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Bands of power joined semigroups 

STOJAN BOGDANOVlC 

A band is a semigroup in which every element is an idempotent. A semigroup S 
is called power joined if for each pair of elements a, b£S there exist positive integers 
in, n with am=bn. We say that a semigroup S is a band of power joined semigroups 
if there exists a congruence Q such that S/Q is a band and each class modg is a power 
joined semigroup. In this case Q is called a band congruence. One defines analogously 
semilattices, rectangular bands and left zero bands of power joined semigroups. Bands 
of power joined semigroups are studied by T . N O R D A H L [ 1] in the medial case (xaby— 
=xaby). In the present paper we consider the general case. 

For non-defined notions we refer to [2] and [3]. 

T h e o r e m 1. A semigroup S is a band of power joined semigroups if and only if 

(A) (Va, beS)(\/m, n£N)(3r, s£N)((aby = (amb»y). 

P r o o f . Let S be a band Y of power joined semigroups Sa, a£ Y. For a£Sa, 
a£ Y and b£Sp, fi£Y we have amb"dSxP for every m, ndN, and thus 

(ab)r = (amb")s for some r,s£N. 
Conversely, let S satisfy condition (A). We define a relation Q on a semigroup 

S as follows: 

(1) aQb*>(3m, n£N)(am = bn). 

It is clear that Q is an equivalence on S. Let agb, then 
(ab)' = (ambn)p = (am+my = a2pn. 

Hence, each ¿»-class is a power joined subsemigroup of S. We shall show that q is 
a congruence on S. Suppose agb and cdS. Then am—b" for some m,n£N, and 
by (A) we have 
(2) (ac)k = (amc')r for some k, r£N, 

(3) (bcfi = (bnc'yi for some k l 5 r^N. 

It follows from (2) and (3) that 
(ac)k'i = (amc')rri = [(amc'yi]r = [(b"c')ri]r = [(&c)*i]r = (bc)kir. 

Received April 3, 1981. 



4 S. Bogdanovii: Bands of power joined semigroups 

Hence, acgbc. Similarly, we obtain cagcb. Consequently, g is a congruence and since 
ago1 for every a^S, we have that S is a band of power joined semigroups. 

T h e o r e m 2. A semigroup S is a semilattice of power joined semigroups if 
and only if 
(B) (Va, fceSXVm, n£N)(3r, seN)((bay = (ambny). 

P r o o f . Let S be a semilattice Y of power joined semigroups Y. For 
a€Sx, a£Y and b£Sp,P£Y we have amb", ba£Sap for every m, n£N. Hence, 

(ba)r = (amb ny for some r, s£N. 

Conversely, let S satisfy condition (B). Then 

(4) (ba)ri = (ab)si f o r s o m e s^N. 

From (B) and (4) we have 

(5) (ab)sir = (ba)rri = (ambn)sri 

for every m,n£N and for some r,s£N. It follows from (5) and Theorem 1 that 
the relation g on S (from (1)) is a band congruence and every equivalence class of S 
modg is a power joined semigroup. It follows from (4) that abgba, so £ is a semi-
lattice congruence. * 

T h e o r e m 3. A semigroup S is a rectangular band of power joined semigroups 
if and only if 
(C) (Va, b, c€5)(3r , s£N)((abcY = (ac)s). 

P r o o f . Let S satisfy condition (C). Then 

(ambnY = (a(am~1b"~1)b)r = (ab)s 

for every m, n£N and for some r, s£N. Hence, the condition (A) holds and from 
this g (from (1)) is a band congruence on S (Theorem 1) and every equivalence 
class of S mod g is a power joined semigroup. It follows from (C) that g is a rec-
tangular band congruence. 

The converse follows immediately. 

C o r o l l a r y . A semigroup S is a left zero band of power joined semigroups if 
and only if 
(D) (Va, b£S)(3r, s£N)((aby = a°). 
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Compact approximants 

RICHARD BOULDIN 

§ 1. Introduction. Interest in approximating a given (bounded linear) operator 
T on a fixed Hilbert space § goes back to [3] and [4], among other references. Each 
of the preceding sources constructed a compact operator C such that ||iT—C|| equa-
led the distance from T to the compact operators; such an operator C is said to be a 
compact approximant. Although much attention has been focused on the Calkin al-
gebra and discovering compact approximants with various algebraic properties, only 
[5] seems to have studied the structure of the set of compact approximants. The 
main results of [5] show that the set of compact approximants has no extreme 
points except in the case that a multiple of T is a compact perturbation of a maximal 
partial isometry and the existence of a finite rank compact approximant is charac-
terized. 

This paper attempts to clarify where the investigation of compact approximants 
stands and to extend it in several directions. The next section compares the methods 
of [3] and [4] and shows that the resulting compact approximants are essentially the 
same. The new derivation of the Gohberg—Krein compact approximant will play 
a key role in several subsequent proofs. Section § 3 gives a simplified criterion for 
when T has a finite rank compact approximant. A similar criterion is given for T 
to have a compact approximant which belongs to the Schatten /7-class. Section § 4 
gives a condition which is necessary and sufficient for T to have a compact approxi-
mant with maximal norm. 

Throughout this work U\T\ will be the polar factorization of T where U is 
a maximal partial isometry and \T\ is (T*T)112. For T compact let Si(T), s2(T),... 
be the eigenvalues of |!T| in nonincreasing order repeated according to multiplicity. 
If for some p ^ 1 one has 

Received January 30, 1981. 



6 R. Bouldin 

then one says that T belongs to the Schatten /»-class Cp which is normed with 

\\T\\P = ( 2 SjiTyy». 

The quantities | | r | | e and re(T) are defined to be the norm and spectral radius, re-
spectively, of the coset of T in the Calkin algebra. 

§ 2. Constructing compact approximants. Since the existence of a compact appro-
ximant is proved in [3] as a by-product of the extension of ¿--numbers from com-
pact operators to bounded operators and the latter is only outlined, a brief deve-
lopment of the Gohberg—Krein compact approximant is offered. Through the use 
of the characterization of the essential spectrum for a self-adjoint operator, a much 
quicker derivation is achieved. For any normal operator the essential spectrum 
coincides with the Weyl spectrum which is all the points in the spectrum except 
isolated eigenvalues with finite multiplicity. See [p. 376, 6], [2], [1]. First, a funda-
mental lemma is required. 

L e m m a 2.1. | |TL = | | | r | | | e =r e ( | r | ) . 

P r o o f . Let n denote the canonical map of the operators on § into the Calkin 
algebra <€. Since is a C*-aIgebra and n is a *-homomorphism, one knows that 
l|rc(T)|| = IIKTOIII and 

|rr(R)| = (n(T)*n(T)yi2 = (n(T*T)y/2 = n((T*T)1/2) = 7 T ( | R | ) . 

Thus, imU = | |^(r) | | = ||7i(|r|)|| = | | | r | | | . . Since n(\T\) is normal in V, its norm 
equals its spectral radius and the lemma is proved. 

It is now clear that the spectrum of |y | in the open interval ( | |71e , consists 
entirely of isolated eigenvalues with finite multiplicity; let •••} be a nonin-
creasing enumeration of that possibly finite set with each eigenvalue repeated 
according to its multiplicity. Let E(-) be the spectral measure for |T| and denote 
£ ( [ 0 , l | r y ) S and £ ( ( | | T L , - ) ) § by §„ and respectively. Let {el3 e2 , ...} be 
an orthonormal sequence of eigenvectors of |T| such that ej corresponds to for 
y '=l , 2, ... and note that the spectral representation of | r | restricted to denoted 
i 2 m , i s 

i 

If U\T\ is the polar factorization of T then the Gohberg—Krein compact approxi-
mant of T, denoted by K henceforth, is 

K = 2(-^j)(Aj-\\T\\e)Uej. } 

Since {Al5 A2, ...} cannot have an accumulation point in (||T||e) either the above 
sum is finite or A2, ...} converges to ||!T||e. In either case, it is apparent that 
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K is the limit of finite rank operators and consequently K is compact. The fol-
lowing calculation shows that K is a compact approximant for T. 

I i r - / q = \\U\T\-c/(o|§0©(ir|-lirDisOn s n m - o i s o e a r i - n r u i s j = 

= max{ | | | r | |Sol | . l i r | | . / |S 1 | | } = H r L . 

In sharp contrast to the above contruction Holmes and Kripke obtain a compact 
approximant for T without using the polar factorization of T. They note that if 
there is an orthogonal projection P with finite codimension such that TP does 
not assume its norm — i.e. ||77>x|| = | |rP|| | |x| | implies x = 0 — then T(J-P) is a 
finite rank compact approximant. In the case that T does not have a finite rank 
compact approximant, the compact approximant constructed by Holmes and Kripke, 
denoted by L henceforth, is 

L = z ( - , mm-wmTfjiwTfjW 

where {/ 1 ; / 2 , ...} is. an orthonormal sequence such that ||7yi|| = ||T|| and 
\\TfJ+1\\ — \\TPj\\ where P} is the orthogonal projection onto the orthogonal 
complement of {/1 ; . . . , /}} for j= 1, 2, . . . . 

Since 117-xll = | | t / | r |x | | = || | r |x | | , one has || \T\M =11 \T\ II and || |T|/y + 1 | | = || | r |P y | | 
for j= 1, 2, .... This implies that 

i n / i = limiL/i and \T\fJ+1 = \\\T\Pj\\fJ+1 for j = 1,2, ... . 
Clearly one can choose _/} = ej for j= 1, 2, ... with {e1} e2, ...} given as in the con-
struction of the Gohberg—Krein compact approximant. The formula for L becomes 

L= 2 <•. ejXXj-WTUTej/WTejW or L = 2 ( - , ej)(lj-\\T\\e)Uej 
J J 

where k}=\\\T\P}l for j=0,1,... and P0=/. Here it is used that 

Tejl\\Tej\\ = U\T\e,/|| U\T\ej\\ = Uk^lWUX^W = Uej. 
It is straightforward to see that the formulas for K and L can be restated in forms 
which are independent of the choices of bases for the eigenspaces of |T|. Thus the 
following theorem has been proved. 

T h e o r e m 2.2. For any operator T which does not have a finite rank compact 
approximant the Holmes—Kripke compact approximant L coincides with the Gohberg— 
Krein compact approximant K. 

A slight refinement of the Holmes—Kripke construction produces a unique compact 
approximant even in the case that T has a finite rank compact approximant. If n 
is the infimum of the codimension of orthogonal projections P such that TP does 
not assume its norm then the Holmes—Kripke construction produces a unique rank 
n compact approximant which coincides with the Gohberg—Krein compact approxi-
mant. 
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§ 3. Compact approximants in Cp. In [5] it is shown that T has a finite rank com-
pact approximant if and only if there is no infinite dimensional closed subspace 
Scz9) with [17x11 >|]71e Hxll for all nonzero x^S. Following [5] the set of compact 
approximants of T is denoted 

T h e o r e m 3.1. The following conditions are equivalent. 
(i) contains a finite rank operator. 

(ii) |r| has only finitely many eigenvalues in (||r||e, 
(iii) The Gohberg—Krein compact approximant K has finite rank. 

P r o o f . The alternative derivation of the Gohberg—Krein compact approxi-
mant makes it clear that (ii) implies (iii) which implies (i). Thus, it suffices to show 
that (i) implies (ii). 

Let A be a finite rank operator in SKT and, for the sake of a contradiction, assume 
|!T| has infinitely many eigenvalues {Al5 X2,...} in the open interval (\T\e, Let 
& be the closed span of the eigenspaces of | r | corresponding to A2, ...}. It is 
easy to see that 

lim*ll > imUWI for every x * 0 
and so 

||Tx|| = II C/UWI = |||r|x|| > \\T\\e\\x\\ for such x. 

The argument is finished as in [5]. Since the restriction of A to & must have non-
trivial kernel, there is some nonzero ytSTlker A and ||(T-,4)j>|| = ||7>|| H | 7 1 J j > | | 
which contradicts that A£R T . 

For a given operator T it is much easier to construct T*T and check the number 
of eigenvalues in (||71®, than it is to examine all possible subspaces S. It is not 
difficult to see that if T has infinitely many eigenvalues in {z: \z\H|71e} then there 
is an infinite dimensional subspace S. But the converse of the preceding statement 
is false. Thus, it appears that the criterion for a finite rank compact approximant 
cannot be simplified any further. 

The results in the preceding theorem can be refined to provide a condition which 
is necessary and sufficient for S\T to contain an operator from the Schatten /7-class C p . 

T h e o r e m 3.2. The following conditions are equivalent. 
(i) RT contains an operator in Cp. 

(ii) If {?!, A2, ...}. is a nonincreasing enumeration of the eigenvalues of \T\ in 

(||r||e, repeated according to multiplicity, then 

j 

(iii) The Gohberg—Krein compact approximant K for T belongs to Cp. 
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Proof . The alternative derivation of theGohberg—Krein compact approximant 
given in section § 2 makes it reasonably clear that (ii) implies (iii). That (iii) implies 
(i) is trivial and so it suffices to show that (i) implies (ii). 

Of course, the spectrum of | 7 | in ( | |7 | |e , belongs to the complement of the 
essential spectrum of |T| and, thus, it consists of isolated eigenvalues {A^ A2 , . . .} 
each with finite multiplicity. Furthermore, the only possible accumulation point 
of {Aj, X2, ...} is | |7| |e . Let {e1,e2,...} be an orthonormal sequence such that <?; 

is an eigenvector for | 7 | corresponding to Xj for . / '=1 ,2 , . . . . Each Xj is repeated 
according to its multiplicity. 

Let A be a Cp-operator in and let U\T\ be the polar factorization of 7 . 
Note that U*A is a Cp-operator and 

\\\T\-U*A\\=\\U*U\T\-U*A\\ = | |7 | | e . 

Furthermore, one has 

II 7 | | ; SII | 7I - U*A II •2 s II (I 7I - re U*Af+(im U*Af\\ S || | 7 \ - re U*A ||:2. 

Thus re (U*A) belongs to and it is routine to see that it is a Cp-operator. 
Let C denote re (U*A) henceforth, let ctj—(Cej, e^ for j= 1 ,2 , . . . and 

Cej—iXjej+Xj with Xj ± ej . Note that 

IIT-IIJ ^ \WT\ej-CejV = I I X j e j - C e j V = U j B j - a j e j - X j V = - « ; ) » +| |xy | |« . 

Thus, \\T\\eS;\Xj-aj\ or Xj-\\T\\e^Uj^Xj+\\T\\e. This makes it apparent that 
a y SO and 2Q-j- \ \T \ \eY=I,v-P j - According to [item 5, p. 94, 3] 

j j 

\\CVP^2<\C\ej,ejy j 

and since | C | s C it is apparent that 

<|C|e j.,eJ.>fe<CeJ.,eJ.) = aJ- for j = 1,2, ... . 

Thus, it is proved that ¿ '(A J - | | r | | e ) p < o ° as desired. 
j 

§ 4. A compact approximant with maximal norm. Recall that an operator T is 
said to "assume its norm" provided there is a nonzero v e c t o r / such that | |7/ | | = 
= 1171111/11. Such / i s said to be a maximal vector for T. It is easy to see that 7 assumes 
its norm if and only if ||T||2 is an eigenvalue of T*T. Note that | | 7 | | a | | / | | 2 = | |7 / | | 2 = 
= < 7 * 7 / , / > and | | ( | |7 | | 2 —T*7) 1 / a / | | 2 =0 are equivalent. This makes it clear, for 
example, that any compact operator assumes its norm. 

The condition that 7 assume its norm played a key role in [4] and now it plays 
a key role in determining when contains an operator with maximal norm — i.e. 
AeStT such that implies 
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T h e o r e m 4.1. There is a compact approximant A of T, i.e. A£$<T, with 
maximal norm if and only if T assumes its norm. 

P r o o f . First it is shown that if T does not assume its norm then S<T does not 
contain an operator with maximal norm. For any B£S\T and / a maximal unit 
vector for B one has 

II711. ^ KB-T)f\\ £ | | 2 ? / | | - | | r / | | = | | 5 | | - | | 7 7 | | 
or 

i m i . + i m i > i i r i i e + n r / i i 

Thus, it would suffice to show that ||71e + | |71 is the supremum of the norms of 
operators in R T . 

Since T does not assume its norm, | r | does not assume its norm. Since ||T|| 
is not an eigenvalue for | r | , it must be an accumulation point for the spectrum. Con-
sequently | | | r | | | e equals | | | r | | | and equivalently | | r | | e equals | |7J. Let E(-) be the 
spectral measure for |T| and choose a unit vector /„ from E([\\T\\ — l/n, | | r | | ] )§. 
Define C„ by 

C„ = <-,/„>(21171-l/n)/„. 

Note that C„ is rank one and | |CJ converges to 2 | | r | | = ||T|| + | | r | | e . 
It now suffices for this half of the proof to show that C„ is a compact approxi-

mant for | r | . Denote E([0, | | r | | - l / « ) ) § and E([\\T\\-l/n, ||T||])§ by §„ and § l f 

respectively. Since § 0 reduces |T| —Cn to | r | |§0 it suffices to sow that 

I K I T I - c j s y | | r | | e = m r i L 

where A\$j1 denotes the restriction of A to Since the above restriction is 
self-adjoint it clearly suffices to show that 

< ( |7 , | -C n )g ,g>€[ - | | r | | , | | r | | ] 

for every unit vector g in Since the numerical range of C„ is [0, 2||7'|| — 1/n], 
one has 

- i m i = | | r | | —l/n—(2||r | | —1/n) S \\T\\ — l/n — (Cng, g ) s 

^ < ( m - c „ ) g , g > == iirn - < c n g , g > ^ urn. 

This shows that ||3p||e + | | r | | =2| |7' | | is the supremum of the norms of the operators 
UC„ which belong to RT, where U\T\ is the polar factorization of T. Thus, half 
of the theorem is proved. 

Now it is assumed that T has a maximal vector and it is to be shown that 
i\T contains an operator with norm | |T | | e+| | r | | . Since T assumes its norm, ||T||2 

is an eigenvalue for T*T and this implies ||T|| is an eigenvalue for |T|. First, 
consider the case that | |r | | has finite multiplicity for | r | and let P be the ortho-
gonal projection onto the corresponding eigenspace. For brevity sake let /? denote 
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l|7||e + | | r | | . In order to show that ßP£$\ ] T i it is noted that the restriction of 
\T\-ßP to (I~P)$> is just |T| Thus, it suffices to show that 

H ( i r i - / H > ) | p s n s u m . . 

Since ( |n -ßP) \PSt> is just - \\T\\eP\P%>, the above inequality is clear and / ?P€f t | r | . 
It follows that ßUP belongs to where U |T| is the polar factorization of T. 

It only remains to deal With the case that | |m is an infinite dimensional eigen-
value of m . In this case it is clear that | |nie = |l|7|||e = FI | . Let P be the ortho-
gonal projection onto some nontrivial finite dimensional subspace of the eigenspace 
for m correspoding to ||T||. Since ( 7 - P ) § reduces | r | - 2 | | r | |P to | 7 , | | ( / - P ) § 
and P9) reduces it to - |1T | |P |PÖ, it is apparent that 2\\T\\P belongs to 5 \ m . 
Thus 2\\T\\UP belongs to SkT and the proof of the theorem is complete. 
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Tolerance Hamiltonian varieties of algebras 

IVAN CHAJDA 

The concept of Hamiltonian algebras was first introduced for groups. A group 
(5 is Hamiltonian if every subgroup of © is normal, i.e., a class of some congruence 
on ©. EVANS [6] introduced the Hamiltonian property for loops and KLUKOVITS 
[7] generalized this concept for universal algebras and varieties: an algebra 91 is 
Hamiltonian if every subalgebra of 91 is a class of some congruence on 91; a variety 
V is Hamiltonian if each 216 y has this property. 

In [7], Hamiltonian varieties are characterized by a nice V3-condition. Such 
conditions are also used for characterizations of varieties fulfilling given tolerance 
identities [3]. It is natural to ask whether the Hamiltonian property can be extended 
also for tolerances (see e.g. [5]) and which VB-condition characterizes such varie-
ties. 

By a tolerance on an algebra i t = ( A , F) is meant a reflexive and symmetric 
binary relation T on A having the Substitution Property with respect to F (i.e. T is 
a subalgebra of the direct product 91x91). Thus each congruence is a tolerance but 
not vice versa. 

D e f i n i t i o n 1. Let Tbe a tolerance on an algebra 9 1 = ( A , F ) . Call 0 ^BQA 
a block of T provided 

(i) BXBQT, 
(ii) B is a maximal subset of A with respect to (i), i.e. if BQC and CxCQT, 

then B=C. 

Clearly, if a tolerance T on 91 is a congruence on 91, every block of T is a con-
gruence class of T and vice versa. Thus blocks of tolerances are generalizations of 
congruence classes. 

The paper [2] contains a characterization of the property that every block of each 
tolerance on 91 is a subalgebra of 91. The objective of this paper is to describe the 
converse situation, namely: 

Received November 20,1979. 
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D e f i n i t i o n 2. An algebra 91 is tolerance Hamiltonian if every subalgebra of 
21 is a block of some tolerance on 91. A variety "V is tolerance Hamiltonian if each 
91 has this property. 

Although [1], [2] contain necessary and sufficient conditions under which a sub-
set of an algebra is a block of some tolerance on it, these conditions cannot be used 
in the way as Mal'cev's Lemma in [7]. The proof of our Theorem 1 is based on a 
characterization given by Lemma 3 below. 

For the sake of brevity, write Xj instead of xx, ...,x„ and yt instead of yy, ...,ym 

if the integers n, m are given. 

T h e o r e m 1. Let ~V be a variety of algebras. The following conditions are equiv-
alent: 

(1) "V is tolerance Hamiltonian. 
(2) For every (m -\-n-\- k)-ary polynomial p and for every (m-\-n-\-Y)-ary poly-

nomial t there exists an (m+n + l)-ary polynomial q over "V such that 

V{t($i, Xj, Z)..., tlpi, Xj, z), Xx, ...,Xn, VX, ...,Vk) = t(ji,Xj, z) 
implies 

P(yi> •••, ym, t(y>, Xj, z), ..., t(y„ xj, z), v1} ..., vk) = q(yh Xj, z). 

Let us begin the proof of Theorem 1 with some lemmas. If T is a binary rela-
tion on a set 91, we denote [z]T= {a£A; (a, z)£T). 

L e m m a 1. Let 91 = (A, F) be an algebra and z£BQA. The following con-
ditions are equivalent: 

(a) B=[z]T for some tolerance T on 91. 
(b) For every (m + n)-ary algebraic function cp over 91, 

<p(z, ..., z, br, ...,b„) = z for some b£B 
implies 

<p(alt ..., am, z, ..., z)£B for each aj£B. 

P r o o f , (a) =>-(6): Routine. 
(b)=>(a): Let R = {<x, x); x£A} U {<x, z); x£B} U {{z, x>; x£B}. Let T be the 

set of all (a, b) such that a=(p{a1, ..., ak), b = <p(b1, ..., bk) for some (at, bt)£R and 
for some algebraic function (p over 91. Clearly T is a tolerance on 91. It only 
remains to prove B = [z]T. Evidenty, 2?g[z] r . Suppose c£[z]T. Then (c, z)£T, i.e. 
c — \//(a1, ..., ak), z = \p(b1, ..., bk) for some (ah b^R and some /c-ary algebraic 
function i]/. We can suppose, that k=m + n + k' (m&0, n s O , k'^0), moreover, 
bt=z for i=l,...,m and at—z for i=m+l, ..., m + n and at=bt for i— 
= m + n + l, ...,k. Put 

•••> im+n) = '/'(^l. •••> + am + „ + l ! •••>«*)• 
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Since z=<p(z, ..., z, blt ..., b„), by (b) we obtain c=(p(al, ..., am, z, ..., z)dB prov-
ing the reverse inclusion [z\T^kB. 

L e m m a 2. Let '& = (A, F) and let T be a tolerance on 9i. For 0 ^BQA the 
following conditions are equivalent: 

(a) B is a block of T. 
(b) B=f}{[z]T;zdB}. 

P r o o f . Routine. 

L e m m a 3. Let 91=(A, F) and 0 ¿¿BQA. The following conditions are equiv-
alent: 

(a) B is a block of some tolerance on 91. 
(b) For every (m+n)-ary algebraic function <p over 91 and for each z£B, 

(p(z, ..., z, blt ..., b„) = z for some b^B 
implies 

q>(a1; ..., am, z, ..., z)£B for each afiB. 

This follows directly from Lemmas 1 and 2. 

P r o o f of T h e o r e m 1. (1)=>(2): Let p and t be (m+n+k)-ary and 
(m+«+l ) -a ry polynomials over "V, respectively, such that 

(*) P(¡(Pi, Xy, Z), ...,t(?i, Xj, Z), XL5 V±, ..., Vk) = t(yt, Xj, z). 

Let 9I=(/4, F) = g m + n + t + 1 be the "V-free algebra with the set of free generators 
fo, ...,x„,ylt . . . , . . . , v k , z } and © = ( £ , F) = g m + „ + 1 the iT-free algebra 
with generators {xj, ..., z}. Hence S is a subalgebra of 91. Since 
"V is tolerance Hamiltonian, B is a block of some tolerance on 91. By Lemma 3, 
(* ) yields p(yt, ...,ym, t(yi,Xj,z), ..., t(J„ xj,z),v1, ...,vk)£B. Since 93 = 
— 5m+n+i there exists an (w+K-f-l)-ary polynomial q over "V such that (2) of Theo-
rem 1 is valid. 

(2)=>(1): Let f be a variety fulfilling (2), 9 1 9 3 = 0 6 , F) a 
subalgebra of 9t and z£B. Let cp be an arbitrary (m-f-n)-ary algebraic function over 
91 and p its generating polynomial, i.e. ..., £m + n )=p(£i , Cm+m clt..., ck) 
for some c1( ..., ck£A. If q>(z, ...,z,bi, ...,b^)=z for some b^B, then, by (2), 

<p(a1; . . . , a m , z, . . . , z ) = q{an ...,am, bx, ...,bn,z)£B 

for each Oj, ..., am£B. By Lemma 3, 9i and also 'V are tolerance Hamiltonian. 

T h e o r e m 2. The tolerance Hamiltonian property is local, i.e. an algebra 91 
is tolerance Hamiltonian if and only if every finitely generated subalgebra of 91 is a 
block of some tolerance on 91. 
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P r o o f . It is a direct consequence of Lemma 3: if S = ( 5 , F) is a subalgebra 
of 91 which is not a block of any tolerance on 91 and every finitely generated sub-
algebra is, then there exist z£B and an (m+n)-ary algebraic function q> over 91 
such that cp(z, ..., z, bt,..., b„)=z and <p(ai> •• •••> f ° r some 
« i , . . . , am, blt..., bn£B. Hence the subalgebra G of 91 generated by {a1,...,am, 
bu ...,bn, z} is not a block of any tolerance on A which contradicts the assump-
tions. The converse implication is trivial. 

T h e o r e m 3. The variety of all semilattices is tolerance Hamiltonian (but not 
Hamiltonian). 

P r o o f , lip, t are semilattice polynomials fulfilling the assumptions of the con-
dition (2) of Theorem 1, then clearly p does not depend on ...,vk and the statement 
of (2) is evident. Thus Theorem 3 is a direct consequence of Theorem 1. By the 
theorem of KLUKOVITS [7], this variety is evidently not Hamiltonian. 

R e m a r k . As it was proved by ZELINKA [8], on every at least three element 
semilattice there exists a tolerance which is not a congruence. 

T h e o r e m 4. No non-trivial variety of lattices is tolerance Hamiltonian. 

P r o o f . Let p and t be (2+0+ l ) - a ry (i.e. ternary) lattice polynomials given 
as follows: 

p(x, y, z) = xV(yAz), t{x, y, z) = z. 

Then we have p{t(y1,y2,z),t(y1,y2,z),v1)=p(z,z,v1)=z=t(y1,y2,z), thus the 
assumptions of (2) of Theorem 1 are valid, but p(ylf y2, Vi) is essentially dependent 
on . Hence, no polynomial q of the required type exists. 
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The range of the transform of certain parts of a measure 

KERRITH B. CHAPMAN and LOUIS PIGNO 

In this note we point out a very elementary condition which provides a uniform 
treatment for the results in [2, 4, 5] concerning the range of the transform of certain 
parts of a measure. We assume familiarity with the basic facts of [8]. 

Let G be a nondiscrete LCA group with character group T and let M(G) denote 
the customary convolution algebra of bounded Borel measures on G. Denote by 
S the structure semi-group of M(G) and let £ denote the semi-characters of S; 
recall that § is the maximal ideal space of M(G), see [8]. For ¡i£M(G) let p. denote 
the Gelfand transform defined on § by i 

Kl) = f Xd n 
s 

where we have identified n and the image of ¡i in M(S) \ we will also let ~ denote the 
usual Fourier—Stieltjes transformation. By M0(G) we mean the set of /i£M(G) 
such that (I vanishes at infinity, i.e. fi is zero on f \ r . 

The main result of this paper is the theorem stated below; its proof is quite 
simple. After stating and proving our theorem, we present two examples which 
serve to indicate its scope. Example 1 is obtained by adapting the work of B. HOST 
and F. PARREAU [3]. In order to present Example 2, we prove a proposition by modi-
fying an argument of I . GLICKSBERG and I . WIK [ 2 ] . Professor Glicksberg has kindly 
pointed out (private communication) that the proposition is also a consequence of 
the main result of [1]. 

T h e o r e m . Let h£T\r and E\T. Then for every fi£M(G), 

(1) (hny(n^Mr\E)-
if and only if 
(2) he(r\yE)~ for every y£T. 

Received March 25, 1981. 
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P r o o f . Let E satisfy (2) with respect to some h£r\r. Fix y0£T; since 
/ i£ ( r \Vo 1 £ ' ) - there is a net ( y ^ c f such that yift and y ¡ i y ^ E for all j. 
Observe that 

= fi(y*h) = Hmfi(y0yj) 

because /2 is continuous on S. Thus (2) implies (1). 
Now let ft£/\r and suppose for every fi£M(G), ( h f i y ( r ) < z f i ( r \ E ) ~ ; we 

want to see that E satisfies (2) with respect to ft. With this in mind fix y 0 £ r and let V 
be any open set of § containing {ft}. It suffices to confirm that F D ( r \ y o E ) is not 
empty. 

Let W=y0V. Then W is an open set containing {y0ft}; by the definition of the 
Gelfand topology on § there exist measures fi1, ...,/i„£M(G) and e > 0 such that 

n {x: !&(x)-A(yoft)l 
¡=i 

For n£M(G) put p. equal to the measure such that (/!)"=/2 on r and let S0 

be the identity measure in M(G). Define auxiliary measures by: 

vi = Hi~[li(%h)80 and trf = v f* v£; ¿ = 1,2, . . . ,n . 
n 

Put a = 2 a i > now, on the one hand, &(hy0)=0, while, on the other, 
/=1 

( M ~ ( y 0 ) = a(hy0)ea(r\Er 
by hypothesis. 

We gather from all this that there is a net (ya)czr\E such that &(ya)—0. 
Now given e > 0 choose a ' such that for all a £ a ' 

consequently for all a s a ' 

i I M v J - M y o ' O I ' - e2-
i=1 

Thus \fii(ya)—A()VOI<e for a g a ' , and so ya€W for all a S a ' . 
We have now proved that if a s a', y0y«€Fn (r\y0E)-, thus h^(r\y0E)~ 

and this means that (1) implies (2). 

Let G be an infinite compact abelian group; a subset RczT is called a Rajchman 
set if whenever n^M(G) and supp ficzR then ¡¿£MQ(G); here ~ is the Fourier— 
Stieltjes transformation. Examples of Rajchman sets can be found in [7]; all the sets 
considered in [4, 5] are Rajchman sets. 

E x a m p l e I. If R is a Rajchman set then R satisfies (2) with respect to every 
idempotent h £ r \ r ; we point out that this fact is more or less implicit in [3]. To 
be explicit we need to reproduce some details from [3]. 
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To confirm that R satisfies (2) with respect to every h~h2£r\r we fix an 
h t = h 0 i l \ r and suppose by way of contradiction that there is a y0£T such that 
M (T\yoR)~- Thus, there is an open set V0 with h„eV0 such that V 0 f ) (r\y0R) 
is empty and l f F „ . For the remainder of the proof, ~ is complex conjugation. 

By the definition of the Gelfand topology on § there exist measures ..., /x„€ 
n 

£M(G) and e=-0 so that H | / J f 0 c ) — i s ° P e n and contained in V0. 
n 

Put Ai={z£C: \z—fii(h0)|<e} and consider the open set H {C'o/O } - 1 ^ ); since 

ha=hl it follows that /¡0€ f | {(^o^i)'}""1^.)} and therefore 

is an open set about h0. Put W\ = {%: jf€JPi} and define V1 = fV1D W\; since 
h0=K0 we see that VydVg and is an open set about h0. Choose p^r such 
that P u P i 1 ^ ! . Next define JB1 = {yS1, /S"1,1}; let 

W2 = {y_: xtiiPHiY}-1^,) for all i and all PeB^f] 

n{x: x e m ^ l ' K A d for all i and all pZBj 

and V2—W2C\W\\ evidently V2<zV1 and h0ZV2. Since V2 is open and B± is finite 
we select P^r such that P2^V2\B1. 

Put Bt={p=nfi>: ¿¡€{—1,0,1}}U{1}; let 

Wz ={x:x^miy}-\Ai) for all i and all PiB2)D 

for all i and all PdP2) 

and V3=W3C\W%; evidently V3cV2 and h0£V3. Since V3 is open and B2 is finite we 
select p3€T such that ft3£Vz\B2- Continuing in this manner we inductively con-

j 
struct a sequence of distinct characters (/?.-)" such that II P?> ¿¡€{—1,0, 1} 

1 = 1 

and § ¡ ^ 0 for some/ , then /?€F0; since P £ V 0 O r , this means that P y ^ i R for 

all P of the form P=flP\l, ¿ ¡€{-1 ,0 ,1} . As shown in [3] (see Theorem 2.8 of 
¡ = 1 

[6, p. 21]) there is a dissociate sequence <cop)~ with the property that if at is of the 
k n 

form co = ff mp, ¿ ¡€{-1 ,0 ,1} , then co is also of the form co = HP"?1, m €{-1 ,0 ,1} . 
¡=i j=I 

Since <cop>™ is dissociate we may now construct a Riesz product XdM(G) 
such that supp IczR and A$M0(G); this contradicts the fact that R is a Rajchman 
set and so our discussion is complete. 

2* 
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The above example is not the only one we know: Let R denote the additive 
group of real numbers and let (p : T—R be a nontrivial homomorphism. A measure 
/¿6M(G) is said to vanish at infinity in the direction of <p if whenever <p(V/)~* + 
then /2(7;)—0; denote the set of all measures vanishing at infinity in the direction 
of q> by MV(G). A subset RczT is said to be (p-Rajchman if for fi£M(G) and 
supp ¡iczR^n^M^G). Then it can be shown that if E is (¡»-Rajchman, E satisfies 
(2) with respect to various h"s. Notice that in general there are (p-Rajchman sets 
which are not Rajchman sets; let T = [m + nil : m, w£Z} and let cp be the identity 
homomorphism of r into R. Then the set {xdT : x s O } is <p-Rajchman but not 
Rajchman. 

Although <p-Rajchman sets and Rajchman sets are the same for the additive group 
of integers Z, there do exist non-Rajchman subsets of Z which determine the range 
of the transform of certain parts of a measure. For the circle group T put / i= / / d +/ i c 

where /i£M(T), fid is discrete and /ic continuous. 
Let /?(Z) denote the Bohr compactification of Z and for £ c Z let E be the 

closure of E in /?(Z). Our result is then: 

P r o p o s i t i o n . If EdZ and Z\E is dense in P(Z) then for T) 

/2d(Z) c fi(Z\E)~. 

P r o o f . For /i£M(T) write f i = n d + n c ; fix 0 < e < l and m 0 £ Z \ £ . We see 
from [2] that there is an infinite sequence of distinct integers satisfying 

g 
(2.1) \fic(m0+mn — mj)\ < — for j < n. 

Put and consider H where the closure is of course taken in /?(Z). 
Since card/ /==», thereisan and a net m a£H, a£ / l such that ma—x€/?(Z). 

Inasmuch as >n0£Z\E it follows that there is an a0£ A such that for all a 
and /? greater than a0 

(2.2) m o + m ^ - m ^ i E 

and 

(2.3) \h(mj-fii(m0 + ma-mf)\~z-j. 

/ 

Notice that (2.3) is valid since fid is a continuous function on j8(Z). As a conse-
quence of (2.2) and (2.3) there is a fcsl and an r>k such that m0+mr—mk$E 

g 
and \ f i i (m 0 ) - f i d (m 0 +m r -m k ) \<-^ . Since 

\Mfn0)-Km0+mr-mk)\ ^ I P d i m o i - ^ ^ w J o + ^ - w i O I + l ^ i m o + w ^ m t ) ! , 
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and r>k, we gather from (2.1) that 

\h(mo)-fi(.m0 + mr-mJ\ =§ e. 

Thus (ld(Z\E)cp.(Z\E)~ and since Z\E is dense in P(Z) we obtain fld(Z)c 
<zfi(Z\E)~. The proof is complete. 

E x a m p l e II. Let N be the natural numbers and for each put E„ = 

— {m : m= 5 ,6{ -1 ,0 , 1}}; set E= Q E„. Let D = { < ? w : * e Z j € N } 
/= i I 

and consider E as a subset of D where D is given the discrete topology. Now the 
integer accumulation points of E in D belong to E so it follows that E is a closed 
subset of Z in the relative tolopogy of P(Z). Notice that E has natural density zero 
so by Wiener's Theorem it follows that if supp QC:E then Q is continuous and this 
in turn implies that Z\E=Z\E is dense in /?(Z). Clearly E is not a Rajchman set 
since it contains the spectrum of an infinite Riesz product. 

R e m a r k . An easy application of Theorem 1 and Corollary 2 of [5, p. 2] estab-
lishes the following assertion: Let Ear satisfy (2) with respect to some h=h2£ 
6 f \ r and let S be an infinite Sidon subset of r; then EUS satisfies (2) with respect 
to h. 

The authors wish to thank Professor Colin Graham of Northwestern University 
for helpful correspondence. 
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On random censorship from the right 

SÁNDOR CSÖRGŐ and LAJOS HORVÁTH 

1 . Introduction. B U R K E et al. [ 4 ] introduced the following censorship model. 
Let X be a real random variable with distribution function F ( / ) = p r {X^t}. For 
a fixed integer A:Si let A1, Ak be pairwise disjoint random events, and define 
the sub-distribution function F ' ( i ) = p r {X<t, A1}, i = l , ..., k. We are interested 
in the joint behaviour of the pairs (X , A1) as expressed by 

S'(r) = exp(- / ! ' ( / ) ) , i = l, ...,fc, 

where A1 is the i-th hazard function I J — j I 

¿ ' (0 = f(l-F(s))-idFHs). 
— oo 

So let {X„, Al, ..., Ak} be a sequence of independent replicas of {X, A1, ..., Ak}, 
/1=1,2, .... We assume throughout that the functions F, F1, ..., Fk are continuous. 
Define the product-limit estimates 

5 , 1 ( 0 = 1 - / 2 ( 0 = n ( T W Í ' i f ^ m a x ^ , . . . , ^ ) sjsn: Xj^t}\tl— Kj+l ) 
0, otherwise, 

i=l, ...,k, where <5J is the indicator of A), and Rj is the rank of ( X j , 1 —<5V) in the 
lexicographic ordering of the sequence (X l t 1—<5j), ..., , 1 —S'„). Finally, intro-
duce the /-th product-limit process 

Zi(t) = n1/2(Sl(t) —Sfrj), 

and, for x = ( x l 5 ..., xk), the corresponding vector process 

Z„(x) = (Z„1(x1), ...,Z„Hxk)). 

Received July 1, 1980. 
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However general is this model, the most important special cases are a) and b) 
below. By working in this generality we merely would like to emphasize the fact that 
the asymptotic theory of random censorship on the right requires only the above 
structure. When dealing with random censorship on the left the basic ingredients S' 
and §'„ should be accordingly modified. This is done in [9]. 

a) Let X°, X°,... be a sequence of independent random variables with common 
continuous distribution function F°. These are censored on the right by Y1,Y2, ••• 
a sequence of independent random variables, independent of the X° sequence, with 
common continuous distribution function H. One can only observe the sequence 
(Z„=min Y„), Sn), where Sn=Sl is the indicator of An=Al={Xn^X°}. In this 

t 
case k=2,1 — F = ( l — f ° ) ( l —H), F1{t)= f (1 -H)dF°, thus S1(t) = S(t) = 

= 1—F°(t), and §*=§„ reduces to the usual product-limit estimate. This is the 
KAPLAN—MEIER [15 ] model as defined by EFRON [12]. It was investigated by BRESLOW 

and CROWLEY [3], MEIER [19] , HALL and WELLNER [14], BURKE et al. [4] and others. 
The useful special case when 1 — H—(l — F°Y, J3>0, was considered by KOZIOL 

and GREEN [18 ] , and their model was investigated by CSÖRGŐ and HORVÁTH [7] and 
KOZIOL [ 1 7 ] . 

b) For k>\ consider k independent sequences Y[,Y2,... {i=\, ...,k) of 
independent random variables with common continuous distribution function H ' , 
and let Ar„=min (Yj, ..., Y*). One observes the sequences (X„,ö'n),i=\, ...,k, 
where ¿'n is the indicator of the event A'n = {Xn—Y'n}. This is the competing risks 
model (giving back the above Kaplan—Meier model for k=2) considered by many 
authors, notably, from the present viewpoint, by Y A N G [ 2 2 ] and BURKE et al. [4 ] . 

Here, as BERMAN [2] proved, the above Sl reduces to Si(t) = l—Hi(t). 
On the basis of the Efron-transformed variant of the Breslow—Crowley weak 

convergence theorem, GILLESPIE and FISHER [13 ] constructed asymptotic confidence 
bands for the survival curve 1 — F° in the Kaplan—Meier model. However, their 
Monte Carlo study has shown that sample size n=200 is not large enough to apply 
the asymptotic bands with high precision. Their results were a strong motivation 
for us to work out a strong approximation theory in [4] for the above general Z„ 
and related processes. A variant of one of the main approximation theorems is for-
mulated in the next section. This result enabled us to build the approximation rates 
into the construction of the Gillespie—Fisher type bands, i.e., we could construct 
"exact" confidence bands ([4]) for the general survival functions S* under the '7-th 
risk A1". We also indicated that these constructions should give reasonable bands 
for much less sample sizes than the asymptotic ones of Gillespie and Fisher. 

H A L L and WELLNER [14 ] utilized Doob's transformation of the Brownian motion 
into the Brownian bridge, and hence proposed the corresponding transformation 
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of the product-limit process in the Kaplan—Meier model. The resulting process 
converges weakly to a transformed Brownian bridge. Although Doob's transfor-
mation belongs to the statistical folklore nowadays, its use by Hall and Wellner in 
the present context is a remarkable step in the asymptotic theory of censored empiri-
cal processes. The resulting asymptotic confidence bands constructed by H A L L and 
WELLNER [14 ] enjoy many advantages over those of GILLESPIE and FISHER [13 ] as 
they explain it in detail. For example, they reduce in the uncensored case to the 
classical Kolmogorov bands. Following H A L L and WELLNER [14 ] , KOZIOL [ 1 7 ] 

considered Kolmogorov, Kuiper and Cramér—von Mises statistics corresponding 
to the transformed product-limit process in the Kaplan—Meier model for testing 
goodness of fit (cf. Section 3 here). 

Following AALEN [1], N A I R [20] proposed another clever transformation of the 
product-limit process in the Kaplan—Meier model. It is a modification of Efron's 
transformation, where the limit process is a scale-changed Wiener process. The re-
scaling depends on censoring, but the Kolmogorov—Smirnov, Kuiper and Cramér— 
von Mises functionals of this process are distribution-free. 

The aim of the present note is to develop strong approximation theorems cor-
responding to the transformations of Hall and Wellner and of Aalen and Nair in 
the general setting of the first paragraph of this section. This is done in Sections 3 
and 4, respectively, after some preliminaries from Burke et al. Convergence rates are 
deduced from these theorems for the above mentioned statistics in Sections 3 and 4. 
Using the approximation rates, we show in Section 5 a possibility for making exact 
the asymptotic bands of Hall and Wellner. This is done again in the general setting. 
Comulative hazard processes are investigated in a similar manner by CSÖRGŐ and 
HORVÁTH [8] . 

2. Preliminaries. Let 7V=inf {/ : F(/) = 1} and define 

If d denotes the inverse of d\ then the vector process with components ¿'„(a'ixi)), 

t 
f (1 -F(s))-*dF>(s), t^TF 

(2.1) A O - T; 
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(0, is the one which was called by BURKE et al. [4] as the Efron transform of 
Z„. All of our approximations will take place on the infinite cube ( — T J f where 
Tn is a sequence of numbers satisfying first the condition: 

(2.2) Tn < Tr and 1 - F(Tn) £ (2en - 1 log n)1'2 

where, throughout this note, e is some arbitrarily fixed positive number. Let 

(2.3) bn = (l-F(TJ)~\ 

and introduce the following (rather messy) rate-sequence 

(2.4) r(n) - v(n) + jn-H*{v(n)+3(e/2yl* b2(log n)1'2}2 

where 

»00 = [bl{(2k+ l)5A1+(2+(5(2k+ l)/AJ)e +((2/3)e+e2)1'2}+6® 4 e ] n l o g n + 

+ &2(12e)1/2n~1/3(log n)1/2 + bl(2k+\) {Ax + ( e / ^ J e 1 ' 2 n " ^ ^ l o g n)3'2 + b„ In'1'2. 
For x=(xt, ...,xk) let ||x|| —max (l^il,. . . , denote the maximum norm. In 
[4] we constructed a special probability space (Q, sá, P) carrying k sequences {Wn} 
of Wiener processes such that for the vector process 

we have 

T h e o 
r em A (BURKE, CSÖRGŐ, HORVÁTH [4] ) . If Tn satisfies condition (2.2), 

then 
P { sup \\Zn(x)-fVl(x)\\>r(n)bn}^kQn->, 

where g=10A(2A: + l) + 100+16Z). 

The constants Alt A2 and A3 in r(n) (A2 also in Q) are the C, K, / constants of 
Theorem 3 of KOMLÓS, MAJOR and TUSNÁDY [16] (quoted as Theorem 2. A in [4]), 
respectively. According to TUSNÁDY [21] (cf. also M. CSÖRGŐ and P. RÉVÉSZ [5]) 
A1,A2 and A3 can respectively be taken as 100, 10 and 1/50. Constant D (in Q) is 
the absolute constant of Lemma 2 of DVORETZKY, KIEFER and WOLFOWITZ [11]. 
The smallest available value for D known to us at present is 2{1 +32/(67t)1/a+ 
+8/31 /2+21 /24exp(71/18)}=s611 due to DEVROYE and WISE [10]. But in practice 
one can probably use without harm the well-known conjecture (which was empiri-
cally verified in a number of situations) that D is 2. 

We should also point out here that originally (Theorem 5.6 of [4]) we had the 
factor rE(n)= max^ exp ( / f ( r „ ) ) of kr(n) instead of b„. But it is not hard to see that 

rE(n)^b„ and the above form of Theorem A is more fortunate since the whole rate-
sequence r(ri)b„ depends on the censoring only through b„ of (2.3). 
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3. Approximation theorems for the Hall—Wellner transformation. Goodness of fit. 
Introduce (with d' of (2.1)) 

Kl{t) = d'(0/(I+d'(0), ^ i < i = l,..., k. 

K\t) is a sub-distribution function in general for each i. It is a distribution function 
(as HALL and WELLNER [14] point out) in the Kaplan—Meiner model (k=2). In 
the competing risks model Kl is a distribution function for those i for which 
TF=THi^mm (THl, ..., THu), where TH, is defined analogously to TF. The empirical 
counterpart of d\t) was considered by BURKE et al. [4] as 

di(i)= j\l-FH(s))-*dF'M i = l,..;k, 

where F„ is the (left continuous) empirical distribution function of Xlt ..., Xn and F'n 

is the empirical sub-distribution function defined as 

Fl
n(t) — n _ 1 # {m: 1 S m ^ n, Xm < t and Al

m occurs}, i = 1, ..., k. 

Independently of us but earlier, HALL and WELLNER [14] have also considered dl
n 

(in the Kaplan—Meier model) but pointed out that it fails to satisfy their reduction 
property. Instead they proposed the following modification of it: 

4 ( 0 = f\l-Fn(s))-1(l-Fn+(s))-idFi
n(s)=n £ {n-j)-\n-j+\)^d) 

U-.x^t) 

where F+ is the right-continuous version of Fn. Although we could have worked 
with dl

n, we adopted this modification for the sake of accordance. 
Lemma 6.2 of [4] estimates the distance of dj, and d'. Using Lemma 4.1 of that 

paper, it is trivial that if T„ satisfies condition (2.2), then 

p r { sup |d i ( i ) -c i (OI ^ 8&»n"1} S 2 0 n - . 

Let 
* , ! ( 0 = 4 ( 0 / ( 1 + 4 ( 0 ) , i = 1, . . . , k. 

Evidently 
| A 2 ( 0 - * ' ( 0 l s | c i ( 0 - d ' ( 0 l , 

and hence, putting together Lemma 6.2 of [4] and the last probability inequality, we 
obtain 

L e m m a 3.1. If T„ satisfies (2.2), then for each i= 1, k 

pr{ sup ^ ^ ( n ) } ^ 8ZJn-£, 

where r1(«) = 12(e/2)1/2/j-1/2^(log «)1 /2+86n
3rr l . 
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Consider now 

¿1(0 = (1 -Ki(0) exp(A'(t))ZXO, / = 1, .... fe, 

and let Bi
a(t)=(\—t)Wi

n{tl{\.—t)) be the sequence of Brownian bridges supplied 
by {fV,j} of Theorem A. For . . . ,x k) let 

¿n(x) = (¿l(Xl), ..., Zk(xk)) 
and 

B^x) = (BKK^x,)), ...,Bk(Kk(xk))). 

T h e o r e m 3.2. If T„ satisfies (2.2), then 

P{ sup \\tn(x)-BK
n(x)\\ > ^ ( n ) } ^ kRin-\ 

where q1(n) = r(n)b„+r2(n) with r2(n)=2eU2r1(n) ¿„(log n)l/\ and R1 = Q + 8D+2 = 
= 10A2(2k+1) +102 +24Z>. 

P r o o f . It is enough to show that 

P{sup \ i \ , { t ) > ft(II)} ^ 

for each / = 1, ..., /c, where unspecified sup means sup . The last probability 

is not greater than 

i>{sup (1 - K & ) ) | z i ( 0 - ^ ( d ( 0 ) | >r (B) &„}+ 

+ Jp{sup | # ( 0 - * ' « l K ( d ' ( 0 ) | > r2(n)} == 

S (Q + 8D) n ~£ + P { sup ¡1^1,(^(0)1 > 2e1/2b„(log n)1'2} 

S ( e + 8 Z ) ) « - c + 2 P { F U ^ ) / f c J > 2e1/2(log n)1/2} 

by Theorem A, Lemma 3.1, and the fact that b l^d ' (T n ) . The last probability is 
less than or equal to n~e, and hence the theorem. 

The components ¿'n of our vector (-vector) process are in fact weighted proces-
ses, the weight being exp (/4'(0). It is then natural to replace this weight with an 
empirical counterpart of it and investigate the convergence of the resulting "twice 
estimated" product-limit process. In principle there are two empirical candidates for 
doing this. One is the exponential empirical hazard function exp (/41,(0) (cf.[4]) 
and the other is the product limit estimate itself. The latter being more natural here, 
consider 

z j ( 0 = (l - ^ ( 0 ) z i ( 0 / ^ ( 0 = (1 - ^ ( 0 ) ( e x p ( - ^ ( O ) - ^ ( O V ^ ( O 
/=1 , . . . ,k , and the corresponding vector process 

Z„ (x )=(Z i (x 1 ) , . . . ,Z i (x k ) ) 
for ...,xk). 
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For T„ we introduce a slightly stronger regularity condition instead of (2.2): 

(3.1) r „ < 7 V and 1 — F(Fn) & 2n~ll2r3(n), 
where 

r3(n) = r(n) + 3(e/2)1/262(logn)1/2. 

By definition (2.4) of r(n) it can be shown that a rough sufficient condition for con-
dition (3.1) to be satisfied is that ( T „ / T F so slowly that) 

(3.2) bn = (1 - F i ^ ) ) - 1 == Mt(n\log n)1'9 

with some constant Mt depending only on E, which can be computed from r3(n). 
Just as Lemma 5.1 of [4] was deduced form an approximation theorem, the 

first statement of the next lemma easily results from Theorem 5.5 of [4] which is the 
original Breslow—Crowley-type variant of the Efron-type theorem cited here. When 
deducing it, one also should apply the already mentioned fact that exp (—/l ' (7 ' n ) )s 
s i — F(Tn). The second statement of the lemma follows from the first just as Lemma 
4.1 of [4] followed from the Dvoretzky—Kiefer—Wolfowitz bound. 

L e m m a 3.3. If T„ satisfies (3.1), then 

pr{ sup |Zj(OI > r3(n)} == ( g + 6) n - £ 

and 

p r j sup ^ J — > . 2 — ( g + 6)n-£ . P \-„J*TnSl(t) e x p ( - y t ' C r j ) / 

T h e o r e m 3.4. If T„ satisfies (2.2), then 

sup \\Zn(x)-BK(x)\\>q2(n)} ^ kR2n~\ 

where qa(n) = 9 1 (n)+2«- 1 / 2 6 2 ( r 3 («)) 2 and R2 = R^IQ + M = 3 0 + 14 + 8/) = 
=3QA2(2k+\)+3l4+56D. 

P r o o f . 

|zi(0-Bi(*'(0)| ^ -B'm(K\t))\+|z;(0 - 2 1 ( 0 1 ^ 

^ | 2 ; ( f ) - B'n(K'(t))\ + n~1/2\Z'n ( 0 l 2 / { 3 ( 0 exp ( - / l ' (0)}. 

- and the theorem follows from Theorem 3.2 and Lemma 3.3. 
As to the order of our rate sequences q1(n) and q2(n), we note that since 

r(n) = 0 (max {fc2n~1/3(log n)3'\ b^n'1'2 log n}), 
we have 

qi{n) = 0 (max {b»n-1/3(log n)3/\ b\ji~1/2log n}), 

q2(n) = 0 (max { ¿ ^ " ^ ( l o g n)3/2, b«n~112 log n}). 
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Now we formulate the corresponding consequences for approximation on the 
fixed cube ( — T ] k with T<TF. These consequences follow from Theorems 3.2 
and 3.4 in the same way as Corollary 5.7 of [4] did. Note that qx(n), q2(n) and r3(/i) 
are understood from now on with b„ replaced in them by the constant 

b = {l-F(T))~\ 

C o r o l l a r y 3.5. If w/log n^2eb\ then 

P{ sup \\2n(x)-B*{x)\\ > 9 l (n)} S kRin-\ 

and if nll2/rs(n)^2b, then 

P { sup \\Zn{x)-BZ(x)\\>q2(n)}^kR2n-. 

The rough sufficient condition for the second statement here is (3.2) with b in 
place of bn. 

The joint weak convergence of the components of 2„ and Z„ follows from this 
corollary together with rate-of-convergence results. Namely, for many funct iona l i¡/ 
(cf. Corollary of KOMLÓS et al. [ 1 6 ] and Corollary 1 of CSÖRGŐ [6] ) on the space of 
functions defined on (— J]* we obtain 

(3.2) sup { № * ( • ) ) ^ y } \ = 0 ( n - * » ( l o B n r * ) , 
-ee<3*<«o 

where 2 and BK is a copy of B* since, if T (<TF) is fixed, then 

qM = 0(n~1/3(logn)3/2) = q2{n). 

For example, (3.2) holds for the Kolmogorov, Smirnov and Kuiper statistics consid-
ered by KOZIOL [17]. 

4. An approximation theorem for the Aalen—Nair transformation. Goodness of fit. 

Let T be a number such that the inequalities 

(4.1) T^TF, F'(T) =- 0, i = l, ...,fc, 

hold, and consider the processes 

2l
n{t) = 2\l(t)l{d\,(T)yi\ i = l,..., k, 

proposed by AALEN [ 1 ] and N A I R [20] in the Kaplan—Meier case (k=2) where 2l
n 

and d'„ are of Sections 2 and 3 respectively. Also, with Wj, of Theorem A, introduce 

(0 = Wiid'it) WiT))1'2, i = I,..., k, 

and for x=(xlt . . . ,x k ) set 

2n{x) = {2l(x,\ ..., 2l(xk% Wn(x) = {WW(Xl), wp(xk)). 
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We note that, / = 1 , ...,k, 

(4.2) {W?{t): - « < i s r } =B{W{di{t)!di(T))-. 

and this equality in distribution is in fact the main advantage of the Aalen—Nair 
transformation. Introduce the notation (in addition to those of the preceding sections) 

a = max 1 I F H T ) . isia/t 

T h e o r e m 4.1. If w/log w^max (2sb2, Sea2), then 

P { sup \\Zn(x)-Wn(x)\\ > <73(71)} ^ kR3n~\ 

where q3(n) = b(2a)1'2r(n) +12(2)1/2eb5a3'2n~1/2\ogn and R3 = Q + 9D+l = 
= lOA2(2k+l)+25D+№. 

P r o o f . 

sup \2\,(,t)-W?(t)\>q3(n)}^ 

sup (dtiT))-^ IZUO-WiWy > b(2ay'2 r(»)} + - » < I S T 
+P{ sup 1^1(^(0)1 > 2e1/2 b(log ny<2}+P{(d;(r) dUT))-1'2 > (2a2)1/2}+ 

+ P{\(di(T)Y'2-(di
n(T))ll2\ > 12(e^)1 '^4(a/2)1/2«-1/2(log n)1'2}. 

Since ^ ( r ) s F ^ ( T ) and by an obvious analogue of Lemma 4.1 of [4] 

provided that w/log ns8ea 2 , we obtain, using also Theorem A, that the first term of 
the above sum is not greater than (Q+D)n~e. We saw in the proof of Theorem 3.2 
that the second term is not greater than n~e. By (4.3) the third term is majorized by 
Dn~e. Using again (4.3), the fourth probability is majorized by 

Dn-'+PWi^-dWy > 12(e/2)1 /2i4n -1 /2(log n)1/2} == 7Dn~c , 

where we used Lemma 6.2 of [4] in the last step. This proves the theorem. 
By (4.2) the limit distributions of the Kolmogorov, Smirnov and Kuiper statis-

tics based on the processes 2l
n coincide with the distributions of the corresponding 

functional of {fF(j) : O S i S l } . These distributions are well known, one of them 
is tabulated in [7]. If ^(¿¡,) denotes any of these three statistics and ^/(W) denotes 
its distribution-free limiting random variable, then we have (3.2) for their distri-
bution functions by Theorem 4.1. 

Since the Aalen—Nair modified Efron transformation leads to asymptotically 
distribution-free statistics, this transformation is more advantageous than those of 
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Hall and Wellner when testing goodness of fit. However, the latter seems much better 
when constructing confidence bands. This is why we do not spell out the exact prob-
ability inequalities in the next section corresponding to the confidence bands aris-
ing from the transformation of Aalen and Nair. 

The two-sample processes, or, more generally, their vector-process generaliza-
tion (for the general competing risks model) can be similarly approximated as the 
one-sample processes in Theorems 3.2, 3.4 and 4.1. 

5. Conficence bands. If G is a continuous distribution function and G„ is the n-
stage empirical distribution function of a sample corresponding to G, then it follows 
from Theorem 3 of KOMLÓS et al. (1975) that for any A, E > 0 we have 

-Aan-5 + M(A -(At + (s/A3))n-V* log n) s 

S pr {G„(/)-A/n1 /2 ^ G(t) S G„(t) + Ajn1/2, -oo < t < 

^ M(A+(A1+(elA3)) n ~1/2 log n) - M 2 n -
where 

MO0 = p r { s u p 
0SSS1 

As we have already noted, Alt A2 and A3 can be taken by TUSNADY [21] as 100, 10 
and 1/50, respectively. (It would be interesting to search for smaller A1, A2 and lar-
ger A3 by Monte Carlo through the above inequalities.) By Remark 1 of [6] and the 
fact that sup |5(G0>))| = sup |f i( i) | , the lower half of the above inequality 

— oo<y<oo O^S^l 
remains valid for discontinuous G as well. 

For 0 < a < l set 
Ma(y) = pr { sup 15(5)1 

OSSgfl 

The analogues of the above inequalities for the general right censorship model are 
the following consequences of Corollary 3.5. 

C o r o l l a r y 5.1. Let T<TF. If «/log nS2efc2, thenforany ¿ > 0 and i= 1, ..., k 
we have 

-Rxn-' + Mv^ik-qAn))^ 

pr 
1 + 

Slit) 
A S'(t) ^ 

1 — 
A 

n1/2(l-Kn(t)) 

t S T 

S MKlm(A + qi(n)) + Rin-c. 
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If «1/2//*3(n)s2è, then for any 0 and i—l,...,k we have 

R2n-<+MKI(T)(X-q2(n)) S p r | s < ( / ) - A n1/2(l-Kl(t)) ~ 
s'n(t) 

Si(t) r} ^ MK,m(X + q2(_n)) + R2n-'. 

. Since K'(T)^b2/(l +b2), i = 1,.. . , fc, we have 
= MK,(T)(X—qj(n)), i=l,...,k; 7 = 1 , 2 , thus MK,iT) can be replaced by either 
M (as noted by H A L L and W E L L N E R [ 1 4 ] ) , or MbtK1+bl) in the lower bounds. Since 
the choice of e is ours, the only unknown quantity in the lower bounds Rjn~'+ 
+Mb2/il+bt)(X—qj(n)), j= 1, 2, is b, and this can be estimated by (l —Fn(T))~1. 

If k = 2 and we are in the Kaplan—Meier model, then the symmetric bands of 
the second statement of the above corollary are those of [14] (without rates). Even if 
we compute with the conjecture D=2 but with A1 = lOO,A2=iO and A3= 1/50, 
a practical application of the lower halves of the above inequalities would demand 
rather astronomic sample sizes. Nevertheless, the above inequalities constitute the 
only information presently available for the precision of the bands in question, and 
if one can dream about future values of the A's as Ax, A1/10,^3^10, then this 
information is not disappointing at all. 
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Factor lattices by tolerances 

GÁBOR CZÉDLI 

1. Introduction 

Given a lattice L, a binary, reflexive, symmetric and compatible relation gQLXL 
is said to be a tolerance relation (or shortly tolerance) of L. Tolerances of lattices 
were firstly investigated by CHAJDA and ZELINKA [2]. Recently the importance of this 
concept has grown : a finite lattice is monotone functionally complete iff it has the 
trivial tolerances only (cf. KINDERMANN [ 4 ] ) . Moreover, KINDERMANN [ 4 ] has shown 
that the algebraic functions on a finite lattice are just the monotone functions pre-
serving its tolerances. 

Our aims in the present paper are to introduce the concept of Ljg (i.e., factor 
lattice by a tolerance g), to give a more handlable description of L/Q, and to give 
a structure-like theorem for lattices with the following consequence: every finite 
lattice is isomorphic to D/g for a suitable finite distributive lattice D. A characteri-
zation for tolerances of lattices will be presented in Theorem 2. 

Given a reflexive and symmetric relation g over a non-empty set A, a subset 
H of A is called a block of g if H2Qg but G2Qg for no HŒG^A. I.e., H is 
a block of g if it is maximal with respect to the property: for any a,b£H agb. 
Let the set of all blocks be denoted by c€q. On the other hand, certain subsets of 
P+ (A), the set of non-empty subsets of A, can be called quasi-partitions on A (cf. 
CHAJDA, NIEDERLE, and ZELINKA [ 1 ] ) . The connection of these two concepts (see 
[1] again) is the following. If g is a reflexive and symmetric relation then 
(ëe is a quasi-partition. For a quasi-partition ^ the relation q,€= {(a, b) : {a, b}QH 
for some H d ^ } is reflexive and symmetric. The map from the set of reflex-
ive and symmetric relations on A into the set of quasi-partitions on A, is bijective 
and its inverse map is . Moreover, a reflexive and symmetric relation g 
is an equivalence iff (€e is a partition. Therefore the following notion of factor latti-
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ces by tolerances seems to be a natural generalization of that of factor lattices by 
congruences. 

For definition, let Q be a tolerance of a lattice L. For blocks G and H of and 
°€{A, V} we define GoH to be the unique block of q for which {goh: g€G, 
H£H}QGCH. (The correctness of this definition will be shown!). NDW L/Q, the 
factor lattice by Q, is the set of all blocks of Q equipped with the above defined A 
and V operations. I.e., the notation L/Q is used instead of (6E and L\Q={L\Q\ A, V). 
It is worth mentioning that L/Q is the factor lattice in the usual sence whenever the 
tolerance e happens to be a congruence relation. 

2. L/Q is an algebra 

In this section the correctness of the definition of L/Q will be shown. Suppose 
G,H£LIQ. If GI£G, H^H ( i = 1, 2) then the compatibi l i ty of Q yields (G^HY, 
GA°H2)€Q. I.e., {goh: g£G, H£H}2QG. Now Z o r n L e m m a applies and {goh: 
g£G,h£H}QE f o r some E£L/Q. 

To show the uniqueness of E some preliminaries are needed. In what follows in 
this section let q be a fixed tolerance of a lattice L. 

L e m m a 1 (CHAJDA and ZELINKA [2]). For a,b£L, (a,b)£Q if and only if 
[a/\b, a\'bfQQ. 

L e m m a 2. The blocks of q are convex sublattices of L. 

P r o o f . Let C be a block of Q, and suppose a,b£C. For an arbitrary x£C 
agx and bgx, whence a\/bQx\fx—x. I.e., ( C U { A V B } ) 2 ^ G and the maximality 
of C yields a\/b{_C. Therefore C is a sublattice. If a, b£C, u£L, and a^u^b, 
then, for any x£C, a/\x£C and b\JxdC. Thus a/\xgb\Jx, and Lemma 1 yields 
XQC. Finally, U£C follows from the maximality of C again. Q. e. d. 

For a subset X of L let [X) and {X] denote the dual ideal and ideal generated 
by X, respectively. We write [a) instead of [{a}), and dually. 

L e m m a 3 (GRATZER [3]). For any convex sublattice C of L the equality C= 
= [ C ) D ( C ] holds. Moreover, if C is the intersection of a dual ideal D and an ideal I, 
then D=[C) and / = ( C ] , 

D e f i n i t i o n 1. For ideals 7X and /2 let / j A ^ ^ / i H ^ , I1S/I2={x: x^cyd 
for some c£ / l s ¿/6/2}=(/iU/2], and let mean / j g / 2 . On the other hand 
for dual ideals and I>2 let D1/\D2={x: x^cf\d for some c£Dlt d£D2}=[D1{JD2), 
D i V D ^ D i d D a , and let D t ^ D 2 mean D ^ D 2 . 

The motivation of this definition will be given in the remark to Lemma 4. 
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P r o p o s i t i o n 1. If (C] = (£>] for C,D£LIQ then C=D. 

P r o o f . First we show that U=([C)A[D))f)(C]eL/g. Suppose x1, x 2 €U. 
Then x^c'tAdi for c,-€[C) and <€[Z>) , /= 1,2. Let c€C and deD, and set 
ci=c'if\c, di = d'iAd 0 = 1, 2). Then, by Lemma 3, we have x^cAd^ c^C, and d^D 
for i = l , 2 . Set a=xl\/c1\Jx^\Jc2 and b=xlydiVx2\/d2. By (C]=(D] and 
Lemma 3 we obtain adC, b£D, and aybdCOD. Since c1Ac2£C and d^d^D, 
(c 1 Ac 2 , a\/b)£g and (i/IA<^> a\Jb)£g follow. The compatibility of g yields 
(¿WaA^iA^. a\/b)€g. But xx, x2€[c1/\d1Ac2Ad2, ayb], whence Lemma 1 im-
plies XaKf?- We have shown that U2QQ. i / 2 [ C ) f l ( C ] = C and the maximal-
l y of C yields U=C^Ljg. By making use of (C]=(X>] we obtain U^[D)f](D]=D 
similarly. Therefore U=D as well. Q. e. d. 

P r o p o s i t i o n 2. Suppose C,D,E^L\Q and {c\/d\ c£C, D£D}QE. Then 
[C)V[D)=[E). 

P r o o f . Let {cwd: c£C, d£D) be denoted by U. Since [J7)=[C)fl[Z>)= 
= [C)V[Z>), [ C ) V [ f i ) i [ £ ) follows easily. To show the required equality let [C)fl[£»)= 
=[C)\J[D)c:E be assumed. Then [£ ,)\([C)fl[X>))7i 0 , and one can easily see 
that £ \ ( [C) f l [Z) ) )7 i 0 as well. Therefore an element a can be chosen so that 
a£E and, e.g., a$[C) . Choosing elements c£C and d£D we can assume that 
a-^cyd. (Otherwise a could be replaced by (c\Jd)Aa, because c\/d, (c\/d)Aa£E and 
(cyd)Aa$ [C).) Evidently we have aAc$C. For an arbitrary x£C we can proceed as 
follows. From (x\/c)\Jd£UQE and a£E we obtain (x\Jc\Jd, a)£g. From x, c€C and 
Lemma 2 (x\/c , xAc) € Q follows. By meeting we obtain (x\/c, a Ax Ac) 6 g. From 
Lemma 1 (x, a Ac) £ g can be concluded. Consequently (CU {aVc})2ij£>, a contra-
diction. Q. e. d. 

Now Propositions 1 and 2 and their dual statements imply the correctness of 
the definition of L/g. 

3. L/g is a lattice 

Before proving what is stated in the title of this section, a more handlable de-
scription of L/Q is necessary. 

L e m m a 4. Suppose E=C\/D and F=CAD for C, D, E, Ft L/Q. Then we 
have [ C ) V [ £ > ) = [ £ ' ) and (C]VCD]Ï=(£]. The dual statement, and 
(C]A(L>]=(F], also holds. 

R e m a r k . If for X£{C, D, E, F}QL/g X is an interval [x l 5x2] , and E= 
=C\JD,F=CAD, then Lemma 4 yields cl\Jdl=<?x, c^Jd2 ^ e2, c1Ad1 ë f , and 
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c^Kd^—fî- (This is always the case when L is a finite lattice.) This remark can supply 
a motivation of Definition 1. 

P r o o f . Since {c\Jd: c€C, d£D}QE, we have (C]V(£>]=({cVd: cÇC, d£D}]Q 
Q(E], implying (C]V(£>]S(£]. The rest follows from Proposition 2 and the Duality 
Principle. 

This lemma enables us to strengthen Proposition 1 : 

C o r o l l a r y 1. For C, D£L/g we have [C)^[Z>) if and only if (C]^(D], 
Really, Proposition 1 follows from this corollary and Lemma 3. 

P r o o f . Suppose [C)^[D), then [C)V[Z>)=[Z>). Proposition 2 and the dual 
of Proposition 1 imply CV D—D. By making use of Lemma 4 we obtain ( C ] ë 
—(C]VCD]=(-D]- The Duality Principle yields the converse implication. Q. e. d. 

T h e o r e m 1. For any tolerance g of an arbitrary lattice L, L/g is a lattice 
again. 

P r o o f . By the Duality Principle it is enough to show that the V operation is 
commutative and associative, and one of the absorption laws holds. Since the join 
for dual ideals in Definition 1 is commutative and associative, the commutativity 
and associativity are straightforward consequences of Proposition 2 and the dual of 
Proposition 1. To show C V ( C A J D ) = C , for C,D£L/Q, by the dual of Proposition 
1 it is enough to check [ C V ( C A D ) ) = [ C ) . But, by Lemma 4, [C)I=[C)A[£>)== 
S [ C A £ > ) , a n d s o [ C V ( C A £ > ) ) = [ C ) A [ C A D ) = [ C ) . Q . e . d . 

The following theorem deals with the connection between tolerances and cor-
responding quasi-partitions on lattices. For a tolerance g on a lattice L, e—Ljg 
and P + (L) were defined in the Introduction. 

T h e o r e m 2. Given a lattice L, for any + (L) the following two conditions 
are equivalent. 

(a) <6=e6Q( = L\g) for some tolerance g on L. 
(b) H has the following six properties: 

(CI) The elements of are convex sublattices of L; 
( C 2 ) U C=L\ cçn 
( C 3 ) For any C,DeV, [ C ) = [£>) is equivalent to ( C ] = ( £ > ] ; 

(C4) For any C,Dthere exist E, F£such that [ C ) V [ D ) = [ E ) , 
(C]V(£>]ë(£], and [C)A[£>)S[F), ( C ] A ( £ ] = ( F ] ; 

(C5) Let XÇ.L, d£C£<# be arbitrary. If for any e£CC\(d] there exists Ce 

such that {e, x}QCe£<ë then and, dually, if for any f£Cf][d) there exists 
Cf such that {f,x}QCf£<8 then X € [ C ) ; 

(C6) If U is a convex sublattice of L and for any a, b£ U there exists D^é 
containing both a and b, then UQC for some CÇ^. 
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Moreover, if L is a finite lattice then (C5) and (C6) follow already from (CI), 
(C2), (C3), and (C4). 

P ro of. (a) implies (b). (CI), (C3) and (C4) is involved in Lemma 2, Corrollary 1, and 
Lemma 4, respectively. Zorn Lemma yields (C2) and (C6). Suppose x£L, d£C£^e= 
=L/g, and for any C D ( d ] there exists Ce£L/g such that {e, x}QCe. Consid-
ering the set X= {x}U (Cfl(<f]) we have X2Qg. Extending X to an element 
of L/g, say E, we obtain [ C ) = [ C n ( J ] ) i [ Z ) c [ £ ) , i.e. [C)S[F) . Corollary 1 yields 
(C] *s(E], Hence x£XQEQ(E]Q(C]. The proof of (C5) is completed by the Dual-
ity Principle. 

(b) implies (a). Suppose ^ satisfies the requirements of (b) and let g denote 
g%={(a,b)€L2: {a, b}QC for some The relation g is evidently symmetric, 
and it is reflexive by (C2). If C,D,E^€, U denotes the set {cVd: c£C, d£D), 
[C)V[/))=[£•), and (C]V(/) ]^(£] then UQE. Indeed, C/g[C)f l [ / ) )=[£) , UQ 
<^{C]\J(D]<^{E], and, by Lemma 3, E=[E)C\{E]. Now (C4) and the Duality 
Principle yield the compatibility of g. Therefore g is a tolerance on L, and 
has to be shown. Suppose C T h e n C2Qg. If (x,c)€g for any c€C then 
x € [ C ) f l ( C ] = C by (C5) and Lemma 3. Thus and Conversely, if 

then UQC for some C^ by (C6). But then both U and C belong to , 
whence U=C. has been shown. 

Finally, suppose L is a finite lattice, <#QP + (L) and # satisfies (CI), (C2), (C3), 
and (C4). Since any convex sublattice of L is an interval, (C6) evidently holds. Sup-
pose x£L, d£C=[a, b]£ré and for any e£Cf}(d] there exists Ce such that {e, 

Then {a,x}QCa=[u,v], Since u^a, we obtain [C)V[Cf l)=[C). Now 
(C4) together with (C3) yield (C]V(Ca]=(C], i.e., b\v=b. Hence x^v^b, which 
implies J C £ ( C ] . ( C 5 ) is satisfied by the Duality Principle. Q . e. d. 

Note that usually it is convenient to give e6Q instead of g. For example, let D be 
a five-element chain, say D—{0<1<2<3<4}, let L—D2\{(0,4)}, a sublattice 
of D\ and let <^e={[(0,0), (2,1)], [(3,0), (4, 1)], [(3,2), (4,4)], [(0,2), (2, 3)], 
[(1,2), (2,4)]}. Then Theorem 2 makes it easy to check that g is a tolerance and 
L/g is isomorphic to N5, the five-element non-modular lattice. 

Proposition 1 yields that for any tolerance g on a finite lattice L, L/g cannot 
have more element than L. That is why the following example can be of some inter-
est. Define g over Q, the set of rational numbers, by g={(x,y) : = 1}. Armed 
with the usual ordering Q turns into a lattice and g is a tolerance on it. By making 
use of the results of this section it is easy to check that the factor lattice Q/g is 
isomorphic to R, the set of real numbers with the usual ordering. (Indeed, the 
map Q/g—R, CV->-infC is an isomorphism.) 
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4. Lattices as tolerance-factors of distributive lattices 

The first example in the previous section indicates that forming factor lattices by 
tolerances preserves neither distributivity nor modularity. It is a naturally arising 
question which lattice identities are preserved. No non-trivial ones, as it will appear 
from the forthcoming theorem. Let T, I, H, S, P, and Pf denote the operators of 
taking factor lattices by tolerances, isomorphic lattices, homomorphic images, 
sublattices, direct products, and direct products of finite families, respectively. 
Note, that H VQYT V for any class V of lattices. Moreover, as it can be deduced 
from Theorem 2, IT V—ll'l V for any class V of lattices. (To keep the size of the 
paper limited, the proof, which is similar to that of Homomorphism Theorem, will 
be omitted.) Let 2 denote the two-element lattice. 

T h e o r e m 3. ISTSP {2} is the class of all lattices, while ITSP /{2} is the 
class of all finite lattices. 

P r o o f . Only one argument is needed to prove this theorem consisting of two 
statements, just we have to show that our embeddings are surjective for the case of 
finite lattices. We have to show that an arbitrary (finite, respectively) lattice L be-
longs to ISTSP{2} (to ITSP /{2}, resp.). First of all we can assume that L is 
complete, since the map L — I ( L ) , x»->-(x] is an (surjective for finite L) embedding 
of L into its ideal lattice, i.e., into a complete lattice. 

Claim 1. There are complete distributive lattices D0 and in P{2} and in-
jective 0-and 1-preserving maps (p0: L—D0, \ such that cp0 preserves arbi-
trary joins and <Px preserves arbitrary meets. If L is finite then D0, Z>1CP/{2}. 

P r o o f . Let A be P(L\{0}), the Boolean lattice of all subsets of JL\{0}, 
and define <px\L^-Dx as JC>-*(JC]\{0}. The completeness of L yields (A ydT)] = 
— fl ((*,]: y € r ) , whence the required properties of are trivial. Moreover, Dy 

is isomorphic to 2lL '_ 1 . Q. e. d. 
Now let D be D0+Dx, the ordinal sum of D0 and Dx. I.e., D is the disjoint union 

of D0 and £>! equipped with the following ordering: x^y iff x£D0 and y£Dlr 

or x,y£Di and x^y for some /€{0,1}. Note that D is complete and it can be 
embedded into the direct square of 2 | i | _ 1 , thus it is in ISP{2} (in ISP /{2} for 
finite L). With the help of functions in Claim 1 define VQP + (D) by 

&={C: 0 ^CQD, for any c,d£C there exists a£L such that 

{c, d}Q[acp0, acpi], and C is maximal with respect to this property}. 

Now, by making use of Theorem 2, we show that ^ ^ ^ q ( — D \ q ) for some tolerance 
Q on D. 
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To check (CI) suppose x, For an arbitrary z£C there exist a,b£L 
such that x, z£[a<p0, a<pj\ and y, [b<pa, bcpy]. Since <p0 preserves joins and <px 

is monotone, we obtain xVy, z£ [a(p0\/b(p0, aq»^ bcpy] Q [(a\Jb)(p0, (aViOPil- From the 
maximality of C we obtain xVyiC, showing that C is a sublattice. Let c, d£C, x£D 
and c<x<d. Suppose that, e.g., x£D0, and let z be an arbitrary element of C. 
Then c, z£[a<p0, acpj] for some a£L. But a<pi£D1 implies x<a(py, whence 
x, z£[a(p0, a(pj]. The maximality of C yields xdC, i.e. C is a convex sublattice. By 
the maximality of C, l(p0£C, so C is not empty. 

F r o m [0<p0, 0<pjU[l<p05 l < P i ] = i and Z o r n L e m m a (C2) fo l lows. 
Now suppose that, in contrary to (C3), [ C ) = [ £ ) and ( C ] ^ ( £ ] for C,E 

Then one of ( C ] \ ( £ ] and ( £ ] \ ( C ] , say (C]\(£"] is not empty. Fix an element d 
from C \ ( i i ] and let x be an arbitrary element of E. Since i/Ax6(C]A[is)=[C) = 
[E), Lemma 3 yields d,dAx£C and x,dAx£E. Hence CKp^dAx^d^acpy 
and bcpoSdAx^x^btyx for some a,b£L. By forming join we obtain (ayb)(p0— 
=a(p0Vbcp^dAx^dVxSa^Vb(p!^(a\/b)^. Thus x,d€[(aVb)<p0,(aVb)(pJ, con-
tradicting the maximality of E. The rest of (C3) follows from the Duality Principle. 

To show (C4), let C,E£<# and define X= {cVe: c£C, e£E}. For any two ele-
ments in X, say CiV^i and c2\le2 (cfcC, efcE), there exists an u£L such that 
c^ e £[14 q>Q, ucpy] for / = 1 , 2 . Indeed, c£[a(p0, acpj] and e^[b(p0, btpj] (/ = 1,2 
and a,b£L), and u can be defined as a\Jb. From Zorn Lemma we obtain the exis-
tence of an such that XQF. Since (C]V(£ ' ]=(Z]S(F] is evident, 
[C)V[£)=[F) has to be shown. If x€ [C)V[£)=[C) f l [£ ) then x ^ c and 
for c£C,e£E, Hence x^cVe^F implies x€[F), showing that [C)V[£')g[F). 
Suppose that [C)V[£)cz[F). Then F \ ( [ C ) n [ £ ) ) and so, e.g., F \ [ C ) are not 
empty. Fix elements d, c, and e in F\[C), C, and E, respectively. For an arbitrary 
xCC we have xAc, x\Jc£C and d, ((*Vc)V<?)Vd£F. Therefore a<p0SxAc^ 
•^tx\lc^aq>j and bq>^dSx\!cVe\Jd^bcp± for some a,b£L. By meeting we ob-
tain (aAb)(p0Sa(p0Abq)0^xAcAi/SxVc^a<piAft<pi=(aAfc)9>i- Now cAd$C and 
x, cAd€[(aAb)(p0, (aAb)(p^\ contradicts the maximality of C. The rest of (C4) is 
settled by the Duality Principle. 

Before going on we show that 

(* ) [w<Po> « ^ i K ^ for any u£L. 

Only the maximality of [u(p0, u(py] has to be shown. Suppose [ucp0, wtpj is not maxi-
mal, then [u(p0, ucp^czC for some C^. Fix an element c in C\[u(p0, ucpj]. 
Since C is a sublattice, c0=cAu<p0 and ci=c\/u<p1 are in C, and either c0<u(p0 

or Cx>«(Pi. If, e.g., c0<u<Po, then c0, ucp^C implies a<p0^c0<ucp0-^ucp^atpy 
for some a£L. Hence acp07±u(p0,(a\/u)(p0=a(p0Vu(p0=u(p0, and utp^atp^ucp^ 
=(aAu)q>1. The injectivity of cp0 and (pt yields a^u, aMu=u, and aAu=u, a 
contradiction. 
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Now suppose x£L, d£Cand for any e£C(~\(d] there exists Ce^€ such 
that {e, x}^Ce. Then for any edCC\(d] there exists ae£L such that 
e, x£[fle<p0, ae<Pil- Set u=/\(ae: e€CCl(d]) and h = /\(e: e£CC\(d\). Since 
preserves arbitrary meets and <p0 is monotone, we obtain u(p0=A(aecp0: e£CP\(d])^h 
and e(LCC\(d\)=u<p1, i.e., h, x£[u<p0,u(p1]=E. From ( * ) we conclude 
that ££<<?. Since u<p^h^y holds for any y£C (indeed, h^yAdeCC\(d]), 
[E)^[C). Now (C3) and (C4) imply (£]=§(C] (cf. the proof of Corollary 1). There-
fore x€(C] follows from The rest of (C5) follows from the 
Duality Principle. 

Now let U be a convex sublattice of D and suppose that for any a, U there 
exists Edit containing both a and b. Then a, b€[u(p0,u(px] for some u£L, and 
Zorn Lemma implies (C6). 

We have shown that is associated With a tolerance g on D. Let D/g = 
denote the corresponding factor lattice. For u£L let MI/' denote [ucp0, u<pJ. Then, 
by (* ) , ij/ is a map from L into Dig. If u,v£L then [(HV«)^)=[(«Vv)<p0) = 
=[u(p0Vv(p0)=[u<p0)\/[v(p0)=[u\p)\/[v(p). Lemma 4 and the dual of Proposition 1 
imply (u\Jv)\l> =mj/\lv\!/, showing that \j/ is a homomorphism. Since cp0 is injective, 
so is \p. Therefore £€IST{Z>}. 

In case L is finite, so is D. Then any convex sublattice and, in particular, any 
element of # is an interval. Hence ij/ is surjective, and LdYT{D}. Q. e. d. 
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On the duality of interpolation spaces of several Banach spaces 

D I C E S A R LASS F E R N A N D E Z 

Introduction 

Since the work by ARONSZAJN—GAGLIARDO ( [1] ) appeared, the problem of the 
duality of interpolation spaces of two Banach spaces has attracted the interest of 
many authors. See for instance LIONS [ 1 0 ] for the trace method, LIONS—PEETRE 

[12] for the mean methods, SCHERER [ 1 4 ] , LACROIX—SONRJER[9], PEETRE [13 ] for the 
J- and ^-methods, and CALDER6N [4] for the complex method. 

Although the study of interpolation spaces has been mainly restricted to couples 
of Banach spaces, many papers concerning interpolation spaces of several Banach 
spaces have appeared. See for instance LIONS [11] , YOSHIKAWA [16] , FAVINI [5] , 

SPARR [15], FERNANDEZ [6] , [7] and [8]. Thus, it is natural to pose the question of 
duality for the theories of interpolation of several Banach spaces. The purpose of 
this paper is to study the duality between the J- and K- interpolation methods for 
several Banach spaces introduced in FERNANDEZ [6] . The distinguishing feature of 
the J- and K- methods studied in [6] is that they deal with 2" spaces and «-parameters. 
This permits us to show that the two methods are equivalent, in the sense that they 
generate the same interpolation spaces. The equivalence of the two methods is fun-
damental to the study of the duality problem. Also, the idea used in the proof of 
the equivalence is the same one used to prove a density theorem, which is another 
crucial point in the duality theory. In this way we have the tools to show that the J-
and K- methods for 2" spaces "are in duality" as is the case for « = 1 . 

For the duality of the complex method for 2" Banach spaces see BERTOLO [3]. 
Through this paper we shall use the following notations: (A) if a=(alt ad), 

b=(jb1, ...,bd)£Rd then we set (i) a^b iff a^bj, j=\, 2, ...,d\ (ii) a-b= 
=a1b1+...adbd-, (iii) aoft=(a1b1 , ...,adbd); (iv) | a | = a x + . . . + a d ; (v) ab=a^...ab/; 
(vi) 2b—2bl...2b"; (B) 1=(1, ..., 1), (C) stands for the LQ spaces 
with mixed norms of BENEDEK—PANZONE [2] with respect to the measure 
=d*h - d^td=dtl/t1 ... dtd/td. 

Received February 11, and in revised form, May 12, 1981. 
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1. Interpolation of 2d Banacta spaces 

We shall first give a summary of facts on the theory of interpolation of 2d 

Banach spaces. Also, we give the discretization of the methods here considered and 
a density theorem which has not appeared before. 

1.1. Generalities. 1.1.1. The set of k=(klt ..., kd)£Rd such that kj=0 or 1 
will be denoted by n . We have • = {0, 1} when d= 1 and • = {(0, 0), (1, 0), 
(0, 1), (1, 1)} when d=2. The families of objects we shall consider will depend on 
indices in • . 

1.1.2. We shall consider families of 2dBanach spaces E=(Ek\k£ • ) embedded, 
algebraically and continuously, in one and the same linear Hausdorff space V. Such 
a family will be called an admissible family of Banach spaces (in V). 

1.1.3. If E=(Ek\k£ • ) is an admissible family of Banach spaces, the linear hull 
IE and the intersection HE are defined in the usual way. They are Banach spaces 
under the norms 

(1) M a t = inf I * = ZkXkl Xk£Ek, k£ • } 
and 
(2) IWInE = max{M£Jfc<ED}. 

The spaces H E and I E are continuously embedded in V. 
1.1.4. A Banach space E which satisfies 

(1) n E c f c I E 

will be called an intermediate space (with respect to E). (Hereafter c will denote 
a continuous embedding.) 

1.2. Intermediate spaces. 1.2.1. Let E=(Ek\k£ • ) be an admissible family of 
Banach spaces. Suppose i = ( f x , . . . , i d )>0 and tk=t*l...tk

i
d. For we set 

(1) K(t; x) = K(t; x; E) = inf{I* i< | |xJ £ Jx = Zkxk, xk£Ek, k£ • } 

and for x e f l E 

(2) J ( f , x) = J ( f , x- E) = max{i*||*||Bk | • } . 

Now, assume O-c@=(01, ..., 0 d ) < l and l ^ Q = ( q x , ..., 

1.2.2. D e f i n i t i o n . We define E0;Q.K=(Ek to be the space of all 
elements x£ IE for which 
(1) t-*KV;x)£L$, 
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and E0.Q.J=(Ek\k£ n)e.Q.j to be the space of all elements ZE for which there 
exists a strongly measurable function - H E such that 

(2) f u ( t ) d j (in IE), 
Ri 

and 
(3) t-ej(f,u(t))iL%. 

1.2.3. P r o p o s i t i o n . The spaces E e . Q . K and E e ; Q ; J are Banach spaces under 
the norms 
(1) Me;Q,K = \ \ t - e K ( f , x)\\LQ, 

and 
(2) | |x | | e ! Q i J = i n f { | | i _ e / ( i ; H(/)) | | i ? | x=f u(t) d j ) , 

respectively. Furthermore, the spaces Ee.Q.K and E e . Q ; J are intermediate spaces with 
respect to E. 

1.2.4. We shall say the spaces Ee.Q.K and Ee.Q;J are generated by the K-
and /-methods, respectively. 

The following result gives a connection between the spaces generated by the 
K- and J- method and says that those are actually equivalent. 

1.2.5. P r o p o s i t i o n . If O < 0 = (0!, ..., 1 and l^Q=(q1, ..., &)<«> 
we have 
(1) = E e;Q;J-

1.2.6. When we have no need to specify which interpolation method has generated 
the intermediate space we shall write simply E 0 Q for the spaces EE;Q;K and E0.Q.J. 

For the proofs of the above results see FERNANDEZ [6]. 

1.3. The discretization on the K- and J-method. Let E=(Ek\kd • ) be an ad-
missible family of Banach spaces. 

1.3.1. P r o p o s i t i o n . Let x£ZE. Then x£(Ek\k£n)e;Q;K i f f 

(1) (e~N-0K{eN; x))N^aa{Zd). 
Moreover 

(2) M e : Q : K = \\(e-N-°K(e»-, x))Niv\\m. 

P r o o f . If reK(t;x)=t-9K..tJe*K(t1,..., td;x), we have 
m.+l m,+1 , , 

\\x\\e;Q;K=\ 2 f 2 f (t-eK(t;x))^dM ...djd\ 
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On the other hand, if emJ^tj^emJ+1, j= 1,2, ..., d we have 

K(emi, em*; x) S K{tm, ..., x) eNK(emi, ..., em«; x) 
and 
(3) e~0 MK(eM; x) S x) S ede~eK(eM; x). 

These inequahties imply (2) at once and prove the assertion. 

1.3.2. P r o p o s i t i o n . Let x£ZE. Then, x£{Ek | k£ a)0;Q;J i f f there is uM£ f lE , 
M£Zd, such that 
(1) x= 2 "m (in IE) 

M€ Zd 

and 
(2) e-" °J(eM; uM)MèZ*0Q(Zd). 
Moreover 
(3) 11*1 \B;Q;J = inf { | | ( e - ^ ® / ( e M ; u M ) ) M e z . | | i e ( Z i l ) I X = IMuM}. 

P r o o f . Let x£(Ek | kÇ. • ) e ; G ; / and u=u(t) be as in 1.2.2. If M—(mx, ...,md), 
let us set 

md+1 

Um = Umi-md= f ••• / "Cl. •~,Qdj1...dji. 
em" e"1 

Then we have 
x= f u(t)dj = 2 «M 

¿ i Me z d 

and 
(4) j | ( e - M - W ; ^ C| | / -®/( / ; u)||L?. 

Taking the infimum in the above inequality we get one half of (3). 
We proceed similarly to obtain the converse inequality in (4), which will imply 

the other half of (3). The proof is complete. 

1.4. Density theorems. Let E = ( E k • ) be an admissible family and let us 
denote by f | E x and H E 7 the closure of H E in E e ; C ; K a n d E e . Q . j respectively. 
Of course, we have ? Ï Ë K = ? T Ë / = f lE . 

1.4.1. P r o p o s i t i o n . If O < 0 < 1 and we have 

(1) n Ê K c E e : C : K ; (2) E e . Q ; , c n Ë ' . 

P r o o f . The inclusion (1) is obvious. To prove (2), let x £ E e ; Q ; J and let 
u=u(t) be as in 1.2.2(2)—(3). Let us set 

md »»! 
XM — xm1...md

 = f ••• / "('I 'd) •••<**'<(• 
1 lmd 1/m 
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Then 
x-xM = jYM{t)u(t)d^t, 

R* 

where YM(t) = Y (t)=0, if 1 /nij<tj<nij (J—l,2,...,d) and = 1 otherwise. 
Consequently 

\\x-xMWe;Q;J^\\t-°J{f,YM(tMtj)\\L? = ||t-°YM(t)J(t; u(i))||L?. 

Finally, since YM(i)—0 as A f — t h e result follows. 

1.4.2. C o r o l l a r y . We have "nE=Ee;e. 

P r o o f . It follows at once from 1.4.1(1)—(2) and the equivalence theorem. 

2. Duality 

2.1. Dual families. For a given admissible family E—(EK | • ) of Banach 
spaces there is a natural duality between H E and I E , and EG.Q;K and E0;Q.J. In 
order to examine this duality let us set the following hypothesis (H) on the admis-
sible family E: 

(H) H E is dense in each Ek, k£ • . 

Let E ' = ( E ' k | k£ • ) be the family given by the duals of the elements of the family 
E—(Ek | k£ • ) . 

Since H E c E ^ , the spaces E'k, k£ • , can be canonically embedded in (HE) ' . 
The density hypothesis assures that this embedding does not identify distinct elements 
in E'k with the same element in (HE) ' . In this way, the family E'=(E'k \ k£ • ) of dual 
spaces is an admissible family of Banach spaces. 

2.1.1. P r o p o s i t i o n . Let E=(Ek \k£ • ) be an admissible family which satisfies 
the hypothesis (H) and let E' = (E'k \ kd • ) be its dual family. Then 

(1) (HE) ' = I E ' 
, and 

(2) IIX'IUE, = sup {\(x, x')n \l\\x\\ n E | HE}; 

(3) ( IE) ' = H E ' 
and 
(4) Hx'llnE' = sup {!<*,-aOJ/llsllnE I * € £ E } ; 

where (,)n denotes the duality between H E and (HE) ' and (,between I E and 
( IE) ' . 
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P r o o f . Since £ ^ C ( n E ) ' , for each • , it follows that l E ' c ^ D E ) ' . 
Conversely, if (HE)', the linear form 

(*»!*€•)-*(2~dZkxk) 

is bounded in the diagonal subspace of ®kEk, with the norm m a x j x j £ f c . By the 
Hahn—Banach theorem there is an (xk \ k£ • )£ ®kE'k such that 

Zk(x, x'k)Ek = ij/(x) 
for all J tef lE, and 

Zk\\x'k\\E'k^ |1 <P||(nE),. 

Now, if we take xk=x, k£ • , it follows that 

$(x) = Ik(x, x'k)Ek, x € f l E . 
Finally, by the density hypothesis (H), the hnear forms x'k, k£ • , are determined 
by their values in HE and 

MlnET ^ ZkUWE'k. 
Similarly we prove (3) and (4). 
As a corollary of proposition 2.1.1 we get the following result on the K- and 

/-functional norms. 

2.1.2. P r o p o s i t i o n . Let E={E k \ k£ • ) be an admissible family of Banach spaces 
which satisfies the density hypothesis (H) and let E'=(E'k \ k€ • ) be its dual family. 
Then 
(1) K{t\x'\E') = sup {|<x, x ' ) | / J ( i _ 1 ; x; E) | x£ HE} 
and 
(2) J(t; x ' ; E') = sup {|<x, x ' ) / ^ " 1 ; x; E) | x € I E}. 

P roo f . Let E be a normed space and 0. Let us denote space E with the 
norm i | H I £ by tE. Then we have (tE)'=t~1E'. 

Now, if we consider the family (^Ek \ k£ • ) we see that (1) and (2) follow at 
once from 2.1.1(2) and 2.1.1(4), respectively. 

2.2. The duality of spaces E 0 Let E be an admissible family of Banach 
spaces which satisfies the density hypothesis (H). Then we can consider intermediate 
spaces with respect to the dual family E', and in particular the interpolation 
spaces E 0 Q . 

Let E be an intermediate space with respect to the admissible family E. Then, 
a necessary and sufficient condition for E' to be an intermediate space with respect 
to the dual family E' is that HE be dense in E. Thus, if E=Ee Q the density result 
of proposition 1.4.1 assures that E'=(Ee Qy is an intermediate space with respect 
to the dual family E'. 
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We shall now study the relationship between the spaces EEQ, and (EEQ)'. 
To this end we shall use again the notation E e ; Q . K and E g . Q . j for the spaces 
generated by the K- and / -method, respectively. 

2.2.1. P r o p o s i t i o n . Let E = (Ek \ k£ • ) be an admissible family which satisfies 
the density hypothesis (H) and let E ' — (E'k | k£ • ) be its dual family. Suppose l^Q — 
=(fi,-,to)*:<s> ^d 0 < e = ( ® i ^<1- Then 

(1) = ( E e s f l ) ' 

where 1 / 2 + 1 / 6 ' = ! (i.e., l/qj+Wj= U 7 = 1 , 2 , . . . . d). 

P r o o f . We shall prove that 

(2) = (Ee;2;j)'. 

By Prop. 2.1.1 it follows that 

E J . f l . s J t c 2 E ' = ( n E ) ' . 

Now, if x'£E'e.Q.K and ( , > n is the duality between HE and (HE) ' , the relation 
(x, x')n makes sense for x 6 E e ; 0 ; / n (HE). Thus, by definition, there is a strongly 
measurable function u: Rd-<- H E such that u£Ll(Ra

+; HE) and satisfies 1.2.2(2). 
From 2.1.2(1) it follows that 

( 3 ) f | < « ( 0 , d j f J ( t ; « ( O ) ^ ( I - 1 ; * ' ) d j = 
Rd Ri 

= ft-°J(v, u(t))t°K(t-\x')d+t ^ \\t-°J(t; " ( 0 ) | | l ? \ \ t 0 K ( t - \ x')||LQ'. 
Ri 

This shows that x 'oueLl(R d
+ ) and thus 

(4) / <U(0, x')d*t = ( f u(i) d j ; x ' ) = (x, x'). 

From (2) and (3) we get the following inequality of Holder type 

(5) \(x,x')\^\\x\\e;Q:J\\x'\\e;Q.;K. 

This Holder inequality implies at once that ( , ) is a bounded linear form on a dense 
subspace of E e ; Q . j . Thus ( , ) can be extended boundedly to all E e ; Q ; J . Hence, 
x'6(E0;Q-JY and we have, for the dual norm 

MVe- .a- . jY = SUP{K*> *'>I/Me;Q;J I * € E e ; Q ; J } == \\x'\\0;Q.;K. 

From this inequality we obtain one half of (1). 

4 
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Conversely, let x ' € ( E g . Q U ) ' . By 2.1.2(1), given s > 0 there is Y N =Y n i n<¡£ 
e H E with YN7¿0 and such that 

zK{e"- x'-, E') =§ (yN/J(eN; yN), x'). 

Next, we denote by le,Q(Zd) the space of all multiple sequences of real number 
(XN)NÍ Z" s u c h that 

ll(*jv)Ar€z"ll/e.a = ll(eiv eXjv)N€Z''ll(a 

Now, if a = ( « „ ) „ € Z " ) and 

x„ = 2 <xNyN¡J(eN-, yN), 
jvez" 

it follows that 

\M\0:Q;J S \\(e-N-°J(eN-, «NyNU(eN;yN))Nzz*||,0(Z-) = 

= ||(c~JV"®laJ»l)jvez«'||iQ(z«»i = l|a||/».o 

Thus x x £E e . Q . j . Also 

<xa, x') = (ENaNyN¡J(eN, yN), x') S eINaNK(e~N-, x') 
therefore 

(6) ElNe-N<xNeNK(e-N; x') == | |a | | e , e | |x ' |U : e ; J . 

Since le-Q(Zd) and l1~e-Q(Zd) are in duality via the duality 

Ni TA 

by taking the supremum over all a£le,Q(Zd) with |]a¡|¡e,Q = l in (6) we obtain 

e\\eNK(e-N; xJUo.o, ^ \\x'\\Q;e;j, 
that is 

s M e - e - j K = ll*'lle¡G¡J-

Since £ is arbitrary we obtain the second half of (2). 
From (2) and the equivalence theorem we obtain (1) and the proof is complete. 

/ 
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Amalgamated free product of lattices. 
I. The common refinement property 

G. GRATZER and A. P. H U H N 

1. Introduction. The common refinement property has been investigated for 
many algebraic constructions. Intuitively, we say that the common refinement prop-
erty holds for the construction * (e.g., direct product or free product) if, whenever 
A0, Ax, B0, B1 are algebras for which * is defined, L=A0 * Ax—Bo * B±, and 
A0, AX,B0, Bx^L, then 

(1) A, = (AinB0)*(AinB1), i = 0, 1, 
(2) B j = ( A o r ) B j ) * ( A x n B j ) , j = 0 , 1 , 

(3) L =(A0i]B0)*(A0r\B1)*(AiriB0)*(AxnB1). 

This is, of course, not a definition; we did not even specify what is meant by the 
right side of (3). In most concrete cases, however, the meaning of (1), (2), and (3) 
is clear: direct product of groups and rings, direct product of lattices with 0, free 
product of lattices ( G . GRATZER and J . SICHLER [ 4 ] ) , and free product of algebras in 
a regular variety ( B . J6NSSON and E . NELSON [6]) are examples of algebraic construc-
tions satisfying the common refinement property. 

The present investigation was prompted by Problem VI. 2 in G . GRATZER [1], 
asking whether or not free {0, l}-product of bounded lattices satisfies the common 
refinement property. We answer this question in the affirmative; the method of the 
proof, however, leads much farther. It will be shown that two free products amal-
gamated over the same finite lattice Q always have a common refinement. The Theo-
rem gives, for an arbitrary lattice Q and any two representations of a lattice L as 
free Q-products, a necessary and sufficient condition for the existence of a common 
refinement. 

2. Results. To define the concept of an amalgamated free product, let Q, A0, Ax 

be lattices (<2=0 is allowed), let Q be a sublattice of both A0 and At, and let 
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AONJ1=Q. Then .¿„LMi is a partial lattice in a natural way (see Section 3 for a 
detailed definition). The free lattice generated by this partial lattice will be called the 
free product of A0 and A, amalgamated over Q, or the Q-free product of A0 and AY; 
it will be denoted by A0*QA1. In this paper, the formula L=A0 *QAX always 
assumes that L is a lattice, A0 and AX are sublattices of L,Q = 0 or Q is a sublattice 
of both A0 and AY. 

Our main theorem is as follows (for a more complete version see Section 4): 

T h e o r e m . Let L = A0* QA1=B0* QBX. These two decompositions of L have a 
common refinement, that is, conditions (1)—(3) of Section 1 hold for *Q if and only if 
for any i,j(L {0, 1}, x£Ah y£Bj, the inequality x^y in L implies the existence of a 
zdA^Bj such that xSz in At and z^y in Bj. 

This theorem has several consequences. 

C o r o l l a r y 1. If Q satisfies the Ascending Chain Condition or the Descending 
Chain Condition, then any two Q-free decompositions of a lattice have a common re-
finement. 

Clearly, the special case Q={0, 1} of Corollary 1 answers Problem VI. 2 of 
[1] in the affirmative. 

C o r o l l a r y 2. Let L=A0*aAi=B0*QB1. I f , for any i,j£{0, 1}, either Ai 

or Bj is convex in A^Bj, then the two decompositions have a common refinement. 

The most important open problem in this investigation is whether the condition 
given in the Theorem is a tautology or not; that is, whether Q-free products always 
have common refinements. 

It follows easily from the main result of G . GRATZER and J . SICHLER [ 4 ] that the 
free factors of a lattice L form a distributive lattice. This statement remains valid 
for <2-free factors ( Q ^ L ) if Q-free products always have common refinements 
(see Section 8). The next two corollaries establish distributivity like properties of 
the set of all g-free factors for an arbitrary Q. 

C o r o l l a r y 3. I f A0*QA^AQ*QA2 and A^A2, then A1=A2. 

C o r o l l a r y 4. If A0*QA1—A0*QA2=A1*QA2, then Q—A0 — A1 = A2. 

3. Amalgamated free products. We need a lemma before we give the definition 
of an amalgamated free product. 

L e m m a 1. Let A0 and Ax be lattices, let Q be a sublattice of both A0 and A1 or 
< 2 = 0 , and let Aor\A1 — Q. Then there exists a smallest partial lattice on the set 
AgUAi extending the operations of A„ and Ax. 
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P r o o f . Since the Amalgamation Property holds for lattices, there is an em-
bedding of AOUAX into a lattice preserving the operations of A0 and AX. Restricting 
the operations of this lattice to AGUAI, we get a partial lattice on the set A0UA1. 
Therefore, the set of all partial lattices on the set A0UA1 whose operations are ex-
tensions of the operations of A0 and AX is nonempty. Now let (AGUA^, Ay, Vy), 
be partial lattices on the set A0UA1. Let A and V be the intersection of the 
Ay's and Vy's, respectively (Ay and \Jy are sets, in fact, they are subsets of 
0 4 0 U A ) 2 X 0 4 0 I M ) ) . We shall prove that < ^ 0 U A ; A, V> is a partial lattice. 
This, will prove Lemma 1. 

Here we need N. Funayama's characterization of partial lattices (see, e.g., 
G . GRATZER [1]): A partial algebra (H\ A, V) is a partial lattice if and only if, for 
arbitrary a,b,c£H, the following five conditions and their duals hold. 

(i) a/\a exits and aAa—a. 
(ii) If a/\b exists, then b/\a exists and a/\b=bf\a. 

(iii) If af\b, (a/\b)/\c, b/\c exist, then af\{bt\c) exists, and (af\b)f\c 
—aA(b/\c). If bf\c, af\{bf\c), af\b exist, then ('af\b)/\c exists and 
(aAb)Ac=aA(bAc). 

(iv) If aAb exists, then ay (aAb) exists, and a=a\/(aAb). 
(v) If [a)V[fe)=[c) in D0(H), then aAb exists in H and equals c. (Here 

D0(H) denotes the lattice consisting of 0 and all dual ideals of H. D0(H) 
is ordered by inclusion.) 

Now we prove (v) for (AQUA^, A, V), the proof of the other four condi-
tions is similar. Every </ i 0 UA; Ay, V7), f^T, is a partial lattice, therefore, (v) 
holds for (AQUAI, Ay, Vy). Assume that [a)V[6)=[c) in D0((A0[JAJ] A, V))-
Then [fl)V[&)=[c) in A i O ^ o U A ; A,, V,» for all y£ r . In fact, A, is an exten-
sion of A; therefore, the dual ideals generated by a and b relative to Ay contain the 
dual ideals generated by a and b relative to A, respectively. Thus [«)V[fc)2[c) in 
D0((A0U AI', AY, Vy>). The reverse inclusion is trivial. Now, by (v), aAyb=c for 
all y ^ r . Hence aAb=c. This completes the proof. 

D e f i n i t i o n 1. Let Q, A0, Ax be as in Lemma 1. Let P(A0, Alf Q) denote the 
smallest partial lattice of Lemma 1. If Q=A0C\A1 is understood, we write P(A0, AJ. 
for P(A0, Alt Q). Then the free lattice generated by P(A0, Alt Q) will be called the 
free product of A0 and Ax amalgamated over Q, and it will be denoted by A0*QA1. 

A warning is in order here. We can partially order A0UA1 by the smallest par-
tial order containing the ordering of A0 and the ordering of AT. If we take AGUAX 
together with all the existing g.l.b.'s and l.u.b.'s relative to this ordering, then the 
resulting partial lattice is generally different from the one defined above. 



56 G. Gratzer, A. P. Huhn 

Definition 1 can easily be extended to a definition of the Q-free product of an 
arbitrary finite number of lattices containing Q. In particular, if L—A0*QA1 = 
—B0*QB1, then (A0P\B0)*Q(A0C]B1)*Q(AyDB0)*Q(AlHBy) is the free lattice gen-
erated by the smallest partial lattice on the set G4 0 n£ 0 )U(y4 0 n .B i )U(^ i n5 0 )U 
U i A D ^ ) whose operations extend the operations of all Atr\Bj, i,j=0, 1. 

We shall need a description of the ordering and of the ideals of P(A„, Ay). 

L e m m a 2. Let x£A0 and yd Ay. Then xSy in P(A0, Ay) if and only if 
there is a z£Q with xSz in A0 and zS.y in Ay. 

P r o o f . Define ^ on A0UAy as follows: ^ retains its meaning on A0 and Ay, 
for x€A0 and yd Ay (or x£A x and y£A0) define ^ as in the lemma. It is obvious 
that S is a partial ordering on A0UAy. (This is used in the proof of the Amalgama-
tion Property for lattices.) Consider the partial lattice (A0UAy; A, V)> where 
af\b=c iff c is the greatest lower bound of a and b with respect to ^ ; aWb—c is 
defined dually. 

Let S j denote the ordering of P{A„, Ay). Since P(A0, Ay) is the smallest partial 
lattice on A0UAy, ^y must be contained in To prove the converse, let a s i ? , 
a, b€A0UAy. If a,bdAt for some i in {0, 1}, then a^b in At. Hence, by the de-
finition of P(Ao, Ay), a^yb. Therefore, and by symmetry, we may assume that 
a£A0 and bdAy. Thus there is an element c in A0i]Ay such that a S c in A0 

and c ^ b in Ay. The same inequalities hold in P(A0, Ax), that is, a ^ y C ^ y b , as 
claimed. 

L e m m a 3. Every ideal of P(A0, Ay) is the union of an ideal 70 of A0 and an ideal 
ly of Ay satisfying ItsC\Q=I1C\Q. Conversely, if 70 is an ideal of A0 and Iy is an ideal 
of Ay with IaC\Q=lyC\Q, then 7 0( jA is an ideal of P(A0,Ay). 

P r o o f . Let I be an ideal of P(A0,Ay). Then Ii=I(~)Ai is an ideal of At, 
/ = 0 , 1 , and f0n<2=inA0nQ=jnA0nA1=/nAinQ=/inQ, which proves the 
first statement. 

To prove the converse, consider the partial algebra ( A 0 U A y ; V, A), where 
xAy (resp., x\Jy) is defined if and only if x and y are in the same At and xAy 
(resp., xVy) is the meet (resp., join) of x and y in At. Call a set I an ideal of the par-
tial algebra (A0DAy\ A, V) if, whenever x,y£l and x\Jy is defined, then xVydl 
and whenever xdl,y£A0UAy, and y^x, then ydl. (The partial order ^ was 
defined in Lemma 2.) Now let 70 be an ideal of A0 and let Iy be an ideal of Ay with 
Ior\Q=IyC\Q. The latter condition ensures that I0UIy is an ideal of (A0UAy; 
A, V). Now we prove that 70U7X is an ideal of P(A0, Ay). In fact, P(A0, Ay) is the 
smallest partial lattice in which, besides the partial operations of (A0UAy; A, V), 
all the meets and joins are defined that follow by iterated application of conditions 
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(i) to (v) and their duals. Therefore, it is sufficient to check that a single application 
of any one of (i) to (v) and their duals does not change the ideals; this is evident. 

4. Smooth representations of ideals. The proofs in G . GRATZER and J. SICHLER 
[4] rely on two facts: 

1. In a free product L=A0*A1 every element has a lower A0-cover, which is 
an element of (A0)b (that is, A„ with a new 0 and 1 adjoined); 

2. Forming lower .¿„-covers is a homomorphism of L into (A0)b. 
In general, these statements do not hold for amalgamated free products. In this 

section we find some statements that hold for amalgamated free products; these 
statements can be viewed as substitutes for the two facts mentioned above. 

Throughout this section, let Q, A0, A1, L be lattices, let L=A0*QA1, and let 
A=P(A0, Alt Q) as defined in Section 3. Let /(A) (respectively, l(A^) denote the 
ideal lattice of A (respectively, of At). For any ideal / of L or of A define 

( /) ; = / r u ; , i = 0 , l 

and for an ideal I of L define 
IA = I HA. 

For a principal ideal / of L, the ideals (/), and IA correspond to the usual lower 
covers (see, e.g., [1]), however, /—(/),-, I£I(L), is not a homomorphism, that is, 

(1) (pOo, In-d)i = P{Uo)i, (In-d.) 

does not hold for all polynomials p. For certain polynomials, however, (1) does hold 
(see Definition 2) and it will turn out (Lemma 8) that this happens often enough, 
making it possible to carry out some of the proofs of [4] under more general condi-
tions. 

D e f i n i t i o n 2. Let p—p(x0, ..., xn_i) be an w-ary lattice polynomial, let 
/, /„, . . . , / n - i be ideals of L (of A, At, respectively), and let I=p(Ia, in 
I(L) (in 1(A), I(Ai), respectively). We say that p(I0, •••,/„-1) is a smooth represen-
tation of / (or t h a t p ( I 0 , ..., /„-1) is smooth) iff one of the following conditions holds: 

a) p=Xi\ 
b) P=Pnf\Pi and both p0(I0, ..., /n_x) and ^(/Q , . . . , / „ - ^ are smooth; 
c) p=p0\/pi, both p0(I0, . . . , /n_i) and P i ( / 0 , 4 - 0 are smooth, and, for 

any q£Q, 

q£p(I0, j) implies that qip0(h, ..., /„-L) or 

•••> 4 - L ) -

The following lemma shows that every representation of an element of L can 
be turned into a smooth representation. 
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L e m m a 4. a£L, a0, ..., On-xdAoUAx, and let a=p(a0, ..., an_1) where 
p is a lattice polynomial. Then there exist an integer m^O, a polynomial p in n + m 
variables, and subsets Q0, Qm-i of Q such that 

(a] =p({aj, ...,(an-il (Qol-AQm-J) 

is a smooth representation of (a] in I(L). 

P r o o f . We prove this statement by induction on the rank of p. 
If p=xn then we can choose >n=0,p=p. 
If p=paVpi, then, by the induction hypothesis, there exist an m S 0 , poly-

nomials p0 and px of n+m—\ variables, and subsets Q0, ..., Qm~2 of Q such that 

p,((aj, K-lL (£„]> - AQm-J) 

is a smooth representation of/>,((a0], ..., ( « „ . J ) for i = 0 and 1. Let Qm-i=(a]C\Q. 
We claim that 

A>((flo]. (Go 1, ->(Qm-J)V 

V ( M « o ] . . . . ( f l . - J , (G<J, -,(Qm-&V(Qm-il) 

is a smooth representation of (a]. Indeed, by the definitions of p t and of QM~I, this 
ideal equals (a]. Moreover, />i((a0], . . .)V(Om-i] is smooth because its components 
are smooth and if, for qeQ, q€p1((a0], ...)V(Gm-i]> then q£(a]; thus, qd(Qm-J 
by the definition of Qm-V Similarly, p0((a], ...)V (A((aoL . . .)V(Gm-i]) is smooth. 

Fina l l y , if p=p0Api, t h e n le t pi((a0], ..., ( ¿ / „ . J , (Q0], ..., (Qm-x]) b e a s m o o t h 
representation of />j((a0]» • ••> (a„-i]) for / = 0 and 1. The meet of these two poly-
nomials is obviously a smooth representation of (a]. 

In the remainder of this section we have to compute polynomials in L, I(L), 
1(A), and I(Ai), i=0,1. We shall distinguish between the operations in 1(A) and 
I(Ai) by superscripting them by A and i, respectively. 

The following lemma is a consequence of the solution of the word problems 
for lattices freely generated by a partial lattice (see, e.g., G . GRATZER, A. HUHN, 
a n d H . LAKSER [2]). 

L e m m a 5. Let x,y£L. Then 

(xVy)C\A =((x]rM)V'4(0']rU), and (xt\y]C\A = ((x]n^)*i(0']n>4). 

L e m m a 6. Let I and J be ideals of L. Then 

(IVJ)A = (I)AVA(J)A. 

Furthermore, if IVJ is smooth, then so is (.1)AVa(J)A-
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P r o o f . We prove that (IV J)A=(I)AV A(J)A (the reverse inclusion is obvious). 
Let (IVJ)A. Then a£A and there exist /£ / and jdJ such that a^iVj. From 
Lemma 5, it follows that 

a£(iVj]nA Q ((i\f)A)VA((j]nA)Q(I)AVA(J)A. 

This proves the first half of the lemma. 
Assume now that IVJ is smooth. We have to prove that so is (I)AVA(J)A. 

Let q£Q and let 
9HI)AVA(J)A. 

Then qOVJ\ thus, q£l or q£J, say q£I. Since qtQ^A, we have q£lC\A=(I)A. 
This completes the proof. 

Most of the results of this section are summarized in the following two lemmas 
that show that one can work with smooth representations as if forming lower covers 
were a homomorphism. 

L e m m a 7. Let I and J be ideals of A and let us assume that IVAJ is smooth. 
Then 

(WAJ), = (I)iVt(J)i far » = 0,1 

and the right side of the equation is smooth. 

P r o o f . We claim that 

( ( / ) o V ° c / ) o ) n e = ( ( / ) i V i ( / ) i ) n f i . 

Indeed, let q£Q and let q£(I)0V0(J)0- Then q£lVAJ; therefore, q is in I or J, 
say, q£I. Then ?6(/)i^(/)iV 1(/) 1, which verifies that the left side is contained in 
the right side. Repeating this argument starting with the right side, we verify the claim. 

This claim, by Lemma 3, shows that 

( W o v m M / x v H A ) 

is an ideal of P(A„, Ax); obviously, it is the smallest ideal containing both I and J, 
that is, 

ivA J = ((/ioVmMi/xw)!)-

Now we compute (using the above claim again): 

(IVAJ)0 = 

= ( ( ( ^ o v w u a / x v v ) ) ! ) ^ = 

= ((/)oV°(/)o)u(((/)1vi(/)1)ne) = 

= ((/)oV o(/)o)U(((/)oV ° ( y)o ) n 0 = 

= (/)oV°GOo-
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Finally, we can see that (/)0V°(/)0 is smooth arguing as we did in Lemma 6. 

L e m m a 8. Let p=p(x0, ..., xn_1) be a lattice polynomial and let J0, ...,/„_1 

be ideals of L, such that p(I0, •••,/„-1) is smooth. Then 

(p(/„, . . . . / „ - , ) ) , = p ( ( / o ) f , . . . , ( / . - 0 l ) 

is a smooth representation of (p(I0, ...,In.1))i. 

P r o o f . By induction: if p—xf or p=p0f\p1, then Lemma 8 is trivial; if 
p = PQWPI , then Lemma 8 is a combination of Lemmas 6 and 7. 

5. Amalgamated free products of sublattices. It was proved in B. J6NSSON [5], 
that, if a variety V has the Amalgamation Property, then the following statement 
holds: for arbitrary algebras A0 and Ax in V and subalgebras A'0 of A„ and A[ of Ax 

the set A'0IJ A'x generates a subalgebra in the free product A0*A1 canonically iso-
morphic to A'0*A[. "Canonically"means that the isomorphism is the identity map 
on A'0 and on A[. J6nsson's proof is valid not only for varieties but also for classes 
closed under the formation of subalgebras and of direct products. Thus the proof 
works for Q-lattices, that is, lattices containing Q as a sublattice such that the ele-
ments of Q are regarded as nullary operations. This yields the following lemma. 

L e m m a 9. Let L—A0*QA1, let A'0 and A'x be sublattices of A0 and A1, respec-
tively, and let Q^A'0and QQA^. Then the sublattice of A0*QA1 generated by A'0{JA[ 
is canonically isomorphic to A'0*QA[. 

There is an alternative proof by using the solution to the word problem for 
lattices generated by a partial lattice. For the case <2 = 0 , such a proof appears 
in G . GRATZER, H . LAKSER, and C . R . PLAIT [ 3 ] . (See also G . GRATZER [ 1 ] . ) 

6. Proof of the Theorem. We introduce some new notation. For an ideal I 
of L, let IAo denote the ideal of L generated by lC\Aa\ we call IAo the lower A0-cover 
of I. Similarly for IBa, and . Note that Lemma 8 holds also for lower A{ 

(resp., j5y)-covers. 
For arbitrary fixed i,y€ {0, 1}, we define ¡¡¡(L) as the set of principal ideals of L 

and the lower ^¡-covers and lower BJ-covers of principal ideals of L. 
We prove the main theorem in a stronger form: 

T h e o rem. Let L=An*QA1
=BQ#QBI. Then the following conditions are 

equivalent. 

( i ) L=(A0R\B0)*Q(A0C]B1)*Q(A1C]B0)*Q(A1DB1). 

(ii) Al=(Aif)B0)*Q(AinB1), for I=0 , 1. 
(iii) B - ^ B ^ Q i A ^ B j ) , for . /=0, 1. 
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(iv) For any {0,1}, x£Ait and ydBj, x^y in L implies the existence of a 
z^AiOBj such that xS.z in Ai and z^y in B}. 

(v) For any i,j£{0, 1} and for any ideal I of L, I={ir\A^ = {lC\BJ] implies 
that I^mA^Bj]. 

(iv) For any / ,y6{0, l} and for any ideal /€/¡,(1.), /=(/("!/(;]=(/05,] im-
plies that ]=(If]Alf]Bj]. 

P r o o f . We prove the theorem by the following scheme: (i)-<-»(ii), (i)-<-(iii); 
(i), (ii), and (iii) jointly imply (iv); ( iv ) - (v )+(v i ) - ( i i ) . 
(ii) — (i) is clear from the definition of the right side of (i) (given after Definition 1). 
(i)-*(ii). Let a£A0. Then, by (i), a can be expressed in the form 

a = p(Xqo, XQO , ..., , XQI , ..., x10, Xio', ..., Xn, , ...) 

where xu, x'tJ, ...dAjOBj, i, jd {0, 1} and p is a lattice polynomial. By Lemma 4, 
(a] has a smooth representation in I(L): 

(a] = p((x oo]» •••> (*«J, • • • > (*lo]> •••5 C*ll]> (Qol •••)' 

where Q0, ...^Q. Then, by Lemma 8, 

(a] = (AL0 = P((X0oL„> ..., (*IOU0, .... (*0IL„, •••. (*IIL0, -AQOL •••)• 

We claim that, (x10\Ao, as well as (xn]A , is generated as an ideal by elements 
of Q. Indeed, let (x10]/4o be generated by xy, y£F, in A0. By Lemma 2, for every 
7€F, there is a yydQ with x y ^ y y ^ x 1 0 . Thus {yy |v€r} generates Oc10]^o, and 
{j^Iy^T} is a subset of Q. Summarizing, 

(a] = .p((x00], • • •, ( x j , . . . , (g10], ..., (Qn], ..., (g0], ...), 

where Q10, ..., Qu, •••, Qo, •••r=Q- Hence a can be expressed by a'00, ..., x10, ..., 
and elements of Q. Thus, a is in the sublattice generated by (A0C\B0)\J(A0nB1). 
Therefore, A0ClB0 and A^OBy generate A0. It follows from Lemma 9 that they 
generate A0 freely over Q. 
(i)"-(iii) follows by symmetry. 
(i), (ii), and (iii) jointly imply (iv). By (ii) and (iii), the sublattice [A0UB0] generated 
by A0UB0 is also generated by A0C\B0, AQOBX, and AxClBg. By (i), A0OB0, 
AoDBy, AyDBo freely generate over Q. Thus [Aa{JB^ is freely generated by 
(An.Bo)U04<>nJBi)U(;iinJBo). Hence, it is also freely generated by [(^0n.B0)U 
U ^ o H ^ i ^ U K ^ o n ^ U ^ i n ^ o ) ] . By (ii) and (iii), this set is A0UB0, and the 
relative sublattice of L on this subset is the partial lattice F(A0, B0, A0r\B0). 
Therefore, [A0\JB^ is the free (/40fl50)-product of A0 and B0. Thus, Lemma2 gives 
us (iv) for / = 7 = 0 . Since (i), (ii), and (iii) are symmetric in / and j, condition (iv) 
now follows. 
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(iv)^(v). Let the ideal I be generated by {x 7 |y£r}QA t and by {y6 \5^A}^Bf, 
we can assume that {y6\5£A} is closed under finite joins. By (iv), for any y6T we 
can choose a y'£A and a z^A^Bj satisfying x ^ z r ^ y r . Obviously, {zy. \y'^r}Q 
^ A , r \ B j generates I. 
(v)-"(vi) is obvious since (vi) is a special case of (v). 
(vi)^-(ii). By Lemma 9 and by symmetry, it suffices to prove that A0 is generated 
by ( ¿ o W U ^ o n * , ) . 

For a£A0, there exist a polynomial p and elements b0, b'0, b1,b{, 
€2?!, such that a=p(b0, b'Q, ..., b±, b[, ...). By Lemma 4, there exist a polynomial 
p and Q0, Qi, ...^Q such that 

(a] =p((b0l, (fcfl, (6J, (63, (Qol (0J , - ) 

is a smooth representation of (a]. Then, by Lemma 8, 

(a] = («I«, = p ( ( & a U , • • •» (*>iL„> • • • > ( 0 a L , -•••)• 

In this expression, (20L0
=((?o]> ••• • Furthermore, we shall prove the claim that 

(PoLv(6oW •••» a n d ••• are generated by elements of A0C\B0 and 
AQOBX, respectively. Thus, each ideal occurring in the representation is generated 
by elements of (AgCiB^UiAgClBJ. Therefore, so is (a]. We conclude that a€ 
£[(4on.Bo)U04on.Bi)], which was to be proved. 

To verify the claim, it is sufficient to prove by symmetry that (¿>0U0 generated 
by its elements in A0DB0. 

First, we verify that ( ¿ J ^ is generated by its elements in B0. 
We start with a smooth representation 

(&J = ?((o«l, « 1 - . (f l j , (a',], . . . ,(*„], (J?J, ...), 

where a0, a^, ...€A0, ax, a'lt ... eA1 and R0, Rx, ...^Q. Then 

(fcoLo = •••> (aiL„. •••> (^oL„> •••) = ( ^ U , (-Ro],-) 

and, applying Lemma 8 twice, we obtain 

(&ok = {(K]B0)AO = ^(((aalBoW •••» ((«IWA», - •••)• 
Hence, 

(*>oL„ = q((a0], ..., ( f l j ^ , ..., (/?„], •••) i 9((ao]Bo, - . •••. №>], •••) i 

§ ? ( ( ( f i o k W ' ( O i k U ' •••, ((-RokU, ••• ) = (i>ok 
therefore, 

(*>oL„ = ?(Ook> •••> OiL„> •••> (*o]> •••)• 

The ideals (fl0k> ••• a r e» by definition, generated by elements of B0; the ideals 
( a j ^ , ... are generated by elements of Q by Lemma 2. Since Q0, ...QQ, we con-
clude that (¿„J^ is generated by elements of B0. 
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Finally, since has been proved to be generated by its elements in B0, 
and (¿>0L0 is by definition generated by its elements in A0, and (60]^o€/00(L), all 
the hypotheses of (vi) are satisfied. Condition (vi) yields that (b^Ao is generated by 
elements of A0f]B0, which completes the proof of the claim. 

This finishes the proof of the implication (vi)—(ii) and of the Theorem. 

7. Proof of Corollaries 1—4. P r o o f of C o r o l l a r y 1. Let Q satisfy, for 
example, the Ascending Chain Condition, and let L—A0*QA1=B0*QB1. We 
claim that, for any i,j€{0, 1}, /y(L) consists of all principal ideals of L. Indeed, 
let us take a smooth representation of the principal ideal (x]: 

(*] = P((aoL («a (a J, «], ...,(Qol (Qil •••), 

a0, a0, ...€A„, ax, a[, and Q0,Qi, •••QQ- Then 

(x)Ao = P((a0l (a'0l ..., (ai]Ao, ...,(Q0], ( f i j , ...). 

It follows from Lemma 2 that the ideals ( a j ^ , ..., are generated by elements of Q; 
thus, by the Ascending Chain Condition, these ideals and also (Q]0, ••• are principal. 
Therefore, (x]Ao is a principal ideal. This proves the claim for i = / = 0 . By symmetry, 
the claim is proved. 

Using this claim, it is easy to establish condition (vi) of the Theorem: if the 
single generating element of an ideal in 7lV(£) is both in At and in BJt then it is in 
A,r\Bj. Thus the Theorem shows the existence of a common refinement. 

P r o o f of C o r o l l a r y 2. Let L=A0*QAi=B0*QB1, and let us assume that 
the hypotheses of Corollary 2 hold, that is, for any i,j, At or B} is convex in A^Bj. 
We are going to establish condition (v) of the Theorem. Let {0,1}, let, for in-
stance, Ai be convex in A^Bj. Let lei(L), such that I=(ir\AH=(ir\Bj]. Let G 
be a generating set of I in At and let H be a generating set of / in Bj. We can assume 
that both G and H are closed under finite joins. Then 

/ - :::: g for some g€Gj = S. h for some h£H). 

Thus, for any g£G there exists an hg£H satisfying g^hg and for hg£H there 
exists an g'dG with hg^g'. Therefore, g^hg^g', so by the convexity of At in 
AiUBj, we conclude that hgdA-t-, since h g cGQBj , h ^ A ^ B j . Now it is clear 
that K—{hg\gdG} generates I and K^A^Bj, verifying condition (v) of the 
Theorem. 

P r o o f of C o r o l l a r i e s 3 a n d 4. Under the conditions of the Corollaries, 
[At\JA^ is the free product of Ax and A2 amalgamated over A1(1A2. Thus we may 
apply Lemma 2 to A1UA2. Therefore, both corollaries follow from the following 
observation (due to E . FRIED): 
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Let L=A0*QA1—AQ*QA2. If the conclusion of Lemma 2 holds fo r A1UA2 

(that is, for x£AX and y£A2, x^y iff x^z^y for some z^A1C\A2 and symmetri-
ca l l y f o r X€A2 a n d y£AJ), t h e n A^AZ. 

Indeed, under these conditions (iv) of the Theorem holds, hence there is a com-
mon refinement. Applying condition (ii) of the Theorem we obtain 

AJ. = (A0R\A1)*Q(A2R\A1) = Q*Q(A2NA1). 

Simi l a r ly , A2=Q*Q(A1DA2), h e n c e A1—A2. 

8. Open problems. We repeat the question already mentioned in Section 2. 

P r o b l e m 1. Is there a lattice Q such that Q-free products do not always 
have common refinements? 

An equally important question arises in connection with Corollaries 3 and 4. 
In fact, they suggest, that some sort of a distributive law must be valid for Q-free 
factors. 

P r o b l e m 2. Do Q-free factors of a lattice L form a distributive sublattice of 
the lattice of all sublattices of LI Does there exist some "natural" generalization of 
distributivity that holds for <2-free factors and implies Corollaries 3 and 4? 

A negative answer to Problem 1 would answer both questions of Problem 2 in 
the affirmative; this can be seen from the following observations. 

Let us assume that for a lattice Q, any two Q-free products of a lattice L have 
a common refinement. Let £ be a lattice and let Q be a sublattice of L. Then 
L=A*QA'=B*QB' implies that 

L =(AF\B)* Q[A' U B'~\; 

thus the g-free factors form a sublattice of the lattice of all sublattices of L. Now 
let A, B,C be Q-free factors of L, that is, let 

L = A*QA' = B*QB' = C*QC'. 
Then 

A^[BiJC] = [(A f | U (^ fl Q] , 

since both sides are the Q-free products of APiBClC, APiBDC', and ACiB'PiC. 
9. Appendix: On the definition of amalgamated free products. In Section 3 we de-

fined A0*QA1 as the free lattice generated by the smallest partial lattice on the set 
AQUAX ( A Q H A ^ Q ) extending the operations of A0 and A1. We denoted this 
partial lattice by P(A0,A1} Q). Here we prove the following characterization: 

P(Aa, Ax, Q) is the smallest weak partial lattice on the set A0UA1 extending 
the operations of A0 and A1. 
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By a weak partial lattice (see [1]) we mean a partial algebra {H\ A, V) satisfying 
conditions (i)—(iv) of Section 3 and their duals. 

This result means the following: by definition, P(A0, Ax, Q) is formed by taking 
AoUAy, and extending the A and V of A0 and Ax by iterating (i)—(v) and their 
duals; according to the result of this appendix, condition (v) and its dual are not 
needed in this process. 

Let WP(A0, A1,Q)=WP be the smallest weak partial lattice on A0UAt 

extending the operations of A0 and Ax. The existence of WP can be proved along the 
lines of the proof of Lemma 1. The proof of Lemma 2 shows that the partial ordering 
on WP is the same as the partial ordering on P(A„, Alt Q). We are going to prove 
that WP is a partial lattice, that is, (v) and its dual hold. Then obviously WP— 
=P(A0,A1,Q). 

By duality, it is sufficient to verify (v). To do that, let a, b, cdA0UA1 such that 
(a]V(b] = (c] in the ideal lattice of WP. We have to show that a\/b exists and 
aVb = c in WP. 

If a\Jb exists, then (ay b] is obviously (a]V(&], hence (aV6]=(c]. We 
conclude that a\/b=c. Therefore, it is sufficient to show that if (a] V (£>]—(c], then 
aVb exists. 

If a,b(A0 or a, bdA^, then a\lb exists. Hence we can assume that a£A0 

and bdAx. By symmetry, we can also assume that c£A1. 
By the general description of join of ideals in a weak partial lattice (see Exer-

cise 5.22 of |.l]), (a]V(2>]=(c] implies the existence of a natural number n and ele-
ments 

(1) a = a 0 S f l 1 s . . . S f l „ in A0, 
(2) b = b0 f?! b„ = c in Au 

(3) r0=s qns q in Q 

such that 

(4) r, ^ b„ 0 s i s « , 
(5) qi a„ 1 g i i n , 
(6) bt+1 = btVql+1, 0 S i < /1, 
(7) at+1 = atWri+1, 0 S i < n , 

(8) a n ^ q ^ b n . 

(The symmetric case with </0=''i='?i = ••• O^i^n, r ^ b t , l^i^tt, 
ai+i—atVri+i> 0 = /<«, bi+1=bi\/qi, is handled similarly.) 

In the proof we shall utilize the following two properties of weak partial 
lattices: 

(PI) If x\/y=z and xSu^z, then « V j exists and u\!y—z. 

5 
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Indeed, by the associative identity, 

uV(xVy) = (uV*)V>>, 

the left side exists and equals z\u\!x exist and equals u, hence uVy exists and equals 

z, as claimed. 
(P2) If x\!y=z, x—XiWxs, and x2^y, then XiV.y exists and xYVy=z. 
Indeed, by the associative identity, 

the left side exists and equals z; in the right side x2My exists and equals y, hence by 
(iii), exists and x1Vy=z, as claimed. 

Now we prove a\/b=c by induction on n. Let « = 1 . Then we have the elements 
a0=a, b0=b, bi = c, r0, q1, q, and r0^q^q, r0^b0, r ^ q ^ ^ , a ^ a V / o , bx = 

By (PI), q1\/b=c and q^a^c implies that axyb exist and a^S/b—c. Since 
ax=ayr0 and r0^b, by (P2), a\Jb exists and a\!b=c, as claimed. 

Now let « > 1 . It is clear, that the elements 
^ ...=qn=q satisfy (1)—(8) with «—1. Therefore, a^by exists and a1Vb1=c. 
By (P2), c = alyb1 = a1\J(q1yb) = a1Vb, since q^a^ Again by (P2), c = ai\Jb = 
={a\lr0)Vb—aWbx since r0^b. This proves the theorem. 
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A general moment inequality for the maximum of partial sums 
of single series 

F. MÓRICZ 

1. The main result 

Let ( X , si, fi) be a (not necessarily finite or a-finite) positive measure space. Let 
{£k~Zk(x): k=\, 2,...} be a given sequence of functions, defined on X, measurable 
with respect to si, and such that \£k\y are integrable over X with respect to fi, where 
y is a fixed real number, y s i ; i.e., our permanent assumption is that £k(iLy(X, si, fi) 
for each k. Set 

b + l 
S(b, l)= 2 £k and M(b, m) = max |S(b , l)\, 

k=b+1 ISiSm 

where b is a nonnegative integer, / and m are positive integers. 
In the following, f{b, m) denotes a nonnegative function defined for integral 

b^O and m ^ l , which possesses the 'superadditivity' property: 

(1.1) f(b, k)+f{b + k,l)7sf(b,k + l) for 0, fcsl, and / s i . 

We shortly explain the origin of the term 'superadditivity' in connection with 
the property expressed by (1.1). The fact is that f(b, k) is actually a function of the 
interval (b, b+k]=I1 with nonnegative integer endpoints. Considering the intervals 
h=(b+k,b+k+[] and I=(b, b+k+[\ too, we can see that the union AU/2 is a 
disjoint representation of I. Now (1.1) can be rewritten as follows 

/ ( A ) + / ( 4 ) = f U ) where / ( / J = f ( b , k), etc. 

In the additive or subadditive case the relation should be replaced by 
or ' s ' , respectively. 
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Further, by <p(t,m) we denote a nonnegative function defined for real f ^ O 
and integral wiSl . We assume that cp(t, m) is nondecreasing in both variables, i.e., 

<K'i> m i ) — 9 ('2, m2) whenever 0 ^ t2 and 1 ^ m1 ^ m2. 

Our main result can be formulated as follows. 

T h e o r e m . Let y s l be given. Suppose that there exist a nonnegative and super-
additive function f(b,m), and a nonnegative function <p(t, m), nondecreasing in both 
variables, such that for every ¿SO and m^ 1 we have 

(1.2) / 1 S ( b , m)p dfi m) <p?(/(i>, m), m). 

Then for every b^O and m?2 we /jaw both the inequality 

0 . 3 ) 

and the inequality 

(i.4) / J T » . » ) * . m ) { ; r v ( i % i = > . [ 5 ] ) } ' . 

Here and in the sequel the integrals are taken over the whole space X, [/] denotes 
the integral part of t, and all logarithms are with base 2. 

R e m a r k 1. It is striking that the factor 5/2 in (1.4) does not depend on y, 
in contrast to the factor in (1.3). On the other hand, we have to take [m/2k] 
in the argument of <p on the right-hand side of (1.4), instead of [w/2 t+1], which is the 
case in (1.3). 

2. Special cases 

We are going to present the riches of applicability of our Theorem, without 
aiming at completeness. 

Let us take (p(t,m)=fa~v>h with an c o l . Then 
[logm] ( t \m~l\ 

<P(t, m) = 2 <P \y\} = 0 

independently of m. 
C o r o l l a r y 1. Let a > l and y ^ l be given. Suppose that there exists a non-

negative and superadditive function f(b, m) such that for every fcsO and mSl we have 

J\S(b,m)\?dvSf*(b, m). 

Then for every b^O and mSl we have 

f My{b, m) dn y (1-2«>>»)-»/•(&, m). 
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This result, apart from the factor 5/2 on the right-hand side, was proved by 
the present author in [3, Theorem 1], and somewhat later (with another constant) 
by LONGNECKER and SERFLING [ 2 , Theorem 1] . 

Now take <p(t, m) = t^~1)ly w(t), where again 1 and w(t) is a (not neces-
sarily nondecreasing, but positive) slowly varying function, i.e., w(t) is defined and 
positive for real i=>0, and for every fixed real C > 0 we have 

w(Ci) , 
. / — 1 as t -* <=°. w(i) 

For example, w(i) = {log (1 + /)}/3{log log (2 + t)f is such a function, where P and 
<5 are arbitrary real numbers. It is not hard to check that we again have 

$(t, m) =á C(a, 7, w) t^~^lyw{t), 

where C(a, 7, w) is a positive constant depending only on a, 7, and w(t). 

C o r o l l a r y 2. Let a > l and 7 S I be given. Suppose that there exist a nonneg-
ative and superadditive function f(b, m), and a slowly varying positive function w(t), 
such that t(a~1)ly w(t) is nondecreasing and that for every ¿SO and m £ l we have 

f \S(b, m)\y dp. tif*(b, m) wy(f(b, m)). 

Then for every ¿SO and m S l we have 

f My(b, m ) d n ^ j C(a, 7, w)f"(b, m) w>(f(b, m)). 

Next take <p(t, m)=A(m), where {l(m): m=1, 2, ...} is a nondecreasing sequ-
ence of positive numbers. 

C o r o l l a r y 3. Let 7 S I be given. Suppose that there exist a nonnegative and 
superadditive function f(b, tri), and a positive and nondecreasing sequence l(m) such 
that for every ¿S0 and mSi we have 

f IS^fc, m)\y d/i =f(b, m)Xy(m). 

Then for every ¿SO and /«Si we have 

(2.1) fMy(b, m) dn s V - ' f i b , m) { ^ A ( [ f ])[• 

This moment inequality, apart from the factor 3 ? _ 1 on the right-hand side, was 
already proved by the present author in a slightly different form in [3, Theorem 4]. 

Finally, it is quite obvious that in any case we can state the following 
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C o r o l l a r y 4. Under the conditions of the Theorem, for every b^O and m^2 
we have 

(2.2) / Af»(b, m) da ^ 3 , - l / ( b , m) ^ ( / ( b , m), (log m)». 

In the special case when <p(t, rn)=X (m) is a slowly varying sequence, which is 
positive and nondecreasing, in particular, when <p(t,m) = l, the right-hand side of 
(2.2) is of the same order of magnitude as the right-hand side of (1.3) or (1.4). Thus, 
in this case the moment inequality (2.2) cannot be improved in the framework of 
our method. 

R e m a r k 2. Corollary 3 is proved in [3] by the socalled bisection technique 
with respect to the number m of the terms, which goes back to the proof of the well-
known Rademacher—Mensov inequality (see, e.g. [4, p. 83]). The proof of Corollary 
1 is based on the bisection technique with respect to the weight fib, m), which was 
firstly applied, it seems to us, by ERDŐS [1] concerning an upper estimation of the 
fourth moment of the partial sums of lacunary trigonometric series. Now, the proof 
of our Theorem presented in the next Section is based on an appropriate combina-
tion of these two bisection techniques. This combined technique was firstly used, as 
far as the author is aware, by TANDORI [5] in order to obtain a special upper esti-
mate for the second moment of the maximum of the partial sums of orthogonal 
series. 

For a more detailed historical background of these moment inequalities see [3]. 

3. The proof of the theorem 

P r o o f of (1.3). Setting 

*(*, 1) = (PC, 1) ( » £ 0) 
and 

[ l o g m ] - l ( t f m 1\ 

* ( f , « 0 = 2 n ^ ' b ^ - J J = 

it is clear that 4>(t, m) is also nondecreasing in both variables. This explicit expression 
for <£(/, m) can be rewritten into the following recurrence one, which will be useful 
in the sequel: 
(3.1) HU 1) = Ht, 2) = *( / , 3) = (p(t, 1) ( r ^ O ) 
and 

(3.2) * ( ' , m) = cp (/, + 0 ( ± , [ | - ] ) (/ ^ 0, m S 4). 
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Now, statement (1.3) to be proved turns into 

(3.3) / M > ( b , m) dn 3 m ) & ( f { b , m), TO). 

The proof of (3.3) proceeds by induction on m. By (1.2) and (3.1), this is obvious 
for m=1 and for each b, even the factor 3V_1 is superfluous on the right of (3.3) 
in this case. 

In order to prove (3.3) for m=2 and 3 with arbitrary b, we use the trivial esti-
mate 

b+m 

M(b, TO) ^ 2 l&l. 
*=6+i 

whence Minkowski's inequality and (1.2) provide that 

(3.4) { / W { b , m ) d n Y ^ j f / 1 / y ( f c - l , l )<p( / ( fc - l , 1), 1). 

Taking into account the monotonicity of cp(t, m) and making use of the elementary 
inequality 

b + m ( b+m 

(3.5) 2 tl'y ^ ™(y-1)ly 2 h\ (i* fe 0, v S 1), 
k = b+l Mfc=6+1 ' 

from (3.4) and (1.1) it follows that 
, , . 6 + m 
{/My(b, m) dp^lly S rn), l ) k 2 J1'1 ^ = 

^ mt'-W/Wib, m) <p(f(b, m), 1). 

By (3.1) this is a sharpened form of (3.3) in case m=2, and (3.3) itself in case m—3. 
Assume now as induction hypothesis that inequality (3.3) holds true for 

each nonnegative integer b and for each positive integer less than m, m s 4 , in the 
place of the second argument (we actually use that it is true for each positive integer 
not more than [mj2]). We will show that inequality (3.3) holds for m itself (and for 
arbitrary b). 

We begin with an elementary observation. If f(b,m)=0 for some b and m, 
then, by (1.1), f(b, k)=0 and, by (1.2), S(b,k) =0 a.e. for each k= 1,2, ...,m, 
too. Consequently, M(b,m)=0 a.e. and thus (3.3) is obviously satisfied. 

Henceforth we may and do assume that f(b, m)?±0. Then there exists an integer 
p, l S / i S m , such that 

(3.6) f ( b , p - l ) S j f ( b , m ) ^ f ( b , p ) , 

where we agree to set f(b, 0 ) = 0 on the left of (3.6) in case p= 1. It is also conve-
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nient to set S(b, 0)=M(b, 0)=0. Now (1.1) and (3.6) imply 

(3.7) f(b+p, m-p) f(b, m)-f(b, p) < j f ( b , m). 

We distinguish three cases according as p = 1, — and p=m. 
Case (i): Set 

ft = a n d 4x = { 

= [—=r~] a n d q* = { 

ft if P-- 1 is even, 
ft+1 if P-- 1 is odd; 

ft if m -P is even, 
ft+1 if m -P is odd. 

(3.8) |5(6, /с)| ^ 

Pi 

It is clear that fi+qi=p—l and p2+q2 = m—p. 
We are going to establish appropriate upper bounds for \S(b, /c)| under various 

values of к between 1 and m. It is easy to check that 

M ( b , p J for 1 

| S ( M i ) l + M(b + ? i , f t ) for q x * k * > p - 1 , 

\S(b,p)\+M(b + p,p2) for p^k^p+p2, 

.\S(b,p + q^)\ + M(b+p+q2,p2) for p + q2^k^m. 

Hence we can derive a suitable upper estimate for \S(b, /c)| when к runs from 1 till 
m, which is independent of the value of k. Consequently, it will be an upper estimate 
for M(b, m), as well: 

(3.9) M(b,m)^\S(b,qi)\ + \S(b + qi,p-qJ\ + \S(b + p,q2)\ + 

+ {AT 46 , ft)+ Mv(b + qlt ft)+ M?(b+ p, ft)+ М?(Ь+ p + q2, ft)}1". 

Applying Minkowski's inequality, we find that 

(3.10) { /МУ(Ъ, m)dfiY<y Ш { /15(6 , qj\> dp}1"+ { f \S(b + qu p-q^dn}^ + 

+ {f|5(b + ft qj\>dnyi> + { f Mi(b,pJdn+fM'{b + qltpddii + 

+ / M ' ( 6 + p, p2)dfi+f M*(b + p+q2, ft)<ty}1/y = A + B, 

where A denotes the sum of the first three terms and В denotes the fourth term on the 
right-hand side of (3.10). 

Due to (1.2) and the facts that 

+ l = and p-qi = p1+ + 1 = 
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we have that 

А Ш/Ч*{Ь, qj(p{f(b, qj, qi)+fll\b + qi,p-qjcp(f(b + q1,p-qd,p-qi) + 

+f1'\b + p, q2)cp(f(b + p, q2), q2) ^ 

^ <P [fib, m), [ у ] ) {Г'ЧЬ, qx)+flh(b + q„ Р-Ч,)+Г'ЧЬ + Р,Ч2)}. 

Using the elementary inequality (3.5) for m—3, by (1.1) we obtain 

(3.11) AS. 3 W / V ' i b , m) cp [ f i b , m), [ у ] ] . 

On the other hand, by the induction hypothesis, 

(3.12) ВУ y-l{fib, Pl) 0>(f(b, pO, Pl) + 

+f(b + qi,Pi) ф-'ifib + q^ Pl), pi)+f(b + p, p2) Фу{КЬ+р, p2), p2) + 

+fib + p + q2, p2) <Py(fib + p + q2, p2), p2)} = 3y~1iB1+B2 + Bs+Bi). 

First consider BX. Taking (3.6) into account, and that PI=P—1 and P^LM/2], 
it follows that 

BI s f i b , Pi) Фу(яь, P-1), P l ) s f i b , PJ ФУ [ у ] ) . 

Similarly, by (3.6) and (3.7) we have in turn 

в ^ п ь + Р + Ч 2 , р 2 ) Ф у [ Щ ^ - , [ ^ } \ 

To sum up; (3.12) and the estimates for B t just obtained yield 

(3.13) B* ^ 3У~1ФУ [f(b'2
m) , {fib, Pl)+fib + qi, Рд+fib+p, p2) + 

+fib + P + q„ p2)} ^ 3-V(b, m) фу [ f ]), 

the last inequality following by (1.1). 
Finally, putting (3.10), (3.11), and (3.13) together, we arrive at the inequality 

{fM4b, mWnY" Ш 3<-y~1)/yflly{b, m){cp[fib, m), + ["])}, 
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which is equivalent to (3.3) owing to (3.2). 
1 1 

Case (ii): p=1. Now fib, l ) > y f(b, m) and thus / ( 6 + 1, m-l)<y/(6, m). 

Setting 

[ m — 11 / p2 if m — 1 is even, 

— \ ^ , , = U + 1 if m - 1 is odd; 
we have, ^2=[m/2], Now instead of (3.9) we can estimate in a simpler way: 

(3.14) M{b,m)^\S(b,\)\ + \SQ>+\,q2)\ + {M?{b+\,p2) + My(b + q2+\,p2)Yly. 

The further reasonings are very similar, but somewhat shorter, to those in Case (i). 
We do not enter into details. 

1 
Case (iii): p=m. Now f(b, m —1)^— fib, m) and 

(3.15) M(b, m) ^ \S(b, q2)\ + \S(b + m-1, 1)| + {M*(6, p^) + My(b + q2,pj}1'*, 

where p2 and q2 are the same as in Case (ii). 
Thus inequality (1.3) has been completely proved. 

P r o o f of (1.4). Setting 
[logm] ( t f m i l 

$ ( t , m ) = Z o ^ ' B R J J 

we have, instead of (3.1) and (3.2), the following recurrence relations: 

$(t, 1) = <p(t, 1) ( ( S O ) and $(t,m) = <p(t,m) + $ [ j , [ y ] ) (¡S0,m52). 

Statement (1.4) turns into 

(3.16) f M*(6, m) dn j f ( b , m) *»(/(&, m), m). 

This is obvious for m — 1 even without the factor 5/2 on the right-hand side 
since M(b, l) = S(b, 1) for each b. In order to prove it for m=2 and for arbitrary b, 
we again use the trivial estimate 

M(b, 2)^\Zb+1\ + \Qb+2\, 

whence Minkowski's inequality and (1.2) provide that 

(3.17) { / M y ( b , 2)dpYh =flly(b, 1 )<p{f(b, 1), l)+jvr(b+l, \)q>{f(b + \, 1), 1). 

Making use of (1.1), we can conclude that either 

fib, 1) S 1 / ( 6 , 2 ) or / ( 6 + 1 , 1 ) ^ 1 / ( 6 , 2 ) . 
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Taking this and the monotonicity of q>(t, tri) into account, from (3.17) it follows that 

{/ МУ(Ъ, 2) d»Y>y 2) { ( p ( f ( b , 2), 1 ) + i ) } = 

= flh(b, 2) Ф(/(Ь, 2), 1), 
which is a sharpened form of (3.16) for m=2. 

The induction step is quite similar to that in the proof of (1.3), with the excep-
tion that this time one can start, instead of (3.9), from the following inequality, too: 

(3.18) M(b, m) á {IS(b, + p)|* + |S(b, p + q2)\y}1/y + 
+ {МУ(Ь, Pl) + My(b + qi,Pl) + My(b + p,p2) + My(b + p + q2, p2)f'y 

(and analogous inequalities also instead of (3.14) and (3.15)). If one begins the cal-
culations with (3.18), then one can avoid using inequality (3.5), as a result of which 
one gets the smaller factor 5/2. Indeed, now 

{/ МУ(Ь, m) äß}1'? ё Ä+B, 
where 

Ä = {/1S(b, / 1 S ( b , p)Vdp+ f IS(b, p+q2)\ydpyiy 

and В is the same as in (3.10). Due to (1.2), the monotonicity of (p(t, m) and (3.6), 
one can easily deduce: 

Ä S { / (b , qj <py{f(b, gi), qi)+f(b, p) q>y{f(b, p), p) + 

+ nb,p + q2)cp(f(b,p + q2),p + q2)Y'y S <p{f(b, m),m){f(b, q,)+f{b, p) + 

+f(b, P+q2)}1'y ^ ( y ) y f l h ( b , m) q>(f(b, m), m). 

The further reasoning runs along the same line as in the proof of (1.3). 
Thus our Theorem has been completely proved. 
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On the a.e. convergence of multiple orthogonal series. I 
(Square and spherical partial sums) 

F. MÓRICZ 

1. Notations. Let Zd be the set of ¿-tuples fc=(/^, ..., kd) with nonnegative 
integral coordinates. Let cp = {<pk(x): k£Zd) be an orthonormal system (in ab-
breviation: ONS) on the unit cube x = ( x l 5 ..., xd)£Id, where /= [0 , 1]. Consider 
the ¿/-multiple orthogonal series 

(1) 2 ak<pk(x) = 2 ... 2 akt ka(xi, -,xd), 

k£ Z*> T1 = 0 kd = 0 

where a={ak: k£Zd) is a system of coefficients, for which 

(2) 

Fixing a sequence Q={Qr' r—0, 1, ...} of finite sets in Zd with properties 

ö o c ö x c e . c . . . and Q ö r = Z d , 
r = 0 

our main goal is to study the convergence behaviour of the sums 

(3) sr(x) = 2 ak(Pk(x) (r = 0, 1, ...), 
which can be regarded as a certain kind of partial sums of series (1). The case 

Ql = {k€Zd: max k, r} 
1 I S j S d 1 ' 
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provides the square partial sums ^ (x ) , while 

1/2 

provides the spherical partial sums ^ ( x ) of (1). 

2. A.e. convergence of {sr(x): r = 0, 1, ...}. Denote by M(d, Q) the class of 
those systems a = {ak: k£Zd} of coefficients for which the sequence {jr(x)} defined 
by (3) converges a.e. for every ONS <p = {<pk(x) : k£Zd} on Id. The set of measure 
zero of the divergence points may vary with each cp. 

One can easily see that if a Ç. M(d, Q), then (2) is necessarily satisfied. This follows 
from the obvious fact that the ¿/-multiple Rademacher system 

consists of stochastically independent functions and thus, for every choice of the 
sequence Q = {Qr: r=0,1, ...} of finite sets in Zd, the sequence {¿r(X)} defined 
by (3) for (p = {/*(*)} converges a.e. or diverges a.e. according as (2) is satisfied or not. 

For a given system a= {ak: k£Zd} of coefficients we set 

where the supremum is taken over all ONS <p = {(pk(x): k£Zd} on ld and dx = 
=dx1...dxi, further, 

This limit exists since J ( a - , d , Q , g ) is nondecreasing in Q. 

T h e o r e m 1. (i) a£M(d,Q) if and only if ||a; d, Q\\ < 
(ii) M(d, Q) endowed with the norm || • \d, Q\\ is a separable Banach space. 

This theorem is essentially a reformulation of an earlier result of TANDORI [11]. 
To this effect, let \]/ = {ij/ki(x1): k=0,1, ...} be a single ONS on 1. Consider 

the ordinary orthogonal series 

and 

; d, Q, g) = sup |s,(x)|)2 dx, 

(4) 2 
where c={c k : ^ = 0 , 1, ...} is a sequence of coefficients for which 

(5) 2 C Î ^ o o . 



79 F. Móricz: Convergence of multiple orthogonal series. I 

Fixing a sequence v = {vr: r=0, 1 , . . .} of integers with the property 0 ^ v 0< v ^ 
< v 2 < . . . , denote by M(v) the class of those sequences c={ck } for which the 
vrth partial sums of series (4) converge a.e. for every ONS /̂ — {il'ki(x1)} on I. 

For a given sequence c = { c t } of coefficients we set 

(6) ./"(c; v, g) = sup / max Лmax 
osrme 

2 dx-L, 

where the supremum is taken over all ONS \jj = {<A* (*i)} on I, and 

||c; v|| = lim v, g) Q CO 

It is not hard to see that 
A r Ï2 

dxlf 2 Cmi y/
mi(x1) 

m , = 0 

J(c; v, g) — sup f max y (osrse 
where 

V1 /8 

(m = 0, 1, . . . ; v_ j = — 1) 

and the supremum is taken over all ONS {f /
m i(x1)} on I. 

After these preliminaries the above-mentioned theorem of Tandori reads as 
follows. 

T h e o r e m A [11, Satz II]. (i) cCM(v) if and only if\\c; v | |<°°; 
(ii) M(v) endowed with the norm || • ; v|| is a separable Banach space. 

Now, it is a trivial observation that Theorem A remains valid if instead of the 
single ONS </' = {i/'Ji1(x1): / ^ = 0 , 1, ...} on I we consider the ¿/-multiple ONS q> — 
= {(pk(x): kez"} on Id and take the integrals over ld instead o f / i n (6). In fact, the 
sufficiency part in (i) is true over any measure space X (instead of X=I or Id), 
while the necessity part in (i) can be shown by the following simple observation: 
let vr— |g r | , the number of the lattice points of Zd contained in the set Qr, and let 
<¡9*0*!, ..., xd) = \j/mi(x1), where the mapping k=k(m1) is one-to-one for each pair 
v r - 1 ^ m 1 S v r and A : € 2 , \ 0 , _ i (/"=0, 1, ...; v _ x = — 1 and Q-1=0). Consequently, 
Theorem 1 is really a reformulation of Theorem A. 

In the light of what has been said above, the result of [11, Satz III] can be re-
formulated as follows. 

T h e o r e m 2. If two systems a={ak: k£Zd} and b= {bk: k£Zd} of coefficients 
are such that 

Br = { 2 H}1/2^{ 2 al}1" = Ar (r= 0 ,1 , . . . ) , 
k£Qr\Qr-1 kiQr\Qr_1 



80 F. Móricz 

then 

||b; d,Q\\^\\a;d, Q\\; 

consequently, if a£M(d, Q) then b£M(d, Q). 
It is of interest to give an upper estimate for the norm || • ; d, 211 which turns out 

to be exact in certain cases. 

T h e o r e m 3. In each case we have 

(7) 11«; d, Q\\ ^ C, { i ( 2 log2(r + 2)} ' , 

and in the special case when 

Ar = { 2 2 al}1/2 = Ar+1 (r = 0 , 1 , . . . ) 
*€Gr\Qr-1 ki<2r+1\Qr 

an inequality opposite to (7) holds also true: 
f - 11/2 

l |a;d,fil l S C2 2 ( 2 ^ ) l o g 2 ( r + 2 ) . 
tr=o k€Qr\Q,-i ' 

Here Cj and C2 are positive constants depending only on d. 

To prove Theorem 3 one has to start with the results of [7, Theorems 1 and 2] 
and to argue in a similar manner as it is done during the proof of [11, Satz VII], 

We note that in the cases of the square and the spherical partial sums the right-
hand sides in inequality (7) coincide, up to a constant: 

Ha; d, Q% ^ C,{ 2 »1WW +2)}1 '2 (i = 1, 2). 

In spite of this fact, the norms ||a; d, Q1\\ and ||a; d, Q2\\ are not equivalent to 
each other in case d ^ 2 . 

T h e o r e m 4. If d^2, then there exists a system a={ak:k£Zd} of coefficients 
for which 

||o; d,Q*\\ < - and ||a; d, Q*\\ = 

and vice versa, there exists a system a={ak: k^Zd) of coefficients for which 

lla; rf.e1!! = - and ||a; d,Q*\\ < «,. 

This is an easy consequence of Theorem 1 and [7, Theorem 3]. 
We note that the result stated in [7, Theorem 3] can be strengthened in the fol-

lowing way: 

Let T be a regular method of summation (see. e.g., [14, p. 74]). Then there exists 
a double orthogonal series (1) such that (2) is satisfied, its square partial sums converge 
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a.e., but its spherical partial sums are not summable by the method T a.e. on 12; and 
vice versa. 

In the proof of the latter assertion one has to use a result of [4, p. 183]: 

For every regular method T of summation there exists a strictly increasing sequence 
{jur: r=0,1, ...} of positive integers such that the a.e. T-summability of series (4) 
under condition (5) involves the a.e. convergence of the firth partial sums of (4). 

Keeping in mind the proof of [7, Theorem 3] one's task is essentially reduced 
to the construction of a single orthogonal series (4) with condition (5), the /irth 
partial sums of which diverge a.e., while the /i2rth partial sums of Which converge 
a.e. on I. This construction can be certainly done if the ratio nr+1lfir is large enough 
( r=0 ,1 , ...), and the last condition may be assumed without loss of generality. 

3. A.e. (C, 3 > 0)-summability of the spherical partial sums. Up to this point we 
studied the convergence properties of series (1) in the setting when a={ak: k£Zd} 
is a fixed system of coefficients, while (p — {(pk(x): k£Zd} runs over all the ONS on 
Id. From now on we consider an individual ONS (p = {<pk} on Id with some nice 
properties and let a={a k [ run over all the systems of coefficients satisfying condi-
tion (2). 

To this aim, we assume that cp = (<pfc(x): k£Zd} is a product ONS on Id in 
the sense that there exists a single ONS ilf={i/fk (x1):kl=0, 1, . . .} on / such that 

furthermore, we assume that the system = (J^)} is such that for every se-
quence c={ck ik^0,1,...} of coefficients we have 

where C is a positive constant. Inequality (9) implies, among others, that series (4) 
converges a.e. under condition (5). The fact that inequality (9) is satisfied for the ordi-
nary trigonometric system \l/ = {l,cos2nk1x1,sin2nk1x1: kx=l,2, ...} is due to 
HUNT [ 3 ] , while for the Walsh system ij/= k1=0, 1 , . . . } is due to SJOLIN [8]. 

It is not hard to conclude from (9) the following upper estimate for the maxi-
mum of the square partial sums of series (1): 

This means that the square partial sums s*(x) converge a.e. on I d provided (2) is 
satisfied. (For more details, see [12] and [6].) 

d 
(8) <pk(x) = JJ ^kj(Xj), k = (klt ...,kd) and x = (xly ..., xd); 

(Q = 0, 1, ...), 

/ ( m a x | s K * ) | ) 2 d x S 2DCD Z « I (<? = 0 . 1. •••)• •! v03rse KO. 

6 
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The question of a.e. convergence of the spherical partial sums ^ ( x ) of series (1) 
under condition (2) seems to us to be an open problem for As to the mul-
tiple trigonometric system, we cite here two papers by Russian mathematicians. On 
the one hand, TEVZADZE [13] published in 1 9 7 3 that he managed to prove that the 
spherical partial sums of the double Fourier expansion of a function / , x2) f rom 
LP(I2) with /?> 1 converge a.e. on 72, but the proof turned out to be false even in 
case p=2. On the other hand, BUADZE [2] announced in 1 9 7 6 the existence of a 
continuous func t ion / (*! , x2) on I2 such that the spherical partial sums of the double 
Fourier expansion of f(x1,x2) diverge everywhere, but the construction has not yet 
appeared. 

We are unable to decide this question. However, we can prove the a.e. (C, <5 >0)-
summability of the spherical partial sums s2

r(x) of series (1) under the only conditions 
that (p = {(pk(x)} is an ONS with properties (8) and (9), and a = {ak} is a system of 
coefficients satisfying (2). To this end, we recall that the (C, <5)-means in ques-
tion are defined as follows: 

•Ag r = 0 

1 « 
= 2 ak<Pk(x)), 

r = 0 r-lcllilsr 

where 

¿S = ( e + 5 ) ( e = 0 , 1, . . . ; < 5 > 0 ) . 
* Q ' 

For a positive integer <5 one can consider the following modified (C, <5)-means, too: 

5 e 2 Ai-ik\ak<pk(x), 
Ae Itlse 

in particular, for <5 = 1, 

| t | s e v 0 + 1 / 

Unfortunately, we can prove the statement that 

— 0 as Q — oo a.e. on / 

only in case 5 = 1 . In fact, writing 

= 2( 2 (r-\k\)ak<pk{x)), 
0 + J r = 0 r-lc|t|sr 

by virtue of the Kronecker lemma (see, e.g. [1, p. 72]) it is enough to show that the 
single orthogonal series 

¿TTT( 2 (r-\k\)akVk(x)) 
r = O r + i r-l<|*|Sr 
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converges a.e. on Id. But by the well-known Rademacher—Mensov theorem this is 
the case provided (2) is satisfied. 

After these preliminaries we state the following 

T h e o r e m 5. Assume that q> = {<pk(x)} is a product ONS on Id given by (8) and 
satisfying condition (9), a={ak} is a system of coefficients satisfying (2), and 8 is 
a positive number. Then the spherical partial sums s2

r(x) of series (1) are (C, S)-sum-
mable a.e. on Id. 

Taking into account of what has been said above on the trigonometric and 
Walsh systems, hence it follows immediately the following 

C o r o l l a r y . If (p = {(pk(x)} is the d-multiple trigonometric or Walsh system, 
then the spherical partial sums s2(x) of series (1) are (C, 5 >0)-summable a.e. on Id 

provided (2) is satisfied. 

R e m a r k s , (a) In the case when <p is the ¿/-multiple trigonometric system, 
STEIN [9] proved that the Bochner—Riesz means aa

Q(x) of series (1) defined by 

¿ i t o = 2 f i - ^ i - 1 (<?. 3^0) , 
Itl-ce^ 8 > 

converge to f ( x ) a.e. on ld provided series (1) is the ¿/-multiple Fourier expansion of 
a f u n c t i o n f ( x ) £ L " ( I d ) , where 

3 > d - T - { J - 1 ) a n d 

In particular, under condition (2) the means os
e(x) converge a.e. on ld again for 

every <5 >0. 
(b) As to the multiple Haar system, KEMHADZE [5] proved that the spherical 

partial sums of the expansion of a function f(x) with respect to the ¿/-multiple Haar 
system converge a.e. on Id provided / (x)££( Iog + L)d~l{Id). 

P r o o f of T h e o r e m 5. Our starting point is that under the conditions of 
the theorem the square partial sums sj(x) of series (1) converge a.e. on l d . We assume 
that d^2, since in case d= 1 we have ( r = 0 , 1 , ...). 

We will show that the subsequence {.^„.(x): m=0 , 1, ...} of the spherical par-
tial sums of (1) also converges a.e. on Id . This is an immediate consequence of 
Beppo Levi's theorem since 

2 I {sUx)-sUx))2dx = 2 ( 2 a f ) ^ 2 fll 

Here we took into account that {Ql^Q^m: m=0,1, ...} is a disjoint sequence of 

6• 



84 F. Móricz 

sets. In fact, if for a certain m^ 1, then ^max^kj=dm and hence 

=S d1'2 max k: == dm+1'2, 
l s j s d 1 

i.e., for nSm + 1. On the other hand, 

max k: s d-1*\k\ > dm~1/2, lSJSd 1 

whence k$Q\J\Q\n follows for n^m—1. We note that we should have taken the 
"thicker" subsequence {j^m/sjix)} too, where [•] means the integral part. 

In order to make the proof complete, we apply a result of TANDORI [10] in a 
somewhat more general setting as stated originally and add some supplements. To 
this effect, let v = {vr: r=0, 1, . . .} be, as earlier, a sequence of integers, O s v 0 < 

..., and consider the vrth partial sums 

*vrOi) = 2 

of the orthogonal series (4) under condition (5). Now we form the (C, <5=-0)-means 
<Tp(v; Xj) of the subsequence {sv (Xj)}: 

(10) <Ta
c(v; x0 = 2 As

ez]SVr(xa) -
A n r = 0 

= 1 c M x j ) 

Ag ,=0 V t ^ v ^ . j + l / 

(<? = 0 , 1, ...; = - 1 ) . 
Then the above-mentioned theorem of Tandori can be stated in a more general 

form as follows. 
T h e o r e m B ([10, Hilfssatz I]). Let v={v r} be a strictly increasing sequence 

of nonnegative integers, and let ¿ > 0 and q> 1. Then, under condition (5), we have 

W \ m j (*i)-<V»](v; — 0 as m -•=>, and 

(ii) max ((Ti(v; x j - f f 1 (v; x j ) - 0 as m 

t9 J -«= r (9 J w • 

a.e. on I. 
This theorem is proved in [10] for the special case q=2, but the proof can be 

executed, without essential changes, for general too. 
Now, using the reasonings made in [4, pp. 186—187] for the special case vr=r, 

one can supplement (i)—(ii) as follows. 
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T h e o r e m C. Let v = {vr} be a strictly increasing sequence of nonnegative 
integers and let ¿>1/2. Then, under condition (5), we have 

(iii) - j ~ r 2 xj-a? (y; x j y - 0 as q 
Q+ i r= o 

a.e. on I. Consequently, if 

*i) -/(*i) as r <*= 
a.e. on I, then 

T ^ T 2 ( f fr _ 1(v; X l ) - f i x j y ^ 0 as e - ~ 
a.e. on I. 

Finally, we insert an elementary lemma which can be found e.g. in [4, p. 189]: 

(iv) If 5 > - 1 / 2 and 

-j-¿(<x?-s)2-0 as e — 
e + i r=o 

where the as
r are the (C, 8)-means of a numerical series, then, for every £>0, we have 

a3+1/2+. a s r ^ 0 o . 

Combining (i)—(iv) in such a manner as it is done in [4, pp. 189—190] for the 
case vr=r, one can conclude the following statement: 

Under condition (5), the a.e. convergence of the subsequence {sv^mj(xj): m = 
=0, 1, ...} of the partial sums of the orthogonal series (4) is equivalent to the a.e. 
convergence of the means x±): Q=0, 1, ...} defined by (10), where <5>0 and 
<7> 1 are fixed numbers. 

On closing, one more remark: the latter statement clearly holds true if the in-
terval I of orthogonality is replaced by any measure space X, in particular, by X=Id. 

This completes the proof of Theorem 5. 
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Upper estimates for the eigenfunctions of the Schrodinger operator 

i. JO6 

For a series of questions concerning spectral theory of non-selfadjoint differen-
tial operators we need some estimates for the eigenfunctions. 

In the present note we shall generalize the former results of IL'IN and Joo [3], 
[4], [5]. 

Let (a, b) be a finite interval and consider the formal differential operator 

ly=~y"+qy 

with the complex potential qdL^ia, b). A function having absolutely continuous 
derivative on every closed subinterval of (a, b) is said to be an eigenfunction of order 
i of the operator / with the complex eigenvalue X if there exist functions uk 

(k—1,2, . . . , /—1) with the same properties such that the equations 

(1) luk(x) = Aut0c) + uk_1(x) (fc = 0, 1, 2, . . . , i) 

hold for almost all x£(a,b), with m_x=0. 
We prove the following 

T h e o r e m . Every eigenfunction ul of order i for the eigenvalue X of the operator 
I has absolutely continuous derivatives on the closed interval [a, b]. Furthermore, setting 
for convenience X = n2 with O^a rg the following estimates hold: 

(2) K - i l L S Q O + M X l + I m ^ K I U , 
i 

( 3 ) K I U S Ck(l+lmny\\uk\\p ( 1 ^ P S » ) , 

(4) M ~ ^ C f c ( l + | / ; | ) |K |L 

for k = 0, 1 , . . . , / ; the constants Ck=Ck(b—a,\\q\\1) do not depend on X. 

R e m a r k . The estimates (2), (3), (4) strengthen and generalize the correspond-
ing results of IL'IN [3] for the case of the Schrodinger operator with q^C^a, b]. 
Our theorem was formulated in [5] and its proof is based only on the use of mean-

Received August 25,1981. 
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value formulas, an essentially new idea, which is necessary if the potential q is not 
smooth. For fixed k, a, b and q the order of the estimates (2), (3), (4) in X cannot be 
improved. (This will be established in a forthcoming paper [6]). Indeed, for numerous 
applications this is the most important aspect. 

For the proof of the Theorem we need the following extensions of Titchmarsh 
classical formulae [2, p. 26]. 

Lemma. We have 
(5) uk(x—t) + uk(x+t) = 2uk(x) cos fit + 

+ / W K ( Q - « > - i ( 0 ] ^ if 
X-t A4 

uk(.x-t)+uk(x+t) = 2 uk(x) + 

+ f if /¿ = 0; 
x-t x + t 

(6) • uk.x(x)t sin fit = J uk.x(0 s i n n ( t - \ x d Z -
x-t 

- / W ) " * - / s i n m t - t j ) d t i d £ if 0, 
X-t I x - i l Z1 

x—t 

- 7 - « * - . « ) ] / ( f M * - £ l ) ( ' - » i ) « M S if H = 0. 
x-t | x - { | 

Proof . (Only for fi^O; the case n=Q is similar.) We can write by (1) 

s i n f i ( / - | * - £ l ) 
f [g(0»«»(0-«»-i(0] = 
-t A» 

J 11 x-t 
integrating by parts, we obtain (5). 

On the other hand, in view of (5), 
x + t t 
f u^iO sin fi(t-\x-Z\)dS = f [ u ^ O t - r i ) + uk-1(x+ri)] s i n n ( t - r i ) dtj = 

x-t 0 
t 

= J 2wfc_1(x)cos/if/sin/i(i—rj)dr\ + 
o 

+ f J ' l m u ^ i O - u ^ i O ] dt sin fi(t t f ) dn; 
0 X-i r 

applying the Fubini theorem, a short computation gives (6). 
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We shall also need the following elementary inequalities: 

(7) |sin z|, |cos z| < 2; |sin z\ < 2\z\ whenever |Im z| S 1; 

(8) |sinz| > y \z\ if | z | s = 2 ; 

(9) sup | s i n a z | > ^ - whenever | I m z | s l and \z\ s 2. 
l/2<a<l 3 

P r o o f of t h e T h e o r e m . It is well known [1] that uk,uk£L°°(a,b) and 
u^L^a, b). Next we show the auxiliary estimate 

(10) 10 [ a max f l |M 4 |+«min(25 , - j^) | | «»_ 1 |U for 0 5 S R, 

where = ^ , j. Indeed, for each | a , j and 

0 S S ^ S R we obtain from (5) and (7) 

(11) |u t(x)| | u f c (x+25) |+4 |u , (x+5) |+25 |k | | J u f c |U + 25min(2«5 ,^ - ) | | u ,_ 1 |L . 

An analogous estimate holds for x£ — ^ — a n d hence 

II"til- S 5 [ a m a x f l | « 4 | + y | | u A | U + 2 ^ m i n ( 2 ^ ^ j - ] | | u A _ 1 | U . 

Now we prove (2) by induction on k. The case k=0 is trivial (we set C 0 = l ) . 
Suppose (2) holds with A:—1 in place of k and consider the eigenfunction uk. Com-

x+t 

paring the expressions for the term J sin fi{t—\x—^\)d^ in (5) and (6), 
x—t 

respectively, and using (7) we obtain 

+2,5* min (2, 25 | ^ | ) | | u t _ 1 | U + 2 ^ min , 48* |/i|)||w*_2|U 

for all x€[a+b,b-8] and 0 t h u s (taking into account that 28\\q\\1^\) 

r m a
t
x J ^ - i l " 5 ! 8 " 1 « ^ ! - 7MB«.B- + 

[a + o, b — 5] 

+ 2 5 m i n ( l , % | ) | | M f c _ 1 | U + 8 5 2 m i n ( ^ | , 5 2 
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Applying (10) for uk_1 instead of uk and expressing hence max J we get 
[fl+0. b—¿J 

{ll - ill» • -¿j- - 3 min (5, II ut _ ,11 „ } <5 |sin S 

Using the induction hypothesis (i.e. | | « l i _ 2 | L s Q _ 1 ( l + |/x|) (1 + I m Ht^- i lL) 

32 f sin dpi T 1 C ^ O + M K i ± i 5 W 0 m : n n « ,„ ,0 
( 1 2 ) T l ~~dfT Llo"~~ M m m ( l , i N ) j -

Set Sk = min [960C4_x(1 + I m n) ( l , [480[|^»J" 

To examine (12), we distinguish two cases: a) 5 k \ n \ s2 , b) <5*|//|>2. 
b-a 

Case a). In view of (8) and the fact ¿(1 + |/i|)S<5 + 1 ^ H — - — , an applica-

nt tion of (12) to 5 = — yields 

M M 11 1 M 
7 13 L10 40J 120 120 J I1""-111" -

- S ^ Q . ^ l + l / i D l + I m ^ J l l u ^ J U ^ I I ^ I U . 

Thus, from the definition of 8 we obtain 

K - i l l - , . 28-120 (13) 
l|ukIU ok 

Case b). According to (9) we may choose 1 j s u c h that Isin ot8kn\ . 

Thus by setting 8=<x8k in (12) we have 

<52 f 1/30 ¿ ( l + l/i|)(l + ImM) ^ 1/3 4 
<5|/4 l/il M 

8 Cfc-iQ + M)! 
\n\ \n\ 
8 
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Observe that 
l + |u| , 1 , Sk , b-a 

= 1 + T - T = 1 = 1 + -
\fi\ M ~~ 2 ~ 4 • 

Therefore 

8 1/7 „ „ <5 f 1 3 T . ( , b—a 1 

-451|q|| 1 -85Ck-! (1 + (1 + Im/i)}||_ J . S ||«»IU, i.e. Hut-ilU _ 7-120|m'| _ 14-120M 
11«J- ~ 6 - Sk 

Summing up (13) and (14), and taking into account the definition of 5k, estimate 
(2) follows with 

Ck = 28-120 + l + [ 9 6 0 ( l + - ^ - ) Q _ 1 ] + [480||<7||1]-1}. 

We prove (3) from (2). Integrating (11) by 8 from 0 to 8k+1 we have for x€ 
a + b I 

€ h — I 

5k+l\uk(x)\ =S  kf1\uk(x + 28)\d8 + 4  kf+1\uk(x+8)\d8 + 
0 0 

(4 2<52 

j83
k+1, l|"*-ill~. 

Applying Holder's inequality and (2) it follows 

5 k + 1 M x ) | ^ 5 5 j U i / * M P + 5 f + 1 M l 1 I K I L + 

+ m i n ( y 5 E + 1 , ^ p ) Q ( l + | /z | )( l+Im/z) | |u t |U, 

whence (by considering the cases and \fi| > 1 separately) 

|«t(*)| =§ 55k-+
1//l|wkllP+5*+illillil|wt|U+45k+1Q(l+Im/i)||Mt|U. 

An analogous inequality holds for | — i — , fcj, and therefore 

- ||mJ. ^ 554-+Vipll«*llp+5*+ill?llill«»ll- + «*+iCJt(l+ImAt)||«J-, 

ll" fcIU ^ KMr+Vll^ l lp ^ Q ( 1 + Im / . ) 1 / " | | uJ p . 
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We turn to the proof of (4). In case of x, x+t£(a, b) we have 

„ , , x ' x sin ut 
(15) uk(x+t) = uk(x) cos fit+uk(x) — + 

x + t sin n(x+t-Z) 
if n * 0, 

uk{x+t) = uk(x) + u'k(x) •/ + 
x + t 

+ / [<?(£) if Ai = 0 

((15) can be verified in a similar way as (5)). For each x(;ja, 

we obtain from (7) and (15) 

a + b 
and t=5 . k+1 

l«i(*)l 
sin fit 

and therefore, applying (2) we get 

K W I F ^ ^ (3 + 25 k + 1 | | ? | | 1 ) | |«J e .+ 

+ <5)t+i min \ l 8 k + 1 , - j l ) Q ( 1 + | /z | )( l+Im n ) [ | u J . . 

A similar estimate holds for — — , i j . Hence by considering the cases H ^ l 

and | / t |> l separately we conclude 

KIU 
sin /it 

If ^fc+ibl—2 then we get by (8) 

1 
j \ K \ \ 3- ¿¿•+

1i(3+25 t+1 | |^||1)||t/,IU + 4 Q ( l + I m / i ) | | M j 0 0 ^ 5 C J « J „ , 

and if Sk+1\ix\>~2 then we have by (9) for t=ccdk+1 instead of t=8k+1 , l j j 

1 II «ill = 
3 \fi\ 

i.e. 

The theorem is proved. 

5 | M „ + 4 5 t + 1 C * ( l + I m / i ) K | L , 

| | u i l U ^ 16(1 + M ) K I U . 
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An important special case of (3) is 

(16) 

The author is indebted to Dr. V. Komornik and Dr. L. L. Stacho for their val-
uable remarks during the preparation of this paper. 
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Lower estimates for the eigenfunctions of the Schrodinger operator 
V. KOMORNIK 

Let G=(a,b) be a bounded interval, qdL1(G) a complex function and con-
sider the formal differential operator 

A function «¡: G—C, « ¡ ^ 0 ( /=0, 1, ...) is said to be an eigenfunction of order / 
(of the operator L) with the eigenvalue X £ C, if it is absolutely continuous together 
with its derivative on every compact subinterval of G, and for almost all x£G the 
equation 

holds, where m.- .^O for / = 0 and «¡_! is an eigenfunction of order /— 1, with the 
eigenvalue k, for / s i . 

It is known (see [1], pp. 167—169) that in this case ut, together with its deriva-
tive, can be continuously extended to the closed interval [a, b], and the extended 
functions are absolutely continuous on the whole interval [a, b]. Hence «¡£.£/((5) 
for all 1 S p ^ For the sake of brevity, we shall use the notation || • ||p instead of 

The aim of the present paper is to prove the following. 

T h e o r e m . Let G— (a, b) be a bounded interval and q£L1(G) a complex func-
tion. Then, for an arbitrary eigenfunction ui of order ;S0 with the eigenvalue k, and 

for any the following estimates hold: 

Lu =-u"+q-u. 

(1) 

(2) 

(3) C 2 . (1 + | l m YXIY"-1"- s M i - s C, • (1 + |lm YX |): |l/P-l/4 
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where the positive constants Cx, C2, C3 depend on i, b—a, |]^||x, but do not depend on X, 
p and q: Cj=CJ(i,b-a,\\q\\1),j=l,2,3. 

R e m a r k . The estimate 

(4) M = - ^ C4(i, b-a, \\q\\J -(I + |Im fX\ f " 

is also true; this was proved by I. Joo [5]. Thus our result is exact from the view 
point of dependence on X. 

In the proof of the theorem we shall use the following result of [5]: If ut is an 
arbitrary eigenfunction of order ¡ > 1 with the eigenvalue X and 
then 
(5) llMi-ill ~ ^ C , ( 0 • (1 + \fX |) • (1 + | l m fX |) • | M U , 

where the constant C0(i)=C()(i,b—a,\\q\\1) does not depend on X. 
We recall the formula of E . C . TITCHMARSH [ 2 ] , having been extended for eigen-

functions of higher order in [5]: for any x—t, x+tdG and /€{0,1, ...}, 

(6) « ¡ ( X + O + U . - C K - O = 2 - « ¡ ( x ) . cos ( f X t ) + 

x-i V x 
if X^O. 

We mention also the simple inequalities: 

(7) e x p ( | I m z | ) - l == |2-cosz| , |2-sinz| ^ exp(|Imz|) + 1 (z6C). 

The proof of the theorem will be based on the following 
P r o p o s i t i o n . Let wf be an arbitrary eigenfunction of order /£ 0 with the eigen-

value X. Then, setting for brevity v=Im and fc(x)=min (|x—a\, jjc—b\), 
we have 

(8) (m, = ) m w |«i,(*)l -(1 + M •^> 6W)- i-exp( |v |-d a < b(x)) ̂  M H N U 

where the constant M—M^b—a, ||g||i) does not depend on X. 
Proo f . We work by induction on i. For i = — 1 (8) is formally true with 

M_!=0(m_!=0) . Let now /SO be arbitrary and suppose (8) is true for / — 1. In 
case | / I | ^ l + 2 i ' | | ^ | | 1 we obviously have 

(9) m, ^ exp ((1 +2' • UqUJ • ( b - a ) ) • | |« ( | | . . 

Consider now the case \fk\ >1 +2' • Ĥ  111 - Denote yd[a, b] such a point where the 
maximum on the left side of (8) is attained. Then 

T10) miHu.GOKl + M-O-'-wpavIO (t = da>b(y)). 
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By properties (10), (7), (6), (5) and the inductive hypothesis we can write the following 
chain of inequalities: 

"»«•(I + M O ' - I N I - 3 m . - C i + l v l O ' - I ^ O O l = k O O K e x p ( M O - i ) ^ 

y+t 

y-t 

sin ]/ X{t — \y — t;\) 
-«i-i(o) j / j dt ^ 2 . | | « i | U + - M ^ r . max |m,(OI • 

^ 2 • ||wi||oo + 2 _ i _ 1 • (m ; • (1 + 2 • |v| O ' + I M U j + p j • ( m i _ 1 ( l + 2 • |v| O ' - ' + l l « , - ! « « ) S 

^ { • i N i ~ + y « I • (1 + ivi r > ' + p | " 0 • ( 1 + 2 - | v | • c ° ( 0 • t 1 + 1 ^ 1 ) • 

• (1 + |v|) • ||m¡11 „ | • ||m,|U + y mr( 1 + | v | O ' + ^ j l p L ( 1 •+ • (1 + 2 • M O ' - 1 • 

• C o ( 0 • ( F + | v | 0 • ||M;|U + l y l 0 ' + I M - • 

• ( | + 2f • (1 + M i _ 1 ) • C0(i) • (1 +b-a) • (1 + |v| 0 ' ) • 

Hence 
(11) m I . ^ ( 7 + 2 i + 1 . ( l + M 1 . _ 1 ) . C o ( 0 - ( l + b - a ) ) . | | « i I U . 

It follows from (9) and (11) that (8) is true for i if we put 

Mi = max (exp ((1 + 2 ; • Iklli) • (b-a)), 7 + 2 i + l . ( 1 + Mi.1) • C0(i) • (1 + b-a)). 

The proposition is proved. 

C o r o l l a r y . For any 0 < a < 1 there exists a constant M ¿(a) —M ¿{a, b—a, ||</||i) 
independent of X such that 

(12) max: M x ) | e x p ( a - | v | - d a i b ( x ) ) S M,{a) • M » . 
• fc la, oj 

Let us turn to the proof of the theorem. Choosing for instance A—1/2, we have 
by (12) for all x£G: 

l«i(*)l s M,(l l2) • I N L • exp ( - y • |v| • da>fc(*)). 
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Taking the LP(G) norm of both sides, we obtain for 

II«,«, si M,(l/2) • HuJ«, •4 1 / p -p _ 1 / p - |v |_ 1 / p S 

^ 4 • M,.(l/2) • ||«¡|U • M " 1 " S 8 • Mj(l/2) • ||«¡11«, • (1 + M)-1 ' " , 

IIи.-ll~ ^ (8 • M t ( 1 / 2 ) ) " 1 • ||и;||„ • (1 + M ) 1 " . 

On the other hand, in the case | v |< l we have obviously 

M , (b-аУ". | | U j |U ^ (1 +b-a) • | |« , |U ^ 2 - ( I +b-a) • I N I - • ( ! + | v | ) - J " , 

and (13) and (14) yield the estimate (2) with 

Q 0 , b - a, II <71| d = mm ((8 • M, (1/2)) , (2 • (1 + b - a)) 

The estimates (3) are easy consequences of (2) and (4). The theorem is proved. 
The author is grateful to I. Joo for stimulating discussions. 
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A projection principle concerning biholomorphic automorphisms 

L. L. STACHÖ 

1. Introduction 

Let E denote a Banach space and D be a bounded domain in E. A mapping F 
of D onto itself is called a biholomorphic automorphism of D if the Frechet deriva-
tive of F exists at each point x£D and is a bounded invertible linear ¿'-operator. 
Our basic motivation in this article is the problem of describing Aut B(E) the group 
of all biholomorphic automorphisms of the unit ball B(E) of E. By recent results 
of W . KAUP [7] and J.-P. VIGUE [18], this problem stands in a close relationship with 
that of the classification of symmetric complex Banach manifolds which is solved 
since a long time in the finite dimensional case [2] but fairly not settled for infinite 
dimensions. 

In 1979, E. VESENTINI [16] has shown that the unit ball of a nontrivial Z.1-space 
admits only linear biholomorphic automorphisms. His proof goes back to investi-
gations on Aut-invariant distances and a classical two dimensional result of M. 
KRITIKOS [9]. Using a characterization of polynomial vector fields tangent to dB(E) 
(the boundary of B(E)) we found [11] an essentially two dimensional argument that 
enabled us to establish the sufficent and necessary condition for an Lp-space to have 
only linear unit ball automorphisms (for different approaches cf. also [1], [16]). 

The purpose of Section 2 the general abstract part of this work is to clear up the 
deeper geometric background and connections of the seemingly different methods 
in treating Lp-spaces that occur in [16] and [11], respectively. Our main theorem pro-
vides a sufficent condition in terms of the Caratheodory (or Kobayashi) metric to 
reconstruct the biholomorphic automorphism group of Banach manifolds from 
those of its certain submanifolds via holomorphic projections. This result seems to 
be very well suited in calculating explicitly Aut B(E) in various Banach spaces E ad-
mitting a sufficiently large family of contractive linear projections. In Section 3 we 
illustrate the use of this projection principle by two typical examples where the con-

Received March 13, 1981. 
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elusion seems hardly available with other already published methods: After nu-
merous partial solutions, recently T. FRANZONI [ 4 ] gave the complete description 
of Aut B(S^(H1,H2)) where H2) = {bounded linear operators H1^H2} 
and Hx, H2 are arbitrary Hilbert spaces. As we shall see, the projection principle 
makes it possible to obtain the exact description of Aut B(H1®...(S>Hn) in an ele-
mentary way where H1 <g>... <g> H„ = {continuous «-linear functional Hl X. . . X Hn — 
—C}. Note that H2)^Hl<^H2 and for H1®...®H„ cannot be 
equipped with a suitable/^-structure on which Franzoni's method is based. The key 
of the reduction by the projection principle is the fact that in finite dimensions the 
strong precompactness of B(H1<S> ...<g)Hn) considerably simplifies the treatment 
of the space (Section 4). The second application concerns atomic Banach lattices. 
The unit balls of finite dimensional such spaces are exactly the convex Reinhardt 
domains. In 1974, T. SUNADA [13] characterized Auto D f ° r a ' l the bounded Rein-
hardt domains D. However, his proofs depend on the Cartan theory of finite dimen-
sional semisimple Lie algebras thus cannot be carried out in infinite dimensions. 
If the finite dimensional ideals form a dense submanifold, the projection principle 
reduces even the most general case to some straightforward 2 dimensional consider-
ations. We remark that in this way also Sunada's proof can be simplified and the 
method applies in parts to other Banach lattices (cf. [12]). 

2. Projection principle 

Our main abstract result concerns with holomorphic vector fields on complex 
Banach manifolds (for basic definitions see [17], [7, §2]). If M denotes a complex 
Banach manifold, a vector field v: M—TM is complete in M iff for every x£M, 

there exists a mapping ex:R—M such that ex(0)=x and ^ex(t)=v(ex(t)) 

Vi€R. In this case we define exp (tv)(x)=ex(t). A function d\TM—R+ is 
called a differential Finsler metric on M if for any fixed xdM, the functional 
TxM^w>— <5(x, vv) is convex and positive-homogeneous and for each coordinate-
map (£/, <£), the function /¡¡Vtqi): >—<5($-1i>, i>($-1e?)) is locally bounded and 
lower semicontinuous whenever v is a holomorphic vector field on M. We shall 
write dM for the Caratheodory distance [3], [17] on M, i.e. dM(x, _y)=sup {areath 
F(y): F is a holomorphic M— A function, F(x)=0} where A = {C€C: |C|<1). 
For a holomorphic mapping F: M-+M, we denote by F' its Frechet derivative 
(recall that for any fixed x£M, F'(x) is a bounded linear TXM-*TXM operator). 
For a Banach space E, we shall denote by E*, || and B(E) its dual, norm, closure 
operation and open unit ball, respectively. 
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2.1. T h e o r e m . Let M be a complex Banach manifold, M' a (complex) sub-
manifold of M and v a complete holomorphic vector field on M. Suppose P is a holo-
morphic mapping of M onto M' such that P\M, = iAM, (the identity mapping on M"). 

Suppose there exists a differential Finsler metric 5 on M' such that 
(i) the vector field P'v\M, is 5-bounded (i.e. sup S(x, P'(x) v(x)) 

xiM 
and by writing d for the intrinsic distance generated by 5 on M', 

(ii) the topology of the metric d is finer than that of M', 
(iii) for any sequence x l 5 x2, which is a Cauchy sequence with respect 

to d but which is not convergent in M' we have dM,(xlt xn)-+°° (« — 
Then the vector field P'v is complete in M'. 

P r o o f . For the sake of simplicity, the proof will be divided into three steps. 
1) From the definition of Caratheodory distance we see immediately that 

dM,(x,y)^dM(x,y) yx,y£M' since M ' c M . It is also well-known [2] that the 
mapping P is a dM—dM, contraction. Hence the relation P\M, = idlli, entails 
dM,(x,y)SdM(x,y). Thus we obtained dM,=dM\M,. 

In the sequel, we set a x ( / ) s e x p (tv)(x) (x£M, i£R) and bx will denote the 

maximal solution of the initial value problem i^y=P'(y)v(y)', j ( 0 ) = x | . 

We show that for arbitrarily fixed zZM', 

(1) dM.(Paz(h),bz(h)) = o(h) (/j-0). 

Indeed: Consider any coordinate-map (U, $) from the atlas of M' for which 
z€ U. We may assume without loss of generality that is a biholomorphism between 

U and the open unit ball of some Banach space E. Then for all j /€dom 

M O e ^ - 1 ^ £ ( £ ) ) } we have 

dM.(Paz(h), K(h)) ^ d(Paz(h), bz(h)) = dB(E)(<PPaz(h), <Pbz(h)) S 

S fi\\4>Paz{h)-0bz(h)\\ 

where /¿=sup {dBm(f g)/\\f-g\\: f , gtl-BiE)^. It is easily seen that f i ^ 

^ 2 sup \dB(E)(f, 0)/ | | / | | : 5 ( £ ) } = 2 sup {ll/H"1 areath | | / | | : | | / | | 

The estimate \\$Paz(h) — <Pbz{h)\ =o(h) (_/—0) can be verified as follows: 

By definition, a is the solution of the initial value problem \-^-y=v(y), j ( 0 ) = z l . 
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Therefore \\$axQi)-(*z+h$'v(z))\\ = o(h). Thus 

d 

[<PPaz{h)-^b2(h)]-

dh 
<PPaz (h) - Q'P'v (z) = Q'P'v (z) - Q'P'v (z)=0. 

An application of (1) directly yields that for any x,y£M', 

m±[dM.(bx(h), by(h))-dM.(x, y)] = Em±ldM.(Pax{h), Pay{H))-dM.(x, y)] S 

S g - 1 [d„(ax(fc), ay(h))—dM(x, y)] = 0 

(since P is a contraction dM^~dM, and dM,=dM\M,). 
2) Henceforth we proceed by contradiction. Assume that the vector field P'v 

is not complete in M'. 
Now we may fix a point x£M' such that dom bx*R. Let t0 be a boundary 

point of the interval (or ray) dom bx. Since 0£dom bx, we have 0. So (by 

passing to the vector field —v) we may assume /„—!• Then consider the function 

e(0 = dM. |fcx(0, &,(/+•y)j [o, y)). 

Since bx(t+h)=b„xt(h) and bx j(/i) whenever t, t+h, 

0,1), from step 3) it follows that 

v,c[o.i). 

We show that the function g is locally Lipschitzian. Since the conclusion of the 
previous step can be interpreted as g'(t)=0 for all such values t where g'(t) exists, 
hence we obtain that g is constant i.e. 

(2) dM.[mo, = (*' a*(t)) W € t)-

P r o o f . By. triangle inequality, it suffices to see that for any z£M' , the mapping 
t<-~bz(t) is locally Lipschitzian with respect to the metric dM,. Denote by <5M, the 
Caratheodory differential Finsler metric of the manifold M' (for definition see 
[2], [17]). Then the function y: r~5M,(bz(r), P'b(bz(j))) is locally bounded (cf. 
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[17]). Hence if . / i s a compact subinterval of dom bz then sup y ( i )<°° and there-
fore 

bz{t")) ^ | f5M.{bz(t), bf,{t)) dt\ = \f y(t) dt\ s 
f f 

S supy(i) • jt"—1'\ whenever t',t"£j. 
its 

3) Write sup 5 (x, P'v(x)) and consider the sequence f„= 
x € M' 2 2 n 

(n= 1,2, . . . ) . For m ^ n we have 

d {bx ( im + , bx (i„ + i - ) | S / <5(6,(0, = 

= f"d(bx(t),P'v(bx(t)))dt^ jnKdt = ^[-1—I). 
'm 'm 

Thus |b x |f„ is a Cauchy sequence with respect to the metric d. Suppose 

i / ^ z|—0 (« — °°) for some point z£M'. Then we would have 

P'v(bx(tn))—P'v(z) («-»»), as a consequence of (ii). However, in this case the 
r [ b x i f ) if r<Edom6x . . . . function b(t)=\, ' . r » , ' , , is a solution of the initial value [bz(t— 1) if 0 s ( i — l)£dom&z 

problem j — y - P ' v ( y ) , j ( 0 ) = j c j with dom ¿¡¿dom bx which is excluded by the 

maximality of bx. Thus jfe* ̂ + — ^ j- does not converge in the metric d. 

By condition (iii), du, , 6X (l _ _L j J = d w ( + t ) ' ̂  ('" + Y ) ) " 

—oo («-• oo). From (2) we see 

- dM . bx ^ y j | - OO ( „ - oo). 

But this is impossible because the topology of a complex Banach manifold is always 
finer than that generated by its associated Caratheodory metric (cf. [17]) whence 

^ ' [ ^ ( y j ' ^ Y - ^ " j ] - * ^ since the mapping t*-+bx{t) is differentiate. 
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The obtained contradiction completes the proof. 

2.2. R e m a r k . From step 1) one immediately reads that in general we have 

2.2a L e m m a . If d*: N^-d*N is a metric valued functor on the category of com-
plex Banach manifolds such that for all manifolds N, N', 

(iv) d*N is a metric on N, 
(v) each holomorphic map N'-»N is a contraction, 

then d*M\M,—d*M,, whenever M' is a sutmanifold of M and there can be found a 
holomorphic projection of M onto M'. 

The proof of Theorem 2.1 can be carried out as well for any metric functor 
d* with properties (iv), (v) and 

(vi) sup {¿S ( f ) ( / , 0)/| | / | | :ll/H =s i - J< oo for any Banach space E. 

The Kobayashi invariant metric (def. see [17], [9]) also satisfies these requirements. 
Hence Theorem 2.1 holds when replacing Caratheodory distances by those of Koba-
yashi. Moreover we have the following important special case of Lemma 2.2a. 

2.2b L e m m a . If E denotes a Banach space and P is a contractive linear projec-
tion E^E then dB(E)\B(PE)=dB(PE) and dk

B(E)\BiPE)=dk
B(PE) where dk stands for the 

Kobayashi distance. 

P r o o f . Since ||JP|| = 1 (otherwise we have the trivial case P=0), PE is a closed 
subspace of E and PB(E)=B(PE)<zB(E). Thus Lemma 2.2a can be applied to 
M=B(E) and M'=B(PE). 

This latter result can be further specialized as follows: Consider any unit vector 
e£E. By the Hahn—Banach theorem, there exists 4>£E* with | |$| | = <£, <J>) = 1. 
Then the mapping P: fi—-(f, <P)e is a contractive linear projection of E onto Ce. 
Thus Lemma 2.2b contains Vesentini's following observation. 

2.2c L e m m a (VESENTINI [ 1 6 ] ) . Let E be a Banach space, e£E a unit vector and 
c — c 

Ci, Then we have dk
B(E)(Cie, (2e)=dB(Ce)(C1e, Cz)=areath 1 2 

1 — t i t : 
i.e. the curve [A BC1—fe] is a complex geodesic with respect to both the Caratheodory 
and Kobayashi distances in B(E). 

Later on, we restrict our attention to Banach space unit balls. Recall ([8], [18]) 
that in a Banach space E, the elements of A u t o ^ i s ) (the connected component of 
Aut B(E) w.r.t. the topology defined in [15]) are exactly the exponential images of 
the second degree polynomial vector fields being complete in B(E) whose Lie-
algebra will be denoted by log*Aut B(E). Moreover, the orbit [ A u t 5 ( £ ) ] {0} = 
= {F(0): Aut B(E)} is the intersection of B(E) with a subspace which, in the 
sequel, we shall denote by E0 and we have £'0=[log*Aut B(E)] {0}. 
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2.3. T h e o r e m . If E is a Banach space and P: E—E is a contractive linear 
projection then .P[log*Aut £ ( £ ) ] jP£clog*Aut B(PE). 

P r o o f . Let w£log*Aut.B(.E') be arbitrarily fixed. We have to show that the 
vector field Pu\B{PE) is complete in B(PE). As in the proof of Lemma 2.2b, let us 
consider the manifolds M=B(E), M'=B(PE), the projection P\B{E) of M onto 
M' and the vector field v=u\B(E) which is by definition complete in M. Take the 
differential Finsler metric S(x, w) = ||tv|| (x£B(PE), w£PE) on M' whose generated 
intrinsic distance is obviously d(x, J/) = ||JC— (x, y£B(PE)). To complete the 
proof, we need only to verify (i), (ii), (iii). 

(i): For x£B(PE) we have P'{x)v(x)=Pu{x) whence by a theorem of 
K A U P — U P M E I E R [ 8 ] , 

w ( 0 ) + w ' ( 0 ) x + y « " ( 0 ) ( x , x ) 

si iuiOjn + iiii'iO)!!, 
{bilin ExE-*E) 

II ¿e(E, E) 

(ii): Trivial. 
(iii): Assume , x2 , ... is a Cauchy sequence with respect to the metric d 

without a limit in M'. Then for some unit vector f(:PE, ||x„—/||-*-0 (m-* i.e. 
W l - l . Therefore, by Lemma 2.2c, dM,(x1, xn)=dB(PE){xl, xn)^dB{PE)(xn, 0 ) -
-d B l P E ){xi , 0)=areath ||x„]| =areath HxJ -«>. 

2.4. C o r o l l a r y . If E is a Banach space and P:E—E is a contractive linear 
projection then P(E0)a(PE)0. In particular, if B{E) is a symmetric manifold then so 
isB(PE), too. 

2.5. C o r o l l a r y . Let E be a Banach space. If one can find a family & of con-
tractive linear projections E—E such that for every P£ Aut B(PE) consists only 
of linear transformations and p | ker P— {0} then all the elements of Aut B(E) 
are also linear. PiSf 

P r o o f . If «glog*AutB(E) then Pv(0)=0 yPdSP whence v(0)=0 i.e. the 
vector fields is linear. On the other hand Aut B(E)=Aut"B(E) Aut0B(E)=Aut°B(E) • 
• exp log*Aut B(E), where Aut0 = {£-unitarities}. 

3. Applications 

Let (X, p) denote a measure space. In [1], [11] it is proved 

3.1. T h e o r e m . The unit ball of E=LP(X, n) admits only linear biholomoprhic 
automorphisms unless dim E= 1 or p—2, 

As the first illustration of the projection principle, we show how can this result 
be reobtained from Thullen's classical 2 dimensional theorem [14]. 
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P r o o f . Suppose H \ { 2 } and à\mE>\. If gi,g2 are functions in E 
with norm 1 having disjoint supports then it is easily seen that the mapping P : 

2 
E£f>-* 2 Ifgj\gj\P~2dfl'Sj is a contractive linear projection of E onto the subspace 

E t v , = ¿ C g j . Now B ( E g i t g ) = { t : i g 1 H 2 g M P + \ Q p ^ } is a Reinhardt domain 

whose biholomorphic automorphisms are all linear by Thullen's theorem. Further-
more we have k e r P g v g = { f £ E : f f Y j \ g j \ " - 2 c i n = 0 (7=1,2)}. Thus f | k e r p

9 v g = 

= {fiE: \/geE[3h£E min(|*| , | A | ) = 0 ] = >f / g \ g \ ' - * d n = 0 } c { f £ E : V ^ c ^ a ^ c 
c l \ l ! 0 < / i ( I 1 ) , / i f t ) < H = i f dffi=Q}— {0}. Hence Corollary 2.5 establishes 
the linearity of Aut B(E). 

To the next application, let . . . , / /„ be arbitrarily fixed Hilbert spaces1 of 
at least 2 dimensions and consider the biholomorphic automorphism group of the 
unit ball B=B(E) of the space E=Hi<Q...<glHn, the Banach space of «-linear 
functional endowed with the usual norm | |F | |=sup {|F(/il5 ...,h„)\: hj^Hj, \\hj\\ = 1 
0 '=1 , . .,«)} for FÇE. For « = 1, 2, the description of Aut B is completely settled 
[5], [4]. It is worth to remark that, in the light of the Kaup Vigué theory, the diffi-
culties in this case can be concentraded to the description of linear ¿'-unitary opera-
tors: If n = \,E can be identified with H1 and for any fixed c£H1, the quadratic 
vector field q^W^f1-*~(f\c)f] satisfies [11, (1)] i.e. tangent to the boundary of B. 

Similarly, if n=2, E can be identified with , H2) and for fixed 
Ci£e{Ey,E2), the vector field , H2)3F^-FC*F] is quadratic and satisfies 
[11, (1)]. It is easily seen, in both cases that, we have {[exp (tq)](0) : /ÇR}=(—1, 1)C, 
thus B is symmetric and Auti?=(Aut®B)exp {qc: c£E}. Here we turn our atten-
tion first of all to the case « ^ 3 which seems heavily treatable with other methods 
and is not touched by the literature. 

3.2. Lemma. Span {UC: U linear € Au t 0 5}=£ ' whenever C € £ \ { 0 } and 
dim H j < ° ° ( y = l , ...,«)• 

P roo f . If C t h e n we may fix unit vectors efeHj (j= 1, . . . ,«) such that 
y=C(e1, ...,en)*0. Then let Pj denote the orthogonal projection of Hj onto Cej 
and set Uf=exp (iSjPj), C(91, • • •, 9„)=(C/? <g>... ® Uf)C ( fyeR ; . /= l , ..., n). Since 
the operators Uf are / / -uni tary , £/f<g>...®£/®€Aut0j3, therefore ...®en — 

1 Without danger of confusion, we write simply (. |.) for the inner product in any of 
Ht, . . . , / /„ . For Aj€J?(Jfj,ffj) and 0 = 1, ...,ri), we define ...QA^H^® ...®Hn3 

3 F>-*-F(Ai/1,..., AJn)], el®...®en = [(f1,... , / „ )> - ( / 1 k 1 ) . . . ( / JO] and <5̂  _ = [F^F(e, ,...,en), 
respectively. 
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d" 
. C6S"=Span {UC: U linear€Aat0j5}. Thus for all / / - u n i t a r y 

y àS1...à9„ o 
operators VJ,(V1e1)®...®(Vnen) = (V1®...®V„)(e1®...®e„)ÇS i.e. f®...®fndS 
whenever / i ê /Z i , . . . , /„€/ /„ , whence S—E (since dim E< «>). 

3.3. P r o p o s i t i o n . For H>2, all the elements of Aut B(H1 ® H n ) are 
linear. 

P r o o f . Observe that the family ^={P1®...®Pn: allPy-s are orthogonal Hr 

projections with dim PjHj=[2 i f j s . 3 and 1 ifj'=-3]} consists of contractive £'-pro-
jections and f ) ker P= {0}. Since for arbitrary P£0>, the subspace PE is iso-

metrically isomorphic to C 2 ® C 2 ® C 2 (C is endowed with its usual euclidean 
norm), by Corollary 2.5 it suffices to see only that the elements of the group 
Aut B(C2 ®C2® C2) are linear. Thus we may assume n—3 and Hj=C ( 7 = 1 , 2 , 3). 
Assume now that E0^0. Now Lemma 3.2 establishes E0—E i.e. symmetry of B. 
We show that this is impossible. 

Denote by ex, e2 the vectors (1,0) and (0,1) in C2, respectively, and consider the 
elements C=e1®e1®e1 and F=e2®e1®e1+e1®e2®e1+e1®e1®e2 of E. Since 
the space E is finite dimensional, for every A£E we can find fi,f2,f3ddB{C2) 

with M | | = y i C / i , / „ / a ) . In particular, for arbitrarily given A£ |o, y j we can fix 

unit vectors f j { X ) such that \\C+1F\\=(C+?.F, <5/iW,/2(a),/3W>- since C,F^0 
(i.e. C(g1,gi,gt), F(gltga,ga)^0 V g i , f t , g 3 ^ 0 ) and since {C+XF,èe^e) = 

e-i + r,(X)e2 

= AF(e 2 , e 2 , e 2 )< 1, for some rj(X)SO we can write / , ( / ) = ^ 1 / 2 ( . /= 

= 1, 2,3). Thus introducing the function <P) (q1 , g2, g3) = ( C + I F , ô e1+g1g2 ji+esfa) (i+c?)1'2 (i+e|)1 / a 

= [l+A(ei + e, + eJ] ¿ ( 1 + eï)"1 / > , we have A àg} 

So U O + r ^ - t l + l ^ + ^ + r a ) ] } - J ( l + r , 2 ) - 3 ' 2 = 0 ( 7 = l , 2 , 3 ) and hence 

A = = = . Therefore r , * 0 ( 7 = 1 , 2 , 3 ) 
1 ~ rt(r2 + rs) 1 - r2(ri + r3) 1 - r3(r1 + r2) 

1 1 1 ( 1 s -v 
and — \ - r x = — h r 2 = — \ - r 3 = — h 2r,I. Observe that from this and from the 

rx r2 r3 \ A J = 1 ') 

assumption AÇ^O, — J it follows that rx—r2—r3. (Otherwise there would be r > 0 

such that two of the numbers rY, r2, ra coincided with r and the third with 1 ¡r, re-
llr r 

spectively. But then X = =0.) Thus the relation X= holds H 3 l-(l/r)(r+r) 1 —2r 
where r (A)=rx (A)=r2 (A)=r3 (A). This fact can be so interpreted that for sufficiently small 

^ = 0 0 = 1 , 2 , 3 ) . 
(̂ (AJ.r^Aj.raCA)) 
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I 1 • K 1 / - J 1 „ r 
values of 0 Inamely for / = — i.e. r < 1, F r=C-1 -F, 

\ 3 4 ' 1—2 r^ 
« V ^ « , . . f u l f i l l [|Fr||.||<PP|| = <Fr,<Pr>. Then by [11, Lemma] 

(2) | | F r | | 2 < c T ^ + < 9 ( F r , F r ) , ^ > = 0 ( o < r < 

for some symmetric bilinear map q\ExE-+E. Here (C, = 1, || F,|| = II - 1 (F r , <Pr) = 

= (1 + r 2 ) - 3 / 2 [ l +3/-y—^-^j = (l + /-2J~1/2(l—2r2)-1 and <9(F„Fr), <Pr) = (q(C,C), <Pr) + 

+ 2 1 r2 2 ^ + $ ) " T a k i n g i n t o c o n s i d e r a t i o n that for 

fixed V£E, the function r>—(V, <Pr) is a polynomial of 3rd degree in r, from 
(2) we obtain 

(2') ( l + r 2 ) - 1 ( l - 2 r 2 ) - 2 + p 1 ( r ) + p 2 W ( l - 2 r 2 ) - 1 + p 3 ( r ) ( l - 2 r 2 ) - 2 = 0 

for some polynomial-triplet p i , p 2 , p 3 - However, (2') immediately implies the con-
tradictory fact that the function /••-»•( 1 + r 2 ) - 1 is a polynomial. 

3.4. T h e o r e m . The linear H1<g>...<&H„-unitary operators are exactly those 
operators F for which there exists a permutation n of the index set {1,..., n} and there 
are surjective linear isometries Uk: Hk-+Hn(k) (k=l, ...,«) such that 

(3) F{L) = [(A, . . . , / „ ) ~ L ( £ / f V ; ( 1 ) , ..., t / " 1 / ^ , ) ] . 

A linear vector field V belongs to log*Aut B if and only if it is of the form 

n 

(3') V = i- 2 i d H i ® - ® i d H k _ 1 ® ^ k ® i d H k + 1 ® . . . ® i d H n k= 1 

where the Ak-s are arbitrary self-adjoint Hk-operators. 

P r o o f . Based on some compactness arguments, in the next section we shall 
establish independently the validity of (3') if the spaces Hk are all finite dimensional. 
Our starting point here is (3') for finite dimensional E. First we extend it to infinite 
dimensions. 

Let V linear€log*Aut B and e^dB^Hj), ..., e*£dB(H„) be arbitrarily fixed 
and define the operator V=V—(V(e*ig>...ig>e*),Set e*)id£ . Since /*id£€ 
£log*AutB, we have K€log*Aut£. Remark that V(e*ig)...iS>e*)=0. Then con-
sider the family of mappings ^={P1igi...0Fn: Pk is an orthogonal Hk-projection, 
dim PkHk<°°,ek£PkHk (k= 1, ..., n)}. Any element P=PX®... ®P„ of ^ is a 
contractive linear projection of the space E onto its subspace (P1H1)<g>...<gi(PnHn). 
Thus by the projection principle, PV\PE£log*Aut B(PE) \/P£SP. 'Hence (applying 
(3') to the finite dimensional (iy/i)®... ®(PnHn)) for each P£there exists a 



A projection principle 109 

unique choice of Ap£ {self-adj. /^-op.-s}, ..., Ap£ {self-adj. H„-op. -s} such that 

Ap
kHkaPkHk{i.e. PkAp

kPk = Ap
k) and (ASeftef) = 0 (fc = 1, n), 

n 

PVP = J2/'.idHl(8)...<2iidHk_1(g)^ik(8)idW|[+1<8i...(8iidHii. 
k = 1 

Introduce the following partial ordering ^ in SP\ If P=P1®... ®P„ and Q = 
def 

= fii®...®&, then let P^Q<=>PkHkaQkHk (i.e. Pk^Qk)k=\, ...,n. From 
the relation P^Q=>PVP=PQVQP we immediately see 

(4) A\ = PkA%Pk (k = 1, ..., n) whenever P g Q. 

Observe that for any fixed and index A:, 
Up

ke\f)\ = \((PV)iel®...®et-1®e®eU1®...®et), dt* ^ /.,;+II.....;>l ^ 

^ ll^ll f =11^11 ||F|| \fe,f$dB(HJ, 
that is 

(5) M H ^ m i (k = l , . . . , n ) 

Since obviously \jP, QdSP^RdS? P , Q ^ R and since by (4), (5) the relation P ^ Q 
entails \(A^e\f)-(,Ale\f)\ = \{A2(e-Pke)\f) + (A^Pke\f-Pkf)\^\\V\\(^e-Pke\\ + 
+ \\f-Pkf\\) Ve,f£dB(Hk), k—l, ..., n, the definitions 

ak(e,f)~i\m{Ap
ke\f) (e,f$Hk, fc = l , . . . , n ) 

make sense and determine bounded sesquilinear functionals. Therefore there exist 
self-adjoint operators Ax: H1-*H1, ..., A„: Hk—H„ such that ak(e,f) = (Ake\f) 
and hence (Ap

ke\f) = (Ap
k {Pke)\Pkf) = (AkPke\PJ) = (AkPke\PJ) = {PkAkPke\f) 

Me, f£Hk i.e. Ap=PkAkPk (P£0>,k=l, ..., n). Now for arbitrary L<iE,e£Hx, ..., 
eneHn the projections Pfc=projSpan{Cii>^e(c>e(J (k = ], . . . ,« ) satisfy 

[FZJfe, en) = [VL](Piei, ..., P„en) = [PVL](e1; ..., e„) = 

n n 

= ZL(en •••^kAkek, ...,<?„) = 2L(ei,- -,Aek,---,en). 
t = l * = 1 

n 
Thus we can write VL(et, ...,e„)= ••••>Bkek, ...,en) where B;=Aj for 

lc=l 

7=1, ..., n - 1 and B„=A„+(F(e*, ..., e*),Se* „») id f , proving (3') in general. 
To prove (3), let F be an arbitrarily given linear £-unitary operator and intro-

duce the families ^k = {Pt®... ®P„: Pk is an orthogonal Hk-projection, Pj=idHj 

for j ^ k } (k—\, . . . ,n ) . From (3') we see /^>
tclog*AutB and hence for every 

Pi&k, the mapping Q = FPF~X also has the properties /£>€log*Aut.B and Q2=Q 
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(since P2=P) which is possible (by (3')) only if Q£&>
IK{P) for some index ¿K{P) 

(k=l,...,«). 
L e t kÇ. {1, . . . , n} b e fixed. W e s h o w t h a t TK(PI)=<fK(P2) V A , A€^V\{ID£}-

Indeed, if then the operators QJ = FRJ F~1 (7 = 1, 2) commute 
(i.e. [ ô i , Ô2] = <2i Ô2 — Ô 2 < 2 i = 0 ) whence we would have [/?1 , /?2]=0. Observe 
t h a t VPI,P^^K\{IDE}3PS€^K [ A , i>3], [P2, P3]*0, t h u s (by t a k i n g R^PJ 
and R2=PS J=1,2) ¿k(Pj)=Tk(P3) holds for . /=1 ,2 . 

Therefore there exists a permutation rc with 

(6) = ( f c = 1, . . . , « ) . 

Since the finite linear combinations of orthogonal projections form a dense submani-
fold of the algebra of linear operators in any Hilbert space, it direcdy follows 
the existence of surjective linear isometries Sk: ££{Hk, Hn(k)) such 
that 

F ( i d H l ® . . . g n d ^ i ^ g n d ^ ® » i d ^ F " ^ 

= idtf, <g>... ® idHn ((c). t O Sk (Ak) O id a„ (k}+, <g>... <g> idHn 

(AkÇ<?(ffk,Hk); k = l, ...,«). 

As a consequence of the relations (6), the mappings Sk send orthogonal projections 
into orthogonal projections and therefore they constitute ""-isomorphisms between 
the C*-algebras ¿f(Hk,Hk) and ¿¡f(Hn(k), H„ik)). It is well-known that now we 
can write 

Sk\ AK~ UkAkUk* ( f c = l , . . . , n ) 

for some surjective linear isometries Uk: Hk^-HnW. Thus if we denote by a the in-
verse of the permutation n, for any linear ¿¿-operator A of the form A ... <g>A„ 
(where Ak££?(Hk, Hk) k= 1, ..., n) we have 

(FAF ~i)L = №,..., f„)~L(Ua (n)Aa(„) u^n)f„)] V L 6 F . 

This means that FAF~1 = UAU~1 \/A£2?{E, E) holds for the F-unitary operator 
U defined by 

U(L) = [(A, -..,/„) - HURVNM, - > U-V^N))] (UE). 

It is easily seen that this is possible only if F = e , 9 f / for some ,9ÇR which completes 
the proof. 

In the remainder part of this section, by making use of the projection principle, 
we shall examine the structure of biholomorphic unit ball automorphisms in case 
of minimal atomic Banach lattices (abbr. by min. 5-lattices). 

A Banach lattice E is called a min. ^-lattice if it is norm-spanned by its 1 dimen-
sional ideals. Henceforth we reserve the symbol E to designate a fixed min. 2?-lattice. 
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According to a well-known representation lemma [10. p. 143, Ex. 7 (b)], we may 
assume that for a fixed set X, E is a sublattice of {X— C functions} such that 

(7) 1 xdE and | |1J = 1 Vx£X, 

(8) Span {1,: = E. ( l x stand for [X3y>-+ 1 if y - x and 0 elsewhere]). 

Remark that then 

(8') wf£E and wf = lim w l Y f whenever / € £ , sup |w(x)| s I.2 

Y finite c X x£X 

For the sake of simplicity we write B=B(E) and the functional [E^ f<-*f(x)] will 
be denoted by 1*. 

First we describe the linear part of Aut B. 

3.5 D e f i n i t i o n . For x, y£X, let x~y if (/"(1 x), l ^ ^ O for some linear element 
£ of l o g o u t B. 

3.6. L e m m a , (i) x~y if and only if for all f , gdE, f—g£l^xy^E and 
2 l/(*)l2= 2 \g(z)\2 entail \\f\\ = \\g\\. 

z=x, y z=x,y 

(ii) The relation ~ is an equivalence. Moreover, in case of ... 

f-gOlx and jt\AxjW= 2\g{xjW imply ||/|] = ||g|| 
7 = 1 7 = 1 for all f,g£E whenever x , , ...,x„ are distinct points. 

P r o o f , (i) Let Y= {yt, ...,yn} be an arbitrary finite subset of X and £ linear^ 
£log*Auti?. Set ocJk = (£(lyj), l y J and assume a1 2? i0 (i.e. ~j>2). Since the mapping 

n 
P:/>-• 1 r f is a band projection of E onto 2 C L , the projection principle establishes 

7 = 1 1 

£ £log*Aut PB where £ =P£\PE. Thus by [11, Lemma]3 

(9) Re ( £ ( f ) , *> = 0 <= ( / , <t>) = ||/||||*|| \jf^PE, <P£(PEf. 

2 Proof: Given e > 0 , by (8), there are Zfinite cX,gfA2f with | | / -^ | | -=e /2 . Now Z c Ylt Y., 
finite c j r implies l l / - * l l s | / - l z / I M C / - l z . / ) | s M l i ' i U v , / - l i > f l l 0" = 1,2) i.e. by triangle 
inequality e s | | w l r i / - ) v l i r 2 / | | . Thus { w l y / } y f l n U e is a Cauchy net in£". Hence for some h£E*, 
w 1 Y f - h . But h(x) = (h, l i ) = l i m y ( w l y / , \x) = w(x)f(x) Mx. 

s In the same way as in [11, Lemma], one can see that if a linear vector field £ on Banach space 
F belongs to log*Aut 5 ( F ) then Re</(/),<Z>)=0-e=(/, i > ) = | l / l l | | $ | | \/f€F,<P€F*. 

Proof: Since £ is tangent to dB(F), we have £(J)£(H-f) whenever l | / | | = l and H isareal 
hyperplane in F supporting B ( f ) at / . But the general form of such a supporting hyperplane is 
H={h£F: Re(A, # ) = ! } where tf>€F* with ||<i>||=</, # ) = !. 
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2 n j e ~ i 9 j f ( y j ) 
j = i 

^ 2 * j \ f ( y j ) \ ^ p{\f<Ji)\, •••» I /OOI) = 11/11 
j=i 

Introduce the function p (e l 5 . . . , g„)= 2 6jly on R ^ and set C = { 0 € R + : 
J=i J 

grad|c/> does not exist}. Since p is an increasing positively homogenenous convex 
function, C is a cone of Lebesgue measure 0. Let us fix arbitrary vectors f ? £ R + \ C , 

n n 
9€R" and set 7 t = g r a d | e p , / 0 = 2 Qj^K > 2 • s i n c e the function 

n 
p is increasing, jt, ..., 7i„=0. Since 7t is positive homogeneous and convex, 2 nj6j = 

j=i 
=P(ei, —, en) i-e. </0 , #> = 11/oil- On the other hand, for any f£PE 

u n = 

i.e. || $| | = 1. Hence (9) can be applied to / 0 and <P. Thus 

(9') Re ( t ( 2 Q j e \ J , 2 = 0-

By the arbitrary choice of $€R", an equivalent form to (9') is 

(9'0 Re [2ejKj<Xjj+2 (ejnkccJk + Qk7ijcckj) ZjZ*1] = 0 
j i^k 

whenever |zj| = . . . = |z„| = 1. 

This is possible only if the rational expression (w.r.t. z l 5 ..., z„) in the argument of 
the Re operation vanishes. Thus in particular i?i7r2a12-l-i>27ria2i::= 0- I.e. we obtained 
the following partial differential equation 

(10) + = 0 ( e € R + \ C ) . 
OQ2 oQi 

f\ 

Since C ,= l l c 2 l , 1 l l ^ | | 2 cA , l l= / ' ( e ) Ve<ER"+, there exists e € R " + \ C w i t h 

J u p 2 
Therefore a 2 ] ^ 0 , moreover a2 1 /a1 2<0, i.e. a21/a12 = — |a2i|/|a12|. 

For (e>, ...,e„)6Rn
+-2, define ^ e„:R-R by <pe3 J f ) = 

=/>(|a12| cos t, |a21| sin i, 03, ..., Qn). Since C is a cone of measure 0 in R"+, (10) 
implies 

(11) <Pe3 e „ ( 0 = 0 for almost every f<E(0,Tr/2) and ( c „ .. . , e j e R T " 

From the convexity of p it follows that it is locally Lipschitzian in the interior of R + . 
Hence, by (11), 

(11') 9 « , „ (0 = J O ) V/£[0, n/2], (03, , 0 „ ) e R r 2 . 
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But then |a12 |=i»0 0(tt/2) = |a21| whence 

PK\-Hel+eir • <pei Cn (arccos = M-'iQl+ei)1'2^ c„(0)= 

<€R) form a one-para-

^ [ / - / ( ^ - / M U 

=p{Yel+elo>Qs>->s»)-
2 

Let now fg£E be functions such that f-g£l{nyi)E and 2^ l / C M 2 = 

= h g ( y j ) \ 2 - Then II1 y/li =p (( J 1/0^) l2)1/2,0,1/(^)1, • • •, I / M l ) = II1 r*ll • Tak-
ing into consideration the fact that Y may be any finite subset of X, from (8') we 
obtain | | / | | = ||s||. 

2 2 
Conversely: Assume that f-g^l^^E and 2\f(y})?= 2 \s(yj)\2 i m P ] y 

| | / | |= | |g | | for all f , g£E. Then the mappings , , „ , / + ((cos /) • / ( j 1 ) + 
+(sin 0 - / > 2 ) ) l y + ( ( - s in t) 'f(yi)+c+(cos t) - / ( J 2 ) ) y 

meter ¿-unitary operator group. Hence the linear field 
dt 

belongs to log*Aut B. 
Proof of (ii): Say t h a t / ~ r * if y finitecrA', / , * € £ , / - * € l y £ a n d 2 l/OOla = 

}>tr 
= 2 k ( j ) l a - Obviously, the relations ~ y are all equivalences. Consider the set 

j-er 
N={m: ... 3 / , * € £ / ~ { x i x">*, | | / | | Hlgll}- Suppose AM0 and set n== 
= min N. From (i) it follows n > 2 . F ixase t Y= {_yl5 ...,yn) andfunctions / i , / 2 € £ 
such that / ~ r f t ~.... ~ J,, but \\f\\ ^ | | / J . Consider the functions*;=1 ( A n u W / j + 

+ [ 2 / A y k f ) (7=1,2). Observe that "">*,• whence 11/11=11̂ 11 (7= 

= 1,2). However, *i~{, '1 ' , '!!>* and therefore by (i) we have ||*i|| =||*2 | | contra-
dicting the assumption H/J^ | | / 2 | | . Thus N=&. Hence if yi~y2~ya then \/f,g£E 
f ^ b y (i)5 y i ~ y 3 holds. 

3.7. C o r o l l a r y . The proof of (i) shows that <^(1^), 1 ^ =-<<f(l„2), 1*> when-
ever y1,y2£X and £ linear€log*Auti?. 

3.8. D e f i n i t i o n . From now on we reserve the notation i^J) to denote 
the partition of X formed by the equivalence classes of the relation ~ . For each / 6 J , 
we shall denote the projection band 1 S E of E by Ht. 

3.9. P r o p o s i t i o n , (i) If f , g£E are functions with finite support and ||/|s ||,a= 
=llslS|ll,. {=(2 ls(*)l2)1/a) v/e^- then ||/||=||*||. 
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(ii) For any i£y,Hi is a Hilbert space (i.e. the norm || • || restricted to Hi 

satisfies parallelogram identity). Namely, a function h: X-*C belongs to Hi i f f 
s u p p ( / i ) c S ' ' , 2 |fr<X>l2<~> furthermore we have l l / I M I / I U V/G^-

(iii) If f g i E and | | / | sJ|=||g| sJI V /6^ then ||/|| = ||g||. 
(iv) If g\X-CJ<LE and | | / |S ( | |„ = |ls|S(IU then gdE. 
(v) Assume tf£jjf(E,E). Then /£log*Aut B if and only if there exists a family 

of linear mappings { £ j : s u c h that i-ij is a self-adjoint Hj-operator for each 
sup and <f= <g> 
Ks its 

P r o o f , (i) is a directe consequence o f L e m m a 3.6 (i). 
(ii): Let f£H and x0£E be arbitrarily fixed. By (i), l | l y / I M I ( Z l / O O I 2 ) 1 / 2 l J 

yiY 0 

= ( 2 l / 0 ) l 2 ) 1 / 2 for all Y finite c X . Hence by (8'), ° ° H I / I I =11/11/.. Furthermore , 
ytr 

if g is a function X — C having support in St and U g l l ^ c °° then (i) ensures V T i , Y2 

finitecZ)||lr/-l1.i/|| = | | l r i / - l y s / | | , 2 = [ | l y i ^ / | | i.e. the net {1 y f } r is a C a u c h y 
net whence f£E. 

(iii): Let £ > 0 be fixed. According to (8'), one can find Y finitecX w i t h 
l l / - l z / I U I ^ - l z ^ l l < £ VZcY. Since the index set J={i£J: 7 0 ^ = 0 } is finite, 
there exists a family o f sets { Z , : / £ / } such that F R ^ c Z , - finite c St ( / € / ) a n d 
2 W l s i f ~ 1 z l f I L < e - Consider n o w the funct ions fc= 2 l U z / I U " 1*, and ge = iZJ itJ ' ' 
= 2 II lz Sh*' 1* where xi denotes an arbitrarily fixed point o f Si (i£J). B y writing itJ ' ' 
Z = U Z f , w e can see ||/e|l = | | l z / | | , | | g j = | | l z ^ l ! and l l / - l 2 / | | , \\g-lzg\\^e. U s i n g 

its 

the triangle inequality, I I / . - & N 2 III h/W^-W l z ( S l W = ( s i n c e II l s / l l , 2 = l l 

for all 0 = 2 llllz/ll^-llls/IU+lllsl«ll^-Pzlill/.l^fj^(ll.lS/-lzl/IU=yisli-
- 1Z{g\\^2e. Thus 111/11 = ||g\\ | S | | / - l z f \ \ + ||| l z / | | = || l z g | | | + | | g - lzg\\ 

(iv): By (8'), to every number w€N, w e can choose Z„ finite c z X such that 

I I /—l z / | | < — . W e may assume without loss o f generality Z x C Z 2 c . . . . T h e n set 
Tt 

y„= {/€,/: Z„nS;7i0} ,g„= 2 ls,g• fiy (") a n d finiteness of the sets JB,gn^E 

V « € N . If then | | a , - « J | = | | 2 l s , * l l = ( b y ( " O H 2 l S i / l l S (since 

I 2 h, / 1 = 1 / - l z / 1 ) ^ I I / - l z /11 T h u s {g„}„ is a Cauchy sequence in E. 

For all x£X, lim g„(x)=g(x) whence g= l im gn. 
n-*- 00 tl*+- 00 

(v) First let <f£log*Aut B. If j , k e J , j * k , x£Sj,yeSk then by the definit ion 
of the classes S{ and by L e m m a 3.6 (i), ( / ( l x ) , 1 * ) = 0 . This fact shows <f(Hj)<zHj 
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Thus by setting we obviously have and<f= ® £¡. Further-
1 iiJ 

more, [11, Lemma] establishes {self-adj. HJ-op.-s} V / 6 ^ . 
The converse statement is immediate from (ii) since then we have exp (tf)= 

= ф exp {£,) and, by assumption, all the operators exp (¿¡) are ^ - u n i t a r y here. 
ji* 

3.10. C o r o l l a r y . For some subset / 0 с / , by writing X0= U Sh we h.zve 
i€S0 

E0=l XE (where £ 0 Е Е С - [ А Щ 5 ] { 0 } cf. Introduction). 

P r o o f . Set Z={x€X: 3c£E0 c(x)^0}. Clearly E0<z\zE. On the other hand, 
if x£Z,c£E0 and с(х)^0 then, by (v), the linear field S=[f>-~i'f(x)lx] satisfies 
l ^ X { j c } c+e"c(x ) l x =exp(//)€£0 V ' € R w h e n c e E 0 з S p a n {Lx:x£Z}= lzEi.s.E0=\zE. 
Suppose now x£Z, с£Е0, с(х)т^0 and x^S^ Let and 

d 
It 

i/(*)l,+i/0>)lj. As in the previous case, c1=/f1(c)=— exp (iifi)c6£'o since by 

(v), Ae log*Aut5 . However, c1(y)=ic(x)^0 i.e. Thus 5 f c Z . 

Next we turn our attention to the quadratic part of log*Aut B. 
In the sequel we shall use the notations J0, X0 introduced in Corollary 3.10. 

Recall that for any c£E0, there is a unique symmetric bilinear form qc: EXE-+E 
with [/->-c-t-<7c(//)]£log*Aut2? and that the mapping c>—qc is conjugate-linear 
and continuous. Since the finitely supported functions are dense in E, to get the 
complete description of log*Aut B it is enough to determine only the values 
(qlx ( 1 ^ , 1 ^ ) , 1 ^ ) (X^XQ, xs, X3, X4£X). T O this task, the projection principle 
provides an essential reduction. 

3.11. L e m m a . Let xx, ...,xn£X,x£X0 and pl
Jk=(qlx (1_ , 1_), ir>. Then 
' *j J * I 

(i) 4 = 0 i f { l , t } * { j , k ] , 
(ii) 

(iii) /»«,€[-1,0] and l{jCi,;t2}JB = {C1lJCi+C2lX2:|Cir+IC2|-1//'<l} if or 
l{jti>Xi)il={C1lXl+C.l,i:max(|C1|, |C2|)<1} in case of /£=0 , 

(iv) — 1/2 if x1~x^x1 and $ 2 = 0 if Xl*x2€X0, 
(v) if xlt ...,xneX0 and xt-t-xj for i ^ j then | |C i l X l +. . .+C„l x J |=max( |Ci | , 

. . . X I ) for all 

P r o o f , (i) Consider the band projection P : / -» - l { ->JCj/. By the projection 
principle, [ /— LXI+PQLX ( / , / ) ] £ log*Aut PB. Applying [11," Lemma] to PB, we 
obtain 

о = в / п » о « ! . * ) + ( p q i * ( f , f ) , <= ii/ii • m = <f, Ф) т Р Е , Ф а Р Е у 

8* 
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Introducing the same function p\ R^.—R+ and set C c R ° + as in the proof of Lemma 
3.6, 

(12) o = p f a , . . . , e * Y ( i x , , J J | e - ' X ) + 

for all e 6 R n
+ \ C and 9€R". Thus 

(120 p ' ^ r ^ + i 2 faeje^e'^x-X>) = 0 (e<EC, 8<ER"). 
OQ i OQe ' 

dp " 
Therefore (for fixed £>€R+\C) the rational expression p ——zt+ 2 PjkQjQk' 

OQi j,k,i = 1 
3p 

•——z,zkz^1 vanishes on d0An i.e. its homogeneous parts are 0-s. Hence only the 
OQe 

coefficients of the form i) may differ from 0. 
(ii) is immediate from (12') if we take n=1 because then p{Q1) = g1-
For the proof of (iii) and (iv), consider the case « = 2 . From (12') and (ii) we 

then see 

(12") ( p 2 - e ! ) i ^ + 2 6 1 Q z ^ P l 2 = = o (e€R" + \C) . 
OQ I OQ2 

Since p(0, Q)=P(Q, 0) and since the function p is increasing and convex, Ve€ 
€[0,1) 3 ! ' = 0 p(Q, 0 = 1- Thus the function t: [0, 1 ) - R + is welldefined by 
p(g,f(g)) = l . Observe that now t is a decreasing concave function and / (0)=0. By 

dp\dgx the implicite function theorem, t'(Qi) = — - — - — whenever (g1, ( ( g ^ j ^ C . Thus, 
dp/dg 2 

since C is a cone with measure 0 in R+, (12") implies 

(12"') i ' ( e ) ( l - e 2 ) = 2gt(g)Pl2 for almost every Q£(0,1). 

Since 0, we have If # f 2 = 0 then r( e) = / ( 0 ) = l V(?€[0,1). In this 
case, /?(<?i, e2) = l if e i < l and = 1 or ^ = 1 and g2 = U i.e. 
p(Qi> e2) = m a x (&i> 62)- If t h e n the solution of (12"') with initial value 

/(0) = 1 is Thus by setting K={(6l, Q2)-.p(Ql, 

(13) K={(Q1,Qi):gl+Q2
lll>"^ 1}. 

The convexity of the function p entails that K is convex whence —1 yielding 
(iii). 
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(iv): If x 1 ~ x 2 ? i x 1 then p(gx, 62)=(el+el)1'2 (cf. Proposition 3.9 (ii)), that 

is, by (13), we have / ? i 2
= — y • 

On the other hand, suppose XX'/'X^XQ and P l ^ O . Since xt£X0, all the pre-
vious considerations can be carried out by interchanging and x2. Thus by (iii), 

= {CiU l+Caixs: |C1 |2+IC2r1/< ,1^ (1 '1, I jCi ) , l i i> S 1 } = 

= {Cilx1+C2U s:|C2|2+ICir1 /<9 l^ ('JC» , , JCl ) ,1"> ^ 1}. 

This is possible only if j = < ? l x i ( l X i , lXl), K ) thus p(Ql, 

If Si denotes the equivalence class (w.r.t. ~ ) of then by Proposition 3.9 (iii), 
II/+ l*,ll = 1111/11 •̂ l x 1 + e 1 » , l l = / ' ( l l / L ' » e ) = l l / + e l * , L i for a r b i t r a r y / 6 H , w h e n c e it 
follows x2£Si i.e. ~ x2 . The obtained contradiction proves (iv). 

(v): Let ylt ...,yn£X0 be pairwise non-~-equivalent. Now for arbitrarily fixed 

f ^ h n ,jF> 

q d f j ) = 2 c(ym) qi ( / , / ) = 2 <(yJ 2 f(yj)f(yk)(qiy U U , O V 
m — 1 ym m = l j,k,l=1 

Applying (i) and (iii) to xx=ym, xk=yk and Xj=yj, hence we obtain 

q d f j ) =~2 c(ym)f(ym)2lym = -c-p. 

Therefore the solution of the initial value problem j - ^ - / ( = c — # c ( / ( , / f ) , / 0 = o j 

is / , = t a n h (tc). Hence { J em 1 : •••» e„€[0,1 )}c{exp [ / ~ c + ? e ( / , / ) ] ( 0 ) : 
lm=l J 

c6l{j ) i J , n ) £ '}c [Aut£]{0}cf i . Then max Q„ 

£„€[0,1]. Consequently 2 emi, 
m = l 

2 e»1» N 1 whenever . . . , 

= 1 whenever max |(?m| = l whence 

2Cj i , 
i=1 

= max | i J . The proof is complete. 

From Lemma 3.11 (i) and the symmetry of the bilinear mappings qc follows 
directly that introducing the functions 

w, {—1/2 if xx = x2 
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we have 

91,(1,, U = 2wx(x)]x for all x£X0, 

q l x ( l x , ly) = w.OOl, if 

U = 0 if x${y,z},x£X0. 
Hence 
(14) gix(f,8)=f(x)wxg+g(x)wxf (xiX0) 

whenever the function f Z E is finitely supported. Moreover by (8') and Lemma 3.11 
(iii), (14) holds for every f£E. 

For sake of brevity, in what follows we shall write / ( i ) instead of the function 

V -
o 1 3.12. L e m m a , (i) — l S j whenever x£Si 

(ii) 0 whenever (id i/0), 
(iii) There exists a unique matrix (Ty)ie^ y6 s\s0 consisting of numbers belong-

ing to [0,1] such that w(J)=—ylJlSj whenever x£SiczXl0 and 

P r o o f , (i) and (ii) are contained in Lemma 3.11 (iv). 
(iii): Let x,x'£Si and y,y'£Sj where </0- From Proposition 3.9 (v) 

it follows the existence of an ¿-unitary operator Usuch that \X, = U\X and \y, = U\y^. 
From the elementary theory of Lie-groups it is well-known that t /vf/~1£log*Aut B 
for every fl£log*Aut B. In particular, [f^U(lx+q1 (U^f U~1f})]Oog*Aut B 
whence qlx.(f,f)=qvlx(f,f)=qlx(U-1f,U-1f). Therefore (qlx,(\x„ 1,,), 1?,) = 
={Uqlx(U-nx„ U-Hyf), l *>=<f f ? 1 ( l x , ly), l * ) > = < * i x ( l „ 1,), O since if U= © Ut 

izs 
is the directe decomposition of U provided by Proposition 3.9 (v) and f(LE then 

Henceforth we reserve the notation (?;./)• e.j '0 ,jej '\j 'o for the matrix introduced 
in Lemma 3.12 (iii). 

3.13. C o r o l l a r y . For arbitrary finitely supported c£E0 and f£E, 

(15) q c { f , f ) = - 2 ( / < i y i > ) / ( 0 - 2 2 i 2 y i j ( f V ) V a ) -
J € i£S o 

P r o o f . Applying Lemma 3.12. and (14), we can see that if c£E0 and f£E 
have finite supports then q c ( f , f ) = - 2 h x ( f J ) 2 2 2 ^ / W • 

x£X0 i£J'0»€S, 

In order to extend (15) to every c£E0 and f£E, we need the following observa-
tions. 
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3.14. L e m m a , (i) E0= © c o / / ; i.e. a function c: X—C belongs to E0 if and 
¡€ J'o 

ort/y i f y i ^ J I k ® ! , ^ « and V e > 0 {/€•/„: | | c ( 0 | | ^ S £ } f i n i t e ( / « i/ie latter 
case ||c|| = s u p | | c % , ) . 

¡«J'o 
(ii) sup 4 | k | | ( = 4 sup ||<7C|| = 4 sup \\qc(J, g)||). 

f.gee 

P r o o f , (i): Trivial from Proposition 3.9 (v), Lemma 3.11 (v) and the fact that 
the finitely supported functions are dense in E. 

(ii): Let i]_, y£Sj and x ^ S ^ , ..., x„£Sin. Consider the func-

tions c = 2 1« a n d / = lv+ 2 lx - 'By (i) we have ||c|| = l and ||/||=§2. By (15), _ i m ' i m m=l in=l 

< ? c ( / j ) , 0 = m i A t t h e s a m e t i m e ' i < 9 c ( / > / ) > i ; ) M i i i i i - i k M i / i i 2 - i u ; i i s 

—4||il | . 

3.15. C o r o l l a r y . (15) holds for each c£E0 and f£E. 

P r o o f . The previous lemma shows that the right hand side of (15) makes al-
ways sense. Observe that the mapping Q:E0XE$(c,f)i->-{right hand side of (15)} 
is real-linear in c and real-quadratic in / . For ||c||, | | / | | S l we have | | Q ( c , / ) | | ^ 
, | 2 - ( / ( 0 | c ( / ) ) / ( 0 i | + 2 | | ^ (sup 2 y j f % i M k % ) / w | | S | | / f . | | C | | + 4 | | 9 | | . M . 
i t s 0 H s 0 WS 0>Z*0 
•ll/ll2. Thus Q is a continuous map. On the other hand, the relation Q(c,f ) = 
= + q c ( f , f ) is already established for a dense submanifold of E0XE by Corollary 
3.13. 

In this way we completely know log*Aut B. The mappings exp [B^f>~* 

<-*c+qc(ff)] are easy to describe: By (15), the equation ft~c+qc{ft,ft) is 
dt 

equivalent with 

(16') = ^ - ( / i V W ( i a s 0 ) 

( i6") ± f t u ) = - 2 2 y y ( / , ( l , k ( 0 ) / . 0 ) U e s \ s j . 
a t ¡ej'o 

If we represent c(i) in the form c^sg ,«^ 0 where £>,-^0, | | = 1 and if / 0
( °= 

= CfCo ) +/ i ) where lying orthogonally to one then cheks immediately that 
for arbitrarily given f0£B, the solution of (16') is 

(17') /r° = M^itdcV+M^df? (iej0) 



120 L. L. Stachô : A projection principle 

where Mx and are the Moebius- and co-Moebius transformations 

nsn - C + t a n h ( t ) - 0 ~ ( t a n h (T))2}1/2 ( c u m n ( 1 8 ) M = l + { tanh (T) ' * = 1+C tanh (r) ICI < !)• 

Substituting (17') into (16"), we obtain 

4 - f ? = [ - 2 2 y i i Q i M U t i ] ^ 

at l€Jf( | 

whose solution is given by 
(17") f ? = exp [ - 2 2 yu6i fMeiZ(Q dr]jf = 

L 0 J 

= [ n Mtt,{Q*y<,-\jf ( j € J \ S J . 
i€*o 

The fact that the right hand side in (17") makes sense, is guaranteed by Lemma 3.14 
(ii). Fortunately, by Lemma 3.14 (i) and (17'), 

[Aut B]{0} = Bf\E0 = { 2 0 ^ A, s 1, idJ0 and 

[i~Wc0{SJ} = { 2 wei(0)c,: e£-R+, c^dBiH;) and 
i i * 0 

[i - k,]€c0(S0)} = {exp [/1-«- c + ( / , / )](0):c6¿0} 

where c0(i/0) = {./0—C functions vanishing at infinity}. A classical theorem 
of Cartan asserts that the relations £/6 Aut B and U(0)—0 entail the line-
arity of U. Thus given Fd Aut B, if we choose the vector cdE0 so that the automor-
phism G=e\p[B3f>-+—c+q(-c){f,f)] satisfies G(0) = F_ 1(0) then the automor-
phism U=FoG is necessarily linear, i.e. we have Fd U• exp [f^-c+qc(f,f)] for 
suitable cdE0 and linear ¿-unitary U. Hence we arrive at the following characteri-
zation of Aut JB: 

3.16. Theo rem. Let E denote a minimal atomic Banach lattice. The space Eis 
spanned by a family {Ht: id J ) of its pairwise lattice-orthogonal Hilbertian projection 
bands such that 

(i) the linear members of Auto B(E) map B(Ht) onto themselve (\jidJ), 
(ii) conversely, if for any index id J , U-, is an H ¡-unitary operator then 0 E/,|B(£)€ 

£ A u t o £ ( £ ) . 
Furthermore there exists a matrix (y;y);, and an index subfamily 

cuch that 
(iii ; F0( =C[A«t P jF)] {0})= © co H„ 
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(iv) O^fij^l for all yu=— for all y y = 0 whenever 

or i and j are distinct elements of </0. 
(v) A mapping F: B(E)—E belongs to Aut0 B(E) if and only i f , by denoting 

the band projection onto Hi by Ph we have 

PiF(J) = C/i{Mei((Pi/|c?))c? + Me
J;((P i/ |c?))[/> ;/-(P f/ |c?)c?]} J0), 

P j F ( f ) = { e x p f 2 yijeiMeiZ{(PM)dx\UjPjf (j€S\SJ 

for suitable Hj-unitary operators Uj (j£ J ) , unit vectors (id<f0) and a func-
tion [./„3ii—-Qi] assuming values in R+ and vanishing at infinity, respectively (the 
transformations MQ l Mjt are those defined in (18)J. 

4. Appendix 
Linear finite dimensional tensor unit ball automorphisms 

Throughout this section H1, ..., H„ are fixed finite dimensional Hilbert spaces. 
We are aimed to describe the structure of the linear unitary operators in the space 
E=Hi®...®Hn. 

We shall use the notations B=B(E), B*=B{E*), 

K= {F£dB: 3\4><idB* <F, <P> = 1}, 

K* = {<P£dB*: 3F£K (F, 3>> = 1}. 

4.1. L e m m a . £ * = {<5Bi e^dBiHJ,..., e„£dB(H„)}. 

P r o o f . Since dim B is compact, thus for any «-linear functional 
FedB, one can find e^dB^HJ, ..., e„£dB(H„) with F(elr ..., en) = 1. Hence 
K*(z{8ei e : ej£dB(Hj)}. On the other hand, every ¿-unitary operator maps 

K onto itself and therefore also 

(19) U*K* = K* for all ¿-unitary operators. 

From the compactness of B it follows K^Q (indeed: for any smooth norm 
||-111 on E, ®7i{F£dB: ll/H^HGHi \/G£dB}aK) whence That is, for some 
unit vectors e%Hn we have 8eo eo£K*. Now from (19) we obtain 
8V eo v eo=(U1®...<giUn)*5eo eo£K* whenever the Us-s are /^-unitary 
operators". Thus {<5̂  ^ ej£dB(Hj)}z>K*. 

4.2. L e m m a . Let 9n and 0=8hi hn where 
^ f j i gj>hj€Hj(j=\, ...,«) and assume $ + ¥ = Then there exists k such that 

for each j^k we have fjWgj (i.e. f} and gj are linearly dependent). 
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P r o o f . The statement holds obviously if for some index m, f j \ \hj for all 
or f j ] ] g j for all 7V m. In the contrary case f k X g k and fmXhm for some pair of 
indices k^m. We may then suppose k=1 and m=2. First we show that in this 
case we have Kxcf . Indeed: from h x x _/j it follows that introducing the tensor 

where fts^-ll/iir'teiL/D/i the relations (£, $) = (£, 0) = 
= 0 ^ ( i ? , f ) hold. One can see in the same manner that h2}fg2. Since hxXfx, 
there exists ux£Hx with f1±u1%h1 and since h2tfg2 one can find u2£H2 

with g2 _L u2 i h2. But then the tensor T=ux <8» u2 <g> h3 <g>... <g) hn satisfies (T, 4>) = 
=(T,W)=O*(T,0) which is impossible. 

4.3. P r o p o s i t i o n . Set 7y = dim Hj ( / = 1 , ..., n) and let Ue^C(E, E) be fixed 
so that i/|B€ Au^ B. Then one can choose Hj-unitary operators Uj such that U= 
= U1<gi...<8>Un. 

P r o o f . It is enough to prove the statement only for ^-unitary operators lying 
in a suitable neighbourhood of idE as it is well-known (see e.g. [6]). 

To do this, fix £ > 0 such that the funct ional <P=Se € , <p=<5; ~ , 
3*=6>fi f n , yn (££*) fulfil 

(20) 3k ek±ek,/k±fk and Vj * k ej\\gj, f j \ \ f j 

whenever we have 

(21) 4>-$,V-¥£K*,\\&-$\\ =\\Y-¥\\ = p. and H ^ - S l , H ^ - ^ H < £, 

(22) \\ej\\ = \\Sj\\ = \\fj\\ = ||/,|| =1 (J = 1, ..., n). 

A value £ > 0 with the above properties in fact exists: Otherwise there would 
be a sequence <Pm=deT c , $m=5-eT fm=8fT 9m=Sjm /» (m = 

= 1, 2 , . . . ) satisfying (21), (22) for e = — but without property (20). For a suitable 
m 

index subsequence {ms}s and for some unit vectors ej, ij, fi, f} we have e™*->-ej, 
e j - ~ e j , f j u - * f j , f j

m ' ^ f j ( j - « > , / = 1 , ...,«). Then the limits satisfy 
$ = w , $ = 9 , || <2> - $ || = || ¥ - ^ | | = i l and the contrary of (20). At the same time 
we also have <P — $ , T—W^K* because of the closedness of K*. Thus by Lemma 
4.2, 3lkoVj*ko ejWj. Since \\<P-$\\ = f 2 , hence | k t o - e J = / 2 i.e. eko±eko. 
Similarly 3\S0 f(t±.fe and f j W f j - Since (20) does not hold, necessarily 
k0?±S0. However the relations $ = !F, entail k0=£0. 

Now assume \\U—id£||<£. Fix an orthonormed basis ( e j : / = 1, ..., rk} in 
Hk (k=1, ..., n), respectively and let us write the functional U*5ei e™ in the form 
U*5e 1 e j = S f i yn (cf. Lemma 4.1.) where f \ is a fixed unit vector in Hk (k = 
= 1, ...,77). It follows from the choice of e that for arbitrary index k, the singleton 
{/J} can be continued to an orthonormed basis { /* :7=1, • ••,/*} of Hk in a unique 



A projection principle 123 

way so that we have 

U*Se\ ei"1^.«?*1 = S f l fi'1 fkj.fi + l fl U = •••' 
k „ 

Set / 0 = {(1, 1,7, 1 , . . . , l ) : / c = l , ...,n;j=l, ...,rk}, / 1 = X 0 » •••> r*} a n d 

let a family Ial^ of multiindices be called thick if V»€/, V»'€/1 i'^i=>i'£l. 
Observe that for any multiindex / = ( / l 5 ..., /„)6h there exists a unique complex 

number which we shall denote by such that |jif| = l and 

(23) U*dei e» = ^ < 5 , 1 r . 
' en e '„ ' f'i K 

Indeed: If not, we can find a minimal (w.r.t. /€/1 not satisfying (23). Now 
U*S i en =8h h for some vectors hk£dB(Hk) (k=l, ..., n). Since obviously 

'1''"' '„ 1 n 

/<t/0, for arbitrarily fixed k, there is k^k with i j ^ 1. Consider the multiindex 7 
defined by 7',=[/.if i ^ k , 1 if (=k\ (<f=1, . . . , n). By the minimality of /, U*8ei en = H Jn 

=x,Sfi p, . Since U*\ <5.i „„ -) <5_i .„ I £K*, using Lemma 4.2 1 JH--'in Vj/2 <i e>» f i eh--eJn) 
we can see i.e. hk—akf^ for suitable otjZdA (k=\, ..., n). 

Then let I be a maximal thick subset of such that / p / o and x,-=l V'€/. 
(Remark: x~l \//6/0-) We shall show that necessarily 1=1^. Hence and from the 
linearity of the mapping U, (23) immediately yields the statement of the lemma. 

Assume / 1 \ / 7 i 0 . Le t7 be a minimal element of Observation: V'€A 
7 V / ^ 7 =>•/€/• I.e. the family / ' = / U {7} is thick. Therefore it suffices to prove X j = l 
(which contradicts our assumption). By writing / = { l , 7 ' i } X . . . X {1,7„}, 

= = /? . 

= * i b f \ i n \ 2 { J f ' . \ /"„ = ( K j - W f ) , / ;n+«5 / i+/i1 /;+/"„. 

However, the function U*<5ej+e} c » + c j has the form <5̂  whence directly 

Xj= 1. 

4.4. C o r o l l a r y . The vector fields V being tangent to dB(E) are exactly those of 
the form 

n 
V = i- 2^idHl®...®idHj_l®Aj®idHj+1®...®i<iHn 

where each A} is a self-adjoint H j -operator. 

s a self-
d 

exp (it • AJ eg)... (g) exp (it • A„). 

P r o o f . For every /7,--operator U} there is a self-adjoint Aj with Uj=exp (i-Aj). 
d 

Thus by Proposition 4.3, V has the form V=— 
dt t 
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Generalized resolvents of contractions 

H. LANGER and B. TEXTORIUS 

1. Let T be a contraction (that is a linear operator of norm ^ 1), defined on a 
closed subspace X ) ( r ) ( ^ § ) of some Hilbert space § and with values in By 
a contraction extension (c.e.) of T we mean an extension T of T to some Hilbert 
space which is also a contraction. If the c.e. f is called canonical. 

Let T on § be a c.e. of T, and denote by P the orthogonal projector of § onto 
The function 

which is defined and holomorphic on the open unit disc D: = {|z| < 1} and whose values 
are bounded linear operators in is called a generalized resolvent of T (generated 
by T). The generalized resolvent Rz is called canonical if T=T. 

It is the aim of this note to give a description of all generalized resolvents of a 
nondensely defined contraction T in a Hilbert space £>. This result is an analogue of 
the formula for the generalized resolvents of an isometric operator, proved in [1] 
for equal and in [2] (see also [3]) for arbitrary defect numbers.* In their turn these 
results have their origin in the classical formula of M . G . KRETN on the generalized 
resolvents of an hermitian operator with equal defect numbers ([4], [5]). 

2. Let T be as above. By T we denote the c.e. of T given by 

D: = (I—T*f)112, = (I-TT*)1'2,®: = «(£>), = «(¿»J. 

The characteristic function of f* is denoted by X(z) (see [6, Chap. VI]): 

X(z): = (-T*-zDRzDJ\^, RM: = (zt-I)~\ z£D. 

Received October 20, 1980. 

* In these papers the more general case of an isometric operator in a nx -space (Pontijagin 
space with index x) has been considered. 

(1) z-~Rz:=P(zT-I)-\ (|z| < 1) 

Tx jc6 D ( T ) , 

.0 x € S C O x , 
and set 
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It is defined and holomorphic on the open unit disc D and its values are contractions, 
mapping ^ into S>, see [6, chap. VI]. By JT (or, sometimes, more explicitly by 
Jtr(T>(T)±, we denote the set of all functions G(z), defined and holomorphic 
on D and whose values are contractions from S(r)-1- into by J f 0 (or jr0(T>(T)x, 
© J ) the subset of J f , consisting of all G£jf which are independent of z. Finally, 
r is the orthogonal projector of § onto S ( T ) X . 

T h e o r e m . Let T be a contraction in the Hilbert space § with a closed domain 
®(2rV£>- The formula 

(2) Rz = Rz-zR1DjfG(z)(l-rX(z)G(z))-1rDRz (|z| < 1) 

establishes a 1,1-correspondence between the set of all generalized resolvents Rz of 
T and all <j£<3f. The generalized resolvent R. is canonical if and only if GdXi,. 

P r o o f , a) Let f be a canonical c.e. of T. We define an operator F from 
D(r)-1- into § by the formula Fx: = Tx (xe l^T) - 1 ) . Then we have 

TT*+FF* sS / or FF* ii / - TT* - D%. 

Therefore the operator F1:=F*D~1 is a contraction, which is densely defined on 
and with values in ^(T)1. The adjoint of its closure G:=(¥})* belongs to J f f 0 . 

Observing fr=0 we find with Rz:=(zf-I)~1: 

(3) Rz-Rz = zRz(T-f)Rz = zRz(T — T)rRz = -zRzFrRz. 
It follows 

Rz = (/+ zRzFT)~1RZ, TRZ = (I+zrRzF)-1rRz, 

and (3) can be written as 

Rz-Rz=-zkzF(I+zrRzF)-1rRz=-zRxDit:G(r+zrR;D*G)-1rRz. 

Furthermore, 
(4) rD = T, r f * = 0 
and we get 

(5) = - z R z D ^ G { I + z r D R z D ^ G ) - 1 r R 1 = 

= -zRiDjfG(l-r(X{z)-f*)G)~1rRz = 

= -zRzD^G(I-rX(z)G)-1rRz=-zRzD*G(l-rX(z)G)~1rDRz. 

b) Let now T be an arbitrary (not necessarily canonical) c.e. of T in 9) z> Rz 

the corresponding generalized resolvent. We shall prove the following statement: 
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(i) If z is fixed in D, then the operator R,1 exists and 

(6) + 

is a canonical c.e. of T. 

Indeed, Rzx—0 for some x^G, implies ((zf— / ) _ 1 x , x) = 0 and 
with U: = ( z f - I ) ~ l x we get 

0 = ((zT—I)G, ti) or | | a f = z(Tu,0), 

hence tt=0 as | z | < l and | | r | | ^1 , a contradiction. In the same way it follows 
that the inverse of R* exists, therefore the range of Rz is dense in 

In order to see that Tz is a contraction we first show that the operator Sz: = 
=R~1+I ( | z |< 1) is a contraction, that is, 

(7) H P - ^ + x l l 2 | |x||2 or | | P 2 - 1 x | | 2 + 2 R e ( J R - 1 x , J c ) ^ 0 

holds for arbitrary xC9?(Pz). Putting R~1x=y, (zT—I)~1y=v we have 

| | ^ - 1 ^ l l 2 +2Re( i? - 1 x , x) = | | j | | 2 + 2 R e ( j , (zT-I)-^y) = 

= ||(zT— 7)i;||2 + 2Re ( (z f — I)v, v) = \\zf 0| |2-| |t; | |2 ^ 0, 

and (7) follows. Further, for an arbitrary pair x, ||x|[ = ||j | | = l , the function 

f{z): = (Szx,y) (|z| < 1) 

is a holomorphic function of modulus which vanishes at z = 0 . By Schwarz' 

lemma, — / ( z ) is of modulus s 1 in D, hence also T , = — Sz is a contraction. Finally, 
z z 

if we find 

C T z - T ) x = — R-HI+RZ-zRZT)* = —R;1P(zT-r)-1(zf-zT)x = 0, z z 

therefore Tz is an extension of T. The statement (i) is proved. 
Now the results of a) can be applied to the canonical c.e. Tz of T. Observing 

the relation ( z T z — I ) ~ 1 = R , , the representation (5) gives 

Rz-Rz =-zRzD^G(z)(l-rX(z)G(z))~irDRz, 

where G ( z ) : = ( i ^ ) ) * , F^zY^FizfDZ1 and F(z):=Tz\UT)±. As Tz is ho-
lomorphic in D , the function G(z) belongs to X. Therefore, an arbitrary general-
ized resolvent of T admits a representation (2) with some GdJf. 

c) Let now, conversely, a function G d J f be given. According to [6, Chap. V, 
Prop. 2.1] its domain T)(T)X and range ^ decompose as 

D(r)-1- = % = X resp., 
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such that G°(z):=G(z)|s0 is a purely contractive holomorphic function (see [6, 
Chap. V, 2.2], whose values are operators from X>° into 9)%, and G'{z):=G{z)\t>, 
is a unitary operator from T>' onto independent of z, | z |< 1. 

The purely contractive holomorphic function G°(z) is the characteristic function 
of some contraction S in a Hilbert space that is, £>° and S® can be identified 
with the subspaces © a=5R(D s) and = 9t(Z)s*) resp. of and we have 

G°(z) = (-S— zDs* (zS* — / ) D s ) 13S (M < 1). 

Thus, X)° and can be considered as subspaces of § as well as of . Besides f , 
projecting § orthogonally onto T>(T)L, we introduce the orthogonal projectors 
r ° , f , and r'^ in § onto D°, 2>l and ^ respectively and the orthogonal 
projectors P and P* onto Q)s and 3>s+ in 

Now an extension Tof T, acting in the space § f f i § i , will be defined as follows: 
With respect to the decomposition 

5 © § ! = D ( r ) © S ' 

of the initial space it has the matrix representation 

m f {T(\~r) DJ'*G' -D*P,S D^rlDs*) 
( 8 ) 0 0 Ds S* )• 

Clearly, T is an extension of T. In order to see that T is contractive we consider the 
operator 7T*=(T i V ) u = 1 > 2 in § © § i . Observing 

' ( 1 -r)T* 0 
0 

-PS*r%D„ Ds 

s J 
and the fact that G'* maps ^ unitarily onto Î ) ' : we find 

T n = T(I-r)f*+D*nD*+D}„P*SPS*rlD*+D+nD%tnD„ 

= T(I—r)T*-\-Difr'ifDif
JrD^r%DJf ^ TT*+D% = 7, 

r12 = -D+P+SDs+D^nDs*S = D+PJ-SDs+Ds,S) = 0, 

tî2=Dl + S*S = I. 

Therefore, f is a c.e. of T. Next we have to calculate the generalized resolvent of T, 
generated by T. In order to do this we observe the following proposition, whose 
simple proof will be left to the reader. 
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(ii) If the c.e. f of T, acting in has the matrix form 

HI % 
then we have 

P i z f - I ) ' 1 ^ = (zf-I-z^CizA-I)-^)-1. 

We apply this proposition to the operator f in (8). With respect to the decom-
position § © § i of initial and range space f can be written as 

f _(f+D+nGT'-D*P*Sr° D*nDs.) 
{ Dsr° S* ) 

and we get for the corresponding generalized resolvent 

(9) Rz = (zT— 1+ zD^r'^G'T' — zD^P^Sr° — z2D^r%Ds*(zS* — I)~1DsT0)= 

= {zT — /.+ zD^ (Ti G'T' — P^Sr0 — zr%Ds* (zS* — I) _1Z>s*r°) = 

= (zf-I+zD^nG'r' + nG°(z) r 0)) -1 = (zf — 1+ zD% G ( z ) r ) - 1 = 

= Rz(l+ zDtG(z)rRz)~1 = Rz-zRzDJfG(z)(l-rX(z)G(z))~^rRz. 

The last equality follows easily if one observes the relation (4) and 

rX(x)G(z) =-zrDRzDj,G(z). 

As the formula (2) can be written as 

Rz = {zf-I+zD*G(z)r)~i 

(see (9)), the correspondence between the generalized resolvents Rz of T and the 
functions is bijective. 

d) It remains to prove the last statement of the theorem. If G 0 £J f 0 is given we 
consider the operator T : 

(10) TX=\TX X€T>(T) 

Then f is an extension of T and, moreover, we have 

TF* = frf*+D+G0G$D ^ TT*+D% = I, 

hence f is a c.e. of T. With the notation of part a) of the proof we find 

F ' Z>*G0, F± -- GQ and G = G0. 

That is, the generalized resolvent of T, generated by f from (10), is given by (2) 
with G = G 0 . The theorem is proved. 

9 
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R e m a r k 1. In the case of an isometric operator T, the unitary extension f , 
generating a given generalized resolvent of T, is uniquely determined (up to iso-
morphisms) if some minimality condition is imposed on T. This is not true in the situ-
ation considered here. E.g., if G6 J f 0 and G is not a unitary constant, in the proof 
of the Theorem (parts c) and d)) two different extensions of T, which generate the 
same generalized resolvent, have been given. 

R e m a r k 2. With the notation in the proof of the theorem, the operator 

r : = ( f + Z ) + G T ' ) k r ) ® » , 

is a contraction in § which extends T. Evidently, the operator f in (8) is a c.e. of T'. 
Thus the generalized resolvent Rz of T in (9) is also a generalized resolvent of T'. 
That is, there exists a function H£ Jf(X>0, such that we have 

Rz = R1<z-zRUzD^ H(Z) (L-X, (z)H(zj) "I N Ru z 

(kltZ: = (zT'-I)-\Dlf*:=(I-T'(fyyi2, =St{DltJ and Xx is the corre-
sponding characteristic function). It is not hard to see that the functions G° and 
H are connected by the relation 

D1,,H{z)=D*G°(z) (|z| < 1). 

We mention that the construction of the operator f in part c) of the proof can 
also be used if G decomposes as 

G(z) = Gl®Gi{z) (|z| < 1) 

where Gx€ JT0(®i. G 2 € ( ® ( 7 , ) - L = D 1 ©D 2 , and 
G2 is purely contractive. Then the above remark holds also true for the operator 

Ti- = ( 7 ' + ^ ) * G 1 r 1 ) | i , ( r ) e i ) i 

(r1 orthogonal projector onto X^) instead of T'. 

R e m a r k 3. If f is a noncanonical c.e. of T in some Hilbert space 
and if 

Ml 3 
with respect to the decomposition § = § © £ , then the operator function Tz in (6) 
can be written as 

Tz = f+zC(I— zA) 

Hence T1/z is the transfer function of the node (A, B, C, f , 2, Jrj) in the sense of [7]. 
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An analogue of the theorem above can be formulated for a dissipative operator. 
In this form it has applications to the spectral theory of canonical differential opera-
tors, which will be considered elsewhere. 

Added in proof. An extension of the Theorem to dual pairs of contractions 
will appear in : Proceedings of the 6 th Conference on Operator Theory in Timisoara 
and Herculane, 1981, Birkhâuser (Basel—Boston—Stuttgart, 1982). 
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A note on hereditary radicals 

EDMUND R. PUCZYLOWSKI 

All rings in this paper are associative. Fundamental definitions and properties 
of radicals may be found in [4]. It is known ([3]) that to any radical S there exist 
a unique maximal hereditary radical hs and a unique maximal left hereditary radical 
lhs contained in S. Of course hsQS= {A\ any ideal of A is in 5} and lhsQ§={A\ 
any left ideal of A is in <S}. It is easy to see that S and S are radicals and S is here-
ditary (left hereditary) if and only if S=S (S=S). The radicals S and S were in-
troduced in [2] to investigate hereditariness of strong and similar radicals. Obviously 

hsQSQS and lhsQSQ S. In the note we prove that hs=S and lhs=S, and that there 
exists a radical S such that hs^S and lhs^S. 

To denote that I is an ideal (left ideal) of a ring A we will write IcA (I<A). 

L e m m a 1. If A is an S-radical ring and for some integer n, An+i=0 then 
An+1£S. 

P r o o f . It is easy to see that for any ad A" the mapping f,:A-*An+1 defined 
by fa(pc)=ax is a ring homomorphism. But f,(A)=aA-cAn+1. Thus aA£S and 
A"+1= 2 aA£S. 

aZA-

P r o p o s i t i o n 1. If S is a radical such that any zero-S-ring is in S then S=hs. 

P r o o f . Let J<\I^A. If J* is the ideal of A generated by J and A£S then 
J* and (J*)3 are in S. Thus by Lemma 1 (J*f£S. Now the assumption implies 
J + (J*)2£S. Since, by Andrunakievich lemma, (J*)3QJ, similarly, we obtain that 
JC\(J*)2£S. This and the fact that ( J + ( J * f ) / ( / ( ( / * f H J ) implies JtS. 
Thus if A€S then A£S, so S = S=hs. 

Of course for any radical S the radical S satisfies the assumption of Proposition 
1, so we have 

Received July 22, 1980, and in revised form, May 5, 1981. 
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C o r o l l a r y 1. For any radical S, hs=S. 

R e m a r k . It is easy to check ([1]) that for any radical S, hs=aS={A\ every 
accessible subring of A is in 5}. Thus, by Corollary 1, aS=S for any radical S. 

Now we prove 

P r o p o s i t i o n 2. For any radical S, lhs=S. 

P r o o f . If K^L~=A then LK<A and LK<\K. Thus if A€§ then I=LKe§. 

Now if R^zK then / ? + / < £ and, since A€S, R+I£S. Also RC\I£S as /?("!/</ 
and /65 . These and the fact that (R+I)/I^R/(RCM) imply R£S. Hence if 

A£S then LeS, so the radical S is left hereditary. This and the fact that lhsQS 
ends the proof. 

E x a m p l e . Let Q be the field of rational numbers, Z the ring of integers and R 

the ring of all 2x2-matrices of the form where a, be Q. Then beQ^ 

is an ideal of R and o)| a n i d e a l o f L e t s b e t h e l ° w e r radical deter-

mined by {/?, /}. Since R and I are divisible rings, all S-rings are divisible. Thus 

JiS and R$S. Since R£§' and SQS therefore S^S and 

The above example shows that generally lhs*S. In the following proposition 
we will describe some radicals for which lhs=§. 

P r o p o s i t i o n 3. For a radical S we have lhs = S, provided a) S contains all 
zero-rings, or b) L<A and A£S imply L = AL. 

P r o o f . Let A^S and K<L<A. Since LK<A, we have LK^S. But LK<iK 
and ( K / L K f = 0 , so if 5" satisfies a) then K£S. If S satisfies b) then K=LK£S 
as K-<L and LdS. Thus in both cases K(iS. Inconsequence LdS and § is left 
hereditary. Hence lhs = §. 

Now we will show that there exist non-hereditary radicals satisfying condition 
b) of the proposition above. Let us define for any class M of rings the class Mx= 
{A£M\ if L^A then AL=L). We have 

P r o p o s i t i o n 4. If a class S is radical then so is Sl. 

P r o o f . Certainly the class Sx is homomorphically closed and any ring which 
is the sum of a chain of .S^-ideals is in S1. So it suffices to prove that if 1<\A and 
I, All are in then A is in St. Let L^A. Then I(LC\I)=LC\I. Also 
(A/I)(<iL+/)//)=(£+/)//, so AL+I=L+I. Thus if l£L then l=m+i for some 
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m€AL, i£l. But since ALQL, i£LC\I. Thus the equality I(LC\I)=LC]I 
implies i£AL and KAL. Hence L=AL and the result follows. 

C o r o l l a r y 2. Let S be the lower radical determined by a class M. If M=M1 

then S=Sj,. 

P r o o f . Since MQS therefore Af=Af1g.S'1 . Now by Proposition 4, St is a 
radical class containing M, so S ^ S i -

Let M= {/?}, where R is the ring of the Example. Then M=M1 and by Corol-
lary 2 the lower radical S determined by M satisfies condition b) of Proposition 3. 
It is easy to see that any non-zero ¿"-ring contains a non-zero idempotent element. 
Thus S is not hereditary as R contains a non-zero nilpotent ideal. 
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Approximate decompositions of certain contractions 

PEI Y U A N WU 

In this paper we obtain an approximate decomposition-for contractions the 
outer factors of whose characteristic functions admit scalar multiples. We show that 
such a contraction is quasi-similar to the direct sum of its C.X and C.0 parts. This 
class of operators includes, among other things, weak contractions and Cj. contrac-
tions with at least one defect index finite. In particular, our result generalizes the 
C , - C u decomposition for weak contractions. Applying this to C1. contractions, 
we obtain that any Cj. contraction with at least one defect index finite is completely 
injection-similar to an isometry. As consequences, we are able to characterize, among 
Cx. contractions, those which are cyclic, have commutative commutants or satisfy 
the double commutant property. 

In Section 1 below we first fix the notation and review some basic facts needed 
in the subsequent discussions. Then in Section 2 we prove the approximate decom-
position and some of its consequences. In Section 3 we restrict ourselves to CX. 
contractions. 

1. Preliminaries. In this paper all the operators are acting on complex, separable 
Hilbert spaces. We will use extensively the contraction theory of S Z . - N A G Y and 
FOIA§. The main reference is their book [8]. 

Let T be a contraction on the Hilbert space H. Denote by D r = r a n (I-T*T)1/2 

and D r * = ran (/— 7T*) l / 2 the defect spaces and d x = r a n k (I-T*T)U* and dTt = 
= rank (/— TT*)LLZ the defect indices of T. T is completely non-unitary (c.n.u.) if 
there exists no non-trivial reducing subspace on which T is unitary. T is of class Ca . 
(resp. C.i) if Tnx++ 0 (resp. T*"X-H- 0) for any X^O; T is of class C0. (resp. C.G) 
if T"x—Q (resp. T*"x-*0) for any x. C^=CA.F\C.P for a , j ? = 0 , 1 . Let T= 

= be the canonical triangulation of type j ^ 1 * j on H — H ^ H ^ . If 

T is c.n.u., then this triangulation corresponds to the canonical factorization 0T= 

Received February 25, 1981. 
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= 026>! of the characteristic function {® r , £>T,, 0T(A)} of T, where {®T, g , 
@i(A)} and {5, 0 2 W } are the outer and inner factors of 0T, respectively. 
Moreover, the characteristic functions of 7\ and T2 are the purely contractive parts 
of and 02, respectively. For c.n.u. T, we will consider its functional model, that is, 
consider T being defined on the space H=[H2(1>Tt)®ATL2(X>T)]Q {0Tw®ATw: 

DT)} by T(J®g)=P(e"f®ei'g), where AT=(I-0*T0T)112 and P denotes 
the (orthogonal) projection onto H. Then and H2 can be represented as 

= {02u®v: u£H2(%), j;6^TL2(Dr)}© {0Tw®ATw: w£H2(DT)} 
and 

H2 = [H\2>Tt)Q02H*(m®{0}. 

A contractive analytic function (D, X>+, 0(X)} is said to admit the scalar mul-
tiple <5 (A) if <5 (/) ^ 0 is a scalar-valued analytic function and there exists a contrac-
tive analytic function {I),, £>, i2(A)} such that Q(X)0().)=d(X)Iv and 0(X)Q(X) = 
=S(X)Ix>t for all X in D={X: |A|<1}. 

For an arbitrary operator T on H, let {T}', {T}" and Alg T denote its commu-
tant, double commutant and the weakly closed algebra generated by T and I. Let 
Lat T, Lat "T and Hyperlat T denote the lattices of invariant subspaces, bi-invariant 
subspaces and hyperinvariant subspaces of T, respectively. Let pT denote the mul-
tiplicity of T, that is, the least cardinal number of a subset K of H for which H= 
= V T"K. T is cyclic if ¿iT= 1. For operators 7 \ and T2 on H1 and H2, respectively, 

nSO 

Ti<T2 (resp. 7 \ -<T 2 ) denotes that there exists an injection X: H1^H2 (resp. an 
injection X: H1—H2 with dense range, called quasi-affinity) such that T2X=XT1. 

ci 
TX<T2 denotes that there exists a family {A^} of injections Xa\ H1-*H2 such that 
H2 = \J XaH1 and T2Xa=XaTx for each a. Tx and T2 are quasi-similar (Tx ~ T 2 ) if 

<* i i i 
TX<T2 and T2<Tt\ they are injection-similar ( 7 \ - T 2 ) if TX<T2 and T2<TX-, 

ci ci ci 
they are completely injection-similar (T1 - T2) if T1<T2andT2-<T1. Note that 
Ti-<T2 implies that 

2. Approximate decomposition. We start with the following major result. 
[T Xl 

Q1 T\ H=Hi®H2 

be the canonical triangulation of type j ^ 1 ^ j. If the characteristic function of 7\ 

admits a scalar multiple, then T~TX®T2. Moreover, if T is c.n.u., then there exist 
quasi-affinities Y: H-*H1@H2 and Z.HX@H2-~H which intertwine T and Tr@T2 

and such that YZ=8(TX®T2) and ZY=5(T) for some outer function <5. 
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P r o o f . Let T—U®T' be decomposed as the direct sum of a unitary opera-

tor U and a c.n.u. contraction T'. Let T' = 1 *,J be of type j ^ ' 1 * j . Then 

U 0 0 
T = 0 T[ * 

0 0 T'2 

where ^ is of class C . t and T2 is of class C.0 . Hence by the uniqueness of the 

canonical triangulation, we have T1—U®T'1 and T2=T2 (cf. [8], p. 73). Note that 
the characteristic functions of Tx and T[ coincide. Therefore the characteristic func-
tion of T[ also admits a scalar multiple. If we can show that T' — Ti®T2, then T— 
= U® T' ~ U® T[ © T2 = 7 \ © T2. Hence without loss of generality, we may assume that 
T is c.n.u. As remarked before, we can consider the functional model of T. Let <5 
be an outer scalar multiple of 0X (cf. [8], p. 217) and let {5," & W } be a contractive 
analytic function such that Q01—5lts and 01(2=<>/%. Define the operator S: 
H2-Hx by S(w©O) = P(O©(-zl r

T i20*w)) for u®0£H2. Note that 
Q®(-ATQ0*2u) is orthogonal to H2 and therefore i , ( 0 © ( — A T i 2 0 2 u ) ) is indeed 
in H j . 

We first check that 7 ,
1S-ST2=<5(7'1)Ar. Note that for u®0£H2, we have 

r 2 ( « © 0 ) = (e" U®O)-(0tW®AtW)-(02U'®V') = 

= (e"u-0Tw-02u')®(-ATw-v') = (e" u — 0Tw — @ 2 u ' ) © 0 

for some w£H2(T>T) and 02u'Qv'^H^, where the last equality follows from the 
fact that T2(U®0)£H2. Moreover, X(u®O)=02u'®v'. Hence 

{ T j S - S T M u ® 0) = 

= T1P(O®(—ATQ02u))—S(<iei'u — 0Tw — 02u,)®O) = 

= P(O®(-eitATQ0iu))-P(O®(-ATQ0Z(e"u-0Tw-02u'))) = 

= P(O®(-ATQ0t0Tw-ATQ0%02u')) = P(0®(-AT5w-ATQu')). 

On the other hand, 

¿(r^AXuffiO) = d(T1)(02u'®v') = P(6Q2u'®dv') = P(0TQu'®5v') = 

= ^ ( 0 — i2u'))-

Since -ATw-v'=Q, we obtain that T^-ST^SiT^X as asserted. 

Let F = tf-tfi©//, and H1®HA^H, where V 

is the operator which appears in the triangulation of S(T) with respect to H1®H2: 
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= JQ^1^ ¿(7^] - coroplete the proof in several steps. In each step the first 

statement is proved. 
(i) Y T H T & T J Y . 

RD(TJ 5 1 ^ XI RSVJT! ¿(TJX+STII 
Y T = l o /Jlo r j - l 0 r2 J = 

r T ^ T J 7 \ 5 i r7 \ O i f d i T J 5 l 

= 1 o r2J = lo r j l o = 
(ii) Z(T1®T2) = TZ. S ince 

B{T)T - Q ¿ ( j y J [ 0 r j ~ I 0 «5{T2)T2 ] ~ 

= T M T ) = F 1 P 5 ^ V 1 = \ T l H T d T i V + X S<-T*>] 
K ) l o r j l o 8(T2) J I 0 T25(T2) J ' 

we have <5 (TL)X+ VT2=T1V+X8 (T2). F rom TJ.S-ST^DIT^X we obta in tha t 
TXS—ST2+VT2=T1V+XD (T2). A simple computation using this relation shows 
t h a t Z(T1(BT2) = TZ. 

(iii) ZY=5(T). 

r / F - S i r ^ ) 5 1 r 5 { T l ) S + K - 5 1 

Z F = l o 5(T2)\ I 0 L\ = I 0 D(T2) J = ^ 

(iv) yZ=<5(7,
1®7,

2). Since 

rfOV) K - S i r s c r o ¿ ( r 1 ) ( K - 5 ) + S 5 ( r 2 ) i 
1 0 / J l o 5(T2)\ ~ I 0 D(T2) J ' 

to complete the proof, it suffices to show that ¿(7 ,
1 ) (F-5)+5<5(7 ,

2 )=0. Note that 
YT=(T1ET2)Y implies that 7<5(r)=<5(7 ,

1©7 ,
2)r. But 

Y 5 { T ) = [ 0 / J l o <5(7^ = I 0 ¿(TV) J 

and 

IT i ( y r *J-rr » ¿ ( / y J L 0 / J L O ¿ ( l y 

We conclude that 5 (7\)K+ 5<5 (r2)=<5 (7\)5 as asserted. 
(v) Y and Z are quasi-affinities. Since 5 is outer, <5(7\) and S(T2) are quasi-af-

finities (cf. [8], p. 118). It can be easily checked that Y and Z are also quasi-affinities. 
It is interesting to contrast the preceding result with [14], Theorem 1, where 

the problem when T is similar to TI®T2 was considered. Here we make a weaker 
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assumption to obtain a (necessarily) weaker conclusion. Indeed, the intertwining 
operators Y and Z constructed here are closely related to the invertible intertwining 
operator appearing in the proof of [14], Theorem 1. 

[T XI 
q 1 be as in Theorem 2.1. Assume that T is 

c.n.u. Then Lat Lat (7 \©r 2 ) , L a t " r ^ L a t " ( 7 \ © r 2 ) and Hyperlat Ts=Hy-
perlat (TxffiTa). 

P r o o f . Let Y and Z be the operators constructed in the proof of Theorem 2.1. 
For K€LatT and Z.€Lat (7\ffir2) , consider the mappings K-YK and L-ZL. 
It is easily checked that they are inverses to each other and preserve the lattice oper-
ations. Hence L a t T s i L a t i r i f f i r a ) . To complete the proof, it suffices to show that 
(i) K£ha.t"T implies that YK£Lat" iTx®T2) and (ii) Hyperlat T implies that 
YKd Hyperlat (T1®T2). Then by a symmetric argument we also obtain that Z.6 
£Lat " ( ^ © T a ) and L£ Hyperlat (T^T^ imply that Z L £ Lat" T and Z L € 
€ Hyperlat T, respectively. 

To prove (i), let S<= {T^T^}". We first check that ZSYe{T}". Indeed, YVZ£ 
6{^i©3"2}' for any Ve {T}'. Hence ZSYVZ=ZYVZS=5(T) VZS=VS (T)ZS= 
— VZ5 (Tx © T2)S—VZSS (Ti © T2) = VZSYZ. It follows that ZSYV=VZSY, 
and therefore ZSY£{T)" as asserted. Since A^Lat" T, we have ZSYKQK. 
Hence YZSYKQYK. But YZSYK= <5(7\©T 2 )SYK=SYS (T)K= SYK. We con-
clude that SYK^YK which shows that iX€Lat" (7\ffiT2). An analogous but 
easier argument than above shows that (ii) is also true. This completes the proof. 

[ T XI 
o r I be 

as in Theorem 2.1. Then there exist bi-
invariant subspaces Kx and K2 of T such that K1\/K2=H, A ^ H A ^ {0}, T\KX is of 
class C u and T\K2 is of class C . 0 . Moreover, Kx and K2 can be chosen such that 
K1=H1 and T\K2~T2. 

P r o o f . As in the proof of Theorem 2.1, we may assume that T is c.n.u. Let Y 
and Z be the operators constructed there, and let Kl—Z(H1 © 0) and K2=Z(0®H2). 
Then Kls /£2£Lat"7\ K2=H and ^1flA:2 = {0} by Corollary 2.2. From the 
definition of Z, it is easily seen that On the other hand, since Z | 0 © / / 2 : 
0®H 2 -»K 2 and Y\K2:K2-0®H2 are quasi-affinities which intertwine OffiT^ 
and T\K2, we have T\K2~T2. Moreover, it is easy to check that in this case T\K2 

must also be of class C . 0 , completing the proof. 

[T> J ' l rQ * 1 

q 1 ^„J is the type [q° J canonical triangulation 
of the contraction T and if the characteristic function of T'2 admits a scalar multiple, 
then, by considering T*, we obtain results analogous to Theorem 2.1 and Corol-
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laries 2.2. and 2.3. Also note that weak contractions and C2 . contractions with dT<<=° 
(cf. Lemma 3.2. below) are among the operators satisfying the assumption of The-
orem 2.1. When applied to weak contractions, Theorem 2.1 yields the following result 
which has been obtained before in [15]. 

C o r o l l a r y 2.4. Let T be a c.n.u. weak contraction and let 7\ and T[ be its C u 

and C0 parts. Then Tx~T®Ti. 

[ T XI f T' X1 
Q1

 r j and T ^ J q 1 j /J be the triangulations of types 

[o' 1 C ] anC^ [o° C ] ' R E S P E C T I V E , Y - ^ ' n c e ^ characteristic functions of Tx 

and T'2 admit scalar multiples (cf. [8], p. 325 and p. 217), by Theorem 2.1 and the 
remark above we have T^T^T-T'^T^. Note that Tx and T'2 are of class C u 

and T2 and T[ are of class C0 , it is routine to check that Tt~T2 and T2~T'X (cf. 
proof of [15], Theorem 1). Hence T~TX®T[ as asserted. 

Note that Corollary 2.2. generalizes the corresponding results for L a t ' T and 
Hyperlat T when T is a c.n.u. weak contraction with finite defect indices (cf. [18], 
Corollary 4.2. and [17], Theorem 3). Indeed, in this case Lat 'Tss La t" (7 \© T2)= 
L a t , / r i ® L a t , T 2 s L a t / T 1 8 L a t ' T i = L a t ' ' ( : r i © r i ) and similarly for Hyperlat T, 
where T[ denotes the C0 part of T. 

As for Corollary 2.3, it generalizes the C 0 —C u decomposition for c.n.u. weak 
contractions (cf. [8], pp. 331—332). To verify this, we have to show that, in the con-
text of Corollary 2.3, if T is a c.n.u. weak contraction, then T\K2 is the C0 part of T. 
Since T\KZ~T2 is of class C0 , we have K2QH[={xeH: T"x^0 as On 
the other hand, since T^TlH'^T^ (cf. proof of Corollary 2.4), we have T\K2~ 

Note that (cf. [8], p. 332). Hence T[ is a weak C0 contraction. 
Let W:H[-*K2 be a quasi-affinity intertwining T[ and T\K2 and let V: 
be the restriction of the identity operator. Then VW is an injection in {T[}'. We 
infer from [1], Corollary 2.8 that VW is a quasi-affinity. It follows that K2=H[ 
whence T\K2 is the C0 part of T. 

3. Cv contractions. In this section we restrict ourselves to contractions with 
at least one defect index finite. We will show that they are completely injection-similar 
to isometries and characterize various algebras of operators associated with them. We 
start with the following lemma. 

L e m m a 3.1. Let T be a c.n.u. Cx. contraction with dT=dT*<°°. Then T is 
of class Cu. 

P r o o f . Since T is of class Cv, its characteristic function {D r , X)^, 0T(A)} 
is a *-outer function. Hence 0T(X)*: X)r has dense range for all A in D (cf. 



Approximate decompositions of contractions 143 

[8], p. 191). We conclude from the assumption dT=dT,< <=° that det 6T^0. By 
[8], Theorem VII. 6. 3 we infer that T is of class Cn. 

L e m m a 3.2. Let T be a C,. contraction with dT<°° and let T= J^1 ^ j 

be of type i^1 * 1. Then Tx and T2 are of classes Cn and C10, respectively. 
LO ^ -oJ 

P r o o f . Obviously, Tx is of class C u . As in the proof of Theorem 2.1, we may 

assume that T isc.n.u.. Let T2 = * j be the triangulation of type ^ J . 

Note that T3 is of class C00. Indeed, since T2 is of class C.0 , we have T*2 = 
rT*n 0 1 = [* 3 T*n\Q s t r o ng1y- 11 follows that rs*n—0 strongly. Hence T3 is of class 

L 4 
C.0 and thus of class C00 . We have 

ï i * * 

T = 0 T3 * 

0 0 T, 

Let r = f J ] with the corresponding regular factorization 0 ^ = 0 3 0 ! , 

where {£> r, ®r»> 0 r ( A ) } is factored as the product of 0?, 0i(A)} and {<5, 
£>T.*, 0 3 (1)}. Since Tx and T3 are of classes C u and C00 , the purely contractive parts 
of 0X and 0 3 are outer and inner from both sides, respectively (cf. [8], p. 257). We 
deduce that dim D r . = d i m ft and dim ft = d i m £ r „ (cf. [8], p. 192). It follows 
that dim 35 r = dim D r * , that is, dr — dT.t. Note that J " is of class Clm 

and oo. Hence by Lemma 3.1, T' is of class C n . This implies that T3 is of 
class C.i , contradicting the fact that T3 is of class C00 . We conclude that T2 itself 
must be of class Cv and therefore of class C10. 

If T is a Cy contraction with c?T< then as shown above 7\ is of class C u 

and has finite defect indices. Hence its characteristic function admits a scalar mul-
tiple (cf. [8], p. 318) and therefore Theorem 2.1 is applicable. In particular, we have 
the following corollary.. 

C o r o l l a r y 3.3. Let T and S be CX. contractions with finite defect indices and let 

T = [ ^ * j and ^[Q1 ^ ] be the triangulations of type j ^ ' 1 * j . Then T~S if 

and only if T1~.S'i and T2~S2. 

P r o o f . The conclusion follows easily from the preceding remark and [22], 
Theorem 6. 
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L e m m a 3.4. Let T=U1®...®Up®Sq on 'H=L\E1)® ...®L2(Ep)®Hl, 
where E/s are Borel subsets of the unit circle satisfying 
=jE„^0, Uj denotes the operator of multiplication by e" on L2(Ej),i=l, ...,p, 
and Sq denotes the unilateral shift on H*. Then ¡xT=p-\-q. 

P r o o f . Let U=U1®...®Up. It is well known that nv=p and ¿us =q. 
Hence ¡iT ^ ¡.iv + ns =p + q. On the other hand, for almost all e" in Ep, consider 
Ht={h{eu):h£H}. "obviously, Ht=C"+q. We assume that N=pT< °° for other-
wise the assertion is trivial. Let K={h1, ..., hN} be a set of vectors in H such that 

H= V TkK. Then H={p1(T)h1+...+pN(T)hN:p1, ...,pN polynomials}-. We de-
k=0 

duce that Ht= {p^e") h^e")-^... +pN(e't)hN(e't): ft, ...,pN polynomials} - for almost 
all elt in Ep, that is, Ht is spanned by the set of N vectors {h±(e"), ...,hN (e'% 
Hence we must have p+q^N, and thus fiT=N=p+q. 

Now we are ready to show the complete injection-similarity of C±. contractions 
with isometries. The next theorem not only generalizes [20], Theorem 2.1 but the 
proof is much simpler. 

T h e o r e m 3.5. Let T be a Cv contraction with dT<°°. Then T is completely 
ci 

injection-similar to an isometry. If T is c.n.u., then U®Sm-„<.T<U®£,„_„, where 
m=dTt, n=dT, U denotes the operator of multiplication by e" on A TLl and Sm_„ 
denotes the unilateral shift on In particular, p-\-m—n^iJiT^p+2(m—n), 
where /;=/%. 

[T X1 
q 1 j be the triangulation 

of type lY'1 * 1 with the corresponding factorization 0T=0201. By the remark 
L0 C.oJ 

before Corollary 3.3, we have T~Tt®T2. Note that 7 i , being of class C u , is 
quasi-similar to U on Aj}n=A^T*„ where A ^ I - 0 * © ^ (cf. [8], pp. 71—72). 
On the other hand, since the characteristic function of T2 is the purely contractive 
part of @2, we infer that dT=n—r and dT*=m—r for some r with O^r^n. 

ci 
Hence for the C10 contraction T2 we have Sm-„-<T2<Sm^„ (cf. [7], Theorem 3). 

ci 

We conclude that U© Sm _ „ -< T"-< f / © Sm _ „. Finally we verify the assertion concern-
ing i iT . Note that T-<C/ffi5m_„ imphes that n T ^f ive , s m _ n =p + m—n by Lemma 
3.4. On the other hand, we have nT=fiTl9T2SnTl + nT^p+2(m—ri) (cf. [10], 
Theorem 2). This completes the proof. 

Unfortunately, we are yet unable to show the uniqueness of the isometry com-
pletely injection-similar to T although its unitary part is indeed unique. This follows 
f rom the following lemma. 
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L e m m a 3.6. For 7 = 1 , 2 , lei V]=Uj@Sj be an isometry, where Us is a uni-
i 

tary operator and Sj is a unilateral shift. If Vx ~ V2, then U1^U2. 

P r o o f . Assume, that Vi=U1®S] is acting on Hj=KJ®Lj,j=\,2. Let X: 
H^H2 and Y: H2^-H1 be the injections which intertwine V1 and V2. We claim that 
XK±QK2. Indeed, for any x in Kx and x=U"yn for some y„<zK1. Hence 

Xx=XU\yn=XV"yn= V2Xyn g V2H2 for any rcfeO. It follows that Xx£ p) V\H2= 
i 11=0 

=K2, as asserted. Similarly, we have YK2QKt. Thus U1~U2. We conclude that 
Ut and U2 are unitarily equivalent to direct summands of each other (cf. [3], Lemma 
4.1). By the third test problem in [5], this implies that U 1 ^ U 2 . 

i 
We conjecture that if V1 ~ V2 and ¡iUt < oo then V1 s? V2. 
The next two theorems characterize those C±. contractions which are cyclic or 

have commutative commutants. Analogous results have been obtained before for 
C. o contractions (cf. [23], Theorems 1.3 and 1.5). 

T h e o r e m 3.7. Let T be a c.n.u. Cx. contraction with dT< Then the follow-
ing statements are equivalent: 

(1) T is cyclic-, 
(2) T is of class Cn and T~ME or T is ofclass C10 and T~S, where ME denotes 

the operator of multiplication by e" on L2(E), E being a Borel subset of the unit circle, 
and S denotes the simple unilateral shift. 

The proof is the same as the one for [20], Theorem 3.2. 

C o r o l l a r y 3.8, Let T be a c.n.u. contraction with i / r
< 0 ° - If T is cyclic, 

so is T* but not conversely. 

P r o o f . If T is cyclic, then T~ME or T^S. Hence or T*~S*. 
In either case, T* is cyclic. The converse example is given by T=S®S (cf. [4], 
Problem 126). 

T h e o r e m 3.9. Let T be a c.n.u. Cx. contraction with Then the follow-
ing statements are equivalent: 

( 1 ) { R } ' = { I Y ; 

(2) T is of class Cn and T~ME or T is of class C10 and dT!f—dT= 1. 

P r o o f . (2)=*(1). If T is of class C u and T~ME, then obviously T is cyclic. 
Hence (1) follows from [9], Theorem 1. On the other hand, if T is of class C10 and 
dTt — dr=l, then (1) follows from [23], Theorem 1.5. 

[T XI 

Q
1

T \ on H=H1®H2 be the triangulation of type 

10 
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Jq '1 * j . As proved in Theorem 3.5, 7 \ ~ i / , the operator of multiplication by 

e" o n ATL?n, a n d T2-<Sm_n, w h e r e m=dT, a n d n=dT. W e c o n s i d e r t h e f o l l o w i n g 

two cases: 

(1) If m=n, then T=TX is of class Cn by Lemma 3.1. Note that there are 
quasi-affinities Y: H-+ATL\ and Z : ATL\-*H which intertwine T and U and such 
that YZ=d(U) and ZY=5(T) for some outer function 6 (cf. [21], Lemma 2.1). 
It is easily verified that {T}'={T}" implies that {U}' = {U}". Therefore U is cyclic 
(cf. [6], §3) and so T~ME for some Borel subset E. 

(ii) If m*n, then there exist finitely many operators Zt: H*_n-»ATLl which 
intertwine Sm.„ and U and such that V ran Zi=ATL2

n (cf. [2], pp. 299—300). Hence 
i 

there exist Yt \ H2--H1 which intertwine T2 and Tx and such that V r a n Yi=H1. i 
On the other hand, using Theorem 2.1 and the assumption {T}'={T}" we infer 
that {7\ © T2}' = © T2}". Thus any operator Y: H2^H1 which intertwines T2 

and Tx must be 0. We conclude from above that H1 = {0}, that is, T is of class C1 0 . 
Moreover, {T}'={T}" implies that m-n=\ (cf. [23], Theorem 1.5). 

C o r o l l a r y 3.10. Let T be a c.n.u. Cx. contraction with dT<°°. If T is cyclic, 
then {T}'={T}" but not conversely. 

P r o o f . The converse example is given in [10], pp. 3 2 1 — 3 2 2 . 
We remark that Corollaries 3 .8 and 3 .10 have been obtained before by SZ.-NAGY 

and FOIA§ [9], Theorem 1 and [6]. 

In the final part of this paper, we determine when a Cj. contraction satisfies the 
double commutant property. Since a c.n.u. contraction T with c / r <°° is comple-
tely injection-similar to an isometry with an absolutely continuous unitary part, to 
motivate we first consider for such isometries. The next lemma partially generalizes 
[12], Theorem 3.3. 

L e m m a 3.11. Let V=U@S be an isometry on H=H1(BH2, where U is a 
unitary operator and S is a unilateral shift. Assume that U is absolutely continuous. 
Then the following statements are equivalent: 

(1) 
(2) V is not unitary, 
(3) {v}"={Hvy <piH~}. 

P r o o f . (1)<=>(2). Trivial. 
(1)=>(3). Let Tt{V}". Then T=T1®T2 where T^{U}" and T2e{S}". 

Since IST^O, there exists (p£H°° such that T2=(p(S). As before, there are (possibly 
infinitely many) operators Zi:H2-^H1 which intertwine S and U and such that 
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V ran Z—H^ (cf. [2], pp. 299—300). Hence <p{U)Zi=Zi(p{S)=ZlT2 for all /. 
' f0 Z-l 

On the other hand, since Yt= ' €{F}', we have TYt=y,T. A simple compu-

tation shows that TXZ=Z{T2. Thus T1Zi^(p(U)Zi for all i. We conclude that 

r 1 = ( p(C / ) and hence T=(p(V). 
(3)=>(1). If S=0, then V=U is a unitary operator. Hence {V}"={\¡/(V): 

ip£L°°), which is certainly not equal to {<p(V): (p£H°°}. 
Next we show that Cx. contractions share similar properties. We need the follow-

ing lemma. 
L e m m a 3.12. Let T be a contraction on H and let T ^ j ^ ^ J on H=HX®H2 

be the triangulation of type j ^ 1 * j. Then H1 is hyperinvariant for T. 

P r o o f . Note that H2={x£H: T*"x-»0} (cf. [8],p. 73). For {T}', we have 
T*"S*x=S*T*nx-~0 as « - o c for any x£H2. This shows that S*H2QH2. It 
follows that SH1 Q H1, whence H1 is hyperinvariant for T. 

T h e o r e m 3.13. Let T be a c.n.u. contraction with dT<Let m=dTt 

and n=dT. Then the following statements are equivalent: 
(1) m^n; 
(2) T is not of class C n ; 

_ (3) {TY={<p{T):<pZH-}. 

P r o o f . (1)<=>(2). This follows from Lemma 3.1 and the fact that Cn contrac-
tions have equal defect indices. 

(1)=>(3). As in the proof of Theorem 3.9, if m ^ n then there exist finitely many 
operators Yi:H2—H1 which intertwine T2 and 7\ and such that V r a n 

Let W£{T}". By Lemma 3.12, ^ J on H^H^H^ Obviously, 

W2£ {T2}'. We check that actually W2e {T2}". Let R£ {T2}', and let Y and Z be the 
operators constructed in the proof of Theorem 2.1. It is easily seen that Z(I®R)Y£ 
6{r} ' . Hence Z(I®R)YW=WZ(I®R)Y. A simple computation shows that 
5(T2)RW2 = IV2d(T2)R=5(T2)W2R. Since 8(T2) is an injection, we have RW2= 
= W2R whence W2£ {T2}" as asserted. Thus there exists q>£H°° such that W2= 
=(p{T2) (cf. [13], Theorem 1). We have cp(T^)Yt=Yt(p(T2)—YtW2 for all i. On the 

other hand, since ^ { r } ' , we have WX-^X.W. It follows that 

= YiW2 whence W^—viTJYi for all i. We conclude that W1=<p(T1). Thus W 

is triangulated as J . But we also have J . Hence 
[0 (p{T2) J L0 <p[T2) J 

10» 
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W-q>(T)=Q je {T}", say. To complete the proof , it suffices to show that Q=0. 

To this end, let S : H 2 -^H 1 be the operator defined in the proof of Theorem 2.1 and 

l e t ^ = j p ( T l ) J ] . It is clear that Ai{T}'. Hence A(W-<p(T)) = (W-<p(T))A. 

A simple computation shows that <5 (7\)<2=0. Since <5 (7\) is an injection, we conclude 
that <2=0, completing the proof. 

(3)=>(2). If T is of class C n , then {T}" has been given in [19], Lemma 2. We 
will show that it is not the same as {cp{T): Note that T is quasi-similar to 
t h e o p e r a t o r U=U1@...@UP o n K~L\E^)®...®L2(EP), w h e r e 0^p^n,Ej = 
= {e": rank AT(e")^j} are Borel subsets of the unit circle satisfying E^E,^ ... 3 

and Uj denotes the operator of multiplication by e" on L2(Ej),j=l, 2, ... 
...,p (cf. [16], Theorem 2). Let <5=det 0T and Q be the algebraic adjoint of 0T. 
Since <5^0, there exists some £ > 0 such that F={eit£E1: |<5(e")|^£} has positive 
Lebesgue measure. Let GQF be such that G and F \ G both have positive Lebesgue 
measure. Let 

0 0 

V = P 
~ XG 

It is easily checked that V€{T}" (cf. [19], Lemma 2). If V=q>(T) for some 
then %c = (p on ATL\. In particular, xG=<p a.e. on Ex. This is certainly impossible. 
We conclude that {T}"*{<p(T): (p£H°°). 

C o r o l l a r y 3.14. Let T be a c.n.u. CV contraction with If T is 
cyclic, then {T}'={(p(T): <p£H°°}. 

P r o o f . This follows from Corollary 3.10 and Theorem 3.13. 
The preceding corollary has been obtained before in [11], Lemma 1. 

C o r o l l a r y 3.15. Let T be a c.n.u. C^ contraction with dT< Then the fol-
lowing statements are equivalent: 

(1) {T}"=Alg T; 
(2) either dT^drf or dT=dT* and 0r(e") is isometric for e" in a set of positive 

Lebesgue measure. 

P r o o f . The assertion follows from Theorem 3.13 and [18], Theorem 3.8. 
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When is a contraction quasi-similar to an isometry? 

PEI YUAN WU 

In this paper we answer the question in the title for contractions with finite 
defect indices. More precisely, we show that if T is a contraction with finite defect 
indices then T is quasi-similar to an isometry if and only if T is of class C1. and there 
exists a bounded analytic function Q such that Q0T=8I for some outer function <5, 
where 0T denotes the characteristic function of T. This condition is analogous to the 
one for a contraction similar to an isometry (cf. [3], Theorem 2.4.). We will also derive 
some related results. 

In the following all the operators are acting on complex, separable Hilbert 
spaces. The main reference is the book of S Z . - N A G Y and FOIA§ [2] . Recall that for 
operators T± and T2 on H1 and H2, respectively, TX<.T2 denotes that 7\ is a quasi-
affine transform of T2, that is, there exists a one-to-one operator X: Hx->-H2 with 
dense range (called quasi-affinity) such that T2X=XTx. Tx and T2 are quasi-similar 
{TX~T2) if TX<T2 and T2<TX. 

For a contraction T, let dT = rank (I-T*T)1/2 and J r *=rank (I—TT*)1/2 

denote its defect indices and let 0T denote its characteristic function. For any « S i , 
let Sn denote the unilateral shift on H2. The next lemma characterizes those contrac-
tions which are quasi-similar to a unilateral shift. 

L e m m a 1. Let T be a contraction with finite defect indices. Then the following 
statements are equivalent: 

(1) T is quasi-similar to a unilateral shift; 
(2) T is of class C10 and there exists a bounded analytic function Q such that 

Q0T=3I for some outer function 8. 

P r o o f . Let n=dT and m=dT*. 
(1)=>(2). That T is of class C10 follows from [8], Lemma 1. Consider the func-

tional model of T, that is, consider T being acting on %=H2
mQ0TH2

n by Tf=P{e"f) 
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for / € § , where P denotes the (orthogonal) projection onto Note that T must 
be quasi-similar to Sm-„. Indeed, this follows from the uniqueness of the Jordan 
model of T (cf. [4], Theorem 4). Let Y: _„—§ be the quasi-affinity intertwining 
Sm-„ and T. Then Y is given by Yg=P(<Pg) for g£H2

m_n, where 0 is an mX(m—n) 
matrix valued bounded analytic function. Note that ran if and only if 
<PHl,_n+0THl is dense in H2

m. Let W denote the mXn matrix valued function 
[<P, 0T], Since <PHi

m_n+0TH2
n=THlt, we conclude from above that !F is an outer 

function. Let XVA denote the algebraic adjoint of the matrix of tF. Say, ipA = I ^ I, 

where Q' is (m—n)Xm matrix valued and Q is nXm matrix valued. Since XVA f—81 , 
where <5=det!P is an outer function, we infer that Q0T=8I as asserted. 

(2)=>(1). Consider the functional model of T and consider Q as a multiplica-
tion operator from H2

m to H\. Let ft=keri2. Define by Xf=8f-0TQf 
for / € § and Y: by Yg=Pg for g£S\. Note that QXf=Q8f-Q0TQf= 
= Q8f-8Qf=0 for any / € § . Hence X indeed maps £ to ft. Let S ^ S J i L It is 
easily verified that X and Y intertwine T and S. Moreover, we have XYg=XPg= 
=X(g-0Tw)=5(g-0Tw)-0TQ(g-0Tw) = 8g-0TQg=5g=d(S"!g for any 
gift, where w£H2

n, and YXf= Y(8f-QTQf) = P(6f)-0 = d(T)f for any 
Since 5(S) and 8(T) are quasi-affinities, so are X and Y. This shows that T is quasi-
similar to S, a unilateral shift, completing the proof. 

We remark that the proof of (2)=>(1) in the preceding lemma holds even without 
the finiteness assumption on the defect indices of T. Also note that Lemma 1 par-
tially generalizes [4], Proposition 2 (for the case dT= 1 and dT*=2) and [6], Theorem 
3.1 (for the case dT*—dT=l). Next we consider contractions quasi-similar to iso-
metries. We need the following lemma. 

L e m m a 2. Let T be a contraction with finite defect indices. Then the following 
statements are equivalent: 

(1) T is quasi-similar to an isometry; 
(2) the completely non-unitary (c.n.u.) part of T is quasi-similar to an isometry. 

Proof . We have only to show (1)=>(2). Assume that T is quasi-similar to the 
isometry V. By [8], Lemma 1, T is of class Cx . . Let V=U@S, where U is unitary 
and S is a unilateral shift, and let T=Ty®T2, where is unitary and T2 is c.n.u. 

Let j t j be the triangulation of type j ^ 1 * j. Then T3 is of class C n and 

has finite defect indices. By [9], Theorem 2.1, T 2 ^ T 3 ® T t . Hence U ® S ~ T 1 ® T 2 

~ r i © r , © r 4 . Note that U and Ty@Tz are of class C u , S and T4 are of class C10 

(cf. [9], Lemma 3.2) and the defect indices of TA are finite. It follows from the proof of 
[8], Theorem 6 that 7 ,

1 © r 3 ~ i 7 and Hence S must be the Jordan model of 
T4 (cf. [8], Lemma 3), that is, S=Sm-„, where m=dT* and n=dTt. Thus S has 
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finite defect indices and we infer from [8], Theorem 6 again that T ^ S . On the other 
hand, the C u contraction T3 is quasi-similar to a unitary operator (cf. [2], p. 72). 
We conclude from above that T2 is quasi-similar to an isometry, completing the proof. 

T h e o r e m 3. Let T be a contraction with finite defect indices and let T= | q1 ^J 

be the triangulation of type J^'1 * j. Then the following statements are equivalent: 

(1) T is quasi-similar to an isometry; 
(2) 7\ is quasi-similar to a unitary operator and T2 is quasi-similar to a unilateral 

shift; 
(3) T is of class Cx. and there exists a bounded analytic function Q such that 

Q0T = SI for some outer function 6. 

P r o o f . By Lemma 2, it suffices to consider c.n.u. T. 
(1)=>(2) is proved in Lemma 2. 
(2)=>(3). By [8], Lemma 1, both 7 \ and T2 are of class C1.. A simple calculation 

shows that T must also be of class Q . . Let 0T=0201 be the canonical factorization 

corresponding to the triangulation T= j^1 * j. Then the characteristic functions 

of Ti and T2 are the purely contractive parts of 0X and 0 2 , respectively. Lemma 1 
implies that there exists a bounded analytic function Q2 such that Q202=82I for 
some outer function 52. On the other hand, 7\ is of class C u implies that 0 t is outer 
(from both sides). Let Oj be the algebraic adjoint of the matirx of 01 and let i2= 
Q1i22 and <5 = <52 det 0 2 . Then Q0T= Q1Q20201 = Q1S201 = dI, where <5 is outer. 

(3)=>(1). As above, let 0T=0201 be the factorization corresponding ( to 

T = \Tl * ] . From Q0T—dI we have 01Q0TQ1 = 01dQ1 = d(det01)I, where Q, 
LO Ti\ 

is the algebraic adjoint of 0 X . It follows that (01Q)02=5I. Since T2 is of class C10 

(cf. [9], Lemma 3.2), we infer from Lemma 1 that T2 is quasi-similar to a unilateral 
shift. On the other hand, Tx is quasi-similar to a unitary operator and T—T^Tz 
(cf. [9], Theorem 2.1). We conclude that T is quasi-similar to an isometry as asserted. 

Note that the isometry quasi-similar to T is unique up to unitary equivalence 
(cf. [1], Theorem 3.1). It also follows from the preceding proof that if T is c.n.u., 
then the isometry quasi-similar to T has an absolutely continuous unitary part. We 
may contrast Theorem 3 with the corresponding results for contractions similar to 
isometries: a contraction T is similar to an isometry if and only if there is a bounded 
analytic function £2 such that Q0T=I (cf. [3], Theorem 2.4); a c.n.u. T is similar to 
an isometry if and only if 7\ is similar to a unitary operator and T2 is similar to a 
unilateral shift (cf. [5], Theorem 2). 
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C o r o l l a r y 4. Let T be a c.n.u. contraction with finite defect indices and let 
be an invariant subspace for T. 

(1) If T is quasi-similar to an isometry, so is T|§x. 
(2) If T is quasi-similar to a unilateral shift, so is 

P r o o f . (1) By [8], Lemma 1, T is of class С ъ . Hence r | § j is also of class C x . . 
Let 0 r = 0 2 0 1 be the corresponding regular factorization and let Q be such that 
Q0T=SI for some outer <5. Then (i202)0i=<57 and by Theorem 3 we conclude 
that T\BI is quasi-similar to an isometry. 

(2) By [8], Lemma 1, Г is of class C10. It is easy to check that T \ b i is also of 
class C10. Similar arguments as above finish the proof. 

C o r o l l a r y 5. Let T be a c.n.u. contraction on § with finite defect indices. If T 
is quasi-similar to an isometry V on ft, then there exist quasi-affinities X:$> —ft and 
Y: ft—§ which intertwine T and V and such that XY=5(V) and YX=8(T) for 
some outer function <5. 

P r o o f . Let be the triangulation of type j^'1 £ j. As before, 

since 7\ is of class C u with finite defect indices, we have Г ~ 7\ ® T2. Let V=U@S 
be the isometry quasi-similar to T, where U is unitary and 5 is a unilateral shift. 
As shown in the proof of Lemma 2, T1~C/ nad T2~S. Note that all these three 
quasi-similarities can be implemented by quasi-affinities satisfying the corresponding 
properties in the conclusion of our assertion (cf. [9], Theorem 2.1, [7], Lemma 2.1 
and proof of Lemma 1). Hence the same holds for the quasi-similarity of T and V. 

For an operator T, let Lat T, La t 'T and Hyperlat T denote, respectively, the 
lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces 
of T. The next lemma will be needed in the proof of Theorem 7. It can be proved 
in the same fashion as [7], Lemma 2.3. 

L e m m a 6. Let V be an isometry with an absolutely continuous unitary part and 
let 91С Lat V. If 5 is an outer function, then <5(K|9t) is a quasi-affinity on 91. 

T h e o r e m 7. Let T be a c.n.u. contraction with finite defect indices. I f T i s quasi-
similar to an isometry V, then Lat T ^ L a t V, Lat" TssLat" V and Hyperlat Ts= 
Hyperlat V. 

P r o o f . Note that T is of class Cj. by [8], Lemma 1. We may assume that T is 
not of class Сц, for otherwise the conclusion has already been proved in [7], Theo-
rem 2.2. 

Let X and Y be the quasi-affinities as in Corollary 5. For 2Ji€Lat T and 916 
6 Lat V, consider the mappings 9Л—Х9Л and Using Lemma 6, we can 
easily verify that they implement the lattice isomorphisms between Lat T and Lat V. 
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From [9], Theorem 3.13 and Lemma 3.11, we infer that Lat TssLat" T and Lat Fs= 
= Lat" V. Hence to complete the proof, it suffices to show that (i) 9Jl£Hyperlat T 
implies JW^Hyper l a t V and (ii) 9 l€Hyperla tF implies FStGHyperlat T. We 
only verify (i) and leave the verification of (ii) to the readers. Let 9Ji£Hyperlat T 
and W£{V}'. Then YWX£{T}' and hence F i o l p . Applying X on both 
sides, we obtain 5(V)WXfSl = XYWXmQXm. Since 5(V)\WXWi is a quasi-affi-
nity on WX9JH (by Lemma 6), we conclude that WXMQXW. This shows that 
Z9JJ iHyperlat V, completing the proof. 

C o r o l l a r y 8. Let T be a c.n.u. contraction with finite defect indices. If T is 
quasi-similar to a unilateral shift, then Lat 7 '=Lat" 7"= {ran W: We {T}'}, where {T}' 
denotes the commutant of T. 

P r o o f . This follows easily from Theorem 7 and the fact that a unilateral shift 
S satisfies Lat S=Lat" S={ran Z : Z£ {S }'}. 
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Injection-similar isometries 

L. KfiRCHY 

1. To construct canonical models for contractions of classes C u and C0 on 
complex separable Hilbert spaces B. SZ.-NAGY and C. FOIA§ generalized the notion 
of similarity (cf. [3, ch. II, sec. 3] and [4]). They called an operator 1) a 
quasi-affine transform of the operator T 2 t T 1 ~ < T 2 , if there exists a quasi-
affinity (an injection with dense range) Xgi f § 2) which intertwines these oper-
ators, that is, XTx = T2X. J \ and T2 are said to be quasi-similar, 7\ ~ , if they are 
quasi-affine transforms of each other, TX<T2 and T2<TX. Finding Jordan-models 
for contractions of class C.0 even quasi-similarity proved to be insufficient. There-
fore SZ.-NAGY and FOIA§ [5] introduced the notion of injection-similarity. Operators 

i 
.$?(§!) and are injection-similar, 7 \ ~ T2, if they can be injected 

i i 
into each other, TX<T2 and T2<TX, that is, there are injections § 2 ) 
and 2 , § i ) such that XTx = T2X and YT2 = TXY. Tx and T2 are com-

c.i 
pletely injection-similar, TX~T2, if they can be completely injected into each other, 

c.i c.i 
TX<T2 and T2<TX, that is, there exist families of intertwining injections {Xx}xQ 
Q&iZt, § 2 ) and {Yg}g & ) such that V ran Xa=§2 and V ran Y e = . a ft 

Recently P. Y. Wu [1] has shown that every contraction T of class CX., with at 
least one defect index finite, is completely injection-similar to an isometry. 
More precisely he proved that 

£/©S ( a ) < T < U@S<«>. 

Here U is a unitary operator of the form U=Ul®U2, where U1 is the unitary part 
of the contraction T (cf. [3, Th. 1.3.2]), and U2 denotes the operator of multiplica-
tion by e" on the space {ATL2(X>T))~ (AT(eu) =(l-QT(e")*0T(e") f'2, where 0T 

is the characteristic function of T). On the other hand S(a) is the unilateral shift of 
multiplicity ct=dT*—dT. 

Received July 1, 1981. 
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As for uniqueness of this isometry, Wu has shown that the unitary parts of 
injection-similar isometries are unitarily equivalent. Moreover he made the conjec-
ture that injection-similar isometries are really unitarily equivalent, at least in the case, 
when their unitary parts have finite multiplicities. (HOOVER [ 7 ] proved that quasi-
similarity even implies unitary equivalence between isometries.) 

In the present paper we give a negative answer to this conjecture and describe 
the isometries being completely injection-similar to the contraction T above. We 
follow the notation and terminology of [3]. For arbitrary operators T^Z 
and T2€£?(%)2), will denote the set of intertwining operators, that is, 

T2)={X£J?(?>1, §2) | T2X=XT,}. 

2. We recall that every isometry F has a unique decomposition V = U© 
such that U is a unitary operator and S(x) denotes the direct sum of a copies of the 
simple unilateral shift S. (S(x) is a completely non-unitary (c. n. u.) isometry with 
multiplicity a.) (Cf. [3, Th. 1.1.1.]) The following proposition shows that Wu's con-
jecture has an affirmative answer, if V is a c. n. u. isometry or U is a singular unitary 
(s. u.) operator (the spectral measure of U is singular with respect to Lebesgue mea-
sure). 

i 
P r o p o s i t i o n 1. Let Fx and V2 be injection-similar isometries, VX~V2. Let 

us assume that Vl is c. n. u. or its unitary part is a s. u. operator. Then these operators 
are unitarily equivalent, Vl = V2. 

P r o o f . Let V1 and V2 act on the Hilbert spaces and § 2 , respectively. Let 
us consider the canonical decompositions of these operators: F j ^ C / i f f i S ^ , V2= 
= U2®S (P ) on the spaces § i = f t i © £ 1 and § 2 = i l 2 ® fi2. We know by [1, Lemma 
3.6] that U X ^U 2 . If F j is c. n. u., then {0}, and so we obtain that 5(ot) = 

= y 1 L v t = S ( n . Now [5, Th. 5/6] results that Consequently in this case 
we have that V1 ̂  V2. 

Let us assume now that ^ {0} and U1 is a s. u. operator. Let us suppose 
further that for instance {0}. (The case £ 1 = 2 2 = {0} is trivial.) Let Xd 

[X X 1 
11 12 of X with respect to 

X21 X22] 
the decompositions above. It follows easily that X12€S(S(x), U2). Having denoted by 

the minimal unitary dilation of SM, we define an operator U2) by 
the equation Y(S<g))-"f: = U2"X12f (f£2un^0) and by taking bounded closure. 
Since, being a bilateral shift, S i s an absolutely continuous unitary (a.c. u.) operator, 
we infer by [8, Theorem 3] that Y=0. Taking into account that A r

1 2 =y |£ 1 , it 
follows that X12=0. We conclude that X22e^(S(a\ S(P>) is an injection. In partic-i ular we infer that a ° d so a similar argument shows that we have 5 ( a ) 
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also. Therefore and [5, Th. 5/6] implies again The proof 
is completed. 

3. In this section we shall see that the setting is contrary to the one in section 2, 
if the isometry V is not c. n. u. and its unitary part is not a s. u. operator. The follow-
ing lemma plays an essential role in the sequel. 

L e m m a 2. Let E be a measurable set on the unit circle C = { z £ C | | z | = l}, 
and let ME denote the operator of multiplication by e" on the space L2(E). (We con-
sider the normalized Lebesgue measure m on C.) If m(E) >0, then we have 

ME®S<ME. 

P r o o f . Let <p1£L"'{E) be a function such that (p1(e")9£0 a. e. and 
J log \<p1(e")\dm= - co. On the other hand let (p2£L"{E) be a function such that 
E 
\(p2(eu)\ = l a.e.. We consider S as the operator of multiplication by e" on the Hardy 
space H2. Now let us define the operator X as follows: X: L2(E)®H2—L2(E), 
X '-f®g^-<Pif+<P2(g\E)- It i s obvious that X£ J(ME© S, ME) is a quasi-surjec-
tion. 

Let us assume now that X ( / © g ) = 0 . Let us suppose further that g^O. Then 
we have gie")^0 a. e., and so / ( e " ) ^ 0 a. e. on E. From the assumption it immedi-
ately follows that \(Pi(e'')\ • \f {eu)\ = \g{eu)\ a. e. on E. But this implies 

log |<Pi(e")| = log |g(e")| - l o g | / (e") | ^ log |g(e")| + 1 - | / ( e ' % 

and so we infer that 

- o o = y log \ (Pi(eil)\ dm S J log | g ( e " ) | dm + m(E)~ F \f(eu)\ dm>-°° 
E E E 

(cf. [3, ch. III]). This being a contradiction we conclude that g=0 and this results 
f—0. Therefore I is a quasi-affinity, and so ME®S-<ME. 

C o r o l l a r y 3. Let ME be as before. Then for any a = l , 2 , we have 

ME®S<"> -< ME. 

P r o o f . By induction we immediately infer that the statement holds for every 
natural number. Let us now assume that c c — L e t be a sequence of pair-

CO 
wise disjoint measurable subsets of E such that [JEn—E and m(En)^~0 for every 

n=l 

n. Then we have ME®SC"^ © (ME ®S)<® ME =sME by Lemma 2, and the 
n = l " /1=1 

proof is finished. 
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C o r o l l a r y 4. Let V b e a non-c. n. u. isometry, and let us assume that 
its unitary part (ft) (ft ̂  {0}) is not a s. u. operator. Then we have: 

i i 
(i) V~U, more precisely U<.V~^U\ 

c.i c.i 

(ii) if even § © ft ^ {0} holds, then V~U®S, more precisely U®S<V< 
<U@S. 

P r o o f . After decomposing U into the direct sum of its singular and its abso-
lutely continuous parts, U=Us@Ua, and considering the functional model of Ua 

(cf. [9]), we conclude these statements by Corollary 3. 
On account of Corollary 4 we can state: 

P r o p o s i t i o n 5. Let Vx and V2 be isometries, and let Ux, U2 denote their uni-
tary parts, respectively. Let us assume that Vx is not c. n. u., and Ux is not a s. u. oper-
ator. Then we have: 

(i) VX~V2 if and only if UX^U2; 
c.i 

(ii) Vx ~ V2 if and only if U1 = U2 and Vx, V2 are unitaries in the same time. 

P r o o f . These statements follow immediately by [1, Lemma 3.6] and the pre-
ceding corollary. We have only to note that for any operator X£J(Vx, V2) we have 
(A r f t 1 ) _^f t a , where ft,CLat Vt is the subspace corresponding to Ut (i=1,2). 
(Cf. the proof of [1, Lemma 3.6].) 

4. Now let T be a contraction of class Cx., with at least one finite defect index, 

dT< Consider the triangulation j^1 ^ j of the type J ^ 1 * | of T. We know 

from [1] that TX£CXX, T2£CX0 and Tx©T2 (cf. [1, Th. 2.1 and Lemma 3.2]). 
Now it follows easily by [3, Prop. II.3.5] and [6, Th. 3] that 

t/©S<"> <T < t/ffiS<a>, 

where U is a unitary operator and S(ct) is the unilateral shift of multiplicity a = 
=dT*—dT. (Cf. [1, Th. 3.5].) Moreover we know by [1, Lemma 3.6] that the unitary 
part of every isometry, being injection-similar to T, is unitarily equivalent to U. 

We shall say that T is mixed with absolutely continuous part (m. w. a. c. p.), 
if T^CUUC10 and Tx is not a s. u. operator in the previous triangulation. Now we 
obtain immediately by Proposition 1: 

T h e o r e m 6. If T£Cx.,dT<°° and T is not m. w. a. c. p., then V=U@S{a\ 
a=df*—dT, is the unique isometry which is completely injection-similar to T. 

On the other hand, in the contrary case we can state: 
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T h e o r e m 7. If and T is m. w. a. c. p., then 

U@S™ < T < U®S™ 

holds, if and only if 1 ^a^dT,—dT. 
To prove this theorem we need: 

L e m m a 8. If T is a contraction of class C10 and dT< then dim ker T* = 
— i / j * . 

P r o o f . We can assume that T is given by its functional model. That is, T is 
the compression of the unilateral shift U+ on the vector-valued Hardy space H2((£t) 
to the subspace ¡o = H2(£t)Q0TH2(&) (£Lat U*+), where dim <£*=dT*, dim (£=dT 

and 0T denotes the characteristic function of T. T being of class C1 0 , its character-
istic function 0T is inner and *-outer (cf. [3, Prop. VI. 3.5]). 

Since T*=U*+ we infer that ker r * = § n k e r U%=§0®*. Let be 
an arbitrary vector. We have that if and only iiv is orthogonal to 0TH2{(£). 
But this is the case, if and only if v is orthogonal to 0tH2((£)Q№tH2((£)= 
= 0T(H2((f) Q AH2(&)) = 0 r (£. (We have used that 0T is an isometry.) Now, for 
any vector w£(£, we have (v,0Tw)= J(v, 0T(e")w)dm= J(0T(e~")*v, w) dm = 

c c 
={0jv,w) = {p(i0^v,w), where Pe denotes the orthogonal projection of H2(<&) 
to the subspace (£. Therefore, we conclude that k e r T * = k e r [(£»). 

On the other hand, since 0~f is an outer function, it follows that //2((£) = 

Therefore the operator <&) is quasi-surjective, and so, taking into 
account that dim(S<°°, we infer that dim ker (Pffi@jr|CJ|t)=dim —dim (£= 
=dT*—dT. The proof is completed. 

Now we can prove Theorem 7. 

P r o o f of T h e o r e m 7. Let Tlt T2 and U be the operators as at the begining 
of this section. Since T is m.w.a.c.p., it follows that the space of U is not trivial (is 
not {0}), and that U is not a s. u. operator. Applying Corollary 3 we can easily infer 

that U®Si*)<U®&dT*-dT'><U®Si*\ for every I g a S d T . - d T . Therefore, it 
is enough to prove that T<U®SM implies a S d T * — d T . 

So, let us assume that T<U®SW. Then we have U®T2<T1®T2<T< 
<U®S(X). L e t X£J(U®T2, U@SM) b e a quas i - a f f in i ty . S ince t h e n X*£J?(U'M® 
®SH"\ U*®T*) is also a quasi-affinity it follows that X*|ker S*(<z): ker S*™-
—ker T2 is an injection. Therefore we get that oc=dim ker 5 * ( a ) s d i m ker T2. 
Taking into account that dT*—dT=dT*—dTi, we conclude by Lemma 8 that a s 
^dT*—dT . The proof is finished. 

it 
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C o r o l l a r y 9. I f T is a contraction as in Theorem 7, then for the multiplicity of 
T* we have: nT*=nu. 

P r o o f . We infer by Theorem 7 and Lemma 2 that T<U®S<U. It follows 
that U*<T*, and so nTt^pv*=nv. On the other hand T*~Tf ®T%~U*®T% 
implies 

5. Finally we show that if T£Cv , dT< °° and T is m. w. a. c. p., then there al-
ways exists an isometry V such that V-<T. It can be easily seen that this is not the 
case, if T is not m. w. a. c. p. (cf. [5, Th. 5 and Prop. 2]). 

T h e o r e m 10. If T£Cx.,dT<<*>, is a contraction m. w. a. c. p., then U®S^~<. 
-<.T, where a=dT*. 

P r o o f . L e t 7 \ , r 2 and U be the operators as in the begining of section 4. 
Since T is m. w. a. c. p., it follows that these operators act on non-zero spaces, and 
that U is not a s. u. operator. Therefore there exists a reducing subspace £ of U such 
that U\£=ME for some measurable set E (m(E)>0). Taking into account that 
r ~ r 1 ® r 2 ~ C / © r 2 , it is enough to prove that ME®S(a) <ME®T2, where 
a=dT*. 

Let us consider the minimal isometric dilation of the contraction 
Since T2£C.„, it follows that W is a unilateral shift of multiplicity 

a=dT* (cf. [3, Th. II. 1.2 and II.2.1]). Therefore we infer by the proof of Corollary 3 
that there exists an injection Y£J{ME ® W, ME ®T2) such that (Y(L2(E)® {0}))- = 
=(ran F) _ =L 2 (£ ' )©{0} . Let P denote the orthogonal projection of the space 
L2(E)®R+ onto its subspace {0}©§. Then the operator X=Y+P£ 
£&(L2(E)®R+,L2(E)®$i>) is obviously a quasi-affinity. 

On the other hand, for any vector f®g£L2(E) ffift+ we have 

(ME®T2)X(f®g) = (ME © r2) 7 (/© g)+(ME® T2) P ( / © g) = 

= Y(ME © W) ( / © g) + (0 © T2 Pg) = Y(ME®W)(f®g) + (0®PWg) = 

= X(ME ®W) ( / © g). 

Consequently we obtained that ME © W<.ME®T2, and so the proof is completed. 
By Theorems 7 and 10 it follows immediately: 

C o r o l l a r y 11. If T£CV, dT<<=°, is a contraction m. w. a. c. p. and dTt = cx>, 
then we have 

J ~ {/©S<~>. 

If both defect indices of T are finite, then it is in general not true that T~ 
~J7ffiiS(ot), where a—dT,—dr. Indeed, contractions T with finite defect indices and 
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quasi-similar to an isometry V, were characterized by P. Y. Wu [2]. We note that if 
T£CV, dT < °° and T is quasi-similar to an isometry V, then V is necessarily unita-
rily equivalent to the operator t /©5 ( a ) , where a=dT»—dT. This follows easily by 
Theorems 6 and 7. 
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Moment theorems for operators on Hilbert space 

ZOLTÁN SEBESTYÉN 

Introduction 

The present note raises and solves moment like problems on the existence of a 
contraction, a subnormal operator and of a continuous semigroup of contractions, 
respectively, on a (complex) Hilbert space: 

(A) Given a sequence {h„}lia0 of elements of the Hilbert space H, under what 
condition does there exist a contraction or a subnormal operator T on H such that 

(B) Given a continuous family {ht}m0 of elements of the Hilbert space H, un-
der what condition does there exist a continuous semigroup {T(}(fe0 of contractions 
on H such that 

The key to the solution (and of the source of these questions) is the theory of 
unitary and normal dilations. 

The author is indepted to Professor B. Sz.-Nagy for his valuable advices, for 
his personal stimulation. 

For normal extension of subnormal operators we refer to BRAM [1], HALMOS [2] 
and SZ.-NAGY [3]. 

T h e o r e m A. Let {hn}nS0 be a sequence of elements of the Hilbert space H. 
There exists a contraction T on H satisfying (1) if and only if 

(1) h„ = T"h0 holds for n = 1, 2, ... 

(2) ht = Tth0 ho lds f o r t =s 0. 

Results 

(i) \ \ 2 c , h 

holds for any finite double sequence {i-'„,„'}„£o,,i'eo °f complex numbers. 

Received April 22, 1981. 
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T h e o r e m B. Let be a continuous family of elements of a Hilbert space 
H. There exists a continuous semigroup {r,} (S0 of contractions in H satisfying (2) 
if and only if 

(») \\2 ct.s /l<+t'||2 ^ 2 c
s,s-ct,t'(hs_t+s., h,.)+ 2cs,s-ci,t'(hs.,h,-s+l.) t,f SSI s~=t 

s',? s'.t' 

holds for any finite double sequence {c(>(.}(g0it.S0 °f complex numbers. 

T h e o r e m C. Let {hn}„so be a sequence of elements of the Hilbert space H such 
that 

(iii) {/!„} spans the space H, 
(iv) | | / i j S JT" (« = 0, 1,2, ...-) for some constant Jf . 

There exists a subnormal operator T on H satisfying (1) if and only if there exists 
a double sequence {/C}n, of elements of H such that 

(v) h°„=h„for n=0,1,2,..., 
(vi) (tiZ,hm)=(hB,hm+n.) for m,n,n'm0, and that 

( v i i ) CBt„. hn„'||2 S 2 Cm,m' C„ ,„- (hm + n,, hm.+n) 
n, n' m,m',n,n' 

holds for all finite double sequence {c„, „'}„,„'so of complex numbers. 

Necessity 

(A) Let U be a unitary dilation of the contraction T on the Hilbert space K con-
taining H such that 
(3) PUnh = T"h (h£H;n = 1 , 2 , . . . ) 

holds with the orthogonal projection P of K onto H. Let further {cn n.}nS0i„>£0 

be a finite double sequence of complex numbers. We have then by (1) and (3) 

||2 >w||2 - || 2 cn,n.T"hn.||2 = || 2 cn,n.pu- hnf ^ 
n, n' n, n' ° n, n' 

^\\2cn,n.U"hnf= 2 cm,m'Cn,n-{Umhm,,U»hn,) = 
rt, n' m, m', n, n' 

= 2 Cm,m.Cntn.(Um-"hm„hn,)+ 2 cm,m'Cn,n'(hm.,Un~mhn.) = 
Riëii m-cn 
m' ,n' m', n' 

= 2 cm>m.cn,n,{Tm-nhm., h„.)+ 2'cm.m. c.n;„,(hm.,T"-mhn,) = 
m ë n m < n « 
m' ,n' m', n' 

~ 2 ¿n,n> i.^m-n + m' > ^n')-!- 2 ^n-m + n')* 
m^n m-cn 
mf

tnf m\jf 
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(B) The unitary dilation of a continuous semigroup { r j ^ o of contractions is 
a continuous semigroup {f/ t},e o of unitaries on the dilations space K, such that 

(4) PTJ,h = Tth 0) 

holds, where P is the orthogonal projection of K onto H. Assume further 
{cr,t'}tso,f==o is a finite double sequence of complex numbers indexed by nonnegative 
real numbers. (2) and (4) imply (ii) exactly in the same manner as before. 

(C) Suppose N is a normal extension of T acting on a Hilbert space K contain-
ing H, and such that 

(5) PN*"'Nnh = T*"'Tnh (h£H; n, n' ^ 0) 

holds with the orthogonal projection P of K onto H. Let further 

(6) hn; = rn'T"h0 (n, n' — 0, 1, 2, ...). 

Assuming (1) we have then h°n=Tnh0=hn for n=0, 1,2, ... ; and we have by (6) 
also that 

( f t j , hm) = (T*»'T»h0, Tmh0) =(T"ho, Tm+n' h0) = 

= (K,hm+n•) (m,n,n'^ 0 , 1 , 2 , . . . ) and, finally, that 

| | 2 hill» = II 2cn,n-Ttn'T"K||2 = ||P 2 cn,n. N*"'N»h0\\* ^ 
n, n' n, n' n, n' 

^ \\2Cn,n-N">' N"h0\\*= 2 cm,m' Cn,n- (Nm + "'h0, Nm'+nh^) = 
ti,n' m,m' n, n' 

= 2 Cm,m' Cn.n' (Tm + n h0, Tm +"h0) = 2 Cm,m'(hm + n', hm. + n) m, m ' , « , « ' m, m',n, n' 

holds for any finite double sequence {c„,„'}„,„'^o of complex numbers. 

Sufficiency 

(A) Let F0 be the (complex) linear space of all finite double sequences 
{cn n.}nSO,n'so of complex numbers with the shift operation 

UoKA = {<„.}, where < „ , = c„_1>n- {n s 1) and c'0>a. = 0. 

Let us introduce a semi-inner product in F0 (in view of (i)) by 

(7) <{cm>m'}, K,„'}> = 2 cm,m-d„,n-(hm-n+m., hn.)+ 2 Cm,m-dn,„'(hm.,hn-m+n.). 
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U0 is an isometry with respect to this semi-inner product. Defining 

Vo{cn,„-}= 2 cn,n.hn+n. for { c M , } f f 0 
n,n-

we obtain a contraction V0 from F0 into H. 
Let F be the Hilbert space resulting from F0 by factoring with respect to the null 

space of < •, • ) and by completing. At the same time £/„ induces an isometry U on F 
and V0 induces a contraction V from F into H. In what follows the equivalence class 
represented by {c„ „.} is also denoted shortly by {£„„-}. We show that 

fl if n =0, and n' = k (fc = 0, 1, ...), 
(8) V*hk = {<„.}, where < n . = { Q 

To show this let k^O, {cmm.}(LF so that (7) gives 

<{cm,m.}, V*hk) = <1V{cm<m.}, hk) = 2 cm.m. (ihm+m., hk) =<{cm> „.}, K , „.}> 
m,m' 

as desired. Because of (8) we get 

f l if n = 1 and n' = k (k = 0 ,1 , . . . ) , 
UV* hk = {d„ „.}, where dnn.=\n , . 

* 1 ' 10 otherwise. 
Defining * 

T = vuv* 
we have Thk=VUV*hk=hk+1 for all k=0,1,..., but this is actually identical 
with (1). 

(B) Let F„ be, similarly as before, the linear space of all double sequences 
KS'LO.S'ÈO °f complex numbers indexed by nonnegative real numbers. Define, 
for all rWo, by 

^ . K s ' } = {cs-(,s.} for {<:,,,.}€ fo 

a shift operation and a semi-inner product (in view of (i)) by 

<K,r'}> K,S'}> = 2cr,r'3,,s'(K-s+r', M + 2 cr,r-3s>s'(hr., hs_r+s.); r^s F a 
r.s' rX 

{C/(}(g0 is then a continuous semigroup of isometries of the Hilbert space F derived 
from F0 as before. By defining 

s.s' 

we get a contraction operator from F into H. The proof that T,-=VU,V* (t^0) 
is a continuous semigroup of contractions satisfying (2) only needs a slight modi-
fication of the argument used above, so we omit it. 
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(C) Let {/i"'}„ be in / / such that conditions (iii—iv) are satisfied. Take the 
(complex) linear space F„ of all finite double sequences {cn n,}n n,È0 of complex 
numbers with a shift operation 

^o{c„,„'} = {<„.}, where = c„_1>n, (n s 1), and cô,„. = 0; 

and (in view of (vii)) with a semi-inner product in F0 defined by 

(9) <{Cm>m-}, K,„'}> = 2 Cm,m'3n,n'(hm + n'>K' + ù-
m, m', n, n' 

We are going to prove that 
( * ) Il A U S 

with the same Xas that in (iv). First of all, for any {<:„ „.}€F0 and i,j= 0, 1 ,2 , . . . 
we define 

a,j) _ i f n ~ ' ' -•>> 
C"'n' ~~ lO otherwise. 

Now, by (9) we have 

I! Wi!'^}!!2 = 2 Cm,m' Cn,n' (^m + n' + i + y, ^m'+n + i+y) = 

m, m', n, n' 

So by induction we can derive 

llWft0}!!2"*1 ^ ll{c^'2k)}|| • ll{c„,n.}||1+a+-+afc for k = 0 , 1 , . . . . 

The definition of N0 shows that 7^0{c„ n , }={c^ 1 } and so the above inequality, (9) 
and (iv) imply that 

* l l{cf/k )}| | .il{cn,n.}ll1+2+-+2k = 

= { 2 «».»• {hm+„+**i, hm.+n+#+i)yi* II { c n t „ . } ^ 

m, m' ,n, n' 

m, m', n,n / 

tt, n' This gives lliv0{cn,n.}|| s I I K ^ } ! 1 - 2 - " - 1 - x { 2 |c„,„-| 
n, ri 

Let so we obtain (*) . 
Defining 

Vo{c„,n-}= 2c„,n-K for {cn,n.}£F0, It, n' 

(vii) shows that V0 is a contraction from F0 

into H. We obtain a Hilbert space F 
from F0 by factoring with respect to the null space of ( •, • > and then by completing. 
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At the same time, F 0 induces a contraction F f r o m F in to H and N0 induces a bounded 
linear operator N on F. 

Finally define the operator 
(10) T = VNV* 

on H. We are going to show that this operator is the desired one. First of all, for 
any k ^ O 

{1, if n = k and n' - 0 , 

0 otherwise. 
Indeed, 

<{*».„•}, V*hk) = (F{cm m.}, hk) = 2, cm,m.W, hk) = m,m 

= 2 Cm,m'(hm, hm.+k) = <{cm>m.}, K,„.}>. 
m, m' 

Thus 
Thk = VNV*hk = F K _ 1 > n , } = 2 K n - K'+i = h°k+i = hk+1 

ntn' 

holds for all k=0,1,2, ... . We have (1) also as was desired. We have only to show 
that T in (10) is subnormal, that is, 

(11) 2(Tmg„,r-gm)^ o 
m,n 

holds for all finite sequence {gn}ns0 in H- We have (11) for elements of the form 
g n = 2 ^ n , w K ' (where {c„„.}£F) as a consequence of (vii). Indeed, 

2(Tmgn,T"sJ = 2(2Cn,n-Tmhn., 2cm,m.T*hm.) = 
m,rt m,n n' m' 

= 2 CM,M.Cn,ATmhn.,Tnhm.)= 2 Cmim.CKim.{hm + n;hm' + J^ 

m, m', n, n' m, m', n, n' 

n,rf 

which implies (11) in general by (iii). The theorem is proved. 
Note that the proof of the theorem yields the following 
P r o p o s i t i o n . Let {/iJ'}n n-So be a double sequence in H which spans H. There 

exists a normal operator T on H such that 
(12) T*R'Tnh% = h* («, n' = 0, 1, 2, ...) 
holds if and only if 

(13) \\h"J S for some constant J f > 0 («, n ' ^ 0) 
and 
(14) ( f C \ ft) = (h%+n„ hl+n) (m, m', n, n' S 0). 



Moment theorems for operators on Hilbert space 171 

P r o o f . Assume (12), then (13) is trivial and (14) is elementary 

w , hi) = (T*m'Tmhi T*"'T"h0) = (Tm+«K, = (hi+n„ h°m,+n). 

Assume now (13) and (14) and denote /¡" by h„ (n=0, 1,2, ...). We have then 
(v—vii) with equality in (vii), consequently the operator V, appearing in the proof 
of Theorem C, is a unitary operator from F onto H. Simple calculation shows that 

(15) for {c„,n.}£F 

holds which yields NN*—N*N, that is, TV is a normal operator. Since V is unitary, 
T=VNV* is normal, too. We have finally to show (12). T satisfies (1), and, by simi-
lar argument as in the proof of Theorem C, (15) implies that 

VN*n' V*h„ = h%. 
So we have 

T*"'Tnh°0 = (VN*V*)"'hn = VN*n'V*h„ = h% for n, n' = 0, 1, .. . . 

The proof is complete. 
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R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1 (Graduate Texts in Mathematics, 
64), xii+224 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

This is the second edition of a book appeared first in 1967. There are numerous minor correc-
tions. In addition, the author made a few substantial changes and supplements to the exposition. 

The main aim of this book is to provide an introduction to some aspects of Fourier series and 
related topics, in which a liberal use is made of modern techniques. It may serve as a useful prepara-
tion for Rudin's "Harmonic Analysis on Groups" and for the second volume of Hewitt and Ross' 
"Abstract Harmonic Analysis". 

The emphasis on modern techniques effects not only the type of arguments, but also to a consi-
derable extent the choice of material. Above all, it leads to a minimal treatment of pointwise conver-
gence and summability. The famous treatises by Zygmund and Bary on trigonometric series cover these 
aspects in great detail. On the other hand, a considerable attention is paid to matters that have not 
yet received a detailed treatment in a book form. Among such material, there appear comments on 
capacity, spectral synthesis sets, Helson sets and so forth, as well as remarks on extensions of results 
to more general groups. Katznelson's book "Introduction to Harmonic Analysis" can be read as 
a companion text. 

The table of contents is the following: 1. Trigonometric series and Fourier series, 2. Group struc-
ture and Fourier series, 3. Convolutions of functions, 4. Homomorphisms of convolution algebras, 
5. The Dirichlet and Fejér kernels, Cesáro summability, 6. Cesáro summability of Fourier series 
and its consequences, 7. Some special series and their applications, 8. Fourier series in L2, 9. Positive 
definite series and Bochner's theorem, 10. Pointwise convergence of Fourier series. 

The reader is supposed only to be familiar with Lebesgue integration. What is needed from func-
tional analysis (Baire's category theorem, uniform boundedness principles, the closed graph, open 
mapping and Hahn—Banach theorems) is dealt with in Appendices A and B. The basic terminology 
of linear algebra is used, but no result of any depth is assumed. 

Each chapter ends with exercises, the more difficult ones being provided with hints to their solu-
tions. The bibliography contains many suggestions for further reading. The treatment is supplemented 
by a list of Symbols and an Index. 

The present volume is an excellent introduction. It is addressed to undergraduate students and 
warmly recommended to everyone who wants to make a quick acquaintance with Fourier Analysis. 

F. Móricz (Szeged) 
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Euclidean Harmonic Analysis, Proceedings of Seminars Held at the University of Maryland, 1979, 
edited by J. J. Benedetto (Lecture Notes in Mathematics, 779), iv+177 pages, Springer-Verlag, Ber-
lin—Heidelberg—New York, 1980. 

During the spring semester of 1979 a program in Euclidean harmonic analysis was presented 
at the University of Maryland. This volume comprises six lecture series of them. The table of contents 
reads as follows. 

1. L. Carleson, Some analytic problems related to statistical mechanics. 
This is addressed to two main problems of classical statistical mechanics: (i) the verification of 

expected equilibrium thermodynamic properties, and (ii) the validity of the Gibbs theory for dynami-
cal systems. 

2. Y. Domar, On spectral synthesis in R", n i 2. 
3. L. H;dberg, Spectral synthesis and stability in S ibolev spaces. 
The following problem is discussed in these two lecture series: Let X be a class of distributions 

with support contained in a fixed subset of E of R"; determine whether or not a given element //€ X 
is the limit in some designated topology of bounded measures contained in X. In Domar's case, the 
Fourier transform of A" is a subset of Z,~(R") with the weak* topology. In Hedberg's case, X is a 
Sjbolev space with the norm topology. 

4. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, 
and analysis on Lipschitz curves. 

5. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, The complex method for in-
terpolation of operators acting on families of Banach spaces. 

6. A. Córdoba, (i) Maximal functions: A problem of A. Zygmund, and (ii) Multipliers o f^*( . I f ) . 
These three lecture series deal with the harmonic analysis of operators of Lp spaces. The prob-

lems studied have emerged mainly from the research of Zygmund, Calderón and Stein. In order to 
verify various L" estimates for the Hilbert transform and related operators, R. Coifman and Y. Meyer 
present a range of real and complex methods. Next, G. Weiss, in a joint work with several others, set 
forth a theory of interpolation, which includes the Riesz—Thorin theorem and Stein's theorem for 
analytic fa-nilies of operators. Finally, A. Córdoba solved several specific problems involving a thor-
ough mix of many of the real methods. 

The present book gives excellent accounts on the fast-growing development of Euclidean harmo-
nic analysis, which has maintained a vital relationship with several other areas of mathematics for over 
150 years. It will certainly stimulate some of the readers to attack the rather difficult problems of this 
important and fascinating field. We warmly recommend the book to everybody who wants to keep 
pace with up-to-date developments in Harmonic Analysis. 

F. Móricz (Szeged) 

T. W. Gamelin, Uniform Algebras and Jensen Measures (London Mathematical Society Lecture 
Note Ssries, 32), VIII+ 162 pages, Cambridge University Press, Cambridge—London—New York— 
Melbourne, 1978. 

These notes are based on various courses given by the author. The unifying theme is the notion 
of subharmonicity with respect to a uniform algebra. Dual to the generalized subharmonic functions 
are the Jensen measures. 

The book consists of nine chapters. Chapter 1 provides an abstract treatment of /i-measures, 
including the basic ideas of the Choquet theory. Chapters 2 and 3 show three natural choices for R-
measures: the representing measures, Arens—Singer measures and Jensen measures. 
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Chapter 4 is based on some unpublished work of B. Cole, in which an open Riemann surface is 
constructed for which the corona problem has a negative answer. Chapter 5 introduces and treats 
various classes of quasi-subharmonic functions, algebras generated by Hartogs series, and the abstract 
Dirichlet problem for function algebras. The abstract development is applied in Chapter 6 to algebras 
of analytic functions of several complex variables. The key to applications is a theorem of H. 
Bremermann asserting that the abstract subharmonic functions essentially coincide with the 
plurisubharmonic functions. 

Chapters 7 and 8 are devoted to the theory of the conjugation operation in the setting of uniform 
algebras. The M. Riesz and Zygmund inequalities turn out to be valid for Jensen measures, and the 
constants are the same as those that arise in the case of the disc algebra. On the other hand, they fail 
to extend to arbitrary representing measures. In Chapter 9 the problem of characterizing the moduli 
of the functions in H\a) is considered. The discussion is based on Cole's proof of a theorem of 
Helson. 

Each chapter ends with references. The book is supplemented by a List of notation and an 
(author and subject) Index. 

The presentation is self-contained and unified. Some of the results are published here for the 
first time. The book may serve as a starting point for research in an area of current interest. It is highly 
recommended for every graduate student who wishes to continue studies in Abstract Harmonic 
Analysis or Functional Analysis. 

F. Móricz (Szeged) 

Herman H. Goldstine, A History of the Calculus of Variations from the 17th through the 19th 
Century (Studies in the History of Mathematics and Physical Sciences, 5), XVIII+410 pages, Springer-
Veriag, New York—Heidelberg—Berlin, 1980. 

. The beginning of the calculus of variations can perhaps be dated from Fermat's elegant prin-
ciple of least time, formulated in 1662 to show how a light ray was refracted at the interface between 
two optical media of different densities. He used the methods of the calculus to minimize the time of 
passage of a light ray through the two media. (By the way, Greek mathematicians were already 
aware of isoperimetric problems and their results were preserved for us by Pappus (c. 300 A. D.), 
but their methods were, of course, geometrical and not analytical). 

The author attempts to trace the development of the calculus of variations during the period, 
in which the foundations of the modern theory were being laid. He chooses the most famous math-
ematicians of the period in question and concentrates on their major works. 

The book is divided into seven chapters, and ends with a rich Bibliography containing about 
200 items and a detailed Index. 

Chapter 1 is entitled "Fermat, Newton, Leibniz, and the Bernoullis". During the 17th century 
mathematical notation began to improve quite markedly and the reasonable symbolisms contributed 
greatly to the development of mathematics. Fermat's work mentioned above seems to be clearly the 
first real contribution to the field. His method was adapted by John Bernoulli in 1696/97 to solve the 
brachystochrone problem (from brachystos, shortest, and chronos, time). The first genuine problem 
of the calculus of variations was formulated and solved by Newton in 1685. He investigated the mo-
tions of bodies moving through a fluid and led up to the general problem of motion in a resisting 
medium. 

Chapters 2 and 3 ("Euler" and "Lagrange and Legendre") present the main achievements in the 
calculus of variations during the 18th century. In his book Euler treated 100 special problems and not 
only solved them but also set up the beginnings of a real general theory. His systematic investigations 
also served to influence the young Lagrange to seek and find a very elegant apparatus for solving prob-
lems. Lagrange explicitly formulated the famous multiplier rule, the so-called Euler—Lagrange 
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rule, which became a sovereign tool in his hands for discussing analytical mechanics. This new tool 
caused EuJer to name the subject appropriately the calculus of variations. In 1786 Legendre broke 
new ground by extending the calculus of variations from a study of the first variation to a study of 
the second variation as well. 

Chapter 4 ("Jacobi and His S:hool") is devoted to the works made in the first half of the 19th 
century. Legendre's analysis was not error-free, but Jacobi in 1836 wrote a remarkable paper on the 
second variation, in which the root of the matter was recognized. Among other things, he showed 
that the partial derivatives with respect to each parameter of a family of extremals satisfy the so-called 
Jacobi differential equation. However, none of Jacobi's results was proved in bis paper. As a result 
a large number of commentaries were published, mainly to establish an elegant result of his on exact 
differentials. The celebrated Hamilton—Jacobi equation underlies some of the most profound and 
elegant results not only of the calculus of variations but also of mechanics, both classical and modern. 

In the second half of 19th century two quite different directions were taken. On the one hand, 
Weierstrass went back to the first principles and not only placed the subject on a rigorous basis using 
the techniques of complex-variable theory, but discovered the so-called Weierstrass condition, fields 
of extremals, sufficient conditions for weak and strong minima, etc. On the other hand, Clebsch tenta-
tively and A. Mayer decisively moved on quite another route. They succeeded in establishing the usual 
conditions for ever more general classes of problems. E.g., Mayer gave an elegant treatment of isope-
rimetric problems, in which he formulated his well-known reciprocity theorem. Details of their re-
searches are presented in Chapter 5 ("Weierstrass") and Chapter 6 ("Clebsch, Mayer, and Others"). 

At the international mathematical congress of 1900 Hilbert gave a beautiful discussion of the 
calculus of variations. His greatest contributions were perhaps the discovery of his invariant integral 
together with the results that stem from it, the perception of the second variation as a quadratic func-
tional with a complete set of eigenvalues and eigenfunctions, and his examination of existence the-
orems. Osgood, Bolza, Kneser, Carathéodory, etc., were also outstanding mathematicians at the turn 
of the century, whose major results are contained in Chapter 7 entitled "Hilbert, Kneser, and Others". 
Upon this point the present volume ends. 

The above listing of the contents could hardly give a right impression of the richness of the book. 
It is written with a brilliant style and the text is illuminated by 66 illustrations. The book will certainly 
be a very instructive and profitable reading for everyone interested in the Calculus of Variations. 

F. Móricz (Szeged) 

G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory (Undergraduate Texts in 
Mathematics), XV+286 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

The nonlinear differential equations governing evolution problems generally contain some para-
meters. Therefore, the equilibrium solutions of such an equation depend on these parameters. Bifur-
cating sulutions are equilibrium solutions which form intersecting branches in a suitable space of func-
tions. One of the central problems in bifurcation theory is: how do stability properties of equilib-
rium solutions change at bifurcation points? 

The book is a very good text for teaching the principles of bifurcation. It gives a general theory 
abstracted from the detailed theory required for particular applications, and providing the reader 
with a "skeleton on which detailed structures of the applications must rest." 

The following types of equilibrium are treated: steady solutions of autonomous problems, peri-
odic solutions of nonautonomous problems, periodic sol utions of steady problems, subharmonic solu-
tions of periodic problems, subharmonic bifurcating solutions of periodic solutions of autonomous 
problems. Bifurcation of periodic solutions of autonomous and nonautonomous problems into 
"asymptotically quasi-periodic" solution is considered as well. 
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The book follows the simplest way of teaching the subject, starting with the analysis of one and 
two-dimensional problems and later demonstrating how the lower-dimensional problems relate to 
high-dimensional problems. Instead of the Center Manifold Theorem, the Implicit Function The-
orem and the Fredholm Alternative are used for the computation of power series solutions and for the 
determination of qualitative properties of the bifurcating solutions. 

Owing to its simplicity and generality, the book should be very useful to persons working in 
fields as diverse as biology, chemistry, engeneering, mathematics, and physics. 

L. Hatvani (Szeged) 

J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications (Applied Math-
ematical Sciences, 19), XIII+408 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976. 

The Hopf bifurcation occurs in connection with dynamical systems containing some parameters 
and refers to the development of periodic orbits ("self-oscillations") from a stable fixed point, as a 
parameter crosses a critical value. This phenomenon can be illustrated by the following example. 
A rigid, hollow sphere with a small ball inside hangs from the ceiling and rotates about a vertical axis 
through its center. For small rotation frequences the bottom of the sphere is a stable point. But if the 
frequency exceeds a critical value then this equilibrium becomes unstable, the ball moves up the side 
of the sphere to a new fixed point. For each value of the frequency greater than the critical one there 
is a stable, invariant circle of fixed points. 

The applications necessitate examination of Hopf bifurcation for vector fields and diffeomor-
phisms given on manifolds. The book originated at a seminar given in Berkeley in 1973—74 and con-
tains contributions of many authors. It offers an excellent discussion of the theoretical results and app-
lications of this topic. The basic tool is the "Center Manifold Theorem" which enables the infinite-
dimensional problems to be reduced to finite dimensional ones. The authors give a survey on the 
necessary preliminaries from functional analysis, thus their book is readable for a wide circle of 
readers interested in this theory and its applications. 

The book treats not only the new directions of research but also the classical results. For exam-
ple, a translation of Hopf's original and generally unavailable paper is included. In Hopf's original 
approach, the determination of the stability of the resulting periodic orbits is, in concrete problems, 
an unpleasant calculation. The authors give explicit algorithms for this calculation which are easy to 
apply in examples. The method of averaging also is used for reducing the problem and establishing 
stability properties. 

Chapters are devoted to partial differential equations, where the key assumption is that the 
semi-flow defined by the equations is smooth in all variables for i > 0. 

The importance of bifurcation theory is in its very close connections with applications. The 
reader can find interesting problems arising in fluid dynamics, population dynamics, celluar biology 
etc. 

To sum up, we can warmly recommend this book for mathematicians, users of mathematics as 
well as science students. 

L. Hatvani—/. Terjéki (Szeged) 

R.O. Wells, Differential Analysis on Complex Manifolds (Graduate Texts in Mathematics, 
65), x+260 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

This book is the second edition of a succesful work which was first published by Prentice-Hall, 
Inc. (1973). The main program of the author is to give a very elegant development of Hodge's theory 
of harmonic integrals and Kodaira's characterization of projective algebraic manifolds. 

12 
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The first four chapters discuss four somewhat different areas of mathematics. 
Firstly differentiable manifolds and vector bundles are studied. Besides summarizing some 

of the basic definitions and results, this chapter contains some nontrivial embedding theorems, the 
continuous and C~ classification of vector bundles. Almost-complex structures and calculus of differ-
entiable forms are also introduced. 

Roughly speaking, sheaf theory gives techniques for passage from local information to global 
information. This theory is desribed in chapter 2. 

Chapter 3 is an exposition of the basic ideas of Hermitian differential geometry with applica-
tions to Chern classes and holomorphic line bundles. The general theory of elliptic differential oper-
ators on compact differentiable manifolds can be found in the following chapter. The decomposition 
theorem of Hodge is proved here, asserting that for a self-adjoint differential operator the vector 
space of the sections is the orthogonal direct sum of the finite-dimensional null space and of the 
range of the operator. The Hodge's representation of the de Rahm cohomology by harmonic forms 
is also described. 

The following chapter 5 is a main chapter of the book. Compact complex manifolds are studied 
here with the application of the previous discussions. Many basic theorems of this field are proved, for 
example the Lefschetz decomposition theorem, the Hodge decomposition theorem, Hodge's generali-
zation of the Riemannian period relations for integrals of harmonic forms on Kahler manifolds, the 
Kadaira—Spencer upper semicontinuity theorem, etc. This chapter contains also a new section in 
addition to the first edition of the book. This is the classical finite dimensional representation theory 
for s/(2C) which is then used for giving a natural proof of the Lefschetz decomposition theorem. 

In the last chapter the famous Kodaire Embedding Theorem is proved, which asserts that a com-
pact complex manifold admits an algebraic embedding into a complex projective space iff it is a 
Hodge manifold. 

The book should be suitable for a graduate level course on the general topic of complex mani-
folds. The text is relatively self-contained but assumes familiarity with the usual first year graduate 
courses. 

Z. I. Szabó (Szeged) 

H. Werner und R. Schaback, Praktische Mathematik II (Methoden der Analysis), Hochschul-
text; Zweite, neubearbeitete und erweiterte Auflage, VIII+388 pages, Springer-Verlag, Berlin— 
Heidelberg—New York, 1979. 

The aim of this textbook is to provide a rigorouf background of certain results widely used 
in Numerical Analysis. The treatment is self-contained, it requires the knowledge of calculus only. 

The present volume consists of four chapters. Chapter 1 treats the theory of interpolation, in-
volving multiple dimensional interpolation and fast Fourier transform. Chapter 2 is devoted to ap-
proximation theory, among others, to the Remes algorithm, the Fourier and CebySev expansions 
of continuous functions. Chapter 3 begins with spline functions, including cubic splines, B-splines etc. 
These results are then applied to the problem of representation of linear functionals, in particular, 
to numerical differentiation and integration. Chapter 4 deals with numerical methods for the initial 
value problem of ordinary differential equations. Both one-step methods, especially the classical 
Runge—Kutta methods, and predictor-corrector methods are presented in details. The notions of 
consistency, stability and convergence of a method plays central role in the treatment. This chapter 
ends with the presentation of stability theorems of Dahlquist. 

Throughout the text there are various examples and figures (altogether 36) illuminating the ma-
terial presented, and giving hints to further results found in the literature. The orientation of the 
reader is helped by a notational index as well as an author and subject index. Among the references 
one finds references to more than 40 textbooks. 
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The material presented in this well-readable book belongs to the main body of up-to-date Nu-
merical Analysis. It will certainly be useful as a textbook for both science and engineering under-
graduate students. 

F. Móricz (Szeged) 

A. Weron (ed.), Probability on Vector Spaces II, Proceedings, Blazejewko, Poland, 1979. (Lecture 
Notes in Mathematics, 628), XIII+324 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1980. 

From the editor's foreword: "This volume contains 30 contributions — the written and often 
extended versions of most lectures given at the Conference. A great majority of papers present new 
results in the field and the rest are expository in nature. The material in this volume complements the 
material in the earliner volume Probability Theory on Vector Spaces, Proceedings Lecture Notes in 
Math. vol. 656, 1978, Springer-Verlag". 

Lajos Horváth (Szeged) 

George W. Whitehead, Elements of Homotopy Theory (Graduate Texts in Mathematics, 61), 
XXI+744 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

Homotopy theory is one of the most essential field of topology, which had its inception in the 
work of L. E. J. Brouwer. The book is concerned with the basic ideas and results of this theory in 
a modern treatment. 

The fundamental notions and problems of the theory such as homotopy classes of mappings, 
fibrations, CW-complexes, the H- and //'-spaces, the Hurewitz map of homotopy group into homology 
group etc. are introduced in the first four chapters. The Hurewitz theorem is also proved, asserting 
that the Hurewitz homomorphism is an isomorphism if the basic space is (n— l)-connected. 

The fifth chapter is devoted to the study of CW-approximations of spaces and of the extension 
problem of maps from a relative CW-complex onto the CW-compIex. In the following chapter a new 
homology group is introduced, with the help of which results parallel to those of obstruction theory 
can then be proved. 

The relationships among the homotopy groups of spaces arising from a fibration are expressed 
by an exact sequence. But the behaviour of the homology groups is much more complicated, and this 
can be examined only in certain cases. These problems are discussed in chapter 7, while the following 
chapter is devoted to the study of several cohomology operations. 

For a 0-connected space X and positive integer N, one can embed X in a space XN such that 
(X", X) is a (N+1) -connected relative CW-complex with nq(XI')=0 for all q^-N. The space XN + 1 

can be constructed from XN with the help of a certain cohomology class kN+1 € HN+2 (XN, nN+1 (X)), 
and X is determined up to weak homotopy type by the so-called Postnikov system {A"1*, k" * *} of X. 
In Chapter 9 the Postnikov systems are used to give an alternative treatment of obstruction theory 
for maps into X. 

In the last three chapters the author turns to the detailed study of //-spaces, homotopy opera-
tions and homology theories without the dimension axiom. 

The book is a very careful and clear work. It is a very good introduction to the field, at the same 
time it can be considered as a high level survey of the subject. It is assumed that the reader is familar 
with fundamental group theory and singular homology theory, including the universal coefficients 
and Kiinneth theorems. 

Z.l. Szabó (Szeged) 
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