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The value distribution of entire functions of order at most one

I. N. BAKER and L. S. O. LIVERPOOL

§ 1. Introduction and results

Recently S. K1MURA [6] proved

Theorem A. Let f be an entire function of order less than one and w, a sequence
such that |w,|—~<o as n—es. Suppose that all the roots of the equations f(z)=w,
(n=1,2,..) lie in a half-plane (say Re z=0). Then f is a polynomial of degree
at most 2,

We begin by improving Theorem A a little to

Theorem 1. If fis an entire function whose growth is at most order one and
minimal type, and w, is a sequence such that |w,|—< while all roots of f(z)=w,
(n=1,2,..)) lie in a half-plane, then f is a polynomial of degree at most 2.

In this form the theorem is sharp. For any d>0 the function ¢?* has type
d and is bounded in Re z=0 so that any sequence w, such that 1<|w,|—~< may
be taken to satisfy the hypothesis in Re z=0.

Theorem 1 has an application in the theory of iteration of entire functions
(see e.g. FaTou [5] for proofs of the following results). The iterates f* of an entire
function f are defined by fl=f, f"*!'=f"of=fof" (n=1,2,..). If f is non-linear
the set €(f) of points in whose neighbourhood {f”} is a normal family, is a
proper open subset of the plane. The complement §(f) of €(f) is a non- empty,
unbounded, perfect set. §(f) has the invariance property:

If we®(f) and f(z)=w, then z€F(S) and fW)eF().

In iteration theory the fixed points of f are important. A fixed point z of f
of order k is a solution of f*(z)=z. It is proved in [5] that every point of F(f) is
a Hmit point of fixed points of f. :

Received January 7, 1978.



4 I. N. Baker, L. S. O. Liverpool

It may happen that a component of €(f) contains a half-plane. Thus for
d=0 the function

0)) g(@)=d (-1

maps H={z: Re z<0} into itself so that {g"} is normal in H.

Suppose that conversely g is a transcendental entire function and that €(g)
contains a half-plane, which we may take to be Rez<0. Then §(g) lies in
Rez=0 and if we take a sequence w,&(g) such that |w,|—oe, all solutions of
f(@)=w, lie in F(g) by the invariance property, and hence in Re z=0. Thus
from Theorem | we have

Theorem 2. If g is a transcendental entire function such that the domain of
normality €(g) of {g"} contains a half-plane, then the growth of g must be at least
of order 1, positive type.

Example (1) shows that this is sharp with respect to growth. Related problems
have been discussed under more restrictive conditions by P. BHATTACHARYYA [4].

If 0€§(g) then every solution z of g(z)=0 belongs to §(g). The following
Theorem 3a is thus a strengthening of theorem 2.

We introduce the notation

) A(0,8) = {z: Jarg z— 0] < §}.

Theorem 3a. Suppose (i) g is a transcendental entire function whose growth
is at most of order 1, minimal type, (i) all the zeros of g lie in Re z=0.
Then for any 6=0 the set F(g)NA(rn,d) is unbounded.

Because of the importance of fixed points it is interesting that we can also prove

Theorem 3b. If in 3a (ii) is replaced by the hypothesis that the first order fixed
points lie in Re z=0, the conclusion remains true.

The example (1), for which all first order fixed points lie in Re z=0, shows
that 3b ceases to hold if the assumption of minimal type is dropped.

In the circumstances of Theorems 3a or 3b it follows that A (wn, §) must contain
fixed points of some order of g. Can one be more explicit about the order of such
fixed points? Let us take 3b and make the stronger hypothesis in (ii) that all the
first order fixed points are real and positive. Our methods and results differ slightly
according to the order of g. For order less than + we have

Theorem 4a. Suppose (i) g is transcendental entire of at most order %, minimal
type, and

(ii) all but finitely many first order fixed points of g are real and positive.

Then for any 6=0, A(rn, 8) contains infinitely many fixed points of order k for
each k=2
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Indeed the fixed points of higher order, whose existence is shown in the theorem
can be taken to be non-real. This is somewhat analogous to the result of the first

author in [2] that if f is transcendental entire of order less than £ and /s a straight

line, then not all solutions of f2(z)—z=0 lie in /. Neither resuli includes the other
but both show that second order fixed points tend to be scattered in their angular
distribution.

If the order of g exceeds 3 we have not been able to prove the existence of
fixed points of order 2 in A(m, §). However we can prove

Theorem 4b. If in Theorem 4a (i) is replaced by the assumption that the order
of g is strictly positive, but at most order 1 minimal type, then for any 0,6 subject
3n
2
order k for each kz=3.

to §< 0<—, 6=0, we have that A(6, d) contains infinitely many fixed points of

Thus in particular if g is at most of order 1 minimal type and all first order
fixed points are real and positive, f has fixed points of every order greater than 2
in A(=n, 6), however small §=0 is taken.

The arguments used in this discussion can also be applied to show that func-
tions of certain classes are not expressible as iterates. of entire functions. An ex-
ample is furnished by

Theorem 5. Suppose the transcendental function F is such that
(i) lim sup {log log log M (F, r)}/log r<1,

(i) all first order fixed poinis of F lie in Rez=0, and
(iii) F is bounded in A(n,d) for some 6=0.
Then F is not expressible as f* k=2, for any entire f.

In (ii) we may replace fixed points by zeros without affecting the validity of
the theorem. The function %" has all its fixed points in Re z=0 and shows that
we cannot allow equality in (i).

§ 2. Proof of Theorem 1

We may assume f(0)><0 (otherwise consider f(z—d8) for a suitable posi-
tive constant 9).

We shall use the following results about functions of minimal type whose
zeros lie in a half-plane. They may be found e.g. in the proof of theorem 1 of [8],
where the additional hypothesis f(—r)=0(r*) of that theorem is not used until
after these facts have been derived.
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. Lemma 1. Let f be a transcendental entire function of at most order one and
minimal (i.e. zero) exponential type. Suppose f(0)==0 and that all zeros a, of f lie
in the right half plane Re z=0. Then there are constants A and c¢ such that

) f@) = Ao T 1 -2 e
n=1 n
where a,=r,e% is such that
(C)) Z=Re D2 a;' = > (cosb)r,
n=1 n=1
is convergent and
5 . A+Rec=0.
Further, for any fixed k
(6) lf(=r)r* ~ e as r-»o.

Proof of Theorem 1. We may suppose w,;=0 (for otherwise consider
f(z)—w,) and suppose first that f is transcendental entire of at most order one,
minimal type and that all solutions of f(z)=w, lie in H:Re z=0. In particular
the zeros a,=r,e lie in H, so by Lemma 1

10 oy 5(L )
1) e a, a,.
Using (4) and (5) this yields
Re LD _ § 1
7
O R CI
If Rez<0 and Rea=0 we have Re — <0, while if z=ge® then for fixed ¢
|z]| Re ! cos as o. )
z—a ¢ = )
Thus by (7), if ¢ is a fixed number such that 0<5<—27£,
f'(2) .
Re —+—o0 as z— o In A(m, ).

Take a fixed constant K=2r/6. Then there is a constant ry such that

3] || 7—' > K for z€A(m 8), |z|= r,.

_Next choose a member of the given sequence w, so that |f(z)|<|w,| for |z|=r,.
By (6) there is a largest r, such that |f(—r,)|={w,|- There is a component G of
{21 |f(z)|>|w,|} which contains {z: z=—r~< —r,} and this component is bounded
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by a level curve I':|f(z)|=|w,] which passes through z=—r,. I' cannot close
in Re z<0 for there are no zeros of f in this region.

If T meets neither of the lines argz=n+4J, then G lies entirely in the angle
A(m, 8). Let rB(r) be the length of that segment y, of |z|=r which lies in G and
contains z= —r. By the arguments used in the proof of the Denjoy—Carleman—
Ahlfors theorem in [9, pp. 310—311] it follows that for all sufficiently large r(=>r, say)
the maximum modulus function M(f, r) of f satisfies

log log M(f r) > log log Max |f(Z)| =T f t0(t)

for a suitable constant C. Since 6(r)<2J this implies that f has order at least
n/26=>1, which is impossible.

Thus there is a level curve I':|f(z)|=|w,|, which starts at z=-r, and runs
to either arg z=n+d& or m—3J. Moreover I lies in |z|=r, so that the mequahty
(8) holds on I'. But w=f(z) maps I' onto |w|=|w,| and as z traverses I', w
traverses |w|=|u¥,,| without change of direction. Further, we have

dw _ dz #f'(2)
w2 f&)
whence, if w=|w,[e® and z=re®cI" we have
©) ide = [ﬂ de} Z}( ((;)
so that by (8)
- #f'(2) |
ol = a0l | L 2| = kiaol.

The image of I' is therefore an arc of |w|=|w,] whose angular measure is at least
K§=2n. Thus I', and in particular 4(r, §) must contain a root z of f(z)=w,,
against the hypothesis of the theorem. _

We conclude that f cannot therefore be transcendental. If f is a'polynOmial
its degree can clearly not exceed two.

§ 3. Proof of Theorem 3

Suppose g is a transcendental entire function of growth at most order 1, minimal
type and is such that
(10) A(m, 0)N F(g)

is bounded for some J=0. Without loss of generality we may assume that the
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set in (10) is empty — it is only necessary to shift the origin and consider the itera-
tion of g(z+a)—a for sufficiently large negative a.

Whether the zeros of g(z) or the fixed points (i.e. the zeros of g(z)~z) are
in Rez=0 it follows from Lemma 1 that for any k

(11) g(=r)r¥ - = as r - oo,

Since A=A(n,d) does not meet §, 4 belongs to an unbounded component
G of the set € (g) of normality of g”. Indeed by [3] G is simply-connected. The bound-
ary dG belongs to & and is a continuum in the complex sphere. By the invariance
property of &, g(z) omits all the values of dG for z€A.

If M=m/(20) the transformation

1
(M) u=(1+0/1-1), z=-uM
maps [t|<1 onto 4, so that the function
1
_ _ 1+t)1‘_f}
w_h(t)_g{ (l—t

is regular in |f|<1 and omits the values wcdG.
By a result of J. E. LitTTLEWOOD [7]

M(h,0) =0{(1—0)%} as o—~1-.
If z=reécA, and |@—nj<§/2, then in (T)
£ = (1= M0 p=M)/(] 4 Mitx—0) M)
~ 1—=2eMim=-0p-M a5 . p oo,

Since |[M(n—0)|<n/4 we have 1—|f|>r ™ for large r. Thus as z=re®—oo
in |@—n|<36 we have

lg@| = [h(D] < M(h, 1—r=M) = O(r*M).
But this conflicts with (11). The result follows.

§4. Preliminaries to the proof of Theorems 4a and 4b

Throughout this section assume that g is an entire function such that

(i) g is transcendental and of at most order one, minimal type,

(ii) all but finitely many fixed points of first order of g are real and positive.
Then we have ‘

2@z =p@e [ (1-2) e,

n=1 n
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where p is a polynomial of degree say d=0, and a,>0. Applying lemma 1 to
{g(2)—z}/p(2) we see that > a;! converges and in fact

80—z = p@ep @ Jf (1-7),

where y is real. If =0 then

Max |g(+iy)| > exp lyyl

so y=0 since g has minimal type. Thus

= z
(12 8() = 24k, hE) = PG = 2@ T (1-Z)-
Lemma 2. If g satisfies (i), (ii) then there is some ry=0 such that |g(—r)l
is increasing for r=ry, so that w=g(—r), r=>r, describes a simple curve I,
I’ approaches infinity in a limiting direction argw=a.

For, let § satisfy 0<6<— From (12) it follows that as z—oo in A(w, d)

we have |A(2)/z| === and

’

kil ‘d+o(1)+£§— - oo,

h

SLA

,ZQ(

(cf. (7) and (8) in theorem 1). Thus |A’(2)|~< and

zg' _ zW (1+1/k) .
(13) e~k (1+zh) as z in A(n, 95).

In particular

(149 g lg-n == {aroy+ 3T

n

} oy

as r—oo, and if g(—r)=Re® we have

dR _8 (—r)
(15) R +ide Py
dR
By (14) the argument of (15) approaches zero as r—e, so that ?>0
for large r.
Clearly |h(—r)|—o- faster than any power of r and argh(—r) tends to a
constant value, namely the argument of the leading coefficient of p(z). Hence
arg g(—r) approaches the same limit. The lemma is proved.

(—dr).
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Lemma 3. If g satisfies (i), (ii) then, given any real 6,, 6, o such that 0<6<§,

O<o=mn, there exist a constant R, and two branches \y and y of z=g'(w) regular in
S = A(6,,0)N{{w| = Ry},

such that the values of Y,y satisfy n—d<argy<n and n<argy<n+9d, re-
spectively. For any k=0 we have

(16) Max {j (w)), ]*/_(w)]}=0(|w|%) as w-—o in S

Proof. As w traverses I' from wy=g(—r,) to o the branch of z=g '(w)
such that r,=g 1(w,) has a regular continuation and the values of z are all real
and negative (< —ry).

For r,=r, put R=|g(—r,)| and consider the level-curve 2=|g(z)|]=R which
passes through z=—r,. Along A we have as in (9)

ide = (z8'/g) {id0 +d71},
where z=recl, g(z)=Re*.

By (13) for z of sufficiently large modulus in 4(n, §) we have for any given
K=4rn/5 that |zg’(z)/g(z)|>K. Thus if R and hence r are sufficiently large we
have |do|=K|d0|, |[dp|=K|dr|[r. As z leaves —r; on 4 and travels in a given direc-
tion to re® the corresponding ¢ changes monotonely so that

| K|0—z| = | [ Kdo| éjk|de| = [ldo| = |[ do| = 40,

and similarly K|log (r/r))|=4¢. As w=g(z) traverses |w|=R, increasing from
arg g(—r) by 4n, z traverses 2 in one direction with 8 changing by at most' 4n/K <4,
while r satisfies ‘ _

17 ' riexp (—4n/K) <r < ryexp (4n/K).

Thus if r, is large enough the value of z remains in 4 (z, §) and by (13) g’(2)=0
on A so the value of z gives a regular continuation of g=(w) from g(—r,) in I
round |w|=R through an angle of 4n. The values of z lie in 4(n, §) but do not
meet the negative real axis except at z=—r;, since ’g(—r) is increasing. Since
I’ can be taken to lie in any sector |argw—a|<g, £€>0, it follows that we can
derive from these values of g7!(w) a branch { which satisfies the statements of
lemma 3, including either n—~d<argy<n or m<argy<mn+d.

If in the above construction we begin by proceeding along A in the opposite
direction from that chosen originally we construct the other branch y of g~L
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For re®=y/(Re’®) we have by
Ir| = W (Re*®)| < ryexp (4n/K)

and from R=|g(—r))|>r¥* for large r, the estimate (16) follows.
-We. shall -also need

Lemma 4 (POLya [10)). Let e, f, h be entire functions which satisfy. e=foh,
h(0)=0. Then there is a positive constant ¢ independent of e, f, h such that

(18) ) | M, ry=M [g, CM [h, %]]

The condition h(0)=0 can be dropped if (18) is to hold only for all sufficiently large r.

§ 5. Proofs of Theorems 4a and 4b

Theorem 4a. Suppose g satisfies the hypotheses of the theorem. The first of
these implies that the minimum modulus of g is large (=R,) on a sequence of circles
lz2|=R,—~<. The R, may be chosen so that there is at least one zero of g in each
R,<l|z|<R,,,- Since |g(—r)|[r—o as r—c each of the simply-connected slit
annuli

A, ={z: R, < |z| < R4y, latgz| <}, n=1,2,..

contains a zero of g and has the property that
(19) ' |g(2)| = |z| on the boundary 0A,.
Denote by ¢ a branch of z=g~(w) which is regular in 4 (0, n) for sufficiently

large w, with values in n=>argz=>n—4§, 6 being the fixed number, 0<6<g chosen
in §4. Such a ¢ exists by lemma 3. '

. For any fixed /=2,3, ..., the (/—1)-th iterate ¢'~*(w) is defined in A(0, )
for sufficiently large w, with values in n>argz=>n—J." For sufficiently large n
then ¢/~ maps 4, univalently onto a simply-connected domain D, in mn>argz=>
>n—0. For z€dD, we have g'~'(z)€d4,. Now since |[g(z)|>|z| for large [z,
2€A(m, 8), it follows from z€dD, that |g"~'(z)|>|z| and from g'~!(z)€d4, and
(19) that at ‘ ' '

lg' ()l = [g(g' 2 (2)] > Ig" (D) = |z],
at least for large n.

.. By Rouché’s theorem g'(z)—z and g'(z) have equal numbers -of zeros in D,
and. 0€g(4,)=g'(D,). Thus the region n>argz>n—§& and a fortiori A(x,d)
contains an infinity of solutions of g'(z)—z=0.
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Theorem 4b. Suppose g has order o, 0<p=1, and is at most of order one,
minimal type, while all but finitely many first order fixed points are positive. Suppose
also that —;—<0<327£ and that o, O<o<mn/2 is so small that §<6ia§32—n. Let
Y and y be the two branches of g~ whose existence is asserted in Lemma 3, in the
case 0,=0. Then Y=y has no solution in A(0, o) N {|w|>R,).

Suppose g has only finitely many fixed points of order k in A(6, 6). Then

F= (g '=0l(x—¥)

is regular and different from 0, 1, - for large z in A(0, ¢). By applying Schottky’s
theorem to F in A(6, o) (or in a slightly smaller sector within A(6, 6) and with
origin shifted so that F0, 1, < in this sector) we find

(20 F(z) = O{exp (C|z|™")}

for some constant C as z—e in A(8, '), ¢’'<o. From (16) the same estimate
follows for |g*~'(z)| with perhaps a different C.

Now there exists 8, such that 0<61<—g— and A(0,06)CA(xm, 6,). Thus
|g(ré®)|~e as r—o and |zg’/g|>K=>2n|c" for large |z|, zEA(B,6"). As in the
proof of theorem 1 there is for large R a level curve I'(R): |g(z)|=R, which passes
through z=re’%, say. Such a curve cannot close in A(6, d) for arbitrarily large R,
since |g(z)|—<o in A(6,d) and A(0, d) contains only finitely many zeros of g.
As in theorem 1 I' must run to the boundary of 4(6, 6°) in at least one direction. .
If y is an arc of I which goes from re’® to A4 (0, ¢’), then from |zg’/g|>K it follows
that the image of y under w=g(z) is the whole of |w|=

For large R we have that if ¢ is the point on |f|=R where |g"2(t)|=
=M(g*"% R) then for some z€y, g(z)=t

(2D M(g*% R) = [g*~1(2)].
Now in A(0,6)CA(r,3), |g@)|/|z2lN+ as |z]+oe, for any N. Take
N=2n/(gs), where g is the order of g. Then for large R we have from (21)

@) Max I8 01> M)
z€ A(,6")

Since k—2=1 the right hand side is (for large r) at least
M(g, r¥) > exp (r¥) > exp (r**/°)

for some arbitrarily large r. Thus we have a contradiction between (22) and the
estimate for g*=! from (20). Hence g must in fact have an infinity of fixed pomts
in A(6, o). "
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§ 6. Proof of Theorem 5

Suppose F satisfies the hypotheses of Theorem 5 and that there exist an entire
function f and an integer k=2 such that F=f* Since F is bounded on the path
y which consists of the negative axis running to —oo, it follows that one of
y, f(9), ..., f¥7%(y) is an unbounded path on which f is bounded. From this
it follows that the lower order of f is positive.

From lemma 4 and the fact that the lower order of f is positive we easily
obtain a contradiction to hypothesis (i) of the theorem, provided k=3.

Jt remains to prove the theorem for k=2. From hypothesis (i), F=/? and the
fact that the lower order of f is positive it follows from Lemma 4 (as is proved
in {1, Satz 12]) that the order of f is less than one. '

. Now f(z)=z+g(2) where the zeros of g are fixed points of f and hence of F.
Thus the zeros of g lie in Re z=0 and the order of z is less than 1. By lemma 1
we have

=l lg(=n)
(23) T and g e as 1o,
while
24) 12| §g__ =>K=2n/6 in |z|>ry, largz—n| <.

For a large R (>M(g, ry)) there is a level curve I': |g(z)]=R passing through
z==—r such that |g(—r)|=R=r2 Just as in the proof of theorem 1 it follows
that I must run to at least one of argz=n+J or n—J, say the former, and that
the image under w=g(z) of this arc must cover |w|=R with angular measure
at least Ko=2m. Let y denote the arc of I between —r and a point z’ chosen so
that the image g(y) covers exactly the angular length X6 of |w|=R. As in the
proof of Lemma 3 (17) it follows that for all z,=r,e®1¢y we have |log (ry/r)|<9.

The arc y is mapped by f(z)=z+g(z) onto a (not necessarily closed) curve
in such a way that the image of z, is z; +Re’®r where |z;]<re’, R=>r?, and ¢,
increases by Ké=2rn as z; describes y. Thus f(y) certainly cuts the negative real
axis, say in a point w’'=f(z"), z’€y. Then

(F)| = [f(F )] = )] = W = (R—retye =

if R and hence r are sufficiently large. Thus 4(x, 8) contains points z” of arbitrarily
large modulus for which

|F(")| = 5 e 1271

which contradicts (iii). This completes the proof.
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C,-Fredholm operators. 1

HARI BERCOVICI

In this note we introduce the notions of C,-Fredholm and C,-semi-Fredholm
operators, which are generalisations of the Fredholm and semi-Fredholm operators,
and we study some properties of these operators. The study of index problems
in connection with operators that intertwine contractions of class C, was suggested
. by [10], Theorem 2 and Conjecture.

In §1 of this note we introduce some notions and we define and study the
determinant function of an arbitrary operator of class C,. In §2 the notions of
C,-fredholmness, C,-semi-fredholmness, and index are defined. Here we find
(Corollary 2.8) a generalisation of [10], Theorem 2 under weaker assumptions.
We also show that the index defined for C,-semi-Fredholm operators is multi-
plicative. At the end of § 2 we prove a perturbation theorem. In § 3 we show that
there exist C,-Fredholm operators with given index (Proposition 3.1). We also
prove that the conjecture from [10] is generally false (Proposition 3.2) but is verified
in the bicommutant of a C, contraction of arbitrary multiplicity (Proposition 3.4).
At the end of § 3 we show that the set of C,-Fredholm operators is not generally open.

§ 1. Preliminaries. The determinant function
For any (linear and bounded) operator T acting on the Hilbert space $ we
denote by Lat (T) the set of invariant subspaces of T and by Lat,, (T) the set of
all semi-invariant subspaces of T (that is, subspaces of the form MOMN, where

M, NeLat (T) and MOR). It is known (see [4], Lemma 0) that a subspace M of
$ is semi-invariant for T if and only if

(1.1) T = PoT|M

Received April 18, 1978.



16 Hari Bercovici

is a “power-compression”, that is, if

(1.2) : T; = PoT'|M, n=12,....

If T is a completely non-unitary contraction this. is equivalent to
(1.3) u(Ty) = Puu(T)|M, ucH=.

It is obvious that Lat, (T)=Lat,, (7*) (we have MON=N-©M*). Let
us recall that the multiplicity ur of the operator T is the minimum cardinality of
a subset A of H such that V T"U=$H. For each MeLat,,(T) let us put

nz=0

ur(M)=pry,. If T is an operator of class C,, we have by [7] that pr=pr. In
this case we shall have

(1.4) (D) = u(M), M€ Laty, (T).

7

For any two operators 7,7’ acting on $, $’, respectively, we denote by
F(T’, T) the set of those operators X: H—~$£" which satisfy the relation

(1.5) T'X = XT.

Obviously, (A(T, T))*=S(T"*, T™).
We are now going to define the determinant function of a C, operator acting
on a separable Hilbert space.

Definition 1.1. Let T be a C, operator acting on a separable space and
let S(M), M= {m ;)71 be the Jordan model of T [2]. We define the determinant
function d; as the limit of any convergent subsequence of {m;m,... m;}(j=1,2, ...).

The function dr is uniquely determined up to a constant factor of modulus

one because |dr|= J[|m;. If dy0 then dr is an inner function.
i=1

The C, operators of finite multiplicity have nonvanishing determinant func-
tion. Indeed, if S(m,,m,,...,m,) is the Jordan model [6] of T, we have
dr=mym,...m,. For any C, operator T the relation d,=d; holds (where
 @D=f®@). |

With this definition of the determinant function, it is obvious that d. is invariant
with respect to quasi-affine transforms. It is also obvious that d;=1 if and only
if T acts on the trivial space {0}. We shall use the general notation

(1.6) dr () = dry,
for any C, operator T and any MeLat,, (7).

Lemma 1.2. 4 contraction T of class C, on a separable Hilbert space is a weak
contraction if and only if dp#0. If T is a weak contraction of class C,, dr coincides
with the determinant of the characteristic function of T.
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.. .Proof. If d;0 it follows that the Jordan model S(M) of T is a weak con-
traction (cf. [3], Lemma 8.4). Thus, by Proposition 4.3.a of [3], it follows that T
is a weak contraction. Conversely, if 7 is a weak contraction, by Lemma 8.4 and
Theorem 8.5 of [3] we have d;0. The coincidence of d; with the determinant
of the characteristic function of T follows from [3], Theorem 8.7.

Theorem 1.3. For any C, operator T acting on a separable space and any
SeLlat (T) we have dpy=d;(H)dr(H"), where H"=9H"t.

Proof. If dr=0, T is a weak contraction and the Theorem follows from [3],
Proposition 8.2. If dy;=0 we must show that either dp(9)=0 or dr(H")=0.
Equivalently, we have to show that T is a weak contraction whenever Tg. and T~
are weak contractions. So, let us assume that T and Tg. are weak contractions.
Let S(M), S(M’), S(M”") be the Jordan models of T, T’, T”, respectively. We
consider firstly the case up($)<eo. For every natural number k we can find
a subspace ,€Lat (T) such that T|$, is quasisimilar to S(my, m,, ..., my). The
subspace $H,=9H"VO€Lat(T) and 79, is also of finite multiplicity. From {3],
Proposition 8.2 we infer

(L7 - dr(D) = dr(H)dr(D), H = HOH =HNH".

Aga"in by [3], Proposition 8.2, mym,...m, divides dr(9;) and dr(9y) divides dr(H”).
Thus (1.7) implies that m,m,...m, divides dr(9)dr(9”). In particular dy=0 and
by':[3_], Proposition 8.2, we have dy=dr(H)d;(9”) in this case.

' , Let us remark now that from the preceding argument it follows that the equality
dr=d($)d(H”) also holds under the assumption pr($”)<oo. Indeed, we have
only to replace T by T* and to use the relation dro=dy .

" We are now considering the general case. Let §,, 9;, 97 have the same meaning
as before. It is clear that ur($;)<< and by the preceding remark it follows that
T is a weak contraction and (1.7) holds. Arguing as in the case ur(9H)<o we
obtain dr#=0, that is T is a weak contraction. This finishes the proof.

« Let T,T" be two operators and XeS#(T",T). For every MeLlat(T),
(XM)~€Lat(T"). We shall prove now a lemma which is not particularly con-.
cerned with operators of class C,.

Lemma 1.4. Let T, T" be two operators and let X€ #(T’, T). The mapping
K—(XR)~ is onto Lat (T”) if and only if K'~(X*K")~ is one-to-one on Lat(T"*)

Proof. Let us assume that & —(X*R®’)~ is one-to-one on Lat (7'*) and let
us take R’ € Lat (7). If we put K=X"1(R’) and K{=(XR)~, we have (X*(® 1)) =
=(ran X* Pyx)~ =(Ker Pg:r X)* =(X"1(]))* =(X"1(]))* and by the same
computation (X*(R1))~=(X"*(8&"))*. By the assumption we have K=K+,
K=K’ so that & =(X¥R)". .

2
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Conversely, let us assume that K—(XR)~ is onto Lat (7") and let us take
K’¢Llat (T'%). Then K+ =(XK)~ where K=X"1(R1). We have K =X8K)*=
=(ran XPy)* = ker Po X*= X* "1 (/) = X* (X YK 1)L) = X* (ker Po, X)* =
=X*"(ran X*Pg)~=X*"'((X*&’)") which shows that & is determined in this
case by (X*R")~. The lemma follows. oo

Remark 1.5. Because the Jordan model of a C, operator acting on a non-
separable Hilbert space contains uncountably many direct summands of the.form
S(m) (cf. [1]) it is natural to extend the definition of the determinant function by
taking dr=0 for T acting on a non-separable space. With this extension Lemma 1.2
and Theorem 1.3 remain valid with the condition of separability dropped. For
Lemma 1.4 it is enough to remark that a completely non-unitary weak contraction
acts on a necessarily separable space and for the Theorem 1.3 we have to remark
that T acts on a separable space if and only if § and $” are separable spaces.

§ 2. Cy-Fredholm operators

Definition 2.1. Let T, T’ be two operators and let X€ #(7T", T). X is called
a (T, T)-lattice-isomorphism if the mapping M—(XWM)~ is an isomorphism of
Lat (T) onto Lat (7).

For T=0 and T'=0 a (T’, T)-lattice-isomorphism is simply an invertible
operator. It is clear that a lattice-isomorphism is always a quasi-affinity but the
converse is not true as shown by the example 7=0, 7’=0. By Lemma 1.4, X s
a (T’, T)-lattice-isomorphism if and only if X™* is a (T*, T’ *)-lattice-isomorphism.
We shall say simply lattice-isomorphism instead of (77, T)-lattice-isomorphism
whenever it will be clear which are 7 and 7.

Definition 2.2. Let T and T’ be two operators of class C, and X€ #(T”, T).
X is called a (T, T)-semi-Fredholm operator if X|ker X)L is a
(T’|(ran X)~, Ty xy)-lattice-isomorphism  and  either  dp(ker X)=0  or
dr. (ker X*)=0. A (T’, T)-semi-Fredholm operator X is (T”, T)- Fredholm if both
dr (ker X) and dj (ker X*) are different from zero. The index of the (T”, T)-
Fredholm operator X is the meromorphic function

@1 J(X) = jor,7y(X) = dr(ker X)/dy. (ker X*).
If X is (T, T)-semi-Fredholm and not (7’, T)-Fredholm we define '
2.2) j&X)=0 if drkerX)=0; j(X)=o if dp(kerX*)=0.

We shall say simply C,-semi-Fredholm, CojFredholm instead of (77, T)-semi-
Fredholm, (7”, T)-Fredholm, respectively, whenever it will be clear which are
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the C, operators T and T’. We shall denote by sF (7", T) (respectively F (7, T))
the set of all (77, T)-semi-Fredholm (respectively (7", T)-Fredholm) operators.
If T=T" we shall write sF(T), F(T) instead of sF (T, T), F(T, T), respectively.
We can easily see how the preceding definition is related to the usual defini-
tion of Fredholm operators. Let us note that the operator T=0 acting on the
Hilbert space $ is a C, operator; it is a weak contraction if and only if
n=dim H <o and in this case d;(z)=z"(|z|<1). If T=T'=0 and Xe HA(T", T)=
=2(9) then X|(ker X)* is a lattice-isomorphism if and only if X has closed range.
From these remarks it follows that an operator X¢€ #(0, 0) is C,-Fredholm if and
only if it is Fredholm in the usual sense, and j(X)(z)=z'®), where i(X)=
=dim ker X —dim ker X* is the (usual) index of the Fredholm operator X.

Proposition 2.3. Let T, T’, T” be Cy-operators acting on 9,5, 9", respect-
ively, and let A€ #(T,T"), B€H(T, T") -be such that AH C(BH")~. If d =0,
we have:

23) (471(BH")~ = 9';
24 (AN BH")™ DAY

Proof. It is enough to prove (2.3) because (2.4) is a simple consequence of (2.3).

We may suppose that B is a quasi-affinity and A is one-to-one. Indeed, we have
only to replace A, B respectively by 4|(ker A)* and Bl(ker B)*, and $ by (BH")".
It follows that dr.=d, and T’ is quasisimilar to the restriction of 7" to some in-
variant subspace. By Theorem 1.3 we have d, =0 and therefore

(2.4) dT'@T" = dT’dT" = dT' dT ?ﬁ 0

The operator X: 9 @ 9H"—~$H defined by X (W ®h”)y=Ah"— Bh” has dense range
and satisfies TX=X(T" T"). :
Thus (T"@® T )gerx). 15 @ quasi-affine transform of 7, in partlcular

(2.5) - dp gr((ker X)1) = dr.
From (2.4) and (2.5) we infer
Q6 dprgpr(ker X) = dy..

The operator Y:ker X—$’ defined by Y(h'@h")=Fh is one-to-one. Indeed,
Y(W@h”)=0 and W'@h"cker X imply A’'=0 and Bh"=Ah=0; it follows that‘
h”=0 because B is one-to-one. Moreover, we have Y€S(T", (I" & T")|(ker X)).
It is easy to verify that ran Y=A4"1(B9H"). By the invariance of the determinant
function we have :

@7 dr (A7 (BS")") = dp-gr-(ker 0 =d

2*
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From Theorem 1.3 and relation (2.7) it follows that
Q8)  dr = dp((A"(BS")")dr- (A (BSN)L) = dr-dr (A~ (BS")*)
and therefore :
dr ((A"1(BH"NL) =1, (471(B9")+ ={0} and (2.3) follows.
The Proposition is proved.

Corollary 24. Let T, T’ be two C, operators such that d;=0 and let
Ac H(T', T) be a quasi-affinity. Then A is a lattice-isomorphism.

Proof. The correspondence K+—(ARK)~ is onto Lat (7”) by Proposition 2.3.
Corollary follows by Lemma 1.4 since A4* is also a quasi-affinity.

Lemma 2.5. Let T, T’ be C, operators and AcS(T’, T). We always have
dp.dy (ker A)=d d;, (ker 4%).

Proof. From Theorem 1.3 and the invariance of the determinant function
with respect to quasi-affine transforms we infer d=d;. (ker 4*)d.((ran 4)~)=
=d,, (ker A¥)dy ((ker A)*) and dy=d; (ker A)dy((ker A)*). The Lemma ob-
viously follows from these relations.

Corollary 2.6. Let T, T’ be weak contractions of class Cy. Then F(T", T)=
=T’ T) and j(A)=dilds., for A F (T, T). '

Proof. For each A€ #(T”, T), Al(ker A)* is a lattice-isomorphism by Corollary
24. Also we have dr(ker 4)=0 and d(ker A*)#0 by Theorem 1.3. The value
of j(A4) follows then from Lemma 2.5.

Remark 2.7. From the preceding proof it easily follows that sF(77,T)=
=#(T’, T) and F(T’, T)=9 if exactly one of the contractions T and T~ is weak.
The following Corollary is a generalisation of [10], Theorem 2.

Corollary 2.8. Let T and T’ be weak contractions of class C, such that
dy=d;.. Then each injection Ac#(T',T) is a lattice-isomorphism (in particular
a quasi-affinity).

Proof. Let A¢H(T’, T) be an injection. By Corollary 2.6 A€F(7°,T) and
j(d)=dy/d.=1; it follows that dp(ker A*)=dr(ker A)=1, thus ker 4*={0}
and A4 is a quasi-affinity. The conclusion follows by Corollary 2.4. '

Corollary 29. Let T be a weak contraction of class Cy and let AC{TY be
an injection. Then the restriction of A to each hyper-invariant subspace of T is a quasi-

affinity.
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Proof. Obviously follows from the preceding Corollary.

Lemma 2.10. For any two C, operators T and T’ we have sF(T,T')*=
=sF(T"*, T™), F(T, T)*=F (T"*, T*), and

(29)  j(4% =(j(4)7)t, AesF(T’,T) (here 0-' =c and =1 =0).

Proof. If A€#(T”, T), we have (A|(ker A)*)*=A*|(ker A*)*, dp..(ker 4¥)=
=d(ker 4%)" and d .(ker A)=dy(ker A)”. The Lemma follows.

Theorem 2.11. Let T,T’,T"” be operators of class C,, AcsF(T’, T),
BesF(T”, T7). If the product j(B)j(A) makes sense we have BAEsF(T”,T)
and j(BA)=j(B)j(A4).

Proof. We shall show firstly that BA|(ker BA)* is a lattice-isomorphism.
To do this we will show that the range of BA is dense in each cyclic subspace of
7’7, contained in (ran BA)~. The whole statement will follow from Lemma 1.4
and Lemma 2.10 and the same argument applied to (BA)*=A*B*..

Let us remark that from the C,-semi-fredholmness of B it follows that

B~1((ran BA)~) ((ran 4)~ +ker B)"~.

Therefore, for each f¢(ran B4A)~ and ¢>0 we-can find gé((ran 4)~ +ker B)~
such that

(2.10) ' Bge$; =\ T"f and |Bg—fll <e.

=0

Now, let us denote by R the subspace ((ran 4)~+ker B)~©(ran 4)~ and by P
the orthogonal projection of ((ran 4)~ +ker B)~ onto R We claim that

.11) dr(R) = 0.

Indeed, if j(4)# e, we have dp(ker 4¥)=0 and RKcker A" If j(A)=< it
follows from the hypothesis that j(B)>0 and therefore d,.(ker B)><0. But

(2.12) ((ran (P|ker B)- = &
and
(2.13) T4 = PT’|((ran A)~ +ker B)~.

From Theorem 1.3 and the invariance of the determinant function with respect
to quasi-affine transforms we infer that d,.(R) divides d.(ker B); thus (2.11)
is proved.

From the relations (2.11-—13) it follows, via Proposition 2.3, that {kESfyg;
PLeP (ker B)} is dense in $§,, that is $,N((ran 4)~ +ker B) is dense in $,. Thus
there exist u€(ran 4)~ and v€ker B such that

(2.14) u+ve9,, llutv—gl<e
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Now, by the C,-semi-fredholmness of A, there exists k€9 such that
(2.15) AkED,, |Ak—ull <e.

-We have Bu=B(u-+v)€B9H,C9H, and it follows that B$,C$,. Therefore
BAk¢BH,CH,. From (2.10), (2.14) and (2.15) we infer |[BAk—~f||=|BAk —Bul +
+|B(u+v)—Bg|| +||1Bg—f|<QI|Bll +1)e. Because ¢ is arbitrarily small, the first
part of the proof is done.

We obviously have

(2.16) ker BA = A~ '(ker B), ker(BA)* = B*~1(ker A*).
T, X
0 7,
composition ker BA=ker A ® (ker BASker 4). By the C,-semi-fredholmness of
A, T, is a quasi-affine transform of T7|9,, where

Let us consider the triangularisation T'|ker BA= ] determined by the de-

2.17) H: = (ran 4)~ N ker B.
If dr(ker B)=20 and dy(ker 4)=0 it follows that
(2.18) dy(ker BA) = d(ker A)d(9,) = 0,

thus BA€sF(T”, T). Analogously, if dj.(ker B¥)=0 and d,(ker A")=0 it
follows that BA€sF(T”, T). From the hypothesis it follows that at least one
of the situations considered must occur. Thus we always have BA€EsF (77, T).

It is obvious that dj.(ker (BA)*)=0 whenever dp.(ker B*)=0 since
ker (BA)* Dker B*. Thus the relation j(BA)=o<o=j(B)j(A4) is proved in this case.
Let us suppose now that j(B)=0. Then, by Theorem 1.3 we have

0 = dr.(ker B) = dr.(H1)dr (ker BS $)).

The projection onto ker A* is one-to-one on ker BO9,, thus Ty, 554 Is 2 quasi-
affine transform of some restriction of Tp, ... It follows that d.(ker B&$,)=0
and the preceding relation implies d.(9H;)=0. By (2.18), the relation j(BA)=
=j(B)j(4) (=0) is proved in this case also. If j(4)€{0, <} we have j(BA)=
= (J(BA ) =(j(4%) j(B*) )*=j(B)j(4) by Lemma 2.10.

It remains now to prove the relation j(BA4)=j(B)j(4) for A€F(T’,T) and
BEF(T”, T’). From the second relation (2.14) we infer, as before,

(2.18) dr-(ker (BAY*) = dr-(ker B*)dr.(H})
where
Q.17* 9t = (ran B*)~Nker 4* = (ker B): N (ran 4)+.

Let us denote by Q the orthogonal projection of " onto (ran A)* =ker A4*. If
we consider the decompositions

(2.19) ker B= 5,05, ker 4* = St @95,
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we claim that Q|9, is a quasi-affinity from 9, into 9;. Indeed, if #€9H, and g€ Hy,
we have (g, Oh)=(g, h)=0 as g€(ker B)L, thus 0H,C H. Because H,=ker B
N(ran 4)~ =ker (Qlker B), Q is one-to-one on $,. We have only to show that
ker A7S(09,)~=9]. If hcker A*6(Q%,)~ and g€ker B we have (h, g)=(h, Qg)=0
because (Q9H.)~ =(Q(ker B))~ (as Q|9,=0); the inclusion ker 4*©(0H.)~ < H*%
follows and the assertion concerning Q|$, is proved.
Now, because $,=ker (Q|ker B), we have the intertwining relation Tgx (Q|9,)=
=(Q|9) Tg,; in particular
(2.20) C dr(9) =dr (99
By (2.18—20) and Theorem 1.3 we have
j(BA) = dr(ker BA)/dr(ker (BA)*) =

= (dr(ker A)/dr-(ker BY))(dr- (Hp)/dr (D)) =

= (dr(ker A)/dr-(ker BY))(dr- (91 dr (9)/dr (9 dr (D)) =

= (dr(ker A)/dr.(ker A%))(dr. (ker B)/dr.(ker B*)) = j(B)j(A).
Theorem 2.11 is proved.

Theorem 2.12. Let T be an operator of class C, acting on $ and let Xc{TY
be such that dr((X9)™)=0. Then I+X€F(T) and jI+X)=1.

Proof. We firstly show that the mapping Lat (T)3M—((/+X)M)~ is onto
Lat (T|(I+X)$)~). To do this let us take NeLat(T), Rc((J+X)H)~ and let
P denote the orthogonal projection of $ onto (ker X)*. Because PRc(P(I+X)9)",
Tyermyr P=PT and  dr((ker X)*)=0, it follows by Proposition 2.3 that
N ={heMN; Phe P(I+X)9H} is dense in N. Now we can show that N c([+X)9;
indeed WC(I+X)H+ker X and ket Xc(I+X)9 (h=(I+X)h for hcker X).
Therefore we have N=((I+X)M)~, where M=(I+X)"'N.

" From the preceding argument applied to 74+ X* and from Lemma 1.4 it follows
that (J+X )|(ker (I+X))t is a lattice-isomorphism. Because ker (/+X)c X9
(h=—Xh whenever (I+X)h=0) and ker ([+X)*CX*5:‘) by Theorem 1.3 it
follows that I+X€eF (T).

It remams only to compute j(/+ X). To do this let us consider the decomposi-

tion =UpB, U=(XH)~. With respect to this decomposition we have
I= [0 Im] ’(‘)ﬂ "6” , where X’¢{T|U}. Since by the hypothesis TjU is
a weak contraction, we infer by Corollary 2.6

2.21) dr(ker (I + X")) = dr(ker (I+X')*).

Now, we can easily verify that ker (/4 X)=ker (/+ X’). The inclusion ker (/+X")C
cker (I+X) is obvious. If hcker (/+X) we have h=—Xhell so that h=—X"y
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=X[U) and heker (/+X"). In particular
(2.22) dr(ker (I+ X)) = dy(ker (I+X")).

It is easy to see, using the matrix representation of X, that u@ vecker (/4 X)*
if and only if
(2.23) ucker(I+X)* and v=-X"*u.

1f we denote by Q the orthogonal projection of $ onto U, it follows from (2.23)
that Qlker (J+X)* is an invertible operator from ker (I+X)* onto ker (J4+X')*,
the inverse being given by ker (/+X")*3ur—»u®d(—X"*u). Because we have also
TiQ=0QT* it follows that Tyl|ker (/+X’)* and T*|ker (/+X)* are similar, in
particular

2.24) dr(ker (I+X)*) = dy(ker (I+X")*).

From (2.21), (2.22), and (2.24) it obviously follows that j(/+X)=1. The Theorem
is proved.

§ 3. Some examples

Proposition 3.1. For any two inner functions m and n there exist a C, operator
T and X€F(T) such that j(X)=mjn.

Proof. The operator T=(S(m)®1)®(S(M)®I), where I denotes the identity
operator on /%, is of class C,. If we denote by U, the unilateral shift on /3,

obviously
X = (Igm®U)®Ugm@U,)E{TY.

Moreover, X has closed range so that X|(ker X)* is invertible. Because T lkerX
is unitarily equivalent to S(m) and T . is unitarily equivalent to S(n), it follows
that X is C,-Fredholm and j(X)=m/n.

The following proposition infirms the Conjecture from [10]. Proposmon 34
shows however that this Conjecture is true under the assumption X¢{T}” and
with the condition pr< < dropped. e

Proposition 3.2. Let K and K, be C, operators of finite multiplicities such
that dy=dy . Then there exist a C, operator T of finite multiplicity and an X& S {T}
such that T|kerX and T\, x+ are quasisimilar to K and K_, respectively.

Proof. Let S=8(m,,m,,...,m,) and S,=S(m;,m,, ..., m,) be the Jordan
models of K, K, respectively (it may happen that some of the m; or m be equal to 1.
By the hypothe51s we have :
3.1) mymy ... m, = myni ... m,.
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Let us consider the operator
(3.2 T = S(@,, @s, .., ©,), Where
B3 ey=mmy...m,, @=mMsMy...M,, Q3= MgMzMg...M,, ...,
¢, = mimg ... m,m,.

(T is generally not a Jordan operator). The matrix over H> given by

0 0..0 m
my 0..00

G4) . A=|0 m;...0 0| =I[a;h=jzn
0 0..m,0

satisfies the conditions
3.5 a;;9;€p H*

and therefore (cf. [2], relations (6.5—7)) the operator X defined by

(3.6) X= [Xij]lgi,jém ' Xijh = P!_\((Pi)aijh (hE 5(%))

commutes with 7. Now it is easy to see that

3.7) Tlker X = @ T|(ker XN $(@)), Taerxs = D Tierxenisiony:

Using [8], p. 315, we see that T|(ker XN$H(gp)) is unitarily equivalent to S(m;)
and T, xeng(oy 1S UNitarily equivalent to S(m;) so that T'ker X is unitarily equiv-
alent to S and T, 4« is unitarily equivalent to S,. Proposition 3.2 follows.

Lemma 3.3. If T and T’ are two quasisimilar operators of class C, and @€ H™
then T\ker ¢(T) and T’iker ¢(T’) are quasisimilar.

Proof. Let X, Y be two quasi-affinities such that 7°X=XT and TY=YT".
Then we have also ¢@(T")X=X@(T) and ¢(T)Y=Ye(T") which shows that
3.8 ' Xker o(T)C ker o(I”), Y ker ¢(T")C ker o(T).

From (3.8) it follows that T'|ker ¢(7) can be injected into 7”[ker ¢(7") and
T’|ker 9(T’) can be injected into T|ker ¢ (7). The Lemma follows by [10],
Theorem 1.

~ Proposition 3.4. Let T be an operator of class Cy and X€{TY". Then T|ker X
and T, x« are quasisimilar. In particular we have

sE(T)N{TY =F (T)N{TY and j(X)=1 for XcF (T)N{TY".

~
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Proof. From [2] and [1] it follows that X=(u/v)(T), where u, v€c H~ and
vhAmp=1. It is easy to see that ker X=ker u(T) and ker X*=ker ¥~ (T*). By
Lemma 3.3 it suffices to prove our Proposition for 7'a Jordan operator and X =u(T).
Now, a Jordan operator is a direct sum of operators of the form S(m) and it is
easy to see that S(m)|ker u(S(m)) and (S(m)*|ker (u(S(m)))*)* are both unitarily
equivalent to S(mAu). Thus for T a Jordan operator Tlkeru(T) and Ty . (ry»
are unitarily equivalent. Thus Proposition follows.

Proposition 3.5. Let T be an operator of class C, and let X€{T}" be an in-
Jection. Then X is a lattice-isomorphism.

Proof. Let Mclat(7T); by [9] we have XIMcIN. Moreover we have
XMeAlg Lat (T|M) and obviously X[Me{T|M). Again by [9] we infer
X|Me{T|M}". From Proposition 3.4 applied to the injection X|M we infer
ker (X[M)*={0} so that

(3.9 X9~ =M.

This shows that the mapping Pt—(X M)~ is the identity on Lat (7). The Proposi-
tion is proved.

Proposition 3.6. There exist an operator T of class C, and operators X,,
Xe{T} such that lim |X,—X|=0, X¢F(T) but X,¢F(T), n=1,2, ... Thus
the set F(T) is not generally an open subset of {T}.

Proof. We shall construct Blaschke products m, b and b, (n=1, 2, ...) such that
(3.10) bAm =1, b,Am s 1;
3.11) '!LI'E |b,—blle = 0.
Then the required example is given by
(3.12) | T=SmMQeI,
where 7 denotes the identity operator on an infinite dimensional Hilbert space, and
(3.A13) . X=bT), X,=b,T) (n=1,2,..).

It is' clear that T|ker X, is unitarily equivalent to S(mAb,)®I which is not
a weak contraction and therefore X,¢F(7T) (by Proposition 3.4, X,¢sF(7)).
Because bAm=1, b(T) is a lattice-isomorphism by Proposition 3.5, in particular
XeF (T). The convergence X,—X follows from (3.11).
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It remains only to construct the functions m, b and b, (n=1, 2, ...). Let us put

(3.14) b= ﬁB", b, = ﬁBﬁ(n =1,2,..), m= ﬁB’,ﬁ
=1 k=1

where B* (respectively BY) is the Blaschke factor with the zero k=% (respectively
k=2 exp (ir¥), 15>0). Because |b—b,|= 2’ |B¥— Bk, one can verify that (3.11)
holds whenever lim Zk“t" 0. Condmons {3.10) are also verified and

ne—co k=
— n
b,Am=B].
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Compléments a ’étude des opérateurs de classe C,. IV

H. BERCOVIC], C. FOIAS, L. KERCHY, B. SZ-NAGY

Dans la Note précédente [1] un rdle fondamental est joué par les deux proposi-,
tions suivantes.

 Proposition 1. Pour tout opérateur T de classe C, dans Pespace de Hilbert
9, les vecteurs f€ 9 pour lesquels mr =mr, sont denses dans 9.

Proposition 2. Pour tout f€$ tel que My =mr, il existe un sous-espace

M de 9, invariant pour T, et une quasi-affinité X: H(m)—~9H, (m=my) tels que
XS(m)=TX, $,VM=9, XH(m)NM = {0}.

Rappelons que T, désigne la restriction de T au sous- espace invariant

\/ T"f; S(m) est 'opérateur défini sur ’espace fonctionnel H(m)=H2OmH?*

par S(m)u Poimy(-w) o0 u=u(2)eH(m) ([A[<1), et, pour tout opérateur ¥
de classe C,, my,=m, (1) est la fonction minimum de V.

Or, la démonstration qu’'on a indiquée dans [1] pour la proposition 2 était
trop sommaire, et méme insuffisante.') Nous allons remédier ce point et cela méme
en établissant le résultat plus fort suivant.

Proposition 2*. Pour tout f€$ tel que my =mr, il existe un saus-espace
M de 9, invariant pour T, tel que

HVM=9, H,NM={0}.

(Pour en déduire la proposition 2 il n’y a qu’a rappeler que, d’aprés la proposi-
tion 1 de [2], T; est quasi-similaire a S(m), avec m= my, (=my).)

ng_u le 9 novembre 1978.

"My Cela a été remarqué par I’un des auteurs (L. K.) de la présente Note ; il a d’abord proposé
une démonstration portant sinon pour tous.les f tels que my =y, mais du moins pour les éléments
f d&’un ensemble dense dans $ (ce qui suffit pour en conclure aux théorémes de [1]). Ensuite, on est
parvenu 2 la démonstration suivante. -
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On commence par le suivant

Lemme. Soient T et T’ des opérateurs de classe C, dans les espaces © et §',
et supposons que T et T’ sont quasi-similaires et sans multiplicité (c’est-a-dire p,=
=pur=1). Alors, tout opérateur injectif A:H—9" tel que AT=T'A, est aussi

quasi-surjectif (c’est-a-dire que A_$§=S5’).

Remarque. Le lemme résulte aussi du théoréme de [3]. Mais dans le cas
particulier (p;=p;.=1) qui nous occupe on a la démonstration suivante simple:

L’injection A4:$H -9’ induit une quasi-affinité B: H—~L ou L=A49H et on
a évidemment BT=(T"|Q)B. Il s’ensuit que 7'|2 et T, donc aussi 7'{Q et 77,
ont la méme fonction minimum. Puisque 7~ est sans multiplicité, on a alors par
le théoréme 2(iv) de [2] que £=%’, donc A9=9'.

Le lemme établi, passons a la démonstration de la proposition 2%,

Puisque 7} a le vector cyclique f, son adjoint (Tf)* a aussi un vecteur cyclique,
soit g; ¢f. le théoréme 2 de [2]. Posons

5*5; =V T*"g, T*g = (T*Ig)*g)*’ P = Ps*g’ M= 5655*9;

n=0

9., étant invariant pour 7, M est invariant pour 7.

De la définition il dérive aussitdét que T,,P=PTP, donc T, ,Px=PTx .Apour
X€ 9., Or, la derniére équation est vérifiée pour x€ M aussi, car on a Py=0 pour
tout yc M. On a donc T, ,P=PT et par conséquent

0 TLX=XT} (n=0,1,..) ou X=P|H,=Pg,|D,
et en passant aux adjoints,

) X*TH =T (n=0,1,..), X*=Pg|9,,.
Puisque g est contenu dans $,N$,,, on a X g=g, et par (2)
3) X*Tig=T/"g (n=0,1,..).

Or, g étant cyclique pour 7, (3) entraine que X *9,, st dense dans 9,1l s’ensuit
que X est injectif.
On en déduit que H,NM={0}. En effet, pour x¢ HNM on a Xx=Px
(parce que x€%H,)=0 (parce que x¢M), d'ot x=0 (parce que X est injectif).
Notons que de (1) il dérive u(7,,)X=Xu(T;) pour toute fonction u€H>,
d’ou, toujours par l'injectivité de X, il s’ensuit que mTflmT*g. D’autre part, on a

MTyy = M(T31g,,r = MTais,, | Mrs = My
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Puisque par hypothése my =mg, on conclut que mp =mr, . Les opérateurs
T,et T,,, étant cycliques et ayant la méme fonction minimum, sont quasi-similaires.
Vu que X est injectif, et que 7,,X=XT,, on a en vertu du lemme que X est aussi
quasi-surjectif, donc P_55f=$§ .

Puisque P9, est évidlemment compris dans $ fV M cela entraine que
5 = Sj*g@wt = stfvmz = 51\/ am.

Cela achéve la démonstration.
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Essential spectrum for a Banach space operator

RICHARD BOULDIN

§ 1. Introduction

Essential spectrum has been much studied with papers [4], [5], [6], [10], [14]
taking the point of view of describing the Weyl spectrum or showing when different
notions of “essential spectrum’ coincide. A principal result of the significant paper
[8] says that if the Weyl spectrum of 7" coincides with the Fredholm spectrum and
T is essentially normal then T is the sum of a normal operator and a compact
operator. The papers [1], [2], [3], [7] develop theories such as triangular representa-
tions for nonnormal operators by using the fine structure of index theory. The pur-
pose of this note is to show that points identified by the fine structure of index
«theory are either very bad or very nice. Points in the semi-Fredholm domain which
satisfy a “modest” hypothesis are very nice.

Let X be a fixed Banach space. Throughout this note “operator” will mean
a linear map of X into X which is defined on a vector space dense in X and has
closed graph. We adopt the notation of [15], which is our basic source for the
theory of closed operators on a Banach space.

For the operator T let nul (T—2) be the dimension of the kernel of 7T—2,
denoted N(T'—4), and let def (T—1) be the codimension of the range of T—4,
denoted R(T—A). The operator T— A is semi-Fredholm provided R(T—4) is closed
and either nul (7 —2X) or def (T— 1) is finite; for such A the index of T—A, denoted
ind (T—7), is nul(T—A4)—def (T—/). The operator T—41 is Fredholm provided
R(T—17) is closed and both nul (T—4) and def(T—41) are finite.

Lemma 1. (Index Theorem) If the operator T—u is semi-Fredholm then there
is a neighborhood of u, say G, such that the following are true:
() A€G implies T—A is semi-Fredholm with nul(T—2)=nul(T—p),
def (T—N)=def (T—p) and ind (T—A)=ind (T—p);
(i) nul(T—2) and def (T'—2) are constant on G\{p} (that is {z: z€G, z#p});

Received April 4, 1978.
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(iii) provided nul (T — y)< <o, nul (T~ 2) is constant on G if and only if N(T —p)C
cN{R((T-pH: k=1,2,...};

(iv) provided def (T—u)<oo, def (T—2) 1is constant on G if and only if
N(T'—w)c N{R((T' - w)"): k=1,2,...}.

Proof. Parts (i) and (ii) are well known; part (iii) is Problem 5.32 of [12, p. 242]
and (iv) results from applying (iii) to (77— 4). 4

The next lemma summarizes many useful facts. The spectrum of the operator
T is denoted o(T). The dimension of the subspace X, in the lemma is called the
algebraic multiplicity of A.

Lemma 2. Let T be an operator and let 2 be an isolated point of o(T). Then
there is a direct sum decomposition of X, say X, X, , such that X, and X, are invariant
under T— ). The restriction of T—2 to X,, denoted (T— )| X,, is quasinilpotent and
(T—M)|X, is invertible. If T— ). is semi-Fredholm then the dimension of X,, denoted
dim X, is finite.

Proof. There are many sources for the information about the decomposition
corresponding to {1} and its complement (for example, see [12, pp. 178—181]).
Since T—21 is semi-Fredholm, it follows that (7T—2)|X, is semi-Fredholm. Since
R((T—-M|X,) is closed, nul’ (T—A)|Xp=nul (T—2)|X, and def’ (T—1)|X,=
=def (T—1)|X, by [12, Theorem 5.10, p. 233]. By [12, Theorem 5.30, p. 240} we
know that dim X,=< implies nul’ (T—21)|X;=-<. This proves that dim X,< oo.

§ 2. Main result

The set of points u such that T—pu is a Fredholm operator is denoted @(T)
and the set of /. for which ind T—/ is zero is denoted ®,(7). Provided there are
nonnegative integers k such that N(7%) equals N(T**%), T is said to have finite
ascent and the smallest such k is the ascent of 7. Provided there are nonnegative
integers m such that R(T™) equals R(7T™*Y), T is said to have finite descent and
the smallest such m is the descent of T. .

To say that N(T— /) is not an asymptotic eigenspace for the operator 7 means
that whenever there is a sequence of distinct eigenvalues say {4,}, converging to
A then |},—A|=0(d(4,, 7)) where

d(2,, A) = sup{dist (x, N(T—2): x| = 1, xe N(T—1,)}.
This concept was introduced in [6].

Theorem 3. If T—21 is a semi-Fredholm operator with A€6(T) and one of
the conditions (1), (2), (3) below holds then ) is an isolated eigenvalue with finite
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algebraic multiplicity. Furthermore, if u is any isolated eigenvalue with finite algebraic
multiplicity then p belongs to ®y(T) and satisfies (2) and (3).

(1) 2 is an isolated point of o(T). '

(2) N(T—1) and N(T'—21") are not asymptotic eigenspaces for T and T’, re-
spectively.

(3) T—2 has finite ascent and finite descent.

Proof. First it is noted that (1) suffices for the conclusion about 1. Since 7—2
is semi-Fredholm, Lemma 2 implies that the spectral subspace X, corresponding
to A is finite dimensional. Consequently the quasinilpotent (T'—2)|X, is nilpotent,
and N((T—A)|X;) is non-trivial. Thus, A is an isolated eigenvalue with finite al-
gebraic multiplicity, and it suffices to show (1) is implied by each of the condi-
tions (2) and (3).

Assume (2) holds and for the sake of a contradiction assume ¢(7) contains
{%,} which converges to A with 4,1 Lemma 1 shows that it may be assumed
that each T—/, is semi-Fredholm. Either nul 7—J1, or def T—J, is positive, and
first we consider the case nul 7—21,=0. It will be shown that since N(T—21) is
not an asymptotic eigenspace, R(T—4) is not closed, a contradiction. Since
{|4a—Al/d(4,, A)} converges to zero there is a sequence of unit vectors {x,} such
that x,e N(T—4,) and

dist (x,, N(T—2)) > d(4,, ))—|A,— 4.
It follows that
I(T— A x, [l /dist (x,, N(T—2A) = |A,— Al/dist(x,, N(T—2) < |4, — 2| (d(A,, H—[A,—A]) -
and clearly the last fraction converges to zero. Thus, R(T—/) is not closed (see
Theorem 5.3, p. 72, [15]) and this contradiction proves that 1 is an isolated point
of o(T). If def (T—4,) where positive then one would use that N(T’—2) is not an
_ asymptotic subspace to show R(T'—41) to be not closed.

If (3) holds then (1) follows immediately from [13, Theorem 2.1, p. 200].

It only remains to establish the properties of the isolated eigenvalue u. If Y,
is the algebraic eigenspace associated with u and ¥, is the complementary subspace
in X then (T—p)|Y, is one-to-one and onto. Since dim Y, is finite, it is straight-
forward to see that (T—u)|Y, is Fredholm with index zero, and conditions (2) and
(3) must hold.

If 2 belongs to o (T)N P, (T) then clearly A is an eigenvalue for the operator T.
Thus, the hypothesis of the next corollary would be stronger if one of the con-
'ditions (1), (2), (3), (4) was required for each eigenvalue 1. Hence, the hypothesis
of the corollary is weaker than the hypotheses for similar results in [4], [5], [11].

Corollary 4. Let T be an operator on X. If every A in o(T)N®(T) satisfies
one of the conditions of Theorem 3 or (4) below then each 1 is an isolated eigenvalue
with finite algebraic multiplicity.

3*
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(4) N(T—2) and N(T'—72) are not subspaces of 5 {R((T—2))} and
ﬁ {R((T"—2)")}, respectively. )
k=1

Proof. Let (4) hold and take e¢=0 such that O<|2—p|<e implies that all
of the conclusions of Lemma 1 hold. Lemma 1 and condition (4) imply nul (T —u)<
<nul (T—2). If nul (T—y) were positive then one of the conditions (1), (2), (3), (4)
would apply and the resulting conclusion would contradict that nul (7—y) is a
positive constant for 0<|A—pu|<e; hence, nul (T—2)=0 for such u. Similarly,
def (T—7) is zero for O<|i—pu|<e and so T—yu is invertible, which proves that
A is an isolated point of (7).

The conditions (1), (2), (3) of Theorem 3 can be weakened provided the
hypothesis for T— /1 is strengthened.

Corollary 5. Let T be an operator on X. Every 2. in 6 (T) N ®y(T) which satisfies
one of the conditions (1), (2'), (3") below is an isolated eigenvalue with finite algebraic
multiplicity.

(1) A is an isolated point of o(T).

2"y N(T—2) is not an asymptotic eigenspace for T.

(3") T—2 has finite ascent.

Proof. If A is an isolated point then Theorem 3 proves the desired conclusion.

The argument given in the second paragraph of the proof of Theorem 3 shows
that (2’) above suffices.

That (3°) suffices follows from [14, Theorem 1.1].

In the final corollary the previous results are applied to get a simple alternative
proof for a recent result on Riesz operators. An operator T is a Riesz operator
provided the following hold for every nonzero Z:

(i)' T—J has finite ascent and finite descent;

(i) N((T—2)) is finite dimensional for k=1,2, ...;

(i) R((T—A)"*) is closed with finite codimension for k=1,2, ...;

(iv) nonzero points of (T are eigenvalues and the only possible accumula-
tion point of o(7T) is zero.’

Note that the sum of any quasinilpotent operator and a compact operator
1s a Riesz operator. For bounded T the next result was proved by CARADUS
9, p. 42).

Corollary 6. Let T be an operator with nonempty resolvent set. If @(T)
contains {z: z5%0} then T is a Riesz operator.

Proof. The index, being locally constant, is continuous and integer valued;
thus, it is constant on connected components, and @,(7) contains {z: z0}. If
o(T)N{z: 220} contains accumulation points of ¢(T) then the intersection of
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{z: z=0} with the boundary of ¢(7T) contains 4, an accumulation point of ¢ (T).
Since nul (T—z) is constant on N={z: 0<|i—z]|<e¢} for some &=>0 and N inter-
sects the resolvent set of 7, it must be that nul (T—2z)=0 for z¢N. Since
ind (T—z)=0 for z¢ N, A is an isolated point and the only possible accumulation
point of a(T) is zero. Now Corollary 5 and Theorem 3 complete the proof.

Because of the astonishing lack of examples of (unbounded) operators in the
literature, we mention the following. If C is the complex plane -endowed with
Lebesgue measure and M, is multiplication by the independent variable defined
on {f(2)€L*(C): zf(z)€L*(C)} then M, is an operator with no A such that M, —2
is semi-Fredholm. So the resolvent set of an operator might be empty.
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On the lattice of congruence varieties of locally
equational classes

G. CZEDLI

1. Introduction

For a class J of algebras, let Con (#") denote the lattice variety generated by
the class of congruence lattices of all members of . A lattice variety % will be called
an I-congruence variety if %=Con () for some locally equational class % of al-
gebras. In particular, every congruence variety is an /-congruence variety. Our aim
is to show that /congruence varieties form a complete lattice, which is a join-sub-
semilattice of the lattice of all lattice varieties (while meet is not preserved). We
also show that the minimal modular congruence varieties described by FREESE [1]
and the minimal modular /-congruence varieties are the same.

The notion of locally equational class has been introduced by Hu [2]. For
the definition, let F be a subset of an algebra A of type 7 and let #,, £, be n-ary
t-terms. The identity # =¢, is said to be valid in F if for all (a,, a,, ..., @, )EF"
we have 1,(ay, dy, ..., 4,)=1,(ay, a5, ..., a,). Suppose K is a class of algebras of
type 7 and denote by L(") the class of all algebras A of type = having the follow-
ing property: .

for each finite subset G of A4 there is a finite family {B,: i€/} in & and there

is for each i€l a finite subset F;SB; such that every identity valid in F; for

all i¢1 is also valid in G.

Now, L is a closure operator on classes of similar algebras. L(J) is called the
locally "equational class (or, briefly, local variety) generated by A, and 4 is said to
be a local variety if L(X)=2. We often write L(A4) instead of L({4}).

Denote by H,S, P, D the operators of forming homomorphic images, sub-
algebras, direct products of finite families and directed unions, respectively, and
let us recall

Received February 15, 1978.
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Theorem 1.1. (Hu [2)) (a) Every variety is a local variety. The converse does
not hold, e.g. all torsion groups form a local variety. )

(b) For a class A of similar algebras L(A")=DHSP(X'); consequently,

(¢) Ais locally equational if and only if it is closed under D, H, S, P;.

Our main tool is the following

Theorem 1.2. (PIXLEY [11]) There is an algorithm which, for each lattice identity
A and pair of integers n,k=2, determines a strong Mal’cev condition (i.e., a finite
set of equations of polynomial symbols of unspecified type) U, ,=U, (1) such
that for an arbitrary algebra A of type T the following three conditions are equivalent:

(i) A is satisfied throughout Con(L(4));

(ii) for each finite subset F of A and integer n=2 there is an integer
k=k(n, F, %) and a t-realization U, of U, , such that U, is valid in F;

(iii) for each finite subset F of A and integer n=2 there is a ky=ko(n, F, 2)
such that for each kz=k, there is a t-realization U, of U, , which is valid in F.

We have supplemented Pixley’s theorem with condition (iii) which is implicit
in the proof in [11] of the theorem. We shall make essential use of

Proposition 1.3. In the above theorem each polynomial of U, , is idempotent
in F.
This follows easily from the construction of U, , described in [11].

2. Lattice of /-congruence varieties

A lattice variety % is called a congruence ‘variety (JONSSON [8]) if % =Con (2¢")
for some variety J¢, and % will be called an l-congruence variety if %=Con (¥")
for some local variety ¥” Let € and &* denote the “sets” consisting of all /~con-
gruence varieties and all /-congruence varieties of the form Con (L(A)), respectively.
Let € and €* be partially ordered by inclusion. Qur main result is

Theorem 2.1. € is a complete lattice. The (infinitary) join of arbitrary
l-congruence varieties in & and their join taken in the lattice of all latrice varieties
coincide.

Although there exists a local variety which cannot be generated by a single
algebra (Hu [2]), we have

Theorem 2.2. For any local variety ¥ there is an algebra A (not necessarily
of the same type as ¥) such that Con(¥)=Con(L(4)). Thus €=C*
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Proof of Theorems 2.1 and 2.2. First we show the following statement:
(1) For any algebra 4 of type 7 there exists an algebra B such that Con(L(4))=
=Con(L(B)) and B has a one-element subalgebra.
Let by€ 4, @={2:1 is a lattice identity satisfied throughout Con(L(4))} and
H={F:F is a finite subset of A containing ,}. By Thm. 1.2 choose a k=k(n, F, %)
and a r-realization U} (F, 2) of U, (1) for all i¢®, FCH and n=2 such that
U, «(F, 4) is valid in F. Denote by P(n, F, %) the set of t-polynomials occuring
in U7 (F, 4) and define an algebra B as follows: B has the same carrier as 4 and
the set of its operations is U{P(n, F, 1): n=2, FEH, A€ ®} (i.e. B is a reduct of 4).
Since Uy, is also valid in F\ {b,}, Con(L(4))=Con(L(B)) follows from Thm.
1.2. By Prop. 1.3, {b,} is a subalgebra of B, which completes the proof of (1).
Now we prove that
(2) For an arbitrary set I of indices and for any algebras 4,(y€r) there is an
algebra 4’ such that V Con (L(4,))=Con (L(4") in the lattice of all lattice
varieties.
We can assume I'##0 (otherwise the statement is trivial) and

— {a,} is a one-element subalgebra of 4, for each y€r,

— all the algebras A (y€I) are of the same similarity type © (otherwise the
set of operations of 4, can be supplemented with projections since for
polynomially equivalent algebras B, and B, over the same carrier,
Con (L(B,))=Con (L(By)) by Thm. 1.2), and

— for each yer, every t-polynomial is equal to some t-operation over 4,.

Denote by 7, the set of i-ary operation symbols in t and regard ;=1 as a set

of i-ary operation symbols (i=0,1,2,...). Now, 1= U 7, and set U= U 7.

For each y€TI', 4, can be regarded as an algebra A4 of type 7’ if we define, for qEr
the operation ¢ by g=4(7) (g(y)€T, A, and A have the same carrler) Evidently,
Con (L(4;))=Con (L(4,)) by Thm. 1.2. Let A’ be a weak direct product of the
algebras A; defined by

={f€y'€[Z 4;: for all but fihitely many y€rl, f(y)=a,}.

By Thm. 1.1 L(4;)SL(4), therefore
V Con (L(A)) = V Con(L(4) < V Con(L(4") = Con(L(4")).
ver ver yer

In order to prove the converse inclusion by means of Thm. 1.2, suppose a lattice
identity 2 is satisfied throughout each Con(L(4,)). Fix an arbitrary finite subset
Fof A" and n=2. For each yeI' set F,={f(y): fEF}S A4, and choose a non-
empty finite AST such that y€I'™\4 implies F,={a,}. Since 1 holds in each
Con (L(4, )), by Thm 1.2 for each yeI there exist k,=z2 and for all k=k,6 a
t-realization U, (y) of U, , such that U, ,(y) is valid in F,. We can suppose k, =2
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if yeI'\4, because F, is a subalgebra consisting of a single element. Set
k=max {k,: yeI'}. Then for each ycI" there exists a realization U, ,(y) of U,
which is valid in F,. Let U;,(y) consist of z-operations ¢, ,,q, ., ---, 4 ,- For
i=1,2,...,s define ¢,€v by g¢,(y)=g;, over A, (ycl). Then the operations
q1> G2» ---» 4, Yield a t’-realization of U, , which is valid in F. This completes the
proof of (2).

Now, let 7" be an arbitrary local variety and let @ consist of all lattice identities
which are not satisfied throughout Con(¥"). For each A€ ® we can choose A4,€¥”
such that 1 is not satisfied in the congruence lattice of 4,. Since L(4,)&7¥ and
4 is not satisfied throughout Con(L(A4,)), it can be easily seen that Con (¥")=
:,1\/:» Con(L(4,)). Hence Thm. 2.2 follows from (2). Since any complete join-

€

semilattice having a O-element is a complete lattice, Thm. 2.1 follows from (2) and
Thm. 2.2. Q.E.D.

3. Minima! modular /-congruence varieties

Let P be the set of all prime numbers and set Py,=PU {0}. For p€ P, denote
by Q, the prime field of characteristic p and by ¥, the variety of all vector spaces
over Q,. The following theorem was announced by FREESE [1]:

Theorem 3.1. For any modular but not distributive congruence variety U there
is a p€Py such that Con(¥,)S%. Consequently, congruence varieties do not form
a sublattice in the lattice of all lattice varieties.

Christian Herrmann has also proved the above theorem. We shall slightly
modify his (unpublished) proof to obtain the following

Theorem_ 3.2. For any modular but not distributive I-congruence variety U
there is a peP, such that Con(¥,)S%. Consequently, l-congruence varieties do
not form a sublattice in the lattice of all lattice varieties.

The proof is based on the following theorem (which is presented here in a
weakened form):

Theorem 3.3. (Hunn [4]) For an arbitrary modular lattice M and n=3 the
Jollowing two conditions are equivalent:
(i) M is not n-distributive, i.e., the n-distributivity law

n n

AV yi=V [V 5)
i=0 ji=0 i=0
i#j

(cf. HunN [3] and [5]) is not satisfied in M.



On the lattice of congruence varieties 43

(i) The lattice variety generated by M contains L, ,(Q,) for some pEP, where
L, ,(Q,) denotes the congruence lattice of the (n+1)-dimensional vector space
over Q,.

For a pair of non-negative integers m, k let us define the divisibility condition
D(m, k) by the formula (3x) (m-x=k-1) where m-x and k-1 mean x+x+...+x
(m times) and 141+1-...+1 (k times), respectively. We need the following

Proposition 3.4. For any lattice identity A there exist non-negative integers
ny, m, k such that for each pe P, the following three conditions are equivalent:

(1) 4 is satisfied throughout Con (7)),

(il) there exists n=n, such that A is satisfied in L,(Q)),

(iii) the divisibility condition D(m, k) holds in Q,.

Proof. The equivalence of (i) and (iii) is a special case of [6, Thm. 3]. As for
(i)~ (i), we can argue as follows: Let us construct the identity 4 from 4 by replacing
the operation symbols A and V by N and o (composition of relations), respect-
ively. By congruence permutability, (i) holds iff 1 is satisfied by arbitrary con-
gruences of any algebra in ¥,. Now, WILLE’s theorem [12] (see also PIXLEY [11,
Thm. 2.2]) involves implicitly that if A is satisfied by certain congruences of the
free ¥,-algebra of rank n,, for some n, depending on 1, then 1 is satisfied by arbitrary
congruences of any algebra in ¥,. Finally, the congruence lattice of the free ¥}-
algebra of rank #, is a sublattice of L,(Q,) whence J. is satisfied by arbitrary con-
gruences of the free ¥,-algebra of rank n,. Q.E.D.

It follows from a more general result of NATION [10, Thm. 2] that any s-distri-
butive congruence variety is distributive (n=1). Now we need the following
generalization of this fact: '

Proposition 3.5. Let n=1 and % be an arbitrary l-congruence variety. If
U is n-distributive, then % is distributive.

Proof. Certain arguments using Mal’cev conditions for congruence varieties
can easily be reformulated for /-congruence varieties. PIXLEY [11] has pointed out’
that JONSSON’s criterion for congruence distributivity [7] remains valid for /-con-
gruence varieties. Similarly, MEDERLY’s criterion for n-distributivity [9, Theorem 2.1]
also remains valid. Thus the have:

Proposition 3.6. For an arbitrary algebra of type T and n=1 the following
two conditions are equivalent:
i. (i) Con(L(A)) is n-distributive,
(i) For each finite FC A there exist k=2 and (n+2)-ary t-polynomials
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to, ty, ..o by on A such that the identities

16(Xg5 Xy ooy Xp1) = Xo» KXo, X1, ~-'7.xn+1) = Xat+1»
ti(x09x13 cees Xps xO) = X0 (l = 0’ 1) '-.': k);

tl'(x’ x, ---3x5 y,}’, ’,V) = ti+1(x’ X, "',xs y’y’ ---,.V)
R e
j+1 j+1

(0=i<k, 0sj=n and i=j(modn+1)) are valid in F.

~ Now, suppose Con (L(4)) is n-distributive for some n=1. Fix a finite FCA.
Then, by Prop. 3.6, there are k=2 and t-polynomials f,, t;, ..., t, satisfying the
required identities in F. Define j(—1)=0 and for i=0, 1, ..., k, j({)=i(modn+1),
0=j(i)=n. Define ternary t-polynomials gy, q;, ..., gy, as follows: g,(x, y, z)=x
and for i=0,1,...,k%k

q2i+1(x’ Vs Z) = ti(x» Xy eoes X5 Vo Vs oo s Z)
[ —
ji-1+1
and
q2i+2(x: Vs Z) = ti(x: Xy eis X5 Vo Vs -5 ) Z)'
[y ——
JO+1

It is easy to check that the polynomials gy, gy, -.., s o Satisfy the equations of
Prop. 3.6 (ii) in F for (1, 2k +2) instead of (n, k). Hence, by Prop. 3.6, 1-distributiv-
ity — which is the usual distributivity — holds throughout Con (L(4)). Thus Thm.
2.2 completes the proof. '

Proof of Theorem 3.2. Let % be an /-congruence variety as in the theorem.
By Prop. 3.5, % is not distributive for n=1, 2, 3, .... Hence, by Thm. 3.3, for each
n>2 we can choose p,€P, such that L,,,(Q, )€%. Set S={p,: n>2}. If the set
{n:n>2 and p,=p,} is infinite for some 7, then {L, +1(QI,"): p,=D,} generates
Con(¥,) by Prop. 3.4 (i, ii). Hence Con(¥,)S%. Suppose {n:n=2 and p,=p,}
is finite for all 7=2. Then it suffices to show that Con (%) is a subvariety of the
variety generated by {L, +10Q,): n>2}. Suppose A holds in L, +1(Q,,) for each
n=>2. For a sufficiently large ¢, 1 holds throughout Con ("Vp") for any n=t by
Prop 3.4 (i, ii). Hence there exists an infinite $"C S\ {0} such that i holds in
Con (¥,) for each p€S’. Then, by Prop. 3.4, the divisibility condition D(m, k)
associated with 4 holds in @, for each p€S’. Therefore, D(m,k) holds in Q,
(otherwise m=0 and k=0, so each p€ S’ divides k). Hence, by Prop. 3.4, 2 holds
throughout Con(¥;). Q.E.D.
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Remark. If 2 is a class of similar algebras closed under S and P,then Con (X')
is an /-congruence variety, namely Con (#")=Con (L(X)).

The author would like to express his thanks to A. P. Huhn for the idea of
introducing /-congruence varieties.
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O cBoiicTBe nepememmBanns B cMbicie A. Penbn
IJISl 9HCN1A TOJIOKHTENBHBIX CYMM

A. A. J)KAMUNP3AEB

I. IlycTh Ha BeposTHOCTHOM TpocTpaHcTBe {2, &, P} 3amanst

(l) 61762!"',51)9"'

— MOCJIeNOBATENALHOCTh HE3ABUCHMBIX CHy4aHHBIX BeswduH (1. Ben.) ¢ ME;=0,
D¢ =1 (i=1,2,...) u {v,}-I0CIENOBaTENILHOCTh IIOJOXHTENBHBIX IEN0UHCIERHBIX
cn. Bell. [MomoxuMm S,=&+&+...+&, (n=1,2,..) u F (x)=P{S,<x}. UYepes
N} o00603HAYUM YHCIO IOJNOXHTENBHBIX CyMM S; M3 TOCIEIOBATEIbHOCTH
Sis1> Skpzs -0 Sy THE k=0, 1, ..., n—1. Taxxe monoxum N,=Ng.

H3BecTHO [3], 4TO €CiiM K MOCHENOBATEIBLHOCTH CJ1. BeJ. (1) mpiMeHHMa LeHT-
panbHas TpenebHas TeopeMa, TOTaa

) Jim P{-nl\ﬁ < x} - R(),
rue
0 npu x =0,
2 .
R(x) = —arcsinjx npu O<x=1,
1 npu x> 1.

o N,
B nmaHHO# cTaTbe [OKa3bIBAETCH, YTO IMOCIEAOBATENBHOCTh CJI. BEJL {——"}
n

06J1aJaeT CBOMCTBOM mepeMelurBaHus B cMbicie A. Penbu. IlpuMmenss 3T1oT dakr,
[OKa3bIBa€M 3aKOH apKCHHYCa JJIL CYMM HE3AaBHCHUMEIX CJI. BelJl. OO CIy4aiHOro
HHIEKca.

Ipexne yeM GopMynupoBaTh pe3yabTaThl, IPHBeAEM cieayloliee OIpefe-
nenue u3 pabotsl A. Penbnu [4]. ByaeM roBOpuTh, YTO MOCHEAOBATENBHOCTD CII.
sen. {n,}, 3amannast Ha {Q, &, P}, obnamaeT CBOMCTBOM HepeMEIIMBAHUS C Ipe-

Tlocrymso 3. VI. 1977,
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nensHOM QyHkuuel pacnpeaenenus (¢. p.) F(x), ecnu aas moboro cobvitia A€ Z,
rae P(A)=0,
3) lim P{y, < x|4} = F(x)

B KaXAO#M Touvke X, ABJiAOlUelics TOYKoH HempepbiBHOCTH ¢. p. F(x).
Teopema 1. Ecau k nocaedosameasnocmu (1) npumenuma yenmpassnaa npe-

N y
OeabHas mMeopemMa, Mo nocaed08ameAbHOCMb CA. 8ed. {—" obaadaem csolicmeom
nepemewuganuan ¢ npedeavhoti @. p. R(x).

Teopema 2. ITyemvs k (1) npumenuma yewmpaavHas npedesvHas meopema,
cyujecmeyem nocae006ameabHoCmy noaoxcumevivlx yucea {k,} maxan, umo k,— oo
Apu n—oo u

0) Yn Py

N,
20e vy noaodcumeastas ca. eea. Toz0a nocaedosamesbHocms cA. geA. { ”"} obaadaem
ceoticmeom nepemewiusanus ¢ npedeavroti . p. R(x). "

Teopema 3. Ecau 6binoaHeHsl ycA08UA meopembl 2, MO APU H-> oo

N,, T o(x
5 P{ T <x} - ¥(x) =0f R(;—) dA(),
20e A(x)=P{vy<x}.
OrmerM, 9T0 (5) mokasaHo B pabore [1] mpu ycrnoBHM HE3aBHCHMOCTH V,
OT TOCefoBaTeJbHOCTU ci. Bel. {&,}.

2. Oas moka3aTeabCTBa TeopeMbl 1 HaM MOHAOOGHTCA CleAYIOIHEE BCIOMO-
raTelbHOE NPEenJIOXECHHAE.

Jdemma. IMyems {{,} u {n,} — 0se nocsedoeamevrocmu ca. gea. marue, 4mo
¢ 20 npu n—e u {n,} o61ad0aem ceoiicmeom nepemewusanus c npedeavroii @.p.
Fy(x). Tozoa {(,+n,} obaadaem ceoiicmsom nepemewsusanus ¢ npedeashoii @. p.

Fy(x).

Jdoka3aTelbCcTBO JeMMBI dABJISeTCA OYEBHAHOW Moaudukanueit [n0Ka-
3aTEeNbCTBA OpPUTWHANIbHON JieMMbl Kpamepa.

3. Joka3zaTenbcTBO TeopeMsl 1. Bocmonwsdyemcs oaHoit TeopeMol A.
Penbu (TeopeMa 2 u3 [4]), koTopas yTBepXAaeT YTO, eCIH ANs J000Oro x H NpH
kaxaoM k, k=1,2, ...

TR
© tim P o M b gy PR,

N, . .
TOrza 1= obnagaer CBOICTBOM IEpeMelUHBaHHS C TpelenbHOH ¢. p. R(x).
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N,
- -OdeBuaHO, 9T0 N,=N,+N] ¥ npu n-co 7" £0. Tlosromy

lim P{]’\:" < x} = R(x).

Tenepb, OpoCNendB OOKA3aTENBCTBO JIEMMBI, HETPYAHO BHAETb, YTO H3 COOT-
HOLIEHMS

O }LIEP{]Z" < X, %<x}=R(x)P{%<x}

caenyer (6). CiemoBaTenbHO, HAM AOCTATOYHO MOKA3aTh, YTO NPH KaXIOM k H
s moboro x, 0<x=1 umeer Mecto (7).
WsBectrO (cM. [2], riaBa V) uro

S, = y} dFi(y),

Ni Ny }__ r {Ni' Ny
(8) P{n <x,7 X -—_;/;P T<x,?<x

rne P{A|S,=y}—3Hnadenne P(A|S,) npu S,=y u P(A|S,) — ycioBHas BepoAT-
HOCTh COOBITHS A OTHOCHTENBHO CII. BeJl. S, .
IpegsopuTenpHO HOKaxeM, 4ro mis jwbdoro y, |y|=T,

-9 lim P{Ni—(y) < x} = R(x),

n—+oo
rae N7 (y)—4uciIo TMONOXHTEIbHBIX CYMM H3 INOCJICAOBATENBHOCTH

Y+&er, Vit iaes oy &t +E,

u T=T(g) BBIOpPaHO Tak, 4yro A Jioboro 3amanHoro ¢ =0

(10) ELIOET .
Iyl=T
Jns ynobGcTBa 3amMCH MHIECKCOB, BBeNEM cJ. Besl. n,=¢&, ., i=1,2,... H 0603-

Ha4uM 4Y€pe3 M: YHCIO MOJIOKHTEIBHBIX CYMM H3 NOCJACOOBATCIIBHOCTH
Uy ’1k+’7k+19 LEER ] 77k+’1k+1+ +r]",

npu k=n; npu k=n nomoxum M;]!=0. fcHo, yTo B cuny (2), EMeeT MeCTO
COOTHOLLIEHWE

()  lim P{Ml" < x} = R(x).

n-»oo n

IMycts N,(y) — YHCAO TOJOXMTEIBHBIX CYMM H3 IIOCJIENOBATEILHOCTH

y+m,y+m+ag, ., y+mt.+n,.

Torma NJ(»)=N,_,(»), Tak kak B Tepmunax {n;} NJ(y) — 4HCIIO [OJIOKHATENBHBIX
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CyMM M3 TOCIENOBATENLHOCTH Y+, Y+Mi+Has ooy Y1+ ..+ 1,y Jlerko
TIPOBEPUTD, YTO NPH HUKCHPOBAHHOM k

N-M0) _ BO-Fs® » o
n n ’ ’

TlosToMy, 4To6H MOKa3aTh (9), JOCTATOYHO HOKA3aTh, YTO NPH H—- oo
N
(12) P{—#<x} - R(x).

OTMeTUM CHaYajia, YTO UMEIT MECTO CAEAYIOLIHe HepaBeHCTBA:
a) eciu y=>0, To MI=N,(y);
6) ecnu y=0 10 M]=N,()).
Tenepyr nokaxem (12) B oTAeNbHOCTH A ' y=>0 n y=0.
1) NMycts y=>0. Beenem semuuuny p=p(y) crenyrwoiunM obpaszoM:

P{lu=m}=P{y+n >0, ..., y+m+..+1,_1>0, y+m+...+n, =0},

roe m=1,2,.... Bocnon30BaBIIHCL TIepBOi TeopeMoi paboTs! [5], Jerko moka-
3aTh, 4TO INA Jo6oro y, 0<y=T, npu m—< P{u=m}-~0 H, clenoBaTe/NbHO,
p — cobeTBennast ci. Bel., T.e. P{u=o}=0 naa moboro y,0<y=T. [Tosromy, .
JJ TIPOH3BOJILHOM NOCJEN0BATENBHOCTA BO3PACTAIOUINX K GECKOHEYHOCTH 4HCEl
m, IMEEM, 4TO ‘

" P
(13) . —— 0 mpu n —»oo.
Teneps 3aMeTHM, YTO B CHUIy ompelenieHus p, y+1,=>0, y+n,+1,>0, ..., y+n,+
+..41,,>0 u y+m+r.4n,=0, otxyna mpu p=n wumeeM, uto N,(y)=
=(u—1D+N], (), tne N[(y)— 4uC0 TONOXKHUTENBHBIX CYMM B TOC/IEI0BATE b=
HOCTH
Y+mt. i, ytrmt o At e, s Yt

npu k=n u NJ(»)=0 npu k=>n.

MNpu u=n 6ynem cpaBuuBaTL M, , U N: +1(»), T. €., COOTBETCTBEHHO YHCIO
TIOTIOKHTENbHBIX YJIEHOB MOCHEAOBATENLHOCTEH 1, 1,5 M, 1+, p0s -oos Mygr T oe
B B P P TRl TR R P TSI Torng,
B CHIy TOro, 4T0 y-+#+...+1,=0, HMeeM :

Npn(p) = Mi4,.
Wrak, ecnit p=n, 10 Mg nwboro y, 0<y=T,

(14) N, () = =D+ M,,.
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Ecmu xe p=>n, 10 (14) OYeBMAHO, TaK KaK BCeraa N,(»)=n. Teneps u3 a) u (14)
HMEEM, YTO

15 M} =N,(y) = @—-D+M;,,,

OTKyZa Onis JIroboro x

(16) - 'P{ﬂ 1+Mu+1 <x}§P{—N"(y)<x}§P{&<X}-
n n n n

M,
B cuny onpeaesiesns y cobutus {u=m} u {——"‘ﬂ <x} HesaBucuMble. [TosTomy
n

m=1

Tak kak cli. BeJ. y HE3aBUCHUT OT K, TO AJIA Jr00oro 3amamaoro 6=>0 u s Beex
¥, 0<y=T, MoxHo Bubpats nenoe T3=7,(8) Tak, urobel P{u=>T;}=4. Torma

(17) 1-"{%l } Z’P{ '"+1<x}P{u m}+P,

rae P,<d. Tenepp nus nwoboro ¢pukcupoBaHHoro 7, HETPYAHO IIPOBEPUTH, UTO
npy m=1,2,..., 1,

(18) lim P{M: x} = R(x).

n—oo

B cusny npoussoassocty 0 =0 u3 (17) u (18) cnenyert, yro ais jwboro y, 0 <y =T,

(19) lim p{yf;l < x} = R(x).

n->oo

MMpunaMas so BauManme (13), u3 (19) uMeeM

(20) lim P{“T_l-i-% < x} = R(x).

n—>oo

M3 (11), (16) u (20) monyyaem, uto Ajis moboro y, O<y=T, umeer mecto (12)
M, CIIeNoBaTeNbHO, (9).

2) Mlycte y=0. B 3TOoM ciyvyae BeiawduHy u=p(y) BBEOEM CJEOYIOLIHM
obpazom. Ina m=1, 2, ... HOJOXHM

Plu=m}=P{y+n =0,..,y+m+..+p_y =0, y+m+...+n, > O}

Onits HEeTpYJHO MPOBEPUTH, YTO (1 — cOOCTBEHHAs CJ1. Bell. [jid Kaxnoro y, —T=
=y=0. B stoMm cinygae BMmecto HepasencTBa (15) OymeM HMeeTh, HEPABEHCTBO

Ml:’+1 = Nn(y) = Mln’

4%
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TpHYEM AHOJIOTHIHO Ciyyal »y >0, AOKa3bLIBAETCS, 4TO
Mn
P{—n‘il <x{—R(x), n-—co.

Hanee, TeM ke cmocoboM, 4yto H npd y >0 nojayyum pokasareibctso (12) H,
cienoBatensHo, (9) mns cnyyas y=0.

Tenepb cHOBa BepHeMcs K cooTHolueHAIo (8). U3sectro [2] (cM. rnaBa V, § 3),
YTO NOJMHTErPAJbHOE BBIDAXEHHE (KOTOpPoe Mbl 0Go3HauuM 4uepes P,(x, y))
B (8) MOXHO HAIHCATH B CJIEAYIOLLEM BHJIE

n

N, N,
nk <x,?"<xly §Skl<y+h}.

e) P,(x, ) = lim P{

Jlerko Bupmers, uto npu ycioBHd {y=S,<y-+h}, h=0,

Ni(y) = N} = Ni(y+h).

IToaTtomy
p{__Nk(ilH_h) < X, % <xly =S < Y+h}§ P, =
(22)
NP N,

= P{E’;ﬁ)_<x’ _k_k< xly = Sk< y+h}a
rue

P, = P{j::k <X, % <xly= 8§ < y+h}.

" Micnonp3ys He3aBHCHUMOCTh NJ'(¥) OT &, &y, ..., &, (22) mepenuuieM B clieayromem
BMIE:
P{Nk(i'*'h) - x}.p{%< xly =S, < y+h} =P =

(23)

éP{ﬂ';-'(l)<x}-P{%<xly§ Sk<y+h}_

B HepasencTBe (23) mepexogEM K mpefesy CHavajaa Imo A, MOTOM 1O n U HHTer-
pupyem mo y or —7T ao T. Torma, mpu nomown (21), (9) u Teopemnr Jlebera, a
TaKXe YYUTHIBas MOHOTOHHOCTH N (y) mo y, uMeeM ’

T T N
lim [ B(x ) dE0) = R [ P < xis, = y|aR )
-T -7
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Orcroma, npuHuMas o BuuManme (8) m (10) nonyvaem, uTO

lim P{N" <X, % < x} = R(x)P{% < x}+A,

n—oco n

rne |A|<2e. B cuny npoussoabHoctH £>0 mosysaem (7). Teopema 1 mokasana.

Jdoka3aTeabcTBO TeopeMnl 2 cleAyeT U3 TeOpeMBl 1 ¥ OHOTO pe3ybTaTa
II. Yépré ([7], Teopema 1).

Hoxa3zaTenbCTBO TeopeMBbl 3 CeAyeT U3 TEOPEMEI 2 ¥ OJHOTO PE3YJILTATA
M. Moavoponu ([6], Teopema 1) B cuny 3aMevanns 2 u crencrsus 1 I Yépré
B [7].

ABTOp BmIpaxaeT riy6okyro 6maromapHocts mpod. M. Mombopoam 3a
UEHHbIE COBETHI M BHMHMAaHWe OKa3aHHOE INPH BHINOJHEHAH HACTOsSIIEH paGoTEHL

JIutepatypa
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Extensions of Lomonosov’s invariant subspace theorem

C. K. FONG, E. A. NORDGREN, M. RADJABALIPOUR,
H. RADJAVI and P. ROSENTHAL

1. Introduction

The famous invariant subspace theorem of V. LomoNosov [9] includes the
assertion that each algebra of operators on a Banach space which commutes with
a néonzero compact operator has a nontrivial invariant subspace. That is, if K is
a compact operator other than 0, and if AK=KA4 for all 4 in some algebra «,
then ./ has an invariant subspace. In [10] it was shown that this could be generalized,
in the case where K is injective and 7 is uniformly closed, to the same conclusion
under the assumption that &/KC K&/ (in the sense that 4 ¢/ implies that AK=KA,
for some A,€2). In [12] it was shown that the hypothesis that K be injective is
not needed. : :

In the present note we prove that ¢ uniformly closed and «/K;,cC K, for’
K, and K, compact and nonzero, implies o has an invariant subspace (Theorem 3)
and the commutant of &/ has an invariant subspace (Thedrem 4). In fact, we obtain
results slightly more general than this. The proofs presented are considerably simpler
than those in [10] and [12].

Our work is merely a perturbation of LoMoNosov’s [9]; it relies on the
following lemma. :

*" Lomonosov’'s Lemma. ([9], [13, p. 156), [11]) If < is an algebra ofbounded;
operators on a Banach space which has no nontrivial invariant subspace, and if K
is. any nonzero compact operator, then there is a vector x#0 and an A in o such
that AKx=x. :

Received July 20, 1978
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2. Preliminary results: An operator equation and operator ranges

We need to consider maps which may be nonlinear, but which are bounded
in a certain sense.

Definition. A function S taking a Banach space X into a Banach space 9
is a bounded map if there is a constant M such that || Sx||=M|x|] for all x€X%;
a bounded operator is a bounded map which is linear.

Note that a nonlinear bounded map need not be continuous.

The next lemma is implicit in [10]. We are grateful to Ivan Kupka for pro-
viding a suggestion which led to the simpler proof given below.

) Lemma 1. Suppose that S is a bounded map taking X into itself, K is a bounded
linear operator on ) with spectral radius r(K), and T is a bounded linear operator
taking X into 9. If T=KTS, if ¢=>0, and if ||Sx|=(r(K)+e)7 x| for all xcX
then T=0.

Proof. Fix xcX. For each positive integer n, Tx=K"TS"x (just keep apply-
ing K and S on the left and the right, respectively). Thus, for all n,

1Tl = | K" T lir ((K)+&)~"l1x]l.

Given any 6=0, |K"|¥"<r(K)+6 for n sufficiently large. For sufficiently large

n, then,
1Tl = (r(K)+ )" I T || (r(K)+£)~"l|x]l.

M]"}»o as n-o, so Tx=0.

rK)+e

Recall that a Riesz operator is an operator with spectral prbperties like those
. of a compact operator; i.e., a Riesz operator is a noninvertible operator whose
nonzero spectrum consists of eigenvalues of finite multiplicity with no limit points
other than 0.

If 5=z, then {(

Definition. The operator K is decomposable at 0 if for each ¢=>0 there is an
invariant subspace M5 {0} of K which has an invariant complement and is such
that the spectral radius of the restriction of K to M is less than e.

Theorem 1. If T=KTS, where S is a bounded map on X, K is a bounded
operator on ) and T is a bounded operator taking X into ), then

(i) K quasinilpotent implies T=0;

(ii) K a Riesz operator implies T has finite rank;

(ili) K decomposable at 0 implies the range of T is not dense.

Proof of (i): For ¢ sufficiently small and positive, [|Sx||=¢~!|x][, so the
result follows immediately from Lemma 1. . B
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Proof of (ii): Choose ¢ sufficiently small so that ||Sx|=(2¢)"!|x]| for all x.
Then the Riesz functional calculus yields an idempotent P which commutes with
K such that the spectral radius of PK is less than &. From T=KTS it follows that
PT=PKTS=(PK)(PT) S, so Lemma 1 implies that PT=0. Hence T=(1—P)T,
and the range of T is contained in the range of the finite-rank operator 1—P.

Proof of (iii): Begin as in (ii) above; get P by the assumption of decom-
posability at 0. Then T=(1—P)7, and the range of T is contained in the range
of 1—P and thus is not dense.

Harmos and DoucLas showed (see [4]) that if 4 and B are operators on
Hilbert space, and if the range of 4 is contained in the range of B, then A=BS
for some operator S. This result is false, in general, on Banach spaces (cf. [5]),
unless B is injective. We note that the result is true in general if we do not require
S to be linear.

Lemma 2. Let A be a bounded operator taking X into .‘Z) and B a bounded
operator taking 3 into ). If the range of A is contained in the range of B, then there
is a bounded mapping S from X into 3 such that A=BS.

Proof. Let ker B={zc3: Bz=0}. Define B: (3/ker B)-~9 by
B(z+ker B) =

then B is an injective bounded operator. Now B~14:9 —~3/ker B is trivially seen
to be a closed operator, so the closed graph theorem implies that B~'4=S for
some bounded operator S:X--3/ker B. Then A=BS. Define the map S: X3
by letting, for each x€X, Sx be any element in Sx of norm at most ||Sx|+[x];
the definition of the norm on a quotient space implies that such an Sx exists. Then
ISx| = (IS]|+ Dlxl. Also 4=BS, for if xcX%, then Ax=BSx=Bz for any
z€Sx. Since Sx is such a z, Ax=BSx, and the lemma is proven.

Definition. A linear manifold M in a Banach space ¥ is an operator range
if there is a Banach space 9 and a bounded operator T: 9 - X such that T(9)=M.

A comprehensive treatment of operator ranges in Hilbert space is given in [6].
GRABINER [7] contains some results about operator ranges in Banach spaces, in-
cluding part (i) of the next theorem (with a proof different from ours). '

Theorem 2. If M is an operator range in Y, and if K is a bounded operator
on Y such that MC KM, then
() (7)) K gquasinilpotent implies M= {0};
(ii) K a Riesz operator implies M. is finite-dimensional,
. (ili) K decomposable at O implies M is not dense.
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Proof. Suppose that 7:X-+9 and 7(X)=T. Then the range of T is con-
tained in the range of KT, so Lemma 2 implies that T=KTS for some bounded
map S. Now parts (i), (ii) and (iii) of this theorem follow from the corresponding
parts of Theorem 1.

3. Invariant subspaces for certain operator algebras

If &/ is an algebra of operators contained in the commutant of a compact
operator K, then the closure of &/ in any of the standard operator topologies is
also contained in the commutant of K. Thus no closure assumption on such an
</ will be helpful in obtaining invariant subspaces. In the case where &/ merely
intertwines a compact operator some closure assumption is essential (cf. remark -
(ii), p. 118 of [10]). For certain applications discussed below, however, we need
to include cases where & is not closed even in the norm topology. It turns out
to be sufficient that &/ be an operator range, in the sense that there is a bounded
linear operator taking some Banach space into the space of operators such that
the range of T is /. (If & is uniformly closed it is an operator range; it is the
range of the injection of & into the space of operators.) '

Theorem 3. If & is an algebra of operators and s/ is an operator range, and
if there exist a nonzero compact operator K, and an operator K, which is decomposable
at 0 such that K, CK,of, then o/ has a nontrivial invariant subspace.

Proof. If & had no invariant subspaces, then Lomonosov’s Lemmma would
imply that 4 K,x=x for some 4,62/ and some x#0. Now =359 for some
Banach space 9). Define Ty=(Sy)(x) for each y€%. Then the range of T is Fx=
={Ax: Aes}, so &x is an operator range. If o/x={0} then the one-dimensional
space spanned by x is invariant under . If /x> {0} then /x is an operator range
invariant under . For A€,

Ax = AA K, x = K, A,x for some A,€ .
Hence #/xcK,s/x. Thus part (iii) of Theorem 2 implies &/x is not dense, so its
closure is a proper invariant subspace for &.

Remark. If K, is compact then the linear manifold «/x occurring in the proof
of Theorem 3 is finite-dimensional. This does not prove, however, the obviously
false assertion that the hypotheses of Theorem 3 and the additional requirement
that X, be compact yield a finite-dimensional invariant subspace for &/. We get
the finite-dimensional subspace /x via Lomonosov’s Lemma, on_the assumption
that we have no invariant subspaces at all.

On the other hand, if < is any algebra of operators with a finite-dimensional
invariant subspace I, then M could arise -from Theorem 3. For let &/, be the set
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of all operators leaving M invariant and let P denote an idempotent with range
M. Then «Z,PCPst,, so Theorem 3 applies to o, (with K;=K,=P). An in-
variant subspace for <7, is also invariant under its subalgebra /. In particular,
the answer to question 1 of [12] is “no”; & is a counter-example.

Theorem 4. If <« is an algebra of operators which is an operator range, if there
exist compact operators K, and K, different from 0 such that “K,C K,of, and if
& contains an operator which is not a multiple of the identity, then the commutant
of & has a nontrivial invariant subspace.

Proof. If the commutant of &/ had no invariant subspace then Lomonosov’s
Lemma would imply that there exists a B commuting with &/ and an x=0 such
that BK,x=x. For A4 in <, then,

Ax = ABK,x = BAK,x = (BKy) A;x

for some A,€s. Thus the linear manifold «/x satisfies &Z/xC(BK,)(#x). Part (ii)
of Theorem 2 above implies that .x is finite-dimensional, (since BK, is compact).
Choose an A4, in &/ which is not a multiple of the identity. Since 4, has the finite-
dimensional invariant subspace &x, 4, has a nontrivial eigenspace (if &x={0},
then A, has nullspace). Since an eigenspace of A4, is invariant under all operators
commuting with 4,, the commutant of &/ has a nontrivial invariant subspace.

Corollary 1. If A is an operator for which there exist a bounded open set D
containing o(A), an analytic function ¢ taking D into D and a nonzero compact
operator K such that AK=Ko(A), then A has a nontrivial hyperinvariant subspace
(unless A is a multiple of the identity).

: Proof. Let H™(D) denote the Banach algebra of all bounded analytic func-
tions on D, with supremum norm, and let

A = {f(4): feH=(D)}.
Choose a fixed Cauchy domain § contained in D and containing ¢(4). Then for
JeH=(D)

Ol = 5| [ FG=aya| =
. ,

1
= 5+ (length of 35)-|f]= - sup [[(z—A) 7.
z€dS

Hence there is a constant M such that [ f(4)|=M|fll. for feH=(D), and it
follows that &7 is the range of the operator f—f(4) (that & is an algebra follows
from the fact that this map is an algebraic homomorphism).

~ Also, if feH=(D) then f(A4)K=Kf(¢(4)). One way to verify this is to note

0K . A 0 :
that, regarded as operatorson ¥ @ X, [0 0] commutes with (0 o A)) , and hence
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. f4 O . . . .
with f ((O o A)]] [ 0 flo A))J' Now f(e(A)=(fop)(4) is again in ,
so Theorem 4 applies.

Corollary 2. If A is power bounded (i.e., there exists a constant M such that
|A"|=M for all positive integers n), and if there exist an integer k and a nonzero
compact operator K such that AK=KA*, then A has a nontrivial hyperinvariant
subspace (or is a multiple of the identity).

Proof. Let dz{f'a,,A”: 5’ |a,,|<oo}. The fact that 4 is power bounded
n=90 n=0

implies that the map of {a,} into Z.'a,,A" is a continuous map of /! into the
n=

bounded operators, so & is an operator range. Note that & is an algebra, since
I* is an algebra under convolution. Now AK=KA* yields A"K=KA™ for all

n, so ( S a,,A"] K=K ( S’ a,,A""] and Theorem 4 applies.
n=0 n=0

Note. Corollary 2 follows from Corollary 1 only under the additional assump-
tion that ¢(A4)c {z: |z]<1}, in which case the function ¢(z)=z* will serve.

Examples. The hypotheses of Corollary 2 hold under various circumstances.

(i) Let {e,}:>, be an orthonormal basis for a Hilbert space H and let {k,}
be a sequence convergmg to 0. If A is a complex number of modulus 1 and 4 is
defined by Ae,=1%"e,, then AK=KA? where K is the compact weighted shift
defined by Ke,=k,e,,,. Then the unitary operator 4 satisfies the hypotheses of
Corollary 2.

(ii) Let K, be a compact operator and B and C be power bounded operators
such that BK,=K,C?2 If A4 is the operator B®& C and X is the operator on X® X
defined by K(x,®x,)=K,x,®0, then AK=KA% and A satisfies the hypotheses
of Corollary 2.

- A natural question is whether Theorems 3 and 4 hold if the intertwining takes
place on the other side; i.e., if K;/C.«K,. Upon reading a preliminary version
of this manuscript L. G. Brown discovered. the following two theorems. We are
grateful to him for permission to include them here. These results were also
obtained independently by S. GRABINER [14].

Theorem 5. If of is an algebra of operators and o/ is an operator range,
and if there exist a nonzero compact operator K, and an operator K, that is decom-
posable at. O such that K,o/cAK,, then o has a nontrivial invariant subspace.

~ Proof. If we suppose &/ has no invariant subspace, then, as in the prodf
of Theorem 3, Lomonosov’s Lemma produces an A4, in & with 1€a(K;4,).
Hence 1€0(4,K;), and taking Banach space adjoints yields 1€o(A4;K;). Note
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that &/*={4*: A€} is also an operator range, K; is compact, K is decom-
posible at 0 and &/*K}c K ar*. It follows as in the proof of Theorem 3, that
there is a nonzero vector x* in X* such that &/*x* is not dense in X*. In fact
an _examination of the proofs of Theorems 1 and 2 reveals that there is a non-
trivial projection P on X such that &/*x* is included in the range of 1— P*.
Since that range is weak™ closed as well as nontrivial, there is a nonzero vector
x in X that annihilates «/*x*. Hence either «/x={0}, in which case x spans a
one dimensional invariant subspace of &, or else the closure of &/x is a proper
invariant subspace of . The contradiction of the original supposition establishes
the result.

Theorem 6. If & is an algebra of operators wich is an operator range, if
there exist compact operators K, and K, different from 0 such that K, c &K,
and if of contains an operator that is not a multiple of the identity, then the
commutant of &/ has a nontrivial invariant subspace.

Proof. Suppose the commutant of &/ has no invariant subspace. Then
Lomonosov’s Lemma implies the existence of a B commuting with &/ such that
1€0(K,B), and hence 1€¢(B*K;). As in the proof of Theorem 4, there exists a
nonzero vector x* in X* such that o/*x* is finite dimensional.

Choose an 4, in o/ that is not a multiple of the identity. Either /*x*= {0},
in wich case A4; has a nontrivial null space, or else o/*x* is a finite dimensional
invariant subspace of Aj. In either event A; has an eigenvector. If A is the
corresponding eigenvalue, then it follovs that the closure of the range of A,— A
is a nontrivial subspace of X wich is invariant under the commutant of «/.

It might be worth noting that the compactness assumption on K; in Theorem 3
can be replaced by the hypothesis that K; has nonzero eigenvalues.

Theorem 7. If o is an algebra of operators which is an operator range, if
HK,C K, d where K, is decomposable at 0 and K, has a nonzero eigenvalue, then
o has a nontrivial invariant subspace.

Proof. If K x,=Ax, with x,=0 and 40, then, for any A€,
Axg = A71AK xy = A7 K A, x, for some A€ .
Thus x, is contained in K;(&x,), so part (iii)) of Theorem 3 implies &x, is
not dense.

Remarks. It is shown in [15] that there is an operator that does not satisfy
the hypothesis of Lomonosov’s invariant subspace theorem. In light of Theorem 4
above we can ask: if B is an operator on a Hilbert space must B commute with
some uniformly closed algebra &/ (containing operators other than scalars) which
intertwines two nonzero compact operators?
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In [10] the following question was raised. If & is a uniformly closed algebra
of operators such that &/Kc KB(¥X) must &/ have a nontrivial invariant subspace?
If of is not required to be closed but is merely required to be an operator range
then the answer is no, as is seen by letting &/=KB(¥) for an injective compact
operator K with dense range.

Some other variants of Lomonosov’s Theorem can be found in [3], [8] and [11].
We are grateful to L. Fialkow for providing us with a copy of [1], where it is shown
that AK=AKA for K compact and 4 a complex number implies 4 has a hyper-
invariant subspace. In the case where |A{=1 this follows from Corollary 1 above;
when |4| =1 it follows from the analogous corollary to Theorem 6. :
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Kernel systems of directed graphs

ANDRAS FRANK

0. In graph theory there is a number of min—max theorems of quite similar
type such that one is not a direct consequence of the other. For instance, a theorem
of J. Edmonds states that in a directed graph there exist k edge disjoint spanning
arborescences rooted at a fixed vertex r (see the exact definitions and formulation
below) if and only if the indegree of every subset of vertices, not containing r, is
at least k. A version of Menger’s theorem resembles Edmonds’ one: in a directed
graph there exist k edge disjoint paths from r to another fixed vertex s if and only
if the indegree of every subset of vertices, containing s but not r, is at least k.

It is a natural question whether there exists a common generalization of these
theorems of similar type. The purpose of this paper is to present a tool, by means
of which such a unification can be obtained on the one hand, and new min—max
theorems can be concluded on the other hand. This tool is the notion of a kernel
system, which is, roughly, a family of subsets of vertices of a directed graph which
is closed under intersection.

Perhaps the most interesting consequences of min—max theorems concerning
kernel systems are the following: '

a) A conjecture of J. Edmonds and R. Giles concerning directed cuts is solved
for graphs possessing an arborescence. '

b) A min—max formula is given for the maximum number of edges which
can be covered by K spanning arborescences rooted at a fixed vertex. .

Some further corollaries of our results will be published in another paper [7]
where, among others, a min—max formula is given for the maximum number
of edges of a digraph which can be covered by k branchings. _

At this point we refer to a recent, fundamental article of EDMONDS and GILES [2]
concerning min—max relations for submodular functions.

Some of our notions are similar to those of Edmonds and Giles and in the
proof of Theorem 3 a relevant idea of their work will be used. However our results

Received October 18, 1977.
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seem to be independent of the main theorem of [2]. The exact relation will be
explained in the last section.

Let G=(V, E) be a finite directed graph with vertex set ¥ and edge set E.
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex,
called the root of G. An arborescence rooted at r (or briefly r-arborescence) is a
directed spanning tree such that every vertex can be reached by a directed path
from r (see [1]). An r—s-path is a directed path from r to the vertex s.

We say that a directed edge e enters a subset X of vertices if the head of e is
in X but the tail is not. We say that a subset E’ of edges enters a subset X of V
if at least one element of E’ enters X. The indegree ¢(X) and the outdegree d(X)
of a subset X of V is the number of edges entering X or V\ X, respectively. It is
well known that the function ¢(X) is submodular, ie. o(X)+o(Y)=o(XUY)+
+0o(XNY) for every pair X, Y of subsets of vertices.

For an arbitrary set X, X’ X means that X’ is a family of not necessarily
distinct elements of X. |X| denotes the cardinality of X. We shall use the notation
Y\ instead of ¥\ {r}. Two subsets X and Y of V' \r are called crossing if XN Y %9,
INY#0, YN\X#0. Otherwise X and Y are non-crossing. A family of subsets of
V\r is called laminar if its members are pairwise non-crossing. (These notions
occur slightly more generally in previous papers [2, 9].) A directed cut of G is a
nonempty set of edges entering a vertex set X provided §(M\X)=0.

1. Definition. A family # of distinct subsets of vertices of V' \r is called
a kernel system with respect to G if

1) o(M)=>0 for every McM,

2)if M, Ne# and M(N=0 then MNN, MUN¢.#. The members of
A are called kernels.

Examples. 1. A ={M: MS V\r}. The second axiom is trivially satisfied,
the first one holds if G has an r-arborescence.

2. Let s be another fixed vertex of G and M={M: MS V\r,s¢M}. The
first axiom holds if there exists an r—s-path.

3. My={M: M V\r,8(M)=0}. If G is connected (in the undirected sense)
then the first axiom is fulfilled. The proof of the second one, as an easy exercise,
is left to the reader.

4. If # is an arbitrary kernel system with respect to G then the kernels of
minimum indegree form another kernel system

M ={M: Me M, o(M) =§1212 o(X)}.

The proof of the second axiom is as follows: Let k= glﬁ 0(X) and M, Ne#’.
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Then.
k+k=oM)+o(N) = og(MUN)+o(MNN)=k+k

whence og(MUN)=9o(MNN)=k, therefore MUN, MONeA’.
5. Let .4 be a kernel system and F be a subset of edges, then

Mp = {M: Mc 4, F does not enter M}
is again a kernel system. The axioms trivially hold.
2. Let k be a positive integer.

Definition. A subset E’ of edges is called k-entering with respect to the kernel
system ., if in the subgraph formed by E’, the indegree of every kernel is at least k.

Theorem 1. 4 subset E’ of edges is k-entering if and only if E’ can be parti-
tioned into k 1-entering subsets.

‘Proof. The necessity is trivial. For the sufficiency it can be assumed that
E’=F. We are going to prove that E can be partitioned into a 1-entering subset
E, and a (k- 1)-entering subset E,. This assertion proves our theorem.

The subset E; will be constructed sequentially and once an edge has been
inserted into E, it is never changed. In an intermediate stage of the algorithm a
kernel M is called dangerous with respect to the current E; if

05 (M) = k—1.

“Starting from the empty set E,, in every step we consider a maximal kernel
M such that E; does not enter M. Insert an edge e into E,; which enters M but
does not enter any dangerous kernel, and then we say that e was inserted into E;
because of M. The process stops when E, is l-entering.

To verify this algorithm we have to justify that the required edge e always
exists.

Claim 1. If f€E, then the head of f is not in M.

- Proof. Suppose the contrary then the tail of f is also in M, by the algorithm.
Let E,-denote the set of edges which were inserted into E; before f, and suppose
that f was inserted into E; because of M,. Now M, NM#=0Q therefore M ,NM
is a kernel. E; does not enter M,N\M and M/ JM=M, which contradict the
maximality of M,. O

Claim 2. If M, is dangerous with respect to E, then M, E M.

Proof. Since My is dangerous, there exists an edge e, € E, entering M,. The
head of this edge is in M, but not in M by Claim 1. [

S
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Claim 3. If M and N are dangerous kernels and M N is nonempty, then M(\ N
is dangerous as well.

Proof. k—~1+k—1=05_g (M)+ QG_El(N)EgG_E‘(MUN)+QG_EI(MDN)E
=k—-1+k—1 whence QG_EI(MON)=k—1. 0

If every dangerous kernel is disjoint from M then an arbitrary edge entering
M can be inserted into“E; and we are done since the new set EN\ E, remains (k —1)-
entering. Otherwise let M, be a dangerous kernel such that M,NM=0 and
Mp\M is as small as possible.

By Claim 2, M,\M=0. There exists an edge e with tail in M\ M and head
in M;(\ M since otherwise

k—1 = 06_g,(Mp) = 0g_g,(MpNM) = k—1

whence M,NM is a dangerous kernel, contradicting Claim 2.

We assert that the edge e enters no dangerous set. If e entered a dangerous
set M, then M’'=M,NM, would also be dangerous by Claim 3. The existence
of such an M’ is in contradiction with the minimum property of M,. O

Corollary 1. (J. EDMONDS [4)) A digraph G has k edge-disjoint r-arborescences
if and only if the indegree of every subset of V\r is at least k.

Proof. Apply Theorem 1 to the first example. The corollary follows.from
the simple fact that a l-entering edge set surely contains an r-arborescence. O

Corollary 2. (Directed edge version of Menger’s theorem [1}) In a digraph
there exist k edge disjoint r—s-paths if and only if the indegree of every subset of
V\ containing s is at least k.

Proof. Apply Theorem 1 for the second example. The corollary follows from
the simple fact that a 1-entering edge set surely contains an r—s-path. O

The next consequence settles in the affirmative a conjecture of J. EDMONDS
and R. GILES [2] in a special case.

Conjecture. An edge set E’ is a k-covering of directed cuts of a:directed
graph if and only if E’ can be partitioned into k 1-coverings of directed cuts. (An
edge set E’ is called a k-covering of directed cuts if every directed cut contains at
least k edges of E”). :

Corollary 3. The conjecture of Edmonds—Giles is true for graphs possessing
an arborescence. o

Proof. Applying Theorem 1 to the third example we obtain that a k-covering
(that is a k-entering edge set) of those directed cuts which are directed away-from
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r can be partitioned into k 1-coverings. However when the graph has an r-arbores-
cence then all of the directed cuts are of this type.

Remark. The proof of Theorem 1 can be considered as a generalization of
LovAsz’ proof in [8] of the afore mentioned theorem of Edmonds. It is, in fact,
a polynomial bounded algorithm provided that some simple operations can be
carried out in polynomial time on the kernels. These operations are as follows:

a) Find a maximal kernel M such that E” does not enter M for an arbitrary
edge set E’.

b) Decide whether E” is k-entering for arbitrary edge set E”.

The above three corollaries are of this type. In Corollary 1 we obtain LovAsz’
algorithm. In Corollary 2 our proof does not mean a new algorithm for Menger’s
theorem since the only way at hand to check b) is to use the classical augmenting
path method.

In Corollary 3 operation a) is simple because the required maximal kernel
M consists of those vertices which cannot be reached by a directed path from r
in the graph arising from G after contracting the edges of E’. Operation b) can be
carried out as follows: Let Gt denote the graph which arises from G after in-
serting k—1 reversed copies of all the edges of E”. It can easily be checked that
E” is k-entering if and only if there exist k edge disjoint r—s-paths in G* for every
vertex s€V\r. This latter problem is polynomially solvable.

3. Let ¢ be a nonnegative .integer function defined on the edge set E of G.
c(e) is called the weight of e.

Definition. A family .4’ of not necessarily distinct kernels of .# (i.e. M M)
is called c-edge-independent if each edge e enters at most c(e) members of %’

Theorem 2.

@ max |.#’| = min > c(e)
eCE
where the maximum is taken over all the c-edge-independent subfamilies M’ of M
while the minimum is taken over all the 1-entering edge sets E’.
(2) The maximum can be realized by a laminar M’ too.

Proof max=min. A simple enumeration shows that |/#'|= c(e) for
any c-edge-independent .#’ and for any l-intering E’. ccE
max=min. - We are going to construct a c-edge-independent family .#" and

a l-entering edge set E’ such that |[#’|= J c(e).
ecE’
The algorithm consists of two parts constructing .# and E’, respectively. It

has the interesting feature that both of its parts are of the greedy type, i.e. both

5%
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A" and E’ will be produced sequentially and once a kernel or edge has been in-
serted into #’ or E’, respectively, it is never changed.

First part: Construction of ’.

First let 4’ be empty. In the general step we decide whether there exists a
kernel M which can be inserted into the current .’ without destroying its
c-edge-independence. If the answer is “no” then the construction of .#’ terminates.

Otherwise let M be a minimal kernel which can be inserted into .#” and let
us insert into .4’ as many copies of M as possible without destroying the c-edge-
independence.

The family .#’ produced by the first part is obviously c-edge-independent.

In order to describe the second part we need some notations. Let the different
kernels of A’ be M, M,, ..., M, (i.e. the first part terminated at the (k +1)-th step),
and suppose that these kernels have been inserted into .#’ in this order. We call
an edge e saturated with respect to .#’ (or briefly saturated) if it enters exactly c(e)
members of 4’ Let E; (i=1,2,...,%) denote the set of those saturated edges
which have been saturated in the i'" step of the first part. It is easy to see that
(3a) E;#0 for i=1,2,...,k;

(3b) E,NE;=0 for l=i<j=k;
(3c) If ecE, then e enters M;
(3d) If ecE,, i<j then e does not enter M;.

Taking into consideration the construction of ., the following claim can be

checked easily.

Claim 1. If M€ #', MCM,, and M¢c # then there exists a saturated edge
e which enters M but not M;, and then e is in E, where h<i. [

In order to verify (2) we show that " is laminar. For, otherwise, let M, and
M; be two crossing members of .# (i<j). Applying Claim 1 with the choice M’
and M=M;NM; we obtain that there exists an edge e in E, (for some h<i)
which enters M but not M;. Then e enters M, a contradiction to (3d).

Second part: Construction of E’. . A

First let £ be empty. In the general step we decide whether E’ is l-entering.
If the answer is ‘“‘yes” then the second part terminates.

Otherwise, let M be a maximal kernel such that the current E” does not enter
M. Let i be the minimum index for which E; enters M. Let us insert an edge e of
E; which enters M into E’. (We say that e has been inserted because of M.)

The set E” produced by the second part is obviously l-entering.

To verify (1) and the algorithm we have to show that there exists a unique

edge of E’ entering M, for each member M; of .#’. This implies |#'|= 2 c(e),
’ ecE’
taking into consideration the fact that the edges of E’ are saturated.
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Claim 2. If an edge e has been inserted into E’ because of N, and e enters a
member M, of M’, then N2M,.

Proof. Since e enters M;, using (3d) we obtain that e is in E; for some j=i.
If NP M, then with the choice M; and M=NNM, Claim 1 implies that there
exists an edge e’ in E, (for some h<i) which enters M;NN but not M;. Then
e’ enters N which is in contradiction with the minimality of j, since h<j. O

Now suppose, indirectly, that two edges e,, e, of E’ enter a kernel M, of ./#’.
Suppose that e, and e, have been inserted into E’ because of N; and N,, respectively,
and e, was inserted later than e,. By Claim 2, N,;, N,2 M, and e; does not enter

N,. Hence N,UN,=N,; which contradicts the maximality of N;. O

Remark. The proof of Theorem 2 can be considered as a generalization of
that of FULKERSON [5] given for maximum packing of rooted r-cuts. Our algorithm
is polynomial bounded provided that the following simple operations can be carried
out in polynomial time.

a) Find a minimal kernel M such that E’ does not enter M for an arbitrarily
given edge set E’.

b) Decide whether E” is 1-entering for a given edge set E”, and if it does
then find a maximal kernel M such that E£” does not enter M.

All the following corollaries and problems are of such type.

Apply Theorem 2 to the first example:

Corollary 4. (EDMONDS [3], FULKERSON [S]) In an edge-weighted digraph
the minimum weight of an r-arborescence is equal to the maximum number of c-edge-
independent vertex sets of VN\r. 0O

(A family of c-edge-independent vertex sets corresponds to a packing of r-
directed cuts in [5)).
Apply Theorem 2 for the second example:

Corollary 5. (FORD—FULKERSON [6]) In an edge-weighted digraph the minimum
weight of an r—s-path is equal to the maximum number of c-edge-independent vertex
sets containing s but not r.

The following corollaries seem to be new.

Problem 1. Suppose that the maximum number of edge disjoint r-arbores-
cences of a (weakly) connected digraph G=(V,E) is k (k=0).  We want to
increase this maximum by using new edges. Let the set E; of possible new edges
be such that G*=(V, EUUE,) has k+1 arborescences. "As‘sign to each edge ¢ of
E, a nonnegative integer weight c(e). What is the minimum sum of weight ¢f the
required new edges? : :
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Solution. Let us define a kernel system . with respect to G,=(V, E;) as
follows:
M= {M: 9s(M)=k, M S V\r}

(Observe that the kernel system .# with respect to G, is defined by means of G.)
Due to the above theorem of Edmonds (Corollary 1) we have to assure that the
indegree of all the subsets of ¥\ is at least k+1, that is, we have to find a mini-
mum weight 1-entering subset of kernel system .#. Applying Theorem 2 for this
A we get:

Corollary 6. The minimum value of the weight sum of those edges of E, whose
insertion into G increases the maximum number of edge disjoint r-arborescences by
one, is equal to the maximum number of not necessarily distinct subsets of V\r such
that (i) the indegree of the set in G is minimum (=k) and (ii) an arbitrary edge e of
E, enters at most c(e) subsets of them. [

Remark. A possible generalization arises naturally. Let G=(V, E) be strongly
k-edge-connected and E, be a set of new edges. Find a minimum subset E, of E;
such that G*=(V, EUE,) is strongly (k+1)-edge-connected. However it is easy
to check that the Hamilton circuit problem is contained in this one in the case
k=0. Therefore this problem is NP-hard and this direction is hopeless.

Now a simple application of Corollary 6 will be presented.

Problem 2. Let us suppose that G=(V,E) has an r-arborescence. Let
F=(E, A) be the hypergraph of all r-arborescence of G. Here the vertex set F of
F is the edge set of G and the edge set of F is the family of r-arborescences of -G.
Determine the rank-function r of F. We recall the definition of the rank-function
r of an arbitrary hypergraph:

“ r(E) = mea} [eNE’| (E’S E)

(i.e. r(E’) shows at most how many edges of E’ can occur in an r-arborescence).
Since every arborescence consists of |V|—1 edges, our problem is equivalent to
the following:
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