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On a set-mapping prdblem of Hajnal and Maté

JOHN P. BURGESS

In the course of a wide-ranging survey of combinatorial set theory, A. Hajnal
and A. Mité prove by a forcing argument the consistency of the following combinat-
orial principle with the Generalized Continuum Hypothesis GCH, and ask whether
if follows from the Axiom of Constructibility V=L (see [4], Thm. 54 and
Problem 8).

(HM) There is a function f: {(«, f, y): a<B<y<w,}—~w, such that for any

uncountable 4 S w, there exist a<f<y in 4 with f(a, B, y)EA.
(We are using the same standard set-theoretic notation as [4], except that we use
w, rather than §&, for the ath transfinite cardinal.) We present here a proof that
V=L implies HM by a metamathematical method which we feel has interest beyond
this particular problem.

1. Jensen’s Absoluteness Principle. The language L [Q,, O] is just like ordinary
first order logic, except for the presence of two generalized quantifiers:
O, x¢(x) meaning: There exist uncountably many x such that ¢ (x).
0,xp(x) meaning: There exist at least w, many x such that ¢(x).
As is explained in some detail in the final paragraphs of [3], R. B. JENSEN’s work
on model theory establishes the following principle: '
(%) Let ¢ be a sentence of L[Q;, @,]. Suppose there is a Boolean-valued
extension V% of the universe of set theory in which GCH holds, such that
in V2 it is true that ¢ has a model. Then already in the constructible universe
L it is true that ¢ has a model.
This principle provides a method for turning a consistency proof for a combin-
atorial principle ¥ into a derivation of ¥ from V=L. Namely, it suffices to find
a sentence ¢ of L[Q,, Q,] for which we can prove, using GCH if needs be, that
¢ has a model if and only if i holds. Unfortunately this method does not seem to
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284 John P. Burgess

apply directly to the principle HM. What we will show here is that it applies to
a certain principle which implies HM.

2. Quagmires. The principle we have in mind is just a bit complicated. A tree
is a partial order J =(7, <) in which the predecessors of any element are well
ordered. The order type of the predecessors of t€ T is called the rank [t| of t. The
ath level T, of the tree is the set of ¢ with |t|=«, and its height the least a with
T,=0. For present purposes a Kurepa tree may be defined as a tree of height w, +1
in which T, has cardinality w,, distinct elements of T, have distinct sets of pre-
decessors, and 7, is countable for a<w;,.

A quagmire (T, <, <, Q) is a Kurepa tree (T, <) equipped with a binary
relation <1 and a trinary function Q such that:

(1) < holds only between elements of equal rank, and linearly orders each
level T, of the tree.

(2) Q is defined on those trxples (', x’, x) with ¥ <ax’<x, and for any such,
Y=, x, x)<ax.

(3) (Commutativity) If y'<ax”<x'<x, then Q(Q(y",x",x"),x",x)=
=Q(y”’ x”’ x)'

(4) (Coherence) If z'<y'<ax’<x, then Q(z,y, 0y, x’, x))=0(, x’, %).

(5) (Completeness) If y<ax€T,_, then for some a<w,, Q(P,(¥), P (x), x)=y.
Here P, is the projection function which assigns to any 7 with [t|=a the unique
u<t with |u|=a. Note that the condition Q(P,(»), P,(x), x)=y implies P,(y)<
<aP,(x), else @ would not be defined on this triple.

What we are going to show, assuming GCH, is that:

(A) The existence of a quagmire implies HM.

(B) There is a sentence of L[Q;, Q,] which has a model if and only if there
exists a quagmire.

(C) There is a Boolean-valued extension ¥# of the universe of set theory
in which GCH holds and there exists a quagmire,

3. Proof of (A). We will show, assuming CH, that if there exists a quagmire (7, <,
<, 0), then HM holds. We begin by deriving from these assumptions the following
combinatorial principle, due to Silver. (For its consequences, cf. [5].)

(W) There exists 2 Kurepa tree (7, <) equipped with a function W defined

on @,, such that:

For a<w;, W(a) is a countable family of subsets of the level 7,. For any

countable S& T, there exists a<w, such that for any a=f<w,,

{Py(x): x€S}€ W(ﬂ)

Indeed, to derive W given CH and a quagmire, note that for each a<w,,
the ath level T, of the quagmire is countable, so its power set can be enumerated
in an o,-sequence X, ; for f<w,. For x€T and o, B<|x| let S(x, B, x) be the
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image {Q(y’, P,(x), x): y'=aP,(x) & y’EXa,,,} of the fith subset of T, under the
map Q( -, P,(x), x). For y<a,, let W(y)={S(x, B, x): o, f<y & xET}, a count-
able family of subsets of T,,.

Now it follows by the Completeness condition in the definition of quagmxre _
that any x€T, . has at most w, < -predecessors Hence given a countable S&
there must exist an x with y<ax for all y€S. Again by Completeness, for each yES
there is then an «(y)<w, with y=Q(P w(3) ()5 Py (), x) Let a=sup {a(y):
yES} By Commutativity, for any a=é<w, and y€S, the element y’=Q(P, 20 (V)

P,y (x), Pa(x)) satisfies Pa(y)(y)<y <1Ps(x) and y <Q(y s Ps(x), x) O(Py (),
Py (®), x)=y. Hence y'=Py(y) and Q(P,(3), P5(x), x)=y.

If now we fix a § such that {P,(y): y€S}=X,, and let y be >u and ﬂ, then
for any y=d<w, it is readily verified that {P;(y): y€ S}=S(«, B, Ps(x))e W(3),
which suffices to prove Silver’s principle W above. This established, we go on, still
assuming CH and the existence of a quagmire, to derive the following combinatorial
principle, due to Hajnal and Maté:

(HM") There exists a sequence of. functions H,: w,—w,, for a<w,, such

that for any infinite SC w, there exists a y<w, such that for any y=d<w,

there exists an x€ S with H;(x)€S.

Towards proving this, we first note that we may assume thhout loss of general-
ity that in our quagmire no level T, has a <1-least element. (Otherwise we can con-
struct a new quagmire with this property by taking:

T’ = oXT,
(m,x) <"(n,y) —~ m=nqx=<y,
() ="(n,y) - x<y or (x=y&m=n),
Q'((m, y), (n, X, (1, x)) = (1m, (¥, %', ),

i.e. by replacing each element x of the original quagmire by a sequence
(2, x), (1, x), (0, x).)

This settled, we go on to construct for each a<w, a maph,: T,~T, such
that 4,(x)<ax for each x€T,, and for any infinite S€ W(«) there exists a.y€ S with
h, (M€ S. Since W(a) is countable, this can be accomplished by a simple diagonal
construction in w stages, whose details are left to the reader. Having the h4,, we
define maps H,: T, ~T, by H(x)=Q(h(P,(x)), P,(x), x).

Now for any denumerably infinite SC T, , our arguments above establish
two things. First, there is an x€7,, and an a=<w, such that for all ¢S and
x=6<w;, Q(Ps(p), Ps(x), x)=y<ax. Second, there is a f<w, such that for all .
p=d=<awy, {Ps(y): yeSYEW(S). If y=max(a, f), then for any y=§<w,, by
construction there exist y, z€ S with /1,(P;(y))=P,(z). Now by Coherence Hj(y)=

1*
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=Q(hs(P5(1)), P5s(3), ¥)=Q(P5(2), P5(3),y)=0(P5(2), Py(x), x})=z, i.e. there is a
y€ S with Hy;(y)€S.

If we assume, as we may without loss of generality, that T, consists precisely
of the ordinals <, then this is precisely what is required to establish the principle
HM’ above. Now as HamwaL and MATE [4] show that HM’ and the existence of
a Kurepa tree imply HM, our proof that CH and the existence of a quagmire imply

HM is complete.

4. Proof of (B). VAUGHT [6] long ago proved that the existence of a Kurepa
tree is equivalent to the existence of a model for a certain sentence ¢ of L[Q,, Q,].
For completeness we recall his argument here: ¢ will involve two singulary pre-
dicates T, O, plus two binary predicates <y, <,, plus a singulary function symbol
r, plus a constant w. ¢ is the conjunction of the sentences (whose precise formaliza-
tion we leave to the reader) expressing:

(1) < partially orders 7T in such a way that the predecessors of any element
are linearly ordered.

(2) <o linearly orders O, with last element w.

(3) r maps T onto O in such a way that for any 77T and u€ O, u<,r(t) if and
only if there exists ¢’ <t with u=r(t’).

@ QuO(w) & Yulu<ow— 10,4 (' <,u))

(5) Q:t(T(¢) & r(t)=w) & distinct + with r(f)=w have distinct sets of <g-
predecessors.

(6) Vulu<ow—"10,H(T(t) & r(t)=uw))

If (T, <) is a Kurepa tree, we get a model of this sentence ¢ by interpreting O
as the set of ordinals =w,, <, as the usual order on this set, w as w,, and r as
the rank function. Conversely, if (T, <1, O, <4, w, r) is a model of ¢, then using
(4) above one easily sees that there is a <,-cofinal subset Z of {u€0: u<,w} which
is well ordered by <, in order type ;. Then restricting < to {t€T: r(t)=w or
r(t)€Z} we get a Kurepa tree.

To get a formula ¢” which has a model if and only if there exists a quagmire,
simply take new symbols <t and @ and conjoin the above ¢ with the sentences
expressing conditions (1)—(5) in the definition of quagmire in § 2 above.

5. Proof of (C). It remains only to prove, assuming GCH, that some suitable
set of forcing conditions gives rise to a Boolean-valued extension of the universe
of set theory in which GCH holds and there exists a quagmire. The proof is so
similar to the proof of the consistency of HM” in [4] and the proof of the consistency
of Silver’s W in [2], that we leave most details to the reader.

As our forcing conditions we take the set 2 of all sixtuples p=(a,, T,, <,,
<a,, Qp, 4,) such that:
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(0) T, is a countable subset of ;.

() (T,, <) is a tree of height a,+1<w,.

(2—(5) in the definition of quagmire in § 2 above hold for <, and Q,.

(6) A, maps a subset of w, onto the a,th level of the tree (7,, <)), and is
order preserving in the sense that for &<#n in dom 4,, we have 4,(§)<1,4,(n).
Note that the requirement that 4, be order preserving means that A, is completely
determined by its domain.

We partially order 2 by setting p<gq if and only if:

M) a,>a, and T,27T, and <,,<,, 0, extend <,, <1, @, respectively
and dom A,2dom 4,. '

(8) For all ¢cdom A,, A,(O)<,4,(8); and for {<n in dom 4,, 0,(4,),
A,(0), A,()=4,(0).

In order to show that & does what it should, we need the following:

Lemma. (a) 2 is o-closed; i.e. whenever p,€ P for n€w and p,.,<p, for all
n, then there exists pc? with p<p, for all n.

(b) & has the w,-chain condition; i.e. no set of pairwise incompatible elements
of # has cardinality w,. _

(c) For each oa<w, and &<w,, {p: a,>o & sup dom A,=E} is dense in P.

The proof of the easy parts (a) and (c¢) will be left to the reader. As for part
(b), let 4S 2 have cardinality w,. Assuming CH, there must exist an 4A"S A4 of
cardinality w, and fixed «, T, <, <1, and Q such that for all pcA4’, a,=a, T,=1T,
<,==,<1,=<1,0,=0. For assuming CH there are only w, possibilities for
these items.

{dom A,: pc 4’} forms a set of w, countable subsets of w,. By a well-known
result of Erdds and Rado (cf. Thm. 2.3 of {4] or Lemma 3.6 of [2]) there exists
a sequence p,, v<w, of elements of 4’ and a fixed XS w, such that for any
u<v<w,,dom 4, ﬂdom A, =X and supdom 4, <1nf(domA —X).

Let p=p,,q= qo, Y= dom A,, Z=dom 4,. Note A | X=A4 |X To establish
~ part (b) of the Lemma it will sufﬁce to construct an ré? w1th r<p and r<gq.
This may be accomplished by taking:

a,=a+1,

T,=TU{t,: £cYUZ} where the ¢, are distinct elements of o, — T,

<,=the extension of < defined so that A4,(n)<,t, for n€Y and 4,()<,

for (€2, _

<a,=the extension of <1 defined so that 7,<a,1, for n<{ in YUZ,

Q,=the extension of Q defined so that Q(A4,(¢), 4,(n), 1,)=t; for {<n in ¥,

and Q,(A4,(8), 4,00, t)=t, for ¢<¢ in Z,

A,=the function A(¢)=1; for é€YUZ.
Details are left to the reader.
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With the Lemma established, we let Z=the complete Boolean algebra of
regular open subsets of 2. Parts (a) and (b) of the above Lemma and standard
forcing lemmas (for which see e.g. [2]) imply that, assuming GCH, in the Boolean-
valued extension ¥? all cardinals are preserved and GCH holds.

Moreover if GE V2 is a generic subset of 2, then the p€ G can be fitted together
to produce a quagmire. Again details are left to the reader. This completes the
proof that V=L implies HM.
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Scalar central elements in an algebra
over a principal ideal domain

"L. O. CHUNG and JIANG LUH

1. Introduction. Let 4 be an algebra (not necessarily associative) over a com-
mutative ring R. A is called scalar commutative if, for each x, y€A4, there exists
o€ R depending on x, y such that xy=ayx. RICH [3] proves that if 4 is scalar com-
mutative and if R is a field then A is either commutative or anticommutative. KoH,
LuH, and PutcHA [1] prove that if 4 is scalar commutative with 1 and if Ris a
principal ideal domain then 4 is commutative. Recently, Lun and PUTCHA [2]
generalized these results by proving that if 4 is an algebra with 1 over a principal
ideal domain R such that for each x, y€ A4 there exist «, f€ R such that (x, f)=1
and axy=Pfyx, then 4 is commutative.

In this paper a ‘“local” scalar commutativity will be studied. We shall call
"an element x€4 scalar central if for each y€A, there exist a, f€R depending on
y such that («, f)=1 and axy=pfyx. We shall prove that if 4 is an associative
algebra over a principal ideal domain R and if x€A is scalar central then there
exists a positive integer n such that x"y=x""lypx=x""2yx?=...=yx" for all y€ A.
If, in addition, 4 has 1 then x2y=xyx=yx2 Therefore the results of Rich, Koh,
Luh and Putcha for associative algebras immediately follow.

Throughout this paper 4 will denote an associative algebra over a principal
ideal domain R, C will denote the center of 4, Z* the set of all positive integers
and N the set of natural numbers. If a, b€ A4 then [a, b]=ab—ba. If a, BER then
(2, B) denotes the greatest common divisor of « and . If a€ 4 then the order of a,
denoted by o(a), is the generator of the ideal I={u|x€R, aa=0} of R. o(a) is
unique up to associates.

2. Main results. Throughout this section x will denote a scalar central element
in A. Let y be an arbitrary element in 4. We assume «, f, @;, f;€R to be such that

Received April 17, 1978, in revised form July 20, 1978.
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(as ﬁ) =(a1: ﬁl): 1 and

() axy = Byx,

@ ax(x+y) = Bi(x+y)x.
From (1) and (2), we obtain

A3) (f—ap)xy = B(fr—a)x?
) (e B—af)yx = a(fy—oy) x>

We begin with

-

Lemma 2.1. If (t;—B,)gx*=0, where keZ*, k=2 and q€R, then
g{x'y, X**~=0 for i=0,1,2,...,k—1.

Proof. By (2), o;qx ™ (x+y)x* " "1=8,gx'(x+y)x*! which is reduced to
Q) oy qx 1 yxk =it = By gt yxcki,

In particular, Bigxty=ofgxty=pqyx*=ckqyx*. Since (u,p)=1, gx*y=gyx*.
Thus, by (5), oigx'yx*"'=pigyx*=Ppig*y=aigxFy, and Bigx'yx*~=algx*y=
=pigx*y. Consequently, o) g(x'yx*"'—x*p)=piq(x'yx*"*—xy)=0.  Since
(o, B)=1, g(x'yx*~'—x*y)=0. Thatis, g[x'y, x*~']=0 as required.

It is clear that there exists an integer n=3 such that o(x")=o(x"*1).

Lemma 2.2. Suppose o(x")=p™, where p is a prime element in R and meZ*.
If p'x"y=0 for some IEN, l<m, then [x'y, x"~']=0 for i=0,1,2,...,n—1. )

Proof. We proceed by induction on /. Suppose /=0. Then x"y=0. By (3)
and (4), we get O=(nf—af)x"y=F(B—a)x""'=(f—af)xyx""", and
0=(o, f—aB) xyx" r=a(By—a) L. Since (¢, f)=1, (B,—a)x"*'=0 and
"By —ay). So (Bi—a)x"=0. Thus, by Lemma 2.1, [x'y, x* =0 for i=0,1,
2, ...,n—1.

Now we assume />0 and o, f—Ba,=p'5, where (p, 6)=1, tEN.

Suppose ¢=/. Then, by (3), 0=p'dx"y=B(B; —o)) X" =p'dxyx", and hence
by (4), O=p'éxyx"=ua(f,—o)x"*1. Since (a, f)=1, (f;—,)x"*1=0. Again by
Lemma 2.1, [xiy, X"~ =0 for i=0,1,2,...,n—1.

Suppose t</. Then, by (3), 0=p'dx"y=p'"*B(B,—a,) x***. So p™|p'~'B(B; — ).
By (3), p'~'p'6xyx"~'=0 and, by (4), p'~a(f;—a)x" 1=p'dxyx"1=0. Hence,
we have p'~'(f;—o)x"*'=0 and p™|p'~'(B,—). Since I<ni, p'|(f;—a,) and
By —a;=p'y, where y€R. Thus, by (3), p'ox"y=Bp'yx"*L, ie. p'x"(dy—Byx)=0.
Since ¢/, [x'(§y —Byx), x"~]=0 for i=0,1,2,...,n—1, by the induction hypo-
thesis. This implies that 6[x’y, x"~{=0. On the other hand, since (x; —f,)p"x"*1=0,
Pmlx'y, x"~1=0 for i=0,1,2,...,n—1, by Lemma 2.1. Since (p™, §)=1, we
obtain [x'y, x»~Y]=0 for i=0, 1,2, ..., n—1. This completes the proof.
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Lemma 2.3. Suppose o(x")=p™, where p is a prime element in R and meN.
Then [x'y, x"~1=0 for i=0,1,2,...,n—1.

Proof. Again we let o f—af,=p's. Suppose r=m. Then, by (3) and (4)

respectively, we have

0=p'6x"y = B(B;—a)x"*t and 0= p'Syx" = a(B—oy)x" L.
Since (a, f)=1, (B;—op)x"**=0. By Lemma 2.1, [x'y,x"" =0 for i=
=0,1,2,...,n—1.

Now suppose t<m. Then by (3), O=p™éx"y=p"'B(B,—a)x"**. So
P'|B(By—a). Let B(B;—ay)=p'y, where y€R. Then, by (3), p'x"(0y—yx)=0. By
Lemma 2.2, [x'(dy—yx), x" ]=0. So d[x'y, x"~]=0. On the other hand, since
(0, —B)p"x"+t1=0, p™[x'y, x* ]=0 by Lemma 2.1. Thus, [x’y, x*~]=0 since
(", 9)=1 ‘

Lemma 24. Suppose o(x")=plipy:...pYs, where pi,p.,...,ps are non-
associate primes in R, and my,m,, ...,mEZ*. Then [x'y,x"~'1=0 for i=
=0,1,2,...,n—1.

Proof. Let g;=pi...p7s3p7iy...pfs, j=1,2,...,5. Then g¢;x is scalar
central, o((g;%)")=o0((g;x)"*"), and hence, by Lemma 2.3, gj[x'y, x" =
=[(g;%)'y, (¢;x)""1=0 for j=1,2,...,s; i=0,1,2,...,n—1. Since the g;’s are
relatively prime, we obtain [x'y, x"~]=0 for i=0,1,2,...,n—1.

Theorem 2.1. Suppose x€A is scalar central and o(x")=0(x"*Y)=0, where
n=3. Then x€C. .

Proof. Clearly o(x®)=0. By (3), and (4) respectively, we obtain
(p—aB)xyx = B(By—a)x® and (o f—afy)xyx = a(fy—a)x>.
Hence (f—a)(fy—oy)x3=0. This implies that f=a or f,=o,. In either case,
we have xy=yx. Since y is an arbitrary element in 4, x€C.
Theorem 2.2. If x€ A is scalar central then there exists n€ L™ such that
xty=x""lyx =x""2yx2=...=yx" for all ycA.
Proof. This is an immediate consequence ‘of Lemma 2.4 and Theorem 2.1..
3. Algebras with unity elements. We assume throughout this section that A4 is.

an algebra with 1 over a principal ideal domain R, and x is a scalar central element.
in 4. Let y be an arbitrary element in 4 and «, 8, &, f,€ R be such that (e, f)=
=(xg, B2)=1,

1) ’ axy = Byx,

@) % x(1+y) = B (1+y)x.
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Then
3) (2B —af)xy = B(B—ar)x,
) (a2 B—apfp) yx = a(Br—ap) x.

Lemma 3.1. If (ay—B,)qx=0, where g€ R, then qxy=gqyx.

Proof. By (3) and (4), (azf—aB)gxy=(xzf—aBr)qyx=0. By (1),
%(B—a)gxy=P,(B—a)gxy=0. Since (%, fz)=1, (B—a)qxy=0. So fgxy=
=agxy=PBqyx. It follows that B(gxy —qyx)=0. Similarly, a(gxy —gyx)=0. Thus,
qxXy =qyx. :

Similarly to the arguments in Section 2 but using identities (1), (2), (3"), (4")
instead of (1), (2), (3), (4), we can readily prove the following

Lemma 3.2. Suppose o(x®)=p™, where p is a prime element in R and mcZ*.
If p'x2y=0 for some IEN, I<m, then x2y=xyx=yx>

Lemma 3.3. Suppose o(x*)=p™, where p is a prime element in R and meZ*.
Then x*y=xyx=yx2.

Lemma 3.4. Suppose o(x®)=pyrpye...pTs, where py,PDs, ..., ps are non-as-
sociate prime elements in A and my, ms, ..., m€Z*. Then x:y=xyx=yx2.

Theorem 3.1. If x€ A is scalar central and if 0(x?)=0, then x€C. '

Theorem 3.2. If x€ A is scalar central then x*y=xyx=yx2 for all yc A.
We should note that under the hypothesis of Theorem 3.2, one could not €x-
pect x€C.

Example. Let A={[a b]
0o c

a, b, cEZz} be the algebra of all upper triangular

matrices over the ring Z, of integers modulo 2. Let x=[g (1)] . Then A has a unity
-clement, x is scalar central, but x¢ C. '
4. Some special cases. We noted in passing that in an algebra over a principal

ideal domain, scalar central elements need not lie in the centre of the algebra. How-
-ever, we have the following

Theorem 4.1. Suppose A is a semi-prime algebra (with or without 1) over a
principal ideal domain R. Then all scalar central elements in A are in the centre C of A.

Proof. Let x be a scalar central element. By Theorem 2.2, there is a least
positive integer n such that x"y=x""lyx=x""2yx2=...=yx" for all yc 4.



Scalar central elements in an algebra over a principal ideal domain 293

Suppose n=1. For y€Ad, let a, B€ R be such that (o, f)=1 and axy=Pyx.
Noting that ax®2p=Bx*"2y and oayx®* " 2=fpx*~2 we have for any z€4
and i=0,1,2,...,n—2,

2 ("t y —xF yxt =Y zai (01 y — X pxnmiol) =
— a2i(xn—1yzxn—ly_xiyxn—i—1an—ly_xn—lyzxiyxn—i—l_l_xiyxn—i—lzxiyxn-i—l) —
— a2ix2n—2yzy_aiﬁiyxn—lan—ly_aiﬂixn—lyzyxn—l+32iyxn—lzyxll—1 :

— a2ix21l—2yzy_aiﬁiyx%—2Zy_aiﬂix2n—2yzy+ﬂ2iyx2n—2zy — O.
Thus, by the semiprimeness of A4, o'(X" ly—x'yx""""1)=0. Likewise,
By —xTyx" =0, Since (o}, BN =1, x"ly—xiyx"~i"1=0 for
i=0,1,2,...,n=2. So X" ly=x""tyx=x""3yx®=..=yx""' for all yeA4. This
contradicts the minimality of n. Hence =1 and xy=yx for all y€4.

Theorem 4.2. Let A be an algebra with 1 over a principal ideal domain R. If
x and 14-x are both scalar central then x€C.

Proof. By Theorem 3.2, for any y€4, xpx=x2y and (1+x)y(1+x)=(1+x)?2y
which imply that xy=yx. :
As a corollary we have the following result due to Lur and PuTcCHA [2].

Corollary 4.1. Let A be an algebra with 1 over a principal ideal domain R.
If every element in R is scalar central then A is commutative.

Remark. To generalize the concept of scalar central element one may call
an element x€ 4 scalar power central if for each y€ A4 there exist a, BER and ncZ™,
depending on y, such that ax’y=pyx" and (a, f)=1. It would be interesting to
know whether analogous results remain true.

The authors would like to express their appreciation to M. Putcha for stimulat-
ing discussions. The first named author also would like to acknowledge the support
by the Engineering Foundation of NCSU.
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On the concentration of distribution of additive functions

P. ERDOS and L. KATAI

1. We say that g(n) is additive if g(mn)=g(m)+g(n) holds for every coprime
pairs m, n of positive integers. If, moreover, g(p*)=g(p)* for every prime power
p% then g(n) is called strongly additive. By p,py,ps, ..., 4.1, ¢qs, ... we denote
prime numbers, ¢, ¢;, ¢, ... are suitable positive constants. P(n) and () denote
the largest and the smallest prime factor of n. The symbol << is used instead of
0; % { }is the counting function of the set indicated in brackets {.}. For a distri-
bution function H(x) let ¢,(7) denote its characteristic function. Let

Q(h) = Qu(h) = sup (H(x + h)— H(x))

be the continuity module — concentration — of H. We say that H satisfies a Lip-
schitz condition if Q(h)<h as h—0.
We assume that g(n) is strongly additive and that

an g _
(LD ? IR

The theorem of Erd6s—Wintner [1] guarantees that the function g(n)—A4,,
where

a3 4= 350

p<n P
bas a limit distribution, i.e. the relation
1
(L4 N#{né Nlg(n)—A, < x} — F(x)

holds at every continuity point of F(x), where F(x) is a distribution function. If,

Received October 1, 1978.
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moreover, Xg(p)/p converges, then the values g(n) have a limit distribution too, i.e.

(1.5) %#{néng(n)< x} - G(x),

at every continuity point of the distribution function G(x).
We have the relations

1 '—it?@- 1 i; l—l a(p)
(16) ww=gﬂu7y ”+;e(J }
1 e
&) %m=gﬁ—;+p ).

From these forms we can see that both Fand G can be represented as the distribu-
tion of the sum of infinitely many mutually independent random variables having
purely discrete distributions. By the well-known theorem of P. LEvy [2] G and F
are continuous if '

(1.8) B 2 l/p=q, where Z, = {plg(p) # 0}.

r€Z,

Furthermore, assuming the validity of (1.3) we have that F and G are of pure type,
either absolutely continuous or singular (see E. LukAcs [3]). To decide the question
if a distribution function were absolutely continuous or singular seems to be quite
difficult. The first result upon this has been achieved by P. ErRDOs [4]; namely it
was proved that if g(p)=0(p~?%),5 being any positive constant, then G(x) is
singular. Recently JoGesH BABU [5] has proved that G(x) is absolutely continuous
if g(n) is generated by g(p)=(logp)~® (0<a<2). The main idea of the proof is
that ¢;(7) is square-integrable in ( —oo, ), and so by using Plancherel’s theory
of Fourier integrals it must have an inverse in L2(—ee, o) that is the density func-
tion of G(x).

It is known that a distribution function H satisfies Lipschitz condition if ¢y (7)|
is integrable in (—ee, o), and so it is absolutely continuous. The method of Jogesh
Babu gives that G satisfies Lipschitz condition if g(p)=(ogp)~® (0<a<1).

The aim of this paper is to investigate the singularity or absolute continuouity
of distribution functions for some classes of additive functions.

We shall prove the following theorems.

Theorem 1. Let g(n) be a strongly additive function,

(1.9 b= 3 @l
p>y P
and suppose that the inequalities

(1.10) D(t4) < 1/t,
(1.11) g(p)—g@)| =1/t if py=p, <1’

[}
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hold, with suitable positive constants A and 6, for every large t. Then

(1.12) (log ) ' < Qg(1/t) < (logt)=* (¢ —<o),

where the constants involved by < may depend on g.
This result was aéhieized by TiaN [7] and P. ErDOGs [8] for log <pfzn) , and for
a(n)

log l resp.

Theorem 2. Let g(n) be strongly additive satisfying (1.1). Then for the con-
centration Q(h) of F(x) or G(x) (if it exists) we have

4

(1.13) © Q@Dy) = TogR (Rz=2),
¢ being an absolute positive constant, and
2 1/2
(1.14) .= (> £2J".
p>R P

Remarks.
1) This assertion is non-trivial only if Dglog R~0 (R-<), since Qg(l/t)=1/t
(t—><=) for every H(x).

- 2)If g(p)=(ogp)~? (y=1 constant), then DR=(1+0(1))M and so

. 2y
‘ Qc(l/f)>>7m-

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)~?, then

1 loglog t)?
(1.15) 71,7<<QG(1/z)<<(_gtlT%l
if y=1, while for y=1
log t)?
(1.16) —1-<<QG(1/t)<<(lﬁ%llLy-.
Remarks. v

1) We guess that QG(I/t)<<—t1% for y>1 but we are unable to prove it.

2) We also guess that G(x) is singular if 0=g(p)=(logp)~’, y>2. This seems
not to be known even if g(p)=(logp)~".

3) By our method we could estimate the concentration for other functions if g(p)
is monotonic. The following assertion holds. Let #(x)=0 to monotonically
decreasing in (1, =), g(p)=t(p) for primes p. Let y(7), z(zr) be defined by the
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y(7)'*
T

relations 7(y(1))= ; t(z(r))=1/r. Suppose that for large 7, y(1)<1",

z(t)>e" " (¢=0 constant), and that the integral
= cos 1t (u)

oy Y log u

is bounded as t-e. Then Qp(h)<1/h. These conditions hold if g(p) decreases

regularly and

20 __ 580 _
25 T 25

Theorem 4. There exists a monotonically decreasing function t(u) satisfying
the conditions

1) _
Z’P

E b

*(p)
—_— <
2 p
for which the distribution function F(x) of the strongly additive g(n) defined by g(p)=
. =t(p) is singular.

2. Proof of Theorems 2 and 4. We shall prove Theorem 2 for F(x) only. The
proof is almost the same for G(x).
F(x) can be represented as the distribution function of 8; 0,= 3 &,, where
. 4 p>R

£, are mutually independent random variables with the distribution

1 1 1

for the mean value M0y and variance DOy we have MOr=0, D=Dg. Con-
sequently, by the Chebyshev inequality,

P(l0g] < ADg) = 1 ——.
So by

we have

F(—d+ ADg)— F(—d— ADg) = P(«:,_ ~80) (yp < R APl = ADR)]

= (1——] [T A=1p)>(1~1]a) - (R=D).

R

By putting A=2 our assertion. follows immediately.
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To proﬁe Theorem 4 we define our g(p) as follows. Let 'R1= 1, R,,, be defined

1 .
by R=logloglogloglog Ry, A,=exp (exp (exp Ry)), g(P)=5 if pE[R, Rip).
Then

. . ,..
> g(p) =, g_(P)<<—}—10glong+1 <

) -
p>R, P p>R, P h M

Let m run over the square-free integers all prime factor of which is less than R.
By Theorem 2, for fixed m.the number of integers »n with

' ‘ c ‘¢
nemo = N, w(m) = Ry 80)—(v—4)€[ -1 1]

is greater than a constant time of -
2 (-2)

m P<R; p
Summing up for m we have

#{n =my= ng(n)ELmJ [g(m)—AR,—%, g(m)—AR,+%]}

>N [ A-1/p) > %»N.

p<R, P(my=R,
So the intervals

Uetm—da—. gom-dnrg|

cover a positive percentage of integers. The whole length of these intervals is less
than ¢2™®)/J,. This quantity tends to zero as /—~co. By this the theorem is proved.

3. Lemmas. Let #(4) be an arbitrary set of distinct square free integers m
having the following properties:

(1) A =x(m),
. : m; my
Q) if pilmy, palmy, my=my€ F(A), then —z=—.
P P
Let o(n) be a multiplicative function such that 0=po(p)=1+0(1/p%) (§>0 con-

stant). Moreover, let

(1) = 3 20
meF(a) M
Lemma 1. For 2=A we have
c
2 =__ 1
62 )  TW=g

¢, being an absolute constant.

2
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Proof. We split the elements of % (4) according to P(m)c[4", A***"). Let
T,(A) denote the part of the sum (3.1) corresponding to this interval. From (2)
we have '

Th(A)éjlyTz%ﬂ

where the sum extends over the square free n with A=x(n)<P(n)=A4>"". So

o(m) o(p)y _ log A**
Z—m (1+ ]<< Togd "

» A<pSA5h+
Using this inequality for every A=0 we have (3.2).

Remark. Since T()=1+T(2), therefore by Lemma 1, 7(1) is bounded.
We shall use the following Esseen type inequality due to A. S. FAINLEIB [6]
which we quote as

Lemma 2. For an arbitrary distribution function H(x) we have .

1/ ‘
(33) Qu()=Csup — [ loy(D)| dr.
: t=1h L §
Lemma 3. Let y=0 be fixed,

(3.4) | s= 5 costlogp™

110<p<e-:1/7 p
" Then S is bounded as t—<o.
Proof. First of all we shall prove that .

E= 3

W=p=<er

cos 7 (logn)~7
1y nlogn

is bounded as 7-<-. Indeed,

1y —y
cos 7 (log u) du
30 ulogu

E—

TR BAE
atz, nlogn\(logn)”  (log (n+1))

A T

To estimate the integral we substitute y=t/(logu)?, and we get 1mmed1ately
that

e' 1 1/(10log )Y

Y
" cost (Iog u)~ - . coily dy = 0(1).
b " ulogu Yo y .

So it is enough to prove that S—E=0(1) as t—e.
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Let t=M=¢""; Ny=M+jN* (j=0,1,...,[M™]), N=M?" N,=N,+N,
and consider the quantity -

S(Ny, N,) = 2

Ny=p<N,. D Nysn<N, nlogn

cost(logp)~? _ cos 7 (log n)"y ,

To estimate it we use the prime number theorem for short intervals in the form

(3.5) Ay, () = "=Z' (4 (n) 1) << 1)10 (Ni=u=N,).
Since .
1 1 Y Jogx+1 2(n—N,)
- = — f sdx = —3
N;logN, nlogn 4 x2(log x)~ Nilog NV,

for N;=n=N,, therefore

' | . o 'L(Nl’ N2)|
3.6 S(Ny, Np) < 1/p? +—,
(3.6) (N1, N) Nlé%; N, /p*+ N2 N, log N,

where

L(N,, N,) = Z’ (A(m)— l)cos 7 (logn)~7.

By using partial summation, -

-1
T
L(Ny, Ny) = Ay, (Ny) cos T (log Ny)~ 7+ 2' Ay, (n) (cos oz n)AV —

n=N, 1

0s t ] .
(log(n+1)y
T T A J
(logn)’ cos (log (n+1))1)"

Since t/(log n)” is monotonic and cosine satisfies Lipschitz condition, the last sum
is majorated by

Hence, by (3.6) we get

Ny—1
L(N,, N,) << )10 [ 2>

n=N,

COosS

_r T
logN, logh,’
Consequently,
- 1 M3RppL/e 1
A ol ey ) Ly

+ M- ( T T ]
(logM)°\log M~ log2M )}’
By putting M=2"¢1°, h=0,1,2, ..., upto M=e""” we have S—E=0(1).
By this Lemma 3 has been proved.
4, Proof of Theorem 3. Let

’ eir(logp)-‘/_ 1
o0 =7 1+
P P

2*



302 - P. Erdds, I. Katai

be the characteristic function of the limit distribution of g(n) defined by g(p)=

=(log p)~". First we observe that
eitllogp) -7 _ |

“.1) ) log [p(z)] = Re 2‘1/ —p—+0(1).
pse
Lemma 3 and the relation
1
A 2;= loglog y+0(1)
gives that -
1 eit(logp)-Y
4.2 logle(7)| = —710gt+0(1)+Re > ’
p=1l0
Consequently, f |@(t)|<eo for y<1. Let y=1. From (4.2) we have
0
@3) lo @] < [ (@)],
where ' : '
elt(logp) k4
4.4 Y(r) = (1-{-——], R=1t=2R
p_S_RIIZ p
Let Y (2)=y,(v) - Yo(r), where
‘/’1= U y Y= .
p=(log R)* (log R)*< p=R1/2
So we have :
2R
dr < —(Bi(R)+ B,(R)
4.5) Rf ()| dt < 27 (Bi(R) + By (R)),
where
2R.
“4.6) BR = [ W@kd (=1,2).
R

First we estimate B,(R). We have

Yo (1) = 1+Z

eitg(m)

where the summation is extended for the square-free m’s satisfying (log R)=
=x(m)=P(m)=RY*. We have

éz(R)<<R+Z%min( l m )|] mZ"m min(R, W)l—gmj’

n runs over the same set as m.
i Let
@7 K(I/R) =sup > 1/m.

X  g(m)€[x,x+1/R)

Let x be fixed. We observe that the set of m’s standing in the right hand side satisfies
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the conditions of Lemma 1 with -4 =(log R)%, ¢=1. Indeed, if |g(m)—g(my)|=1/R,
D1/my, po/m,, then

()< 5:)

= |g(p)—g(po)l—lg(m)—g(my)| =

1 1
= — —1/R =0,
(Gozpy ogpy |/
and so ﬂ¢ﬂ. So we have
D P2 .
loglog.R
K(I/R) <& W.

Furthermore, the contribution of the pairs m, n for which |g(m)—g(n)|[=R? is
majorated by

1 (log R)?

— I 2 BN

7 L, P <

pP=R
Consequently

@8) Bz(R)<<R+2i[ s R { : > ]l/m})+

n Srej+1 i
n M lo=j=rt) tg(m) —g(n)| € [j/R. o

> —R~[ ' > l/m];<<'R.

< il )
osjsRe) Iy(M)IE[jIR, %]

Since Y, ()|= ]I ((1+1/p)<loglogR, therefore B;(R)<«(loglog R)2R. So
p=(log R)* . .

we have
2R

' f lp ()] dr < R*-17 (loglog R)®.

Applying this inequality for R=T/2" (h=1,2,...) we get
(loglog T)?

P b
= J le@ldr <
T 1‘/. (loglog T)?10g T

T - ’

. From Lemma 2 our theorem immediately follows.

if y=1.

5. Proof of Theorem 1. First we prove the second inequality in (1.12). Let
gn; )= 2 g(p) -

pln, px=y

Since from (1.10)

3 Ig(n; 0] = NDG) =0y,
n=N
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‘we have

.1 sn=N; |gln; 124) = 1/1}§¥

For a natural number n let e(n) denote the product of those prime: factors
of n that are less than t34; let f(n)=nfe(n). From (5.1) we get that with the ex-
ception of at most N/t integers if n=N and g(n)€[x, x+1/¢], then g(e(n))e[x—1/t,
x+1/t]. Let x and ¢ be fixed, and a,<a,<...<ay be the sequence of those square-
free integers all prime divisors of which is less than ¢*4 and g(a;)€[x—1/t, x+1/1],
Let E(a;) be the number of those n=N for Wthh ajle(n) and (a;, e(n))=a; holds
By using the Eratosthenian sieve we have

(-2) E(a)=1+0()——+ Neoa,) HA[I_%] (N = =),

J p<l2

where o(m)= [[? Since [] (1-1/p) < (log )71,
plm / p<t4

we have

1 A
5.3) - 0, (1/1) <<—+L sup o@)
logt =" gepet=Tn,x+1m G

It has only remained to prove that

G4 | u,= > 2@

glapelx,x+1  4;

uniformly for x€(—co, ) as t—+co.
We write every a; as mv where P(m)<t?d, x(v)=t%, or v=1. So

U

X,

50 em).

v U {g(m>erx—g(v),x+1/z—g(v)1 m

The set of m’s satisfies the conditions of Lemma | (see (l.ll)) so the inner

sum is bounded, and we have
< JI [l + Q(pp)) 1.

6= p§t2A

U

x,t

We shall prove that
G(/1)-G(- 1/1)—1 v t =),

and by this the proof will be finished.
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Let P= ][ p. It is obvious that

| | e
CORNN. i 11—(<1+o(1))Np<1]l(1-1/p)=—@  ~o9),

¢, 1s an absolute constant. Furthermore,

> kel= Sk@l > t=san Jf(1-1] 3L

n=N,(n, P)=1 g>tc1 qm=N,(m, P)=1 p=stey g=tc1 q
13

By choosing ¢;=24, from (1.9) we have

1 lg(p)l _ N

1=1¢ Z n étNH(l-—) Z —_—

n§11~(1,§r,1;)l=1 néN,(n,P):llg( )l plP D/ p>rta P tlogt
q(n)| =1/t

This and (5.5) gives that -

€s _ G
tlogt ~ logt’

FAt)~F(=1/t) = 2Af;gt -

By this the proof of our theorem is finished.
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On the essential maximal numerical range

C. K. FONG

1. Introduction

In [4], STampELI introduced the concept of maximal numerical range and used:
it to derive an identity for the norm of a derivation on Z($). If T is a bounded
operator on a Hilbert space ©, then the maximal numerical range of T, denoted
by W,(T), is defined to be the set :

{A: (Tx,,x,) ~ 4 where |x,]| =1 and ||Tx,| —~T|}.

For an operator T on $ the inner derivation 8 is a map on #($) defined by §,(X)=
=TX—XT (Xc¢#(9)). Stampfli showed that |[d;]|=2inf {|T—2]: A€C}, and
167l=2||T| if and only if 0€ W (T).

In the present paper, we consider the analogous concept called essential maximal
numerical range to derive the norm of an inner derivation on the Calkin algebra.
Let T¢ Z(H) and ¢ be the image of 7 in the Calkin algebra #(9)/# (H). The inner
derivation d, on #(9)/# (H) is defined by d,(x)=tx—xt. The essential maximal
numerical range of T, denoted by ess W, (T), is defined to be the set

{A: (Tx,, x,) —~ A where ||x,]| = 1, x, — 0 weakly and || Tx,| — llell}

We shall see that |d[j=2inf {[z—A]: A€cC} and |4=2|¢| if and only if
0cess W,y(T). Also, we shall show that W,(T)=ess Wy(T) under the following
mild condition: [ Tx||#|T| for every unit vector x. In the final section we con-
sider the maximal numerical range V,(T) for an element T in a general C*-algebra.
and we show that Vy(T)=Wy(T) if TcH(H) and V,y(¢)=ess Wy(T) where ¢ is.
the image of T€#(H) in the Calkin algebra.

To close this introduction, we state and prove two technical but simple lemmas.
which will be used several times in the following sections. Recall that the essential

Received May 27, 1978.
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norm of T¢A(9), denoted by || T|,, is inf {|T+K|: K is compact}. Note that
ITl.=llt]] where ¢ is the image of T in the Calkin algebra.

Lemma 1.1, If |x,|=1 and x,—~0 weakly, then lim sup || Tx,|=|T].-

Proof. For every compact operator K, |Tx,|=|T+K|+|Kx,]. Since
11Kx,|| -0, we have lim sup ||Tx,||=||T+K||. Therefore the lemma follows.

Lemma 1.2. If Te B(D), then there exists an orthonormal sequence {x,} such
that ||Tx,|—~|T\,. Furthermore, if P is an infinite rank prejection and TP=T,
then we can choose {x,} so that the additional condition Px,=x, for all n is satisfied.

Proof. Suppose x;, Xs, ..., X;—, have been constructed so that Px,=x, and
I1Tx, | = T|,—n"* for n=1,...,k—1. Let E be the projection onto the linear
span of xy, ..., x,_,. Then |T(I—-E)P|=|T(U-E)|=|T(U—-E).=|{T),. Hence
there exists a unit vector x, such that (/—F)Px,=x, and |Tx|=|T|.—k"
The sequence {x,} constructed as above is the required one.

2, Essential maximal numerical ranges

The following proposition is similar to Theorem 5.1 in [2].

Proposition 2.1. Let T¢B(H) and LeC. Then the following conditions are
equivalent:

(1) There exists an orthonormal sequence {x,} in $ such that |Tx,|~|T|.
and (Tx,, x,)—A.

(2) There exists a sequence {x,} of unit vectors such that x,—-0 weakly,
ITx | ~IT\, and (Tx,, x,)—~2.

(3) There is a projection P of infinite rank such that PTP— )P is compact and
ITPl.=|T],.

Proof. That (1) implies (2) is obvious.

(2)=(1): Suppose that {y,}is a sequence of unit vectors such that y,—0 weakly,
1Tyl —~ITl, and (Ty,,y,)—~A. We construct an orthonormal sequence {x,} such
that || Tx,||=|T||,—n"* and [(Tx,,x,)—A|<n~' as follows. Assume that
Xy, -..» X,y have been constructed. Let E be the projection onto the subspace spanned
by Xy, ..., X4—y. Then |Ey,|~0 as n—eo. Let z,=|(I—E)y,| *(I—E)y,. (Note

.that "(I-E)y,#0 and hence z, is well defined when n.is large enough.) We have
|zy—y.ll -0. Hence |Tz|=[T|.—k~* and |(Tz,,z,)—2A|<k~! for some large
n. Let x; be such a z,,.
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(I)=(3): Assume that (1) holds. By the proof of Theorem 5.1 in[2], we can
choose a subsequence {y,} of {x,} such that

"%' I((T_)")ym ym)|2 ~<oo,

Let P be the projection onto the subspace spanned by {y,}. Then PTP— AP is
a Hilbert—Schmidt operator and hence compact. Since {y,} is orthonormal, by
Lemma 1.1, |TP|,=lim sup |(TP)y,|. Hence |TP|,=|T|,. .

(3)=(1): Assume that (3) holds. By Lemma 1.2, there exists an orthonormal
sequence {x,} such that Px,=x, for all n and | Tx,|-~|TP|.=||T|,. Since PTP=
=AP+K where K is compact, we have (Tx,,x,)=A+(Kx,,x,)—>A as n—co.
(Note that, since x,—~0 weakly and K is compact, we have [|Kx,|~0.) Hence
(1) holds. '

The proof is complete.

Definition. Let T€¢ #(9). The essential maximal numerical range of T, denoted
by ess Wy(T), is defined to be the set of all those A€ C satisfying one of the condi-
tions in Proposition 2.1.

Remark. By Lemma 1.2, we see that ess W,(T) is always non-empty. Ob-
viously, ess W (T)=ess W,(T+K) if K is a compact operator.

By condition (2) in Proposition 2.1, we can follow the argument of Lemma 2
in [4] to prove the convexity of ess Wy (7). Thus we obtain:

Proposition 2.2. The set ess Wy(T) is non empty, compact, convex and con-
tained in the essential numerical range of T.

The following proposition is simple but useful.

Proposition 2.3. Suppose that T€ B(9) and U is a neighborhood of ess Wo(T).
Then there exists 0=0 'and a subspace M of © of finite codimension such that
x€M, |xl=1 and |Tx|=||T|.—6 imply (Tx, x)€U.

Proof. We may assume that U is open. Suppose that no such M and § exist.
Then we can construct an orthonormal sequence {x,} such that |Tx|,~{T], and
(Tx,, x,)¢ U. Let {y,} be a subsequence of {x,} such that the limit A= ’l‘l_.II}o @y,, y»)
exists. Then A¢ U. This is impossible because by definition we have Acess Wy(T).

"A consequence of the above proposition is the upper semicontinuity of the
map T—ess W,(T). (This result resembles Theorem 6 in [4].)

Corollary 2.4. Let AcB(D) and let U be a neighborhood of ess Wy(A). Then
there exists >0 such that T¢ B(9) and |T—A||,<d imply ess Wo(T)S U.

" Proof. We may choose a neighborhood V of ess Wy(T) such that
V+{2eC: |A|=e}S U for some positive number &. By Proposition 2.3, there is
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a subspace M of finite codimension and =0 such that x¢M, |x||=1" and [|4Ax| =
=| Al —46 imply (4x, x)€ V. We may assume that 26 <e. Suppose that |T—A|, <6
and Acess Wy(7). Then there exists a sequence {x,} of unit vectors such that x,—~0
weakly, ||Tx,|—IT|l, and (Tx,,x,)—A When n is sufficiently large, we have
| Tx | =IT|l,—d, I(T—A)x,[|=||T—A},+5=26 (by Lemma 1.1) and hence ||4Ax,| =
= Tx,|| —{(T—A) x| =IT|.—36=>||4]|,—46. Let P be the projection onto M.
Since x,—0 weakly and 7—P is a finite rank projection, we have |Px,—x,| —0.
Let y,=|Px,|71Px,. Then y, €M and |y,—x,|—~0. Therefore |4yl =lAl.—

and hence (4y,, y,)€V when n is sufficiently large. By Lemma 1.1, when # is large
enough, |[(T—A4)y,|=|T—A4|.,+6=26 and hence (Ty,,y,)EU. With no loss of
generality, we may assume that U is closed at the very beginning. Therefore

A=lim (Tx,, x,)=lim (Ty,, y,)€ U. The proof is complete.

3. The norm of an inner derivation on the Calkin algebra

Let Te #($H) and ¢ be theimage of T in the Calkin algebra Z(9)/H# (H). Recall
that d, is the derivation defined on Z(9)/4 (H) given by d,(x)=tx—xt. The main
result of the present section is the following identity:

|l = 2inf {iT—2|l: 2€C}.
Proposition 3.1. If Acess Wy(T), then ||d||=2(|T|.—IA]).

Proof. By Proposition 2.1, there exists a projection P of infinite rank such
that ptp=Jp and |tpl=||¢]|. (Again, p is the image of P in the Calkin algebra.)
Hence :
Id]l = ld,@p— DI = lt@p—D—2p—D¢t| =

= 2|tp—ptll = 2|tp—pipll = 2(llzpll =l pepll) = 2(li£]l —|2)).
The proof is complete.

Proposition 3.2. We have Ocess W,(T) if and only if |T|,=|T—Al, Sfor
all 2¢C.

Proof. If Ocess Wy(T), then, by Proposition 3.1, we have 2|7T|.=|d]|=
=2||T-1], for all 2¢C. Conversely, suppose that 0¢ ess Wy(T). Then, by a suitable
scalar multiple of 7, we may assume that Re A=2¢ (le'ess W,(T)) for some &>0.
By Proposition 2.3, there exist =0 and a subspace I of finite codimension such
that xéM, ||x]=1 and ||Tx||=||T||,—30 imply Re (Tx, x)=e. We may assume
that d=¢. Let {x,} be an orthonormal sequence in M such that |(T—8)x,|—~
—~|T—9d|,. (The existence of such a sequence follows from Lemma 1.2.) For
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sufficiently large n, we have [[(T—68)x,|={T—4d|,—0¢ and hence | Tx,|=|T|,—36.
Therefore, when n is large enough, we have Re(7Tx,, x,)=¢ and hence

I(T—8)x,l1* = | Tx,[>—20 Re (Tx,, x,) +0% = | Tx,[|>— 262+ 6° = || Tx,[|>— &%

Let n—>oo. Then we get |T—5|2=|T|2—6% Thus |T—8|,<|T|,. Therefore,
if |T).=)1T-A|, for all A€C, then we have Ocess Wy (7).

Theorem 3.3. Suppose that T¢ B(9H) and t is the image of T in the Calkin al-
gebra. Then |d| =2inf {|T—2],: A€C}.

Proof. It is easy to see that there exists some A4€C such that
17— 2ll, = inf {IT—4],: A€C}.

By Proposition 3.2, we have Ocess Wy(T'— ). Hence, by Proposition 3.1, ||d,|=
=|ld,_,|l =2|T—2,)l,. Therefore the theorem is valid.

Corollary 3.4. |dl=2|¢t|| if and only if Ocess Wy(T).

4. Relation between W,(T) and ess Wy (7).

Let 7€ #4(H). Then the following proposition follows from the definitions of
Wo(T) and ess Wy (T).

Proposition 4.1. If |T||=|T|., then ess Wy(T)S Wy(T).

In case |T|=]|T|,., nothing much can be said about the relation between
Wo(T) and ess Wy (T). However, in that case, W,(Z) is the “numerical range over
the maximal vectors™:

Proposition 4.2. If |T|=ITl|,, then
Wo(T) ={(Tx,x): x|l =1 and ||Tx|| = |T|}.

Proof. Since [[T*T|,=|T|2<|T*T|, there is a finite rank projection P
commuting with T*T such that [|[T*T(I—P)|<||T*T|. Hence |[T{I—P)|<|T].
Now the proposition follows from the following lemma.

Lemma 4.3. If P is a projection commuting with T*T such that || T(I—P)| <
<||TY, then Wy(T)=Wy(TP).

Proof. Note that [TP||=|T|. Suppose that i€ Wy(T). Then there exists
a sequence {x,} of unit vectors such that [Tx,|—~|7| and (Tx,,x,)—A. Since
I T2z T T x| =(T*T x5 )= Tx, >~ T2, we have |T*Tx,|—|T|* Write
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Xy =0,y +Baz, Wwith ||yl =lz,ll=1, l#,>+|B,*=1, Py,=y, and Pz,=0. Now,
since P commutes with 7*7T,

1712 =l FNCT T Y2yl + B2 (T TY22,|* =
= (T*T)2 (0 yo) HT*TY*(B,2)|1* =
= W(T*T)2x, || = | Tx, > ~ [IT||>

Since  |(T*T)'2z,)|2=| Tz,|*=IIT(I— P)z,|?=| T(I-P)|*<| T)|? lim B,=0. Hence

[Tyl =IT| and (Ty,,y,)—+A. Now it is easy to see that A€ W,(TP). The proof

of Wy(TP)S Wy(T) is straightforward and hence omitted. :
Next we show that Wy(T)=ess Wy(T) under a rather mild condition.

Proposition 4.4. If T¢ B(9) fails to attain its norm (in the sense that | Tx| =
#|T||Ix)| unless x=0), then Wy(T)=ess Wy(T).

Proof. From the proof of Proposition 4.2 and the given condition we see .
that | T||=(T].,. Now the proposition follows from the following lemma.

Lemma 4.5. (HoLmes and KRIPKE [3; Lemma 2]) If T¢B(S) fails to attain
its norm and if {x,} is a sequence of unit vectors in § such that | Tx,|—|T|, then
x,~0 weakly.

Corollary 4.7. If $ is a separable Hilbert space and Tc B(9), then there is
a compact operator K such that Wy(T+K)=ess Wy(T).

Proof. It suffices to show that there exists a compact operator K such that
T+K fails to attain its norm. Let the polar decomposition of 7be T=VP where
' P:(T *TY/? and V is a partial isometry. By considering eigenvalues of P, we can
show that there exists a hermitian compact operator J such that P+J has the
following three properties: first, P+J remains to be positive; second, the range
of P+J is in the initial space of V; third, P+J has no eigenvalue greater than or
equal to ||P].. By the third property, it is easy to see that P+.J does not attain
its norm. Let K=VJ. Then T+K=V(P+J). If [(T+K)x|=|T+K]||x|, then
by the second property of P+J, we have

I(P+N)x|| = [V(P+D)x| = IV (P+I)|lx]
= V*V P+ DXl = 1P+ ||x]

and hence x=0. Therefore T+ K does not attain its norm. The proof is complete.



On the essential maximal numerical range - 313

5. Maximal numerical range of an element in C*-algebra

Let o be a C*-algebra with identity 7 and let T be an element in /. Recall
that a linear functional f on & is called a state if f(I)=| fll=1. We call a state
f is maximal for T if f(T*T)=|T|%.. We shall denote by S,(T, /) the set of
all maximal states of T. It is easy to show that S,(7, &) is non-empty.

Definition. The (algebraic) maximal numerical range of “an element T in
a C*-algebra of, denoted by V,(T, &), is defined to be the set {f(T): f€ So(T, «)}.
. g Y Vo .

Note that V,(T, &) is a non-empty convex compact subset of V(T7, <), the
(algebraic) numerical range of T. Because of the following proposition, Vy(7, &) ,
can be abbreviated as V(7).

Proposition 5.1. If o is a sub-C*-algebra of & containing I and T, then
Vo(T, &)=Vo(T, %).

The proof of the above proposition follows from a standard argument of
Hahn—Banach type and hence is omitted.

Remark. It is easy to check that S,(7, &) is a face of the state space, that is,
if f and g are two states such that Af--(1—2A)g is in So(7, &) for some A with
0<A<l1,. then f, g€ 84(T, &). However, V,(T), the image of Sy(7, /) under the
evaluation map f—f(7), is in general not a face of V(T, /). For example, if’

$=C? and.TCB(S) is given by the matrix (g 0] then V(T is {0} while
V(T, #(9)) is a disk centred at 0.

‘Proposition 5.2. For an element T in the C*-algebra s, we have V,(T*)=
=Vy(T)*. (For a set S in C, we write S* for {4cC: 1€ S}.)

Proof. It suffices to show that So(7, #)=S,(T*, &). Let f be in S,(T, ).
By Schwarz’s inequality, we have f(T*T)*=f((T*T)?). Hence |T|*=f(T*T)*=
=f((T*T¥)=f(T*(TTHT)=|T|*f (TT*). Hence f(IT*)z|T|® Therefore
f€S8o(T*, o). Thus we have shown that S,(T*, &)=S,(T, &) and hence the
proposition follows.

Now we are going to show the main result of the present section: the algebralc:
maximal numerical range of an operator on Hilbert space is the same as the usual
one. First we need-a lemma similar to Proposition 2.3. '

Lemma 52. If Uis a neighbdurhood of Wo(T), then there is a positive number-
& such that (Tx, x)eU for the unit vectors x satisfying |Tx|=|T| —4.

The proof is the same as that of Proposition 2.3 and hence omitted.
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Remark. By using this lemma, we can show that the map 7T+— W,(T) is upper
‘semi-continuous.

Theorem 5.4. If T is an operator on a Hilbert space 9, then Wy (T)=
=Vo(T, (B(9))- '

Proof. Suppose that 1€ Wy (T). Then there exists a sequence {x,} of unit vectors
such that | Tx,|—|T| and (Tx,, x,)—~A. For each n, define a state f, on Z(9H)
by f,(4)=(4x,, x,). By the compactness of the state space, {f,} has a subsequence
.converging in the weak*-topology to some state, say f. Then ||T||? =lim || Tx,|?=
=lim (T*Tx,, x,)=f(T*T) and J=lim (Tx,, x,)=limf,(T)=f(T). Therefore
AEV(T, B(9)).

Conversely, suppose that A€ V(7). We assume on the contrary that 1¢ Wy(T).
Since, by Lemma 2 in [4], W,(T) is compact and convex, there is an open half-
space H containing W, (T) such that A4 H~, the closure of H. By Lemma 5.3,
‘there exists a positive. number § such that (Tx, x)¢ H for all x with |x||=1 and
I Tx||>=||T||>—4é. We can choose é small enough so that 36[|T || <dist (1, H), the
distance from A to H. It is well-known that convex combinations of vector states
are dense in the state space in the weak*-topology. Hence there existsAa linear func-
tional f of the form f(4)=> u,(4x,,x,) with p,=0, > p,=1 and |x,|=1
such that f(T*T)=|T|*—é* and |f(T)—A|<d|T|. Let

F={n: |Tx,|?> = |T|*-3).
"Then ' g
ITI2=&* = f(T*T) = 3 I Tx,l12 = (IT12—6) eZy#,.)HITllz( g;/“n) =
= IT12=6( 3 wy)-

n¢gs -

Hence > u,=34. Therefore,
AT~ 3 pta(Tx, )| = | 5 40T, x,)| = ST
ney ng s

Let 2,=( > p) '#,. Then we have 3 A,(Tx,, x)¢H and
ney nes

| 2 ln(Txn,xn)_ 2 un(Tx,,', xn)‘ = |(l - 2 #n)( 2 AH(TX,,,X,,))I = 5”T" .
nes nes nes ncy

Hence dist (f(T), H)=26||T|. From this and || f(T)—A|<8|T| we see that
dis (1, H)=<38|T||. This contradicts our choice of § which satisfies the inequality
38 || T| <dist (A, H).

Next we prove a theorem similar to Theorem 5.4 for an element in the Calkin
.algebra. First we need a simple lemma.

Lemma 5.5. Let T€ B(9) and t be its image in the Calkin algebra. If | T|=|t{,
then Vy()S V(T). : )



On the essential maximal numerical range 315

Proof. Let A€ Vy(z). Then there is a state g on the Calkin algebra Z($H)/HA (H)
such that g(¢*t)=|t|? and g(¢)=A. Let p be the canonical projection from %($)
to the Calkin algebra. Then f=gop is a state on #(9) satisfying f(T*T)=| T|?
and f(T)=A. Hence A€ Vy(T). '

Theorem 5.6. If © is a separable Hilbert space, T is an operator on $ and t
is its image in the Calkin algebra, then ess Wy(T)=V,(t, B(O)H )

Proof. By Corollary 4.6, there is a compact operator K such that |74 K| =||¢|
and ess Wo(T)=W,(T+K). By Theorem 5.4, Wy(T+K)=V,(T+K). By Lemma
5.5, we have Vy(T+K)2V,(t). Hence ess Wy(T)2 V().

On the other hand, suppose Acess W (T). Then, by Proposition 2.1, there
exists a projection P in £Z(9) such that its image p in the Calkin algebra satisfies
ptp=Ap and |tp||=]|¢]. Let ¥ be the commutative algebra generated by 1, p
and pt*tp. Then it is easy to see that there is a multiplicative linear functional g
on % such that g(p)=g(1)=1 and g(pt*tp)=|pt*tp|=|tp||2=|¢|% Let h be a
state on the Calkin algebra which extends g and let f be the functional given by
f(xX)=h(pxp). Then it is easy to check that f is a state on the Calkin algebra,
f*)=|t|* and f(#)=A. Therefore A€ V,(2).

Remarks 1. The above theorem can be proved in the same way as
Theorem 5.4, by using Proposition 2.3 instead of Lemma 5.5. This alternative
proof does not require the underlying Hilbert space $ to be separable. 2. Because
of Theorem 5.4, many results concerning maximal numerical ranges of operators
can be extended to corresponding results for maximal numerical ranges of elements
in C*-algebras. For instance, Pythagorean relation for operators in [4] becomes:
if T is an element in a C*-algebra, then there exists a unique z,6C such that
IT—zoll2+ |A2=|(T—2z5)+ A2 for all A in C; moreover, 0€ V,(T—2) if and only
if A=z,.
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On Fong and Sucheston’s mixing property of operators
in a Hilbert space

CHARN-HUEN KAN

1. Introduction

Let T be a bounded linear operator on a (real or complex) Hilbert space §.
A matrix (@,;) (n,i=0,1,2,...) is said to be uniformly regular (U. R.) if

sup > |ay| =a<e, supla,|=b,~0 (n—e), and limSa,=1

In this article we consider the problem of the equivalence of assertions (a) and (b)
below. 4 is an element of 9.

(a) T"h converges weakly.

(b) For every U. R. matrix (a,), Za,,,- T'h converges strongly (to the weak

limit in (a)).

In the more general context of a Banach space B, (b)=(a) is always true ([8]),
but (a)=(b) may fail even if T is a contraction and (a) holds for every #€B ([3)).
This equivalence (in a weaker form) was first proved for the special case where
$=L, of a probability space and Th=hoT for an invertible, measure preserving
transformation T on that space ([4]). This was recently generalized to an arbitrary
contraction on $ in [1], [13] and, in the form as stated above, FONG and SUCHESTON
[8]. In this article we shall prove in Theorem 1 the equivalence for a much wider
class of operators. This class contains all operators similar to contractions, and
we shall give some sufficient conditions for such similarity to hold. By an application
of the uniform boundedness principle, it is easy to show that conditions (2.0—1)
in Theorem 1 imply that T is power-bounded, i.e. sup |T"||<eo, provided that
the operator B is bounded. Whether the equivalence is true for a general power-
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bounded operator is an open question. Note that if (a) holds, then {T%h: i=0} is
bounded and the expression in (b) is meaningful. For (b)=(a) with T not power-
bounded, we require such expressions to be finite sums. With this modification,
(b) implies that {T%h: i=0} is bounded (see [1, p. 237]), and hence (a) ([8]).

2, Main Theorem
Theorem 1. Let T be an operator on a Hilbert space . Assume that there

exist Hilbert spaces ®, K, a contraction C on K, and operators A: K~®, R: 6 -9
and B, S: $—+® which are bounded except possibly B such that

2.0) RS=identity operator on
and
2.1 . lLm||AC"4A*Bh—ST"h| =0 for all hc$.

Then for any fixed h€$, the following conditions (a) and (b) are equivalent:
(@) T"h converges weakly.
(b) For every U. R. matrix (a,), > auT ‘h converges strongly (to the weak limit

in (a)).

Proof. We only need to prove (a)=(b). In (2.1), C can be assumed to be an
isometry. In fact, there exists an isometry U on a Hilbert space 2> satisfying
C"=PU"|], n=0, where P is the orthoprojector from £ onto K] (see e.g. [18], p.
11), thus implying AC"A*=(AP)U"(AP)*. Henceforth we shall replace C by an
isometry U. '

Suppose (a) holds. Since the limit is a fixed point of 7, we can and do assume
that it is 0. Given &=0, there exists an integer N such that for all m=N,
|AU™A* Bh— ST™h||=e. Hence

N-1 oo
22) | aurin| =0, 3 irmiirl]| 3 auston),
i i=0 i=N !

(2.3) “ > a,,iSTihH = e+ \ > am.AUiA*Bh” = ae+|]A|i” > a,,iU"A*Bh”.
i=N i=N i=N

By the assumption, there exists a positive integer M=N such that for all m=M,

(2.4) KST™h, Bh)| = |(Bh, ST™h)| = [(S*Bh, T™h)| = «.



On Fong and Sucheston’s mixing property of operators in a Hilbert space 319

Hence for all m=M and i,j=0, we have
(2.5) KU'A*Bh, U'+™4*Bh)| = |(Bh, AU™A*Bh)| = |(Bh, ST™h)|+

+ |(Bh, AU™A*Bh— ST™h)| = e+¢| Bh|;
and similarly,

2.6) - |(Uf+'"A*Bh, UfA*Bh>| = g+e¢|Bh|.
Hence
co 2.
(0N)) “ Za,,,.U"A*BhH 2 2' a,,,a,,J(U'A*Bh U’A*Bh)
i=N i=N j=

= (2M +1)ab,| 4*Bh|2+a%c(1 +| Bhl),

as can be seen by dividing the double sum into parts where [i—j|=M and
li—jl=M, respectively, and using (2.5) and (2.6). Fmally (2.2), (2.3) and (2.7)
imply lim ||2’ a,; T'h| =0.

Remarks. (1) The proof actually shows that (c) (T"h, S*Bh)—~0 implies (b).
This together with (b)=(a) shows that (c) is equivalent to 7"/#—-0 weakly. In
fact, we have for all k, z€R, limsup [(C"k, z){=|z|| -lim sup |(C"k, k){''® ([6],
Lemma 2.1). Applying this to k=A*Bh, z=A*R*y for any y¢$ and utilizing
(2.0) and (2.1), it is.not hard to show that lim sup [(T"h, y)|=|4*R*y| -lim sup
[{T"h, S*Bh)['/%. In the case of T being a contraction, (c)=>(b) was implicitly proved
in [8] by a somewhat different method. We can also prove the general case from this
by observing that (c) implies, by (2.1), (C"A*Bh, A*Bh) -0, and hence, applying the
contraction case and using (2.1) again and (2.0), (b).

(2) An operator T on $ is said to be similar to a contraction C on R if there
exists a (boundedly) invertible operator A4: R~$ such that T7=ACA~1. Then
T"=AC"A 1= AC"A*(4* 1471, n=0, and the condition (2.1) is satisfied. '

(3) Theorem 1 applies to operators of the C, classes of H. LANGER (see [18],
p. 55) and the now classical C,=C,; classes, ¢=0, of Sz.-NAGY and Foiag ([17]).
They are those operators T on $ satisfying T"=A"*P_U"A4'% n=1, for a posi-
tive and (boundedly) invertible operator 4 on $ and a umtary operator U on a Hil-
bert space 809. Note also that C,cC,; ([12]) and that the union of all C,
classes is dense (in the norm topology) in the set of power-bounded operators ([10]).
(b) is valid for all h€$H in case of operators with their spectra lying inside the open
unit disc. This follows from the fact that lim || 7"|*"<1 implies lim || T"A|| =0 for
all A€9. We should also mention that the operators considered here are all similar
to contractions (see a general theorem in [11]), and that some power-bounded,
operators are not similar to any contraction ([7]). . :
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3. Similarity to contractions
We shall give three sufficient conditions for T on § to be similar to a contrac-
tion. The Corollary below generalizes a result of Sz.-NaAGy [16]. The special case
where T is power-bounded and lim sup |T"A||=m|h|, h€H, is tacitly contained
in [1, p. 238]. In [1] and [16] Banach limits are used as the main tool. Our proof

is of a more constructive nature. Theorem 2 will also be used in the proof of Theo-
rem 3.

Theorem 2. Let T be an operator on $ satisfying, for a positive number M,
n—1 .
(ERY n~t DUIT h|P= ME||h|I® (n=1, he$).
, =0

Then there exists a positive operator R on § such that
(.2) T*RT=R and R= M?I.

If, in addition, there exists a positive number m such that
n—1 . ’

(3.3) mhlP=nt 2 TAI? (n=1, he9)
i=0

then R and its positive square root P are invertible and
G4 . PTP-' is an isometry and mI=P = ML

Corollary. If T is an operator on $ and there exist positive numbers m, M, p
such that :

n—1
(3.5) mP|[h|P = limsupn= 3 |T*h|P = MP[jh|? (heD),
i=o -
then i
(3.6 (m/M)||h| = | T"hl| = (M/m)|h] (n =0, he9),

and T is similar to a contraction. _
The same conclusion holds if we replace in the middle term of (3.5) lim sup by
lim inf and even if we replace this middle term by lim sup | T"h||? or by lim inf || T"Af".

Proof of Corollary. The middle term in (3.5) is unchanged if -we. change
k to T’h, for any j=0. Hence m®| T h|°P=MP?|T’h||?, for any i,j=0: The first
conclusion then follows. Theorem 2 applies now to ‘give the second conclusion.
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Proof of Theorem 2. Consider first the separable case. so assume that there
is a countable dense subset {h,, 4,, ...} of . Let R —n‘lz T*'T‘ nzl. R, is

positive and (3.1) implies R,=M%®I, n=1. Hence for each Jj=1, {R,h;: n=1}
is bounded and so weakly sequentially compact ([5, 11.3.28]). Using the diagonal
process, we can extract a subsequence {R;} such that R;h; converges weakly for
each j. It follows that R’ converges in the weak operator topology to a positive
operator R=M?]. T*R,T converges to T*RT. On the other hand, T*R,T—R,=
=n"Y(T*T"-I), n=1. We claim that a~17*"T" converges weakly to 0. This
then implies that T*R;T has to converge to R, and thus T*RT=R. For the
claim, observe that for each A€$ and each positive integer n,

n~H TR S = S (GTHTIT TR =
j=1 j=1

=n ._ﬁ (M2 T~ i+1 ) = Mn~t j \TSThI® = M*|ThI?,

by applying (3.1) twice. But 2 j~1 diverges, and hence n=1||T"h||2*~0. Now for
any 4, k€9, [n~Y(T*"T"h, k)ls(n‘lll T"h[|2)1/2(n‘1|| T"k||?'/*--0, proving the claim.
Thus (3.2) is proved.

If in addition (3.3) is assumed then m21<R ,nzl. In particular mI=R,,
n=1, whence m21<R Thus m?I=R=M?1I and so mI=P=MI, and R and
P are invertible. From T*P:T=P?, we get (PTP~Y)*(PTP-Y)=], showing that
PTP~!is an isometry.

When $ is not separable, we proceed as follows. Given any k€9, the closed
subspace generated by {R}U{S;...S,h: n=1, $;=T or T*, 1=i=n} is separable,
contains #, and reduces 7. Utilising this construction and employing transfinite
induction, £ can be decomposed into a direct sum of a family of mutually orthogonal,
separable, closed subspaces, each reducing T. The construction for the separable
case applies to each of these subspaces, and we get a positive operator R on
$ satisfying (3.2) and, if (3.3) is assumed, m2I=R. The rest of the proof is as
before. :

Theorem 3 below generalizes the result of G:-C. Rota [15, Th. 2] that every
operator T with spectral radius r<1 is similar to a proper contraction (one of
norm <1). This is because r=Ilim || 77" and so by the root test for series,

Z’ |T"|2<e, implying the case s=0 of Theorem 3. Another case, s-l was

treated by HoLBROOK ([11]) under the assumption that T is power-bounded.
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Theorem 3. Let T be an operator on 9, 0=s=1 a fixed number, and
Q=0(T, s)=|I-sT*T|"* (by symbolic calculus). Assume that there exist positive
numbers M, N such that (3.1) is satisfied and

3.7 g 1QT"h||? = N2{|h|I® (heD).

Then there exists a positive operator P on $ satisfying
(3.9 I=P=(N*+sM2)2]
such that PTP~! is a contraction, and a proper one in the case s=0.
Condition (3.1) is redundant in the case s=0, ie., Q=I.
Proof. Condition (3.7) implies that the increasing sequence of positive operators
S,,=.52_(’)1 T*Q2T, n=1, converges in the weak operator topology to a positive

operator S=N?J. In fact for any A, k€9, and any n>m=0,
n—1 N
K(S,—Sw b, k)| = t_Z (QT*h, QT'k)| =

= Sherm-eria=(Fhern) (Fera]”

whence the assertion follows. From the identities Q*4-7™*S,T=S,.,, n=1, we get
Q*+T*ST=S.
For each positive integer #,

StsR,= 3 STHQA T 4n=t 'S SITHTI = n-1 "21(’21 siT*iQZT"+sz*fo).
i=0 i=1 j=1 \i=o0
Since Q2+sT*T=|I—sT*T|+sT*T=1, it follows by easy induction that the terms
in the first summation form an increasing sequence of positive operators, each =1.
Hence S+sR,=(1—1/n)I. By Theorem 2, there exists a positive operator R=M?27
on § with T*RT=R, and by the above inequalities, and considerations as in the
proof of Theorem 2, S+sR=1 Summing up the results in this and the last para-
graphs, we get Q24+ T*P2T=P? and I=P*=(N2%+sM?)I, where P is the posi-
tive square root of $+sR. Hence (3.8) follows and P is invertible. With C=PTP~1,

(QP-Y)*(QP~1)+C*C = P-1(Q*+ T*P*T)P~* = P-1ptp-1 = [,

This shows that C*C=1I and C'is a contraction. In the case s=0, we have Q=]I,
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and the above equality becomes P—2+C*C=J]. Hence for each hc$,
ICh)? =<h, C*Chy = (h, By—(h, P~2hY = [P — || P~ h|* = |hI* (-] P]~?).

Thus C is a proper contraction.

- We now present a similarity theorem in a measure-theoretic setting. Let
X, & w=(X, 1) be a o-finite measure space, and L,=L,(X, &, p), 1 =p<e, the
usual Banach spaces of functions. Let M * be the set of extended-valued nonnegative
measurable functions (modulo p-null functions) on (X, u). A linear operator t on
M+ is monotone if f,, feM*, f,}f a.e. implies tf,ttf a.e. (cf. [2], p. 389). For such
a 1, its adjoint is uniquely defined as a (linear) operator t* on MT* satisfying
[f-*gdu=[g-tfdp, forall f,gcM*. 1t is easy to show that z* is also mono-
tone and that t**=1. If for a fixed 1=p<c, T is a positive (in the sense that
TL}cL}), bounded linear operator on L,, then it extends uniquely to a mono-
tone operator 7 on M *, according to the definition: tf=lim T/, a.e., where féM™,
f€L3, and f,tf. For each fEM*, such a sequence f, always exists and the defi-
nition of ¢f is unambiguous. We shall simply write T for the extended .

Theorem 4. Let T be a monotone operator on M+ and 1=p<c q fixed num-
ber. Assume that, for p=1, t*k=k; and for p=1,

3.9 t*(k(zh)P~) = kh?~* for some functions 0 < h, k < oo,

Then o, defined on M+ as of=kY?t(fk™/7), is a positive L, contraction. Further,
(3.9) is equivalent to

(3.10)  t(ky(x*h)?' ") = kyh¥'~ for some functions O < hy, k, <o, with
ky=k~7+1 and 1/p+1/p'=1.

Corollary. Suppose T is a positive (in the sense that TL} cL}), bounded
operator on Ly, and T*(kThy=kh or T(kT*h)=kh for some functions O<h<oo
m=k=M, where m, M are positive constants. Then T is similar to a positive con-
traction on L,.

Proof of Theorem 4. The case p=1 is easy. Consider the case p=1.
First we show (3.9)=(3.10). Suppose (3.9) holds. Then th<e. For if th=c
on a set E of positive measure, then for all positive numbers N,

Nt*(klp) = v (Nklp) = T (k(th)P~Y) = khP~! <oo,

implying t*(k15)=0. So 0= [ h-t*(klp)du=[gk-thdu=, a contradiction. Let
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F={th=0}. Then [h-t*lpdu=[thdy=0, and hence ©*1;=0. Define - h,=
F

=k(th)’"'+1,. Then 0<h,<w, and (3.10) can be verified as follows: t*h,=
=1*(k(zh)*~")+0=kh?™' by (3.9); consequently, (t*h)" '=(t*h)/P V=
=(khP~YP-D=fUe-Dp=k 1 h and hence, t(k,(z*h)? Y)sth=(k~ 1 h)HP~D=
=k, B~ 0=, h¥='; which is (3.10). Implication (3.10)=>(3.9) can be proved
similarly, by replacing (z, &, k, p) by (z*, hy, k1, p’). From the definition of o we
can show that o*f=k~YPt*(kY?f), fc M*. Hence (3.9) transforms into o*(ou)?~'=
=uP~', where u=hk"?. This implies that ¢ is a contraction on L,. In case of a
Borel space, this implication follows from a dilation theorem in [2]. The general
case is proved here by adapting the proof in [9] for the case s1=1, ¢ 1<1 "In fact,
we have ocu<oo, just as th<e. For fEM™* and any 1=0, '

[ 1(,,21,u>0)(af Jou) - (ou)P =2 dy =
= [o(f—w)* - (ou)—2dp = f J—n* 0" (oup=tdu= S/ l(fzm(f JuyuPd-p

Multiplying both sides by l" %, and integrating with respect to A from O to -, we
obtain, by the Fubini—Tonelli Theorem,,

(-2 v (L)

showing that ¢ is an L, contraction.

Remarks (4). If o: M*(X,uy)~M*(Y,v) is monotone, I_S_péq{oo,
O<u€L,(X,p), and o*(ou)’ '=u?"?, then ¢ extends to a bounded, positive linear.
operator from L, (X, u) to L,(Y, v) with norm =[ul|@/?~* Indeed, by the method
of the proof of Theorem 4, we have for all fEL} (X, p), [(of)?dv=[fPus="dp.
(This is trivial when p=1, for which case the condition on ¢ reads ¢*1=u?"")
By the Schwarz inequality, the last integral is =( [ f%du)? ( [ u%dyu)=""4. The con-
clusion follows. This generalizes a result in [14] for non-negative infinite matrices,
as it can be easily shown that non-negative matrices are monotone. Analogous to
Theorem 4, the inequality for ¢ is equivalent to o(c*v)¥ '=v”~' for some
O<v€L,(Y,v) when 1<p, where 1/p+1/p’=1 and 1l/g+1/g’=1.
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Mean ergodicity in G-semifinite von Neumann algebras

SANDOR KOMLOSI

Introduction. Let 4 be a von Neumann algebra in a complex Hilbert space H,
and let G be a semigroup of normal endomorphisms of 4. Denote by A¢ the set
of all elements of A which are invariant with respect to each element of G. If the
identity 7 belongs to A%, then 4% is a von Neumann algebra too, but if this isn’t
so, then A€ is ‘only’ an ultraweakly closed involutive subalgebra of 4, and hence
there exists a largest projection P17 in A such that for every element T of 4 one
has PT=TP=T ([7], Chap. L. § 3, Théoréme 2.).

Let Q denote the set of positive, normal, linear mappings of 4 into itself obtained
from the elements of G by forming convex combinations. The operators in 4 of the
form V(T), where V€Q and T€A are called the means of the operator 7. For
any TcA let K,(T,G) denote the set of all means of 7. The investigation of the
‘behaviour’ of the means is one of the subjects of mean ergodic theory ([9], Kap. 1,
§2.). Concerning von Neumann algebras we refer only to the classical results of
J. DixMier ([6)) and the paper of 1. KovAcs and J. SzGcs ([10)).

The purpose of this paper is to investigate a special class of von Neumann
algebras.

§1 contains preliminary results without their proofs.

In § 2 we define the notion of ‘weak ergodicity in means’ to express a ‘good
behaviour’ of the means of an operator. This section is devoted to establishing the
simplest consequences of this definition.

Let X(T, G) be the weak closure of Ky(7T, G). In § 3 we shall give sufficient
conditions for T in order that K(T, G)NA® be nonempty (Theorem 3.1.), and
that K(T, G)NAS consist of exactly one operator.

1. Definitions and preliminaries. Let us consider a pair (4, G) of a von Neu-
mann algebra 4 and a semigroup G of normal endomorphisms of 4. We shall denote
by A* the positive portion of A4.

Received September 15, 1977, in revised form January 8, 1979.
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A non-negative, finite or infinite valued function ¢ defined on 4% is called a
weight on 4%, if it has the following properties:

() o(T+S) = o(T)+¢(S) for every T,ScA*; and
(ii) @(cT)=cop(T) for every ¢=0 and TeA*,
(with the convention that 0. = 0).

We call ¢ G-invariant if for every T€¢A4* and ge€G we have o(T) = ¢(g(T)).

The notion of a G-invariant weight is a very natural generalization of that of

a trace.
A weight ¢ on A7 is said to be faithful if the conditions T¢A* and @(T)=0

imply T=0; normal if, for every increasing directed set F A+ with sup S=
: scF

=T€A*, we have @(T)=sup ¢(S); semi-finite if, for every T€A*, T0 there
Se¢eF

exists SEA*, S0 such that S=T and ¢(S)<es.

A weight ¢ on A% is said to be non-infinite if there exists S€A4*, S0 such
that ¢(S)<eo. ' :

For later purposes we state an important fact concerning weights.

Proposition 1.1. ([8], Lemma 1.5) For any weight ¢ on A% the following
conditions are equivalent:
(i) ¢ is normal,
(ii) o is ultraweakly lower semicontinuous,
(iii) there exists a family of vectors {x} in H such that

o(T)= 2> (Tx,, x;) for every TEA*.
Now we shall define special subspaces of 4. Denote by I' the set of normal
faithful G-invariant non-infinite and non-zero weights defined on 4+,

Definition 1.1. A projection E€A is called finite, if there is a @€I" such
that @(E)<oco. An operator in A is called simple, if it is a linear combination of .
finite projections. Denote the set of simple operators by M,.

Let @€l and let M} ={T¢A*|¢(T)<e)}. Denote by M the smallest norm
closed subspace of A that contains M/ for every @¢I'. Since ¢ defines a linear
form ¢ on the linear span of M, it is not hard to see that the norm closure of M,
is identical with M. '

Let N,={TcA|p(T*T)<e}. N, is a left ideal in 4. Denote by N the norm
closed linear hull of all N,. It is obvious that M;S N and hence MZN.
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Definition 1.2. A pair (4, G) is said to have property II if for every proper
projection P€A such that g(P)=P for every g¢G, we have that P¢c A4S
We classify the pairs (4, G) by their weights.

Definition 1.3. A pair (A, G) is called finite (resp. semifinite) if for every
TcA+, T0 we can find a normal G-invariant finite (resp. semifinite) weight ¢
such that ¢(7")=0.

To facilitate the statement of the next proposition it will be convement to
introduce the following notations.

Definition 1.4. Let E be a projection in A% Let us consider the restricted
“von Neumann algebra Ag. Since E¢ A, every element g of G induces a normal
endomorphism g, on Ag. These restricted endomorphisms form a semigroup. Let
us denote this semigroup by Gz. The pair (4, Gy) is called a restriction of (4, G).

Proposition 1.2. ([5], Theorem 1) If a pair (A, G) has property 11, then there
exists a maximal projection E in A° such that the restricted pair (Ag, Gg) is finite.

For finite pairs the following theorem will play an important role in proving
Theorem 3.3.

Theorem. (I. KovAcs—J. SzGcs ([10])) Let the pair (4, G) be ﬁmte For every
T€ A the convex set K(T, GYNAC contains exactly one element.

In the following paragraphs we shall deal with pairs (4, G) for which the set
T is non-empty. This requirement is fulfilled for example in the classical case, when
the group § of inner automorphisms of 4 plays the role of G, and 4 is semifinite.
We do not know if this is the case in general for semifinite pairs, but we can state
the following:

Proposition 1.3. If a semifinite pair (A, G) has property I1 and 1 CG, then
there exists a normal faithful G-invariant and semifinite weight on A*.

Property IT ensures that the support of any G-invariant weight defined on 4+
does belong to A%. It follows from the condition i G that A% is part of the center
of A and hence DixMIER’s reasoning ([7], Chap. 1, § 6, Proposition 9.) can be repeated
essentially word by word.

The terms and symbols introduced here will be used in what follows without
further reference.

2. Let & be an ultrafilter in Q. Denote by & (T') the image of # which is ultra-
filter, too. Since the unit ball of 4 is weakly compact, K(T, G) is weakly compact,
too, for every 7€ A4, and so the ultrafilter & (T') of the means of T converges weakly
to an element S of K(T, G). Let this fact be expressed by the symbol “}h V(T)=S.
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Now we define two notions to express ‘good behaviour’ of the means of an
operator.

Definition 2.1. Let the operator T¢A be called weakly quasi-ergodic if it
has the following properties:

(Li) K(T, G)NAC® is non-empty

(Lii) for each R€K(T, G) the set K(R, G)NA® is non-empty.
Denote by L the subset of weakly quasi-ergodic elements of A4.

Definition 2.2. Let the operator T€A be called weakly ergodic if it has the
following properties:
(Ei) K(T, ®)NA® consists of exactly one element,
(Eii) for each Rc¢K(T, G) the set K(R, G)NA® consists of exactly one ele-
ment.
Denote by E the subset of weakly ergodic elements of 4. It is obvious that ASc
cEcCL.

Proposition 2.1. L is a norm closed, G-invariant subspace of A.

Proof. The G-invariance and the homogeneity of L are rather obvious. First
we prove the additivity of L. Let T, and T, be arbitrary elements of L. We shall
show that the operator 7=T;+ T, belongs to L. By assumption there is an operator
S, such that S,€K(Ty, G)NA®. Let &, be an ultrafilter in Q such that 11m V(T)=

=S,. The limits 11m V(T)=S, and hm V(T,)=R, exist, SOEK(T G) and

R, K(T,, G). By condltlon (Lii) there e)usts an ultrafilter %, in Q such that
hm V(Ry)=RC¢K(R,, G)NAC. It follows taking account of the facts that Sy=

_S1+R2 and K(S,, G)cK(T,G) that S= hmV(So) S, +ReK(T, G)N AC.

Now let us consider an arbitrary element Y of K(T G). Then we can find an
ultrafilter # in Q such that Y= 11;11 V(T). The limits 11}11 V(T)=Y, and 11;1 V(Ty)=

=Y, exist, and both belong to L. Since Y=7Y,+Y,, then using the previous result it
is obvious that K(¥, G)NAC is non-empty, so we have finished proving that T¢L.

Now we are going to show that L is norm closed. Let the sequence {7,} of
operators converge to the operator T uniformly. Let us suppose that for each n,
T.cL. Passing, if necessary, to a subsequence, we can assume without loss of gen-
erality that ||T,,,—T,| < 1/2**! for each n.

Using the technique of the previous part of the present proof we can construct
a sequence {S,} recursively in the following way:

S, €K(T,, )NA® and S,.1—S,€K(T,41—T,, G)

for each n. It is an obvious consequence of these facts that the sequence {S,} con-
verges in norm, and the limit S of it belongs to A€,
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Now we prove that for any &=0 and for any finite system of vectors
X1s Xos eees Xg3 Vis Vas ---s Vi of H we can find an operator RE€K (T, G) such that

(%) ((S—R)x;,y;)| <& for each i=1,2,..,k

Let us choose a sufficiently large index p, for which | S— S| and | T~ T || are both suf-
ficiently small. Since S,€ K(T,, G), there existsa V€ Q such that [((S,— V(T,)) x;, 1)
is sufficiently small for each i=1,2, ..., k. Let R=V(T). This operator satisfies
(#), and this means that SCK(T, G)NA4S.

Now let us consider an arbitrary element ¥ of K(T, G). We can find an ultra-
filter # in Q such that Y=1i}n V(T). Let us set Y,,=li5;rn V(T,). 1t is clear that

Y.L for every n, and that the sequence {Y,} converges in norm to Y. Applying
the preceding part to the sequence {Y,}, we get that K(Y, G)N A€ is non-empty.

The next proposition might bear the name ‘The Theorem of Linear Choice’.

Proposition 2.2. For every Ty¢L and So€K(T,, GYNA® we can find a
positive linear mapping © of L onto AS which possesses the following properties:
() ©(TYeK(T, G) for each TcL,
(i) 2(TS)=1(T)S and t(ST)=St(T) for every TEL and ScAS,
(i) =(Ty)=3S,.

We omit the proof. It can be done by J. T. SCHWARTZ’s method developed in
_([11], Lemma 5).

Proposition 2.3. The weakly ergodic elements of A form a norm closed,
G-invariant subspace E of A. Denote by 1,(T) the single element of K(T, G)NA®
for every T¢E. The mapping 1, is positive linear and has the property that

’CO(TS) =1(T)S and 1,(ST) = Sto(T) for every TCE and S¢ AC.
Proof. The G-invariance of E is based upon the fact that for every T€A the
elements of G map K(7T, G) into itself. ,
Denote by A the family of those linear mappings © of L onto 4% which have

properties (i) and (ii) of Proposition 2.2. Let ¢ and  be two arbitrary elements of A.
Let us define the following subset

Ly ={Te€Llx(T) = ¥(T)}.
Taking into account the fact that every element of A is norm-continuous and linear
it follows that L, , is a norm closed subspace of 4. Denote by L, the intersection of
all such L, , subspaces. It is obvious that L, is a norm closed subspace of 4 and by
Proposition 2.2 it is identical with E.

If we restrict any = oceuring in Proposition 2.2 to E, then we get the mapping 7,
with the desired properties.

4



332 Sandor Komlosi

3. In this section we shall investigate pairs (4, G) for which I" is non-empty
and hence the subspaces M and N defined in Definition 1.1. are different from the
trivial subspace {0}. '

Theorem 3.1. If for a pair (4, G) the set T is non-empty then all elements of
the subspace N are weakly quasi-ergodic.

Proof. By virtue of Proposition 2.1 it is enough to prove that for every o¢rI’
N,cL. Proving this we follow S. M. ABDALLA ([1], Chap. 3, Theorem 3.4). For our
purposes it is sufficient to show that for every T€N,,

(i) K(T,6)c N, and (ii)) K(T,G)NA® is non-empty.

Let TEN, and R€K(T, G). Wecanfind afilter #in Q such that li;’n V(T)=R

in the strong operator topology. As K(T, G) is bounded, we have li};n V(@ v(n)=

= R*R in the weak operator topology. On the other hand, if V€Q and V= 2"' o8
i=1

(X,->0,' 3 a,~=1, gEG s then we have by Schwarz’s inequality-
i
i=1

o0 @ v @) =o|( Zua @) (S unm)| = 2 uasem e m)=

= L

1 1
= > 0,0;0(8(T&(T)? - 0(g;(T)g;(1))* = 2 auo;0(T*T) = (T*T).
L tJ
Since ¢ is normal, it is ultraweakly lower semicontinuous and so it is weakly"
lower semicontinuous on any bounded part of 4+, thus @(R*R)=¢@(T*T). This _
proves (i).
Since ¢ is normal it can be represented in the following form: o (T)= 3 (Tx,, x,)

for every T€A™, where the xs are suitable vectors from H. It follows that the func-
tion S—@(S*S) is weakly lower semicontinuous on any bounded part of 4 and
thus it attains its minimum on the weakly compact bounded set K(7, G). Taking
into account the fact that ¢ is faithful it follows that the function S—(¢(S*S))!/2=
=||S|l; is a pre-Hilbert norm on N, therefore the minimum is attained only at
one point. Denote by T, this element. It is not hard to see that for every element g
of G g(T)EK(T, G). On the other hand, it is evident that ¢ (T T)=¢(g(T)*g(Ty)
and this implies that g(7,)=T,. This means that T,€ A and proves (ii).

The next theorem is a generalisation of J. B. CoNwaAY’s résult ([4], Lemma 6).

Theorem 3.2. If for a pair (4, G) the set I is non-empty and A® does noi con-
tain any finite projection except 0, then for every TcM, K(T, G)N A¢ = {0}.

Proof. Let P be a finite projection in 4. Then we €an find a @€I' such that
@(P)<e. By Theorem 3.1 it follows that K(P, G)NA® is non-empty. Denote
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by S an arbitrary element of this set. Since ¢ is weakly lower semicontinuous on
K(P, G) and finite constant on K,(P, (), the values of ¢ are finite on K(P, G), thus
@(8)=<o. On the other hand, P¢A*, hence ScA™*.

Let S= f AdE; be the spectral decomposition of S, where E, is right-continuous.
Let u=A be arbitrary positive reals. It is clear that E,—FE, belongs to AS and
that A(E,—E;)=S. It follows that i-@(E,—E;)=¢(S) so the projection E,—E;
can’t be infinite, and therefore E,=FE,. This proves that S=0.

Now let TeM be arbitrary. For any &>0 we can find finite projections

P, P,, ..., P, and complex numbers ¢, ¢,, ..., ¢, such that “T— Z"' ciP,.“<s. By
i=1

Theorem 3.1 it follows that K(T, G)(NAC is non-empty. Denote by S an arbitrary
element of this set. By Proposition 2.2 there exists a positive linear mapping t of
L onto A% such that for every R€L, 1(R)EK(R, G)N A and ©(T)=S. Since |7]|=1,

we have ”‘L'(T) Zc r(P,)”<a By the preceding part of the present proof we
have ©(P)=0 for all indices i, hence ||t(T)||<e. This proves that 1(T)=S=0.

Theorem 3.3. Let the pair (4, G) possess property I1. Let us suppose that T is
non-empty and that 8§ CG. In this case for every Te M, K(T, G)NA® consists of
a single element. In other words, MCE.

Proof. Denote the largest projection of 4¢ by P. If P=0 then the statement
of the theorem is trivial. If P20, then necessarily P=1. Indeed, if we set R=I—P
then we have g(R)g(P)=0 and g(P)=P for every gcG and thus g(R)=R for
every g€G. It follows from property IT that Rc A%, and, consequently, /=P+
+ReAS.

In virtue of Proposition 2.3 and Theorem 3.1 it is sufficient to show that for
every €I’ and TeM S the set K(T, G)NA® contains exactly one element.

Denote by Y the maximal projection of A% for which the restriction (4y, Gy)
of (4, G) is finite (Proposition 1.2.). Let Z=7I—7Y. Taking into account that 4 G
the projections Y and Z belong to the center of A. It follows immediately from
this that for every S€A the operator S is uniquely determined by its ‘parts’ Sy
and Sz.

By Theorem 3.1 K(T, G)NA® is non-empty. Denote by R and S two elements
of it. Using the facts that

{1 . (K(T, )N A%y g.K(T,,, Gy)NAGr and
) (K(T, G)N 4%), S K(Ty, G)NAG=

the restricted operators Ry and Sy belong to the set (1) and the restricted operators
R, and S belong to the set (2). By the theorem of 1. KovAcs—J. SzGcs the set (1)

4
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consists of a single element, so Ry,=Sy. By Theorem 3.2 it follows that R,=
=S,=0. This means that R=S, and thus the set K(T, G)NA® has only one
clement.

Acknowledgement. 1 am indebted to Prof. J. Sz{ics for his continued interest in
my work and for several valuable suggestions.
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Note on the convergence
of Fourier series in the spaces A2

V. G. KROTOV

In this note we consider the basis problem for the trigonometric system in the
spaces A2 defined as follows: Let w be a modulus of continuity and let 1=p<e
-be a real number. The class AZ consists of all fupctions f€L? for which the norm

150 = 1F1,+1f17, 0

is finite, where
Ifl, = {_ f P dx}?,  1fl}0 = sup. wz)(zs(,s)f) ,

(We refer to [1] for w,(f) and w.) With respect to this norm A2 is a nonseparable
Banach space.

A sequence {f,} of elements in the Banach space B, which is a basis for its
closed span E({f,}, By=E(B) is called a basic sequence.

Theorem 1. For any w and l<p<oo the trigonometric system is a basic
sequence in the space AP,

If T, is a trigonometric polynomial of degree n, then the inequality

, T
0 | 1771, = na, (%, 7,)
holds [5].
For any f€L? and n=0 the inequality?)
@ 1Safll, = Coll flI,

is true [4], where S, f denotes the n-th partial sum of the Fourier series of f.

Received April~ 26, 1977.
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scientist.

1) C, will always denote positive constants depending only on p, not necessarily the same
at each occurrence.
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Proof of Theorem 1. Since for any absolutely continuous function f with
f’€LP the inequality
0,6, f)=9lf'l, O<do=m)
holds, by (1) we obtain

) ©,(5, T,) = néw, (% 'T,]

for any trigonometric polynomial 7. Furthermore, from (2) and a theorem of
Jackson type in the space L? (see [6]) for any f€LP and r=1 the inequality

@ 17=5.11,= o, (% 1)

follows.
Using the inequality (3) we have

©,3, S,f) = néw, (% S, }) = nd [w,, [% f]+w,, (% f-5, f]] =

= nofw, (Z.)+207-5.11,)
so, by inequality (4),

) @,(8, S,f) = C,pnéw, (% f]

holds. From (5) and by a familiar inequality (see e.g. [8] p. 111)

w@) =20n"rw@) O<np=56=n)
it follows that
Y14

0,5, ) = Co@lfly. (0<6=2).
If %ééén, then by (4) we have -
wp(a, Snf) = wp(69f)+wp(5:f_snf) =
= wp(59f)+2”f_snf”p = prp(aﬁf)'
From the last two inequalities we obtain

15: /15,0 = Collf 15,0

18,150 = Cpllfllp,0-

Now our statement follows from a known theorem (see e.g. [7], p. 58). The proof is
complete.

and by (2)
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In order to describe the subspaces E(A2) we consider the classes
P — v 1 2005 ) }
lw—{fEAw. glm ©0) =0
which are closed subspaces in A2.

We show that if the condition

©6) lim—— J =0

30 0 (3)
is fulfilled, then
0] E(4%) = 4.

In fact, if the function f€Ai?, then

@, (5, f) = €,(5,f) 0(6),
where &,(5,f)i0 as 640. We can take for example

£,(5,f) = 0n (5, Ql’—gl]

For %<6§_7z, by (4), we have
wp(a’f—snf) - wp(l,f—snf) — ‘(_72 ]
0@ [n] =Gul5f] .
w —
n
and for 0<6§—7-:; from (5) the inequality

0,5, f=S8,f) _ @,(3,f) nd -
o® = o@® T° 7)

LAPRYE)) @p

follows. As in the proof of Theorem 1, we obtain hence

1~ $uf1, = Cp [, (2 5) + A +11, 5, (2. )]
and thus AP c E(AP). ‘
Since by condition (6) sin nx, cos nx€AP (n=0) and A2 is a closed subspace of
, thus E(AZ)cAE and (7) is proved.
If the condition (6) is not fulfilled, then AZ contains only the functions which
are equivalent to constants. Consequently, by Theorem 1 we have

Theorem 2. The trigonometric systém Sforms a basis in the space A}, 1<p<oo
if and only if condition (6) holds.

A system, which is a basic sequence for every permutation of its terms, is called
an unconditional basic sequence.
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For any f€L? we have by the Parseval formula
1 F S .
- f [f(x+h)—f(x—h)|?dx =4 21 (a3 +b})sin>nh  (h=0),

where a, and b, are Fourier coefficients of n. Hence it is easy to obtain that the
trigonometric system is an unconditional basic sequence in AL for every w.

On the other hand, if p=~2, then the trigonometric system does not form an
unconditional basic sequence in the space AL, where w(6)=0* (0<a=1). This state-
ment follows from KonjusHkOvV [2], Theorems 8 and 10. ‘

In [3] we have given necessary and sufficient conditions that the Haar system
should be a basic or unconditional basic sequence in the spaces A2, 1=p<oo,

Finally we remark that Theorem 1 is also true for other spaces. So we can
consider the spaces defined by the modulus of smoothness of order & of functions;
or, for example, we can take the spaces

WAL = {f: f*-DEAC, fOeAD).

Since the proofs are the same as before, we omit them.
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Multiparameter strong laws of large numbers. IT
(Higher order moment restrictions)

F. MORICZ

§ 1. Introduction

We use the notations introduced in [5] with the exceptions that at present

(i) it is more convenient to write {, into the form {, =a, ¢, (x), where {a}=
={a,: k€Z%} is a set of numbers (coefficients) and {or () ={o(x): keZ%} is
a set of measurable functions defined on a positive measure space (X, 4, p);

(i) by m=(my, ..., my) > we always mean that only max (m,, ..., my)—~co
(and min (my, ..., my)+> may also occur).

We consider the d-multiple series

(1.1 2 a Pi(x) = Z kZ Uiy, ..., kg Pry . ka (X5

where the multiindex k=(k,, ..., k;) belongs to Z%, the partially ordered set of
the d-tuples of positive integers, d being a fixed positive integer. The set of d-tuples
of non-negative integers is denoted by Z%. For b€Z* and mecZ% write

d by+m;
S, m; x) = 2 a (%) = 2 ks, ... ko () Pryy k0 (X)
b+1=k=b+m S=1 k=41
and )
M(b,m; x) = ,max. |S(b, k; x)| = max“rrkxax |S(bys ..., ba; kyy ooy ka; X)|.
=ky=

In case b=0 write S(O, m; x)=S(m; x) (rectangular partial sums of (1.1)) and
M(0, m; x)=M(m; x).

Throughout the paper we assume that there exist a number r=2 and a con-
stant C such that the inequality ‘
" (1.2) [18(0,m; )l du(x) = C( ag)’?

b+15ka+m

Received June 11, 1977.
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holds for all b€ Z¢ and m¢Z?, and either for all sets {a,} (in § 1—2) or for only
the single set {a,=1} of coefficients (in § 3—4).

Here and in the sequel the integrals, unless stated otherwise, are taken over X;
C, C,, C,, ... denote positive constants, not necessarily the same at different
occurrences.

Example 1. Let r be an integer, r=2. The set {¢,(x)} is said to be multi-
plicative of order r if for all systems of pairwise distinct ky, ks, ..., k, from Z4
we have

a3 (o) auw=o

This definition for d=1 is due to ALExiTs [1, p. 186].

The arguments of GAPOSKIN [2], KOMLGs and REVEsz [3] in the case d=1 obvi-
ously apply to the case d=2 and lead to the following result: Let r be an even integer,
r=4. If {o,(x)} is multiplicative of order r and

(14) Jowdm=c
for all keZ°, then we have (1.2) for all {a,}.

Example 2. The vanishing of the integrals in (1.3) is of no relévance, only
their “‘smallness™ in a certain sense is needed. .

In case d=1, according to GAPOSKIN [2], a sequence {p{x)}-, is said to be
weakly multiplicative of order r, where r is an even positive integer, if there exists
a non-negative function A(/) such that for every 1=i,<i,<...<i, we have

|f (}Zl ‘P-'p(x)) dﬂ(x)l = h())

" with /=min ({,—iy, iy~ Iy, ..., i,—i,—;) and

5 ooy <.
I=1

Now it is proved in [2] (and announced in [3]) that if r=4, {(p,-(x)};"j’__1 is a weakly
multiplicative sequence of order r, which satisfies (1.4), then we have (1.2) for all
{ai};r

In case d=2, let (X, 4;, n;) be a positive measure space, {pP(x))}2, a .
sequence of measurable functions on X; for each j=1,2,...,d. Let

d
(Xs 4, ”) = J>=<1 (st A,, ”J)
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be the product measure space and let

_ ) |
o) = [] 0P (x;), where k=(ks,....,k) and x=(x;, ..., )
=1 .

The following statement holds: If for some r=2 each sequence {pP(x)}z>,
(j=1,2, ..., d) satisfies the inequality

b+m . r . b+m r/2
(1.5 f 2 a0 (x)) duy(x) = Cj[ 2 a,?)
_ i=h+1 i=+1

X
for all {a;}2,, b=0 and m=1, then {p,(x): k€Z’} satisfies inequality (1.2) for
d
all {a,: k€Z%}, b€Z® and meZ% with C= ][] C;.
j=1

For simplicity, assume that d=2. Then by (1.5), Fubini’s theorem, and Min-
kowski’s inequality we get that

b+m c+n r
f f 2 aik(pi(l)(x1)¢l£2)(x2) dp (%) dpy () =
X, X, |i=btlk=ct1
b4+m c+n r
= [ ]2 (2 ool ) o0 e[ dise oty =
X, U, i=b+1 \k=c+1
b+m c+n 2yr/2
=a [l 3 (2 o)} duto =
] X, li=b+rli=ci1 .
b+m c+n r 2fryr/2
§C1{ 2 (f 2> aik¢l£2)(x2)| dﬂz(xz)] } =
L1y ket

b+m c+n rf2
gclcz[ 2 2 a?k)

i=b+1k=c+1-
This is the wanted inequality (1.2).

The results below will be obtained by adaptation of more or less standard
arguments well-known in probability theory concerning limit theorems, and by
making use of a recent maximal inequality of the author [4, Theorem 7]. It is worth

stating the special case of this inequality for a=¢/2, y=r and f(b, m)= > a
b+1=k=b+m
in the form of a separate lemma.

Lemma 1. Let r>2 and {a,} be given. If inequality (1.2) holds for all beZ*
and mcZ%., then

(1.6) S M bm)dum=C( 5 af)”

b+1=k=b+m

also holds for all b€Z® and meZ4.
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28§. A.e. convergence of series (1.1)

Theorem 1. Let r>2 and let {a,} be such that

k=1
If inequality (1.2) holds for all b€Z® and meZ%, then
2.2) S(,m; x) -0 a.e.as b—o and mcZi;
Surthermore,
(2.3) f(sup sup |S(b, m; x)|y du(x) = C,( 5 ap)’™
bz0 m=1 k=1

In particular, from (2.2) it follows that the d-multiple series (1.1) converges
a.e. in the sense that its rectangular partial sums S(m; x) converge a.e. as
min (m,, ..., my) ~<~. (See more detailed in [6].)

Lemma 2 ([6, Lemma 1]). For all b¢Z* and meZ4
max ‘ > ak(pk(x)] = 2M (b, m; x).

I=p=q=m 'p1p<Kk=b+q

Proof of Theorem 1. Condition (2.1) implies the existence of a sequence
{m,=(my,, ..., my)}yo, in Z4 for which

(@) I'=mj<mp<... foreach j=12,..,d

@) { > - 3 Ja =@+ Iap (1=1,2,..).
kz1

k=1  1sksm,
It follows from (i) that min (my,, ..., my)—>cc as [—-e, and from (ii) that
24 2(1—}-1)’{ > - 2 }aﬁ =2(Z ay”® (my=0).

i=o K=l 1=ksm, k=1

Motivating by the representation

S(my.q; x)—S(m;; x) = ZS(sm,, s(m,+1—m,)+(l—s)m,; x),

where the summation J is extended over all 2?°—1 choices of &=(g, ..., &;)
€

with coordinates &;=0 or 1, the case &=...=¢=0 excluded, we introduce the
following maxima:
M, (x) = M(Smn e(my,;—m)+(1—-g)my; x),
where t=g¢,+2¢,+...+2% ;. It is clear that 1=r=29-1.
We are going to show that

2d—1

@.5) E: (+1y (=21 M,:,(x)) <= ae.
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Inequality (1.2), via Lemma 1, yields

2.6) Ig (1+1)'(j§:1 f M;,,(x)dﬂ(x)) =
=C 2‘ (l+ 1y {( Sksmm_ léém’)aﬁ}r/z =2C,( élalz{)'/z’

the last inequality is owing to (2.4). Hence B. Levi’s theorem implies (2.5).

Let us now estimate S(b, m;x) with arbitrary béZ? and meZ%. Recall
that bsEm, iff b;>m;, for at least one j (1=j=d). In the special case when
there exists a non-negative integer / such that b£m, and b+m=m,,,, by Lemma
2 we obviously have

2d—1

|S(b, m; x)| = 2¢ :;1' M, (x).

In the general case let us determine non-negative integers » and v such that
b£fm, and b=m,,; ; b+m*xm, and b+m=m,,,.

It is clear that such x and v (uniquely) exist, and 0=u=v. Again by virtue of Lemma 2
we have

isto,m; 91 =2 3 (3 m,0).

whence, using Holder’s inequality,
v od_1 1/r
) istom; 91 = 2{ Savr (3 M) x
=y t=1

291 . , T '
{Z’ (l+1)’} w1th r= = 1.

By (2.5) we can conclude that |S(b,m;x)| is a.e. as small as required if
max (b, ..., b;), and consequently u is large enough. This proves (2.2).
From (2.7) we obtain that

(sup sup S, m; 2 = G 3 a1y (3 M),
[ =22 5

% M=l

Integrating both sides over X, the wanted inequality (2.3) comes from (2.6). This
completes the proof of Theorem 1.
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§ 3. Multiparameter SLLN

In the sequel we assume that all a,=1 in (l.1), i.e. from now on

Sbh,m; x)= > ¢u(x)
b+1=k=b+m
and

M(b,m; x) = max | 2’ <p,(x)| (b€Z¢ and meZ4 ),
1=k=m '} )<1=p+

.although our results remain valid in the more general setting when 2 af =co
k=1

and {a,} behaves sufficiently “regularly”. .
Our permanent assumption is now that inequality (1.2) holds true only in
this special @, =1 case, i.e. there exists a number r>2 such that

G.D [1S®, m; x)f du(x) = C|m|2
p :
holds for all béZ? and m€Z%, where |m| stands for [ m,. Hence Lemma 1
=1
implies
(3.2) M (b, m; x)du(x) = C;|m|"2.

Theorem 2. If inequality (3.1) holds for all b€Z® and meZ% with an r=2,
then for any 6=>0 we have

S(m; x)

3.3) lim y - =0 a.e .
mP ( 3 log 2m,)” Gog log 4lm)e+or

and

(3.4 S(m; x) =0 ae.

m-—co [m{I2 (log 2im)é (log log 4|m|)(1+6)1r

Here and in the sequel.all Iogérithms are of base 2. Further, S(m; x)=S(0, m; x).
. This result for d=1 (in a slightly weaker form) was proved by SERFLING.[7,
Theorem 3.1].

Remark 1. For d=1 relations (3.3) and (3.4) coincide. For d=2, if m—
is such a way that m,=m,=...=m, then (3.3) is stronger than (3.4), while if m—~
in such a way thate.g. m,=...=m,=1 then the situation is converse: (3.4) is stronger
than (3.3).
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Both (3.3) and (3.4) improve as r increases. By letting r—e we find, for

any 6=0,

lim S(m; x)

0L R (log 2lmy 0 2

This result is not far from the “="" part of the law of the iterated logarithm.

Lemma 3. For any 6=0, we have

> |t+k|-t {log (2 Zd,; kj)}_d—‘s <o

k=0
and
-1-4

Proof of Lemma 3. For simplicity, we only prove in the case d=2. Then
the first series can be rewritten and estimated as follows

o oo 1 o i 1
51,21 ik(log (i+k))*+o = 21' {gl k(log (1+1))**° +

S J S B S E—
k=Th1 k(log 1+ K))P+3) = ™% & i(log 1+ D)) +°
The convergence of the second series can be verified similarly.

Proof of Theorem 2. Lemma 1 constitutes the basis of the proof. Applying
Chebyshev’s inequality to (3.2) we obtain that

C, |m|®

3.5) p{Mb,m; x)= A} = 21— —

(beZ4, mez¢ and A >0).
Substituting here
d 1/r
A(m) = |m|'/? ( ﬂlomej] (loglog 4 |m|)@+d/  or
j=1 :

[m/*(log 2 m{)*" (log log 4|m ¢+
for A, we get that

MM (m; x) = A(m)}<cl( )i 10g2m)—1(loglog4|m|)-"—5 or

C:(log 2|m|)~¢(log log 4|m|)~*~¢,
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Let m=2% where k runs over Z¢. Then, by Lemma 3,
2 u{M@2%; x)= 229} <o
k=0

Hence, via the Borel—_-Cantelli lemma, we have
M@k x) <229 ae,

with the exception of a finite number (depending on x) of k.
It is obvious that if 2*=m=2%*! with some k=0, then we have
A(m)= A(2¥) and |S(m; x)| = M(2k+1; Xx).
Consequently,

|Sm; X)| _ M%) A2+
Am) - A2 @

(3.6) a.e.,

provided max (k,, ..., k;) is large enough. Since the right-most member in (3.6) is
bounded as k-, it follows that

3.7 S(m; x) = O{A(m)} a.e.

Taking into consideration that § may be chosen arbitrarily small (but positive),

€ .99

we can change “0” to “0” in (3.7), as a result of which we get the wanted (3.3)
and (3.4).

§ 4. Rates of convergence

Turning to the rate of convergence in (3.3) and (3.4), we can state

Theorem 3. If inequality (3.1) holds for all b€ Z* and meZ% with an r=>2,
then for any choices of o« and B satisfying :

“4.1) ' 0=B<oar—1
and for any €>0 we have
(42) Z;m-zl-wjﬂ' ksgp [S(l:, x)l . ge} < o0
m= for atll'éa_.s;néne I Iklllz [ 1]1- log 2k_,)
=j= Jj=
and .
1 IS (k; x)| }
“3) 2 3 e W (og 2 kD = =

d 1-
" ) ( 17 10g2m,)
j=1
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This result for d=1 was also established by SERFLING [7, Theorem 5.3].

Remark 2. Observe that the more restrictive *“  sup ” in (4.2) is

kj=m;
forat Iéast 3ue Js s
. . 1sj=
weakened into “ sup * in (4.3). ’
kyz=m
for'every j,
1=j=d

If inequality (3.1) is satisfied for all beZ* and meZ¢% with arbitrarily large
exponents r, then (4.2) and (4.3) hold for each choice of a=0 and B=0.

The proof of Theorem 3 is based on (3.5) and on the following auxiliary result,
which for the sake of brevity is stated only for d=2,

Lemma 4. If (4.1) holds, then

i=1k=1 lk(log 2ik)2“’(log 2i)ar_1

Proof of Lemma 4. An easy computation shows that the series in question
can be estimated from above as follows

1 o 21+1_1 1 oo

had 1 & 1
Sk 4 & ogZkr P(og2h " = Ak 2 (g2 P+ P "

Now let us deal with the inner series:

{ [log 2k] oo } 1 1 [log 2k] 1

=} +I=[log22’k]+1 (I+log2ky~#(I+ 1)~ = (log2k)*~# ré; (Sl

=

+ = ,
161 TF 7T = Togaky= 7

where [.] denotes integral part. Taking into account that by (4.1) we have ar—fg=>1,
the proof is ready.

Proof of Theorem 3. We prove for d=2 only. The general case d=2 can
be handled in the same way, merely the technical details become more complicated.
In virtue of Lemma 4, for (4.2) it is enough to demonstrate that

_ ISG, k; x)| - }

=C ( 1 n 1 ]
= 7\ (log2i)*-1 " (log2k)*-1)"
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To this end, let the non-negative integers p and g be defined by

P?=m=<2°*1 and 29=n<29*L 4
It is obvious that
L ] o g-1 p—1 oo
@y wmw={F Z+3FT+3 Fhao
u=pov=q u=pv= u=0 v=gq
with ) _ :
_ ) ISG, ks x| _ }
v(, v) = {2"3}355‘“ P 8 @ik)'"2 (log 2zlog 2k ~ & -
By (3 5) it is not hard to check that
v(u, v) = p{M(2*+1, 2741 x) = e(u+ 1P (o+ 122072} =
=G 2e " ((u+ Do+ D))=
Since
3 3w 0) = Cre ((p+ D(g+ )" = Gy (log 2mlog 2n)~+1,

u=pv

3
I
'y

2’” 2 v(u, ) = Cye~" (p+ 1)~ +1 = Cyz~(log 2m)'“’+1

=pv=

and similarly,

pZ 2 v(u, v) = Cge~"(log 2m)~*+1,
u=0 v=q

from (4.5) we obtain the desired (4.4). This proves (4.2).
The proof of (4.3) can be executed in a similar. manner as that of (4.2). The
proof of Theorem 3 is complete. :

It is clear that under the conditions of Theorem2 we have S(m; x)/jm|-0
a.e. as m—co. For this SLLN we can prove essentially better convergence rates,
however, now only with the weaker ‘ sup’ instead of ‘““sup ’

<L kj_%m., f kam

for every j, . for at least one j,

1sj=d 1=j=d I

Theorem 4. If inequality (3.1) holds for all b€ Z* and meZ%  with an r>2,
then for any 6=0 and e=>0 we have

|m|¢ -7 #{ 1S(k; x)|

4.6) 2 sup S - s} .
m=1 (ﬂlog 2m )(log]og4,m|)d+a kzm
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and

|mj¢r-2)/2 { |S(k; X)I }
4, oo,
@.7) mgl (log2|m|)”(loglog4|m|)1+"# :;l:, |k| ==

Remark 3. Both convergence rates improve as r increases. Letting r—oo
results, for any =0 and &=0,

P |ml“n{§gg IS(k; x)|/k| = e} <-oo.

The probf of Theorem 4 runs along the same lines as that of Theorem 3.
First we infer that

u{sgp ISk x)|/|k| = &} = Coe™"|m| ="/

[

(for d=1 see also in [7, Theorem 5. 1), then (4.6) and (4.7) follow from the fact
that, for any 6=0,

2 Iml_l{ﬂlome ]_1 (loglog4|ml)—d—6<°°

m=1
and
2, |m|~*(log 2|m[)~¢(loglog 4 |m|)~*~? < 0.
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On the indicatrix of orbits of 1-parameter subgroups
in a homogeneous space

- P. T. NAGY

§ 1. Preliminaries

In the following H, KCG denote Lie groups, g, b, T the corresponding Lie
algebras, which can be identified with the tangent spaces 7.G, T,H, T.K at the

unity e€G, H, K, respectively.

Let be L(M) the bundle of linear frames on the manifold M and p: L(M)—M
the natural projection in this bundle.

The isotropy group H of the homogeneous space M=G/H leaves the origin
o€ M of the space M=G/H fixed. Hence the differential z,, of the map z: M—~M
(z€ H) is a linear transformation on the tangent space T,M. This representation
z->2,, (z€H) of the isotropy group on the tangent space T,M is called the linear
1sotropy group. The action a: GXM—~M of the group G on M induces an action

&: GXL(M)—~L(M) of the group G on the linear frame bundle L(M). It is clear
that the action & is effective if and only if ‘the linear representation of the isotropy
group is faithful, i.e. the map z—z,, (z€ H) is one-to-one. : :

- It is well-known that the faithfulness of the linear representation of the isotropy
group is a necessary condition for the existence of invariant connéctions in a homo-
geneous space. Therefore in the following this condition will be supposed.

Let be given a frame u,cL, M at the point o€ M. The action & of G on L(M)
yields an embedding of G in L(M) so that to the unity e€G corresponds the frame
u,. In the'following we use this embedding and we will regard the principal bundle
{G, n, G/H} ‘as a subbundle of {L(M), p, M}. '

We recall Wang’s theorem on invariant connections, cf. [2], 186—190.

Let be M=G/H a homogeneous space. There exists a one-toone correspond-
ence between the set of G-invariant connections in L(M ) and the set of linear maps

A: g—gl(n) satisfying the conditions : : :

@ AX)y=2i1(X) if Xeb, S VIR T S

() A(Z, XD)=[1(2), AX)] if Zeh, Xeg, . . = = -y

Received July 25, 1978. - . .+ . R T
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where 4 denotes the homomorphism of the Lie algebras §—gl(n) induced by the
linear representation of the isotropy group.

Let ¢ denote a G-invariant connection form on L(M), than the corresponding
linear map A: g—gl(n) satisfies

AX)=9(X) if Xeg,

where X denotes the vector field on L(M), defined by the tangent vectors of orbits
" in L(M) of the one-parameter subgroup exp tXcG.
Let m denote a complementary subspace to the subalgebra fy in g that is

g=hom

Let be given a leftinvariant coframe {0, ..., ®", ® »"**} on the group
G such that the equations w'=...=w"=0 define the subalgebra b and the equa-
tions w"t'=...=w"*¥=0 define the subspace m. In the following the indices have
the values: a, b, c=1,, A B,y=n+1,...,n+k, where n=dim M and n+k=
=dim G. The structure equations of the group G have the form

n+1
5 srey

dof = — D g Aof ——;— > .o Nos,
. B.c b,c
dw® = 1 > c°,§,w”/\w7—2'c§cwﬂ/\a)°——l— 2 g0 Aos.
2 B,y B.c 2 b,c
The connection form ¢ can be expressed by .
: ' 1 1
o) = S ot (DE; = 3 (2 0! W+ 2 40?0+ Sl (D),

where /¢, are constant and {E°} denotes the canonical basis of the linear Lie algebra
gl(n).

§ 2. The indicatrix of orbits of 1-parameter subgroups

Let be M a differentiable manifold and suppose that there is linear connection
on M. Let y(¢) be given a differentiable curve in M. The operator of the parallel
translation along the curve y(¢) will be denoted by 7, to: TioM—~Ty, oM.

The indicatrix of the curve y(¢) at the point y(z,) is the curve ¥(¢) in the tangent
space T, M, defined by the parallel translatlon of the tangent vector y(¢) of the

curve to the pomt y(to)
Y(2) = 14,,,¥ ().

Theorem 1. Let M=G|/H bea homogeneous space, and let a G-invariant con-
nection on M be given by a map A: g—~gl(n), according to Wang’s theorem. The
indicatrix of the orbit y(t)=a(exp tX, 0) at the origin o€ M (Xcg) is the curve

Y(t) = x~'(exp tA(X))»Y,, where x:TyM —R" s the coordinate map
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.defined by the frame u and Yo=mn,(X)cT,M is the tangent vector to the curve y(t)
at the initial pomt o.

Proof. Smce we regard the group Gasa submamfold of L(M), the 1-parameter -
subgroup x(¢) =exp tX (X€g) is a curve in L{M) with tangent vectors )? (O)EeT,, L(M).
The equations of x(¢) in G L(M) are

%w"(z\"(t)) =0(=1,..,n), %w“(X(t)) =0 (a=n+1, ..., n+k),

with respect to the given G-left invariant coframe {®, ..., ®"**}. Hence the equa-
tions of the orbit y(t)=a(exptX, 0)=p-x(t) are

L or (@) =0 @=1,...,n),

On the other hand, using the following lemma, the components of the covariant
derivative V,p=V s y of the tangent vector y(¢) of the orbit y(¢) can be expressed as
o .

(V,5) = 50 R+ 3 ot (D) (X).

Lemma. Let M be a manifold equipped with a connection form ¢ on L(M).
Let y(t) be a curve in M, X(t) a vector field along y(t). The components o', ..., ©"
of the R"-valued canonical form w on the covariant derivative vector V,X=V 3 X
along the curve y(t) satisfy o

(V. X) = w“(z?)-l-Z 92() w0 (X)

where $ and X denote the horizontal lzfts of the vectors y and X, and ¢ are the com-
ponents of connection form ¢. :
This lemma is a versnon of Theorem 11 in §6 4 [1]. A(X)=¢(X ) and
— 0’(X)=0, we get V,yzn“A(X)xy, where »:T,M—~R" is the coordinate
map defined by the chosen frame field, or equivalently, we get the equation of the
indicatrix Y(¢) of y(¢) in the form
%Y(r) = % A(X)xY (¢).

It is well-known that the solution of this ordinary differential equation with constant
coeﬂicxents is Y (1) = %~ (exp tA(X)) Yo,
where Yo=Y(0)==_X. The theorem is proved.

- Corollary. The k-th covariant derivative V®y of tangents of the orbit y(t)=
=a(exp tX,0) at the initial point o€ M is (A(X))*Y,, where Y,=r,¥Y.
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~§ 3. The indicatrix of orbits in a reductive space

If there is given a reductive complement mcg to the subalgebra [) in the
" Lie algebra g, characterized by

g= hbem and [h,m]cm,
then it is clear that the map A: g—gl(n) defined by
' AX) =A(X) if Xe¢h, AX)=0 if Xem
satisfies the assumptions of Wang’s theorem. The corresponding G-invariant con-

nection is called the canonical connection of the reductive space {M= G/H m}.
From Theorem 1 it follows immediately:

Theorem 2. Let {M=G/H, m} be a reductive homogeneous space. The curve
y(t) in M is the orbit of a 1-parameter subgroup of G if and only if its indicatrix with
respect to the canonical connection is an orbit of a l-parameter subgroup of linear
isotropy group. In detail, the indicatrix of the orbit a(exp tX, o) at the origin o€ M
is the curve Y(t)=(exp t ad Z)Y,, where Z=X, and Y,=X,, are the components '
of the vector X in the subspaces by and m, respecttvely, and the tangent space T,M is
identified with the reductive complement m.

Proof. From the property [h, mJcm of the reductive complement m fol-
lows that the homomorphism A: h—gl(n) induced by the linear representation of
isotropy group has the form: A(Z)=ad Z: m—m (Z¢h). The theorem is proved.

Corollary. The k-th covariant derivative V® 3 of the tangents of the orbit
y(t)=a(exp tX, 0) at the initial point o€M is (ad Z)*Y,.

§ 4. Geodesics in a fibering of reductive space

Let {M=G/H, m} be a reductive homogeneous space. Let be given a sub-
group Kc H and a reductive complementum f on the homogeneous space F=H/K.
The homogeneous space N=G/K has a structure of a fibre bundle {N, n; M, F},
where N, M and F are the total, basic and the fiber type manifolds, respectively.
We have the decompositions of Lie algebras

g= béBm, b =1tof, ¢=Iiefom
satisfying
(b, mlcm, 5, ﬂCf [f,fow] C fem.
It is clear that f@m is a reductive complement on the homogeneous space N —-G/K.

We investigate the projection to M of the geodesics in the homogeneous space
N=G/K with respect to the canonical connectlon corresponding to the reductive
complement- f @ m.
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Theorem 3. The curve y(t) in M=G/H through the origin o€ M is a projec-
tion of a geodesic in N=G/K (KC H) with respect to the canonical connection if
and only if its indicatrix at the origin o€ M is an orbit of a l-parameter subgroup
exptad Z of the linear isotropy group, where Z¢f.

(Here and in the following ad Z: g—g denotes the operator X—~[Z, X] on g.
Since [h, m]cm, this operator can be restricted to the subspace mcg; this restric-
tion is denoted by the same way.)

Proof. Since N=G/K is a reductive homogeneous space equipped with can-
onical connection, the geodesics in N are the orbits of 1-parameter subgroups exp tX
of the group G, where Xcf@m. From Theorem 2, it follows that the indicatrix
of the orbit of subgroup exp tX at the point o€ M isthecurve Y(¢)=(exp ¢t ad Z)Y,
where Z= X and Y=X_. From X¢{@m follows that Z=X, Ef

On the other hand, if YEm( T,M), Z¢f, then it is clear that Y(t) (exp rad Z)Y
is the indicatrix of the orbit of the subgroup exp t1(¥Y+Z). But we know that the
orbit of a l-parameter subgroup exp t(Y+Z) in the space N=G/K is geodesic.
The theorem is proved.

s

§ 5. Geodesics in the tangent sphere bundle of a 2-transitive
Riemannian homogeneous space

. We apply our results to the characterization of the projections of geodesics
of the tangent sphere bundle of a 2-transitive Riemannian homogeneous space with
respect to the Sasaki metric. We get a generalization of a result ([5], [4], [3]) asserting
that the projection of a geodesic of the tangent sphere bundle of a space of constant
curvature is a helix.

Let be M=G/H a 2-transitive Riemannian homogeneous space, that is the
“group G is supposed to act transitively on the tangent sphere bundle N of the mani-
fold M. It is well-known that from the 2-transitivity of the isometry group G of M
follows that M is symmetric space (cf. [6], 289). On a'Riemannian symmetric space
M=G/H there is a natural reductive complement mcg whose canonical con-
nection has the same geodesics as the Riemannian connection of the symmetric
space M [6].

From the 2-transitivity of G on M G/H it follows that there exists a subgroup.
.Kc H such that the tangent sphere bundle N can be written in the forfh N=G/K.
The isotropy group H is isomorphic to a subgroup of the orthogonal group O(n),
and hence we have an invariant metric on H. This metric induces on the homogene-
ous space F=H/K a naturally reductive Riemannian metric, which defines on F
the geometry of n-sphere. Let m and f denote the reductive. complements on M’
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and F, respectively, i.e. we have g=hdm, h=Id| Now we can apply Theorem 3
to this case.

4 Theorem 4. Let M=G/H be a 2-transitive Riemannian homogeneous space.

The curve y(t) in M is a projection of a geodesic in the tangent sphere bundle if and
_only if y(t) is a 3-dimensional helix (i.e. the first two curvatures x,, », are arbitrary
constants, and the others zero: sz=...=x,_,=0).

Proof. From Theorem 3 we know that y(¢) is a projection of a geodesic
in N if and only if its indicatrix has the form exp (¢ ad Z)Y, where Yem, Zefch.

After identifying an orthogonal frame at o€ M with the identity of H the
adjoint representation maps the group H isomorphically on a subgroup of the
orthogonal group O(n) acting on the unit (n—1)-sphere of the tangent space T,M
(=m). In the following we identify the group H with the subgroup of O(n) by -
this isomorphism. The reductive complement f of the subalgebra ¥ in | corresponds
to the tangent space at the initial point of the (n—1)-sphere F=H/K. Since the
reductive complement § on F=H/K is identified with the reductive complement
on the (n—1)-sphere S" '=0(n)/O(n—1), the 1-parameter subgroup exp (¢ ad Z)
(Zcf) of O(n) is a 1-parameter rotation group around the (n—2)-pla‘1ne in T .M,
orthogonal to the 2-plane of the geodesic great circle which is the orbit of exp (¢ ad Z)
in $"~1=F through the initial point. It follows that the curve Y(z)=exp (t ad Z)Y
(Yem; Z¢§) is a circle. The indicatrix of a curve y(¢) is a circle if and only if it is a
3-dimensional helix. Theorem 4 is proved.
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Some equivalent formulations of the intersection
problem of finitely generated classes of graphs

SVATOPLUK POLJAK and DANIEL TURZIK

Introduction. An ordering < on the class of finite undirected graphs without
loops is defined by G<F iff there exists a (partial) subgraph G of the graph F
which is a subdivision of the graph G. A class L of graphs is called closed if GEL,
G<F=FcL. By L(G,,...,G, we denote the smallest class of graphs which is
closed and contains the graphs G, ..., G,. 'The graphs G, ..., G, are called
generators of the class L(G,, ..., G,). A class L is called finitely generated if it is

closed and there are graphs G, ..., G, such that L=L(G,,...,G,). If Lis a
" closed class we denote by B(L) the set of all minimal members of L in <. The set
B(L) is called the base of L. Evidently, L is finitely generated iff its base B(L) is
finite.

The following problem was posed by L. LovAsz [1] and by P. UNGAR [3]: Is -
the class LML’ finitely generated for every pair L, L’ of finitely generated classes
of graphs? It is not difficult to see that the essence of the problem lies in the investiga-
tion of “‘braids” of subdivisions of pairs of graphs. The problem is equivalent to
the question whether the number of “critical braids™ is finite or infinite.

Our method shows that it is sufficient to investigate such “braids” of sub-
divisions G*, H’ of graphs G, H that G does not contain vertices of H and H’ does
not contain vertices of G. Every edge of a graph determines a path in its subdivision.
If we decompose the graphs G, H into single edges, it is sufficient to mvestlgate
the ““braids” of corresponding paths. This “‘braid” of paths will be called a crossing
system (see the definition below). We hope that the investigation of “‘braids” of
paths is easier than the investigation of ‘“‘braids™ of general graphs and could lead
to a solution of the problem. It also follows that the problem does not depend on
concrete graphs. We prove that it is sufficient to solve it for special pairs L(G), L(H)
where G is a disjoint union of complete graphs Kf and H is a disjoint union of com-
plete bipartite graphs K .

Received October 7, 1977, in revised form April 9, 1979. '
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Notions and results. A graph c=({vy, ..., v,}, {e;, ..., ¢}) is called a path if
e; is edge adjacent to vertices v;_;, v;, 1=i=¢. Denote by V(c) the set {v,, ..., v,}
of vertices of the path ¢, and by K(c)={v,, v,} the set of endvertices of the path c.
A set of paths C={c,, ..., ¢,,} is called a disjoint system of paths if every two paths

of C are vertex disjoint. Put V(C)= _('jl V(c), K(C)= ) K(c). K(C) is called
i= i=1
the. set of endvertices of C.

Let C=(cy, ..., ¢n), D=(d,, ..., d,) be two disjoint systems of paths which
satisfy K(CYNV(D)=V(C)NK(D)=0. In this case the couple (C, D) is called
an (m, n)-crossing system. By gr (C, D) we denote the graph on the set of vertices
V(C)U V(D) which is the union of all paths of C, D. A vertex v€ V(C)NV(D)
is called a crossing of (C, D) if N(v, C)# N(v, D) where N(v, C), resp. N(v, D),
is the set of all neighbours-of the vertex v in the graph C, resp. D.

Fig. la

Fig. 1b

Fig. 1a, 1b are examples of (3, 3)-crossing systems. The crossing system 1a is reducible. An
example of its reduction is the crossing system in Fig. 1b. )
There is a crossing at every vertex in the crossing system in Fig. 1a.but not in Fig. 1b.
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-~ We say that an (m, n)-crossing system (C, D) is reducible if in gr (C, D) there
exist two disjoint systems of paths C’, D’ such that

) C'=(chrcnd D =(di, ..., d);
2) 'lKv(c,.) =K(c)), K(d) =K(d)) for every i, j, i=1,...,m, j=1,...,n;
3) the crossing system (C’, D") has strictly fewer crossings than (C, D). (See Fig. 1.)

Denote by G+ H the disjoint sum of G and H.

Theorem. The following conjectures are equivalent:

1) L,NL, is a finitely generated class for every pair L,, L, of finitely generated
classes of graphs.

2) The class L(G)NL(H) is finitely generated for every two graphs G, H.

3) The class L(Ks+...+Kg)L(K, ¢+...+ Ky 6) (the graphs in brackets are
disjoint unions of n copies of Kg, resp. K, ) is finitely generated for every natural
number n.

4) For every m and n there exists a k such that every (m, n)-crossing system with
more than k crossings is reducible.

- Proofs. Evidently 1)<2) and 2)=3). We prove 3)=4) and 4)=2). The crdssing
system (C, D) is called minimal if (C, D) is not reducible and every vertex of gr (C, D)
is crossing. The implication 4)=2) immediately follows from the following lemma.

Lemma 1. Let a graph B belong to the base of the class L(G)ﬂL(H)V and let
m and n denote the numbers of the edges of graphs G and H, resp. Then there exists
_a minimal (m, n)-crossing system with at least |B| vertices.

Proof. Let a graph R contain subdivisions G’, H” of the graphs G, H. We may
suppose G, H have no isolated vertices. In general these subdivisions can be placed
differently in the graph R. Therefore we introduce the following notation. We denote
by .@g: G—R the morphism which maps the graph G on its subdivision "G’ =¢G
in the graph R: the morphism ¢, maps the vertices of G on distinct vertices of the
graph R and the edges of the graph G on openly disjoint paths. The location of the
subdivision of the graph H we denote similarly by ¢4: H—~R. Put ¢ =(¢¢, ¢g).
In the sequel a morphism will always mean such a pair ¢ =(@q, ¢g).” Every morphism
¢=(¢¢, ¢g) induces a vertex-mapping f,: V(G+H)-~V(R) which is the restric-
tion of the morphism ¢ to the set of vertices of G+ H. Clearly a vertex-mapping
[+ V(G+H)~V(R) can be induced by various morphisms. If e=(ay,a,) is an
edge of G then the image of the edge e is a path ¢(e)=¢(a, a;) =( (@) =%, X3, ...
s Xpo1, X =f(a0), X:€V(9G), k=1. A vertex acV(G) is called a tied vertex



360 ' Svatopluk Poljak, Daniel Turzik

in R with respect to ¢ if f(a)€@H. Likewise bcV(H) is a tied vertex in R with
respect to ¢ if f(b)€pG. The set of tied vertices of the graphs G, H is denoted by
Wo=W. (So WS V(GQUV(H).)

We shall study quadruples (R, ¢, f, W) where R is a graph, ¢ is a morphlsm,
fis a vertex-mapping and W is a set of tied vertices. The quadruple (R, ¢, f, W)
is admissible if ¢=(¢g, g): G+H—~R and f=f, is the vertex mapping induced
by ¢ and W=Wyp is the set of tied vertices with respect to ¢. The admissible quad-
ruple (R, ¢, f, W) is called critical if:

1) after removing any edge e of R, there is no ¢’ and no W’'S W such .that
(R—e, ', f, W’) is an admissible quadruple;

2) there is no couple ¢”, W”& W such that (R, ¢”,f, W”) is an admissible
quadruple;

3) if x¢V(R) has degree 2 then x<f(G+ H).

Put L=L(G)NL(H). Evidently, for every graph B¢ B(L) there exist ¢, f, W
such that the admissible quadruple (B, ¢, f, W) is critical.

The following lemma will finish the proof of Lemma 1.

~ Induction Lemma. For every critical quadruple Q=(R, ¢,f, W), W0,
there exists a critical quadruple Q'=(R’, @’,f’, W’) such that |R’|=(R| -and
WeW.

Using the Induction Lemma, Lemma 1 may be proved as follows. For every
BeB(L) there exists a critical quadruple Q=(R, ¢, f, W) such that |R|=|B| and
W=0. We construct an (m, n)-crossing system from the quadruple Q by splitting
every vertex f(x), x€V(G+H) into d(x) vertices of degree 1 where d(x) is the
degree of the vertex f(x) in R. Since Q is critical, this (m, n)-crossmg system is
minimal. -

~ Proof of the Induction Lemma. Let Q=(R, ¢, f, W) be a critical quad-
ruple, W=0. Take a point u€ W. We will construct a quadruple Q’=(R’, ¢’, f’, W’)
such that WS W— {u} and |R’|=|R|. Put w=f(u). There are three possibilities:

a) wef(O)NS(H),
b) wef(G)N(pH~f(H),
o) wef(H)N(pG—f(G)).

Cases b) and c) are symmetric, consequently it suffices to treat a) and b) only. Denote
by N(x, ¢G), resp. N(x, oH), the neighbourhood of the vertex x€V(R) in @G,
resp. oH.
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Case a). Let w=f(a)=f(b) where acV(G), be V(H). Clearly, |N(w, ¢G)|=
=dg(a), |IN(w, oH)|=dy(b), and from condition 1) in the definition of critical
quadruples, dp(w)=|N(w, 9G)UN(w, oH)|. Next we define the admissible quad-
" ruple Q. Let . V(R )=(V(R)—{w})U{a’, b’} and defines the edges of R’ by

e€ E(R)) for w¢ecE(R),
(x,aYeE(R’) for x€N(w, ¢G),
(x, b)CE(R") for x€N(w, pH).

The vertex mapping f” is defined by f"(x)=f(x) for x> a, b, f(@)=a’, f "(b)=b’. Now
we define the morphism ¢’. If an edge e is not adjacent to a or b in G+ H, put
o'()=gp(e). If e=(a,v), resp. e=(b,v), p(@=(w, Xy, ..., X, f(v)), put ¢’(e)=
=(a, %1, ..., %, f(v)), resp. @' (=¥, x4, ..., %, f)).
Evidently, W¢’=We¢ — {a, b}. We verify that the quadruple Q’ satisfies :con-
dition 1) in the definition of critical quadruples. By way of contradiction let us sup-
‘ pose that there is an edge e,€ E(R’) and a morphism '’ such that (R"—e,, ¥, f”, Wy’)
is an admissible quadruple with Wiy’S We’. Since dp.(a’)=dg(a) and dp.(b')=
=dg(b), neither @’ nor b’ is adjacent to e,.If e is an edge of G, resp. H, whichis not
adjacent to the vertex a, resp. b, then b’¢J’ (e), resp. a’¢y’(e); because a, b Wy’ .
Thus, we can define an admissible quadruple (R—e,, i, f, Wi) where the morphism
y is defined from ¥’ by the reverse procedure to the one we used to obtain ¢’ from ¢.
Clearly, Wy=Wy’ U {a, b}< We. This contradicts the fact that Q is critical. Con-
dition-3) is obvious. If Q does not satisfy condition 2), it is sufficient to replace ¢’
by a sultable ¢” and W’ by a smaller set W”.

Case b) will be divided into three subcases b,), b,), by) where b)) means"
IN(w, 9GYNN(w, pH)|=i. Let w=f(a), a€ V(G).

.Cases b,) and b,) will be considered together. Denote by x, an arbitrary element
of N(w, G) in the case by) and the only element of N(w, (pG)ﬂN (w, oH ) in the
case by).

1. Put V(R)=V(R)U{a’}. Define the edges of R’ by -
' éeE(R') for wq eeE(R),. |
(x,a)CE(R) for x€N(w, pG)U{w}, x # x,, }
(x, w)¢E(R') for IxE N(w, g H)U {x,}.

2. The mapping f” is defined by f'(@)=a" and f'(v)=f(v) for va.



362 Svatopluk Poljak, Daniel Turzik

3. The morphism ¢’ is defined by
¢'(e) = @(e) for a¢ecE(G+H),
o'(e) = (@, xy,...,%) for ace, @(&) =W, Xy, ..., %), X # Xps

o'(e) = (a’,w, x4, X1, ..., x,) for the only e with ¢@(e) = (w, x;, Xy, ..., X).
4. W =W—{a}.

Case by). Denote by x,, x, the elements of N(w, pG)NN(w, ¢H).
1. Put V(R’): (V(R)U{a’})— {w}. Define the edges of R’ by'

| ec E(R’) for we{eEE(R), |

(x,@)CE(R) for xEN(w, ¢G),

(. x)EER).
2. Put f’'(a)=a’ and f'(v)=f(v) for v#a.
3. Put ¢’(e)=¢p(e) for ¢(e) not containing w,

(P,(e):(a’:.VI’ ""yk) for (p(e)=(w’y15 '-'ayk)’

@’ (€)=(..., X1, X5, ...) for the only ec E(H) for which ¢ (e)=(..., x;, W, X,, ...)
contains w. ’ :
4. W'=W—{a}.

The proof of case b) goes like the proof of case a) (but in case b,) it is also nec-
essary to use condition 2) in the definition of critical quadruples), and we omit it.
(See Fig. 2.)

Lemma 2 below implies immediately the proof of the implication 3)=4) and
completes the proof of the Theorem.

>

Lemma 2. Let S be a minimal (m, m)-crossing system. Then there exists a
graph B from the base of the class L(K}+... +KMNL(K; g+ ... +KJg) such that
the number of vertices of B is greater than the number of vertices of S. (K3, K; ¢ denote
the i-th copy of Ky, K, ¢, respectively.)

Proof. Let S be a minimal (m, m)-crossing system formed by two disjoint’
systems of paths C, D where C=(c, ..., c,), D=(d,, ..., d,). First, take the dis-
joint union of m copies of the graph Kj (denote the i-th copy by Ki). The vertices of
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K are denoted by c}, ¢, d}, df, uj, u?. We shall construct the graph B from > K,
in two steps:

a) we construct a subdivision of > Kj,

b) we add further edges.

Put a new vertex #? on every edge (c}, c?). Identify the vertices c},.c? with the end-
points of the path ¢;. Subdivide the edge (42, d?) by the number of:yertices of the
path d; and identify this subdivision with the path d;. Now, all vertices of the crossing
system S are identified with some vertices of the graph B. Hence we may assume
V(S)S V(B). Add to B all edges (x,y)cE(gr(C,D)). This completes the con-
struction of B. ]

The graph B evidently contains the subdivision of the graph G=2 K;. We
shall show that it contains the subdivision of H=2 K, s, too. The graph K, ¢
is formed by six paths of length 2 which have common endpomts The subd1v1s1on
of K} o is in the graph B formed by the paths ¢}, w/, ¢}, j=1,2,3, c!, d}, ¢%, j=1,2
and ¢}, ¢;, ¢? (c; is the path of the system C).

We shall prove that the graph B does not contain other subd1v151ons of > K,
and 3 K, than those described above. The vertices ], u2, ¢}, ¢f, d}, df, i=1,...,m
are the only vertices of B of degree =5. Hence, the only subdivision of > K,
in B, possibly with the exception of edges (d}, d?), is that described above. Since
the vertices ¢}, ¢?, i=1, ..., m, are the only ones of degree 6 in B, the vertices of
degree 6 in K; ; must be put on them. Further, 5 vertices of K} ; must be put on
vertices d}, df, u}, u;, u}. Thus subdivisions of edges (d}, d?) and the remaining
paths between ¢}, ¢? in K} ¢ correspond to the paths in'the crossing system . The
- minimality of B follows from the minimality of S.
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A Jordan form for certain infinite-dimensional operators

ERIK J. ROSENTHAL

We derive several theorems about invariant subspaces of operator algebras
of finite strict multiplicity. We generalize a result of EMBRY [3] to show that such
algebras have maximal invariant subspaces (Theorem 2), and we prove some related
theorems. The main results are Theorems 5 and 6, which give a “Jordan form” for
operators which inherit finite strict multiplicity.

The first theorem is a-slight sharpening of its corollary, which is due to HERRERO
[7]. Herrero’s result generalizes LAMBERT’s result for strictly cyclic algebras [11] to
algebras of finite strict multiplicity. Our proof combines ideas from HERRERO [7]
and from RADJAVI arid ROSENTHAL [18]. »

We will use the following notation throughout this article. We use $ to denote
a separable Hilbert space, and #(9) is the algebra of all bounded, linear 'operators
on §. If & is a subalgebra of #(9) or if T is an operator in Z($), Lat o or Lat T
denotes the lattice of invariant subspaces of & or of T. & (T) will be used for the
subalgebra of #(9) generated by T and the identity. Finally, if 9% and 9t are sub-
sets of §, MV N is the closed linear span of M and N.

Recall that a subalgebra of of #($) has finite strict multzplzczty 1f there is a
finite collection of vectors {x1, X3, ..., X,} such that

{Ay 1+ Aoxa+ ...+ A, x, A€} =

In that case, {x;, X,, ..., x,} is called an FSM set for o/, and the minimal cardmahty
of all such.sets of vectors is called the strict multiplicity of of. If & has strict multi-
plicity 1, & is said to be strictly cyclic. The operator T has finite strict multiplicity
if o/ (T) does, and T is strictly cyclic if o (T) is. & is said to inherit finite strict
multiplicity if the uniform closure of its restriction to every invariant subspace has
finite strict multiplicity, and & is said to be hereditarily strictly cyclic if the uniform

closure of its restriction to every invariant subspace is strictly cyclic. We will reserve -

the terms strictly cyclic and finite strict multiplicity for infinite-dimensional operators

‘Received July 31, 1978.
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(unless we are talking about the restriction of an infinite-dimensional operator to
a finite-dimensional invariant subspace). '

Theorem 1. Let o be a uniformly closed subalgebra of B(9) containing the
identity, and let McLat of be such that oZ|M has finite strict multiplicity; assume
that {x,, x,, ..., X,} is an FSM set for |M. Then every invariant linear mani-
fold of M whose closure contains the vector x,+x,+...+Xx, is closed.

Proof. Let & be the (umformly closed) algebra of all n><n matrices with
entries from &, and define ¢: o -~ M? by

o(4;) = (4;)%
where X=(x;, X3, ..., X,). Then ¢ is obviously bounded, and ¢ is onto since &/

has finite strict multiplicity on 9.

Let M be an invariant linear manifold of /|9 whose closure contains x,+
+XgF ... +x,, let B=p 1(N™), and let & =@~} (R®). If &/ =2, then =N
since @(N)=@(#)=N". We show that & = # by assuming that 4" = % and
finding a contradiction.

_ Since we are assuming 4 = &, the invariance of R implies that 4 is a proper

left ideal in 4. Also, 1€ # since 3 x;€R; i.e.,
IX = (3 %0 5 %00 2 Xis oes 2, X0,

so 1X€N®™. Since A is a proper ideal, 1 is not in the closure of 4, and so A~ is
not dense in %. Now, let #%c % be an open set such that #N % =0. Then ¢ (%)
is open by the open mapping theorem, and @(#)NN?=@. But then N™ is not
dense in ™. But of course NP =N, giving a contradiction.

The following special case of this theorem is the basis for many important
known results, some of which are listed below.

Corollary 1. (HERRERO [7]) A uniformly closed algebra of finite strict multi-
plicity has no dense invariant linear manifolds other than $.

Corollary 2. (EMBRY [3]) If & is a uniformly closed algebra of finite strict
multiplicity, and if x, is a cyclic vector for &, then x, is a strictly cyclic vector.

Proof. {dx,: Acs/} is dense since x, is a cyclic vector, and hence is all of
$ by Corollary 1.

One of the best known unsolved problems in operator theory is the transitive
algebra problem. Recall that an operator algebra is fransitive if its only invariant
subspaces are {0} and $. The problem is whether Z(9) is the only (weakly closed)
transitive algebra? Many partial results have been obtained, beginning with ARVE-
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SoN’s work [1]. An affirmative answer would imply that every operator has a non-
trivial invariant subspace — see [18, Chapter 8]. Finding results such as the follow-
ing appears to have been the main goal of LAMBERT [11], [13] and HERRERO [7], [8]
in studying algebras of finite strict multiplicity.

Corollary 3. (HERRERO [7]) The only weakly closed transitive algebra of finite
strict multiplicity is B(9).

Proof. Let s be a transitive, weakly closed algebra of finite strict multiplicity.
Since & is transitive, every invariant linear manifold of & (other than {0}) must
be dense in §. Hence, by Corollary 1, {0} and § are the only invariant linear mani-
folds of /. The Rickart—Yood theorem (cf. [18, Corollary 8.5]) then implies that
A =%5(9). '

Lemma 1. If o« is an algebra of strict multiplicity n, and if WMicLat o/, then
the compression of & to M+ has strict multiplicity at most n.

Proof. Let P be the projection onto M+, and let ¢, e, €3, ..., e, be vectors
such that
{Are;+Asest...+A,e,0 A€} = 9.

Let .szi:{PA:AEM}, and let f;=Pe;,, m;=e;— f;. It suffices to show that

(Aifi+ Aofot ...+ A, [ Acad) =ML,

Note that PAm;=0 for every Acs/ since McLatof/. Given xc ML, choose
{4y, Az, ..., A} C & such that x=A,e;+ A,e,+ ... + A,e,. Then

PA.fi+...+ PA,f, = PA,(fi+m)+...+PA,(f,+m,) = Px = x.

In the above proof we found » vectors to prove that o/ had finite strict multi-
plicity. Some of these vectors might be 0. In the strictly cyclic case, since the strict
multiplicity does not increase, the compression algebra will also be strictly cyclic.
This proves

Corollary. If o is a strictly cyclic algebra, and if IMELat f, the compression
of o/ to M+ is strictly cyclic.

EmBry [3, Theorem 2] proves that every intransitive strictly cyclic algebra has
~a maximal invariant subspace. The next theorem is a generalization of Embry’s
theorem.

Theorem 2. If o is an algebra of finite strict multiplicity, then every (proper)
invariant subspace of < is contained in a (proper) maximal invariant subspace.

,
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Proof. Since the uniform closure of &/ has the same invariant subspace lattice
as &/, we can assume that o7 is closed. Let MM¢cLat &/ with M=$H. By the Haus-
dorff Maximality Principle there exists a maximal chain {9,} of proper invariant
subspaces containing M. Choose a countable dense subset {x;: i=1,2,...,} of
Laj M,, and choose M, so that x,¢M, . Then

Um,, = {x} = Um,.

If UM, =9, UM, is dense in H. By Corollary 1 to Theorem1, UM, =$.
By the Baire_Category Theorem, some M, =9, which is impossible. Thus, U, =%,
and so UM, is a maximal invariant subspace containing 9.

For a large class of algebras of finite strict multiplicity, maximal invariant sub-
spaces have co-dimension 1.

Theorem 3. If o is an algebra of finite strict multiplicity such that for every
McLat o, the compression of o to M is not strongly dense in B(M™L), then every
maximal invariant subspace of < has co-dimension 1.

Proof. Let 9 be a maximal invariant subspace. If the co-dimension of M is
greater than 1, the compression of o to M+ has a non-trivial invariant subspace R.
This follows from Corollary 3 to Theorem 1 since the compression s not Z(M+)
by hypothesis. If we show that M@ McLat of/, we will be done since this will
contradict the maximality of M.

Since McLat .o/, it is enough to show that if ye®, then AyeTRepM for
every A€s/. So let Py and Pg. be the projections onto 9 and ML, respectively.
Then ’

Ay = (PyL+Py)Ay = PrL Ay+PpAy.

Note that Py, &/ is in the cofnpression algebra, so Py Aye‘jt. And of course
Py AyeR.

Corollary. If & is an Abelian algebra of finite strict multiplicity, then every
invariant subspace of o is contained in an invariant subspace of co-dimension 1.

Proof. This follows immediately from the previous two theorems since &
being Abelian guarantees that the compression of & to ML is also Abelian and
hence not strongly dense in Z(WML).

We can even say more about algebras generated by certain strictly cyclic oper-
ators.

Lemma 2. If T is a strictly cyclic operator, and if 6(T) is a singleton, then T
has a unique maximal invariant subspace.
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" Proof. The Corollary to Theorem 3 implies that 7 has a maximal invariant
subspace. Suppose that 7" has two distinct maximal invariant subspaces M;-and IM,.
Let M=M,NM,, and choose unit vectors e, €M;-NM, and e, M, NM;". Since
M, and M, have co-dimension 1 by the last corollary, ML=V {e;, e,}. Let

T= [T1 T 2]
0 T3
be the decomposition of T with respect to M@ VL.

" Now, T, has one-point spectrum since T does, and Ty is strictly cyclic by Corol-
lary 1 to Theorem 1. Since a strictly cyclic operator with one-point spectrum on a
finite-dimensional space is similar to a unilateral shift, T; has a one-dimensional
eigenspace. Thus e, or e, is not an elgenvector suppose e, is not. Since e,€M,,
Te, €M,; ie.,

T, T.Y(0
(& 7)(0)- e,

So Tye.€My, and T,e,cM; ie., Tye€MNIML. But iD?zﬂiDIl V{e,;}, which
shows that e, is an eigenvector of T;. This contradiction completes the proof.

Corollary. If T is a strictly cyclic operator whose spectrum is a singleton, if
McLat T and is the unique maximal invariant subspace of T, and if ecML, >0,
then e is a strictly cyclic vector for o (T).

Proof. Since e is not contained in any proper invariant subspace, it is a cyclic
vector. By Corollary 2 to Theorem 1, e is a strictly cyclic vector.

Theorem 4. Let T be a strictly cyclic operator with one-point spectrum. Let
WM be its maximal invariant subspace, let e€ ML, e#O and let Be A (T). Then
(1) BecM if and only if R(B)cW.*)
(i) x is a strictly cyclic vector if and only if (x, e)=0.
(iii) B is invertible if and only if (Be, e)0.
(iv) Every operator in o (T) has one-point spectrum.

Proof. By the Corollary to Lemma 2, e s a strictly cyclic vector. Let &f =</ (T).

() If R(B)cM, trivially -BecM. If Be=xcM, since HLe=$, we have
R(B)=Bsle=sfBe=LxIM.

(i) If x is a strictly cyclic vector, x¢ M, so (x, e)=0. If (x, ©)=0, Lxt M,
so Zx=9 (since every element of Lat o/ is contained in ).

(iii) If B is invertible, R(B)E M, so (Be, &)=0 by (i).

*) R denotes “range”.
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If (Be, e)0, R(BYE M. Thus R(B) is dense in $, and R(B) is invariant
under A. Hence R(B)=$H. By a theorem of LAMBERT [11, Lemma 3.1] every point
in the spectrum of B is compression spectrum. Thus B must be invertible.

(iv) Let Be=oe+m, where meM. If As«, then ((B—JA)e, e)>0. Thus,
B— is invertible, so 1¢a(B); ie., o(B)={a}.

LAMBERT [11] proved that a unilateral shift whose weights are p-summable and

“decrease monotonically to 0 is strictly cyclic. Since such an operator has Donoghue
lattice, and since that property is trivially inherited, such an operator is hereditarily
strictly cyclic. The class of hereditarily strictly cyclic operators is much wider than
this. For example, if S is any quasinilpotent hereditarily strictly cyclic shift with
Donoghue lattice, let T=S@(S+1). Since the full spectra of S and S+1 are
disjoint, Z(T)=4(S)® L (S+1). (Consider the Riesz decomposition.) Thus if e
is a strictly cyclic vector for #(S), e®e is obviously a strictly cyclic vector for
A (T).

An example of HEDLUND [6] shows that even for o/ =/ (T) where T is a uni-
lateral weighted shift, &/ being strictly cyclic does not in general imply that o is
hereditarily strictly cyclic. Thus, in the theorems that follow, we cannot remove
the ““hereditary” part of the hypothesis.

In the case of an hereditarily strictly cyclic operator with one-point spectrum,
we can describe itsinvariant subspaces in some detail. This is done in the following
theorem, which generalizes the well-known fact that an operator on a finite-dimen-
sional space is unicellular if and only if it is cyclic and has one-point spectrum (see

" [18, Theorem 4.7)). There are operators which are unicellular but have spectra con-
taining more than one point — see [4].

Theorem 5. Let T be strictly cyclic. If T is unicellular, then o(T) is one point.
Conversely, if T is hereditarily strictly cyclic and if o(T) is one point, then T has
Donoghue lattice (i.e. there is an orthonormal basis {e,}>, such that the non-trivial

invariant subspaces of T are the subspaces 9, =\ e; for positive integers k).
Jj=k .

Proof. Every point in ¢(T*) is an eigenvalue of T* since every point in ¢(T)
is compression spectrum. If 7* had two linearly independent eigenvectors, T would
have two non-comparable invariant subspaces. Thus T unicellular implies that ¢(7)
is a singleton. -

Conversely, -suppose that T is hereditarily strictly cyclic, and that o(7T)= {4}

" Let S=T-1,. Since Lat S=LatT, it suffices to show that S has Dor)éghue
lattice.

Let M,=9H. If M, has been defined, let M, ; be the unique maximal invariant
subspace of S[M,. Since 0 is compression spectrum for S|M, for each k, SO)<
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CIM,,,. Choose a unit vector e, M. Then ¢, is a strictly cyclic vector, and
S"e €M, '

Let S"e,=e,+m,, , where e M., and m, €M, . Since S is strictly
cyclic, {S"e,: n=0, 1,2, ...} spans 9. Hence, €={e,: n=0, 1,2, ...} is an ortho-
gonal spanning set. Each ¢;¢ M; if j=i, so €L(N IM,); ie, N M, ,={0}. This
shows that Lat 7 contains a Donoghue lattice. To complete the proof, we must
show that there are no other invariant subspaces.

Let M be any invariant subspace of T, and let # be the largest index such that
McM,. (Since MM, and since ) WM;={0}, such an n exists). If W=,
M,+, is the unique maximal invariant subspace of T|IM,, and so McIM,,,, a
contradiction. So M=M,, and we are done.

SHIELDS’ article [20] contains many of the known results about weighted shifts.
It includes some discussion of strictly cyclic shifts. The invariant subspace lattice
of every weighted shift obviously contains the Donoghue subspaces, but there may
be other invariant subspaces. Shields defines a shift to be strongly strictly cyclic if
its restriction to each of its Donoghue subspaces is strictly cyclic. This definition is
somewhat weaker than hereditarily strictly cyclic. Shields proves {20, Prop. 38] that
a quasinilpotent strongly strictly cyclic shift is unicellular. Although the statement
of Theorem 5 does not include Shields’ theorem, its proof obviously yields his result

. t00. (The proof in [20] depends on calculations with the weights.)

Theorem 5 suggests that hereditarily strictly cyclic operators might serve as
“generalized Jordan blocks”, and that operators which inherit finite strict multi-
plicity may have a “Jordan form” in some sense. This is the case, and it is proven
in Theorem 6 below. We require two lemmas.

Lemma 3. Let T be a strictly cyclic operator whose spectrum is a singleton,
and suppose that T inherits finite strict multiplicity. Then T is hereditarily strictly
eyclic.

Proof. Let a(r)={A} andlet S=T—.. It suffices to prove the theorem for S.
By Lemma 2, S has a unique maximal invariant subspace ;. As in the proof of
Theorem 5, let ¢, be a unit vector orthogonal to 9, . Then e, is a strictly cyclic vector
by Theorem 4, and e, = Se, is in M, since 0 is compression spectrum for S. Since
S is strictly cyclic, {S"e¢,: n=0,1,2, ...} spans §, and so {S"¢,: n=1,2,3, ...}=
={S"¢,;: n=0,1,2, ..} spans M,; i.e. e is a cyclic vector for S|M,. Hence,
by Corollary 2 to Theorem 1, e; is a strictly cyclic vector since S|, has finite
strict multiplicity. o

We now proceed as we did in the proof of Theorem 5 to construct a sequence
of invariant subspaces M, such that S|M, is strictly cyclic. At each step, S|M,
strictly cyclic implies the existence of a maximal invariant subspace M, ,,, and then
S|M, ., will be strictly cyclic. To complete the proof, we must show that N M, =
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={0}, and that S has no other invariant subspaces. But this follows exactly as in
the proof of Theorem 5. i

Lemma 4. Let {x, y} be an FSM set for the operator T, and suppose that T
inherits finite strict multiplicity, and that 6(T)={0}. Let W=/ (T)x and R=27(T)y,
and assume that M is infinite-dimensional. Then either MNN={0} or there exists

a finite-dimensional invariant subspace & of T complementary to W such that MV K =
=MVR=9.

Remark. The assumption that 9 is infinite-dimensional is for convenience.
If both M and N are finite-dimensional, since TP will then be cyclic and nil-
potent, the lemma reduces to a well-known finite-dimensional theorem (see [5, Theo-
rem 1, 57)).

Proof. Note first that MV IR = since every vector in § has the form Ax+ By
where A4, B€ o/ (T). By Corollary 2 to Theorem 1 and by Lemma 3, T|9M is hered-
itarily strictly cyclic, and we may apply Theorem 5. So let 9,, IM,, P, ... be the
non-zero invariant subspaces of 7|9 in decreasing order (Vy=M). If M were
finite-dimensional, then NN ={0} since T|M has no finite-dimensional invariant
subspaces. So assume that N is infinite-dimensiona] and that the non-zero invariant .
subspaces of T'|:t are My, N, N, ... in decreasing order. )

Now, if MNN={0}, we are done. If not, MNR=M,=N,, for some k and
m. Thus, MNN has finite co-dimension « in H. We proceed by induction on a.
If =0, then M=N=9H, and ]K={0} does the trick. So assume true for a=n—1,
and consider a=n.

Since MNN=N,, if MNNER,, then m=0 and NcM, and again
f={0} suffices. So assume -MNRN,;, and let y, be a unit vector in N,ONR,.
Then y, is a cyclic vector for T|R,. (In fact, y, is a strictly cyclic vector.) Thus,
{x, y,} is an FSM set for MVR,;, and MOAR=MNN,cMVR,. Moreover, the
co-dimension of MNN in MVN, is exactly n—1, and the inductive hypothesis
applies. So choose a finite-dimensional invariant subspace &, of T' complementary
to such that MVK{H=MVR,, and let K={z€H: Tz€K,}. We will show that |
has the desired properties. ‘

First, if zéM and z0, then Tz¢ K, since T|P has.no finite-dimensional
invariant subspaces. Hence, since the co-dimension of I in § is finite, K is finite-
dimensional, and since 0 is the only point in the spectrum of 7, T'|® is nilpotent.
Thus, the dimension of K is greater than the dimension of &, since TR CK,. Hence,
the co-dimension of IMVRK is less than the co-dimension of MV K,, ie. MVK
must be all of §. Finally, TRCK,cR, so R is an invariant subspace of 7. The
proof is complete. :
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The purpose of Lemma 4 is of course Theorem 6 below. Lemma 4 yields Theo-
rem 6 fairly easily. But first, define the operator 7 to be a Jordan operator if T has
n complementary invariant subspaces M, M,, ..., M, such that H is the (not
necessarily orthogonal) direct sum of the M;’s, and such that either the matrix of
T[M; is a (finite-dimensional) Jordan block, or T'[M; has Donoghue lattice.

Theorem 6. Let T be an operator on § which inherits finite strict multiplicity,
and whose spectrum is finite. Then T is a Jordan operator.

Proof. Let a(T)={4, %, ..., %} Then T has k complementary invariant
subspaces 9y, Hs, ..., H; whose span is all of § such that ¢(T|H,)={4;}. It suffices
to prove the theorem for each T'|9;, so assume that $, =9 and 1,=0 (otherwise,
consider 7T—4,). ' ’

We now proceed by induction on # the strict multiplicity of 7. For n=1, Theo-
rem 5 applies. So assume true for strict multiplicity »n—1, and let {x;, x5, ..., x,}
be an FSM set for T. Let M,=«/(T)x;. By the inductive hypothesis, the theorem

n—1
holds on V %;. Let

i=1
n—1 . m
V mi = \/ wja
i=1 j=1

where the 9 ’s are mutually complementary invariant suBspaces of T, where T|M;
has\Donoghue lattice for j<m, and where M,,.is finite-dimensional. (We are thus
throwing all of the finite-dimensional invariant subspaces of T into 3,. By the
Jordan Canonical Form Theorem, this is equivalent to the”above definition of Jor-
dan operator.)

Now, if 9, is finite-dimensional, since T'|9t; has Donoghue lattice for j<m,
%, is necessarily complementary to 9M; for j<m. In that case, replacing M, by
M, VR, does the trick. If N, is infinite-dimensional, Lemma 4 applies to N,VIR,.
(If m=1, RN, is complementary to M, , and we are done.) So let N, VM, =K[KVD,,
where & and 9 are complementary, and where & is a finite-dimensional invariant -
subspace of 7. Then & must be complementary to 9, M,, ..., M,,_,, and replac-
ing M, by M,,VK] comples the proof. '
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A note on integral operators

A. R. SOUROUR

Let (X, m) be a separable g-finite measure space which is not purely atomic (it
may include some atoms). A bounded linear operator T on L2(X) is called an integral
operator if there exists a measurable function £ on XXX such that (7f)(x)=
= f k(x, »)f(y)ym(dy) almost everywhere. It is known ([7], p. 35) that every Hil-
bert—Schmidt operator is an integral operator. It is also known that there are
integral operators which are not Hilbert—Schmidt or even compact. For example,

if k is the characteristic function of the set U (In, n+1]><[n n+1]), the operator

induced by k on L2(0,) is a projection of infinite rank. (This example is in
Harmos [3).) However, KoroTkov [6] proved that every operator unitarily equi-
valent to T is an integral operator if and only if T is a Hilbert—Schmidt operator.
The purpose of this note is to give a proof of Korotkov’s theorem which seems to
be conceptually simpler than the original. Unlike the prdof in [6], we do not use
any results about Fourier series. Qur techniques are more operator-theoretic.

We start by establishing notation. Let $ be a separable infinite-dimensional
Hilbert space, and let Z($) be the algebra of bounded operators on . If T€ Z(9),
and if M is a (clo‘sed) subspace of §, then the compression of T to M is the operator
PTP|M, where P is the projection onto . We will always assume that M is a
“half” of $, that is, both M and M+ are infinite-dimensional.

If K is a compact operator, then the sequence of s-numbers of K is the sequence
§;=s,=... of nonzero eigenvalues of the compact positive operator (K* K)Y/2, each
repeated according to its multiplicity. A compact operator is called Hilbert—Schmidt
if its sequence of s-numbers is square summable. For a detailed discussion of ideals,
s-numbers and related concepts see pp. 25—27 of [7]. Here we need only the follow-
ing fact: If two compact operators have the same sequence of s-numbers, then they
must belong to the same two-sided ideals ([7, p. 26]).

Received' May 25, and in revised form szlgust 9, 1978.
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Lemma 1. If K is a compact operator, then K= [KI Sg], where every S;
is a Hilbert— Schmidt operator. Consequently, there is a Htlbert—Schmldt operator

S such that [0 0] is unitarily equivalent to K+ S.

Proof. Let {e,} be an orthonormal basis for the ﬁnderlying Hilbert space,
then |[Ke,|—-0 and [K*e,)—~0. Choose a subsequence {f,} of {e,} such that
S IKfJ2<e= and S |K*f,|2<e. Let M be the orthogonal complement of the
span of {f,}. (By passing to a subsequence of {f,}, if necessary, we can assume that
9M is infinite-dimensional.) The matrix of K relative to the decomposition M M+
has the required form. The second assertion of the Lemma follows easily from
the first.

Lemma 2. Let A be a linear space of compact operators, and assume that U
is closed under unitary equivalence and under compression and that it contains every
Hilbert—Schmidt operator. Then W is a two-sided ideal in #(9).

Proof. Assume that K¢, and apply Lemma 1 to conclude that the operator
T= [{){ 8] belongs to 2. Each of the following operators is unitarily equivalent to
T and hence belongs to A: ’

SRR 3 [ |
O [ [ B

By taking an appropriate linear’ combmatlon we see that (OK 8] is also in U, and

so is the operator .
U 0)(0 0)(U* 0y (O 0
0 V)IKOJlO V*} = \VKU* O

for any unitary operators U and V. Since every operator can be written as a linear
combination of four unitary operators ([1, p. 4]), the operator'(gl KB 8) belongs
to U for any operators 4 and B. By unitary equivalence, the following operator also
belongs to A . :
1 ( AKB AKB
_ —AKB — AKB)’ ,
Consequently AKB belongs to . Therefore U is a two-sided ideal. . -

Lemma 3. Let (X, m) be a separable c-finite measure space and Y a Borel

subset of X such that L*(Y) and L*(X\Y) are both infinite dimensional, and let $
be a separable Hilbert space, M a subspace of $ with dim M=dim Ml=co, Tan
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operator on § and A the compression of T to M. If every operator on L*(X) which is
unitarily equivalent to T is an integral operator, then every operator on L2(Y) which is
unitarily equivalent to A is an integral operator. -

Proof. Let V: M—~L2(Y) be a unitary operator and let W.be any unitary
mapping M+ onto L2(X\Y), and let U=V @ W. Thus UTU* is an integral oper-
ator on L%(X). If k is the kernel of the latter, then VAV™ is an mtegral operator
whose kernel is the restriction of k to Y X Y.

Lemma 4. Let T be a bounded operator on © such that UTU* is an integral
operator for every unitary operator U mapping 9 onto L*(X). Then T is compact.

Proof. First we show that every non-compact operator has a compression
(to an infinite dimensional subspace) which equals the sum of a non-zero scalar
and a Hilbert—Schmidt operator. Let T be a non-compact operator and let T=T7,+
+iT, where T; and T, are self-adjoint. One of the operators T, and T, (say 7y) is
not compact. Let E be the spectral measure of 7;. Then there is a real number
20 such that dim (E(4)H)=c for every open set 4 containing Z. Consequently,
there is a compression PT; P|P$ of T; (to an infinite dimensional subspace) which
is equal to A+a Hilbert—Schmidt operator. Since PT,P is self-adjoint, the same
argument shows that there is an infinite dimensional projection Q=P “such that
QT,0|0% is a scalar+a Hilbert—Schmidt operator (this scalar may be zero).
Thus

OTQ|0% = p+S

where 520 and S is a Hilbert—Schmidt operator. (This proof is due to the referee. )

Let ¥ be a non-atomic “half”” of X. If T is non-compact and is always integral -
on X, then by Lemma 3, the compression u+ S is always integral on Y. It follows
that the identity on L2(Y) is an integral operator, which is impossible (see [5, problem
134]). So T must be compact.

For clarity of exposition, we will prove the main result first when X =[O, 1].

Theorem 1. Let T be a bounded operdtor on H. Then UTU* is an iniégral
operator for every unitary operator U mapping $ onto L*(0, 1) if and only if T isa
Hilbert— Schmidt operator.

Proof. The “if” part is easy. To prove the converse, let # be the set of all
operators T on $ with the _property that UTU * is an integral operator for’ every
unitary U: $—L2(0, 1). It is easy to see that J is a linear space and is closed under
umtary equivalence. It is also closed under compression smce if Te# and 4 is.a

compression of T, then A is always integral on (0, —;—] and hence is always integral

on (0, 1), By Lémma 2, . is a two-sided ideal. Let K¢.# and let {A,,} be the sequence
.of s-numbers of K. Since £ is an ideal, every operator on L?(0, 1) with the same
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sequence of s-numbers is an integral operator. We will now construct an operator
on L%(0, 1) with s-numbers {4,}.

Let {e,} be an orthonormal basis of L2?(0, 1) consisting of unimodular func-
tion, that is [e,(x)|=1. (For example, the usual exponentials exp (2nikx), arranged
in a sequence.) Let {a,} be a sequence of positive numbers such that. > a2=1, and
let {E,} be a sequence of disjoint measurable subsets of (0, 1) whose union is (0, 1)
and such that m(E,)=o?. Let ¢,=a 'y,, where y, is the characteristic function
of E,. Therefore {¢,} is an orthonormal set in L2(0, 1). Define an operator C on
L2(0, 1) by the equations

Cop, = 2pe,, and Cf=0 if fec{p,}t.

It is easy to see that C*e,=4,¢, and CC*e¢,=A2¢,
whose sequence of s-numbers is {4,}.

By the foregoing, the operator C must be an integral operator Let k be the
kernel of C, so

e,, and so C is a compact operator

CF)(x) = [ k(x, Nf()mdy) ae.

By considering only functions in L2(E,) for a fixed n, we see that
of =(f, o) Ine, for fEL*(E,),

€N = [ o5 he(9)f(Im(dy) for fELX(E,)

By the uniqueness of the kernel, we must have k(x, y)=a;'1,e,(x) when ycE,.
For every fe€L*(0, 1), the function Jk(x, -)f(-)| must be integrable for almost

every x. By taking f=1, we have f |k(x, Y)|m(dy)<e for almost every x, so
- Y d,A,<oo. Since this is true for any (normalized) square-summable sequence
{2}, we must have {4,} square-summable, and so K is a Hilbert—Schmidt operator.

SO

Theorem 2. Let (X, m) be a separable o-finite measure space with no atoms,
and let T be a bounded operator on $. Then UTU™ is an integral operator for every
unitary operator U mapping 9 onto L*(X) if and only if T is a Hilbert—Schmidt
operator.

Proof. This theorem is proved by slight modifications of the proof of Theo-
rem 1. We only indicate the necessary changes.

As before, let £ be the set of all operators T on $ with the property that UTU*
is an integral operator for every unitary U: $-L?(X). Unlike the case X=]0, 1],
it is not immediately obvious that .# is closed under compression. (If T€¢# and 4
is a compression of T, then we only know that 4 is always integral on every half
of X.) So we introduce the class # of all compressions of operators in .#, that is

4 B)EJ . It is obvious

Ac ¢ if and only if there exist operators B, C, D such that (C D
that # is a linear spaée, and is closed under compression and under unitary equiv-
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alence, and so it is a two-sided ideal by Lemma 2. In view of Lemma 1, we need
only show that every operator in ¢ is Hilbert—Schmidt. Let Y be a “half” of X
which has finite measure and we may assume that m(Y)=1. If K¢ #, then as
before, every operator on L?(Y) with the same s-numbers as K must be an integral
operator. An examination of the remainder of the proof of Theorem 1 shows that
it depends on the two properties of ¥ which we now list and prove.

(i) There exists an orthonormal basis of L*(Y) consisting of unimodular func-
tions.

Proof. There is an isomorphism of the measure algebra of (Y, m) onto the
measure algebra of the unit interval [4, p. 173]. This isomorphism induces a linear
map V of the linear space of equivalence classes of measurable functions on [0, 1]
onto the space of equivalence classes of measurable functions on Y (see [2, pp. 252—
254] for details). This map can be seen to carry the exponentlals (exp 2ninx) into a
basis of L2(Y) consisting of unimodular functions.

(i) If {x,} is a sequence of positive numbers such that > «,=1, then there
is a sequence of disjoint measurable subsets of ¥ whose union is ¥ and such that
m(E,)=q,.

Proof. Again this follows immediately from the isomorphism of the measure
algebras.
This ends the proof of Theorem 2.

Corollary. The conclusion of Theorem 2 is valid if X contains atoms but is
not purely atomic.

Proof. Let Y be a half of X which contains no atoms, and let T be an operator
which is always integral on X. Every compression of T is always integral on Y,
hence is Hilbert—Schmidt by Theorem 2. Therefore 7 must be Hilbert—Schmidt by
Lemma 1.
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A short proof of the fact that biholomorphic automorphisms
~ of the unit ball in certain L spaces are linear

L. L. STACHO

1. As a consequence of his investigations on the Carathéodory and Kobayashi
distances on domains in locally convex vector spaces, E. VESENTINI [1] proVed that
biholomorphic automorphisms of the unit ball*) of L'(Q, u) are all linear, when-
ever the underlying measure space (Q, g) is not a unique atom. In this paper we
shall provide a quite different approach to the problem which applies to LP(Q, w)
as well, for every p€[l, ).

Theorem. Let (@2, u) be a measure space having two disjoint subsets Q’ Q7
such that O0<p(Q), p(Q")<o. Then for any pe€[l,==)\{2}, all bzholomorphzc
automorphisms of the unit ball of LP(Q, u) are linear.

Our method is based on a result of W. KAupr and H. UPMEIER [2] éoncerning
Aut B(E) for general Banach spaces E. Here we present a direct proof of the theo-
rem, which may have interest because of its extreme brevity. However, we remark
that one can also determine the general algebraic form of an element from
Aut B(L¥*(Q, ) in a similar way.

2. First we prove a lemma. To this end, let E denote an arbitrarily fixed Banach
space with norm |.||, E* the dual of E endowed with the norm ||.|,.

Lemma. Aut B(E) contains only linear mappings if and only if the relation

La(x, %), @) =—(c, @) forall xCE, o€E* with x| = ol =1=(x, @)

entails ¢=0 whenever c¢€E and q is a bilinear form from EXE into E. :

Received December 20, 1978.

*) In general, if B(E) denotes the open unit ball of a Banach space E then the -biholomorphic
automorphisms of B(E) are defined as those one-to-one mappings of B(E) onto itself whose Fréchet
derivative exists at every point x € B(E) as an invertible operator. We shall denote the group formed
by the biholomorphic automorphisms of B(E) by Aut B(E).

7%
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Proof. Accordingnto {2, p. 131}, there can be found a subspace V in E and a con-
jugate-linear mapping v—gq, from V into the space of the (continuous) E-bilinear
forms such that Aut (D) is generated by the group G, of the surjective linear iso-
metries of E onto itself any by the images under the exponential map of the vector

fields (v+4,(z, z))a% (veV). Thus, for Aut B(E)=G, it is neceésary and suffi-

cient that there exist a ¢€ EN\ {0} and a bilinear form ¢: EXE—E such that the
0 .

vector field (c+4(z, Z))E be tangent to B(E) (the boundary of B(E)), i.e.

®) Re(c+q(z,2), ¥y =0 whenever |z = ¥l =1=(z, ).

Suppose now that the vectors ¢, xCE, @€E* and the E-bilinear form g sat-
isfy x| =lloll,=1={x, ¢) and (2). Then for all 2¢C with |1|=1 we have ||’.x| =
=|Z¢|,=1={Ax, 1) whence 0=Re {c+q(x, 1x), Lo} =Re [1({c, ) +{g(x, x), p))].
Therefore {c, ¢)+{q(x, x), ¢)=0 which completes the proof of the Lemma..

3. Now we shall proceed to the proof of the Theorem. Henceforth let p€[l, o)
be arbitrarily fixed and set E=LP(Q, ). As usual we shall identity E* with
- LP*=D(Q, u) and the pairing operation with (x, )= f x(&) - &) du(€) (for all
x€E and ¢@¢E™), respectively. :
For any x¢E, let x denote the function &—x(&)-|x(&)|?~? (with the conven-

tion 0.0772=0). Observe that here

3) X*€E*, x*, = IxP=t, (x, x*) = |Ix|]p for all xcE.

Then assume that the function x€E and the E-bilinear form ¢ satisfy (1).
Applying (3) we see that .

CaCellxl, x/1x), G/ilx)*y = —(e, GAIx)*  for all  x€ EN(0}, |
that is :

(1) (q(x, %), ¥y = —|x|*{c; ¥y forall xeE.

In particular, if F and G are any two disjoint subsets of Q such that 0<u(F),
#(G)<e then
[ aUr+2-16, 1p+2- 1)+ 2122 1g) du =
I

=—(u(F)+]ilP - w(G)? [&(1p+7-|2P~21g) du
J S

for all A€C. (For any p-measurable subset Hc Q of finite pg-measure, 15 denotes
the characteristic function of H, considered as an element in E.)
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Thus, by setting

%= [q(p1dp, o= [Ig0r10+9(6, 11da, m= [q(ls, 15 dn,
F F ] _ F

Bo= [q(r10dn, Bi= [lqUr10)+qUe, 191dn, Bo= [q(lg,16)dn,
G G G

m=p(F), p=p@), n= [édy, y= [edu
. F G

we obtain

2 2

TP 3 B = =G AP Ot 2+ 1)
for all A¢C. Therefore for any ¢>0 and 9€C with |9|=1;

(Bo- ¥ DI (ot Bre @)+ (- 0+ B2 @) I+ (e 0 =

. =—(uy+ o+ 0P [y + (- 0271 9.
In particular, we have

%+ By 07 = —(uy+pz- @°)*Py, forall ¢=>0. v
Hence —p2'7. y1=li'm [—(uy+ s - Q")z”’g‘2]=lifm (0tg+ By - 0°)+ 0~ 2. This is possible
et : otee
only if p=2 or y;=0. Thus if p>2 then by definition of y, we have

4 - [edu=0 whenever 0<u(G)<e for some GC Q\F.

F
But (4) immediately implies ¢=0 because of our assumption on the measure space
(Q, p). Thus, by the Lemma, B(E) admits in case p=2 only linear biholomorphic
automorphisms. Q.E.D. '
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On the tensor product of weights on /*-algebras

SERBAN STRATILA

1. Let ¢ and ¥ be normal semifinite weights on the W*-algebras # and 4,
respectively. Using the Tomita—Takesaki theory ([13]) and the Pedersen—Takesaki
theorem on the equality of weights ([10]), ConnEs ([3], 1.1.3) (see also [9]) proved
that there exists a unique normal semifinite weight ¢ ¥ on AN such that

(1) aeM}, beM = aBbeM5y and (9BY)(aBb) = (@)W (b),
)] s(e®Y) =s(p)Bsy),
A ¥ (xBy)=of ()Ba¥(y) for tcR, xes(p)Ms(p), yEsW)AsW).

Here and in the sequel we use the standard notations in the Tomita—Takesaki
theory ([12], [13]). In particular, s(¢) is the support projection of ¢ and ‘.Ut: =
={x€Mt; p(x)<+o=}h If ¢ is not faithful, then {o?},.x means, of course, the
modular automorphism group associated with the restriction of ¢ to s(p).#s(p).

If ¢ and  are normal positive functionals, then condition (1) alone is sufficient
to insure the uniqueness in the definition of @&y. However, in the general case-
it is often difficult to check condition (3) above for some candidates for @®.

The aim of this Note is to offer alternative equivalent definitions for @@y
and to prove some very natural properties of the tensor product of weights.

2: From the works of ComBes ([1]), HAAGERUP ({7]) and PEDERSEN and TAKESAKI
([10]) (see also [6]) we know that for every normal weight ¢ on .# there exists a
family {¢;};c; of normal positive functionals on . such that o= X ¢;, i.e.;

icl

O] ' o(x)= %(pi(x) forall xecH+.

In particular, there is an increasing net {¢;};c; of normal positive functionals on #
such that ¢;te, ie.: .

®) ¢(x) = sup ¢i(x) = lim ¢, (x) for all xcM*.

Received August 14, 1978.
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On the other hand, and this is the main technical tool we shall use, from the
recent work of CONNEs ([4]) it follows that

(6) if ¢ is a normal semifinite weight on M and {@;};c is an increasing net of nor- -
mal weights on A such that e, then

o' (x)—= o7 (x) (t€R)
Jor every xelJ s(p)As(p;).
i€l
Here —~ means convergence in the ultra-strong topology on . of some section
{ieI: iziy} of the net involved.

Finally, from the proof of ([10], Lemma 5.2) it is easy to infer the following
improvement of ([10], Lemma 5.2): '

(7) if o1, @, are normal semifinite weights on M such that s(¢,)=s(@,) and there
exists an s-dense ¢%:-invariant *-subalgebra s/ of M, such that

¢.(a*a) = @,(a*a) for all acd,
then @, =¢@,, ie. Q;(X)=@,(x) for all xc M.
In all this paper .# and .4 will denote two W*-algebras.

3. Lemma. Let ¢, @, be normal semifinite weights on M# and Y a normal
semifinite weight on N. If ¢1=0¢,, then O,QY=0,Q.

Proof. If ¢, =g,, then s(p,)=s(¢,), whence, by (2), s(@,@¥)=s(p)@s()=
=s(p)®@s(Y)=s(p.®@Y). Moreover, by (1) and (3), the algebraic tensor product
o =M, @M, is an s-dense ¢?:®¥ .invariant x-subalgebra of M, =, Since @, =0,
are positive linear functionals on the x-algebra M, and Y =0 on the = -algebra
M,, it follows that ¢, ®Y=¢,®@¢¥ on the x-algebra . Thus P, RY=¢, Y,

by (7).

4. Theorem. Let ¢, Y be normal semifinite weights and {@:}ic;, {¥;};cs be
increasing nets of normal weights on M, N, respectively. If ote and Yy, then

‘Pi@lpjw@lﬁ-

Proof. By Lemma 3, {¢;®¥;}cy, je; is an increasing net of normal weights
ou MQN and ¢,@y;=¢p®y for all i€l, jeJ. Consequently, the formula

0(2) = sup (9:;BY) (D) = 1lim (0:BY)(2),  (2€(A&N)*)
defines a normal semifinite weight w on #®.4. For acMS, beMS, we have

©(@®b) = sup @:(@)¥;(b) = 5up 9:(@) sup ¥, (5) = P(@Y ().
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On the other hand, it is easy to see that s(¢;)ts(¢), s(Y )s(¥) and.s(p; @Y )s(w),
hence

: s(w) = s(@)®s(Y).- .
Finally, by the result (6), for &R, x€J s(p)#s(ey), ye U s(W) As(y,), we have:
, i€l j€r

ol (x) = o? (%), ot (¥) = a¥ ()
and
o/ ®VI(xB y) > a7 (xB y).
Hence,
o (xBy) = of (OB af ().
Since s(p)is(p), s(¥pis(y), the above equality still holds for x¢s(p) /l§(¢),.

yesW) s (). o
Thus, o satisfies all conditions (1), (2), (3) which define ¢®y. Consequently

: wzqz)@lﬁ, ie. Q’i@‘//jk/’@‘p-

5. In particular if the ¢;’s and the y;’s are normal positive functionals such:
that ote, ¥ 1y, then

® (@®¥)(2) = sup (¢:8Y)(2) (z6(AB N)?)

is'an alternative equivalent definition of the weight ¢®y, independent of the:
choice of the families {¢,}, {{;}, whose existence is guaranteed by (5).

6. As a first application we obtain the distributivity of the tensor product with:
respect to addition:

Corollary. Let ¢,, @, be normal semifinite weights on M such that ¢,+¢@, is
semifinite and  is a normal semifinite weight on' A" Then

(P1+P)BY = 0. BY +0.B .
Proof. Let {y;} be an increasing net of normal positive functionals on A~
such that ¥ ;ty. ' '
Assume that ¢,;, ¢, are normal positive functionals. Since the distributivity
property is obvious for normal positive functionals, by Theorem 4 we obtain

(@1+9)®Y = sup (¢1+ @) BY; = sUp 91 BY; +5Up 9:BY; = 01 Y + 9, B Y.

Now, in the general case, let {¢,;}, {(2} be increasing nets of normal positive:
functionals on . such that ¢, tp,, @, t@,. Itis then obvious that ¢y;+ @yt +@s-
Using Theorem 4 and the first part of the proof, we obtain

((P1+¢2)®'//:= Sgp (@1 t+ )Y = S},{P (Pu®Y +0u®Y) =~
= S‘l.lp Q’u@l:b‘*’s}c]p Pu®Y = 0, BY+0.QY.
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1. If =2 ¢; and ¥ =2 y;, then from Corollary 6 and Theorem 4 it fol-
7 7 .

Jlows that

9) (e®¥)(2) = %' (@:®Y)(2) (26(AB H)*).

In particular if the ¢;’s and the y/;’s are normal positive functionals, then the above
‘relation gives another alternative equivalent definition of ¢@®3y, independent of
the choice of the families {¢;} and {i;}, whose existence is guaranteed by (4).
The weight ¢ is called strictly semifinite ([2]) if there exists a family {¢;} of
‘normal positive functionals with mutually orthogonal supports such that ¢ =23 ¢;.
13

If both ¢ and y are strictly semifinite, then, by (9), @®y is again strictly semi-
finite. This result is originally due to- COMBES (2D
Other particular cases of (8) and (9) are mentioned in ([11], 0.1.2).

8. Another application concerns the relation between the tensor product and

- the balanced weight. Let us recall ([3], 1.2.2) that if ¢,, ¢; are normal semifinite

‘weights on .M, then the balanced weight 8(¢y, @,) on the W*-algebra Mat, ()=
== M/ @Mat, (C) of 2 by 2 matrices over .# is defined by

X X
0(o1, @2 [xz x::] = @1(X1) + @2 (x30).

" Now let ¥ be a normal semifinite weight on 4. Then 6(¢;, ¢)®¢ and
B(p,®@Y, ¢,@Y) are both normal semifinite weights on the W*-algebra

Mat, (M) BN 22 M B N @Mat, (C) = Mat, (4B N)

.and we have the following

Corollary. 0(p,®Y, 9.8Y)=0(¢1, p)OY.

Proof. It is obvious that if ¢;;te; and @yute,, then 6(py;, )10(@., @2).
Also, the stated equality is obvious for normal positive functionals. Thus the corol-
1ary follows using (5) and Theorem 4.

9. Consider again the balanced weight 8(¢,, ¢,) and assume that s(@,)=s(¢,).
Then the Connes’ cocycle ([3], 1.2.2) u,=[D¢,: D¢,),, (t€R), is defined by the

~equality
0 0 00
O'f(%’%) (S((p) OJ = (“t 0) (lER).

"Thus, using Corollary 8, for v, =[D(p,®¥): D(@;®¥)], we get

[0 0) = o5@18¥.028%) [0 _ 0] — eneaw [0 _ 0] _ (0 _ 0
v 0) — ™ s(e.®¥) 0) — s(e)@s(¥) 0) = \u,Bs(¥) 0)
Consequently, o

[D(9:BY): D(0:@Y)]; = [D@s: D], B s(Y).
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Using this equality and the chain rule for the Connes cocycle ([3], 1.2.3), we obtain
the following

Corollary. Let ¢,, ¢, be normal semifinite weights on M with s(p)=s(p,)
and let ., W, be normal semifinite weights on N with s(Y,)=s(,). Then

[D(p:®Y12): D(9, @Yy, = [D@s: Dy),®[DY,: DYy), (t€R).

This result is stated by DIGERNES ([5], 2.4), where the proposed proof con-
sists of checking the KM S conditions insuring the uniqueness of the Connes’ cocycle
{[5], 2.2), but only for decomposable elements

ZEE, NN O, NN, 2,65, N )RR, NN,).

However, it is not obvious a priori that this entails the KM S condition for all . -

* *
ZlEm‘Pz@'Pzﬂm‘Pl@%’ zZEm%@']’lnm‘Pz@%’
which is the real requirement for the uniqueness.

On the other hand, if y,=y,=y, then using Corollary 8 it is easy to show that
for the S-operators ([5], (2.6)) we have

So,5v. 0,80 = Se2,0,® Sy -
‘Once this equality is obtained, the proof in ([5], 2.4) holds indeed.

10. For every normal semifinite weight ¢ on .# and every positive self-adjoint

perator A affiliated with the centralizer M, of ¢ there exists a unique normal semi-

finite weight ¢, on # such that [De4: D(p], A", t¢R, ([10]). From Corollary 9
we infer the following result, originally obtained by Katayama ([9]):

Corollary. Let ¢, { be normal semifinite weights on M, N, respec.tiuely, and
let A, B be positive self-adjoint operators affiliated to M,, N, respectively. Then
" AQB is a positive self-adjoint operator affiliated to (MRN),z, and

(‘P®¢)A§B_=(PA®¢B- :
11. Arguing as in the proof of Corollaries 6 and 8, with the help of (5) and

Theorem 4 we obtain:

Corollary. Let @, ¢ be normal semiﬁnite weights on M, N, respectively, and
let n: My~ M; 02 Ny~ N be normal .completely positive lmear maps. If the weights
@oTm, Yoo are semifinite, then

" (eBW)o(rBo) = (<p°7t)®(¢oe).

12. A final application concerns some operator -valued weights ‘({8]) called
Fubini mappings ([14]). For every normal semifinite weight y on 4" there is a unique
normal semifinite operator valued weight EY, defined on (#®4)* with values in
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the extended positive part ([8]) .#* of .#, such that

(10) P(E%(2) = @0BY)(2) (2B H)*)

for every normal positive functional ¢ on # (cf. also [11], 0.1.6). From Theorem 4
it follows that:

Corollary If Y, ¥ ; are normal semifinite weights on A and Y1y, then
EJ{(Z)—SUPE_/{ (Z) (ZE(J[QQ‘/V)+)

Also, the equality (10) extends to any normal semifinite weight ¢ on /.

Actually, the operator valued weight EY, is nothing but the tensor product.
operator valued weight 1,®y ([8]), where 1, stands for the identity mapping:
on .#. We remark that Corollary 12 can be extended to an arbitrary normal semi-
finite operator valued weight instead of 1 ,. Moreover, Theorem 4 can be extended.
to operator valued weights.
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Almost ail algebras with triply transitive automorphism
groups are functionally complete

LASZLO SZABO and AGNES SZENDREI

1. Introduction

The present work is a continuation of a series of results on the functional com-
pleteness of algebras with high symmetry. It is also a contribution to the solution
of Problem 20 in GRATZER [4]. WERNER [14] prdved that every finite algebra (4; )
" where ¢ is Pixley’s ternary discriminator function on A is functionally complete.
Recently, FRIED and PixLEY [2] showed that for 3=|4|<R,, the algebra (4;d)
with d the dual discriminator function on A is also functionally complete. A con-
siderable generalization of these results was found by CsAkANY [I] who proved
that, up to equivalence, except for six algebras every non-trivial finite algebra whose
automorphism group is the full symmetric group is functionally complete. Our
contribution to this topic is the following theorem: an at least four element non-
trivial finite algebra whose automorphism group is triply transitive is either func-
tionally complete or equivalent to an affine space over the two element field. In the
proof our main tool is Rosenberg’s completeness criterium which provides a powerful
method for checking functional completeness.

There is an interesting phenomenon which is worth being referred to in con-
~ nection with our result. This is the connection of our theorem to the Stupecki type

criteria for completeness due to SALoMaA [10] and ScHOFIELD [11], saying that any
set F of functions over a finite set 4 (]4|=4) which contains a function satisfying
the Stupecki condition and a triply transitive group of permutations of 4, generates
the set of all functions on A, except for the case when all functions in F are linear
in each variable, relative to some representation of 4 as a vector space over the two
element field. Making use of Rosenberg’s completeness criterium, this theorem can
be further improved to doubly transitive permutation groups and then the excep-
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392 Laszl6 Szabo, Agnes Szendrei

tions are exactly those sets of functions that are linear with respect to a vector space
over an arbitrary prime field (see ROSENBERG [8], also KNOEBEL [5]). It would be
worthwhile to find out whether our theorem could be generalized for finite algebras
with doubly transitive automorphism groups.

2. Preliminaries-

Let 4 be a non-empty set. By an operation we always mean a finitary opefa-
tion. The set of n-ary operations on A4 will be denoted by O% (n=1). Furthermore,

we set O,= U O%. An operation f€O% is said to depend on its i’th variable

(I=i=n) if there exist elements a,, ..., a,, a;(#a,) in A such that
J@y, oosay) #Zfayy oy @i, Al Qitay oaes Q)

fis called essentially k-ary, if it depends on exactly k of its variables. f is termed
idempotent, if for every ac A, we have f(a, ..., a)=a. fis called non-trivial if it is
not a projection.

We adopt the termlnology of [4] except that polynomxals and algebraic func-
tions are called term functions and polynomial functions, respectively. Accordingly,
the set of polynomial functions and the set of term functions of an algebra U are
denoted by P(A) and T(A), respectively. Two algebras (with a common base set)
are said to be equivalent if they have the same term functions. By a clone we mean
a subset C of O, for some set A(0), which contains the projections and is closed
with respect to superposition. In particular, both P(2l) and T() are clones for any
algebra A. An algebra U=(4; F) is called functionally complete if P(W)=0,
-and #rivial if T (W) contains projections only. An algebra is said to be idempotent if
its fundamental operations (and hence all term functions) are idempotent. For a
field K, an affine space over K is defined to be an algebra (A4; I') where 7 is the set
of all idempotent term functions of a vector space over K with base set A. :

The automorphism group of an algebra U is denoted by Aut A. If Aut ¥« is
the full symmetric group then U is called homogeneous.

"Now we are going to formulate Rosenberg’s Theorem [6, 7] whlch is our main
tool in proving our theorem. First, however, we need some further definitions.

Let A(<0) be a finite set, k,n=1, €O and ¢S A4* an arbitrary k-ary
relation. f is said to preserve ¢ if g is a subalgebra of the £’th direct power of the
algebra (4; f); in other words, f preserves g if for any nXk matrix with entries in
A, whose rows belong to g, the row of column values of f also belongs:to ¢. It is
easy to verify that the set of operations preserving a relation ¢ forms a clone, which
will be denoted by Pol g.
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A k-ary relation ¢ on A is called central if o#A* and there exists a non-void.
proper subset C of A such that '
() {ay, ..., @€ whenever at least one a;€C (1=j=k);
(b) {4y, ..., @ )€0 implies (al,,, es Qg€ for every permutation m of the
1nd1c:es 1,...,k;
©) (a, .. ak)EQ if a;=a; for some i=j(1=i, ]<k)
Let 2<kf |4] and mzl A family T={6,, ..., 0,} of equivalence rela--
tions on A is termed k-regular if '
(d) each @; has k equivalence classes (j=1, ..., m);
(e) the intersection ('"11 g; of arbitrary equivalence classes ¢, of @, (i=1, ..., m)
is non-empty. .
The relation ¢ determined by T consists of all {ay, ..., a,y€ A* having the property
that for each j (j=1, ..., m) at least two elements among g, ..., q, are equiv-
alent modulo 0;. Notice that ¢ has properties (b) and (c).
We shall use the following version of Rosenberg’s Theorem (see [9]):

Theorem. (ROSENBERG [6, 7]) For a non-empty finite set A, Pol g is a maximal
' subclone of O, provided ¢ is one of the following relations on A:
. (&) a bounded partial order;
(B) a binary relation {{a, any|lac A} where 1 is a permutation of A with |Al/p
" cycles of the same prime length p;
() a quaternary relation {{ay, a,, ag, a;)€ A*lay+a,=as+a,} where (A; +) is
an elementary abelian p-group (p is a prime number);
(8) a non-trivial equivalence relation;
(e) a central relation;
(0) a relation determined by a k-regular famzly of equwalence relations on A
(k=3).
Moreover, every proper subclone of O is contained in at least one of the clones listed
above.,

In the proof of our theorem we need two other results.

Lemma. (SWIERCZKOWSKI [12]; see also [1; Lemma 4]). If an at least quaternary
operation turns into projection whenever we identify any two of its variables, then it
always turns into the same projection. '

Theorem. (UrBaNIK [13; Lemma 9]) Let U=(A4; F) (|4|=2) be an idem--
potent algebra which has essentially ternary term functions but has neither essentially
binary nor essentially quaternary term functions. Then W is equivalent to an algebra:
(4; IUG) where

(i) {4; 1) is an affine space over the two element field GF (2);
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(i) either G=9 or there exists an integer r=5 such that G contajns an r-ary
" .operation depending on every variable, furthermore, every g€G depends on at least
rvariables and satisfies the equation g(xy, ..., x,)=Xx, whenever the elements x,, ..., x,
belong to a subalgebra of (A; I) generated by less than r elements.

3. VResults

Our main theorem was inspired by the following

Theorem. (CSAKANY [1])) A non-trivial finite homogeneous algebra is func-

tionally complete unless it is equivalent to one of the following algebras:
© (2; n) with n(x)=x+1 (mod 2);

(2; s) with s(x,y, 2)=x+y+z (mod 2) (i.e. the two element affine space over
GF (2)); -

(2; 8) with 5(x,y, 2)=x+y+z+1 (mod 2);

2; dy with d(x, y, z)=xy+yz+xz (mod 2);

(3;0) with xoy=2x+2y (mod 3);

the four element affine space over GF (2).

The proof of this result in [1] depends upon the Stupecki criterium. Trying to
prove it by means of Rosenberg’s Theorem, the first author noticed that it suffices
to require Aut A to be quadruply transitive. Moreover, the major part of his proof
used 3-fold transitivity only. This observation led us to the following

Theorem. An at least four element non-trivial finite algebra with triply transi-
tive automorphism group is either functionally complete or equivalent to an affine
space over GF (2).

Remark. Examining the proof presented in the next section one can observe
‘that the hypotheses of this theorem can be slightly weakened so that the conclusion
still remain valid. Namely, it suffices to assume that the endomorphism monoid be
weakly triply transitive in the sense that any three distinct elements of the algebra
-can be sent into any other tree distinct elements by an endomorphism.

It is easy to check that a more than four element affine space over GF (2) has
a triply but not quadruply transitive automorphism group. Hence we get

Corollary 1. An at least four element non-trivial finite algebra with quadruply
‘transitive automorphism group is functionally complete unless it is equivalent to the
Sour element affine space over GF (2).

Corollary 2. An at least four element non-trivial finite algebra with triply
transitive automorphism group is simple or equivalent to an affine space over GF (2).



Algebras with triply transitive automorphism groups 395

This is a sharpening of a result of GANTER, PLONKA and WERNER [3] on the
51mphc1ty of finite homogeneous algebras.

Corollary 3. An at least four element finite szmple algebra with triply transi-
tive automorphism group is functionally complete.

4. Proof of the main theorem

We start with two simple observations.

Proposition 1. 4 finite algebra W=(A; F) is either functionally complete
or P(AMYS Pol ¢ for a relation ¢ (on A) of type (%), (), (0), () or ' '
(¢') an at least binary central relation :

Proof. Notice that if ¢ is a unary central relation or a relation of type (B)
then Pol o fails to contain all constant functions on 4. Thus the statement follows
from Rosenberg’s Theorem.

Proposition 2. Let A be an at least four element finite algebra whose auto-
morphism group is triply transitive. Then any non-trivial term function of W is at least
ternary. In particular, W is idempotent.

Proof. Let feT(A), fbinary, and a=b arbitrary elements in the base set 4
of AU. Then f(a, b)€{a, b}, else there would exist nwcAut A with an=a, br=b
and . f(a, b)n=cq {a, b, f(a, b)}, implying that f(a, b)=f(ar, bnr)=c which con-
tradicts. the choice of c. Similarly, g(x)€{x} for any unary g€T(U) and x€A.
Thus. f(x, x)=x for any x€A. Furthermore, if, say, f(a, b)=a then by the 2-fold
transitivity of Aut ¥, f(x, y)=x for any distinct x, y€4. Hence f is a projection,
what was to be proved.

Lemma 1. Let A be a finite set, |A|=4, and f a non-trivial ternary operation
on A such that the algebra {A;f) is functionally incomplete and has a triply transi-
tive automorphism group. Then '

() f is a minority function, i.e. f(x,y,)=f(y, X, Y)=f(, y, x)=x for all
X, yE A, and for any distinct elements a, b, c€A, f(a, b, c)¢{a, b, c};

(i) PEA; N EPol g if ¢ is a relation of type (a), (y) with p=2, (&") or ({).

Proof. Recall that fturns into projection if we identify any two of its variables.
Suppose that there exist distinct elements g, b, c€4 such that f(a, b, c)€ {a, b, ¢},
say, f(a, b, c)=a. Then the 3-fold transitivity of Aut (4;f) implies f(x,y, z)=x
for any distinct x, y, z€A. Hence the algebra (4;f) is homogeneous, so that by
Csakany’s Theorem (4; f) must be equivalent to the four element affine space over

8



396 Laszl6 Szabo, Agnes Szendrei

GF (2), else it would be functionally complete. However, then f is necessarily the
‘““parallelogram operation” x+y-+4z, which does not satisfy our assumption on f.
This contradiction shows that a, b, ¢, f(a, b, ¢) are pairwise different provided the
first three of them are such. Let a, b, c€4 be pairwise different. Then there exists
an automorphism = of (4; f) which sends a, b and f(a, b, c) into a, b and c, respec-
tively. Hence f(a, b, cn)=c. Consequently,

(#) for any distinct elements a, b, c€A there exists dcA such that f(a, b, d)=c.

Now we are going to show that P((4; /)) EPol ¢ if g is a relation of type («),
(') or ({). We do this by constructing matrices with entries in 4 such that each
row belongs to ¢ but the row of column values of f fails to belong to ¢. We have to
construct various matrices according to the various possibilities for the behaviour
of f when identifying two of its variables. Consider first a partial order = with lower
bound O and upper bound 1, further, let 0<a<1 (a€A4). Owing to (%), we can
choose de A such that f(0,a, d)=1. As regards the behaviour of f when identify-
ing two of its variables, by symmetry, it suffices to deal with the following two
cases: f(x,y,y)=x for all x,y€A or fis a majority function (ie. f(x,y,y)=
=f(y, x, »)=f(y,y, )=y for all x, y€A). Accordingly, the two matrices dis-
proving P({4; f))SPol= are

00 0a
al aa
ﬂ and g4 ¢4
10 la

Let o be a k-ary central relation (k=2) and select (a, ..., a,)€ A*—g. Further-
more, let c€C, the centre of g. By the definition of a central relation, a,, a,, ¢ are
pairwise different, so that, by (%), there exists d€A4 such that f(c, a,,d)=a,.
Now the matrices

C 4y A3...4; a, ¢ az...a
a, Gy Az...0q; ¢ ¢ Qaz...a;
d d d..d ad ¢ g, g5..q,
a, 4y as...aq; a; a, az...a

show that P({4; /))& Pol ¢ whether f(x, x, y)=x forall x, y€A or fis a minority
function. By symmetry, all other cases can be reduced to one of these. Similarly, if -
@ is a k-ary relation of type () (k=3) and ({(a,, s @)EA*—0 then, a,, a,, a;
being pairwise different (by property (c)), there is a d€A4 with f(ay, a5, d)=ay.
Hence the two matrices '

a, a, a; a,... a a, a, a, a4... q

a; a, dg 4y... 4; “ay Ay Gy A4...aQ

d d d d..d ad g, q, a4, a,...q,

al a2 a3 a4... aE al' az as 04...ak
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meet our requirements if f(x, x, y)=x for all x, y€A4 or fis a minority function,
respectively.,

Suppose f is not a minority function, say f(x, x, y)=x for all x, yc4. Then
P({A; ) EPol ¢ for any relation of type (y) or (d). Indeed, assume first ¢ is a
non-trivial equivalence relation, agb, a=b. and agc (i.e. {a,c)€A*—0), a, b, c€A.
Then, by (%), there exists d€A such that f(a, b, d)=c, hence the matrix

AR L
Qo R

8
o

proves P((4; /) E Pol ¢. If in turn o is a relation of type (p), take into considera-
tion that f is essentially ternary, hence in particular, f depends on the third variable,
i.e. there exist elements a, b, c,d€A, c#d such that f(a, b, c)#f(a, b,d). Then
the matrix

a a a a
b a b a
c a d c—d+a

f(a,b,c) a f(a, b, d) a

shows that P({4; ))& Pol o, what was to be proved. By Proposition 1, this con-
tradicts the functional incompleteness of (4;f). Thus f is a minority function.

It remains to verify that if f is a minority function and P({(4;f))S Pol ¢ for
a relation ¢ of type (y) then p=2. This is done by the following matrix:

0 0

Qe a8
Ol O8

0 a
a a
a 0
where 0 is the zero element of the abelian group (4; +), a€ 4 is arbitrary and, by
definition, {(a, a, 0, 0)¢g iff a+a=0.

Lemma 2. Consider a finite set A, |A|=4, and an at least quaternary non-
trivial operation f on A such that the algebra {(A; f) has a triply transitive automor-
phism group and f turns into projection whenever we identify any two of its variables.
Then {(A; f) is functionally complete.

Proof. Suppose f is n-ary, n=4. By Swierczkowski’s Lemma f always turns
into the same, say the first, projection if we identify any two of its variables. Since
£ itself is not the first projection, there exist (necessarily distinct) elements e, (1=i=n)

8*
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such that f(e, ..., e,)>e,. Then f(ey, ..., e,)#e, or e;. We can assume without
loss of generality that f{e,, ..., e,)#e,, i.€. e,, e, and f(e,, ..., €,) are pairwise
different. Hence, 3-fold transitivity of Aut{4;f) implies

(* %) for any distinct elements a, b, c€A there exist elements ds, ..., d, such that
f(a’ b’ daa cres ‘d,,)=C.

By Proposition 1, we are done if we show that P({4; f)) is not contained in
Pol ¢ for any relation g of type (), (), (6), (¢") or ({). To this end we have to con-
struct matrices with entries in 4 whose rows belong to ¢ but the row of column
values of f fails to belong to g. The five matrix schemes corresponding to the five
types are the following:

@0 0 (y)a aaa O a a : !
b 1 b aba b a .
d; 1 dy, a a d, d; d
d, 1 d, a a d, d, d,
1 0 c a a a c a
() c a, a;...q, © ay, ay, a; a,...a;
ds 4, dg... 4 as azAaa ay ... d;
dy dy ds...ds dy dy dy dy...dy"
d, d,.d,..d, d, d, d, d,..d,
a, a; az...qa;, (k=2 a, a, as a,...aq, (k=3).

If g is a partial order, 0 and 1 denote the lower and upper bounds, respectively, b
is another element, 50, 1. The existence of the elements d;, ..., d, is ensured
by (* *). Similar argument can be applied in the other cases, too. In case (y) q, b, ¢
are arbitrary distinct elements of 4 while in case () a, b and ¢ are selected such
that a=b, agb and agc (i.e. {(a, c)€A*—9); ds, ..., d, is chosen according to (* *).
Finally, if ¢ is of type (¢”) or ({) then we fix a k-tuple {a,, ..., a,)€ 4*— 9. By defini-
tion, its components are necessarily pairwise different, moreover, if o is a central
relation, none of them belong to the centre C. Thus ¢(€C), a,, q,, resp. a,, a;, &
are pairwise different, hence (# ) implies the existence of the elements d,, ..., d,€4
completing the first columns of the corresponding matrices.

Lemma 3. Let U=(A4; F) (|4|=4) be a functionally incomplete non-trivial
finite algebra with a triply transitive automorphism group. Then '

(1) U has a unique non-trivial ternary term function m. It is a minority function
and has the property that for any distinct elements a, b, c€ A, m(a, b,-c)e{ {a, b, c};
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- (ii) any non-trivial quaternary term function h of W satisfies the identities
'y Y

) h(x, x,y,2) = m(x, y, 2),

)] h(x, y, x, 2) = m(x, y, 2),

(3) h(x,y, z, x) = m(x, y, z),

C)] h(x,y,y,2) = z,

R h(x,, 2.2) = ,

(©) h(x,y,2,3) = z,

(7) h(m(x, y, 2), x, y, z) = m(x, y, 2),

or arises from such a term function by interchanging its variables.

Proof. Let n denote the minimum of the arities of non-trivial term functions
of . By Proposition 2, n=3. If n=4, arbitrary non-trivial n-ary term function
[ turns into projection when we identify any two of its variables. Hence, by Lemma 2,
(4; f) (consequently, also ) is functionally complete, contradicting our hypothesis.
Thus n=3, i.e. A has a non-trivial ternary term function. By Lemma 1, every such
term function enjoys property (i).

In order to prove uniqueness we first show that for any non-trivial ternary term
functions f, g€ T(2), the following identity holds:

(® flgx,y,2), v, 2) = x.

Indeed, f(g(x, ¥, 2), y, z), being a ternary term function of U, must be a minority
function or a projection. Since by the identification x=y we get x, the former
case is excluded. Thus f(g(x, y, z), ¥, z)=x or y. On the other hand, by the identifica-
tion x=z we also get x, so the proof of (8) is concluded. Taking into considera-
tion that (8) holds for any f, g€ T(U), in particular for g=f, too, we get the
identity

g(xa Y, 2) =f(f(g(x’ ¥, Z)s Vs Z):ys Z) =f(x, ¥, 2).

This completes the proof of (i).

Let /4 be a non-trivial quaternary term function of . If we identify any two of its
variables, we either get a projection or the (unique) non-trivial ternary term function m.
The latter must occur at least once, otherwise, by Lemma 2, the algebra {(4; 4) (hence
also A) would be functionally complete. Suppose e.g. that A(x, x, y, z)=m(x, y, 2).
Thus h(x, x,z,z)=x, so that A(x,y,z, z)=x or y (since neither h(x,y,z z)=z
nor h(x,y, z,z)=m(x, y,z) can hold). We can assume without loss of generality
that A(x, y, z,z2)=y. So far, we have (1) and (5). They imply

(I) h(x’ x’ x’ Z) = Z’ (II) h(x’ x’ y’ x) = y9
n hx,y,y, )=y, (AV) h(x,y,x,x)=y.



400 Laszl6 Szabd, Agnes Szendrei

By (Il) and (IID) A(x, y, z, ¥}#£x, y, m(x, y, z), which proves (6). Similarly, (I) and
(IV) exclude all possibilities for A(x, y, x, z) but (2). (4) follows from (I) and (III),
while (3) from (II) and (IV). In order to verify (7) one has to check that
h(m(x, y, z), x, y, z) is a minority function, which is straightforward by the preceding
identities. The proof is complete.

Now we are ready to prove our main result formulated in Section 3.

Proof of the Theorem. Let WU=(4; F) (|4|=4) be a non-trivial finite
algebra which is functionally incomplete and has a triply transitive automorphism
group. By Proposition 2, U is idempotent and has no essentially binary term func-
tion. On the other hand, by Lemma 3, 9 has an essentially ternary term function.
We are going to prove that 9 has no essentially quaternary term function. Suppose
the contrary and choose an essentially quaternary A€T(2) such that it satisfy
identities (1)-—(7) in Lemma 3. Since % depends on its first variable, there exist
elements a, b, c,d¢A such that h(a,b,c,d)=h(b, b, c,dy=m(b, c,d). Then the
matrix

\
Qo ofN
Qo oo

ab
b b
b b
b b
h{a, b,c,d) h(b,b,c,d) b b

shows that P(A)E Pol ¢ if ¢ is a relation of type (y) with p=2. By Lemma 1,
P E Pol ¢ if ¢ is a relation of type (), (y) with p=2, (¢’) or (). Thus P(W)ES
CPolp where ¢ is a non-trivial equivalence relation. Select distinct elements
a’, b, ¢’€ A such that a’gb’ but a’gc’ (i.e. {a’, ¢')€ A*—p). Assume first 4(a, b, ¢, d)=a.
Then, by (7)

) h(a, b, c,d) # h(m(b, ¢,d), b, c,d)=m(b, ¢, d)

where a, m(b, ¢, d) and h(a, b, ¢, d) are pairwise different (a=m(b, c,d) would
imply equality in (9), contradicting the choice of a, b, ¢, d). Hence, by the 3-fold
transitivity of Aut 2 there exists n€Aut A which sends m(bd, ¢, d), a, h(a, b, c, d)
into a’, b” and ¢’, respectively. Thus we have the matrix

a b
brn brn
cn ocn
dn dn

’ 7

a ¢

with its rows belonging to ¢ but a’gc’, contradicting the inclusion P(W)E Pol g.
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Assume now that #(a, b, ¢, d)=a. Then, by (1) and (7)
(10)  a=h(a,b,c,d) = h(b,b,c,d)=m(b,c,d) = h(m(b,c,d), b, c,d).

Thus a, b, m(b, ¢, d) are pairwise different. (10) implies immediately that a=b,
mb, c,d). If b=m(b, c,d) then by Lemma 3(i), b, ¢, 4 are not distinct, so that,
since m is a minority function, we have ¢=d. However, then by (5), A(a, b, ¢, d)=
=b=h(b, b, ¢, d), which is impossible by (10). By the 3-fold transitivity of Aut U
there exists an automorphism n sending a, b, m(b, ¢, d) into.a’, b’, ¢’, respectively.
Hence we get the matrix
4 a b
v b
cn cn
dr dr

’ s

a ¢,

again contradicting the inclusion P ()< Pol g.

It follows from the foregoing argument that 9 has no essentially quaternary
term function. Thus A satisfies the hypotheses of Urbanik’s Theorem, so that A
is equivalent to an affine space over GF(2) or arises from such a space by adding
new at least r(=5)-ary fundamental operations among which there is an essentially
r-ary operation which turns into projection if we identify any two of its variables.
However, by Lemma 2, the existence of such an operation would imply functional
completeness. Hence U is equivalent to an affine space over GF(2), what was to
be proved.
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The function model of a contraction and the space L'/H]

BELA SZ.-NAGY and CIPRIAN FOIAS

Recently, new techniques were invented for obtaining invariant subspaces for
rather general classes of operators on Hilbert space, see [2}—[5]. The present note
constitutes a first step to exploit similar techniques in the understanding of the
fine structure of the functional model, in the sense of [1], of completely non-
unitary contractions.

1. Recalling the canonical model of a completely non-unitary contraction on
a separable Hilbert space we consider a contractive analytic function {€, €, @ (1)}
on the unit disc D={4: |A|<1}; € and €, being separable Hilbert spaces. Setting
A=A4(e")=(I—0(e")*O(e"))"/* we define the Hilbert function spaces

(1.1) R, = HYE )AL} G), $=K,0{Owddw: we HX(E))

(see [1], Chapter VI). P4 will denote orthogonal projection of &, onto $.

We shall also have to do with spaces L', HY, H,, H>, all with respect to nor-
malized Lebesgue measure dm=dt/(2r) on the unit circle {e": 0=¢<2n}. Recall
that H* is the Banach dual of the factor space L!/H,, through the bilinear form

(fuy= [fudm (fel',ucH"),

f—f" denoting the natural map of L! onto L'/H, (see e.g. [6]).

With any (ordered) pair {i, k} of elements of H we associate the element Ak*
of L! defined by
(1.2) hic*(e™) = (h(e™), k(e™))e,0e (0 =1 < 2m).

For sake of simplicity we shall also write, for any f€L!,

|l instead of (£ sy

and scalar product and norm of vectors without subscript will always mean those
in the space $.

Received July 20, 1978, and in revised form August 20, 1979.
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2. With the operator valued function {€, €, ©(1)} we associate the multi-
plication operator

@1  6,: HG) ~ HX(,) defined by (0, u)(e") = O(eMu(e") (uecH(E))

and its adjoint @% (i.e. the coanalytic Toeplitz operator denoted in [6] by T ©@7));
we have

22 (@%u)(e") = [0(e")*u(e)], (u€ HY(E)),

where [ -], denotes the natural orthogonal projection of any (scalar or vector valued
function space) L? onto its subspace H?2.
Observe that for any fixed p€D the function

2.3 () = (1—ah™

belongs to H2, and has norm
1Dullr: = (1 =[u[®»-*2

It is easy to deduce from (2.2) that
2.4 0% (p,a) = p,O®()*a for any acC,.
The following functional #¢ on H? will play an important part:

*

(2.5) ne(p) = infsups(e,a), where s(@,a) = M‘M (=0 if pa=0)
AcPacA “‘Pallm(m)

and & denotes the family of subspaces of €, with finite codimension.

Obviously, ng(cp)=ne(¢) for any complex number ¢=0. By virtue of (2.4)
we have, in particular,

2.6) Ne(p,) = inf sup 12 dle

AcPacy lale,

In what follows we shall assume that €_ is infinite dimensional.
Lemma 1. Given any sequence {goj};“’ of elements of H? there exists an ortho-
normal sequence {a,}y in €, such that,

1 .
(27) s((pjs an) = '18((01)'!_'; for J= 15 2a sy N= 132: sere

Proof. By virtue of the definition (2.5) there exist U; ,c # (j=1,2,...;n=1,2,...)
such that

1
sup s(p;,a) = rze(<p,-)+;-

aeilh,,



The function model of a contraction and the space LY/ H¢} 405

Set .
Wy=( V Ut)t (=12, ..)

1=j=n
1=m=n

Clearly, W, c®, U,cU,_;, and A,CU; , (1=j=n, | =m=n). From the last inclu-
sion we infer

1
Sélg[l) s(pj,a) = sup s(¢;,a) = ne((p,-)+—n—.

a€y,

Choose inductively a sequence {a,};” of unit vectors in €, such that ,£U, and
that g, be orthogonal to ay, ..., a,_, (n=2, 3, ...). Then we shall have (2.7.)

Notice, for further use, that each infinite orthonormal sequence weakly con-
verges to 0.

3. A subset & of the (open) unit ball 2 of H? will be called dominant if

3.1 sup (@) g2 = lulg- for every ucH=.
L4

This' is an obvious analogue of that a subset S of the unit disc D be dominant
in the sense of [8], namely that

3.2) sup lu(p)| = ullg- holds for every ucH™.
neES

Moreover, if S is dominant in D in the sense (3.2) then
(3.3) Fs={1—|uP"p,: pes}

‘\
is dominant in 2 in the sense (3.1). Indeed, %2 is obvious and in analogy with
(2.4) we easily obtain

fup,ly = p‘,m for uc¢H> and pcD.
Hence,

(3.4 MEE(L — k2 py) s e = lu(
so validity of (3.2) for S implies that of (3.1) for &%.

Lemma 2. If & is dominant in the unit ball 2 of H?* then the convex hull of
the set

(3.5) ' {Wp): v, ¥ e}

is dense in the unit ball of L'/H}.
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Proof. If not, there exist in the Banach dual H= of LY/H, an element u and
a unit vector fin L!/H; such that

(3.6) Re(f", u > sup Re (), u) = supsup| figy dm| =
zég PEL YED

= supsup | [{ag], Y dm| = sup |[ig] s
PEFYED 134

& being dominant in 2 the last member equals ||#||4~, and hence is =ZRe (f, ),
in contradiction with the strict inequality in (3.6).

4, For fixed o€ H? and ac€, we denote

“.1) poa = Pg(pa®0).
It is easy to show that

(4.2) poa = (pa—O[0%¢a],)D(—4[0* pa],).

For any h=hy@® €S (he€ HX(E,), h€ AL} (€)) we have therefore

@3)  (@od)k* = 9@ hy)e,~ (O10%pal, , ho)e,~ (410*9dl,  hy)e =
= ¢(a, he,—([0* pal ., O hy+ Ahy)e,

where the last term belongs to H} since

4.4) hy &L ©* hy+ ARy € L2 (€) © H(€)
because of the definition (1.1) of H.

Therefore,
@.5) (@oa)h* =tp(a, hy)g, mod Hy.

It also follows from (4.3) and (4.4) that

(4.6) h(poa)* = (poa)h* = @(ho, A)e,— (h2, [O% 9a] ;)¢

Suppose {a,} is a sequence of vectors in €,, tending weakly to 0. Then by (4.5)
and by the Lebesgue dominated convergence theorem,

I(Poa) i 3/3 = 10(@ns ho)e, s = I llge [ [ |20, ho(e)[2 dm]' ~ 0 (2~ 0).

We shall also show that [|h(poa,*)||.1z3—~0. Since [@(ho, a,)¢li;n—~0 by part
of the preceding argument, by (4.6) it suffices to prove that

@7 I(he, [O* 9a,] el -0 as n—0.
It even suffices to prove (4.7) for p=¢™ (r=0,1,...). Indeed, (4.7) then holds
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for all partial sums @y(e”) of the L2-expansion (p(e"‘)zf ¢, €™, and since {a,}
is bounded, say |la,ll¢, =4, we have, setting Yy=¢ — oy, ’ ' -
@.8)  l(he, [0*Ynadele, = [ IholellO* Yinas), e dm =

= ||h2|lL2(e) ||[@*¢Nan]+"L;(CE) = ||h2”L2(<£) "‘/hv”uﬁAa

and this bound is independent of n and as small as we wish upon choosing N large
enough. .

Now to prove (4.7) for p =™ (r=0) observe thatif @(1)=0,+10,+120,+...
then we have

[@ (e"')* e"”a,,]; - Zr' @'_J_eijxa”’
- j=0
and hence,
. N b r
I(hs, [©*e™a,) el = fl .Z(; (™' O;_;hy, ay)g,| dm,
= o

which tends to O as n—’—O, again by the weak convergence of {a,} to 0 and by the
Lebesgue dominated convergence theorem.
So we have proved, in particular,

Lemma 3. If {a,} converges to O weakly in Q?,; then for any @€H? and h€$
we have
I@oa)h*|| g — 0,  |h(@oa)* |y ~ 0 as n—>o.

We shall also need the following
Lemma 4. For all ¢, ¢ H? and ac€, we have.

(4.9) Iwoa)(poa)* ~y@llale) ymy = 1Wn2O% 0a] g lalle, -
Proof. By Qirtue of (4.5) and (4.2) we have

(Wop)(@oa)* = ¢(a, pa—0O[O0*¢d],)e, mod Hy:

(@, @10*al ez = ¥zl s, 9% 0al s
(in:analogy to (4.8)) we conclude to (4.9).

Because

5. Next we prove the following

Lemma 5. Suppose €, is (countably) infinite dimensional and suppose h, k€9,
O1s eors Ops Y1 ..., Y,EH? and =0 are given. Then there exist W, k'€$ such that

G0 e mriy—me =30, . = SWlelotanee) e,

LY/H§

(-2) 17 = 2 le I€)? = Z @ ;ll72 -
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Proof. Let =0 be fixed and choose by virtue of Lemma 1 an orthonormal
sequence {a,} in €, such that

1 .
19% 0elure = (16@) + =) lolus for j=1,.,r and n=zr.

Hence, and from Lemma 3 we deduce that for n large enough, say for n=n,, and
for j=1, ..., r we have '

5.3 1o% Q;llare = (’70(‘Pj)+5) llo;llge
and
G4 lh(@joa) Iy = 6, |(Yj0a)k |y = 6.

Again by virtue of Lemma 3 we can choose, step by step, the integers (n,=)n, < ‘
<ny=<...<n, such that

(5:5) IWica,)(@j0a) I yr = 6, (Y 0a,)(9i0a,) Iy 1 = 6
=1L ..,rni=1..j-1;n=ny.

Rename a, by b; (j=1,...,r) and set

(5.6) h = ;(dzio ), kM= %’((pjo D]

Then we have

(h+K)(k+ K'Y —hk* — 30,07 = W + KR+ KK — 30,0, =
1 1

= Shlppob)+ 3 Wiobpk + 3 [W10b)(@s00) ~ )] +

r j—1
+ 212; [(‘//iobi)(¢j°bj)*+(¢j° j)(‘Piobi)*] = Q.
j=li=

Taking account of (5.3), (5.4), (5.5), and Lemma 4 we deduce that

r—1D . rir—1)
3 o+ 3 é

r r
1920 22 = r5+’5+%' 1V ;1la2(ne (@) + ) l@;lluz+

so we arrive at the conclusion (5.3) by choosing 4 small enough, namely such that

[0+ ZWtnton]s = e

Finally, (5.2) follows at once from (5.6) and (4.1); e.g.,

2

=

2

= 3 W5 Wus(by, be, = 3 IW,1°

H¥Ey)  Jii=

I#)® = ’ Py [é’ ‘ﬁjbj@o) %"'ijf

because of orthonormality of {b;}].
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Remark. The pair 4, K’ can obviously be replaced by any of the pairs A, k™
(n=1, 2, ...) defined by

&N A = jgl' W;0b;4m), K = ;é'l (@0b;+n)-
Then, for every 1¢ 9,

Toh®* | O [* [l @y J) p*
tend to O in L'/H as n—co.

6. Now we are going to establish the main result of this paper.

Theorem. Suppose {€, €,, O(R)} is a contractive analytic function, with separ-
able €, €, and dim € =<, and suppose that for some 9, 0<9<1, the set
F={pcH?: |olas =1, 10(p) = 9}
is dominant in the unit ball 2 of H®. Then
{(hk*) : h, ke D} = L'/H}.
i.e. every feL' has a representation
f=hk*mod H} with hke$.

Proof. Consider an fe€L' with || f|l,1,a3=ve; it does not restrict generality
to assume vy=1. Choose a number ® such that 3<w<1 and set v,=w"
w.—_

&, = _2L9_ ®; then

6.1 Vepr = v+ 26

Setting Ag, h_y, ko, k_,=0 (in $) we are going to prove that there exist &, k€ H
(s=1,2,...) such that

N f— kSl pymr = vs
6.2) (s=1,2..).

”hs_hs—1”2 = Vi1, ”ks'"ks—lll2 = Vs

This being obvious for s=0 we shall proceed by induction. Suppose 4, k,
have been already found for s5=0, ..., ¢, satisfying (_6.2), and perform the step
g—+q+1 as follows. Set

(6.3) [ =fr—hk;;
then | {2, g3=v, by (6.2) for s=q. It now follows from Lemma 2 that there exist
0,€%, W€D, ¢;=0 (j=1, ...,r), with 3 c,=1 and

1

(64 If'—FZl VP = B0
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On the other hand, from Lemma 5 it follows that there exist

hq+1=hq+h,, k

q

1=k, +k’€9 such that

(6.5) hysrk i —hok} -jgl cive¥;0; o =
= _21“chvq'»bj”muvcj"q‘l’i“m ne(9)+¢, = 21 Cjved+e, = v, 945
i= j= :
and

66) Mo = = SVervillie = v Mokt = 3 Wervaoflin = v,
Jj= ) . J=L

Because of the relation

f=hgirkgss = (f’— 21 c,-vqtﬁjgo_j] - (hqhk;‘u —hokg — _Zl'cj"q‘/’j‘l’_j) ;
i= ) i=
from (6.4), (6.5) and (6.1) we deduce ’
6.7 If— hq+1kZ+1"L1/H‘l, = v +26 = vgua3

and (6.6), (6.7) yield (6.2) for the A ., k4, just defined. The construction by induc-
tion is thus established for all s.

From (6.2) now follows that 4, k, converge (strongly in $) to some limits 4, k,
and that h.k* converges in L'/H; to f°. Since h,—h, k,—~k obviously also imply
A k* —hk*|| .2 ~0 we conclude that | f— hk*|) tyyu3=0; thus completing the proof
of the theorem.
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A note on the Radon—Nikodym theorem
of Pedersen and Takesaki

JURGEN TISCHER

0. Introduction. The Radon—Nikodym theorem of PEDERSEN and TAKESAKI [4]
shows the existence and uniqueness of-a density of certain semi-finite weights v
with respect to a given normal, faithful and semi-finite weight ¢, the density being
a self-adjoint, positive operator. Here, it is shown that — with a suitable extension
of the definition of a density — this theorem remains true without the assumption
of semifiniteness of the weight . Paragraph 2 sums up some facts about projec-
tions which are used in the sequel. '

This paper is based on the first part of the author’s thesis which was supervised
by Professor D. Kolzow. The author would like to express his gratitude to Professor
Kolzow for his constant assistance and encouragement which were formative in
the preparation of this thesis.

1. Basic notations and definitions. Let 2 be a von Neumann algebra. A weight
@ on A is a map defined on A* with values in R¥:=R+U{e} which is additive
and positive homogeneous (0o :=0). :

A weight ¢ on U defines the left ideals

n,:= {A€U|p(4*4) <=} and N, := {4cA|p(4*4) = 0}

N

and the convex cone :
m} = {AcUA*|[p(A4) <o}

The weight ¢ is called faithful if it is strictly positive, semi-finite if the identity
of U is the ultraweak limit of elements of m}, and normal if ¢(sup 4,)=sup (4,
for every increasing bounded net in A+,

If ¢ is semi-finite, normal and faithful, then on n, an inner product is defined
by (4, B):=¢(B*4) (¢ the canonical extension of ¢ to m,:=m}—m}=n%n).
The usual Gelfand—Naimark—Segal construction gives a faithful, normal represen-

Received April 20, 1978.
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tation m, of A on H,, the completion of n, with respect to the inner product (., .).
The involution * of A extends from n,Nn; to a closed conjugate linear operator
S on H,. If S=JA"® (the polar decomposition of S) then J is a conjugate linear
isometry and 4 is a self-adjoint, positive, non-degenerate operator. Every t€R
defines a unitary operator 4" on H,, A—A7"A4" leaves n, () invariant and
so gives rise to a *-automorphism o, of A. The strongly continuous one parameter
group X, :={o,|t€R} is called the modular automorphism group of ¢. The weight
¢ fulfils the Kubo—Martin—Schwinger (KMS) condition with respect to 2,
forall 4, Bcn,MNn} there is a continuous, bounded function fon {z€Cl0=Im z= 1},
holomorphic in the interior and such that for all €R .

f(t) = (p(ax(A)B)’ f(t+l) = (p(BO',(A))
If 2’ is a strongly continuous one parameter group on A and ¢ is KMS with

respect to 2/, then X'=X,.
A semi-finite, faxthful normal weight ¢ is a trace iff )J is trivial.

2. Semi-finite projections. Let ¢ be a fixed normal weight on . If AEN,NA*
and if E is the spectral measure of A4, then supp A=sup E(]l/n, =[). Now,
0=1/nE(Ql/n,~D=A4, so E(l/n,[) isin.N, (since ¢ is additive), and we have
that supp 4 is in N, (since ¢ is normal). , ,

It follows that given two projections P, Q€N,,, their supremum (in the set of
all projections of W) PV Q=supp (P+Q) is again in N,. So the set of all projec-
tions in N, is an increasing family with supremum P,. Since ¢ is normal, P, is
again in N, hence (CoMses [1], p. 75): The set of all projections of N,, has a largest
element P,,.

Remarks. .

‘a) If A€N,, then supp A*A=supp4 is in N,, so suppA=P,. Thus,
A=A supp A=AP, and N,CUP,. Since N, is a left ideal and P,EN,, it follows
that N,=UP,.

b) If g is a *-automorphism of U and if ¢ is g-invariant, then ¢(g(P,))=
=¢(P,)=0(g~(P,))=0, so g(P,)=P,=g 1(P,) and P, is g-invariant.

The following example shows that the set of projections of m} is not an increas-
ing family.

Example. Let H be an infinite-dimensional Hilbert space with an orthonormal
basis (e,),n. Define U:=L(H), for ne¢N define f,€H by

Joi= (=12 ey, 1 +(1/27) ey,
and define projections P, P,€ ¥ by

P, = 2;92:.—1®92n—1, Py:= g;fn®f;l'



A note on the Radon—Nikodym theorem of Pedersen and Takesaki 413

Define the weight ¢ on U by

Then ¢ is normal, ¢(P)=0, p(Id)=- and ¢(e,®e,)=1 for all neN. Since
Id=P,+ > e,,&e¢,,, this.shows that ¢ is semi-finite.
n=1

(p(P2) ol 2 (P262ns e2n) - 12 ((eZan)fn: e2n) - Z |(82n’f)|2 Z 1/2'l = 1

Now, it is easy to see that P,VP,=Id. Thus we have: P, and P, are in m} and
P,VP, is not, i.e. the set of all projections in m; is not an increasing family.

Definition. Let P be a projection in 2.

a) P is called semi ﬁmte (with respect to @) if the restriction of ¢ to PU*P
1s semi-finite;
. b Pis calléd o-finite (with respect to @) if there is a sequence (P,), ¢ of mutually
orthogonal projections of m;} with P=3'P,..

Clearly, every o-finite projection is semi-finite.

2.1 Lemma. A4 projection P of W is o-finite iff there is an Acwm] with
P=supp A.

N

Proof. Let P be o-finite, P:Zw'P” and P,ém/. One can assume that

n=1
¢(P)#0 for all n. Define 4:= 2’ (1/2" max (¢(P,), 1)))P,. Then ¢(4)=1,
AEm*. On the other hand, supp A P. To prove the other direction, let 4 be in
my and P:=supp A. Let E be the spectral measure of 4. Define E;: E(]l oo[),
E,;=EQln,1)(n—1)[) for n=2. Then 1/nE,=4, so E,m} and P= Z E,.

n=1

2.2 Corollary. With Py, P, o+finite projections, P\ P, is o-finite.
Proof. Let 4,, 4, be in m; with supp 4,=P;. Then supp (4,+4.)=P,VP;.

2.3 Proposition (Characterization of semi-finite projections). Let
P be a projection in . Then the following are equivalent:
a) P is semi-finite;
b) P=VP,, where (P),., is a family of o-finite prOJecttons,
¢) P=VP, where (P);, is a family of projections in m} ;
d) P=sup P;,, where (P);c, is an increasing family of o-finite pr0]ectlons

9*
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Proof. a)=b): Assume b) false and a) true
Define &:={Se¢U| S o-finite projection, S=P}, Q:=P— VC

By assumption @0, so there is an ultraweakly continuous state f on A with
E:=supp f=Q. Now, if (4);¢; is a net in PUAPNm; converging ultraweakly to
P, then for all i€I, supp 4, is o-finite and supp A,=P; thus, supp 4; is in €, i.e.
A4,0=0. Now, |f(P—A4)|=|f(E(P—A)E)|=|f(EPE)|=1, which is a contradic-
tion to (4;) converging ultraweakly to P. The proofs of the other implications are
easy consequences of the definition of o-finite. *

2.4 Corollary. For every family (P,) of semi-finite projections, VP, is semi-
finite.

2.5 Corollary (cf. PEDERSEN—TAKESAKI [4]). The set of all semi-ﬁnité projec-
tions (with respect to @) contains a largest element denote{d by Q,. -

2.6 Corollary. If g is a *-automorphism of W and ¢ is g-invariant, then Q,
is g-invariant. : ° ’

Proof. The Proposition shows that
0, =V{P| P projection, Pcm;}.
This set is g-invariant by assumption and g is a *-automorphism, thus

2(0,) =V{g(P)| P projection, Pem}}=Q,.

If H is an infinite-dimensional Hilbert space with an orthonormal basis (e,), ¢ x>
then ¢:=>n-w, defines a normal, semi-finite weight on A:=L(H).

If x:= D e,/n and P_is the projection on (x), then ¢(P,)=co. Every A€P AP,
neN
“is a multiple of P, so P, is not semi-finite. This shows that if 2 is a semi-finite projec-

tion and Q is a projection with Q=P, then Q is not necessarily semi-finite.. How-
ever, if ¢ is semi-finite, normal and faithful and if P is Z,-invariant, then P is semi-
finite (cf. COMBES——DELAROCHE (2. For then by [4], thm 3.6, Pm,cCm, and
mq,Pcmq, so, if (4,) is a net in m} which converges ultraweakly to the 1dent1ty,
(PA4,P)is a net in PAPNm; Wthh converges ultraweakly to P.

" 3. The Radon—Nikodym theorem. For the rest of this paragraph let % be a
von Neumann algebra and ¢ a semi-finite, normal, faithful weight on . The von
Neumann algebra of all invariant elements of A with respect to the modular auto-
morphism group Z, will be denoted by %°. '

For the convenience of the reader some of the notations and results of [4] wnll
be given.
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Let H be a self-adjoint, positive operator in U?. Then, the map A —q@(HY2AHY)
is a normal, semi-finite, Z,-invariant weight on 2, denoted by ¢y. If H is a self-
adjoint, positive operator affiliated to 2A?, then for every &=>0 the operator H, is
defined by H,:=H(l+¢H)™*. Then, H A" and the map A—»sup ¢y (4) isa

normal, semi-finite, X, -invariant welght on 2, again denoted by @y.
Then, the main result of [4] is the following:

Theorem (Radon—Nikodym theorem of Pedersen and Takesaki). Let Y be
a semi-finite, normal X ,-invariant weight on . Then, there is a unique self-adjoint
operator H affiliated with N? such that y=qy.

There is a commutative analogue of this theorem, cf. [3], p. 245, lemme 1:
If 9 is commutative, i.e. isomorphic to an L*~(Z, u) with locally compact Z
and positive Radon measure p, denote by ?/)\‘“ the set of all positive, measurable
functions on Z with values in R* modulo locally null-functions. The weight ¢ is
then a semi-finite, normal, faithful trace on . Then, for every normal weight

Y (=normal trace) on U there is a unique H€§‘ such that
J(4) = p(HA) for all Ae3,

where ¥, ¢ denote the canonical extensions of  and ¢ to 3*.

Here, y need not be semi-finite. In the following it is shown that the same is
true for the theorem of Pedersen and Takesaki with a suitable definition of the
density H. '

Definition. Let B be a von Neumann algebra. A spectral measure on the
Borel sets B(R™) of the extended positive real line with values in the set of self-
adjoint projections of B is called a (B-valued) extended spectral measure. The set

of all B-valued extended spectral measures is denoted by 2/3\’”
3.1 Lemma. If EEQIW and AEW*, then the map m,, 4 on BRY) with values
in R+, defined by

_ - my, 4(4) = (p(E(A)AE(AQ) (deB(R*))
1S a measure on . ’

Proof. Since E(4)€W?, prop. 4.1 of [4] shows that m,, 4 is additive. The spectral
-. measure E is o-additive and, by prop. 4.2 of [4], the map E(d)—~¢(E(4)AE(4))
is normal.

N
Definition. Let E be in A¢*. For AcUA* define m, 4 as in Lemma 3.1.
Define ¢z: A+—~R* by

os(d):= [Adm, () (= [2do(E,4E)) (AeUM).
R+ . R+ :
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A~
3.2 Lemma. If ECU®*, then ¢ is a normal and X ,-invariant weight on U.

Proof. By [4], prop. 4.1 the map A—@(E(4)AE(4)) is a weight on U for
every A¢B(R*). Thus, the map ¢ is additive and positive homogeneous.
Next, take a g€Z,. Then, for all AcUA* and for all 4¢B(R*) we have

@(E(4) g(A) E(4)) = ¢(E(4) AE(4)),

from which it follows that ¢ is Z-invariant.
Now, we show that ¢ is normal Take an 1ncreasmg family (4,) in A+ with
sup A4;=A. Then by the positivity of all occurring values the following holds:

0e(d) = [Adg(E,4E) =
R+ :
=sup{ 3 1;0(E(4)AE(4))|Z 4;=R*, J;=inf4;} =
=sup{> 2;0(E(4)) (sup 4) E 4p)}=
= sup sup {Z2j0(E(4)AE@4)))}=

= SUp @ (4)-
The following lemma shows that the definition of ¢ is indeed an extension of
the definition of ¢4 by Pedersen and Takesaki.

3.3 Lemma. Let H be a self-adjoint, positive operator affiliated to.N®. If E is
the canonical spectral measure on B(RY) defined by H, then @gz=0;.

Proof. Take A€A*. Firsf, if f is a simple real-valued function on ﬁ*;
f=§'aildl,'we have ’
i=1

ora D) = 3 00(Lo(H)ALL () = [1() do(E; AE,).
. i=1 R+

Next, take an increasing sequence (f,) of simple functions which converges to
A(14ei)~L. Then H,=supf,(H), so '

0, (4) = 5Up @,y (4) = sup [£,()do(E; 4E) =
ﬁf
= [1(1+2))" do(E, AE)).
=
Finally, by definition we have

ou(4) = 58, (4) = sup [ 2(1-+e1) dop (B AE)) =

- R*

= [ 1do(E; AE;) = pz(4).
R+
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3.4 Theorem (Radon—Nikodym theorem of Pedersen and Takesaki — gen-
eralized version). Let yr.be a normal X ,-invariant weight on W. Then, there is a unique

EeN®" such that Y =qg.

Proof. Existence: Define 9:=Q,AQ,. For a map f on. A* define f to be
the restriction of f to 2+.

Since Y is Z,-invariant, so is Q, (2.6), i.e. Qu€U? and so Q, is semi-finite
with respect to ¢ (see the end of § 2). Thus, (p is semi-finite, normal and falthful and’
y is semi-finite and normal. .

We show that i is Z ;-invariant: Since Q,, is Z -invariant, X, leaves 91 invariant;
now, @ fulfils the KMS condltlon with respect to the restriction of 2, to A, so E¢
and Z; coincide. Thus, for all §¢ X; there is a g€ X', such that §=¢; hence z//(g(A))—
P () =¥ (2() = (=T (4) (4€T)

So, the Radon-—Nikodym theorem of PEDERSEN and TAKESAKI gives a unique
self-adjoint and positive operator H affiliated to 9® such that U=0y. If E is

the spectral measure of H, define _EGQ/I‘P\* by RestpgsyE:=E, and E({=}):=

Next we show that y=gg:

Let A be in A™.

Case1: Qj AQ;-#0. Since ¢ is faithful, ¢(Q;A4Q;)=0 and it follows that
@p(A)=ce - go(Q;ﬁLAQ,;'-)—oo Assume that i (A4) is finite. Then, by Lemma 2.1, supp 4
is o-finite, and it follows that supp 4=Q,, and Q AQy =0 which is a contradic-
tion. Thus Y (4)=< and so Y (4)=¢(A).

Case 2: Q, AQJ- 0. Now, since 4 is positive, we have that Q, AQW A (ie.
A€+ and Y(A)=y(4)= <DH(A) Pz, (D=0g(4).

Uniqueness. Suppose F¢ 9o* with Y=¢;. Then Q:=F(R*)EU® so Q' is
semi-finite with respect to ¢. If fis a map on U+, denote the restriction of f to
(QUQ)* by f. Then, ¢ is semi-finite, normal and faithful and q)F( )= f Adp(F. F).

R+
If K is the (canomcal) self-adjoint operator with spectral measure Restpr+) F, then
by 3.3, go,: ¢Rmym+)p Py, SO (Pp is semi-finite by [4], prop 4.2, from which it
follows that Q is semi-finite with respect to ¢r=y. Thus 9=0,=Q, . On the
other hand, if P¢%is a projection with ¢g(P)<eo, then by the faithfulness of ¢,
F({c) PF({=})=0, so P=Q. These facts together give Q=0 (see §2).

In particular, the argument applies to the spectral measure E (where E is as
in the proof of existence), so one has E(R*)= F(R+) (i.e. Y=y =0), and by the

uniqueness of X it follows that E=F.
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On the very strong and mixed approximations

V. TOTIK

1. Let f be a continuous and 2z-periodic function. Denote by E,(f), w(f; é)
and s5,(x)=s,(f; x) its best uniform approximation by trigonometric polynomials
of degree at most », its modulus of continuity, and the k-th partial sum of its Fourier
series, respectively.

If w is a modulus of continuity and r=0 is an integer we define W” H® to be:
the class of those functions f for which w(f®; 8)=K,w(5) (6€[0, 2n]) holds with
some constant K.

In [3], following works of ALEXITS, KRALIK and LEINDLER, we proved

Theorem A. If p,B,y=0 and f€e W H® then we have

h,(f, b B; x) = {( TP 2 2’(k+1)” llsk(x)—f(x)lp} = KHPSm %)

and
1 .
J1 =z 4 n+
o If,p;xl={7k§ Ax:ilsk(x)—f(x)l"} = KHj " [Az=[ ny]],
where '

mt = (e S (peld)] |

Moreover, there are functions fEe W"H® for which

h,(f, p, B; 0)= cHPS" and o}|f, p; O] = cHPA" (n=1,2,..)

Sor some ¢=0.

Received November 29, 1978.

*) K, ¢ with or without subscripts denote constants not necessarily the same at each occur-
rence. \
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LEINDLER [2] raised the question: What can we say about the order of the strong
-approximation if we replace the sequence of the partial sums by a subsequence
«(very strong approximation) or by a permutation of such a subsequence (mixed
.approximation). In this paper we shall deal with these questions.

Our main result is

Theorem 1. Let E,(f)=Ko, (n=1,2,...), where the sequence {o,} satisfies
ithe condition

((1.1) igyi, = Kp, (i,n=1,2,..).

There exists a constant K,, independent of n and of the sequence v={v }—, for
which
1 .
1 2n p
3 s.@s0r =ke 0=0.
N k=nt1

We shall use Theorem 1 to prove

Theorem 2. Let us suppose that fc W' H® where either r=1 or r=0, and
«w satisfies the condition ’

(1.2) i (%) = Ko (%) Gom=1,2,..).

We have for any v, B, p=0 and for an arbitrary sequence v={v,}

1

43 Ay 2 e @ e} = kgt
and : '

1
ay {5 2 4t -rwp} = ez

where K is independent of n and v. _
If,-moreover, for every function fEW'H® and for every sequence {v.} we have

(1.5) {% k=,.22.: JswD~f (")l"}F =0 [‘3‘ @ [%)]

then either r=1 or r=0, and (1.2) is true.

If w(8)=6% (0<a=1) then (1.2) is satisfied and Theorem 2 shows that there
is no difference with respect to the approximation order between the strong and the
very strong approximation of functions in the classes W" Lipax (r=0, 1, ...; 0<a=1).
This is an answer to one of Leindler’s problems (see the last two question of [2]).
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We mention that the assumption “‘either rz=1 or r=0 'and (1.2)” is also
necessary that (1.3) and (1.4) should be satisfied, namely for f=(r41)p we obtain
by Corollary of [3, Theorem 1]

1 , ' 1

{%2’ 184, —f <x)|"}7= 0 [{ Gy 2 2 (k+1)P~ llsvk(x)—f(x>|v} ) =

(0] [ir @ (i]}
n n
so the second part of Theorem 2 is appliéable.

Finally we turn to the mixed approximation. Let N be the collection of the
natural numbers.

" Theorem 3. Let n: N—N be an injection, p=0 and fe W"H®, where either
r=1 or r=0, and (1.2) is true for w.
(i) If 0<B=1 then

1

2By 5 ) = (o S e+ 17 a1 = Keigdn

. oo 14 )
W) If B=1and 2 [Tlr—w[%]] =oo then h,(f,p, B, n; x) = KHL"
k=1

(i) If B>1 and kg[—;,—w(%]] <oo then h,(f, p, B, n; x) = o(HELY,

uniformly in x.
oo p
(iv) If O<p<1 and 2 (k+1)1 [‘]:Tw[’lg]] =oco then
k=1
1

alf, poms =g 2 At @~} = Kepgn.

4
(v) If O0<p<1 and Z(k+1)’“1[ 1 w(llc]] <oo then
a3lf, b, m; x| = o(H2&"),
uniformly in x.
i) If y=1 then ol|f, p, n; x| = KHP>"

The above constant K is independent of =, n and x. :
These estimations are best possible, namely if g,—~0 arbitrarily, then there
exist feW"H® and ¢=0 such that, according to the cases (iy—(vi) separately, there
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are permutations ©n of N for which
Co . cHP B @)
(1.8) ho(f, 05 By 75 x) = qcHEG™ (i)
Aco Hrdm i)
and
' cHPZ™  (iv)
(1.9) alf, p, s 0= e, HEL™ (V)
' cHP " (vi)
are satisfied for infinitely many n. '
Corollary. Under the assumptions of Theorem 3, for

h,(p, )= sup  suph,(f, p, B, n; x)
fro(f;8)=w(d) n; x

and
Un(p’ .B): sup Supaflf, p, 7, xl
Jio(f;N=w(d) n; x
we have

af, HES" = hy(p, B, 04(p, B) = QHPS™" (1> 0,n=1,2,..)
where B*=min (1, ).
2. To prove our theorems we require the following two lemmas.

Lemma 1. [3, Theorem 4] There exists a K, depending only on p(=0) for

which
1

{i P l"} = K, B, (f)log 2,

whenever 1=k, <k,<...<k,=n

Lemma 2. [3, Lemma 5] Let @ be an arbitrary -modulus of continuity. Then
there are functions fe WOH® such that :

(eR)) Isws2(f3 0)—f(0)] > 10~ 2w[ ! ] log 7 (1= e1%n)
is true for infinitely many n.

We can also require that (2.1) be true for infinitely many n belonging to a given
sequence.

3. Proof of Theorem 1. Let k; be the number of those v, for which
. 2Zipn<v,=2*n (n<t=2n,i=01,..).

By Lemma 1 we have

2l+l
S 10~ = Kiu(Eun (D) (10

2in<v,=2i+1p .ki

2i+1h 4
)

13

p
n] = Kkz le‘n [lOg
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and thus it is enough to show that

_ Qz* 2"+1n)" —
where K is independent from v and n.
Now, .
1 Qs (,+1)] [9] [ "]]
S=K,{— I[——— —=2 k;{log—| | = Si+S..
P [n kiz?vo ! @ n ké:) n ngi l+ :
(1.1) gives

SléKi 2 k=K

n k>0

1 Pk, n\* o ’
=K— ¥ . Ze =
S - & L (% o O R (9

(if k,=0 then the last member is missing) where the summation in S,, is extended

to the i’s satisfying the condition —log I ‘=p. We obtaln

k.
Sy =K > — =K.
k‘.>0 h
n . n - . n\?/n .
In S,, we have log —k—>pi i.e. F>e?i, and so (logF) /Fé(pi)"/e”i; hence,
= 1 (pi)r _
S22§ Kl_li_p epi :K.

Finally, (log x)?/x=K, (x=1) and so f—-(logk ) =K,.

\
Collecting the above estimations we obtain (3.1), and the proof is completed.

Proof of Theorem 2. JEW™H® implies by the well-known result of Jackson
that E,,(f)éK%;co [%], thus we. can apply Theorem 1 with g,,:-nl—rco [—-’11—] and.

obtain

{n _,,2_ |Svk(X)—f(x)|p} =K ;},w(i]_
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Using this, we get for 2M0~l<p=2m

. -
A ) —f 00l = Ko7 2 a1+

1

k=

Ty 2 @Y 3 s W-fe] =

L
P

1 a5 m\f—19m 1 1 ? - p,B,n
which is (1.3).

(1.4) resuits by a similar argument using also the Holder inequality (see e.g.
the proof of [1, Theorem 3]).

Next we prove the last statement of Theorem 2. We have to show that if (1.2)
1s not satisfied then (1.5) does not hold for some f and v.

Thus let us suppose that (1.2) is not true. Then for every n there are m, and i,

such that ,
R
i,ol=—|> no|—I|.
2iam,, m,

. 1 1
Since w [5%]5—0)[;], we may suppose that the sequence {1 >, Is increasing

and that m,,,>2m, (n=1,2, ...).
Taking into account that surely i,—c if n—>c, we have 2">¢!% for all
sufficiently large n. Now Lemma 2 glves a function fe WOH*® such that

1
G2 |ssemea(f; O—f©O) = 10~ (log z'n)w[m) O<i=m)
holds for infinitely many ». Hence, if we construct a sequence {v;} for which »
. Vmar1 = 2nm, 4+ 1, vy o = 2m,+2, ..., Vg, = 20m,+m,

for all n (this is clearly possible) then we get for infinitely many n

1

{ml” k=n2-2:1 o (f;‘ 0 —f(0)|P}7 > 10"*(log 2") @ (—2'"1_'",.] =

1_2.[1]14(1]
2—2—10 i,w 2, >710 na)m—"

i.e. fand {v} do not satisfy (1.5).
We have completed our proof.
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Proof of Theorem 3. First we prove (i) for f=1:

m ot 95K Zaw—rer) +ils 3 ksww-ror) s
. a)>n

= KH,‘j’,,}’"+K%m[%] = KHP')",
where we use Theorem A and Theorem 1.
This gives

(3-3) ' kgn; ISz () —=f(OIP = Kk;n; [% w[?)] ,

by which we have for 2™~1<n=2" and for f<1

gm+1

;21 (e 1P 5,00 () —f (O = Kmoé_:,l (emp-1 k=22"" 15200 () —f (P =

=k e F (ot =x 2 ko)) F @v=
=25 & ) =T & e\ & =
. . m=logk— N

el ot m g (ol

and this is exactly (i).

(ii) follows from (3.3) since
1

W50, 675 9 = sy 3 1P o @S OP) = KAz,

’

Now let us suppose that f [%w [—1—
k=1

, .
k)] <oo, Lemma 1 gives that

Zico-rear=x 3 [Lo(y))
by which .

She-swr=x 3 [Lo(H)] <ow 01w,

Let e=0 be arbitrary and let us choose M so that

2'; Ise () —F (P <&
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be satisfied for all x. If N;orgii)gln*l(i) then

LY Z (k+1)F1 [ 2y () _f(x)Ip =

(n+1)
- (N+1)P-t M _ , 1 . _ »_
= Ty & OO Gy ,.(,fM("H)ﬂ 5200 ()~ ()]
= o)+ = 3 () —fIP = -2

n+l l

for all »n large enough. Thus we have proved- (iii), too.
(iv) follows from (i):

1 n l
a)lfp, m; x| = K{ml—)ykg{) (’H—1‘k)y_1|5n(k)(x)—f(x)|p}p =

= k{1 s n s P] =KHz
where we used the inequalities
a@k* = A = @k (@>-1, c;(@)=0, k=1,2,..):
(vi) could be proved similarly with the aid of (ii) and (iii).
o 14
Finally let us suppose that y<1 and 2 (k+1)"-! [%w(%]] <o, It'is
k=1
known that the last condition implies
>) [l “’[i]]p: o((n+1)-)
Sk Tk ’

‘Thus to every ¢=0 there exists an M =M (¢) for which

3wy |bo(H] <o amd T (Lo(5)] < e
k=93 41 Kk B} % =&

\
-are satisfied. It is easy to see that (1.2) implies w(6) logd=0(1) (§—0). Now the
Dini—Lipschitz test gives that s.(x) —f(x)=0(l) uniformly in x, and so

&P
[$xn—ty () —f(¥)] < g k=01 .., 2M)
for n=n,.
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Using the previous estimations and (3.3) we have for n=n, and 2™ '<
<n=2"
1
2M T

1
a1l b, s 2| = K[{ 2 A @ O]+

{Al; moZI 2}}1 A7 San-19 (%) f(x)l”} = K[{Zlfkg; lsn(n—k)(x)—f(x)lp};+

m=M k=2m-+1
1 1

S e F e n-seor]” )=« (e npie) +

A Eo 3 el ) =l

1
1 2M+1 1 P ml)'_l ; 1 om,
myy—1
+{AV =1 [kr ( ]] mZM(z) } {Ayk 2M+1+1(kr ]
1
3

5 el e el e )

m=logk—1 ' (4
1

2ol o=

(AZ)"
which was to be proved.
So far we have proved (1)—(vi). It remains to show that these estimations are
best possible.
Let f be the function given in Theorem A.
The first row of (1.8) immediately follows from Theorem A.
=(1 1
Let us suppose that k;:: [Fw (75
permutation of N as follows: If =(0), ..., n(n,_,) are already known and n({)=M,,
(i=0,1, ..., n,_y), let
z(n,+1) =2M,+1, n(n,+2) =2M,+2, ..., z(n,+n,) = 2M,+n,,
where n,, will be chosen later. '
However should n be defined between n,,_; and n,, we have in any case

|

|-

T = KeHpP2"

» .
)] =c and that f=>1. We shall define a =

1

{(Zn 1_|_ = Z (k+ 1Y sp09 (%) —f(x)lp} =

1 1

{——(2,, IJFI—),,—(nm)” - Z Is,:(k)(x)—f(x)lp} >{ P llsk(x)—f(x)]l’}p

v

n,+1x
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and therefore

(3.4

l
: . S O-OF)7
b, (D Bim; O)=c 2 Is(0)—f (0)|P — __n+_l— = 5 Hrpc:
if n,, is large enough in comparison with M,, because [ki [E)]

equivalent with (H?»")?=0 (%) .

Let us choose n,, so large that the above estimation should be satisfied, and then
continue the procedure.

It is clear that the above, partly defined = could be extended to a permutation
of N, and so (3.4) shows that (ii) cannot be improved.

Finally, if o,-0 arbitrarily, we follow the above construction and get

1
n

Mp+1 ;=2A;,,"+1 5(0) —f(O){P} =

1 1
e = (5) =
cy— —ol|+ =co, | —| =co,, HP5"
{nmk=21§+1[kr k Qm n, Qm

(at the sccond inequality we used that for f we have |5(0)—f(0)|=c — L (]1(]

thm(f’ p, ﬂ’ T, 0) = C{

v

kr
(5:2V-2""1=k=5-2"4+2""") (see the proof of [3, Theorem 1}) if »,, is large enough.

Thus the proof of (1.8) is completed.

The proof of (1.9) is similar, we omit the details. ‘ :

The proof of the Corollary on the basis of the above arguments is easy. The
right-hand estimations follow from the proof of (i)—(vi), while the left-hand sides
are easy consequences of Theorem A.

The proof of Theorem 3 is thus completed.
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Quasi-similarity of restricted C, contractions

MITSURU UCHIYAMA

1. A bounded linear operator X from a separable Hilbert space $ to a separable
Hilbert space §’ is called a quasi-affinity if K(X)=0 and K(X*)=0, where K(X)
denotes the kernel of X. The bounded operators 7 on $ and 77 on &’ are called
quasi-similar and denoted by T~ T" if there are quas1 -affinities X and Y such that
XT=T'X and TY=YT".

In this note we say thet T has property (Q)if T|K(4) and ((T*]K(A*)*) are
quasi-similar for every. 4 in (7). Not every bounded operator has property (Q);
‘it is easy to contstruct even a self adjoint operator which has not property (Q).

2. Lemma 1. If Ton  and S on ' are similar, then T has property (Q) if
and only if so is S.

Proof. Let T have property (Q) and suppose XT'=SX for some invertible X.
Set B=X"14X for A commuting with S. Then it is clear that B commutes with 7
and that T|K(B) and T*|K(B*) are similar to S|K(4) and S*|K(4*), respec-
tively. Therefore S|K(4)~(S*|K(4*))*.

Lemma 2. If both T on 9 and S on 9 have property (Q) and a(T)ﬂa(S) 0,
then the direct sum T EB S on 56955’ has property (Q) also.

Proof. From Rosenblum’s corollary, (T SY =(T) ®(SY [2]. The rest is
omitted.

Proposition 1 If$is ﬁnzte dimensional, then every normal operator on $ has
property (Q). '

Proof. From Lemma 1 and Lemma 2, we may assume that T=al for some

scalar a. The rest is obvious.
We will use the above results in the last example.

Received_ September 29, 1978, in revised form February 1, 1979. |
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3. Sz.-NaGy and C. Foias [7] conjectured that all C, contractions with finite
multiplicity have property (Q). In this section we present a counter example. About
the terminology and the notations see [4] and [1].

Example 1. Let i, and ¥, be relatively prime scalar inner functions defined
on the unit circle. And define the 22 diagonal matrix valued inner function M by

M = yiy.0¥iyi.
Then the class Cy(2) contraction S(M) on H(M) defined by
S(M) = Hf© MH;, S(M)HK = P(zh),

where H? denotes the 2-dimensional vector valued Hardy class and P is the projec-
tion from H? onto $(M), does not have property (Q).

Proof. Setting
yiy: ol
A=PA|H(M) commutes with S(M), because AMHZcC MH?. First we show that

: { 2 e% 12 l//il//z] ng}

10 ¥
ki =-=[,, 1 AU

and hence

For this, it is sufficient to show that
110
—_ HZ.
V2 [lﬁz - 1] ’
It is clear that the right hand side set is included to the left hand side set. Suppose

that an element 4; DA, in the left hand side set is orthogonal to the right hand set.
Then there are f; and f, in H? such that

hi+ynhy = Yo fi, by =Y, fs, and, therefore, lp1(fz+hz) =¥, fi.

Since y, and , are relatively prime, there exists f in H? such that f,=y, f so
JSothe=y, f. On the other hand, for every g, and g, in H; it follows that

(hy, Y182+ (hy, Yogi—80) = 0.

Thus we have f,=h, and (h,, ¥,g;)=0, which imply /=0 and hence A,=h,=0.
Next we show that

{hi@®hy: hi€HE, A(h ©h)c MHS} =

closure of range 4 = (Yi® Y3y HZO MH?
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and hence (S(M)*|K(4*))*~S@Widyiy3). For this it suffices to show that

AHIN MH; = (i@ yiy3) H.
Since

[ﬁ wj [1 5] and M=(w%esww§)<¢2éw,

AHZVMHEC (V2 y3y2)HL. Suppose that yih @y3ysh, is orthogonal to
AHZVMH?. Then hy&®h, is orthogonal to

[} Y] evesaoun e

From this it follows that #,+4,=0, and that 4, and A, are orthogonal to ¥, H2 and
Y, H2, respectively. Since ¥, and ¥, are relatively prime, we have h;=h,=0.,

Last we must show that S(M)|K(4) and (S(M)*|K(A*))* are not quasi-
similar. But this is clear, because the minimal functions of these operators are Y33
and Y32, respectively.

4. We denote the lattice of invariant subspaces for T and the lattice of hyper-
invariant subspaces for 7 by Lat T and Hyplat T, respectively.

Let 0 and 6" be nXn matrix valued inner functions. Suppose S(#) on $H(6)
and S(8’) on $(0’) defined as Example 1 are quasi-similar. Then there are nXxn
matrices I' and A over H™ such that

ro=0'4 and (detI)(det A)A(detB)(detd) =1 [1].

Moreover, it follows that
(det A)I°6” = G(det I') A%,

where I'“ denotes the classical adjoint of I' [6]. In this case, setting X=P'TI'|H(6)
and Y=P(det A)I°|H(0’), where P’ and P are the projections from H, onto
$(0’) and $H(0), respectively, X and Y are quasi-affinities satisfying XS(@)=S(@)X
and YS(0')=S(0)Y [l]; moreover, X Y=0¢(S(0)) and YX=¢(S(0)), where
¢=(det I')(det A). '

Proposition 2. The mapping T from Lat S(0) to Lat S(0") defined by 18 =X2
is a lattice isomorphism, and its inverse is given by 7~'8=Y®. Hyplat S(0) and
Hyplat S(8") are isomorphic. Similarly, the mapping ©’ from Lat S(8)* to Lat S(0’)*
defined by v £=Y*L is a lattice isomorphism, and its inverse is :given by v18=
=X*8. Hyplat S(6)* and Hyplat S(0')* are isomorphic.

Proof. Let £#0 belong to Lat S(0). Then X2s0 belongs to Lat S(8).
Since (X [2)(S(0)|2)=(S(0")|XL)(X|2), we have S(6)|2~ S(¥)[XL [1]. Similarly,
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S(0")|X2~ S(0)|YXE. Since YXL=9(S(0))2c L, wehave YX2=¢ (see [5] or [7]).
Therefore, T is one to one. Surjectivity is similarly shown. That ¢ preserve the lattice
structure is obvious. That Hyplat S(0) and Hyplat S(#) are isomorphic was shown
in [8]. Since

X*Y*=@(S®)*) and Y*X* = ¢(S(©6)")

we can show the rest similarly.

Proposition 3. If S(0) and S(8') are quasi-similar, then .S(0) has property
(Q) if and only if so is S(6'). '

Proof. Assume that S(6’) has property (Q). For each 4 commuting with
S(@) set B=XAY. Then B commutes with S$(8°) and Y K(B)< K(A4). Since

BX = XAYX = XAp(S(8)) = Xo(S(©) A
we have XK(4)cK(B). Thus, by Proposition 2, it follows that
K(4) o YK(B) > YXK(A) = K(A).
Therefore, we have K(4)=YK(B)and XK(4)=XYK(B)=K(B). Thus
SO)K () = SO)|YK(B) ~ SO)|K (B).

Similarly, we have
S(O)K(4") = S(O)*|X*K(B*) ~ S(8)|K(BY).
Since S(6)|K(B)~(S(0')*[K(B*))*, it follows that .
SO)K (4) ~ (SO)IK(4M)*,
concluding the proof.
Proposition 4. If A belongs to (S(0))”, then
SOIK(4) ~ (SO)IK(AM)*"

Proof. Let 0'=y,®...®, be the normal form of 8. Then B=XA4Y belongs
to (S(9))” so B=n(S(0")) for some n in H*= [9]. Setting y;=y,/(nAY¥;) we have
K(B)= (y10...0¥)Hi o ({1 ®...®Y,) H.

Thus S(0)|K(B)~ SN D ...6nAY,). On the other hand,

nHEN @ H2 = (qAy,&...dn\Y,) H?
implies that
(SO)IK B ~ SOAY.®... OnAY,).

Since, by the proof of Proposition 3,
~ SOIK(4) ~ SO)K(B)- and  S(O)|K(4") ~ SO)|K(BY),
we have S(0)|K(A)~(SO)|K(4*)*.

Corollary. If S(6) has a cyciic vector, then S(0) has Property (Q).
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Proof. Since (S(©)=(S(0))" (see [3] and [4]), it is obvious.
To conclude we present a counterexample to the converse assertion of Corollary.

Z+1]. Then
z—1

0=, @Y ) is a 2X2 matrix valued inner function, and S(0) has no cyclic
vector [4]. But it follows that

S(0) = S(1BY, Y, ) ~ SYLBY, BV = SW, BY)BSWy).

Since S(Y,Dy,) is a 2X2 diagonal matrix, by Proposition 1, S(/,®y,) has
property (Q). Since S(i,) has a cyclic vector, by Proposition 4, S(y,) has property
(Q). Lemma 2 and relation

a(SU@YD))No(SWo) =0 (cf. [4D,

imply that S(J;®¥,)® S(¥,) has property (Q). Thus, by Proposition 3, S(6) also
has property (Q).

Example 2. Set 1/11(2)=1—Z:% for |a|<1 and wz('z)=exp(

Note. After this paper was written, the author received a preprint*) from Hari’
Bercovici, which covers a great part of the results of this paper. The author thanks
to H. Bercovici and B. Sz.-Nagy.
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On the structure of standard regular semigroups

R. J. WARNE

We give a structure theorem for a class of regular semigroups and determine:
the smallest inverse semigroup congruence for this class of semigroups. Let S be
a regular semigroup, let 7 denote the union of the maximal subgroups of S, and
let E(T) denote the set of idempotents of 7. Assume 7 is a semigroup (equivalently
T is a semilattice Y of completely simple semigroups (T,: yeY )). If Y has a greatest
element and e, f, g€ E(T), e=f, and ez=g imply fg=gf, we term S a standard
regular semigroup. The structure of S is given modulo standard inverse semigroups
and standard completely regular semigroups by means of an explicit multiplica-
tion. In the case |Y|=1, our structure theorem reduces to the Rees theorem for
completely simple semigroups. A structure theorem for standard completely regular
semigroups is also given. The minimum inverse semigroup congruence on a standard
regular semigroup is described.

Let us first state our structure theorem for standard regular semigroups. Let
(V, o) be a standard inverse semigroup with semilattice of idempotents ¥, and let
(T, ») be a standard semilattice Y of completely simple semigroups (T,: y€Y)
with y=y#*y€T,. Suppose T,NV=H, for ycY and (H,, o) [(H,, *)] is the maxi-
mal subgroup of (V, o) [(T, )] containing y and assume axb=agob for
a, b€ U(H,: ycY). Let I [J,] denote the maximal left zero [right zero] subsemi-
group of T, containing y. Let (¥, T, ¥) denote {(i, b,): b€V, i€l -1, JETy-1,p}
under the multiplication (i, b,7)(r, ¢, s)=(i*u, bo(jxr)oc, vxs) where
UE€L o oo pocy-1 @0 V€S o 1 -10po)- WE show (Theorem 1.9) that (Y, T, V) is a stand--
ard regular semigroup and, conversely, every standard regular semigroup is isomor--
phic to some (Y, 7, V). _

In [4, Theorem 3.14], we gave a different structure theorem for standard regular
semigroups.

The structure of standard inverse semigroups is clarified by [4, Theorem 5.5].

Received May 9, 1978.
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In Section 1, we prove our structure theorem for standard regular semigroups
(Theorem 1.9) and give some specializations of this theorem (Remarks 1.21 and
1.22). In Section 2, we describe standard completely regular semigroups in terms
of groups by means of a “Rees type” multiplication (Theorem 2.1). In Section 3,
we give the following description of the minimum inverse semigroup congruence
on a standard regular semigroup S=(Y, T, V). Let N denote the collection of ali
finite products of elements of the form a~'osoa where a€V and s or
57 (U, yeY))* (U(,: y€Y)). Let N,=NNH, for peY. Let

Sy ={((i, a,)), (p, b, q))ESXS: Nyoa= Nyob where y=aoca™=bob 1.

“Then, oy is the minimum inverse semigroup congruence on S.

We will use the definitions and notation of CLIFFORD and PRESTON [1, 2] unless
otherwise specified. The terms mainly used are: Green’s relations (£, %, %, and 9),
R-class, regular semigroup, bisimple semigroup, inverses, inverse semigroup, left
{right) zero semigroup, right group, idempotent, natural partial order of idempo-
tents, semilattice, completely simple semigroup, semilattice of completely simple
semigroups [groups, left (right) zero semigroups], maximal subgroup, congruence,
and kernel of a homomorphism.

A semigroup is termed completely regular if it is a union of its subgroups. If
X is a semigroup, E(X) will denote the set of idempotents of X. A regular semi-
group X is termed locally inverse if e,f, g€ E(X), e=f and ex=g imply fg=gf.
(See [4] for an explanation of terminology.) A congruence ¢ on a semigroup X such
that X/¢ is an inverse semigroup is termed an inverse semigroup congruence on X.
“Structure homomorphisms™ are defined and discussed in [4, Section 1].

1. Standard regular semigroups. In this section, we establish our new structure
theorem for standard regular semigroups (Theorem 1.9).

Let S be a standard regular semigroup and let 7 denote the union of the maximal
subgroups of S. Hence, T is a semilattice Y’ of completely simple semigroups
(T,: y€Y’) [1, Theorem 4.6] where Y’ has a greatest element y,. Let {{, .: y,z€Y}
denote the set of structure homomorphisms of T [4, Section1]. Let E,=E(T,).
‘Select and fix e, eE(T ) ‘For each  ycY’, define e,=e, Cy y- Let So_e Se, .
Let 7, [J ] denote the set of idempotents of the $-class [% class] of T, contammg
e, . Let H denote the s#-class of S containing e,.

Lemma 1.1. (4, Lemma 2.2]) y—e, defines an isomorphism of Y’ onto E(S,).
Lemma 1.2. Hesz,ﬁS0 for yeY’

Proof. Utilize [4, Theorem 2.3].
Let E(Sy)=Y and let #(a) denote the collection of inverses of a.
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Lemma 1.3. (a) T is a semilattice Y of completely simple semigroups (T,: y€Y)
where y*=y€T,. (b) I=U(l,: yeY) [J=U(J,: yeY)] is the semilattice Y of left
zero semigroups [right zero semigroups] (I,: y€Y) [(J,: y€Y)].

Proof. (a) Let T, =T,(y€Y’). Then,usingLemma 1.1, T, T, =T,T,ET,,=
=Teyz:Teyez' (b) Utilize the proof of [4, Lemma 2.4] and its dual.

" Lemma 1.4. Every element of S may be uniquely expressed in the form x=gbh
where bES,, g€l,,_1, and heJ,_,,.

Proof. Let acS. Hence, acR,NL; for some e, f€E(S). Suppose ecT, and
JeT,(y,2€Y"). Let r, [[;] denote the Z#-class [Z-class] of T, [T,] containing e [ f].
Using[1, Theorem 2.51], r,NI, =0 and lfﬂJ # . Lethr NI, and helNJ, .
Hence, g(e, ae, )h (geyo)a(e h) (geye, )a(e 0 h)y=gah=a. By the proof of [l
Theorem 2. 18] since at€R, ﬂL,,, there exists a unique a '€R,NL,NF(a) such
that aa—'=g and a~*a=h. Thus, (eyoaeyo)(eyoa‘leyo) (eyoaeyo)=eyoaey°ha‘1geynaeyo: '
=e, ae, , and similarly, (eyoa—le%)(eyﬂaeyo)(eyoa'le;o)=eyoq‘1eyo. Thus, if
b=eyoaeyo, b‘1=eyoa—1eyo. Hence, as above, bb~'=e, and b~ 'b=e,. Hence,
every element of S may be expressed in the form gbh where b€S,, g€l,,-., and
heJ,-1,. We next show gbh€¢ R, L,. Since gbhb~'bb~'=g, gcgbhS. Thus, since
gbhegs, gbh€ R,. Similarly, gbh€ L,. We are now in a position to establish unique-
ness. Let x=gbh=wcz where c€S,, wel _,, and z&J__,,. Hence, gZxAw
and, similarly, A.%#z. Since gw=w, wg=g, and S, is an inverse semigroup, using
[1, Theorem 1.17], cc '=bb lcct=cc tbb~1=bb"'. Thus, g=w. Similarly
b~lb=c ¢ and h=z. Hence, b=>bb~1bb 1b=bb"1gbhb~'b=cc iwczclc=
=cclecie=c. Q.E.D.

Using Lemma 1.2, Hey is the ##-class of S, [Tey] containing e, .

Lemma 1.5. If iEIey and jeJ, , jicH,
Proof. Apply the proof of [4, Lemma 2.11].

Lemma 1.6, Let H=U(Hey: y€Y’). Then H is the semilattice Y of groups
(H,: y€Y). Hence, E(H) is contained in the center of H (i.e. eh=he for all e€¢ E(H)
and heH).

Proof. Utilize [4, Proposition 1.9], Lemma 1.2, and [1, Lemma 4.8].

Lemma 1.7. Let b, c€Sy, j€J,-v,, and p€l, ... Then (b(jp)c)(b(jp)c)~'=
=(bc)(bc)™ and (b(jp)c)~tb(jp)c=(bc) 1hc.

Proof. Using Lemmas 1.5 and 1.6, (b(jp)c)(b(jp)c) 1 =b(jp)cc 2 (jp) b=
=bec™1(jp)(jp) b 1=bcc™b"1=(bc)(bc)' and, similarly, (b(jp)c) 2 (b(jp)c)=
=(bc)~2be.
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For a, b¢S,, define aob=ab. For a, bcT, define axb=ab.

Lemma 1.8. Let b, cCSy, i€1,,-1, j€Jp-104 PEL o1, and q€J, _y,,.. Then
(i) (peq)=(i*x)(bo(j*p)oc)(y*q) where X€ly, 0poc-1 @A Y€ 4o -10pon-
Hence, S={(i,b,j): b€S,, i€l -1, jE€EJ,-1,,} under the multiplication
(i, b,))(p, ¢, 9)=(i*x, bo(j*p)oc, yxq).

Proof. Utilizing  Lemma 1.7, (ibj)(peq)=i(bo(j*p)oc)g=(i*((boc)o
o(boc) ™)) (bo(j*p)oc)((boc)o(boc)) xq). Let bob~'=e, and (boc)o(boc) 1=
=e,,. Thus, ix((boc)o(boc)™Y)=i(, ,=i*x and, similarly, ((boc)-o(boc))xg=
=yxq. Hence, using Lemmas 1.4, 1.3, 1.5, 1.2, and 1.7 the last sentence of the
lemma is established.

Theorem 1.9. (Y, T, V) is a standard regular semigroup, and, conversely, every
standard regular semigroup is isomorphic to some (Y, T, V).

Proof. The converse is a consequence of Lemmas 1.1, 1.6, 1.3, 1.2, and 1.8.
We next establish the direct part of Theorem 1.9. Let S:(Y, v, T).

Lemma 1.10. S is a groupoid.

Proof. Let (i, b,)), (r,c,s)€S. Let {{,.: y,2z€Y} denote the set of structure
homomorphisms of (T, *). Suppose y=z. Hence, z=y*z=y(, xz=zxy=z%)(, .
or z=y{,,. Thus, y{,,=z. Hence, ily,.p-1 hocjooe-1ZL(boc)o(boc)™?, since
iZbob™. Thus pop-1,(pocrobocr-1€lpocyowory-1- HENCE, IxX=1ly 011 (hocyo(pocy-1
for x€ly,popon-1 and, similarly, s _1.. Gog-10p0c€dpoc)-topoc aNd Y ks=
=-10c,oc)-10oc) 10T V€Jhogy-10poey- Lhus, (G, b,j)(r, ¢, s) is independent of
the choice of u and ». Furthermore, as in the proof of [2, Theorem 2.11], j€J,
and i€/, implies jxicH, . Let H=U(H,: yc€Y). Then, Lemma 1.6 is valid for H.
Thus, as in the proof of Lemma 1.7, (bo(j*r)oc)o(bo(j*r)oc) t=(boc)o(boc)7L,
and, similarly, (bo(j*r)oc) lo(bo(j*r)oc)=(boc) o(boc).

Lemma 1.11. S obeys the associative law.

Proof. Let a=(, b,j), B=(r,c, s), y=(w, d, z) be elements of S. Let o,=i,
a;=b, and ag=j. Then, ((aﬁ)‘y)l=izbob'l,(bocod)o(bocod)‘l:(a(ﬂy))lﬁ and, simi-
larly, ((@B)y)s=(x(By))s. Furthermore, ((xB)y)e=bo(j*r)oco((vxs)*w)od where
V€ pogy-1pocy- HOWEVET,  (v#S)*w= (((boc) to(boc)) ¥ s)x w=(cLob loboc)o
o(s*w). Hence, ((af)y).=bo(j*r)ococ™lob™ oboco(s ¥ w)od= bO(_]*I')OCO(S*W)O
od. Similarly, (x(By)).=bo(j*r)oco(s*xw)od. Q.E.D.

Lemma 1.12. (b~1ob, 571, 'bob‘l)EJ((i, b,j)). Hence, S is a regular semi-
group.

Proof. This lemma follows from a straightforward calculation.
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Lemma 1.13. (a) (7, b, ))& (p, z, q) if and only if i=p. (b) (i,b,7)L(p,z, q)
if and only if j=q. () (i, b,))# (p, z,q) if and only if i=p and j=q.

Proof. (a) First assume i=p (hence, bob 1=zoz ). Thus, (i, b,j) (b~ 1ob,
b7loz,q)=(,z2,q) and (i, z,q)(z toz,z7 b, j)=(, b,j). If (i,b,/)%(p, z q),
there exist x, y¢/ such that ixx=p and pxy=i. Thus, ixp=p and pxi=i.
Hence, bob '=zoz™! and i=p. ’ :

Lemma 1.14. (i, b, /) 2(p, z, w) if and only if bDz(€V). Hence, S is bisimple
if and only if V is bisimple.

Proof. Suppose Dz (in V). Hence, there exists x€¥V such that bob™1=
=xox ! and x"lox=z loz. Thus, (,b,))Z(, x,w)Z(p,z, w). Conversely,
suppose (i, b, ))2(p, z, w). Hence, (i, b, j) 2 (u, x, v)f(p,z q), say. Thus, bob 1=
=xox~1 and x lox=z"loz or bD:z.

Lemma 1.15. E(S)={(G, b, j): jxi=b""%, icl,, jcJ,, y€Y}.

Proof. Suppose (i, b,j)(i, b,j)=(, b,j). Hence, bo(j*i)ob=>b.- Thus,
(b lob)o(jxi)o(bob™)=b"1. Hence, b"¢H and bob 1=b"1lob. Hence,
j*iCH, ,-1 and jxi=b"1 Conversely, (i, (j*i)™L j)(i, (j*D) ™% j)=(i*({(j*i) o
o(J# D), (J*i)™4 ((G*1)o(j*i) Y *j)=(i, (i) ).

Lemma 1.16. T'={(, b, j): beH,,icl,,jcJ,, y€ Y} is the union of the maximal
subgroups of S.

Proof. Let T’ denote the union of the maximal subgroups of S. Hence,
(i, b, /)€ T’ if and only if (i, b, j) # (p, ¢, ¢)€E(S). Suppose (i, b, j)H# (p, ¢, Q) E(S).
Using Lemmas 1.13 and 1.15, c=(gxp)~'€H,, say, i€l, jeJ,, and bcH,. Sup-
pose i€l,, beH,, and jeJ,. Hence, (i,b,/)# (i, (j*i)™j)€E(S). Q.E.D.

Lemma 1.17. Let T;={(, g, /): gcH,, i€l,, jeJ,}. Then T’ is the semilattice
Y of completely simple semigroups (T ; 1 yeY).

Proof. Let (i, g,), (p, h, )€ T,. Hence, (i,g,/)(p, h, q)=(i, go(j*p)oh, q).

Hence, 7, is completely simple. Let (i,g,/)€T, and (p,h,q)cT,. Hence,

G, & N (D, h, @) =(i*(yoz), go(j*p)oh, (yoz)xq)ET,
Lemma 1.18. Every element of T, may be uniquely expressed in the form

x=ixgxj where icl,, g¢H,, and jcJ,.

Proof. Suppose T,=.#(G; M, K; P) (notation of [1]). Let e,=(pphu.
Hence L={(p;Ya: IEM} Jy= {(P,11)1, JjeK}, and H,={(®u: gEG} Hence,
(8)ij= (ph D (D11 (P where x=py'pugPapr"
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Lemma 1.19. Let (ixg*j)0=(, g,j) (icl,, gcH,, j¢J,). Then 0 defines an
isomorphism of T onto T’. Hence, T’ is locally inverse.

Proof. If j¢H, and p€l,, j*pcH,,,. Let ixg%jcT, and pxhxqcT,
(iel,, g€H,, jeJ,, pel,, héH,, g€J,). Hence, ((i*g*j)*(p*h*q))ﬂ—
—(z*g*(j*p)*h*q)o (zale(yoz)*g*(]*p)*h*(yoz)*q)f) (i#(yo2), go(j*p)oh
(yoz)xq)=(, & J)(p, h, q)=(ixg )0 (pxh*q)0.

Remark 1.20. The isomorphism g—(gog™, g,g log) embeds (V, o) into
(Y, T,V). In fact, {(gog™', g 8 'og): gcV}= (yo,yo,yo)(Y T, V)(¥o, Yo, Yo)
where y, is the greatest of Y.

The terms standard regular semigroup of type w7, wY inverse semigroup,
locally inverse semigroup, rectangular group, orthodox semigroup, standard orthodox -
semigroup and standard #-unipotent semigroup are defined in [4, pp. 540—542].

Remark 1.21. Using Lemmas 1.14—1.17, (¥, 7, V) is a standard regular semi-
group of type oY if and only if V is an wY inverse semigroup.

Remark 1.22. Let (Y, 7, V), denote (Y, T, V) with “completely simple semi-
groups” replaced by “rectangular groups” and “bo(j*r)oc” replaced by “boc”.
Let (Y, T, V), denote (Y, T, V), with “rectangular groups” replaced by “right
groups”. Then, (¥, T, V), [(Y, T, V)] is a standard orthodox. [standard Z-uni-
potent] semigroup, and conversely every standard orthodox [standard Z-uni-
potent] semigroup is isomorphic to some (Y, T, V), [(Y¥, T, V)] (cf. [4, Theorems
5.1 and 5.3 and Remark 5.6]).

Remark 1.23. If we specialize Theorem 1.9 to orthodox semigroups, we obtain
the specialization of Yamada’s structure theorem for generalized inverse semigroups
[6] to standard regular semigroups.

2. Standard completely regular semigroups. In this section, we give a structure
theorem for standard completely regular semigroups (Theorem 2.1).

Let Y be a semilattice with greatest element. Let I [J] be a locally inverse semi-
lattice ¥ of left zero [right zero].semigroups (I,: a€Y) [(J,: «€Y)] with structure
" homomorphisms (&, ;) [({,,5)]- Let G be a semilattice Y of groups (G,: «a€Y) with
structure homomorphisms {¢, z}. Let (j,i)—p;; be a function of JXxI into G
such that

(1) if jEJa and iEIaa pj,ieGa;
(2) if jEJa and ielﬁ? pj,i:pjga,mﬁ)igﬁ,aﬂ;

(3) ]f jEJa and ie[z and d%ﬂ, pj,iqoa,ﬁ:pj{,,g,i{,,p'
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Let (Y, 1, J,G,¢, &, @) denote {(i, g,/): icl,, gEGa,JEJ and «€ Y} under the:
multiplication

(4) (l’ g,j)(W, h: Z) = (iws gpj,whs _]Z)

Theorem 2.1. (Y, 1, J, G,{, &, @) is a standard completely regular semigroup,.
and, conversely, every such semigroup is isomorphic to some (Y, 1,J, G, &, ¢).

Proof. Let S be a standard completely regular semigroup. Hence, S is a.
semilattice Y of completely simple semigroups (S,: a€Y). Let «, denote the greatest
element of Y. Let {, 5} denote the set of structure homomorphisms of S. Let
eaer(Sao) and define ea=e%5%’a. Hence, e,ep=e,5. Let I, [J,] denote the set of
idempotents of the #-class [#-class] of S, containing e,. Hence, 1, [J,] is a left zero
[right zero] semigroup. As in the proof of Lemma 1.3, I= U(,: 2€ Y) [J= U(J,: a€ V)]
is a semilattice Y of left zero [right zero] semigroups (I,: «€Y) [(J,: a€Y)]. Let
lap=04,4l) and &, ;=0, plI. Thus I and J are locally inverse by [4, Theorem 1.6].
Let G, denote the #-class of S, containing e,. Hence, using [4, Proposition 1.9],
G=U(G,: acY) is the semilattice ¥ of groups (G,: a€Y) with structure homo-
morphisms ¢, ;=46, 4|G. As in the proof of Lemma 1.18, every element of S may
be uniquely expressed in the form x=igj where icl,, g€G,, and jcJ,. Let JE€J,
and icl;. Hence, ji=j{, ,5ils 14€ Gop. For j€J, and i€ly;, define p; ;=ji. Hence,
(Jj,i)—p;,; defines a function of JX/ into G satisfying (1) and (2). (3) is verified.
by a straightforward calculation. Let x=igjcS, and y=whz€S,;. Hence xy=
= (ig]) (Wh2) = (8P, W) 2=, o) (82}, 1) (2 g, up)=(W) (g2, W) (j2).  Thus, igj—~
—~(i, g,j) defines an isomorphism of S onto X=(Y, 1, J, G,{ & ¢) under (4).

Next, we show X=(Y, 1, J,G,(, &, ¢) is a standard completely regular semi--
group. Closure is a consequence of (1) and (2). For acY, let T,={(, g, j): i€l,,
8€G,, j€J,). Let x=(i, g j)ET,, y=(m, h,n)€T,, and w=(c,z, d)ET,. Using
Q) and ) PymPupapy =Pit, gty s Pa,881 =P gy ™y =P iy ™y sy =
DR, gy 1) &g, gy = Pime- Smilarly,  p, g, g =pj ..  Thus,  (xy)w=
(imc, 804, apyPj, mPap, apy NP, apy P jn, c 2Py, apy»Jnd)=x(yw). Using (4), the Rees theo-
rem [1, Theorem 3.5, (1) and (2), X is the semilattice ¥ of completely simple semi-
groups (7,: a€Y). Hence, X is completely regular by [1, Theorem 4.6]. We next
show X is locally inverse Using (4), E(X)={G, pj;,)): i€l,, jEJ,, ac Y} Let
(, pj"},j)e T, and (a, p,, o> D)ETy. Then, using (4), 3) and (2), G, p;;, L=, p,, 2. by
if and only if o=8, i, y=a, and j{, ,=b. Thus, using (4), (3) and (2), S is locally
inverse.

Remark 2.2. The structure of I, J, and G are given in terms of their respective
structure homomorphisms (see [4, Section 1, especially Remark 1.7], [5, Theorem 1];
and [1, Theorem 4.11]).
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Remark 2.3. In [4], we used the term Cliffordian semigroup to describe a
-union of groups. In order not to conflict with the terminology of [3], we adopted .
-our present terminology which appears to be the prevalent terminology.

* 3. The minimum inverse semigroup congruence. In this section, we describe the
minimum inverse semigroup congruence on a standard regular semigroup
S=(Y,V,T). If ¢ is a homomorphism, ker ¢ will denote the kernel of ¢.

Proposition 3.1. Let @ be a homomorphism of V onto an inverse semigroup
V* such that JxI1< Uker w. Then, (i,b,j)0=bw defines a homomorphism of S
wonto V*. Conversely, if 0 is a homomorphism of S onto an inverse semigroup V*,
then (i, b, ))0=bw where w is a homomorphism of V onto V* with Uker oS Jx*1.

Proof. We first establish the direct part. Let (i, b,j), (r, ¢, s)€S. Hence,
(G, b, j)(r, ¢, 5))0 = .(bo(jele r)oc)w = bwo((b " ob)o(coc™Y))wocw =
= bwocw = (i, b, j)0(r, ¢, 5)0.

‘Conversely, let 6 be a homomorphism of S onto V*. For b¢cV, define bo=
=(bob™1, b, b10b)0. Thus,  bwcw=((bob1, b, b~ob)(coc™, ¢, c71oc))f=
=((boc)o(boc)™1, boc, (boc) to(boc))8=(boc)w. Hence, w is a homomorphism of
V into V*. Let (i, b, j)€S. Then, (G, b, /)=(, bob™1, bob ™) (bob™L, b, b~1ob)(b 10
ob, b~tob,j). Using Lemma 1.13 (b), (i, bob™Y, bob ™)L (bob~, bob™ 1, bob™1).
Hence, using Lemma 1.15, (i, bob™1, bob )8 =(bob™ 1, bob™, bob~1)0. Similarly,
(b71ob, b~ tob, j)O=(b"1ob, b~tob,b~10b)0. Thus, using Lemmas 1.15 and 1.13,
(i, b,/)0=((bob=1, bob~, bob V) (bob~,b,b 1ob) (b~ ob, b~10b,b710b))0 = (bob™?,
b, b7tob)0=bw. Let cc V*. Hence, c=(i, d, j)0=dw for some (i, d, j)¢ S. Thus, w is
a homomorphism of V onto V*. Let jeJ, and i€l,. Since (y,,/)0(,z, 2)0=
=(y*z,j*i, y*2)0=(j*i)o=yowzo=(yz)w, j*xic¢Uker w. Q.E.D.

Let N denote the collection of all finite products of elements of the form
a losoa where acV-and s or s71€J« 1 Since # is a congruence relation on V
by [4, Lemma 2.13] and JxIS H=U(H,: y€Y), a tosoacH. Thus, N is an
inverse subsemigroup of V and H. Since E(¥V) is contained in the center of H, it
follows that x"'oNoxE N for all xcV. Let N,=H,NN. Then N is the semi-
lattice Y of groups (N,: y€Y). Let gy={(a, )eVXV: aca™, bob™%, aob €N,
for some y€Y}. Then, using [2, Theorem 7.54 and Lemma 7.48], gy is a congruence
relation on ¥V with kernel {N,: y€Y}.

Proposition 3.2. V/gy is the maximal inverse semigroup homomorphic image
of S under the homomorphism (i, b, j)0y=bos where o} is the natural homomorphism
of V onto V/gy.
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Proof. Using Proposition 3.1, 8y is a homomorphism of S onto V/gy. Let
0 be a homomorphism of S onto an inverse semigroup V*. Define (x0y)y=x0
for x€S. We will show that y is a homomorphism of V/gy onto V*. Suppose
that (i, b, j)0y=(p, ¢, q)0y. Hence, bofi=ceo¥ and (b, c)€gy. Thus, using [2,
Theorem 7.55], b=nc for some néN_, .. By Proposition 3.1, (i, b, j)8=bw for
some homomorphism w of ¥V onto V* with UkerwSJ«I. We note that
n=(a;'s,ay)...(a; " s,a,) where a;€V and s; or s;'€J«I. Thus, s,w€E(V*) and,
hence, nw€ E(V*). Thus, since ni#coc™, nhw=(cw)(cw)~t. Hence bw=nwcw=
=cw(cw) tecw=cw. Thus, (i,b,j)0=(p, ¢, q)0. Q.E.D.

Theorem 3.3. Let S=(Y, V, T) be a standard regular semigroup. Let N denote
the collection of all finite products of elements of the form a *osoa where acV and
sors7i¢J*I. Let N.=NNH, for y¢ Y. Let y={((i, a, /), (p, b, 9))€ SXS: N,0a=
=N,ob where y=aoa‘1=bob‘1}. Then, oy is the minimum inverse semigroup
congruence on S.

Proof. Utilize Proposition 3.2 and its proof.
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A concept of characteristic for semigroups and semirings

H. J. WEINERT

§ 1. Introduction

The characteristic y(R) of a Ring R=(R, +, +) corresponds to a congruence
on the ring Z of integers via the ideal n(R)=(y(R)), the annihilator n(R) of (R, +)
regarded as a Z-module in the natural way. Likewise, the characteristic y(a) of an
element a€R is defined by the annihilator n(z)=(y(a)), and it determines the
structure of the submodule

(ay = Za = Z[(y(a)).

Moreover, the characteristic y(R) of R is the least common multiple of all y(a),
corresponding to the intersection (y(R))=N{(y(@))|ac R} of ideals or congruences.
Clearly, y(a)=o0(a) if the (additive) order o(a)=|{(a)| of a€ R is finite, and y(a)=0
if o(a)=o=. In particular, these considerations do not depend on the multiplication
of R, and may be used to define the characteristic y(R) of any (rot necessarily com-
mutative) group (R, +).

In a similar way we shall introduce the characterlstlc of a semiring (S, +, +),
defined to be an algebra such that (S, +) and (S, ) are arbitrary semigroups con-
nected by ring-like distributivity, dealing basically with the characteristic of a semi-
group (S, +). For the latter, the additive notation does not mean any restriction,
and may be changed if one is interested in semigroups only.

Let (S, +) be a semigroup. For each a¢ S, the cyclic subsemigroup

{a) = Na = N/x(a)

is determined by a congruence x(e@) on the semigroup (N, +) of positive
integers. Let K=K(N) be the complete lattice of all congruences on (N, +).
Then, analogously to the above procedure concerning rings or groups, the inter-
section ) {x(@)lac S}IEK(N) will be a first candidate for the characteristic of
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(S, +) we want to define. However, the characteristics y(a) and y(R) above are
integers, corresponding to congruences on Z by a lattice isomorphism of (K(Z), 2)
onto (N, |) with the divisiblity relation |, and this arithmetical aspect is important.
As a substitute for the latter, we define a lattice monomorphism y of (K(N), 2
into a complete lattice (L, 2), the dual of the direct product (N7, =)X(N,, |),
determining each congruence % on (N, +) by a pair y(x)=(v, g)€L. In particular,
the pair x(x(a))=(v(a), g(@)) corresponding to the congruence »(a), will be called
the characteristic of the element a€S.

After these preparations in § 2, we define in § 3 the characteristic of a semi-
group (S, +) as the intersection y(S)=(v(S), g(S)) of all x(x(a))=(v(a), g(a)),
the characteristics of the elements a€S. In fact there are two ways to do this,
depending on whether one takes this intersection in L or in x(K)<L. Both result-
ing concepts, clearly not very different, will prove fruitful and well-behaved e.g.
with respect to subsemigroups and epimorphic images. In particular, if S is a ring
or a group, the second component g(S) of x(S) will coincide in both cases with the
usual characteristic y(S) discussed above.

In fact we deal in this paper (§ 3) with the more general concept of characteristic,
taking the intersection in L, since it contains the first one by simplification, and
provides more information in some cases. More details as well as some remarks
concerning another concept of characteristic introduced in [5] and [6], are given in
the text. Of our results, some of them being independent on any concept of ‘“‘char-
acteristic” used to prove them, we mention here the following ones on semirings:
All elements of a semiring S which are multiplicatively (left, right or weakly) can-
cellable in S, have the same characteristic y(s), coinciding with the characteristic
z(S) of S. Let S be a semiring which consists only of those elements (and, possibly,
of a zero); then y(S) is either (0, 1), or (0, p) for some prime p, or (e, 0). If such
a semiring S contains at most one idempotent and no element of infinite order,
both with respect to (S, +), then it is a ring (cf. Prop. 7, Thm. 8).

In § 4, we deal with semirings S embeddable into one with right identity or
even with identity. Let 7, be a semiring containing S and a right identity e,. Then
(2% (T,)=yx(e)=4=2(~,0) holds, and for each Acy(K) contained in this
interval there exists a semiring 7, with a right identity e, such that y(7,)=A1. The
corresponding statements hold for a semiring S embeddable into one with identity
(cf. Thm. 9). Further, using concepts due to [2] and given in the text, the uni-
versal identity extension U of such a semiring S has characteristic y(U)=(e, 0},
and, if x(S)€x(K), at least one strict identity extension 7, of S has characteristic
2(T)=x(S). Moreover, for each A1€x(K) such that y(S)=212(e, 0), there exists
an identity extension U, of S with characteristic y(U;)=4 which is universal with
respect to all identity extensions T of S with characteristic 7(T)2A4: each such T
is an epimorphic image of U, (cf. Thm. 11).
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§ 2. Basic concepts

The semiring (N, +, -) of positive integers operates in a natural way on each
semigroup (S, +) or on each semiring (S, +, -) by

¢} na=an= Zn’ a for all neEN, acs,

i=1

satisfying (n+m)a=na+ma, (nm)a=n(ma) and, in case of semirings,

1) “n(a-b)=(na)-b=a-(nb) for all neN, a,bes.
Sometimes we shall assume, for all a, b€ S or some particular ones, that
an n(a+b) =na+nb for all neN

holds, clearly not true in general and weaker than a+b=b+a. (For example, a
semiring S embeddable into one with identity satisfies (1”) for all a, €S, and
there are such semirings with non commutative addition, cf. [2].) Moreover, for
each a€s,

2 ¢,: N—(a)=Na defined by n—n® =na

is an epimorphism of (N, +) onto the cyclic subsemigroup {a) of (S, +), and the
corresponding congruence on (N, +) will be denoted by »(a).

According to the introduction, we want to define the characteristic of ac€S by
x(@=x(x(a)) with a suitable monomorphism y of the lattice K of all congruences on
(N, +) into a lattice L, which extends the arithmetical structure of (N, ). We do
this step by step in the following way. '

Each congruence €K on (N, +) is either the equality 1, or uniquely deter-
mined by two integers v€N, and g€N (the minimal ones such that v+ 1=v+1+g(x)
holds, cf. [5], § 20) according to
.3 ' (n,m)Exc»nEm(x)Q{ZEZ (();) for m,m=>o,
where n=m(g) means the usual congruence of integers modulo g. Conversely, each
pair (v, g)EN XN defines by (3) a congruence »=1, on (N, +). Thus we can
define the bijection
©) X KN{i} = L' =NgXN by x —x() = (v, g).

Applying this via (2) to an element a€(S, +), we obtain: If x(a)=1y, all elements
a, 2a, ... of {a) are mutually distinct, and o(@)=[(a)|=-<-. If x(a)=1y, We use (4)
to define the characteristic of siuch an element acS by

x(a) = x(x(a)) = (v(a), g(a)) = (@, 8)-
It determines the mutually distinct elements of {a),
) . a,..,va; (v+1a,...,(v+ga
such that (v+g+1)a=(@+1)a is the first repetition, v=v(a) the length of the
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aperiodic part V(a)={a, ...,va} of (a), and g=g(a) the length or order of the
periodic part G(a@)={(v+1)a, ..., (v+g)a} of (a), known to be a group (which fol-
lows immediately by Lemma 3). Clearly we have v(a)+g(a)=0(a).

Lemma 1. Let (K, &) be the lattice of all congruences on (N, +), regarded as
partially ordered set with respect to the inclusion relation »,C x,. Define, further, a
relation on L’=N,XN by
©) (15 8) 2 (v2, 82) & vy = v, and gg,.

Then (L', ) is dual-isomorphic to the direct product of (N,, =) and (N, |), hence is
likewise a lattice, and (4) becomes an isomorphism of the lattice (K\ {1y}, E) onto
(L', €) according to

@) 1 2 %y & 2(0) 2 x0x) < v, =0, and gy|g,.

Proof. It is easily seen by (3) that (7) holds for all 3, %,€ K\ {1y}. Hence (4)
becomes an isomorphism of the partially ordered sets (K\ {ix}, &) and (L', &),
due to (6); since (L, &) is a lattice, so is (K\{in}, S)-

In order to include 1K in this context, we also want to define x (1) as a pair
(v, g) such that (3) remains meaningful. This could be done by choosing g=0 (for
each v) or v=< (for each g), adjoining a greatest element = to (N,, =). With
respect to the structure of L’, we do both and define

@ 1) = (o2, 0L = Ny XN,

hence X(a)= x(x(a))=(, 0) for the characteristic of an element ac(S, +) of infinite
order. '

Lemma 2. We use (6) to define a relation on L=Ng XN,. Then (L, &) is
dual-isomorphic to the direct product of (N7, =) and (N, |), hence is likewise a
complete lattice. Moreover, the bijection y: K—y(K)=L'U{(e>, 0)} defined by (4)
and (&) is a lattice monomorphism of (K, S) into (L, ). Hence (x(K), £) is a sub-
lattice of (L, &) as well as a complete lattice, but y(K) is not closed with respect to
infinite intersections in (L, ).

The proof is immediate using Lemma 1 and assertions like N {(y, 1)|v€Ny}=
=(==,1) or N{(0, g)|geN}=(0, 0). We conclude these preliminary considerations
with the following statements, denoting by [ ] the greatest integer, by ( , )* the grea-
test common divisor, and by [, ]* the least common multiple.

Lemma 3. Let x(a)=(v(a), g(a)) be the characteristic of an element ac(S, +),
o(a)<ee, and consider an element ha €{a), 1=h=o0(a). Then

®) o) = [22], g(ha)=(?(‘;§—‘°,07

holds, implying y(ha)=(v(ha), g(ha)) 2y (a).
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Proof. Suppose y(ha)=(', g’). Then, by (3) or (5), v"€N, has to be maximal
such that v”ha is contained in the aperiodic part of {a), hence v” is given by the first
formula (8). Similarly, g’¢ N has to be minimal such that (v'+1+g")Yha=("+1)ha
holds, which is equivalent to (v'+1+g)h=@ +1)h modulo g(a); the smallest
solution g’€¢N of this congruence is given by the second formula of (8).

As a consequence of (8), the periodic part G(a)={halv(a)<h=o0(a)} of {a)
contains a unique idempotent A,q, i.e. an element with characteristic (0, 1), deter-
mined by (g(a), hy)*=g(a), or g(a)lh,. This yields y((hy+1)a)=(0, g(a)), hence
(hy+1)acG(a) generates — like each element with a characteristic of this type —
a cyclic group of order g(a), proving that G (a) is such a group with A,a as its neutral
element.

For formulas being equivalent to (8) cf. 6], § 2. Note that (8) as well as v(a)+
+g(a)== also hold in case o(a)=<c, dealing with = in a suitable way. (One can
look at (Ng°+, -, =) as an ordered semiring.) The proof of the next lemma, simi-
lar to that above, will be omitted.

Lemma 4. a) Let (S, +) be a semigroup and a, b elements of S satisfying (17).
Then we have

&) v(a+b) = max{v(a), v(b)}, gla+b)llgla) g(b)",
ie. y(a+b)2x@ Ny M) and likewise y(b+a)=2yx(a)Ny(b).

b) Let (S, +, ) be a semiring and a, b€ S. Then we have
©) v(ab) = min {v(a), v(b)}, g(ab)|(g(a), g(b))*,
ie. y(ab)2x(@Uy () and likewise y(ba)2x(a) Uy (b).

§ 3. The characteristic of semigroups and semirings

Definition. The characteristic x(S) of a semigroup (S, +) is defined by

(10 2(S) = (v(5), 8(8)) = (sup {v(a)la€ S}, lem {g(a)lac S}),
i.e. by the intersection of ail characteristics x(a)=y(x(a))=(v(a), g(a)), a€ S, taken
in the lattice (L, € ) introduced in Lemma 2. The characteristic of a semiring (S, +, +)
is defined to be that of (S, +).

If (S, +) contains an clemerit of infinite order, then y(S)=(, 0) by (4") 1.
Hence, suppose o(a)<ee, i.e. y(a)=(v(a), g(a))€L’ for all acS. Then we have
v(S)<=o or v(S)=c depending on whether {v(a)|a€ S}SN, has a maximum,

1) A possibility to distinguishi this case from the following one with »(S)=(e=, 0) is to replace
L by Ng XNg and to definz x(N)=(, =) instead of (4").



450 H. J. Weinert

and likewise g(S)#0 or g(S)=0 with {g(a)lac S}SN, and clearly there are
semigroups and semirings which correspond to each of the resulting four cases.

In particular, if v(S)<< and g(S)=0, ie. x(S)EL’ (obviously satisfied
if |S|<e), then each {a)S (S, +) is an epimorphic image of a single finite cyclic
semigroup (C, +), determined by yx(C)=yx(S). Moreover, since a congruence on
(N, +) is also one on (N, +, -), the semiring (N, +, -) operating on (S, +) by (1)
can be replaced by the semiring (N/x, +, -) with x=371(x(S)) if x(S)€x(K),
and x is the maximal congruence on (N, -+) of this kind.

Note further that only in the mixed cases v(S)<e<, g(S)=0 and v(S)=eo,
8(8) 20, the characteristic y(S) defined above is not contained in y(K)=L"U {(==, 0)}.
Leaving certain information out of consideration, one could decide to define a
characteristic 7(S) such that 7(S)=(e, 0) also holds in thése two cases, or equiv-
alently, to define 7(S) by the intersection M {y(a)lac S} taken in the sublattice

. x(K) of L. But this would not simplify things considerably, and so we stay here 2)
with the more general concept defined above. Clearly, corresponding results for
the other one may be obtained by identification of all (v, g)€ L\ ¥(K) with (e, 0).

Proposition 5. Let E be a set of generators of the semigroup S=(S, +) or of
the semiring S=(S, +, +), of course using both operations in the latter case, and
assume that (1”7) holds for all a, b€ S. Then one can replace (10) by

(109 2(8) = (sup {v(a)lac E}, lem {g(a)lac E}) = N{x(a)lacE}.
E|<eo implies y(S)ey(K) if (17) holds for all a, b¢ S.

In particular,

The proof is immediate by Lemma 4. The next statements on semigroups clearly
apply to semirings, too. :

Proposition 6. a) Let (H, +) be a subsemigroup or an epimorphic image of a
semigroup (S, +). Then we have y(H)Z2yx(S).

b) If (S, +) is cancellative, we have v(a)€ {0, <} for all ac S, hence v(S)€ {0, = }.
I (S, +) is a group, g(S) is the usual characteristic of S as defined in § 1.

The proof is straightforward. Note that even a commutative semigroup (S, +)
with »%(S)=(0, p), p a prime, need not be cancellative. Any direct sum in the semi-
group-theoretical sence (cf. [1], If, §9.4) of two or more cyclic groups of order p
provides a counter example.

An element s of a semigroup (S, +) is called weakly cancellable in (S, ) if
Sx:sy and xs=ys for x, yeS imply x=y (cf. [3], L. 2).

~ ¥) Some announcements given in [2], concerning the characteristic of semirings S, refer directly
to the intersection x(S)= n{z(a)laES }EK, hence to a concept which clearly correspords to 7(S)
above. ' .
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Proposition 7. Let (S, +, -) be a semiring.

a) If s€S is weakly cancellable in (S, ), then y(s)Sy(a) holds for all acs.
Hence all elements s,s’¢ S which are weakly cancellable in (S, +) have the same
characteristic, and x(s)=yx(S)ex(K) .holds if such an element s exists.

b) If (S, +) has a neutral element, called the zero o of (S, +, +), and if 0 is
weakly cancellable in (S, -), then x(S)=(0,1) or, equivalently, (S, +) is idem-
potent.

Proof. By assumption on s, n(as)=m(as) and n(sa)=m(sa) together imply
na=ma, from which yx{as)Ny(sa)Syx(a) follows. Using (9"), we obtain x(s)S
Cx(as)Ny(sa) S x(a) for all ac S, i.e. x(s)Sx(a). This implies the other statements in
a) and also b), since (0, 1) is the characteristic of idempotent elements in (S, +),
and the greatest element of L.

An example of a semiring S such that S has a zero o Wthh 1s even cancellable
in (S, ), is given in [8]. Moreover, a -semiring S is called multiplicatively cancella-
tive, briefly mult. can., if each azo0 of S (meaning each a€ S if there is no zero o
of §) is cancellable in (S, -). Note that if S has a zero 0 and |S|=2, then either o
is also cancellable in (S, -), or o is annihilating (i.e. ao=o0a=0 for all a€¢S) and
(S\{o}, -) is a cancellative subsemigroup of (S, -). A mult. can. semiring S does
not have (proper) zero divisors, whereas the converse does not hold in general (cf.
{81, {10D). .

We introduce a wider class of semirings: A semiring S, containing a zero o
or not, is called weakly mult. can., if each a>o of § is weakly cancellable in (S, -).

Theorem 8. a) Let S be a weakly mult. can. semiring. Then all elements s#o
of S have the same characteristic x(s), coinciding with x(S), which is either (0, 1), or
(0, p) for some prime p, or (==, Q).

b) Let S be a weakly mult. can. semiring with zero o. Then either (S, +) is idem-
potent, or o is the only idempotent of (S, +) and annihilating. Clearly, the first case
corresponds to x(S)=(0, 1), the second one to (0, p) or (==, 0).

c) Let S be a weakly mult. can. semiring, |S|=2, which contains at most one
idempotent and no element of infinite order of (S, +). Then S is a ring, whose addltwe
group (S, +) is the direct sum of cyclic groups of order p.

Proof. a) By Prop. 7, a) we obtain x(S)=yx(s) for all s%0 of S. If %(S)=
#(eo, 0), we have v(s)=0v(S)<ew and g(s)=g(S)=0 for each s>¢0; hence for
each hEN, 1=h=v(s)+g(s), either As=o0 holds or (8) implies

v(hs) = [vis) ] =v(s) and g(hs)= (Té%? = g(s).

This proves v(s)=0 and either g(s)=1 or g(s) prime. .
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b) If (S, +) is not idempotent, we have (0, 1)=y(0)=x(s)=%(S) for all s=o
of S by a). Hence o is the only idempotent of (S, +), and y(ao)=2x(0), x(0a)2x(0)
by (9") implies ao=o0a=o0 for all acS.

¢) Using a) and the assumptions, we have y(S)=(0,p). Hence each s=o
generates a group {s) of order p, whose zero o, has characteristic (0, 1). Again by
a), there is at most one element in S whose characteristic differs from (0, p), hence
all o, collapse to the zero o of (S, +), and (S, +) is a group with x(S)=(0, p).
By well known facts on groups or modules, (S, +) is the direct sum of cyclic groups
of order p, if it is commutative. Suppose the contrary, then (S, 4, -) would be
a ring with non commutative addition, which always contains a two-sided anni-
hilator ideal different from {o} (cf. [9]), contradicting that S is weakly mult. can. .

An example of a weakly mult. can. semiring S such that each element of (S, -)
is neither left nor right cancellable is given by the tables

+|a1 a, b, b, -_Ial a, b, b,

a;la; ay by by, a,|a, a, a, a,
a\a, a; by by ayja, a a; a,
by|by by by by by{by by by b,
by|by, by b, by by|b, b, by b,.

Note that S'is the direct composition (cf. the definition given in the proof of Prop.10)
of two semirings {a, b} and {1, 2} with operations obvious from these tables, and
that the zero a; of S is weakly cancellable in (S, -), too. On the other hand, one
easily proves that a ring S is weakly mult. can. iff it is mult. can.. Further, using the
other parts of Thm. 8, part ¢) may be reformulated as follows: A weakly muit. can.
semiring S such that x(S)=(0, p) is a ring. The corresponding statements in the
other cases, x(S)=(0,1) or %(S)=(,0), are far away from being true, even for
semirings S which are mult. can. . In fact, such a semiring need not have a zero (e.g.
S=(N, +, ») for x(S)=(,0), for x(S)=(0, 1) see [8]).

Concluding this section, we mention a concept of characteristic introduced in
[5], § 23 for semigroups, and similarly in [6], § 3 for semirings. Working only with
the order of elements of (S, +), the characteristic of S is defined to be

0 iff o(a)=< for all a0 of S,

n iff there is a (minimal) #€N such that o(ae)|n for all acS, and

o for all other cases.
Applied to a weakly mult. can. semiring S, by Thm. 8a) S has either characteristic
n=1, or n=p, or 0in this sense, a result stated in [6], Satz 1 for mult. left (or right)
can. semirings.
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§ 4. Semirings embeddable into semirings with (one sided) identity

A semiring S need neither be embeddable into a semiring with right identity
nor into one with left identity. There are also semirings S for which only one kind
of these extensions exists, and semirings .S which have both, extensions with right:
and no left identity as well as extensions with left and no right identity. The latter
case is equivalent to S being embeddable into a semiring with identity. For corre--
sponding examples as well as for necessary and sufficient conditions we refer to [2].
The following statements deal with the characteristic of a semiring S and of its.
extensions with a one-sided (say, right) or two-sided identity; assertions or concepts.
needed from [2] will be given.

Theorem 9. a)‘Let S be a semiring embeddable into one with right identity..
Then for each semiring T, with a right identity e,, containing S as a subsemiring,
the characteristic 2=y(T,) satisfies y(S)2x(T,) and i=y(T,)=y(e,)ex(K), hence

3y 2(8) 242 (=,0), Acx(K).

In particular, if x(S)§ L' =NyXN, the characteristic of T, is uniquely determined by~ -
A=x(T)=(=,0).

Conversely, let S be a semiring as above and let A€L satisfy (11). Then there
exists at least one such extension T, of S satisfying x(T,)=A.

b) Let S be a semiring embeddable into one with identity. Then the same state--
ments hold for-the characteristic A=y(T) of each semiring T with identity which
contains S, and for each A€ L satisfying (11).

Remark. By the converse statements, for a semiring S embeddable into one
with (right) identity, there exists such an extension T, or T of the same characteristic
1(T)=x(S) or x(T)=x(S) if and only if y(SYSx(K) holds. This is always the:
case if S is finitely generated (by Prop. 5, since (1”) holds for all a,b€S if S is.
embeddable as assumed above), and also if (S, -) contains a weakly cancellable
element (by Prop. 7. a). But there are semirings .S, embeddable as above, such that
1(S)¢ x(K), hence x(S)oyx(T,) or x(S)>x(T) for all extensions under dis--
cussion. For an example, let S be the zero ring on the Priifer group (S, +) (cf.
[5], § 23); then Sis even embeddable into a ring with identity, but x(S)=(0, 0)¢ x(K).

Proof of Thm. 9. The first part of a) follows directly by Prop. 6a) and by
Prop. 7a), and likewise the corresponding part of b). Moreover, both converse:
statements of a) and b) become trivial if x(S)¢ L’, since then only A=(e, 0) sat--
isfies (11). Thus it remains to prove these statements with the assumption x(S)€L’.

If S is embeddable into a semiring with right identity, in the proof of Thm. 1,
[2] we have constructed a semiring 7, with the following properties: S is a subsemi--
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ring, T, contains the identity mapping 1=15 of S, 1+ is defined by a(t+1)=a+a
for all ac S, and e,=1g is the right identity of 7,. Hence for each (n, m)¢NXN
‘we have .

(12) na = ma for all a€S o ne, = me,.

Since x(S)=Ny(@€L’ by assumption, (12) yields x(S)=yx(e)=x(T,). In the
‘two-sided case, the semiring T constructed in the proof of Thm. 2, [2] in a similar
way, satisfies (12) with respect to the identity e of 7, hence x(S)=yx(e)=x(T).
“Thus in both cases there are extensions 7, resp. T of S whose characteristic equals
#(S), and the proof will be complete applying the following

Proposition 10. a) Let T, be a semiring with a right identity e,.. Then for
each A€yx(K) such that y(T,)212(c, 0), there exists an extension T, of T, with a
right identity e/ of characteristic y(T])=2.

b) The corresponding statement holds in the case of two-sided identities.

Proof. It will be enough to deal with a). Since A=(v, g) corresponds to
2=yx"Y ()€K, which is also a congruence on the semiring (N, +, -), the semiring
. N'=N/x={1", 2, ...} satisfies y(N")=y(1")=4 and v=uv(l"), g=g(1’). If 1=(0, g),
N’'==Z/(g) has g’=0" as annihilating zero, and we write N’=N;. In each other
case (including N'=N for A=(e,0)) we adjoin an annihilating zero o’ to N’
and obtain a semiring Ny={0’, 1’,2’,...}, sharing with N’ all properties stated
.above.

Now we use the semiring 7, and define operations on the set 7, =T7,XN; by

(13) (t1, ni)—i'(tZa ny) = (i +1t5, ny+ny).

This construction, called the direct composition of T, and N, may clearly be applied
to any two (or more) semirings, yielding a semiring again. In our case, 7,’ contains
.an isomorphic copy of T, by t—~(t, 0’); hence we can consider T as an extension
of T,. Moreover, e /=(e,,1") is a right identity of T,. Since y(T))=yx(e,)2i=
=x(1"), we obtain x(e))=x(1"), again by (13), i.e. x(T,/)=1 as we were to prove.

Now let S be a subsemiring of a semiring T with identity e;. We call T an
identity extension of S, and write T=[S, er], if T is generated 'by S and e. In this
case, each element 7€ 7T equals a sum

t= 31 with 1,€SU(er), neN.
i=1

Note that the addition in T is not assumed to be commutative. Clearly, each exten-
sion T’ of S with an identity e’ contains the identity extension [S,e’]S 7’. More-
-over, by Thm. 4 of [2], there exists a universal identity extension U=[S, ey] of S,
defined by the property that for each T=[S, e;] there is an epimorphism

(14) Y: U—-T such that a —a for all a€cS, and ey — er.
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_ By (14), U is unique up to isomorphisms (relative w.r.t. S). Conversely, each con-
gruence 7 on (U, +, -) such that 7|SXS is the equality on S, corresponds to an
identity extension Tz U/t of S. Applying Zorn’s Lemma to the set @ of all these
. congruences (in fact a complete lattice), there is at least one maximal 7,€©®, hence
an identity extension To= U/t, of S with the property: Each epimorphism (rela-
tive w.r.t. §) of T, onto an identity extension is an isomorphism. We call such
a T, (being “minimal with respect to epimorphisms™) a strict identity extension
of S. Note that T also has no proper subsemirings containing S and any identity,
and that there are semirings .S with non isomorphic strict identity extensions (cf. [2]).

Theorem 1. Let S be a semiring embeddable into one with identity.

a) The universal identity extension U=I[S, ey] has characteristic y(U)=(e>, 0),
regardless of the characteristic y(S) of S.

b) For each 2€y(K) such that x(S)222(c,0) (ie. (11)), there exists an
identity extension U, of S of characteristic y{U,)=24, which is universal for all
identity extensions T” of S of characteristic x(1") satisfying y(S)2x(T")=22. Clearly,

/. is uniquely determined by S and A, up to isomorphisms relative w.r.t. S.

) If x(S)Ey(K), then there exists at least one strict identity extension Ty of S

of characteristic y(Tp)=yx(S).

Proof. a) By Thm. 9, there is a semiring 7 containing S and an identity
er such that y(7)=(ee, 0). The identity extension [S, e;]& T is an epimorphic
- image of U, ¥: U~[S, ef], hence (e, 0)=x([S, e7])2x(U) by Prop. 6a), proving

2(U)=(=>, 0). | |

b) As just stated, the subsemiring Ney={ey) of U=[S,ey] is isomorphic
to (N, +, +), and may be identified with the latter. As a consequence of Thm. 9,
for each A€y (K) satisfying (11), there is an identity extension T of S with y(T)=2..
Hence for the congruence t€© on (U, +, .) such that T'= Ufr, the restriction
r[N'><N coincides with y 1(})=x€K. Considering » as a relation on U, let O,
be the set of all € @ such that 7" 2 x. Since 7€ O, the intersection 7,= N {t'€ O, }€ O,
satisfies ,[NXN=ux, like . Hence 7, provides an identity extension U,=UJz,
of S which has characteristic x(U,;)=yx(x)=A. Moreover, for each identity exten-
sion 77 of S with- x(7")=4"24, the corresponding congruence 1°€¢® such that
T =U/v satisfies 17¢0,, since T'|NXN=y 1(A)2%. Thus by 1,S7 there is
an epimorphism of U, onto T”, relative w.r.t. S, hence respecting identities.

¢) If x(S)€x(K), then there is an identity extension 7 of S with y(7T)=
=yx(S) by Thm.9 (or, likewise, U, s, of b) just proved). If T is not strict, there
exists an epimorphism of 7" onto a strict identity extension T of S. Using (11) and
Prop. 6a) we obtain ¥ (S)2x (L) 2x(T)=x(S), as we have to show.

Each semiring S has a unique maximal epimorphic image S* of S which is
embeddable into a semiring with identity, and ¢*: S$—S* is universal with respect
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to this property (cf. [2]). Hence the universal identity extension U* of S* together
with @*: S—~U*, satisfies that each homomorphism ¢: S—7” of S into any
semiring T” with identity has a (unique) decomposition

¢: Sy, 17,

i.e. U* is the universal semiring with identity of S as introduced first in [4]. Hence
the results of this section, applied to S* instead of S, provide also information on
an arbitrary semiring S. For instance: The universal semiring with identity U* of
S has characteristic y(U*)=(so, 0).

Finally we note: A mult. can. semiring S is always embeddable into one with
identity, and has a unique strict identity extension Ty. It is the only identity extension
of S being again mult. can. ([2], Thm. 12; for semirings with commutative addi-
tion cf. [6], Satz 2). Moreover, by Thm. 11c¢), the characteristic y(Tp) of T, coincides
with x(S). For similar results on identity extensions of rings compare [7].
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On intertwining dilations. V
(Letter to the Editor)

ZOIA CEAUSESCU and CIPRIAN FOIAS

1. In the paper [3] the last two theorems (Lemma 5.1 and Proposition 5.1)
are incorrect. Namely, the mapping constructed in the proof of Lemma 5.1 (yielded
by the formula (5.6)) is not injective (as asserted at the end of the proof of Lemma 5.1).
The error consists in the assumption which is implicitly made in §5, that for any
Ando dilation {U,, U,} on &, U, is the minimal isometric dilation of

A= PelUyK where K= {7 uro
. n=0

(the terminology and the notation are that of [3]). Here is a counterexample:

Set :
H=Ca{0}, K= H20{0}, | = H*®S,H?

T1=T2=0.5’ U,=8,0S8,, U2=(S 0
+

where S denotes the canonical multiplication unilateral shift on the classical Hardy
space H2 Then {U,, U,} is an Ando dilation of {7}, T,} but U, is not the minimal
isometric dilation of 4=P, U,|[K=0,. Moreover, changing the role of U; and U,
does not improve the situation since, if we set '

K =

n

Ury, A’ = PcUylK,

0

<78

then analogously U, is not the minimal isometric dilation of A'=0,.

2. Therefore one cannot range the present Ando dilation {U,, U} of {Og, Og}
in the frame considered in [3], § 5. Consequently, we must withdraw Lemma 5.1
and Proposition 5.1 from our paper [3]. However we take this opportunity to state

Received January 23, 1979.
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that one can give a similar, but more complicated labeling of all Ando dilations by
referring besides the paper [3] also to our next paper [4]. Since this correct form of
Lemma 5.1 and Proposition 5.1 of [3] needs a much longer discussion, it will be given
in a subsequent paper.

3. We should like to indicate a simple case in which Lemma: 5.1 of [3] conserves
its validity, namely if the factorization T,-T, is regular (in the sense of [5], Ch. VII).
Indeed the only fact we have to prove is that for any Ando dilation {U;, U,}, U,
is the minimal isometric dilation of 4. In the present case this is equivalent to the
relation

m U,(86K)c HoK.

In proving (1) we firstly notice that for any /€ =((U,—T,)$)~ there ex1sts (because
of the regularity of T;-T,) a sequence {h;};,C$ such that

()] Dr,h; -0 and (U,—T)Teh; ~ 1
From the first relation (2) we obtain
3 |Ue—T)h;ll* = | Dr, byl —~ O

so that-the second relation (2) becomes (I—P)U,U,h;—~Il. Therefore, setting
$=9 and H,=HVU,HV..VU;H (n=1,2,...) asin [3],§1 we have

U .+ 9) 30U h;—T, Tob; ~ |, .
whence (U,H,+9)~ oL, and consequently,
(4), U:9:+9) D H1-

We can apply (4), to the compressions (T}), and A4, to $, of U, and U,, respectively
(since by [1], (Ty),- 4, is also regular) and obtain

(4)n (UZ S)n+5n—l)— - 5;;

for all n=1. By iterating (4)"'we finally obtain

) U:K+9)~ oK

Now

© U,(ReK) c U,(ReH) cfKeH L H
(because of formula (5.8) of [3]) and

@) U,(8©K) LU,K.

Relation (1) follows now directly from Relations (5), (6), and (7).
The validity of Lemma 5.1 of [3] under the supplementary condition of regularity
completes also the proof of Theorem 6.1 (3) and Corollary 6.1 of [2].

.
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A. C. Bajpai, I. M. Calus, and J. A. Fairley, Numerical methods for engineers and scientists:
(A s_tudents’ course book), XII+ 380 pages, Taylor & Francis Ltd, London, 1975.

The book comprises three ‘Units’: 1. Equations and Matrices, 2. Finite Differences and their-
Applications, 3. Differential Equations. The emphasis is on the practical side of the subject and the:
more theoretical aspects are omitted. The reader should be familiar with the items listed under the:
heading of Prerequisits at the beginning of each Unit. There are several references to the suitability
of methods presented for programming on a computer. As different programming languages are in
use, the various techniques discussed are not, with one exception, translated into computer programs,
but a large number of flow diagrams are incorporated in the text.

The programmed method of presentation requires the active participation of the reader in many
places where he is asked to answer a question or to solve, either partially or completely, a problem..
The answers to these are always given so that the reader can check his attempt and thus obtain a conti-
nuous assessment of his understanding of the subject.

The book will certainly be useful as a textbook for both science and engineering students.

F. Moricz (Szeged)

H. Bithimann—L. Loeffel—E. Neivergelt, Entscheidungs- und Spieltheorie. Ein Lehrbuch fiir:
Wirtschaftswissenschaftler (Hochschultext), XIII+311 pages, Berlin—Heidelbers—New York,.
Springer-Verlag, 1975.

In everyday life, and especially in management praxis one often has to make decisions se-
quentially in a process in which some external effect modifies the evolution between two consecutive:
steps. The decision-maker wants, of course, to choose those decisions which ensure the most favour--
able evolution of the process, in other words, he wants to maximize his reward.

Decision and game theory deals with the mathematical analysis of such, so-called sequential,
decision processes. If the influencing external effect is another decision-maker acting according to-
his own preference (reward) structure, then the corresponding process is called a game. If the
distrubing effect is simply the chance, or, in other words, a non-interested decision-maker, then one:
faces a simple sequential decision problem. Risk theory, Wald’s statistical decision theory and'
decision making under uncertainty are the most important sub-fields of decision theory.

The present book is a first introduction to decision and game theory. It was written for students
in management science, and requires a mathematical education on secondary school level only..

The first part of the book deals with decision theory including utility theory. The second part
is devoted to game theory, while the third one to statistical decision theory. Two mathematical:
appendices contain the more elaborate proofs, and a bibliography and an index close the volume..
121 figures and many explicitly solved examples help to understand the text.
: D. Vermes (Szeged)
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Surveys in Combinatorics, Proceedings of the 7** British Combinatorial Conference, ed. B.
Bollobas, VII+261 pages, Cambridge University Press, Cambridge—New York—London—Mel-
‘bourne, 1979.

These excellent surveys cover many basic areas in combinatorics and give a good picture of
recent developments of the field. The papers are the following: N. L. Biggs: Resonance and re-
.construction; A. Gardiner: Symmetry conditions in graphs; D. J. Kleitman: Extremal hypergraph
problems; W. Mader: Connectivity and edge-connectivity in finite graphs; J. NeSetfil and V. Rodl:
Partition theory and its applications; J. J. Seide!: Strongly regular graphs; J. A. Thas: Geometries
in finite projective and affine spaces; C. Thomessen: Long cycles in digraphs with constraints on the
-degrees; D. Welsh: Colouring problems and matroids.

L. Lovdsz (Szeged)

Siegfried Brehmer, Hilbert-Riume und SpektralmaBe, 224 Seiten, Akademie-Verlag, Berlin, 1979.

Der Hauptteil dieses Bindchens in der Reihe ,,Wissenschaftliche Taschenbiicher* ist der Theorie
«der beschriankten linearen Operatoren gewidmet. Im Mittelpunkt steht die Spektralzerlegung
beschrinkter selbstadjungierter Operatoren, die dann auch auf den Fall unbeschrinkter selbst-
.adjungierter Operatoren ausgedehnt wird. Der Rest bringt eine relativ elementare, aber griindlich
ausgearbeitete Einfithrung in die Theorie der SpektralmaBe und Spektralintegrale und gipfelt in
der Bereitstellung der Funktionalkalkiils fiir mef3bare Funktionen von (nicht notwendig beschrink-
ten) normalen Operatoren. Der Verf. stiitzt sich natiirlich auf Standardwerken, macht aber gele-
:gentlich auch Vereinfachungen und Erneuerungen, die teilweise seine Kollegen und Studenten
.gefunden haben.

Béla Sz.-Nagy (Szeged)

Shiing-shen Chern, Complex manifolds without potential theory (with an Appendix on the geometry
-of characteristic classes), V+ 152 pages. Second Edition, Springer Verlag, Berlin—Heidelberg— New
York, 1979.

The new methods of complex manifold theory are very useful tools for investigations in
-algebraic geometry, complex function theory, differential operators and so on. The differential
geometrical methods of this theory were developed essentially under the influence of Professor
S.-S. Chern’s works. The present book is a second edition; it was originally published by Van
Nostrand in 1968. It can serve as an introduction to, and a survey of, this theory and is based on the
.author’s lectures held at the University of California and at a summer seminar of the Canadian
Mathematical Congress.

The methods of complex manifold theory have grown parallel to the Hodge—De Rham theory
-of harmonic integrals, which is an analogue of classical potential theory. The treatment of this book
Jleaves out of consideration these analytical aspects of the theory; the title hints at this circumstance.

The text is illustrated by many examples. The reader in supposed to be acquainted with some
-differential geometry, fibre bundle and sheave theory. The book is warmly recommended to everyone
dnterested in complex differential geometry.

P. T. Nagy (Szeged)
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Shiing-shen. Chern, Selected Papers, XXXII+476 pages. Springer Verlag, New York—Heidel-
berg—Berlin, 1978.

This book is a presentation of a fascinating personal Oeuvre and at the same time of the many-
sided progress in differential geometry in the last 45 years. The volume contains approximately one
third of Professor Chern’s works, among them also some less known fundamental papers published
in inaccessible journals.

The selection is introduced by three papers presenting Chern’s mathematical and personal
oeuvre written by André Weil, Phillip A. Griffiths and S.-S. Chern himself with the titles: “S.-S. Chern
as Geometer and Friend”, “Some Reflection on the Mathematical Contributions of S.-S. Chern”
and “A Summary of My Scientific Life and Works”, respectively. )

Chern’s investigations can be put into the following domains of differential geometry ac-
cording to his own classification: projective differential geometry, euclidean differential geometry,
geometric structures and their intrinsic connections, integral geometry, characteristic classes, holo-
morphic mappings, minimal submanifolds, webs. His results give programs for future research, and
at the same time they pursue the geometric view of his masters: Wilhelm Blaschke and Elie Cartan.

This excellent book should not be missing in any mathematical library.

P. T. Nagy (Szeged)

P. Ginssler and W. Stute, Wahrscheinlichkeitstheorie (Hochschultext/Universivtext), XII+418
pages, Springer-Verlgg, Berlin—Heidelberg—New York, 1977.

The book is intended to serve as a graduate text in probability theory. No knowledge of measure
or probability theory is pressupposed, only a few notions and results from analysis, linear algebra
and set theory are required. These prerequisities are collected in Ch. 0.

The text comprises the major theorems of probability theory and the measure theoretical
foundations of the subject. The material of Chapters 1—6 may be considered as an introductory
course in probability theory: 1. Measure theoretical tools and basic notions of probability theory,
2. Laws of large numbers, 3. Empirical distributions, 4. The central limit theorem, 5. Conditional
expectations and distributions, 6. Martingales. The material of Chapters 7—10 may form the basis
of an advanced course: 7. Stochastic processes, 8. Random elements in metric spaces, 9. Central
limit theorems for martingale difference schemes, 10. Invariance principles.

There are exercises and remarks at the end of each chapter. The book is supplemented with
a bibliography con51stmg of 154 items, a list of symbols and conventions, an author and subject index.

The textbook is written in a concise but always clear and well-readable way. We warmly
recommend it to both students and lecturers at universities and technical colleges.

F. Moricz (Szeged)

I. I. Gihman—A. V. Skorohod, The theory of stochastic processes I, IT, III (Grundlehren der
mathematischen Wissenschaften 210, 218, 232), VIII+570, VII+441, VII+387 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1974, 1975, 1979,

Very few scientists show up in our age of specialization who would try to make an effort to
penetrate in almost every important part of the whole branch of a mathematical field. This is what
Professors Gihman and Skorohod do with the theory of probability and stochastic processes. That
this is indeed so is recognized if the three-volume treatise under review is looked at as a part of
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a larger series of books. This series consists of three more books by the same authors, another
joint book by Professor Skorohod and N. P. Slobodenyuk, and five books by Skorohod alone.

In these three volumes the authors endeavoured to present an exposition of the basic results,
methods and applications of the theory of random processes. The various branches of the theory
cannot, however, be treated in equal detail. A knowledge of basic probability and measure theory,
as well as real and complex variable function theory and functional analysis (especially Hilbert
space theory) is required from the reader. Thercfore, these volumes are intended for professional
mathematicians and graduate students rather than for undergraduates. A substantial number of the
results are appearing in non-periodical literature for the first time, and there are results which have
not been published even in periodicals. A great number of proofs of known results are also new.
Since the authors are able to review the material in a long perspective, there is no doubt that this
three-volume monograph will be one of the main references and sources of inspiration for research
for a long time to come.

In what follows we can only try to indicate the contents by giving some key words.

Volume I. Chapter I (Basic notions of probability): axioms, independence, conditional expecta-
tion, random functions and mappings, Kolmogorov’s fundamental theorem. Chaprer II (Random
sequences): martingales, semi-martingales, Markov chains, lattice random walk with vector jumps,
stationary sequences, Birkhoff—Hinchin theorem. Chapter III (Random functions): Gaussian,
Markov, independent increment processes, Doob’s theorem on separable and measurable equivalents,
criteria for the absence of second kind discontinuities, Kolmogorov’s criterion for continuity.
Chapter IV (Linear theory of random processes): second order random functions in a linear space,
spectral decomposition of correlation functions of processes and fields, L2-continuity, -differen-
tiability, -integrability, and -decomposability into orthogonal series. Stochastic measures and
integrals, integral and spectral representations of second-order processes and fields. Linear transform-
ations, admissible and physically realizable filters, filtering of stationary processes with minimal
mean square error, forecasting. Chapter V (Probability measures on fuction spaces): Conditions for
realizability of measures on function spaces endowed with metric or vector structure, positive
definite functionals and measures on a Hilbert space X, characteristic, linear and quadratic functionals
and Gaussian measures on X. Chaprer VI (Limit theorems for random processes): weak compactness
and convergence of probability measures in metric and Hilbert spaces, limit theorems for sums of
independent variables in a Hilbert space, convergence of continuous processes and processes with
no second kind discontinuities. Chapter VII (Absolute continuity of measures associated with random
processes): densities of measures, admissible shifts of measures on a Hilbert space, absolute continuity
under mappings, applications for Gaussian and Markov processes. Chapter VIII. (Measurable
functions on Hilbert spaces): conditions for continuous approximation (in measure) of linear functi-
onals, operators and mappings, orthogonal polynomials for Gaussian measures.

Volume I1. Chapter I (Basic definitions and properties of Markov processes), Chapter II (Homo-
geneous Markov processes): semigroup theory, strong Markov property, local behaviour of sample
paths, Feller processes, processes in locally compact spaces, cut-off and non-cut-off processes,
multiplicative and additive functionals, excessive functions. Chapter III (Jump processes): structure
of sample paths, homogeneous Markov processes with a countable set of states, semi-Markov jump
processes, Markov processes with a discrete component. Chapter IV (Processes with independent
increments): decomposition into discrete and stochastically continuous processes, conditions for
the latter to be Poisson, Lévy representation for the characteristic function of the increments, dis-
tribution of functionals concerning fluctuations (supremum, arrival time, size of jumps), local
behaviour, growth at infinity, vector-valued jump processes. Chapter ¥ (Branching processes): branch-
ing Markov processes with a finite number of particles, infinitesimal characteristics of branching
processes with a continuum of states, general Markov processes with branching.
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Volume 111. Chapter I (Martingales and stochastic integrals): quasi-martingales, stopping and
random time substitution, decomposition of supermartingales, (local) square integrable martingales,
continuous characteristics. Stochastic integrals over locally square-integrable martingales and
martingale measures. Itd’s formula, stochastic differentials, bounds on moments, representation ‘of
martingales by integrals over a Wiener measure, decomposition of locally square integrable martinga-
les. Chaptrer I (Stochastic differential equations): the stochastic line integral, existence and uniqueness,
finite-difference approximations, solutions of stochastic differential equations without an after-
effect as a Markov process, differentiability with respect to initial data of solutions, limit theorems of
stochastic differential equations. Chapter III (Stochastic differential equations for continuous pro-
cesses and continuous Markov processes in R™): 1td processes, processes of diffusion type, existence
and uniqueness, diffusion processes in R™, homogeneous processes with integrable kernel of a poten-
tial, local structure of continuous homogeneous Markov processes in R™, M-functionals; the rank
of a process, continuous processes in R'.

Apart from the bibliography, each volume ends with a section of historical and bibliographical
remarks and a (not too rich) subject index. Also, an Appendix is included in Vol. III, correcting
some errors in the first two volumes. All three volumes were translated by Samuel Kotz who has
done a superb job.

Sdndor Csorgd (Szeged)

S. A. Greibach, Theory of program structures: Schemes, Semantics, Verification (Lecture Notes
in Computer Science, 36), 364 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1975.

Investigations concerning semantics play a fundamental réle in computer science. This book
contains the material of a first course on schematology, dealing with one approach to formalizing
the elusive notion of the “semantics of programming languages”. It is a nice introduction intending
to make the reader familiar with the theory of program schemes and related topics.

In accordance with the introductory feature of the book, numerous examples are included
to illustrate each new construction and many of the proofs, while in some cases the formal proofs
are given in outline only. The book concludes with a large number of exercises. All these greatly
help the reader to understand the main ideas.

As familiarity with formal languages and finite state machines makes the understanding of
some chapters easier, we recommend this book first of all to students with this background.

G. Maréti (Szeged)

Maurice Holt, Numerical Methods in Fluid Dynamics (Springer Series in Computational
Physics), VIII+ 253 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977.

At 'tile present time the majority of unsolved problems in fluid dynamics are governed by
non-linear partial differential equations and can only be treated by a numerical approach. The
development of large-scale computers have formed a basis for algoritmic constructions and extensive
mathematical experiments in this area, too, as a result of which a lot of principal advances have been
recently made in numerical methods. 3

The first part of this monograph describes two recent finite difference methods, both developed
in the USSR. The first is due to Godunov (Ch. 2) originally presented in 1960 and revised in 1970.
The second method was developed principally by Rusanov in 1964 in collaboration with Babenko,
Voskresenskii and Liubimov, and is familiarly known as the BVLR method (Ch. 3). Both the Godunov
and BVLR methods have their origins in the method of characteristics (in two dimensions). Ch. 4
contains the method of characteristics for three-dimensional problems.
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The second part treats the methods of integral relations (Ch. 5) introduced by Dorodnitsyn
in 1950 and extended in 1960, the method of lines and Telenin’s method (Ch. 6) developed from
1964 onwards. The objective of all these methods is to eliminate finite difference calculations in one
or more coordinate directions by using interpolation formulae, especially polynomials or trigono-
metric functions, to represent the unknowns in selected directions.

The presentation is made for graduate students in engineering or applied mathematics with
basic knowledge of fluid mechanics, partial differential equations and numerical analysis. Many
applications and samples of numerical solutions of model problems are presented.

The book is warmly recommended to everyone practicing numerical analysis in industry or
teaching at universities and technical colleges. It will certainly stimulate some of the readers to
look for further effective numerical methods to attack the rather difficult problems of fluid dynamics.

F. Moricz (Szeged)

E. H. Lockwood and R. H. Macmillan, Geometric Symmetry, X+228 pages, Cambridge
University Press, Cambridge—London—New York—Melbourne, 1978.

This large-scale summarizing work retrieves a long-time missing unified basic collection of
discrete symmetry groups and present them not only for the specialists of this discipline, but also
for artists and for the interested general public.

The book is divided into a “Descriptive” part and a part on “The mathematical structure”.
(Both parts discuss discrete symmetries of spaces of dimension not higher than 3 and this splitting
of themes is no benefit for the user who wishes to find all information about say, the frieze-groups
or the plane-groups in the same place.)

The book consists of the following chapters: Part I. 1. Reflexions and rotations, 2. F1n1te
patterns in the plane, 3. Frieze patterns, 4. Wallpaper patterns, 5. Finite objects in three dimensions,
6. Rod patterns, 7. Layer patterns, 8. Space patterns, 9. Patterns allowing continuous movement,
10. Dilation symmetry, 11. Colour symmetry, 12. Classifying and identifying plane patterns, 13.
Making patterns; — Part I1. 14. Movements in the plane, 15. Symmetry groups. Point groups, 16.
Line groups in two dimensions, 17. Nets, 18. Plane groups in two dimensions, 19. Movements in
three dimensions, 20. Point groups in three dimensions, 21. Line groups in three dimensions, 22.
Plane groups in three dimensions, 23. Latfices, 24. Space groups I, 25. Space groups II, 26. Limit-
ing groups, 27. Colour symmetry.

It must be noted that the references are incomplete. For instance there is no reference to the
works of Coxeter or Fejes To6th in discrete geometry. Perhaps this is the cause of some mistake
in the historical introduction: it were not Polya or Niggli who first enumerated the 17 wallpaper
groups in 1924, but Fedorov in 1891 and later, independently of him, Fricke and Klein in 1897.

A particular virtue of the book is the Notation and Axes supplementary chapter which
symbolizes the beneficent endeavour of the authors to unify the notation system of the groups
studied. Perhaps because the main user of these symmetry groups is crystallography, the authors’
effors aim to generalize the crystallographic notation, although that is not ideal owing to its redund-

- anBy. As far as we know this book is a pionerring work not only in summarizing geometric symmetry
but in the unification of its notation, too.

] Its clear structure, neat way of exposition and abundant illustrations in color make this ex-
cellent book an attractive reading, a valuable and useful help for teachers on all levels (in secondary
or high schools, or at universities), and even for artists, textile designers, architects, etc.

Dénes Nagy and Szaniszlo Bérczi (Budapest)
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Laszi6é Lovidsz, Combinatorial Problems and Exercises, 551 pages, Akadémiai Kiado and North
Holland Publishing Company, Budapest, 1979

Though the roots of combinatorics go back to the 18'® and 192 centuries, it has become a cohe-
rent discipline in the last twenty years only. Mostly isolated theorems were known beside the earlier
developed enumeration techniques. The recent extremely rapid development of combinatorics was
influenced by the occurrence of combinatorial problems connected with computer science, operation
research, statistics, coding theory etc. The enormous quantitative increase has been accompanied by
the appearance of several new methods, techniques and theories. This development is manifested

- also by the increase in the number of books from no more than a dozen in the middle of this century
‘to several hundreds today. Lov4sz’ book is a masterpiece among them. .

- Inspite of the modest title it is not just a collection of problems but.it builds up more than a
dozen “theories” and techniques in combinatorics, some of them presented here for the first time
as a coherent topic.

It is a three-level version of the classical book of Polya—Szegs: Aufgaben und Lehrsitze aus
der Analysis, containing parts as Problems, Hints and Solutions. These cover classical theorems and
the latest results as well. A large part of the text has appeared previously in research papers only.
In many cases the proofs are much simpler than the original ones.

The first four chapters are devoted to enumeration; generating-function techniques (the first
developed techniques in Combinatorics), the famous P6lya method (used for some classical problems
on partitions), sieve methods, a large part of the latter in probabilistic setting such as M. Hall’s
and Rényi’s method for coding permutations, enumeration of trees and one-factors.

§ 5 is on duality and parity. Here the nature of the solutions unifies the material more than the
problems themselves. § 6—§ 7 deal with connectivity, Menger—K 6nig—Hall—Tutte—Edmonds type
factorization theorems, the ‘max-flow — min cut’ theorem, a subject which is strongly connected
with linear programming. :

Chromatic number is a concept whose origin goes back to the last century (Four Colour
Conjecture). It is now of completely independent interest; e.g. chromatic polynomials and the
problem of characterization of critical graphs concerning the chromatic number are considered in § 8.

§9 deals with independent sets, characterization of critical graphs concerning maximal inde-
pendent sets and their applications; e.g. game-theory.

§ 10 contains extremal problems characterized by Turan’s theorem, and several problems on
Hamiltonian lines.

§ 11 and § 12 deal with algebraic graph theory, spectra of graphs and automorphims of graphs.

§ 13 contains hypergraph theory, including intersection theorems like the Sperner and the
Erd6s—Ko—Rado theorems, fractional and integer matching and covering, and it ends with Lovasz’
perfect graph theorem. Various proof techniques are demonstrated, some of them developed, partly
or fully, by the author himself.

§ 14 contains the Ramsey theory. This includes Ramsey-type theorems for systems of finite
sets and also other structures (as integers, vector spaces, arithmetic progressions). The last chapter
is devoted to reconstruction problems. '

Throughout the book there is a strong emphasis on “good characterization”, on algorithmic
aspects, on the connection of combinatorics with integral linear programming, on the use of linear
algebra, and on probabilistic setting.

The exposition is extremely clear and elegant. The author seems always to find the simplest way
to prove the deepest theorems.

The book is highly recommended not only to young researchers but also to the specialists
in combinatorics and the mathematical public in general.
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It will undoubtedly not only “help in learning existing techniques in combinatorics” but will
also stimulate new ideas. :
“Some fields have had to be completely omitted: random structures, integer programming,
matroids, block designs, lattice geometry, etc. I hope eventually to write a sequel to this volume
covering some of these latter topics.” Having an outstanding book like this we are looking forward
to the next volume.
Vera T. Sés (Budapest)

J. D. Monk, Mathematical Logic (Graduate Texts in Mathematics, 37), 531 pages, Springer-
Verlag, New York-—Heidelberg——Berlin, 1976.

This book is based on the author’s lectures given at various universities.

After a survey of recursive function theory and the elements of logic, the reader is made familiar
with the concept of first order languages and the basic facts concerning them. This part of the book
serves as a preparation for the following chapters, dealing with decidable and undecidable theories
and other tdpics in model theory. The book concludes with touching upon several other kinds of
logics, e.g., many-sorted logic, second-order logics, etc.

At the end of each chapter the reader finds references and a rich variety of interesting exercises.

We recommend this excellent work to everyone interested in, or dealing with, mathematical
logic. First or second year graduate students can study sentential logic and its relationship to Boolean
algebras by reading chapters 8 and 9 only. Because of the very abstract nature of the subject we
suggest reading the whole book first of all to postgraduate students, as well as young logicians, who
thereby can be helped efficiently in preparing the material of their lectures on mathematical logic

s

G. Maréri (Szeged)

H. Rademacher, Lectures on Elementary Number Theory, IX+146 pages Robert E. Krieger
Publishing Co., Huntington, New York, 1977.

Number theory is full of problems and results that most mathematicians know, but the general
feeling about their proof is that it is very difficult and technical. We all know about the prime number
theorem, quadratic reciprocity, Dirichlet’s theorem on primes in arithmetic progressions, Brun’s
theorem on twin primes, just to mention some of the most classical examples. But very few of us
have had the possibility of learning the proofs of these facts, although these proofs are not as inac-
cessible as believed. This, of course, is a pity, because a major contribution of number theory to
mathematics is in_the powerful methods which emerge from the solutions of its simple yet very
difficult, challenging problems. Some of the “elementary” proofs in number theory may contain the
kernel of other more general mathematical theories. This is why it is great to be able to read accounts
of some of these classical difficult problems in number theory in a form accessible to non-specialists,
in particular students.

This classic book, whose second printing is reviewed here, discusses some of these well-known
but not generally well-understood problems in “elementary” number theory (“elementary” only
means that no complex function theory is used: real calculus is used and the field is full with compli-
cated, ingenious arguments). It is not a textbook but it does start with the basics: unique factoriza-
tion, Farey fractions, linear Diophantine equations, congruences. It gets to quadratic reciprocity
through an interesting detour to constructing regular heptadecagons, Lagrange resolvents and
Gaussian sums. After discussing lattice point techniques and some results on prime distribution
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like Chebyshev’s theorem, the book gives the proof of Dirichlet’s theorem on primes in arithmetical
progressions, and of Brun’s theorem on the convergence of the sum of reciprocals of twin primes.

This book is indeed recommended to everyone, in particular to students: its material belongs
to what may be regarded as “basic mathematical intelligence”, its presentation is easy to follow and
yet it leads the reader to the deepest “elementary” results in number theory.

L. Lovdsz (Szeged)

R. D. Richtmyer, Principles of advanced mathematicél physics. I (Texts and Monographs in
Physics), XV +422 pages, Springer-Verlag, Berlin—Heidelberge—New York, 1978. — DM 44,—.

As the author points out in the preface, nowadays physics cannot apply intuitive methods as
earlier, it needs a high level adequate mathematics of a wide range. However, branches of mathema-
tics are used from a specific physical point of view, i.e., some of the mathematical theories are ir-
revelant to physics while some results marginal to the mathematical theories have great importance
in physics. The aim of the book is to collect mathematics from this special physical point of view.
The title is somewhat misleading because the book does not concern any principles; it concentrates
on Hilbert and Banach spaces and distributions, linear operators and their spectra, with special
attention to operators that emerge from differential equations in physics.

' There is a great demand for such books which can serve as basic ones for students. That is
why it is a pity that measure theory is not treated thoroughly, hence probability theory cannot
be set forth in its natural way and the spectral theories of self-adjoint and unitary operators are formul-
ated by spectral families (resolutions of the identity) instead of projection valued measures, involving
thus more complicated tools.

The treated material is essential for general understanding of physics (except perhaps the last
chapter: non-linear problems; fluid dynamics); the presentation of the subject is clear and suitable
for the purpose of the author. The book will certainly prove very useful for students in physics.

T. Matolcsi (Budapest)

A. N. Shiryayev, Optimal Stopping Rules (Applications of Mathematics, Vol. 8), X+217
pages, New York—Heidelberg—Berlin, Springer-Verlag, 1978.

" 'What is the secret of a successful life? Perhaps nothing but the ability to stop each activity
at the right moment. The vital applicability of the theory of optimal stopping is consequently beyond
doubt. But there was one more reason why to publish the present volume in the series “Applications
of Mathematics”. Namely the theory of optimal stopping itself serves as an interesting field of
application for other deep mathematical disciplines.

The present book is a well-written, concise presentation of the beautiful round theory of optimal
stopping of Markov processes. Although it is shown that all interesting non-Markovian stopping
problems can be reduced to equivalent Markovian ones, the decision of the author to restrict himself
to Markov processes was a step off the applications in favour of the methodological closedness of
the theory. The emphasis of the volume lies on the demonstration how potential- and martingale-
theoretical results can be applied to solve the mathematical problem of optimal stopping. Possible
applications of optimal stopping theory are only outlined. But this incompleteness from the side of
applications does not lessen the value of the book. On the contrary, it has the effect of forcing the rea-
der to think it over and fill up the gaps by himself. This way the passive reader is converted into an
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active partner in research. Besides conciseness and theoretical clarity, this is the very property which
makes the book extremely fitting to serve as a basis for a half-year course for advanced students in
probability. The presented material can also be regarded as a first non-trivial introduction to the
theory of filtration and control of stochastic processes.

The Russian original was substantially improved and enlarged before translation. The chapter-
headings are 1. Random Processes: Markov Times; 2. Optimal Stopping of Markov Sequences;
3. Optimal Stopping of Markov Processes; 4. Some Applications to Problems of Mathematical
Statistics. A detailed bibliography and an index close the volume.

D. Vermes (Szeged)

Dietrich Stoyan, Qualitative Eigenschaften und Abschiitzungen stochastischer Modelle, X - 198
pages, Akademie-Verlag, Berlin, 1977.

The theories of queues, inventories, dams, risks and reliability belong to the oldest spheres of
applied probability, and even non-specialists know that they are merely different interpretations of
the same mathematical discipline. It is not the lack of a common language that gives rise to the very
non-homogeneous outlook of these theories, but rather the dissimilarity of the applied techniques.

The situation very much resembles to the early decades of the theory of differential equations,
when the explicit form of the exact solutions was of primary interest. At that time the necessary
approaches varied from equation to equation. Only Liapunov’s direct method and the monotonicity
methods (differential inequalities and fixed-point theorems) have opened the fundamentally new
prospects of the uniform, so called qualitative, theory of differential equations.

The stochastic theory of queues, inventories, etc. now stands at the beginning of a similar
vigorous development. The aim of the present booklet is to awake interest in this new field. Most of
the book deals with monotonicity methods, based mainly on the author’s own results. Although
these techniques are far not as powerful at the present stage as their deterministic analogues (they
are used only for obtaining some estimates), they appear to be a first step towards a uniform quali-
tative theory of queues, reliability etc. The last chapter of the book gives a short glimpse into the
modern but already well-developed stability theory of stochastic models.

The purpose of the author is to give a first introduction and therefore the more laborious proofs
are only sketched. The reader is supposed to have some pre-knowledge in the theory of queues, in-
ventories, etc. The language of the book is clear, but, due to some long definitions and complicated
formulations, it is not very easy-flowing. Some open problems, an extensive bibliography and an
index supplement the volume.

D. Vermes (Szeged)
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