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Co-Fredholm operators. I1

HARI BERCOVICI

Sz.-NAGy and Folag [16] proved that the operators T of class C, and of finite
multiplicity have the following property:

(P) any injection Xc{T} is a quasi-affiniti.

In [3] we showed that property (P) also holds for weak contractions of class
C,. In sec. 4 of the present note we shall characterize the class 2 of C, operators
‘having property (P).

UcHiyaMma [18] has shown that some quasi-affinities intertwining two contrac-
tions of class Cy(N) induce isomorphisms between the corresponding lattices of
hyper-invariant subspaces. This is not verified for arbitrary operators of class C,
(cf. Example 2.10 below). For operators of the class 2 we show (cf. sec. 4) that
any intertwining quasi-affinity induces isomorphisms between the corresponding
lattices of invariant and hyper-invariant subspaces. However the other results proved
in [18] for operators of the class Cy(V) hold for arbitrary operators of class C,;
this is shown in sec. 2 of this note. In sec. 2 we also show which is the connection
between the lattice of hyper-invariant subspaces of a C, operator and the correspond-
ing lattice of the Jordan model.

In sec. 3 of this note we prove a continuity property of the Jordan model.
This is useful when dealing with operators of class 2.

In [16] B. Sz.-NaGy and C. Folas made the conjecture that any operator T of
class C, and of finite multiplicity has the property:

(Q) Tiker X and T, x« are quasisimilar for any Xc{TY.
This conjecture was infirmed in [3], Proposition 3.2, but was proved under the
stronger assumption X¢ {T}” for any operator T of class C, (cf. also UcHivamA [19]).

Uchiyama began the study of the class of operators satisfying the property (Q)
showing in particular that there exist operators of class Cq¢(N) and multiplicity 2
wich have this property (cf. [19]), Example 2). In sec. 5 of this note we characterise
in terms of the Jordan model the class 2 of C, operators having property (Q).

Received January 16, 1979.



4 H. Bercovici

In [3} the determinant function of a weak contraction was used for proving
various index results. In sec. 6 of this note we extend the notion of inner function
in order to find a substitute of the determinant function for the case of operators
of class 2. In sec. 7 it is shown that the class of generalised inner functions (defined
in sec. 6) naturally appears in the study of index problems. In sec. 8 we generalise
the notion of C,-fredholmness defined in [3]. All results of [3] are extended to this
more general setting. ’

1. Notation and preliminaries

Let us recall that Lat (T) and Lat, (T) stand for the lattice of all invariant,
respectively semi-invariant subspaces of the operator 7. We shall denote by
Hyp Lat (T) the lattice of hyper-invariant subspaces of 7. If McLat, (T), Ty
stands for the compression of T to the subspace M and u, (M) stands for the multi-

plicity of Tj,. The notations T<T", TQ T’ mean that T is a quasi-affine trans-
form of T”, respectively that 7 can be injected into T’ (cf. e.g. [15]).
The following result will be frequently used in the sequel.

Lemma 1.1. ’If T and T’ are operators of class Cy and T<T’ then T and T’
are quasisimilar.

Proof. Cf. [16], Theorem 1 or [4], Corollary 2.10.

Lemma 1.2. Let {m};>, be a sequence of pairwise relatively prime inner func-

tions. If the operator T= é S(m;) is of class Cqy, the Jordan model of T is S(m),
i=0

m=m1‘.

Proof. If Tis of class C, it follows that T is a weak contraction (cf. the proof
of [6], Lemma 8.4) and from the assumption we easily infer d.=m;. The conclusion
follows by [6], Theorem 8.7. ,

For two operators T and T° we denote by (7", T) the set of intertwining
operators

Ly | F(T',T)={X: T'X = XT).

Let us recall (cf. [3], Definition 2.1) that X¢€#(7", T) is a lattice-isomorphism
if the mapping MM—(XM)~ is an isomorphism .of Lat (T') onto Lat (7).

Definition 1.3. An operator T has p;operty (P) if any injection A€{TY} is
a quasi-affinity.
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We introduce the property (Q) as in [19]:

Definition 1.4. An operator T has property (Q) if for any AE{T} T |ker 4
and Ty, 4 are quasisimilar.
Obviously (P) is implied by (Q).

Lemma 1.5. The operator T of class C, acting on the Hilbert space © has the
property (P) if and only if there does not exist $'cLat(T), =9, such that T and
T|9’ are quasisimilar.

Proof. Let T be quasisimilar to T|9", H'¢Lat(T) and let X: H—+H " be a
quasi-affinity such that (7}9") X=XT. Then A=JX (where J denotes the inclusion
of & into ) commutes with T and ker A={0}. If T has the property (P) we infer
9'=(49)~=9. Conversely, if A¢{TY is an injection, T and T|(4$H)~ are quasi-
similar by Lemma 1.1. ‘

We shall denote by H;” the set of inner functions in H*. The set H; is (pre)-
ordered by the relation

(1.2) m=m’ if and only if [m(2)|=|m )|, |zl<1.
Obviously m=m" if and only if m divides m’. The relations m=m’ and m'=m
imply that m and m” differ by a complex multiplicative constant of modulus one;

we shall not distinguish between the functions m and m’ in this case.
Let us recall (cf. [4]) that a Jordan operator is an operator of the form

(1.3) SMy=@ S(my), m,=M()

where M is a model function, that is M is an inner function valued mapping defined
on the class of ordinal numbers and

m,=m,; whenever o= f;
(1.9) _

m,=my; whenever &= f;
(1.5 m, =1 for some ¢,

where & denotes the cardinal number associated with the ordinal number o

The Jordan model S(M) is acting on a separable space if and only if m,=1,
where o denotes the first transfinite ordinal number. In this case the Jordan operator
is determined by the sequence {m;};2,. If m,=1 for some n<w, we shall also
use the notation S(mqg, m,y, ..., m,_,) for S(M) (cf. [13]). If S(M) is the Jordan
model of the operator T of class C,, we shall use the notation m,[T]=M (&) (cf. [4]).
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2. Hyper-invariant subspaces of operators of class C,

In this section we continue the study of hyper-invariant subspaces for the class
C, begun by UcHIYAMA [18] (for the case of operators of class Co(N)). The following
Proposition extends [18), Theorem 3 and Corollaries 4 and 5 to the class of general
Jordan operators.

Proposition 2.1. Let T=S(M) be a Jordan operator acting on the Hil-
bert space

(21) 5(M) =& 5("14)3 m, = M(a)

(i) A subspace M H(M) is hyper-invariant for T if and only if it is of the form
2.2) M= mH*m HY, m]=m,,

and the functions M" and M” given by M"(2)=m, and M’'(x)=m,m] are model
Sfunctions.

(i) If M is a subspace of the form (2.2) then T'=T|M is unitarily equivalent
to S(M’) and T"=Tg, is unitarily equivalent to S(M"). In particular,

2.3) ' My = Mg Mpn
if M is hyper-invariant.

Gii) If WM,, M,cHyp Lat (T') are such that T|M, and T|M, are quasisimilar,
we have M, =MN,.

Proof. We shall denote by Py, , the projection of H* onto $(m,), by Fs(m.)
the projection of H(M) onto H(m,) and by J, the inclusion of H(m,) into H(M).
By the lifting Theorem (cf. [12], Theorem I1.2.3) {T'}" is strongly generated by the
operators (T), where Yy€H™, and the operators 4;, given by

2.4 { Age = Ty Py Poimyy  If 2= P;
. Agy = Jp(mglm) Py, if o= B,
:and therefore the subspace M H(M) is a hyper-invariant subspace if and only

1t is invariant and A,;MCIM for each « and B. Let us assume that M is hyper-
:dinvariant. Because Aa,S)JI:Ps(mz) MM we have

{2.5) M=M,

where I, €Lat (S(m,)), say M,=m] H*Om, H?; therefore M is of the form (2.2).
Now let « and f be ordinal numbers such that a«<f; the conditions 4,,McIN
and A4, MM are equivalent to Ps(m’)‘JJI,CEDI,, and (m,/mg)M;CM,. We infer
memy H® and (m,/mgymz€m, H® so that m=m; and m,/m]=my/mj, respec-
tively; therefore M’ and M ” are model functions.
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Conversely, let M be given by (2.2) and assume M’ and M” are model func-
tions. It easily follows that Ps(,,,ﬁ)ﬂﬁ,,cﬂltﬁ and (m,/mg)M;IM, whenever a<p.
Thus A4,McB for each « and B so that McHyp Lat (T) and (i) follows.

To prove (ii) let us remark that, if M is given by (2.2), we have T[IMM= P S(m)|M,
and Tnl=@& S(m)mt, where WM,=m; H2om,H?* and S(m,)|M, is unitarily
equivalent to S(m;) while S(m)yn. is unitarily equivalent to S(m;). If M is hyper-
invariant then S(M’) and S(M ") are Jordan operators and therefore they are the
Jordan models of 7” and T”, respectively. In particular my =my=my/my=my/mz.
and (2.3) follows.

Finally, if M,, M,cHyp Lat(7) and T|M,, T|M, are quasisimilar it fol-
fows that 7|9, and T|M, have the same Jordan model. By (ii) 9, is determined
by the Jordan model of* T|M,. Therefore M,=M, and (iii) follows.

Remark 2.2. The proof of Proposition 2.1 can be applied with minor changes
to the description of Hyp Lat (T) when T= ¢ S(m;) and {m;};c, is a totally
jeJ

ordered subset of H;>.
For further use let us note that the general form of a subspace McHyp Lat (7)) is

.5) 93?=j?l(m}’H26ij2), m;=m; for jcJ

where mj=m; and m;/m]=m/m;, whenever m;=m,.
Remark 2.3. Let the subspaces I; be given by

(2.6) - M; = @ (m;@@H*6mM,H?), j=1,2.

Then )

MMM, = D (my(2)V my(x) H2O m, H?),
Q@ {

M VM, = B (my () Amy(e) H2O m, H?);
in particular MM, if and only if m (¢)=m,(x) for each a.

We shall now characterize the Jordan operators having a totally ordered lattice
of hyper-invariant subspaces thus extending [18], Theorem 6.

Proposition 2.4. The lattice Hyp Lat(T), T=S(M), is totally ordered if
and only if one of the following situations (i), (ii) occurs:

n n—1 n
i) my = (l—z:_i] and mae{l, (i] s (z—a ) } for each «, with la]<l1

az 1-az 1-—-az
and a natural number n.

(i) my=exp [ZE{—Z'] with |a|=1, t=0, and m,=m, whenever m,# 1.
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Proof. For two inner divisors m, m’ of my we have (ran m(T))~ c(ran m’(T))~
if and only if m=m’ (cf. [4]), Lemma 1.7). If Hyp Lat (T") is totally ordered it fol-
lows that the lattice of divisors of mr=m, is also totally ordered. Therefore we
have either mo=( lz—a ] (la]<1, n a natural number) or m0=exp(t ii;]

(lal=1, 1=0).

z—a
1—az
decreasing function of z. By Proposition 2.1 and Remark 2.3, Hyp Lat (T') is iso-
morphic to the lattice of natural number valued decreasing functions k(o) such
that k(x)=n(x) and n(x)—k(x) is also decreasing. Assume there exists «, such
that m=n(@)¢{n, n—1,0} and define k,(x)=max{n@—1,0} and k()
=min {m, n(«)}. Then we have k;(0)=n—1=k,(0)=m and k;(e)=m—1)<
<k,(ag)=m so that k; and k, are incomparable. Thus we necessarily have
n(@)e{n,n—1, 0}. Conversely, if n(x)€{n,n—1, 0} for every a, let us take two
functions k,, k, of the type considered before. If k, and k, would not be compara-
ble there would exist a<f such that #(B)0 and, by example, k,(e)<k,(a),
k,(B)=k,(B). From the assumption it follows that n(x)=n(f)+1 so that n(f)—
—ky(B)=n(0)—ky{x)=n(f)+1—k,(«) and therefore k,(¢)—1=k,(f). Now k,(B)=
=k, (a)=k,(x)—1=k,(B), a contradiction. This shows that Hyp Lat (7) is totally
ordered in this case.

Now let us consider the case m,(z)=exp [t —-] Then m,(z)=exp (t (a)———)

n(x)
Let us consider the first situation. Then m,=[ ) where n(x) is a

where t(x) is a positive number valued decreasing function. Again by Proposition
2.1 and Remark 2.3, Hyp Lat (T) is isomorphic to the lattice of positive number
valued decreasing functions s(«) such that s(x)=t(x) and t(x)—s(x) is also decreas-
ing. Assume there exists oo such that #(x)¢ {z,0} and let us take O<e¢<
min {#(xg), t—#(ag)}. Then the functions s,(¢)=max {#(x)—¢,0} and s,(0)=
=min {#(«), #(xe)} are such that s5,(0)=1(0)—e=>s,(0)=1(x,) and

s1(at) = 1(og) —€ < 55(at) = t(x0);

therefore s, and s, are incomparable. Thus we necessarily have t(x)€{t, 0} if
Hyp Lat (T) is totally ordered.

Conversely, let us assume #(x)€ {t, 0} for each a. If s is a function of the type
considered above and #(x)>20, we have s(0)=s(x) and t—sO)=t(x)—s(®)=
=t—s(a) so that s(e)=s(0). Thus s(e)=s(0) if #()¢0 and s()=0 if 2(a)=0.
It is obvious that Hyp Lat (T) is totally ordered in this case also. The Proposition
is proved.

UcHryaMA [18] has shown that two quasisimilar operators of class Cy(N) have
isomorphic lattices of hyper-invariant subspaces. This result is also verified, as we
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shall see in sec. 4, for operators of class C, having property (P). The same thing
is not true for arbitrary operators of class C, (cf. Example 2.10). However we can
find a connection between Hyp Lat (T) and Hyp Lat (S) if S is the Jordan model
of the C, operator T. This allows us to extend [18], Corollaries 2 and 5 to arbitrary
operators of class Cy.

Theorem 2.5. Let T be an operator of class C, acting on the Hilbert space
$ and let S=S(M) be the Jordan model of T. Let ¢: Hyp Lat (S)—~Hyp Lat (T).
be defined by

(2.8) (M) = re Xr 5 XM

and let : Hyp Lat (T)~Hyp Lat (S),
V.. Hyp Lat(T*) - Hyp Lat(S¥)

be defined by analogous formulas.

(i) There exist Ye#(S,T) and Xc#(T,S) such that Y(MM)=(YM)~=
=X"1(M), McHyp Lat (T). In particular S|\ (M) is unitarily equivalent to the
Jordan model of T|IM.

(ll) IPO(P = idHprat (S)-
(i) ¥, (@D) = (Y (YL, McHyp Lat (7).

Proof. By [4], Theorem 3.4, there exists an almost-direct decomposition
29 H=V9h. 9HELat(T),

such that T|$, is quasisimilar to S(m,) and H,4,19+, if « and g are different
limit ordinals and m, n<w. If we put

(2.10) = (BV Hy)L€Lat(T*)
Fa
we also have $=V HF by [4], Lemma 1.11; because

(2.11) Tox(Pgr19) = (Pgr|9)(T1H)

and obviously Pgx|9, is a quasi-affinity, Tg* is also quasisimilar to S(m,). We
choose quasi-affinities X,: Sm)—~9,, Y. H—+H(m,) such that (T|HHX,=
=X,S(m,) and S(m,)Y,=Y,Tg+ and moreover

(212) ’ 2 ”Ya+n” = 1: Z "Xa+n” = 1

n<eo n<ow
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for each limit ordinal «. Then we can define quasi-affinities X¢# (T, ), YeF(S, T’
by the formulas

(2.13) Xh= 3 X,h,, h = ©h, €H(M),
Yh= @ J,Y,Pg:h, heH.

‘Indeed, from (2.12) it follows that X and Y are bounded (of norm =1).
Let us remark that Y,(Pg:|9,)X,€{S(m,)} is a quasi-affinity such that by
‘Sarason’s Theorem {10] we have

(2.14) Y, (Pgx|9) X, = u,(S(my), u.cH=, uAm,=1.
If McHyp Lat(S) we obviously have y(p(M))cIM. Now, let M be given
by (2.2) and denote M,=m, H :em,H> Then, by (2.14),
XX~ o (YxXMm)- =Fx,m)- = (YGPSZ X, M) =
= (1, (S(m))M,)~ = M, and therefore M = (YXM)~  y(p(W));
ithis proves (ii).
Let us consider the operators Rg,€ {T}" defined by

{(2.15) { ;ﬂa _ ;}?’gi (7;3 }),;P%: . ifif aaé >ﬁ ﬂ
ga = Ap\Mg/My) Lo Ly )
-and let Ag,€{S}" be defined by (2.4). Then, for a=p,
YRy, = JpYy Pz Xy Py Yo Pz =

= Jpus(S(mp)) Ps (mg) Ya Py =

= 15(S)J5 Py mp) Poma YPz = 4 (S) Aga Y Py
:and because A;,YP(g+)1 =0 we obtain
(2.16) YRy, = up(S) Ag, ¥

in this case. The relation (2.16) is proved analogously when a=p. If t¢ Hyp Lat (T)
and M=(YN)~ we infer from (2.16) u4(S) Az, MMV, Because w,Am,=1 we
infer by [3], Corollary 2.9, that u,(S(m,))|(4, M)~ is a quasi-affinity; therefore
WM (1, (S(m,)) (A D) ™)~ =(A4,, D)~ =(ﬁ5(m 2P ~. As in the proof of Proposi-
tion 2.1 it follows that M= M,, M,=m, H*©m,H?cLat (S(m,)) and for a<p,

ugmiemgH? and u,(m,/mg)mzem, H?. Because u,Am,=1, usAmg=1 we also
have u,Am} =1, usAmg=1 so that from the preceding relations we infer m, €my H?,
Tespectively (m,/mg)mz€m; H2. By Proposition 2.1 we proved

{2.17) (Y®)~cHyp Lat (S) whenever 9<¢Hyp Lat (7).
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Analogously we infer
Q.17 (X*MN)~ ¢HypLat(S*) whenever 9tcHypLat(T™).

If MecHyp Lat () we have X*(ML)c(YN)L. Indeed, if heM, geNL, we
have (Yh, X*g)=(XYh, g)=0 because XYhe9. An analogous argument shows that

(2.18) : Y (L) < (P(O)+, NcHyp Lat (7).
In particular we have

i i i
THRL < SHX*RL)™ < SHY, (L) < SHEOY)L < S ML
Because Pyq 1 ¥ |9+ has dense range and Sygy L (PygyL Y[R =(Pyay L Y[R Ty o

it follows that S*|(¥Y M)+ < T*|M+. By [16], Theorem 1 (cf. also [4], Corollary 2.10)
the operators T*|JL, S*|[(X*RL)~, Sy, (ML), SH(Y ()L and S*(YM)*L are
pairwise quasisimilar. Because S* is also (unitarily equivalent to) a Jordan operator
it follows by Proposition 2.1 (iii) that (X*R4)~ =y (R =Y (9))*=(YRN)*+. This
proves the assertions (i) and (iii) of the Theorem.

The following Corollary extends [18], Corollary 5, to arbitrary operators of
class C,.
T X
07"
triangularization of T with respect to the decomposition 9 =IM B M+, Mc Hyp Lat (T),
we have )
2.19) My = My Mpa.

Proof. If Y is as in Theorem 2.5, T” is quasisimilar to S|y (M) and T” is
quasisimilar to S, L. The Corollary follows by Proposition 2.1 (ii).

Corollary 2.6. If T is an operator of class Cy on  and T=[ is the

Corollary 2.7. Let T and T’ be two quasisimilar operators of class C,, let S be
their Jordan model and let n: Hyp Lat (T)—~Hyp Lat (T”), ¢: Hyp Lat (T)—~
-Hyp Lat (S), ¥': Hyp Lat (T")—~Hyp Lat (S) be defined by formulas analogous
to (2.8).

() Won=\y; in particular T\ and T'|n(M) are quasisimilar for
MeHyp Lat (T).

(i) If McHyp Lat (T"), W eHyp Lat (T’) are such that T|M and T'|M’ are
quasisimilar, then Ty,+ and T, 1 are also quasisimilar.

Proof. The inclusion (/ on)(M)cy(M) is obvious for WMEHyp Lat (7).

Then by Theorem 2.5 (i) we infer T|iméS|(¢’o;1)(ﬂll)%S|l,l/(9J2)<T|ﬂJI. By [16],
Theorem 1, T|M, S| on)(IMR), S|Y (M) are pairwise quasisimilar and the equality
Y on=y follows by Proposition 2.1 (iii). Now it is obvious by Theorem 2.5 (i)
that T|M and 77 |y(M) are both quasisimilar to S|y (M); (i) follows.
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To prove (ii) we remark that, by Theorem 2.5 (i), S|y (%) and S|Y’'(M’) are
quasisimilar and therefore ¥ (M)=y'(M’) by Proposition 2.1 (iii). Again by Theo-
rem 2.5 it follows that Ty, 1 and T” g, ) are both quasisimilar to S ;. where =y (M) =
=’(M’). ‘Corollary follows.

Corollary 2.8. LetT, S, @,y be as in Theorem 2.5 and let ¢,: Hyp Lat (S*)—~
—~Hyp Lat (T*) be defined by a formula analogous to (2.8). Among the spaces
NeHyp Lat (T) such that T|N is quasisimilar to S|M for a given MEHyp Lat (5),
@ (M) is the least one and (¢* (M) is the greatest one.

Proof. If TR is quasisimilar to S| we have Yy(M)=M by Theorem 2.5
(i) and Proposition 2.1 (iii) and therefore @(@M)=¢(Y(N))cR. Now, by Corol-
lary 2.7, T|9% and S|M are quasisimilar if and only if Ty and Sg1 are quasi-
similar. Because ¢, (M) is the least hyper-invariant subspace of T* such that

T, Ly and Sg are quasisimilar, the last assertion of the Corollary follows.

Corollary 2.9. Let T, S, ¥, ¢, @, be as before. The following assertions are
equivalent:
(i) o is a bijection;
(ii) ¢, is a bijection;
(i) @ @)=, (M*) for McHyp Lat (S);
(v) if My, N.€Hyp Lat (T) and T|N,, TN, are quasisimilar, we have N; =N, .

Proof. By Theorem 2.5 (ii) ¢ is a bijection if and only if ¥ is one-to-one.
By Theorem 2.5 (i) and Proposition 2.1 (iii) ¥ is one-to-one if and only (iv) holds.
Thus the equivalence (i)<>(iv) is established.

By Theorem 2.5 (iiij) we have ¢, (MY)=y M)+ so that Y is one-to-one if
and only if ¥, is one-to-one. This establishes the equivalence (i)« (ii).

T|p@) and T|(p,®*))* are both quasisimilar to S| so that (W)=
=(p, (M1))L if (iv) holds. Conversely, if (iii) holds and T[R,, T|N, are quasi-
similar, by the preceding Corollary we have @(M)CR;c(p,(WML)L=p (M),
Jj=1,2, where M=y @)=y (N,). Thus N,;=N,=¢(@N) and the Corollary is
proved.

Example 2.10. Let S=Sm)® and T=S® S(m), where mcH and
S(m2)® denotes the direct sum of R, copies of S(m?). By [2], Corollary 1, S is
the Jordan model of T. The subspaces ker m(T), ran m(T) are hyper-invariant for
T and T|ker m(T), T|ran m(T) are both quasisimilar to S(m)®. By Corollary 2.9
it follows that in this case ¢ is not onto, ¥ is not one-to-one.

If we take in particular m(z)=2z2 (|z|<1) it is easily seen that
card (Hyp Lat (T))=9 and card (Hyp Lat (S))=5. Thus Hyp Lat(7) and Hyp
Lat (S) are not isomorphic. Moreover, one can verify, by the proof of Propositi-
on 2.4, that Hyp Lat (T) is not totally ordered while Hyp Lat (S) is totally ordered.
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3. A theorem on monotonic sequences of invariant subspaces

If T is an operator of class C,acting on H and H;€Lat (T) aresuchthat H;CH; .4,
Jj=0,1,..., and 9=V 9;, itis clear that my is the least common inner multiple
jz0

of the functions Mz, j=0,1, .... The following Theorem shows that the same
thing is verified for all the functions appearing in the Jordan model of T.

Theorem 3.1. Let T be an operator of class C, acting on the Hilbert space
$ and let {9;};cLat(T) be such that H;CH;s1, 0=j<oo, and H=V 9;.
: j=0

Then
(3.1) m,[T] = 1\2/1 m,[T|H;]

Jor each ordinal number o.

i i

Proof. Because T|9H;<T|9;+1<T it follows that m,[T|H;)=m,[T|H;..]=
=m,[T] for each a (cf. [4], Corollary 2.9). Let us consider firstly the case a=w
and denote m= V m,[T|9;]; then m divides m,[T]. Because m,[T|H;] divides

m we have #Tq(m(r)s,)-—l‘ns (m)=a (cf. [4], Remark 2.12). Because obviously
(m(MH)~-=V om(T)$5, we infer pr(m)=pyems-=Ro 8= and therefore
j=

m,[T] divides m by [4], Definition 2.4, Thus m,[T]=m and (3.1) is proved for
a=w.

Now let us recall that by [4], Theorem 3.3, there exists an orthogonal decom-
position
(3.2 S$=0 M, McLlat(T),

such that T, is quasisimilar to @ S(m,,;[T]) for each limit ordinal . If
J<ow A
we define ®;=(Py 9;)~ we obviously have im(,=j\§/0 K]; and T,’§j<l Tg, so that

T |Rj<'T |$; by [4], Corollary 2.9. Again by [4], Corollary 2.9 we infer m,[T|];]=
=m,[T|9;], <o, and therefore it will be enough to prove the relation (3.1)
for =M, and H;=8K;, that is for T acting on a separable space.

We may assume that T is a functional model, that is

(3.3) $ =9(0) = H* o OH*()

where U is a separable Hilbert space, @ is a two-sided inner function, @€ H;* (£ (2)),
and

(3.4 Th = S(O)h = Py 1h, 1(2) = z, h€H(O).
With eac_h subspace $; we can associate by [12], Theorem VIL.1.1 a factorisation
3.5) 0 =0Poew
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such that the functions O and @? are two-sided inner,
3.6) $; = 0P HX (WO OH*(N),

and T|9; is unitarily equivalent to S(@{). The inclusion $;C$H;;, is equivalent
to OP H2 (W) OF), H*(U) and therefore

3.7 0P = 02,Q; for some Q;€H (L))

The condition $= V 33] is equivalent to H2()= V OPH?(). In partic-
ular, if »cl, we have hm lu—Po®pzayull =0. It is easnly seen that Pe(»panpu=
=09 0P 0)*u. Indeed, 1t is enough to verify that the scalar product

(u—0P ()02 0y u, O (2)z"v)

vanishes for v€U and natural »; this is a simple computation. Thus we have
u=1lim 6P P (0)*u, uc. Because the functxons 0P eY(0)*u are uniformly

jroo

bounded we also have uAwA...Au,=lim (OP)"(OP(0))\" (... Au,),
- .

Uy, Uy, ..., u,€ U, and therefore

NAG LS AU ERTY

Because _V (0PN H2(UA") is invariant with respect to the unilateral shift on

H2QUM) we necessarily have

(3.8) HXUMN) = (@}2))/\"H2(II/\").
j=0
The subspaces ’
(3.9) ) = (0P "HUA")© ON"HE(UA")

are invariant with respect to S(@"") and because O M=(@P)""(OMM s a
regular factorization, S(©"")|H7 is unitarily equivalent to S((@P)""). By (3.7)
we have (OP)""=(@¥ )" Q}" and therefore $Hjc$},, for 0=j<co. Finally,
relation (3.8) shows that $(0"")= ‘Vo 9} and therefore

j=

(.10 me[S(ON)] = V molS (O17) Hi1.

By [6], Corollary 3.3, and relation (2.5) we have m,[S(O")]=m,[T1m,[T]...

m, [T} and mo[S(O)|H])=mo[S(OP)")]=mo[T|$1my[T|D]...m,_,[T|H,].

Let us put m=V m[T|H;] for k<w; then m divides m,[T] and relation (3.10)
jz0

shows that
mo[TYm, [T]...m, [T} =memy...my_y, 1=n-<o.
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Therefore we have necessarily m,[T]=m, and (3.1) is proved for a<w. The:
Theorem follows.

Remark 3.2. The relation (3.1) is not verified if the sequence {§,};~, is replaced
by an arbitrary totally ordered family of invariant subspaces. Indeed, let us take a.
Jordan operator T=S(M) such that m,=1, where 2 denotes the first uncount--
able ordinal number. The subspaces 5a=ﬁﬂa H(mg) for a<Q are separable and.

HS(M)= V $,. The relation (3.1) is not verified in this case because m,[T|H,]=1

while it 1s pos51b1e to have m,[T]=1. However the relation (3.1) is verified for-
a<w and for any totally ordered family {§;};¢, of invariant subspaces such that.
H= V $;. Indeed, if $ is separable we can select an increasing sequence {9; };_,

such that H= V 55 and then apply Theorem 3.1. If § is not separable, the proof”

of Theorem 3. 1 shows how to reduce the problem of verifying (3.1) to the separa--
ble case.

Let us recall that for a contraction T of class Cy and for a subspace ¢ Lat, (T):
such that T, is a weak contraction, dr(9) denotes the determinant function of T
(cf. [3], Definition 1.1).

Corollary 3.3. Let T be a weak contraction of class Cy acting on $ and let
9H€Lat (T), 0=j<-oo.

0) If 9,C9;41 and V H;=9, we have dr= V dr (9))-

(i) If $;,59;+, and m §,=(0}, we have A "ar($)=1.

Proof. (i) Obviously V ar(9;) d1v1des dy. Now, my[T19;1m [T|H;]... m,[T|9;].
divides V dr(9;) for every natural n; by Theorem 3.1 it follows that m,[T]m,[T]...
.m [T] d1v1des V dr(9;) and therefore dy divides _V dar(9)).
(ii) Since T*i 1s also a weak contraction we infer by (1) dr= V dr(93). Because:

dr=dr(9;)dr(9;") (cf. [6], Proposition 8.2) we obtain

dT = (j/z\0 dr(ﬁj)) ‘ (j\z/o dT(g)}L)) = (j/z\o dT(sjj)) . dT'
The Corollary follows.

Proposition 3.4. Let T be an operator of class C, acting on the separable
Hilbert space . Then

3.11) A m;[T]=1

<o
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if and only if for any sequence {$;}7—,CLat (T) suchthat $;59;.,and ( $;={0},
Jj=0
we have

(G.12) A, molT19,]=1.

Proof. As shown in the proof of [5], Theorem 1, there exists a decreasing
sequence {9;};_,CLat (T) such that () H;={0} and my[T|H;)=m;[T] so that
FE

(3.11) follows from (3.12).
Conversely, let us assume (3.11) holds. For any natural number k we have the

.decomposition
= (m(T)H;)" e = VEDNE, my = m,[T).

Because obviously mg[Twt] divides m;, it follows by [12], Proposition IIL6.1, that
(3.13) molT[9H;] divides my[T|M¥).m;, 0=j < o,

Now, Bec(m(T)H)~ and T|(m(T)$H)~ is an operator of finite multiplicity,
in particular a weak contraction (cf. [6], Theorem 8.5). Because ﬂ ‘Dt" c ﬂ 9= {0}
‘we infer by the preceding Corollary /\ dT(iUt") 1, in partlcular /\ mo[Tl‘.)Jl] 1.
By (3.13) /\ mo[T|9H;] necessarily d1v1des m,, and the relation (3. 12) follows from

the assumptlon The Proposition is proved.

4. Operators of class Cy having property (P)
L J

In [16], Theorem 2, the operators of class Cy and of finite multiplicity were
shown to have property (P). In [3], Corollary 2.8 we extended this result to the class
of weak contractions of class Cy. We are now going to characterise the class of C,
operators having property (P).

Theorem 4.1. Let T be an operator of class C, acting on the Hilbert space $.
Then T has property (P) if and only if

(4.1) A m[T]=1.

j<o
In particular, if T has property (P), § is separable and T* also has property (P).

Proof. Let us assume (4.1) holds and denote m;=m;[T]. For each j<w
the subspace

“2) $; = (my(1)9)"
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is hyper-invariant for T and pur(9;)<oo (cf. [4], Remark 2.12). If A¢{T} is an
injection then A4|9;€{T'|9;}" is also an injection and by [16], Theorem 2,

“43) (49)™ > (49H)™ = 9;.
We have (jV $;)t= N ker m;(T*)=%H° and the minimal function m® of
<o j<o

T*9® divides m], j<w. By the assumption we infer m°=1 so that $°={0}
and therefore \/ 9;=9. From (4.3) we infer
<o

(44) (49)" > V 9,=5

that is, 4 is a quasi-affinity. The injection A being arbitrary it follows that T has
property (P).

Conversely, let us assume that (4.1) does not hold. We claim that there exist
an inner function m such that 7 and T@® S(m) are quasisimilar. If $ is separable
we may take m=] A m;[T] and apply [1], Lemma 3. If § is nonseparable we may

<o

take m=m,[T]. Then T@® S(m) and T have the same Jordan model so that they
are quasisimilar. Let us take a quasi-affinity X such that

(4.5) (TeS(m) X = XT.

Let us put '
4.6 M= (X*{0}oH(m))-, N=9H0M.

Then MeLat(T*) and T*M is quasisimilar to S(m)*. If P, and P, denote
the orthogonal projections of $HH(n) onto H, H(m), respectively, the operator

%)) Y=PX|%
satisfies the relation '
4.8 TY = Y(T|N).

We claim that Y is a quasi-affinity. We show firstly that ran Y* is dense in .
Indeed, because Py X*|{0}d H(m)=0 (by the definition (4.6) of M and RN), we have

4.9 ranY* = Pa X*(HD {0}) = Pa X*(HDH(m))
which shows that
4.10) (ranY*)~ = (Py(ran X*)~)~ = P H = N.

Now let us show that ker Y*={0}. To do this let us remark that the sub-
space :
4.11) KR =kerY*@H(m) = ucHo9H(m); X*ucM}

is invariant with respect to (7@ S(m))*, (X*Q)~=M and (THM)X *m
=X*(T® S(m))*|] so that T*M and (T S(m))*|} are quasisimilar. By the
remark following relation (4.6), (T® S(m))*|{ is quasisimilar to S(m)*. But

2
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(T® S(m))*}{0}® H(m) is unitarily equivalent to S(m)* so that K= {0} H(m) by
[14), Theorem 2, and the injectivity of Y* is proved. Relation (4.8) and Lemma 1.1
show that T and T|M are quasisimilar. Because M= {0}, we have M=$H so that
T does not have property (P) by Lemma 1.5.

Theorem is proved.

Corollary 4.2. An operator T of class C, has property (P) if and only if there
does not exist T’ of class Cy on a nontrivial Hilbert space such that T and T® T’
are quasisimilar.

Proof. Let Tand T@® T’ be quasisimilar. Since T~ acts on a nontrivial space,
there exists a nonconstant inner function m such that T@ S(m)<' T. Because

obviously T % T® S(m), Teo S(m) and T are quasisimilar by [16], Theorem 1.
By the proof of Theorem 4.1 it follows that T does not have the property (P). The
converse assertion of the Corollary follows from the proof of Theorem 4.1.

Corollary 4.3. If T and T’ are two quasisimilar operators of class C,, then T
has property (P) if and only if T’ has property (P).

Proof. Theorem 4.1 exprimes the property (P) in terms of the Jordan model
so that the Corollary is obvious.

Proposition 44. Let T= [(1; g,,] be the triangularization of the operator T

of class Cy with respect to the decomposition H= ®9H", H'¢Lat (T). Then T has
property (P) if and only if T’ and T" have property (P).

Proof. Let S(M), S(M’), S(M”) be the Jordan models of T, T’, T”, respec-

tively. Let us assume that T has property (P). Because S(M ’)<l S(M) it follows
that m;, divides m, for each a (cf. [4], Corollary 2.9), therefore by Theorem 4.1 we
have A mj=1 and T has property (P). Analogously T”* has property (P) because
j<o
T* has property (P) and it follows by Theorem 4.1 that T” also has property (P).
Conversely, let us assume that T’ and T” have property (P) so that

4.12) A mj= A mj=L1

j<o. i<o

We consider firstly the case u;.<-<o. In this case the space
4.13) 9; = (o0} (T)9) cHyp Lat (1), j <o,

is contained in $’@(M](T")H")~ so that up(H;)<e<> and by [16], Theorem 2,
T|9; has property (P). Because A mj=1 we have \ $;=9 (cf. the proof of

j<ow j<o



C,-Fredholm operators. IT ’ 19

Theorem 4.1) and the first part of the proof of Theorem 4.1 shows that T has prop-
erty (P).
Considering the operator T* instead of T, it follows that T has property (P)

in the case p;.<eo also.

We are now considering the general case pp.=pp-=¥8,. Let us define the hyper-
invariant subspaces $; by (4.13). The operator T|§' @ (m[(T”)$"”)~ has prop-
erty (P) because prs g (rngn-<< and from the first part of the proof of our
Proposition it follows that T|H; also has the property (P). Because V ;=9

we infer as in the first part of the proof of Theorem 4.1 that T has property P).
The proposition is proved.

Corollary 4.5. If T is an operator of class C, having property (P) and
MeLat, (T), then Ty, also has property (P).

Proof. We have MM=UEB, U, B¢Lat (T) and T|U has property (P) by
Proposition 4.4. Again by Proposition 4.4 and Theorem 4.1 it follows that T,; has
property (P) because To=(T|U)*|9M.

Proposition 4.6. Let T be an operator of class Cy acting on 9 and let
$H;cLat (T) be such that H;CH;41, j<w, Ho={0} and H= V 9;. Then T has
property (P) if and only if TR » 8;=9;1109; (j<w) have property (P) and
“4.14) A [T l]_l

i<o

Proof. If T has property (P) then T, have property (P) by Corollary 4 5.
By Theorem 4.1 and Proposition 3.4 we infer the necessity of (4.14).

Conversely let us assume that Tg %, have property (P) and (4.14) holds; let us
put m;=my[Tg1]. If we define )

(4.15) L; = (m;(T) $)~€Hyp Lat (T)
then, as in the proof of Theorem 4.1, from (4.14) we infer \/ £,=% and the first

i<o
part of the proof of Theorem 4.1 shows us that it is enough to prove that T|2;
have property (P). Now, obviously £;C$; so that by Corollary 4.5 we have only
to show that T'}$H; have property (P). This easily proved inductively since the tri-

angularization of T'|9;,, with respect to the decomposition $;.,=9;®RK; is of
the form T15j+1=[g|5f ]A,;f] The Proposition follows.

Corollary 4.7. Let T Jbe an operator of class C, acting on $ and let
HicLlat (T) be such that 9;11C9;, j<w, HDo=9H and () 9;={0}. Then T has
property (P) if and only if TRJ, KR;=9;09;+1 (j<w), h:z;;property (P) and
(4.16) A mo[T19;]= 1.

J<o

2%
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Proof. By Theorem 4.1, T has property (P) if and only if 7* has property (P).
Therefore we have only to replace T by T*, $; by Sj;-'- and apply the preceding Prop-
osition.

We are now going to extend [18], Theorem 1, and [3], Corollaries 2.4, 2.8 and
2.9 to the case of C, contractions having property (P).

Proposition 4.8. Let T and T’ be two quasisimilar operators of class C, acting
on 9, &, respectively, and having property (P). Let us define

¢: Hyp Lat(T) - HypLat(T") and n: Hyp Lat(7T’) -~ Hyp Lat(T)
by
@.17) M= V XM W= V YR
Xes (T, T) YES(T,T)
(1) Each injection A< S(T’, T) is a lattice-isomorphism.

(ii) EM)=(4IM)~ =B~'M, Mc Hyp Lat (T), for any quasi-affinities A¢ F(T’, T),
BeA(T,T).

(iii) & is bijective and n=¢"1.

Proof. (i) If A€#(T", T) is an injection, T is quasisimilar to 77|(4%$H)~ so
that 7" and 77 [(49)~ are quasisimilar. Now T has property (P) so that (49)~ =9’
by Lemma 1.5 and A4 is a quasi-affinity.

Let &', 8”¢Lat(7) be such that (AR)~=(4K]")~=8K*; then we also have
(AR)~=8* with RK=8K'VK”. The operators T|R’, T|R” and T|R are quasi-
similar to T’|{*. By Proposition4.4 T|R has the property (P) and therefore
K=8/"=8 by Lemma 1.5. Thus we have shown that the mapping K& —~(4AK)~ is
one-to-one on Lat (7). Because we have shown that 4 is a quasi-affinity, the same
argument can be applied to T'*, T* and 4* thus proving, via [3], Lemma 1.4, that
A is a lattice-isomorphism.

(ii) Let us take any quasi-affinities A< # (T, T) and B<S(T, T’); by (i) 4
and B are lattice isomorphisms. For each M€ Hyp Lat (T'), BA€ {T'} so that BAD M
and since T|M also has property (P) by Proposition 4.4 and BA|Me{T|M} is
one-to-one, we infer by (i) (BAM)~ =M. Now, B is a lattice-isomorphism so
that we infer
4.18) BL(M) = (AM)~.

If XeJ(T', T), we have BX€{T} so that BXIMcM and by (4.18) XM
CB () =(4M)—; it follows that (M) (AM)~. Because the inclusion (AW~ <
c &) is obvious, (ii) is proved.

(iii) If Ac# (T, T), B #(T, T’) are quasi-affinities we have by (ii) (BAM)~ =M
and (ABR)~=N for any McHyp Lat(7T), NeHyp Lat (7). Because, again by
(i), EO)=(AM)~ and p(M)=(BRN)~, (iii) follows.
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The Proposition is proved.

Corollary 4.9. Let T, S, ¢, Y be as in Theorem 2.5. If T has property (P),
@ is a bijection and Yy=¢ L.

Proof. Obviously follows from the preceding Proposition.
The following result extends [3], Proposition 2.3, to the class of C, operators
having property (P).

Proposition 4.10. Let T, T’, T” be operators of class C, acting on 9, O,
9”, respectively, and let Ac S (T, T"), BEF(T, T") be such that AH <(BH")".
If T has property (P) then

0 (A7'BH)) =9 and (i) (A9’ NBH")™ D 49"

Proof. Because (ii) easily follows from (i), we have only to prove (i). We may
assume that 4 is one-to-one, B is a quasi-affinity and 7 has the property (P). Indeed,
we have only to replace 7, T/, T”, 4, B,by T|(BS")™, Tier gyt > Tgrerny L Al(ker )+,
B|(ker B)*, respectively. Now the operator T” has property (P) being quasisimilar
to T (cf. Corollary 4.3) and 7~ has property (P) being quasisimilar to T|(49")~
(cf. Proposition 4.4). Then the operators 7"®7” and T’'®T are quasisimilar
and have property (P) by Proposition 4.4. The operator X: $'@H"-H®H
given by ‘

4.19) X(Weh")=hKo(Ah'—Bh"), Woh"c¢H o,

is an injection. Indeed, X(W'@®h”)=0 implies A’=0 -and BA”"=AK =0, thus.
h”=0 by the injectivity of B. Because Xc¢ £ (T"®d T, T'®T") it follows by Prop-
osition 4.8(i) that X is a lattice-isomorphism. In particular X(X~1(H’® {0})) is
dense in ' {0}. But

X(X-1(9'@{0}) = {K®0; h'€$’ and Ah" = Bh” for some h"}
so that (i) follows and the Proposition is proved.

Corollary 4.11. Let T, T’, T”, A and B be as in the preceding Proposition.
If T’ is multiplicity-free then A= (BS") contains cyclic vectors of T".

Proof. Let us denote by P the orthogonal projection of ' @&$ onto $.
From Proposition 4.10 it follows that 4~1(B$”)=PX(X1($’ & {0})) is dense in:
$’ (where X is defined by relation (4.19)). Let us denote Hy=(X"2(H'® {O}))O
©ker (X|X~2(9'® {0p))cLat, (T'® T"). Then we have

T’ (PX|9e) = (PX[90) (T"® T")g,

and by Lemma 1.1 T and (T"@7T")g, are quasisimilar; in particular (I"&® T")g
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is also multiplicity-free. If A, is any cyclic vector of (I"@ T”) then PXho€ 471 (BSH")
is a cyclic vector of T’. Corollary follows.

Finally let us remark that the result of [4] concerning the quasi-direct decom-
position of the space on which a weak contraction acts can be extended, via Prop-
osition 4.8 (i), to the class of C, operators having property (P).

Corollary 4.12, Let T be an operator of class C, having property (P) and
acting on the (necessarily separable) Hilbert space  and let @ S(m;) be the Jordan
j<w
model of T. There exists a decomposition of

(4.19) =V 9;

j<oe

into a quasi-direct sum of invariant subspaces of T such that T\|9; is quasisimilar
to S(m,).

Proof. Cf. the proof of [4], Proposition 3.5.

5. Operators of class Cp having property (Q)

The following Lemma extends [19], Proposition 3, to the entire class of C,
operators.

Lemma 5.1. Let T andT’ be two quasisimilar operators of class C,. Then T
has property (Q) if and only if T' has property (Q).

Proof. Because (Q) implies (P), by Corollary 4.3 it is enough to prove the
Lemma for T and T having the property (P). Let XeS(T, T'), YeF(T',T) be
two quasi-affinities. By Proposition 4.8 (i) X and Y are lattice-isomorphisms. Let
us take A€{T’}; then B=XAY¢{T}. Obviously ker B=Y ~!(ker 4), X being an
injection. Because Y is a lattice-isomorphism we have (Y (ker B))~=ker 4 so
that Y|ker B is a quasi-affinity from ker B into ker 4. Because

Ylker B€ #(T'|ker A, T|ker B)

it follows by Lemma 1.1 that T'|ker B and T’ |ker 4 are quasisimilar. Analogously
Tyer g+ and Ty, 4 are quasisimilar. If T has the property (Q), the operators T[ker B
and Ti,.p. are quasisimilar and it follows from the preceding considerations that
T’|ker A and Ty, .. are quasisimilar. Since A¢{T’}’ is arbitrary it follows that 7"
has the property (Q). The Lemma is proved.

Lemma 5.2. For any inner function m and natural number k the operator
T=S(m,m,...,m) has the property (Q).
e, e —

k times
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Proof. By the lifting Theorem (cf. [12], Theorem II.2.3) any operator X¢€ {T}
is given by

.1 Xh = PgAh, heH = H(M)BH(M)S...®H(m)

ktimes

where A=l[a;],.; ;< is an arbitrary matrix over H>. As shown by NORDGREN [9]
(cf. also Sz{cs [17] and Sz.-NAGyY [11]) there exist matrices B, U, ¥ which determine -
by formulas analogous to (5.1) operators Y, K, L in {T} such that

(5.2) (det U)(det V)Am = 1;
(5.3) AU = VB,
(5.4) B = [bijlléi,j§k7 b‘j = 0 for 1 #j.

From (5.2) we infer as in [8] that K and L are quasi-affinities and therefore
lattice-isomorphisms by Proposition 4.8 (i). From (5.3) we infer

(5.5 XK=LY

so that K(ker Y)cker X and K l(ker X)cCker ¥; because K is a lattice-iso-
morphism it follows that (K(ker Y))~=ker X and therefore Tjker X and T|ker ¥
are quasisimilar Analogously Tke,x* and Ty« are quasisimilar. We have

Y= @ b;;(S(m)) and ker Y= EB (ker b;;(S(m))) so that T|ker Y is unitarily
equwalent (cf. [15], p- 315) to @ S(m;), where m;=mAb;;. Analogously we

can show that T, y, is unitarily equlvalent to 65 S(m;). We have shown T|ker Y
i=

and Ty..y. are unitarily equivalent; we infer that Tiker X and Ty x« are quasi-
similar. Because X is arbitrary in {T}’, the Lemma follows.

Lemma 5.3. If T® S has the property (Q) then T and S also have the prop-
erty (Q).

Proof. It is obvious since {T® S} >{TYdIUId{SY}.
The following Theorem characterizes the class of C, operators having the prop-
erty (Q) in terms of the Jordan model.

Theorem 5.4. An operator T of class C, has property (Q) if and only if
® Am=1, my=mT], and

j<o
(i) the functions my/my, my/m,, ... are pairwise relatively prime.

In particular, if T has property (Q), then T acts on a separable Hilbert space
and T* also has property (Q).
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Proof. Let T have property (Q). Then T also has property (P) so that the
necessity of (i) follows by Theorem 4.1. By Lemma 5.1 the Jordan model S(M) of
T also has the property (Q) so that S:' =8S(m)® S(m;,,), j<w, must have prop-
erty (Q) by Lemma 5.3. The matrix

0 mj/mj,y
(5.6) A= [0 0 ]
determines an operator X¢{S’}’ by the formula
5.7 Xh = Pg Ah, he9;= H(m)OH(M;+1).
Obviously

ker X = $(m,)® {0}
so that S’|ker X is unitarily equivalent to S(m;). Now
ran X = ((m;/m;,) H*o m; H*) & {0}
so that ker X*=$(m;/m;,,) ® H(m;.,) and it follows that S, x+ is unitarily equiv-
alent to S(m;/m;.)® S(m;.1). The Jordan model of S(m;/m; )@ S(m;4y) is
S((m;fm; IVm; )@ S((mj/m; ) Amy )

by [2], Lemma 4. Because S’ has the property (Q) this Jordan model must coincide
with S(m;) so that (m;/m;,,)Am;,,=1. In particular m;m;,, and m,/m,,, are
relatively prime for k=j; (ii) is proved.

Conversely, let us assume that conditions (i) and (ii) are satisfied. Let us denote
(5.8 fu; =myimyy,, j<o.

Then by Lemma 1.2, S(m,) is quasisimilar to @ S(u;), S(m,) is quasisimilar

<o

to @ S@up,..,S(m) is quasisimilar to @ S(u;) so that T is quasisimi*

1sj<o k=j<w
lar to .
(5.9) S=@ T/, T'=!S@, uj, ..., u).
{th.)li J+1times

Because the functions uy, 1, ... are pairwise relatively prime we have (mo/u;) Au;=1
so that (mefu)(T¥)=0, k=j, and (me/u))(T’) is a quasi-affinity. This implies that

9 =Hu)OHu)®... 09 (u;) = (ran (myfu;)(S))~

J+1times

is a hyper-invariant subspace of S. We are now able to prove that S, and therefore
T, has property (Q). Any operator X¢€{SY has the property X$'c$’, j<w, so
that X= @ X’, X’¢{T’yY. By Lemma 5.2, T’|ker X and T/, are quasisimi-

i<o
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lar. But obviously ker X= @ ker X/, ker X*= 63 ker X”* so that Slker X=
J<
=@ T’lker X’ and Skerx*—@ Tiopysn; it follows that Slker X and Sy, y»

<o

are quasisimilar. The Theorem 1s proved
We are now able to give a complete description of the lattice of hyper-invariant:
subspaces of an operator of class Cy having property (Q). :

Proposition 5.5. An operator of class C, having property (P) has property
Q) if and only if

(5.10) Hyp Lat(T) = {(ran m(T))~: mEH*, m = my[T1}.

Proof. As usuval S(M) denotes the Jordan model of 7. Assume (5.10) holds;
by Proposition 4.8 (iii), (5.10) also holds for S(M). In particular,

kerm;,,(S(M)) = EB ((mym;.)H* O mH)® +1§ $H(m)
is of the form (ran u(S(M)))~ for some inner divisor u of m,. Because ran u(S(m,))=
=(my/m;+ ) H2OmyH? we must have u=my/m;,,. We have also

.11 (mo/mj)Amyyq =1

because u(S(m;4,)) must have dense range. From (5.11) we infer (m;/m;)Am;,,=1,
Jj<w. By Theorem 5.4 it follows that T has property (Q).

Conversely, let us assume that T has property (Q). By the proof of Theorem
5.4, T is quasisimilar to

(5.12) : S=j® S/ on $= B 9,
< <o
where
(5.13) S" et S(ujs uj, LEAE ] uy')’ 51 5(”_})@5(“))@ @5(“_’),
J+1times J+1times
(5.14) u; =miim;,q,
and
(5.15) & = ((mo/u,;)(S) H)~€Hyp Lat (S).
Let us take McLat(S) and denote M;=((my/u;)(S)M)~. We claim that
(5.16) M= O M, and M;=MN .
J<a

The 1nclus1on Mo @ M; is obvious. Now, the minimal function m of Sy,
N= ime( @ Mm;)= ﬂ ker (mofu;)”((S|M)*) divides myfu;, j<w, so that mAu;=1.
It follows that m= 1 9l {0} and (5.16) is proved.
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Moreover, by (5.16), M, is a hyper-invariant subspace of S7 if McHyp Lat ().
By Proposition 2.1 (i) we have M;=MoM}® ... @M where MI=u;H*Ou; H?
j4+1 times
so that 932i=u;-(Sj)$5j. Let us denote by lm the limit of an arbitrary converging
subsequence of {ugy] ... u}, . ,; we shall have (m/uj)Au;=1so that M;=(m(S%)$%)~.
Using (5.16) we infer M=(m(S)H)~ and by Proposition 4.8 (iii) the proof is done.
Let us denote by Z% the lattice Lat(S(m,m, ..., m)) (m€H>, 1sk<w). The
T rimes

‘preceding proof also characterizes Lat (7) for T having property (Q).

Corollary 5.6. Let T be an operator of class C, having the property (Q). Then
Lat (7)) is isomorphic to  [] .?u’;“, where u;=m;[T]/m; [T}, j<co.

j<o
Proof. The decomposition (5.16) was proved for any McLat (S). The Corol-
lary follows by Proposition 4.8 (i).

Example 5.7. There are operators T of class C, for which (5.10) hblds with-
-out property (P). In fact it can be shown that a Jordan operator S(M) satisfies
the condition (5.10) if and only if (mg/m)Am,=1 for each ordinal number o.

Proof. The necessity of the condition (my/m,)Am,=1 is proved analogously
‘with the proof of (5.11). Conversely, let us assume (my/m,)Am,=1 and let
MeHyp Lat (S(M)) be given by (2.2). Then m,/m] divides my/m; so that my/m
divides mo/m, and therefore (mg/m))Am,=1. We infer (my(S(m,))H(m)) =
= (m/(S(m,)) (m{jm)(S(m,))$ ()~ =m H:Sm H? because (my/m)(S(m,) is
a quasi-affinity (cf. [12], Proposition 111.4.7). We infer

M = (ran my (S(M)))~.

Remark 5.8. As shown by Example 2.10, property (5.10) is not stable with
respect to quasisimilarities.

6. Generalized inner functions

Let us recall (cf. [7]) that a function m€ H® has a factorization
6.1) m = cbs

where ¢ is a complex constant of modulus one, b is a Blaschke product

p &, A Z - o
(6.2) b(z)—]k]lakl a2 lal<l 2 (=la))<
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and s is a singular inner function, that is

6.3) 5(2) = exp [— [ nz—zf—zdu(t))

where u is a finite Borel measure on [0, 2r), singular with respect to Lebesgue meas-
ure. Let us denote by ¢(z) the multiplicity of the zero z in the Blaschke product
(6.2), that is, -

6.4 6(2) = card {k: q, = z}.
The convergence condition in (6.2) is equivalent to
6.5) II2'16(2)(1—12|)<<><>.

We shall denote by I' the set of pairs y=(o, #), where u is a finite Borel meas-
ure singular with respect Lebesgue’s measure on [0, 27}, ¢(2) is a natural number
for |z|]<1 and the condition (6.5) is satisfied. With respect to the adition (g, 1)+
+(o’, W)=(6+0’, u+p’), I becomes a commutative monoid. The set I is ordered
by the relation (6, p)=(c¢’, ¢’) if and only if 6=0¢" and pu=yp’. Moreover, in I
are defined the lattice operations:

(o, )V (o', ) = (aVa’, pVy),
(o, WA (0’, ') = (e N\o’, pAy)

where pV ', pAp’ have the usual sense and ¢V’ =max {0, ¢’}, 6 A¢’=min {0, ¢"}.
A mapping y: H*—~I is defined by y(m)=(o, u), where o is given by (6.4) and
¢ by (6.3) if m has the decomposition (6.1). We have also a mapping 6: I'~H;”
defined by
a a—zY® etz

©6) 6oy = I (o) ol [ SEauw)
where y=(o, pt). Then yod=id and 6(y(m))=cm with ¢ a complex constant of
modulus one.

Let us recall that, for a function f€ H*, the function f~ is defined by f~ (z)=
f(?j. For y=(o, u)€I' we shall define the element y " =(¢”,p")eI' by ¢ (2)=
=¢(z) and u"=poj where j: [0, 2n]—~[0, 2n] is given by j(r)=2n—t.

Let us list some properties of the mapping y.

Lemma 6.1. (i) y(mymy)=y(m)+y(my), my, myc H;>.

(i) y(m)=y(my) if and only if my=my; y(m)=y(my) if and only if m, and
m, differ by a complex multiplicative constant of modulus one.

(i) y(m™)=y(m)", meH;".
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(iv) If {m;};_o,C H, then the family {mgm,...m;};_, has a least inner multiple
m if and only if 5’ y(m)Er and in this case y(m)= f’ y(m;).
Jj=0 j=0

Proof. (i), (ii) and (iii) are obvious. To prove (iv) let us assume firstly that
{mym,...m;};_, has a least inner multiple m. Then obviously y=y(m) if and only

if y= 3 y(m;) for each natural n. Consequently f y(my)€Er and y(m)= Z.:. y(m;).
j=n j=0 j=0

Conversely if y= f y(m)Er then &(y)=mymym,...m; for each j so that the
J=0
family {mym,...m;}7., has a least inner multiple. The Lemma is proved.
We shall now introduce the class .# of (not necessarily finite) Borel measures
i on [0, 2x] for which there exists a finite Borel measure v singular with respect to
Lebesgue measure such that u<v, where the absolute continuity u<v is under-
stood as

6.7 = \'{ (uAnv).

We shall denote by .#, the class of o-finite measures p€.# and by ./#_ the
class of measures u€.# which take the values 0 and < only.

Lemma 6.2. (i) If p€# and v is a finite measure such that p<v, we have a
decomposition

(6.8) dy = fdv

where f: [0, 2n]—[0, + o] is a Borel function.
(ii) Every p€.# admits a unique decomposition p=pg+u_, where uy€M,,
b €M and u, and p_ are mutually singular.

(i) If {u}ieoc A then 2 pe .
j=o0 -

Proof. (i) The measure p,=pAnv is finite, p,<v, and by the Radon—
Nikodym theorem we have du,=f,dv, where f,: [0, 2n]—[0, n] is a Borel func-
tion. Because p,=pu,,, we have f,=f,,, dv-a.e.; replacing f, by f,=£f,VfaV...VS,
we may assume f,=f,,,. Now it is clear that the function f=lim f, satisfies the
relation (6.8).

(ii) Let v and f be as before; let us denote A={¢; f(t)=+ <} and f_=fy,,
Jo=f(1—x4.). Then we may take du,=fy dv, du_ =1 dv.

(iii) Let us take finite measures v; such that p;<v;; then f u;<v, where

i=0

v is defined by
y= 3 2=9yv,([0, 27)).
Jj=0
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"Remark 6.3. Obviously, every measure u of the form (6.8) belongs to . if
v is a finite singular measure on [0, 27].

Lemma 6.4. If p;,v,eM,j=0,1,..., are such that S’ = Z'”vj then there
j=0 i=0
exist €M, i,j=0,1, ..., such that 3 p;=p;, > wi;=v;, ,j=0,1,....
i=0 i=0

Proof. Let ustake a finite singular measure « such that y; <, v;<a,j=0, 1, ....
By Lemma 6.2 we have

6.9 du; = fidx, dv; =g;de, 0=j< oo,
By the hypothesis we have

(6.10) 2 f, Z‘ g; da-ae.

It will be enough to find Borel functions 4;; such that

ca

(6.11) Shy=f, Sh;=g devae, 0=ij<e,
. ji=0 i=0

and then to define dy;;=/h;;da.
If the sum (6.10) is dx-a.e. finite we may define 4;; inductively by

j-1
Ihoo =fol\go, hoj= [fo—kzt; hOk)/\gja 1=j<oo;
i-1
(6.12) 1hi0=fi/\(g0_ tho): l =i<eo;
k=0
j-1 i-1 )
lh,l=(fl—20 h"]/\(gj—k%hkj], 1§l,j<0°.

If the sum (6.10) is not dx-a.e. finite we can find increasing sequences {f™},,
{9}y such that f-—- hm fl‘"), gj=1lim g da-ae., 0=i,j<ec, and f o=
i=0

n-»co
= 2’g‘"’<oo do-ae., 0=n<oo.

Let A be defined by (6.12) with f;, g; replaced by £, g?) in case n=0, and by
[0 £, gD o) in case nz=1. We can take h;= 2 K? and the Lemma
follows.

We shall now introduce the class I of “generalized inner functions”. An ele-

ment y of I is a pair y=(o, ) where p€.# and o is a natural number valued func-
tion defined on {z; |z[<1} such that

(6.13) S (1—|z)) <ce.

o(z)#0
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The subclass [yl consists of the pairs y=(a, u)€I" such that p¢.#,. Anal-
ogously with I, I’ is a commutative monoid and an ordered set in which the latfice
operations are defined. For y=(c, p)€I" we define y =(¢",u )¢ as in the
case y€I. Any y=(o, w)¢I’' has a decomposition

(6.19) ? = YotVms Vo= (0 p)€l, v.. = (0, 1)
where p=py+pu,, is the decomposition of p given by Lemma 6.2 (ii).

Lemma 6.5. (i) Iy is the set of simplifiable elements of I, that is yeIy if
and only if y'+y=y"+y implies y'=y” for y’,y"€T.
(i) Y +y=y"+y implies y'=y" whenever y_=y Ay”".

Proof. (i) It is obvious that y’+y=y”+4y implies y’=y” whenever y€rl,.
Conversely, if y¢ Ty, we have 0=y_ and O+y=y_+7.

(ii) By (i) we can simplify y, from the equality y'+y=y"+y and we obtain
Y +7.=7"+7y.. Now the assumption implies y’+y_=7" and y"+y.=%"; the
Lemma follows.

We shall consider the cartesian product # =I"XI* and on 4 we define the
relation “~* by
(6.15) (»y) ~0%y) if and only if y+y; =7"+n.

The relation ““~” is not an equivalence relation; however, as shown by Lemma
6.5 (i) the restriction of “~* on Hy=I¢X I, is an equivalence relation. The
quotient %,=,/~ is a group- the group of formal differences y—y’, y, y’€f.
We may assume [,C%, identifying the element ycI, with the class of (7, 0) in

Hol ~.
We shall now describe the connection of " and I’y with I.

Proposition 6.6. (i) If {y;}j_,CTI are such that

(6.16) VE Vs, 0=j<ee, ‘/\0?j=0,
Jj=
then
6.17) y = _Zoy,.ef‘.
_)=

Conversely, each ycI' has a representation of the form (6.17) such that (6.16) is
satisfied.

(i) If {y;}; o<l satisfy (6.16) and, moreover,
(6.18) @i =7+ DANG— 4D =0, j#Kk,

then the element y defined by (6.17) belongs to ['y. Conversely, each y€l, has a
representation of the form (6.17) such that (6.16) and (6.18) are verified.
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Proof. (i) If y;=(o;, u), 0=j<o, we have pu= 5[1,-6«/1 by Lemma 6.2

(i11); it remains to show that o= 2 o; is finite and the condition (6.13) is satisfied.
i=0
But A ¢;=0 imply that for each 7, 6;(z)=0 for some j and the finiteness of
j=0

‘o is obvious. The condition (6.13) is satisfied because ¢(z)>0 implies a(_,(z)?va
and therefore

2 (A=lzh) = 2 oy(D(A—lz]) <.

a{2)#0 Jzi<1

Conversely, if y=(o, #) we define

(=0 |if =j
- (=0 I o=

if 6(2)=j, 0=j<oo.

To define p; let us write du=f-dv for some finite measure v and put du;=f;-dv,
where

6.20 fo=in, gy=(r= ZajArG D, 1=)<e

It is obvious that y;=(g;, ;) satisfy (6.16—17).
(ii) Let us put y;=(o;, #;); from (6.18) we infer the existence of a sequence

of pairwise disjoint Borel subsets A;C[0,2n] such that tO 2n]= G A4; and

i=0
H; ( U A4,)=0. If p= 2 uj, we have pu(4)=(uo+m+...+p)(4;)<e; thus pu
is 0- ﬁmte Conversely, let us take y=(o, perl, and define o; by (6.19). If du=f-dv
and v is finite, f is dv-a.e. finite so that [0, 2n]= U A; where A;={x; f(x)€[ ], J+ Hr
We define =

= g;“ (k+1)" fra,

and du;=f;-dv. It is clear that y;=(g;, u;) satisfy the conditions (6.16—18).
Proposition 6.6 is proved.

Proposition 6.7. If {y;}io, {vi}y;oc T are such that 3 y;= 3 yi€l" then
ji=o i=o
there exist {ij}osi j<eCI such that 3 y,=vi, 3 yi;=7;, 0=i,j<eo.
j=0 i=0
Proof. If y;=(0;, 1)), v;=(0}, i), 0=j<eo, we shall define y;;=(o;;, 1;)),

where y;; are given by Lemma 6.4 and ¢;; are defined by formulas analogous to
(6.12) with f; and g; replaced by o; and o}, respectively. The Proposition follows.
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7. Co-dimension of a subspace

We shall denote by 2 the class of C, operators having the property (P). If
Te? and S(M) is the Jordan model of T we have A y(m;)=0, m;=m;[T], by
<o

Theorem 4.1 and Lemma 6.1. This fact and Proposition 6.6 suggest the following
Definition.

Definition 7.1. The dimension y; of the operator T€Z is defined as

.1) pr = f y(m), my=m,[T]

If T is an operator of class C, and M¢Lat, (T) is such that Tp€2, then the
T-dimension y(M) is defined as .

(7.2) rr@) = y(W) = 1.

Remark 7.2. (i) Because m;[T*]=m;[T]" (cf. [4], Corollary 2.8) we have
Yr+=77, T€P. Moreover, if T is of class Co and IMcLaty (T) is such that Tp€2?,
then

(1.3) P () = yr (D).

(i) It is clear that y;=0 if and only if T acts on the trivial space {0}.

(iii) The dimension yy is a quasisimilarity invariant of T. Indeed, y; is defined
in terms of the Jordan model.

We shall say C,-dimension instead of T-dimension if no confusion is possible.
‘The usual dimension is a particular case of the Cy-dimension. Indeed, the operator
T=0€ £ (9) is a C, operator and each subspace Mc$H is invariant for 7. By
Theorem 4.1, T|MM has the property (P) if and only if dim M<o< and in this
case pr(M)=(c, 0) where ¢(0)=dim M and o(z)=0 otherwise.

Lemma 7.3, An operator TEP is a weak contraction if and only if ypel
.and in this case »

1.4 yr = y(dy).

Proof. Obviously follows from Lemma 6.1 (iv), [6], Theorem 8.5 and [3], Defi-
nition 1.1.

By Proposition 6.6, Theorems4.1 and 5.4, we have {y;; T¢?}=I and
{yr; T has the property (Q)}=1I,. It is natural to define &, by

(7.5) TcP, if and only if T€¢# and y.¢T,.

Lemma 74. If T€Z is acting on H and H;cLat (T) are such that H;C9H;44,
0=j<o, and \/ $;=9, we have

a.6) vr=V 7e(S).
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Proof. Because T|5,-<i T, we have m[T|H;}=my[T] for each natural num-
ber k; therefore y(m[T|9;)=y(m[T]) and the inequality yr=V y7(9; fol-
jzo

lows. Now, by Lemma 6.1 we shall have V yr(H)= Z"' y ( V m[T|H;]) for each

natural number n; by Theorem 3.1 we 1nfer V yT(51)> Z’ y(m,[T]). Since » is
arbitrary the inequality V r(9)=yr follows Lemma 7. 4 1s proved.

Remark 7.5. From (7.3) it follows that Lemma 7.4 also holds under the
assumption $;€Lat (T™) instead of §H;€Lat (T), 0=j< .

Corollary 7.6. If T, T'¢2, we have yrgpr=7r+7r -
Proof. By Remark 7.2 (iii) it is enough to prove the Corollary for T=S(M),
=S8(M’). For each j the space &;=9;®H;€Lat (TDT"), where H;=H(m))P
SHm)®...09(m;), H;=9m)®H(Mm)®..®H(m) and H(M)= V Hi»
HM')= V 9;- By Lemma74 we have ypqp= V Yrer(§)), ¥r= V 71(55,),
Y= V yT (Sj ). By Lemma 7.3 and [3], Theorem 1. 3 the Corollary follows
We shall now introduce a relation ¢ on the class 2, connected to index problems.

Definition 7.7. For Ty, T,¢# we write T,oT, if there exist T€% and
Xe{TY such that Ty and T, are quasisimilar to T'|ker X and T, y., respectively.

. Lemma 7.8. If T€Z? and HeLat(T) then To(Tg®Tgy1).

Proof. The operator S=T7@T4€¢# by Proposition 4.4 and the operator X
defined by X(u@v)=v®0 commutes with S. It is easy to see that S|ker X is
unitarily equivalent to 7" and Sy, x. is unitarily equivalent to Tg® Ty5.; Lemma
7.8 follows.

By Theorem 4.1 and Remark 7.2 (jii), 7r,=0 if and only if ?r,=0 if Ty0T,.
The connection between ¢ and y is stronger than that, as it will be shown in the
following propositions.

Theorem 7.9. If T,, T,€? and T,0T, then V1, = V1,

Proof. It is enough to show that for T€¢# and X€{T} we have yr(ker X)=
=yr(ker X*). Let T be acting on $ and let S(M) be the Jordan model of T. As
shown in the proof of Theorem 4.1 we have

.7 H= j\z/o 9 H; = (mj(T)g))—EHYP Lat(T).

For each natural j we have X9;,C$; and X;=X|9;€{T|9;}. Because T|H,;
is of finite multiplicity, we infer by [3], Corollary 2.6, and Lemma 7.3,

(1.8) y(ker X ;) = y(ker X7").

3
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. Because obviously Xm;(T)lker X=0, we have ker X;>(m;(T) ker X)~ and,
as in the proof of Theorem 4.1, we infer ker X=V ker X;. Thereforc by Lemma 7.4

=0

applied to Tlker X it follows that
(1.9 y(ker X) = V y(ker X;).

We have XjPg |ker X*=Pg X“P5 [ker X*=Pg X*|ker X*=0 so -that
Py (ker X*)cker X* Because P ,T T* Py we shall have Py T*lker X*=
“(Ts Iker X})Pg Iker X*. This relation 1mp11es that (T*|ker X *)a , where

= (ker (Pg | ker X*))t = ker X*© (ker X*NH;)€Lat (Tye, x9),
is quasisimilar to some restriction of nglker X} and therefore |
(7.10) P(])) = y(ker X7).
Now V K;=ker X*© (ker X* ﬂ( ﬂ H7))=ker X* so that from (7.8—10)
and Lemma 7 4 applied to 7y, x« WE mfer y(ker X*)= V Y(R)= V y(ker X})=
—jVo y(ker X;)=y(ker X).

By the same argument applied to T instead of T we infer y(ker X)=y(ker X*).
The Theorem follows.

Corollary 7.10. If T€? and $HeLat(T) then yr=yr(O)+7r (D).
Proof. Obviously follows from Corollary 7.6 and Theorem 7.9.

Corollary 7.11. Let T€P be acting on $ and let $;€Lat(T) be such that
80=9, $,59,51 0=j<=) and () §;=(0}. Then ‘yT=j§yT(Rj), where ;=
=909+ 0=j<). ‘

Proof. By Lemma 7.4 and Remark 7.5 we have yr= V 7r($j). Because

=9 ®f]; and K;cLat (Ts},,) we have yr(9j,)= yT(Sb-L)+yT(RJ) by the
Corollary 7.10. By induction it follows that yr(ﬁ F)= Z’ yr(8,). Corollary 7.11
follows.

Corollary 7.12. Let T€P be acting on '5 Then T<P, if and only if
/\ 77r(9;)=0 for each decreasing sequence {9,}_,cLat(T) such that ﬂ 9=
o)

Proof. Let us assume T€2,. By Corollary 7.10 we have yr=y7(9;)+77r(H})
so that by Lemma 7.4 we infer yy=y7+ A y7(9,). Because yp€l, it follows that
i=0

0= _/2\0?7(55,')-
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Conversely, if T4¢ P,, let S(M) be the Jordan model of 7. By the proof of [5],
Theorem 1, there exist $;€Lat (T) such that $;,,C9;, ﬂ $;=0 and the Jordan

model of T|H; is @ S(m). Because yr(9H7)= 2’ y(mk)el" from the relation

=779 +1r(9)) wé infer (yp) o =(7(9)).. and therefore /\ 1r(9) =) #0.

Corollary 7.12 is proved.
We shall prove now a partial converse of Theorem 7.9.

Theorem 7.13. () If T,T'¢®? are weak contractions and 7Vyr=yy., then
ToT".
) Gi) If T,T’¢ are such that yr=yr then there exists SE€P such that ToS
and SoT’.

Proof. Let S(M) and S(M’) be the Jordan models of T and T”, respctively.
The condition y;=v;.. is equivalent to dy=dr.; let us denote d=dy=dp.. If
we denote d;=dlmomy...m;_;, d_;=d[mym;...m;_, for 1=j<e and d,=d, we
have A d;= A d_;=1 and by Theorem 4.1 and Proposition 4.4 the operator

j=0 ji=0

AR , K= & Sd)

j=—o

has property (P), that is, K€2. We define now an operator X¢ {K} by X( EB h;)
j=-
= 69 k; where

i=—oo

k, =P hi_y if j=1,
(7.12) {‘ NS J

= (d;ld;_)h;_, if j=0.

It is easy to see that ker X = EB ker (X9 (d)) and ker X*= @ ker (X*|9 (d))).
For j=0
ker (X19 (d,)) = d; ., H2O d; H?
so that S(d))|ker (X |9 (d))) is unitarily equivalent to S(d;/d;,,)=S(m;) and there-
fore Klker X is unitarily equivalent to S(M). We can analogously verify that
K., x+ is unitarily equivalent to S(M").
Let us remark that the minimal function of K coincides with the common

determinant function of 7 and 7.
(ii) Let S(M) and S(M ") be the Jordan models of T and T, respectively. The

equality yr=7, is equivalent to Z‘ y(m J)— y(m_,) By Proposition 6.7 we can
i=o
find y,.jef‘ such that > y;;=y(m;) and Z’yij:y(mj), 0=i,j<eo. Because ;=
j=0 i=0

3*
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=y(m;) we have y;;€I' and therefore y;;=y(m;;) for m;=06(y;;)¢ H>. We define
the operator
01y 5=@(B5m) =B, 5=@Stmy), 0=i<.

i=0 i=0 j=0

j=0

Because y(m)= 2' y(m;;), the operator S, is a weak contraction and Vs, =

=V s(myy» O=i<o (cf. Lemma 7.3). By the proof of (i) we can find operators K'c¢2
acting on $; and contractions X;€{K‘} such that

(7.14) mo[Ki] =m,, 0=i =< oo,

Kilker X; and K} xx are unitarily equivalent to S(m;) and S;, respectively. The
operator K-G) K' is of class Cy, X= 69 Xe{K}Y and Klker X, K, x. are

i=0
unitarily equivalent to S(M), S, respectlvely

Let us show that K€#. The spaces K;=9,09D,D ... H; are invariant for
T, V ]= 6} $; and my[K|K]t]=m;,,, 0=i< . Because T€ZP we have A mia=1

i=0 i=0

and by Propos1t10n 4.6 it follows that Kc#. In particular S also has the property
(P) by Proposition 4.4 and therefore we proved that ToS. The relation ST’ is
proved analogously. The Theorem follows.

Remark 7.14. If T and T’ have finite multiplicities, then the operator K used
for the proof of (i) also has finite multiplicity. Thus we obtain a new proof of Proposi-
tion 3.2 of [3].

8. Cy-Fredholm operators

The results of sec. 7 suggest the following generalization of [3], Definition 2.2.

Definition 8.1. Let T and 7~ be operators of class C, and let Xe#(T”, T).
Then X is called a (T, T)-semi-Fredholm operator if X|(ker X)* is a (T”|(ran X) ™,
Taex 1)-lattice-isomorphism and either T|ker X€2 or T, 4x.€%2 holds. A (T", T)-
semi-Fredholm operator X is (7", T)-Fredholm if both T|ker X and T} . have
property (P). If X is (T, T)-Fredholm, its index is defined as

3.1 ind (X) = (yr(ker X), yr.(ker X*))e ' x I
If X is (T, T)-semi-Fredholm but not (77, T)-Fredholm, we define
8.2) ind(X) =+ if T|kerX¢Z;

== if Tiex+42.
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Let us remark that for Tlker X€ 2, and Ty, 3x€%P,, ind (X) is uniquely deter-
mined (modulo the relation “~”) by the element y(ker X)— 1y, (ker X*)€%, (cf.
sec. 6).

In order to distinguish the operator introduced by Definition 8.1 from the
operators considered in [3] we shall denote by ®(T”, T) and ¢®(T’, T) the set of
(T, T)-Fredholm and (T, T)-semi-Fredholm operators, respectively. If T'=T we
write (7)), and o®(T) instead of & (T, T), o® (T, T), respectively.

Obviously #(T', T)c ®(T’, T) and for XeF(T’, T) we have

(83) ind (X) = y(j(X)
if ind (X) is interpreted as an element of %, and
y(m/n) = y(m)—y(n) for m,ncH.
The following Proposition extends [3], Corollary 2.6 and Remark 2.7.
Proposition 82. (i) If T,T'€®? then &(T', T)=5(T", T) and
8.9 ind (X) ~ (yg, yr) for XeSL(T',T).

(i) If exactly one of the operators T and T’ has property (P) then ®(T’, T)=9,
e®(T’, T)=F(T", T), and for XcF(T", T),
ind(X)=+4o if T¢2,
=—o if T4
Proof. (i) because Ty, xy1 and T’|(ran X)~ are quasisimilar and have the
property (P) for any X¢ S (7', T) (cf. Corollary 4.5 and Lemma 1.1) it follows
that X|(ker X)* is a lattice-isomorphism by Proposition 4.8 (i). In particular

yr((ker X)1)=yr((ran X)~). By Corollary 7.10 it follows that yr=yr(ker X)+
+yr((ker X)) and yp.(ker X*)+yr{(ran X)~)=y;. so that

yr+yr (ker X*)+y =y +yp(ker X)+y
where y=y((ker X)*)=y5((ran X)~). Because

= yrAvr
we infer by Lemma 6.5 (ii):

Yr+7yr (ker X*) = yr +yr(ker X);

this means exactly ind (X)~(yr, v1)-

(ii) As in the preceding proof T, )1 and T’|(ran X)~ are quasisimilar and
one of them must have the property (P) by Corollary 4.5. Then Corollary 4.3 and
Proposition 4.8 (i) show that X|(ker X)* is a lattice-isomorphism. To end the
proof it is enough to show that &(7’, T)=0. Assume by example T'¢Z; then
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for any Xc £ (T’, T), T’|(ran X)~€2 so that T, 4.§¢% by Proposition 4.4. The
case T¢2 is treated analogously. The Proposition is proved..

Example 8.3. The relation ind (X)~(yz,yr-) obtained in Proposition 8.2
cannot be improved. By example, if yr=y;. it does not follow that y;(ker X)=
=yplker X*) for each Xe¢ S (T, T). Indeed, let us take 7'=S(M)€Z such that
=0, 1), p€A_, and T=Jg S(m;). Then yr.=yr+y(my) sothat yr=yy by

the choice of yr. The inclusion X: @ 9 (m)—~P 9 (m;) is one-to-one and
Jj=1 j=o0 .
yT:(keI' X*) =y(n10) ?50.

Lemma 8.4. For any two contractions T and T’ of class Cywe have 6 ®(T, T')* =
=¢®(T'*, T, &(T, T"Y*=d(T"*, T*) and

(8.5) ind (X*) = —ind (X)~, X€o®(T,T")
(here —(3,7")" =", 7))

Proof. Cf. the proof of [3], Lemma 2.10.
The following Theorem ‘extends [3], Theorem 2.11 to this more general setting.

Theorem 85. Let T,T’, T” be operators of class C,, A€c®(T’,T),
Bco®(T”, T’). If ind(4)+ind (B) makes sense we have BACe®(T”,T’) and

(8.6) ind (BA) ~ ind (4)+ind (B).

Proof. We have to follow the proof of [3], Theorem 2.11, replacing weak
contractions by contractions having property (P) and using Proposition 4.10 instead
of [3]; Proposition 2.3. Only relation (8.6) needs some comments if 4 and B are
C,-Fredholm. With the notation of the proof of [3], Theorem 2.11 we have

8.7 yr(ker BA) = yr(ker A)+7r(H)  ([3], relation (2.18)),
8.3) (D) = yr (93)  ([3] relation (2.20)),

8.9 yr-(ker (BA)*) = yp-(ker B¥) +y7.(H7) (relation (2.18)%),
and

(8.10) ker B=9,89,, kerA*= 909! (relation (2.19)).

We infer, with the notation y =y;(9,) =71-(93), that

yr{ker BA)+y=yr(ker 4) +yr (H1) +y=vr(ker A)+yr.(ker B)
and
yr- (ker (BA)*)+y = yp- (ker BY)+y7(91) +7 = yr (ker 4*) +yp-(ker BY).
By addition we obtain
vr(ker BA) +yr.(ker 4*) +yg-(ker B) +y =
= yp-(ker (B4)*) +yr(ker A)+y1-(ker B)+y
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and-since y=yg.(ker B) Ay (ker A*); Lemma 6.5 (ii) implies
. yr(ker BA)+yp (ker A*)+yp-(ker BY) =
= yp(ker (BA)*)+yr(ker 4)+y- (ker B).

The last relation is equivalent to (8.6). The Theorem follows. .
The proof of [3], Theorem 2.12 is easily extended to the general setting.

Proposition 8.6. Let T be an operator of class C, acting on the Hilbert space
and let Xc{T} be such that T|(X9)~€P. Then Y =I+X€ ®(T) and (T |[ker Y)oT . y+-
In particular ind (Y)~(0, 0).

Proof. We have shown in the proof of [3], Theorem 2.12 that ker ¥ =ker (Y |W),
U=(XH)~, and that (T|W), yu+ and T . are similar. This shows that
(T|ker Y¥) 0T erys-

In fact we shall prove a more general perturbation theorem.

Theorem 8.7. Let T, T’ be two operators of class C, acting on 9, &', respec-
tively, and let us take Xco®(T',T), YeS(T',T). If T'(YH)"€P, we have
X+Yeo®(T',T) and

@.11) ind (X+Y) ~ind ) +0,7), 7 = 7o ((VS)").

Proof. We shall prove firstly that (X+Y)($) is dense in each cyclic sub-
space of T’ contained in ((X+Y)$)~. The same argument applied to (X+Y)*
will show, via [3], Lemma 1.4, that (X+7)|(ker (X+Y))* is a lattice-isomorphism.

In proving this we may assume that ' =X9VY$ so that ker X*=(P,,, . Y$)";

it follows that T, X*-1<T’I(Y$3)‘ so that necessarily T, x€2 (cf. Corollary 4.5).
Analogously we may assume that T |ker X¢2 so that X is Cy-Fredholm.

The injection J: ker Y —~$ is Cy-Fredholm, J€ @(T, T|ker Y) by the assump-
tion of the Theorem, and therefore, by Theorem 8.5, XJ€ &(T”, T|ker ¥); in
particular T, ype=Ty€? where U=Kker (XJ)*=(X(ker ¥))*.

Let us take f€((X+Y)$)~ and denote o= \/0 T'if. Because

jE

Py|H:€ S (Ty, T'|97)

and Py (X+Y)EF(Ty, T) are such that ran (Py|H;)C(ran Py(X+Y))~ we infer
by Corollary 4.11 the existence of a cyclic vector g of T7|9} such that P,g=
=Py (X+Y)h for some h<$H. Then the difference g'=g-—(X+Y)hc(ran XJ)~ =
=(X(ker ¥))~ and because XJ is a Cy-Fredholm operator we infer the existence
of h'cker Y such that X4 is cyclic for T’|$,,. Let us denote

S = BV and Z = (X+Y)|H,€ ST, T|$0).
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Then (Z$Ho)~ ©9H; indeed, because h’cker Y, we have Zh'=XA" and there-
fore (Z9¢)~>Hxy=9,, in particular g’€(ZHo)~. Now g=g'+Zhe(ZH,)~ so
that (Z$)~09H,=9;. By Proposition 8.2 (ii) Z€ad(T’, T|Hy) so that $H,=
=(ZR)"=((X+7Y)K)~ for some Ke€Lat (T|H)cLat(T). The first part of the
proof is done.

Let us assume that T|ker X€2. Then ker (X+Y)cX~1(¥Y$H) and

T|ker X
TIX"((YSB)')=[ ';r ;1]

where T, < T’|(Y9)~ so that T; has the property (P) (cf. Corollary 4.5). By Proposi-
tion4.4, T[X*((¥YH) )2 and therefore Tlker (X+Y)€L. Analogously
Texsyp€? if Ty xs€P so that in any case X+Y€o®(T’,T). Conversely,
because X=(X+Y)—Y, Tlker Xc? whenever Tlker (X+Y)c? and T/, x.€P
whenever Ty x.y€2. Therefore ind (X)€{+ o, —<} if and only if

ind (X+ Y)€ {+ o0, — oo}

and in this case ind (X)=ind (X+7Y).

It remains to prove that (8.11) holds whenever X€ &(T”, T). To do this let us
remark that Py 1 € D(T(yg 1, T') and ind (Pyg,1)=(y, 0), where y=y5.((¥Y9)").
Because obviously Py 1 (X+Y)=Pyg1 X we infer by Theorem 8.5 '

(8.12) ind (X+Y)+(y, 0) ~ ind (Pygyt X) ~ ind (X)+(y, 0)
so that
yr(ker (X+Y))+7+7yr (ker (PygL X)*) =
) = yT' (kel' (X+ Y)*) + 'yT (ker P(YS))J‘ X)
and '
yr(ker Pygyt X)+7vr (ker X*) =
= yr.(ker (Pygyt X)*)+yr(ker X)+y.
By addition we obtain

613 {yr(ker(X+ Y))+7pg- (ker X*)+y+yp(ker Pygyt X)+yp-(ker (Pyg)t X)) =
' =y (ker (X+Y)*)+yr(ker X)+y+yr(ker Piygyr X)+7r (ker (PygyL X))
As shown in the proof of Theorem 8.5 (cf. relations (8.8—10)) we have
yr(ker PygyL X) = yr(ker X)+y7.((Y9)™) = yr(ker X)+y

and
P (Ker (PygyL X)) = yr. (ker X*)+9.

Moreover, as shown in the first part of this proof, we have yy(ker (X+Y ))é
=pr(X (YD) "))=yr(ker X)+y and analogously yr- (ker X*)=yy.(ker (X+¥)*)+7.
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All these relations show, via Lemma 6.5 (ii), that from (8.13) we may infer
yr{ker (X+Y))+7yp (ker X*)+7y = yp(ker (X+Y)*)+yr(ker X)+7.

The last relation is equivalent to (8.11). Theorem 8.7 is proved.
We shall prove now a partial converse of Theorem 8.5. For simplifying nota-
tions we shall consider the case of a single operator T of class C,.

Proposition 8.8. Let T be an operator of class C, acting on $ and let AC{T}’ ..
If there exist B, Cc {T'} such that AB,CAC®(T), we have Acd(T).

Proof. Because ker ACkerCA and ker A*cCker (4B)* we obviously have-
Tlker A, Ty., +€%. We shall now prove that the mapping K—~(4K)~ is onto-
Lat (T|(A9)~). As in the first part of the proof of Theorem 8.7 we take f€(4$)™
and remark that

Pagy-oups)-|DrE L (Tius)-oas)-> T19s)s

Pius)- o(unsy- A€ P (T agy-ouns)-> T);

an application of Corollary 4.11 proves the existence of a cyclic g€9, and of a
vector h€$ such that g— Ah€(4ABH)~. Because ABCP(T) we find 4’ such that
ABK is cyclic for T{H,_ . If 99=9,V9pw we obtain as in the proof of Theo--
rem 8.7 (490)~ D9, and therefore H,=(4K)~ for some KeLat (T'|H,)< Lat (7).

Analogously we can show, using the operator 4*C*¢ ®(T™*), that the mapping:
K-(4*R)~ is onto Lat(T*|(4*$)~). By [3], Lemma 1.4, Proposition 8.8 follows.

Example 8.9. For each pair (y,y)eI'XI' there exist a Cy-operator T and
Xe®(T) such that ind (X)=(y, y').

Proof. As in the proof of [3), Proposition 3.1, we take operators K, K'¢#
such that yx=7, yx-=7" and we define T=(K®I)®(K’®1I), where I denotes the:
identity on H?2, If U, denotes the unilateral shift on H?2, the required Cy-Fredholm:
operator is given by

X ={IUhHe(xU,).

The proof of [3], Proposition 3.4, can be applied to obtain the following result..

Proposition 8.10. For each operator T of class Cy we have o®(T)N{T} =
=&(T)N{T)" and ind (X)~(0,0) for Xe®(T)N{TY.

The operators X,, X defined in the proof of [3], Proposition 3.6, are such that
X,669(T), Xc®(T), and lim || X,—X[|=0. Thus we have the following result.

n-> oo

Proposition 8.11. The sets c®(T), ©(T) are not generally open subsets of
{TY, for T an operator of class C,.
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On the Jordan model of C,, operators. IT

HARI BERCOVICI

The existence of the Jordan model for operators of class C, was established
in [9] and {10] for operators of finite multiplicity, in [4] for operators acting on
separable Hilbert spaces and in [2] for operators acting on nonseparable spaces.
In Sec. 2 of this note we give a common description of these three types of Jordan
models. We also find a direct definition of the inner functions appearing in the
Jordan model. '

B..Sz.-NaGy and C. Foias have shown in [9], Sec. 7, that the space $ on which
an operator T of class Cy(N) is acting admits a decomposition into an approximate
sum of invariant subspaces $; for T such that T19; is multiplicity-free. In Sec. 3
of this note we extend this result to operators of class C, of arbitrary multiplicity.
In fact we prove the existence of an almost-direct decomposition (cf. Theorem 3.4).
Moreover, in the case of weak contractions (which contains the case discussed in
[9) we show that there exists a quasi-direct decomposition (cf. [7], ch. III) The
main ingredient in Sec. 3 is a generalization of [4], Proposition 2.

Acknowledgement. The author is very indebted to Dr. L. Kérchy for his valuable
remarks, and in particular for two suggestions that helped to simplify the proofs
of Theorems 2.7 and 3.4. .

1. Preliminaries

We begin with some known facts about cardinal and ordinal numbers (cf. [12]).
Here 0 is considered as ordinal number so that each ordinal « is the ordering type
of the well-ordered set of ordinals {f: f<a}. An ordinal number is a limit ordinal
if it has no predecessor. Each ordinal number is of the form a«+#n with « a limit
ordinal and »n<w, where w is the first transfinite ordinal. For each ordinal number
« we denote by & the associated cardinal number. :

Received January 15, 1979, and in revised form, July 20, 1979.
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Lemma 1.1. For each cardinal number § we have X=card {a: ¥<N}.

Proof. Let us denote A={x: &<§} and let B be the ordinal number cor-
responding to A. Then B=card 4 and B¢A so that B=card A=R. Now let
7 be the first ordinal number such that 7=¥; then y¢ A4 so that y=f and there-
fore ®=9=f=card A. The Lemma follows by the Cantor—Bernstein theorem.

Remark 1.2. The preceding proof shows that p=y=the first ordinal with

B=x.

Corollary 1.3. If R,<N, are cardinal numbers and R, is transfinite, we have
Np=card {o: R;=a<R,}.

Proof. By Lemmal.l we have §&,=card {a: G<{,}=card {a: a<R}+.
+card {o: R;=d<R,}=R8,;+8, where R=card {a: 8, =&<N,}. Because R, is
transfinite 8, or & must be transfinite and we have X,=max {8,, R}=8& because
8;#N,. The Corollary is proved.

Corollary 1.4. If R is a transfinite cardinal number then 8 =card {a: a=\}
is the first cardinal greater than X.

Proof. We have only to apply the preceding Corollary for ®;=8& and R,=
=the successor of § in the series of cardinal numbers.

Now let us recall that the multiplicity iy of the operator T acting on the Hil-
bert space § is the minimum dimension of a subspace M $H such that H=YV T M.

n=0

It is obvious that

(1.1) ﬂrédim5§ &0'#1‘
so that the equality
(1.2) ur =dim $

holds whenever dim H=>8, or pr=N,.

Lemma 1.5. We have up=pz. for any operator T of class C,.

Proof. For u;<®, see [10], Theorem 3. Therefore if ur=8, we also have
Urs=R, and the equality pr=pur. follows from (1.2).

Let us recall that the operator T can be injected into T’ (TQ T’) if there exists
an injection X such that T"X=XT. If there exists a quasi-affinity X such that
T’ X=XT we say that T is a quasi-affine transform of 77 (T<T").

Lemma 1.6. If T and T’ are two operators of class C, and T% T’, we have
ur=pr. If T<T’ then uyp=pqz..
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Proof. Let T, T’ be acting on $, ', respectively, and let X be any injection
such that 7 X=XT. Then X* has dense range; if M $’ is such that ¥ T*"M=9’

n=0

we have \/ T*"'X*M=9 and obviously dim (X*IM)- =dim M. Therefore pur.=

n=0

Uy SO that pr=p;. by Lemma 1.5. If T<T’, we may assume X has dense range
so that ur.=pu; obviously also follows. The Lemma is proved.
If T is an operator of class C, we shall use the notation

(1.3) ur(M) = lr|canm(ry-> MEH

where H;* denotes the set of inner functions in H=. We shall consider the set H
(pre)ordered as in [2]. Namely, we write m,=m, if m, divides m, or, equivalently,
if Jmy (2)|=|my(2)| for |z|<1.

The following Lemma also follows from [8], Theorem 111.6.3; we prove it for
the sake of completeness.

Lemma 1.7. If T is an operator of class Co, and m,, my=my, then
(ran my (7))~ c(ran my(T))~ if and only if my=m,.

Proof. If m;=m,, we have m; =m,m, so that obviously ran m,(T)cran m,(T).
Conversely, if (ranm,(T))~ c(ran my(T))~, we have (my/mg)(T)m;(T)=0 and
therefore my=(my/m,)m,. The Lemma follows. '

Corollary 1.8. The function uy is decreasing on H;”.

Proof. Obviously follows from Lemma 1.6 and the proof of Lemma 1.7.

Corollary 1.9. If T and T’ are operators of class C, and T% T’, we have
pr(m)Spp(m), meH. If T<T’, we have p(m)=pur-(m), m H".

Proof. If X is any injection such that 7"X=XT, we also have m(T')X=

Xm(T), mé H:*, and therefore T'|(ran m(T))‘%T’|(ran m(T"))~. If X is a quasi-
affinity we have (Xranm(T))"=(ranm(T’))~ so that T|(ran m(T))~<
<T’|(ran m(T"))~. The Corollary follows by Lemma 1.6.

We shall see that the converse of Corollary 1.9 is also true.

Let us recall that for an operator T of class C, acting on $ and for f¢$, m,
stands for the minimal function of T'|H,, where

(1.49) Hr=V T"f.

n=0

The following result is proved in {4], Proposition 1.

Proposition 1.10. The set {f: my=mgs} is dense in 9.
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In fact, from the proof of {10], Theorem 1, it follows that {f: m;=m} is
a dense G;.

Finally let us recall the definition of approximate sums and quasi-direct sums
(cf. [6] and [5], ch. III). Let § be a Hilbert space and {$,};¢, be a family of subspaces
of 9 such that

(1.5) $=V 9

jet
We say that 9 is the approximate sum of {$;};¢, if for each subset KcJ we have

(1.6) (,-\e/x 9)N( ,yK ;) = {0}.

We say that H is the quasi-direct sum of {§,};¢, if for each family {K,},c 4 of sub-
sets of J we have

1.7 NV 55,)—V55,, K= ﬂK

acA jekK,

We shall introduce an intermediate notion. Namely, we shall say that § is
the almost-direct sum of {§;};¢, if the relation (1.7) holds whenever K=0.

Lemma 1.11. Let {H;};c; be a family of subspaces of § such that (1.5) holds.
$ is the almost-direct sum of {9;};c; if and only if we have

(1.8) H=V 95, where $F=(V H)L, jeJ.
jeJ kj
Proof. If § is the almost-direct sum of {$;};¢c;, we have
\/ ;= \/ (V Hi)t > (ﬂ (V St = ((0Oh+ =

Conversely, if (1 8) holds and {K},c 4 are such that () K,=0, then
acA

(N(V 9)D+> VIV S>> V(V 9))
a€d jeK, a€A jeK, acd jéK,
and because U {j: j¢K,}=J, we have V (V H)=V 9;=9. The Lemma
ac4d acd j¢K, Jjed

follows.

2. Jordan models

Definition 2.1. A model function is a function M which associates with every
ordinal number « an inner function M () such that

() M(P)= M(x) whenever & =f;
(ii) M(«) = M(B) whenever & = B;
(iii) M(x) =1 for some: a.
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If M is a model function, the operator S(M) acting on $H(M) is defined as
ey S(M) = @ S(my), m,= M().

Lemma 2.2. Let {m,},c < H;" - be a totally ordered family of nonconstant func-
tions. Then the multiplicity of T= @ S(m,) equals card A.
acAd

Proof. If 4 is finite, the assertion follows from [9]. If 4 is infinite, it follows
from the inequality p.o1.=py that pp is-also infinite so that py=dim (D 9H(m,))
; acA

by (1.2). Therefore, card A=pu;=card A4 -Ro=card 4. The Lemma follows.

Corollary 2.3. If M is a model function, we have psyp=a, where o is the
first ordinal number such that m,=1.

Proof. If « is the first ordinal number with m,=1, it follows from Defini-
tion 2.1 (ii) that {B: m,=1}={B: B<a} so that the Corollary follows by Lemmas
1.1 and 2.2.

Definition 2.4. For any operator T of class Cy we define
@2 My(@) = m,[T] = Nm: pr(om) = 5)

where ‘A’ stands for the greatest common inner divisor.

Let us remark that M;(0)=m,[T] coincides with the minimal function of 7.
M, is a model function. Indeed, the conditions (i) and (ii) of Definition 2.1 are
obviously satisfied while (iii) is satisfied because Mr(x)=1 whenever &=dim
(ur(M=pr=dim $ by (1.1)). It is also clear by Corollary 1.9 that M is invariant
with respect to quasi-affine transforms. '

Proposition 2.5. If M is a model function we have Mg;n=M.

Proof. Let us put T=S(M), M'=My, m,=M(x) and m,=M’(x). Let us
assume m=m;. Because m(S(m’))=0 if and only if m=m’ (moreover,
S(m’)|(ran m(S(m’)))~ is quasisimilar to S(@m’/mAm")), by Lemma 2.2 we have

pr(m) = py(my) = card {&; & < B} = B.

Conversely, let us assume mnot =mg. Then pp(m)=card {a: &=p}>p. By (2.2) we
infer mz=m, and the Proposition is proved.

Now let us recall the definition of a Jordan operator (cf. [2]). If & is a cardinal
number and 7' is an operator, 7® denotes the direct sum of & copies of 7. o

Definition 2.6. A Jordan operator, is an operator of the form

2.3) T= @ S(m)dn

meHT .
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‘where A is a cardinal number valued function on H;” such that
(i) A={m: h(m)s0} is a well anti-ordered set;
(i) {m€A: h(m)<R,} is a decreasing (possibly finite or empty) sequence;
(i) h(m)> 2 h(m’) whenever 3 h(m’) = R,.
m>m m'>m

Our condition (iii) slightly differs from condition (b) of [2], Definition 1. If we
:analyse the proof of [2], Theorem 1, we remark that the Jordan model obtained
‘there satisfies the actual condition (iii). Indeed, if h(m)= 2 h(m") it is easy to

:see that (with the notation of [2]) m is not a saltus point for f.
Let us remark that, by Lemma 2.2, we have
(2.9) pr@)= 2 h(m), ucHp

unot=m

if T is the operator given by (2.3).
Theorem 2.7. Each operator T of class C is quasisimilar to S(My).

Proof. From Corollary 1.9 it follows that My is a quasisimilarity invariant
“Therefore, by [2], Theorem 1, it is enough to prove that for T a Jordan operator
in the sense of Definition 2.6, T and S(M7) are unitarily equivalent. So, let T be
given by (2.3) and denote m,=M (). It is enough to prove that

2.5) card {o; m, = m} = h(m), me€H.

Let us assume firstly that 2(m)=0. There exists a last m'€ 4={m’: h(m’)=0}
such that m'z=mAm;. Thus for m’€4 we have m(S(m’))=0 if and only if
m(S(m’))=0. By Lemma 2.2 we infer pp(m)=py(m") so that by (2.2) there is
no o such that m,=m and (2.5) is proved in this case.

Now let us assume O<h(m)<®,. Then the sum

(2.6) k= 3 h(m)

m=>m
)

is finite by Definition 2.6 (iii). It is clear that pr(u)=k if and only if u=m and
therefore if and only if ur(w)=k+n—1, n=h(m). We obtain

M =Myyy =...= Mgypg = M.

Analogously we obtain m,,,=m" where m’ is the predecessor of m in A; thus
{o: my=m}={k,k+1, ..., k+n—1} and (2.5) is proved in this case also.

Finally let us assume h(m)=R,. If k=&<h(m), where k is defined by (2.6),
'we have pr(w)=a if and only if u=m. Indeed, if unot =m, wehave ur(u)=h(m)
by Lemma 2.2. Therefore

2.7 m, =m whenever k=& < h(m).
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If &=h(m) and m’ is the predecessor of m in A (if m is the first element of 4 we take
m’=1) then, again by Lemma 2.2, u;(m")= > h(m")= 2 h(m")+h(m)=h(m)
m'>m m’>m

so that m,>m. Therefore
{oa; m, = m} = {a; k=& < h(m)}
and (2.5) follows by Corollary 1.4 in this case. The Theorem is proved.
Let us recall that f~(z)=f(Z) for fcH>.

Corollary 2.8. For each operator T of class Cy we have pr(m)=pr.(m"),
meH; and m,[T*|=m,[T]" for each ordinal number «.

Proof. Since pur(m) is a quasisimilarity invariant it is enough to prove the
Corollary for T=S(M) and in this case the assertions of the Corollary become
obvious.

We are now able to prove the converse of Corollary 1.9.

Corollary 2.9. For two operators T, T’ of class C, the following assertions are
equivalent:

G T<T'

0, T* < T'%;

i) pr(m)=pr (m), meH;
@iii) m,[T)1=m,[T’] for each ordinal number a.

Proof. (i)=(ii) by Corollary 1.9. (ii)=(iii) by Definition 2.4.

(iii)=(i). Let us denote m,=m,[T], m,=m,[T’]. There exist (cf. [9]) isometries
R,: $(m)—+H(m)) such that S(m)R,=R,S(m,). If X and Y are two quasi-
affinities such that 7" X=XS(My) and S(M)Y=YT, the operator Z=X (P R,)Y
is an injection and T"Z=ZT.

Finally, the condition m,[T]=m,[T’] is equivalent to m,[T*]=m,[T'*] by
Corollary 2.8; it follows that the condition (i), is equivalent with (i)—(iii). The
Corollary is proved.

The following Corollary gives in particular a new proof of [11], Theorem 1.

Corollary 2.10. For two operators T, T’ of class C, the following assertions
are equivalent:

G) T<T;
G) T<T' and T’ <T;
(i) pr(m) = pr.(m), meH;

(iv) T and T’ are quasisimilar.

4
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Proof. ()= (i) and (i)=(iii) by Corollary 1.9. (iii)= (iv). By Definition 2.4
we infer m [T]=m,[T’] so that T and T’ are quasisimilar having the same Jordan
model. (iv)=(i) and (iv)=(ii) are obvious.

Corollary 2.11. If T is an operator of class C, on the Hilbert space § then
each invariant subspace M of T is of the form M=(XH)~=ker Y for some X, Y€ {T} .

Proof. Let us denote by T’ the restriction 7| and by J the inclusion of

M into H. By Corollary 2.9 we have T’*-1<T* so that there exists an injection
Z: M- such that T*Z=ZT’'*. Then X=JZ*¢{T} and (X9~ =J(Z*H)~=
=JM=M. Analogously M+=(Y*H)~ for some Y*€{T*}) so that P=ker Y.
The Corollary follows.

As shown by Proposition 2.5 and Theorem 2.7 the operators of the form S(M)
with M a model function form a complete system of representants for the class C,
with respect to the relation of quasisimilarity. Sometimes it is more convenient to
use Jordan operators as given by Definition 2.6.

Proposition 2.12. If M is a model function and
(2.8) h(m) = card {&; m, = m}, meH?,
then the function h satisfies the conditions (1)—(iii} of Definition 2.6.

Proof. (i) A={m: h(m)=0} is the range of the decreasing function M defined
on a well-ordered set so that obviously A4 is well anti-ordered.

(i) If h(m)<y, we infer m=m, for a=w. Therefore {m: O<h(m)<go}
is the range of the function M on a ségment of the natural numbers.

(iii) Let us-assume h(m)=§, and let a be the first ordinal number such that
m,=m. By Lemma 1.1 &= 2 h(m’). If a is a finite number, the relation h(m)=a&

m>m

is obvious. If « is transfinite we infer by Corollary 1.4 and Definition 2.1 (ii)

h(m)zcard{f; f=a}=a’'=>a= 2 h(m),
m'>m
where & is the successor of & in the series of cardinal numbers. The Proposition
is proved. :
From now on we shall call Jordan operators the operators S(M) with M a
model function and S(M;) will be called the Jordan model of the operator T of
class C,.

Remark 2.13. For any operator T of class Cy we have

29 ur(m,[T)) = &
Indeed, we have only to verify (2.9) for T=S(M) and in this case (2.9) is obvious.
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3. Decomposition theorems

The following Lemma is essentially contained in [9], sec. 2. We prove it for
the sake of completeness. Let us remark that Lemma 3.1 also follows from [11],
Theorem 2.

Lemma 3.1. Let T and T’ be operators of class Cy, both quasisimilar to S(m)
(mEH;") and let A be such that T'A=AT. Then A is one-to-one if and only if it
has dense range.

Proof. Let X and Y be two quasi-affinities such that TX=XS(m) and
S(m)Y=YT’. The operator YAX commutes with S(m) so that YAX=u(S(m))
for some u€H= by Sarason’s Theorem [7]. If A is one to one or has dense range
then so does u(S(m)) and therefore uAm=1. Now

XYAXY = Xu(S(m))Y = w(T)XY = XYu(T")

sothat XYA=u(T) and AXY=u(T"). u(T)and u(T’) are quasi-affinities because
uAm=1 and ran A>ran u(T"), ker ACker u(T) so that 4 is a quasi-affinity in
both cases.

The following result is a generalisation of [4], Proposition 2.

Proposition 3.2. Let T and T’ be two operators of class C, acting on $, &',
respectively, X be a quasi-affinity such that T'X=XT, f€$ be such that m;=my
and &>0. Then there exist subspaces $,, W, invariant for T and $;, MT invariant
Jor T’ such that:

@ 9= 5)];

(D) [|Pg; Xf—Xfll <e;
(i) My =@*H)L, D= XH)L;
(i) £V, =9, 95,ND={0}, HIVIMI=9, HSINM} = {0};
™) Pgx X|D, and Py X\, are quasi-affinities.

Proof. The conditions (i}—(v) are not independent. Indeed, let us assume that
(1) and (iii) are verified and Pgx X|9, is a quasi-affinity. It follows that T”|(X$,)~
and (T*|9;)* are both quasisimilar to S(my) and Pg:|(X9,)~ has dense range;
by Lemma 3.1 Py ,-|H; also has dense range, that is (X9,)”=(Pg,-91)"-
Then M, =ker Pg: X sothat H,;NY;=ker Pg:X|H,={0}. Analogously HyNM; =
={0}. Now $5’=(X$51)‘699ﬁf=(P(X51)- HHVM;=H;VM; and analogously
$,VM,=9H. Obviously My =(Pym;XH)~=(Py;XWM;)~ and W;=(Py X*H)~ =
=(Pgm X*M7)~ and it follows that Py XM, is a quasi-affinity.

4%
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It follows by the preceding remark that it will be enough to define $, by (i),
to find 9 satisfying (ii) and such that Pg+X|$, is a quasi-affinity and then to
define M, M by (iii).

The operator 7’|(X9,)~ has the cyclic vector Xf so that by [10], Theorem 2,
(T’ (X9 ™)* has a cyclic vector k. Moreover, by Proposition 1.10, the set of cyclic
vectors of (7”|(X9,)~)* is dense in (X9H,)~ so that we may assume

G.D lk—Xf|| <e.
We define $7=V T'*"k so that k€HF and (ii) is verified by (3.1). Let us

n=0

compute the minimal function m of (T'*|9})*. Obviously m divides mp.=my.
Now the operator Y=Pyg,-|9; satisfies the relation

(3.2 (T'(X9)™)Y = YT¥|HF

and ran Y>k; it follows that Y has dense range and from (3.2) we infer
m” (T’ |(X$) )Y )Y =Ym™ (T*|9})=0 so that my,xg,-=mr divides m. Because
(T’ |(X9)~)* and T"*|HF are both quasisimilar to S(my) we infer by Lemma 3.1
that Y is a quasi-affinity. In particular, Y*X[H,=Pg:X|H, is a quasi-affinity.
Proposition 3.3 follows.

Lemma 3.3. Let T be an operator of class C, acting on 9, let S(M) be the
Jordan model of T and let $'(C$) be a separable space. Then there exists a reducing
subspace 9, for T such that T|9, is quasisimilar to @ S(m;) (m;=M(j)) and

ji<o

Ho0 9.

Proof. Let X be any quasi-affinity such that
3.3) TX = XS(M).
We shall denote by $, the least reducing subspace of T containing $  and
X ( @ $(m;)). The space $H, is separable; let EB S(mj) be the Jordan model of
T|Sjo. We have m}=m; by Corollary 2.9. Becanise Ho2 (X ( EB $H(m;)))~ we have:

(3.9 @D S(my) < T|9,

j<eo

and therefore m;=m] again by Corollary 2.9. Therefore m ;=m; and the Lemma
follows.

Theorem 3.4. Let T be an operator of class Cy acting on  and let S(M) be
the Jordan model of T. We can associate with each limit ordinal o a reducing sub-
space 9, for T such that:

D 5= 9:;
(i) TI|9, is quasisimilar to @ S(m,. ).

j<a
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Proof. Let X be as in the preceding proof. We shall construct by transfinite
induction reducing subspaces $, for each limit ordinal o such that:

(3'5) @B Ha > X(®ﬁ @ 5(ma+j));
a=< a<p Jj<ow
3.6) T|9, is quasisimilar to j@ S(mgy p).

Let $, be given by Lemma 3.3 (with $'=(X( & H(m))~) and assume H, are
Jj<o
defined for a<p. Let us denote:

G.7 =09, K=908.

a<pf

Then & reduces T'; let us denote by S(M’) the Jordan model of T|R. From the
condition (3.5) we infer X*(R)c @ $H(m,) and therefore:
y=8

(3.8) T*[] < @ S(mps -
7

By Corollary 2.9 we infer:
(3.9) M () = my,,.
By Theorem 2.7 and Definition 2.2 we have for any ordinal y:
(3.10) Mgy, = Nm: pp(m) = f+y} =

= Am: prisyerie(m) = B+v}
Now,
(3.11) Krisyerie) (M) = ppa(m)+ppe =

= prja(m)+ B Ry = prja(m)+ B
since B is transfinite. Because: B+y=pB+7, we infer:
(3.12) Mgy = AN{m: ppe(m) = 7} = M’(p).

From (3.9) and (3.12) it follows that M’(y)=my,,,. An application of Lemma 3.3
to T|R shows the existence of a reducing subspace H,C R such that:

(3.13) T|9, is quasisimilar to jé(Bw S(mg. )
and
.19 H; o PRX(.EB H(my. )

J=<o

Conditions (3.5—6) are obviously conserved. Theorem 3.4 follows now because from
(3.5) we infer H=P 9,.

The proof of the following theorem is a refinement of the proof of [4], Theo-
rem 1.
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Theorem 3.5. Let T be an operator of class C, acting on 9 and let S(M)
be the Jordan model of T. There exists a decomposition of 9 into an almost-direct sum

(3.15) H=V9.

of invariant subspaces of T such that:
() TI|9, is quasisimilar to S(m,) for each ordinal o,
(i) Dy+nLlDpsm if o, B are different limit ordinals and m, n<o.

Proof. Theorem 3.4 allows us to consider only the case where & is separable.
Let {y;};>, be a sequence of vectors dense in § and let {¢;}7-, be a sequence in
which each y, appears infinitely many times. We shall construct inductively sub-
spaces 9o, D1, «orr Dn» M, invariant for T and Hg, 97, ..., H,, W invariant for
T* such that

(3-16) f),, = 51'", f,,Emt,,_l and mf" = mrlm"_l; 5: (@ gﬁ:(—l;
(3.17) (DoVHV..VH)L =W, (HVHIV...VH)L =M,;
(3.18) Ppe|M, isa quasi-affinity;

(3.19) {”Pﬁov-ﬁIV...Vs,.(Dk"(Dk” <27" k=mn/2 if nis even,

IPgevsrv. . vs:pp—oull < 277 k= (n—1)/2 if n is odd.

To begin we put M_,=IM* =9H; the conditions (3.16—19) are obviously
satisfied for n=— 1. Let us assume that the spaces 9;, 97, D;, M} have been con-
structed for 0=j=n—1. From (3.17) and (3.18) we infer

60\/51\/ ~--V5n—1\/g‘nn—l = (Sjovglv "'Vgn—l)@(Pm:_ngtn-l)— = 5
and analogously $5VHIV..VH,_ VI_ =9H. Therefore there exist u€HVH,V...
V1, EM,_; and w*EHIVHIV...VH,_,, v*eME_, such that
0 lox—u—v| <2771,  k=nf2 if nis even,
(.20) lo,—u*—v*} <2771, k=m—1)/2 if nis odd.
By Proposition 1.10 we can choose f,¢M,_, with m, =myg  and such that

{"fu—vli < 2~-""1if n is even,

(3.21) | Py fo—0*l <27"7% if n is odd.

Proposition 3.2 allows us to construct the subspaces 35,,=$3f", $r, M, and M
such that
(.22) |Pgs Pags_ fu—Pags_ full < 27772

(3.23) M =M, 0Py, D0~ My =M,_,06(Pm,_,H7)";
(3.29) Py | M, is quasi-affinity.
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Let us show that the conditions (3.16—19) are verified. (3.16) is obvi-
ous and (3.18) coincides with (3.24). For (3 17) we have (HVHV...VH,)Lt=
=(HoVH1V..VH,_ )t NHL= ,,_10531- v 10 (Pmx_, D)~ =M, by (3.23) and
analogously (H5VHIV..VHHLt=M,. Ifn 1s even we have

[ Psyvs,v..vs, 0 —@ull = Ilu+f,.—¢kll s lutv—gll+lv—fill <277,
by (3.20) and (3.21). If n is odd we have

IPszvsgv..vss Px—0ull = 1"+ Pgs Poe_ fi—all <
< ||u*+v*_¢k||+||u*—P9,l:_1f,,l]+|]P 1fn 5*1-’“* f"" <2-" by

(3.20—22); thus (3.19) is also verified.
From (3.19) we infer '

(3:25) 9=V 9,=V 9}

j<o j<a
If ix#j (say i=<j by example) we have $; 1 MM} and H;CWM by (3.16), so that
$; L 9. Therefore $5*c(v $;)+ and (3.25) shows, by Lemma 1.11, that the

decomposition H= V 55 1s almost direct. To finish the proof let us remark that

M, 1=(DFVHIV.. VSE,":+1)‘LC9R by (3.17), so that m,.  divides m. As in [4],
Theorem 1, it follows that the Jordan model of T is €B S(m) where my=my .

j<o
Theorem 3.5 is proved.

In the case of weak contractions the result of Theorem 3. 5 can be improved.

Proposition 3.6. Let T be a weak contraction of class C, acting on the (nec-
essarily separable) Hilbert space $ and let @ S(m;) be the Jordan model of T.

j<o
There exists a decomposition

(3.26) 9=V 9;

J<o
of § into a quasi-direct sum of invariant subspaces of T such that T\9; is quasi-
similar to S(m;).
Proof. Let X be a quasi-affinity such that TX=X (@ S(m;)) and define

9;=(X9(m)))~. Let {K },c4 be a family of subsets of the natural numbers and

denote K= () K,. Because the mapping M-~(XM)~ is an isomorphism of the
acAd
lattice of invariant subspaces of @ S(m;) onto the lattice of invariant subspaces
j<o

of T (cf. [3], Corollary 2.4) we have
0,0Y, 5)= (0, (@ 5" = (X(@ 5m)" = .5,

Proposition 3.6 follows.
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Finite homogeneous algebras. I

BELA CSAKANY and TAT'JANA GAVALCOVA

1. Preliminaries. Following MARCZEWSKI [7], an operation f: 4*—A is called
homogeneous if h(f(x, ..., x))=f(h(xy), ..., h(xy)) for every permutation % and
any elements x, ..., x; of A. An algebra (4; F) is said to be homogeneous if each
operation f€ F is homogeneous.

In this paper, we shall describe all finite homogeneous algebras up to equiv--
alence. This is the same as determining all clones of homogeneous operations on
finite sets. In the present Part I we shall

(1) list all minimal clones consisting of homogeneous operations (it turns out
that this list contains at most three items on any finite set, and the dual discriminator
function d, introduced by E. Fried and A. F. Pixley, always generates such a minimal.
clone);

(2) determine all clones of homogeneous operations containing the minimal:
clone generated by the dual discriminator.

Let us start with notions and notations. The symbol n means the set:
{0, 1, ...,n—1}. For the sake of simplicity, we shall consider algebras of the form
{n; F) only. The following description of homogeneous operations was given by
MaRrczewsKI [7]: for a homogeneous k-ary operation f on n, f(a, ..., @)=a; where:
1=i=sk, or, possibly, f(a,, ..., a)=ay+1 if ., is the unique element of n distinct
from a, ..., a,, in such a way that the index of the value of f(ay, ..., a;) depends:
upon the pattern of equalities in the sequence (g, ..., @) only. A homogeneous
operation f is called a pattern function provided f(a;, ..., a,) always belongs.
to {a, «oer @)

Several kinds of homogeneous operations will play an important role in the
sequel: Pixley’s ternary discriminator p, the dual discriminator d, the switching
function s, the k-ary near-projection /, where k=3 (they are defined on any set);
further, the (z—1)-ary operation r,, defined on n for n=2, and Sw1erczkowsk1 s
ternary function f,, defined on 4. Let us recall their definitions:

Received February 9, 1979
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pla,b,cy=c if a=b, and p(a b,c) =a otherwise;
dla,b,c)=a if a=0b, and d(a, b,c) = ¢ otherwise;
sabcy=c if a=b, s(a,bcy=>b if a=c and s(a,b,c)=a

otherwise;
I(ay, ...,a) = a, if a,...,a are pairwise distinct and [ (ay, ..., a) = aq,
otherwise;
r.(ay, ...,a,-) =a, if {a,...a,_1,a8}=n and r(a,...,a,-)) =a
otherwise;
finally,

fo(1,2,3) =£,0,1,1) =£,(1,0, 1) = fo(1, 1, 0) = £,(0,0,0) = 0
{see [8], [7], [9], [3], [2D).

A set of operations on a set n is called a clone if it contains all trivial opera-
tions (i.e., all projections) and it is closed under superposition. For any set F of
operations on n, we say that F produces the operation g and we use the symbol
F—g if g can be obtained from operations in F and the projections by superposi-
tion (in this case, one can also say that g is a term function of the algebra (n; F)).
In the case F={f} we write f—g. Obviously, the relation — is transitive. For
the negation of F—+g we write F-~g. An algebra {n; F) is functionally complete
if the set FU{0, 1, ...,n—1} (i.e., F together with the constant nullary operations)
produces each possible operation on n. The clone [F] generated by F is the set of
all operations F produces. We write [f;,f;,...] instead of [{fi,fs,...}]- The
algebras (n; F) and (n; G) are said to be equivalent if [F]=[G]. A clone T is called
minimal if the clone of all projections is the unique one which is contained in 7T°
properly; this means that T contains a non-projection, and any non-projection in
T produces every other non-projection.

In the next lemma we collect the basic facts about how the above-mentioned
homogeneous operations produce each other:

Lemma 1. On a finite set n, the following hold:

(1) p —f for any pattern function f.
2 > for j=k

3 r,=>1l,_, for n=>3.

4 lL+d for n=1.

(5) d+ 1, for n>2, n=k

© L+ for j>k, n=z=k

Proof. (1) is a result in [4]. :
(2). It is sufficient to establish /;~I;,,, and this is given by the identity
Ly (g, ooy Xpy X0 ) =501y X3y o0 X5, Xj40)s Li(Xas X5 ooy Xjs Xp60)s Xas ooy Xj41)-
3)e Loy (X1s ooy Xpog) = Fa(Xao1s ovs X3, Xay Ta(Xpgo1s -ves Xgs X2))-
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To prove (4)—(6), we use the following fact. Let f, g be operations on n and
Jf—g; then, for any natural number ¢, the subalgebras of (n; f)* are closed under
the (componentwise performed) operation g.

(4). Observe that o={(1, 0, 0), €0, 1, 0), 0,0, 1)} is a subalgebra of (n; /;)® but
d({1,0,0), (0,1, 0), (0,0, 1))=(0, 0,0)¢ 0. Hence I/,—~d is impossible.

Concerning (5) and (6), we present the crucial subalgebras only:

©) {(k—1,0), ..., (2, 0), (1, O), {0, 0), (0, 1)} C (m; d)2,
(6) {(i—2,0),...,¢2,0),(1,0),0,0), (0, 13} < {(m; ;)2

2. Minimal clones of homogeneous operations. In this section, our main tool is
the following fact:

Lemma 2. For n=3, every non-trivial pattern function on wn produces d or
some I, with k=n.

Proof. It was proved in [2] (see the proof of Lemma 5 there) that any non-
trivial pattern function on n produces d or an /, which is non-trivial; but J, is trivial
if k>n. '

The clones in the title of this paragraph are given by

Theorem 1. The minimal clones consisting of homogeneous operations on a
finite set u (n=>1) are the following:

[L] and [d], if n=5;

), [d] and [ fol, if n=4;
[L], [d] and [rs), if n=3;
[s], [d] and [ry), if n=2.

Proof. First we prove that, for n=3, [/] is minimal on n. Take a non-trivial
fwith [,—~f; it is sufficient to show f—I,. As pattern functions produce pattern
functions only, by Lemma 2 we have f—d or f—I, for a suitable k=n. From
f—~d it follows [,—~d, contradicting Lemma 1(4); therefore f—I, holds. Now
k<n is impossible by Lemma 1(6), i.e., f—I,, which was needed. .

For n=3, the minimality of [d] can be proved by an analogous argument;
here we have to apply Lemma 1(5) instead of (4).

For n=5, there is no other minimal clone of operations on n. In order to
show this, we shall verify that each non-trivial homogeneous operation g on n
produces /, or d. There are two possibilities:

a) g—r,. Then, by Lemma 1(3) and (2), we have g—/,.

b) g-r,. If, in addition, g is a pattern function, then Lemma 2 applies in
the above manner. If g is not a pattern function, then we can identify variables
of g (if necessary) so that we obtain an (n—1)-ary g’ satisfying g'(ay, ..., ¢,-)=a,,
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whenever {a,, ...,a,-1,a,}=n, ie., a, is the unique element of n distinct from
a,, ..., a,_;. Now, if there exist two variables of g’ whose identification furnishes
a non-trivial pattern function, then, applying Lemma 2 for g’ again, our claim
follows. Suppose that g’ turns into a projection by identifying any two of its vari-
ables. By a result of Swierczkowski, g’ always turns into the same projection ([8];
see also [5], pp. 206—207; note that g’ is at least quaternary). Hence g’ equals r,
up to permutation of variables, implying g—-r,, contrary to the hypothesis.

Next we prove that [ f] is minimal on 4. Let f;,—~f and suppose f-f,. Then
(4; foy and (4;f) are not equivalent. A homogeneous non-trivial algebra (4; F)
is not functionally complete iff it is equivalent to (4; f;) (see [2]); therefore, (4; f)
is functionally complete. Now, (4; f;) is functionally complete a fortiori, a contra-
diction.

Similarly, a non-trivial homogeneous functionally incomplete algebra (3; F)
is equivalent to (3; rs) (see [2]), hence the minimality of [rs] on 3 follows.

Furthermore, every non-trivial homogeneous operation g on 4 produces one
of I, d and f;, showing that there are no other minimal -clones of homogeneous
operations on 4. Indeed, if g is a pattern function, Lemma 2 applies. If g fails to
be a pattern function, then an appropriate identification of variables of g leads
to a ternary g’ satisfying g’(a, a,, a;)=a,, whenever {a,, ..., a;}=4. As we have
g(a, ay, a5)=a; 1=i=3) if card {a,, a,, a;}<3, and the pattern of equalities in
{ay, a,, az) determines the value of i, the operation g’ is defined uniquely by the
sequence (g’(0,1, 1), g'(1,0,1), g’(1, 1, 0)) (of course, g’(0,0,0)=0 always). Let
us denote g’ by f, (k=0,1,...,7) if this sequence is the dyadic form of k (i.e.,
4¢’(0, 1, 1)+2g¢’(1, 0, 1)+g’(1, 1, 0)=k). This notation is consistent with the orig-
inal definition of f,. We have to verify that every f; produces one of /;, d and f;.

One can check the following identities:

(a) fs(x’ y,2) = r4(x, Y Z);

®) f:(, x, 2) = fe(z, y, X) = f3(x, y, 2);

(C) fl(}’, Zsfl(za ¥, x)) =f4(y’f4(z’ X, y)’ Z) = P(x, ¥, Z);
@ f2(y’f2(ya z, x), x) =f7(y’f7(y'9 z, X), x) = d(x, y, 2).

From (a) and Lemma 1(3) and (2), it follows f;—/,. From (b), f;—/, and
fe—1,. Further, (c) together with Lemma 1(1) implies f,—~d and f;—d; finally,
(d) shows f,—~d and f;—d. The case n=4 is settled.

In the case n=3 we can proceed similarly. Any non-trivial homogeneous
function g on 3 is either a pattern function — then we use Lemma 2 — or not. In
the latter case g produces a binary g’ in the usual way such that g’(a,, a,)=a; when-
ever {a;, @, a;}=3, and g'(a, a)=a. Clearly, g’=r;, hence g—r;, as required.

All minimal clones we have found are distinct. This is implied by Lemma 1(4)
and the fact that pattern functions produce merely pattern functions.
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The case n=2 of Theorem 1 can be realized by casting a glance at the diagram
of the lattice of all clones on 2, due to PosT (see, e.g., [6]; note that ry(x)=
=x-+1 mod 2 and d(x,y,z)=xy+xz+yz mod2 on 2).

3. Homogeneous dual discriminator algebras. After WERNER [9], an algebra (n; F)
is said to be a discriminator algebra (or quasi-primal algebra) if p€[F]. Analogously,
an algebra (n; F) will be called a dual discriminator algebra if d¢[F]. In this para-
graph we determine all homogeneous dual discriminator algebras up to equivalence,
i.e., for any n, we determine all clones of homogeneous operations on n containing d.
From now on, » is fixed and n=3.

Call a ternary operation m on n a majority operation if, for any x, y€n,
m(x, x, y)=m(x, y, x)=m(y, x, x)=x holds. The dual discriminator is a majority
operation. The following theorem of BAKER and PixLey [1; Corollary 5.1] is basic
for our considerations (see also [9]):

Let {(n; F) be a finite algebra such that F produces a majority operation and
let g be an arbitrary operation on n. If every subalgebra of (n; F)? is closed under
the (componentwise performed) operation g, then F produces g.

For a clone T on n, let ST stand for the set consisting of base sets of all sub-
algebras of (n; T)% Let & be the set of all clones on the set n containing d. We
call a set P of subsets of n? complete if there exists a clone T€% such that P=ST
(i.e., if there exists a dual discriminator algebra on n such that P is the set of all
subalgebras of the direct square of this algebra). Denote by & the set of all com-
plete sets.

Lemma 3. S is an inclusion-reversing one-to-one mapping of & onto &.

Proof. The unique non-trivial part of this assertion is that S is one-to-one’
Suppose T, T,¢# and ST ,=ST,. If feT, then every set in ST;(=ST,) is
closed under f, hence, by the Baker—Pixley theorem, 7;—f follows. This means
JET, as T, is a clone. Therefore, 7,S7; (and by symmetry, T;E7,). We get
T,=T,, which was needed.

By virtue of Lemma 3, we can investigate complete sets instead of clones.
First we establish some properties of complete sets. Subsets of n®> may be considered
as binary relations on n. The following lemma is familiar:

Lemma 4. Any complete set contains the complete relation; furthermore, it is
closed under relation product, intersection and forming the inverse relation.

For convenience, several kinds of subsets of n? will bear special names. A set
of form KXL with K, LSn, card K=k, card L=] is a block of size (k,[). A set
of form {(iy, jr), ..., {ix> Jup}, where iy, ..., i, are pairwise distinct as well as jy, ..., ji,
is a string of size k. A set of form {{i,J1), --.» (a5 J1)s {insJa)s Casdaps oo Kl J0)}
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(k,1=2) is called a cross of size (k,I). Essentially, a string of size k is a partial
permutation with a k-element domain and a cross+of size (k, /) is the union of two
blocks of size (k, 1) and (1, /) with a non-empty intersection. Block of size m means
a block of size (m, I) or (k, m); similarly for crosses.

Lemma 5. Any complete set consists of blocks, strings and crosses; in par-
ticular, S[d] consists of all blocks, strings and crosses.

Proof. A complete set consists of subsets of n? preserved by d, and, by result
of FRIED and PixLEY [3; Theorem 2.4], d preserves a subset ¢ of n? iff ¢ is p-rec-
tangular, i.e.,

g (i, ju)s Gy jo), Ck, 1)€o  implies (i, I)és for ji #j.
an

(iys J)s Cizs ), Ck, Dy€o implies (k,jYeo for iy is.

Clearly, blocks, strings and crosses are p-rectangular and the converse can also be
checked without trouble.

From now on, we shall use the following notations: B is the set of all blocks
and B’ is the set of all blocks of size (k, ) with k,l>n—1. The set of strings and
crosses S, S’ and C, C’, resp., are defined analogously. Finally, let C,, be the set
of all crosses of size (k, /) with k,/=m. Now Lemma 5 can be reformulated as
follows:

For any complete set P, the inclusion PSBUSUC holds; in particular,
S{d}=BUSUC.

Next we clear up the structure of several further complete sets:

Lemma 6. (1) S[d, I, ]J=BUSUC,, for m=2,...,n—1.
(@ S[pl = BUS.
(3 S[d,1l,41,r0=BUS'UC, for m=2,..,n-2
@ Sl[p,r]=BUS".

Proof. (1) The following inclusions are obvious: BUSUC,,SS[d, /,,.,]ES[d]=
=BUSUC. Take a set from C\C,,,, i.e., a cross of form {(i, J1), ...> {1 J1)s --->1> )}
with k>m (the case />m can be settled similarly). Then /,.+1(Gps1sfa)s -
wers oy J1)» i1 J2)) ={m+1,J2) Showing that our cross is not closed under /,,,. Thus,
the set of all subalgebras of (n;d, /,.,)? is BUSUC,, as asserted.

(2)—4) can be verified in an analogous manner observing that no cross is
closed under p, because we have p((i,, 1), (i1, J1)s {irsJo))=(iz,Jo); furthermore,
no block, string and cross, each of size¢ n—1, is closed under r,. Indeed, take,
e.g., a block {i,...,i,-1}XL of size n—1 and a jE€L; then (i, ), ..., (in-1,J)
belong to this block but r,({i1, ), ..., {{,-1, 7)) does not.
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Lemma 7. For the clone H of all homogeneous operations on n, SH =B'US".

Proof. By (4) of the previous lemma, SHCB'US’. On the other hand,
SH contains all permutations of n, i.e. all strings of size n, since for any operation
J homogeneity means that each permutation is a subalgebra of (n;f)%. Now we
can apply Lemma 4 in order to obtain all sets in B’US’. Namely, every string
of size less than n—1 is the intersection of two permutations, every block of size
(k, n) is the (relation) product of a string of size k and the complete relation, every
block of size (n, 1) is the inverse of a block of size (/, n), and every block of size
(k, 1) is the intersection of blocks of size (k, n) and (n, I).

In view of Lemmas 5 and 7, our task is reduced to determining all complete:
sets between B’US’ and BUSUC.

Lemma 8. All complete sets containing B’UUS’ and contained in BUSUC
are those listed in Lemma 6.

Proof. It is sufficient to prove the following two propositions: '

(a) If a complete set contains B’UJS’ and a block, or a string, or a cross,
any of them of size n—1, then it contains BUS.

(b) If a complete set contains B’US’ and a cross of size m, then it contains.
C,,; moreover, if m=n—1, it contains even BU S.

Indeed, suppose (a) and (b) are fulfilled, and let P be a complete set with
B’'US’'CPCBUSUC. If P contains no crosses, then (a) implies P=B'US’ or
P=BlJS. Otherwise, let m be the maximum of the sizes of crosses in P. If there
is a block or a string of size n—1 in P, then in virtue of (2), (b) and the maximality
of m we have P=BUSUC,,. In the opposite case, P=B"US’UC,, by the same
Teason.

It remains to prove (a) and (b). As for (a), one can check easily that all blocks:
and strings of size n—1 can be obtained from sets in B’US’ and an arbitrary
Jixed block or string or cross, any of them of size n—1, by product, intersec-:
tion and formation of inverse relation. Applying Lemma 4, the assertion (a) follows.

(b) First let R be a complete set containing B’US’ and an arbitrary cross:
{ of size (m, ) where 2=l<m=n—1. Then any cross of the same size (m, I) can
be obtained in the form =,{n, with appropriate strings =n,, 7, of size n; crosses of
size (I, m) arise as inverses of the previous ones; crosses of size (m, m) can be rep-
resented as {,n{, where {, and {, are crosses of size (m, I) and (I, m), respectively,
and = is a string of size n; finally, an arbitrary cross of size (k,, k,) with k&, k,=m
is the intersection of a cross of size (m, m) and an appropriate block of size (k;, k).
Thus, C, SR, as required. In the case m=n—1, the second part of (b) is a con-
sequence of (a). .

Secondly, let R be complete with R=2B’US’ and let R contain a cross of’
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size n. The preceding considerations show that we have two possibilities only, namely,
R=B'US’UC’ or R=BUSUC. The proof will be complete if we deduce that
B’US’UC’ is not a complete set. Assume SF=B"US’UC’ for some homogene-
ous dual discriminator algebra (n; F). As SF is closed under r,, we have F-r,
by the Baker—Pixley theorem, hence, according to Lemma 1(3) and (2), F-l,
follows. However, as we have seen in the proof of Lemma 6(1), our cross of size
n is not closed under /,, a contradiction.
Now we are ready to formulate the main result of this paragraph.

Theorem 2. The finite homogeneous dual discriminator algebras with more than
one element are the following (up to equivalence):

(2; d), (25 p)s (2; p; Ta);

(3; d), (35 p), (35 P, 79), (35 d, Iy);

4; d), (4; p), 4; py1a), (45 d,15), (4;d, 1), (4;d, 1)
and for n=5 4

(; d), (n; p), (m; p,1a), 0;d, by (k=3,...,n),

m;d,rp), {n;d,rp, 1) (k=3,...,n=2).

The interval of clones between [d] and H=[p, r,] on n is the lattice with the
diagram presented below:

3 [p9 rll]
p.rd  Ipl [d, r,, 1]
o [p, 7] \\\
[p, vl [r] [d,r] [d, 1] (d, T'ns In-2]
o [l AN
[2) [d, 1,_o]¥ [d, r,]
o [4, 1]
[d] [4,1,_.]
o 4
n=2 n=3 n=4 n=s 4

Proof. For n=2, this follows immediately from Lemmas 6, 7 and 8. The
case n=2 can be found in Post’s work ([6], pp. 72—76).
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Unbounded operators with spectral decomposition properties

1. ERDELYI

The general spectral decomposition problem for bounded linear operators on
a complex Banach space X has been formulated and studied in [4]. In this paper
we extend the problem to the unbounded case and show that the single valued
extension property remains valid for a class of closed linear operators on X.

While the theory of unbounded decomposable operators considered in [2, 3]
relies heavily upon the concept of spectral capacity [1], here we make the theory
independent of such an external constraint.

A short glossary of notations now follows. For a subset S of the complex
plane C, S denotes the closure, S¢ the complement, conv S the convex hull and
d(4, S) the distance from a point A to S. ¢ denotes the collection of all open sets
in C. For a linear operator T on X we use the following notations: the domain
Dy, the spectrum o (T), the resolvent set ¢(7’) and the resolvent operator R(-; T).
A subspace (closed linear manifold) Y of X is invariant under T if T(YNDp)cCY.
Inv (T) denotes the family of invariant subspaces under T. For Y¢Inv (T), we
write T'|Y for the restriction of T to ¥ and we abbreviate A/—T by A—T, where
A€C and I stands for the identity operator. '

Let T: Dy(cX)—X be a closed linear operator.

1. Definition. A spectral decomposition of X by T is a finite system {(G;, Y)}<
< %X Inv (T) with the following properties:

5) o(T)c U G .
(ii) X=2Y;
(iii) - o(T|Y)c G; for all i.
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2. Definition. T is said to have the spectral decomposition property (abbrev.
SDP) if for every finite open cover {G;} of 6(7), there is a system {¥;}cInv (7T)
with the following properties:

0] Y, c Dy if G; is relatively compact;
1)) {(G;, Y))} is a spectral decomposition of X by T.

Our objective is to show that T with the SDP possesses the single valued exten-
sion property. For this we need a lemma.

3. Lemma. Given T, let f: D—~Dy be holomorphic on an open connected set
DcC and satisfy conditions:

» JQA)£0 and (A-T)f(A)=0 on D.
If Yelnv(T) is such that {f(?): A€G}CY for some GE% then Dco(T|Y).

Proof. Define
H={eD: f(A), f'(A, f' (), ..., €Y}

H has the following properties:

(a) H=0; (b) His open; (c) Hisclosed in D; (d) Hco(T|Y).

(@): Let 4€G. For r=>0 sufficiently small, I'={1€C: |A—Jj|=r}cG and
then by hypothesis, { f(2): AeT}c Y. By Cauchy’s formula

@ F(2)da _
f (i)—sz() STyt n=012, .

(b): Let A€ H. Then f(4),f (o), f"(4o), ...€Y. Since f,f',f”, are analytic,
they admit Taylor series expansions in an open neighborhood V(%) of 4, and hence
fO()EY on V()) for n=0,1,2,.... Thus V(})cH.

©): #=[ A yorm]no.

n=0
(d): Let AcH. The vectors £ (%) are not all zero because otherwise f=0. Let
m = min {n: f™ (1) > 0}.
If m=0 then Tf(A)=Af(1) and
0y TR = ™) for m=>0.

(1) holds because f is T-analytic (cf. [5, Lemma 2.1]) on D. In either case, f(™(J) is
an eigenvector of T|Y with respect to the eigenvalue 4.
By properties (a), (b), (¢) H=D and then property (d) concludes the proof.

4. Theorem. Every T with the SDP has the single valued extension property.
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Proof. Let f: DDy be locally holomorphic on an open DcC and satisfy
identity
A-T)f(2)=0 on D.

We shall adapt the proof of [4, Theorem 8] to the unbounded case. We may assume
that D is connected and contained in ¢(T), for DNg(T)#0 implies that f=0
on some open set and hence on all of D, by analytic continuation. Fix A¢¢D and
choose real numbers #, and r, such that O<r,<r,<d(y, D°). Let

G ={l: A=Al <nr}, Gy={A:|1A-1)=>r}
Then G,, G, cover ¢(T), G, is both convex and compact, D—G,=9 and
)] D ¢ G,.
By the SDP of T, there are Y,, Y,€Inv (T) verifying the following conditions:
X=Y,+Y, with Y, C Dy;

©) cs(TIY)c G, i=12
There is an open ¥ D—G, and there are functions f;: ¥ —Y; (i=1, 2) such that
@ fW =f@+fo(w) on V.

Since the ranges of both f and f; are contained in Dy, so is the range of f;. There
is a function g: V—~Y,NY, defined by

g = @-—1) (W) = T-pfi(eY1NY,, pev.

Since Y;NY, is invariant under T|Y; and G, is convex, we have
o(T|Y;NY,) c conve(T|Y,) C G,.
Consequently, VcGico(T|Y,NY,). The function Ah: ¥V—-Y,NY,, defined by
h(u) = R(u; T|Y, N YY) g(EY,NY,, pev
(=T~ (] = 0.
Since both A(V)C Yy, f,(V)cY, and Vco(T|Y,), we have
fiw) = h(WEY,NY, on V.

Then (4) implies that f(u)€Y, on V¥ and hence f(u)€Y, on all of D, by analytic
continuation. Now if f is not identically zero on D then Lemma 3 implies that
Dco(T])Y,). This, under hypothesis (2), contradicts the second inclusion of (3). [J

has property

Acknowledgement. The author expresses his gratitude to the referee for his
critical reading of the paper and for his valuable suggestions for improvements.
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Weighted shifts quasisimilar to quasinilpotent dperators

LAWRENCE A. FIALKOW

1. Introduction. The purpose of this note is to resolve certain questions raised
in [8] and [9] concerning quasisimilarity and quasinilpotent operators. We prove
that a weighted shift is quasisimilar to a quasinilpotent operator if and only if it
is a direct sum of quasinilpotents (Theorems 2.7 and 2.8). As an application, we
show that there exist operators T such that T and T* are quasiaffine transforms
of quasinilpotent operators but such that T is not quasisimilar to any quasinilpotent
operator (Corollary 2.9). In section 3 we relate our results to several open problems
concerning quasisimilarity and spectra. _ ,

Let $ denote a separable infinite dimensional complex Hilbert space and let
Z(9) denote the algebra of all bounded linear operators on $. Let 4" and 2 denote,
respectively, the subsets of Z(9) consisting of all nilpotent and quasinilpotent
operators. For T in £(9), let M(T)={xcH: | T"x|""-~0}. M(T) is a linear mani-
fold whose closure is hyperinvariant for T'; moreover, T is quasinilpotent if and
only if M(T)=9 [7, Lemma, page 28].

An operator X in Z(9) is a quasiaffinity if X is injective and has dense range.
An operator B is a quasiaffine transform of an operator A if there exists a quasi-
affinity X such that AX=XB. Operators 4 and B are quasisimilar if they are quasi-
affine transforms of each other [18]. C. ArosToL, R. G. DouGLas, and C. Foias
'[4, Corollary, page 413] gave necessary and sufficient conditions for two nilpotent
operators to be quasisimilar, but analogous results for quasinilpotent operators
appear to be unknown. The present note concerns the quasisimilarity orbit of 2.
Let 2,,={T€2(9): Tis a quasiaffine transform of some quasinilpotent operator},
and let 25={TcZ(9): T* is in 2,;}. Let 2,; denote the quasisimilarity orbit
of 2, ie. 2,={Tc¥(9): T is quasisimilar to some quasinilpotent operator}.

In [8] and [9] we obtained the following invariants for membership in 2.
A compact subset KcC is the spectrum of an operator in 2, if and only if K
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is connected and contains 0 [8, Theorem 3.11). If T is in 2,,., then T satisfies the
following properties:

(D M(T) and M(T™*) both contain orthonormal bases for $; in particular,
P(T) and M(T™) are dense in H [8, Proposition 3.13].

an If Ms {0} is an invariant subspace for T, then o(T|M) is connected
and contains 0; if additionally, M=$H, then o((1—Py)T|{(1—Pyr)$H) is con-
nected and contains 0 [8, Theorem 3.1). (Pg, denotes the orthogonal projection
of $ onto M and ¢(-) denotes the spectrum of an operator.) Each operator satisfy-
ing (I) also satisfies (II) [8, Proposition 3.15]; several equivalent reformulations
of (II) are given in [9, section 3].

Note that 2,,c2,,N2;; and that if Tis in 2, , then M(T™) is dense [8, Lemma
3.12). C. ApostoL [3] proved that M(T™) is dense if and only if T is a quasiaffine
transform of a compact quasinilpotent operator. Thus an operator T satisfies (I)
if and only if Tis in 2,,N2;.

In [8] we studied whether (I) actually implies membership in 2,,, or equivalently
(in view of Apostol’s result), whether 2,,=2,,12;.. In [8] we obtained an affirma-
tive answer to this question for decomposable operators (including normal, spectral,
compact, and Riesz operators) and for hyponormal operators. If T is decomposable
and MM (T*) is dense, then T is quasinilpotent {8, Corollary 3.4]}; moreover, the
only hyponormal operator satisfying I(T)~ =9 is the zero operator [8, Theorem
3.6). In section 2 we show that despite these positive results, 2,, is actually a proper
subset of .@afﬂ.@;‘f, so that neither (I) nor (II) necessarily implies membership
in 2,,.

2. Weighted shifts in 2,,. Let /=Z or Z* and let a={«,},¢; denote a bounded
sequence of complex numbers. Let {e,},c; denote an orthonormal basis for $.
The weighted shift with weight sequence o, W,, is defined by the relations W,e,=
=0,e,4q €D, If I=Z*, W, is a unilateral shift, while if =2, W, is a bilateral
shift. T. B. HoOVER [14] exhibited weight sequences « and B, both with infinitely
many zero terms, such that W, and W, are quasisimilar, W, is quasinilpotent, and
the spectrum of W, is the closed unit disk. In this section we characterize the weighted
shifts in 2,,.

For T in 3(55) and nz=0, let M, (T)=ker (T"“)eker (T"). Let ‘B(T)—

= V ker (T™)= ZGBSD? (T), and let M_(T)=H6P(N)= ﬂ (9eker (TM).

the sequel dim ‘.Ut refers to the orthogonal dimension of a closed subspace IMcC$H.
Lemma 2.1. If A and B are quasisimilar operators in £ (9), then A and B have

the following properties:

1) dmM,(4) =dimM,(B) for 0=n=eco;

2) dimker(4") =dimker(B") for n=>0.
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Proof. Let X and Y denote quasiaffinities such that AX=XB and YA=BY.
To prove 1) it suffices to show that dim M,(B)=dim M,(4) for O=n=o, for
then 1) follows by symmetry. Let 0=n<oc; we may assume that dim I,(4)=0.
Let {e;}o=1<, (0<p=-<<) denote an orthonormal basis for M,(4). Let P,=0 and
for n>0, let P, denote the orthogonal projection onto ker (B"); note that P,.,—P,,
is the projection onto Mt,(B).

We show that {(1—P,)Ye}o<r<, is an independent sequence in M,(B). Since:
A1, =0, then B""'Ye,=YA"*'e,=0, so (1—P)Ye,=(P,s1—P)Ye,cM,(B).

Suppose 0=j<p, cp,...,c;€C and Zl'ci(l—P,,)Yei=0. Then 2 c¢Ye:=
i=0

=P, > c;Yecker (B"), and so YA"(S c;)=B"(3 ¢;Ye)=0. Since Y is injec-
tive, > ce€ker (4"), and thus 0=(3 ce;, e,)=c, for 0=m=j. Therefore
{1—P,)Ye)o<r<p, is independent, and it follows (via Gram—Schmidt) that.
dim M, (B)=p=dim M,(4). This completes the proof of 1) for n<eo.

Note that if yeM_(4), then X*ycIM_(B). Indeed, if z¢€H, n=0, and B"z=0,.
then (X*y,z)=(y, Xz)=0 since Xz€ker (4") and yeIM_(4). Since X* is injec-
tive, it follows that dim M_(B)=dim M_(4); the reverse inequality follows by
symmetry.

For 2), note that since ker (4"*)=ker (AMGM,(4), M(A)=ker (4),
ker (B"*Y)=ker (B")®M,(B), and My(B)=ker (B), the result follows from 1) by
induction on n.

Corollary 2.2. Let A and B be quasisimilar operators in £(9). Then there
is an operator B’ unitarily equivalent to B such that M,(A)=M,(B’) for 0=n=oo.

Proof. For 0=n=e<, let P, and Q, denote, respectively, the orthogonal pro-
jections onto M,(4) and M,(B). Note that F.,... Po=osns. @n=1 and
P,P;=0;0;=0 for i#j (0=i,j=<). Lemma 2.1 implies that there exists an iso-
metric operator V,, which maps M, (4) onto M, (B). Let V= .,z VoPy (Strong
convergence); then V*=3V¥Q, and V is unitary. If B’=V*BV, it follows.
that M,(4)=MM,(B") for each n.

Remark. An analogue of Corollary 2.2 for n=0 is implicit in the proof of
[19, Lemma 2].

For Tin Z(9), let (TY ={Sc L(H): TS=ST} and let (T)"={REL(H): RS=
=SR for each S in (T)’}. In the sequel 7(T) denotes the spectral radius of 7.

Lemma 2.3. Let A, B, X, and Y be operators such that AX=XB and YA=BY.
If RE(B)”, then XRY€(A) and r(XRY)=r(YX)r(R).

Proof. The hypothesis implies that XRYA=XRBY =XBRY=AXRY, so XRY
commutes with 4. Since R€(B)” and YX€(B), R commutes with YX, and thus
r(XRY)=r(YXR)=r(YX)r(R).
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Corollary 24. If A is in 2, then A commutes with a nonzero quasinilpotent
-operator.

Proof. Let B€2 be quasisimilar to 4 and let X and Y denote quasiaffinities
such that AX=XB and YA=BY. Lemma 2.3 implies that XBY is a quasinilpotent
operator commuting with 4; moreover, since X is injective and Y has dense range,
XBY is nonzero if B is nonzero. If B=0, then A=0, so the result is clear in this
case also.

Lemma 2.5. Let W be a noninvertible injective weighted shift such that r(W)=0"
If S commutes with W, then a(S) (the spectrum of S) has nonempty interior or S is
a scalar multiple of the identity.

Proof. The proof depends on several results from [15] to which we refer the
reader for complete details. We consider first the case when W is a unilateral shift.
In this case S may be represented as a multiplication operator M, on a space of
formal power series H?(ff) [15, Theorem 3(b)]. The power series for the multiplier
@ is convergent in D= {z€C: |z|<r(W)} [15, Theorem 10(iii)], and thus represents
an analytic function @(z) in D. Now a(M,) coincides with the spectrum of & in
H=(P) [15, Proposition 20], and thus ¢(M,) contains @ (D) [15, page 79]. If M,
is not a scalar multiple of the identity, then ¢ is non-constant, and it follows that
@ (D), and thus also ¢(My), has nonempty interior. The proof for the case when W
is a non-invertible bilateral shift is analogous; the pertinent results are [15, Theo-
rem 3(a)), [15, Theorem 10’(iii—b)], and the remarks of [15, page 83].

Remark. The conclusion of Lemma 2.5 may fail if W is invertible; consider
the unweighted bilateral shift, whose spectrum is the unit circle. Note also that
there exist noninjective, non-quasinilpotent weighted shifts which commute with
nonzero quasinilpotent operators. '

Corollary 2.6. If W is a noninvertible injective weighted shift and r(W)=0,
then W commutes with no nonzero quasinilpotent operator.

Theorem 2.7. Let W=W, be a bilateral weighted shift. The following are
equivalent.
1) Wea,;
'2) W is a direct sum of quasinilpotent operators, and if a has at most finitely many
zero terms, then W is quasinilpotent.

Proof. The implication 2)=1) follows from [8, Proposition 3.10]. For the
converse, we assume that Wc32,, and we consider several cases depending on
the number and location of the zero terms in the weight sequence «. Note that since
We2,, then W is noninvertible [14], [12]).
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i) W is injective. Since We€Z2,,, Corollary 2.4 implies that W commutes with
a nonzero quasinilpotent; thus Corollary 2.6 implies that ¥ is quasinilpotent.

ii) For each integer N, there exist integers m and n, n<N-<m, such that
o, =a,=0. It is clear that in this case W is an infinite d1rect sum of finite dimen-
sional nilpotent operators.

iii) There exist integers n and m, n=m, such that «,=0, «,=0, and o, =0
for k<n or k=>m. We consider only the case n<m; the case n=m may be
treated similarly. Let 9,={e,, €s-1,€u—2; --)» Do={€n1+1s..»€p), and Hs=
=(€pm+1> m+2> --.p. Relative to the decomposition H=9,® H.DH;, the operator
matrix of W is of the form W= W,,*GBN ©W,, where W, and W, are injective
unilateral weighted shifts on $, and £, respectively, and N™~"=0, :

Suppose that W is quasisimilar to a quasinilpotent operator Q. Let X and ¥
be quasiaffinities such that WX=XQ and YW=QY. Note that P(W)=9H,09,
and M_(W)=%Hs. Corollary 2.2 implies that there is an operator Q" unitarily equiv-
alent to Q such that M, (W)=M,(Q") (0=n=<), and thus ker (W")=ker (0™
for n=0. Let U denote a unitary operator such that Q'=U*QU. Let X'=XU
and Y'=U*Y; clearly X’ and Y’ are quasiaffinities and (*) W"X’'=X"Q™ and
Y wr= Q"‘ Y’ for n=0. Since ker (W")=ker (Q'"), the preceding equations imply
that M=PA)=P(Q) =90 H, is an invariant subspace for X" and Y.

Relative to the-decomposition $=M ML, the operator matrices of X’, ¥,
Q’, and W are of the form ’

(Xn Xlz) [Yu Y12) [Qu Q12) d [Z 0)

0 X Lo v Lo oo’ * low)

where X,, and Y,, have dense range, and Q.,€2. The equations (*) imply that
W, Xp0=X2:0s0 and Yy W,=0,,Y5. Lemma 2.3 implies that R=Xp, 0¥, is a
quasinilpotent operator commuting with W,, and we assert that R is nonzero. For
otherwise, since Y, X, commutes with Q,,, it follows that 0=Ys R=Y 5 X35 Q0s Y50 =
=09, Y 50 X520 Y. Since X, and Y, have dense range, it follows that Q,,=0. Now
(*) implies that W,=0, which is a contradiction.

Thus R is a nonzero quasinilpotent commuting with W,, so Corollary 2.6 implies
that W, is quasinilpotent. By .applying the preceding method to W*, we conclude
that W, is also quasinilpotent. (Note that W*=W,®N*® W}, so that Z(W*)=
=9,89:) Since W,, W2 and NeJ, it follows that W is quasinilpotent,
which (together with case i)) completes the proof of the second part of 2).

iv) There exists a largest integer N such that ay=0, but there exists no smalles,
such integer. Let M ={ey, ey_1, ...). Relative to the decomposition H=MHM*,

W=N@W,, where N is an infinite direct sum of finite dimensional nilpotentst
and W, is an injective unilateral weighted shift. Since B(W)=M, the method of
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case iii) implies that W, is quasinilpotent, so W is a direct sum of quasinilpotents.

v) There is a smallest integer N such that oy=0, but there is no largest such
integer. The desired conclusion that W is a direct sum of quasinilpotents follows
by applying case iv) to W¥*, which is a bilateral weighted shift relative to the basis
{f = ., where f,=e_,.

Theorem 2.8. Let W=W, be a unilateral weighted shift. The following are
equivalent.

1) We2,;
2) WEZ or vy has infinitely many zero terms;
3) W is a direct sum of quasinilpotent operators.

Proof. The implication 2)=>3) is obvious and 3)=1) follows from [8, Prop.
3.10). Suppose that W,€2,;. Let W, be a quasinilpotent injective unilateral weighted
shift and let W,=W;@®W,. Thus W, is a bilateral weighted shift and W, is in
2, [8]. If at most a finite number of the weights of W, are zero, then Theorem 2.7
implies that W,€2, from which it follows that W,£2. In the remaining case,
W, has infinitely many zero weights, and since W} is injective, these weights corre-
spond to zero terms in y.

Corollary 2.9. 2, is a proper subset of .@afﬂ.@;}.

Proof. According to [9, Example 3.2], there exists a non-quasinilpotent injec-
tive unilateral weighted shift W such that M (W) and M(W™) both contain the
orthonormal basis {e,};>,. Thus MM(W) and M(W*) are both dense, and so [3]
implies that We2,,N2;,. However, since W is injective and non-quasinilpotent,
Theorem 2.8 implies that W is not in 2,,.

Remark. The shift W in the preceding proof satisfies properties (I) and (II)
of section 1. It follows that in general neither property implies membership in 2.
These results provide negative answers to Question 3.9, Question 3.14, and Ques-
tion 3.16 of [8]. Theorem 2.7 and Theorem 2.8 answer [8, Question 3.7]. We note
also that it is possible to prove Theorem 2.8 directly, without recourse to Theo-
rem 2.7, by employing the same technique used to prove Theorem 2.7.

In [11] C. Foias and C. PEARCY proved that if Q is quasinilpotent, then Q
and Q* are quasiaffine transforms of compact operators (which are necessarily
quasinilpotent). (This result also follows from [3].) In [11, Proposition 1.5] it is also
proved that there exists a quasinilpotent operator that is not quasisimilar to any
compact operator. The shift W of Corollary 2.9 is an example of a non-quasinilpotent
operator such that W and W™ are quasiaffine transforms of compact operators
but such that W is not quasisimilar to any compact operator. The fact that W and



Weighted shifts quasisimilar to quasinilpotent operators 77

W* are quasiaffine transforms of compact operators follows from [3]. Now each
nonzero operator quasisimilar to a compact operator commutes with a nonzero
compact operator [11, Proposition 1.5]; since the spectrum of a compact operator
is countable, Lemma 2.5 implies that W is not quasisimilar to any compact operator.

3. Conclusion. In this section we relate our results to a conjecture of [13],
discuss some related questions. Let {M,},o,<x (2<k=o) denote a sequence of
closed subspaces of $. The sequence {M,} is said to be a basic sequence for an oper-
ator T in Z(9) if the following properties are satisfied: 1) for each »n, M, is invariant
for T, i.e. T, CIM,; 2) For each n, M, and \/ M, are complementary in $;

m#n
3) If k=oo, then N(V M,)={0}. The trivial basic sequence for any oper-
n=1m=n ’
ator is the sequence MM, ={0}, M,=9. The concept of a basic sequence is due to
C. Apostol [1].
D. A. Herrero [13, Conjecture 1] stated the following

Conjecture H. [13] If an operator T has no non-trivial basic sequence, then
each operator S quasisimilar to T satisfies o(S)=a(T).

Theorem 2.8 can be interpreted as offering some (albeit limited) support to
this conjecture. Indeed, an injective unilateral weighted shift 7 has no nontrivial
pair of complementary invariant subspaces [15, Corollary 2, page 63]. Thus T has
no nontrivial basic sequence, and Theorem 2.8 shows that if r(7)=0, then r(S)>0
for each operator S quasisimilar to 7. We can show a bit more. Suppose T shifts
the basis {e,};-,. Let X and Y be operators with dense range and let S be an oper-
ator such that 7X=XS and YT=SY. Since XY commutes with T, [16, page 780]
implies that the matrix of XY relative to {e,} is given by a formal power series

f‘ a,T". Since XY has dense range, [a,|>0. By method quite different than that
n=0 .

used in section 2 it can be shown that if f |a,] 1| S| <|ay, then r(S)ér(T);
n=1

note that if a,=0 for each n=1, then XY is invertible, so T and S are similar.

~In a different direction, S. CLARY [5] has studied subnormal operators quasi-
similar to the unweighted unilateral shift U. It follows from [5] that there exists sub-
normal operators S such that S and U are quasisimilar but not similar; however,
quasisimilar subnormal operators do have equal spectra [6, Theorem 2]. The preced-
ing remarks suggest the following question.

Question 3.1. If T is an injective unilateral weighted shift and S is quasi-
similar to T, does ¢(S)=0(T)?

C. ArosToL [1] proved that an operator T is quasisimilar to a normal operator
if and only if 7" has a basic sequence {IR,} such that each restriction T|I, is simi-
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lar to a normal operator. In [9, Theorem 5.5] it is proved that if an operator T has a
basic sequence {t,} such that each restriction 7|, is a spectral operator, then
T is quasisimilar to a spectral operator. The proof of this result also yields the fol-
lowing sufficient condition for membership in 2.

Proposition 3.2. If {,} is a basic sequence for an operator T such that
each restriction T|W, is quasinilpotent, then T is in 2.

Question 3.3. Is the converse of Proposition 3.2 true?

The results of [8] show that if T'is in 2., and T is decomposable or hyponormal,
then T is quasinilpotent, so Question 3.3 has an affirmative answer for operators
in these classes. More generally, the answer is affirmative for each operator T sat-
isfying property (C) in the sense of [17], since for each such operator, M (T) is closed.
The answer is also affirmative for weighted shifts; indeed Theorem 2.7 and Theo-
rem 2.8 may be reformulated as follows.

Theorem 3.4. A weighted shift W is in 2, if and only if there exists a basic
sequence {IM,} for W such that each restriction WM, is quasinilpotent.

Proof. Theorem 2.7 and Theorem 2.8 imply that if a weighted shift W is in
92,5, then W is a direct sum of quasinilpotents; this direct sum decomposition gives
rise to the desired basic sequence. The converse follows from Proposition 3.2.

Acknowledgement. The author wishes to thank the referee for helpful comments.
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On the admissibility of topological vector spaces

0. HADZIC

1. Introduction. Let X be a Hausdorff topological vector space. A subset A of
X is called admissible [7] if for every compact subset KC A and for every neigh-
bourhood U of zero in X there is some continuous mapping h: K—~A4 such that

(i) dim(span h(K)) <-<e,
(i) x—hxeU, for all xckK.

S. Haun and K. F. POTTER [3] proved fixed point theorems for admissible sub-
sets of Hausdorfl topological vector spaces. NAGUMO proved that all convex sub-
sets of a locally convex space are admissible [9] and the admissibility of many non-
convex topological vector spaces has been proved by KLEE [6], RIEDRICH [14], [15],
Icun [4], PALLASCHKE [12] and KRAUTHAUSEN [7].

But the following questions remained open:

a) Which Hausdorff topological vector spaces are admissible?

b) Which convex subsets are admissible? :

©) For which compact subsets K of a Hausdorff topological vector space X is
the following valid:

(%) If U is an arbitrary neighbourhood of zero in X then there is a finite
dimensional continuous mapping h: K--co K such that x—hAxcU for all
xeK.

Recently, MATUSOV [8] proved that every compact convex subset of a Hausdorff
topological vector space has the fixed point property using an idea of SARIMSAKOV [10]
and a result of KasaHARA [5).

Now we give Kasahara’s definition of paranormed spaces [5].

A linear mapping @ of a topological semifield E into another F is said to be
positive if ®(x)=0 in F for every x€E with x=0. Let || || be a mapping of a

Recevied April 10, and in revised form July 10, 1979.
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linear space X into a topological semifield £ and let @ be a continuous positive
linear mapping of E into itself. The triple (X, | ||, @) is called a paranormed space
over E and || | a ®-paranorm on X over E if the following conditions are satisfied:
(P1) llx)=0, for every x£X;
(P2) ||Ax||=]4|- Ilx|| for every real 1 and every x€X;
(P3) |x+y1=0(x| +Iyl) for every x, yeX.

A set K, Kc X where X is a topological vector space, is said to be of type ¢
iff (X, || ||, @) is a paranormed space and for every n€ N, every x,, X, ..., X,€K—K
and every 4;,,0=X4=1(=1,2,...,n) such that 4,4+ 72,+...4+24,=1, we have

I Zn')six,-né Z"‘l@("xi”). If K=X, the space X is of type &.
i=1 i=1

In this paper we shall prove:
a’) Every Hausdorff topological vector space of type & is admissible.
b’) Every convex subset of type & of a Hausdorff topological vector space is

admissible.
¢’) For every compact subset K of type & of a Hausdorfl topological vector

space property (%) is valid.
As a Corollary we shall obtain an extension of Matusov’s fixed point theorem.
2. The main result. We use the following theorem from KASAHARA’s paper [5].

Let (X, 1) be a topological linear space. Then there exists a paranormed space
(X, I, ) over a Tihonov semifield E such that:
(1) For every neighbourhood U of 0€X there are an ¢>0 and an indecompos-
able idempotent o€ E such that

{xeX:|x||-0 =sep}c U.
(2) For every neighbourhood U of OCE the set
{xeX:lxleU})
is a neighbourhood of 0€X.

The Tihonov semifield £ from the above Theorem is R,, the set of all mappings

from 4 into R where 4 is a set of paranorms generating the topology of X and

satisfying the condition that for each pcA there are a>0 and ¢g€A4 such that
p(x+y) =a(g(x)+4g(»), for all x,yeX.

Now we are ready to formulate our main theorem.
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Theorem. For every compact subset K of type ® of a topological vector space X
and for every neighbourhood U of zero in X there exists a finite dimensional continuous
mapping h: K—~co K such that x—hxeU for all xcK.

Proof. Let U be an arbitrary neighboufhood of zero in X and let
p={ty, ts, ..., 1,y 4 and &>0 such that

”x_yllel//.z,s:> x_,VEU,
where
U,.={uucRy, u(t) <e j=12,..,n}

Further, since the mapping &¥: R,—~R, is a continuous linear mapping there exists
a neighbourhood ¥V, (y, &) of zero in R, such that

Ix—yll€Vi(n, &) = @(lx—yDeU,,..
Suppose now that V,(u, ¢) is a circled neighbourhood of zero in X such that

x_y€V2(ﬂ: 8) = ”x_yIIEVI(ﬂs 8)'

Since X is a Hausdorff topological vector space it is also a Hausdorff uniform space
and let d be a pseudometric on X and 6=0 such that

d(x3 y) <d= x"J’EVz(H, 8)'

We shall use the notation
V.(d,0) = {y:yeX,d(x,y) <o} (6=0).

Since the set K is compact there exists a finite set {x;, x5, ..., X,}< K such that
for every x€K there exists i€ {1, 2, ..., m} such that

x€V,.(d, 9).
.So if we define the functions f;: K—~R* (i=1,2, ..., m) so that
fi(x) = max {0, 6 —d(x, x,)}
for every x¢K and i€{1,2,...,m} it follows that
[i(x) #0ed(x,x)<4.

Since for every x¢K there exists at least one i€{1,2,..., m} such that fi(x)=0
we conclude that for every x€K,

s(x) = éfi(x) =0

6*
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and that all mappings f; (i=1, 2, ..., m) are continuous since the mapping x—d(x, x;)
is continuous for every i€{l,2, ..., m}. Now, let

h(x)=s(1—x)i=2";f,.(x)x,. for all xcK.

Then h(K)cco K and h is a continuous mapping from X into a finite dimensional
subspace of X. Further we have

=1 = i35 2 s~ 2 Ao =

s -] = o5 2@

s (x)

Since f;(x)=0=d(x, x)<5 ‘it follows that for every x€K such that £i(x)#0

we have that
O (lx—x[)€eU, .
and so '

llhx —x]| () = ﬁéfi(x)di(llx—xill)(t) === Z'f (x)e=¢ forevery rcp.

So we have ||hx—x|€U, ., which implies hx—xcU and the proof is complete:

Corollary 1. Every convex subset A of type ® of a Hausdorff topological vector
space is admissible.

Proof. If K is a compact subset of 4 and U is an arbitrary neighbourhood of
zero, the Theorem implies the existence of a finite dimensional continuous mapping
h: K—co K with the following property:

x—hxeU for all x€X.
Since A is convex it follows that co Kc A and so A4 is admissible.
Corollary 2. Every Hausdorff topological vector space of type @ is admissible.

Corollary 3. Let A be a closed and convex subset of type @ of a Hausdorff
topological vector space E and h: A—~A be a continuous mapping such that h(A)
is compact. Then there exists at least one fixed point of the mapping h.

Proof. Since A4 is admissible we can apply a fixed point theorem from [3] and
so the set of fixed points of the mapping / is nonempty.
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New generalizations of Banach’s contraction principle

M. HEGEDUS

Many research papers have appeared on different generalizations of Banach’s
contraction principle. A. MEIR and E. KEeELER [2] studied mappings f: X—-X of
a metric space (X, g) having the property that for every ¢>0 there exists a =0
such that e=g(x,y)<e+6 implies g(f(x),f(»))<e. In the present paper we
consider the following generalization of a restriction of this definition. For x, yeéX
let d (x,y)=diam {x, y, f(x), f(3), f3(x), f2()), ...}. Here “diam” abbreviates dia-
meter.

The mapping f: XX is called a generalized Meir—Keeler contraction if
d;(x, y)<e for x,y€X and if for every >0 there exist &', &” such that 0<¢'<
<e<e” and dy(x, y)<e&” implies o(f(x), f()<¢"

Lj. B. Ciri€ [1] studied mappings f: X—~X for which d,(x, y)<oo and there
exists a constant o, 0=a-<1, such that

o(f(0), f()=a max {e(x, »), e(x.fX), e(»f). e(x. ), e, f(D)}

for x,ycX. In the present paper we consider the following class of mappings wider
than that considered by Cirié.

The mapping f: X—X is called a generalized Banach contraction if d,(x, y)<eoo
for x,y€X and if there exists a constant o, 0=a<1 such that o(f(x), f(»)=
=oady(x,y) for all x, ycX.

It is obvious that every generalized Banach contraction is a generalized Meir—
Keeler contraction. The function f(x)=sin x on X=[0, n/2] is a generalized Meir—
Keeler contraction which is not a generalized Banach contraction. This may be
seen in the following way. Firstly, if sin x were a generalized Banach contraction
on [0, n/2], then we would have |sin x|=alx] for all x€[0, /2] with some a,
0=q~<1. But this is impossible, since 1i11‘1)i;:lj =1. Secondly, for any given e,

P
O<e=1 let ¢ be a number such that sing<ég <e Denote ¢”=arcsing’. If

x-y

x,yE[O —] y=xand |x—y|=¢" then [sin x—sin y|= fcos tdt—f cos (x +1)dt=

0

Received May 15, 1979.
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x~-y
= f cos tdt=sin (x—y)=sin (arc sin ¢")=¢’. Consequently, sin x is a generalized
0

Meir—Keeler contraction on [0, g]

Now we give an example of a generalized Banach contraction which is
not of Ciri¢ type. In fact, let X={1,2,3,4} and ¢(1,2)=39, o(1,3)=3.7,
o(1, 9=4.0, 0(2,3)=3.9, ¢(2,4=3.9, ¢(3,4)=3.0. Furthermore, let f be defined
on X by the equalities f(1)=2, f(2)=3, f(3)=4, f(4)=4. Then o(f(1),f(2))=
=max {e(1,2), o(L, (1), e(2./(2), o(1,£(2)), e(2,/(1))}. However, it is easy to
verify that in this case o(x, y)=0,99d,(x, y) for all x,y€X.

The objective of the present paper IS to prove the followmg theorems

Theorem 1. Let f: X—~X bea generahzed Meir—Keeler mapping. Then there
exists at most one fixed point of f, and {f™(x)};>, is a Cauchy sequence for every
x€X. If X is.complete, then for every x€X, f’ "(x) converges to the umque fixed point
offas n—~oo, A

Theorem 2. Let f: X—~X be a generalized Banach contraction with constant
o, let xo€X be fixed, and let S,=diam {f"(xo), f**(xo), ...}. Then

o(xo, f(x0)) (n = 0,1,..),

5, =

Oy S—Q(f" l(xo),f"(xo)) ("—1 2,..).
I f X is complete, then

e(zf"(xo) =

é(xo, f(x)) (=0,1,..).

Q(Z,f "(xo)) — Q(f "1(x,), f "(x) (m=1,2;:.)

Where z denotes the unique ﬁxed point of f.
The proofs will be based on' the following

Lemma. Let f: X—~X be a generalized Meir—Keeler mapping, and let x,€ X,
8,=diam {f"(xp), f"*!(x), ...}- Then §, -El:p o(f™(xo), f¥(xp)) (n=0, 1, ).

Proof. It is sufficient to consider the case n=0. If §,=0, then the statement
of the lemma is obvious. If 8,>0, then choose &, 5, in such a way that we have
0<d;<d,<d; and o(f(x),f(»)<6b; if d (x,y)<d;. Now let k,I=1. Since
Smintk—1,1-1y=00=<0;, we have o(f*(xo), /" (x,))<8;<0o. This immediately implies
the -assertion of our lemma. . -

Proof of Theorem 1. Let z” and z” be fixed points of f- If (2", 2")=¢>0,
then choose ¢, ¢” such that O<e'<e<e” and o f(x), f(M))<¢ if d;(x,y)<e".



New generalizations of Banach’s contraction principle 89-

Since z’, z” are fixed points, d,(z’,z")=0(z’, z")=e<e". Consequently, ¢(z’, z")=
=o(f(z"), f(z"))<& <e, a contradiction. Therefore we must have ¢(z’, z”)=0, i.e.,.
that z’'=z".

Now let x,€X be fixed and use the notations of Lemma. We have to prove
that 6,—~0. It follows from the definition of §, that 6y=¢,=...=0. Consequently,
0,—~¢ for some £=0. Assume that ¢>0, and choose ¢’, ¢” so that we have 0<¢'<
<e<e” and o(f(x), f(»)<e if d;(x,y)<e”. Let n, be so large that Op,<e”. I’
k,1>ny, then Q(fk(xo),f(xo))<3,<3» since df(fk—l(xo)’fl—l (xo))=5min(k—1;l-1)§
=0, <¢”. Therefore, §,.,=¢, a contradiction since J,je. Hence &¢=0, and
{/"(xo)};>, is a Cauchy sequence. _

Now let X be complete. Then f”(x,) converges to an element z of X. We have
to prove that z is invariant under f. Let &} =d,(f"(z),f"(z)). We must prove that
8¢ =0. Assume the contrary, i.e., that >0, and choose &%, 6% so that 0<§¥ <
<05<6y and o(f(x),f())<8&f if di(x,y)<6f’. If k=1, then for all large
enough n, d;(f*1(z), /"' (x)))<6; since f™(xo)—+z as n—es. For such n we
have o(f*(2), /" (x0))<d%. If we let n tend to =, then we obtain that o(f*(z), z)=
=6y Consequently, according to Lemma, =6}, a contradiction. Therefore z
is a fixed point of f. ,

Proof of Theorem 2. The inequalities involving J, imply the other two
inequalities. The second inequality concerning §, is an immediate consequence of
the first. To prove the first, we observe that §,=a"d,. This is so since for k>1=n
we have o( f*(xo), f'(x,))=«d,-,. Consequently, 5,=ad,_,. We obtain from this
by recursion that §,=«"dy. Now let k=1,2,.... Then

Q(xo’fk (xo)) = Q(XOsf(xo))+ Q(f(xo)afk (xo)) =
= 0(x0,f(x0))+6, = 0(x0,f (%)) + 8y
on the basis of what we have just observed. According to Lemma we therefore have

So=0(xo, f(x0))+ 0y, i.€., Go= - o(xo, f(xp)). This is the inequality to be

proved for n=0. For n=1,2,... we obtain from this and from what we have

observed at the beginning of our proof that d,=a",= laTa (o f(x0))-
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A simple proof for von Neumann’s minimax theorem

L JOO
To the memory of F. Riesz (1880—1956)

1. The usual proofs of the von Neumann minimax theorem and its generaliza-
tions are based on deep results of Sperner or Brouwer (cf. [2], [4], [5]). Our proof
is based on the simple lemma due to F. Riesz (cf. [3], p. 41) that if a system of com-
pact subsets of a topological space has the finite intersection property (i.e. every
finite set has non-empty intersection) then the whole system has non-empty inter-
section. This proof is a development of the ideas of the paper [1].

2, Theorem. Let E and F be topological vector spaces, and let K,CE, K,CF
be convex compact sets. Let f(x, y) be a real-valued continuous function on K;XK,,
which is concave in x for any fixed y€K,, and convex in y for any fixed x€K,. Then

min max f(x, y) = max min f(x, y).
yeszmf( 2 ) xEKlyQKzf( , ¥)

Proof. Let ¢ be a (fixed) real number such that
HO=H,={x:f(x,y) =c} =0 for every y€K,

where @ denotes the empty set. The sets H, are convex and compact. We assert that

¢)) 'N H, 0.

Y€K,

According to the lemma of Riesz it is enough to prove that for any finite set
{yl’ eeey yn}CKz we have

N H,, = 0.
i=1

We prove this by induction on 7.
Consider the case n=2. Suppose there exist y,, y,€K; for which

@ Hmn H,=9
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and set H(A)=H, .q_5, for i€[0,1]; H(?)=0 by the convexity of f(x, y) in y.

Next we show that
3) H(}))c H,UH,.

For every x¢K, and x¢H, UH, we have
S A+ (A =2)ys) = f(x, )+ =D (x, y) < ¢

since f is convex in y. Thus x¢ H(2). Therefore, (3) follows because of the defini-
tions of H, , H, .
Using (2) and (3) we show that for arbitrary 2€[0, 1]

) either H() C H,
Suppose the contrary:

HOHYNH, #0 and H(}*)nH =0
for some A*¢[0, 1]. Let y;€ H(J)NH, and y;€ HAY)NH, be arbitrarily chosen
Consider the closed interval .

1, }’2] = {lyi‘+(1—)-)y§! 0=2=1})
By the convexity of the sets H, we have

1, ysl € H(X).

From (2) and the compactness of H and H, we see that there exists y E[yl, 4|
such that ‘

or H()C H,,.

1

y ey ]ﬂH)U([yn ]ﬂH-)

and hence y*¢H, UH, . On the other hand, y*¢H (A*) whlch contradlcts 3).
So (4) is proved.

To comiplete the proof of (3), we need the following statement: If H(A)N
NH, >0 for 4€[0,1]}, then there exists &=e&(»1, 2, /1)>0 such that

4 : HMNH, #9 for |A-2| <eg.

[Similarly: if H(A)NH, =0 for 2,¢[0,1], then there exists ag—sz(yl,yz,lz)>0
such that

©) HRMNH, =0 for |A—2)<e ]
We prove (5). If H(A)NH, %P then according to (4), H(A)NH, =09, that is
@) ' S(x, Ln+d —A)ys) < ¢ for every x€H,.

Since f(x, Am+(1—2)y,) is a continuous function in (x, 1), it follows from (7)
that for every x¢€H, there exists a neighborhood U, of x and ¢(x)>0 such that

S an+A=Dy) <c for (x, DEUX(A—e(x), 2y +e)).
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Therefore,
H

yz

c U U,.

xXE€H,y,

Since H, is compact we can choose a finite system '{Uxi}:.;l such that
n
H,c iszl u,,.

Then for &=min {e(x;): i=1,...,n} we have (5). The proof of (6) is similar.
From (4), (5), (6) it follows that the set {1€[0, 1]: H(2)cH, } is open in [0, 1].
Similarly, the set {A€[0,1]: H()cH, } is also open in [0, 1]. Taking (4) into
consideration, we arrive at a decomposition of the interval [0, 1] into two disjoint
non-empty relatively open sets, which is impossible. Thus we proved that

H,NH, #0.

Suppose we know that for any subset {y;,...,»} of K,(CF) having at
most n elements we have

k
N H, =0
i=1

and then we prove the same for n+1 elements.
Suppose there exist y,, ..., ¥,4, such that

n+1l
®) () Hy =0
Then we have
n+1
(H”ﬂ H:;)ﬂ(HMnH;,):ﬂ fOI‘ H3 = DSH“.

Now using the induction assumption and (8) we can apply the idea of the proof of
n=2 for the sets
H)=H,NH, (i=1,2).
Thus we obtain
n+1

m H}’i # ﬂ’
i=1

and so, according to the lemma of Riesz, (1) is proved.

Denote by € the set of real numbers ¢ for which H®=H,=@ whenever y<K,.
If ¢,€%, then c€¥ for every c=c¢,. Since the function f is continuous, the set €
is bounded from above. Denote by ¢* its smallest upper bound. From the lemma of
Riesz we deduce that ¢*€¥. We prove that

. .
® min glea,éf(x, y)=ct
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Suppose

min max
min max f(x, y) > ¢%,

then there exists &=>c* for which

a =
;gl,pglelg(f(x nzé=c

Therefore max f(x, y)=¢é& for every y€K,, hence {x: f(x,y}=¢}=0 for every
x€K,y

y€K,, but this contradicts the choice of ¢*.
On the other hand, because of (1), we have

def
A= (} H 0.
yeK,

Let x*cA. From the definition of H, we obtain f(x*, y)=c* for every ycK,;
thus
10) min f/(x*, y)=c¢* and maxmin f(x, y) = ¢*.

Y€K

x€Ky y€EK2

From (9) and (10) we deduce

min max = maxmm
min max f(x, y) = max min f(x, y).

Since

min max f (x, y) = max min 2 f (x, »)

is obvious, the theorem is proved.
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Remarks on a paper of L. Szabé6 and A. Szendrei

H. K. KAISER and L. MARKI*

The aim of this note is to give an infinite version of the Theorem of L. SzaBo
and A. SzenDREI [4]. We shall do this without using I. Rosenberg’s Theorem [3]
and those parts of [4] which make use of it. We adopt the terminology of [2] and [4].

Theorem. An at least four element non-trivial algebra with triply transitive
automorphism group either has the interpolation property or is equivalent to an affine
space over GF (2).

Most of the proof follows closely that of L. SzaB6 and A. SzENDREI [4], we:
shall write out only those parts which are different. We do not need Proposition 1
of [4]. We formulate Proposition 2 in a slightly different way: we consider not nec-
essarily finite algebras and local term functions instead of term functions. The proof
1s literally the same.

Lemma 1. Let A be an algebra with at least four elements and with a triply
transitive automorphism group. If A does not have the interpolation property but has
a three-place non-trivial local term function f, then f is a minority function such that
fa, b, )¢ {a, b, ¢} whenever the elements a, b, cc A are all different.

Proof. The proof that f(a, b,c)é{a, b, c} if |{a, b, c}|]=3 and that condi-
tion (x) of [4] holds, is literally the same as in [4]. This is the beginning of their
proof of Lemma 1; thereby we need the infinite version of B. Csikiny’s Theorem,
which is an immediate consequence of the finite one. For, given an (infinite) algebra.
A with a pattern function p(x,, ..., x,) which can be interpolated on every finite
subset of A%, and a partial function f on a finite subset Hc 4%, let B denote the
subset of 4 which consists of the elements occurring as coordinates in H or being
values of f on H. Then take the polynomial function p which interpolates p on B*;

Received January 9, in revised form October 24, 1979.

* This work was carried out while the second author was visiting at the Technische Hoch-
schule Darmstadt. He is indebted to Prof. R. WILLE for the invitation. :
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(B, p) is, by Csakany’s Theorem, functionally complete, and this gives a representa- -
tion of fin terms of j, hence as a polynomial function on 4.

Now it suffices to show that if the local term function f is not a minority func-
tion, then A4 has the interpolation property. For this end we show first that in this
.case 4 has the 2-interpolation property. Further, it suffices to consider functions
in one variable only: if we take two distinct elements of A* for some k¢N, they
differ in at least one component i, and then we consider the i-th projection. Given
arbitrary elements x, y, u, v€A4, x>y, we have to show the existence of a unary
polynomial function g such that g(x)=u, g(¥)=v. Supposing that 4 has at least
five elements, it is sufficient to prove this if x, y, u, v are all distinct. (In fact, in the
other case we can choose two elements e, f both distinct from x, y, u, v, and then
send x, y first to e, fand then e, f'to u, v.) Since f'is not a minority function, at least
one of the values f(x,y,»), f(», x,»), f(y,y,x) is equal to y. Suppose e.g.
f(y,y, x)=y. By (%) we have elements ¢, d€ 4 such that f(y, x, d)=v, f(x, v, ¢)=u.
Then we take g to be- a (unary) polynomial function which interpolates
F(fE¢, x,d), v,c) at E=x,y. (In case 4 has four elements, by somewhat more, but
still elementary, computation one can construct this polynomial function g, thus
avoiding the use of Rosenberg’s Theorem.)

Now we use induction and prove that if 4 has the (n—1)-interpolation prop-
erty (n>2) then it has the n-interpolation property, too. Let g: A*~A4 and
X1, ., X,€A*¥ be different elements and put a;=g(x;), i=1,...,n. Since g has
the {n—1)-interpolation property, we have polynomial functions f, ..., f; such that

fix)=a;, i=1,2,4,..,n; filx)=a;, i=1,3,4,...,n;

a; i=4,..,n,
fa(x) =1f(x) i=3,
folxa) i=2,
and for arbitrary elements d, u< A4,
a; i=24,..,n,
f4(xi):{d i=3;
a; i=1,4,...,n,
f5(x,.)={u i=3.

If fi(x5)=a;, then we are done. Suppose therefore f,(x;)#a; and by using (%)
choose d, u so that f( fi(xs), d, u)=a;. By assumption, fis not a minority function,
hence we have, say, f(y,y, x)=y. If we have in addition f(y, x, y)=f(x, y, y)=x,
then we take a polynomial function p which interpolates f( f;, f3, f3) on {x;, ..., x,}.
It is easy to see that p(x)=a;; i=1, ..., n. If f(y, x, y) or f(x, y, y), say f(», x, ),
is also y, then we consider a polynomial function ¢ which interpolates f(fi, f1, f5)
on {x,,...,x,} and again we obtain that q(x;)=gq;, i=1, ...,n.
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Lemma 2. Let A be an algebra with at least four elements and with a triply
transitive automorphism group. Suppose that there exists an at least quaternary (say
n-ary) non-trivial local term function f which turns into a projection whenever we
identify any two of its variables. Then A has the interpolation property.

Proof. Again we repeat the beginning of the proof in [4] and obtain prop-
erty (* *). Along the same lines as in Lemma 1 we show first that A4 has the 2-inter-
polation property. Take again four different elements x, y, a, b€ A. By (* %) there
exist elements d,...,d,, dy,....d, in A4 such that f(x,y,d,,...,d)=a and
f(r,a,d;,...,d)=b. Consider now a polynomial function g which interpolates
f(f&y. ds,....d), a,dy, ...,d;) at E=x,y. This function does the job.

Suppose next that 4 has the (m—1)-interpolation property (m=2). We show
that it has the m-interpolation property as well. Consider a function h: 4*—~A4
and put a;=h(x), i=1, ..., m. By assumption we have a polynomial function f;
such that f;(x)=gq;, i=2, 3, ...,m. If fi(x;)=a, then we are done. Suppose f;(x,) =
#a,;, then choose an element b¢ {a;, f1(x,)}, and consider a polynomial function
f2 such that:

b i=
a i=3,...,m

fz(xi) = {

By (% ) there are fy, ..., f, in 4 such that f(fi(x), b, 15, ..., 2,)=a;. Next we
choose a polynomial function f; such that:

t3 i=1
a,- i=2, 4, ey M.

o]

Finally, we take a polynomial function r which interpolates f{fi, /o) fas tas s £n)
on {x, ..., X,}, then we have A(x)=r(x), i=1, ..., m.

As a next step, we transfer Lemma 3 of [4], together with its proof, with the
obvious modifications to the infinite case.

Lemma 4. Let A be an algebra with at least four elements and with triply transi-
tive automorphism group. If A does not have the interpolation property, then A admits
no essentially quaternary local term function.

Proof. Suppose £ is an essentially quaternary local term function on 4, then
it has the properties (1)—(7) of Lemma 3. Since /& depends on the first variable,
one can find elements a, b, ¢, d in 4 such that A(a, b, c,d)i=s#h(b, b, c,d)=
=m(b, ¢, d):=t, where m is the unique non-trivial ternary local term function on 4.
A short elementary computation shows that (at least) b, c, d, ¢ must be all different.
Let ® be a congruence of 4 and #Ov with usv, and choose an arbitrary
z¢{u,v}. If h(a,b,c,d)a, then just as it is done at the corresponding
4
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o

place in the proof of the Theorem in [4], we see that @, m(b, ¢, d), h(a, b, ¢, d)
are all different. Now we can find a n€ Aut 4 such that n(a)=v, n(h(a, b, ¢, d))=z,
z(m(b, ¢, d))=u, and we have h(v, b, nc, nd) =z, h(u, nb, nc, nd)=u, which implies
z=h(v, nb, nc, nd) Oh(u, nb, nc, nd)=u, hence © = A% Suppose now h(a, b, ¢, d)=a,
then again we follow the corresponding lines in the proof of the Theorem in [4]
and obtain that a, b, m(b, c, d) are all different. Further we choose a n€ Aut 4 with
na=u, nb=v, n(m(b, c, d))=z, and conclude that u=h(y, v, nc, nd) Oh(v, v, nic, nd)=
=2z, whence @=A% By this we have that A is simple, and by Lemma 3, 4 has a
unique non-trivial ternary local term function m, which is a minority function.
This implies that m remains unchanged if we permute its variables, furthermore
m(m(x, y, 2), y, z)=x for all x, y, z€ A (cf. (8) in [4]). In particular, since m(b, ¢, d)=t,
we get m(¢, ¢, d)=b.

On the other hand, 4 does not have the interpolation property, hence by
M. IstiNGER, H. K. KaIser and A. F. PixLeY [1], Corollary 3.9, we know: If g is
a binary local polynomial function and r an element of 4 such that q(x, r)=q(r, x)=r
(for all x€A), then g is the constant function with value r. Consider gq(x, y)=
=h(a, m(x, , t), X, ). Then we have g(x,y)=t for all x, €A, which contradicts
q(c, dy=h(a, m(c, d, t), ¢, d)=h(a, m(t, ¢, d), ¢, d)=h(a, b, ¢, d)=s=t. This com-
pletes the proof of Lemma 4.

Now we continue the proof of the Theorem exactly as it is done in [4].
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Kanonische Zahlensysteme in der Theorie
der quadratischen algebraischen Zahlen

I. KATAI und B. KOVACS

1. Bekanntlich kann jede nichtnegative ganze Zahl in jeder der beiden Formen
N=aytayAd+...4a, A" und N =ay+a,(—4)+...+a,(—4"

eindeutig aufgeschrieben werden, wobei 4;€{0,1, ..., 4—1} (j=0,1,...,n) und
A=2 ganze Zahlen sind.

I. KATAl und J. SzAB6 [1] untersuchten das folgende Problem: Es seien o eine
ganze Gaullsche Zahl, N(a) ihre Norm und 4,={0, 1, ..., IN(x){—1}. Unter wel-
chen Bedingungen kann man die GaulBlsche Zahl y eindeutig in der Form

(1.1) Y = aptau+...+a0 mit a;ENy (j=0,..,n)

aufschreiben? Sie haben bewiesen, daBl dies fir & dann und nur dann gilt, wenn
a=—A=xi ist, wobei A4 eine positive ganze Zahl bedeutet. Sie haben noch gezeigt,
daB} in diesem Falle jede komplexe Zahl z in der Form

(1.2) z=j"g; a;of mit a; €A

aufgeschrieben werden kann.

Es sei jetzt N=0 eine quadratfreie rationale ganze Zahl. Es ist bekannt, daB3
jeder reelle quadratische algebraische Zahlenkérper die Form R(V_IV) hat. ITm
Weiteren bezeichnen wir die ganzen Zahlen von R(YN) mit o, B, ..., die rationalen
ganzen Zahlen mit 4, B, C, .... Das Paar {o, #4;} wird ein Zahlensystem in R(YN)

genannt, wenn jede algebraische ganze Zahl yeR(V—I\_/’) eindeutig in der Form (1.1)
aufgeschrieben werden kann.
Wir bewiesen die folgenden Sitze.

Eingegangen am 5. Mai 1978.
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Satz 1. {«, Ag} ist dann und nur dann ein Zahlensystem in R(V]—V), wenn
1) a=A+VN und 0<—-24=A*-N=2, fir N=1(mod4),

2) o= %(Bj;]/ﬁ) und 0<-B= %(82—N) =2, fir N=1(mod4),
wobei B eine ungerade ganze Zahl ist.

Satz 2. Es sei {ay, A} ein Zahlensystem in irgendeinem reellen quadratischen
Zahlenkérper. Dann kann jede reelle Zahl x auf mindestens eine Weise in der Form
(1.2) aufgeschrieben werden.

2. Einige Bemerkungen und Hilfssiitze. Es ist bekannt, daB fiir den Diskriminan-
ten D von R(VN) gilt:

1) D=4N falls N £ 1(mod4),
2) D=N falls N=1(mod4).

Ist a=A+BYN<R (]/N ) eine quadratische algebraische ganze Zahl, dann folgt
aus der Berechnung des Diskriminanten der Basis {1, «}, daB {1,«} genau dann
eine ganze Basis von R(}YN) ist, wenn, im Falle Nz1 (mod 4) u=A+}YN mit
einer beliebigen rationalen ganzen Zahl 4, und im Falle N=1 (mod 4),x=1/2(B% VN)
mit einer ungerader ganzer Zahl B ist. Diese Zahlen « sind die Wurzel den folgenden
quadratischen Gleichungen mit rationalen ganzen Koeffizienten:

X -24x+(4~N), bzw. 3-Brtg (B=N).

Ist {«, A,} ein Zahlensystem in R(VI_V), dann ist [N(x)|>1, und a eine quadrati-
sche ganze Zahl, weiterhin ist {1, «} eine Basis in R(¥N).

Lemma 1. Es sei {0, A;} ein Zahlensystem in R(VN). Dann ist {1,a} eine
ganze Basis von R(VN).

Beweis. Es- geniigt zu beweisen: Ist yER(VZ_V) eine ganze Zahl, dann gilt
y=X,4+Y,a, wobei X,, Y, rationale ganze Zahlen sind. Es sei a ecine Wurzel der
Gleichung mit rationalen ganzen Koeffizienten x?+Cx+D=0. Dann gilt fir jede
natiirliche Zahl s=2:

2.1) of =X, +Ya

mit einem rationalen ganzen Zahlenpaar X, Y. Da {a, A;} ein Zahlensystem in
R(YN) ist, hat jede ganze Zahl y€R(YN) die form (1.1). Durch Einsetzen von
(2.1) ergibt sich, daB y=X,+Y,a ist, wobei X,, Y, rationale ganze Zahlen sind.
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Lemma 2. Ist a eine nichtnegative ganze Zahl in R(YN), dann ist {a, Ag}-
kein Zahlensystem in R(VN).

Beweis. Es sei y eine negative ganze Zahl in R(}/]V). Wir nehmen an, daf:
{o, #;} ein Zahlensystem in R(VN) ist. Dann kommen wif wegen a,€A
(#=0,1,...,n) und a=0 zu einem Widerspruch:

O=y= Zo'oa,-a"éo.

Lemma 3. Ist a€ R(VN) eine algebraische ganze Zahl mit |a|<1, dann ist
{o, Ao} kein Zahlensystem in  R(VN).

Beweis. Wir nehmen an, daB {o, 4} ein Zahlensystem in R(VN) ist. Wegen:
Lemma 2 geniigt es die Behauptung nur im Falle —1<a<O0 zu beweisen. Es sei
7€R(VN) eine algebraische ganze Zahl mit

IN@I-1

2.2) _ Y= I

2n R
Auf Grund von y= 2 a;o'; a;€ A, ist aber
i=0

P = (Gp+as0®+... + a5, *) +(ay0+ 0503+ ...+ 0y, 07N =
= a0+a20t2+...+ag,,a2" = (IN(O‘)I_I)(1+0(2+...+O(2") =

=(IN@I-1)/(1-a?),
im Widerspruch mit (2.2).

Lemma 4. Es sei ocER(VJV) eine Wurzel der Gleichung X2+ Ux+V =0, wobei’
U=0 und V=1 rationale ganze Zahlen sind. Ist y=X-+Yo mit rationalen ganzen:
Zahlen X, Y, dann existieren solche nichtnegativen rationalen ganzen Zahlen C, D, E,.
F, mit welchen y=C+ Do+ Ea®+ Foa® gilt.

Beweis. Da o2+ Ux+V =0 und V=1 ist, existieren rationale ganze Zahlen:
L,=0 und L,=1, fir welche L,V +X=0 und L,V+Y=0 ist. Dann gilt
y = X+Yo = Ly(«*+Ux+V)+ L (034 Ue>+ V) + X+ Yo =
=X+ L)+ Y+ L V+L U)o+ (L U+ Lo+ L, a3,
wobei jeder Koeffizient eine nichtnegative rationale ganze Zahl ist.
Lemma 5. Es sei a€ R(JYN) eine Wurzel der Gleichung x*+ Ux+V =0, wobef*

0<U=V=2, und U, V rationale ganze Zahlen sind, ferner sei {1,a} eine ganze-
Basis in R(VN). Dann ist {a, Ay} ein Zahlensystem in R(YN).
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Beweis. Da {1, a} eine ganze Basis in R(J/N) ist, kann jede algebraische
ganze Zahl y€R(VN) mit rationalen ganzen Zahlen X, Y eindeutig in der Form
=X+Ya aufgeschricben werden. Wegen Lemma 4 gilt

2.3) y = do+diat...+dpe, k=3, d;=0 (=0,1,...,k),

wobei d; rationale ganze Zahlen sind. Es sei L(y, d)=dy+d,+...+d;, L(y,d) ist
¢ine nichtnegative ganze Zahl. Wegen V=2 kann dy=r,+tV geschrieben werden,
wobei t=0 eine rationale ganze Zahl ist, ry€.4;, d.h., wegen o®+ Un+V =0,

do = ro+tV =ro+t(—0tUa) = ry+t {{V-U)a+ U—-1)a?+a3}.
Setzen wir das in (2.3) ein, so ergibt sich
9 = rg+ {d, +t(V-U)}o+ {dy+1(U—1)}a2+(ds+ 1) a3 +dyot +... +dyof =
=di +dfa+...+df o,

wobei df€A,, df nichtnegative ganze Zahlen sind, ferner L(y, d*)=L(y, d) gilt.
Es sei y,=d}f+dfa+...+dfa*", dann ist y=ro+ay,, Ly, d¥)=L(y,d*), und
Gleichung besteht nur im Falle ry=0. Setzen wir diesen Algorithmus fort, so
bekommen wir

(24) Y= "o+0¢}’1, h= "1+°¢72, s ¥ = ru+a)’n+1: mit rie‘/‘/(') (l = O, 1, )

und
L(y,d)=L(y,,d)=...= L(y,,d) =...;

Gleichungen bestehen nur im Falle r;=0.

Da L(y,d)=0 und L(y;,d)=0 ganze Zahlen sind, ist notwendigerweise
r,=0 (k=M). Dann gilt aber wegen (2.4) fiir jede natiirliche Zahl s=1, daB «°|yy,
was auf Grund von |N(«)|=¥=2 nur dann mdglich ist, wenn y,,=0 ist. Aus (2.4)
bekommen wir die behauptete Darstellung

Y =rotrat..+ry_ oM7L e,

Es soll noch gezeigt werden, daBl diese Darstellung eindeutig ist. Dies folgt
daraus, daB wenn O0=so+sy0+... +5.8* (5;64;), dann «fs, und deshalb s,=0,
und aus dhnlichem Grund s;=0, 5,=0, ..., 5, =0 sind.

Lemma 6. {, A} ist dann und nur dann ein Zahlensystem in R(YN), wenn
{&, A5} auch ein Zahlensystem ist.

Beweis. Klar, denn die Darstellungen
§= Zbjo/ und y= 2(’) b;@ (bjcN)
j=0 Jj=

fiir ye R(YN) sich gegenseitig implizieren.
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3. Beweis des ersten Satzes. Ist {«, A7} ein Zahlensystem in R(VI—V), so ist
{1, «}, auf Grund von Lemma 1, eine ganze Basis in R(VW) Im Falle N=1 (mod 4)

gilt also oc=-%— (Bx Vﬁ) und az—Ba+711- (B%—N)=0, wobei B eine ungerade ganze

Zahl ist. Im Falle N#1 (mod 4) aber ist =4+ }N und o®—24a+(4%—N)=0,
wobei A eine beliebige ganze Zahl bedeutet. Auf Grund von Lemma 6 geniigt es die

algebraischen ganzen Zahlen a=%(B+ VJ—V), bzw. a=A+}YN nur im Falle

‘N=1 (mod 4), bzw., im Falle N#1 (mod4) zu untersuchen. Nach Lemma 2 ist
B<—}N, —B=3 und A<—JN, —4=2.
Es sei zuerst N21 (mod 4). Da A4, mindestens zwei Elemente hat, ist

G3.0) IN@)| = |42—N| = 422-N=2.

Da A<—}N, ist (3.1) im Falle A=—}YN+2 erfiillt. Wenn auBerdem noch
1=-24=4%*—N gilt, so ist — auf Grund von Lemma 5 — {«, A;} ein Zahlen-
system. Wegen —A=2 ist —24=A42—N im Falle 4>—}) N+ 1—1 nicht erfiillt.
Wir brauchen darum nur die o zu untersuchen, fiir welche — VITIT —1l<d=
<—VYN+2 ist. Auf Grund von Lemma 3 im Falle |A+}/1V|<1 wegen A<— VN
ist —4—}YN<1, d.h. {« A;} ist kein Zahlensystem in R(Vﬁ) Da —JN-1
keine ganze Zahl ist, geniigt es die ganzen Zahlen 4 zu untersuchen, die die folgende
Bedingung erfiillen:

3.2 —YN+1-1<A<-}N-1.

Der Bedingung (3.2) geniigt aber keine ganze Zahl 4, da aus (3.2) N<(—4+1)*<
<N+1 folgt.

ZusammengefaBt: a=A+}N ist dann und nur dann ein Zahlensystem in
R(YN) im Falle N#1 (mod4), wenn A=—})N+1—1, oder — was damit
Aquivalent ist — wenn 1=-24=4%2—N=2 ist, wobei 4 eine rationale ganze
Zahl ist. ' ‘

Es sei jetzt N=1 (mod 4). Da 4, mindestens zwei Elemente hat, so ist

G.3) IN@)| = I% (Bz—N)'I = %(Bz—N) =2,

Da B<-—VN ist, wird (3.3) dann erfiillt, wenn B= —VYN+8 gilt. Wenn auBer-
) ¥
dem auch 1=-B= vy (B*—N) gilt, so ist {«, #;} nach Lemma 5 ein Zahlensystem.

Da —B=3 ist, wird —Bézl (B%*—N) dann nicht erfiillt, wenn B>—}JN+4-—2
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ist. Deshalb geniigt es nur die a zu untersuchen, fiir welche
—VYN+4-2<B=—JN+8
i —
5 (B+VN)
—B—YN<2, d.h. esist B>—})N—2 und so ist {«, A#;} kein Zahlensystem in

R(VN). Da —YN-2 keine ganze Zahl sein kann, geniigt es die ganzen Zahlen B
zu untersuchen, die die Bedingung

(3.4 —VYN+4-2<B<~-)YN-2

erfilllen. Geniigt B (3.4), so gilt (—B—2)*=N+1, oder (—B—2)?=N+2, oder
(—B—2)?=N+3. Da B und N ungerade ganze Zahlen sind, so gilt (—B—2)2
#N+1, und (—B—-2)?#N+3. Da N=1 (mod4) und B ungerade ist, deshalb
gilt N4+2=-1 (mod4), und (—B-2)’=1 (mod4), daraus folgt (—B—2)?x
#=N+2.

gilt. Auf Grund von Lemma 3 im Falle <1 wegen B<—VN gilt

ZusammengefafBit: a=%(Bi YN) ist dann und nur dann ein Zahlensystem
in R(YN) im Falle N=1 (mod4), wenn B=—}N+4—2, oder — was damit
dquivalent ist — wenn 1= -—Bé% (B*—N)=2 ist, wobei B eine ungerade ganze
Zahl bedeutet.

4. Beweis des zweiten Satzes. Zum Beweis des zweiten Satzes wird eine Unglei-
chung benutzt.

Lemma 7. Es sei N#1 (mod4), und {a, N} ein Zahlensystem in R(}/]—V)
Dann ist |A2*—N—1|=|a], wobei a=A+VN.

Beweis. Wir nehmen an, daB |42—N-—1|<|a| ist. Wegen a=A+}YN gilt

RN €52 200 (€ 52 7 NS S
A+YN ATYN

Im Fall a=A+}N miifite
1

A+VN

gelten. Das ist aber wegen den Bedingungen N=2, A<—}N und |A+V1_V[>1
unmoglich ’
Wenn aber a=A—}N ist, dann miiBte

-1 <A—VJV—

<1

4.1) —~1<A+VYN- LI

A-VN
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gelten. Wir zeigen aber, daB (4.1) unmoglich ist. Bei festgelegtem N=2 ist die-
Funktion y=x4})N—(x—}N)~! im Intervall (—<, () monoton wachsend und.
in diesem Intervall ist y=—1 nur fiir

@.2) x = %(— 1-V 1+4(N+YN+1)).

So ist (4.1) nicht erfﬁllt, wenn

4.3) A=[(-1-V1+4N+VN+1)).

N -

Da {a, A} in R(/N) ein Zahlensystem ist, gilt 4=—}JN+1—1. Eine einfache:
Rechnung ergibt

_ N+1—1<%(—1-—V1+4(N+VJ—V_+1)].

Das bedeutet — wegen (4.3), (4.2) und weil die Funktion y=x+VN—(X—}N)*
im Intervall (— e, 0) monoton wachsend ist —, da (4.1) nicht erfiillt ist. Damit ist.
unsere Behauptung bewiesen.

Bemerkung Wegen [¢|>1 folgt aus diesem Lemma, da} A*—N=3.
Lemma 8. Es sei N=1 (mod 4), und sei {«, A;} ein Zahlensystem in R(YN)..

Dann ist 7‘1{—(B2—N)—1 =|a|, wobei a=—21-(B:i:VZTI).

Beweis. Wir nehmen an, da

% (B*—N)— 1| <|a| gilt. Wegen a=%(B:l: YN) ist:

%(B+VN)-—;—(B—VM .
B (BT

1.

_1<

Ist oc=%(B+l/]_\7), so gilt —1<—21—(B¥VJ_\I)—2(B+VJ_V)‘1<1. Das ist aber wegen,

den Bedingungen N=5, B<—}N und |«|>1 unmdoglich. Ist aber a=%(B— YN),
so muB} gelten: ‘ o

. 1 2
4.9 —1<—2—(B+V_1\7)—B_1/]_V_<1.
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‘Wir zeigen, daB auch (4.4) unmdoglich ist. Bei festgelegtem N=S5 ist die Funktion
—\-1
} y=x+%}/ﬁ— (x—-zl—l/N) im Intervall (— oo, 0) monoton wachsend und in die-

sem Intervall ist y=—1 nur fiir

@.5) x=—;-(—l—V5+N+2VN).

Deshalb, im Falle
4.6) B=—1-V5+N+2VN

kann (4.4) nicht gelten. Da {o, A;} ein Zahlensystem in R(V]V) ist, deshalb gilt
—VYN+4—-2. Durch eine einfache Rechnung ergibt sich

—YN+4-2<-1-)5+N+2}N.

-1
Auf Grund von (4.6), (4.5) und da die Funktion y=x+% YN— (x—-% VN) im

Intervall (— <o, 0) monoton wachsend ist, kann (4.4) nicht erfiilit sein. Damit ist
unsere Behauptung bewiesen.

Bemerkung. Wegen |a|>1, auf Grund von diesem Lemma gilt %(Bz—N)é&

Jetzt sind wir imstande Satz 2 zu beweisen.

Es sei {0, 4;} ein Zahlensystem in R(YN) und bezeichne C das groBte Ele-
ment von A;. Nach Lemma 7 und 8 ist |C|=|¢|] und C=2, Daraus folgt fiir eine
beliebige natiirliche Zahl n=1:

1

all

1

@7 c —=x|-

Da N quadratfrei und 4, B ganze Zahlen sind, sind 4+}JN und -;—(B:I: VN)

irrationale Zahlen. Deshalb bilden die ganzzahligen Vielfachen von o mod 1 eine
iiberall dichte Menge in [0, 1]. Daraus folgt, daB die reellen Zahlen der Form X+ Yo
(X, Y sind ganze Zahlen) — die ganzen Zahlen von R(JN) — im Intervall (— oo, o)
iiberall dicht sind.

Es sei X eine beliebige reelle Zahl. Wir zeigen, daB X in der Form (1.2) geschrie-
ben werden kann. Es sei ,BER(VN) eine ganze Zahl, fiir welche B€(x, x+ 1). Es
existiert wegen (4.7) ein r,€A; mit

ﬂx=ﬁ+%<x§ﬂ+ =t
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(weil a<0 ist). Durch wiederholte Anwendung von (4.7) erhalten wir, daB es ein
r_,€N; existiert, mit
r_o—

r_
B+ = =x< ﬁ1+—a§2' = B,

(weil «2=>0), ferner, wegen (4.7) existiert auch ein r_z;€.4; mit

r_ r_,—1
Bs= ﬁz""&s—s =X §ﬁz+__2'§_'

Setzen wir diesen Algorithmus fort, so erhalten wir eine Folge 8, (n=1,2,...) fiir
die man nach dem ersten Satz hat:

a) r_,eA4; (n=1,2,..),
b) lim ﬁ,,-—x (wegen |o|=1 und Byir<x<Pu (k 0,1,..)),
¢) B=rpd+...+ra+ry mit reM (i=0,1, ..., 1).

So ist f,= > rf und deshalb x=> ref mit ricA;. Offensichtlich ist die
i=1 i=1

Wahl von B nicht eindeutig, da die ganzen Zahlen von R(VN) auf der Zahlen-
gerade iiberall dicht liegen: so ist die Form (1.2) von x auch nicht eindeutig. Damit
ist unsere Behauptung bewiesen.
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On Cy-operators with property (P)

L. KERCHY

1. H. Bercovicl [1] has considered the class # of Hilbert space operators T
of class C, having the following property:
(P) any injection X€{T} is a quasi-affinity.

He has shown that 7€ if and only if K m,[T]=1, where m,[T] (n=1,2,..))
n=1

are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].)

He has proved, furthermore, that every operator 7€¢% has the following
stronger property also:

(P*) for any Xc{T} we have yr(ker X)=y(ker X™).

{Cf. Theorem 7.9 of [1].) Here yr(ker X) and y;(ker X*) are generalized inner func-
tions; they play the roles of determinants of the operators Tlker X and T, x«-
(Cf. sections 6 and 7 of [1].)

Let ¢ be the following relation on the class 2: T; 9T, if there exist 7€ and
Xe{TY such that T, and T, are quasisimilar to Tlker X and T x«, thatis, T}~
~Tlker X, and To~ Ty x«- Then the previous statement can be written in the
following form. If T,, T,6€# and T;0T,, then Yr, =71, (because yr is a quasi-
similarity invariant).

Bercovici has also proved a partial converse of this statement. Namely, he has
proved that if Ty, 7,6 are weak contractions and V1, =7V1,5 then T,0T7,. On
the other hand he has shown that if T, 7,62 are such that Y1, =71, then there
exists S€2 such that 7,95 and S¢7,. The main purpose of this note is to prove
the complete converse of the statement mentioned above, namely,

Theorem. If Ty, T,¢? are such that YT, =V1ys then T, 0T,.

Thus the operators of class £ have, in general, no stronger property than (P*).
In particular, in general it is not true that an operator 7€Z has the property:

(Q) Tlker X and T, . are quasisimilar for any X¢{T}"
(Cf. [2])

Received November 19, 1979.
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Furthermore, from the Theorem we can easily infer that ¢ is an equivalence
relation on 2.

2. In the sections 6 and 7 of [1] Bercovicl introduced the notions of “gen-
eralized inner function” and ¢C,-dimension of a subspace” in the following way.
Any inner function m€H;” has a factorization m=chs, where ¢ is a complex
constant of modulus one, b is a Blaschke product and s is a singular inner function
deriving from a finite Borel measure p on [0, 2n], singular with respect to Lebesgue
measure. (Cf. [3], Ch. I11.) Let us denote by o (z) the multiplicity of the zero z (|z|<1)
in the Blaschke product 5. Then y(m) will denote the pair y(m)=(s, 1). The class
I of “generalized inner functions” will be the set of pairs y=(o, y), where o is a
natural number valued function defined on D={z: |z|<1} such that ()2;0(1 —lz)=

<o, and p is a (not necessarily finite) Borel measure on [0, 27], which is absolute
continuous with respect to a finite Borel measure v singular with respect to Lebesgue
measure. We define addition and lattice operations in I’ by components.
If T¢#, then it can be proved that y;:= f y(m)EL, where the m;=m;[T]
ji=0

are the inner functions in the Jordan model of 7. (Cf. Theorem 4.1 and Proposi-
tion 6.6 of [1].) If T is an operator of class Co and MeLat, (T) is such that Ty€2,
then y; (M) is defined as yT(i)R)=mi.

For two operators T and T’ we denote by S£(T”, T) the set of intertwining
operators S(T’, T)={X|T'X=XT}. If T'=T, then S(T, T)={T} is the com-
mutant of T.

The next Lemmas will be frequently used in the sequel.

Lemma 1. Let {m,};>, be a sequence of pairwise relatively prime inner func-
tions having a least common multiple m. Then the operator T= é; S(m,) is quasi-

=0

similar.to S(m).
Proof. Cf. Theorem 2.7 of [4]).

Lemma 2. Let m;, m, be inner functions.
() If my divides my (myz=my) and Xu=Pg,  u for all uc$H(my), then
XeSI(S(my), S(my)) is surjective and S(my)|ker X is unitarily equivalent to S (ﬁ]

my
[S(m,)|ker X=S (%]] .
(i) If my=m, and Xu=l"':iu for all ueH(m,), then X¢F(S(my), S(my)) is
1

L. m
injective and S(my),..x»=S |—|.
m
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Proof. We can easily verify this statement by a short computation.

Lemma 3. (Proposition 4.6 of [1]) Let T be an operator of class C, acting-
on $ and let H;cLat(T) be such that H;C9H;., (j=1,2,...), and H= V 9H;.
Then Te? if and only if Tg€?, &;=9;1.09; (j=0,1,2, ...; 50—{0}) and
/\ mo[Tgr]=1. (If S is an operator of class Cy, then m,[S] denotes its minimal

functlon )

3. Firstly 'we shall prove the statement of the Theorem in different special
cases in the Propositions 1 and 2, from which the general situation can be derived.
We remark that it can be always supposed that 7; and 7, are Jordan operators.
In the proofs of Propositions 1 and 2 we shall need the next Lemma.

Let us denote by > the set of injections a: N-NU(—N)=N satisfying the
conditions:

() if 1=i<j and ¢(@)e(j)=0, then |o()|<lo(/);

(i) if réo(N), then for all s¢ N such that s-r=0 and |s]<|r] we have s€a(N).
(Here and in the sequel N is the set of natural numbers 1,2, ....) Let ¥ be the set
of sequences: a={a,};>, of real numbers such that' ¢;=za,=...=0 and 4,~0
as n—oo. If a,b€9, then let F,, denote the mapping N—~R defined by

a;, if iEN,
F“’"’)(i)={—bi, if ie(=N).
Lemma 4. Let a, b€Y satisfy the condition: if b,=0 for some néEN, then
there exists mEN such that a,=0. If f a,= fb,,, then there exists a 6€J
such that for all ne N we have " "

0= Z"' Fio,1y(0(i)) = 2 max (a,, b))
i=1
Surthermore Zn' Fion(0@) tends to 0, if n tends to .
i=1 ’

Proof. Let o(1)=1. If we have already defined ¢ for i=1,2,...,j, and
max {o(})}i=1, ..., j}=r;, min {{e()|i=1, ..., ;)}U{0})}= —s;, then

j
_(Sj+ 1) lf % F(a’b)(o'(i)) = bsl+1’

r;+1  otherwise.

o(j+1) =

It can be easily seen that this a¢> will be suitable.

Proposition 1. If Ty, T,€2 are such that yr =yr,=y and y has the form
y=(0,0), then T,0T,.
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Proof. Let T, and T, be the Jordan operators T,= é S(u,) -and T,=
n=1

= é S(v,). From the assumption it follows that u#, and v, are Blaschke products
n=1
having the same zeros (disregarding multiplicities)' 71545 .... Forall n u, and v,

have factorizations u,= ]] U, 15 Ug= ]] v, ;> where u, , and v, are Blaschke factors

-containing only /, as a zero (If 4, 1s not a zero of u, (v,), then u, ;=1 (v, ;:=1).)

Let us denote by ¢ and b the multiplicities of 4, as zero of v, ; and of u,,,
respectively. Then a,= {af,”},‘,’;l, b= {b{}r.,€9, and by virtue of y; =yr, we have

5 d®= 3 b® for all IEN.
-n= =1

By Lemma 4 there exists a 6,€ > such that
i
0= 3 Fu, »,y(c:()) = 2 max (a{”, b{")
i=1

for all j€N. Let ¢{ be defined by ¢ :.21' Fo5y(0/()), and let

I -z}
wiP (z) = (]l:] 1 ’—7,2 ) it 20,
=" if 3,=0; jEN, z€D.
It is clear that w{’ =1, if j is large enough. So the operator T, defined by T,= él S(WP)
has finite multiplicity. On the other hand by the construction it follows that my[7}]=
=(uy, Vo, )%
Let X; be the contraction defined by X,(j@1 £ =j§l g;» where ,-éél fis

_EB EGB HSWP) and g,=0
Poosnfi-y if w2y = wid,

o
& w(') —=f1-1 i Wi =w® for j=2.

By Lemma 2 we infer that X,¢ {7}’ and T|ker X,= EB S (U, 1), (T,)kcr xr = é S(v,,)).
n=1 n=1
Since /\ mo[® T)= /\ ( ]] (41, Vo, )®)=1, by Lemma3 we see that
T= 69 T,e.@ Then X= @ X€ {T} and using Lemma 1 we get

Tiker X = @ Tifker X, = & (& S0n0) = & (& 56 ~ & 56 =T,
=1 n=1

I_ =1

and simildrly Tyeex+~Tp. Therefore, T;0T, and Proposition 1 is proved.
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Proposition 2. If Ty, T,€? are such that yr =yr,=7 and y has the form
y=(0, ), then T, 0T,.

Proof.

(i) Let T; and T, be the Jordan operators Ty= é S(u,) and T-2-= 'EB S(,).

. . . ' . n=1 n=1

From the assumption it follows that there exist a finite Borel .measure v in [0, 27],
singular with respect to Lebesgue measure, and non-increasing sequences {f;}n;,
{g.):>., of non-negative Borel functions from L'(v) which are tending to 0 and

such that _
Exp[f.) =u, and Exp[g,] =v, for all n

Here and in the sequel we use the notations
etttz .
Explf, E](z) = exp [— [ eT_—Zf(t)dv(t)] (z6D), and Exp[f]=Exp[£[0,2q]],
E

for any non-negative Borel function f¢L'(v), and measurable set Ec[0, 2x]. ’
Therefore we see that f(t)={f,()}:2,, g(t)={g.,()};=;€% for all ¢ in [0, 27].
Furthermore we can assume that

5’ fut) = 5 g,(t) for all ¢ in [0, 2],

(i) Let £ be the measurable set of points ¢ in [0, 2x] such that a=g(¢r) and
b=f(t) satisfy the assumptions of Lemma 4. If t€E let 6,3 be the function
constructed in the proof of Lemma 4 taking a=g(¢) and b=f(¢). For all jeN
let 2;€L'(v) be the measurable function defined by

]
__Zl' Fow, raplo: () if t€E}

0 otherwise.

hy(r) =

By Lemma 4 we infer that
0 = h;(¢) = 2max (f,(2), g:(t))
for all jeN, t€[0, 27], and
jli_noao hi(t)=0 forall r€[0,2n]}

Introducing the inner functions {w;};, by w;=Exp [k;], we consider the operator
@ Sw)).
j=1 -

_(iii) We shall show that @ S(w;)€2. By Lemma 3 it is enough to prove

j=1
that m= A my[ P Sw;)]=1.
k=1 j=k

8
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Let ¢ be an arbitrary positive number. There exists a positive é such that if
H is a Borel set and v(H)<d, then f 2 max {f;(¢), g:(¢)}dv(t)<e. By Egorov’s
H

theorem we infer that there exists a Borel set H, such that v(H)<4 and the sequence
{h;};~, converges uniformly to zero on the complement CH,=[0, 2n]\H,. So
there exists a k, such that for all j>k, and t€¢CH, we have h;(t)<e. Therefore
if j>k,, then for all #¢[0,2n] we have h;(r)= h,(t), where h, is the function
defined by

e if teCH,,

R = { )
= 2max (1,0, ga() i reH,.
We infer that the inner function m satisfies the inequality

m = Exp [A,].
Therefore we have

2 )
n(©)] = [Exp [£1(0)] = exp[— [ A()dv(®)] =
=exp[- [AR@Odv@®)- [F()dv(@)] = exp[—e—z-v([0, 27])].
H, CH,

Since ¢ can be chosen arbitrary small, so |m(0)|=1. That is, m=1.
(iv) Let E; ; denote the measurable subset of E defined by

Ej,i = {tEE: at(j'l'l) = l}

for all jeN and i€N. Then {E; };cn cx Will be a system of subsets of E such
that the systems {E; ,};. 5 and {Ej ,}Je ~ consist of pairwise disjoint sets for all ﬁxed
jEN and i€N, respectxve]y, furthermore U =E for all jEN, (U

D{tcE|g(t)=0} if i€N and (U D{tEEIf(t)>0} if ic(—N).

For all jEN let S; be the operator defined by §;=S; 89S, ., where §;,=
=i§% S(Exp [k, E; ;)) and Sj'2=i§?v S(Exp [~;+1, Ej, ).

By Lemma 1 we infer that S, ; and §; , are quasisimilar to S(w;) and S(w;,1),

respectively, for all jc N, Therefore the operator S= é S; is quasisimilar to the
j=1

operator (é S(w,-))ea(é; S(w;)), which belongs to £ by section (iii) and Proposi-
j=1 j=2
tion 4.4 of [1}. By Corollary 4.3 of [1} we see that S€Z.
Since S;, , is quasisimilar to S;,, ;, there exists a quasiaffinity Y ;€ #(S;.1,1, S}, 2)
(JEN). We may assume that Y; is a contraction.
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For all jEN, i€ N let
Z; € f(S(EXP [h41, E;,i])> S(Exp [h;, E;, -]))
be the operator defined by

Exp[h;.1, E;,] .

——2 Ly, if €N,
Zj,i'n - Exp [hj,Ej,l]

P5(EXP[hj+1,Ej,i])n1 if IE(_N),

where me H(Exp [h;, E; |]).
Then for all jEeN we infer that Z;= @ Z; £ F5(S;,2, S}, -
i€n

Let X<{SY} be the operator defined by
XIEEBN S(Exp[h;, E; ) =Z; and Xlé% SExplhj, E;D=7Y;

for all jEN.

Then by Lemmas 1 and 2 we infer

Siker X = & (& SExo 11 B ) = & (8 SExoLfin £,.D) ~

Jj=1\i=1,

~ @ SExplfi, E]), and similarly,

i=1

SkerX* ~ _6_91 S(EXp [gi9 E])

(v) It is clear that for all ¢ CE=[0, 2n]\ E we have that a=f(t) and b=g(t)
satisfy the assumptions of Lemma 4. Replacing E, f,(?), g.(t), dv(¢) by (CE) =
={t€[0, 2n)2n —t€CE}, g,2n—1t), f,(2n—t) and dv(2n—t), respectively, we
repeat the reasoning of the sections (ii), (iif) and (iv). Also taking adjoints we get
that there exist operators R€# and Y€ {R} such that

Riker¥ ~|@® S(Exp[fi, CE) and Ryeys ~ @ S(Exp lgi, CED.
i=1 i=1

Therefore, the operator T=S@®R will belong to 2, Z=XapYc{T}, and
by Lemma 1

TlkerZ~ @ SExpfi) = Ta,  Tierz ~ D SExp el = T..

That is, T; 0T, and the Proposition 2 is proved.

8*
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Proof of the Theorem. Let T} and T, be the Jordan operators Tl=é Su,)
n=1

and T,=@ S(v,). The inner functions u,, v, have canonical factorizations
n=1
Up=Up 1 Uy g, Un=Up 1" Un g, Where u,,, v, are Blaschke products, u, ,, v, o are

singular inner functions for all #€N. Introducing the operators 75 ;= é S,
n=1

and T, ;= é S(v,,) (i=1,2) we infer by Propositions 1 and 2 that Ty.07:,
n=1

and T, ,0T; ,. Taking direct sums and using Lemma 1 we see that T;0T,. The

proof is done.

4. By this Theorem and Theorem 7.9 of [1] we infer:
Corollary 1. For Ty, To€? we have T,oT, if and only if yr =vr,.
We list some immediate consequences of this Corollary.

Corollary 2. g is an equivalence relation on 2.

Corollary 3. Let us suppose that TcP, H,¢Lat (T) and yri(ﬁi)=(a,~, 1),
where p; is o-finite (i=1,2). If TyoT, and (T1|9) o(T:|Ds), then (T)sito(To)sf-

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the
above Corollary 1.

Corollary 4. Let T, S be operators of class P acting on the spaces H and K,
respectively, and let $H;cLat(T), K;€Lat(S) be such that H;TH;41, K;CR; 4y

(=1,2,..) and V $;=9, V &;=8 If (T|$)e(SI]) for all j=1,2,...,
=1 f=1
then TpS. ’ !

Proof. This follows from Corollary 1 and Lemma 7.4 of [1].
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Contributions to the ideal theory of semigroups

S. LAJOS

Let S be a semigroup. A subsemigroup 4 of S is said to be an (m, n)-ideal of
§ if the inclusion A™SA"C A4 holds, where m, n are non-negative integers, A4° is
the empty symbol. The author [4] proved that the product of two (1, 1)-ideals of S
is again a (1, 1)-ideal. Thus the collection of all (1, 1)-ideals of a semigroup S is a
semigroup with respect to the ordinary set product. This semigroup will be denoted
by B(S). Also, the collection of all left [right] ideals of S is a multiplicative semi-
group. This semigroup will be denoted by L(S)[R(S)]. It is easy to see, that L(S)
is a right ideal and R(S) is a left ideal of B(S). Their intersection, the multiplicative
semigroup of all two-sided- ideals of S is a quasi-ideal of B(S).

In this short note certain classes of semigroups will be characterized by prop-
erties of the semigroups B(S) and L(S). For the undefined notions and notations
we refer to [1], [2], and [12].

We begin with two lemmas.

Lemma 1. A semigroup S is regular if and only if BSB=B holds for every
bi-ideal B of S.
This is an easy consequence of a result by J. Lun [10].

Lemma 2. A semigroup S is a semilattice of groups if and only if the inter-
section of any two (1, 1)-ideals of S is equal to their product.

For this criterion, see the author [5] or [6].
Our first main result is contained in the following

Theorem 1. For a semigroup S the following conditions are equivalent:

(1) S is a semilattice of groups.

(2) B(S) is a distributive latiice with respect to the set product and the set-theo-
retical union.

(3) B(S) is a regular monoid with respect to the set product.

Received January 30, 1979.
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Proof. (1)=(2): If S is a semigroup which is a semilattice of groups, then
every bi-ideal of S is a two-sided ideal of S. Hence this implication is straight-
forward by Lemma 2.

(2)=(1): by Theorem 1 of [6].

(1)=(3) is obvious.

(3)=(1): Suppose that S is a semigroup whose bi-ideal semigroup B(S) is
a regular monoid with respect to set product. If 4 is the identity element of B(S),
we have S=ASASA. Hence A=S. Therefore BS=SB=B holds for any
bi-ideal B of S, whence B is a two-sided ideal of S. On the other hand, the regularity
of B(S) together with Lemma 1 implies that S is regular. Thus S is a regular duo
:semigroup which is a semilattice of groups.

Corollary 1. If S is a semilattice, then B(S) is a distributive lattice. In partic-
wdar, if S is a diagonal semilattice (i.e., every non-zero element of S is an atom),
then B(S) is a Boolean algebra.

Corollary 2. The bi-ideal semigroup B(S) of a semigroup S is a Boolean algebra
if and only if S is a diagonal semilattice of groups.

The following criterion is due to the author [7].

Lemma 3. A semigroup S is a semilattice of left groups if and only if BN L=BL
holds for every bi-ideal B and every left ideal L of S.

By making use of Lemma 3, further characterizations can be given for semi-
.groups that are semilattices of left groups in term of the bi-ideal semigroup B(S).

Theorem 2. For a semigroup S the following conditions are equivalent:
1) S is a semilattice of left groups.
{2) B(S) is a band and S is a right identity of it.

© (3) B(S) is a regular semigroup and S is a right identity of it.

Proof. (1)=(2): If S is a semigroup which is a semilattice of left groups,
then, by Lemma 3, the relation LN R=RL holds for every left ideal L and every
right ideal R of S, thus S is regular. Moreover Lemma 3 implies BS=B for every
bi-ideal B of S, whence S is a right identity of B(.S). Then Lemma 1 implies that
every bi-ideal of S is globally idempotent, i.e., B(S) is a band.

(2)=(3) is clear.

(3)=(1): If (3) holds, then it follows that S is a regular left duo semigroup
which is a semilattice of left groups.

T. Sair6 [11] has proved the following criterion.

Lemma 4. A semigroup S is a semilattice of left simple semigroups if and
only if the intersection of any two left ideals of S is equal to their product.
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Now we are ready to prove the following result.

Theorem 3. For a semigroup S the following conditions are equivalent:

(1) S is a semilattice of left simple semigroups. ‘

(2) L(S) is a distributive lattice with respect to the set product and set-theoretical
union.

(3) L(S) is a multiplicative semilattice.

Proof. ()=(2): If S is a semilattice of left simple semigroups, then, by
Lemma 4, every left ideal of S is a two-sided ideal. Hence the implication follows
by Lemma 4.

(2)=(3) is obvious. Finally, (3)=(1) by [11].

Next an ideal-theoretical characterization will be given for homogroups. A semi-
group S is called a homogroup if it has a subgroup which is at the same time a two-
sided ideal of S (for an equivalent definition see [13]). For instance, a semigroup
with zero element is a homogroup.

Theorem 4. A4 semigroup S is a homogroup if and only if the bi-ideal semi-
group B(S) has a zero element. :

Proof. Let § be a homogroup with the group-ideal G. Let B be a bi-ideal
of S. Then the product BG is a right ideal of S, and BGS G. Hence it follows that
BG=G, because a group has no proper right ideals. Similarly, we get GB=G
and G is the zero element of B(S).

Conversely, if S is a semigroup whose bi-ideal semigroup has a zero element
Z, then we have SZ=ZS=Z. Hence Z is a two-sided ideal of S. For any element
z of Z the product Zz is a left ideal of S. Thus we have Z=Z(Zz)=Zz, since
the set product is associative for non-empty subsets of S. Similarly we get zZ=2Z
for any element z of Z. Therefore Z is a subgroup of S, and S is a homogroup,
indeed.

Remark. It is easy to see that Theorem 4 remains true with P(S) instead of
B(S), where P(S) is the power semigroup of S, i.e., the multiplicative semigroup
of all non-empty subsets of S.

Finally, we are interested in semigroups whose bi-ideal semigroup is a monoid.

Theorem 5. For a semigroup S the bi-ideal semigroup B(S) is a monoid if and
only if (i) every bi-ideal of S is a two-sided ideal of S, and (ii) every two-sided ideal of
S is complete (i.e. IS=SI=1).

Proof. First, let S be a semigroup having properties (i), (ii). Then the bi-ideal
semigroup B(S) is the multiplicative monoid of all two-sided ideals of S with the
identity S.
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Secondly, if the (1, 1)-ideals of a semigroup S form a monoid with identity 4,
then we have S=A4SAC 4, whence it follows that 4=S. Thus BS=SB=B
for every bi-ideal B of S, that is, every (1, 1)-ideal B is a complete (two-sided) ideal
of S. Theorem 5 is completely proved.

For the characterizations of completely regular semigroups in terms of (m, n)-
ideals, see the author [8] and [9].
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Selecting independent lines from a family of lines in a space

L. LOVASZ

0. Introduction. A family of flats in a projective space is called independent,.
if no member of the family intersects the flat spanned by the other members. It is
an interesting combinatorial problem to select a maximum number of independent
flats from a given family of flats. In the special case when all the flats are faces of”
a simplex, this question is equivalent to the so-called matching problem for hyper-
graphs: given a collection of sets, find the maximum number of disjoint ones among:
them. This problem is known to belong to the class of (in a sense) hardest combina--
torial problems, the so-called NP-complete problems (see [6]). Hence there is no
hope to solve it in a satisfactory way.

However, the special case of the matching problem when all the given sets.
are pairs, is well-solved [2, 4). This suggests that probably the problem of selecting
a maximum set of independent lines from a family of lines is solvable.

“Solution” here may mean two different things:

(a) find a minimax formula for the number in question;

(b) find an algorithm to determine this number such that the running time of”
the algorithm is polynomial in the number of data.

We shall present a solution in the sense of (a) (Theorem 2). It remains open.
if these methods can be extended (or other methods found) to yield a solution in
the sense (b), but we hope the answer is affirmative. The problem we discuss can
be considered as the so-called “matroid parity problem” for representable matroids.
(see LAWLER [3], Ch. 9). We shall discuss the difficulties of generalizing our methods,
along with other connections to matroid theory in section 5.

1. Some special cases and equivalents. The famous f-factor problem,“sgl;/’;iwg.y
TUTTE [5], is the following. Let G be a graph and f an integer-valued function on its:
vertex set V' (G). Does there exist a subgraph G” such that the degree of x in G’ is
f(x), for every x€V(G)?

Received March 1, 1978.
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This problem can be reduced to the line-selection problem as follows. Let,
for each x€V(G), A, be a flat of rank* f(x) in a projective space, such that the
flats {4,: x€V(G)} are independent. For each edge e=(x, y), select two points
PexCA, and p, €A, such that the points {p, .: e is a line adjacent to x} are in
general position on A, (i.e. no f(x) of them are contained in a proper subflat of
A,). Let & denote the line connecting p, , to p, ,. Then it is easy to verify that

a subgraph H has degree =f(x) at each point x iff the lines {é: ec E(H)} are
independent.

So G has an f-factor iff the family {é: e€ E(G)} contains 212' J(x) inde-

pendent lines. Our results therefore yield a necessary and sufficient condition for
the existence of an f-factor in a graph. Although our condition has features similar
to Tutte’s, to derive Tutte’s theorem from it is somewhat lengthy.

We may place the points p. x on 4, in such a way that they form an arbitrary
matroid embeddable in the projective space we consider. This yields then a solu-
tion to the “matchoid problem” of Edmonds in the special case when the matroids
prescribed at the vertices are representable.

Finally, we mention an equivalent version of our problem. Let 5# be a collec-
tion of lines which spans a rank r projective space P. Let v(#) be the maximum
number of independent lines in 2% and p () the minimum number of lines in #
‘which still span P. Then v(#)+u(s#)=r. This identity is a generalization of
Gallai’s identity in graph theory, and can be proved along the same lines. So we
also have a minimax formula for the minimum number of lines in a family which
span the same flat as the whole family. The transformation of Theorem 2 to this
‘version is left to the reader.

2, Preliminaries. Let P be a projective geometry over a (possibly skew) field.
We shall denote by X the span of the set XS P, i.e. the smallest flat (subspace)
«containing X. Each flat A in P has a rank r(4), which is one larger than its dimen-
sion. So # has rank 0, points have rank 1, lines have rank 2. We extend the nota-
tion of rank over arbitrary subsets of P by r(X)=r(X) and even over a collec-
tion J# of subsets of P by r(of)=r(Us#). Similarly, if 3¢ is a collection of sub-
sets of P we set 3¢ = U _

The rank satisfies the important identity

r(AUB)+r(ANB) =r(4)+r(B),
where A, B are flats.

* The rank r(4) of a projective space A4 is its dimension plus 1.
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We shall make use of the following very simple lemma:

Lemma 1. Let Ay, ..., Ay, D be flats in a prajective geometry and A;S D.
Assume that

3 (D)= r(4)} < (D).

k
Then () A;#9.

i=1

Proof. We show by induction on k that

F(4yN .0 A) = r(D)— é {r(D)—r(4)}.

This is trivially true if k=1. Let k=2. Then
(AN .0 4) =r(A,N . NA4_Y+r4)—r((A.N... .04, )UA4) =
= r(d,N...N A )+ r(4)—r(D).

Applying the induction hypothesis the assertion follows.
Q.E.D.

Recall that-a set of lines in a projective geometry is called independent if no
member of the set meets the span of the rest. It is immediately seen that each subset
of an independent set is independent. i

Lemma 2. Let & be a set of lines in a projective space. Then
) r(F) =2|#|.
Equality holds iff & is independent.
Proof. Let e€#. Then
rF)=r(@+r(F—e)—r(eNF —e) = r(F—e)+2—r(eNF—e).

Hence the inequality (1) follows by induction. If # is independent, then clearly
so is & —e and then equality in (1) follows by induction. On the other hand, if
equality holds in (1) then the computation above implies that r(eNF —e)=0, i.e.
eNF—e=0. Since this holds for every ec#, it follows that # is independent.

Q.E.D.

A set € of lines is called a circuit, if r(€)=2|%¢|—1 but every proper subset
of ¢ is independent. Thus a circuit is 2 minimal dependent set of lines; but not
every minimal dependent set of lines is a circuit, as shown by 3 lines in general posi-
tion in the space.
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Note that if ¥ is a circuit and ec% then
216|—1=1r(®) =r(@—e)+2—r(eN¥—e) =2|%|—r(eNé—e),
whence it is seen that e meets ¥—e in exactly one point.

Lemma 3. Let X be a set of lines such that r(A)=2|4|—1. Then A con-
tains exactly one circuit. :

Proof. Let ¥ be a minimal subset of ¢ with r(%¥)=2|%¢|—1. We claim that
all proper subsets of € are independent. In fact,

r@—e)=r@)-2+r(eNé—e) =2|€|-3+r(eNG—e) = 2|%—e|—1.
Equality here would contradict the minimality property of ¥. Hence ¥ —e is inde-
pendent for every e. This implies that € is a circuit.
Assume now indirectly that there is another circuit ¢’. Let e.g. f¢¥—%’.
We have
r(A—f) = r()=2+r(fONH—f) = 2[A'|=3+r(fN A —f).

But fNE—f =0 and so fNA—f=0. Hence H# —f is independent and so it

cannot contain any circuit.
Q.E.D.

Let 57 be an arbitrary set of lines in a projective geometry. Let v(5#) denote
the maximum number of independent lines in 5#. A set of v(3#) independent lines
will be called a basis of 2.

Let 4 be a basis of # and e a line not contained in #. Obviously, e must inter-
sect 2. Lemma 3 implies that %-+e contains a unique circuit, which will be called
the fundamental circuit of e relative to #. Trivially, the fundamental circuit of e
contains e. If e intersects a line f€4 then the fundamental circuit of e, relative to
2, is the set {e, f}.

If # is a basis, e a line not contained in 4, and- f a line of the fundamental
circuit of e relative to %, then %—f+e is another basis. We say that #—f+e
arises from % by elementary augmentation. Trivially, the inverse of an elementary
augmentation is an elementary augmentation as well.

3. Primitive sets of lines. In this section we discuss a special type of arrange-
ment of lines. These sets will be the most difficult cases in the proof of the main
result. A set 5 of lines in a projective space is called primitive, if the intersection
of spans of all bases is void.

Lemma 4. Let 3 be a primitive set of lines and B,, B, two bases of H#. Then
%, can be transformed into B, by elementary augmentations.
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Proof. Let &;, &, be two bases such that %; arises from %; by elementary
augmentations and [#;N%,| is maximal. If # =%, we are done by the remark
after the definition of elementary augmentation.

We claim that #,=%;. In fact, if B, =B, then there exists a line ec B,
such that eE%,. Let ¥ be the fundamental circuit of e relative to &;. Since &,
is independent, there exists a line f€4¢—%B;. B, =%B,+e—~f is a basis which arises
from %, by elementary augmentations and which has |2;N%;|>|8;N%,}, a con-
tradiction.

So we know that #,=%;. We want to show that %,=4,. Assume indirectly
that there exists a line e€%;—%,. Consider a basis %, which does not span e.
Such a basis exists since ## is primitive. Choose &;, %, and %, so that |81 B,
is maximal. Obviously, %,=%,, and hence, there exists a line g€, such that
gEB;,. Let €, ¥, denote the fundamental circuits of g relative to 4, and ..
We distinguish two cases.

Case 1. 4,#%,. Then ¥,E%,+g, since otherwise, #,+g would contain
two distinct circuits, contradicting Lemma 3. Similarly %, E%;+g. So we can
select lines f,6%,—%B,—g and f,€4,—B,—g. Now B/ =%B;—fi+g is a basis
arising from %; by elementary augmentations, and |%,N%;|>|8,N%,|, a con-
tradiction.

Case 2. 4,=%,. Then e¢%,=%,. Let f€¥,—%,, and put %' =%B,+g—f.
Now |%{N%B;|=|8,N B, |B{NB,|=|B N\ B, and since ec By, e¢ B,, this is a
contradiction.

Lemma 5. Let # be a primitive set of lines and A CH such that r(HA )=
=2v+2. Then the flats spanned by the circuits in A have no element in common.

Proof. Suppose indirectly that a point p is contained in the span of each
circuit in . Since S is primitive, there exists a basis #E # such that the span
of # does not contain p. Choose such a Z with |#2| maximal. Since r(Z+p)=
=2v+1<r(A), thereis a line ec# such that ¢eE#+p. Then p¢B+e. Let ¥
be the fundamental circuit of e relative to #. Then p¢% and so by the definition
of p, €EA. Let fc4—A, then B'=B—f+e is a basis such that p¢# and
|8 NA|=|BNA|, which is a contradiction.

Lemma 6. Let # be a primitive set. of lines, # a basis, e, fcH# such that
r(B+e+f)=2v+2. Let %, and 6, be the fundamental circuits of e and f, respectively,
relative to B. Then €,N\¥,=0. ‘

Proof. Suppose indirectly that %,N%,=0. Let %, ..., %, denote the circuits
in A =%B+e+f and let D; be the flat spanned by &;. For each uc€d, r(A —u)=
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=2v+1, since otherwise % —u would be an independent set of v+1 lines. Let
Ho = {ueA r(H—u) = 2v}.
If uc A —24, then A4 —u contains a unique circuit by Lemma 3. Let
A ={ucH—Hy: 6, S H—u).
Thus {y, Ay, ..., A} is a partition of &, and
G = A —Hy— A

%,N%,=0 implies now by Lemma 5 that r=3. Furthermore, we have

t
r(D) =2\ —Ay— A -1, r(U D,-] = 2| =AY —2.

1
(Here r(L_)1 D) =2 — A o|—2 is trivial; in the case of strict inequality Lemma 3

would imply that UD; contains only one circuit, which is not the case.) Now apply

Lemma 1:
D),
1
t
and so (1} D;#0. But this contradicts Lemma 5.

i=1
Call two lines e, f of a primitive set # coherent, if r(#+e+f)=2v+1 for
every basis 4.

1

2{r(Up)-roa} = 2 -1y = 21r-ap-1 <o

i=1

C-

i

Lemma 7. Coherence of lines is an equivalence relation.

Proof. Symmetry and reflexivity of coherence are evident. Suppose e and f,
moreover f and g, are coherent. We show that e and g are coherent. Suppose indi-
rectly that there exists a basis %, such that r(%,+e+g)=2v+2. Since s is primi-
tive, there exists another basis %, such that /& A,, and so r(B,+f)=2v+1. Choose
A, such that |#,NAB,| is maximum. Since r(#;+e+g)=>r(B,+f), there exists
a line h€B,+e+g such that AEA,+f, -i.e. such that

3) r(Bo+f+h) =2v+2.

So /1 is not coherent with fand so h=e,g. Thus Ac%,. Let ¥ denote the funda-
mental circuit of / relative to %,. Since ¥E£%,, we may choose a line /€¥—%,.
Then %,=%,+h—1 is a basis such that fEB; (since fELAB,+h by (3) and B,C
cZ +h) and moreover, |2, B,|>|%B,N%,|. This contradicts the choice of %,.
QE.D.

Lemma 8. Let & be a basis and e a line not in the span of 8. Let € denote
the fundamental circuit of e relative to &. Then all lines in € are coherent.
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Proof. Suppose indirectly that there is a line f€% such that e, f are not
coherent. Let #’ be a basis such that r(#’+e+f)=2v+2. From among all counter-
examples choose one in which |2’ 4| is maximal. Since r(# +e+f)=r(Z+f)
there is a line g€%’+e+f not contained in the span of #+f. Obviously, ge,f,
$0 g€ #’. Let %, denote the fundamental circuit of g relative to 4. Since r(%+f+g)=
=2v+2, if follows by Lemma 6 that ¢N%,=0. Hence if we replace any element
of 4,N# by g in 2, we obtain another basis #* which has the property that the
fundamental circuit of f'relative to #* is €, but |B*N%B’|=>|2NA’|, acontradiction.

Q.E.D.

Lemma 9. If 5 is primitive, e, fc# and e and f intersect, then e and f are
coherent.

Proof. Suppose not, then there exists a basis & such that r(#+e+f)=2v+2.

By an elementary augmentation we get a basis £’ such that e€#’ but fE4’. But

by eNf=0 the fundamental circuit of f relative to &’ is {e, f}, which contradicts.
Lemma 8.

Q.E.D.

Lemma 10. Let 5 be a primitive set of lines, B a basis of 5, e a line not in
the span of # and o the set of lines in B coherent to e. Then every line coherent to e
is contained in o+ e.

Proof. Let f be a line coherent to e. Let pce—% and ¢¢f, and denote by
g the line pg. Set #'=H#+¢g.

Claim 1. v(3#")=v. For suppose indirectly that #’ contains an independent.
set # of v+1 lines. Obviously, g€# and % —g is a basis of #. But
r(F—gtetNH=r(F) =2v+2,
which contradicts the assumption that e and f are coherent.

Claim 2. 5’ is primitive. This follows immediately from the fact that all bases:
of # are bases of 5.

Claim 3. If two lines of # are coherent in ¢’ then they are coherent in #»
for the same reason.

Claim 4. e, f and g are coherent in 5. This follows by Lemma 9.

Now by Lemma 8, all lines in the fundamental circuit of g relative to # are:
coherent to g in #’. By Claim 4, they are coherent to e in 3’ and so by Claim 3,
they are coherent to e in #. Thus gN& =0. Since p§o but pce, it follows
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that g has at least two points in. &/+e. But then gC./+e, and consequently
g€/ +e. q being an arbitrary point of £, it follows that fSo/+e.

Q.E.D.

Let #,, ..., 5, denote the equivalence classes of the relation of coherence.
‘Consider a basis & and set v;=[#N ;. Observe that the numbers v; are inde-
pendent of the choice of 4: in fact, they remain the same when an elementary aug-
mentation is carried out by Lemma 8, and every other basis can be obtained from £
by elementary augmentations by Lemma 4.

Our result on primitive set of lines can be summarized as follows:

S,

Theorem 1. Let # be a primitive set of lines. Then there exist flats A,, ..., 4;
with the following properties:
(i) Ay, ..., A, are disjoint.
(ii) Every line in S is contained in exactly one of A, ..., A;.
(iii) r(4)=2v;+1.
(iv) Every baszs contains precisely v; lines in A;.

W) v(#)= Z’V

Proof. Denote by 4; the flat spanned by 5#;. First we show that r(4,)=
=2v;+1. Let ecs#; and £ any basis not spanning e. Let &/,=%Ns#;. By Lemma 8,
the fundamental circuit of e relative to 4 is contained in «/+e. Hence r(«;+e)=
=2v;4+1. On the other hand, Lemma 10 implies that all lines of #; are contained
in o, +e. Hence A;=sf;+e and r(4)=2v;+1.

Thus (iii) and (iv) are proved. (v) follows immediately. If we show (i) then (11)
will be trivially true.

So let 1=i<j=k; we show that A4,NA4;=0. Let e}, e;c#;, and let Z
be a basis such that r(#+e;+e;)=2v+2 (such a basis exists by the definition of
the sets 3#). Let &, =%Ns#,. By the argument above, ¢, meets .izlz (t=i,j) and
A=sl,+e,. But -

r(4,U4) = (U U e, e)) = r(B+eit+e)—28 — sb— of)| =
= 2|B|+2-2\B — oA, — ;| = || +||+2 = r(4) +r(4)).

Hence 4; and 4; are disjoint.
Q.E.D.
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4. The main result.

Theorem 2. Let # be a set of lines in a projective geometry. Then the maxi-
mum number v(3¥) of independent lines in 3# is the minimum of the expression

r(4)— r(A)]

r(A)+ 2 >
where A, A, ..., A, are flats such that AZ A, (i=1,...,k) and for every e€s#
either eN A0 or there is an i such that eS A;. ’

Proof. 1. First we show that if # is a set of independent lines, .A, Ayy .oy Ay
are subspaces such that 4 < 4; and each line of & either meets 4 or is contained
in one of the A4;’s then

1#1= r(ay+ 3 [(ATED],

Let #; and &, denote the set of lines of # contained in 4; and meeting 4, respec-
tively. Let A; be the subspace spanned by & =% —%;_,—...—%,. Then r(4))=
=2|#/|. Moreover, the subspaces 4; are clearly independent and, therefore, so are
the subspaces 4N 4, i=0, ..., k. Hence

rA) = 3 (AN A).
i=0
Here r(A;NA)=r(4)+r(4)—r(4;UA)=r(4])+r(4)—r(4;), whence

.y Sr(A,-)—r(A) r(4iN4) V(A) r(4)
%= —""(A) 3 ’2 3

5 +r(4;NA4),

and using integrality,

EAE [if);—'—(ﬂ] +r(4iN 4),
Moreover, obviously | |=r(4NA4gy). Hence
k
I#1= Z 171 =r 4N H+ 2{[M]+ (A'mA)}

=i+ B[R]

II. We want to construct subspaces 4, 4, ..., 4, satisfying the conditions in
the theorem. We use induction on v(3#)=v. If 5 is primitive then the result is

9
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immediate by Theorem 1. So we may suppose that 3¢ is not primitive, i.e. there
exists a point p contained in the span of each basis. Delete the lines containing p
from % to obtain the system 5#;. Project the lines of 2%, from p onto a hyperplane
T. Let ¢’ be the projection of e on T, and ¢ ={e’: e€#,}.

The system 3, contains no v independent lines. In fact, if v lines from #,
are not independent, then neither are the corresponding lines in 5 ; if v lines from
J#, form a basis then p is contained in their span and hence the rank of their span
decreases by the projection from p.

So by the induction hypothesis, there exist flats D, Dy, ..., D, in T such that
DS D, (i=1,...,k); for each ecs#, the line e either meets D or is contained in
some D;; and
r(D)+ Zk' [———-——(Di) ; r(D)] =v—1

Consider now the subspaces 4=D-p, A;=D;+p. Obviously, AS A4,. Fur-
thermore, the lines in ¢ —3#, meet A, and so do all lines ¢ for which ¢’ meets D.
If ¢S D; then e A4;. Finally, r(4)=r(D)+1, r(4)=r(D)+1 and hence

r(Dy+1+ 2

i=1

r(d)— r(A)]

r(d)+ 2[ M]

EQED.

5. Connections with' matroid theory. The first question which comes up is whether
or not Theorem 2 remains valid in an arbitrary matroid. First of all, the definition
of independence of lines has to be done more carefully; let us accept the natural
solution that a set & of lines is independent if r(¥#)=2|%|. In this case the prob-
lem is equivalent to the so-called matroid parity problem (see LAWLER [3], Chap-
ter 9).

A counterexample to the analogue of Theorem 2 is any affine space, where #
consists of all lines parallel to a given one. Of course, if we extend our affine space
to a projective space then we could choose k=0, A the common ideal point of
our lines. But in general, there seems to be no hope to extend the original matroid
so as to achieve the validity of Theorem 2. The possiblity of “simulating” the flat
A inside the matroid seems to be a difficult, and probably not only technical, question.

It is clear that independence of lines does not define, in general, a matroid.
See e.g. Two disjoint lines and a third one meeting Qoth. There is a class of systems
of lines, however, for which the situation is different. Let us call a set 2 of lines
flexible, if r(eN #—e)=1 for each line ec#. For each ecs#, let p(e) be the
intersection of e with s#—e, if this exists, and an arbitrary point of e otherwise.
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The next proposition shows that independence of lines in a flexible set defines a.
matroid:

Proposition 1. Let 3 be a flexible set of lines. Then & S5 is independent
iff the set F'={p(e): e€F} of points is independent.

Proof. It is trivial that if & is independent then so is #’. Assume now that
&’ is independent. Then we prove by induction on |#| that if 4<% then

) HF'UY) = |F'|+]1%].

For 4=% this will mean that & is independent.
(4) is trivially true for ¥=0. Let ¥=0 and e<¥%. Then

r(F U9) =r(FU@-e)+1,

since 5 being flexible, e intersects #’ U (% — e) in precisely one point. This proves
(4) by induction.
Q.E.D.

Finally, let us point out one more matroid which is induced by a set of lines.
This is a certain analogue of the matching matroid of graphs by EpMonDs and FuL-
KERSON [1]. Let 2 be a set of lines. Call a subset ¥C 5 dispersive, if there exists.
a basis # of # such that r(BU%)=2v(#)+|%|.

Proposition 2. Dispersive sets form the independent sets of a matroid.

This proposition generalizes Lemma 8, and can be proved along the same lines:
Details are omitted.
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On the divergence of multiple orthogonal series

F. MORICZ and K. TANDORI

1. Preliminaries. Let I"=_>d<1 [0,1] be the unit cube in the d-dimensional
je

Euclidean space, where d=1 is a fixed integer. The points (X3, ..., X2)y (F1s vves Va)s +--
of I are denoted by the corresponding bold letters x,y,.... Let Z be the set of
d-tuples k=(k,, ..., k;) with positive integral coordinates, the tuple (1,...,1) is
denoted by 1. Z4 is partially ordered by agreeing that k=m iff k;=m; for each j.
Finally, we write

k, = mind k; and k*= maxdkj.

1sjs= 1=js

Let {¢,(x): k€Z%} be a d-dimensional orthonormal system on I, i.e. for every
k and m in Z¢ let

[ o on)dx = b (@x = dx;...dx,).
Id

In particular, if for each j=1,2,...,d the system {p{’(x)}>, is orthonormal on

I=[0, 1], then the functions
d o
(Pkl,.‘.,k.,(xn s Xg) = ]]1 %8’ (xj)

i=
are orthonormal on /.

We shall consider the d-multiple orthogonal series
M 2o X)) = 2 oo 2 Gy, kP, kd(F1s s Xa
k=1 k=1 kz=1
where {a,: k€Z4%} is a given system of numbers (coefficients). For any meéZ4 set
Sp(x) = . 2 mp(x) =

=k=
m, my
= Z o 2 ak]....,kdqpkl,...,kd(xl’ seey xd):
ky=1 ky=1

Received September 24, 1979.
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which is a rectangular partial sum of (1). In case my=...=my, S (x) is called a
square partial sum of (1). The spherical partial sums of (1) are defined as

S®=_ 3 aa® (r=dd+l,.)

ki 4. +k3=r

The following Theorem A has been published by a few authors, while The-
orems B and C were proved by the first author in [3] and [4].

Theorem A. If
a4
2 ai [ (log 2k))* < <o,
1

k=1 i=

hen the rectangular partial sums S_(x) of (1) converge a.e. on I as m, — .
Here and in the sequel log is of base 2.
Theorem B. If
2, ag (logk*)? <o,
k=1

then both the square partial sums S, . .(X) and the spherical partial sums S,(x) of
(1) converge a.e. on I° as n— oo,

The part concerning the spherical partial sums was stated in [3] in a slightly
different form, but the two statements are equivalent, because

k*)2=ki+... +hki=d(kY)

2 ai =0
k=1

Theorem C. If

then

d
Sa(x) = ox[ﬂlog 2m,-] a.e. onl®as m*—eco,
j=1

2. Results. In this paper we are going to show that these theorems are exact
in the sense that log n cannot be replaced by any sequence ¢(n) tending to < slower
than logn as n—~<. More precisely, let {¢(n)};~, be a non-decreasing sequence
of positive numbers for which

) e(n) = o(logn) (n —<).

Theorem 1. For every d=1 and {o(n)} satisfying (2), there exist an ortho-
normal system {p (x): k€Z%} and a system {a: K€Z1} of coefficients such that

€ 2 ai(log k¥ =202 (k*) <o
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and
@) lmsup [Sp(x)| =< a.e. on I°.

By virtue of Theorem B in case d=2 both the square partial sums and the
spherical partial sums of the series 1(21 a, ¢, (X) occurring in Theorem 1 converge a.e.

Theorem 2. For every dz=1 and {o(n)} satisfying (2), there exist an ortho-
normal system {p,(x): k€ Z%} and a system {b,: k€Z4} of coefficients such that

. [Sm (X)]
> bt <o d hm su
G kT =P logm*y'~Tg(m")

= aq.e. on Il

Theorems 1 and 2 for d=1 are well-known (see, e.g. [1, pp. 99—100]).

Theorem 3. For every d=2 and {o(n)} satisfying (2), there exist an ortho-
normal system {p, (x):)k€Z%} and a system {c,: K€Z%} of coefficients such that

S i (logk") <o
k=1

and

=c a.e. on I°

; 15wl
-’ logm) T o)

Again by Theorem B, both the square partial sums and the spherical partial
sums of the series kZ'l .0, (x) converge a.e.

Our last theorem states the a.e. divergence of the rectangular partial sums of
series (1) for a whole class of coefficient systems. A system {a,: k€Z4 “) of
coefficients is said to be non-increasing in absolute value if for every k, meZ4,

k=m = |a] = |ayl.

1t is clear that this is equivalent to the following: for every kéZ4 andj, 1=j=d,
we have

|ak1,...,kj-1,kj,kj+1....,kdl = lakly...,kj-l,kj"'l.kj-(-l ..... kdl'

Theorem 4. For every system {a: KEZ%} of coefficients, which is non-
increasing in absolute value and satisfies the relation

d
&) g’ ai ]_] (log 2k,)? = oo,
there exists an orthonormal system {p,(x): KEZ%} such that

(6) limsup |S,(x)] = a.e. on I°.
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If, in addition, for every me€Z% we have

d
) 2 at ] Qog2kgy = =,
then m*—<o can be replaced by‘m*—-oo in (6).

The two parts of Theorem 4 coincide for d=1. In this case Theorem 4 was
proved by the second author in [5].

3. Notations and an auxiliary result. For the sake of simplicity in notations, we
present the proofs only for the case d=2. We write (x, y) instead of x=(x,, x,)
and (k, I) instead of k=(k,, k).

We agree that {(a, b) means either the open interval (a, b), or one of the half-
closed intervals [a, b) and (g, b}, or the closed interval [a, b}. Given a function f(x, y)
defined on I? and a rectangle R={(a, b)X{c, d)SI?, let us put’

x—a y—c -
f(b—a’d———c-] if (x, )ER,

0 otherwise.

f(R; x,y) =

Given a set HS I3, let H(R) denote the set into which H is carried over by the
linear transformation ¥=(b—a)x+a and y=(d—c)y+c.

A set HSI (or 17 is said to be simple if H can be represented as the union
of finitely many disjoint intervals (or rectangles).

The proofs of all our theorems are based on the following basxc result of MEN-
Sov [2).

Lemma. For every positive integer n there exist a system {y{"(x)}., of step
Junctions, orthonormal on the interval I=[0, 1), and a simple set E™ of I such that

®) mes E® = C,

and for every xCE®™ there exists an integer x(x), 1=x(x)=n, such that Y™ (x)=
l,bx(x) (x)=0 and

)] kf) Y™ (x) = C,Vn log 2n.
=1

Here C, and C, denote positive constants. Further, if ECI (or CI?%), then
mes E denotes the Lebesgue measure of the set £ on the line (or on the plane).

4. Proof of Theorem 4. Part 1. By (5) and the non-increasing property of
{a3)7 1~ we have

2 22*(p+1)2(g+1)2aZes1_q 0001y = oo

0g=

Mg

P
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With the notation
A= 3 24(p41)P(g+1)%ad_y g0, (P=0,1,..)

0=p,g=r
max(p,q)=r

oo

this can be rewritten into the form 3 4,=<c. We can find a sequence {s,};=, of
r=0
positive numbers with the following properties:

lims, =0, s#4,=1 (r=0,1,..)

r—co

and
(10) Sstd, =
r=0

Without loss of generality we may assume that a,=0 for every k,[=1,2, ....

Our goal is to construct a system {@.(x, ¥)}5°;-, of step functions and a system
{H,,}; ;-0 of simple sets of 7% such that these functions be orthonormal on 72, these
sets be stochastically independent with

(1)  mesH,, = C}27*(p+1)*(g+1)°s2aze+1_; 00414 (r,g=0,1,..),
and for every (x, y)€H,,

m n C2
(12) D% A | 3 2 aupu(ny)| = —52—
where r=max (p, q).

The construction will be done by induction on r. If r=0, then let ¢, (x, y)=
=1/sya; on a rectangle H,, of area sia?, and let ¢ (x,»)=0 otherwise. Then
(11) and (12) are satisfied for p=g=0 provided C;,C,=1, which is the case.

Now let r, be a positive integer and assume that the step functions @ (x, )
are defined for k,/=1,2,...,2—1 and the simple sets H,, are defined for p, g=
=0, 1, ...,r,—1 such that these functions are orthonormal on I2%, these sets are
stochastically independent, and the relations (11) and (12) are satisfied for p, g=
=0,1, ..., 7o—1. We are going to define the step functions ¢, (x,y) of the ryth
block successively in the following arrangement: for

k=20,2041, ..., 20+ 1 and l=1;
k=20 20+1,...,20+1—1 and [=2,3;

....................................................................................

k=202041,..,20t1—1" and I=2%,20+1,.., 20+ ~1;
k=202 207241, ..., 2%—1 and I=2%,20+1,..,20%1—1;

k=23 | and L= 20, 2041, ., 20411
k= and =20, 2041, ..., 2041 1;
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.and the simple sets H, ,,H, ,,...H, ,,H _,,,...,H , ,H,, 6 insuch a way
i rg,0 rg 1 o To ro—L,ro 1,ry 0,rq
that the functions ¢ (x,») (k,/=1,2,...,2%% —1) be orthonormal on 72, the
sets H,, (p,q=0,1, ...,r) be stochastically independent, and the relations (11)
.and (12) be satisfied for p, ¢=0, 1, ..., r,.
For the sake of definiteness, let us assume that the sets H, ,, H, ,, ..., H,

r5,35—1

(1=g,=ry) and the functions ¢,(x, y) for k=2",2%+1, ..., 2°"—1 and I=1,2, ...
...,2%—1 have been appropriately defined. Let us apply Men$ov’s lemma firstly
‘with n=2", secondly with n=2%, and set

Porosk—1.29041-1 (% ¥) = PEFI() Yoy (k=1,2,...,20; 1=1,2,..,2%).

Then by (9) for every (x,y)€ F=E®?XE®™ we have

m n
max max | 3 3G, .. Poro k100111 V| =
1sm=20 1=nm2to | 51 5 2fo+k—1,29041—1 7 20 +k—1,29 +1—1

= C22 | 2r°+q°(r0+ 1)(q0+ 1)a2Po+1_1,2qo+1_1'
Let Q be an arbitrary rectangle in I? with
mes Q = 20+ %(ry+1)2(go+ l)zsfoag,oa_l‘zqo“_l

(the quantity on the right is not greater than 1 because of the choice of s,), and
let us “‘contract™ the functions @ from /2 to Q:

5 x,y) = ¢2'°+"—1.2‘70+1—1(Q§ X, ¥)
2F0 4k —1,290 +7-1 K V2ot (ry+1)(go+1)s,,azr0+11,200+1 1

(k=1,2,...,20; 1=1,2,...,2%).

Tt is not hard to check that these step functions are also orthonormal on 72, by (8)
(13) mes F(Q) = mes FmesQ = (mes E€)2 mesQ =

= Ci20%%(ro+1)%(qo+ 1) 58, B3rg41_y pqp+1_y>
and for every (x, y)€F(Q)

m o = C?
>(14) 1:,1"8;2'0 lgriléazx‘lo kgl' 1=21, a2’°+k—1.2q°+1—1(p2'0+k—l, 2qo+l—1(x’ y) = —570- "

Since the functions ¢,(x, y) and the sets H,, defined so far are step functions
.and simple sets, respectively, we can divide 72 into a finite number of disjoint rec-
tangles R,, R,, ..., R, such that each function ¢ (x,y) (&,I=1,2,...,2"—1;
k=27 2041, ..,20t 1 and [=1,2,...,2%—1) is constant on each R,
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(s=1,2, ...,0) and each set H,, (p, ¢=0, 1, ..., rq—1; p=r, and ¢=0,1, ..., g,—1)
is the union of certain R,. Let R, and R denote the two halves of R;, i.e., if R;=
={a, byX{c, d), then let R;=(a, (a+b)/2]X{c,d) and R;=((a+b)/2,b)X(c, d).
We set

-
(02"0+k_1’2110+[_1(x’ y) = Zqogro.*_k_l’qu..L]_l(R;; x’ y)_

aro_n.k 1,29 +1— 1(R.;': X, y) (k_ 1 2 °; l=1, 2: ---92q°)

ma

and

Hoo= (U 6RO (L_JIG(R;')),
where G=F(Q).

It is easy to verify that the step functions ¢u(x,y) (k,1=1,2,...,20—1;
k=20,2041,...,2%%—1 and =1, 2, ..., 29271 —1) form an orthonormal system
on I%, the simple sets H,, (p,q=0,1,...,r,—1; p=r, and ¢=0,1,...,q,) are
stochastically independent, by (13)

mes H, ,, = mes F(Q) = C72 %% (ry+1)%(q+ 13t 2r0+1—1,2qo+1_-1 s

and by (14) for every (x, y)€H

o 90
Zm' 2 :
max max a,, 2 @, " xy)=—.
1=m=2"0 1=n=2d0 | k=1 i= 2To+k—1,290 +1—-1 7 2M0+k—1,2% +I—1 sro

The above induction scheme shows that the orthonormal system {@u(x, )} -,
and the system {H,}> _, of stochastically independent sets can be defined so that
the conditions (11) and (12) hold true.

Putting (10) and (11) together we see that

(15) 2> 2 mes H,, = .
p=04g=0

Thus the second Borel—Cantelli lemma implies that almost every (x, y)€I® belongs
to an infinite number of sets H,,. Taking into account (12) this means that for aimost
every (x, y) there exist four sequences {m;}, {M;}, {n;} and {N;} of positive integers
such that m;=M; and n=N, (i=1,2, ...), max (m;, n)~>o as i—o, and

lim kZ 2 auPu(x, y)| =
Since the double sum in absolute value is equal to
SM;,N;(xa y)—SM(,"(—l(x9 y)—Sm;-l,N.-(x, y)+Sm1—1,m—1(x’ y)’
(6) follows.
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Part 2. Now suppose that (7) is also satisfied, i.e. for every m and n we have
k b 12: af, (log 2k)? (10g 21)? = oo
Then, using the non-increasing property of {aZ,}, for every r we have
2"2 20+4(p+ 1)2(q+1)2a30+1_y gora_y = oo
This makes it possible to define a sequence O=ro<r,<r,~<... of integers such that

A= 3 S e 1gr e =1 (=01, ..).
p=r;+1 g=r;+1 . .
Finally, let {s;};>, be a sequence of positive numbers with the properties
lims{ =0, ()P4i=1 (=0,1,..)
and o

(16) S (sl = .
i=0

After this modification we have only to repeat the construction of Part 1. Rela-
tions (11) and (16) imply that

o Tren T
> mes H,, = oo,

1 g=r;+1

-~
i}

o
-]
1
o
+

which is stronger than (15). The second Borel—Cantelli lemma yields that almost

every (x,y)€I? now belongs to an infinite number of sets H,, with r;<p,g=r;,,,

i=0, 1, ... . This already ensures that m*—c can be replaced by m —< in (6).
The proof of Theorem 4 is complete.

5. Proofs of Theorems 1—3 run along the same lines as that of Theorem 4
with the exception that now there is no need of a “‘contraction” of the functions @.
In particular, at present

o -
Qo rpor, 7 4i-1(X, ¥) = Z; Por+k-1,27+1-1(R53 X, ¥)— 21 Por k-1, 11-1(RS 5 %, ),
s= §=
where
Porsk-1,2741-106 V) =Y W () (k1=1,2,...,2; r=0,1,..),

while the other ¢,(x, ) are indifferent from our point of view (of course, they have
to be normal and orthogonal to each other). Further,

#,= (0 Fo)u( O F),
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where F=E®) < E®), By (8)
) : mes H,, = mes F = (mes E®))2 = C2,

Let g(n)=(¢(n) log n)*2. Then by (2)
o(n) =o0(g(n)) and g(n) =o(logn) (n ).
Hence there exists a sequence {n;=27}72, of.integers such that n;=2n;_, (n,=1),
o(m) _1 em _ 1 .
18 —— = — and =— if n=n
us) en) — j logn = j !
The definition of the coefficients is the following: set for k,/=1,2, ..., n;;
j=12, ...

(G=1,2..).

1 .
anj+k—1,'lj+l~1 - njé(zn‘,) log 2nj (ln Theorem 1)!
a(2ny) -
by +k-1,np41-1 = Wg—é;j— (in Theorem 2),
___e@ny . ;
an+k—1,nj+l—1 - n,(lOg 2nj)2 (ln Theorem 3)’

al’ld ak,:‘bk,:CkI:O fOI‘ k, l=1, 2, veny nl'_].;

k=n;,..,2n;—1 and I=1,2,..,n;—

L;
k=2n;,..,n;,,—1 and I=12,..,n;,,—1;

k=1,2,..,n;—1 and Il=n;,...,2n;—

=1
k=1,2..,2n,—1 and l=2n;..,n;,,—1; j=12,...
After this preparation it is quite easy to conclude the proofs. For example,
let us carry out the proof of Theorem 1.

If (x, y)EH,J, ' (recall n;=27), then by (9) and (18)

(19) b= DAX 2 2 aueulny)| =
jEMA<N;4.q k=n;+1 I=n;+1
ng n; (log 2nj)2

=CY (j=1,2,..).

n;@(2n;) log2n;
By virtue of the second Borel-—Cantelli lemma (17) implies that

mes(limsup H,,,) = 1.
jroo
Thus (19) provides (4).
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Besides, by (18)
> a} (log max (k, I))?¢? (max (k, )) =

n,§k,l<2n,

(log 2n;)20%(2n;) 1
22

ItA

2- G2 “= see Jo
"I RE G, (og 2nF = J (j=12..)

Since the remaining a,;=0, hence (3) follows immediately. This finishes the proof
of Theorem 1.
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Characterization of Lebesgue-type decomposition
of positive operators

K. NISHIO

1. Introduction

Our concerns in this paper are (bounded linear) positive, i.e. non-negative
definite, operators on a Hilbert space. Order relation among operators always refers.
to this notion of positivity; that is, B=A means B—A is positive. For conven-
ience, a positive operator B is said to dominate another 4 if aB=A for some «=0.

Given a positive operator 4, we say a positive operator C to be A-absolutely
continuous if there exists a sequence {C,} of positive operators such that C,tC’
and C,=u,A for some «,=0 (n=1,2,...). Here C,tC means that C,=C,=...
and C, converges strongly to C. In [2] ANDoO showed that for any positive operator
B there is the maximum of all A-absolutely continuous positive operators C such
that C=B, and established an algorithm for obtaining the maximum, denoted by
[4]B, in terms of parallel addition;

[41B = lim (n4): B.

Here the parallel sum A:B of two positive operators 4, B was introduced by ANDER-
soN and TrAPP [1] in study of electrical network connection; A:B is defined, in
operator matrix notation, as the maximum of all positive operators C such that:

(i a2 =(co)
=
A A+B) ~ \0 0)°
Meanwhile, PEKAREV and SMULJAN [6] introduced the notion of ‘complement of a
positive operator B with respect to a positive operator 4. When B dominates A%

the complement, denoted by B,, exists and is defined as the minimum of all positive
operators C such that

(B A

(E4=0

A C
Received February 9, 1979.
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They developed detailed analysis of the map B~-B, as well as the map B—(B,),
in connection with the reverse operation of parallel addition, that is, parallel sub-

traction.

Our first aim in this paper is to present algorithms for obtaining [4] B in terms
.of complement operation.

There is still an important binary operation for positive operators 4, B. It is
the geometric mean A4 B introduced by Pusz and WoroNowicz [7]; A# B is
defined as the maximum of all positive operators C such that

[AC
=
¢ 5)=0

Our second aim is to show that [4] B coincides with each of [4:B]B, [(4:B)% B,
{A+B]B and [(44 B)3B. Coincidence of [4:B]B and [(4:B)?B as well as
that of [44 B]lB and [(4 4 B)*B is not a trivial thing. As a consequence the
identities A# B=A%[A]B and A:B=A:[A]B will be established.

In the next section fundamental properties and lemmas of parallel sum, com-
plement and geometric mean are established in the form convenient for our aim.
The main results will be presented in the final section.

2. Parallel sum, complement and geometric mean

In this section all operators are positive unless otherwise mentioned.
The parallel sum A:B of two operators A, B is defined as the maximum of all
operators C satisfying

O G Af—B] = (g ?)]'

Explicit representation for A:B is given by

((4:B)f, f) = inf {(4h, h)+(Bg, g); f = h+g}.

If 4 and B are invertible
2 A:B=(4"'+B"H) L

The following properties of parallel addition can be derived easily from definition

(e.g. (1), [5D.
3 A:B=B:A and (A:B):C=A:(B:C).

“) (CAC):(CBC) = C(4:B)C.
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A consequence of (4) is
) (CAC):(CBC)~= C(4:B)C for invertible C.
) AjdA and BB implies A,:B,iA4:B.

As mentioned in the Introduction, given positive operators A,’B the r;iaximum
of all positive A-absolutely continuous C with C=B exists and is determined by

0 [4]B = lim (nd):B.

Moreover, it is known (see [2]) that [4]B=B .is equivalent. to the condition
®) the linear manifold {k; B*hcran (4%)} is dense in the whole space.
The following properties of the operation [4] can be derived easily from definition

(c-g- [2].

) [4]B=[C]B if 4 dominates C.
(10) |  [AI(B+C) = [4] B+[4]C.

A consequence of (10) is

an [B=[4]C if B=cC

More delicate properties are summarized in the following lemma.

Lemma 1. For any positive operator A the operation [A] has the following
properties;

(i) [4](B+ad)=[A]B+aAd for a=0 and B=0.
(i) If positive operators B and AP dominate each other for some p=>0, then
[4]B=B. :

Proof. (i) follows from the identity

2
(BA):(B+oad) = (&——EE] (((oc+ﬂ)A):B)+a°fﬂ A for o, p>0,

which is easily checked for invertible 4, B and then for general 4, B by (6) through
approximation of 4 by 4+¢l and B by B+el

(ii) Suppose B and 4? dominate each other. If p=1, 4 dominates A®, hence B.
This implies [4] B=B. Suppose 0<p~<1. Then there is X such that B=AP/? X4?%,
ker (X)=ker (4°) (see [4]) and the restriction X|,, - is an invertible operator
on ran (4)~, the closure of the range of 4. Now by (7) and (4)

B=[A]B=nA:B= A*2(nd'-?:X) 472,

10
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Since X|,,4)- 1S invertible and ker (X)=ker (4)=Xker (A¥~P), by virtue of con-
dition (8) [4'~P).X must coincide with X itself. Therefore by (7)
B = [A]B = APR([A*P)X) AP/* = AP/ X AP = B,
This completes the proof. R
Let 4, B be positive operators. It is known (e.g. [4], [7]) that there is a positive
operatnr C for which
' ) (B A
AC _
if and only if B dominates 42 In this case, there is the minimum of all such C.

-According to Pekarev—Smuljan [6] this minimum is called the complement of B
with respect to 4 and is denoted by B,. More explicit representation of B, is given by

1 B,=Z*Z,

where Z is the uniquely determined (bounded linear) operator such that 4=B*Z
and ker (Z*)oker (B) (e.g. [4], [7]). If B and A? dominate each other, the restric-
tion ZJ| . (.- is an invertible operator on ran (4)~. In particular,

=0

(13) B, =AB'A for invertible B.

The following properties of complement can be‘derived easily from definition (e.g. [7]).
14 B,=C, if B=C and C dominates A%

(15) BB implies (B,),!B, if B dominates A2

As a consequence of (15), B dominates 42 if and only if 4(B+el)~24 is bounded
above for ¢=>0. In this case

(16) B, = lai}lgA(B-i-aI)“A.
A little more effort will show
1)) B,= weak-lciPOJ (A+el)(B+e)7(A+el).

The following property and calculation rules of complement can be derived easily
by (16), (2) and (4) through approximation.

1) ‘ ' [42)(B,) = B, if B dominates A2
(19) (4:B)c = Ac+B; if both A4 and B dominate C2.
0 (A+B)c= Ac:B; if both A and B dominate C2.

Lemma 2. (PEKAREV and SMULIAN [6]) Let A, B be positive operators. Then
B dominates A if and only if B does A+ B. In this case, the following identity holds

BA+B == BA+2A+B.
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Proof. The first assertion is immediate from definition. The expected identity
is true when B is invertible. In fact, by (13)
Bs:g=(A+B)B™Y(4+B)= AB‘1A+2A+B B,+24+4B.
The general case results by (17) through approx1mat10n This completes the proof.
Lemma 3. The following three conditions for positive operators A, B and C
are mutually equivalent, :
(i) 4:B=C,
(i) A-C=(B-C),
(i) A—C=(4+B),.
If equality holds anywhere in (i) or (ii) or (iii) then equality holds everywhere. In
particular, the following identity holds
A:B=A—(A+B),.
Proof. By definition of parallel addition, (i) is equivalent to
(A -C A
=0
A A+B ’

which is equivalent to (iii) by definition of complement. On the other hand, the
identity
I 0] [A-—C A )(I —1] [A—C C )
1)U 4 a4+BJl0 )™\ ¢ B-C

implies the equivalence of (ii) and (iii). This completes the proof.
Given positive operators A, B there is the maximum of all positive operator C

such that
(£5)o
C B jm— .

This maximum is called the geometric mean of A and B, and is denoted by A3 B.
The following properties of geometric mean can be derived from definition (e.g.

131, [7D-

(03] A#B= A¥*(A-*BA-%)*4* for invertible A.

For general A, the geometric mean A #B can be computed by approximation.
(22) AtA and BB imply A,%+B,}A#B.

(23) (CAC)#(CBCY=C(A# B)C.

A consequence of (23) is
29 (CAC)#(CBC) = C(4#%# B)C for invertible C.

10*
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Lemma 4. For any positive operators A, B the following indentity holds
Ausp ¥ Bzp =A% B.

Proof. Let C=A4B. Clearly (see the second sentence after the proof of
Lemma 1) A4, B and A, dominate C? and moreover A=B., B=A. hold. This
implies 44 B=A¢ 3 B.. Reverse inequality follows immediately from the inequality

Ac# Bc = (A% B),
because (44 B), .z =A% B. This inequality is surely guaranteed whenever both
A and B dominate C2 In fact (13), (14) and (23) will yield
Ac# B = C(A+e)'C#C(B+<I)7IC
= C((A+eD) ¥ (B+e)™HC
=C((A+e#(B+e))C for >0,

the last equality resulting from (21), in which by (22) and (15) the last term
C((A+eD)# (B+e))™1C converges increasingly to (44 B)c on taking limit ¢—0.
This completes the proof.

Relations between parallel sum and geometric mean are gathered in the follow-
ing lemma.

Lemma 5. The following relations hold for. parallel sum and geometric mean.
() 27 (A#B)=A:B=|A+B| (4% B).
(i) (A+A%+B):(B+A+B)=A%B.
Proof. By using approximation, 4 can be assumed to be invertible. Let
C=A"*BA~}. Then by (5) and (24) the first inequality of (i) is equivalent to
‘ 271 (I C) = I:C,
-which is, in turn, equivalent to
271Ctr=C(I+C) !
by (21) and Lemma 3. But the last inequality is surely guaranteed by arithmetic-

geometric mean inequality for a positive operator. In the same way the second
inequality of (i) is equivalent to

CU+C) 1= ||A+B||1CYACH,
hence to
(I+C) 1= |4+ B|| 4.
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Since the inverse map converts order-relation, this last inequality is equivalent to
4+ B|| 1= A*(I+C) 43, '
which is surely guaranteed. (ii) results from the idéntity
’ (I+CH:(C+CH) = C?,

which is guaranteed by simple computation. This completes the proof.

3. Theorems

Theorem 1. For any positive operators A, B

[A]B = 133101 (B+eA)a)at-

If B dominates A, then
[A)B = (Bat)4t.

Proof. Suppose first that 4 and B dominate each other. Then by (12)
BA* = Z*Z,

where Z is an operator such that ker (Z)=ker (4%), 4*=B*Z and Z|,, - is
an invertible operator on ran (4)~. This implies that

VBt =2,
where V is a unitary operator on ran (4)~, and hence
(B3)*V*Bt = Z* Bt = A%,
Again by (12) the last identity leads to
(B,3).+ = B*VV*Bt = B=[A]B,

the last equality resulting from domination by 4. Thus the assertion is true in case
A and B dominate each other.

Suppose next that B dominates 4. Then for each » the operator (n4):B and 4
dominate each other, hence

(nd): B =[Al((n4): B) = ((nA):B) ;)43 = (B4})43,
which implies, by definition of [A4]B,
[A] B = (B 3) 4.

Since (B,1),3 is A-absolute continuous by (18), and [4] B is the maximum of all.
A-absolutely continuous C with C=B, the reverse inequality holds too, proving
the second assertion of the theorem.
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To prove the first assertion, remark that for any positive B and ¢=0, B+}¢e4
dominates A. Therefore by Lemma 1 (i) and the second assertion already proved

[A)B+e4 = [A)(B+eA) = (B+¢A4) 43) 4>
which leads to the first assertion on taking limit ¢—0. This completes the proof.
Theorem 2. For any positive operators A, B
[A]B=[A:B]B=[(A:B]B=(A—A:B),.;+A:B.
Proof. Let C=A4:B. Since 4, B=C and C dominates C2, by (9)
[41B = [C]B = [C?]B.
Further (10) (concavity) implies
[C3B = [CH(B-C)Y+[CYC = [CH(B-C)+C,
the last equality resulting from Lemma 1 (ii). On the other hand, by Lemma 3
B-C=(A4-C),
which together with (11) and C2-absolute continuity of (4—C) tmplies
[C(B-C)=(4—-C).
Now it remains to prove the relation
(A—C)c+C =[A]B.
To this end, for each n let B,=(rC):B and C,=A4:B,. Since 4 and A+ B,

dominate each other, Lemma 1 (ii) with p=% and with 42 instead of 4 shows

[4°1(4+B,) = A+B,,
and hence by Theorem 1
((A +Bn)A)A = A +Bn .

On the other hand, since the relation by Lemma 3

C,=A:B,= A—(A+B,),
yields
((A + Bn)A)A = (A - Cn)A ’

combination of these two relations leads to
A+B,=(4A-C,),.
Further Lemma 2, with 4—C, and C, instead of B and A4 respectively, shows
(A-C)y=(A-C)c,+C,+ 4.
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Therefore the following relation has been proved
B, =(4-C)c,+C,.
Since (3) (associativity and commutativity) implies

_ h

n
B, n+1

n+l1

((n+1)A):B) and C,= C,

the established relation becomes

n n
(n+1)A):B= . (A—n—H-C}C+ C,

which leads to
[A]B=(A—=C)c+C _
by (15) because A—_n% C converges decreasingly to A—C. This completes
the proof.
Corollary 3. For any positive operators A, B
A:B = A:[A]B.

Proof. Let C=A:B. Then definitely both 4 and B dominate C2. By Theo-
rem 2 it suffices to show A4:[C?%B=C. Calculation rules (19), (20) and Theorem 1
will yield . :

- C=[CC =((4:B)o)c = (Ac+Boe = (A)c:(Bo)e = A:[CIIB= 4:B=C.
This completes the proof. '
Theorém 4. For any positive operators A, B ‘
[4]1B = [A#B]B:[(A#B)Z]_B = A sp.
Proof. With C=A44# B Lemma 5 (ii) shows
4+Cy:(B+C)=C.

Then, in the proof of Theorem 2, replacement of 4 and B by 4+C and B+C,
respectively yields

[CI(B+C)=[CYB+C= Ac+C = [CY(B+C),

which implies by Lemma 1 (i)
[C1B=[C*B=A,.

On the other hand, Lemma 5 (i) together with (9) implies
[C1B=[A:B]B=[C?}B,
which completes the proof, because [4:B]B=[A]B by Theorem 2.
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Corollary 5. For any positive operators A, B
A# B = A#[A}B.

Proof. Let C=A#B. By Theorem 4 it suffices to prove A#[C%B=C.
Twice applications of Lemma 4 will show

C = Ac# Bc= (Ac)c# (Bo)cs
hence by Theorem 1

C=[CYA#[CI)B=A%[C)B=A#+B=C.
Therefore A= [C?B=C. This completes the proof.
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Integrability of Rees—Stanojevic sums

BABU RAM

1. A sequence {a,) of positive numbers is called quasi-monotone if n~#a4,;0
for some B, or equivalently if a,,,=a,(1+a/n).
We say that a sequence {@;) of numbers satisfies
Condition S* if a,—~0 as k—+-> and there exists a sequence (4,) such that
" (A4 is quasi-monotone, > A;<<co, and |da|=4, for all k.
k=0 .
Condition S$* is weaker than Condition § of Sidon introduced in [4].

Recently, Rees and STANOJEVIC [3] (see also GARRETT and STANOJEVIC [2])
introduced the modified cosine sums

M gn(x) = 1 > da, + j 2, da;cos kx
2 k=0 k=1Jj=k

and obtained a necessary and sufficient condition for the integrability of the limit
of these sums.

The object of this paper is to show that Condition S* is sufficient for integra-~
bility of the limit of (1).

2. We require the following lemmas for the proofs of our results:
Lemma 1. (FoMIN [1]) If |ci|=1, then

/

[

sin(k+1/2)x

ké;ck-—m-x/z— dx = C(n“l"l), l

where C is a positive absolute constant.

Lemma 2. (SzAsz [5]) If {a,) is quasi-monotone with J a,<<o, then na,—0
as n-—oo, .

Received March 22, 1979.
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3. We prove

Theorem. Let the sequence {a,) satisfy Condition S*. Then
g(x)= lim X [——1- day+ 2 dajcos kx]
) Neeoo p -1 2 =k
exists for x€(0,n] and g(x)eL(0, n).
Proof. We have '
g =2 [%Aa,‘-{- 2 dajcos kx] =
k=1 J=k

LI | n 1
= kgl'.EAak-*-kgl' a, cos kx—a,,+1D,,(x)+—-2- niy-

Making use of Abel’s transformation, we obtain

@ g(x) =

L | 1 1 1
= 32 dat 3 400,00+ 2]+ (D0 +5) ~nraDuD =yt e =

= k=

n-—1 .
= 2 Aaka(x)+anDn(x)_an+1Dn(x)'
k=1
The last two terms tend to zero as n—~o for x>0 and since
(D) =0(@1/x) if x#0 and 2 |day| <<,
k=0

the series f Aa, D (x) converges. Hence '}im gn(x) exists for x>0. Now applica-
k=1 e

tions of Abel’s transformation and Lemma 1 yield

oo

Aaka(x)I dx =

€) f |g(x)| dx =

A“l D, (x)’dx<

2t p,0)| ax =

=C Z'(k+l)|AAk| =
k=1

o aA
el

=C 2’(k+l)AAk+2Ca f"‘”

= c[f(kﬂ)
k=1

Ay (1 +E'J_Ak+1

= ckf' (k+1)

Aks .
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the last step being the consequence of A,(14a/k)=4,,,. But
kg";Ak = ,Zl (k+1) Ade+(n+1) 4, — ;.
Applications of 5 A,<< and Lemma 2 yield

@ kZ’ (k+1D) A4, = > A+ Ay <o
=1 k=1

(3) and (4) now imply the conclusion of the Theorem.
Corollary. Let {a) be a sequence satisfying the condition S*. Then

h (x)

%=

Zm daysin(k+1/2)x =
k=1

") €10, ).

converges for x€(0,n] and

Proof. This follows immediately, namely by (2), 2sin — g(x) h(x).
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Minimax theorems beyond topological vector spaces

L. L. STACHO

1. Introduction

The numerous applications and generalizations of von Neumann’s classical
minimax theorem constitute an important chapter of modern convex analysis.
However, all proofs make essential use of some variant of Brouwer’s fixed point
theorem, a result that has seemingly nothing to do with convexity but closely con-
nected with the vector space structure of R".

In his recent paper [3], I. Jo6 submitted a completely new and elementary
proof of Ky Fan’s minimax principle, based on a simple fixed point theorem that
can be easily proved by the usual methods of convex analysis. Now the converse
question arises: Is it possible to give an extension of the concept of convexity that
allows us to find a proof of Brouwer’s fixed point theorem proceeding along the
lines of the fixed point theorem in [3].

Unfortunately, we cannot furnish yet a definitive answer to this problem. How-
ever, by an examination of the proofs in [1] and [3] we can find a deep argument
that may provide some hope in an affirmative answer. Namely, these proofs do
not touch the algebraic structure of the underlying vector spaces and the only prop-
erty arising from convexity which is actually used is the trivial topological fact that
the interval [0, 1] is connected.

The main purpose of the present article is to show how these remarks yield
new generalizations of the Ky Fan and Brézis—Nirenberg—Stampacchia minimax
principles, respectively, for topological spaces that are richer but axiomatically
simpler than the familiar topological vector spaces.

Our goals will be the following three observations:

a) The most suitable concept in describing the topological situation that occurs
in the minimax principles is perhaps the interval space defined (in Section 2) as a
topological space equipped with a system of connected subsets that play the role

Received May 12, 1979.
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of closed segments in vector spaces. In such spaces the convexity of sets and quasi-
convexity of functions have a natural interpretation and Jo6’s method (even with
some simplifications) can be applied to establish an extension of Ky Fan’s minimax
theorem.

b) On the other hand, by shifting the emphasis from the topology on the order
structure of one of the underlying spaces, a little change in the crucial steps of [1]
(summarized there in formulae (3), (4), (5)) leads to a new elementary proof and
generalization for certain interval spaces of the Brézis—Nirenberg—Stampacchia
minimax theorem [4, p. 289] that provides a deeper explanation of the asymmetry
noted in [4, Remark p. 290].

c¢) We can answer by a counterexample a question of L. NIRENBERG [5, p. 144]
concerning the conjectured most general form of minimax theorems in topological
vector spaces.

I am indebted to 1. Joo for the stimulating discussions and for having called
my attention to Nirenberg’s question.

2. A Joo type minimax theorem in interval spaces

Definition. By an interval space we mean a topological space X endowed
with a mapping [., .]: XX X—{connected subsets of X} such that x,, x,€[xy, x,]=
=[xy, x,] for all X, x,€X.

In interval spaces it makes sense to speak of éonvexity in a natural way:

Definition. A subset X of an interval space X is convex if for every x,, x,€ K
we have [x,, x,JC K. Obviously, this concept preserves the following fundamental
properties of convexity in vector spaces:

Proposition 1. In any interval space X, convex sets are connected or empty.
The intersection of any family of convex sets is convex. The union of any increasing
(with respect to inclusion) net is convex.

For our purposes it is of more importance that, although convex functions
cannot be defined on interval spaces in a reasonable manner, the concept of quasi-
convexity of functions can be extended to interval spaces.

Definition. A function f mapping an interval space X into R is quasiconvex
or quasiconcave if f(z)=max {f(xy), f(x)} or f(z)=min {f(x,),f(x,)} whenever
X;, X;€ X and zC [x,, x,]. Thus fis quasiconvex [quasiconcave] iff the sets {x: f(x) =7y}
[{x: f(x)=y}] are convex for all y€R.

To extend the proof in [1] for interval spaces, we need the following generaliza-
tion of the fixed point theorem in [3]:
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Proposition 2. Let Y be an interval space, X a topological space and K(-)
a mapping of Y into the family of compact subsets of X, such that

(1) K(»)=P for all y€Y,
#)) K(Z)CK(J’DUK(J’e) whenever z€[yy1,y,] and yi,y.€Y,

A3 ﬂ K(y,) is connected or empty for every y,,...,y,£Y (n=1,2,..),
)] xEK(y) whenever y= hm Vi, X= llm x; and x,€K(y) for all icS. Then~
we have () K(y)#=0.
. yeY

Proof. We must show that the family K(Y) has the finite intersection brop--
erty, i.e.

(3) NKQy)=9 for every vy, ..., va€Y
i=1 '

for all nEN. We prove (3’) by induction on n. For n=1, (3") follows from (1).
Suppose that (3") holds for n=1, ...,k but there are yl,. s Yis1 Such that

ﬂ K(y})=9. Consider now the mapping y—K*(y)=K(»)N ﬂ K(y7). It readily

follows from our induction hypothesis that X*(y)=@ for all y€Y. Moreover,
(2) and (3) ensure that

(5) K*(2) is a connected subset of K*(yp)UK*(y;) for any z€[yf, y;].

By-definition, K*(3})NK*(y})=0. (5) implies that for every z€[y}, y3], the con-
nected set K*(z) is the disjoint union of the compact sets K*(2)NK*(y}) (j=1,2).
Hence

(5) either K*(z)cK*(y;) or K*(z2)cK*(y}) for any z€[y],y3].

Thus the sets S;={z€[y}, y3]: K*@)K*(¥))}(j=1, 2) aredisjoint non-empty and
S;US,=[y;, ¥i]. But from (4) we see that both S, and S, must be closed in
[}, 3] (In fact, let j=1 or 2 be fixed and let (y;: i€.#) be a netin S; with
yi—~y€lys, y3]. For any index i€.#, pick a point x;¢K*(y;) arbitrarily. Since by
the definition of S, the sets K*(y;) are contained in the compact K*(y}), for a
suitable subnet (x; : m€M) we have x; _,—x for some x€ K*(y}). Now (4) ensures
that x€ K*(y) whence K*(y)cK*(yJ)) However this contradicts our axiomatic
assumption that intervals are connected.

Theorem 1. Let X, Y be compact interval spaces and let f: XXY—R be a
continuous function such that
(6%) the subfunctions x—f(x,y) are quasiconcave for any fixed y€Y,
(6") the subfunctions y—f(x,y) are quasiconvex for any fixed x€X.
Then y,= max min f(x, )= min max f(x, y)=y*.
y ¥y x
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Proof. A standard compactness argument establishes that both y, and y* are
attained (thus the statement of Theorem 1 makes sense). Then obviously we have
7.=7*. The converse inequality y,=max min f(x, y)=y* is equivalent to the exist-

x oy

ence of some x,€X such that for all y€Y we have f(x,,y)=y*
For each ycY, let K(y) be defined by K(y)={x: f(x, »)=y*}. Thus to y, =y*
‘we have to show ﬂ K(y)#=90.

From the deﬁnmon of y* we see that K(y)=0 for any y€Y. The continuity of
fimplies that K(y) is compact and from (6*) we obtain that K(y) is convex for all
y€Y. From (6”) it follows K(2)={x: f(x, 2)=y*}c{x: max {f(x,y)):j=1, 2}=y*}=

2 2
= {x: fx,yp=y*}= U K(y;) whenever z¢[y,, y,]. Finally, also from the con-
i=1 j=1

tinuity of f we deduce (4). Since convex sets are connected or empty, Proposition 2
can be applied, whose conclusion is [} K(y)=0.
yevy

We close this section with the following question:
Question. Is there a choice of X, Y and K in Proposition 2 such that the
conclusion () K(y)=@ be a known equivalent of Brouwer’s fixed point theorem?
yey p

3. A generalization of the Brézis—Nirenberg—Stampacchia minimax theorem

Definition. We shall say that an interval space Y is Dedekind complete if for
every pair of points y,, y.€Y and convex subsets H,, H,CY with y,cH;(j=1,2)
and [y, yoJc HyUH, there exists z€ H, such that [y,, z]\{z}c H, or there exists
z€ H, such that [y,, z\{z}C H,.

Lemma 1. Let Y be a convex subset of some real Hausdorff topological vector

space with its natural interval structure {y,, yJ= {1 -y, +2iy,: 2€[0, 11} (for each
31, ¥.€Y). Then Y is a Dedekind complete interval space.

Proof. Given y,,y, and H,, H, as above, set z=(1—-2"y,+4*y, where
*=sup {A€[0, 1]: (1 — )y, +2y.€ H,}. Then z€[y,, y,] and [y;, zI\{z}C H; (j=1,2).

Proposition 3. Let X be an interval space, Y a Dedekind complete Haus-
dorff interval space and f: XXY—R a function such that

(T%) the subfunctions x—f(x, y) are quasiconcave on X and upper semicontinuous
.on any interval of X (for all fixed yeY).

(7) the subfunctions y—f(x, y) are quasiconvex on Y and lower semicontinuous
.on any interval of Y (for all fixed x€X). Then the family F of X-subsets defined by

(8) F={{x: f(x,y) = y}:yeY,y<y*}, where y* =infsup f(x, y),
_ sy
has the finite intersection property whenever y*=> — o,
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~ Proof. The definition of y* ensures that F=@ for any FEF (and F =0 if
y* > — ). Assume now that we have

Ds

® F; =0 for every choice of F,, ..., F,€F,

i=1

n+1l -
but (| F=0 where Ff, ..., F,., are some given elements of &. To complete the
i=1

proof, we show that this is impossible.
By (8) we may suppose that F={x: f(x, y)=yi} (=1, ...,n+1) with
Vis oo Vap1€Y and y*>yf=...=y;,,. Set

n+1

(10) G= N {x:fCx, y)) =7} and K@) ={x€G: f(x,y) >} forall ycY.
i=3

Now (7%) implies that each set K(y) is convex in X and from (10) and (9) we see that

K(y) ) {x:f(x, y) = %}’—}ﬂ:'{j: {x:f(x, yH= yl_-;-y_} #0 (forall ycY).

Also in this proof, the key property of the mapping y—K(y) is that
2" K@ <K(ypUK(y,) whenever z€[yy,y,] (for all y,,y,€Y) which
can be deduced from (10) and (7) as follows: K(z)={x€G: f(x, z)>yi}c

2
cfxeG: {maxf(x, y): j=1, 2}=y}= _le {x€G: flx, y)=v1}=K(ODUK(y).
Hence it follows that ! ‘
(5" either K(z2)c K(y;) or K(z)cK(y}) for any z€[y}, yi].
Indeed, x,€K(z)NK(y;) and x,€K(z)NK(y;) implies that for the sets T;=

=[xy, BN FEO(Y F*(j=1,2) we have T,NToc () Fr=0 and [x, %] > T;UT, >
i=3 i=1
2
D [x1, x]N(FF U FF)NGD[xy, XN -U1 K(y))oby (2)2[x1, x]JNK(2)=[x;, x,]. By
S

(7% the sets F;* are closed in X (i=1,...,n+1) whence T, and T, are closed in
[x1, x,]). But this contradicts the connectedness of [x,, x;]. Thus (5*) holds.
(2*) and (5% show that the sets

an H={z: K(z) cKOD} (j=1,2)

are convex in Y, HYUH;D[y,,y] and yjeH] (j=1,2). Since the interval
space Y was assumed to be Dedekind complete, there exist j€{l,2} and z*¢H}
such that

(12) v, ZI\{z*} < Hf where ke{l,2\{j}.
From (10) and (11) we have
13) Fe*, %) > 3F for all x*€K(z).

11
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On the other hand, if x*¢K(z*) then x*¢ K(y;). From (12) and (11) it follows
K)o K(2) for all ze[yf, z*I\{z*} whence we obtain by (10) that

(139 fx*, 2)=vy7 forall ze[yy, 2*N\{z*} and x*€K(z%).

Since the topology of Y was supposed to be Hausdorff and since the interval [y}, z*]
is connected, the point z* belongs to the closure of [y, z*]\{z*}. But then (7%)
and (13") imply f(x*, z*)=y] for all x*€ K(z*) (#0) which contradicts (13).

Theorem 2. Suppose that X is an interval space, Y is a Dedekind complete
Hausdorff interval space and that the function f: XXY—~R has the properties (77),

(7}) the subfunctions x—f(x,y) are upper semicontinuous and quasiconcave on
the whole X (for all fixed y€Y),

(7%) for some y<mf sup fx,y) and ycY, the set {x: f(x, y)>y} is compact.

Then we have max inf f(x, y)—mf sup f(x, y).
x oy y x

Proof. From the definition of the operations inf and sup it follows immediately
that sup mf f(x, )<1nf sup f(x,y). Therefore again it suffices to prove that

mf f(xo, )>y (——mf sup f(x ¥)) for some x,€X, or equivalently that the family

Z defined by (8) admnts a common point.

Now (7°) ensures that y*>—oo and that some member of & is a non-empty
compact set. By (73), each member of & is a closed subset of X. Hence NF =0
if and only if # has the finite intersection property. But this is a directe consequence
of Proposition 3.

Corollary. (Brézis—Nirenberg—Stampacchia) If X is a convex subset of a
real Hausdorff topological vector space, Y is a convex subset in a real vector space
and {1 XXY R is a function satisfying (T}), () and (T°) then we have max inf

Sflx, }’)=ifylfsgpf(x, . x oy

Proof. Let us endove Y with any locally convex Hausdorff vector space top-
ology. (It is always possible e.g. by taking the convex core topology on the sup-
porting vector space of Y, cf. [6, p. 110, (2.10)].) Then by Lemma 1 we can apply
Theorem 2.

4. A counterexample concerning the extendibility of Theorem 2

In the light of the proof of Proposition 3, we can answer (negatively) the
question raised by L. NIRENBERG [5, p. 144] whether condition (7%) can be replaced
by the weaker condition (7%) in the Brézis—Nirenberg—Stampacchia minimax
theorem.
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Theorem 3. There exist locally convex Hausdorff topological vector spaces F,

G and compact convex subsets XCF and YCG, further a function f: XXY {0, 1}

satisfying (7, (7), and such that O=maxmin f(x,y) and 1=max minf(x, y).
x y y x

Remark. It is well-known from elementary convex analysis that a convex
subset K of a finite dimensional real Hausdorff topological vector space V is closed.
if and only if it is algebraically closed (i.e. if the sets {1€R: u+2-vEK} are closed
for all u, veV) [6, p. 59, p. 9]. Hence (7*) [respectively (7)] implies that the sub--
functions x—f(x, y) [y~f(x, ¥)] restricted to the intersection of X[Y] with any
finite dimensional linear submanifold of F [G] are all upper [lower] semicontinuous..

Proof. Let G be the space of the functions mapping N(={1, 2, ...}) into R en-
dowed with the pointwise convergence topology and let Y ={y€G: range (y)[0, 1]}.
Thus Y is homeomorphic to the compact product space [0, 1]N. For i=1,2, ...
let e; denote the function e;: n—8,(=1 if i=n, 0 if i>n). Set H,=co {e;: i>n}
(the symbol co standing for the algebraic convex hull operation; n=1,2,...).
Clearly, the sets H, are algebraically closed (because the vectors e, e, ... are

linearly independent). Further we have ﬁ H,=0. Therefore the function
n=1

m(y) = min {n€N: y¢ H,}

is well-defined for all y€G. Now we define the space F as the set of the functions.
mapping Y into R, also with the pointwise convergence topology, and we set
X={x€F: range (x)C[0, 1]}. Again, X is homeomorphic to the compact product,
[0, 1]¥. To define the function f, first we introduce the following X-subset valued
function K(-) on Y:

K(y)=co{ly,: n=m(y)} (for all yc¥)

where 1,, denotes the characteristic function of the set H, (i.e. 1 (=1 if yeH,
and 0 else) Since the functions 1, (n€N) are linearly mdependent the sets K(y)
are algebraically closed {(for all y¢ Y ). Then let

F6 9 = gy (=1if x€K (@), 0 if x¢ K(y)) for all x€X, yeY.

To show (7%), we have to check that for all y€R, the sets {x: f(x, y)=v} are
algebraically closed for any y€Y. But {x: f(x, py=y}=X if y=0, K(p)if 0<y=1,
0if y=>1.

In particular, {x: f(x, »)=1}=K(y)=0 for each y€Y, whence 1=max f(x, y)=

Xy

= min max f(x, y).

y x

For (7°) we must show that {y: f(x,y)=y} is algebraically closed for all
y€R and x€ X. Now we have {y: f(x, y)=y}=0if y<0, Yify=1, and if 0=y<1 then

11*
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{: fx, »=9}={y: fx, ) =0}={y: x¢ K()}={y: x4 co {15 : n=m(»)}}. In case
of xgco{l, : n€N} we obviously have {y: x¢co {1g,: nzm()}=Y. If
x€co {1, : n€N} then there exist finite sets #,CN and {]: i€ £} (0, =) such that
2> Xf=landx= J -1y, thus in this case we have {y: x¢co {1, :n=m(»)}}=
N i€,
={y: min Jx<m(y)}={y: min S, <min {n: yQH,,}}={y: In=min S, y¢H,}=
min S

={y: Van=min 4, y¢H,}= (\ H,=H_,, s, Wwhich is also convex and alge-
n=1

‘braically closed.
Since for any x€X we have seen that {y: f(x,y)=0}=Y or H, for some
nEN, ie. {y: f(x, y)=0}s0, we can conclude O=min f(x, ¥)=max min f(x, y).
X,y X ¥y

Question. Does sup iryxff(x, y)=ir}fs;1pf(x, ») hold if the function f: XX Y ~R
is such that X and Y are convex compact subsets of some locally convex Hausdorff
topological vector spaces and every restriction to any straight line segment con-
tained in X [in Y] of the subfunctions x—f(x, y) [y—f(x, y)] is continuous and
concave [convex]?
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Almost periodic functions and functional equations

L. SZEKELYHIDI

1. Introduction. In this paper we deal with bounded solutions of a class of
functional equations defined on topological groups. Our results are based on the
fact that all characters of a group are almost periodic functions (see e.g. MAAK
[5}, [6]). This can be restated by saying that all bounded solutions of the functional
equation f(xy)=f(x)f(»y) are almost periodic functions. In this work this result
is generalized for the functional equation (1) which has been dealt by many authors
(see [1], [7], [8], [9], [11], [12]) but has not been completely solved. Using our results
we give all bounded solutions of (1) on commutative groups. Our other main result
is the proof of the fact that all bounded solutions of (2), and in particular of (3),
are almost periodic functions. Concerning these equations see [1].

We note that some of our results remain valid on topological semigroups as
well. On the other hand the method used in Section 3 to solve equation (1) can be
used successfully to solve other similar equations ([10]).

2. Preliminary facts and results. Let G be a group and X a uniform space.
A function f: G—X is said to be almost periodic if for every X-entourage R there
exists a finite covering A, ..., 4, of G such that (f(xz), f(yz))€R whenever z€G,
x, y€d; (i=1,...,n).

Let H be a set and X a uniform space. A function f: H-X is said to be totally
bounded if for every X-entourage R there exists a finite covering B, ..., B, of
ran f, the range of f, such that (x, y)€ER whenever x, y€B; (i=1,...,n).

If G is a group, X is a uniform space and f: G—+X is an almost periodic func-
tion, then f is totally bounded. Indeed, if R is any X-entourage and 4;, ..., 4,
is a finite covering of G for which (f(xz),f(yz))€R holds whenever z€G, x, y€4;
(i=1,...,n) then B;=f(4,) (i=1, ...,n) yields an appropriate covering of ran f.

If G is a topological group, X is a Banach space, then the continuous func-
tion f: G—X is almost periodic if and only if the orbit of f is relatively compact
in the Banach space of all continuous, bounded X-valued functions on G. (The

Received April 13, 1979.
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-orbit of f'is the set of all right translates of f. It can be proved that this is equivalent
1o the relative compactness of the set of all left translates of f)
For more about almost periodic functions see e.g. [2], [3], [4], {5], [6].

3. Bounded solutions of functional equations.

Theorem 3.1. Let G be a topological group, n a positive integer, and a, by:
G —C bounded functions, where the a’s are continuous (k=1,....,n). If f: G—~C
is a function for which

%) fxy) = kz (%) b ()

holds whenever x,y€G, then f is a continuous almost periodic function. If the a,’s
.are linearly independent, then the b,’s are also continuous almost periodic functions.

Proof. Let B(G) denote the set of all complex valued continuous bounded
functions on G equipped with the pointwise operations and sup-norm. B(G) is a
Banach space. Let

A, ={b(Wax: ¥y¢G} (k=1,...,n).

As @, is continuous bounded and b, is bounded, hence 4, is relatively compact in
B(G) (k=1, ...,n). Let F denote the orbit of f in B(G), then by (1) we see that F
is a subset of the set A4,+...+A4,, which is a continuous image of the relatively
compact set A;X...XA,. Hence f is almost periodic. The continuity of f follows
directly from (1) by the substitution y=e (the unit element).

If the a@’s are linearly independent then there are elements x,,...,x, of G
for which the matrix (a;(x;)) is regular (see e.g. [11]). Substituting the x;’s into (1)
in place of x, for fixed y we get that the numbers b,(y) satisfy a system of linear
equations, the matrix of which is regular. Hence the functions b, can be represented
as a linear combination of some translates of fand thus they are continuous almost
periodic functions.

Theorem 3.1 can be generalized as follows:

Theorem 3.2. Let G be a topological group, L, M, N normed spaces,. g: G—~L
a tatally bounded continuous function, h: G—~M a bounded function and F: LXM ~N
a bounded bilinear operator. If f: G—+~N is a function for which

) f(xy) = F(g(x), h(»))

holds whenever x, y€G, then f is a continuous almost periodic function.

Proof. The continuity of ffollows by substituting y=e. Let ¢=0 be arbitrary
and let K be a bound for A. As g is totally bounded, there exists a finite covering
L,,...,L, of ran g such that [[u—uv||<¢ whenever u, v€L; (i=1,...,n). Let A4;=
=g (L) (i=1,...,n) then A4,,..,4, is a finite covering of G. If x, y€A4;
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(i=1, ..., n) then g(x), g(»)€L; hence || g(x)—g(»)ll<e which implies for every z€G
1/ —f 2 = ||F(g(x), h(2)— F(g(»), h(D)|| =
=||F(g(x)—g(, h(2)|| = Cllg(x)— g - K= C-e-K

that is £ is almost periodic.
The linearity of F in (2) can be replaced by uniform continuity. Namely, we have

Theorem 3.3. Let G be a topological group, L, M, N uniform spaces, g. G—~L
a totally bounded continvous function, h: G~ M a bounded function and F: LXM—~N
a uniformly continuous function. If f: G—~N is a function for which (2) holds when-
ever x,y€G then f is a continuous almost periodic function.

Proof. The continuity of ffollows by substituting y=e. Let R be an arbitrary
X-entourage. By the uniform continuity of F there exists an L X M-entourage S,
for which ((u, v), (', v"))€S implies (F(u,v), F(u',v))€R. Further there exists
an L-entourage T such that (v, #’)€T and v€M implies ((u,v), (0, v"))€S. By
the totally boundedness of g there exists a finite covering L,, ..., L, of ran g such
that u, w’€L; implies (u, ' )eT (i=1, ..., n).

Let 4;,=g (L) (i=1, ...,n), then A4,, ..., 4, is a finite covering of G, and
for x, y€A; (i=1, ...,n) we have g(x), g(»)€L;, hence for zcG -

(f(x2), f(y2)) = (F(g(x), h(2)), F(g(y), h(2))ER,
that is f'is almost periodic.

Remark 3.4. The conditions of Theorem 3.3 are satisfied for instance if g,
h are bounded functions with values in finite dimensional vector spaces (or, more
generally, in Montel spaces), L, M denote the closures of their ranges respectively,
and F is continuous on LX M. Hence we have the corollaries:

Corollary 3.5. Let G be a topological group, let g, h: G—~C (the set of com-
plex numbers) be bounded functions, and let g be continuous. Let F: (ran gXran h)~ —
—~C be a continuous function. If f: G—-C is a function for which (2) holds when-
ever x, y€G, then f is a continuous almost periodic function.

Corollary 3.6. Let G be a topological group, f: G—~C be a continuous bounded
Sfunction. Let F: (ran fXranf)~—C be a continuous function. If the equality

3 fxy) = F(f(x),f()

holds whenever x, y€G, then f is almost periodic.

4. Bounded solutions of equation (1). In this section we exhibit all bounded solu-
tions of equation (1) on commutative groups. More exactly, we show that f is a
trigonometric polynomial and so are the functions aq,, b, whenever the a,’s and
also the b,’s are linearly independent. By trigonometric polynomial we mean a
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linear combination of continuous characters. Here the number of different characters
is called the degree of the trigonometric polynomial.

In what follows we assume that G is a commutative topological group with
sufficiently many continuous characters, that is any two elements of G can be sep-
arated by continuous character. For instance all locally compact Hausdorff groups
posses this property and so does the additive group of any locally convex topological
vectorspace. Then the Fourier transform of almost periodic functions can be defined
as an injective mapping by the formula

fo=[f
(where [ denotes the invariant mean on almost periodic functions) whenever 7y is a
continuous character of G (see [5], [6]).

Theorem 4.1. Let G be a commutative group with sufficiently many continuous
characters, n a positive integer and ay, b, f: G—+C (k=1, ...,n) functions. If fisa
continuous bounded fuﬁction, then it is a trigonometric polynomial of degree at most n.

Proof. First we assume that the a,’s and also the b,’s are linearly independent.
Then there are elements x,, ..., x, of G for which the matrix (ai(xj)) is regular.
As in Theorem 3.1 we obtain that the b,’s are continuous bounded functions. Simi-

larly, we get the same for the a;’s.
By Theorem 3.1, f, a,, b, are almost periodic functions. On the other hand,

the linear independence of the a’s implies the same for their Fourier transforms.
Now let y be fixed and compute the Fourier transforms of both sides of (1) as

functions of x. We obtain
@ T = 2 ambo)

where y€G and y is a character of G. Now compute the Fourier transforms of
both sides of (4) as functions of y. We obtain

®) F@9@) = 2 4,(0)b(2)

where y, 7 are characters of G. Let y,, ..., 7, be characters of G for which the matrix
(44 (v))) is regular. Substituting in (5) y; for y we get that the numbers b, (c) for 7y,
(Jj=1, ..., n) satisfy a homogeneous linear system of equations, the matrix of which
is regular, hence b,(1)=0 for t#y; (j=1,...,n, k=1, ...,n). Thus the Fourier
n
transform of b,— > Bk(yj)y ; vanishes, and hence b, is a trigonometric polynomial
=1
of degree at most n (k=1, ..., n). Similarly we get the statement for q,, f.
In the general case, when the a,’s or the b,’s are linearly dependent, then by the
successive decreasing of » we can make the a,’s and the b,’s simultaneously linearly
independent and hence the statement remains valid for f.
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Corollary 4.2. Let G be a locally compact topological group. Then any finite
dimensional translation invariant subspace of the Banach space of all continuous
bounded complex valued functions on G consists of almost periodic functions. If G is’
commutative then this subspace consists of trigonometric polynomials.

Proof. Let M be the subspace in question and let a,, ..., a, be a basis of M.
Then for every fe M we have '

© fxy) = kg",:ak(x) b ()

whenever x, y€G. Since the a’s are linearly independent, hence the b,’s are con-
tinuous bounded functions. This implies that f is almost periodic. If G is commuta--
tive then, as in the proof of Theorem 4.1, we obtain that the b,’s are trigonometric
polynomials and hence substituting x=e in (6) we see that f is a trigonometric
polynomial. In particular, the a,’s are trigonometric polynomials.
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~ Bemerkung zu einem Satz von S. Kaczmarz

KAROLY TANDORI

Fiir ein orthonormiertes System ¢={p,(x)};° im Intervall (0, 1) bilden wir
die Lebesgueschen Funktionen
1

Lig,x)= [

]
S.KAczMARzZ [2] hat bewiesen, dal im Falle

21 o(X)@()|dt (n=1,2,..).

) Li(p; x) =0(1) (x€(0,1); n=1,2,...)
und fir a={a,};’¢!? die Reihe
2) 2, G Pi(x)

k=1

fast iiberall in (0, 1) konvergiert.

Weiterhin haben wir in [3] Folgendes gezeigt:

Ist a4l2, dann gibt es ein orthonormiertes System ¢ in (0, 1) derart, daB3 (1)
erfullt ist, und die Reihe (2) in (0, 1) fast iiberall divergiert.

In dieser Note werden wir fiir diese Behauptung einen einfacheren Beweis geben,
der sogar noch etwas mehr ergibt.

Fiir ein orthonormiertes System ¢ in (0, 1) bilden wir

dt.

1 n
Lie; 0= [ max | 3 o) eul)
¢ 1Eisnign

Offenbar gilt

L,(¢; x) = L;(9; x).
Wir beweisen.

Satz. Ist a4l? so gibt es ein orthonormiertes System ¢ in (0, 1) mit
©) Ly(p; ¥) =0() (x€(0,1); n=1,2,...)
derart, dap die Reihe (2) in (0, 1) iiberall divergiert.

Eingegangen am 10. April 1979.
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Bemerkung. Dieser Satz ist eine Verscharfung eines vorigen Resultates von
Verf. [4]. Nach einem Satz von L. CSErNYAK [1] gilt im Falle (3) und ac/?

S aamleron.

Beweis des Satzes. Ohne Beschrinkung der Allgemeinheit kénnen wir
0=a,=1 voraussetzen. Es sei O=n(l)<...<n(l)<... eine Indexfolge mit der
Eigenschaft ol
4) Ai= D aizd4 (1=23,..).

k=n(l-1)+1
Mit ky<...<k;<... bezeichnen wir die Indizes k, fiir die a,=0 ist. Es sei Z(/)
die Menge der Indizes k mit n(/—1)<k=n(!) und q,=0 (I=2,3, ...).
Es seien weiterhin L (l), J,(I) (k€Z(l); 1=2,3,...), J; (i=1,2,...) Teilinter-
valle von (0, 1) mit den Eigenschaften (fiir 7, /;, ,=2,3,...)
L(DNL, (D) =0 (ky, ko€ Z(1), Ky # k) KLZJ(I) L(h=(,1),

mes I,() = a}/A} (keZ(D), L(DNJ (D=0 (k€Z()),
Jo(WNT (1D =0 (ky€Z (1)), ko€ Z(1y), (ky— ko) +(l— 1) = 0),
mes J () = mes L(D/12 (k€Z(@), J,NJ, =0 (1, i,=1,2,...; iy #Ziy).
Unter den obigen Bedingungen kann man solche Intervalle leicht angeben.
Es sei ¢={p,(x)}; ein orthonormiertes System von Treppenfunktlonen in
(0, 1) mit den Eigenschaften

sup
n

Ajfa, -1, x€l. ()
lox () = 1A =1/B)Vmes J (D, xeJ (D (keZ()),
0, sonst
oy, ()] = {l” mes . :fnjst} (i=1,2..).

Ein solches System kann leicht angegeben werden; man hat die Gruppe der Funk-
tionen @ —1y+1(X), ..., @, y(x) durch Rekursion zu definieren.

Es sei x€(0,1). Auf Grund der Definition der Intervalle Jk(l), J; und der
Funktionen ¢, (x) gibt es einen Index /, derart, daf

©) xé(0 U 20)uU .

o k(=1
Ist I=1l,, dann gibt es auf Grund von (5) und der Definition von ¢,(x) einen Index
k(x, DeZ() mit

¥

2 ak(pk(x)| = |y 2,1 Prcix, 1y (X = 4)f1 = 2YL

k=v(—1)+1
Daraus folgt, daB die Reihe (2) im Punkt x divergiert.
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Es sei x€(0,1). Auf Grund der Definition der Intervalle I, (!), J.(/), J; und
der Funktionen ¢,(x) gibt es fiir jedes / einen Index k(x,)€Z() mit x€IL; y;
weiterhin existieren Indizes I, ko(x, ) (€ Z(l,)) und i, mit X€Jy (x.1p> X€J;,» Dann
gilt fiir jedes n

max 2 Or(x) @ (t )| = 2 [Pk, 1y (X) Orcx, 1y O+ | Prot, 10) () Prgix, 10D} @k, (K@ (O]

1=s=n

Auf Grund der Definition der Funktion ¢,(x) ergibt sich dann

1
max

l=s=n

> 0 0u(0) dt =
k=1

éé (06 @ [ 10y O A+ 1@us, ] [ [94e,ny D de) +

Diex, 1y Jiix, 1

F Pk, 10 (N f [@reotx,10) ON At Do, 1) (%)) f [Pkox, 10 (D] A2+

Tig(x, 1) M NEXA
+1es, (0] f i, (D] dt =
o A? A, & 1
= zgz' [m mes I, ;, (1) + P (1—1/13)42 ;/me——m mesJk(x,,)(l)] +
F(1—1/Rye ___1___ 4 mes Ly, 1) (D +
Vmes Jko(x,lg) (o) Aio(x,1p) ly

1

1
Tes T mes — ———mesJ, =
mes Jpym gy kot 1) (o) +— mes J;,

es J;,

+(1-1/)

oo

N 122 [’11?+(1 —1/12)”2%)+(1 —71(2;]1/2{(1—1/13)4_1 =3 [ g"."_ll_)

Damit haben wir bewiesen, daBl (3) fiir das System ¢ erfiillt ist.
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Uber einen Satz von Alexits und Sl;arma

KAROLY TANDORI

1. Es sei (X, o, p) ein MaBraum mit p(X)<oo. Fiir ein System ¢={p,(x)};~
von Funktionen in L(X) betrachten wir die Lebesgueschen Funktionen

g @@ du() (xeX; n=1,2,.).

Lp; x)= [

X

Es sei weiterhin A={4,};" eine monoton nichtabnehmende Folge von positiven.
Zahlen; im folgenden werden wir auch 4,—< (k—<c) voraussetzen.
G. ALexits und A. SHARMA [1] haben im Fall

1) ) L(p;x)=0(,) (x€X;n=12.)

den Folgenden Satz bewiesen: Geniigt eine Folge {a,};7 von reellen Zahlen der
Bedingung .

@ S aih <o,

weiterhin besteht

J

x k=1

> a.h <pk(x)| dp@=0(1) (1=1,2,..),

fiir jede Folge {b,} mit J afbj<oo, dann konvergiert die Reihe
k=1

G g’: 3,0(%)

in X fast tiberall.

Eingegangen am 10. April 1979.
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Man kann zeigen (s. z. B. [2]), daB im Falle (1) die Bedingung (2) allein fiir die
‘Konvergenz fast iiberall der Reihe (3) nicht hinreichend ist. Es ist natiirlich zu befra-
-gen, welche Bedingung fiir ¢ im Falle (1) die Konvergenz fast iiberall der Reihe
-(3) sichert. In dieser Note werden wir auf diese Frage eine genaue Antwort geben.

2. Ohne Beschrinkung der Allgemeinheit konnen wir 4,=1 voraussetzen. Fiir
_jede positive ganze Zahl / bezeichne Z (/) die Menge der positiven ganzen Zahlen k,
mit 2'<2,=2"*'. Es seien /,<...<l;<... diejenigen Indizes, fir die Z(l)=0
ist; die Elemente von Z (/) seien in der natiirlichen Anordnung v(i)+1, ..., v(i+1).

.Fiir eine Folge a setzen wir

v(i+1)
Al2 = 2 a,zc).k (i = l, 2, ...).

k=v(@+1

Satz I. Ist (1) erfiillt, und gilt fiir die Folge a

Z A; <o,
i=1
-so konvergiert die Reihe (3) fast tiberall in X.

Beweis. Wir wenden die Methode von Alexits und Sharma an. Die n-te Par-
‘tialsumme der Reihe (3) bezeichnen wir mit s,(x). Fiir eine positive ganze Zahl i
'setzen wir

0; (x) v(i)<nsv(l+l) |S (x) v(l')(x)ls
Ef ={xex: —max (s()-sn@)}
B = {XGX v(i)<nnlsv(t+l)( (50 () — Sv(p) (x)))}'

n(x) bezeichne die kleinste positive ganze Zahl (v (i)<n(x)=v(i+1)), fir die

(S,, (x) v(l) (X)) (XE Ei+)

X — -
Sn(wyX — Sy (%) = o max,

ist. Dann gibt mit dem Rademacherschen System {r (1)}

 afin)( 3 SO0
p=v(i)+1 P

(x€E).

()50 ()= [ (s

fv(0<nsv(|+1)
l

—Vl

Durch Anwendung der Bunjakowski;Schwarzschen Ungleichung und des Fubini-
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schen Satzes ergibt sich:

® Ef (V(l)<nsv(;+1) (S (x)- Sv(iy (X)) du(x) =

i

[( v(-+1)ak Vl—krk(t)] f( "(Z") rp(t)cop(x)) du(x)]dté

k=v(i)+1 E+ ‘P=v()+1 V},—p

=S
{f f f ( > M]{ > M} dﬂ(x)du(y)c;'t}llzé

p=v(d+1 q—v(z)+1 W:;

min {(n(x), n(3)) X 1/2
= 4, {Ej:Ej; it 2De) )(p”(y)‘du(x)du(y)} =

= Via{ [(f], 2, 2G| auc) aucn]

1 |k=v®+1

Ill\

Auf Grund der Voraussetzung (1) gibt es eine positive Konstante X, fiir die L,(¢; x)=
=K}, (x€X; n=1,2,...) erfiillt ist. Durch eine Abelsche Umformung bekom-
men wir

}'k lk-&-l

i) -1 1 k 19
5 m(xz«pk(y) _ [_ ) > 0000 ty— 2 0.0,
k=v)+1 & k=v(D+1 s=v(D+1 Aniy) 5=+

woraus folgt

/

n(y)
Z qok(x)(pk(y) ldu(x) -

x lk=v()+1
n(y) 1.1
(z_'z ) q’s(x)(l’s(y)]d/.l(x)-{- ,
k v(l)+1 k+1 s=vD 41
1 n(y)
+l 2 ‘ps(x)q’s()’)ldﬂ(X).S_
n(y) x |s=v(@)+1
n(y)—1
= 1o (ﬂk ](L"(“’ N+ Loy (03 ) +7— (an(co N +Lyy (95 ¥) =

= 4K+ /Ay +1 = 8K

fiir jedes x€X, auf Grund der Definition der Folge {v(i)};". Daraus und aus (5)
erhalten wir

©® J 0 8%, 1y (4D =50 () A () = V28R ()4,
E* a

(]

12
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Durch Anwendung dieser Ungleichung auf das System {—¢,(x)}; ergibt sich
(— (n () =50 (x)) dp(x) = V28Kp(X) 4;.

Ef v(l')<nsv(l+l)

(]

Daraus und aus (6) folgt
Q) [8:0)du(x) = V216Ku(X)4; (i=1,2,..).
x .

Endlich aus (4) bekommen wir, daB
Za <o

in X fast iiberall besteht. Da auf Grund der Definition von §;(x) die Unglei-
chung |5,y 5 (X) =5, ()|=6:(x) (x€X; i=1,2,..) gilt, ergibt sich, daB

Z |Sv(i+1)(x)-sv(i)(x)| < oo

in X fast iiberall besteht und so '_l_l;lg 5. iy(x) fast iiberall in X existiert. Im Falle
v())=<n=v(i+1) gilt weiterhin |s,(x)—s5,;(x)|=5(x)—~0 (i—) in X fast iiberall,
und so konvergiert die Reihe (3) in X fast iiberall.

3. Wir zeigen, daB die Bedingung (4) genau ist.
Satz I1. Gilt
® S Ap=,

so gibt es ein System ®={P (x)}; von reellen Funktionen in L(0,1) derart, daB

L(®; x) =

D, (x) 8 (1) dt = 162, (x€0,1); n=1,2,...)

besteht und die Reihe
® ' k;; a, Py (x)
in (0, 1) iiberall divergiert.

Beweis. Fiir jede positive ganze Zahl i seien I,(i) (s=v(i)+1, ..., v(i+1))
disjunkte Intervalle mit '
v(i+1

) 1) -
O I.(i) = (0, 1), mes 1,(i) = az/ a; und I()=0, wenn a,=0.

s=v()+1 k=v(i)+1
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Fiir einen Index s mit v(i)<s=v(i+1) und a,=0 setzen wir

Ai/as" xels(i)’
?;(x) = {O, sonst;
im Falle a,=0 sei & (x)=0.
Sei i, eine positive ganze Zahl und sei x<(0, 1). Dann gibt es fiir jede positive:
ganze Zahli (1=i=ig) einen Index s(x; i) (v(/)=<s(x; z)<v(1+1)) mit’ xEI(x ,)(z),"
Man hat dann

v(ig-+1)

iq _
2 a®(x) = ;1' As(x; i) (ps(;;i)(x)'

k=1
Daraus, auf Grund der Definition der Funktionen &,(x), folgt

v(ig)+1

(10) > a;qsk(x):__é:A,. (x€©,1); ip=1,2,...).

Aus (8) ergibt sich, daB die Reihe (9) in (0, 1) iiberall divérgiert.
Es sei i eine positive ganze Zahl, v(i)<n=v(i+1) und x€(0, 1). Dann gibt:
es einen Index s(x; i) (v()<s(x;)=v(i+1)) mit x€l ., (), und so gilt

1

/

0

2
! ~ mes L1y (i)

s(x;l)

S 6,®e,0)

k=v(D+1

dt = f |(ps(x ;i) (x) ¢s(x 3i) (t)l dt =

s(x ()(')
Daraus folgt, auf Grund der Definition von 4; und v(i);

an f

Es sei n eine beliebige positive ganze Zahl. Dann gibt es einen Index i, mit v(iy)<:
<n=v(i,+1), und gilt '

2 B, ()P, (1) dt =24, (x€(0,1; v()<n=v(i+1); i=12,..)

k=v(i)+1

fp—1 1
L@ x=s 3|
i=1 g
=2(Aygyt - F Ao FA) =422+ +20+Y) = 16. 20 = 164,30y +1 = 164,
fiir jedes x€(0, 1).
Damit haben wir Satz IT bewiesen.

v(i+1)

> %@mmhw/

k=v(i)+1

D ()P ()| dt =

k= \'(lo) +1

4. Fiir eine positive Konstante K bezeichne Q(4, K) die Klasse der Systeme
o={p(x)});> von reellen Funktionen in L(0, 1) fiir die

1

Lip; 0= [

0

dt =K2, (x€(0,1); n=12,..)

Q%Mwm

gilt, und sei Q(/) die Klasse der Systeme ¢ mit
La(@; x) = 0() (x€(0,1); n=1,2,..).

12%
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M(2) bezeichne die Klasse der Folgen a, fiir die die Reihe (3) bei jedem System
@€Q(2) in (0, 1) fast iiberall konvergiert. Endlich wird fiir eine Folge a

1
la; Al = sup [ supls,(x)ldx .
PENLYG

gesetzt. In [3] haben wir bewiesen:
acM(2) gilt dann und nur dann, wenn |a; Al| < .
Nach den vorigen Resultaten kann man [|a; 2| auswerten.

Satz III. Fir jede Folge a gilt
C, ;; A;i=la; A =C, gl' A;
mit positiven Konstanten Cy, C,.
Beweis. Da

supls () = 3 5,()
ist, erhalten wir

1 oo
J supls,(x)|dx = V216 3 4;
) n i=1

auf Grund von (7) fir jedes System ¢@€Q(4;1); woraus die zweite Ungleichung
mit C,=V2 16 folgt.

Weiterhin sei ¢, (x)=®,(x)/4 (k=1,2,..) mit den in §3 definierten Funk-
tionen @,(x). Dann gilt @€Q(4;1) nach dem Satz II. Weiterhin bekommen wir
aus (10)

1

1 oo
[ supls(ldx= 5 3 4,
o " 4 =
also besteht die erste Ungleichung mit C,=1/4.

5. Bemerkungen. 1) G. ALexitTs und A. SHARMA [1] haben Systeme
@={¢,(x)};> von Funktionen in L(X) betrachtet, fiir dic

L(g;x)=0() (x6X;n=12,..)
gilt, und haben Folgendes bewiesen: Ist die Summe
12) > at
k=1

endlich, so konvergier. die Reihe (3) in X fast iiberall.
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Weiterhin haben wir in [4] Folgendes bewiesen: Ist die Summe (12) unend-
lich, so gibt es ein orthonormiertes System @={®,(x)};” im Grundintervall (0,1) mit
L(®;x)=0(1) (x€(0,1); n=1,2,..)

derart, daB die Reihe (9) in (0, 1) fast iiberall divergiert.
Diese Satze sind in den Satzen I—II enthalten. Im Falle 1,=4 (k=1,2,...)

ist ndmlich die Konvergenz der Reihe (4) mit der Konvergenz der Reihe (12) dqui-
valent. '

2) Im Falle A,— e (k— <o) kann in Satz II das System & im allgemeinen nicht

normiert gewéhlt werden. Ist nadmlich f lag| <<=, und gilt
k=1
JR@dp@ =1 (k=1,2..),
X

so konvergiert die Reihe (9) in X fast iiberall.
3) Es gilt auch der folgende Satz.

Satz IV. Essei o={p,(x)};° ein System von Funktionenin L(X) mit L (¢; x)=
=K, (x€X; n=1,2,...). Dann gilt

(13) [lou@) du(x) = 2VKp()7, (n=1,2,..).

Beweis. Fiir eine positive ganze Zahl » seien

E} = {x€X: ¢,(x) =0}, E; = {x€X: ¢,(x) <0).
Da

a@= [ 0| Zn0ew)a
0 k=1
gilt, hat man

n

E"[%(x)du(x) =0f1r,,(t)[ f(kz; ,.k(t)wk(x)) d#(x)] gt =

E} "7

A

{Ofl I (pg; rp(t)%(x)) (51 rq(t)wq(Y)] du(x) du(y)a’t}ll2 =

EYE}

i

(1A
A

kgnll (%) 9y (,V)‘ du (x)) du (y)}ll2 = { Xf L(o: ) du (y)}llz

= VKu(X)4,.
Durch Anwendung dieser Ungleichung auf das System {—¢.(x)};> ergibt sich

[ (= 0u(®) dux) = VRRX) 2.
2

Diese zwei Ungleichungen ergeben die Behauptung (13).
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The maximal'function of a contraction

ILIE VALUSESCU

1. Let € be a separable Hilbert space. An Z(€)-valued semi-spectral measure
F on the unit circle T is a map from the family of the Borel sets Z(T) of the unit
circle into £ (€), such that for any ac€, ¢—~(F(s)a, a) is a positive Borel measure.
A semi-spectral measure E is spectral if for any a,, 0, in Q?(T) we have E(6,MN0oy)=
=E(0) E(s,) and E(T)=I;.

By the Naimark dilation theorem, for any £ (€)-valued semi-spectral measure
F there exists a spectral dilation {8, V, E], i.e., a Hilbert space &, a bounded opera-
tor ¥ from € into | and an #(K)-valued spectral measure E on T such that for
any 6€%(T) :
a.1n ‘ F(o) =V*E(a)V.

For a Hilbert space &, we denote by EZ the spectral measure corresponding
to the multiplication by e on L2(&).

An Z(€)-valued semi-spectral measure F is of analytic type if it admits a spectral
dilation of the form [L*(F), ¥, E¥] such that V€L’ (). The name is justified
by the fact that there exists an analytic function {€, §, @())} (see [4], [S]) such that
for each ac€

2 O(Na = Va)(A) (D).

Moreover, {€, &, ©(A)} is an L%-bounded analytic function, i.e., there exists M =0

such that
2n

(1.3) sup 21 f |©(re*)a)|2dt = M2|a||? (acE).

0=r<1

Conversely, to any L?-bounded analytic function {€, &, @ (%)} it corresponds
an analytic type semi-spectral measure Fo, with a dilation as {L*(J), Ve, E5},
such that (1.2) is verified.

Received November 1, 1978.
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An L?*-bounded analytic function {€, §, O (1)} is called outer if

(1.4) {;7 VoG = L2 (F).

To an arbitrary #(€)-valued semi-spectral measure F on T a unique outer
L2-bounded analytic function {€, &,, ©,(1)} was attached in [4] such that the
corresponding semi-spectral measure F, is maximal among the #(€)-valued semi-
spectral measures of analytic type dominated by F. This unique outer L?-bounded
analytic function is called the maximal function of the semi-spectral measure F.
In the present note, for the semi-spectral measure F corresponding to a contraction
T, some specific properties of the maximal function, in connection with the Sz.-Nagy—
Foiag model for T, are obtained.

2. Let T be a contraction on a Hilbert space 9, and let U be its minimal unit-
ary dilation acting on K. If E is the spectral measure of U, then the semi-spectral
measure of the contraction T is the £ (H)-valued semi-spectral measure obtained
by the compression of E to 9, i.e.

@.1) Fr(0) = PoE@@|$ (c€B(T)).

Now, let us sketch the way to obtain the maximal function of Fy. If we put

@2 !, = ?U"ss,

then U, =U|8., is an isometry on & . Taking the Wold decomposition of U, on
K, it follows that
2.3) R, = M. (20,

where €, =R, OU,R,, M,(8)=@ UL, and R= () U"R,. Let P be the
orthogonal projection of &, onto M. :(2*), &°* the Fouri;r= ;epresentation of M. (£)
onto L%(8,), and ¥, the bounded linear operator from § into L% (2,) defined by
(2.4 V, = 0% P |$.

Then the Z($H)-valued semi-spectral measure defined by

2.5) Fy(0) = V{E}(o)V: (0€B(D)

is of analytic type. The L2-bounded analytic function {9, £,, ©,(%)} attached to
F,, as in section 1, is the maximal function of Fy and is called the maximal function
of the contraction T.

In the next Proposition (suggested by C. Foiag) an explicit form of the maximal
function of T is given.
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Proposition 1. The maximal function {$, £, ©,(2)} of the contraction T on
$ coincides with {9, Dy, @(1)} where
(2.6) O () = Dps(I-ATH™1 (AeD).

Proof. We shall show that for any Aeb and h€9H
.7 OMh =w,0,(Hh (1€D),
where w, is the unitary operator from £, into D, defined by
2.8) @, (Ia—UT*Yh = Drxh.

If ©,: $- 9, arethe Taylor coefficients of the maximal function {§, 2, , 0, (1)},
then for any A€$ and /€L, we have

1 o .
©uh, L)e. = 5 [ (AI)(E), €™L)e, di = (Vih, €7 @241 )1200,) =
= (9% PYh, d%HU"1) 20, = (PP*h, " 1)a = U"P%R, 1) = (PBU*h, 1), .

Hence, the coefficients of @,(2) are of the form
2.9 0, = PHU*9.

In order to prove (2.7) it is enough to show that

O,h=1-Ur"T*n for n=0,
or, by (2.9), that
(2.10) U*h—(I-UTHT*™h 41 8, .
But, for any A, h'€H we have
(U*"h—(I—UT*)T*"h, (I-UT*)h’) =
= U*h—T*h+UT**1h, ) —U*" 1 —U*T* h+T*+* h, T*h) =
— (T*nh _T*nh+TT*n+1 h, h/)_(T*n+1h __T*n+1h+T*n+1 h, T* h/) —
= (TT*"**h, K)—(T****h, T*h") = 0.
Hence (2.10) is valid and then so is (2.7). Thus the proof of Proposition 1
is done.
Remark that the maximal function of T is not zero unless T is a coisometric
operator. :
From the fact that the characteristic function of T
Or(A) = [-T+AD(I—-AT*)"1D4]| Dy verifies Op(A) Dy = Dps(I—-ATH1QAI-T)
(see [5)) it results the following relation between the maximal function and the char-
acteristic function of the contraction 7':

(2.11) O:(ADDy = OU)AI-T) (A€D). .
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If the contraction T belongs to the class C ., (i.e. T*"—~0as n— <) then R = M (L),
and thus by (2.3)—(2.5) it results that the semi-spectral measure of T is of analytic
type if and only if 7¢C.,. In this case the contraction T is uniquely determined
(up to unitary equivalence) by its maximal function. Moreover, in the C., case,
the maximal function gives an explicit form of the imbedding of § into the
space H=H?*(D;)O 07 H*(Dr) of the Sz.-Nagy—Foias functional model for T.

Proposition 2. Let T be a contraction of the class C., on the Hilbert space
$ and let {9, Dy, O(A)} be its maximal function. The image of an element hc$H
in the space of the functional model H is the function uc H®(D;.) defined by

(2.12) u(?) = O()h (JeD).

Proof. The functional model (see [5], Ch. VI)is obtamed bya umtary 1mbeddmg
@ of the dilation space & of T into a functional space.
In the C.o case K=M(L,), d=&>r" and it follows that

H= 0% = ¢°r* §.
From (2.4) and (2.7) it results that H=F,$ and, consequently, ucH is given by
u(l) =WVeh)()) = 0(Hh (AL€D).
The proof is finished.

3. In general, the maximal function of a contraction is not bounded. If
{9, 2,, ©,(A)} is bounded, then there exists @,(e") a.e. as non-tangential strong
limit of ©,(%) and

(3.1 dFe, = 1 O,(e")* @l(e“) dt a.e.

(SN

Concerning the boundedness of @,(7), we have the following

Proposition 3. The L?-bounded analytic function {€, §, © (1)} is bounded if
.and only if the corresponding semi-spectral measure Fgq is boundedly dominated by
the Lebesgue measure dt on T.

Proof. If {€, &, ©(})} is bounded, then for any analytic polynomial p and
for acC

J 1od(Fsra, “)=51?.,f [12(@ (") @ (e")a, a) dt =

___1_ 2 it 2 2L 2 2
=5z J P10 aldr = M2 [ |pPlalds

0
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It results that dFg=M 2717; dt. Conversely, if dFg=M 2—2—17? dt, then

2n

or
[ IpEIea) 2 dt ={ipVoalbay = [ [pI2d(Eg Voa, Voa) =
0

]

2

2n
i 1
= [ (R, ) = M5 [ ipPlaliar

It follows that
(3.2) [Vea)(t)| = Mlall a.e.

Using the Poisson integral of @(7) and (3.2), it results that

ol =| 5 [ B:owanwial =

2

1 1
=57 J POI0ea) Ol dt = Mlal 5 [ Pi()dt = Mial
and the proof is finished.

It is known [2] that the contraction 7 with the spectral radius ¢(T)<1 is
characterized by the fact that the semi-spectral measure F; has bounded derivative.
Therefore the following holds.

Corollary. If the spectrum of the contraction T is in the open unit disc, then
the maximal function {H, £,, ©,(2)} is bounded.

-Moreover, the above quoted result of Schreiber can be completed in the follow-
ing roanner.

Proposition 4. A contraction T on a Hilbert space $ has the semi-spectral
measure Fr of the form dF;=0 (e")* O (e")dt, with {9, §, O (1)} a bounded analytic
Sfunction, if and only if T€C., and o(T)<1. Moreover, the bounded analytic func-
tion {9, &, ©(2)} has a bounded inverse if and only if T is a strict contraction.

Proof. By the form of dFy it follows that F is of analytic type i.e. T€C.,.
The boundedness of ©(4) implies that Fr has bounded derivative and from [2]
it results that o(7)<1.

Conversely, if T€C., and o(T)<1, then Fr=F,, and using the above
Corollary the function © (1) is bounded and dF;=0 (e)* O (") dt.

If, moreover, dFT O (e")*O(e")dt and {H, &, O (A} has a bounded inverse,
then the associated operator @ from L% (%) into L%(8,) defined by

(3.3) (Ou)(e") = O(eMu(t) (ueLi (D))
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is boundedly invertible, and for any trigonometric polynomial p and for h€9H
we have

[ 1pERA(Fh k) = [ 1p)(O()* O ()h, K)dt =
0 0

2n 2

= f ll@(e")p(e“)hllzdtéIIOIIZf |p(e)i2]| k)| dt.
[ [1]
Also, we have

2n 2n
[ 10 p(e)hidr = |01~ [ |00 (") p(e") hl2dt =
[} 0

2n

=012 [ Ip(en)]hl2dt.

(]

For any positive continuous function ¢ on T it follows that

2n 2z 2n
i~ [ gdr= [ paFr(y =01 [ pdr.
0 (1] 0

Therefore, there exists a positive constant ¢ such that
3.4 cdt =dFy = c™ldt.

But (3.4) holds (see [1], [3]) if and only if T is a strict contraction.

Now, let us suppose that T is a strict contraction. Then Fy is of analytic type,
F;=Fy where O(4) is the maximal function of T, and (3.4) implies that the bounded
operator © defined by (3.3) has a bounded inverse. By the fact that @ intertwines
the shift operators in L%($) and L2 (2,), using Lemma 3.2 from [5] it follows that
@ (7) has a bounded inverse.
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A problem of Sz.-Nagy

JAN A. VAN CASTEREN

1. Introduction

Let  be a complex Hilbert space. Relatively simple proofs of the following
results are given.

(a) A power bounded operator T on $ is similar to a unitary operator if and
only if T is surjective and if there exists a constant M such that

A—-12Dlixl = M| Tx—-2x], 1Al <1, x€9.

(b) Let i4 be the generator of a strongly continuous group {P,: tcR} in $.
Suppose that sup {|P_,||: 1=0} is finite. Then A is similar to a selfadjoint operator
if and only if there is a constant M such that

Re Allx|| = M||Ax—iAdx|l, Rei =0, xcD(A).

By spectral theory the “only if”’ parts are obvious. For a contraction 7, sta-
tement (a) is due to GOHBERG and KREIN [3], who deduced it from a theorem of
Sz.-NaGy and Foias[10]. In the latter theorem the authors provide a sufficient
condition for an invertible contraction 7" to be similar to a unitary operator, in
terms of the characteristic operator function @;(1) of 7. This condition is that
a constant N exists for which

Ixl = NllOr(Dxl, 1Al <1, x€9.

For the concept of characteristic operator function and its connection with the
theory of unitary dilations we refer to Sz.-NAGy and Foias [11, Chapitre VI, pp.
228—230, and Chapitre IX, p. 334].

" The problem of finding a simpler proof of statement (a), avoiding characteristic
functions and dilation theory, was pointed out by Sz.-NAGy in [2]. In the present
paper we shall give a solution. We shall even do it for non-contractive, but power

Received February 22, and in revised form, May 25, 1979.
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bounded operators. Indeed, the proof of (a) shall be reduced to the comparatively
simpler theorem of Sz.-NAGY [9] which asserts that an invertible operator S is sim-
ilar to a unitary operator if (and only if) sup {||S”|: n€Z} is finite.

Statement (b), the continuous counterpart of (a), is entirely new.

2. Main results

We shall need a few definitions. A linear operator T on § is said to be power
bounded if sup {|T™|: n€N} is finite. Let 4 and B be linear operators with domain
and range in $. Then A is said to be similar to B if there exists a bounded linear
operator ¥ with bounded everywhere defined inverse such that AV =VB.

Theorem 1. A power bounded operator T on $ is similar to a unitary operator
if and only if it satisfies one of the following conditions (in (iiy’ T is supposed to be a
contraction) :
(i) T has power bounded inverse S.
(i) The operators (T—AI)71, |A|<1, exist and

sup {(1—IADIT—AD7Y: Al < 1} <.
(ii)’ The operators O ()7, |Al<1, exist and
sup {|0(A)7M: 1Al <1} <<e.

(i) T has an inverse S for which the operators (I—AS)™%, |Al<1, exist and for
which
limfinf sup{(1—rI)|(I—-28)7: |A]=r} <.

(v) T is surjective and there is a constant M such that
(I=1ADlxll = M|Tx—2x], |l <1, x€$.

Proof. Sz.-NaGy [9] proves the sufficiency of (i) by means of an invariant
mean on Z. The necessity of (i) is trivial. The implications (i)= (ii), (ii)= (iii) and
(iii)=(iv) are more or less trivial. The implication (iv)=(ii) follows from the fact
that boundary points of the spectrum of a closed linear operator are approximate
eigenvalues; e.g. HALMOS [4, Problem 63, p. 39]. In [10] Sz.-NaGY and Foias use
unitary dilation theory to prove the sufficiency of (ii)’. By establishing certain mutual
inequalities between ||@r ()71 and {(T—241)7Y, |Al<1, GoHBERG and KREIN [3]
prove the equivalency of (ii) and (ii)’. See also KREIN [5, 6] and Sz.-NAGY and Foias
[11, Chapitre IX, p. 334].

A simple proof of the implication (iii)=>(i) runs as follows. Since it neither
uses unitary dilation theory nor characteristic functions it solves a problem posed
by Sz.-NAGY in [2, p. 585]. o
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Fix x in $ and r in [0, 1). Denote
M(r) = sup {(1 - (I-28)7Y: |1A] = r}:

for O0<r<1 and put My,=sup {|7T"|: n€éN}. From (iii) it follows that the spectral
radius o(S) of S satisfies ¢(S)=1. Since |T"|=M,, n€N, it also follows that
2(T)=1. Hence, for |i|<1, we have norm convergence in both expansions

(I—2S)= S ms", (I-AT)"'= 3 IT".
n=0 n=0
So, since ST=1I, we have with A=re”, 0=r<1,

Z’ r]nleintsn — 2 rneimsn_l_ 2 rne—ian =
n=0

n=—co n=1 ,
=I—-re*S)y +re *"T(I—re *T) = (1-rH(I—re*S)*(I—re *T) L.
Thus, by (iii), it follows that

2

oo , 1 +7
3 rseae= o f dt =

n=—0o

ZO'O rlnleimsn x
n=—oo

+x
= o [ 1= —reS) = (I=re=*T) " x|dt =
o +x

§M(r)2-2—1n~ [ II~re*T) x|2ds =

—-Tn

+n

=M(r)2.% f

—n

co

2' rne—intTnx
n=9

2 oo

dt = M(r)? 3 r®|T"x|2.

n=0

Consequently,

2 r||Sshx)E = (M()2—1) 3 r*| T |2
n=1 n=0
Next, fix m in N, m=1. Then,
FSTaE = (1) 3 P Trmst =

=(1—r)=M§ 3 S"xl2 = (=) Mg 3 v S
n=m n=1
and, by what is proved above,
rm ST x| = (1—r)ME(M(r)*—1) 3 r¥|T x| =
n=0

= (=) MM — 1) M§(1 -~ x| = MG(M(r)*—1)llx)%
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‘Since O<r<1 is arbitrary, we conclude that
N lifn'infM(?(M(r)z—l)‘-’"‘, m=1
Hence (1) follows. )

Remark 1. The operator (1—r2)(I—rS)"1(I—rS~1)~! can be considered as
kind of an operator valued Poisson kernel.

Remark 2. In [7] SHIELDS discusses a number of boundedness properties of
‘powers of an operator in relation to the boundedness properties of its resolvent
‘family. See also VAN CASTEREN [12] where similar questions are considered.

*

Next we describe the continuous analogue of Theorem 1. For a proof the reader
-will need Stone’s theorem and some other standard facts on strongly continuous
-semigroups. For all this we refer to Yosipa [13].

Theorem 2. Let iA be the generator of a strongly continuous group {P,: t€R}.
Assume that sup {||P_,||: =0} is finite. Then A is similar to a selfadjoint operator
if and only if it satisfies one of the following conditions:

(i) sup {|PJ: s=0}<eo.
(ii) The inverses (A1—iA)~Y, Re 1=0, exist and

sup {Re A[[(AT—id)7Y||: Re A > 0} < .
(iii) The inverses (L[—id)™', Re .=>0, exist and
lirg‘i(}lf sup {w||AI—id)7Y|: Red = 0w} < .
(iv) There is a constant M such that
Re iljx|| = M||Ax—iAdx|, Rel =0, xeD(A).

Proof. We only prove the implication (iii)=(i). Here we use Plancherel’s
theorem in L3(R, 9); e.g. see EDWARDS and GAUDRY [1, § 3.4, p. 53] or STEIN [8,
Chapter I1, § 5, pp. 45—47]. -

Fix x in  and @w=0. Put

M(w) = sup Lo||(AI—id)~|: Re i = w}.

From standard semigroup considerations it follows by (iii) that the integral

f e~oli=i&s p x ds

Ed
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exists and that
fe“"’s'“ii‘Psx ds = f e~ sSSP xds+ fe“"”"f’P_,x ds =
— oo [1} Q
= ((w—i&) I—id) x+((0—i&)[+id) ' x = 20((0+i)[—id) (@ —iO)I+id)x.
So by Plancherel’s theorem it follows that

_[e—ewlsluPsx”zds =31;_f”_[e—wlsl-igspsxdslladé -
= 5%- fsz((w+ié)l_iA)—l((w—'ié)I-i-iA)‘lx“2dé =

= M@)o [ (@=i)I+idyxfedz =

_ » 1 T —ws+ifs 2 — r —20ms 2
—M(a))z—z?_ £ H Of emos+isP_ xds|[ dg = M(w)*- of e~ P_ x||2ds.
Put My=sup {|P-,|: t=0} and fix S=0. Then

e S| x| = 20 [ =% P_;_5)P,x]?ds =
S

=20M; [ 7| Pox|2ds = 20M§ [ || Pyx|2ds
N 0

and by what is proved above,

=25 Psx||* = 20ME(M(w)*—1) [ e=**|P_,x||*ds =
1)
= 20M$(M(@)—1) [ e ds-||x|?* = M§(M(w)>—1)] x|
0

Consequently, we conclude that
1Pl = M¢ lim‘igxf(M(a))Q— 02, s=0.
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A note on quasitriangularity and trace-class selfcommutators

DAN VOICULESCU

In [3] C. A. BERGER and B. 1. SHAwW proved that for a hyponormal operator T
the following inequality holds:

Tr[T*, T] = _11{ m(T)w(o(T))

where ¢ (T) is the spectrum of 7, w is planar Lebesgue measure and m(T)ENU {c}
denotes the multicyclicity of 7. The aim of the present note is to give a new proof and
an extension of the result of Berger and Shaw by connecting it with quasitriangularity
relative to the Hilbert—Schmidt class. Thus, we obtain that the hyponormality con-
dition can be replaced by the condition that the negative part ([T*, T7)_ of [T*, T}
be trace class (the author has learned that this result has been obtained about
a year ago by C. A, Berger using different methods). But even more, for such T we
prove that

Tr[T* T} = % m(T+X) w(c(T+X))
where X is any Hilbert—Schmidt operator. In particular if
Tr[T*T] > % w(o(T))

then every Hilbert—Schmidt perturbation of T has a non-trivial invariant subspace.

Quasitriangular operators were introduced by P. R. HaLmos [6] and it was
shown by ArostoL, Foias and VoICULESCU [2] that there is a spectral characteriza-
tion of these operators. A refinement of the notion of quasitriangular operator
relative to a norm-ideal was considered in [11]. .

Received March 8, 1979.
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Throughout, H will denote a complex separable Hilbert space of infinite dimen-
sion. By #(H) we denote the bounded operators on H and by 2(H) the set of
finite-rank orthogonal projections on H with its natural order. Then the analogue
-of Apostol’s modulus of quasitriangularity relative to a Schatten—von Neumann
<lass is:

q,(T) = liminf|(/-P)TP|,

‘where T€ Z(H) and |X[,=Tr((X*X)??) (1sp=<).
Then if P,c?(H) and P,~=—I we have

Moreover, one can find P,£2(H) such that P,tI and

lim (7= P,)TP,|, = g,(T).

For Tc¢#(H) we shall denote by Rat(T) the algebra of operators of the
form f(T) where f is a rational function with poles off the spectrum o¢(7) of T.
The multicyclicity m(T)ENU {«} is the least cardinal of a set Z< H such that
the closed linear span of Rat (7)= is H.

Proposition 1. For T¢#(H) and 1=p<o we have

,(T) = (m(T)7|T|.

Proof. If m(T)=-< there is nothing to prove. So assume m(T)=n-<e and
«consider a multicyclic set {¢,, ..., &,} for T;. Consider

j
Hj=k\ZlRat(T)ék, Ho=0, KJ=H]eHJ_1, TJ=PKjTlKJ$ ’]j=PK16j'

Then, using Proposition 2.1 of [11] we have qp(T)g(Z",' (g,(TY)P)Y?. Now,
k=1

it is easily seen that ¢(7)Co(T) and #, is 2 multicyclic vector for 7. This reduces
the proof of the proposition to the case n=1.

Consider a sequence {A;}7, of points contained and dense in the union of
the bounded components of C\g (7). Since ¢&; is multicyclic for T, it is easily seen
that denoting by P,, the projection onto the finite-dimensional subspace of H spanned
by the vectors T*(T—2)'...(T—A,)"1¢ where 0=k=2m, we have P,=P,,,,
Pt and rank (/—P,)TP,)=1. It follows that |(/—P,)TP,|,=|T| and hence
9,(T)=|T]. Q.ED.
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For a hermitian operator A€.%(H) such that the negative part A_ of 4 is
trace-class, we shall denote by Tr A the trace of A, in case A is trace-class and -
in case A4 is not trace-class.

Proposition 2. Let T€L(H) be an operator such that the negative part
(T*, TD- of [T*, T) is trace-class. Then we have Tr[T*, T1=(q,(T))>

Proof. Let P,c#?(H), P,tI be such that "1|1_113° i(I—P,)TP,|,=q.(T).
We have

(q2(T))2 = ”l‘llll I(I_Pm)TPmlg = nlll__{l; Tr(PmT*TPm—PmT*PmTPm) =
= lim Tr(P,(T*, T)P,+P,T(I-P,)T*P,) =
= limsup Tr(P,[T*, T1P,) = Tr[T* T].
QE.D.

Proposition 3. Let Tc ¥(H) be an operator such that the negative part
([T*, TD_ of [T*, T) be trace-class and let X¢ ¥ (H) be a Hilbert— Schmidt opera-
tor. Then we have

Tr[T* T]= —_][—;11(T+X)a)(0'(T+X))

where  denotes planar Lebesgue-measure.

Proof. It is clearly sufficient to consider the case when m(T+X)=n< co.
Given £=>0 and denoting by  the open set

Q ={zeC: |z| = [T+ X || +eN\o(T+X)
we can find a hyponormal operator D such that:

o(D)c Q, mD)y=n, |D|=|T+X|+e [D*, D=0,
Tr[D*, D] = % (0(@—¢).

Such a D is easily constructed by using the “computational lemma” of the paper

of BERGER and SHAW [3], or more elementarily by considering an appropriate direct

sum of operators of the form AI+uS where A, p€C and S is the unilateral shift.
Using Proposition 1 we have

Tr(T©D)*, (ToD)] = (¢:.(T D)),
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and hence
Te[T*, T]+%(w(9)—e) = (g(T®D))-
But ¢,(T®D)=q,((T+X)® D) since X is Hilbert—Schmidt.

Moreover, m((T+X)®D)=n=m(T+X) and hence, using Proposition 2,
we have

(@(T+X)DD)) = (m(T+X))(IT+X [+ = % m(T+X)(0(Q)+ o (e (T+X))).

1t follows that Tr[T*, T]é% m(T+X)(w(o(T+X))—¢). Since £>0 is arbitrary,
we have

Tr[T* T]= —71?m(T+X) o(o(T+X))

which is the desired result. Q.E.D.

Consider 6,,(T), o,.(T) the left-essential and the right-essential spectra of T
and remark that if o(7+X) in the proposition above is bigger than ¢,,(T)No,.(T)
then T+4X has a non-trivial invariant subspace. This together with Proposition 3
gives the following:

Corollary 1. If T is an operator with ([T*, T))_ trace class and
THT*, T] >+ (01(T) 0,,(T)

then every operator T+ X with X Hilbert—Schmidt has a non-trivial invariant sub-
space.

Consider also E(c(7)) the polynomially convex hull of ¢(T), i.e., the com-
plement of the unbounded component of C\o(T) and remark that for X a com-
pact operator o(T+X)N(C\E(c(T))) is an at most countable set and hence
o(6(T+X))=w(E(s(T))). This together with Proposition 3 gives:

Corollary 2. If T is an operator with ([T*, T])_ trace-class and if
Te(T*, T] > — o(Ee(T))

then m(T+X)=1 for every Hilbert—Schmidt operator X.
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The functional model of a contraction and the space L!

CIPRIAN FOIAS, CARL PEARCY and BELA SZ.-NAGY

The present Note is a straightforward continuation of the recent paper [I]..
Indeed, we have noticed subsequently that, under slightly changed assumptions,
the results of that paper can be extended from the factor space L!/H, to the space-
L1 itself, and “localized” on parts of the unit circle C.

The ingredients of these extensions are mostly taken over, with some changes,.
from the paper [I], and so are the notations and the terminology. When referring:
to a specified lemma or formula of [I} we indicate it by the subscript I. Applica--
tions to the invariant subspace problem are to be given later.

1. Let us begin with some lemmas requiring little changes with respect to [I]..

Lemma 1. If {a,} converges weakly to O in €, then for any @&H?® and héH

we have
I(@oas)-h*|lpr —~ 0 and {h-(poay)*lr—~0 as n-oo.

* (This is a strengthening of Lemma 3,, where only convergence in the factor
space L'/H; was established.)

Proof. For any h, k¢$ the function k-A* is the complex conjugate of h.k*
so they have the same norm in L. Therefore it suffices to prove the first convergence.
Now, by (4.3); and (4.7); we have

i(poay) - il = l@(an, Me, i+ 1O @a,ls, Adellir -0 as n—eo.
Lemma 2. For any ¢, YycH? and ac€, we have
“(‘/’00) “(poa)y —yo ”a”é,lll,l =Yalgee, [0 0a), ln2@ + I[O*Yal s [ mse lvalare.)-

(This takes over the role of Lemma 4,, with the unpleasant difference that
here we have to increase the right hand side of the inequality by a second term.)

Proof. It readily follows from (4.2); and (4.3), that
(oa)-(poa)* = Y lalg, —(Ya, ©O[0%¢a],)e, — (O[O0 Yal,, 0a)e, +
+ (0" Ya],, [0%¢al.)e = Y@ llalg, — (O Ya]_, [0*¢a],)e — (O ¥a],, O*¢a)e..

Received September 30, 1979.
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where [-]_=[-]-[-]+; hence,
||Woa)- (poa)*— ¢ llal2, || =

= [[0*Yal -3 I[0*0al. 2@+ [O* ¥l |3 | ©* Pal ey
Since fI[-]-ll;2=I[:1l.2 and since @* is also contractive, the proof is done.

Lemma 3. Suppose €, is (countably) infinite dimensional, and let h,k€$H,
D1y eees Ops W1y -y Y, EH? and £>0 be given. Then there exist K, k'€9 such that

|41y =heter= 0,8 = 2 aslolasCr00d + o (0) +2

e = 2 W5, K2 = 2 lo3lEs.

Remark. One can choose K, k' even to run over sequences Hh™, k™
{n=1,2, ...) such that, for every 1€H, h™ .I1* and k™ .1* tend to O in L* as n—co.

Proofs. Almost identical with those of Lemma 5, and Remark;, by using
Lemmas 1 and 2 in place of Lemmas 3, and 4;, and applying inequality (5.3)
both to ¢; and ;.

2. More essential change is needed with Lemma 2;. Its role will be taken by

Lemma 4. Given a subset S of the open unit disc D={L: |A|<1} let s be
the set of non-tangential limit points of S on the unit circle C.*) Then for any fc L) (s)
and &¢=>0 there exist [y, ..., 4,€S and c,, ..., c,€C such that

) ) ||f_2"'ij, <& and D lcjl = | fllungys
1 L1(s) 1
where P, is the Poisson kernel function on C corresponding to the point p(€D), i.e.
, 1—|u?
) iy . _— Pl
@ Pe) = [T

Proof. Suppose there exist fy€ L*(s) and ¢,=>0 for which the assertion does
not hold, i.e. such that the open ball G in L*(s) with centre f; and radius g, is dis-
Jjoint from the set X of all finite linear combinations 3 ¢;P,, with u;€8, ¢;€C,
and 2 |¢;|=[ foll ;1()- Since both G and X are convex, and G is open, there exist,
by the Hahn—Banach separation theorem, a function g,€L=(s) (the Banach dual
of L1(s)) and a real number « such that

(3) Re f hgodm = o < Re f fgodm

1) For any ScD, the corresponding set sc C is a Borel set, indeed an F,,,.
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for all A€ X and f€G (in particular for f=f;); m denotes normalized Lebesgue
measure on C.
Thus if we set

§o) = [8o()Pu(e)dm (u€D)
and observe that )
[Pulirsy = Pl =1, and hence, | follry Pu€ X,
the first inequality in (3) shows that
@ [ follal@o@) =« for all uesS.

Since &, is a bounded harmonic function on D, by the Fatou theorem we infer
from (4) that

| foll sy |80 (€*)] = & almost everywhere on s,
so that

Re fﬁ)go dm = || foll 115y [ Goll o gsy = .
This contradicts the second inequality (3). The proof of Lemma 4 is complete.

3. In the sequel the functional n,(¢) defined in {I] will again play a basic part.
Let us recall, in particular, that for ¢=p,, where

pu(€") = (1—pe*)™  (n€D),

16(p,) = inf 10.()*| 2],

we have

where U runs through the family of subspaces of €, of finite codimension; cf. (2.6),.
For any number 3, 0=8<1, consider the subset

S Ss ={ueD: ne(p,) =9}
of D, and the corresponding set s; of non-tangential limit points of S; on C.

We are going to prove the following substitute for Lemma 5;:

Lemma 5. Suppose €, is (countably) infinite dimensional and suppose f€L(s;)
and h,k€$, and also €0 are given. Then there exist b, k'€ such that

I(h+8) - (k+K) ~hk* —flliae, = 29[ flleres + 26
171 1K = 1 lergssy -

Proof. By Lemma 4 there exist y,, ..., 4,¢S and ¢, ..., ¢,€C satisfying (1)

(with s=sg). One can obviously assume that ¢;20 for all j, so we can set
@; = [e;2 (L~ [u;[D) 2 py,, ;= (s8R C)) - 05
(j=1,2, ...,n). Then we have
Y@, =ciPy,, [Wllae = lloylik: = lcjl
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so that by Lemma 3 we obtain /’, kK'€$ such that

”(h-l—h’).(k-i—k’)*—h-k*——;'c,-P,,j =282+

Li(ss
and

W W = S lel
Taking also account of (1) we conclude the proof.
4. Now we are ready to state the following:
Theorem. Suppose {€, €_, O())} is a contractive analytic function, with sep-
arable €, €, and with dim €_=c. Suppose that for some 9, 0§8<%, the set

S of non-tangential limit points of the set Sg (defined by (5)) on C has positive Lebesgue
measure. Then for every felLl(sg) there exist h, k€S such that

©) f=h-k* almost everywhere on sy.

Proof. As in the proof of Theorem; we choose a number w such that
23<w=<1 and consider an fEL'(sg) with || fllpay=1. Setting h_y=hy=k_,=
=k,=0 (in $) we show by induction that there exist #4,, k,€9 (n=1, 2, ...) such that

M) W~ Kl s @ and B, —h, o, [ko—kaaf? s 0" (n=0,1, ..).

This being obvious for n=0 we assume #,, k, to be already found for n=0, ..., q.
Setting f,=f—h,-k; and ¢=(w—298)w%2, by Lemma 5 we infer that there exist
hyi1, kpir€9 such that

Magarskgon—hg kg —fallirssy = 28 1| fillirgssy + 24

Mrgsr—hgll®  lhgrr—Kgll2 = || fill gy = @2

and

Then we have
W= hysrKgiillgey = W(FatAge kg)—hgsr kG sl = 28 004+ (0 - 29)0? = @,

and the proof of (7) by induction is done.
By account of (7), the sequences {h,}, {k,} are strongly convergent (in )
and their respective limits /1, k satisfy (6). Theorem is proved.
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On contractions of class C;.

PEI YUAN WU

It has been known that C,; contractions are quasi-similar to unitary operators.
One may come to wonder what the corresponding result for the larger class of C,.
contractions is. Along this line Sz.-NAGY and Foias ([3}, pp. 71—72) showed that
an arbitrary C;. contraction is a quasi-affine transform of an isometry. This result
was also proved by DoucLas ([2], Lemma 4.5) using a different method. In the
present paper we will refine the Sz.-Nagy and Foias technique more deeply to derive
a “‘canonical” isometry for a completely non-unitary (c.n.u.) C,. contraction whose
defect indices are finite.

After we fix the notation and terminology in Section 1, we prove our main
result in Section 2 in a series of lemmas. The notion of “multiplicity-free’” C,. con-
tractions will be taken up in Section 3. We show that a c.n.u. multiplicity-free C;.
contraction with finite defect indices must be either of class C;; or of class C,,.

The author wishes to express his gratitude to Dr. L. Kérchy for pointing out
some gap in, and simplifying the proof of, the main result in the preliminary version
of this paper.

1. Preliminaries. A contraction T (|T||=1) is completely non-unitary (c.n.u.)
if there exists no reducing subspace on which T is unitary. The defect indices of T
are, by definition, dp=rank (I—T*T)"? and dp.=rank (/—=TT*"2. T€C,. (resp.
C.) if T"x+0 (tesp. T* x-+0) for all x=0; C,;=C,.NC.,. For every C,.
contraction T we have dp=dy.. T€C,. (resp. C.o) if T"x—~0 (resp. T* x—0)
for all x; Cy;,=C;.NC.,.

Let C be the complex plane. For a positive integer n, let L: and H? denote the
standard Lebesgue and Hardy spaces of C*-valued functions defined on the unit
circle C. We will use “¢” to denote the argument of a function defined on C and for
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analytic functions, we will freely identify A(f) on the circle with its extension to the
open unit disk A(2). If T is a c.n.u. contraction with defect indices dr=m and
dr.=n, in the discussion of the following we shall consider its functional model,
that is, we consider T being defined on 5E[Hf®m]e{97w@Aw: wEHZ} by
T(fog)=P("fDe'g) for f@ge®H, where @, denotes the characteristic func-
tion of T, A=(I—©}0)"* and P denotes the (orthogonal) projection onto $.
If Oy is the characteristic function of T, then the characteristic function of T™* is
©;, where 0} (A)=0r(4)*. For the details, the readers are referred to [3].

For arbitrary operators Ty, T, on 9,, H,, respectively, TI-Q T, denotes that
T, is injected into T,, that is, there exists an injection X: $,—~9, such that T,X=
=XT,. If X also has dense range, then we say that X is a quasi-affinity and T, is a
quasi-affine transform of T, (denoted by T),<T,). Ty, T, are quasi-similar (Ty~T,)
if T <T, and T,<T;. For an arbitrary operator T on §, let u, denote the multi-
plicity of T, that is, the least cardinal number of a subset & of elements in $ for

" which =V T"8&. Note that if T,<T, then pr =p,.
n=0

2. C,. contractions in general. Our purpose in this section is to prove the fol-

lowing main result.

Theorem 2.1. Let T be a completely non-unitary C,. contraction with defect
indices dr=n=dr.=m<oc. Then T<S,_,® U, where S, _, denotes the unilateral
shift on H:_, and U denotes the operator of multiplication by e on ALZ.

If T is a C,. contraction as above, then T* is of class C., and we may con-
sider T* being defined on $=[H2H A" L]0 (07w 4" w: weH?)} by T*(f@g)=
=P~ ("fde’'g) for fHgc®H, where 4" =(I—0O*O7)"® and P~ denotes the
(orthogonal) projection onto $. Let P,: $§—~4" L2 be the operator P, (fog) =g
and let ¥ be the operator of multiplication by e on 4~ L2,. Then it is easily seen
that V*P,=P,T and P, is injective (cf. [3], pp. 71—72). Thus T<V*|P;$. What
Lemmas 2.2, 2.3 and 2.4 below show is that ¥*|[P,§ is unitarily equivalent to
Sp-n®U.

Lemma 2.2. Eﬁ—:f-L_,z,,_eA_"_ﬁ, where L={fcH:: ©1f=0}.

" Proof. Let k be an element of L2@®4~LZ,. We first show that k€A IZ6P,%
if and only if k_LLﬁ and k1 $. Indeed, any A€$H can be written in the form
h=f+g, where f] a- L2, and ge}i@. If k is orthogonal to any two of the elements
h, f and g, then it is also orthogonal to the third element. Our assertion follows
immediately. Since L2® A4~ LZ=(LEo H) S H D {O7wd A~ w: we H2), the following
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three conditions are equivalent:
 keALLoPS,
kETL—?,, and 0k = Orwedd”w for some WéH,‘,",,
ked L% and k=A"w forsome wece,
which shows that Pr§=A"TE0 8.

Lemma 2.3. Let S,, and Sp-n denote the unilateral shifts on HY and HY_,,
respectively, and let = {f¢ HZ: ©1f=0}. Then S,|8=S,_,.

Proof. Since £ is an invariant subspace for S, 2=¢qu for some inner
function {C% C", ®} where g=m. @ is *-outer implies that @ is outer. Hence
ker ®7(¢) has dimension m—n for almost all z (cf. [3], p. 191), and it follows that
g=m-—n. ' o

On the other hand, considering the quotient field derived from the algebra H>,
we see that the equation ©,f=0 has m—n linearly independent solutions:
Yis ooos Ymen- That is, Yy, coos Yp—pn€L2 and ¢,(8), ..., Yp—n(¢) is a linearly inde-
pendent system for almost all # (cf. [4], the proof of Theorem 5). Therefore, m—n=gq.
Thus g=m—n and the assertion follows.

Lemma 2.4. V*P.$ is unitarily equivalent to S,,_,® U.

Proof. Let 8=®H?2_, be as in Lemma 2.3 and let ;= &y, for j=1, ..., m—n,
where 7; denotes the column vector with m—» components whose j-th component
is 1 and other components are 0. It is easily seen that for almost all 7,
Vi(0), ..., ¥,.—n(t) are orthonormal eigenvectors of A~ (t) whose corresponding
eigenvalues 6,(¢), ..., 6,,—,(t) all constantly equal to 1. Since for almost all ¢,
47 (¢) is a self-adjoint operator on C™ bounded by 0 and 1, we can extend {¥;(z)}["™"
to an orthonormal base {y/;(¢)}" of C™ consisting of eigenvectors of 47 (¢), that is,
such that A~ ()y;(t)=6;()y;(t), j=1,...,m, where the eigenvalues 6;(t) are
arranged in decreasing order:

1=61(0)=... = 0pen(@) = Opp_nsr1() =...=6,(t) =0 ae.

Let E;={t: rank 4" (t)=/}, j=1, ..., m. Define X: 4" L2~L%(E)® ... ® L*(E,) by
X(4™)=%,6,9 ... ®x,,0,,, where forany veL?, x;()=(v(t), ¥;())cm, J=1, ..., m,
and ( , )om denotes the Euclidéan inner product in C™. It was shown on pp. 272—273
of [3] that X can be extended to a unitary transformation from ZTL_;";, onto
LHED®...® L*(E,) such that XV =V"'X, where V' is the operator of multiplica-
tion by e on L:(E)®...® L*(E,). .
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We complete the proof of this lemma in scveral steps. In each step the first
statement is proved.
() X4"8=H:_,®0®...®0. Let S,_, and S,, denote the unilateral shilts on
n

H2_,and H?, respectively. We have .,,-,=S,, ®. So V (St j=1,....,m—n}=2

and A" 8= V {4” Sy, j=1, ...,m—n}=iV {Viay,, j=1, ..., m—n}). Since X
i=0 =0
is a unitary operator for which XV=V'X,X A8= \ {XV4"y;, j=1, ..., m—n}=
i=o

=i\;70 Vx4~ y;, j=1,...,m—n}=H:_ ,®0®...00, where in the last equation

we used the relation XA™y;=n; for j=1, ..., m—~n.

(i) V"*0®... 00D L*(Eywps) D ... ® LE(E,) is unitarily equivalent to U on

bt

ALE. Let U be unitarily equivalent io the operator U’ of multiplication by ¢ on
I*(F)®...®L*(F,), where F;={t: rank 4(¢)=j}, j=1, ..., n, are Borel subsets
of C satisfying Fy2F,=...2F, (cf. [3], pp. 272—273). An elementary argument
shows that m+rank A(t)=n+rank 4,(¢f)=n+rank 4”(—t) a.e., where 4, =
=(—60;0%)?. Hence rank A(¢)=j if and only if rank A" (—¢)=m—n+j. It
follows that F;=E,_,,;={t€C: —t€E,_,;}, for j=1,...,n. We infer that U’,
hence U, is unitarily equivalent to V'*|0®... 0D LA(E, 1) D ... ®L2(E,)

(iii) V*|P,$ is unitarily equivalent to S,,_,®U. By (i) and Lemma 2.2 we
have X*[(L%_,0H: YOL*Ep_,10)®...0LXE,)=4"L2604" 2=P,$H. Hence
V*P$ is unitarily equivalent to V'*(L?_,0 Hp_)® L*(Ey—ys)) @ ... ® L*(E,),
which is, in term, unitarily equivalent to S,,_,® U by (ii).

This completes the proof.

We remark that from the proof above we can easily deduce that if 7'is a c.n.u.
C,. contraction with defect indices dp=n=dr.,=m=<o, and U, ¥V and W denote
the operators of multiplication by ¢ on ALZ, A, L% and L%,_,, respectively, then
V=WeU.

Note that the isometry of which T is a quasi-affine transform is, in general,
not unique as is evident from the following lemma.

Lemma 2.5. Let S and U be the unilateral and bilateral shifts on H? and L2,
respectively. Then S<U.

Proof. Let g be an essentially bounded function in L? which is cyclic for U,
that is, L*= V U"g (cf. [5], proof of Lemma 4). Define X: H2—~L? by Xf=gf
for fc H®. It is easﬂy verified that X is a quasi-affinity intertwining S and U.
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Corollary 2,6. Let T be a Cyy contraction with defect indices dr=n=dp,=
=m=:oo, Then T<S,,—,-

Proof. For a Cy, contraction T we have 4=(I—0%0;)"?=0. The assertion
follows immediately from Theorem 2.1.

Actually, in the preceding situation Sz.-Nagy and Foiag showed that T is com-
pletely injection-similar to the uniquely determined S,,., (cf. [4]).

3. Multiplicity-free C,. contractions. A C,. contraction T is said to be mudlti-
plicity-free if it admits a cyclic vector, that is, up;=1. The following theorem gives
equivalent conditions for multiplicity-free C,, contractions, which generalizes Prop-
osition 2 of [4].

Theorem 3.1. Let T be a Cy, contraction with defect indices dr=n=dp,=
=m=oo and let S denote the simple unilateral shift. Then the following are equiv-
alent:

(1) T is multiplicity-free,

2) ST,

3) S~T;

4 m—n=1 and there exists an mX1 matrix A over H= such that [4, O]
is outer;

(5) m—n=1 and there exist elements Xi,..,x, in H* such that

X1 01 —Xg 02 +o ( o 1)m+1 X Hm

is outer, where 0; denotes the determinant of the nXn matrix obtained by deleting
the j-th row from the matrix of O, j=1, ..., m.

The proof essentially follows the same line of arguments as given by Sz.-NAGY
and Foiag [4] for the case m=2, n=1. We leave the verification to the readers.

Theorem 3.2. Let T be a c.nu. Cy. contraction with defect indices dp=n=
=dp=m= oo, Then the following are equivalent:

(V) T is multiplicity-free;

(2) either T is of class Cyg and T~ S or T is of class Cy and T~ My,
where S denotes the simple unilateral shift and My, denotes the operator of multiplica-
tion by é* on L*(E) for some Borel subset ECC.

Proof. (2)=(1). This is trivial since pp=/pg=p, =1.

(1)=>(2). By Theorem 2.1, T<J=S,,. ,®U, where S,_, denotes the uni-
lateral shift on H2_, and U denotes the operator of multiplication by ¢/ on ALZ.
Thus (1) implies that py=pr=1. It is an easy matter to check that either J=S

14
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and T is of class C,, or J=M  for some Borel subset ESC and T is of class Cy;.
In the former case, T~ S follows from Theorem 3.1; in the latter, T~ My follows
from Lemma 4.1 of [1], since T is itself quasi-similar to a unitary operator. This
completes the proof.
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On a partial solution of the transitive algebra problem

B. S. YADAY and S. CHATTERJEE

Let B(H) denote the Banach algebra of all bounded linear operators on an
infinite-dimensional separable complex Hilbert space H. A subalgebra & of B(H)
is called transitive if it is weakly closed, contains the identity operator and its only
invariant subspaces are {0} and H. B(H) is obviously transitive. Whether there
exists any other transitive algebra is a well known open problem, the so-called
‘transitive algebra problem’. The problem was first raised by KapisoN [5] and it
continues to be still unsolved. However, partial solutions of the problem have been
obtained by many mathematicians; see, for example, ARVESON [1], BARNES [2], DOUGLAS
and PEARCY [3], NORDGREN [8], NORDGREN, RADJAVI and ROSENTHAL [9], and RADJAVI
and RoSENTHAL [10], [11]. The first such solution was given by ARvEesoN [1] who
proved that if a transitive algebra & contains a maximal abelian self-adjoint algebra,
then o/ =B(H). In the same paper, he also proved that B(H) is the only transitive
algebra containing a simple unilateral shift. By using Arveson’s techniques, NORD-
GREN, RADJAVI and RoOSENTHAL [9] have shown that a transitive algebra containing
a Donoghue operator (backward weighted shift with a monotone decreasing and
square-summable weight sequence) equals B(H). The purpose of this note is to
go a step further in this direction and show that every transitive algebra containing
a certain type of weighted shift, more general than a Donoghue operator, coincides
with B(H). Our result assumes significance in the light of the conjecture that every
transitive algebra containing a weighted shift is equal to B(H).

We shall denote by H™ the direct sum of # copies of H, and by A®™ the operator
on H™ which is the direct sum of n copies of A.

Let {w,};=, be a bounded sequence of non-zero complex numbers and let
{e.}e>, be an orthonormal basis of H. The operator T on H defined by the require-

ment
Te,=0 and Te,=wee_, (k=1,2,..)

is called a weighted unilateral (backward) shift with the weight sequence {w,};>,.

Received February 20, 1979.
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We may and shall assume, without any loss of generality, that the weights w, are
positive real numbers [4]. In this case, {w};>, is said to be of bounded pth-power
variation if

2 W= Wipyl? <oo.
k=1
(For p=1, we simply say “bounded variation™.)
The following theorem is an important tool to obtain our results:

Theorem A. [9, Corollary 1] If a transitive algebrav & contains an operator
A such that

(i) every eigenspace of A is one-dimensional, and

(ii) for every n, each non-trivial invariant subspace of A™ contains an eigenvector
of A("),

then s/ =B(H).

In the rest of this paper, & will denote a transitive algebra containing a weighted
unilateral shift T with the weight sequence {w,};=,. Our first result is

Theorem 1. If {w.}r, is of bounded variation and

2
& (Wegg oW
1 5= 5(n) = [M) o
O () k‘g{, Wy... W, =
for all n=2, then o/ =B(H).
Proof. We know that there is a disc of eigenvalues for a backward weighted
shift, but they are all of multiplicity one. Thus T satisfies condition (i) of Theorem

A. Next, let (x;, Xs, ..., x,) be a non-zero element of a non-zero invariant subspace
M of T™ and let

M

X. =

j X

i e, 1=j=n.

I
o

If, for each j, the sequence {x;};=, has only finitely many non-zero terms, then
the invariant subspace of T™ generated by (xy, X,, ..., x,) is finite-dimensional
and thus contains an eigenvector. We therefore assume, without loss of generality,
that for every m=0, there is a number r=r(m)=m and a number s=s(m), 1 =s(m)=n,
such that

()] |x, | = max . {Ix;;1} = 0.

izm;l=sj=

Now, for a given integer m, we have

(T("))'(xla X9y euny xn) _ [xr,l e Xy, 2 e Xr,n e )+(y y y )
- 0> 0> +24» 0 r1s Yr,2s coc9 Vrenh
xr,swr oo wl xr,s 7S xr,s .
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where
oy Xk iWeeeWe—rs1
Ve, i = D —————"_,.
k=r+1 x,,sw,...wl

Now

- - 2 2 - 2

”yrj”2= > (Wk---Wk-r+1) Xk, j Z(Wuz Wk+r+1) xk+r+1j| =
' k=r+1 W,...wy Xe,s k=0 wy...w, X, s

= Z°.°(Wk+z--~wk+r+1)2, by (2),

k=0 Wi.ee W,

2 23
1 &(w w 1 = kw w;
_ k+2-0 Wit 2 _ i+2 itr
= — — Wk+r+1_—2 22— W irr1—Whirsd)
we S0’ Wa...w,

(by Abel’s transformation [12])
0 .2 2
z kg(; [Wisri1—Wiirsals by (1),

0 = .
= 2 Wetrs1=Wirrsol (Wetrs1FWirrso) =
Wi k=0

IIA

281
— —Wi41l, where p = sup {w},
w2 k

k>r

and hence y,;~0 as m—oo.

Also, for each j (1=j=n), the sequence {ﬂ} is contained in the unit
sim=1

disc, and hence admits a convergent subsequence converging to a number, say z;.
A routine check reveals that a number j, lying between 1 and » will occur infinitely
often as a value s=s(m) and corresponding to this j,, we have z;,=1. The upshot
of the above deliberation is that M contains an eigenvector of T, viz.
(2169, 25€5, ---5 Z,€5). Thus, T also satisfies condition (ii) of Theorem A and we
‘are done.

Theorem 2. If {w,}i=, is of bounded pth-power variation and

3) 5=06(n) = kg (jéo Wisa o Wit Wi+~) <o

W2...wn

for all n=2, where 1<p<oo and q is the Holder conjugate of p, then of =B(H).
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Proof. Proceeding as in the proof of Theorem 1, we have
> (wg...w 2 2 = (wp...w
N = ks Vk—r+1 - ( k- k—r+1]
ot =( 3, () ) = 3 (e

k=r+1 We... Wy
: Wi oo Wier i
= 3 ——==, by(®
karp1 Wp...W;

Xk, j
xr,s

Xk, j
xr,s

=

1 & Wisze Wisr 1 S &w w
e )+2... j+r
=— 2 " Wigp11 = — 2| 2 Whtr i1~ Wit el
Wy k=0 Wy...W, Wi k=0 \j=0 Wz...W,

(by Abel’s transformation [12])

1 o f k w.. Y\Ye
= (3 (S e )7 (3 -l by Holder's inequality)

St/a
) (kZ lwk—Wk+1|p)1/p: by (3);

W, >

and hence, y, ;>0 as m-—co.

The rest of the proof follows as that for Theorem 1.

Let I?, 1<p<oo, be the Banach space of all complex pth-power summable
sequences x= {xg, X;, Xp, ...} with the norm

o i/p
It = Zede)
k=0
Then a weighted unilateral (backward) shift T on /? appears as
T {xq; X1, Xg5 ...} = {WyXy, WoXs, ...}
We denote by Za strongly closed subalgebra of B(/?) containing the identity opera-
tor and with no non-trivial invariant subspaces. We have the following analogue of

Theorem 1 for I? spaces, which we state without proof:

Theorem 3. If & contains T with

S (Wesg-o Ween)' :
(—m—"“’) <o forall n=2,
k=0 W2...W,|

then & = B(IP).
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Remark. A subalgebra ¥ of B(H) is called strictly cyclic if there exists a
vector x,€H such that {A4x,: A€¢¥}=H, and an operator A€B(H) is strictly
cyclic if the algebra generated by A is strictly cyclic. LAMBERT [7] has shown that.
every transitive algebra which contains a strictly cyclic algebra equals B(H). It
follows, in particular, that every transitive algebra containing a strictly cyclic opera-
tor is equal to B(H). Every Donoghue operator is strictly cyclic [6]. Whether the:
weighted shifts 7 in our Theorems 1 and 2 are also strictly cyclic, is not known..
In case they are, these theorems will follow as corollaries to LAMBERT’S theorem
[7, Theorem 4.5). In fact, we strongly feel that the following is true: :

Conjecture. Every weighted unilateral shift whose weight sequence is of
bounded variation and square-summable is strictly cyclic.
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D. W. Barnes and J. M. Mack, An Algebraic Introduction to Mathematical Logic, V+ 121 pages,
Springer-Verlag, Berlin—Heidelberg—New York, 1975.

According to the authors’ intention declared in the Preface, “this book is intended to make
mathematical logic available to mathematicians workingin other branches of mathematics”. Despite:
of the title the presentation uses very few algebraic means.

Chapter T accumulates some simple notions such as the free algebra, relatively free algebra and
variety of universal algebras. Chapters II and III deal with Propositional calculus. Chapter IV deve-
lops both syntax and semantics of Predicate calculus and proves Gédel’s Completeness Theorem by
the method of Henkin. In Chapter V mathematical theories based on the fitst order predicate cal-
culus are investigated. In particular, the Lowenheim-Skolem Theorem and the elimination of quanti-
fiers are studied. Chapter VI lists the axioms of the Zermelo—Frankel set theory. Chapter VII intro-
duces the notions of ultraproduct, ultrapower and direct limit and there is a nice proof of the theo-
rem that every field has an algebraic closure. Non-standard models are discussed in Chapter VIII
with applications 1o elementary non-standard analysis. In Chapter IX Turing machines and G&del
numbers are introduced to explain the notion of calculability and solvability. In particular, Church’s.
theorem on undecidability of the predicate calculus is included. Finally, Hilbert’s Tenth Problem and
a brief outline of its solution by MaiiyaSeviC are presented in Chapter X.

The book is very clearly written, supplied with excercises at the end of sections (some of them
need far more knowledge than provided by the text).

P. E.-Torh (Szeged)

B. Bollobds, Graph theory: An Introductory Course (Graduate Texts in Mathematics, Vol. 63),
X+180 pages, Springer-Verlag, New York—Heideiberg—Berlin, 1979.

The 8 chapters of the book (Fundamentals; Electrical Networks; Flows, Connectivity and Match-
ing; Extremal Problems; Colouring; Ramsey Theory; Random Graphs; Graphs and Groups)
contain gradually more and more involved results, with several relations to other branches of mathe-
matics.

The reviewer was pleasantly surprised to find a full chapter on electrical networks, and feels
some competence to criticize this chapter in a more detailed way. The order of the presentation is
quite unusual. In other texts, Theorem 1 is presented usually much later than Theorem 7. (However,
the other texts are written mainly to students in engineering, while the order in this book seems to
be more adequate for mathematicians.) On the other hand, one sees no reason why should the mate-
rial of §2 separate those in §§1 and 3. The references at the end of the chapter refer to §2 only and the:
exercises, related to §2 are also more adequate than the rest. Probably a few remarks on electric net-
work duality and its relation to planar graphs could also be in order.
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The author successfully meets two contradicting requirements: most of the important branches
-of the theory are presented; still, several deep results are included. The presentation is clear, there is
a strong attempt to present typical methods and ways of reasoning in addition to the results.

A great advantage of the book is the good selection of exercises, containing quite a few unusual
and deep results.

The book is a valuable addition to the literature and is highly suggested for students and
teachers of graph theory.

A. Recski (Budapest)

Carl de Boor, A Practical Guide to Splines (Applied Mathematical Sciences, 27) XXIV + 392
pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978.

The textbook grew out of lectures on splines delivered by the author at Redstone Arsenal in
1976 and at White Sands Missile Range in 1977. It stresses the representation of splines as linear
<combinations of B-splines, provides proofs only for some of the results stated but offers many For-
tran programs. The reader is requested to consult a few books listed in the bibliography if he wishes
to develop a more complete picture of spline theory. As the author says in the Preface, his book pre-
sents only those parts of spline theory which he found useful in calculations. Indeed, this book is an
excellent one for everyone who deals with applied mathematical problems involving polynomial
splines. '

The following outline may provide an idea of the content. Chapters I and II recapitulate mate-
rial needed later from the ancient theory of polynomial interpolation. The next four chapters follow
somewhat the historical development, with piecewise linear, piecewise cubic, and piecewise parabolic
approximation discussed. The computational handling of piecewise polynomial functions is the sub-
ject of Chapters VII and VIII. B-splines are introduced in Ch. IX, while Chs. X and XT are intended
to familiarize the reader with them. The remaining chapters contain various applications, all involv-
ing B-splines: the smoothing spline and least-squares spline approximation for noisy data, the use of
splines in solving differential equations, approximation of curves etc. The final chapter treat with the
simplest generalization of splines to several variables.

Each chapter ends with some problems to test the reader’s understanding of the material, to
bring in additional material and to urge numerical experimentation with the programs provided.
‘The Bibliography does not claim completeness, it contains only items referred to in the text. For the
reader’s convenience a Postscript on Things not Covered, a List of Fortran Programs, and a Subject
Index complete the book.

F. Moricz (Szeged)

Yuan Shih Chow and Henry Teicker, Probability Theory (Independence, Interchangeability,
Martingales), XV +455 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978.

The concern of this book is the measure theoretical foundations of probability theory and the
major theorems of the subject. The main topics treated are independence, interchangeability and
martingales as indicated in the title. Thus, such important concepts as Markov and stationary pro-
cesses are not even defined, although the special cases of sums of independent random variables and
interchangeable random variables are dealt with extensively. Likewise, continuous parameter sto:
chastic processes, although alluded to, are not discussed.

The book is intended to serve as a graduate text in probability theory. No knowledge of measure
or probability is presupposed. A novel feature is the attempt to intertwine measure and probability
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rather than, as customary, to set up between them a sharp demarkation. Particular emphasis is plac-
ed upon stopping times, on the one hand, as tools in proving theorems, and on the other, as objects
of interest in themselves. For example, optimal stopping problem, limit destributions of sequences
of stopping rules (i.¢. finite stopping times), randomly stopped sums are of special interest. Many of
the proofs given and a few of the results are new. Occasionally, a classical notion is looked at through
new lenses (e.g. reformulation of the Lindeberg condition). .

Chapter 1—3 contain the elements of measure theory, binomial random variables and indepen-
dence involving the Borel—Cantelli theorem and Kolmogorov zero-one law. It is surprising how
much probability can be developed without even a mention of integration. A number of topics treated
later in generality are foreshadowed in the very tractable binomial case. Ch. 4 is devoted to'integra-
tion in a probability space, while Ch. 6 to measure extensions, Lebesgue—Stieltjes measure and the
Kolmogorov consistency theorem. .

Readers familiar with measure theory can plunge into Ch. 5 after reading Section 3.2. A one-
year course presupposing measure theory can be built around Chapters §, 7, 8, 9, 10, 11 and 12. In
more detail, Ch. 5 treats the sums of independent random variables, Ch. 7 introduces the notions of
conditional expectation, conditional independence, and martingales. Ch. 8 deals with distribution
functions and characteristic functions, involving the Fréchet—Shohat, Glivenko—Cantelli and Cra-
mér—Lévy theorems. The central limit theorems are studied for the independent case, interchange-
able case and martingale case (Ch. 9), while the laws of large numbers, the law of the iterated logarithm
for independent case (Ch. 10), Martingales are introduced in Section 7.4, where the upward case is
treated, and then developed more generally in Ch. 11. The final Ch. 12 contains material concerning
infinite divisible laws.

The book is complemented by a List of Abbreviations, a List of Symbols and Conventions, and
an (author and subject) Index. Each section ends with exercises, and each chapter with references.
The exercises are used to extend theory, to illustrate a theorem, or to obtain a classical result from one
recently proven.

The presentation is self-contained and unified. It is highly recommended for every graduate stu-
dent or mathematician who wishes to begin studies in Probability Theory.

F. Moricz (Szeged)

Combinatorial Mathematics. VI, Proceedings of the Sixth Australian Conference on Combina-
torial Mathematics, Armidale, August 1978. Edited by A. F. Horadam and W. D. Wallis (Lecture
Notes in Mathematics, Vol. 748), IX+206 pages, Springer-Verlag, Berlin—Heidelberg—New
York, 1979.

The volume contains texts of three of the invited addresses (R. B. Eggleton and D. A. Holton
on graphic sequences, S. O. Macdonald on the interaction between combinatorics and graph theory,
B. D. McKay and R. G. Stanton on generalized Moore-graphs) and 15 contributed papers (about
40—40% of which refer to designs and graphs, respectively).

A. Recski (Budapest)

George Griitzer, Universal Algebra, 2nd edition, XVIII+581 pages, Springer-Verlag, New
York—Heidelberg—Berlin, 1979,

The first edition of Gritzer’s Universal Algebra came out in 1968 and instantly became z/e refer-
ence book of its topic. The very successful choice of the material is testified by the fact that, after.
eleven years and about a thousand new articles in the area,a second edition containing the unchanged
text of the first one has been justified and necessitated.
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Clearly, in order to remain the reference book also in the future, this second edition has had
to mirror the rapid development of universal algebra in the seventies. For this aim, it contains seven
appendices, partly written by invited experts, and an abundant additional bibliography which in-
cludes even several important articles not in print yet.

The first appendix (Shortly: Al) is a survey of recent research not covered in the further appen-
dices. A2 is a review of the solved problems, posed in the first edition. A3 (by B. Jonsson) introduces
into Mal’cev conditions and congruence varieties, A4 (by W. Taylor) surveys equational theories,
AS (by R. N. Quackenbush) gives a picture on primal algebras and other generalizations of Boolean
algebras, and A6 (by G. H. Wenzel) deals with equational compactness. Finally, A7 contains the proof
of a deep new result of the author and W. A. Lampe, namely, that the congruence lattice, the subal-
gebra lattice and the automophism group are independent for infinitary algebras.

The time-tested basic text with these nicely written mini-monographs added will serve, no doubt,
as the standard universal algebra book, in the cighties, too.

) B. Csakany (Szeged)

S. W. Hawking and W, Israel, editors, General Relativity. An Einstein Centenary Survey, XV +920
pages, Cambridge University Press, Cambridge—London—New York—Melbourne, 1979.

The Einstein centenary arose widerspread new interest for general relativity all over the world.
The present book is a most appropriate commemoration on Einstein’s hundredth birthday. Twenty-
one of the world’s leading relativists collaborated on this survey and gave a render of the current
state of research.

The book starts with an introductory survey of S. W. Hawking and W. Israel. The papers of
C. M. Wil], D. H. Douglass and V. B. Braginsky deal with the confrontation between gravitation
theory and experiments. The work of A. E. Fischer and J. E. Marsden discusses the initial value
problem and the Cauchy problem for relativity and they give the dynamical formulation of general
relativity too.

The discovery of exotic astronomical objects (quasars, pulsars, and X-ray sources) necessitated
the development of theories which can explain the complex behaviour of these objects theoretically.
Such are the theory of cosmology, black hole physics, theory of singularity, the early history of the
universe, e.t.c. A lot of papers discuss these fields by the authorities who, strictly speaking, created
these theories. We can mention here, e.g., the following names: R. Gerock and G. T. Horowith
(Global structure of spacetimes), B. Carter (The general theory of the mechanical, electromagnetic
and thermodynamic properties of black holes), S. Chandrasekhar (An introduction to the theory of
the Kerr metric and its perturbations), R. D. Blanford and K. S. Thorne (Black hole astrophysics),
R.H.Dicke and P. J. E. Peebles (The big bang cosmology—enigmas and nostrums), Ya. B. Zel’dovich
(Cosmology and the early universe), M. A. H. MacCallum (Anisotropic and inhomogeneous relativ-
istic cosmologies), R. Penrose (Singularities and time-asymmetry).

One of the most exciting problem of physics is the unification of general relativity with quanti-
zation and with other laws of physics. The book treats the present status of this field with an abun-
dant and profound material. C. W. Gibbons surveys the present quantum field theory in curved
spacetime. B. S. DeWitt gives a new synthesis of quantum gravity. The article of S. W. Hawking
shows how the path integral approach can be applied to the quantization of gravity and how it leads
to the concepits of black hole temperature and intrinsic quantum mechanical entropy. In the last
article of the book S. Weinberg deals, in connection with ultraviolet divergences in quantum gravity,
with the future of quantum gravity and gives several conjectures concerning the evolution of the
quantization in relativity.



Bibliographie 22t

We want to emphasize also the highly intelligent editorial work and the very nice appearance
of the book. The editors should be congratulated for presenting us a work which will remain the:

“Bible” of relativity for many decades to come.
Z. I. Szabo (Szeged)

H Hermes, Introduction to Mathematical Logic, XI+242 pages, Springer-Verlag, Berlin—
Heidelberg—New York, 1973.

This volume is a valuable introductory text in the classical two-valued predicate logic.

After three editions in German, the original text was translated into English by D. Schmidt..
Concerning the material covered is no difference between the English and the third German edition.

Both syntactical and semantical approaches are developed with a little more emphasis on the
latter. After an excellent introduction the language and calculus of the first-order predicate logic are
given in Chs. II—IV. The treatment leads to the G6del’s Completeness Theorem in Ch. V. In Ch. VI,
the axiomatic number theory and the second order predicate logic are introduced, on making the
notion of completeness clearer. Ch. VIII includes pure model-theoretic proofs of some basic results
in definition theory (such as theorems of Robinson, Craig, Beth, etc).

In the remaining chapters (VII and IX) useful techniques are presented to derive some well-
known logical connectives and normal forms. A systematic treatment of substitution is also included

here.
P. E.-Toth (Szeged)

Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces. I (Function Spaces) (Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, 97), X-+243 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1979.

The second volume on classical Banach spaces b& the same authors [Volume I: Classical Ba-
nach Spaces. 1 (Squence spaces), Springer-Verlag, Berlin—Heidelberg—New York, 1977] is devot-
ed to the study of Banach lattices.

A partially ordered Banach space X over the reals is called a Banach lattice if the following
conditions are satisfied:

(i) x=y implies x+z=y+z, for every x, y, z€X;;

(ii) ax=0, for every x=0 in X and every non-negative real a;

(iii) for all x, y€X there exists a least upper bound xVy and a greatest lower bound xAy;

(iv) there exists a constant M such that Ixll=M |yl whenever |x|=|y|, where the absolute

value [x] of x€X is defined by {x|=xV (—x).

The structure of Banach lattices is much simpler than that of general Banach spaces and their
theory is therefore more complete and satisfactory. Many of the results concerning Banach lattices.
are not valid and sometimes even do not make sense for general Banach spaces. The theory of Ba-
nach lattices has many tools which are specific to this theory, in particular, the notions of p-convexity
and p-concavity seem to be especially useful. These notions play a central role in the present volume
and presumably will continue to dominate the theory of Banach lattices.

The book consists of two chapters, both subdividing into seven sections. The table of contents.
is quite detailed and gives a clear idea of the material discussed in each section. The basic standard
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theory of Banach lattices is contained is Sections 1 a)—<). The theory of p-convexity and p-conca-
vity is presented in Sections 1 d)—f). .

Chapter 2 is devoted to a detailed study of the siructure of rearrangement invariant funcnon
spaces (r.i.f.s.) on [0, 1] and [0, «): a) Basic definitions, examples and results; b) The Boyd indices;
c) The Haar and the trigonometric systems; d) Some results on complemented subspaces; €) Iso-
morphisms between r.i.f.s. and uniqueness of the r.i. structure; f) Applications of the Poisson pro-
.cess to r.ifs.

Three of the sections are concerned with the general theory of Banach spaces rather than with
Banach lattices. Section 1 €) deals with the theory of uniform convexity, 1 g) with the approximation
property, and 2 g) with geometric aspects of interpolation theory in general Banach spaces.

The prerequisities include, besides standard material from functional analysis and measure
theory, only a superficial knowledge of the material presented in Volume I of this book. For the con-
venience of the reader the authors tried to discuss briefly in the appropiiate places the notions and
results from probability theory which they apply.

The overlap between this volume and existing books on lattice theory is small and consists
mostly of the standard material presented in Sections 1 a)—b). The books of W. A. J. LUXEMBURG
and A. C. ZAANEN [Riesz spaces I, North—Holland, Amsterdam, 1971] and H. H. SCHAEFER [Banach
dattices and positive operators, Springer-Verlag, Berlin—Heidelberg—New York, 1974] contain
much additional material rather on vector lattices. The volume under review comprises the substan-
tial progress made in the seventies.

To sum up, the present book is a rich and up-to-date account on this fast-growing and important
subject. It is warmly recommended to everyone who wants to learn, or do research in, the theory of
Banach spaces.

F. Moricz (Szeged)

M. Schreiber, Differential forms (A heuristic introduction), X+ 150 pages, Springer-Verlag,
New York—Heidelberg—Berlin, 1977.

The theory of differential forms is one of the most frequently applied branches of mathematics
not only in several fields of mathematics but also in theoretical physics. But the systematic treatment
of differential forms requires an apparatus of topology and algebra which can be difficult for mathe-
maticians and physicists working in other fields of research. The present book treats the theory of
differential forms with minimal apparatus and very few prerequisites. The exposition is heuristic
and concrete. A differential form is considered as a multi-dimensional integrand given on surfaces in
Euclidean space, and the various operations (such as exterior derivation) are treated on an elemen-
tary level, from the geometrical point of view. Several formulas, such as Stokes’formula, are proved
-on such an elementary level as possible. The book contains a short introduction to integral geometry
also. .
It is addressed to mathematicians, physicists and students who are interested in a quick acquire-
ment of differential forms techniques.

Z. I. Szabo (Szeged)

G. Takeuti and W. M. Zaring, Axiomatic Set Theory, V+238 pages, Springer-Verlag (Berlm—
Heidelberg—New York, 1973).

This almost completely self-contained volume is a continuation of a previous one by the same
-authors (“Introduction to Axiomatic Set Theory”, Springer-Verlag, 1971). The present book deals
‘with three well-known methods for constructing models of .the Zermelo—Fraenkel set theory: rela-



Livres regus par la rédaction 223

tive constructibility, Cohen’s forcing and Boolean valued models. After developing Lévy-Schoen-
field’s theory of refative constructibility (Sections 7, 8, 9) a relationship is established between Co-
hen’s technique of forcing (Sec. 10) and Scott-Solovay’s theory of Boolean valued models (Sec. 13).
In the first six sections some facts of Boolean algebras, Boolean o-algebras, partial ordered structures,
and topologies needed later on are collected. The remaining sections are devoted to a deeper investi-
gation of the concepts introduced in the earlier sections.
The text is recommended for graduate students.
P. E.-Toth (Szeged)

1. M. Yaglom, A simple non-euclidean geometry and its physical basis, XVIII + 308 pages, Sprin-
ger-Verlag (New York—Heidelberg—Berlin, 1979).

It is a hard problem of geometrical education to give a simple, relatively Quick but deep synthe-
tical treatment of classical non-euclidean geometries. The book of I. M. Yaglom proves that this
program is realizable very elegantly from the mathematical point of view and the deep connections
between these geometries and physics can also be illuminated on this level. This physical motivation
of the classical geometries is the most important intrinsic value of the book. -

Chapter I and II are simple but non-trivial introductions to plane Galilean geometry and to
Galilean inversive geometry with plane and inversive Euclidean geometry. The next chapters treat
the physical basis of Galilean geometry, the relativistic kinematic and relativistic Minkowskian geo-
metry. At the end of the book the reader finds three supplements in which the author gives a syste-
matical treatment of the nine plane geometries with their axiomatic characterization and analytic
models.

The subject is accessible to anyone versed in elementary mathematics. The book is addressed
mainly to students of mathematics, physics, and mathematical education.
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