C[G]). This is not true over an arbitrary 
locally compact abelian group. Indeed, without conditions the statement may be 
vacuous (for example, over the group R of real numbers the function exp (ix) is 
positive definite but has no Fourier transform as a function).5) 

Let us interprete our apparatus for the group Z. The characters are the maps 
/ , : Z—T1 defined as *,(«)=exp (int), where /€[0,2n] and T1 = {z€C: |z| = l}. 
The e lement f=Zf (n)n£C[Z] 6 ) has involute f* = If(—n)n and Fourier transform 

f(y,) = If(n)x,(n)=If(n) exp (—int), a trigonometric polynomial. We have f f * = 
= \Zf(n) exp (—int)|2. The theorem of FEJÉR and RIESZ [1] is thus equivalent to the 
relation P(C [Z])=S(C[Z]). Accordingly we say, for any discrete abelian group G, 
that the extended Fejér—Riesz theorem holds for G if P(C[G])=S(C[G]). We are 
now in position to characterize those discrete abelian groups for which the extended 
Fejér—Riesz theorem holds. 

Theorem 2. For any discrete abelian group G the Fejér—Riesz relation 
P(C[G]) = S(C[G]) holds if and only if the set of hermitian squares in C[G] is self 
dual, S(C[G])='S(C[G]). 

Proof . By Theorem 1 the sequence (5) has the further refinement 

(7) S(C[G]) c P(C[G]) = 'P(C[G]) = 'S(C[G]), 

whence S = P if and only if S= 'S , q.e.d. 

The question of what groups fulfill this condition is essentially open. What 
little we know about it will be presented in Section 5. 

«) [5] Corollaire 1, page 92. 
s) With conditions a variety of statements can be made; for instance (in abbreviated notation) 

L1 H L2 fl PD=Z.1 H £ s H P. That the left side is included in the right side comes immediately from 
(6); the opposite inclusion follows from the Plancherel theorem together with [4], # 13.4.4, page 256. 

•) The summation is that of C[Z], not that of Z. 
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4. Finite groups 

Our discussion of discrete abelian groups did not yield an extended Fejér—Riesz 
theorem for that class and in particular left open the question whether the hermitian 
squares form a cone. In contrast to this we find for finite groups, abelian or not, that 
the set of hermitian squares is a cone, and moreover in the strong sense of being self 
dual.7) We have for this result a proof belonging to pure algebra. 

T h e o r e m 3. For any finite group G we have S(C[G])='S(C[G]). 

P r o o f . It is well known that C[G] is the finite algebra-direct sum of minimal 
two-sided ideals, each of which is principal, generated by a uniquely determined 
idempotent, and that these idempotents are pairwise mutually annihilating, central, 
and hermitian. That is to say, if «,• are the generators of the minimal two-sided ideals 
C[G]uj then u j=u*=u j , u ju k =s j k u k , and « , /=/«y for all f£C[G]. Each /£C[G] 
has the unique decomposition f—Ifuj into its components fUjdC[G]Uj, whence 
f f * = Ifujlf*uk=Iff*un, which is to say S(C[G])cz®jS(C[G]uj). Conversely, 
if h=Igjg* with gj£C[G]uj then gJ=gJuj and h=Z(gjUjfgjUj=Ig*u} • I gkuk= 
=£g*€S(C[G]), where g=IgjUs. Therefore 

(8) S(C[G]) = © jS(C[G] Uj). 

Let / E ' S ( C [ G ] ) be given. Since for any g€C[G] we have g*g«,<ES(C[G]) (because 
g*guj=g*gUjU*=(gUjfgUj), we have </, g V j ) = 0 for all j. But ( f , g * g U j ) = 
= (fUj,g*gUj), so /WjÉ 'SÍQG]«; ) , whence ' S ( C [ G ] ) c ®/S(C[G]m7) . Conversely, 
if h=Igj with gjC'SCCfG]«,-) then for any f=If*fu^S(C[G]) we have (h,f)= 
= Z(gj,f*fuj)^0, hCS(C[G)), so that 

(9) 'S(C[G]) = ffi/S(C[G]»,). 

Since the minimal ideals C [G]Uj are simple as rings each one is algebra-isomorphic 
(by the Wedderburn theorem) to the full algebra L(Hj) of all linear transformations 
on a finite dimensional Hilberst space H}. The left regular representation is faith-
ful, and so maps each ideal C [G]uj algebra-isomorphically onto a subalgebra of 
£(C[G]). Since C[G]Uj is a full ring, so therefore is At(C[G]Mj). 

For H finite dimensional the algebra L(H), though not a group algebra, has the 
involution r—T* defined by the operator adjoint, and it has the scalar product 
(T, 5 ) = t r a c e (TS*), the so-called trace inner product, which trivially fulfills the 
Ambrose law (1). We may therefore define positivity duality and the sets S, 'S 
over L(H). 

') Evidently the positivity dual of any set is a cone. 
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Lemma. For any finite dimensional Hilbert space H we have S (L(H)) = 

Proof . We have S (L(H))a'S {L(H)) by (3) since that result depends only 
upon (1). For the opposite inclusion let c£'S(L(H)) be given. Pick arbitrarily a unit 
vector v£H, extend the set {«} to an orthonormal basis (e1=v, e2,..., ed) of H, 
and let p be the orthogonal projection onto the subspace spanned by e1. Then 
(cv, v)g=(ce1, e1)H=Z(cpe', =trace (c/?)=(c, p) = (c,pp*)^0, whence c is a 
positive hermitian operator. If b is its positive square root then c=bb*£S (L(H)) 
and the lemma is proved. 

Returning to the proof of Theorem 3, we claim that the isomorphism is an 
essentially H*-map in the sense that for all / , g€C[G] 

For (f,g)=(fg\e)=<Jg*){e), and since ^(f)x=fx=Zf(s)sx=Zf(tx~1)t, whence 
(K(f)x> t)=f(.tx~1) for x> teG, we have also trace (A+(/))= #((?)/(<?). As evi-
dently *,(g)*=Â,(g*) we have finally trace (A,(/>A„(*))=trace (A+(/S*))= 
= # (G)(fg*)(e)= # (G)(f,g), which is (10). By the lemma we therefore conclude 
that StClGlw^'SiCIG]«,) for all j, and tracing this back through (9) and (8) we 
reach the assertion of the theorem, q.e.d. 

We turn now to the question whether one can define "positive" over finite groups 
in such a way as to substantiate the Fejér—Riesz relation. By (4) the elements o f ' S 
go over to positive operators in the regular representation. If a definition of P con-
sistent with this fact can be formulated, then automatically one will have ' S = P , 
and also automatically, by Theorem 3, the Fejér—Riesz relation P = S . The follow-
ing considerations lead to such a formulation. 

De f in i t i on 1. By the unitary dual object Gu of a finite group G we mean the 
set of all equivalence classes of irreducible unitary complex representations of G,8) 

Let [A'] denote the similarity class of the operator X or the equivalence class of 
the representation X, as context requires. For any representation Q we write Q^ 
for the extension of Q to the discrete group algebra C[G]. 

De f in i t i on 2. The Fourier transform f of f£C[G\, G finite, is the map of 
(Ju to similarity classes of operators given by 

='S(L(H)). 

(10) trace {Uf)-h(g)) = # (G)(f, g). 

(11) 
for [e]€Gu. 

' ) This is a variant of a procedure discussed in [6] without attribution. 
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Operator positivity is of course a unitary invariant, and it is known that equiv-
alent irreducible unitary representations are in fact unitarily equivalent.9) It follows 
that, for any [g]€0u and /6C[G], for a single a£[g] if and only if a + ( / ) s 
SO for all oc£[f?]. This makes possible the following definition. 

Def in i t ion 3. For /£C[G] and %£GU we say / is positive at and write 
f ( 0 — i f for any, hence all, we say / i s positive, and write / s 0 , 
if / (£)&0 for all ¡,£GU. 

Having formulated this concept of positive transform we now say, as in the pre-
vious case, that /€C[G] for G finite is positive if / s 0, and we denote by P(C[G]), 
as before, the set {/: / = 0 } of such positive elements. The consistency with (4) of 
this definition of P follows from the reducibility of the left regular representation 
of G, as we now show. 

Theorem 4. For any finite group G we have P(C[G])='S(C[G]). 

Proof . Let A denote the left regular representation of G. It is well known that 
every irreducible unitary representation of G is (equivalent to) a direct summand of 
X with multiplicity equal to its degree.10) Let XU) be the irreducible subrepresentations 
of X, and dj their degrees. Then Ass ®djXU). For the extension A+ of A to C[G], 
which is of course nothing but the left regular representation of C[G]u),wethen have 
W ) ^ ® d J X ( i \ f ) for all / iC[G], Now /€P(C[G]) if and only if 0 
for all j, hence if and only if A+( /)S0, which is to say if and only if / 6 A(C[G]). 
The proof is now completed by an appeal to (4). 

Coro l l a ry . For any finite group G we have the Fejér—Riesz relation P(C[G])= 
= S(C [G]). 

5. The group Z © Z 

For finite groups we have S = ' S as a matter of pure algebra, for discrete abelian 
groups generally we have S c P = ' P = ' S , and for Z in particular we have the self 
duality S= 'S , this being an equivalent formulation over discrete abelian groups of 
the Fejér—Riesz relation S = P . One naturally inquires into the extent of validity 
of this self duality, or equivalently, of the validity of the extended Fejér—Riesz the-
orem. In this inquiry the next case to check after G = Z is G = Z © Z . We find that 
for Z © Z the extended theorem fails, P ^ S . As we shall see in a moment, this will 

•) See for instance [7], (3.2), page 19. 
») [8], page 1 - 1 8 . 
" ) In agreement with our previous use of the symbol A«. 
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show that the Fejér—Riesz theorem fails for trigonometric polynomials in several 
variables. 

We will demonstrate this by exhibiting a class of counterexamples. For this pur-
pose it proves convenient to employ Laurent polynomials, as follows. Over Z we 
may express the generic /= I / (« )«€C[Z] as the Laurent polynomial f(z)=If(ri)z" 
in the complex variable z. Evidently the addition and multiplication of Laurent poly-
nomials duplicate the corresponding operations in C[Z], or, in algebraic language, 
the set of Laurent polynomials is C-algebra isomorphic to C[Z]. If we put f*(z)= 
= If(n)z~" and use the obvious scalar product then the isomorphism preserves the 
Ambrose law (1) as well. In the Laurent version the Fourier transform / of / £ C [Z] 
is the restriction to T1 of the corresponding Laurent polynomial. Over Z © Z we pro-
ceed analogously. We have elements f=If(n, m)(«ffi/Ji)ÇC[Z©Z] and their Fou-
rier transforms /(%,, xs)=Zf(n, m) exp (-int) exp (—ins), trigonometric polyno-
mials in two variables, which we may view as the restrictions to T? of the Laurent 
polynomials f(z, w)=If(n, m)z"wm in two complex variables. Our discussion of P 
and S over Z © Z will thus also be a treatment of the Fejér—Riesz theorem in two 
variables. We note for reference that the involution in two variables reads f* (z, w)= 
= If(n,tn)z~"w-m. 

If /6CfZffiZ] is a hermitian square, so that / (z , w)=h(z, w)h*(z, w) for some 
Laurent polynomial h(z, w), then we claim that without loss of generality h(z, w) 
may be assumed to be analytic in z and w, and to have non-zero coefficient of z° 

n 
when written as a polynomial in z, which is to say h(z, w)=Z ak(yv)zk with 

o 
CC[w]12) and a0(H>)^0. For by definition of the involution we have h*(z,w)= 
— S(z_1, vf_1), the bar denoting the conjugation of all constants. Therefore the lowest 
negative powers (negative exponents of greatest absolute value) of z and w occurring 
in h(z, iv) are the negatives of the highest (positive) powers of z and w occurring in 
h*(z, w); hence by factoring out of h(z, w) the lowest negative powers of z and w, 
and out of h*(z, w) the highest powers, we shall have cancellation. Therefore we can 
substitute for h(z, w) an analytic polynomial. If as(w), j > 0 , is the non-zero coeffi-
cient of least index in h(z, w), now assumed analytic, we can factor zs out of h(z, w) 
and z~s out of h*(z, vv) and cancel them, arriving thus at new polynomials with non-
zero coefficients of z° ("constant terms"). 

Example. The element /£C[Z©Z] whose Laurent polynomial is' / ( z , w ) = 
=(l /4){z 2+z~ 2+w 2+w~ 2+4} is a hermitian square because /(xt> Is)= 

" ) We adhere to the standard notations F[r] for the ring of polynomials and F(t) for the 
field of rational functions over the field F. There is no conflict with the notation C[G] where G is a 
group. 



Polynomials over groups and a theorem of Fejér and Riesz 343 

= 1 +(1/2) cos (2/)+(1/2) cos (2s) = cos2 ( i)+cos2 (¿) = |cos (O+ ' - cos (J)|2. From 
this factorization we have / (z , w)=(l/2){(z+z - 1)+г(w>+w-1)}•(l /2){(z+z-1)-
-z'(>v+н'_1)}, which is to say / ( z , w)=g(z, w)g*(z, w) with g(z,w)= 
=(1/2){(Z+Z_1)+/(W+M'~1)}. Factoring out the lowest negative powers we have 

(w i w 1 
g(z, w) = z-1w~1(l/2){(zaw + w)+i(w!!z+z)} = z - 1 v f - 1 | - + - ( w 2 + l ) z + - z 2 | . 

Thus f=hh* where /i£C[Z©Z] has the Laurent polynomial 

w i w 
Hz, w) = - + - (w2+ l ) z + - z 2 . 

By means of the foregoing reduction one might hope to be able to characterize 
the hermitian squares in a purely algebraic way. But the system of non-linear equa-
tions one would have to discuss has so far proved intractable, and we are forced to 
curcumvent this difficulty by the following special arguments, which enable us to 
proceed a little farther. 

Let p(z, w)€C(w)[z] be given, and suppose its degree in z is 2. We then have 
p(z, w)=pA(W)zi+pY(W)z+p2(w) with PJ(W)£C[W\. In general the equation p(z, w)=0 
defines two branches r± = {—p1±y(pl —4p0p2)}/2pQ; r± are algebraic over C(iv), 
and , C(w, r+, /•_) is the splitting field of p(z, vv). Therefore p(z, w) is reducible in 
C(vv)[z] if and only if one, hence both, of r± are in C(w). 

Consider now 
(12) / (z ,w) = ( z + r - 1 ) ( w + w - 1 ) + c , c<E R. 

We rewrite this as f(z, w)=z~1 { ( W + W _ 1 ) Z 2 + C Z + ( H ' + M ' _ 1 ) } and put p(z,w)= 
=(w+w~1)z2+cz+(w+w~1). The equation p(z,w)=0 determines the branches 

w-1)2)}/2(w+w x). To ascertain the character of these func-
tions we examine the radical i(c2— 4(w + w_1)2) = / ( c — 2{w + w -1)) • / (c + 2(w + M>~ 1))-
We have c±2(w+w~1)=0 if and only if vt>2±(c/2)w+l=0, which is to say 
w={±c^i(c2 —16) }/4. Thus except for c=± 4 the functions r± both have branch 
points at these values of w, so that r± (w).([ C(vv) and p(z, w) is irreducible in 
C(w)[z] for c^±4. 

If / were a hermitian square, so that f(z,w)=h(z,w)h*(z,w) with h(z,w) 

analytic, h(z, w)= Eak(w)z^, afc(M>)6C[w], a0(w)?^0, then precisely because the 
o 

constant term is not zero the highest power of z occurring in h(z, w)h*(z, w) is the 
highest power of z occurring in h(z, w). But since f=hh* this is the highest power of z 
occurring in f (z, w), namely 1. Therefore h (z, w) must have the form a (M>) (Z—/} (w)), 
with a(w)£C[M>] and a(w)/?(w)£C[w]. Since p(w) is at worst rational we have 
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ß(w)£ C(w). By definition of the involution we have 

h*(z,w) = »(w-^z^-Piw-1)) = äiw-^z-^l-zßiw-1)) = 

= ( - 1 ) Z - 1 5 ( W - 1 ) ^ ( W - 1 ) ( Z - 1 / ^ ( H ' - 1 ) ) . 

Substituting this into our relation f(z, w)=h(z, w)h*(z, w) and recalling that 
z/(z, w)=p(z, w) we get p(z, w)=(-l)a(w)ä(w-1)ß(w-1)(z-ct(w))(z-l/ß(w~1)), 
a factorization of p(z, w) in C(w)[z], But we have just observed, in the previous 
paragraph, that p(z,w) is irreducible in C(vv)[z] if c?±± 4. Hence there can be 
no factorization of the form f=hh* if 4. Since f(xt, &)=2 cos (t) • 
• 2 C O S ( J ) + C we have /£P(C[Z@Z]) for c > 4 . We have established. 

Theorem 5. For each real c > 4 the Laurent polynomial / ( z , w)=(z+z _ 1 ) • 
• (w+w-1)+c defines an element of C[Z©Z] which is positive but is not a hermitian 

square. 

By the same methods we have the following further result. 

Theorem 6. The set S(C[ZffiZ]) of hermitian squares over Z©Z is not a cone. 

Proof . With h(z,w)=z + w put g=hh*, f ( z , w)=g(z, w)+c with c£R, 
and p(z, w)=z~Y(z, w). One checks that there exists 0<c0ÇR such that p(z, w) 
is irreducible in C(w)[z]. Hence /0(z, w)=g(z, w)+c0 does not correspond to a her-
mitian square in C[Z©Z] even though f is the sum f—hh*+(fc^){fc^)* of hermitian 
squares. 
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Doubly stochastic, unitary, unimodular, and complex orthogonal 
power embeddings 

ROBERT C. THOMPSON and CHI-CHIN TUNG KUO 

1. Introduction 

We shall say that a finite matrix A is embedded in a larger finite matrix M if A 
is the leading principal submatrix of M, and we write Mz>A or AcM. If M'nA' 
for i=1, 2, ..., k, we say A is power embedded in M to exponent Ic. We also say that 
M is a dilation of A. Many years ago, in connection with unitary dilation theory for 
Hilbert space operators, E. EGERVARY [2] studied power embeddings of a contraction 
A into a unitary M. The objective of this note is to sharpen Egervary's result and 
also to obtain analogous power embedding theorems into a doubly stochastic matrix, 
or into an integral unimodular matrix, or into a complex orthogonal matrix. The 
fact that more or less analogous theorems are obtainable suggests that various other 
parts of the presently existing rather extensive unitary dilation theory for infinite 
dimensional operators is capable of expansion in various directions. See, for example 
[1] and [5]. 

In each of our cases, the dilation M will turn out to exist if and only if it has at 
least kd more rows then A, where 5 is a measure of how far A is itself from the doubly 
stochastic, unimodular, unitary, or orthogonal state. 

2. Doubly stochastic power embeddings 

Let A be an aXa matrix with nonnegative entries. We consider whether it is 
possible to find a power embedding of A to exponent k into a doubly stochastic 
matrix M. (Thus M is to have real nonnegative entries with row and column sums 
equal to one.) Here k is fixed and specified in advance, and we wish also to know the 
size of the smallest dilation M. 

Of course, a doubly stochastic dilation of A could exist only if A is a contraction 
in the sense of nonnegative matrices, that is, has each row and column sum at most 
one. In this case we say that A is a double stochastic contraction. So assume that A is 
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a double stochastic contraction, set A = and let 

a 
d = a- 2 au 

measure the doubly stochastic deficiency of A. (Plainly d^O with equality if and 
only if A is doubly stochastic.) Now take 8 to be the least integer satisfying S a d . 
This quantity 6 is an integral measure of the doubly stochastic deficiency of A, 
with ¿ = 0 precisely when contraction A is doubly stochastic. 

Theorem 1. Let the nonnegative matrix A be a doubly stochastic contraction, 
and define the integral doubly stochastic deficiency 8 of A as above. Then A possesses 
a doubly stochastic power embedding M to exponent k, i.e., 

(1) M' =3 A' for l ^ i s k , 

with M having p. more rows than A, if and only if p^k8. 

The proof requires several lemmas. 

Lemma 1. Suppose that A is not doubly stochastic, that M is, and that (1) holds. 
Then, after a permutation similarity preserving A, M takes the form M=[Mij\Q^ijSk 

with 
(a) MM=A, and the other diagonal blocks Mu square, 
(b) Mtj=0 whenever j=i+2, 
(c) Mto=0 for all /, 
(d) Each row of each M / i+1 is nonzero, for all i with (Read Mkfk+1 

as Mk0.) 

Proof . The proof is by induction on k, the case k=\ being trivial. Suppose 
the result established for k, and now assume that Mlz>Al for i=k+1 also. Per-
form a permutation similarity on M, permuting only rows (and columns) that pass 
through Mn. Note that M ^ 0, since M1 2=0 forces Mu to be doubly stochastic, 
hence Af01=0, and therefore forces M^—A to be doubly stochastic, a contradic-
tion. (When k=\, M12 is M10.) We chose our permutation similarity so that the 
nonzero rows in Afia are the last rows, i.e., 

with A/i'3=0 and with each row in M'w nonzero. (Conceivably, block M^ is vacu-
ous, and when k— 1 subscript 3 is read as 0.) Partition and renumber the blocks in 
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M in accord with this pattern: 

M0 Q = M m , M 0 1 = [Mo!, Mq'J, M0J- = M 0 ' y + 1 , 

M S M S ® 
MI0=M?+LTQ, MN = [M/+1>I, M/+1>2], MU = M[+LJ+1, 

with square blocks Af„, M£2. Then M partitions as M = [ M y ] 0 S i j S j k + 1 with 
M'00=A. At this moment, it is conceivable that block row 1 is absent. We show that 
M'02=0. The leading block in Mk+1' is 

Ak+1+M0'2M2'3.! .Mlk+1Mi+U0. 

By hypothesis this equals Ak+1. Since M23, ..., Mk+li0 each has all rows non-
zero, we deduce that MQ2=0. If the block row labeled i= 1 were absent, so would 
be block column i, hence M'00=A would be doubly stochastic, a contradiction. This 
completes the induction step. 

Lemma 2. Suppose that doubly stochastic M=[A/y] has the block form de-
scribed in Lemma 1, where M^ is n^nj. Then d^nt for l^i^k. 

Proo f . If <2 is a matrix, oQ will denote the sum of the entries of Q. Because M 
is doubly stochastic and has leading block row A, M01,0, 0, ..., 0, we get oM01=d. 
Fix p , l ^ p S k . Then, by columns, 

hence 

therefore, 
o[Mlj]lsiSp,1SjSp+1-oMPtP+1 n i + . . . + n p - d . 

But 

Therefore dsoMPtP+1^oMp0+(rMpl+...+oMPwk=np. Hence dSnp as desired; 
l ^ p S k . (Where necessary, read subscripts modulo fc+1.) 

Lemma 3. If A possesses a doubly stochastic power embedding M, to exponent 
k, with M having p more rows than A, then p^kS. 

Proof . p=n1+...+nk and d^nt for each i. Since is integral, S^n, for 
all i, therefore n^kS. 

it* 
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Lemma 4. Given olXol contraction A, there exists an (a+<5)x(a+<5) doubly 
stochastic matrix 

Here 5 is as before, S^d. 

Proof . We apply Ky Fan's criterion [4, see also 3] for the solvability of a mixed 
system of linear equalities and inequalities. Let the row sums of A be rh and the col-
umn sums be cy, 1 s i , j s a . The condition to be satisfied is that the matrix 

[°c I) 
have row sums 1 — r( in the top block row, and 1 in the other block row, plus a corre-
sponding column statement. These are the equalities to be considered. The inequalities 
are that the entries of B, C, D are to be nonnegative. We treat these entries as un-
knowns. If(/>, q) is a position in B, C, or D, we introduce real dummy variables up, vq 

and a real nonnegative dummy variable wpq. Form a column vector u from the up, 
and a row vector v from the vq. Form also a column vector c=[l— rx, 1 — r2, ..., 
1— ra, 1, 1, ..., 1]T displaying the proposed row sums in (2), and a row vector 
r = [ l - c 1 , 1—c2, ..., 1 —ca, 1, 1, ..., 1] displaying the proposed column sums. Ky 
Fan's test for the solvability of our mixed system of equalities and inequalities 
amounts to this: We must show that the conditions 

(3) up+vq+wpq — 0 

(up, vq real, wp,aO) for all (p, q) belonging to blocks B, C, D imply 

(4) (u, c)+(r, 

where ( • , •) is the standard inner product. This is easily done. Let U0 be the maxi-
mum entry among ult ...,ua and the maximum entry among ua+1, ..., ua+s. 
Similarly let V0 be the maximum entry among vlt ..., va, and Vx the maximum entry 
among va+1, ..., va+i. Noting that 2 T 0 - r d = 2 i ( l - c j ) = ^ we get 

(u,c)+(r, v) Uod+UJ + Vod+VJ = 

= ( U o + V O d H U i + V J d H U i + V J Q - d ) == 0, 

owing to (3) and d^S. 

P roo f of Theorem 1. If A is doubly stochastic the necessity of fi^kd is 
trivial since ¿=0 . If A is not doubly stochastic, fi^kd follows from Lemma 3. 
Conversely, let p. be any integer satisfying p^kS. Construct the blocks B, C, D 
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described by Lemma 4. Now take M to be the direct sum of 

A B 0 0 ... 0 
0 0 I 0 ... 0 

0 0 0 0 ... I 
C D 0 0 ... 0 

and a (ji—fc<5)-square identity matrix. The identity matrices in the above block are 
5xd. Then M is doubly stochastic and M'ziA' for l^i^k. 

3. Unitary power embeddings 

Our objective in this section is to sharpen Egervary's theorem on unitary power 
embeddings. Let matrix A have complex elements. To be embeddible at all in a uni-
tary matrix, each singular value of A must be s i , i.e., A must be a contraction. So 
assume that A is a contraction. The unitary deficiency 8 of contraction A is now 
defined as the number (with multiplicity) of singular values of A strictly less than one. 
Thus ¿ = 0 if and only if A is unitary, and, in general for contraction A, 8 is the rank 
of I—AA*, also the rank of I—A*A. 

Theorem 2. Let complex matrix Abe a contraction, and define the unitary defi-
ciency 8 of A as above. Then A possesses a unitary power embedding M to exponent 
k, with M having p. more rows than A, if and only if p^k8. 

When k= 1, this Theorem is an easy special case of a known result [6] on sin-
gular values. 

Lemma 5. Suppose that A is not unitary, that M is, and that (1) holds with 
fcs2. Then, after a unitary similarity preserving A, the matrix M takes the form 
M = [My]osi)ist with 

(a) MW=A and the other diagonal blocks square; 
(b) each block is zero, except perhaps for M00, M01, M u , Mk0, Mkl, and Afi l + 1 

for l^i<k; 
(c) blocks M23, M3 4 , . . . , Mk_l k are each unitary and 5x8; 
(d) block M12 has 8 columns and at least 8 rows; block Mk0 has 8 rows, all linearly 

independent. 

Proof . We begin with A f = | ^ ^ j . After a block diagonal similarity by a 

unitary matrix of the form diag (I, W), we preserve A and change C to WC. Choosing 
the last rows of IF to be an orthonormal basis for the row space of C*, we convert C 
to a matrix in which the first rows are zero and the last are linearly independent. So 
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repartition M as 

M = 
Moo M>i M 0 2 

0 M u M 1 2 

Mgo M 2 1 M 2 2 

with square diagonal blocks, M00—A, and linearly independent rows in M20. 
From M*M=I we get Mt0M20=I—A*A. Since I—A*A has rank <5, this also is the 
rank of M20M20 and therefore of M20. Hence M20 has <5 rows. The leading block in 
M2 is A2+M02M2a. Hence MQ2M20—0, and as M20 has independent rows, M02=0. 
Orthogonality of columns then forces M22=0. Since M22 is 5 X8 and since M02=0, 
M12 must have independent columns. It follows that M12 has at least S rows. This 
completes the proof for k—2. 

Suppose the result established for k, and now assume Mk+1Z)Ak+1. After 
a block.diagonal unitary similarity preserving A, we may make the last rows of M12 

independent and the remaining rows zero. Since M12 has 8 columns, necessarily 
independent, this lower block in M12 is <5x<5 and unitary. Now repartition as in the 
proof of Lemma 1. Then M23 is 8x8 and M'X2 possibly is vacuous. We must show 
that M'02—0, M'12 has 8 columns and at least <5 rows, M'21=0, M22=0, M'k+li2—0. 

For simplicity, drop primes. Since Mk+1uAk+1, we have 

M 0 2 A f 2 3 . . . A f k > k + 1 M t + l f 0 = 0. 

Linear independence of rows in M23, ..., Mk+U0 forces M0 2=0. Orthogonality of 
columns forces M2 1=0, M22=0, Mk+lt2=0. If M12 were absent, Mm would be 
forced to be a direct summand of M, hence unitary. Therefore M12 is present, and as 
M22 is 5 x8, M12 has 8 columns, necessarily independent. Therefore it has at least 8 
rows. 

P roof of Theorem 2. Suppose that a power embedding of A into a unitary 
matrix M exists, to exponent k. We wish to show that the number ji of additional 
rows in M satisfies f i^k8. If A is already unitary this is evident. Suppose A to be 
not unitary. If k=1 we have 

f A M01l 
L M10 MUJ M 
LAi10 i r ± u . 

where M*qM10=I—A*A has rank 5; therefore M10 has at least 8 rows, hence pi^S. 
Now suppose ¿"s 2. Then M may be put in the form described in Lemma 5, with 
blocks M12, M a , ..., Mk0 each having at least <5 rows. Therefore n^kS . 

Turning to the converse, since both I—AA* and I—A*A have rank 8, nonsin-
gular matrices X and Y exist such that 
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Set 

* = C = -[0,Ii]Y, D = [0, I^YA*X*~1 J^J, 

and form the matrix 

Vol 1 
We claim that this matrix is unitary. Certainly AA*+BB*=IX. Next, note that 

(6) X-*AY* [J / ] = X~1A(I-A*A)Y-1 = X-1 (I-AA*)AY-i = 

= [ o o 
The definition of D shows that 

ra—m — *m>*-Mi\-

This equation is the same as AC*+BD*=0. 
Finally, we show that CC*+DD*=TS. We have, using (6) at one point, 

[2 ¿MS SMS J)-™-" 
= Y*~1(I—2A*A+A* (A A*) A) F = 

= Y*-i{l-2A*A+A*\l-x\1^ ° j ^ J ^ j r - 1 = 

— IS 
_ r o o i _ r o o i r o z>*i r o o ] _ r o 0 1 
~ l o / J Lz> o J l o 0 J ~ I 0 i j 1 0 23Z>*J" 

Hence CC*+DD*=Iit as claimed. 
Therefore matrix (5) is unitary, and has 5 more rows than A. This settles the case 

k= 1. For 1, we use these blocks B, C, D together with the construction in the 
proof of Theorem 1. This completes the proof of Theorem 2. 
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Let us note two additional facts: (i) If contraction A has real entries, this proof 
produces a real dilation M; (ii) If contraction A has quaternion entries, this proof 
produces a symplectic dilation M, i.e., a unitary M with quaternion entries. 

It should also be noted that essentially this proof is already in the literaure; 
see [1]. 

4. Unimodular power embeddings 

Now let aXa matrix A have entries from a commutative principal ideal domain 
R. We wish to embed A to exponent k into a unimodular matrix M. We take the uni-
modular deficiency <5 of A to be the number of non-unit invariant factors of A. Then 
¿ = 0 if and only if A is unimodular. We adopt the convention that any matrix A 
over R now is to be viewed as a contraction. (This is not quite as unnatural as it 
seems: if we were to permit matrices with entries from the field of fractions of R, 
by p-adic theory the contractions would be just those with entries in R.) 

Theorem 3. Let matrix A have entries in the principal ideal domain R. Then 
A possesses a unimodular power embedding M to exponent k, with M having p more 
rows than A, if and only if p^ki5, where ô is the unimodular deficiency of A defined 
above. 

When k=lr this theorem is a special case of a known result [7] on invariant 
factors. 

Lemma 6. Assume that A is not unimodular, and that A is power embedded in 
unimodular M to exponent k. Then, after a unimodular similarity preserving A, M takes 
the form M=[A/y]0S< t JSk , where 

(a) MW=A and each diagonal block Mn is square, 
(b) Mu=0 if j^i+2, 
(c) Mi0=0 for 1 
(d) Each block M12, M^, ..., Mk0 has at least ô rows, with M23, ..., Mk0 each 

having all rows independent and M12 at least S independent rows. 

Proof . By induction on k. For k=1 we need only show that M10 has at least 
ô independent rows. After a block diagonal unimodular similarity of M preserving 
A, no generality is lost if M10 is cast into Hermite form. If it has fewer than <5 non-
zero rows, by a column Laplace expansion det M is a linear combination of a X a 
minors formed from the first a columns of M, each minor using at least a—¿ + 1 
rows from Moa. Thus det M is a linear combination of (a—<5-f l)-square minors 
from M00. If j is the first nonunit invariant factor of A=M 0 0 , each of these minors 
is divisible by s, so that s is a factor of det M. This is impossible. 

Now assume the result for k. By a block diagonal unimodular similarity of M 
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preserving A, we may cast M12 into row Hermite form, with the nonzero (and inde-
pendent) rows last. Now repartition M as before. Then Mk+1^>Ak+1 implies 
M02M23...Mktk+1Mk+10=0 and hence (by independence of rows) MO2=0. Let 
the blocks be «¡X«,-. We must show that and that M12 has at least ¿independ-
ent rows. To see that 8^n1} expand det M down its first n0—a columns, with com-
plementary minors coming from the last «j-f-• ••+nk+1 columns. If a minor uses x 
rows from MQO, and if this minor is not to be divisible by s we must have x^n0—8. 
Also, it must use n0—x rows from M t + 1 > 0 . 

Expand the complementary minor down the columns running through M01. 
A nonzero minor in this expansion must use all the rows in M01 that were not used in 
M00, and perhaps some rows from Mn, ..., Mk+1>a. The complement of this minor 
uses all the columns and some of the rows of 

There are nx+...+nk+1 —(n0—x) rows to select from to produce a nonzero minor, 
and n2+ ...+nk+1 must be used. Consequently if there is to be a term in the expansion 
of det M not divisible by s, we must have n2+ ...+nk+1^n1 + ...+nk+1—(n0—x). 
Thus 8^n0—xS«!. If there were not 8 independent rows in M12, we could cast M12 

into row Hermite form, and repeat the last argument with a smaller matrix M12 

having less than 8 rows. 

P r o o f of Theo rem 3. We first show that ¡i^k8. If A is unimodular this 
is clear. If not, M partitions into «¡X«; blocks, with S=n2, ..., 
S=nk . Hence /i^kS. 

Conversely, we first produce a unimodular matrix of size (a+<5)X(a+<5): 

Let A = U diag (/, S)V, where U and V are unimodular, and 5 is diagonal with the 
nonunit invariant factors of A as diagonal elements. (The Smith form of A.) Here 
S is 8x8. Then let 

M12 0 0 ... 0 
M22 M23 0 ... 0 

Mk2 Mk3 . . . . Mktk+1 

+ M k + 1>3 . ... M t + l j i + 1 

\A 
l e D J 

/ 0 0 
0 s I, 
0 h 0 

This matrix is plainly unimodular and has 8 more rows and columns than A. This 
settles the case &=1, and k > \ is now treated as in the proof of Theorem 1. 
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5. Complex orthogonal power embeddings 

Let aXa matrix A now have complex entries. The closeness of A to (complex) 
orthogonality will be measured by the rank of <5 of I—AAT. This also is the rank of 
I—ArA, because: the rank of I—AAT is a minus the number of elementary divisors 
of AAT belonging to eigenvalue 1. Since the elementary divisors of a matrix product 
AB belonging to a nonzero eigenvalue are also those of BA (Flander's Theorem), 
ATA must have the same elementary divisors for 1 as AAT. Of course, ¿ = 0 if and 
only if A is already orthogonal. 

Theo rem 4. Let matrix A have complex entries. Then A possesses a complex 
orthogonal power embedding into M, to exponent k, with M having p more rows than 
A, if and only if p^kô, where 8 is the orthogonal deficiency of A defined above. 

The proof of sufficiency is entirely analogous to the sufficiency proof in Theorem 
2, changing * to T. Only the necessity needs proof. First we treat the case k= 1. Let 

Orthogonality demands that Af01M0^=7—AAT, and hence M01 must have rank at 
least 8. Therefore it has at least 8 columns. 

The following lemma will be required -below. 

Lemma 7. Let S be a kXn complex matrix with SST=Ik. Then an nXn 
orthogonal matrix O exists with S as the last k rows. 

Proof . Plainly S has rank k, hence fcs« and it has a kxk nonsingular sub-
matrix. Let P be a permutation matrix such that SP has its initial kxk submatrix 
nonsingular. Set 5P=[S 1 , S2], with S\ invertible. Now take 

with X=-YSjSilT. Then Ar51
T+ rS2

T=0, for any choice of Y. We require 
XXT+YYT=In_k and this amounts to 

Now Ik=S1S?+S2Sj=S1[Ik+(Si1S<d(Sr1SjT]S?. Hence - 1 is not an eigen-
value of (Sr152)(5 ,r1S2)T, and therefore not of (51

_1
iS'2)T(5r152). Thus 

SjSilTSi1S2+In_k is nonsingular, and hence (7) can be satisfied by some choice 
of Y. (Note that Y is square.) For this choice of Y, O is orthogonal, and the lemma is 
proved. 

A M01 

M10 Mu ] 

(7) y [ S 2
T 5 r 1 T 5 r 1

1 S 2 + 7 n _ j y T = 7„ 'n-k-
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Now we handle the case k=2. Rename the blocks in M a s 

Then CT C=7— ArA = FT diag (0, Ig) Y for some invertible Y. Hence 

( C T - 1 ) T ( C T - 1 ) = diag ( 0 , I S ) . 

Let S be the ¡1X8 matrix comprising the last 8 columns of CT - 1 . Then STS=Is, 
and by the lemma an orthogonal O exists of the form 

rZ Ol \ZY{] 
Then OCY~1 = I , for some Z, and so OC= , where Yx, Y2 arise from 

10 7 j L r J 

a partitioning of Y as Y= J^1 j . Then 

C T C = YJZTZY1 + YT
2Y2 = (ZY1)T(ZY1) + F T [ ® ° ] Y = + C T C . 

Therefore (ZF1)T(ZF1)=0 and YjY2=CTC. Moreover Y2 is ¿Xa with independ-
ent rows. Perform an orthogonal similarity on M by diag (/„, O). After this simi-
larity, we partition M as 

A M01 M02 

M = M10 Mu M12 

M 2 0 M 2 1 M 2 2 

with square diagonal blocks, M 2 0 =F 2 is 8Xoc with independent rows, and 
M 1 0 = Z Y 1 , so that Mj,M1 0=0. If we pass to PMPT with a block diagonal permu-
tation matrix, we perform a permutation similarity on A and arrange that the initial 
8x8 block in M20 is nonsingular, and still have MJqM1o=0. 

We proceed to simplify the form of M. Let T be an as yet unspecified aX8 
matrix. Observe that M10TTrMj0 is nilpotent (its square is zero), and therefore 
I+M10TTrMj0 is invertible. Choose a nonsingular X such that 

X(I+M10TTtM?0)Xt = 7, 

then set Y=-XMWT. Both X and Y depend on T. Now set 

® 

This matrix is orthogonal. Applying to M a block diagonal orthogonal similarity 
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by diag (4 , О), we get in the lower left positions 

XM10(Ia-TM20) 
M* n ] 

We now choose T, therefore also Zand Y. Since the leading SxS submatrix in tfM 

is nonsingular, we may choose T so that 

TM, -['¿¿У 
For this choice of T, the upper block in (8) has the form [0, • ], where the 0 has ö 
columns. That is, after an orthogonal similarity preserving the structure of M, we 
may take M in the form 

M = 
M01 M02 

[0, M;0] Mu M12 
[М2й , M2„] M21 M22 _ 

where M20 is 5xS and invertible. (The whole purpose of this reduction was to get a 
nonsingular block in Af20 beneath a zero block in M10.) 

Now invoke the condition M2z>A2. This yields 

M0 1[0, + M o i [M 2 0 , M2'0] = 0. 

Because М'2й is invertible, we get M02=0. And now, because M is orthogonal, 

[0, МГ0]ТМ12+[М^0, м;0]тм22 = 0, 
yielding M20

TM22=0, whence M22=0. Also, we now have AAJ+M0lMl1 = la, 
whence M01Mji has rank <5, and thus M01 has at least <5 columns. Hence M has at 
least 28 more rows than A. 

We have Mj2M12=Is, hence an orthogonal О exists with 

o ' 

for some Z. Then OM12 = ^ j , and a block diagonal orthogonal similarity of M by 

diag (/, O, / ) preserves the block structure and converts M12 to ^ J. Repartitioning 

we now get 
A M01 M02 0' 

[0, M U M u M l 2 0 
[0, MlJ M21 M22 Id 

_[M'Z(>,M^} M3l M32 0. 
with M30 8x8 and nonsingular. Orthogonality implies M20, M21, M22 are all zero. 
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We now continue by induction, analogous to the proof of Theorem 2. For 
example, M3^>A3 now implies Mo2=0 (using M2z>A2), whence M32=0, and 
a splitting of M12 can be obtained, etc. This completes the proof of Theorem 4. 

Comment . Each theorem above is of the following type: Given a semigroup 
G of matrices of specified size nXn, and a fixed matrix A, how large must n be so that 
M exists in G with M'HA' for /=1, ..., k. The same question can be formulated 
for other semigroups. For example, if G is the full linear group, then M must have at 
least kő more rows than A, where <5 is the nullity of A. We omit the proof. 
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Spectral results for some Hausdorff matrices 

B. E: RHOADES and N. K. SHARMA 

Let B F[0, 1] denote the Banach space of functions / of bounded variation over 
the interval [0, 1], with ||/|| = V ( f ) , the variation o f /over [0, 1]. In addition, each / 
is assumed to satisfy / ( / ) = [ / ( ' + 0 ) + f ( t - 0)]/2 at each point of discontinuity for 
0<?<1, and / ( 0 + ) = / ( 0 ) = 0 . 21 will denote the subspace of BV[Q, 1] consisting of 
absolutely continuous functions. Let ^f denote the Banach algebra of multiplicative 
conservative Hausdorff matrices. For feBV[0, 1], let Hf denote the Hausdorff 

i 
matrix corresponding to the moment sequence {/*„}, defined by ¡i„= J t" d f , 

o i 
n=0 ,1 ,2 , . . . , and define Tf(z)= f r1+Vz df for each z€D-{0}, where 

D={z: |z—1/21<1/2}. 
The Euler matrix of order q, written (E, q), is the Hausdorff matrix correspond-

ing to 
(0, 0 si t < q, 

The corresponding function for I, the identity matrix is 

rO, 0 s i < l , 

M will denote the Cesaro matrix of order 1, corresponding to f(t)=t, O ^ r ^ l . 
In [11] it was shown that № can be identified with BV[0,1], and that 21 can be 

identified with ¿^[0,1], the Banach space of absolutely integrable functions on 
[0,1]. In [5] it was shown that ||///|| = F( / ) . For additional properties of Hausdorff 
matrices the reader may consult [3]. 

For f,g(iBV[0,1], define 
i 

a ) ( / * g ) ( o = / ( 0 g ( i ) - / g ( « ) 4 f m , o ^ s i . 

Received August 12, 1981. 
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The multiplication defined by (1) is a reformulation, and an extension to multiplica-
tive Hausdorff matrices, of the formula developed in [2, p. 196]. 

Theorem 1. Let f,g£BV[0,1]. Then 
(a) Hf,q = HrHg, 
(b) | | /*g\\ S ll/H ||g||, and 
(c) f*g = g*fiBV[0, 1]. 

Since f,gtBV[0,1], there exist moment sequences {¿„}, {c„} defined by 
i i 

bn= f tn dg, c„= f t" d f , n=0, 1, 2, .... From Theorem 210 of [3], the sequence {an}, 
o o 

defined by an=b„cn, is also a moment sequence. Therefore, there exists a mass 
i 

function h£BV[0, 1] such that a„= Jt" dh. To prove (a), it remains to show that 
h=f*g. 

If one defines b(z)- ftzdg(t), c(z)= f tz df(z), then b(z) and c(z) are 
o o 

analytic for R e z > 0 and continuous for Rez^O. Since an=bnc„ for all nonnega-
tive integers n, it follows that a(z), defined by a(z)=b(z)c(z), has the representation 

i 
a(z)= f tzdh(t). 

0 
By defining u=e~\ v = e~s, h(u) = h(\)-A(t), g(u)=g(\)-B(t), and 

/ ( M )= / (1) -C(f ) , where A, B, and C are as defined on pages 200—201 of [2], the 
equation 

i i i 
/ t'-dh(t) = / t*dg(t). j t z d f ( t ) 
0 0 0 

becomes oo oo oo 

f e-'zdA(t)= f e-,zdB(t)- J e~,z dC(f). 
0 0 0 

Using the multiplication theorem derived on page 201 of [2], it follows that 
oo oo 

f e~ztdA(t)=z f e~ztdA(t), where 
J - o o 

t 

(2) A(t)= f B(t-s)dC(s). 

o 

Substituting the values of A,B,C,u,v into (2), and noting that B(t—s)= 
=g(l)~g(u/v), yields 

u u u 

h(l)-h(u)= f [g(l)-g(u/v)](-df(v))=-g(l) f df(v)+ f g(u/v)df(v) = 
I i i 

i I 

= g( 1) / df(v)~ J g(u/v)d/(v). 
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Therefore 
i 

Hu) = Hl)-g(l){f(l)-/(u)]+fg(ulv)df(v)=. 
U 

1 
= h ( l ) - g ( l ) / ( l ) + / ( « ) g ( l ) - / g ( t ) d / m , u 

and (1) is established, provided it can be shown that /z(l)=,g(l)/(l). But this is 
easy. Since a„=bnc„ for all n, a0—b0c0; i.e., 

i i i 
/ dh(t) = / dg(t). f df(t\ 

0 0 0 

so that M l ) - M 0 ) = (g ( l ) -g (0 ) ) ( / ( l ) - / (0 ) ) . But h{0)—g(0) =/(0)=0, so that 
M l ) = g 0 ) / ( 1 ) -

To prove (b), ||/**|| = ||fl> J | = | |H, • Hg\\ ^ \\H,\\ • = ||/|| • || g||. 
Since multiplication of Hausdorff matrices is commutative, (c) follows immedi-

ately from (a) and (b). 
Definition (1) is useful, not only for computing mass functions for products of 

moment sequences, but also is useful as a tool for computing the spectra for par-
ticular Hausdorff matrices, as the following theorem illustrates. 

Theorem 2. The spectrum of M, a{M) = {z: | z - l /2 | ^ l /2} . 

Suppose there exists a mass function f£BV[0, 1] such that ((t—A(p1)*f)(t) = 
i 

= (Pi(t) for some complex number A. Then, for 0 < / < l , tf(l)=t J (/(w)/w2) du= 
t 

=;/(?). Hence 

which implies 

a.e. in (0,1). For A^O the above equation takes the form f'(t)/f(t)=(k-l)/At, 
which has the solution f(t)=AtiX~1)/x for some constant A. For Re ((A-1)/A)>0, 
fiBV[0,1] and, for Re((A-l)/A)<0, f$BV[0,1]. Since Re ((A-1)/A)>0 is 
equivalent to A $ D, and since the spectrum is always closed, the theorem is proved. 

Remarks . 1. Theorem 2 is not a new result, but the proof is new. A different 
proof appears in [4]. Theorem 2 can also be established using the techniques employed 
in Theorem 4 of [6]. Since M is also a weighted mean method, Theorem 2 is a special 
case of Theorem 1 of [1]. 

12 
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2. Using the same technique as in Theorem 2, it can be shown that a(E, q)= 
= {z: | z | s 1}, a result established by a different method in Theorem 3 of [9]. Also, 
if / ( ' ) = ' * , then o{Hf)=D. 

T h e o r e m 3. Let fiBV[0, 1] such that /(/)//eL1!0, 1]. Then f(t)*tdSH. 
i 

From (1), f(t)*t=tf(\)+h(t), where h(t)=t J (f(u)/u2) du. Then, a.e. on 

[0, 1], 

m=/mdu.rn, 
and 

j w w t * } 
0 0 t " 0 

Interchanging the order of integration in the first integral yields the second in-
tegral, so h ' & l 0 , 1]. Thus, hiL^O, 1] and the theorem follows. 

It follows from [7] that the set of conservative Hausdorff matrices is a maximal 
commutative Banach subalgebra of the algebra of conservative matrices. Conse-
quently, the spectrum of any member of is determined by the set of multiplicative 
linear functional defined in this subalgebra. (See, e.g. [12, p. 264].) The remainder of 
this paper is devoted to a study of these functional, and in extending some of the 
results of [10]. 

T h e o r e m 4. Let x be any multiplicative linear functional defined in JF such 
that 0. Then x(TfM)=Tf(x(M)) for each ftBV[0,1]. 

Without loss of generality it may be assumed that / is nondecreasing. Define 
/ ¿ ( 0 = 0 for 0 f 6 ( t ) = f ( t ) for 5=i/=Sl. Then MBV[0,1] and | | / - / a | | S 
3§/(<5). Since f(t)-*0 as f - 0 , U / - / J - 0 as ¿ - 0 . Therefore \\Hf-HfJS 
as ¿ - 0 . Since \Tf(z)-Tfi(z)\^\\Hf-Hf\\ for each z£D-{0}, Tf/{z)-Tf(z) 
as 0. 

Define x(M)=z, z£D-{0}. Sinceclearly / ( / ) / ' ^ [ O , 1], f,{t)*t&BL by The-
orem 3. As in the proof of Corollary 4 of [10], x (MHfs)—zTfi(z). Since z ^ 0 , 
X ( H f i ) = T f i ( z ) . Taking the limit as 5 - 0 yields x(Hf)=Tf(z), and the proof is 
finished*, since Hf=TS(M). 

Remark 3. In Remark 3 of [10] it was shown that, for z€Z>, x(Af)=z implies 
X (TfM)=Tf (x (M)). The above theorem has extended this result to D - {0}. That 
Theorem 4 cannot be extended to D will be shown in the example following Remark 4. 

i 
Define Xo by X o p „ , where nn= J t" df Then Xo is a nonzero mul-
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tiplicative linear functional on with the property that x0(E, q)=0 for each 

T h e o r e m 5. Let x be any nonzero multiplicative linear functional on JF. Then 
X(E,q)=0 for some 0<<jr< 1 if and only if X~Xo-

If X=Xo then clearly x(E, g)=0. Suppose x(E, q)=0 for some 
Let qt satisfy O^q^q. Then (E, q1)=(E, q)(E, qjq) so that x(E, 
=X(E, q)-y_(E, Suppose q<q2<l. Since lim ql=Q, choose any n such 
that Then x(E,ql)=0, which implies xi.E,q^=0. 

Now let f^BV[0,1] such that / (1 - 0 ) = / ( l ) . Consider the function g defined 
by g(t,q)=f(qt)*<pq(t), 0 < # < 1 . Using (1) it is easy to verify that g(t, q)=f(t) 
for 0 S t ^ q , and g(t, q)=f(q) for q^t^l. Therefore ||g(i, 9 ) - / ( i ) l l a s 
q—l. Since xifi,q)=0 for each 1, x(Hg{tiq))=0 for each and 
hence x(Hf)=0. 

Any htBV[0, 1] can be written in the form h(t)=f(t)+).cp1(t), where 
i 

A=lim f1" df and f(t)=h(t)-A<p1(t). Then z(//h)=A, so that x=Xo-
o 

T h e o r e m 6. Let /€21, a any constant. Then 

o{Tf(M)+a{E, q)) = {.Tf{z)+aq~zg5-{0}}. 

Let x be any multiplicative linear functional on Suppose z(Af)=z for 
z£D-{0}. From Theorem 4, x(Tf(M)+a(E, q))=Tf(z)+aq~1+1'z£a (Tf(M)+ 
+a(E, q)). If x(Af)=0 and x(E,q)=r^0, then there exists a z e 5 - { 0 } such 
that r=q~1+1,z. Define a=a(«) = z log q/(log 9+2n zni) for n any integer. Then 
q~1+1/x=r, and a - 0 as «-«>. Since /€21, 7>(a ) -0 as Thus, for all n 
sufficiently large, a e D - { 0 } and Tf(a)+aq-1+ll"£a (Tf(M)+a(E, q)). The result 
now follows since the spectrum is closed. 

R e m a r k 4. A different proof of Theorem 6, for functions of regular bounded 
variation, appears in [8]. 

The following example shows that x(A/)=z, z = 0 need not imply x(TfM)= 
= T,(x(M)). Consider M+(E,q)i3f. From Remark 2, - 1 £o(E,q). Define 
{z„}by z„=log (log q+(2n- l)ni). Then z„e2)-{0} for each n, z„—0, and, the 
multiplicative linear functional on Iff defined by x(M)=z„ also satisfies x(E,q)= 
=q-1+1'z"=~l for each n. Therefore, by Theorem 6, z„-1€<x (M+(E, q)) for 
each n. Since the spectrum is closed, — 1 €<r (M+(E, q)). Hence there exists a Xi 
such that Xi{M+(E, q))= — 1. It will now be shown that Xi(M)=0. Suppose not. 
Then Xi(M)=z^Q- From Theorem 6, — l = X i ( M + ( E , q))=z+q~1+1'z, or 

12» 
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q~1+1'z= — (1+z) for some z€D —{0}, which is impossible, since 0 < ? < 1 . There-
fore Xi(.M) = 0 and /1(E,q)=-\. 

Thus Theorem 4 cannot be extended to D. This example also shows that x (M)=0 
does not imply <?)=0 even though the converse is true from Theorem 5. 
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A note on boundedly complete decomposition of a Banach space 

P. K. JAIN, KHALIL AHMAD and S. M. MASKEY 

1. Introduction. Let E be a Banach space. A sequence (M,) of subspaces of E 
is said to be a decomposition of E if each xiE can uniquely be expressed as 

OO 

x= 2 xi> where for each i, and convergence is with respect to the norm 
¡=i 

on E. The uniqueness implies the existence of (not necessarily continuous) associated 
projections Pi of E onto Mt such that PiPj=6iJPj, where StJ=0 for iVy and <50 = 1 
for i—j, and we write Pj(x)=x;. If each Pf is continuous, the decomposition is 
called a Schauder decomposition and we write it as (Mt, P," 

2 * f ¡=1 

A decomposition (Mf) 

<=00 implies that 2! xi 
i=1 

is called boundedly complete if the relation sup 
1SB<« 

converges, where for each i. 
The study of decomposition of a Banach space was initiated in the work of 

GRINBLYUM [3] and developed further in [2, 9, 10, 11, 12]. The purpose of the present 
note is to give certain sufficient conditions for a decomposition to be boundedly 
complete. 

2. In this section, we state and prove a lemma, on which we rely heavily when 
proving our main results. 

Lemma. Let (Mt) be a Schauder decomposition of E. Then the following state-
ments are equivalent: 

(A) For each number A>0 there exists a number 0 such that 

Z x i = 1, 2 i=n+l 
S A imply 2 xi i=l 

S 1 + r, 

€ M; for each i). 

Received August 20, 1981. 
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(B) For every e > 0 there exists a ¿ > 0 such that 

(xt eM, for each i) 

I S , II xt = 1 imply 2 i=n+1 
^ e 

Proof . (A)=>(B). Suppose (A) holds and (B) is not true, then there exists an 
e > 0 such that for every ¿>0 , 

2xi IS, = 1, 2 xi i=n+1 
e ( x ^ M , ) . 

Then, for A=—, where K is a constant appearing in Grinblyum's AT-condition for 
A 

Schauder decomposition (see [8], p. 93), there exists no rA>0 so as to satisfy (A). 

Indeed, let / ¿ > 0 be arbitrary, S = rÀ/(l + rx) and y, f = xi I .¿xj Then 

¡=i = i, \\ 2 y* 

= i / . Z ^ y=i 

^e/K 

1 

2 x j 
J=I 

1-Ô 
= l + rx. 

This is a contradiction and hence (A) implies (B). 

(B)=>(A). Assume that (A) is not true, i.e. there exists a A>0 such that for 
every r x >0, 

2 x i ¡=i = l , 2 xt 
i=n+l 

= A, 2xi 
i=l 

1 + rt. 

Then, for e=A(l— rf) with 0 < f / < l arbitrary, there exists no ¿ > 0 so as to satisfy 

(B). Indeed, let <5>0 be arbitrary with S^tj. Let rx=S/(l—§) and yi—Xij 

Therefore 
1 

2 x j 
j=i 

i=n+1 
2 X j 

= 1 - 5 , = 1, 

S e , 

which is a contradiction, hence (B) implies (A). 

Note. The statements (A) and (B) in the lemma will be referred to as properties 
A and B, respectively. 
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3. Main results 

Theorem 3.1. Let (Mj) be a Schauder decomposition of E. If (Mj) satisfies 
property A (or B), then (Af,) is boundedly complete. The converse may not be true. 

Proof . Suppose sup 
13n<°° 

= a < ° ° with xi€Mi. Let y„= 2xi> choose a 
¡=1 

sequence (rtk) of positive integers such that lim ||jn, || = fim ||.y„|| =/J (say). If /5=0, 
EO 

then Z x i converges (to zero). If /MO, we shall show that (yn^ is a Cauchy 
sequence. In fact, otherwise there would exist a ¿ > 0 and subsequences (yn.), 
(y*,), of ( j ^ with n k > n l j 0 = 1 , 2 , . . . ) such that 

l l ^ - J ^ I I ^ <5 0 = 1, 2, ...). 
Then, since 

I IJVl 
& — = x > 0, 

a 

we would have by property A 

y«i 
lb-,II II y«. 

1+rit 

hence 

Thus 
l l ^ l l £ l l ^ l l d + 

ß = l im l l j v l l s l im | b „ , | | ( l + r , ) = ß(l + rx), 
J

 0 0

 J J
 0 0

 J 

which is impossible since ¡¡¿¿0. Consequently, (yn/J is a Cauchy sequence. Hence 
lim y„.=x£E. Therefore, (Mt) being a Schauder decomposition, oo fc 

"k 
* = y»* = J " 2 Z x i = Z x t -k-*" * ¡=i ¿=1 

( oo 
This shows that Z x t converges, whenever 

¡=i 

sup 
lsn-c» 2*1 

( = 1 

For the converse, consider the following counter-example which would complete 
the proof of the theorem. 

Example 3.2. Let ( j , || ||) be a Banach space. Define 
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the norm on U(x) being given by 

= 2B*«0-

Further, let us assume the Banach space % to be such that the topological dual of 
the space ^(x) is its respective cross dual (see [6], Table 3.29, and [5]). Now, we 
observe that (AQ with Af,={5f<: where 5f< means the sequence (0,0, . . . , 
Xj, 0, ...) i.e. the i-th entry in ¿¡' is x( and all others are zero, forms a Schauder de-
composition (see [4], p. 290, and [8], p. 95) of ¡i(x). Now, we define 

XX XX 
= N2 = { s P + 5 1 : x £ X } , = ty, for 1 * 1 , 2 . 

Then (JV,) is a boundedly complete decomposition, but does not satisfy property A. 

Remark . Properties A and B are not invariant under an isomorphism of the 
space E onto another space Ex. Hence they are not isomorphic properties since 
(Nj) forms a boundedly complete decomposition, equivalent to (iV,), of E which sa-
tisfies property A. 

Def in i t i on 3.3. A Schauder decomposition (Mt) is said to be monotone if 

Zx< 
n + 1 
2 Xi 
(=1 

, for all n, where xt is an arbitrary element of M,. 

Def in i t i on 3.4. A Banach space is uniformly convex if for every e > 0 there 
exists ¿ > 0 such that whenever ||x||, | | j | | S l , and ||a-—y\\ëe, then ||(jc+j>)/2|| s 
S 1 - 5 . 

Now, we give sufficient conditions for a decomposition to satisfy property A 
(or B). 

Theorem 3.5. If (Mj) is a monotone decomposition of a uniformly convex space 
E, then (Mj) satisfies property B (hence property A). 

Proof . Let property B be not true. Then for any given e>0 and <5>0 (in 
particular, we choose ¿ > 0 of definition 3.4), there exists a sequence (x,), xt g M ; 

such that 

1-5, 2*i i=1 
- 1 and 2 >=n + l 

e. 

Therefore, monotonicity of (Mf) implies 
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Let x = Z x i and y — 2 xt- Then ||x||, and 
i=l ¡=1 

I k - J l l 

and so \\(x+y)/2\\ ^ 1 — <5. Hence 
2 xi 

i=n + l 

l-ô^\\(x+y)/2\\ = 

which is a contradiction. 
2 x i + t 2 x. ¡=1 z ;=n+i 2 xi 1-Ô, 

Coro l l a ry 3.6. If (A/j) is a monotone decomposition of a uniformly convex 
space E, then (Mf) is boundedly complete. 
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Analytical Methods in Probability Theory. Proceedings, Oberwolfach, Germany, 1980. Edited by 
D. Dugué, E. Lukács and V. K. Rohatgi (Lecture Notes in Mathematics, 861), X+183 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

This volume contains most of the papers read at the conference "Analytical Methods in Proba-
bility Theory", Oberwolfach, June 9—14,1980. Characterizations of distributions (unimodal, Poisson, 
Gamma, unimodality of infinitely divisible distributions) are investigated in nine papers. Ten papers 
deal with asymptotic properties of stochastic processes and their applications in statistics (tests for 
exponentiality and independence, local limit theorem for sample extremes, local time and invariance, 
rate of convergence in the central limit theorem, weak convergence of point processes). 

Lajos Horváth (Szeged) 

S. Burris—H. P. Sankappanavar, A Course in Universal Algebra (Graduate Texts in Mathema-
tics, vol. 78), XVI+276 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1981. 

The book gives a high-level course in modern methods and results of universal algebra. It is 
divided into S numbered chapters, contains a large bibliography, author and subject index and a 
list of some open problems and applications. 

Chapter I contains the neccessary definitions and theorems from lattice theory. Chapter II (The 
elements of universal algebra) describes the most important concepts and notions. Here we can find 
the most commonly used methods to construct algebraic structures. Chapter III discusses several 
topics, e.g., how universal algebra can be related to combinatorics and to regular languages. Chapter 
IV — starting from the notion of a Boolean algebra — presents results of the last years. It deals 
with primal algebras, quasi-primal algebras, functionally complete algebras and some interesting 
classes of varieties. Chapter V discusses connections between universal algebra and model theory. 
Each chapter is divided into sections, and each section ends with references and exercises. 

The book is very elegantly and clearly written and can be recommended for all students and 
mathematicians interested in universal algebra. 

László Hannák (Budapest) 

W. K. Biihler, Gauss. A Biographical Study, VIII+208 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1981. 

Im Jahre 1977 wurde der 200. Geburtstag von Gauss gewürdigt; 1980 sein 125. Todestag. Die 
Lebenszeit des Princeps mathematicorum liegt also nicht allzu weit zurück; dennoch wird es mit 
jedem Jahr schwieriger, eine Gauss-Biography zu schreiben. Wie der Verfasser selbst schreibt, 
enthält sein Werk kaum Dinge, die dem Spezialisten nicht bereits bekannt sein dürften: fast alle 
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Informationen können in bereits veröffentlichten Quellen gefunden werden; darüberhinaus stehen 
die Gesammelten Abhandlungen von Gauss einigermaßen vollständig zur Verfügung. 

Ziel des Buches ist eine Darstellung des Lebens und Wirkens von Carl Friedrich Gauss, der 
— sogar mit den Maßstäben unserer schnellebigen Zeit — in einer Periode außerordentlicher politi-
scher und sozialer Veränderungen lebte. Der Verfasser vertritt die Auffassung, daß Gauss nicht in 
die intellektuelle Szene dieser Zeit "paßte" und daß sein Lebensweg ein ungewöhnlich geradliniger 
gewesen ist. 

. Mit seinem Werk wendet sich der Autor an Mathematiker und andere Wissenschaftler unserer. 
Zeit, wobei aber die Wissenschaftshistoriker und die Psychologen, welche "die Skalps großer Männer 
sammeln" ausgeschlossen werden. Der Verfasser ist — wie er in seinem Vorwort selbst zugibt — bei 
seiner Darstellungsweise gleichzeitig bescheiden und unbescheiden. Bescheiden ist er deswegen, weil 
er nicht den Versuch unternimmt, das "Leben von Gauss" in definitiver Weise niederzuschreiben. 
Als unbescheiden, wenn nicht gar grandios, sieht er seinen Versuch an, aus dem Leben und Wirken 
von Gauss diejenigen Gesichtspunkte wenigstens teilweise hervorzuheben, die einerseits von zeit-
gemäßem Interesse sind und sich andererseits an einen nicht primär historische motivierten Leser 
werden. 

Dieses Vorhaben des Verfassers ist als gelungen einzuschätzen; sein Werk ist eine anspruchsvolle 
Lektüre, die zu lesen es sich lohnt. 

Abschließend ein Überblick über den inhaltlichen Aufbau des Buches: Kindheit und Jugend, 
1777—1795; Die zeitgenössische politische und soziale Lage; Studentenzeit in Göttingen, 1795— 
1798; Zahlentheoretische Arbeiten; Der Einfluss von Gauss' arithmetischen Arbeiten; Rückkehr 
nach Braunschweig. Dissertation. Die Umlaufbahn der Ceres; Heirat, spätere Jahre in Braunschweig; 
Die politische Szene in Deutschland, 1789—1848; Familienleben, Umzug nach Göttingen; Tod von 
Johanna und zweite Ehe. Die ersten Jahre als Professor in Göttingen; Der Stil von Gauss; Astrono-
mische Arbeiten. Elliptische Funktionen; Modulare Formen. Die Hypergeometrische Funktion; 
Geodäsie und Geometry; Der Ruf nach Berlin und Gauss' soziale Rolle. Das Ende der zweiten Ehe; 
Physik; Persönliche Interessen nach dem Tode der zweiten Frau; die Göttinger Sieben; Die Methode 
der kleinsten Quadrate; Numerische Arbeiten; Die Jahre 1838—1855; Gauss' Tod. 

In drei Appendizes werden die Organisation der Gesammelten Werke von Gauss, ein Überblick 
über die Sekundärliteratur und ein Index der Arbeiten von Gauss gegeben. Jedes Kapitel ist von 
zahlreichen erläuternden Fußnoten begleitet, die zu einem noch besseren Verständnis beitragen. 

Manfred Stern (Halle) 

J . T. Cannon—S. Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742 
(Studies in the History of Mathematics and Physical Sciences, 6), IX+184 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1981. 

Very few works have produced such a tremendous effect on the development of theoretical 
physics and matematics as Newton's Principia published in 1687. The book deals with the history of 
vibration theory during the half century that followed this date. Reading the book one has the feeling 
that the originality and brilliancy of ideas of Newton, Taylor, Euler and the Bernoulli family can 
really be appreciated only by studying their original works and correspondence. The reader obtains 
considerable help to do this from the authors who make the contents of these works readily accessible 
and make clear the historical connections among many of the pertinent ideas and concepts such as 
isochronism, simultaneous crossing of the axis, pendulum condition. These concepts were used for 
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the study of the problems of floating bodies, hanging chains, resonating beams, the vibrating ring 
and the vibrating string pertaining to dynamics in many degrees of freedom. 

The nicely presented book is concluded by the facsimile of Daniel Bernoulli's papers on the 
hanging chain and the linked pendulum with translations. 

L. Hatvani (Szeged) 

J . Carr, Applications of Centre Manifold Theory (Applied Mathematical Sciences, 35), XII + 142 
pages, Springer-Verlag, New York—Heidelberg—Berlin, 1981. 

What is the centre manifold theory in the title of the book? In the theory of differential equations 
the case when the linear part of the right-hand side has pure imaginary eigenvalues and the real 
parts of the remaining spectrum points are bounded above by a negative constant is called critical. 
If the proper subspace corresponding to the pure imaginary part of the spectrum is of finite dimension 
the centre manifold theory guarantees the existence of a locally invariant manifold for the system 
which is tangent to this finite dimensional subspace at the origin. This gives a machinery to reduce 
the dimension of the system under investigation in the critical case. 

The book is based on a series of lectures given in the Lefshetz Center for Dynamical Systems 
in the Division of Applied Mathematics at Brown University during the academic year 1978—79. 
This is what may cause that, as in a good lecture, this introductory book first gives a full account of 
the key ideas and methods in a simpler but interesting in itself case, illustrates them by examples, 
and then proceeds toward the necessary generalizations. In the first two chapters the basic theorems 
of the theory are formulated, illuminated and proved. Chapters 3—5 are devoted to applications such 
as the Hopf bifurcation theory and its application to a singular perturbation problem which arises 
in biology. In Chapter 6 the theory is extended to a class of infinite dimensional problems. Finally, 
the use of the extension in partial differential equations is illustrated by means of some simple ex-
amples. 

We can recommend these notes both to users of mathematics and to mathematicians interested 
in bifurcation and stability theory and their applications. 

L. Hatvani (Szeged) 

The Chern Symposium 1979. Proceedings of the International Symposium on Differential 
Geometry in Honor of S.-S. Chern, held in Berkeley, California, June 1979. Edited by W. Y. 
Hsiang, S. Kobayashi, I. M. Singer, A. Weinstein, I. Wolf, H.-H. Wu, VII+259 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1980. 

This book contains 12 articles reflecting the connection of modern differential geometry with 
other subjects in mathematics and physics. 

Some of the papers are intended to exploit the influence of such differential geometric notions 
as fiber bundle, characteristic classes etc, which originated from the work of S.-S. Chern, to 
modern physics, especially to general relativity and gauge theory (M. P. Atiyah: Real and Complex 
Geometry in Four Dimensions; Raoul Bott: Equivariant Morse Theory and the Yang—Mills Equa-
tions on Riemann Surfaces; Chen Ning Yang: Fibre Bundles and the Physics of the Magnetic Mono-
pole; Shing-Tung Yau: The Total Mass and the Topology of an Asymptotically Flat Space-Time.) 
Three papers are devoted to the study of problems in algebraic geometry. (Eugenio Calabi: Isometric 
Families of Kahler Structures; Mark Green and Philip Griffiths: Two Applications of Algebraic 
Geometry to Entire Holomorphic Mappings; F. Hirzebruch: The Canonical Map for Certain Hilbert 
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Modular Surfaces.) Two papers are discussing classical problems in geometry (Nicolaas H. Kuiper: 
Tight Embeddings and Maps. Submanifolds of Geometrical Class Three in EN; Robert Osserman: 
Minimal surfaces, Gauss Maps, Total Curvature, Eigenvalue Estimates, and Stability). Two papers 
are devoted to the interaction of differential geometry and functional analysis (J. Moser: Geometry 
of Quadrics and Spectral Theory; Louis Nirenberg: Remarks on Nonlinear Problems). One paper is 
related to homology theory (Wu Wen-tsün: de Rham-Sullivan Measure of Spaces and Its Calcula-
bility). 

The reader can trace in these papers the influence of differential geometric ideas in the develop-
ment of mathematical and physical sciences. The book is worth studying for everyone working in 
differential geometry or in related topics. 

Péter T. Nagy (Szeged) 

M. Csörgő—P. Révész, Strong Approximations in Probability and Statistics, 284 pages, Akadémiai 
Kiadó, Budapest and Academic Press, New York—San Francisco—London, 1981. 

When writing about a book of which the brother of the reviewer is one of the authors, the 
topic of which is in a broad sense almost identical to and constitutes a starting point for a large 
part of recent research of the reviewer and, thirdly, in which the reviewer's earlier work is cited to 
such a large extent (perhaps because of the first connection?), there is an unavoidable danger of lack 
of objectivity. Exposing himself freely to such a charge, but greatly economizing with praising ad-
jectives, the reviewer feels that this is a significant monograph with effects that will influence much 
wider circles than that what is broadly termed nowadays as the "Hungarian school" of probability 
and statistics. 

Chapter 2 (Strong approximations of partial sums of independent identically distributed random 
variables by Wiener processes) and Chapter 4 (Strong approximation of empirical processes by 
Gaussian processes) deal with the basic issues indicated in their titles. Both chapters describe the 
history of the corresponding developments, concentrating on the evolution of the involved ideas. 
The first breakthrough of this evolution, after Strassen's and Kiefer's work with the Skorohod em-
bedding technique, was the two authors' invention of the quantile transformation technique, formerly 
used also by Bártfai, by which they disproved a conjecture of Strassen concerning the approximation 
of partial sums and were able to extend Kiefer's approximation of the empirical process. Up to these 
points both chapters are complete. Then the descriptions of the final breakthrough follow, respec-
tively, the celebrated Komlós—Major—Tusnády approximations. The proofs of the latter results 
are not given in detail, save for a partial result for the empirical process. The fourth chapter also 
containes the authors' approximation for the quantile process. 

When the final approximation results by Komlós, Major and Tusnády emerged, another basic 
question of the possible applications, other than convergence rates for the distribution of functionals 
and the law of the iterated logarithm, became important. These depend on what the corresponding 
properties, to be inherited by strong invariance, of the approximating (uni and multivariate) Wiener, 
Brownian bridge and Kiefer processes are within the best rates of approximation. This question lead 
to the two authors' important series of "How big and small" papers concerning the almost sure size 
of the increments of these processes. A comprehensive account of these results, at least in the uni-
variate and in certain bivariate cases, is given in Chapter 1 together with new constructions of the 
corresponding processes. This 67 pages first chapter is in itself a significant contribution to the litera-
ture of stochastics. 

Chapters 3 and 5 utilize the results of Chapter 1 for partial sum and empirical processes, res-
pectively, via the strong approximations in Chapters 2 and 4. The sixth chapter deals with applica-
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tions of the basic approximation results for further empirical processes such as density and regres-
sion estimators and the empirical characteristic function, while Chapter 7 with those for randomly 
indiced partial sum and empirical processes. Each chapter ends with a section of supplementary 
remarks concerning various side developments. 

It is no risk to predict that this book will be a frequent reference in research papers for a longer 
time to come. It is also appropriate as a textbook for a one-year graduate course. 

Sándor Csörgő (Szeged) 

L. R. Foulds, Optimization Techniques. An introduction (Undergraduate Texts in Mathematics), 
XI+502 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

This book provides an introduction to the main optimization techniques which are presently 
in use. Chapter 1 contains a brief introduction to the basic terminology of the theory of optimization. 
Chapter 2 is concerned with linear programming (LP). After describing the basic problem of LP, the 
author presents different forms of the simplex algorithm such as the primal simplex method, the 
"big M" method and the two-phase method. Relationships are introduced between dual and primal 
problems. We can find a short part about the postoptimal analysis. Some special LP problems 
(transportation problem, assignment problem) are studied and different solutions of them are de-
scribed. Chapter 3 introduces the techniques developed to solve large scale LP problems (Revised 
Simplex Method, Dantzig—Wolfe decomposition, dual-primal algorithm). There is a short overview 
of the parametric programming. Chapter 4 discusses the integer programming problem and its solu-
tions by different methods as enumerative techniques, and cutting plane methods. New formulations 
and models are presented. Chapter 5 is concerned with network optimization, emphasizing the short-
est path problem, the minimal spanning tree problem and different flow problems. Chapter 6 contains 
a short review about some known dynamic programming problems and their solutions. Chapter 7 
— classical optimization — is an introduction to nonlinear programming, which takes place in 
Chapter 8. This part of the book consists of several methods to solve unconstrained nonlinear prob-
lems, and among the methods concerned with the solution of constrained problems, the author discus-
ses some efficient strategies such as the gradient projection method, the penalty function method and 
linear approximations. 

For unexperienced readers, there is an Appendix with linear algebra and basic calculus. The 
book contains a large number of excercises and their solutions. 

This work evolved out from the experience of teaching the material to finishing undergraduates 
and beginning graduates. So all chapters contain a "real-life" problem to solve, which is modified 
depending on the aims of the chapter. All problems are examined not from theoretical but from 
practical point of view, so algorithms are simply explained with illustrative numerical examples. This 
book is easy to read, it is a very useful material for education. 

G. Galambos (Szeged) 

From A to Z. Proceedings of a symposium in honour of A. C. Zaanen. Edited by C. B. 
Huijsmans, M. A. Kaashoek, W. A. J. Luxemburg, W. K. Vietsch (Mathematical Centre Tracts, 149) 
VII+130 pages, Mathematisch Centrum, Amsterdam, 1982. 

The symposium was held on July 5—6, 1982, at the University of Leiden, on the occasion of 
Professor A. C. Zaanen's retirement. 

There were three invited lectures (H. H. SCHAEFER: Some recent results on positive groups and 
semi-groups; F. SMITHIES: The background to Cauchy's definition of the integral; B. SZ.-NAGY: 
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Some lattice properties of the space L2), and nine lectures by former Ph. D. students of Prof. Zaanen 
(J. L. GROBLER: Orlicz spaces — a survey of certain aspects; C. B. HUUSMANS: Orthomorphisms; 
K. DE JONGE: Embeddings of Riesz subspaces with an application to mathematical statistics; M. A. 
KAASHOEK: Symmetrizable operators and minimal factorisation; W. A. J. LUXEMBURG: Orthomor-
phisms and the Radon-Nikodym theorem revisited; P. MARITZ: On the Radon-Nikodym theorem; 
B. DE PAGTER: Duality in the theory of Banach lattices; A. R. SCHEP: Integral operators; W. K. 
VIETSCH: Compact operators). A Curriculum vitae of A. C. Zaanen, a list of his publications, and a 
list of all his former Ph. D. students close the handy and beautifully presented small volume. 

Professor Zaanen's infatigable and successful mathematical activity, which, we hope, he will 
be able to continue by the same energy and precision through many years to come (he is actually 
working on his book Riesz spaces. II) has won for him a high appreciation from the mathematical 
community. All who had the chance to meet him or to contact him at least by correspondence, 
enjoyed his attractive and suggestive, but utmost modest personality: no wonder that his excellent 
former pupils, although spread out by now on four continents, are still so much attached to him. His 
fine personality is mirrored also by his nice photo at the beginning of this volume. 

As a survey of various modern areas of mathematical analysis, this book also appeals to, and 
will be an interesting and useful reading for, mathematicians far beyond the circle of those closely 
attached to the person of Professor Zaanen. 

Béla Sz.-Nagy (Szeged) 

Geometry and Differential Geometry. Proceedings, Haifa, Israel 1979. Edited by R. Artzy and 
I. Vaisman (Lecture Notes in Mathematics 792) VI+444 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1980. 

The present book contains the text of the lectures presented at a Conference on Geometry and 
Differential Geometry, which was held at the University of Haifa, Israel, March 18—23, 1979. The 
conference was divided into two sections, namely Geometry and Differential Geometry, and in both 
sections the subject matters covered a broad range, and many of the aspects of modern research in the 
field were discussed. Altogether 42 papers are published in the book, thus it is impossible to give a 
complete list of the authors' works. The reader can find several papers from the fields of synthetic and 
axiomatic geometry, theory of matroids, Riemannian manifods, Lie algebras and Lie groups, con-
formal geometry, foliations and fibrations etc. 

The book is structurally well arranged and the single papers are of high-level affording good 
reading. 

Z. / . Szabó (Szeged) 

B. D. Hassard—N. D. Kazarinoff—Y.-H. Wan, Theory and Applications of Hopf Bifurcation 
(London Mathematical Society Lecture Note Series, 41), VIII+311 pages, Cambridge University 
Press, Cambridge—London—New York—New Rochelle—Melbourne—Sydney, 1981. 

The adventurous history of James Watt's centrifugal governor provides an interesting example 
of Hopf bifurcation. This device was invented by Watt in about 1782 for the purpose of controlling 
steam engines. Centrifugal governors worked well for roughly a century after their introduction. 
Later on, however, when a great number of machines were constructed having different physical 
parameters, curious behaviour was observed in a large percentage of them: some governors would 
"hunt" for the right operating speed before settling down; others would oscillate, never attaining a 
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constant angular velocity. To eliminate "hunting", viscous dampers (dashpots) were added on to the 
governors. It was proved that there is a minimum amount of damping which must be present in the 
system in order to guarantee stability. As the damping is decreased past a critical value, the stationary 
solution becomes unstable; but a stable periodic solution appears and takes its place as the long-term 
behaviour of the system. 

In general, the "Hopf Bifurcation" describes this phenomenon: the birth of a family of oscilla-
tions as a controlling parameter is varied. 

The authors first present the mathematical theory of Hopf bifurcation (Ch. 1). The reader can 
find the bifurcation formulae for computing the form of the oscillations, their amplitudes, their 
periods, and their stability or lack of it. A "Recipe-Summary" also is given making easier to apply 
the formulae in a particular case. The amount of algebraic manipulation, necessary for analytical 
evaluation of bifurcation formulae, increases rapidly with the number of state coordinates. For the 
avoidance of this difficulty a numerical algorithm is presented in FORTRAN codes for the required 
calculation (Ch. 3); moveorer, a set of computer programs is provided on microfiche, which enables 
anyone with moderate FORTRAN ability to run Hopf bifurcation computations. 

The applications illustrated by the numerous examples worked out are divided into groups 
according as the basic model is an ordinary differential equation (Ch. 2), differential-difference and 
integro-differential equation (Ch. 4), or partial differential equation (Ch. 5). In these chapters the 
reader can find interesting examples such as Watt's steam-engine governor, the Hodgkin—Huxley 
model nerve conduction equations, the Brusselator, and Dowell's panel flutter model. 

Summing up, this book will be very useful for all scientists in whose fields bifurcation pheno-
mena occur. 

L. Hatvani (Szeged) 

T. Hida, Brownian Motion (Applications of Mathematics, Vol. 11), XVI+ 325 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1980. 

Mentioning the name of Brownian motion provokes a lively reaction from most mathematicians, 
and their attitude reflects mostly memories of their former professor of probability. But before one 
would decide to punish a sometime teacher by neglecting his subject, it is worth of weighing who else 
will be hit by this decision. We warn: The Brownian motion is not a privilege of probabilists! On the 
contrary, by its internal wealth it forms an everywhere dense set in mathematics. Even if it is not 
a primary object of someone's investigation, the connaissance of Brownian motion can offer a diffe-
rent, often equivalent view-point to the matter or at least it can provide the scientist with essential, 
non-trivial examples. 

The author of the present book had K. Yosida and K. Ito as professors, so it wasn't difficult for 
him to get engaged to Brownian motion. But for him the fundamental structure is less a random 
process with its sample paths (as for Ito) or a semi-group of operators on a Banach space (as for 
Yosida) but rather a measure on a space of generalized functions. Taking advantage of the possi-
bilities offered by Gaussian measures, he presents essentially a Hilbert space theory of Brownian 
motion and of white noise. Fourier transforms, orthogonal expansions and infinite-dimensional 
transformation groups play key role in the book. At the same time as he investigates one of the 
infinitely many aspects of Brownian motion the author presents a new, interesting functional ana-
lytic theory. 

Besides being indispensable for specialists of stochastic processes, the book is recommended 
to any mathematician feeling enough force to get acquined with a new non-trivial field. The reviewer 

13 
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would like to call special attention of collègues bearing a deep sympathy towards Hilbert space me-
thods. Brownian motion can not only give much more motivation to mathematicians as say quantum 
mechanics, but being a natural, internal creature of mathematics with its infinitely many interrelations, 
it can promote cohesion and mutual understanding in the divergent family of mathematicians of 
today. 

D, Vermes (Szeged) 

J . Kevorkian—J. D. Cole, Perturbation Methods in Applied Mathematics (Applied Mathematical 
Sciences, 34), X+558 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1981. 

This is a revised and updated version, including a substantial portion of new material, of J. D. 
Cole's book under the same title published by Ginn-Blaisdell in 1968. 

Perturbation methods are very often used by applied mathematicians and physicians when 
attempting to solve physical problems. In essence, a perturbation procedure consists of constructing 
the solution for a problem involving a small parameter e, either in the differential equation or the 
boundary conditions or both, when the solution is known for the limiting case e=0. 

Traditional regular perturbation problems, for example, the problem of calculating the perturbed 
eigenvalues and eigenfunctions of a selfadjoint differential operator, are omitted; they are discussed 
in most texts on differential equations. Rather, the present book concentrates on the so-called singular 
perturbation problems. Such problems are, among others, layer type problems and cumulative 
perturbation problems. 

In a layer type problem the small parameter multiplies a term in the differential equation which 
becomes large in a thin layer. Often this is the highest derivative in the differential equation and the 
e=0 approximation is therefore governed by a lower order equation which cannot satisfy all the 
initial or boundary conditions prescribed. In a cumulative perturbation problem the small para-
meter multiplies a term which never becomes large. However, its cumulative effect becomes important 
for large values of the independent variable. 

The book consists of five chapters, and ends with Bibliography, Author and Subject Index. 
No particular attempt is made to have a complete list of references. 

Chapter 1 contains some background on asymptotic expansions. Chapter 2 gives a deeper expo-
sition of limit process expansions through a sequence of examples for ordinary differential equations. 
Chapter 3 is devoted to cumulative perturbation problems using the so-called multiple variable 
expansion procedure. Applications to nonlinear oscillations, celestial mechanics are discussed in 
detail. In Chapter 4 the procedures of the preceding chapters are applied to partial differential equa-
tions. Finally, Chapter 5 deals with typical examples from fluid mechanics: linearized and transonic 
aerodynamics, shallow water theory etc. 

The book is written from the point of view of an applied mathematician. Sometimes less atten-
tion is paid to mathematical rigour. Instead, physical reasoning is often used as an aid to understand-
ing a problem and to formulating an appropriate approximation procedure. 

To sum up, this well-written book contains a unified account on the methods of current rese-
arches in Perturbation Theory. The authors present the "state of the art" in a systematic manner. 
The book under review will certainly serve as a textbook both for advanced undergraduate students 
and for practicing scientists dealing with truly complicated problems of mathematical physics. 

F. Móricz (Szeged) 

I 
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Oldrich Kowalski, Generalized Symmetric Spaces (Lecture Notes in Mathematics, 805) XII+ 187 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

In the last 15 years the theory of "s-manifolds", which is a very succesful generalization of sym-
metric spaces, has been largely built up. This type of spaces is defined similarly as symmetric spaces 
by postulating the existence of a geodesic symmetry at each point of the space without requiring the 
involutiveness of these symmetries. The author of this Lecture Note is one of the developers of the 
theory of these spaces. He presents in this book a self-contained treatment of the geometric theory 
of Riemannian and affine "i-manifolds". Must of the results contained in this lecture note were 
avaible earlier only in journal articles, and some of them are published here the first time. The reader 
is supposed to be familiar with the basic notions and methods of modern differential geometry and 
Lie group theory. 

The list of the chapter headings gives a glimpse of the content: Generalized symmetric Rieman-
nian spaces, Reductive spaces, Differentiable i-manifolds, Locally regular i-manifolds, Operations 
with s-manifolds, Distinguished ^-structures on generalized symmetric spaces, The classification of 
generalized symmetric Riemannian spaces of low dimensions, The classification of generalized affine 
symmetric spaces in low dimensions. 

The Lecture Note is very clearly and well written. It is recommended to everyone interested in 
the geometric theory of spaces with a transformation group. 

Péter T. Nagy (Szeged) 

Measure Theory. Proceedings, Oberwolfach 1979. Edited byD. Közlow (Lecture Notes in Mathe-
matics, 794), XV+573 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

Judging from its proceedings, this must have been a significant conference on measure theory. 
There are 10 papers on what is classified as general measure theory, 8 on measurable selections and 
4 on liftings. Two papers deal with differentiation of measures and integrals and 5 are on vector and 
group valued measures and their probabilistic applications. Stochastic analysis and various abstract 
probabilistic topics are the theme for 8 more articles, £p-spaces and related topics are dealt with in 2 
papers. Integral representations and transforms figure in 3 papers and there are 4 papers classified 
miscellaneous. This comes to altogether 46 articles, and the collection is closed by a record of the 
problem session of the conference with 8 problems from 7 authors. 

Sándor Csörgő (Szeged) 

Richard M. Meyer, Essential Mathematics for Applied Fields (Universitext), XVI+ 555 pages, 
Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

The purpose of this work is to provide a wide spectrum of "essential" mathematics for workers 
in the variety of applied fields. Much of the material covered here either too widely scattered or too 
advanced as presented in the literature to those who need it. The treatment in this book requires 
only the calculus through differential equation. There is no need for measure theoretic background. 

This bulky volume consists of twenty sections, arranged into six units. The first unit comprises 
Basic Real Analysis beginning with the notions of sets, (single and multiple) sequences, series and 
functions, and ending with some Abelian and Tauberian theorems. The second unit is devoted to 
(the 1- and n-dimensional) Riemann—Stieltjes Integration. The third unit treats Finite Calculus, 

13» 
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i.e., the theory of finite differences and difference equations. The fourth unit contains Basic Complex 
Analysis, including Laurent's theorem and expansion, and residue theorem. The fifth unit gives an 
account of Applied Linear Algebra, among others, of the generalized inverse and characteristic 
roots. Finally, the sixth unit collects Miscellaneous things such as convex sets and functions, max-min 
problems and some basic inequalities. 

Each unit develops its topic rigorously based upon material previously established. Throughout 
the text are found solved Examples and Exercises requiring solution, both being essential parts of the 
development. Complete hints or answers are provided for the exercises. There are References to 
additional and related material, too. 

This self-contained textbook is warmly recommended to everyone who is going to get acquainted 
with the background of applied mathematics. 

F. Móricz (Szeged) 

Physics in One Dimension. Proceedings, Fribourg 1980. Edited by J. Bernasconi, and T. Schneider 
(Springer Series in Solid-State Sciences, Vol. 23) IX+368 pages. Springer-Verlag, New York—Heidel-
berg—Berlin, 1981. 

Mathematics in one dimension is a commonly accepted thing, but physics is essentially three-
dimensional. Nevertheless in certain cases some problems of 3D mathematical physics can be reduced 
to one dimension and then solved in a simpler way. Ideas of this type of transformations are described 
by the introductory lecture of this volume, which contains the Proceedings of an International Con-
ference on Physics in One Dimension, held in Fribourg in 1980. The rapid development of experi-
mental physics of long polymer chains in the last decade has shown however that one dimensional 
physics itself is more than speculation. 

This book is a clever mixing of recent theoretical and experimental works in this field. Part II is 
devoted to the theory of soliton type excitations, Part III deals with magnetic properties. Several 
points of views on solitons in the simplest polymer, the polyacetilene are outline din Part IV. The last 
three parts contain papers on metallic conductivity, disorder, localization, excitons and other inte-
resting questions relevant to one dimensional systems. The wide range and the great number of 
the authors yield a good overview on the whole subject which will attract an even growing interest 
in the near future. 

M. G. Benedict (Szeged) 

J . H. Pollard, A Handbook of Numerical and Statistical Techniques with Examples Mainly from 
the Life Sciences, XII+ 349 pages, Cambridge University Press, Cambridge—London—New York— 
Melbourne, 1979. 

This is a well and carefully compiled easy-to-use handbook of basic numerical and statistical 
techniques designed to aid the practising statistician in solving day-to-day problems on a small 
programmable desk calculator or mini-computer. 

Part I (Basic numerical techniques) consists of seven chapters. After listing the modest amount 
of prerequisites from calculus and linear algebra and the usual techniques of reducing truncation 
and round-off errors, it describes methods for smoothing data, for numerical integration and diffe-
rentation, interpolation and some related topics. 

Part II (Basic statistical techniques) consists of equally seven chapters but covers, of course, 
nearly the 60% of the text. After supplying the elements of probabilistic and statistical theory very 
briefly, the essential characteristics of the most commonly used continuous and discrete distributions 
are given. Following then a short chapter on fitting a Pearson curve, two rich chapters come on 
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hypothesis testing and estimation. The final one is on random numbers, data transformation and on 
the simplest techniques with randomly of deterministically censored samples. Part III is fully devoted 
to the method of least squares in (simple and multiple) linear, curvilinear and non-linear regression. 

There are 15 tables, 105 references and good author and subject indices. Each of the amazingly 
large number of techniques covered is demonstrated by at least one numerical example according 
to the title and there is a wealth of good computational and programming advices. All in all, this book 
is way above the usual level of the many books on "basic statistics" published nowadays. Experimen-
tal scientists, particularly those in life sciences, will find it very useful. 

Sándor Csörgő (Szeged) 

Probability in Banach Spaces m . Proceedings, Medford, USA, 1980. Edited by. A. Beck (Lecture 
Notes in Mathematics, 860), VI+ 329 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

Four papers of this volume give surveys on the developments of probability theory in infinite-
dimensional vector spaces in the last two-three years. Generalized domains of attraction, empirical 
processes, central limit theorems and inequalites in Banach spaces are studied. Twenty research 
papers present various directions of this subject, well-known results of finite- dimensional spaces are 
extended to the case of Banach spaces (martingales, strong, and weak laws of large numbers, laws of 
iterated logarithm, selfdecomposability and stability of measures, stability of linear and quadratic 
forms). Properties of Gaussian measures in function spaces are also investigated. 

Lajos Horváth (Szeged) 

Robert D. Richtmyer, Principles of Advanced Mathematical Physics, Vol. EL (Texts and Monog-
raphs in Physics) XI + 322 pages, Springer-Verlag,New York—Heidelberg—Berlin, 1981. 

There are many good books on the mathematical methods of physics, and it seems quite difficult 
to select just the principles out of this enormous subject, but this book of Richtmyer has successfully 
solved this problem, enabling the student or the non-expert research worker to grasp some modern 
views on contemporary mathematical physics. 

This second volume begins with chapter 18, which together with the subsequent four, cover the 
traditional material of applications of group theory in physics. On the other hand, the next three 
chapters approach continuous groups from a less conventional viewpoint. It is the concept of mani-
fold that leads us to Lie groups and then through chapters 26—28 to the apparatus of general rela-
tivity. 

A topic, which has never been considered so far in books of this kind, is outlined in the last 
three chapters. Starting from the problem of hydrodynamical turbulence, the first steps of the 
theory of bifurcations, attractors and chaos are presented. 

The main virtue of this book is that it gives much information about newly developed mathe-
matical concepts on a language, adopted usually in books on physics. There are a lot of examples 
and several problems, challenging the conscientious reader. 

M. G. Benedict (Szeged) 

Charles E. Rickart, Natural Function Algebras (Universitext) XIII+240 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1979. 

The term "function algebra" in the title refers to a uniformly closed algebra of complex-valued 
continuous functions defined on a compact Hausdorff space. Such Banach algebras have been inten-
sively studied recently. Since the most important examples of these algebras are built up from ana-
lytic functions, the majority of the papers in question was earlier dominated by problems of analyti-



382 Bibliographie 

city. The present author is concerned, however, with another facet of the subject based on the obser-
vation that very general algebras of continuous functions may exhibit certain properties that are 
reminiscent of analyticity. The most striking one of them is a local maximum principle proved by 
Hugo Rossi in 1960. This deep result plays a key role throughout the discussion. Although the main 
body of the material presented here was published in a series of papers during the last 10 or 15 years, 
the book contains numerous improvements on old results as well as unpublished results. 

To be more definite, the classical holomorphy theory, based on the «-dimensional complex 
space C™, is ultimately determined by the algebra all polynomials in C". In the abstract sitiiation 
the space C" is replaced by a Hausdorff space X and the algebra SP by a given algebra si of continuous 
complex-valued functions on Z. In order to obtain interesting results, one must impose some rather 
general conditions on the pair [£, si]. In the first place, ,s/is assumed to determine the topology of 
Z in the sense that the given topology is equivalent to the weakest one under which the elements 
of si are continuous. Secondly, it is assumed that every homomorphism of si onto the complex 
field C, which is continuous relative to the compact-open topology in si, is a point evaluation in the 
space Z. Then si determines an 'W-holomorphy" theory based on Z roughly analogous to the way 
& determines the classical theory. 

This fairly general setting makes it possible to establish a variety of results, many of which are 
full or partial generalizations of results in Several Complex Variables. The s& -holomorphy theory 
might also be considered as an approach to the Infinite Dimensional Holomorphy theory. The latter 
subject, which already has an extensive literature, involves the study of functions on infinite dimen-
sional linear topological spaces. 

The material is divided into fourteen chapters: 1. The category of pairs, 2. Convexity 
and naturality, 3. The Silov boundary and local maximum principle, 4. Holomorphic 
functions, 5. Maximum properties of holomorphic functions, 6. Subharmonic functions, 7. Varieties, 
8. Holomorphic and subharmonic convexity, 9. [27, ¿^-domains, 10. Holomorphic extensions of 
[Z, si]-domains, 11. Holomorphy theory for dual pairs of vector spaces, 12. (E, F)-domains of 
holomorphy, 13. Dual pair theory applied to [27, .s/]-domains, 14. Holomorphic extensions of A-
domains. The text is supplemented with Bibliography containing 75 items, Index of Symbols, and 
General Index. 

This self-contained textbook is addressed to graduate students and warmly recommended to 
everyone who wants to keep pace with up-to-date developments in Holomorphy Theory and Banach 
Algebras. 

F. Móricz (Szeged) 

Séminaire de Probabilités XIV, 1978/79. Edité par J. Azéma et M. Yor (Lecture Notes in Mathe-
matics, 784), VII+ 546 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

This is the first volume of this series of seminar notes after that the old Strasbourg seminar has 
been "decentralised to Paris". Nevertheless the authors and the names in the titles of the papers 
are basically the same as before, completed by some distinguished overseas visitors (10 of the 49 pa-
pers are in English). Thus, with a very few exceptions, the topic continues to be what is broadly de-
scribed the general theory of stochastic processes. Although, naturally, some of the shorter commu-
nications might prove important, it is interesting to note that if we take out the 14 longer or middle 
size papers then the average lenght of the remaining 35 notes is 6 typed pages. Many of them (com-
menting, correcting, or exposing already existing developments by other or the same authors) could 
have never been published elsewhere. This is of course the very feature of these seminar notes which 
reflect a vivid but somewhat closed research activity. 

Sándor Csörgő (Szeged) 
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Solitons. Edited by R. K. Bullough and P. J. Caudrey (Topics in Current Physics, Vol. 17) XVIII + 
389 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

Frontiers of the two closely related sciences, mathematics and physics have moved away quite 
a distance from each other, after the mathematical foundations of quantum mechanics have been 
established. 

Now again some important questions of physics have become of fundamental interest in mathe-
matics and vice versa. Namely the problem of solving nonlinear partial differential equations has 
arisen in many fields of physics and this "white land" then attracted the mathematicians too. 

The soliton is a very special solution of a nonlinear wave equation, it propagates e.g. like a single, 
bell shaped wavelet, preserving its shape during the propagation and even after "interaction" with 
similar "objects". It behaves much like a physical particle, and that is why it has attracted most 
attention among other possible solutions. Some of them were known for a long time, but a syste-
matic study has become possible only after the discovery of the so-called inverse scattering method 
in the late sixties and early seventies. This method reduces the nonlinear problem to the solution of 
a system of linear integral equations by a process resembling the Fourier transformation. Besides 
the editors' review on the history and the present status of this field, the volume contains 11 invited 
studies on the subject, all of them written by the establishers of the theory of solitons. Almost the 
half of the contributions deals with the inverse scattering method, namely the works of Newell, 
Zakharov, Wadati, Faddeev, Calgero and Degasperis. A direct method, transforming the nonlinear 
equation into a bilinear one is outlined by Hirota. Physical aspects are treated in the contributions 
of Lamb and Maclaughlin and also of Bullough, Caudrey and Gibbs. The famous Toda lattice is 
dealt by Toda. Novikov investigates equations with periodic boundary conditions. Possible quan-
tization procedures are treated by Luther. 

Each work is clearly written, emphasizing the underlying principles and giving many examples. 
This book is highly recomended to all who work in the field of nonlinear analysis and partial 

differential equations, and without doubt, it must be found in every physics library. 

M. G. Benedict (Szeged) 

Superspace and Supergravity. Proceedings of the Nuffield Workshop, Cambridge, June 16— 
July 12, 1980. Edited by S. W. Hawking and M. Rocek, XII+ 527 pages, Cambridge University 
Press, London—New York—New Rochelle—Melbourne—Sydney, 1981. 

10—15 years ago the considerable part of physicists was convinced on the "in principle" im-
possiblity of the unified field theory. But in the last decade the research has been boomed in this 
direction. In contrast with the classical unified theories of Weyl, Einstein, Cartan, Calusa, Klein and 
others the new theories are not restricted only to the gravitation and electromagnetism and are quan-
tized. The possibility of building of unified theories of this type turned to be promising by the large 
development of mathematical tools as differential geometry and topology, functional analysis and 
representation theory. 

The new unifying theory bears the name of supergravity theory: the classical space-time of 
relativity theory has been extended by commuting and anticommuting variables to a higher dimen-
sional manifold, the so called superspace. The symmetry groups have a graded structure correspond-
ing to the bundle structure of the superspace, these are the "supersymmetries", their infinitesimal 
versions are the "superalgebras". 

The present book contains the proceedings of the Workshop on Supergravity held in the De-
partment of Applied Mathematics and Theoretical Physics at the University of Cambridge from 
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16 June to 12 July, 1980, and supported by the Nuffield Foundation. The aim of this meeting was to 
give a survey on the present state of the very recent and rapidly developing supergravity theory. 

This book is a collection of lectures devided into six parts: Introduction to supergravity, Quanti-
zation, Extended supergravity, N = 8 supergravity, Kahler spaces and supersymmetry, Other aspects 
of supergravity. 

The supergravity theory is far from being worked out. One of the outstanding problems at the 
present time is "The construction of a complete formulation of extended supergravity with auxiliary 
fields, preferably in superspace" formulated by the aditors in the introduction. 

The book gives for the reader a very recent survey on the present state of the very interesting 
subject of supergravity theory. 

Peter T. Nagy (Szeged) 

Michio Suzuki, Group Theory I (Grundlehren der mathematischen Wissenschaften, 247), XIV + 
434 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

The theory of finite groups developed extremely rapidly during the past twenty five years or so, 
reaching its zenith in 1981, when the full classification of finite simple groups was completed. The 
book under review is the first part of a two-volume work first published in Japanese by Iwanami 
Shoten in 1977—78, and now translated into English. For the translation several mistakes of the ori-
ginal version were corrected, and, more importantly, to reflect the progress achieved in the meantime, 
a few paragraphs were added to the survey of finite simple groups in Chapter 3, and a few items were 
added to the bibliography as well. 

According to the Preface, one of the main aims of the author was to present an introduction to 
the theory of finite simple groups. Of course, taking into account the tremendous diversity of the 
branches of group theory involved, it is understandable that even such important topics as permuta-
tion groups, or representation theory could not be discussed in detail. 

Volume I contains three of the six chapters constituting the book. In Chapter 1 the basic ideas 
of group theory are discussed, including permutation groups, operator groups, semidirect products, 
and general linear groups. Chapter 2 is devoted to the most fundamental theorems and methods of 
group theory, for example, some results on p-groups, Sylow's Theorems, Schreier's Refinement 
Theorem, the Krull—Remak—Schmidt Theorem, the fundamental theorem on finitely generated 
abelian groups, Schur's Lemma, cohomology theory, the Schur-Zassenhaus Theorem, and wreath 
products. Chapter 3 starts the discussion of more specific branches of group theory with considering 
several particular classes of groups, namely torsion-free abelian groups, symmetric and alternating 
grcups, linear groups, and Coxeter groups. The volume ends with a survey of finite simple groups, 
and the proof of Dickson's theorem on the subgroups of 2-dimensional special linear groups over 
finite fields. 

As a rule, each section is followed by a collection of interesting exercises, most of them supple-
mented with a "Hint" to a solution. The exercises mainly serve to introduce the reader to important 
concepts and theorems not discussed in the text. However, the book can also be read without solving 
a single exercise, as no reference is made in the text to results of earlier exercises. 

The book is written in a very clear style. The only prerequisite for its reading is some basic 
knowledge in linear algebra (matrices, determinants) and elementary number theory. This excellent 
book is warmly recommended to students intending to specialize in group theory, as well as to other 
non-specialists who are interested in the recent advances of group theory. 

Agnes Szendrei (Szeged) 
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W. Tömig, Numerische Mathematik für Ingenieure und Physiker, Band 2: Eigenwertprobleme 
und numerische Methoden der Analysis, X11I + 350 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1979. 

The development of large-scale computers have formed a basis for algorithmic constructions 
and extensive mathematical experiments in many areas of science and technology, thereby attracting 
a new generation of scientists to problems of numerical mathematics. This is the second volume of a 
textbook. The first volume published also in 1979 contains the following three parts. Part I: Auxi-
liary results, Computation of zeros of a function; Part II: Solution of linear systems of equations; 
Part III: Solution of nonlinear systems of equations. 

This volume consists of four parts. Part IV: The eigenvalue problem for matrices. It contains, 
among others, the iteration procedure of Mises, the inverse iteration, the algorithms of Jacobi and 
Givens, and the LR algorithm. Part V: Interpolation, approximation and numerical integration. 
It treats the usual interpolating polynomials, approximation by orthogonal polynomials as well as 
the cubic spline interpolation, the well-known quadrature and some cubature formulae, the Romberg 
integration procedure etc. Part VI: Numerical solution of ordinary differential equations. It deals 
with methods for initial value problems (mainly one-step methods, in particular Runge-Kutta ones), 
for boundary and eigenvalue problems (difference methods, variational and Ritz methods). The 
notions of consistency and convergence are discussed in detail,but multi-step methods (in particular, 
predictor-corrector ones) are not presented. Part VII: Numerical solution of partial differential 
equations. One section contains the method of finite differences for the numerical solution of initial 
value and initial-boundary value problems of hyperbolic and parabolic differential equations. 
Another section is devoted to hyperbolic systems of first order and the last section to the boundary 
value problem of elliptic differential equations of second order, including the method of differences, 
the Ritz method and the method of finite elements. 

There are examples throughout the text. Each section ends with exercises and some of them with 
a FORTRAN programme. The reader can find references to additional and related material, too. 

This accurately written textbook is warmly recommended to every undergraduate student in 
applied mathematics who is going to acquire a firm basis of Numerical Analysis. 

F. Móricz (Szeged) 

G. Whyburn—E. Duda, Dynamic topology (Undergraduate Texts in Mathematics), Springer-
Verlag, New York—Heidelberg—Berlin, 1979. 

Everybody who learned mathematics is convinced that the knowledge acquired by means of 
active learning is the deepest and most fruitful. This can be carried out by developing one's own 
proofs for the theorems. Both learning and teaching a subject in this way are conditioned upon re-
ducing to individual steps of the proofs. In this book the reader finds an excellent realization of this 
method in topology. As we can learn from J. L. Kelly's foreword, G. Whyburn was a master of this 
manner of theaching. The book is based on a set of his notes, which have been completed and arran-
ged by E. Duda. Each of the short sections, which can serve as the subject-matter of one lesson, 
consists of a preparing part including the necessary definitions, exercises and, finally, their solutions. 
The problems in the first sections are rather simple but later they become more complicated. The 
first exercies of the book is: "Prove that the union of the elements of any countable collection of 
countable sets results in a countable set", and the last one is proving the Jordan Curve Theorem. 
The materials of the sections are collected from the field of dynamic topology, developed origonally 



386 Livres reçus par la rédaction 

by G. Whyburn. It concerns those topological objects which center around the function concept. 
The book is concluded by Whyburn's article entitled "Dynamic Topology" which appeared in 1970 
in the American Mathematical Monthly. 

J. L. Kelley writes in the Foreword: "Constructing a proof for a good known theorem is next 
best to finding and proving a good theorem. It gives one hope of eventually creating mathematics". 
Therefore, we recommend this book to every student and teacher interested in analysis, especially 
in topology. 

L. Hatvani (Szeged) 

Livres reçus par la rédaction 

S. S. Abhyankar, Weighted expansions for canonical desingularization (Lecture Notes in Mathematics, 
Vol. 910), VII+236 pages, Springer-Verlag, Berlin—Heidelberg— NewYork, 1982. — DM 25,—. 

Analytic Theory of Continued Fractions. Proceedings, Loen, Norway 1981. Edited by W. B. Jones, 
W. J. Thron, and H. Waadeland (Lecture Notes in Mathematics, Vol. 932), VI+240 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 28,—. 

D. M. Arnold, Finite rank torsion free Abelian groups and rings (Lecture Notes in Mathematics, Vol. 
931), VII +191 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 24,—. 

Automorphic Forms, Representation Theory and Arithmetic. Papers presented at the Bombay Collo-
quium 1979 (Tata Institute Studies in Mathematics), VII+355 pages, Tata Institute of Funda-
mental Research, Bombay—Springer-Verlag, Berlin—Heidelberg—New York, 1981. — DM 
39,—. 

J . Back—D. J . Newman, Complex analysis (Undergraduate Texts in Mathematics), X+244 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 54,—. 

P. Berthelot—L. Breen—W. Messing, Théorie de Dieudonné cristalline II (Lecture Notes in Mathe-
matics, Vol. 930), XI+261 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 
— DM 33,50. 

J . M. Bismut—L. Gross—K. Krickeberg, Ecole d'été de Probabilités de Saint-Flour X—1980. Edité 
par P. L. Hennequin (Lecture Notes in Mathematics, Vol. 929), X+313 pages, Springer-Verlag, 
Berlin—Heidelberg—New York, 1982. — DM 39,—. 

P. M. C. de Boer, Price effects in input-output relations: A theoretical and empirical study for the 
Netherlands 1949—1967 (Lecture Notes in Economics and Mathematical Systems, Vol. 201), 
X+14Ö pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 24,—. 

R. Bott—L. W. Tu, Differential forms in algebraic topology (Graduate Texts in Mathematics, Vol. 82), 
XIV+331 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 74,—. 

Brauer Groups in Ring Theory and Algebraic Geometry. Proceedings, University of Antwerp, Bel-
gium, August 17—28, 1981. Edited by F. van Oystaeyen and A. Verschoren (Lecture Notes 
in Mathematics, Vol. 918), VIH+300 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1982. — DM 34,50. 

Categorical Aspects of Topology and Analysis. Proceedings of an International Conference held at 
Carleton University, Ottawa, August 11—15, 1981. Edited by B. Banaschewski (Lecture Notes 

' in Mathematics, Vol. 915), XI+ 385 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1982. — DM 39,—. 

K. L. Chung, Lectures from Markov processes to Brownian motion (Grundlehren der mathematischen 
Wissenschaften, Band 249), VIII+239 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1982. — DM 79,—. 
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E. Combet, Intégrales exponentielles: Développements asymptotiques, propriétés lagrangiennes (Lec-
ture Notes in Mathematics, Vol. 937), VIII+ 114 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1982. — DM 19,80. 

Convex Analysis and Optimization. Edited by J.-P. Aubin and R. B. Vinter (Research Notes in 
Mathematics, 57), VI+210 pages, Pitman Advanced Pub!., Boston—London—Melbourne, 
1982. — £9.95. 

I. P. Comfeld—S. V. Fomin, Ergodic theory (Grundlehren der mathematischen Wissenschaften, 
Band 245), X+486 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. — DM 
118,—. 

B. Dacorogna, Weak continuity and weak lower semicontinuity of non-linear functional (Lecture Notes 
in Mathematics, Vol. 922), V+120 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1982. — DM 18,—. 

J. Dassow, Completeness problems in the structural theory of automata (Mathematical Research 
— Mathematische Forschung, 7), 148 pages, Akademie-Verlag, Berlin, 1981. — 20,— M. 

Differential Geometric Methods in Mathematical Physics. Proceedings of an International Conference 
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