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On a set-mapping problem of Hajnal and Máté 

J O H N P. BURGESS 

In the course of a wide-ranging survey of combinatorial set theory, A. Hajnal 
and A. Máté prove by a forcing argument the consistency of the following combinat-
orial principle with the Generalized Continuum Hypothesis GCH, and ask whether 
if follows from the Axiom of Constructibility V=L (see [4], Thm. 5.4 and 
Problem 8). 

(HM) There is a function / : {(a, /?, 7): a a > 2 such that for any 
uncountable A Q a>2 there exist in A with /'(a, /?, y)£A. 

(We are using the same standard set-theoretic notation as [4], except that we use 
cox rather than for the ath transfinite cardinal.) We present here a proof that 
V=L implies HM by a metamathematical method which we feel has interest beyond 
this particular problem. 

1. Jensen's Absoluteness Principle. The language L [gx, g2] is just like ordinary 
first order logic, except for the presence of two generalized quantifiers: 

Qxx(p{x) meaning: There exist uncountably many x such that <p(x). 
Q%x(p(x) meaning: There exist at least co2 many x such that <p(x). 

As is explained in some detail in the final paragraphs of [3], R . B . JENSEN'S work 
on model theory establishes the following principle: 

(* ) Let cp be a sentence of L[Q1, Q2], Suppose there is a Boolean-valued 
extension Vm of the universe of set theory in which GCH holds, such that 
in Vs6 it is true that q> has a model. Then already in the constructible universe 
L it is true that <p has a model. 

This principle provides a method for turning a consistency proof for a combin-
atorial principle 1p into a derivation of from V=L. Namely, it suffices to find 
a sentence <p of L\QX, Q2] for which we can prove, using GCH if needs be, that 
cp has a model if and only if \j/ holds. Unfortunately this method does not seem to 
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284 Jolin P. Burgess 

apply directly to the principle HM. What we will show here is that it applies to 
a certain principle which implies HM. 

2. Quagmires. The principle we have in mind is just a bit complicated. A tree 
is a partial order < ) in which the predecessors of any element are well 
ordered. The order type of the predecessors of t£T is called the rank |r| of t. The 
ath level Ta of the tree is the set of t with \t)=a, and its height the least a with 
r a =0 . For present purposes a Kurepa tree may be defined as a tree of height £ox +1 
in which T has cardinality co2, distinct elements of T^ have distinct sets of pre-
decessors, and Ta is countable for a<cOj. 

A quagmire (T, Q) is a Kurepa tree (T, < ) equipped with a binary 
relation <i and a trinary function Q such that: 

(1) <3 holds only between elements of equal rank, and linearly orders each 
level Tx of the tree. 

(2) Q is defined on those triples ( / , x', x) with and for any such, 
/<2(/> X',X)~=3X. 

(3) (Commutativity) If y"<ix"<x'-=:x, then Q{Q(y", x", x'), x', x) = 
=Q(y", x", x). 

(4) (Coherence) If z '<i/<ue'-=x, then Q{z',y',Q(y',x',x)) = Q(z',x',x). 
(5) (Completeness) If yox£T , then for some cc^^, Q(Pa(y), Pa(x), x)=y. 

Here Px is the projection function which assigns to any t with \t]=a the unique 
with \u\—a. Note that the condition Q(Px(y), Pa(x), x)=y implies Pa(y)<i 

< ^ ( 4 else Q would not be defined on this triple. 
What we are going to show, assuming GCH, is that: 
(A) The existence of a quagmire implies HM. 
(B) There is a sentence of L[QX, g.J which has a model if and only if there 

exists a quagmire. 
(C) There is a Boolean-valued extension V® of the universe of set theory 

in which GCH holds and there exists a quagmire. 

3. Proof of (A). We will show, assuming CH, that //there exists a quagmire (T 
«3, Q), then HM holds. We begin by deriving from these assumptions the following 
combinatorial principle, due to Silver. (For its consequences, cf. [5].) 

(W) There exists a Kurepa tree (T, < ) equipped with a function W defined 
on col5 such that: 
For a r<coi, W(a) is a countable family of subsets of the level Ta. For any 
countable S ^ T a there exists a<ai1 such that for any a 
{P„(x): x£S}iW(fi). 
Indeed, to derive W given CH and a quagmire, note that for each a<et>l5 

the ath level Tx of the quagmire is countable, so its power set can be enumerated 
in an o)i-sequence Xa p for p^co1. For x£ T and a, P<\x\ let S(a, ft, x) be the 
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image {{?(/, P*(x), x): / < P , ( i ) & of the /3th subset of Ta under the 
map Q(-,Px(x),x). For y^o^, let W{y) = {S{a, fi, x): a, & a count-
able family of subsets of T7. 

Now it follows by the Completeness condition in the definition of quagmire 
that any x£T has at most a>1 <3-predecessors. Hence given a countable SQT0)i, 
there must exist an x with y<\ x for all y£ S. Again by Completeness, for each y£ S 
there is then an a(y)<coj with y-Q(Px(y)(y), Px(y)(x), x). Let a=sup {x(y): 
ydS}. By Commutativity, for any a^¿-CCÜJ and y6S, the element y' = Q(PxW(y), 
i . w W . n W ) satisfies / )

l W ( y ) < / < i ,
s ( x ) and y'^Q{y', Pb{x), x) = Q{Px(y){y), 

Px(y)(x), x)=y. Hence y' = Pd(y) and Q(Pó(y), Ps(x), x)=y. 
If now we fix a ft such that {Px{y): y€S}=Xx^ and let y be > a and /3, then 

for any ysá-e®! it is readily verified that y£S}=S(a, p, Ps(x))eW(5), 
which suffices to prove Silver's principle W above. This established, we go on, still 
assuming CH and the existence of a quagmire, to derive the following combinatorial 
principle, due to Hajnal and Máté: 

(HM') There exists a sequence of, functions Hx: a>2-~co2, for a<0^, such 
that for any infinite SQ co2 there exists a v-=a)i such that for any •y=á<co1 

there exists an x£ S with Hs(x)£ S. 
Towards proving this, we first note that we may assume without loss of general-

ity that in our quagmire no level Tx has a o -least element. (Otherwise we can con-
struct a new quagmire with this property by taking: 

T' = a>XT, 

(m, x) (n, y) —• m = n & x < y, 

(m, x)<i'(n, y) —• x<iy or (x = y & m > n), 

Q%m, / ) , (n, x'), („, x)) = (in, Q(y', x', x)), 

i.e. by replacing each element x of the original quagmire by a sequence 
, . . (2,x),( l ,x) , (0,x).) 

This settled, we go on to construct for each a c a ^ a map hx: Tx^*Ta such 
that hx(x)-cix for each x£Tx, and for any infinite S£ W(a) there exists with 
hx(y)£ S. Since W(a) is countable, this can be accomplished by a simple diagonal 
construction in (o stages, whose details are left to the reader. Having the hx, we 
define maps ffa: by Ha(x) = Q(hx(Px(x)), Px(x), x). 

Now for any denumerably infinite S Q T , our arguments above establish 
two things. First, there is an x£T and an cc<a>1 such that for all y£S and 
a § ¿ < 0 ! , Q(Pi(y), Pi(x), x)=y<ix. Second, there is a /?<(«! such that for all 
P^ő^o)!, {Ps(y): y£S}£W(S). If y = max (a,/?), then for any by 
construction there exist;', S with íi6(Ps(y))=:Pö(z). Now by Coherence Hs(y) = 
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= Q(hs{Ps(y)), Ps{y), y)=Q(Pi(z), Ps(y),y) = Q(Pi(z), Ps(x), x)=z, i.e. there is a 
yiS with //aOO€S. 

If we assume, as we may without loss of generality, that T consists precisely 
of the ordinals <<a2> then this is precisely what is required to establish the principle 
H M ' above. Now as HAJNAL and MÁTÉ [4] show that H M ' and the existence of 
a Kurepa tree imply HM, our proof that CH and the existence of a quagmire imply 
HM is complete. 

4 . Proof oí (B) . VAUGHT [6] long ago proved that the existence of a Kurepa 
tree is equivalent to the existence of a model for a certain sentence (p of L[Q1} g2]. 
For completeness we recall his argument here: q> will involve two singulary pre-
dicates T, O, plus two binary predicates < T , < 0 , plus a singulary function symbol 
r, plus a constant w. <p is the conjunction of the sentences (whose precise formaliza-
tion we leave to the reader) expressing: 

(1) partially orders T in such a way that the predecessors of any element 
are linearly ordered. 

(2) < 0 linearly orders O, with last element w. 
(3) r maps T onto O in such a way that for any t£T and u£0, iKQr(t) if and 

only if there exists t'<Tt with u = r(t'). 
(4) QxitO(u) & V«(w-=0»v-~iöi«'(" ,<ow)) 
(5) Q»t(T(t) & /-(0 = ^) & distinct t with r{t) = w have distinct sets of < r -

predecessors. 
(6) V « ( « < 0 w - n 2 ^ ( 7 X 0 & r (*)=«)) 

If (T, < r ) is a Kurepa tree, we get a model of this sentence q> by interpreting O 
as the set of ordinals < 0 as the usual order on this set, w as a a n d r as 
the rank function. Conversely, if (T, < T , O, -=0, w, r) is a model of cp, then using 
(4) above one easily sees that there is a <0-cofinal subset Z of {i/£0: «<„« '} which 
is well ordered by < 0 in order type o^. Then restricting < T to {t£T: r(t) = w or 
r(/)£Z} we get a Kurepa tree. 

To get a formula cp' which has a model if and only if there exists a quagmire, 
simply take new symbols <i and Q and conjoin the above cp with the sentences 
expressing conditions (1)—(5) in the definition of quagmire in § 2 above. 

5. Proof of (C). It remains only to prove, assuming GCH, that some suitable 
set of forcing conditions gives rise to a Boolean-valued extension of the universe 
of set theory in which GCH holds and there exists a quagmire. The proof is so 
similar to the proof of the consistency of HM' in [4] and the proof of the consistency 
of Silver's W in [2], that we leave most details to the reader. 

As our forcing conditions we take the set & of all sixtuples p = (ap, Tp, 
Cp. QP, AP) such that: 
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(0) Tp is a countable subset of cOj. 
(1) (Tp, < p) is a tree of height a p +l<coi-
(2)—(5) in the definition of quagmire in §2 above hold for <ap and Qp. 
(6) Ap maps a subset of co2 onto the apth level of the tree (Tp, <p) , and is 

order preserving in the sense that for in dom Ap, we have Ap(^)<ipAp(t}). 
Note that the requirement that Apbe order preserving means that Ap is completely 
determined by its domain. 

We partially order & by setting p<.q if and only if: 
(7) a p > a , and T p ^ T q and < p , < V Op extend , Qq respectively 

and dom /lpj2dom Aq. 
(8) For all tedom Aq, Aq(®^pAp(0; and for t, in domAq, Qp(At(&, 

AM Ap{t,)) = Ap(0. 
In order to show that & does what it should, we need the following: 

Lemma, (a) 2? is a-closed; i.e. whenever pniSP for n£a> and p„+1<pn for all 
n, then there exists p^SP with p<pn for all n. 

(b) 3? has the co2-chain condition; i.e. no set of pairwise incompatible elements 
of has cardinality a>2. 

(c) For each accoj and [p: a p > a & sup dom / l p >c} is dense in 0>. 

The proof of the easy parts (a) and (c) will be left to the reader. As for part 
(b), let have cardinality co2. Assuming CH, there must exist an A'QA of 
cardinality a>2 and fixed a,T, < , o , and Q such that for all pi A', ap—a, Tp = T, 
<p=<, o p = -ci, Q„ = Q. For assuming CH there are only possibilities for 
these items. 

{dom Ap: pi A'} forms a set of co2 countable subsets of co2. By a well-known 
result of Erdos and Rado (cf. Thm. 2.3 of [4] or Lemma 3.6 of [2]) there exists 
a sequence pv, v<ro2 of elements of A' and a fixed XQa>2 such that for any 
ju<v<ffl2, dom Ap n d o m / l p = X and sup dom Ap <inf (dom/lp —X). 

Let p=pa, q = q0, Y= dom Ap, Z—dom Aq. Note Ap\X=Aq\X. To establish 
part (b) of the Lemma it will suffice to construct an r^SP with r<p and r<q. 
This may be accomplished by taking: 

ar = a+1 , 
Tr-T{J{t4\ ££7UZ} where the ^ are distinct elements of ^ - T , 
< r = t h e extension of < defined so that for r j iY and 

for C€Z, 
< j r =the extension of o defined so that ? „ - < f o r q^C in YUZ, 
Qr = the extension of Q defined so that Qr(Ap(£), Ap(t]), = for in Y, 

and Qr(Aq(0, /1,(0, tc) = t( for in Z, 
yir = the function AR(0 = t( for Q£YUZ. 

Details are left to the reader. 
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With the Lemma established, we let ^?=the complete Boolean algebra of 
regular open subsets of SP. Parts (a) and (b) of the above Lemma and standard 
forcing lemmas (for which see e.g. [2]) imply that, assuming GCH, in the Boolean-
valued extension Vs3 all cardinals are preserved and GCH holds. 

Moreover if G£ V® is a generic subset of 0>, then thep£G can befitted together 
to produce a quagmire. Again details are left to the reader. This completes the 
proof that V=L implies HM. 
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Scalar central elements in an algebra 
over a principal ideal domain 

L. O. C H U N G and J IANG L U H 

1. Introduction. Let A be an algebra (not necessarily associative) over a com-
mutative ring R. A is called scalar commutative if, for each л:, y£A, there exists 
af_R depending on x, у such that xy=ayx. RICH [3] proves that if A is scalar com-
mutative and if J? is a field then A is either commutative or anticommutative. Кон, 
LUH, and PUTCHA [1] prove that if A is scalar commutative with 1 and if R is a 
principal ideal domain then A is commutative. Recently, LUH and PUTCHA [2] 
generalized these results by proving that if A is an algebra with 1 over a principal 
ideal domain R such that for each x, y€A there exist a, such that (a, P) = 1 
and axy=fiyx, then Л is commutative. 

In this paper a "local" scalar commutativity will be studied. We shall call 
an element x£A scalar central if for each у в A, there exist a, fi€R depending on 
у such that (a, /?) = 1 and axy=Pyx. We shall prove that if A is an associative 
algebra over a principal ideal domain R and if x£A is scalar central then there 
exists a positive integer n such that x?y=x?~1yx=x?~2yx2 = ...=yx" for all у в A. 
If, in addition, A has 1 then x2y=xyx=yx2. Therefore the results of Rich, Koh, 
Luh and Putcha for associative algebras immediately follow. 

Throughout this paper A will denote an associative algebra over a principal 
ideal domain R, C will denote the center of A, Z + the set of all positive integers 
and N the set of natural numbers. If a,b£A then [a, b]=ab—ba. If a, then 
(a, Д) denotes the greatest common divisor of a and p. If a£A then the order of a, 
denoted by o(a), is the generator of the ideal 7= {<x|a€7?, aa=0} of R. o{a) is 
unique up to associates. 

2. Main results. Throughout this section x will denote a scalar central element 
in A. Let у be an arbitrary element in A. We assume a, P, a1, P^R to be such that 

Received April 17, 1978, in revised form July 20, 1978. 
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(a,/*)=(«!, and 
(1) axy = Pyx, 

(2) axx(x + y) = P1(x + y)x. 
From (1) and (2), we obtain 

(3) (a J - a pjxy = p^-oijx*, 

(4) K j S - a fijyx = «(ft-oc,)x\ 
We begin with 

Lemma 2.1. If (a1 — P1)qxk =0, vt-Zzere k£Z+, a«*/ then 
q[x?y, x*~']=0 /or i=0 , 1, 2, ..., fc-1. 

P roo f . By (2), <x1qxi+1(x+y)xk~i~1=P1qxi(x+y)xk~' which is reduced to 

(5) <x1qxi+1yxk~i+1 = P1qxiy^~i. 

In particular, P\qx?Y=OL\q^Y = [i\qyx?—OL\qyxk. Since , p1) = l, qxky = qyxk. 
Thus, by (5), <x[qxiyx/'~i=pi

1qyxk=pi
1qxky=a.i1qxky, and P[qx'yx*~'=oi[qx*y= 

= P[qxky. Consequently, q (xiyxk ~1 — x* j ) = P[ q (x'yxk — xky) = 0. Since 
(a[, Pi

1) = l,q(xiyxk~i-xky)=0. That is, q[x''y, x*- ' ]=0 as required. 
It is clear that there exists an integer n^3 such that o(x") = o(x"+1). 

Lemma 2.2. Suppose o(x")=pm, where p is a prime element in R and m£Z+. 
Ifplxny — 0 for some /€N, then [x'y, x"~']=0 for i=0, 1, 2, . . . , « - 1 . 

P roof . We proceed by induction on /. Suppose 1=0. Then xn_y=0. By (3) 
and (4), we get 0 = (aip-ap,)xny = p(p1-a1)xn+1 = (aip-xp1)xyx"-1, and 
0 = (aip — af t ) xyx"~1 = a (fi1—cc1)xn+1. Since (a,0)= 1, (P1-a])x"+1 = 0 and 
pml(P1-oc1). So (P1-a1)xn=0. Thus, by Lemma 2.1, [x'y, x n _ i ]=0 for / = 0 , 1 , 
2, ..., n-1. 

Now we assume / > 0 and ^P — P^—p'd, where (p,5)= 1, t£N. 
Suppose / S / . Then, by (3), Q=p'Sxny = P(P1-a1)xn+1=.p'Sxyx", and hence 

by (4), 0=p'5xyxn=a(p1-<x1)xn+1. Since (oc, p) = l,(p1-ot1)x"+1=0. Again by 
Lemma 2.1, [x ' j , x n - ' ] = 0 for i=0 , 1, 2, .. . , n-1. 

Suppose *</. Then, by (3), 0=plSxny=p'-'fii^-ajx"*1. So />"V~7?(f t - a i ) -
By (3), pl-'p,5xyxR-1 = 0 and, by (4), pl-'a(P1-al)xn+1=pl8xyxn-1 = 0. Hence, 
we have / » ' " ' ( f t - a ^ ^ + ^ O and / > " V _ ' ( A - a i ) - Since / o ^ / r K f t - a O and 
P1-a1=p'y, where y£R. Thus, by (3), p'5xny = Pp'yxn+1, i.e. p'x"(5y-Pyx) = 0. 
Since [x'(5y —Pyx), x " _ i ]=0 for /=0, 1, 2, ..., n —1, by the induction hypo-
thesis. This implies that S[x'y, x n _ i ] = 0. On the other hand, since fa-P1)pmxn+1=0, 
pm[x'y,x?-l] =0 for i = 0 , 1 , 2 , ...,n-\, by Lemma 2.1. Since (/>'",<5) = 1, we 
obtain [x'y, y _ i ] = 0 for ¿=0, 1, 2, ..., n— 1. This completes the proof. 
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Lemma 2.3. Suppose o(x") =pm, where p is a prime element in R and m£N. 
Then [xiy,xn~i]=0 for i=0, 1, 2, ..., n-1. 

Proof . Again we let aip — ap1=p'd. Suppose igm. Then, by (3) and (4) 
respectively, we have 

0 = p'Sx"y = J6(j81-a1)x"+1 and 0 = p'dyx" = a(pi^a1)xn+1. 

Since (a,j8) = l, (jS1-a1)x"+ 1=0. By Lemma 2.1, [;t'>, 0 for i= 
= 0, 1,2, . . . , « - 1 . 

Now suppose ton. Then by (3), 0=pmdx"y=pm-'P(P1-oiJ)x"+l. So 
p'Wi^-oiJ. Let P(P1-oc1)=p'y, where y£R. Then, by (3), p'x"(5y-yx)=Q. By 
Lemma 2.2, [x'(6y — yx),xn~i] = 0. So ¿Wy, x"_i] = 0. On the other hand, since 
(*i-Pi)pmxr,+1 = 0, pm[xiy,^'~i]= 0 by Lemma 2.1. Thus, [x'>, 0 since 
(Pm,3) = 1. 

Lemma 2.4. Suppose o(x") =p™rp™-•••P™s, where px,p2, ... ,ps are non-
associate primes in R, and m1} m2, ..., ms£Z+. Then [x'y,x"~'] — 0 for i= 
= 0, 1,2, . . . , « - 1 . 

Proof . Let qj=p^...pji_-1
1pjpi

x...p"s, j-^-,2, ...,s. Then qjX is scalar 
central, o((qjX)n) = o((qjX)n+1), and hence, by Lemma 2.3, q][x'y, x"~l] = 
= [(qjx)'y> = 0 for j — 1, 2, ..., s; i=0, 1, 2, ..., n — 1. Since the q/s are 
relatively prime, we obtain [x'y, x"~']=0 for /=0, 1, 2, ..., n — 1. 

Theorem 2.1. Suppose x£A is scalar central and o(x") = o(x"+1)=0, where-
Hg3. Then x£ C. • 

Proof . Clearly o(x3)=0. By (3), and (4) respectively, we obtain 
(ajjS —a fii)xyx = P(Pl — al)x3 and (ajjS —a P^xyx = ci(P1 — c/.1)xi. 

Hence (p—a)(pi — a1)x3=0. This implies that jS"=a or P1=V-1. In either case,, 
we have xy=yx. Since y is an arbitrary element in A, x£C. 

Theorem 2.2. If x£A is scalar central then there exists n£Z+ such that 
x"y — x"~xyx = xn~2yx2 =...= yx" for all y£A. 

Proof . This is an immediate consequence of Lemma 2.4 and Theorem 2.1.. 

3. Algebras with unity elements. We assume throughout this section that A is-
an algebra with 1 over a principal ideal domain R, and x is a scalar central element-
in A. Let y be an arbitrary element in A and a, fi, a2, P^dR be such that (a, P)= 
= (a2, J?2) = l, 
(1') ' axy — Pyx, 
(2') a2x{\+y) = p2{\+y)x. 
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Then 
(30 (<x2p-<xp2)xy = P(P2-a2)x, 

(4') (a2p-ap2)yx = u(p2-txjx. 

Lemma 3.1. If (a2 — P2)qx=0, where q£R, then qxy—qyx. 

Proof . By (30 and (40, (a 2P-ap 2 )qxy= (a 2 /?-ap 2 )qyx=Q. By (10, 
<x2(p — (x)qxy=p2(j} — <x)qxy=0. Since (a2, ft2)= I, (/?—a)qxy = 0. So Pqxy = 
=aqxy=Pqyx. It follows that P(qxy — qyx) =0. Similarly, a(qxy—qyx) = 0. Thus, 

•qxy=qyx. 
Similarly to the arguments in Section 2 but using identities (10, (20, (30, (40 

instead of (1), (2), (3), (4), we can readily prove the following 

Lemma 3.2. Suppose o(x2) =pm, where p is a prime element in R and miZ+. 
If p'x2y=0 for some /£N, l<m, then x2y=xyx=yx2. 

Lemma 3.3. Suppose o(x2)=pm, where p is a prime element in R and m£Z+. 
Then x2y=xyx=yx2. 

Lemma 3.4. Suppose o(x2)=p™1p%*...p™°, where p1,p2, •••,/?., are non-as-
sociate prime elements in A and mlt m2, ..., ms£Z+. Then x2y = xyx=yx2. 

Theorem 3.1. If x£ A is scalar central and if o(x2)=Q, then xiC. 

Theorem 3.2. If x£A is scalar central then x2y=xyx=yx2 for all yd A. 
We should note that under the hypothesis of Theorem 3.2, one could not ex-

pect x£C. 

Example . Let A = | Jg b, c6Z 2 j be the algebra of all upper triangular 

matrices over the ring Z2 of integers modulo 2. Let x = ^ . Then A has a unity 

•element, x is scalar central, but C. 

4. Some special cases. We noted in passing that in an algebra over a principal 
ideal domain, scalar central elements need not lie in the centre of the algebra. How-
ever, we have the following 

T h e o r e m 4.1. Suppose A is a semi-prime algebra (with or without I) over a 
principal ideal domain R. Then all scalar central elements in A are in the centre C of A. 

Proof . Let x be a scalar central element. By Theorem 2.2, there is a least 
positive integer n such that x"y=x"~1yx=x"~2yx2=... =yx" for all y£A. 
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Suppose и>1. For y€A, let a, P£R be such that (a, P) — l and axy=Pyx . 
Noting that ах2п~2у=Рхг"~2у and a.yx2n~'l = Pyx2n~2, we have for any z£A 
and i=0, 1, 2, ..., n-2, 

oti(xn~1y-xiyxn-i-1)zai(xn-1y-xiyxn-i_1) = 

— a2i(x"-1yzxn-1y-xiyxn-i-1zxn-1y-x"-1yzxiyxn-i-1 + xiyx"-i-1zxiyxn-i-1) = 

= a.2ix2n-2yzy-aipiyxn-1zxn-1y-aipixn-1yzyxn-1+p2iyxn-1zyx"-1 = 

= oL2ix2n~2yzy — aipiyx2"~2zy — aipix2n~2yzy+p2iyx2n~2zy = 0. 

Thus, by the semiprimeness of A, al(xn~ly—x,yxn~'~1)=0. Likewise, 
Pn~i~1(^'-1y—xiyxn~i-1)=0. Since (а',)3"-'-1) = 1, for 
г = 0, 1,2, ...,n-2. So x"-1y = xn-2yx=x"~3yx2 = ...=yxn-1 for all у£A. This 
contradicts the minimality of n. Hence w = l and xy=yx for all у в A. 

Theorem 4.2. Let A be an algebra with 1 over a principal ideal domain R. If 
x and 14-х are both scalar central then x£C. 

Proof . By Theorem 3.2, for any y£A, xyx=x2y and (1 +x)^( l + x ) = ( l +x)2y 
which imply that xy=yx. 

As a corollary we have the following result due to LUH and PUTCHA [2]. 

Coro l l a ry 4.1. Let A be an algebra with 1 over a principal ideal domain R. 
If every element in R is scalar central then A is commutative. 

Remark . To generalize the concept of scalar central element one may call 
an element x£A scalar power central if for each y£A there exist a, P£R and n£Z+, 
depending on y, such that их"у=Pyx" and (oc,P) = l. It would be interesting to 
know whether analogous results remain true. 

The authors would like to express their appreciation to M. Putcha for stimulat-
ing discussions. The first named author also would like to acknowledge the support 
by the Engineering Foundation of NCSU. 
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On the concentration of distribution of additive functions 

P. ERDOS and I. KATAI 

1. VVe say that g(n) is additive if g(mn)=g(m)+g(n) holds for every coprime 
pairs m, n of positive integers. If, moreover, g(pa)=g(p)a for every prime power 
p", then g(n) is called strongly additive. By p,p1;p2, ..., q, q2, ... we denote 
prime numbers, c, cx, c2, ... are suitable positive constants. P(n) and x(n) denote 
the largest and the smallest prime factor of n. The symbol <sc is used instead of 
0 ; # { } is the counting function of the set indicated in brackets {.}. For a distri-
bution function H(x) let (pH{T) denote its characteristic function. Let 

Q(h) = QH{h) = sup (H(x + h)-H(x)) 

be the continuity module — concentration — of H. We say that H satisfies a Lip-
schitz condition if Q(h)«h as /2— 0. 

We assume that g(n) is strongly additive and that 

/1 n ^ s2(p) , (1.1) 2 — 7 — 
p P 

The theorem of Erdos—Wintner [1] guarantees that the function g(n)—A„, 
where 

(1.3) A„= 
p-^n P 

has a limit distribution, i.e. the relation 

(1.4) J V | g ( n ) - / i „ < x } ~ F ( x ) 

holds at every continuity point of F(x), where F(x) is a distribution function. If, 

Received October 1, 1978. 
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moreover, Zg(p)lp converges, then the values g(n) have a limit distribution too, i.e. 

(1.5) I # { N S J V | G ( N ) < X } - ~ G ( X ) , 

at every continuity point of the distribution function G(x). 
We have the relations 

(1.6) M r ) = I I ( ( l e - ^ + l ^ H ) ^ ) , 

( 1 eirg(p)\ 

P
 v P P ' 

From these forms we can see that both F and G can be represented as the distribu-
tion of the sum of infinitely many mutually independent random variables having 
purely discrete distributions. By the well-known theorem of P. LEVY [2] G and F 
are continuous if 
(1.8) 2 l / p = ~ , where Zg - {p\g(p) * 0}. 

Pi zg 

Furthermore, assuming the validity of (1.3) we have that F and G are of pure type, 
either absolutely continuous or singular (see E . LUKÁCS [3]). To decide the question 
if a distribution function were absolutely continuous or singular seems to be quite 
difficult. The first result upon this has been achieved by P. ERDŐS [4]; namely it 
was proved that if g(p)=0(p~s), ö being any positive constant, then G(x) is 
singular. Recently JOGESH BABU [5] has proved that G(x) is absolutely continuous 
if g(n) is generated by #(/>)=(logp)~a (0<a<2) . The main idea of the proof is 
that cpG(T) is square-integrable in (-<»,<»), and so by using Plancherel's theory 
of Fourier integrals it must have an inverse in L2(—°°, that is the density func-
tion of G(x). 

It is known that a distribution function H satisfies Lipschitz condition if \(pH(f)\ 
is integrable in ( — « . , a n d so it is absolutely continuous. The method of Jogesh 
Babu gives that G satisfies Lipschitz condition if g(p)=(logp)~a ( 0 < a < 1). 

The aim of this paper is to investigate the singularity or absolute continuouity 
of distribution functions for some classes of additive functions. 

We shall prove the following theorems. 

T h e o r e m 1. Let g(ri) be a strongly additive function, 

(1.9) D ( Y ) = 2 ^ , 

and suppose that the inequalities 
(1.10) D(f*) < l / t , 

(1.11) [g(Pi)-gO>2)| > l/t if 
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hold, with suitable positive constants A and 3, for every large t. Then 

(1.12) (log t ) - 1 « e G ( i / o « ( l o g o - 1 

where the constants involved by <s may depend on g. 

This result was achieved by TJAN [7] and P. ERDOS [8] for log ^ ^ , and for 

log — —, resp. n 

Theorem 2. Let g(n) be strongly additive satisfying (1.1). Then for the con-
centration Q(ti) of F(x) or G(x) (if it exists) we have 

(1-13) Q(*DR) S J ^ ( ^ 2 ) , 

c being an absolute positive constant, and 

0.149 
Remarks. 

1) This assertion is non-trivial only if Z^log-R—0 since QH{l/t)»\/t 
(/—oo) for every H(x). 

2) If g(p)=(logp)-1 ' ( y ^ l constant), then ^ = ( 1 + 0 ( 1 ) ) ^ — ^ and so 
\2 y 

Qom»-¿7-

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)~y, then 

(1.15) A - < < Q G m < J } 2 M ^ t r 

if while for y=\ 

Remarks. 
1) We guess that CgO/O^-^"^ for y > l but we are unable to prove it. 
2) We also guess that G(x) is singular if p)~y, This seems 

not to be known even if g{p)=i)ogp)~~y. 
3) By our method we could estimate the concentration for other functions if g(p) 

is monotonic. The following assertion holds. Let f(w)>0 to monotonically 
decreasing in (1,°°), g(p)—t(p) for primes p. Let y(z), z(t) be defined by the 
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v(T)1/4 

relations — ; t(z(t))=1/t. Suppose that for large r, ^ ( t ) < t c , 

z( i)>e t l +° (e>0 constant), and that the integral 
COSTt(u) , 

/ — i — — d u 
y f r ) M l ° g " 

is bounded as x— <». Then QF{h)<ss:\jh. These conditions hold if g(p) decreases 
regularly and 

^ g2(p) , • y g(p) 
2J =oo> 2i =°°-P p 

Theorem 4. There exists a monotonically decreasing function t(u) satisfying 
the conditions 

v t(p) v t2(p) 2, = Zj 00 5 
p p 

for which the distribution function F(x) of the strongly additive g(n) defined by g{p) = 
' = t ( f ) is singular. 

2. Proof of Theorems 2 and 4. We shall prove Theorem 2 for F(x) only. The 
proof is almost the same for G(x). 

F(x) can be represented as the distribution function of 61; dR= 2 £P,> where 
p> R 

¿_p are mutually independent random variables with the distribution 

P (i, = g(p) [l - } ) ) = j , P(tP = ~g(p)/p) = l ~ j , 

for the mean value M6R and variance D9R we have M0R =0, DQR=DR. Con-
sequently, by the Chebyshev inequality, 

So by 

d= 2*® 
pSR P 

we have 

F(-d + ADR)-F(-d-ADR) S f ( i p = (\fp S ^ ADj\ 

By putting A—2 our assertion follows immediately. 
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To prove Theorem 4 we define our g(p) as follows. Let i?i = l, Rl+1 be defined 

by i?,=logloglogloglogi?,+ 1 > A,=exp (exp (exp R,)), g(p)=j^ if p£[R,,R,+J. 

Then 

P>R, P P>R, P AL 

Let m run over the square-free integers all prime factor of which is less than R. 
By Theorem 2, for fixed m. the number of integers n with 

n — mv ^ N, x(m) ^ R,, g(v)-(AN-AR)e[-^~, ^-J 

is greater than a constant time of • 

m pt?Rl\ p) 
Summing up for m we have 

# {n = mv^N\g(n)eU [,?(m)-ARlg(m)-ARl+£]} 

»N п (I-Vp) 2 

So the intervals 

U \g(m)-AR,~, g(m)-ARl+jJ 

cover a positive percentage of integers. The whole length of these intervals is less 
than c2"(J?')/A,. This quantity tends to zero as /—oo. By this the theorem is proved. 

3. Lemmas. Let £f(A) be an arbitrary set of distinct square free integers m 
having the following properties: 

(1) A ^ x(m), 
TYI M 

(2) if Pil«!, p2\m2, m1?±m2€&'(A), then — . 
Pi Pi 

Let Q(n) be a multiplicative function such that O^Q(p)S1 + О ( l / p s ) (¿=-0 con-
stant). Moreover, let 

(3.1) T(A)= 2 
ш£УМ m 

Lemma 1. For A we have 

Cj being an absolute constant. 
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Proof . We split the elements of Sf{A) according to P(m)£[A2", A2"*1). Let 
Th(A) denote the part of the sum (3.1) corresponding to this interval. From (2) 
we have 

where the sum extends over the square free n with A ^x(n)<P(n)^A2"*\ So 

e(m) ^ „ , e ^ ) ^ < i o g ^ " + 1 

n f i + — V m p J 

Using this inequality for every /isO we have (3.2). 

Remark . Since T(l)^l+T(2), therefore by Lemma 1, T(l) is bounded. 
We shall use the following Esseen type inequality due to A. S. FAINLEIB [6] 

which we quote as 

Lemma 2. For an arbitrary distribution function H(x) we have 

(3.3) QH(h)^C s u p | f'\cpH(z)\ dr. 
tsllh t X 

Lemma 3. Let y>0 be fixed, 

(3.4) S = 2 C 0 S T ( l 0 g ^ 
P 

Then S is bounded as T ->-=>. 

Proof . First of all we shall prove that 

COST ( log n)~y 

E = 2 
Tiosnse^v n log n 

is bounded as T . Indeed, 

E _ /• COST ( l o g u)-y ^ 1 ( 
J0 u l o g U tio^„ n l o g n I tioS„ n log n v(log n)' (log (n +l))' 

T10(logT)1+5' • 

To estimate the integral we substitute y=z/(\ogu)y, and we get immediately 
that 

E T COST (log U)-? , 1 r/(101ogr)v c o s 
/ , —du = — / — Yj -dy = 0 ( 1 ) . 

J "log u y J y1" ^ 

So it is enough to prove that S—£'=0(1) as T— 
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Let T 1 0 S L M ^ E Z L H ; N^M+JN31* 0 = 0, 1, ...,[M1/4]), N=M3,I, + 

and consider the quantity 

S(N1,NJ= 2 C Q S T ( l o g p ) " y - 2 c ° S T î l o ë w ) y . 
iVjSp^ATj p N^n-^Nz n\Ogn 

To estimate it we use the prime number theorem for short intervals in the form 

(3.5) ANl(u) = j t y l ( n j - 1 ) « ( i ^ T o ( N ^ u * N2). 

Since 

1 L _ = _ f l o g * + l
 d x ^ 2(n-N,) 

N1logN1 n log n J^ x2 (log x)- ~~ yVflogA^ 

for N ^ n ^ z N n , therefore 
(3.6) s(Nl,N2)« , 2 W + l + M , 

N1 log N1 

where 

L(N1,N2)= 2 (A(N)-1)COST ( log 

By using partial summation, 

L(NLT N2) = ANI(N2.) cos x (log A g - + ^ , N i ( n ) ( C 0 S _ I _ _ c o s ^ I ^ ) . 

Hence, by (3.6) we get 

L(iVl' ^ (i^kr il + X ICOS(ïôg^y ~C 0 S(log(w + 1))?I) • 

Since t/(log n)Y is monotonie and cosine satisfies Lipschitz condition, the last sum 
is majorated by 

T T 

log N± log N2 ' 
Consequently, 

2 I S ( N 1 , N 2 ) ^ 2 — + TT2 + N 77ÛÏ + 

0 M S P S 2 M P 2 M 2 ( log M ) 1 1 

M ~ 1 ! I ( T 
p I _ l 

' Uog M log 2 M J (log M)10 Uog M log 2M J 

By putting M = 2 V ° , H=0, 1,2, ..., up to M^E*1/Y we have S-E=0(L). 
By this Lemma 3 has been proved. 

4. Proof of Theorem 3. Let 

<P(R) = Il[l+-p v 
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be the characteristic function of the limit distribution of g(n) defined by g(p) = 
=(logp)~y. First we observe that 

e i t ( log p ) - v _ 1 
(4.1) log l<pC0| = Re 2 +0(1). 

P S / V P 
Lemma 3 and the relation 

2 - = log log y+0(l) 
PSy P 

gives that 
1 piz(.logp)-y 

(4.2) log |cp(T>| ^ logr + 0 ( l ) + R e 2 • 
7 PS t" P 

Consequently, J for y < l . Let y s l . From (4.2) we have 

(4.3) ° |<P(T)|«T-^|<KT)|, 
where 

(pitdog p)-y \ 

1+ , i = 2R. P ' 

Let ip (T) = ij/1 (T) • ij/2 (T), where 

•Ai= n , <1*2= n • pS(logR)4 (logi?)4«=pS.R1/1! 

So we have 
2 R , 

(4.5) f \(p(x)\dz«-m{B1(R) + B2(<R)), 
R 

where 
2R 

(4.6) Bj(R)= f # , . ( r ) | ^ r 0 - 1 , 2 ) . 

First we estimate B2(R). We have 
gi t g(m) 

M r ) = 1+2- m 

where the summation is extended for the square-free m's satisfying (log/?)4S 
We have 

jB2(.R)« J i - l - Z - m i n i ^ r - r ^ T l + minf/ t , . 1 ) , m \ \g(m)\J ¿imn \ |g(m)-g(n) | ) 

n runs over the same set as m. 
Let 

(4.7) K(l/R) = s u p 2 ! /» ' • 

Let x be fixed. We observe that the set of m's standing in the right hand side satisfies 
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the conditions of Lemma 1 with A= (log R f , g = l . Indeed, if \g(m^) — g(m2)\^l/R, 
pjm1, p2/m2, then 

g ( 7 7 ) f e l l - = 
- 1 / Ä > 0 , 

< Pi > V Pi • 
1 1 

(log ft)7 (log p2y 

'-. So we ha 
Pi P2 

K ( l / * ) « l 0 g l ° g * 

m, m2 and so — — . So we have 

(log*)4 " 

Furthermore, the contribution of the pairs m, n for which \g(m)—g(ri)\^R2 is 
majorated by 

Consequently 

(4.8) 2 7 x r { ' 2 + 

+ 2 T^ri ' 2 Hm)«R. 
lg(m)l( 

Since №i( t ) | s 77 (1 +l /p)« loglog/? , therefore ^ ( ^ « ( l o g l o g R)2R. So 
pS(logR)4 

we have 
2 R 

f i/r <s= J?1-1^ (log log /?)2. 
R 

Applying this inequality for R = T\2h (/¡=1,2,. . .) we get 

(loglogTT i f , 
T „ I y l / y ' " ' 

Y f \<P(r)\dT TJ ( loglogT)2 logT 1 j— , it 7 = 1 . 

. From Lemma 2 our theorem immediately follows. 

5. Proof of Theorem 1. First we prove the second inequality in (1.12). Let 

g(n; y)= 2 s(p)-
p\n,psy 

Since from (1.10) 
N 
t2 2 \g(n- t2A)\^ ND(t2A)^ .. 
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we have 

(5.1) \g(n; 

For a natural number n let e(n) denote the product of those prime factors 
of n that are less than t2A; let f(n)=n/e(n). From (5.1) we get that with the ex-
ception of at most N/t integers if n^N and £(/!)€[*, x+l/t], then g{e(n))£[x—l/t, 
x+l/t]. Let x and t be fixed, and al^a2<...<aR be the sequence of those square-
free integers all prime divisors of which is less than t2A and g(aj)£[x— \/t, x+l/t], 
Let E(aj) be the number of those n^N for which aj\e(n) and (cij, e(n)) = aj holds. 
By using the Eratosthenian sieve we have 

(5.2) E(aJ* 1 + 0 ( 1 ) n f l - M X 
Oj P ) 

where g(m)= 77 , . • Since 77 (1 - 1/p) « (log t)~\ 
p\m i — l/P p^tA 

we have 

(5.3) • 2 , ( 1 / 0 « 1 + 1 sup 2 

t lOg t * g(aj)iU-l/l, x + l/t] a j 

It has only remained to prove that 
(5.4) " Ux,,= 2 - ^ - « 1 

9(oj)€U,Jt + l/(] a j 

uniformly for x€(—o°, as 
We write every aj as mv where P(m)<ts, x(v)^t>, or i> = l. So 

V V lg(m)£lx-g(v),x + l/t-g(v)] m ) 

The set of w's satisfies the conditions of Lemma 1 (see (1.11)) so the inner 
sum is bounded, and we have 

u x „ < < 7 7 
( F S P S I " V p J 

We shall prove that 

G(\lt)-G(-l/t)^j^j ( i - o o ) , 

and by this the proof will be finished. 
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Let P= JJ p. It is obvious that 
P < TCI 

(5.5) 2' 1=((1+*(1))2V ÏÏ (AT—), 
rSAf,(n,f)=l p<l'i Cx10gf 

c2 is an absolute constant. Furthermore, 

nsN,(n,P)=l qm^N,(.m,P) = 1 pStcl V pt q-*-t<=i 1 

By choosing q = 2 A , from (1.9) we have 

2 i s * 2 
nsN,(n,P)=l n&N,(.n,P)=l p\P V pf P tlOgr 

This and (5.5) gives that 

KIJ ' ' 2 A log T flog* logi 

By this the proof of our theorem is finished. 
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On the essential maximal numerical range 

C. K. F O N G 

1. Introduction 

In [4], STAMPFLI introduced the concept of maximal numerical range and used-
it to derive an identity for the norm of a derivation on If T is a bounded 
operator on a Hilbert space §>, then the maximal numerical range of T, denoted 
by W0{T), is defined to be the set 

{A: (Tx„, x„) —• A where | | x j = 1 and \\TxJ - ||r||}. . 

For an operator T on § the inner derivation 3T is a map on !%(§>) defined by 5T(X) — 
= TX-XT Stampfli showed that ||<5r||=2inf {| |r-A| | : A£C}, and 
||5 r | |=21|r| | if and only if 0£W 0 {T) . 

In the present paper, we consider the analogous concept called essential maximal 
numerical range to derive the norm of an inner derivation on the Calkin algebra. 
Let r £ ^ (S)and t be the image of T in the Calkin algebra ^(i^/Jf(£>)• The inner 
derivation d, on is defined by dt{x)—tx—xt. The essential maximal 
numerical range of T, denoted by ess W0(T), is defined to be the set 

{A: (Txn, x„) - A where ||JCJ = 1, x„ - 0 weakly and ||7JCJ - ||i||}. 

We shall see that ||dt\\ = 2 inf {||i-A||: AgC} and KH=2| | i | | if and only if 
06ess W0(T). Also, we shall show that JF0(r) = ess W0{T) under the following 
mild condition: || J ,x||^||7'|| for every unit vector x. In the final section we con-
sider the maximal numerical range V0(T) for an element Tin a general C*-algebra 
and we show that V0(T)= Wa(T) if and K0(/)=ess W0(T) where t is 
the image of in the Calkin algebra. 

To close this introduction, we state and prove two technical but simple lemmas-
which will be used several times in the following sections. Recall that the essential 

Received May 27, 1978. 
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norm of r e d e n o t e d by | | r | | e , is inf { | | r+K| | : K is compact}. Note that 
ll^lle^l'll where t is the image of T in the Calkin algebra. 

Lemma 1.1. If | | x j = l and weakly, then Iimsup | | r * J s | | r | | e . 

Proof . For every compact operator K, H J j f J + | |A*J. Since 
]\KxJ —0, we have lim sup ||7x„|| Therefore the lemma follows. 

Lemma 1.2. If then there exists an orthonormal sequence {x„} such 
that ||Jxn|| —||r||e. Furthermore, if P is an infinite rank prejection and TP=T, 
then we can choose {*„} so that the additional condition Pxn=x„ for all n is satisfied. 

Proof . Suppose x1,x2, ..., have been constructed so that Px„=xn and 
j|7xn|| = | | T \ [ e — 1 for n = \,...,k-\. Let E be the projection onto the linear 
span of * 1 > . . . , * t _ 1 . Then \\T(I - E) P\\ = \\W - E)\\S||r(/-JE)||c=||r||e. Hence 
there exists a unit vector xk such that ( I—E)Px k =x k and || 7xJ 
The sequence {xn} constructed as above is the required one. 

2. Essential maximal numerical ranges 

The following proposition is similar to Theorem 5.1 in [2]. 

P ropos i t i on 2.1. Let and A£C. Then the following conditions are 
equivalent: 

(1) There exists an orthonormal sequence {*„} in £> such that || Txn\\ —1| !T||e 

and (Txn, x„)~X. 
(2) There exists a sequence {xn} of unit vectors such that 0 weakly, 

IITAHITI and (Tx„,x„)~X. 

(3) There is a projection P of infinite rank such that PTP—XP is compact and 

II Hole-
proof . That (1) implies (2) is obvious. 
(2)=>(1): Suppose that {>>„} is a sequence of unit vectors such that >>„—0 weakly, 

\\Tyn\\M\T\\e and (Ty„, j„)— A. We construct an orthonormal sequence {x„} such 
that HTxJI S l i r i l e -H- 1 and |(7x„, xn)-X\<n~1 as follows. Assume that 
xi> • • • > xk-i have been constructed. Let E be the projection onto the subspace spanned 
by xlt ..., xk_1. Then H-EyJ —0 as n — . Let zn = \\(J-E)yn\\ ~\I-E)yn. (Note 

.that (I—E)yn9i0 and hence z„ is well defined when n.is large enough.) We have 
| | z „ - j j ~ 0 . Hence | |7zJ s l i n i . - f c " 1 and \{Tzn, z^-X^k^ for some large 
n. Let xk be such a z„. 
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(1)=>(3): Assume that (1) holds. By the proof of Theorem 5.1 in [2], we can 
choose a subsequence {y„} of {*„} such that 

m, n 
Let P be the projection onto the subspace spanned by {j'„}. Then PTP—XP is 
a Hilbert—Schmidt operator and hence compact. Since {y„} is orthonormal, by 
Lemma 1.1, ||77»||e^limsup ||(77>)>J. Hence ||7ï»||, = ||7ï|e. 

(3)=K1): Assume that (3) holds. By Lemma 1.2, there exists an orthonormal 
sequence {*„} such that Pxn = xn for all n and ||7X,|| — H = | j S i n c e PTP= 
=ÀP+K where K is compact, we have. (Txn, x„)=X+(Kxn, x„)—A as w— 
(Note that, since x„—0 weakly and K is compact, we have j| Kxn\\ —0.) Hence 
(1) holds. 

The proof is complete. 
Def in i t ion . Let T£âS(9)). The essential maximal numerical range of T, denoted 

by ess W0(T), is defined to be the set of all those AçC satisfying one of the condi-
tions in Proposition 2.1. 

Remark . By Lemma 1.2, we see that ess W0(T) is always non-empty. Ob-
viously, ess W0(r)=ess JV0(T+K) if A- is a compact operator. 

By condition (2) in Proposition 2.1, we can follow the argument of Lemma 2 
in [4] to prove the convexity of ess IV0(T). Thus we obtain: 

P ropos i t i on 2.2. The set ess W0(T) is non empty, compact, convex and con-
tained in the essential numerical range of T. 

The following proposition is simple but useful. 

P ropos i t i on 2.3. Suppose that T£&(%>) and U is a neighborhood of ess (V0(T). 
Then there exists ¿>0 and a subspace 93Z of § of finite codimension such that 
*eSR, ||*|| = 1 and 112*11 is||r||e-5 imply (Tx, x)£U. 

Proof . We may assume that U is open. Suppose that no such SDÎ and <5 exist. 
Then we can construct an orthonormal sequence {*„} such that ||7x||„—1| T\\e and 
(Tx„, X„) $ U. Let {y„} be a subsequence of {x„} such that the limit 1 = lim (Tyn, y„) n-*- oo 
exists. Then A(£ U. This is impossible because by definition we have A6ess W0(T). 

A consequence of the above proposition is the upper semicontinuity of the 
map 7V-<-ess W0(T). (This result resembles Theorem 6 in [4].) 

Coro l la ry 2.4. Let and let U be a neighborhood of ess W0(A). Then 
there exists <5>0 such that T£â$(9>) and \\T-A\\e~=.ô imply ess W0(T)Q U. 

Proof . We may choose a neighborhood V of ess W0(T) such that 
V+{A£C: | A | f o r some positive number e. By Proposition 2.3, there is 
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a subspace SOI of finite codimension and ¿ > 0 such that ||x|| = 1 and \\Ax\\ & 
= IMIIe-4<5 imply (Ax, x)£ V. We may assume that 2<5<g. Suppose that \\T-A\\e<5 
and ess W0(T). Then there exists a sequence {xn} of unit vectors such that 0 
weakly, ||7A:J — ||R||E and (Txn,x„) — X. When n is sufficiently large, we have 
\\TxJ>\\T\\e-d, \\(T-A)xn^\\T-A\\e+5^25 (by Lemma 1.1) and hence \\Axn\\ ^ 
^\\Txn\\ — \\(T—A)xn\\ >||71|e—3<5>|ML—45. Let P be the projection onto 2R. 
Since 0 weakly and I—P is a finite rank projection, we have | |Px„—xj — 0. 
Let yn = \\Pxn\\-iPx„. Then and [ y . - j e J - O . Therefore \\Ayn\\^\\A\\e-45 
and hence (Ay„,yn)£ V when n is sufficiently large. By Lemma 1.1, when n is large 
enough, \\(T—A)yn\\ T—A\\e + ds2d and hence (Ty„, yn)£U. With no loss of 
generality, we may assume that U is closed at the very beginning. Therefore 
A = lim (Tx„, x„) = lim (Ty„, y„)£ U. The proof is complete. 

3. The norm of an inner derivation on the Calkin algebra 

Let T£ 88(5)) and t be the image of T in the Calkin algebra Recall 
that dt is the derivation defined on &(§)/%"(§>) given by d,(x)—tx—xt. The main 
result of the present section is the following identity: 

II4H =2 in f{ | | r -A | | , : A€C}. 

P ropos i t i on 3.1. If Aeess W0(T), then | | i / , | |^2(| |r | |e- | /l |) . 

Proof . By Proposition 2.1, there exists a projection P of infinite rank such 
that ptp=Xp and \\tp\\ = ||f ||. (Again, p is the image of P in the Calkin algebra.) 
Hence 

||d,|| ^ \\dt(2p —1)|| = \\t(2p— l) — (2p— l)i|| = 

= 2\\tp-pt\\^2\\tp-ptp\\^2(\\tp\\-\\ptp\\) = 2(\\t\\-\X\). 

The proof is complete. 
P ropos i t i on 3.2. We have OGess JV0(T) if and only if | | r | | c ^ | | r - / l | | e for 

all xec. 

Proof . If 0€ess f¥0(T), then, by Proposition 3.1, we have 2 | | r | | e ^ | | i / t | | s 
^2\\T-X\\e for all /.£C. Conversely, suppose that ess W0(T). Then, by a suitable 
scalar multiple of T, we may assume that Re X^2e (A£ess W0(T)) for some 
By Proposition 2.3, there exist ¿ > 0 and a subspace 2Ji of finite codimension such 
that ||;t|| = l and | | rx | |& | | r | | e -35 imply Re (Tx, We may assume 
that S^e. Let {x„} be an orthonormal sequence in 931 such that ||(r— <5)xJ| — 
—||r—¿||e. (The existence of such a sequence follows from Lemma 1.2.) For 
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sufficiently large n, we have | |(r-<5)*J s | | r -5 | ] e -«5 and hence | |7*J s | | r | | e - 3 5 . 
Therefore, when n is large enough, we have Re (Txn, *„)=<5 and hence 

| |(I-<5)*J2 = ||Tx„\\2 — 2<5 Re (Txn, *„)+<52 ^ ||7*n||2-2«52 + <52 = ||7*J2-<52. 

Let I I - O O . Then we get | | R - 5 | | 2 ^ | | R | | 2 - ^ . Thus | | R - < 5 | | e < | | 2 1 e . Therefore, 
if | | r | | e ^ | | r - A | | e for all A€C, then we have OfEess W0(T). 

Theorem 3.3. Suppose that and t is the image of T in the Calkin al-
gebra. Then | |d ( | |=2inf{||r-A||e: AeC}. 

Proof . It is easy to see that there exists some X0£C such that 

| |7W0 | | e=.inf{ | | r -A| | e : leC) . 

By Proposition 3.2, we have 06ess JV0(T— A0). Hence, by Proposition 3.1, \\dt\\ — 
= | | i/ (_Ao | |^2| |r-;.0 | |e . Therefore the theorem is valid. 

Coro l l a ry 3.4. |K|| = 2||f|| if and only if Q^W0{T). 

4. Relation between fV0(T) and ess IV0(T). 

Let T£.88(§>). Then the following proposition follows from the definitions of 
W<>(T) and ess W0(T). 

Propos i t i on 4.1. If |]r||=||r||e, then ess W0[T)Q WQ(T). 

In case || r | | >| | r | | e , nothing much can be said about the relation between 
W0(T) and ess W0(T). However, in that case, Wn{T) is the "numerical range over 
the maximal vectors": 

P ropos i t i on 4.2. If ||r||>||r||e, then 

W,(T) = {(!*,*): ||*|| = 1 and ||7x|| = ||r||}. 

Proof . Since | | r * r | | e H | r | | ; M | r * 7 1 , there is a finite rank projection P 
commuting with T*T such that | | rT ( / - .P ) | | -= | | r * r | | . Hence | | r ( / - P ) | | < | | r | | . 
Now the proposition follows from the following lemma. 

Lemma 4.3. If P is a projection commuting with T*Tsuch that || T(I—P)\\ < 
<||71, then W0(T) = W0(TP). 

Proof . Note that | | rp| | = | | r | | . Suppose that /.£ Wn(T). Then there exists 
a sequence {*„} of unit vectors such that | | r*J — | |r | | and (7*„, *„)—!. Since 
III'll2—JlT*Txnl ^(T*Txn , *„)=||Ix„||2—1| r| |2 , we have | | r T * J ^| |T||2 . Write 
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xn=anyn+pnzn with | | j J = | | z J = l, k | 2 + | f t , | 2 = l , Pyn=yn and Pzn=0. Now, 
since P commutes with T*T, 

ii t v ^ KmT*T)^yx+\m(T*T)^znr = 

= \\(T*Tr\anyn)+(T*Ty'*(J}nznW = 

= | | ( R * T ) 1 / 2 . X N | | 2
 = L L ^ P _ [ | R | | B . 

Since | | ( r r ) l / 2 z „ P = | | r z n P = | | r ( / - J P ) 2 n P s | | r ( / - P ) | | 2 < | | r | | 2 , lim/?n=0. Hence 
II7>JH|71I and (Ty„,yn)-»JL. Now it is easy to see that W0(TP). The proof 
of W0(TP)Q W0(T) is straightforward and hence omitted. 

Next we show that H/
0(7,)=ess W0(T) under a rather mild condition. 

P ropos i t i on 4.4. If T(_38(5>) fails to attain its norm (in the sense that || 7JC|| ^ 
fi || T|| ||*|| unless x = 0), then IV0(T) = ess W0(T). 

Proof . From the proof of Proposition 4.2 and the given condition we see 
that ||TH = 11 ^le- Now the proposition follows from the following lemma. 

• ( 
Lemma 4 .5 . (HOLMES and KRIPKE [3; Lemma 2]) If fails to attain 

its norm and if {*„} is a sequence of unit vectors in § such that \\Txn\\ — ||71> then 
0 weakly. 
Corol la ry 4.7. If $j is a separable Hilbert space and j), then there is 

a compact operator K such that W/
0(T+/^) = ess W0(T). 

Proof . It suffices to show that there exists a compact operator K such that 
T+ K fails to attain its norm. Let the polar decomposition of T be T— VP where 
P—(T* r)1 / 2 and V is a partial isometry. By considering eigenvalues of P, we can 
show that there exists a hermitian compact operator J such that P+J has the 
following three properties: first, P+J remains to be positive; second, the range 
of P+J is in the initial space of V\ third, P+J has no eigenvalue greater than or 
equal to ||.P||e- By the third property, it is easy to see that P+J does not attain 
its norm. Let K=VJ. Then T+K= V(P+J). If | | ( r+K)*| | = | | r + j q ||x||, then 
by the second property of P+J, we have 

||(P+7)je|| = r ( />+. / )* | | = r ( i>+/ ) | | | | x | | 

^ | |F*F(P+J)HM| =| |P+71| | |x | | 

and hence jt=0. Therefore T+K does not attain its norm. The proof is complete. 
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5. Maximal numerical range of an element in C*-algebra 

Let si be a C*-algebra with identity 7 and let T be an element in si. Recall 
that a linear functional / on si is called a state if / ( 7 ) = | | / | | = 1. We call a state 
/ is maximal for T if / ( T * T) = \\T\\2. We shall denote by S0(T,s1) the set of 
all maximal states of T. It is easy to show that S0(T, si) is non-empty. 

Def in i t ion . The (algebraic) maximal numerical range of an element T in 
a C*-algebra si, denoted by V0(T, si), is defined to be the set {f (T): feS0(T, si)}. 

Note that V0(T, si) is a non-empty convex compact subset of V(T, si), the 
(algebraic) numerical range of T. Because of the following proposition, V0(T, si)< , 
can be abbreviated as V0(T). 

Propos i t i on 5.1. If si is a sub-C*-algebra of 3$ containing I and T, then 
V,{T,si)=V0{T,!%). 

The proof of the above proposition follows from a standard argument of 
Hahn—Banach type and hence is omitted. 

Remark . It is easy to check that S0(T, si) is a face of the state space, that is, 
if / and g are two states such that Xf--(\ — ?)g is in S0(T, si) for some X with 
0 < 1 < 1 , . then fg£S0(T, si). However, V0(T), the image of S0(T, si) under the 
evaluation map f-+f(T), is in general not a face of V(T,si). For example, if 

§ = C2 and . Te@(y>) is given by the matrix ^ ¿j, then Va(T) is {0} while 

V(T, 38($b)) is a disk centred at 0. 

P ropos i t i on 5.2. For an element T in the C*-algebra si, we have V0(T*) = 
= V ^ T f . (For a set S in C, we write S* for {/.£C: liS}.) 

Proof . It suffices to show that S0(T, si) = S0(T*, si). Let / be in S0(T, si). 
By Schwarz's inequality, we have f(T*T)2^f((T*T)2). Hence \\Tt=f(T*TY^ 
^f((T*T)2)=f(T*(TT*)T)^\\T\\*f(TT*). Hence f(TT*)^\\T\\2. Therefore 
f£S0(T*,si). Thus we have shown that S0(T*, si) = S0(T, si) and hence the 
proposition follows. 

Now we are going to show the main result of the present section: the algebraic: 
maximal numerical range of an operator on Hilbert space is the same as the usual 
one. First we need a lemma similar to Proposition 2.3. 

Lemma 5.2. If U is a neighbourhood of W0(T), then there is a positive number 
5 such that {Tx, x)£U for the unit vectors x satisfying ||7x|| =||T|| —§. 

The proof is the same as that of Proposition 2.3 and hence omitted. 
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Remark . By using this lemma, we can show that the map T*—- W0(T) is upper 
semi-continuous. 

T h e o r e m 5.4. If T is an operator on a Hilbert space then W0(T) = 
•=V0(T, {&($>)). 

Proo f . Suppose that AG W0(T). Then there exists a sequence {x„} of unit vectors 
such that | |7xJ - | | r | | and (Tx„,x„)^L For each n, define a state /„ on 
by f„(A)=(Ax„, x„). By the compactness of the state space, {/„} has a subsequence 
•converging in the weak*-topology to some state, say / . Then ||7"||2 =l im | | 7 x J 2 = 
= lim (T*Txn,xn)=f(T*T) and A = lim (Txn, xn) = \\mfn{T)=f{T). Therefore 

.AG K0(r, £?(§)). 

Conversely, suppose that A£V0(T). We assume on the contrary that WQ(T). 
;Since, by Lemma 2 in [4], W0(T) is compact and convex, there is an open half-
space H containing fV0(T) such that A(J H~, the closure of H. By Lemma 5.3, 
there exists a positive.number 5 such that ( T x , x ) £ H for all x with ||x|| = 1 and 
' | |7x| |2s| |r | |2-<5. We can choose <5 small enough so that 33 | | r | | <dist (A, H), the 
•distance from A to H. It is well-known that convex combinations of vector states 
are dense in the state space in the weak*-topology. Hence there exists a linear func-
tional / of the form f(A) = 2 Uni^x„,*„) with 2 X = 1 and ||x„|| = l 

•such that / ( r*I 7 )^ | | r | | 2 —<5 2 "and | / ( r ) - A | « 5 | | r | | . Let 

sr= {n: ||7xJ2 S ||r||2-5}. 
Then 

| | 7 T - < 5 2 * f ( T * T ) = ZHnWTxT S ( I M I 2 - « 5 ) ( 2 A O + I W Z AO -

= imi2-<K 2 O-
Hence £ = Therefore, 

n$y 
I f ( T ) ~ 2 Hn(Txn, xn)\ = I 2 1 Vn(Txn, *„)| S ¿1171. 

Let A„=( 2Vn)~1Hn- Then we have 2 K( T x n , xn)^H and 
niy 

I 2 K{Txn, x„)~ 2 Vn(Txn, xn)\ = 1(1 - 2 Vn)(2 K(Txn, x„))| 5 | | r | | . 
ni? nZ? 

Hence dist ( / ( T ) , H)s2<51| 7"||. From this and | | / ( r ) - A | « 5 | | r | | we see that 
•dis (A, i f ) <3<5 ¡r i j . This contradicts our choice of 5 which satisfies the inequality 
351| T || < dist (A, H). 

Next we prove a theorem similar to Theorem 5.4 for an element in the Calkin 
algebra. First we need a simple lemma. 

Lemma 5.5. Let and t be its image in the Calkin algebra. If || T|| = || 11|, 
.then V0(t)gV0(T). 
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Proof . Let V0(t). Then there is a state g on the Calkin algebra (§) 
such that g(f*0 = llf||a and g(t) =/.. Let p be the canonical projection from 3S{§>) 
to the Calkin algebra. Then f=gop is a state on satisfying f{T*T) = ¡712 

and f{T)=L Hence V0{T). 

Theorem 5.6. If § is a separable Hilbert space, T is an operator on £) and t 
is its image in the Calkin algebra, then ess W0(T)=V0(t, (§)). 

Proof . By Corollary 4.6, there is a compact operator K such that || T+K\\ = ||11| 
and ess W0{T)=W0{TJrK). By Theorem 5.4, W0(T+K) = V0{T+K). By Lemma 
5.5, we have V0(T+K)^ V0(t). Hence ess fV0(T)^ V0(t). 

On the other hand, suppose A£ess W0(T). Then, by Proposition 2.1, there 
exists a projection P in such that its image p in the Calkin algebra satisfies 
ptp=lp and H l̂l = [|/[|. Let be the commutative algebra generated by 1 ,p 
and pt*tp. Then it is easy to see that there is a multiplicative linear functional g 
on <€ such that g( /?)=g( l )=l and g(pt* tp) = \\pt*tp\\ = \tp\\2 = \\t||2. Let h be a 
state on the Calkin algebra which extends g and let / be the functional given by 
f(x)—h(pxp). Then it is easy to check that / is a state on the Calkin algebra, 
/(i*i) = l|i||2 and / 0 ) = ^ Therefore A€F„(i). 

Remarks 1. The above theorem can be proved in the same way as 
Theorem 5.4, by using Proposition 2.3 instead of Lemma 5.5. This alternative 
proof does not require the underlying Hilbert space § to be separable. 2. Because 
of Theorem 5.4, many results concerning maximal numerical ranges of operators 
can be extended to corresponding results for maximal numerical ranges of elements 
in C*-algebras. For instance, Pythagorean relation for operators in [4] becomes: 
if T is an element in a C*-algebra, then there exists a unique z0£ C such that 
| | r -z 0 | | 2 +|A| 2 ^ | | ( r -z 0 )+A| | 2 for all X in C; moreover, 0€F 0 ( r -A) if and only 
if A = z0. 
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1. Introduction 

Let T be a bounded linear operator on a (real or complex) Hilbert space 
A matrix (ani) (n, i=0, 1, 2, ...) is said to be uniformly regular (U. R.) if ^ 

sup 2 K-l = fl<00> SVP k ; l = K - 0 (n and l i m 2 <*„i = 1-
» i • » i 

In this article we consider the problem of the equivalence of assertions (a) and (b) 
below, h is an element of 

(a) T"h converges weakly. 
(b) For every U. R. matrix (ani), 2amT'h converges strongly (to the weak 

i 
limit in (a)). 

In the more general context of a Banach space S , (b)=>(a) is always true ([8]), 
but (a)=>(b) may fail even if T is a contraction and (a) holds for every /¡6© ([3]). 
This equivalence (in a weaker form) was first proved for the special case where 
9)—L2 of a probability space and Th=hoT for an invertible, measure preserving 
transformation T on that space ([4]). This was recently generalized to an arbitrary 
contraction on § in [1], [13] and, in the form as stated above, FONG and SUCHESTON 
[8]. In this article we shall prove in Theorem 1 the equivalence for a much wider 
class of operators. This class contains all operators similar to contractions, and 
we shall give some sufficient conditions for such similarity to hold. By an application 
of the uniform boundedness principle, it is easy to show that conditions (2.0—1) 
in Theorem 1 imply that T is power-bounded, i.e. sup | |rn | |<oo, provided that 
the operator B is bounded. Whether the equivalence is true for a general power-
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bounded operator is an open question. Note that if (a) holds, then {T lh: / ^ 0 } is 
bounded and the expression in (b) is meaningful. For (b)=>(a) with T not power-
bounded, we require such expressions to be finite sums. With this modification, 
(b) implies that {Ph: / ^0} is bounded (see [1, p. 237]), and hence (a) ([8]). 

2. Main Theorem 

Theorem 1. Let T be an operator on a Hilbert space Assume that there 
exist Hilbert spaces ©, ft, a contraction C on ft, and operators A: ft — ©, R: (5—§ 
and B, S: © which are bounded except possibly B such that 

(2.0) 

and 
(2.1) 

RS=identity operator on § 

lim \\AC"A*Bh —ST"h\\ = 0 for all 

Then for any fixed h£5), the following conditions (a) and (b) are equivalent: 
(a) T"h converges weakly. 
(b) For every U. R. matrix (ani), 2 amTlh converges strongly (to the weak limit 

i 
in (a);. 

Proof. We only need to prove (a)=>(b). In (2.1), C can be assumed to be an 
isometry. In fact, there exists an isometry U on a Hilbert space £r>ft satisfying 
C"=PUn\$i, n^O, where P is the orthoprojector from 2 onto ft (see e.g. [18], p. 
11), thus implying ACnA*=(AP)U"(AP)*. Henceforth we shall replace C by an 
isometry U. 

Suppose (a) holds. Since the limit is a fixed point of T, we can and do assume 
that it is 0. Given e>0, there exists an integer N such that for all m=N, 
\\AUmA*Bh-STmh\\^e. Hence 

(2.2) 

(2.3) 

^b/z'wT'hW + m 2 amST'h 
i=N ! 

2 a«ST'h 
i=N 

~ as + 2 antAU'A*Bh 
i=N 

^as + \\A\\ 2 anlU'A*Bh 
i=N 

By the assumption, there exists a positive integer M ^ N such that for all ragM, 

(2.4) \(STmh, Bh)\ = |(Bh, STmh)\ = \(S*Bh, Tmh)\ e. 
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Hence for all m^M and i,j=0, we have 

(2.5) \(U'A*Bh, U'+mA*Bh)\ = \(Bh, AUmA*Bh)\ ^ \(Bh, STmh)\ + 

+ |(Bh, AUmA*Bh — STmh)\ ^ s + e\\Bh\\; 
and similarly, 

(2.6) < \(UJ+mA*Bh, UJA*Bh)\ s e + e\\Bh\\. 

Hence 
2 • 

(2.7) 2 aniU'A*Bh = 2 2 anianJ(UiA*Bh, UJA*Bh) S 
i=N i=N j=N 

si (2M+l)abn\\A*Bhp + a2s(l+\\Bh\\), 

as can be seen by dividing the double sum into parts where | /—y|sM and 
\i-j\=~M, respectively, and using (2.5) and (2.6). Finally (2.2), (2.3) and (2.7) 
imply l i m a n i T l h \ \ = 0 . 

i 

Remarks . (1) The proof actually shows that (c) (T"h,S*Bh)^0 implies (b). 
This together with (b)=>(a) shows that (c) is equivalent to Tnh—0 weakly. In 
fact, we have for all k, lim sup \{Cnk, z)\^\\z\\ -lim sup \{C"k, £)|1/2 ([6], 
Lemma 2.1). Applying this to k=A*Bh, z = A*R*y for any y£§> and utilizing 
(2.0) and (2.1), it is.not hard to show that lim sup \{T"h, y)\^\\A* R* y\\ - lim sup 
|(T"h, S*Bh)|1/2. In the case of T being a contraction, (c)=>-(b) was implicitly proved 
in [8] by a somewhat different method. We can also prove the general case from this 
by observing that (c) implies, by (2.1), (C"A*Bh, A*Bh)^0, and hence, applying the 
contraction case and using (2.1) again and (2.0), (b). 

(2) An operator T on § is said to be similar to a contraction C on it if there 
exists a (boundedly) invertible operator A: such that T=ACA~1. Then 
r"=AC"A-1=AC"A*(A*-1A-1), nS0, and the condition (2.1) is satisfied. 

(3) Theorem 1 applies to operators of the CA classes of H . LANGER (see [18], 
p. 55) and the now classical Ce=CgI classes, G > 0 , of SZ.-NAGY and FOIA§ ([17]). 
They are those operators T o n § satisfying Tn=AmPS)UnAm, n s l , for a posi-
tive and (boundedly) invertible operator A on § and a unitary operator U on a Hil-
bert space Note also that CA(zCnA^ ([12]) and that the union of all Ce 

classes is dense (in the norm topology) in the set of power-bounded operators ([10]). 
(b) is valid for all in case of operators with their spectra lying inside the open 
unit disc. This foll'ows from the fact that lim ||rB|| 1 / n< 1 implies lim \\Tnh\\ = 0 for 
all /z€§. We should also mention that the operators considered here are all similar 
to contractions (see a general theorem in [11]), and that some power-bounded, 
operators are not similar to any contraction ([7]). , 
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3. Similarity to contractions 

We shall give three sufficient conditions for T on § to be similar to a contrac-
tion. The Corollary below generalizes a result of SZ.-NAGY [16]. The special case 
where T is power-bounded and lim sup \\Tnh\\ ^m ||A||, is tacitly contained 
in [1, p. 238]. In [1] and [16] Banach limits are used as the main tool. Our proof 
is of a more constructive nature. Theorem 2 will also be used in the proof of Theo-
rem 3. 

Theorem 2. Let T be an operator on § satisfying, for a positive number M, 

(3.1) n - ^ Z W T ' h V ^ M ^ W h r ( n ^ i . h e s ) . 
«=0 

Then there exists a positive operator R on § such that 

(3.2) T*RT =R and R ^ M2I. 

I f , in addition, there exists a positive number m such that 

(3.3) m*\\hr ^ n ' 1 2 WT'hW* ( n s l , 
i =0 

then R and its positive square root P are invertible and 

(3.4) PTP-1 is anisometry and ml^P^MI. 

Corol lary . If T is an operator on and there exist positive numbers m, M, p 
such that 

(3.5) m'||fc||' lim sup n'1 WT'hW" S M"| | / ip (/i€§), 
¡=0 

then 
(3.6) (mlM)\\h\\ ^ \\T"h\\ ^ (M/m)\\h\\ (n S 0, h€§), 

and T is similar to a contraction. 
The same conclusion holds if we replace in the middle term of (3.5) lim sup by 

lim inf and even if we replace this middle term by lim sup [| Tnh\\" or by lim inf || T"h\\p. 

Proof of Corol lary . The middle term in (3.5) is unchanged if we. change 
h to T'h, for any Hence mp||r'7!||p^Mp||7 ,-''/;||p, for any The first 
conclusion then follows. Theorem 2 applies now to give the second conclusion. 
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Proof of Theorem 2. Consider first the separable case. So assume that there 
n-i 

is a countable dense subset {h1,h2,...} of Let R„=n~1 £ T*'T\ R„ is 1 i=o 
positive and (3.1) implies R„^M2I, n ^ l . Hence for each . / s i , {R„hj: n ^ l } 
is bounded and so weakly sequentially compact ([5,-11.3.28]). Using the diagonal 
process, we can extract a subsequence {i?^} such that R'nh} converges weakly for 
each j. It follows that R'n converges in the weak operator topology to a positive 
operator R^M21. T*R'„T converges to T*RT. On the other hand, T*RnT-Rn= 
=n~1(T*" T"-I), We claim that n~xT*"T" converges weakly to 0. This 
then implies that T*R'nT has to converge to R, and thus T*RT=R. For the 
claim, observe that for each and each positive integer n, 

j=i 

^ n-1 2 (M2\\Tn-J+1h\\2) = M2«-1 \\T'Th\\2 s M4||rh||2, 
j=1 i = 0 

n 
by applying (3.1) twice. But 2 J 1 diverges, and hence n-1 | |r"A||2—0. Now for 

any h,k£§>, \n^(T*nTnh, k)\%(n-1\\Tnh\\2)ll2(n-1\\Tnk\\2)1/2^0, proving the claim. 
Thus (3.2) is proved. 

If in addition (3.3) is assumed, then m2I^R„, n^ 1. In particular m2I^R'n, 
« s i , whence m2MR. Thus m2I^R^M2I and so ml^P^MI, and R and 
P are invertible. From T*P2T=P2, we get (PTP-i)*(PTP~1) = J, showing that 
pjp-1 is a n isometry. 

When § is not separable, we proceed as follows. Given any the closed 
subspace generated by {/z}U {Si... S„h: «^1 , St=T or T*, 1 S / S n } is separable, 
contains h, and reduces T. Utilising this construction and employing transfinite 
induction, § can be decomposed into a direct sum of a family of mutually orthogonal, 
separable, closed subspaces, each reducing T. The construction for the separable 
case applies to each of these subspaces, and we get a positive operator R on 

satisfying (3.2) and, if (3.3) is assumed, m2IsR. The rest of the proof is as 
before. 

Theorem 3 below generalizes the result of G.-C. ROTA [15, Th. 2] that every 
operator T with spectral radius /•< 1 is similar to a proper contraction (one of 
norm <1). This is because r=lim [| T"^'" and so by the root test for series, 

.Z l]T™ll2<°°> implying the case 5=0 of Theorem 3. Another case, 5=1, was b = 0 
treated by HOLBROOK ([11]) under the assumption that T is power-bounded. 
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Theorem 3. Let T be an operator on O ^ s ^ l a fixed number, and 
Q = Q(T, s)=\I—sT*T\112 (by symbolic calculus). Assume that there exist positive 
numbers M, N such that (3.1) is satisfied and 

(3.7) 2 WQT-hr^ i V W 
n = 0 » 

Then there exists a positive operator P on § satisfying 

(3.8) I s PS (N2+sM2)1'2/ 

such that PTP~X is a contraction, and a proper one in the case 5=0. 

Condition (3.1) is redundant in the case 5=0, i.e., Q=I. 

Proof . Condition (3.7) implies that the increasing sequence of positive operators 
n — 1 

S„= 2 T*'Q2r, «^1 , converges in the weak operator topology to a positive 
¿ = 0 

operator S^N2I. In fact for any h,k£%>, and any n=»m^0, 

\((Sn-SJh, k)\ = I *2<&T% 07"FC>| S 
I i—m I n-1 ( n-1 V ' 2 / - " - 1 \1/2 

^ 2 WQT'hW • WQT'kW s 2 lie^ll2 2 WQT'm , 
i-m ^ i=m ' M = m ' 

whence the assertion follows. From the identities Q2+T* S„T=Sn+1, « S i , we get 
Q*+T*ST=S. 

For each positive integer n, 

S+sR„sz "2 s'T*iQ2Ti+n~1 "2 s'T*iTi = ( s ' * 2 2 + . 
¡=0 j=1 j=1 M=0 / 

Since Q2+sT* T= \I-sT*T\+sT* T^I, it follows by easy induction that the terms 
in the first summation form an increasing sequence of positive operators, each s / . 
Hence S+sR„^(l — lln)I. By Theorem 2, there exists a positive operator RsM2I 
on § with T*RT=R, and by the above inequalities, and considerations as in the 
proof of Theorem 2, S+sR^I. Summing up the results in this and the last para-
graphs, we get Q2+T*P2T=P2 and ISP2S(N2+sM2)I, where P is the posi-
tive square root of S+sR. Hence (3.8) follows and P is invertible. With C=PTP~\ 

(QP~1)*(QP~1) + C*C = P-1(&+T*I»T)P-1 = p-ip*p~1 = /. 

This shows that C*CsI and C is a contraction. In the case 5=0, we have Q=I, 
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and the above equality becomes P~2+C*C=I. Hence for each 

IICM* = </», c*ch) = (h, h)-(h, p-*h) = PII2-||JP-1/I||2 ^ PII2(1-I|/ ,I|-2). 
Thus C is a proper contraction. 

We now present a similarity theorem in a measure-theoretic setting. Let 
(X, g , n)=(X, /1) be a <r-finite measure space, and Lp=Lp(X, g, p), the 
usual Banach spaces of functions. Let M + be the set of extended-valued nonnegative 
measurable functions (modulo //-null functions) on ( X , fi). A linear operator T on 
M+ is monotone i f /„ , / € M + , / „ t / a.e. implies xfn\xf a.e. (cf. [2], p. 389). For such 
a r, its adjoint is uniquely defined as a (linear) operator t* on M+ satisfying 
J f ' x*g dfi = f g ' z f d f i , for all f,g£M+. It is easy to show that T* is also mono-
tone and that T * * = T . If for a fixed lS/?<°°, T is a positive (in the sense that 
TLptzLp), bounded linear operator on Lp, then it extends uniquely to a mono-
tone operatorzon A?+, according to the definition: T/=lim Tf„ a.e., where / f M + , 
fn£L+, and f„\f. For each / € M + , such a sequence/„ always exists and the defi-
nition of T/ is unambiguous. We shall simply write T for the extended T. 

T h e o r e m 4. Let x be a monotone operator on M+ and 1 ^<oo a fixed num-
ber. Assume that, for p = l,x*k^k; and for 1, 

(3.9) x*(k(xh)p~1) ^ kh"'1 for some functions 0 < h, k < 

Then (T, defined on M+ as af=k1/px(fk~llp), is a positive Lp contraction. Further, 

(3.9) is equivalent to 

(3.10) T ( F C 1 ( T * / I 1 ) P ' - 1 ) S FCI/IF'-1 for some functions 0 < ht, <<==>, with 

K1=K~P'+1 and l/p+llp'=l. 

Coro l la ry . Suppose T is a positive (in the sense that TL2 c i 2
+ ) , bounded 

operator on L2, and T*(kTh)skh or T(kT*h)^kh for some functions 0 
mSkS.M, where m, M are positive constants. Then T is similar to a positive con-
traction on L2. 

Proof of T h e o r e m 4. The case p = 1 is easy. Consider the case p > l . 
First we show (3.9)=>-(3.10). Suppose (3.9) holds. Then r/z<°o. For if xh=°° 
on a set E of positive measure, then for all positive numbers N, 

Nx*(klE) = x*(NklE) rs x*(k(xh)p~1) s kh"-1 

implying x*(fcl£)=0. So 0 = f h-x*(k\^)dp—jEk-xhdp—°=, a contradiction. Let 
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F— {тА=0}. Then / h-т* lFdfi=J тАф=0, and hence t * 1 f = 0 . D e f i n e - Л ^ 

=k(ih)p Then and (3.10) can be verified as follows: 
=т*(&(тй)р - 1)+0^&Лр - 1 by (3.9); consequently, (т*/21)"'-1=(т4Л)1 / (р~1)^ 
7S(khp~1)1Kp~1}=k1Kp~1)h=kï1h, and hence, T(£1(T*AJp '-1)STAS(A:-1A1)1/(p_1)= 
= M Î / ( p ~ ® = M i ' ~ \ ' which is (3.10). Implication (3.10)=>(3.9) can be proved 
similarly, by replacing (т ,h ,k ,p) by (т*,h 1 ,k 1 ,p ' ) . From the definition of a we 
can show that ffV=Ar1/pT*(/fc1/p/),/€M+. Hence (3.9) transforms into 

where u=hkllp. This implies that a is a contraction on Lp. In case of a 
Borel space, this implication follows from a dilation theorem in [2]. The general 
case is proved here by adapting the proof in [9] for the case <rl ̂  1, a* 1S1. In fact, 
we have <xw<°°, just as rA<°o. For f£M+ and any A=-0, 

== f a(J—Xu)+ '(ffu)p-1dfi = / V-kuY /1{/S,B}(/-A«)«pi/-V. 
Multiplying both sides by AP_2, and integrating with respect to A from 0 to we 
obtain, by the Fubini—Tonelli Theorem, 

showing that a is an Lp contraction. 

R e m a r k s (4). If a : M+(X,fi)—M+(Y,v) is monotone, 1 
0<u£Lq(X, p), and o*(ou)p~1^uq~1, then a extends to a bounded, positive linear 
operator from Lq(X, p) to Lp(Y, v) with norm S||M||(?

,/p)_1. Indeed, by the method 
of the proof of Theorem 4, we have for all f£L+{X,n), f (af)pdv^f fpifl~p dfi. 
(This is trivial when p= 1, for which case the condition on a reads <x*l s « ' " 1 . ) 
By the Schwarz inequality, the last integral is fdn)plq ( /u 9 d ix f q ~ p y l q . The con-
clusion follows. This generalizes a result in [14] for non-negative infinite matrices, 
as it can be easily shown that non-negative matrices are monotone. Analogous to 
Theorem 4, the inequality for a is equivalent to a(a*v)9 '^1^vp '~ l for some 
O^v^L^Y, v) when l</>, where l/p + l/p' = l and l/q+l/q'=l. 

F 
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Mean ergodicity in G-semifinite von Neumann algebras 

SÁNDOR KOMLÓSI 

Introduction. Let A be a von Neumann algebra in a complex Hilbert space H, 
and let G be a semigroup of normal endomorphisms of A. Denote by AG the set 
of all elements of A which are invariant with respect to each element of G. If the 
identity I belongs to A°, then AA is a von Neumann algebra too, but if this isn't 
so, then A° is 'only' an ultraweakly closed involutive subalgebra of A, and hence 
there exists a largest projection P^I in A such that for every element T of A one 
has PT=TP=T ([7], Chap. I. §3, Théorème 2.). 

Let Q denote the set of positive, normal, linear mappings of A into itself obtained 
from the elements of G by forming convex combinations. The operators in A of the 
form V{T), where VÇQ and TÇA are called the means of the operator T. For 
any T£A let K0(T, G) denote the set of all means of T. The investigation of the 
'behaviour' of the means is one of the subjects of mean ergodic theory ([9], Kap. 1, 
§ 2.). Concerning von Neumann algebras we refer only to the classical results of 
J . DIXMIER ([6]) and the paper of I . KOVÁCS and J . Szűcs ([10]). 

The purpose of this paper is to investigate a special class of von Neumann 
algebras. 

§ 1 contains preliminary results without their proofs. 
In § 2 we define the notion of 'weak ergodicity in means' to express a 'good 

behaviour' of the means of an operator. This section is devoted to establishing the 
simplest consequences of this definition. 

Let K(T, G) be the weak closure of K0(T, G). In § 3 we shall give sufficient 
conditions for T in order that K(T, G)(~)AG be nonempty (Theorem 3.1.), and 
that K(T, G)DAG consist of exactly one operator. 

1. Definitions and preliminaries. Let us consider a pair (A, G) of a von Neu-
mann algebra A and a semigroup G of normal endomorphisms of A. We shall denote 
by A+ the positive portion of A. 

Received September 15, 1977, in revised form January 8, 1979. 
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A non-negative, finite or infinite valued function <p defined on A+ is called a 
weight on A + , if it has the following properties: 

(i) <p(T+S) = <p(T) + cp(S) for every T, S£A+; and 

(ii) (p(cT) = c<p(T) for every c & 0 and T£A+, 

(with the convention that 0-°° = 0). 

We call <p G-invariant if for every T£A+ and g£G we have <p(T) = cp(g(T)). 

The notion of a G-invariant weight is a very natural generalization of that of 
a trace. 

A weight <p on A + is said to be faithful if the conditions T£A+ and <p(T)=0 
imply T= 0; normal if, for every increasing directed set ^(zA+ with sup S= 

= T£A+, we have <p(T)= sup cp(S); semi-finite if, for every T£A+, 7 V 0 there 
Si? 

exists S€A+ , S^O such that S ^ T and <p(S)<°°. 
A weight <p on A+ is said to be non-infinite if there exists S£A+, S?¿0 such 

that 
For later purposes we state an important fact concerning weights. 

P ropos i t i on 1.1. ([8], Lemma 1.5) For any weight (p on A+ the following 
conditions are equivalent: 

(i) <p is normal, 
(ii) (p is ultraweakly lower semicontinuous, 

(iii) there exists a family of vectors {x,} in H such that 

<P(T) = 2 iTx" x>) f o r every T£A + . 
i 

Now we shall define special subspaces of A. Denote by r the set of normal 
faithful C-invariant non-infinite and non-zero weights defined on A+. 

Def in i t i on 1.1. A projection E£A is called finite, if there is a (pdT such 
that (p(E)«=°. An operator in A is called simple, if it is a linear combination of 
finite projections. Denote the set of simple operators by M0. 

Let <ptr and let M+ = {TeA + \(p(T)«*,}. Denote by M the smallest norm 
closed subspace of A that contains M+ for every (p£T. Since q> defines a linear 
form <p on the linear span of M+, it is not hard to see that the norm closure of M0 

is identical with M. 
Let N9={T£A\(p(T*T)«x>}. Nv is a left ideal in A. Denote by N the norm 

closed linear hull of all Nq>. It is obvious that M0QN and hence MQN. 
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Def in i t i on 1.2. A pair (A, G) is said to have property 77 if for every proper 
projection P£A such that g(P)sP for every g£G, we have that P£A°. 

We classify the pairs (A, G) by their weights. 

De f in i t i on 1.3. A pair (A, G) is called finite (resp. semifinite) if for every 
T£A+, 7V0 we can find a normal G-invariant finite (resp. semifinite) weight <p 
such that cp(T)^0. 

To facilitate the statement of the next proposition it will be convenient to 
introduce the following notations. 

De f in i t i on 1.4. Let £ be a projection in A°. Let us consider the restricted 
von Neumann algebra AE. Since E£A°, every element g of G induces a normal 
endomorphism gE on AE. These restricted endomorphisms form a semigroup. Let 
us denote this semigroup by GB. The pair (AE, GE) is called a restriction of (A, G). 

P ropos i t i on 1.2. ([5], Theorem 1) If a pair (A, G) has property 77, then there 
exists a maximal projection E in AG such that the restricted pair (AE, GE) is finite. 

For finite pairs the following theorem will play an important role in proving 
Theorem 3.3. 

Theorem. (I. KOVÁCS—J. Szűcs ([10])) Let the pair (A, G) be finite. For every 
T£A the convex set K(T, G)f]AG contains exactly one element. 

In the following paragraphs we shall deal with pairs (A, G) for which the set 
r is non-empty. This requirement is fulfilled for example in the classical case, when 
the group t] of inner automorphisms of A plays the role of G, and A is semifinite. 
We do not know if this is the case in general for semifinite pairs, but we can state 
the following: 

P ropos i t i on 1.3. If a semifinite pair (A, G) has property 77 and tt <zG, then 
there exists a normal faithful G-invariant and semifinite weight on A+. 

Property 77 ensures that the support of any G-invariant weight defined on A+ 

does belong to AG. It follows from the condition t| c C that A° is part of the center 
of A and hence DIXMIER'S reasoning ([7], Chap. 1, § 6, Proposition 9.) can be repeated 
essentially word by word. 

The terms and symbols introduced here will be used in what follows without 
further reference. 

2. Let be an ultrafilter in Q. Denote by T) the image of J5" which is ultra-
filter, too. Since the unit ball of A is weakly compact, K(T, G) is weakly compact, 
too, for every T£A, and so the ultrafilter (T) of the means of J converges weakly 
to an element S of K(T, G). Let this fact be expressed by the symbol lim V(T) = S. 
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Now we define two notions to express 'good behaviour' of the means of an 
operator. 

De f in i t i on 2.1. Let the operator T£A be called weakly quasi-ergodic if it 
has the following properties: 

(Li) K(T, G)F)AG is non-empty 
(Lii) for each R£K(T, G) the set K(R, G)HAG is non-empty. 

Denote by L the subset of weakly quasi-ergodic elements of A. 

Def in i t i on 2.2. Let the operator T£A be called weakly ergodic if it has the 
following properties: 

(Ei) K(T, G)F)AG consists of exactly one element, 
i.Eii) for each R£K(T, G) the set K(R, G)DAG consists of exactly one ele-

ment. 
Denote by E the subset of weakly ergodic elements of A. It is obvious that AGC 
^EcL. 

Propos i t i on . 2.1. Lis a norm closed, G-invariant subspace of A. 

Proof . The G-invariance and the homogeneity of L are rather obvious. First 
we prove the additivity of L. Let 7\ and T2 be arbitrary elements of L. We shall 
show that the operator T= TX + T2 belongs to L. By assumption there is an operator 
iSj such that S^K(TX,G)V\AG. Let be an ultrafilter in Q such that lun K(7\) = 
= S1. The limits lim V(T) = S0 and lim V(T2) = R2 exist, S0£K(T,G) and 
R2£K(T2, G). By condition (Lii) there exists an ultrafilter in Q such that 
lim V(R2)=R£K(R2, G)HAG. It follows taking account of the facts that SG= 

= S! + R2 and K(S0, G)<^K(T, G) that -S'=lim F(S0) = S1+i?€is:(r, G)^A°. 

Now let us consider an arbitrary element Y of K(T, G). Then we can find an 
ultrafilter ^ in Q such that 7 = lim V(T). The limits lim V(T1) = Y1 and lim V(T2) = 
= Y2 exist, and both belong to L. Since Y= YT + Y2, then using the previous result it 
is obvious that K(Y, G)(~)AG is non-empty, so we have finished proving that T£L. 

Now we are going to show that L is norm closed. Let the sequence {r„} of 
operators converge to the operator T uniformly. Let us suppose that for each n, 
TN£L. Passing, if necessary, to a subsequence, we can assume without loss of gen-
erality that | | r B + 1 -7 ; | | < l/2n+1 for each n. 

Using the technique of the previous part of the present proof we can construct 
a sequence {Sn} recursively in the following way: 

SNIK(TN,G)NAG a n d SN+1 — SN£K(TN+1—T„, G) 

for each n. It is an obvious consequence of these facts that the sequence {Sn} con-
verges in norm, and the limit S of it belongs to AG. 



Mean ergodicity in G-semifinite von Neumann algebras 331 

Now we prove that for any and for any finite system of vectors 
JC15 JC2, •••, xk; y1,y2, - . . ,y k of H we can find an operator R£K0(T, G) such that 

(*) |((5—i?)x;, < e for each i = 1,2, ..., k. 

Let us choose a sufficiently large index p, for which || S—Sp|| and || T— TP\\ are both suf-
ficiently small. Since SP£K(TP, G), there exists a V0EQ such that j ((Sp - V0(TP)) XT, j .) | 
is sufficiently small for each /=1 ,2 , ...,k. Let R= V0(T). This operator satisfies 
O ) , and this means that S£K(T, G)DAG. 

Now let us consider an arbitrary element Y of K(T, G). We can find an ultra-
filter J5" in Q such that F=lim V(T). Let us set F„=lim V(T„). It is clear that 

Yn£L for every n, and that the sequence {F„} converges in norm to Y. Applying 
the preceding part to the sequence {F„}, we get that K(Y, G)P\A° is non-empty. 

The next proposition might bear the name 'The Theorem of Linear Choice'. 

P r o p o s i t i o n 2.2. For every T0£L and S0£K(T0, G)f)AG we can find a 
positive linear mapping x of L onto AG which possesses the following properties: 

(i) x(T)eK(T, G) for each T£L, 
(ii) x(TS)=z(T)S and T(ST) = SX(T) for every T£L and S£AG, 
(iii) x(T0) = S0. 

We omit the proof. It can be done by J. T. SCHWARTZ'S method developed in 
([11], Lemma 5). 

P r o p o s i t i o n 2.3. The weakly ergodic elements of A form a norm closed, 
G-invariant subspace E of A. Denote by X0(T) the single element of K(T, G)C\AG 

for every T£E. The mapping x0 is positive linear and has the property that 

T „ ( T S ) = T 0 ( T ) S ahd x0(SR) = Sx0(T) for every T£E and S£AG. 

Proof . The G-invariance of E is based upon the fact that for every T£A the 
elements of G map K(T, G) into itself. 

Denote by A the family of those linear mappings x of L onto AG which have 
properties (i) and (ii) of Proposition 2.2. Let x and i¡/ be two arbitrary elements of A. 
Let us define the following subset 

L^ = {T£L\x(T) = HT)}. 

Taking into account the fact that every element of A is norm-continuous and linear 
it follows that LTt<l/ is a norm closed subspace of A. Denote by L0 the intersection of 
all such LT^ subspaces. It is obvious that L0 is a norm closed subspace of A and by 
Proposition 2.2 it is identical with E. 

If we restrict any x oceuring in Proposition 2.2 to E, then we get the mapping T0 

with the desired properties. 

4 
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3. In this section we shall investigate pairs (A, G) for which f is non-empty 
and hence the subspaces M and N defined in Definition 1.1. are different from the 
trivial subspace {0}. 

T h e o r e m 3.1. If for a pair (A, G) the set r is non-empty then ail elements of 
the subspace N are weakly quasi-ergodic. 

P r o o f . By virtue of Proposition 2.1 it is enough to prove that for every q>^r 
N^czL. Proving this we follow S. M . ABDALLA ([1], Chap. 3, Theorem 3 .4) . For our 
purposes it is sufficient to show that for every 

(i) K(T, G) a Ny and (ii) K(T, G)i)AG is non-empty. 
Let TtNy and R£K(T, G). We can find a filter & in Q such that lim V(T)=R 

in the strong operator topology. As K(T, G) is bounded, we have lim (V{T)* V(T)) = 
n 

=R*R in the weak operator topology. On the other hand, if V£Q and V~ 2 
i = l 

n 

( a ; > 0 , 2 a i = 1. then we have by Schwarz's inequality 
¡=i 

cp(V{TfV{T)) = cp [( J ; a i g i ( r r ) ( i a y g j ( r ) ) j = 2 a .«^(g«(7TgjCO) 

S Z «ixMgi(T*)gi(T))^ • (p(gj(T*)gj(T)y* = 2 *i*MT*T) = <p{T*T). 

Since <p is normal, it is ultraweakly lower semicontinuous and so it is weakly 
lower semicontinuous on any bounded part of A+, thus <p(R*R)^(p(T*T)'. This 
proves (i). 

Since <p is normal it can be represented in the following form: (p(T) — 2 (Tx,, x,) 
i 

for every T£A+, where the x,'s are suitable vectors from H. It follows that the func-
tion S—cp(S*S) is weakly lower semicontinuous on any bounded part of A and 
thus it attains its minimum on the weakly compact bounded set K(T, G). Taking 
into account the fact that cp is faithful it follows that the function S-*(cp(S* S))1/z— 
= US||2 is a pre-Hilbert norm on Nv, therefore the minimum is attained only at 
one point. Denote by T0 this element. It is not hard to see that for every element g 
of G g(T0)£K(T, G). On the other hand, it is evident that (p(T*T0)=<p(g(T0)*g(T0)) 
and this implies that g(J'0) = r 0 . This means that T0£Aa and proves (ii). 

The next theorem is a generalisation of J. B. CONWAY'S result ([4], Lemma 6). 

T h e o r e m 3.2. If for a pair (A, (?) the set r is non-empty and A° does not con-
tain any finite projection except 0, then for every T^M, K{T, G)C\AG = {0}. 

P r o o f . Let P be a finite projection in A. Then we can find a (p£T such that 
<?(/>)<oo. By Theorem 3.1 it follows that K(P, G) C\AG is non-empty. Denote 
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by S an arbitrary element of this set. Since q> is weakly lower semicontinuous on 
K(P, G) and finite constant on K0(P, G), the values of q> are finite on K(P, G), thus 
cp(S)<oo. On the other hand, P£A+, hence Sg^4". 

Let S=f XdE} be the spectral decomposition of S, where E, is right-continuous. 
Let be arbitrary positive reals. It is clear that E^—E^ belongs to A° and 
that XiE^-E^S. It follows that X-<p(Ell-EÁ)^(p(S) so the projection Ep-Ex 

can't be infinite, and therefore E^Ex- This proves that S=0. 
Now let T£M be arbitrary. For any s > 0 we can find finite projections 

P l5 P2 , ...,P„ and complex numbers cv, c2, ..., cn such that llr— 2 Cirill<e- By 
1 i = l 

Theorem 3.1 it follows that K(T, G)F)AG is non-empty. Denote by S an arbitrary 
element of this set. By Proposition 2.2 there exists a positive linear mapping % of 
L onto A° such that for every R£L, T(R)£K(R, G)DAG and T (T) = S. Since | | T | | S 1 , 

we have | | T ( T ) — 2 C I ' R ( ^ > > ) | | < E . By the preceding part of the present proof we 

have t (P;)=0 for all indices I, hence | | t (r) | |<6. This proves that T(T) = S=Q. 

Theorem 3.3. Let the pair (A, G) possess property II. Let us suppose that F is 
non-empty and that 11 c C . In this case for every T£M, K(T,G)PlAG consists of 
a single element. In other words, M<zE. 

P r o o f . Denote the largest projection of AG by P. If P = 0 then the statement 
of the theorem is trivial. If I V 0, then necessarily P=I. Indeed, if we set R=I—P 
then we have g(R)g(P)=0 and g(P)=P for every g£G and thus g(R)SR for 
every g£G. It follows from property II that R£A°, and, consequently, l—P-V 
+ReAG. 

In virtue of Proposition 2.3 and Theorem 3.1 it is sufficient to show that for 
every <p£T and the set K(T, G)C\AG contains exactly one element. 

Denote by Y the maximal projection of AG for which the restriction (AY, GR) 
of (A, G) is finite (Proposition 1.2.). Let Z—I- Y. Taking into account that fc| c G 
the projections Y and Z belong to the center of A. It follows immediately from 
this that for every SZA the operator S is uniquely determined by its 'parts' SY 

and SZ. 
By Theorem 3.1 K(T, G)C\AA is non-empty. Denote by R and S two elements 

of it. Using the facts that 

(1) (K(T, G ) N ^ C ) R G K(TY, GJ^A^T a n d 

(2) (K(T, G) 0 AG)Z i K(TZ, GZ)C\AGZ 

the restricted operators RR and SY belong to the set (1) and the restricted operators 
RZ and SZ belong to the set (2) . By the theorem of I . KOVÁCS—J. Szűcs the set (1) 

4* 

/ 
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consists of a single element, so RR=SY. By Theorem 3.2 it follows that RZ = 
= SZ=0. This means that R = S, and thus the set K(T, G)DAG has only one 
element. 

Acknowledgement. I am indebted to Prof. J. Szűcs for his continued interest in 
my work and for several valuable suggestions. 
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Note on the convergence 
of Fourier series in the spaces Ap

a 

V. G. KROTOV 

In this note we consider the basis problem for the trigonometric system in the 
spaces Ap defined as follows: Let co be a modulus of continuity and let 1 ^ p « » 

- be a real number. The class Ap consists of all functions / €L P for which the norm 

\\f\\p,<o = ll/llp+ll/llp,co 
is finite, where 

11/11, = { II/II;.„= sup " f f / P . ' o<isn (0(0) 

(We refer to [1] for c o p ( f ) and co.) With respect to this norm Ap is a nonseparable 
Banach space. 

A sequence {/„} of elements in the Banach space B, which is a basis for its 
closed span £({/„}, B)=E(B) is called a basic sequence. 

T h e o r e m 1. For any co and 1</)<M the trigonometric system is a basic 
sequence in the space Ap. 

If T„ is a trigonometric polynomial of degree n, then the inequality 

(1) \\TX^ncop[^,T„) 

holds [5]. 
For any f(LLp and « s 0 the inequality1) 

(2) l|Sn/Hp S Cpll/Hp 

is true [4], where S„f denotes the n-th partial sum of the Fourier series of / . 

Received April'26, 1977. 

This research was made while the author worked at the Bolyai Institute Szeged as a visiting 
scientist. 

Cp will always denote positive constants depending only on p, not necessarily the same 
at each occurrence. 
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Proof of Theorem 1. Since for any absolutely continuous function / with 
f'£Lp the inequality 

cop(8,f)^d\\f'\\p (0^8 ^n) 
holds, by (1) we obtain 

(3) cop(S, T„) ^ n5cDp , r n ) 

for any trigonometric polynomial Tn. Furthermore, from (2) and a theorem of 
Jackson type in the space Lp (see [6]) for any f£L" and n^l the inequality 

(4) \\f-SJ\\pSCpa>p(j,f) 

follows. 
Using the inequality (3) we have 

cop(8, Snf) =S n8cop [ j , S J ) nd [cop , / ) + cop ^ 

so, by inequality (4), 

(5) cop(8,SJ)^Cpn8cop[^,f) 

holds. From (5) and by a familiar inequality (see e.g. [8] p. I l l ) 

<a(<5) = I S r j ^ c o i t i ) (0 < r] s 6 7t) 
it follows that 

If then by (4) we have 

O)P(S, S n f ) S (Op{8J)+CDp(8J-SJ) == 

^ (op(8,f)+2II/— Sn/Hp ^ Cpwp(8,f). 

From the last two inequalities we obtain 

\\SJ\\*p,a^ Cp\\f\\*p>m 
and by (2) , 

l | S n / I U ^ C P l l / I U -

Now our statement follows from a known theorem (see e.g. [7], p. 58). The proof is 
complete. 
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In order to describe the subspaces E(A^) we consider the classes 

« - { * « = K s ^ H 
which are closed subspaces in Ap. 

We show that if the condition 

(6) l i m - ? K = 0 

¿ - o £0(5) 
is fulfilled, then 
(7) E(ApJ = Xp

m. 

In fact, if the function then 

a>p(6,f)*ep(5,f)a>(5), 

where ep(8,f)\0 as We can take for example 

7t For by (4), we have 

<oP(S,f-SJ) „ cop(Uf-Snf) ^ „ J n ) 
co (5) = ( n \ - ^ " " { n ' 1 ) a 

7C 
and for 0<<5^— from (5) the inequality 

cop(d,f-Snf<op(5,f) nd 
co(S) ~ co(d) " m(6) " 

follows. As in the proof of Theorem 1, we obtain hence 

\\f-SJ\\p^ C„ [ a > p ( ^ j ) + ( l + ||/||* 

and thus Xp
m c E(Ap

a). 
Since by condition (6) sin nx, cos nx^X^ (ra^O) and Xp is a closed subspace of 

Ap, thus E(A£)<zXp
m and (7) is proved. 

If the condition (6) is not fulfilled, then Ap contains only the functions which 
are equivalent to constants. Consequently, by Theorem 1 we have 

Theorem 2. The trigonometric system forms a basis in the space , 1 </)<» 
if and only if condition (6) holds. 

A system, which is a basic sequence for every permutation of its terms, is called 
an unconditional basic sequence. 
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For any ff_L2 we have by the Parseval formula 

- f \f(x + h)-f(x-h)\4x = 4 2 (a2
n + b2

n) sin2 nh (h > 0), 
71 -Î 

where a„ and bn are Fourier coefficients of n. Hence it is easy to obtain that the 
trigonometric system is an unconditional basic sequence in A£ for every со. 

On the other hand, if рт±2, then the trigonometric system does not form an 
unconditional basic sequence in the space where a>(<5) = ô" ( 0 < a ^ 1). This state-
ment follows from KONJUSHKOV [2], Theorems 8 and 10. 

In [3] we have given necessary and sufficient conditions that the Haar system 
should be a basic or unconditional basic sequence in the spaces 1 — <QQ 

Finally we remark that Theorem 1 is also true for other spaces. So we can 
consider the spaces defined by the modulus of smoothness of order к of functions; 
or, for example, we can take the spaces 

WAl = { / : f^eACJ^eA^}. 

Since the proofs are the same as before, we omit them. 
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Multiparameter strong laws of large numbers. II 
(Higher order moment restrictions) 

F. MÓRICZ 

§ 1. Introduction 

We use the notations introduced in [5] with the exceptions that at present 
(i) it is more convenient to write £k into the form £k=ffk<pk(x), where {ak}= 

= {ak: k£Zd
+} is a set of numbers (coefficients) and {<pk(x) = {cpk(x): kÇZl} is 

a set of measurable functions defined on a positive measure space (X , A, ¡i) ; 
(ii) by m = (m1, ...,md) — o° we always mean that only max(m1 , ...,md)— °° 

(and min (m1, ..., wd)4-°=> may also occur). 
We consider the ¿/-multiple series 

d ©o 
(i-i) 2ak<pk(x)= Z Zak kd<pkl kd(x), 

k^l j = 1 kj = l 

where the multiindex k = (Â ,̂ ..., kd) belongs to Z\, the partially ordered set of 
the ¿/-tuples of positive integers, d being a fixed positive integer. The set of ^-tuples 
of non-negative integers is denoted by Zd. For bÇZd and m£Zd

+ write 

d bj + mj 
S(b,m;x) = 2 akcpk(x) = 2 Z akx,...,kAx) <Pk *„(*) 

b+l^ksb+m j=1 kj=bj+l 
and 

M(b, m; x ) = m a x |S(b, k ; x ) | =» m a x m a x . . . , bd; fcl5 ..., kd; x) | . 

In case b=0 write 5(0, m; x) = S(m; x) (rectangular partial sums of (1.1)) and 
M(0, m; x) = M(m; x). 

Throughout the paper we assume that there exist a number 2 and a con-
stant C such that the inequality 

"(1.2) / > ( b , m ; x ) | ' 4 u ( x ) s C ( 2 «k)"/2 
J b + l s k s b + m 

Received June 11, 1977. 
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holds for all b£Zd and m£Zd
+, and either for all sets {ak} (in §§ 1—2) or for only 

the single set {a k=l} of coefficients (in §§ 3—4). 
Here and in the sequel the integrals, unless stated otherwise, are taken over X; 

C, Q , C2, ... denote positive constants, not necessarily the same at different 
occurrences. 

Example 1. Let r be an integer, rS2. The set (<pk(x)} is said to be multi-
plicative of order r if for all systems of pairwise distinct k l5 k2, ..., kr from Z i 
we have 

(1 .3) / ( I < M * ) ) ^ ( * ) = O. 

This definition for d= 1 is due to ALEXITS [1, p. 186]. 
The arguments of GAPOSKIN [2], KOMLÓS and RÉVÉSZ [3] in the case d= 1 obvi-

ously apply to the case d^2 and lead to the following result: Let r be an even integer, 
/•a4. If {<pk(x)} is multiplicative of order r and 

(1.4) J<p'k(x)dKx)^C 

for all then we have (1.2) for all {ab}. 

Example 2. The vanishing of the integrals in (1.3) is of no relevance, only 
their "smallness" in a certain sense is needed. 

In case d= 1, according to GAPOSKIN [2], a sequence {<P;(*)},°li is said to be 
weakly multiplicative of order r, where r is an even positive integer, if there exists 
a non-negative function h(l) such that for every l ^ / 1 < / 2 < . . . < i r we have 

f i n V i p ( x ) ] d ^ x ) 

with /=min (/2—j 'i, 1*4—/3, ..., ír—ir-i) and 

2 Z< r-2> /2/j(/) < 

^ h { l ) 

/=1 

Now it is proved in [2] (and announced in [3]) that if 4, {<?;(*)}" 1 is a weakly 
multiplicative sequence of order r, which satisfies (1.4), then we have (1.2) for all 

In case d ^ 2 , let ( X j , Aj, f i j ) be a positive measure space, {(p<f)(xj)}';°=1 a 
sequence of measurable functions on Xj for each j= 1, 2 , . . . , d. Let 

(X,A,p)= X ^ X j , Aj, nj) 
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he the product measure space and let 

d 
<PkO) = II <Pk?(*;)> w h e r e k = (fcl5 ..., kd) and x = (xx, ..., xd). 1 

The following statement holds: If for some r ^ 2 each sequence {9>i') (•*/)}£ i 
(j= 1,2, ..., d) satisfies the inequality 

„ 6 + m r • / 6 + m \ r/2 
(1.5) / ^ aM j )(Xj) d n j ( x j ) ^ C j \ 2 

for all {¡2;}n=i' ¿ = 0 and w S 1, then {<pk(x): k£Zd
+} satisfies inequality (1.2) for 

all {flk: keZd
+}, bfZd and meZd

+ with C= ¡J Cj. 
j= i 

For simplicity, assume that d=2. Then by (1.5), Fubini's theorem, and Min-
kowski's inequality we get that 

6+m c+rt r 
/ 2 2 aik<pln(xI)<P*2,(*2) ^ I ( ^ I ) d/i2(x2) = 

X\ I i=fc + l ft = C + l 

= f { / | J | f [ k 2 \ M 2 ) ( x 2 ) j ^ ( x ^ d n ^ d ^ i x , ) 

Л b+m / c+n \ r / 2 

2 2 aik(pi2)(x2) dn2(x2)^ ¡ = 6+1 U = c + 1 ) i 

(i + m / /.I c+n ,r \2/r-\r/2 

^ Z j / l ^ ^ t t ^ W l ^ 2 ^ ) ] | 3= 

(6+m c+w -vr/2 

¡=6+l*=c+l J 

This is the wanted inequality (1.2). 

The results below will be obtained by adaptation of more or less standard 
arguments well-known in probability theory concerning limit theorems, and by 
making usé of a recent maximal inequality of the author [4, Theorem 7]. It is worth 
stating the special case of this inequality for a=r/2,y = r and / (b , m)= 2 ak 

b + l s k s b + m 
in the form of a separate lemma. 

Lemma 1. Let r>2 and {ak} be given. If inequality (1.2) holds for all b£Z' i 

and m£Zd
+, then 

(1.6) J Mr(b, m; x) dfi(x) ë Cx( 2 4 ) r / 2 

b + l â k s b + m 

also holds for all b€Zd and m£Zd
+. 
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2§. A.e. convergence of series (1.1) 

T h e o r e m 1. Let 2 and let {ak} be such that 

(2.1) 
k s l 

If inequality (1.2) holds for all b£Zd and m € Z d , then 

(2.2) 5 ( b , m ; x ) —0 a.e. as b—® and m £ Z d ; 
furthermore, 
(2.3) / ( s u p s u p |S(b,m; x)\)'dn{x)S C2{ 2 а*)"*. 

b s o m s l k s l 

In particular, from (2.2) it follows that the ¿/-multiple series (1.1) converges 
a.e. in the sense that its rectangular partial sums S^m; x) converge a.e. as 
min (тг, ..., га,,)— (See more detailed in [6].) 

Lemma 2 ([6, Lemma 1]). For all bfZd and m£Zd
+ 

max | 2 ak<pk(x)\s2dM(b,m;x). 
l s p s q s m b+psksb+q 

P r o o f of T h e o r e m 1. Condition (2.1) implies the existence of a sequence 
{т ,=(ш 1 м . . . , mdl)}1°=1 in Zd

+ for which 

(i) 1 ^ mn < mJ2 < . . . for each j — 1,2, ...,d; 

( i i ) i ^ - 2 ( / = 1 , 2 , . . . ) . 
' k e l lsksm,-1 k s l 

It follows from (i) that min (m lh ..., md/)—°° as and from (ii) that 

(2-4) J ( / + D r { 2 " - 2 } 4 s 2 ( 2 a D " 2 (m„ = 0). 

1=0 * k s l l s k s m , ' k s l 

Motivating by the representation S(mi+1; x)-S(m,; x ) = 2 " £ ( m i + 1 - m ( ) + ( l - E ) m , ; x ) , e 

where the summation 2 is extended over all 2d—1 choices of e=(e1, ..., ed) 
с 

with coordinates EJ—0 or 1, the case ex = ...=ed—0 excluded, we introduce the 
following maxima: 

Mul(x) = М(ЕШ,, E ( M / + 1 — M,) + ( 1 — E) M,; x) , 

where /=£ 1 + 2£2+.. .+2d '1£< , . It is clear that l s t ^ 2 d - l . 
We are going to show that 

(2.5) 2 ( 1 + 1 у { 2 1 Ml,(*)] < » a.e. 
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Inequality (1.2), via Lemma 1, yields 

(2.6) i ( /+1) ' [ 5 7 MUX) == 
/=0 = l J J 

^ Q J (/ + iy {( 2 - 2 K } r / 2 c x ( 2 4 ) r / 2 , 
/=0 l s k s m , + 1 l s k s m , k s l 

the last inequality is owing to (2.4). Hence B. Levi's theorem implies (2.5). 
Let us now estimate SO», m; x) with arbitrary b£Zd and m£Zd

+. Recall 
that iff bJ>mjl for at least one j (l^j^d). In the special case when 
there exists a non-negative integer / such that b ^ m , and b + m S m / + 1 , by Lemma 
2 we obviously have 

|S(b,m; x)\^2i2d£ MtJ(x). 
t=i 

In the general case let us determine non-negative integers u and v such that 

b $ m„ and b ^ m„+1 ; b + m ^ m ^ and b + m « m u + 1 . 

It is clear that such u and v (uniquely) exist, and O^u^v. Again by virtue of Lemma 2 
we have 

|S(b,m; x)\-^2d z i ' z 1 Mul(x)\, 
l = = 1 / 

whence, using Holder's inequality, 

(2.7) \S(b, m; x)| ^ 2" { 2 V + 1)' ( ¿ f M ' . <(*))} ' X 

XiIwl WIth ' " 
By (2.5) we can conclude that |.<?(b, m; x)| is a.e. as small as required if 
max (¿>l5 ..., bd), and consequently u is large enough. Tliis proves (2.2). 

From (2.7) we obtain that 

(sup sup |S(b, m; x)|)' ^ c j (/+1)' f M'ttl (x)]. 
bs» m i l /=o »fcaaMa ' 

Integrating both sides over X, the wanted inequality (2.3) comes from (2.6). This 
completes the proof of Theorem 1. 
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§ 3. Multiparameter SLLN 

In the sequel we assume that all ak= 1 in (1.1), i.e. from now on 

S ( b , m ; x ) = 2 <Pk(x) 
b + l s k s b + m 

and 
M(b,m;x)= max ! 2 < P i ( * ) l (b6Zd and m£Zd), 

l â k s m b + l s l s b + k 

.although our results remain valid in the more general setting when 2 ak=a:' 
k s l 

and {ak} behaves sufficiently "regularly". . 
Our permanent assumption is now that inequality (1.2) holds true only in 

this special ak= 1 case, i.e. there exists a number r > 2 such that 

(3.1) J |5(b, m; x)\rdfi(x) S C|m|r/2 

d 
holds for all b£Z and m £ Z + , where |m| stands for Tlmj- Hence Lemma 1 

i=i 
implies 

(3.2) fMr(b, m; x) dpi (x) Cx |m|'/2. 

Theo rem 2. If inequality (3.1) holds for all b£Zd and m£Zd
+ with an r > 2, 

then for any S > 0 we have 

(3.3) lim ^ = 0 a.e. . 
M 1 / 2 ( 2 log 2mJ)1/r(log log 4|m|)(d+<5,/r 

and 

( } I™ |m|1/2 (log 2|m|)<,/r(log log 4|m|)(1+i)/r _ 

Here and in the sequel,all logarithms are of base 2. Further, S(m; x) = 5(0, m; x). 
This result for d= 1 (in a slightly weaker form) was proved by SERFLING. [7, 

Theorem 3.1]. 

Remark 1. For d= 1 relations (3.3) and (3.4) coincide. For d^2, if 
is such a way that m1=m2=... =md then (3.3) is stronger than (3.4), while if m—o° 
in such a way that e.g. m2=.. • —md = 1 then the situation is converse : (3.4) is stronger 
than (3.3). 
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Both (3.3) and (3.4) improve as r increases. By letting r— <=° we find, for 
any 6 >0, 

.. S(m; JC) 
m™ |m|1/2 (log 2|m|)'i " U a-e-

This result is not far from the part of the law of the iterated logarithm. 

Lemma 3. For any ¿>0 , we have 

2 | l + k | - 1 { l o g i 2 + i / c , ) } < » 
k s O I V j=1 J> 

and 

ZU+Z*] { l o g ( 2 + i / c J ) } 1 < » . 
ksO J = 1 ' I V j = l / } 

Proof of Lemma 3. For simplicity, we only prove in the case d=2. Then 
the first series can be rewritten and estimated as follows 

~ ~ i °° 1 f ' 1 

- fc(iog(i + 0)2+a + 

1 1 - 1 
+ * J L / c ( l o g ( l + f c ) ) 2 + * J - Q i ( l o g ( l + 0 ) 1 + a < 0 ° ' 

The convergence of the second series can be verified similarly. 

Proof of Theorem 2. Lemma 1 constitutes the basis of the proof. Applying 
Chebyshev's inequality to (3.2) we obtain that 

r Iml'/a 
(3.5) n{M( b, 1 1 1 (b £Zd, m and X > 0). / 
Substituting here 

/ t sVr 
/l(m) = |m|1/2 # l o g 2 m J (loglog4|m|)(<i+'»/' or 

v = i / 

|m|1/2(log 2 ¡m|)d/r (log log 4 |m|)(1+4>/' 
for X, we get that 

H{M(m; x) ^ A(m)} s Cx ^ l o g 2 m J ) 0oglog4|m|)- '-« or 

Cx (log 2|m|)-"(log log 41ml)"1-5. 
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Let m=2 k where k runs over Zd. Then, by Lemma 3, 

2 n { M ( 2 " ; x ) s A ( 2 k ) } < ~ . 
ksO 

Hence, via the Borel—Cantelli lemma, we have 

M(2k; x) < A(2k) a.e., 

with the exception of a finite number (depending on x) of k. 
It is obvious that if 2 k ^ m ^ 2 k + 1 with some k^O, then we have 

I(m) a l(2k) and |S(m; x)\ S A/(2k+1; x). 

Consequently, 
|5(m; x)\ ^ M(2*+'; x) ¿(2k+*) 

( 3 " 6 ) - I c E o ~ " / ( 2 k ) " ^ T a - e " 

provided max (klt ..., kd) is large enough. Since the right-most member in (3.6) is 
bounded as k—oo, it follows that 

(3.7) 5(m;x) = 0{A(m)} a.e. 

Taking into consideration that 8 may be chosen arbitrarily small (but positive), 
we can change "O" to "o" in (3.7), as a result of which we get the wanted (3.3) 
and (3.4). 

§ 4. Rates of convergence 

Turning to the rate of convergence in (3.3) and (3.4), we can state 

T h e o r e m 3. If inequality (3.1) holds for all b£Zd and m £Zd
+ with an r > 2 , 

then for any choices of a and /? satisfying 

(4.1) 0 s i j 3 < a r - l 
and for any e > 0 we have 

( 4 ' 2 )
 m f i | m | ( l o g 2 | m D d - ^ 

\S(k; x)\ 1 
s u p ' A M < o c 

and 

id 
for a t & Z U j . | k | 1 / 2 n ^ g 2 k j \ 

l^jsd V/=l ' 

tAK 1 / IS'O; x)| 1 
m s l |m| ( tf log 2m,J l k s m | k | 2 |k|) j 
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This result for d= 1 was also established by SERFLING [7, Theorem 5.3]. 

Remark 2. Observe that the more restrictive " sup " in (4.2) is 
f . V s ^ • for at least one J. t. 

weakened into " sup " in (4.3). x ~ m i 

kj^mj for every j, lSjSd 
If inequality (3.1) is satisfied for all b£Zd and m£Z+ with arbitrarily large 

exponents r, then (4.2) and (4.3) hold for each choice of a > 0 and /?>0. 

The'proof of Theorem 3 is based on (3.5) and on the following auxiliary result, 
which for the sake of brevity is stated only for d=2. 

Lemma 4. If (4.1) holds, then 

CO oo J 

1?1 k?i ikQog2i/c)2_i (log2i)xr~1 ^ 

Proof of Lemma 4. An easy computation shows that the series in question 
can be estimated from above as follows 

oo - | CO 2 , + 1 — 1 I OO J CO J 

¡ 5 i(log2ifc)2-"(log2ir-1 - k?i~k ,?o (l+loglkf-Hl + ir-1 " 

Now let us deal with the inner series: 

{[log 2fc] ~ 1 1 1 [log 2k] ] 

1?0 + / = M + J a + l o g 2 f c ) 2 - ' , ( / + i r - 1 - ( l o g 2 k f - f M, (l+ir~1 + 

°° i Q + / = [ i o 5 ] + i ( / + i r - " + 1 ~ (log2ky~P ' 
where [.] denotes integral part. Taking into account that by (4.1) we have a/-—/J>1, 
the proof is ready. 

Proof of Theorem 3. We prove for d=2 only. The general case d>2 can 
be handled in the same way, merely the technical details become more complicated. 

In virtue of Lemma 4, for (4.2) it is enough to demonstrate that 

(4.4) n(m,n) = n{ sup k '\ ^ - S e l gi 
UmoiUn (ifc)1/2(log2ilog2fc)" J 

~ C 4 ( l o g 2 i ) w - 1 + ( log2fcr~1) ' 
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To this end, let the non-negative integers p and q be defined by 

2 " s m < 2P+1 and 2« 3= n < 2«+1. 
It is obvious that 

{ 00 00 co Q — 1. p — 1 0 0 

2 2 + 2 2 + 2 2fv(«,o) u = pv=q u = pt>=0 u=0 0=0-' 
with 

, ^ J " fc; *)| 1 
v(u,v)=ui max max . . . . . ' , — . . . gg ef. v ' * ( i f e ) 1 / 2 ( l o g 2 i l o g 2 f c ) 1 J 

By (3.5) it is not hard to check that 

v(w, V) 3= a j { M ( 2 " + 1 , 2 " + 1 ; jc) S e ( w + i y ( ® + 1)«2<U+C>/2} ^ 

sC12f6-r((ii + l )(o+l))- r . -
Since 

' 2 2 v(«, ®) s C7e-'(0> + 1)(?+1))"*'+1 s C8e~' (log 2m log2n)-"+ 1 , , 
u — p v—q * 

J 2 v ( « , 0) ^ C 76- ' (p+ l ) " ^ 1 S C88- r(log2m)-»+1 , 
u— p t?=0 

and similarly, 

2 v (u , ») C e e - ' 0 o g 2 m ) " " + 1 , 
u = 0 u=<7 

from (4.5) we obtain the desired (4.4). This proves (4.2). 
The proof of (4.3) can be executed in a similar manner as that of (4.2). The 

proof of Theorem 3 is complete. 

It is clear that under the conditions of Theorem 2 we have S(m; x)/|m|—0 
a.e. as m— For this SLLN we can prove essentially better convergence rates, 
however, now only with the weaker " sup " instead of " sup ". 

kjSmj , kjsmj 
for every j, for at least one j, 

1 SjSi lsjsd , .. . : 

Theorem 4. If inequality (3.1) holds for all b£Zd and m£Zd
+ with an r > 2 , 

then for any ¿ > 0 and e>0 we have 

^ |m| ( r -2 ) /2 f |S(k; *)| I (4.6) 2 7 - 3 r / T u p iki 
m S l(^log2my .J( loglog4|m|)"+' ' l k s , n |K| J 
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and 

| m | ( r -2) /2 r | S ( k ; x ) | 1 
( 4 - 7 ) J i (log 21m|)d (log log 41mI)1+3 ^ f e |k| ~ 1 " °°' 

Remark 3. Both convergence rates improve as r increases. Letting r-~°° 
results, for any a > 0 and e>0, 

^ | m | V { s u p | 5 ( k ; *)|/ |k| £ e} < 
1 k^m 

The p roo f of Theorem 4 runs along the same lines as that of Theorem 3. 
First we infer that 

H{sup \S(k; x ) | / | k | S e } ^ C 9 e - ' | m | - ' / 2 

ksm l 

(for d= 1 see also in [7, Theorem 5.1]), then (4.6) and (4.7) follow from the fact 
that, for any ¿>0 , 

2 M - 1 { i 7 1 o g 2 m j ) ( loglog4|m|) - d- i < » 
m i l V = 1 / 

and 
2 |m | - 1( log2 |m | ) - d( loglog4 |m|)- 1- a<~. 

msl x 
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On the indicatrix of orbits of 1-parameter subgroups 
in a homogeneous space 

P. T. NAGY 

§ 1. Preliminaries 

In the following H, Kc: G denote Lie groups, g, I), I the corresponding Lie 
algebras, which can be identified with the tangent spaces TeG, TeH, TeK at the 
unity ef G, H, K, respectively. 

Let be L(M) the bundle of linear frames on the manifold M and p: Z,(M) — M 
the natural projection in this bundle. 

The isotropy group H of the homogeneous space M=GIH leaves the origin 
o£M of the space M=G/H fixed. Hence the differential z*0 of the map z: M-+M 
(z£H) is a linear transformation on the tangent space T0M. This representation 
Zh-*Z*0 of the isotropy group on the tangent space T0M is called the linear 
isotropy group. The action a: GxM—M of the group G on M induces an action 
a: GXL(M)-+L(M) of the group G on the linear frame bundle L(M). It is clear 
that the action a is effective if and only if the linear representation of the isotropy 
group is faithful, i.e. the map z^z¥o (z£H) is one-to-one. 

It is well-known that the faithfulness of the linear representation of the isotropy 
group is a necessary condition for the existence of invariant connections in a homo-
geneous space. Therefore in the following this condition will be supposed. 

Let be given a frame u0(iLoM at the point o£M. The action a of G on L(M) 
yields an embedding of G in L(M) so that to the unity e£G corresponds the frame 
u0. In the following we use this embedding and we will regard the principal bundle 
{G, n, G/H} as a subbundle of {L(M), p, M). 

We recall Wang's theorem on invariant connections, cf. [2], 186—190. 
Let be M—G/H a homogeneous space. There exists a one-to-one correspond-' 

ence between the set of (/-invariant connections in L(M) and the set of linear maps 
A: g—gl(n) satisfying the conditions 

(i) A(X) - ;.(*) if Z€f), ' V. , •,.••. 
(ii) A([Z, X])-= [¿(Z), A(X)] if Z £ f ) , * € g , 

Received July 25, 1978. 
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where A denotes the homomorphism of the Lie algebras f)^gl(n) induced by the 
linear representation of the isotropy group. 

Let (p denote a G-invariant connection form on L(M), than the corresponding 
linear map A: g—gl(w) satisfies 

A(X) = <p(X) if 
where £ denotes the vector field on L(M), defined by the tangent vectors of orbits 
in L(M) of the one-parameter subgroup exp tXczG. 

Let m denote a complementary subspace to the subalgebra i> in g that is 
g = l)©m. 

Let be given a leftinvariant coframe {co1, ..., a>", con+1, ..., a>n+k} on the group 
G such that the equations a>1=...=con=0 define the subalgebra f) and the equa-
tions Q)n + 1=.. .= A)N+/C=0 define the subspace m. In the following the indices have 
thevalues: a, b, c=l,r..., n; a, P, y=n+1, ..., n+k, where w=dimM and n+k = 
=dim G. The structure equations of the group G have the form 

da>° = - 2 tfcoShcoc -4- 2 cSeflMo)6, 
P,c b,c 

d a f = - i ^ a / A ^ - ^ o / A ^ - i 2 clc<»b A<«c. 
P,y p,c £ b,c 

The connection form <p can be expressed by 

<p{X) = 2 <PacVt)Ec
a = 2 ( 2 ctt

pco/(X) + ^2clccob(X)+^2labcCo"(X))E^ . 

o, c a, c 0 b A b 

where /{¡c are constant and {££} denotes the canonical basis of the linear Lie algebra 
8K»). 

§ 2. The indicatrix of orbits of 1-parameter subgroups 

Let be M a differentiable manifold and suppose that there is linear connection 
on M. Let y(t) be given a differentiable curve in M. The operator of the parallel 
translation along the curve y(t) will be denoted by xt<t\ T ^ M — I j ^ M . 

The indicatrix of the curve y(t) at the point y(t0) is the curve Y(t) in the tangent 
space ry(,o)Af, defined by the parallel translation of the tangent vector y(t) of the 
curve to the point >>(i0) : 

Theorem 1. Let M—G/H be a homogeneous space, and let a G-invariant con-
nection on M be given by a map A: g—gl(n), according to Wang's theorem. The 
indicatrix of the orbit y ( 0 = a ( e x P tX, °) at the origin o£M (A^g) is the curve 

Y(t) = x_1(exp tA(X))xY0, where x: T0M — R" is the coordinate map 
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defined by the frame u and Y0=Tt)t:(X)£ TaM is the tangent vector to the curve >>(/) 
at the initial point o. 

Proof. Since we regard the group G as a submanifold of L(M), the 1-parameter 
subgroup x(t)=exp tX(X£ g) is a curve in L(M) with tangent vectors TmL(M). 
The equations of x(t) in G<zL(M) are 

-^co°(X-(t)) = 0 (a = l, . . . ,n), ^(o°{X(t)) = 0 (a = n + 1, ..., n+k), 

with respect to the given G-left invariant coframe {to1, ..., con+k}. Hence the equa-
tions of the orbit y(t)=a(exptX,o)=p-x(t) are 

= 0 (a = 1 , . . . , n). 

On the other hand, using the following lemma, the components of the covariant 
derivative Vty=Vj>_y of the tangent vector y(t) of the orbit y{t) can be expressed as 

It 

ua(V,y) = ^ co°(X)+Z (p°c(X)<oc(X). 

Lemma. Let M be a manifold equipped with a connection form <p on L(M). 
Let y(t) be a curve in M, X(t) a vector field along y(t). The components co1, ...,©" 
of the R"-valued canonical form co on the covariant derivative vector VtX=V d_X 
along the curve y(t) satisfy dt 

a>a(ytX) = ^to>°(X) + Z.cpUh<oc(X) 

where y and ft denote the horizontal lifts of the vectors y and X, and cp° are the com-
ponents of connection form cp. 

This lemma is a version of Theorem 11 in §6.4 [1]. A(X)=q>(£) and 
d , 

-^a>"(X) =0, we get Vty=x 1A(X)xy, where x:T0M->-R" is the coordinate 

map defined by the chosen frame field, or equivalently, we get the equation of the 
indicatrix Y(t) of y(t) in the form 

^-Y{t) = x~iA(X)xY(t). 

It is well-known that the solution of this ordinary differential equation with constant 
coefficients is y ( f ) = „ - i ( e x p tA(X))xY0, 

where Y0= Y(0)—nMX. The theorem is proved. 

Corol lary . The k-th covariant derivative of tangents of the orbit y(t)= 
=a(exp tX, o) at the initial point o£M is (A(X))k Y0, where Y0=n^Y. 
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§ 3. The indicatrix of orbits in a reductive space 

If there is given a reductive complement m e g to the subalgebra i) in the 
Lie algebra g, characterized by 

9 = i)ffim and (T), m ] c m , 
then it is clear that the map A: g—gl(n) defined by 

A(JQ = A(X) if /1(20 = 0 if X£m 
satisfies the assumptions of Wang's theorem. The corresponding G-invariant con-
nection is called the canonical connection of the reductive space {M=G/H> m}. 
From Theorem 1 it follows immediately: 

Theorem 2. Let {M=G/H,m} be a reductive homogeneous space. The curve 
y(t) in M is the orbit of a l-parameter subgroup of G if and only if its indicatrix with 
respect to the canonical connection is an orbit of a \-parameter subgroup of linear 
isotropy group. In detail, the indicatrix of the orbit a(exp tX, o) at the origin o£M 
is the curve y(/) = (exp t ad Z)Y0, where Z=X^ and Y0=Xm are the components 
of the vector X in the sub spaces i) and m, respectively, and the tangent space T0M is 
identified with the reductive complement m. 

Proof . From the property [f), m]cm of the reductive complement m fol-
lows that the homomorphism X: f) — gl(n) induced by the linear representation of 
isotropy group has the form: X(Z) —ad Z: m-«-m (Z£t>). The theorem is proved. 

Corol lary. The k-th covariant derivative V ^ y of the tangents of the orbit 
j ( i ) = «(exp tX, o) at the initial point o£M is (ad Z)kY0. 

§ 4. Geodesies in a fibering of reductive space 

Let {M—G/H, m} be a reductive homogeneous space. Let be given a sub-
group K(zH and a reductive complementum f on the homogeneous space F—H/K. 
The homogeneous space N=G/K has a structure of a fibre bundle \N,n, M, F}, 
where N, M and F are the total, basic and the fiber type manifolds, respectively. 
We have the decompositions of Lie algebras 

g - f ) © m , i) = f © f , g = f © f © m 
satisfying 

[{), m ] c m , [ f , f ] c = f , [ f , f © u > ] c f © m . 

It is clear that f ©m is a reductive complement on the homogeneous space N=^G/K. 
We investigate the projection to M of the geodesies in the homogeneous space 

N—G/K with respect to the canonical connection corresponding to the reductive 
complement - f © nt. 
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Theorem 3. The curve y(t) in M=G)H through the origin o£M is a projec-
tion of a geodesic in N=G/K (KaH) with respect to the canonical connection if 
and only if its indicatrix at the origin o£M is an orbit of a l-parameter subgroup 
exp t ad Z of the linear isotropy group, where Z£f. 

(Here and in the following ad Z: g-»g denotes the operator X— [Z, X] on g. 
Since [ f ) , r a ] c m , this operator can be restricted to the subspace m e g ; this restric-
tion is denoted by the same way.) 

Proof . Since N=GIK is a reductive homogeneous space equipped with can-
onical connection, the geodesies in N are the orbits of l-parameter subgroups exp tX 
of the group G, where Z£f©m. From Theorem 2, it follows that the indicatrix 
of the orbit of subgroup exp tX at the point o£M is the curve 7(i) = (exp t ad Z)Y, 
where Z=Xf) and Y=Xm. From X£f ©m follows that Z-X^\. 

On the other hand, if y £ m ( = T0M), Z€f, then it is clear that Y(t) = (exp t ad Z)Y 
is the indicatrix of the orbit of the subgroup exp t{Y+Z). But we know that the 
orbit of a l-parameter subgroup exp t(Y+Z) in the space N=G/K is geodesic. 
The theorem is proved. 

* 

§ 5. Geodesies in the tangent sphere bundle of a 2-transitive 
Riemannian homogeneous space 

We apply our results to the characterization of the projections of geodesies 
of the tangent sphere bundle of a 2-transitive Riemannian homogeneous space with 
respect to the Sasaki metric. We get a generalization of a result ([5], [4], [3]) asserting 
that the projection of a geodesic of the tangent sphere bundle of a space of constant 
curvature is a helix. 

Let be M=G/H a 2-transitive Riemannian homogeneous space, that is the 
group G is supposed to act transitively on the tangent sphere bundle N of the mani-
fold M. It is well-known that from the 2-transitivity of the isometry group G of M 
follows that M is symmetric space (cf. [6], 289). On a Riemannian symmetric space 
M—G\H there is a natural reductive complement m e g whose canonical con-
nection has the same geodesies as the Riemannian connection of the symmetric 
space M [6]. 

From the 2-transitivity of G on M— G/H it follows that there exists a subgroup. 
K<zH such that the tangent sphere bundle N can be written in the fori?) N=G/K. 
The isotropy group H is isomorphic to a .subgroup of the orthogonal group 0(n), 
and hence we have an invariant metric on H. This metric induces on the homogene-
ous space F=H/K a naturally reductive Riemannian metric, which defines on F 
the geometry of «-sphere. Let m and f denote the reductive complements on M 
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and F, respectively, i.e. we have g=I)©m, f)=l©f. Now we can apply Theorem 3 
to this case. 

Theorem 4. Let M=G/H be a 2-transitive Riemannian homogeneous space. 
The curve y(t) in M is a projection of a geodesic in the tangent sphere bundle if and 
only if y(t) is a 3-dimensional helix (i.e. the first two curvatures xz are arbitrary 
constants, and the others zero: x3~ ... = xn^1=0). 

Proof . From Theorem 3 we know that y(t) is a projection of a geodesic 
in N if and only if its indicatrix has the form exp (/ ad Z)Y, where Y£m, Zg fc f ) . 

After identifying an orthogonal frame at odM with the identity of H the 
adjoint representation maps the group H isomorphically on a subgroup of the 
orthogonal group O(n) acting on the unit (n—l)-sphere of the tangent space T0M 
(=m). In the following we identify the group H with the subgroup of 0(n) by 
this isomorphism. The reductive complement f of the subalgebra I in I) corresponds 
to the tangent space at the initial point of the (» — l)-sphere F=H/K. Since the 
reductive complement f on F=H[K is identified with the reductive complement 
on the (« — l)-sphere S"~1=0(n)/0(n— 1), the 1-parameter subgroup exp (/ ad Z) 
(Z€f) of O(n) is a 1-parameter rotation group around the (n—2)-plane in TaM, 
orthogonal to the 2-plane of the geodesic great circle which is the orbit of exp (t ad Z) 
in S"~1 = F through the initial point. It follows that the curve 7 ( 0 = e x p (t ad Z)Y 
(y£m, Z€f) is a circle. The indicatrix of a curve y(t) is a circle if and only if it is a 
3-dimensional helix. Theorem 4 is proved. 
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Some equivalent formulations of the intersection 
problem of finitely generated classes of graphs 

SVATOPLUK POLJAK and DANIEL TURZÍK 

Introduction. An ordering -< on the class of finite undirected graphs without 
loops is defined by G<F iff there exists a (partial) subgraph G of the graph F 
which is a subdivision of the graph G. A class L of graphs is called closed if G€L, 
G<.F=>F£L. By L(Glt ..., G„) we denote the smallest class of graphs which is 
closed and contains the graphs G1, ..., G„. .The graphs G1, ..., G„ are called 
generators of the class L(Glt ..., Gn). A class L is called finitely generated if it is 
closed and there are graphs G1,...,Gn such that L=L(Gly ..., G„). If L is a 
closed class we denote by B(L) the set of all minimal members of L in -<. The set 
B{L) is called the base of L. Evidently, L is finitely generated iff its base B(L) is 
finite. 

The following problem was posed by L . LOVÁSZ [1] and by P. UNGAR [3]: Is 
the class L f | L' finitely generated for every pair L, Lf of finitely generated classes 
of graphs? It is not difficult to see that the essence of the problem lies in the investiga-
tion of "braids" of subdivisions of pairs of graphs. The problem is equivalent to 
the question whether the number of "critical braids" is finite or infinite. 

Our method shows that it is sufficient to investigate such "braids" of sub-
divisions G', H' of graphs G, H that G' does not contain vertices of H and H' does 
not contain vertices of G. Every edge of a graph determines a path in its subdivision. 
If we decompose the graphs G, If into single edges, it is sufficient to investigate 
the "braids" of corresponding paths. This "braid" of paths will be called a crossing 
system (see the definition below). We hope that the investigation of "braids" of 
paths is easier than the investigation of "braids" of general graphs and could lead 
to a solution of the problem. It also follows that the problem does not depend on 
concrete graphs. We prove that it is sufficient to solve it for special pairs L(G), L(H) 
where G is a disjoint union of complete graphs Kf and H is a disjoint union of com-
plete bipartite graphs 

Received October 7, 1977, in revised form April 9, 1979. 
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Notions and results. A graph c = ({u0 , . . . , o,}, {elt . . . , e ( } ) is called a path if 
ef is edge adjacent to vertices v^, vh l^i^t. Denote by V(c) the set {i>0, ..., v,} 
of vertices of the path c, and by K(c)={vQ, ut} the set of endvertices of the path c. 
A set of paths C— {c1} ..., cm} is called a disjoint system of paths if every two paths 

m m 
of C are vertex disjoint. Put V(C)= Q Hcd, K(C)= U K(c^. K(C) is called 

¡=1 ¡=1 
the. set of endvertices of C. 

Let C=(c1 ; ...,cm), D=(d1, ...,dn) be two disjoint systems of paths which 
satisfy K(C)r\V(D)=V(C)f)K(D)=&. In this case the couple (C, D) is called 
an (m, ri)-crossing system. By gr (C, D) we denote the graph on the set of vertices 
K(C)UF(fl) which is the union of all paths of C, D. A vertex v£ V(C)f] V(D) 
is called a crossing of (C, D) if N(v, C)^N(v, D) where N(v, C), resp. N(v, D), 
is the set of all neighbours of the vertex v in the graph C, resp. D. 

Fig. la 

: Fig. lb 

Fig. la , l b are examples of (3, 3)-crossing systems. The crossing system la is reducible. An 
example of its reduction is the crossing system in Fig. lb. 

There is a crossing at every vertex in the crossing system in Fig. la but not in Fig. lb . 
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: We say that an (in, n)-crossing system (C, D) is reducible if in gr (C, D) there 
exist two disjoint systems of paths C', D' such that 

>• 1) C" — (c{, ..., c'm), D'= (d[,...,d'ny, 

2) K(Ci) = K(c\), K(dj) = K(d'j) for every i, j, i = 1, ..., m, j = 1, ..., n; 

3) the crossing system (C', D') has strictly fewer crossings than (C, D). (See Fig. 1.) 

Denote by G + H the disjoint sum of G and H. 

Theorem. The following conjectures are equivalent: 
1) LinZ/2 is a finitely generated class for every pair L1, L2 of finitely generated 

classes of graphs. 
2) The class L(G)C\L(H) is finitely generated for every two graphs G, H. 
3) The class L(K6 + ...+Ke)C\L(K2f6 + ...+K26) (the graphs in brackets are 

disjoint unions of n copies of K6, resp. K2 J is finitely generated for every natural 
number n. 

4) For every m and n there exists a k such that every (m, ri)-crossing system with 
more than k crossings is reducible. 

• Proofs. Evidently I )o2) and 2)=>3). We prove 3)=>4) and 4) =>2). The crossing 
system (C, D) is called minimal if (C, D) is not reducible and every vertex of gr (C, D) 
is crossing. The implication 4) =>-2) immediately follows from the following lemma. 

Lemma I. Let a graph B belong to the base of the class L(G)f]L(H) and let 
m and n denote the numbers of the edges of graphs G and H, resp. Then there exists 
a minimal (m, ri)-crossing system with at least \B \ vertices. 

Proof . Let a graph R contain subdivisions G', H' of the graphs G, H. We may 
suppose G, H have no isolated vertices. In general these subdivisions can be placed 
differently in the graph R. Therefore we introduce the following notation. We denote 
by (pG: G—R the morphism which maps the graph G on its subdivision G' = (pG 
in the graph R: the morphism cpG maps the vertices of G on distinct vertices of the 
graph R and the edges of the graph G on openly disjoint paths. The location of the 
subdivision of the graph H we denote similarly by <pH: H—R. Put <p=((pG, <pH). 
In the sequel a morphism will always mean such a pair (p=((pG, cpH). Every morphism 
(p = ((pG, <pH) induces a vertex-mapping f^: V(G + H)-*V(R) which is the restric-
tion of the morphism q> to the set of vertices of G+H. Clearly a vertex-mapping 
f: V(G+H)-*-V(R) can be induced by various morphisms. If e=(a1,a2) is an 
edge of G then the image of the edge e is a path <p(e)=q>(al, a2)=(f(a1)=x0, x1} ... 
..., xk=f(a2)), Xi£ V(cpG), A: = l. A vertex a£ V(G) is called a tied vertex 
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in R with respect to (p if f(a)£<pH. Likewise b£V(H) is a tied vertex in R with 
respect to <p if f(b)£<pG. The set of tied vertices of the graphs G, H is denoted by 
Wcp=W. (So WQV(G)UV(H).) 

We shall study quadruples (R, (p,f, W) where R is a graph, q> is a morphism, 
/ is a vertex-mapping and W is a set of tied vertices. The quadruple (R, <p,f, W) 
is admissible if (p=((pG, (PH)'- G+H^R and f=f9 is the vertex mapping induced 
by <p and W= W<p is the set of tied vertices with respect to (p. The admissible quad-
ruple (R, <p,f, W) is called critical if: 

1) after removing any edge e of R, there is no <p' and no W'QW such .that 
(R—e, q>',f, W') is an admissible quadruple; 

2) there is no couple cp", W such that (R, (p",f, W") is an admissible 
quadruple; 

3) if x£V(R) has degree 2 then x£f(G + H). 
Put L=L(G)OL(H). Evidently, for every graph B£B(L) there exist cp, f , W 

such that the admissible quadruple (B, <p,f, W) is critical. 
The following lemma will finish the proof of Lemma 1. 

Induc t ion Lemma. For every critical quadruple Q = (R, (p,f, W), 
there exists a critical quadruple Q' = (R', <p',f, W') such that and 
W'<g W. 

Using the Induction Lemma, Lemma 1 may be proved as follows. For every 
B£B(L) there exists a critical quadruple Q=(R, <p,f, W) such that and 
W=0. We construct an (m, n)-crossing system from the quadruple Q by splitting 
every vertex f{x), xG V(G+H) into d{x) vertices of degree 1 where d(x) is the 
degree of the vertex f(x) in R. Since Q is critical, this (m, w)-crossing system is 
minimal. 

Proof of the Induc t ion Lemma. Let Q=(R, (p,f, W) be a critical quad-
ruple, JV^0. Take a point W. We will construct a quadruple Q'=(R',(p',f, W') 
such that W'QW-{u) and Put w=f(u). There are three possibilities: 

a) we/(G)n/(//), 

b) wif(G)n{<pH-f(H)), 

c) we/Off) n(<pG-/(G)). 

Cases b) and c) are symmetric, consequently it suffices to treat a) and b) only. Denote 
by N(x, (pG), resp. N(x, <pH), the neighbourhood of the vertex V(R) in q>G, 
resp. cpH. 
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Case a). Let w=f(a)=f(b) where at V(G), be V(H). Clearly, |/V(w, <pG)\ = 
=dG(a), \N(w, q>H)\=dH(b), and from condition 1) in the definition of critical 
quadruples, dR(w)—\N(w, (pG)UN(w, (pH)\. Next we define the admissible quad-
ruple Q'. Let V(R')=(FOR)- {w})U K , b'} and defines the edges of R' by 

e£E(R') for w$e£E(R), 

(x, a')tE(R') for xeN(w, ipG), 

(X,b%E(R') for X£N(W, <pH). 

The vertex mapping/ ' is defined by f'(x)=f(x) for x^a, b, f'(a)=a' ,f'(b)=b'. Now 
we define the morphism cp'. If an edge e is not adjacent to a or b in G+H, put 
<p'(e)=(p(e). If e=(a, v), resp. e = (b, v), q>(e) = (w, x l 5 ..., xk,f(v)), put (p'(e) = 
= (a\ x±, ...,xk, f(v)), resp. <p'(e) = (b', xt, ...,xk, f(v)). 

Evidently, W<p' = Wtp — {a, b}. We verify that the quadruple Q' satisfies con-
dition 1) in the definition of critical quadruples. By way of contradiction let us sup-
pose that there is an edge e0 £E(R') and a morphism i// such that (R' — e0, ip',f, WI/J') 
is an admissible quadruple with Wij/'QW(p'. Since dR,(a') = dG(a) and dR.(b') = 
— dG(b), neither a' nor b' is adjacent to e0. If e is an edge of G, resp. H, which is not 
adjacent to the vertex a, resp. b, then b'^ ij/'ie), resp. a'$_\jf'{e), because a, W\j/'. 
Thus, we can define an admissible quadruple (R—e0, \jj,f, W\j/) where the morphism 
i/i is defined from ij/' by the reverse procedure to the one we used to obtain cp' from cp. 
Clearly, Wij/ = Wij/' U {a, W<p. This contradicts the fact that Q is critical. Con-
dition 3) is obvious. If Q does not satisfy condition 2), it is sufficient to replace <p' 
by a suitable cp" and W' by a smaller set W". 

Case b) will be divided into three subcases b0), bj), b2) where b;) means 
\N(w, (pG)C)N(w, <pH)\ = i. Let w=f(a), a£V(G). 

Cases b0) and bt) will be considered together. Denote by x0 an arbitrary element 
of N(w, cpG) in the case b0) and the only element of N(w, <pG)C\N(w, cpH) in the 
case bj). 

1. Put V(R')=V(R)\J{a'}. Define the edges of R' by 

edE(R') for w$e<:E(R), 

(x,a%E(R') for x£N(w, (pG)U{w}, x ^ x0, ' 
i 

(x, w)eE(R') for x€N(w, (pN)U{x0}. 

2. The mapping/ ' is defined by f'(a)=a' and f'(v)=f{v) for v^a. 
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3. The morphism tp' is defined by 

(p'(e) = cp(e) for a$e£E{G + H), 

(p'(e)^=(a',x1,...,xk) for a£e, (p(e) = (w, xlf ..., xk), xx ^ 

q>'(e) = (aw, x0, x1, ...,xk) for the only e with cp(e) = (w, x0 > > ..., xk). 

4. W'=W-{a}. 

Case b2). Denote by x l 5 x2 the elements of N(w, (pG)f]N(w, cpH). 

1. Put F(i?') = ( ^ ) U { a ' } ) - { » v } . Define the edges of R' by 

e£ E(R') for w$eeE(R), 

Cx,a%E(R ' ) for x£N(w,<pG), 

(XL, X2KE(R'). 

2. Put f'{a) = a' and f'(p)=f(v) for v^a. 

3. Put (p'(e) = (p(e) for cp(e) not containing w, 

(P'{E) = {a',yi, ...,yk) for <p(e) = (w,y1, ...,yk), 

(p'(e) = (-..,x1,x2,...) for the only e£E(H) for which q>(e)—{..., w, x2, ...) 
contains w. 

4. W'—W—{a}. 

The proof of case b) goes like the proof of case a) (but in case b2) it is also nec-
essary to use condition 2) in the definition of critical quadruples), and we omit it. 
(See Fig. 2.) 

Lemma 2 below implies immediately the proof of the implication 3)=>-4) and 
completes the proof of the Theorem. 

L e m m a 2. Let S be a minimal (m, m)-crossing system. Then there exists a 
graph B from the base of the class L(Kl + ...+K™)P\L(Kl 6 + such that 
the number of vertices of B is greater than the number of vertices of S. (Kg, K2 6 denote 
the i-th copy of Ke, K26, respectively.) 

Proof . Let 5 be a minimal (m, m)-crossing system formed by two disjoint 
systems of paths C, D where C=(c1, ...,cm), D=(d1, ..., dm). First, take the dis-
joint union of m copies of the graph Ke (denote the i-th copy by The vertices of 
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edges of çG—pH 

edges of çH— <pG 

edges of q>GCI q>H 

•Fig. 2 
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K[ are denoted by cf, cf, d f , d f , uf, uf. We shall construct the graph B from y K6 

in two steps: 
a) we construct a subdivision of ¿'A"s> 
b) we add further edges. 

Put a new vertex wf on every edge (cf, cf). Identify the vertices cf,.cf with the end-
points of the path ct. Subdivide the edge ( d f , d f ) by the number of-.yertices of the 
path dt and identify this subdivision with the path d{. Now, all vertices of the crossing 
system S are identified with some vertices of the graph B. Hence we may assume 
V(S)QV(B). Add to B all edges (x,y)iE(gx (C, D)). This completes the con-
struction of B. 

The graph B evidently contains the subdivision of the graph G=2Ke. We 
shall show that it contains the subdivision of H = 2 l K % e , too. The graph K2tS 

is formed by six paths of length 2 which have common endpoints. The subdivision 
of K\ 6 is in the graph B formed by the paths cf, u{, cf, j— 1, 2, 3, cf, d{, cf, j= 1, 2 
and cf, Ci, cf (c; is the path of the system C). 

We shall prove that the graph B does not contain other subdivisions of 2 
and 2 than those described above. The vertices u), uf, cf, cf, d\,df, i= 1, ..., m 
are the only vertices of B of degree Hence, the only subdivision of 2 ^s 
in B, possibly with the exception of edges (J?, d f ) , is that described above. Since 
the vertices cf, cf, i=l, ..., m, are the only ones of degree 6 in B, the vertices of 
degree 6 in K2 6 must be put on them. Further, 5 vertices of K2 6 must be put on 
vertices d f , d f , uf, uf, u\. Thus subdivisions of edges ( d f , d f ) and the remaining 
paths between cf, cf in K2 6 correspond to the paths in the crossing system S. The 
minimality of B follows from the minimality of S. 
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A Jordan form for certain infinite-dimensional operators 

ERIK J. ROSENTHAL 

We derive several theorems about invariant subspaces of operator algebras 
of finite strict multiplicity. We generalize a result of EMBRY [3] to show that such 
algebras have maximal invariant subspaces (Theorem 2), and we prove some related 
theorems. The main results are Theorems 5 and 6, which give a "Jordan form" for 
operators which inherit finite strict multiplicity. 

The first theorem is a slight sharpening of its corollary, which is due to HERRERO 
[7]. Herrero's result generalizes LAMBERT'S result for strictly cyclic algebras [11] to 
algebras of finite strict multiplicity. Our proof combines ideas from HERRERO [7] 
and from RADJAVI arid ROSENTHAL [18]. 

We will use the following notation throughout this article. We use § to denote 
a separable Hilbert space, and is the algebra of all bounded, linear operators , 
on li si is a subalgebra of 88{$t>) or if 7" is an operator in £%(§>), Lat si or Lat T 
denotes the lattice of invariant subspaces of si or of T. si(T) will be used for the 
subalgebra of generated by T and the identity. Finally, if 901 and 91 are sub-
sets of 331V 91 is the closed linear span of 9Jt and 91. 

Recall that a subalgebra si of has finite strict multiplicity if there is a 
finite collection of vectors {xx, x2, •••, xn} such that 

{A1x1 + A2x2+...+A„x„: A£si} = 

In that case, {x1} x2, ..., *„} is called an FSMset for si, and the minimal cardinality 
of all such, sets of vectors is called the strict multiplicity of si. If si has strict multi-
plicity 1, si is said to be strictly cyclic. The operator T has finite strict multiplicity 
if si(T) does, and T is strictly cyclic if si (T) is. si is said to inherit finite strict 
multiplicity if the uniform closure of its restriction to every invariant subspace has 
finite strict multiplicity, and si is said to be hereditarily strictly cyclic if the uniform 
closure of its restriction to every invariant subspace is strictly cyclic! We will reserve -
the terms strictly cyclic and finite strict multiplicity for infinite-dimensional operators 
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(unless we are talking about the restriction of an infinite-dimensional operator to 
a finite-dimensional invariant subspace). 

Theo rem 1. Let si be a uniformly closed subalgebra of containing the 
identity, and let 93i£Lat sd be such that si^Ji has finite strict multiplicity; assume 
that {x1(x2, ...,*„} is an FSM set for si\9)1. Then every invariant linear mani-
fold of si\9)l whose closure contains the vector xt+x2+... +xn is dosed. 

Proof . Let si be the (uniformly closed) algebra of all nXn matrices with 
entries from si, and define cp: si — 9)i(n) by 

<p(A;J) = (A;J)X 

where x ^ x ^ x a , •••,*„)• Then <p is obviously bounded, and <p is onto since si 
has finite strict multiplicity on 9)1. 

Let 91 be an invariant linear manifold of sf\W. whose closure contains 
+ x 2 + . . . + x „ , let J=<p"-1(9l(n)), and let Jf=<p~\91(n)). If Jf = 3B, then 91=91 
since <p(J~)=(p(@)=W"\ We show that Jf = J by assuming that jf ^ J and 
finding a contradiction. 

Since we are assuming j f ^ 38, the invariance of 91 implies that Jf is a proper 

left ideal in 39. Also, 1 6 ^ since 2 '-e-> 

l x = ( 2 x i , 2xi> ...,2xi)> 

so lx£ 9t(n). Since Jf is a proper ideal, 1 is not in the closure of J f , and so Jf is 
not dense in J . Now, let <Wcz J be an open set such that <2rfl J =0. Then (p(%) 
is open by the open mapping theorem, and (p(?U) n9t ("}=0. But then 9l(n) is not 
dense in 9l(n). But of course 9l(n) = 9i(n), giving a contradiction. 

The following special case of this theorem is the basis for many important 
known results, some of which are listed below. 

Coro l l a ry 1. (HERRERO [7]) A uniformly closed algebra of finite strict multi-
plicity has no dense invariant linear manifolds other than 

Coro l l a ry 2. (EMBRY [3]) If si is a uniformly closed algebra of finite strict 
multiplicity, and if x0 is a cyclic vector for si, then x0 is a strictly cyclic vector. 

Proof . {Ax0: A£si} is dense since x0 is a cyclic vector, and hence is all of 
§ by Corollary 1. 

One of the best known unsolved problems in operator theory is the transitive 
algebra problem. Recall that an operator algebra is transitive if its only invariant 
subspaces are {0} and The problem is whether is the only (weakly closed) 
transitive algebra? Many partial results have been obtained, beginning with ARVE-
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SON'S work [1]. An affirmative answer would imply that every operator has a non-
trivial invariant subspace — see [18, Chapter 8]. Finding results such as the follow-
ing appears to have been the main goal of LAMBERT [11], [13] and HERRERO [7], [8] 
in studying algebras of finite strict multiplicity. 

C o r o l l a r y 3. (HERRERO [7]) The only weakly closed transitive algebra of finite 
strict multiplicity is 

Proof . Let si be a transitive, weakly closed algebra of finite strict multiplicity. 
Since s4 is transitive, every invariant linear manifold of si (other than {0}) must 
be dense in Hence, by Corollary 1, {0} and are the only invariant linear mani-
folds of si. The Rickart—Yood theorem (cf. [18, Corollary 8.5]) then implies that 

Lemma 1. If si is an algebra of strict multiplicity n, and if StfidLat si, then 
the compression of si to 9JI-1 has strict multiplicity at most n. 

Proof . Let P be the projection onto 301-1-, and let e1, e2, e3, ..., e„ be vectors 
such that 

{Aiei + A2e2+...+Ane„: A£si} = §>. 

Let si = {PA: A£si}, and let f = Pet, m^e^ — f{. It suffices to show that 

{Aih + A2f2+...+AJn: A f i J ) = 9JU. 

Note that PAm^ = 0 for every A^si since SJtgLatsi. Given x^SDl-1-, choose 
{A1; A2, ...,A„}CS/ such that •x = A1e1 + A2e2+ ... +A„en. Then 

PAJ^+.^ + PAJ, = PA1(f1+mJ) + ... + PA„(fn+mn) = Px = x. 

In the above proof we found n vectors to prove that si had finite strict multi-
plicity. Some of these vectors might be 0. In the strictly cyclic case, since the strict 
multiplicity does not increase, the compression algebra will also be strictly cyclic. 
This proves 

Coro l l a ry . If si is a strictly cyclic algebra, and if SKgLat si, the compression 
of si to 9J11- is strictly cyclic. 

E M B R Y [3, Theorem 2] proves that every intransitive strictly cyclic algebra has 
a maximal invariant subspace. The next theorem is a generalization of Embry's 
theorem. 

T h e o r e m 2. If si is an algebra of finite strict multiplicity, then every (proper) 
invariant subspace of si is contained in a (proper) maximal invariant subspace. 
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Proof . Since the uniform closure of si has the same invariant subspace lattice 
as si, we can assume that si is closed. Let SDigLat j / with SDi^i). By the Haus-
dorff Maximality Principle there exists a maximal chain {9JJJ of proper invariant 
subspaces containing 9Jt. Choose a countable dense subset /=1, 2, ..., of 
(J and choose 9 ^ so that x^SI?^. Then 
Ct 

If U9Jia( = § , U S ^ is dense in By Corollary 1 to Theorem 1, U9JZa.=§. 
By the Baire Category Theorem, some 9Jta( = § , which is impossible. Thus, U 9Jia. ̂  §>, 
and so U9)ia is a maximal invariant subspace containing 301. 

For a large class of algebras of finite strict multiplicity, maximal invariant sub-
spaces have co-dimension 1. 

Theorem 3. If si is an algebra of finite strict multiplicity such that for every 
9Jl€Lat si, the compression of si to 9Jtx is not strongly dense in then every 
maximal invariant subspace of si has co-dimension 1. 

Proof . Let 9CR be a maximal invariant subspace. If the co-dimension of Di is 
greater than 1, the compression of si to 9J2-1- has a non-trivial invariant subspace SR. 
This follows from Corollary 3 to Theorem 1 since the compression is not 
by hypothesis. If we show that 9t©S)i£Lat si, we will be done since this will 
contradict the maximality of 9Ji. 

Since 9Ji6Latsi, it is enough to show that if yiSR, then /4y€9l©9)i for 
every A£si. So let Pw and Pm± be the projections onto 9ft and 9Ji±, respectively. 
Then 

Ay - (Pw±+Pm)Ay = PmxAy + PmAy. 

Note that Pm±si is in the compression algebra, so Pm± Ay£iSl. And of course 
pnAym. 

Corol la ry . If si is an Abelian algebra of finite strict multiplicity, then every 
invariant subspace of si is contained in an invariant subspace of co-dimension 1. 

Proof . This follows immediately from the previous two theorems since si 
being Abelian guarantees that the compression of si to 9Jix is also Abelian and 
hence not strongly dense in 

We can even say more about algebras generated by certain strictly cyclic oper-
ators. 

Lemma 2. If T is a strictly cyclic operator, and if a(T) is a singleton, then T 
has a unique maximal, invariant subspace. 
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Proof . The Corollary to Theorem 3 implies that T has a maximal invariant 
subspace. Suppose that T has two distinct maximal invariant subspaces 3Rrand 9Ji2. 
Let Stn=SOl1DSOl2, and choose unit vectors e^SR^ nSK2 and Since 
SJlj and 9W2 have co-dimension 1 by the last corollary, 9JtJ- = V{e1, e2}. Let 

be the decomposition of T with respect to 931 ©Hi-1. 
Now, J 3 has one-point spectrum since T does, and T3 is strictly cyclic by Corol-

lary 1 to Theorem 1. Since a strictly cyclic operator with one-point spectrum on a 
finite-dimensional space is similar to a unilateral shift, T3 has a one-dimensional 
eigenspace. Thus e1 or e2 is not an eigenvector; suppose e1 is not. Since e^iOh, 
r^eaR,; i.e., 

So T3e1€9Jl2, and T ^ e W ; i.e., rs^e«^!"!^-1-. But 93i2n9Ji± = V{e1}, which 
shows that ei is an eigenvector of T3. This contradiction completes the proof. 

Corol lary . If T is a strictly cyclic operator whose spectrum is a singleton, if 
931gLat T and is the unique maximal invariant subspace of T, and if e€93lJ-, e^O, 
then e is a strictly cyclic vector for si(T). 

Proof . Since e is not contained in any proper invariant subspace, it is a cyclic 
vector. By Corollary 2 to Theorem 1, e is a strictly cyclic vector. 

Theorem 4. Let T be a strictly cyclic operator with one-point spectrum. Let 
9Ji be its maximal invariant subspace, let e^SR-1-, e^O, and let B£si(T). Then 

(i) Bee№ if and only if 9l(£)c9Ji.*) 
(ii) x is a strictly cyclic vector if and only if (x, e)^0. 

(iii) B is invertible if and only if (Be, e)^ 0. 
(iv) Every operator in si(T) has one-point spectrum. 

Proof . By the Corollary to Lemma 2, e is a strictly cyclic vector. Let si=si(T). 
(i) If 9?(fi)c93i, trivially 5e£93l. If Be=x0R, since sie=%, we have 

5R (B)=Bsie = siBe = six c 9TC. 
(ii) If x is a strictly cyclic vector, x^9[R, so (x, e)^0. If (x, e)?±0, sixct93i, 

so six=5) (since every element of Lat si is contained in 9JI). 
(iii) If B is invertible, 9i(fi)ct;9Ji, so (Be,e)^ 0 by (i). 

lo T3) 

*) 5R denotes "range". 
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If (Be,e)?¿0, <R (5) <£$)*. Thus is dense in and is invariant 
under 91. Hence 9?(.#)=§. By a theorem of LAMBERT [11, Lemma 3.1] every point 
in the spectrum of B is compression spectrum. Thus B must be invertible. 

(iv) Let Be—oie+m, where /m€9JI. If X^a, then ((B-l)e,é)?¿0. Thus, 
B—X is invertible, so X§o(B)\ i.e., a(B) = {c¿). 

LAMBERT [11] proved that a unilateral shift whose weights are p-summable and 
"decrease monotonically to 0 is strictly cyclic. Since such an operator has Donoghue 
lattice, and since that property is trivially inherited, such an operator is hereditarily 
strictly cyclic. The class of hereditarily strictly cyclic operators is much wider than 
this. For example, if S is any quasinilpotent hereditarily strictly cyclic shift with 
Donoghue lattice, let T=S(B(S+1). Since the full spectra of 5 and S + l are 
disjoint, si(T)=si(S)®si(S+1). (Consider the Riesz decomposition.) Thus if e 
is a strictly cyclic vector for si(S), e@e is obviously a strictly cyclic vector for 
J{T). 

An example of HEDLUND [6] shows that even for si=si(T) where R is a uni-
lateral weighted shift, si being strictly cyclic does not in general imply that si is 
hereditarily strictly cyclic. Thus, in the theorems that follow, we cannot remove 
the "hereditary" part of the hypothesis. 

In the case of an hereditarily strictly cyclic operator with one-point spectrum, 
we can describe its invariant subspaces in some detail. This is done in the following 
theorem, which generalizes the well-known fact that an operator on a finite-dimen-
sional space is unicellular if and only if it is cyclic and has one-point spectrum (see 
[18, Theorem 4.7]). There are operators which are unicellular but have spectra con-
taining more than one point — see [4]. 

T h e o r e m 5. Let T be strictly cyclic. If T is unicellular, then a(T) is one point. 
Conversely, if T is hereditarily strictly cyclic and if o{T) is "one point, then T has 
Donoghue lattice (i.e. there is an orthonormal basis such that the non-trivial 

oo 

invariant subspaces of T are the subspaces 9Jffc= \j e, for positive integers k). 
j=k 

P r o o f . Every point in o(T*) is an eigenvalue of T* since every point in o(T) 
is compression spectrum. If T* had two linearly independent eigenvectors, T would 
have two non-comparable invariant subspaces. Thus T unicellular implies that o(T) 
is a singleton. 

Conversely, •suppose that T is hereditarily strictly cyclic, and that <T(T)~{XQ}. 
Let S=T-X0. Since Lat S=La t T, it suffices to show that 5 has Donoghue 
lattice. 

Let 5D?0=$. If has been defined, let 9Ji t+1 be the unique maximal invariant 
subspaceof S^J?*. Since 0 is compression spectrum for S |9Jift for each A:, 5"(9Jifc)c 
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c9J t i + 1 . Choose a unit vector e^Sllf1-. Then e0 is a strictly cyclic vector, and 

Let Sne0 = en+mn+1 where en£9JlJ-+1 and mn+1£sMn+l. Since S is strictly 
cyclic, {S"^: «=0, 1,2, ...} spans Hence, © = n =0, 1,2, ...} is an ortho-
gonal spanning set. Each e&iVlj if so © ± ( 0 9Ji„); i.e., fl 9Ji„ = {0} . This 
shows that Lat T contains a Donoghue lattice. To complete the proof, we must 
show that there are no other invariant subspaces. 

Let 9Jt be any invariant subspace of T, and let n be the largest index such that 
9Jic9)l„. (Since 9Jic9Ji0 and since fl 9J?;={0}, such an n exists). If 9fl^9Jl„, 
9)t„+1 is the unique maximal invariant subspace of r|9Jt„, and so 9Jtc9Jt„+1, a 
contradiction. So 9ft=93?„, and we are done. 

SHIELDS' article [20] contains many of the known results about weighted shifts. 
It includes some discussion of strictly cyclic shifts. The invariant subspace lattice 
of every weighted shift obviously contains the Donoghue subspaces, but there may 
be other invariant subspaces. Shields defines a shift to be strongly strictly cyclic if 
its restriction to each of its Donoghue subspaces is strictly cyclic. This definition is 
somewhat weaker than hereditarily strictly cyclic. Shields proves [20, Prop. 38] that 
a quasinilpotent strongly strictly cyclic shift is unicellular. Although the statement 
of Theorem 5 does not include Shields' theorem, its proof obviously yields his result 
too. (The proof in [20] depends on calculations with the weights.) 

Theorem 5 suggests that hereditarily strictly cyclic operators might serve as 
"generalized Jordan blocks", and that operators which inherit finite strict multi-
plicity may have a "Jordan form" in some sense. This is the case, and it is proven 
in Theorem 6 below. We require two lemmas. 

Lemma 3. Let T be a strictly cyclic operator whose spectrum is a singleton, 
and suppose that T inherits finite, strict multiplicity. Then T is hereditarily strictly 
cyclic. 

Proof . Let <j(f) = {A} and let S=T—l. It suffices to prove the theorem for S. 
By Lemma 2, S has a unique maximal invariant subspace 9)^. As in the proof of 
Theorem 5, let e0 be a unit vector orthogonal to SDix. Then e0 is a strictly cyclic vector 
by Theorem 4, and e1 = Sen is in 9Jix since 0 is compression spectrum for S. Since 
S is strictly cyclic, {S^e,,: n = 0, 1, 2, ...} spans and so {S"^: n = l , 2, 3, ...} = 
^ S V ^ n=0, 1, 2, _..} spans 9)^; i.e. e1 is a cyclic vector for S^Jij. Hence, 
by Corollary 2 to Theorem 1, ex is a strictly cyclic vector since S |9J?X has finite 
strict multiplicity. 

We now proceed as we did in the proof of Theorem 5 to construct a sequence 
of invariant subspaces 9Ji„ such that S|9W„ is strictly cyclic. At each step, SJ93i„ 
strictly cyclic implies the existence of a maximal invariant subspace 9M„+1, and then 
S|9Jl„+1 will be strictly cyclic. To complete the proof, we must show that fl 9Ji„ = 
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= {0}, and that S has no other invariant subspaces. But this follows exactly as in 
the proof of Theorem 5. 

Lemma 4. Let {x, j } be an FSM set for the operator T, and suppose that T 
inherits finite strict multiplicity, and that o(T)-{0}. Let Tl=si(T)x and'R=s?(T)y, 
and assume that is infinite-dimensional. Then either 9JJ f) 9t = {0} or there exists 
a finite-dimensional invariant subspace ft of T complementary to 9)1 such that 9JtVft = 
=9JlV9t=§. 

Remark . The assumption that 93t is infinite-dimensional is for convenience. 
If both 9Ji and 9t are finite-dimensional, since y(SDi will then be cyclic and nil-
potent, the lemma reduces to a well-known finite-dimensional theorem (see [5, Theo-
rem 1, 57]). 

Proof . Note first that 9JiV9i=§ since every vector in § has the form Ax+By 
where A, B£s/(T). By Corollary 2 to Theorem 1 and by Lemma 3, 7"|9Ji is hered-
itarily strictly cyclic, and we may apply Theorem 5. So let 9Jl0, S0ll5 S0I2, ... be the 
non-zero invariant subspaces of r|9Jl in decreasing order (9)i0=9)t). If 91 were 
finite-dimensional, then 9Jtn9t = {0} since r|9)l has no finite-dimensional invariant 
subspaces. So assume that 91 is infinite-dimensional and that the non-zero invariant 
subspaces of T|9l are 9t0, 9lx, 9t2, ... in decreasing order. 

Now, if 9Jifl9t={0}, we are done. If not, 9Jin9t=9Jl*=9lm for some k and 
m. Thus, 9)1 fl 91 has finite co-dimension a in We proceed by induction on a. 
If a=0 , then , 9 ) 1 = 9 1 = a n d ft= {0} does the trick. So assume true for ct=n — 1, 
and consider a=n. 

Since 9)lfl9t=9tm, if 9910914:91!, then m = 0 and 9tc9K, and again 
ft= {0} suffices. So assume 9JZn9tc:9l1, and let yx be a unit vector in 9 l 1 09l 2 . 
Then y1 is a cyclic vector for (In fact, y1 is a strictly cyclic vector.) Thus, 
{x, y j is an FSM set for 9JlV9l1; and 9Kn9l=9Kfl9l1c9KV9l1. Moreover, the 
co-dimension of 9)i09l in 9JZ V Sij is exactly n—1, and the inductive hypothesis 
applies. So choose a finite-dimensional invariant subspace ft0 of T complementary 
to such that 9KVfto=50iV9l1, and let ft={z(E§: 7z<Eft0}. We will show that ft 
has the desired properties. 

First, if z£9)t and z^0 , then 7z$ft0 since T|9K has-no finite-dimensional 
invariant subspaces. Hence, since the co-dimension of 9)1 in § is finite, ft is finite-
dimensional, and since 0 is the only point in the spectrum of T, Tift is nilpotent. 
Thus, the dimension of ft is greater than the dimension of ft0 since r f t c z i ^ . Hence, 
the co-dimension of 9)iVft is less than the co-dimension of 9WVft0, i.e. 9KVft 
must be all of Finally, r f t c f t 0 c f t , so ft is an invariant subspace of T. The 
proof is complete. 
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The purpose of Lemma 4 is of course Theorem 6 below. Lemma 4 yields Theo-
rem 6 fairly easily. But first, define the operator T to be a Jordan operator if T has 
n complementary invariant subspaces 99^, 9Ji2, ..., 9Jf„ such that § is the (not 
necessarily orthogonal) direct sum of the Sft/s, and such that either the matrix of 
T|93i; is a (finite-dimensional) Jordan block, or 7*[9Jl; has Donoghue lattice. 

Theorem 6. Let T be an operator on § which inherits finite strict multiplicity, 
and whose spectrum is finite. Then T is a Jordan operator. 

Proof . Let o(T) = {Xi, X2, Xk}. Then T has k complementary invariant 
subspaces § 2 , •••, §>k whose span is all of § such that o(T|§ ;) = {AJ. It suffices 
to prove the theorem for each so assume that § ! = $ and ^ = 0 (otherwise, 
consider T—Ax). 

We now proceed by induction on n the strict multiplicity of T. For n=1, Theo-
rem 5 applies. So assume true for strict multiplicity «—1, and let {xx, x2, ..., xn} 
be an FSM set for T. Let 9t i=^/(7 ,)jc i. By the inductive hypothesis, the theorem 

holds on V ^ ; - Let 
¡=i 

n — 1 m v 91, = v ¡=1 j=1 

where the 9Ji/s are mutually complementary invariant subspaces of T, where T\93lj 
has xDonoghue lattice for j < m , and where 9Jim .is finite-dimensional. (We are thus 
throwing all of the finite-dimensional invariant subspaces of T into 9Jtm. By the 
Jordan Canonical Form Theorem, this is equivalent to the'above definition of Jor-
dan operator.) 

Now, if 9t„ is finite-dimensional, since TjSJî  has Donoghue lattice for j < m , 
9i„ is necessarily complementary to 9Ji; for j<m. In that case, replacing 9№m by 
9)imV9l„ does the trick. If 9t„ is infinite-dimensional, Lemma 4 applies to 9t„V93i1. 
(If w = l, 9l„ is complementary to 9Jit, and we are done.) So let 9i„V9Jl1=ft V9Ji1; 

where ft and 9)i are complementary, and where ft is a finite-dimensional invariant 
subspace of T. Then ft must be complementary to 9Jix, 9JJ2, ..., 9Jtm_i, and replac-
ing 99tm by 9JlmVft comples the proof. 
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A note on integral operators 

A. R. SOUROUR 

Let (X, m) be a separable ^-finite measure space which is not purely atomic (it 
may include some atoms). A bounded linear operator Ton L2(X) is called an integral 
operator if there exists a measurable function k on XXX such that ( T f ) ( x ) = 
= f k(x, y)f(y)m(dy) almost everywhere. It is known ([7], p. 35) that every Hil-
bert—Schmidt operator is an integral operator. It is also known that there are 
integral operators which are not Hilbert—Schmidt or even compact. For example, 

if k is the characteristic function of the set (J ([«, n+\]X[n, n-t-lj), the operator 
n = 0 

induced by k on L2(0, is a projection of infinite rank. (This example is in 
HALMOS [3].) However, KOROTKOV [6] proved that every operator unitarily equi-
valent to T is an integral operator if and only if T is a Hilbert—Schmidt operator. 
The purpose of this note is to give a proof of Korotkov's theorem which seems to 
be conceptually simpler than the original. Unlike the proof in [6], we do not use 
any results about Fourier series. Our techniques are more operator-theoretic. 

We start by establishing notation. Let § be a separable infinite-dimensional 
Hilbert space, and let be the algebra of bounded operators on If Si (¡5), 
and if SUi is a (closed) subspace of then the compression of T to 9)1 is the operator 
PTP\M, where P is the projection onto 9)1. We will always assume that 9)1 is a 
"half" of that is, both 9)1 and 9)1-*- are infinite-dimensional. 

If K is a compact operator, then the sequence of s-numbers of K is the sequence 
i j ^ j ^ . . . of nonzero eigenvalues of the compact positive operator (K*K)112, each 
repeated according to its multiplicity. A compact operator is called Hilbert—Schmidt 
if its sequence of s-numbers is square summable. For a detailed discussion of ideals, 
i-numbers and related concepts see pp. 25—27 of [7]. Here we need only the follow-
ing fact: If two compact operators have the same sequence of s-numbers, then they 
must belong to the same two-sided ideals ([7, p. 26]). 

Received May 25, and in revised form August 9, 1978. 
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Lemma 1. If K is a compact operator, then K= j^1 where every St 

is a Hilbert—Schmidt operator. Consequently, there is a Hilbert—Schmidt operator 

S such that qJ is unitarily equivalent to K+ S. 

Proof . Let {e„} be an orthonormal basis for the underlying Hilbert space, 
then ||ATe„||—0 and HA^eJ—0. Choose a subsequence {fn} of {e„} such that 
2 \\Kfn\\2<°° and 2 1 ^ * / J 2 < ° ° - L e t 9K be the orthogonal complement of the 
span of {/„}. (By passing to a subsequence of {/„}, if necessary, we can assume that 
9Jt is infinite-dimensional.) The matrix of K relative to the decomposition © S0?-L 

has the required form. The second assertion of the Lemma follows easily from 
the first. 

Lemma 2. Let 2i be a linear space of compact operators, and assume that SI 
is closed under unitary equivalence and under compression and that it contains every 
Hilbert—Schmidt operator. Then 91 is a two-sided ideal in 

Proof . Assume that X£2I, and apply Lemma 1 to conclude that the operator 

T= ^ qJ belongs to 21. Each of the following operators is unitarily equivalent to 

T and hence belongs to 21: 

- o n e - D - t C S -
_i_ri oua: tfui 0) UK -iK) 

3 2 l o ¿ J U r / d l o - i ) 2 UK K)' 

By taking an appropriate linear combination, we see that i^, is also in 2f, and 
so is the operator 

(U (n (0 0̂ 1 (U* 0") _ f0 0\ 
(o V) U oj [o V*J ~ {VKU* Oj 

for any unitary operators U and V. Since every operator can be written as a linear 

combination of four unitary operators ([1, p. 4]), the operator ^ ^ belongs 

to 21 for any operators A and B. By unitary equivalence, the following operator also 
belongs to 21 

AKB AKB\ it -AKB -AKB)' 
Consequently AKB belongs to 21. Therefore 21 is a two-sided ideal. 

Lemma 3. Let (X, m) be a separable a-finite measure space and Y a Borel 
subset of X such that L2(Y) and L2(X\Y) are both infinite dimensional, and let § 
be a separable Hilbert space, 9Ji a subspace of § with dim 9)i=dim 9JJ+ = T an 
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operator on § and A the compression of T to 9JÍ. If every operator on L2(X) which is 
unitarily equivalent to T is an integral operator, then every operator on L2(Y) which is 
unitarily equivalent to A is an integral operator. 

Proof . Let V: 9Ji-*L2(Y) be a unitary operator and let W. be any unitary 
mapping 9JÍ-1- onto L2(X\Y), and let U=V@ W. Thus UTU* is an integral oper-
ator on L2(X). If k is the kernel of the latter, then VAV* is an integral operator 
whose kernel is the restriction o f f c t o F x ? . 

Lemma 4. Let T be a bounded operator on § such that UTU* is an integral 
operator for every unitary operator U mapping § onto IJ(X). Then T is compact. 

Proof . First we show that every non-compact operator has a compression 
(to an infinite dimensional subspace) which equals the sum of a non-zero scalar 
and a Hilbert—Schmidt operator. Let T be a non-compact operator and let T= 7 \ + 
+ iT2 where 7\ and T2 are self-adjoint. One of the operators 7\ and T2 (say 7\) is 
not compact. Let E be the spectral measure of Tt. Then there is a real number 
X^O such that dim (E(A)§>) =00 for every open set A containing A. Consequently, 
there is a compression PTXP\P9) of 7\ (to an infinite dimensional subspace) which 
is equal to 1 + a Hilbert—Schmidt operator. Since PT2P is self-adjoint, the same 
argument shows that there is an infinite dimensional projection Q = P such that 
QT2Q\Q9) is a scalar+a Hilbert—Schmidt operator (this scalar may be zero). 
Thus 

QTQm = ii+S 
where ¿u^O and S is a Hilbert—Schmidt operator. (This proof is due to the referee.) 

Let Y be a non-atomic "half" of X. If T is non-compact and is always integral 
on X, then by Lemma 3, the compression fi+S is always integral on Y. It follows 
that the identity on L2(Y) is an integral operator, which is impossible (see [5, problem 
134]). So Tmust be compact. 

For clarity of exposition, we will prove the main result first when .3f=[0, 1]. 

Th eorem 1. Let T be a bounded operator on Then UTU* is an integral 
operator for every unitary operator U mapping § onto L2(0, 1) if and only if T is a 
Hilbert—Schmidt operator. 

Proof . The " i f" part is easy. To prove the converse, let J be the set of all 
operators T on §> with the property that UTU* is an integral operator for' every 
unitary U: §-<-L2(0, 1). It is easy to see that J is a linear space and is closed under 
unitary equivalence. It is also closed under compression since if and A is.a 

compression of T, then A is always integral on ^0, y j and hence is always integral 

on (0, 1). By Lemma 2, J is a two-sided ideal. Let K^J and let {X„} be the sequence 
of ¿-numbers of K. Since J is an ideal, every operátor on L2(0, 1) with the same 
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sequence of ¿-numbers is an integral operator. We will now construct an operator 
on L2(0, 1) with ¿-numbers {).„}. 

Let {e„} be an orthonormal basis of L2(0, 1) consisting of unimodular func-
tion, that is |e„(x)| = l. (For example, the usual exponentials exp (2nikx), arranged 
in a sequence.) Let {<*„} be a sequence of positive numbers such that. and 
let {£"„} be a sequence of disjoint measurable subsets of (0, 1) whose union is (0, 1) 
and such that m(En)=<xl. Let <pn=a~1z„, where /„ is the characteristic function 
of En. Therefore {q>„} is an orthonormal set in L2(0, 1). Define an operator C on 
L2(0, 1) by the equations 

Ccpn = Xnen, and Cf = 0 if /€{<pn}x. 
It is easy to see that C*en=?.n<pn and CC*e„=A2e„, and so C is a compact operator 
whose sequence of ¿-numbers is {).„}. 

By the foregoing, the operator C must be an integral operator. Let k be the 
kernel of C, so 

(Cf)(x) = J k(x, y)f(y)m(dy) a.e. 
By considering only functions in L2(E„) for a fixed n, we see that 

Cf = ( / , <p„)/„en for f£L2(En), 
so 

(Cf)(x) = Ju~1 Xne„(x)f(y)m(dy) for feV(E„). 

By the uniqueness of the kernel, we must have k(x, y)=oc~1Anen(x) when y£En. 
For every fdL2(0, 1), the function \k(x, •) /(•)! must be integrable for almost 
every x. By taking / = 1, we have f \k(x, y)\m(dy)«>= for almost every x, so 
y, a„A„<°°. Since this is true for any (normalized) square-summable sequence 
{<*„}, we must have {A„} square-summable, and so AT is a Hilbert—Schmidt operator. 

Theorem 2. Let (X, m) be a separable a-finite measure space with no atoms, 
and let T be a bounded operator on Then UTU* is an integral operator for every 
unitary operator U mapping § onto L2(X) if and only if T is a Hilbert—Schmidt 
operator. 

Proof . This theorem is proved by slight modifications of the proof of Theo-
rem 1. We only indicate the necessary changes. 

As before, let J be the set of all operators Ton § with the property that UTU* 
is an integral operator for every unitary U: L2(Z). Unlike the case ^ = [ 0 , 1], 
it is not immediately obvious that J is closed under compression. (If T ^ and A 
is a compression of T, then we only know that A is always integral on every half 
of X.) So we introduce the class / of all compressions of operators in J , that is 

A^f if and only if there exist operators B, C, D such that ^ / j ] ^ - ^ obvious 

that # i s a linear space, and is closed under compression and under unitary equiv-
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alence, and so it is a two-sided ideal by Lemma 2. In view of Lemma 1, we need 
only show that every operator in $ is Hilbert—Schmidt. Let y be a "half" of X 
which has finite measure and we may assume that m(Y) = 1. If K ^ f , then as 
before, every operator on L2(Y) with the same s-numbers as A'must be an integral 
operator. An examination of the remainder of the proof of Theorem 1 shows that 
it depends on the two properties of Y which we now list and prove. 

(i) There exists an orthonormal basis of L?(Y) consisting of unimodular func-
tions. 

Proof . There is an isomorphism of the measure algebra of (Y, m) onto the 
measure algebra of the unit interval [4, p. 173]. This isomorphism induces a linear 
map V of the linear space of equivalence classes of measurable functions on [0, 1] 
onto the space of equivalence classes of measurable functions on Y (see [2, pp. 252— 
254] for details). This map can be seen to carry the exponentials (exp Ininx) into a 
basis of L2(Y) consisting of unimodular functions. 

(ii) If {a„} is a sequence of positive numbers such that ^ «„ = 1, then there 
is a sequence of disjoint measurable subsets of Y whose union is Y and such that 
m(En) = an. 

Proof . Again this follows immediately from the isomorphism of the measure 
algebras. 

This ends the proof of Theorem 2. 

Corol la ry . The conclusion of Theorem 2 is valid if X contains atoms but is 
not purely atomic. 

Proof . Let F be a half of X which contains no atoms, and let T be an operator 
which is always integral on X. Every compression of T is always integral on Y, 
hence is Hilbert;—Schmidt by Theorem 2. Therefore T must be Hilbert—Schmidt by 
Lemma 1. 
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A short proof of the fact that biholomorphic automorphisms 
of the unit ball in certain L" spaces are linear 

L. L. S T A C H 6 

1. As a consequence of his investigations on the Caratheodory and Kobayashi 
distances on domains in locally convex vector spaces, E . VESENTINI [1] proved that 
biholomorphic automorphisms of the unit ball*) of №(£2,11) are all linear, when-
ever the underlying measure space (Q, fi) is not a unique atom. In this paper we 
shall provide a quite different approach to the problem which applies to LP(Q, fi) 
as well, for every />£[1,°°). 

Theorem. Let (Q, fi) be a measure space having two disjoint subsets Q', Q" 
such that O^fi(Q'), fi(Q")«*>. Then for any °°)\{2}, all biholomorphic 
automorphisms of the unit ball of L"(Q, fi) are linear. 

• Our method is based on a result of W. KAUP and H. UPMEIER [2] concerning 
A u t 5 ( £ ) for general Banach spaces E. Here we present a direct proof of the theo-
rem, which may have interest because of its extreme brevity. However, we remark 
that one can also determine the general algebraic form of an element from 
Aut B(L2(Q, fi)) in a similar way.' 

2. First we prove a lemma. To this end, let E denote an arbitrarily fixed Banach 
space with norm ||. ||, E* the dual of E endowed with the norm ||. || + . 

Lemma. Aut B(E) contains only linear mappings if and only if the relation 

(1) . .{q(x,x),q>) =—{c,q>) for all x£E, cp£E* with \\x\\ = ||<p||* = 1 = (x, (p) 

entails c=0 whenever cfE and q is a bilinear form from ExE into E. 

Received December 20, 1978. 

*) In general, if B(E) denotes the open unit ball of a Banach space E then the biholomorphic 
automorphisms of B(E) are defined as those one-to-one mappings of B(E) onto itself whose Frechet 
derivative exists at every point xdB(E) as an invertible operator. We shall denote the group formed 
by the biholomorphic automorphisms of B(E) by Aut B(E). 

T 
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Proof . According to [2, p. 131], there can be found a subspace V in E and a con-
jugate-linear mapping v— qv from V into the space of the (continuous) F-bilinear 
forms such that Aut (D) is generated by the group G0 of the surjective linear iso-
metries of E onto itself any by the images under the exponential map of the vector 

3 

fields (v + qv(z, z))-^- (v£V). Thus, for Aut 2?(£) = G0 it is necessary and suffi-

cient that there exist a c £ £ \ { 0 } and a bilinear form q: EXE—E such that the 

vector field (c+q(z , z)) be tangent to dB(E) (the boundary of B(E)), i.e. 
(2) Re (c + q(z, z), i^) = 0 whenever ||z|| = |MU = 1 = <z, 

Suppose now that the vectors c, x£E, (p£E* and the ¿'-bilinear form q sat-
isfy Ml = M * = 1 =<*,<?} and (2). Then for all ;.<EC with |A| = 1 we have ||/lx|| = 
=-ll'MU = 1 %<P) whence 0 = Re (C+q(/.x, AX), hp) = Re q>) + (q(x, x), (p))]. 
Therefore <c, (p) + (q(x, x), <p}=0 which completes the proof of the Lemma. 

3. Now we shall proceed to the proof of the Theorem. Henceforth let />€[!, 
be arbitrarily fixed and set E=Lp(Q,n). As usual we shall identity E* with 
LPI(-P~1XQ, N) and the pairing operation with (x,q>)= f x(c) • (P(C) DFI(C) (for all 
x £ £ and <p£E*), respectively. 

For any x££, let x denote the function ^¡—x(^) • \x{^)\"~2 (with the conven-
tion 0-0P~2=0). Observe that here 

(3) x*£E*, | | x % = | | X | |p - \ <x,x*> = ||x|lp for all x£E. 

Then assume that the function x£E and the £-bilinear form q satisfy (1). 
Applying (3) we see that 

(q(xl\\x\\, x/||x||), (x/||x||)*> = -<c, (x/||x|l)*> for all x€£ \{0} , 
that is 
(1') • (q(x,x),x*) =-!|x| |2<c, x*> for all x<E£. 

In particular, if Fand G are any two disjoint subsets of Q such that 0</ i (F) , 
FI(G)-<°° then 

f q(\F+?.-\G, if+;..ic)(if+l|;.r2i0)^ = 
a 

= -{^F) + \k\p.^G)fp f c(if+;..|;.|"-2ic)dp 
Si 

for all (For any /«-measurable subset HczQ of finite /(-measure, \H denotes 
the characteristic function of H, considered as an element in £.) 



Biholomorphic automorphisms of the unit ball in certain Lp spaces are linear 383 

Thus, by setting 

/ t e O f , 1g) + ? 0 G > I f ) № > « 2 = jq(Ig>1G)^> 
F F F 

p0 = f q ( l F , l p ) d n , f[qOF,lG)+q(lG,h)]dn, h = f q(lG,lG) dfi: 

G G G 

Pi = p(F), P2 = Ji= J cdn, y2= f c d n 
F G 

we obtain 
2 2 

• + + + 

fc = 0 fc = 0 

for all A£C. Therefore for any and with |3| = 1, 
(P0-e'-1)&-1H«o+Pi-ef)H*i • e+iV ep+1)3+(a2 • g2)92 = 

In particular, we have 

«o + Pi -0 p = -(t<i + P2-ep)2/pyi for all 
Hence — u2Jp • = lim [ — (fii+p2 * Qp)21 p Q~2] = lim (a0+pi • gp) • g~2. This is possible 
only if p = 2 or y ^ O . Thus if p?±2 then by definition of yj we have 

(4) J c d f i = 0 whenever 0<^((7)<<=° for some G cz Q\F. 

But (4) immediately implies c = 0 because of our assumption on the measure space 
(£2, ¡x). Thus, by the Lemma, B(E) admits in case p^2 only linear biholomorphic 
automorphisms. Q.E.D. 
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[2] W. KAUP—H. UPMEIER, Banach spaces with biholomorphically equivalent unit balls are iso-
morphic, Proc. Amer. Math. Soc., 58 (1976), 129—133. 
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On the tensor product of weights on H7 "-algebras 

SERBAN STRATILA 

1. Let (p and ip be normal semifinite weights on the W* -algebras Ji and JV, 
respectively. Using the Tomita—Takesaki theory ([13]) and the Pedersen—Takesaki 
theorem on the equality of weights ([10]), CONNES ([3], 1.1.3) (see also [9]) proved 
that there exists a unique normal semifinite weight <p on Jt®J/~ such that 

(1) a<E9Ji+, btWlj; => a®be'3Jlvylp and {(p®\l/)(a®b)= (p(a)\}f(b), 

(2) s ( < p ® ^ ) = s (<P)®sW0, 

(3) f o r x£s(<p)J(s{(p), yes(^)^s(>j/). 

Here and in the sequel we use the standard notations in the Tomita—Takesaki 
theory ([12], [13]). In particular, s(cp) is the support projection of q> and 9Jl+ = 
= {x£Ji+\ If (p is not faithful, then {<rf}(eR means, of course, the 
modular automorphism group associated with the restriction of <p to s((p) Jis(q>). 

If cp and \j/ are normal positive functionals, then condition (1) alone is sufficient 
to insure the uniqueness in the definition of (p<g\l/. However, in the general case 
it is often difficult to check condition (3) above for some candidates for q>0ij/. 

The aim of this Note is to offer alternative equivalent definitions for cp® 
and to prove some very natural properties of the tensor product of weights. 

2; From the works of COMBES ([1]), HAAGERUP ([7]) and PEDERSEN and TAKESAKI 

([10]) (see also [6]) we know that for every normal weight <p on Ji there exists a 
family {<Pi};£/ of normal positive functionals on Jt such that <p— Z (pi, i.e.; 

¡e / 
( 4 ) <p(x) = 2 <Pi(x) f o r all x £ J i + . 

ia 

In particular, there is an increasing net {<pi}ie/ of normal positive functionals on Ji 
such that (pi\<p, i.e.: 

( 5 ) <p(x) = s u p <Pi(x) = l i m q>i(x) f o r all x£J?+. 

Received August 14, 1978. 



386 §erban Stratila 

On the other hand, and this is the main technical tool we shall use, from the 
recent work of CONNES ([4]) it follows that 

(6) if (p is a normal semifinite weight on Ji and {<Pi}i€i is an increasing net of nor-
mal weights on Ji such that <pjcp, then 

a f ' ( x ) ^ a!(x) ( / £ R ) 

for every x£\J s(<pi)Jis((p,). 
HI 

Here means convergence in the ultra-strong topology on Ji of some section 
{/'€/: ¡ = /0} of the net involved. 

Finally, from the proof of ([10], Lemma 5.2) it is easy to infer the following 
improvement of ([10], Lemma 5.2): 

(7) if (pi, (p2 are normal semifinite weights on Ji such that s((p1)^s(cp2) and there 
exists an s-dense a9*-invariant *-subalgebra si of SJJ^ such that 

(pi(a*a) s (p2(a*a) for all a£si, 

then <Px i-e- <Pi (x) = <p2 (*) for all x£Ji+. 

In all this paper Ji and Jf will denote two W* -algebras. 

3. Lemma. Let cpx, (p2 be normal semifinite weights on Ji and i¡/ a normal 
semifinite weight on J f . Jf <pxS(p2, then <p1®\jj^(p2(S)ij/. 

Proof . If cp^S(p2, then s ^ p J S s ^ a ) , whence, by (2), s(<p1®i/0=s(<p1)(g>s(i/') = 
=s((p2)<8)s(i^)=s(^2<8"/')- Moreover, by (1) and (3), the algebraic tensor product 

is an j-dense a''*®*-invariant *-subalgebra of Since (pi^cp2 

are positive linear functionals on the *-algebra 9)1^ and ip^O on the *-algebra 
SOî , it follows that cp^ij/Scp^^ on the *-algebra si. Thus cp^ij/^cp^ij/, 
by (7). 

4. Theorem. Let q>, ij/ be normal semifinite weights and {<p,-}ie/, U ' ^ j i j be 
increasing nets of normal weights on Ji, J f , respectively. I f (pi\<p and then 

Proof . By Lemma 3, {<Pi®"/'j}ieI,.Kj is an increasing net of normal weights 
on Ji®Jf and ( P i < 2 ) ^ f o r all z£/, j£J. Consequently, the formula 

co(z) = s u p ((pS \j/)(z) = l im (<p;® ipj)(z), (z£(Ji®jr)+) 
ij ij 

defines a normal semifinite weight to on J i ® J f . For b0il^, we have 

a>(a®b) = s u p ( P i ( a ) \ l / A b ) ^ s u p ^ c O s u p i / ^ b ) = cp(a)\b(b). 
ij J i j 
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On the other hand, it is easy to see that s(<p;)ts((p), s(i/^)ts(i/0 and s(^i(g)i/'/)ts(M)„ 
hence 

s(co) = s ^ i g s ^ . -

Finally, by the result (6), for /£R, IJ sOpJ-Y/sOp,-), y£ IJ s(i/0,yKs(i/0, we have 
¿€i jiJ 

a p ( y ) - ^ a t i y ) 

and 

Hence, o?(x®y) = a f ( x ) ^ a f ( y ) . 

Since s((pi)te((p), s(\pj)js(\p), the above equality still holds for x£s((p) Jfs(<p)„ 

ytsMJTsW). 
Thus, co satisfies all conditions (1), (2), (3) which define <p®ip. Consequently 

co = (p<gnl'/, i.e. q>i®il/jj(p®il 

5. In particular if the cp?s and the ijz/s are normal positive functionals such; 
that (pi\(p, i/'jti/', then 

(8) ( < P ® M z ) = s u p f a > , ® ^ , ) ( z ) 

is an alternative equivalent definition of the weight q>®\}/, independent of the: 
choice of the families {<p;}, {i¡/}), whose existence is guaranteed by (5). 

6. As a first application we obtain the distributivity of the tensor product with-
respect to addition: 

Corol la ry . Let cp1, cp2 be normal semifinite weights on Jt such that <p1 + (p2 's' 
semifinite and \j/ is a normal semifinite weight on Ji. Then 

Proof . Let {\J/j} be an increasing net of normal positive functionals on JT 
such that ij/jiij/. 

Assume that (p2 are normal positive functionals. Since the distributivity 
property is obvious for normal positive functionals, by Theorem 4 we obtain 

O l + <?>2)®</' = SUP (cpi + (p2)®ll'j = SUP <Pi<§> + SUp (p2® if/ j - (p^llz + ipn®!//. 

Now, in the general case, let {cpu}, {(p2k} be increasing nets of normal positive^ 
functionals on Jt such that <p2k\<p2- It is then obvious that (Pu + (p2k^(Pi + <P2-
Using Theorem 4 and the first part of the proof, we obtain 

(<Pi + q>2) ® = sup (cpu + (p2k) <g> ijf = sup (<pu <§ (A + cp2k <g> i/0 = ik ik 
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7. If q>=2 <Pi and ij/ = 2 ^j* then from Corollary 6 and Theorem 4 it fol-
• j 

lows that 
(9) (<p®</0(z) = 2 ' 0 i ® f , ) ( z ) 

U 
In particular if the <pf's and the i/^'s are normal positive functionals, then the above 
relation gives another alternative equivalent definition of q><8)tj/, independent of 
the choice of the families {<pf} and {i¡/j), whose existence is guaranteed by (4). 

The weight cp is called strictly semifinite ([2]) if there exists a family {<?,} of 
normal positive functionals with mutually orthogonal supports such that <p—2 <Pi-i 

If both (p and i¡/ are strictly semifinite, then, by (9), (p®ij/ is again strictly semi-
finite. This result is originally due to COMBES ([2]). 

Other particular cases of (8) and (9) are mentioned in ([11], 0.1.2). 

8. Another application concerns the relation between the tensor product and 
the balanced weight. Let us recall ([3], 1.2.2) that if <px, cp2 are normal semifinite 
weights on M, then the balanced weight 8(<pi, cp2) on the W* -algebra Mat2 (Ji) = 
si Mat2 (C) of 2 by 2 matrices over Ji is defined by 

W<Pi, V2) *22) = •Pi^n)+ ^2(^22)• 

Now let ip be a normal semifinite weight on Ji. Then 9((p1, (p2)<2>ip and 
'6(<Pi®^, (p2®<M a r e both normal semifinite weights on the IF*-algebra 

Mat2 (Ji)®Ji~ Ji® Ji®Mat2 (C) Si Mat2 (Ji® J i ) 

and we have the following 

Corol lary , ^(i»!®^, <p2®*ii)=0(<p1, (p2)®*l/. 

Proof . It is obvious that if (puicpi and (p2k\cp2, then 0(cpu, (p2k)id(cp1, (p2). 
Also, the stated equality is obvious for normal positive functionals. Thus the corol-
lary follows using (5) and Theorem 4. 

9. Consider again the balanced weight 6(<pcp2) and assume that s((p2)Ss(cp1). 
Then the Connes cocycle ([3], 1.2.2) u,=[D(p2: DcpJ,, (t£R), is defined by the 
•equality 

a> Ufa) oj - u oj 
Thus, using Corollary 8, for v,=[D((p2®il/): D^®^)], we get 

_ « ( n « * . * ® « (0 0 ) _ o^.vjv* (0 0 ] _ ( 0 0 ) 

U , Oj - a> {s((p2®ik) Oj - U(<p2)®s(iA) Oj ~ Ur®s(« / r ) o j • 

•Consequently, [D(<p2®i/0: D((p1®^i)\ = [Dcpz-.Dcp^&sW). 
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Using this equality and the chain rule for the Connes cocycle ([3], 1.2.3), we obtain 
the following 

Corol la ry . Let (px, <p2 be normal semifinite weights on J( with s(cp2)^s(<p1) 
•and let \]/1, \j/2 be normal semifinite weights on J f . with s(hj/2)=s(ij/1). Then 

[D(<p2®4I2)-.DgiAJ], = [Dq>2: DcpJ,®[Dij/2: Dij/J, (t£R). 

This result is stated by DIGERNES ([5], 2 .4 ) , where the proposed proof con-
sists of checking the KMS conditions insuring the uniqueness of the Connes' cocycle 
{[5], 2.2), but only for decomposable elements 

(K, n ® (91$, n z26 (9*^ n 9i92) ® (9t^ n 91*). 
However, it is not obvious a priori that this entails the KMS condition for all . 

which is the real requirement for the uniqueness. 
On the other hand, if \J/1 = \f/2=il/, then using Corollary 8 it is easy to show that 

for the ^-operators ([5], (2.6)) we have 

Once this equality is obtained, the proof in ([5], 2.4) holds indeed. 

10. For every normal semifinite weight <p on Jl and every positive self-adjoint 
•operator A affiliated with the centralizer Jl^ of (p there exists a unique normal semi-
finite weight <pA on Jl such that [D(pA: Dq>]t=Alt, t£R, ([10]). From Corollary 9 
we infer the following result, originally obtained by KATAYAMA ([9]): 

Corol la ry . Let <p, \j/ be normal semifinite weights on Jl, Jl", respectively, and 
let A, B be positive self-adjoint operators affiliated to Ji^, Jf^, respectively. Then 
A(&B is a positive self-adjoint operator affiliated to (Ji®^)^^^ and 

11. Arguing as in the proof of Corollaries 6 and 8, with the help of (5) and 
Theorem 4 we obtain: 

Coro l la ry . Let (p, \]/ be normal semifinite weights on M, N, respectively, and 
let 7i: Jl^—Jl, Q: -^JV be normal completely positive linear maps. If the weights 
•cpoit, i//oq are semifinite, then 

(q>®il/)o(n®e) = (<pon)®(il/oQ). 

12. A final application concerns some operator valued weights ([8]) called 
Fubini mappings ([14]). For every normal semifinite weight \j/ on Jf there is a unique 
normal semifinite operator valued weight E*M defined on (JI®JV)+ with values in 
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the extended positive part ([8]) Jl+ of M, such that 

(10) = 

for every normal positive functional <p on M (cf. also [11], 0.1.6). From Theorem 4-
it follows that: 

Coro l la ry . If ij/, Ij/j are normal semifinite weights on Jf and \l/j\\p, then 

E*M (z ) = s u p Ejl (z) ( z i ( J l ®JT)+). 

Also, the equality (10) extends to any normal semifinite weight ç on JÍ. 
Actually, the operator valued weight E*t is nothing but the tensor product 

operator valued weight ([8]), where iM stands for the identity mapping: 
on J i . We remark that Corollary 12 can be extended to an arbitrary normal semi-
finite operator valued weight instead of xM. Moreover, Theorem 4 can be extended, 
to operator valued weights. 
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Almost all algebras with triply transitive automorphism 
groups are functionally complete 

LÁSZLÓ SZABÓ and ÁGNES SZENDREI 

1. Introduction 

The present work is a continuation of a series of results on the functional com-
pleteness of algebras with high symmetry. It is also a contribution to the solution 
of Problem 2 0 in GRÀTZER [4]. WERNER [14] proved that every finite algebra (A; t) 
where t is Pixley's ternary discriminator function on A is functionally complete. 
Recently, FRIED and PIXLEY [2] showed that for 3 S | / L | < N 0 , the algebra <A;d) 
with d the dual discriminator function on A is also functionally complete. A con-
siderable generalization of these results was found by CSÁKÁNY [1] who proved 
that, up to equivalence, except for six algebras every non-trivial finite algebra whose 
automorphism group is the full symmetric group is functionally complete. Our 
contribution to this topic is the following theorem: an at least four element non-
trivial finite algebra whose automorphism group is triply transitive is either func-
tionally complete or equivalent to an affine space over the two element field. In the 
proof our main tool is Rosenberg's completeness critérium which provides a powerful 
method for checking functional completeness. 

There is an interesting phenomenon which is worth being referred to in con-
nection with our result. This is the connection of our theorem to the Slupecki type 
criteria for completeness due to SALOMAA [10] and SCHOFIELD [11], saying that any 
set F of functions over a finite set A (|/4|^4) which contains a function satisfying 
the Slupecki condition and a triply transitive group of permutations of A, generates 
the set of all functions on A, except for the case when all functions in F are linear 
in each variable, relative to some representation of A as a vector space over the two 
element field. Making use of Rosenberg's completeness critérium, this theorem can 
be further improved to doubly transitive permutation groups and then the excep-
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tions are exactly those sets of functions that are linear with respect to a vector space 
over an arbitrary prime field (see ROSENBERG [8], also KNOEBEL [5]). It would be 
worthwhile to find out whether our theorem could be generalized for finite algebras 
with doubly transitive automorphism groups. 

2. Preliminaries 

Let A be a non-empty set. By an operation we always mean a finitary opera-
tion. The set of «-ary operations on A will be denoted by O^0 (n = l). Furthermore, 

oo 
we set O a = (J O^0. An operation / 6 O ^ is said to depend on its z'th variable 

n = 1 

(lS/'S/z) if there exist elements al, ..., a„, a'-(a;) in A such that 

/(«i, •••,«„) i, ...,ai_1,a'i,al+1, ...,an). 

f is called essentially k-ary, if it depends on exactly k of its variables. / is termed 
idempotent, if for every a£A, we have f(a, ..., a)=a. f is called non-trivial if it is 
not a projection. 

We adopt the terminology of [4] except that polynomials and algebraic func-
tions are called term functions and polynomial functions, respectively. Accordingly, 
the set of polynomial functions and the set of term functions of an algebra 9t are 
denoted by P(9l) and T(9l), respectively. Two algebras (with a common base set) 
are said to be equivalent if they have the same term functions. By a clone we mean 
a subset C of O^ for some set A(?±0), which contains the projections and is closed 
with respect to superposition. In particular, both P(2l) and T(Sl) are clones for any 
algebra 91. An algebra 11 = (A; F) is called functionally complete if P(5I )=O x 

and trivial if T(9l) contains projections only. An algebra is said to be idempotent if 
its fundamental operations (and hence all term functions) are idempotent. For a 
field K, an affine space over K is defined to be an algebra {A; I ) where I is the set 
of all idempotent term functions of a vector space over K with base set A. 

The automorphism group of an algebra 91 is denoted by Aut 91. If Aut 91 is 
the full symmetric group then 21 is called homogeneous. 

' Now we are going to formulate Rosenberg's Theorem [6, 7] which is our main 
tool in proving our theorem. First, however, we need some further definitions. 

Let A(^0) be a finite set, k,n^l,f€O^0 and g ^ A k an arbitrary fc-ary 
relation. / is said to preserve Q if Q is a subalgebra of the &'th direct power of the 
algebra (A;f); in other words, / preserves Q if for any nXk matrix, with entries in 
A, whose rows belong to Q, the row of column values of / also belongs =to Q. It is 
easy to verify that the set of operations preserving a relation Q forms a clone, which 
will be denoted by Pol Q. 
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A k-ary relation g on A is called central if g?±Ak and there exists a non-void 
proper subset C of A such that 

(a) (alt ..., ak)£g whenever at least one a^C (l^j^k); 
(b) (at, ..., ak)£q implies (aln, ..., ak„)for every permutation it of the 

indices l,...,k; 
(c) <a1; ..., ak)£g if at = aj for some i^j (l^ij^k). 
Let and m=s\. A family T— {0 l 5 ..., &m} of equivalence rela-

tions on A is termed k-regular if 
(d) each &j has k equivalence classes (j= 1, ...,m); 

m 
(e) the intersection H  Et of arbitrary equivalence classes e,. of 0, (7=1, ...,/w)< 

i = 1 
is non-empty. 

The relation Q determined by T consists of all (aj, ..., ak)£Ak having the property 
that for each j (j= 1, ... , m) at least two elements among als ak are equiv-
alent modulo Gj. Notice that Q has properties (b) and (c). 

We shall use the following version of Rosenberg's Theorem (see [9]): 

, Theorem. (ROSENBERG [6, 7]) For a non-empty finite set A, Pol Q is a maximal 
subclone of O^, provided Q is one of the following relations on A: 

(a) a bounded partial order; 
(/?) a binary relation {(a, an)\a£A} where n is a permutation of A with \A\/p-

cycles of the same prime length p; 
(y) a quaternary relation {<(%, a2, a3, a4)£Ai\a1+a2—az + a^ where (A;+) is 

an elementary abelian p-group (p is a prime number); 
(5) a non-trivial equivalence relation; 
(e) a centra^ relation; 
(0 a relation determined by a k-regular family of equivalence relations on A 

(FCS 3). 
Moreover, every proper subclone of O^ is contained in at least one of the clones listed' 
above. 

In the proof of our theorem we need two other results. 

Lemma. (SWIERCZKOWSKI [12]; see also [1; Lemma 4]). If an at least quaternary-
operation turns into projection whenever we identify any two of its varidbles, then it 
always turns into the same projection. 

Theorem. (URBANIK [13; Lemma 9]) Let 91 = (A; F) be an idem-
potent algebra which has essentially ternary term functions but has neither essentially 
binary nor essentially quaternary term functions. Then 91 is equivalent to an algebra: 
(A; /U G) where 

(i) (A; I) is an affine space over the two element field GF (2); 
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(ii) either (7 = 0 or there exists an integer r^5 such that G contains an r-ary 
operation depending on every variable, furthermore, every g£ G depends on at least 
j-variables and satisfies the equation •••, x„) =.x1 whenever the elements x1; ..., x„ 
belong to a subalgebra of (A ; / ) generated by less than r elements. 

3. Results 

Our main theorem was inspired by the following 

THEOREM. (CSÂKÂNY [1]) A non-trivial finite homogeneous algebra is func-
tionally complete unless it is equivalent to one of the following algebras: 

• (2; n) with n(x)=x+\ (mod 2); 
(2; s) with s(x, y, z) = x+y+z (mod 2) (i.e. the two element affine space over 

GF(2)); 
(2; s) with s(x, y, z) = x+y+z+1 (mod 2); 
(2; d) with d(x,y, z)=xy+yz + xz (mod 2); 
(3;o) with xoy=2x + 2y (mod3); 
the four element affine space over GF(2). 

The proof of this result in [1] depends upon the Slupecki critérium. Trying to 
prove it by means of Rosenberg's Theorem, the first author noticed that it suffices 
to require Aut 21 to be quadruply transitive. Moreover, the major part of his proof 
used 3-fold transitivity only. This observation led us to the following 

Theorem. An at least four element non-trivial finite algebra with triply transi-
tive automorphism group is either functionally complete or equivalent to an affine 
space over GF (2). 

Remark . Examining the proof presented in the next section one can observe 
that the hypotheses of this theorem can be slightly weakened so that the conclusion 
still remain valid. Namely, it suffices to assume that the endomorphism monoid be 
weakly triply transitive in the sense that any three distinct elements of the algebra 
•can be sent into any other tree distinct elements by an endomorphism. 

It is easy to check that a more than four element affine space over GF (2) has 
a triply but not quadruply transitive automorphism group. Hence we get 

C o r o l l a r y 1. An at least four element non-trivial finite algebra with quadruply 
transitive automorphism group is functionally complete unless it is equivalent to the 
four element affine space over GF (2). 

C o r o l l a r y 2. An at least four element non-trivial finite algebra with triply 
.transitive automorphism group is simple or equivalent to an affine space over GF (2). 
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This is a sharpening of a result of GANTER, PLONKA and WERNER [3] on the 
simplicity of finite homogeneous algebras. 

Coro l l a ry 3. An at least four element finite simple algebra with triply transi-
tive automorphism group is functionally complete. 

4. Proof of the main theorem 

We start with two simple observations. 

P r o p o s i t i o n 1. A finite algebra ^¡l — (A; F) is either functionally complete 
or P (21) ̂  Pol Q for a relation Q (on A) of type (a), (y), (S), (Q or 

(e') an at least binary central relation. 

Proof . Notice that if Q is a unary central relation or a relation of type (/?) 
then Pol Q fails to contain all constant functions on A. Thus the statement follows 
from Rosenberg's Theorem. 

P ropos i t i on 2. Let 21 be an at least four element finite algebra whose auto-
morphism group is triply transitive. Then any non-trivial term function of 21 is at least 
ternary. In particular, 21 is idempotent. 

Proof . Let /£T(2I), /binary, and a^b arbitrary elements in the base set A 
of 21. Then f(a, b)£ {a, b}, else there would exist 7r£Aut2I with an=a, bn=b 
and f(a, b)n = c$ {a, b,f(a, b)}, implying that f(a, b)=f(a%, bn)=c which con-
tradicts the choice of c. Similarly, g(x)£ {x} for any unary g£T(2l) and x£A. 
Thus /(x, x )=x for any x£A. Furthermore, if, say,/(a, b)—a then by the 2-fold 
transitivity of Aut2I, f(x, y)=x for any distinct x,y£A. Hence / is a projection, 
what was to be proved. 

Lemma 1. Let A be a finite set, \A\ ==4, and f a non-trivial ternary operation 
on A such that the algebra ( A ; f ) is functionally incomplete and has a triply transi-
tive automorphism group. Then 

(i) / is a minority function, i.e. f(x, y, y)=f(y, x, y)=f(y, y, x)=x for all 
x, y£A, and for any distinct elements a, b, c£A, f(a, b, c)$ {a, b, c}; 

(ii) Pol q if q is a relation of type (a), (y) with p>2 , (s') or (£). 

Proof . Recall that / turns into projection if we identify any two of its variables. 
Suppose that there exist distinct elements a, b, c£A such that f(a, b, c)£ {a, b, c}, 
say, f(a,b,c)=a. Then the 3-fold transitivity of Aut (A; f ) implies fix, y, z)=x 
for any distinct x, y, z£A. Hence the algebra ( A ; f ) is homogeneous, so that by 
Csakany's Theorem ( A ; f ) must be equivalent to the four element affine space over 

8 
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GF (2), else it would be functionally complete. However, then / is necessarily the 
"parallelogram operation" x+y + z, which does not satisfy our assumption on / . 
This contradiction shows that a, b, c,f(a, b, c) are pairwise different provided the 
first three of them are such. Let a, b, c£A be pairwise different. Then there exists 
an automorphism n of (A; / ) which sends a, b and f(a, b, c) into a, b and c, respec-
tively. Hence f(a, b, en) = c. Consequently, 

( * ) for any distinct elements a, b, c£A there exists d£A such that f(a,b,d)—c. 

Now we are going to show that P ( ( /4 ; / ) ) ^Po l Q if g is a relation of type (a), 
(e') or (0- We do this by constructing matrices with entries in A such that each 
row belongs to Q but the row of column values of / fails to belong to Q. We have to 
construct various matrices according to the various possibilities for the behaviour 
o f / when identifying two of its variables. Consider first a partial order s. with lower 
bound 0 and upper bound 1, further, let 0-=a< 1 (a€A). Owing to (*), we can 
choose d£A such that /(0, a,d)= 1. As regards the behaviour of / when identify-
ing two of its variables, by symmetry, it suffices to deal with the following two 
cases: f(x, y, y)—x for all x, yd A or / is a majority function (i.e. f(x, y, y) = 
=f(y, x, y)=f(y, y, x)=y for all x,y£A). Accordingly, the two matrices dis-
proving P « , 4 ; / » g Pols= are 

0 0 0 a 
a 1 a a 

and d_d 
1 0 l a 

Let Q be a fc-ary central relation (k^2) and select (alt ..., ak)£Ak—g. Further-
more, let c€C, the centre of g. By the definition of a central relation, a1, a2, c are 
pairwise different, so that, by (*), there exists d£A such that f(c, a2,d)=a1. 
Now the matrices 

c a2 as...ak a1 c a3...ak 
a2 a2 a3... ak c c a3...ak 
d d d ...d and c a2 a3...ak 

a1 a2 a3... ak ax a2 a3 ... ak 

show that P«v4 ; / ) ) ^Po l Q whether f(x, x,y) = x for all x, y£A o r / i s a minority 
function. By symmetry, all other cases can be reduced to one of these. Similarly, if 
Q is a k-ary relation of type (£) 3) and {a1,..., ak)dAk—g then, a „ a2, a3 

being pairwise different (by property (c)), there is a d£A with f(a2, a3, d)=at. 
Hence the two matrices 

a2 a2 a3 ai...ak ax a2 a2 ai...ak 
a3 a2 a3 at...ak a2 a2 a2 ai...ak 
d d d d ... d a2 a2 a3 a4...ak 

ax a2 a3 at...ak ax a2 a3 a4 ... ak 
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meet our requirements if f(x,x,y)=x for all x, y£A or / is a minority function, 
respectively. 

Suppose / is not a minority function, say / ( x , x,y)=x for all x,y£A. Then 
P((A;Pol o for any relation of type (y) or (<5). Indeed, assume first g is a 
non-trivial equivalence relation, agb, a?±b and age (i.e. (a, c)£A2 — g), a,b,c£A. 
Then, by (*), there exists d£A such that f(a,b,d) = c, hence the matrix 

a a 
a b 
d d 
a c 

proves P((/i ;/))§= Pol g. If in turn g is a relation of type (y), take into considera-
tion t h a t / i s essentially ternary, hence in particular,/depends on the third variable, 
i.e. there exist elements a,b, c, d£A, c^d such that f(a, b, 0)9^/(0, b, d). Then 
the matrix 

a a a a 
b a b a 
c a d c—d+a 

f(a, b, c) a /(a, b,d) a 

shows that P « , 4 ; / ) ) ^ P o l g, what was to be proved. By Proposition 1, this con-
tradicts the functional incompleteness of (A; f ) . Thus / is a minority function. 

It remains to verify that if / is a minority function and P « y l ; / ) ) g P o l g for 
a relation g of type (y) then p=2. This is done by the following matrix: 

a 0 a 0 
a 0 0 a 
a a a a 
a a 0 0 

where 0 is the zero element of the abelian group (A; +), a£ A is arbitrary and, by 
definition, (a, a, 0, 0)£g iff a+a=0. 

Lemma 2. Consider a finite set A, \A\^4, and an at least quaternary non-
trivial operation f on A such that the algebra (A; f ) has a triply transitive automor-
phism group and f turns into projection whenever we identify any two of its variables. 
Then ( A \ f ) is functionally complete. 

Proof . Suppose/ is w-ary, « s 4 . By 3wierczkowski's Lemma/always turns 
into the same, say the first, projection if we identify any two of its variables. Since 
/ itself is not the first projection, there exist (necessarily distinct) elements et (1 ^isn) 

8 * 
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such that f(e1, ...,e„)^e1. Then f(ex,..., e2 or e3. We can assume without 
loss of generality that f(ex, ...,en)^e2, i.e. ex, e2 and f{ex, ..., en) are pairwise 
different. Hence, 3-fold transitivity of Aut (A; / ) implies 

( * * ) for any distinct elements a,b,c£A there exist elements d3,...,d„ such that 
f(a,b,d3, ...,d„) = c. 

By Proposition 1, we are done if we show that F((A;f)) is not contained in 
Pol g for any relation g of type (a), (y), (5), (e') or (0. To this end we have to con-
struct matrices with entries in A whose rows belong to Q but the row of column 
values of / fails to belong to g. The five matrix schemes corresponding to the five 
types are the following: 

(a) 0 0 (y) a a a a (ft a a 
b 1 b a b a b a 
d3 1 ds a a ds d3 d3 

dn i dn a a dn dn d„ 
1 0 c a a a c a 

c a2 • •
 ak (0 «2 °2 a 3 a 4 . .. ak 

a2 a3. .. ak a3 
a2 a3 a 4 . .. ak 

d3 d3 d3. .. d3 d3 d3 d3 d3. .. d3 

dn dn d„. •dn dn d„ d„ dn- -dn 

ax a2 a3...ak (k ^ 2) ax a2 a3 ai...ak ( i c S 3 ) . 

If g is a partial order, 0 and 1 denote the lower and upper bounds, respectively, b 
is another element, b^O, 1. The existence of the elements d3, ...,d„ is ensured 
by (* *). Similar argument can be applied in the other cases, too. In case (y) a, b, c 
are arbitrary distinct elements of A while in case (<5) a, b and c are selected such 
that a^b, agb and age (i.e. (a, c)£A2 — g);d3, ...,dn is chosen according to ( * *). 
Finally, if g is of type (e') or (Q then we fix a &-tuple (a1; ..., ak)£Ak—g. By defini-
tion, its components are necessarily pairwise different, moreover, if g is a central 
relation, none of them belong to the centre C. Thus c(€C), a2, a1} resp. a2, a3, ax 

are pairwise different, hence (* #) implies the existence of the elements d3, ..., dn£A 
completing the first columns of the corresponding matrices. 

Lemma 3. Let <H~{A', F) be a functionally incomplete non-trivial 
finite algebra with a triply transitive automorphism group. Then 

(i) 31 has a unique non-trivial ternary term function m. It is a minority function 
and has the property that for any distinct elements o, b, c£A, m(a, b, c)$ {a, b, c}; 
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(ii) any non-trivial quaternary term function h of 91 satisfies the identities 

(1) h(x, x, y, z) = m{x, y, z), 

(2) h(x,y,x,z)'=m(x,y,z), 

(3) h(x, y, z,x) = m(x, y,z), 

(4) h(x, y, y, z) — z, 

f5) h(x, y, z, z) = y, 

(6) h(x,y,z,y) = z, 

(7) h (m (x, y, z), x, y, z) = m (x, y, z), 

or arises from such a term function by interchanging its variables. 

Proof . Let n denote the minimum of the arities of non-trivial term functions 
of 21. By Proposition 2, «S3. If nS4, arbitrary non-trivial «-ary term function 
/ turns into projection when we identify any two of its variables. Hence, by Lemma 2, 
(A; / ) (consequently, also 21) is functionally complete, contradicting our hypothesis. 
Thus «=3, i.e. 21 has a non-trivial ternary term function. By Lemma 1, every such 
term function enjoys property (i). 

In order to prove uniqueness we first show that for any non-trivial ternary term 
functions f,g£T(2l), the following identity holds: 

(8) f{g(x, y, z), y, z) = x. 

Indeed, f(g(x, y, z), y, z), being a ternary term function of 21, must be a minority 
function or a projection. Since by the identification x=y we get x, the former 
case is excluded. Thus f(g(x, y, z), y,z)—x or y. On the other hand, by the identifica-
tion x=z we also get x, so the proof of (8) is concluded. Taking into considera-
tion that (8) holds for any / , g£T(2I), in particular for g=f too, we get the 
identity 

g(x, y, z) = / ( / ( g ( x , y, z), y, z),y, z) = f{x, y, z). 

This completes the proof of (i). 
Let h be a non-trivial quaternary term function of 21. If we identify any two of its 

variables, we either get a projection or the (unique) non-trivial ternary term function«?. 
The latter must occur at least once, otherwise, by Lemma 2, the algebra (A; h) (hence 
also 21) would be functionally complete. Suppose e.g. that h(x, x, y, z)=m(x, y, z). 
Thus h(x, x, z, z)=x, so that h(x, y, z, z)—x or y (since neither h(x, y, z, z)=z 
nor /i(x, y, z, z)=m(x, y, z) can hold). We can assume without loss of generality 
that hix, y, z, z)=y. So far, we have (1) and (5). They imply 

(I) h(x, x, x, z) = z, (II) h(x, x, y, x) = y, 
(III) h(x, y, y, y) = y, (IV) h(x, y, x, x) = y. 
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By (II) and (III) h(x,y, z, y)^x,y, m(x,y,z), which proves (6). Similarly, (I) and 
(IV) exclude all possibilities for h(x,y, x, z) but (2). (4) follows from (I) and (III), 
while (3) from (II) and (IV). In order to verify (7) one has to check that 
h(m(x, y, z), x, y, z) is a minority function, which is straightforward by the preceding 
identities. The proof is complete. 

Now we are ready to prove our main result formulated in Section 3. 

P r o o f of the Theo rem. Let 91=(/4; F) be a non-trivial finite 
algebra which is functionally incomplete and has a triply transitive automorphism 
group. By Proposition 2, 91 is idempotent and has no essentially binary term func-
tion. On the other hand, by Lemma 3, 91 has an essentially ternary term function. 
We are going to prove that 91 has no essentially quaternary term function. Suppose 
the contrary and choose an essentially quaternary /jgT(2I) such that it satisfy 
identities (1)—(7) in Lemma 3. Since h depends on its first variable, there exist 
elements a,b,c,d£A such that h{a,b,c,d)7ih{b,b,c,d)=m{b,c,d). Then the 
matrix 

a b a b 
b b b b 
c e b b 
d d b b 

h(a, b, c, d) h(b, b, c, d) b b 

shows that P(9I )^Pol Q if g is a relation of type (y) with p — 2. By Lemma 1, 
P(9I )^ Pol g if Q is a relation of type (a), (y) with />>2, (e') or (£). Thus P ( 9 l ) i 
^ P o l g where g is a non-trivial equivalence relation. Select distinct elements 
a', b', c'€A such that a'gb' but a'gc' (i.e. (a, c')€A2 — g). Assume first h(a, b, c, d)^a. 
Then, by (7) 
(9) h(a, b, c, d) ^ h(m(b, c, d), b, c, m(b, c, d) 

where a, m(b,c,d) and h{a,b,c,d) are pairwise different (a=m(b, c, d) would 
imply equality in (9), contradicting the choice of a, b, c, d). Hence, by the 3-fold 
transitivity of Aut 91 there exists 7i€ Aut 91 which sends m(b, c, d), a, h(a, b, c, d) 
into a', b' and c', respectively. Thus we have the matrix 

a' V 
bn bn 
ck cn 
dn dn 
a' c' 

with its rows belonging to g but a'gc', contradieting the inclusion P ( 9 l ) ^ P o l g . 
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Assume now that h(a, b, c, d)—a. Then, by (1) and (7) 

( 1 0 ) a = h(a, b, c, d) ^ h(b, b, c, d) = m(b, c, d) = h(m(b, c, d), b, c, d). 

Thus a,b,m(b,c,d) are pairwise different. (10) implies immediately that a^b, 
m(b, c, d). If b=m(b, c, d) then by Lemma 3(i), b, c, d are not distinct, so that, 
since m is a minority function, we have c=d. However, then by (5), h(a,b,c,d)~ 
=b=h(b, b, c, d), which is impossible by (10). By the 3-fold transitivity of Aut 21 
there exists an automorphism n sending a, b, m(b, c, d) into, a', b', c', respectively. 
Hence we get the matrix 

a' V 
b' b' 
CN CK 
dn dn 
a' c' , 

again contradicting the inclusion P(2I)^Pol Q. 
It follows from the foregoing argument that 21 has no essentially quaternary 

term function. Thus 21 satisfies the hypotheses of Urbanik's Theorem, so that 21 
is equivalent to an affine space over GF(2) or arises from such a space by adding 
new at least r(&5)-ary fundamental operations among which there is an essentially 
r-ary operation which turns into projection if we identify any two of its variables. 
However, by Lemma 2, the existence of such an operation would imply functional 
completeness. Hence 21 is equivalent to an affine space over GF(2), what was to 
be proved. 
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The function model of a contraction and the space U/H^ 
BELA SZ.-NAGY and CIPRIAN FOIA§ 

Recently, new techniques were invented for obtaining invariant subspaces for 
rather general classes of operators on Hilbert space, see [2]—[5]. The present note 
constitutes a first step to exploit similar techniques in the understanding of the 
fine structure of the functional model, in the sense of [1], of completely non-
unitary contractions. 

1. Recalling the canonical model of a completely non-unitary contraction on 
a separable Hilbert space we consider a contractive analytic function {(£, , 0 (A)} 
on the unit disc D = {X: |A|-< 1}; © and being separable Hilbert spaces. Setting 
A=A(e")=(/— 0(e")*0(e"))1 /2 we define the Hilbert function spaces 

(1.1) = i f 2 ( e y © i § = ft+e{0M>©dw: wiH2(<&)} 

(see [1], Chapter VI). will denote orthogonal projection of 5\+ onto 
We shall also have to do with spaces L1, H1, H^, H°°, all with respect to nor-

malized Lebesgue measure dm=dtl(2n) on the unit circle {e": 0^/<2tt}. Recall 
that H°° is the Banach dual of the factor space L1/^, through the bilinear form 

</', «> = / / " dm (/6 L\ u € H~), 

/ ' denoting the natural map of L1 onto (see e.g. [6]). 
With any (ordered) pair {h, k} of elements of H we associate the element hk* 

of L1 defined by 

(1.2) hk*(e") = [h{e"), k(e>0)fc9. (0 s t < 2n). 

For sake of simplicity we shall also write, for any /GL1, 

ll/ILVtfS instead of | | / ' | |£i / J fi , 

and scalar product and norm of vectors without subscript will always mean those 
in the space fj-

Received July 20, 1978, and in revised form August 20, 1979. 
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2. With the operator valued function {(£, , 0 (A)} we associate the multi-
plication operator 

(2.1) 0 X : H\<&) - # 2 ( C y defined by (0xu)(e") = 0(eu)u(e") (u£H2(<£)) 

and its adjoint 0* (i.e. the coanalytic Toeplitz operator denoted in [6] by T(0~)); 
we have 
(2.2) №)( « " ) = [0(e»yu(e<')]+ 

where [•]+ denotes the natural orthogonal projection of any (scalar or vector valued 
function space) L2 onto its subspace H-. 

Observe that for any fixed n£D the function 

(2.3) P№) = (1-PX)~1 

belongs to H2, and has norm 

\\P^m = ( 1 - M 2 ) " 1 / 2 -

It is easy to deduce from (2.2) that 
(2.4) 0*x(p„a)=pfl0(jiya for any <76®*. 

The following functional t]e on H2 will play an important part: 

(2.5) ri9(cp) = inf sup s(cp, a), where s(<p, a) = 11 (= 0 if (pa = 0) 

and 4> denotes the family of subspaces of with finite codimension. 

Obviously, rje(ccp)=r\e{(p) for any complex number c^O. By virtue of (2.4) 
we have, in particular, 

(2.6) Va(Pv) = inf sup I i e 0 0 * « l l « 

In what follows we shall assume that is infinite dimensional. 

Lemma 1. Given any sequence of elements of H2 there exists an ortho-
normal sequence {a„}" in (S+ such that, 

( 2 . 7 ) s((pp a„) s r]e((pj) + -I- for j = 1, 2 , . . . , « ; n = 1 , 2 , . . . . 

Proof . By virtue of the definition (2.5) there exist 0 = 1,2,...; « = 1,2,.. .) 
such that 

sup s((pj,a) t]e(<pj) + —. 
0 6 » , n n 
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Set 

*„ = ( V & M 1 («=--1,2,. . .) . 
I S j S n 
ISmSn 

Clearly, and 2Inc9IJ>m (1 s§/=an, l^m^n). From the last inclu-
sion we infer 

s u p s{<Pj, a) ^ sup s(<pj, a) tirie (<pj) + . 

Choose inductively a sequence {¿z„}~ of unit vectors in such that a„£ll„ and 
that a„ be orthogonal to a l s ..., a„_1 (n=2, 3, ...). Then we shall have (2.7.) 

Notice, for further use, that each infinite orthonormal sequence weakly con-
verges to 0. 

3. A subset if of the (open) unit ball 2) of H2 will be called dominant if 

(3.1) sup ||[u(p]+||H2 = ||i/||H~ for every u£H°°. 

This is an obvious analogue of that a subset S of the unit disc D be dominant 
in the sense of [8], namely that 

(3.2) sup|«Gu)| = ||M||h- holds for every u £ H ~ . 
ItiS 

Moreover, if S is dominant in D in the sense (3.2) then 

(3.3) ^ s = { i - l H T V ^ s } 
i 

is dominant in ^ i n the sense (3.1). Indeed, SPscz@ is obvious and in analogy with 
(2.4) we easily obtain 

- P^uifi) for u£H°° and n ^ D . 
Hence, 

(3.4) ¡ [ « ( I - H T V J + I I h ^ ! " ^ ) ! 

so validity of (3.2) for 5 implies that of (3.1) for £fs. 

L e m m a 2. If ¡P is dominant in the unit ball 3) of H2 then the convex hull of 
the set 

(3.5) { № ) ' • ( p ^ ^ i ® ) 

is dense in the unit ball of L1/H^. 
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Proof . If not, there exist in the Banach dual H°° of V-\H\ an element u and 
a unit vector / in L1/Hg such that 

(3.6) R e ( / ' , u) > sup R e ((i¡/(p)', u) = s u p s u p \ fu<p & dm I = 
ViST VtST <¡,£9 ' J 1 

= s u p s u p I f [ u < p ] + i p d m \ = sup||[w(j(r] + | | H . . 

if being dominant in S the last member equals ||w||H», and hence is g R e ( / " , u>, 
in contradiction with the strict inequality in (3.6). 

4. For fixed cp£H2 and we denote 

(4.1) (poa = P^ya® 0). 

It is easy to show that 

(4.2) (poa = (c,pa-0[0*cpa]+)®(-A[0*(pa]+). 

For any h=h0®h1£% (h0£H2(<£*), /z^Z/^G)) we have therefore 

(4.3) ( .poa)/ ,* = <p(a, h ^ - ( 0 [ 0 * <pa] +, /¡0)gt - (A [0*q>a] + , = 

= P C M ) » . - ( [ © > « ] + , 0 * / i o + J / i 1 ) g , 

where the last term belongs to since 

(4.4) h2¥L0*ho + Ah1iL\<£)QH2(<£) 

because of the definition (1.1) of 
Therefore, 

(4.5) ( ( p o d ) h * =tip(a, / / 0 ) g t m o d / / 0
l . 

It also follows from (4.3) and (4.4) that 

(4.6) h{<poaf = ((poa)k* = y{h0, a\it-(h2, [0*(pa]+)e. 

Suppose {a„} is a sequence of vectors in G*, tending weakly to 0. Then by (4.5) 
and by the Lebesgue dominated convergence theorem, 

\\{(poa„)h*\\LiIHl == ||<p(an, h0)eJLi s \\(pl\H* [ f \(a„Me")f dm]1'2 - 0 (n - 0). 

We shall also show that ll/zOpoOILVJ^®- Since ||<p(/z0, an)eJL1~0 by part 
of the preceding argument, by (4.6) it suffices to prove that 

(4.7) \\(h2, [0*(pan]^\\Ll-0 a s n ~ 0. 

It even suffices to prove (4.7) for (p=e'" (/•=0, 1, ...). Indeed, (4.7) then holds 
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CO 

for all partial sums (pN(ei!) of the L2-expansion <p(e'') = 2 cre'r'> and since {a„} 
o 

is bounded, say we have, setting ^N — V—VN' 

(4.8) | \ (h 2 , [0*tNan]+)e||Ll = /\\KU\W4>NanUkdm = 

^ H^2llL2((S)ll[®*,AiVan]+llL2'(g) = 

and this bound is independent of n and as small as we wish upon choosing N large 
enough. 

Now to prove (4.7) for <p=eirt (rsO) observe that if 0 ( / ) = 0 o + ; . 0 1 + ; . 2 0 2 + ... 
then we have 

[0(e't)*e'"an] + = i ^ . y ^ a , , 
j = 0 

and hence, 
.1 r 

II(h2, [0*e»<an\+\\\Li = / 2 (e->jt6:-A, 
lj=0 

dm, 

which tends to 0 as n—0, again by the weak convergence of {«„} to 0 and by the 
Lebesgue dominated convergence theorem. 

So we have proved, in particular, 

Lemma 3. If {a„} converges to 0 weakly in then for any (p£H2 and h£$y 
we have 

K(poa„)h*\\Li,Hi^Q, \\h((poany\\Li/Hia - 0 as n - _ 

We shall also need the following 

Lemma 4. For all cp, ij/£H2 and we have 

(4.9) | | ( ^ o a ) ( < p o a ) * - ^ M | J i V „ x s W M | 0 * <pa\)H;mMe t . 

Proof . By virtue of (4.5) and (4.2) we have 
(il/o(p)((poa)* = <p(a, (pa — 0[0*(pa]+)<itmodHq. 

Because 
||<Ka, 0 [ 0 * < H + k | | t x = \ m M M E J O * x 

(in:analogy to (4.8)) we conclude to (4.9). 

5. Next we prove the following 

Lemma 5. Suppose is (countably) infinite dimensional and suppose h, k£Sj; 
(p1, ..., <pr, \j/lt ••., ilsrdH2, and E > 0 are given. Then there exist h', k'£$> such that 

( 5 : 1 ) 
1 L1/Hi i 

(5.2) h a t ^ 2 UAh, ll*T ^ 2 M* • 
1 1 
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Proof . Let <5>0 be fixed and choose by virtue of Lemma 1 an orthonormal 
sequence {a„} in (S* such that 

||6> *x <PjaJH*M = ( l e C ^ j ) + \\<Pj\\h* f o r j = l , ...,r a n d n s r . 

Hence, and from Lemma 3 we deduce that for n large enough, say for and 
for 7=1, ..., r we have 
(5.3) \\0*x<Pjan\\H*m^(le(<Pj) + S)l\<Pj\\H* 
and 
(5.4) M<Pj°aJ*h*iHl = s> Kh°^)k*\\L i I H l s 5. 

Again by virtue of Lemma 3 we can choose, step by step, the integers (n0^)n1~=; 
< « 2 < . . . < n r such that 

(5.5) \№i°a„X(Pj°an)*\\LiIHi 8, W^joa^iOa^W^^ ^ 8 

( j = 1, ..., r\ i = 1, ...,/-1; n a rij). 

Rename a„} by bj (j= 1, ..., r) and set 

(5.6) h' = 2 Wj°bjy, k' = 2 (vjobj). 
i i 

Then we have 

(h + h')(k + k ' y - h k * - 2 t j V j = hk'* + h'k* + h ' k ' * - 2 ^ j V j = 
i i 

= 2 h (cpjobjT + 2 Wj°bj)k* + 2 iWjobjXcpjobj) - il/j'tpj] + 
i l l 

+ 2J2\Wi°bd{<Pj°bjrH*j°bj)(<ptobd*\ = Q. 
J = l i = l L J 

Taking account of (5.3), (5.4), (5.5), and Lemma 4 we deduce that 

l|0|lL»/*i r8 + r8 + 2 + + 

so we arrive at the conclusion (5.3) by choosing 5 small enough, namely such that 

[ ( K r + O + i l l ^ V I W l H a J i s e . 

Finally, (5.2) follows at once from (5.6) and (4.1); e.g., 

P T = I k ( 1 «A A © o ) == 2 <l>jbj 2 = 2 W j , tdmibj, bdSt = 2 I W f 

because of orthonormality of {bjW. 
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R e m a r k . The pair h', k' can obviously be replaced by any of the pairs h(n), k,n) 

(«=1, 2, ...) defined by 

(5.7) A<"> = 2 №j°bj+n), k^ = 2 (VjobJ+n). 
; = i j = I 

Then, for every / £ § , 
/O/JW*, h™l*, IkW, 

tend to 0 in £ 7 # o as «-<-00. 

6. Now we are going to establish the main result of this paper. 

Theorem. Suppose {(£, 0(A)} is a contractive analytic function, with separ-
able (£, and dim 0^=°°, and suppose that for some 9, 0 < 9 < 1, the set 

<?= {cptH*: |M|Ha = 1, r,e(<p) ^ 9} 

is dominant in the unit ball S) of H2. Then 

{(hk*y : h,k£9)} = I}/Hl 

i.e. every fdL1 has a representation 

f = hk* m o d Hi with h,k£$. 

Proo f . Consider an /€£* with H/HZZ/HO—V0 ; it does not restrict generality 
to assume v„=l. Choose a number (O such that 3<co< 1 and set vs=cos, 

ES = —J— COS; then 

(6.1) vs+1 = 9vs + 2es. 

Setting h0, h_!, k0, k_t=0 (in §>) we are going to prove that there exist hs, ks£$> 
(5=1,2, ...) such that 

Wf-hXWutHl = vs 
(6.2) ( 5 = 1 , 2 , . . . ) . 

W h s - h ^ f S VS_X, I f e - t l l l ^ V ^ 

This being obvious for 5=0 we shall proceed by induction. Suppose hs, ks 

have been already found for 5 = 0 , ...,g, satisfying (6.2), and perform the step 
q—q+1 as follows. Set 

(6-3) f = f-h,k*-, 

then U/'llii/flo—vq by (6.2) for s=q. It now follows from Lemma 2 that there exist 

<Pj£ST, with 2 c, = l and 

(6.4) / ' - ZCjVqtjVj 
J= 1 

/ 
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On the other hand, from Lemma 5 it follows that there exist 

hq+1=hg+h', kq+1=kq+k'i% such that 

(6.5) 

and 

hq+ik*q+1 - h„k* - Z cj VqtjVj 
i=i 

¿\\ywtj\\H4]^q<Pj\\mrie((Pj) + £q ^ ÉcjVqS + sq = vqS + eq 
7=1 

(6.6) \\hq+l-hqII2 ^ Z W Y w M * ^ v №q+i-kq\\2 ^ 2\\YW<PJI\* s v 4 . 
j=1 . J=1 

Because of the relation 

f-hq+1k*+1 = ( / ' - i j C j v q j ^ ) - [ h q + 1 k * q + 1 - h q k * q - £ c ; v , i j / j , 

from (6.4), (6.5) and (6.1) we deduce 
(6-7) \\f-hq+1k*q+1\\LriHi ^9vq + 2eq = v f + 1 ; 

and (6.6), (6.7) yield (6.2) for the hq+1, kq+l just defined. The construction by induc-
tion is thus established for all s. 

From (6.2) now follows that hs, ks converge (strongly in § ) to some limits h, k, 
and that hsk* converges in LX\H\ to / ' . Since hs—h, ks-»k obviously also imply 
\\hsk*—M*||Li— 0 we conclude that \\f—hk*\\Li/Hi = 0; thus completing the proof 
of the theorem. 
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A note on the Radon—Nikodym theorem 
of Pedersen and Takesaki 

JÜRGEN TISCHER 

0 . Introduction. The Radon—Nikodym theorem of PEDERSEN and TAKESAKI [ 4 ] 

shows the existence and uniqueness of-a density of certain semi-finite weights i¡/ 
with respect to a given normal, faithful and semi-finite weight <p, the density being 
a self-adjoint, positive operator. Here, it is shown that — with a suitable extension 
of the definition of a density — this theorem remains true without the assumption 
of semifiniteness of the weight ij/. Paragraph 2 sums up some facts about projec-
tions which are used in the sequel. 

This paper is based on the first part of the author's thesis which was supervised 
by Professor D. Kolzow. The author would like to express his gratitude to Professor 
Kolzow for his constant assistance and encouragement which were formative in 
the preparation of this thesis. 

1. Basic notations and definitions. Let 2t be a von Neumann algebra. A weight 
<p on 21 is a map defined on 21+ with values in R + :=R + U{°°} which is additive 
and positive homogeneous (0-c°:=0). 

A weight cp on 21 defines the left ideals 

n „ : = a n d N9:={AZ'$i\(p(A*A) = 0} 

and the convex cone 

The weight cp is called faithful if it is strictly positive, semi-finite if the identity 
of 21 is the ultraweak limit of elements of and normal if <p(sup At) = sup 
for every increasing bounded net in 2i+. 

If q> is semi-finite, normal and faithful, then on n̂ , an inner product is defined 
by (A, B):= (p(B*A) (<p the canonical extension of cp to m^m+ — m * = it*n^,). 
The usual Gelfand—Naimark—Segal construction gives a faithful, normal represen-

Received April 20, 1978. 
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tation 7î  of 21 on Hy, the completion of with respect to the inner product ( . , . ) . 
The involution * of 2i extends from n^fln* to a closed conjugate linear operator 
5 on H9. If S—JA112 (the polar decomposition of S) then / is a conjugate linear 
isometry and A is a self-adjoint, positive, non-degenerate operator. Every t£ R 
defines a unitary operator A" on H^, A --A~"AA" leaves 7^(21) invariant and 
so gives rise to a *-automorphism a t of 21. The strongly continuous one parameter 
group {<r,|i€R} is called the modular automorphism group of q>. The weight 
(p fulfils the Kubo—Martin—Schwinger (KMS) condition with respect to I(p, i.e. 
for all A, i ^n^D«* there is a continuous, bounded function/on {z£C|0^Im z ^ l } , 
holomorphic in the interior and such that for all 

f { t ) = <p(<r,(A)2), / 0 + 0 = <p{Ba,iA)). 

If 2" is a strongly continuous one parameter group on 21 and cp is KMS with 
respect to I ' , then I ' = 

A semi-finite,.faithful, normal weight <p is a trace iff is trivial. 

2. Semi-finite projections. Let <p be a fixed normal weight on 21. If /1 € A^ fl 21+ 

and if E is the spectral measure of A, then supp .4=sup E(]\jn, °o[). Now, 
O^l/nEQl/n, s o EQl/n, is in.iV,, (since (p is additive), and we have 
that supp A is in N9 (since <p is normal). 

It follows that given two projections P, Q^N^, their supremum (in the set of 
all projections of 21) />Vg=supp ( P + g ) is again in N9. So the set of all projec-
tions in Ny is an increasing family with supremum P9. Since cp is normal, Pv is 
again in N9 , hence (COMBES [1], p. 75): The set of all projections of Nv has a largest 
element Pv. 

Remarks . 
a) If A^Ny, then supp A*A = supp A is in Nv, so supp^s i* , , . Thus, 

A—A supp A = APq> and N/p<z'ilPtp. Since N9 is a left ideal and P^dN^, it follows 
that N 9=WP 9 . 

b) If g is a *-automorphism of 21 and if cp is ^-invariant, then <p(g(Pv)) = 
= (p(Pip) = (p{g-\P9))=0, so g i P ^ P ^ g - ^ P y ) and P9 is ^-invariant 

The following example shows that the set of projections of is not an increas-
ing family. 

Example. Let H be an infinite-dimensional Hilbert space with an orthonormal 
basis (e„)n?N. Define 1l:=L(H), for n£N define f„£H by 

/ . : = ( l - l / ^ ^ - i + O W S , , , 

and define projections Px, P2d1l by 
oo oo 

Pi-= 2e2n-itoe^-i, P2:— 2 f n ® f n -
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Define the weight <p on 21 by 
oa 

n = l 

Then cp is normal, (p(P1) = 0, <p(Id)=°° and <p(e2n®e2n) = 1 for all w€N. Since 
EO 

I d = P 1 + 2 e2n®e2n> this-shows that <p is semi-finite. 
n=i 

= 2 (P2e2m e2n) = ¿ ( ( e 2 „ , / „ ) / „ , e2n) = j5 l ( ^ , / „ ) | 2 = 2 1/2" = 1. 
n = 1 H = 1 11 = 1 n = l 

Now, it is easy to see that P1VP2=Id. Thus we have: P1 and P2 are in m+ and 
PiVP2 is not, i.e. the set of all projections in m^ is not an increasing family. 

Def in i t ion . Let P be a projection in 91. 
a) P is called semi-finite (with respect to cp) if the restriction of cp to P 9 I + P 

is semi-finite; 
b) P is called a-finite (with respect to cp) if there is a sequence (P„)ngN of mutually 

orthogonal projections of with P—2Pn-
Clearly, every a-finite projection is semi-finite. 

2.1 Lemma. A projection P of % is a-finite i f f there is an A£with 
P = s u p p ^ 4 . 

) 
Proof . Let P be a-finite, P= 2 Pn

 a n d P„€m*. One can assume that 
n = 1 

<p(PJ?i0 for all n. Define A:= 2 (1/(2" max (<pCP„), 1)))PB. Then <p{A)s 1, so 
n = 1 

On the other hand, supp A=P. To prove the other direction, let A be in 
and Pi^supp A. Let E be the spectral measure of A. Define E^EQX, °°D, 

En:=EQlln, l /(n-1)[) for n ^ 2 . Then \jnEnSA, so E„£m+ and P= f , E„. 
^ n = l 

2.2 Corol la ry . With Pi, P2 a-finite projections, V/>
2 ' s a-finite. 

Proof . Let Alt A2 be in m + with supp^ j = />
i. Then supp (A1+A2)=P1VP2. 

2.3 P r o p o s i t i o n (Cha rac t e r i za t i on of semi- f in i te p ro jec t ions ) . Let 
P be a projection in 91. Then the following are equivalent: 

a) P is semi-finite; 
b) P —V Pj, where (/>,),. e l is a family of a-finite projections; 
c) p=\jpwhere (Pj)^, is a family of projections in 
d) P=sup Pn where (Pj)ie, is an increasing family of a-finite projections. 

9* 
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Proof . a)=>-b): Assume b) false and a) true. 
Define <5:={Se9l| S (r-finite projection, SsiP}, £ > : = P - V e . 

By assumption Qr^O, so there is an ultra weakly continuous state / on 9t with 
£ : = s u p p f = Q . Now, if is a net in P9iPnm<S" converging ultraweakly to 
P, then for all /£/, supp.4, is c-finite and s u p p ^ ^ P ; thus, supp/l, is in (5, i.e. 
A,Q=0. Now, \f(P-A,)l = lf(£(P-Ai)E)\ = lf(£PE)l = l, which is a contradic-
tion to (A,) converging ultraweakly to P. The proofs of the other implications are 
easy consequences of the definition of cr-finite. 

2.4 Coro l la ry . For every family (P;) of semi-finite projections, VP ; is semi-
finite. 

2.5 Coro l l a ry (cf. PEDERSEN—TAKESAKI [4] ) . The set of all semi-finite projec-
tions (with respect to <p) contains a largest element denoted by Q^. 

2.6 Coro l la ry . If g is a * -automorphism of 91 and (p is g-invariant, then Qv 

is g-invariant. c 

Proof . The Proposition shows that 

Q9 = V{P| P projection, P£ m + }. 

This set is g-invariant by assumption and g is a * ̂ automorphism, thus 

g(S9) =V{g(P)] p projection, P€n , ;} = 

If H is an infinite-dimensional Hilbert space with an orthonormal basis (<?„)„£N, 
then (p:=2n'C0e defines a normal, semi-finite weight on 9 l :=L(H) . 

If x:= 2 eJn and Px is the projection on (x), then r/)(Px)=°o. Every A^Px'iiPx 
NI N 

' is a multiple of Px> so Px is not semi-finite. This shows that if P is a semi-finite projec-
tion and Q is a projection with Q^P, then Q is not necessarily semi-finite. How-
ever, if q> is semi-finite, normal and faithful and if P is -invariant, then P is semi-
finite (cf. COMBES—DELAROCHE [2]) . For then by [4] , thm 3 . 6 , P M ^ C M , and 
m^Pcm^; so, if (Aj) is a net in m* which converges ultraweakly to the identity, 
(.PAjP) is a net in P9tPf]m + which converges ultraweakly to P. 

3. The Radon—Nikodym theorem. For the rest of this paragraph let 91 be a 
von Neumann algebra and (p a semi-finite, normal, faithful weight on 91. The von 
Neumann algebra of all invariant elements of 91 with respect to the modular auto-
morphism group Z will be denoted by 9t'p. 

For the convenience of the reader some of the notations and results of [4] will 
be given. 
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Let Hbe a self-adjoint, positive operator in 2P. Then, the map A -*q>(Hll2AH112) 
is a normal, semi-finite, ¿"„-invariant weight on 21, denoted by (pH. If H is a self-
adjoint, positive operator affiliated to SP, then for every £>0 the operator Hr is 
defined by Hc:=H(l + eH)-\ Then, H^W* and the map A^sup<pH(A) is a 

c>0 * 

normal, semi-finite, ^-invariant weight on 21, again denoted by cpH. 
Then, the main result of [4] is the following: 

Theorem (Radon—Nikodym theorem of Pedersen and Takesaki). Let ty be 
a semi-finite, normal 1 ̂ -invariant weight on 21. Then, there is a unique self-adjoint 
operator H affiliated with 21'' such that ip = (pH. 

There is a commutative analogue of this theorem, cf. [3], p. 245, lemme 1: 
If 21 is commutative, i.e. isomorphic to an L°°(Z,/n) with locally compact Z 

and positive Radon measure n, denote by 3 + the set of all positive, measurable 
functions on Z with values in R + modulo locally null-functions. The weight (p is 
then a semi-finite, normal, faithful trace on 21. Then, for every normal weight 
\j/(=normal trace) on 21 there is a unique i / £ 3 + such that 

{¡/(A) = <p(HA) for all A£3 + , 

where ip, (p denote the canonical extensions of i¡/ and <p to 
Here, ip need not be semi-finite. In the following it is shown that the same is 

true for the theorem of Pedersen and Takesaki with a suitable definition of the 
density H. 

Def in i t ion . Let SB be a von Neumann algebra. A spectral measure on the 
Borel sets B(R+) of the extended positive real line with values in the set of self-
adjoint projections of 23 is called a Q^-valued) extended spectral measure. The set 
of all ©-valued extended spectral measures is denoted by 23+. 

3.1 Lemma. If E^2l«'+ and A£21+, then the map m^^ on B{R+) with values 
in R + , defined by 

m<p,A(A)-.= <p{E(A)AE(A]) (A£B(R+)) 
is a measure on R + . 

Proof . Since E(A)£ 2i<p, prop. 4.1 of [4] shows that mv<A is additive. The spectral 
measure E is c-additive and, by prop. 4.2 of [4], the map E(A) -*/p(E(A)AE(A)) 
is normal. 

Def in i t ion . Let E be in 2l<»+. For A£2I+ define mv A as in Lemma 3.1. 
Define <pE: 2 I+-H+ by 

?*(A):=J*dm9iA(X)(=JXd<p(EiAEx)) 2I+). 
R + - R + 
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3.2 Lemma. If Ed21''+, then <pE is a normal and T. ̂ -invariant weight on 91. 

Proof . By [4], prop. 4.1 the map A-~q>{E(A)AE(A)) is a weight on 91 for 
every <d€5(R+). Thus, the map q>E is additive and positive homogeneous. 

Next, take a Then, for all Ad91+ and for all J€.B(R+) we have 

<p(E(A)g(A)E(A)) = (P{E(A)AE(A))> 

from which it follows that (pE is ^-invariant. 
Now, we show that q>E is normal. Take an increasing family (AJ in 91+ with 

supAi=A. Then by the positivity of all occurring values the following holds: 

cpE(A) = fXdcp(ExAEx) = 
R+ 

= s u p { 2 ^ M E ( 4 J ) A E ^ J ) ) \ 2 AJ = 5+> H = «RF^} = 

= sup {2 Xjcp(E(Aj) (sup A,)E(Aj))} = 

= sup sup {2 Xjcp(E(Aj)AiE(AJ))} = 

= sup <pE(Ai). i 
The following lemma shows that the definition of (pE is indeed an extension of 

the definition of (pH by Pedersen and Takesaki. 
3.3 Lemma. Let H be a self-adjoint, positive operator affiliated to W. If E is 

the canonical spectral measure on 5 (R + ) defined by H, then <pB = (pE. 

Proof . Take 2l+ . First, if / is a simple real-valued function on R + , 
n 

f=2aiiA,> we have 
»=i 

VttmiA) = 2 ^(p{lAi(H)AlAi(H)) = f / (>•) d<p(Ex AEX). 

Next, take an increasing sequence (/„) of simple functions which converges to 
A(l-feA)-1. Then H=swpfn(H), so 

J . 
(pHc (A) = sup (p/n(H) (A) = sup J /„ (2) dq> (Ex AEX) = 

" R + 
= FX{l+eX)-1dq>(ELAEO. 

R + 

Finally, by definition we have 

<PH(A) = sup cpHc(A) = s u p J ;.(1 -ffiA)-1 d<p(ExAEx) = 
R + 

= fXd<p(EiAEJ = <pE(A). 
R + 
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and Takesaki — gen-
Then, there is a unique 

Proof . Existence: Define 91 := <2^912^. For a map / on. 21+ define / to be 
the restriction of / t o 91+. 

Since \f/ is Zy-invariant, so is Q$ (2.6), i.e. Q^ZW and so is semi-finite 
with respect to (p (see the end of § 2). Thus, cp is semi-finite, normal and faithful and 
$ is semi-finite and normal. 

We show that $ is -invariant: Since is -invariant, l,p leaves 91 invariant; 
now, q> fulfils the KMS condition with respect to the restriction of to 91, so ï 9 

and I0 coincide. Thus, for all gÇX^ there is a such that g=g; hence, $(g(A))= 
= $(g(A)) = il,(g(A))=il,(A) = {i>(A) G4€9i+). 

So, the Radon—Nikodym theorem of PEDERSEN and TAKESAKI gives a unique 
self-adjoint and positive operator H affiliated to 91*' such that \j/=(pH. If EH is 
the spectral measure of H, define E£tyP* by RestB ( R + )£:=£, , and 

Next we show that i¡/=(pE: 
Let A be in 9I+. 
Case 1: Q^AQ^O. Since q> is faithful, <p(Q£AQfr)?iO and it follows that 

<pE(A)^°° Assume that \j/(A) is finite. Then, by Lemma 2.1, supp A 
is cr-finite, and it follows that supp A ^ Q ^ and Q^AQfr = 0 which is a contradic-
tion. Thus \j/(A)=°° and so il/(A)~(pE(A). 

Case 2: Q^AQ^ = 0. Now, since A is positive, we have that Q^AQ^—A (i.e. 
AW+) and 4>{A) = 4i(A) = <p„(A) = 0Ea(A)=<pE(A). 

Uniqueness. Suppose F Ç w i t h i¡/=(pF. Then g :=F(R + )69I" , so g is 
semi-finite with respect to (p. If / is a map on 9I+, denote the restriction of / to 
(Q11Q)+ by/. Then, 0 is semi-finite, normal and faithful and <pF(.) = J).d(p{F.F). 

H* 
If K is the (canonical) self-adjoint operator with spectral measure RestB(R+)F, then 
by 3.3, <Pr=0Rest ,„ sF=@k> s o 9f is semi-finite by [4], prop. 4.2, from which it 
follows that Q is semi-finite with respect to (pF=\j/. Thus — On the 
other hand, if PÇ9I is a projection with (pF(P)<then by the faithfulness of cp, 
¿r({oo})PF({°°})=0, so Ps sg . These facts together give Q = Q<1, (see §2). 

In particular, the argument applies to the spectral measure E (where E is as 
in the proof of existence), so one has £"(R+) = F(R + ) (i.e. $ = $ = and by the 
uniqueness of K it follows that E—F. 

3.4 T h e o r e m (Radon—Nikodym theorem of Pedersen 
eralized version). Let i¡/.be a normal Z^-invariant weight on 91. 
Ei 9F5 such that ij/ = (pE. 
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On the very strong and mixed approximations 

V. TOTIK 

1. Let / be a continuous and 27r-pcriodic function. Denote by En(f), a>(/; d) 
and sk(x)=sk(f; x) its best uniform approximation by trigonometric polynomials 
of degree at most n, its modulus of continuity, and the £-th partial sum of its Fourier 
series, respectively. 

If co is a modulus of continuity and is an integer we define WrHm to be: 
the class of those functions / f o r which co(/ ( r ); 5)^KFCO(D) (¿€[0, 2N]) holds with, 
some constant Kf. 

In [3], following works of ALEXITS, KRALIK and LEINDLER, we proved 

Theorem A. If p, y>0 and /£ WrHa then ice have 
i 

K ( f , P, P; x) = (x)-f(x)I'}p KHf;£* *) 

and 
2_ 

< I / , P; X\ = {^JT/R-L k ( * ) - / ( * ) l p } P ^ [AI = ( M + r ) | , 

where 
I 

Moreover, there are functions /6 Wr H" for which 

K ( f , P, P; 0) S cH?:tn and <rj |/, p; 0| S cH?:y (n = 1,2,. . .) 

for some c>0. 

Received November 29, 1978. 

*) K, c with or without subscripts denote constants not necessarily the same at each occur-
rence. \ 
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LEINDLER [ 2 ] raised the question: What can we say about the order of the strong 
approximation if we replace the sequence of the partial sums by a subsequence 
•(very strong approximation) or by a permutation of such a subsequence (mixed 
-approximation). In this paper we shall deal with these questions. 

Our main result is 

Theorem 1. Let E„(f)^Kgn («=1,2, ...), where the sequence {e„} satisfies 
the condition 

< i . i ) i Q 2 , n ^ K e n ( / , « = 1 , 2 , . . . ) . 

There exists a constant Kp, independent of n and of the sequence v= for 
which 

\ \ 2 M*)-/«!'}" ^ KpQn (p > o). 
I n k=n+1 } 

We shall use Theorem 1 to prove 

Theorem 2. Let us suppose that /£ Wr H™ where either rS 1 or r — 0, and 
<o satisfies the condition 

< 1 . 2 ) icq ( ^ Y =g Km ( 1 ) ( / , «¡ = 1 , 2 , . . . ) . 

We have for any y, 0 and for an arbitrary sequence v= {vfc} 

.and 

•(1-4) {4? 2 Alzl\sVk(x)-f(x)Y\'^ KH^l'" 

where K is independent of n and v. 
I f , moreover, for every function f£ Wr H1' and for every sequence {vfc} we have 

i 

O-5» I V J . ^ « - ^ ' - " ^ " ^ ) 
•then either r^l or r=0, and (1.2) is true. 

If a>(8)=8" ( 0 < a s l ) then (1.2) is satisfied and Theorem 2 shows that there 
is no difference with respect to the approximation order between the strong and the 
very strong approximation of functions in the classes W L i p a ( r = 0 , 1 , ...; 1). 
This is an answer to one of Leindler's problems (see the last two question of [2]). 
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We mention that the assumption "either 1 or r—0 and (1.2)" is also 
necessary that (1.3) and (1.4) should be satisfied, namely for /?>(/•+ l)p we obtain 
by Corollary of [3, Theorem 1] 

R J L " = « W ^ r w , 1 " " l K ' x > - f U , " \ ' \ = 

» i m ^ I I . 

so the second part of Theorem 2 is applicable. 
Finally we turn to the mixed approximation. Let N be the collection of the 

natural numbers. 

T h e o r e m 3. Let n: N—N be an injection, p>0 and /£ WrH"', where either 
1 or r=0, and (1.2) is true for co. 

(i) If 0<jSs=l then 

hn(f, p, p, n; x) = {(^ny 1 + 1)""1 Kv(*)-/W1P}" ^ KH№". 

(ii) If j3>l and J «({))" = - ^en hn(f,p, p, Tr; x) S KH>£\ 

(iii) If P> 1 and J c o < - then hn(f p, p, = o{H^% 

uniformly in x. 

(iv) 7 f 0 < p < l and ¿"(fc+iy-^-^ro^-jyj =°° then 

k=l 

d \ f , p, 7i; x\ = {—k2AyzlK(k)(x)-f(x)\jP ^ KHf;£\ 

(v) If 0 < P < 1 and 
J M T ) ) ' 

: oo then 

ol\f,P,n; x\ = o(HW), 

uniformly in x. 

(vi) If y s l then al\f,p,n- x\^KH?£n. 

The above constant K is independent of it, n and x. 
These estimations are best possible, namely if Q„~*0 arbitrarily, then there 

exist f£WrHm and c > 0 such that, according to the cases (i)—(vi) separately, there 
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V1J r, <o 0) 
cH'%» (¡0 

(iii) 

'r, a> (iv) 
CO Hp'y'n 
i fl F, O) (V) 

cHp'1'" r, 0} (vi) 

are permutations n of N for which 

(1.8) h„(J, p, p, n; x) = 

and 

(1-9) al\f,p,n;0\^ 

are satisfied for infinitely many n. 

Coro l l a ry . Under the assumptions of Theorem 3, for 

KiP, P) = sup sup h n ( f , p,P,ii; x) 
f .a(f ;S)S<D(6) 71; x 

and 
vn(p,P)= sup supaf l / , p, n; x\ 

f : co(f; 6) Sm(S) n; jc 
we have 

ClH^*-n S hn(p, P), an(p, p) g (c, > 0 ,n = 1, 2, ...) 

where J?* = min (1, P). 

2. To prove our theorems we require the following two lemmas. 

Lemma 1. [3, Theorem 4] There exists a Kp depending only on p(>0) for 
which 

2_ 

2K-f\PX ^KpEkl{f)\og^, 

l r i=1 j r 

whenever l^i:1<i:2<...<i:rS». 
Lemma 2. [3, Lemma 5] Let co be an arbitrary modulus of continuity. Then 

there are functions f£W0Ha such that 
(2.1) | s n ± x ( f ; 0)—/(0)| > 10~2co ( 1 ) l o g y (A s e~™n) 

is true for infinitely many n. 
We can also require that (2.1) be true for infinitely many n belonging to a given 

sequence. 

3. P r o o f of Theo rem 1. Let k. be the number of those vt for which 

2'n < v( s 2f+1n (n < t ^ 2n, i = 0, 1, ...). 

By Lemma 1 we have 

2 k ( * ) - / ( * ) l p S Kki(E2i„(f))p f l o g ^ X == Kki£?,.„ flog 
2in<v,=S2i + 1n V K; / V K; ) 



On very strong and mixed approximations 423; 

and thus it is enough to show that 

<3.1) n k^o V q„ ) V ki ) -

where K is independent from v and n. 
Now, 

f l 2 2 № ( i o g f ) 1 = 
n k~io \ Qn ) n fc.^o v Q„ ) V kt) J 

(1.1) gives 

A 2 k ^ K , 
n 0 

nt.>o,i>oUi' v kt) n \ kQJ n\ k0J 

(if k0=0 then the last member is missing), where the summation in 521 is extended 
1 n to the / ' s satisfying the condition —log-y~—P- We obtain 
l /Cj 

0 n 

n n ( f l \ p l 71 • In ^ we have log — =>/?/ i.e. — >e?<, and so Jtog—J j—^(pi)p/ep'; hence, 

¡=1 ip e"i 

Finally, {log x)pIx?EkKp(x^\) and so flog n V k0) , 
Collecting the above estimations we obtain (3.1), and the proof is completed. 

Proof of Theorem 2. /€ WrHa implies by the well-known result of Jackson 

that thus we-can apply Theorem 1 with ("""]' anc*' 

obtain 
i 

1 2n l 7 1 ( n 
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Using this, we get for 2 m ° - 1 <«s2 m ° 

i . 

1 m0- l V" l p 
+ j ^ r y j 2 (2mY~1 2 K W - / W I " ^ . . 

which is (1.3). 
(1.4) results by a similar argument using also the Holder inequality (see e.g. 

the proof of [1, Theorem 3]). 
Next we prove the last statement of Theorem 2. We have to show that if (1.2) 

is not satisfied then (1.5) does not hold for some / and v. 
Thus let us suppose that (1.2) is not true. Then for every n there are mn and /„ 

such that 

Since ^ [ ^ n j j ^ T ^ l m ) ' w e m a y s u PP o s e that the sequence {z„}~=1 is increasing 

and that m„+1>2mn ( n= l , 2 , ...). 
Taking into account that surely ia— °° if we have 2'">e100 for all 

sufficiently large n. Now Lemma 2 gives a function / £ W°Ha such that 

(3.2) |s 2 . n m n + x ( f ; 0) —/(0)| > 10-2 (log 2 ' . ) c o ( 0 - < X ̂  mn) 

holds for infinitely many n. Hence, if we construct a sequence {vt} for which 

V,+i = 2'»mn+l, vmn+2 = 2'»m„ + 2, ...,v2mn = 2i»mn + m„ 

for all n (this is clearly possible) then we get for infinitely many n 
i 

2" K ( f ; 0 ) - / ( 0 ) | 4 P > 10"2(log2'")a>i^T" -) ^ 

S -J- 1 0 - 2 i > ( — 1 > 4" 10~2nft) i — ] 2 " U'nmJ 2 KmJ 

i . e . / and {vfc} do not satisfy (1.5). 
We have completed our proof. 
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Proof of Theorem 3. First we prove (i) for j8=l : 

K(J, p, 1, tt; x) 2 |st(x)-/(x)|4P + { - l - 2 s 
1 Jc=0 J inH-1 0 ̂ k^m J ' 

nQt)>-n 

^ ^ KHP-y, 

where we use Theorem A and Theorem 1. 
This gives 

I M ) ' (3.3) 2 M x ) - f { x ) \ ^ K Z 
k=1 fc=l 

by which we have for 2m°~1<«^2m» and for /?< 1 

n m0-1 2m + l 

2(k+iy-1Kik)(x)-f(x)\"^K 2 (2m)"-1 I W * ) - / ( * ) I P 

k=l m=0 fc = 2m 

m0- l 2"> + l ( 1 /" H i ' 2™o f 1 / 1 " o - 1 

« ' ¿ « " i K r ' i W ? 
I ^ • 

m = logfc — 1 

and this is exactly (i). 
(ii) follows from (3.3) since 

K ( f , P, P, n\ x) S 1 («+1/"1 I W*)-/(*)IP}"^ 

Now let us suppose that 2 <w j < c o - Lemma 1 gives that 

S \sk(x)-f(x)\> 3 K2M CO (1 ) ) " = 0(1) (M - CO). 

k=n 

by which 

k 

Let e>0 be arbitrary and let us choose M so that 

2 k(*)-/(*)lp < e 
k=M 
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<be satisfied for all x. If N^ max n~1(i) then 
osimil 

1 2(k+ly-Ms^W-ZWI'^ 

fAT+iy-1 M i 

II ( H ) I M 

" + 1 k=M /1 + 1 

for all n large enough. Thus we have proved" (iii), too. 
(iv) follows from (i): 

al\f,p, 7t- x\ ^ 2 ('i+l-ky-i\sn(k)(x)-f(x)\>>y = 

i 

= ^{orny 20(k+iy'1Kn-k)(x)-f(x)\jP ¡BKHr";r, 

"where ewe used the inequalities 

Ci(a)kx c2(a)k* (a > - 1 , Cl(a) > 0 , k= 1,2, ...). 

(vi) could be proved similarly with the aid of (ii) and (iii). 

Finally let us suppose that and 2 (fc + l ) y _ 1 < 0 ° - I t ' i s 

known that the last condition implies 

Thus to every e > 0 there exists an M— M(e) for which 

PC)M\ 1 - y 

\ 
are satisfied. It is easy to see that (1.2) implies ca(<5) log <5=o(l) (¿—0). Now the 
Dini—Lipschitz test gives that sk(x)—/(x) = o(l) uniformly in x, and so 

| i , ( » - t ) W - / ( * ) l < ¿ s r p i № = 0 , 1 , . . . , 2M) 

for 
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Using the previous estimations and (3.3) we have for and 2'"° 1-
- n ^ 2m° 

i 
(f 1 2M i 7 

al\f, p, n; x\ 2 ^r1|s«(.-t)(*)-/(*)lp} + 
i i 

r l mo-l 2- + 1 - | 7 Cf 1 2M v 7 
+ H f 2 2 ^ K 2 + l^A m = Af (t = 2m + l J t = 0 > 

1 

i 

• 7 « " f l ' f e + f e l l M i ) ) ' « ' - 1 } 7 

i 

+ 
m = logfc—1 

which was to be proved. 
So far we have proved (i)—(vi). It remains to show that these estimations are 

best possible. 
Let / be the function given in Theorem A. 
The first row of (1.8) immediately follows from Theorem A. 

Let us suppose that 2 CJ = c o anc* that /?>!. We shall define a n 

permutation of N as follows: If 7r(0), ..., n{nmare already known and n(J) = Mm 

(/=0, 1, ...,ram-i), let 
n{nm+\) = 2Mm+\, n(nm+2) = 2Mm + 2, ..., n(nm + nm) = 2Mm + nm, 

where nm will be chosen later. 
However should n be defined between nm_1 and nm we have in any case 

i . JL 

{ i ^ r T n f ^ ' 1 3 I W * ) - / M I P } M ; T T T 2 Mx)-m\'}' l-(Znm + i ) *=«m+l J lnm+i t=2Mm+l J 
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and therefore 
(3.4) 

K J f , P> ß, n;0)^c 
, 2 M O ) - / ( 0 ) 1 * 1 * 

— T 2 k ( o ) - / ( o ) l p - ' = 0
 n , , ^ j U ^ " » l « m + l ) c = 0 

if nm is large enough in comparison with Mm, because 2 a j ' s 

equivalent with [ i - j . 

Let us choose nm so large that the above estimation should be satisfied, and then 
continue the procedure. 

It is clear that the above, partly defined n could be extended to a permutation 
of N, and so (3.4) shows that (ii) cannot be improved. 

Finally, if gn~*0 arbitrarily, we follow the above construction and get 
i 

hnm(f> P, P> o) = c U - Z | s t (0) - / (0) |4 P
 s <-"m + i * = 2Mm + l > 

(at the second inequality we used that for / we have 1^(0)—/(0)|sc — co j 

(5 • 2v-2v~1^k^5 •2V+2V-1) (see the proof of [3, Theorem 1]) if nm is large enough. 
Thus the proof of (1.8) is completed. 
The proof of (1.9) is similar, we omit the details. 
The proof of the Corollary on the basis of the above arguments is easy. The 

right-hand estimations follow from the proof of (i)—(vi), while the left-hand sides 
are easy consequences of Theorem A. 

The proof of Theorem 3 is thus completed. 
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Quasi-similarity of restricted C0 contractions 

MITSURU UCHiYAMA 

1. A bounded linear operator X from a separable Hilbert space § to a separable 
Hilbert space is called a quasi-affinity if and K(X*) = 0, where K(X) 
denotes the kernel of X. The bounded operators T on § and T' on are called 
quasi-similar and denoted by T' if there are quasi-affinities X and Y such that 
XT=T'X and TY= YT'. 

In this note we say thet T has property (Q) if T\K{A) and ({T^KiA*)*) are 
quasi-similar for every A in (T) ' . Not every bounded operator has property (Q); 
it is easy to contstruct even a self adjoint operator which has not property (Q). 

2. Lemma 1. If T on § and S on 9y' are similar, then T has property (Q) if 
and only if so is S. 

Proof . Let T have property (Q) and suppose XT=SX for some invertible X. '' 
Set B=X~1AX for A commuting with S. Then it is clear that B commutes with T 
and that T\K(B) and T*\K(B*) are similar to and S"\K{A*), respec-
tively. Therefore S|A:(4)~(S*|i:(>4*))*. 

Lemma 2. If both T on § and S on have property (Q) and cr(r)ricr(5') = 0, 
then the direct sum T® S on § © §>' has property (Q) also. 

Proof . From Rosenblum's corollary, (T© S)'=(Ty®(Sy [2]. The rest is 
omitted. 

P r o p o s i t i o n 1. If 9) is finite dimensional, then every normal operator on § has 
property (Q). 

P r o o f . From Lemma 1 and Lemma 2, we may assume that T—al for some 
scalar a. .The rest is obvious. 

We will use the above results in the last example. 

Received September 29, 1978, in revised form February 1, 1979. . 
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3 . S Z . - N A G Y and C . FOIA§ [7 ] conjectured that all C 0 contractions with finite 
multiplicity have property (Q). In this section we present a counter example. About 
the terminology and the notations see [4] and [1]. 

Example 1. Let ij/1 and \p2 be relatively prime scalar inner functions defined 
on the unit circle. And define the 2 x 2 diagonal matrix valued inner function M by 

M = I 
Then the class C0(2) contraction S(M) on § ( M ) defined by 

§(M) = Hi © MHl S(M) H = P(zh), 

where H2 denotes the 2-dimensional vector valued Hardy class and P is the projec-
tion from Hi onto §(M), does not have property (Q). 

Proof . Setting 

A=PA\5)(M) commutes with S(M), because AMH2cMH2. First we show that 

and hence 

For this, it is sufficient to show that 

{K@h2: h£Hl A(h^h^MHi) = -i- ^ HI 

It is clear that the right hand side set is included to the left hand side set. Suppose 
that an element hx © h2 in the left hand side set is orthogonal to the right hand set. 
Then there are fx and / 2 in H2 such that 

hx+\!/xh2 = \j/2fx, hx = \j/xf2, and, therefore, *l/t(f2+h2) = \l/2fx. 

Since iJ/x and ij/2 are relatively prime, there exists / in H\ such that fx—^/xf so 
f2+h2=\j/2f. On the other hand, for every g1 and g2 in H2 it follows that 

(h, "Ai g 2 ) + i h , gi ~ gi) = 0-

Thus we have f2—h2 and (h2,^2g^)—Q, which imply / = 0 and hence hx=h2 = 0. 
Next we show that 

closure of range A = (ij/f® ij/j ij/t) H2 Q MHl 
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and hence (S(M)*\K(A*))*~S(i]/l(Biplil/l). For this it suffices to show that 

AH2VMHI = 
Since 

A = [OL rJ^l 1 ^O] AND 

AH*VMH\c(i/^28 " A i " A D S u p p o s e that is orthogonal to 
AH2W MH2. Then h^®h2 is orthogonal to 

[\ ' ^ J / / | V 0 A 2 © , / , , ) / / ! . 

From this it follows that A1+/!2=0, and that hx and h2 are orthogonal to ij/2 H2 and 
ipiH2, respectively. Since \j/1 and t¡/2 are relatively prime, we have /i1 = /?2 = 0. 

Last we must show that S{M)\K(A) and (S(Mf\K{A*)f are not quasi-
similar. But this is clear, because the minimal functions of these operators are t/'®)/'2 

and respectively. 

4. We denote the lattice of invariant subspaces for T and the lattice of hyper-
invariant subspaces for T by Lat T and Hyplat T, respectively. 

Let 9 and 9' be nXn matrix valued inner functions. Suppose S(0) on §(9) 
and S(9') on §(0 ' ) defined as Example 1 are quasi-similar. Then there are nXn 
matrices T and A over H°° such that 

re = 6'A and (det F) (det A) A (det 9) (det 0') = 1 [1]. 

Moreover, it follows that 
(det A)ra9' = 0 (det T) A", 

where ra denotes the classical adjoint of r [6]. In this case, setting X=P'F\9)(0) 
and y=P(de t A)Ta |§(0'), where P' and P are the projections from Hn onto 
§(0 ') and §(0), respectively, X and Fare quasi-affinities satisfying XS(9) = S(0')X 
and YS(9') = S(9)Y [1]; moreover, XY=<p(S(9'j) and YX=q>(S(6)), where 
<p=(det T)(det A). 

P r o p o s i t i o n 2. The mapping x from Lat S(0) to Lat S(9') defined by T £ = X £ 

is a lattice isomorphism, and its inverse is given by x_1£ = Y£. Hyplat S(0) and 
Hyplat S(O') are isomorphic. Similarly, the mapping x' from Lat S(9)* to Lat S(9')* 
defined by x' 2 = Y* 2 is a lattice isomorphism, and its inverse is given by x/_1£ = 
=X*&. Hyplat 5(0)* and Hyplat S(0')' are isomorphic. 

Proof . Let £ ^ 0 belong to Lat S(0). Then belongs to Lat 5(0'). 
Since (Z|£)(S(0)|£) = (S(0')|l£)(A''|fl), we have S(6)\2~S(6')\X2. [1]. Similarly, 
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S(6')\X2~S(e)\YXQ. Since YX2=(p(S(6))2<z2, we have KZ£ = £ (see [5] or [7]). 
Therefore, t is one to one. Surjectivity is similarly shown. That r preserve the lattice 
structure is obvious. That Hyplat 5(0) and Hyplat S(d') are isomorphic was shown 
in [8]. Since 

X*Y* = <p(S(0)*) and Y*X* = <p(5(0')*) 
we can show the rest similarly. 

P ropos i t i on 3. If 5(0) and 5(0') are quasi-similar, then 5(0) has property 
(Q) if and only if so is 5(0'). 

Proof . Assume that S(0') has property (Q). For each A commuting with 
5(0) set B=XAY. Then B commutes with 5(0') and Y K(B)aK(A). Since 

BX = XAYX = XAcp (5(0)) = Xcp (5(0)) A 

we have XK(A)c:K(B). Thus, by Proposition 2, it follows that 

K(A) YK{B) 3 YXK(A) = K(A). 

Therefore, we have K(A) = YK(B) and XK(A) = XYK(B) = K(B). Thus 

S(0)|K(4) = S(0)\YK(B) ~ 5(0') (5). 
Similarly, we have 

S(9)*\K(A*) = S(0)*\X*K(B*) ~ S(9')*\K(B*). 

Since S(0')|Je(fl)~(S(0')*|K(£*))*, it follows that 
5(0)|K(,4) ~ {S(0)\K(A*)Y, 

concluding the proof. 

P r o p o s i t i o n A. If A belongs to (5(0))", then 

5(0)1*04) ~ (S(6)*\K(A*))*. 

Proof . Let 0 ' = ^ ! © ...©)/'„ be the normal form of 0. Then B—XAY belongs 
to (5(0'))" so £=>J(5(0')) for some t] in / / ~ [9]. Setting = 1̂ /(17 A we have 

K(B) = (^©...©^^©(^©...ffiW//2. 
Thus S(0')\K(B)~S(r)/\ij/i® ... ©//Ai/O- On the other hand, 

implies that 
{S(0T\KOB*))*5(//AI^1FFI...FFI/;A^„). 

Since, by the proof of Proposition 3, 
5(0)|A:O4) ~ S(6')\K(B) • and S(ff )* IK(A*) ~ S(6')*\K(B*), 

we have 5(0)|/q>4)~(5(0)*|/s:O4*))*. 
Corol la ry . If 5(0) has a cyclic vector, then 5(0) has Property (Q). 
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Proof. Since (5(0))'=(5(0))" (see [3] and [4]), it is obvious. 

To conclude we present a counterexample to the converse assertion of Corollary. 

2 — a (z+ l \ Example 2. Set ^ 1 (z)=-—— for | a |< l and ^2(z)=exp . Then 
1 — ccz \z— 1 j 

0=(^1©i/,l(//2) is a 2 x 2 matrix valued inner function, and 5(0) has no cyclic 
vector [4]. But it follows that 

5(0) = 5(1 © ^ © i / ^ ) ~ 5(i/'1©IAi©I/'2) = 5(t/'1©t/'1)ffi5(iA2). 

Since 5(i/'1ffii/'1) is a 2 x 2 diagonal matrix, by Proposition 1, S(\l/1®\l/1) has 
property (Q). Since S(^2) has a cyclic vector, by Proposition 4, S(i]/2) has property 
(Q). Lemma 2 and relation 

ff(SWi®«Mn<r(SGM = 0 (cf- [4]), 
imply that 5(i^1©^1)© S(\j/2) has property (Q). Thus, by Proposition 3, 5(0) also 
has property (Q). 

Note. After this paper was written, the author received a preprint*) from Hari 
Bercovici, which covers a great part of the results of this paper. The author thanks 
to H. Bercovici and B. Sz.-Nagy. 
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On the structure of standard regular semigroups 

R. J. WARNE 

We give a structure theorem for a class of regular semigroups and determine 
the smallest inverse semigroup congruence for this class of semigroups. Let S be 
a regular semigroup, let T denote the union of the maximal subgroups of S, and 
let E(T) denote the set of idempotents of T. Assume T is a semigroup (equivalently 
Tis a semilattice Y of completely simple semigroups (Ty: yd F)). If Fhas a greatest 
element and e,f,gdE(T), e=f, and e^g imply fg—gf, we term S a standard" 
regular semigroup. The structure of S is given modulo standard inverse semigroups 
and standard completely regular semigroups by means of an explicit multiplica-
tion. In the case |F | = 1, our structure theorem reduces to the Rees theorem for 
completely simple semigroups. A structure theorem for standard completely regular 
semigroups is also given. The minimum inverse semigroup congruence on a standard 
regular semigroup is described. 

Let us first state our structure theorem for standard regular semigroups. Let 
(V, o) be a standard inverse semigroup with semilattice of idempotents Y, and let 
(T, *) be a standard semilattice Y of completely simple semigroups (Ty: yd Y) 
with y = y*ydTy. Suppose Ty(~]V=Hy for yd Y and (Hy, o) [(Hy, *)] is the maxi-
mal subgroup of (V., o) [{T, *)] containing y and assume a*b—aob for 
a,bdU(Hy: ydY). Let Iy denote the maximal left zero [right zero] subsemi-
group of Ty containing y. Let (Y, T, V) denote {(i,b,j): bdV, idIbob-x, jdJb-iob} 
under the multiplication (i, b,j)(r, c, s)—(i*u, bo(j*r)oc, v*s) where 
wi/(i.oc)»(i.oc)-i a n d v£J(b°c)-ic(boc)- W e show (Theorem 1.9) that (Y, T, V) is a stand-
ard regular semigroup and, conversely, every standard regular semigroup is isomor-
phic to some (Y, T, V). 

In [4, Theorem 3.14], we gave a different structure theorem for standard regular 
semigroups. 

The structure of standard inverse semigroups is clarified by [4, Theorem 5.5].. 

Received May 9, 1978. 
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In Section 1, we prove our structure theorem for standard regular semigroups 
(Theorem 1.9) and give some specializations of this theorem (Remarks 1.21 and 
1.22). In Section 2, we describe standard completely regular semigroups in terms 
of groups by means of a "Rees type" multiplication (Theorem 2.1). In Section 3, 
we give the following description of the minimum inverse semigroup congruence 
on a standard regular semigroup S=(Y,T, V). Let N denote the collection of all 
finite products of elements of the form a~1osoa where a£V and s or 
.s~H(\J(Jy: >'6 5 0 ) * ( U ( / r y£Y)). Let N, = NDH, for y£Y. Let 

SN = {((/, a,j), (p, b, q))£SxS: Nyoa = Nyob where y = aoa'1 = bob-1}. 

Then, dN is the minimum inverse semigroup congruence on S. 
We will use the definitions and notation of CLIFFORD and PRESTON [1, 2] unless 

otherwise specified. The terms mainly used are: Green's relations {Si, i f , and 3>), 
-class, regular semigroup, bisimple semigroup, inverses, inverse semigroup, left 

(right) zero semigroup, right group, idempotent, natural partial order of idempo-
tents, semilattice, completely simple semigroup, semilattice of completely simple 
semigroups [groups, left (right) zero semigroups], maximal subgroup, congruence, 
and kernel of a homomorphism. 

A semigroup is termed completely regular if it is a union of its subgroups. If 
X is a semigroup, E(X) will denote the set of idempotents of X. A regular semi-
group X is termed locally inverse if e,f g£E(X), e^f and e=g imply fg=gf 
'(See [4] for an explanation of terminology.) A congruence g o n a semigroup X such 
that X/Q is an inverse semigroup is termed an inverse semigroup congruence on X. 
"Structure homomorphisms" are defined and discussed in [4, Section 1]. 

1. Standard regular semigroups. In this section, we establish our new structure 
theorem for standard regular semigroups (Theorem 1.9). 

Let S be a standard regular semigroup and let T denote the union of the maximal 
subgroups of S. Hence, T is a semilattice Y' of completely simple semigroups 
(Ty: y£ Y') [1, Theorem 4.6] where Y' has a greatest element y0. Let {¿^z: y, z£ Y} 
denote the set of structure homomorphisms of T [4, Section 1]. Let Ey=E(Ty). 
Select and fix ey£E(Tyo). For each y£Y', define ey = e y ^ y . Let S0 = eyoSeyo. 
Let Ie [Je ] denote the set of idempotents of the if-class [^2-class] of Ty containing 
ey. Let He denote the ^f-class of S containing ey. 

Lemma 1.1. ([4, Lemma 2.2]) y-»ey defines an isomorphism of Y' onto E(S0). 

Lemma 1.2. He=TyC\ S0 for y^Y'. 

Proof . Utilize [4, Theorem 2.3]. 
Let £(S0) = y and let J {a) denote the collection of inverses of a. 
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Lemma 1.3. (a) T is a semilattice Y of completely simple semigroups (Ty\ yd Y) 
where y*=y£Ty. (b) / = U(Iy: y£Y) [J=U(Jy: y£Y)] is the semilattice Y of left 
zero semigroups [right zero semigroups] (Iy: yd Y) [(Jy: y£Y)]. 

Proof , (a) Let Te=Ty{ydY'). Then, using Lemma 1.1, TeTe=TyTz<gTy2 = 
= T = T (b) Utilize the proof of [4, Lemma 2.4] and its dual / yz eyex 

Lemma 1.4. Every element of S may be uniquely expressed in the form x=gbh 
where bdS0, gdlbb-i, and hdJb-ib. 

Proof . Let adS. Hence, a£ReC)Lf for some e,fdE(S). Suppose e£Ty and 
fdTz (>', z<E Y'). Let re [lf] denote the ^-class [J2?-class] of Ty [Tz] containing e [ / ] . 
Using [1, Theorem 2.51], r e C \ I e ^ a and l f C \ J e ^ Letgdre(~\Iey and hd l fHJ^ . 
Hence, g(eyoaeyt)h = (geyo)a(eyoh) = (geyeyo)a(eygezh)=gah = a. By the proof of [1, 
Theorem 2.18], since adRgDLh, there exists a unique a~1dRhr\Lif]J(d) such 
that aa~x=g and a~la=h. Thus, (ey<iaey)(e^a"1 ey)(eyoaey) = eyaaeytha'^ae^ = 
= W a n d similarly, {e y a-^e y ) (e y ae y ) (e y a-^e ; ) = eya-^ey a . Thus, if 
b=e ae , b_1 = e a~1e„ . Hence, as above, bb 1 = e, and b 1b = e,. Hence, >>o J>o' ô y z 

every element of S may be expressed in the form gbh where bdS0, gdlbb-1, and 
h£Jb-ib. We next show gbhdRgC\Lh. Since gbhb~1bb~1=g, gdgbhS. Thus, since 
gbhdgS, gbhdRg- Similarly, gbh£Lh. We are now in a position to establish unique-
ness. Let x—gbh = wcz where cdS0, wdlcc-i, and zdJc-ic. Hence, g0txMw 
and, similarly, h$£z. Since gw = w, wg—g, and S0 is an inverse semigroup, using 
{1, Theorem 1.17], cc-1 = bb~1cc-1 = cc~1bb-1=bb~1. Thus, g=w. Similarly 
b~1b=c~1c and h=z. Hence, b=bb~1bb~~1b=bb~1gbhb~1b = cc~1wczc~1c = 
= cc~1cc~1c — c. Q.E.D. 

Using Lemma 1.2, He is the ^f-class of S0 [ 7 y containing ey. 
Lemma 1.5. If idL and jdJ. , jidH. . 

Proof . Apply the proof of [4, Lemma 2.11]. 

Lemma 1.6. Let H=U(He : yd Y'). Then H is the semilattice Y of groups 
(Hy : yd Y). Hence, E(H) is contained in the center of H fi.e. eh=he for all edE(H) 
and hdH). 

Proof . Utilize [4, Proposition 1.9], Lemma 1.2, and [1, Lemma4.8]. 

Lemma 1.7. Let b, cdS0,jdJb-ib, and pdlcc-1. Then (b(jp)c)(b(jp)c)~1 = 
—(bc)(bc)~^ and (b(jp)c)-1b(jp)c=(bc)~1bc. 

Proof . Using Lemmas 1.5 and 1.6, ( b ( j p ) c ) ( b ( j p ) c ) ~ 1 = b ( j p ) c c ~ 1 ( j p ) ~ 1 b ~ 1 = 
=bcc-1(jp)(jp)-1b-1=bcc-1b-1 = (bc)(be)~1 and, similarly, (b(jp)c)'1(b(jp)c) = 
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For a,b£S0, define aob=ab. For a,b£T, define a*b — ab. 

Lemma 1.8. Let b, c£S0, KIbob-i,j£Jb-iob, p£lco-c-i, and q£Jc.ioc. Then 
(ibj)(pcq) = (i*x)(bo(j*p)oc)(y*q) where xil(boc)o{boc)-i and y£J(boc)-io(6oc). 
Hence, 5 s {(/, b,j): b£S0, i£fbob-i, j£Jb-iob} under the multiplication 
(i, b,j)(p, c, q) = (i*x, bo(j*p)oc, y*q). 

Proof . Utilizing Lemma 1.7, ( ibj){pcq) — i{bo{j*p)oc)q = {i*{(boc)o 
o(6oc)-1))(6o(y'*/7)oc)(((Z>oc)-1o(6oc))*^). Let bob~x = eT and (¿oc)o(6oc)_ 1= 
= ew. Thus, i*((boc)o(boc)~1) = iC,yW = i*x and, similarly, (([boc)-1o(boc))*q = 
=y*q. Hence, using Lemmas 1.4, 1.3, 1.5, 1.2, and 1.7 the last sentence of the 
lemma is established. 

Theorem 1.9. (Y, T, V) is a standard regular semigroup, and, conversely, every 
standard regular semigroup is isomorphic to some (Y, T, V). 

Proof . The converse is a consequence of Lemmas 1.1, 1.6, 1.3, 1.2, and 1.8. 
We next establish the direct part of Theorem 1.9. Let S=(Y, V, T). 

Lemma 1.10. S is a groupoid. 

Proof . Let (i, b,j), (r, c, s)ZS. Let {Cy,z- y, z£ Y} denote the set of structure 
homomorphisms of (T, *). Suppose y^z. Hence, z=y*z=yCytZ*z=z*y=z*y(ytZ 

or zSyCy,z. Thus, Xy,z = z. Hence, iC^-i^^^yi^iboc^iboc)-1, since 
iSebob-1. Thus iCbob.i>(6oe)o№oe)-i€/№oc)<>(6.c)-i. Hence, ' i**=if6 .4- i ,№ . e ) o ( i < , e )- i 
for x£l(boc)o(boc).i and, similarly, sCc-ioetiboc)-ioboc€Jiboe)-ioboc and y*s= 
=iC->oc,№oc)-'o(ioc) for yeJ(boc)-io(bocy Thus, (i, b,j)(r, c, s) is independent of 
the choice of u and v. Furthermore, as in the proof of [2, Theorem 2.11], j£Jz 

and i£Iy implie's j*i£Hyz. Let H= U(//,,: yd Y). Then, Lemma 1.6 is valid for H. 
Thus, as in the proof of Lemma 1.7, ( b o ( j * r ) o c ) o ( b o ( j * r ) o c ) ~ 1 = (boc)o(boc)~\ 
and, similarly, (bo( j*r )oc)~ 1 o(bo( j*r )oc)=(boc)~ 1 o(boc) . 

Lemma 1.11. S obeys the associative law. 

Proof . Let a = (i,b,j), fi = {r,c,s), y = (w,d,z) be elements of 5. Let cc^i, 
a2~b, and a3=j. Then, ((a^)?)i = iC6oil-i;(6ocoi))o(f>ocod)-i = (a(i5y))1, and, simi-
larly, ((oip)y)z — (a(fiy))3. Furthermore, ((af})y)2=bo(j*r)oco((v*s)*w)od where 
v£J(b°c)-Hb°cy However, (y*j)*»v = (((6oc)_1o(i>oc))*5)* w—{c~1ob~1oboc)o 
o(s*w). Hence,((af})y)2 = bo(j*r)ococ~1ob~1 oboco(s* w)od=bo(j*r)oco(s*w)o 
od. Similarly, (a(py) ) 2 =bo( j*r )oco(s*w)od . Q.E.D. 

Lemma 1.12. (b~1ob, b-1, bob'1)^J(fj, b,j)). Hence, 5 is a regular semi-
group. 

Proof . This lemma follows from a straightforward calculation. 
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Lemma 1.13. (a) (i,b,j)@(p, z, q) if and only if i=p. (b) (i, b,j)£?(p, z, q) 
if and only if j=q. (c) (z, b,j)Jf(p, z, q) if and only if i=p and j=q. 

Proof , (a) First assume i=p (hence, bob~i=zoz~1). Thus, (/, b,j)(b~1ob, 
¿_ 1oz, q) = (i, z, q) and (z, z, q^z'^oz, z~1ob,j) = (i, b,j). If (z, b,j)@(p, z, q), 
there exist x,ydl such that i*x=p and p*y = i. Thus, i*p=p and p*i=i. 
Hence, bob~1=zoz~1 and i—p. 

Lemma 1.14. (z, b,j)3)(p, z, w) if and only if b!3z(£ V). Hence, S is bisimple 
if and only if V is bisimple. 

Proof . Suppose b3)z (in V). Hence, there exists x£V such that bob-1 — 
and x~1ox=z~1oz. Thus, (i, b,j)i%(i, x, w)£f(p, z, w). Conversely, 

suppose (z, b,j)3i(p, z, w). Hence, (i, bJ)Sft(u, x, v)£C(p, z, q), say. Thus, bob~1 = 
=xox~1 and x~1ox=z~1oz or b!3z. 

Lemma 1.15. E(S)={(i,b,j): j*i=b~\ iUy, j£Jy, y£Y). 

Proof . Suppose (z, b,j)(i, b,j) = (i, b,j). Hence, bo(j*i)ob = b. Thus, 
0b~' i ob)o{j*i )o{bob- Y )^b- 1 . Hence, b~KH and bob~1=b~1ob. Hence, 
j*i£Hbob-i and j*i=b~1. Conversely, {i,(j*i)~1,j)(i,(j*i)~1,j) = (i*((j*i)~1o 
°(j*ij), (j*0~\ (U*i)°(j*i)~1)*j) = {i> U*i)~\j)-

Lemma 1.16. T' = {(i,b,j): b£Hy,i£ly,j£Jy,y£Y} is the union of the maximal 
subgroups of S. 

Proof . Let T' denote the union of the maximal subgroups of S. Hence, 
(z, b,j)£ r if and only if (z, b,j)je(p, c, q)£E(S)' Suppose (z, b,j)3e(p, c, q)£E(S). 
Using Lemmas 1.13 and 1.15, c = (q*p)~1£Hy, say, i£ly,j£Jy, and b£Hy. Sup-
pose i£ly, b(iHy, and jUy. Hence, (z, b,j)^{i, (j*i)~\j)£E(S). Q.E.D. 

Lemma 1.17. Let Ty = {(i, g,j): g£Hy, i£ly,j£Jy}. Then T' is the semilattice 
Y of completely simple semigroups (Ty: y£ Y). 

Proof . Let ( i , g , j ) , ( p , h , q ) e T y . Hence, (z, g,j)(p, h, q) = (i, go(j*p)oh, q). 
Hence, T'y is completely simple. Let ( i , g , j ) £T y and (p,h ,q)£T ' z . Hence, 
(i,g,j)(P, K q) = (i*(y°z), go(j*p)oh, (yoz)*q)eTy2. 

Lemma 1.18. Every element of Ty may be uniquely expressed in the form 
x = i*g*j where i£ly, g£Hy, and j£Jy. 

Proof . Suppose Ty = Jt{G\M,K\P) (notation of [1]). Let ey = (j>~l
1)n. 

Hence, Iy={(p^)a: ieM}, Jy = {(p-\j:jeK}, and Hy = {(g)n: gfG}. Hence, 
(g)ij=(Pii1)ii(x)u(Pji)ij where x=p~1pligpnp-1

1. 
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Lemma 1.19. Let (i*g*j)9 — (i,g,j) {idIy, gdHy, jdJy). Then 9 defines an 
isomorphism of T onto T'. Hence, T' is locally inverse. 

Proof . If jdHy and pdlz, j*pdHyoz. Let i*g*jdTy and p*h*q£Tz 

(i£Iy, gdHy, jdJy, pOz, hdHz, qdJz). Hence, ( ( i * g * j ) * ( p * h * q ) ) 9 = 
= (i*g*(j*p)*h*q)9 = (i#(yoz)*g*(j*p)*h*(yoz)#q)9 = (i*(yoz),go(j*p)oh> 

(yoz)*q) = (i, g, j)(p, h,q) = (i*g*j)9(p*h*q)9. 

R e m a r k 1.20. The isomorphism g—(gog -1 , g, g - 1 og) embeds (V, o) into 
(Y, T, V). In fact, {(gog-\ g, g - 1 og): gd V}=(y0, y0, y0)(Y, T, V)(y0, y0, y0) 
where y0 is the greatest of Y. 

The terms standard regular semigroup of type &> Y, coY inverse semigroup, 
locally inverse semigroup, rectangular group, orthodox semigroup, standard orthodox 
semigroup and standard if-unipotent semigroup are defined in [4, pp. 540—542]. 

Remark 1.21. Using Lemmas 1.14—1.17, (Y, T, V) is a standard regular semi-
group of type coY if and only if F is an coY inverse semigroup. 

R e m a r k 1.22. Let (Y, T, V)0 denote (Y, T, V) with "completely simple semi-
groups" replaced by "rectangular groups" and " b o ( j * r ) o c " replaced by "boc". 
Let (Y, T, V)<p denote (Y, T, V)0 with "rectangular groups" replaced by"right 
groups". Then, (Y, T, V)0 [{Y, T, V)^] is a standard orthodox, [standard if-uni-
potent] semigroup, and conversely every standard orthodox [standard Jif-uni-
potent] semigroup is isomorphic to some (Y, T, V)0 [(Y, T, K)J (cf. [4, Theorems 
5.1 and 5.3 and Remark 5.6]). 

Remark 1.23. If we specialize Theorem 1.9 to orthodox semigroups, we obtain 
the specialization of Yamada's structure theorem for generalized inverse semigroups 
[6] to standard regular semigroups. 

2. Standard completely regular semigroups. In this section, we give a structure 
theorem for standard completely regular semigroups (Theorem 2.1). 

Let Y be a semilattice with greatest element. Let I [J] be a locally inverse semi-
lattice Y of left zero [right zero] semigroups (7a: a £ Y) [(/„: ad Y)] with structure 
homomorphisms {^a,p) [(£„,/?)]• Let G be a semilattice Y of groups (Ga: ad Y) with 
structure homomorphisms {(pXip}. Let ( j , i ) — p J t i be a function of Jxl into G 
such that 

(1) if jdJx a n d idh, Pj,idGx; 

(2) if jdJx a n d IDJ^ PJ,i = PJI.,. 

(3) if jdJa a n d id/x a n d a £ 0, pj,i(px,p = 
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Let (Y , /, J, G, i, c, <p) denote {(/, g,'j): i£lx, g£Gx,j£Jx and a € T} under the: 
multiplication 

(4) (i, g, j) O, h, z) = (iw, gpj, w h, jz). 

Theorem 2.1. ( Y , I , J , G, c, 9)) « a standard completely regular semigroup,, 
and, conversely, every such semigroup is isomorphic to some (Y, I, J, G, (p). 

Proof . Let S be a standard completely regular semigroup. Hence, S is a. 
semilattice Y of completely simple semigroups (Sx: a6 Y). Let a„ denote the greatest 
element of Y. Let {<5^} denote the set of structure homomorphisms of S. Let 

and define e^e^S . Hence, exep = exp. Let Tx [ /J denote the set of 
idempotents of the =S?-class [^-class] of Sa containing e„. Hence, Ia [ /J is a left zero 
[right zero] semigroup. As in the proof of Lemma 1.3,1= U (/„: oc£ Y) [/= U(Ja: a€ 7)] 
is a semilattice Y of left zero [right zero] semigroups (/„: af_ Y) [(Ja\ 7)]. Let 
(xj—<>x,p\J a n d t\I- Thus I and J are locally inverse by [4, Theorem 1.6]. 
Let Gx denote the -class of Sx containing ea. Hence, using [4, Proposition 1.9], 
G=U(Ga: Y) is the semilattice Y of groups (Ga: Y) with structure homo-
morphisms (px p=5x ^\G. As in the proof of Lemma 1.18, every element of S may 
be uniquely expressed in the form x=igj where i£la, g£Gx, and j€Jx. Let j£Jx 

and «e/p. Hence, ji=jCx ^i^ xfi£Gxl!. For j£Jx and i f j p , define Pj,i=ji. Hence,. 
(.j\i)-"Pj,i defines a function of Jxl into G satisfying (1) and (2). (3) is verified, 
by a straightforward calculation. Let x = igj£Sa and y = whzdSp. Hence xy = 
=(igj) (whz) = i(gPj wh)z = (/'C^ xp) (gpJt w h) ( z ^ xfi)=(iw) (gpjt w h) (jz). Thus, igj-

g j ) defines an isomorphism of S onto X=(Y, I, J, G, (, cp) under (4). 
Next, we show X=(Y, I, J, G, c, cp) is a standard completely regular semi-

group. Closure is a consequence of (1) and (2). For a£Y, let Tx={(i,g,j): i£ Ta,. 
g£Gx,j£Jx}. Let x = (i, g,j)£Ta, y = (m, h, n)£Tp, and w=(c, z, d)£Ty. Using 
(2) and (3), 
=Pji.*,ri»')t ty*y=p '-»u>- s i m i l a r l y . Pn,c<Ppy,m=Pin,c- Thus, (xy)w= 
(jrnc,g(pxix^pj m<pxp ^7h(petapyp jn tcz(py^y,jnd) = x(yw). Using (4), the Rees theo-
rem [1, Theorem 3.5], (1) and (2), X is the semilattice Y of completely simple semi-
groups (Tx: a£Y). Hence, X is completely regular by [1, Theorem 4.6]. We next 
show X is locally inverse. Using (4), E(X)= {(i,pjl,j): i£lx, j£Jx, <x£Y}. Let 
(hPZlMT. and Then, using (4), (3) and (2), (i,pj), j)^(a,p~l, 6> 
if and only if a^P, i£XtP=a, and jt,a^=b. Thus, using (4), (3) and (2), S is locally 
inverse. 

Remark 2.2. The structure of I, J, and G are given in terms of their respective 
structure homomorphisms (see [4, Section 1, especially Remark 1.7], [5, Theorem l]j 
and [1, Theorem 4.11]). 
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R e m a r k 2.3. In [4], we used the term Cliffordian semigroup to describe a 
union of groups. In order not to conflict with the terminology of [3], we adopted 
•our present terminology which appears to be the prevalent terminology. 

3. The minimum inverse semigroup congruence. In this section, we describe the 
minimum inverse semigroup congruence on a standard regular semigroup 
S—(Y, V, T). If (p is a homomorphism, ker cp will denote the kernel of <p. 

P r o p o s i t i o n 3.1. Let co be a homomorphism of V onto an inverse semigroup 
V* such that J*IQ Uker no. Then, (/, b,j)9 — bco defines a homomorphism of S 
onto V*. Conversely, if 9 is a homomorphism of S onto an inverse semigroup F*, 
.then (/, b,j)6=bco where co is a homomorphism of V onto V* with Uker coQJ*I. 

Proof . We first establish the direct part. Let ( i , b , j ) , (r, c, s)£S. Hence, 

(0' , b,j)(r, c, s))9 = (bo(j*r)oc)a> = bcoo((b~1ob)o(coc~1))coocco = 

= bcoocco = (/, b,j)9(r, c, s)9. 

Conversely, let 9 be a homomorphism of S onto V*. For b{IV, define ba>= 
= (bob~\ b, b'1 ob)0. Thus, bcoco)=((bob~1, b, b^obXcoc'1, c, c~1oc))6= 
= ((boc)o(boc)~1, boc, (boc)~1o(boc))9—(boc)co. Hence, co is a homomorphism of 
F in to F*. Let ( i , b , j ) £S . Then, {i,b,j) = {i,bob~\bob-1){bob-\b,b-1ob){b-1o 
o^b-iobj). Using Lemma 1.13 (b), (i, bob'1, bob-*) & (bob'1, bob'1, bob'1). 
Hence, using Lemma 1.15, (i, bob*1, bob-1) 9 = {bob'1, bob-1, Z>oZ>_1)0. Similarly, 
(b~1ob,b~1ob,j)9={b~1ob,b~1ob,b~1ob)9. Thus, using Lemmas 1.15 and 1.13, 
•(i,b,j)6=((bob-1,bob-1,bob-1)(bob-\b,b-1ob)(b-1ob,b-1ob,b-1ob))6 = (bob 
b, b~1ob)9 = bco. Let c£F*. Hence, c = {i, d,j)6 = dco for some (i, d,j)£S. Thus,rois 
a homomorphism of F onto V*. Let j£Jy and i£lz. Since (y,y,j)9(i,z,z)9 = 
= {y*z,j*i, y*z)9 = (j*i)co=ycozco = (yz)co, / * / £ U k e r co. Q.E.D. 

Let N denote the collection of all finite products of elements of the form 
.a^osoa where a£V and s or s_1dJ* I. Since is a congruence relation on F 
by [4, Lemma2.13] and J*IQH=U(Hy: y£Y), a^osoadH. Thus, N is an 
inverse subsemigroup of V and H. Since E{V) is contained in the center of H, it 
follows that x^oNoxQN for all x£V. Let Ny = HyC\N. Then N is the semi-
lattice Y of groups (Ny: y£Y). Let gN= {{a, b)£ F x V: aoa~\ bob-1, aob^£Ny 

for some y£ 7}. Then, using [2, Theorem 7.54 and Lemma 7.48], oN is a congruence 
relation on F with kernel {Ny: y£Y). 

P r o p o s i t i o n 3.2. V/Qn is the maximal inverse semigroup homomorphic image 
of Sunder the homomorphism (/, b,j)9N=bg^ where Q% is the natural homomorphism 
•of V onto V/gN. 
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P r o o f . Using Proposition 3.1, 0N is a homomorphism of S onto V/QN. Let 
0 be a homomorphism of S onto an inverse semigroup V*. Define (xON)y = xO 
for x£S. We will show that y is a homomorphism of V/QN onto V*. Suppose 
that (/, b,j)6N—(p, c, q)6N. Hence, bQ% = cg% and (b, c)£gN. Thus, using [2, 
Theorem 7.55], b=nc for some n£Ncoc.1. By Proposition 3.1, (/', b,j)9=ba> for 
some homomorphism OJ of V onto V* with Ukera>QJ*L We note that 
n = (a^1Sla1) ,..(a~1Snan) where V and S( or S^DJ*!. Thus, SFIJ^EIV*) and, 
hence, noj£E(V*). Thus, since n.^coc'1, na>=(cco)(c(o)~1. Hence bco=ncoc(o = 
— cco(ca>)~1cco = cco. Thus, (/, b,j)6=(p, c, q)6. Q.E.D. 

T h e o r e m 3.3. Let S=(Y, V, T) be a standard regular semigroup. Let N denote 
the collection of all finite products of elements of the form a~1osoa where a£ V and 
sors~KJ*L Let Ny=NDHyfor y£Y. Let dN={((i, a j ) , (p, b, qj)£SxS: Nyoa = 
=Nyob where y=aoa~1 = bob~xy Then, SN is the minimum inverse semigroup 
congruence on S. 

Proof . Utilize Proposition 3.2 and its proof. 
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A concept of characteristic for semigroups and semirings 

H. J. WEINERT 

§ 1. Introduction 

The characteristic y(R) of a Ring R=(R, +, •) corresponds to a congruence 
on the ring Z of integers via the ideal it (/?) = (}> (/?)), the annihilator n(/?) of (R, +) 
regarded as a Z-module in the natural way. Likewise, the characteristic y(a) of an 
element a£R is defined by the annihilator it («)=(}> (a)), and it determines the 
structure of the submodule 

<a> = Za - Z/(y(a)). 

Moreover, the characteristic y(R) of R is the least common multiple of all y(a), 
corresponding to the intersection (y(.R))= n{(y(a))|a(|i?} of ideals or congruences. 
Clearly, y(a) = o(a) if the (additive) order o(a) = |(a)| of a£R is finite, and y(a)=0 
if o(a)=°°. In particular, these considerations do not depend on the multiplication 
of R, and may be used to define the characteristic y(R) of any (not necessarily com-
mutative) group (R, +). 

In a similar way we shall introduce the characteristic of a semiring (S, +, •), 
defined to be an algebra such that (S, + ) and (S, •) are arbitrary semigroups con-
nected by ring-like distributivity, dealing basically with the characteristic of a semi-
group (S, +). For the latter, the additive notation does not mean any restriction, 
and may be changed if one is interested in semigroups only. 

Let (S, + ) be a semigroup. For each a£S, the cyclic subsemigroup 

(a) = Na =s N/x(a) 

is determined by a congruence x(a) on the semigroup (N, + ) of positive 
integers. Let K=K(~N) be the complete lattice of all congruences on (N, +) . 
Then, analogously to the above procedure concerning rings or groups, the inter-
section D {x(a)\a£ 5}6iT(N) will be a first candidate for the characteristic of 
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(S, + ) we want to define. However, the characteristics y{a) and y(R) above are 
integers, corresponding to congruences on Z by a lattice isomorphism of (K(Z), ¡2) 
onto (N0, |) with the divisiblity relation |, and this arithmetical aspect is important. 
As a substitute for the latter, we define a lattice monomorphism y of (A'(N), 
into a complete lattice (L, the dual of the direct product (N~, ^ ) x ( N 0 , |), 
determining each congruence * on (N, + ) by a pair y (x) = (v, g)£L. In particular, 
the pair y(x(a)) = {v(a), g(aj) corresponding to the congruence x(a), will be called 
the characteristic of the element a£ S. 

After these preparations in § 2, we define in § 3 the characteristic of a semi-
group (S, + ) as the intersection y(S) = (v(S), g(S)) of all %(x(a)) = (v(a), g(a)), 
the characteristics of the elements ad S. In fact there are two ways to do this, 
depending on whether one takes this intersection in L or in y(K)zzL. Both result-
ing concepts, clearly not very different, v/ill prove fruitful and well-behaved e.g. 
with respect to subsemigroups and epimorphic images. In particular, if S is a ring 
or a group, the second component g(S) of /(5") will coincide in both cases with the 
usual characteristic y (S) discussed above. 

In fact we deal in this paper (§ 3) with the more general concept of characteristic, 
taking the intersection in L, since it contains the first one by simplification, and 
provides more information in some cases. More details as well as some remarks 
concerning another concept of characteristic introduced in [5] and [6], are given in 
the text. Of our results, some of them being independent on any concept of "char-
acteristic" used to prove them, we mention here the following ones on semirings: 
All elements of a semiring S which are multiplicatively (left, right or weakly) can-
cellable in S, have the same characteristic x(s), coinciding with the characteristic 
y(S) of S. Let 5 be a semiring which consists only of those elements (and, possibly, 
of a zero); then y(S) ¡ s either (0, 1), or (0,p) for some prime p, or (=>=, 0). If such 
a semiring S contains at most one idempotent and no element of infinite order, 
both with respect to (S, +), then it is a ring (cf. Prop. 7, Thm. 8). 

In § 4, we deal with semirings S embeddable into one with right identity or 
even with identity. Let Tr be a semiring containing S and a right identity er. Then 
x(5') = x(^r) = z(i'r) = ''i = (°0.0) holds, and for each Xdy(K) contained in this 
interval there exists a semiring J r ' with a right identity e'r such that y_{T'r)=X. The 
corresponding statements hold for a semiring S embeddable into one with identity 
(cf. Thm. 9). Further, using concepts due to [2] and given in the text, the uni-
versal identity extension U of such a semiring S has characteristic x(C/) = (°°, 0), 
and, if y(S)dy(K),' at least one strict identity extension T0 of S has characteristic 
x(T0) = x(S). Moreover, for each Xdy(K) such that 0), there exists 
an identity extension Ux of S with characteristic y(UA)=X which is universal with 
respect to all identity extensions T of 5 with characteristic each such T 
is an epimorphic image of Ux (cf. Thm. 11). 
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§ 2. Basic concepts 

The semiring (N, + , •) of positive integers operates in a natural way on each 
semigroup (S, + ) or on each semiring (S, + , •) by 

n 
(1) na = an=2a for all n£N, a£S, 

i=1 
satisfying (n+m)a=na+ma, (nm)a=n(ma) and, in case of semirings, 
(1') n(a-b) = (na)'b = a-(nb) for all N, a,b£S. 
Sometimes we shall assume, for all a, b£S or some particular ones, that 
(1") n(a + b) = na + nb for all n£N 
holds, clearly not true in general and weaker than a+b=b+a. (For example, a 
semiring 5 embeddable into one with identity satisfies (1") for all a, b£ S, and 
there are such semirings with non commutative addition, cf. [2].) Moreover, for 
each a£S, 
(2) cpa: N — (a) = N a defined by n — rf - — na 
is an epimorphism of (N, + ) onto the cyclic subsemigroup (a) of (S, +) , and the 
corresponding congruence on (N, + ) will be denoted by x(a). 

According to the introduction, we want to define the characteristic of S by 
y (a) = x(x(aj) with a suitable monomorphism % of the lattice K of all congruences on 
(N, + ) into a lattice L, which extends the arithmetical structure of (N0, |). We do 
this step by step in the following way. 

Each congruence x£K on (N, + ) is either the equality zN or uniquely deter-
mined by two integers u€N0 and (the minimal ones such that v+1 = y+1 + g(x) 
holds, cf. [5], § 20) according to 

. , . f n = m or 
(3) (n,m)£x*>n = m(x)<* [n = m (g) for B> m > p> 

where n=m(g) means the usual congruence of integers modulo g. Conversely, each 
pair (y,g)€N0XN defines by (3) a congruence on (N, +) . Thus we can 
define the bijection 
(4) x- K\{1n} — = N0XN by x - X(x) = (v, g). 
Applying this via (2) to an element a£(S, +) , we obtain: If x(a) = iN, all elements 
a, 2a, ... of (a) are mutually distinqt, and o(a)= |(a>| = °°. If x(a)^iN, we use (4) 
to define the characteristic of such an element a£ S by 

X(a) = x(*(a)) == (v(a), g(a)) = (v, g). 
It determines the mutually distinct elements of (a), 
(5). a,...,va; (u + l)a, ..., (u + g)a 
such that ( y + g + l)a=(y-f- \)a is the first repetition, v = v(a) the length of the 
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aperiodic part V(a) = {a, ..., va} of (a), and g=g(a) the length or order of the 
periodic part G(a)={(v+l)a, ..., (u+g)a} of (a), known to be a group (which fol-
lows immediately by Lemma 3). Clearly we have v(a)+g(a) = o(a). 

Le mma 1. Let (K, ) be the lattice of all congruences on (N, +), regarded as 
partially ordered set with respect to the inclusion relation = Define, further, a 
relation on I ' = N0XN by 

(6) («i, gi) i (v2, g2) ^ v2 and gi|g2-

Then (L\ Q) is dual-isomorphic to the direct product of (N0, = ) and (N, |), hence is 
likewise a lattice, and ( 4 ) becomes an isomorphism of the lattice ( A " \ { F N } , onto 
(L', Q) according to 

(7) i » x(y-i) i i W v1 S v2 and gx|g2. 
Proof . It is easily seen by (3) that (7) holds for all tclt x2€AT\{;N}. Hence (4) 

becomes an isomorphism of the partially ordered sets (AT\{iN}, and (Z/, 
due to (6); since (L', Q) is a lattice, so is (^ \{ i N } , Q). 

In order to include In£ K in this context, we also want to define /(iN) as a pair 
(v, g) such that (3) remains meaningful. This could be done by choosing g = 0 (for 
each v) or v = o° (for each g), adjoining a greatest element °o to (N0, g ) . With 
respect to the structure of L', we do both and define 

(40 X0N) = (~,0)€L = N0~XN0, 

hence / (a) =x(x (a)) ~ > 0) for the characteristic of an element a£(S, +) of infinite 
order. 

Lemma 2. We use (6) to define a relation on L=N"XN0. Then (L, Q) is 
dual-isomorphic to the direct product of (NJ°, and (N0, |), hence is likewise a 
complete lattice. Moreover, the bijection x: K^x(K)=L'\J {(«>, 0)} defined by (4) 
and (4') is a lattice monomorphism of (K, Q) into (L, Q). Hence {x(K), Q) is a sub-
lattice of (L, (=) as well as a complete lattice, but y(K) is not closed with respect to 
infinite intersections in (L, Q). 

The proof is immediate using Lemma 1 and assertions like D {(u, l) | f6N0}= 
=(°°, 1) or fl {(0, g)|g€N} = (0, 0). We conclude these preliminary considerations 
with the following statements, denoting by [ ] the greatest integer, by ( , )* the grea-
test common divisor, and by [ , ]* the least common multiple. 

Lemma 3. Let x(a) = (v(a), g(a)) be the characteristic of an element a£(S, +), 
o(a)<oo, and consider an element ha 6(a), l^h^o(a). Then 

« ' < * > - A ' • 
holds, implying x(hd) = (v(ha), g (/¡a)) =?/(«). 
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Proof . Suppose y(ha) = (v', g'). Then, by (3) or (5), t/£N0 has to be maximal 
such that v'ha is contained in the aperiodic part of (a), hence v' is given by the first 
formula (8). Similarly, g'£N has to be minimal such that (v' +\-\-g')ha=(v' +\)ha 
holds, which is equivalent to (v'+1 +g')h = (v' + \Jh modulo g(a)\ the smallest 
solution of this congruence is given by the second formula of (8). 

As a consequence of (8), the periodic part G(a) = {ha\v(a)<h^o(a)} of (a) 
contains a unique idempotent h0a, i.e. an element with characteristic (0, 1), deter-
mined by (g(a\h0)*=g(a), or g(a)\h0. This yields y_{(ha+\)a) = (Q, g(a)), hence 
(/?0+ l)a£G(a) generates — like each element with a characteristic of this type — 
a cyclic group of order g(a), proving that G(a) is such a group with hua as its neutral 
element. 

For formulas being equivalent to (8) cf. [6], § 2. Note that (8) as well as ?;(a)-|-
-fg(a)=oo also hold in case o(a)= dealing with °° in a suitable way. (One can 
look at (NJp + , •, as an ordered semiring.) The proof of the next lemma, simi-
lar to that above, will be omitted. 

Lemma 4. a) Let (S, +) be a semigroup and a, b elements of S satisfying (1"). 
Then we have 
(9) v(a + b) max (v(a), v(b)}, g(a + b)j[g(a), g(b)]*, 

i.e. y(a + b)^y(«) fl x(b) and likewise x(b + a)^y(a) fl y_(b). 
b) Let (S, +, •) be a semiring and a, b£S. Then we have 

(9') v(ab)^mm{v(a),v(b)}, g(ab)\{g(a), g(b))*, 

i.e. y(ab)^y(a)\Jy(b) and likewise y_(ba) =?/(«)U^(b). 

§ 3. The characteristic of semigroups and semirings 

Def in i t ion . The characteristic x(S) of a semigroup (S, + ) is defined by 

(10) x(S) = {v(Sl g(Sj) = (sup{»(fl)|fl€S}, lcm{g(fl)|a65}), 
i.e. by the intersection of all characteristics y(a) = y(x(a)) = (v(a), g(a)), S, taken 
in the lattice (L, ^ ) introduced in Lemma 2. The characteristic of a semiring (S, +, •) 
is defined to be that of (5, +). 

If (S, + ) contains an element of infinite order, then %(S) = (°°,0) by (4') J). 
Hence, suppose i.e. y(a) = (v(a), g{a))dL' for all adS. Then we have 
¡;(S)«*> or v(S)=<>= depending on whether {y(a)|a£>i>)^N0 has a maximum, 

') A possibility to distinguish this case from the following one with /(.S) = (~, 0) is to replace 
L by NQ" X N(T and to defins x('N) = (~, instead of (4'). 
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and likewise g(S)=^0 or g(S)— 0 with { g ( i 7 ) | a Ç N , and clearly there are 
semigroups and semirings which correspond to each of the resulting four cases. 

In particular, if n(S)«=° and g(S)^0, i.e. y(S)£L' (obviously satisfied 
if |S|<oo), then each (a)Q(S, + ) is an epimorphic image of a single finite cyclic 
semigroup (C, +) , determined by x(C)—Z(S). Moreover, since a congruence on 
(N, + ) is also one on (N, + , •)> the semiring (N, + , •) operating on (S, + ) by (1) 
can be replaced by the semiring (N/jc, + , •) with x=x_1(x(>S)) if x(S)C/AK), 
and x is the maximal congruence on (N, + ) of this kind. 

Note further that only in the mixed cases v(S)«*=, g(S)~0 and v(S)=°°, 
g(S)?±0, the characteristic^(5) defined above is not contained in y(K) = L'U {(°°, 0)}. 
Leaving certain information out of consideration, one could decide to define a 
characteristic / ( 5 ) such that xOS) = (°°, 0) a ls° holds in thèse two cases, or equiv-
alently, to define %(S) by the intersection f l{ / (a ) | a65} taken in the sublattice 
X(K) of L. But this would not simplify things considerably, and so we stay here 2) 
with the more general concept defined above. Clearly, corresponding results for 
the other one may be obtained by identification of all (u, g)£L\y(K) with (°=>, 0). 

P r o p o s i t i o n 5. Let E be a set of generators of the semigroup S=(S, +) or of 
the semiring S=(S, + , •), of course using both operations in the latter case, and 
assume that (1") holds for all a, b£S. Then one can replace (10) by 

(10') x(S) = (sup 1cm {g(a)|«€iT}) = H {*(a )K£} . 

In particular, implies y(S)fy(K) if (1") holds for all a,b£S. 

The proof is immediate by Lemma 4. The next statements on semigroups clearly 
apply to semirings, too. 

P r o p o s i t i o n 6. a) Let (H, +) be a subsemigroup or an epimorphic image of a 
semigroup (S, +). Then we have y.{H) ^y(S). 

b) If (S, +) is cancellative, we have v(a)£ {0, for all a£ S, hence v(S)£ {0, <=°}. 
If (S, +) is a group, g(S) is the usual characteristic of S as defined in § I. 

The proof is straightforward. Note that even a commutative semigroup (5, + ) 
with x(S)=(0, p), p a prime, need not be cancellative. Any direct sum in the semi-
group-theoretical sence (cf. [1], II, § 9.4) of two or more cyclic groups of order p 
provides a counter example. 

An element s of a semigroup (S, •) is called weakly cancellable in (5, •) if 
and xs=j>s for x, y£S imply x=y (cf. [3], I. 2). 

2) Some announcements given in [2], concerning the characteristic of semirings S, refer directly 
to the intersection x(S)= il {^(a)\a€S}f.K, hence to a concept which clearly corresponds to /(S) 
above. 
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Propos i t i on 7. Let (S, + , •) be a semiring. 
a) If s£S is weakly cancellable in (S, •), then x(s) = X(a) holds for all a£S. 

Hence all elements s,s'£S which are weakly cancellable in (S, •) have the same 
characteristic, and x(s) = y (S)£x(K) holds if such an element s exists. 

b) If (S, +) has a neutral element, called the zero o of (S, + , • ), and if o is 
weakly cancellable in (S, • ), then x(S) = (0, 1) or, equivalently, (S, +) is idem-
potent. 

Proof . By assumption on s, n(as)=m(as) and n(sa)—m(sa) together imply 
na=ma, from which x(^)Plx(ia)iix(a) follows. Using (9'), we obtain = 
^ X (as) Pi -y (sa) Q y (a) for all ad S, i.e. y(s)<ï=x(a)- This implies the other statements in 
a) and also b), since (0, 1) is the characteristic of idempotent elements in (S, +), 
and the greatest element of L. 

An example of a semiring S such that S has a zero o which is even cancellable 
in (S, •), is given in [8]. Moreover, a semiring S is called multiplicatively cancella-
tive, briefly mult, can., if each a^o of S (meaning each a£S if there is no zero o 
of S) is cancellable in (S, •). Note that if S has a zero o and |S| then either o 
is also cancellable in (S, •), or o is annihilating (i.e. ao=oa=o for all a£S) and 
(S\{o}, •) is a cancellative subsemigroup of (S, •). A mult. can. semiring S does 
not have (proper) zero divisors, whereas the converse does not hold in general (cf. 
[8], [10]). 

We introduce a wider class of semirings: A semiring S, containing a zero o 
or not, is called weakly mult, can., if each a^o of S is weakly cancellable in (S, •)• 

Theorem 8. a) Let S be a weakly mult. can. semiring. Then all elements s?±o 
of S have the same characteristic x(s), coinciding with / (5 ) , which is either (0, 1), or 
(0,p) for some prime p, or 0). 

b) Let S be a weakly mult. can. semiring with zero o. Then either (S, +) is idem-
potent, or o is the only idempotent of (S, +) and annihilating. Clearly, thé first case 
corresponds to /(5') = (0, 1), the second one to (0,p) or 0). 

c) Let S be a weakly mult. can. semiring, |S |Ê2 , which contains at most one 
idempotent and no element of infinite order of (S, +). Then S is a ring, whose additive 
group (S, +) is the direct sum of cyclic groups of order p. 

Proof , a) By Prop. 7, a) we obtain x(S)=x(s) for all s^o of S. If / ( S ) ^ 
0), we have v(s)=v(S)<œ and g(s)=g(S)^0 for each s^o; hence for 

each hÇN, 1 either hs = o holds or (8) implies 

and *(>") = ( ¿ ^ == 

This proves v(s)=0 and either g(i) = l or g (s) prime. . 
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b) If (S, + ) is not idempotent, we have (0, l)=/:(0)5z iz( J)=/('S') f ° r all s ^ o 
of 5 by a). Hence o is the only idempotent of (5, -f), and x.{ao)^x.(p), /(oa)=?x(o) 
by (9') implies ao=oa—o for all a£S. 

c) Using a) and the assumptions, we have p). Hence each s ^ o 
generates a group (s) of order p, whose zero os has characteristic (0, 1). Again by 
a), there is at most one element in S whose characteristic differs from (0, p), hence 
all os collapse to the zero o of (S, +) , and (S, + ) is a group with x(S)=(0,p). 
By well known facts on groups or modules, (S, + ) is the direct sum of cyclic groups 
of order p, if it is commutative. Suppose the contrary, then (5, + , •) would be 
a ring with non commutative addition, which always contains a two-sided anni-
hilator ideal different from {o} (cf. [9]), contradicting that S is weakly mult. can. . 

An example of a weakly mult. can. semiring 5 such that each element of (5, •) 
is neither left nor right cancellable is given by the tables 

+ «i a 2 by b2 • «i 02 b2 

«1 a i a 2 h b2 a i « i a 2 

«2 «2 b2 h a 2 «i «2 «1 
h h b2 W b2 h b2 h 
h h b2 b2 bo b2 h b2 ¿>1 b2 

Note that S is the direct composition (cf. the definition given in the proof of Prop. 10) 
of two semirings {a, b) and {1, 2} with operations obvious from these tables, and 
that the zero ax of S is weakly cancellable in (S, -)> too. On the other hand, one 
easily proves that a ring S is weakly mult. can. iff it is mult. can.. Further, using the 
other parts of Thm. 8, part c) may be reformulated as follows: A weakly mult. can. 
semiring S such that /(5")=(0, p) is a ring. The corresponding statements in the 
other cases, xCS)=(0> 1) or x(S) = (°°, 0), are far away from being true, even for 
semirings S which are mult. can.. In fact, such a semiring need not have a zero (e.g. 
S=(N, + , . ) f o r x(S)=(~, 0), for x(S)=(0,1) see [8]). 

Concluding this section, we mention a concept of characteristic introduced in 
[5], § 23 for semigroups, and similarly in [6], § 3 for semirings. Working only with 
the order of elements of (S, +) , the characteristic of S is defined to be 

0 iff o(a)= co for all a^o of S, 
n iff there is a (minimal) «€N such that o{a)\n for all a£S, and 

for all other cases. 
Applied to a weakly mult. can. semiring S, by Thm. 8a) S has either characteristic 
n = 1, or n~p, or 0 in this sense, a result stated in [6], Satz 1 for mult, left (or right) 
can. semirings. 
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§ 4. Semirings embeddable into semirings with (one sided) identity 

A semiring S need neither be embeddable into a semiring with right identity 
nor into one with left identity. There are also semirings S for which only one kind 
of these extensions exists, and semirings S which have both, extensions with right 
and no left identity as well as extensions with left and no right identity. The latter 
case is equivalent to S being embeddable into a semiring with identity. For corre-
sponding examples as well as for necessary and sufficient conditions we refer to [2]. 
The following statements deal with the characteristic of a semiring S and of its-
extensions with a one-sided (say, right) or two-sided identity; assertions or concepts 
needed from [2] will be given. 

Theorem 9. a) Let S be a semiring embeddable into one with right identity-
Then for each semiring Tr with a right identity er, containing S as a subsemiring, 
the characteristic ). = x(Tr) satisfies y(S)^y(Tr) and k = x{Tr)=%{er)£x(K), hence 

(11) Z ( S ) I A I (OO, 0), XIX(K) . 

In particular, if /(>S)$Z/=N0xN, the characteristic of Tr is uniquely determined by • 
A=X(RR) = (OO,0). 

Conversely, let S be a semiring as above and let ).£L satisfy (11). Then there-
exists at least one such extension Tr of S satisfying y{Tr) = A. 

b) Let S be a semiring embeddable into one with identity. Then the same state-
ments hold for the characteristic /.=y{T) of each semiring T with identity which 
contains S, and for each k£L satisfying (11). 

Remark . By the converse statements, for a semiring S embeddable into one 
with (right) identity, there exists such an extension Tr or T of the same characteristic 
y(Tr)=x(S) or y(T)=y(S) if and only if y(S)Qy(K) holds. This is always the 
case if S is finitely generated (by Prop. 5, since (1") holds for all a, b£S if S is 
embeddable as assumed above), and also if (S, •) contains a weakly cancellable 
element (by Prop. 7. a). But there are semirings S, embeddable as above, such that 

hence x(Tr) or x(S)z)x(.T) for all extensions under dis-
cussion. For an example, let S be the zero ring on the Priifer group (S, + ) (cf.. 
[5], § 23); then Sis even embeddable into a ring with identity, but / ( 5 ) = (0, 0)(ly(K). 

Proof of Thm. 9. The first part of a) follows directly by Prop. 6a) and by 
Prop. 7a), and likewise the corresponding part of b). Moreover, both converse-
statements of a) and b) become trivial if ^(£)(£//, since then only A=(°=,0) sat-
isfies (11). Thus it remains to prove these statements with the assumption y{S)dL'. 

If S is embeddable into a semiring with right identity, in the proof of Thm. 1, 
[2] we have constructed a semiring Tr with the following properties: S is a subsemi-
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ring, Tr contains the identity mapping i = is of S, i + t is defined by a(i + i)=a+a 
for all a£S, and e, = is is the right identity of Tr. Hence for each (n, m ) £ N x N 
we have 
(12) na = ma for all a£S o ner = me,. 

Since x ( 5 ) = n / ( a ) € L ' by assumption, (12) yields x(S)=x(er)=x(Tr). In the 
two-sided case, the semiring T constructed in the proof of Thm. 2, [2] in a similar 
way, satisfies (12) with respect to the identity e of T, hence x(S)=x(e)=x(T). 
Thus in both cases there are extensions Tr resp. T of S whose characteristic equals 
x(S), and the proof will be complete applying the following 

P r o p o s i t i o n 10. a) Let Tr be a semiring with a right identity er. Then for 
each such that x(r r)j2A 0), there exists an extension T'r of Tr with a 
right identity er' of characteristic /(7,

r")=A. 
b) The corresponding statement holds in the case of two-sided identities. 

Proof . It will be enough to deal with a). Since A=(v, g) corresponds to 
.x=x~1(X)£K, which is also a congruence on the semiring (N, + , •), the semiring 
N ' = N / x = { 1 ' , 2 ' , ...} satisfies X ( N ' ) = z ( l ' ) = A and » = » ( 1 ' ) , g=g(V). If A = ( 0 , g ) , 
N ' ^ Z j ( g ) has g'=o' as annihilating zero, and we write N'—N^. In each other 
case (including N ' = N for A = ( ° ° , 0 ) ) we adjoin an annihilating zero o' to N ' 

and obtain a semiring N ^ = { O ' , Y, 2', ...}, sharing with N ' all properties stated 
above. 

Now we use the semiring Tr, and define operations on the set Tf = TrxN'0 by 

<13) (h, O + 02, <) = (h + h, n[ + n'2). 
This construction, called the direct composition of Tj. and NJJ, may clearly be applied 
to any two (or more) semirings, yielding a semiring again. In our case, T, contains 
an isomorphic copy of Tr by /—(/, o'); hence we can consider Tr' as an extension 
of Tr. Moreover, er'=(<?,, 1') is a right identity of 71/. Since /(Tr) = -/(er)^l = 
=x(l')> we obtain x(e'r)—x(^'), again by (13), i.e. %(r r ' )=2 as we were to prove. 

Now let S be a subsemiring of a semiring T with identity eT. We call T an 
.identity extension of S, and write T— [5, eT], if T is generated by 5 and eT. In this 
case, each element t ^ T equals a sum 

t = 2 h with i,€SU<er>, n€ N. 
/=1 

Note that the addition in T is not assumed to be commutative. Clearly, each exten-
sion T' of S with an identity e' contains the identity extension [5", e']Q T'. More-
over, by Thm. 4 of [2], there exists a universal identity extension U—[S, ev] of S, 
defined by the property that for each T=[S, eT] there is an epimorphism 

(14) ij/: U — T such that a — a for all a£S, and ev-~eT. 
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By (14), U is unique up to isomorphisms (relative w.r.t. 5"). Conversely, each con-
gruence x on (U, + , •) such that r|SX.S" is the equality on S, corresponds to an 
identity extension T s U/x of 5. Applying Zorn's Lemma to the set 0 of all these 
congruences (in fact a complete lattice), there is at least one maximal r o £0 , hence 
an identity extension T0^U/x0 of S with the property: Each epimorphism (rela-
tive w.r.t. S) of T0 onto an identity extension is an isomorphism. We call such 
a T0 (being "minimal with respect to epimorphisms") a strict identity extension 
of S. Note that T0 also has no proper subsemirings containing S and any identity, 
and that there are semirings S with non isomorphic strict identity extensions (cf. [2]). 

Theorem 11. Let S be a semiring embeddable into one with identity. 
a) The universal identity extension U=[S, eL] has characteristic y(U) = (=°,0), 

regardless of the characteristic y(S) of S. 
b) For each /.£/(K) such that / (S ) 5 / 0) (i.e. (11)), there exists an 

identity extension Ux of S of characteristic X(U^) = A, which is universal for all 
identity extensions T' of S of characteristic y(T') satisfying y(S) Z^y(T') Q/.. Clearly, 
Ui is uniquely determined by S and X, up to isomorphisms relative w.r.t. S. 

c) If then there exists at least one strict identity extension T0 of S 
of characteristic x(T0) =X(S)-

Proof , a) By Thm. 9, there is a semiring T containing S and an identity 
eT such that '/(T)=(°°, 0). The identity extension [5, e-,] Q T is an epimorphic 
image of U, ip: U—[5, eT], hence 0)=x([S, eT])^y(U) by Prop. 6a), proving 

b) As just stated, the subsemiring Nev = (ev) of t /=[S, ev] is isomorphic 
to (N, + , •), and may be identified with the latter. As a consequence of Thm. 9, 
for each /.Cy(K) satisfying (11), there is an identity extension T of S with y(T) = ).. 
Hence for the congruence x£0 on (U, +, • ) such that TszU/x, the restriction 
T | N X N coincides with y~1(l) = y.(zK. Considering X as a relation on U, let 0X 

be the set of all 0 such that x' ¡5 Since xf- 0x , the intersection xx = fl {t'f 0X}£ 0X 

satisfies T x | N X N = X, like x. Hence xx provides an identity extension Ux^U/xx 

of 5'which has characteristic y(U?) = y{x) = /.. Moreover, for each identity exten-
sion T' of S with = the corresponding congruence x'£& such that 
T'^U/x' satisfies x'£0x, since T' |NXN=X_1(^') = '<- Thus by rxQx' there is 
an epimorphism of Ux onto T', relative w.r.t. S, hence respecting identities. 

c) If y(S)£y(K), then there is an identity extension T of S with y(T) = 
=X(S) by Thm. 9 (or, likewise, of b) just proved). If T is not strict, there 
exists an epimorphism of T onto a strict identity extension T0 of S. Using (11) and 
Prop. 6a) we obtain x(S) = x(T<d = x(T) = xXS)> a s w e have to show. 

Each semiring S has a unique maximal epimorphic image S* of S which is 
embeddable into a semiring with identity, and q>*: S-»S* is universal with respect 
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to this property (cf. [2]). Hence the universal identity extension U* of S*, together 
with q>*: S-»U*, satisfies that each homomorphism <p: S—T" of S into any 
semiring T" with identity has a (unique) decomposition 

(P: L. T/*-JU T", 

i.e. U* is the universal semiring with identity of S as introduced first in [4]. Hence 
the results of this section, applied to S* instead of S, provide also information on 
an arbitrary semiring S. For instance: The universal semiring with identity U* of 
S has characteristic l(U*)={^>, 0). 

Finally we note: A mult. can. semiring S is always embeddable into one with 
identity, and has a unique strict identity extension T0. It is the only identity extension 
of S being again mult. can. ([2], Thm. 12; for semirings with commutative addi-
tion cf. [6], Satz 2). Moreover, by Thm. 11c), the characteristic z(Tn) of T0 coincides 
with x(S). For similar results on identity extensions of rings compare [7]. 
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On intertwining dilations. V 
(Letter to the Editor) 

ZOIA CEAUSESCU and CIPRIAN FOIA§ 

1. In the paper [3] the last two theorems (Lemma 5.1 and Proposition 5.1) 
are incorrect. Namely, the mapping constructed in the proof of Lemma 5.1 (yielded 
by the formula (5.6)) is not injective (as asserted at the end of the proof of Lemma 5.1). 
The error consists in the assumption which is implicitly made in § 5, that for any 
Ando dilation {UIT U2} on SI, U2 is the minimal isometric dilation of 

A = PKU2\K where K = \} U;§> 
n—0 

(the terminology and the notation are that of [3]). Here is a counterexample: 
Set 

§ = C©{0}, K = H2®{0}, S* = H2®S+H2 

ri = r2 = o4, u ^ s + ® s + , = 

where S+ denotes the canonical multiplication unilateral shift on the classical Hardy 
space H2. Then {U1, C/2} is an Ando dilation of {T1, T2} but U2 is not the minimal 
isometric dilation of A=PKU2\K=OK. Moreover, changing the role of UI and U2 

does not improve the situation since, if we set • 

K' = V US9>, A' = PKUW, 
n = 0 

then analogously UX is not the minimal isometric dilation of A' = OK,. 

2. Therefore one cannot range the present Ando dilation {ULT U2} of {0&, 0%} 
in the frame considered in [3], § 5. Consequently, we must withdraw Lemma 5.1 
and Proposition 5.1 from our paper [3]. However we take this opportunity to state 
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that one can give a similar, but more complicated labeling of all Ando dilations by 
referring besides the paper [3] also to our next paper [4]. Since this correct form of 
Lemma 5.1 and Proposition 5.1 of [3] needs a much longer discussion, it will be given 
in a subsequent paper. 

3. We should like to indicate a simple case in which Lemma 5.1 of [3] conserves 
its validity, namely if the factorization 7\ • T2 is regular (in the sense of [5], Ch. VII). 
Indeed the only fact we have to prove is that for any Ando dilation {t/1; U2}, U2 

is the minimal isometric dilation of A. In the present case this is equivalent to the 
relation 
(1) С / 2 ( Я 0 К ) с § е К . 

In proving (1) we firstly notice that for any 1£&=((и1—Т1)§>)~ there exists (because 
of the regularity of 7\ • T2) a sequence {Ay}"=1c§ such that 

(2) D T i h j — 0 and M - T J T z h j - I. 

From the first relation (2) we obtain 

(3) \\(U2-TJhj\\2 = \\DT2hj\\2 - 0 

so that the second relation (2) becomes ( I—P)U 1 U 2 h J -» l . Therefore, setting 
§ „ = § and %„=$>Уи1Ь\/. . . \ /Щ?> (л = 1, 2, ...) as in [3], § 1 we have 

(U2bi+b)~3U2UlhJ-T1T2hj - I, 

whence ( U2 + § ) ~ э fl, and consequently, 

(4X (U 2 §!+§)" 

We can apply (4 \ to the compressions (T1)„ and A„ to Sj„ of Ux and U2, respectively 
(since by [1], • A„ is also regular) and obtain 

(4)„ (C/2 § „ + § „ _ 0 - э § „ 

for all я ё 1. By iterating (4)n we finally obtain 

(5) (U2K+b)~ з К. 
Now 
(6) и 2 ( я е к ) с с / 2 ( я е $ ) <= я © $ ± ь 

(because of formula (5.8) of [3]) and 

(7) U2(RQK)±U2K. 

Relation (1) follows now directly from Relations (5), (6), and (7). 
The validity of Lemma 5.1 of [3] under the supplementary condition of regularity 

completes also the proof of Theorem 6.1 (3) and Corollary 6.1 of [2]. 
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A. C. Bajpai, I. M. Calus, and J . A. Fairley, Numerical methods for engineers and scientist» 
(A students' course book), XII+380 pages, Taylor & Francis Ltd, London, 1975. 

The book comprises three 'Units': 1. Equations and Matrices, 2. Finite Differences and their 
Applications, 3. Differential Equations. The emphasis is on the practical side of the subject and the: 
more theoretical aspects are omitted. The reader should be familiar with the items listed under the: 
heading of Prerequisits at the beginning of each Unit. There are several references to the suitability 
of methods presented for programming on a computer. As different programming languages are im 
use, the various techniques discussed are not, with one exception, translated into computer programs, 
but a large number of flow diagrams are incorporated in the text. 

The programmed method of presentation requires the active participation of the reader in many 
places where he is asked to answer a question or to solve, either partially or completely, a problem.. 
The answers to these are always given so that the reader can check his attempt and thus obtain a conti-
nuous assessment of his understanding of the subject. 

The book will certainly be useful as a textbook for both science and engineering students. 

F. Móricz (Szeged) 

H. Bühlmann—L. Loeffel—E. Neivergelt, Entscheidungs- und Spieltheorie. Ein Lehrbuch für 
Wirtschaftswissenschaftler (Hochschultext), XIII + 311 pages, Berlin—Heidelberg—New York, 
Springer-Verlag, 1975. 

In everyday life, and especially in management praxis one often has to make decisions se-
quentially in a process in which some external effect modifies the evolution between two consecutive 
steps. The decision-maker wants, of course, to choose those decisions which ensure the most favour-
able evolution of the process, in other words, he wants to maximize his reward. 

Decision and game theory deals with the mathematical analysis of such, so-called sequential, 
decision processes. If the influencing external effect is another decision-maker acting according to 
his own preference (reward) structure, then the corresponding process is called a game. If the 
distrubing effect is simply the chance, or, in other words, a non-interested decision-maker, then one: 
faces a simple sequential decision problem. Risk theory, Wald's statistical decision theory and 
decision making under uncertainty are the most important sub-fields of decision theory. 

The present book is a first introduction to decision and game theory. It was written for students 
in management science, and requires a mathematical education on secondary school level only. 

The first part of the book deals with decision theory including utility theory. The second part 
is devoted to game theory, while the third one to statistical decision theory. Two mathematical 
appendices contain the more elaborate proofs, and a bibliography and an index close the volume.. 
121 figures and many explicitly solved examples help to understand the text. 

D. Vermes (Szeged)i 

12* 
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B i b l i o g r a p h i e 

Surveys in Combinatorics, Proceedings of the 7 t h British Combinatorial Conference, ed. B. 
Bollobás, V1I+261 pages, Cambridge University Press, Cambridge—New York—London—Mel-
bourne, 1979. 

These excellent surveys cover many basic areas in combinatorics and give a good picture of 
recent developments of the field. The papers are the following: N. L. Biggs: Resonance and re-
construction; A. Gardiner: Symmetry conditions in graphs; D. J. Kleitman: Extremal hypergraph 
problems; W. Mader: Connectivity and edge-connectivity in finite graphs; J. Nesetril and V. Rödl: 
Partition theory and its applications; J. J. Seidel: Strongly regular graphs; J. A. Thas: Geometries 
in finite projective and affine spaces; C. Thomessen: Long cycles in digraphs with constraints on the 

•degrees; D. Welsh: Colouring problems and matroids. 

L. Lovász (Szeged) 

Siegfried Brehmer, Hilbert-Räume und Spektralmafie, 224 Seiten, Akademie-Verlag, Berlin, 1979. 

Der Hauptteil dieses Bändchens in der Reihe „Wissenschaftliche Taschenbücher" ist der Theorie 
•der beschränkten linearen Operatoren gewidmet. Im Mittelpunkt steht die Spektralzerlegung 
beschränkter selbstadjungierter Operatoren, die dann auch auf den Fall unbeschränkter selbst-
adjungierter Operatoren ausgedehnt wird. Der Rest bringt eine relativ elementare, aber gründlich 
ausgearbeitete Einführung in die Theorie der Spektralmaße und Spektralintegrale und gipfelt in 
der Bereitstellung der Funktionalkalküls für meßbare Funktionen von (nicht notwendig beschränk-
ten) normalen Operatoren. Der Verf. stützt sich natürlich auf Standardwerken, macht aber gele-

gentlich auch Vereinfachungen und Erneuerungen, die teilweise seine Kollegen und Studenten 
gefunden haben. 

Béla Sz.-Nagy (Szeged) 

Shiing-shen Chern, Complex manifolds without potential theory (with an Appendix on the geometry 
•of characteristic classes), V+152 pages. Second Edition, Springer Verlag, Berlin—Heidelberg—New 
York, 1979. 

The new methods of complex manifold theory are very useful tools for investigations in 
algebraic geometry, complex function theory, differential operators and so on. The differential 
geometrical methods of this theory were developed essentially under the influence of Professor 
S.-S. Chern's works. The present book is a second edition; it was originally published by Van 
Nostrand in 1968. It can serve as an introduction to, and a survey of, this theory and is based on the 
author's lectures held at the University of California and at a summer seminar of the Canadian 
Mathematical Congress. 

The methods of complex manifold theory have grown parallel to the Hodge—De Rham theory 
•of harmonic integrals, which is an analogue of classical potential theory. The treatment of this book 
•leaves out of consideration these analytical aspects of the theory; the title hints at this circumstance. 

The text is illustrated by many examples. The reader in supposed to be acquainted with some 
•differential geometry, fibre bundle and sheave theory. The book is warmly recommended to everyone 
.interested in complex differential geometry. 

P. T. Nagy (Szeged) 
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Shiing-shen Chern, Selected Papers, XXXII+476 pages. Springer Verlag, New York—Heidel-
berg—Berlin, 1978. 

This book is a presentation of a fascinating personal Oeuvre and at the same time of the many-
sided progress in differential geometry in the last 45 years. The volume contains approximately one 
third of Professor Chern's works, among them also some less known fundamental papers published 
in inaccessible journals. 

The selection is introduced by three papers presenting Chern's mathematical and personal 
oeuvre written by André Weil, Phillip A. Griffiths and S.-S. Chern himself with the titles : "S.-S. Chern 
as Geometer and Friend", "Some Reflection on the Mathematical Contributions of S.-S. Chern" 
and "A Summary of My Scientific Life and Works", respectively. 

Chern's investigations can be put into the following domains of differential geometry ac-
cording to his own classification: projective differential geometry, euclidean differential geometry, 
geometric structures and their intrinsic connections, integral geometry, characteristic classes, holo-
morphic mappings, minimal submanifolds, webs. His results give programs for future research, and 
at the same time they pursue the geometric view of his masters : Wilhelm Blaschke and Elie Cartan. 

This excellent book should not be missing in any mathematical library. 

P. T. Nagy (Szeged) 

P. Ganssler and W. Stute, Wahrscheinlichkeitstheorie (Hochschultext/Universitext), XII+418 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977. 

The book is intended to serve as a graduate text in probability theory. No knowledge of measure 
or probability theory is pressupposed, only a few notions and results from analysis, linear algebra 
and set theory are required. These prerequisities are collected in Ch. 0. 

The text comprises the major theorems of probability theory and the measure theoretical 
foundations of the subject. The material of Chapters 1—6 may be considered as an introductory 
course in probability theory: 1. Measure theoretical tools and basic notions of probability theory, 
2. Laws of large numbers, 3. Empirical distributions, 4. The central limit theorem, 5. Conditional 
expectations and distributions, 6. Martingales. The material of Chapters 7—10 may form the basis 
of an advanced course: 7. Stochastic processes, 8. Random elements in metric spaces, 9. Central 
limit theorems for martingale difference schemes, 10. Invariance principles. 

There are exercises and remarks at the end of each chapter. The book is supplemented with 
a bibliography consisting of 154 items, a list of symbols and conventions, an author and subject index. 

The textbook is written in a concise but always clear and well-readable way. We warmly 
recommend it to both students and lecturers at universities and technical colleges. 

F. Móricz (Szeged) 

I. I. Gihman—A. V. Skorohod, The theory of stochastic processes I, n , i n (Grundlehren der 
mathematischen Wissenschaften 210, 218, 232), VIH+570, VII+441, VII+387 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1974, 1975, 1979. 

Very few scientists show up in our age of specialization who would try to make an effort to 
penetrate in almost every important part of the whole branch of a mathematical field. This is what 
Professors Gihman and Skorohod do with the theory of probability and stochastic processes. That 
this is indeed so is recognized if the three-volume treatise under review is looked at as a part of 

I 
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a larger series of books. This series consists of three more books by the same authors, another 
joint book by Professor Skorohod and N. P. Slobodenyuk, and five books by Skorohod alone. 

In these three volumes the authors endeavoured to present an exposition of the basic results, 
methods and applications of the theory of random processes. The various branches of the theory 
cannot, however, be treated in equal detail. A knowledge of basic probability and measure theory, 
as well as real and complex variable function theory and functional analysis (especially Hilbert 
space theory) is required from the reader. Therefore, these volumes are intended for professional 
mathematicians and graduate students rather than for undergraduates. A substantial number of the 
results are appearing in non-periodical literature for the first time, and there are results which have 
not been published even in periodicals. A great number of proofs of known results are also new. 
Since the authors are able to review the material in a long perspective, there is no doubt that this 
three-volume monograph will be one of the main references and sources of inspiration for research 
for a long time to come. 

In what follows we can only try to indicate the contents by giving some key words. 
Volume I. Chapter I (Basic notions of probability): axioms, independence, conditional expecta-

tion, random functions and mappings, Kolmogorov's fundamental theorem. Chapter II (Random 
sequences): martingales, semi-martingales, Markov chains, lattice random walk with vector jumps, 
stationary sequences, Birkhoff—Hinchin theorem. Chapter III (Random functions): Gaussian, 
Markov, independent increment processes, Doob's theorem on separable and measurable equivalents, 
criteria for the absence of second kind discontinuities, Kolmogorov's criterion for continuity. 
Chapter IV (Linear theory of random processes): second order random functions in a linear space, 
spectral decomposition of correlation functions of processes and fields, L2-continuity, -differen-
tiability, -integrability, and -decomposability into orthogonal series. Stochastic measures and 
integrals, integral and spectral representations of second-order processes and fields. Linear transform-
ations, admissible and physically realizable filters, filtering of stationary processes with minimal 
mean square error, forecasting. Chapter V(Probability measures on fuction spaces): Conditions for 
realizability of measures on function spaces endowed with metric or vector structure, positive 
definite functionals and measures on a Hilbert space X, characteristic, linear and quadratic functionals 
and Gaussian measures on X. Chapter VI(Limit theorems for random processes): weak compactness 
and convergence of probability measures in metric and Hilbert spaces, limit theorems for sums of 
independent variables in a Hilbert space, convergence of continuous processes and processes with 
no second kind discontinuities. Chapter VII (Absolute continuity of measures associated with random 
processes): densities of measures, admissible shifts of measures on a Hilbert space, absolute continuity 
under mappings, applications for Gaussian and Markov processes. Chapter VIII. (Measurable 
functions on Hilbert spaces): conditions for continuous approximation (in measure) of linear functi-
onals, operators and mappings, orthogonal polynomials for Gaussian measures. 

Volume II. Chapter I (Basic definitions and properties of Markov processes), Chapter II (Homo-
geneous Markov processes): semigroup theory, strong Markov property, local behaviour of sample 
paths, Feller processes, processes in locally compact spaces, cut-off and non-cut-off processes, 
multiplicative and additive functionals, excessive functions. Chapter III (Jump processes): structure 
of sample paths, homogeneous Markov processes with a countable set of states, semi-Markov jump 
processes, Markov processes with a discrete component. Chapter IV (Processes with independent 
increments): decomposition into discrete and stochastically continuous processes, conditions for 
the latter to be Poisson, Levy representation for the characteristic function of the increments, dis-
tribution of functionals concerning fluctuations (supremum, arrival time, size of jumps), local 
behaviour, growth at infinity, vector-valued jump processes. Chapter V (Branching processes): branch-
ing Markov processes with a finite number of particles, infinitesimal characteristics of branching 
processes with a continuum of states, general Markov processes with branching. 
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Volume III. Chapter I (Martingales and stochastic integrals): quasi-martingales, stopping and 
random time substitution, decomposition of supermartingales, (local) square integrable martingales, 
continuous characteristics. Stochastic integrals over locally square-integrable martingales and 
martingale measures. Itő's formula, stochastic differentials, bounds on moments, representation of 
martingales by integrals over a Wiener measure, decomposition of locally square integrable martinga-
les. Chapter II (Stochastic differential equations): the stochastic line integral, existence and uniqueness, 
finite-difference approximations, solutions of stochastic differential equations without an after-
effect as a Markov process, differentiability with respect to initial data of solutions, limit theorems of 
stochastic differential equations. Chapter III (Stochastic differential equations for continuous pro-
cesses and continuous Markov processes in Rm): Itö processes, processes of diffusion type, existence 
and uniqueness, diffusion processes in Rm, homogeneous processes with integrable kernel of a poten-
tial, local structure of continuous homogeneous Markov processes in Rm, M-functionals; the rank 
of a process, continuous processes in R1. 

Apart from the bibliography, each volume ends with a section of historical and bibliographical 
remarks and a (not too rich) subject index. Also, an Appendix is included in Vol. Ill, correcting 
some errors in the first two volumes. All three volumes were translated by Samuel Kotz who has 
done a superb job. 

Sándor Csörgő (Szeged) 

S. A. Greibach, Theory of program structures: Schemes, Semantics, Verification (Lecture Notes 
in Computer Science, 36), 364 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1975. 

Investigations concerning semantics play a fundamental role in computer science. This book 
contains the material of a first course on schematology, dealing with one approach to formalizing 
the elusive notion of the "semantics of programming languages". It is a nice introduction intending 
to make the reader familiar with the theory of program schemes and related topics. 

In accordance with the introductory feature of the book, numerous examples are included 
to illustrate each new construction and many of the proofs, while in some cases the formal proofs 
are given in outline only. The book concludes with a large number of exercises. All these greatly 
help the reader to understand the main ideas. 

As familiarity with formal languages and finite state machines makes the understanding of 
some chapters easier, we recommend this book first of all to students with this background. 

G. Maróti (Szeged) 

Maurice Holt, Numerical Methods in Fluid Dynamics (Springer Series in Computational 
Physics), VIII+253 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977. 

t 
At the present time the majority of unsolved problems in fluid dynamics are governed by 

non-linear partial differential equations and can only be treated by a numerical approach. The 
development of large-scale computers have formed a basis for algoritmic constructions and extensive 
mathematical experiments in this area, too, as a result of which a lot of principal advances have been 
recently made in numerical methods. ^ 

The first part of this monograph describes two recent finite difference methods, both developed 
in the USSR. The first is due to Godunov (Ch. 2) originally presented in 1960 and revised in 1970. 
The second method was developed principally by Rusanov in 1964 in collaboration with Babenko, 
Voskresenski! and Liubimov, and is familiarly known as the BVLR method (Ch. 3). Both the Godunov 
and BVLR methods have their origins in the method of characteristics (in two dimensions). Ch. 4 
contains the method of characteristics for three-dimensional problems. 
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The second part treats ihe methods of integral relations (Ch. 5) introduced by Dorodnitsyn 
in 1950 and extended in 1960, the method of lines and Telenin's method (Ch. 6) developed from 
1964 onwards. The objective of all these methods is to eliminate finite diiference calculations in one 
or more coordinate directions by using interpolation formulae, especially polynomials or trigono-
metric functions, to represent the unknowns in selected directions. 

The presentation is made for graduate students in engineering or applied mathematics with 
basic knowledge of fluid mechanics, partial differential equations and numerical analysis. Many 
applications and samples of numerical solutions of model problems are presented. 

The book is warmly recommended to everyone practicing numerical analysis in industry or 
teaching at universities and technical colleges. It will certainly stimulate some of the readers to 
look for further effective numerical methods to attack the rather difficult problems of fluid dynamics. 

F. Móricz (Szeged) 

E. H. Lockwood and R. H. Macmillan, Geometric Symmetry, X+228 pages, Cambridge 
University Press, Cambridge—London—New York—Melbourne, 1978. 

This large-scale summarizing work retrieves a long-time missing unified basic collection of 
discrete symmetry groups and present them not only for the specialists of this discipline, but also 
for artists and for the interested general public. 

The book is divided into a "Descriptive" part and a part on "The mathematical structure". 
(Both parts discuss discrete symmetries of spaces of dimension not higher than 3 and this .splitting 
of themes is no benefit for the user who wishes to find all information about say, the frieze-groups 
or the plane-groups in the same place.) 

The book consists of the following chapters: Part I. 1. Reflexions and rotations, 2. Finite 
patterns in the plane, 3. Frieze patterns, 4. Wallpaper patterns, 5. Finite objects in three dimensions, 
6. Rod patterns, 7. Layer patterns, 8. Space patterns, 9. Patterns allowing continuous movement, 
10. Dilation symmetry, 11. Colour symmetry, 12. Classifying and identifying plane patterns, 13. 
Making patterns; — Part II. 14. Movements in the plane, 15. Symmetry groups. Point groups, 16. 
Line groups in two dimensions, 17. Nets, 18. Plane groups in two dimensions, 19. Movements in 
three dimensions, 20. Point groups in three dimensions, 21. Line groups in three dimensions, 22. 
Plane groups in three dimensions, 23. Lattices, 24. Space groups I, 25. Space groups II, 26. Limit-
ing groups, 27. Colour symmetry. 

It must be noted that the references are incomplete. For instance there is no reference to the 
works of Coxeter or Fejes Tóth in discrete geometry. Perhaps this is the cause of some mistake 
in the historical introduction: it were not Pólya or Niggli who first enumerated the 17 wallpaper 
groups in 1924, but Fedorov in 1891 and later, independently of him, Fricke and Klein in 1897. 

A particular virtue of the book is the Notation and Axes supplementary chapter which 
symbolizes the beneficent endeavour of the authors to unify the notation system of the groups 
studied. Perhaps because the main user of these symmetry groups is crystallography, the authors' 
effors aim to generalize the crystallographic notation, although that is not ideal owing to its redund-
ancy. As far as we know this book is a pionerring work not only in summarizing geometric symmetry 
but in the unification of its notation, too. 

Its clear structure, neat way of exposition and abundant illustrations in color make this ex-
cellent book an attractive reading, a valuable and useful help for teachers on all levels (in secondary 
or high schools, or at universities), and even for artists, textile designers, architects, etc. 

Dénes Nagy and Szaniszló Bérezi (Budapest) 
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László Lovász, Combinatorial Problems and Exercises, 551 pages, Akadémiai Kiadó and North 
Holland Publishing Company, Budapest, 1979. 

Though the roots of combinatorics go back to the 18th and 19th centuries, it has become a cohe-
rent discipline in the last twenty years only. Mostly isolated theorems were known beside the earlier 
developed enumeration techniques. The recent extremely rapid development of combinatorics was 
influenced by the occurrence of combinatorial problems connected with computer science, operation 
research, statistics, coding theory etc. The enormous quantitative increase has been accompanied by 
the appearance of several new methods, techniques and theories. This development is manifested 
also by the increase in the number of books from no more than a dozen in the middle of this century 
to several hundreds today. Lovász' book is a masterpiece among them. 

• Inspite of the modest title it is not just a collection of problems but it builds up more than a 
dozen "theories" and techniques in combinatorics, some of them presented here for the first time 
as a coherent topic. 

It is a three-level version of the classical book of Pólya—Szegő: Aufgaben und Lehrsätze aus 
der Analysis, containing parts as Problems, Hints and Solutions. These cover classical theorems and 
the latest results as well. A large part of the text has appeared previously in research papers only. 
In many cases the proofs are much simpler than the original ones. 

The first four chapters are devoted to enumeration; generating-function techniques (the first 
developed techniques in Combinatorics), the famous Pólya method (used for some classical problems 
on partitions), sieve methods, a large part of the latter in probabilistic setting such as M. Hall's 
and Rényi's method for coding permutations, enumeration of trees and one-factors. 

§ 5 is on duality and parity. Here the nature of the solutions unifies the material more than the 
problems themselves. § 6—§ 7 deal with connectivity. Menger—König—Hall—Tutte—Edmonds type 
factorization theorems, the 'max-flow — min cut' theorem, a subject which is strongly connected 
with linear programming. 

Chromatic number is a concept whose origin goes back to the last century (Four Colour 
Conjecture). It is now of completely independent interest; e.g. chromatic polynomials and the 
problem of characterization of critical graphs concerning the chromatic number are considered in § 8. 

§ 9 deals with independent sets, characterization of critical graphs concerning maximal inde-
pendent sets and their applications; e.g. game-theory. 

§ 10 contains extremal problems characterized by Turán's theorem, and several problems on 
Hamiltonian lines. 

§ 11 and § 12 deal with algebraic graph theory, spectra of graphs and automorphims of graphs; 
§ 13 contains hypergraph theory, including intersection theorems like the Sperner and the 

Erdős—Ko—Rado theorems, fractional and integer matching and covering, and it ends with Lovász' 
perfect graph theorem. Various proof techniques are demonstrated, some of them developed, partly 
or fully, by the author himself. 

§ 14 contains the Ramsey theory. This includes Ramsey-type theorems for systems of finite 
sets and also other structures (as integers, vector spaces, arithmetic progressions). The last chapter 
is devoted to reconstruction problems. 

Throughout the book there is a strong emphasis on "good characterization", ón algorithmic 
aspects, on the connection of combinatorics with integral linear programming, on the use of linear 
algebra, and on probabilistic setting. 

The exposition is extremely clear and elegant. The author seems always to find the simplest way 
to prove the deepest theorems. 

The book is highly recommended not only to young researchers but also to the specialists 
in combinatorics and the mathematical public in general. 
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It will undoubtedly not only "help in learning existing techniques in combinatorics" but will 
also stimulate new ideas. 

"Some fields have had to be completely omitted: random structures, integer programming, 
matroids, block designs, lattice geometry, etc. I hope eventually to write a sequel to this volume 
covering some of these latter topics." Having an outstanding book like this we are looking forward 
to the next volume. 

Vera T. Sos (Budapest) 

J . D. Monk, Mathematical Logic (Graduate Texts in Mathematics, 37), 531 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1976. 

This book is based on the author's lectures given at various universities. 
After a survey of recursive function theory and the elements of logic, the reader is made familiar 

with the concept of first order languages and the basic facts concerning them. This part of the book 
serves as a preparation for the following chapters, dealing with decidable and undecidable theories 
and other topics in model theory. The book concludes with touching upon several other kinds of 
logics, e.g., many-sorted logic, second-order logics, etc. 

At the end of each chapter the reader finds references and a rich variety of interesting exercises. 
We recommend this excellent work to everyone interested in, or dealing with, mathematical 

logic. First or second year graduate students can study sentential logic and its relationship to Boolean 
algebras by reading chapters 8 and 9 only. Because of the very abstract nature of the subject we 
suggest reading the whole book first of all to postgraduate students, as well as young logicians, who 
thereby can be helped efficiently in preparing the material of their lectures on mathematical logic 

G. Maroti (Szeged) 

H. Rademacher, Lectures on Elementary Number Theory, IX+146 pages, Robert E. Krieger 
Publishing Co., Huntington, New York, 1977. 

Number theory is full of problems and results that most mathematicians know, but the general 
feeling about their proof is that it is very difficult and technical. We all know about the prime number 
theorem, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, Brun's 
theorem on twin primes, just to mention some of the most classical examples. But very few of us 
have had the possibility of learning the proofs of these facts, although these proofs are not as inac-
cessible as believed. This, of course, is a pity, because a major contribution of number theory to 
mathematics is in the powerful methods which emerge from the solutions of its simple yet very 
difficult, challenging problems. Some of the "elementary" proofs in number theory may contain the 
kernel of other more general mathematical theories. This is why it is great to be able to read accounts 
of some of these classical difficult problems in number theory in a form accessible to non-specialists, 
in particular students. 

This classic book, whose second printing is reviewed here, discusses some of these well-known 
but not generally well-understood problems in "elementary" number theory ("elementary" only 
means that no complex function theory is used: real calculus is used and the field is full with compli-
cated, ingenious arguments). It is not a textbook but it does start with the basics: unique factoriza-
tion, Farey fractions, linear Diophantine equations, congruences. It gets to quadratic reciprocity 
through an interesting detour to constructing regular heptadecagons, Lagrange resolvents and 
Gaussian sums. After discussing lattice point techniques and some results on prime distribution 
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like Chebyshev's theorem, the book gives the proof of Dirichlet's theorem on primes in arithmetical 
progressions, and of Brun's theorem on the convergence of the sum of reciprocals of twin primes. 

This book is indeed recommended to everyone, in particular to students: its material belongs 
to what may be regarded as "basic mathematical intelligence", its presentation is easy to follow and 
yet it leads the reader to the deepest "elementary" results in number theory. 

L. Lovasz (Szeged) 

R. D. Richtmyer, Principles of advanced mathematical physics. I (Texts and Monographs in 
Physics), XV+422 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1978. — DM 44,—. 

As the author points out in the preface, nowadays physics cannot apply intuitive methods as 
earlier, it needs a high level adequate mathematics of a wide range. However, branches of mathema-
tics are used from a specific physical point of view, i.e., some of the mathematical theories are ir-
revelant to physics while some results marginal to the mathematical theories have great importance 
in physics. The aim of the book is to collect mathematics from this special physical point of view. 
The title is somewhat misleading because the book does not concern any principles; it concentrates 
on Hilbert and Banach spaces and distributions, linear operators and their spectra, with special 
attention to operators that emerge from differential equations in physics. 

There is a great demand for such books which can serve as basic ones for students. That is 
why it is a pity that measure theory is not treated thoroughly, hence probability theory cannot 
be set forth in its natural way and the spectral theories of self-adjoint and unitary operators are formul-
ated by spectral families (resolutions of the identity) instead of projection valued measures, involving 
thus more complicated tools. 

The treated material is essential for general understanding of physics (except perhaps the last 
chapter: non-linear problems; fluid dynamics); the presentation of the subject is clear and suitable 
for the purpose of the author. The book will certainly prove very useful for students in physics. 

T. Matolcsi (Budapest) 

A. N. Shiryayev, Optimal Stopping Rules (Applications of Mathematics, Vol. 8), X+217 
pages, New York—Heidelberg—Berlin, Springer-Verlag, 1978. 

What is the secret of a successful life? Perhaps nothing but the ability to stop each activity 
at the right moment. The vital applicability of the theory of optimal stopping is consequently beyond 
doubt. But there was one more reason why to publish the present volume in the series "Applications 
of Mathematics". Namely the theory of optimal stopping itself serves as an interesting field of 
application for other deep mathematical disciplines. 

The present book is a well-written, concise presentation of the beautiful round theory of optimal 
stopping of Markov processes. Although it is shown that all interesting non-Markovian stopping 
problems can be reduced to equivalent Markovian ones, the decision of the author to restrict himself 
to Markov processes was a step off the applications in favour of the methodological closedness of 
the theory. The emphasis of the volume lies on the demonstration how potential- and martingale-
theoretical results can be applied to solve the mathematical problem of optimal stopping. Possible 
applications of optimal stopping theory are only outlined. But this incompleteness from the side of 
applications does not lessen the value of the book. On the contrary, it has the effect of forcing the rea-
der to think it over and fill up the gaps by himself. This way the passive reader is converted into an 
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active partner in research. Besides conciseness and theoretical clarity, this is the very property which 
makes the book extremely fitting to serve as a basis for a half-year course for advanced students in 
probability. The presented material can also be regarded as a first non-trivial introduction to the 
theory of filtration and control of stochastic processes. 

The Russian original was substantially improved and enlarged before translation. The chapter-
headings are 1. Random Processes: Markov Times; 2. Optimal Stopping of Markov Sequences; 
3. Optimal Stopping of Markov Processes; 4. Some Applications to Problems of Mathematical 
Statistics. A detailed bibliography and an index close the volume. 

D. Vermes (Szeged) 

Dietrich Stoyan, Qualitative Eigenschaften und Abschätzungen stochastischer Modelle, X+198 
pages, Akademie-Verlag, Berlin, 1977. 

The theories of queues, inventories, dams, risks and reliability belong to the oldest spheres of 
applied probability, and even non-specialists know that they are merely different interpretations of 
the same mathematical discipline. It is not the lack of a common language that gives rise to the very 
non-homogeneous outlook of these theories, but rather the dissimilarity of the applied techniques. 

The situation very much resembles to the early decades of the theory of differential equations, 
when the explicit form of the exact solutions was of primary interest. At that time the necessary 
approaches varied from equation to equation. Only Liapunov's direct method and the monotonicity 
methods (differential inequalities and fixed-point theorems) have opened the fundamentally new 
prospects of the uniform, so called qualitative, theory of differential equations. 

The stochastic theory of queues, inventories, etc. now stands at the beginning of a similar 
vigorous development. The aim of the present booklet is to awake interest in this new field. Most of 
the book deals with monotonicity methods, based mainly on the author's own results. Although 
these techniques are far not as powerful at the present stage as their deterministic analogues (they 
are used only for obtaining some estimates), they appear to be a first step towards a uniform quali-
tative theory of queues, reliability etc. The last chapter of the book gives a short glimpse into the 
modern but already well-developed stability theory of stochastic models. 

The purpose of the author is to give a first introduction and therefore the more laborious proofs 
are only sketched. The reader is supposed to have some pre-knowledge in the theory of queues, in-
ventories, etc. The language of the book is clear, but, due to some long definitions and complicated 
formulations, it is not very easy-flowing. Some open problems, an extensive bibliography and an 
index supplement the volume. 

D. Vermes (Szeged) 
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