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Bands of power joined semigroups

STOJAN BOGDANOVIC

A band is a semigroup in which every element is an idempotent. A semigroup S
is called power joined if for each pair of elements a, b€ S there exist positive integers
m,n with a™=5b". We say that a semigroup S is a band of power joined semigroups
if there exists a congruence ¢ such that S/g is a band and each class modg is a power
joined semigroup. In this case g is called a band congruence. One defines analogously
semilattices, rectangular bands and left zero bands of power joined semigroups. Bands
of power joined semigroups are studied by T. NorRDAHL [1] in the medial case (xaby=
=xaby). In the present paper we consider the general case.

For non-defined notions we refer{ to [2] and [3].

Theorem 1. A semigroup S is aband of power joined semigroups if and only if
(A) (Va, b€ S)(Vm, n€ N)(3r, s€ N)((ab) = (a™b"y).

Proof. Let S be a band Y of power joined semigroups S,,a€Y. For a¢S,,
acY and bES,, BcY we have a"b"cS,; for every m,n€N, and thus

(ab)" = (a™b"y for some r,sEN.
Conversely, let S satisfy condition (A). We define a relation ¢ on a semigroup
S as follows:
§)) agh < (3m, n€ N)(a™ = b").
It is clear that ¢ is an equivalence on S. Let agb, then
(ab)* = (a™b")? = (a™+™)? = g*P™,
Hence, each g¢-class is a power joined subsemigroup of S. We shall show that ¢ is
a congruence on S. Suppose agb and ¢€S. Then a™=b" for some m,n€EN, and
by (A) we have
()] (ac)t = (a™c’)" for some k,réN,
3) (boYr = (b"cH)n  for some ky, r€EN.
1t follows from (2) and (3) that
(acyn = (a™cym = [(a™ )] = [(B"cYn]" = [(be)ss]” = (be)ar.
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4 S. Bogdanovi¢: Bands of power joined semigroups

Hence, acgbc. Similarly, we obtain cagch. Consequently, g is a congruence and since
apa® for every a€S, we have that § is a band of power joined semigroups.

Theorem 2. A semigroup S is a semilattice of power joined semigroups if
and only if

(B) (Va, beS)(Vm, ne N)(3r, s€ N)((bay = (a™b"y).
Proof. Let S be a semilattice ¥ of power joined semigroups S,,a€Y. For
acS,,acY and bCSy, B€Y we have a™b", bacS,; for every m,n€N. Hence,

(ba) = (a™b")* for some r,sEN.
Conversely, let S satisfy condition (B). Then

@ (ba) = (ab) for some 1, 5€ N.
From (B) and (4) we have
&) (ab)rr = (bayrs = (a™b")"

for every m,néN and for some r,s€N. It follows from (5) and Theorem 1 that
the relation ¢ on S (from (1)) is a band congruence and every equivalence class of S
modg is a power joined semigroup. It follows from (4) that abgba, so g is a semi-
lattice congruence. *

Theorem 3. A semigroup S is a rectangular band of power joined semigroups
if and only if
©) (Va, b, c€8)(3r, s N)((abe) = (ac)).

Proof. Let S satisfy condition (C). Then

(@™b"y = (a(a™-1b"-Y) by = (ab)

for every m,n€ N and for some r,s€N. Hence, the condition (A) holds and from
this ¢ (from (1)) is a band congruence on S (Theorem 1) and every equivalence
class of S mod ¢ is a power joined semigroup. It follows from (C) that ¢ is a rec-
tangular band congruence.

The converse follows immediately.

Corollary. A4 semigroup S is a left zero band of power joined semigroups if
and only if

D) (Va, beS)(Ar, s€ N)((aby = a°).
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Compact approximants

RICHARD BOULDIN

§ 1. Introduction. Interest in approximating a given (bounded linear) operator
T on a fixed Hilbert space $ goes back to [3] and [4], among other references. Each
of the preceding sources constructed a compact operator C such that | T—C || equa-
led the distance from T to the compact operators; such an operator C is said to be a
compact approximant. Although much attention has been focused on the Calkin al-
gebra and discovering compact approximants with various algebraic properties, only
[5] seems to have studied the structure of the set of compact approximants. The
main results of [5] show that the set of compact approximants has no extreme
points except in the case that a multiple of T is a compact perturbation of a maximal
partial isometry and the existence of a finite rank compact approximant is charac-
terized.

This paper attempts to clarify where the investigation of compact approximants
stands and to extend it in several directions. The next section compares the methods
of [3] and [4] and shows that the resulting compact approximants are essentially the
same. The new derivation of the Gohberg—Krein compact approximant will play
a key role in several subsequent proofs. Section § 3 gives a simplified criterion for
when T has a finite rank compact approximant. A similar criterion is given for T
to have a compact approximant which belongs to the Schatten p-class. Section §4
gives a condition which is necessary and sufficient for T to have a compact approxi-
mant with maximal norm.

Throughout this work U|T| will be the polar factorization of T where U is
a maximal partial isometry and |T'| is (T*T)V2. For T compact let s;(T), so(T), ...
be the eigenvalues of |T'| in nonincreasing order repeated according to multiplicity.
If for some p=1 one has

;’ $;(T)P <eo

Received January 30, 1981.



6 R. Bouldin

then one says that T belongs to the Schatten p-class C, which is normed with
17, = (jZ' s;(T)?)HP.

The quantities ||T||, and r,(T") are defined to be the norm and spectral radius, re-
spectively, of the coset of T in the Calkin algebra.

§ 2. Constructing compact approximants. Since the existence of a compact appro-
xXimant is proved in [3] as a by-product of the extension of s-numbers from com-
pact operators to bounded operators and the latter is only outlined, a brief deve-
lopment of the Gohberg—Krein compact approximant is offered. Through the use
of the characterization of the essential spectrum for a self-adjoint operator, a much
quicker derivation is achieved. For any normal operator the essential spectrum
coincides with the Weyl spectrum which is all the points in the spectrum except
isolated eigenvalues with finite multiplicity. See [p. 376, 6], [2], [1]. First, a funda-
mental lemma is required.

Lemma 2.1. [T{.=|T|l.=r.(T)).

Proof. Let n denote the canonical map of the operators on § into the Calkin
algebra . Since ¥ is a C*-algebra and n is a *~homomorphism, one knows that
=Dl = lll=(T)Il and

(1) = (R(TY* (D)) = (n(T* D) = n((T*T)*?) = n(IT]).

Thus, [T, = =D = =T DI = lIT|(.. Since =(|T'|) is normal in ¥, its norm
equals its spectral radius and the lemma is proved.

It is now clear that the spectrum of |{T'| in the open interval (| T, , <) consists
entirely of isolated eigenvalues with finite multiplicity; let {4,, 4,, ...} be a nonin-
creasing enumeration of that possibly finite set with each eigenvalue repeated
according to its multiplicity. Let E(-) be the spectral measure for [T'| and denote
E[0,1T.)H and E((ITl., <))9 by $H, and $,, respectively. Let {e, e,, ...} be
an orthonormal sequence of eigenvectors of |T'| such that e; corresponds to 4; for
j=1,2, ... and note that the spectral representation of |T'| restricted to $,, denoted

|T| lﬁl’is
PACRCHYILIE
J

If U|T| is the polar factorization of T then the Gohberg—Krein compact approxi-
mant of T, denoted by K henceforth, is

K= ZJ’ (-, e)(4; =T Ue;.

Since {2;, 43, ...} cannot have an accumulation point in (||T|., <), either the above
sum is finite or {4;, A, ...} converges to [|T}i,. In either case, it is apparent that
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K is the limit of finite rank operators and consequently K is compact. The fol-
lowing calculation shows that K is a compact approximant for 7.

IT =Kl = 1UIT|=UQIS@UTI-IT1JID)I = NT1-01He®UTT-IT 1)l =
= max {||T|Soll. 1ThII Hall} = 1T,

In sharp contrast to the above contruction Holmes and Kripke obtain a compact
approximant for T without using the polar factorization of 7. They note that if
there is an orthogonal projection P with finite codimension such that TP does
not assume its norm — i.e. |[TPx|[j=|TP||lx| implies x=0 — then T(/—P) is a
finite rank compact approximant. In the case that T does not have a finite rank
compact approximant, the compact approximant constructed by Holmes and Kripke,
denoted by L henceforth, is

L= 12 G XTH =TI TAHNTA

where {f}, fz ...} is. an orthonormal sequence such that |7fii=|T| and
ITf;+1l =ITP;| where P; is the orthogonal projection onto the orthogonal
complement of {f;, ..., fj} for j=1,2, ....

Since | Tx|| = |UIT|x|| = | |T| x|, one has | |T] Al =I|T||l and ||| fj+ll = | IT] P,

for j=1, 2, .... This implies that

ITIA=WTilAA and [TIfjea=WTIP;|fjs: for j=1,2,....
Clearly one can choose f;=e; for j=1, 2, ... with {e, €,, ...} given asin the con-
struction of the Gohberg—Xrein compact approximant. The formula for L becomes

L= 12' (- e—ITl)TefiTejl or L= ,2 (-, e (=T Ve,

where 2;=||T|P;| for j=0,1,... and P,=1 Here it is used that
Te,f|Te;l = UIT|efIUIT|e)l = Uksef|UAe;| = Ue;. |
It is straightforward to see that the formulas for K and L can be restated in forms

which are independent of the choices of bases for the eigenspaces of |T'|. Thus the
following theorem has been proved. '

Theorem 2.2. For any operator T which does not have a finite rank compact
approximant the Holmes—Kripke compact approximant L coincides with the Gohberg—
Krein compact approximant K.

A slight refinement of the Holmes—Kripke construction produces a unique compact
approximant even in the case that T has a finite rank compact approximant. If n
is the infimum of the codimension of orthogonal projections P such that TP does
not assume its norm then the Holmes-—Kripke construction produces a unique rank
n compact approximant which coincides with the Gohberg—Krein compact approxi-
mant.
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§ 3. Compact approximants in C,. In [5] it is shown that T has a finite rank com-
pact approximant if and only if there is no infinite dimensional closed subspace
&cd with |Tx|=|T|.lx|l for all nonzero x€&. Following [5] the set of compact
approximants of T is denoted K.

Theorem 3.1. The following conditions are equivalent.

(i) Ky contains a finite rank operator.

(i) |T| has only finitely many eigenvalues in (|T|,, ).

(iii) The Gohberg—Krein compact approximant K has finite rank.

Proof. The alternative derivation of the Gohberg—Krein compact approxi-
mant makes it clear that (ii) implies (iii) which implies (i). Thus, it suffices to show
that (i) implies (ii).

Let A be a finite rank operator in &7 and, for the sake of a contradiction, assume
|T'| has infinitely many eigenvalues {,, 4,, ...} in the open interval (|T],, ==). Let
& be the closed span of the eigenspaces of |T'| corresponding to {4;, Az, ...}. It is
easy to see that '

NT|x]l = [T |lxl| for every x€&, x>0
and so
ITx) =1 UIT|xl| =IT1x] > |Tlllx]|l for such x.

The argument is finished as in [5]. Since the restriction of 4 to & must have non-
trivial kernel, there is some nonzero y€&Nker 4 and |[(T—AAyl=ITyll=|T. |yl
which contradicts that A€K,.

For a given operator T it is much easier to construct T*T and check the number
of eigenvalues in (|| T'||2, «) than it is to examine all possible subspaces &. It is not
difficult to see that if T has infinitely many eigenvalues in {z: |z|>|T|.} then there
is an infinite dimensional subspace &. But the converse of the preceding statement
is false. Thus, it appears that the criterion for a finite rank compact approximant
cannot be simplified any further.

The results in the preceding theorem can be refined to provide a condition which
is necessary and sufficient for 7 to contain an operator from the Schatten p-class C,,.

Theorem 3.2. The following conditions are equivalent.

(i) K¢ contains an operator in C,.

(i) If {1, A2, ...}.is a nonincreasing enumeration of the eigenvalues of |T| in
(IT}le, =), repeated according to multiplicity, then

,JZ,'(lj—IITIIe)” <o

(iii) The Gohberg—Krein compact approximant K for T belongs to C,.
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Proof. The alternative derivation of the Gohberg—Krein compact approximant
given in section § 2 makes it reasonably clear that (ii) implies (iii). That (iii) implies
(i) is trivial and so it suffices to show that (i) implies (ii).

Of course, the spectrum of |T'| in (|T|., =) belongs to the complement of the
essential spectrum of |T'| and, thus, it consists of isolated eigenvalues {1,, A, ...}
each with finite multiplicity. Furthermore, the only possible accumulation point
of {41, s, ...} is | T|l,. Let {e;, e,, ...} be an orthonormal sequence such that e;
is an eigenvector for |T| corresponding to A; for j=1,2,.... Each 4; is repeated
according to its multiplicity.

Let 4 be a C,-operator in K and let U|T'| be the polar factorization of T.
Note that U*4 is a C,-operator and

NT|-U*4l = U*U|T|-U*A]| =T -4|| =|T|.-
Furthermore, one has
ITN2 =\IT|— U*4|? =||(IT| —1reU*4)*+({im U* 4| =||T|—reU*4|
Thus re (U*A) belongs to &1, and it is routine to see that it is a C,-operator.
Let C denote re(U*A4) henceforth, let a;=(Ce;,e;) for j=1,2,... and
Cej=w;e;+x; with x;1e;. Note that
ITHZ = T |e;—Ceyl|* = [|[1;e;— Ce;ll* = || 2;e;—a;e;—x;|12 = (A;— )2+ x;1%

Thus, |Tl.=[4;—a;| or A;—|T|.=a;=2;+|T]|.. This makes it apparent that
a;=0 and 3'(4;—[T|.)'=2«f. According to [item 5, p. 94, 3]
J J '

IClI5 = ;’ (Cle;, €
and since |[C|=C it is apparent that
(Cle;, e;) = (Cej,e;) =a; for j=1,2,....
Thus, it is proved that Z(Aj—llTlle)"<oo as desired.
j

§ 4. A compact approximant with maximal norm. Recall that an operator T is
said to ‘‘assume its norm” provided there is a nonzero vector f such that |Tf | =
=|T|Ilf1{l. Suchfis said to be a maximal vector for T It is easy to see that T assumes
its norm if and only if [7||? is an eigenvalue of T*T. Note that ||T |3 f|2=|Tf]%=
=(T*Tf,f) and |(IT||*—T*T)"2f||2=0 are equivalent. This makes it clear, for
example, that any compact operator assumes its norm.

The condition that T assume its norm played a key role in [4] and now it plays
a key role in determining when &, contains an operator with maximal norm — i.e.
A€, such that BeR; implies ||B|=[A].
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Theorem 4.1. There is a compact approximant A of T, ie. A€SR,, with
maximal norm if and only if T assumes its norm.

Proof. First it is shown that if T does not assume its norm then & does not
contain an operator with maximal norm. For any B€R; and f a maximal unit
vector for B one has

1Tl = I(B=T)S1| = IBf I —ITS1 = I BI —ITSI
1Tl TN = T H+ITSN = | B

Thus, it would suffice to show that |T'[,+ (7| is the supremum of the norms of
operators in Kz.

Since T does not assume its norm, |T'| does not assume its norm. Since ||T||
is not an eigenvalue for |T'|, it must be an accumulation point for the spectrum. Con-
sequently |||T]ll. equals [}|T||} and equivalently ||T|, equals |T|. Let E(-) be the
spectral measure for {T'| and choose a unit vector f, from E([[|T||—1/n, |T|]D9.
Define C, by

or

C,= (L QRITI-1/n)f,.

Note that C, is rank one and ||C,| converges to 2|T||=IT|+I|T]..

It now suffices for this half of the proof to show that C, is a compact approxi-
mant for |T|. Denote E([0, |T||—1/n))9 and E((|T||—1/n, |TID$ by H, and H,,
respectively. Since 9, reduces |T| —C, to [T| |9, it suffices to sow that

IATT=CIHull = 1T} = NTHI.

where A|9, denotes the restriction of 4 to $,. Since the above restriction is
self-adjoint it clearly suffices to show that

{TI-C g g)el-ITI, ITI]

for every unit vector g in $,. Since the numerical range of C, is [0, 2||T|| —1/n],

one has
=TI =T -1/n—=QIT|=1/n) =TI -1/n—(C,g, g)=

=T1-C)g 8 =ITI—(C.g, 8 = IT|.

This shows that ||T||.+ || =2||T|| is the supremum of the norms of the operators
UC, which belong to &, where U|T| is the polar factorization of T. Thus, half
of the theorem is proved.

Now it is assumed that T has a maximal vector and it is to be shown that
K contains an operator with norm ||T|,+ [T]|. Since T assumes its norm, [[T]?
is an eigenvalue for T*T and this implies ||T|| is an eigenvalue for |T|. First,
consider the case that |T'f| has finite multiplicity for |T| and let P be the ortho-
gonal projection onto the corresponding eigenspace. For brevity sake let § denote
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ITle+IT]. In order to show that BPERr| it is noted that the restriction of
[T|—BP to I—-P)$ is just [T||(I—P) 9. Thus, it suffices to show that

IAT1—-BP)PSI =Tl

Since (|T| —BP)|P$ is just —||T|.P|PH, the above inequality is clear and BPEK, .
It follows that BUP belongs to &, where U|T| is the polar factorization of T,

It only remains to deal with the case that |7 is an infinite dimensional eigen-
value of |T]. In this case it is clear that |T|,=|i{T|ll.=|T}. Let P be the ortho-
gonal projection onto some nontrivial finite dimensional subspace of the eigenspace
for |T| correspoding to {|T||. Since (/—P)$H reduces [T|—2|T|P to [T||(I—P)D
and P$ reduces it to —||T|P|PD, it is apparent that 2[|T||P belongs to K11-
Thus 2||T||UP belongs to & and the proof of the theorem is complete.
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Tolerance Hamiltonian varieties of algebras

IVAN CHAJDA

The concept of Hamiltonian algebras was first introduced for groups. 4 group
® is Hamiltonian if every subgroup of ® is normal, i.e., a class of some congruence
on ®. Evans [6] introduced the Hamiltonian property for loops and KLUKOVITS
[7] generalized this concept for universal algebras and varieties: an algebra U is
Hamiltonian if every subalgebra of U is a class of some congruence on U; a variety
¥ is Hamiltonian if each W€ ¥" has this property.

In [7], Hamiltonian varieties are characterized by a nice Y¥3-condition. Such
conditions are also used for characterizations of varieties fulfilling given tolerance
identities [3]. It is natural to ask whether the Hamiltonian property can be extended
also for tolerances (see e.g. [5]) and which Y3-condition characterizes such varie-
ties.

By a tolerance on an algebra U=(4, F) is meant a reflexive and symmetric
binary relation T on A having the Substitution Property with respect to F (i.e. T is
a subalgebra of the direct product X A). Thus each congruence is a tolerance but
not vice versa. :

Definition 1. Let T be a tolerance on an algebra A=(A4, F). Call g=#BEZ A4
a block of T provided
(i) BXBET,
(ii) B is a maximal subset of 4 with respect to (i), i.e. if BEC and CXCET,
then B=C.

Clearly, if a tolerance T on U is a congruence on U, every block of T is a con-
gruence class of T and vice versa. Thus blocks of tolerances are generalizations of
congruence classes.

The paper [2] contains a characterization of the property that every block of each
tolerance on A is a subalgebra of UA. The objective of this paper is to describe the
converse situation, namely:

Received November 20, 1979.



14 1. Chajda

Definition 2. An algebra U is tolerance Hamiltonian if every subalgebra of
A is a block of some tolerance on . A variety ¥ is tolerance Hamiltonian if each
Ac ¥ has this property.

Although [1], [2] contain necessary and sufficient conditions under which a sub-
set of an algebra is a block of some tolerance on it, these conditions cannot be used
in the way as Mal’cev’s Lemma in [7]. The proof of our Theorem 1 is based on a
characterization given by Lemma 3 below.

For the sake of brevity, write X; instead of x,, ..., x, and j, instead of y,, ..., Y,
if the integers n, m are given.

Theorem 1. Let ¥ be a variety of algebras. The following conditions are equiv-
alent:
(1) ¥ is tolerance Hamiltonian.
(2) For every (m+n+k)-ary polynomial p and for every (m+n+1)-ary poly-
nomial t there exists an (m+n+1)-ary polynomial q over ¥ such that

PP Rjy 2 t(Fiy Xy 2D Xpy vey Xy V1 oens U) = (P %;, 2)
implies
p(yl’ ceey ym, t(yi’ 56'1, z), ey t(y.b i‘,, Z), U, ..A., vk) = q(j;i’ 56’_,, Z).

Let us begin the proof of Theorem 1 with some lemmas. If T is a binary rela-
tion on a set A, we denote [z]y={ac4; (a,z)€T}.

Lemma 1. Let =(A, F) be an algebra and z€ BZ A. The following con-
ditions are equivalent:

(a) B=[z]y for some tolerance T on .

(b) For every (m+ n)-ary algebraic function ¢ over U,

o(z,...,2, by,....,b,) =z for some biB
implies
@(ay, ..., ap, 2, ...,2)EB  for each a;cB.

Proof. (@)=(b): Routine.

(®)=(a): Let R={(x, x); xc A} U{(x, z); x€ B} U{(z, x); x€ B}. Let T be the
set of all (a, b) such that a=¢(a,, ..., @), b=0(by, ..., b;) for some (a;, b)€ R and
for some algebraic function ¢ over . Clearly T is a tolerance on . It only
remains to prove B=|[z]y. Evidenty, B&[z]y. Suppose c€[z]r. Then {c, z)€T, i.e.
c=y(ay, ..., &), z=yY(by, ..., b) for some (a;, b)¢ R and some k-ary algebraic
function . We can suppose, that k=m+n+k’ (m=0, n=0, k’=0), moreover,
b=z for i=1,...,m and a@=z for i=m+1,...,m+n and aq;=b; for i=
=m+n+1, ..., k. Put

(P(ély tees fm+n) = lp(éh s €m+n’ Amtn+1s »o0» ak)'
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Since z=¢(z, ..., z, by, ..., b,), by (b) we obtain c=¢(a,, ..., a,, 2, ..., Z)EB prov-
ing the reverse inclusion [z];EB.

Lemma 2. Let W=(A4, F) and let T be a tolerance on A. For 3 #BE A the
following conditions are equivalent:

(@) B is a block of T.

(b) B=N {{z}y; z€B).

Proof. Routine.

Lemma 3. Let W=(4, F) and @& =BES A. The following conditions are equiv-
alent:

(@) B is a block of some tolerance on .

(b) For every (im+n)-ary algebraic function ¢ over W and for each z€B,

o(zy...,2, by, ..., b,) =z for some bR
implies
oy, ..., ap, 2, ...,2)EB for each a;B.

This follows directly from Lemmas 1 and 2.

Proof of Theorem 1. (1)=(2): Let p and ¢ be (m+n+k)ary and
(m+n+1)-ary polynomials over ¥, respectively, such that

(*) p(t(j;h x.j9 Z)) e t(j;h 55_,', Z), x19 cees Xy U1y -0 Uk) = t(j;i’ x'j, Z)'

Let A=(4, F)=F,+n+x+1 be the ¥ -free algebra with the set of free generators
{X15 coos Xy V15 oo Vims V15 oo ¥, 23 and B=(B, F)=§, .41 the ¥ -free algebra
with generators {Xxi, ..., X,, V1, ---» Vm» 2}. Hence B is a subalgebra of A. Since
¥ is tolerance Hamiltonian, B is a block of some tolerance on . By Lemma 3,
(%) vyields  p(yi, ..o Vms 1(Fis %j5 2)s ooy (P, Xy, 2), 01, ..., 0 )EB.  Since B=
=&ninsa there exists an (m+n+1)-ary polynomial g over ¥~ such that (2) of Theo-
rem 1 is valid.

2)=(): Let ¥ be a variety fulfilling (2), A=(4, F)e¢¥", B=(B,F) a
subalgebra of A and z€B. Let ¢ be an arbitrary (m-+n)-ary algebraic function over
A and p its generating polynomial, ie. @&y, ..., &) =P&1s ooy Empns C1s oovs C1)
for some ¢y, ...,c,€A4. If @(z,...,2,by,...,b,)=z for some b;€B, then, by (2),

o(@ys o5 Ams 2, ..., 2) = (a3, .., Ay by, .o by, 2)EB
for each ay,...,a,€8. By Lemma 3, ¥ and also ¥~ are tolerance Hamiltonian.

Theorem 2. The tolerance Hamiltonian property is local, i.e. an algebra U
is tolerance Hamiltonian if and only if every finitely generated subalgebra of U is a
block of some tolerance on U.
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Proof. It is a direct consequence of Lemma 3: if B=(B, F) is a subalgebra
of A which is not a block of any tolerance on U and every finitely generated sub-
algebra is, then there exist z€B and an (m+n)-ary algebraic function ¢ over U
such that ¢(z,...,2,b;,...,0,)=2z and ¢(a,...,8,,2,...,2)4B for some
@y ooy Gy by, ..., b€ B. Hence the subalgebra € of U generated by {a, ..., a,,
by, ..., b,, z} is not a block of any tolerance on 4 which contradicts the assump-
tions. The converse implication is trivial.

Theorem 3. The variety of all semilattices is tolerance Hamiltonian (but not
Hamiltonian).

Proof. If p, t are semilattice polynomials fulfilling the assumptions of the con-
dition (2) of Theorem 1, then clearly p does not depend on 4, ..., v, and the statement
of (2) is evident. Thus Theorem 3 is a direct consequence of Theorem 1. By the
theorem of KLukovrts [7], this variety is evidently not Hamiltonian.

Remark. As it was proved by ZELINKA [8], on every at least three element
semilattice there exists a tolerance which is not a congruence.

Theorem 4. No non-trivial variety of lattices is tolerance Hamiltonian.

Proof. Let p and ¢t be (24+0+1)-ary (i.e. ternary) lattice polynomials given
as follows:
p(x,3,2) =xN(A2), 1(x,y,2) =z

Then we have P(t(J’n Ves 2)s t(V15 V25 2), '1’1)=P(Z» z,v)=z=1t(y1, s, Z), thus the
assumptions of (2) of Theorem 1 are valid, but p(y,, s, v;) is essentially dependent
on »;. Hence, no polynomial g of the required type exists.
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The range of the transform of certain parts of a measure

KERRITH B. CHAPMAN and LOUIS PIGNO

In this note we point out a very elementary condition which provides a uniform
treatment for the results in [2, 4, 5] concerning the range of the transform of certain
parts of a measure. We assume familiarity with the basic facts of {8].

Let G be a nondiscrete LCA group with character group I' and let M (G) denote
the customary convolution algebra of bounded Borel measures on G. Denote by
S the structure semi-group of M(G) and let S denote the semi-characters of S;
recall that .S is the maximal ideal space of M(G), see [8]. For u¢ M(G) let 2 denote
the Gelfand transform defined on S by

AG) = [ xdp

N

where we have identified u and the image of g in M(S); we will also let ~ denote the
usual Fourier—Stieltjes transformation. By My(G) we mean the set of ucM(G)
such that £ vanishes at infinity, i.e. i is zero on I'\[I.

The main result of this paper is the theorem stated below; its proof is quite
simple. After stating and proving our theorem, we present two examples which
serve to indicate its scope. Example 1 is obtained by adapting the work of B. Host
and F. PARREAU [3]. In order to present Example 2, we prove a proposition by modi-
fying an argument of I. GLICKSBERG and I. Wik [2]. Professor Glicksberg has kindly
pointed out (private communication) that the proposition is also a consequence of
the main result of [1].

Theorem. Let he'\I' and EN\I'. Then for every pcM(G),

M (h)™ (') € A(TN\E)~
if and only if
) he(INYE)~ for every vy<I.

Received March 25, 1981.
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Proof. Let E satisfy (2) with respect to some he€I\I. Fix 7,€I'; since
he (I\ys*E)~ there is a net (y;)CI' such that y;—~h and y;¢ys'E for all j.
Observe that

(h)" (y)) = A(yoh) = lig_n ﬂ()’o?j)

because fi is continuous on $. Thus (2) implies (1).

Now let h¢ '\I' and suppose for every ucM(G), (h) (F)CA(IN\E)™; we
want to see that F satisfies (2) with respect to 4. With this in mind fix y,€I" and let V'
be any open set of S containing {h}. It suffices to confirm that VN (I™\y,E) is not
empty.

Let W=7,V. Then W is an open set containing {fsh}; by the definition of the
Gelfand topology on $ there exist measures yy, ..., 4, M(G) and £>0 such that

iél {0 100 — AGoh)| <€} S W.

For ucM(G) put ji equal to the measure such that ()" =g on I' and let &,
be the identity measure in M(G). Define auxiliary measures by:

v, = wi—LFh)é, and o, =v;x¥; i=1,2,...,n

Put 0 = 3 6;; now, on the one hand, &(hy,)=0, while, on the other,

i=1
(ho) (7o) = 8 (hF)EG(IN\E)~
by hypothesis.

We gather from all this that there is a net (y,)<I'\E such that &(y,)—0.
Now given ¢=>0 choose o such that for all a=o’

18 (y)l < &%
consequently for all az=ao’

3 1B~ AGRI <

Thus |2;(y,)—f;(Fh)|<e for a=a’, and so y,€W for all az=da'.
We have now proved that if a=a’, 77,V (I\YoE); thus hc (I\yoE)™
and this means that (1) implies (2).

Let G be an infinite compact abelian group; a subset RcI” is called a Rajchman
set if whenever u¢ M(G) and supp AICR then u€My(G); here ~ is the Fourier—
Stieltjes transformation. Examples of Rajchman sets can be found in [7]; all the sets
considered in [4, 5] are Rajchman sets.

Example L If R is a Rajchman set then R satisfies (2) with respect to every
idempotent h¢’\I'; we point out that this fact is more or less implicit in [3]. To
be explicit we need to reproduce some details from [3].
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To confirm that R satisfies (2) with respect to every h=h2¢I\I" we fix an
hi=hyc¢ \I" and suppose by way of contradiction that there is a y,€I" such that
ho& (I'\yoR)~. Thus, there is an open set V, with hy€¥V, such that VN (IN\y,R)
is empty and 1¢V¥,. For the remainder of the proof, ~ is complex conjugation.

By the definition of the Gelfand topology on § there exist measures p,, ..., 4,€

¢M(G) and &€=0 so that ﬂ {o: 1800 — Ri(ho)l <&} is open and contained in V.
Put A,={z€C: |z—4, (h0)|<s} and consider the open set ﬂ {(hop)"}"(A4); since
ho=h it follows that hy¢ ﬂ {(hor)” }"4(4)} and therefore

_ {r'j ﬂfl(Ai)} N {r:] (hou)” —l(Ai)}

is an open set about h,. Put Wi={y:x€W,} and define V,=W,NW7F; since
hy=h, we see that ¥V,CV, and V, is an open set about h,. Choose B,€I" such
that By, Br1€V;. Next define B,={f;, f7,1}; let

= {x: 1€ {(B1)"}*(4) for all i and all BEBIN
N{x: x€{(Bhou)"}2(4,) for all i and all f¢B,}

and V,=W,NW}; evidently V,c¥; and h,€V,. Since ¥, is open and B, is finite
we select B,€I’ such that S,€¥V,\B;.

Put By={f= I B :€{—1,0, 1JU{1}; let
i=1

Wo={x: x€ {(Bu;)"}~(4;) for all i and all BEB,}N
N{x: x€ {(Bhon)"}X(4;) for all i and all e By}

and V,=W,NW}; evidently V,CV, and h€V;. Since V; is open and B, is finite we
select B¢’ such that B,€V,\B,. Continuing in this manner we inductively con-

struct a sequence of distinct characters (f;);° such that f= ]JI B3, 6,€¢{—1,0,1}
and 6,0 for some i, then B€¥,; since BeV,NI, this me;;; that By, '€R for
all § of the form f= ]J] B%, 6,€{—1,0,1}. As shown in [3] (see Theorem 2.8 of
[6,p. 21]) there isa drssocrate sequence (w,)y with the property that if w is of the
form o= ]] ol, 6,€{—1,0,1}, then wis also of the form w—j[]1 By, mie{—1,0, 1}.

Srnce (w,,)l is dissociate we may now construct a Riesz product A€M (G)
such that supp ACR and A¢ M,(G); this contradicts the fact that R is a Rajchman
set and so our discussion is complete.

2%
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The above example is not the only one we know: Let R denote the additive
group of real numbers and let ¢ : 'R be a nontrivial homomorphism. A measure
HEM(G) is said to vanish at infinity in the direction of ¢ if whenever @(y;)—~+ o
then A(y;)—0; denote the set of all measures vanishing at infinity in the direction
of ¢ by M,(G). A subset RCI is said to be @-Rajchman if for ué¢ M(G) and
supp ACR=u€M,(G). Then it can be shown that if E is ¢-Rajchman, E satisfies
(2) with respect to various h’s. Notice that in general there are ¢-Rajchman sets
which are not Rajchman sets; let I'={m+n}2 : m,ncZ)} and let ¢ be the identity
homomorphism of I' into R. Then the set {x€I' : x=0} is ¢-Rajchman but not
Rajchman.

Although ¢-Rajchman sets and Rajchman sets are the same for the additive group
of integers Z, there do exist non-Rajchman subsets of Z which determine the range
of the transform of certain parts of a measure. For the circle group T put u=p,+p.
where up€M(T), u; is discrete and u. continuous.

Let 8(Z) denote the Bohr compactification of Z and for EcZ let E be the
closure of E in f(Z). Our result is then:

Proposition. If ECZ and ZN\E is dense in B(Z) then for uc M(T)
84(Z) € J(Z\E)~.

Proof. For u€M(T) write p=p;+p.; fix O<e<l and meZ\E. We see
from [2] that there is an infinite sequence (m;);> of distinct integers satisfying

2.1) [A.(mo+m,—m))| < —% for j<n.

Put H={m;); and consider H where the closure is of course taken in B(Z).
Since card H= <, thereisan x¢Z and a net m,€H, a€A such that m,—x€f(Z).

Inasmuch as m,Z\E it follows that there is an oy€ A such that for all «
and p greater than o

(2.2) my+m,—my¢ E
and
23 1Ra(mo) = Aa(mo+ m, —mp)| < =

/

Notice that (2.3) is valid since fi; is a continuous function on S(Z). As a conse-
quence of (2.2) and (2.3) there is a k=1 and an r=k such that my+m,—m ¢ E

and  |f1,(mo) — fi(mo+m,—my)| <% - Since

[Aa(mg) — A(mo+ m,—m)| = |A4(mg) — fs(My+m, —m)| + 1. (mo+ m,—m,)],
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and r=k, we gather from (2.1) that
[2a(mg) — f(mo+m, —my)| = e.

Thus A,(Z\E)CA(Z\E)~ and since Z\E is dense in f(Z) we obtain 2,(Z)c
CA(ZN\E)~. The proof is complete.

Example II. Let N be the natural numbers and for each n€N put E,=
={m:m= 3685, 6,6{~1,0,1}}; set E=(J E,. Let D={e""" : kcZ, jeN}
i=1 1

and consider E as a subset of D where D is given the discrete topology. Now the
integer accumulation points of E in D belong to E so it follows that E is a closed
subset of Z in the relative tolopogy of (Z). Notice that E has natural density zero
so by Wiener’s Theorem it follows that if supp § CE then ¢ is continuous and this
in turn implies that Z\E=Z\E is dense in f(Z). Clearly E is not a Rajchman set
since it contains the spectrum of an infinite Riesz product.

Remark. An easy application of Theorem 1 and Corollary 2 of [5, p. 2] estab-
lishes the following assertion: Let ECI satisfy (2) with respect to some h=h%¢
€I\ and let S be an infinite Sidon subset of I'; then EUS' satisfies (2) with respect
to h.

The authors wish to thank Professor Colin Graham of Northwestern University
for helpful correspondence.
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On random censorship from the right

SANDOR CSORGO and LAJOS HORVATH

1. Introduction. BURKE et al. [4] introduced the following censorship model.
Let X be a real random variable with distribution function F(¢)=pr {X<t}. For
a fixed integer k=1 let A%, ..., A* be pairwise disjoint random events, and define
the sub-distribution function Fi(t)=pr {X<t, 4'},i=1,...,k. We are interested
in the joint behaviour of the pairs (X, 4°) as expressed by '

Si() =exp(—4'(r)), i=1,..,k

t
where A* is the i-th hazard function ( f = f ]

—o0 (—oo,1)

t

A= [ (1-F(s))dF(s).

So let {X,, A}, ..., 4%} be a sequence of independent replicas of {X, 4%, ..., 4%},
n=1,2,.... We assume throughout that the functions F,F%, ..., F* are continuous.
Define the product-limit estimates

(___n—RE )6" if ¢ (X, .., X,
g,:(t):l—ﬁ;(t): {léjéng<t} n—Rj-l—l s 1 =< max 1y ce> n)

0, otherwise,

i=1, ..., k, where &} is the indicator of 4}, and R} is the rank of (X;, 1—0%) in the
lexicographic ordering of the sequence (X;,1-6%), ..., (X,, 1—¢!). Finally, intro-
duce the i-th product-limit process

Zi = n1/2(S'(t)—§,f(t)),
and, for x=(x, ..., x;), the corresponding vector process

Zn (X) = (Zp];(xl), ceey Z,’: (xk))'

Received July 1, 1980.
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However general is this model, the most important special cases are a) and b)
below. By working in this generality we merely would like to emphasize the fact that
the asymptotic theory of random censorship on the right requires only the above
structure. When dealing with random censorship on the left the basic ingredients S*
and S¢ should be accordingly modified. This is done in [9].

a) Let X7, X7, ... be a sequence of independent random variables with common
continuous distribution function F°, These are censored on the right by Y,, Y, ...
a sequence of independent random variables, independent of the X° sequence, with
common continuous distribution function H. One can only observe the sequence
(X,=min (X?,Y,),5,), where §,=6% is the indicator of A,=A}={X,=X?}. In this

case k=2,1-F=(1—F)(1—H), F*(t)= f‘ (1—H)dF°, thus S ()=S(t)=

~

=1-F°(t), and §!=S, reduces to the usual product-limit estimate. This is the
KAPLAN—MEIER [15] model as defined by EFron [12]. It was investigated by BRESLOow
and CROWLEY [3], MEIER [19], HALL and WELLNER [14], BURKE ef al. [4] and others.
The useful special case when 1—-H=(1—F%®? 8>0, was considered by KozioL
and GREeEN [18], and their model was investigated by Cs6rRG6 and HORVATH [7] and
KozioL [17].

b) For k=1 consider k independent sequences Y,,Yi ...(i=1,...,k) of
independent random variables with common continuous distribution function H°,
and let X,=min (Y}, ...,Y%. One observes the sequences (X,,6),i=1, ...k,
where 6! is the indicator of the event A\={X,=Y:}. This is the competing risks
model (giving back the above Kaplan—Meier model for k=2) considered by many
authors, notably, from the present viewpoint, by YANG [22] and BURKE et al. [4].
Here, as BERMAN [2] proved, the above S’ reduces to- S'(t)=1—H'(t).

On the basis of the Efron-transformed variant of the Breslow—Crowley weak
convergence theorem, GILLESPIE and FISHER [13] constructed asymptotic confidence
bands for the survival curve 1—F¢ in the Kaplan—Meier model. However, their
Monte Carlo study has shown that sample size #=200 is not large enough to apply
the asymptotic bands with high precision. Their results were a strong motivation
for us to work out a strong approximation theory in [4] for the above general Z,
and related processes. A variant of one of the main approximation theorems is for-
mulated in the next section. This result enabled us to build the approximation rates
into the construction of the Gillespie—Fisher type bands, i.e., we could construct
““exact” confidence bands ([4]) for the general survival functions S* under the “i-th
risk 4”’. We also indicated that these constructions should give reasonable bands
for much less sample sizes than the asymptotic ones of Gillespie and Fisher.

HaLL and WELLNER [14] utilized Doob’s transformation of the Brownian motion
into the Brownian bridge, and hence proposed the corresponding transformation
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of the product-limit process in the Kaplan—Meier model. The resulting process
converges weakly to a transformed Brownian bridge. Although Doob’s transfor-
mation belongs to the statistical folklore nowadays, its use by Hall and Wellner in
the present context is a remarkable step in the asymptotic theory of censored empiri-
cal processes. The resulting asymptotic confidence bands constructed by HALL and
WELLNER [14] enjoy many advantages over those of GILLESPIE and FIsHER [13] as
they explain it in detail. For example, they reduce in the uncensored case to the
classical Kolmogorov bands. Following HALL and WELLNER [14], KozioL [17]
considered Kolmogorov, Kuiper and Cramér—von Mises statistics corresponding
to the transformed product-limit process in the Kaplan—Meier model for testing
goodness of fit (cf. Section 3 here).

Following AALEN [1], NAIR [20] proposed another clever transformation of the
product-limit process in the Kaplan—Meier model. It is a modification of Efron’s
transformation, where the limit process is a scale-changed Wiener process. The re-
scaling depends on censoring, but the Kolmogorov—Smirnov, Kuiper and Cramér—
von Mises functionals of this process are distribution-free.

The aim of the present note is to develop strong approximation theorems cor-
responding to the transformations of Hall and Wellner and of Aalen and Nair in
the general setting of the first paragraph of this section. This is done in Sections 3
and 4, respectively, after some preliminaries from Burke et al. Convergence rates are
deduced from these theorems for the above mentioned statistics in Sections 3 and 4.
Using the approximation rates, we show in Section 5 a possibility for making exact
the asymptotic bands of Hall and Wellner. This is done again in the general setting.
Comulative hazard processes are investigated in a similar manner by CsorG6 and
HorvATH [8].

2. Preliminaries. Let Ty=inf {t : F(¢)=1} and define
t
[ A=F())2dF(s), t<T;
2.1) @) =17,
[ (1=F(9)2dFi(s), t=T,,

TF
i=1, ..., k. The last integral f here is either finite or infinite. Consider

Zi(r) = exp (4'(1)) Z}(2),
i=1, ...k, and for x=(x,,...,x) the corresponding vector process
Zn(x) = (Z:(xl)s sery Zﬁ(xk))'

If @' denotes the inverse of d', then the vector process with components Z!(a'(x))),
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x€(0, «)*, is the one which was called by BURKE et al. [4] as the Efron transform of
Z,. All of our approximations will take place on the infinite cube (— ==, T,]J* where
T, is a sequence of numbers satisfying first the condition:

2.2 T,<Tpy and 1—F(T,) = (2en—!logn)!/?
where, throughout this note, € is some arbitrarily fixed positive number. Let
2.3) b, =(1-F(T,)™4,

and introduce the following (rather messy) rate-sequence

@4 r(n) = () + - n=V¥{o(n) + 3 (&/201% bE(log my)

where
v(n) = [b2{(2k+1)54;+(2+(5(2k + 1)/ 45))e+((2/3) e+ €2)/2} + b34e ] n 2 log n +
+b2(126)/2n =113 (log m)!/2 4 b2(2k + 1) {4y + (&/ A5)} 642 —3(log n)""2 + b, 2n -2,

For x=(x,...,x) let |x|l=max(|x,},..., |x]) denote the maximum norm. In
[4] we constructed a special probability space (2, o, P) carrying k sequences {W'}
of Wiener processes such that for the vector process

Wix) = (Wid (x)), ..., WE(d (%))
we have

Theorem A (BUrke, CsORGS, HorvATH [4]). If T, satisfies condition (2.2),

then
P{ sup |Z,(x)—Wi(x)|=r(n)b,} = kQn-*,
x€(—o0, T, I¥

where Q=104,(2k+1)+100+16D.

The constants 4,, 4, and A, in »(n) (4, also in Q) are the C; K, 4 constants of
Theorem 3 of KomLGs, Major and TusNADY [16] (quoted as Theorem 2. A in [4]),
respectively. According to TusNADY [21] (cf. also M. CsorG6 and P. REvisz [5])
A,, A, and 4, can respectively be taken as 100, 10 and 1/50. Constant D (in Q) is
the absolute constant of Lemma 2 of Dvorerzky, KiErer and WoLrowirz [11].
The smallest available value for D known to us at present is 2{l+32/(6n)/2+
+8/31/24-21/24 exp (71/18)}=611 due to DevroYE and WIsE [10]. But in practice
one can probably use without harm the well-known conjecture (which was empiri-
cally verified in a number of situations) that D is 2.

We should also point out here that originally (Theorem 5.6 of [4]) we had the
factor rg(m)= max exp (A(T,)) of kr(n) instead of b,. But it is not hard to see that

rg(n)=b, and the above form of Theorem A is more fortunate since the whole rate-
sequence r(n)b, depends on the censoring only through b, of (2.3).
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3. Approximation theorems for the Hall—Wellner transformation. Goodness of fit.
Introduce (with d* of (2.1))

K@) =d'@))(1+d(t)), —e<t=<wo, i=1, ..,k

K(2) is a sub-distribution function in general for each i. It is a distribution function
(as HALL and WELLNER [14] point out) in the Kaplan—Meiner model (k=2). In
the competing risks model K is a distribution function for those 7 for which
Tp=Tyi=min (Ty, ..., Tyx), Where Ty, is defined analogously to T'z. The empirical
counterpart of d'(t) was considered by BURKE et al. [4] as

di@t) = ft(l—F,,(s))“2 dFi(s), i=1,...,k,

where F, is the (left continuous) empirical distribution function of X, ..., X, and F}
is the empirical sub-distribution function defined as

Fi)=n'¢{m: 1=m=n,X, <t and 4}, occurs}, i=1,.., k.

Independently of us but earlier, HALL and WELLNER [14] have also considered d!
(in the Kaplan—Meier model) but pointed out that it fails to satisfy their reduction
property. Instead they proposed the following modification of it:

t
a@®= [(-F@)1-F@)dFys) =n 3 (a=j)Hn—j+D)75}
—oo {/:X;<t}
where F is the right-continuous version of F,. Although we could have worked
with d}, we adopted this modification for the sake of accordance.
Lemma 6.2 of [4] estimates the distance of d! and d*. Using Lemma 4.1 of that
paper, it is trivial that if T, satisfies condition (2.2), then

—cot=

pr{ sup |di(£)—ci(?)] > 8bin~1} =2Dn-".
T’l

Let
Ki(t) = ci(O)/(1+ci(@), i=1,..., k.
Evidently
K3 (@)= K ()] = |, () —di (@),

and hence, putting together Lemma 6.2 of [4] and the last probability inequality; we
obtain
Lemma 3.1. If T, satisfies (2.2), then for each i=1, ...,k
pr{ sup |Ki(t)—K'(t)| > ry(n)} =8Dn-",
T'I

—oco<t=

where r,(n)=12(g/2)"2n="2bi(log n)"/>*+8b3n1,
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Consider now
Zj,(t) = (1 —K,f(t)) exp (Ai(t))Z,';(t), i=1,..,k,
and let Bi(1)=(1—t)Wi(t/(1—1)) be the sequence of Brownian bridges supplied
by {W}} of Theorem A. For x=(x,,...,x,) let
Zn(x) = (Z:(xl)’ cery Zz(xk))

and
BE(x) = (BY(K(x), -, BE(K*(x,)))-
Theorem 3.2. If T, satisfies (2.2), then
P{ sup [Z,(x)—B¥(x)| > q:(n)} = kRyn~",
Xx € (=00, T, J*

where q,(n)=r(n)b,+ry(n) with ry(n)=2¢"2r,(n) b,(log )%, and Ry=Q+8D+2=
=104,(2k +1)+102+24D.

Proof. It is enough to show that
P{sup |Zi(r)—Bi(K'(1))| > q:(m)} = Ryn~*

for each i=1, ..., k, where unspecified sup means sup . The last probability

~oo<t=T,

is not greater than
P{sup (1-Ki()) |ZL() =W (d ()] >r(n) b,} +
+P {sup [K}(0)—K'(O)||Wi(d (D)] = ro(m)} =
= (Q+8D)n—*+P{ sup [Wi(d'(1))| > 2&'/*b,(log n)1/2} =
= (Q+8D)n—*+2P{|W (b))/b,| > 2&'2(log n)*/%}
by Theorem A, Lemma 3.1, and the fact that b*=d(T,). The last probability is
less than or equal to »~% and hence the theorem.

The components Z! of our vector (-vector) process are in fact weighted proces-
ses, the weight being exp (A°(¢)). It is then natural to replace this weight with an
empirical counterpart of it and investigate the convergence of the resulting ‘‘twice
estimated” product-limit process. In principle there are two empirical candidates for
doing this. One is the exponential empirical hazard function exp (A4;(¢)) (cf.[4])

and the other is the product limit estimate itself. The latter being more natural here,
consider

éi(t) = (1—K!0))ZL(@0)/Si(t) = (1—Ki())(exp (—A' (1)) —8i(1))/Sk(2)
i=1, .., k, and the corresponding vector process

Z,(x) = (ZH0)s -.» Z5(x))
for x=(xy, ..., X¢).
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For T, we introduce a slightly stronger regularity condition instead of (2.2):

3.1 T,<Tpy and 1—F(T) = 2n"2p,(n),
where
rs(n) = r(n)+3(e/2)'2b:(log n)2.
By definition (2.4) of r(n) it can be shown that a rough sufficient condition for con-
dition (3.1) to be satisfied is that (T}, T, so slowly that)

3.2 b, =(1—F(T,))™ = M,(n/log n)*®

with some constant M, depending only on ¢, which can be computed from r;(n).

Just as Lemma 5.1 of [4] was deduced form an approximation theorem, the
first statement of the next lemma easily results from Theorem 5.5 of [4] which is the
original Breslow—Crowley-type variant of the Efron-type theorem cited here. When
deducing it, one also should apply the already mentioned fact that exp (—A'(T,))=
=1 F(T,). The second statement of the lemma follows from the first just as Lemma
4.1 of [4] followed from the Dvoretzky—Kiefer—Wolfowitz bound.

Lemma 3.3. If T, satisfies (3.1), then
pr{ sup IZ‘(t)l > ry(m} = (Q+6)n~*

—cwo<t=T

and

2
pr{ eesE:sr Si (t) exp (—A'(T)) } =(Q+6)n—".

Theorem 3.4. If T, satisfies (2.2), then

P{ 5o, 12— B (l>gu(m)} = kRen~,

x€(—e, T,

where q,(n) = q,(n)+2n" "2 B2 (ry(n))* and R, = R,+20+12 =30+14+8D=
=304,(2k+1)+314+56D.

Proof.
1Zi () — BUK ()| = |Zi0) = BL RV ()| +1Z0) — Zie)] =
= |Zi(t) - Bi(K' ()| +n 2| ZL()IH{Si(2) exp (— 4' (D))},

. and the theorem follows from Theorem 3.2 and Lemma 3.3.

As to the order of our rate sequences gq,(n) and g,(n), we note that since

r(n) = O(max {b2n~'3(log n)*2, bin~'2log n}),
we have
g:(n) = O(max {b3n~'2(log n)*?, bin~'/21og n}),

g.(n) = O(max {b2n~"3(log n)*2, bén=12log n}).
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Now we formulate the corresponding consequences for approximation on the
fixed cube (— oo, T]* with T<T,. These consequences follow from Theorems 3.2
and 3.4 in the same way as Corollary 5.7 of [4] did. Note that g, (n), ¢.(n) and ry(n)
are understood from now on with b, replaced in them by the constant

b= (1-F(T))™
Corollary 3.5. If nflog n=2¢b? then
P{_swp 12,9 BEC] > 4u(m)} = kRyn~,

—oo,

and if m%[ry(n)=2b, then

P{ sup 1Z,)=BI)l > g:(n)} = kRyn=.

The rough sufficient condition for the second statement here is (3.2) with b in
place of b,.

The joint weak convergence of the components of Z, and Z, follows from this
corollary together with rate-of-convergence results. Namely, for many functionals
(cf. Corollary of KoMLGs et al. [16] and Corollary 1 of Cs6rG [6]) on the space of
functions defined on (— o, T]* we obtain

(3.2)  sup |pr{¥(Z.(-) < »}—pr {Y(BX(-)) < y}| = O(n~13(log n)*%),
—co<y<oo
where *=",* and B¥ is a copy of BY since, if T (<T,) is fixed, then

q:(n) = O(n=3(logn)*’%) = gy(n).

For example, (3.2) holds for the Kolmogorov, Smirnov and Kuiper statistics consid-
ered by KozioL [17].

4. An approximation theorem for the Aalen—Nair transformation. Gooduess of fit,
Let T be a number such that the inequalities

“4.1) T<Tg, F(T)=0, i=1,..,k,
hold, and consider the processes
Zi0) = ZiONdi(D)"2, i=1, ..,k

proposed by AALEN [1] and NAIR [20] in the Kaplan—Meier case (k=2) where Z}
and d} are of Sections 2 and 3 respectively. Also, with #! of Theorem A, introduce

WO =Wid D)D" i=1,..,k
and for x=(x,,...,x;) set

Z,(x) =(Zx(xy, ..., Z3(x), W,(x) = (WO (x), ..., WP (xp).
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We note that, i=1, ...k,
4.2) WO@): —o<t =T} =o {(W(d'(t)/d(T)): —co<t=T}

and this equality in distribution is in fact the main advantage of the Aalen—Nair
transformation. Introduce the notation (in addition to those of the preceding sections)

a = max 1/F{(T).
Theorem 4.1. If n/log n=max (2¢b?, 8ea?), then
P{ sup IZ,()-W(9l = go(m} = kRsn™,

‘ x€(—e0, T]
where qy(n)=bQRay2r(n)+12(2)\2eb’a*?n~2logn and Ry=Q+9D+1=
=104,(2k +1)+25D +101.

Proof.
P{_sup |Z()-W L0l > g(m} =
=P {_:gtpé T(‘d:.(T))‘”2 |ZL()—Wi(d (1)) = bQa)’2 r(n)}+
+P {_ sup [Wi(di())| > 2642 b(log m)¥2}+ P {(d'(T) di(T)) 2 > (2a%)"/%} +
+ P{|(d' (D)2~ (di(T)V2| > 12(e/2)V/2b* (a/2)/2n 22 (log n)*2}.

Since d!(T)=FXT) and by an obvious analogue of Lemma 4.1 of [4]

12 } e
4.3) P{ D) = BN = Dn-¢,
provided that n/log n=8ea? we obtain, using also Theorem A, that the first term of
the above sum is not greater than (Q+D)n~*° We saw in the proof of Theorem 3.2
that the second term is not greater than n~*. By (4.3) the third term is majorized by
Dn~*. Using again (4.3), the fourth probability is majorized by

Dn—*+P{|d(T)—d\(T)| > 12(/2)2b*n—"2(log n)*2} = TDn~*,

where we used Lemma 6.2 of [4] in the last step. This proves the theorem.

By (4.2) the limit distributions of the Kolmogorov, Smirnov and Kuiper statis-
tics based on the processes Z! coincide with the distributions of the corresponding
functionals of {W¥(s) : 0=s=1}. These distributions are well known, one of them
is tabulated in [7]. If ¥ (Z}) denotes any of these three statistics and ¥ (W) denotes
its distribution-free limiting random variable, then we have (3.2) for their distri-
bution functions by Theorem 4.1.

Since the Aalen—Nair modified Efron transformatlon leads to asymptotically
distribution-free statistics, this transformation is more advantageous than those of
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Hall and Wellner when testing goodness of fit. However, the latter seems much better
when constructing confidence bands. This is why we do not spell out the exact prob-
ability inequalities in the next section corresponding to the confidence bands aris-
ing from the transformation of Aalen and Nair.

The two-sample processes, or, more generally, their vector-process generaliza-
tion (for the general competing risks model) can be similarly approximated as the
one-sample processes in Theorems 3.2, 3.4 and 4.1.

5. Conficence bands. If G is a continuous distribution function and G, is the #-
stage empirical distribution function of a sample corresponding to G, then it follows
from Theorem 3 of KomLGs et al. (1975) that for any 2, e=>0 we have

—Ayn=t+ M(L—(A,+(e/A))n"2logn) =
=pr{G,(t)—A/n'? = G(t) = G,(1)+n'?, —c <t < o} =

= M(1+(4;+(e/45))n 2 logn)+ A,n—,
where
M(y) =pr {oiugl [B(s)l < y}.

As we have already noted, A4,, 4, and A4, can be taken by TusNADY [21] as 100, 10
and 1/50, respectively. (It would be interesting to search for smaller 4,, 4, and lar-
ger A; by Monte Carlo through the above inequalities.) By Remark 1 of [6] and the
fact that  sup |B (G(y))lé oiugl [B(s)|, the lower half of the above inequality

—-oo<y<eo
remains valid for discontinuous G as well.
For O0<a<1 set

M, (y) =pr {02:2 |B(s)l < y}.

The analogues of the above inequalities for the general right censorship model are
the following consequences of Corollary 3.5.

Corollary5.1. Let T<Ty. If nflog n=2eb?, thenforany >0 and i=1; ..., k
we have
’ —Rln"+MK:(T,(l—-q1(n)) =

i)
= pr A
AR RG))

Si(t) =T
1- A ’ =
n2(1-K, (1))

= S'(t) =

= My (ry(A+q:1(n))+Ryn—=.
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If n2[r;(n)=2b, then for any A=>0 and i=1, ...,k we have

i Si
__Rgn—8+MK:(T)(/1—q2(n)) =pr {S,:(t)—l Fm(ln——(tl}'ﬁﬁ =
Si(r)

§Si(t) = S",',(t)'*')'nl—/z(l—_](,:(t_))_’

— oot | = T} = MKI(T)(}-'I'qg(n))‘*'Rgn—a.

. Since K{(T)=b*/(14b%),i=1, ...,k, we have M(A—q;(n)) <M , 45, (A—q;(n))=
=My r(A—q;(m), i=1,...,k; j=1,2, thus My, can be replaced by either
M (as noted by HALL and WELLNER [14]), or My ;e in the lower bounds. Since
the choice of ¢ is ours, the only unknown quantity in the lower bounds R;n~*+
+ M0 45 (2—4;(n)), j=1, 2, is b, and this can be estimated by (1—F,(T)) ™.

If k=2 and we are in the Kaplan—Meier model, then the symmetric bands of
the second statement of the above corollary are those of [14] (without rates). Even if
we compute with the conjecture D=2 but with 4,=100, 4,=10 and A4;=1/50,
a practical application of the lower halves of the above inequalities would demand
rather astronomic sample sizes. Nevertheless, the above inequalities constitute the
only information presently available for the precision of the bands in question, and
if one can dream about future values of the A’s as 4,, A;~1/10, A;=10, then this
information is not disappointing at all.
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Factor lattices by tolerances

GABOR CZEDLI

1. Introduction

Given a lattice L, a binary, reflexive, symmetric and compatible relation ¢ S L XL
is said to be a tolerance relation (or shortly tolerance) of L. Tolerances of lattices
were firstly investigated by CHAIDA and ZELINKA [2]. Recently the importance of this
concept has grown: a finite lattice is monotone functionally complete iff it has the
trivial tolerances only (cf. KINDERMANN [4]). Moreover, KINDERMANN [4] has shown
that the algebraic functions on a finite lattice are just the monotone functions pre-
serving its tolerances.

Our aims in the present paper are to introduce the concept of L/p (i.e., factor
lattice by a tolerance g), to give a more handlable description of L/g, and to give
a structure-like theorem for lattices with the following consequence: every finite
lattice is isomorphic to D/g for a suitable finite distributive lattice D. A characteri-
zation for tolerances of lattices will be presented in Theorem 2.

Given a reflexive and symmetric relation ¢ over a non-empty set 4, a subset
H of A is called a block of ¢ if H2C o but G*Cg forno HcGSA4. le., His
a block of ¢ if it is maximal with respect to the property: for any a, b€ H apb.
Let the set of all blocks be denoted by %,. On the other hand, certain subsets of
P*(A4), the set of non-empty subsets of A4, can be called quasi-partitions on A (cf.
CHAIDA, NIEDERLE, and ZELINKA [1]). The connection of these two concepts (see
[1} again) is the following. If ¢ is a reflexive and symmetric relation then
%, is a quasi-partition. For a quasi-partition % the relation ¢,={(a,b) : {a,b)}SH
for some He®%} is reflexive and symmetric. The map ¢—%,, from the set of reflex-
ive and symmetric relations on A into the set of quasi-partitions on 4, is bijective
and its inverse map is %—g,. Moreover, a reflexive and symmetric relation ¢
is an equivalence iff %, is a partition. Therefore the following notion of factor latti-
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ces by tolerances seems to be a natural generalization of that of factor lattices by
congruences.

For definition, let ¢ be a tolerance of a lattice L. For blocks G and H of and
o€{A,V} we define GoH to be the unique block of ¢ for which {goh: g€G,
he H}YSGcH. (The correctness of this definition will be shown!). Now L/, the
factor lattice by g, is the set of all blocks of ¢ equipped with the above defined A
and V operations. L.e., the notation L/g is used instead of €, and L/¢=(L/g; A, V).
It is worth mentioning that L/g is the factor lattice in the usual sence whenever the
tolerance ¢ happens to be a congruence relation.

2. L/g is an algebra

In this section the correctness of the definition of L/¢ will be shown. Suppose
G,HeLjo. If g,€G, h;eH (i=1,2) then the compatibility of g yields (g,oh,,
g:0h5)€0. le., {goh: g€G, h¢ HP?C . Now Zorn Lemma applies and {goh:
g¢G,h¢ HYSE for some E€L/o.

To show the uniqueness of E some preliminaries are needed. In what follows in
this section let ¢ be a fixed tolerance of a lattice L.

Lemma 1 (CHAIDA and ZeLINKA [2]). For a,b€L, (a,b)co if and only if
[aAD, avb)* S e.

Lemma 2. The blocks of ¢ are convex sublattices of L.

Proof. Let C be a block of g, and suppose a, b€C. For an arbitrary x¢C
agx and bgx, whence aVbexVx=x. le., (CU{ayb})*Se and the maximality
of C yields avbeC. Therefore C is a sublattice. If a, b€C, uc¢L, and a=u=b,
then, for any x€C, apx€C and b\Vx€C. Thus apxegbVx, and Lemma 1 yields
xgc. Finally, u€C follows from the maximality of C again. Q. e. d.

For a subset X of L let [X) and (X] denote the dual ideal and ideal generated
by X, respectively. We write [a) instead of [{a}), and dually.

Lemma 3 (GrATzER [3]). For any comvex sublattice C of L the equality C=
=[CYN(C] holds. Moreover, if C is the intersection of a dual ideal D and an ideal I,
then D=[C) and I=(C).

Definition 1. For ideals I; and I, let LAL=LNL, LVI,={x:x=cVd
for some c€l,,delL}=(I,UlL], and let I;=I, mean I,S/,. On the other hand
for dual ideals D, and D, let D,AD,={x: x=cAd for some c€D,,d¢D,}=[D,UD,),
D,vD,=D,ND,, and let D;=D, mean D,2D,.

The motivation of this definition will be given in-the remark to Lemma 4.
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Proposition 1. If (Cl=(D] for C,DEL[g then C=D.

Proof. First we show that U=([C)A[D))N(C]€L/e. Suppose x;,x,€U.
Then x;=cAd] for c[€[C) and d;€[D), i=1,2. Let c€C and d€D, and set
c;=ciA\c, di=d;N\d (i=1, 2). Then, by Lemma 3, we have x,=cAd;, ¢;€C, and d;€D
for i=1,2. Set a=xVe;Vx,Ve, and b=x,Vd\Vx,\Vd,. By (C]l=(D] and
Lemma 3 we obtain a€C, b€D, and aybeCND. Since ¢ Ac,€C and diAd,ED,
(ciAca, aVb)€g@ and  (diAds, avb)€g follow. The compatibility of ¢ yields
(aACNdiNdy, aVD)E@. But  xy, x:€[ciAdiAceA\ds, aVb], whence Lemma 1 im-
plies (x;, xo)€9. We have shown that U2Sg. U2[C)N(C)=C and the maximal-
ity of C yields U=C¢ L/g. By making use of (C]=(D] we obtain U2[D)N(D]=D
similarly. Therefore U=D as well. Q. e. d.

Proposition 2. Suppose C,D,EcLfo and {cvd:c€C, de¢DYSE. Then
[C)VID)=[E).

Proof. Let {cvd: c€C,déD} be denoted by U. Since [U)=[C)N[D)=
=[C)WI[D), [CID)S|E) follows easily. To show the required equality let [C)N[D)=
=[C)V[D)cE be assumed. Then [E)\([C)N[D))> @, and one can easily see
that EN\([C)N[D))#= @ as well. Therefore an element @ can be chosen so that
acFE and, e.g., a¢[C). Choosing elements c¢¢C and d€D we can assume that
a=cvd. (Otherwise a could be replaced by (cVd)Aa, because cVd, (cVd)\acE and
(evd)Aa¢[C).) Evidently we have aAc ¢ C. For an arbitrary x€C we can proceed as
follows. From (xVc)yde€ USE and a€E we obtain (xVcVd, a)€g. From x, c€C and
Lemma 2 (xVc, xAc)€o follows. By meeting we obtain (xVc, aAxAc)€e. From
Lemma 1 (x, aAc)€g can be concluded. Consequently (CU{ayc})*Se, a contra-
diction. Q. e. d.

Now Propositions 1 and 2 and their dual statements imply the correctness of
the definition of L/p.

3. L/o is a lattice

Before proving what is stated in the title of this section, a more handlable de-
scription of L/g¢ is necessary.

Lemma 4. Suppose E=CYD and F=CAD for C,D,E, FcL[g. Then we
have [C)V[D)=[E) and (CIV(DI=(E). The dual statement, [C)\[D)=[F) and
(CIND]=(F], dalso holds.

Remark. If for X¢{C,D,E, F}SL/e X is an interval [x;,x,}, and E=
=CVyD, F=CAD, then Lemma 4 yields c¢,\Vdi=e;,c,Vdi=e,, c;Adi=f,, and
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c:Ad,=f;. (This is always the case when L is a finite lattice.) This remark can supply
a motivation of Definition 1.

Proof. Since {cVd:c€C,deD}EE, we have (CJV(D]=({cVd: c€C,deD} S
C (E], implying (C1V(D]=(E]. The rest follows from Proposition 2 and the Duality
Principle.

This lemma enables us to strengthen Proposition 1:

Corollary 1. For C,D€eLjg we have [C)=[D) if and only if (C]=(D).
Really, Proposition 1 follows from this corollary and Lemma 3.

Proof. Suppose [C)=[D), then [C)V[D)=[D). Proposition 2 and the dual
of Proposition 1 imply CVD=D. By making use of Lemma 4 we obtain (C]=
=(CIV(D}=(D). The Duality Principle yields the converse implication. Q.e¢. d.

Theorem 1. For any tolerance ¢ of an arbitrary lattice L, Lo is a lattice
again.

Proof. By the Duality Principle it is enough to show that the V operation is
commutative and associative, and one of the absorption laws holds. Since the join
for dual ideals in Definition 1 is commutative and associative, the commutativity
and associativity are straightforward consequences of Proposition 2 and the dual of
Proposition 1. To show CV(CAD)=C, for C, DEL/g, by the dual of Proposition
1 it is enough to check [CV (CAD))=[C). But, by Lemma 4, [C)=[C)A[D)=
=[CAD), and so [CV(CAD))=[C)A[CAD)=[C). Q.. d.

The following theorem deals with the connection between tolerances and cor-
responding quasi-partitions on lattices. For a tolerance ¢ on a lattice L, ¥,=L/g
and P*(L) were defined in the Introduction.

Theorem 2. Given a lattice L, for any € S P+ (L) the following two conditions
are equivalent.

(@) ¢=%,(=L/o) for some tolerance ¢ on L.

(b) € has the following six properties:

(Cl) The elements of € are convex sublattices of L;

(C2) CLEJ«C=L;

(C3) For any C,Dc%, [C)=[D) is equivalent to (C)=(D];

(C4) For any C,DE¥ there exist E,Fc¥€ such that [C)V[D)=[E),
(CIV(DI=(E), and [C)A[D)=([F), (CIN(D]=(F];

(C5) Let x€L, deCc¥ be arbitrary. If for any e€CN(d] there exists C,
such that {e,x}SC.€¥€ then x€(C], and, dually, if for any fcCN[d) there exists
C, such that {f,x}SC €% then x€[C);

(C6) If U is a convex sublattice of L and for any a, beU there exists DE¥
containing both a and b, then USC for some C¢%.
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Moreover, if L is a finite lattice then (C5) and (C6) follow already from (Cl),
(C2), (C3), and (C4).

Proof. (a) implies (b). (C1),(C3) and (C4)isinvolved in Lemma 2, Corrollary 1,and
Lemma 4, respectively. Zorn Lemma yields (C2) and (C6). Suppose x€L, dcCe%4,=
=L/g, and for any e€CN(d] there exists C,£L/g such that {e, x}SC,. Consid-
ering the set X={x}U(CN(d]) we have X?CSp. Extending X to an element
of L/g, say E, we obtain [C)=[C N S[X)E[E), ie. [C)=[E). Corollary 1 yields
(C]=(E]. Hence xc XS ECS(E]S(C]. The proof of (C5) is completed by the Dual-
ity Principle.

(b) implies (a). Suppose ¥ satisfies the requirements of (b) and let ¢ denote
0¢={(a, b)L?: {a, b}SC for some C€%}. The relation g is evidently symmetric;
and it is reflexive by (C2). If C,D, Ec¥, U denotes the set {cVd: c€C,deD},
[C)V[D)=[E), and (C]V(D]=(E]} then UZE. Indeed, US[C)N[D)=[E), US
C(CIV(DIS(E], and, by Lemma 3, E=[E)N(E]. Now (C4) and the Duality
Principle yield the compatibility of o. Therefore g is a tolerance on L, and %,=%
has to be shown. Suppose C¢€¥. Then C*Cp. If (x,c)€p for any ¢€C then
x€[C)N(C]=C by (C5) and Lemma 3. Thus C€¢%, and ¢S%,. Conversely, if
Uc%, then USC for some CC¥ by (C6). But then both U and C belong to %,,
whence U=C. ¥=%, has been shown.

Finally, suppose L is a finite lattice, S P* (L) and ¥ satisfies (Cl), (C2), (C3),
and (C4). Since any convex sublattice of L is an interval, (C6) evidently holds. Sup-
pose x€L,deC=[a, b}€¥ and for any e€CN(d] there exists C, such that {e, x}S
CC.£%. Then {a,x}SC,=[u,v]. Since u=a, we obtain [C)V[C,)=[C). Now
(C4) together with (C3) yield (C]V(C,]=(C], ie., bVv=>b. Hence x=v=b, which
implies x€(C]. (CS5) is satisfied by the Duality Principle. Q. e. d.

Note that usually it is convenient to give €, instead of g. For example, let D be
a five-element chain, say D={0<1<2<3<4}, let L=D"{(0,4)}, a sublattice
of Dz’ and let %0= {[(O’ O)’ (2’ 1)], [(3’ O)’ (4’ 1)]’ [(3a 2)9 (49 4)]’ [(O’ 2)’ (2’ 3)]’
[(1,2).(2,4)]}. Then Theorem 2 makes it easy to check that g is a tolerance and
L/g is isomorphic to N;, the five-element non-modular lattice.

Proposition 1 yields that for any tolerance ¢ on a finite lattice L, L/¢ cannot
have more element than L. That is why the following example can be of some inter-
est. Define ¢ over Q, the set of rational numbers, by ¢={(x, y): [x—y|=1}. Armed
with the usual ordering Q turns into a lattice and g is a tolerance on it. By making
use of the results of this section it is easy to check that the factor lattice Q/¢ is
isomorphic to R, the set of real numbers with the usual ordering. (Indeed, the
map Q/¢—R, C—infC is an isomorphism.)
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4. Lattices as tolerance-factors of distributive lattices

The first example in the previous section indicates that forming factor lattices by
tolerances preserves neither distributivity nor modularity. It is a naturally arising
question which lattice identities are preserved. No non-trivial ones, as it will appear
from the forthcoming theorem. Let T, I, H, S, P, and P, denote the operators of
taking factor lattices by tolerances, isomorphic lattices, homomorphic images,
sublattices, direct products, and direct products of finite families, respectively.
Note, that HVCIT V for any class V of lattices. Moreover, as it can be deduced
from Theorem 2, IT¥V=ITT V for any class ¥ of lattices. (To keep the size of the
paper limited, the proof, which is similar to that of Homomorphism Theorem, will
be omitted.) Let 2 denote the two-element lattice.

Theorem 3. ISTSP {2} is the class of all lattices, while TTSP {2} is the
class of all finite lattices.

Proof. Only one argument is needed to prove this theorem consisting of two
statements, just we have to show that our embeddings are surjective for the case of
finite lattices. We have to show that an arbitrary (finite, respectively) lattice L be-
longs to ISTSP{2} (to ITSP {2}, resp.). First of all we can assume that L is
complete, since the map L—I(L), x—(x] is an (surjective for finite L) embedding
of L into its ideal lattice, i.e., into a complete lattice.

Claim 1. There are complete distributive lattices D, and D, in P{2} and in-
jective O-and 1-preserving maps @qo: L—~D,, ¢1: L—D; such that ¢, preserves arbi-
trary joins and ¢, preserves arbitrary meets. If L is finite then D,, D,€P{2}.

Proof. Let D; be P(L\{0}), the Boolean lattice of all subsets of L\ {0},
and define ¢,: LD, as x—(x]\ {0}. The completeness of L yields (A(x,: yel)]=
=MN((x,): y€T'), whence the required properties of ¢, are trivial. Moreover, D,
is isomorphic to 2It-1, Q. e. d.

Now let D be Dy+ D, the ordinal sum of Dy and D;. Le., D is the disjoint union
of Dy and D, equipped with the following ordering: x=y iff x€¢D, and y¢D,,
or x,y€D; and x=yp for some i€{0,1}. Note that D is complete and it can be
embedded into the direct square of 2!"-1, thus it is in ISP{2} (in ISP,{2} for
finite L). With the help of functions in Claim 1 define S P* (D) by

¢={C: 3=CED, for any c,deC there exists éeL such that
{c, d}<[ap,, ap,], and C is maximal with respect to this property}.

Now, by making use of Theorem 2, we show that =% ,(=D/g) for some tolerance
gon D.
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To check (Cl) suppose x, y€C€%. For an arbitrary z€C there exist a, b¢L
such that x, z€[ap,, ap,] and y, z€[bg,, be,]. Since ¢, preserves joins and ¢,
is monotone, we obtain xVy, z€ [ap,V by, ap,V bp ] S [(aVb)@y, (@V b)¢,]. From the
maximality of C we obtain xVy¢eC, showing that C is a sublattice. Let ¢, d€C, x€D
and c¢<x<d. Suppose that, e.g., x€D,, and let z be an arbitrary element of C.
Then ¢, z€[agp,, ap,] for some a€cL. But ap,€D, implies x-<a@,, whence
X, z€[apy, ap,). The maximality of C yields x€C, i.e. C is a convex sublattice. By
the maximality of C, 1¢,€C, so C is not empty.

From {0¢,, 0¢,]U[1¢@,, 1¢;]J=L and Zorn Lemma (C2) follows.

Now suppose that, in contrary to (C3), [C)=[E) and (C]#(E] for C, E€%.
Then one of (CIN\(E] and (E]N\(C], say (C]\(£] is not empty. Fix an element d
from C\(F] and let x be an arbitrary element of E. Since dAx€(CJA[E)=[C)=
[F), Lemma 3 yields d,dAx€C and x,dAx€E. Hence ap,=dAx=d=aq,
and bp,=dAx=x=bg, for some a,bcL. By forming join we obtain (ayb)p,=
=ap,Vbp,=dAx=dV x=ap,Vbp,=(aVb)p,. Thus x,d€[(aVb)p,, (@Vb)¢,], con-
tradicting the maximality of E. The rest of (C3) follows from the Duality Principle.

To show (C4), let C, E€%¥ and define X={cVe: c€C, e€E}. For any two ele-
ments in X, say c¢,Ve; and c¢,Ve, (¢;€C, ¢,€E), there exists an u€L such that
c;Velupg, up;] for i=1,2. Indeed, c;€[ap,, ap,] and e;€[bpy, bp;] (i=1,2
and a, b€L), and u can be defined as aVb. From Zorn Lemma we obtain the exis-
tence of an Fe€% such that XS F. Since (CIV(E]=X]=(F] is evident,
[C)VIE)=[F) has to be shown. If x€[C)V[E)=[C)N[E) then x=c¢ and x=e
for c€C,ecE. Hence x=cVecF implies x€[F), showing that [C)V[E)Z[F).
Suppose that [C)V[E)c[F). Then F\([C)ﬂ[E)) and so, e.g., F\[C) are not
empty. Fix elements 4, ¢, and e in F\[C), C, and E, respectively. For an arbitrary
x€C we have xAc,xVce€C and d, ((xVc)Ve)VdEF. Therefore apy=xAc=
=xVc=ap, and bp,=d=xVcVeVd=bp, for some a,becL. By meeting we ob-
tain (aAb)po=a@\boy=xAcANd=xN c=ap,Abp,=(a\b)p,. Now cAd¢C and
x, cAde[(aAb)p,, (aAb)p,] contradicts the maximality of C. The rest of (C4) is
settled by the Duality Principle.

Before going on we show that

() [u@o, up,]€¥ for any wucL.

Only the maximality of [u¢,, ue,] has to be shown. Suppose [u@,, u¢,] is not maxi-
mal, then [ug,,up,]cC for some C€c%. Fix an element ¢ in C\[u@q, up,].
Since C is a sublattice, co=cAu@, and c¢;=cVup, are in C, and either c,<ugp,
or ¢ =up,. If, e.g., co<u@,, then ¢, up€C implies aQy=c,<u@y<up,=ap,
for some acL. Hence ag,=u@,, (aVu)p,=ap,Vup,=up,, and u@,=a@;Aup,=
=(aAu)p,. The injectivity of ¢, and ¢, yields azu,aVu=u, and aAu=u, a
contradiction.
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Now suppose x€L, deCe¥ and for any e€CN(d] there exists C.€¥ such
that {e,x}SC,. Then for any ecCN{(d] there exists a, 6L such that
e, x€[a,py, aspy]. Set u=A(a.:e€CN(d]) and h=A(e:e€CN(d]). Since ¢,
preserves arbitrary meets and ¢, is monotone, we obtain u@,=A(a.9,: e€CN(d])=h
and x=A(a,9,: e€CN(d])=ug,, ie., h, x€[up, up,]=E. From (%) we conclude
that E€¥. Since u@,=h=y holds for any y€C (indeed, h=yAdeCN(d)),
[E)=[C). Now (C3) and (C4) imply (E]=(C] (cf. the proof of Corollary 1). There-
fore x€(C] follows from x€ES(E]S(C]. The rest of (CS) follows from the
Duality Principle.

Now let U be a convex sublattice of D and suppose that for any a, b€ U there
exists E€¥ containing both a and b. Then a, b€[ug,, up,] for some u€L, and
Zorn Lemma implies (C6).

We have shown that % is associated with a tolerance ¢ on D. Let D/p=¢%
denote the corresponding factor lattice. For u€L let wy denote [ugg, ue,]. Then,
by (%), ¥ is a map from L into Dfg. If u,v€L then [uVo)y)=[(uVv)p,)=
=[up,V o) =[upy)Vve,)=[1f)V[vep). Lemma 4 and the dual of Proposition 1
imply (uVo)=uwyVop, showing that i is a homomorphism. Since ¢, is injective,
so is Y. Therefore L€IST{D}.

In case L is finite, so is D. Then any convex sublattice and, in particular, any
element of ¢ is an interval. Hence ¥ is surjective, and L€IT{D}. Q. e. d.
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On the duality of interpolation spaces of several Banach spaces

DICESAR LASS FERNANDEZ

Introduction

Since the work by ARONSZAIN—GAGLIARDO ([1]) appeared, the problem of the
duality of interpolation spaces of two Banach spaces has attracted the interest of
many authors. See for instance Lions [10] for the trace method, LioNs—PEETRE
[12] for the mean methods, SCHERER [14], LACROIX—SONRIER [9], PEETRE [13] for the
J- and K-methods, and CALDERON [4] for the complex method.

Although the study of interpolation spaces has been mainly restricted to couples
of Banach spaces, many papers concerning interpolation spaces of several Banach
spaces have appeared. See for instance Lions [11], YosHikawa [16], Favint [5],
SPARR [15], FERNANDEZ [6], [7] and [8]. Thus, it is natural to pose the question of
duality for the theories of interpolation of several Banach spaces. The purpose of
this paper is to study the duality between the J- and K- interpolation methods for
several Banach spaces introduced in FERNANDEZ [6]. The distinguishing feature of
the J- and K- methods studied in [6] is that they deal with 2" spaces and n-parameters.
This permits us to show that the two methods are equivalent, in the sense that they
generate the same interpolation spaces. The equivalence of the two methods is fun-
damental to the study of the duality problem. Also, the idea used in the proof of
the equivalence is the same one used to prove a density theorem, which is another
crucial point in the duality theory. In this way we have the tools to show that the J-
and K- methods for 2" spaces “‘are in duality” as is the case for n=1.

For the duality of the complex method for 2" Banach spaces see BERTOLO [3].

Through this paper we shall use the following notations: (A) if a=(ay, ..., a,),
b=(by, ..., b)ER? then we set () a=b iff a;=b;, j=1,2,...,d; (i) a-b=
=a,b,+...azby; (i) aob=(a,b,, ..., a;b,); (V) la|=a,+...+a,; (v) a®=ab...a;
(vi) 2°=2%..2%; (B) 1=(l,...,1), (C) L2¢=L2(R% stands for the L2 spaces
with mixed norms of BENEDEK—PANZONE [2] with respect to the measure d t=
=d by ... d ty=dnfty ... diyft,.

Received February 11, and in revised form, May 12, 1981.
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1. Interpolation of 2¢ Banach spaces

We shall first give a summary of facts on the theory of interpolation of 2¢
Banach spaces. Also, we give the discretization of the methods here considered and
a density theorem which has not appeared before.

1.1. Generalities. 1.1.1. The set of k=(k,, ..., k,)€R? such that k;=0 or 1
will be denoted by J. We have O ={0,1} when d=1 and O={(0,0),(1,0),
(0, 1), (1, 1)} when d=2. The families of objects we shall consider will depend on
indices in .

1.1.2. We shall consider families of 2¢ Banach spaces E=(E,|k€ 1) embedded,
algebraically and continuously, in one and the same linear Hausdorff space V. Such
a family will be called an admissible family of Banach spaces (in V).

1.1.3. If E=(E,|k€ (1) is an admissible family of Banach spaces, the linear hull
ZE and the intersection (MNE are defined in the usual way. They are Banach spaces
under the norms

€)) x| zg = inf {zk"xk"Ek | x = Zyx; X €E,, k€ D}
and
) Ixll ne = max{jix| g, | k€ O}

The spaces NE and ZE are continuously embedded in V.
1.1.4. A Banach space E which satisfies

1) NEcCc ECZE

will be called an intermediate space (with respect to E). (Hereafter — will denote
a continuous embedding.)

1.2. Intermediate spaces. 1.2.1. Let E=(E,|k€ (1) be an admissible family of
Banach spaces. Suppose t=(t,,...,7,)>0 and #=r1.. . For xcZE, we set

¢)) K(t; x) = K(t; x; E) = inf{Z, " x| g, | ¥ = Zyxi, ;€ B, k€ O}
and for x¢NE
2 J(t; x) = J(t; x; E) = max{t*|x|g | ke O}.

Now, assume 0<@=(0,,...,0)<1 and 1=0=(q, ..., gz)=co.

1.2.2. Definition. We define E,. o.x=(E;|k€ 0)g.0.x to be the space of all
elements x€ ZE for which
(M =9 K(t; x)€ L,
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and Eg.,.;=(Ec|k€O)g, ., to be the space of all elements x¢ ZE for which there
exists a strongly measurable function u:R% —~NE such that

) x= [u@)d, (nZE),
RY

and

&) 1=9J(r; u(t))e L.

1.2.3. Proposition. The spaces Eg: .y and Eg.o.; are Banach spaces under
the norms ‘

@ I xlle;0:x = 2~ 0 Kit; %) Le>
and
) Ixllo; ;0 = inf {||t=0 (5 u(®))| e | x = [u(t)d,z},

respectively. Furthermore, the spaces Eg.,.x and Eg. 4., are intermediate spaces with
respect to E.

1.2.4. We shall say the spaces Eg. 5. and Eg.,.; are generated by the K-
and J-methods, respectively.

The following result gives a connection between the spaces generated by the
K-and J- method and says that those are actually equivalent.

1.2.5. Proposition. If 0<@=(0,,...,0,)<1 and 1=Q0=(q,,..,q)<<
we have

(D Eo,0:x = Ee;0;4-

1.2.6. When we have no need to specify which interpolation method has generated
the intermediate space we shall write simply Eg , for the spaces Eg.4.x and Eg . ;.
For the proofs of the above results see FERNANDEZ [6].

1.3. The discretization on the K- and J-method. Let E=(E,|k€ 1) be an ad-
missible family of Banach spaces.

1.3.1. Proposition. Let x€XE. Then x€(E,|k€O)g.o.x Uf

M (e=N9K(eN; x))nexa€12(ZY).
Moreover
2 fixlle;;x 2 ”(e'N'oK(eN; x))Nezd“lQ(zd)-

Proof. If t79K(t; x)=1t7%...t7% K(¢,, ..., t;; X), we have

em"+1 em1+1

woax=(2_ [ (2.1

my=—oco

25/qy 1/g,,
(t-°K(z; x))‘hd*tll '"d*t"J
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On the other hand, if e™=t;=e™*!, j=1,2,...,d we have

K(em, ..., ema; x) = K(tp, ..., tg; X) = e"K(em, ..., ems; X)
and
€)) e~ MEK(eM; x) = t-9K(t; x) = efe~9K(e¥; x).

These inequalities imply (2) at once and prove the assertion.

1.3.2. Proposition. Let x€ ZE. Then, x€(E, | k€ D)y, o,s Iff there is uy€ NE,
McZ?, such that

) x= 3 uy (in IE)
MEZ4

and

@) e~M9J(eM; uy)peza€12(Z9).

Moreover

©)] [ xllo;0;0 = inf{"(e'M'OJ(eM; uM))MEZ""lQ(Z") |x = ZM“M}'

Proof. Let x€(E,|k€0)g,q,, and u=u(t) be asin 1.2.2.If M=(m,, ..., m),

let us set
my+1 m;+1
e e

Up = Upy oo, = f f u(ty, .., t)d ty...d 1.

Then we have

and
(C)) H(e—M-OJ(eM; uM))MEzd”,g(Z,,) = _CHt_eJ(t; u)”:.g.

Taking the infimum in the above inequality we get one half of (3).
We proceed similarly to obtain the converse inequality in (4), which will imply
the other half of (3). The proof is complete.

1.4. Density theorems. Let E=(E;|kc ) be an admissible family and let us
denote by NE* and NE’ theclosure of NE in Eg.,., and Eg, 4., respectively.
Of course, we have NEX=NE=NE.

1.4.1. Proposition. If 0<@<1 and 1=Q<e we have
(1) NE*CEe.q:x; 2 Eg;0,,C NE.
Proof. The inclusion (1) is obvious. To prove (2), let x€Eq.,., and let

u=u(t) be as in 1.2.2(2)—(3). Let us set

My m
xM =x,,,1“_,,,d= f eee f u(tl,...,t,,)d*tl...d*td.

my 1fm,
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Then
x—xy= [Yu(u()d,,
Rd

where Yy, (1)=Y,, .. (1)=0, if 1/mj<t;<m; (j=1,2,...,d) and =1 otherwise.
Consequently

Ix—Xpllo; 0,0 = “t_e-l(t§ YM(t)u(t))”Lg = “t_GYM(t)J(t; u(t))“Lg.
Finally, since Y, (t)+0 as M-, the result follows.

14.2. Corollary. We have NE=Eg,,.
" Proof. It follows at once from 1.4.1(1)—(2) and the equivalence theorem.

2. Duality

2.1. Dual families. For a given admissible family E=(E, |k€O) of Banach
spaces there is a natural duality between NE and 2E, and Eg .4 and Eg.,. ;. In
order to examine this duality let us set the following hypothesis (H) on the admis-
sible family E:

(H) NE is dense in each E,, k€ .

Let E'=(E, | k€ (1) be the family given by the duals of the elements of the family
E=(E, | kcO).

Since NECE,, the spaces E,, k€ O, can be canonically embedded in (NE)".
The density hypothesis assures that this embedding does not identify distinct elements
in E;, with the same elementin (NE)". In this way, the family E"=(E} | k€ ) of dual
spaces is an admissible family of Banach spaces.

2.1.1. Proposition. Let E=(E, | k€ O) be an admissible family which satisfies
the hypothesis (H) and let E'=(E,|k€ Q) be its dual family. Then

)] (NE) = ZE’
. and
) %"l ze, = sup{I<x, x)nl/lxl nelx€ NE};
3) (CEy =NE’
and
“) 1%l ner = sup {I[<x, xel/lxll ne | x€Z E};

where () denotes the duality between NE and (NE) and (,)y between LE and
(ZEy.
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Proof. Since E;C(NE), for each k€, it follows that ZE'c(NE)".
Conversely, if ®#¢(NE)’, the linear form
¥: Ol k€O) ~ 2279 2, x,)

is bounded in the diagonal subspace of @,E,, with the norm max|jx,| 5, . By the
Hahn—Banach theorem there is an (x;|k€ 0)€ @, E; such that

Zi(x, X, = ¥(x)
for all x¢NE, and
Zillxill g, = 1DllnEy -
Now, if we take x,=x, k€ O, it follows that
D (x) = Z,(x, X )5,,» *€NE.
Finally, by the density hypothesis (H), the linear forms x;,k€ 0, are determined
by their values in NE and
I@lcney = Zillxil g
Similarly we prove (3) and (4).
As a corollary of proposition 2.1.1 we get the following result on the K- and
J-functional norms. '

2.1.2. Proposition. Let E=(E, | k€ O) be an admissible family of Banach spaces
which satisfies the density hypothesis (H) and let E'=(E; | k€ (1) be its dual family.
Then

()] K(t; x'; E') = sup {Kx, X )/J(t71; x; B) | x€ NE}
and
Q) J(t; x'; B’y = sup {|{x, x")K(71; x; E) | x€ T E}.

Proof. Let E be a normed space and ¢=0. Let us denote space E with the
norm t|-||; by tE. Then we have (tEY=t"1E".

Now, if we consider the family (#E,|k€ O0) we see that (1) and (2) follow at
once from 2.1.1(2) and 2.1.1(4), respectively.

2.2. The duality of spaces Eg 6. Let E be an admissible family of Banach
spaces which satisfies the density hypothesis (H). Then we can consider intermediate
spaces with respect to the dual family E’, and in particular the interpolation
spaces Eg .

Let E be an intermediate space with respect to the admissible family E. Then;
a necessary and sufficient condition for E’ to be an intermediate space with respect
to the dual family E’ is that NE be dense in E. Thus, if E=E, , the density result
of proposition 1.4.1 assures that E’=(E4 ;)" is an intermediate space with respect
to the dual family E’.
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We shall now study the relationship between the spaces Eg 5, and (E, ).
To this end we shall use again the notation Eg.,.x and Eg,., for the spaces
generated by the K- and J-method, respectively.

2.2.1. Proposition. Let E=(E, | k€ O) be an admissible family which satisfies
the density hypothesis (H) and let E' =(E, | k€ O1) be its dual family. Suppose 1 =Q=
=(qy, ..., q)< and 0<O=(0y,...,05)<1. Then

M 60 = (Eoyp)
where 1/0+1/Q'=1 (ie., l/q;+1/q;=1, j=1,2,...,d).
Proof. We shall prove that
2 E,G;Q';K = (EG;Q;,I)’-
By Prop. 2.1.1 it follows that
Eg.o .k CZE = (NE).

Now, if x’€Eg, 4. and (, ), is the duality between NE and (NE)’, the relation
(x, x"), makes sense for x€Eg., ;N (NE). Thus, by definition, there is a strongly
measurable function u: R?*—~NE such that u€LL(R%; NE) and satisfies 1.2.2(2).
From 2.1.2(1) it follows that

©) [lu@, N de = [T u@)KE™S x)d,t =
R4 R4

= [1=00(t; u@) 19K, x) d, ot = 1200 (55 u())
Rd

eIt K™ X g,

This shows that x’ou€L}(R%) and thus

@ f (@), x)d,t = < f u(t)d,t; x’> = (x, x').
‘ R<

R

From (2) and (3) we get the following inequality of Hdlder type

) 1(x x| = |1 xl6:0:51% ll6;0: -

This Hélder inequality implies at once that (, ) is a bounded linear form on a dense
subspace of Eg.,.;. Thus (,) can be extended boundedly to all Eg ;. Hence,
x'€(Eg.p,,) and we have, for the dual norm

(b (Eg;0;sy = SUP {1, XM/ xlle::5 | X€Eg;0;5} = X ll6;07;x-
From this inequality we obtain one half of (1).

4
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Conversely, let x’€(Eq.(.,). By 2.1.2(1), given ¢>0 there is Yy=7Y,
€NE with Y,#0 and such that

eK(eV; x'; E) = (yulJ(€V; yu), X'

Next, we denote by [9-¢(Z%) the space of all multiple sequences of real number
(xy)ycze such that

€

10y

[(xn)nezallioe = (e @ xy)nezdllie <.

Now, if a=(ay)y€/%2(Z% and

X = 2 ay ynlJ (e ya)s
NEZ4
it follows that

%lle; 0.0 = ”(e'N'eJ(eN§ ayyn/J (€"; ya))ne Z‘”le(z") =
= ”(e_N‘elaNDNeZ“”lq(z") = |lallio.0 <<=.

Thus x,€Eg.4.;. Also

(g5 X'y = (EnayynlJ (€Y, yy), x") = eZyayK(e~N; x)
therefore

© elye Naye" K(e~N; x') = |lallo, ol X'l 6;0:4-
Since [9:2(Z°) and I'~%2(Z?) are in duality via the duality
(0 8y= 2> eWaysy,
NeZzd
by taking the supremum over all a€/®9(Z% with |a],6,c=1 in (6) we obtain

elle" K(e="; xie.or = XNl 00,4,
that is
tllx’lle; 05k = 1x'll6; 0+

Since ¢ is arbitrary we obtain the second half of (2).
From (2) and the equivalence theorem we obtain (1) and the proof is complete.

7
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Amalgamated free product of lattices.
I. The common refinement property

G. GRATZER and A. P. HUHN

1. Introduction. The common refinemént property has been investigated for
many algebraic constructions. Intuitively, we say that the common refinement prop-
erty holds for the construction % (e.g., direct product or free product) if, whenever
Ay, Ay, By, B; are algebras for which * is defined, L=4, * 4,=B, % B;, and
Ay, Ay, By, BiYS L, then

(1) 4;= (4NB)* (A4NBy), i=0,1,
(2) BJ':(AOmB_/)*(AlmBJ): ]=0, la
(3) L =(A4,NBy)*(AyNBy) % (A;NBy) % (A,MN By).

This is, of course, not a definition; we did not even specify what is meant by the
right side of (3). In most concrete cases, however, the meaning of (1), (2), and (3)
is clear: direct product of groups and rings, direct produci of lattices with 0, free

" product of lattices (G. GRATZER and J. SICHLER [4]), and free product of algebras in
a regular variety (B. JONssoN and E. NELSON [6]) are examples of algebraic construc-
tions satisfying the common refinement property.

The present investigation was prompted by Problem VI. 2 in G. GrArzer [1),
asking whether or not free {0, 1}-product of bounded lattices satisfies the common
refinement property. We answer this question in the affirmative; the method of the
proof, however, leads much farther. It will be shown that two free products amal-
gamated over the same finite lattice Q always have a common refinement. The Theo-
rem gives, for an arbitrary lattice Q and any two'representations of a lattice L as
free Q-products, a necessary and sufficient condition for the existence of a common
refinement.

2. Results. To define the concept of an amalgamated free product, let Q, 4,, 4,
be lattices (Q= is allowed), let O be a sublattice of both A, and 4, and let

Received May 28, 1981.
The research of the first author was supported by the NSERC of Canada.
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AyNA;=0. Then AyUA, is a partial lattice in a natural way (see Section 3 for a
detailed definition). The free lattice generated by this partial lattice will be called the
free product of A, and 4, amalgamated over Q, or the O-free product of 4, and 4,;
it will be denoted by A4,%y A,. In this paper, the formula L=4A, *, 4, always
assumes that L is a lattice, A, and A, are sublattices of L, Q= or Q is a sublattice
of both A4, and 4,.

Our main theorem is as follows (for a more complete version see Section 4):

Theorem. Let L=Ayx yA;=B* oB,. These two decompositions of L have a
common refinement, that is, conditions (1)—(3) of Section 1 hold for * 4 if and only if
for any i,j€{0, 1}, x€A;, yEB;, the inequality x=y in L implies the existence of a
2€A;NB; such that x=z in A; and z=y in B;.

This theorem has several consequences.

Corollary 1. If Q satisfles the Ascending Chain Condition or the Descending
Chain Condition, then any two Q-free decompositions of a lattice have a common re-
finement.

Clearly, the special case Q=/{0, 1} of Corollary 1 answers Problem VI. 2 of
[1] in the affirmative.

Corollary 2. Let L=Ag* o A1=ByxoB,. If, for any i,jc{0,1}, either A,
or B; is convex in A;UB;, then the two decompositions have a common refinement.

The most important open problem in this investigation is whether the condition
given in the Theorem is a tautology or not; that is, whether Q-free products always
have common refinements.

It follows easily from the main result of G. GRATZER and J. SICHLER (4] that the
free factors of a lattice L form a distributive lattice. This statement remains valid
for Q-free factors (QESL) if Q-free products always have common refinements
(see Section 8). The next two corollaries establish distributivity like properties of
the set of all Q-free factors for an arbitrary Q.

Corollary 3. If Aok qAy=Aoxgde and A, S A,, then A;=A,.
Corollary 4. If AyxgA,=AogkgAs=A %A, then Q=Ay=A,=A4,.

3. Amalgamated free products. We need a lemma before we give the definition
of an amalgamated free product.

Lemma 1. Let Ay and A, be lattices, let Q be a sublattice of both Ay and A, or
0=, and let A, A,=Q. Then there exists a smallest partial lattice on the set
AU A, extending the operations of Ay and A,.
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Proof. Since the Amalgamation Property holds for lattices, there is an em-
bedding of 4, A4, into a lattice preserving the operations of 4, and 4,. Restricting
the operations of this lattice to 4,1 4,, we get a partial lattice on the set 4,U4;.
Therefore, the set of all partial lattices on the set 4,04, whose operations are ex-
tensions of the operations of 4, and 4, is nonempty. Now let (4,UA,; A,, V,), Y€T,
be partial lattices on the set 4,UA4,. Let A and V be the intersection of the
Ays and V,’s, respectively (/\y and V, are sets, in fact, they are subsets of
(40U A4,)?X(4,U4,)). We shall prove that (4,Ud4;; A, V) is a partial lattice.
This, will prove Lemma 1.

Here we need N. Funayama’s characterization of partial lattices (see, e.g.,
G. GRATZER [1]): A partial algebra (H; A, V) is a partial lattice if and only if, for
arbitrary a, b, c€H, the following five conditions and their duals hold.

(i) ana exits and apa=a.

(ii) If apb exists, then bAa exists and aAb=bAa.

@iii) If aAb, (aAb)Ac, bAc exist, then aA(bAc) exists, and (aAb)Ac
=an(bAc). If bAc, aN(bAc), ahb exist, then (apb)Ac exists and
(apnb)Ac =aM(bAc).

@iv) If anb exists, then aV(aAb) exists, and a=aV(aAb).

(v) If [a)V[b)=[c) in Dy(H), then apAb exists in H and equals c. (Here
Dy(H) denotes the lattice consisting of & and all dual ideals of H. Dy(H)
is ordered by inclusion.)

Now we prove (v) for (4,UA;; A, V), the proof of the other four condi-
tions is similar. Every (4,U4;; A,,V,), €I, is a partial lattice, therefore, (v)
holds for (4,UA,; A,,V,). Assume that [a)V[b)=[c) in Dy(4,UA;; A, V)).
Then [a)V[b)=[c) in Dy((4,UAy; A,, V,)) for all yerl. In fact, A, is an exten-
sion of A; therefore, the dual ideals generated by a and b relative to A, contain the
dual ideals generated by a and b relative to A, respectively. Thus [@)V[b)2[c) in
Dy,({4,U 4;1; A,, V,)). The reverse inclusion is trivial. Now, by (v), aA,b=c for
all yeI'. Hence aAb=c. This completes the proof.

Definition 1. Let Q, A,; 4, be as in Lemma 1. Let P(A,, 4,, Q) denote the
smallest partial lattice of Lemma 1. If Q= A4, A4, is understood, we write P(A4,, A4,).
for P(A4,, A1, Q). Then the free lattice generated by P(4,, 4;, Q) will be called the
free product of A, and A, amalgamated over Q, and it will be denoted by 4,* ¢ 4,.

A warning is in order here. We can partially order 4,U 4, by the smallest par-
tial order containing the ordering of A4, and the ordering of A4,. If we take A4,U A4,
together with all the existing g.l.b.’s and lL.u.b.’s relative to this ordering, then the
resulting partial lattice is generally different from the one defined above.
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Definition 1 can easily be extended to a definition of the Q-free product of an
arbitrary finite number of lattices containing Q. In particular, if L=A4g*y4,=
=By * B, then (4;NBy)* o(A;NBy) * o(4,NBy) % o(4,NBy) is the free lattice gen-
erated by the smallest partial lattice on the set (4,NBy)U(A,NBYU(4;NBYU
U(4,NB,) whose operations extend the operations of all 4;NB;, i,j=0, 1.

We shall need a description of the ordering and of the ideals of P(4,, 4,).

Lemma 2. Let x€A, and y€A,. Then x=y in P(A,, A)) if and only if
there is a z€Q with x=z in Ayand z=y in A,.

Proof. Define = on 4,UA4; as follows: = retains its meaning on 4, and 4;;
for x€ A, and y€A, (or xcA, and y€A,) define = as in the lemma. It is obvious
that = is a partial ordering on A,U4,. (This is used in the proof of the Amalgama-
tion Property for lattices.) Consider the partial lattice (4,UA;; A, V), where
aAb=c iff c is the greatest lower bound of a and b with respect to =; aVb=c is
defined dually. ' ,

Let =, denote the ordering of P(4,, 4,). Since P(A,, 4,) is the smallest partial
lattice on A4,UA4;, =; must be contained in =. To prove the converse, let a=b,
a,bcA,UUA,. If a,bcA; for some iin {0, 1}, then a=b in A4;. Hence, by the de-
finition of P(4,, A;), a=,b. Therefore, and by symmetry, we may assume that
acA, and b€A,. Thus there is an element ¢ in A4, A4; such that a=c¢ in A4,
and c=b in A4,. The same inequalities hold in P(A4,, 4,), that is, a=,c=.b, as
claimed.

Lemma 3. Every ideal of P(Ay, 4,) is the union of an ideal I, of A, and an ideal
L, of A4, satisfying I,NQ=1,NQ. Conversely, if I, is an ideal of A, and I, is an ideal
of A, with I;,NQ=I,NQ, then Iyl is an ideal of P(A,, A4,).

Proof. Let I be an ideal of P(A4y, A;). Then I;=INA; is an ideal of 4;,
i=0,1, and I,NQO=INA,NQ=INANA,=INA,NQO=1,NQ, which proves the
first statement.

To prove the converse, consider the partial algebra (4,U4;; V, A), where
xAy (resp., xVy) is defined if and only if x and y are in the same 4; and xAy
(resp., xVy) is the meet (resp., join) of x and y in 4;. Call a set / an ideal of the par-
tial algebra (4,UA4;; A, V) if, whenever x,y€l and xVy is defined, then xVy€l
and whenever x€l,y€A4,UA,;, and y=x, then y€l. (The partial order = was
defined in Lemma 2.) Now let I, be an ideal of 4, and let I, be an ideal of 4, with
I,NQ@=LNQ. The latter condition ensures that /,U/; is an ideal of (4,UA;;
A, V). Now we prove that I,UI; is an ideal of P(4,, 4,). In fact, P(A4,, 4,) is the
smallest partial lattice in which, besides the partial operations of (4,UA,;; A, V),
all the meets and joins are defined that follow by iterated application of conditions
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(i) to (v) and their duals. Therefore, it is sufficient to check that a single application
of any one of (i) to (v) and their duals does not change the ideals; this is evident.

4. Smooth representations of ideals. The proofs in G. GRATZER and J. SICHLER
[4] rely on two facts:

1. In a free product L=Ay* A, every element has a lower A4,-cover, which is
an element of (4,)° (that is, A, with a new 0 and 1 adjoined);

2. Forming lower 4,-covers is a homomorphism of L into (4,)°.

In general, these statements do not hold for amalgamated free products. In this
section we find some statements that hold for amalgamated free products; these
statements can be viewed as substitutes for the two facts mentioned above.

Throughout this section, let Q, 4,, 4, L be lattices, let L=A,%,4,, and let
A=P(Ay, A, Q) as defined in Section 3. Let I(4) (respectively, 1(4;)) denote the
ideal lattice of A (respectively, of 4;). For any ideal I of L or of A define

(I =1IN4;, i=0,1

and for an ideal I of L define
I, = INA.

For a principal ideal I of L, the ideals (/); and I, correspond to the usual lower
covers (see, e.g., [1]), however, I—(l);, I€I(L), is not a homomorphism, that is,

(1) (P(lo, B In—l))i = p((IO)i, cers (In—l)i)

does not hold for all polynomials p. For certain polynomials, however, (1) does hold
(see Definition 2) and it will turn out (Lemma 8) that this happens often enough,
making it possible to carry out some of the proofs of [4] under more general condi-
tions.

Definition 2. Let p=p(x,, ..., Xx,~;) be an r-ary lattice polynomial, let
L1, ..,I,_, be ideals of L (of A, 4;, respectively), and let I=p(l,, ..., I,-,) in
I(L) (in 1(A), 1(4), respectively). We say that p(Jy, ..., I,_,) is a smooth represen-
tation of 1 (or that p(ly, ..., I,_4) is smooth) iff one of the following conditions holds:

a) p=xi;

b) p=peAp; and both py(ly;...,1,_;) and py(dy, ..., I,—1) are smooth;

¢) p=peVp,, both py(l,, ..., I,_,) and p,(ly, ..., I,-,) are smooth, and, for

any g¢Q,

qgcp(y, ..., I,_y) implies that g€ py(4,, ..., I,-;) or
qul(IOs s In—-l)'

The following lemma shows that every representation of an element of L can
be turned into a smooth representation.
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Lemma 4. Let acL,ay, ..., a,_,€AUA;, and let a=p(ay, ..., a,_,) where
p is a lattice polynomial. Then there exist an integer m=0, a polynomial p in n+m
variables, and subsets Q, ..., Qn-1 of Q such that

(a] =ﬁ((ao], s (an-I]! (QO]’ "oy (Qm—l])
is a smooth representation of (a] in I(L).

Proof. We prove this statement by induction on the rank of p.

If p=x;, then we can choose m=0, j=p.

If p=p,Vp,, then, by the induction hypothesis, there exist an m=0, poly-
nomials j, and p, of n+m—1 variables, and subsets Q,, ..., Q,-2 of Q such that

ﬁi((aO]a (A ] (an-I], (QO]’ AR (Qm—2])

is a smooth representation of p;((al, .., (a,-,]) for i=0 and 1. Let Q,_,=(a]NQ.
We claim that

ﬁo((al)]s “eey (an—l]a (Qo]a “es (Qm—2])v
V(ﬁl((aol (At ] (an—l]’ (QO]’ Tt (Qm—..])v(Qm-l])

is a smooth representation of (a]. Indeed, by the definitions of p; and of Q,,_,, this
ideal equals (a]. Moreover, p,((do], ---)V(Q,—1] is smooth because its components
are smooth and if, for g€Q, ¢€p,((ao), ...)V(Qm-1), then g€(a]; thus, g€(Q, -1l
by the definition of Q,,_,. Similarly, Fy((a], ...)V (Fx((@o), ---)V(Qm-1]) is smooth.

Finally, if p=p,Ap;, then let p,((ap), -, (@-1], (Do), ---5 (Om—1]) be a smooth
representation of p;((a], -.., (@,-4]) for i=0 and 1. The meet of these two poly-
nomials is obviously a smooth representation of (q].

In the remainder of this section we have to compute polynomials in L, (L),
I(A), and I(4,), i=0,1. We shall distinguish between the operations in /(A4) and
I(A4;) by superscripting them by 4 and i, respectively.

The following lemma is a consequence of the solution of the word problems
for lattices freely generated by a partial lattice (see, e.g., G. GRATZER, A. HUHN,
and H. LAKSER [2]).

Lemma 5. Let x,y€L. Then
(xVyINA4 = (xINAVA((yIN4), and (xAy]NA = ((x]NA)N(y]1NA).
Lemma 6. Let I and J be ideals of L. Then

vy, = (I)AVA(J)A‘

Furthermore, if INJ is smooth, then so is (I),NV4(J),.



Amalgamated free product of lattices I. 59

Proof. We prove that (IVJ),S(I),V4(J), (the reverse inclusion is obvious).
Let ac (JVJ),. Then a€A and there exist i€] and j€J such that a=iVj. From
Lemma 35, it follows that
a€(iVilN4 g ((INAVAUINA4) S (DN 4 s

This proves the first half of the lemma.
Assume now that IVJ is smooth. We have to prove that so is (I),V4(J),.
Let g¢Q and let

g€ VA )4

Then g¢lvJ; thus, g€l or g€J, say g€l. Since g€ QE A, we have g€INA=(I),.
This completes the proof.

Most of the results of this section are summarized in the following two lemmas
that show that one can work with smooth representations as if forming lower covers
were a homomorphism.

Lemma 7. Let I and J be ideals of A and let us assume that IN*J is smooth.
Then
(IVAT), = (I)Vi{J); for i=0,1

and the right side of the equation is smooth.
Proof. We claim that
((DeV°(N)e)NQ = (D VI(IN)NQ.

Indeed, let ¢g€Q and let ge(I),V%J),. Then g€IV4J; therefore,-g is in I or J,

say, q€l. Then ge€(I)S(),V¥(J),, which verifies that the left side is contained in

the right side. Repeating this argument starting with the right side, we verify the claim.
This claim, by Lemma 3, shows that

((DoV O N U((D:V(I)y)

is an ideal of P(A4,, A,); obviously, it is the smallest ideal containing both / and J,
that is,

IVAT = ((DoV O (D) U{(DLVEI),).
Now we compute (using the above claim again):
(INAT), =
= (((DV D UDV DN N4y =
= ((DV° D) U((DVH(NNQ) =
=((DeV° () U(((DV°(N))NQ) =
= (DeV(J),.



60 G. Gritzer, A. P. Huhn

Finally, we can see that (I),V°J), is smooth arguing as we did in Lemma 6.

Lemma 8. Let p=p(x,, ..., x,-1) be a lattice polynomial and let 1, ..., I,_,
be ideals of L, such that p(l, ..., 1,_,) is smooth. Then

(p(IDa (RS In—l))i = p((IO)I" sy (In—l)i)
is a smooth representation of (p(ly, ..., I,-1));.

Proof. By induction: if p=x; or p=peAp,, then Lemma 8 is trivial; if
p=p,Vp:, then Lemma 8 is a combination of Lemmas 6 and 7.

5. Amalgamated free products of sublattices. It was proved in B. J6nssoN [5],
that, if a variety V" has the Amalgamation Property, then the following statement
holds: for arbitrary algebras 4,and 4, in ¥ and subalgebras A4, of 4, and 4; of 4,
the set AglJA; generates a subalgebra in the free product 4,* 4, canonically iso-
morphic to Ay * A;. “Canonically” means that the isomorphism is the identity map
on Ay and on A;. Jonsson’s proof is valid not only for varieties but also for classes
closed under the formation of subalgebras and of direct products. Thus the proof
works for Q-lattices, that is, lattices containing Q as a sublattice such that the ele-
ments of Q are regarded as nullary operations. This yields the following lemma.

Lemma 9. Let L=AyxyA,, let Ajand A] be sublattices of A, and A,, respec-
tively, and let QS Agand QS Ay. Then the sublattice of Ay oA, generated by A\ A,
is canonically isomorphic to Ay o A;.

There is an alternative proof by using the solution to the word problem for
lattices generated by a partial lattice. For the case Q=¢, such a proof appears
in G. GRATZER, H. LAKSER, and C. R. PLATT [3]. (See also G. GRATZER [1].)

6. Proof of the Theorem. We introduce some new notation. For an ideal I
of L, let I, denote the ideal of L generated by /M A4,; we call I, the lower A,-cover
of I. Similarly for 7, , Iy ,and I, . Note that Lemma 8 holds also for lower 4;
(resp., Bj)-covers.

For arbitrary fixed i, j€ {0, 1}, we define /;;(L) as the set of principal ideals of L
and the lower 4;-covers and lower B;-covers of principal ideals of L. -

We prove the main theorem in a stronger form:

Theorem. Let L=Ay*qA1=By*oB,. Then the following conditions are
equivalent.

» L=(AoﬂBo)*Q(AonBl)*Q(AlnBo)*Q(Al NB,).

(ii) 4;=(4,N\Bg)*o(4,NBy), for i=0, 1.
(ii)) B;=(4oNB;)* o(4,NB)), for j=0, 1.
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(v) For any i,j€{0,1}, x€A4;, and y¢B;, x=y in L implies the existence of a
z€A;N\B; such that x=z in A; and z=y in B;.

(v) For any i,j€{0,1} and for any ideal I of L, I=(INA)=(NB;] implies
that I1=(INA;NB;].

(iv) For any i,jc{0,1} and for any ideal IcI;;(L), I=(INA])=UNB;] im-
plies that 1=(INA;NB}].

Proof. We prove the theorem by the following scheme: (i)« (i), (i)<-(iii);
(i), (i), and (iii) jointly imply (iv); (iv)—(v)—(vi)—(ii).
(ii) > (i) is clear from the definition of the right side of (i) (given after Definition 1).
(i)—~(ii). Let acA,. Then, by (i), a can be expressed in the form

7 /7 / 7’
a = p(Xo0s Xo0'> -++» Xors Xor s +++> X105 X105 -5 X115 X1175 +--)

where x;;, xi;,...€A4,NB;,i,j€{0,1} and p is a lattice polynomial. By Lemma 4,
(a] has a smooth representation in I(L):

(a] = ﬁ((xoo]s ey (xOI]s ree (xlo]’ sers (xll], EE ] (Qo]s )a
where @, ...£Q. Then, by Lemma 8§,

(a] = (a]Ao = ﬁ((xoo],{.,, cees (x1o],4°, cees (xOI]AO’ ) (xII]Aos vees (Qol, )

We claim that, (x;0],,, as well as (xy],,, is generated as an ideal by elements
of Q. Indeed, let (x,,] 4 be generated by x,, €I, in A,. By Lemma 2, for every
yerl, there is a y,€Q with x,=y,=x;,. Thus {y,|y€I'} generates (x,,] 4,» and
{»,lyer} is a subset of Q. Summarizing,

(a] = p((xoal, ---> Ceao)s -5 (Quols -5 (@i, -5 (@, ---)s

where Qg ooy Q15 o0y @, ... EQ. Hence a can be expressed by Xgp, ..., X105 --+»
and elements of Q. Thus, a is in the sublattice generated by (4, By)U(A4,NB)).
Therefore, 4o\ B, and A, B, generate A,. It follows from Lemma 9 that they
generate A, freely over Q.

(i)« (iii) follows by symmetry.

(i}, (i), and (iii) jointly imply (iv). By (ii) and (iii), the sublattice [4,U B,] generated
by AyUB, is also generated by A4,MN By, A;NB,, and A;NB,. By (i), A,NB,,
ANBy, AyNB,y freely generate over Q. Thus [4,UB,] is freely generated by
(4,NBy)U(4sNB)YU(A,NBy). Hence, it is also freely generated by [(4,NBy)U
UAoNBYIUI(A4,NBg)U(A4;NBy)]. By (ii) and (iii), this set is A4,UB,, and the
relative sublattice of L on this subset is the partial lattice P(d,, By, Ao\ By).
Therefore, [4,U By] is the free (4, By)-product of 4, and B,. Thus, Lemma 2 gives
us (iv) for i=j=0. Since (i), (ii), and (iii) are symmetric in i and j, condition (iv)
now follows.
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(iv)~(v). Let the ideal I be generated by {x,ly€I'}S4; and by {y;|0€¢4}SB;;
we can assume that {y,|6€4} is closed under finite joins. By (iv), for any y€l we
can choose a y’€4 and a z,.€A4;NB; satisfying x,=z,.=y,.. Obviously, {z, |[y'€e'}S
€4,NB; generates 1.
(v)—~(vi) is obvious since (vi) is a special case of (v).
(vi)—~(ii). By Lemma 9 and by symmetry, it suffices to prove that 4, is generated
by (4,NB)U(4,NBy).

For a€A,, there exist a polynomial p and elements by, by, ...€By, by, bj, ...€
€B,, such that a=p(b,, by, ..., b;, by, ...). By Lemma 4, there exist a polynomial
P and Qp, @y, ...S0Q such that

(a] = B((bol, (B, .., (b, (B3l -, (Qol, (@il ,.)

is a smooth representation of (a]. Then, by Lemma 8,

(a] = (@l = 5 ((bolags -5 (balags -5 (Qolugs --)-

In this expression, (Q,] Ao=(Q0]’ .... Furthermore, we shall prove the claim that
(bola,» (bolu,s ---» and (bl (bils,. .- are generated by elements of 4,NB, and
AN B,, respectively. Thus, each ideal occurring in the representation is generated
by elements of (4,NBy)U(4,NB,). Therefore, so is (a]. We conclude that ac¢
€[(4,NBy)U(4,NB,)], which was to be proved.

To verify the claim, it is sufficient to prove by symmetry that (b,],, is generated
by its elements in AN B,.

First, we verify that (by],, is generated by its elements in B,.

We start with a smooth representation

(bo] = q((aO]: (a(,)L ceey (aI], (aﬂ’ cevs (RO]’ (R1]9 ),
where a,,a, ...€4,,a,,4a;,...€A4;, and Ry, Ry, ...£0. Then
(bO]Ao = q((aO]Aos cees (al]Ao’ cees (Ro]Aos ) = 4((ao]> ey (al]Aoa (Ro]s---)
and, applying Lemma 8 twice, we obtain

(bo]A., = ((bo]B., 4o = 4 (((aO]Bo)Ao’ cees ((‘11]80).40, sees ((-RO]Bo)Ao’ )

Hence,
(bO]Ao = q((aO]: vees (al]AO’ [ARE] (RO]’ ) 2 q((aO]Bo, LS ] (al]Ao’ (RARE] (RO]’ ) 2
=2 q(((aO]Bo)Ao’ cees ((al]Bo g2 9 ((Ro]Bo Ag> o+ )= (bo]A.,

(bo]Ao = q((“o]a.,, ers (01],40, .5 (Rol, )

The ideals (ao]uo’ ... are, by definition, generated by elements of B,; the ideals
(@))4,s --- are generated by elements of Q by Lemma 2. Since @y, ...S0Q, we con-
clude that (b,],, is generated by elements of B,.

therefore,
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Finally, since (b,] 4, has been proved to be generated by its elements in B,,
and (byl,, is by definition generated by its elements in 4,, and (b,] 4,E000(L), all
the hypotheses of (vi) are satisfied. Condition (vi) yields that (b,] 4, is generated by
elements of A4, B,, which completes the proof of the claim.

This finishes the proof of the implication (vi)—(ii) and of the Theorem.

7. Proof of Corollaries 1—4. Proof of Corollary 1. Let Q satisfy, for
example, the Ascending Chain Condition, and let L=Ao*y4,=By*,B,. We
claim that, for any i, {0, 1}, I;;(L) consists of all principal ideals of L. Indeed,
let us take a smooth representation of the principal ideal (x]:

(x] = P((ao]a (a(’)]’ LR (al]9 (a{], RS ] (QOL (Ql], )’
Qy, Ay, ...€ Ay, @y, 0y, ...€A4;, and Qy, Oy, ... Q. Then

(x]Ao = P((ao], (a(’)], AR ] (aI]Ao9 (aﬂAo, ses (QO]’ (Q1]9 )-

It follows from Lemma 2 that the ideals (a,] 4,0 +-» are generated by elements of Q;
thus, by the Ascending Chain Condition, these ideals and also (Q],, ... are principal.
Therefore, (x],, is a principal ideal. This proves the claim for i=j=0. By symmetry,
the claim is proved.

Using this claim, it is easy to establish condition (vi) of the Theorem: if the
single generating element of an ideal in /;;(L) is both in 4; and in B;, then it is in
A;NB;. Thus the Theorem shows the existence of a common refinement.

Proof of Corollary 2. Let L=A,% o4, =By* By, and let us assume that
the hypotheses of Corollary 2 hold, that is, for any i, j, 4; or B; is convex in 4,UB,;.
We are going to establish condition (v) of the Theorem. Let i, j€ {0, 1}, let, for in-
stance, 4; be convex in 4;UB;. Let I€I(L), such that I=(INA]=(INB;]. Let G
be a generating set of /in 4; and let H be a generating set of / in B;. We can assume
that both G and H are closed under finite joins. Then

I = {x|x = g for some g€G} = {x|x = h for some heH}.

Thus, for any g€G there exists an h,€ H satisfying g=h, and for h,cH there
exists an g’€¢G with h,=g’. Therefore, g=h,=g’, so by the convexity of 4; in
A;UB;, we conclude that h,€4;; since h,cGSB;, h,€A,NB;. Now it is clear
that K={h,|g€G} generates I and KESA4,NB;, verifying condition (v) of the
Theorem.

Proof of Corollaries 3 and 4. Under the conditions of the Corollaries,
[4,UA4,] is the free product of 4, and 4, amalgamated over 4;MNA4,. Thus we may
apply Lemma 2 to 4;UA,. Therefore, both corollaries follow from the following
observation (due to E. FRIED):
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Let L=AyxyA,=Ay*gA4,. If the conclusion of Lemma 2 holds for 4,UA4,
(that is, for x€4, and yc4,, x=y iff x=z=y for some z€4,N A, and symmetri-
cally for x€A4, and y€Ad,), then 4,=A4,.

Indeed, under these conditions (iv) of the Theorem holds, hence there is a com-
mon refinement. Applying condition (ii) of the Theorem we obtain

4, = (AomAl)*Q(AznAl) = Q*Q(AznAl)-
Similarly, A,=Q#4(4;NA4,), hence A,=4,.
8. Open problems. We repeat the question already mentioned in Section 2.

Problem 1. Is there a lattice Q such that Q-free products do not always
have common refinements?

An equally important question arises in connection with Corollaries 3 and 4.
In fact, they suggest, that some sort of a distributive law must be valid for Q-free
factors.

Problem 2. Do Q-free factors of a lattice L form a distributive sublattice of
the lattice of all sublattices of L? Does there exist some ‘‘natural” generalization of
distributivity that holds for Q-free factors and implies Corollaries 3 and 4?

A negative answer to Problem 1 would answer both questions of Problem 2 in
the affirmative; this can be seen from the following observations.

Let us assume that for a lattice Q, any two Q-free products of a lattice L have
a common refinement. Let L be a lattice and let Q be a sublattice of L. Then
L=Ax,A’=B*,B implies that

L =(ANB)*ol4’UB'];

thus the Q-free factors form a sublattice of the lattice of all sublattices of L. Now
let 4, B,C be Q-free factors of L, that is, let

L=A%y4" =BxyB = Cx*,C’".
Then
AN[BUC] = [ANBUMUNC),

since both sides are the Q-free products of ANBNC, ANBNC’, and ANB'NC.

9. Appendix: On the definition of amalgamated free products. In Section 3 we de-
fined A4,* g4, as the free lattice generated by the smallest partial lattice on the set
AUA, (4)NA;=0) extending the operations of A4, and A4,. We denoted this
partial lattice by P(A,, 4;, Q). Here we prove the following characterization:

P(A,y, A1, Q) is the smallest weak partial lattice on the set 4,U4; extending
the operations of 4, and 4,.
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By a weak partial lattice (see [1]) we mean a partial algebra (H; A, V) satisfying
conditions (i)—(iv) of Section 3 and their duals.

This result means the following: by definition, P(A4,, 4,, Q) is formed by taking
A;UA;, and extending the A and V of 4, and A4, by iterating (i)—(v) and their
duals; according to the result of this appendix condition (v) and its dual are not
needed in this process.

Let WP(Ay, Ay, Q)=WP be the smallest weak partial lattice on A,UA4,
extending the operations of 4, and A4,. The existence of WP can be proved along the
lines of the proof of Lemma 1. The proof of Lemma 2 shows that the partial ordering
on WP is the same as the partial ordering on P(4,, 4;, Q). We are going to prove
that WP is a partial lattice, that is, (v) and its dual hold. Then obviously WP=
=P(A0’ Al, Q)

By duality, it is sufficient to verify (v). To do that, let a, b, c€ 4,U A4, such that
(@lV(b]=(c] in the ideal lattice of WP. We have to show that aVb exists and
aVb=c in WP.

If aVb exists, then (aVb] is obviously (a]V(b], hence (aVb]=(c]. We
conclude that aVb=c. Therefore, it is sufficient to show that if (a]V(b]=(c], then
aVb exists.

If a,b¢ A4, or a,bcA,, then aVb exists. Hence we can assume that a€A4,
and b€A,. By symmetry, we can also assume that c€4,.

By the general description of join of ideals in a weak partial lattice (see Exer-
cise 5.22 of |1]), (a]V(b]=(c] implies the existence of a natural number » and ele-
ments

() a=ay=a,=...=a, in A,

2) b=by=b=...=b,=c in A4,,

B rE=Egpg=Ern=g¢g=.=q= in @
such that

4 ri=b, 0=i=n,

O g=a, 1=i=n,

6) biy1=bVgiy;, 0=i<n,

(M ap1=aNryy, 0=i<n,

® a,=qg=hb,.
(The symmetric case with go=r=q,=..=q,_;,q:=a;, 0=i=n, r;=b;, 1=i=n,
a;.,=a\r;11,0=i<n, b;,,=b;Vgq;,0=i<n is handled similarly.)

In the proof we shall utilize the following two properties of weak partial

lattices:
(P1) If xVy=z and x=wu=z, then uVy exists and uVy=z.
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Indeed, by the associative identity,
uV(xVy) =uVx)Vy,

the left side exists and equals z; #V x exist and equals u, hence uV y exists and equals
z, as claimed.
(P2) If xVy=z, x=x,Vx,;, and x,=y, then x,Vy exists and x,Vy=z.
Indeed, by the associative identity,

(xVx))Vy =, V(x,Vy),

the left side exists and equals z; in the right side x,Vy exists and equals y, hence by
(iii), x,Vy exists and x,Vy=z, as claimed.

Now we prove aVb=c by induction on n. Let n=1. Then we have the elements
ay=a, by=>b, by=c, ry, q1, q, and ry=q,=q, ry=b,, rn=q,=a,, a,=aVry,, b=
=bVqy, a;=q=b,=c.

By (P1), ¢,Vb=c and ¢;=a=c implies that q;Vb exist and q,Vb=c. Since
ay=aVr, and ry=b, by (P2), aVb exists and aVb=c, as claimed.

Now let n=1. It is clear, that the elements a¢,=...=a,,b,=...=b,, n=q,=
=...=¢q,=q satisfy (1)—(8) with n—1. Therefore, a,Vb, exists and a,Vb,=c.
By (P2), ¢c=a,Vby=a,V(q:Vb)=a, VD, since ¢;=a,. Again by (P2), c=a,Vb=
=(aVr))Vb=aVb, since ry=b. This proves the theorem.
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A general moment inequality for the maximum of phrtia] sums
of single series

F. MORICZ

1. The main result

Let (X, &7, u) be a (not necessarily finite or o-finite) positive measure space. Let
{&i=6&(x): k=1,2, ...} be a given sequence of functions, defined on X, measurable
with respect to &, and such that |£,|” are integrable over X with respect to u, where
y is a fixed real number, y=1; i.e., our permanent assumption is that &€ L*(X, o, u)
for each k. Set

bt
S, ) = .

=b+1

¢ and  M(b, m) = max |S(b, )],

where b is a nonnegative integer, / and m are positive integers.
In the following, f(b, m) denotes a nonnegative function defined for integral
b=0 and m=1, which possesses the ‘superadditivity’ property:

(1.1)  fb, )+f(b+k, D) =f(b,k+I) for b=0, k=1, and I=1.

We shortly explain the origin of the term ‘superadditivity’ in connection with
the property expressed by (1.1). The fact is that f(b, k) is actually a function of the
interval (b, b+k]=1; with nonnegative integer endpoints. Considering the intervals
L=(b+k,b+k+I] and I=(b, b+k+I] too, we can see that the union /;Ul, is a
disjoint representation of /. Now (1.1) can be rewritten as follows

fU)+f) =) where f(I) =f(b, k), etc.

In the additive or subadditive case the relation ‘=’ should be replaced by ‘=’
or ‘=", respectively.
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Further, by ¢(¢, m) we denote a nonnegative function defined for real =0
and integral m=1. We assume that ¢(z, m) is nondecreasing in both variables, i.e.,

o, m) =¢(ty,my) whenever 0=# =1t and 1=m; =m,.
Our main result can be formulated as follows.

Theorem. Let y=1 be given. Suppose that there exist a nonnegative and super-
additive function f(b, m), and a nonnegative function ¢(t, m), nondecreasing in both
variables, such that for every b=0 and m=1 we have

(1.2) [1S(b, m)l" du = (b, m) ¢*(f (b, m), m).

Then for every b=0 and m=2 we have both the inequality

(1.3) S Mo, m)dp =377 £(b, m) {[Iong]_l ‘P(f(bf)_m) ’ [2:21])}7

and the inequality

) [ man= 26 m{3" o (LM, [2)).

Here and in the sequel the integrals are taken over the whole space X, [f] denotes
the integral part of ¢, and all logarithms are with base 2.

Remark 1. It is striking that the factor 5/2 in (1.4) does not depend on vy,
in contrast to the factor 37~ in (1.3). On the other hand, we have to take [m/2"]
in the argument of ¢ on the right-hand side of (1.4), instead of [m/2**'], which is the
case in (1.3).

2. Special cases

We are going to present the riches of applicability of our Theorem, without
aiming at completeness.
Let us take o@(t, m)=1*"" with an a>1. Then

[log m]

Bem="3 o[z [m]) = a-20-0m-1e-on,
K=o
independently of m.

Corollary 1. Let a=>1 and y=1 be given. Suppose that there exists a non-
negative and superadditive function f(b, m) such that for every b=0 and m=1 we have

[ 1S, m)? du = (b, m).

Then for every bz=0 and m=1 we have

[ M(b, m) dp = %(1—2(1-“)~’V)-7f“(b, m).
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This result, apart from the factor 5/2 on the right-hand side, was proved by
the present author in [3, Theorem 1], and somewhat later (with another constant)
by LONGNECKER and SERFLING [2, Theorem 1].

Now take o¢(t, m)=t*"""w(t), where again a«>1 and w(t) is a (not neces-
sarily nondecreasing, but positive) slowly varying function, i.e., w(t) is defined and
positive for real 7=0, and for every fixed real C=0 we have

w(Cr)

W—'l as t —oo.

For example, w(t)={log (1+1)}*{loglog (2+¢)}* is such a function, where § and
¢ are arbitrary real numbers. It is not hard to check that we again have

&(t, m) = C(a, 9, w) t@=V7w(1),

where C(a, y, w) is a positive constant depending only on «, y, and w(?).

Corollary 2. Let a=1 and y=1 be given. Suppose that there exist a nonneg-
ative and superadditive function f(b, m), and a slowly varying positive function w(t),
such that t*~7 w(t) is nondecreasing and that for every b=0 and m=1 we have

J18(, m)i? dp = f(b, m) w?(f (b, m)).

Then for every b=0 and m=1 we have

J MG, my di = 2 Cla, 3, w) (b, m) (5, m).
Next take @ (¢, m)=A(m), where {i(m):m=1,2, ...} is a nondecreasing sequ-
ence of positive numbers.

Corollary 3. Let y=1 be given. Suppose that there exist a nonnegative and
superadditive function f(b, m), and a positive and nondecreasing sequence A(m) such
that for every b=0 and m=1 we have

S 18, m)? dp = £ (b, m) &7 (m).
Then for every b=0 and m=1 we have

@.1) S M7, m) dp = 3= 1(b, m) {::Zglm]z [[12”;]]}7

This moment inequality, apart from the factor 3~ on the right-hand side, was
already proved by the present author in a slightly different form in [3, Theorem 4].
Finally, it is quite obvious that in any case we can state the following
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Corollary 4. Under the conditions of the Theorem, for every b=0 and m=2
we have

2.2 [ M?(b,m)dp = 31-1 f(b, m) p? [ f(b, m), [%]] (log m)".

In the special case when ¢@(f, m)=A(m) is a slowly varying sequence, which is
positive and nondecreasing, in particular, when ¢(t, m)=1, the right-hand side of
(2.2) is of the same order of magnitude as the right-hand side of (1.3) or (1.4). Thus,
in this case the moment inequality (2.2) cannot be improved in the framework of
our method.

Remark 2. Corollary 3 is proved in [3] by the socalled bisection technique
with respect to the number m of the terms, which goes back to the proof of the well-
known Rademacher—Men3ov inequality (see, e.g. [4, p. 83]). The proof of Corollary
1 is based on the bisection technique with respect to the weight f(b, m), which was
firstly applied, it seems to us, by ErRDOs {1] concerning an upper estimation of the
fourth moment of the partial sums of lacunary trigonometric series. Now, the proof
of our Theorem presented in the next Section is based on an appropriate combina-
tion of these two bisection techniques. This combined technique was firstly used, as
far as the author is aware, by TANDORI [5] in order to obtain a special upper esti-
mate for the second moment of the maximum of the partial sums of orthogonal
series.

For a more detailed historical background of these moment inequalities see [3].

3. The proof of the theorem

Proof of (1.3). Setting

@, 1) =0, 1) (t=0)
and
{log m]—1

oem=3" ¢ (% [%]] (t=0,m=2),
it is clear that @(t, m) is also nondecreasing in both variables. This explicit expression
for & (2, m) can be rewritten into the following recurrence one, which will be useful
in the sequel:

3.D) O(t,1)=0(,2)=2(t,3) =0(t,1) (t=0)

and

(3.2) o, m) =@ [z, [%]] +o [% [%D (t=0,mz=4).
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Now, statement (1.3) to be proved turns into
(3.3) [ M(b, m)du = 31 £ (b, m) @*(f (b, m), m).

The proof of (3.3) proceeds by induction on m. By (1.2) and (3.1), this is obvious
for m=1 and for each b, even the factor 3’7 is superfluous on the right of (3.3)
in this case.

In order to prove (3.3) for m=2 and 3 with arbitrary b, we use the trivial esti-
mate

b+m
M, m)= 2 [&l
k=b+1
whence Minkowski’s inequality and (1.2) provide that

G4 {[Memadirs S pre-L)e(fk-1, 1, 1)
k=bi1

Taking into account the monotonicity of ¢ (¢, m) and making use of the elementary
inequality

b+m b+m Y
3.5) D L m(Y-WV( > tk] Gz=0,7=1),
k=b+1 k=b+1

from (3.4) and (1.1) it follows that
b4+m
{[ M6, mydp} = o(f(b, m), 1) 3 fUr(k—1,1) =
k=b+1

= mO-YP f17(b, m) o(f (b, m), 1).

By (3.1) this is a sharpened form of (3.3) in case m=2, and (3.3) itself in case m=3.

Assume now as induction hypothesis that inequality (3.3) holds true for
each nonnegative integer b and for each positive integer less than m, m=4, in the
place of the second argument (we actually use that it is true for each positive integer
not more than [m/2]). We will show that inequality (3.3) holds for m itself (and for
arbitrary b).

We begin with an elementary observation. If f(b, m)=0 for some b and m,
then, by (1.1), f(b, k)=0 and, by (1.2), S(b,k)=0 a.e. for each k=1,2,...,m,
too. Consequently, M (b, m)=0 a.e. and thus (3.3) is obviously satisfied.

Henceforth we may and do assume that f(b, m)s£0. Then there exists an integer
p,1=p=m, such that

3.6 f(b,p=1) = £ (b, m) <1(b, p),

where we agree to set f(b, 0)=0 on the left of (3.6) in case p=1. It is also conve-
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nient to set S(b, 0)=M(b,0)=0. Now (l.1) and (3.6) imply

(37 f(b+p, m=p) = £(b, m)~f(b, B) < 5.1 (b, m).

We distinguish three cases according as p=1, 2=p=m—1, and p=m.
Case (i): 2=p=m—1. Set

N _Im if p—1 s even,
i and q‘"{p1+1 if p—1 is odd;

_|m—p _]pe if m—p is even,
pz‘[ 3 ] and qz—{p2+l if m—p is odd.

It is clear that p,+¢,=p—1 and p,+q.=m—p.
We are going to establish appropriate upper bounds for |S (b, k)| under various
values of k between 1 and m. It is easy to check that

[ M(b, pp for 1=k=p,

IS(b, g)|+M(b+qy, py) for gy =k=p—1,
(B.8) IS, k)| = ; G '

[S(b, p)| +M(b+p, p) for p=k=p+p,,

[S(b, p+ g+ M(b+p+4gs,pz) for p+g,=k=m.

Hence we can derive a suitable upper estimate for |S(b, k)| when k runs from 1 till
m, which is independent of the value of k. Consequently, it will be an upper estimate
for M (b, m), as well:

(3.9 M(b,m) = S(b, g +|S(b+q1, p— gD +1S(b+p, )l +
+{M?(b,p)+M"(b+ g1, p)+ M?(b+p, p)+M?(b+p+ gz, P}
Applying Minkowski’s inequality, we find that
(3.10) {f M(b, m)du}r = {[IS(b, gl dp}+{ [ 1S(b+ g, p— gl dpu}r +
+{[15®+p, g7 du}r+{ [ M(b, p) du+ [ M?(b+qy, p) du+
+[ M (b+p, p)dut [ MY (b+p+ gz, po) du} = A+ B,

where 4 denotes the sum of the first three terms and B denotes the fourth term on the
right-hand side of (3.10).
Due to (1.2) and the facts that

m—2 m m—2 m
T & = [‘z—]“ = [?] and p=q=pitl = [T]“ = [7]
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we have that

A= (b, ¢) o(f(b, q1), 1)+ (b4 g1, p—q) o(f(b+ 91, P—q), P— 1) +
+f7(b+p, 42) o(f(b+D, ), 4;) =

= o (76, m), [2]) 76, 4 477+ a1, b= +776 +p,00).

Using the elementary inequality (3.5) for m=3, by (1.1) we obtain

G.11) A = 30D f117 (b, m) ¢ ( f(b, m), [%]]

On the other hand, by the induction hypothesis,

3.12) B = 3-H{f(b, p) ®*(f (b, p), )+
+f(b+a1, p) D' (f(b+ 41, p), 1)+ (b+p, p2) D (f(b+p, P2, Po)+
+f(b+p+ s, po) P'(f(b+ P+ 42, P2)s P2)} = 37~ 1(B,+ By+ By + By).

First consider B,. Taking (3.6) into account, and that p,=p—1 and p,=[m/2],
it follows that

B, =1, P #'(f (b p=1), p) =/ (b, py 9 (L& [7]).
Similarly, by (3.6) and (3.7) we have in turn

B, = f(b+p, p)) & (—f(bz—m) [%D
B, §f(b;|'P+42’ p) 97 [’ﬁbz—m) [%]]

To sum up; (3.12) and the estimates for B; just obtained yield

61 =300 (LG [2]) (56, 54/ b+ a1, b+ G +p, I+

+1b+p+ar, 2} = 3756, m @ (LB [2])

the last inequality following by (1.1).
Finally, putting (3.10), (3.11), and (3.13) together, we arrive at the inequality

{f M (b, mydp}tir = 30-20 f117(b, m) {</> (f (b, m), [%]]”’ (’szml ['r;]]}
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which is equivalent to (3.3) owing to (3.2).
1 1
Case (i): p=1. Now f(b, 1)>3 f(b, m) and thus f(b+1,m—1)<5f(b, m).
Setting

_[m—l] and _{p2 if m—1 s even,
P: = |3 =1 py+1 if m—1 is odd;

we have, g,=[m/2]. Now instead of (3.9) we can estimate in a simpler way:
(3.14) M(b,m) = [S(b, DI+[S(b+1, g +{M"(b+1,p)+M"(b+go+1, p) /.

The further reasonings are very similar, but somewhat shorter, to those in Case (i).
We do not enter into details.

1
Case (iii): p=m. Now f(b,m——l)ézf(b,m) and

(3.15)  M(b,m) =1S(b, g)| +|S(b+m—1, DI+ {M?(b, p) + M?(b+ gz, p)}'/",

where p, and g, are the same as in Case (ii).
Thus inequality (1.3) has been completely proved.

Proof of (1.4). Setting

Be,m= 3 o [% [zﬂk]] (t=0,m=1),

k=0

we have, instead of (3.1) and (3.2), the following recurrence relations:

S, D=0 1) =0 and @, m)=e( m+d (—é—, [ﬂ]) (t=0,m=2).

2
Statement (1.4) turns into

(3.16) M6, mydy = % f(b, m) &(f(b, m), m).

This is obvious for m=1 even without the factor 5/2 on the right-hand side
since M (b, 1)=S(b, 1) for each b. In order to prove it for m=2 and for arbitrary b,
we again use the trivial estimate

M(b, 2) = [&p4al+Ep 4,
whence Minkowski’s inequality and (1.2) provide that

G117 {[ Mr(b, ) duf = f17(b, 1) 9(f(b, 1), 1)+/(b+1, 1) o(f(b+1, 1), 1).

Making use of (1.1), we can conclude that either

)= 27(b2) or f(b+1,1) S 2 /(b,2).
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Taking this and the monotonicity of ¢ (¢, m) into account, from (3.17) it follows that

(300, ar = 106, D {0 (16, 2, )+ (LG 21} =

=f'(b,2) &(f(b,2), 1),
which is a sharpened form of (3.16) for m=2.
The induction step is quite similar to that in the proof of (1.3), with the excep-
tion that this time one can start, instead of (3.9), from the following inequality, too:

(3.18) M(b, m) = {IS(b, g)I’+I|S (b, pI?+[S(b, p+ g}/ +
+{M(b, p)+M?(b+4qy, p)+M?(b+p, p)+M'(b+p+q,, p)}”
(and analogous inequalities also instead of (3.14) and (3.15)). If one begins the cal-

culations with (3.18), then one can avoid using inequality (3.5), as a result of which
one gets the smaller factor 5/2. Indeed, now

{f M?(b, m) du}tlr = A+ B,
where
A={[1S0, a)I"du+ 1S, P du+ [1S(b, p+go)l? d}>

and B is the same as in (3.10). Due to (1.2), the monotonicity of ¢(t, m) and (3.6),
one can easily deduce:

A={f(b, q) 0" (f (b, 9> ¢:)+f (b, p) *(f (b, P), p)+
+ f(b, p+g2) @(f(b, p+2), P+ )} = @(f(b, m),m){f(b, )+ (b, p)+

1y
706, gy = () 706, m) 0 (76, m), m)

The further reasoning runs along the same line as in the proof of (1.3).
Thus our Theorem has been completely proved.
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On the a.e. convergence of multiple orthogonal series. I
(Square and spherical partial sums)

F. MORICZ

1. Notations. Let Z¢ be the set of d-tuples k=(k,, ..., k;) with nonnegative
integral coordinates. Let ¢@={¢,(x): k€Z?} be an orthonormal system (in ab-
breviation: ONS) on the unit cube x=(x,, ..., x;)€1?, where I=[0, 1]. Consider
the d-multiple orthogonal series

Q)] 2 a;@i(x) = Z A akl,...,kd(pkl,..‘,kd(xh ces Xg)s
KEZa k k =0

1=0 d
where a={a,: kcZ%} is a system of coefficients, for which

2 > al <oe.

kez?

Fixing a sequence Q={Q,:r=0,1, ...} of finite sets in Z? with properties

QOCQICQ2C"’ and U Qr = Zd,
r=0 .
our main goal is to study the convergence behaviour of the sums
(3) s,(x) = 2 ak(pk(x) (r = 0, 19 '-~)a
k€Q,

which can be regarded as a certain kind of partial sums of series (1). The case

Q! = {kez*: max k;=r}
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provides the square partial sums s}(x), while

d 1/2
Qf:{kEZ“’: |k|=(2k§] ér}
j=1

provides the spherical partial sums s*(x) of (1).

2. A.e. convergence of {s.(x):r=0,1,...}. Denote by M(d, Q) the class of
those systems a={a,: k€Z“} of coefficients for which the sequence {s,(x)} defined
by (3) converges a.e. for every ONS ¢ ={p,(x): k€Z% on I°. The set of measure
zero of the divergence points may vary with each ¢.

One caneasily see that if a€ M(d, Q), then (2) is necessarily satisfied. This follows
from the obvious fact that the d-multiple Rademacher system

{re(x)}= {j]j1 rkl(xj): k=(ky; ...,k )€Z? and x=(x,...; xd)EI"}

consists of stochastically independent functions and thus, for every choice of the

sequence Q={Q,:r=0, 1, ...} of finite sets in Z, the sequence {s,(x)} defined

by (3) for ¢ ={r,(x)} converges a.e. or diverges a.e. according as (2) is satisfied or not.
For a given system a={a,: k€Z%} of coefficients we set

S(a; d, 0, @) = sup J (max |s,(x)])* dx,
J Vosrz

where the supremum is taken over all ONS @ ={¢,(x): k€Z%} on 1¢ and dx=
=dx,...dx,, further,
la; d, Q| = lim #%(a; d, Q, 9) ==
o~

This limit exists since £ (a;d, Q, ¢) is nondecreasing in g.

Theorem 1. (i) a€M(d, Q) if and only if |a;d, Q| < ;
(ii) M(d, Q) endowed with the norm | -;d, Q| is a separable Banach space.

This theorem is essentially a reformulation of an earlier result of TANDORTI [11].
To this effect, let y={y, (x,): k=0,1,...} be a single ONS on I. Consider
the ordinary orthogonal series

) i Cky ‘//kl (x0),

ky=0

where c¢={c¢, 1 k,=0,1, ...} is a sequence of coefficients for which

&) 2 =ce.
k1=0
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Fixing a sequence v={v,:r=0,1, ...} of integers with the property 0=v,<v,<

<vy=<..., denote by M(v) the class of those sequences c={c, } for which the

v,th partial sums of series (4) converge a.e. for every ONS t//={l,bkl(x1)} on I
For a given sequence c={c,} of coefficients we set

2
] dx19

where the supremum is taken over all ONS ¥={y (x))} on I, and

Vr

. 2 ¥ (x0)

1=0

©) F(c; v, @) =sup >I/‘[olgra.-‘;(e

le; vil = lim F12(c; v, g) S eo.
Qo=+ co
It is not hard to see that

F(c; v, 0) =sup f[max
I

0=r=o

2
] dx19

Z:O le qlml (xl)

m

where

v 172 .
C, = ( b c,zl] (m=0,1,..;v_;=—1)
k1=vm_1+1
and the supremum is taken over all ONS {‘I’ml(xl)} on I.
After these preliminaries the above-mentioned theorem of Tandori reads as
follows.

Theorem A [11, Satz II]. (i) ceM(v) if and only if |c; V| < e=;
(ii)) M (v) endowed with the norm | - ;v| is a separable Banach space.

Now, it is a trivial observation that Theorem A remains valid if instead of the
single ONS y={, (x,): k;=0, 1, ...} on I we consider the d-multiple ONS ¢=
={@i(x): k€Z%} on I’ and take the integrals over 1 instead of 7 in (6). In fact, the
sufficiency part in (i) is true over any measure space X (instead of X=I or 9,
while the necessity part in (i) can be shown by the following simple observation:
let v,=|Q,|, the number of the lattice points of Z“ contained in the set Q,, and let
@(xy, --os X)=V,, (x;), where the mapping k=k(m,) is one-to-one for each pair
Vooy<m=v, and k€Q\Q,-,(r=0,1,...;v_;=—1 and Q_,=0). Consequently,
Theorem 1 is really a reformulation of Theorem A.

In the light of what has been said above, the result of {11, Satz III] can be re-
formulated as follows. .

Theorem 2. If two systems a={a,: k€Z%} and b={b,: k€ Z%} of coefficients

are such that

B={ 3 bpr={ I aiff=4, (r=0,1,..),

k€EQ Q1 keQ\Q,
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then
b; 4,0l = lla; d, Qll;

consequently, if acM(d, Q) then beM(d, Q).

It is of interest to give an upper estimate for the norm || - ; d, Q|| which turns out
to be exact in certain cases.

Theorem 3. In each case we have

oo 1/2
™ laol=a{3( 3 aogrtd)
r=0 k€0,\0,-,
and in the special case when

A, ={ > a‘z‘}uz z{ > ai}m =4, (r=01,..)

kEQNQ, -, k€Q,,1\Q,
an inequality oppositeto (7) holds also true:

oo 1/2
la;d,Qll = Cz{ 2( 2 ad) 10g2(r+2)} )
r=0 kQQr\Q

r-1

Here C, and C, are positive constants depending only on d.

To prove Theorem 3 one has to start with the results of [7, Theorems 1 and 2]
and to argue in a similar manner as it is done during the proof of [11, Satz VII].

We note that in the cases of the square and the spherical partial sums the right-
hand sides in inequality (7) coincide, up to a constant:

la; d, Ol = Cl{kEZZd ailog*(Iki+2P# (i =1,2).

In spite of this fact, the norms |a; d, QY and |a; d, Q% are not equivalent to
each other in case d=2.

Theorem 4. If d=2, then there exists a system a={a,: k€ Z°} of coefficients
for which

la; d, QY| < = and |a; d, Q% = <,
and vice versa, there exists a system a={a,: k€Z%} of coefficients for which
la; d, QY = e and |a; d, Q% < o~

This is an easy consequence of Theorem ! and [7, Theorem 3].
We note that the result stated in [7, Theorem 3] can be strengthened in the fol-
lowing way:

Let T be a regular method of summation (see. e.g., [14; p. 74]). Then there exists
a double orthogonal series (1) such that (2) is satisfied, its square partial sums converge
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a.e., but its spherical partial sums are not summable by the method T a.e. on 12; and
vice versa.

In the proof of the latter assertion one has to use a result of {4, p. 183]:

For every regular method T of summation there exists a strictly increasing sequence
{u,:r=0,1, ...} of positive integers such that the a.e. T-summability of series (4)
under condition (5) involves the a.e. convergence of the p.th partial sums of (4).

Keeping in mind the proof of [7, Theorem 3] one’s task is essentially reduced
to the construction of a single orthogonal series (4) with condition (5), the y,th
partial sums of which diverge a.e., while the p,th partial sums of which converge
a.e. on 1. This construction can be certainly done if the ratio u, ./, is large enough
(r=0,1, ...), and the last condition may be assumed without loss of generality.

3. A.e. (C, 6 = 0)-summability of the spherical partial sums. Up to this point we
studied the convergence properties of series (1) in the setting when a= {a,: k€Z%}
is a fixed system of coefficients, while ¢ ={@,(x): k¢Z"} runs over all the ONS on
I°. From now on we consider an individual ONS ¢={¢,} on I with some nice
properties and let a={a,} run over all the systems of coeflicients satisfying condi-
tion (2).

To this aim, we assume that ¢={@,(x): k€Z%} is a product ONS on I in
the sense that there exists a single ONS ¢={, (x,):£,=0, 1, ...} on /such that

d
(8) (pk(x) = jgl- '//kj(xj)’ k = (kls sers kd) and x = (xl’ sees xd);

furthermore, we assume that the system l,b={|//,,l(x1)} is such that for every se-
quence c¢={c, :k,=0,1,...} of coefficients we have

) f [olgax
Y =rs=¢

where C is a positive constant. Inequality (9) implies, among others, that series (4)
converges a.e. under condition (5). The fact that inequality (9) is satisfied for the ordi-
nary trigonometric system Y ={1,cos 2nk,x,, sin2nk,x;: k;=1,2, ...} is due to
Hunr [3], while for the Walsh system = {wkl(xl): k,=0,1, ...} is due to SIOLIN [8].

It is not hard to conclude from (9) the following upper estimate for the maxi-
mum of the square partial sums sI(x) of series (1):

f (ons1ax [stx))?dx =2iC? 3 ai (e=0,1,...).
Id =rse ngo

r

2 G ¥, (x)

k=0

2
] dx, =C Zo' a, (=0,1,..),
K

1=0

This means that the square partial sums s!(x) converge a.e. on I¢ provided (2) is
satisfied. (For more details, see [12] and [6].)

6
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The question of a.e. convergence of the spherical partial sums s*(x) of series (1)
under condition (2) seems to us to be an open problem for d=2. As to the mul-
tiple trigonometric system, we cite here two papers by Russian mathematicians. On
the one hand, TevzaDze [13] published in 1973 that he managed to prove that the
spherical partial sums of the double Fourier expansion of a function f(x,, x,) from
LP(1%) with p>1 converge a.e. on /%, but the proof turned out to be false even in
case p=2. On the other hand, BuADZE [2] announced in 1976 the existence of a
continuous function f(x;, x;) on 12 such that the spherical partial sums of the double
Fourier expansion of f(x,, x,) diverge everywhere, but the construction has not yet
appeared.

We are unable to decide this question. However, we can prove the a.e. (C; § =>0)-
summability of the spherical partial sums s?(x) of series (1) under the only conditions
that ¢={p,(x)} is an ONS with properties (8) and (9), and a={q,} is a system of
coefficients satisfying (2). To this end, we recall that the (C, §)-means o5(x) in ques-
tion are defined as follows:

) =5 A =
er=
1 e
= ;{g_ g o— r( Z ak(pk(x))s

where

o+9d
Ag:( Q] (e=0,1,..;6=0).

For a positive integer é one can consider the following modified (C, §)-means, too:

. 1 -
aZ(x) =1 2 Ag-mak(l’k(x),
e K=e
in particular, for 6=1,
- |kl ]
Gi(x) = (1— a X
i = 3 1ot
Unfortunately, we can prove the statement that
o5(x)—&%(x) ~0 as ¢ - ae.onl/
only in case d=1. In fact, writing
o(x) —83(x) = _Z ( IZI’H (r =1k a, oy (x)),

by virtue of the Kronecker lemma (see, e.g. [1, p. 72)) it is enough to show that the
single orthogonal series

oo

2 2 (r—lkl)aupk(x))

r=0r+1 r—1<lk
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converges a.e. on I%. But by the well-known Rademacher—Men3ov theorem this is
the case provided (2) is satisfied.
After these preliminaries we state the following

Theorem 5. Assume that ¢={,(x)} is a product ONS on I* given by (8) and
satisfying condition (9), a={a,} is a system of coefficients satisfying (2), and § is
a positive number. Then the spherical partial sums s*(x) of series (1) are (C, 8)-sum-
mable a.e. on I°

Taking into account of what has been said above on the trigonometric and
Walsh systems, hence it follows immediately the following

Corollary. If o={p(x)} is the d-multiple trigonometric or Walsh system,
then the spherical partial sums s*(x) of series (1) are (C, >0)-summable a.e. on I°
provided (2) is satisfied.

Remarks. (a) In the case when ¢ is the d-multiple trigonometric system,
STEIN [9] proved that the Bochner—Riesz means 65(x) of series (1) defined by

= — _l_kl_za >
#e= 3 (1-) anw @o=0

converge to f(x) a.e. on I¢ provided series (1) is the d-multiple Fourier expansion of
a function f(x)€ LP(I?), where
5>i§—1(%*1) and 1<p=2.
In particular, under condition (2) the means &4(x) converge a.e. on I¢ again for
every 6=0.
(b) As to the multiple Haar system, KeEMHADZE [5] proved that the spherical
partial sums of the expansion of a function f(x) with respect to the d-multiple Haar
system converge a.e. on /¢ provided f(x)cL(log* L)*~1(I%).

Proof of Theorem 5. Our starting point is that under the conditions of
the theorem the square partial sums s*(x) of series (1) converge a.e. on /. We assume
that d=2, since in case d=1 we have s*(x)=s(x) (r=0,1,...).

We will show that the subsequence {s3.(x): m=0, 1, ...} of the spherical par-
tial sums of (1) also converges a.e. on /¢ This is an immediate consequence of
Beppo Levi’s theorem since

f ./‘(s}m(x)—sﬁm(x))2 dx = 2” ( 2z ap) = ké ai <eo.
m=0 ja d

=0 1 2
=0 ke Qgm\0gm

Here we took into account that {QX.\Q%-:m=0,1, ...} is a disjoint sequence of

6‘
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sets. In fact, if k€Qi.\ Q% for a certain m=1, then max k, d™ and hence

1=sj=d

k| = dl/2 max k = qm+i2

ie., k§Qy\Q% for n=m+1. On the other hand,

" max k; = d-R|k| > dm-12,
1=j=d
whence k¢ Qi\ Q% follows for n=m—1. We note that we should have taken the
“thicker” subsequence {s{ms;(x)} too, where [-] means the integral part.

In order to make the proof complete, we apply a result of TANDORI [10] in a
somewhat more general setting as stated originally and add some supplements. To
this effect, let v={v,:#=0,1, ...} be, as earlier, a sequence of integers, 0=v,<
<V, <V,<..., and consider the v,th partial sums

§v,(x1) = kg ckllpkl(x]_)

1=

of the orthogonal series (4) under condition (5). Now we form the (C, =0)-means
a3(v; x,) of the subsequence {5, (x,)}:

(10) od(v; x) = A,, 2 A3TL5, (x) =

e r=0
1 [] v
=— 2 Az—r( j ckl‘l’kl(xl)]
A“ r=0 ky=v,_y+1
(Q = 0, 1, ey Vg :—-1).

Then the above-mentioned theorem of Tandori can be stated in a more general
form as follows.

Theorem B ([10, Hilfssatz 1]). Let v={v,} be a strictly increasing sequence
of nonnegative integers, and let 6=>0 and q=>1. Then, under condition (5), we have

@ 5v ™ (x) —0m(¥; X) -0 as m »o, and

(ii) [qm]<r<[qm“](a (v; %) =0y (V; X)) ~ as m oo

ae. on .

This theorem is proved in [10] for the special case g=2, but the proof can be
executed, without essential changes, for general ¢=1, too.

Now, using the reasonings made in [4, pp. 186—187] for the special case v,=r,
one can supplement (i)—(ii) as follows.
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Theorem C. Let v={v,} be a strictly increasing sequence of nonnegative
integers and let 6=1/2. Then, under condition (5), we have

(iii) (zr'j Yv; x)—0f(v; D) ~0 as g >

+l,_

a.e. on I. Consequently, if

ol(v;x) ~flx) asr—o
ae. on I, then

Q-}-l 2(‘76 Yv; x)—f(x))? ~0 as g =

ae. on I.
' Finally, we insert an elementary lemma which can be found e.g. in [4, p. 189]:

(v) If 6 >=—1/2 and
_1_1 ;eo’(af—s)2—>0 as @ — o,

where the o° are the (C, 8)-means of a numerical series, then, for every >0, we have

gdtltte L5 g5 r —co.

Combining (i)—(iv) in such a manner as it is done in [4, pp. 189—190] for the
case v,=r, one can conclude the following statement:

Under condition (5), the a.e. convergence of the subsequence {Ev[qm] (x)): m=

=0, 1, ...} of the partial sums of the orthogonal series (4) is equivalent to the a.e.
convergence of the means {az(v; x1): 0=0,1, ...} defined by (10), where =0 and
q=>1 are fixed numbers.

On closing, one more remark: the latter statement clearly holds true if the in-
terval  of orthogonality is replaced by any measure space X, in particular, by X=1¢
This completes the proof of Theorem 5.
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Upper estimates for the eigenfunctions of the Schriodinger operator

1. JOO

For a series of questions concerning spectral theory of non-selfadjoint differen-
tial operators we need some estimates for the eigenfunctions.

In the present note we shall generalize the former results of IL’IN and Jo6 [3],
(4], [5].

Let (a, b) be a finite interval and consider the formal differential operator

ly=-—y"+qy _

with the complex potential g€ L'(a; b). A function u; having absolutely continuous
derivative on every closed subinterval of (a, b) is said to be an eigenfunction of order
" i of the operator / with the complex eigenvalue A if there exist functions u,
(k=1,2, ...,i—~1) with the same properties such that the equations

M I (x) = du () w1 (x) (k=0,1,2,...,1)
hold for almost all x€(a, b), with u_,;=0.
We prove the following

Theorem. Every eigenfunction u; of order i for the eigenvalue 1 of the operator
1 has absolutely continuous derivatives on the closed interval (a, b]. Furthermore, setting
for convenience A=p® with O=arg u<mn, the following estimates hold:

€) lug-1lleo = Ce(L+1u)(1+Tm p) 1]l o »

1
A3) lule = G +Im ) Pllul, (1 =p=w)
4) luillo = Ce(1+1uD uel»

for k=0;1, ...,i; the constants C,=C,(b—a,|lqll,) do not depend on A.

Remark. The estimates (2), (3), (4) strengthen and generalize the correspond-
ing results of IL’IN [3] for the case of the Schrodinger operator with g€C'[a, b].
Our theorem was formulated in [5] and its proof is based only on the use of mean-

Received August 25, 1981.
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value formulas, an essentially new idea, which is necessary if the potential ¢ is not
smooth. For fixed k, a, b and g the order of the estimates (2), (3), (4) in 1 cannot be
improved. (This will be established in a forthcoming paper [6]). Indeed, for numerous
applications this is the most important aspect.

For the proof of the Theorem we need the following extensions of Titchmarsh
classical formulae [2, p. 26].

Lemma. We have
©) u(x— ) +u(x+1) = 2u,(x) cos ut+

x4+t . _ _
+ [ l0@u@-una@ D gy g,
e (x— 1) +up(x+1) = 2u,(x) +
x+t
+ [ [@u® w1 @ —Ix—EDdE if p=0;

¥t x4+t
©® - ey ()tsinpt = f wey(€)sinpe—|x—&) g~
x+t t _ _
- [ 0@u-@-u-@) [ B i nanae i po,
x—t |x—&|
x4+t
U1 () 12 = j w1 (O —Ix—¢l) dE -
x4+t
— f [9(8) the—1 (&) — 1 —2(&)] f (n—|x—ENt—n)dndé if p=0.
1x—2¢]|
Proof. (Only for u=0; the case p=0 is similar.) We can write by (1)
x4+t . _ -
JRCIGINCENG B s

x+1

— [ @+pu ) LD

d¢;
integrating by parts, we obtain (5).
On the other hand, in view of (5),

x+t

S w1 @sinp@—~lx~¢€)dé = [ [y (x—n)+u, (x+n)] sin p(t—n) dn =

t
= f2uk-1(x)cosunsin,u(t—rl)dn+
Ix 4))

t x+¢&

+f [ l@0u0-u-d) sin uln —

d¢sin u(t—mn) dn;

applying the Fubini theorem, a short computation gives (6).
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We shall also need the following elementary inequalities:

)] sin 2|, |cos z] < 2; [sin z| < 2|z| whenever |Imz|=1;
1 .
8) isin z| = 3 lz| if 2l =2;
. 1
9) sup |sinaz| > 3 whenever |Imz|=1 and |z]=2.
12<a<l

Proof of the Theorem. It is well known [1] that u,,u,€L~(a,b) and
u € L'(a, b). Next we show the auxiliary estimate_

. 2 -
(10) Tl oo = 10["*1_1},:1”)(_6] Juy| +46 min (25, lll_|) le_1ll. for 0= =R,

b—a 1 1

here R = min{ , , .
e 2 Tmp > 44l

0=J/=R we obtain from (5) and (7)

}. Indeed, for each xe[a, %b—] and

(1) i = i+ 201+ (5 8]+ 260 gt + 26 i (26, o

, b
An analogous estimate holds for xé[a ,b], and hence

1 . 2
e = 5, 18X , i+ i+ 20 min (26, 2 sl
Now we prove (2) by induction on k. The case k=0 is trivial (we set Co=1).

Suppose (2) holds with k—1 in place of k and consider the eigenfunction #,. Com-
x+t
paring the expressions for the term f U1 (&) sin p(t—|x—&|)d¢ in (5) and (6),
Xt

respectively, and using (7) we obtain

|ty —1 ()| 6]sin Sp| = (6+ 20| gll M pllluel o +

. ) 4
+25* min (2, 26 [ty -1l +25° min (W’ 5%l -l

for all x€[a+b,b—38] and 0=3=R, thus (taking into account that 24||gq|;=1)

e imax  lu-al dlsin ul = 7|l luil +

. . 1
+25 min (1, 8{p() | tg—] +86% min (Tﬂ’ 1) sl
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Applying (10) for u,_, instead of u, and expressing hence ma{ 5 [t _1] we get

{lua-sle 5 =70 min (6, bl f o 1sin 3wl =
= 7 b+ 46 gl minCL, 814t -ol o+ 86 i (1o, 5 ) gl
Using the induction hypothesis (i.e. [u—sllo=Cry (1 +|u]) (1 +Im p) lue_yll..)
12) 7{ C,,._l(1+lﬁl)l(1+lmy) min (1, 5|ll|)]—

GnaLHDALIN D, ) = ...

4 8
in(1, 8{ul) —— [min(1, )2
llglly min(l, 8ul) m [min(1, 6|u])] ]

lul
Set &, = min {R, [960Ck_1(1+Im u)( b ;“)]_1, [480||q[|1]'1}.

sin 6;1“

To examine (12), we distinguish two cases: a) d;|u|=2, b) 5, ju|>2.
— , an applica-

Case a). In view of (8) and the fact 6(1+|u[)=d+1=1+

)
tion of (12) to 5=7" yields
P2 [ —25] 25— g el
7 13170 " 0) 120 T 120 MHe-tl= =

o f1f1
= 2 a8 G4 1D +1m )] - 4501, -

—86% Cory (1 HD1 +1m )il = ).
Thus, from the definition of § we obtain
lug—illeo- 28 -120
13
(13) Tl 5

Case b). According to (9) we may choose aE(—z—, l] such that Isin ad u| >—

Thus by setting d=ad, in (12) we have _
52{ 130 S(+|uD(1+Im ) c 3 _i” e
31l Il ST R
8 Ck_1(1+lul)(l+lm/z)}
o — " Upqlloo = HlUglleo -
m m -1l = el
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Observe that

14|y 1 Oy b—a
=l4+—=1+==1+
il |l 2 4
Therefore
5 1/7 é { 1 0 [ b—a]

b—a
—4auqnl—sack-1.[1+—r](1+lmu>}||uk_l||m = e,

i.e.

(14)

lug-ale _ 7-1201p _ 14-120]4|
lulee — 6 — Oy

Summing up (13) and (14); and taking into account the definition of J,, estimate
(2) follows with

Ck=28-120{[ b—a

] +1+[960(1+ JCk 1]_1+[4801|q]|1]‘1}.

b—a

We prove (3) from (2). Integrating (11) by é from O to é,,; we have for x€

a+b
E["’ 2 ]
[

Seralu ()| = f |uy (x+20) |do+4 f |y (x+6)| d5 +

. (4 262
081l bt min (58, —I—l';r—l]nuk_lnm.

Applying Holder’s inequality and (2) it follows
Ot (O = 53TV P el p + 64 all g lla lluell o +

20841
|l

whence (by considering the cases |u|=1 and |p|=>1 separately)

. 4
+min (5622, 2252 Gu(1 ) (14 Im ) e

| (| = 563142 luil p+ r 1 g la il o +404 1 Cu(1+Tm )iy oo

An analogous inequality holds for x¢ [—f:—;——, b], and therefore

. lugll oo = 564 1/p||“k||p+5k+1HQ||1“ukHeo+45k+1 C(1+Im p)|uyll o »
1l.e.
lugll o = 10647 ull, = Co(1 +Im )7 uy ),



92 1. Joo

We turn to the proof of (4). In case of x, x+1t€(a, b) we have

(15) w (x+1) = uy(x) cos put+uj () Sl

+

x+t

+ [ 19 u(®) — w1 (O]

sinu(x+t—:¢) dE if 0
u ?

u (x+1) = w(x) +ug(x) - t+
x+1

+ [ 190 w(O)—up oy Ol (x+1-8 dE if p=0

b
((15) can be verified in a similar way as (5)). For each x¢ [a, at ] and t=§, .,

we obtain from (7) and (15)
sin ut
u
and therefore, applying (2) we get

’ . 2
[z () = (3420411910 lupll o + 64 4 min (25k+19 —] flug-all

|ul

sin ut
u

Jui(x)l

= (342641l glD el o +

+3emin (2441, o) G ED A +Im ) ..

2
Tl
a+b
2

A similar estimate holds for x¢ [ , b]. Hence by considering the cases ju|=1
and |u|>1 separately we conclude

sin ut

lluagll oo

= (34204117 1ID [ tell o + 40141 Ce(1 +Im ) 1]} o .
If 6,..p|=2 then we get by (8)
1
7 luill = 07t (3+ 2041l gl uill = +4C (1 +Im wl|ul| oo = 5Cilluy |
3
. 1
and if &, ,|u|=2 thén we have by (9) for t=ad,, instead of =6, [aE[E, 1]]

1 Juif
3 |ul

= 5|lugll o+ 40k 41 (1 +Im ) 0]l o,

ie.
luillee = 16Q1+ [uDllul -
The theorem is proved.
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An important special case of (3) is

1 1/2 o
(16) ol = 12{5 2 +lglh) Tugle G 2= 0)

The author is indebted to Dr. V. Komornik and Dr. L. L. Staché for their val-
uable remarks during the preparation of this paper.
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Lower estimates for the eigenfunctions of the Schridinger operator

V. KOMORNIK

Let G=(a,b) be a bounded interval, g€ L'(G) a complex function and con-
sider the formal differential operator

Lu =—u"+gq-u.

A function %;: G—~C,u; Z0({=0;1,...) is said to be an eigenfunction of order i
-(of the operator L) with the eigenvalue A€ C, if it is absolutely continuous together
with its derivative on every compact subinterval of G, and for almost all x¢G the
equation

) —u{()+q(x) - u(x) = A+ u;(x)+u; -1 ()

holds, where u;_,=0 for {=0 and u;_, is an eigenfunction of order /— 1, with the
eigenvalue 4, for i=1.

It is known (see [1], pp. 167—169) that in this case u;, together with its deriva-
tive, can be continuously extended to the closed interval [a, b], and the extended
functions are absolutely continuous on the whole interval {a, b]. Hence u,€ L?(G)
for all 1=p=-co. For the sake of brevity, we shall use the notation | - ||, instead of

” * ” LP(G)*
The aim of the present paper is to prove the following.

Theorem. Let G=(a,b) be a bounded interval and q€L*(G) a complex func-
tion. Then, for an arbitrary eigenfunction u; of order i=0 with the eigenvalue A, and
for any l=p<g<ece, the following estimates hold:

@ Wl » (1 m e,
ilp
©) Cy-(1+[Im VP-4 = ”Z+ = Cy-(1+|Im Va|)Hr-va,
illp

Received April 22, and in revised form June 20, 1981.
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where the positive constants Cy, Cy, C3 depend on i, b—a, ||q||,, but do not depend on 4,
p and q- Cj=Cj(i’ b_a’ ||‘I||1)’ J= 1’ 2, 3.

Remark. The estimate

u,' oo .
@ Wl < ¢ b-a.lal) - (+Im Ve
illp

is also true; this was proved by I. Joé [5]. Thus our result is exact from the view
point of dependence on A.

In the proof of the theorem we shall use the following result of [5]: If u; is an
arbitrary eigenfunction of order i=1 with the eigenvalue A and u,_,=Lu;—21-1
then

(5) lti—allee = CoG)- (14 |VA]) - (14 {ImVA]) - e,
where the constant C,(i))=C,y(i,b—a, |q];) does not depend on A.

We recall the formula of E. C. TitcHMARsH [2], having been extended for eigen-
functions of higher order in [5]: for any x—t, x+t€G and i€{0,1, ...},

(6) u;(x+)+u(x—1t) =2-u,(x)+cos (VZt)+
x+1 : (f—1lx—
+ [ (0@ u®-u-() 2 ‘F(’ﬁ"‘ D g,
it 2520, o
We mention also the simple inequalities:
) exp(Imz|)—1=|2.cosz|, |2:sinz] =exp([Imz))+1 (2€C).

The proof of the theorem will be based on the following

Proposition. Let u; be an arbitrary eigenfunction of order i=0 with the eigen-
value ). Then, setting for brevity v=Im Y. and d, y(x)=min (|x—a|, |x—b|),
we have

®  Om=) max Gl (14 ] - dep ()7 exp(lv] - oy () = M- i
where the constant M;=M;b—a,|ql,) does not depend on 1.

Proof. We work by induction on i. For i=—1 (8) is formally true with
M_,=0(u_,=0). Let now (=0 be arbitrary and suppose (8) is true for i—1. In
case |/A|=14+2'-]q|l, we obviously have
® m; = exp (1 +2°+|lgll) - (b—a)) - |uy ..

Consider now the case lﬁl >1+42'+|/qll;. Denote y€[a,b] such a point where the
maximum on the left side of (8) is attained. Then

110) m; =y M-+ -~ eexp (V) (t = d,,, ().
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By properties (10), (7), (6), (5) and the inductive hypothesis we can write the following
chain of inequalities:

m;-(L+ Y —ullw = my- (1+ V) =, (0)) = |u; ()] - (exp (v]) — 1) =

y+t

= 2 u(p)-cos (VA1) = lu, =D +u,0+0l+| [ (9@u(®~

sin VA (t~|y—¢&)
Vi

(L+exp(W(E—ly—EM)+—=

— () dé, =2 Jufo+N9l, u ()]

2.|1/,1| <1s:

IVﬂl Jnax fu; (@) - (1+exp (Ve — [y &) =

= 2-||uium+z-"-1-(m,-~(1+2-|v|t)"+||u,.||w)+w’—zl-(m,~-1(1+2-1v|z)"-1+||u.--1uw) =
§§-||u,-nm+%mi-(1+|v|r)f 77 (1 M- (L4210 - oD - (YD

MEZ
v

ol (410 Bl = i (D) +

(4Pl = %-uuiuw%mi-(lﬂvn)" (1+Mo_p) (142 | 1)1

-[%+2i-(1+M,-_1)-Co(i)-(l+b—a)-(1+|v|t)").
Hence
(11 my = (T4+241.(1+M;_) - Co(i) - (1+ b —a)) - 4]l .-
It follows from (9) and (11) that (8) is true for 7 if we put
M; = max (exp (1 +2'-|gll) - (b—a)), T+ 2+ - (1+M;_,) - Co(i) - (1 + b —a)).
The proposition is proved.

Corollary. For any O<a<1 there exists a constant M (@)=M;(«x, b—a, |¢l1)
independent of A such that

(12) max uy(x)| exp (o V] - d,5 (%)) = Mi(@) - | uill o

Let us turn to the proof of the theorem. Choosing for instance a=1/2, we have
by (12) for all x€G:

4 = MO/ - exp (= - 9]

-2
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Taking the L?(G) norm of both sides, we obtain for |v|=1
ludl, = Mi(1/2) - lluf| - 412 - p=2/2 . |v] =P =
= 4-M,01/2)-|
and hence,
13) ludleo = (8 M(1/2))=1 - ull, - (1 VDV

Uil + VI 7HP = 8- M;(1/2) -

ludle - (1+ VD17,

On the other hand, in the case [v|<1 we have obviously

luill, = (b—a)"/e.
and
(14) luillo = (2-:(A+b—a)) 2 |luyl

and (13) and (14) yield the estimate (2) with
Ci(i, b—a, llqll) = min (8- M,(1/2))7*, 2-(1+b—a)) 7).

The estimates (3) are easy consequences of (2) and (4). The theorem is proved.
The author is grateful to I. Jo6 for stimulating discussions.

Ul =(1+b—a)-|

Ullw = 2-(1+b—a)-

Juilleo « (1 + V)2,

o (L+IV)YP;
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A projection principle concerning biholomorphic automorphisms

L. L. STACHO ~

1. Introduction

Let E denote a Banach space and D be a bounded domain in E. A mapping F
of D onto itself is called a biholomorphic automorphism of D if the Fréchet deriva-
tive of F exists at each point x€D and is a bounded invertible linear E-operator.
Our basic motivation in this article is the problem of describing Aut B(E) the group
of all biholomorphic automorphisms of the unit ball B(E) of E. By recent results
of W. Kaupr [7] and J.-P. ViGUE [18], this problem stands in a close relationship with
that of the classification of symmetric complex Banach manifolds which is solved
since a long time in the finite dimensional case [2] but fairly not settled for infinite
dimensions.

In 1979, E. VESENTINI {16] has shown that the unit ball of a nontrivial L'-space
admits only linear biholomorphic automorphisms. His proof goes back to investi-
gations on Aut-invariant distances and a classical two dimensional result of M.
Krimixos [9]. Using a characterization of polynomial vector fields tangent to dB(E)
(the boundary of B(E)) we found [11] an essentially two dimensional argument that
enabled us to establish the sufficent and necessary condition for an L?-space to have
only linear unit ball automorphisms (for different approaches cf. also [1], [16]).

The purpose of Section 2 the general abstract part of this work is to clear up the
deeper geometric background and connections of the seemingly different methods
in treating LP-spaces that occur in [16] and [11], respectively. Our main theorem pro-
vides a sufficent condition in terms of the Carathéodory (or Kobayashi) metric to
reconstruct the biholomorphic automorphism group of Banach manifolds from
those of its certain submanifolds via holomorphic projections. This result seems to
be very well suited in calculating explicitly Aut B(F)in various Banach spaces E ad-
mitting a sufficiently large family of contractive linear projections. In Section 3 we
illustrate the use of this projection principle by two typical examples where the con-
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clusion seems hardly available with other already published methods: After nu-
merous partial solutions, recently T. FRANZONI [4] gave the complete description
of AutB(¥(H,,H;)) where %(H,, H;)={bounded linear operators H,—~H,}
and H,, H, are arbitrary Hilbert spaces. As we shall see, the projection principle
makes it possible to obtain the exact description of Aut B(H,®...® H,) in an ele-
mentary way where H,® ... ® H,={continuous n-linear functionals H;X...XH,—~
—~C}). Note that ¥(H,, H;)~H,®H, and for n=3,H,®...@H, cannot be
equipped with a suitable J *-structure on which Franzoni’s method is based. The key
of the reduction by the projection principle is the fact that in finite dimensions the
strong precompactness of B(H,®...® H,) considerably simplifies the treatment
of the space (Section 4). The second application concerns atomic Banach lattices.
The unit balls of finite dimensional such spaces are exactly the convex Reinhardt
domains. In 1974, T. SuNaDA [13] characterized Aut, D for all the bounded Rein-
hardt domains D. However, his proofs depend on the Cartan theory of finite dimen-
sional semisimple Lie algebras thus cannot be carried out in infinite dimensions.
If the finite dimensional ideals form a dense submanifold, the projection principle
reduces even the most general case to some straightforward 2 dimensional consider-
ations. We remark that in this way also Sunada’s proof can be simplified and the
method applies in parts to other Banach lattices (cf. [12]).

2. Projection principle

Our main abstract result concerns with holomorphic vector fields on complex
Banach manifolds (for basic definitions see [17], [7, § 2]). If M denotes a complex
Banach manifold, a vector field v: M ~TM is complete in M iff for every x€M,

there exists a mapping e,: R—-M such that e,(0)=x and %e,it):v(e,(t))

vt€R. In this case we define exp (w)(x)=e,(t). A function §:TM—-R, is
called a differential Finsler metric on M if for any fixed x€M, the functional
T .M>w—d(x,w) is convex and positive-homogeneous and for each coordinate-
map (U, ®), the function fU:?: dU>e—~5(P e, v(P %)) is locally bounded and
lower semicontinuous whenever » is a holomorphic vector field on M. We shall
write d,, for the Carathéodory distance [3], [17] on M, i.e. dy(x,y)=sup {areath
F(p): F is a holomorphic M- A function, F(x)=0} where A={{cC:|[{|<1}.
For a holomorphic mapping F: M—~M, we denote by F’ its Fréchet derivative
(recall that for any fixed x€M, F’(x) is a bounded linear T, M —T,M operator).
For a Banach space E, we shalldenoteby E*, || |,~ and B(E) its dual, norm, closure
operation and open unit ball, respectively.
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2.1. Theorem. Let M be a complex Banach manifold, M’ a (complex) sub-
manifold of M and v a complete holomorphic vector field on M. Suppose P is a holo-
morphic mapping of M onto M’ such that P|,,.=id,, (the identity mapping on M’).

Suppose there exists a differential Finsler metric 6 on M’ such that

(i) the vector field P'v|,, is 6-bounded (i.e. 51611:{ 3(x, P/(x) v(x)) <<o)
X

and by writing d for the intrinsic distance generated by 6 on M’,

(ii) the topology of the metric d is finer than that of M’,

(iii) for any sequence xy, x,,...€M’ which is a Cauchy sequence with respect
to d but which is not convergent in M’ we have d,.(x,,x,)—>c (n—o0).

Then the vector field Pv is complete in M’.

Proof. For the sake of simplicity, the proof will be divided into three steps.

1) From the definition of Carathéodory distance we see immediately that
dp (%, ¥)=dy(x,¥) Vx,yeEM’ since M’c M. It is also well-known [2] that the
mapping P is a d,—d,. contraction. Hence the relation P|,,=id,, entails
dy(x, y)=dy(x,y). Thus we obtained dy.=dyl,..

In the sequel, we set a,(t)=exp ()(x) (xeM, teR) and b, will denote the

maximal solution of the initial value problem {d_a; y=P (v (y); y(0)=x}.

We show that for arbitrarily fixed zeM’,

(M dy:(Pa.(h), b.(h)) = o(h) (h ~0).

Indeed: Consider any coordinate-map (U, ®) from the atlas of M’ for which
zeU. We may assume without loss of generality that & is a biholomorphism between

U and the open unit ball of some Banach space E. Then for all he{tedom b,:

b, (1)€ ¢‘1(7IB(E)]} we have

dyg-(Pa,(h), b, (h)) = d(Pa,(h), b,(h)) = dacey(®Pa,(h), Db.(h) =
= p||®Pa,(h)—Db,(h)|

where uzsup{dB(E)(f,g)/Hf—gll:f,ge—é-B(E)}. It is easily seen that u=

1 1
=2 sup {dsn (/111 fe5 BEE) =2 sup {171 areath | 111 /I = 5} <
The estimate || PPa,(h)— Db (h)|=0(h) (j—0) can be verified as follows:

By definition, a is the solution of the initial value problem {%y=v(y), y(0)=z}.
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Therefore ||®a,(h)—(®z+h®"v(2))|=0(h).  Thus —d‘% [ @Pa,(h)— Db, (h)]=
0

= %1- ®Pa,(h)— D' P'v(z)= ' P'v(z)— &' P'v(2)=0.
(1]

An application of (1) directly yields that for any x, yeM’,
[dM (bx(h), by () —dp(x, Y)) = [d,u (Pa,(h), Pa,(h))—dp-(x, y)] =

Ihl [dM(ax(h) a,(h)—dy(x, y)I =

(since P is a contraction dy,—~d,, and d,.=dyl,.).

2) Henceforth we proceed by contradiction. Assume that the vector field P»
is not complete in M’.

Now we may fix a point x€ M’ such that dom b,R. Let ¢, be a boundary
point of the interval (or ray) dom b,. Since Ocdomb,, we have #,>0." So (by

1 .
passing to the vector field —t—v) we may assume f,==1. Then consider the function
(1]

0(t) = dy, [b,,(t), bx[t+%)] [tE [O, %]]

1 1 i
Since b, (t+h)=b, ,(h) and b, [t+5+h)=bbx (t+3)(h) whenever 1, t+h, 1+,

1
t+3+h6[0, 1), from step 3) it follows that

— 0(t+h)— o) _ 1

We show that the function g is locally Lipschitzian. Since the conclusion of the
previous step can be interpreted as o’(¢)=0 for all such values ¢ where ¢’ (¢) exists,
hence we obtain that ¢ is constant ie.

@ dyy [b,,(:), b, (t+—21—]] =dy. [x, b, (%}] vie [o, -21-]

Proof. By triangle inequality, it suffices to see that for any ze M’, the mapping
t—b () is locally Lipschitzian with respect to the metric d,,.,. Denote by J,,. the
Carathéodory differential Finsler metric of the manifold M’ (for definition see
[2],[17]). Then the function y: 75, (5,(7), P’b(b.(1))) is locally bounded (cf.
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[17]). Hence if £ is a compact subinterval of dom b, then sup y(¢)<< and there-
fore es

v v
dig (b=, b.(2) = | [ 40 (bo0), L) dit| = | [ () dt| =
v v

=supy()-1t"—¢t’| whenever ¢, t"€S.
s

1
2n

N]»—-

3) Write  K=sup d(x, P'v(x)) and consider the sequence f,=
xeM

(n=1,2,...)). For m=n we have

d {bx (t,,, +%] b, (t,, +%]} = f " 5(b. (1), b)) dt =

= ,.f "5(by(0), P'o(be(t))) di = | mf”m SRS [L_i).

m n
1 . . .
Thus {b,, (t,, +5]} is a Cauchy sequence with respect to the metric d. Suppose
neEN

1
d[bx(t,,+3],z]—»0 (n—~<) for some point zeM’. Then we would have

P’v(b,(t,))~P’v(z) (n—~<), as a consequence of (ii). However, in this case the

function b(t)= {bx(’) if te¢domb,

b.(t—1) if 0= (1—1)cdom b, is a solution of the initial value

d . o C .
problem {Ey=1”v( »), y(0)=x} with dom bz2dom b, which is excluded by the
1
maximality of b,. Thus {b, [t,,+—2—]} does not converge in the metric d.

1 1 1 1
By condition (i), dM,[b,,(E],bx (1—5’;]]=dw[b,(t1+§),bx [,ﬂ+5)] -
—+o (n—+o). From (2) we see

oo ()0 ) a3 o)
il o)) = 2

—dM,[x, bx(%)] —~oo (n — ).

But this is impossible because the topology of a complex Banach manifold is always
finer than that generated by its associated Carathéodory metric (cf. [17]) whence

1 1 1
dy [b,, [5], b, (—2— ——2—]] -0 (n—+<) since the mapping t—b,(?) is differentiable.
n
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The obtained contradiction completes the proof.
2.2. Remark. From step 1) one immediately reads that in general we have

22a Lemma. If d*: N—d}, is a metric valued functor on the category of com-
plex Banach manifolds such that for all manifolds N, N’,

(iv) d} is a metric on N,

(v) each holomorphic map N’—~N is a dy—dy, contraction,
then dyly,=dy,, whenever M’ is a sutmanifold of M and there can be found a
holomorphic projection of M onto M’.

The proof of Theorem 2.1 can be carried out as well for any metric functor
d* with properties (iv), (v) and

1
(vi) sup {d;m( Lo f|[—<_—3}<°° for any Banach space E.

The Kobayashi invariant metric (def. see [17], [9]) also satisfies these requirements.
Hence Theorem 2.1 holds when replacing Carathéodory distances by those of Koba-
yashi. Moreover we have the following important special case of Lemma 2.2a.

22b Lemma. IfE denotes a Banach space and P is a contractive linear projec-
tion E~E then dyglppry=9ppr nd di plsen=45prn where d* stands for the
Kobayashi distance.

Proof. Since ||P|=1 (otherwise we have the trivial case P=0), PE is a closed
subspace of E and PB(E)=B(PE)CB(E). Thus Lemma 2.2a can be applied to
M=B(E) and M’=B(PE).

This latter result can be further specialized as follows: Consider any unit vector
e€E. By the Hahn—Banach theorem, there exists P€E* with | ®|=(e, P)=1.
Then the mapping P: f—(f, ®)e is a contractive linear projection of E onto Ce.
Thus Lemma 2.2b contains Vesentini’s following observation.

2.2c Lemma (VESENTINI [16)). Let E be a Banach space, e€E a unit vector and

81, (€ 4. Then we have d}, (E)(Cl e, C23)=dB(Ce) (16, L2€)=d (({, {;)=areath IC1 —CCZ
— 6162

i.e. the curve [43(—C(e] is a complex geodesic with respect to both the Carathéodory
and Kobayashi distances in B(E).

b4

Later on, we restrict our attention to Banach space unit balls. Recall ([8], [18])
that in a Banach space E, the elements of AutyB(E) (the connected component of
Aut B(E) w.r.t. the topology 7, defined in [15]) are exactly the exponential images of
the second degree polynomial vector fields being complete in B(E) whose Lie-
algebra will be denoted by log*Aut B(E). Moreover, the orbit [Aut B(E)]{0}=
={F(0): FEAut B(E)} is the intersection of B(E) with a subspace which, in the
sequel, we shall denote by £, and we have FE,=[log*Aut B(£)]{0}.
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2.3. Theorem. If E is a Banach space and P: E—~E is a contractive linear
projection then P[log*Aut B(E)]|pzClog*Aut B(PE).

Proof. Let uclog*Aut B(E) be arbitrarily fixed. We have to show that the
vector field Pulypp, is complete in B(PE). As in the proof of Lemma 2.2b, let us
consider the manifolds M=B(E), M'=B(PE), the projection P|y, of M onto
M’ and the vector field v=u|g, which is by definition complete in M. Take the
differential Finsler metric &(x, w)=|w| (x¢ B(PE), w€¢ PE ) on M’ whose generated
intrinsic distance is obviously d(x,y)=lx—yl (x, y€B(PE)). To complete the
proof, we need only to verify (i), (ii), (iii).

(i): For x¢B(PE) we have P’(x)v(x)=Pu(x) whence by a theorem of
Kaur—UPMEIER (8],

8(x, Po(x))=|1Pu(x)] =llu(x)||=|{u0)+u’ O+ u”(O)(x x)||=

1
=[uO)l + 1w (Ol 2, Eﬁ-\ —2-u”(0)

{bilin E x E-E).

(ii): Trivial.

(iii): Assume X, x,, ... is a Cauchy sequence with respect to the metric d
without a limit in M’. Then for some unit vector f€PE, |x,—f||~0 (n—<) i.ec.
fix,l =1.  Therefore, by Lemma 2.2¢,d),(xy, X,)=dgpg (X1, X) Z=dgpg (X, 0)—
—dppr)(%:1, 0)=areath ||x,]| =areath || x,| > <.

24. Corollary. If E is a Banach space and P:E—E is a contractive linear
projection then P(E))C(PE),. In particular, if B(E) is a symmetric manifold then so
is B(PE); too.

2.5. Corollary. Let E be a Banach space. If one can find a family 2 of con-
tractive linear projections E~E such that for every Pc P, Aut B(PE) consists only

of linear transformations and ﬂ ker P={0} then all the elements of AutB(E)
are also linear.

Proof. If v€log*Aut B(E) then Pv(0)=0 Y Pc? whence v(0)=0 ie. the
vector field v is linear. On the other hand Aut B(E)=Aut"B(E) Aut,B(E)=Aut’B(E) -
-exp log*Aut B(E), where Aut®= {E-unitarities}.

3. Applications

Let (X, u) denote a measure space. In [1], [11] it is proved

3.1. Theorem. The unit ball of E=L?(X, ) admzts only linear biholomoprhic
automorphisms unless dim E=1 or p=2, eo.

As the first illustration of the projection principle, we show how can this result
be reobtained from Thullen’s classical 2 dimensional theorem [14].
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‘Proof. Suppose p€[l, <]\ {2} and dim E>1. If g,, g, are functions in E
with norm 1 having disjoint supports then it is easily seen that the mapping )

2
Eef— 3 f /2;lgjIP~%du - g; is a contractive linear projection of E onto the subspace
i=1

2 .
E”"”’Ejgl Cg;. Now B(E, ,)={(,8,+{:8::(;["+I{.[P <1} is a Reinhardt domain

whose biholomorphic automorphisms are all linear by Thullen’s theorem. Further-
more we have ker Pgl.h={fEE:ffg_jlgjlp‘zd/z=0 (j=1,2)}. Thus () ker P, o=

192
={feE: vgcE[3h¢E min(|gl, |h))=01= [fZ|g|"~2du=0}c {fCE: ¥X,C X[3X,C
CX X1 O<p(Xy), u(Xy)<oo]= f dfu=0}={0}. Hence Corollary 2.5 establishes
the linearity of Aut B(E). %

To the next application, let H,, ..., H, be arbitrarily fixed Hilbert spaces! of
at least 2 dimensions and consider the biholomorphic automorphism group of the
unit ball B=B(E) of the space E=H,®...®H,, the Banach space of n-linear
functionals endowed with the usual norm ||F|=sup {|F(h, ..., h,)|: ;€ H;, ||| =1
(J=1,...,n)} for FEE. For n=1,2, the description of Aut B is completely settled
[5], [4]). It is worth to remark that, in the light of the Kaup Vigué theory, the diffi-
culties in this case can be concentraded to the description of linear E-unitary opera-
tors: If n=1, E can be identified with H, and for any fixed c€H,, the quadratic
vector field g=[H, 3f— —(f|c) f} satisfies [11, (1)] i.e. tangent to the boundary of B.

Similarly, if n=2, E can be identified with %(H,, H,) and for fixed
CEc % (E,, E,), the vector field [¥(H,, H;)> F—~—FC*F} is quadratic and satisfies
[11, (1)]. It is easily seen, in both cases that, we have {[exp (19)](0): te R}=(—1, C,
thus B is symmetric and Aut B=(Aut’B)exp {g.: ccE}. Here we turn our atten-
tion first of all to the case n=3 which seems heavily treatable with other methods
and is not touched by the literature.

32. Lemma. Span {UC:U linearcAutyB}=FE whenever CEEN\{0} and
dim Hj<e (j=1,...,n).

Proof. If C#0 then we may fix unit vectors e;6¢H, (j=1, ...,n) such that
y=C(é, ..., €,)#0. Then let P; denote the orthogonal projection of H; onto Ce;
and set U}=exp (i%;P),C(9,, ..., $,)=(U}®...®U)C (8;€R;j=1,...,n). Since
the operators U} are H-unitary, U}®...@ UJ€Aut,B, therefore e,®...®e,=

1 Without danger of confusion, we write simply (.|.) for the inner product in any of
H,,..,H,. For A,¢%(H, H) and e,€H, (j=1, ..., n), we define 4,®...04,=[H,®...9H,>

SF—F(A.\f,,...A.0)], e1®...®e,=[(f, ... f)—=>(file)...(f,le,)] and 6,1' e, =P~ Fley,..., e),
respectively.
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o
=7 _ CecS=Span {UC: U linear€Aut,B}. Thus for all H;-unitary
y 09,...09,|p

operators V;, (V1) ®...Q (V,e,)=(V1®...8V,)(&1®...Q¢e,)ES ie. 1®...QfES
whenever fi€H,, ....f,€H,, whence S=FE (since dim E< o).

3.3. Proposition. For n=>2, all the elements of Aut B(H,®...QH,) are
linear.

Proof. Observe that the family #={P,®...® P,: all P;-s are orthogonal H;-
projections with dim P;H;=[2if j=3 and 1 if >3]} consists of contractive E-pro-
jections and () ker P={0}. Since for arbitrary P€Z; the subspace PE is iso-

Pco
metrically isomorphic to C*®C:®C? (C is endowed with its usual euclidean

norm), by Corollary 2.5 it suffices to see only that the elements of the group
Aut B(C*® C?*® C?) are linear. Thus we may assume n=3 and H;=C (j=1,2,3).
Assume now that E;=0. Now Lemma 3.2 establishes E,=F i.e. symmetry of B.
We show that this is impossible.

Denote by e,, e, the vectors (1,0) and (0, 1) in C2, respectively, and consider the
elements C=e,®e,®e; and F=e,Qe,Q6,+6,0e,RQe,+6,®e;,Qe, of E. Since
the space E is finite dimensional, for every A€E we can find fi, f;, /3€0B(C?

i
with ||A|=A(f, /s, f3). In particular, for arbitrarily given A€ (0, ?) we can fix

unit vectors f;(1) such that [C+AF|=(C+AF,J; FRONA @y Since C, F=0
(ie. C(gl,gz, 83)> F (81,82, 83)=0 Vg1, &2 8320) and since (C+AF, 52, ez,e2>=
etri(Nes
T+, " (j=
=1, 2, 3). Thus introducing the function ®,(¢1, ¢z, ¢3)=(C+AF, 5 e, 4012, )43 )

A+ed2 Aot/

0
=[1+4(e,+0:+25)] 2(1+e§) 12, we have — $,=0 (j=L,2,3).
00; l(ry (), rg .7y ()

So {AQ+r)—[L+A(r 4131} 2 (1+r)~%2=0(j=1,2,3) and hence
K=1

=AF(ey, e, €5)<1, for some r;(A)=0 we can write f;(1)=

4! _ s _ £

B l—ry(re+ry) B 1—ry(ry+ry) B L—rs(ry-+ry)

Therefore fj;éO (j=12,3)
1 1 1 1 3 .

and ——+r1=——+r2=—+r3(= —+ er). Observe that from this and from the

rn ry rs Y =
1

assumption A€ (O, ?) it follows that ry=r,=r,. (Otherwise there would be r=0
such that two of the numbers r,, r,, r; coincided with r and the third with 1/r, re-
1

Ir <0.) Thus the relation 1= holds

1—-QA/r)(r+r) 1-2r
where r(A)=r,(1)=r, (A1) =r;(2). This fact can be so interpreted that for sufficiently small

spectively. But then A=
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F,
1—2r2

fulfill |F,|-||®,|=(F,, ®,). Then by [11, Lemma]
Vﬁ—3)
4 ’

1 17 -3
values of r=0 [namely for A>-§ i.e. r<—V-——4———], F,=C+ !

¢75521+rez, e;+reg,e,+tre,
@ IFATC, 3+ a(F F) oy =0 fo<r=
for some symmetric bilinear map ¢: EXE—~E. Here(C,®,)=1,|F,| =12~ (F,, ®,)=

= (17714 3= =(14+77) 7 (1-27%) " and q(F,, F), 0)=(4(C.C). )+

r2
r
1-2r2
fixed VEE, the function r—(V, ®,) is a polynomial of 3" degree in r, from
(2) we obtain

@) (147 (1 =2r) 724 py (N + p (N (1 —2r) 71+ pa () (1 =277 72 = 0

for some polynomial-triplet p,, p,, p;. However, (2) immediately implies the con-
tradictory fact that the function »—(1+r*~! is a polynomial.

+2

2
{g(C, F), o)+ [I—r—2r] {q(F, F), ®). Taking into consideration that for

3.4. Theorem. The linear H,®...Q H,-unitary operators are exactly those
operators F for which there exists a permutation 7 of the index set {1, ..., n} and there
are surjective linear isometries Uy: H,~H,y,, (k=1,...,n) such that

(3) F(L) = [(.fl, ,f;l)'_’L(Ul_l mw(l)s =°* Un_lfn(n))]-
A linear vector field V belongs to log*Aut B if and only if it is of the form

n

(3’) V = i' Zidﬂl®"'®idﬂk-l®Ak®ide+1®"'®idﬂn

k=1
where the A,-s are arbitrary self-adjoint H,-operators.

Proof. Based on some compactness arguments, in the next section we shall
establish independently the validity of (3’) if the spaces H, are all finite dimensional.
Our starting point here is (3") for finite dimensional E. First we extend it to infinite
dimensions.

Let ¥ linearclog*Aut B and ef€dB(H,), ..., e €0B(H,) be arbitrarily fixed
and define the operator V=V—-(V(e/®...Q¢e}), Oer,...ex)idg.  Since i-idg€
€log*Aut B, we have V¢log*Aut B. Remark that V(e}®...®e*)=0. Then con-
sider the family of mappings #={P,®...®P,: P, is an orthogonal H-projection,
dim P H <<, e6P.H, (k=1,...,n)}. Any element P=P,®...QP, of # is a
contractive linear projection of the space E onto its subspace (P, H,)®... (P, H,).
Thus by the projection principle, PV|pz€log*Aut B(PE) YP¢#. 'Hence (applying
(3" to the finite dimensional (P\H,)®...Q(P,H,)) for each P¢2, there exists a
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unique choice of AF¢ {self-adj. H,-op.-s}, ..., AF¢ {self-adj. H,-op.-s} such that
APH,c P, H,(ie. P,ALP, =A%) and (AFfelle}) =0 (k=1,...,n),

PVP = 2 i-idy®...Qidy,_,®4,8idy,,,®...®idy,.
k=1

Introduce the following partial ordering = in #: If P=P,®...QP, and Q=
def

=0,®9...0, then leE PéQj—;»PkaCQka (ie. P,=Q)k=1,...,n. From
the relation P=Q=PVP=PQOVQP we immediately see
C)) AP = P,A2P, (k=1,...,n) whenever P=0.
Observe that for any fixed P€# and index k,
[(AEel )] = [PV @ ... @ ef_1Qe®€f1® ... ®€)), Ser, et _,.fretsyronet) =

=PV e ®...0e®... @€k I0et,...s...cs =IPTI = IPI| Ve, feOB(HY),
that is
) 142 =171 (k=1,..,n) VPE.

Since obviously VP, Q€ 2 3Rc P P, Q=R and since by (4), (5) the relation P=Q
entails |(42e|f)—(ALe| )| =|(42(e— Pee)|f)+ (42 Pyel f— Po)| =7l (e — Peell +
+1f~Pfl) Ve, fcdB(H,), k=1, ...,n, the definitions

ak(esf) = I];lg%(AlI:elf) (e9fEHk’ k= 19 sees n)

make sense and determine bounded sesquilinear functionals. Therefore there exist
self-adjoint operators A,: H;—~H,, ..., A,: H,~H, such that g (e,f)=(A4elf)
and  hence (Alfe[f)z(Alf(Pke)IPkf):(AkPkeIPkf)=(AkPke|Pkf)=(PkAkPke|f)
Ve, fcH, ie. Af=P, A, P, (P¢P,k=1,...,n). Now for arbitrary LEE, e,€H,, ...,
e, H, the projections P =projspanie 4 ency K=1, ..., n) satisfy

(7Ll(e, ...,e,) = [VLI(Piey, ..., P,e,) =[PV L)(ey, ..., €,) =

= kgL(el, s PoAre, ..., e) = k;;L(e,, ey Aylyy .nr ).

Thus we can write VL(e,...,e,)= 3 L(ey,...,Bie,....e,) where B;=A4; for
k=1

j=1, ..,n—1and B,=A4,+{V (€], ..., €;), 0.2, ) idg, proving (3) in general.

To prove (3), let F be an arbitrarily given linear E-unitary operator and intro-
duce the families #,={P;®...® P,: P, is an orthogonal H,-projection, P;=idg,
for jk} (k=1,...,n). From (3") we see iZ,Clog*AutB and hence for every
Pc &, the mapping Q=FPF1 also has the properties iQ€log*Aut B and Q*=Q
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(since P*=P) which is possible (by (3)) only if Q€% (p, for some index £,(P)
(k=1, ..., n).

Let k€{l,...;n} be fixed. We show that £, (P))=¢,(P;) VP1, Po€ 2\ {idg}.
Indeed, if £,(R)#¢,(R,) then the operators Q;=FR;F~'(j=1,2) commute
(ie. [01, 0)]=0,0,—0,0,=0) whence we would have [R,, R;]=0. Observe
that VP, P.€ 2\ (idg} 3PP, [Py, Py, [Py, P5)#0, thus (by taking R,=P;
and R,=P; j=1,2) ¢, (P;)=¢,(Ps) holds for j=1,2.

Therefore there exists a permutation 7 with

(6) ngF-l = n (k) (k e l, ceny n).

Since the finite linear combinations of orthogonal projections form a dense submani-
fold of the algebra of linear operators in any Hilbert space, it directly follows
the existence of surjective linear isometries S,: Z(H,, H,)~%(H 4, Hyy) such
that

F(idy,®...Qidy,_,®4,®idg, ,,®...Qidg )F 1=

= id”]®"'®idHﬁ(k)-1®Sk(Ak)®idHn(k)+1®"'®idHn
(4L H, H); k=1, ..., n).

As a consequence of the relations (6), the mappings S, send orthogonal projections
into orthogonal projections and therefore they constitute *-isomorphisms between
the C*-algebras £(H,, H,) and %(H,,,, H,)- It is well-known that now we

can write
Sk: Ak‘—’ UkAkUlz-l (k_—-"l,, n)

for some surjective linear isometries U, : Hy—H, . Thus if we denote by o the in-
verse of the permutation x, for any linear E-operator A of the form A=4,®...9 4,
(where A4,€c¥(H,,H)k=1, ...,n) we have

(FAF WL =[(fi, -, ) = LU, 1y Ae y Ushy > s Uy Ao mUsly f1 - VLEE.

This means that FAF1=UAU"' YA€ ¥(E, E) holds for the E-unitary operator
U defined by

U(L) = [(f;l, af;) »L(Ul-lfn(l)a LR ] Un—lfn(n))] (L€E)

It is easily seen that this is possible only if F=eU for some 3¢R which completes
the proof.

In the remainder part of this section, by making use of the projection principle,
we shall examine the structure of biholomorphic unit ball automorphisms in case
of minimal atomic Banach lattices (abbr. by min. B-lattices).

A Banach lattice E is called a min. B-lattice if it is norm-spanned by its 1 dimen-
sional ideals. Henceforth we reserve the symbol E to designate a fixed min. B-lattice.
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According to a well-known representation lemma [10. p. 143, Ex. 7 (b)], we may
assume that for a fixed set X, E is a sublattice of {X—~C functions} such that

@) 1.€E and |I,f =1 Vx€X,
(8) Span {l,: xcX}=E. (1, stand for [X3y+— 1 if y =x and O elsewhere]).
Remark that then

®) wf€E and wf= 1lim wlyf whenever fcFE, suplw(x)| = 1.2
Y finitecX ' x€eX
For the sake of simplicity we write B=B(E) and the functional [E> fr~f(x)] will
be denoted by 13}.
First we describe the linear part of Aut B.

3.5 Definition. For x, y€X, letkwy if {/(1,), 1,)0 for some linear element
¢ of log*Aut B.

36. Lemma. (i) x~y if and only if for all f,g€E, f—g€l, ,E and
2 f@PF= 3 lg@} entail || fl=|gl.

z=X,y z=x,p
(ii) The relation ~ is an equivalence. Moreover, in case of xy~...~X,,

f-gely .y and _=2"]|f(x,-)r—'=jg";|g(x,-)|2 imply  11f1 = ligl

Jor all f,g€E whenever x,, ..., x, are distinct points.

Proof. (i) Let Y={yy, ..., y,} be an arbitrary finite subset of X and ¢ linear¢
€log* Aut B. Set ap={ (lyj), 1, ) and assume 0,20 (i.e. p1~py). Since the mapping

P: fi—~1,f is a band projection of E onto > Cl »,» the projection principle establishes
i=1
¢ €log*Aut PB where ¢ =P{|py. Thus by [11, Lemma]?

© Re (Z(f), ®) =0 < (f, &) = | fll P VfcPE, dc(PE)".

2 Proof: Given &¢>0, by (8), there are Z finite C X, g€1, f with || f—g|l<e&/2. Now ZCY;, Y,
finite < X implies ”f—g”EIf—lzflEWIU—]ZI)IEIW(IYIUY’[—lylf)l (=1,2) i.e. by triangle
inequality ex=||wly, f—wly, f1]. Thus {wly S}y cintee is @ Cauchy net inE. Hence for some h€E?,
wlyf—~h But A(x)={, 15 =limy{wlyf, 1.} =w(x)f(x) Vx.

3 In the same way as in [11, Lemma], one can see that if a linear vector field £ on Banach space
F belongs to log*Aut B(F) then Re({f(f), d)=0<={f, D)=IIf1] lIP]l VfEF, PEF~

Proof: Since £ is tangent to @B(F), we have £ (f)€(H—/) whenever ||f]]=1 and H is a real
hyperplane in F supporting B(f) at f. But the general form of such a supporting hyperplane is
H={heF: Re{h, ®)=1} where ®EF* with ||®]|=(f, P)=1.
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Introduce the function p (g4, ..., 00= > Qiln on R’ and set C={p€R":
j=1

grad|,p does not exist}. Since p is an increasing positively homogenenous convex
function, C is a cone of Lebesgue measure 0. Let us fix arbitrary vectors ¢€R,\C,

9€¢R" and set n=grad|,p, fo= > Qje"“’llyj, o= 3 gje"""!ly*j. Since the function
= =1

n
p is increasing, =, ..., 7,=0. Since 7 is positive homogeneous and convex, > m;0;=
ji=1

=p(0y, ---» n) 1. {(fo, P)=[fll. On the other hand, for any f€PE

I/, &)l =

Zme i) S Sl S p(S0D) s 170N = 1]

ie. [|@l=1. Hence (9) can be applied to f, and &. Thus

9 Re </[ o e'“fly,], > n;e"“’lf,> =0.
=1 =
By the arbitrary choice of 3€R”, an equivalent form to (9’) is
9" Re [ZQJ'“J'“H_*--;Z; (0 M+ e;04) 2,25 ] = O
J J
whenever |z,| =... = |z,| = 1.

This is possible only if the rational expression (w.r.t. z,, ..., z,) in the argument of
the Re operation vanishes. Thus in particular @, 7,05+ 0s7, %5, =0. Le. we obtained
the following partial differential equation

/] op —
(10) Q15i“12+@23§;“21=0 (e€RENO).

do
3 =0.

Since szllgzlhll§||Zgjlyj||=p(9) Vo€R" , there exists g€R%\C with »
J 2

Therefore ag;#0, moreover dg/o,<0, i.e. Ogrfotia= — lotay |/ |t12].

For (5, .-, 0)ERY™?,  define Poq.....0, ' R>R by Pog.....0, ()=
=p(Jasa| COS 1, |0tz | SN 2, 05, ..., 0,). Since C is a cone of measure 0 in R, (10)
implies ‘

(1) @, ...0.(t) =0 for almost every ¢€(0,7/2) and (g, ..., 0, )ERAE

From the convexity of p it follows that it is locally Lipschitzian in the interior of R’, .
Hence, by (11),

(1) Pos...nea(t) = @oy,....0n(0)  VIE[O, /2], (05, ..., €)ERTE
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_ e _
pl“lzl I(Qi"' 93)1/2 *Pey,... 0, (arccos (0 + Q‘l 2)1/—2] = I“ml 1(@%‘*‘ Qg)llzq’as,...,qn(o):
1

=p(VQ§+Q§’ 0, Ogs «+» Q,,)-
2

Let now f,gcE be functions such that f—g€l, E and S k=
v j=1

= 2 leOpl Then 11xf1=p ({ Z1FGIFJA01f0, . 0D =Iysl. Take

ing into consideration the fact that ¥ may be any finite subset of X, from (8") we
obtain || fll=ligl.

2 2
Conversely: Assume that f—gel, ,,E and 2fplE= > lg(ypl? imply
=1 =1

Ifl=lgl for all f,g€E. Then the mappings U'=[f—>ly\ 4,y f* ((cos By-f(y)+
+(sin £) - f(2) ), + ((—sin O« f(y1)+c+(cos ) - f(y2)),] (t€R) form a one-para-
meter E-unitary operator group. Hence the linear field %IOU ‘= frf (), —f()L,,]

belongs to log*Aut B.
Proof of (ii): Say that f~Ygif Y finitec X, f,g€E, f—g€lyEand 3 |f(¥)|*=
: 134

= > |g(»)|2. Obviously, the relations ~7¥ are all equivalences. Consider the set
yeY

N={m:3x;~...~x, 3f,8€E f~ Grewxmdg || £ ) gl ). Suppose N#0 and set n=
=min N. From (i) it follows n>2. Fixaset Y={y,, ..., »,} and functions f;, fo€E
such that f; ~ Y,y ~ ... ~y,but | fill | £,]|. Consider the functions g; =1 E\NU ) i+

=1,2). However, g, ~ "¢ and therefore by (i) we have | g =g, contra-
dicting the assumption | fi] #| fzll. Thus N=0. Hence if y, ~ys~ys then Vf,g€E
frbrreydgo fA Urvde je. by (i), yy~p; holds.

3.7. Corollary. The proof of (i) shows that {£(l,),1)=—{¢(,), l;:> when-
ever y;,¥,€X and ¢ linearclog*Aut B.

3.8. Definition. From now on we reserve the notation {S;:i€#} to denote
the partition of X formed by the equivalence classes of the relation ~. For each i€ 4,
we shall denote the projection band 15E of E by H,.

39. Proposition. (i) If f,g€E are functions with finite support and ||flS‘||,,=
=l glsl» (E(QZS lg(x)|)¥2) vies then ||fl=|gl.

8
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(i) For any i€ #, H; is a Hilbert space (i.e. the norm | -|| restricted to H;,
satisfies parallelogram identity). Namely, a function h: X—~C belongs to H, iff
supp (WS, > |h(x)]P<<o, furthermore we have | fli=Ifll,. VfeH,.

S,

x€S,

(iii) If f,g€E and |fls|=lgls|l vieF then | fli=lgl.

) If §: X~C./KE and |fls)|a=lgls)a Vi€F then gcE.

(v) Assume ¢€ ¥ (E,E). Then (€log*Aut B if and only if there exists a family
of linear mappings {¢;:j€ $} such that i-£; is a self-adjoint H-operator for each

JES, sup £l <o and £= @ ¢;.
jes

Proof. (i) is a directe consequence of Lemma 3.6 (i).
(ii): Let f€H and x,€E be arbitrarily fixed. By (i), [ 1y £ I=I( 3 | f(»)[]2)"2 L
yeY

=( % | f(»)[2)2 for all Y finitec X. Hence by (8"), e>=| f||=If|l,s. Furthermore,
y

if g is a function X—C having support in S; and | gll,s<<> then (i) ensures VY, Y,
ﬁniteCX,Illylf— ly’f||=||1,.1f— ly,f";z:”lylu,f" i.e. the net {I,f}, is a Cauchy
net whence f€E.

(iii): Let e=0 be fixed. According to (8"), one can find Y finitec X with
If—12f1,lg—1;gll<¢ YZCY. Since the index set J={ic#: YNS;=0} is finite,
there exists a family of sets {Z;:i€J} such that YN S;cZ; finitec S, ({¢J) and
%Ills‘f— 1 fll,,<e. Consider now the functions f,= é’l 1z, flls-1,, and g,=

= 1158l 1, where x; denotes an arbitrarily fixed point of S; (i¢J). By writing
ieJ

Z= LEJJ Z,, we can see || fl=I1z11, lgl=ll12¢l and | f~1.f1|,llg—1zgll<e. Using

the triangle inequality, [|f, —g.|= Z W1z, fll2— 11z gl o|=(since |15 fll2=I15 gl
for all )= 2 1z, flla—01s f|l,a+|| ls,g"ﬁ Illz‘gllﬂl<( 2(”ls,f Iz la=l1s8—

_]z‘g"ga)<23- Thus || fli=lgll=I/- zfll+llllzfll—Illzglll+|lg— I8l =4e.
(iv): By (8’), to every number néN, we can choose Z, finitec X such that

1 .
lf—1; fll<—. We may assume without loss of generality Z,cCZ,c.... Then set
" n
F.={icF:Z,NS;#0},8,= 2 l5 g By (ii) and the finiteness of the sets £, g,€E
ié3,
vnEN. If n>m then |g,—g.l=l g 15 gll= (by (iii))=ll_€ Z\’ Is, fl| = (since
ics, i

1 n m
| X 15 fI=lf-1, A)=1-1, f||<;. Thus {g,}, is a Cauchy sequence in E.
€5 NFm ~ m
For all x€X, lim g,(x)=g(x) whence g=lim g,.

n—-»oo Ne—+oo

(v) First let ¢¢log*Aut B. If j,k€S,j#k,x€S;, y<S, then by the definition
of the classes S; and by Lemma 3.6 (i), (¢(1,), 1;)=0. This fact shows ¢(H;)CH;
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vj€#. Thus by setting £,=¢| a, We obviously have ||£;}}=|//] and /= & ¢;. Further-
jes

more, [11, Lemma)] establishes ¢;€i- {self-adj. H;-op.-s} Vj€.f.
The converse statement is immediate from (il) since then we have exp (£)=
= 65; exp (£;) and, by assumption, all the operators exp (¢;) are H;-unitary here.
j€

3.10. Coiollary. For some subset $,C %, by writing Xo= 1) S;, we hxve
€%,
E,=1y E (where E,=C-[AutB]{0} cf. Introduction).

Proof. Set Z={x€X: 3¢€E, ¢(x)»=0}. Clearly E,C1,E. On the other hand,
if x€Z,ceE, and c¢(x)>#0 then, by (v), the linear field £=[f—i-f(x)1,] satisfies
Iy n¢ +e'c(x)1,=exp (t£)€ E, Vtc Rwhence E, D Span {1,:x€Z}=1,Eie.E,=1,E.
Suppose now x€Z,c€Ey, c(x)=0 and x€S;. Let yeS\{x} and ¢ =[f—~

d
if(x)1,+if(»)1,]. As in the previous case, clzt’l(c)=zl exp (t£,)c€E, since by
. 0
W), ¢€log*Aut B. However, ¢, (y)=ic(x)=0 ie. y€S; Thus S,CZ.

Next we turn our attention to the quadratic part of log*Aut B.

In the sequel we shall use the notations #,, X, introduced in Corollary 3.10.
Recall that for any c€E,, there is a unique symmetric bilinear form q.: EXE—~E
with [fr~c+q.(f.f)]€log*Aut B and that the mapping c~»¢g. is conjugate-linear
and continuous. Since the finitely supported functions are dense in E, to get the
complete description of log*Aut B it is enough to determine only the values
<q1x1(lxs’ 1), 1.) (x,€X0, X,, X5, X,€X). To this task, the projection principle
provides an essential reduction.

3.11. Lemma. Let Xy, ..., x,€X, x,€ X, and Bj,=(q,, (1, 1,0, 1%). Then
1

() B%=0if {1,¢}={j, k},

@) fn=-1,

(i) BLE[—1,00 and 1,3 B={GL 4l [GE+GIP<1) if f5=0 or
Yoy xgB={01 15, + 01, max (0], () <1} in case of Bi.=0,

(v) B=—1/2 if x;~xy5#x, and f3,=0 if x; #x,€Xy;

W) if X1, ..., %,€Xy and x;xx; for i#j then |{;1,,+...+,1, |=max (|{],
s L) for all ¢y, ..., ,€C.

.....

principle, [ fs-—»lxl+Pq1x( f.N]€log*Aut PB. Applying [11, Lemma] to PB, we
obtain

= [ f1* sy @)+ <P (f: ), ) = | fIl -1 @]l = (f, @) VSfEPE, PE(PE)*.

8*
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Introducing the same function p: R’} —R, andset CCR’, asin the proof of Lemma
3.6,

(12) 0= p(o1, -..r 0n)? <lx1, 3 gp _.s,l*>+
j=100;

op -
+<q1 (Ze;e iy Zene’s*lxk), > 35( ey,

for all geR,\C and 9¢R". Thus
, d 0 n
a2y p° ap '31+( ﬁ’ke,ek 31’ ¢ it “"] 0 (e¢C, %€R").

Therefore (for fixed 0€R?\C) the rational expression p %zl+ Z ,B k00
9
"de,

coefficients of the form pL(=pL,) may differ from 0.

(i) is immediate from (12") if we take n=1 because then p(o,)=0,.
For the proof of (iii) and (iv), consider the case n=2. From (12’) and (ii) we
then see

ap ap
” 2_ 2 2 n
(129 (p*—0d) ’—391 +20,0: _392 Bie =0 (ecR3\CO).

——2z,;z,z;* vanishes on dy4" i.e. its homogeneous parts are 0-s. Hence only the

Since p(0, ¢)=p(g,0) and since the function p is increasing and convex, Y¢¢
€[0,1) 31t=0 p(g,?)=1. Thus the function #:[0,1)-R, is welldefined by
p(e,1(0))=1. Observe that now ¢ is a decreasing concave function and #(0)=0. By
dp/9e,
dp|de.

since C is a cone with measure 0 in R2 , (12”) implies

the implicite function theorem, #'(o;) =— whenever (g,, t(¢,))¢C. Thus,
(127 t’(0)(1— 0% = 20t(0) p3. for almost every €(0, 1).

Since t'=0, we have B%=0. If %,=0 then t(g)=1(0)=1 Vo€[0,1). In this
case, p(0:, ¢2)=1 if g,<1 and g=t(g))=1 or g=1 and g,=1, ie.
p(0:, 02)=max (¢, 0;). If P%=<0 then the solution of (12”) with initial value

t0)=1 is t(g)=(1—¢® 1. Thus by setting K={(01, 2): p(e1> 02)=1},
13 K = {(01, 02): 03+ 07 VP = 1}.

The convexity of the function p entails that K is convex whence f2,= —1 yielding

(iii).
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(iv): If x,~x,x, then p(o,, 0)=(ei+ed)"® (cf. Proposition 3.9 (ii)), that

1
is, by (13), we have f2,= -5

On the other hand, suppose x; #x,€X, and B%,0. Since x,€X,, all the pre-
vious considerations can be carried out by interchanging x; and x,. Thus by (iii),

2 - 2 ix,)s .:
ey B = (ke +Laleg: 1l + 10l ™ lrrrledd <y o

2 —
— {C11x1+C21x8:|C2| +|(1I ll(qlxl(lx’.lxl):’xl) = 1}.

1
This is possible only if p},= —5=<‘11,1(1x,’ 1,), 13 ) thus p(e;, e)=(0}+03) 2.

If S, denotes the equivalence class (w.r.t. ~) of x; then by Proposition 3.9 (iii),
14+ L= f - L, + e, |=p(If 12, @ =17+l I 2 for arbitrary feH, whence it
follows x,€S; i.e. x;~X,. The obtained contradiction proves (iv).

(v): Let yy, ..., y.€ X, be pairwise non- ~-equivalent. Now for arbitrarily fixed

.......

n n n

() = 2 Omay, () = 30 3 OO0, Uy 1), )1,

m=1 m=1 Ik 1=1

Applying (i) and (iii) to x;=y,, x, =y, and x;=y;, hence we obtain

ms==1

0. f) == 3 cOm fOmPL,, =—C-f2
d

Therefore the solution ‘of the initial value problem

T h=e=a.fn 0 1o=0}

is f,=tanh (¢«c). Hence {"'Z:'I Oml, 015y 0,€[0, 1)}c {exp [f»c+qc(ﬂf)](0):

c€ly, .,y E}c[Aut B]{0}cB. Then max g, = 2 0nl, |I=1 whenever g,, ...,
n m= m=1 m
2,€[0,1]. Consequently 2 @ml, ||=1  whenever max lo.]=1 whence
m=1 m m=

=m”z_u1( |¢ml. The proof is complete.

P28

From Lemma 3.11 (i) and the symmetry of the bilinear mappings g, follows
directly that introducing the functions

_1/2 if xl =x2

Wiy (¥2) = {(q1x(lx1, L), Y if x = x

(x1€ Xy, X2€ X),
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we have
g1, (., L) =2w,(x)1, for all xeX,
ql,(lxa ly) = Wx(y)ly if xeXO’ yEX\{X},
7. ,,1) =0 if x¢{y, z}, x€X,.

Hence

(14) 9:1.(f, &) =f () weg+ 8w, f (x€X,)

whenever the function f€E is finitely supported. Moreover by (8") and Lemma 3.11
(iii), (14) holds for every f€E.
For sake of brevity, in what follows we shall write f© instead of the function

15,/

1
3.12. Lemma. (i) w§?=—§- 15 whenever x€S; (i€ %),

(i) wP=0 whenever x¢S,; (i€.5),
(iii) There exists a unique matrix (y;)ic 5, jc s\, €ONSisting of numbers belong-
ing to [0, 1] such that w87=—y,jlsj whenever x€S,CX, and jEI\S,.

Proof. (i) and (ii) are contained in Lemma 3.11 (iv).

(iii): Let x, x’€S; and y, y’'eS; where i€.#, j¢ £, From Proposition 3.9 (v)
it follows the existence of an E-unitary operator U such that 1,,=Ul, and 1,,=U1, .
From the elementary theory of Lie-groups it is well-known that UsU—€log*Aut B
for every v€log*AutB. In particular, [fi~U(1.+4¢, (U™Y, U7Yf))]clog*Aut B
whence g1 (f,/)=qu (f.f)=q: (U £, U f). Therefore (g, (1,,1,), 1})=
=(Uq, (U'1,,, U1, 1;‘,)=(Uq,x(1x, 1), 1;’)>=<q1x(1x’ 1), 1) since if U= S{?‘ U,
is the directe decomposition of U provided by Proposition 3.9 (v) and f¢E then
U 15 =0 O1L)=(fOU 1,)=(fOIU;  1,)=(fO|1,).

Henceforth we reserve the notation ()¢ 4,, jes\ s, fOr the matrix introduced
in Lemma 3.12 (iii).

3.13. Corollary. For arbitrary finitely supported c€E, and f¢E,
(15) 9.(.f) =—‘€2J (fCeO fO=2 [ Z v;(fOleD]fO.
LA ]

- JESNSFy €S,

Proof. Applying Lemma 3.12. and (14), we can see that if c€E, and f€E
have finite supports then g.(ff)=— 3 cWq (L) 5 3 2c()f(x)-
i€F, x€8,

x€X,
1
: [_ —fO- 2 Yijfm]-
2 i€F,

In order to extend (15) to every c€E, and f€E, we need the following observa-
tions. ’ '
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3.14. Lemma. (i) E,= @%H; i.e. a function c: X—~C belongs to E, if and
ics,
only if Vi€S [P <o and VYe=0 {icF: ||V ,0=¢} finitec S, (in the latter

case |ic|| =Sup el ).
l

(i) sup Z vy =4lgl(=4 sup lgl =4 sup llg.(f; DI
JeINS, i cEBNE, c€ B0,
X2

Proof. (i): Trivial from Proposition 3.9 (v), Lemma 3.11 (v) and the fact that
the finitely supported functions are dense in E.
(ii): Let j€ S\S, Iy, ..., in€ Iy, YES; and X1€8; 5 .5 X,€S;,. Consider the func-

tions ¢= Zn’ I, and f=1+ Zn' I, 2 By (i) we have |c[|=1 and | f||=2. By (15),
m=1 " m=1

4. )= Z_'lvn,,,,-- At the same time, Kg.(f.f), I5)|=lgl-lell -1 /12 115]=
=4lq]|. '
3.15. Corollary. (15) holds for each c€E, and f€E.

Proof. The previous lemma shows that the right hand side of (15) makes al-
ways sense. Observe that the mapping Q:E,X E>(c, f)~{right hand side of (15)}
is real-linear in ¢ and real-quadratic in f. For |c|,[fll=1 we have |Q(c,N)lI=

ﬂZ(f“’IC"’)f")H-FZH Z (SUP Z’ Yall S Py 1e®l2) SPN=N F12 el +4ligl « fiell -

k¢ sy i€
|l f !|2 Thus Q isa contmuous map On the other hand, the relation Q(c, f)=
=+44q.(f,f) is already established for a dense submanifold of E,XE by Corollary
3.13.

In this way we completely know log*Aut B. The mappings exp[B>f
' d
—c+q.(f,f)] are easy to describe: By (15), the equation = fimetq (fis f) is

equivalent with

(1) LIO = O-(PIOSD (€5

16" LI ==2 3 g (PO P (eFN)-
1£7,

If we represent ¢® in the form ¢P=g,c® where ¢,=0,|c’}=1 and if fO=
={;cD+1D where f© lying orthogonally to ¢, one then cheks immediately that
for arbitrarily given fy€B, the solution of (16") is

(17) IO = M, () + ML) O (esy)
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where M, and ML are the Moebius- and co-Moebius transformations

{+tanh (7)
1+ tanh (1)’

Substituting (17’) into (16”), we obtain

{1—(tanh ())%'/2

M) = vk @

1) M@=

(t€R, {{| < D).

-d . ,
=P =[-2 3 weiMe ()] (jeA\R)
dt i€s,

whose solution is given by

1 -
ar) O e [-2 3 ma [ Mo ae] 19 =
o 0

= [ J Max@1]fS (GeSNSD.

The fact that the right hand side in (17”) makes sense, is guaranteed by Lemma 3.14
(ii). Fortunately, by Lemma 3.14 (i) and (17"),

[Aut B){0} = BNE,={ 3 Xc;: 0=, =1,c,€IB(H;) i€F and
€7,
[i— Aleco(F)} = {EZJ' M, (0)c;: ¢€R,, c;€dB(H) Vi€S, and
[i — AJ€co(Fo)} = {exp [f—> c+g.(f; ]I(0): c€ Ey}

where co(SFo)={F—C functions vanishing at infinity}. A classical theorem
of Cartan asserts that the relations U€AutB and U(0)=0 entail the line-
arity of U. Thus given F¢ Aut B, if we choose the vector ¢€E, so that the automor-
phism G=exp [B3fir—c+qo(f.f)] satisfies G(0)=F~'(0) then the automor-
phism U=FoG is necessarily linear, i.e. we have FcU-exp[firc+q.(f,f)] for
suitable c€FE, and linear E-unitary U. Hence we arrive at the following characteri-
zation of Aut B:

3.16. Theorem. Let E denote a minimal atomic Banach lattice. The space E is
spanned by a family {H;: ic #} of its pairwise lattice-orthogonal Hilbertian projection
bands such that

(i) the linear members of Auty B(E) map B(H,) onto themselve (Vi€.5),
(i) conversely, if for any index i€ #, U, is an H;-unitary operator then E% Uilse€
i€
€Aut, B(E).

Furthermore there exists a matrix (y;;); ;€# and an index subfamily SyC .S
such that

(iii " Eo( =C[Aut BIE)]{0})= _9-9’  H;,

i€Fo
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1
(iv) O=y,;=1 for all i,jc.5,; y,~i=3 Sor all ic.#y; y;;=0 whenever i,j¢5,

or i and j are distinct elements of F,,.
(v) A mapping F:B(E)—~E belongs to Auty B(E) if and only if, by denoting
the band projection onto H; by P;, we have

PLE() = UM, (BT 1e) 4+ M3 (PAID)P~(PAID ) (€50,
PG ={on ] 3 ne(PAD) U LT (GESNSD

for suitable H ;-unitary operators U, (j€#), unit vectors c}€H,;(i€¢#,) and a func-
tion [F,3i—0;] assuming values in R, and vanishing at infinity, respectively (the
transformations M, , M;,ri are those defined in (18)).

4. Appendix
Linear finite dimensional tensor unit ball automorphisms

Throughout this section H,, ...; H, are fixed finite dimensional Hilbert spaces.
We are aimed to describe the structure of the linear unitary operators in the space
E=H,®...QH,.

We shall use the notations B=B(E), B*=B(E"),

K ={FecoB: 31PcoB* (F,P) =1},

= {PcdB*: 3F€K (F, d)=1}.
e es’ e,€0B(H)), ..., e,c0B(H,)}.

Proof. Since dim E<o, B is compact, thus for any n-linear functional
FcdB, one can find e,€8B(H,), ..., e,£0B(H,) with F(e, ..., e,)=1. Hence
K *C{‘Sel,...,e": e,€0B(H j)}. On the other hand, every E-unitary operator maps
K onto itself and therefore also

4.1. Lemma. K*={o

(19) U*K* = K* for all E-unitary operators.

From the compactness of B it follows K@ (indeed: for any smooth norm
-, on E, 0= {F€dB: || Fll,=|G|, YGEIB}CK) whence K*>@. That is, for some
unit vectors eY€H,, ..., e%€H, we have be. .., 0€K*. Now from (19) we obtain
0v,0,..0,0=(U1®...QU,)" S0 o€K* whenever the U;-s are H;-unitary
operators. Thus {6, . :e€dB(H)}>K"

42. Lemma. Let ®=§, ,.¥=6, and ©=6, ., where 0z
=f;, 8, Bi€H; (j=1, ..., n) and assume (D+T "©. Then there exists k such that
for each j=k we have fillg; (ie. f; and g; are linearly dependent).
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Proof. The statement holds obviously if for some index m, fil|h; for all j=m
or fjlg; for all j#m. In the contrary case fittg, and f,ih, for some pair of
indices km. We may then suppose k=1 and m=2. First we show that in this
case we have h,tf;. Indeed: from h, 4 f; it follows that introducing the tensor
E=§08.®...0g, where §,=g,—| fil 2(g:| /) /i the relations (£, ®)=(E, @)=
=07(E, ¥) hold. One can see in the same manner that h,jg,. Since h K1,
there exists ,€H; with f;1u, % h, and since h,lrg, one can find wu,cH,
with g, 1 u; 2 h,. But then the tensor T=u,Qu, @h; ® ... ®h, satisfies (T, Py=
=(T, ¥)=0=(T, ©) which is impossible.

4.3. Proposition. Set r;=dim H; (j=1, ...,n) and let U¢Z(E, E) be fixed
so that Ul|g€Auty B. Then one can choose H ;-unitary operators U; such that U=
=Ul®"' ®Un.

Proof. It is enough to prove the statement only for E-unitary operators lying
in a suitable neighbourhood of idg as it is well-known (see e.g. [6]).

To do this, fix &>0 such that the functionals ®=6, .. ¢=6; ..
=0, . .. ¥=6; .7 (CE%) fulfil

(20) 3k e lé.filfy and Vji=k e, filf;

whenever we have

@) -8, ¥-PcK* |0-B| =[¥-P| =V2 and |0-¥|,|E-P| <s,
(22) led =gl =11 =1/ =1 G=1,..,n).

A value ¢=0 with the above properties in fact exists: Otherwise there would

be a sequence @,=06.m  .m, 5",55;1","”;;", ¥, =0pm  ms ¥p=0pm  im (m=

R 1 . .
=1, 2, ...) satisfying (21), (22) for ¢=— but without property (20). For a suitable
m

index subsequence {m}, and for some unit vectors e;, &, f;, f'J we have ej-—~e;,
efsve;, [ ~f; [o~f; (s=eo,j=1,...;n). Then the limits &, &, ¥, ¥ satisfy
o=V, =7 ,||d—&|=||¥—P|=V2 and the contrary of (20). At the same time
we also have & — &, ¥ — PcK* because of the closedness of K*. Thus by Lemma
4.2, 3k, Vjs¢k, e;]&;. Since [#—B[=V2, hence lle,,—&ll=y2 ie. e,L18&,.
Similarly 3!/, ffonfo and Vj=¢, filf;. Since (20) does not hold, necessarily
ko#¢,. However the relations =¥, =¥ entail k,=¢,.

Now assume [U-—idg}<e. Fix an orthonormed basis {e4:j=1,...,r} in
H, (k=1, ..., n), respectively and let us write the functional U*S,1 . in the form
U*,, =0,  ;n (cf. Lemma 4.1.) where f} is a fixed unit vector in H, (k=
=1, ..., n). It follows from the choice of ¢ that for arbitrary index k, the singleton
{f3} can be continued to an orthonormed basis {f%:j=1, ...,r} of H, in a unique



A projection principle 123

way so that we have

Udey,..ekmtekohr, o0 = Op, it pe oot g (G =151

k n
Set I={(,....1,j1,.., k=1 ..,nj=1,..,n}, L=X{l...,n} and
i=1

let a family I, of multiindices be called thick if Vicl,vi'el, i'=i=i'€l
Observe that for any multiindex i=(i, ..., [,)€I; there exists a unique complex
number which we shall denote by »x; such that |»]=1 and

) Udetposer, = %1053 p

Indeed: If not, we can find a minimal (w.r.t. =) i€l; not satisfying (23). Now
U*,1 o =0y, ., for some vectors h€0B(H,)(k=1,...,n). Since obviously
1 i, 12 %n

i¢1,, for arbitrarily fixed k, there is £k with i;=1. Consider the multiindex j
defined by j,=[i, if £k, 1if £=k](/=1, ..., n). By the minimality of 7, U*éel n =

1 ,eJ
=x15f‘1,1,...,p;"- Since U* (7—15—541,...,e’,‘"+'l/_1§'5e}l,...,e'j'"
we can see hllff ie. h=a, f¥ for suitable «;€94 (k=1, ..., n). :

Then let 7 be a maximal thick subset of I, such that I, >/, and »;=1 Vicl.
(Remark: »;=1 vi€l,.) We shall show that necessarily /=1;. Hence and from the
linearity of the mapping U, (23) immediately yields the statement of the lemma.

Assume IN\J# 5. Let j be a minimal element of I,;\/. Observation: Vi€l
Jj#i=j=icl. Le.the family I’=7U {/} is thick. Therefore it suffices to prove x; —1
(which contradicts our’ assumption). By writing J={1,/,}X...X{1,/,},

l’ (,* — —
58i+e,. aefte] = 2& 5, e, 2 ”i‘sf,ll,...,f;'
i n n

)EK*, using Lemma 4.2

= xjéf}’l f,.+,6,§m5 e j;n = (K —1)51-} reor +5f1+f11’ vfx+f"

However, the function U*6. el oere] has the form 9, whence directly

”j:-l.

4.4. Corollary. The vector fields V being tangent to 0B(E) are exactly those of
the form

=1 -12 idHl® ces ®ide-1®Aj®ide+1® ves ®idHn
=1
where each A; is a self-adjoint H ;-operator.

Proof. For every H;-operator U; there is a self-adjoint 4; with U;=exp (i~ 4;).
. d
Thus by Proposition 4.3, ¥ has the form V=—d—t exp (it-A)®...Qexp (it-A,).
0
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Generalized resolvents of contractions

H. LANGER and B. TEXTORIUS

1. Let T be a contraction (that is a linear operator of norm =1), defined on a
closed subspace D(T)(=9H) of some Hilbert space $ and with values in $. By
a contraction extension (c.e.) of T we mean an extension 7 of T to some Hilbert
space $ D%, which is also a contraction. If $=9, the c.e. T iscalled canonical.

Let Ton $ bea c.e. of T, and denote by P the orthogonal projector of $ onto
$. The function ' ) _

1) z—Ri=PT-DYy (2] < 1)

which is defined and holomorphic on the open unit disc D:= {|z| <1} and whose values
are bounded linear operators in $, is called a generalized resolvent of T (generated
by T). The generalized resolvent R, is called canonical if T'=T.

It is the aim of this note to give a description of all generalized resolvents of a
nondensely defined contraction T in a Hilbert space §. This result is an analogue of
the formula for the generalized resolvents of an isometric operator, proved in [1]
for equal and in [2] (see also [3]) for arbitrary defect numbers.* In their turn these
results have their origin in the classical formula of M. G. KREIN on the generalized
resolvents of an hermitian operator with equal defect numbers ([4], [5]).

2. Let T be as above. By T we denote the c.e. of T given by

o Tx xeD(T),
Tx: = {
0 xeD(M)4,
and set
D: =(I-T*T)", D,: = (I-TT"2, 9: = R(D), 9,: = R(D,).

The characteristic function of T* is denoted by X(z) (see [6, Chap. VI)):
X(2): = (=T*=zDR,D)|a,, R,: = (zT—I)"1, z€D.

Received October 20, 1980.

* In these papers the more general case of an isometric operator in a 7.-space (Pontrjagin
space with index x) has been considered.
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It is defined and holomorphic on the open unit disc D and its values are contractions,
mapping 2, into 2, see [6, chap. VI]. By X (or, sometimes, more explicitly by
A (D(T)*L, 9,)) we denote the set of all functions G(z), defined and holomorphic
on D and whose values are contractions from D(T)* into 9,, by H, (or HH(D(T)*,
9,)) the subset of ), consisting of all G€#* which are independent of z. Finally,
I' is the orthogonal projector of § onto D(T)*.

Theorem. Let T be a contraction in the Hilbert space $ with a closed domain
DT)#=H. The formula

) R, = R,—zR,D G(2)(I-TX(2)G(2))*TDR, (lz| <1)

establishes a 1,1-correspondence between the set of all generalized resolvents R, of
T and all GEXA'. The generalized resolvent R is canonical if and only if GEX,.

Proof. a) Let T be a canonical c.e. of T. We define an operator F from
D(T)* into $ by the formula Fx:=Tx (x¢ D(T)L). Then we have

TT*+FF*=1 or FF*=I-TT*=D:2

Therefore the operator Fy:=F*D;! is a contraction, which is densely defined on
9, and with values in D(T)L. The adjoint of its closure G:=(F,)* belongs to 5.
Observing T7I'=0 we find with R,:=(T—I)"1:

3) R,—R, = zR (T —T)R, = zR(T = T)I'R, = —zR_FTR,.
It follows .
R, = (I+zR,FI)"'R,, TR, = (I+2['R,F)~'TR,,

and (3) can be written as

R,—R,=—zR,F(I+2lR,F)~'T'R, =— 2R, D ,G(I+2'R,D,G)"'T'R,.

Furthermore,

@ ID=r, I'T*=0

and we get

(5) R,—R, =—zR,D,G(I+2I'DR,D,G) TR, =

= —2zR,D,G(I-I'(X(2)-T*G) TR, =
= —zR,D,G(I-TX(2)G) ‘TR, = —zR, D,G (I-T'X(2)G)"'I'DR,.

b) Let now T be an arbitrary (not necessarily canonical) c.e. of Tin §59, R,
the corresponding generalized resolvent. We shall prove the following statement:
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i) If z is fixed in D, then the operator R exists and
® P :

6) T,: = —zl—(R;1+1)

is a canonical c.e. of T.

Indeed, R_x=0 for some x€%,x>0, implies ((zT—I)’lx, x) =0 and
with @: = T—-D"'x we get
0 =((zT-D#,a) or |a|?=z(Ta, a),
hence #=0 as |z]<1 and ||[T||=1, a contradiction. In the same way it follows
that the inverse of R} exists, therefore the range of R, is dense in §.

In order to see that T, is a contraction we first show that the operator S, :=
=R;'+1 (Jz]<1) is a contraction, that is,

M IR:*x+x[? =lx|* or [R7*x|*+2Re(R;*x,x)=0
holds for arbitrary x€R(R,). Putting R;x=y, (zT—I)"1y=7 we have
|R; x|+ 2Re (R *x, x) = ||ly|+2Re (y, cT—-D71y) =
= |(zT—D&|2+2Re ((zT— D)5, 8) = [|zT3)2— 3|2 = 0,
and (7) follows. Further, for an arbitrary pair x, y€$, ||x||=|y||=1, the function
J@:=(Sxy) (z1<1)
is a holomorphic function of modulus =1, which vanishes at z=0. By Schwarz’
lemma, —21,— f(2) is of modulus =1 in D, hence also T,=% S, is a contraction. Finally,

if xeD(T) we find
(T.-T)x = -i—R;l (I+R,—zR,T)x = %R;IF(ZT— D=i(zT—2zT)x =0,

therefore T, is an extension of T. The statement (i) is proved.
Now the results of a) can be applied to the canonical c.e. T, of T. Observing
the relation (z7,—I)"*=R_, the representation (5) gives

R,—R, =—zR,D,G(z)(I-T'X(z)G(2))"*I'DR,,

where G(z):=(F1(_z))*, Fi(2):=F(2)*D;* and F(2):=T./pp1. As T, is ho-
lomorphic in D, the function G (z) belongs to . Therefore, an arbitrary general-
ized resolvent of T admits a representation (2) with some G€.f.

¢) Let now, conversely, a function G€ " be given. According to [6, Chap. V,
Prop. 2.1] its domain D(T)* and range 2, decompose as

D)L =02, 9, = D ®D] resp,,
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such that G°(2):=G(z)|y is a purely contractive holomorphic function (see [6,
Chap. V, 2.2], whose values are operators from ®° into 29, and G’ (2):=G(2)|y,
is a unitary operator from ®’ onto &, independent of z, |z|<]1.

The purely contractive holomorphic function G%(z) is the characteristic function
of some contraction S in a Hilbert space $,, that is, D° and 2 can be identified
with the subspaces @,=m and P, = R(D,.) resp. of H;, and we have

G*(2) = (~S—zDp(zS*~ 1)~ Ds)|s, (lz| < 1).

Thus, D° and 29 can be considered as subspaces of $ as well as of §,. Besides I,
projecting § orthogonally onto D(T)', we introduce the orthogonal projectors
I’ 1,18 and I, in  onto D° D', 2] and 2; respectively and the orthogonal
projectors P and P, onto 9, and P in ;.

Now an extension T'of T, acting in the space HBH,, will be defined as follows:
With respect to the decomposition

909, =D(MODSDDH,
of the initial space it has the matrix representation

® 7 (f(l—r) D,I.G -D,P,S D, r*wst)
0 0 Dy st )

Clearly, T is an extension of T. In order to see that T is contractive we consider the

operator TT*=(t;); j=1,. in H®H,. Observing

-nT* 0
e _|07TiD, 0
= |-Ps*rip, D
Ds:I%D, S

and the fact that G™* maps 2, unitarily onto D": G’G;=I|,; , we find
ty = T(I-NT*+D,I,D,+D,P,SPS*IYD, +D, DL ID, =
=T(U-rT*+D,I,D,+D,P,SS*I%D,+D,I\D:.TD, =
— (- T*+D, D +D,I3D, = TT*+D} = I,
Ty =—D,P,SDs+D, I Ds:S = D, P,(—SDs+Ds:S) = 0,
Ty =DE+S*S =1

Therefore, T is a c.e. of T. Next we have to calculate the generalized resolvent of T,
generated by T. In order to do this we observe the following proposition, whose
simple proof will be left to the reader.
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(ii) If the c.e. T of T, acting in $=H@®$, has the matrix form

~ (T C]
r=(z 2
then we have

B(zT-Dg =(z2T—1—-22C(zA—1)"1B)1.

We apply this proposition to the operator T in (8). With respect to the decom-
position $HPH$; of initial and range space T can be written as

7o (f’+D*F;G’I"—D*P*SI’° D*rws.]
DgI® S*

and we get for the corresponding generalized resolvent
() R, =(zT—1+zD, I G'I"—zD,P,ST°— 2D, I\Dgs(z8*—I)"1DsI) ! =
= (2T —I+2zD(I',G' I’ = P,ST®— 2I'\ Dg.(2S* — ) ' D T%)~* =
=(zf —I+ 2D, ([ G' T'+ %G (D))" = (zT —I+2zD,G(2)I) ™" =
= R,(I+2D,G(z2)[R))™ = R,—zR,D,G(2)(I-I'X(z)G(z))'T'R,.
The last equality follows easily if one observes the relation (4) and
I'X(x)G(z) = —zI'DR,D,G(2).
As the formula (2) can be written as
R, = (zT ~1+2zD,G(z)I)™

(see (9)), the correspondence between the generalized resolvents R, of T and the
functions G€X£ is bijective.

d) It remains to prove the last statement of the theorem. If G,€.¢ is given we
consider the operator T

(10) Fo: — Tx x€D(T)

* = «Gox  x€D(T)-L.

Then T is an extension of T and, moreover, we have

oy

TT* = TTT*+D,G,GiD = TT*+D3 = I,
hence T is a c.e. of T. With the notation of part a) of the proof we find
F = D*Go, Fl = G; and G = Go.

That is, the generalized resolvent of T, generated by T from (10), is given by (2)
with G=G,. The theorem is proved.

9
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Remark 1. In the case of an isometric operator T, the unitary extension T,
generating a given generalized resolvent of T, is uniquely determined (up to iso-
morphisms) if some minimality condition is imposed on 7. This is not true in the situ-
ation considered here. E.g., if G€X;, and G is not a unitary constant, in the proof
of the Theorem (parts c) and d)) two different extensions of T, which generate the
same generalized resolvent, have been given.

Remark 2. With the notation in the proof of the theorem, the operator
T: = (f +D,G'T")|xress

is a contraction in $ which extends 7. Evidently, the operator T'in (8) is a c.e. of T”.
Thus the generalized resolvent R, of T in (9) is also a generalized resolvent of 7.
That is, there exists a function He¢X'(?°, 9,,,), such that we have

R, =Ry .~ zR, , D, , H@)(I-X,()H(2)) IR, ,

(Ioil.,:=(zf"—-1)‘1,D1,*:=(I—1°"(f")*)1’2, Dy, =%(Dy,,) and X, is the corre-
sponding characteristic function). It is not hard to see that the functions G° and
H are connected by the relation

Dl,*H(z) =D,G(2) (lz| <1).

We mention that the construction of the operator T in part ¢) of the proof can
also be used if G decomposes as

G(2) = G,®Gx(2) (Iz2l<1)

where G€X4(Dy, D+,1); Go€H (D, Dyo) (DM =D,0D;, 9=9,,,0P,,,) and
G, is purely contractive. Then the above remark holds also true for the operator

Ty: = (T +D,G[lsmnes,
(I', orthogonal projector onto D) instead of T.
Remark 3. If T is a noncanonical c.e. of T in some Hilbert space $5,

and if -
c
T= [B A]

with respect to the decomposition $=$@ €, then the operator function T, in (6)
can be written as

T, =T+2C(I—zA)"B.

Hence Ty, is the transfer function of the node (4, B, C, T, 2, ) in the sense of [7].
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An analogue of the theorem above can be formulated for a dissipative operator.
In this form it has applications to the spectral theory of canonical differential opera-

tors,

which will be considered elsewhere.

Added in proof. An extension of the Theorem to dual pairs of contractions
will appear in: Proceedings of the 6® Conference on Operator Theory in Timisoara
and Herculane, 1981, Birkhduser (Basel—Boston—Stuttgart, 1982).

[1] M.

[2] H.
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[4] M.
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A note on hereditary radicals

EDMUND R. PUCZYLOWSKI

All rings in this paper are associative. Fundamental definitions and properties
of radicals may be found in [4]. It is known ([3]) that to any radical S there exist
a unique maximal hereditary radical hg and a unique maximal left hereditary radical
Ihg contained in S. Of course hsC S={A| any ideal of 4 is in S} and /hsCS §={4|
any left ideal of A4 is in S}. It is easy to see that S and S are radicals and S is here-
ditary (left hereditary) if and only if S=35(S=35). The radicals § and § were in-
troduced in [2] to 1nvest1gate hereditariness of strong and similar radlcals Obviously

hsS SCS 8§ and IhsS Sc C §. Inthe note we prove that hs==S and lhg= S and that there
exists a radical S such that hs=8 and Ihs=S.
To denote that 7 is an ideal (left ideal) of a ring 4 we will write J<a4 (I<A).

Lemma 1. If A is an S-radical ring and for some integer n, A"**=0 then
A S.

Proof. It is easy to see that for any a€A4" the mapping f,: A—~A"*! defined
by f,(x)=ax is a ring homomorphism. But f,(4)=ad<14"*'. Thus ad€S and
A"tl= 3 ade€S.

acAar

Proposition 1. If S is a radical such that any zero-S-ring is in S then S=h.

Proof. Let J<l<aA. If J* is the ideal of 4 generated by J and A€S then
J* and (J*)® are in S. Thus by Lemma 1 (J*)*¢S. Now the assumption implies
J+(J*)%€S. Since, by Andrunakievich lemma, (J*)*CJ, similarly, we obtain that
JN(*2eS. This and the fact that (J+(J*)?2)/(J*2~J/((J*)?NJ) implies JES.
Thus if A¢S then A4¢€S, so S=S=hs.

Of course for any radical S the radical S satisfies the assumption of Proposition
1, so we have

Received July 22, 1980, and in revised form, May 5, 1981.
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Corollary 1. For any radical S, hs=S

Remark. It is easy to check ({1]) that for any radical S, hs=aS={4| every
accessible subring of 4 is in S}. Thus, by Corollary 1, aS=S8 for any radical S.
Now we prove

Proposition 2. For any radical S, Ihs=S:.

Proof. If K<L<A then LK<A and LK<K. Thus if A¢S then I=LKeS.

Now if R<K then R+I<L and, since A€§ R+IeS. Also RNIES as RNI<]
and I€8. These and the fact that (R+D/I=R/(RNI) imply ReS. Hence if

AES then LES so the radical § is left hereditary. This and the fact that thQS
ends the proof.

Example. Let Q be the field of rational numbers, Z the ring of integers and R

, b 0,b
0 0) where a, b€ Q. Then I= {(O, OJleQ}

is an ideal of Rand J= {[0 O)I z€Z } an ideal of 1. Let .S be the lower radical deter-

the ring of all 2 X 2-matrices of the form [

mined by {R,I}. Since R and I are divisible rings, all S-rmgs are divisible. Thus
J¢S and R¢S. Since ReS and SCS therefore §»S and §=38.

The above example shows that generally Ihg=S. In the following proposition
we will describe some radicals for which Ihg=S.

Proposition 3. For a radical S we have lhs=S, provided a) S contains all
zero-rings, or b) L<A and A€S imply L=AL.

Proof. Let A¢S and K<L<4. Since LK<A, we have LK¢S. But LK<k
and (K/LK)*=0, so if S satisfies a) then K€S. If S satisfies b) then K=LK¢cS
as K<L and L€S. Thus in both cases K€S. In consequence L€S and-Sis left
hereditary. Hence lhs=S.

Now we will show that there exist non-hereditary radicals satisfying condition
b) of the proposition above. Let us define for any class M of rings the class M, =
{AeM| if L<A then AL=L}. We have

Proposition 4. If a class S is radical then so is S;.

Proof. Certainly the class S, is homomorphically closed and any ring which
is the sum of a chain of §;-ideals is in S;. So it suffices to prove that if I<a4 and
LA/l are in S; then 4 is in S;. Let L<A. Then I(LNI)=LNI. Also
A/ (L+D/N)=(L+D)I, so AL+I=L+I. Thus if lcL then I=m+i for some
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meAL, icl. But since ALCSL, icLNI Thus the equality I(LNI)=LNI
implies i€AL and l€AL. Hence L=AL and the result follows.

Corollary 2. Let S be the lower radical determined by a class M. If M=M,
then S=S,.

Proof. Since MS S therefore M=M,<S S,. Now by Proposition 4, S, is a
* radical class containing M, so SESS,.

Let M={R}, where R is the ring of the Example. Then M =M, and by Corol-
lary 2 the lower radical S determined by M satisfies condition b) of Proposition 3.
It is easy to see that any non-zero S-ring contains a non-zero idempotent element.
Thus S is not hereditary as R contains a non-zero nilpotent ideal.
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Approximate decompositions of certain contractions

PEI YUAN WU

In this paper we obtain an approximate decomposition -for contractions the
outer factors of whose characteristic functions admit scalar multiples. We show that
such a contraction is quasi-similar to the direct sum of its C., and C., parts. This
class of operators includes, among other things, weak contractions and C,. contrac-
tions with at least one defect index finite. In particular, our result generalizes the
C,—C;, decomposition for weak contractions. Applying this to C,. contractions,
we obtain that any C,. contraction with at least one defect index finite is completely
injection-similar to an isometry. As consequences, we are able to characterize, among
C,. contractions, those which are cyclic, have commutative commutants or satisfy
the double commutant property.

In Section 1 below we first fix the notation and review some basic facts needed
in the subsequent discussions. Then in Section 2 we prove the approximate decom-
position and some of its consequences. In Section 3 we restrict ourselves to C,.
contractions.

1. Preliminaries. In this paper all the operators are acting on complex, separable
Hilbert spaces. We will use extensively the contraction theory of Sz.-NAGY and
Foras. The main reference is their book [8].

Let T be a contraction on the Hilbert space H. Denote by Dyp=ran (I—T*T)!/2
and Dp.=ran (I-TT*)"? the defect spaces and dp=rank (I-T*T)}? and dp.=
=rank (/—~TT*/® the defect indices of T. T is completely non-unitary (c.nu.) if
there exists no non-trivial reducing subspace on which T is unitary. T is of class C,.
(resp. C.,) if T"x+»0 (resp. T*"x+0) for any x=0; T is of class C,. (resp. C.g)
if T"x-~0 (resp. T*'x—0) for any x. C,,=C,.NC., for «, f=0,1. Let T=
[T X
—[0 T,
T is c.n.u., then this triangulation corresponds to the canonical factorization @,=

] be the canonical triangulation of type [glé ] on H=H,®H,. If
-0

Received February 25, 1981.
This research was partially supported by National Science Council of Taiwan, China.
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=0,0, of the characteristic function {Dr, Drs, @7 (A)} of T, where {D, §,
0,(1)} and {§, Dy, O:(1)} are the outer and inner factors of O, respectively.
Moreover, the characteristic functions of T and T, are the purely contractive parts
of @, and @,, respectively. For c.n.u. T, we will consider its functional model, that is,
consider T being defined on the space H=[H?*(D.)®47L3(Dy)]O {Orwdd w:
weHY (D)} by T(f@g)=P('fde'g), where A, =(—0%O)V? and P denotes
the (orthogonal) projection onto H. Then H, and H, can be represented as

H, = {O,uddv: uc HA(F), v€ A7 LA(Dp)} o {Orwd dyw: we HE(Dq)}
and
H, = [H¥(Dr)© 0. H3(F)]© {0}

A contractive analytic function {D, D,, © (1)} is said to admit the scalar mul-
tiple 5(A) if 6(A)z0 is a scalar-valued analytic function and there exists a contrac-
tive analytic function {D., D, (1)} such that Q()OA)=6(M)Iy and O(H)QA)=
=8(W)l,, for all A in D={1:[A|<l}.

For an arbitrary operator T on H, let {T}’, {T}” and Alg T denote its commu-
tant, double commutant and the weakly closed algebra generated by T and 7. Let
Lat T, Lat “T and Hyperlat T denote the lattices of invariant subspaces, bi-invariant
subspaces and hyperinvariant subspaces of T, respectively. Let u, denote the mul-
tiplicity of T, that is, the least cardinal number of a subset K of H for which H=
=V T"K. Tiscyclic if ur=1. For operators T, and T, on H, and H,, respectively,

n=0
TIQT2 (resp. T, <T,) denotes that there exists an injection X: H,—~H, (resp. an
injection X: H,—~H, with dense range, called quasi-affinity) such that T, X=XT;.

ci
T,<T, denotes that there exists a family {X,} of injections X,: H,~H, such that
Hz—V X.H, and T,X,=X,T, for each a. T; and Tz are quasz-szmzlar (T1~T2) if

T1-<T2 and T,<T,; they are znjectzon-szmzlar (T1~T2) if T1<T2 and T2<T1,

they are completely injection-similar (T1~T2) if T1<T2 and T2-<T1. Note that
T, < T, implies that Ky, Ehy,.

2. Approximate decomposition. We start with the following major result.

Theorem 2.1. Let T be a contraction on H and let T= [g" ;‘f] on H=H,®H,
2

, . , (&} .. .
be the canonical triangulation of type [0 ‘12 ] If the characteristic function of Ty
. 0.

admits a scalar multiple, then T ~T,@&T,. Moreover, if T is c.n.u., then there exist
quasi-affinities Y: H~H,®H, and Z: H,®H,—~H which intertwine T and T, T,
and such that YZ=6(T,&®T,) and ZY=6(T) for some outer function o.



Approximate decompositions of contractions 139

Proof. Let T=U®T’ be decomposed as the direct sum of a unitary opera-

tor U and a c.n.u. contraction T’. Let T'= [ ] be of type [ ] Then
u 0 0
T=}0 T; «]|,
0 0 T;

where [(()] 3,1,] is of class C_; and Ty is of class C ,. Hence by the uniqueness of the
canonical triangulation, we have T,=U®T; and T,=T, (cf.[8], p. 73). Note that

the characteristic functions of T, and Ty coincide. Therefore the characteristic func-
tion of 7 also admits a scalar multiple. If we can show that T’ ~T;@T;, then T=
=UT ~UT,T,=T,dT,. Hence without loss of generality, we may assume that
T is c.n.u. As remarked before, we can consider the functional model of T. Let
be an outer scalar multiple of &, (cf. [8], p. 217) and let {§, Dy, 2(A)} be a contractive
analytic function such that Q©,=6l, and ©,Q=0l;. Define the operator S:
H,~H, by Suo0)=P(0a(—4 Q@*u)) for u®0c¢H,. Note that
0(—4;9263u) is orthogonal to H, and therefore P(OEB(—ATQ@;‘u)) is indeed
in H;.
We first check that T,8—ST,=6(T,)X. Note that for u®0€H,, we have
T,(u@0) = (e ud0)— (O w4, w) —(Ou’ V') =
= (€' U—Orw—0,u")D(—A;w—1") =(e*u—Orw— Opu") B0
for some w¢H?*(D;) and O,u' ®v'¢H,, where the last equality follows from the
fact that T,(u®0)€H,. Moreover, X(u®0)=0,u"®v’. Hence
(T:S—ST)(uad0) =

=T, P(0B(— 4720 u))—S(("u—Orw—0,u")H0) =

= P(0®(—e" 47 Q05u))—P(0D(— 47 QO (e u—Orw—0,u))) =

= P(O@(‘ATQ@;@TW—ATQ@)zkggu,)) - P(O@(—ATJW"‘ATQU,)).
On the other hand,

(M) Xud0) = s(TN(O,u" D) = P(0O,u' D) = P(OQu'Bo’) =
= P(0®(6v' — 41 Qu)).

Since —Arw—v"=0, we obtain that T,5—ST,=J(T)X as asserted.

5(Ty) S (V-5
Let Y= [ ]H HoH, and Z=[) ;0

is the operator which appears in the triangulation of § (1) with respect to H,®HH,:

]:HIGBHZ—»H, where V'
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H(TYV

0 o(Ty)

statement is proved.
() YT=(T\eTyY.

[5(T,) S][o TJ [<5(T1)T1 5(T,)X+ST2]_

o(T) = ] We complete the proof in several steps. In each step the first

Yr

0
(ii) Z(T,®T.)=TZ. Since

oLl 3P T

il R S R

RN v

] [T1 (T T,V +X5(T2)]
6(T) To(Ty I’
we have S(TYX+VT,=T\V+X6(T,). From T,5—ST,=46(T)X we obtain that
T.S—ST,+VT,=T,V+X3(T,). A simple computation using this relation shows
that Z(T,©T)=TZ.
(iii) ZY=6(T).
[I V- S] [é(Tl) S] [5(T1) S+V -—S
o a1 (T
(iv) YZ=46(T,&®T,). Since

[5(T1) S] [I V—-S] B [5(T1) 5(T1)(V—S)+S5(T2)]
0 sl o 8(T>) ’
to complete the proof, it suffices to show that &(7)(V —S)+S6(T,)=0. Note that
YT=(T,@T,)Y implies that Y§(T)=$6 (T1 ®T,)Y. But
[5 (1) ] [6 (1) ] [5 (TY? (T)V +S6(Ty)
o(Ty) o(Ty)

= o(T).

Yo(T) =

n 8T) O Hacr,) s] [6(T1)° 5(T)S
0 (T (T 1

We conclude that STV +S6(T,)=06(T1)S as asserted.
(v) Y and Z are quasi-affinities. Since d is outer, 6(T3) and §(T,) are quasi-af-
finities (cf. [8], p. 118). It can be easily checked that ¥ and Z are also- quasi-affinities.
It is interesting to contrast the preceding result with [14], Theorem 1, where
the problem when T is similar to T, T, was considered. Here we make a weaker

(T BTYY = [
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assumption to obtain a (necessarily) weaker conclusion. Indeed, the intertwining
operators Y and Z constructed here are closely related to the invertible intertwining
operator appearing in the proof of [14], Theorem 1.

Corollary 2.2. Let T=[(])11 g] be as in Theorem 2.1. Assume that T is
2

cnu. Then Lat T=Lat(T,07T,), Lat”"T=Lat"(T\®&T,) and Hyperlat T'=Hy-
perlat (T, Ty,).

Proof. Let Y and Z be the operators constructed in the proof of Theorem 2.1.
For K¢Lat T and L¢Lat(T,8T,), consider the mappings K—~YK and L—ZL.
It is easily checked that they are inverses to each other and preserve the lattice oper-
ations. Hence Lat T'=Lat(T;&7T,). To complete the proof, it suffices to show that
(i) K€Lat” T implies that YKcLat” (T,®T,) and (i) K€Hyperlat T implies that
YKcHyperlat (T,@®T,). Then by a symmetric argument we also obtain that L€
€Lat” (Ty®T,) and LcHyperlat (T,®T,) imply that ZL€Lat”T and ZL¢€
€Hyperlat T, respectively.

To prove (i), let S€{T,&T,}". We first check that ZSY¢€ {T'}". Indeed, YVZ¢
e{T@T,} for any Ve{T}. Hence ZSYVZ=ZYVZS=6(T)WZS=V(T)ZS=
=VZo(TyeT,)S=VZSo(T1&T,)=VZSYZ. 1t follows that ZSYV=VZSY,
and therefore ZSY€{T}" as asserted. Since K¢cLat” T, we have ZSYKCK.
Hence YZSYKCYK. But YZSYK=6(T,&®T,)SYK=SY5(T)K=SYK. We con-
clude that SYKCSYK which shows that YK¢Lat” (T 1®0T,). An analogous but
easier argument than above shows that (ii) is also true. This completes the proof.
T, X
0T,
invariant subspaces K, and K, of T such that K,V K,=H, K,NK,={0}, T|K; is of
class Cy, and T|K; is of class C.,. Moreover, K, and K, can be chosen such that
K,=H, and T|Ky~T,.

Corollary 2.3. Let T= ] be as in Theorem 2.1. Then there exist bi-

Proof. As in the proof of Theorem 2.1, we may assume that T"is c.n.u. Let Y '
and Z be the operators constructed there, and let K, =Z(H,®0) and K,=Z(0D H,).
Then K,, K,€Lat"T,K;VK;=H and K;NK,={0} by Corollary 2.2. From the
definition of Z, it is easily seen that K;=H,. On the other hand, since Z|0¢ H,:
O®H;~K, and Y|K,:K,~0@H, are quasi-affinities which intertwine 08T,
and T|K,, we have T|K,~T,. Moreover, it is easy to check that in this case T|K,
must also be of class C 4, completing the proof.

We remark that if T =[T1 X,] is the type [C°‘ * ] canonical triangulation
0 T, 0 C,.

of the contraction T and if the characteristic function of T; admits a scalar multiple,
then, by considering T*, we obtain results analogous to Theorem 2.1 and Corol-
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laries 2.2. and 2.3. Also note that weak contractions and C; . contractions with dy < oo
(cf. Lemma 3.2. below) are among the operators satisfying the assumption of The-
orem 2.1. When applied to weak contractions, Theorem 2.1 yields the following result
which has been obtained before in [15].

Corollary 2.4. Let T be a c.n.u. weak contraction and let Ty and Ty be its C,,
and C, parts. Then T,~T®T;.

Ty X] and T =[§1 ’;,,,] be the triangulations of types
2

Proof. Let T= 0 T,

[C'l *1 ang [Co * ], respectively. Since the characteristic functions of T;
0 C, 0 C,.

and T admit scalar multiples (cf. [8], p. 325 and p. 217), by Theorem 2.1 and the
remark above we have T,®T,~T~T;®T,. Note that T, and T are of class C,,
and T, and Tj are of class C,, it is routine to check that T;~T, and T,~T; (cf.
proof of [15], Theorem 1). Hence T~T,@7; as asserted.

Note that Corollary 2.2, generalizes the corresponding results for Lat”7T and
Hyperlat T when T is a c.n.u. weak contraction with finite defect indices (cf. [18],
Corollary 4.2. and [17], Theorem 3). Indeed, in this case Lat"T=Lat”"(T,®T,)=
Lat"T,®Lat"T,>=Lat"T,@Lat"T;=Lat”(T,®T,;) and similarly for Hyperlat T,
where T, denotes the C, part of T.

As for Corollary 2.3, it generalizes the C,—C,, decomposition for c.n.u. weak
contractions (cf. [8], pp. 331—332). To verify this, we have to show that, in the con-
text of Corollary 2.3, if T is a c.n.u. weak contraction, then T'|K; is the C, part of T
Since T|K,~T, is of class C;, we have K,SH;={x€¢H:T"x—~0 as n—}. On
the other hand, since T,~T|H;=T, (cf. proof of Corollary 2.4), we have T|K;~
~T7. Note that ¢(T})Sa(T) (cf. [8], p. 332). Hence T is a weak C, contraction.
Let W:H;—~K, be a quasi-affinity intertwining 77 and T|K, and let V:K,—~H;
be the restriction of the identity operator. Then VW is an injection in {T;}. We

- infer from [1], Corollary 2.8 that ¥'W is a quasi-affinity. It follows that K,=H;
whence T|K, is the C, part of T.

3. C,. contractions. In this section we restrict ourselves to C,. contractions with
at least one defect index finite. We will show that they are completely injection-similar
to isometries and characterize various algebras of operators associated with them. We
start with the following lemma.

Lemma 3.1. Let T be a c.nu. C,. contraction with dy=dr.<o. Then T is
of class Cy;.

Proof. Since T is of class C,., its characteristic function {D;, Dps, O1(1)}
is a *-outer function. Hence @1(1)*: Dy.~D, has dense range for all A in D (cf.
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[8], p. 191). We conclude from the assumption dy=dr.<<o that det ©;%0. By
[8], Theorem VII. 6. 3 we infer that T is of class Cy,. )

Lemma 3.2. Let T be a C,. contraction with dr<o and let T= gl ;]
2

be of type [gl C*f ] Then Ty and T, are of classes Cy, and C,, respectively.
.0 .

Proof. Obviously, T, is of class Cy;. As in the proof of Theorem 2.1, we may

assume that 7" is c.n.u.. Let T2=[Ts *] be the triangulation of type [C"' * ]
0 T, 0 C,.

Note that T, is of class C,,. Indeed, since T, is of class C.,, we have Ty"=

T*n

= [* T*n

C. and thus of class Co. We have

]—»0 strongly. It follows that T3"—0 strongly. Hence T, is of class

T, * *
T = 0 T3 *
) 0 0 T,

Let T'= [0 Ta] with the corresponding regular factorization ©,,=0;60,,

where {Dr., Dps, O (1)} is factored as the product of {Dr., F, ©,(1)} and {§F,
Dy, O3(A)}. Since T, and T are of classes Cy; and Cy, the purely contractive parts
of ©, and @; are outer and inner from both sides, respectively (cf. [8], p. 257). We
deduce that dim D;.=dim § and dim F=dim Dz, (cf. [8], p. 192). It follows
that dim ®; =dim Dy, that is, dp=d;.. Note that T’ is of class C,.
and dp =d;< . Hence by Lemma 3.1, T" is of class Cy,. This implies that T is of
class C.,, contradicting the fact that T, is of class Cy,. We conclude that T, itself
must be of class C,. and therefore of class Cy,.

If T is a C,. contraction with d;<<e, then as shown above T; is of class Cy;
and has finite defect indices. Hence its characteristic function admits a scalar mul-
tiple (cf. [8], p. 318) and therefore Theorem 2.1 is applicable. In particular, we have
the following corollary..

Corollary 3.3. Let T and S be C,. contractions with finite defect indices and let

T= [0 Tz] and S= [0 Sz] be the triangulations of type [O C. ] Then T~ S if
and Only lj‘ TINSI and T2~S2.

Proof. The conclusion follows easily from the preceding remark and [22],
Theorem 6. .
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Lemma 34. Let T=U®..®U,®S, on 'H=LE)®..0LE,)®H],
where 0=p, q=-co, L[;'s are Borel subsets of the unit circle satisfying E,2FE,2...2
DE,#@,U; denotes the operator of multiplication by " on L*(E)),i=1,...,p,
and S, denotes the unilateral shift on H 2. Then pp=p+gq.

Proof. Let U=U®...®U,. It is well known that ,uU—p and Ms, =4
Hence pyp=py+ s, =p+4. On the other hand, for almost all e* in E,, consider
H,={h(e"): heH}. “Obviously, H,=C'*. We assume that N=p; <o for other-
wise the assertion is trivial. Let K={h;, ..., hy} bea set of vectors in H such that
H= {7 T*K. Then H={p,(T)hy+...+py(T)hy: p1, ..., py polynomials}~. We de-

k=0
duce that H,= {p,(€") hy(€®)+ ... +pn(€hy(e™): Py, ..., py Polynomials)~ for almost
all ¢" in E,, that is, H, is spanned by the set of N vectors {hy(e"), ..., hy(e")}.
Hence we must have p+g¢g=N, and thus pu;=N=p+q.

Now we are ready to show the complete injection-similarity of C;. contractions
with isometries. The next theorem not only generalizes [20], Theorem 2.1 but the
proof is much simpler.

Theorem 3.5. Let T be a C,. contraction with dp<o. Then T is completely

injection-similar to an isometry. If T is c.n.u., then U@ S,,,_,,2T< UdS,_,, where
m=dgs, n=dy, U denotes the operator of multiplication by " on A;L?and S, _,
denotes the unilateral shift on H:_,. In particular, p+m—n=p,=p+2(m—n),
where p=ug.

Proof. We may assume that T is c.n.u.. Let T= ] be the triangulation

[0 T,

of type ] with the corresponding factorization @;=0,0;. By the remark

o e
before Corollary 3.3, we have T~T,®T,. Note that T, being of class Cy, is
quasi-similar to U on 4,L:=A,L%, where 4,=(—0FO)* (cf. [8], pp. 71—T72).
On the other hand, since the characteristic function of T, is the purely contractive
part of @,, we infer that dy,=n—r and dpg=m—r for some r with 0=r=n.

Hence for the Cy, contraction T, we have S,-,<T5<S,-, (cf. [7], Theorem 3).

We conclude that U S, _, <T< UdS,,_,. Finally we verify the assertion concern-
ing pr. Note that T<U® S,,—, implies that pr=pves, ,=p+m—n by Lemma

3.4. On the other hand, we have pr=pror,=pr,+pr,=p+2(m—n) (cf. [10],
Theorem 2). This completes the proof.

Unfortunately, we are yet unable to show the uniqueness of the isometry com-
pletely injection-similar to T" although its unitary part is indeed unique. This follows
from the following lemma.
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Lemma 3.6. For j=1,2, let V;=U;®S; be an isometry, where U; is a uni-
i
tary operator and S| is a unilateral shift. If Vy~V,, then U ==U,,.

Proof. Assume, that V;=U;®S; is acting on H;=K;®L;,j=1,2. Let X:
H,~H, and Y: H,—H, be the injections which intertwine V; and V,. We claim that
XK,SK,. Indeed, for any x in K; and n=0,x=Uly, for some y,€K,. Hence
Xx=XUly,=XV1y,=ViXy,CVIH, for any n=0. It follows that Xx€ () V' H,=

i n=0
=K,, as asserted. Similarly, we have YK,EK;. Thus U,~ U,. We conclude that
U, and U, are unitarily equivalent to direct summands of each other (cf. [3], Lemma
4.1). By the third test problem in [5], this implies that U,z U,.

1
We conjecture that if V;~V, and puy, oo then V,=V,.
The next two theorems characterize those Cj. contractions which are cyclic or
have commutative commutants. Analogous results have been obtained before for
C., contractions (cf. [23], Theorems 1.3 and 1.5).

Theorem 3.7. Let T be a c.n.u. Cy. contraction with dp<eo. Then the follow-
ing statements are equivalent:

(1) T is cyclic;

(2) Tisof classCyy and T~My or T'is of class Cyy and T~ S, where M, denotes
the operator of multiplication by e" on L2(E), E being a Borel subset of the unit circle,
and S denotes the simple unilateral shift.

The proof is the same as the one for [20], Theorem 3.2.

Corollary 3.8, Let T be a c.nu. Cy. contraction with dp<eo. If T is cyclic,
so is T* but not conversely.

Proof. If T is cyclic, then T~M, or T~S. Hence T*~M5% or T*~S*.
In either case, T* is cyclic. The converse example is given by T=S®S (cf. [4],
Problem 126).

Theorem 3.9. Let T be a c.nu. Cy. contraction with dy< e, Then the follow-
ing statements are equivalent:

M) {Ty={1}";

(2) T is of class Cyy and T~My or T is of class Cyy and dp—dp=1.

Proof. (2)=(1). If T is of class Cy; and T~My, then obviously T is cyclic.
Hence (1) follows from [9], Theorem 1, On the other hand, if T is of class C,, and
dry—d,=1, then (1) follows from [23], Theorem 1.5.

X
1)=@2). Let T= [(];1 | on H=H,®H, be the triangulation of type
2 .
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[(C)'lé ] As proved in Theorem 3.5, T,~U, the operator of multiplication by
-0

e*on A; L2, and T,<S,,_,, where m=dy, and n=d;. We consider the following
two cases:

(i) If m=n, then T=T; is of class C,; by Lemma 3.1. Note that there are
quasi-affinities Y: H—~4,;L% and Z: AL}~ H which intertwine T and U and such
that YZ=6(U) and ZY=48(T) for some outer function 4 (cf. [21], Lemma 2.1).
It is easily verified that {T}={T}" implies that {U} ={U}". Therefore U is cyclic
(cf. [6], §3) and so T~M  for some Borel subset E.

(i) If m#n, then there exist finitely many operators Z;: H2_,~A;L? which
intertwine S,,_, and U and such that V ran Z,:FL?, (cf. [2], pp. 299—300). Hence

there exist Y;: Hy,~H, which intertwine T, and T, and such that \/ ran Y;=H,.

On the other hand, using Theorem 2.1 and the assumption {T} ={T}" we infer
that {T,®T,} ={T1®T,}". Thus any operator Y: H,—~H, which intertwines T,
and T, must be 0. We conclude from above that H,= {0}, that is, T is of class Cy.
Moreover, {T} ={T}” implies that m—n=1 (cf. [23], Theorem 1.5).

Corollary 3.10. Let T be a c.n.u. Cy. contraction with dr<eo. If T is cyclic,
then {T}Y ={T}" but not conversely.

Proof. The converse example is given in [10], pp. 321—322.

We remark that Corollaries 3.8 and 3.10 have been obtained before by Sz.-NaGy
and Foias [9], Theorem 1 and [6].

In the final part of this paper, we determine when a C,. contraction satisfies the
double commutant property. Since a c.n.u. C,. contraction T with d;< e is comple-
tely injection-similar to an isometry with an absolutely continuous unitary part, to
motivate we first consider for such isometries. The next lemma partially generalizes
[12], Theorem 3.3. ‘

Lemma 3.11. Let V=U®S be an isometry on H=H,® H,, where U is a
unitary operator and S is a unilateral shift. Assume that U is absolutely continuous.
Then the following statements are equivalent:

(1) §#0;

(2) V is not unitary;

@) VY ={e(V): pcH"}.

Proof. (1)«<(2). Trivial.

v 1)=>(3). Let Te{V}". Then T=T,&T, where T,€{U}" and T,c{S}".
Since S#0, there exists @€ H = such that T,=¢(S). As before, there are (possibly

infinitely many) operators Z;: H,—~H, which intertwine S and U and such.that
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V ran Z;=H, (cf. [2], pp. 299—300). Hence ¢ (U)Z;=Z;0(S)=2Z,T, for all i.
On the other hand, since Y,-E[g gi]E{V}’, we have TY,=Y;T. A simple compu-

tation shows that T,Z,=Z;T,. Thus T,Z;=¢(U)Z; for all i. We conclude that
T1=¢(U) and hence T=¢(V).

B3)=(1). If §=0, then V=U is a unitary operator. Hence {V}'={y(¥):
Yy€L=}, which is certainly not equal to {@(V): €H>}.

Next we show that C,. contractions share similar properties. We need the follow-
ing lemma.
T, X

Lemma 3.12. Let T be a contraction on H and let T= [0 T

on H =H,®H,
be the triangulation of type [0 C ] Then H, is hyperinvariant for T.
-0

Proof. Note that Hy={x€H: T*"x—~0} (cf. [8], p. 73). For S€{T}, we have
T*S*x=S*T*x—~0 as n—o for any x¢H,. This shows that S*H,CH,. It
follows that SH,C H,;, whence H, is hyperinvariant for T.

Theorem 3.13. Let T be a c.nu. C,. contraction with dp<oo. Let m=dy,
and n=dy. Then the following statements are equivalent:
(1) m#n;
(2) T is not of class Cyq;;
. O {1V ={e((T): peH™}.

Proof. (1)<(2). This follows from Lemma 3.1 and the fact that Cy, contrac-
tions have equal defect indices.

(1)=(3). As in the proof of Theorem 3.9, if m>#n then there exist finitely many
operators Y;: H,~H, which intertwine T, and 7; and such that V ran Y;,=H,.

Let We{T}". By Lemma 3.12, W= [O W] on H=H1®H2. Obviously,
2

Woc{T.}. We check that actually W,€ {T,}". Let R€{T,}, and let ¥ and Z be the
operators constructed in the proof of Theorem 2.1. It is easily seen that Z(I/@ R)Y¢
€{T}. Hence Z(I®RYW=WZ(IDR)Y. A simple computation shows that
O(T)RW =W S (T)R=6(T)W,R. Since &(T,) is an injection, we have RW,=
=W,R whence W€ {T,}" as asserted. Thus there exists ¢€H*= such that W,=
=¢(T,) (cf. [13], Theorem 1). We have o (T))Y;=Y;¢(T,)=Y;W, for all i. On the

other hand, since X,-E[g é,i]E{T}’, we have WX;=X,W. It follows that W,Y,=
=YW, whence W,Y;=¢(T)Y; for all i. We conclude that W,;=¢(T,). Thus W

s o (Ty) * ] o(Ty) *
is triangulated as [ But we also have T [ ] Hence
e 0 oy *M=lo" " oy

10*
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W—o()= [8 g]e {T'}", say. To complete the proof, it suffices to show that @=0.
To this end, let S: H,—~H, be the operator defined in the proof of Theorem 2.1 and

let A= 5(Tl) S] It is clear that A€{T). Hence A(W—o(T))=(W —¢(T))A.

A simple computation shows that (7,)Q=0. Since 6(7})is an injection, we conclude
that 0=0, completing the proof.

(3)=(2). If T is of class Cy;, then {T}" has been given in [19], Lemma 2. We
will show that it is not the same as {¢(T): ¢€ H=}. Note that T is quasi-similar to
the operator U=U,®...®U, on K=I%E\)®...®L*E,), where 0=p=n, E;=
={e": rank 47(e")=j} are Borel subsets of the unit circle satisfying E;2E,2...2
2E,#0 and U; denotes the operator of multiplication by e" on L¥(E),j=1,2,.

. p (cf. [16], Theorem 2). Let =det @1 and Q be the algebraic adjoint of @T
Since 820, there exists some >0 such that F={e“cE,: |6(¢")|=¢} has positive
Lebesgue measure. Let G C F be such that G and F\G both have positive Lebesgue
measure. Let

0 0

V=P 1
_XGKATQ X

It is easily checked that V€ {T}” (cf. [19], Lemma 2). If ¥V =¢(T) for some @€cH>,
then y;=¢ on A7 L. In particular, y;=¢ a.e. on E;. This is certainly impossible.
We conclude that {T}' = {o(T): p€ H=}.

Corollary 3.14. Let T be a c.nu. C,. contraction with dy<dp.=e. If T is
cyclic, then {T}Y ={o(T): € H~}.

Proof. This follows from Corollary 3.10 and Theorem 3.13.

The preceding corollary has been obtained before in [11], Lemma 1.

Corollary 3.15. Let T be a c.nu. Cy. contraction with dp<oo. Then the fol-
lowing statements are equivalent:

M (T} =AlgT;

() either d #dp or dp=dp. and O (e") is isometric for " in a set of positive
Lebesgue measure.

. Proof. The assertion foliows from Theorem 3.13 and [18], Theorem 3.8.
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When is a contraction quasi-similar to an isometry?

PEI YUAN WU

In this paper we answer the question in the title for contractions with finite
defect indices. More precisely, we show that if 7" is a contraction with finite defect
indices then T is quasi-similar to an isometry if and only if T is of class C|, and there
exists a bounded analytic function @ such that Q6,;=4I for some outer function &,
where @ denotes the characteristic function of T. This condition is analogous to the
one for a contraction similar to an isometry (cf. [3], Theorem 2.4.). We will also derive
some related results.

In the following all the operators are acting on complex, separable Hilbert
spaces. The main reference is the book of Sz.-NAGY and Foias [2]. Recall that for
operators T; and T, on H, and H,, respectively, T;<T, denotes that T, is a quasi-
affine transform of T,, that is, there exists a one-to-one operator X: H, ~H, with
dense range (called quasi-affinity) such that T,X=XT,. T, and T, are quasi-similar
(Ty~T,) if TZy<T, and T,<T;.

For a contraction T, let dy=rank (/—T*T)/2 and dp=rank (I—-TT*)/2
denote its defect indices and let @ denote its characteristic function. For any n=1,
let S, denote the unilateral shift on HZ. The next lemma characterizes those contrac-
tions which are quasi-similar to a unilateral shift.

Lemma 1. Let T be a contraction with finite defect indices. Then the following
statements are equivalent:

(1) T is quasi-similar to a unilateral shift;

(2) T is of class Cyy and there exists a bounded analytic function Q such that
QO =481 for some outer function J.

Proof. Let n=d; and m=dp..
(1)=(2). That T is of c}ass C,, follows from [8], Lemma 1. Consider the func-
tional model of T, that is, consider T being acting on $=H2 S O HZ by Tf=P(e"f)
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for f€$, where P denotes the (orthogonal) projection onto $. Note that T must
be quasi-similar to S, _,. Indeed, this follows from the uniqueness of the Jordan
model of T (cf. [4], Theorem 4). Let ¥: H:_ —$ be the quasi-affinity intertwining
S,,-,and T. Then Y is given by Yg=P(Pg) for gc H,_ , where @ is an mX(m—n)
matrix valued bounded analytic function. Note that ran ¥Y=$9 if and only if
®H? _,+OrH? is dense in HZ. Let ¥ denote the mXn matrix valued function
[®, ©4]. Since ®HZ_, + O, H?=WH?, we conclude from above that ¥ is an outer

function. Let ¥# denote the algebraic adjoint of the matrix of ¥. Say, xp‘=[ Q] ,

where Q' is (m—n)Xm matrix valued and Q is nXm matrix valued. Since ¥4 ¥ =4I,
where d=det¥ is an outer function, we infer that Q@,;=41 as asserted.

(2)=(1). Consider the functional model of T and consider Q as a multiplica-
tion operator from H? to HZ. Let S=ker Q. Define X:H—+RK by Xf=3f—0O,Qf
for f€H and Y:K-9 by Yg=Pg for gefR. Note that QXf=Q5f— QO Qf=
=Q6f—6Qf=0 for any f€$. Hence X indeed maps § to K. Let S=§,|R. It is
easily verified that X and Y intertwine T and S. Moreover, we have XYg=XPg=
=X(g—Ow)=0(g—0O;w)— 0, 2(g—Ow)=0g—0OQg=0g=06(S>g for any
geR, where weH?, and YXf=Y(0f—O.Qf)=P(f)—0=6(T)f for any f€9.
Since 6(S) and 6(T') are quasi-affinities, so are X and Y. This shows that T is quasi-
similar to S, a unilateral shift, completing the proof.

We remark that the proof of (2)=(1) in the preceding lemma holds even without
the finiteness assumption on the defect indices of 7. Also note that Lemma 1 par-
tially generalizes [4], Proposition 2 (for the case dr=1 and dx=2) and [6], Theorem
3.1 (for the case dr+«—dr=1). Next we consider contractions quasi-similar to iso-
metries. We need the following lemma.

Lemma 2. Let T be a contraction with finite defect indices. Then the following
statements are equivalent:

(1) T is quasi-similar to an isometry;

(2) the completely non-unitary (c.nu.) part of T is quasi-similar to an isometry.

Proof. We have only to show (1)=(2). Assume that T is quasi-similar to the
isometry V. By [8], Lemma 1, T is of class C,.. Let V=U®S, where U is unitary
and Sisa unilateral shift, and let T=T,®T,, where T; is unitary and T, is c.n.u.

Let T,= ] be the triangulation of type [ ] Then T, is of class C,; and

0 T,
has finite defect indices. By [9], Theorem 2.1, T2~T36BT4. Hence UpS~T,8T,
~T,&T;®T,. Note that U and T, T are of class Cyy, S and T, are of class Cj,
(cf. [9], Lemma 3.2) and the defect indices of T, are finite. It follows from the proof of
[8], Theorem 6 that T, T3~ U and T,<S. Hence S must be the Jordan model of
T, (cf. [8], Lemma 3), that is, S=S,,_,, where m=drs and n=dy. Thus S has
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finite defect indices and we infer from [8], Theorem 6 again that 7,~S. On the other
hand, the C,; contraction T, is quasi-similar to a unitary operator (cf. [2], p. 72).
We conclude from above that T, is quasi-similar to an isometry, completing the proof.

T
Theorem 3. Let T be a contraction with finite defect indices and let T =[ . *]

0 T,
be the triangulation of type [C(;l C* ] Then the following statements are equivalent:
-0

(1) T is quasi-similar to an isometry;

(2) T, is quasi-similar to a unitary operator and T, is quasi-similar to a unilateral
shift;

(3) T is of class C,. and there exists a bounded analytic function Q such that
QO,=46I for some outer function 9.

Proof. By Lemma 2, it suffices to consider c.n.u. T.

(1)=(2) is proved in Lemma 2.

(2)=(3). By [8], Lemma 1, both T, and T, are of class C,.. A simple calculation
shows that 7" must also be of class C;.. Let ©@,=0,0, be the canonical factorization
T, *
07T,
of Ty and T, are the purely contractive parts of ®, and 0,, respectively. Lemma 1
implies that there exists a bounded analytic function Q, such that Q,0,=§,7 for
some outer function §,. On the other hand, T; is of class Cy, implies that @, is outer
(from both sides). Let 2, be the algebraic adjoint of the matirx of @, and let Q=
©,Q, and =6, det ©,. Then QO=0,Q,0,0,=0Q,56,0,=451, where § is outer.

(3)=(1). As above, let @,;=0,0,; be the factorization corresponding  to

T=[§1 ;] From Q0O;=0I we have 0,20, Q,=0,6Q,=0d(det @,)I, where Q,
2

is the algebraic adjoint of ©,. It follows that (©;Q)©,=41. Since T, is of class Cy,
(cf. [9], Lemma 3.2), we infer from Lemma 1 that T, is quasi-similar to a unilateral
shift. On the other hand, T, is quasi-similar to a unitary operator and T~T;®7T,
(cf. [9], Theorem 2.1). We conclude that T is quasi-similar to an isometry as asserted.

corresponding to the triangulation T'= ] Then the characteristic functions

Note that the isometry quasi-similar to 7 is unique up to unitary equivalence
(cf. {11, Theorem 3.1). It also follows from the preceding proof that if T is c.n.u.,
then the isometry quasi-similar to T has an absolutely continuous unitary part. We
may contrast Theorem 3 with the corresponding results for contractions similar to
isometries: a contraction 7' is similar to an isometry if and only if there is a bounded
analytic function  such that Q@ =1 (cf. [3], Theorem 2.4); a c.n.u. T is similar to
an isometry if and only if T is similar to a unitary operator and T is 51m11ar toa
unilateral shift (cf. [5], Theorem 2).
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Corollary 4. Let T be a c.n.u. contraction with finite defect indices and let $,
be an invariant subspace for T.

(V) If T is quasi-similar to an isometry, so is T|9,.

(2) If T is quasi-similar to a unilateral shift, so is T|9,.

Proof. (1) By [8], Lemma 1, T is of class C,.. Hence T'|9, is also of class C;,..
Let @;=0,0, be the corresponding regular factorization and let 2 be such that
Q0 ,=41 for some outer 6. Then (26,)@,=4I and by Theorem 3 we conclude
that T'|$, is quasi-similar to an isometry.

(2) By [8], Lemma 1, T is of class Cy,. It is easy to check that T'|9, is also of
class Cyy. Similar arguments as above finish the proof.

Corollary 5. Let T be a c.n.u. contraction on 9 with finite defect indices. If T
is quasi-similar to an isometry V on K, then there exist quasi-affinities X:9—~K and
Y:K~9 which intertwine T and V and such that XY=06(V) and YX=6(T) for
some outer function 9.

Proof. Let T=[T1 *] be the triangulation of type [C01 g ] As before,
-0

0T,
since T is of class C,, with finite defect indices, we have T'~T,®T,;. Let V=U&S
be the isometry quasi-similar to T, where U is unitary and S is a unilateral shift.
As shown in the proof of Lemma 2, T;~U nad T,~S. Note that all these three
quasi-similarities can be implemented by quasi-affinities satisfying the corresponding
properties in the conclusion of our assertion (cf. [9], Theorem 2.1, [7], Lemma 2.1
and proof of Lemma 1). Hence the same holds for the quasi-similarity of 7 and V.

For an operator T, let Lat T, Lat”T and Hyperlat T denote, respectively, the
lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces
of T. The next lemma will be needed in the proof of Theorem 7. It can be proved
in the same fashion as [7], Lemma 2.3.

Lemma 6. Let V be an isometry with an absolutely continuous unitary part and
let McLatV. If § is an outer function, then S(V|N) is a quasi-affinity on N.

Theorem 7. Let T be a c.n.u. contraction with finite defect indices. If T is quasi-
similar to an isometry V, then LatT=LatV, Lat” T=Lat”V and Hyperlat T'=
Hyperlat V. :

Proof. Note that T is of class C,. by [8], Lemma 1. We may assume that T is
not of class C;, for otherwise the conclusion has already been proved in [7], Theo-
rem 2.2.

Let X and Y be the quasi-affinities as in Corollary 5. For MecLat T and Ne
€Lat ¥, consider the mappings M —~XM and N—-YRN. Using Lemma 6, we can
easily verify that they implement the lattice isomorphisms between Lat T and Lat V.
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From [9], Theorem 3.13 and Lemma 3.11, we infer that Lat T=Lat” T and Lat V=
=Lat” V. Hence to complete the proof, it suffices to show that (i) MMcHyperlat T
implies XM ¢Hyperlat ¥ and (i) MeHyperlat ¥ implies YR¢Hyperlat 7. We
only verify (i) and leave the verification of (ii) to the readers. Let MeHyperlat T
and We{V}). Then YWX€{T} and hence YWXMEM. Applying X on both
sides, we obtain S(FWXM=XYWXMS X M. Since §(V)WXM is a quasi-affi-
nity on WX (by Lemma 6), we conclude that WXMM S XM. This shows that
meHyperlat V, completing the proof.

Corollary 8. Let T be a c.n.u. contraction with finite defect indices. If T is
quasi-similar to q unilateral shift, then Lat T=Lat"T={ran W: W¢{T}'}, where {T}
denotes the commutant of T.

Proof. This follows easily from Theorem 7 and the fact that a unilateral shift
S satisfies Lat S=Lat” S={ran Z: Z¢{SY}}.
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Injection-similar isometries

L. KERCHY

1. To construct canonical models for contractions of classes Cy; and C, on
complex separable Hilbert spaces B. Sz.-NAGY and C. Folas generalized the notion
of similarity (cf. [3, ch. II, sec. 3] and [4]). They called an operator T,€Z(H,) a
quasi-affine transform of the operator T,£.L(9,), T1<T,, if there exists a quasi-
affinity (an injection with dense range) X€.%($,, $,) which intertwines these oper-
ators, thatis, XT,=T,X. T, and T, are said to be quasi-similar, T, ~T,, if they are
quasi-affine transforms of each other, T;<T, and T,<T;. Finding Jordan-models
for contractions of class C., even quasi-similarity proved to be insufficient. There-
fore Sz.-NAGY and Foias [5] introduced the notion of injection-similarity. Operators

T, €2 (9H,) and T, £(9,) are injection-similar, Tl;Tz, if they can be injected

into each other, T, <T, and T,<T,, that is, there are injections X€.Z(9;, He)
and YE€L (9., $)) such that XT;=T,X and YT,=T,Y. T, and T, are com-

ci
pletely injection-similar, Ty~ T,, if they can be completely injected into each other,
c.i ci
T,<T, and T,<Ty, thatis, there exist families of intertwining injections {X,},S
CEZ(9H1,9,) and {¥,},S & (92, H,) suchthat V ran X,=$, and V ran Y, =$,;.

Recently P. Y. Wu [1] has shown that every contraction T of class C,., with at
least one defect index finite, dr=<< <, is completely injection-similar to an isometry.
More precisely he proved that

UpS® < T< UDS®,

Here U is a unitary operator of the form U=U,®U,, where U, is the unitary part
of the contraction T (cf. {3, Th. 1.3.2}), and U, denotes the operator of multiplica-
tion by e on the space (4,L2(Dy))~ (Ar(")=(I—Or(€")*Or(e"))2, where O
is the characteristic function of T'). On the other hand S is the unilateral shift of
multiplicity «=d*—dr.

Received July 1, 1981.
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As for uniqueness of this isometry, Wu has shown that the unitary parts of
injection-similar isometries are unitarily equivalent. Moreover he made the conjec-
ture that injection-similar isometries are really unitarily equivalent, at least in the case,
when their unitary parts have finite multiplicities. (HoOVER [7] proved that quasi-
similarity even implies unitary equivalence between isometries.)

In the present paper we give a negative answer to this conjecture and describe
the isometries being completely injection-similar to the contraction T above. We
follow the notation and terminology of [3). For arbitrary operators T,€.2(9,)
and TL,€2£(9,), #(Ty,T,) will denote the set of intertwining operators, that is,
I (T, To)={X€L (D1, Do) | T X=XT}.

2. We recall that every isometry ¥ has a unique decomposition V=Ug®S®
such that U is a unitary operator and S denotes the direct sum of « copies of the
simple unilateral shift S. (S is a completely non-unitary (c. n. u.) isometry with
multiplicity «.) (Cf. [3, Th. L.1.1.]) The following proposition shows that Wu’s con-
jecture has an affirmative answer, if ¥ is a c. n. u. isometry or U is a singular unitary
(s- u.) operator (the spectral measure of U is singular with respect to Lebesgue mea-
sure).

1
Proposition 1. Let ¥V, and V, be injection-similar isometries, Vi~V,. Let
us assume that V, is c.n.u. or its unitary part is a s.u. operator. Then these operators
are unitarily equivalent, V,=V,.

Proof. Let V; and V, act on the Hilbert spaces $, and $,, respectively. Let
us consider the canonical decompositions of these operators: V,=U,®S@, V,=
=U,»S® on the spaces $,=R,®L, and H,=K,®L,. We know by [1, Lemma
3.6] that Uy=U,. If V, isc. n.u., then &,={0}, and so we obtain that S =

= Vl; V,=S®. Now [5, Th. 5/6] results that S =S5 Consequently in this case
we have that V;=V,.

Let us assume now that R, {0} and U, is a s. u. operator. Let us suppose
further that for instance £,7{0}. (The case £,=2,={0} is trivial) Let X¢
X1
Xoo
the decompositions above. It follows easily that X;,€ #(S®@, U,). Having denoted by
S the minimal unitary dilation of $®, we define an operator Y¢£(S%, U,) by
the equation Y(S@)~"f:=U;"Xpf (f€2,,n=0) and by taking bounded closure.
Since, being a bilateral shift, S& is an absolutely continuous unitary (a.c. u.) operator,
we infer by [8, Theorem 3] that Y=0. Taking into account that X,,=Y|2,, it
follows that X;,=0. We conclude that X,,€ £(S®@, S®¥)) isan injection. In partic-

€F(V,, Vy) be an injection, and consider the matrix [‘;‘1 ] of X with respect to
21

1
ular we infer that £, {0}, and so a similar argument shows that we have S® < S®@
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also. Therefore S(“);S(”), and 5, Th. 5/6] implies again $®@==S5®¥. The proof
is completed.

3. In this section we shall see that the setting is contrary to the one in section 2,
if the isometry ¥ is not c.n. u. and its unitary part is nota s. u. operator. The follow-
ing lemma plays an essential role in the sequel.

Lemma 2. Let E be a measurable set on the unit circle C={z€C||z|=1},
and let My denote the operator of multiplication by e on the space L*(E). (We con-
sider the normalized Lebesgue measure m on C.) If m(E)=0, then we have

M:®S < Mg.

Proof. Let ¢,€L~(E) be a function such that ¢,(¢")0 a.e. and
f log @, (e")|dm= — . On the other hand let ¢, L~(E) be a function such that
E

lpg(e™)|=1 a.e.. We consider S as the operator of multiplication by ¢ on the Hardy
space H2. Now let us define the operator X as follows: X:L2(E)® H?*-+L*(E),
X fog—o, f+@,(g|lE). It is obvious that X€F(M;d S, M) is a quasi-surjec-
tion.

Let us assume now that X(f®g)=0. Let us suppose further that g>0. Then
we have g(e®)=0 a.e., and so f(e*)#0 a.e. on E. From the assumption it immedi-
ately follows that |o,(e")|-|f(e")|=|g(e")| a.e. on E. But this implies

log |4 (e")| = log |g(e')| —log|f(e")| = log|g(e™)| + 1 —[f(e"),

and so we infer that
—e= [loglg(¢) dm = [loglg(e")]dm+m(E)~ [1f(e")]dm >—<
E E E
(cf. [3, ch. III}). This being a contradiction we conclude that g=0 and this results
f=0. Therefore X is a quasi-affinity, and so M ®S<M;.
Corollary 3. Let My be as before. Then for any «=1,2,...; we have
Mi®HS® < M.

Proof. By induction we immediately infer that the statement holds for every
natural number. Let us now assume that a=-oo. Let {E,}>, be a sequence of pair-

wise disjoint measurable subsets of £ such that G FE,=E and m(E,)=0 for every

n=1
n. Then we have M ®S™= @ (M; ®S)< @ M; =M, by Lemma 2, and the
n=1 " n=1 "

proof is finished.
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Corollary 4. Let VEZL(9) be a non-c. n. u. isometry, and let us assume that
its unitary part UEZL(K) (]={0}) is not a s. u. operator. Then we have:

@) V; U, more precisely U<V <U,;

(i) if even HOK={0} holds, then Vf: U S, more precisely U®S f<l V<
<U®S.

Proof. After decomposing U into the direct sum of its singular and its abso-
lutely continuous parts, U=U,® U,, and considering the functional model of U,
(cf. [9]), we conclude these statements by Corollary 3.

On account of Corollary 4 we can state:

Proposition 5. Let V, and V, be isometries, and let U,, U, denote their uni-
tary parts, respectively. Let us assume that V, is not c¢. n. u.,and U, is not a s. u. oper-
ator. Then we have:

() Vi~V if and only if U,=U,;

[

(ii) Vi~Vyif and only if U,=U, and V,,V, are unitaries in the same time.

Proof. These statements follow immediately by [1, Lemma 3.6] and the pre-
ceding corollary. We have only to note that for any operator X€#(V,, V,) we have
(XR;)"ER,, where K,Lat¥; is the subspace corresponding to U; (i=1,2).
(Cf. the proof of {1, Lemma 3.6].)

4. Now let T be a contraction of class C;., with at least one finite defect index,

dr< . Consider the triangulation [Tl *] of the type [C'1 * ] of T. We know
0 T, 0 C,

from [1] that T,€Cyy, To6Cyq and T~T1®T, (cf. [1, Th. 2.1 and Lemma 3.2]).
Now it follows easily by [3, Prop. I1.3.5} and [6, Th. 3] that

UDS® <L T < UBS®,

where U is a unitary operator and S® is the unilateral shift of multiplicity o=
=dp«—dr. (Cf. [1, Th. 3.5].) Moreover we know by [1, Lemma 3.6] that the unitary
part of every isometry, being injection-similar to T, is unitarily equivalent to U.

We shall say that T is mixed with absolutely continuous part (m. w. a. c. p.),
if T¢CUCy, and T is not a s. u. operator in the previous triangulation. Now we
obtain immediately by Proposition 1:

Theorem 6. If T€C,.,dr<o and T is not m. w. a. c. p., then V=U & S®,
a=dp«—dy, is the unique isometry which is completely injection-similar to T.

On the other hand, in the contrary case we can state:
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Theorem 7. If T¢C,.,dr<o and T is m. w. a. c. p., then

c.i
UpSO < T <UDS®

holds, if and only if 1=a=dpn—dy.
To prove this theorem we need:

Lemma 8. If T is a contraction of class Cy, and dp<oo, then dimker T*=
=dp—dy.
T+ 4r

Proof. We can assume that T is given by its functional model. That is, T is
the compression of the unilateral shift U, on the vector-valued Hardy space HZ(E,)
to the subspace H=H*(€.)© O H*(€) (cLat UY), where dim G.=d,., dim E=d,
and @, denotes the characteristic function of T. T being of class C,,, its character-
istic function @ is inner and *-outer (cf. [3, Prop. VI. 3.5)).

Since T*=U%1|9, we infer that ker T*=9HNker UX =HNE,. Let v€E. be
an arbitrary vector. We have that v¢$, if and only if v is orthogonal to ©,H?(€).
But this is the case, if and only if » is orthogonal to ©,H*(€)©10, H* (€)=
=0, (H*(€)0 AH?(€))=0,€. (We have used that @, is an isometry.) Now, for
any vector we€, we have (v, O w)= / (, Op(eMW)dm= f (Or(e™ ™, wy dm=

[+ C

=(07v, wy=(PgOrv, w), where Pg denotes the orthogonal projection of H?(€)
to the subspace €. Therefore, we conclude that ker T*=ker (PgO7|Es).

On the other hand, since @7 is an outer function, it follows that H2(€)=
= (07 H*(E,))~=(07€,)V 107 HX(E,) S (05 €,V (1H*(€))=(PeO5 €,)~ @ LH*(E).
Therefore the operator P07 |€, €L (€*, €) is quasi-surjective, and so, taking into
account that dim €<, we infer that dim ker (Pg07|€,)=dim €, —dim €=
=dr«—dy. The proof is completed.

Now we can prove Theorem 7.

Proof of Theorem 7. Let Ty, T, and U be the operators as at the begining
of this section. Since T is m.w.a.c.p., it follows that the space of U is not trivial (is
not {0}), and that U is not a s. u. operator. Applying Corollary 3 we can easily infer

that U@S®<U@SUn4<U @S®, for every l=a=d;.—d,. Therefore, it
is enough to prove that T<U@S® implies a=d .—d.

So, let us assume that T<U®S®. Then we have U@T,<T, ®T,<T<
<U®S®. Let XcH(UT,, U®S™) be a quasi-affinity. Since then X*¢ £ (U* @
@S*®, U*@T)) is also a quasi-affinity it follows that X*|ker §*®: ker $*®
—~ker Ty is an injection. Therefore we get that a=dim ker $*® =dim ker T}.
Taking into account that dp«—dr=drs—dy , we conclude by Lemma 8 that o=
=d;,—dy. The proof is finished.

11



162 L. Kérchy

Corollary 9. If T is a contraction as in Theorem 7, then for the multiplicity of
T* we have: pp.=py.

Proof. We infer by Theorem 7 and Lemma 2 that T<U®S<U. It follows
that U*<T*, and so pp«Spys=py. On the other hand T*~ Ty @T; ~U* BT}
implies pr«Zpge=py.

5. Finally we show that if T€C,.,d;<< and T is m. w. a. c. p., then there al-
ways exists an isometry ¥ such that V' <T. It can be easily seen that this is not the
case, if T is not m. w. a. c. p. (cf. [5, Th. 5 and Prop. 2]).

Theorem 10. If T€C,., dp< =, is a contraction m. w. a. c. p., then U®S® <
<T, where a=dp«.

Proof. LetT,, T, and U be the operators as in the begining of section 4.
Since T is m. w. a. . p., it follows that these operators act on non-zero spaces, and
that U is not a s. u. operator. Therefore there exists a reducing subspace £ of U such
that U|2=M; for some measurable set E (m(E)=0). Taking into account that
T~T,®T,~U®T,, it is enough to prove that My®SYP <M HT,, where
o=dpx.

Let us consider the minimal isometric dilation W¢.%(8.) of the contraction
T Z(9). Since T,eC.y, it follows that W is a unilateral shift of multiplicity
a=dp. (cf. [3, Th. 11.1.2 and I1.2.1]). Therefore we infer by the proof of Corollary 3
that there exists an injection Y€ # (Mg @W, My ®T,) such that (Y(L2(E)® {0])) =
=(ran Y)"=L*(E)®{0}. Let P denote the orthogonal projection of the space
L*E)®K,; onto its subspace {0}@$. Then the operator X=Y+P¢
CL(LHEYD R, LAE)DD) is obviously a quasi-affinity.

On the other hand, for any vector f@gelLl*(E)®RKR,. we have

(Mp®T)X(fBg) = (M@ T)Y(fO )+ (MDT) P(fDg) =
=Y(MdW)(fDg)+(0T,Pg) = Y(MOW)(fDg)+(0DPWg) =
= X(M0oW)(fDg).

Consequently we obtained that M, & W<M;®T,, and so the proof is completed.
By Theorems 7 and 10 it follows immediately:

Corollary 11. If T€C,.,dp<eo, is a contraction m. w. a. c. p. and dp«=,

then we have
T~ UBS=),

If both defect indices of T are finite, then it is in general not true that T~
~U®S8®, where a=d,.—d;. Indeed, contractions T with finite defect indices and
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quasi-similar to an isometry ¥, were characterized by P. Y. Wu [2]. We note that if
T€C,.,dp<eo and T is quasi-similar to an isometry ¥V, then V is necessarily unita-
rily equivalent to the operator U @S, where a=d;.—d;. This follows easily by
Theorems 6 and 7.

[1} P.
2] P.
[3] B.
[4] B.
[5] B.
[6] B.
[7]1 T.

[8] R.

[9] N.
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Moment theorems for operators on Hilbert space

ZOLTAN SEBESTYEM

Introduction

The present note raises and solves moment like problems on the existence of a
contraction, a subnormal operator and of a continuous semigroup of contractions,
respectively, on a (complex) Hilbert space:

(A) Given a sequence {h,},=, of elements of the Hilbert space H, under what
condition does there exist a contraction or a subnormal operator T on H such that
Q) h,=T"h, holds for n=1,2,....

(B) Given a continuous family {h,},-, of elements of the Hilbert space H, un-
der what condition does there exist a continuous semigroup {T},., of contractions
on H such that
® h, = T;hy holds for ¢=0.

The key to the solution (and of the source of these questions) is the theory of
unitary and normal dilations.

The author is indepted to Professor B. Sz.-Nagy for his valuable advices, for
his personal stimulation.

For normal extension of subnormal operators we refer to Bram [1], HALMOS [2]
and Sz.-NAGY [3].

Results

Theorem A. Let {h,},=¢ be a sequence of elements of the Hilbert space H.
There exists a contraction T on H satisfying (1) if and only if

v 2 - _-
(1) HZ Co,n hn+n'|| = 2 Conym* Cuy e (hm—n+m” hn’)+ 2 Cin,m' Cy, ! (hm'3 hn—m-i-n’)
n,n m=n n<n
wm m W

holds for any finite double sequence {c¢, ,}y=o,w=0 Of complex numbers.

Received April 22, 1981,
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Theorem B. Let {h},=¢ be a continuous family of elements of a Hilbert space
H. There exists a continuous semigroup {T,},=¢ of contractions in H satisfying (2)
if and only if

(ll) ”Z ct,!’ ht+l’”2 = 2 Cs,s’ Et,l' (hs—t+s” hl’)+ 2 cs,s‘ El.t' (hs" hr—s-H')
N4 s=t :’<zt
s, o

holds for any finite double sequence {c, ,}z0,¢=0 0f complex numbers.

Theorem C. Let {h,},=, be a sequence of elements of the Hilbert space H such
that "

(iii) {h,} spans the space H,

av) |hll=H" (n=0,1,2,..)) for some constant KA.
There exists a subnormal operator T on H satisfying (1) if and only if there exists
a double sequence {h},}, =, of elements of H such that

(v) B8=h, for n=0,1,2, ...,
(Vi) (7, hp)=(hy, hpsy) for m,n,n'=0, and that

(Vll) ”2 Cn,n’ h:’Hz = 2 Cm,m Eu,n’ (hm+n’, hm’+n)
N4 m,m’,n,n

holds for all finite double sequence {c, y}n w=o 0f complex numbers.

Necessity

(A) Let U be a unitary dilation of the contraction T on the Hilbert space K con-
taining H such that
3 PU"h=T"h (h€éH; n=1,2,..)
holds with the orthogonal projection P of K onto H. Let further {c, . }n=0,n=0
be a finite double sequence of complex numbers. We have then by (1) and (3)

1 cn Pl = 1.2 e Tl = | 3 e P =
n, n o n Pyt

= HZ Cn,n’ U"hn’“2 = 2 Cm,m’ E;,;:' (Umhm': Urh,) =
n,n ’ m,m’,n,n

= 2 cm,m' En,n’ (Um_"hm” hn')+ 2 Cm,M’ En,ll' (hm’ ’ U"—mhn’) =
mz=n . m<n .
mon A "1,’", '

= 2 cm,m’ En,n’(.Tm—"hm" hn’) + 2 - cm,m’ En,ln’ (hm”T"_mhn') =
m=n m-=n ¢
m,n m,n

= cm,m' En,n’ (hm—n+m” hn')+ Z cm,m' En,n' (hm" hn—m+n’)'
m=n m-=<n .
m,n m,n et .
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(B) The unitary dilation of a continuous semigroup {T,};=, of contractions is
a continuous semigroup {U,},=, of unitaries on the dilations space K, such that

@ PULR=Th (he€H, t=0)

holds, where P is the orthogonal projection of K onto H. Assume further
{ct,¢}i=0,r=0 is a finite double sequence of complex numbers indexed by nonnegative
real numbers. (2) and (4) imply (ii) exactly in the same manner as before.

(C) Suppose N is a normal extension of T acting on a Hilbert space K contain-
ing H, and such that

&) PN N*h=T"T"h (h€H;n,n =0)
holds with the orthogonal projection P of K onto H. Let further
(6) B =T"T"hy, (n,n’ =0,1,2,..).

Assuming (1) we have then hl=T"h,=h, for n=0,1,2,...; and we have by (6)
also that
(h:" hm) = (T‘"l T hOa ™ ho) :(T" hOa ™+ hO) =

= (hns hm+n’) (m: n, n = 0,1,2, )
and, finally, that

12 cune B1F = | 3 um T Tho|[* =[P 3 o N N"hi|[* =

= || Senw N Nho|P = 3 o G (N™+7 By, N™+7hg) =

m,m’ n,n

= Z cm,m' én,n' (Tm+n’ hO’ Tm'+nh0) = 2 cm,r{l’ En,n' (hm+n’a hm’+n)

m,m’,n,n m,m’,n,n

holds for any finite double sequence {c,, ,},, =0 Of complex numbers.

Sufficiency

(A) Let F, be the (complex) linear space of all finite double sequences
{Cn, winzo,w=0 Of complex numbers with the shift operation
Uo{cs,n'} ={cn,w}>, Wwhere ¢, =c,.yp(n=1) and ¢5, =0

Let us introduce a semi-inner product in F, (in view of (i)) by

(7) <{Cm,m’}’ {dn,n’}> = g cm,m' an,n' (hm—n+m’a hn') + 2 cm,m’ an,n’ (hm’a hn—m+n')'

m<n
m,n m,.n
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U, is an isometry with respect to this semi-inner product. Defining

Vo{cn,n'} = ch,n' hn+n' fOl‘ {cn,n’}E FO
nn

we obtain a contraction ¥, from F, into H.

Let F be the Hilbert space resulting from F; by factoring with respect to the null
space of (-,-) and by completing. At the same time U, induces an isometry U on F
and V, induces a contraction V' from F into H. In what follows the equivalence class
represented by {c, ,-} is also denoted shortly by {c, ,}. We show that

1 if n=0, and "=k (k=0,1,..),

* _ —
@)  Vhe={d, .}, where d,, _{0 otherwise.

To show this let k=0, {¢,, »}€F so that (7) gives
<{cm,m’}’ V*hk> = <V{Cm,m’}9 hk> = 2, cm,m' (hm+m’> hk) :<{cm, m’}’ {dn. n’}>

as desired. Because of (8) we get
. " p {l if n=1 and =k (k=0,1,..),
UV b ={dyn} where d,, = 0 otherwise.

Defining * .
T=vuv

we have Th,=VUV*h,=h,,, for all k=0,1,..., but this is actually identical
with (1).

(B) Let F, be, similarly as before, the linear space of all double sequences
{5 ¢}sz0,y=0 Of complex numbers indexed by nonnegative real numbers. Define,
for all r=0, by

U, {cs,s’} = {Cs—t,s'} for {cs,s’}€ Fy

a shift operation and a semi-inner product (in view of (i)) by

<{cr,r'}’ {ds,s’}> = Z cr,r’ as,s' (hr—s+r’s hs’)+ Z cr,r’ as,s’ (hr’s hs—r+s’);

rs r<s
rs rs

{U,},=, is then a continuous semigroup of isometries of the Hilbert space F derived
from F, as before. By defining

V{cs,s’} = 2 cs,s'hs+s" for {cs,s’}€F0
s, 8

we get a contraction operator from F into H. The proof that T,=VU,V* (t=0)
is a continuous semigroup of contractions satisfying (2) only needs a slight modi-
fication of the argument used above, so we omit it.



Moment theorems for operators on Hilbert space 169

(C) Let {A}, v=o be in Hsuch that conditions (iii—iv) are satisfied. Take the
(complex) linear space F, of all finite double sequences {c, .}, y=o Of complex
numbers with a shift operation

Nofc,,n} = {cf,w}, where ¢, =cCpoyp(n=1), and ¢, =0;
and (in view of (vii)) with a semi-inner product in F, defined by

(9) <{cm,m’}’ {dn,n’}> = 2 , cm.m‘ an,n’ (hm+n’a hm'+n)'

We are going to prove that
() | Noll = o

with the same 2" as that in (iv). First of all, for any {c, ,}¢F, and i,;=0,1,2, ...
we define
Ld) {c,,_,-,,,,_j, .1f n=zin =j
mn 0 otherwise.

Now, by (9) we have

[ {C;(.f’..’:)}uz = Z Com,m? Crym (hm+n'+i+j5 hm’+n+i+j) =
m,m’ ,n,n

= {eSa Y, {enwd) = eSO - Hen,w -
So by induction we can derive

I{eEONE = ™M - Ienn JIt 2442 for k=0,1,....

The definition of Ny shows that Ny{c, ,.}={c{":?} and so the above inequality, (9)
and (iv) imply that

I Noden, w1 = 1{elew™ M« ey, I+ =

= { 2 Com,m’ E‘:n,n’ (hM+'l’+2"+1’ hm’+n+2"+l)}1/2 ” {Cn,n'}I]2k+1_l =
m,m’,n,n

= { Z " |cm,m’| |En,n’l ”hm+n'+2"+1" ¢ ”hm’+n+2"*‘1” }1/2” {cn,n’}”2k+1nl =
m,m’,n,

= {en,n }IF 1 3 leq | AT
This gives : ,
I No{en,w Y = I{en,n P =275 72 H{ S Ly el AT+ J27570
Let k<o, so we obtain ().

Defining .
VO{cn,n’} = Z: cn,n' h:I fOI’ {cn,n’}E FOs

(vii) shows that ¥V, is a contraction from F, into H. We obtain a Hilbert space F
from F, by factoring with respect to the null space of (-, ) and then by completing.
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At the same time, ¥, induces a contraction V from F into H and N, induces a bounded
linear operator N on F.

Finally define the operator
(10) T =VNV*

on H. We are going to show that this operator is the desired one. First of all, for
any k=0

V*h, = {d, .}, where d,, ={
Indeed,

l, if n=k and n’=0,
0 otherwise.

<{Cm,m’}’ V*hk> = <V{cm,m'}: hk) = m.Zn:’ cm,m'(h:’y hk) =

= mzm' cm,m' (hm’ hm'+k) = <{cm,m’}’ {dn,n'}>'

Thus
Thy = VNV*h =V {dyoyp} = 3 dype Bn = Bz = b

holds for all k=0, 1,2, .... We have (1) also as was desired. We have only to show
that 7 in (10) is subnormal, that is,

(1) Z'(T"'g.., T"g.) =0

holds for all finite sequence {g,},=o in H. We have (11) for elements of the form
Z’c,, why (where {c, .}¢F) as a consequence of (vii). Indeed,

Z(ngn’ I"g,) = Z(Z Ca,n’ Im hn > Zcm,m T"hm) =

= 2 cm,m’En,n'(Tmhn’! T"hm’) = 2 Cm,m’En,n'(hm+n’shm’+n) =

z || 3 e, hrlF=0,
nn
which implies (11) in general by (iii). The theorem is proved.
Note that the proof of the theorem yields the following

Proposition. Let {h%'}, »-=¢ be a double sequence in H which spans H. There
exists a normal operator T on H such that

(12) T TR = b (m,n’ =0,1,2,..)

holds if and only if

(13) [BX(| = o "+" for some constant A =0 (n,n =0)
and

(14) (h: > h") = (hm+n » tm’ +n) (m: m” n, n’ = 0)
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Proof. Assume (12), then (13) is trivial and (14) is elementary
(b, b)) = (T*™ T™hg, T*" T he) = (T™+" h§, T™*"ho) = (3 4> M +.)-
Assume now (13) and (14) and denote h? by h, (n=0, 1,2, ...). We have then

(v—vii) with equality in (vii), consequently the operator ¥V, appearing in the proof
of Theorem C, is a unitary operator from F onto H. Simple calculation shows that

(15) N*{cn.n’} = {Cn,n’—l} for {cn,n’}eF
holds which yields NN*=N*N, that is, N is a normal operator. Since V is unitary,

T=VNV* is normal, too. We have finally to show (12). T satisfies (1), and, by simi-
lar argument as in the proof of Theorem C, (15) implies that

VN* V*h, = h¥.
So we have

T T"h = (VN*V*h, = VN*'V*h, =h* for mn’ =0,1,....

The proof is complete.
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R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1 (Graduate Texts in Mathematics,
64), xii+ 224 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979.

This is the second edition of a book appeared first in 1967, There are numerous minor correc-
tions. In addition, the author made a few substantial changes and supplements to the exposition.

The main aim of this book is to provide an introduction to some aspects of Fourier series and
related topics, in which a liberal use is made of modern techniques. It may serve as a useful prepara-
tion for Rudin’s “Harmonic Analysis on Groups” and for the second volume of Hewitt and Ross’
“Abstract Harmonic Analysis”.

The emphasis on modern techniques effects not only the type of arguments, but also to a consi-
derable extent the choice of material. Above all, itleads to a minimal treatment of pointwise conver-
gence and summability. The famous treatises by Zygmund and Bary on trigonometric series cover these
aspects in great detail. On the other hand, a considerable attention is paid to matters that have not
yet received a detailed treatment in a book form. Among such material, there appear comments on
capacity, spectral synthesis sets, Helson sets and so forth, as well as remarks on extensions of results
to more general groups. Katznelson’s book “Introduction to Harmonic Analysis” can be read as
a companion text.

The table of contents is the following: 1. Trigonometric series and Fourier series, 2. Group struc-
ture and Fourier series, 3. Convolutions of functions, 4. Homomorphisms of convolution algebras,
5. The Dirichlet and Fejér kernels, Cesaro summability, 6. Cesiro summability of Fourier series
and its consequences, 7. Some special series and their applications, 8. Fourier series in L2, 9. Positive
definite series and Bochner’s theorem, 10. Pointwise convergence of Fourier series.

The reader is supposed only to be familiar with Lebesgue integration. What is needed from func-
tional analysis (Baire’s category theorem, uniform boundedness principles, the closed graph, open
mapping and Hahn—Banach theorems) is dealt with in Appendices A and B. The basic terminology
of linear algebra is used, but no result of any depth is assumed.

Each chapter ends with exercises, the more difficult ones being provided with hints to their solu-
tions. The bibliography contains many suggestions for further reading. The treatment is supplemented
by a list of Symbols and an Index.

The present volume is an excellent introduction. It is addressed to undergraduate students and
warmly recommended to everyone who wants to make a quick acquaintance with Fourier Analysis.

F. Moricz (Szeged)
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Euclidean Harmonic Analysis, Proceedings of Seminars Held at the University of Maryland, 1979,
edited by J. J. Benedetto (Lecture Notes in Mathematics, 779), iv+ 177 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York, 1980.

During the spring semester of 1979 a program in Euclidean harmonic analysis was presented
at the University of Maryland. This volume comprises six lecture series of them. The table of contents
reads as follows.

1. L. Carleson, So>me analytic problems related to statistical mechanics.

This is addressed to two main problems of classical statistical mechanics: (i) the verification of
expected equilibrium thermodynamic properties, and (ii) the validity of the Gibbs theory for dynami-
cal systems.

2. Y. Domar, On spectral synthesis in R", n=2.

3. L. Hzdberg, Spectral synthesis and stability in S >bolev spaces.

The following problem is discussed in these two lecture series: Let X be a class of distributions
with support contained in a fixed subset of E of R"; determine whether ornot a given element u€ X
is the limit in some designated topology of bounded measures contained in X. In Domar’s case, the
Fourier transform of X is a subset of L~(R™) with the weak* topology. In Hedberg’s case, X is a
Sobolev space with the norm topology.

4. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderdn’s theorem,
and analysis on Lipschitz curves.

5. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, The complex method for in-
terpolation of operators acting on families of Banach spaces.

6. A. Cordoba, (i) Maximal functions: A problem of A. Zygmund, and (ii) Multipliers of & (L”).

These three lecture series deal with the harmonic analysis of operators of L? spaces. The prob-
lems studied have emerged mainly from the research of Zygmund, Calder6n and Stein. In order to
verify various L” estimates for the Hilbert transform and related operators, R. Coifman and Y. Meyer
present a range of real and complex methods. Next, G. Weiss, in a joint work with several others, set
forth a theory of interpolation, which includes the Riesz—Thorin theorem and Stein’s theorem for
analytic famnilies of operators. Finally, A. C6rdoba solved several specific problems involving a thor-
ough mix of many of the real methods.

The present book gives excellent accounts on the fast-growing development of Euclidean harmo-
nic analysis, which has maintained a vital relationship with several other areas of mathematics for over
150 years. It will certainly stimulate some of the readers to attack the rather difficult problems of this
important and fascinating field. We warmly recommend the book to everybody who wants to keep
pace with up-to-date developments in Harmonic Analysis.

F. Moricz (Szeged)

T. W. Gamelin, Uniform Algebras and Jensen Measures (London Mathematical Society Lecture
Note Sczries, 32), VIII + 162 pages, Cambridge University Press, Cambridge—London—New York—
Melbourne, 1978. '

These notes are based on various courses given by the author. The unifying theme is the notion
of subharmonicity with respect to a uniform algebra. Dual to the generalized subharmonic functions
are the Jensen measures.

The book consists of nine chapters. Chapter 1 provides an abstract treatment of R-measures,
including the basic ideas of the Choquet theory. Chapters 2 and 3 show three natural choices for R-
measures: the representing measures, Arens—Singer measures and Jensen measures.
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Chapter 4 is based on some unpublished work of B. Cole, in which an open Riemann surface is
constructed for which the corona problem has a negative answer. Chapter 5 introduces and treats
various classes of quasi-subharmonic functions, algebras generated by Hartogs series, and the abstract
Dirichlet problem for function algebras. The abstract development is applied in Chapter 6 to algebras
of analytic functions of several complex variables. The key to applications is a theorem of H.
Bremermann asserting that the abstract subharmonic functions essentially coincide with the
plurisubharmonic functions.

Chapters 7 and 8 are devoted to the theory of the conjugation operation in the setting of uniform
algebras. The M. Riesz and Zygmund inequalities turn out to be valid for Jensen measures, and the
constants are the same as those that arise in the case of the disc algebra. On the other hand, they fail
to extend to arbitrary representing measures. In Chapter 9 the problem of characterizing the moduli
of the functions in H®(¢) is considered. The discussion is based on Cole’s proof of a theorem of
Helson.

Each chapter ends with references. The book is supplemented by a List of notation and an
(author and subject) Index.

The presentation is self-contained and unified. Some of the results are published here for the
first time. The book may serve as a starting point for research in an area of current interest. It is highly
recommended for every graduate student who wishes to continue studies in Abstract Harmonic
Analysis or Functional Analysis.

F. Mdricz (Szeged)

Herman H. Goldstine, A History of the Calculus of Variations from the 17th through the 19th
Century (Studies in the History of Mathematics and Physical Sciences, 5), XVIII + 410 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1980. )

. The beginning of the calculus of variations can perhaps be dated from Fermat’s elegant prin-
ciple of least time, formulated in 1662 to show how a light ray was refracted at the interface between
two optical media of different densities. He used the methods of the calculus to minimize the time of
passage of a light ray through the two media. (By the way, Greek mathematicians were already
aware of isoperimetric problems and their results were preserved for us by Pappus (c. 300 A. D.),
but their methods were, of course, geometrical and not analytical).

The author attempts to trace the development of the calculus of variations during the period,
in which the foundations of the modern theory were being laid. He chooses the most famous math-
ematicians of the period in question and concentrates on their major works.

The book is divided into seven chapters, and ends with a rich Bibliography containing about
200 items and a detailed Index.

Chapter 1 is entitled “Fermat, Newton, Leibniz, and the Bernoullis”. During the 17th century
mathematical notation began to improve quite markedly and the reasonable symbolisms contributed
greatly to the development of mathematics. Fermat’s work mentioned above seems to be clearly the
first real contribution to the field. His method was adapted by John Bernoulli in 1696/97 to solve the
brachystochrone problem (from brachystos, shortest, and chronos, time). The first genuine problem
of the calculus of variations was formulated and solved by Newton in 1685. He investigated the mo-
tions of bodies moving through a fluid and led up to the general problem of motion in a resisting
medium,

Chapters 2 and 3 (“Euler” and “Lagrange and Legendre””) present the main achievements in the
calculus of variations during the 18th century. In his book Euler treated 100 special problems and not
only solved them but also set up the beginnings of a real general theory. His systematic investigations
also served to influence the young Lagrange to seek and find a very elegant apparatus for solving prob-
lems. Lagrange explicitly formulated the famous multiplier rule, the so-called Euler—Lagrange
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rule, which became a sovereign tool in his hands for discussing analytical mechanics. This new tool
caused Euler to name the subject appropriately the calculus of variations. In 1786 Legendre broke
new ground by extending the calculus of variations from a study of the first variation to a study of
the second variation as well.

Chapter 4 (“Jacobi and His School”) is devoted to the works made in the first half of the 19th
century. Legendre’s analysis was not error-free, but Jacobi in 1836 wrote a remarkable paper on the
second variation, in which the root of the matter was recognized. Among other things, he showed
that the partial derivatives with respect to each parameter of a family of extremals satisfy the so-called
Jacobi differential equation. However, none of Jacobi’s results was proved in bis paper. As a result
a large number of commentaries were published, mainly to establish an elegant result of his on exact
differentials. The celebrated Hamilton—Jacobi equation underlies some of the most profound and
elegant results not only of the calculus of variations but also of mechanics, both classical and modern.

In the second half of 19th century two quite different directions were taken. On the one hand,
Weierstrass went back to the first principles and not only placed the subject on a rigorous basis using
the techniques of complex-variable theory, but discovered the so-called Weierstrass condition, fields
of extremals, sufficient conditions for weak and strong minima, etc. On the other hand, Clebsch tenta-
tively and A. Mayer decisively moved on quite another route. They succeeded in establishing the usual
conditions for ever more general classes of problems. E.g., Mayer gave an elegant treatment of isope-
rimetric problems, in which he formulated his well-known reciprocity theorem. Details of their re-
searches are presented in Chapter 5 (“Weierstrass™) and Chapter 6 (“Clebsch, Mayer, and Others™).

At the international mathematical congress of 1900 Hilbert gave a beautiful discussion of the
calculus of variations. His greatest contributions were perhaps the discovery of his invariant integral
together with the results that stem from it, the perception of the second variation as a quadratic func-
tional with a complete set of eigenvalues and eigenfunctions, and his examination of existence the-
orems. Osgood, Bolza, Kneser, Carathéodory, etc., were also outstanding mathematicians at the turn
of the century, whose major results are contained in Chapter 7 entitled “Hilbert, Kneser, and Others”.
Upon this point the present volume ends.

The above listing of the contents could hardly give a right impression of the richness of the book.
It is written with a brilliant style and the text is illuminated by 66 illustrations. The book will certainly
be a very instructive and profitable reading for everyone interested in the Calculus of Variations.

F. Mdricz (Szeged)

G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory (Undergraduate Texts in
Mathematics), XV +286 pages, Springer-Verlag, New Y ork—Heidelberg—Berlin, 1980.

The nonlinear differential equations governing evolution problems generally contain some para-
meters. Therefore, the equilibrium solutions of such an equation depend on these parameters. Bifur-
cating sulutions are equilibrium solutions which form intersecting branches in a suitable space of func-
tions. One of the central problems in bifurcation theory is: how do stability properties of equilib-
rium solutions change at bifurcation points?

The book is a very good text for teaching the principles of bifurcation. It gives a general theory
abstracted from the detailed theory required for particular applications, and providing the reader
with a “skeleton on which detailed structures of the applications must rest.”

The following types of equilibrium are treated: steady solutions of autonomous problems, peri-
odic solutions of nonautonomous problems, periodic solutions of steady problems, subharmonic solu-
tions of periodic problems, subharmonic bifurcating solutions of periodic solutions of autonomous
problems. Bifurcation of periodic solutions of autonomous and nonautonomous problems into
“‘asymptotically quasi-periodic” solution is considered as well.
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The book follows the simplest way of teaching the subject, starting with the analysis of one and
two-dimensional problems and later demonstrating how the lower-dimensional problems relate to
high-dimensional problems. Instead of the Center Manifold Theorem, the Implicit Function The-
orem and the Fredholm Alternative are used for the computation of power series solutions and for the
determination of qualitative properties of the bifurcating solutions.

Owing to its simplicity and generality, the book should be very useful to persons working in
fields as diverse as biology, chemistry, engeneering, mathematics, and physics.

L. Hatvani (Szeged)

J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications (Applied Math-
ematical Sciences, 19), XIII+408 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976.

The Hopf bifurcation occurs in connection with dynamical systems containing some parameters
and refers to the development of periodic orbits (“self-oscillations™) from a stable fixed point, asa
parameter crosses a critical value. This phenomenon can be illustrated by the following example.
A rigid, hollow sphere with a small ball inside hangs from the ceiling and rotates about a vertical axis
through its center. For small rotation frequences the bottom of the sphere is a stable point. But if the
frequency exceeds a critical value then this equilibrium becomes unstable, the ball moves up the side
of the sphere to a new fixed point. For each value of the frequency greater than the critical one there
is a stable, invariant circle of fixed points.

The applications necessitate examination of Hopf bifurcation for vector fields and diffeomor-
phisms given on manifolds. The book originated at a seminar given in Berkeley in 1973—74 and con-
tains contributions of many authors. It offers an excellent discussion of the theoretical results and app-
lications of this topic. The basic tool is the “Center Manifold Theorem” which enables the infinite-
dimensional problems to be reduced to finite dimensional ones. The authors give a survey on the
necessary preliminaries from functional analysis, thus their book is readable for a wide circle of
readers interested in this theory and its applications.

The book treats not only the new directions of research but also the classical results. For exam-
ple, a translation of Hopf’s original and generally unavailable paper is included. In Hopf’s original
approach, the determination of the stability of the resulting periodic orbits is, in concrete problems,
an unpleasant calculation. The authors give explicit algorithms for this calculation which are easy to
apply in examples. The method of averaging also is used for reducing the problem and establishing
stability properties.

Chapters are devoted to partial differential equations, where the key assumption is that the
semi-flow defined by the equations is smooth in all variables for z>0.

The importancé of bifurcation theory is in its very close connections with applications. The
reader can find interesting problems arising in fluid dynamics, population dynamics, celluar biology
etc.

To sum up, we can warmly recommend this book for mathematicians, users of mathematics as
well as science students.

L. Hatvani—J. Terjéki (Szeged)

R.O. Wells, Differential Analysis on Complex Manifolds (Graduate Texts in Mathematics,
65), x+260 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979.

This book is the second edition of a succesful work which was first published by Prentice-Hall,
Inc. (1973). The main program of the author is to give a very elegant development of Hodge’s theory
of harmonic integrals and Kodaira’s characterization of projective algebraic manifolds.

12



178 Bibliographie

The first four chapters discuss four somewhat different areas of mathematics.

Firstly differentiable manifolds and vector bundles are studied. Besides summarizing some
of the basic definitions and results, this chapter contains some nontrivial embedding theorems, the
continuous and C” classification of vector bundles. Almost-complex structures and calculus of differ-
entiable forms are also introduced.

Roughly speaking, sheaf theory gives techniques for passage from local information to global
information. This theory is desribed in chapter 2.

Chapter 3 is an exposition of the basic ideas of Hermitian differential geometry with applica-
tions to Chern classes and holomorphic line bundles. The general theory of elliptic differential oper-
ators on compact differentiable manifolds can be found in the following chapter. The decomposition
theorem of Hodge is proved here, asserting that for a self-adjoint differential operator the vector
space of the sections is the orthogonal direct sum of the finite-dimensional null space and of the
range of the operator. The Hodge’s representation of the de Rahm cohomology by harmonic forms
is also described.

The following chapter 5 is a main chapter of the book. Compact complex manifolds are studied
here with the application of the previous discussions. Many basic theorems of this field are proved, for
example the Lefschetz decomposition theorem, the Hodge decomposition theorem, Hodge’s generali-
zation of the Riemannian period relations for integrals of harmonic forms on Kihler manifolds, the
Kadaira—Spencer upper semicontinuity theorem, etc. This chapter contains also a new section in
addition to the first edition of the book. This is the classical finite dimensional representation theory
for s/(2C) which is then used for giving a natural proof of the Lefschetz decomposition theorem.

1In the last chapter the famous Kodaire Embedding Theorem is proved, which asserts that a com-
pact complex manifold admits an algebraic embedding into a complex projective space iff it is a
Hodge manifold.

The book should be suitable for a graduate level course on the general topic of complex mani-
folds. The text is relatively self-contained but assumes familiarity with the usual first year graduate
courses.

Z. I. Szabo (Szeged)

H. Werner und R. Schaback, Praktische Mathematik I (Methoden der Analysis), Hochschul-
text; Zweite, neubearbeitete und erweiterte Auflage, VIII1+ 388 pages, Springer-Verlag, Berlin—
Heidelberg—New York, 1979.

The aim of this textbook is to provide a rigorous background of certain results widely used
in Numerical Analysis. The treatment is self-contained, it requires the knowledge of calculus only.

The present volume consists of four chapters. Chapter 1 treats the theory of interpolation, in-
volving multiple dimensional interpolation and fast Fourier transform. Chapter 2 is devoted to ap-
proximation theory, among others, to the Remes algorithm, the Fourier and CebySev expansions
of continuous functions. Chapter 3 begins with spline functions, including cubic splines, B-splines etc.
These results are then applied to the problem of representation of linear functionals, in particular,
to numerical differentiation and integration. Chapter 4 deals with numerical methods for the initial
value problem of ordinary differential equations. Both one-step methods, especially the classical
Runge—Kutta methods, and predictor-corrector methods are presented in details. The notions of
consistency, stability and convergence of a method plays central role in the treatment. This chapter
ends with the presentation of stability theorems of Dahlquist.

Throughout the text there are various examples and figures (altogether 36) illuminating the ma-
terial presented, and giving hints to further results found in the literature. The orientation of the
reader is helped by a notational index as well as an author and subject index. Among the references
one finds references to more than 40 textbooks.
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The material presented in this well-readable book belongs to the main body of up-to-date Nu-
merical Analysis. It will certainly be useful as a textbook for both science and engineering under-
graduate students.

F. Moricz (Szeged)

A. Weron (ed.), Probability on Vector Spaces II, Proceedings, Btazejewko, Poland, 1979. (Lecture
Notes in Mathematics, 628), XIII+324 pages, Springer-Verlag, Berlin—Heidelberg—New York,
1980.

From the editor’s foreword: “This volume contains 30 contributions — the written and often
extended versions of most lectures given at the Conference. A great majority of papers present new
results in the field and the rest are expository in nature. The material in this volume complements the
material in the earliner volume Probability Theory on Vector Spaces, Proceedings Lecture Notes in
Math. vol. 656, 1978, Springer-Verlag”.

Lajos Horvdth (Szeged)

George W. Whitehead, Elements of Homotopy Theory (Graduate Texts in Mathematics, 61),
XXI+ 744 pages, Springer-Verlag, New Y ork—Heidelberg—Berlin, 1979.

Homotopy theory is one of the most essential field of topology, which had its inception in the
work of L. E. J. Brouwer. The book is concerned with the basic ideas and results of this theory in
a modern treatment.

The fundamental notions and problems of the theory such as homotopy classes of mappings,
fibrations, CW-complexes, the H-and H’-spaces, the Hurewitz map of homotopy group into homology
group etc. are introduced in the first four chapters. The Hurewitz theorem is also proved, asserting
that the Hurewitz homomorphism is an isomorphism if the basic space is (n— 1)-connected.

The fifth chapter is devoted to the study of CW-approximations of spaces and of the extension
problem of maps from a relative CW-complex onto the CW-complex. In the following chapter a new
homology group is introduced, with the help of which results parallel to those of obstruction theory
can then be proved.

The relationships among the homotopy groups of spaces arising from a fibration are expressed
by an exact sequence. But the behaviour of the homology groups is much more complicated, and this
can be examined only in certain cases. These problems are discussed in chapter 7, while the following
chapter is devoted to the study of several cohomology operations.

For a 0-connected space X and positive integer N, one can embed X in a space X~ such that
X", X)isa (N+1) -connected relative CW-complex with 7, (X™)=0 for all g> N. The space X’ N+l
can be constructed from X~ with the help of a certain cohomology class k™ ** € HY * (X7, ny ., (X)),
and X is determined up to weak homotopy type by the so-called Postnikov system {X”~, k™ **} of X.
In Chapter 9 the Postnikov systems are used to give an alternative treatment of obstruction theory
for maps into X.

In the last three chapters the author turns to the detailed study of H-spaces, homotopy opera-
tions and homology theories without the dimension axiom.

The book is a very careful and clear work. It is a very good introduction to the field, at the same
time it can be considered as a high level survey of the subject. It is assumed that the reader is familar
with fundamental group theory and singular homology theory, including the universal coefficients
and Kiinneth theorems. .

Z.1. Szabd (Szeged)
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