
ACTA U N I V E R S I T A T I S S Z E G E D I E N S I S 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 

B. CSÁKÁNY 
S. CSÖRGŐ 
F. GÉCSEG 
L. HATVANI 
A. HUHN 
L. LEINDLER 

A D I U V A N T I B U S 

L. LOVÁSZ 
L. MEGYESI 
F. MÓRICZ 
P. T. NAGY 
J. NÉMETH 

L. PINTÉR 
G. POLLÁK 
L. RÉDEI 
I. SZALAY 
Á. SZENDREI 
K. TANDORI 

R E D I G I T 

B. SZ.-NAGY 

TOMUS 42 
FASC. 1—2 

SZEGED, 1980 

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS 



A JÓZSEF ATTILA TUDOMÁNYEGYETEM KÖZLEMÉNYEI 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 
C S Á K Á N Y BÉLA 
C S Ö R G Ő S Á N D O R 
G É C S E G F E R E N C 
H A T V A N I L Á S Z L Ó 
H U H N A N D R Á S 
L E I N D L E R L Á S Z L Ó 

LOVÁSZ LÁSZLÓ 
MEGYESI LÁSZLÓ 
M Ó R I C Z F E R E N C 
N A G Y PÉTER 
N É M E T H JÓZSEF 

P I N T É R LAJOS 
P O L L Á K G Y Ö R G Y 
R É D E I L Á S Z L Ó 
S Z A L A Y I S T V Á N 
S Z E N D R E I Á G N E S 
T A N D O R I K Á R O L Y 

K Ö Z R E M Ű K Ö D É S É V E L S Z E R K E S Z T I 

SZŐKEFALVI -NAGY BÉLA 

42. K Ö T E T 
FASC. 1—2 

SZEGED, 1980 
JÓZSEF A T T I L A T U D O M Á N Y E G Y E T E M B O L Y A I I N T É Z E T E 



ACTA U N I V E R S I T A T I S S Z E G E D I E N S I S 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 

B. CSÁKÁNY 
S. CSÖRGŐ 
F. GÉCSEG 
L. HATVANI 
A. HUHN 
L. LEINDLER 

A D I U V A N T I B U S 

L. LOVÁSZ 
L. MEGYESI 
F. MÓRICZ 
P. T. NAGY 
J. NÉMETH 

R E D I G I T 

B. SZ.-NAGY 

L. PINTÉR 
G. POLLÁK 
L. RÉDEI 
I. SZALAY 
Á. SZENDREI 
K. TANDORJ 

TOMUS 42 

SZEGED, 1980 

INSTITUTUM BOLYAIANÜM UNIVERSITATIS SZEGEDIENSIS 

L 



A JÓZSEF ATTILA TUDOMÁNYEGYETEM KÖZLEMÉNYEI 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 
C S Á K Á N Y BÉLA 
C S Ö R G Ő S Á N D O R 
G É C S E G F E R E N C 
H A T V A N I L Á S Z L Ó 
H U H N A N D R Á S 
L E I N D L E R L Á S Z L Ó 

LOVÁSZ LÁSZLÓ 
MEGYESI LÁSZLÓ 
M Ó R I C Z F E R E N C 
N A G Y PÉTER 
N É M E T H JÓZSEF 

P I N T É R LAJOS 
P O L L Á K G Y Ö R G Y 
R É D E I L Á S Z L Ó 
S Z A L A Y I S T V Á N 
S Z E N D R E I Á G N E S 
T A N D O R I K Á R O L Y 

K Ö Z R E M Ű K Ö D É S É V E L S Z E R K E S Z T I 

SZŐKEFALVI -NAGY BÉLA 

42. K Ö T E T 

S Z E G E D , 1980 

J Ó Z S E F A T T I L A T U D O M Á N Y E G Y E T E M B O L Y A I I N T É Z E T E 



Acta Sei. Math., 42 (1980), l—\2 

Co-Fredholm operators. II 

HARI BERCOVICI 

SZ.-NAGY and FOIA§ [16] proved that the operators T of class C0 and of finite 
multiplicity have the following property: 
(P) any injection X£ {T}' is a quasi-affiniti. 

In [3] we showed that property (P) also holds for weak contractions of class 
C0. In sec. 4 of the present note we shall characterize the class S? of C0 operators 
having property (P). 

UCHIYAMA [18] has shown that some quasi-affinities intertwining two contrac-
tions of class C0(N) induce isomorphisms between the corresponding lattices of 
hyper-invariant subspaces. This is not verified for arbitrary operators of class Cft 

(cf. Example 2.10 below). For operators of the class 3? we show (cf. sec. 4) that 
any intertwining quasi-affinity induces isomorphisms between the corresponding 
lattices of invariant and hyper-invariant subspaces. However the other results proved 
in [18] for operators of the class C0(N) hold for arbitrary operators of class C0; 
this is shown in sec. 2 of this note. In sec. 2 we also show which is the connection 
between the lattice of hyper-invariant subspaces of a C0 operator and the correspond-
ing lattice of the Jordan model. 

In sec. 3 of this note we prove a continuity property of the Jordan model. 
This is useful when dealing with operators of class 

In [16] B. SZ.-NAGY and C. FOIA§ made the conjecture that any operator T of 
class C0 and of finite multiplicity has the property: 
(Q) T|ker X and TkerX* are quasisimilar for any Xi {J } ' . 
This conjecture was infirmed in [3], Proposition 3.2, but was proved under the 
stronger assumption X£ {T}" for any operator 7" of class C„ (cf. also UCHIYAMA [19]). 

Uchiyama began the study of the class of operators satisfying the property (Q) 
showing in particular that there exist operators of class C0(N) and multiplicity 2 
wich have this property (cf. [19], Example 2). In sec. 5 of this note we characterise 
in terms of the Jordan model the class 2t of C„ operators having property (Q). 

Received January 16, 1979. 
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In [3] the determinant function of a weak contraction was used for proving 
various index results. In sec. 6 of this note we extend the notion of inner function 
in order to find a substitute of the determinant function for the case of operators 
of class 3?. In sec. 7 it is shown that the class of generalised inner functions (defined 
in sec. 6) naturally appears in the study of index problems. In sec. 8 we generalise 
the notion of C0-fredholmness defined in [3]. All results of [3] are extended to this 
more general setting. 

1. Notation and preliminaries 

Let us recall that Lat ( T ) and Lat^ (T) stand for the lattice of all invariant, 
respectively semi-invariant subspaces of the operator T. We shall denote by 
Hyp Lat (T) the lattice of hyper-invariant subspaces of T. If aJleLat .̂ (T), Tm 

stands for the compression of Tto the subspace SOi and ^r(9Jl) stands for the multi-
i 

plicity of Tw. The notations T~<T\ T<T' mean that T is a quasi-affine trans-
form of T', respectively that T can be injected into T' (cf. e.g. [15]). 

The following result will be frequently used in the sequel. 

Lemma 1.1. If T and 7" are operators of class C0 and T< T' then T and T' 
are quasisimilar. 

Proof. Cf. [16], Theorem 1 or [4], Corollary 2.10. 

Lemma 1.2. Let be a sequence of pairwise relatively prime inner func-
eo 

tions. If the operator S(m¡) is of class C0, the Jordan model of T is S{m), 
i = 0 

m = mT. 

Proof . If T is of class C0 it follows that T is a weak contraction (cf. the proof 
of [6], Lemma 8.4) and from the assumption we easily infer dT=mT. The conclusion 
follows by [6], Theorem 8.7. 

For two operators T and T' we denote by •/(?"", T) the set of intertwining 
operators 
(1.1) J(T',T) = {X: T'X = XT). 

Let us recall (cf. [3], Definition 2.1) that X^J(T\ T) is a lattice-isomorphism 
if the mapping ®te-«-(Z$Dt)- is an isomorphism of Lat (T) onto Lat (T'). 

Definit ion 1.3. An operator T has property (P) if any injection A£{T}' is 
a quasi-affinity. 
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We introduce the property (Q) as in [19]: 

Def init ion 1.4. An operator T has property (Q) if for any A£{T}', r|ker A 

and TkeiAt are quasisimilar. 
Obviously (P) is implied by (Q). 

Lemma 1.5. The operator T of class C0 acting on the Hilbert space § has the 

property (P) if and only if there does not exist Lat (T), such that T and 

are quasisimilar. 

Proof. Let T be quasisimilar to TS)'€Lat (T) and let X: be a 
quasi-affinity such that {T\9)')X—XT. Then A—JX (where J denotes the inclusion 
of into § ) commutes with T and ker A = {0}. If T has the property (P) we infer 
g>'=(A§>)-=§>. Conversely, if A£ {T}' is an injection, T and T\(A§)~ are quasi-
similar by Lemma 1.1. 

We shall denote by H" the set of inner functions in H°°. The set H" is (pre)-
ordered by the relation 

(1.2) m á m ' if and only if |m(z)| ̂  |m'(z)|, |z|<l. 

Obviously m^m' if and only if m divides m'. The relations m^m' and m'^m 

imply that m and m' differ by a complex multiplicative constant of modulus one; 
we shall not distinguish between the functions m and m' in this case. 

Let us recall (cf. [4]) that a Jordan operator is an operator of the form 

(1.3) S(M) = © S imJ, mx = M{a) 
a 

where M is a model function, that is M is an inner function valued mapping defined 
on the class of ordinal numbers and 

{mx mf whenever a ̂  /J; 

mx = mp whenever a = p; 

(1.5) m, = 1 for some a, 

where a denotes the cardinal number associated with the ordinal number a. 
The Jordan model S(M) is acting on a separable space if and only if ma=\, 

where co denotes the first transfinite ordinal number. In this case the Jordan operator 
is determined by the sequence {Wj}°10. If mn=1 for some «<ct>, we shall also 
use the notation S(m0, m1, ..., mn_1) for S(M) (cf. [13]). If S(M) is the Jordan 
model of the operator T of class C0, we shall use the notation m a [ r ]=M(a ) (cf. [4]). 
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2. Hyper-invariant subspaces of operators of class C0 

In this section we continue the study of hyper-invariant subspaces for the class 
C„ begun by UCHIYAMA [18] (for the case of operators of class C0(N)). The following 
Proposition extends [18], Theorem 3 and Corollaries 4 and 5 to the class of general 
Jordan operators. 

Proposition 2.1. Let T= S(M) be a Jordan operator acting on the Hil-

bert space 

(2.1) § (M ) = © § (mj, mx = M(ai). 
a 

(i) A subspace 9Jtc§(M) is hyper-invariant for T if and only if it is of the form 

(2.2) 931 = 0 ( M : # 2 0 m, H*), ml tk mx, 
a 

and the functions M' and M" given by M"{n)=m"x and M'(jx)=mJm"x are model 

functions. 

(ii) If № is a subspace of the form (2.2) then T' = T\)R is unitarily equivalent 

to S(M') and T"=Tm± is unitarily equivalent to S(M"). In particular, 

(2.3) mT = mr. mT» 
ifyjl is hyper-invariant. 

(iii) If 3Jil5 9Ji2€Hyp Lat (T) are such that and r|5öi2 are quasisimilar, 

we have 9Jl1=SDi2. 

Proof. We shall denote by the projection of H2 onto by Pg (m ) 

the projection of § ( M ) onto § ( w j and by Jx the inclusion of §>{mx) into § ( M ) . 
By the lifting Theorem (cf. [12], Theorem II.2.3) {T}' is strongly generated by the 
operators 4f(T), where ij/£H°°, and the operators Aßx given by 

<2.4) { Aßt — Jß 

Aox — Ja 

— JßPi>(.mß-)P§{m*) if X — ß', 

*/»«= WmßlmJh(m.) i f a>~ß> 

;and therefore the subspace 9Jlc§(/V/) is a hyper-invariant subspace if and only 
it is invariant and ^ S f l c i J l for each a and /?. Let us assume that 9JÏ is hyper-
invariant. Because Aaxy)l~P^m } SRcSIl we have 

<2.5) S)l = © 2R, 
a 

•where 2Ra£Lat (S(mxj), say S R t h e r e f o r e 9K is of the form (2.2). 
Now let a and jS be ordinal numbers such that the conditions ^^SRcSDl 
and A ^ c z m . are equivalent to P ^ S ^ c S D ^ and ( m ^ / m ^ ^ e ^ . We infer 
mxÇ.m'pH2 and {mJm^)m"^m"xH- so that m'x^m'^ and mjmx^mfi/m'^, respec-
tively; therefore M' and M" are model functions. 
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Conversely, let 9Ji be given by (2.2) and assume M ' and M " are model func-
tions. It easily follows that Pg^SO^cSOlp and (mJm^WlpCWlt whenever a</?. 
Thus A^maNl for each a and P so that 0)1 £ Hyp Lat (T) and (i) follows. 

To prove (ii) let us remark that, if 9JÎ is given by (2.2), we have r [9K=© SimJI®^ 

and TmJ- = © S{mx)m±, where mx=rnxHiQmxH2 and SimJI»^ is unitarily 
a 

equivalent to S(mx) while SÇm^J- is unitarily equivalent to S(mx). If 9JÎ is hyper-
invariant then S (M ' ) and S(M") are Jordan operators and therefore they are the 
Jordan models of 7" and T", respectively. In particular mr=m'Q—mjm'^=mT\mT-

and (2.3) follows. 
Finally, if 9Wi, 9K2ÇHyp Lat (7 ) and r ^ , T|DJî2 are quasisimilar it fol-

lows that r|9Mx and r|93l2 have the same Jordan model. By (ii) ÜJÍj is determined 
by the Jordan model of" r ^ . Therefore and (iii) follows. 

Remark 2.2. The proof of Proposition 2.1 can be applied with minor changes 
to the description of Hyp Lat (T ) when T= © 5(wy) and {mj}j€J is a totally 

js.J 
ordered subset of H". 

For further use let us note that the general form of a subspace Hyp Lat (T) is 

(2.5) © (m'jH2QmjH2), m", m, for j€J 
iii 

where m"ĵ .m"k and mjlm"J-^mlJml whenever m }^mk . 

Remark 2.3. Let the subspaces Wlj be given by 

(2.6) SKy = © (mj(«)H*QmxH2), j = 1,2. 
a. 

Then 
f a ^ n 9K2 = © (mMVmÂ*)H*QmxH% 

( 2"7 ) laKiVaria = © (mx(a)Am2(a)/P© mxH2); a 

in particular SD̂ cSDÎa if and only if ml(oi)^m.i('x) for each a. 
We shall now characterize the Jordan operators having a totally ordered lattice 

of hyper-invariant subspaces thus extending [18], Theorem 6. 

Proposit ion 2.4. The lattice Hyp Lat (T), T=S(M), is totally ordered if 

and only if one of the following situations (i), (ii) occurs: 

(i) m°=(S)and mÂ1' (S) ' (S)}for each a'with |a|<1 
and a natural number n. 

(ii) m0=exp (*——•) with |a| = l, 0, and mx=m0 whenever mx?±l. 
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Proof. For two inner divisors m, m' of mT we have (ran wz(J))~c(ran m'{T))~~ 

if and only if msm' (cf. [4], Lemma 1.7). If Hyp Lat (T) is totally ordered it fol-
lows that the lattice of divisors of m r=m0 is also totally ordered. Therefore we 

have either w0=|—^—(|a|«=l, n a natural number) or m0—exp(f j 
\1 —az ) v z — a ) 

(|a| = l, />0). 
( z - f l \ " W 

Let us consider the first situation. Then m,=I - — w h e r e « (a ) is a 

decreasing function of a. By Proposition 2.1 and Remark 2.3, Hyp Lat (T ) is iso-
morphic to the lattice of natural number valued decreasing functions k (a) such 
that &(a)áw(a) and n(a)—k(oc) is also decreasing. Assume there exists oc0 such 
that m—n(a0)^ { « , «—1, 0} and define k1 (a) = max [n(a) — 1, 0} and k2(a) 
= min {m, «(a)}. Then we have k^(0)=n—1 >k2 (0 )=m and k1(oc0)=m—1)< 
</r2 (a0)—m so that kx and k2 are incomparable. Thus we necessarily have 
n(a)€{n, n — 1, 0}. Conversely, if n(a)€{«, n—1, 0} for every a, let us take two 
functions klt k2 of the type considered before. If kx and k2 would not be compara-
ble there would exist a</? such that n(JS)^0 and, by example, k1(ct)<k2(ci), 

ki(P)>k2(P). From the assumption it follows that iz(a)=7i(/?) + l so that n (j5) — 
-k2(fi)S n (a) -k2(a)^n(P)+i-k2(a) and therefore k2(a)-l^k2(fi). Now k^fi)^ 
^k1((x)^k2(<x) — l^k2 ( f i ) , a contradiction. This shows that Hyp Lat (J1) is totally 
ordered in this case. 

Now let us consider the case m0 (z)=exp • Then ma (z)=exp , 

where t{a) is a positive number valued decreasing function. Again by Proposition 
2.1 and Remark 2.3, Hyp Lat (T ) is isomorphic to the lattice of positive number 
valued decreasing functions i (a) such that s(a)^i (a) and ¿(a)—s(a) is also decreas-
ing. Assume there exists a0 such that í(a0)f£{í, 0} and let us take 0 < £ < 
min {í(a0), i—f(a0)}. Then the functions jj (a)=max {i(a)—e, 0} and s2(a) = 

=min {/(a), i(a0)} are such that i1(0)=/(0)—e>s2(0)=t(ao) and 

Si(a0) = t(a0)-e < s2(a0) = r(a0); 

therefore sx and s2 are incomparable. Thus we necessarily have /(oc)€{i, 0} if 
Hyp Lat (T ) is totally ordered. 

Conversely, let us assume /(a)£ {t, 0} for each a. If í is a function of the type 
considered above and t(a)¿¿0, we have s(0)^s(a) and /—s(0)S/(a)—s(a)= 
= t - s ( a ) so that s(a)=s(0). Thus s(a)=s(0) if t (a)^0 and s(oe)=0 if *(a)=0. 
It is obvious that Hyp Lat (T ) is totally ordered in this case also. The Proposition 
is proved. 

UCHIYAMA [18] has shown that two quasisimilar operators of class C0(JV) have 
isomorphic lattices of hyper-invariant subspaces. This result is also verified, as we 
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shall see in sec. 4, for operators of class C0 having property (P). The same thing; 
is not true for arbitrary operators of class C0 (cf. Example 2.10). However we can 
find a connection between Hyp Lat ( T ) and Hyp Lat (S ) if S is the Jordan model 
of the C0 operator T. This allows us to extend [18], Corollaries 2 and 5 to arbitrary 
operators of class C0. 

Theorem 2.5. Let T be an operator of class C0 acting on the Hilbert space 

§ and let S=S(M) be the Jordan model of T. Let <p: Hyp Lat (S )^Hyp Lat (7> 
be defined by 

(2.8) (p(2R) = V 
*€/(7\S) 

and let ip: Hyp Lat (T ) - H y p Lat (S), 

•A*: Hyp Lat (T*) - Hyp Lat (S*) 

be defined by analogous formulas. 

(i) There exist Y£J(S, T) and X£J{T, S) such that i^(9M)=(nW)- = 

=X_1(9)?), 9Ji€Hyp Lat (T). In particular S\ij/(M) is unitarily equivalent to the 

Jordan model of 7"|9Ji. 

( i i ) [¡/0(p = idHypLat(S)-

(iii) ^ (a » J - ) = (^0DI))J-, SJlgHypLat (T). 

Proof. By [4], Theorem 3.4, there exists an almost-direct decomposition 

(2.9) § = V 8«, S a £Lat (T), 
at ^ 

such that T|$a is quasisimilar to S(ma) and if a and fi are different 
limit ordinals and m, n^co. If we put 

(2.10) S i = ( V S/r^CLat(T*) 

we also have § = V § * by [4], Lemma 1.11; because 
a 

(2.11) = ( P ^ a X m j 

and obviously -PgjIS« is a quasi-affinity, is also quasisimilar to S(mJ. We 
choose quasi-affinities Xx: §>(mx)-~§>x, Ya: such that (T\$yx)Xx= 

= Xx S(mx) and Sim^Y^Y^i and moreover 

(2.12) 2 l in +J ^ i, 2 fl^+J ^ i 
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for each limit ordinal a. Then we can define quasi-affinities XÇ.f(T, S), T) 

by the formulas 
•(2.13) Xh = 2 X«ha, h = ©A. <E§(M), 

a a 

Yh = @ J.YaP6Îh, 
a 

Indeed, from (2.12) it follows that X and Y are bounded (of norm S i ) . 
Let us remark that Y^P^lfy^) XxÇ_ {S^mJ}' is a quasi-affinity such that by 

Sarason's Theorem [10] we have 

(2.14) Ya{P^\§t)Xa = ux(S(mj), ux€H", « . A m ^ l . 

If SRÇHyp Lat (S) we obviously have i//(ç>(9)ï))c9JÎ. Now, let 9K be given 
.by (2.2) and denote mx=m^H2QmxH2. Then, by (2.14), 

(KKIR)- 3 (FXSRJ- = (YX.WJ- = (YxP6:Xx9)lx)- = 

= (u.(S (/»,))№,)- = 931, and therefore 931 = (YJirSR)- c i//(<p(m)); 

;this proves (ii). 

Let us consider the operators Rfix€ {T}' defined by 

\RPx = Xf(mll/mx)YxP^ if a > /?, 

-and let Apx£{SY be defined by (2.4). Then, for a^fi, 

YRp: = J a YD Ps* X^ (mjj) Ya P6* = 

= JpUp (S(mpj) Pç {mp) Yx Pè* = 

= Up (S) Jp Cmjî) P6(ma) = Up(S)ApxYP£* 

:and because AfixYP(S*)±=0 we obtain 

(2.16) YRqx = Up(S)ApxY 

in this case. The relation (2.16) is proved analogously when <x^p. If 9l6Hyp Lat (T) 

and 9JÎ=(F9l)- we infer from (2.16) ^(SO/i^SJlcSDi. Because uxhmx=\ we 
infer by [3], Corollary 2.9, that « ^ ( f f î ^ K ^ S K ) - is a quasi-affinity; therefore 
^Rr> (a ; (S ( i iO ) (^aR) - ) -= (4 »aB) -= (^c B 1 j a » ) - - As in the proof of Proposi-
tion 2.1 it follows that 9K = © 5№a, mx=mxH2QmxH^LsLt(S(mx)) and for 

a 
u0mxÇ.m^H2 and ux(mJmf)m'^mxH2. Because uxAmx=1, upAmfi=l we also 
have uaAm^=i, AmJ=l so that from the preceding relations we infer mx£m'pH2, 

respectively (mJm f i )m'^mxH2 . By Proposition 2.1 we proved 

<2.17) (F9l)~£Hyp Lat (S) whenever 9l€Hyp Lat (T). 
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Analogously we infer 

(2.17)* (.ST* 91) ~ £ Hy p Lat (S *) whenever 91£ Hyp Lat (T*). 

If Hyp Lat (T) we have .S'*(9t-L)c(r9t)-L. Indeed, if h£9i, g(E9l\ we 
have (Yh, X*g)=(XYh, g)=0 because AT/7691. An analogous argument shows that 

(2.18) ^ ( 9 U ) c 0K91))-1-, 916 Hyp Lat (T). 

In particular we have 

Because I91-1 has dense range and SaM)x(P (rM)±F|9l±)=(P (mxF|9}-L)7 ,9,_L 

it follows that S * ! ^ ) 1 ^ * ^ 1 ' By [16], Theorem 1 (cf. also [4], Corollary 2.10) 
the operators T*^-1 , ¿ ^ ( J T ^ 1 ) - , S*|i/'+(9lJ-), S*^^))1- and S h r i l l ) 1 are 
pairwise quasisimilar. Because S* is also (unitarily equivalent to) a Jordan operator 
it follows by Proposition 2.1 (iii) that (Z*9ix )-=^+ (9l-L )=(^(9l) )J-=(F9l)-L . This 
proves the assertions (i) and (iii) of the Theorem. 

The following Corollary extends [18], Corollary 5, to arbitrary operators of 
class C0. 

[T' X 1 

q y,// is the 
triangularization of T with respect to the decomposition § = S)l®9JlJ-, 9Jl£Hyp Lat (T ) , 
we have 
(2.19) mT = mT- mT«. 

Proof. If <j/ is as in Theorem 2.5, 7" is quasisimilar to and T " is 
quasisimilar to The Corollary follows by Proposition 2.1 (ii). 

Corol lary 2.7. Let T and T' be two quasisimilar operators of class C0, let S be 

their Jordan model and let rj: Hyp Lat ( r ) - H y p Lat (7"), Hyp Lat (T) — 

-»Hyp Lat (S), ip': Hyp Lat (7") — Hyp Lat (5) be defined by formulas analogous 

to (2.8). 

(i) ij/'ori = \]/; in particular r|9Jt and T'|i/(93l) are quasisimilar for 

9K£Hyp Lat (T). 

(ii) 7/9Ji€HypLat(r), 9K '€HypLat ( r ) are such that r|9K and r'|9T are 

quasisimilar, then Tm± and are also quasisimilar. 

Proof. The inclusion is obvious for 9Jt£Hyp Lat (T). 

Then by Theorem 2.5 (i) we infer T\m<S\(il/'on)(№)<S\il/(!№)<T\№. By [16], 
Theorem 1, T|9Jl, 5|(^'o/j)(93i), S|i/̂ (9Jl) are pairwise quasisimilar and the equality 
il/'orj—i// follows by Proposition 2.1 (iii). Now it is obvious by Theorem 2.5 (i) 
that r|a>l and T'\ri(№) are both quasisimilar to S|^(9Ji); (i) follows. 
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To prove (ii) we remark that, by Theorem 2.5 (i), 5|^(a»î) and S^ 'O^ ' ) are 
quasisimilar and therefore \j/(W)=if/'(W) by Proposition 2.1 (iii). Again by Theo-
rem 2.5 it follows that Twx and T'№,± are both quasisimilar to Sm>_ where 9t=i/f(9Jl) = 
=\p'(W). Corollary follows. 

Corol lary 2.8. Let T, S, q>, ip be as in Theorem 2.5 and let Hyp Lat (S*)-~ 
— Hyp Lat (T*) be defined by a formula analogous to (2.8). Among the spaces 

916 Hyp Lat (T ) such that J|9l is quasisimilar to S|9ft for a given 93?6 Hyp Lat (5), 
<p (93Î) is the least one and (ç>*(9Jl-L))-L is the greatest one. 

Proof. If r|9l is quasisimilar to S|9Jt we have \j/(91)=931 by Theorem 2.5 
(i) and Proposition 2.1 (iii) and therefore <p (9JÎ)=<p(\]/ (91)) c 91. Now, by Corol-
lary 2.7, T|9t and 5|50i are quasisimilar if and only if T^x and Sw± are quasi-
similar. Because (9JÎ-1-) is the least hyper-invariant subspace of T* such that 
T ^ X ) and Sw±_ are quasisimilar, the last assertion of the Corollary follows. 

Corol lary 2.9. Let T, S, (p, cp* be as before. The following assertions are 

equivalent: 

(i) q> is a bijection; 

(ii) (p^ is a bijection; 

(iii) <p(93l)-L=<?);([(9K-L) for 9JÎ€Hyp Lat (5 ) ; 
(iv) if 9l1; 9l2€Hyp Lat (71) and T " ^ , T[9Î2 are quasisimilar, we have 9^ = 9Î2. 

Proof . By Theorem 2.5 (ii) q> is a bijection if and only if ip is one-to-one. 
By Theorem 2.5 (i) and Proposition 2.1 (iii) i¡i is one-to-one if and only (iv) holds. 
Thus the equivalence ( i )o ( iv ) is established. 

By Theorem 2.5 (iii) we have i/^(9JÎ-L)=i/'(95l)J- so that ip is one-to-one if 
and only if ipx is one-to-one. This establishes the equivalence (i )o(i i ) . 

r|<p(9H) and ^ (^ (a^ ) ) - 1 - are both quasisimilar to S\Wl so that <p(2)t) = 
=(ç»+(9Ji-L))-L if (iv) holds. Conversely, if (iii) holds and T|9Î2 are quasi-
similar, by the preceding Corollary we have <p (9JÎ) c 91, c (<p+ (9JÎ ±))J- = (p (99Î), 
j= 1,2, where 9Jl=i^(9î1) = ^(9î2). Thus 9t1=9î2=ç>(9:>î) and the Corollary is 
proved. 

Example 2.10. Let S=S(m2)^ and T=S®S(m), where and 
S(/w2)(So) denotes the direct sum of K0 copies of S(m2). By [2], Corollary 1, S is 
the Jordan model of T. The subspaces ker m(T), ran m(T) are hyper-invariant for 
7" and 7"|ker m(T), 7>an m(T) are both quasisimilar to S(m)^. By Corollary 2.9 
it follows that in this case <p is not onto, f is not one-to-one. 

If we take in particular m(z)=z2 (|z|< 1) it is easily seen that 
card (Hyp Lat (7"))=9 and card (Hyp Lat (S) )=5. Thus Hyp Lat (T) and Hyp 
Lat (S) are not isomorphic. Moreover, one can verify, by the proof of Propositi-
on 2.4, that Hyp Lat (T) is not totally ordered while Hyp Lat (S ) is totally ordered. 
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3. A theorem on monotonic sequences of invariant subspaces 

If T is an operator of class C0 acting on § and Lat (T) are such that cz9)j+1, 
7=0,1, ... , and § = V $,•> it is clear that mT is the least common inner multiple 

J® o 
of the functions mT|Sj, j=0,1, ... . The following Theorem shows that the same 
thing is verified for all the functions appearing in the Jordan model of T. 

Theorem 3.1. Let T be an operator of class C0 acting on the Hilbert space 

§> and let { f v } J l 0 c :Lat (T ) be such that § c § +1, 0 a n d § = V 
is o 

Then 

(3-1) m.[T]= V m«[r|Sy] 
is 1 

for each ordinal number a. 

Proof. Because T\§>j<T\9)j+1<T it follows that mx[T\§>j]^ma[T\9>J+1]^ 
for each a (cf. [4], Corollary 2.9). Let us consider firstly the case a^co 

and denote m=\j ma[T|§,]; then m divides ma[T], Because divides 
JSO 

m we have (cf. [4], Remark 2.12). Because obviously 
( m ( r ) § ) ~ = V m(T)§>j we infer /iT(m)=fiT,,m,T)f))-^^0 -5.-0. and therefore 

j so 
mJT] divides m by [4], Definition 2.4. Thus mx[T]=m and (3.1) is proved for 
asco. 

Now let us recall that by [4], Theorem 3.3, there exists an orthogonal decom-
position 
(3.2) § = © 2Ka, 93la£Lat(T), 

a 

such that riSOtj is quasisimilar to © S(mx+j[T]) for each limit ordinal a. If 
J<0) 

we define we obviously have 9Jt0=V and T%<T% i so that 

T\Kj-<T\%j by [4], Corollary 2.9. Again by [4], Corollary 2.9 we infer ma[T\Rj]^ 
^ma[T|§j], a<co, and therefore it will be enough to prove the relation (3.1) 
for §=9Ji0 and §j=Rj, that is for T acting on a separable space. 

We may assume that T is a functional model, that is 

(3.3) § = § ( 0 ) = i/2(U)G 0t f2 (U) 

where U is a separable Hilbert space, 0 is a two-sided inner function, 0€if~(jS?(U)), 
and 
(3.4) Th= S{0)h = P6myh,7iz) = z, he?>(&). 

With each subspace we can associate by [12], Theorem VII. 1.1 a factorisation 

(3.5) 0 = 0f> 0«> 
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such that the functions Q (p and 0*2) are two-sided inner, 

(3.6) b j = 0 j 2 ) # 2 (U )Q 0Я2(11), 

and Т\9)} is unitarily equivalent to S (&f ) ) . The inclusion § j C § j + 1 is equivalent 
to & f № 0 Х ) с О ( Л г № ( и ) and therefore 

(3.7) 0<2> = e f ^ Q j for some 

The condition § = V bj is equivalent to Я2 (Н) = V 0 f Я2(U). In partic-
j'eo jgo 

ular, if u£VL, we have lim |]и—Рвсг)нг(и)и||=0. It is easily seen that Рв^юн2ш)и= 

= &{p Q{p {G)*u. Indeed, it is enough to verify that the scalar product 

( « - 0<-2) (z) 0j2 ) (0)* u, & {P (z)zn г;) 

vanishes for t>£U and natural n; this is a simple computation. Thus we have 
u=lim 0f Qf (0)*И, M£U. Because the functions Qfef{G)*u are uniformly 

bounded we also have lim ( 0 f ) A n ( 0 f (0)*)An(MlA...AM„), 
j-*» 

ux,u2, ..., w„GU, and therefore 

V (0< 2 ) ) A "# 2 (U A n ) z> Нл". 
j'so 

Because V (0j2))A"7/2(UA") is invariant with respect to the unilateral shift on 
j so 

H2 (UA" ) we necessarily have 

(3.8) # 2 (U A " ) = V (0j2 ) )A"#2 (UA n )-
jso 

The subspaces 
(3.9) = (0<2>)л"я2(ил")© 0Л"Я2(ЦЛВ) 

are invariant with respect to 5 (0Л п ) and because 0Лп=(0^2 ) )Лп (0У ) )Лп is a 
regular factorization, S(0A")|§" is unitarily equivalent to 5((0^1))Лп). By (3.7) 
we have ( 0 f )A"=(0<2>1)A"i2An and therefore for 0ёу<«=. Finally, 
relation (3.8) shows that § ( 0 A n ) = V Ь", and therefore 

js о 

(3.10) шо[5(0А")] = V mo[S(0A*)IS3J-
jso 

By [6], Corollary3.3, and relation (2.5) we have mo[S(0A")]=mo[T]m1[T]... 

mn_AT] and mo[5(0A")|§Jn]=Wo[5((0<1>)A")]-Wo[r|5J.]Wl[r|§J.]...m„_1[r|5J.]. 
Let us put mk= \J mt|T|§•] for /c-=co; then mk divides mk[T] and relation (3.10) 

j&o 
shows that 

m0 [r ]nj1 [r ] . . .mn_i [T] = m0m1...mn^1, 1 ̂  n < со. 
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Therefore we have necessarily mk[T]=mk and (3.1) is proved for a<co. The 
Theorem follows. 

Remark 3.2. The relation (3.1) is not verified if the sequence {§j}~=0 is replaced 
by an arbitrary totally ordered family of invariant subspaces. Indeed, let us take a 
Jordan operator T=S(M) such that ma = 1, where Q denotes the first uncount-
able ordinal number. The subspaces © &(mB) for a < Q are separable and 

fi <x 

§>(M)= V The relation (3.1) is not verified in this case because mffl[T|§J = 1 
a<Q 

while it is possible to have mm[T]^\. However the relation (3.1) is verified for 
a <co and for any totally ordered family of invariant subspaces such that 
§ = V Indeed, if § is separable we can select an increasing sequence {§,. 

j£J 
such that § = V Si and then apply Theorem 3.1. If § is not separable, the proof 

nso " 
of Theorem 3.1 shows how to reduce the problem of verifying (3.1) to the separa-
ble case. 

Let us recall that for a contraction To f class C„ and for a subspace SUî Lat̂  (T) 

such that Tw is a weak contraction, dr(M) denotes the determinant function of Tw 

(cf. [3], Definition 1.1). 

Corol lary 3.3. Let T be a weak contraction of class C0 acting on § and let 

Lat (T), 

(i) If SjC.^+i and V we have dT= V dT(^j). 
jmo jmo 

(ii) If § p § J + 1 and f| we have A ¿r(5/) = l-
jmo jmo 

Proof, (i) Obviously V divides dT. Now, mQ[T\%J]m-L[T\§J]...mn[T\%jl 
jm o 

divides V dr (§,•) for every natural n; by Theorem 3.1 it follows that m0[T]m1 [T]... 
¡mo 

...m„[T] divides V dT(§;) and therefore dT divides \J dT(§>j). 
jmo jmo 

(ii) Since T* is also a weak contraction we infer by (i) dT= \J dT(5)f). Because 
jm o 

dT=dT (§;) dT ( §+ ) (cf. [6], Proposition 8.2) we obtain 

dT = { A dT(bj)) • ( V dT(Zf)) = ( A dT(<Djj) • dT. 
jm 0 jmo j so 

The Corollary follows. 

Proposit ion 3.4. Let T be an operator of class C0 acting on the separable 

Hilbert space Then 

(3.11) /\m}[T] = l 
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if and only if for any sequence { § }J l 0c Lat (T ) such that §>JZ3%JJ.1and § , = {0}, 
JSO 

we have 

<3.12) A « o [ T | S j ] = I -
jso 

Proof. As shown in the proof of [5], Theorem 1, there exists a decreasing 
•sequence {§y}"= 0cLat (T) such that f| § , = {0} and m0[T\$j]=mj[T] so that 

(3.11) foUows from (3.12). 
Conversely, let us assume (3.11) holds. For any natural number k we have the 

decomposition 
% = (mk(T)%j)- ©91) = SWj©9t}, mk = mk[T]. 

Because obviously /w0[7"sij] divides mk, it follows by [12], Proposition III.6.1, that 

(3.13) m0[T\5>j] divides m0[T\m)]-mk, 0 ^ j < 

Now, 9JiJie(77jt(r)§)- and T\(mk(T)$)- is an operator of finite multiplicity, 
in particular a weak contraction (cf. [6], Theorem 8.5). Because Pi 93*5 c Pi § , = {0} 

js0 7=0 
we infer by the preceding Corollary A = >n particular A m0[r|9)l*] = l. 

J'SO j s o 
By (3.13) A w0[r|SJ necessarily divides mk and the relation (3.12) follows from 

js 0 
the assumption. The Proposition is proved. 

4. Operators of class Co having property (P) 

In [16], Theorem 2, the operators of class C0 and of finite multiplicity were 
shown to have property (P). In [3], Corollary 2.8 we extended this result to the class 
of weak contractions of class C0. We are now going to characterise the class of C0 

operators having property (P). 

Theorem 4.1. Let T be an operator of class C0 acting on the Hilbert space 

Then T has property (P) if and only if 

(4.1) A ntj[T] = 1. 
J-e© 

In particular, if T has property (P), § is separable and T* also has property (P). 

Proof. Let us assume (4.1) holds and denote ntj=mj[T]. For each j<co 
the subspace 
(4.2) = K - ( r ) § ) -
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is hyper-invariant for T and /i r (§; )<°o (cf. [4], Remark 2.12). If A€ {71}' is an 
injection then is also an injection and by [16], Theorem 2, 

(4.3) (A$)~ 3 (A%j)- = §>j. 

We have ( V § i ) x = f ) kermJ(T*)=§0 and the minimal function m° of 
j< to j<(0 

r*|§° divides mj, j^co. By the assumption we infer m°=1 so that 5 ° = { 0 } 
and therefore V From (4.3) we infer 

}<<o ' • 

(4.4) (A&)~ ZD V = § 
J-COJ 

that is, ,4 is a quasi-affinity. The injection being arbitrary it follows that T has 
property (P). 

Conversely, let us assume that (4.1) does not hold. We claim that there exist 
an inner function m such that T and T® S{m) are quasisimilar. If § is separable 
we may take m = f\ mj[T\ and apply [1], Lemma 3. If § is nonseparable we may 

}<a> 
take m=ma[T]. Then T®S(m) and T have the same Jordan model so that they 
are quasisimilar. Let us take a quasi-affinity X such that 

(4.5) (T@S(m))X= XT. 
Let us put 

(4.6) 9Jt = (X* ({0} © § (m)))", = § Q SW. 

Then 9Jt£ Lat (T*) and r*|2)l is quasisimilar to S(m)*. If Pl and P2 denote 
the orthogonal projections of <9© §(m) onto §>(m), respectively, the operator 

(4.7) F = P1Z|5R 
satisfies the relation 
(4.8) TY= Y(T\tl). 

We claim that Y is a quasi-affinity. We show firstly that ran Y* is dense in 91. 
Indeed, because i>9,Z*|{0}©§(m)=0 (by the definition (4.6) of 9)1 and 91), we have 

(4.9) ran Y* = P9 1Z*(§© {0}) = P 9 l Z* ( §©§ (m) ) 

which shows that 
(4.10) (ran Y*)~ = (Pg, (ran Z * ) - ) - = Pm§ = 91. 

Now let lis show that ker F* = {0}. To do this let us remark that the sub-
space 
(4.11) ft = ke r r *©§ (m) = {u(ES©S(m); X*«<E9H} 

is invariant with respect to (T®S(mj)*, (Z*ft)~=9Ji and (r*|9K)^r* = 
=Z*(7'©5'(m))*|ft so that and (T® S(m))*|ft are quasisimilar. By the 
remark following relation (4.6), (T® is quasisimilar to S(m)*. But 
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(r©S(w))*|{0}©§(7n) is unitarily equivalent to S(m)* so that R= {0}© § (m) by 
[14], Theorem 2, and the injectivity of Y* is proved. Relation (4.8) and Lemma 1.1 
show that T and :T|9t are quasisimilar. Because 5Dt ̂  {0}, we have 9i so that 
T does not have property (P) by Lemma 1.5. 

Theorem is proved. 

Corol lary 4.2. An operator T of class C0 has property (P) if and only if there 

does not exist T' of class C0 on a nontrivial Hilbert space such that T and T© T' 

are quasisimilar. 

Proof. Let Tand T®T' be quasisimilar. Since T' acts on a nontrivial space, 

there exists a nonconstant inner function m such that T® S(m)-<T. Because 

obviously T<T® S(m), T@S(m) and T are quasisimilar by [16], Theorem 1. 
By the proof of Theorem 4.1 it follows that T does not have the property (P). The 
converse assertion of the Corollary follows from the proof of Theorem 4.1. 

Corol lary 4.3. If T and T' are two quasisimilar operators of class C0, then T 

has property (P) if and only if T has property (P). 

Proof. Theorem 4.1 exprimes the property (P) in terms of the Jordan model 
so that the Corollary is obvious. 

[7" X 1 
q j,// be the triangularization of the operator T 

of class C„ with respect to the decomposition § = §'©§", §'6Lat (T). Then T has 

property (P) if and only if 7" and T" have property (P). 

Proof. Let S(M), S(M'), S(M") be the Jordan models of T, T', T", respec-
i 

tively. Let us assume that T has property (P). Because it follows 
that m'x divides mx for each a (cf. [4], Corollary 2.9), therefore by Theorem 4.1 we 
have A m'j=l and T' has property (P). Analogously T"* has property (P) because 

j<to 
T* has property (P) and it follows by Theorem 4.1 that T" also has property (P). 

Conversely, let us assume that T' and T" have property (P) so that 

(4.12) A = A >n'j = 1-
j-'cj j a 

We consider firstly the case In this case the space 

(4.13) = « ( T ) § ) - € Hyp Lat (T), j < co, 

is contained in § ' f f i ( m j ( r " ) § " ) " s o that M S j H " 3 and by [16], Theorem 2, 
T\9)j has property (P). Because A = 1 we have V §/=£> (cf. the proof of 
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Theorem 4.1) and the first part of the proof of Theorem 4.1 shows that T has prop-
erty (P). 

Considering the operator T* instead of T, it follows that T has property (P) 
in the case /iT.< °° also. 

We are now considering the general case iiT>=nT» = X0- Let us define the hyper-
invariant subspaces by (4.13). The operator T\9)'@{m"j(T")§>")~ has prop-
erty (P) because MT'i(m'j(T')s,")~<°° and from the first part of the proof of our 
Proposition it follows that also has the property (P). Because \J j 

j<(0 

we infer as in the first part of the proof of Theorem 4.1 that T has property (P). 
The proposition is proved. 

Coro l lary 4.5. If T is an operator of class C0 having property (P ) and 

SDleLatj (T), then Tm also has property (P). 

Proof . We have 3)i=U©93, H, 23<ELat (T) and T|U has property (P) by 
Proposition 4.4. Again by Proposition 4.4 and Theorem 4.1 it follows that Tm has 
property (P) because 7^=(r|lt)*|9J?. 

Propos i t ion 4.6. Let T be an operator of class C0 acting on § and let 

Jrj^Lat (T) be such that §j-c§)+1, /<©, §o= {°} and §= \J §>j. Then T has 
j<co 

property (P) if and only if TRj, = + (_/<«) have property (P) and 

(4.14) A m ^ T x] = 1. 
J-=0) 1 

Proof . If T has property (P) then TR have property (P) by Corollary 4.5. 
By Theorem 4.1 and Proposition 3.4 we infer the necessity of (4.14). 

Conversely let us assume that have property (P) and (4.14) holds; let us 
put mj=m0[TS)^]. If we define 
(4.15) J = (nij (T) £ Hyp Lat (T) 

then, as in the proof of Theorem 4.1, from (4.14) we infer V ~/=§> and the first 
j<0> 

part of the proof of Theorem 4.1 shows us that it is enough to prove that T\2j 

have property (P). Now, obviously fijC^- so that by Corollary 4.5 we have only 
to show that T\&j have property (P). This easily proved inductively since the tri-
angularization of r|§ J + i with respect to the decomposition §> j + 1 =& j®R j is of 

the form = 7^]- T h e Proposition follows. 

Coro l lary 4.7. Let T be an operator of class C0 acting on § and let 

§j£Lat (T) be such that /<0, §0 = § and H §,— {()}. Then T has 
j <al 

property (P) if and only if , Rj=%)jQ§>j+1 ( ; ' <a ) , have property (P ) and 

(4.16) A m„ [ r|S ; ] = l . 

2* 
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Proof. By Theorem 4.1, Г has property (P) if and only if T* has property (P). 
Therefore we have only to replace T by T*, b j by and apply the preceding Prop-
osition. 

We are now going to extend [18], Theorem 1, and [3], Corollaries 2.4, 2.8 and 
2.9 to the case of C0 contractions having property (P). 

Proposit ion 4.8. Let T and T' be two quasisimilar operators of class C0 acting 

on §>, respectively, and having property (P). Let us define 

s: Hyp Lat (T) - Hyp Lat ( Г ) and ц: Hyp Lat (T") - Hyp Lat ( Г ) 
by 
(4.17) с(9Я) = V t](9l)= V Yto. 

XIJ(X',T) YZSIT.T') 

(i) Each injection T) is a lattice-isomorphism. 

(ii) £(9К)=(/Ш)- =Я_19Л, ТОеНур Lat (T),for any quasi-affinities A~J(T', T), 

B£S(T, T'). 

(iii) t is bijective and >; = c_1. 

Proof , (i) If A£J(T', T) is an injection, Г is quasisimilar to T'\(A9))~ so 
that T' and T'\(Ab)~ are quasisimilar. Now T' has property (P) so that (A§i)~ = $У 

by Lemma 1.5 and A is a quasi-affinity. 
Let Я', &"6Lat (T ) be such that ( Л Я ' ) - = 0 4 Я " ) _ = Я * ; then we also have 

(/4Я)-=Я* with Я=Я'\/Я". The operators Г|Я', 7 ^ " and Г|Я are quasi-
similar to 7"|Я*. By Proposition 4.4 Г|Я has the property (P) and therefore 
Я ' = Я " = Я by Lemma 1.5. Thus we have shown that the mapping Я—(/4Я)- is 
one-to-one on Lat(T). Because we have shown that A is a quasi-affinity, the same 
argument can be applied to T'*, T* and A* thus proving, via [3], Lemma 1.4, that 
A is a lattice-isomorphism. 

(ii) Let us take any quasi-affinities A£S(T', T) and T'); by (i) A 

and В are lattice isomorphisms. For each 9Jt€Hyp Lat (T), BA£ { T } ' so that А49Лс9Л 
and since Т\Ш also has property (P) by Proposition 4.4 and 5/i|9Ji€ {7,|9Л}' is 
one-to-one, we infer by (i) (б/Ш)~=9Л. Now, £ is a lattice-isomorphism so 
that we infer 
(4.18) Я-Ч9И) = (ЛЮ1)-. 

If X£J(T',T), we have BX£ {T}' so that 5X9Jlc9Jt and by (4.18) X9Jic 
с£-1 (ЗК)=(^9Л)- ; it follows that с(9Я)с=(Л9.)})-\ Because the inclusion (Л9Л) _ с 
c^(9Ji) is obvious, (ii) is proved. 

(iii) If A£ J{T', T), B£J(T, T') are quasi-affinities we have by (ii) (£/Ш)"=9Л 
and (AB9t)-=9i for any 9Л£ Hyp Lat (r ) , 916Hyp Lat (T ' ) . Because, again by 
(ii), £(901)=(Л9Л)- and г] {Щ=(ВЩ~, (iii) follows. 
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The Proposition is proved. 

Corol lary 4.9. Let T, S, (p, be as in Theorem 2.5. If T has property (P), 
(p is a bijection and \j/ = <p~1. 

Proof. Obviously follows from the preceding Proposition. 
The following result extends [3], Proposition 2.3, to the class of C„ operators 

having property (P). 

Proposit ion 4.10. Let T, T', T" be operators of class C0 acting on 

§>", respectively, and let AÇ_J(T, T'), B£J(T,T") be such that A$o'<z(B§")-. 

If T has property (P) then 

(i) (A-HB^'Oy = S ' and (ii) =) A&. 

Proof. Because (ii) easily follows from (i), we have only to prove (i). We may 
assume that A is one-to-one, B is a quasi-affinity and T has the property (P). Indeed, 
we have only to replace T, T, T", A, B, by T\(B9>")~, T^aA)J., T^B)±, A\(ker A)\ 

i?|(ker B)L, respectively. Now the operator T" has property (P) being quasisimilar 
to T (cf. Corollary 4.3) and T' has property (P) being quasisimilar to T\(A9y')~ 

(cf. Proposition4.4). Then the operators T'®T" and T'®T are quasisimilar 
and have property (P) by Proposition 4.4. The operator X: § ' © § " — £ ) ' © § 
given by 
(4.19) X(h'®h,r) = h'®(Ah'-Bh"), fc'ffi/i "€§'©§", 

is an injection. Indeed, X(h'®h") =0 implies h'=0 and Bh"=Ah'=0, thus. 
h"=0 by the injectivity of B. Because X£J(T'®T, T'®T") it follows by Prop-
osition 4.8(i) that A' is a lattice-isomorphism. In particular A r (Z - 1 (§ ' f f i {0})) is 
dense in £>'©{0}. But 

^(X-HS' f f i iO} ) ) = {Zi'ffiO; and Ah' = Bh" for some h"} 

so that (i) follows and the Proposition is proved. 

Corol lary 4.11. Let T, T', T", A and B be as in the preceding Proposition. 

IfT' is multiplicity-free then A^iBfy") contains cyclic vectors of T'. 

Proof . Let us denote by P the orthogonal projection of § ' © § onto 
From Proposition 4.10 it follows that A- 1 {B§" )=PX(X- 1 (9 ) ' ® {0})) is dense in; 

(where X is defined by relation (4.19)). Let us denote § 0 = ( ^ _ W © {0}) )© 
©ker ( ^ I X - ^ S ' © {0}))6Lat4 (T'®T"). Then we have 

T'(PX\<ô0) = (PX\Z0)(T'®T'%o 

and by Lemma 1.1 T' and (T'®T")& are quasisimilar; in particular (T'® T")5 
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is also multiplicity-free. If/r0 is any cyclic vector of ( 7 "© r " ) S o t h e n P X A o ^ ^ - 1 ^ " ) 
is a cyclic vector of 7". Corollary follows. 

Finally let us remark that the result of [4] concerning the quasi-direct decom-
position of the space on which a weak contraction acts can be extended, via Prop-
osition 4.8 (i), to the class of C0 operators having property (P). 

Corol lary 4.12. Let T be an operator of class C0 having property (P) and 

acting on the (necessarily separable) Hilbert space § and let © S(mj) be the Jordan 
j<Oi 

model of T. There exists a decomposition of § 

(4.19) j'-cco 

into a quasi-direct sum of invariant subspaces of T such that T\$)j is quasisimilar 

to S(mJ). 

Proof. Cf. the proof of [4], Proposition 3.5. 

5. Operators of class Co having property (Q ) 

The following Lemma extends [19], Proposition 3, to the entire class of C0 

operators. 

Lemma 5.1. Let T andT" be two quasisimilar operators of class C0. Then T 

has property (Q) if and only if T' has property (Q). 

Proof. Because (Q) implies (P), by Corollary 4.3 it is enough to prove the 
Lemma for T and T' having the property (P). Let X^J(T, T'), Yf^J{T', T) be 
two quasi-affinities. By Proposition 4.8 (i) X and Y are lattice-isomorphisms. Let 
us take A^{T'}'\ then B=XAYe{T}'. Obviously ker B=7-Hker A), X being an 
injection. Because Y is a lattice-isomorphism we have (7(ker B)) ~ = ker A so 
that Y|ker B is a quasi-affinity from ker B into ker A. Because 

YlkeiBtSiT'lkerA, T{kerB) 

it follows by Lemma 1.1 that T|ker5 and T' |ker A are quasisimilar. Analogously 
an<i T'KER A* a r e quasisimilar. If T has the property (Q), the operators 7T|ker B 

and TktrBt are quasisimilar and it follows from the preceding considerations that 
7"|ker A and T'kcr are quasisimilar. Since A£{T'}' is arbitrary it follows that 7" 
has the property (Q). The Lemma is proved. 

Lemma 5.2. For any inner function m and natural number k the operator 

T=S(m,m, ...,m) has the property (Q). 
k times 
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Proof. By the lifting Theorem (cf. [12], Theorem II.2.3) any operator Xe { r } ' 
is given by 

(5.1) Xh = P$Ah, = S(m)©§(m)©. . .©8(m) 
k times 

where ^ = tFLY]iSIJst is an arbitrary matrix over H°°. As shown by NORDGREN [9] 
(cf. also Szűcs [17] and SZ.-NAGY [11]) there exist matrices B, U, V which determine 
by formulas analogous to (5.1) operators Y, K, L in {T}' such that 

(5.2) (det U) (det F)Am = 1; 

(5.3) AU = VB, 

(5.4) B=[blJ]ialiJsk, bu = 0 for 

From (5.2) we infer as in [8] that K and L are quasi-affinities and therefore 
lattice-isomorphisms by Proposition 4.8 (i). From (5.3) we infer 

(5.5) XK = LY 

so that íT(ker Y)cker X and AT-1(ker Z)cker Y; because AT is a lattice-iso-
morphism it follows that (A:(ker F) ) _=ker X and therefore r|ker X and T|ker Y 

are quasisimilar. Analogously TkerX* and Tketi* are quasisimilar. We have 
k k 

Y=®bjj(S(m)) and ker Y= © (ker bjj(S(m))) so that T|ker F is unitarily 
j-i j-i 

equivalent (cf. [15], p. 315) to © S(ntj), where m^mKbjj. Analogously we 
* 

can show that TkerY* is unitarily equivalent to © S(ntj). We have shown T|ker Y 
j=i 

and Tkciyt are unitarily equivalent; we infer that r|ker X and TketX* are quasi-
similar. Because X is arbitrary in {T}', the Lemma follows. 

Lemma 5.3. If T®S has the property (Q) then T and S also have the prop-

erty (Q). 

Proof. It is obvious since { r ® 5}'z> { r } '©/U/© {5} ' . 
The following Theorem characterizes the class of C0 operators having the prop-

erty (Q) in terms of the Jordan model. 

Theorem 5.4. An operator T of class C0 has property (Q) if and only if 

(i) A rrij — 1, mj = mj[T], and 

(ii) the functions m0lm1, m1/m2, ... are pairwise relatively prime. 

In particular, if T has property (Q), then T acts on a separable Hilbert space 
and T* also has property (Q). 
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Proof. Let T have property (Q). Then T also has property (P) so that the 
necessity of (i) follows by Theorem 4.1. By Lemma 5.1 the Jordan model S{M) of 
T also has the property (Q) so that S(mj)@S(mj+1), j^co, must have prop-
erty (Q) by Lemma 5.3. The matrix 

0 mjlmJ+1 

0 0 (5.6) A = 

determines an operator X£ {SJ } ' by the formula 

(5.7) Xh = P^Ah, h£f>j = S(mj)©S(mJ+1 ). 
Obviously 

ker X = 9) (ntj) © {0} 

so that SJ|ker X is unitarily equivalent to S(mJ). Now 

ran X = ((mj/mj+i) H2 Q rrijH2) © {0} 
so that ker Ar*=§(m j//n j+1)©$(7jj j+1) and it follows that S{„xtt is unitarily equiv-
alent to 5(mJ//MJ+i)ffi'S(mJ+1). The Jordan model of S{mjlm j+1) © S(m j+1) is 

S {(mjlm j+1) V ntj+1) © S ((trij/mj+1) A 7Wj+x) 

by [2], Lemma 4. Because SJ has the property (Q) this Jordan model must coincide 
with S(mj) so that (/m7/wj+1)A/mj+i=1. In particular mjmj + 1 and mk/mk+1 are 
relatively prime for k>j\ (ii) is proved. 

Conversely, let us assume that conditions (i) and (ii) are satisfied. Let us denote 

(5.8) luj = mj/mj+1, j < co. 

Then by Lemma 1.2, S(m0) is quasisimilar to © S(uj), S(m0 is quasisimilar 
j< o 

to © S(uj),..., S(mk) is quasisimilar to © S(uJ) so that T is quasisimi" 
lSj<<o kSj«o 

lar to 
(5.9) S= @ T\ TJ =[S(uj, uj ,...,uj). 

j^to v. 
7+1 times 

Because the functions w0, ult ... are pairwise relatively prime we have (m0/Uj)Auj—l 
so that (mJuJ)(Tk)=0, k^j, and (m0/Uj)(TJ) is a quasi-affinity. This implies that 

& = S(uj)©S(uj)©... ®S ( « i ) = (ran (m0IUj)(S))~ 
. V. 
J-t-l times 

is a hyper-invariant subspace of S. We are now able to prove that S, and therefore 
T, has property (Q). Any operator Z€ {5 } ' has the property X&cz&yj-^ca, so 
that X- © Xs, XJ£ {TJ}'. By Lemma 5.2, T-'Iker XJ and 7^erXJ, are quasisimi-

j<a> 
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lar. But obviously ker X= © ker XJ, ker X* = © ker XJ* so that S|kerZ= 
j< co j< a 

= © JJ'|ker XJ and S t e I , = © TlnxJt; it follows that S|kerX and 5kerX» 
j < to j < to 

are quasisimilar. The Theorem is proved. 
We are now able to give a complete description of the lattice of hyper-invariant 

subspaces of an operator of class C0 having property (Q). 

Proposit ion 5.5. An operator of class C0 having property (P) has property 

(Q) if and only if 

(5.10) Hyp Lat (J ) = {(ran m(T))~: m£Hr, m si m0[T]}. 

Proof. As usual S(M) denotes the Jordan model of T. Assume (5.10) holds-
by Proposition 4.8 (iii), (5.10) also holds for S(M). In particular, 

ker m,+1 (S(Af)) = © ((LmJmJ+JH'emlH'1)® © § ( m j 
isj J+ISicto 

is of the form (ran u(S(M)))~ for some inner divisor u oim0. Because ran u(S(m0))= 

=(mo//wJ+1)i/20moi72 we must have u=mjmj+1. We have also 

(5.11) (m0/mi+1)AmJ+1 = 1 

because w(S(mJ+1)) must have dense range. From (5.11) we infer (mj/mj+J)/\mJ+1=ly 

j<(o. By Theorem 5.4 it follows that T has property (Q). 
Conversely, let us assume that T has property (Q). By the proof of Theorem 

5.4, T is quasisimilar to 

(5.12) 5 = © SJ on § = © 

where 
(5.13) sJ = s(uj, uj,..., uj), = d (u j )@5(uj )e . . .e&(uj ) , 

' r v. 
j + 1 times j + 1 times 

(5.14) Uj = mjlmj+1, 

and 
(5.15) & = ( (m j u j ) (S) § ) - £ Hyp Lat (5). 

Let us take 9tt€Lat(S) and denote Wj=((m0IUj) (S)m)-. We claim that 

(5.16) m = ® W t j and = 931 fl 
jcco 

The inclusion 9Jtz> © <S0lJ is obvious. Now, the minimal function m of Sn, 
j « 0 

9l=9Jl©(© 3Jlj}= f l ker (m0IUj)~((S\mf) divides mjujj^o), so that mAw — l . 
j < CO j<<o 

It follows that m = \, 91 = { 0 } and (5.16) is proved. 
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Moreover, by (5.16), 5Ш; is a hyper-invariant subspace of S} if ЗИбНур Lat (S). 
By Proposition 2.1 (i) we have ЯИу=ЗЛ5©ЯН5© ...©ЭЛ? where m]=u'jH2QujHi 

v 
j + 1 times 

so that Mj=u'j(SJ)^J. Let us denote by m the limit of an arbitrary converging 
subsequence of we shall have (m/u^Auj-l so that 5DJ;=(w(SJ) 
•Using (5.16) we infer 9Jf=(w(S)§)~ and by Proposition 4.8 (iii) the proof is done. 

Let us denote by the lattice Lat (S(m, m m)) im£H°°, 1 sJt<£o). The 
к times 

preceding proof also characterizes Lat (7") for T having property (Q). 

Corol lary 5.6. Let T be an operator of class C0 having the property (Q). Then 

Lat (T) is isomorphic to JJ +1, where i/J. = /7jJ[7,]/mJ+1[J'], 
j <C3 * 

Proof. The decomposition (5.16) was proved for any 9)i£Lat(S). The Corol-
lary follows by Proposition 4.8 (i). 

Example 5.7. There are operators Г of class C0 for which (5.10) holds with-
out property (P). In fact it can be shown that a Jordan operator S(M) satisfies 

the condition (5.10) if and only if (m0/mlz)Ama = l for each ordinal number OL. 

Proof. The necessity of the condition (т01та)Ата=1 is proved analogously 
with the proof of (5.11). Conversely, let us assume (т0/тх)ЛтО1 = 1 and let 
юге Hyp Lat (5 (M) ) be given by (2.2). Then mjmx divides m0/'< so that тЦт"а 

divides m0/ma and therefore (m^/m )̂,\mJ. = l. We infer (m„ (S (mj )§ (mj )~ = 
because « K ) ( S « » is 

a quasi-affinity (cf. [12], Proposition 1II.4.7). We infer 

9Д = (ran m'a(S(M)))-. 

Remark 5.8. As shown by Example 2.10, property (5.10) is not stable with 
respect to quasisimilarities. 

6. Generalized inner functions 

Let us recall (cf. [7]) that a function m^H" has a factorization 

(6.1) m = cbs 

where c is a complex constant of modulus one, b is a Blaschke product 

(6.2) = 
* m 1 —°kz k 
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and is a singular inner function, that is 

0 

where n is a finite Borel measure on [0, 2n], singular with respect to Lebesgue meas-
ure. Let us denote by a(z) the multiplicity of the zero z in the Blaschke product 
(6.2), that is, 

(6.4) <j(z) = card {k: ak = z}. 

The convergence condition in (6.2) is equivalent to 
(6.5) 2 

|Z|«=1 

We shall denote by r the set of pairs y=(o, ¡i), where n is a finite Borel meas-
ure singular with respect Lebesgue's measure on [0, 2K], a (z) is a natural number 
for |z|<l and the condition (6.5) is satisfied. With respect to the edition (a, /.i) + 
+(a', fi ' )=(<r+a', /i+aO, r becomes a commutative monoid. The set r is ordered 
by the relation (c, j i f and only if a ^ a ' and nS/i'. Moreover, in r 
are defined the lattice operations: 

(<7,/z)V(ff',/0 = (<rV<7', /iV/O, 

(<r,/i)A(ff', n') = (<TAa',nt\n') 

where fi\J fi', /i Afi' have the usual sense and ay a' = max {<r, a'}, cAa'^min {a, a'}. 

A mapping y: is defined by y (m) = (a, //), where a is given by (6.4) and 

/x by (6.3) if m has the decomposition (6.1). We have also a mapping <5: r—H°* 

defined by 

where y = /<)• Then 70 <5 =id and 8 (y (m))=cm with c a complex constant of 
modulus one. 

Let us recall that, for a function f(LH°°, the function f~ is defined by f~(z) = 

/(z). For y=(o,n)£r we shall define the element y~ =(<x~, by a~ (z)= 

=c ( z ) and n~=noj where j: [0, 2tt] —[0, 2n] is given by j(t)=2n — t. 

Let us list some properties of the mapping y. 

Lemma 6.1. (i) y(mlm2)=y(m1)+y{m2), mx,m2£H?°. 

(ii) y(m1)^y(m2) if and only if y(m1)=y(m2) if and only if mY and 

m2 differ by a complex multiplicative constant of modulus one. 

(iii) y(m~)=y(m)~, m£Hr. 
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(iv) If {mj}Y=0czHi°°, then the family {m0m1...mj}J1=0 has a least inner multiple 
OO OO 

m if and only if y. y{m^r and in this case y(m)= y. y{m). 
7 = 0 7=0 

Proof, (i), (ii) and (iii) are obvious. To prove (iv) let us assume firstly that 
{wi0m1...mJ-}~=0 has a least inner multiple m. Then obviously y^y(m) if and only 

OO OO 

if y^ ^ y(/Mj) for each natural«. Consequently 2 and y(m)= £ y(mj). 
jSn 7 = 0 7 = 0 

OO 

Conversely if y= 2 y{m^r then S(y)^m0m1m2.- mj for each j so that the 

family {m0m1...mj}JL0 has a least inner multiple. The Lemma is proved. 
We shall now introduce the class M of (not necessarily finite) Borel measures 

fx on [0,2n] for which there exists a finite Borel measure v singular with respect to 
Lebesgue measure such that p-<v, where the absolute continuity /i-< v is under-
stood as 
(6.7) p = V (pAnv). 

n 

We shall denote by Jtn the class of c-finite measures \i<iJl and by Jim the 
class of measures p^Jl which take the values 0 and °° only. 

Lemma 6.2. (i) If and v is a finite measure such that ¿¿«< v, we have a 

decomposition 

(6.8) dp = fdv 

where f : [0, 2n]-+ [0, +<»] is a Borel function. 

(ii) Every ¡i£J( admits a unique decomposition where 

/'ooi-^oo and Ho end are mutually singular. 

(iii) If {pj)J=0cJi then 
7 = 0 

Proof, (i) The measure p„=pAnv is finite, p„<v, and by the Radon— 
Nikodym theorem we have d\in=fndv, where f„: [0, 2n\—[0, n] is a Borel func-
tion. Because p„-^Hn+i we have /„==/„+1 rfv-a.e.; replacing/„ by /n'=/iV/2V ...V/„ 
we may assume f„=fn+1. Now it is clear that the function / = lim /„ satisfies the 

n — O O 

relation (6.8). 
(ii) Let v and /be as before; let us denote A = {t;f(t)= + and /„ = f%A , 

/o=/ ( l - zJ - Then we may take dp0=f0-dv, dp^=f„dv. 
oo 

(iii) Let us take finite measures Vj such that t i j < v j > then £ where 
7=0 

v is defined by 

v = J 2~jvjjvj([0, 2n}). 
7=0 
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Remark 6.3. Obviously, every measure n of the form (6.8) belongs to Jl if 
v is a finite singular measure on [0, 2K]. 

oo oo 

Lemma 6.4. If fi,, Vj€.J/,j=0,1, ... , are such that 2 f1]— 2vj t^ien there 
j=0 j=o CO n 

exist ¡¿ijZJ/, i,j=0,1, ... , such that % HiHi, 2 Hij = vj> U}=0. 1 
j=0 ¡=0 

Proof. Let us take a finite singular measure a such that a, Vj -<a,/=0,1, .... 
By Lemma 6.2 we have 

(6.9) dfij =fjdcc, dvj = gjdx, 0 < 

By the hypothesis we have 

(6.10) 2 f j = 2 Sj d*-a.e. 
j =0 J=0 

It will be enough to find Borel functions htJ such that 

(6.11) 2 by =fi, 2hij = gJ da-a.e„ 0 
j=0 i=0 

and then to define d/.iij=hijda. 

If the sum (6.10) is da-a.e. finite we may define h¡j inductively by 

Uoo=/oAg0, h0j = \f0- 2 M A g j , 
v fc=0 ' 

(6.12) j hm = / , A ( g 0 - l~2Ko), 1 S i 

I hij = (/, - 'I /',>) A ( g ; - 2o hkJ), 

If the sum (6.10) is not da-a.e. finite we can find increasing sequences {//n)}r=o> 

{gin) }~0 such that fi = lim f."\ gj=]im gf doc-a.e„ and jj/tw= 
B-̂TO co I* — 0 

= 2 8j1^00 da-a..e., 
j=o 

Let be defined by (6.12) with /¡, g j replaced by /¡(1), gj0 in case «=0 , and by 

fin+1>-fi"\ gf+1)~gf incase n^ 1. We can take htj= 2 hff and the Lemma n = 0 

follows. 
We shall now introduce the class f of "generalized inner functions". An ele-

ment y of f is a pair y=(<r, ¡i) where n^Ji and a is a natural number valued func-
tion defined on {z; |z|<l} such that 

(6.13) 2 
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The subclass f0cf-consists of the pairs y=(a, n)£t such that /i£„//0. Anal-
ogously with r , T is a commutative monoid and an ordered set in which the lattice 
operations are defined. For y=(<x, ¿¿)£f we define y~ = (<r~, /OCT as in the 
case y€/\ Any y = (o, has a decomposition 

(6.14) y = y0 + Vc»> y<> = ^oKAh y « = 

where is the decomposition of fi given by Lemma 6.2 (ii). 

Lemma 6.5. (i) f 0 is the set of simplifiable elements of t, that is y€f 0 if 
and only if y'+y=y"+y implies y'=y" for y', y"£f. 

(ii) y' + y = y" + y implies y' — y" whenever y„ =y'Ay". 

Proof, (i) It is obvious that y'+y = y"+y implies y '=y" whenever y£f 0 . 
Conversely, if y w e have 0^y„ and 0+y^y^+y . 

(ii) By (i) we can simplify y0 from the equality y'+y=y"+y and we obtain 
y ' + y a , = y " + y c a . Now the assumption implies y '+y«,=y ' and y "+y „=y " ; the 
Lemma follows. 

We shall consider the cartesian product J T = f x r and on Jf we define the 
relation by 

(6.15) (y, y j ~ (y', y0 if and only if y + yi = y'+y!-

The relation is not an equivalence relation; however, as shown by Lemma 
6.5 (i) the restriction of on J f 0 = f 0 x f 0 is an equivalence relation. The 
quotient is a group- the group of formal differences y—y', y, y'£F0. 

We may assume F0(Z% identifying the element y£f0 with the class of (y, 0) in 

We shall now describe the connection of f and f „ with r . 

Proposition 6.6. (i) If {yj}Y=0c^r are such that 

(6.16) yj s yJ+1, 0 =5 j < =o, A Yj = 0, 
js 0 

then 

(6.17) Y = Z y £ r . 
j=o 

Conversely, each y£F has a representation of the form (6.17) such that (6.16) is 
satisfied. 

(ii) If {yj}°°=Q<^r satisfy (6.16) and, moreover, 

(6.18) (y j -y j+i )A(yk-y t + 1 ) = 0, 

then the element y defined by (6.17) belongs to T0. Conversely, each y£ T0 has a 

representation of the form (6.17) such that (6.16) and (6.18) are verified. 
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Proof, (i) If yj=((7j, fij), we have /i= 2 Hj£J/ by Lemma 6.2 
j=o 

oo 
(iii); it remains to show that ff = 2 ^ is finite and the condition (6.13) is satisfied. 

7 = 0 
But A Oj=0 imply that for each z, cr(z)=0 for some j and the finiteness of 

jmo 
a is obvious. The condition (6.13) is satisfied because a(z)^0 implies cr0(z)?±0 

and therefore 
2 0 - I ^ M 2 <70(z)(l-|z|)<=o. 

o(z)?SO |z|<=l 

Conversely, if y = (a, ¡i) we define 

(z) = 0 if ff(z) =S j 
(6.19) 

1 if ff(z) =» J, 0 ^ j < oo. 

To define/i, let us write dpL—f-dv for some finite measure v and put dp—fydv,. 

where 

(6.20) /o=/Al , / , - = ( / - Z A ) A 1 / 0 + 1), 1^7 
v t = 0 / 

It is obvious that yj = (Oj,Hj) satisfy (6.16—17). 
(ii) Let us put yj=(cFj, /¿j); from (6.18) we infer the existence of a sequence 

oo 

of pairwise disjoint Borel subsets AjC[0,2n] such that [0,2n]= [J Aj and 
;=o oo 

/ i/ (LM* ) = 0 - If 2 ¿j> we have /i = ( / * 0 + + •••+)".,•) 04,) thus n 
k<j j=0 

is (T-finite. Conversely, let us take y=(a, n)£ra and define Oj by (6.19). If d\i=f-dv 
oo 

and v is finite,/is dv-a.e. finite so that [0, 27r]= (J Aj where Aj = {x;/(*)€[7,7+1)}-
j=o 

We define 

/, = ¿(fc+i Y l f n k 
k=j 

and dnj=fj-dv. It is clear that yj = (aj,nJ) satisfy the conditions (6.16—18). 
Proposition 6.6 is proved. 

oo oo 
Proposit ion 6.7. If {yj }° l0 , {-/.}7=0cf are such that 2 f j = 2 fj^T then 

j=o j=o 
oo oo 

there exist {y l 7 } o s u < I„cf such that 2 Vu=Vt> 2 Vij=7j. 0=§/'J< 
>=o ¡=0 

Proof. If yj=((Tj, fij), y'j = {.a], n'j), 0^7<oo, we shall define yij=((rij, Hij), 

where are given by Lemma 6.4 and CT¡J are defined by formulas analogous to 
(6.12) with/} and g j replaced by Oj and a'j, respectively. The Proposition follows. 
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7. Co-dimension of a subspace 

We shall denote by & the class of C„ operators having the property (P). If 
T^SP and S(M) is the Jordan model of T we have A y(Wj)=0, mj=mj[T], by 

j< to 

Theorem 4.1 and Lemma 6.1. This fact and Proposition 6.6 suggest the following 
Definition. 

Definit ion 7.1. The dimension yT of the operator T£!P is defined as 

(7.1) V r = Zvimj), mj = mj[T]. 
j=o 

If T is an operator of class C0 and aJieLat^ (T) is such that then the 
T-dimension yr (9Ji) is defined as 

(7.2) = y(2R) = yrsw. 

Remark 7.2. (i) Because mj[T*]=mj[T]~ (cf. [4], Corollary 2.8) we have 
yT*=y T,T£0>. Moreover, if T is of class C0 and SRgLatj (T) is such that 
then 
(7.3) y T * m = y T m ~ -

(ii) It is clear that yT—0 if and only if T acts on the trivial space {0}. 
(iii) The dimension yT is a quasisimilarity invariant of T. Indeed, yT is defined 

in terms of the Jordan model. 
We shall say C0-dimension instead of T-dimension if no confusion is possible. 

The usual dimension is a particular case of the C0-dimension. Indeed, the operator 
r = 06 .£?(§) is a C0 operator and each subspace SDiciSj is invariant for T. By 
Theorem 4.1, r|SDi has the property (P) if and only if dim 9Ji< and in this 
case vr(9Ji)=(<7,0) where o-(0)=dim 9Ji and <x(z)=0 otherwise. 

Lemma 7.3. An operator is a weak contraction if and only if yT£T 

and in this case 

(7.4) yT = y(dT). 

Proof. Obviously follows from Lemma 6.1 (iv), [6], Theorem 8.5 and [3], Defi-
nition 1.1. 

By Proposition 6.6, Theorems 4.1 and 5.4, we have {yT; T£3?}=r and 
{yT; T has the property (Q ) } = f „ . It is natural to define by 

(7.5) if and only if and y T e f 0 . 

Lemma 7.4. If is acting on § and §j€Lat (T) are such that § ; c : § J + 1 , 
oo, and V Sy=§> we have 

(7.6) ^ yT = V Vr(Sy). 
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Proof . Because T|§ ;-< T, we have mk[T\^^mk[T\ for each natural num-
ber k; therefore y(MK[ T | i j .•]) ^ y ( M K [ T ] ) and the inequality y r S V VT(§>J) fol-

jmo 
n 

lows. Now, by Lemma 6.1 we shall have V V r (£>/)— 2 V ( V for each 
j SO K = 0 7S0 

R 

natural number n; by Theorem 3.1 we infer V yr(5;) — 2 y(.mkUli- Since n is 
/so *=o 

arbitrary the inequality V ?T(5;)SyT follows. Lemma 7.4 is proved, 
yso 

Remark 7.5. From (7.3) it follows that Lemma 7.4 also holds under the 
assumption § y £La t ( r * ) instead of § ^ L a t (T), 

Corol lary 7.6. If T,T'£SP, we have y T @ r = y T + y r -

Proof. By Remark 7.2 (iii) it is enough to prove the Corollary for T=S(M), 

T'=S(M'). For each j the space %=§_,-©§j-€Lat (71® 7"), where §>j=§>(m0)@ 

© d ( « i ) © - ® S ( » » y ) , and § ( M ) = V S j , yso 
§ ( M ' ) = V By Lemma7.4 we have y r s T , = V Vr©T-(%). VT= V ?r(§j ) , 

>so jso jso 
y r = V Vr*(§/)• By Lemma 7.3 and [3], Theorem 1.3, the Corollary follows. 

j SO 
We shall now introduce a relation q on the class SP, connected to index problems. 

Definit ion 7.7. For TX, we write TXQT2 if there exist T£0> and 
X£{T}' such that TX and T2 are quasisimilar to T|ker X and TKERXT, respectively. 

Lemma 7.8. If Ti0> and §€La t (J ) then TQ(Ts®T6±). 

Proof. The operator S=T@T^&> by Proposition4.4 and the operator X 

defined by X(ju © d) = y © 0 commutes with S. It is easy to see that S|ker X is 
unitarily equivalent to T and SK„X* is unitarily equivalent to r s © T^j.; Lemma 
7.8 follows. 

By Theorem 4.1 and Remark 7.2 (iii), yTi=0 if and only if yTa=0 if TXqT2. 

The connection between Q and y is stronger than that, as it will be shown in the 
following propositions. 

Theorem 7.9. If TX, T2£0> and TxQT2 then yTi=yTi. 

Proof . It is enough to show that for and X£ { J } ' we have yr(ker X) = 

=yT(ker X*). Let T be acting on $ and let S(M) be the Jordan model of T. As 
shown in the proof of Theorem 4.1 we have 

(7.7) § = V Zj, §>j = (mj(T)$)-£HypLat(T). 
j so 

For each natural j we have XfyjC&j and Arj=A'|§J€{7,|§J}'. Because T\9)} 
is of finite multiplicity, we infer by [3], Corollary 2.6, and Lemma 7.3, 

(7.8) y ( k e r ^ ) = y ( k e r^ ) . 

3 
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Because obviously Xmj(T)\ktTX=0, we have ker X}^>(mj(T) ker X)~ and, 
as in the proof of Theorem 4.1, we infer ker X = V ker X,. Therefore, by Lemma 7.4 

js о 
applied to 7|ker X it follows that 

(7.9) у(кегЛГ)= V K b « * , ) . 
JM о 

We have XfP6\ka X*=P6jX*P6j\ker X*=PSX* |ker X * = 0 so that 
PSj(ker X* )cker X*. Because РЪТ* = Т£Р^ we shall have Р&Т*\кет X* = 

= (Tg\ker Х?)Р^\кет X*. This relation implies that (Г*|кег Х*)я , where 

R j = (ker(PSj|ker**))J- = ker X* Q (ker X* n§/)€Lat (TkerA»); 

is quasisimilar to some restriction of 7$ |кег X* and therefore 

(7.10) y(%) = у (ker X*). 

Now V %=ker X* © (ker X* П ( П S/)) = kerX* so that from (7.8—10) 
yso jso 

and Lemma 7.4 applied to TkcrXt we infer у (ker X*)= у у (ft7) s V y(kerZ?) = 
jSO /SO 

= V У (ker Xj)=у (ker X). 
j so 

By the same argument applied to T* instead of T we infer у (ker X)^y(ker X*). 
The Theorem follows. 

Corollary 7.10. If and §€Lat (J) then ут=Ут(Ь)+Ут(Ь±)-

Proof. Obviously follows from Corollary 7.6 and Theorem 7.9. 

Corollary 7.11. Let T£0> be acting on § and let § ,€Lat (T ) be such that 

So=§, (0=7сand П §j={0}- Then yT= 2yT(Rj), where ft; = 
JSO j=0 

= b j e b j + 1 ( 0 s s / < ~ ) . 

Proof. By Lemma 7.4 and Remark 7.5 we have у т = V У г (£>/)• Because 

b f + 1 = b t ® & j and tt^Lat (TSJ-+1) we have y r ( §/ + 1 ) =y r ( § J ± ) +y r ( « J ) by the 

Corollary 7.10. By induction it follows that yT (S/+1 )= ^ Уг(Я,)- Corollary 7.11 
n = 0 

follows. 

Corollary 7.12. Let T4&> be acting on Then T^SP0 if and only if 

Л Ут(Ь]) = 0 for each decreasing sequence {§m}~=0c:Lat (7") smcA that p) bj = 
jSO jsо 
= {0}. 

Proof. Let us assume Т€&*0. By Corollary 7.10 we have yT=yT(S,)+yT(§/) 

so that by Lemma 7.4 we infer у т = у т + Л Ут(§/)- Because уг6Г0 it follows that 
JS0 

0= л У г (§,')• 
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Conversely, if Tf* let S(M) be the Jordan model of T. By the proof of [5], 
Theorem 1, there exist §j€Lat (T) such that §J+1cr§7-, Q §7 = 0 and the Jordan 

js o 
model of T i s © S(mk). Because y T ( & f ) = 2 y(mk)£r> from the relation 

kmj k<j 
i T ^ y A & ^ + yri&j) we infer (yr)„=(77-(0J))M and therefore A 

; so 
Corollary 7.12 is proved. 

We shall prove now a partial converse of Theorem 7.9. 

Theorem 7.13. (i) If T, T'£âP are weak contractions and yr = y r., then 

TqT'. 

(ii) If T, T'^S? are such that y r = y r then there exists S^SP such that TQS 

and SQT'. 

Proof . Let S(M) and S(M') be the Jordan models of T and T', respectively. 
The condition yT=yT,_ is equivalent to dT — dT,; let us denote d=dT = dT,. If 
we denote dj = dlm0m1...mj_1, d_j = d/m'0m'1...>nj_1 for 1. = / < a n d d0=d, we 
have A d j= A d „ j = 1 and by Theorem 4.1 and Proposition 4.4 the operator 

jmo jso 

(7.11) K= © S(dj) 
j=- oo 

has property (P), that is, We define now an operator X£{K}'byX( © hj) — 
+ oo 

- © kj where 

~ ¡kj^wkj-1 i f 

( ) 1 = (dj/dj .Jhj^ if 0. 

It is easy to see that ker X= ©" ker (X\i) (dj)) and ker X*=(B ker (¿7,)). 
7=0 7=0 

For 
ker (X | $ (dj)) = dj+1H2QdjH2 

sothat S(i/,)|ker (Z|§ (dj)) is unitarily equivalent to S(dj/dJ+1) = S(mj) and there-
fore A"|ker X is unitarily equivalent to S(M). We can analogously verify that 
KkctX* is unitarily equivalent to S(M'). 

Let us remark that the minimal function of K coincides with the common 
determinant function of T and T'. 

(ii) Let S (M ) and S(M') be the Jordan models of T and T', respectively. The 

equality yT=yr- is equivalent to 2 y('nj) = £ y(m'j)- By Proposi t ion 6.7 we can 
7 =0 7=0 

CO CO 

find y, -6f such that 2 '/¡j = "t('"<) a n d 2 'hi=7(mj)> 0 ̂  f, /< Because 
7 = 0 ¡ = 0 

3* 
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= y ( m i ) we have y u t r and therefore y i j = y ( m i J ) for mij=d{yij)^H". We define 
the operator 

(7.13) 5 = © Í © S(mu)) = © S„ S, = © S(mu), 0 S i < » . 
¡ =0 Y/= 0 ' i=0 7=0 

Because y(w,)= y ( m u ) , the operator Sj is a weak contraction and y s = 
; = o ' 

=Ys(m,)> 0 — ° ° (cf. Lemma 7.3). By the proof of (i) we can find operators K^SP 
acting on and contractions Xtd {A"'}' such that 

(7.14) m0[Kt] = m„ 

/¡f'|ker X{ and Kl „ x * are unitarily equivalent to and S;, respectively. The 

operator K= © Kl is of class C0, X= © X£{K}' and K\ksx X, KketX* are 
¡ =0 ¡=O 

unitarily equivalent to S(M), S, respectively. 
Let us show that Kf̂ SP. The spaces = ® Öi © • • • © Ö; are invariant for 

oo 

T, V © and m0[K\S<l]=miJrl, 0=£/<<*>. Because 7 ^ we have A ™,+i=l 
¡ S O 1 = 0 ¡ s o 

and by Proposition 4.6 it follows that K ^ . In particular 5 also has the property 
(P) by Proposition 4.4 and therefore we proved that TQS. The relation SQT' is 
proved analogously. The Theorem follows. 

Remark 7.14. If T and T' have finite multiplicities, then the operator K used 
for the proof of (i) also has finite multiplicity. Thus we obtain a new proof of Proposi-
tion 3.2 of [3]. 

8. Co-Fredholm operators 

The results of sec. 7 suggest the following generalization of [3], Definition 2.2. 

Definition 8.1. Let T and T' be operators of class C„ and let T). 

Then X is called a (TT)-semi-Fredholm operator if X|(ker X ) x is a (r'|(ran X)~, 
^(kerx)±)-Iattice-isomorphism and either T|ker X^SP or Tke[Xt£0> holds. A (T\ 7 > 
semi-Fredholm operator X is (T\ T)-Fredholm if both T|ker X and TketXt have 
property (P). If X is (7", r)-Fredholm, its index is defined as 

(8.1) ind(X) = (yT(kerX), yr. (ker X*)) £ f x f . 

If X is (T\ 7>semi-Fredholm but not (T ' , 7>Fredholm, we define 

(8.2) ind(X)=: + oo if T\kcrXi&-, 

= - ~ if nKtX^3P. 
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Let us remark that for r|ker X^SP^ and T'kerX»€^o> ind (X) is uniquely deter-
mined (modulo the relation by the element yr(ker X)—yT,(ktx X*)£% (cf. 
sec. 6). 

In order to distinguish the operator introduced by Definition 8.1 from the 
operators considered in [3] we shall denote by 4>(T', T) and a<P{T\ T) the set of 
(7", 7>FredhoIm and (T\ 7>semi-Fredholm operators, respectively. If T' = T we 
write <P(T), and a<P(T) instead of <P(T, T), o<P(T, T), respectively. 

Obviously &(T',T)cz$(T',T) and for X&(T',T) we have 

(8.3) md{X) = y { j (X ) ) 

if ind (X) is interpreted as an element of 10o and 

y(m/n) = y(m) — y(n) for m,n£H™. 

The following Proposition extends [3], Corollary 2.6 and Remark 2.7. 

Proposit ion 8.2. (i) If T, T'<i0> then <P(T', T) = J(T\ T) and 

(8.4) ind (X) ~ (yT, yT.) for XeJ(T\ T). 

(ii) If exactly one of the operators T and T' has property (P) then <P(T', T) = 0, 

o$(T', T) = J(T', T), and for X£S(T', T), 

i n d ( Z ) = + oo if 

= -oo if T'ig>. 

Pr oof. (i) because 7^ker^j_ and T'|(ran X) are quasisimilar and have the 
property (P) for any XiJ(T',T) (cf. Corollary 4.5 and Lemma 1.1) it follows 
that A'KkerA')-1- is a lattice-isomorphism by Proposition 4.8 (i). In particular 
yT((ker A')-L) = y7..((ran X) - ) . By Corollary 7.10 it follows that yT = yT(ker X) + 

+yr((ker Z)-1) and yr.(ker ^ - ^ . ( ( r a n X)~)=yT. so that 

7T + IT (ker X*) + y = yT,+yT (ker X) + y 

where y=y r((ker A')-L)=yr((ran A1)-). Because 

y = yrAyr 
we infer by Lemma 6.5 (ii): 

yT+yr(kerX*) = yr+yT(ker X); 

this means exactly ind (X)~(yT, yT,). 

(ii) As in the preceding proof T(kerx)-i- and 7"|(ran X)~ are quasisimilar and 
one of them must have the property (P) by Corollary 4.5. Then Corollary 4.3 and 
Proposition 4.8 (i) show that -Y|(ker X)1- is a lattice-isomorphism. To end the 
proof it is enough to show that <P(T', T ) = 0. Assume by example then 
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for any X£J(T', T), 7"|(ran X)~e3? so that by Proposition 4.4. The 
case is treated analogously. The Proposition is proved. 

Example 8.3. The relation ind (X)~(yT, yT) obtained in Proposition 8.2 
cannot be improved. By example, if y r - f r it does not follow that yT(ker X) — 

=yT.(kerX*) for each X£S(T', T). Indeed, let us take T' = S(M)£0> such that 
y r = (0 , H), and T= © S(w) . Then y r =Vr+v ( w o ) so that y T = y T - by 

jsl 
the choice of yT. The inclusion X: © § (w,)— © § is one-to-one and 

j so 
yr(ker X*)=y(m0)^ 0. 

Lemma 8.4. For any two contractions Tand T' of class C0 we have o<P(T, T'Y = 

= o<P(T'*, T% $(T, T')* = 4>(T'*, T*) and 

(8.5) ind (X*) = -ind (X)~ , X£ cr$(T, T') 

{here -(y,y')~ =(y'~ ,y~)). 

Proof. Cf. the proof of [3], Lemma 2.10. 
The following Theorem extends [3], Theorem 2.11 to this more general setting. 

Theorem 8.5. Let T. T', T" be operators of class C0, A£a<P(T', T), 

B£o$(T",T'). If ind (/4) -find (B) makes sense we have BA^a<t>(T", T') and 

(8.6) ind (BA) - ind (A) + ind (B). 

Proof. We have to follow the proof of [3], Theorem 2.11, replacing weak 
contractions by contractions having property (P) and using Proposition 4.10 instead 
of [3], Proposition 2.3. Only relation (8.6) needs some comments if A and B are 
C0-Fredholm. With the notation of the proof of [3], Theorem 2.11 we have 

(8.7) yr(ker BA) = yr(ker A) + y r (SO ([3], relation (2.18)), 

(8.8) yT (& ) = y r m ([3] relation (2.20)), 

(8.9) yr-(ker (BA)*) = yr»(ker B*)+yT> (§>t) (relation (2.18)*), 
and 

(8.10) ker B = § ! © § ! , keri4* = S Î©§J (relation (2.19)). 

We infer, with the notation y=yT-(&i)=7r (Sa)» that 

y T (ker BA) + y=yT (ker A) + y r ( §0 + y=y r (ker A) + yr (ker B) 
and 

y j" (ker (BA)*)+y = y T- (ker B*)+yT (Sî)+y = y T (ker A*) + yT. (ker B*). 

By addition we obtain 
y r (ker BA) + yT. (ker A*) +y r . (ker B*)+y = 

= yT- (ker (BA)*)+y j (ker A)+y T. (ker B)+y 
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and since y^y r (ker 2?)Ayr(ker A * ) , Lemma 6.5 (ii) implies 

yT(ker B A ) + y T . ( k e T A * ) + y T - ( k e r B * ) = 

= yr»(ker C&4)*)+yr(ker A ) + y T - (ker B ) . 

The last relation is equivalent to (8.6). The Theorem follows. 
The proof of [3], Theorem 2.12 is easily extended to the general setting. 

Proposition 8.6. Let Tbe an operator of class C0 acting on the Hilbert space § 
and let X€ {T}' be such that T\(X§>)~ £0>. Then Y=I+X£$(T) and(T\ker Y)gTketyt. 
In particular ind (F)~(0, 0). 

Proof. We have shown in the proof of [3], Theorem 2.12 that ker 7=ker (F|U), 
U=(X!r>)_, and that (:T|U)kermu)t and TknYt are similar. This shows that 
(T|ker Y)QTket Y*-

In fact we shall prove a more general perturbation theorem. 

Theorem 8.7. Let T, 7" be two operators of class C0 acting on respec-

tively, and let us take X£a<P(T', T), Y£S(T\ T). If T'\{YSr>)-£0>, we have 
X-h Y£o<P(T', T) and 

(8.11) ind (X+Y) ~ ind ( * )+ (? , y), y = yr-((F§)-). 

Proof. We shall prove firstly that (J f+F ) ( § ) is dense in each cyclic sub-
space of T' contained in ( ( X + F ) § ) _ . The same argument applied to (X+ Yf 
will show, via [3], Lemma 1.4, that (X+F)|(ker (X-f F ) ) x is a lattice-isomorphism. 

In proving this we may assume that £>'=XJrjVF$ so that ker X*=(PkecXt F§)~; 

it follows that TkecXt,-<T'\(Y§>)- so that necessarily TkerX^ (cf. Corollary 4.5). 
Analogously we may assume that T|ker so that X is C0-Fredholm. 

The injection J: ker F—§ is C0-Fredholm, J£<P(T, r|ker Y) by the assump-
tion of the Theorem, and therefore, by Theorem 8.5, XJ£4>(T', T|ker F); in 
particular T k^ x j y ,=T^0> where U=ker (XJ)*=(X(ker F) ) x . 

Let us take /€ ( (Z+F )§ ) -and denote § ' ,= V T'Jf. Because 
js 0 

PuWMtn, n s » 

and Pu(X+Y)dJ?(T^,T) are such that ran (Pu|§;)c(ran Pn(X+Y))~ we infer 
by Corollary 4.11 the existence of a cyclic vector g of T'\9)'f such that Pug= 
=PU(X+Y)h for some h£Sj. Then the difference g'=g-(X+Y)he(r<in XJ)~ = 
=(Ar(ker Y))~ and because XJ is a C0-Fredholm operator we infer the existence 
of /T6ker F such that Xh' is cyclic for T'|P>',. Let us denote 

So = S»VS». and Z = {X+ F)| §0 £ J'iT', T\§„). 
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Then (Z§0 )~ indeed, because A'£ker У, we have Zh'=Xh' and there-
fore (Z% 0 ) -z>b ' x l f=&f, in particular g '€ (Z§ 0 ) - . Now g=g'+Zh£(Z?>0)- so 

that (Z§ 0 ) -z>b ' g=b ' f By Proposition 8.2 (ii) Z£o4>(T', Г|§0) so that bf= 

= ( 2 f t ) - = ( ( A r +y ) f t ) - for some &£Lat (:r|§0)czLat (T). The first part of the 
proof is done. 

Let us assume that Г|кег Then ker ( j f + F ) c I - 1 ( i ' S ) and 

ч гГ|кег X * l 
т\х-Чюг) = [ 0 т \ 

where Тг < Г '|(У§)" so that Тх has the property (P) (cf. Corollary 4.5). By Proposi-
tion 4.4, r p f - ^ F S ) - ) ^ and therefore T|ker (X+Y)Ç&>. Analogously 
rkervc+ry>£& i f Tkttx*^ so that in any case X+Y€o<P(T', T). Conversely, 
because X=(X+Y)-Y, T\ker X£0> whenever Т\кет (X+Y)£&> and 
whenever Therefore ind (X)d { + — if and only if 

i n d ( Z + y ) e { + ~ , 

and in this case ind (X)=ind ( X + У). 
It remains to prove that (8.11) holds whenever X£ Ф(Т', T). To do this let us 

remark that Р ( Ш х € Ф ( Г ( ' ш ± , Г ) and ind (P(ï^±)=(y, 0), where у = у г ( ( У 0 ) " ) . 
Because obviously P(Vs>)±(X-\-Y)=P{Yi})i_X we infer by Theorem 8.5 

(8.12) ind (X+ Y)+(y, 0) ~ ind (P ( y s )x X) ~ ind (X)+(y, 0) 
so that 

y T(ker ( X + У ) ) + y + у г- (ker (P ( y s )x JQ*) = 

= y r (ker (ЯГ+ Yf)+y j (ker P ( W x X) 
and 

У Г (ker P(Yg>)± X)+yT. (ker X*) = 

= у т . ( к е г ( Р ( Ш х ^ Г ) + у г ( к е г Х ) + у . 

By addition we obtain 

f y r (ker ( X + У ) ) + y r (ker X*)+y+yT (ker Р ( Ш х X ) + y r ( k e r (P(r^ * ) * ) = 

( ' ) 1 = y r (ker (X+ У )* )+y r (ker X)+y+yr (ker Р<г&)± X)+yr (ker (Р ( У& )± X)*). 

As shown in the proof of Theorem 8.5 (cf. relations (8.8—10)) we have 

yr(ker P(yS)j.X) ^ у г ( к е г * ) + у г ( ( У £ Г ) = y T (kerZ )+y 
and 

y j. (ker (P(Yb)± XT) yT. (ker X*)+y. 

Moreover, as shown in the first part of this proof, we have yr(ker ( X + Y ) ) ^ 
X ) + y and analogously yr.(ker A-*)SyT,(ker ( X + У ) * )+у . 
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All these relations show, via Lemma 6.5 (ii), that from (8.13) we may infer 

y , {ker (Jr+r ) )+y r (ker * * ) + ? = yr (ker (X+ Y)*)+yT (ker X)+y. 

The last relation is equivalent to (8.11). Theorem 8.7 is proved. 
We shall prove now a partial converse of Theorem 8.5. For simplifying nota-

tions we shall consider the case of a single operator T of class C0. 

Proposi t ion 8.8. Let Tbe an operator of class C„ acting on § and let A£ {T}'. 

If there exist B,Ci{T}' such that AB, CAf_<t>(T), we have A£<P(T). 

Proof . Because ker A a ker CA and ker A*aker (AB)* we obviously have 
J|ker A, TkcrAt££?>. We shall now prove that the mapping is onto 
Lat (r|04§)-). As in the first part of the proof of Theorem 8.7 we take f£(A§>)~ 

and remark that 
P u s ) - e MBS)-1 §/£ - e(ABS) - , r i S A 

-PuS)-Q(XBS)" -e(ABS)-» T); 

an application of Corollary 4.11 proves the existence of a cyclic g€&f and of a 
vector such that g—Ah£(ABSj>)-. Because AB£<P(T) we find h' such that 
ABh' is cyclic for T\§>g-M. If §0=§/IV§B/.' we obtain as in the proof of Theo-
rem 8.7 (A$>0)-zD$>f and therefore %f=(AR)- for some ft£Lat ( r|§ 0 ) cLat (T). 

Analogously we can show, using the operator A*C*(L<P(T*), that the mapping: 
is onto Lat(T*|(/i*§)-). By [3], Lemma 1.4, Proposition 8.8 follows. 

Example 8.9. For each pair (y, y ' ) 6 F x r there exist a C0-operator T and 

Xi<P(T) such that ind (X )= (y , y'). 

Proof . As in the proof of [3], Proposition 3.1, we take operators K, K'^SP 

such that yK=y, "?K'=y' and we define T= (K<2>I)® (K' 01), where I denotes the 
identity on H2. If U+ denotes the unilateral shift on H2, the required C0-Fredholm 
operator is given by 

X = (I®U%)®(I®U+). 

The proof of [3], Proposition 3.4, can be applied to obtain the following result. 

Proposi t ion 8.10. For each operator T of class C0 we have o&(T)C\{T}"= 

= <t>(T)C\{T}" and ind (Z )~ (0 , 0) for X£^(T)C\{T}". 

The operators X„, X defined in the proof of [3], Proposition 3.6, are such that 
Xn$ff<P(T), Xe<P(T), and lim ||—AT|| = 0. Thus we have the following result. 

Tl-*0O 

Proposit ion 8.11. The sets o<&(T), <P(T) are not generally open subsets of 

{T}',for T an operator of class C0. 
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On the Jordan model of Co operators. II 

HARI BERCOVICI 

The existence of the Jordan model for operators of'class C0 was established 
in [9] and [10] for operators of finite multiplicity, in [4] for operators acting on 
separable Hilbert spaces and in [2] for operators acting on nonseparable spaces. 
In Sec. 2 of this note we give a common description of these three types of Jordan 
models. We also find a direct definition of the inner functions appearing in the 
Jordan model. 

B. SZ.-NAGY and C. FOIA§ have shown in [9], Sec. 7, that the space § on which 
an operator T of class C0(N) is acting admits a decomposition into an approximate 
sum of invariant subspaces for T such that T\§>j is multiplicity-free. In Sec. 3 
of this note we extend this result to operators of class C0 of arbitrary multiplicity. 
In fact we prove the existence of an almost-direct decomposition (cf. Theorem 3.4). 
Moreover, in the case of weak contractions (which contains the case discussed in 
[9]) we show that there exists a quasi-direct decomposition (cf. [7], ch. III). The 
main ingredient in Sec. 3 is a generalization of [4], Proposition 2. 

Acknowledgement. The author is very indebted to Dr. L. Kerchy for his valuable 
remarks, and in particular for two suggestions that helped to simplify the proofs 
of Theorems 2.7 and 3.4. 

1. Preliminaries 

We begin with some known facts about cardinal and ordinal numbers (cf. [12]). 
Here 0 is considered as ordinal number so that each ordinal a is the ordering type 
of the well-ordered set of ordinals {/?: P<ct}. An ordinal number is a limit ordinal 
if it has no predecessor. Each ordinal number is of the form a+n with a a limit 
ordinal and n<a>, where ca is the first transfinite ordinal. For each ordinal number 
a we denote by a the associated cardinal number. 

Received January 15, 1979, and in revised form, July 20, 1979. 
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Lemma 1.1. For each cardinal number K we have X=card {a: 

Proof. Let us denote A={a: a<K } and let /? be the ordinal number cor-
responding to A. Then $=card A and so that |5=card Now let 
y be the first ordinal number such that y=K; then y$A so that ySp and there-
fore N = y£j5=card A. The Lemma follows by the Cantor—Bernstein theorem. 

Remark 1.2. The preceding proof shows that j?=y=the first ordinal with 

Corol lary 1.3. If are cardinal numbers and X2 is transfinite, we have 

X2=card {a: K^a-c i^ } . 

Proof. By Lemma 1.1 we have K2=card {a: a<K2 }=card {a: ac^J-l-
-1-card {a: + where K=card {a: Because K2 is 
transfinite Xi or K must be transfinite and we have K2=max {Ki, because 
Ni ̂  K2. The Corollary is proved. 

Corollary 1.4. If K is a transfinite cardinal number then K'=card {a: a = 
is the first cardinal greater than X. 

Proof. We have only to apply the preceding Corollary for and K2 = 
=the successor of X in the series of cardinal numbers. 

Now let us recall that the multiplicity fiT of the operator T acting on the Hil-
bert space § is the minimum dimension of a subspace 931 such that §>= V T"W. 

nso 
It is obvious that 
(1.1) Ht = dim 
so that the equality 

(1.2) fiT — dim § 

holds whenever dim or 
Lemma 1.5. We have fiT=piT* for any operator T of class C0. 

Proof. For /iT<s0 see [10], Theorem 3. Therefore if we also have 

fiTt = Ho and the equality pT=pT* follows from (1.2). 
i 

Let us recall that the operator T can be injected into T' (T< T') if there exists 
an injection X such that T' X= XT. If there exists a quasi-affinity X such that 
T'X=XT we say that T is a quasi-affine transform of T' (7X7" ) . 

i 
Lemma 1.6. If T and T are two operators of class C0 and T-<T', we have 

If T<T' then nT=pT. 
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Proof. Let T, 7" be acting on respectively, and let X be any injection 
such that T'X=XT. Then X* has dense range; if is such that V r '*"SR=S' 

we have V 7"*nJV*9Jl=$ and obviously dim (Z*9Jl)-Sdim 9JI. Therefore 
NSO 

H r* so that nT^nT . by Lemma 1.5. If 7X7" , we may assume X has dense range 
so that n r S [ i T obviously also follows. The Lemma is proved. 

If T is an operator of class C0 we shall use the notation 

0 - 3 ) M ™ ) = ^T|(ran m(T))-> 

where denotes the set of inner functions in H°°. We shall consider the set H°° 

(pre)ordered as in [2]. Namely, we write m iSm2 if mx divides m2 or, equivalently, 
if |i»j1(z)|sj/M2(z)| for |z|<l. 

The following Lemma also follows from [8], Theorem III.6.3; we prove it for 
the sake of completeness. 

Lemma 1.7. If T is an operator of class C0 and m1,m2^mT, then 

(ran m!(T))~ c:(raa m2(T))~ if and only if m1^m2. 

Proof. If m1^m2, we have m1=m2m3 so that obviously ran w1(7 ,)cran m2(T). 

Conversely, if (ranw1 (7 , ) )~c(ranm2 (T) )~, we have (mT/m2)(T)m1(T)=0 and 
therefore mT^(mT/m2)ml. The Lemma follows. 

Corol lary 1.8. The function ¡.iT is decreasing on H™. 

Proof. Obviously follows from Lemma 1.6 and the proof of Lemma 1.7. 

i 
Corollary 1.9. If T and T' are operators of class C0 and 7X7" , we have 

pT(m)^pr(m), If T<T', we have pT{m)^pr{m), 

Proof. If X is any injection such that T'X=XT, we also have m(T')X= 

Xm(T), m£H~, and therefore r|(ran m(T))~<T'\(mn m(T'))~. If X is a quasi-
affinity we have (Xran m(r ) ) -= (ran m(T'))~ so that T|(ran m(T))~ 

-<r'|(ran m(T'))~. The Corollary follows by Lemma 1.6. 
We shall see that the converse of Corollary 1.9 is also true. 
Let us recall that for an operator T of class C„ acting on § and for /€§, 

stands for the minimal function of T\5)f, where 

(1.4) s , = V T'f. 
JJSO 

The following result is proved in [4], Proposition 1. 

Proposit ion 1.10. The set {/: mf—mT} is dense in 
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In fact, from the proof of [10], Theorem 1, it follows that {/: mf=mT} is 
a dense G¿. 

Finally let us recall the definition of approximate sums and quasi-direct sums 
(cf. [6] and [5], ch. III). Let § be a Hilbert space and {$>j} j€ } be a family of subspaces 
of § such that 

( 1 .5 ) S = V 
¡íJ 

We say that § is the approximate sum of if for each subset KczJ we have 

(1.6) ( V § / ) n ( V § ; ) = {0}. 
itK UK 

We say that H is the quasi-direct sum of j if for each family {Ka}aiA of sub-
sets of J we have 

( 1 . 7 ) n ( V S y ) = V S y , K = f ] K a . 
aíA j€Ka jíK aíA 

We shall introduce an intermediate notion. Namely, we shall say that § is 
the almost-direct sum of if the relation (1.7) holds whenever K=0. 

Lemma 1.11. Let be a family of subspaces of § such that (1.5) holds. 

9) is the almost-direct sum of {ŐjJye/ if and only if we have 

(1.8) S = V S ; > where = ( V j€J-

Proof . If § is the almost-direct sum of {§/}ygj, we have 

v S ; = v ( v ^ ( n ( v z j y = ({O»-L = 
jíJ jiJ k^j JtJ 

Conversely, if (1.8) holds and {K^aiA are such that p) Ka=0, then 
OSA 

( n ( V v ( V V ( V SJ) 
OÍA j(.Ka aíA jíKa OÍA JÍKa 

and because U { j : j$Ka}=J, we have V ( V § ; ) = V i>j—i>- The Lemma 
aíA a(A jíJ 

follows. 

2. Jordan models 

De f in i t ion 2.1. A model function is a function M which associates with every 
ordinal number a an inner function M(a) such that 

( i ) M ( ß ) ^ M ( a ) w h e n e v e r ä ^ /5; 

(ii) M(oi) = M(ß) whenever ä = ß; 

(iii) M(a ) = 1 for some' a. 
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If M is a model function, the operator S(M) acting on § ( M ) is defined as 

(2.1) S(M) = © S(mJ, ma = M(cc). 
a 

Lemma 2.2. Let {m^aiAaH~ be a totally ordered family of nonconstant func-

tions. Then the multiplicity of T= © S(ma) equals card A. 
oZA 

Proof. If A is finite, the assertion follows from [9]. If A is infinite, it follows 
from the inequality pT,eT,^pr that pT is also infinite so that / i T =dim(© §(m0)) 

by (1.2). Therefore, card A c a r d A •X0=card A. The Lemma follows. 

Corol lary 2.3. If M is a model function, we have fis(M-) = a, where a is the 

first ordinal number such that mx = 1. 

Proof. If a is the first ordinal number with mx=1, it follows from Defini-
tion 2.1 (ii) that {fi: m ^ 1}={/?: so that the Corollary follows by Lemmas 
1.1 and 2.2. 

Def init ion 2.4. For any operator T of class C0 we define 

(2.2) MT(a) = mx[T] = A{m: pT(m) a} 

where " A " stands for the greatest common inner divisor. 
Let us remark that MT(0)=mo[T] coincides with the minimal function of T. 

MT is a model function. Indeed, the conditions (i) and (ii) of Definition 2.1 are 
obviously satisfied while (iii) is satisfied because MT(a)=l whenever a=dim£j 
(/¿ r ( l )=^ r^dim § by (1.1)). It is also clear by Corollary 1.9 that MT is invariant 
with respect to quasi-affine transforms. 

Proposit ion 2.5. If M is a model function we have Msm)—M. 

Proof. Let us put T=S{M), M'=MT, ma=M(a) and m'a=M'(a). Let us 
assume Because m(S(m'))=0 if and only if m^m' (moreover, 
S(m'))(ran m(S(m')))~ is quasisimilar to S(m'/mAm')), by Lemma 2.2 we have 

/zT(m) : ; nT(mp) el card {a; a ft} — ft. 

Conversely, let us assume m not Then /ir(w)^card {a: a ̂ /5} >/5. By (2.2) we 
infer m'p—nip and the Proposition is proved. 

Now let us recall the definition of a Jordan operator (cf. [2]). If X is a cardinal 
number and T is an operator, T (S ) denotes the direct sum of X copies of T. 

Definit ion 2.6. A Jordan operator, is an operator of the form 

(2.3) T= © S(m)Wm» 
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where h is a cardinal number valued function on //" such that 
(i) A = {m: h{ni)?±0} is a well anti-ordered set; 

(ii) {m£A: is a decreasing (possibly finite or empty) sequence; 

.(iii) h(m) > 2 h(m') whenever 2 H™! = ^o-m'^-m m'=~m 

Our condition (iii) slightly differs from condition (b) of [2], Definition 1. If we 
analyse the proof of [2], Theorem 1, we remark that the Jordan model obtained 
there satisfies the actual condition (iii). Indeed, if h(m) = 2 h(m') it is easy to 

m'>m 
:see that (with the notation of [2]) m is not a saltus point for /. 

Let us remark that, by Lemma 2.2, we have 

(2.4) pT(u) = 2 h(m), u£Hr 
unot mm 

i f T is the operator given by (2.3). 

Theorem 2.7. Each operator T of class C0 is quasisimilar to S(MT). 

Proof . From Corollary 1.9 it follows that MT is a quasisimilarity invariant 
Therefore, by [2], Theorem 1, it is enough to prove that for T a Jordan operator 
in the sense of Definition 2.6, T and S{MT) are unitarily equivalent. So, let T be 
given by (2.3) and denote mx—MT(a). It is enough to prove that 

(2.5) card {a; mx = m) = h(m), mZH™. 

Let us assume firstly that h(m)= 0. There exists a last m1£A={m': h(m')^0} 

such that m1SnjAm r . Thus for m'£A we have m(S(m'))=0 if and only if 
m1 (S(»j/ ) )=0. By Lemma 2.2 we infer nT(m)=fxT(mi) so that by (2.2) there is 
no a such that mx=m and (2.5) is proved in this case. 

Now let us assume 0 </j(m)<K0- Then the sum 

(2.6) k = 2 Hm') 
m'>m 

is finite by Definition 2.6 (iii). It is clear that p T (u )sk if and only if u^m and 
therefore if and only if nT(u)^k+n—1, n—h(m). We obtain 

™k = %+i =•••= >"fc+n-i = m. 

Analogously we obtain mk+n=m' where m' is the predecessor of m in A; thus 
{a: mx=m)={k, k+1, ..., k+n — 1} and (2.5) is proved in this case also. 

Finally let us assume /j(m)£K0- If k^a<h(m), where k is defined by (2.6), 
we have /¿t(m)=a if and only if u^m. Indeed, if «not Sm, we have ¡ iT (u)^h(m) 
by Lemma 2.2. Therefore 

<2.7) ma = m whenever k s a < h(m). 
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If a^h(m) and m' is the predecessor of m in A (if m is the first element of A we take 
m ' = l ) then, again by Lemma 2.2, pT(m') = £ h(m")— 2 h(m")+h(m) — h{m) 

m">m' m">m 
so that m ^ m . Therefore 

{a; ma = m} = {a; fc ^ a < h(m)} 

and (2.5) follows by Corollary 1.4 in this case. The Theorem is proved. 
Let us recall that / " » = / ( F ) for 

Corol lary 2.8. For each operator T of class C0 we have ¡iT{m)=fiTt(m~), 

and mC[[r*]=ffiC![7,]~ for each ordinal number a. 

Proof. Since pT(m) is a quasisimilarity invariant it is enough to prove the 
Corollary for T=S(M) and in this case the assertions of the Corollary become 
obvious. 

We are now able to prove the converse of Corollary 1.9. 

Corol lary 2.9. For two operators T, T' of class C0 the following assertions are 

equivalent: 

(i) T<T'\ 

(i)* T* < T'*; 

(ii) pT(m)^pr{m), m£Hr; 

(iii) /Ma[r]^ffia[7"] for each ordinal number a. 

Proof. (i)=>(ii) by Corollary 1.9. (ii)=>(iii) by Definition 2.4. 
(iii)=>-(i). Let us denote ma=ma[T], m'x=mx[T']. There exist (cf. [9]) isometries 

Rx: such that S(m'x)Rx=RxS(mx). If X and Y are two quasi-
affinities such that T'X=XS(MT.) and S(MT)Y— YT, the operator Z = Z ( © RX)Y 

a 
is an injection and T'Z=ZT. 

Finally, the condition mx[T]^mx[T'] is equivalent to mx[T*]^mx[T'*] by 
Corollary 2.8; it follows that the condition (i)+ is equivalent with (i)—(iii). The 
Corollary is proved. 

The following Corollary gives in particular a new proof of [11], Theorem 1. 

Corol lary 2.10. For two operators T, T' of class C0 the following assertions 

are equivalent: 

(i) 7 X 7 " ; 

(ii) 7 X 7 " and T'-<T; 

(iii) pT(m) = pT,(m), m£Hr I 

(iv) T and T' are quasisimilar. 

4 
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Proo f . (i)=>(iii) and (ii)=>(iii) by Corollary 1.9. (iii)=»(iv). By Definition2.4 
we infer mx[T]—ma[T'] so that T and T' are quasisimilar having the same Jordan 
model. (iv)=>(i) and (iv)=>(ii) are obvious. 

Coro l la ry 2.11. If T is an operator of class C0 on the Hilbert space § then 

each invariant subspace WlofT is of the form SOI=(X§)~ =ker Y for some X, Y£ {JT}'. 

Proo f . Let us denote by T' the restriction T|9K and by J the inclusion of 
i 

5DÎ into By Corollary 2.9 we have 7"*-<T* so that there exists an injection 
Z : 2TC-S such that T*Z=ZT'*. Then X=JZ*£{T}' and (X§)-=J(Z*&)~ = 

=J2R=2K. Analogously 9R-L = ( y * § ) - for some F * Ç { r * } ' so that 93î=ker Y. 

The Corollary follows. 
As shown by Proposition 2.5 and Theorem 2.7 the operators of the form S(M) 

with M a model function form a complete system of représentants for the class C0 

with respect to the relation of quasisimilarity. Sometimes it is more convenient to 
use Jordan operators as given by Definition 2.6. 

Propos i t ion 2.12. If M is a model function and 

(2.8) h(m) = card {a; mx = m], m£Hr, 

then the function h satisfies the conditions (i)—(iii) of Definition 2.6. 

Proo f , (i) A = {m: h (m) ^ 0} is the range of the decreasing function M defined 
on a well-ordered set so that obviously A is well anti-ordered. 

(ii) If h(m)<we infer m^ma for aëco. Therefore {m: 0-=/j(/w)<No} 
is the range of the function M on a segment of the natural numbers. 

(iii) Let us assume /2(m)ëK0 and let a be the first ordinal number such that 
mx=m. By Lemma 1.1 S= 2 h(m'). If a is a finite number, the relation A (w )>a 

m'>m 

is obvious. If a is transfinite we infer by Corollary 1.4 and Definition 2.1 (ii) 

h(m) s card {/?; p = S} = S' > S = 2 h{m'), 

where a' is the successor of â in the series of cardinal numbers. The Proposition 
is proved. 

From now on we shall call Jordan operators the operators S(M) with M a 
model function and S(MT) will be called the Jordan model of the operator T of 
class C0. 

Remark 2.13. For any operator T of class C0' we have 

(2.9) H M J T ] ) S a. 

Indeed, we have only to verify (2.9) for T= S(M) and in this case (2.9) is obvious. 
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3. Decomposition theorems 

The following Lemma is essentially contained in [9], sec. 2. We prove it for 
the sake of completeness. Let us remark that Lemma 3.1 also follows from [11], 
Theorem 2. 

Lemma 3.1. Let T and T' be operators of class C0, both quasisimilar to S(m) 

(m£H{°) and let A be such that T'A = AT. Then A is one-to-one if and only if it 

has dense range. 

Proof . Let X and Y be two quasi-affinities such that TX=XS(m) and 
S{m)Y=YT'. The operator Y AX commutes with S(m) so that YAX=u(S(m)) 

for some uZH™ by Sarason's Theorem [7]. If A is one to one or has dense range 
then so does u(S(m)) and therefore uAm=l. Now 

XYAXY = Xu(S(m))Y = u{T)XY = XYuÇT) 

so that XYA = u(T) and AXY=u(T'). u(T) and u(T') are quasi-affinities because 
u/\m = l and r a n 3 r a n ii(T'), ker ,4 C ker M (7) SO that A is a quasi-affinity in 
both cases. 

The following result is a generalisation of [4], Proposition 2. 

Proposi t ion 3.2. Let T and T' be two operators of class C0 acting on 

respectively, X be a quasi-affinity such that T'X=XT, f£$> be such that mf=mT 

and £>0. Then there exist subspaces §>i> ®îi invariant for T and SDi* invariant 

for T'* such that: 

(i) Si = S/; 

(ii) \\P&tXf-Xf\\^e; 

(iii) S W ^ ^ S Î H , = ( X ^ V ; 

(iv) = § i fl SJlx = {0}, SÎV9JÎÏ = § j n 9 J i i = {0}; 

(v) Ps* X\ and Pm*X | DJÎj are quasi-affinities. 

Proof . The conditions (i)—(v) are not independent. Indeed, let us assume that 
(i) and (iii) are verified and i>$'jAr|§1 is a quasi-affinity. It follows that T'\(X^~ 

and (T*|§iT are both quasisimilar to S(mT) and i^ jK-X"^ - has dense range; 
by Lemma 3.1 also has dense range, that is (^§ ] )~ = (7>(XSl)-S1*)_. 
Then 93ii = ker P^X so that f l = k e r P . g ^ = {0}. Analogously 5*n9K? = 
= {0}. Now s , = ( j r s 1 ) - © a » î = ( / ' ( x 4 i ) - s î ) v ® ç = s î v a j ç and analogously 
Ô1VSR1=§. Obviously 93Î*=(Pm* X§)~={PwlXWIJ- and Wl = ( . P a i l X * = 

= (/>,„, Af*9R;f)- and it follows that T V ^ a « ! is a quasi-affinity. 

4* 
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It follows by the preceding remark that it will be enough to define by (i), 
to find § * satisfying (ii) and such that P&*Xis a quasi-affinity and then to 
define 2Rl3 by (iii). 

The operator has the cyclic vector Xf so that by [10], Theorem 2, 
( r 'KZg) ! ) - ) * has a cyclic vector k. Moreover, by Proposition 1.10, the set of cyclic 
vectors of (r ' lC^&i) - )* is dense in ( A ^ ) ~ so that we may assume 

(3.1) ||fc-*/||<e. 

We define V T'*"k so that and (ii) is verified by (3.1). Let us 
( ISO 

compute the minimal function m of (7"'* |§*)*. Obviously m divides mT,=mT. 

Now the operator F=P (XSi)-|ijj* satisfies the relation 

(3.2) (T'\(X&)-)*Y=YT'*\&1 

and ran Y^k; it follows that Y has dense range and from (3.2) we infer 
m~((7" |(A"§i)")*)F= Ym~ (T*|§*)=0 so that mT,[(XSii)-=mT divides m. Because 
(7,'|(X§1)~)* and T'* are both quasisimilar to S(mT) we infer by Lemma 3.1 
that 7 is a quasi-affinity. In particular, is a quasi-affinity. 
Proposition 3.3 follows. 

Lemma 3.3. Let T be an operator of class C0 acting on let S(M) be the 

Jordan model of T and let §'(c§) be a separable space. Then there exists a reducing 

subspace §0 for T such that T|§0 ' s quasisimilar to 0 SimJ) (ntj=M(j)) and 
j < CO 

Proof. Let X be any quasi-affinity such that 

(3.3) TX = XS(M). 

We shall denote by § 0 the least reducing subspace of T containing and 
© §(my)). The space § 0 is separable; let © S(m'j) be the Jordan model of 

j<a> j<(o 
We have m'j^mj by Corollary 2.9. Because § 0 3(A ' ( © 9>(inj)))- we have: 

j<(£> 

(3.4) © S(MJ) < T | S0 

and therefore mj^m'j again by Corollary 2.9. Therefore mj—m'j and the Lemma 
follows. 

Theorem 3.4. Let T be an operator of class C0 acting on § and let S{M) be 

the Jordan model of T. We can associate with each limit ordinal a a reducing sub-

space 9ya for T such that: 

(0 S = © & ; 
a 

(ii) T |§a is quasisimilar to © S(ma+j). 
j-CO 
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Proof . Let X be as in the preceding proof. We shall construct by transfinite 
induction reducing subspaces for each limit ordinal a such that: 

(3.5) © H.=>X(® © S(m.+ i ) ) ; 

(3.6) T\9)x is quasisimilar to © S{ma+j). 
j-^a 

Let § 0 be given by Lemma 3.3 (with § ' = ( Z ( © § ( » i j ) ) - ) and assume § a are 
j< 0) 

defined for a</?. Let us denote: 

(3.7) « = 

Then R reduces T; let us denote by S(M') the Jordan model of T\St. From the 
condition (3.5) we infer X * ( f t ) c © and therefore: 

ys/) 

(3.8) T*\&<®S(tn„+7y. 
y 

By Corollary 2.9 we infer: 
(3.9) M'(y)^m,+1. 

By Theorem 2.7 and Definition 2.2 we have for any ordinal y: 

(3.10) m0+y= A{m: fiT(m)^JTy} = 

= A { m : ^(T|fl)©(r|i')(m) = P+y}-
Now, 

(3.11) ^(r|it)ffl(r|C)(m) = S 

= HT\R(™) + P • ^O = L*T\si(M) + P 

since P is transfinite. Because: P + y=P+y, we infer: 

(3.12) mfi + 1 == A {m: /ir|J,(m) y} = M'(y). 

From (3.9) and (3.12) it follows that M'(y)=mp+y. An application of Lemma 3.3 
to T\$t shows the existence of a reducing subspace S^cft such that: 

(3.13) T\§>p is quasisimilar to © S(mp+j) 

and 
(3.14) 

Conditions (3.5—6) are obviously conserved. Theorem 3.4 follows now because from 
(3.5) we infer § = © & , . 

a 

The proof of the following theorem is a refinement of the proof of [4], Theo-
rem 1. 



54 IH. Bercovici 

Theorem 3.5. Let T be an operator of class C0 acting on § and let S(M) 

be the Jordan model of T. There exists a decomposition of § into an almost-direct sum 

(3.15) § = V & 
a 

of invariant subspaces of T such that: 

(i) T\9)a is quasisimilar to S(mx) for each ordinal a; 
(ii) §a+n_L§0+m if a, P are different limit ordinals and m, n<co. 

Proof . Theorem 3.4 allows us to consider only the case where §> is separable. 
Let o be a sequence of vectors dense in §> and let {(Pj}jL0 be a sequence in 
which each <pk appears infinitely many times. We shall construct inductively sub-
spaces § 0 , ..., §„ , 93i„ invariant for T and JrjJ, ..., §*,' 931* invariant for 
T* such that 

(3.16) §„ = §/„, fnmn.1 and mfn = mr|OTn l ; §n* c 931^; 

(3.17) (5oV§1V...V§„)^ = 5mn*) (§o*V§iV...V§:)^=9Ji„; 

(3.18) |S0i„ is a quasi-affinity; 

(3.19) { ll-psBv$1v...vsBÇ>t-Ç>*ll < 2 fc = n/2 if n is even, 
H ^ s ï v s ï v . . . v J < 2~", k = (n —1)/2 if n is odd. 

To begin we put 93l_1 = 93i11=§j; the conditions (3.16—19) are obviously 
satisfied for n= — 1. Let us assume that the spaces §>j, §>*, 931 j, 9JÎ* have been con-
structed for j^n — l. From (3.17) and (3.18) we infer 

S o V ^ V - V S ^ V a j t , , ^ = ( S o V S i V . - . V ^ - O © ^ ; . , ^ - ! ) - = S 

and analogously §*V§*V...V€>*_1V99î*_1=g>. Therefore there exist w€&oV§iV... 
...V$n-i, and u * € $ * V $ * V . . . V s u c h that 

—u —u|| < 2~"~1, k = n/2 if n is even, 

||%-M*-el < 2~n~1, k = (n-l )/2 if n is odd. 

By Proposition 1.10 we can choose /„6®Zn_1 with i and such that 

Jll/n-f|| < 2~"~1 if n is even, 
(121) tll^n;.,/.-«'! < 2~"~2 if n is odd. 

Proposition 3.2 allows us to construct the subspaces § „ = § / , 93l„ and 931* 
such that 

(3-22) | | P S * P ^ L - P ^ . J n I I < 2~"~2; 

(3.23) ®ç = 9w;_1e(i»aC_ is11)- ait, = 9Jtn_1e(/,ffl.n_1 §„*)-; 

(3.24) Pm* 1aR„ is quasi-affinity. 
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Let us show that the conditions (3.16—19) are verified. (3.16) is obvi-
ous and (3.18) coincides with (3.24). For (3.17) we have (d0V$xV...V§n)-L = 
=(S0V§1V...V§ I I_1)-Ln§BJ-=aw:_ in5„ i=9KB*_1e(/'OTi.15 ( ))-=9Ji: by (3.23) and 
analogously (§£ V SftV...'V £>*)1=®l„. If n is even we have 

\\P^6lv...v9tl(pk-(pk\\ S IIu+fn-(pk\\ ^ \\u + v-q>k\\+\\v-fn\\ < 2 - " , 

by (3.20) and (3.21). If n is odd we have 

< l lu^+^-^ l l + l l ^ - P ^ ^ / J I + < 2"" by 

(3.20—22); thus (3.19) is also verified. 
From (3.19) we infer 

(3.25) § = V S; = V 
jsa j^ta 

If IVJ (say ¡'-=7 by example) we have and C3Jt* by (3.16), so that 
Therefore S*c=(V S,)"1 and (3.25) shows, by Lemma 1.11, that the 

i*J 
decomposition § = V is almost direct. To finish the proof let us remark that 

j<a> 
9Jl„+1=(§JV § i V . . . V ^ c 9 J l n by (3.17), so that m/n+i divides mfn. As in [4], 
Theorem 1, it follows that the Jordan model of T is © S(mj), where mJ=m/ . 

Theorem 3.5 is proved. 
In the case of weak contractions the result of Theorem 3.5 can be improved. 

Proposit ion 3.6. Let T be a weak contraction of class C0 acting on the (nec-

essarily separable) Hilbert space £> and let © S(mj) be the Jordan model of T. 
j<03 

There exists a decomposition 

(3.26) § = V 
j-<a> 

of § into a quasi-direct sum of invariant subspaces of T such that T\S)j is quasi-

similar to S(mj). 

Proof . Let X be a quasi-affinity such that TX=X( © S(mj)) and define 
]<m 

&j=(X&(mJ))~. Let {Ka}0£A be a family of subsets of the natural numbers and 
denote K= f") Ka. Because the mapping 9Ki-*(X9M)- is an isomorphism of the 

lattice of invariant subspaces of © S(mj) onto the lattice of invariant subspaces 
j<(0 

of T (cf. [3], Corollary 2.4) we have 

n ( v b j ) = m n ( © § K ) ) ) ) - = = V 
aZA JZKa a€A j£Ka JtK j(.K 

Proposition 3.6 follows. 
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Finite homogeneous algebras. I 

BÉLA CSÁKÁNY and TAT'JANA GAVALCOVÁ 

1. Preliminaries. Following MARCZEWSKI [7], an operation /: Ak-*A is called 
homogeneous if h(f(x1, ..., xk))=f(h(x1) h(xk)) for every permutation h and 
any elements ..., xk of A. An algebra (A; F) is said to be homogeneous if each 
operation f£F is homogeneous. 

In this paper, we shall describe all finite homogeneous algebras up to equiv-
alence. This is the same as determining all clones of homogeneous operations on 
finite sets. In the present Part I we shall 

(1) list all minimal clones consisting of homogeneous operations (it turns out 
that this list contains at most three items on any finite set, and the dual discriminator 

* function d, introduced by E. Fried and A. F. Pixley, always generates such a minimal 
clone); 

(2) determine all clones of homogeneous operations containing the minimal: 
clone generated by the dual discriminator. 

Let us start with notions and notations. The symbol n means the set 
{0,1, ..., n—1}. For the sake of simplicity, we shall consider algebras of the form 
(n; F) only. The following description of homogeneous operations was given by 
MARCZEWSKI [7]: for a homogeneous A>ary operation/on n, f(a1, ..., ak)=ai where 
l^i^k, or, possibly, f{ax, ..., ak)=ak+1 if ak+1 is the unique element of n distinct 
from ax, ..., ak, in such away that the index of the value of f(ax, ..., ak) depends-
upon the pattern of equalities in the sequence (at, ..., ak) only. A homogeneous 
operation / is called a pattern function provided /(al5 ..., ak) always belongs 
to { a l s a k } . 

Several kinds of homogeneous operations will play an important role in the 
sequel: Pixley's ternary discriminator p, the dual discriminator d, the switching 
function s, the A:-ary near-projection lk where 3 (they are defined on any set); 
further, the (n—l)-ary operation rn, defined on n for nS2, and Swierczkowski's 
ternary function/0, defined on 4. Let us recall their definitions: 

Received February 9, 1979 
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p(a, b,c) — c if a = b, and p{a, b,c) — a otherwise; 
d(a, b,c) = a if a = b, and d(a, b,c) = c otherwise; 
s{a, b, c) = c if a = b, s(a, b, c) = b if a = c and s(a, b,c) = a 

otherwise ; 
lk(ax, ..., ak) = ax if ax, ..., ak are pairwise distinct and 4(ûi> •••> ak) = ak 

otherwise ; 
/•„(&, ..., = a„ if {ax, ..., an.x, an} = n and r„(%, ..., an_0 = ax 

otherwise ; 
finally, 

/o(l, 2, 3) =/„(0, 1, 1) =/0 ( l , 0, 1) =/0 ( l , 1, 0) =/o(0, 0, 0) = 0 

{see [8], [7], [9], [3], [2]). 
A set of operations on a set n is called a clone if it contains all trivial opera-

tions (i.e., all projections) and it is closed under superposition. For any set F of 
operations on n, we say that F produces the operation g and we use the symbol 
F-*g if S be obtained from operations in F and the projections by superposi-
tion (in this case, one can also say that g is a term function of the algebra (n; F)). 

In the case F= { / } we write f-*g. Obviously, the relation — is transitive. For 
the negation of F—g we write F-t-g. An algebra (n; F) is functionally complete 

if the set FU (0,1,..., n — 1} (i.e., F together with the constant miliary operations) 
produces each possible operation on n. The clone [F] generated by F is the set of * 
all operations F produces. We write [/i,/2, ...] instead of [{/i,/2, ...}]. The 
algebras (n; F) and (n; G) are said to be equivalent if [F]=[(?]. A clone Fis called 
minimal if the clone of all projections is the unique one which is contained in T 

properly; this means that T contains a non-projection, and any non-projection in 
T produces every other non-projection. 

In the next lemma we collect the basic facts about how the above-mentioned 
homogeneous operations produce each other: 

Lemma 1. On a finite set n, the following hold: 

(1) P -*" / for any pattern function f. 

(2) Ij lk for j^k. 

(3) rn - /„_! for n> 3. 
(4) lk + d for n > 1. 
(5) d -+- lk for n > 2, n ^ k. 

(6) Ij -+- lk for j > k, n ^ k. 

Proof . (1) is a result in [4]. 
(2). It is sufficient to establish /;-WJ+1, and this is given by the identity 
(/ + lC*l» •••> xj> Xj + j) = lj(lj(xx, X3, ..., Xj, Xj+1), lj(x2, X3, ..., Xj, Xj+j), X4, ..., + 

0 ) « L-lixl> •••> xn-1) = rn{xn-l> •••> *3> x2> rn(xn-1, •••» x2> 
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To prove (4)—(6), we use the following fact. Let f , g be operations on n and 
f-*g\ then, for any natural number t, the subalgebras of (n;/) ' are closed under 
the (componentwise performed) operation g. 

(4). Observe that cr= {<1, 0, 0), <0,1, 0>, (0, 0, 1)} is a subalgebra of <n; Ik)3 but 
d({ 1, 0, 0>, <0, 1, 0>, <0, 0, 1 » = <0, 0, 0)$(T. Hence lk^d is impossible. 

Concerning (5) and (6), we present the crucial subalgebras only: 

2. Minimal clones of homogeneous operations. In this section, our main tool is 
the following fact: 

Lemma 2. For n^3, every non-trivial pattern function on n produces d or 

some lk with k^n. 

Proof. It was proved in [2] (see the proof of Lemma 5 there) that any non-
trivial pattern function on n produces d or an lk which is non-trivial; but lk is trivial 

The clones in the title of this paragraph are given by 

Theorem 1. The minimal clones consisting of homogeneous operations on a 

finite set n ( « > ! ) are the following: 

[/„] and [d], if 5; 

[/J, [d] and [/J, if n=4; 
[/J, [d] and [r3], if « = 3; 
[ 5 ] , [d] and [rj, if n = 2 . 

Proof. First we prove that, for «S3, [/„] is minimal on n. Take a non-trivial 
/ with /„—/; it is sufficient to show /— /„. As pattern functions produce pattern 
functions only, by Lemma 2 we have f-*d or f-*lk for a suitable k^n. From 
f-*d it follows /„ — d, contradicting Lemma 1(4); therefore f-*lk holds. Now 
k<n is impossible by Lemma 1(6), i.e., /—/„, which was needed. 

For n^3, the minimality of [d] can be proved by an analogous argument; 
here we have to apply Lemma 1(5) instead of (4). 

For nS5, there is no other minimal clone of operations on n. In order to 
show this, we shall verify that each non-trivial homogeneous operation g on n 
produces l„ or d. There are two possibilities: 

a) g—r„. Then, by Lemma 1(3) and (2), we have £-*-/„. 
b) g-*+rn. If, in addition, g is a pattern function, then Lemma 2 applies in 

the above manner. If g is not a pattern function, then we can identify variables 
of g (if necessary) so that we obtain an (n—l)-ary g' satisfying g'(a1 an_1)=an, 

(5) 

(6) 

{<fc-1,0), ..., <2, 0), <1, 0), <0, 0), <0, 1>} c (n; d)% 

{ < ; -2 , 0), ..., <2, 0), <1, 0), <0, 0), <0, 1)} c <n; /,>«. 

if k>n. 
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whenever {a1; a„_ l5 a„}=n, i.e., a„ is the unique element of n distinct from 
at, ..., a„_i. Now, if there exist two variables of g' whose identification furnishes 
a non-trivial pattern function, then, applying Lemma 2 for g' again, our claim 
follows. Suppose that g' turns into a projection by identifying any two of its vari-
ables. By a result of Swierczkowski, g' always turns into the same projection ([8]; 
see also [5], pp. 206—207; note that g' is at least quaternary). Hence g' equals r„ 
up to permutation of variables, implying g—r„, contrary to the hypothesis. 

Next we prove that [/„] is minimal on 4. Let /<>-*/ and suppose /-+-/0- Then 
<4;/0) and (4;/) are not equivalent. A homogeneous non-trivial algebra (4; F) 
is not functionally complete iff it is equivalent to <4 ;/„) (see [2]); therefore, (4;/) 
is functionally complete. Now, <4 ;/0) is functionally complete a fortiori, a contra-
diction. 

Similarly, a non-trivial homogeneous functionally incomplete algebra <3; F) 
is equivalent to <3; r3) (see [2]), hence the minimality of [/-3] on 3 follows. 

Furthermore, every non-trivial homogeneous operation g on 4 produces one 
of /4, d and /„, showing that there are no other minimal clones of homogeneous 
operations on 4. Indeed, if g is a pattern function, Lemma 2 applies. If g fails to 
be a pattern function, then an appropriate identification of variables of g leads 
to a ternary g' satisfying g'(a a2, a3)=ai, whenever {a1, ..., a4}=4. As we have 
g'^, a2, a3)—at ( lS/^3) if card {flj, a2, a3}<3, and the pattern of equalities in 

, a2, a3) determines the value of /', the operation g' is defined uniquely by the 
sequence <g'(0,1,1), g'( 1, 0,1), g'(l, 1, 0)> (of course, g'(0, 0, 0)=0 always). Let 
us denote g' by fk (k—0,1, ..., 7) if this sequence is the dyadic form of k (i.e., 
4g'(0,1, l )+2g' ( l , 0, l )+g ' ( l , 1, 0)=£). This notation is consistent with the orig-
inal definition of f0. We have to verify that every fk produces one of /4, d and /0. 

One can check the following identities: 

(a) fz(x,y, z) = r4(x, y, z); 

(b) My, x, z) =fe(z, y, x) =f3(x, y, z); 

(c) fi(y,z,f1(z,y,xj)= fi(y,/4(z, x,y),z) = p(x, y, z); 

(d) f'i{y,fi(y, z, x), x) =f7{y,f7(y, z, x), x) = d(x, y, z). 
From (a) and Lemma 1(3) and (2), it follows /3—/4. From (b), /5—/4 and 

/6—/4. Further, (c) together with Lemma 1(1) implies f i ^ d and / 4 — f i n a l l y , 
(d) shows /2—d and f7-*d. The case n=4 is settled. 

In the case n=3 we can proceed similarly. Any non-trivial homogeneous 
function g on 3 is either a pattern function — then we use Lemma 2 — or not. In 
the latter case g produces a binary g' in the usual way such that g'(aj, a2)=a3 when-
ever {alt a2, a3}=3, and g'(a, a) = a. Clearly, g'=r3, hence g—r3, as required. 

All minimal clones we have found are distinct. This is implied by Lemma 1(4) 
and the fact that pattern functions produce merely pattern functions. 
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The case n=2 of Theorem 1 can be realized by casting a glance at the diagram 
of the lattice of all clones on 2, due to POST (see, e.g., [6]; note that R2(X) = 
= x + l mod 2 and d(x, y, z)=xy+xz+yz mod 2 on 2). 

3. Homogeneous dual discriminator algebras. After WERNER [9], an algebra (n; F) 

is said to be a discriminator algebra (or quasi-primal algebra) if p£[F]. Analogously, 
an algebra (n; F) will be called a dual discriminator algebra if d(E[F]. In this para-
graph we determine all homogeneous dual discriminator algebras up to equivalence, 
i.e., for any n, we determine all clones of homogeneous operations on n containing d. 

From now on, n is fixed and « s 3 . 
Call a ternary operation m on n a majority operation if, for any x,y€ n, 

m(x,x,y)=m(x,y,x)=m(y,x,x)=x holds. The dual discriminator is a majority 
operation. The following theorem of BAKER and PIXLEY [1; Corollary 5.1] is basic 
for our considerations (see also [9]): 

Let (n; F) be a finite algebra such that F produces a majority operation and 
let g be an arbitrary operation on n. If every subalgebra of (n; F)2 is closed under 
the (componentwise performed) operation g, then F produces g. 

For a clone T on n, let ST stand for the set consisting of base sets of all sub-
algebras of (n; T)2. Let J5" be the set of all clones on the set n containing d. We 
call a set P of subsets of n2 complete if there exists a clone Tfc Ĵ " such that P=ST 

(i.e., if there exists a dual discriminator algebra on n such that P is the set of all 
subalgebras of the direct square of this algebra). Denote by Sf the set of all com-
plete sets. 

Lemma 3. S is an inclusion-reversing one-to-one mapping of 2F onto £P. 

Proof . The unique non-trivial part of this assertion is that S is one-to-one* 
Suppose TX,T2^ and STX=ST2. If f£T2 then every set in S r x ( =Sr 2 ) is 
closed under f hence, by the Baker—Pixley theorem, Tx-*f follows. This means 
/€7\ as 7\ is a clone. Therefore, T2<gTx (and by symmetry, 7\g7,). We get 
Tx=T2, which was needed. 

By virtue of Lemma 3, we can investigate complete sets instead of clones. 
First we establish some properties of complete sets. Subsets of n2 may be considered 
as binary relations on n. The following lemma is familiar: 

Lemma 4. Any complete set contains the complete relation; furthermore, it is 

closed under relation product, intersection and forming the inverse relation. 

For convenience, several kinds of subsets of n2 will bear special names. A set 
of form KXL with K, LQn, card K=k, card L = l is a block of size (k, I). A set 
of form {(/i,A>, ..., (ik,jk)}, where iL,...,ik are pairwise distinct as well as jx, ...,jk, 

is a string of size k. A set of form {<Wi>, <i2Ji>, <'iJi>, <W2>> •••» <Wi>} 
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(k, 1^2) is called a cross of size (k, I). Essentially, a string of size k is a partial 
permutation with a ̂ -element domain and a cross ̂ of size (k, /) is the union of two 
blocks of size (k, 1) and (1, /) with a non-empty intersection. Block of size m means 
a block of size (m, /) or (k, m); similarly for crosses. 

Lemma 5. Any complete set consists of blocks, strings and crosses; in par-

ticular, Sfi/] consists of all blocks, strings and crosses. 

Proof. A complete set consists of subsets of n2 preserved by d, and, by result 
of FRIED and PIXLEY [3; Theorem 2.4], d preserves a subset <r of n2 iff o is p-rec-

tangular, i.e., 
i'Ji), (hji), (k, l)e<* implies (i, l)£a for A ^ j2 

and 
(h,j),(i2,j),(k,l)£o implies (k,j)£a for h^h-

Clearly, blocks, strings and crosses are ^-rectangular and the converse can also be 
checked without trouble. 

From now on, we shall use the following notations: B is the set of all blocks 
and B' is the set of all blocks of size (k, I) with k, I¿¿n—1. The set of strings and 
crosses S, S' and C, C', resp., are defined analogously. Finally, let Cm be the set 
of all crosses of size (k, I) with k,l^m. Now Lemma 5 can be reformulated as 
follows: 

For any complete set P, the inclusion Pg jBUSUC holds; in particular, 
S ^ B U S U C . 

Next we clear up the structure of several further complete sets: 

Lemma 6. (1) lm+J=5U-SUCm for m=2, ..., n-l. 

(2) S[p] = BUS. 

(3) S[d,lm+1,rn] = B'US'UCm for m = 2, ..., n—2. 

(4) S[p,rJ = B'{JS'. 

Proof. (1) The following inclusions are obvious: £U5UCmgS[i/, /m + jgS[r f ] = 
= 5 U 5 U C . Take a set from C\Cm , i.e., across ofform {(ik,j\),..., (i1,ji), ...,(/1,7,)} 
with k>m (the case l>m can be settled similarly). Then /m+1((/m+1,y"1), ... 
•••> (h>(h> J'2))=('«+15/2) showing that our cross is not closed under /m+1. Thus, 
the set of all subalgebras of (n; d, lm+1)2 is 2?USUCm, as asserted. 

(2)—(4) can be verified in an analogous manner observing that no cross is 
closed under p, because we have p((h,jj), (ii,ji), (h>js))—(ja,js)l furthermore, 
no block, string and cross, each of size n—1, is closed under r„. Indeed, take, 
e.g., a block {/, / „ - J X l of size n - l and a j£L; then (h,j), (in-iJ) 

belong to this block but r n , j),..., (in-i,j)) does not. 
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Lemma 7. For the clone H of all homogeneous operations on n, SH=B'\J S\ 

Proof. By (4) of the previous lemma, SHQB'DS'. On the other hand,. 
SH contains all permutations of n, i.e. all strings of size n, since for any operation 
/homogeneity means that each permutation is a subalgebra of (n;/)2. Now we 
can apply Lemma4 in order to obtain all sets in B'US'. Namely, every string 
of size less than n—1 is the intersection of two permutations, every block of size 
(k, n) is the (relation) product of a string of size k and the complete relation, every 
block of size (n, 1) is the inverse of a block of size (/, « ) , and every block of size 
(fc, I) is the intersection of blocks of size (k, « ) and (n, I). 

In view of Lemmas 5 and 7, our task is reduced to determining all complete 
sets between US" and 5USUC. 

Lemma 8. All complete sets containing B'US' and contained in BiJ SUC 
are those listed in Lemma 6. 

Proof. It is sufficient to prove the following two propositions: 
(a) If a complete set contains B'US' and a block, or a string, or a cross, 

any of them of size n — 1, then it contains BUS. 
(b) If a complete set contains B'US' and a cross of size m, then it contains 

Cm; moreover, if m^n— 1, it contains even BUS. 

Indeed, suppose (a) and (b) are fulfilled, and let P be a complete set with 
5 ' U S ' g P ^ ^ U S U C . If P contains no crosses, then (a) implies P=B'\JS' or 
P=B[JS. Otherwise, let m be the maximum of the sizes of crosses in P. If there 
is a block or a string of size n — 1 in P, then in virtue of (a), (b) and the maximality 
of m we have P=B{JSUCm. In the opposite case, P=B'US'UCm by the same 
reason. 

It remains to prove (a) and (b). As for (a), one can check easily that all blocks 
and strings of size n—1 can be obtained from sets in B'US' and an arbitrary 
fixed block or string or cross, any of them of size n—l, by product, intersec-
tion and formation of inverse relation. Applying Lemma 4, the assertion (a) follows. 

(b) First let R be a complete set containing B'US' and an arbitrary cross 
£ of size (m, I) where 2 ^ / < m s n - l . Then any cross of the same size (m, /) can 
be obtained in the form n^n^ with appropriate strings n2 of size n; crosses of 
size (/, m) arise as inverses of the previous ones; crosses of size (m, m) can be rep-
resented as 7iC2 where and t2 a fe crosses of size (m, I) and (/, m), respectively, 
and 7i is a string of size « ; finally, an arbitrary cross of size lc2) with kx, k2^m 

is the intersection of a cross of size (m, m) and an appropriate block of size (kt, k2). 

Thus, Cm^R, as required. In the case m=n—1, the second part of (b) is a con-
sequence of (a). 

Secondly, let R be complete with i? ¡2 .B'US' and let R contain a cross of 
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size n. The preceding considerations show that we have two possibilities only, namely, 
7 ? = 5 ' U 5 , U C ' or R=B\JS\JC. The proof will be complete if we deduce that 
B'US'UC' is not a cbmplete set. Assume S F = f i ' U S ' U C ' for some homogene-
ous dual discriminator algebra (n; F). As SF is closed under rn, we have F-*rn 

by the Baker—Pixley theorem, hence, according to Lemma 1(3) and (2), F—l„ 

follows. However, as we have seen in the proof of Lemma 6(1), our cross of size 
n is not closed under /„, a contradiction. 

Now we are ready to formulate the main result of this paragraph. 

Theorem 2. The finite homogeneous dual discriminator algebras with more than 

one element are the following (up to equivalence): 

(2; d>, (2; p), <2; p, r2); 

<3; d), <3; p), <3; p, r3), <3; d, Z3>; 

<4; d), (4; p), <4; p, r4), <4; d, Z3>, <4; d, Z4>, <4; d, r4> 

and for n£5 

(n; d), (n; p), <n; p, ra>, <n; d, lk> (k = 3, ..., n), 

<n; d, rn), (n; d, rn, lk) (fc = 3, ..., n-2). 

The interval of clones between [d] and H—[p, rn] on n is the lattice with the 
diagram presented below: 

[P, 

[P, '"J 

[p] 

Id, 73] 

M 

n = 3 n = 2 n = 4 n e 5 

Proof . For « >2 , this follows immediately from Lemmas 6, 7 and 8. The 
case n—2 can be found in Post's work ([6], pp. 72—76). 
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Unbounded operators with spectral decomposition properties 

I. ERDÉLYI 

The general spectral decomposition problem for bounded linear operators on 
a complex Banach space X has been formulated and studied in [4]. In this paper 
we extend the problem to the unbounded case and show that the single valued 
extension property remains valid for a class of closed linear operators on X. 

While the theory of unbounded decomposable operators considered in [2, 3] 
relies heavily upon the concept of spectral capacity [1], here we make the theory 
independent of such an external constraint. 

A short glossary of notations now follows. For a subset S of the complex 
plane C, S denotes the closure, Sc the complement, conv S the convex hull and 
d(X, S) the distance from a point X to S. 'S denotes the collection of all open sets 
in C. For a linear operator T on X we use the following notations: the domain 
DT, the spectrum A(T), the resolvent set Q(T) and the resolvent operator R(- ; T). 

A subspace (closed linear manifold) Y of X is invariant under T if T{YC\DT)A Y. 

Inv (T) denotes the family of invariant subspaces under T. For Inv (T), we 
write T\Y for the restriction of T to Y and we abbreviate XI-T by X-T, where 
X£C and I stands for the identity operator. 

Let T\ Z ) r ( c l ) - I be a closed linear operator. 

1. Definition. A spectral decomposition of Xby T\s afinite system {(Gf, 7,)}c: 
c ^X Inv (T) with the following properties: 

0) a(T) c U Gr, 

(Ü) *=2Yt; 

(iii) a(T\Yi) c G; for all i. 
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2. Definition. T is said to have the spectral decomposition property (abbrev. 
SDP) if for every finite open cover {(Jf} of a(T), there is a system {Y , } c lnv (T) 

with the following properties: 

(I) Yt c DT if Gt is relatively compact; 
( I I ) {((?,-, F,)} is a spectral decomposition of X by T. 

Our objective is to show that T with the SDP possesses the single valued exten-
sion property. For this we need a lemma. 

3. Lemma. Given T, let f: D—DT be holomorphic on an open connected set 

DczC and satisfy conditions: 

/(A) ^ 0 and (A-r )/ (A) = 0 on D. 

If Felnv(r) is such that {/(A): for some G£<S then D<z<r{T\Y). 

Proof. Define 
H = {;.€/>: /(;.), /'(/),/"(;.),..., SF}. 

H has the following properties: 
(a) (b) H is open; (c) H is closed in D; (d) Ha<j(T\Y). 

(a): Let A0€G. For r>0 sufficiently small, r={X£C: |A-A0|=r}cG and 
then by hypothesis, {/(A): A £ r } c Y. By Cauchy's formula 

(b): Let h i H . Then W W J ' W . - ^ - Since/,/',/",... areanalytic, 
they admit Taylor series expansions in an open neighborhood F(A0) of A0 and hence 
/ (n )(A)£F on F(A0) for «=0 ,1 ,2 , . . . . Thus F(A0)c/7. 

(c): H=\ n a(n))-1mlnz'. 
«- N=O J 

(d): Let The vectors / (n)(A) are not all zero because otherwise /=0. Let 

m = min {n:/(">(A) ^ 0}. 

If m=0 then 7/(A)=A/(A) and 

(1) T/(m) (A) = A/(m) (A) for m > 0. 

(1) holds because / is jT-analytic (cf. [5, Lemma 2.1]) on D. In either case, / ( m ) (A) is 
an eigenvector of T\Y with respect to the eigenvalue A. 

By properties (a), (b), (c) H=D and then property (d) concludes the proof. 

4. Theorem. Every T with the SDP has the single valued extension property. 
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Proof. Let f: D—DT be locally holomorphic on an open D<zC and satisfy 
identity 

( A - J T ) / ( A ) = 0 o n D. 

We shall adapt the proof of [4, Theorem 8] to the unbounded case. We may assume 
that D is connected and contained in A(T), for DC\Q(T)T^% implies that f—0 

on some open set and hence on all of D, by analytic continuation. Fix A0£Z> and 
choose real numbers r± and r2 such that 0</-2</-1<ii(i0, Dc). Let 

G! = { A : | A - A 0 | < r j , G2 = { A : | A - A 0 | > r2}. 

Then Glt G2 cover a(T), Gx is both convex and compact, and 

(2) D + G2. 

By the SDP of T, there are YT, Y2£Inv ( T ) verifying the following conditions: 

X = Y X + Y2 with Y1CZDT; 

(3) <x(r|y;) c G , i = 1,2. 

There is an open VcD—Gj and there are functions V — Y I ( I = 1,2) such that 

(4) f(LI) = f M + f M on V. 

Since the ranges of both/ and fx are contained in Dr, so is the range of f2. There 
is a function g: V-*Y1OY2 defined by 

g(/0 = (ii-T)fM = (r-p)/2(i0^ny2, HdV. 

Since Y1C\Y2 is invariant under T\YX and Gx is convex, we have 

(¡(T^C) 7a) <= conv o{T\Y,) c Gt. 

Consequently, VaG^QiT^^ Y2). The function h: V-Y^Yz, defined by 

h(ii) = R(inT\Yir)Y2)g(ji)(iY1C}Y2, ¡xdV 
has property 

o i - T ) [ h ( j i ) - f M ] = o. 

Since both h(V)aYl,f1(V)^Y1 and VCLQ^Y^, we have 

fM = h(^Yir\Y2 on V. 

Then (4) implies that f(ji)£Y2 on V and hence f(ji)£Y2 on all of D, by analytic 
continuation. Now if / is not identically zero on D then Lemma 3 implies that 
D<za(T\Y2). This, under hypothesis (2), contradicts the second inclusion of (3). • 

Acknowledgement. The author expresses his gratitude to the referee for his 
critical reading of the paper and for his valuable suggestions for improvements. 
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Weighted shifts qnasisimilar to quasinilpotent operators 

LAWRENCE A. FIALKOW 

1. Introduction. The purpose of this note is to resolve certain questions raised 
in [8] and [9] concerning quasisimilarity and quasinilpotent operators. We prove 
that a weighted shift is quasisimilar to a quasinilpotent operator if and only if it 
is a direct sum of quasinilpotents (Theorems 2.7 and 2.8). As an application, we 
show that there exist operators T such that T and T* are quasiaffine transforms 
of quasinilpotent operators but such that Tis not quasisimilar to any quasinilpotent 
operator (Corollary 2.9). In section 3 we relate our results to several open problems 
concerning quasisimilarity and spectra. 

Let § denote a separable infinite dimensional complex Hilbert space and let 
i?(<rj) denote the algebra of all bounded linear operators on §>. Let Jf and Si denote, 
respectively, the subsets of £?(§>) consisting of all nilpotent and quasinilpotent 
operators. For T in JS?(§), let 9Jt(r) = ||T"x||1/n-0}. 93t(r) is a linear mani-
fold whose closure is hyperinvariant for T; moreover, T is quasinilpotent if and 
only if 931(7-)=§ [7, Lemma, page 28]. 

An operator X in .£?(§) is a quasiaffinity if X is injective and has dense range. 
An operator B is a quasiaffine transform of an operator A if there exists a quasi-
affinity Xsuch that AX=XB. Operators A and B are quasisimilar if they are quasi-
affine transforms of each other [18]. C. APOSTOL, R. G. DOUGLAS, and C. FOIA§ 
[4, Corollary, page 413] gave necessary and sufficient conditions for two nilpotent 
operators to be quasisimilar, but analogous results for quasinilpotent operators 
appear to be unknown. The present note concerns the quasisimilarity orbit of Si. 

Let £ a f = {T£ £?(?>): 71 is a quasiaffine transform of some quasinilpotent operator}, 
and let &*af- { r e i ? ( § ) : T* is in 2af}. Let Slqs denote the quasisimilarity orbit 
of SL, i.e. = { ! * € # ( § ) : T is quasisimilar to some quasinilpotent operator}. 

In [8] and [9] we obtained the following invariants for membership in £lqs. 
A compact subset KaC is the spectrum of an operator in 2.qs if and only if K 
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is connected and contains 0 [8, Theorem 3.11]. If T is in £qs-, then J satisfies the 
following properties: 

(I ) 2R(r) and Sfl(T*) both contain orthonormal bases for in particular, 
2R(7') and 951(7'*) are dense in § [8, Proposition 3.13]. 

(II ) If 9Jt?i{0} is an invariant subspace for T, then <r(r|93J) is connected 
and contains 0; if additionally, then <r((l-POT)7 ,|(l-/>SK)§) is con-
nected and contains 0 [8, Theorem 3.1]. (Pm denotes the orthogonal projection 
of § onto 9JI and &(•) denotes the spectrum of an operator.) Each operator satisfy-
ing (I ) also satisfies (II ) [8, Proposition 3.15]; several equivalent reformulations 
of ( I I ) are given in [9, section 3]. 

Note that Mqs<z£afn£*af and that if Tis in 2LaS, then 9)?(7"*) is dense [8, Lemma 
3.12]. C. APOSTOL[3] proved that 93I(T*) is dense if and only if T is a quasiaffine 
transform of a compact quasinilpotent operator. Thus an operator T satisfies (I ) 
if and only if T is in 2afC\£*f. 

In [8] we studied whether (I) actually implies membership in 2,qs, or equivalently 
(in view of Apostol's result), whether £>gs=£afC\£l*f. In [8] we obtained an affirma-
tive answer to this question for decomposable operators (including normal, spectral, 
compact, and Riesz operators) and for hyponormal operators. If T is decomposable 
and 9M(r*) is dense, then T is quasinilpotent [8, Corollary 3.4]; moreover, the 
only hyponormal operator satisfying 9Ji(r)~ —?> is the zero operator [8, Theorem 
3.6]. In section 2 we show that despite these positive results, Hqs is actually a proper 
subset of so that neither (I) nor (II) necessarily implies membership 
in < V 

2. Weighted shifts in J4S. Let 7 = Z or Z + and let tx— {an}„e/ denote a bounded 
sequence of complex numbers. Let {e„}niI denote an orthonormal basis for 
The weighted shift with weight sequence a, Wa, is defined by the relations Wae„= 

-~anen+i («€/)• If / = Z + , Wa is a unilateral shift, while if 7=Z , Wa is a bilateral 

shift. T. B. HOOVER [14] exhibited weight sequences a and fl, both with infinitely 
many zero terms, such that Wa and We are quasisimilar, Wa is quasinilpotent, and 
the spectrum of Wf is the closed unit disk. In this section we characterize the weighted 
shifts in 2,qs. 

For T in i ? ( § ) and «SO, let S3?„(T)=ker ( r n + 1 ) e k e r (Tn). Let = 

= V k e r ( r n ) = J©9W n ( r ) , and let 2 R 0 0 ( r ) = § e ^ ( T ) = f ) ( § e k e r ( r n ) ) . In n = l 71 = 0 n = l 
the sequel, dim 9Ji refers to the orthogonal dimension of a closed subspace 9Jlc§. 

Lemma 2.1. If A and B are quasisimilar operators in i f (§) , then A and B have 

the following properties: 

1) dim2Jln(^4) = dimS0l„(5) for O s n s » ; 

2) dim ker (A") = dim ker (£") for n > 0. 
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Proof . Let X and Y denote quasiaffinities such that AX=XB and YA=BY. 

To prove 1) it suffices to show that dim 9K„(5)sdim 9Jln(/4) for O s n s « , for 
then 1) follows by symmetry. Let 0^ra<°o; we may assume that dim 93l„(y4)>0. 
Let {ejostcp (0<p^co) denote an orthonormal basis for 9M„04). Let P0=0 and 
for « > 0 , let Pn denote the orthogonal projection onto ker (Bn); note that Pn+1—P„, 

is the projection onto 9Jt„ (B). 

We show that {(1— P^)Yek}osk<p is an independent sequence in 2Jl„(2?). Since 
A"+1ek=0, then B"+1Yek=YAn+1ek=0, so iX-P^Yek=(Pn+l-Pn)Yek^mn(B). 

Suppose 0 c0, ..., Cj£C and cil-P^Ye—O. Then £ cje— 

=Pn2ciYe&ker(5n), and so YA"(2 ciei)=B"(2 ci Ye)=0. Since Y is injec-
tive, 2cie&ker (4"), and thus 0= (2 ^e,-, em) — cm for 0 ^ m S j . Therefore 
{(1—P„)Yek}0sk<p is independent, and it follows (via Gram—Schmidt) that 
dim 93tB(2?)^p=dim S0i„(^). This completes the proof of 1) for 

Note that if then X^eSDUCB). Indeed, if z € § , « > 0 , and Bnz=0, 
then (X*y,z)=(y,Xz)=0 since Xz£ker (An) and . yeSR^ ) . Since X* is injec-
tive, it follows that dim 9K„(2?)s dim SDl^./!); the reverse inequality follows by 
symmetry. 

For 2), note that since ker G4"+1)=ker (¿^©SR,,^), 2R0(/f)=ker (A), 

ker (i?n+1)=ker (8")@9Jin(i?), and 9K0(fi)=ker (B), the result follows from 1) by 
induction on n. 

Corol lary 2.2. Let A and B be quasisimilar operators in J£?(S). Then there 

is an operator B' unitarily equivalent to B such that $)i„(^4)=93l„(5/) for 

Proof . For let P„ and Q„ denote, respectively, the orthogonal pro-
jections onto №n(A) and 2)i,,0B). Note that 2 o s n s ~ & . = ! and 
PiPj—QiQ—0 for i ^ j Lemma 2.1 implies that there exists an iso-
metric operator V„ which maps %Jl„(A) onto Stt„(B). Let )r/=2osns°° ^ P n (strong 
convergence); then V * = 2 V * Q n and V is unitary. If B ' = V * B V , it follows 
that 9Ji„(^)=9Ji„(5') for each n. 

Remark. An analogue of Corollary 2.2 for n=0 is implicit in the proof o f 
[19, Lemma 2]. 

For Tin .£?(£), let ( T ) ' = {SfEJS?(§): TS=ST) and let RS= 

= SR for each S in (7")'}. In the sequel r(T) denotes the spectral radius of T. 

Lemma 2.3. Let A, B, X, and Y be operators such that AX—XB and YA=BY. 

If Re(B)", then XRY£(A)' and r(XRY)^r(YX)r(R). 

Proof . The hypothesis implies that XRYA=XRBY=XBRY=AXRY, so XRY 

commutes with A. Since R<i(B)" and YX£(B)\ R commutes with YX, and thus 
* r(XRY) = r(YXR)^r(YX)r(R). 
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Corol lary 2.4. If A is in 2,qs, then A commutes with a nonzero quasinilpotent 

•operator. 

Proof. Let -862. be quasisimilar to A and let X and Y denote quasiaffinities 
such that AX=XB. and YA=BY. Lemma 2.3 implies that XBY is a quasinilpotent 
operator commuting with A; moreover, since X is injective and Y has dense range, 
XBY is nonzero if B is nonzero. If B=0, then A=0, so the result is clear in this 
case also. 

Lemma 2.5. Let W be a noninvertible injective weighted shift such that r(lV)>0' 

If S commutes with W, then a(S) (the spectrum of S) has nonempty interior or S is 

•a scalar multiple of the identity. 

Proof . The proof depends on several results from [15] to which we refer the 
reader for complete details. We consider first the case when W is a unilateral shift. 
In this case S may be represented as a multiplication operator M0 on a space of 
•formal power series H2 ( f i ) [15, Theorem 3(b)]. The power series for the multiplier 
<P is convergent in D= { z€C : \z\<r(fV)} [i5, Theorem 10(iii)], and thus represents 
an analytic function <P(z) in D. Now a(M0) coincides with the spectrum of <P in 
H°°(P) [15, Proposition 20], and thus a(M0) contains $(Z>) [15, page 79]. If 
is not a scalar multiple of the identity, then $ is non-constant, and it follows that 
0(D), and thus also <r(M0), has nonempty interior. The proof for the case when W 

is a non-invertible bilateral shift is analogous; the pertinent results are [15, Theo-
rem 3(a)], [15, Theorem 10'(iii—b)], and the remarks of [15, page 83]. 

Remark. The conclusion of Lemma 2.5 may fail if W is invertible; consider 
the unweighted bilateral shift, whose spectrum is the unit circle. Note also that 
there exist noninjective, non-quasinilpotent weighted shifts which commute with 
nonzero quasinilpotent operators. 

Corol lary 2.6. If W is a noninvertible injective weighted shift and r(W)>0, 

then W commutes with no nonzero quasinilpotent operator. 

Theorem 2.7. Let W—Wx be a bilateral weighted shift. The following are 

equivalent. 

1) W€£v; 
'2) W is a direct sum of quasinilpotent operators, and if a. has at most finitely many 

zero terms, then W is quasinilpotent. 

Proof . The implication 2)=>1) follows from [8, Proposition 3.10]. For the 
converse, we assume that W£Qqs and we consider several cases depending on 
the number and location of the zero terms in the weight sequence a. Note that since 
We£qs, then W is noninvertible [14], [12]. 
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i) W is injective. Since W£Sqs, Corollary 2.4 implies that W commutes with 
a nonzero quasinilpotent; thus Corollary 2.6 implies that W is quasinilpotent. 

ii) For each integer N, there exist integers m and n, n<N<m, such that 
a m = a n = 0. ^ is clear that in this case W is an infinite direct sum of finite dimen-
sional nilpotent operators. 

iii) There exist integers n and m, n^m, such that a„=0, am=0, and 
for k<n or k>m. We consider only the case n<m; the case n—m may be 
treated similarly. Let Si=<e„, en_1, en_2, ...>, %2=(en+1, •••> em), and § 3 = 
=(em+i> em+2> •••>• Relative to the decomposition § = §i©§2©I>3J the operator 
matrix of W is of the form W—W^@N@Wy, where Wp and Wy are injective 
unilateral weighted shifts on and § 3 respectively, and Nm~"=0. 

Suppose that W is quasisimilar to a quasinilpotent operator Q. Let X and Y 

be quasiaffinities such that WX=XQ and YW=QY. Note that ^P(J*0=Si©$a 

and SOi^CJ^F")Corollary 2.2 implies that there is an operator Q' unitarily equiv-
alent to Q such that Ttn(W)=W„(Qf) (O^n^oo), and thus ker (W")=ker (Q'n) 

for «SO. Let U denote a unitary operator such that Q' = U*QU. Let X' = XU 

and Y'—U*Y; clearly X' and Y' are quasiaffinities and (*) WnX'=X'Q'n and 
Y'Wn=Q'nY' for « > 0 . Since ker (W" ) = ker (Q'n), the preceding equations imply 
that <m='^(W) = 'ip(Q')=§>i®§>2 is an invariant subspace for X' and Y'. 

Relative to the decomposition §=S[)Z©9Jix, the operator matrices of X', Y', 

Q', and W are of the form 

where X22 and Y22 have dense range, and Q22€.Q. The equations (*) imply that 
WyX22—X22Q22 and Y22Wy=Q22Y22. Lemma2.3 implies that R=X22Q22Y22 is a 
quasinilpotent operator commuting with Wy, and we assert that R is nonzero. For 
otherwise, since Y22X22 commutes with Q22, it follows that 0=Y22R— Y22X22Q22Y22 — 

— Q22Y22X22Y22. Since X22 and Y22 have dense range, it follows that Q22 — 0. Now 
(*) implies that Wy=0, which is a contradiction. 

Thus R is a nonzero quasinilpotent commuting with Wy, so Corollary 2.6 implies 
that Wy is quasinilpotent. By applying the preceding method to W*, we conclude 
that Wfi is also quasinilpotent. (Note that IV* = WP®N*® W*, so that 0>{W*) = 

=£>2®§3-) Since Wy, and N^Jf, it follows that W is quasinilpotent, 
which (together with case i)) completes the proof of the second part of 2). 

iv) There exists a largest integer N such that aN=0, but there exists no smalles, 
such integer. Let W.=(eN, eN-lt ...). Relative to the decomposition 
W=N@Wy, where N is an infinite direct sum of finite dimensional nilpotentst 
and Wy is an injective unilateral weighted shift. Since ^5(H/)=9Ji, the method of 
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case iii) implies that WY is quasinilpotent, so W is a direct sum of quasinilpotents. 
v) There is a smallest integer N such that aN=0, but there is no largest such 

integer. The desired conclusion that W is a direct sum of quasinilpotents follows 
by applying case iv) to W*, which is a bilateral weighted shift relative to the basis 
{/n}n+~-„, where /„=*_„. 

Theorem 2.8. Let W= Wr be a unilateral weighted shift. The following are 

equivalent. 

1) 
2) or y has infinitely many zero terms; 
3) W is a direct sum of quasinilpotent operators. 

Proof. The implication 2)=»3) is obvious and 3)=>1) follows from [8, Prop. 
3.10]. Suppose that WY€£QS. Let WF be a quasinilpotent injective unilateral weighted 
shift and let WA = © WY. Thus WA is a bilateral weighted shift and WA is in 
Jss [8]. If at most a finite number of the weights of WA are zero, then Theorem 2.7 
implies that from which it follows that In the remaining case, 
Wa has infinitely many zero weights, and since Wp is injective, these weights corre-
spond to zero terms in y. 

Corollary 2.9. 3.qs is a proper subset of £>aj-(~)£l*f. 

Proof. According to [9, Example 3.2], there exists a non-quasinilpotent injec-
tive unilateral weighted shift W such that 50l(W0 and both contain the 
orthonormal basis {e„}~=0. Thus T i (W) and 9Jl(iV*) are both dense, and so [3] 
implies that W(LQAFC\2.*F. However, since W is injective and non-quasinilpotent, 
Theorem 2.8 implies that W is not in MQS. 

Remark. The shift W in the preceding proof satisfies properties (I) and ( I I ) 
of section 1. It follows that in general neither property implies membership in Hqs. 
These results provide negative answers to Question 3.9, Question 3.14, and Ques-
tion 3.16 of [8]. Theorem 2.7 and Theorem 2.8 answer [8, Question 3.7]. We note 
also that it is possible to prove Theorem 2.8 directly, without recourse to Theo-
rem 2.7, by employing the same technique used to prove Theorem 2.7. 

In [11] C. FOIA§ and C. PEARCY proved that if Q is quasinilpotent, then Q 

and Q* are quasiaffine transforms of compact operators (which are necessarily 
quasinilpotent). (This result also follows from [3].) In [11, Proposition 1.5] it is also 
proved that there exists a quasinilpotent operator that is not quasisimilar to any 
compact operator. The shift W of Corollary 2.9 is an example of a non-quasinilpotent 
operator such that W and W* are quasiaffine transforms of compact operators 
but such that W is not quasisimilar to any compact operator. The fact that W and 



Weighted shifts quasisimilar to quasinilpotent operators 77-

W* are quasiaffine transforms of compact operators follows from [3]. Now each 
nonzero operator quasisimilar to a compact operator commutes with a nonzero 
compact operator [11, Proposition 1.5]; since the spectrum of a compact operator 
is countable, Lemma 2.5 implies that IF is not quasisimilar to any compact operator. 

3. Conclusion. In this section we relate our results to a conjecture of [13], 
discuss some related questions. Let {93i„}1Sn<fc denote a sequence of 
closed subspaces of The sequence {93t„} is said to be a basic sequence for an oper-
ator Tin ( § ) if the following properties are satisfied: 1) for each n, 93l„ is invariant 
for T, i.e. r9Jlnc93i„; 2) For each n, 9Jl„ and V are complementary in § ; 

m n̂ 
oo 

3) If k= oo, then f ) ( V ®lm )={0}. The trivial basic sequence for any oper-
n = l mSn 

ator is the sequence 931!={0}, 9 3 ^ = T h e concept of a basic sequence is due to 
C. Apostol [1]. 

D. A. HERRERO [13, Conjecture 1] stated the following 

Conjecture H. [13] If an operator T has no non-trivial basic sequence, then 

each operator S quasisimilar to T satisfies a(S)=a(T). 

Theorem 2.8 can be interpreted as offering some (albeit limited) support to 
this conjecture. Indeed, an injective unilateral weighted shift T has no nontrivial 
pair of complementary invariant subspaces [15, Corollary 2, page 63]. Thus T has 
no nontrivial basic sequence, and Theorem 2.8 shows that if r{T) >0, then r(S) 

for each operator S quasisimilar to T. We can show a bit more. Suppose T shifts 
the basis {<?„}~=0. Let X and Y be operators with dense range and let S be an oper-
ator such that TX=XS and YT= SY. Since XY commutes with T, [16, page 780] 
implies that the matrix of XY relative to {en} is given by a formal power series 

oo 

2! anTn. Since XY has dense range, |aol>0. By method quite different than that 
« = 0 
used in section 2 it can be shown that if \an\||5n|H|a0|» then r(S)^r(T); 

n=i 
note that if an=0 for each then XY is invertible, so T and S are similar. 

In a different direction, S. CLARY [5] has studied subnormal operators quasi-
similar to the unweighted unilateral shift U. It follows from [5] that there exists sub-
normal operators S such that S and U are quasisimilar but not similar; however, 
quasisimilar subnormal operators do have equal spectra [6, Theorem 2]. The preced-
ing remarks suggest the following question. 

Question 3.1. If T is an injective unilateral weighted shift and S is quasi-
similar to T, does a(S)=a(T)l 

C. APOSTOL [1] proved that an operator T is quasisimilar to a normal operator 
if and only if T has a basic sequence {93l„} such that each restriction r|93i„ is simi-
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lar to a normal operator. In [9, Theorem 5.5] it is proved that if an operator T has a 
basic sequence {9K„} such that each restriction T|95in is a spectral operator, then 
T is quasisimilar to a spectral operator. The proof of this result also yields the fol-
lowing sufficient condition for membership in 2.qs. 

Proposit ion 3.2. If {$t„} is a basic sequence for an operator T such that 

each restriction T|9Ji„ is quasinilpotent, then T is in Hqs. 

Question 3.3. Is the converse of Proposition 3.2 true? 
The results of [8] show that if T is in Hqs and T is decomposable or hyponormal, 

then T is quasinilpotent, so Question 3.3 has an affirmative answer for operators 
in these classes. More generally, the answer is affirmative for each operator T sat-
isfying property (C) in the sense of [17], since for each such operator, 9Ji (2") is closed. 
The answer is also affirmative for weighted shifts; indeed Theorem 2.7 and Theo-
rem 2.8 may be reformulated as follows. 

Theorem 3.4. A weighted shift W is in 2.qs if and only if there exists a basic 

sequence {9Jl„} for W such that each restriction W\yjln is quasinilpotent. 

Proof. Theorem 2.7 and Theorem 2.8 imply that if a weighted shift W is in 
¿2qs, then IF is a direct sum of quasinilpotents; this direct sum decomposition gives 
rise to the desired basic sequence. The converse follows from Proposition 3.2. 

Acknowledgement. The author wishes to thank the referee for helpful comments. 
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On the admissibility of topological vector spaces 

O. HADZIC 

1. Introduction. Let X be a HausdorfF topological vector space. A subset A of 
X is called admissible [7] if for every compact subset K<zA and for every neigh-
bourhood U of zero in X there is some continuous mapping h: K-+A such that 

(i) dim (span h (K)) < 

(ii) x-hxfU, for all x£K. 

S. HAHN and K. F. POTTER [3] proved fixed point theorems for admissible sub-
sets of HausdorfT topological vector spaces. NAGUMO proved that all convex sub-
sets of a locally convex space are admissible [9] and the admissibility of many non-
convex topological vector spaces has been proved by KLEE [6], RIEDRICH [14], [15], 
ICHII [4], PALLASCHKE [12] and KRAUTHAUSEN [7]. 

But the following questions remained open: 
a) Which Hausdorff topological vector spaces are admissible? 
b) Which convex subsets are admissible? 
c) For which compact subsets K of a Hausdorff topological vector space X is 

the following valid: 
( * ) If U is an arbitrary neighbourhood of zero in X then there is a finite 

dimensional continuous mapping h: K—coK such that x—hxd U for all 
x£K. 

Recently, MATUSOV [8] proved that every compact convex subset of a Hausdorff 
topological vector space has the fixed point property using an idea of SARIMSAKOV [10] 
and a result of KASAHARA [5]. 

Now we give Kasahara's definition of paranormed spaces [5]. 
A linear mapping <J> of a topological semifield E into another F is said to be 

positive if 0(x)^O in F for every x£E with x^O. Let || || be a mapping of a 
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linear space X into a topological semifield E and let $ be a continuous positive 
linear mapping of E into itself. The triple (X, || ||, &) is called a paranormed space 

over E and || || a <P-paranorm on X over E if the following conditions are satisfied: 
(P I ) B*||sO, for every x£X; 

(P2) ||Ax|| = |A|- ||jc|| for every real A and every x£X\ 

(P3) ||;t+j|| (11*11+II J>ll) for every x,yZX. 

A set K, Ka X where A" is a topological vector space, is said to be of type <i> 

iff (X, || ||, $ ) is a paranormed space and for every n£N, every xT, x2, ..., xndK—K 

and every A,-, Os A,-̂  1 ( i = 1, 2, ..., n) such that Aj +A 2 + ... + A „ = 1, we have 

2 A,*,- ^ 2 ¿^(piW). If K=X, the space X is of type <P. 
¡=1 i=l 

In this paper we shall prove: 
a') Every HausdorfF topological vector space of type <P is admissible, 
b ' ) Every convex subset of type 4> of a Hausdorff topological vector space is 

admissible. 
c") For every compact subset K of type $ of a Hausdorff topological vector 

space property ( * ) is valid. 
As a Corollary we shall obtain an extension of Matusov's fixed point theorem. 

2. The main result. We use the following theorem from KASAHARA'S paper [5]. 

Let (X, T) be a topological linear space. Then there exists a paranormed space 

(X, || ||, <P) over a Tihonov semifield E such that: 

(1) For every neighbourhood U of 0£X there are an e>0 and an indecompos-

able idempotent Q£E such that 

{x(LX: M-eseeJct/. 

(2) For every neighbourhood U of 0£E the set 

{x€X:||x||€C/} 

is a neighbourhood of 0£ X. 

The Tihonov semifield E from the above Theorem is RA, the set of all mappings 
from A into R where A is a set of paranorms generating the topology of X and 
satisfying the condition that for each p£A there are a>0 and q£A such that 

p(x+y) <x(q(x) + q(y)), for all x,y£X. 

Now we are ready to formulate our main theorem. 
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Theorem. For every compact subset Kof type <t> of a topological vector space X 

and for every neighbourhood U of zero in X there exists a finite dimensional continuous 

mapping h: K-*co K such that x—hx£ U for all x£K. 

Proof. Let U be an arbitrary neighbourhood of zero in X and let 
/i = { f j , t2, ..., t^aA and e>0 such that 

where 
Un.t = {u:u£JRd, u(tj) < £ , ; ' = 1, 2, ...,«}. 

Further, since the mapping <t>: RA—RA is a continuous linear mapping there exists 
a neighbourhood e) of zero in RA such that 

Suppose now that V2(p, e) is a circled neighbourhood of zero in X such that 

x-y£V2(n, e) Wx-yWZV^, e). 

Since X is a Hausdorff topological vector space it is also a Hausdorff uniform space 
and let d be a pseudometric on X and ¿>0 such that 

d(x, }>) < <5 =>• x-y£V2(fi, £). 

We shall use the notation 

Vx(d, S) = {y:y£X, d(x, y) < <3} (d > 0). 

Since the set K is compact there exists a finite set x2, ..., xm}czK such that 
for every x£K there exists /€{1,2, ..., m} such that 

xeVXi(d, <5). 

.So if we define the functions f : K-*R + (/=1, 2, ..., m) so that 

fi(x) = max {0, 5 — d(x, x,)} 

for every x^K and «'€{1, 2, ..., m) it follows that 

fi(x) ^ 0 o d(x, x,) < 5. 

Since for every x£K there exists at least one /€{1,2, ...,m} such that f(x)^Q 

we conclude that for every x£K, 
m s(x) = 2f,№ * o 

6* 
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and that all mappings/ 0 = 1, 2, ..., m) are continuous since the mapping x*-*d(x, x,) 
is continuous for every /€{1, 2, ..., m}. Now, let 

= i ifi(x)x, for all x£K. 
s\X) (=1 

Then h(K)cco K and h is a continuous mapping from K into a finite dimensional 
subspace of X. Further we have 

\\hx-x\\ = 

1 

I m J m 

s(x)fi(x)(x-xd 

Since /¡(x)^0<=>i/(x, Xf)<8 it follows that for every x£K such that f(x)^0 
we have that 

and so 
1 m 1 m 

\\hx-x\\ (t) si < Zfi(*> = £ for every t£n. 

So we have ||hx—xW^U^ ,̂ which implies hx—x£U and the proof is complete. 

Corol lary 1. Every convex subset A of type $ of a Hausdorff topological vector 

space is admissible. 

Proof. If K is a compact subset of A and U is an arbitrary neighbourhood of 
zero, the Theorem implies the existence of a finite dimensional continuous mapping 
h: K^co K with the following property: 

x—hx£U for all x£K. 

Since A is convex it follows that co KxzA and so A is admissible. 

Corol lary 2. Every Hausdorff topological vector space of type <P is admissible. 

Corol lary 3. Let A be a closed and convex subset of type $ of a Hausdorff 

topological vector space E and h: A-*A be a continuous mapping such that h(A) 

is compact. Then there exists at least one fixed point of the mapping h. 

Proof. Since A is admissible we can apply a fixed point theorem from [3] and 
so the set of fixed points of the mapping h is nonempty. 
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New generalizations of Banach's contraction principle 

M. HEGEDOS 

Many research papers have appeared on different generalizations of Banach's 
contraction principle. A. MEIR and E. KEELER[2] studied mappings /: X-*X of 
a metric space {X, Q) having the property that for every e >0 there exists a <5 > 0 
such that implies g(/(*),/(>>))<£. In the present paper we 
consider the following generalization of a restriction of this definition. For x, yd X 

let df(x, j )=diam {x, y,f(x),f(y),f2(x),P(y), ...}. Here "diam" abbreviates dia-
meter. 

The mapping /: X-+X is called a generalized Meir—Keeler contraction if 
df(x,y)< oo for x,y£X and if for every e>0 there exist s', e" such that 0 < e ' < 

and df(x,y)<e" implies e(/(x),/(;>))<£'. 
Lj. B. CIRI6[1] studied mappings f: X—X for which df(x, and there 

exists a constant a, 1, such that 

e(/(*),/0))=« max {g(x, .y), Q(X,/(X)), g(y,f(y)), g(x,f(y)), g(y,f(x))} 

for x, y£X. In the present paper we consider the following class of mappings wider 
than that considered by Ciric. 

The mapping /: X-»X is called a generalized Banach contraction if df(x, j ) «= °° 

for x, y(zX and if there exists a constant a, 0 ^ a < l such that 6 ( / W , / ( j ) ) = 
^ adf(x,y) for all x, y£X. 

It is obvious that every generalized Banach contraction is a generalized Meir— 
Keeler contraction. The function /(x)=sin x on X=[0,n/2] is a generalized Meir— 
Keeler contraction which is not a generalized Banach contraction. This may be 
seen in the following way. Firstly, if sin x were a generalized Banach contraction 
on [0,7t/2], then we would have |sin x| Sa |x| for all x£[0, TT/2] with some a, 

But this is impossible, since lim s m x =1. Secondly, for any given e, 
x—o x 

0 < e ^ l let e' be a number such that sine<e'<e. Denote s"=arc sine'. If r7tl X X ~ y 

0,— |,j>^xand |x—y\^s", then |sinx—sinj>| = J cos tdt=f cos (x + t)dt^ 
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^J cos tdt=sia (x—j)ssin (arc sin e')=e'. Consequently, sin x is a generalized 
o 

Meir—Keeler contraction on |o, y j . 

Now we give an example of a generalized Banach contraction which is 
not of Ciric type. In fact, let X={\,2,3,4} and 2)=3.9,. e ( l , 3)=3.7, 

4)=4.0, Q(2,3) = 3.9, Q(2, 4) = 3.9, e(3,4)=3.0. Furthermore, let/be defined 
on X by the equalities /(1)=2, /(2)=3, /(3)=4, /(4)=4. Then e (/ ( l ) ,/ (2) ) = 
=max {e ( l , 2), c ( l ,/(1)), e(2,f(2j), <?(l,/(2)), e(2,/(l))}. However, it is easy to 
verify that in this case g{x,y)^0,99df (x,y) for all x,y£X. 

The objective of the present paper is to prove the following theorems. 

Theorem 1. Let f: X-~X be a generalized Meir—Keeler mapping. Then there 

exists at most one fixed point of f , and {/"(x)}~=1 is a Cauchy sequence for every 

x£X. If X is complete, then for every x£X,f"(x) converges to the unique fixed point 

of f as «—<=o. 

Theorem 2. Let f: X-*X be a generalized Banach contraction with constant 

a, let x0£X be fixed, and let c5„=diam {/"(x0),/n+1(x0), ...}.' Then 

a." 
Sn^j^Q(x0,f(x0)) (n = 0,1,...), 

6. ^ e(fn-Hx0)Jn(x0)) (n = 1,2,...). 

If X is complete, then 

e(z,fn(x0j) ^ Q(x0,f(x0)) (n = 0,1, ...). 

e ( z , / " W ) s iK/""1^),/"(*<,)) ( « = i, 2,...), 

where z denotes the unique fixed point of f. 

The proofs will be based on the following 

Lemma. Let f: X—X be a generalized Meir—Keeler mapping, and let xQdX, 

¿„ = diam {/"(x0),/n+1(*o). - . } . Then <5„=sup <?(/n(x0),/*(*„)) (n=0,1, ...). 
k> n 

Proof. It is sufficient to consider the case n=0. If d0=0, then the statement 
of the lemma is obvious. If <5o>0, then choose S'0, in such a way that we have 

and e ( / ( x ) , / ( j ) ) <^ if d (x,y)^S;. Now let k,lsz 1. Since 
w e h a v e This immediately implies 

the assertion of our lemma. 

Proo f of Theorem 1. Let z' and z" be fixed points of /. If Q(Z', z " )=e>0 , 
then choose e', z" such that 0<£ '<e<e" and g(f(x),f(y))<s' if df(x,y)<e". 
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Since z', z" are fixed points, df (z\ z")—g(z\ z " ) =e<e " . Consequently, g(z', z") = 

= £(/(z ' ) ,/(z") )<£'<£, a contradiction. Therefore we must have o(z', z " )=0, i.e.,. 
that z'=z". 

Now let x0dX be fixed and use the notations of Lemma. We have to prove 
that ¿„->-0. It follows from the definition of <5„ that <50=<5iS...^O. Consequently, 
<5„—e for some esO. Assume that e>0, and choose e', e" so that we have 0<e'-= 
<e<£ " and g(f(x),f(y))<s' if df(x, y)^e". Let «„ be so large that <5„0<£". I f 
k,!>n0, then g(fk(x0),f(x0)}<£'<£, since i//(/lt""1(*o)»/'~1(*o))=5min{i-1:!-i} = 
Ső„o-<£". Therefore, 5no+1^e', a contradiction since ¿„je. Hence e=0, and 
{f"(x0)}"=1 is a Cauchy sequence. 

Now let X be complete. Then f (x0) converges to an element z of X. We have 
to prove that z is invariant under /. Let S*=df(f(z),f(z)). We must prove that 

= Assume the contrary, i.e., that <5q >0, and choose 0%', dj" so that 0<<5£'-< 
<¿£<<5*' and g{f(x),f(y))<0*' if df(x,y)<0*". If k ^ l , then for all large 
enough n, df(/k~1(z),f"~1(x0j)^iől' since f"(x0)-~z as For such n we 
have e(/*(z) ,/"(x0 ) )<áj ' . If we let n tend to «=, then we obtain that g(fk{z), z ) s 
^¿o . Consequently, according to Lemma, a contradiction. Therefore z 
is a fixed point of /. 

P roo f of Theorem 2. The inequalities involving d„ imply the other two 
inequalities. The second inequality concerning 5„ is an immediate consequence of 
the first. To prove the first, we observe that d„̂ ocn<50. This is so since for 
we have g(fk(x0),/'(x0))^a<5„_l. Consequently, 5„^a5n_1. We obtain from this 
by recursion that <5„̂ an<50. Now let k—1,2 Then 

e(*o>/*(*o)) = Q(x0,f(x0))+Q(f(x0),fk(x0)) S 

= = e{xo,f(x0))+<xS0 

on the basis of what we have just observed. According to Lemma we therefore have 

$0—6(*o> f(xo))+> i e-, g(x0,f(x0)). This is the inequality to be 

proved for n—0. For «=1 ,2 , ... we obtain from this and from what we have 
a" 

observed at the beginning of our proof that - — - g(x0,/(x0)). 
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A simple proof for von Neumann's minimax theorem 

I. JOC 

To the memory of F. Riesz (1880—1956) 

1. The usual proofs of the von Neumann minimax theorem and its generaliza-
tions are based on deep results of Sperner or Brouwer (cf. [2], [4], [5]). Our proof 
is based on the simple lemma due to F. RIESZ (cf. [3], p. 41) that if a system of com-
pact subsets of a topological space has the finite intersection property (i.e. every 
finite set has non-empty intersection) then the whole system has non-empty inter-
section. This proof is a development of the ideas of the paper [1]. 

2. Theorem. Let E and F be topological vector spaces, and let KtczE, K»aF 

be convex compact sets. Let f(x, y) be a real-valued continuous function on Kx X K. 2, 
which is concave in x for any fixed y£K2, and convex in y for any fixed x^Ky. Then 

minmax/(x, y) = max min f(x, y). 

Proof . Let c be a (fixed) real number such that 

H$c) = Hy = {x: f(x, >>) S c} 0 for every y£K2, 

where 0 denotes the empty set. The sets Hy are convex and compact. We assert that 

(1) n 
According to the lemma of Riesz it is enough to prove that for any finite set 
{ j i> we have 

n Hy, * 0. 
<=i 

We prove this by induction on n. 

Consider the case n=2. Suppose there exist yx, ys€ K2 for which 

(2) H n r )H y i = 0 

Received January 15, 1979. 
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and set H(X)=Hyi+il_x)y„ for /€[0,1]; H(/.)^Q by the convexity of f(x, y) in y. 

Next we show that 
(3) 

For every x£Kx and x $ Hy^ U H^ we have 

f(x, —X)y2) ^f(x,yi) + (\ -X)f(x, yoj < c 

since /is convex in y. Thus *$//(/.). Therefore, (3) follows because of the defini-
tions of H y i , Hya. 

Using (2) and (3) we show that for arbitrary ¿£[0,1] 

(4) either HQ) a Hn or H(?) c Hyt. 

Suppose the contrary: 

H(X*)r\Hn * 0 and H()*)r\Hy2 * 0 

for some A*€[0,1]. Let y*eH(A*)C)Hyi and y*2ZH(X*)C\Hn be arbitrarily chosen. 
Consider the closed interval 

tit, yt] = { ^ i + (1 - №: 0 A S 1}. 

By the convexity of the sets Hy we have 

[ytyficHQ.*). 

From (2) and the compactness of H and Hyn we see that there exists y*€[yt,ylJ 
such that 

y*<£ ({yt yt)n Hy2), 

and hence y*$H \JH . On the other hand, y*^H()*) which contradicts (3). 
So (4) is proved. 

To complete the proof of (3), we need the following statement: If i/fA^f l 
f)Hn9^& for 1], then there exists £j=£i (yi , y2, ¿1)>0 such that 

(5) H(X)DHyi ^ 0 for lA-Ail < ex. 

[Similarly: if H(X2)f]Hy^0 for A2€[0,1], then there exists £2=e2(>'i. A2 )>0 
such that 

(6) H(X)C\Hyi 0 for |A-A2|<e2.] 

We prove (5). If HQ^OH^H then according to (4), H(X1)C\Hy=9, that is 

(7) f(x, AxJ'i + O - ^ y a ) < c for every x£Hy2. 

Since f(x, Xyx -}- (1—X)y2) is a continuous function in (x, X), it follows from (7) 
that for every x£Hyt there exists a neighborhood Ux of x and e (x )>0 such that 

f(x, A ^ + 0 - ) ) Y 2 ) < c for (x, X)£Uxx(X 1 - E ( X ) , X 1 + S ( X ) } . 
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Therefore, 
U ux. x(LHyt 

Since Hyt is compact we can choose a finite system such that 

c u u x r 
i — 1 

Then for £1=min {s(xf): i= 1, . . . , « } we have (5). The proof of (6) is similar. 
From (4), (5), (6) it follows that the set {/.€[0,1]: H(/.)cHyi} is open in [0, 1]. 

Similarly, the set {A£[0,1]: H(k) cr H y^ is also open in [0,1]. Taking (4) into 
consideration, we arrive at a decomposition of the interval [0, 1] into two disjoint 
non-empty relatively open sets, which is impossible. Thus we proved that 

HyiC\Hyz^<d. 

Suppose we know that for any subset {yit ..., yk} of K2(cF) having at 
most n elements we have 

n H f i * 0 
¡=i 

and then we prove the same for n + 1 elements. 
Suppose there exist y1; ..., yn+1 such that 

(8) "n Hyi = 0 
/=1 

Then we have 

(Hnr\H3)r\(Hnr]H3) = Q for H3 = "c\ Hyi. 
¡ =3 

Now using the induction assumption and (8) we can apply the idea of the proof of 
/2=2 for the sets 

Hi = HytC]H3 (i = 1,2). 
Thus we obtain 

n + 1 
n Hyi * 0, 
¡=1 

and so, according to the lemma of Riesz, (1) is proved. 
Denote by # the set of real numbers c for which H ^ = H y ^ whenever y£Kz. 

If then for every c^c0. Since the function/is continuous, the set # 
is bounded from above. Denote by c* its smallest upper bound. From the lemma of 
Riesz we deduce that We prove that 

(9) minmax/(x, y) == c*. yZK2 x£Kx 
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Suppose 
m'" max/(*, y) > 
ytKi xíKl 

then there exists c>c* for which 

min max f(x, j>) £ c > c*. 

Therefore max f(x, for every y$K2, hence {x: f(x,y)^c}^9 for every 

y£K2, but this contradicts the choice of c*. 

On the other hand, because of (1), we have 

A™ f| 
ye*! 

Let x*£A. From the definition of Hy we obtain f(x*, y) = c* for every y(LK2; 

thus 

(10) min f(x*,y)^c* and max min f(x, y) s c*. 
yZK 2 xiK-iyZKi 

From (9) and (10) we deduce 

min max f(x, y) § max min/(x, y). 
yiK^xZIC! xiK^yZK^ 

Since 
min max/(x, y) & max min f(x, y) 
yiK^xiK! xZIl! y£K2 

is obvious, the theorem is proved. 
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Remarks on a paper of L. Szabó and Á. Szendrei 

H. K. KAISER and L. MÁRKI* 

The aim of this note is to give an infinite version of the Theorem of L. SZABÓ 
and Á. SZENDREI [4]. We shall do this without using I. Rosenberg's Theorem [3] 
and those parts of [4] which make use of it. We adopt the terminology of [2] and [4]. 

Theorem. An at least four element non-trivial algebra with triply transitive 

automorphism group either has the interpolation property or is equivalent to an affine 

space over GF (2). 

Most of the proof follows closely that of L. SZABÓ and Á. SZENDREI [4], we 
shall write out only those parts which are different. We do not need Proposition 1 
of [4]. We formulate Proposition 2 in a slightly different way: we consider not nec-
essarily finite algebras and local term functions instead of term functions. The proof 
is literally the same. 

Lemma 1. Let A be an algebra with at least four elements and with a triply 

transitive automorphism group. If A does not have the interpolation property but has 

a three-place non-trivial local term function f , then f is a minority function such that 

f(a, b, c) (J {a, b, c} whenever the elements a, b, c£A are all different. 

Proof . The proof that f(a,b,c)${a,b,c} if |{a, b, c}|=3 and that condi-
tion ( * ) of [4] holds, is literally the same as in [4]. This is the beginning of their 
proof of Lemma 1; thereby we need the infinite version of B. Csákány's Theorem, 
which is an immediate consequence of the finite one. For, given an (infinite) algebra 
A with a pattern function p{x1, •••, xk) which can be interpolated on every finite 
subset of Ak, and a partial function / on a finite subset H<^Ak, let B denote the. 
subset of A which consists of the elements occurring as coordinates in H or being 
values of / on H. Then take the polynomial function p which interpolates p on Bk; 

Received January 9, in revised form October 24, 1979. 
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(B, p) is, by Csakany's Theorem, functionally complete, and this gives a representa-
tion of/in terms of p, hence as a polynomial function on A. 

Now it suffices to show that if the local term function / is not a minority func-
tion, then A has the interpolation property. For this end we show first that in this 
case A has the 2-interpolation property. Further, it suffices to consider functions 
in one variable only: if we take two distinct elements of Ak for some k£N, they 
differ in at least one component i, and then we consider the i-th projection. Given 
arbitrary elements x, y, u, v£A, x^y, we have to show the existence of a unary 
polynomial function g such that g(x)=u, g(y)=v. Supposing that A has at least 
five elements, it is sufficient to prove this if x, y, u, v are all distinct. (In fact, in the 
other case we can choose two elements e, f both distinct from x, y, u, v, and then 
send x, y first to e,f and then e,f to u, v.) Since/is not a minority function, at least 
one of the values /(x, y, y), f(y, x, y), f{y, y, x) is equal to y. Suppose e.g. 
f(y, y, x)=y. By ( * ) we have elements c, d£A such that f(y, x, d) = v,f(x, v, c)—u. 

Then we take g to be a (unary) polynomial function which interpolates 
/(/(£, x, d), v, c) at £=x, y. (In case A has four elements, by somewhat more, but 
still elementary, computation one can construct this polynomial function g, thus 
avoiding the use of Rosenberg's Theorem.) 

Now we use induction and prove that if A has the ( « — l)-interpoIation prop-
erty (n>2) then it has the «-interpolation property, too. Let g: Ak—A and 
xlt ..., x„£Ak be different elements and put a—g^x,), i = l , ...,«. Since g has 
the ( « —l)-interpolation property, we have polynomial functions ...,/5 such that 

If /i(x3)=a3, then we are done. Suppose therefore fx(x3)?ia3 and by using ( * ) 
choose d, u so that /(/i(x3), d, u)=a3. By assumption,/is not a minority function, 
hence we have, say, f(y, y, x)=y. If we have in addition f(y, x, y)=/(x, y, y)=x, 

then we take a polynomial function p which interpolates/(/i,/2,/3) on {xx, ..., x„}. 
It is easy to see that ^(x,) = a j; /=1, ..., n. I f f ( y , x, j ) or/(x, y, y), say f(y, x, y), 

is also y, then we consider a polynomial function q which interpolates f ( f i , f i , f 5 ) 

on {x j , ..., x„} and again we obtain that q(x,)=ai, i= 1, ..., n. 

f1(x) = ai, i = 1, 2, 4, ...,n; /¡¡(Xj) = a(, ¿=1 ,3 ,4 , . . . , « ; 

a, i = 4, ..., n, 

/3(*i) = /i(*3) 1 = 3, 
/2(x2) i = 2, 

and for arbitrary elements d, u£A, 
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Lemma 2. Let A be an algebra with at least four elements and with a triply 

transitive automorphism group. Suppose that there exists an at least quaternary (say 

n-ary) non-trivial local term function f which turns into a projection whenever we 

identify any two of its variables. Then A has the interpolation property. 

Proof. Again we repeat the beginning of the proof in [4] and obtain prop-
erty ( * * ) . Along the same lines as in Lemma 1 we show first that A has the 2-inter-
polation property. Take again four different elements x,y, a,b£A. By ( * * ) there 
exist elements d3, ..., d„, d3 d'n in A such that f(x, y, d3, ..., d„)=a and 
f(y,a,d3, ..., d'n)=b. Consider now a polynomial function g which interpolates 
/(/(£> y> d3, ..., d„), a, d3, ..., d'n) at £,=x,y. This function does the job. 

Suppose next that A has the (m — l)-interpolation property (m>2). We show 
that it has the /«-interpolation property as well. Consider a function h: Ak-*A 

and put ai=h(Xi), /=1, ...,m. By assumption we have a polynomial function f 

such that f1(x)=ai,i=2, 3, ..., m. If f(x1)=al then we are done. Suppose fiixj^ 

then choose an element b^.{a1,f1{pci)}, and consider a polynomial function 
/2 such that: 

By ( * * ) there are t3, ..., tn in A such that /(/i(*i), b, t3, ..., t„)=a1. Next we 
choose a polynomial function f3 such that: 

Finally, we take a polynomial function r which interpolates /(/i,/2,/3, i4, ..., tn) 

on {x1; ..., x,„}, then we have h(xi)=r(xi), /=1, ..., m. 

As a next step, we transfer Lemma 3 of [4], together with its proof, with the 
obvious modifications to the infinite case. 

Lemma 4. Let A be an algebra with at least four elements and with triply transi-

tive automorphism group. If A does not have the interpolation property, then A admits 

no essentially quaternary local term function. 

Proof. Suppose h is an essentially quaternary local term function on A, then 
it has the properties (1)—(7) of Lemma 3. Since h depends on the first variable, 
one can find elements a, b, c, d in A such that h(a, b, c, d):=S9ih(b, b, c, d) = 

=m(b, c, d):=t, where m is the unique non-trivial ternary local term function on A. 

A short elementary computation shows that (at least) b, c, d, t must be all different. 
Let 0 be a congruence of A and uQv with u^v, and choose an arbitrary 
z${u,v}. If h(a,b,c,d)9ia, then just as it is done at the corresponding 

7 
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place in the proof of the Theorem in [4], we see that a, m(b, c, d), h(a, b, c, d) 

are all different. Now we can find a Aut A such that n(a)=v, n(h(a, b, c, d))=z, 

n(m(b, c, d))—u, and we have h(v, nb, nc, nd)=z, h(u, nb, nc, nd)=u, which implies 
z=h(v, nb, nc, nd)0h(u, nb, nc, nd)=u, hence 0=AZ. Suppose now h(a, b, c,d)=a, 

then again we follow the corresponding lines in the proof of the Theorem in [4] 
and obtain that a, b, m(b, c, d) are all different. Further we choose a 7i£Aut A with 
na=u, nb=v, n(m(b, c, d))=z, and conclude that u=h(u, v, nc, nd)0h(v, v, nc, nd)= 

—z, whence 0=A2. By this we have that A is simple, and by Lemma 3, A has a 
unique non-trivial ternary local term function m, which is a minority function. 
This implies that m remains unchanged if we permute its variables, furthermore 
m(m(x, y, z), y, z)=x for all x, y, z£A (cf. (8) in [4]). In particular, since m(b, c, d)=t, 

we get m(t, c, d)=b. 

On the other hand, A does not have the interpolation property, hence by 
M. ISTINGER, H. K . KAISER and A . F. PIXLEY [1], Corollary 3.9, we know: I f q is 
a binary local polynomial function and r an element of A such that q(x, r)=q(r, x)=r 

(for all x£A), then q is the constant function with value r. Consider q(x,y)= 

=h(a,m(x,y,t),x,y). Then we have q(x,y)=t for all x,y£A, which contradicts 
q(c, d)=h(a, m(c, d, t), c, d)=h(a, m(t, c, d), c, d)=h(a, b, c, d)=s?±t. This com-
pletes the proof of Lemma 4. 

Now we continue the proof of the Theorem exactly as it is done in [4]. 
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Kanonische Zahlensysteme in der Theorie 
der quadratischen algebraischen Zahlen 

I. KÁTAI und B. KOVÁCS 

1. Bekanntlich kann jede nichtnegative ganze Zahl in jeder der beiden Formen 

N= a0+a1A + ...+a„An und N = a0+a1(-A)+...+aa(-Att) 

eindeutig aufgeschrieben werden, wobei aj£ {0,1, ..., A — 1} (j=0,1, ..., ri) und 
A ^ 2 ganze Zahlen sind. 

I. KÄTAI und J. SZABÖ [1] untersuchten das folgende Problem: Es seien A eine 
ganze Gaußsche Zahl, N{a) ihre Norm und ^ = { 0 , 1 , . . . , №V(a)| —1}. Unter wel-
chen Bedingungen kann man die Gaußsche Zahl y eindeutig in der Form 

(1.1) y = a0+a1a + ...+a„ot.n mit aj£jV0 ( j = 0,...,n) 

aufschreiben? Sie haben bewiesen, daß dies für a dann und nur dann gilt, wenn 
ct=—A±i ist, wobei A eine positive ganze Zahl bedeutet. Sie haben noch gezeigt, 
daß in diesem Falle jede komplexe Zahl z in der Form 

— CO 

(1.2) z = 2 aj*J mit 

j=k 

aufgeschrieben werden kann. 
Es sei jetzt N > 0 eine quadratfreie rationale ganze Zahl. Es ist bekannt, daß 

jeder reelle quadratische algebraische Zahlenkörper die Form hat. Im 
Weiteren bezeichnen wir die ganzen Zahlen von mit a, ß,..., die rationalen 
ganzen Zahlen mit A,B,C, ... . Das Paar {a, A^} wird ein Zahlensystem in R(fN) 

genannt, wenn jede algebraische ganze Zahl yGi?(/]v) eindeutig in der Form (1.1) 
aufgeschrieben werden kann. 

Wir bewiesen die folgenden Sätze. 

Eingegangen am 5. Mai 1978. 

7» 
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Satz 1. {a, ^0} ist dann und nur dann ein Zahlensystem in R(yN), wenn 

1) a = A±fN und 0<-2A^A2-N^2, für JV E|= 1 (mod 4), 

2) a und für A^=l (mod4), 

wobei B eine ungerade ganze Zahl ist. 

Satz 2. Es sei {ot0, JQ ein Zahlensystem in irgendeinem reellen quadratischen 

Zahlenkörper. Dann kann jede reelle Zahl x auf mindestens eine Weise in der Form 

(1.2) aufgeschrieben werden. 

2. Einige Bemerkungen und Hilfssätze. Es ist bekannt, daß für den Diskriminan-
ten D von R(^N) gilt: 

1) D = 4N falls N & 1 (rnod 4), 

2) D = N falls N = 1 (mod 4). 

Ist a = A + B^N£R N ) eine quadratische algebraische ganze Zahl, dann folgt 
aus der Berechnung des Diskriminanten der Basis {1, a}, daß {1, a} genau dann 
•eine ganze Basis von ^( l ' lv ) ist, wenn, im Falle N^l (mod4) A = A + ]FN mit 
einer beliebigen rationalen ganzen Zahl A, und im Falle N= 1 (mod 4), a = 1/2(5 
mit einer ungerader ganzer Zahl B ist. Diese Zahlen a sind die Wurzel den folgenden 
•quadratischen Gleichungen mit rationalen ganzen Koeffizienten: 

X 2 - 2 A X + ( A 2 - N ) , b z w . 

Ist {a, JVo} ein Zahlensystem in R(/N), dann ist |iV(a)|>l, und a eine quadrati-
sche ganze Zahl, weiterhin ist {1, a} eine Basis in R t fN ) . 

Lemma 1. Es sei {a, ein Zahlensystem in R(fN). Dann ist (1, a} eine 

ganze Basis von 

Beweis. Es genügt zu beweisen: Ist eine ganze Zahl, dann gilt 
y=Xy+Yya, wobei Xy, Yy rationale ganze Zahlen sind. Es sei a eine Wurzel der 
Gleichung mit rationalen ganzen Koeffizienten x2+Cx+D=Q. Dann gilt für jede 
natürliche Zahl i ä 2 : 

<2.1) «> = Xs+Ysa 

mit einem rationalen ganzen Zahlenpaar Xs, Ys. Da {a, JQ ein Zahlensystem in 
R(/N) ist, hat jede ganze Zahl y£R(fN) die form (1.1). Durch Einsetzen von 
{2.1) ergibt sich, daß y=Xy + Yya ist, wobei Xy, Yy rationale ganze Zahlen sind. 
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Lemma 2. Ist et eine nichtnegative ganze Zahl in R(j/N), dann ist {a, JQ 

kein Zahlensystem in R(fN). 

Beweis. Es sei y eine negative ganze Zahl in R^N). Wir nehmen an, daß-
{a, J^} ein Zahlensystem in R(]?N) ist. Dann kommen wir wegen a,(E 
(/=0,1, ..., n) und aSO zu einem Widerspruch: 

CO 

0 > ? = ^a.-a '^O. 
i=l 

Lemma 3. Ist a £ R(/N) eine algebraische ganze Zahl mit |a] < 1, dann ist 

{a, JQ kein Zahlensystem in R(fN). 

Beweis. Wir nehmen an, daß {«, JQ ein Zahlensystem in R(^N) ist. Wegen-
Lemma 2 genügt es die Behauptung nur im Falle — l < a < 0 zu beweisen. Es sei 

eine algebraische ganze Zahl mit 

(2.2) y s № ) | - l 
1 —a2 ' 

2B 

Auf Grund von y = 2 «¡a1; a¡£J^ ist aber 
¡=o 

y = (a0+a2a2+...+a2na2n) + (a1oc+asa3+...+a2n.1oi2"-1)^ 

== a0+a2oc2+...+a2na2" (|JV(oí)|-l)(l+a2+...+a2n) == 

*-QN(a)\ -1)1(1 -<x2), 
im Widerspruch mit (2.2). 

Lemma 4. Es sei a eine Wurzel der Gleichung X2+ Ux+V=0, wobei' 

U^O und Fsl rationale ganze Zahlen sind. Ist y = X+ Yv. mit rationalen ganzen' 

Zahlen X, Y, dann existieren solche nichtnegativen rationalen ganzen Zahlen C, D, E,. 

F, mit welchen y=C + Dtx+Ea.2 + Fa3 gilt. 

Beweis. Da a2+U<x + V=0 und F ^ i ist, existieren rationale ganze Zahlern 
Z„S0 und 1, für welche Z . 0 F+Xs0 und LxV+Ysz0 ist. Dann gilt 

y = X+Ya = L0(a2+Uix + V)+L1 (a3+C/a2 + Fx ) + X + Y<x = 

= (X0 + L0V) + (Y+L1V+L0U)a + (LxU+L0)a.2+Lxa3, 

wobei jeder Koeffizient eine nichtnegative rationale ganze Zahl ist. 

Lemma 5. Es sei ctdR^N) eine Wurzel der Gleichung x2+Ux + V—0, wobei' 

0< und U, V rationale ganze Zahlen sind, ferner sei {1, a} eine ganze-

Basis in R(fÑ). Dann ist {a, JQ ein Zahlensystem in 
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Beweis. Da {1, a} eine ganze Basis in R(fN) ist, kann jede algebraische 
ganze Zahl y£R(YN) mit rationalen ganzen Zahlen X, Y eindeutig in der Form 
•ji=X+Ya. aufgeschrieben werden. Wegen Lemma 4 gilt 

<2.3) y = dQ+d1a+...+dka!', ( ; = 0, 1, ..., k), 

wobei dj rationale ganze Zahlen sind. Es sei L(y, d)=d0+d1 + ...+dk, L(y,d) ist 
eine nichtnegative ganze Zahl. Wegen F s 2 kann d0=ra+tV geschrieben werden, 
wobei t^O eine rationale ganze Zahl ist, r0£J^, d.h., wegen a2 + Ua + F—0, 

d0 = r0 + tV = r0 + t(—a2Ua) = r0 + t {(V-U)a + (U-l)a2+a3). 

Setzen wir das in (2.3) ein, so ergibt sich 

7 = r0+{d1 + t(V-lT)}oc + {d2+t(U-l)}oi*Hd3+t)oL3+di<xi + ...+dkoik = 

= dt + dta+...+dt<xk, 

wobei d* nichtnegative ganze Zahlen sind, ferner L(y, d*)=L(y, d) gilt. 
Es sei y1=d*+d*a-\-...+dkyk~1, dann ist y = r0 + ay1, L(yu d*)^L(y,d*), und 
Gleichung besteht nur im Falle ro=0. Setzen wir diesen Algorithmus fort, so 
¡bekommen wir 

<2.4) y = r0+<*?!, ^ = rx+ay2, ...,yn = r„+ayn+1, mit r£JT0 (i = 0, 1, ...) 

uud 

Gleichungen bestehen nur im Falle r,=0. 
Da L (y ,d )^0 und L (y t , d )^0 ganze Zahlen sind, ist notwendigerweise 

rk=0(ksM). Dann gilt aber wegen (2.4) für jede natürliche Zahl ä^ I , daß af\yM, 

was auf Grund von |JV(a)|=Fs2 nur dann möglich ist, wenn yM=0 ist. Aus (2.4) 
bekommen wir die behauptete Darstellung 

y = r0 + r1a + .. .+rM_1aM-1 , rfcJ^. 

Es soll noch gezeigt werden, daß diese Darstellung eindeutig ist. Dies folgt 
daraus, daß wenn 0=J0+Jia+... +sfcoc* (sj€.JQ, dann a|s0 und deshalb i 0=0, 
und aus ähnlichem Grund ^ = 0 , 52=0, ..., j fc=0 sind. 

Lemma 6. {a, JQ ist dann und nur dann ein Zahlensystem in R(^N), wenn 

{ä, Jß auch ein Zahlensystem ist. 

Beweis. Klar, denn die Darstellungen 
m m 

y=Zbj<xJ und y= Z b j f f l 
0 j=0 

für y£R(tfN) sich gegenseitig implizieren. 
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3. Beweis des ersten Satzes. Ist {a, J Q ein Zahlensystem in so ist 
{1, a}, auf Grund von Lemma 1, eine ganze Basis in R(YN). Im Falle JVsl (mod 4) 

gilt also < x = y ( 5 ± u n d a z -Ba+^ - (B 2 —N)=0 , wobei Beine ungerade ganze 

Zahl ist. Im Falle N,ÄL (mod 4) aber ist A=A±FN und OT2-2AO>+(A2-N)=0, 

wobei A eine beliebige ganze Zahl bedeutet. Auf Grund von Lemma 6 genügt es die 

algebraischen ganzen Zahlen a = y bzw. a = A + YN nur im Falle 

'N=1 (mod 4), bzw., im Falle N ^ 1 (mod 4) zu untersuchen. Nach Lemma 2 ist 
B < - y % - 5 a 3 und A^-Yn, - A S 2 . 

Es sei zuerst N^. 1 (mod 4). Da J^ mindestens zwei Elemente hat, ist 

(3.1) |iV(ot)| = \A2-N\ = A 2 - N S 2 . 

Da A < - f N , ist (3.1) im Falle A ^ - Y N + 2 erfüllt. Wenn außerdem noch 
1^—2ASA 2 —N gilt, so ist — auf Grund von Lemma5 — {<x,JQ ein Zahlen-
system. Wegen - A S 2 ist - 2 A S A 2 - N im Falle A > ~ Y N + 1 - 1 nichterfüllt. 
Wir brauchen darum nur die a zu untersuchen, für welche — YN+ 1 — 1~=A< 

•< - VN+2 ist. Auf Grund von Lemma 3 im Falle \A + YN\ < 1 wegen A^-YN 

ist - A - Y N ~ = 1, d.h. {a, J ß ist kein Zahlensystem in R(YN). Da - J ^ V - 1 
keine ganze Zahl ist, genügt es die ganzen Zahlen A zu untersuchen, die die folgende 
Bedingung erfüllen: 
(3.2) - j / i V + l - l ~ = : A ^ - Y N ~ 1 . 

Der Bedingung (3.2) genügt aber keine ganze Zahl A, da aus (3.2) N*=.(—A + l ) a < 
<N+L folgt. 

Zusammengefaßt: <X=A±YN ist dann und nur dann ein Zahlensystem in 
R(YN) im Falle 1 (mod4), wenn AS-YN+1-1, oder — was damit 
äquivalent ist — wenn — 2ASA2—NS2 ist, wobei A eine rationale ganze 
Zahl ist. 

Es sei jetzt N= 1 (mod 4). Da J^ mindestens zwei Elemente hat, so ist 

(3.3) |JV(«)| = = 1(B2-N)s2. 

Da ist, wird (3.3) dann erfüllt, wenn B S - Y N + 8 gilt. Wenn außer-

dem auch ls -BS— (B2—N) gilt, so ist (a, JQ nach Lemma 5 ein Zahlensystem. 

Da -Bs3 ist, wird -Bs—(B2-N) dann nicht erfüllt, wenn 5 > - K J V + 4 - 2 
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ist. Deshalb genügt es nur die a zu untersuchen, für welche 

- FN+4-2 < B S - / W + 8 

< 1 wegen B < - f N gilt gilt. Auf Grund von Lemma 3 im Falle 

- B - l N ~ z 2 , d.h. es ist und so ist {a, J^} kein Zahlensystem in 
R ( F N ) . Da — YN—2 keine ganze Zahl sein kann, genügt es die ganzen Zahlen B 

zu untersuchen, die die Bedingung 

(3.4) — —2 < Ä < — i~N—2 

erfüllen. Genügt B (3.4), so gilt ( - . f f -2 ) 2 =Ar+ l , oder ( - B - 2 ) 2 = N + 2 , oder 
( - B - 2 ) 2 = N + 3 . Da B und N ungerade ganze Zahlen sind, so gilt ( - B - 2 ) 2 ^ 

1, und ( - 5 - 2 ) V A T + 3 . Da N= 1 (mod4) und B ungerade ist, deshalb 
gilt N+2 = —1 (mod 4), und (-B-2)2=1 (mod4), daraus folgt (-B-2)V 

Zusammengefaßt: a=y (2?±/ iV ) ist dann und nur dann ein Zahlensystem 

in i^j/jv) im Falle N= 1 (mod 4), wenn B^~YN+ 4 -2 , oder — was damit 

äquivalent ist — wenn — ( B 2 - N ) ^ 2 ist, wobei B eine ungerade ganze 

Zahl bedeutet. 

4. Beweis des zweiten Satzes. Zum Beweis des zweiten Satzes wird eine Unglei-
chung benutzt. 

Lemma 7. Es sei N^ 1 (mod 4), und {a, JQ ein Zahlensystem in R ( F N ) . 

Dann ist M2-JV-l|£|a|, wobei a = A ± F N . 

Beweis. Wirnehmen an, daß \A2—N—1|-= |a| ist. Wegen A=A±YN gilt 

X _ { A + Y N ) { A - Y N ) 1 ^ 

A±YN A ± F F I ^ 

Im Fall OL=A + YN müßte 

- 1 <A-fN 1—= < 1 
A + I N 

gelten. Das ist aber wegen den Bedingungen N^2, A ^ — ̂ N und \A + Yn\^\ 
unmöglich 

Wenn aber a = A-YN ist, dann müßte 

(4.1) - l ^ + j/tf < 1 
A - V N 
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gelten. Wir zeigen aber, daß (4.1) unmöglich ist. Bei festgelegtem N s 2 ist dier 
Funktion (x—ylv ) - 1 im Intervall (—<»,0) monoton wachsend undL 

in diesem Intervall ist y= — 1 nur für 

(4.2) * = 1 ( _ i _ 1 + 4 ( ^ + 1 ^ + 1 ) ) . 

So ist (4.1) nicht erfüllt, wenn 

(4.3) A S j { - 1 - y 1 + 4{JV+ Y~N+1)). 

Da {a, JQ in R(}'N) ein Zahlensystem ist, gilt A^ — YN+1 — 1. Eine einfache; 
Rechnung ergibt 

- y ^ - l < y ( - l - y i + 4 ( J V + ] / Ä H - l ) ) . 

Das bedeutet — wegen (4.3), (4.2) und weil die Funktion (AT—J'lv)-1-
im Intervall (— 0) monoton wachsend ist —, da (4.1) nicht erfüllt ist. Damit ist: 
unsere Behauptung bewiesen. 

Bemerkung. Wegen |a|>l folgt aus diesem Lemma, daß Aa—Ns3. 

Lemma 8. Es sei N= 1 (mod4), und sei {a, JQ ein Zahlensystem in R(yN). 

2 
1 

Beweis. Wir nehmen an, daß 

Dann ist - i ( 5 2 - i V ) - l is|a|, wobei a=^-(B±YN). 

j ( 5 2 - i V ) - l <|a| gilt. Wegen a = j ( B ± YN) ist; 

±(B+YN)-UB-YN) , 
- 1 < — - 1. 

\{B±YN) \{B±YN) 

Ist u.=^-(B+YN), so gilt - \ ^ ( B - Y N ) - 2 ( B + Y N ) ~ 1 < \ . Das ist aber wegen, 

den Bedingungen JVS5, B-^ — YN und |a|>l unmöglich. Ist aber « = y (B — YN\) 

so muß gelten: 

(4.4) - ^ ( j + y i v ) - » ^ , . 



106 I. Kätai und B. Koväcs 

Wir zeigen, daß auch (4.4) unmöglich ist. Bei festgelegtem iVs 5 ist die Funktion 

^c—y/ivj im Intervall ( - « > , 0) monoton wachsend und in die-

sem Intervall ist y= — 1 nur für 

(4.5) x = l ( - l - / i + l v + 2 y l ) . 

Deshalb, im Falle 

(4.6) B ^ 5 + N + 2 f N 

kann (4.4) nicht gelten. Da {a, JQ ein Zahlensystem in R(Yn) ist, deshalb gilt 
B^~YN+4—2. Durch eine einfache Rechnung ergibt sich 

- l 
im Auf Grund von (4.6), (4.5) und da die Funktion y=x+y / W - ^ c - y ]/jvj 

Intervall (— 0) monoton wachsend ist, kann (4.4) nicht erfüllt sein. Damit ist 
unsere Behauptung bewiesen. 

Bemerkung. Wegen |a|>l, auf Grund von diesem Lemma gilt (ßa—iV)s3. 

Jetzt sind wir imstande Satz 2 zu beweisen. 
Es sei {a, JQ ein Zahlensystem in R(Yn) und bezeichne C das größte Ele-

ment von Nach Lemma 7 und 8 ist |C|^|a| und C^2. Daraus folgt für eine 
beliebige natürliche Zahl « s l : 

(4.7) 

Da N quadratfrei und A, B ganze Zahlen sind, sind A±]fN und y (2?±/iV) 

irrationale Zahlen. Deshalb bilden die ganzzahligen Vielfachen von et mod 1 eine 
überall dichte Menge in [0,1]. Daraus folgt, daß die reellen Zahlen der Form X+ Ytx 

(X, Y sind ganze Zahlen) — die ganzen Zahlen von R(Yn) — im Intervall (—00,00) 
überall dicht sind. 

Es sei Zeine beliebige reelle Zahl. Wir zeigen, daß X in der Form (1.2) geschrie-
ben werden kann. Es sei ß£R(YN) eine ganze Zahl, für welche ß€(x, x + l ) . Es 
existiert wegen (4.7) ein mit 

a a 

1 1 
a" a"-1 
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(weil a<0 ist). Durch wiederholte Anwendung von (4.7) erhalten wir, daß es ein 
r. t€JS existiert, mit 

(weil a2>0), ferner, wegen (4.7) existiert auch ein mit 

Setzen wir diesen Algorithmus fort, so erhalten wir eine Folge ß„ (n=1, 2, ...) für 
die man nach dem ersten Satz hat : 

a) r-„£Jf0 (w=l, 2, ...), 
b) lim ß„—x (wegen |a]>l und (k=0,1, ...)), 
c) ß=rlctl + ...+r1ix+r0 mit r^J^ (/=0,1, ..., /). 

— II ^ —oo 
So ist ß„= £ ri/x* und deshalb x = 2 mit r^JV^. Offensichtlich ist die 

i=i i=i 
Wahl von ß nicht eindeutig, da die ganzen Zahlen von auf der Zahlen-
gerade überall dicht liegen: so ist die Form (1.2) von x auch nicht eindeutig. Damit 
ist unsere Behauptung bewiesen. 
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On Co-operators with property (P) 

L. KERCHY 

1. H. BERCOVICI [1] has considered the class SP of Hilbert space operators T 

of class C0 having the following property: 
(P) any injection X£ {T}' is a quasi-affinity. 

He has shown that if and only if A MN[T] = 1, where MN[T] (N=1, 2, ...) 
B = 1 

are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].) 
He has proved, furthermore, that every operator has the following 

stronger property also: 
(P*) for any XZ{T}' we have yr(ker X)=y r (ker X*). 

(Cf. Theorem 7.9 of [1].) Here yr(ker X) and yr(ker X") are generalized inner func-
tions; they play the roles of determinants of the operators 7"|ker X and TKERXR. 

(Cf. sections 6 and 7 of [1].) 
Let Q be the following relation on the class SP\ 7i oT, if there exist T^SP and 

XC{T}' such that TX and T2 are quasisimilar to 7"|ker X and TKCTXT, that is, 
~T|ker X, and 7,2~7'kerXi. Then the previous statement can be written in the 
following form. If 7\, and TXqT2, then yTl—yr2 (because yT is a quasi-
similarity invariant). 

Bercovici has also proved a partial converse of this statement. Namely, he has 
proved that if TX, T2<ISP are weak contractions and then TxQT2. On 
the other hand he has shown that if 7\, are such that then there 
exists SDSP such that TXQS and SQT2. The main purpose of this note is to prove 
the complete converse of the statement mentioned above, namely, 

Theorem. If T^T^SP are such that yTl=yT„> then TXqT2. 

Thus the operators of class 3P have, in general, no stronger property than (P*). 
In particular, in general it is not true that an operator T^SP has the property: 

(Q) r|ker X and TKERX* are quasisimilar for any X£ {T}'. 

(Cf. [2].) 

Received November 19, 1979. 
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Furthermore, from the Theorem we can easily infer that Q is an equivalence 
relation on 0>. 

2. In the sections 6 and 7 of [1] BERCOVICI introduced the notions of "gen-
eralized inner function" and "C0-dimension of a subspace" in the following way. 
Any inner function m£Hf° has a factorization m=cbs, where c is a complex 
constant of modulus one, b is a Blaschke product and s is a singular inner function 
deriving from a finite Borel measure p on [0, 2rt], singular with respect to Lebesgue 
measure. (Cf. [3], Ch. III.) Let us denote by a(z) the multiplicity of the zero z (|z|<l) 
in the Blaschke product b. Then y(m) will denote the pair y (m) = (c, ft). The class 
F of "generalized inner functions" will be the set of pairs y=(<x, p), where a is a 
natural number valued function defined on D={z: |z|<l} such that 2 (1 —|z|)«= 

< and fi is a (not necessarily finite) Borel measure on [0,2n], which is absolute 
continuous with respect to a finite Borel measure v singular with respect to Lebesgue 
measure. We define addition and lattice operations in f by components. 

eo 
If T£3f, then it can be proved that yT : = 2 y K ) e f , where the m—m^T] 

j=o 
are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 and Proposi-
tion 6.6 of [1].) If T is an operator of class C0 and 9Ji€ Lat^ (T) is such that 
then yT (931) is defined as yr(9Ji)=yr^. 

For two operators T and T' we denote by T) the set of intertwining 
operators J(T',T) = {X\T'X=XT}. If T' = T, then J(T, T)={T}' is the com-
mutant of T. 

The next Lemmas will be frequently used in the sequel. 

Lemma 1. Let {«!,}," 0 be a sequence of pairwise relatively prime inner func-
CO 

tions having a least common multiple m. Then the operator T= © S(mf) is quasi-
1 = 0 

similar to S(m). 

Proof . Cf. Theorem2.7 of [4]. 

Lemma 2. Let m1} m2 be inner functions. 

(i) If m2 divides mx (m^m^) and Xu=P^m^u for all u£§>(m^), then 

Xay(S(m2), Sim^) is surjective and S(milker X is unitarily equivalent to S V rn2) 

[sim^rX^ (%-)}. 

(ii) If m1sm2 and Xu=-^-u for all u£9)(mj, then X£J(S(m^), S(m1)) is 
m\ 

injective and S (w2)kerX, s S • 
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Proof . We can easily verify this statement by a short computation. 

Lemma 3. (Proposition4.6 of [1]) Let T be an operator of class C0 acting 
eo 

on £> and let $;€Lat (T) be such that §j<=§J+1 (/=1,2, ...), and §= V 

JAen if and only if (/=0,1 ,2 , . . . ; § 0 = { 0 } ) and 
oo 

A »io[?®-L]=l. (If S1 is an operator of class C0, then m0[S] denotes its minimal 
}=i 
function.) 

3. Firstly we shall prove the statement of the Theorem in different special 
cases in the Propositions 1 and 2, from which the general situation can be derived. 
We remark that it can be always supposed that Tx and T2 are Jordan operators. 
In the proofs of Propositions 1 and 2 we shall need the next Lemma. 

Let us denote by 2 *he set of injections a: N-^N(J(—N)=]V satisfying the 
conditions: 
(i) if 1 s / < ; and <t ( i> (/ )S0, then |ff(/)|<K/)|; 
(ii) if r£o(N), then for all such that J-rS0 and |i|<M we have s£a(N). 

(Here and in the sequel N is the set of natural numbers 1,2, . . . . ) Let 'S be the set 
of sequences: a={«„}~=1 of real numbers such that' ^ S a ^ . . . £ 0 and an~*0 
as /J —oo. If then let F (o 6) denote the mapping R defined by 

| at, if iiN, 

Lemma 4. Let a,ball satisfy the condition: if b„=0 for some n£N, then 
oo oo 

there exists mÇN such that am—0. If 2 an= then there exists a od2 
71 = 1 n = i 

such that for all n£N we have 

0 S 2 *<..»)(*(0) — 2 max (a,, bj 
i = l 

n 
furthermore 2 t) (')) tends to 0, if n tends to 

¡=i ' 

Proo f . Let <r( l )=l . If we have already defined a for i = l , 2,...,/, and 
max { f f ( i )|i=l, . . . ,/}=/> min{{<r(/)|i=l, ...,/}U {0 } } = -SJ, then 

a(j+1):= 
- ( s , + l ) if 1 F ( f l i 4 ) (* (0) ^ bs j+1, 

>=i 
T j+1 otherwise. 

It can be easily seen that this be suitable. 

P ropos i t i on 1. If TLT T2(iiP are such that YTL=YRT=Y and Y has the form 

y=(cr, 0), then TxQT2. 
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Proof. Let TX and T2 be the Jordan operators 7\= © 5(«„) and T2 = 
n = l 

OO 
= © S(un). From the assumption it follows that ux and vx are Blaschke products 

B = 1 
having the same zeros (disregarding multiplicities): A^ Aj,... . For all n u„ and v„ 

have factorizations un= f ] un,, vn= [J vn,, where u„, and vn, are Blaschke factors 

•containing only A, as a zero. (If A, is not a zero of un (v„), then u„ ,:= 1 (vn ,:= 1).) 
Let us denote by and b® the multiplicities of A, as zero of vn l and of un l, 

respectively. Then a ;= {O^KLIJ b , = and by virtue of y T i = y T „ we have 

2 a<°= J ¿><° for all K N . 
-n=l n = l 

By Lemma 4 there exists a <7,6^ such that 

O s l F(a(ii|)(<r,(0) ==2 max («<<>, &<<>) 

for all Let c f be defined by c f = j ? ^ „ » ¿ M O ) , and let 
¿ = 1 

V7 f i , A, —z V . 

z c ? if A, = 0 ; j £ N , z £ D . 

It is clear that w f = 1 , i f j is large enough. So the operator TT defined by T, = © S ( w f ) 

has finite multiplicity. On the other hand by the construction it follows that m0(T(] ^ 

^ ( « M V » ! , , ) 2 -

Let X, be the contraction defined by -*"/(© /, )= © g j , where © /., 
7=1 7=1 7=1 

© gj€ © § « ) and ^ = 0 , 
7 = 1 7 = 1 

§7 = " f - Zy - i if for j S 2. wy>i 

By Lemma 2 we infer that {T,}' and r,|ker © S ( u n i l ) , (T,)KETX* =s © S(u„ ,). 
T ' i * n = 1 

Since A Wo[© r , ]^ A (/Z ( « i /Vfi ,)8)==1, by Lemma 3 we see that 
J=i 1=7 J = 1 , = J ' 

T = © Then © X £ { J } ' and using Lemma 1 we get 
j=I <=i 

T\kerX = © r,|kerZ( s © ( © £(«„,,)) = © f © S(uM ) ) ~ © S(U„) = TX 
1=1 /=1 M>=1 / n=l V=1 ' n=l 

and similarly TKCRX,~T2. Therefore, TXQT2 and Proposition 1 is proved. 
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Proposit ion 2. If T1, are such that —Vr2=V and 7 has the form 

y = (0,n), then TxqT2. 

Proof. 

(i) Let T± and T2 be the Jordan operators Tx= © S(un) and T2 = © S(v„). 
11 = 1 n = l 

From the assumption it follows that there exist a finite Borel measure v in [0, 2n], 

singular with respect to Lebesgue measure, and non-increasing sequences {/,}r=i> 
{&>}r=i non-negative Borel functions from Lx(v) which are tending to 0 and 
such that 

Exp [/„] = un and Exp [gn] = vn for all n. 

Here and in the sequel we use the notations 

Exp [ f , E](z) = e x p / d v ( 0 ] (ze-D), and E x p [ f ] = Exp [/,[[0, 2n]], 

for any non-negative Borel function f£L}(v), and measurable set £c[0, 2n], 

Therefore we see that f(t) = {f,,(t)}~=l, g(t) = {gn(t)}~^<$ for all t in [0, 2n}. 

Furthermore we can assume that 

¿ / „ ( 0 - 2 gn(0 for all t in [0, 271]. n = l n=l 

(ii) Let E be the measurable set of points t in [0, 2K] such that a=g(t) and 
b=f(t) satisfy the assumptions of Lemma 4. If t~E let be the function 
constructed in the proof of Lemma 4 taking a—g(t) and b=f(t). For all j£N 

let hj^L1^) be the measurable function defined by 

hj(t) = 2FWf>,m->№)) if t(LE\ 
i=1 
0 otherwise. 

By Lemma 4 we infer that 

0=5Ay(O25 2maxC/i(O,fc(O) 

for all j£N, i<E[0, 27t], and 

lim hj(t) = 0 for all i€[0, 27t].! 

Introducing the inner functions {wj}~=1 by Wj=Exp [hj], we consider the operator 

© S(wj). 
j=i oo 

(iii) We shall show that © S(Wj)£0>. By Lemma 3 it is enough to prove 
CO „ S = 1 

that m= A ™o[© 5,(wJ-)] = l. 
k = l j = k 
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Let e be an arbitrary positive number. There exists a positive S such that if 
H is a Borel set and v(//)<<5, then f 2 max {/i (0>i>i (0}^ vC0< £- By Egorov's 

theorem we infer that there exists a Borel set He such that and the sequence 
{kj}7= i converges uniformly to zero on the complement CHe—[0, 2n]\Hc. So 
there exists a k0 such that for all j>k0 and t£CHe we have hj{t)<e. Therefore 
if j>k0, then for all t€[0, In] we have hj(t)she(t), where ht is the function 
defined by 

je if t£CHc, 

h A t ) 12max {/i(0> g i ( 0 } if 

We infer that the inner function m satisfies the inequality 

m = Exp [h^. 

Therefore we have 

2)i 
|IH(0)| ^ |Exp[AJ(0)| = exp [ - / h j t ) d v ( 0 ] = 

o 

= e x p [ - Jh(t)dv(t)- fhe(t)dv(t)] S exp[-e-s-V([0,2TT])]. 
HC CHE 

Since e can be chosen arbitrary small, so |m(0)| = l . That is, m=1. 
(iv) Let E}< i denote the measurable subset of E defined by 

E j . i ^ i t t E : <7,(y + l ) = i } 

for all jdN and i(LN. Then {Ejj}j€Ni€f, will be a system of subsets of E such 
that the systems {£ } ; } , - a n d {Ej ¡}j€N consist of pairwise disjoint sets for all fixed 
j£N and i£N, respectively; furthermore IJ EU-=E for all j£N, ( IJ E} ¡)r> 

¡ej9 ' jeN 
^{t£E\gl(t)>0} if i£N and ( U £>, , )=> { t£E\№>0} if X(~N). 

JiN 
For all j£N let Sj be the operator defined by Sj=SJt x © SJt 2, where SjiX = 

= © ¿ ( E x p t / ^ - . J ) and S, ,2=f f i S (Exp [h j + 1 ,E j^ . 
¡if) itfil 

By Lemma 1 we infer that SjiX and SJi2 are quasisimilar to S(wj) and S(wJ+1), 
OO 

respectively, for all j£N. Therefore the operator 5 = © Ss is quasisimilar to the 
j=i 

oo oo 
operator ( © 5'(wJ))ffi(© S(wj)) , which belongs to SP by section (iii) and Proposi-

t i j = 2 
tion 4.4 of [1]. By Corollary 4.3 of [1] we see that S£0>. 

Since SJt 2 is quasisimilar to Sj+XtX, there exists a quasiaffinity Yj£J(SJ+lx, Sj .¿) 
O'c AO. We may assume that Yj is a contraction. 
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For all j£N, i£N let 

ZJitts(s{Exp [hJ+1, EjJ), S(Exp [hj, £,,,])) 

be the operator defined by 

Zj,i>n = 

Exp[A.+1 EjA , f 

Exp [/ij,^.,] 

if i€C-iV), 

where w € § (Exp [A,., Eji J). 
Then for all j£N we infer that Z7 = © 

¡6/» 
Let X£ { 5 } ' be the operator defined by 

© § (Exp [hj, Ej ,]) = Z; and © §(Exp [hj+1, EjJ) = 7y 
i e 

for all j€JV. 

Then by Lemmas 1 and 2 we infer 

S | ker X ss © ( © S (Exp [/,,£,, J) ] = © ( © S(Exp[/;, £},;])) ~ 
j = 1 M = l ; ' ¡ = 1 V = 1 ' 

oo 

~ © S(Exp [/¡, £•]), and similarly, 
i=1 

© S(Exp[g f ,£]). 
¡=1 

(v) It is clear that for all t£CE=[0, 2TI]\£ we have that a=f(t) and b=g(t) 

satisfy the assumptions of Lemma 4. Replacing E, fn(t), gn(t), dv(t) by (CE)~ = 

= {/e[0,2n]\2n-teCE}, g„(2n—t), /„(271-0 and dv(2n-t), respectively, we 
repeat the reasoning of the sections (ii), (iii) and (iv). Also taking adjoints we get 
that there exist operators R^S? and Yd {i?}' such that 

J? I ker Y ~ I© 5(Exp [ f h CE]) and Rkctï* ~ © 5(Exp [ g i , CE]). 
> = 1 i=l 

Therefore, the operator T = S ® R will belong to 3F, Z = X @ Y £ { T } ' , and 
by Lemma 1 

TlkerZ ~ © 5(Exp LAD = TLT TKETZ* ~ © S(Exp [g i ] ) = T 2 . 
1=1 i = 1 

That is, TX QT2 and the Proposition 2 is proved. 

8» 
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OO 
Proo f of the Theorem. Let Ti and T2 be the Jordan operators 7 \ = © S(u„) 

n = l 
oo 

and T2= © S(v„). The inner functions un, v„ have canonical factorizations 
n = l 

«n="n,i*wn,2> vn=vn,i- where u„A, vn l are Blaschke products, w„>2, v„tZ are 
oo 

singular inner functions for all n£N. Introducing the operators 7"^,= © S(un,) 
n = l 

OO 
and T2 ¡= © S(v„fi) (I= 1,2) we infer by Propositions 1 and 2 that T1aQT2a 

n=i 
and T12QT2 2. Taking direct sums and using Lemma 1 we see that 7\ Q T 2 . The 
proof is done. 

4. By this Theorem and Theorem 7.9 of [1] we infer: 

Corol lary 1. For 7\, T2£3? we have TloT2 if and only if yT = yTn. 

We list some immediate consequences of this Corollary. 

Corol lary 2. Q is an equivalence relation on 

Corol lary 3. Let us suppose that T^S?, Lat (TT) and yT,(§>,) — (crf, /¿,), 

where ^ is o-finite (j= 1,2). If TXqT2 and then ( T , ) ^ e(T2)^. 

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the 
above Corollary 1. 

Corol lary 4. Let T, S be operators of class S? acting on the spaces $ and R, 

respectively, and let §J iLat (7 ' ) , ft,€Lat(S) be such that § J -c§ J + 1 , 5\jCzStJ+1 

0=1 ,2 , . . . ) and V -$>, = &, V = V (TlZjleiSl&j) for all j= 1,2,. . . , 
7=1 j=l 

then TQS. 

Proof. This follows from Corollary 1 and Lemma 7.4 of [1]. 
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Contributions to the ideal theory of semigroups 

S. LAJOS 

Let S be a semigroup. A subsemigroup A of S is said to be an (m, n)-ideal of 
S if the inclusion Am SA" A holds, where m, n are non-negative integers, A0 is 
the empty symbol. The author [4] proved that the product of two (1, l)-ideals of S 

is again a (1, l)-ideal. Thus the collection of all (1, l)-ideals of a semigroup S is a 
semigroup with respect to the ordinary set product. This semigroup will be denoted 
by B(S). Also, the collection of all left [right] ideals of S is a multiplicative semi-
group. This semigroup will be denoted by L(5) [R(5) ] . It is easy to see, that L (S ) 
is a right ideal and R (5 ) is a left ideal of B(5"). Their intersection, the multiplicative 
semigroup of all two-sided ideals of S is a quasi-ideal of B(S). 

In this short note certain classes of semigroups will be characterized by prop-
erties of the semigroups B(S) and L(S). For the undefined notions and notations 
we refer to [1], [2], and [12]. 

We begin with two lemmas. 

Lemma 1. A semigroup S is regular if and only if BSB—B holds for every 

bi-ideal B of S. 

This is an easy consequence of a result by J. LUH [10]. 

Lemma 2. A semigroup S is a semilattice of groups if and only if the inter-

section of any two (1,1 )-ideals of S is equal to their product. 

For this criterion, see the author [5] or [6]. 
Our first main result is contained in the following 

Theorem 1. For a semigroup S the following conditions are equivalent: 

(1) S is a semilattice of groups. 

(2) B(S) is a distributive lattice with respect to the set product and the set-theo-

retical union. 

(3) B(S) is a regular monoid with respect to the set product. 

Received January 30, 1979. 
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Proof. (1) =>-(2): If S is a semigroup which is a semilattice of groups, then 
every bi-ideal of S is a two-sided ideal of S. Hence this implication is straight-
forward by Lemma 2. 

(2)=>(1): by Theorem 1 of [6]. 
(1)=>(3) is obvious. 
(3)=>(1): Suppose that S is a semigroup whose bi-ideal semigroup B(S ) is 

a regular monoid with respect to set product. If A is the identity element of B(S), 
we have S=ASAQA. Hence A-S. Therefore BS=SB=B holds for any 
•bi-ideal B of S, whence B is a two-sided ideal of S. On the other hand, the regularity 
of B(S) together with Lemma 1 implies that S is regular. Thus S is a regular duo 
semigroup which is a semilattice of groups. 

Corol lary 1. If S is a semilattice, then B(S) is a distributive lattice. In partic-

ular, if iS is a diagonal semilattice (i.e., every non-zero element of S is an atom), 

then B(S) is a Boolean algebra. 

Corol lary 2. The bi-ideal semigroup B(S) of a semigroup S is a Boolean algebra 

if and only if S is a diagonal semilattice of groups. 

The following criterion is due to the author [7]. 

Lemma 3. A semigroup S is a semilattice of left groups if and only if Bf]L=BL 

holds for every bi-ideal B and every left ideal L of S. 

By making use of Lemma 3, further characterizations can be given for semi-
groups that are semilattices of left groups in term of the bi-ideal semigroup B(S). 

Theorem 2. For a semigroup S the following conditions are equivalent: 

•(I) S is a semilattice of left groups. 

{2) B(5") is a band and S is a right identity of it. 

• ¡(3) B(S) is a regular semigroup and S is a right identity of it. 

Proof. (1)=>(2): If S is a semigroup which is a semilattice of left groups, 
then, by Lemma 3, the relation LC\R=RL holds for every left ideal L and every 
right ideal R of S, thus S is regular. Moreover Lemma 3 implies BS=B for every 
bi-ideal B of 5, whence 5 is a right identity of B(S'). Then Lemma 1 implies that 
every bi-ideal of S is globally idempotent, i.e., B(S) is a band. 

(2)=>(3) is clear. 
(3)=>-(l): If (3) holds, then it follows that S is a regular left duo semigroup 

which is a semilattice of left groups. 
T. SAIT6[11] has proved the following criterion. 

Lemma 4. A semigroup S is a semilattice of left simple semigroups if and 

only if the intersection of any two left ideals of S is equal to their product. 
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Now we are ready to prove the following result. 

Theorem 3. For a semigroup S the following conditions are equivalent: 

(1) S is a semilattice of left simple semigroups. 

(2) L (S ) is a distributive lattice with respect to the set product and set-theoretical 

union. 

(3) L (S ) is a multiplicative semilattice. 

Proof. (1)=>(2): If S is a semilattice of left simple semigroups, then, by 
Lemma 4, every left ideal of S is a two-sided ideal. Hence the implication follows 
by Lemma 4. 

(2)=>(3) is obvious. Finally, (3)=»(1) by [11]. 
Next an ideal-theoretical characterization will be given for homogroups. A semi-

group S is called a homogroup if it has a subgroup which is at the same time a two-
sided ideal of 5 (for an equivalent definition see [13]). For instance, a semigroup 
with zero element is a homogroup. 

Theorem 4. A semigroup S is a homogroup if and only if the bi-ideal semi-

group B(S) has a zero element. 

Proof. Let 5 be a homogroup with the group-ideal G. Let B be a bi-ideal 
of S. Then the product BG is a right ideal of S, and BGQG. Hence it follows that 
BG=G, because a group has no proper right ideals. Similarly, we get GB=G 

and G is the zero element of B(S). 
Conversely, if S is a semigroup whose bi-ideal semigroup has a zero element 

Z, then we have SZ=ZS=Z. Hence Z is a two-sided ideal of S. For any element 
z of Z the product Zz is a left ideal of S. Thus we have Z = Z ( Z z ) = Z z , since 
the set product is associative for non-empty subsets of S. Similarly we get zZ=Z 

for any element z of Z. Therefore Z is a subgroup of S, and S is a homogroup, 
indeed. 

Remark. It is easy to see that Theorem 4 remains true with P (S ) instead of 
B (S), where P (S ) is the power semigroup of S, i.e., the multiplicative semigroup 
of all non-empty subsets of S. 

Finally, we are interested in semigroups whose bi-ideal semigroup is a monoid. 

Theorem 5. For a semigroup S the bi-ideal semigroup B(S) is a monoid if and 

only if (i) every bi-ideal of S is a two-sided ideal of S, and (ii) every two-sided ideal of 

S is complete (i.e. IS-SI=I). 

Proof. First, let S be a semigroup having properties (i), (ii). Then the bi-ideal 
semigroup B(S) is the multiplicative monoid of all two-sided ideals of S with the 
identity S. 
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Secondly, if the (1, l)-ideals of a semigroup S form a monoid with identity A, 

then we have S=ASA^A, whence it follows that A = S. Thus BS=SB=B 

for every bi-ideal B of S, that is, every (1, l)-ideal B is a complete (two-sided) ideal 
of S. Theorem 5 is completely proved. 

For the characterizations of completely regular semigroups in terms of (m, «)-
ideals, see the author [8] and [9]. 
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Selecting independent lines from a family of lines in a space 

L. LOVÁSZ 

0. Introduction. A family of flats in a projective space is called independent,. 

if no member of the family intersects the flat spanned by the other members. It is 
an interesting combinatorial problem to select a maximum number of independent 
flats from a given family of flats. In the special case when all the flats are faces of 
a simplex, this question is equivalent to the so-called matching problem for hyper-
graphs : given a collection of sets, find the maximum number of disjoint ones among, 
them. This problem is known to belong to the class of (in a sense) hardest combina-
torial problems, the so-called NP-complete problems (see [6]). Hence there is no 
hope to solve it in a satisfactory way. 

However, the special case of the matching problem when all the given sets 
are pairs, is well-solved [2, 4]. This suggests that probably the problem of selecting, 
a maximum set of independent lines from a family of lines is solvable. 

"Solution" here may mean two different things: 
(a) find a minimax formula for the number in question; 
(b) find an algorithm to determine this number such that the running time of 

the algorithm is polynomial in the number of data. 
We shall present a solution in the sense of (a) (Theorem 2). It remains open 

if these methods can be extended (or other methods found) to yield a solution in 
the sense (b), but we hope the answer is affirmative. The problem we discuss can 
be considered as the so-called "matroid parity problem" for representable matroids-
(see LAWLER [3], Ch. 9). We shall discuss the difficulties of generalizing our methods, 
along with other connections to matroid theory in section 5. 

1. Some special cases and equivalents. The famous f-factor problem, solved by 
TUTTE [5], is the following. Let G be a graph and/an integer-valued function on its: 
vertex set V(G). Does there exist a subgraph G' such that the degree of x in G' is 
f{x), for every x£V(G)l 
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This problem can be reduced to the line-selection problem as follows. Let, 
f o r each x£V(G), Ax be a flat of rank*/(x) in a projective space, such that the 
flats {Ax : x£V(G)} are independent. For each edge e=(x,y), select two points 
PetX£Ax and pFt >.€ Ay such that the points {pe,x: e is a line adjacent to x } are in 
general position on Ax (i.e. no f(x) of them are contained in a proper subflat of 
Ax). Let e denote the line connecting pe x to pey. Then it is easy to verify that 

a subgraph H has degree S/(x) at each point x iff the lines {e: e£E(H)} are 

independent. 

So G has an /-factor iff the family {e: e£E(G)} contains ~ y /(x) inde-
X 

pendent lines. Our results therefore yield a necessary and sufficient condition for 
the existence of an /-factor in a graph. Although our condition has features similar 
to Tutte's, to derive Tutte's theorem from it is somewhat lengthy. 

We may place the points pe,x on Ax in such a way that they form an arbitrary 
matroid embeddable in the projective space we consider. This yields then a solu-
tion to the "matchoid problem" of Edmonds in the special case when the matroids 
prescribed at the vertices are representable. 

Finally, we mention an equivalent version of our problem. Let / be a collec-
tion of lines which spans a rankr projective space P. Let v(^f ) be the maximum 
number of independent lines in and the minimum number of lines in 
which still span P. Then v (¿f)+n [JF)=r. This identity is a generalization of 
Gallai's identity in graph theory, and can be proved along the same lines. So we 
also have a minimax formula for the minimum number of lines in a family which 
span the same flat as the whole family. The transformation of Theorem 2 to this 
version is left to the reader. 

2. Preliminaries. Let P be a projective geometry over a (possibly skew) field. 
We shall denote by X the span of the set XQ P, i.e. the smallest flat (subspace) 
containing X. Each flat A in P has a rankr(^4), which is one larger than its dimen-
sion. So 0 has rank 0, points have rank 1, lines have rank 2. We extend the nota-
tion of rank over arbitrary subsets of P by r(X)=r(X) and even over a collec-
tion of subsets of P by r ( j f ) = r ( U Jf). Similarly, if ¿f is a collection of sub-
sets of P we set 5P = U * . 

The rank satisfies the important identity 

r(AUB) + r(Af)B) = r(A) + r(B), 
where A, B are flats. 

* The rank r(A) of a projective space A is its dimension plus 1. 
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We shall make use of the following very simple lemma: 

Lemma 1. Let Ax, ..., Ak, D be flats in a projective geometry and AtQD. 

Assume that 

t=i 
k 

Then P| 
¡=i 

Proof. We show by induction on k that 

r^n.-.n^) ^ r(D)~ 2 {r(D)-r(Ad}. 
¡=1 

This is trivially true if k—1. Let ks2. Then 

s riA.n.-.n Ak^) + r(Ak)-r(D). 

Applying the induction hypothesis the assertion follows. 
Q.E.D. 

Recall that a set of lines in a projective geometry is called independent if no 
member of the set meets the span of the rest. It is immediately seen that each subset 
of an independent set is independent. 

Lemma 2. Let 2F be a set of lines in a projective space. Then 

(1) 2 \ & \ . 

Equality holds iff 3? is independent. 

Proof. Let Then 

r(SF) = r(e) + r -r(eD^-e) = r(^-e) + 2-r(ei]^-e). 

Hence the inequality (1) follows by induction. If -F is independent, then clearly 
so is !F—e and then equality in (1) follows by induction. On the other hand, if 
equality holds in (1) then the computation above implies that r{eC\lF— e)=0, i.e. 
efl J2"—e=0. Since this holds for every it follows that J5" is independent. 

Q.E.D. 

A set # of lines is called a circuit, if r($) = 2|#| —1 but every proper subset 
of is independent. Thus a circuit is a minimal dependent set of lines; but not 
every minimal dependent set of lines is a circuit, as shown by 3 lines in general posi-
tion in the space. 
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Note that if "if is a circuit and then 

2 \<6\-\ = r(«) = r(<6-e)^2-r(e(\^e) = 2|?|-r(enM1 

whence it is seen that e meets <<i— e in exactly one point. 

Lemma 3. Let X be a set of lines such that r(Jf)=2|Jf| —1. Then tf con-

tains exactly one circuit. 

Proof. Let <6 be a minimal subset of j f with /•(#)=2 |<ii|-l. We claim that 
all proper subsets of are independent. In fact, 

r($-e) = r(<^) — 2 + r(ef]^—e) = 2|<g,|-3 + r(en#-ri) £ 2\9-e\-l. 

Equality here would contradict the minimality property of c6. Hence is inde-
pendent for every e. This implies that if is a circuit. 

Assume now indirectly that there is another circuit c6'. Let e.g. 
We have 

r ( J f -/ ) = r ( X ) - 2 + r ( / n X^f) = 2\JiT\-3 + r(fn JP=7). 

But fCW—f and so / n x — / ^ 0 . Hence X - / is independent and so it 

cannot contain any circuit. 
Q.E.D. 

Let 3? be an arbitrary set of lines in a projective geometry. Let v ( j f ) denote 
the maximum number of independent lines in A set of independent lines 
will be called a basis of . 

Let S>3 be a basis of Jf and e a line not contained in SB. Obviously, e must inter-
sect 38. Lemma 3 implies that 38-\-e contains a unique circuit, which will be called 
the fundamental circuit of e relative to 88. Trivially, the fundamental circuit of e 

contains e. If e intersects a line f€33 then the fundamental circuit of e, relative to 
38, is the set {e,f}. 

If ^ is a basis, e a line not contained in 38, and / a line of the fundamental 
circuit of e relative to 38, then 3S—f+e is another basis. We say that 38—f+e 

arises from 38 by elementary augmentation. Trivially, the inverse of an elementary 
augmentation is an elementary augmentation as well. 

3. Primitive sets of lines. In this section we discuss a special type of arrange-
ment of lines. These sets will be the most difficult cases in the proof of the main 
result. A set 3V of lines in a projective space is called primitive, if the intersection 
of spans of all bases is void. 

Lemma 4. Let JP be a primitive set of lines and 3ftx, 382 two bases of JF. Then 

0$! can be transformed into 38 2 by elementary augmentations. 
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Proof . Let 3S2 be two bases such that arises from â?, by elementary 
augmentations and is maximal. If 0)[=38'2 we are done by the remark 
after the definition of elementary augmentation. 

We claim that In fact, if then there exists a line 
such that e %S&2. Let (ê be the fundamental circuit of e relative to . Since 
is independent, there exists a line 3&'2=$i'2-Ve~f is a basis which arises 
from ^ by elementary augmentations and which has \3&'XÇ\$'2\>¡¿¡$[033'̂ , a con-
tradiction. 

So we know that 3â[=3ft2. We want to show that Assume indirectly 
that there exists a line 3ft'2. Consider a basis which does not span e. 

Such a basis exists since Jf is primitive. Choose and so that \3S[Ç\S80\ 

is maximal. Obviously, ^„T^J, and hence, there exists a line gÇ.âS0 such that 
Let ^ denote the fundamental circuits of g relative to and 38'2. 

We distinguish two cases. 

Case 1. <êi7é(S2. Then since otherwise, &'2+g would contain 
two distinct circuits, contradicting Lemma 3. Similarly Qi&i+g- So we can 
select lines -®2-g and / a i ^ - ^ - g . Now 2 8 " g is a basis 
arising from by elementary augmentations, and a con-
tradiction. 

Case 2. <ëx = <é2. Then ei<gx=^2. Let and put @?=@'t+g-f. 

Now l ^ i n ^ ' l ^ l ^ n ^ l , and since e^3S'2, this is a 
contradiction. 

Lemma 5. Let № be a primitive set of lines and .yfQff such that r ( j f ) s 

^2v + 2. Then the flats spanned by the circuits in & have no element in common. 

Proof . Suppose indirectly that a point p is contained in the span of each 
circuit in j f . Since is primitive, there exists a basis SSQfC such that the span 
of 3S does not contain p. Choose such a @ with maximal. Since r(âS+p) = 
=2v + l < r ( X ) , there is a line such that e^W+p. Then p^W+e. Let if 
be the fundamental circuit of e relative to J1. Then p^SS and so by the definition 
of p, Jf. Let / e ^ - j f , then is a basis such that p^W and 

which is a contradiction. 

Lemma 6. Let iff be a primitive set. of lines, Si a basis, such that 

r(âS+e+f)=2v+2. Let (êx and ^ be the fundamental circuits of e arid f respectively, 

relative to 3S. Then <&1C[<g2 = Çi. 

Proof . Suppose indirectly that ^ f l * ^ ? ^ . Let ..., denote the circuits 
in Jf =âS+e+f and let £>, be the flat spanned by For each u£jf, 
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S2v+1, since otherwise Jf—u would be an independent set of v + l lines. Let 

= r ( j f - u ) = 2v}. 

If u£J?"—then Jf—u contains a unique circuit by Lemma 3. Let 

JTf = {u£ JfT- Jf0: i?f g JT-u}. 

Thus {Jf0 , J f l s ..., JT,} is a partition of Jf, and 
</> — -v/" V V O j ^ ,/t Q Jl J . 

implies now by Lemma 5 that r s 3. Furthermore, we have 

r ( A ) = 2 p f - J f 0 - J f ; | - 1, r j u f l , ) = 2|JT-jr0|-2. 
< 

(Here /-((J D,)s2|Jf—Jf0|—2 is trivial; in the case of strict inequality Lemma 3 
i = l 

would imply that UZ>; contains only one circuit, which is not the case.) Now apply 
Lemma 1: 

¿ { ' • ( ¿ ^ • j - K A ) } = i { 2 W - 1 } = 2 | j r - j f 0 | - i < r ( u A ) , 

t 
and so Pi A 5*0- But this contradicts Lemma 5. 

¡=1 
Call two lines e, f of a primitive set coherent, if r(38+e+f)^2v + l for 

every basis 38. 

Lemma 7. Coherence of lines is an equivalence relation. 

Proof. Symmetry and reflexivity of coherence are evident. Suppose e and /, 
moreover / and g, are coherent. We show that e and g are coherent. Suppose indi-
rectly that there exists a basis such that r(3S1+e+g)=2v+2. Since ^C is primi-
tive, there exists another basis 3S2 such that f%382, and so r(382+f)—2v-1-1. Choose 
@2 such that I ^ D ^ I is maximum. Since r(381+e+g)>r(3$2+f), there exists 
a line /i€^i+e+g such that h^3S2+f, i e. such that 

(3) r(^2+/+/i) = 2v+2. 

So h is not coherent with / and so h^e, g. Thus h(^3Sl. Let # denote the funda-
mental circuit of h relative to 3d2. Since we may choose a line 
Then 38'2=3i2+h-l is a basis such that f%i%2 (since f%382+h by (3) and 38'2<z 

<z3?2+h), and moreover, \3i'2(\3S^>\382C\38-h. This contradicts the choice of 38 2. 

Q.E.D. 

Lemma 8. Let 3% be a basis and e a line not in the span of 38. Let m denote 

the fundamental circuit of e relative to 38. Then all lines in <6 are coherent. 



Selecting independent lines from a family of lines in a space 127 

Proof. Suppose indirectly that there is a line /£<£ such that e,f are not 
coherent. Let SB' be a basis such that r(@'+e+f)=2v+2. From among all counter-
examples choose one in which \3B'V\3B\ is maximal. Since r(3$'+e+f)>r(3&+f) 

there is a line g£38'+e+f not contained in the span of SB+f. Obviously, g^e,f, 

so g£38'. Let denote the fundamental circuit of g relative to SB. Since r(3S+f+g)= 

=2v+2, if follows by Lemma 6 that ^ = 0 - Hence if we replace any element 
of by g in 3B, we obtain another basis 38* which has the property that the 
fundamental circuit of/relative to S3* is <€, but \38*C\S8'\>\38C\S8'\, a contradiction. 

Q.E.D. 

Lemma 9. If is primitive, e,f£3€ and e and f intersect, then e and f are 

coherent. 

Proof. Suppose not, then there exists a basis J1 such that r(38+e+f)=2v+2. 

By an elementary augmentation we get a basis 38' such that e~3i' but f%38'. But 
by efl/>¿0 the fundamental circuit o f / relative to SB' is {e,f}, which contradicts-
Lemma 8. 

Q.E.D. 

Lemma 10. Let be a primitive set of lines, 38 a basis of e a line not in 

the span of SB and stf the set of lines in 38 coherent to e. Then every line coherent to e 

is contained in sf+e. 

Proof. Let /be a line coherent to e. Let p^e—38 and q£f and denote by 
g the line pq. Set =3>?+g. 

Claim 1. v(3tf") = v. For suppose indirectly that contains an independent 
s e t ^ of v+1 lines. Obviously, and 3F—g is a basis of №. But 

r(&-g + e+f) S r{F) = 2v + 2, 

which contradicts the assumption that e and / are coherent. 

Claim 2. ¿tf" is primitive. This follows immediately from the fact that all bases 
of are bases of 

Claim 3. If two lines of are coherent in № then they are coherent in 
for the same reason. 

Claim 4. e, f and g are coherent in Jtf". This follows by Lemma 9. 
Now by Lemma 8, all lines in the fundamental circuit of g relative to 38 are 

coherent to g in By Claim 4, they are coherent to e in and so by Claim 3, 
they are coherent to e in Thus g f W Since p^sd but pde, it follows. 
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that g has at least two points in sf+e. But then g Q ^ + e , and consequently 
q£sf+e. q being an arbitrary point of/, it follows that fQs4+e. 

Q.E.D. 

Let ..., denote the equivalence classes of the relation of coherence. 
Consider a basis 28 and set v f= \280 Observe that the numbers vf are inde-
pendent of the choice of 29\ in fact, they remain the same when an elementary aug-
mentation is carried out by Lemma 8, and every other basis can be obtained from (% 
by elementary augmentations by Lemma 4. 

Our result on primitive set of lines can be summarized as follows : 

Theorem 1. Let № be a primitive set of lines. Then there exist flats A1} ..., Ak 

with the following properties: 

(i) A1,...,Ak are disjoint. 

(ii) Every line in is contained in exactly one of Alt ..., Ak. 

(hi) r (4 )=2v ( +1. 
(iv) Every basis contains precisely vi lines in At. 

(v) v ( j f ) = i v ( . 
¡=1 

Proof. Denote by A, the flat spanned by First we show that r(Ai) — 
—2v f+l. Let and 2S any basis not spanning e. Let s/i=28C\M'i. By Lemma 8, 
the fundamental circuit of e relative to 28 is contained in s/t+e. Hence r(s/i+e) = 
=2v f + l . On the other hand, Lemma 10 implies that all lines of ^ are contained 
in sft + e. Hence A — s i ^ e and r (Ai )=2v f+l . 

Thus (iii) and (iv) are proved, (v) follows immediately. If we show (i) then (ii) 
will be trivially true. 

So let 1 we show that AiClAJ=0. Let e^^, e^^fy, and let 2d 

be a basis such that r(28+el+eJ)=2v+2 (such a basis exists by the definition of 
the sets Let ¿¿,=28034?,. By the argument above, e, meets s/t (t—i, j) and 
At=sft + et. But 

r(A,\JAj) = r ^ U ^ U h , ej)) S r(28+ei+ej)—2\@—sii—s4]\ = 

= = 1^1 + 1^1+2 = r(Ad+r(Aj). 

Hence Ai and A j are disjoint. 
Q.E.D. 
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4. The main result. 

Theorem 2. Let № be a set of lines in a projective geometry. Then the maxi-

mum number v(j^f) of independent lines in 3V is the minimum of the expression 

r M + | [ i W t l M ] , 

where A, Alt ..., Ak are flats such that AQA, 0=1, ...,k) and for every e^yP 

either eDA^d or there is an i such that eQAt. 

Proof. I. First we show that if J*" is a set of independent lines, A, Alt..., Ak 

are subspaces such that A Q Ai and each line of 3F either meets A or is contained 
in one of the A?s then 

Let S'i and J^ denote the set of lines of 2F contained in At and meeting A, respec-
tively. Let A\ be the subspace spanned by Then r(A'i) = 

=2|^j'|. Moreover, the subspaces A\ are clearly independent and, therefore, so are 
the subspaces Aid A, i=0, ..., k. Hence 

r(A)^ 2 r(A[n A). 
i=0 

Here r(A'ir)A)=r(A'i)+r(A)-r(A'i\JA)^r(A'i)+r(A)-r(Ai), whence 

and using integrality, 

m ^ ^ ^ + rCA'^A). 

Moreover, obviously \^\^r(Af]A'0). Hence 
W = 11 Sr(A'onA)+ 2 + n s 

II. We want to construct subspaces A, A1,..., Ak satisfying the conditions in 
the theorem. We use induction on v(Jif) = v. If 3/P is primitive then the result is 

9 
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immediate by Theorem 1. So we may suppose that tf is not primitive, i.e. there 
exists a point p contained in the span of each basis. Delete the lines containing p 

from 3? to obtain the system . Project the lines of from p onto a hyperplane 
T. Let e' be the projection of e on T, and 3^x = {e': 

The system c?̂  contains no v independent lines. In fact, if v lines from 
are not independent, then neither are the corresponding lines in ; if v lines from 
J f j form a basis then p is contained in their span and hence the rank of their span 
decreases by the projection from p. 

So by the induction hypothesis, there exist flats D, Dx, ..., Dk in T such that 
DQDi (/=1, for each the line e either meets D or is contained in 
some Dt; and 

Consider now the subspaces A=D+p, A~Dt+p. Obviously, AQA,. Fur-
thermore, the lines 

in ffl — m e e t A, and so do all lines e for which e' meets D. 

If e'QDt then eQAt. Finally, r{A)=r(D) + l, r(Ai)=r(Di) + l and hence 

r l A ) + 1 p&pdL ] = r № ) + 1 + ! [ ^ m ] _ v . 

|Q.E.D. 

5. Connections with matroid theory. The first question which comes up is whether 
or not Theorem 2 remains valid in an arbitrary matroid. First of all, the definition 
of independence of lines has to be done more carefully; let us accept the natural 
solution that a set J* of lines is independent if In this case the prob-
lem is equivalent to the so-called matroid parity problem (see L A W L E R [3], Chap-
ter 9). 

A counterexample to the analogue of Theorem 2 is any affine space, where 
consists of all lines parallel to a given one. Of course, if we extend our affine space 
to a projective space then we could choose k=0, A the common ideal point of 
our lines. But in general, there seems to be no hope to extend the original matroid 
so as to achieve the validity of Theorem 2. The possiblity of "simulating" the flat 
A inside the matroid seems to be a difficult, and probably not only technical, question. 

It is clear that independence of lines does not define, in general, a matroid. 
See e.g. iwo disjoint lines and a third one meeting both. There is a class of systems 
of lines, however, for which the situation is different. Let us call a set of lines 
flexible, if r(efl for each line For each e£3/e, let p(e) be the 
intersection of e with J^f— e, if this exists, and an arbitrary point of e otherwise. 
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The next proposition shows that independence of lines in a flexible set defines a. 
matroid : 

Propos i t ion 1. Let № be a flexible set of lines. Then ¿FQffl is independent 

iff the set ¿?'={p(e): of points is independent. 

Proof . It is trivial that if & is independent then so is SF'. Assume now that 
J5"' is independent. Then we prove by induction on \<S\ that if 'SÇ^êF then 

(4) r(P'U9) = + 

For this will mean that SF is independent. 
(4) is trivially true for i?=0. Let 3 V 0 and eCé. Then 

T(JF' U 9 ) = r ( ^ ' U ( 0 - e ) ) + l, 

since Jf being flexible, e intersects ¿F' U e) in precisely one point. This proves 
(4) by induction. 

Q.E.D. 

Finally, let us point out one more matroid which is induced by a set of lines. 
This is a certain analogue of the matching matroid of graphs by EDMONDS and FUL-
KERSON [1]. Let be a set of lines. Call a subset dispersive, if there exists, 
a basis 0S of tf such that r(® US?)=2vpf ) + 

Proposi t ion 2. Dispersive sets form the independent sets of a matroid. 

This proposition generalizes Lemma 8, and can be proved along the same lines 
Details are omitted. 
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On the divergence of multiple orthogonal series 

F. MÓRICZ and K. T A N D O R I 

1. Preliminaries. Let Id= X [0,1] be the unit cube in the ¿/-dimensional 
j=i 

Euclidean space, where ds 1 is a fixed integer. The points (x l5 ..., xd), (yt yd),... 

of Id are denoted by the corresponding bold letters x, y,.. . . Let Zd+ be the set of 
¿-tuples k=(/c ls..., kd) with positive integral coordinates, the tuple (1,..., 1) is 
denoted by 1. Zd+ is partially ordered by agreeing that k^m iff k jSmj for each j. 

Finally, we write 
k* = min k, and k* = max 

* lSJSd 1 lsjsd J 

Let {<pk(x): k£Zd+} be a d-dimensional orthonormal system on Iá, i.e. for every 
k and m in Zd+ let 

f(pk(x)cpm(x)dx = <5km (dx = dx1... dxd). 

In particular, if for each j—1, 2, ...,d the system {<PfcJ)(-x)}r=i is orthonormal on 
/=[0,1], then the functions 

i 
(Pkl kd(xi> •••>xd) = II VÍc? ( x j ) 

j=i 
are orthonormal on ld. 

We shall consider the ¿-multiple orthogonal series 

oo oo 

(1) 2«t<Pu(*)= 2 - 2 ak1,...,kd(Pki,...,kd(xl, •••> xd)y 

ksl ftx=l kd=l 

where {ak: k í Z d + ) is a given system of numbers (coefficients). For any m£Z+ set 
•Sm(x) = 2 ak(pk(x) = liksm 

ml md 

= 2 ••• 2 aki kd<Pki ••• > 
*,=! kä=1 

Received September 24, 1979. 
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which is a rectangular partial sum of (1). In case mx = ...—md, Sm(x) is called a 
square partial sum of (1). The spherical partial sums of (1) are defined as 

Sr(x) = 2 ak<Pk(x) (r = d,d+1,...). 

The following Theorem A has been published by a few authors, while The-
orems B and C were proved by the first author in [3] and [4]. 

Theorem A. If 

2 a* ¡¡(log 2kJ-
k s l j=l 

then the rectangular partial sums Sm(x) of (1) converge a.e. on Id as m^ —• 

Here and in the sequel log is of base 2. 

Theorem B. If 

k = l 

then both the square partial sums S„ „(x) and the spherical partial sums S„ (x) of 

(1) converge a.e. on Is as n — oo. 

The part concerning the spherical partial sums was stated in [3] in a slightly 
different form, but the two statements are equivalent, because 

(k*)2 ̂  A:2 + . • • + S i/(k*)2. 
Theorem C. If 

k s l 
then 

Sm(x) = ox ^ 77 log 2myj a.e. on Id 

2. Results. In this paper we are going to show that these theorems are exact 
in the sense that log n cannot be replaced by any sequence g(n) tending to °° slower 
than log n as n — More precisely, let {£>(«)}™=1 be a non-decreasing sequence 
of positive numbers for which 

(2) g(n) = o(logn) (n 

Theorem 1. For every d^l and {<?(«)} satisfying (2), there exist an ortho-

normal system (<pk(x): k£Zd+} and a system {ak: k£Zd+} of coefficients such that 

(3) 2 4 0 o g k T ' - V ( k * ) < ~ 
k s l 
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and 

(4) limsup |iSm(x)| = oo a.e. on Id. 

By virtue of Theorem B in case ds2 both the square partial sums and the 
spherical partial sums of the series 2 #k<pk(x) occurring in Theorem 1 converge a.e. 

ksl 

Theorem 2. For every ds 1 and {£>(«)} satisfying (2), there exist an ortho-
normal system (<pk(x): k£Z+} and a system {¿>k: k£Zd+} of coefficients such that 

2 and limsup- i ^ g - L - = „ a.e. on I*. 
uti ( l°8m ) 6 ( m ) 

Theorems 1 and 2 for d= 1 are well-known (see, e.g. [1, pp. 99—100]). 

Theorem 3. For every ds2 and {(?(«)} satisfying (2), there exist an ortho-
normal system {<pk(x):kGZ+} and a system (ck: k£Zd+} of coefficients such that 

2 C\ (lOg k*)2 <co kel 
and 

l i m S UP 7, 1 / ^ = °° a-e• 011 Id-n>*-~ (log m )" 2g(m ) 

Again by Theorem B, both the square partial sums and the spherical partial 
sums of the series 2 ck<pk(x) converge a.e. 

k^l 
Our last theorem states the a.e. divergence of the rectangular partial sums of 

series (1) for a whole class of coefficient systems. A system {ak: k£Zd+} of 
coefficients is said to be non-increasing in absolute value if for every k, m£Zd+, 

k == m =• |ak| fe |aj. 

It is clear that this is equivalent to the following: for every k£Zi and j, 1 SjSd, 

we have 
\aki kj-ukj.kj + i kd I — \akl kj-i,kj + l,kj + i,...,kd\-

Theorem 4. For every system {ak: k€Z+} of coefficients, which is non-

increasing in absolute value and satisfies the relation 

(5) 2< i7(log2fc,)2 = - , 
ksl )=X 

there exists an orthonormal system {<pk(x): k£Zd+} such that 

(6) limsupl^mix)! = oo a.e. on Id. m*-+oo 
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I f , in addition, for every m£Z"+ we have 

(7) 2 a i n Q o g 2 k j y = ~ , 
ksm J=1 

then m* — oo can be replaced by —oo in (6). 

The two parts of Theorem 4 coincide for d= 1. In this case Theorem 4 was 
proved by the second author in [5]. 

3. Notations and an auxiliary result. For the sake of simplicity in notations, we 
present the proofs only for the case d—2. We write (x,y) instead of x= ( x j , xa) 
and (k, I) instead of k= ( k l t k2). 

We agree that (a, b) means either the open interval (a, b), or one of the half-
closed intervals [a, b) and (a, b], or the closed interval [a, b]. Given a function f(x, y) 

defined on 72 and a rectangle R—{a, b)x(c, d)QP, let us put 

№ ; x, y) = ' ( H . H ) * * * * 

0 otherwise. 

Given a set H^I2, let H(R) denote the set into which H is carried over by the 
linear transformation x=(b—a)x+a and y=(d—c)y+c. 

A set HQ I (or QI2) is said to be simple if H can be represented as the union 
of finitely many disjoint intervals (or rectangles). 

The proofs of all our theorems are based on the following basic result of MEN-
sov [2]. 

Lemma. For every positive integer n there exist a system of step 

functions, orthonormal on the interval /= [0,1], and a simple set £(n) of I such that 

(8) mes f W s Q , 

and for every there exists an integer x(x), l^x(x)Sn, such that 

SO, ...,№M(x)mO and 

(9) Z H n ) ( x )^C 2 fH log2n . 
k=l 

Here Cj and C2 denote positive constants. Further, if EQI (or then 
mes E denotes the Lebesgue measure of the set E on the line (or on the plane). 

4. Proo f of Theorem 4. Part 1. By (5) and the non-increasing property of 
K/)m=i we have 

2 2 2"+9 (P+ 0 2 ( ?+ = 
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With the notation 

Ar= 2 2 ' + « (p + l)2 (<?+l)2ai,+ ._1 (2 ,+ i_1 (r = 0,1,...) 
0 Sp.qSr 

ma x(p,g)=r 

this can be rewritten into the form 2 A r=°=. We can find a sequence {J,}"=0 of 
r = 0 

positive numbers with the following properties: 

lim sr = 0, s2Ar Si (r = 0,1, ...) 

and 

(10) 
r = 0 

Without loss of generality we may assume that aklS0 for every k, I—1,2, .... 

Our goal is to construct a system {<pH(x, y)}"/=1 of step functions and a system 
№M)79=0 s 'mPl e sets of 72 such that these functions be orthonormal on 72, these 
sets be stochastically independent with 

(11) mes Hpq ë C122"+*(p+1)*(9+ l)2s*fl|p+i_ l l2.+i-i 

and for every {x, y)£ Hpq 

(12) max max 
in 1) 

2 2 aki<Pki(x, y) k=2P 1=21 

(j>,q = 0,1,...), 

) 
Sr 

where / =max (p, q). 

The construction will be done by induction on r. If r=0, then let (Pu(x,y) = 
=l/j0 f lu on a rectangle Hm of area slaxl and let <pn (x, y)=0 otherwise. Then 
(11) and (12) are satisfied for p = q=0 provided C l 5 C 2 ^ l , which is the case. 

Now let r0 be a positive integer and assume that the step functions cpkl(x, y) 

are defined for k, 1=1, 2, ..., 2r°—1 and the simple sets Hpq are defined for p, q= 

=0,1, ..., r0— 1 such that these functions are orthonormal on I2, these sets are 
stochastically independent, and the relations (11) and (12) are satisfied for p,q= 

=0,1, ...,r„—1. We are going to define the step functions (pkt(x,y) of the roth 
block successively in the following arrangement: for 

k = 2ro, 2ro+l, ..., 2'o+1—1 

k = 2ro, 2ro+l, ..., 2ro+1 —1 
and 1 = 1; 

and I = 2,3; 

k = 2ro, 2ro+l 2 ro+1-l and / = 2\ 2 r »+ l , ..., 2 r » + 1 - l 

k = 2ro~1, 2ro~1 + 1, ..., 2ro — 1 and / = 2\ 2r« + l, . . . , 2 r o + 1 - l 

k = 2, 3 

k = 1 

and I = 2'», 2 r »+ l , ..., 2r»+1 —1 

and / = 2ro, 2 ' «+ l , . . . ,2 r « + 1 - l 
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and the simple sets Hr>>0, H,o l , ..., H^, Hro_1<ro, ..., Hl ro, H0 ,o in such a way 
that the functions (pkl(x, y) (k,l= 1, 2, ..., 2r°+1 —1) be orthonormal on 72, the 
sets Hpq (p,q=0, 1, ..., r0) be stochastically independent, and the relations (11) 
and (12) be satisfied for p, q=0, 1, ..., r0. 

For the sake of definiteness, let us assume that the sets Hr^Q, r , ..., 
(l^q0^r0) and the functions q>kl{x, y) for k=2r°, 2 r°+l , ..., 2 r ° + 1 - l and /=1,2, ... 
...,29°—1 have been appropriately defined. Let us apply Mengov's lemma firstly 

-with n=2r», secondly with n=2"°, and set 

<W - i .2*. + / - i (*> y) = ^ t o ^ O O (fc = 1, 2, ..., 2r<>; 1 = 1, 2, ..., 2*0). 

Then by (9) for every ( x , y )ZF=E^ a ) XE ( -^ we have 

max max 
lsmsz'o lsnszto 

m n 

2 2 a2ro+k-i,s?h+t-i(P2rtt+k-i,2<it>+t-Ax> y) 
k=l 1=1 

S Cf } ^ o ( r 0 + l)(?o+l)aar0+l_1>2,.+!_!• 

Let Q be an arbitrary rectangle in 72 with 

mes <2 = 2 ' .+ « . ( r0+l )2 (9 0+l ) »^ l f l « f i ,+ 1_ l f l i 0 + 1_1 

(the quantity on the right is not greater than 1 because of the choice of jro), and 
Jet us "contract" the functions <p from Z2 to Q : 

= / \ _ <?2rQ + fc-l,2'7o+/-l(6; X> >') 
^2ro+k-l,29o+l-l^X' W ~ ./=77/ . n / , j/2ro+«0(ro+l)(?o+l)s,oa2ro+i_129o+i_1 

(fc=l,2,...,2'o; /=1,2, . . . , 2q"). 

It is not hard to check that these step functions are also orthonormal on 72, by (8) 

(13) mes F(Q) = mes FmesQ = (mes £(2r°>)2 mes Q s 

S C122ro+i0(ro+l)2(90+l)2s2ofl2ro+1_1 2?0+1_1, 

and for every (x,y)£F(0 

(14) max max 
lSmá2r0 1SBS2Í0 2 2 a2r0+k-l,2l0+l-l<P2r0+k-l,2l0+l-l(X> y) 

k=1 1=1 

*-2 
Sr, 

Since the functions (pkl(x, y) and the sets H tq defined so far are step functions 
and simple sets, respectively, we can divide 12 into a finite number of disjoint rec-
tangles R1; R2, ..., Ra such that each function (pkl(x, y) (k,l= 1, 2, ..., 2r° —1; 
k=2r°, 2 r°+l, ..., 2r°+1 —1 and /= 1,2, ..., 2 ? ° - l ) is constant on each Rs 
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( s = l , 2, ..., ff) and each set Hpq (p, <7=0, 1, ..., r0—\\p=r0 and ?=0, 1, ..., q0-i) 
is the union of certain Rs. Let R's and R" denote the two halves of Rs, i.e., if Rs = 
= {a, b)x(c, d), then let R'={a, (a+b)/2]X(c, d) and R"=((a+b)/2, b)x(c, d). 
We set 

i°2r0+fe-l,2«0+/-l(-X:' J*) — '̂<P2r0+li-l,290 + Z - l ^ ' X> 37) .s 1 

- ¿ ^ . w *» >o ( f e = 2 ' •••> 2 r ° ; 1 = J. 2> 2 '°) 
S = 1 ' 

and 

where G=F(Q). 
It is easy to verify that the step functions (pki{x,y) (k, I = 1, 2, ..., 2r<> —1; 

k = 2r», 2r° +1, ..., 2 r o + 1 - l and 1 = 1,2, ..., 2«o+1 —1) form anorthonormalsystem 
on 72, the simple sets Hpq (p, q=0, 1, .., r0—1; p=r0 and q=0,1, ..., q0) are 
stochastically independent, by (13) 

mes Hro,qo = mes F(Q) s C122'<.+«»(r0 +1)2(^0 + l)25r20 «^0+ i_1>2?0+ i_1, 

and by (14) for every (x, jO 

max max 
m H 

2 2 fl2r0 + t-l,2Î0+/-1^2r0+fc-l>290+/-l('V:' JO fc=l /=1 
'-a 

The above induction scheme shows that the orthonormal system {(pki(x, y) 
and the system {ffpq}p|9=1 of stochastically independent sets can be defined so that 
the conditions (11) and (12) hold true. 

Putting (10) and (11) together we see that 

(15) J j ? mes = 
p=04=0 

Thus the second Borel—Cantelli lemma implies that almost every (x, y)£l2 belongs 
to an infinite number of sets Hpq. Taking into account (12) this means that for almost 
every (JC, y) there exist four sequences {wj;}, {M ; } , { « ¡ } and {A^} of positive integers 
such that ntiSMf and (/=1, 2, ...), max (m;, /7,) — =° as i — °o, and 

lim 
M, N, 
2 2 aklcpkl(x,y) 

Since the double sum in absolute value is equal to 

SM^X, y) (x, y), 

(6) follows. 
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Part 2. Now suppose that (7) is also satisfied, i.e. for every m and n we have 

2 2 fl«0°g2/c)2 (log 2/)2 = oo. 
k=m l—n 

Then, using the non-increasing property of {a*,}, for every r we have 

p=rq=r 

This makes it possible to define a sequence 0=r 0 <r 1 <r 2 < . . . of integers such that 

Al = 21 T<2 2 " + " (p+ l ) 2 ( i + l ) 2 a l „ + 1 _ l f 2 , + 1 _ 1 0 = 0, 1, ...). p=r,+l q=r,+1 

Finally, let {i-},™ 0 be a sequence of positive numbers with the properties 

lim s,' = o, (S;?a; ^ 1 (i = 0,1, ...) I-» oo 
and 

(16) 2(s;)sa; = ~ . 
i = 0 

After this modification we have only to repeat the construction of Part 1. Rela-
tions (11) and (16) imply that 

2 2 2 mes - f fp, = °°, 1=0 p=rt+l q=r, +1 

which is stronger than (15). The second Borel—Cantelli lemma yields that almost 
every (x, j )€72 now belongs to an infinite number of sets Hpq with rt<p, q^ri+1, 

i—0,1,.... This already ensures that m*—°° can be replaced by m^ — i n (6). 
The proof of Theorem 4 is complete. 

5. Proo fs of Theorems 1—3 run along the same lines as that of Theorem 4 
with the exception that now there is no need of a "contraction" of the functions (p. 
In particular, at present 

a a 
(par+k-i.v+i-1(*> y) — 2 Vsr+k-i,v+i-i(Rs> x>y)~ 2 <P2r+k-i.2r+i-i(Rsl x, y)> 

s—1 s=1 
where 

y) = il>l2r)(x)M2rHy) (*, I = 1/2, ...,2'; r = 0,1,...), 

while the other q>kl(x, y) are indifferent from our point of view (of course, they have 
to be normal and orthogonal to each other). Further, 
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where F=£<2r>x£ (2r). By (8) 

(17) mes Hrr = mes F = (mes £(2">)2 ^ Q2. 

Let g(n)=(g(n) log n)1'2. Then by (2) 

g(n) = o(g(n)) and g(n) = o (log n) (n — 

Hence there exists a sequence {«J=2 r j }Jl1 of integers such that «yS2nJ_1 (n0=l), 

(18) and if B S B , (J = l,2,...). 
g(n) j log n j 1 

The definition of the coefficients is the following: set for k, /=1,2, ...,/ 
j= 1,2, ... 

rijg(2nj) log 2ny-a»y+t-i,ny+/-i = ., ( i n Theorem 1), 

/A \ 
h1+k-i.nJ+t-i = n j g l o g^n , (in Theorem 2), 

= (m Theorem 3); 

and akl=bkl=ckl=0 for k, 1=1, 2, ..., n1 — 1; 

k = rij, ...,2nj — l and I = 1, 2, ..., n} — 1; 

fc = 2rij, ..., nJ+1 — 1 and / = 1, 2, ..., nJ+1 — 1; 

k = 1, 2, ..., tij — 1 and I = tij, ...,2nj — l; 

k = 1, 2, ..., 2rij — 1 and I = 2ny, ..., n}+1 — 1; 7 = 1 ,2 , . . . . 

After this preparation it is quite easy to conclude the proofs. For example, 
let us carry out the proof of Theorem 1. 

If (x,y)€H (recall ns=2Ti), then by (9) and (18) 

(19) max 2 2 aklcpkl{x,y) 
k=n,+l /=n,+l 

- c ! " ' < y y s e n 0 = 1.2,...). 

njQ(2nj)log2nj 

By virtue of the second Borel—Cantelli lemma (17) implies that 

mes (lim sup Hrj rj) = 1. Thus (19) provides (4). 
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Besides, by (18) 

2 al (log max (k, T)f q* (max (k, Q) 
itjSk, 1~Z2BJ 

(log2nJ)2g2(2>iJ) ^ 1 
J n2j Q2 (2nj) (log Inj)2 - f 0 = 1,2,...). 

Since the remaining ak, = 0, hence (3) follows immediately. This finishes the proof 
of Theorem 1. 
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Characterization of Lebesgue-type decomposition 
of positive operators 

K. NISHIO 

1. Introduction 

Our concerns in this paper are (bounded linear) positive, i.e. non-negative-
definite, operators on a Hilbert space. Order relation among operators always refers 
to this notion of positivity; that is, BsA means B—A is positive. For conven-
ience, a positive operator B is said to dominate another A if aB^sA for some a^O. 

Given a positive operator A, we say a positive operator C to be A-absolutely 

continuous if there exists a sequence {C„} of positive operators such that C„TC 
and C„S<x„A for some a„s0 (N=L, 2, ...). Here CJC means that 
and C„ converges strongly to C. In [2] ANDO showed that for any positive operator 
B there is the maximum of all .¿-absolutely continuous positive operators C such 
that C^B, and established an algorithm for obtaining the maximum, denoted by 
[A]B, in terms of parallel addition; 

[A]B= lim (nA):B. oo 

Here the parallel sum A :B of two positive operators A, B was introduced by ANDER-
SON and TRAPP [1] in study of electrical network connection; A .B is defined, in 
operator matrix notation, as the maximum of all positive operators C such that: 

Meanwhile, PEKAREV and SMULJAN [6] introduced the notion of complement of a. 
positive operator B with respect to a positive operator A. When B dominates A2 

the complement, denoted by BA, exists and is defined as the minimum of all positive 
operators C such that 

(B A\ 

L o M 
Received February 9, 1979. 
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They developed detailed analysis of the map B*-*BA as well as the map B^-*(BA)A 

in connection with the reverse operation of parallel addition, that , is, parallel sub-
traction. 

Our first aim in this paper is to present algorithms for obtaining [A\B in terms 
of complement operation. 

There is still an important binary operation for positive operators A, B. It is 
the geometric mean A#B introduced by Pusz and WORONOWICZ [7]; A#B is 

defined as the maximum of all positive operators C such that 

(A C\ 

( c J s 0 -

Our second aim is to show that [A]B coincides with each of [A\B]B, [(A: B)2] B, 

[A#B]B and [(A^B)2]B. Coincidence of [A:B]B and [(A:B)2]B as well as 
that of [A#B]B and [(A #B)2]B is not a trivial thing. As a consequence the 
identities A%-B=A*[A]B and A:B=A:[A]B will be established. 

In the next section fundamental properties and lemmas of parallel sum, com-
plement and geometric mean are established in the form convenient for our aim. 
The main results will be presented in the final section. 

2. Parallel sum, complement and geometric mean 

In this section all operators are positive unless otherwise mentioned. 
The parallel sum A:B of two operators A, B is defined as the maximum of all 

operators C satisfying 

Explicit representation for A:B is given by 

((A:B)f,f) = inf{(Ah, h)+(Bg, g ) ; / = h + g}. 

If A and B are invertible 
(2) A-.B = {A~i+Brv)-\ 

The following properties of parallel addition can be derived easily from definition 
(e.g. [1], [5]). 
(3) A:B = B:A and (A:B):C = A:(B:C). 

(4) (CAC):(CBC) S C(A:B)C. 
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A consequence of (4) is .., 

(5) (CAC):(CBC) = C(A:B)C for invertible C. 

(6) AJA and BJB implies A„:BJA:B. 

As mentioned in the Introduction, given positive operators A, B the maximum 
of all positive ^-absolutely continuous C with CsB exists and is determined by 

(7) [A]B = lim (nA):B. 

Moreover, it is known (see [2]) that [A]B=B is equivalent to the condition 
(8) the linear manifold {h; B^hdran 04*)} is dense in the whole space. 
The following properties of the operation [A] can be derived easily from definition 
(e.g. [2]). 
(9) [A]Bs[C]B if A dominates C. 

(10) [A](B+C)S{A)B+[A]C. 

A consequence of (10) is 
(11) [A]Bs[A]C if BsC. 

More delicate properties are summarized in the following lemma. 

Lemma 1. For any positive operator A the operation [A] has the following 

properties; 

(i) [A]{B+aA) = [A]B + ctA for a>0 and Bs0. 
(ii) If positive operators B and Ap dominate each other for some p >0, then 

[A]B=B. 

Proof, (i) follows from the identity 

(PA):(B+«A) = (((«+P)A):B) + for a, fi > 0, 

which is easily checked for invertible A, B and then for general A, B by (6) through 
approximation of A by A+el and B by B+el. 

(ii) Suppose B and Ap dominate each other. If ps 1, A dominates Ap, hence B. 

This implies [A]B=B. Suppose 0 < p < l . Then there is X such that B=A"'2 XA"12, 

ker (Z)=ker (Ap) (see [4]) and the restriction is an invertible operator 
on ran (A)~, the closure of the range of A. Now by (7) and (4) 

BS[A]BsnA:Bs Ap/2(nA1-p:X)A<'/2. 

10 
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Since A ' l ^^ j . is invertible and ker (X) = ker (A)=ker (A1 p), by virtue of con-
dition (8) [A^^X must coincide with X itself. Therefore by (7) 

B 3=- [A]B is A"t<&Al~*\X)A"% = Ap,2XApli = B. 

This completes the proof. 
Let A, B be positive operators. It is known (e.g. [4], [7]) that there is a positive 

operator C for which 
(B A\ 

L e ) » 0 

if and only if B dominates A2. In this case, there is the minimum of all such C. 
According to Pekarev—Smuljan [6] this minimum is called the complement of B 
with respect to A and is denoted by BA. More explicit representation of BA is given by 

(12) BA = Z*Z, 

where Z is the uniquely determined (bounded linear) operator such that A=BiZ 
and ker (Z* )D ker (B) (e.g. [4], [7]). If B and A2 dominate each other, the restric-
tion Z|ran(^)- is an invertible operator on ran (A)~. In particular, 

(13) BA = AB~1A for invertible B. 

The following properties of complement can be derived easily from definition (e.g. [7]). 

(14) BA ^ CA if B S C and C dominates A2. 

(15) BJB implies (BN)ALTBA if B dominates A2. 

As a consequence of (15), B dominates A2 if and only if AiB+zI^^A is bounded 
above for e>0. In this case 

(16) BA = hmA(,B+£l)-1A. 

A little more effort will show 

(17) BA = weak-Hm (^+e/)(5+e/)-1 (^+e/). 

The following property and calculation rules of complement can be derived easily 
by (16), (2) and (4) through approximation. 

(18) = BA if B dominates A2. 

(19) (A :B)C = Ac+Bc if both A and B dominate C2. 

(20) (A+B)cm AC:BC if both A and B dominate C2. 

Lemma 2. (PEKAREV and SMULJAN [6]) Let A, B be positive operators. Then 

B dominates A if and only if B does A+B. In this case, the following identity holds 

Ba+b=Ba + 2A+B. 
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Proof. The first assertion is immediate from definition. The expected identity 
is true when B is invertible. In fact, by (13) 

BA+B = (.A+B)B~1(A + B) = AB^A + IA + B = Ba+2A+B. 

The general case results by (17) through approximation. This completes the proof. 

Lemma 3. The following three conditions for positive operators A, B and C 

are mutually equivalent, 

(i) A:BsC, 

(ii) A — Cs (B—C)c, 

(iii) A-CS(A+B)A. 

If equality holds anywhere in (i) or (ii) or (iii) then equality holds everywhere. In 

particular, the following identity holds 

A:B = A-(A+B)a. 

Proof. By definition of parallel addition, (i) is equivalent to 

(A-C A \ 

I ^ A+B)^0' 

which is equivalent to (iii) by definition of complement. On the other hand, the 
identity 

( I 0\tA-C A w/ -I\ (A-C C -J 

1-7 l) I A A + B) lo I ) = I C B-C) 

implies the equivalence of (ii) and (iii). This completes the proof. 
Given positive operators A, B there is the maximum of all positive operator C 

such that 
(A C} 

( c b) = 
This maximum is called the geometric mean of A and B, and is denoted by A # B. 

The following properties of geometric mean can be derived from definition (e.g. 
[3], [7]). 
(21) A # 5 = Ai(A~*BA-i)tA* for invertible A. 

For general A, the geometric mean A can be computed by approximation. 

(22) A„\A and Bn\B imply An± Bn\ B. 

(23) (CAC) # (CBC) s C(A # B) C. 

A consequence of (23) is 

(24) (CAC) # (CBC) = C(A # B)C for invertible C. 

10* 
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Lemma 4. For any positive operators A, B the following indentity holds 

# B(j4#B) = A # B. 

Proof . Let C=A#B. Clearly (see the second sentence after the proof of 
Lemma 1) A, B and Ac dominate C 2 and moreover A^BC, B^AC hold. This 
implies A # B SAC # Bc. Reverse inequality follows immediately from the inequality 

Ac#Bc^(A#B)c, 

because (A#B)a#b=A# B. This inequality is surely guaranteed whenever both 
A and B dominate C2. In fact (13), (14) and (23) will yield 

AC#BC ^^C(^+£/)-1C#C(5+£/)-1C 

^CdA+eiy^CB+siy^C 

= C((A+£I)#(B+sI))-1C for e > 0 , 

the last equality resulting from (21), in which by (22) and (15) the last term 
C(G4+£/)#( f i+a/) ) _ 1C converges increasingly to (A # B)C on taking limit e—0. 
This completes the proof. 

Relations between parallel sum and geometric mean are gathered in the follow-
ing lemma. 

Lemma 5. The following relations hold for. parallel sum and geometric mean. 

(i) 2-104 #B)^A:BsHA+BJI ~\A #B)\ 

(ii) (A+A#B):(B+A#B) = A#B. 

Proof . By using approximation, A can be assumed to be invertible. Let 
C=A~iBA~i. Then by (5) and (24) the first inequality of (i) is equivalent to 

2 - 1 ( / i ! :C )S/ :C , 

which is, in turn, equivalent to 

2- i C i ^ C i l + C ) ' 1 

by (21) and Lemma 3. But the last inequality is surely guaranteed by arithmetic-
geometric mean inequality for a positive operator. In the same way the second 
inequality of (i) is equivalent to 

C(Z-f-C)-1 s |M+£||-1C*>4C*, 
hence to 
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Since the inverse map converts order-relation, this last inequality is equivalent to 

\\A+B\\lsAi{I+C)A\ 

which is surely guaranteed, (ii) results from the identity 

(I+C*):(C+C*) = C*, 

which is guaranteed by simple computation. This completes the proof. 

3. Theorems 

Theorem 1. For any positive operators А, В 

[А] В = lim(CB+eA)A i )A i. £ i 0 
If В dominates A, then 

[A]B = (Ba±)a±. 

Proof. Suppose first that A and В dominate each other. Then by (12) 

BAi = Z*Z, 
where Z is an operator such that ker (Z)=ker (A*), Ai=BiZ and Z\ran(A). is 
an invertible operator on ran (A)~. This implies that 

V(BAi)i = Z, 

where V is a unitary operator on ran (A)~, and hence 

(BAi)iV*Bi = Z*Bi = AK 

Again by (12) the last identity leads to 

(BAi)Ai = B*VV*Bi = B= [A]B, 

the last equality resulting from domination by A. Thus the assertion is true in case 
A and В dominate each other. 

Suppose next that В dominates A. Then for each n the operator (nA):B and A 

dominate each other, hence 

(nAy.B = [A]((nA):B) = ((nA):B)Ai)Ai S ( ^ i , 

which implies, by definition of [A]B, 

[А] В S (BAi)Ai. 

Since (BAi)Ai is Л-absolute continuous by (18), and [А] В is the maximum of all. 
/4-absolutely continuous С with С SB, the reverse inequality holds too, proving 
the second assertion of the theorem. 
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To prove the first assertion, remark that for any positive B and e>0, B+eA 

dominates A. Therefore by Lemma 1 (i) and the second assertion already proved 

[A]B+EA = [A](B+EA) = { ( B + E A ) ^ ) ^ , 

which leads to the first assertion on taking limit e—0. This completes the proof. 

Theorem 2. For any positive operators A, B 

[ A ] B = [ A \ B ] B = [(A: FI)2] B = ( A - A : B ) A . B + A:B. 

Proof. Let C=A:B. Since A, BsC and C dominates C2, by (9) 

[A]B S [ C ] B S [CL]B. 

Further (10) (concavity) implies 

[C2]5 [C 2 ] ( 5 -C )+ [C 2 ]C = [C 2 ] ( 5 -C ) + C, 

the last equality resulting from Lemma 1 (ii). On the other hand, by Lemma 3 

. B - C S ( A - C ) C , 

which together with (11) and C2-absolute continuity of (A—C) c implies 

[ C * ] ( B - C ) S ( A - C ) C . 

Now it remains to prove the relation 

( A - C ) C + C = [A]B. 

To this end, for each n let B„=(nC):B and C„ = A :B„. Since A and A+Bn 

dominate each other, Lemma 1 (ii) with P — ̂  and with A2 instead of A shows 

[A*\(A+BJ = A+BA, 

and hence by Theorem 1 

((A + BN)A)A = A+BN. 

On the other hand, since the relation by Lemma 3 

CN = A:BN = A - ( A + B N ) A yields 

{(A + Bn)A)A = (A-Cn)A, 

combination of these two relations leads to 

A+Bn=(A-Cn)A-

Further Lemma 2, with A—CN and C„ instead of B and A respectively, shows 

(A — C„)A = (A — Cn)cn + CN + A. 
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Therefore the following relation has been proved 

Bn = (A-Cn)Cn + Cn. 

Since (3) (associativity and commutativity) implies 

* = + and Cn = - ^ C , 

the established relation becomes 

{(n + l)A):B = ^ T ( A - ^ T c ) c + C , 

which leads to 
[A]B = (A-C)c+C 

by (15) because A — r C converges decreasingly to A—C. This completes 
/1+1 

the proof. 

Corol lary 3. For any positive operators A, B 

A:B = A:[A]B. 

Proof. Let C=A:B. Then definitely both A and B dominate C2. By Theo-
rem 2 it suffices to show A:[C2]B=C. Calculation rules (19), (20) and Theorem 1 
will yield 

C = [C2]C = ((A:B)c)c = (A c + Bc)c ^ (AC)C:(BC)C == A:[C2]B^A:B = C. 

This completes the proof. 

Theorem 4. For any positive operators A, B 

[A]B = [A#B]B=[<<A#BY\B = Aa*b. 

Proof. With C=A#B Lemma 5 (ii) shows 

(A + C):(B+C) = C. 

Then, in the proof of Theorem 2, replacement of A and B by A+C and B+C, 

respectively yields 

[C ] ( 5+C ) ^ [C 2 ]£+C ^ Ac+C = [C ] (5+C) , 

which implies by Lemma 1 (i) 

[C]B = [C2]B = Ac. 

On the other hand, Lemma 5 (i) together with (9) implies 

[C]B^[A:B]B^[C2]B, 

which completes the proof, because [A:B]B=[A]B by Theorem 2. 
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Corol lary 5. For any positive operators A, B 

A#B = A#{A]B. 

Proof. Let C=A#B. By Theorem 4 it suffices to prove 
Twice applications of Lemma 4 will show 

C — AC#BC = (Ac)c# (Bc)c, 

hence by Theorem 1 

C = [C2]A # [C2]£ =s A # [C2]5 SA#B=C. 

Therefore A # [C2]B=C. This completes the proof. 
Acknowledgment. The author would like to thank Professor T. Ando for sug-

gesting this research and stimulating discussions. 
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Integrability of Rees—Stanojevic sums 

BABU R A M 

1. A sequence (a„) of positive numbers is called quasi-monotone if n~fia„\0 
for some /3, or equivalently if an+1Sa„(l+a/«). 

We say that a sequence (ak) of numbers satisfies 

Condition S* if ak-~0 as and there exists a sequence (Ak) such that 

(Ak) is quasi-monotone, 2 Afe<00> and \Aak\^Ak for all A:. 

Condition S* is weaker than Condition S of Sidon introduced in [4]. 
Recently, REES and STANOJEVI6 [3] (see also GARRETT and STANOJEVI6 [2]) 

introduced the modified cosine sums 

and obtained a necessary and sufficient condition for the integrability of the limit 
of these sums. 

The object of this paper is to show that Condition S* is sufficient for integra-
bility of the limit of (1). 

2. We require the following lemmas for the proofs of our results : 

L e m m a 1. (FOMIN [1]) If |CK|SL, then 

where C is a positive absolute constant. 

Lemma 2. (SzAsz [5]) If (a„) is quasi-monotone with 2an~<<x'> then na„—0 
as rc —o=. 

(1) g»(*) = -J 2 Aak + 2 2 A<*J cos kx 
1 n n n 

Ä=0 k=lj=k 

Received March 22, 1979. 
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3. We prove 

Theorem. Let the sequence (ak) satisfy Condition S*. Then 

g(x) = lim 2 [4" àak + 2 ¿ai cos M 

exists for n] and g(x)£L(0, n). 

Proof . We have 
R r i n 1 

gn(*) = 2 2 Aajcos kx\ = 

" 1 " 1 
= 2 ^ r A a k + 2 akcoskx-att+lDn(x)+—an+1. 

k = l fc=l 

Making use of Abel's transformation, we obtain 

<2) g»(*) = 

= 2-J + "n [D„ -a„+iD„ W - f l i + y flB+1 = 

= "2 AakDk(x) + anDn(x)-an+1Dn(x). 
*=l 

The last two terms tend to zero as n-~ <*> for x^O and since 

\Dk(x)\ = 0(l/x) if x^O and fc=0 eo 
the series 2 ^akDk(x) converges. Hence lim g„(x) exists for x^O. Now applica-

tions of Abel's transformation and Lemma 1 yield 

(3) / |g(*)| dx = J 2 AakDk(x) fc=i 

= f 2 A k ^ D k ( x ) 
k=1 Ak fc=l 

dx = 

dxs 2\AAk\ f ¿ ^ D j i x ) 
o i=o Aj 

dxS 

S C 2 (k+l)\AAk\ = 
k=1 

k=l I V K/ I t = i K 
00 ~ fc-J- 1 

t=l t=i K 
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the last step being the consequence of Ak(l+OL/lc)^Ak+1. But 

2Ak=2\k + l)AAt+(n + l)AB-Al. 
*=l *=i 

oo 
Applications of 2 and Lemma 2 yield 

o 

(4) 

fc=l k=1 

(3) and (4) now imply the conclusion of the Theorem. 
Corollary. Let (ak) be a sequence satisfying the condition S*. Then 

— 2 M sin (fc+1/2)* = 
X X 

converges for x£(0, TI] and €¿(0, TL). 

x 
Proof. This follows immediately, namely by (2), 2sin — g(x)=/i(x). 
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Minimax theorems beyond topological vector spaces 

L. L. STACH6 

1. Introduction 

The numerous applications and generalizations of von Neumann's classical 
minimax theorem constitute an important chapter of modern convex analysis. 
However, all proofs make essential use of some variant of Brouwer's fixed point 
theorem, a result that has seemingly nothing to do with convexity but closely con-
nected with the vector space structure of R". 

In his recent paper [3], I. Jo6 submitted a completely new and elementary 
proof of Ky Fan's minimax principle, based on a simple fixed point theorem that 
can be easily proved by the usual methods of convex analysis. Now the converse 
question arises: Is it possible to give an extension of the concept of convexity that 
allows us to find a proof of Brouwer's fixed point theorem proceeding along the 
lines of the fixed point theorem in [3]. 

Unfortunately, we cannot furnish yet a definitive answer to this problem. How-
ever, by an examination of the proofs in [1] and [3] we can find a deep argument 
that may provide some hope in an affirmative answer. Namely, these proofs do 
not touch the algebraic structure of the underlying vector spaces and the only prop-
erty arising from convexity which is actually used is the trivial topological fact that 
the interval [0, 1] is connected. 

The main purpose of the present article is to show how these remarks yield 
new generalizations of the Ky Fan and Brezis—Nirenberg—Stampacchia minimax 
principles, respectively, for topological spaces that are richer but axiomatically 
simpler than the familiar topological vector spaces. 

Our goals will be the following three observations: 
a) The most suitable concept in describing the topological situation that occurs 

in the minimax principles is perhaps the interval space defined (in Section 2) as a 
topological space equipped with a system of connected subsets that play the role 

Received February 22, and in revised form, May 25, 1979. 
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of closed segments in vector spaces. In such spaces the convexity of sets and quasi-
convexity of functions have a natural interpretation and Joo's method (even with 
some simplifications) can be applied to establish an extension of Ky Fan's minimax 
theorem. 

b) On the other hand, by shifting the emphasis from the topology on the order 
structure of one of the underlying spaces, a little change in the crucial steps of [1] 
(summarized there in formulae (3), (4), (5)) leads to a new elementary proof and 
generalization for certain interval spaces of the Brezis—Nirenberg—Stampacchia 
minimax theorem [4, p. 289] that provides a deeper explanation of the asymmetry 
noted in [4, Remark p. 290]. 

c) We can answer by a counterexample a question of L. NIRENBERG [5, p. 144] 
concerning the conjectured most general form of minimax theorems in topological 
vector spaces. 

I am indebted to I. Joo for the stimulating discussions and for having called 
my attention to Nirenberg's question. 

2. A Joo type minimax theorem in interval spaces 

Definition. By an interval space we mean a topological space X endowed 
with a mapping [.,. ]: XXX-* {connected subsets of A"} such that x l5 AT2€[*I, *2] = 
= [x2, x j for all x1, x2(iX. 

In interval spaces it makes sense to speak of convexity in a natural way: 

Definit ion. A subset K of an interval space X is convex if for every x l5 x2£K 

we have [xl5 xJcA". Obviously, this concept preserves the following fundamental 
properties of convexity in vector spaces: 

Proposit ion 1. In any interval space X, convex sets are connected or empty. 

The intersection of any family of convex sets is convex. The union of any increasing 

(with respect to inclusion) net is convex. 

For our purposes it is of more importance that, although convex functions 
cannot be defined on interval spaces in a reasonable manner, the concept of quasi-
convexity of functions can be extended to interval spaces. 

Definit ion. A function / mapping an interval space X into R is quasiconvex 

or quasiconcave if /(z)^max {/(xi),/(x2)} or /(z)smin { / ( x j , / ^ ) } whenever 
x l s x2£X and z c [Xi, x j . Thus/is quasiconvex [quasiconcave] iff the sets {x: /(x) = y} 
[ {x: /(x)^y} ] are convex for all y€R. 

To extend the proof in [1] for interval spaces, we need the following generaliza-
tion of the fixed point theorem in [3]: 
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Proposition 2. Let Y be an interval space, X a topological space and K(•) 

a mapping of Y into the family of compact subsets of X, such that 

(1) for all ydY, 

(2) K(z)aK(yJ\JK(y2) whenever zd[yi,y2] and yx,y2dY, 
n 

(3) P| K(yt) is connected or empty for every yx, ...,y„dY (n = 1, 2,...), 
¡=1 

(4) xdK(y) whenever ̂  = lim yt, x=lim x( and x ¡dK(yi) for all id J'. Then 
iiJ i€S 

we have f| 
yer 

Proof. We must show that the family K(Y) has the finite intersection prop-
erty, i.e. 

(3') 0 K(y,) * 0 for every yi,...,y„dY 
¡ = 1 

for all H£N. We prove (3') by induction on n. For n=1, (3') follows from (1). 
Suppose that (3') holds for n=l,...,k but there are yx, •••,yt+1 such that 
k +1 «¡+1 
Pi K(yf)=9. Consider now the mapping AT* 0 0 = ^ 0 ) 0 Pi K{y*). It readily 

¡=1 i=3 

follows from our induction hypothesis that K*(y)^0 for all yd Y. Moreover, 
(2) and (3) ensure that 

(5) K*(z) is a connected subset of K* (yt)\J K* (yt) for any z£[y*,yH 

By definition, K*(y*)r\K*(y2)=Q. (5) implies that for every z£[y*,yH, the con-
nected set K*(z) is the disjoint union of the compact sets K*(z)f)K*(y]) (j~\, 2). 
Hence 

(5') either K * ( z ) ^K* ( y t ) or K*(z)czK*(yt) for any zd ly^y t l 

Thus the sets Sj= {zd[yx, y%]: K* (z)cz K* (y])} (j= \, 2) are disjoint non-empty and 
SjU S2=[j ' i , y*]. But from (4) we see that both and S2 must be closed in 
[>»*, y2]. (In fact, let 7=1 or 2 be fixed and let ( j f : id^) be a net in Sj with 
yi—yd[yi,y£i- For any index idpick a point xtdK*(y^ arbitrarily. Since by 
the definition of Sj, the sets K*(yt) are contained in the compact K*(y^), for a 
suitable subnet (xim: mdJt) we have xim-~x for some xdK*(y^). Now (4) ensures 
that xdK*(y) whence K*(y)cK*(yJ).) However this contradicts our axiomatic 
assumption that intervals are connected. 

Theorem 1. Let X, Y be compact interval spaces and let f: XX be a 

continuous function such that 

(6X) the subfunctions x>->-f(x,y) are quasiconcave for any fixed ydY, 

(&) the subfunctions y*-*f(x,y) are quasiconvex for any fixed xdX. 

Then = max min f(x, y)= min max f(x, y)=y*. 
x y y X 
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Proof. A standard compactness argument establishes that both y¥ and y* are 
attained (thus the statement of Theorem 1 makes sense). Then obviously we have 
y+=y*. The converse inequality y+ = max min f(x, y)=y* is equivalent to the exist-

* y 
ence of some x0£X such that for all yd Y we have f(x0,y)^y*. 

For each y£ Y, let K(y) be defined by K(y) = {x: f(x, y)^y*}. Thus to y^y* 

we have to show H K(y)^0. 
yer 

From the definition of y* we see that K(y)^0 for any y£Y. The continuity of 
/implies that K(y) is compact and from (6X) we obtain that K(y) is convex for all 
y£Y. From (60 it follows K(z) = {x: f(x, z)sy*}c{x: max {f(x, yj):j=l, 2}=?y*}= 

2 2 
= U f(x>yj)-Y*}— U K()'j) whenever zd[ylt y^. Finally, also from the con-

7=1 J=1 
tinuity o f / we deduce (4). Since convex sets are connected or empty, Proposition 2 
can be applied, whose conclusion is D 

yer 
We close this section with the following question: 
Question. Is there a choice of X, Y and K in Proposition 2 such that the 

conclusion H K (y )^0 be a known equivalent of Brouwer's fixed point theorem? ytr 

3. A generalization of the Brezis—Nirenberg—Stampacchia minimax theorem 

Definit ion. We shall say that an interval space Y is Dedekind complete if for 
every pair of points y!,y2€Y and convex subsets Hx, H2c^Y with y^Hj (j=\,2) 

and [ , y2]<zH1UH2 there exists such that [y2, z]\{z}c//2 or there exists 
Z€H2 such that [>'i, z]\{z}c//2 . 

Lemma 1. Let Y be a convex subset of some real Hausdorff topological vector 

space with its natural interval structure , _y2] = {(1~~ ̂ J i + /€[0, 1]} (for each 

y\, y2£Y). Then Y is a Dedekind complete interval space. 

Proof . Given ylty2 and HX,H2 as above, set z = ( ! ~/*)yl+/.*'y2 where 
;.*=sup {A€[0,1]: (1 -?.)y1+?.y2£H1}. Then ze[yuy2] and [yJt z]\{z}<zHj 0 = 1 , 2). 

Proposit ion 3. Let X be an interval space, Y a Dedekind complete Haus-

dorff interval space and /: I X f - R a function such that 

(7*) the subfunctions x>-*f(x, j ) are quasiconcave on X and upper semicontinuous 

on any interval of X (for all fixed y£Y). 

(7*) the subfunctions y>-—f(x, y) are quasiconvex on Y and lower semicontinuous 

on any interval of Y (for all fixed x£X). Then the family ¿F of X-subsets defined by 

(8) F={{x:f(x,y)^y}:y(iY, y < y*}, where y*=infsup f(x,y), 
1 1 y X 

has the finite intersection property whenever y* =— 
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Proof. The definition of y* ensures that for any (and if 
y* > — co). Assume now that we have 

(9) f ) Fi ^ 0 for every choice of Flt ..., 
¡=i 

B+l 
but f\ F*=d where Ff, ..., F*+1 are some given elements of 2F. To complete the 

¡=1 
proof, we show that this is impossible. 

By (8) we may suppose that F* = {x: f(x,yf)Sy^} (/'=1, ..., n + 1) with 
yh...,y*n+1iY and Set 

(10) G = "n (x: f(x, and K(y) = {x£G:f(x, y) > y^} for all y£Y. 
¡=3 

Now (7*) implies that each set K(y) is convex in X and from (10) and (9) we see that 

K(y) 3 [x: fix, y) S n"Q {*•• fix, yf) s * 0 (for all Y). 

Also in this proof, the key property of the mapping yt-+K(y) is that 
(2*) K(z)dK(yi)UK(y2) whenever zt[yi,y2] (for all y^y^Y) which 

can be deduced from (10) and (7 ) as follows: K(z) = {x£G: f(x, z ) > y * } c 

{max/(x, y j ) : 7 =1, 2}^y*}= U {x€G: f(x, yJ)>y*1}=K(y1)UK(yi). 
i 

Hence it follows that 
(5*) either K(z)czK(y*) or K(z)^K(y*2) for any z€ [y f , j>2*]. 
Indeed, x1eK(z)C]K(y*) and x2£K(z)C\K(y*) implies that for the sets T} = 

= [xl5 x 2 ]HF;n"n F*(j= 1, 2) we have T ^ T ^ f ) F*=Q and [Xl, x2] z> TxU T23 
¡=3 ¡=1 

=3[*!, x2]n(F*uF2)nG=>[Xl, x2]n U K(yJ) =5by (2 )3 [ x x , x2]flK(z) = [Xl, x2]. By 
j=i 

(T) the sets F* are closed in X (/=1, ..., w + 1) whence Tx and T2 are closed in 
[xi, x2]. But this contradicts the connectedness of [x1; x2]. Thus (5*) holds. 

(2*) and (5*) show that the sets 

(11) H) EE {z: K(z) C K(y*)} (; = 1,2) 

are convex in Y, H*UH2 =>[}>!, y2] and y*dHf (7=1,2). Since the interval 
space Y was assumed to be Dedekind complete, there exist 7'€{1, 2} and z*£H* 

such that 

(12) [y*k, z*]\{z*} c Hk* where ke{\,2}\{j}. 

From (10) and (11) we have 

(13) f(x*, z*) > yt for all x*<=K(z*). 

it 
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On the other hand, if x*£K(z*) then x*<f From (12) and (11) it follows 
K(y*)z2K(z) for all z£[yt, z*]\{-?*} whence we obtain by (10) that 

(13') f(x*,z)^yt for all z(:[yt, z* ]\{z* } and x*iK(z*). 

Since the topology of Y was supposed to be Hausdorff and since the interval [yk, z*] 

is connected, the point z* belongs to the closure of [>£, z*]\{z*}. But then (7y) 
and (13') imply f(x*, z*)=sy? for all x*£K(z*) ( ^0 ) which contradicts (13). 

Theorem 2. Suppose that X is an interval space, Y is a Dedekind complete 

Hausdorff interval space and that the function f: XX Y—R has the properties (7*), 
(7*) the subfunctions x>-<-/(x, y) are upper semicontinuous and quasiconcave on 

the whole X (for all fixed ydY), 

(T) for some y<inf sup f(x, >•) and y£Y, the set {x: f(x, j>)Sy} is compact. 
y x 

Then we have max in f f ( x , j>)=inf sup f(x, j ) . 
x y y x 

Proof. From the definition of the operations inf and sup it follows immediately 
that sup in f f ( x , j ) ^ in f sup f(x, y). Therefore again it suffices to prove that x y y x 

inf/(x0, j ) ^ y * ( = in f sup f(x, j')) "for some x0£X, or equivalently that the family 
y y x 

2F defined by (8) admits a common point. 
Now (7C) ensures that y *> — °° and that some member of & is a non-empty 

compact set. By (7^), each member of J* is a closed subset of X. Hence fl 
if and only if 3F has the finite intersection property. But this is a directe consequence 
of Proposition 3. 

Corollary. (Brezis—Nirenberg—Stampacchia) If X is a convex subset of a 

real Hausdorff topological vector space, Y is a convex subset in a real vector space 

and f: XX 7—R is a function satisfying (7^), (T) and (7C) then we have max inf 
x y 

f(x, j>) = inf sup/(x, y). 
y X 

Proof. Let us endove Y with any locally convex Hausdorff vector space top-
ology. (It is always possible e.g. by taking the convex core topology on the sup-
porting vector space of Y, cf. [6, p. 110, (2.10)].) Then by Lemma 1 we can apply 
Theorem 2. 

4. A counterexample concerning the extendibility of Theorem 2 

In the light of the proof of Proposition 3, we can answer (negatively) the 
question raised by L. NIRENBERG [5, p. 144] whether condition (7*) can be replaced 
by the weaker condition (7X) in the Brezis—Nirenberg—Stampacchia minimax 
theorem. 
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Theorem 3. There exist locally convex Hausdorff topological vector spaces F, 

G and compact convex subsets XaF and YczG, further a function f: XX F— {0,1} 
satisfying (T), (7y), and such that 0 = max min f(x,y) and l=maxmin/(x, j ) . 

x y y X 

Remark. It is well-known from elementary convex analysis that a convex 
subset K of a finite dimensional real Hausdorff topological vector space V is closed 
if and only if it is algebraically closed (i.e. if the sets {AeR: u+X • v£K} are closed 
for all u, v£V) [6, p. 59, p. 9]. Hence (7X) [respectively (7*)] implies that the sub-
functions x>-»f(x,y) [y>-*f(x,y)] restricted to the intersection of X[Y] with any 
finite dimensional linear submanifold of F [G] are all upper [lower] semicontinuous.. 

Proof. Let G be the space of the functions mapping N ( = {1,2, ...}) into R en-
dowed with the pointwise convergence topology and let Y= {y£G: range ( j ) c [0 , 1]}.. 
Thus Y is homeomorphic to the compact product space [0,1]N. For /=1,2, ... 
let et denote the function e{\ 1 if i=n, 0 if Set H„=co {et: / >«} 

(the symbol co standing for the algebraic convex hull operation; «=1 ,2 , ...). 
Clearly, the sets Hn are algebraically closed (because the vectors elte2, ... are-

OO 
linearly independent). Further we have p] 77„=0. Therefore the function 

n=l 

m(y) = min {w£N: 

is well-defined for all j € G. Now we define the space F as the set of the functions 
mapping Y into R, also with the pointwise convergence topology, and we set 
Z = { x £ F : range (x)c:[0,1]}. Again, X is homeomorphic to the compact product 
[0, l]y. To define the function f first we introduce the following X-subset valued 
function K(') on Y: 

K(y) = co {lHn: n s m(y)} (for all y£Y) 

where \H denotes the characteristic function of the set H„ (i.e. 1^00 = 1 if y£Hw 

and 0 else). Since the functions 1H (w£N) are linearly independent, the sets K{y} 

are algebraically closed (for all y£ Y). Then let 

f(x, y) = l w „ ( y ) ( = 1 if xiK(y), 0 if K(y)) for all x£X, y^Y. 

To show (7X), we have to check that for all y£R, the sets {x: f(x, y)^y} are 
algebraically closed for any y£Y. But {x: f(x, y)=y}=X if y^O, K(y) if 
0 if y > l . 

In particular, {x: /(x, y)^\} = K{y)7i® for each y£Y, whence l=max/(x, y) — 

= min max/(x, y). 
y x 
For (7*) we must show that {>•: f(x, j;)=>'} is algebraically closed for all 

ygRand x£X. Now we have {y : f{x, y)Sy}=® if y<0, Y if y s i , and i f 0 ^ y < l then 

n* 
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{y-Rx, y)^y}={y-f(x,y)=ti)={y. xHco { 1^ : nsm(y)}}. In case 
of x$co {1H : w6N} we obviously have { j : x$co : « ^/«(;>)}} = Y. If 
x£co {1^ : /i£N} then there exist finite sets / j C N and {Af: /£,/^<3(0, such that 

2 A f = l and x= £ K' ^h » thus in this case we have {y: x$co : nSm(y)}\= 

= {y: min Jx^m(y)}={y: min J»x<min { « : J $#„}}={;>>: InSmm J?x yiHn} = 
min J 

= {y\ V«^min Jx y£Hn}= H H„ = Hminj, which is also convex and alge-
N = 1 * 

braically closed. 
Since for any x£X we have seen that {y: f(x, y)=Q}=Y or H„ for some 

«6N, i.e. {y: f(x,y)=O}^0, we can conclude 0=min f(x, _v) = max min /(x, y). 
x,y x y 

Question. Does sup in f f ( x , j ) = in f sup f(x, v) hold if the functionf: XX r—R 
X y y X 

is such that X and Y are convex compact subsets of some locally convex HausdorfF 
topological vector spaces and every restriction to any straight line segment con-
tained in X [in Y] of the subfunctions XH—/(X, J ) [y>—f{x, J')] is continuous and 
concave [convexJ1 
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Almost periodic functions and functional equations 

L. SZÉKELYHÍDI 

1. Introduction. In this paper we deal with bounded solutions of a class of 
functional equations defined on topological groups. Our results are based on the 
fact that all characters of a group are almost periodic functions (see e.g. MAAK 
[5], [6]). This can be restated by saying that all bounded solutions of the functional 
equation f(xy)=f(x)f(y) are almost periodic functions. In this work this result 
is generalized for the functional equation (1) which has been dealt by many authors 
(see [1], [7], [8], [9], [11], [12]) but has not been completely solved. Using our results 
we give all bounded solutions of (1) on commutative groups. Our other main result 
is the proof of the fact that all bounded solutions of (2), and in particular of (3), 
are almost periodic functions. Concerning these equations see [1]. 

We note that some of our results remain valid on topological semigroups as 
well. On the other hand the method used in Section 3 to solve equation (1) can be 
used successfully to solve other similar equations ([10]). 

2. Preliminary facts and results. Let G be a group and X a uniform space. 
A function /: G-*X is said to be almost periodic if for every X-entourage R there 
exists a finite covering Ax, ..., A„ of G such that (f(xz),f(yz))£R whenever z£G, 

x,y€A( (i=l, ...,n). 

Let H be a set and X a uniform space. A function /: H—X is said to be totally 

bounded if for every X-entourage R there exists a finite covering Bx, ..., B„ of 
ran/, the range of/, such that (x, y)<íR whenever x,y£Bt ( i = l , ..., n). 

If G is a group, X is a uniform space and /: G—X is an almost periodic func-
tion, then / is totally bounded. Indeed, if R is any X-entourage and Ax, ...,A„ 

is a finite covering of G for which ( f(xz),f(yz))(iR holds whenever z£G, x,y£A, 

(i= 1, ..., n) then Bi=f(Ai) (i= 1, . . . ,« ) yields an appropriate covering of ran/. 
If G is a topological group, X is a Banach space, then the continuous func-

tion /: G—X is almost periodic if and only if the orbit of /is relatively compact 
in the Banach space of all continuous, bounded X-valued functions on G. (The 
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•orbit of / is the set of all right translates of f. It can be proved that this is equivalent 
to the relative compactness of the set of all left translates of /.) 

For more about almost periodic functions see e.g. [2], [3], [4], [5], [6]. 

3. Bounded solutions of functional equations. 

Theorem 3.1. Let G be a topological group, n a positive integer, and ak, bk: 

G-+ C bounded functions, where the aks are continuous (&= 1, ...,«). If f: G—C 

is a function for which 

(1) f(xy)= 2ak(x)bk{y) 

k = 1 

holds whenever x,y(iG, then f is a continuous almost periodic function. If the ak's 

are linearly independent, then the bks are also continuous almost periodic functions. 

Proof. Let B(G) denote the set of all complex valued continuous bounded 
functions on G equipped with the pointwise operations and sup-norm. B(G) is a 
Banach space. Let 

A = {h(y)ak: ydG} (k = \,...,n). 

As ak is continuous bounded and bk is bounded, hence Ak is relatively compact in 
B(G) (k=1, ..., n). Let F denote the orbit o f/in B(G), then by (1) we see that F 
is a subset of the set At + ...+An, which is a continuous image of the relatively 
•compact set AlX...XAn. Hence /is almost periodic. The continuity of / follows 
directly from (1) by the substitution y=e (the unit element). 

If the ak s are linearly independent then there are elements xl, ...,x„ of G 
for which the matrix (a^Xj)) is regular (see e.g. [11]). Substituting the x,'s into (1) 
in place of x, for fixed y we get that the numbers bk(y) satisfy a system of linear 
^equations, the matrix of which is regular. Hence the functions bk can be represented 
as a linear combination of some translates of / and thus they are continuous almost 
periodic functions. 

Theorem 3.1 can be generalized as follows: 

Theorem 3.2. Let G be a topological group, L, M, N normed spaces, g: G-~L 

a totally bounded continuous function, h: G-*M a bounded function and F: LXM-*N 

a bounded bilinear operator. If f : (?—iV is a function for which 

(2) f(xy) - F(g(x): h(y)) 

¡holds whenever x,ydG, then f is a continuous almost periodic function. 

Proof. The continuity of/follows by substituting y=e. Let e=>0 be arbitrary 
and let K be a bound for h. As g is totally bounded, there exists a finite covering 
L1,...,Ln of rang such that ||i/—u[| <e whenever u, vd.Lt (i=l, ..., n). Let A-t = 
=g~1(Li) (t'=l, ...,«) then Alt ..., An is a finite covering of G. If x, y£A{ 
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(/ = 1, ..., n) then g(x), g(y)dL{ hence ||g(*)-g(.v)ll <e which implies for every z£G 

\\f(xz)-f(yz)\\ = \\F(g(x),Hz))-F(g(y),h(z))\\ = 

= !|F(gW-g(y) ;ft(z))|| S C||g(*)-g(>OI|-K^C-e-K 

that is / is almost periodic. 
The linearity of F in (2) can be replaced by uniform continuity. Namely, we have 

Theorem 3.3. Let G be a topological group, L, M, N uniform spaces, g : G-~L 

a totally bounded continuous function, h: G-~M a bounded function and F: LxM-~N 

a uniformly continuous function. If f : G^-N is a function for which (2) holds when-

ever x, y£G then f is a continuous almost periodic function. 

Proof. The continuity of/follows by substituting y=e. Let R be an arbitrary 
X-entourage. By the uniform continuity of F there exists an LxM-entourage S, 

for which ((m, d), (u', u'))6S implies (F(u,v), F(u',v'))£R. Further there exists 
an L-entourage T such that («, u')£ T and v£M implies ((u, v), (u', v'))£S. By 
the totally boundedness of g there exists a finite covering Lx, ..., L„ of rang such 
that u,u'£L{ implies (u,u')£T(i—l,...,n). 

Let Ai=g~1(Li) 0 = 1» •••>"), then At, ...,A„ is a finite covering of G, and 
for x, y£Ai (i=l, ..., n) we have g(x), g(y)£Lit hence for z£G 

(f(xz)J(yz)) = (F(g(x), h(z)), F(g(y), h(z)))£R, 
that is / is almost periodic. 

Remark 3.4. The conditions of Theorem 3.3 are satisfied for instance if g, 
h are bounded functions with values in finite dimensional vector spaces (or, more 
generally, in Montel spaces), L, M denote the closures of their ranges respectively, 
and F is continuous on LXM. Hence we have the corollaries: 

Corol lary 3.5. Let G be a topological group, let g, h: G—C (the set of com-

plex numbers) be bounded functions, and let g be continuous. Let F: (ran gX ran h)~ — 

—C be a continuous function. If f : C is a function for which (2) holds when-

ever x, yd G, then f is a continuous almost periodic function. 

Corol lary 3.6. Let G be a topological group, f: G—C be a continuous bounded 

function. Let F: (ran/Xran/)~ — C be a continuous function. If the equality 

(3) f(xy) = F(f(x),f(y)) 

holds whenever x, yd G, then f is almost periodic. 

4. Bounded solutions of equation (1). In this section we exhibit all bounded solu-
tions of equation (1) on commutative groups. More exactly, we show that / is a 
trigonometric polynomial and so are the functions ak, bk whenever the ak s and 
also the bk s are linearly independent. By trigonometric polynomial we mean a 



168 L. Székelyhídi 

linear combination of continuous characters. Here the number of different characters 
is called the degree of the trigonometric polynomial. 

In what follows we assume that G is a commutative topological group with 
sufficiently many continuous characters, that is any two elements of G can be sep-
arated by continuous character. For instance all locally compact Hausdorff groups 
posses this property and so does the additive group of any locally convex topological 
vectorspace. Then the Fourier transform of almost periodic functions can be defined 
as an injective mapping by the formula 

/(V) = J f l 

(where f denotes the invariant mean on almost periodic functions) whenever y is a 
continuous character of G (see [5], [6]). 

Theorem 4.1. Let G be a commutative group with sufficiently many continuous 

characters, n a positive integer and ak, bk, f: G—C (k = 1, ..., n) functions. If f is a 

continuous bounded function, then it is a trigonometric polynomial of degree at most n. 

Proof. First we assume that the ak s and also the bk's are linearly independent. 
Then there are elements x1} ...,xn of G for which the matrix (a^Xj)) is regular. 
As in Theorem 3.1 we obtain that the bk's are continuous bounded functions. Simi-
larly, we get the same for the ak s. 

By Theorem 3.1, f , ak, bk are almost periodic functions. On the other hand, 
the linear independence of the ak s implies the same for their Fourier transforms. 

Now let y be fixed and compute the Fourier transforms of both sides of (1) as 
functions of x. We obtain 

(4) f(y)y(y)= 2ok(y)bk(y) 
k = 1 

where y£G and y is a character of G. Now compute the Fourier transforms of 
both sides of (4) as functions of y. We obtain 

(5) / ( 7 ) K 0 = ¿4t(y)S*(T) 
t = l 

where y, t are characters of G. Let y1, ..., yn be characters of G for which the matrix 
(dk(yj)) is regular. Substituting in (5) for y we get that the numbers Bk(T) for x^yj 

( y = l , • • •,«) satisfy a homogeneous linear system of equations, the matrix of which 
is regular, hence bk(T) = 0 for t ^ ( j = \ , . . . , n , k=l, ...,«). Thus the Fourier 

n 
transform of bk— 2 bk(yj)yj vanishes, and hence bk is a trigonometric polynomial 

j=i 

of degree at most n (k = 1, ..., «). Similarly we get the statement for ak, f. 

In the general case, when the ak s or the bk s are linearly dependent, then by the 
successive decreasing of n we can make the ak s and the bk s simultaneously linearly 
independent and hence the statement remains valid for /. 
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Corollary 4.2. Let G be a locally compact topological group. Then any finite 

dimensional translation invariant subspace of the Banach space of all continuous 

bounded complex valued functions on G consists of almost periodic functions. If G is 

commutative then this subspace consists of trigonometric polynomials. 

Proof. Let M be the subspace in question and let ar, ..., an be a basis of M. 

Then for every f£ M we have 

(6) f(xy)= 2ak(x)bk(y) 
k = 1 

whenever x,y(LG. Since the ak's are linearly independent, hence the bk's are con-
tinuous bounded functions. This implies that / is almost periodic. If G is commuta-
tive then, as in the proof of Theorem 4.1, we obtain that the bks are trigonometric 
polynomials and hence substituting x=e in (6) we see that / is a trigonometric 
polynomial. In particular, the ak s are trigonometric polynomials. 

References 

[1] J. ACZÉL, Lectures on functional equations and their applications, Academic Press (New York— 
London, 1966). 

[2] S. BOCHNER—J. VON NEUMANN, Almost periodic functions in groups. II, Trans. Amer. Math. 
Soc., 37 (1935), 21—50. 

[3] W. F. EBERLEIN, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. 
Math. Soc., 67 (1949), 217—240. 

[4] E. HEWITT—K. Ross, Abstract Harmonic Analysis I, II, Springer (Berlin—Heidelberg—New 
York, 1963, 1970). 

[5] W. MAAK, Darstellungstheorie unendlicher Gruppen und fastperiodische Funktionen, Enzyklo-
pädie d. math. Wiss. I. 1, 2. Aufl., Heft 7,1. 

[6] W. MAAK, Fastperiodische Funktionen, Springer (Berlin—Göttingen—Heidelberg, 1950). 
[7] M. A. MCKIERNAN, Equations of the form H(xoy) = £ i ft(x)gt (y), Aequationes Math, 16-

(1977), 51—58. 
[8] M. A. MCKIERNAN, The matrix equation a(xoy)=a(x) + a(x)a(y) + a(y), Aequationes Math.,. 

15 (1977), 213—223. 
n , 

[9] T. A. O'CONNOR, A solution of the functional equation <p(x-y) = Z aj(x)aj (y) on a locally 
i 

compact Abelian group, Aequationes Math., 15 (1977), 113. 
[10] L. SZÉKELYHÍDI, Almost periodic solutions of linear functional equations, to appear. 
[11] E. VINCZE, Eine allgemeinere Methode in der Theorie der Funktionalgleichungen. I, II, Publ. 

Math. Debrecen, 9 (1962), 149—163, 314—323. 
[12] E. VINCZE, Eine allgemeinere Methode in der Theorie der Funktionalgleichungen. III, Publ.. 

Math. Debrecen, 10 (1963), 283—318. 

DEPARTMENT OF MATHEMATICS 
KOSSUTH LAJOS UNIVERSITY 
4010 DEBRECEN, HUNGARY 





Acta Sei. Math., 42 (1980), 171—173 

Bemerkung zu einem Satz von S. Kaczmarz 

- K Á R O L Y T A N D O R I 

Für ein orthonormiertes System <p = {<pk0t)}~ im Intervall (0,1) bilden wir 
die Lebesgueschen Funktionen 

i „ 
LniSP, x) = f 2 <Pk(.x)<pk(t) 

k=1 
dt (n = 1,2,...). 

S.KACZMARZ [2] hat bewiesen, daß im Falle 

(1) L.(q>; x) = 0(1) (*€(0, 1); n = 1, 2, ...) 

und für a= {a k } i d l 2 die Reihe 
oo 

(2) 2 a k9k ( x ) 
k=l 

fast überall in (0,1) konvergiert. 
Weiterhin haben wir in [3] Folgendes gezeigt: 
Ist dann gibt es ein orthonormiertes System (p in (0,1) derart, daß (1) 

erfüllt ist, und die Reihe (2) in (0,1) fast überall divergiert. 
In dieser Note werden wir für diese Behauptung einen einfacheren Beweis geben, 

der sogar noch etwas mehr ergibt. 
Für ein orthonormiertes System cp in (0, 1) bilden wir 

1 

L*(<p\ x) = / max £ <pk(x)<pk(t) dt. 
-> lglSn k = l 

Offenbar gilt 
Ln((p\x) S L*(cp; x). 

Wir beweisen. 

Satz. Ist a$/2, so gibt es ein orthonormiertes System cp in (0, 1) mit 

(3) L*n(cp\x) = 0(1) (*€(<>, 1); n = 1, 2,...) 

derart, daß die Reihe (2) in (0,1) überall divergiert. 

Eingegangen am 10. April 1979. 
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Bemerkung. Dieser Satz ist eine Verschärfung eines vorigen Resultates von 
Verf. [4]. Nach einem Satz von L. CSERNYÄK [1] gilt im Falle (3) und a£/2 

sup ¿f l* f l » t ( * )|€L l «U) . 
t=i " 1 

Beweis des Satzes. Ohne Beschränkung der Allgemeinheit können wir 
OSßfc^l voraussetzen. Es sei 0=«(1)<.. .<«(/)-=.. . eine Indexfolge mit der 
Eigenschaft 
(4) 

„(0 
Af = 2 (1 = 2,3,...). 

* = n ( / - l ) + l 

Mit bezeichnen wir die Indizes k, für die ak=0 ist. Es sei Z(/) 
die Menge der Indizes k mit n(l—Y)<k^n(l) und a^O (1=2, 3, ...). 

Es seien weiterhin Ik(l), Jk(l) (k£Z(l); 1=2,3, ...), (/'=1,2, ...) Teilinter-
valle von (0,1) mit den Eigenschaften (für /, lx, /2=2, 3, ...) 

4 , ( 0 0 4 , ( 0 = 0 ( k ^ k ^ Z d l k ^ K ) u 4 (0 = (0,1), 
*e zw 

mes 4 (0 = 4/A? (fcez(O), 4 ( 0 n 4 ( 0 = 0 (fe€Z(/)), 
Jkl(h)^Jk2(h) = 0 (k.ezd,)), fc26Z(/2), (k1 — k2)2+(l1 — l2)2 * 0), 

mes 4 ( 0 = mes 4(0//2 (kdZ(l)), J^C\Jh = 0 (ix, i2 = 1, 2, ...; ^ ^ i2). 

Unter den obigen Bedingungen kann man solche Intervalle leicht angeben. 
Es sei (p = {cpk(x)}~ ein orthonormiertes System von Treppenfunktionen in 

(0, 1) mit den Eigenschaften 

\A,/ak • l, *<E4(0 

(•k€Z(l)), (l-l/P)/|/mes4(0, * 6 4 ( 0 
0, sonst 

Jl/j/mes/,-, x€/, 1 ,. , » . 
= sonst} = 

Ein solches System kann leicht angegeben werden; man hat die Gruppe der Funk-
tionen <p„(i-i)+i(x),..., <p„(i)(x) durch Rekursion zu definieren. 

Es sei xÇ(0,1). Auf Grund der Definition der Intervalle 4 (0 , 4 und der 
Funktionen <pk(x) gibt es einen Index /0 derart, daß 

(5) x<f(G U 4 ( o ] u ( U 4 ) -
V=/ 0 *€Z (0 ' i 

k,=-n(l0-1) 

Ist /s/0, dann gibt es auf Grund von (5) und der Definition von <pk(x) einen Index 
k(x, l)£Z(l) mit 

v(/) 

2 ak<Pk(x) = |fl*(*,i)%ix./)WI = Aill - 2'll 

Daraus folgt, daß die Reihe (2) im Punkt x divergiert. 
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Es sei x£(0,1). Auf Grund der Definition der Intervalle Ik(l), Jk(l), J¡ und 
der Funktionen (pk(x) gibt es für jedes / einen Index k(x, l)£Z(l) mit xZIk(xl); 

weiterhin existieren Indizes l0, k0(x, /0)(£Z(/0)) und i0 mit x£Jk¡¡(xy, x£J¡o. Dann 
gilt für jedes n 

max 
l S s S n = 21 <Pk(x, I) (x) <pk(x, I) (Ol + l<Pko(x,i„) ( * ) <PMX, , M +1 (pki (x)cpk¡(t) I. 

1=2 
2<Pk(x)(pk(t) 
i=i 

Auf Grund der Definition der Funktion q>k (x) ergibt sich dann 

f max 
y lsssn 

2 <Pk(x)(pk(t) 
k=1 

dt S 

oo 

^ 2{\<Pk(x,i)(x)\ f l<Pk(x,i)(.t)\dt+\<pk(Xil)(x)\ f \<pk(x,n(t)\dt) + 
1 = 2 j r 

k(x, I ) ^ X c C x » ! ) 

+ / \<Pk0(x,io)iO\dt + \(pko(x,la)(x)\ f |<PM*,¡„)(0I dt + 
rk0(.x,l0) \(x,I0) 

+ Ko(X>l f\<Pkio(.t)\dt = 

= 2 (zu ~~/2mes jrk(x,i)0) + - — - 1 /n1/2 . — rnes Jk(x,(/)] + 

+ (1 - 1 / ® V * 1 — 4 — mes / ^ „ , . , ( 0 + 
r mes A„(x, (0) Co) io) 'o 

- | - w 2 } ) + ( I - ¿ R + D - m+1 ^ 3 ( l + 1 1 ) < 

Damit haben wir bewiesen, daß (3) für das System cp erfüllt ist. 
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Über einen Satz von Alexits und Sharma 

K Á R O L Y TANDORI 

1. Es sei (X, st, n) ein Maßraum mit /¿(Y)< Für ein System <p = 
von Funktionen in L(X) betrachten wir die Lebesgueschen Funktionen 

L„((p; x) = f \z <Pk(x) <Pk(0 dfi(t) (x£X; n = 1,2,...). 

Es sei weiterhin eine monoton nichtabnehmende Folge von positiven 
Zahlen; im folgenden werden wir auch °° voraussetzen. 

G. ALEXITS und A. SHARMA [1] haben im Fall 

(1) Ln(cp; *) = 0(A„) (.xiX; n = 1, 2, ...) 

den Folgenden Satz bewiesen: Genügt eine Folge von reellen Zahlen der 
Bedingung 

(2) 
k=l 

weiterhin besteht 

dfi(x) = 0( 1) (n = l,2,...), /1 Zakh(Pk(x) 
X U=1 

für jede Folge { b j r mit 2 dann konvergiert die Reihe 
k = l 

(3) 2ak<Pk(x) 
k=1 

in X fast überall. 

Eingegangen am 10. April 1979. 
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Man kann zeigen (s. z. B. [2]), daß im Falle (1) die Bedingung (2) allein für die 
Konvergenz fast überall der Reihe (3) nicht hinreichend ist. Es ist natürlich zu befra-
gen, welche Bedingung für a im Falle (1) die Konvergenz fast überall der Reihe 
(3) sichert. In dieser Note werden wir auf diese Frage eine genaue Antwort geben. 

2. Ohne Beschränkung der Allgemeinheit können wir A ^ l voraussetzen. Für 
Jede positive ganze Zahl / bezeichne Z(/) die Menge der positiven ganzen Zahlen k, 

mit 2'<Ak^2'+1 . Es seien /!<...</;<... diejenigen Indizes, für die 
ist; die Elemente von Z(/) seien in der natürlichen Anordnung v(i') + l, ..., v(/+l). 
Für eine Folge a setzen wir 

V(i+1) 
A f = 2 aUk (¿ = 1,2,...). 

fc = v(i) +1 

Satz I. Ist (1) erfüllt, und gilt für die Folge a 

¡=i 

so konvergiert die Reihe (3) fast überall in X. 

Beweis. Wir wenden die Methode von Alexits und Sharma an. Die n-te Par-
tialsumme der Reihe (3) bezeichnen wir mit s„(x). Für eine positive ganze Zahl i 

setzen wir 

Et = {xdX: v(omaxj+i)(sn(x)-sHi)(x))}, 

Er = {xiX: y(0 max.+i) (-(s„(x)-sv(i) (*)))}; 

n(x) bezeichne die kleinste positive ganze Zahl ( v ( i ) <n ( i ) g v ( i + l ) ) , für die 

S„(x)*-Sv(0(*) = V(i) +1 ) ( s » W - s w i ) W ) ( * € # ) 

ist. Dann gibt mit dem Rademacherschen System {/*(/)}" 

akYTkrk(t)] { f ) dt v(0-=nsv(,+l) J U = v(0+1 = f x p ) 

(xZEf). 

Durch Anwendung der Bunjakowski—Schwarzschen Ungleichung und des Fubini-
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sehen Satzes ergibt sich: 

(5) / ( i B m | x . + i ) ( S , ( * ) - S , M ( * ) ) ^ ( » ) = 

- / ( ( o ) / ( f / \\k=y(.i)+1 > /+ Vp=v(0+1 \XP > > 

, , , { / / / ( f i « & W ) ( f J i M f l Ö L l ^ + w * } " ' . 
1<T I* P̂ = v(0 + 1 ^ M9=v( i)+1 ^ ; J 

f I min(n(x), n(y)) „ fiA l1/a 

^ M f f l 2 r dn(x)dß(y)\ S 
V + I P = V ( . ) + 1 ¿ p J 

Auf Grund der Voraussetzung (1) gibt es eine positive Konstante K, für die L„ (q>;x)S 

sKXn(xdX\ n = 1,2,...) erfüllt ist. Durch eine Abelsche Umformung bekom-
men wir 

n(y) m,(x\a>,(v\ "OO-i ( 1 1 ^ * 1 "00 
2 <P*W<pkW = 2 i_L__LJ 2 cps(x)cps(y)+-±- Z <Ps(x)<Ps(y), 

= v(i)+l '-k. t = v(i) + l K'-k /-fc + l's=v(i) + l An(v) s=v(i)+l fc = v(i)+l ¿-k. t = v(i) + l -̂k + s=v(i) + l "W »=v(0+l 

woraus folgt 
• I n(y) ( , n (LA 

dn(x) S 
£ |* = v(i)+l K 

n(y)-l/l 1 \ /•! * 
^ 2 \T-t— / ^ <Ps(*)<Ps(y) 

fc=v(0+l VA '-k + 1 / X U=v(0+1 
dfi(x) + 

+ y— /1 2 <Ps(x)<PM d/i(x)S Än(y) x |s=v(0+l 

n(y)-l ( 1 1 \ 1 
ss 2 h — l — ( £ * ( < ? ; y)+LHi)((f>> 30)+-;—(AiwOp; y)+LHi)(q>; y)) k=v(i)+l ^-k /-k + An(y) 

— +1}/Av(i)+1 ^ 

für jedes xGA', auf Grund der Definition der Folge {v (/')}". Daraus und aus (5) 
erhalten wir 

(6) / v ( i ) max.+ i ) (sB (x)-sv (0 (x)) 
E, 

12 
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Durch Anwendung dieser Ungleichung auf das System {—<p*(x)}~ ergibt sich 

/voÄ+i) (-(SnM-V,(*))) dn(x) ^ ]fl%Kß{X)Ai. 
Er 

Daraus und aus (6) folgt 

(7 ) / ö , ( * № ( * ) — fil6Kn{X)At ( I = 1, 2, ...)• 
x 

Endlich aus (4) bekommen wir, daß 

¡=1 

in X fast überall besteht. Da auf Grund der Definition von <5,(x) die Unglei-
chung |5v( i+1)(x)-5v(0(x)|s5i(x) (x£X; / = 1,2, ...) gilt, ergibt sich, daß 

2 kv(,+i)(*)-Sv(o(*)l <o° 
i = 1 

in X fast überall besteht und so lim jvrn (x) fast überall in X existiert. Im Falle 
v(/')~s/i;Sv(/+l) gilt weiterhin | s„ (x) - sv ( i ) (x) | ̂  <5,(x) - 0 ( / — i n X fast überall, 
und so konvergiert die Reihe (3) in X fast überall. 

3. Wir zeigen, daß die Bedingung (4) genau ist. 

Satz II. Gilt 

(8) j U - = ~ , 
i = l 

so gibt es ein System $={3> fc(x)}~ von reellen Funktionen in L(0,1) derart, daß 

1 CO 
Ln(<P; x)= J 2 Mx)*M dt ̂  16A„ (x€(0,1); n = 1,2,...) 

o k=1 

besteht und die Reihe 

(9) 2aMx) 
i=i 

in (0, 1) überall divergiert. 

Beweis. Für jede positive ganze Zahl /' seien Is(i) ( j=v (/ ) + l, ..., v(/'+l)) 
disjunkte Intervalle mit 

v ( i + l ) v ( i + l ) u Is(i) = (0,1),mes Is(i) = a*/ 2 und 1,(0 = 0, wenn as = 0. 
S = v(0+1 * = v(i)+l 
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= 

Für einen Index s mit v ( i ' ) < iSv (/+ l ) und as7±0 setzen wir 

\AJas, x£ls(i), 

[0, sonst; 
im Falle as=0 sei <Ps(x)=0. 

Sei /0 eine positive ganze Zahl und sei (0, 1). Dann gibt es für jede positive; 
ganze Zahl / ( lS/S/0 ) einen Index s(x; i) (v(i)<s(x; /)^v(z '+l ) ) mit x6/ä(jc; i )(i% 
Man hat dann 

v ( ' o+ l ) >'» 

2 ak$k(x) = 2 as<x;i)$s{x-,i)(x). 
k=l i=1 

Daraus, auf Grund der Definition der Funktionen <Pk (x), folgt 

(10) 1 = 2 A, (*€(0,1); i0 = 1, 2, ...)• 
k=1 ¡=1 

Aus (8) ergibt sich, daß die Reihe (9) in (0,1) überall divergiert. 
Es sei i eine positive ganze Zahl, v (7+ l ) und x€(0,1). Dann gibt 

es einen Index i) (v (/ )< i (x ; i ' ) Sv ( ! + l ) ) mit x£lsix;i)(i), und so gilt 
i / 2 - V W ) 

* = v(0 + l 

A-

d t ^ J ^ . ( » ¡ oW^x i oWI dt = - j - 5 - mes Is (x ; i ) ( i ). 

Daraus folgt, auf Grund der Definition von Ai und v(i), 
dt^ 2A„ (x£(0,1; v(i ) < n v(i +1) ; ¿ = 1,2,...). ( 1 1 ) / 1 2 *k(x)*k(t) 

0 l t = v ( i ) + l 

Es sei n eine beliebige positive ganze Zahl. Dann gibt es einen Index i0 mit v(;0)-
<ti^v(/0+1), und gilt 

Ln(<P;x)S 2 f 
v(i+1) 

2 #k(x)<i>k(t) 
fc=v(i) + l 

dt+f 2 4>k(x)<Pk(t) 
* = v(l0) + l 

dts 

2(AV(2)+... +A v ( i 0 + 1 )+l n ) =s 4(22+... + 2'°+1) == 16 • 2'» ^ 16Av(i0)+1 16A„ 

für jedes x€(0, 1). 
Damit haben wir Satz II bewiesen. 

4. Für eine positive Konstante K bezeichne ß(A, K) die Klasse der Systeme 
(P= { (Pk(x) )r v o n reellen Funktionen in L(0,1) für die 

i 
L„(<p; x)= f 2 <Pk(x)q>k(t) dt^Kln ( *e (0 , l ) ; n = l ,2,.. . ) 

gilt, und sei Q(/.) die Klasse der Systeme (p mit 

£„(<?; x) = 0(}.n) (x€(0, 1); n = 1, 2, ...). 

12* 
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M(X) bezeichne die Klasse der Folgen a, für die die Reihe (3) bei jedem System 
<jt>£ß(A) in (0,1) fast überall konvergiert. Endlich wird für eine Folge a 

i 
fla; A|| = sup f sup\sn(x)\dx. 

<?€ß(;.;l)o » 

gesetzt. In [3] haben wir bewiesen: 

o£M(A) gilt dann und nur dann, wenn ||a; A|| < <=°. 

Nach den vorigen Resultaten kann man ||a; A|| auswerten. 

Satz III. Für jede Folge a gilt 

C 1 2 A i S \ \ a ; M \ s C 2 Z A i 
/=i ¡=i 

mit positiven Konstanten C l 5 C2. 

Beweis. Da 

sup|s„0)| == ¿<5;(x) 
" ¡=i 

ist, erhalten wir 
i 

f snp\sn(x)\dxS / 2 1 6 Z A 

auf Grund von (7) für jedes System <p£i2(Ä; 1); woraus die zweite Ungleichung 
mit C 2=/2 16 folgt. 

Weiterhin sei (pk(x)=<Pk(x)/4 (k = 1,2, ...) mit den in §3 definierten Funk-
tionen <Pk (x). Dann gilt (pdü(X; 1) nach dem Satz II. Weiterhin bekommen wir 
aus (10) 

1 1 ~ 
/ sup \s„(x)\dxs — ^Ai, 

also besteht die erste Ungleichung mit C1=l/4. 

5. Bemerkungen. 1) G. ALEXITS und A. SHARMA [1] haben Systeme 
v o n Funktionen in L{X) betrachtet, für die 

Ln(<p; x) = 0(1) (x£X;n = 1,2,...) 

gilt, und haben Folgendes bewiesen: Ist die Summe 

(12) 2 a l 
k = 1 

endlich, so konvergier die Reihe (3) in X fast überall. 
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Weiterhin haben wir in [4] Folgendes bewiesen: Ist die Summe (12) unend-
lich, so gibt es ein orthonormiertes System 4> = {<Pft(x)}~ im Grundintervall (0,1) mit 

*) = 0( 1) (*e(0,1); n = 1, 2, ...) 

derart, daß die Reihe (9) in (0, 1) fast überall divergiert. 
Diese Sätze sind in den Sätzen I—II enthalten. Im Falle A t=4 (k=1, 2,...) 

ist nämlich die Konvergenz der Reihe (4) mit der Konvergenz der Reihe (12) äqui-
valent. 

2) Im Falle /1*-*«= ( & — k a n n in Satz II das System im allgemeinen nicht 

normiert gewählt werden. Ist nämlich 2 K l < 0 °> und gilt 
k = l 

f$Kx)dfi(x)= 1 (k = 1, 2, ...), 
x 

so konvergiert die Reihe (9) in X fast überall. 
3) Es gilt auch der folgende Satz. 

Satz IV. Es sei (p— ein System von Funktionen in L(X) mit L„(<p; x)S 
sKA„(x£X; n = 1,2,...). Dann gilt 

(13) f\(pk (x)\dß (x)s2yKKX)Än (»1 = 1,2,...). 
x 

Beweis. Für eine positive ganze Zahl n seien 

E+ = {x£X: q>n(x) > 0 } , E~ = {x£X: <pn(x) < 0} . 

Da 

gilt, hat man 

<Pn(x) = / r„(0 f 2 <?*(*)) dt 

f <pn(x)dp(x) = / rn(t) [ ¡ [ Z » • * ( ' )% ( * ) ) ^ ( x ) l dt S 
E* 0 E+ K=1 

= { f I I ( ^ ^ w ) {b-q(t)<pq{y))d^x) dn(y)dt} 
® En En 

^ { / ( / | 1 <Pk(x)My)\dKx)} dß(y)}llZ S { / L n ( < p ; y)dn(y)} 

1/2 

^ YKIL{X)X„. 

Durch Anwendung dieser Ungleichung auf das System {—<pt(x)}~ ergibt sich 

f(-<pn(x))dKx)sYKti(x)Xn. 

Diese zwei Ungleichungen ergeben die Behauptung (13). 



.182 K. Tandori: Über einen Satz von Alexits und Sharma 

Schriftenverzeichnis 

'[1] G. ALEXITS, A. SHARMA, The influence of Lebesgue functions on the convergence of function 
series, Acta Sei. Math., 33 (1972), 1—10. 

'[2] K. TANDORI, Weitere Bemerkungen über die Konvergenz und Summierbarkeit der Funktionen-
reihen, Acta Math. Acad. Sei. Hungaricae, 28 (1976), 119—127. 

'[3] K. TANDORI, On the Lebesgue functions, Fourier Analysis and Approximation Theory, Colloquia 
Mathematica Societatis János Bolyai, 19. (Budapest, 1976), 845—859. 

[4] K. TANDORI, Ergänzung zu einem Satz von S. Kaczmarz, Acta Sei. Math., 28 (1967), 147— 
153. 

-BOLYAI INSTITUT 
UNIVERSITÄT SZEGED 
ARADI VÉRTANÚK TERE 1 
•6720 SZEGED, UNGARN 



Acta Sei. Math., 42 (1980), 183—188 

The maximal function of a contraction 

ILIE VALUÇESCU 

1. Let G be a separable Hilbert space. An i?(Ê)-valued semi-spectral measure 

F on the unit circle T is a map from the family of the Borel sets âS(T) of the unit 
circle into such that for any a-~(F(p)a, a) is a positive Borel measure. 
A semi-spectral measure E is spectral if for any ax, cr2 in @(T) .we have E(axH<x2) — 

= E(pJE(aJ and £ (T )=/ e . 
By the Naimark dilation theorem, for any JS?((£)-valued semi-spectral measure 

F there exists a spectral dilation [ft, V, E], i.e., a Hilbert space ft, a bounded opera-
tor V from (S into ft and an i?(ft)-valued spectral measure E on T such that for 
any trÇ^(T) 

For a Hilbert space g, we denote by E£ the spectral measure corresponding 
to the multiplication by e" on L2 (g) . 

An i f (G)-valued semi-spectral measure F is of analytic type if it admits a spectral 
dilation of the form [L2(g), V, £ * ] such that FGcL2+ (g). The name is justified 
by the fact that there exists an analytic function {(£, ¡y, 0(A)} (see [4], [5]) such that 
for each a£<£ 

(1.2) 0(A) a = (Va)(A) (AtED). 

Moreover, {(£, g, 0(A)} is an L!1-bounded analytic function, i.e., there exists M > 0 
such that 

Conversely, to any L2-bounded analytic function {(£, g, 0(A)} it corresponds 
an analytic type semi-spectral measure Fe, with a dilation as {L2 (g) , V0, Eg}, 

such that (1.2) is verified. 

(1.1) F(a) = V*E(ff)V. 

(1.3) 

Received November 1, 1978. 
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An Z,2-bounded analytic function {6, gf, 0(A) } is called outer if 

(1.4) Vein'Fe<£ = L2+(g). 
o 

To an arbitrary jSf(G)-valued semi-spectral measure F on T a unique outer 
L2 -bounded analytic function {(£, @X(A)} was attached in [4] such that the 
corresponding semi-spectral measure F0 i is maximal among the :Sf((£)-valued semi-
spectral measures of analytic type dominated by F. This unique outer L2-bounded 
analytic function is called the maximal function of the semi-spectral measure F. 

In the present note, for the semi-spectral measure F corresponding to a contraction 
T, some specific properties of the maximal function, in connection with the Sz.-Nagy— 
Foia§ model for T, are obtained. 

2. Let T be a contraction on a Hilbert space §>, and let U be its minimal unit-
ary dilation acting on ft. If E is the spectral measure of U, then the semi-spectral 

measure of the contraction T is the Z£(§)-valued semi-spectral measure obtained 
by the compression of E to i.e. 

(2.1) FT(o) = P&E(c0|S (<r€^(T)). 

Now, let us sketch the way to obtain the maximal function of FT. If we put 

(2.2) = V 
o 

then £/+ = i/|ft+ is an isometry on Taking the Wold decomposition of U+ on 
it follows that 

(2.3) fl+=M+(2„)© 

where fi*=.8+e= ® U"+ fl„ and <R= Let Pa* be the 
0 n=0 

orthogonal projection of onto M+ ( f i+ ) , <P2* the Fourier representation of M + ( f i + ) 
onto L2+(fi+), and Vx the bounded linear operator from § into £+(£*) defined by 

(2.4) 

Then the JSf(§)-valued semi-spectral measure defined by 

(2.5) i » = Vx Eq,(a)V1 ( a & ( F j ) 

is of analytic type. The Z,2-bounded analytic function {§ , £# , Qx(A)} attached to 
Fx, as in section 1, is the maximal function of FT and is called the maximal function 

of the contraction T. 

In the next Proposition (suggested by C. Foia§) an explicit form of the maximal 
function of T is given. 
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Proposit ion 1. The maximal function {§ , 0i(A)} of the contraction T on 

§ coincides with {§, 0(2) } where 

(2.6) 0(A) = £>r*(7—AT*)-1 (AÇD). 

Proof. We shall show that for any AÇD and A€|j 

(2.7) 0 (A) h = co* 0X(A) h (A€ D), 

where co* is the unitary operator from £+ into S r * defined by 

(2.8) a>M*-UT*)h = DT*h. 

If 0„ : § — are the Taylor coefficients of the maximal function {§ , 01(A)},. 
then for any and /*££* we have 

1 2" 
( 0 „M* ) o t = — / { (V1h)(e i%e i »>Q sJt=(y1h,e i «$e*lJL , ( S t ) = 

= (^s*P2*h, $s*U"I,)L*<St) = (P2*h, U"IX = (U*"P2*h,= (P^* U*n h, l ^ . 

Hence, the coefficients of (A) are of the form 

(2.9) 0„ = /,a*i/*,,|§. 

In order to prove (2.7) it is enough to show that 

0„h = (I-UT*)T*nh for nmO, 
or, by (2.9), that 

(2.10) U*"h-(I-UT*)T*"h_L2^. 

But, for any h, /¡'€5 we have 

(iV*nh-(l-UT*)T*nh, (.I-UT*)h') = 

= (U*"h — T*"h+UT*"+1 h, h')-(U*"+1h-U*T*nh + T*"+1h, T*^ = 

= (T*nh—T*"h + TT*"+1h, h') — (T*"+1h — T*n'<~1h + T*''+1h, T*h') = 

_ (TT*n+1h, h')-(T*n+1h, T*h') = 0. 

Hence (2.10) is valid and then so is (2.7). Thus the proof of Proposition! 
is done. 

Remark that the maximal function of T is not zero unless T is a coisometric 
operator. 

From the fact that the characteristic function of T 

0 r (A ) = [ - T+XD J * ( I - kT* ) - *D T ] \ ' ! > T verifies 0 r (A)Z) r = JD r* (7-Ar* ) - 1 (A7-r ) 

(see [5]) it results the following relation between the maximal function and the char-
acteristic function of the contraction T: 

(2.11) 0r(A)Z>r = 0 (A ) (A7-T ) (A<ED). 
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If the contraction 7" belongs to the class C.0 (i.e. r*"-0as/7—=°) then ft=M(2J, 
and thus by (2.3)—(2.5) it results that the semi-spectral measure of T is of analytic 
type if and only if 7"£C.0. In this case the contraction T is uniquely determined 
(up to unitary equivalence) by its maximal function. Moreover, in the C.0 case, 
the maximal function gives an explicit form of the imbedding of § into the 
space H=H2(T>Tt)e0TH2CbT) of the Sz.-Nagy—Foia§ functional model for T. 

Proposit ion 2. Let T be a contraction of the class C.0 on the Hilbert space 

S) and let {§ , D r„, 0(A)} be its maximal function. The image of an element /?£§ 

Jn the space of the functional model H is the function u£H2C£>T,) defined by 

(2.12) u(A) = 0(A)/i (A £D). 

Proof. The functional model (see [5], Ch. VI) is obtained by a unitary imbedding 
<P of the dilation space ft of T into a functional space. 

In the C.o case ft=M(£+), $ = <t>~T* a nd it follows that 

H = = 4>®T* 

From (2.4) and (2.7) it results that and, consequently, M£H is given by 

u(X)=(Veh)(A) = 0(X)h (A CD). 

The proof is finished. 

3. In general, the maximal function of a contraction is not bounded. If 
{§ , 0 i (A)} is bounded, then there exists 01 (e" ) a.e. as non-tangential strong 
limit of 0 i (A) and 

(3.1) dFei = -10i (e ' ' ) * 0 x ( e " ) dt a.e. 

Concerning the boundedness of 0 l (A), we have the following 

Proposition 3. The L2-bounded analytic function {(£, g, 0(A)} is bounded if 

•and only if the corresponding semi-spectral measure F0 is boundedly dominated by 

the Lebesgue measure dt on T. 

Proof. If {£•, 5, 0(A)} is bounded, then for any analytic polynomial p and 
for 

2lt | 2 it 

/ \p\2d(Fe(t)a, a) = —— f |p|2(0(eu)*0(e'')a, a)dt = 
o £ n o 

, 2lt . 2ir 
= 2nf \P\2W0(.e")a\\2dtsM2— f \p\2\\a\\2dt. 
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It results that dFgsM2^- dt. Conversely, if dF0sM24~ dt, then 
2n 2n 

f WWea){t)\\2dt =\\\pVea\\hm = / |p\2d{E£ Vea, V0a) = 
o o 

2ir . 2 « 
= / |p\2d(F0(t)a,a)sM2^f WWaVdt. 

It follows that 

(3.2) ll(Fea)(OII ^ M\\a\\ a.e. 

Using the Poisson integral of 0(A) and (3.2), it results that 

||0(A)a|| = 
1 2" 

/ P,(tWea){t).dt 

i 2jr , 2>l 
~ 2iT / dtS-M\\a\\ — f P,(t)dt = M\\a\\ 

and the proof is finished. 
It is known [2] that the contraction T with the spectral radius e ( T ) < 1 is 

characterized by the fact that the semi-spectral measure FT has bounded derivative. 
Therefore the following holds. 

Corollary. If the spectrum of the contraction T is in the open unit disc, then 

the maximal function {§, Si., @i (/>.)} is bounded. 

Moreover, the above quoted result of Schreiber can be completed in the follow-
ing manner. 

Proposit ion 4. A contraction T on a Hilbert space § has the semi-spectral 

measure FT of the form dFT = 0(eu)* 0(e")dt, with {§>, g, 0(A) } a bounded analytic 

function, if and only if T£C.0 and Q(T)< 1. Moreover, the bounded analytic func-

tion {§ , g, 0(A) } has a bounded inverse if and only if T is a strict contraction. 

Proof. By the form of dFT it follows that FT is of analytic type i.e. TdC.0. 

The boundedness of 0(A) implies that FT has bounded derivative and from [2] 
it results that f?(7")<l. 

Conversely, if T£C.0 and 0(7") <1, then FT = F0, and using the above 
Corollary the function 0(A) is bounded and dFT=0(ei')* 0(eu)dt. 

If, moreover, dFT=0(el')*0(e")dt and {§ , g, 0(A)} has a bounded inverse, 
then the associated operator 0 from L\(%>) into £+(£*) defined by 

(3.3) (0u)(ei')=0(e")u(t) (u€Z.2+(§)) 
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is boundedly invertible, and for any trigonometric polynomial p and for /¡65 
we have 

f \p(e")\2d(FT(t)h, h)=f \p(eilW(0(eiT0(ei,)h, h)dt = 

2* 
= / = l|0|l2 f \p(e")\2\\h\\2dt. 

o o 
Also, we have 

2n 2ic 

/ ||®(ei')p(c'')A||2i// S ||0-1||_2/ ||€)(e")~16)(e")p(e1')/i||2di = 
o o 

2s 

= l|0_1ir2/ \p(eumh\\2dt. 
o 

For any positive continuous function cp on T it follows that 

2lt 2 71 2n 
||0-1||-2/ v'dts f <pdFT(t)*m*f <pdt. 

o o o 

Therefore, there exists a positive constant c such that 
(3.4) cdt = dFf c~*dt. 

But (3.4) holds (see [1], [3]) if and only if T is a strict contraction. 
Now, let us suppose that T is a strict contraction. Then FT is of analytic type, 

FT=Fe where 0(A) is the maximal function of T, and (3.4) implies that the bounded 
operator 0 defined by (3.3) has a bounded inverse. By the fact that 0 intertwines 
the shift operators in ,L+(Sj) and using Lemma 3.2 from [5] it follows that 
0 (A) has a bounded inverse. 
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A problem of Sz.-Nagy 

JAN A. V A N CASTEREN 

1. Introduction 

Let § be a complex Hilbert space. Relatively simple proofs of the following 
results arc given. 

(a) A power bounded operator T on § is similar to a unitary operator if and 
only if T is surjective and if there exists a constant M such that 

(i-IA|)ll*ll ^Af||7,*-;jf||> Ml < i, 

(b) Let iA be the generator of a strongly continuous group {P,: /€R} in 
Suppose that sup {HP-,!!: /=0} is finite. Then A is similar to a selfadjoint operator 
if and only if there is a constant M such that 

ReA||x|| ^ M^Xx—iAx\, Re A > 0, x<LD(A). 

By spectral theory the "only i f " parts are obvious. For a contraction T, sta-
tement (a) is due to GOHBERG and KREIN [3], who deduced it from a theorem of 
SZ.-NAGY and FOIA§ [10]. In the latter theorem the authors provide a sufficient 
condition for an invertible contraction T to be similar to a unitary operator, in 
terms of the characteristic operator function 0 r (A ) of T. This condition is that 
a constant N exists for which 

11*11 ^iV||er(A)*||, |A| < i, 

For the concept of characteristic operator function and its connection with the 
theory of unitary dilations we refer to SZ.-NAGY and FOIA§ [11, ChapitreVI, pp. 
228—230, and Chapitre IX, p. 334]. 

The problem of finding a simpler proof of statement (a), avoiding characteristic 
functions and dilation theory, was pointed out by SZ.-NAGY in [2]. In the present 
paper we shall give a solution. We shall even do it for non-contractive, but power 

Received February 22, and in revised form, May 25, 1979. 
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bounded operators. Indeed, the proof of (a) shall be reduced to the comparatively 
simpler theorem of SZ.-NAGY [9] which asserts that an invertible operator S is sim-
ilar to a unitary operator if (and only i f ) sup {[|S"||: /i£Z} is finite. 

Statement (b), the continuous counterpart of (a), is entirely new. 

2. Main results 

We shall need a few definitions. A linear operator T on § is said to be power 

bounded if sup {HT"!!: n€N} is finite. Let A and B be linear operators with domain 
and range in §>. Then A is said to be similar to B if there exists a bounded linear 
operator V with bounded everywhere defined inverse such that AV=VB. 

Theorem 1. A power bounded operator T on § is similar to a unitary operator 

if and only if it satisfies one of the following conditions (in (ii)' T is supposed to be a 

contraction): 

(i) T has power bounded inverse S. 

(ii) The operators (T— A/)-1, |A|<1, exist and 

SUP{(1— |A|)||(T— A/)-1||: |A| < 

(ii)' The operators 6R(A)-1, |A|<1, exist and 

sup {ll©,.^)-1»: 

(iii) T has an inverse S for which the operators (/—AS)-1, |A|<1, exist and for 
which 

liminf sup{(1 —r2)||(/—AS)-1||: |A|=r} 

(iv) T is surjective and there is a constant M such that 

(1—|A|)||*|| S M\\Tx—kx\\, |A| -<= 1, 
Proof. SZ.-NAGY [9] proves the sufficiency of (i) by means of an invariant 

mean on Z. The necessity of (i) is trivial. The implications (i)=>(ii), (ii)=>(iii) and 
(iii)=>(iv) are more or less trivial. The implication (iv)=>(ii) follows from the fact 
that boundary points of the spectrum of a closed linear operator are approximate 
eigenvalues; e.g. HALMOS [4, Problem 63, p. 39]. In [10] SZ.-NAGY and FOIA§ use 

unitary dilation theory to prove the sufficiency of (ii)'. By establishing certain mutual 
inequalities between ||0T(A)-1|| and ||(R-A/)-1||, |A|<1, GOHBERG and KREIN [3] 

prove the equivalency of (ii) and (ii)'. See also KREIN [5, 6] and SZ.-NAGY and FOIA§ 
[11, Chapitre IX, p. 334]. 

A simple proof of the implication (iii)=>(i) runs as follows. Since it neither 
uses unitary dilation theory nor characteristic functions it solves a problem posed 
by SZ.-NAGY in [2, p. 585]. 
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Fix x in § and r in [0,1). Denote 

M(r) = sup {(1 -rOlKZ-AS)-1 ! !: W = r} 

for 0 < r < l and put M0=sup {||rn||: From (iii) it follows that the spectral 
radius Q(S) of S satisfies Since ||rn||^M0, n€N, it also follows that 
e ( T ) s 1. Hence, for |/.|<1, we have norm convergence in both expansions 

(I-J.S)-1 = 2 (i-ZT)-1 = 2 ^"T". 

n=0 n=0 

So, since ST=I, we have with l=re", 0 S r < l , 

co oo oo 2 rMeintSn= 2rne~in'T" = n= — OO R — 0 /1 = 1 

= (/— re"5)_1 + re~" T(J— re~u T)~l = (1 - r2) (/ - rj'S)-1 (I-re~ u T)~K 

Thus, by (iii), it follows that 

2 /-2'n|||S',x||2 = f 2 rMeimSnx dt 

1 
= ^ f \\(l—r2)(I—rei'S)~1(I—re~"T)~1x\\2dt S 

—n 
1 + n 

sM(r)2-— f I\(I-re~i,T)-1x\\2dt = 
—it 

+it 
2 rne-in,T"x 
n—0 

dt = M{rf 2r*n\\T"x\\2. 
n = 0 

= M(r)2 • — J 
—n 

Consequently, 

2 r ' lS"* ! ! 2 ^ ( M ( r ) 2 - i ) 2 ^"lli""*!!2. 
n=l (1=0 

Next, fix m in N, m£ l . Then, 

r2m||5m*||2 = (1-r2) 2 r2n\\Tn-mS"x\\2S 
n = m 

3=( l - r 2 ) -M 0 2 2 »•2n||5",x||2s ( l - r^Mo 2 2 ||S"jc||8 

n=m w=l 

and, by what is proved above, 

r2m||Smx||2=s ( l - r 2 )M 0 2 (M ( r ) 2 - l ) 2^"\\Tnx\\2S 
n=0 

Si (1 -r2) A f 0 2 (M ( r ) 2 -1 ) Ml(1 - r2 ) -1 IIJC||2 = M%(M(r)2-1)|| xIP-
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Since 0 < r < l is arbitrary, we conclude that 

||Sm|| ^ liminf M02(M(r)2-1)1 '2, m S 1. 
>r»l 

Hence (i) follows. 

Remark 1. The operator (1—r2 ) (/-rS) - 1 (/—rS - 1 ) - 1 can be considered as 
ikind of an operator valued Poisson kernel. 

Remark 2. In [7] SHIELDS discusses a number of boundedness properties of 
powers of an operator in relation to the boundedness properties of its resolvent 
family. See also VAN CASTEREN [12] where similar questions are considered. 

* 

Next we describe the continuous analogue of Theorem 1. For a proof the reader 
will need Stone's theorem and some other standard facts on strongly continuous 
semigroups. For all this we refer to YOSIDA [13]. 

Theorem 2. Let iA be the generator of a strongly continuous group {Pt: /£R}. 
Assume that sup {||P_,||: i s 0} is finite. Then A is similar to a selfadjoint operator 

if and only if it satisfies one of the following conditions: 

(i) sup{||7>J: s s O H « . 

(ii) The inverses (XI — iA)-1, Re A>0, exist and 

sup {Re XKXI-iAyW: Re X > 0} < =°. 

'(iii) The inverses (XI— iA)~x, Re A>0, exist and 

lim inf sup {to||A7—i/4)_1||: Re A = <w} < <o40 

(iv) There is a constant M such that 

Re A||x|| == M\\Xx-iAx\\, Re A > 0, x£D(A). 

Proof. We only prove the implication (iii)=>-(i). Here we use Plancherel's 
theorem in L 2 ( R , § ) ; e.g. see EDWARDS and GAUDRY [1, § 3.4, p. 53] or STEIN [8, 

Chapter II, § 5, pp. 45—47]. 
Fix x in § and to >0. Put 

M(oo) = sup {2(o\\(XI-iA)~1\\: R e A = to}. 

From standard semigroup considerations it follows by (iii) that the integral 

f e-a^-*sPsxds 
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exists and that 
OO CO oo 

f e-°'ul~iisPsxds= f e~t0S~'SsPsxds+ f e~ms+i^P.sxds = 
0 0 

= = 2(a({co + i^)I-iA)-%(o-ii)IJriA)-1x. 

So by Plancherel's theorem it follows that 
CO | » » 

f e-°-<a^\\Psx\\2ds = — f | f e-°>M-'SsPsxds\fdQ = 

= ¿ 7 WMin+iOI-i^doi-iQI+iA^xWtdlis 

I OO CO oo 

= M(co)2 — f || f e-as^sP^xds\\2d^M((of- f e-^P.^'ds. 
2 j r -CO 0 0 

Put M0=sup {||P_t||: issO} and fix 0. Then 
oo 

e-*"s\\PsxP = 2co f e-*™\\P_is^Psx\\*ds^ 
s 

S2a)M2 7e-2rasH^xll2rfs ^2ojM02 7 
S 0 

and by what is proved above, 
oo 

e-2<oS\\Psx\\2 2coM$(M((o)2-l) f e-2as\\ P-Sx\\2ds^ 
o 

2cuM04(M(co)2-l) 7e~2asds-\\x\\2 = M^(M((o)2-\)\\x\\2. 
o 

Consequently, we conclude that 

|jPJ s M02 lim inf (M(w)2 -1)1/2, s fe 0. 
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A note on quasitriangularity and trace-class selfcommutators 

D A N VOICULESCU 

In [3] C. A. BERGER and B. I. SHAW proved that for a hyponormal operator T 

the following inequality holds: 

T r [ n r ] ^ - I m ( 7 > ( f f ( r ) ) 

where a{T) is the spectrum of T, a> is planar Lebesgue measure and M(7)6NU { « } 
denotes the multicyclicity of T. The aim of the present note is to give a new proof and 
an extension of the result of Berger and Shaw by connecting it with quasitriangularity 
relative to the Hilbert—Schmidt class. Thus, we obtain that the hyponormality con-
dition can be replaced by the condition that the negative part (|T*, 7])_ of [T*, T\ 

be trace class (the author has learned that this result has been obtained about 
a year ago by C. A. Berger using different methods). But even more, for such T we 
prove that 

Tr [T*, T]S — m(T+X)co(a(T+X)) 
n 

where X is any Hilbert—Schmidt operator. In particular if 

71 

then every Hilbert—Schmidt perturbation of T has a non-trivial invariant subspace. 
Quasitriangular operators were introduced by P. R. HALMOS [6] and it was 

shown by APOSTOL, FOIA§ and VOICULESCU [2] that there is a spectral characteriza-
tion of these operators. A refinement of the notion of quasitriangular operator 
relative to a norm-ideal was considered in [11]. 

Received February 20, 1979. 
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Throughout, H will denote a complex separable Hilbert space of infinite dimen-
sion. By SC(H) we denote the bounded operators on H and by £?(H) the set of 
finite-rank orthogonal projections on H with its natural order. Then the analogue 
of Apostol's modulus of quasitriangularity relative to a Schatten—von Neumann 
•class is: 

•where T£Se(H) and \X\p=1v((X* X)^) (lSp<=o). 

Then if Pn£&(H) and P„-^I we have 

liminf |(/—P„)77>n| S qp(T). 

Moreover, one can find Pn£0>(H) such that Pn\I and 

l i m \(I-PN)TPN\P = GP(T). 

For Te& (H ) we shall denote by Rat(T) the algebra of operators of the 
form f(T) where / is a rational function with poles off the spectrum a(T) of T. 

The multicyclicity wj ( r )6NU{° ° } is the least cardinal of a set Ed H such that 
the closed linear span of Rat (T )E is H. 

Proposit ion 1. For T£J?(H) and 1 we have 

qp(T) S (m(r))1/p||r||. 

Proof. If m(T) = °° there is nothing to prove. So assume m(T) = n < ° » and 
consider a multicyclic set {ç l5 ..., Çn} for T}. Consider 

HJ= V Rat ( r )c t , # 0 = 0, KJ = HiQHj.l, T j = PKJT\Kj, th = P K j Ç j . 

k=1 

Then, using Proposition 2.1 of [11] we have q p { T ) ^ ( j? (qP(Tk))")llp. Now, 
k-1 

it is easily seen that a(Tk)cza(T) and t]k is a multicyclic vector for Tk. This reduces 
the proof of the proposition to the case n=1. 

Consider a sequence {¿,}7=i of points contained and dense in the union of 
the bounded components of C\A(T). Since is multicyclic for T, it is easily seen 
that denoting by PM the projection onto the finite-dimensional subspace of H spanned 
by the vectors T K ( T - X ^ - 1 . . . ( T - X M ) ~ 1 ^ 1 where O^k^lm, we have P M ^ P M + 1 , 

F J I and r a n k ( ( / — P ^ T P M ) = 1. It follows that \(R-PM)TPM\P^\\T\\ and hence 
QP(T)^\\T\\. O.E.D. 
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For a hermitian operator such that the negative part A_ of A is-
trace-class, we shall denote by Tr A the trace of A, in case A is trace-class and °° 
in case A is not trace-class. 

Proposit ion 2. Let Td^iH) be an operator such that the negative part 

([T*, J])_ of [T*, T] is trace-class. Then we have Tr[T*, T]s(q2(T))2. 

Proof. Let Pme&(H), Pm\I be such that lim \(I-Pm)TPm\2=q2(T). 

We have 

(q2(T)f= lim \{I-Pm)TPm\l = lim T r ( P m T * T P m - P m T * P m T P J = 
v ' m— oo m-*oo 

= lim Tr(P f f l[r*, T]Pm+PmT(I-Pm)T*Pm) s 

lim sup Tr(Pm[T\ T)PJ = Tr[T\ T]. 
OO 

Q.E.D. 

Proposit ion 3. Let be an operator such that the negative part 

([T*, J])_ of[T*, T] be trace-class and let X£&(H) be a Hilbert—Schmidt opera-

tor. Then we have 

Tr[J*, T ] S - m(T+X)co(ff(T+X)) 
71 

where co denotes planar Lebesgue-measure. 

Proof. It is clearly sufficient to consider the case when m(T+X)=n-< 

Given £>0 and denoting by Q the open set 

a = {z€C: \z\ S ||T+ X\\+ e}\(T(T+ X) 

we can find a hyponormal operator D such that: 

a(Z)) c Q, m (D ) = n, \\D\\ S ||T+ X || + e, [D*, D] =£ 0, 

Tr [D*, D] ^ (co(£2)—e). 

Such a D is easily constructed by using the "computational lemma" of the paper 
of BERGER and SHAW [3], or more elementarily by considering an appropriate direct 
sum of operators of the form ?J+fiS where X, p€C and S is the unilateral shift. 

Using Proposition 1 we have 

Tr[(r©Z>)*, (T®D)] =S (q2(T®D))\ 
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and hence 

Tr [ T\ T]+^(co(Q)-s) S (q2(T®D)f. 

But q2(T®D)=q2((T+X)®D) since X is Hilbert—Schmidt. 
Moreover, m((T+X)®D)=n=m(T+X) and hence, using Proposition 2, 

we have 

(q2«T+ X)®D)f S (m(T+X))(\\T+X\] + e)°- = -i m(T+X)(co(Q) + co(<r(T+X))). 

It follows that Tr [ r * , T)^— m(T+X){(o(p(T+X))-s). Since s>0 is arbitrary, 
n 

we have 

Ti[T*, T] ^—m(T+X)(o(a(T+X)) 
n 

which is the desired result. Q.E.D. 

Consider <rle(T), are(T) the left-essential and the right-essential spectra of T 

and remark that if o{T+X) in the proposition above is bigger than ate(T)Piare(T) 

then T+X has a non-trivial invariant subspace. This together with Proposition 3 
gives the following: 

Corol lary 1. If T is an operator with ([T*, T})_ trace class and 

Tr [ r * , T]>±(ole(T)n<rre(.T)) 

then every operator T+X with X Hilbert—Schmidt has a non-trivial invariant sub-

space. 

Consider also E(c(T)) the polynomially convex hull of <R(T), i.e., the com-
plement of the unbounded component of C\<R(T) and remark that for X a com-
pact operator (T(T+X)D (C\E(a (T ) ) ) is an at most countable set and hence 
(D(<J(T+X))^CO(E(O(T))). This together with Proposition 3 gives: 

Corol lary 2. If T is an operator with ([T*, T])_ trace-class and if 

then m (T+ X)>\ for every Hilbert—Schmidt operator X. 
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The functional model of a contraction and the space L1 

CIPRIAN FOIA§, CARL PEARCY and BÉLA SZ.-NAGY 

The present Note is a straightforward continuation of the recent paper [I].. 
Indeed, we have noticed subsequently that, under slightly changed assumptions, 
the results of that paper can be extended from the factor space U\H£ to the space 
D itself, and "localized" on parts of the unit circle C. 

The ingredients of these extensions are mostly taken over, with some changes,, 
from the paper [I], and so are the notations and the terminology. When referring 
to a specified lemma or formula of [I] we indicate it by the subscript I. Applica-
tions to the invariant subspace problem are to be given later. 

1. Let us begin with some lemmas requiring little changes with respect to [I].. 

Lemma 1. If {a„} converges weakly to 0 in then for any (p£H2 and h£9y 

we have 
\\(cpoan)-h*\\Li - 0 and \\h-((poa„)*\\Li - 0 as 

(This is a strengthening of Lemma 3,, where only convergence in the factor 
space V-\H\ was established.) 

Proof. For any h,k£$> the function k-h* is the complex conjugate of h • k* 

so they have the same norm in L1. Therefore it suffices to prove the first convergence^ 
Now, by (4.3), and (4.7), we have 

\\((poan)-h*\\Li S ma^h^^ + li^cpa^hM* - 0 as n 

Lemma 2. For any and we have 

|\(ijtoa) • ((pod)* - rj/ip ||a|||, |Li S ||tM|H*(et) ll[0>a] + ||h»<«)+ \\[@*M+ lla^e) Mh»№í)-

(This takes over the role of Lemma 4,, with the unpleasant difference that 
here we have to increase the right hand side of the inequality by a second term.) 

Proof. It readily follows from (4.2)i and (4.3), that 

(il/oa)-((poa)* = . ^ M S , - O K 0 [ 0 * < H + ) e , - ( 0 [ 0 * « M + ! cpa)^ 

Received September 30, 1979. 
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where [ - ] _= [ • ]—[ • ]+ ; hence, 

\\(фоаМ<роаГ-Ф<рЫ%.\\*& 

Since lit • ] — — l i t • ]|li,»((j) and since 0* is also contractive, the proof is done. 

Lemma 3. Suppose <£„, is (countably) infinite dimensional, and let h, 

•<Pi> *• • 3 (pT, Фи •••> Ф,£Н2 and e>0 be given. Then there exist h',k'd& such that 

( h + w + k y - h . v - z t j v j ш i\\Ф1\\нЛ\ч>М-ЫФ ] )+пв( (р ] ) )+^ 
. 1 L1 1 

PT si 2 ИФЛнг, wrs 2 Ш\2н>-
i i 

Remark. One can choose h', k' even to run over sequences A(n), 
<n = 1,2, ...) such that, for every /€§, й ( лМ* and kw • I* tend to 0 in L 1 as n-~ 

Proofs. Almost identical with those of Lemma 5, and Remark,, by using 
Lemmas 1 and 2 in place of Lemmas 3| and 4,, and applying inequality (5.3), 
both to (pj and фj. 

2. More essential change is needed with Lemma 2,. Its role will be taken by 

Lemma 4. Given a subset S of the open unit disc D={1: |Я|<1} let s be 

the set of non-tangential limit points of S on the unit circle C. *) Then for any fdV-(s) 

and s>0 there exist ..., and cl5 ...,c„£С such that 

(1) f - 2 c j P t < 6 and Z\cj\ ^ ll/llz.4s), 
¡Ms) 1 

where P^ is the Poisson kernel function on C corresponding to the point p(£D), i.e. 

Proof. Suppose there exist f0£L1(s) and e0>0 for which the assertion does 
not hold, i.e. such that the open ball G in L 1 ^ ) with centre /0 and radius e0 is dis-
joint from the set X of all finite linear combinations with Hj£S, cfiC, 

and 2 lc7'l —ll/ollxi(i)- Since both G and X are convex, and G is open, there exist, 
by the Hahn—Banach separation theorem, a function g0€Lm{s) (the Banach dual 
of L 1 ^ ) ) and a real number a such that 

<3) Re fhg0dm s a < R e ffg0dm 

x ) For any ScZ>, the corresponding set s c C is a Borel set, indeed an Fa6a. 
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for all hdX and /£G (in particular for f=f0); m denotes normalized Lebesgue 
measure on C. 

Thus if we set 

go 0 0 = / g o i e ^ P ^ d m ( j i i D ) 
s 

and observe that 

WPJLHS) ^ \\PJN = 1, and hence, W M M ^ 6 X, 

the first inequality in (3) shows that 

(4) ll/oll2.i(S)lfoG*)N « for all p i S . 

Since Jo is a bounded harmonic function on D, by the Fatou theorem we infer 
from (4) that 

ll/olli.i(s)l£b(e")l a almost everywhere on s, 
so that 

Re f/ogo dm m ||/0Hi,iw ||gollL~<s) S 
s 

This contradicts the second inequality (3). The proof of Lemma 4 is complete. 

3. In the sequel the functional t]9(cp) defined in [I] will again play a basic part. 
Let us recall, in particular, that for (p=p„, where 

P, (ei') = (l-iiei')-1 (l*<LD), 
we have 

f foOg = inf 110(̂ *19111, 

where 91 runs through the family of subspaces of of finite codimension; cf. (2.6),. 
For any number 5, consider the subset 

(5) S> = {(i(iD: 

of D, and the corresponding set ss of non-tangential limit points of S3 on C. 

We are going to prove the following substitute for Lemma 5,: 

Lemma 5. Suppose (S^ is (countably) infinite dimensional and suppose / C L 1 ^ ) 
and h,k£&, and also e>0 are given. Then there exist h',k'£S$ such that 

\l(h + h').(k+kT-h'k*-f\\LHsa) s 29||/||Lt(Ss) + 2s, 

P'll, WW S ||/||tl(S9). 

Proof . By Lemma4 there exist ..., p„£S and c t , . . . , c„€C satisfying (1) 
(with s=s3). One can obviously assume that c^0 for all j, so we can set 

<Pj = |c//2(l - [lijm.j, "Ay = (sgn Cj) . <Pj 

(y'= 1,2,..., n). Then we have 

tjVj = CjPN, UjWh = \№i\\H* = \Cj\ 
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so that by Lemma 3 we obtain h', such that 

(h + AO • (k + kT -h • k* - J Cj S 29Z\cj\ + s 
L\s») 1 

and 

1 

Taking also account of (1) we conclude the proof. 

4. Now we are ready to state the following: 

Theorem. Suppose &(?•)} is a contractive analytic function, with sep-

arable (E+ and with dim = Suppose that for some 9, , the set 

ss of non-tangential limit points of the set S9 (defined by (5)) on C has positive Lebesgue 

measure. Then for every /6L1(is) there exist h, such that 

(6) f = h-k* almost everywhere on s9. 

Proof . As in the proof of Theorem, we choose a number co such that 
23-=co<l and consider an /6Z.x(Js) with li/IIL1^) —1- Setting h-1=ha=k_1= 

=k0=0 (in § ) we show by induction that there exist h„, k„£§) ( « = 1, 2, ...) such that 

(?) l !/-/v*n* IL (S s )Say and WK-h^.f, \\K~K_A* ^ CO"-1 (n = 0,1, . . . ) . 

This being obvious for n=0 we assume /?„, k„ to be already found for n—0, ..., q. 

Setting fq=f-hq-k* and £,=(co—29) ©"/2, by Lemma 5 we infer that there exist 
hq+i,kq+1£§> such that 

IIVi• K+1 - K - K - f q \ ^ 29• II/,IIL>(S3) + 2E4 
and 

\\hq+\ — hqW2, ||*g+1-£8||2 ^ H/,11^) S CO«. 
Then we have 

l l/-^ + 1 -^ + 1|| L . ( S s )= ||(/g+ hq • k*)—• ^+111^(5») = 23 • co9+(a>—2S)(oq = co*+1, 

and the proof of (7) by induction is done. 
By account of (7), the sequences {h„}, {k„} are strongly convergent (in § ) 

and their respective limits h, k satisfy (6). Theorem is proved. 
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On contractions of class Cj. 

PEI Y U A N W U 

It has been known that Cxx contractions are quasi-similar to unitary operators. 
One may come to wonder what the corresponding result for the larger class of Cx. 

contractions is. Along this line SZ.-NAGY and FOIA§ ([3], pp. 71—72) showed that 
an arbitrary Cx. contraction is a quasi-affine transform of an isometry. This result 
was also proved by DOUGLAS ([2], Lemma 4.5) using a different method. In the 
present paper we will refine the Sz.-Nagy and Foia§ technique more deeply to derive 
a "canonical" isometry for a completely non-unitary (c.n.u.) Cx. contraction whose 
defect indices are finite. 

After we fix the notation and terminology in Section 1, we prove our main 
result in Section 2 in a series of lemmas. The notion of "multiplicity-free" Cx. con-
tractions will be taken up in Section 3. We show that a c.n.u. multiplicity-free Cx. 

contraction with finite defect indices must be either of class Cxx or of class CXQ-
The author wishes to express his gratitude to Dr. L. Kerchy for pointing out 

some gap in, and simplifying the proof of, the main result in the preliminary version 
of this paper. 

1. Preliminaries. A contraction T (|| 7*|| ^ 1) is completely non-unitary (c.n.u.) 

if there exists no reducing subspace on which T is unitary. The defect indices of T 

are, by definition, ¿ r = r a n k ( I - T * T ) l l i and rfr,=rank(/-7T*)1'2. T£CX. (resp. 
C.j) if T"x->0 (resp. T^x-i-O) for all x^O; Cxx=Cx.r\C.x. For every Cx. 

contraction T we have dTsdT*. T£C0. (resp. C.0) if T"x-~0 (resp. T*"x-~0) 
for all x; c 1 0 = c i . n c . 0 . 

Let C be the complex plane. For a positive integer n, let L'n and 7/„2 denote the 
standard Lebesgue and Hardy spaces of C"-valued functions defined on the unit 
circle C. We will use "t" to denote the argument of a function defined on C and for 
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analytic functions, we will freely identify h(t) on the circle with its extension to the 
open unit disk h(X). If T is a c.n.u. contraction with defect indices dT=m and 
dT,=n, in the discussion of the following we shall consider its functional model, 

that is, we consider T being defined on ^>=[Hl®AL2m]Q{0Tw®Aw: w£//2} by 
T(f®g)=P(e"f©eug) for /©g€§ , where 0T denotes the characteristic func-
tion of T, A =(/—6>£0r)1/2 and P denotes the (orthogonal) projection onto §>. 
If QT is the characteristic function of T, then the characteristic function of T* is 
0j, where 0j(X) = 0T(l)*. For the details, the readers are referred to [3]. 

/ 

For arbitrary operators Tx, T2 on § 2 , respectively, 7 W r 2 denotes that 
Tx is injected into T2, that is, there exists an injection X: such that T2X= 

=XT1. If X also has dense range, then we say that X is a quasi-affinity and Tx is a 
quasi-affine transform of T2 (denoted by 7\, T2 are quasi-similar (T1~7 , 2 ) 
if TX<.T2 and T2<Tx- For an arbitrary operator Ton let pT denote the multi-

plicity of T, that is, the least cardinal number of a subset ft of elements in § for 

' which V T"Sk. Note that if TL<T2 then pT SpT . 
n = 0 2 1 

2. C1. contractions in general. Our purpose in this section is to prove the fol-
lowing main result. 

Theorem 2.1. Let T be a completely non-unitary C\. contraction with defect 

indices dT =w=£?j-t=iw-<Then T<Sm-n®U, where Sm-„ denotes the unilateral 

shift on and U denotes the operator of multiplication by e" on A L\. 

If T is a Cx. contraction as above, then T* is of class C.x and we may con-
sider T* being defined on S>= [// 2 ©aH^Q {6>;wffiA~w: w6# 2 } by T*(f®g) = 

=P~(e"f®e"g) for where A~ = (I-0~T*0~Tfn and P~ denotes the 
(orthogonal) projection onto Let Px: 5)-+A~ L2m be the operator Px(f®g)=g 

and let V be the operator of multiplication by e" on A~l?m. Then it is easily seen 
that V*PX=PXT and Px is injective (cf. [3], pp. 71—72). Thus T<V*\J\¥>. What 
Lemmas 2.2, 2.3 and 2.4 below show is that V " i P ^ is unitarily equivalent to 
Sm-n®U. 

Lemma 2.2. P&=A~~UmQA^, where £= {/6/7 2 : 0~f= 0}. 

Proo f . Let k be an element of L\®A~L2m. We first show that k£A "L^QP^ 

if and only if kA.L2n and k , I n d e e d , any hd§> can be written in the form 
h=f+g, where f±A"L% and gdP-A- If A: is orthogonal to any two of the elements 
h, f and g, then it is also orthogonal to the third element. Our assertion follows 
immediately. Since Ll®A~Ll={I}nQH%)®5)®{0~Tw®A~w: the following 
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three conditions are equivalent: 

k^A~L% and 0 ® k = 0 j W ® A ~ \ v for some w£H%„ 

k£A~L2m and k = A~w for some wdfi, 

which shows that P1$j=A~L?nQA~ 2. 

Lemma 2.3. Let Sm and Sm_„ denote the unilateral shifts on H^ and 7/2_„, 
respectively, and let 2= {f£H*: 0~Tf= 0}. Then 5m|£=Sm_„. 

Proof . Since £ is an invariant subspace for Sm, 2=<PN2 for some inner 
function {Cq, Cm, <P} where q^m. 0T is *-outer implies that 0? is outer. Hence 
ker 0 f ( t ) has dimension m—n for almost all t (cf. [3], p. 191), and it follows that 
q^m—n. 

On the other hand, considering the quotient field derived from the algebra H°°, 

we see that the equation 0^/=O has m—n linearly independent solutions: 
..., t/>m_„. That is, iK. — a n d ip^t), ..., \pm-n(t) is a linearly inde-

pendent system for almost all t (cf. [4], the proof of Theorem 5). Therefore, m—nSq. 
Thus q=m—n and the assertion follows. 

Lemma 2.4. F*|/>1§ is unitarily equivalent to 5m_„© U. 

Proof. Let 2= <S>H*_n be as in Lemma 2.3 and let ipj=<Pt]j for j= 1, ..., m—n, 

where rjj denotes the column vector with m—n components whose _/-th component 
is 1 and other components are 0. It is easily seen that for almost all t, 

ij/1(t'), ...,i//m-„(t) are orthonormal eigenvectors of A~ (t) whose corresponding 
eigenvalues 5x(t), ...,dm-„(t) all constantly equal to 1. Since for almost all t, 

A~ (t) is a self-adjoint operator on Cm bounded by 0 and 1, we can extend { ^ ( i ) } " - " 
to an orthonormal base {^ (0 }™ °f Cm consisting of eigenvectors of A~(t), that is, 
such that A~(t)il/j(t)=8j(t)il/j(t), j=l,...,m, where the eigenvalues dj(t) are 
arranged in decreasing order: 

1 = <5^0 = ... = <5m_„(i ) s <5 m _ „ + 1 ( 0 s r . . . s <5m(0 S O a.e. 

Let Ej={t: rank A~(t)^j}, j=l,..., m. Define X: A~L2m-*L2(E1)®... © I 8 ( £ J by 
X{A~v)=x181®...®xm8m, where for any v£L2m, Xj(t)=(v(t), \f/j(t))Cm, j= 1,..., m, 

and( , )Cm denotes the Euclidean inner product in Cm. It was shown on pp. 272—273 
\ of [3] that X can be extended to a unitary transformation from A~L2m onto 

L2(E1) ®... ® L2(Em) such that XV=V'X, where V' is the operator of multiplica-
tion by e" on L2(E1)®...®L2(Em). 
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Wc complete the proof of this lemma in several steps. In each step the first 
statement is proved. 

(i) X<d~fi=//2_11©0©... ©0. Let Sm_„ and S„, denote the unilateral shifts on 
a 

CO 

Iif„_„ and II?n, respectively. We have $Sm-„ = Sm <P. So V {S}nil/j,j=i, ...,m-n}=2 
i=o 

and {A~S}„il/j,j=l,...,m-n}=\/ {VlA~^,, j=l, ..., m-n). Since X 
1=0 t—0 

_ OO 
is a unitary operator for which XV=V'X, XA~2= \/ {XVlA~ ifr,, j= 1, ...,m — n} = 

¿=o 
CO 

= v {V'lXA~\j/j, 7=1,..., m—n}=H*_u®0®...®0, where in the last equation 
i = 0 

we used the relation XA~\j/~r\j for j = i , ..., m—n. 

(ii) F'* |0 ©... © 0 © L2 (Em _„.,.!)©...© L2 (Em) is unitarily equivalent to U on 

in—n 

AL\. Let U be unitarily equivalent to the operator U' of multiplication by e" on 
L2(FJ®...®L2(FJ, where Fj={t: rank /1(0=/}, j=l, ..., n, are Borel subsets 
of C satisfying F 1 i F 2 i . . . i f „ (cf. [3], pp. 272—273). An elementary argument 
shows that 77?+rankzl(i)=«+rank-d^(i)=«+rankA~{—t) a.e., where A.,.= 

=(I—0T0^)1/Z. Hence rank /1(f) §7 if and only if rank A~ (-t)^m-n+j. It 
follows that Fj=E~_n+J = {t£C: —teEm_n+J}, for j=1, ...,«. We infer that U', 

hence U, is unitarily equivalent to F'*|0©... ©0©L2(JS'1„_ll+1) ©... ®L2(Em). 

(iii) is unitarily equivalent to Sm^„®U. By (i) and Lemma2.2 we 
have X* [ (^„_Heg,LJ©L 2 (^„ , - , , + i )© - ®L\EJ]=Tl2mQT~2=Hence 
V*\P& is unitarily equivalent to F'*|(L2_.„©7/2_„)©L2{Em_„+1)©...©L2 (EJ, 

which is, in term, unitarily equivalent to Sm-H® U by (ii). 
This completes the proof. 
We remark that from the proof above we can easily deduce that if T is a c.n.u. 

Cl. contraction with defect indices dT=n^.dT*=m-<°and U, V and W denote 
the operators of multiplication by e" on AL2, A^L2, and L2m_n, respectively, then 
Vsa W® U. 

Note that the isometry of which T is a quasi-aflme transform is, in general, 
not unique as is evident from the following lemma. 

Lemma 2.5. Let S and U be the unilateral and bilateral shifts on H2 and L2, 
respectively. Then S<, U. 

Proof. Let g be an essentially bounded function in L2 which is cyclic for U, 

that is, £ 2 = V U"g (cf. [5], proof of Lemma 4). Define X: IP-^L2 by Xf=gf 
n=0 

for f£H2. It is easily verified that X is a quasi-affinity intertwining S and U. 
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Corollary 2.6. Let T be a C10 contraction with defect indices dr=n=^dri~-

=m<oo. Then T<Sm^„. 

Proof. For a C10 contraction T we have A=(J—@£ ©T)1/2—0. The assertion 
follows immediately from Theorem 2.1. 

Actually, in the preceding situation Sz.-Nagy and Foia§ showed that T is com-
pletely injection-similar to the uniquely determined Sm-„ (cf. [4]). 

3. Multiplicity-free Cx. contractions. A Cx. contraction T is said to be multi-

plicity-free if it admits a cyclic vector, that is, \iT=1. The following theorem gives 
equivalent conditions for multiplicity-free C10 contractions, which generalizes Prop-
osition 2 of [4]. 

Theorem 3.1. Let T be a C10 contraction with defect indices dT=n^dT.,= 

and let S denote the simple unilateral shift. Then the following are equiv-

alent: 

(1) T is multiplicity-free; 

(2) S<T; 

(3) S~T; 

(4) m—n= 1 and there exists an mX 1 matrix A over H°° such that [A, <9r] 
is outer; 

(5) m—n=1 and there exist elements x1,...,xm in H°° such that 

Xlo1-xie,+...+(-i y+1xmem 

is outer, where Oj denotes the determinant of the nXn matrix obtained by deleting 

the y-th row from the matrix of 0T, j= 1, ..., m. 

The proof essentially follows the same line of arguments as given by SZ.-NAGY 
and FOIA§ [4] for the case m=2, n=\ . We leave the verification to the readers. 

Theorem 3.2. Let T be a c.n.u. Cx. contraction with defect indices dT=nS 

SdTt=ffl<°°. Then the following are equivalent: 

(1) T is multiplicity-free; 

(2) either T is of class C10 and T~S or T is of class Cn and T~ME, 

where S denotes the simple unilateral shift and ME denotes the operator of multiplica-

tion by eu on L2(E) for some Borel subset EQC. 

Proof. (2)->(l). This is trivial since ht=hs=hMe—1. 

(1)=*(2). By Theorem2.1, T-<J=Sm~n®U, where £,„_„ denotes the uni-
lateral shift on H2_„ and U denotes the operator of multiplication by e" on ~AL2. 

Thus (1) implies that 1. It is an easy matter to check that either J=S 

14 
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and T is of class C10 or J~ME for some Borel subset EQC and T is of class C u . 
In the former case, S follows from Theorem 3.1; in the latter, T ~ M £ follows 
from Lemma 4.1 of [1], since T is itself quasi-similar to a unitary operator. This 
completes the proof. 
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On a partial solution of the transitive algebra problem 

B. S. YADAV and S. CHATTERJEE 

Let B(H) denote the Banach algebra of all bounded linear operators on an 
infinite-dimensional separable complex Hilbert space H. A subalgebra sd of B (H) 

is called transitive if it is weakly closed, contains the identity operator and its only 
invariant subspaces are {0} and H. B(H) is obviously transitive. Whether there 
exists any other transitive algebra is a well known open problem, the so-called 
'transitive algebra problem'. The problem was first raised by KADISON [5] and it 
continues to be still unsolved. However, partial solutions of the problem have been 
obtained by many mathematicians; see, for example, ARVESON [1], BARNES [2], DOUGLAS 
and PEARCY [3], NORDGREN [8], NORDGREN, RADJAVI and ROSENTHAL [9], and RADJAVI 

and ROSENTHAL [10], [11]. The first such solution was given by ARVESON [1] who 
proved that if a transitive algebra s i contains a maximal abelian self-adjoint algebra, 
then ¿rf=B(H). In the same paper, he also proved that B(H) is the only transitive 
algebra containing a simple unilateral shift. By using Arveson's techniques, NORD-
GREN, RADJAVI and ROSENTHAL [9] have shown that a transitive algebra containing 
a Donoghue operator (backward weighted shift with a monotone decreasing and 
square-summable weight sequence) equals B(H). The purpose of this note is to 
go a step further in this direction and show that every transitive algebra containing 
a certain type of weighted shift, more general than a Donoghue operator, coincides 
with B(H). Our result assumes significance in the light of the conjecture that every 
transitive algebra containing a weighted shift is equal to B(H). 

We shall denote by H(n) the direct sum of n copies of H, and by A(n) the operator 
on H(n) which is the direct sum of n copies of A. 

Let {wk}™=1 be a bounded sequence of non-zero complex numbers and let 
foKlo be an orthonormal basis of H. The operator T on H defined by the require-
ment 

Te0 = 0 and Tek = wkek-l (k = 1, 2, ...) 

is called a weighted unilateral (backward) shift with the weight sequence 

Received February 20, 1979. 
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We may and shall assume, without any loss of generality, that the weights wk are 
positive real numbers [4]. In this case, {wt}~=1 is said to be of bounded />th-power 
variation if 

J" K - W t + i l " < » . 
k=1 

(For p = 1, we simply say "bounded variation".) 
The following theorem is an important tool to obtain our results: 

Theorem A. [9, Corollary 1 ] If a transitive algebra si contains an operator 

A such that 

(i) every eigenspace of A is one-dimensional, and 

(ii) for every n, each non-trivial invariant subspace of A(n) contains an eigenvector 

of A<n>, 

then st=B{H). 

In the rest of this paper, si will denote a transitive algebra containing a weighted 
unilateral shift T with the weight sequence {w t}~=1. Our first result is 

Theorem 1. If { w ^ } ^ is of bounded variation and 

( 1 ) 5 = d ( n ) = s h + 2 - t H 2 < ~ 

for all hS2, then st=B(H). 

Proof . We know that there is a disc of eigenvalues for a backward weighted 
shift, but they are all of multiplicity one. Thus T satisfies condition (i) of Theorem 
A. Next, let (xlt x2, ..., x„) be a non-zero element of a non-zero invariant subspace 
M of r ( n ) and let 

oo 

xJ= 2xuet, 1 — j — n. 
i = 0 

If, for each j, the sequence has only finitely many non-zero terms, then 
the invariant subspace of T(n) generated by {x1,x2, ...,*„) is finite-dimensional 
and thus contains an eigenvector. We therefore assume, without loss of generality, 
that for every m^O, there is a number r=r(m)and a number s=s(m), 1 ^s(m)^n, 

such that 

(2) K s l = . max {\xu\} > 0. 

Now, for a given integer m, we have 

(T^)r(x 1,X2,...,Xn) ( Xr, I „ xr,2 „ Xr,n „1 . / n 

w = e°>ire<» ->^eo\ + (yr.i,yr.2, -,yr,n), 
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where 

„ _ -V Xk,jWf-Wk-r + l „ 
YR,j — ZJ ~ k r • 

Now 

|| ||2 _ y + I xk,j _ y ( wk+2-~ wk+r+l ^ I xk + r + l,j 

*=f+l I Wr...Wl ) I XriS ~ )\ xr>s 

M \ W1...Wr ) 

W1fc=0v w2...wr ) wlk=0i=0 w2...wr .7 

(by Abel's transformation [12]) 

& 00 

2 H + r + i - w l + r + i \ , by ( l ) , Wx fc=o 

<5 00 

= -TT 2'|wt+ r + i -w t + r + 2|(w f c + r + 1 + w k + r + 2 )S 
k=0 

^ 2 K -w k + 1 | , where p = sup {vvt}, Wl *=-r * 

and hence yrj-+0 as m — °°. 

Also, for each j (l^jsri), the sequence | Xr'J i is contained in the unit 
1 xr,s Jm=1 

disc, and hence admits a convergent subsequence converging to a number, say Zj. 
A routine check reveals that a number j0 lying between 1 and n will occur infinitely 
often as a value s=s(m) and corresponding to this j0, we have Zj=l. The upshot 
of the above deliberation is that M contains an eigenvector of Tw, viz. 
( z ^ , z2e0, ..., zne0). Thus, T also satisfies condition (ii) of Theorem A and we 
are done. 

Theorem 2. If is of bounded pth-power variation and 

(3) 5 = S(n)= 2(2Wj+i'Wj+n)9 

k=o \ j f o w2...w„ ) 

for all n^2, where l < p < » and q is the Holder conjugate of p, then s/=B(H). 

< oo 
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Proof. Proceeding as in the proof of Theorem 1, we have 

- u . t e r f t e i T - ter) te 

~ TT ^ —w—Z, w*+'+1 = ~ 2J\2J — — I lwJt+r+i —Wft+r+2l 

Wi *=o W2...Wr Wlk=0\j=o w2...wr ) 

(by Abel's transformation [12]) 

= [ i f i Wj+J ' WJ+r)T(2 (by Holder's inequality) 

(51/« 
= - ( 2 h - w i t . l f , by(3); 

and hence, JV,j—0 as w— 
The rest of the proof follows as that for Theorem 1. 
Let /", be the Banach space of all complex />th-power summable 

sequences x= {x0, xlt xz,...} with the norm 

HP 

Ml = ( ¿1**1') 

Then a weighted unilateral (backward) shift T on lp appears as 

T{x0, Xi, X2, . . . } = { ^ . X j , w2x2, ...}. 

We denote by i f a strongly closed subalgebra of B(lp) containing the identity opera-
tor and with no non-trivial invariant subspaces. We have the following analogue of 
Theorem 1 for lp spaces, which we state without proof: 

Theorem 3. If contains T with 

ttoV w2... wn ) k 
then &=B(lp). 
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Remark. A subalgebra i f of B(H) is called strictly cyclic if there exists a 
vector x0(LH such that A££f}=H, and an operator A£B{H) is strictly 
cyclic if the algebra generated by A is strictly cyclic. LAMBERT [7] has shown that 
every transitive algebra which contains a strictly cyclic algebra equals B{H). It 
follows, in particular, that every transitive algebra containing a strictly cyclic opera-
tor is equal to B(H). Every Donoghue operator is strictly cyclic [6]. Whether the 
weighted shifts T in our Theorems 1 and 2 are also strictly cyclic, is not known. 
In case they are, these theorems will follow as corollaries to LAMBERT'S theorem 
[7, Theorem 4.5]. In fact, we strongly feel that the following is true: 

Conjecture. Every weighted unilateral shift whose weight sequence is of 
bounded variation and square-summable is strictly cyclic. 
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D. W. Barnes and J. M . Mack, An Algebraic Introduction to Mathematical Logic, V+121 pages, 
Springer-Verlag, Berlin—Heidelberg—New York, 1975. 

According to the authors' intention declared in the Preface, "this book is intended to make 
mathematical logic available to mathematicians working in other branches of mathematics". Despite 
of the title the presentation uses very few algebraic means. 

Chapter I accumulates some simple notions such as the free algebra, relatively free algebra and 
variety of universal algebras. Chapters I I and I I I deal with Propositional calculus. Chapter IV deve-
lops both syntax and semantics of Predicate calculus and proves Godel's Completeness Theorem by 
the method of Henkin. In Chapter V mathematical theories based on the fiist order predicate cal-
culus are investigated. In particular, the Lowenheim-Skolem Theorem and the elimination of quanti-
fiers are studied. Chapter V I lists the axioms of the Zermelo—Frankel set theory. Chapter V I I intro-
duces the notions of ultraproduct, ultrapower and direct limit and there is a nice proof of the theo-
rem that every field has an algebraic closure. Non-standard models are discussed in Chapter V I I I 
with applications to elementary non-standard analysis. In Chapter IX Turing machines and Godei 
numbers are introduced to explain the notion of calculability and solvability. In particular, Church's 
theorem on undecidability of the predicate calculus is included. Finally, Hilbert's Tenth Problem and 
a brief outline of its solution by MatiyaSevii are presented in Chapter X. 

The book is very clearly written, supplied with excercises at the end of sections (some of them 
need far more knowledge than provided by the text). 

P. E.-Toth (Szeged) 

B. BoIIobds, Graph theory: An Introductory Course (Graduate Texts in Mathematics, Vol. 63), 
X+180 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

The 8 chapters of the book (Fundamentals; Electrical Networks; Flows, Connectivity and Match-
ing; Extremal Problems; Colouring; Ramsey Theory; Random Graphs; Graphs and Groups) 
contain gradually more and more involved results, with several relations to other branches of mathe-
matics. 

The reviewer was pleasantly surprised to find a full chapter on electrical networks, and feels 
some competence to criticize this chapter in a more detailed way. The order of the presentation is 
quite unusual. In other texts, Theorem 1 is presented usually much later than Theorem 7. (However, 
the other texts are written mainly to students in engineering, while the order in this book seems to 
be more adequate for mathematicians.) On the other hand, one sees no reason why should the mate-
rial of §2 separate those in §§1 and 3. The references at the end of the chapter refer to §2 only and the 
exercises, related to §2 are also more adequate than the rest. Probably a few remarks on electric net-
work duality and its relation to planar graphs could also be in order. 
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The author successfully meets two contradicting requirements: most of the important blanches 
•of the theory are presented; still, several deep results are included. The presentation is clear, there is 
a strong attempt to present typical methods and ways of reasoning in addition to the results. 

A great advantage of the book is the good selection of exercises, containing quite a few unusual 
and deep results. 

The book is a valuable addition to the literature and is highly suggested for students and 
teachers of graph theory. 

A. Recski (Budapest) 

Carl de Boor, A Practical Guide to Splines (Applied Mathematical Sciences, 27) XX IV+392 
pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

The textbook grew out of lectures on splines delivered by the author at Redstone Arsenal in 
1976 and at White Sands Missile Range in 1977. It stresses the representation of splines as linear 
-combinations of 5-splines, provides proofs only for some of the results stated but offers many For-
tran programs. The reader is requested to consult a few books listed in the bibliography if he wishes 
to develop a more complete picture of spline theory. As the author says in the Preface, his book pre-
sents only those parts of spline theory which he found useful in calculations. Indeed, this book is an 
•excellent one for everyone who deals with applied mathematical problems involving polynomial 
splines. 

The following outline may provide an idea of the content. Chapters I and I I recapitulate mate-
rial needed later from the ancient theory of polynomial interpolation. The next four chapters follow 
•somewhat the historical development, with piecewise linear, piecewise cubic, and piecewise parabolic 
approximation discussed. The computational handling of piecewise polynomial functions is the sub-
ject of Chapters VI I and VIII. v3-splines are introduced in Ch. IX, while Chs. X and X I are intended 
to familiarize the reader with them. The remaining chapters contain various applications, all involv-
ing ő-splines: the smoothing spline and least-squares spline approximation for noisy data, the use of 
splines in solving differential equations, approximation of curves etc. The final chapter treat with the 
simplest generalization of splines to several variables. 

Each chapter ends with some problems to test the reader's understanding of the material, to 
bring in additional material and to urge numerical experimentation with the programs provided. 
The Bibliography does not claim completeness, it contains only items referred to in the text. For the 
reader's convenience a Postscript on Things not Covered, a List of Fortran Programs, and a Subject 
Index complete the book. 

F. Móricz (Szeged) 

Yuan Shih Chow and Henry Teicher, Probability Theory (Independence, Interchangeability, 
Martingales), XV+455 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

The concern of this book is the measure theoretical foundations of probability theory and the 
major theorems of the subject. The main topics treated are independence, interchangeability and 
martingales as indicated in the title. Thus, such important concepts as Markov and stationary pro-
cesses are not even defined, although the special cases of sums of independent random variables and 
interchangeable random variables are dealt with extensively. Likewise, continuous parameter sto-
chastic processes, although alluded to, are not discussed. 

The book is intended to serve as a graduate text in probability theory. No knowledge of measure 
or probability is presupposed. A novel feature is the attempt to intertwine measure and probability 
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rather than, as customary, to set up between them a sharp demarkation. Particular emphasis is plac-
ed upon stopping times, on the one hand, as tools in proving theorems, and on the other, as objects 
of interest in themselves. For example, optimal stopping problem, limit destributions of sequences 
of stopping rules (i.e. finite stopping times), randomly stopped sums are of special interest. Many of 
the proofs given and a few of the results are new. Occasionally, a classical notion is looked at through 
new lenses (e.g. reformulation of the Lindeberg condition). 

Chapter 1—3 contain the elements of measure theory, binomial random variables and indepen-
dence involving the Borel—Cantelli theorem and Kolmogorov zero-one law. It is surprising how 
much probability can be developed without even a mention of integration. A number of topics treated 
later in generality are foreshadowed in the very tractable binomial case. Ch. 4 is devoted to integra-
tion in a probability space, while Ch. 6 to measure extensions, Lebesgue—Stieltjes measure and the 
Kolmogorov consistency theorem. 

Readers familiar with measure theory can plunge into Ch. 5 after reading Section 3.2. A one-
year course presupposing measure theory can be built around Chapters S, 7, 8, 9, 10, 11 and 12. In 
more detail, Ch. 5 treats the sums of independent random variables, Ch. 7 introduces the notions of 
conditional expectation, conditional independence, and martingales. Ch. 8 deals with distribution 
functions and characteristic functions, involving the Fréchet—Shohat, Glivenko—Cantelli and Cra-
mér—Levy theorems. The central limit theorems are studied for the independent case, interchange-
able case and martingale case (Ch. 9), while the laws of large numbers, the law of the iterated logarithm 
for independent case (Ch. 10), Martingales are introduced in Section 7.4, where the upward case is 
treated, and then developed more generally in Ch. 11. The final Ch. 12 contains material concerning 
infinite divisible laws. 

The book is complemented by a List of Abbreviations, a List of Symbols and Conventions, and 
an (author and subject) Index. Each section ends with exercises, and each chapter with references. 
The exercises are used to extend theory, to illustrate a theorem, or to obtain a classical result from one 
recently proven. 

The presentation is self-contained and unified. It is highly recommended for every graduate stu-
dent or mathematician who wishes to begin studies in Probability Theory. 

F. Móricz (Szeged) 

Combinatorial Mathematics. VI, Proceedings of the Sixth Australian Conference on Combina-
torial Mathematics, Armidale, August 1978. Edited by A. F. Horadam and W. D. Wallis (Lecture 
Notes in Mathematics, Vol. 748), IX+206 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1979. 

The volume contains texts of three of the invited addresses (R. B. Eggleton and D. A. Holton 
on graphic sequences, S. O. Macdonald on the interaction between combinatorics and graph theory, 
B. D. McKay and R. G. Stanton on generalized Moore-graphs) and 15 contributed papers (about 
40—40% of which refer to designs and graphs, respectively). 

A. Recski (Budapest) 

George Gratzer, Universal Algebra, 2nd edition, XVII I+581 pages, Springer-Verlag, New 
York—Heidelberg—Berlin, 1979. 

The first edition of Grátzer's Universal Algebra came out in 1968 and instantly became the refer-
ence book of its topic. The very successful choice of the material is testified by the fact that, after, 
eleven years and about a thousand new articles in the area, a second edition containing the unchanged 
text of the first one has been justified and necessitated. 
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Clearly, in order to remain the reference book also in the future, this second edition has had 
to mirror the rapid development of universal algebra in the seventies. For this aim, it contains seven 
appendices, partly written by invited experts, and an abundant additional bibliography which in-
cludes even several important articles not in print yet. 

The first appendix (Shortly: A l ) is a survey of recent research not covered in the further appen-
dices. A2 is a review of the solved problems, posed in the first edition. A3 (by B. Jónsson) introduces 
into Mal'cev conditions and congruence varieties, A4 (by W. Taylor) surveys equational theories, 
A5 (by R. N . Quackenbush) gives a picture on primal algebras and other generalizations of Boolean 
algebras, and A6 (by G. H. Wenzel) deals with equational compactness. Finally, A7 contains the proof 
of a deep new result of the author and W. A. Lampe, namely, that the congruence lattice, the subal-
gebra lattice and the automophism group are independent for infinitary algebras. 

The time-tested basic text with these nicely written mini-monographs added will serve, no doubt, 
as the standard universal algebra book, in the eighties, too. 

B. Csákány (Szeged) 

S. W. Hawking and W. Israel, editors, General Relativity. An Einstein Centenary Survey, XV+920 
pages, Cambridge University Press, Cambridge—London—New York—Melbourne, 1979. 

The Einstein centenary arose widerspread new interest for general relativity all over the world. 
The present book is a most appropriate commemoration on Einstein's hundredth birthday. Twenty-
one of the world's leading relativists collaborated on this survey and gave a render of the current 
state of research. 

The book starts with an introductory survey of S. W. Hawking and W. Israel. The papers of 
C. M. Will, D. H. Douglass and V. B. Braginsky deal with the confrontation between gravitation 
theory and experiments. The work of A. E. Fischer and J. E. Marsden discusses the initial value 
problem and the Cauchy problem for relativity and they give the dynamical formulation of general 
relativity too. 

The discovery of exotic astronomical objects (quasars, pulsars, and X-ray sources) necessitated 
the development of theories which can explain the complex behaviour of these objects theoretically. 
Such are the theory of cosmology, black hole physics, theory of singularity, the early history of the 
universe, e.t.c. A lot of papers discuss these fields by the authorities who, strictly speaking, created 
these theories. We can mention here, e.g., the following names: R. Gerock and G. T. Horowith 
(Global structure of spacetimes), B. Carter (The general theory of the mechanical, electromagnetic 
and thermodynamic properties of black holes), S. Chandrasekhar (An introduction to the theory of 
the Kerr metric and its perturbations), R. D. Blanford and K . S. Thorne (Black hole astrophysics), 
R. H. Dicke and P. J. E. Peebles (The big bang cosmology—enigmas and nostrums), Ya. B. Zel'dovich 
(Cosmology and the early universe), M. A. H. MacCallum (Anisotropic and inhomogeneous relativ-
istic cosmologies), R. Penrose (Singularities and time-asymmetry). 

One of the most exciting problem of physics is the unification of general relativity with quanti-
zation and with other laws of physics. The book treats the present status of this field with an abun-
dant and profound material. C. W. Gibbons surveys the present quantum field theory in curved 
spacetime. B. S. DeWitt gives a new synthesis of quantum gravity. The article of S. W. Hawking 
shows how the path integral approach can be applied to the quantization of gravity and how it leads 
to the concepts of black hole temperature and intrinsic quantum mechanical entropy. In the last 
article of the book S. Weinberg deals, in connection with ultraviolet divergences in quantum gravity, 
with the future of quantum gravity and gives several conjectures concerning the evolution of the 
quantization in relativity. 
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We want to emphasize also the highly intelligent editorial work and the very nice appearance 
of the book. The editors should be congratulated for presenting us a work which will remain the 
"Bible" of relativity for many decades to come. 

Z. I. Szabó (Szeged) 

H Hermes, Introduction to Mathematical Logic, XI+242 pages, Springer-Verlag, Berlin— 
Heidelberg—New York, 1973. 

This volume is a valuable introductory text in the classical two-valued predicate logic. 
After three editions in German, the original text was translated into English by D. Schmidt. 

Concerning the material covered is no difference between the English and the third German edition. 
Both syntactical and semantical approaches are developed with a little more emphasis on the 

latter. After an excellent introduction the language and calculus of the first-order predicate logic are 
given in Chs. II—IV. The treatment leads to the Godel's Completeness Theorem in Ch. V. In Ch. VI, 
the axiomatic number theory and the second order predicate logic are introduced, on making the 
notion of completeness clearer. Ch. VII I includes pure model-theoretic proofs of some basic results 
in definition theory (such as theorems of Robinson, Craig, Beth, etc). 

In the remaining chapters (VII and IX ) useful techniques are presented to derive some well-
known logical connectives and normal forms. A systematic treatment of substitution is also included 
here. 

P. E.-Toth (Szeged) 

Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces. I I (Function Spaces) (Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, 97), X+243 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1979. 

The second volume on classical Banach spaces by the same authors [Volume I : Classical Ba-
nach Spaces. 1 (Squence spaces), Springer-Verlag, Berlin—Heidelberg-—New York, 1977] is devot-
ed to the study of Banach lattices. 

A partially ordered Banach space X over the reals is called a Banach lattice if the following, 
conditions are satisfied: 

(i) x^y implies x+zmy + z, for every x, y, z£X; 
(ii) axm0, for every x £ 0 in X and every non-negative real a; 
(iii) for all x, y£X there exists a least upper bound xVy and a greatest lower bound xt\y, 
(iv) there exists a constant M such that lUllsA/ llyll whenever |x|sj>>|, where the absolute 

value |x| of x^X is defined by M=xV(—x). 
The structure of Banach lattices is much simpler than that of general Banach spaces and their 

theory is therefore more complete and satisfactory. Many of the results concerning Banach lattices 
are not valid and sometimes even do not make sense for general Banach spaces. The theory of Ba-
nach lattices has many tools which are specific to this theory, in particular, the notions ofp-convexity 
and ̂ -concavity seem to be especially useful. These notions play a central role in the present volume 
and presumably will continue to dominate the theory of Banach lattices. 

The book consists of two chapters, both subdividing into seven sections. The table of contents-
is quite detailed and gives a clear idea of the material discussed in each section. The basic standard 
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•theory of Banach lattices is contained is Sections 1 a)—c). The theory of /»-convexity and p-conca-
vity is presented in Sections 1 d)—f). 

Chapter 2 is devoted to a detailed study of the structure of rearrangement invariant function 
spaces (r.i.f.s.) on [0,1] and [0, =°): a) Basic definitions, examples and results; b) The Boyd indices; 
c) The Haar and the trigonometric systems; d) Some results on complemented subspaces; e) Iso-
morphisms between r.i.f.s. and uniqueness of the r.i. structure; f ) Applications of the Poisson pro-
cess to r.i.f.s. 

Three of the sections are concerned with the general theory of Banach spaces rather than with 
Banach lattices. Section 1 e) deals with the theory of uniform convexity, 1 g) with the approximation 
property, and 2 g) with geometric aspects of interpolation theory in general Banach spaces. 

The prerequisities include, besides standard material from functional analysis and measure 
theory, only a superficial knowledge of the material presented in Volume I of this book. For the con-
venience of the reader the authors tried to discuss briefly in the appropriate places the notions and 
results from probability theory which they apply. 

The overlap between this volume and existing books on lattice theory is small and consists 
mostly of the standard material presented in Sections 1 a)—b). The books of W. A. J. LUXEMBURG 
and A. C. ZAANEN [Riesz spaces I, North—Holland, Amsterdam, 1971] and H. H. SCHAEFER [Banach 
lattices and positive operators, Springer-Verlag, Berlin—Heidelberg—New York, 1974] contain 
much additional material rather on vector lattices. The volume under review comprises the substan-
tial progress made in the seventies. 

To sum up, the present book is a rich and up-to-date account on this fast-growing and important 
subject. It is warmly recommended to everyone who wants to learn, or do research in, the theory of 
Banach spaces. 

F. Móricz (Szeged) 

M . Schreiber, Differential forms (A heuristic introduction), X+150 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1977. 

The theory of differential forms is one of the most frequently applied branches of mathematics 
not only in several fields of mathematics but also in theoretical physics. But the systematic treatment 
of differential forms requires an apparatus of topology and algebra which can be difficult for mathe-
maticians and physicists working in other fields of research. The present book treats the theory of 
differential forms with minimal apparatus and very few prerequisites. The exposition is heuristic 
and concrete. A differential form is considered as a multi-dimensional integrand given on surfaces in 
Euclidean space, and the various operations (such as exterior derivation) are treated on an elemen-
tary level, from the geometrical point of view. Several formulas, such as Stokes'formula, are proved 
on such an elementary level as possible. The book contains a short introduction to integral geometry 
also. 

It is addressed to mathematicians, physicists and students who are interested in a quick acquire-
ment of differential forms techniques. 

Z. I. Szabó (Szeged) 

G. Takeuti and W. M. Zaring, Axiomatic Set Theory, V+238 pages, Springer-Verlag (Berlin— 
Heidelberg—New York, 1973). 

This almost completely self-contained volume is a continuation of a previous one by the same 
authors ("Introduction to Axiomatic Set Theory", Springer-Verlag, 1971). The present book deals 
with three well-known methods for constructing models of the Zermelo—Fraenkel set theory: rela-
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tive constructibility, Cohen's forcing and Boolean valued models. After developing Lévy-Schoen-
field's theory of relative constructibility (Sections 7, 8, 9) a relationship is established between Co-
hen's technique of forcing (Sec. 10) and Scott-Solovay's theory of Boolean valued models (Sec. 13). 
In the first six sections some facts of Boolean algebras, Boolean er-algebras, partial ordered structures, 
and topologies needed later on are collected. The remaining sections are devoted to a deeper investi-
gation of the concepts introduced in the earlier sections. 

The text is recommended for graduate students. 
P. E.-Tóth (Szeged) 

I , M . Yaglom, A simple non-euclidean geometry and its physical basis, XVII I+308 pages, Sprin-
ger-Verlag (New York—Heidelberg—Berlin, 1979). 

It is a hard problem of geometrical education to give a simple, relatively quick but deep synthe-
tical treatment of classical, non-euclidean geometries. The book of I. M. Yaglom proves that this 
program is realizable very elegantly from the mathematical point of view and the deep connections 
between these geometries and physics can also be illuminated on this level. This physical motivation 
of the classical geometries is the most important intrinsic value of the book. 

Chapter I and I I are simple but non-trivial introductions to plane Galilean geometry and to 
Galilean inversive geometry with plane and inversive Euclidean geometry. The next chapters treat 
the physical basis of Galilean geometry, the relativistic kinematic and relativistic Minkowskian geo-
metry. At the end of the book the reader finds three supplements in which the author gives a syste-
matical treatment of the nine plane geometries with their axiomatic characterization and analytic 
models. 

The subject is accessible to anyone versed in elementary mathematics. The book is addressed 
mainly to students of mathematics, physics, and mathematical education. 

Z. I. Szabó (Szeged) 
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