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The value distribution of entire functions of order at most one 
J. N. BAKER and L. S. O. LIVERPOOL 

§ 1. Introduction and results 

Recently S. K I M U R A [6] proved 

T h e o r e m A. Let f be an entire function of order less than one and wn a sequence 
such that |w„|-»°° as n — Suppose that all the roots of the equations f{z) = wn 

(n = l , 2, ...) lie in a half-plane (say Re z=^0). Then f is a polynomial of degree 
at most 2. 

We begin by improving Theorem A a little to 

T h e o r e m 1 . I f f is an entire function whose growth is at most order one and 
minimal type, and wn is a sequence such that — °° while all roots of f ( z ) = w„ 
(« = 1,2, ...) lie in a half-plane, then f is a polynomial of degree at most 2. 

In this form the theorem is sharp. For any d > 0 the function edT has type 
d and is bounded in R e z ^ O so that any sequence wn such that 1 may 
be taken to satisfy the hypothesis in Re zsO. 

Theorem 1 has an application in the theory of iteration of entire functions 
(see e.g. F A T O U [5] for proofs of the following results). The iterates / " of an entire 
f u n c t i o n / a r e defined by fi=f / " + 1 = / " o / = / o / " (« = 1,2, ...). I f / i s non-linear 
the set (£( / ) of points in whose neighbourhood {/"} is a normal family, is a 
proper open subset of the plane. The complement % ( f ) of (£ ( / ) is a non-empty, 
unbounded, perfect set. tf(f) has the invariance property: 

If w f . g ( / ) and / ( z ) = w, then z € g ( / ) and f(w)Cg(/). 
In iteration theory the fixed points of / are important. A fixed point z of / 

of order A: is a solution of fk(z) = z. It is proved in [5] that every point of g ( / ) is 
a limit point of fixed points of / 

Received January 7, 1978. 
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It may happen that a component of £ ( / ) contains a half-plane. Thus for 
d > 0 the function 

maps H= {z: Re z < 0 } into itself so that {#"} is normal in H. 
Suppose that conversely g is a transcendental entire function and that l£(g) 

contains a half-plane, which we may take to be Re z<0 . Then g ( g ) lies in 
R e z s O and if we take a sequence such that |w„| — a l l solutions of 
f ( z ) = wn lie in ff(g) by the invariance property, and hence in R e z ^ O . Thus 
from Theorem 1 we have 

T h e o r e m 2. If g is a transcendental entire function such that the domain of 
normality CC(g) of {g"} contains a half-plane, then the growth of g must be at least 
of order 1, positive type. 

Example (1) shows that this is sharp with respect to growth. Related problems 
have been discussed under more restrictive conditions by P. B H A T T A C H A R Y Y A [4]. 

If 0 6 5 ( g ) then every solution z of g(z)=0 belongs to g(g). The following 
Theorem 3a is thus a strengthening of theorem 2. 

We introduce the notation 

T h e o r e m 3a. Suppose (i) g is a transcendental entire function whose growth 
is at most of order 1, minimal type, (ii) all the zeros of g lie in Re z § 0 . 

Then for any ¿ > 0 the set (re, S) is unbounded. 

Because of the importance of fixed points it is interesting that we can also prove 

T h e o r e m 3b. If in 3a (ii) is replaced by the hypothesis that the first order fixed 
points lie in R e z ^ O , the conclusion remains true. 

The example (1), for which all first order fixed points lie in R e z ^ O , shows 
that 3b ceases to hold if the assumption of minimal type is dropped. 

In the circumstances of Theorems 3a or 3b it follows that A (n, d) must contain 
fixed points of some order of g. Can one be more explicit about the order of such 
fixed points? Let us take 3b and make the stronger hypothesis in (ii) that all the 
first order fixed points are real and positive. Our methods and results differ slightly 
according to the order of g. For order less than we have 

T h e o r e m 4a. Suppose (i) g is transcendental entire of at most order minimal 
type, and 

(ii) all but finitely many first order fixed points of g are real and positive. 
Then for any 5 >0 , A (n, 5) contains infinitely many fixed points of order k for 

each k § 2. 

(1) g(z) = d - V 2 - 1 ) 

(2) A(6,8) = {z: | a r g z - 0 | < ¿}. 



The value distribution of entire functions 5 

Indeed the fixed points of higher order, whose existence is shown in the theorem 
can be taken to be non-real. This is somewhat analogous to the result of the first 
author in [2] that if / is transcendental entire of order less than j and / is a straight 
line, then not all solutions of / 2 ( z ) — z = 0 lie in /. Neither result includes the other 
but both show that second order fixed points tend to be scattered in their angular 
distribution. 

If the order of g exceeds | we have not been able to prove the existence of 
fixed points of order 2 in A {n, 8), However we can prove 

T h e o r e m 4b. If in Theorem 4a (i) is replaced by the assumption that the order 
of g is strictly positive, but at most order 1 minimal type, then for any 0, § subject 

we have that A(0, S) contains infinitely many fixed points of 

order k for each k^3. 

Thus in particular if g is at most of order 1 minimal type and all first order 
fixed points are real and positive, / has fixed points of every order greater than 2 
in A(n, 5), however small ¿ > 0 is taken. 

The arguments used in this discussion can also be applied to show that func-
tions of certain classes are not expressible as iterates of entire functions. An ex-
ample is furnished by 

T h e o r e m 5. Suppose the transcendental function F is such that 
(i) lim sup {log log log M(F, r)}/log #•< 1, 

r-*- OO 
(ii) all first order fixed points of F lie in R e z ^ O , and 

(iii) F is bounded in A (n, <5) for some 5 >0. 
Then F is not expressible as fk,k^2, for any entire f . 

In (ii) we may replace fixed points by zeros without affecting the validity of 
the theorem. The function ee~~ has all its fixed points in R e z s O and shows that 
we cannot allow equality in (i). 

§ 2. Proof of Theorem 1 

We may assume / ( 0 ) ^ 0 (otherwise consider /(z—<5) for a suitable posi-
tive constant <5). 

We shall use the following results about functions of minimal type whose 
zeros lie in a half-plane. They may be found e.g. in the proof of theorem 1 of [8], 
where the additional hypothesis f(—r) = 0(rk) of that theorem is not used until' 
after these facts have been derived. 
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. L e m m a 1. Let f be a transcendental entire function of at most order one and 
minimal (i.e. zero) exponential type. Suppose /(0)^0 and that all zeros an of f lie 
in the right half plane Re z^O. Then there are constants A and c such that 

(3) 
n=l V «„/ 

where an=rneie" is such that 

(4) / = Re J a " 1 = J (cos BB)/ra 
n=l n=l 

is convergent and 
(5) ¿ + Rec = 0. 

Further, for any fixed k 

(6) | / ( - r ) | / r * - °° as 

P r o o f of T h e o r e m 1. We may suppose ^ = 0 (for otherwise consider 
/ ( z ) — Wj) and suppose first that / is transcendental entire of at most order one, 
minimal type and that all solutions of f ( z ) = w„ lie in H: Re z s O . In particular 
the zeros an=rne"B» lie in H, so by Lemma 1 

m = c + y ( - J - + J - 1 
f ( z ) n=Az-a„ a J 

Using (4) and (5) this yields 

(7) R e ^ = J ' R e - 1 
/ ( z ) n f i z-an ' 

If Rez-<0 and R e a ^ O we have Re—i—=0, while if z = o e " ' then for fixed a> 
z — a 

\z\ Re — — cos <p as q — 

7T 
Thus by (7), if d is a fixed number such that 0 < < 5 < y , 

|z| Re a s i n A ( n > 5 ) -

Take a fixed constant K>2n/d. Then there is a constant r0 such that 

(8) K for z£A(n, S), |z| > r0 . 

Next choose a member of the given sequence wn so that | / ( z ) | < |w„| for | z | ^ r 0 . 
By (6) there is a largest r„ such that |/(—/•„)| = |n,„|. There is a component G of 
{z: | / (z) | >|w„|} which contains {z: z = — /•< — /•„} and this component is bounded 
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by a level curve T: | /(z) | = \wn\ which passes through z——r„. f cannot close 
in Re z < 0 for there are no zeros of / in this region. 

If r meets neither of the lines argz=7t±<5, then G lies entirely in the angle 
A(7i,<5). Let rd(r) be the length of that segment yr of \z\ = r which lies in G and 
contains z=—r. By the arguments used in the proof of the Denjoy—Carleman— 
Ahlfors theorem in [9, pp. 310—311] it follows that for all sufficiently large say) 
the maximum modulus function M ( f , r ) of / satisfies 

/ dt 
log log M (/, r) > log log Max | /(z) | J Jq^+C, 

for a suitable constant C. Since £?(/•) <2<5 this implies that / has order at least 
n/2(5>l, which is impossible. 

Thus there is a level curve T: | /(z) | = |vv„|, which starts at z=—rn and runs 
to either are z=n+S or n—S. Moreover r lies in | z | ^ r 0 so that the inequality 
(8) holds on r . But w=f(z) maps T onto ¡u'j = |H'„| and as z traverses F, w 
traverses |w| = |w„| without change of direction. Further, we have 

dw dz zf'{z) 
w ~ z . f ( z ) 

whence, if w=\wn\ei'p and z=re'B^r we have 

so that by (8) 
zf'(z) 

|dcp\ ^ \d0\ № K\d0\. 

The image of r is therefore an arc of |w| = |w„| whose angular measure is at least 
Kd>2n. Thus r , and in particular A (n, S) must contain a root z of f ( z ) — w„, 
against the hypothesis of the theorem. 

We conclude that / cannot therefore be transcendental. If / is a polynomial 
its degree can clearly not exceed two. 

§ 3. Proof of Theorem 3 

Suppose g is a. transcendental entire function of growth at most order 1, minimal 
type and is such that 
(10) A(n, <5)0 g(g) 

is bounded for some ¿ > 0 . Without loss of generality we may assume that the 
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set in (10) is empty — it is only necessary to shift the origin and consider the itera-
tion of g(z+a)—a for sufficiently large negative a. 

Whether the zeros of g(z) or the fixed points (i.e. the zeros of g(z)—z) are 
in R e z ^ O it follows from Lemma 1 that for any k 

(11 ) g(— r — o° a s r — oo. 

Since A=A(n,d) does not meet g , A belongs to an unbounded component 
G of the set (£(g) of normality of g". Indeed by [3] G is simply-connected. The bound-
ary dG belongs to g and is a continuum in the complex sphere. By the invariance 
property of g , g(z) omits all the values of dG for z£A. 

If M=nj{15) the transformation 

(T) « = (1+0/(1-0, 2 = 
maps | / | < 1 onto A, so that the function 

« - « M ^ f í 
is regular in | f | < l and omits the values w£dG. 

By a result of J. E. L I T T L E W O O D [7] 

MQI,Q) = 0 { ( l - e ) - 2 } as Q — 

If z = re,e£A, and |0-TT |«5/2, then in (T) 

l = (1 _ eMi(it-fl) r-M^J 

~ l - 2 e M i l * - e ) r - M a s . _ „ 

Since \M(n—0)|<;r/4 we have \ — \t\>r~M for large r. Thus as z = r é 9 — 
in \ 8 — w e have 

|g(z)| = |/i(OI < M(h,\-r~M) = 0 ( r 2 M ) . 

But this conflicts with (11). The result follows. 

§ 4. Preliminaries to the proof of Theorems 4a and 4b 

Throughout this section assume that g is an entire function such that 
(i) g is transcendental and of at most order one, minimal type, 

(ii) all but finitely many fixed points of first order of g are real and positive. 
Then we have 

«(*)-* = p W Ü (l — f \ e°~», 
n=i v 
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where p is a polynomial of degree say d^O, and 0. Applying lemma 1 to 
{g(z)—z}Ip(z) w e see that 2^an1 converges and in fact 

g ( z ) - z = p(z)exp(iyz) ] J \ i - J L \ 
n=l v 

where y is real. If y^O then 

Max | g (± iy) | > exp 

so 7 = 0 since g has minimal type. Thus 

(12) g(z) = z + h(z), h(z) = p(z)Q(z) = p(z) n fl 
n=i v anj 

L e m m a 2. If g satisfies (i), (ii) then there is some r o > 0 such that |g( — /")l 
is increasing for r>r0, so that w=g( — r), r>rQ describes a simple curve f . 
r approaches infinity in a limiting direction a rgw = a. 

For, let 5 satisfy 0 < ( 5 < y . From (12) it follows that as z — °° in A(n,S) 

we have |A(z)/z| — °° and 

zh' 
p Q h 

(c.f. (7) and (8) in theorem 1). Thus |A ' (z ) | -« . and 

ZS' zh'(l + \/h') . .. 
( 1 3 ) a s m 

In particular 

(14) g'(-r)/g(-r) = ^-{d+o(\)+Z-L-\ {1 + 0(1)} 
r I flal ' T«n-' 

as r — and if g(—r)==Rel<p we have 

dR 
By (14) the argument of (15) approaches zero as r — s o that — > 0 

for large r. 
Clearly —r)| — oo faster than any power of r and arg h(—r) tends to a 

constant value, namely the argument of the leading coefficient of p(z). Hence 
arg g(—r) approaches the same limit. The lemma is proved. 
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7T 

L e m m a 3. If g satisfies (i), (ii) then, given any real 90, <5, a such that 0 < ( 5 < y , 

0-<<7 = 7r, there exist a constant Rl and two branches ip and % of z=g~1(w) regular in 
S = A(90, <r)n {|w| > iij}, 

such that the values of satisfy 7r —<5 -=arg ip and 7i<arg y <n + 5, re-
spectively. For any /c>0 we have 

i 
(16) Max {|^(iv)|, |^(w)|} = 0(|wf*) as w i n S. 

Proof . As w traverses r from w0=g(—rQ) to the branch of z=g~1(w) 
such that r0=^~1(w0) has a regular continuation and the values of z are all real 
and negative ( < — /•„). 

For r1 =-/'0 put -R=|g(—/"i)| and consider the level-curve X = \g(z)\ = R which 
passes through z=—rx. Along X we have as in (9) 

idcp = (zg'/g){id9+^-], 

where z=rei6fj., g(z) = Re'"'. 
By (13) for z of sufficiently large modulus in A(n,S) we have for any given 

K>4n/5 that \zg'(z)lg(z)\>K. Thus if R and hence r are sufficiently large we 
have \d(p\>K\d6\, \d(p\>K\dr\/r. As z leaves —rx on X and travels in a given direc-
tion to re'6 the corresponding <p changes monotonely so that 

K\6-7i\ = | f Kd91 ^ f K\d9\ S f\d<p\ = d<p\ = Acp, 

and similarly A T | l o g A ( p . As w-g(z) traverses |w| = 7?, increasing from 
a r g g(—r) by 4ft, z traverses ). in one direction with 9 changing by at most' 4n/K<5, 
while r satisfies 
(17) r i exp ( - 4n/K) < r < /-x exp (4n/K) . 

Thus if rt is large enough the value of z remains in A(n, <5) and by (13) g'{z)^0 
on X so the value of z gives a regular continuation of g _ 1(w) from g(—r^) in r 
round through an angle of 4n. The values of z lie in A (n, 3) but do not 
meet the negative real axis except at z=—r 1 ? since g(—r) is increasing. Since 
r can be taken to lie in any sector |argw—a|<£, £>0, it follows that we can 
derive from these values of g~*(w) a branch i¡/ which satisfies the statements of 
lemma 3, including either n—5<arg\j/<n or 7 r < a r g i p ^ n + d . 

If in the above construction we begin by proceeding along X in the opposite 
direction from that chosen originally we construct the other branch / of g - 1 . 
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For re10 = \J/(Reirp) we have by 

|r | = liACRe^)! < i\ exp (4n/K) 

and from R = |g(—/-^l for large r1 the estimate (16) follows. 
We shall also need 

Lemma 4 ( P Ó L Y A [ 1 0 ] ) . Let e,f,h be entire functions which satisfy e=foh, 
h (0) — 0. Then there is a positive constant c independent of e, f h such that 

(18) M ( e , r ) > j l f [ s , c M 

The condition h ( 0 ) = 0 can be dropped ¡ / ( 1 8 ) is to hold only for all sufficiently large r. 

§ 5. Proofs of Theorems 4a and 4b 

T h e o r e m 4a. Suppose g satisfies the hypotheses of the theorem. The first of 
these implies that the minimum modulus of g is large (>i?„) on a sequence of circles 
|z| = i?„ — T h e R„ may be chosen so that there is at least one zero of g in each 
í,<|z|<üJ+1. Since |g(-r)\/r-»°° as r-*-°° each of the simply-connected slit 
annuli 

An = {z: R„ < [z| < Rn+1, |argz| < TZ}, n = 1, 2, ... 

contains a zero of g and has the property that 

(19) |g(z)| => |z| on the boundary dA„. 

Denote by <p a branch of z=g~1(w) which is regular in A(0,n) for sufficiently 
large w, with values in 7i>arg z>n—<5, <5 being the fixed number, 0 < ( 5 < y chosen 
in §4. Such a <p exists by lemma 3. 

: For any fixed 1=2, 3, . . . , the (/—l)-th iterate cp!~1(w) is defined in A(0, n) 
for sufficiently large w, with values in 7r>arg z=»7r —<5. For sufficiently large n 
then <p1-1 maps A„ univalently onto a simply-connected domain D„ in 7r=-arg z > 

<• >7r —d. For z£dDn we have g'^1(z)£dAn. Now since |g(z) |> |z | for large |z|, 
z£A(n, S), it follows from z f j D n that |g' _ 1(2) |> |z | and from g'~1(z)^dAn and 
(19) that at 

Ig'wi = Ig^' - 1 ^)) ! > |g i_1(^)l > w , 
at least for large n. 

. By Rouché's theorem g'(z)—z and gl(z) have equal numbers of zeros in D„ 
and:: 0£g(A„)=gl(Dn). Thus the region 7i>arg z>n — ő and a fortiori A(n,ő) 
contains an infinity of solutions of g'(z)— z = 0. 
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T h e o r e m 4b. Suppose g has order o, 0 < 1, and is at most of order one, 
minimal type, while all but finitely many first order fixed points are positive. Suppose 

also that and that a, 0<(T<7i/2 is so small that Let 
2 2 ' . 2 2 

ij/ and x be the two branches of whose existence is asserted in Lemma 3. in the 
case 0o = 6. Then *j> = x has no solution in A(9, H{|>v| 

Suppose g has only finitely many fixed points of order k in A (6, a). Then 

is regular and different from 0, 1, °° for large z in A (9, a). By applying Schottky's 
theorem to F in A (8, <7) (or in a slightly smaller sector within A (6, a) and with 
origin shifted so that F^O, 1, °° in this sector) we find 

(20 ) F ( z ) = 0 { e x p ( C | z | " " ) } 

for some constant C as in A (0, a'), a'^o. From (16) the same estimate 
follows for |g* - 1(z) | with perhaps a different C. 

71 
Now there exists 81 such that O c ^ ^ y and A(9, cr')<zA(n, 5^. Thus 

\g(reie)\^o0 as r — °o and \zg'/g\>K>2nl<r' for large |z|, z£A(9, a'). As in the 
proof of theorem 1 there is for large R a level curve T(R): |g(z)| = which passes 
through z=re ' 9 , say. Such a curve cannot close in A (6, 5) for arbitrarily large R, 
since |g(z)| —<=> in A (9, S) and A (9, 5) contains only finitely many zeros of g. 
As in theorem 1 F must run to the boundary of A (9, a') in at least one direction. 
If 7 is an arc of r which goes from re*e to c)A(0, a'), then from \zg'/g\>-K it follows 
that the image of y under w=g(z) is the whole of |w|=/?. 

For large R we have that if t is the point on \t\=R where |g*_2(OI = 
=M(gk~2, R) then for some zgy, g{z)=t 

(21) = Ig*"1^)!-

Now in A(9,a')cA(n,S1), \g(z)\l\z\N-<*> as for any N. Take 
N>2n/(go), where Q is the order of g. Then for large R we have from (21) 

(22) Max Ig*"1^)! > M(gk~2, rN). 
| z | = r 

zZA(e,,o 
Since A:—2 = 1 the right hand side is (for large r) at least 

M(g, rN) > exp ( r* ) > exp (r2*/o) 

for some arbitrarily large r. Thus we have a contradiction between (22) and the 
estimate for g k _ 1 from (20). Hence g must in fact have an infinity of fixed points 
in A(9,a). 
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§ 6. Proof of Theorem 5 

Suppose F satisfies the hypotheses of Theorem 5 and that there exist an entire 
function / and an integer such that F=fk. Since F is bounded on the path 
y which consists of the negative axis running to — it follows that one of 

/(?)> •••> / t - 1 ( ? ) is an unbounded path on which / is bounded. From this 
it follows that the lower order of / is positive. 

From lemma 4 and the fact that the lower order of / is positive we easily 
obtain a contradiction to hypothesis (i) of the theorem, provided k ^ 3. 

It remains to prove the theorem for k=2. From hypothesis (i), F=f2 and the 
fact that the lower order of / is positive it follows from Lemma 4 (as is proved 
in [1, Satz 12]) that the order of / is less than one. 

Now /(z)=zH-g(z) where the zeros of g are fixed points of / and hence of F. 
Thus the zeros of g lie in Re z s O and the order of z is less than 1. By lemma 1 
we have 

(23) M and a s 

while 

(24) > K > 2 n / ô in |z| > r0 , |arg z — n\ -< 5. 

For a large R ( > M ( g , /•„)) there is a level curve T: |g(z) |=i? passing through 
z——/• such that | g ( — = R > r 2 . Just as in the proof of theorem 1 it follows 
that r must run to at least one of arg z=n+S or n—8, say the former, and that 
the image under w=g(z) of this arc must cover jiv[ = i? with angular measure 
at least Kd>2n. Let y denote the arc of r between —r and a point z' chosen so 
that the image g(y) covers exactly the angular length K8 of |w|=i?. As in the 
proof of Lemma 3 (17) it follows that for all z1=r1e">i£y we have |log ( r j / r ) j<5. 

The arc y is mapped by / ( z ) = z + g ( z ) onto a (not necessarily closed) curve 
in such a way that the image of zx is z1 + Re"''1 where |zjcre"5 , R>r2, and <p1 

increases by K8>2n as z t describes y. Thus / (y ) certainly cuts the negative real 
axis, say in a point w'=/(z"), z"€ y. Then 

\F(z")| - | /( /(z")) | = |/(w')| > M 2 > ( R - r e r > | r j 

if R and hence r are sufficiently large. Thus A (n, ¿) contains points z" of arbitrarily 
large modulus for which 

which contradicts (iii). This completes the proof. 
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C0-Fredholm operators. I 
HARI BERCOVICI 

In this note we introduce the notions of C0-Fredholm and C0-semi-Fredholm 
operators, which are generalisations of the Fredholm and semi-Fredholm operators, 
and we study some properties of these operators. The study of index problems 
in connection with operators that intertwine contractions of class C0 was suggested 
by [10], Theorem 2 and Conjecture. 

In § 1 of this note we introduce some notions and we define and study the 
determinant function of an arbitrary operator of class C„. In §2 the notions of 
C0-fredholmness, C0-semi-fredholmness, and index are defined. Here we find 
(Corollary 2.8) a generalisation of [10], Theorem 2 under weaker assumptions. 
We also show that the index defined for C0-semi-Fredholm operators is multi-
plicative. At the end of § 2 we prove a perturbation theorem. In § 3 we show that 
there exist C„-Fredholm operators with given index (Proposition 3.1). We also 
prove that the conjecture from [10] is generally false (Proposition 3.2) but is verified 
in the bicommutant of a C0 contraction of arbitrary multiplicity (Proposition 3.4). 
At the end of § 3 we show that the set of C0-Fredholm operators is not generally open. 

§ 1. Preliminaries. The determinant function 

For any (linear and bounded) operator T acting on the Hilbert space § we 
denote by Lat (T ) the set of invariant subspaces of T and by Lat1/2 (T) the set of 
all semi-invariant subspaces of T (that is, subspaces of the form 99J091, where 
Ml, 5R€Lat(r) and 9K=>91). It is known (see [4], Lemma 0) that a subspace 9Ji of 
§ is semi-invariant for T if and only if 

(i.i) Tm = pwT\m 

Received April 18, 1978. 



16 Hari Bercovici 

is a "power-compression", that is, if 

(1 .2) 7 S = P „ r | O T , « = 1 , 2 , . . . . 

If T is a completely non-unitary contraction this is equivalent to 

(1.3) « ( T y = P«K(r) |SR, J i -

l t is obvious that L a t 1 / 2 ( r ) = L a t 1 / 2 ( J * ) (we have SDle5U=5ixe50i-1-). Let 
us recall that the multiplicity /xT of the operator T is the minimum cardinality of 
a subset 21 of § such that V TnfH=%. For each 9Ji€Lat1/2 (T) let us put 

n£0 
/ jT(3)l)=/jT m . If T is an operator of class C0 , we have by [7] that ¡iT=nTt. In 
this case we shall have 

(1-4) ' = H r * m , M6La t 1 / 2 (T ) . 

For any two operators T, T' acting on respectively, we denote by 
T) the set of those operators X\ which satisfy the relation 

(1.5) T'X=XT. 

Obviously, {J{T, T'))¥ = J(T'\ T*). 
We are now going to define the determinant function of a C„ operator acting 

on a separable Hilbert space. 

D e f i n i t i o n 1.1. Let T be a C0 operator acting on a separable space and 
let S(M), M= {nij}J=1 be the Jordan model of T [2]. We define the determinant 
function dT as the limit of any convergent subsequence of {m1m2... mj}(j= 1,2, ...). 

The function dT is uniquely determined up to a constant factor of modulus 
EO 

one because \dT\= [J |m,-|. If dT^0 then dT is an inner function. 
j=i 

The C0 operators of finite multiplicity have nonvanishing determinant func-
tion. Indeed, if S(m1,m2, is the Jordan model [6] of T, we have 
dT=m1m2...mn. For any C0 operator T the relation dTt=dj holds (where 
f ( z ) = m ) . 

With this definition of the determinant function, it is obvious that dT is invariant 
with respect to quasi-affine transforms. It is also obvious that dT=1 if and only 
if T acts on the trivial space {0}. We shall use the general notation 

(1.6) d T m = d T n 

for any Co operator T and any SDteLatyg (7"). 

L e m m a 1.2. A contraction T of class C0 on a separable Hilbert space is a weak 
contraction if and only if dT^0. If T is a weak contraction of class C0 , dT coincides 
with the determinant of the characteristic function of T. 
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P r o o f . If dT?i0 it follows that the Jordan model S(M) of T is a weak con-
traction (cf. [3], Lemma 8.4). Thus, by Proposition 4.3.a of [3], it follows that T 
is a weak contraction. Conversely, if T is a weak contraction, by Lemma 8.4 and 
Theorem 8.5 of [3] we have dT7±0. The coincidence of dT with the determinant 
of the characteristic function of T follows from [3], Theorem 8.7. 

T h e o r e m 1.3. For any C0 operator T acting on a separable space and any 
£ ' 6 Lat (T) we have dT=dT{?)')dr($)"), where 

P r o o f . If dTpi0, T is a weak contraction and the Theorem follows from [3], 
Proposition 8.2. If dT=0 we must show that either dT($>')=0 or dT{<o")=0. 
Equivalently, we have to show that T is a weak contraction whenever T& and 
are weak contractions. So, let us assume that and Ts» are weak contractions. 
Let S(M), S(M'), S{M") be the Jordan models of T, T', T", respectively. We 
consider firstly the case For every natural number k we can find 
a subspace § t 6 L a t ( r ) such that T\9)k is quasisimilar to S(m1,m2, ..., mk). The 
subspace = V £>k 6 Lat (T) and T\§>'k is also of finite multiplicity. From [3], 
Proposition 8.2 we infer 

(1.7) • d r ( & ) - d r M d A s n , K = & & & = §>'kr\S". 

Again by [3], Proposition 8.2, m1m2...mk divides dT(5)k) and dT(§>k) divides dT(§>"). 
Thus (1.7) implies that m1m2...mk divides dT(Sy')dT(9)"). In particular dT^0 and 
by [3], Proposition 8.2, we have dT=dT{9)')dT{§>") in this case. 

Let us remark now that from the preceding argument it follows that the equality 
dT=dT(9)')dT{$z>") also holds under the assumption ")<«>. Indeed, we have 
only to replace T by T* and to use the relation dTt=dj. 

We are now considering the general case. Let §>k, , §jk have the same meaning 
as before. It is clear that /¿r(£>D<0° a n d by the preceding remark it follows that 
T i s a weak contraction and (1.7) holds. Arguing as in the case /*r(£>')<0° we 
obtain dT7± 0, that is J is a weak contraction. This finishes the proof. 

• Let T,T' be two operators and X£J(T', T). For every 3Ji£Lat (T), 
(ifSDi)" £Lat (T'). We shall prove now a lemma which is not particularly con-
cerned with operators of class C„. 

L e m m a 1.4. Let T, T' be two operators and let X£J(T', T). The mapping 
is onto Lat (T ' ) if and only if R'<-+(X*$t')- is one-to-one on Lat (7"*) 

P r o o f . Let us assume that R'<-+(X*R')~ is one-to-one on Lat (7"*) and let 
us take SV £ Lat (T'). If we put it=JIT"1 ( i f ) and we have ( Z * ^ ) ) - = 
=(ran and by the same 
computation (A r*(ft'-L))-=(Z-1(ft '))"L- By the assumption we have ft^SV1, 

so that # ' = ( * » ) " . . 

2 
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Conversely, let us assume that is onto Lat (7 ' ) and let us take 
ft'6Lat(r'*). Then where We have « '=(^51)- = 
= (ran XPA)x = ker PñlY* = X*~\X1-) = X*-\{X-í(Sl'íy)x) = X*'\ker = 
=X*-\nm X*P¿)-=X*~í((X*Si')-) which shows that ft' is determined in this 
case by (A^iV) - . The lemma follows. 

R e m a r k 1.5. Because the Jordan model of a C0 operator acting on a non-
separable Hilbert space contains uncountably many direct summands of the form 
S{M) (cf. [1]) it is natural to extend the definition of the determinant function by 
taking dT=0 for 7acting on a non-separable space. With this extension Lemma 1.2 
and Theorem 1.3 remain valid with the condition of separability dropped. For 
Lemma 1.4 it is enough to remark that a completely non-unitary weak contraction 
acts on a necessarily separable space and for the Theorem 1.3 we have to remark 
that 7 acts on a separable space if and only if and are separable spaces. 

§ 2. C0-Fredholm operators 

D e f i n i t i o n 2.1. Let 7, T' be two operators and let X^J{J', 7). X is called 
a (7T)-latt ice-isomorphism if the mapping is an isomorphism of 
Lat (7) onto Lat (T'). 

For 7 = 0 and 7 ' = 0 a (77)-lat t ice-isomorphism is simply an invertible 
operator. It is clear that a lattice-isomorphism is always a quasi-affinity but the 
converse is not true as shown by the example 7 = 0 , 7 ' = 0 . By Lemma 1.4, X is 
a (7 ' , 7)-lattice-isomorphism if and only if X* is a (7*, 7'*)-lattice-isomorphism. 
We shall say simply lattice-isomorphism instead of (7 ' , 7)-lattice-isomorphism 
whenever it will be clear which are 7 and 7 ' . 

D e f i n i t i o n 2.2. Let 7 and 7 ' be two operators of class C0 and X£J(T\ T). 
X is called a (7 ' , T)-semi-Fredholm operator if XKker X)1- is a 
(7' |(ran X)~, 7(kerX>1)-lattice-isomorphism and either dT (ker X)^0 or 
dT,(ker X*)^0. A (7 ' , 7)-semi-Fredholm operator X is (7 ' , T)-Fredholm if both 
dT (ker X) and dT, (ker A"") are different from zero. The index of the (7 ' , 7 ) -
Fredholm operator X is the meromorphic function 

(2.1) j(X) = j(T,T')(X) = ¿ r (ke r X)/dT. (ker X*). 

If X is (7 ' , 7)-semi-Fredholm and not (7 ' , 7)-Fredholm we define 

(2.2) j(X) = 0 if dT(ker X) = 0; j(X) ==° if dT, (ker X*) = 0. 

We shall say simply C0-semi-Fredholm, C0-Fredholm instead of (7 ' , 7)-semi-
Fredholm, (7 ' , 7)-Fredholm, respectively, whenever it will be clear which are 
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the C0 operators T and T'. We shall denote by sF (T\ T) (respectively F (7", T)) 
the set of all (T7")-semi-Fredholm (respectively (7", T)-Fredholm) operators. 
If T= T' we shall write sF (T), F (T) instead of sF (T, T), F (T, T), respectively. 

We can easily see how the preceding definition is related to the usual defini-
tion of Fredholm operators. Let us note that the operator T= 0 acting on the 
Hilbert space § is a C0 operator; it is a weak contraction if and only if 
« = d i m § < o o and in this case dT{z)=z" ( |z |< 1). If T=T'=0 and XiJ{T', T) = 
= i ? ( § ) then X|(ker X)1 is a lattice-isomorphism if and only if X has closed range. 
From these remarks it follows that an operator 0) is C0-Fredholm if and 
only if it is Fredholm in the usual sense, and j(X)(z)=z'(x\ where i(X) = 
=dim ker X— dim ker X* is the (usual) index of the Fredholm operator X. 

P r o p o s i t i o n 2.3. Let T, T', T" be C0-operators acting on respect-
ively, and let A£J(T,T'), B£J{T,T") be such that A$>'a{B$)"y. If dr^0, 
we have: 
(2.3) -

(2.4) ( / f $ T W ) ~ ^AfY. 

P r o o f . It is enough to prove (2.3) because (2.4) is a simple consequence of (2.3). 
We may suppose that B is a quasi-affinity and A is one-to-one. Indeed, we have 

only to replace A, B respectively by A\(ker A)L and 5j(ker B)1, and § by (B£>")~. 
It follows that dT.=dT and T' is quasisimilar to the restriction of T to some in-
variant subspace. By Theorem 1.3 we have dT ,^Q and therefore 

(2.4) dr'ST- = dT,dT< = dT,dT ^ 0. 

The operator X: defined by X(h'®h")=Ah'—Bh" has dense range 
and satisfies TX=X{T'®T"). 
Thus {T'@ ^'Ockerx^ is a quasi-affine transform of T, in particular 

(2.5) dT,Br.{(ktvX)±) = dT. 

From (2.4) and (2.5) we infer 

(2.6) ¿ r e r - ( k e r X ) = d r . 

The operator Y: k e r X — d e f i n e d by Y{h'@h")=h' is one-to-one. Indeed, 
Y{h'@h,r) = 0 and h' © h" € ker X imply h' = 0 and Bh"=Ah' = Q\ it follows that 
h"=0 because B is one-to-one. Moreover, we have (7"® 7")j(ker X)). 
It is easy to verify that ran Y=A'1(B§>"). By the invariance of the determinant 
function we have 
(2.7) dT.((A-i(BZ"))~) = drer( k e r * ) = dT.. 

2» 
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From Theorem 1.3 and relation (2.7) it follows that 

(2.8) dr = dT.{{A-\B9>"))-)dr.{{A-\B9>'= dr 

and therefore 

d r ^ A - ^ B è " 0 ) x ) = 1, = {0} and (2.3) follows. 

The Proposition is proved. 

C o r o l l a r y 2.4. Let T, T' be two C0 operators such that dr^0 and let 
T) be a quasi-affinity. Then A is a lattice-isomorphism. 

P r o o f , The correspondence Sî>—(yift)- is onto Lat (T') by Proposition 2.3. 
Corollary follows by Lemma 1.4 since A* is also a quasi-affinity. 

L e m m a 2.5. Let T,T' be C0 operators and A£J(T', T). We always have 
dT,dT (ker A)=dTdT, (ker A*). 

P r o o f . From Theorem 1.3 and the invariance of the determinant function 
with respect to quasi-affine transforms we infer dT,=dT,(ker A*)dr((ran A)~) = 
= dT, (ker A*)dT ((ker A)-1) and dT = dT (ker A)dT ((ker A)-1). The Lemma ob-
viously follows from these relations. 

C o r o l l a r y 2.6. Let T, T' be weak contractions of class C0. Then F(T', T) = 
= J{T\ T) and j(A) = dT/dr, for A£J(T', T). 

P r o o f . For each A Ç J (J", T), A ¡(ker A)1 is a lattice-isomorphism by Corollary 
2.4. Also we have dT(ker A)^0 and dr(ker A*)^0 by Theorem 1.3. The value 
of j{A) follows then from Lemma 2.5. 

R e m a r k 2.7. From the preceding proof it easily follows that s F ( r ' , 2") = 
=J{J', T) and F (T\ 7 ) = 0 if exactly one of the contractions T and T' is weak. 

The following Corollary is a generalisation of [10], Theorem 2. 

C o r o l l a r y 2.8. Let T and T' be weak contractions of class C0 such that 
dT=dr. Then each injection A£^(T', T) is a lattice-isomorphism (in particular 
a quasi-affinity). 

P r o o f . Let A£S(T', T) be an injection. By Corollary 2.6 A£F(T', T) and 
j(A)=dT/dT,= i ; it follows that dT,(kev A*)=dT(ker A) = l, thus k e r 4 * = { 0 } 
and A is a quasi-affinity. The conclusion follows by Corollary 2.4. 

C o r o l l a r y 2.9. Let T be a weak contraction of class C0 and let A € {T}' be 
an injection. Then the restriction of A to each hyper-invariant subspace of T is a quasi-
affinity. 
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P r o o f . Obviously follows from the preceding Corollary. 

L e m m a 2.10. For any two C0 operators T and T' we have sF(T, T')* = 
= sF (T'*,T% F(T,T')* = F(T'*,T*), and 

(2.9) j(A*) = ( j ( ^ ) " ) " 1 , A € sF ( Г , T) (here 0" 1 = ~ and - - 1 = 0). 

P roo f . If A£J(T',T), we have (Л|(кег A^f^A^ktv A*)1, dT,Jker A*) = 
=dT,(ker A*)~ and dT,(ker A) = dT(ker A)~. The Lemma follows. 

T h e o r e m 2.11. Let T,T',T" be operators of class C0, A£sF(T', T), 
BisF (T", T'). If the product j{B)j(A) makes sense we have BA£sF(T", T) 
and j(BA)=j(B)j(A). 

P r o o f . We shall show firstly that ВА\(кет BA)X is a lattice-isomorphism. 
To do this we will show that the range of BA is dense in each cyclic subspace of 
T", contained in (ran BA)~. The whole statement will follow from Lemma 1.4 
and Lemma 2.10 and the same argument applied to (BA)*—A*B*,. 

Let us remark that from the C0-semi-fredholmness of В it follows that 

2?-1((ran BA)~)a ((ran +ker B)~. 

Therefore, for each / £ (ran BA)~ and e > 0 we can find g в ((ran A)~ +ker B)~ 
such that 
(2.Ю) Bg£§>f = V T"nf and | | 5 g - / | | < £ . 

nm о 

Now, let us denote by Я the subspace ((ran Л)~ + кег "©(ran A)~ and by P 
the orthogonal projection of ((ran A)~ + ker B)~ onto Я. We claim that 

(2.11) d r ( f t ) ^ 0 . 

Indeed, if Д Л ) ^ w e have dT,(ker A*)^0 and Я с к е г A*. If. j(A) = <*= it 
follows from the hypothesis that j(B)^0 and therefore dT,(ker B)^0. But 

(2.12) ( ( r a n ( ^ | k e r 5 ) - = Я 
and 
(2.13) = PT'\((vanA)-+ktvBy. 

From Theorem 1.3 and the invariance of the determinant function with respect 
to quasi-affine transforms we infer that dr(i\) divides dT,(kev B); thus (2.11) 
is proved. 

From the relations (2.11—13) it follows, via Proposition 2.3, that {k£%>g; 
Pkf^P (ker B)} is dense in §>g, that is §9П((гап A)~ + ker B) is dense in Thus 
there exist г/€(гап A)~ and vdker В such that 

(2 Л 4) u + vebg, ||« + t>-g|| < e. 
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Now, by the C0-semi-fredholmness of A, there exists k£?> such that 

(2.15) Ak£%u, \\Ak — u\\ e. 

We have Bu = B(u + v)£B$jg(z§)f and it follows that B9)ua$jf. Therefore 
BAk£B9)ucz9)r From (2.10), (2.14) and (2.15) we infer \\BAk-f\\s\\BAk-Bu\\ + 
+ | |5(M+y)-fig| | + | | ^ - / | | < ( 2 | | 5 | | + l)e. Because e is arbitrarily small, the first 
part of the proof is done. 

We obviously have 

(2.16) ker BA = A~1(kerB), kzx (BA)* = B*~\kex A*). 
T X~\ q1 j , determined by the de-Let us consider the triangularisation Tjker BA = 

composition ker BA= ker A ©(ker BA ©ker A). By the C0-semi-fredholmness of 
A, T2 is a quasi-affine transform of T'\9)l, where 

(2.17) § ! = (ran A)~ Piker B. 

If (ker 5 ) ^ 0 and (ker , 4 ) ^ 0 it follows that 

(2.18) d r (ker BA) = dT(ker A)dT.(%1) ^ 0, 

thus BA£sF(T", T). Analogously, if dT,(kcr B*)^0 and dr(ker A*)^0 it 
follows that BA£sF(T", T). From the hypothesis it follows that at least one 
of the situations considered must occur. Thus we always have BAdsF (T", T). 

It is obvious that dT,(kex (BA)*)=0 whenever dr,(ker B*)=0 since 
ker (BA)* 3 ker B*. Thus the relation j{BA) = °o = j(B) j(A) is proved in this case. 
Let us suppose now that j(B)=0. Then, by Theorem 1.3 we have 

0 = dr (ker B) = ¿r (§i) ¿7-(ker 5 ©SO. 

The projection onto ker A* is one-to-one on ker BQ§>1, thus rk ' e r B Q g i is a quasi-
affine transform of some restriction of T(,erAt. It follows that dr(kex BQ^^O 
and the preceding relation implies dT,($)1)=0. By (2.18), the relation j(BA) = 
=j(B) j(A) (=0) is proved in this case also. If j(A)(: {0, we have j(BA) — 
= {j( iBA)*y)-i={j{A*y j { B * y ) - i = № j ( A ) by Lemma 2.10. 

It remains now to prove the relation j(BA)=j(B)j(A) for A£F (T\ T) and 
B£F(T",T'). From the second relation (2.14) we infer, as before, 

(2.18)* dT• (ker (BA?) = dr (ker B*) dT. (§*) 
where 
(2.17)* $>f = ( ran^*)-Dker i<* = (ker B y D (ran A y . 

Let us denote by Q the orthogonal projection of onto (ran A)x =ke r A*. If 
we consider the decompositions 

(2.19) kertf = ker ,4* = 
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we claim that g | § 2 is a quasi-affinity from § 2 into § 2 . Indeed, if / j€§ 2 and 
we have (g, Qh)=(g, h) =0 as g€(ker B)L, thus Q§>2c=§2. Because § x = ker Bf] 
0(ran A)~ =ker (£>|ker B), Q is one-to-one on § 2 . We have only to show that 
ker = If heker A*Q(Qb2)- and g£kex B we have (h, g) = (h, Qg) = 0 
because (Q§>2)~ = (2 (ker B))- (as 0 | § i = O); the inclusion ker 
follows and the assertion concerning Q\§>2 is proved. 

Now, because § x = ker (2¡ker B), we have the intertwining relation (Q|§2) = 

= (6IS>2)^s2; in particular 
(2.20) dT,(§>2) = dT.(§*2). . 

By (2.18—20) and Theorem 1.3 we have 

j(BA) = dT(kerBA)/dr.(ker(BA)*) = 

= (dT(ker A)/dr(ker B*))(dr, (SJAMSi)) = 

= (dT (ker A)/dr, (ker B*)) (dT. (&) dT (%2)/dT. (§*) dT. (§*)) = 

= (dT(ker A)ldT. (ker A*))(dr (ker B)/dr(ker B*)) = j(B)j(A). 

Theorem 2.11 is proved. 

T h e o r e m 2.12. Let T be an operator of class C0 acting on § and let X^{T}' 
be such that dT((Xf>)~)^0. Then I+X£F(T) and j(I+X)=l. 

P r o o f . We firstly show that the mapping Lat (7)3501--((/+X)SR)- is onto 
~Lat(T\((I+X)%)-). To do this let us take 91 {Lat (T), 9 l c ( ( /+X) .^ )~ and let 
P denote the orthogonal projection of § onto (ker X)-1. Because 
T{^rX)i_P=PT and i/ r((kerZ)-L)?i0, it follows by Proposition 2.3 that 
9l'={/?€9t; Ph£P(I+X)§>} is dense in 91. Now we can show that 
indeed 9 t ' c ( / + * ) § +ker X and ker Z c ( / + * ) § (h = (I+X)h for h£ ker Z). 
Therefore we have N=((I+X)Wl)-, where an = ( /+JQ- 1 9 i . 

From the preceding argument applied to I + X * and from Lemma 1.4 it follows 
that (/+A')|(ker(/+A'))-L is a lattice-isomorphism. Because ker ( / + I ) c I § 
(h = - Xh whenever (I+X)h=0) and ker (I+X)*czX*§>, by Theorem 1.3 it 
follows that l+XeF(T). 

It remains only to compute j(I+X). To do this let us consider the decomposi-
tion § = U©33, U=(X§)~ . With respect to this decomposition we have 
/ = [ o 7°]' X = [ o Xo } ' w h e r e X ' i { T \ U Y - S i n c e by the hypothesis 7 |U is 

a weak contraction, we infer by Corollary 2.6 

(2.21) dT (ker (/ + X')) = dT (ker ( / + X')*). 

Now, we can easily verify that ker ( 7 + Z ) = k e r ( I+X' ) . The inclusion ker ( I + X ' ) c . 
c k e r (I+X) is obvious. If h£ker(I+X) we have h=-Xh£U so that h=-X'i{ 
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(X'=X\1X) and A 6 ker (7+ j r ) - I" particular 

(2.22) cfT(ker (7+ X)) = dT{ ker ( / + X')). 

It is easy to see, using the matrix representation of X, that u@v£ker (1+ X)* 
if and only if 
(2.23) u 6 k e r ( / + A " ) * and v = -X"*u. 

If we denote by Q the orthogonal projection of §> onto U, it follows from (2.23) 
that £>|ker (7+AO* is an invertible operator from ker (74-AO* onto ker (7+A")*» 
the inverse being given by ker(7+^0*31"— «©(—X"*u). Because we have also 
KQ = QT* it follows that 7"*|ker(7+*')* and r* |ker(7+A0* are similar, in 
particular 
(2.24) d r (ker ( / + * ) * ) = i/T(ker (I+X'f). 

From (2.21), (2.22), and (2.24) it obviously follows that j(I+X) = l. The Theorem 
is proved. 

§ 3. Some examples 

P r o p o s i t i o n 3.1. For any two inner functions m and n there exist a C0 operator 
T and XCF(T) such that j(X) = mln. 

P r o o f . The operator T—(S(m)^iI)®(S(n)<S)l), where I denotes the identity 
operator on !?•, is of class C0. If we denote by U+ the unilateral shift on I2, 
obviously 

x = (i^rn)®uimi!b(n)®u+)e{Ty. 

Moreover, X has closed range so that X|(ker X)x is invertible. Because r jke r X 
is unitarily equivalent to S(m) and TkerX, is unitarily equivalent to S(n), it follows 
that X is C0-Fredholm and j(X)=m/n. 

The following proposition infirms the Conjecture from [10]. Proposition 3.4 
shows however that this Conjecture is true under the assumption X£ {T}" and 
with the condition dropped. 

P r o p o s i t i o n 3.2. Let K and K+ be C0 operators of finite multiplicities such 
that dK=dK . Then there exist a C0 operator T of finite multiplicity and an Xz {T}' 
such that T|ker X and Tke[X* are quasisimilar to K and K^, respectively. 

P r o o f . Let S=S(m1, m2, ..., m„) and Sjf = S(m'1,m'2, ...,m'n) be the Jordan 
models of K, , respectively (it may happen that some of the mj or m'j be equal to 1). 
By the hypothesis we have 
(3.1) m1m2...m„ = m'1m'2...m'n. 



C0-Fredholni operators. I 25 

Let us consider the operator 

(3.2) T = S(<px,<p2,..., (pn), where 

(3.3) (p1= m1m2...m„, (p2 = m'2m2... m„, <p3 = m'2m'3m3... m„, .. 

<Pn = m'2ma... m'„m„. 

(T is generally not a Jordan operator). The matrix over 77" given by 

(3.4) A = 

0 Ô ... 0 m{ 
m'2 0 ... 0 0 
0 m'3... 0 0 

satisfies the conditions 
(3.5) 

0 0 ... m'„ 0 ^ 

a u (pjÇ. (P iH 2 

and therefore (cf. [2], relations (6.5—7)) the operator X defined by 

(3.6) X = [Xu]lsiJSn, Xuh = P^ôauh (hiZ(<Pj)) 

commutes with T. Now it is easy to see that 

(3.7) r | k e r X = © T|(ker ATI §(<?,)), ^kerX* = © 
/=1 1=1 

Using [8], p. 315, we see 
that r |(ker Affl §(<?,•)) is unitarily equivalent to S(m^) 

and T'dterx'n$(«>))unitarily equivalent to S(m'{) so that T|ker X is unitarily equiv-
alent to S and 7"kerX* is unitarily equivalent to S*. Proposition 3.2 follows. 

L e m m a 3.3. If T and T' are two quasisimilar operators of class C„ and (p£H°° 
then T\ker<p(T) and 7'jker <p(T') are quasisimilar. 

Proof . Let X, Y be two quasi-affinities such that T'X=XT and TY=YT'. 
Then we have also (p(T')X=X<p(T) and <p(T) Y= Y(p(T') which shows that 

(3.8) X ker <p (71) c ker q>(T'), Y ker (p(T')a ker <p(T). 

From (3.8) it follows that T|ker (p(T) can be injected into r ' jker (p(T') and 
J ' |ker <p(T') can be injected into r |ker <p(T). The Lemma follows by [10], 
Theorem 1. 

P r o p o s i t i o n 3.4. Let T be an operator of class C0 and {T}". Then T|ker A' 
and TkcrX* are quasisimilar. In particular we have 

sF (70fl {T}" = F (TOD {T}" and j(X) = 1 for XÇF (T)Cl {T}". 
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P r o o f . From [2] and [1] it follows that X=(u/v)(T), where u,v£H°° and 
vt\mT=\. It is easy to see that ker Z = k e r u(T) and ker Z* = ker u" (T*). By 
Lemma 3.3 it suffices to prove our Proposition for 7'a Jordan operator and X=u(T). 
Now, a Jordan operator is a direct sum of operators of the form S(m) and it is 
easy to see that S(m)|ker u{S(m)) and (S(m)*|kei (u(S(m)))*)* are both unitarily 
equivalent to S(mf\u). Thus for T a Jordan operator r |ker u(T) and 7'ker(li(n)* 
are unitarily equivalent. Thus Proposition follows. 

P r o p o s i t i o n 3.5. Let T be an operator of class C0 and let X£{T}" be an in-
jection. Then X is a lattice-isomorphism. 

P r o o f . Let 9Ji6Lat (7) ; by [9] we have Z9Jic=SR. Moreover we have 
A^DJii Alg Lat (T^SDi) and obviously A^ORf {r|SK}'. Again by [9] we infer 
A'lOJiG {7~|50i}". From Proposition 3.4 applied to the injection A" we infer 
ker (Z|93i)* = {0} so that 

(3.9) (A-ffli)- = 2R. 

This shows that the mapping (A'SDl)- is the identity on Lat (T). The Proposi-
tion is proved. 

P r o p o s i t i o n 3.6. There exist an operator T of class C0 and operators Xn, 
X£{T}" such that lim \\Xn-X\\ =0 , X£F (T) but ^ n $ F ( r ) , n= 1 , 2 , . . . . Thus 

n 00 

the set F (T) is not generally an open subset of {T}'. 

P r o o f . We shall construct Blaschke products m, b and b„ (n = 1, 2, ...) such that 

(3.10) bf\m = 1, ¿»„Am ^ 1; 

(3.11) lim \\bn — b\\„ = 0. 
n~* OO 

Then the required example is given by 

(3.12) T = S(m)<S> 7, 

where 7 denotes the identity operator on an infinite dimensional Hilbert space, and 

(3.13) . X=b(T), X„ = b„(T) (n = 1,2, . . . ) . 

It is'clear that T|ker X„ is unitarily equivalent to S(mAb„)(g)I which is not 
a weak contraction and therefore ^ „ ^ ( 7 ) (by Proposition 3.4, <Vn$sF(7")). 
Because bf\m=\, b(T) is a lattice-isomorphism by Proposition 3.5, in particular 
X£F(T). The convergence Xn-~X follows from (3.11). 



C0-Fredholni operators. I 27 

It remains only to construct the functions m, b and b„ (n = 1,2, ...). Let us put 

(3.14) Ь=ПВ\ b„=ffBk„(n = 1,2, . . . ) , m=ffBk
k 

k = l к = 1 к = 1 

where Вк (respectively Вк) is the Blaschke factor with the zero k~2 (respectively 

к~г exp (itk), /'=-0). Because \b-b„\^ £ \Bk-B% one can verify that (3.11) 
oo k = 1 

holds whenever lim ^ k*tk — 0. Conditions (3.10) are also verified and n - ~ k = 1 
bnt\m—Bn

n. 
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Compléments à l'étude des opérateurs de classe C0. IV 
H. BERCOVICI, C. FOIAÇ, L. KÉRCHY, B. SZ.-NAGY 

Dans la Note précédente [1] un rôle fondamental est joué par les deux proposi-, 
tions suivantes. 

P r o p o s i t i o n 1. Pour tout opérateur T de classe C0 dans l'espace de Hilbert 
les vecteurs pour lesquels mTf—mT, sont denses dans 

P r o p o s i t i o n 2. Pour tout /£§ tel que mTf = mT, il existe un sous-espace 
5DI de 9), invariant pour T, et une quasi-affinité X: &(m)-*§)j- (m = mT) tels que 

XS(m) = TX, V 9W = ( m ) f l l = {0}. 

. Rappelons que Tf désigne la restriction de T au sous-espace invariant 
oo 
V Tnf\ S(m) est l'opérateur défini sur l'espace fonctionnel §>(m) = H2QmH2 
n = 0 

par S(m)u = P&(m)(A-u) où u = u(A)£§>(m) (|A|<1), et, pour tout opérateur V 
de classe C0 , mv=mv(l) est la fonction minimum de V. 

Or, la démonstration qu'on a indiquée dans [1] pour la proposition 2 était 
trop sommaire, et même insuffisante.1) Nous allons remédier ce point et cela même 
en établissant le résultat plus fort suivant. 

P r o p o s i t i o n 2*. Pour tout /£§ tel que mT=mT, il existe un sous-espace 
93i de §>, invariant pour T, tel que 

WSSt = §, = {0}. 

(Pour en déduire la proposition 2 il n'y a qu'à rappeler que, d'après la proposi-
tion 1 de [2], Tf est quasi-similaire à S (m), avec m = mTf (=mT).) 

; ;.. Reçu le 9 novembre 1978. 

• , r) Cela a été remarqué par l'un des auteurs (L. K.) de la présente Note ; il a d'abord proposé 
une ¡démonstration portant sinon pour tous.les / tels que mTf=mT, mais du moins pour les éléments 
/ d'un ensemble dense dans § (ce qui suffit pour en conclûre aux théorèmes de [1]). Ensuite, on est 
parvenu à la démonstration suivante. 
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On commence par le suivant 

Lemme. Soient T et T' des opérateurs de classe C0 dans les espaces §> et §>', 
et supposons que T et T' sont quasi-similaires et sans multiplicité (c'est-à-dire nT = 
~HT,= \). Alors, tout opérateur injectif A : § —S' tel que A T= T'A, est aussi 
quasi-surjectif (c'est-à-dire que A9) = §}'). 

R e m a r q u e . Le lemme résulte aussi du théorème de [3]. Mais dans le cas 
particulier (pT=pT>= 1) qui nous occupe on a la démonstration suivante simple: 

L'injection A:§> — induit une quasi-affinité B.5) — 2 où Q=AÇ> et on 
a évidemment BT=(T'\Q)£. Il s'ensuit que 7" | £ et T, donc aussi T'\2 et T', 
ont la même fonction minimum. Puisque T' est sans multiplicité, on a alors par 
le théorème 2(iv) de [2] que £ = § ' , donc Ai) = £)'. 

Le lemme établi, passons à la démonstration de la proposition 2*. 
Puisque Tf a le vector cyclique / , son adjoint (7})* a aussi un vecteur cyclique, 

soit g; cf. le théorème 2 de [2]. Posons 

S « = v n > 7;9 = (r*|5*9r, P = P&ta, SPî = SeS*9; 
n = 0 

étant invariant pour T, 9JÎ est invariant pour T. 
De la définition il dérive aussitôt que T^gP=PTP, donc T^gPx = PTx pour 

Or, la dernière équation est vérifiée pour xÇ 9JÏ aussi, car on a Py—0 pour 
tout j>€30î. On a donc T¥gP=PT et par conséquent 

(1) ngX=XT] (11=0 ,1 , . . . ) où x=P\$>f = P6..\$>„ 

et en passant aux adjoints, 

(2) X*T% = T/"X* (» = 0 ,1 , . . . ) , X* = Pèf\^g. 

Puisque g est contenu dans on a X*g=g, et par (2) 

(3) X*Tïg"g = Tf*»g (« = 0 ,1 , . . . ) . 

Or, g étant cyclique pour T f , (3) entraîne que X*9)^g est dense dans Il s'ensuit 
que X est injectif. 

On en déduit que § / . na«={0} . En effet, pour xfE^fVDî on a Xx=Px 
(parce que x £ § y ) = 0 (parce que xÇ 9JÎ), d'où x = 0 (parce que X est injectif). 

Notons que de (1) il dérive u(Tirg)X=Xu(Tf) pour toute fonction uf H°°, 
d'où, toujours par l'injectivité de X, il s'ensuit que mT \mTt . D'autre part, on a 

™t*„ = m(T* |6,b)* = 'n i . i s . Jwr* = mT. 
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Puisque par hypothèse mT = m T , on conclut que mT =mT t^. Les opérateurs 
Tj et étant cycliques et ayant la même fonction minimum, sont quasi-similaires. 
Vu que X est injectif, et que T^GX=XTF, on a en vertu du lemme que X est aussi 
quasi-surjectif, donc 

Puisque P$jf est évidemment compris dans § Y V 9JÎ cela entraîne que 

§ = ô „ © s w = p $ ) f v m = s r v a» . 

Cela achève la démonstration. 
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Essential spectrum for a Banach space operator 

R I C H A R D BOULDIN 

§ 1. Introduction 

Essential spectrum has been much studied with papers [4], [5], [6], [10], [14] 
taking the point of view of describing the Weyl spectrum or showing when different 
notions of "essential spectrum" coincide. A principal result of the significant paper 
[8] says that if the Weyl spectrum of T coincides with the Fredholm spectrum and 
T is essentially normal then T is the sum of a normal operator and a compact 
operator. The papers [1], [2], [3], [7] develop theories such as triangular representa-
tions for nonnormal operators by using the fine structure of index theory. The pur-
pose of this note is to show that points identified by the fine structure of index 

»theory are either very bad or very nice. Points in the semi-Fredholm domain which 
satisfy a "modest" hypothesis are very nice. 

Let J be a fixed Banach space. Throughout this note "operator" will mean 
a linear map of X into X which is defined on a vector space dense in X and has 
closed graph. We adopt the notation of [15], which is our basic source for the 
theory of closed operators on a Banach space. 

For the operator T let nul (T—l) be the dimension of the kernel of T—l, 
denoted N(T—l), and. let def (T—X) be the codimension of the range of T—l, 
denoted R(T—l). The operator T—X is semi-Fredholm provided R(T—X) is closed 
and either nul (T—X) or def (T—A) is finite; for such I the index of T—X, denoted 
ind (T-X), is nul (T—A) —def (T—X). The operator T - l is Fredholm provided 
R(T-l) is closed and both nul (T-X) and def (T—l) are finite. 

L e m m a 1. (Index Theorem) If the operator T—/J. is semi-Fredholm then there 
is a neighborhood of ¡J,, say G, such that the following are true: 

(i) l£G implies T—l is semi-Fredholm with nul (T— / ) ^ n u l (T-¿i), 
def (7"—A)^def (T~n) and ind ( r ~ A ) = ind (T-fi); 

(ii) nul (T—L) and def (T-X) are constant on G\{fi} (that is {z: z£G, Z^/J.}); 
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(iii) provided nul nul (T— A) is constant on G if and only ifN(T—p)a 
cn{R((.T-fi)k): k= 1 ,2 , . . . } ; 

Civ) provided def (T— / /)< def {T—)) is constant on G if and only if 
N(T'-ii)c n{/?((r-/i)1): k=\, 2, . . .}. 

P r o o f . Parts (i) and (ii) are well known; part (iii) is Problem 5.32 of [12, p. 242] 
and (iv) results from applying (iii) to (T'~ A). 

The next lemma summarizes many useful facts. The spectrum of the operator 
T is denoted a(T). The dimension of the subspace X0 in the lemma is called the 
algebraic multiplicity of A. 

L e m m a 2. Let T be an operator and let X be an isolated point of cr(T). Then 
there is a direct sum decomposition of X, say X0®Xlt such that X0 and X1 are invariant 
under T—X. The restriction of T—X to X0, denoted (T—X)\XQ, is quasinilpotent and 
(T—X)\X1 is invertible. If T—X is semi-Fredholm then the dimension of X0, denoted 
dim X0, is finite. 

P r o o f . There are many sources for the information about the decomposition 
corresponding to p.} and its complement (for example, see [12, pp. 178—181]). 
Since T—X is semi-Fredholm, it follows that (T— A)\XQ is semi-Fredholm. Since 
R ((T-X)\X0) is closed, nul' (T'-/l)|A r

0=nul (T-X)\X0 and dtf (T - >)\Xa = 
= def (T—X)\X0 by [12, Theorem 5.10, p. 233]. By [12, Theorem 5.30, p. 240] we 
know that dimA'0=°° implies nul' (T—A)|X0= This proves that dim 

§ 2. Main result 

The set of points fi such that T—n is a Fredholm operator is denoted <i>(7) 
and the set of X for which ind T—X is zero is denoted <£0(T). Provided there are 
nonnegative integers k such that N(Tk) equals N(Tk+1), T is said to have finite 
ascent and the smallest such k is the ascent of T. Provided there are nonnegative 
integers m such that R(Tm) equals R(Tm+1), T is said to have finite descent and 
the smallest such m is the descent of T. 

To say that N(T— A) is not an asymptotic eigenspace for the operator T means 
that whenever there is a sequence of distinct eigenvalues say {A„}, converging to 
A then \X„—X\=o(d(X„, A)) where 

d(X„,X) = sup{dist(x, N(T-Xj): ||x|| = 1, x € W ( r - A „ ) } . 

This concept was introduced in [6]. 

T h e o r e m 3. If T—X is a semi-Fredholm operator with X^o(T) and one of 
the conditions (1), (2), (3) below holds then X is an isolated eigenvalue with finite 
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algebraic multiplicity. Furthermore, if fi is any isolated eigenvalue with finite algebraic 
multiplicity then /J. belongs to <t>0(T) and satisfies (2) and (3). 

(1) X is an isolated point of a(T). 
(2) N(T—X) and N(T' — X') are not asymptotic eigenspaces for T and T', re-

spectively. 
(3) T—X has finite ascent and finite descent. 

P r o o f . First it is noted that (1) suffices for the conclusion about X. Since T— X 
is semi-Fredholm, Lemma 2 implies that the spectral subspace X0 corresponding 
to X is finite dimensional. Consequently the quasinilpotent (T—X) \X0 is nilpotent, 
and N((T— X)\X^) is non-trivial. Thus, X is an isolated eigenvalue with finite al-
gebraic multiplicity, and it suffices to show (1) is implied by each of the condi-
tions (2) and (3). 

Assume (2) holds and for the sake of a contradiction assume a(T) contains 
{X„} which converges to X with X„^X. Lemma 1 shows that it may be assumed 
that each T—X„ is semi-Fredholm. Either nul T—Xn or def T—Xn is positive, and 
first we consider the case nul T—A„>0. I t will be shown that since N(T—X) is 
not an asymptotic eigenspace, R(T—?,) is not closed, a contradiction. Since 
{\X„—X\/d(X„,X)} converges to zero there is a sequence of unit vectors {x„} such 
that x„£N(T-Xn) and 

dist (xn, N(T-X)) > d(X„,X) — \Xn — X\. 
It follows that 

| | (r-AK|| /dist(x„, N(T-X))=\Xn-X\/dist{x„,N(T-X))^\Xn-X\/(d(Xn,X)-\Xn-X\) 

and clearly the last fraction converges to zero. Thus, R(T—X) is not closed (see 
Theorem 5.3, p. 72, [15]) and this contradiction proves that X is an isolated point 
of a(T). If def (T—X„) where positive then one would use that N(T'—X) is not an 
asymptotic subspace to show R(T' — X) to be not closed. 

If (3) holds then (1) follows immediately f rom [13, Theorem 2.1, p. 200]. 
It only remains to establish the properties of the isolated eigenvalue fx. If Y0 

is the algebraic eigenspace associated with /< and Yx is the complementary subspace 
in X then (T-~j.i)\Yy is one-to-one and onto. Since dim Y0 is finite, it is straight-
forward to see that (T— n)\Y0 is Fredholm with index zero, and conditions (2) and 
(3) must hold. 

If X belongs to o(T)0 <P0(T) then clearly X is an eigenvalue for the operator T. 
Thus, the hypothesis of the next corollary would be stronger if one of the con-
ditions (1), (2), (3), (4) was required for each eigenvalue X. Hence, the hypothesis 
of the corollary is weaker than the hypotheses for similar results in [4], [5], [11]. 

C o r o l l a r y 4. Let T be an operator on X. If every X in a(T)C\^>0(T) satisfies 
one of the conditions of Theorem 3 or (4) below then each X is an isolated eigenvalue 
with finite algebraic multiplicity. 

3' 
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(4) N(T—X) and N(T' — X) are not subspaces of f | {^((7-A)*)} and 

f ) -/.)')}, respectively, 
k—1 

P r o o f . Let (4) hold and take e > 0 such that 0 < | A - / i | < e implies that all 
of the conclusions of Lemma 1 hold. Lemma 1 and condition (4) imply nul (J— 
<nu l (T — A). If nul (T—fi) were positive then one of the conditions (1), (2), (3), (4) 
would apply and the resulting conclusion would contradict that nul (T—^t) is a 
positive constant for 0<|A —/i|<e; hence, nul ( r—A)=0 for such ¡i. Similarly, 
def(J—A) is zero for 0<|A—/¿|<e and so T—fi is invertible, which proves that 
A is an isolated point of o(T). 

The conditions (1), (2), (3) of Theorem 3 can be weakened provided the 
hypothesis for T—X is strengthened. 

C o r o l l a r y 5. Let Tbe an operator on X. Every X in o(T)C\<P0(T) which satisfies 
one of the conditions (1'), (2'), (3') below is an isolated eigenvalue with finite algebraic 
multiplicity. 

(1') A is an isolated point of a{T). 
(2') N(T—X) is not an asymptotic eigenspace for T. 
(3') T—X has finite ascent. 

P r o o f . If A is an isolated point then Theorem 3 proves the desired conclusion. 
The argument given in the second paragraph of the proof of Theorem 3 shows 

that (2') above suffices. 
That (3') suffices follows from [14, Theorem 1.1]. 
In the final corollary the previous results are applied to get a simple alternative 

proof for a recent result on Riesz operators. An operator T is a Riesz operator 
provided the following hold for every nonzero A: 

(i) T—X has finite ascent and finite descent; 
(ii) N((T—X)k) is finite dimensional for k= 1,2, ...; 

(iii) R((T—X)k) is closed with finite codimension for k = 1,2, ...; 
(iv) nonzero points of a(T) are eigenvalues and the only possible accumula-

tion point of <r(T) is zero. 
Note that the sum of any quasinilpotent operator and a compact operator 

is a Riesz operator. For bounded T the next result was proved by CARADUS 

[9, p. 42]. 

C o r o l l a r y 6. Let T be an operator with nonempty resolvent set. If <P(T) 
contains {z: z^O} then T is a Riesz operator. 

P r o o f . The index, being locally constant, is continuous and integer valued; 
thus, it is constant on connected components, and <&0(T) contains {z: z^O}. If 
o(T)C\ {z: z^O} contains accumulation points of a(T) then the intersection of 



Essential spectrum for a Banach space operator 37 

{z: z^Oj with the boundary of a(T) contains X, an accumulation point of a(T). 
Since nul (T—z) is constant on N={z: 0< | / l—z |<e} for some e > 0 and N inter-
sects the resolvent set of T, it must be that nul (T—z)=0 for z£N. Since 
ind (T—z)=0 for z£N, X is an isolated point and the only possible accumulation 
point of a(T) is zero. Now Corollary 5 and Theorem 3 complete the proof. 

Because of the astonishing lack of examples of (unbounded) operators in the 
literature, we mention the following. If C is the complex plane -endowed with 
Lebesgue measure and Mz is multiplication by the independent variable defined 
on { / ( Z ) € L 2 ( C ) : zf(z)iL-(C)} then Mz is an operator with no X such that Mz-X 
is semi-Fredholm. So the resolvent set of an operator might be empty. 
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On the lattice of congruence varieties of Locally 
equational classes 

G. CZEDLI 

1. Introduction 

For a class J f of algebras, let Con ( J f ) denote the lattice variety generated by 
the class of congruence lattices of all members of №. A lattice variety ^ will be called 
an l-congruence variety if <%,= Con(.yT) for some locally equational class X o f al-
gebras. In particular, every congruence variety is an /-congruence variety. Our aim 
is to show that /-congruence varieties form a complete lattice, which is a join-sub-
semilattice of the lattice of all lattice varieties (while meet is not preserved). We 
also show that the minimal modular congruence varieties described by FREESE [1] 

and the minimal modular /-congruence varieties are the same. 
The notion of locally equational class has been introduced by Hu [2]. For 

the definition, let F be a subset of an algebra A of type T and let t1, t2 be n-ary 
r-terms. The identity t1 = t2 is said to be valid in F if for all (a i , a 2 , ..., a„)6F" 
we have tx(ax,a2, ..., a„) = t2(a1, a2, ...,an). Suppose J f is a class of algebras of 
type T and denote by L ( J f ) the class of all algebras A of type T having the follow-
ing property: 

for each finite subset G of A there is a finite family {Bt \ / £ / } in j f a n d there 
is for each i f j a finite subset Fi Q Bi such that every identity valid in F ; for 
all i£I is also valid in G. 

Now, L is a closure operator on classes of similar algebras. L ( J f ) is called the 
locally equational class (or, briefly, local variety) generated by JT, and X is said to 
be a local variety if L ( J f ) = JC We often write L(^ ) instead of L({^}). 

Denote by H, S, Pp D the operators of forming homomorphic images, sub-
algebras, direct products of finite families and directed unions, respectively, and 
let us recall 

Received February 15, 1978. 
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T h e o r e m 1.1. (Hu [2]) (a) Every variety is a local variety. The converse does 
not hold, e.g. all torsion groups form a local variety. 

(b) For a class tfof similar algebras L ( j f ) = D H S P ^ J f ) ; consequently, 
(c) Jf is locally equational if and only if it is closed under D, H, S, Vf. 

Our main tool is the following 

T h e o r e m 1.2. (PIXLEY [11]) There is an algorithm which, for each lattice identity 
A and pair of integers n,k^2, determines a strong Mal'cev condition (i.e., a finite 
set of equations of polynomial symbols of unspecified type) Unk=Unk(A) such 
that for an arbitrary algebra A of type x the following three conditions are equivalent: 

(i) A is satisfied throughout Con 
(ii) for each finite subset F of A and integer 2 there is an integer 

k=k(n, F, A) and a i-realization U*k of Unk such that ZJ*k is valid in F; 
(iii) for each finite subset F of A and integer 2 there is a k0=k0(n, F, A) 

such that for each k^k0 there is a x-realization U* k of Unk which is valid in F. 

We have supplemented Pixley's theorem with condition (iii) which is implicit 
in the proof in [11] of the theorem. We shall make essential use of 

P r o p o s i t i o n 1.3. In the above theorem each polynomial of U*k is idempotent 
in F. 

This follows easily from the construction of U k described in [11]. 

2. Lattice of /-congruence varieties 

A lattice variety is called a congruence variety (J6NSSON [8]) if &=Con(Jf) 
for some variety J f , and will be called an l-congruence variety if ^ = C o n ( Y O 
for some local variety "V. Let (E and (E* denote the "sets" consisting of all /-con-
gruence varieties and all /-congruence varieties of the form Con (L(A)), respectively. 
Let (£ and (£* be partially ordered by inclusion. Our main result is 

T h e o r e m 2.1. (£ is a complete lattice. The (infinitary) join of arbitrary 
l-congruence varieties in £ and their join taken in the lattice of all lattice varieties 
coincide. 

Although there exists a local variety which cannot be generated by a single 
algebra (Hu [2]), we have 

T h e o r e m 2.2. For any local variety there is an algebra A ('not necessarily 
of the same type as Y ) such that Con = Con (L (/!))• Thus & = (£*. 
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P r o o f of T h e o r e m s 2.1 a n d 2.2. First we show the following statement: 
(1) For any algebra A of type x there exists an algebra B such that Con (L(^)) = 

= Con(L(£)) and B has a one-element subalgebra. 
Let b0£A, — {X:X is a lattice identity satisfied throughout Con(L(/4))} and 
H= {F: F is a finite subset of A containing 60}. By Thm. 1.2 choose a k=k(n, F, A) 
and a T-realization U^K(F, X) of Unk(X) for all Xe<P, F£H and « s 2 such that 
U^k(F, X) is valid in F. Denote by P(n, F, X) the set of t-polynomials occuring 
in U^k(F, X) and define an algebra B as follows: B has the same carrier as A and 
the set of its operations is U {P(n, F, /.): FeH, /.6 (i.e. B is a reduct of A). 
Since U„r

 k is also valid in F \{6 0 } , Con ( L = C o n (L (B) ) follows from Thm. 
1.2. By Prop. 1.3, {¿„} is a subalgebra of B, which completes the proof of (1). 

Now we prove that 
(2) For an arbitrary set F of indices and for any algebras Ay(y(T) there is an 

algebra A' such that V Con (L (A y)) = Con (L(A ' ) ) in the lattice of all lattice 
varieties. y £ r 

We can assume / V 0 (otherwise the statement is trivial) and 

— {ay} is a one-element subalgebra of Ay for each y € T, 
— all the algebras Ay(y£F) are of the same similarity type t (otherwise the 

set of operations of Av can be supplemented with projections since for 
polynomially equivalent algebras B1 and B2 over the same carrier, 
Con (L (5X)) = Con (L (B2)) by Thm. 1.2), and 

— for each y £ f , every r-polynomial is equal to some r-operation over Ay. 
Denote by zi the set of /-ary operation symbols in T and regard T- = Tf as a set 

of /-ary operation symbols ( / = 0 , 1 , 2 , . . . ) . Now, T= | J T,. and set T '= (J z'r 

i=0 i=0 
For each y£T, Ay can be regarded as an algebra A'y of type T' if we define, for q£R', 
the operation q by q = q(y) (i?(y)€f, AY and A'Y have the same carrier). Evidently, 
Con (L(Ay)) = Con (L(Ay)) by Thm. 1.2. Let A' be a weak direct product of the 
algebras A'y defined by 

= 17 A': for all but finitely many y<El\ f ( y ) = a\. 1 ytr 7 

By Thm. 1.1 M A ' ^ Q U A ' ) , therefore 

v Con(L04)) = V Con (L(/!.;)) g V Con(L(,4')) = Con(L(^'))-
yzr yzr yzr 

In order to prove the converse inclusion by means of Thm. 1.2, suppose a lattice 
identity X is satisfied throughout each Con(L(.i4 )). Fix an arbitrary finite subset 
F of A' and n^2. For each y£r set Fy = {f(y): f£F}QAy and choose a non-
empty finite A Q T such that y£r\A implies Fy={ay). Since X holds in each 
Con(L(yiy)), by Thm 1.2 for each y€T there exist k y ^ 2 and for all k ^ k y a 
T-realization U^k(y) of Un k such that U^k(y) is valid in Fy. We can suppose ky = 2 
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if y£r\A, because F is a subalgebra consisting of a single element. Set 
k=max {ky: y£r}. Then for each y£F there exists a realization U*k(y) of Unk 

which is valid in Fy. Let U*k(y) consist of i-operations qly, q2y, ..., qs For 
i ' = l , 2 , . . . , s define qti\x' by qi(y) = qify over Ay(y£T). Then the operations 
qx,q2, yield a r'-realization of Unk which is valid in F. This completes the 
proof of (2). 

Now, let V be an arbitrary local variety and let <P consist of all lattice identities 
which are not satisfied throughout Con(~V). For each we can choose A , ^ 
such that X is not satisfied in the congruence lattice of AX. Since L ( A J Q - F and 
A is not satisfied throughout Con (L(A;)), it can be easily seen that Con (I R) = 
= V Con (L(^ ; ) ) . Hence Thm. 2.2 follows from (2). Since any complete join-

x 
semilattice having a 0-element is a complete lattice, Thm. 2.1 follows from (2) and 
Thm. 2.2. Q.E.D. 

3. Minimal modular /-congruence varieties 

Let P be the set of all prime numbers and set P0=PU {0}. For p£P0 denote 
by Qp the prime field of characteristic p and by "V the variety of all vector spaces 
over Qp. The following theorem was announced by FREESE [1]: 

T h e o r e m 3.1. For any modular but not distributive congruence variety °U there 
is a p£P0 such that Con ( f ^ ) ^ ali. Consequently, congruence varieties do not form 
a sublattice in the lattice of all lattice varieties. 

Christian Herrmann has also proved the above theorem. We shall slightly 
modify his (unpublished) proof to obtain the following 

T h e o r e m . 3.2. For any modular but not distributive l-congruence variety % 
there is a pdP0 such that Con (i^) Q 6U. Consequently, l-congruence varieties do 
not form a sublattice in the lattice of all lattice varieties. 

* 

The proof is based on the following theorem (which is presented here in a 
weakened form): 

T h e o r e m 3.3. ( H U H N [4]) For an arbitrary modular lattice M and the 
following two conditions are equivalent: 

(i) M is not n-distributive, i.e., the n-distributivity law 

*A V yt = V (*A V J'i) 
1=0 j = 0 V 1=0 ' 

ivy 
(cf. H U H N [3] and [5]) is not satisfied in M. 
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(ii) The lattice variety generated by M contains Ln+1(Qp) for some p£P0 where 
Ln+1(Qp) denotes the congruence lattice of the (n + l)-dimensional vector space 
over Qp. 

For a pair of non-negative integers m, k let us define the divisibility condition 
D(m, k) by the formula (3.x:) (m-x=k-1) where m-x and k-1 mean x + x + . . . + ; c 
(m times) and 1 + 1 + 1 + .. . + 1 (k times), respectively. We need the following 

P r o p o s i t i o n 3.4. For any lattice identity X there exist non-negative integers 
n0,m,k such that for each p£P0 the following three conditions are equivalent: 

(i) X is satisfied throughout Con(T^), 
(ii) there exists n = «0

 such that X is satisfied in Ln(Qp), 
(iii) the divisibility condition D(m,k) holds in Op. 

P r o o f . The equivalence of (i) and (iii) is a special case of [6, Thm. 3]. As for 
(ii)—(i), we can argue as follows: Let us construct the identity X from X by replacing 
the operation symbols A and V by D and o (composition of relations), respect-
ively. By congruence permutability, (i) holds iff X is satisfied by arbitrary con-
gruences of any algebra in V . Now, WILLE'S theorem [ 1 2 ] (see also PIXLEY [ 1 1 , 

Thm. 2.2]) involves implicitly that if X is satisfied by certain congruences of the 
free "^-algebra of rank n0, for some n0 depending on X, then X is satisfied by arbitrary 
congruences of any algebra in i ^ . Finally, the congruence lattice of the free i 
algebra of rank n0 is a sublattice of Ln(Qp) whence X is satisfied by arbitrary con-
gruences of the free T^-algebra of rank n0. Q.E.D. 

It follows from a more general result of NATION [ 1 0 , Thm. 2 ] that any «-distri-
butive congruence variety is distributive ( n ^ 1). Now we need the following 
generalization of this fact: 

P r o p o s i t i o n 3.5. Let «Si and % be an arbitrary l-congruence variety. If 
°ll is n-distributive, then °U is distributive. 

P r o o f . Certain arguments using Mal'cev conditions for congruence varieties 
can easily be reformulated for /-congruence varieties. PIXLEY [ 1 1 ] has pointed out 
that JONSSON'S criterion for congruence distributivity [7] remains valid for /-con-
gruence varieties. Similarly, MEDERLY'S criterion for «-distributivity [9 , Theorem 2 . 1 ] 

also remains valid. Thus the have: 

P r o p o s i t i o n 3.6. For an arbitrary algebra of type x and nS1 the following 
two conditions are equivalent: 

; (i) Con(L(/4)) is n-distributive, 
(ii) For each finite FQ A there exist and (n + 2)-ary x-polynomials 

/ 
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t0, t1 , ... , tk on A such that the identities 

f0(*0> xl> ••• > *n + l) = X0> h(.x0> xl> ••• ; *n + l) = Xn +1' 

x l i ••• 5 X n' *o) = *0 ( ' — 0> 1> ••• , 

if(x, x, = ti+1(x, x, ...,x, y,y, ..., _y) 

j+1 j'+i 

(0^i<k, O^j^n and i=j(mod n +1)) are ua/W in F. 

Now, suppose Con(L(/4)) is «-distributive for some « S i . Fix a finite FQA. 
Then, by Prop. 3.6, there are and i-polynomials t0, tx, ..., tk satisfying the 
required identities in F. Define j(—1)=0 and for i '=0, 1, ...,k, j(i) = i(mo d/? +1), 
0 D e f i n e ternary r-polynomials q0, q1, ..., q2k+2 as follows: q0(x. y, z) = x 
and for i '=0, 1, . . . , k 

?M+I(x,y,z) = ti(x,x, ...,x, y,y, . . . , y , z ) 
j ( / - i ) + i 

and 
+ y, z) = tt(x, x, ..., x, y, y, ..., y, z). 

J(0+1 

It is easy to check that the polynomials q0,qx, •••,q2k+2 satisfy the equations of 
Prop. 3.6 (ii) in F f o r (1, 2k+2) instead of («, k). Hence, by Prop. 3.6, 1-distributiv-
ity — which is the usual distributivity — holds throughout Con(L(/4)). Thus Thm. 
2.2 completes the proof. 

P r o o f of T h e o r e m 3.2. Let be an /-congruence variety as in the theorem. 
By Prop. 3.5, % is not distributive for « = 1, 2, 3 Hence, by Thm. 3.3, for each 
« > 2 we can choose p„£P0 such that Ln+1(Qp Set S= {/?„: «>2}. If the set 
{n: « > 2 and p„—p,} is infinite for some t, then {L„+1(QP)' p„=p,} generates 
Con(T^) by Prop. 3.4 (i, ii). Hence C o n S u p p o s e {« :«>2 and p„=p,} 
is finite for all / > 2 . Then it suffices to show that Con (iQ is a subvariety of the 
variety generated by {Ln+1(Qp ): «>2}. Suppose X holds in Ln+1(Qp) for each 
« > 2 . For a sufficiently large t, X holds throughout Con(Vp ) for any n^t by 
Prop 3.4 (i, ii). Hence there exists an infinite S'Q 5 \ { 0 } such that X holds in 
Con(T^) for each p£S'. Then, by Prop. 3.4, the divisibility condition D(m, k) 
associated with X holds in Qp for each p£S'. Therefore, D(m,k) holds in Q0 

(otherwise m=0 and k^O, so e a c h p £ S ' divides k). Hence, by Prop. 3.4, X holds 
throughout Con (T^O). Q.E.D. 
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R e m a r k . If JT is a class of similar algebras closed under S and P^then Con (Jf) 
is an /-congruence variety, namely Con (,#")=Con (L(Jf)) . 

The author would like to express his thanks to A. P. Huhn for the idea of 
introducing /-congruence varieties. 
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О свойстве перемешивания в смысле А. Реньи 
для числа положительных сумм 

А. А . ДЖАМИРЗАЕВ 

1. Пусть на вероятностном пространстве {О, ^ Р) заданы 

(1) Си ••• 5 <5П> ••• 

— последовательность независимых случайных величин (сл. вел.) с М£,~О, 
75с,- = 1 0'=1, 2, ...) и {гп}-последовательность положительных целочисленных 
сл. вел. Положим + ... + £„ (п= 1 ,2 , . . . ) и Рк(х)=Р{$к<х}. Через 
N¡1 обозначим число положительных сумм 5,- из последовательности 
Бк+1, 5 к + 2 , где А:=0, 1, ...,п— 1. Также положим Ип = И%. 

Известно [3], что если к последовательности сл. вел. (1) применима цент-
ральная предельная теорема, тогда 

(2) 

где 

Нт = Я(х), п— ~ I П ) 

К(х) 

О при 
2 г — агс Бт]/* при О 
Т1 

при 

х = О, 

X й 1, 

1. 

• { * } 

В данной статье доказывается, что последовательность сл. вел, 

обладает свойством перемешивания в смысле А. Реньи. Применяя этот факт, 
доказываем закон арксинуса для сумм независимых сл. вел. до случайного 
индекса. 

Прежде чем формулировать результаты, приведем следующее опреде-
ление из работы А. Р е н ь и [4]. Будем говорить, что последовательность сл. 
вел. {г]п}, заданная на {О,^7, Р}, обладает свойством перемешивания с пре-

Поступило 3. VI. 1977. 
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дельной функцией распределения (ф. p.) F{x), если для любого события 
где Р(А)> О, 
(3) lim P{tjn < х\А} = F(x) П-»во 

в каждой точке х, являющейся точкой непрерывности ф. p. F(x). 

Т е о р е м а 1. Если к последовательности (1) применима центральная пре-

дельная теорема, то последовательность сл. вел. |—j обладает свойством 

перемешивания с предельной ф. p. R{x). 

Т е о р е м а 2. Пусть к (1) применима центральная предельная теорема, 
существует последовательность положительных чисел {кп} такая, что кп-~°° 
при и—оо и 

(4) 
(NV) 

где v0 положительная сл. вел. Тогда последовательность сл. вел. |—— > обладает 
свойством перемешивания с предельной ф. p. R(x). " 

Т е о р е м а 3. Если выполнены условия теоремы 2, то при 

(5) Р < jc} - V (*) = / R ( у ) clA (у), 

где /l(x) = P{v0<x}. 
Отметим, что (5) доказано в работе [1] при условии независимости v„ 

от последовательности сл. вел. {£„}. 
2. Для доказательства теоремы 1 нам понадобится следующее вспомо-

гательное предложение. 

Л е м м а . Пусть {£„} и {t]n} — две последовательности сл. вел. такие, что 
£„-£-0 при и — оо и {?/„} обладает свойством перемешивания с предельной ф.р. 
F0(x). Тогда {£„ + >?„} обладает свойством перемешивания с предельной ф. р. 
F0{x). 

Д о к а з а т е л ь с т в о л е м м ы является очевидной модификацией дока- • 
зательства оригинальной леммы Крамера. 

3. Д о к а з а т е л ь с т в о т е о р е м ы 1. Воспользуемся одной теоремой А. 
Реньи (теорема 2 из [4]), которая утверждает что, если для любого х и при 
каждом k,k = 1, 2, ... 

тогда j ~ j обладает свойством перемешивания с предельной ф. p. R(x). 
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Очевидно, что Nn=Nk + Nk и при я—°° — — 0. Поэтому 

lim < Л = R(x). 
и—«о I n ) 

Теперь, проследив доказательство леммы, нетрудно видеть, что из соот-
ношения 

следует (6). Следовательно, нам достаточно доказать, что при каждом к и 
для любого х, имеет место (7). 

Известно (см. [2], глава V) что 

(8, P { f -= * f , , } - / « х. f < ф . = y}äFM, 

где — значение Р(А ^ при Sk=y и Р (Л ̂  — условная вероят-
ность события А относительно сл. вел. Sk. 

Предворительно докажем, что для любого у, \у\^Т, 

(9) lim Л = д(*), П-со I n j 

где Nk(y) — число положительных сумм из последовательности 

и Т= Т(Ё) выбрано так, что для любого заданного е > 0 

(10) / dFk(y)äe. 

Для удобства записи индексов, введем сл. вел. »7, = ^ + i = 1,2, ... и обоз-
начим через Мк число положительных сумм из последовательности 

Пк, Чк + Чк + i, •••,4k + Vk + 1+---+Ч*, 

при к^п; при к положим Мк= 0. Ясно, что в силу (2), имеет место 
соотношение 

(11) lim х\ = R(x). п-<*> In J 

Пусть Nn(y) — число положительных сумм из последовательности 

y + h,y + h + fl2, ...,y + th+...+q„. 

Тогда Nk(y)=Nn_k(y), так как в терминах {>/,} Nk{y) — число положительных 
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сумм из последовательности у+г\1, у+г]1 + 112, ..., у+ц1 + ••• + Чп-к- Легко 
проверить, что при фиксированном к 

йЛу)-Щ(у) Щу)-Шп-к(у) Р = И, П —ОО. 

Поэтому, чтобы показать (9), достаточно доказать, что при и—°° 

(12) / » { ^ О О ^ ^ а д . 

Отметим сначала, что имеют место следующие неравенства: 
а) если у >0, то М"^Шп(у); 
б) если у-&0 то М"ШМп(у). 

Теперь докажем (12) в отдельности для у > 0 и у ^ О . 
1) Пусть у >0 . Введем величину ц=р.(у) следующим образом: 
Р{ц = т) = Р{у + т > 0, ..., У+П1+--+Ч«-1 > °> У + Ч1+-+Ч» = 0}, 

где т = 1,2, ... . Воспользовавшись первой теоремой работы [5], легко пока-
зать, что для любого у, 0 < ^ = Г, при оо Р{ц—т}—0 и, следовательно, 
ц — собственная сл. вел., т .е . Р{ц = <*>}=0 для любого у, 0 ~ Т . Поэтому, 
для произвольной последовательности возрастающих к бесконечности чисел 
т „ имеем, что 

(13) при п -
т„ 

Теперь заметим, что в силу определения у+ч1 >0 , у+ц1+г]2>0, ..., у+ц1 + 
+ + и у+г11+}..+г]11Ш0, откуда при ц ^ п имеем, что Я„(у)= 
= (/|—1 )+№Ц+1(у), где Шк(у)—число положительных сумм в последователь-
ности 

У + гь+.-.+ч,,, у + Чг+...+г1к + г1к+1, ...,у + г11+...+г1п, 

при к ^ п и М к (у )=0 при к > п . 
При ц ^ п будем сравнивать и МЦ+1(у), т. е., соответственно число 

положительных членов последовательностей ••• > + ••• 
••• + Чп и У + Ч1+ + -,У + Ч1 + Ч2+ •••+% + %+!+• ••+»/„• Тогда, 
в силу того, что у+г1г + ...+г] ^ 0 , имеем 

Итак, если то для любого у, 0 ~=уШТ, 

(14) + 
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Если же fi >и, то (14) очевидно, так как всегда N„(y)^n. Теперь из а) и (14) 
имеем, что 
(15) + 
откуда для любого х 

{ м п л 
——— независимые. Поэтому 

Так как сл. вел. ц независит от п, то для любого Заданного ¿ > 0 и для всех 
у, можно выбрать целое Тг = Т1(5) так, чтобы Р {ц^-Т^^д. Тогда 

(17) p \ M l ± i ^ x \ =
T 2 p \ ^ ± i ^ x \ P { ^ m ) + p n j 

I п ) m = i i n ) 

где -Р„<<5. Теперь для любого фиксированного Тг нетрудно проверить, что 
при т = 1 , 2, ..., Тг 

(18) l i m p j - ^ ± í - < Л = ВД. 
I n ) 

В силу произвольности <5 > 0 из (17) и (18) следует, что для любого у, 0<у = Т, 

(19) lim Р < Л _ R ( x y 

П-ОО ( П J 

Принимая во внимание (13), из (19) имеем 
(20) lim + < Л = R{x)_ 

п—~ I n n J 

Из (11), (16) и (20) получаем, что для любого у, имеет место (12) 
и, следовательно, (9). 

2) Пусть >• ^ 0 . В этом случае величину ц=ц(у) введем следующим 
образом. Для ш = 1,2, ... положим 

Р{ц = ш} = Р{у + Пг = 0, ...,y + rll+... + r,m_1 = 0, у + щ+...+пп > 0}. 

Опять нетрудно проверить, что ß — собственная сл. вел. для каждого у, — Т^ 
=у=0. В этом случае вместо неравенства (15) будем имееть, неравенство 

м ; + 1 s Jv„00 — м;, 
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причем анологично случаю у >0 , доказывается, что 

P^Mhi и - со. 

Далее, тем же способом, что и при у ^ О получим доказательство (12) и, 
следовательно, (9) для случая j> s 0. 

Теперь снова вернемся к соотношению (8). Известно [2] (см. глава V, § 3), 
что подинтегральное выражение (которое мы обозначим через Р„(х,у)) 
в (8) можно написать в следующем виде 

(21) Рп(х, у) = ton Р < лг, < х\у ^ Sk < у + й}. 

Легко видеть, что при условии { y ^ S k < y + h } , А=>0, 

NU (у) ^ N£ N£(y + h). 
Поэтому 

NZ(y+h) Nk . . _ ,1 н P l и y + h j ̂  Pn ̂  

(22) 

где 
Рп = y + h}. 

Используя независимость Nk(y) от .. . , (22) перепишем в следующем 
виде: 

(23) 

В неравенстве (23) переходим к пределу сначала по А, потом по и и интег-
рируем по у от —Т до Т. Тогда, при помощи (21), (9) и теоремы Лебега, а 
также учитывая монотонность Nk(y) по у, имеем 

lim / Pn(x,y)dFk(y) = R(x) f = 
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Отсюда, принимая во внимание (8) и (10) получаем, что 

где \А\<2е. В силу произвольности е > 0 получаем (7). Теорема 1 доказана. 

Д о к а з а т е л ь с т в о т е о р е м ы 2 следует из теоремы 1 и одного результата 
Ш. Ч ё р г ё ([7], теорема 1). 

Д о к а з а т е л ь с т в о т е о р е м ы 3 следует из теоремы 2 и одного результата 
Й. М о д ь о р о д и ([6], теорема 1) в силу замечания 2 и следствия 1 Ш. Ч ё р г ё 
в [7]. 

Автор выражает глубокую благодарность проф. Й. М о д ь о р о д и за 
ценные советы и внимание оказанное при выполнении настоящей работы. 
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Extensions of Lomonosov's invariant subspace theorem 
C. K. F O N G , E. A. N O R D G R E N , M. R A D J A B A L I P O U R , 

H. R A D J A V I and P. R O S E N T H A L 

1. Introduction 

The famous invariant subspace theorem of V . LOMONOSOV [9] includes the 
assertion that each algebra of operators on a Banach space which commutes with 
a nonzero compact operator has a nontrivial invariant subspace. That is, if K is 
a compact operator other than 0, and if AK=KA for all A in some algebra si, 
then s4 has an invariant subspace. In [10] it was shown that this could be generalized, 
in the case where K is injective and si is uniformly closed, to the same conclusion 
under the assumption that siKaKsi (in the sense that A (is/ implies that AK=KAi 

for some Al£s/). In [12] it was shown that the hypothesis that K be injective is 
not needed. 

In the present note we prove that si uniformly closed and siKx a K2si, for 
Kl and K2 compact and nonzero, implies si has an invariant subspace (Theorem 3) 
and the commutant of si has an invariant subspace (Theorem 4). In fact, we obtain 
results slightly more general than this. The proofs presented are considerably simpler 
than those in [10] and [12]. 

Our work is merely a perturbation of LOMONOSOV'S [9] ; it relies on the 
following lemma. 

' L o m o n o s o v ' s L e m m a . ([9], [13, p. 156], [11]) If si is an algebra of bounded 
operators on a Banach space which has no nontrivial invariant subspace, and if K 
is any nonzero compact operator, then there is a vector x^O and an A in si such 
that AKx=x. 

Received July 20, 197& 
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2. Preliminary results: An operator equation and operator ranges 

We need to consider maps which may be nonlinear, but which are bounded 
in a certain sense. 

D e f i n i t i o n . A function S taking a Banach space X into a Banach space 9) 
is a bounded map if there is a constant M such that 115x11 SM||jc| | for all 
a bounded operator is a bounded map which is linear. 

Note that a nonlinear bounded map need not be continuous. 
The next lemma is implicit in [10]. We are grateful to Ivan Kupka for pro-

viding a suggestion which led to the simpler proof given below. 

L e m m a 1. Suppose that S is a bounded map taking X into itself, K is a bounded 
linear operator on 9) with spectral radius r(K), and T is a bounded linear operator 
taking X into 2). If T=KTS, if e>0 , and if ||S;c|| =§(/•(*)-He)"1 \\x\\ for all x£X 
then T= 0. 

P r o o f . Fix jc€3£. For each positive integer n, Tx=KnTS"x (just keep apply-
ing K and S on the left and the right, respectively). Thus, for all n, 

\\TX\\ == ii/niimH(*)+£)-"M-

Given any ¿ > 0 , ||.K',||1/',<r(.K')+<5 for n sufficiently large. For sufficiently large 
n, then, 

| | 7* | | =§ {r(K) + 5)" ||I'll ( r ( / 0 + e ) - n | | * | | . 

If <5<£, then as so Tx=0. 
UrCfiO + fiJJ 

Recall that a Riesz operator is an operator with spectral properties like those 
of a compact operator; i.e., a Riesz operator is a noninvertible operator whose 
nonzero spectrum consists of eigenvalues of finite multiplicity with no limit points 
other than 0. 

D e f i n i t i o n . The operator K is decomposable at 0 if for each e > 0 there is an 
invariant subspace SDi ̂  {0} of K which has an invariant complement and is such 
that the spectral radius of the restriction of K to 9ft is less than E. 

T h e o r e m 1. If T=KTS, where S is a bounded map on X, K is a bounded 
operator on 3) and T is a bounded operator taking X into "3), then 

(i) K quasinilpotent implies T=0; 
(ii) K a Riesz operator implies T has finite rank; 

(iii) K decomposable at 0 implies the range of T is not dense. 

P r o o f of (i): For £ sufficiently small and positive, H^H^fi -1!!*!!, so the 
result follows immediately from Lemma 1. 
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P r o o f of ( i i ) : Choose e sufficiently small so that ||5x|| s (2f i ) _ 1 ||x|| for all x. 
Then the Riesz functional calculus yields an idempotent P which commutes with 
K such that the spectral radius of PK is less than e. From T=KTS it follows that 
PT=PKTS=(PK)(PT)S, so Lemma 1 implies that PT= 0. Hence T=(l-P)T, 
and the range of T is contained in the range of the finite-rank operator I—P. 

P r o o f of ( i i i ) : Begin as in (ii) above; get P by the assumption of decom-
posability at 0. Then T = ( l —P) T, and the range of T is contained in the range 
of l-P and thus is not dense. 

HALMOS and DOUGLAS showed (see [4]) that if A and B are operators on 
Hilbert space, and if the range of A is contained in the range of B, then A=BS 
for some operator S. This result is false, in general, on Banach spaces (cf. [5]), 
unless B is injective. We note that the result is true in general if we do not require 
S to be linear. 

L e m m a 2. Let A be a bounded operator taking X into 9) and B a bounded 
operator taking 3 into 9). If the range of A is contained in the range of B, then there 
is a bounded mapping S from X into 3 such that A=BS. 

Proof . Let ker B= {z£3: Bz=0}. Define B: (3/ker by 

5 ( z + ke r5 ) = Bz; 

then B is an injective bounded operator. Now B~1A: 9)->-3/ker B is trivially seen 
to be a closed operator, so the closed graph theorem implies that B~1A=§ for 
some bounded operator X—3/ker B. Then A=B§. Define the map 5: 3E—3 
by letting, for each x£X, Sx be any element in Sx of norm at most ||&C|| + ||JC||; 
the definition of the norm on a quotient space implies that such an Sx exists. Then 
||Sx||3i(||£|| + l ) M . Also A = BS, for if x£X, then Ax = B§x = Bz for any 
z^Sx. Since Sx is such a z, Ax = BSx, and the lemma is proven. 

D e f i n i t i o n . A linear manifold 9K in a Banach space X is an operator range 
if there is a Banach space 'J) and a bounded operator T: — X such that 7(9)) = 

A comprehensive treatment of operator ranges in Hilbert space is given in [6]. 
GRABINER [7] contains some results about operator ranges in Banach spaces, in-
cluding part (i) of the next theorem (with a proof different from ours). 

T h e o r e m 2. If 9JI is an operator range in 9), and if K is a bounded operator 
on 9) such that STCc/^Dl, then 

(i) ([7]) K quasinilpotent implies .351 ={0}; 
(ii) K a Riesz operator implies 9JI is finite-dimensional; 

(iii) K decomposable at 0 implies 9Jt is not dense. 
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P r o o f . Suppose that T: 5) and r(3E)=S)l. Then the range of T is con-
tained in the range of KT, so Lemma 2 implies that T=KTS for some bounded 
map S. Now parts (i), (ii) and (iii) of this theorem follow from the corresponding 
parts of Theorem 1. 

3. Invariant subspaces for certain operator algebras 

If si is an algebra of operators contained in the commutant of a compact 
operator K, then the closure of si in any of the standard operator topologies is 
also contained in the commutant of K. Thus no closure assumption on such an 
si will be helpful in obtaining invariant subspaces. In the case where si merely 
intertwines a compact operator some closure assumption is essential (cf. remark 
(iii), p. 118 of [10]). For certain applications discussed below, however, we need 
to include cases where s i is not closed even in the norm topology. It turns out 
to be sufficient that si be an operator range, in the sense that there is a bounded 
linear operator taking some Banach space into the space of operators such that 
the range of T is si. (If si is uniformly closed it is an operator range; it is the 
range of the injection of si into the space of operators.) 

T h e o r e m 3. If si is an algebra of operators and srf is an operator range, and 
if there exist a nonzero compact operator and an operator K2 which is decomposable 
at 0 such that siK1cK2si, then si has a nontrivial invariant subspace. 

P r o o f . If si had no invariant subspaces, then Lomonosov's Lemma would 
imply that A0K1x=x for some A0£si and some x^O. Now si= for some 
Banach space 9). Define Ty=(Sy){x) for each Then the range of X is six= 
= {Ax: A£s/j, so six is an operator range. If six={0} then the one-dimensional 
space spanned by x is invariant under si. If stfx^ {0} then six is an operator range 
invariant under si. For A£si, 

Ax = AA0Kxx = K2A2x for some A2£si. 
Hence six<zK2six. Thus part (iii) of Theorem 2 implies six is not dense, so its 
closure is a proper invariant subspace for si. 

R e m a r k . If K2 is compact then the linear manifold six occurring in the proof 
of Theorem 3 is finite-dimensional. This does not prove, however, the obviously 
false assertion that the hypotheses of Theorem 3 and the additional requirement 
that K2 be compact yield a finite-dimensional invariant subspace for stf. We get 
the finite-dimensional subspace six via Lomonosov's Lemma, on the assumption 
that we have no invariant subspaces at all. 

On the other hand, if si is any algebra of operators with a finite-dimensional 
invariant subspace 9Jt, then 9JI could arise from Theorem 3. For let s i a be the set 
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of all operators leaving 90t invariant and let P denote an idempotent with range 
50i. Then rf/cW,, so Theorem 3 applies to si0 (with K1=K2=P). An in-
variant subspace for si0 is also invariant under its subalgebra si. In particular, 
the answer to question 1 of [12] is "no" ; si0 is a counter-example. 

T h e o r e m 4. If si is an algebra of operators which is an operator range, if there 
exist compact operators Kt and K2 different from 0 such that siK^K2si, and if 

contains an operator which is not a multiple of the identity, then the commutant 
of si has a nontrivial invariant subspace. 

Proof . If the commutant of si had no invariant subspace then Lomonosov's 
Lemma would imply that there exists a B commuting with si and an x^O such 
that BK1x=x. For A in si, then, 

Ax = ABKxx = BAKxx = (BK2)AlX 

for some A1^si. Thus the linear manifold six satisfies A c ( B K 2 ) {six). Part (ii) 
of Theorem 2 above implies that six is finite-dimensional, (since BK2 is compact). 
Choose an A0 in si which is not a multiple of the identity. Since A0 has the finite-
dimensional invariant subspace six, A0 has a nontrivial eigenspace (if six={0}, 
then A0 has nullspace). Since an eigenspace of A0 is invariant under all operators 
commuting with A0, the commutant of si has a nontrivial invariant subspace. 

C o r o l l a r y 1. If A is an operator for which there exist a bounded open set D 
containing a(A), an analytic function <p taking D into D and a nonzero compact 
operator K such that AK=K<p(A), then A has a nontrivial hyperinvariant subspace 
(unless A is a multiple of the identity). 

: P roo f . Let H°°(D) denote the Banach algebra of all bounded analytic func-
tions on D, with supremum norm, and let 

si={f(A):f£H°°(D)}. 

Choose a fixed Cauchy domain S contained in D and containing a (A). Then for 
f£H°°(D) 

n ^ 1 1 = ¿ 1 1 f / ( * ) ( * - ¿ r 1 ¿4 -
ZK as 

S ^ - - ( l eng th of &>)• 11/11- • sup | | ( z - 4 ) - 1 | | . 
¿n zeds 

Hence there is a constant M such that | | / (^) | | = s M | | / | L for /€H°°(Z>), and it 
follows that si is the range of the operator f-*f(A) (that si is an algebra follows 
from the fact that this map is an algebraic homomorphism). 

Also, if f£H°°(D) then f(A)K=Kf(cp(A)). One way to verify this is to note 

that, regarded as operators on £ © £ , commutes with ?., .), and hence 
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with / ( ( i <?(%)) = f(y(A))\' Now f((P(A))=(f0(P)(A) is a8ain in 

so Theorem 4 applies. 

C o r o l l a r y 2. If A is power bounded (i.e., there exists a constant M such that 
\\A"\\ ^M for all positive integers n), and if there exist an integer k and a nonzero 
compact operator K such that AK=KAk, then A has a nontrivial hyperinvariant 
subspace (or is a multiple of the identity). 

P r o o f . Let s/=\ 2 A": ^ \an\< ool. The fact that A is power bounded 
ln = 0 n — 0 J 

implies that the map of {a„} into 2 anA" is a continuous map of I1 into the 
n = o 

bounded operators, so si is an operator range. Note that si is an algebra, since 
I1 is an algebra under convolution. Now AK—KAk yields A"K=KAnk for all 
n, so | J ^ and Theorem 4 applies. 

N o t e . Corollary 2 follows from Corollary 1 only under the additional assump-
tion that o(A)a{z: |z |< 1}, in which case the function tp (z)=zk will serve. 

E x a m p l e s . The hypotheses of Corollary 2 hold under various circumstances. 
(i) Let {e„}~=0 be an orthonormal basis for a Hilbert space H and let {&„} 

be a sequence converging to 0. If A is a complex number of modulus 1 and A is 
defined by Ae„ = l2"e„, then AK=KA2 where K is the compact weighted shift 
defined by Ke„=knen+1. Then the unitary operator A satisfies the hypotheses of 
Corollary 2. 

(ii) Let K0 be a compact operator and B and C be power bounded operators 
such that BK0=K0Ci. If A is the operator B(BC and K is the operator on X©X 
defined by K(xx © x2)=K0x2(B 0, then AK—KA2, and A satisfies the hypotheses 
of Corollary 2. 

A natural question is whether Theorems 3 and 4 hold if the intertwining takes 
place on the other side; i.e., if Kxsi<zsiK2. Upon reading a preliminary version 
of this manuscript L. G. Brown discovered the following two theorems. We are 
grateful to him for permission to include them here. These results were also 
obtained independently by S. GRABINER [14]. 

T h e o r e m 5. If si is an algebra of operators and si is an operator range, 
and if there exist a nonzero compact operator Kx and an operator K2 that is decom-
posable at. 0 such that KxsicsiK2, then si has a nontrivial invariant subspace. 

P r o o f . If we suppose si has no invariant subspace, then, as in the prooif 
of Theorem 3, Lomonosov's Lemma produces an A0 in si with 1 €o(K1A0). 
Hence 1 €ff(A0K1), and taking Banach space adjoints yields 1 € a(A^Kx). Note 
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that si* = {A*: A £s/} is also an operator range, K* is compact, K2 is decom-
posible at 0 and si*K*cK2si*. It follows as in the proof of Theorem 3, that 
there is a nonzero vector x* in X* such that si* x* is not dense in X*. In fact 
an examination of the proofs of Theorems 1 and 2 reveals that there is a non-
trivial projection P on X such that si*x* is included in the range of 1 — P*. 
Since that range is weak* closed as well as nontrivial, there is a nonzero vector 
x in X that annihilates si* x*. Hence either six = {0}, in which case x spans a 
one dimensional invariant subspace of si, or else the closure of six is a proper 
invariant subspace of si. The contradiction of the original supposition establishes 
the result. 

T h e o r e m 6. If si is an algebra of operators wich is an operator range, if 
there exist compact operators Kx and K2 different from 0 such that KxsiasiK2, 
and if si contains an operator that is not a multiple of the identity, then the 
commutant of si has a nontrivial invariant subspace. 

P r o o f . Suppose the commutant of si has no invariant subspace. Then 
Lomonosov's Lemma implies the existence of a B commuting with si such that 
1 6f f (KiB) , and hence 1 €<r(B*Kf). As in the proof of Theorem 4, there exists a 
nonzero vector x* in X* such that si* x* is finite dimensional. 

Choose an A0 in si that is not a multiple of the identity. Either si*x* = {0}, 
in wich case has a nontrivial null space, or else si*x* is a finite dimensional 
invariant subspace of AJ. In either event A* has an eigenvector. If A is the 
corresponding eigenvalue, then it follovs that the closure of the range of A0 — A 
is a nontrivial subspace of X wich is invariant under the commutant of si. 

It might be worth noting that the compactness assumption on Kx in Theorem 3 
can be replaced by the hypothesis that has nonzero eigenvalues. 

T h e o r e m 1. If si is an algebra of operators which is an operator range, if 
siKyc:K2si where K2 is decomposable at 0 and has a nonzero eigenvalue, then 
si has a nontrivial invariant subspace. 

P r o o f . If A1x0=Ax0 with xo^0 and A^O, then, for any A£si, 
Ax0 = A~1AK1x0 — ?>~1K1A1x0 for some Ax£si. 

Thus six0 is contained in Kx{six0), so part (iii) of Theorem 3 implies six0 is 
not dense. 

R e m a r k s . It is shown in [15] that there is an operator that does not satisfy 
the hypothesis of Lomonosov's invariant subspace theorem. In light of Theorem 4 
above we can ask: if B is an operator on a Hilbert space must B commute with 
some uniformly closed algebra si (containing operators other than scalars) which 
intertwines two nonzero compact operators? 
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In [10] the following question was raised. If si is a uniformly closed algebra 
of operators such that sfK<^KB(£) must si have a nontrivial invariant subspace? 
If si is not required to be closed but is merely required to be an operator range 
then the answer is no, as is seen by letting si=KB(X) for an injective compact 
operator K with dense range. 

Some other variants of Lomonosov's Theorem can be found in [3], [8] and [11]. 
We are grateful to L. Fialkow for providing us with a copy of [1], where it is shown 
that AK=kKA for K compact and X a complex number implies A has a hyper-
invariant subspace. In the case where |A | s l this follows from Corollary 1 above; 
when |1| > 1 it follows from the analogous corollary to Theorem 6. 
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Kernel systems of directed graphs 
A N D R Á S F R A N K 

0. In graph theory there is a number of min—max theorems of quite similar 
type such that one is not a direct consequence of the other. For instance, a theorem 
of J. Edmonds states that in a directed graph there exist k edge disjoint spanning 
arborescences rooted at a fixed vertex r (see the exact definitions and formulation 
below) if and only if the indegree of every subset of vertices, not containing r, is 
at least k. A version of Menger's theorem resembles Edmonds' one: in a directed 
graph there exist k edge disjoint paths from r to another fixed vertex s if and only 
if the indegree of every subset of vertices, containing s but not r, is at least k. 

It is a natural question whether there exists a common generalization of these 
theorems of similar type. The purpose of this paper is to present a tool, by means 
of which such a unification can be obtained on the one hand, and new min—max 
theorems can be concluded on the other hand. This tool is the notion of a kernel 
system, which is, roughly, a family of subsets of vertices of a directed graph which 
is closed under intersection. 

Perhaps the most interesting consequences of min—max theorems concerning 
kernel systems are the following: 

a) A conjecture of J. Edmonds and R. Giles concerning directed cuts is solved 
for graphs possessing an arborescence. 

b) A min—max formula is given for the maximum number of edges which 
can be covered by K spanning arborescences rooted at a fixed vertex. 

Some further corollaries of our results will be published in another paper [7] 
where, among others, a min—max formula is given for the maximum number 
of edges of a digraph which can be covered by k branchings. 

At this point we refer to a recent, fundamental article of EDMONDS and GILES [2] 
concerning min—max relations for submodular functions. 

Some of our notions are similar to those of Edmonds and Giles and in the 
proof of Theorem 3 a relevant idea of their work will be used. However our results 

Received October 18, 1977. 
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seem to be independent of the main theorem of [2]. The exact relation will be 
explained in the last section. 

Let G=(V, E) be a finite directed graph with vertex set V and edge set E. 
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex, 
called the root of G. An arborescence rooted at r (or briefly r-arborescence) is a 
directed spanning tree such that every vertex can be reached by a directed path 
from r (see [1]). An r-s-path is a directed path from r to the vertex s. 

We say that a directed edge e enters a subset X of vertices if the head of e is 
in X but the tail is not. We say that a subset E' of edges enters a subset X of V 
if at least one element of E' enters X. The indegree e(X) and the outdegree d(X) 
of a subset X of V is the number of edges entering X or respectively. It is 
well known that the function g(A') is submodular, i.e. Q(X) + g (7) = i> (ZU 7) + 
+ f ( J f | y ) for every pair X, Y of subsets of vertices. 

For an arbitrary set X, X'cX means that X' is a family of not necessarily 
distinct elements of. X. \X\ denotes the cardinality of X. We shall use the notation 
K \ r instead of F \ { r } . Two subsets Z a n d Y of K \ r are called crossing if ATI 

y \ A V 0 . Otherwise X and Y are non-crossing. A family of subsets of 
V\r is called laminar if its members are pairwise non-crossing. (These notions 
occur slightly more generally in previous papers [2, 9].) A directed cut of G is a 
nonempty set of edges entering a vertex set X provided ¿ ( K \ A ' ) = 0 . 

1. D e f i n i t i o n . A family Jl of distinct subsets of vertices of F \ r is called 
a kernel system with respect to G if 

1) e ( M ) > 0 for every 
2) if M, N£Jl and then MON, MDN^Jl. The members of 

Jl are called kernels. 

Examples . 1. Mx = {M: M Q The second axiom is trivially satisfied, 
the first one holds if G has an /--arborescence. 

2. Let s be another fixed vertex of G and Jl2 = {M: MQ V\r,s£M}. The 
first axiom holds if there exists an r—s-path. 

3. Jl3 = {M: MQ V\r, <5(M)=0}. If G is connected (in the undirected sense) 
then the first axiom is fulfilled. The proof of the second one, as an easy exercise, 
is left to the reader. 

4. If JL is an arbitrary kernel system with respect to G then the kernels of 
minimum indegree form another kernel system 

Jl' = {M: MiM, Q(M) = min ^(Z)}. 

The proof of the second axiom is as follows: Let k— min Q{X) and M, N£J('. 
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Then 
k + k = Q(M) + Q(N) s + ^ k + k 

whence Q(MUN) = e(Mr\N)=k, therefore MUN, MilNeJt'. 
5. Let Jl be a kernel system and F be a subset of edges, then 

Jlr = {M: M£ Jt, F does not enter M} 

is again a kernel system. The axioms trivially hold. 

2. Let A: be a positive integer. 

D e f i n i t i o n . A subset E' of edges is called k-entering with respect to the kernel 
system Ji, if in the subgraph formed by E', the indegree of every kernel is at least k. 

T h e o r e m 1. A subset E' of edges is k-entering if and only if E' can be parti-
tioned into k l-entering subsets. 

P r o o f . The necessity is trivial. For the sufficiency it can be assumed that 
E'=E. We are going to prove that E can be partitioned into a l-entering subset 
Ex and a (k — l)-entering subset E2. This assertion proves our theorem. 

The subset Ex will be constructed sequentially and once an edge has been 
inserted into Ex it is never changed. In an intermediate stage of the algorithm a 
kernel M is called dangerous with respect to the current Ex if 

0G-Ei(M) = k—l. 

Starting from the empty set £ \ , in every step we consider a maximal kernel 
M such that Ex does not enter M. Insert an edge e into Ex which enters M but 
does not enter any dangerous kernel, and then we say that e was inserted into Ex 

because of M. The process stops when Ex is l-entering. 
To verify this algorithm we have to justify that the required edge e always 

exists. 

C l a i m 1. If fdEt then the head of f is not in M. 

P r o o f . Suppose the contrary then the tail of / is also in M, by the algorithm. 
Let Ef denote the set of edges which were inserted into Ex before / , and suppose 
that / was inserted into Ex because of Mf. Now MfC\ M V 0 therefore Mff)M 
is a kernel. Ef does not enter MfC\ M and Mf{J My^Mf which contradict the 
maximality of Mf. • 

C l a i m 2. If MD is dangerous with respect to Ex then MD%.M. 

P r o o f . Since MD is dangerous, there exists an edge ex£Ex entering MD. The 
head ..of this edge is in MD biit not in M by Claim 1. • 

5 
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Cla im 3. If M and N are dangerous kernels and MC\N is nonempty, then M ON 
is dangerous as well. 

P r o o f . = + 
^k-l+k-l whence Qc_Ei(MC\N)=k-l. • 

If every dangerous kernel is disjoint from M then an arbitrary edge entering 
M can be inserted into ^ and we are done since the new set E\E1 remains (k — 1)-
entering. Otherwise let MD be a dangerous kernel such that MDC\M^O and 
MD\M is as small as possible. 

By Claim 2, MD\M There exists an edge e with tail in MD\M and head 
in MD fl M since otherwise 

fc-1 = Qg-Ei(Md) S Qg_Ei(MDC\M) s k - 1 

whence MDC\M is a dangerous kernel, contradicting Claim 2. 
We assert that the edge e enters no dangerous set. If e entered a dangerous 

set Me then M' = Me fl MD would also be dangerous by Claim 3. The existence 
of such an M' is in contradiction with the minimum property of MD. • 

C o r o l l a r y 1. (J. EDMONDS [4]) A digraph G has k edge-disjoint r-arborescences 
if and only if the indegree of every subset of V\r is at least k. 

P r o o f . Apply Theorem 1 to the first example. The corollary follows from 
the simple fact that a 1-entering edge set surely contains an r-arborescence. • 

C o r o l l a r y 2. (Directed edge version of Menger's theorem [1]) In a digraph 
there exist k edge disjoint r-s-paths if and only if the indegree of every subset of 
V\r containing s is at least k. 

P r o o f . Apply Theorem 1 for the second example. The corollary follows from 
the simple fact that a 1-entering edge set surely contains an r—s-path. • 

The next consequence settles in the affirmative a conjecture of J. EDMONDS 

and R. GILES [2] in a special case. 

C o n j e c t u r e . An edge set E' is a ^-covering of directed cuts of a directed 
graph if and only if E' can be partitioned into k 1-coverings of directed cuts. (An 
edge set E' is called a k-covering of directed cuts if every directed cut contains at 
least k edges of £"). 

C o r o l l a r y 3. The conjecture of Edmonds—Giles is true for graphs possessing 
an arborescence. 

P r o o f . Applying Theorem 1 to the third example we obtain that a ^-covering 
(that is a ^-entering edge set) of those directed cuts which are directed away from 
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r can be partitioned into k 1-coverings. However when the graph has an r-arbores-
cence then all of the directed cuts are of this type. 

R e m a r k . The proof of Theorem 1 can be considered as a generalization of 
LovÁsz' proof in [8] of the afore mentioned theorem of Edmonds. It is, in fact, 
a polynomial bounded algorithm provided that some simple operations can be 
carried out in polynomial time on the kernels. These operations are as follows: 

a) Find a maximal kernel M such that E' does not enter M for an arbitrary 
edge set E'. 

b) Decide whether E" is ^-entering for arbitrary edge set E". 
The above three corollaries are of this type. In Corollary 1 we obtain LovÁsz' 

algorithm. In Corollary 2 our proof does not mean a new algorithm for Menger's 
theorem since the only way at hand to check b) is to use the classical augmenting 
path method. 

In Corollary 3 operation a) is simple because the required maximal kernel 
M consists of those vertices which cannot be reached by a directed path from r 
in the graph arising from G after contracting the edges of E'. Operation b) can be 
carried out as follows: Let G+ denote the graph which arises from G after in-
serting k — 1 reversed copies of all the edges of E". It can easily be checked that 
E" is ^-entering if and only if there exist k edge disjoint r—s-paths in G+ for every 
vertex s£V\r. This latter problem is polynomially solvable. 

3. Let c be a nonnegative integer function defined on the edge set £ of G. 
c(e) is called the weight of e. 

D e f i n i t i o n . A family Jt' of not necessarily distinct kernels of Jt (i.e. Jt'dJt) 
is called c-edge-independent if each edge e enters at most c(e) members of Jt'. 

T h e o r e m 2. 

(1) max \Jt'\ = min 2 c ( e ) 
eiE' 

where the maximum is taken over all the c-edge-independent subfamilies Jt' of Jt 
while the minimum is taken over all the \-entering edge sets E'. 
(2) The maximum can be realized by a laminar Jt' too. 

P r o o f , maxsmin . A simple enumeration shows that \Jt' | ^ 2! c(e) f ° r 

any c-edge-independent Jt' and for any 1-intering E'. e€£ 

max=min. We are going to construct a c-edge-independent family Jt' and 
a 1-entering edge set E' such that \Jt'\= 2 

e€E' 

The algorithm consists of two parts constructing Jt' and E', respectively. It 
has the interesting feature that both of its parts are of the greedy type, i.e. both 

5« 
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Jt' and E' will be produced sequentially and once a kernel or edge has been in-
serted into Jt' or £", respectively, it is never changed. 

First part: Construction of Jt'. 
First let Jt' be empty. In the general step we decide whether there exists a 

kernel M which can be inserted into the current Jt' without destroying its 
c-edge-independence. If the answer is "no" then the construction of Jt' terminates. 

Otherwise let M be a minimal kernel which can be inserted into Jt' and let 
us insert into Jt' as many copies of M as possible without destroying the c-edge-
independence. 

The family Jt' produced by the first part is obviously c-edge-independent. 
In order to describe the second part we need some notations. Let the different 

kernels of Jt' be Mly M2, ..., Mk (i.e. the first part terminated at the (fc + l)-th step), 
and suppose that these kernels have been inserted into Jt' in this order. We call 
an edge e saturated mth respect to Jt' (or briefly saturated) if it enters exactly c(e) 
members of Jt'. Let Ei (¿=1,2, ...,&) denote the set of those saturated edges 
which have been saturated in the /th step of the first part. It is easy to see that 
(3a) E^Q for i = l , 2 , ..., k\ 
(3b) Ei fl = 0 for l^i^jsk; 
(3c) If e d Ei then e enters Af,-; 
(3d) If edEt, i<j then e does not enter M j . 

Taking into consideration the construction of Jt', the following claim can be 
checked easily. 

C l a i m 1. If MjZJt', Mc.Mn and M£ Jt then there exists a saturated edge 
e which enters M but not Mt, and then e is in Eh where h «= i. n 

In order to verify (2) we show that Jt' is laminar. For, otherwise, let Mi and 
M j be two crossing members of Jt' (i<j). Applying Claim 1 with the choice M' 
and M = Mi Pi Mj we obtain that there exists an edge e in Eh (for some h-= i ) 
which enters M but not M,. Then e enters Mj, a contradiction to (3d). 

Second part: Construction of E'. 
First let E' be empty. In the general step we decide whether E' is 1-entering. 

If the answer is "yes" then the second part terminates. 
Otherwise, let M be a maximal kernel such that the current E' does not enter 

M. Let i be the minimum index for which Ei enters M. Let us insert an edge e of 
£, which enters M into E'. (We say that e has been inserted because of M.) 

The set E' produced by the second part is obviously 1-entering. 
To verify (1) and the algorithm we have to show that there exists a unique 

edge of E' entering M ; for each member Mt of Jt'. This implies \Jt'\ = 21 c(e)> 
e££' 

taking into consideration the fact that the edges of E' are saturated. 
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Cla im 2. If an edge e has been inserted into E' because of N, and e enters a 
member Mi of Jl\ then N^Mr 

Proof . Since e enters Af;, using (3d) we obtain that e is in E j for some j ^ i . 
If N^Mj then with the choice M{ and M=NC\Mi Claim 1 implies that there 
exists an edge e' in Eh (for some /J<I) which enters MjDN but not Mt. Then 
e' enters N which is in contradiction with the minimality of j, since h «=:j. • 

Now suppose, indirectly, that two edges , e2 of E' enter a kernel Mt of Jt'. 
Suppose that ex and e2 have been inserted into E' because of and N2, respectively, 
and e2 was inserted later than e±. By Claim 2, , JV2 3 Mi and ex does not enter 
N2. Hence TVj U jV2 ̂ N x which contradicts the maximality of Nx. • 

R e m a r k . The proof of Theorem 2 can be considered as a generalization of 
that of F u l k e r s o n [ 5 ] given for maximum packing of rooted /--cuts. Our algorithm 
is polynomial bounded provided that the following simple operations can be carried 
out in polynomial time. 

a) Find a minimal kernel M such that E' does not enter M for an arbitrarily 
given edge set E'. 

b) Decide whether E" is 1-entering for a given edge set £" , and if it does 
then find a maximal kernel M such that E" does not enter M. 
All the following corollaries and problems are of such type. 

Apply Theorem 2 to the first example: 

C o r o l l a r y 4 . ( E d m o n d s [3], F u l k e r s o n [5]) In an edge-weighted digraph 
the minimum weight of an r-arborescence is equal to the maximum number of c-edge-
independent vertex sets of V\r. • 

(A family of c-edge-independent vertex sets corresponds to a packing of r-
directed cuts in [5]). 

Apply Theorem 2 for the second example: 

C o r o l l a r y 5. ( F o r d — F u l k e r s o n [6]) In an edge-weighted digraph the minimum 
weight of an r-s-path is equal to the maximum number of c-edge-independent vertex 
sets containing s but not r. • 

The following corollaries seem to be new. 

P r o b l e m 1. Suppose that the maximum number of edge disjoint r-arbore;-
cences of a (weakly) connected digraph G=(V, E) is k (k^O). We want to 
increase this maximum by using new edges. Let the set Ex of possible new edges 
be such that G+=(V, EUE-^ has k + l arborescences. Assign to each edge c of 
El a nonnegative integer weight c(e). What is the minimum sum of weights cf the 
required new edges? 
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S o l u t i o n . Let us define a kernel system Jl with respect to G1=(V,£1) as 
follows: 

Jl = {M: gG(M) = k, M Q K \ r } . 

(Observe that the kernel system Jl with respect to Gx is defined by means of G.) 
Due to the above theorem of Edmonds (Corollary 1) we have to assure that the 
indegree of all the subsets of V\r is at least k +1, that is, we have to find a mini-
mum weight 1-entering subset of kernel system Jt. Applying Theorem 2 for this 
Jl we get: 

C o r o l l a r y 6. The minimum value of the weight sum of those edges of Ex whose 
insertion into G increases the maximum number of edge disjoint r-arborescences by 
one, is equal to the maximum number of not necessarily distinct subsets of V\r such 
that (i) the indegree of the set in G is minimum (=k) and (ii) an arbitrary edge e of 
Ex enters at most c(e) subsets of them. • 

R e m a r k . A possible generalization arises naturally. Let G=(V, E) be strongly 
Ar-edge-connected and Ex be a set of new edges. Find a minimum subset E2 of Et 

such that G + = ( F , E(JE2) is strongly (/c+l)-edge-connected. However it is easy 
to check that the Hamilton circuit problem is contained in this one in the case 
k=0. Therefore this problem is NP-hard and this direction is hopeless. 

Now a simple application of Corollary 6 will be presented. 

P r o b l e m 2. Let us suppose that G=(V, E) has an r-arborescence. Let 
F=(E, A) be the hypergraph of all r-arborescence of G. Here the vertex set E of 
F is the edge set of G and the edge set of F is the family of r-arborescences of G. 
Determine the rank-function r of F. We recall the definition of the rank-function 
r of an arbitrary hypergraph: 

(4) r(£") = max | a f | E'\ (£' Q E) 
a€ A 

(i.e. r(E') shows at most how many edges of E' can occur in an r-arborescence). 
Since every arborescence consists of \V\ — 1 edges, our problem is equivalent to 
the following: 

Let us complete E' by a minimum number edges of E\E' so that the 
completed E' contains an r-arborescence. Applying Corollary 6 for the case when 
the original graph is G'={V, £"), E!=E\E', c = 1 and k=0, we obtain 

C o r o l l a r y 7. r(£')— min (\V\ — \—t) where the minimum is taken over 
V1,Va,...,Vt \ 

all those laminar families of subsets Vx, Vt, ..., Vt of V\r for which E' does not 
enter any Vt and an arbitrary edge of E\E' enters at most one Vr 
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Hence one can easily obtain 

C o r o l l a r y 8. A subset E' of edges of G is a subset of an r-arborescence if and 
only if \V\ — \^\E'\+t for an arbitrary l-edge-independent laminar family of subsets 
Vlt V2, ..., Vt of V\r such that E' enters no Vt. 

R e m a r k s 1. One can immediately prove a slightly sharper version of this 
corollary when in the necessary and sufficient condition the cardinalities of all 
but one Vf are one. 

2. Some further special cases of the above corollaries are interesting for their 
own sake. Let us apply Corollary 6 in the case if k=0 and Ex consists of the 
reversed copies of all edges of E. We obtain a theorem of Lucchesi—Younger type 
(but not the Lucchesi—Younger theorem itself), which simply follows from the 
theorem of EDMONDS—GILES [2] , too (although our proof provides a polynomial 
algorithm as well). The reader may find it interesting to specialize for the case 
fcs 1, E1=E and c = 1. In this way a min—max theorem can be obtained for the 
minimum number of edges of G whose duplication increases the maximum number 
of edge disjoint r-arborescences. 

4. In this section a generalization of Theorem 2 will be given. Unlike the proof 
of Theorem 2, this does not provide a polynomial algorithm. This is the reason 
why Theorem 2 was discussed in the previous paragraph. 

Let Jt be a kernel system with respect to G=(K, E) and let f be a nonnegative 
integer function defined on the kernels. 

D e f i n i t i o n . The function f is called weakly supermodular on Jt if M, NdJt, 
f ( M ) > 0 , f(YV)>0, M P i N ^ Q imply that 

If already M,N£Jt and M f l i W Q imply this inequality then f is called super-
modular. 

D e f i n i t i o n . A family E' of not-necessarily distinct edges of E (i.e. E'CE) 
is called f-entering, if in the subgraph G'=(V, E') the indegree of every kernel 
M is at least f (M). 

Let c be a nonnegative integer function defined on the edges of G. 

T h e o r e m 3. Let I be a weakly supermodular function on Jt. Then 

(5) f ( M ) + i ( N ) f ( M U N)+f(M f l N). 

(6) 

where Jt' is c-edge-independent, E' is {-entering. 
(7) The maximum can be realized by a laminar Jt'. 
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P r o o f . First we will prove (7) which will be used in the proof of (6), too. We 
note that this technique is due to N. Robertson for f = 1 and to Edmonds and 
Giles for an arbitrary supermodular function f. It can be assumed that the optimum 
Ji' consists of kernels with positive weights only. If M, N are crossing members 
of Jt' then replace them by MUN and MP\N i.e. Jt"=Jt'\{M, N} U 
U{A/UAT,MfW}. It is easy to check that Ji" is c-edge-independent again and, 
since f is weakly supermodular, 

2 f(M) s 2 KM). 
MZM' MiM' 

Hence Jt" is another optimum c-edge-independent family. Apply this method as 
long as there exist crossing members in the optimum family. The process terminates 
since 2 increases at each step. 

MiM' 
We need two simple claims. 

C l a i m 1. Let e be an edge of G and let f be a weakly supermodular function 
on Jt. Let 

f(M), if e does not enter M 
ie(M) = 0, if f (M) = 0 

. f(M) — 1, otherwise, 
then fe is weakly supermodular. 

The proof of the claim is trivial. 
We note that the analogous property for supermodular functions is not 

necessarily true. 

C l a i m 2. Let c1(e)=k -c{e) for a natural number k. If J/"c.Ji is a laminar 
c^-edge-independent family, then it can be partitioned into k c-edge-independent 
families. 

P r o o f . The members of Jt" will be colored one by one with colors 0, 1, ... k — 1. 
In the general step let M be a maximal non-colored member of Jt". If there exist 
no previously colored member M' of Ji" containing M then let M be colored by 0. 
Otherwise let M ' be a previously colored kernel with which received its 
color last. If the color of M' is i then we color M by z + 1 mod k. 

It is an easy exercise to verify that each subfamily of kernels with the same 
color is c-edge-independent. • 

For the proof of (6) a simple enumeration shows that max=min. Let vf 

denote the left-hand side in (6). We use induction on v{. If v ,=0 then the state-
ment is trivial. 

Let M be an arbitrary kernel such that f ( M ) > 0 and not all the edges entering 
M are of zero weight. There are two cases. 
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(a) There is an edge e with positive weight, entering M such that all the op-
timum (of weight vf) c-edge-independent families saturate e (i.e. e enters just c(e) 
kernels of the family with positive weight). 
In this case v, =vf—c(e). By the induction hypothesis there exists an E'ec.E for 
which v, = 2 c ( e ' ) and E'e is fc-entering. Let E'=E'e\J{e). Since v,= 2 c ( e ' ) 

" e'iE'. e'iE' 
and E' is f-entering we are finished with the proof. 

(b) For each edge et with positive weight and entering M there exists an 
optimum c-edge-independent family Jt{ which does not saturate er Let Jt"— 
=Jt1\JJt2\J...{JJtk\J{M}. Then Jt" is cx-edge-independent where C j • c and 

2 f(N) = k-vt + f(M). 
NZM" 

By the proof of (7) there exists a laminar family Jt'" such that 

2 t(N)m 2 HN). NZM" NiJl" 

Now by Claim 2, Jt'" can be partitioned into k c-edge-independent subfamilies. 
However, the weight of one of these subfamilies is greater than v, which is im-
possible. Hence case (b) cannot occur. • 

Theorem 3 reduces to Theorem 2 in the case f = 1, therefore the corollaries 
of Theorem 2 can be generalized. However, we emphasize only one consequence 
of Theorem 3. 

P r o b l e m 3. Let G = (V,E) be a digraph in which the maximum number 
of edge-disjoint r-arborescences is k (k>0). We want to increase this maximum 
to K (K>k) by multiplying edges. What is the minimum number of the required 
new edges? 

S o l u t i o n . Due to the theorem of Edmonds (Corollary 1) we have to assure 
just that in the extended graph the indegree of every subset of V\r is at least K. 

Let Jt be the kernel system defined in the first example. Let the function f 
be defined as follows: 
(8) f (M) = max {K- g (M), 0} 

that shows the number of edges still required to reach K as the indegree of M. In 
this way our question is translated into the problem of a minimum f-entering 
edge set. 

Cla im. The above defined f is weakly supermodular. 
i 

Proof . Trivial. • 

We note that f is not supermodular in general. 
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Applying Theorem 3 for this f in the case c = 1 we obtain a min—max formula 
for the minimum number of new edges. Instead of the exact formulation of this 
theorem we mention another problem which is equivalent to this one but is more 
illustrative. 

P r o b l e m 4. What is the maximum number of edges which can be covered 
by K r-arborescences? 

S o l u t i o n . If there exist K edge disjoint r-arborescences then this number is 
obviously K-(\V\ — 1). Otherwise let a1,a2, ...,aK be r-arborescences whose union 
is as large as possible. Suppose that this union consists of m edges. Let us multiply 
every edge of G by the number of r-arborescences from at,a2, ...,aK containing it. 
Of course this graph has already K r-arborescences. This means that 
s=K-(\V\ — 1)— m new copies of original edges assure the existence of K edge 
disjoint r-arborescences. Conversely, if the insertion of s new copies of edges yields 
the existence of K edge disjoint r-arborescences, then m = K-(\V\ — 1)— s edges 
can be covered by K r-arborescences in G. In this way Problem 4 is equivalent to 
Problem 3. Hence, as a consequence of Theorem 3, we obtain 

C o r o l l a r y 9. The maximum- number of edges which can be covered by K 
r-arborescences is equal to the minimum value of 

1 = 1 

where the minimum is taken over all the \-edge-independent laminar families of 
subsets Vx, V2, ..., Vt of V\r where t is arbitrary and function f is defined in (8). 

There is an interesting special case of this corollary. 

C o r o l l a r y 10. The edges of G can be covered by K r-arborescences if and 
only if for an arbitrary laminar \-edge-independent family of subsets Vlt V2, ...V, 
of V\r, the number e, of edges entering no Vt satisfies 

(9) e,^K(\V\-\-t). 

R e m a r k . K . VIDYASANKAR [ 1 1 ] has proved a similar but simpler necessary 
and sufficient condition for the problem in Corollary 10. He requires (9) only in 
the case if the cardinality of all but one of the F/s is one, with the two side-con-
ditions that the indegree of each vertex is at most K and every edge is in an 
r-arborescence. The necessity of these two latter conditions is trivial (and obviously 
our conditions imply them). 

Now we formulate Corollary 9 in another way. Suppose again that G has an 
r-arborescence. Let E' be a subset of edges of G and let r (£") denote the maximum 
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number of edges E' can have in common with an r-arborescence, i.e. r is the rank-
function of the hypergraph of /--arborescences. We recall that function r was determin-
ed by a min—max formula in Corollary 7. 

C o r o l l a r y 9a. The maximum number of edges which can be covered by K 
r-arborescences is equal to the 

mm(K-r(E") + \E\E"\). 

P r o o f , max ^ min is true for any hypergraph-. For the equality we show that 

(10) min (K.r(E")+ \E\E"\) sS tf(|F|-l)- i f ( F ; ) 

where V1, F2, . . . , VR form a 1-edge-independent family. It can be assumed that 
f(F,.)>0 whence f(VJ)=K— Q(V,). Let E" be the set of edges which do not enter 

t 
any F,. We have 2 Q(Vi) = \E\E"\. Obviously, an arbitrary r-arborescence 

¡=i 
contains at least t edges entering one of the F/s. Thus r ( £ " ' ) ^ | F | — 1 — H e n c e 
(10) follows, as required. • 

A similar version of Corollary 10 easily follows. 

C o r o l l a r y 10a. The edges of G can be covered by K r-arborescences if and only 
if K-r(E')s=\E'\ for every E'QE. 

The reader can easily observe the similarity between Corollary 10a and a 
Theorem of C. ST. J. A . NASH-WILLIAMS [10] on the covering of a matroid by 
K bases. 

5. In this last section we discuss the relationship between our results and those 
of J. Edmonds and R. Giles. Roughly speaking the main difference is that we 
consider entering edges only while they deal with entering and outcoming edges 
together. 

..•••. Edmonds and Giles have defined the notion of crossing family. Our theorems 
concern a special type of crossing family (when the members of the family do not 
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contain a fixed vertex), but they cannot, however, be generalized for arbitrary 
crossing family. The remark after Corollary 6 justifies this statement for The-
orem 2. The example in the Figure shows that Theorem 1 also fails for general 
crossing families. 

Let M= IM: Q(M)=2}= {(1, 2, 3, 4, 6), (2, 3, 6), (2), (1, 2, 4, 5, 6), (4)}. The edges 
cannot be colored with two colors so that both of the color classes enter every 
kernel. 
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Covering branchings 

A N D R Á S F R A N K 

In a previous paper [4] we proved, among others, a min-max theorem con-
cerning cuts of a directed graph. Now this theorem will be applied in order to get 
some new min-max theorems about branchings and arborescences. For example, 
a good characterization is given for the problem of the existence of k branchings 
covering all of the edges of a directed graph. This theorem can be considered as 
a directed counterpart of a theorem of Nash-Williams about covering forests. 

Another corollary is a directed analogue of Tutte's theorem about edge disjoint 
spanning trees. A directed graph has k edge disjoint spanning arborescences 
(possibly rooted at different vertices) if and only if, for every family of t disjoint 
subsets of vertices, the sum of their indegrees is at least k(t — 1). This theorem 
differs from Edmonds' one concerning the existence of k edge disjoint spanning 
arborescences rooted at a fixed vertex. However we shall use Edmonds' result in 
the proof. 

Let G=(V,E) be a finite directed graph with vertex set V and edge set E. 
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex of G. 
We use the notation U = V \{ r} . 

An arborescence a is a directed tree such that every edge is directed toward 
a different vertex. It is well known that an arborescence has a unique vertex (of 
indegree 0) from which every other vertex can be reached by a directed path. This 
vertex is called the root of a. A spanning arborescence of G rooted at r is called 
an r-arborescence. 

A branching b is a directed foresl, the components of which are arborescences. 
We say that a directed edge e enters a set X of vertices if the head of e is in 

X but its tail is not. We say that a subset E' of edges enters X if at least one element 
of E' enters X. 

The indegree eG(X) of a subset X of V is the number of edges entering X. The 
following inequality is straightforward: QC(X) +QG(Y)^QG(X{J T) + £G(ZN 7). 

Received December 30, 1977. 
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For an arbitrary set X, X'CX means that X' is a family of not necessarily distinct 
elements of X. 

A family SF of subsets of U is called laminar if at least one of X\Y, Y\X, 
X f ] Y is empty for any two members of 2F. 

Let f be a non-negative integer valued function defined on the subsets of U. 
f is called weakly supermodular if X, YQU, f(X), f ( K ) > 0 and XDY^Q imply 
f ( j r ) + f ( y ) s f ( i u r ) + f ( j ' n y ) . If X, YQ U and ATI already imply it 
then f is called supermodular. 

A family E' of not necessarily distinct edges of G (i.e. E'C.E) is called 
f-entering if in the graph G'=(V, E') the indegree of every subset X is at least f(X). 

Let c be a non-negative integer valued function on E. A family J5" of not 
necessarily distinct subsets of U is called c-edge-independent if each edge e of G 
enters at most c(e) members of J5". 

The following theorem was proved in a slightly other form in [4]. 

T h e o r e m 1. I f f is weakly supermodular and implies f ( 7 ) = 0 then 

max 2" f ( ^ ) = min 2 c(*) 
* XiS? E Ci 

where & is c-edge-independent (¡Fc2u) and E'cE is {-entering. The maximum 
can be realized by a laminar 

Let k be a natural number and FQE. 

P r o b l e m 1. What is the maximum number M of edges of F which can be 
covered by k r-arborescences of G? 

The case F=E was discussed in [4]. We formulate this problem in another form. 

P r o b l e m la . What is the minimum number m of not necessarily distinct 
edges of G which, together with F, contain k edge disjoint r-arborescences? 

The two problems are equivalent because M^k(\V\ — 1)—m yand 
msk(\V\-Y)-M, hence 
(1) m + M = k(\V\-\). 

By a theorem of J. EDMONDS [3, 5] a digraph has k edge disjoint r-arborescerices 
if and only if the indegree of every subset of F \ { r } is at least k. Therefore 
m = min \E'\ where E' is f-entering and the function f is defined as follows: E'CZE : 

f ( X ) = m a x (0 , k—Qh ( X ) ) f o r XQU 

where QH(X) is the indegree of X in the subgraph H=(V, F). Obviously f is 
weakly supermodular. (Observe that F is used only to define f). Applying Theorem 1 
to G and to this function f, with the choice c(e) = 1 (<?££), we get m = m a x 2 
where SF is 1-edge-independent. This, together with (1), proves 
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T h e o r e m 2. If H=(V, F) is a subgraph of G — (V,E) then the maximum 
number of edges of H which can be covered by k r-arborescences of G is equal to 

min [ f c ( | K | - l - < ) + Z ÔH^Ï] 
i = 1 

where the minimum is taken over all l-edge-independent laminar families 
v2,..„ vt) (V^U). 

P r o b l e m 2. Let H=(U,F) be a directed graph (there is no distinguished 
vertex). What is the maximum number M of edges which can be covered by k 
branchings ? 

Complete H by a new vertex r and by |C/| new edges which are joined from 
/• to all other vertices of U, i.e. V=UU{r} and E=FU {(i\x): x£[/}. It is easy 
to check that the maximum number of edges of H which can be covered by k 
/•-arborescences of G=(V,E) is M. Apply Theorem 2 and observe that in this 
case a laminar family of subsets of U consists of pairwise disjoint subsets. Thus 
we have 

T h e o r e m 3. The maximum number of edges of H—(U, F) which can be 
covered by k branchings is equal to 

m i n [ / c ( | C / | - 0 + i e H ( ^ ) ] 
1 = 1 

where the minimum is taken over all families of disjoint subsets Vi ( /=1, 2, ..., t) 
of U. 

A simple application of this theorem provides an analogue of Tutte's disjoint 
spanning trees theorem [8]. 

T h e o r e m 4. H=(U,F) has k edge disjoint spanning arborescences (possibly 
rooted at different vertices) if and only if 

(2) ¿ Q H ( V d ^ k ( t - 1 ) 
i=i 

for every family of disjoint subsets Vt (/=1,2, ...,/) of U. 

P r o o f . H has k edge disjoint spanning arborescences if and only if at least 
k(\U\ — 1) edges of H can be covered by k branchings, i.e., by Theorem 3, 

k(\U\-t) + 2 eH(Vi) = k(\U\-\), which is equivalent to (2). • 
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Another consequence of Theorem 3 is 

T h e o r e m 5. The edges of H can be covered by k branchings if and only if 

(3) k(\U\-t)^e, 

for every family of disjoint subsets Vx, V2,..., Vt of U, where e, denotes the number 
of edges not entering any Vr 

P r o o f . By Theorem 3 we have to assure that k(\U\-t)+ % Qh(V^\F\. 
t ¡=i 

But this is equivalent to (3), because e,+ 2 QH(^) = 1^1- • ¡=i 

T h e o r e m 5a. The edges of H can be covered by k branchings if and only if 
(4a) the indegree of every vertex is at most k, and 
(4b) the edges of H (in the undirected sense) can be covered by k forests. 

P r o o f . The necessity of the conditions is obvious. For the sufficiency we verify 
that (4a) and (4b) imply (3). Let V1, V2, ..., Vt be disjoint subsets of U. Let 

t 
F0 = { 7 \ | J Vi (V0 may be empty) and let e(X) denote the number of edges with 

i=l 
tails and heads both in X. Then 

e,--= 2 QH(x)+2e(Vi)^k\V0\+2k(\Vi\-\) = k(\U\-t). • 
x£V0 i=l i = l 

R e m a r k . The last theorem can be considered as a new "linking" theorem. Let 
Jtx denote the circuit matroid (on F) of H considering H as an undirected graph. 
Let Jt2 denote the matroid on F in which a subset is defined to be independent if 
it contains no two edges directed toward the same vertex. Now Theorem 5a states 
that if F can be covered by k independent sets of and can be covered by k in-
dependent sets of M2 then F can be covered by k sets which are independent in 
both Mx and J i 2 . 

Another special case of this statement, when and Jt2 are transversal 
matroids, was proved by BRUALDI [2] . However, this statement is not true in general: 
Let Jtx be the circuit matroid of Ki (the complete graph on 4 vertices) and Ji2 be 
defined such that a subset in independent if it contains no disjoint edges of K t . 

Now we prove a Vizing type theorem which is due to MOSESYAN [6] for y = \. 

T h e o r e m 6. If in H=(U, F) the indegree of every vertex is at most K and 
H does not contain y +1 edges with the same heads and tails then F can be covered 
by k=K+y branchings. 

P r o o f . (4a) holds obviously. To prove (4b) we have to verify that e ( X ) ^ 
^k{\X\ — 1) for X<ZU. This condition is equivalent to (4b) by a well-known 
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theorem of N A S H - W I L L I A M S [ 7 ] . If \X\y^k then e(X)^\X\(\X\-l)y^ 
s=A:(pf|-l). If in turn \X\yszk then е(Х)ЩХ\-AHZKAr-y^flZI-l). • 

Finally, a theorem is stated which is also a consequence of Theorem 1. The 
proof is left to the reader. 

T h e o r e m 7. The edges of H=(U, F) can be covered by к spanning arborescences 
if and only if k(\U\ — 1 — t + d ) f o r every l-edge-independent laminar family 
&r={V1, ..., Vt}, where et is the number of edges not entering any Vt and d denotes 
the maximum number of Vt 's containing any vertex. 
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The dual discriminator function in universal algebra , 

E. FRIED and A. F. PIXLEY 

1. Introduction and summary of results 

For any set S the (ternary) discriminator t of S is the function from S3 to 
S defined by • t(x, y, z)—x if x^y and = z if x=y. 

The discriminator function has proved useful in the study of varieties generated 
by quasi-primal algebras — which includes the variety of Boolean algebras — 
and related areas of universal algebra. (See [14] and, for example, [15], [18], [19], [21].) 
Indeed, in the two element Boolean algebra ({0, 1}, V, A, ') , 

(1.1) ( *A/ )V( /Az )V(*Az) 

is a polynomial representing the discriminator of the set {0, 1}. 
In the present paper we introduce the study of a closely related function, the 

dual discriminator, the function d from S3 to S defined by d(x, y, z)=x if x=y, 
and =z if x^y. 

We may think of the dual discriminator as playing a role which generalizes 
the "median" polynomial on the two element lattice in the same way that t 
generalizes (1.1); indeed, for the lattice ({0, 1}, V, A), the median, 

(1.2) (xAJOVCMZMXAZ), 
is a polynomial representing the dual discriminator of {0, 1}. More generally, the 
algebras in which the dual discriminator is a polynomial stand, roughly speaking, 
in the same relation to the two element lattice as quasi-primal algebras stand to 
the two element Boolean algebra; the purpose of the present paper is to give some 
grounds for this analogy. The two element lattice is, however, the only lattice in 
which the dual discriminator function is a polynomial. On the other hand, weakly 
associative lattices with the unique bound property ([5]) provide important examples 
of this extension of the theory of distributive lattices. Within this extended theory 
the special results of [7] are also of particular interest. 

Received September 16, 1977. 
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As is suggested by the examples of Boolean algebras and distributive lattices, 
the discriminator is strictly "stronger" than the dual discriminator. In fact, from 
the definition we obviously have 

(1.3) d(x, y, z) = t(x, t(x, y, z), z), 

but there is no way of expressing t in terms of d (as one sees by considering the 
two element lattice). There are, however, interesting relations connecting the two. 
Among these are the following dual functional equations: 

(1.4) t(x,y,d(x,y,z)) = x, d(x,y,t(x,y,zj) = x. 

Also, if / is the 4-ary discriminator defined by 

(1.5) f(x,y,u,v) = u if x = y, and = v if x y, 
then 
(1.6) t(x, y, z) =/(*, y, z, x), and d{x, y, z) =/(*, y, x, z), 

dually. (As is well known, / is equivalent to t since f ( x , y, u, v) = t(t(x, y, u), 
t(x, y, v), v).) 

For terminology in the paper we shall generally follow GRATZER [ 9 ] . In parti-
cular, for a given type of algebras a polynomial symbolp(x,y, ...) is simply a term 
in the first order theory of that type. If A = (A, F) is an algebra of this type, the 
polynomial pA(x,y, ...) of A is the mapping induced on A by p(x, y, ...). An al-
gebraic function is a mapping of A obtained by inserting fixed elements of A in 
some of the argument places of a polynomial. 

S u m m a r y of r e su l t s . In Section 2 we shall discuss some simple relations 
between "discriminator" and "dual discriminator" varieties. We also show 
(Theorem 2.3) that a finite algebra A of more than two elements is functionally 
complete if and only if the dual discriminator is an algebraic function of A. Finite 
algebras in which the dual discriminator is a polynomial are characterized (Theorem 
2.4) in a way which generalizes a characterization of quasi-primal algebras. In 
Sections 3 and 4 we obtain an equational characterization (Theorem 3.2) of dual 
discriminator varieties. This result parallels an earlier result of M C K E N Z I E [ 1 1 ] 

for discriminator varieties. We also show (Theorem 3.11) that dual discriminator 
varieties have equationally definable principal congruences in the sense of [8], and 
examine the duality between "principal" and "co-principal" congruences in dis-
criminator varieties. It is further shown (Theorem 4.2) that the discriminator be-
haves, in certain respects, like a generalized complementation operation. In Section 
5 we examine weakly associative lattices and, in particular, obtain an explicit finite 
equational base for the variety generated by all weakly associative lattices having 
the unique bound property (Theorem 5.8). 
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2. Discriminator and dual discriminator varieties; functional completeness 

A discriminator variety is a variety V having a ternary polynomial symbol 
p(x,y,z) such that for each subdirectly irreducible (SI) algebra A£V, pA(x,y,z) 
is the discriminator of A. Finite SI members of a discriminator variety are usually 
called quasi-primal algebras ([14]). Dually, let us say that a variety V is a dual 
discriminator variety if V has a ternary polynomial q(x, y, z) such that qA(x, y, z) 
is the dual discriminator of A for each SI algebra A£V. 

Note that if V is a discriminator (respectively, dual discriminator) variety 
in which the polynomial symbols p and p' (respectively q and q') each induce the 
discriminator (respectively, dual discriminator) on each SI member of V, then 
p=p' (respectively q — q') is an equation of V. Briefly, the discriminator and dual 
discriminator are unique. Also note that by (1.3) each discriminator variety is a 
dual discriminator variety. 

In addition to the variety of Boolean algebras, discriminator varieties include, 
as a few examples, all varieties of arithmetical rings (i.e.: varieties generated by 
finite sets of finite fields), varieties generated by simple relation algebras, and simple 
cylindric algebras. (See [21] for other examples.) Beyond the variety of distributive, 
lattices the simplest dual discriminator variety is the variety W3 generated by the 
"triangle" algebra W3=({0, 1, ax), V , A) where V , A are the l.u.b. and g.l.b. 
respectively for the following reflexive and antisymmetric relation: O s l ^ a ^ O . 
(See [6].) In this case the polynomial 

[(zA (x Ay)) V (*V y)] A [z V (x A y)] 

will be shown, in Section 5, to be the dual discriminator of the set {0, 1, a j . More 
generally, varieties generated by weakly associative lattices having the unique 
bound property ([5]) will also be shown to be dual discriminator varieties. Interesting 
special cases include the varieties Wn, generated by the algebras 
W„=({0, 1 , a l 5 ...,a„_2}, V , A) where V, A are l.u.b. and g.l.b. for the reflexive 
and antisymmetric relation 0 ^ 1 /=1 , . . . ,«—2. These were introduced 
in [6]. 

The following are some simple comparative properties of the discriminator 
and dual discriminator. 

2.1 Lemma . If V is a discriminator variety or,a dual discriminator variety, each 
nontrivia! SI member of V is simple and has only simple nontrivial subalgebras. 

P r o o f . For the dual discriminator, if is a congruence of any subalgebra 
of A6K, let (x, y)£6, x^y. Then for any z in the subalgebra, 

x — qA(x, x, z) 6 qA(x, y, z) = z 
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For the discriminator, 
X = pA(x, y, z) 9 pA(x, x, z) = z. 

2.2 Lemma, i) A discriminator variety Vis arithmetical (i.e.: congruence permut-
able and congruence distributive); equivalently, 

p{x, x, z) = z, p(x, y, x) = x, p(x, z,z) = x 

are equations of V. 
ii) A dual discriminator variety V is congruence distributive, in fact 2-distri-

butive; equivalently, 

q(x, x, z) = x, q(x, y, x) = x, q(x, z, z) = z 

are equations of V. 
iii) A dual discriminator variety is a discriminator variety if and only if it is 

congruence permutable. 

P r o o f , i) and ii) are well known; see, e.g., [14] and [10]. For iii), if F i s congruen-
ce permutable and m(x, y, z) is any Mal'cev polynomial symbol for V, then for 
any SI member A£ V, mA(x, qA(x, y, z), z) is clearly the discriminator of A. If V 
is a discriminator variety, then p(x, y, z) is a Mal'cev polynomial symbol for V, 
by i). (Note that for any Mal'cev polynomial symbol m(x, y, z) for V, and in parti-
cular for m=p, mA(x, pA(x, y, z), z) is the dual discriminator of any SI AC K. In 
general the discriminator and its dual are interdefinable through any Mal'cev 
function.) 

Recall that a finite algebra A is functionally complete ([13]) if each function 
f : A"—A, 0 i s an algebraic function of A. A well known criterion (due 
to W E R N E R [ 2 0 ] ) for functional completeness is that the discriminator of A be an 
algebraic function of A. (Hence a quasi-primal algebra is obviously functionally 
complete.) From the remarks above it is clear that a finite SI algebra in a dual 
discriminator variety is quasi-primal (respectively, functionally complete), if and 
only if there is a polynomial m(x, y, z) (respectively, algebraic function) of A, 
satisfying m(x, x, y)=y and m(x,y,y)=x. According to the following theorem, 
if \A | > 2 and the dual discriminator is an algebraic function of A, then such an 
algebraic function m(x, y, z) always exists. 

2.3 T h e o r e m . Let A = (A, F) be a finite algebra of order greater than 2. The 
dual discriminator of A is an algebraic function of A if and only if A is functionally 
complete. 

Proof . The " i f" direction is trivial. To prove the "only i f" direction we es-
tablish two claims: 
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Claim 1. If A is a finite algebra having a majority polynomial (i.e.: a ternary 
polynomial satisfying the equations of Lemma 2.2, ii)) and if AX A has only two 
subalgebras (the diagonal A = {(a, a): a £ A} and A X A), then A is primal. 

P r o o f of C la im 1. Since A has a majority polynomial it follows from 
[3, Corollary 5.1] that the polynomials of A are exactly the functions / : An—A such 
that each subalgebra of AX A is closed under / ; i.e.: if S is a subalgebra of AX A 
and (xn yj)£S, ; = 1, . . . ,« , then 

/((*i> yi)> — ,(xB, J>„)) = ( / (* i . • • • > *„)> / O i , • • •, JO)€ 5. 

But since the subalgebras A and AX A are closed under any / : A"^A and since 
these are the only subalgebras of AX A, the claim follows. 

Claim 2. Suppose A=(A, F) is finite with n>2 elements and the dual dis-
criminator of A is an algebraic function of A. Let S be a subalgebra of AX A such 
that j g S . Then S = /l or S=AXA. 

P r o o f of C l a i m 2. Let the distinct elements of A be a l 5 . . . , an, n>2. Since 
the dual discriminator of A is an algebraic function q of A and since A Q S, q extends 
(coordinate-wise) to S. Suppose {a^a^ZS for some i^j, i.e.: suppose S contains 
some off-diagonal element. Then for all r, 

q((a;,a;), (a ; , a,), (ar, arj) = {q{at, at, ar), qfa, a,-, ar)) = (at,ar)£ S. 

Hence for all s,r,r^ i, 

q((ar,ar), (a;, ar), (as, as)) = (q(a„ at,as), q(ar, ar, as)) = (as, ar)£ S. 

Finally, choose m different from both i and j, which is possible since n>2. Then 
for all s, 

q((as,aj), (as,am), (ai; aj) = (q(as, as, aj, q(aj, am, a;)) = (as, a;)€ S. 

Hence S=AXA so Claim 2 is proved. 
To complete the proof of Theorem 2.3 let A satisfy the hypotheses. Let A + 

be the algebra obtained from A by adjoining as new nullary operations all elements 
of A. Then the dual discriminator is a majority polynomial of A+ and for each 
subalgebra S of A+XA+, A<gS. By Claim 2, A+XA+ has only A and A+XA+. 
as subalgebras. Hence by Claim 1, A + is primal. Thus A is functionally complete. 

Note . The two element lattice, for which the median is the dual discriminator, 
is not functionally complete — since algebraic functions of lattices are isotone. 
Hence the condition that A be of order greater than 2 is essential. 

Quasi-primal algebras were originally defined ([14]) as finite algebras A having 
the following property: 
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Let / : A"—A be any function. If each subalgebra S of AX A with subuniverse 
of the form S= {(x, xa):;c£dom (a)}, a an internal isomorphism of A, is closed 
under the coordinate-wise extension f x f of / , then / is a polynomial of A. It is 
therefore natural to ask for a similar characterization of finite algebras having the 
dual discriminator as a polynomial. To do this we introduce the following 
definition: 

For an algebra A, a subalgebra S of AX A is projectively rectangular (or, briefly 
p-rectangular) if S has the following two properties: 

i) (x,y^), (x,yj, (u,v)£ S and yx ^ y2 imply (x,v)£S, 
ii) (x^y), (x2,y), (u,v)eS and xx ^ x2 imply (u,y)£S. 

2.4. T h e o r e m . For a finite algebra A the following are equivalent: 
a) The dual discriminator of A is a polynomial of A. 
b) If f : A"-* A is any function such that each p-rectangular subalgebra of AX A 

is closed under the coordinate-wise extension f x f of f , then f is a polynomial of A. 

P r o o f . a)=>b). The dual discriminator qA is a majority polynomial of A. Hence, 
by [3, Corollary 5.1], the polynomials of A are just the functions f : A"-*A such that 
all subalgebras S of AX A are closed under f . Hence we need only show that each 
subalgebra S of AX A is p-rectangular. But if (x, (x, y2), (u, v)£S and yi~y2, 
then qA((x, (x, y2), (u, v)) = (x, v)€ S, and if (xx, y), (x2, y), (u, v)£S and = x 2 , 
then qA((x1, y), (x2, y), (u, v)) = (u, y) £ S. 

b)=>a). Let S be a p-rectangular subalgebra of AX A and let (x1,y1), (x.,, y2), 
(x3,ys)£S. Then 

d ((*i, yd, (x2, >'2), (x3, y3)) = (d (x1, x2 , x3), d (yj , y2, j>3)) = 

= (*i> .Vi) i f = x2 and yx = y2 

= (*i, y3) if = x2 and v'x ^ y2 

= (x3,y1) if and yx=y3 

= (xs,y3) if x 1 ?±x 2 and y 1 ^ y 3 , 

hence S is closed under the dual discriminator d. Thus d is a polynomial of A. 

N o t e . The conditions defining a p-rectangular subalgebra are equivalent to 
the following {pi,p2 are, respectively, the first and second projections): 

i)' If S contains 2 points of {x} X Sp2 then S contains {x} X Sp2, 
ii)' If S contains 2 points of Spx X {j} then S contains Spt X {.y}. 

To compare quasi-primal algebras with algebras having the dual discriminator 
as a polynomial, let A be quasi-primal and suppose S is a subalgebra of A X A such 
that S contains two points, (x, yx), (x, y2) of {x}X Sp2. Then for any (ux, vj, (u2, v2) £ S, 
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/((*, >'i), (x, y2), (« i ,^) , (u2,v.2j) = (u1,v2)iS i f / i s the 4-ary discriminator (1.5). 
Hence S = S p ^ S p z . On the other hand, Theorem 2.3 shows that for sets with 
at least three elements, the constant functions together with either the discriminator 
or the dual discriminator, generate all functions. 

3. Characterization and properties of dual discriminator varieties 

The following theorem, which gives an equational characterization of dis-
criminator varieties, appears in MCKENZIE [11]. 

3.1 T h e o r e m . For a variety V and ternary polynomial symbol p(x,y,z), the 
following are equivalent: 

1) V is a discriminator variety with p(x,y,z) the discriminator on each SI 
member of V. 

2) The following are equations of V: 
a) p(x, z, z) = x, p(x, y, x) = x, p(x, x, z) = z, 
b) p(x,p(x,y,z),y) = y, 
c) for each operation symbol f of V, 

p(x,y,f(z1, ...,zkj) =p(x, y,f(p(x,y, z j , ...,p(x,y,zk))) 

(where f is k-ary). 

The proof depends essentially on observing that for any A£V and a,b£A, 
the principal congruence 6 (a, b) is given by 

6(a, b) = {(*, y)€AXA: pA(a, b, x) = pA(a, b, j>)}. 

For dual discriminator varieties we have the following corresponding result: 

3.2 T h e o r e m . For a variety V and ternary polynomial symbol q(x,y,z), the 
following are equivalent: 

1) V is a dual discriminator variety with q(x,y,z) the dual discriminator on 
each SI member of V. 

2) The following are equations of V: 
a) q(x, z, z) = z, q(x, y, x) = x, q(x, x, z) = x, 
b) q(x, y, q(x, y, z)) = q(x, y, z), 
c) q{z, q(x, y, z), q(x, y, w)) = q(x, y, z), 
d) for each operation symbol f of V, 

q(x, y, f(z1, ..., zk)) = q(x, y, f(q(x, y, z j , ...,q(x,y, zj)) 

(where f is k-ary). 
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If V is an idempotent variety the equations d) may be replaced by 

d') q(x, y, f(zlr ..., zk)) =f(q(x, y, z j , ...,q(x,y, zk)) 

P r o o f . If 1) holds then it is easy to check that a)—d) are equations of each 
SI member of V and hence of V. If V is idempotent then 1) clearly implies d'). 

Conversely, suppose a)—d) are equations of V. For each AC V and a,b£A, 
define the co-principal congruence y(a, b) by 

y(a, b) = {(*, y)£AXA: qA(a, b, x) = qA(a, b, y)}. 

By d) (or d')) if V is idempotent) y (a, b) is easily seen to be a congruence of A. 
Next observe that, by b), 

(3.3) {qA(x,y, z), z)£y(x,y) for all x,y,z£A. 

Now qA(x, x, z)=x by a). Hence to complete the proof it will suffice to show that 
if A is SI and x, y€A, then 

(3.4) x T6 y implies y(x,y) = a>, 

for, by (3.3), this will mean qA(x, y, z)=z if xj^y. 

As a preliminary we first establish the following implication: 

(3.5) x ^ y implies y(qA(x, y, z), z) co, for any A £ F and x,y,z£A. 

To prove (3.5) we observe that, by c), we have 

qA(z, qA{x, y, z), qA(x, y, w)) = qA(z, qA(x, y, z), qA(x, y, z)) 
and hence (qA(x, y, z), qA(x, y, w))£y(z, qA{x, y, z)) for all x,y,z,w£A. If 
y(z,qA(x,y,z))=a> for some x,y,z, then qA(x, y, z)=qA(x, y, w) for all w£A. 
In particular, using a), we would then have 

x = qA(x, y, x) = qA(x, y, z) = qA(x, y, y) = y. 

This establishes (3.5). 
Now let A be SI in V. Choose a, b£A, a^b, such that (a, b)0 for all con-

gruences 6¿¿co. Let us suppose we have a pair x,y£A contradicting C3.4), i.e.: 
such that x^y and y(x, y)^oj. Then (a, b)6 y (x, y) so qA{x, y, a)=qA(x, y, b). 
Denote the common value of these expressions by c£A. By (3.5) we have 

y(a, qA(x,y, a)) = y(a,c) ^ co and y(b, qA(x, y, b)) = y(b, c) ^ co 

Hence (a, b)£y(a, c)Hy(b, c) so that, by a), 

a = qA(a, c, a) = qA(a, c, b) and b = qA(b, c, b) = qA(b, c, a). 

l ) In Theorem 3.1, if V is idempotent, the equations c) may be analogously simplified. 
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Since a^b, we have c^a or c^b. If c^a then, taking x=a, y=c, z=b in 
(3.5), we obtain y(qA(a, c, b), b) = y(a, b)^(o. Hence (a, b)dy(a, b) which implies 
a = qA(a,b,a)=qA(a,b,b) = b, a contradiction. If c^b then, taking x=b, y = c, 
z = a in (3.5), we obtain y(qA(b, c, a), a) = y{b, a)^a> which again leads to the 
contradiction a=b. Hence (3.4) is established, completing the proof. 

'Notice that on SI members of a dual discriminator variety we have: 

6(a, b) = co if a = b, and = i if a b, 

y(a, b) = i if a = b, and = co if a b. 

We compare these congruences more closely. First observe that in a dual dis-
criminator variety F, q(x,y,u) and q(x,y,v) are principal intersection polynomials 
in the sense of BAKER [1], i.e.: the polynomial symbols D1(x,y,u,v)=q(x,y,u) 
and D2(x,y,u,v)—q(x,y,v) have the property that on any SI member A of F, 

(3.6) • DA(x, y, u, v) = D£(x, y,u,v) iff x = y or u = v. 

From [1] it then follows that for any AG F, the meet of principal congruences 8 (a, b) 
and 8(c, d) is principal and is given by 

(3.7) 8(a, b)A8(c, d) = 8(qA(a, b, c), qA(a, b, d)). 

Using this observation we have 

3.8 T h e o r e m . Let A be any algebra in a dual discriminator variety. For any 
a, b£A, the principal and co-principal congruences 8 (a, b) and y(a, b) are complements 
and, in particular, 

y(a,b)o8(a,b)oy(a,b) = i (o denotes relation product). 

P r o o f . For all x, y£A, using equations a), b) of Theorem 3.2, we have 

x y(a, b) qA(a, b,x) 8(a, b) qA{a, a,x)^a = qA(a, a, y) 8(a, b) qA(a, b, y) y(a, b) y 

Hence y(a,b)o8(a,b)oy(a,b) = i. For the meet, if (x, y)£8(a, b)Ay(a, b) then 
(.x,y)£8(a,b)A8(x,y)=8(qA{a,b,x),qA(a,b,y)) by (3.7). But qA(a,b,x) = 
—qA(a,b,y) since (x, y)£y(a, b). Hence x=y, whence 8(a, b) Ay (a, b) = co. 

3.9 C o r o l l a r y . In a dual discriminator variety the join of co-principal congruent 
ces is co-principal and is given by 

(3.10) y(a, b)Vy(c, d) = y(qA(a, b, c), qA(a, b, d)). 

P r o o f . Apply Theorem 3.8 and congruence distributivity, taking complements 
of both sides of (3.7). 
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Theorem 3.8 has several important consequences. Recall from [12] that a variety 
V has definable principal congruences if there is a formula /?(ы, v, x, у) in the firs-
order language of V such that for all A 6 F and a, b, c, d£A, 

0c ,d )£9 (a ,b ) iff A f}(a, b, c, d). 

A stronger concept, equationally definable principal congruences, was introduc-
ed in [8]. 

3.11 T h e o r e m . If V is a dual discriminator variety, then V has equationally 
definable principal congruences. In particular, for A£V, a,b,c,d£A, 

(3.12) ( C j d ) e 0 ( e , b ) iff A\=(Vu)[q(c,d,u) = q(c,d,q(a,b,u)J]. 

P r o o f . First notice that 

( c ,d )€0(e ,b ) iff e(c,d)^9(a,b) iff у (a, b) == y(c, d) 

by Theorem 3.8. But y(a, Ь)Шу(с, d) is equivalent to the condition . 

(3.13) (V«i, m2€ A)[qA{a, b, и J = qA(a, b, щ) => qA(c, d, и J = qA(c, d, u2)]. 

Clearly the right side of (3.12) implies (3.13) and, taking u2 = qA(a, b, w,), the right 
side of (3.12) follows from (3.13) and equation b) of Theorem 3.2. 

3.14 C o r o l l a r y . If V is a dual discriminator variety and A i s a subdirect 
product of algebras Ai,i£I, then for a, b, c, d£A, 

(3.15) ( c , d ) £ 0 ( a , b ) iff ( V / e / ) [ ( c ; , 0 ( a ; , b;)]. 

Corollary 3.14 is immediate from the universal form of the formula appearing 
in (3.12); it asserts that К has factor determined principal congruences in the sense of [8]. 

From [8, Theorem 4.5] we also obtain: 
i 

3.16 C o r o l l a r y . A dual discriminator variety has the congruence extension 
property. 

M C K E N Z I E [ 1 2 ] has shown that if a variety V of finite type has only finitely 
many SI members, all finite, and has definable principal congruences, then V has 
a finite equational base. On the other hand BAKER'S finite basis theorem [ 2 ] asserts 
that a congruence distributive variety of finite type generated by a finite algebra 
always has a finite equational base. Hence if A is a finite algebra in a dual dis-
criminator variety (of finite type), then A has a finite equational base either as a 
result of Baker's theorem and Lemma 2.2, ii), or more briefly, from McKenzie's 
result and Theorem 3.11. Despite the fact that we have these two proofs it is still 
instructive to establish the result directly, illustrating McKenzie's method. We 
do this as follows: 
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If d(x0, x l 5 x2) is the dual discriminator of a set, define inductively 

i / j (x0, X j , x 2 ) = d (xq , 

^2(^05 -*2> -̂ 3) = d(x0, dx (xq , Xj, x2), Xg), 

and observe that 

d„(x0, ..., x„+1) = x0 if x0 equals any of x1,...,x„, 
= x„+ 1 otherwise. 

It follows that on any set S the sentence 

(Vx0, ..., x„) V (*; = *,), (meaning \S\ 3= n), 
0 Sicj'Sn 

is true in S if and only if the following equation Nn holds in S: 

dn(xo» • • • > dn..x(x 1, . . . , x„, dn—2(^2» • • • > 2̂C*̂ «—25 ̂ n-i! > • • •) = 

= cin(x0, • • •, x„, _ 1 (Xj, . . . , x„, c/„_2(^25 (x„_2, x„_ 1, x„, x„_j)...). 
For example, N3 is 

Now let F be a dual discriminator variety of finite type and let A be a finite algebra 
in V. By congruence distributivity and either [13, Theorem 2.5] or [10], the variety 
generated by A is 

F ( A ) = I P s H S ( A ) 

and thus we can effectively determine from the finitely many isomorphism types 
of HS(A), all of the isomorphism types of the SI members of F(A). Let these be 
K0 = {Ax, ..., A4} and let n=max {\A,\: i=l, ..., k). Then the equations a), b), 
c), d) of Theorem 3.2, together with N„ (with qi replacing di,i=\, ...,ri) are an 
equational base for the variety generated by 

Kx = {B: B is SI of the given type, \B\sn, and is the dual discriminator of B}. 

To this extent the basis is canonical. Next we can obviously effectively list the 
members of Kx and, by congruence distributivity, for each B; in Kx, either B( is 
isomorphic with some algebra of Ka or there is an equation ei which is an identity 
of each member of K0 but not of Bf. Let e;(1), . . . , e,(m), 0, be such "exclusion" 
equations, which can clearly be effectively determined. Then the equations 
a), b), c), d), N„,eim, ..., ei(m) are a finite equational base for A. 

In Section 5 we shall apply Theorem 3.2 even more directly to obtain explicit 
equational bases for the varieties a) generated by all weakly associative lattices 
having the unique bound property, and b) the variety generated by the triangle 
algebra W3 . 
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4. Dual discriminator varieties and the discriminator 

Recall that a congruence permutable distributive lattice is necessarily relatively 
complemented. (Of course the converse is always true whether the lattice is dis-
tributive or not.) The following theorem generalizes this fact to dual discriminator 
varieties. (Cf. Lemma 2.2.) 

4.1 L e m m a . Let A be any algebra in a dual discriminator variety and let 
f : A3-*A be any function which is compatible with all of the congruences of A and 
which satisfies the following equations for all x,y,z£A: 

qA(x, y, f(x, y, z)) = x, f{x, x, z) = z. 

Then f induces the discriminator on each SI homomorphic image of A. 

P r o o f . qA(x,y,f(x,y, z)) = x = qA(x,y, x) so that (f(x,y, z), x)£y(x, y) in 
any SI homomorphic image. But if x^y, y(x,y) = ci), so that f(x,y, z) = x. 

4.2 T h e o r e m . If A is any algebra in a dual discriminator variety the following 
are equivalent: 

a) A is congruence permutable. 
b) There is a ternary function f : A3 —-A which is compatible with all congruences 

of A and which induces the discriminator on each SI homomorphic image of A. 

Example . If A is a congruence permutable distributive lattice, then, by The-
orem 4.2, such a function / exists and induces the discriminator on the two ele-
ment lattice. Hence on {0, 1} 

/ (1 , y, 0) = / (0 , y, 1) = / (complement). 

From this it follows that for y in the interval [JC, z] of A, f ( x , y, z) is the relative 
complement of y=qA(x, y, z)=(xAy)V(yAz)V(xAz). (Cf. (1.1) and (1.2).) 

P r o o f of T h e o r e m 4.2. Suppose A is congruence permutable and x, y, z£A. 
Then (as noted in the proof of Theorem 3.8), 

x = qA(x, x, z) 0(x, y) qA(x, y, z) y(x, y) z. 

Hence, by permutability, there is a c£A such that 

xy(x,y) c6(x,y) z, 

which means y)Pl[z]0(x, Thus, by the Axiom of Choice, there is 
a function / : A3-*A such that for each x, y, A, 

x y(x, y) f(x, y, z) 9(x, y)z. 
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Hence, 
i) qA(x, y, f(x, y, z)) = qA(x, y, x) = x, ii) f(x, y, z) 0(x, y) z. 

To show that / is compatible with the congruences of A first let (p be a completely 
meet irreducible congruence (i.e.: such that A/q> is SI). Let (x, xx), (y, j^), (z, z^)£<p. 
If (x,y)£q> then (xi,Ji)€<p, so 6(x,y)^(p and 0(x l 5 vx)^(p and, by ii), 
f(x,y,z) <p z <p Zi cp f(xl,y1,zx). If (x, y)$(p then (x,, ^ ( J so that 

/ (x , y, z) ip qK{x, y, f(x, y, z)) = x <p x± = qA(x1, y1,f(x1, z,)) <p f(x1, yx,zx) 

by i). Hence / is compatible with <p. Since any congruence is the meet of completely 
meet irreducible congruences, it easily follows that / is compatible with all con-
gruences of A. Hence / meets the conditions of Lemma 4.1 so that it induces the 
discriminator on each SI homomorphic image of A. 

Conversely, if / satisfying b) exists and , 02 are congruences of A with 
x y 02 Z then, by the compatibility of / , 

x = / (x , z, z) 02 f(x, y, z) f(x, x, z) = z 

so that A is congruence permutable. 
Finally we observe that in any discriminator variety V (which by Lemma 2.2 

is necessarily a dual discriminator variety) we have, in addition to formulas (3.6), 
(3.7), and (3.10), their duals. Indeed, we may call the polynomial symbols p(x, y, u) 
and p(x,y,v) principal join polynomials, since for SI algebras A£K, 

(3.6)' PA(x, y, u) — pA(y, x, v) iff x = y and u = v. 

(Note the reversal of x and y.) Using (3.6)' we can deduce 

(3.7)' 0(a, b)\f6(c, d) = 0(a, 6)o0(c, d) = 9(pA(a, b, c), pA(b, a, d)). 

(V — o since V is congruence permutable by Lemma 2.2.) 

To prove (3.7)' we observe that by the remark following Theorem 3.1, 

(x,z)d0(a,b)o6(c,d) iff ( 3 y ) [ p A ( a , b , x ) = pA(a,b,y) and pA(c, d, y) = pA(c, d, z)]. 

Hence on each SI factor A; of A, 

PA>(a,, , = pAi(a,, bi, j>;) and pA< (c,, dt, j>f) = pA<(c;, d;, z;), 

from which we directly infer 

(4.3) pA>(pA<(a,, bt, Ci), pA<(bt,a„ dt), x,) = pA<(pA<(a,-, b{, c;), pA<(bt, a „ dt), zt), 
using (3.6)'. From (4.3) we have (x, z)£6(pA(a, b, c), pA(b, a, d)) by Corollary 3.14. 

Conversely, if {x,z)£9(pA(a,b,c),pA(b,a,d)) then (4.3) holds on each SI 
factor A; of A. Thus if and then X;=z( while Q(ai, b^ = i if a ^ b i 
and likewise for c ^ d ^ From this it follows that 

X,- 6(ah b^ pA>{pA>(ai, bi, x,), pAi(a„ f>;, z(), z;) 0(cf, dt) z ; 



96 F.. Fried, A. F. Pixley 

since the middle term is xt if and z, if at^bt. Hence, by Corollary 3.14, 

x в(а, b) pb(p*(a, b, x), pA(a, b, z), z) 0(c, d) z, 

establishing (3.7)'. Complementing both sides of (3.7)' we obtain 

(3.10)' y(a, b)Ay(c, d) = у(p*(a, b, с), pA(b, a, d)). 

Formulas (3.6)' and (3.7)' together with some additional properties of principal 
congruences in discriminator varieties can also be found in [4]. 

5. Weakly associative lattices 

Recall from [7] that an algebra A = ( A , V, A) is a weakly associative lattice 
(W AL) if the operations V and A are binary and satisfy the following identities in A: 

xVx = x, xAx = x, (idempotence) 

хУу = уУх, xAy = yAx, (commutativity) 

(5.1) xA(xVy) = x, x\J(xAy) = x, (absorption) 

((*Az)V0>Az))Vz = z l . 
> (weak associativity) 

((xVz)A(yVz))Az = zJ 

WALs have also been called trellises by SKALA [17]. Tournaments ([7]) and the 
algebras W„ of Section 2 are special cases of WALs. A WAL has the unique bound 
property (UBP) ([5]) if for distinct a,b£A, aSc and b^c imply c = aWb and, 
dually, d^a, d^b imply d=aAb. For brevity we shall call a WAL with the UBP 
simply a UBP. In [6] it was shown that for a WAL A the following are equivalent: 

a) A is a UBP, 
b) A is SI and satisfies the congruence extension property. 
c) Each subalgebra of A is simple. 

The following theorem adds a new equivalence to this list. Combined with Theorem 
2.3 it also provides a new proof that a finite UBP of more than two elements is 
functionally complete. (See [5] for the original proof.) 

5.2 T h e o r e m . A WAL A is a UBP if and only if the dual discriminator is a 
polynomial of A. In particular the WAL polynomial symbol qu(x, y, z), explicitly 
constructed in the proof below, has the property: For any UBP A, qA(x, y, z) is the 
dual discriminator of A. 

P r o o f . If the dual discriminator is a polynomial q of A and if A is not a UBP, 
then for some a,b£A, a^b, a^c, b^c, and aVb^c; while q(c, aVb, a)=a. 
But for the three element chain with elements {a, aVb,c} the mapping a onto 2 
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given by: a a = 0 , (aV£)a=ca = l, is a homomorphism. But since q{\, 1,0) = 1, 
this is a contradiction. Hence, A must have unique upper bounds, and dually, 
unique lower bounds. (Essentially the same proof is used in [5, Theorem 4].) 

Conversely, define the polynomial symbols h, h', g by 

h{x, y, z) = (zAy)V(((zAx)Vy)Ax), 

h'(x, y, z) = (2Vx)A(((zVj)Ax)Vy), 

g(x, y, z) = h(h(x, y, z), h'(x, y, z), z). 

Let A be any UBP. Then h and h' are easily seen to induce majority functions on 
A and hence so does g. 

Consider a pair a,b£A such that a-^b. Then 

(5.3) a < b TS (cAa)Vfe for all c£A. 

Since cAa is a lower bound for the elements a and (cAa)V6, which by (5.3) are 
distinct, we have 

((cAa)Vb)Aa = cAa, 

because A is a UBP. Therefore hA(a, b, c)=(cAb)\/(cAa) for a<b. Thus, since 
c is an upper bound for both cAb and cAa, 

hA(a, b,c) = c unless cAb = cAa < c. 

In the latter case both cAa and a are lower bounds for the distinct elements a and 
b. Hence cAa=a (which means aSc ) . Also cAb=ct\a implies b^c. Hence 
we have 

hA(a, b,c) = a if a = b or 6 ^ o a ] 
(5.4) , . f for a s. b and arbitrary c. 

= c otherwise J 

Dually, from the definition of K, we obtain 

h'A(a,b,c)—b if a = b or a ^ c < b] 
(5.4)' , . r for a ^ b and arbitrary c. 

= c otherwise J 

Now consider gA(a, b, c) for a^b. By (5.4) and (5.4)' and the fact that hA 

is a majority function, we have four cases: gA(a,b,c) equals one of hA(a,b,c), 
hA(a, c, c)=c, hA(c, b,c)=c, or hA(c,c,c)=c, i.e.: 

gA(a, b, c) = hA(a, b, c) or c. 

The case gA(a,b,c)=hA(a,b,c) occurs when a=b (yielding gA(a, b, c)=b) or 
when b ? ± o a and a ^ c - ^ b . Since A is a UBP these two inequalities together 
with yield the contradiction a=b. Hence we have 

(5.5) gA(a, b,c) = b if a = b, and = c if a < b. 
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Now let u{x,y, z) be any WAL ternary majority polynomial symbol. The simplest 
is apparently 

u (x, y, z) = [(xA z)V(yA z)]V (xA y). 
Put 

fix, y, Z, w) = u(g(x, y, z), g(y, w, z), z). 
Since u* is a majority function, if a^b^d and c is arbitrary, from (5.5) we obtain: 

fA(a, b, c, d) = uA(b, b,c) = b if a = b = d, 
= uA(b, c,c) = c if a = b < d, 
= uA(c, b, c) = c if a < b = d, 
= uA(c, c, c) = c if a -= b < d. 

Thus for a^b^d and c arbitrary we have 

(5.6) fA{a,b, c,d) = b if a = b = d, and = c otherwise. 
Finally, put 

<7„(x, y, z) = f(xAy, x, z, x\Jy). 
By (5.6) we have 

q£(a, b,c) = a if aAb = a = aVb, and = c otherwise. 

Since aAb=a=aWb is equivalent to a=b, AA is the dual discriminator of A. 
Next we shall prove that the explicit polynomial symbol given in Section 2 

is the dual discriminator for the triangle algebra W3 . In fact we prove more. 

5.7 T h e o r e m . The polynomial symbol 

q,(x,y,z) = [(zA (xA >')) V (* V )0] A [z V (* A y)] 

induces the dual discriminator on the triangle algebra W3 and on no other WAL of 
more than two elements. 

P r o o f . It is routine to check that qA is a majority polynomial on any WAL 
A. Hence on W3 agrees with the dual discriminator if any two of its argu-
ments are equal. Otherwise, using symmetry, we may suppose z=aY and either 
JC=0, y=\, or x = l , 7 = 0 . In both cases xAy=0 and xVy= 1. Thus 

qT*(x, y, z) = [(a^OÍV lJA^VO] = a1=z-
so that qt induces the dual discriminator on W3 . ,• i . 

To complete the proof observe that if A is a WAL which is not W3 and has 
more than two elements, then it must'contain an incomparable pair b and c. Put 
a=bAc. Then aAb=a and aVb=b, so 

qA(a, b, c) = [(cAa)Vi>]A[cVa] = bAc = a c. : '' 

But a^b since b and c are incomparable. Hence qA fails to be the dual discri-
minator on A. • I 
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In contrast to the unique property of the polynomial symbol qt expressed by 
Theorem 5.7, any polynomial symbol which induces the dual discriminator on 
W5 also induces the dual discriminator on every W„, « > 5 , This is so since each 
3-generated subalgebra of any such W„ is evidently isomorphic to a subalgebra 
of W5. (See Problem 2, Section 6.) 

Theorems 5.6 and 5.7 together with Theorem 3.2 yield the following result 
immediately. (Since it is routine to check that qu and qt induce majority polynomials 
in any WAL, equations a) of Theorem 3.2 are omitted from ii) below. Also we 
may use d') of Theorem 3.2 since WALs are idempotent.) 

5.8. T h e o r e m . Let B denote the set of identities whose members are the 
following: 

i) the identities (5.1) defining WALs, 
ii) the identities (from Theorem 3.2J: 

q(x, y, q(x, y, z)) = q{x, y, z), q(z, q(x, y, z), q(x, y, w) = q(x, y, z)), 
q(x, y, zVw) = q(x, y, z)V q(x, y, w), q(x, y, zAw) = q(x,y, z)hq(x, y, w). 

Then the set Bu, obtained from B by taking for q the polynomial symbol qu defined 
in Theorem 5.3, is an equational base for the variety U generated by all UBPs. The 
set Bt, obtained from B by taking for q the polynomial symbol q, of Theorem 5.7, 
is an equational base for the variety T generated by the triangle algebra W3. 

Since the identities B of Theorem 5.8 contain only four variable symbols, we 
have the following corollary. 

5.9 C o r o l l a r y . Let X be a WAL. If each subalgebra of A which is generated 
by four or fewer elements is contained in the variety U (respectively T), then A is 
contained in U (respectively T). 

In [7] a weaker version of Corollary 5.9 was established, namely for the variety 
T only and with "five" instead of "four". Hence Corollary 5.9 solves the problem 
raised in [7] (following Corollary 1 of Theorem 2). 

6. Problems 

1. Find a simple property P of varieties such that: A variety V is a dual dis-
criminator variety if and only if V has a) a majority polynomial, b) the congruence 
extension property, and c) property P. 

2. Does Theorem 5.7 have an analog for W4, i.e.: is there a WAL polynomial 
symbol q(x, y, z) which induces the dual discriminator on the UBP W4 and on 
no other WAL of more than three elements? 

7* 
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Quasisimilar operators with different spectra 

D O M I N G O A. H E R R E R O 

1. Introduction. Let be the Banach algebra of all (bounded linear) 
operators acting on the complex Banach space X. T££f(X) and are called 
quasisimilar (q.s.) provided there exist quasi-invertible continuous linear maps 

and Y: X-9) such that TX=XA and YT=AY (X is quasi-invertible 
if Ker X= {0} and Ran X is dense in X; [48]). 

As in [38], the four (weakly closed identity containing) subalgebras naturally 
associated with T£g(X) will be denoted by si{T), si"(T), si' (T) and si"(T) 
(the algebra generated by the polynomials in T, the algebra generated by the ra-
tional functions of T with poles outside the spectrum a (T) of T, the commutant 
and the double commutant of T, resp.). Then si(T)czsia(T)(z^"(T)csi'(T) 
and the corresponding invariant subspace lattices satisfy the reverse inclusions: 
Lat T = Lat si (71) z) Lat sia (T) D Lat si" (T)z> Lat si' (T). (These are called the 
lattices of invariant, analytically invariant, bi-invariant and hyperinvariant sub-
spaces, resp. As usual, subspace will denote a closed linear manifold of 3t\) 

Quasisimilarity was first studied by B. SZ. -NAGY and C . FOIA§ ( [48 ] ; see also [ 1 7 ] ) 

in connection with the invariant subspace problem in Hilbert spaces; namely, if 
A is q.s. to T, and T has a non-trivial hyperinvariant subspace, then so does A 
( [17 ; 39; 4 1 ] ) . A and 7 need not have the same spectrum ( [ 4 8 ] ) ; however, a{A)C\a(T) 
cannot be empty ([39]). Furthermore, every component of a (A) (a(T)) intersects 
<r(T) ((7(A), resp.; [32]). 

Several results scattered through the literature assert that, under suitable 
restrictions on T or A or both, a (A) actually contains a(T) or coincides with it 
([9; 11; 39]) and there also exist examples of q.s. operators with different spectra 
([39; 48]; see also Section 2, below). 

This article is primarily concerned with the following questions: 
(1) Under what conditions on Tdoes " A is q.s. to T" imply "A is similar to T"? 
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(2) Under what conditions on T does "A is q.s. to T" imply G(A) = O(T)7 
(3) When can we assert that a (A) is strictly larger (or strictly smaller) than 

ff(T) for some A q.s. to T1 
It is completely apparent that if T satisfies (1), then it also satisfies (2). On the 

other hand, two q.s. nilpotent operators with infinite dimensional range acting 
on a separable Hilbert space need not be similar ([3]; see also [18; 36]), so that 
•a T satisfying (2) need not satisfy (1). 

In [2], C. APOSTOL proved that A is q.s. to a normal operator if and only if 
LatA contains a countable basic system of subspaces {ft„}™ such that 
A |ft„ (A restricted to ft„) is similar to a normal operator for every n. (A countable 
family {£„}i of subspaces of the Banach space X is called basic if the subspaces 

m 
Xn and X'n= \J Xk are complementary for every n and p) £¿={0}; [2]). In Section 

kin 1 
2 it will be shown that, under suitable (very general) conditions, an operator T 
having a denumerable basic system of invariant subspaces is q.s. to operators A 
and B such that either o(A) is strictly smaller than a (T), or a(B) is strictly larger 
than er (T), or both. To the best of the author's knowledge, this is the only known 
way to produce q.s. operators with different spectra. Recently, L. A. Fialkow showed 
that two q.s. non-invertible injective bilateral weighted shifts need not be similar; 
however, they necessarily have the same spectrum and this spectrum can be a disc 
of positive radius. Since Fialkow's operators do not admit any non-trivial pair 
of complementary invariant subspaces (see [22]), they add some extra support 
to the following 

C o n j e c t u r e 1. Assume that Lat T does not contain any denumerable basic 
system of subspaces. Then o(A) = o(T) for every A q.s. to T. 

The strict multiplicity Ji(s4) of a subalgebra si of is defined as the in-
fimum of card (T), taken over all the subsets T of X such that X = 

n 
~{2 djXj'. Aj£s4, Xj€r, « = 1, 2, ...}. If T can be taken equal to the singleton 
{x0}, then sf is called a strictly cyclic algebra and x0 is called a strictly cyclic vector 
for si. According to [28, Theorem 8], if fi[si"(T)]<^, then T satisfies (1). The 
main part of this paper is devoted to exploit this result and the constructions in 
[6] in order to show the existence and/or the density of operators satisfying 
certain properties related with quasisimilarity and an approximation problem, 
acting on a complex separable infinite dimensional Hilbert space ft (throughout 
this paper ft will always denote a space of this type). 

Recall that T£ <£(ft) is biquasitriangular (BQT) if ind ( / . -7 , ) = 0, whenever 
?. — T is a semi-Fredholm operator ( [ 4 ] ) . C . FOIA§, C . PEARCY and D . VOICULESCU 

[19] proved that for every T£i?(f t ) and e>0, there exists T r f ^{S \ ) such that 
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| | r - T J | < £ , (the ideal of compact operators), 7"e = norm-lim U„TU* 
for a suitable sequence {{/„} of unitary operators, Lat Te contains a denumerable 
family of pairwise orthogonal subspaces and TF is q.s. to a BQT operator 
(Te£(BQT)qs, in the notation of [19]). This strong result suggested to the authors 
of that article the following question 

IS(BQT)QS = J?(Z)7 

The answer is no. Indeed, the following sets are (norm-)dense in JSf(3E): 
(A)={T: T is q.s. to some A£(BQT) with a(A) = a(T)} [19]; 

. ( B ) = {7": T is q.s. to some A£(BQT) wi th O(A)ZXJ(T), A{A)^A(T)}-, 
(C)= {T: T is q.s. to some A£(BQT) with o(A)acr(T), a{A)^a(T)}-, 
(D)={T: T is similar to A®B, fi[si"(A)] = fi[^"(B*)]=l, a(A)C\o(B) = ®, 

IA—A and Xb—B* are semi-Fredholm operators of index — °° for suitably 
chosen points l A , AB£C}. 

Clearly, for every such T and every L q.s. to T, L is actually similar to T and 
it has the same spectrum as T. Therefore, ( D ) c {T: T satisfies ( l ) } \ ( f i g r ) 9 S . 

(E)mn = \T: T, A and B are as in (D), except that fi[si"(A)] = m and 
fi[si"(B*)]=n} (for every m, n such that m, n= 1, 2, ... or c, the power 
of the continuum); 

(F)={T: a(T)—a(L) for every L q.s. to T, but ¿f(T)^.9>QS(T)}, where £f(T) 
[Sfqs(T), r esp )={A£Se(S i ) : A = WTW~i for some invertible (A is q.s. 
to T, resp.)}. 

Recall that si a ¿¡C( X. ) is a reflexive algebra if si = Alg Lat si, where 
A\gI={A£Se(X)\ L a t / l 3 £ } (Z=any family of subspaces of £). T£Se(X) is 
called reflexive if si(T) is. The following results are "in the air": The sets 

(G)={T: T is reflexive}; 
(H)={T: si"(T) is reflexive}; 
(I) = {T: si" (T) is reflexive}; 
(J) = { r : ^ ' ( r ) is reflexive}, 

as well as their complements in J?(ft), are dense in 
There are at least two different extensions of the notion of similarity related 

with approximation problems: A and T are asymptotically similar if their similarity 
orbits have the same closure (i.e., ¿f(A)~=Sf(T)~; [7; 33]). They are approximately 
similar if /l = norm-lim W„TW~i for a sequence {W„} of invertible operators 
with sup || W„\\ || W^W < °° ([24]). Since asymptotic similarity (and, a fortiori, 
approximate similarity) preserves the spectrum and every part of it (see [33]), it 
will not be difficult to conclude from the results and examples of this article and 
the results of [7; 8; 33; 34; 35] that, in general, Sf{T) is a proper subset of Sfap(T)V\ 
n ^ s ( 7 ) (¡fap(T)={A\ A is approximately similar to T}<z£f(T)-) and the 
equality £f(T) = £f(T)~, implies that T is similar to a normal operator 
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with a finite spectrum and therefore £f(T) =-9'qs(T) =-9'ap(T) =9'[T)- (this is 
false for arbitrary Banach spaces; see [7; 35]); however, the equality £f(T) = 
=Sfgs(T) does not imply Sf(T) =£f(T)~~ (even for Hilbert spaces; [28; 35]. Since 
approximate similarity preserves every Schatten p-ideal and asymptotic similarity 
does not preserve them, it is immediate that these two notions are different; see 
[33; 46] for details). 

In [24], D . W . HADWIN defined the approximate double commutant of T££?(St) 
by appr (T)"={Z,G.£?(ft): \\LAn—AnL\\ —0 ( « - » ) whenever {An} is a bounded 
sequence such that \\TA„-A„T\\-+Q («-<*>)}. He proved that app r (T ) "c z 
czstf"(T)f)C*(T) (where C*(T) denotes the C*-algebra generated by T) and 
conjectured ([24, Conjecture 2.5]) that appr (T)"=s/"(T) if and only if T is 
algebraic. This conjecture is false. Indeed, (K) = {T: appr (T)"=si"{T)}, as well 
as its complement, is dense in j£?(ft). 

The interested reader will have no trouble to prove the density in of 
new different classes of operators somehow related with (A)—(K). 

The author is deeply indebted to R. G. Douglas, L. A. Fialkow, D. W. Hadwin 
and C. Pearcy for sending him their unpublished papers (the reader will find very 
useful information in Fialkow's papers [14; 15; 16], which have several points in 
common with the present article). The author also wishes to thank J. Barría, 
M. Cotlar, A. Etcheberry, B. Margolis and M. B. Pecuch for many helpful 
suggestions. 

2. Operators quasisimilar to orthogonal direct sums. Given a family {#"„} of 

Banach spaces, let 9En denote the hilbertian sum of the 3T„'s (i.e., is the 

closure of the algebraic direct sum with respect to the norm || {x„}|| = 

= (|wr)-
L e m m a 1. Let ty be the hilbertian sum of the family {STn} of Banach spaces 

00 

and let {r„} (Tn£&(2Cn)) be a uniformly bounded family of operators. Let 7=© T„ 
1 

be the operator defined in the usual fashion on and assume that ||(A — 7"„)_1|! g 
^ <¡>[dn(l)— e„] for d„(X) >£„, where <¡>(t) is a non-increasing function of t (0 < /<«>) 
independent of n, {e„} is a sequence of non-negative reals converging to 0 and dn (A) = 

= dist[ l , <7(r„)]. Then G{T)=O~, where A = \Jo{T¿. 
i 

P r o o f . Clearly, X — T is invertible in if and only if X — Tn is in vertible 
in J2?(ár„) for every n and ||(A — T J - 1 ! ^ C for a constant C depending only on X. 

From our hypothesis about the growth of ||(A — r n ) - 1 | | , we can easily see 
that, given £>0, |](A— TJ^'Ü ^<P [dist {A, a}—e] for every X such that dist [A, 
and for all «>«0(e), whence the result follows. • 
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E x a m p l e 1. Clearly, the function $ must satisfy $(t)^l/t, but the con-
dition of Lemma 1 cannot be replaced by | | ( A — 1 ¡ | = O[l/i/„(0]- Indeed, if 

O/")^«; where {P„} is a sequence of pairwise orthogonal projections of i 
infinite rank in the Hilbert space ft whose partial sums strongly converge to the 
identity I, then H is an hermitian operator unitarily equivalent to H(oo) (the ortho-

CO 

gonal direct sum of denumerable many copies o f / / ) , er(/7)={0} JJ { l / « } = E { H ) 

(E( •) denotes the essential spectrum) and || W(l-H)-1 W^WsW W\\ ¡| W~}\\ld(X) 
for every invertible and for every X^a(H) . 

¥(H)~ contains a BQT operator A such that o(A)=-E(A) = o(HyjK, where 
K is an arbitrary compact connected set containing the origin ([34]), i.e., there exists 
a sequence A„= WnHW~1 converging to A in the norm. It readily follows that 

B= © A„ is q.s. to H and it can be shown as in [13] that a(B) = E(B) = a(A). 
i 

E x a m p l e 2. If lim f<P(t)= °° for every. f > 0 , then there exists a universal 
quasinilpotent operator Q in ¿C(S\) (i.e., if{Q)~ contains every nilpotent) such that 
l l ( ^ - 0 _ 1 l l = m a x {* ( | i | ) , ( l+e ) |A | - i } (for an arbitrary prescribed e>0) , Q = Q(°°\ 
Q is the orthogonal direct sum of denumerable many nilpotent operators acting 
on finite dimensional Hilbert spaces and is q.s. to a compact quasinilpotent operator 
(see [3; 8; 31]). 

Proceeding as in Example 1 it is not difficult to construct a BQT operator 

B= © Bn q.s. to Q such that o(B)=E(B) is an arbitrary connected compact set 
i 

containing the origin. 

T h e o r e m 1. Assume that TZ,Sf(^) admits a denumerable basic system of in-
variant subspaces {$"„} and let Tn==T\Sfn for n= 1,2, ...; let <& be the hilbertian 

sum of the %n's and let be defined by B-© Tn. Then B is q.s. to T, o~ a 
i 

c<r(5)c(7(r), every component of o(B) or a{T) intersects op(T) — ap(B) = 

= (J ap{Tn)c.a (op(-) denotes the point spectrum) and ap(T*) = ap(B*) = 
i 

= IJ ap(T*)(Z(7. Assume, moreover, that SCn is actually (isomorphic with) a Hilbert 
i 

space for every n; then there exist operators Ln similar to Tn, « = 1 , 2 , . . . , such 

that A=(BL„ is q.s. to T and a(A)=o~. 
i 

N o t e . In the case when 9C is a Hilbert space and T* is defined via inner pro-
duct, <J(T*) = <J(T)*, where K* = {X: ?,£K} is the symmetric of the set KciC 
with respect to the real axis. In this case the corresponding inclusion should be 
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read ap{T*)(Za*. It is convenient to remark that 3Cn can be isomorphic to a 
Hilbert space for every n even if 9C is not; namely, it T is a diagonal operator 
with respect to a Schauder basis of 9C and the 5T„'s are the one-dimensional sub-
spaces spanned by the elements of that basis. 

P r o o f . That B and T (and A when Sf„ is a Hilbert space for every n) are actu-
ally q.s. follows by standard arguments (see, e.g., [2; 39]). It is clear that 
/.£o(B) if and only if either ?.£a(Tn) for some n or the family {(A — T J - 1 } is 
not uniformly bounded. Now, if ||(A — T'n№))xn№)|| — 0 (A: — «>) for a suitable sub-
sequence {«(&)}" of natural numbers and for suitably chosen unitary vectors 
xn(k-y-%n(k)i then Jim ¡ | ( / - r )x n ( t ) | | = 0 and therefore X£o(T). Hence, <j~<zo(B) 
and o(B)\oczo(T). 

Now assume that S£n is a Hilbert space for every n. According to [30], for 
each « = 1 ,2 , . . . , there exists an operator Ln£££{9Cn) similar to T„ such that 

— i.«)-1!) ^ l/[t/„(A) — 1/«] for all X such that dn{).)>\jn. Define A ££?($/) q.s. 

to T and B by A = @Ln. By Lemma 1, a(A) = a~. 
i 

The remaining spectral inclusions follow from [13; 25; 32]. • 
By using [12, Theorem 1.4], we obtain 

C o r o l l a r y 1. Let T be as in Theorem 1. If o(Tn)f]o(TJ = ® for a pair of in-
dices n, m then T has a nontrivial hyperinvariant subspace. 

E x a m p l e 3. (The main example) Combining the arguments of the previous 
examples and the results of [2; 13; 29; 31; 34; 35; 39] it is possible to show that 
if T is a Hilbert space operator such that Lat T contains a denumerable basic system 
of subspaces {«„} such that Tn = T\SKn either satisfies An@(). + QB)£Sf(Tn)- for 
some An and some nilpotent Qn with Q^O or a universal quasinilpotent, or 
a(Tn) contains more than n points, then given an arbitrary compact set KczC 
such that every / £ K\cr ~ belongs to a component of K that intersects 

<;„= H [ U a ( T n ) Y i then there exist A and B q.s. to T such that a(A) = K{jG~ 
m = l n—m 

and a(B) = K(Ja(T). The details of the construction are left to the reader. 

R e m a r k s , a) Let be a Banach algebra with identity. It is well known that 
the mapping a— o(a) from J1 into the family of nonempty compact subsets of 
C is upper semi-continuous with respect to the Hausdorff metric, but it is not 
continuous, in general ([5; 25; 29; 40; 42; 44]). In certain special cases(e.g.,a=lima„ 
for a commutative sequence {a„}, or a(a)=a totally disconnected set, etc.) it is 
possible to prove that a—a(a) is actually a continuous mapping. By a minor 
modification of the proof of Lemma 1, we can obtain the following sufficient con-
dition: "If a= l ima„ for a sequence {cz„} satisfying the conditions of Lemma 1, 
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then <x(a)=lim a(a„) (in the Hausdorff metric)". Examples 1 and 2 show that 
this condition cannot be too relaxed. 

b) In Lemma 1 and Theorem 1: The results remain true if the hilbertian sum 

is replaced by ll{x„}||=(j^ l |xj p) 1 / p for some p, etc. 
n=i 

c) If T is decomposable, then a(T)c.a(A) for every A q.s. to T([10]). Further-
more, if 9Ji£Lat T and A is q.s. to T, then a{T\W)f\a{A)^ ([14]); thus, if for 
every ).£a(T) and every e > 0 there exists an £6 Lat T such that a{T\yRk £ ) c 
cA(A, e) = {z: |A—z|<e}, then it readily follows that a(T)<^a(A) for every A 
q.s. to T. The hyponormal operators have the same property ([9]). The spectral 
inclusion could be strict, e.g., for the operators of Examples 1,2,3. However, by 
combining the results of [23] and the examples of [28] it is possible to show that 
for every infinite dimensional separable Banach space 3C, there exist operators 
A, O £ ¿£(9C) such that A and Q are nuclear operators, Q is quasinilpotent, a (A) 
is the union of {0} and a sequence of points converging "very fast" to 0, si(A) 
and si(Q) are strictly cyclic algebras, sd(A) (-si(Q), resp.) is se.misimple ( a radical 
algebra, resp.; see definitions in [42]), every L q.s. to A (to Q, resp.) is actually 
similar to it and it has the same spectrum as A (as Q, resp.). Moreover, for every 
finite m, Lat A contains a basic system of invariant subspaces, which are 
maximal spectral subspaces for the decomposable operator A ([10]); however, 
Lat A does not contain any denumerable basic system of subspaces (see [28]). 

d) Every subspace in a basic system of invariant subspaces of ££(3C) is 
actually bi-invariant. Many examples regarding operators T such that a(A)?*a(T) 
for some A q.s. to T deal with operators having a denumerable basic system of 
hyperinvariant subspaces. This is not always the case: indeed, a straightforward 
computation shows that for the q.s. operators A and T involved in the example 
of HOOVER [39], every pair of non-trivial hyperinvariant subspaces of T (or A) has 
a non-trivial intersection. 

e) There is little hope to improve [12, Theorem 1.4] or Corollary 1. Indeed, 
if U denotes the bilateral shift "multiplication by eie" in L2 (Unit circle, Lebesgue 
measure) and w(ei(,)=sign 9 ( - 7 t < 0 < + ? r ) , then H2 and uH2 are invariant (but 
not bi-invariant!) subspaces of U such that H2f]uH2= {0}, L2 = H2\/uH2, but 
(by Apostol's result; [2]) U cannot be q.s. to (U\H2)®(U\uH2). 

f ) [15, Theorem 2.1] admits the following mild generalization, which follows 
from Theorem 1 and the same proof as in [15]: If i f (ft) and Lat T contains 
a basic system of subspaces {&„} such that T„ = T i s a spectral operator for 
every n, then T is q.s. to a spectral operator. 

3. The subsets (A), (B) and (C) are dense in From this point on, we 
shall only consider Hilbert space operators. The density of (A) follows from [19]. 



J 02 
D o m i n g o A. Herrero 

L e m m a 2. Given T£jS?(ft) and £>0, there exists Tt££e{&) such that 
|| T— r e | | <£ and Tt is similar to (A + Q)®C, where a (A + Q) lies in the unbounded 
component of C\o(C), E(T)=E{C) and Q is an arbitrary operator such that 
«x(ß)cd(0,e/5). 

P r o o f . Proceeding as in [45], we can find an L€JSP(ft) such that 
| | r - L H 3 e / 4 and 

MÖ3 
with respect to an orthogonal direct sum decomposition of ft into 
two infinite dimensional subspaces, where dist [A, ff(r)] = dist [A, c7(C)] = s/2 and 
A lies in the unbounded component of C \ f f ( C ) . 

By the corollary of ROTA [ 4 3 ] (see also [ 3 0 ] ) , we can find a Q' similar to Q 
such that Hß'll <E/4. Then 

is similar to (A + 2 ) © C, by Rosenblum's corollary ([41, Corollary 0.15]) and 
| | r - 7 J S | | r - Z . | | + | | e ' H e . • 

As in HOOVER [39], we can find two q.s. operators g i and Q2 such that 
is quasinilpotent and o(Q2) = A(0, £/6)~, and ¡IQjll <s/4, j= 1,2. By using the 
results of [19], C can be replaced by an operator Ce£{BQT)qs with the same 
spectrum as C such that ||C —Ce||<e. Then the operator T • given by 

t ° J ~ { o c j 

satisfies \\T—Tej\\<£, j—1,2, and it is immediate from our construction that 
TEl and Tc2 are q.s. operators of the class (BQT) q s . 

Since a (T e l ) is a proper subset of o(Ti2), it follows at once that (B) and (C) 
are dense in i f (ft). 

Given T£ £?(&), let TE be constructed as in Lemma 2 with Q = V=the Volterra 
operator, and let W be an invertible operator such that TS=W[(X + V)(B 
©C] Then s/(TE) =W[s4{V) ©si(C)] W~\ Alg Lat s/(Te) = W[k\g Lat V)© 
©AlgLat and similarly for the other three algebras naturally asso-
ciated with T£ (all these facts can be easily checked by using the results of [41]); 
moreover, appr (TE)"= W[appr (K)"®appr (C)"] W'1 ([24]). 

Since AlgLat V ([41]) and 
T£appr(K)" (see [41] or [20, Proposition 6]), it follows that none of the four al-

•gebras associated with Tz is reflexive and appr (Te)" ^¿rf" {Tt). Thus, we have 

C o r o l l a r y 2. The complements of the sets (G), (H) , (/), (J) and (K) are dense 
in J5?(ft). 
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4. (D) is dense in áf(St). The main ingredient is the construction of a large 
family of operators with a strictly cyclic double commutant. 

Let Q be a nonempty bounded connected open subset of the plane such that 
dQ (the boundary of Q) consists of finitely many pairwise disjoint regular analytic 
Jordan curves (We shall say that "Q is an open set with analytic boundary" or 
"dQ is analytic" as a shorthand notation) and let A — {A1, ..., l m } be a finite 
subset of C \ i 2 ~ having exactly one point in every component of this last set. Let 
e > 0 be small enough so that AC\(Q~+et)=® (where K+A = {z+X\ z£K}, K<zC) 
for every r£[0,1] and define r = {(z, i )€CX(0, 1): z-etfJ)Q). It is apparent that 
there exists an analytic diífeomorphism <p: {(z, / )€CX(—1, 2): z — etidQ}^ 
where is the union of m open annulus with pairwise disjoint closures in the 
plane; then <p | f : T — Í2„ = <¡¡>(T) is an analytic diífeomorphism such that if dm0 

denotes the planar Lebesgue measure on Q0 and dmr is the area measure on f 
induced by Lebesgue measure in R3, then there exists ó, 0<<5< 1, such that 
dm0{<p(fi)]Smr(B)(1 /5)m0[(p(B)] for every Borel set fici; moreover, q> can be 
chosen to be a conformal mapping. 

The Sobolev space W2,2 (Q0) of all distributions u on Q0 whose distributional 
partial derivatives of order belong to L2(Q0,dm0) can be identified 
with a Banach algebra (under an equivalent norm) of continuous functions on 
£2g (see [1, Chapter V]) and it is clear that <p induces an isomorphism between 
this space and W„=W 2 ' 2 (T) (defined in the obvious way on the analytic differenti-
able manifold T). Furthermore, by using this isomorphism, it is easily seen that 
there exists a constant C such that, given f,g£ W „ , the pointwise product 
(.fg)(z,t)=f(z,t)-g(z,t) defines an element of and | | / g | | s C | | / | | ||g|| (where 
|| • || denotes the norm in W„) ; hence, W „ is a semisimple Banach algebra with 
identity e(z,t) = l, under an equivalent norm. The Gelfand spectrum Ji(W„) 
can be naturally identified (via point evaluations; see [1;21]) with r ~ . 

Let A c o =A 2 , 2 ( r ) be the closure in of the functions of the form 

f(z,t) = Z t k f k ( z ) , » = 1 ,2 , . . . , ( # ) 
k=0 

where the fk's are rational functions with poles in a subset of A (these are the 
"analytic elements" of By using the maximum modulus principle and Runge's 
theorem (see, e.g., [21]), it is easily seen that every / € A „ can be continuously 
extended to a unique function defined on 3 = {(z, i )€CX[0, 1]: z—£í£í2 -}, an-
alytic with respect to z£Q+et for every /6[0, 1] and, on the other hand, every 
function / (z , t) satisfying these conditions such that / | T € W „ , is an element of A„,. 

, A^ is a subspace of W „ invariant under r = M 2 C i f ( W M ) defined by 
Tf(z, t)=zf(z, t) (here and in what follows, Mg denotes the operator "multiplica-
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tion by g"). Moreover, A„, is a Banach algebra with identity e, and Jt (A^) can 
be naturally identified with S. 

Let L=T\A„ and let Pr: C X R - C be the projection onto C {Pr(z, r ) = z ) ; t h e n 

L e m m a 3. With the above notation: 
(i) o(T)=E,(T)=Er(T)=El(L)=Pr(r-), where £,(•) (Er(-), resp.) denotes 

the left (right, resp.,) essential spectrum. 
(ii) a (L) =Er (L)=Pr (£). 

(iii) K e r ( A - L ) = {0} and dim Ker (A-L)* = °° (so that ind ( A - L ) = 
for every X£o(L)\E,(L). 

(iv) si"(L)=jtf'(L) = {Mg : g£ A„) , i.e., the double commutant of L is the 
maximal abelian subalgebra of consisting of all multiplications by elements 
of A„ and this is a strictly cyclic algebra with strictly cyclic vector e. 

P r o o f , (i), (ii) and (iii) follow from the previous observations. The proof 
is left to the reader. 

(iv) By using several well known results about strictly cyclic algebras 
([26; 27; 37]), it suffices to show that, if then A=Mg, where g=Ae. 
The remaining of the proof is an "ad hoc" modification of an argument 
used in [28]. 

Given t], T£[0, 1], ri^T, choose <5, 0<<5< \r]—x\/S, and let hn(z,t)£ A„ be 
the restriction to f " of the function defined by 

(0 outside (>} — 3 S, t/ + 3<5), 
(r->7 + 3<5)2/2<52 in fo-35, »1-25], 
1 -(/-!/+<5)2/2<52 in [>/ - 26, r\ - 5], 
1 in [ q - 5 , t]+5], 
l-(t-ri-d?/2S* in [ti+6,ti+2S\, 

,(f->;-3<5)2/2<52 in [ti+2S,t] + 38]. 

K(z,t)=< 

Define hx(z, t)=hn(z, t-rj+x) and let [ 0 , 1 ] - [ T - 4 S , T + 4 5 ] N [ 0 , 1 ] be an 
arbitrary C°° bijection such that ij/(t)=t in [ T — 3 ( 5 , T + 3 5 ] D [ 0 , L] and 
min {<A'(O:i€[0, 1]}>0. 

Define W T 4 = W 2 , 2 ( { ( Z , I ) € T : | R - T | < 4 < 5 } ) exactly in the same way as W „ 

and let Tt S be the "multiplication by z" in this new space. Let A t 4 be the sub-
algebra of the "analytic elements" of W t s (defined in the obvious way) and 

The properties of ij/ make it clear that S: ATtS-*Am defined by Sf(z, t}~ 
= / ( Z + E [ ^ ( / ) — I ] , I/R(I)) is a (not necessarily isometric) isomorphism .of 
Hilbert spaces. 

Our choice of 5 makes it possible to find a disc A = A (A (rj, x), e8j2) contained 
in 8+&i such that A~C\o(Lxt)—$. 
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Finally, let R: -*H2{A) be the "restriction in the »/-fiber" mapping defined 
by Rf(z)=f(z, f])\ziA and let LA be the "multiplication by z" in H2(A). 

Clearly, if Mn and Mt are the multiplications by hn and hz, respectively, then 
(L), so that L(MnAMt)-(MnAMx)L=Q whence we obtain 

0 = R L M n A M z S - R M n A M x L S = L d ( R M n A M r S ) - ( R M ! i A M l S ) L z < i (Beware! LS^ 
7±SLz S\ however, it is not difficult to check that >p(t) = t in [T-3<5, T + 35] D [0, 1J 
yields MzLS=MtSLTii). 

Since A(LA)=A~ is disjoint f rom O(LR S) by construction, it follows f rom 
Rosenblum's corollary ([41, Corollary 0.13]) that RMnAMtS=0; moreover, since 
5 is an isomorphism, RMnAMT=0. Since Q is connected, the vanishing of f(z,rj) 
on A implies that / ( z , r\) = 0, whence we conclude that the value of Af(z, x) only 
depends on the values of / ( z , t) for t in a neighborhood of x. 

We shall need a little more: A straightforward computation shows that 
\\(t-x)khT(z, O I I - 0 as <5^0, uniformly with respect to k (fc = l , 2, ...). Let / 
be any function of the form ( # ) and let F(z, t ) = f ( z , x); then 

/ ( z , t) = F(z, t)+ % (t - x)kfk(z), 
k=l 

where the fk's are rational functions of z with poles in a subset of A. Since A com-
mutes with Mz, it is clear that AMF=MFA and AMfk—MfkA for £: = 1,2, 
and therefore AF(z, t) = AMFe(z, t) = [MF(Ae)\(z, t) = F(z, t)g(z, t)=g(z, t)f{z, t)y 

which is equal to g(z, x)f(z, x) for t = x. Hence, 

Af{z, x) = AF(z, T ) + 2 fk(2) LIM A[(F-xf HT](z, T) -
k=1 

= g(z, X)/(z, T), for every x£ [0, 1]. 

Therefore, Af(z,t)=g(z,t)f(z,t) on F~ for every / of the form ( # ) . By 
continuity, we conclude that A=Mg. • 

By a formal repetition of the proof of [28, Theorem 8] and the above result» 
we can easily obtain 

L e m m a 4. Let Q, s and A be- as in Lemma 3 and let n be a positive integer. 

Define W „ = © W 2 , 1 (dQ+ke /n , dmk), where dmk is the "arc length measure" oh 
k = 1 

dQ+ke/n and VJ2,1(dQ+ke/n, dmk) is the Sobolev space of all distributions u on 
dQ+ke/n with distributional derivative (with respect to "arc length") in 
L2(dQ+ks/n, dmk), with the norm 

11/11 ={ / [\f(z)\2+\dfldmk(z)\2]dmk}U\ 
BH+ke/n 
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and let A„ be the subspace of "analytic elements" of W„ (i.e., A„ = W„-closure 
{(/1? /2, ...,/„): fk is rational with poles in a subset of A}). 

Then W„ and A„ are semisimple Banach algebras of continuous functions with 
identity (under an equivalent norm), Ji(W„) (Ji(A„), resp.) can be naturally iden-
tified with U (dQ+ke/n)X{k/n) ( U +ke/n)x{k/n}, resp.)cCX[0, 1]. 

k=l 1 
Furthermore, if Tn = Mz in W„, then A„ is invariant under T„, and T„ and its 

restriction L„ — Tn |A„ satisfy 

(i) c(T„) = Et(T,) = Er(T„) = E,(L„) = Er(Ln) = Pr[Ji(Wn)}. 

(ii) a(L„) = Pr[Jt(An)\. 
(iii) Ker (A — Ln) = {0} and dim Ker (A - L„)* = n (so that ind(A-L„) = -n) 

for every A£ (\ (Q + ke/n)<Z(r(Ln)\E(Ln). 
k = 1 

(iv) si' (L„) = si" (Ln) = {Mg: g€A„} is a maximal abelian strictly cyclic sub-
algebra of JS?(AB). 

The proof is left to the reader. 
Given Q with analytic boundary, £ > 0 and A as indicated, and an index 

n, - " » S / i < 0 , we shall denote by T(Q,s,ri) and L(Q, e, n) the operators defined 
by Lemma 3 (for n=—°°) or by Lemma 4 (for - = < n < 0 ) . If + 
we shall use the adjoint operators T(Q*, £, — n)* and L(Q*, e, —rif. 

Now we are in a position to prove the main result of this paper. 

T h e o r e m 3. The subset (£>) of those operators T similar to A®B, where 
(i) a (A)r \a{B)=9\ 

(ii) si"(A) and si"(B*) are strictly cyclic algebras; 
(iii) Aa—A and XB—B* are semi-Fredholm operators of index — for suitably 

chosen ).A and kB\ 
(iv) Sf(A ffi B) © B) and this set does not intersect (BQT)?J; is dense 

in ¿'(ft). 

P r o o f . The result follows by modifying the proofs in [6]. 
By [6, Proposition 1.4] (Indeed, by a minor modification of it), given T£ JSf(ft) 

and £>0, there exists an operator 7i such that. || — 7\]| < e and 

N-l 0 * * * 
0 N2 * * * 
0 0 S1! * * 

0 0 0 AT3 0 
10 0 0 0 N j 
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(with respect to a suitable orthogonal direct sum decomposition of ft into five 
subspaces), where 

a) Nj is normal and a(Nj) = E(Nj) for j= 1 , 2 , 3 , 4 ; 
b) a(N2)\J<j(N9) is the closure of a nonempty open subset Q0 with analy-

tic boundary; t 

c) <T(N1)n<r(N4)=0, (t(Nj) and a(N4) are disjoint unions of pairwise disjoint 
regular analytic Jordan curves, a(N1)cda(N2)r\ dd0 and a(AQczda(N3) f)dQai 
oiNj) («7(^4), resp.) is contained in the open set {2: (A — T) is semi-Fredholm of 
negative (positive, resp.) index}; 

d) is similar to a direct sum F® S2, where F is a normal operator with 
simple eigenvalues (i.e., cyclic) acting on a finite dimensional subspace, such that 
a(F)f] [a (N2) U ff (AQ U ff (S2)]=0, and da(S2)c:Q-; 

e) The Weyl spectrum w(T) of T satisfies the inclusions w(T) = 
=<r(77\{A: ( A - T ) is a Fredholm operator of index 0}cff(Ar2)U<T(AyUff(S2)c 
c w ( T ) e , where K={X\dist (A, (K<zC); 

def 
f ) min. ind (A—52) = min {dim Ker {X — S2), dim Ker (A—S2)*}=0 for every A 

such that (A — S2) is semi-Fredholm. 
Clearly, a(7\) is the disjoint union of its clopen subsets cr(F) and <t(7I)\<t(F) 

so that, by ROSENBLUM [41 , Corollary 0 . 1 5 ) , Tx is similar to F® T2, where 

T9 = 

* * * * 

0 N2 * * * 
0 0 S^ * * 

0 0 0 N3 * 
0 0 0 0 N, 

m p 
According to c), i V 1 = © Nlk ( W 4 = 0 TV4y), where a(Nlk)=E(Nlk) (<r(iV4.) = 

k=l j=l 
=E(Nlj), resp.) is the boundary of a unique component Qk ( Q j , resp.) of the semi-
Fredholm domain of T2, where ind (1 — T2)=nk<0 0, resp.) for all A£i2 t , 
¿ = 1 , 2 , ...,m (X£Qj, 7=1,2, ...,p, resp.). 

Let AM={11, A2, . . . , Xq, fa, n2, . . . , nq} be a finite set having exactly two 
points, Aa and nh, in each of the q components of Q0. Replacing, if necessary, e 
by an s ' , 0 < e ' < e , we can assume that the three sets ct(F), (AM)E and (£20)c are 
pairwise disjoint. 

Let T(Qk,s,nk) (fc=l, '2, . . . , m) and T{Q*,e, - n , ) * (7 = 1,2, ...,p) be the 
operators constructed as above indicated. Since dH{a(Nik), a[T(Qk, e, n t ) ]}^e 
(dH denotes the Hausdorff distance), it follows from [35] that there exists Tk similar 
to T(Qk,e,nk) such that 117^—iVu||<2e, k=1,2, ...,m. Analogously, there exists 
T] similar to T(Q*,s,-itj)* such that \\TJ-N^W^le, j=l, 2, ...,p; thus, if 
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m p 
Mj = © Tk and M4 = © Tj, and Ta is the operator obtained from T2 by replacing 

* = 1 7 = 1 
Nt by Mi and N4 by M4 , then \\T2-T3||-=2e. 

It is clear that Mx has an invariant subspace such that £1=Af1 |9K1 is similar 
m 

to © L(Qk, e, nk) and that M4 has an invariant subspace 9J?4 such that the 
i P 

compression Li of M4 to is similar to © L(Q* e, — n,)*. Since the spectra of 
i 

the components of these direct sums are pairwise disjoint, it follows as in'the proof 
of Corollary 2 that si" (L^ and si" (L4) are strictly cyclic operator algebras. 

Proceeding exactly as in the proof of [6, Proposition 2.1], we find out that 

T3 = 
Lx * 
0 Sa 

0 0 La -'i 

(with respect to a suitable orthogonal direct sum decomposition), where SZ£BQT 
and (j(S3)=E(S3) = Qg. 

Let Ci = 0 (¿h+L[A(A,, e/2), e/2, - « ] ) and C 4 = © (M h+L[A<jih , e/2), 
Ji =1 »=1 

e/2, — «>]*). By using the results of [ 3 4 ; 3 5 ] and ROSENBLUM [ 4 1 , Corollary 0 . 1 5 ] , 

we can find an operator 
(C{ *ï 
l o Ci)' 

with C'i similar to C, . , /=1,4 , such that | | 5 3 — 5 4 | | < E , SO that if Ti is the operator 
obtained from T3 by replacing S3 by S4, then a formal repetition of previous argu-
ments shows that HTg —T4||<£ and T4 is similar to L1®C[®.C'i®Li which, in 

m 
turn, is similar to A0(BB, where A0={^ L(Qk, s, nk)j®Cx and 

B - C 4 ( B { © l ( m , e, -«;)*}• ' 
. j 

Thus, if A = F@A0, it readily follows that there exists an operator Th similar 
to A®B such that \\T-Tb\\<4e. 

Since A and B clearly satisfy (i)—(iv), we are done. • 

C o r o l l a r y 3. {E)mn, (F), (G), (H), ( / ) and (J) are dense in JS?(it). 

P r o o f . The proof will be just sketched. Repeat exactly the same proof as 
above replacing AM.by AMNTI^{Xi, ...; ..., nq, v% ..., vqi nx, ..., TT4} with 
the same.characteristics as AM and four points, Xh, ph, vh, nb, in each component 
of O0. • • • 
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4 4 
(£)„,„: Replace A and B by / i © { © v j \ and ' 5 © { © nh/\, resp., where 

7m (/„) is the identity on a Hilbert space of algebraic dimension m («, resp.), and use 
the.results of [27]. 

q 
(F) Replace A by A © { ® (vh + Q)\, where Q is any nilpotent of infinite rank. 

/1=1 
The result follows as in Theorem 3 by using the results of [3]. 

(/) and ( / ) : These two cases follow at once from Theorem 3, the fact that A „ 
and A„ are semisimple Banach algebras and [47]; it is easily seen that si"(A)=si' {A) 
and si"(B)=si'(B) are reflexive. 

(G) and (H): These two cases follow at once from the above observations abou 
si" (A). and si" (B) and the results of [37; 38]. • 

R e m a r k . An alternative proof for the cases (G)—(J) can be obtained by using 
the Apostol—Morrel dense class C0 (S\) (see definition and properties in [6]) 
and the results of [41]. 

5. (K) is dense in JSf(ft). The proof is a "trivialization" of that of the case (D). 

L e m m a 5. Let Q be an open set with analytic boundary, let rf)=dQx(0, 1) 
and S o = i 2 " X [ 0 , 1]. W 0 o o =W 2 , 2 ( r 0 ) (defined as in Section 4) has the same pro-
perties as and the subalgebra A0oo of "analytic elements" of W0oo 

(A0oo= {/£W0 o o; f ( z , t) is analytic with respect to z£Q for every /£[0, 1]}) has 
the same properties as ATC. 

If T0 = MZ in W0oo and L0 = r 0 | A 0 „ , then: 
(i) <j(T0) = El(T0) = Er(T0) = El(L0) = dQ. 

(ii) a(L0) = E,(L0) = Q-. 
(iii) K e r ( A - £ 0 ) = { 0 } and dim Ker (A —L0)* = °° (so that ind (A—L0)= — 

for every X£Q. 
(iv) si'(L0)z> {Mg: g£A0oo}, so that jl[.si'(L0)]=\. 
(v) si"(L0)=si"(L0) = {Mg: g€ A0oo, g(z, t) is constant with respect to t for 

every (fixed) z£Q~}=norm-closure of the rational functions of L0 with poles 
outside Q~. ' 

(vi) a p p r ( / , 0 ) ' W ( / - , , ) . 
P r o o f : The statements relative to W0co and A0co (in particular, J4(W0oJR;F~; 

and J t ( A 0 a J ^ 3 0 ) can be proved exactly as in the previous section. Now (i), (ii): 

and (iii) are clear and (iv) is obvious. 
(v) L&t A£si"(L0). Since A commutes with the maximal abelia'n algebra of 

all multiplications by the elements of A0oo, A must be a multiplication too: A=Mg, 
where g Ae(Aa„.. . -. 

For every T£[0, 1], define Cz by CJ{z, t)=f[z, 1/2 + (i—r)/2]. By using, 
e.g., [1], it is not difficult to see that Cz is bounded and commutes with A; the/e-

8* 
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fore, g{z, T) = Ae(z, r)=ACte(z, r) = C,Ae(z, r) = CTg(z, r)=g(z, 1/2), i.e., g de-
pends only on z. 

By the definition and properties of A0oo, it follows that g(z,t) is the norm-
limit of a sequence of rational functions with poles outside Q~. Since si' (L0) 
is strictly cyclic, this implies that A=Mg is a norm-limit of rational functions of 
L0 with poles outside Q~ (see [37]). This proves (v). 

(vi) It is obvious that for every appr (C)" is inverse-closed, so that 
appr (C)" always contains the norm-closure of the rational functions of C with 
poles outside o(C). Now (vi) follows from (v). • 

L e m m a 6. Let Q be an open set with analytic boundary, let n be a natural 
number, let W0„ be the direct sum of n copies of W2 ,1 (dQ, dm) and let A0n be the 
subspace of "analytic elements" of W0n. Then W0n and A0„ are Banach algebras with 
identity (under an equivalent norm), Ji(W0n)^dQX{l/n, 2/n, . . . , 1} and Ji(A0)1)% 
^ Q~X{l/n, 2/n, ..., 1}. 

If T<Sn = Mz in W0n, then A0n is invariant under T0n and its restriction 
Lon = Ton\Kn satisfy 

(i) G (T0n) = E, (T0n) = Er {T0n) = Et (L0n) = Er (L0n) = dQ. 
(ii) G(L0„) — Q~. 

(iii) Ker ( ; . -£ 0 „ )={0} and dim Ker (A — L0n)*=n (so that ind (). — L0n)=—n) 
for every X£Q. 

(iv) si'(L0n) ~ A(
0"xn) is the algebra of all nXn operator matrices with entries 

in {Ms:g£A„n}, so that ¡i[si'(L9„)} = 1. 
(v) si"(L0n)=si"(_L0n) = {Mg: g£A0„}= norm-closure of the rational functions of 

L0n with poles outside Q~. 

(vi) appr (L0n)"=si"(L0n). 
The proof (that can be easily "modelled" on that of Lemma 5) is left to 

the reader. 

Now it is clear that if r = F © { ® L(Qk, «*)}©{© L(Q* -« , )*}, where F 
i j=i 

is an operator acting on a finite dimensional space, L(Q,ri) is the operator 
defined by Lemma 5 (for n= — °°) and by Lemma 6 (for - « < « < 0 ) and 
{or(f), {i2~}™=1, {£2j~}y=1} (Osm, /»<«=) is a family of pairwise disjoint compact 
sets, then appr (T)"=si"(T) = norm-closure of the rational functions of T with 
poles outside a{T). 

A formal repetition of the proof of Theorem 3 shows that the operators in 
JSf(St) that are similar to some T as above form a dense subset, whence we obtain 

C o r o l l a r y 4. (K) is dense in i f ( f t ) . 



Quasisimilar operators with different spectra 117 

References 

[1] R. A. ADAMS, Sobolev spaces, Academic Press (New York—San Francisco—London, 1975). 
[2] C. APÓSTOL, Operators quasi-similar to a normal operator, Proc. Amer. Math. Soc., 53 (1975), 

104—106. 
[3] C. APOSTOL, R. G. DOUGLAS and C. FOIAÇ, Quasi-similar models for nilpotent operators, 

Trans. Amer. Math. Soc., 224 (1976), 407—415. 
[4] C. APOSTOL, C. FOIAÇ and D. VOICULESCU, Some results on non-quasitriangular operators. 

IV, Rev. Roum. Math. Pures Appt., 18 (1973), 487—514. 
[5] C. APÓSTOL, C. FOIAÇ and D. VOICULESCU, On the norm-closure of nilpotents. II, Rev. Roum. 

Math. Pures Appl., 19 (1974), 549—577. 
[6] C. APÓSTOL and B. MORREL, On approximation of operators by simple models, Indiana Univ. 

Math. J., 26 (1976), 427—442. 
[7] J. BARRÍA and D. A. HERRERO, Closure of similarity orbits of nilpotent operators. I: Finite rank 

operators, / . Operator Theory, 1 (1979), to appear. 
[8] J. BARRÍA and D. A. HERRERO, Closure of similarity orbits of nilpotent operators. II (to appear). 
[9] S. CLARY, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 

53 (1975), 88—90. 
110] I. COLOJOARÂ and C. FOIAÇ, Theory of generalized spectral operators, Gordon and Breach 

( N e w Y o r k , 1968). 
[11] R. G. DOUGLAS, On the operator equation S * X S = X and related topics, Acta Sci. Math. 30 

(1969), 19—32. 
[12] R. G. DOUGLAS and C. PEARCY, Hyperinvariant subspaces and transitive algebras, Mich. Math. 

J., 19 (1972), 1—12. 
[13] L. A. FIALKOW, A note on direct sums of quasinilpotent operators, Proc. Amer. Soc., 48 (1975), 

125—131. 
[14] L. A. FIALKOW, A note on quasisimilarity of operators, Acta Sci. Math., 39 (1977), 67—85. 
[15] L. A. FIALKOW, A note on quasisimilarity. II, Pacific J. Math., 70 (1977), 151—162. 
[16] L. A. FIALKOW, A note on the operator X->-AX—XB, Transactions Amer. Math. Soc., 243 

(1978), 147—168. 
[17] P. A. FILLMORE, Notes in operator theory, D . Van Nostrand, Reinhold Mathematical Studies 

No . 30 (New York, 1970). 
[18] C. FOIAÇ and C. PEARCY, A model for quasinilpotent operators, Mich. Math. J., 21 (1974), 

399—404. 
[19] C. FOIAÇ, C. PEARCY and D. VOICULESCU, Biquasitriangular operators and quasisimilarity, Linear 

spaces and approximation (Proc. Conf. Oberwolfach, 1977), Birkhàuser (Basel, 1978), 47—52. 
[20] C. FOIAÇ, C. PEARCY and J. P. WILLIAMS, Some remarks on the Volterra operator, Proc. Amer. 

Math. Soc., 31 (1972), 177—184. 
[21] T. W. GAMELIN, Uniform algebras, Prentice Hall Inc., (Englewood Cliffs, New Jersey, 1969). 
[22] R. GELLAR, Two sublattices of weighted shifts invariant subspaces, Indiana Univ. Math. J., 23 

(1973), 1—10. 
[23] S. GRABINER, Derivations and automorphisms of Banach algebras of power series, Memoirs 

Amer. Math. Soc. 146 (Providence, Rhode Island, 1974). 
[24] D. W. HADWIN, An asymptotic double commutant theorem for C*-algebras, Transactions 

Amer. Math. Soc., 244 (1978), 273—297. 
[25] P. R. HALMOS, A Hilbert space problem book, D. Van Nostrand (Princeton, New Jersey, 1967). 
[26] D. A. HERRERO, Álgebras de operadores transitivas que contienen una subálgebra de multi-

plicidad estricta finita, Rev. Un. Mat. Argentina, 26 (1972), 77—84. 



118 Domingo A. Herrero: Quasisimilar operators with different spectra 

[27] D. A. HERRERO, Operator algebras of finite strict multiplicity, Indiana Univ. Math. J., 22 (1972), 
13—24. 

[28] D. A. HERRERO, Operator algebras of finite strict multiplicity. II, Indiana Univ. Math. J., 27 
(1978), 9—18. 

[29] D. A. HERRERO, Normal limits of nilpotent operators, Indiana Univ. Math. J., 23 (1974), 1097— 
1108. 

[30] D. A. HERRERO, A Rota universal model for operators with multiply connected spectrum, 
Rev. Roum. Math. Pures Appt., 21 (1976), 15—23. 

[31] D. A. HERRERO, Universal quasinilpotent operators, Acta Sci. Math., 38 (1976), 291—300. 
[32] D. A. HERRERO, On the spectra of the restrictions of an operator, Trans. Amer. Math. Soc., 

233 (1977), 45—58. 
[33] D. A. HERRERO, Clausura de las órbitas de similaridad de operadores en espacios de Hilbert, 

Rev. Un. Mat. Argentina, 27 (1976), 244—260. 
[34] D. A. HERRERO, Closure of similarity orbits of Hilbert space operators. II: Normal operators, 

J. London Math. Soc., (2) 13 (1976), 299—316. 
[35] D. A. HERRERO, Closure of similarity orbits of Hilbert space operators. ILL, Math. Ann. 232 

(1978), 195—204. 
[36] D. A. HERRERO, Quasisimilarity does not preserve the hyperlattice, Proc. Amer. Math. Soc., 

65 (1977), 80—84. 
[37] D. A. HERRERO and A. LAMBERT, On strictly cyclic algebras, ^-algebras and reflexive operators, 

Trans. Amer. Math. Soc., 185 (1975), 229—235. 
[38] D. A. HERRERO and N. SALINAS, Analytically invariant and bi-invariant subspaces, Trans. Amer., 

Math. Soc., 173 (1972) , 117—136 . 
[39] T. B. HOOVER, Quasi-similarity of operators, Illinois J. Math., 16 (1972), 678—686. 
[40] T. KATO, Perturbation theory for linear operators, Springer-Verlag (New York, 1966). 
[41] H. RADJAVI and P. ROSENTHAL, Invariant subspaces, Ergebnisse der Mathematik und ihrer 

Grenzgebiete, B. 77, Springer-Verlag (New York—Heidelberg—Berlin, 1973). 
[42] C. RICKART, General theory of Banach algebras, D. Van Nostrand, (Princeton, New Jersey; 

1960). 
[43] G.-C. ROTA, On models for linear operators, Comm. Pure Appl. Math., 13 (1960), 469—472. 
[44] N. SALINAS, Operators with essentially disconnected spectrum, Acta Sci. Math., 33 (1972), 

193—206. 
[45] N. SALINAS, A characterization of the Browder spectrum, Proc. Amer. Math. Soc., 38 (1973), 

369—373. 
[46] R. SCHATTEN, Norm ideals of completely continuous operators, 2nd. ed., Ergebnisse der Mathe-. 

matik und ihrer Grenzgebiete, B. 27, Springer-Verlag (Berlin—Heidelberg—New York, 1970). 
[47] V. S. SULMAN, Operator algebras with strictly cyclic vectors, Mat. Zametki, 16 (2) (1974), 253— 

257. (Russian) 
[48] B. SZ.-NAGY and C. FOIAÇ, Analyse harmonique de opérateurs de l'espace de Hilbert, Masson et 

Cie.—Akadémiai Kiadó (Paris—Budapest, 1967). 
[49] D. VOICULESCU, A non-commutative Weyl—von Neumann theorem, Rev. Roum. Mafh. Pures et 

Appl., 21 (1976), 97—113. 

DEPARTMENTO DE MATEMATICAS, APARTADO 1827 
INSTITUTO VENEZOLANO DE INVESTIGACIONES CIENTIFICAS 
CARACAS 101. VENEZUELA 



Acta Sei. Math., 41 (1979), 119—11& 

Affine algebras in congruence modular varieties 

C H R I S T I A N H E R R M A N N 

Algebras which are polynomially equivalent to a module have been characterized 
by CSÁKÁNY [3], [4] in terms of the associated system of congruence classes. Re-
cently, SMITH [ 1 0 ] and GUMM [7] characterized such algebras within congruence 
permutable classes following the lines of "Remak's Principle", cf. [2, p. 167]. In 
this note their results will be extended to congruence modular classes. 

D e f i n i t i o n . A (general) algebra A is called abelian if in the congruence 
lattice of AX A there exists a common complement of the kernels of the two 
projections. 

T h e o r e m . Every abelian algebra in a congruence modular variety is polynomially 
equivalent to a module over a suitable ring. The abelian algebras form a subvariety. 

Here the polynomial equivalence of two algebras with the same base set 
means that the sets of their algebraic functions coincide. 

C o r o l l a r y A. Let si and 3S be subvarieties of a congruence modular variety, 
si abelian and 39 congruence distributive. Then every algebra in the join of si and 
S8 is a direct product of an algebra in si and an algebra in 38. 

Now, the finite base theorems of BAKER [1] and MCKENZIE [9] join into one. 

C o r o l l a r y B. There exists a finite equational base for every congruence modular 
variety which is generated by finitely many finite algebras each of which is either 
abelian or generates a congruence distributive subvariety. 

The idea of the proof can be ea. ily stated: For an abelian group A the differ-
ence is a homomorphism of A2 onto A which has the diagonal £> = {(*, x)\x£A} 
as its kernel. Thus, the group structure can be recovered from the natural homo-
morphism A2-*A2/D via the identification x>--(x, 0)+£> of A and A2/D. In general, 

Received August 1, 1977. 
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it is still true that an abelian algebra has a congruence x which has D as a class 
— cf. HAGEMANN and HERRMANN [ 8 ] — and we may define the difference by the 
natural homomorphism A2-j-A2jx. Assume for a moment that 0 is an idempotent 
element of A. Then x»-»[(x, 0)]x is an embedding of A into A2/x but not necessarily 
onto. Therefore, a limit construction is used to embed A into an algebra B which 
is closed under the group operations. Using DAY'S [ 5 ] terms for congruence modular-
ity one sees that A is a subgroup, too. 

1. The centring congruence. The proofs rely on results of HAGEMANN and 
HERRMANN [8]. Thus, a general assumption to be made is that the algebras are 
strictly modular which means that every "diagonal" subdirect product B^A" — 
with n finite, (x, . . . , x)£B for all x in A — is congruence modular. We write xy 
for pairs, xyzu for quadruples, [a] a for the congruence class of a modulo a. Let 
tj0, t}x denote the kernels of the two projections of A2 onto A. 

P r o p o s i t i o n 1. A strictly modular algebra A is abelian if and only if there 
is a congruence x on A2 such that 
(C) t i o n x = r ] i n > c = 0 
(RR) xxxuu for all x and u in A. 
If A is abelian then x = ((A) is uniquely determined and it holds 
(RS) xyxuv implies yxxvu 
(RT) xyxuv and yzxvw imply xzxuw 
(SW) xyxuv if and only if xuxyv. 

P r o o f . Everything but (SW) is shown in [8], Thm. 1.4 and Prop. 1.6. Now, 
define X by xykuv if and only if xuxyv. Due to (RR), (RS) and (RT) A is a con-
gruence on A2. Since x is reflexive it satisfies (RR). Finally, assume xyXxv, i.e. 
xxxyv. By (RR) we have yyxxx, hence yyxyv and y=v by (C). This proves 
f? o rU=0 and, by symmetry, ^ 0 1 = 0 . By the uniqueness of x it follows x=X 
which means (SW). 

L e m m a 2. Let A be strictly modular and abelian, x=£(A). Then A2/x is strictly 
modular and abelian, too, and with ?. = ̂ (A2/x) it holds for all a, b, c, e in A 

P r o o f . Consider A4 and let 0O, 01, 02, 03 be the kernels of the projections. 
For each /</ ' there is a "copy" x t j of x on A* given by 

Because of x0 1^©0C\6.1 and both permute and have join 1. There-
fore, the map <p with (p (x0 x2 x2 x3)=([x 0 Xj] x, [x2 x3] x) is a homomorphism of 

(1) 
(2) 

([ae]x, [be]x)X([ab]x, [ee]x) 
([ae]x, [bc\ x)X([ce]x, [ba\ x). 

x0x1x2x3xiJy0y1y2y3 if and only if x^jxy^j 
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A* onto C 2 where C=A2/x. Its kernel is £ = % i l x 2 3 . We claim that the image 
of fi=e+x120 x03 is the congruence ( (C) on C2 . We have to show 

x01(~)n = x2SC\n = s and xxxxfiuuuu for all x and u in A. 

The second is obvious. By modularity we get x01C) n=e+x0if~)x12r\x03. Now, 
consider Xq XJ XB Xqi n x12 n x^3y{iy-iy2y3. By (RS) we have x2x1xy2y1 and 
x1x0xy1y0, hence x 2 x 0 x y 2 y 0 by (RT). With x0x3xy0y3 and a second application 
of (RT) it follows x2x3xy2y3. This shows x0x1x2x3x23y0y1y2y3, i.e. x 0 1 f l x 1 2 n 
f)X03Qx23 and X01C\H=E. x23C\n=s follows by symmetry. 

By Proposition 1 the image of fi has properties (RT) and (SW), i.e. 

(3) " xyuvfiabcd and uvstficdef imply xystfiabef, and 

(4) xyuvfiabcd if and only if xyabfiuvcd. 

On the other hand, all the arguments about ¡x remain valid if we interchange x0i 
and x23 with x12 and x03. In particular, property (SW) reads then 

(5) xyuvfiabcd if and only if byucfiaxvd. 

Moreover, recall that x is reflexive and satisfies (RR). Thus, since n^xnC)x23 

and / i 2 x 1 2 n % , we have 

(6) xxuvfiaauv, (7) xyuufixycc, (8) xyuxpayua, (9) xyyvpxbbv. 

Now, we are ready to prove (1): aabafibabb holds by (8) and baaapbbba by 
(9) whence aaaafibaba by (3). eeaapaaaa holds by (6) and it follows eeaafibaba 
by the transitivity of ¡1. An application of (5) yields aeabfibeaa. Since beaapbeee by 
(7) one concludes aeabpbeee by the transitivity of ¡i. Thus, aebefxabee by (4). To 
prove (2) substitute in aaaafibaba b by c to get aaaa/icaca. By (6) it holds eeaaiiaaaa 
and by (7) eebbfieeaa whence eebbficaca by the transitivity of /1. Thus, 
aebc\iceba by (5). 

2. Embedding into a "linear" algebra. Call an algebra A linear — with respect 
to an abelian group structure (A, + , —, 0) on A — if 0 is an idempotent element 
of A and if " —" (and " + ") are homomorphisms of A2 into A. Linear algebras 
are just reducts of modules: If A is linear let R be the set of all unary functions 
on A which are induced by terms in the language of A with 0 added as a constant. 
With pointwise addition and with composition R becomes a unitary ring. Its opera-
tion on A makes A a faithful unitary ^-module AR. Given any fundamental opera-
tion / of A one has 

f ( X l ...xn) = / ( x 1 0 . . . 0 ) + . . . + / ( 0 . . . Ox,), 

i.e. f is described by a term in the language of AR — cf. SMITH [10]. For a class 
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<6 of algebras let D № ? , Sif, denote the class of all direct unions, homti-
morphic images, subalgebras, and finite subdirect products of algebras in resp. 

L e m m a 3. Let A be a strictly modular abelian algebra having an idempotent 
element 0. Then A can be embedded into an algebra B in DHP//4 which is linear 
with respect to an abelian group (B, + , — ,0). 

P r o o f . In view of Lemma 2 we may define a series of strictly modular abelian 
algebras: 

Aq = A, An+1 = A%/£(A„). 

Let n„ be the canonical homomorphism of A\ onto An+1. Clearly, for every n, 0 n + 1 = 
=[xx]l{An) is an idempotent element of An+1. Thus, with 0„=0 and s„x = 
=[*0]CC>4„) one gets due to (C) for every n an embedding e„: A„-»An+1 such that 
£„0n=0n + 1 . Let Am be the direct union over the system (A„,e„) and identify A„ 
with its image in Am. Applying Lemma 2(1) to A„ we see that for each n 
£

n+i07rn—7r
n+i°(£nX£„)- Therefore, a—b=n„(a, b) if a and b are in A„, defines 

a map of A2
m into A^ . By definition it is compatible with the fundamental operations 

of Am and it holds a—0=a, a—a=0. Moreover, by Lemma 2(2) it follows 
a—(b—c)=c—(b—a). Thus, with a+b=a—(0 — b) one gets an abelian group 
structure on A„ which makes it linear. 

3. Using the Day terms. For all of the following suppose that we work within 
a fixed congruence modular variety "V. Then, due to DAY [5] there are a number 
n and 4-variable terms m0, ...,mn in the language of Y such that the following 
identities hold in Y : 

(ml) m0(xyzu) = x and m„(xyzu) = y, 

(m2) m^xxzz) = x for all / = 0, ..., n, 

(m3) mfxyzz) — mi+1(xyzz) for i even, 

(m4) mt(xyxy) = mi+1(xyxy) for i odd. 

We define by induction p0(xzu)=x, 

r mi+1(pi(xzu), Pi(xzu), u, z) for i even, 
P, + i(xzu) { mi+1(pi(xzu), Pi(xzu), z, u) for / odd. 

Obviously, in y it holds pi(xzz)=x for all i. Put p(xzu)=pn_1(xzu). Then 
p(xzz)=x holds in "V. 

Call an algebra A affine if it is polynomially equivalent to a linear algebra 
Av or, in other words, if there is an abelian group structure (A, + , —, 0) on A 
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such:that for every fundamental operation / of A there is an / v linear with respect 
to (A, + , - , 0) such that 

f(x1...xn)=f*(x1...xn)+f(0-0). 

L e m m a 4. In an affine algebra A^y it holds p{xzu) = x—z + u. 

P r o o f . Since A is polynomially equivalent to an J?-module AR for each 
¿=0, . . . , « there are ai,pi,yi,5l in R and c, in A such that 

m-iixyzu) = XiX+Piy + JiZ + diU + Ci 

holds in A. (ml) yields 0 = wf(0000) = c i , x=mi(xx00) = (ai+Pi)x, and 
0 = mi{0Qzz)=iyi+di)z. Since AR is faithful it follows a,.+/?,- = 1 and ^,.+<5,-0. 
In particular, we get 

m,(xxvw) = x—diV + diW for i=0,...,n. 

By induction one concludes-

(io) Pk(xzu) = x - 2 (~iystz+ 2 (-1)'*/«-
i = l i=1 

On the other hand, (ml) yields 0=m0(0y00) = p0y and 0=w0(000w)=d0w, as 
well as 0=mn(000u)=S„u and y=mn(0y00)=fi„y whence p0=50=8n =0 and 
j8„=l. Finally, (w3) and (w4) imply Piy=mi(0y00) = mi+1(0y00) = Pl+1y for i 
odd and (P, + 5i)y = mi(0y0y)=mi+1(0y0y) = (Pi+1 + 8l+l)y for i even. Thus, it 
holds Pi+1=Pi for i odd and Pi+1=Pi+8i—Si+1 for /' even. By induction one 

. ' k 
gets Pk=Pk+1= 21 — f ° r ^ °dd. In particular, with m=n — 1 if n even 

¡=1 m 
and m=n if n odd we have 1 =/?„= ^ ( - l ) ' ^ - . Then with (10) it follows 
p(xzu) = x — z + u. 1-1 

C o r o l l a r y 5. If a is a congruence of A (L'V such that Ala is affine then a permutes 
with every congruence of A. 

P r o o f . Let J? be a congruence of A and suppose xotyfiz. Then p(xyz)fix since 
p(xyy)=x holds in "V and p(xyz)az by Lemma 4. Thus, zap (xyz) Px. 

4. Proof of the Theorem. First, suppose that the abelian algebra A has an 
idempotent element 0. Construct the linear algebra A ^ ^ A according to Lemma 3. 
By Lemma 4 "here is a term p(xyz) in the language of "V such that p (xyy)=x= 
=p(yyx) holds in Ax. In particular, all subalgebras of Am are congruence permut-
able. and each of the embeddings £„ is onto: / j 1 c x = 1 implies that for every xy 
there is uv such that 0 0 ^ u v x x y which means uOxxy. Thus, in fact Am=A and A 
is linear itself. Since x—y+z—p(xyz). is represented by a term in the language 
of A we get every term of AR after joining 0 as a constant. In general, choose an 
arbitrary element 0 of A and consider the mape : A -+A2jx with x=[x0] Ji. A2/x 
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has the idempotent element [xx]x hence it is linear by the above. £ is still one-to-one 
by (C) and in view of Lemma 2 (1) it satisfies 

(11) / ( * i , •..,*„) = e/(*i , . . . , *„ ) -e / (0 , . . . ,0) . 

for every fundamental operation / of A. Hence, it holds 

(12) p(ex, ey, ez) = ep(x, y, z)—ep(0, 0, 0) = sp(x, y, z)-e0 = ep(x, y, z), 

since p is a term and e0=[00]x is the neutral element of the linear algebra A2/x. 
Therefore, s(A) is closed under the operation p(xyz)—x—y+z and an abelian 
group with zero 0=e0, x+z—p(x0z), and x—y=p(xy0). If we transfer the 
group operations via £ _ 1 to A then (11) states that A is affine. Moreover, by (12) 
we have p(xyz)=x—y+z on A. Indeed, A and A2 are congruence permutable 
and E is an onto map, too. Moreover, the full module structure of AR can be re-
covered from A after adding the constant 0. 

That the abelian algebras in a congruence modular variety form a subvariety 
is obvious by Proposition 1. As a defining set of identities one can use p(xyy) = 
=p{yyx)=x and the identities expressing the compatibility of p and the funda-
mental operations of "V; cf. GUMM [7]. 

5. Proof of Corollary A. First, observe that si and have only the trivial 
algebra in common. Every algebra in the join of si and $1 is a homomorphic image 
C/6> of a subdirect product CQAXB with A£si and Let a and /} denote 
the kernels of the projections of C onto A and B, respectively. Since C/oc+fi is in 
both si and 3$ it must hold «+ /?=1 . Then, by Corollary 5, C is the direct pro-
duct of A and B. 

Since B generates a congruence distributive variety, p is a neutral element of the 
congruence lattice of C (see [8, Thm. 4.1]) which implies 0 = <9 + a n / ? = ( 0 + a ) n 
Hf© +/?). Thus, CI© is itself a subdirect product of an algebra in si and one in 
3& and, by the above argument, even a direct product. 

6. Proof of Corollary B. Let # be congruence modular and generated by finite 
algebras Ax, ...{A„,B1,...,Bm where each At is abelian and each Bt generates 
a congruence distributive subvariety. Let si and be the subvarieties generated 
by the Ax, ...,A„ and the Bt, ...,Bm, respectively. Then ^ = D H P / S { B l t ..., Bm) 
is congruence distributive due to [8, Cor. 4.3] and has a finite equational base due 
to BAKER [1]. The variety si is polynomially equivalent (via finitely many constants) 
to the variety of all modules over a fixed ring R: take the free algebra on countably 
many generators in si and apply the Theorem. Since si is locally finite, R has to 
be finite. Thus, si has a finite equational base, too. 

By Corollary A si and are independent in the sense of GRATZER, LAKSER , and 
PLONK A [ 6 , Thm. 2 ] . In particular, one can define predicates for the congruences 
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which yield the direct product decomposition. Therefore, ($=si\l!% is finitely 
axiomatizable, i.e. it has a finite equational base. 

The author wishes to express his warmest thanks to the J. Bolyai Society 
and to B. Csákány and A. P. Huhn for inviting him to Szeged, the most 
appropriate place where to write this paper. 

Added in March 78. Since several reformulations of our Theorem have been 
discovered meanwhile it seems necessary to add the following 

Scho l ion . For a strictly modular algebra A the following are equivalent: 
(1) A is abelian. 
(2) For the commutator introduced in [8] it holds [lA, 1^1 = 0^ . 
(3) The diagonal D is a congruence class of A XA. 

Implications (l)=>-(2), (2)=>(1), and (2)-t>(3) are instances of Thm. 1.4, Observa-
tion 1.2, and Cor. 2.4 in [8] respectively. Moreover, using Cor. 1.2 it is easily seen 
that for, projective quotients a/jS and y/5 [y, implies [a,a.]Q/}. Thus, by 
Thm. 1.4 A is abelian if there is B and a£con(2?) such that B/ft = A and 1 B /B 
is projective to a quotient of a sublattice of con (B) which is isomorphic to the 
5-element lattice Ma. 
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A characterisation of binary geometries of types K(3) and K(4) 
L. KASZONYI 

I 
In connection with halfplanar geometries I introduced the property K(r) of 

binary geometries (see [2]). The aim of this paper is to give a new characterisation 
of such geometries for r = 3 and 4. 

First I give some definitions. 

D e f i n i t i o n 1. Let us consider the binary geometry G, which is embedded 
in the binary projective geometry r (i.e. in the geometry over GF(2), r(G)=r(r), 
G^r). A subspace (point, line, hyperplane) m of T is called an outer subspace 
(point, line, hyperplane) of G, if m is not spanned by G-points. 

We note that by the homogeneity of r this definition depends only on G. 

D e f i n i t i o n 2. A binary geometry G of rank n has the property K{r) if every 
subgeometry of G of rank n—r is contained in an outer hyperplane {n=r, 

D e f i n i t i o n 3. A set H={h1,h%, ...,hm} (ms 3) of hyperplanes of the binary 
projective geometry f is a hypercircuit if 

r{nh] = r ( n fcf) = r ( r ) - m + l 
Mj 

holds for every 1,2, ...,m}; m is called the length of H. 
We shall frequently use the following 

T h e o r e m 1. (Two Colour Theorem) bOG^Q holds for all hyperplanes b • 
of a binary projective geometry _r(pG) if and only, if G contains an odd circuit. 

The geometrical dual of Theorem 1 may be.formulated as follows: ,, 

T h e o r e m 2: A set of hyperplanes of a binary projective geometry r covers 
all f-points if and only if contains an odd hypercircuit. 

Received June.29, 1.977, in revised form March,3, 1978t ; . . - -.•:..• .-c. 
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Our theorem is the following: 

T h e o r e m 3. A binary geometry G of rank n 1) is of type K(r) (r=3, 4) 
if and only if for an arbitrary subspace a of G of rank n—r—1, the set Ji(a) of 
outer hyperplanes containing a contains an odd hypercircuit. 

First we prove 

L e m m a 1. A binary geometry of rank 4 is of type K(3) if and only if the set 
of its outer hyperplanes contains an odd hypercircuit. 

P r o o f . Sufficiency is clear by Theorem 2. We have to prove that if the set of 
outer planes covers the points of G then it covers the outer points of G as well 
(see Theorem 2). 

Let us assume indirectly that the set Ji% of outer planes of G covers the points 
in G but there is an outer point yx which is not covered by Jt3. Consider the outer 
plane and let / be a line of bx which covers PlG. The existence of such a line 
is trivial. Denote the planes incident in T to / and distinct from ¿>l5 by dx and d2. 
The set of planes {b1,d1,d2} covers all T-points. thus holds for 
an 1,2} by our indirect hypothesis. Let for example y i d d 1 \ f (see Fig. 1). 

We prove that for the set U=d1\f\{y1}, UczG holds. Let us assume in-
directly that U has a point y2 not in G. Consider the line l1=a(y%, y2) *) and set 
gi=ff)li- Choose a point g of d2 not on / and let l2=a(g1,g) (see Fig. 2). It 
is easy to see that the plane 62=(7(/1U/2) is an outer plane containing ft, a 
contradiction. 

*) c(...) denotes the subspace of /'spanned by the set given in the parentheses. 
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We show that U is an oval of dl. Let ux, u2£U be arbitrary, a(u1, u2)H/0 
and fC\U=Q, thus every line of U consits of two points. But | i / | = 3 , therefore 
U spans di. It is easy to see that yx is a nucleus of U (i.e. the common point of 
tangentials to U). 

Let ux£U be arbitrary, consider the outer plane bz containing ux. The line 
/ i=¿3 H d1 cannot be tangential to U, thus fx intersects U in two points, say at ux 

and M2 (see Fig. 3). This means that fx covers all the points of ¿>3, and the points 
of f2=d2C\b3 and not on / are outer points. Therefore the plane ff ( / 2 U {y^) is 
an outer plane containing yx, a contradiction. 

L e m m a 2. A geometry G of rank 5 is of type K{4) i f f the set Jt± of its outer 
hyperplanes contains an odd hypercircuit. 

P r o o f . We have to prove that if the elements of J(i cover G, then they cover 
the outer points as well. Let us assume indirectly that G is covered by the elements 
of Jin but G has an outer point which is not covered by them. Let bm be an 
element of Jl^ for which \bmC\G\ is maximal. 

Let di be a plane of bm which covers the points of bm fl G. Let us denote by 
cx and c2 the hyperplanes containing dx and distinct from bm. The set {bm, cx, c2} 
covers all the /"-points. Let y^c^ (see Fig. 4). Denote the set (G D c J X ^ by V. 
Let us project V from yx to dx. We prove that the projection V meets all lines of dx. 
Let us assume indirectly that dx has a line I for which / f l K' = 0 holds. Let g2 be 
an arbitrary point of c2 not on dx. It is easy to see that cr({g2}U/U {yx}) is an outer 
hyperplane of G containg yx, a contradiction (see Fig. 5). Therefore V contains 
a full line fx. Let us consider the plane d2=a{fxyj{yx}). Making use of the fact 
that. V contains fx, we can see thai U=VC\d2 is an oval on d2, the nucleous of 
which is 

r, 

Fig. 3 Fig. 4 

9 
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Let u£U be arbitrary, denote the outer hyperplane containg the point u by bu. 
We prove the validity of the following three statements: 

(i) d2C\bu is a line and a secant to U (i.e. |£/H(i/2(~lZ>u)| =2), 
(ii) ¿ » „ n c j n c g ^ , 

(iii) | & u n c | s 3 . ' 
Part (i). yi$bu, thus d2<tba, therefore dzf)bu is a line. The lines of d2 con-

taining u are either secants or tangential to U. The lines which are tangential to 
U contain thus d2C\bu is a secant. 

Part• (ii). Let UC\bu — {u,v}; assume indirectly that buC\Gr\c1 contains a 
point z not in U (see Fig. 6). The plane d3—a(u,v,z) covers Gf)bu, because 

Therefore d3C\d1 covers c2Obu. Using this fact we can see that 
o(c2C\bu\J {vx}) is an outer hyperplane, a contradiction (see Fig. 7). 

Part (iii). \buC\U\=2, thus we have to prove c 2 f ] 6 u n G ^ 0 . Assuming 
Co f]6U fl G = 0 we can see that <x(c2n6uU {vi}) is an outer hyperplane. 

Let U={u1,u2,u3}, and assume that UC\bU2={m15«2} and Uf)bU3= w3}. 
Set a(u1,u2)=s1, a(u1,u3)=s2, c1C\bUi=d4, c1f]bU3=dB, d1f]di=s4, d1C\d5=s5, 
g 4 5 = j 4 f l i 5 (see Fig. 8). 'We prove that the plane ff (s4U {yt}) contains a point g6 

not on (T(M3, 7i). Let us assume indirectly that 

{ff( i4U{y a})nG}\{«i„y i} = 0. 

Using (ii) we can see that a({c2Pl6U2}U {vj ) is an outer hyperplane. It is easy to 
see as well that ge is the point of the line «"(y^ g45) distinct from yx and g45.' Con-
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sider bgij. The line 0 d2 cannot be a secant to U by (ii), and cannot be tangential 
to U by y, $ , therefore bg^C\di=f1. 

We prove that I ^ D G I s l . Let us assume indirectly that | / 1 f l G | s 2 . Let 
g?, g8 €/i 0)G. Then the plane a(g6, g1, gg) covers b^HG. Using this fact we can 
see that the hyperplane <r({c2n6 }U {}>!}) is an outer hyperplane, a contradiction. 
Therefore |{./iUs4U.s5}OG|s=l, ' thus j Z ^ O G H ^ O G I ^ holds, contradicting 
(iii) and the maximality property of bm. 

Our Theorem 3 is now an easy consequence of Lemmas 1 and 2 and of the 
"Scum Theorem" (see [1]). 

The following assertion may be proved by induction on n—r(G) for r = 2, 3, 4: 
if the outer hyperplanes of the binary geometry G cover all of its subspaces with 
rank n — r then they cover all those of T as well. 

To prove it for general r it would suffice to settle the case n — r+1: 

C o n j e c t u r e . If the outer hyperplanes of a binary geometry G cover all G-
points, then they cover all /"-points as well. 

The conjecture is proved for r (G)=4 and /*(G) = 5 in Lemmas 1 and 2. The 
case r(G) = 3 is trivial. For /"(G)>5 the proof (if it exists) seems to be hard. 

9* 
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Multiplicative periodicity in rings 

R E Y A D H R. K H A Z A L 

A well known result of JACOBSON [4] establishes that a ring R is commutative 
if for every aC R there is an integer « > 1 (depending on a) such that a=a". This 
has been generalized by HERSTEIN [1] . On the other hand, ISKANDER [ 3 ] characterizes 
via polynomial identities varieties of rings in which every element generates a finite 
subring, while KRUSE [5] and L'vov [6 , 7 ] characterize via polynomial identities 
varieties generated by finite rings. 

In the present paper we consider rings in which every element generates a 
finite multiplicative semigroup. It turns out that such rings are precisely the rings 
in which a power of every element generates a finite subring. A semigroup is called 
periodic if every element is of finite order. We call a ring R periodic if for every 
a£R there are a positive integer r and a polynomial h(t) with integral coefficients 
such that ar + ar+1h(a)= 0. The term "periodic" has been used in literature for 
the case R = l , (cf. OSBORN [8]). We will use the term periodic to mean also the 
case /->1. The main result is: 

T h e o r e m 1. The following statements about a ring R are equivalent: 
(i) R is periodic; 

(ii) if af R then a power of a generates a finite subring; 
(iii) the multiplicative semigroup of R is periodic. 

It is clear that (ii) implies (iii) and (iii) implies (i). Before we show that (i) implies 
(ii) we give some preliminaries. 

T h e o r e m 2. (HERSTEIN [2]) If R is a ring with centre C such that for every a(^R 
there exists a polynomial pa(t) such that a2pa(a)—adC, then R is commutative. 

P r o p o s i t i o n 3. If R is a periodic division ring then R is a field. Also R is an 
algebraic extension of Zp (the integers modulo p) for some prime p. 

P r o o f . Let a£R. As R is periodic, there are 0 and a polynomial hit) 
such that ar + ar+1h(a) = 0. Thus ar~1(a + a2h(a)) = 0. But R is a division ring, 
hence a+a2h(a) = 0. Thus, by Herstein's Theorem 2, R is commutative. Since 
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Z, the ring of integers, is not periodic (2+22h(2)=Q is impossible), the prime 
field of R is Z p for some prime p and so R is an algebraic extension of Z p . 

P r o p o s i t i o n 4. Let Rbe a primitive ring. If R is periodic then R is isomorphic 
to a dense ring of algebraic linear transformations of a vector space V over a field 
F that is an algebraic extension of some prime field Z p . 

P r o o f . By Jacobson's Density Theorem R is isomorphic to a dense ring of 
linear transformations of a vector space V over a division ring D. However D is 
a homomorphic image of a subring of R. Hence D is periodic and thus D is a fieldt 
which is also an algebraic extension of Zp . In this case periodicity implies tha, 
the linear transformations involved are algebraic over Z p . 

P r o p o s i t i o n 5. Let Rbe a periodic ring. Then 
(i) J{R) (the Jacobson radical of R) is nil; 

(ii) RjJ(R) is isomorphic to a subdirect sum of dense rings of algebraic linear 
transformations of vector spaces over fields each of which is an algebraic extension 
of Z p for some prime p. 

P r o o f . Statement (ii) follows from Proposition 4 and Jacobson's Structure 
Theorem [2, 4]. Let a£J(R). Then ar + ar+1h(a)= 0 for some positive integer r 
and h(t)£Z[t]. Hence, ar= -ar+1h(a) = ar+1g(a) = ar+2g(d)2=a2rg(a)r, and 
(ag(a))r is an idempotent. Hence cfg(a)r=0, as the only idempotent in J(R) is 0. 
Hence ar=ararg(a)r=0 and J(R) is nil. 

The converse of Proposition 5 is not true. The ring of integers Z is a subdirect 
sum of Z p for all primes p and Z is not periodic. * 

P r o p o s i t i o n 6. The following conditions on a ring R are equivalent: 
(i) R is periodic; 

(ii) every subring of R generated by one element is an extension of a nilpoient 
ring by a finite direct sum of finite fields; 

(iii) every subring of R generated by one element is an extension of a nil ring 
by a finite ring; 

(iv) for every a£R there are integers s, / > 1 such that (a—as)' = 0. 
P r o o f . It is obvious that (ii) implies (iii) and (iv) implies (i). Let A be the 

subring of R generated by a£A. Then every ideal of A is finitely generated as A is 
commutative and is generated by one element. If R is periodic then J (A) is nil 
(by Proposition 5) and hence nilpotent. A/J(A) is isomorphic to a subdirect sum 
of periodic primitive rings generated by one element. Thus A/J(A) is isomorphic 
to a subdirect sum of finite fields F(i). F(i) is generated by one element ar Also 
a' +ar

i
+1h{ai)=0. But a,-_1 = 0 is impossible in F(i), so a|. + a?A(oi) = 0. Hence 

e,.= —Ofhia^) is idempotent and it is the identity element of F(i). Thus 
a=a+J(A) satisfies a + a2h(a) = 0 in AjJ(A) and e = — ah(a) is the identity 
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element of AIJ(A). Thus A/J(A) is isomorphic to a finite direct sum of finite fields. 
This establishes that (i) implies (ii). 

Let N be a nil ideal in A such that A/N=F is finite. Hence F is periodic and 
is generated by one element. By (ii), 7(F) is nilpotent and FjJ(F) 1) ©... © F(k), 
where F(i) is a finite field of characteristic pn 1 ^i^k. Thus there is such 
that F/J(F) satisfies x - r ^ O . Thus a=a+N satisfies a-as£J(F). As J(F) 
is nilpotent, there is a positive integer r such that (a — a s ) r =0, i.e. (a—as)r£N. 
Thus for some (a—as) r t=0. This establishes that (iii) implies (iv) and con-
cludes the proof of Proposition 6. 

Now, we conclude the proof of Theorem 1. By Statement (ii) of Proposition 6, 
if a£R then J(A) is nilpotent and A/J(A)^F(1)Q ...®F{k) where F(i) is a finite 
field of characteristic pt, l^i^k. Thus mat J (A), where m = l.c.m. (px, ...,pk). 
Hence (ma)r=0 for some r>-0. Thus for every a£R some power a!" is torsion 
in the additive group of R. By (iv) of Proposition 6, (b—bs)' = 0, b = <f. bst is a poly-
nomial of degree less than st in b, and nb = 0 for some n >0. In the subring 
B of R generated by b, every element has an expression in the form 1 = i=st, 
O^s,•</?}. Hence B is finite, it has at most « s i _ 1 elements. Thus Statement (i) of 
Theorem 1 implies Statement (ii). This concludes the proof of Theorem 1. 

If J? is a periodic ring and a£R, we define: Index (a)=inf {/•: /->0, cf+ 
+ ar+1h{a) = 0, /z(i)€Z[<]}, Index (R) = sup {Index (a): N(R) = sup{n: w>0, 
for some a£R, a is nilpotent, an—0 and Degree (a) = inf {deg/z(a): ar + 
+ar+1h(a)=0, r=>0, h(t)eZ[t]}. Degree (i?)=sup {Degree (a): a£R}. 

It turns out that 

P r o p o s i t i o n 7. If R is a periodic ring then N(R) = Index (R). 

P r o o f . Clearly, iV(i?)^Index (R). If a£R then by Proposition 6 (iv), 
(a-tfy = 0. One can assume that r^N(R). But Index (a)^r^N(R). Hence 
Index (R)^N(R). 

We conclude this paper by establishing some properties of periodic rings of 
bounded Index or Degree. 

P r o p o s i t i o n 8. Let F be a periodic field. Then Degree (F) = d i f f F = 
= GF(p, d+\) (where GF(p, t) is the Galois field of p' elements). 

P r o o f . If F is periodic and Degree ( F ) = d , then F is an algebraic extension 
of Z p for some prime p; furthermore, for any a£F, there is h(t)iZ[t] such that 
a+a2h(a)=0 and d e g h ( t ) ^ d , on the other hand, there is b£F such that 
Degree (b)=d. 

Now [Zp(b): Zp]=d+1 = the degree of the minimal polynomial of b over Zp. 
In fact F—Zp(b). It is obvious that F contains Zp(b). Let a£F. If Zp(b) then 
(Zp(b))(a)^Zp(b). Now a being algebraic over Zp, H-(Zp(b))(a) is a finite sub-
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field of F and | H : Zp]=n>d+\. The field H is generated by one element c whose 
minimal polynomial over Z p is of degree n. Thus Degree (c)=n — \>d, which is 
impossible. Therefore F=Zp(b). Conversely, since F is a finite field of pd+1 ele-
ments, F is periodic. Now any 0?±a£F is algebraic over Z p and [Z p ( a ) :Z p ] = 
=k^d+l. Thus the minimal polynomial of a is of degree at most d+1 and so 
Degree (a) ^ d. Also F is generated by an element b such that Degree (b)=d. 

Thus from Propositions 5 and 8 it follows that a periodic ring R whose Degree 
is d is such that J(R) is nil and R/J(R) is isomorphic to a subdirect sum of dense 
rings of algebraic linear transformations of vector spaces over GF(p, k) with 
k^d+1 for some primes p. 

P r o p o s i t i o n 9. R is a periodic primitive ring and Index (R)=n i f f R is iso-
morphic to F„ (the ring of nXn matrices over F) for some algebraic extension F 
of Z p for some prime p. 

P r o o f . Let F be an algebraic extension of Z p . If A^F„ then the matrix A 
has n2 entries and involves only a finite number of elements of F. Thus A£G„ where 
G is a finite subfield of F, i.e. A belongs to a finite subring of F„. By Theorem 1, 
F„ is periodic. It is well known that F„ is primitive. Since the minimal polynomial 
of A£Fn is of degree at most n, N(F„)^n. Also A=[au], a(j = \ if / < / and 
aiJ=0 if z'sy, satisfies A"=0 and A"'1^0. Thus N(F„)=n, and by Proposi-
tion 7, Index (Fn)—N(F„)=n. Conversely, let R be a periodic primitive ring and 
Index Then R = Fm or Fs is a homomorphic image of a subring of R, 
for every positive integer s, where F is an algebraic extension of Z p for some p. 
Now, Index (R) does not increase by taking subrings or homomorphic images 
and so J=Index (Fs)^ Index (R)=n. Thus R = Fn. 
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Sublattices of a distributive lattice 

VACLAV K O U B E K 

At the Mini-Conference on Lattice Theory in Szeged, 1974, M. S e k a n i n a has 
formulated the following problem: Is it true that if a lattice B contains an arbitrarily 
large finite number of pairwise disjoint sublattices, isomorphic to a lattice A, then 
B also contains an infinite number of such sublattices? The aim of the present 
paper is to construct two countable distributive lattices A and B which are counter-
examples, i.e. such that for any m = 1, 2, 3, ..., B contains m disjoint copies of A, 
but it does not contain infinitely many such copies. An independent solution of 
Sekanina's problem was found by I . K o r e c in a paper to appear (personal com-
munication). 

An analogous problem can be formulated for other structures than lattices 
and various concepts of subobject, e.g. summand. In the second part a general 
formulation of this problem is exhibited. 

1. We recall that a graph (.X, R) (i.e. RcXxX) is bipartite if it is symmetric 
and there exists a subset M of X such that if (x, y)£R then x£M 

D e f i n i t i o n . A graph (X, R) is strongly reduced if for any distinct points 
x,y£X there exists at most one point z with (z, x), (z,y)£R. 

C o n v e n t i o n . Denote by N the set of all natural numbers, by Z the set of 
all integers. 

C o n s t r u c t i o n 1.1. We shall construct countable, connected, strongly re-
duced, bipartite graphs (Xt, Rt) with z'€N, i > l such that 

a) for every x£Xt, card {z: (x, z)6i?,}€{2, 3}; 
b) if f : (Xi, Ri)-+(Xj, Rj) is a one-to-one compatible mapping then i=j and 

/ is the identity. 
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Put 

= {(*, yY- (*, y(L Z), (y^O^ye {i, - <}U 

U{i + 2 fc+l : fc?N}U{-i-3fe-l: k£ N}) (sgnx = sgn^)}5 

R, = {((*, 0), (x+1, 0)): x6 Z}U{((x, 0), ( x - 1 , 0)): Z}U 

u{(0+S, y), (y + t,y)):(y€{i+2k + i:keN}U 

U{—i —3fc—1: *€N}U{i , - i } ) , ( | s - i | = 1), (s_Mj> ==0)}U 

U {((y - , 0), (y, y)), ((y, y), (y - J L , o)): y € {i+ 2k +1: k € N} U 

U{—f—3Jfe—1: fc€N}U{i, -i}}. 

It is clear that {X,, Rt) is a countable, symmetric, strongly reduced graph. Set 
= is even}, then Ri(z((Xi-Mi)XMi)U(MiX(Xi-AQ) and 

therefore (Xi, /?,) is a bipartite graph. Further, for every x£X,, 

We shall prove Property b). If f:(X¡, Rt)~*(Xj, Rj) is a one-to-one compatible 
mapping then for { / - 1 , 1 - i ' }U {i+2k:k£N}U {-i-3k: k£N},f(x, 0)€ {( / ' -1 ,0) , 
(1 - j , 0)}U {(j+2k, Q):kiN}(J{(-j-3k, 0): A:£N}. Hence / ( { ( / - 1 , 0 ) , (1 - / , 0)})e 
€{ (7 -1 ,0 ) , (1-./, 0)} and therefore i=j. Further, fix, 0)6{0>, 0): y€Z}. If 
/ ( /—1,0)=(1 — 0 ) then f(i+2k,0)=(-i-2k,0) but the latter is impossible, 
thus /(/—1, 0)=(/—1, 0) and so is f(x, 0)=(x, 0) for every x€Z. Hence / is 
the identity. 

Let us introduce the notation X~(Xlt Mt), N, i>1 . 

{Xt, R,) 

Fig.l 

card {z: (x, z)£Ri}e{2, 3}. 
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C o n s t r u c t i o n 1.2. Let X = (A', R, M) where (X, R) is a bipartite graph and 
MczX such that if (x,y)£R then x £ M iff y$M. Set 

Af = {ZcX:(3(x,y)£R)(xeM and Z = (M-{x})U{3;»}; 

Ai = {Zc X: (3xeM)(3Kc{y: (y, x)eR})(K is finite and Z = (M-{x}) UK)}; 

A§ = { Z c X: (B x£X-M)(3Kcz {y: (y, x)£R})(K is finite and Z = (M-K)U {*})}; 

Af = { Z c X: (3K<-M)(K is finite and Z = M- J5T)}; 

Af = {Zc: X: (3K<z X-M)(K is finite and Z = M U X)}. 

Put AX=\J A f , Bx = Ax\J{<b,X). For Z, VtB* define Z V F = Z U F , Z A F = 
¡=1 

= Z H F, then it is easy to verify that (Ax, U, D) and (Bx, U, f l ) are lattices (and 
hence they are distributive). Moreover, Ax and Bx are countable iff X is countable. 

Let 3L = (X,R,M), 9 )=(F , S, N) where (X, R), {Y, S) are bipartite graphs 
and for (x, jK-R (or (x, y)65), x£M iff y^M (or iff y$N, respectively). 
If / : X-Y such that f(M)<zN and / : (X, R)-»(Y, S) is a one-to-one compatible 
mapping then <p: BX-*BV (or cp/Ax: Ax—A®) is a one-to-one lattice homomorph-
ism, where <p (Z) = ( f ( Z ) U N ) - f ( M - Z ) if Z*9,X, <p(0) = 0, (p(X)=Y. We 
shall write YX=(A*, U, fl), Tf=(p/Ax, <PX=(Bx, U, 0 ) , <Pf=(p. 

N o t e 1.3. Denote by Gr the category whose objects are triples ( X , R , M ) 
where (X , R) is a bipartite graph and McX such that if (x, y)£R then x£M iff 
y$M and whose morphisms f : (X, R, M)-*(Y, N, S) are one-to-one mappings 
f: (X, R)^(Y, S) with f(M)<zN. Denote by DLat the category of distributive 
lattices and one-to-one lattice homomorphisms. Then (P, are faithful functors 
from Gr to DLat. 

D e f i n i t i o n . Let 21 be a lattice. An element x of 4C is called meet-infinite 
(or join-infinite) if there exists an infinite subset B of 91 such that for any distinct 
points a,b£B, at\b~x (or a\lb=x, respectively). 

L e m m a 1.4. Let 3£ = (X, R, M) be an object of Gr such that M and X—M 
are infinite and for every x£X the set {y: (x, y)£R} is finite. Then for Z f A x we have 

a) Z is a meet-infinite element i f f Zz>M\ 
b) Z is a join-infinite element i f f ZCLM. 

P r o o f . If F z ) M then it is clear that F i s meet-infinite ( F = ( F U {x})f l(FU {j}) 
for every x^y, x, y£X— V). Let F be meet-infinite. Let 3S<zAx be an infinite set 
with W1C\ JV2= V for every W^W^®. If M - F ^ 0 then M-W?± 
r^M—V holds only for finitely many and so is finite because the set 
{y: (x, y)£R) is finite for every x£X, a contradiction; thus M — F = 0 and hence 
FDM . The proof of case b) is analogous. 
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L e m m a 1.5. Let f : 21-»© be a one-to-one lattice homomorphism. If a621 
is a meet-infinite (join-infinite) element then f(a) is meet-infinite (join-infinite), too.-

P r o o f . The proof is easy and is therefore omitted. 

L e m m a 1.6. Let X = (X, R, M) be an object of Gr such that for every x£X 
the set {y : (x, j)€-R} is finite. Let Z, V£B* be such that there exists an infinite set 
3)czBs with the following properties: 1) for every W

7
, fl = K (or 

W1UW2=V); 2) Zz>W (or ZczW) for every Then Z=X (or Z = 0 , 
respectively). 

P r o o f . Clearly, X is finite iff Bs is finite. If the set {y : (x, is finite for 
every x£X then X is finite iff M and X—M are finite. By Lemma 1.4 we get that 
VZA5 and therefore either Z—X or If Z£A*, we have that Z— V is finite 
and therefore £8 is not infinite, a contradiction. 

P r o p o s i t i o n 1.7. Let X = (X, R, M), "i) = {Y,S,N) be objects of Gr 
such that 

a) (X, R), (Y, S) are strongly reduced; 
b) for every x£X the set {y: (y, x)£R} is finite and has at least two points; 
c) M, X-M, N, Y-N are infinite. 

If f : WX-^Wi) (or f : — <i>9)J is a one-to-one lattice homomorphism then there 
exists a morphism g: (X, R, M)-*{Y, S, N) of Gr with xPg=f (or <Pg=f, re-
spectively). 
ess^"-" 

P r o o f . By Lemmas 1.4 and 1.5, f ( A f ) ^ A f , f(A^)c:A^. Now we shall 
prove f(A*)czAf. Since for every Z£A*, Z—M and M—Z are nonempty, we 
get that f(Z)£A*\JA\\JA*, hence / ( ^ c ^ L U f L U ® . Assume thai there 
exists Z£A? with f(Z)€Af. Then there exists VX£A\ with VXUZ£A* and 
Vxr\Z$Af. Then f(Vx)U/CZ)6^® and f{Vx)C\f{Z)iA*. Therefore ( / ( . F i ) - W ) n 
n ( / ( Z ) - 7 V ) ^ 0 but (N —f(Fj))fl(N —f(Z))=0. We shall prove f{V1)-N= 
—f(Z)—N, hence we get a contradiction because (Y, S) is strongly reduced. 
Choose V2£A? with V2UZ, V2(J V, £Af, V2HZ, V2nVx£A*. Then V2U Z= 
^.V2UV1=ZUV2UV1 (we use that F^Z^Af and therefore V1-M=Z-M). 
Then / ( V 2 ) U/ (Z) = / ( V2) U / ( V,) =f(Z) U/( V2) U / ( V,), hence (f(V2)Uf(Z))~ 
- J V = ( / ( F 2 ) U / ( K 1 ) ) - / V . Since f(Vx)D/(F2), f(Z)C\f(V2)^, we have 
(f(Vi)-N)n(nV2)-N) = & and (f(Z)-N)fl(f(V2) — N) — 0. Thus f(Z)-N= 
=f(V1)—N. We obtain that f(Af)cAf because it can be proved analogously 

that f(Af)DAf=0. Hence f(A%)cAf, f(A*)cA* Define g: X-+Y as follows: 
for xdM, g(x)=y where f(M—{x})=N—{y}, 
for x$M,g(x)=y where / ( M U {x}) =NU 
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(Since f(A*)c:Af, we get that for every v^M, f{M—{v})=N—{w) where w£N 
and for every v£X-M, f(MU{v})=NU{w} where w£Y-N.) It is clear that 
g(M)<zN and g is one-to-one. If (x, y)£R with x£M then Z=(M-{x])]J{y}ZA\ 
and therefore /(Z)eAf. Since Z=>M-{x}, we get that f(Z)zDN-{g{x)} and 
since ZczMU {y}, we get that f(Z)czNU {g(y)}. Hence f(Z)=(N-{g(x)})U 
U{gO>)} and so (g(x) ,g( j ) )€5 . It is clear that If / : then by 
Lemmas 1.4 and 1.5 f(A*)c:Aj!,f{A*)c:A*. Therefore by Lemma 1.6 / ( 0 ) = 0 , 
f(X)=Y and the rest follows from the foregoing part of the proof. 

C o r o l l a r y 1.8. Put 91 ¡ = f £ ; , = (for 3ch see Construction 1.1). 
If f : 21,-*Sfj (or f : S , — i s a one-to-one lattice homomorphism then i=j 
and f is the identity. 

C o n s t r u c t i o n 1.9. Let T be a set. Put 

7 = (Z: ( Z c e x p T ) , (Z ^ 0), (Z is finite), (V£Z => (V * 0 and F or T—V is finite)), 

( V F 1 , F 2 € Z ) ( F 1 - F 2 ^ 0 ) } . 

Define a partial ordering s on 7 as follows: Z x s Z 2 iff for every V£Z1 there 
exists WiZ2 with Vz>W. Clearly, s is a reflexive and transitive relation. Since 
for every Z£ Y, F 2 € Z implies we get that ZX^Z2^ZX iff ZX=Z2\ 
thus s is a partial ordering. 

Now if we put 

ZiVZ2 = {VeZ1UZ2: (fVeZ1UZ2=>fV-V ^ 0 or W= V)}\ 

ZxAZ2 = {F: (3F I €Z 1 ) (BF 2 €Z 2 ) (F= VxUV2), 

( v ^ e z ^ c v ^ e z ^ ^ u ^ C F ^ w1uw2 = F ) } , 

we get that (Y, is a partial ordering induced by a lattice (Y, V, A) and it is 
easy to verify that (F, A, V) is a distributive lattice. Put S>(T)=(Y, V, A). We 
shall identify t£T with {{i}}<E Y, i.e. Ta Y. It is clear that the sublattice of 3>(T) 
generated by T is a free distributive lattice over T. Furthermore, no element Z 
of 3>(T) is join-infinite and Z £ Y is meet-infinite iff there exists an infinite set 
F c T with F€Z. 

Let U be a set and let {£/,•,•: i, y'6N} be a cover of U. Define 

F = { Z c exp U: (Z is finite), (F<E Z => (F ^ 0), (F is finite or 

(3/, N)([/;>J —F is finite))), (VFX, F 2 6Z)(F X -F 2 * 0)}. 

Define a partial ordering S on Y as follows: ZX^Z2 iff for every VdZx there 
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exists W£Z2 with Vz> W. Clearly, ^ is a partial ordering and if we put 

Z I V Z 2 = { F £ Z J U Z 2 : ( V f V € Z 1 U Z 2 ) ( f V a V = > f V = F ) } ; 

Z X A Z 2 = { V : ( B F 1 € Z 1 ) ( B F 2 6 Z 2 ) ( K = F X U F 2 ) , ( V ^ € Z , ) , 

( v ^ e y ^ u w j c F=> fVjUff^ — v)} 

then (Y, V, A) is a distributive lattice induced by the ordering Put 

Y = {Z€ Y: Fg Z (V is infinite, (Bi, j, m,n£N) 

((¿, j ) * (m, n), V-U,j * 0, V-Um<n * 0))}, 

then Y is an ideal in Y. Let ~ be the congruence relation generated by Y. Then 
Z X ~ Z 2 iff VeY whenever F 6 ( Z 1 - Z 2 ) U ( Z 2 - Z 1 ) . Hence if we put 

Y = {Z€ Y: F e z => (V is finite or ( B ' , . / € N ) ( t / w - F is finite, Fc£/ ;>J))}, 

we get that (Y, s ) induces operations sup and inf as follows: s u p { Z 1 , Z 2 } = 
= Z1VZ2 , inf {Z1, Z 2 }=Z 1 AZ 2 if Z1AZ2£Y, = 0 otherwise. Clearly, (Y, sup, inf) 
is a lattice. Since. (Y, sup, inf) is isomorphic to (Y, V, A ) / ~ , we get that it is dis-
tributive. We shall identify ud U with {{w}}£Y, i.e. t / c Y . Notice that the sub-
lattice of (Y, sup, inf) generated by U is a free distributive lattice over U. Introduce 
the notation %>(U, Uj •: i, / £ N ) = (Y, sup, inf) (further on we shall write only 
V, A instead of sup, inf). 

L e m m a 1.10. For every cover {i/i;J-: i, y'6N} of U no element of 
Uit j: i, J£N} is join-infinite. An element Z of ^(U, Uit j: i, j£N) is meet-in-

finite i f f 
a) either Z ^ 0 and there exists V^Z such that V is infinite, 
b) or Z = 0 and there exist infinitely many i, j£ N such that XJitj is infinite. 

P r o o f . Let Z € Y, we prove that it is not join-infinite. Let be a subset of 
Y such that Z 1 V Z 2 = Z for any distinct Z l 5 Z2^ST. Then Z X U Z 2 3 Z and for 
every V^(Z1UZ2)-Z there exists W£Z with VD W. Hence, if F 6 Z - Z , for 
Z^ST then V£Zj for every Z j € f - { Z t } and if Z p Z where Z £ 2 T then Z, = Z. 
Therefore we get that 2T is finite and Z is not join-infinite. 

Let Z€ Y, Z ^ 0 be such that every F € Z is finite. We shall prove that Z is 
not meet-infinite. Let 9~<ZLY be such that Z J A Z 2 = Z for any distinct Z X , 

Hence if FEZ, with K D Vx then for every W 2 £ Z 2 , V V1U tV2 and there 
exists F2£Z2 with F = F 1 U F 2 . On the other hand, for every V£Z there exists 
F j ^ Z j with KD V1. Now, for every F £ Z and every Z^ST we choose Wy i^Zi 
with Wvi<zV. Then for i ^ j , WVi\J lVVj=V. Therefore for every F g Z 
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the set {Wv i: ZiZZT} is finite and if W v ^ V then W v ^ W V t i for every 
Z ^ Z j , Z^ST. Hence the set {Z^.T: ( f V v ^ V)} is finite. Let ST' be 
a subset of 2T with Z^S'' iff Z,o>Z. It suffices to prove that ST' is finite. For 
any distinct ZX,Z2^ST' and every V1£Z1 — Z, V2£Z2—Z, there exists V£Z with 
V1UV2z>V. For every Z£3"-{Z}, we choose Vt£Z,-Z and put W—Vid 
n U V. Now if Z ^ Z j then W,U WjcV for some V£Z. Since ÍJ V is a finite 

Vtz Vtz 
set, we get that there exists only a finite set such that if Z^ST" then V— 
— for every V£Z. Hence ST' is finite because if W p C for some 
V^Z then W,— Vi= V, a contradiction (notice that F6Z,). Thus ST is finite and 
Z is not meet infinite. 

If there exists an infinite set Vf_Z then put ST={{W\ JV€Z-{V}}U 
U{F-{JC}}: x£V}. Clearly, i f Z l 5 Z 2 € ^ Z^Z2 then ZtAZ2=Z and is 
infinite since V is infinite. 

If Z = 0 and M = {(i, j): UitJ is infinite} is infinite, then put &~={{Uitj): 
(z, 7)6M}. Then ¿T is infinite and for distinct Z , , Z 2 t ^ Z1AZ2 = 0 = Z. 

Let be an infinite subset of #( ( / , UUj: i, N) such that for distinct Z l 5 

Z j A Z 2 7 Í 0 . Then for every {0} there exists an infinite set F F 6 Z ; and if 
Z , ^ Z j then K;U Vj is not a subset of any Um n , m, N, but every V, is a subset 
of some Um n . Hence if Z ^ Z j then (mt, n^irrij, rtj) and Um „ is infinite. 

C o n s t r u c t i o n 1.11. Choose countably infinite sets T and U and a covering 
{Uitj: i, N} of U such that UtJ is infinite, and if i+j=m+n then UUjC\ Um n—&, 
otherwise the intersection is a singleton. Choose a mapping s: £/—T such that 
e|U iyJ: Uij-~T is a bijection for every (z, » S N X N and choose a bijection 

l1'- N—T. Set K = { q > , í ) : G > € N ) , g í e " 1 (/z ( [ y ] ) ) ) } . 

Let S0Í be the sublattice of 3l(T)x [J » f (for 93; see Corollary 1.8) generated 
by the set , € N 

U 

^ = {(*, W/cn): (<€ T), ((z is odd), ( [ i - ] ) * /) => at = 0 

[(i is even), ( „ ( [ ! ] ) * t) => a, = X ^ , („ ([!]) = , =• fl|€ ®,)} 

U{({K}, {a,},6N): (T-V is finite), (Vi6N)(a f = 0)}. 

It is clear that 5 is a countable set and therefore 9Ji is a countable distributive 

lattice. For i £ T set z(t) = (t, {a,},eN) where a(t)£S and = if ¡i (JyJ j = L 
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Let 91 be the sublattice of <g(U, Uitj: i, j£N)X [I®-1 with s~ 

=card £—1 ( [ i ] ) j generated by the set 

Q = {("> K,«}(*«)en): («6 U), ((p is odd), 

=> aPf9 = 0), ((p is even), (q ^ u) => ap<q = X ^ ) , 

(? = «=» aP,,e»[-|j)}U{({K}, {ap,q}(p,qKk): 

(3i, j € N ) ( ( £ / , - i s finite), (VczU^)), 

(V(p, ?)€K( f l p ,4 = 0))}. 

Since g is a countable set, 5ft is a distributive lattice. For u£U, put /?(") = 
= (". {ap,,}(p,,)€K)i6 w h e r e = i f 4 = U-

L e m m a 1.12. Let (t, {«,-},• €N) ¿e a /jo/wi where t£3)(T) and a ;6S [ i / 2 ] / o r euery 
/£N. Then (t, {a,}l€N) w a point of 9Ji i f f the following conditions hold: 

a) if i is odd and « ¡^0 then t is greater than or equal to p 

b) if i is even and at^Xli/2j then either t is less than or equal to p f i y l j 
or for every z"6 N, a ; = 0 and every set V£t is infinite. 

Let (w, {aPtq\p>q)eK) be a point where Uitj: i,j£ N) and ap ,9€© [ p / 2 ! for 
every (p, <7)6K. Then (w, {a p ? } ( p ^ € K ) is a point o/5ft i f f the following conditions hold: 

a) if p is odd and «P i ??£0 then u is greater than or equal to q; 
b) if p is even and apq?±X\pl2} then either u is less than or equal to q or for 

every (p,q)£K, apq = Q and either w = 0 or every set V£u is infinite. 

P r o o f . Easy. 
Notice, if (w, „Jen) i s a point of 5ft then there exist only finitely many 

(p,q)£ K with apq=0, X[p/2y Hence we get 

C o r o l l a r y 1.13. An element (u, {ap 9)(p 9)€K) of 5ft is meet-infinite i f f either 
there exists an infinite set V(zU with Vdu or « = 0, or there exists (p, <?)€K with 
XlPi2]^ap,q^Mip/2y An element (u, {aPi9}(Pi?)6K) of 91 is join-infinite i f f there exists 
(p,q)£K with Mlp/2]^apq^<d. 

P r o o f . The statement follows from Lemmas 1.4, 1.10, 1.12 and the fact that 
if ZlDZ2 = 0 then either Z, = 0 or Z2=0 and if Z1UZ2=Xi then either Zx=Xi 
or Z2=Xt in each S f . 

P r o p o s i t i o n 1.14. Let <p\ 501—5)1 be a one-to-one lattice homomorphism. Then 
for every t£T, (¡9(a(/)) = /?(«) where s(u) = t. 
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P r o o f . Set (p{a(?)) = («', {ap i j ( p > 9 ) € K)- Since a{t) is join-infinite, we get accord-
ing; to Corollary 1.13 and Lemma 1.12 that there exists u ' ^ U such that either 
u ' ^ u ' or u ' ^ u ' . 

a) First we prove that u' — u'. Assume the contrary, i.e. for some t0£T, 
u'o^u'o. We know that there exists a finite set IVc U with W^u'". Now if 
u'o^u'" (in the case «'»>«'», the proof is analogous) then put Lt={u£U: «>«'} 
for t£T. Clearly, L, is a finite set for every t£T. Now there exists a finite subset 
f c T with f l L , = f l L,- Then V {<*('): is join-infinite and therefore 

fgr tgT' 
f | (see Corollary 1.13 and Lemma 1.12). For t^T-T' put 

16 T 

E, = {(', W/6N )€ 2K: ( [ y ] ) = i ) , 0' is even) => a, = M [ l / 2 ] J , 

(i is odd(3x6M [ i / 2 ] ) (a f = Muin~{x}))}. 

Hence, if e1,e2 are distinct points of Et then e 1 Ve 2 =a( / ) and ^ V c ^ e 2 V c, 
exAc=e2Ac where c= V{«(/): t€T'}. For w€93i, let <p(w) = {(vw, bw

pJ\p qKK. 
Since no element of U, {/, i, N) is join-infinite, the set E,= {e£Et: ve=u'} 
is infinite for every t^T—T' (because for infinitely many el,e2£El, vei = ve2 and 
then necessarily vCl = u'). Hence for e£Et, yeVc=f<z( , )Vc . Now, for distinct 
t2£T—T' and for e1^Eh, e 2 6 , we have e1Ae2=a(t1)Aa(t2). Thus, for every 
distinct points t ^ t z Z T — T ' , 

(a) e ^ c ^ e ^ c for any e 1 , e 2 £ E h and i>eiVc = t>eaVc, 
(b) eAe=a( / 1 )Aa( i 2 ) for every -e£Et, 

Since for every t£T—T' there exists only a finite subset K , c K such that (p, Kr 

whenever bpq^&, X[p/2] and (veVc, {¿y J ^ ^ K ) ^ where e£ET, therefore there 
exists (p,, q,)£K and an infinite set £ t c £ , such that whenever 
e, , e2 are distinct points of Et. Since a ( i ) A a ( / ' ) = e V c for every t, t'ZT—T' and 
e£E,, we get that bfj^x(,">=</) (see Lemma 1.6) and since in S ; Z 1 H Z 2 = 0 implies 
either Z j = 0 or Z 2 = 0 , we have that for every t'£T—T', t?*t' and every e£E, . , 
be =0 . Since D Lt for every i£T—T' and since P) L, is finite, we get a 

' ' t(T t(.T 

contradiction. Hence w'° = u'°. 
b) Now, we prove that a p , u = M [ m ] . Assume the contrary, i.e. a P i U = Z ^ M l p / 2 ) . 

If p is odd then for / ' , t"ir, i V i V i , t'^t, the element e=(<x(i)Vce(0)A 
A(a(/)Va(?")) is both meet- and join-infinite. On the other hand, if <p(e) = 
= (ve'{be

pJ(P,i) 6 k) then be
p q = & or X[p/2] if (p, q)^(p, u) and b\ u=Z, which 

contradicts Lemmas 1.4 and 1.5. If p is even, the proof is analogous. Thus 
at,u=MW2V 

10 



146 Vaclav Koubek 

c) Now we prove that E(if) = t. Let i0 be an odd natural number with 

= let pQ be an odd natural number with p 11 su®068 

to prove that i0=p0. Define tp: ®,0—®Po as follows: (¡/{Z)=be^u, where 

ez=(t, {a,}i€N) and if p ( [ y j j = ' anc* ' °dd then a¡=Z, while if / is even 

then a,=Mm (recall that <p(ez)=(uez, {¿pf9}(Pi9KK))- It is clear that i/̂  is a lattice 
homomorphism (it is a composition of the embedding of ©,o into 9Ji, of <p and 
of the projection from 9Í to ©Po). We shall prove that ip is one-to-one. By Lemma 
1.6 it suffices to prove that <A|2I,0 is one-to-one. First we shall prove that for every 
Z €31/, vez=u'. Hence, it follows immediately that ij/ is one-to-one and by 
Corollary 1.8, i0=p0. Put 

E-, = |(I, {a,},€ N): ( [Y]) = (' is even) =• a¡ = Mim , 

(i is odd => (3x€ M [ i /2 ])(a i = M [ l / 2 ] - {x}))J, 

E2 = |(i , {a,},eN): [[yj] = , (i is even) ^ a¡ = M i m j , 

(i is odd =• (3xe xím-Mui2ú(a¡ = Mim 

Clearly, if we verify that for e££\U£ 2> ve=u', then for every Z£21, , ve* = ü, 
Since for any distinct el,e2£E1 (e¡, e2£E2), e1Ve2=a(t) (e1Ae2 = a(t), resp.) we 
get that there exists at most one e1^E1 (or e2 € E2) with vei7±u' (or v"2 ̂  u1) because 
for u£U, if uxVu2 = u (or U1AU2 = U) then either u¡ = u or u2 = u. Then neces-
sarily v"1 Choose a homomorphism a\ 3¡{T)-+ 9JÍ such that o(t)=x(t) 
for every 16 T (clearly, such a homomorphism exists). Now we can choose t'f__$)(T) 
such that t'>t and va(,) and u"2 are incomparable. Then a(t')/\e2=n(t) (observe 

that if o(t') = {t, {fl/}/€N) then for an odd i with p = a,=Mmi), but 

(p (a (<')) A (p (e2) ?¿<p(a (/)), a contradiction. Thus for every e£E2, ve = u'. Ariálog-
ously, we prove that vei=u'. The proof is concluded. 

T h e o r e m 1.15. For every natural number i,'there exist pairwise disjoint sub-
lattices 9l0, 9lj , ..., 9l i_1 of the lattice 91 which are isomorphic to SDZ, but there are 
not infinitely many pairwise disjoint sublattices 910,91!,... of 9Í which are iso-
morphic to 93J. 

P r o o f . Let {<pk}kgN be a sequence of one-to-one lattice homomorphisms from 
9)1 to 91. Then for arbitrary k£N and t£T, (pk{a{t))=fi(u) where e(u) = t. Further, 
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for every finite set T'czT there exists a point y(r')€2>t such that y(7") = a 0 ) 
iff tiT-T'. On the other hand, if U'cU is an infinite set and £ / ' - C / , . ^ 0 for 
any i, N, then for every u£U' iff e=(0, {ap q}(p q)e K) where apq=9 
for every (p,q)£K. Therefore there exist ik, jk£N with q>k(<x(t)) = (u', {ap>i}(p,,)eK) 
where {w'}=e_ 1(i)n U{ j for every t£T. Therefore there exist k^ki with 

Put V}=^kl,;tint/ik2,Jk2 e(u) = t. Then (pki(a(t)) = <pki(a{t)) 
and {<pfe (9Ji)}fc e N a r e n o t pairwise disjoint. 

Let A: be a natural number. For every j^k define 1pj: <2i(T)-~<t>{U, Uitj: i,j£N) 
as follows: \j/j(Z)= {e~1(V)C]U^_J)J: V^Z}. Clearly, the ip/s are one-to-one 
homomorphisms and {^ j (^(T))} J s k are pairwise disjoint. Define cpj-. 9Ji — 91, 
<Pj('> M / e n ) : = ( h ( 0 , {¿P>,}(P>i)€K) w h e r e b i ^ f , ) = a i - T h e n W j - J = k } is a family 
of pairwise disjoint one-to-one latlice homomorphisms. The proof is concluded. 

2. Let us formulate the above problem in a general category with a class 9JI 
of its morphisms. 

D e f i n i t i o n . Let Jf" be a category with a cosingleton 0. Let f,g:A—B be 
morphisms of X. We shall say that / , g are disjoint if 

0 A 
| / 
1 

A—^— 
is a pull back. 

D e f i n i t i o n . Let J f be a category, let 9JJ be a class of its morphisms. A pair 
(A, B) of objects is said to have the property (S^,) if for every n= 1, 2, ... there 
exist n pairwise disjoint 9Ji-morphisms from A to B, but there do not exist in-
finitely many such morphisms. We say that JT fulfils Sekanina's axiom with re-
spect to 9)i if no pair of objects has the property (S^). 

Now we can formulate the foregoing result as follows: The pair (®i, 91) of 
countable distributive lattices has the property (Sal) with Jl the class of all 
monomorphisms. 

Now we establish some other results: 

T h e o r e m 2.1. The category of sets, the category of vector spaces and the 
category of unary algebras with one operation fulfil Sekanina's axiom with respect 
to 9JI for every class 9Ji containing all monomorphisms. 

Proof . Easy. 

Theorem 2.2. The category of complete, completely distributive Boolean al-
gebras fulfils Sekanina's axiom with respect to the class of all monomorphisms. 

10« 
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Proof . The statement follows immediately from the well-known fact that 
every complete, completely distributive Boolean algebra is the algebra of all sub-
sets of some set. 

T h e o r e m 2.3. The category of graphs or unary algebras with a operations 
(a is a cardinal, a >0J fulfils Sekanina's axiom with respect to the class of all 
summands. 

Proof . The statement follows from the fact that / : A—B is sumand iff 
A is isomorphic to the sum of some components of B. 

Now we recall that a monomorphism / in a category J f is an extremal mono-
morphism if any epimorphism e is an isomorphism whenever f=goe for some 
morphism g of J f . In the category of graphs or topological spaces extremal mono-
morphisms are embeddings to full subgraphs or subspaces. 

I. KOREC showed that there exists a pair (A, B) of countable graphs or countable 
unary algebras with two operations which have the property (S^) where 90Z is the 
class of all extremal monomorphisms. 

T h e o r e m 2.4. There exists a pair (A, B) of connected, countable, bipartite 
graphs with the property (5^) where 501 is an arbitrary class of monomorphisms con-
taining all extremal monomorphisms. 

T h e o r e m 2.5. There exists a pair (A, B) of continua with the property (Sw) 
where A is a subcontinuum of the plane, B is a subcontinuum of the cube and SR is 
an arbitrary class of monomorphisms containing all extremal monomorphisms. 

P r o o f of T h e o r e m s 2.4 a n d 2.5. Put X= {a, b, c}U(NX {0, 1}), 

R = {((0, 0), a), ((0, 0), b), ((0, 0), c), (a, (0, 0)), (b, (0, 0)), (c, (0, 0))}U 

U{((/,0), (¿,1)), ((/, 1), (¿,0)): ¿6 N}U 

U{((i, 0), ( /+1 , 0)), ((< + 1, 0), (/, 0)): /€ N}. 

(X,R) 

Fig. 2 
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Clearly, (X , R) is a connected, countable bipartite graph. Choose a bijection (p 
from L={(x, y,z, v):(x,y,z, ygN), (x+y^z + v)} to N. Put (Y, S) = (X, R)X 
X(NXN, A)/~ where ( N x N , A) is the smallest reflexive relation on N x N and 
~ is the smallest equivalence relation on Z x N x N with 

(k, 1, x, y) ~ (k, 1, z, v) whenever (p(x, y, z, v) = k. 

Clearly, (Y, S) is a connected, countable graph. To verify that it is bipartite, it 
suffices to put M={(k,i,x,y)£Y: k + i is even}/~. Let k be a natural number, 
i^k. Define /¡k: (X, R)-»(Y, S) as follows: fi(x) is the ~-class containing 
(x,k,k — i). Clearly, f k , z'=0, 1, . . . , k, are pairwise disjoint extremal mono-
morphisms. Let {/¡} be a sequence of one-to-one morphisms from (X, R) to (7, 5). 
Since card {y-(y, (0, 0))gi?} = 4, we get that for every i there exists (pn qt)6NXN 
such that / ¡ (0,0) is the ~ -class containing (0, 0, pt, qt). Hence we easily get that 
/¡(j, 0) is the ~-class containing ( j , 0 , p „ q,) and /¡(j, 1) is the ~-class containing 
(j,\,Pi,q,)- Further, there exist ;0, with p. +q^p +qt . Let k = 
= (P{Pi0,%,P i l,<li)- Then fio(k,l)=fii(k,\) and therefore fa and f^ are not 
disjoint. If we set A=(X, R), B=(Y, S), then the proof of Theorem 2.4 is 
concluded. 

Let K be a circle with the usual topology. Choose two distinct points a, bfK. 
Let S={{x, y}: (x, be equipped with the discrete topology where R<0XXX 
is the relation defined above. Let P, be the one-point compactification of KX S/ ~ 
with ~ standing for the smallest equivalence relation such that: 

(a, {x, >>}) ~ (a, {x, z}) for every {x,y}, {x, z}d S with x£{(i,j): i+j is even}; 

(b, {x,y}) ~ (b, {x, z}) for every {x, j>}, {x, z} £ S with x£{(i, j): i+j is odd}. 

Clearly, P± is a subcontinuum of the plane. We shall assume that N has the discrete 
topology. Let P2 be the one-point compactification of PxXNxN/w where % 
is the smallest equivalence relation such that if q>(x,y,z,v) = k then 

((a, {(k, 0), (k, 1)}], x,y) « ([a, {(/c, 0), (k, 1)}], z, v) if k is odd, 

([*>, {(/c, 0), (k, 1)}], x, y) « ([fe, {(k, 0), (k, 1)}], z, v) if k is even, 

where [x] denotes the ~ -class containing x. Clearly, P2 is a subcontinuum of the 
cube. The proof that (P l 5 P2) has the property (Sm) is analogous to that of the 
similar statement for (X , R) and (y, S). It suffices to realize that if / : K-+K is one-
to-one then / is a homeomorphism. 

T h e o r e m 2.6. There exists a pair (A, B) of 0-dimensional compact Hausdorjf 
spaces on sets of power which has the property (5M) where SDl is the class of all 
summands. 
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P r o o f . Define topological spaces Sn by induction as follows: is the one-
point compactification of a countable discrete set; S„ is the one-point compactifica-
tion of S n _ j X N where N has the discrete topology. Put R„ to be the one-point 
compactification of Ki copies of S„. Let 7\ be the one-point compactification 
of the disjoint union of RltR2, Clearly, 7\ is a 0-dimensional compact 
Hausdorif space on a set of power Ki-

Let U be a countable set and let {£/,,,: i, y€N} be a cover of U such that every 
U j j is infinite and Ui jC\U m n =& if i+j=m+n, t^ j - f l £/mj„ is infinite if 
i+j^m + n. Choose a mapping 1p: (7—{1,2, 3, ...} such that 1p\UitJ is a bijection 
from U i j onto {1,2,3 , . . .} for every i, j£N. 

Let T2 be the one-point compactification of 7 \ X N x N / % (NXN has the discrete 
topology) where % is the smallest equivalence relation such that (x, i, j ) % (x, m, ri) 
if x£Rp and p£*p(UijC)Umi„). Clearly, T2 is a 0-dimensional compact Hausdorff 
space on a set of power Kj. 

Let k be a natural number, / = 0 , 1, ..., Ar. Define /¡k: Tx — T2, by /¡k(x) being 
the % -class containing (x, k, k — i). It is easy to verify that f f is a summand and 
that /.* and f * are disjoint whenever iVy. 

Let {/¡: Tl-+T2} be a sequence of summands. Then for every /, there exist 

j^k^N and i1,i2,...,inZN such that / , ( 7 \ - U R, ) c Tx X {(/,, * , ) } /« , there-
m = 1 m 

fore if /,. +k. ¿¿j. +k. , we get that Im/! Pi I m / . 0 and thus /) and f , Ji0 '0 Jtl ° 'o 'l J 'o J 

are not disjoint. On the other hand, there exist i0, such that either j, 
5* j i l

Jrk k or (7,o, kjJ=(j^, h j . Hence if we set A = TX, B=T2, the proof 
of the theorem is complete. 
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Mean ergodic semigroups on ^-algebras 

B U R K H A R D K Ü M M E R E R and R A I N E R N A G E L 

In 1 9 6 6 I. KOVÁCS and J. Szűcs [ 5 ] proved the following: If G is a group of 
^-automorphisms on a W*-algebra si having a faithful family of normal (/-in-
variant states, then the weak*-closed convex hull of Gx, x£si, contains a unique 
G-invariant element. As its forerunner, the von Neumann mean ergodic theorem, 
this result has found many applications in mathematical physics. For that reason 
it is interesting to ask whether the theorem may be generalized to semigroups 
of bounded operators on si. 

On the basis of an abstract mean ergodic theory (see [8], [14] or section 1 below) 
we will prove in section 2 that the desired result holds for semigroups of operators 
on si satisfying a certain contraction property. This answers a question raised 
in [9]. Our technique can be applied with particular success to semigroups of 
completely positive contractions on si (theorem 2.4). In section 3 we investigate 
the relation between mean ergodicity and compactness of such semigroups. 

Some of the results have been announced in [6]. 

1. The abstract mean ergodic theory 

In this section we recall the basic theory of mean ergodic operator semigroups. 
Let E denote a Banach space, E* its (topological) dual and -Sf(/s) the space of 
all bounded linear operators on E. We call a semigroup S(z£C(E) (norm) mean 
ergodic if the strong (or weak) operator closure cö S in 3?(E) of the convex hull 
of S contains a projection P satisfying 

TP = PT = P for all T£S. 

Endow E* with the weak* topology a(E*, E) and denote the weak* closed convex 
hull of the orbit of (p£E* under the adjoint semigroup S*: = {T*e^(E*): T£S} 
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by co S*(p. The following property of a mean ergodic semigroup is then 
immediate. 

(1.1) P r o p o s i t i o n . Let S<z£?(E) be mean ergodic with projection P. Then 
P (resp. its adjoint P*) is a projection onto the S-fixed space F in E (resp. S*-fixed 
space F* in E*) and we have PxZco Sx, P*(p€co S*(p for x£E, cp£E*. Moreover, 
the dual of PE is isomorphic to P*E*. 

For bounded semigroups we have the following useful characterization of 
mean ergodicity. 

(1.2) T h e o r e m [8]. If the semigroup S<z£f(E) is bounded, the following con-
ditions are equivalent: 
(a) S is mean ergodic. 
(b) S* is weak* mean ergodic, i.e. the closed convex hull of S* with respect to the 

weak* operator topology a(£C(E*), E*®E) contains a weak* continuous pro-
jection P* satisfying 

P*T* = T*P* = P* for all T£S. 

(c) The S-fixed space F separates the S*-fixed space F* and F* C\co S*tp?i& 
for all <p£E*. 

R e m a r k s : 1. The proof of (c)=>(a) follows as in [8], 1.7. 
2. <T{£P(E*), E*(G>E) is the topology of pointwise convergence on 

(.E*, A{E*, E)). 

3. Weak* mean ergodicity of S* should be distinguished from norm mean 
ergodicity of S* on the Banach space E*. 

The main objective of the theory is to show that certain semigroups on certain 
Banach spaces are mean ergodic. The oldest result in this direction is the von 
Neumann mean ergodic theorem which states that the semigroup S'.— {Tn". w£N} 
generated by a unitary operator T on a Hilbert space is mean ergodic. This has 
been generalized considerably with emphasis either on the geometry of the underly-
ing Banach space or on particular properties of the semigroup. We quote two typical 
results (see [8], 1.4 and 1.9 or [14], III. 7.11 and 7.9). 

(1.3) Example s . 1. Every contraction semigroup on a Hilbert space is mean 
ergodic (Alaoglu-Birkhoff). 

2. A group G in 3?{E) which is compact in the strong (or weak) operator 
topology is mean ergodic. 
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2. A non-commutative mean ergodic theorem 

In what follows si shall always be a W*-algebra with dual si* and predual 
si^ (see [3] or [12]). On si we consider a bounded semigroup S of weak* continuous 
linear operators whose preadjoints S^ := {T^ 6 SC(si^): 76 5} then exist. F.or such 
a pair (si, S), called here a dynamical system, we state our main result. 

(2.1) T h e o r e m . Let (si, S) be a dynamical system. If there exists a faithful 
family <P of normal states on si satisfying 

(*) <p((Tx)*(Txj) <p(x*x) for all (p£4>, T£ S, x£ si, 

then S is weak* mean ergodic. 

The proof of the theorem will be based on example 1.3.1 and on the coin-
cidence of certain topologies. For this purpose we denote by ¿FA, A contained 
in si£, the set of all normal positive linear forms on si, the topology on si generated 
by the seminorms 

x - <p(x*x)112, (p£A. 

In particular, we write ~̂A = .Tl/t if A = {<p} and we have STA=s(si,siJ, the 
strong topology, if A=si+ (see [12], 1.8.6). Take now <p£si* and denote its support 
by Py and the orthogonal complement 1 —p^ by p ^ . Then we have si=Kip(B L^ 

setting 
Kv := sipv and L^ := sip^ - {x£si: cp(x*x) = o}. 

If si is a weakly closed *-subalgebra of £P(H), H Hilbert space, it follows from 
[3], chap. I, §4, prop. 4 and [12], 1.15.2 that the topologies OT^, s(si, si^) and the 
strong operator topology coincide on norm bounded sets of K(p. 

Assume now that A is a faithful family of normal states on si. It follows from 
the considerations above that 3TA coincides on norm bounded subsets of si with 
the topology of pointwise convergence on | J p H. By [3], chap. I, §4, sect. 6 this 

<piA 
set is total in H. Therefore we can apply [13], III.4.5. and have the following lemma. 

(2.2) L e m m a . Let si be a W*-algebra in &(H), H Hilbert space, with unit 
ball six. If (p£si+ (resp. if Aczsi£ faithful) then ^ (resp. -TA) coincides on 
six Pi Kip (resp. six) with the strong operator topology. 

P r o o f of the Theorem. Step 1. For (pfP it follows from ( * ) that L,p is S-
invariant. Therefore S induces an operator semigroup S^ on Kv by 

T(p(xP<p) •= T(xpv)ptp = (Tx)pq> for all T£ S. 

The. completion of Kv with respect to is a Hilbert space H9 on which S(p induces 
a contraction semigroup S v (again by (*)) . This contraction semigroup is mean 
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ergodic by (1.3.1) with corresponding projection and has the property 
that 

* p(p^C) a(p? 

is contained in the ST^-closed convex hull of S^x. Now take xdK^. Then co S^x 
is a norm bounded subset of K ^ c s / whose strong operator closure is a complete 
subset of ([3], chap. I, 3, sect. 1). From (2.2) it follows that K v . Since the 
bounded convex subsets of si have the same closure for the strong operator topol-
ogy, the weak operator topology and the weak* topology ([3], chap. I, § 3, th. 1), 
we have shown that for every there is a unique S^ -fixed point x° con-
tained in the weak* closed convex hull co Svx of Svx. 

Step 2. For X(L$2, <p£$ we define the non-empty, weak* compact set 

Qv{x) := = yp9 and ||y|| r||*||} 

where r :=sup {| | r | | : T£S). For (px,(p26<P and p ^ p it follows from the 
construction above that p = x° and therefore Q<Pi(x)z}Q<P2(x). Since we may 
assume that is convex, we obtain that {Q^ix): is filtered downwards. 
Because of compactness there exists an element x°£ Qv(x). From (Tx°—x°)p(p = 

<pi<t> 
= Ty(x V<?) — x0p(p = 0 for all (p£<P it follows that x° is an S-fixed point. Moreover, 
x° is contained in the ST^ -closed, hence in the -closed convex hull of Sx. 
Again we conclude by (2.2) that this closure coincides with co Sx for the weak* 
topology on si. 

Step 3. Take 0 ^ x £ s i such that Tx=x for all T£S. Since is faithful 
there exists <p€i> such that 

0 xpy =: x9 = TyXyi Kp for all T^S^. 

Since Sy is mean ergodic, we can find a continuous linear form \j) on the Hilbert 
space Hy such that and iM?«,y,,) = tAOv> for all T£S, y^sf and y9\= 
'•=yP<p£K<p- The formula <l/(y)'-=>p{y<fl), y£si, defines an s(si, ^ ) - con t inuous , 
hence a weak* continuous linear form on s4 (see [12], 1.8.10 and 1.8.12). Obviously 
i\> is S* -invariant and does not vanish on x. Therefore the fixed space of 
separates the fixed space of S and S is weak* mean ergodic by (1.2.c). 

R e m a r k s . 1. If S satisfies the above assumptions, then the preadjoint semi-
group S+ is (norm)mean ergodic on si* by (1.2). 

2. The same result holds if 3> satisfies 

(*) <p((Tx)(Tx)*) <p(xx*) for all T£ S, x£s/. 

3. If (s4x, Sj) and (s/2, S2) are dynamical systems having faithful families 
and of normal states which satisfy ( * ) and if one defines the semigroup 
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S1<2)S2 on the W*-tensor product si^®si2 in the usual way, then <P1(%,<P2 is a 
faithful family of normal states on s i ^ s i ^ satisfying (*) . 

. (2.3) C o r o l l a r y . Let (si, S) be a dynamical system with <P as in (2.1). For 
(p£&,x£si (and with the notation as in the proof of (2.1)) the following are 
equivalent: 
(a) xv is S^-invariant in H^. 
(b) .y^cp(x* y), y€si, defines an S^-invariant, weak* continuous linear form on si. 

P r o o f , ( a )^ (b ) : The conti action semigroup S^ on H^ and its adjoint semi-
group have the same fixed space containing x<p=xp<l,. Therefore we obtain 

(p(x*y) = (p(p<px*yp<l>) = (y<l„xv)<p = {T<py!ll,x<ll)<l) = 

= ((Ty)p„ *„>„ = <p(pvx*(Ty)P<p) = <p(x*Ty) 
for all Tes. 

(b)=>(a): Assume T^(xp^)^xp tp for some T ^ S ^ and therefore T ^ x p ^ ^ x p ^ . 
Since sip9 is dense in H(p, there exists y<p=yp(p such that 

(p(x*y) = (pip^x*ypv) = (>„, x^X ^ (yv, T*xv)v = 

= {Tvy(p, xv)v = <p(x*Ty). 

The most important application of the above theorem will be to semigroups of 
completely positive operators on s i (see [16] for the definition). In particular we 
will obtain useful information on the corresponding mean ergodic projection and 
on the fixed space. 

(2.4) T h e o r e m . Let (si, 5) be a dynamical system where S consists of com-
pletely positive contractions. If there exists a faithful family <P of S^-subinvariant 
normal states on si, then S is weak* mean ergodic. Moreover, the corresponding 
projection P is a conditional expectation onto the weak* closed fixed point subalgebra 
P si of si. 

Proof . Completely positive contractions T£S satisfy a Schwarz inequality 

(Tx)*(Tx)^T(x*x) for all x£si (see [16]). 

For <p£4> we get 

- • cp ((Tx)* (Tx)) ^ <p (T(x* jc)) s= <p (x* x) for all x 6 si, 

hence ( * ) is satisfied and S is weak* mean ergodic by (2.1). Obviously, the pro-
jection P is positive and therefore P(y*)—(Py)* for all y£si. Consequently, it 
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suffices to show that P(x0y)=x0Py for all x0£Psi, y£si. Take <p£<P, x0£Psi 

and denote the weak* continuous ,S\-invariant linear form x>-*(p(x% x) by Lx^q> 

(use (2.3)). But LXa<p is a linear combination of positive elements in P^s i^ . Again 
by (2.3) we obtain L^cpZP^si^ for z0:=y0x0 and y0£Psi. Preserving the nota-
tion of (2.3) we remark that the mean ergodic projection P v is self adjoint on H^. 
Therefore we obtain by an analogous computation that (x9, P<fz0^=(x9, z0v) for 
all x£si. Since <P is faithful we conclude z0=y0x0£Psi. Consequently x0Py£Psi, 

and for (p£P*si+ we have (p (P(xQy))=P*<p (x0y) - <p (xQy) = Lx*o(p (j') = 

=P„:(Lx*(p)(y)—Lx*(p(Py)=(p(x0Py). Since P+si^ separates Psi, the assertion 
follows. 

The known mean ergodic theorems for W*-algebras follow from the fact 
that *-homomorphisms on arbitrary W/*-algebras and positive operators on commu-
tative IP*-algebras are completely positive. 

(2.5) C o r o l l a r y . (KOVÁCS—Szűcs [5], [1]) Let S be a semigroup of normal 
*-homomorphisms on a W*-algebra si. If there exists a faithful family <P of S^in-
variant normal states on si, then S is weak* mean ergodic and the corresponding 
projection is a conditional expectation. 

( 2 . 6 ) C o r o l l a r y (NAGEL [ 8 ] ) : Let S be a semigroup of weak* continuous positive 
contractions on a commutative W*-algebra si. If there exists a faithful normal 
S^-subinvariant state on si, then S is weak* mean ergodic. 

(2.7) C o r o l l a r y . If (si, S) satisfies all assumptions of (2.4), the following 
are equivalent: 
(a) 71 = 1 for all T£S. 
(b) The mean ergodic projection P is strictly positive. 
(c) <P consists of S-invariant states. 

P r o o f . (a)=>(c): 7"1 = 1 and q>£$ implies T p ^ p ^ and T v p ^ = p v . From 
(2.3) it follows that x>-*(p(p<px) = (p(x) is T*-invariant. (c)=>(b) is trivial and 
(b)=> (a) follows since P y = 0 for y:= l - r i s ; 0 . 

3. Compactness and mean ergodic properties 

Compactness in some form underlies many ergodic theorems. In the case of 
automorphism groups on W*-algebras this has been studied by several authors 
(e.g. [15], [4], [7], [10]). We will generalize these results to bounded semigroups. 

As in the previous section, let si denote a W*-algebra with predual siM -. On 
(resp. !£{s4*)) we consider the weak* operator topology o(!£(si), si® si,) 
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(resp. the weak operator topology o(<£(si^, s i ^ s i ) ) and recall that the unit 
ball in $£(si) is weak* operator compact. 

(3.1) P r o p o s i t i o n . Fora dynamical system (si, S) the following are equivalent : 
(a) S\ (and co SJ are relatively compact. 
(b) The closure of S (and of co S) contains only weak* continuous operators. 
(c) ( W) is relatively weakly compact for any weakly compact set fVczsf*. 
(d) S is equicontinuous for the Mackey topology x 

P r o o f . The implications (a)-<=>(b)-<=(c)o(d) hold in any (dual) Banach space 
and follow from topological vector space theory (use [13], IV.3.2, IV.11.4). 

(a)=>(c): By Eberlein's theorem ([13], IV. 11.2) it suffices to show that 
{T^r. TeS, /'€N} is relatively weakly compact for any weakly convergent sequence 
{ipi} in si^. To that purpose we choose a sequence {/?„} of mutually orthogonal 
projections in si and show that lim ij/i(Tpn) = 0 uniformly for ;ÇN, T£ S 

i l - . «» 

(use the compactness criterion from [2]). Take e > 0 and denote the limit of 
by i¡/0 and the /--ball in si for r :=sup{ | | 71 : T£S} by sir. Then define 

Q, := {x€s/r: \№j-iP0)(x)\ ^ e/4 for all j ^ /}. 

oo 

Each Qj is weak* closed and sir = (J Qt. Since si, is weak* compact, there exists 

/06N such that Q, contains a weak* open set in sir, i.e. there exists x0£sir and m 
(Px, ...,(pm£si^ such that f) {x£sir: |<p;(x) — <p,(Xo)|< 1} is contained in Qi. 

i — 1 0 

By (a) the set {Tt<p;: TeS, l^i^m} is relatively weakly compact, hence there 
exists WjÇN such that ¡<p,(7>„)|<l for all TeS, Isi^m and «=£«x (use [2] 
again). Then (Tpn+x0)eQia and, since x0eQi(i, 

0 ) 2 for T£S,j^i0 and n ^ nx. 

We apply now the hypothesis (a) and the compactness criterion to the set 
{TJxpj-ij/o): TeS, and find n2eN such that 

(2) — — £/2 for Tes, n s „2. 

Finally, there exists « 3 6N such that 

(3) \MTPÙ\ = £/2 for T£S and n ^ n3. 

Define « 0 :=max {«l5 n2, n3} and conclude from (1), (2) and (3) that 

| f , (7>„) | si e for Tes, je N and n ^ n0 . 
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R e m a r k s 1. SAITO [10 ] proved the equivalence of (a) and (c) for mean ergodic 
groups of *-automorphisms. • • 

2. Instead of the weak* operator topology we could use equally well the 
topology of pointwise convergence on si where sicz^C(H) is endowed with the 
weak operator topology. 

Our next result shows once more the usefulness of condition ( * ) of section 2. 
Not only does it imply mean ergodicity but also compactness. 

(3.2) P r o p o s i t i o n . Let (si, S) be a dynamical system. If there exists a faithful 
family of normal states on si satisfying 

(*) q>((Tx)*(Txj)^ (p(x*x) for all Tg 5, x£si, 

then S satisfies ( a ) - (d ) of (3.1). 

P r o o f . Take ipis/* and assume that S^ip is not relatively weakly compact. 
By [2] there exists e>0, a sequence { r J c S and a sequence {p„} of mutually 
orthogonal projections in such that for all But for 
we have lim <p(pn) = 0 and lim <p((Tnpn)*(Tnpn)) = 0 (apply (*)), i.e. Tnp„ 

ft-*- c© fl-»eo 
converges to 0 for the topology ST0. Since this topology is stronger than the 
weak* topology on norm bounded sets of si (use (2.2)), we obtain the contradic-
tion that \p{Tnpn) converges to 0. 

R e m a r k . Examples show that for arbitrary dynamical systems weak com-
pactness does not imply weak* mean ergodicity [10] nor does weak* mean ergodicity 
imply compactness. 

(3.3) C o r o l l a r y . Let (si, S) be a dynamical system where S is a group of 
*-automorphisms on si. The following properties are equivalent: 

(a) There exists a faithful family of S^-invariant normal states. 
(b) S is weak* mean ergodic. 
(c) S+ is relatively weak operator compact in SC(si^). 

P r o o f . The implications (a)=>(b) and (a)=>(c) follow from (2.1) and (3.2), 
while a proof of (c)=>(a) can be found in [15]. Assume now that 5 is weak* mean 
ergodic with projection P. To prove (a) it suffices to show that P is strictly positive: 
Assume P(x*x)—0 for some non-zero x£si. Since P is normal we can find a 
maximal projection 0 ^p£si such that P(p)=0. This and the assumption 71 = 1 
imply Tp^p for all T£S. But S is a group and therefore Tp=p for all T£S, 
which is a contradiction. 
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Purely contractive analytic functions and characteristic 
functions of non-contractions 

BRIAN W. M c E N N I S 

1. Introduction 

If T is a bounded operator on a Hilbert space then the characteristic func-
tion of T is the operator valued analytic function 

eT(X) = [-T/r+A/T.2T.(/-i:r*)-l/TeT] |X>r, 

w h e r e JT = sgn(I—T*T), JTT = sgn(I—TT*), QT=\I-T*T\112, QT*=\I-TT*\1/2, 

and HT=JT9). 0T(X) is defined for those complex numbers X for which I—XT* 
is boundedly invertible, and takes values which are continuous operators from 
3)r to the space ® r * = / r * i j . 

The characteristic function of a contraction T appears in the work of S Z . - N A G Y 

and FOIA§ [13] as the Fourier representation of a projection in the space of the 
unitary dilation of T. From this representation is obtained a functional model 
for T in terms of 0T. If 0(X): £>—£)* is an operator valued analytic function, then 
a contraction T can be constructed (using the same type of functional model) such 
that 0 = 0T, if and only if 0 is purely contractive,i.e., if ||@(A)a|| <| |a| | whenever 
|A|<1, a € D , a?*0. 

In this paper we also consider operator valued analytic functions 0(X) : 35— 
but D and £)* are Krein spaces rather than Hilbert spaces (see Sec. 2 below), and 
thus the inner product is not assumed to be positive definite. We show that 
0 = 0T for some bounded operator T if and only if 0 is purely contractive and 
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fundamentally reducible, with respect to the indefinite inner products of 35 and 
X>* (see Sec. 3). 

There have been previous papers (BRODSKII [3 ] , BRODSKII, GOHBHRG , and 
KREIN [4 ] , [5 ] , CLARK [6 ] , and BALL [1] ) giving necessary and sufficient conditions 
for an operator valued analytic function to be a characteristic function, but the 
conditions lack the simplicity of those presented here. In each paper, it is required 
that a certain function have an analytic extension to the unit disk (cf. Sec. 7); 
this requirement is eliminated here. In [6] and [1] it is also shown that the positive 
definiteness of certain functions is necessary and sufficient for Q to be a charac-
teristic function. We use this kind of result from [1] to prove our theorem, by show-
ing that if 0 is a purely contractive fundamentally reducible analytic function, taking 
values which are operators between Krein spaces, then the associated kernel matrix 
function is positive definite (Theorem 3). 

2. Krein spaces 

An indefinite inner product space is a complex vector space ft on which is 
defined an inner product [• , . ] that is not assumed to be positive, i.e., it is possible 
for [x, x] to be negative for some x£St. We call ft a Krein space if there is an 
operator / on ft such that J2=I, J—J*, (i.e., [Jx,y]=[x,Jy\), and the J-inner 
product 

(2.1) (*,}0 = [./*,y] (* ,> '£«) 

makes ft a Hilbert space. Such an operator J is called a fundamental symmetry. 
(See [2, Chapter V].) 

The spaces D T = 7 r § and DTt=JT,9), considered in Sec. 1, are Krein spaces 
with the indefinite inner products 

[x, y] = (JTx, y) ( x , y € £ r ) 
and 

[x,y] = (JT*x,y) {x,y£'£T*). 

(Here ( . , . ) denotes the inner product on the Hilbert space §.) Clearly, J j and J-p* 
are fundamental symmetries on 35T and D r *, respectively. We will always consider 
£>r and 35r* as Krein spaces, rather than as subspaces of the Hilbert space 

In Krein spaces, the emphasis is always on the indefinite inner product, with 
the J-norm | |x| | j=[Jx, x]1/2 serving mainly to define the topology (the strong topol-
ogy). Accordingly, if A is a continuous operator between Krein spaces ft and ft', 
we use A* to denote the adjoint, of A with respect to the indefinite inner products. 
If J and J' are fundamental symmetries on ft and ft', respectively, then the adjoint 



Purely contractive analytic functions 163 

of A with respect to the J- and 7'-inner products (2.1) will be denoted by Aw and 
is given by AW=JA*J' (see [2, Sec. VI. 2]). 

Different fundamental symmetries J on a Krein space ft define different /-norms, 
but the strong topologies obtained coincide (see [12, Sec. 1.4] and [2]). Thus we 
can talk about the strong topology on a Krein space. • 

We will be needing the following: 

L e m m a 1. If J is a symmetry on a Krein space ft (i.e., J2=I, J=J*) such 
that the J-inner product (x, y)=[Jx, y] is positive, then J is a fundamental symmetry, 
i.e., the J-inner product makes ft a Hilbert space. 

P r o o f . See [2, Corollary V.1.2], 

3. Purely contractive analytic functions. The main theorem 

An operator valued analytic function is a function 6 which is defined and analytic 
in D, the open unit disk in the complex plane, and which takes values that are con-
tinuous operators from a Krein space 35 to a Krein space . 0 is said to be 
purely contractive if, for each k£D, 

(3.1) [0(A)fl, S(A)a] < [a, a] (a£T>, a ^ 0) 
and 
(3.2) («*€£* , 

R e m a r k s . In Hilbert space, (3.2) is implied by (3.1), but this is not true in 
general. (See, for example [9, Sec. 3]. Note that the results in [9] concerning ex-
pansive operators apply to contractive operators, with the inner product — [. , .] .) 
Also, in Hilbert space, it is not necessary to assume that the inequalities (3.1) and 
(3.2) are strict inequalities, except at / .=0, since the maximum modulus principle 

can then be used to get strict inequality for all ).fD (cf. [13, Sec. V.2.2]). 
An operator A on a Krein space ft is said to be fundamentally reducible if 

there is a fundamental symmetry on ft commuting with A [2, Sec. VIII. 1]. Suppose 
0 is an operator valued analytic function, and let 0„=0(O) . We call the function 
0 fundamentally reducible if the operators 0* 0O (on 35) and 0 O 0 J (on X)+) are 
fundamentally reducible. 

If 35 and 35' are two Krein spaces, then an operator t : 35—35' is said to be 
unitary if it is continuous and invertible, and if [rx,rx] = [x, x] for all x£Q. Two 
operator valued analytic functions 0(A): 35 — 35* and 0'(A): 35' — are said to 
coincide if there are 'unitary operators . T :® — 35' and R*: 3 ) * — s u c h that 
0 ' ( A ) = T + 0 ( A ) T - 1 f o r a l l 

u* 
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We can now state the main result of this paper. 

T h e o r e m 1. Suppose 0 is an operator valued analytic function. For 0 tocoincide 
with the characteristic function of a bounded operator on a Hilbert space, it is 
necessary and sufficient that 0 be purely contractive and fundamentally reducible. 

The condition that 0 be fundamentally reducible can not be omitted from 
Theorem 1, as P. Jonas of Berlin has constructed an example of a (constant) purely 
contractive analytic function which does not coincide with the characteristic func-
tion of any bounded operator on a Hilbert space. The author is indebted to J. Bognár 
and B. Sz.-Nagy for pointing out the existence of this example. 

4. Proof of necessity in Theorem 1 

We assume here that 0 is an operator valued analytic function coinciding with 
0 r , for some operator T. Thus 0 r (A) is defined and analytic in the open unit disk 
D, and takes values which are continuous operators between the Krein spaces 
T>T and D r *. To prove that 0 is purely contractive and fundamentally reducible, 
it clearly suffices to show that 0 r is purely contractive and fundamentally reducible. 

Recalling the definitions of the indefinite inner products on T>r and T>Tt, we 
obtain 

(4.1) 0 r(A)* = [-T*JT* + XQT{I-XT)-1QT*] I Dy., 

and it follows, similarly to [13], relation (VI. 1.4) (cf. [11]), that for k€Z> 

/ - 0 r ( A ) * e T ( A ) = (1 - m Q r ( I - l T ) - ^ I - ? . T * r U T Q T 

and 
I—0T(k)0T(k)* = (l-\k\*)JT*QT.(I-Xr*)-i(I-ZT)-1QT*. 

Consequently, for k£D, 

[ ( / - 0 r ( A ) * 0 r ( ; O ) a , a ] = { X - V m i l - k T ^ J j Q r a W ^ 0, 

where a€35r> and 

[ ( / - 0 r ( A ) 0 r ( A ) * K , a * ] = ( l - | A | 2 ) | | ( / - ; £ r ) - i e T * a J 2 > 0, 

where a ^ 1 > T t , a ^ 0 . Therefore, 0 r is purely contractive. 
Since 0T(O)*0 r(O) = T* T, it follows that 0T(O)*0 r(O) commutes with the 

fundamental symmetry JT=sgn(I-T*T) on T>r. Likewise, 0T(O)0T(O)* = 7T* 
commutes with the fundamental symmetry JT* = sgn (/— TT*) on %)T,. Con-
sequently, 0 T is fundamentally reducible. • 

The proof of sufficiency in Theorem 1 occupies the next four sections. 
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5. Fundamental symmetries on 35 and 

Suppose 0 is a purely contractive, fundamentally reducible analytic function. 
Let J0 be a fundamental symmetry on £> commuting with 0 o 0 o . Then the operator 
1—01©0 is not only self-adjoint but also /0-self-adjoint (i.e., self-adjoint with re-
spect to the /0-inner product). Thus we can define 

/ — sgn (I— 0o 0O) and e = | / - 0 * 0 o r , 

where these are computed using the ./„-self-adjoint functional calculus on the 
Hilbert space 35 with the /„-inner product. / and Q commute with /„ and hence 
are self-adjoint (as well as /„-self-adjoint). 

Since 0 is assumed to be purely contractive, I— 0„ 0O is injective. Therefore 
we conclude that J2=I and Q has range dense in 3). Also, we have 

[JQh, Qh] = [ ( / - 0O* 0O)h, h]^ 0 (he 35), 

and consequently [Jh, / ¡ ] s0 for all he35. It follows from Lemma 1 that / is a 
fundamental symmetry on 35. 

Similarly, if /0* is a fundamental symmetry on 35* commuting with 0o0*t, 
and if we define 

/* = sgn (7-0o0o*), 

using the /0*-self-adjoint functional calculus on I)*, then /* is a fundamental 
symmetry on 35*. 

The operators / and /* do not depend on the choice of fundamental sym-
metries /„ and /„». Indeed, suppose / x is another fundamental symmetry on 35 
commuting with 0*0 O , and let / ' = sgn ( 7 - 0 * 0 o ) and g ' = | / - 0 * 0 o | 1 / 2 be 
computed with respect to the Jx -inner product. Then / ' and Q' are also /0-self-
adjoint, and JQ2=J'Q'2. Since both / and / ' are /0-unitary, and both Q2 and 
Q'2 are /0-positive, the uniqueness of the /0-polar decomposition of JQ2 implies 
/ = / ' . The argument for /* is similar. 

P r o p o s i t i o n 1. ©J is the same as the adjoint of 0O with respect to the 
J- and Jk -inner products on X) and 3)*. 

P r o o f . 0 ( * ) = / 0 j / * = / ( / 0 * ) = 0 * (cf. [7, Sec. 2]). 
Although CLARK [6] and BALL [1] do not approach the subject of fundamental^ 

symmetries on 35 and 35* in the same manner as we have done here, the end result 
is the same. Their approach is to begin with 3) and 35* as Hilbert spaces and sub-
sequently impose on them the Krein space structures derived from the symmetries 
/ = s g n ( / -0O*0O) and /* = sgn (I— 0 o 0o) - Thus it is implicit in the definitions 
of the inner products in [6] and [1] that 0 is to be taken to be fundamentally 
reducible. 
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BRODSKII [3] , and BRODSKII, GOHBERG , and KREIN [4 ] , [ 5 ] consider S and 
as Hilbert spaces, but do not, however, assume 7 = s g n (7— 0 q 0 o ) . Instead, they 
deal with a more general situation in which the object studied is not a single oper-
ator T but an uzel, a collection of operators and Hilbert spaces. A ^-uzel is a collec-
tion of spaces © and operators T, R, J, where T: R: © J is a symmetry 
on ©, and I—T*T=RJR*. The particular case of interest to us is when © = X)T, 
R=QT, and J=JT. 

6. The theorem of Ball 

We wish to apply [1, Theorem 2], but some differences in notation need to 
be cleared up first. Let us define 0(A) = 0(A)*. In [1], the characteristic function 
BT is BT = 0J (cf. (4.1)), and so the condition given in [1, Theorem 2] for B to be 
a characteristic function must be written with B—0. Also, operators in [1] are 
assumed to act between Hilbert spaces, whereas here we consider them as acting 
between Krein spaces. The concept of adjoint must therefore be interpreted ap-
propriately. Proposition 1 shows that the definitions of J and given here are 
the same as those in [1] (with B=0). 

It should be noted that in [1, Theorem 2] it is being asserted that xB=BTxif 

for some operator T, where x and T* are unitary operators between Hilbert spaces. 
Since / = s g n (7 -5 (0 )5 (0 )* ) and / r = sgn (l-BT(0)BT(0)*), it follows that 
xJ=JTx. Similarly, T*/*=/ r»T ; ( t , and we deduce that x and r* are also unitary 
operators between Krein spaces. Thus we have coincidence of B and BT in the 
sense of Sec. 3. 

We can now state Ball's theorem, using our notation: 

T h e o r e m 2. ([1, Theorem 2]) Let 0(A): ® — D* be an operator valued analytic 
function. Then 0 coincides with the characteristic function of some bounded operator 
on a Hilbert space if and only if 

(i) 0 is fundamentally reducible, 
(ii) 7— 0q0o and I— 0o0q are infective, and 

(iii) the operator matrix 

1 ( 1 - ^ ( 1 - 0 ^ ) * 0 ( 1 ) ) ( A - / i ) - i ( 0 ( A ) * - 0 O < m 
(6.1) k(p,A) ^ ( 0 ( A ) _ 0 № ) ) ( i - i a y ^ - e ^ Q d Y ) ) 

is positive definite on some neighborhood % of zero, i.e., 

(6.2) 1 J [kQij, / 0 ( / , © g , ) . ( f j @ g j ) ] ̂  0 
1=1 j=i 

for all and for all g^ and n^W ( / = 1 , 2 , ...,«). 
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Note . k(ji,/is considered as an operator on the Krein space £>© The 
matrix in [1] is obtained by setting B=0 and considering (I@J^)k(z, w)(J®I). 
The neighborhood D considered in [1] is denoted by 6ll in the above theorem. 
(In this paper, D denotes the open unit disk.) 

7. The functions <P and Q 

In view of Theorem 2, it remains to show that (6.2) is valid whenever 0 is purely 
contractive and fundamentally reducible. 

If we consider, for the moment, £ and as Hilbert spaces, with the J- and 
J*-inner products, then Proposition 1 shows that 0O has a polar decomposition 

(7.1) ©o = U(0* 0oy2 = (0O 0O*)1'2 U. 

(This decomposition can also be done in Krein space. See [10].) Following the 
argument used in [1, Sec. 1.3 and Sec. 2.1], we can assume that the codimension 
of (0*0O)1/2X>, in the Hilbert space D, equals the codimension of (0O 0*)1/2 T)^, in 
the Hilbert space Then U can be chosen to be a unitary operator between 
the Hilbert spaces 2> and From (7.1) we have U(0*0o)=(0o0*)U, and 
hence UJ=J* U. Thus U is also a unitary operator between the Krein spaces 
35 and 35*. 

If the vector /€£> satisfies (I+U*0(X))f= 0, for some l£D, then it 
follows that 

U, f] = [U* 0 (A)/, U* 0 (;.)/] = [0 (A)/, 0 (A)/]. 

Hence, since 0 is purely contractive, / = 0 and we conclude that 1+ U*&{/.) is 
injective for all lf_D. Similarly, 7+0(1 )* U is injective and thus I+U*0(X) has range 
dense in £>, for all A£D. Hence, for each X£D, we can define 

(7.2) = (7—i7* 0 (A))(7+ U* 0 (A)) -1/, 

an operator with domain dense in S . 
Note that the operator 7+ f / * 0 o = 7 + ( 0 * 0 o ) 1 / 2 is boundedly invertible, and 

hence (7+{7*0(A)) -1 is analytic for all A belonging to some neighborhood "ll of 
zero, with "UaD (cf. [8, Sec. VII. 1.1]). Consequently, <£(/) is analytic for 
Clearly, we can assume that % is closed under complex conjugation. 

R e m a r k . In [3], [4], [5], [6], and [1] assumptions are made which amount 
to assuming that <P(A) (A£<%) extends to an analytic function on D. However, it 
is not necessary to make this assumption here. 

We obtain from (7.2) that, for each AGD, 

(7.3) <P(X)J = 2(7+£/*0(A)) -1— 7, 



168 Brian W. Mcfcnnis 

and thus ${l)J is closed. Consequently, for each <PQ.) is closed. Also, (7.3) 
implies that 

<i>(A )<*>/ = 2(1+ 0{X)*U)~l-I 

(recall the notation introduced in Sec. 2), and hence 

(7.4) <J>(A)(*> = (I-0(X)*U)(I+0(X)*U)-1J. 
For A 6 A an arbitrary vector in the domain of $(A) is of the form 

/=/(/+ U*0(X))g, where If (• , •) denotes the /-inner product on 35, then 
we can readily deduce that 

(7.5) Re(<P(A)/, / ) - [g, g ] - [0 (A)g , 0(A)g] ^ 0. 
It follows that 

(7.6) ||(/+4>(A))/||5 ^ 11/115+IIHMfj ^ | |(/-<P(A))/ | |5, 

and hence 7+<£(A) is injective with closed range. 
By a similar argument, we deduce from (7.4) that / + i>(A)(+) is injective, and 

thus / + ^(A) has dense range. Therefore, the operator / + $(A) is bijective and closed, 
and consequently (by the closed graph theorem) boundedly invertible (for all X£D). 

We can now make the definition 

i2(A) = ( / - i ) ( A ) ) ( / + 0 ( A ) ) - 1 (A6£>). 

By the preceding paragraph, Q(X) has domain equal to 35 and, by (7.6), i2(A) is 
a contraction on the Hilbert space D with the /-inner product. Since 0 is purely 
contractive, equality holds in (7.5) only if / = 0 , and hence the same is true in (7.6). 
It then readily follows that Q is purely contractive. 

<P(A) is known to be analytic only in a neighborhood of zero, and thus the 
analyticity of Q(X) in D is not immediately obvious. We can write 

(7.7) /+<P(A) = 'P(X)(I+U*0(X))~1J, 

where f ( A ) = / ( / + £ / * 0 (A))+(/—£/* 0 (A)). Since I+<PQ) is boundedly invertible, 
(7.7) implies that f (A) is boundedly invertible. Since f (A) is analytic in £>, so is 
f (A)"1 (see [8, Sec. VII. 1.1]), and therefore the function 

( /+4KA))- 1 = J i l + U ^ i X ) ) ^ ^ ) - 1 

is analytic in D. Finally, we note that 

Q(X) = 2(/+<P(A)) - 1 —/ (X^D), 

and thus Q(X) is analytic in D. 
We have now shown that Q is a purely contractive analytic function on the 

Hilbert space 35 ("with the /-inner product) and thus (by [13, Theorem VI.3.1]) Q 
coincides with the characteristic function of some contraction S, i.e., -r £>(/) = 
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= 0S (A) T for some unitary operators D s and r15—35 s * (35 considered 
as a Hilbert space). It then follows that, for each 1, and for 
(i = 1, 2, . . . ,«) we have (using the /-inner product) 

(7.8) 

2 ¿{((1 -fitfijr^I-OijjijY^QOi,))^, aJ + iiv-^iQivd-QOijVai, bj) + 
1=1 i 

+(0'i-fij)-1(Q(fi)(*}-BQijy(*>)bl, + №,)Q(fidw)bt, bj)} = 

2 
0 2 {(/- № S*)-i Qs ra, + ( / - ^ S T 1 Qs* t* 6,} 

i=i 

(cf. [1, Sec. 1.5]). 

8. Positive definiteness of k([i, A) 

We now prove a series of results that will enable us to write (6.2) in the form 
(7.8) and thus establish the positive definiteness of k(p, A). 

P r o p o s i t i o n 2. For A££>, 1+0(1) J z's boundedly invertible and i/*0(A) = 
=(I—<P(/J)J)(I+<P(X)J)~1. 

P r o o f . The equation / + # ( A ) / = 2 ( / + t / * 0 ( A ) ) - 1 , obtained from (7.3), shows 
that I+<P(/.)J is boundedly invertible and that 

U*0(X)(l+4>(X)J) = [ ( /+£/*© (A)) — (/— U*0 (A))] (I+U*0 (A)) ~1 = I-$(k)J. 

L e m m a 2. Suppose that Ax and A2 are bounded operators with I+A- boundedly 
invertible ( /= 1,2). Then if B^I-A^I+A^1 ( /=1,2) , we have 

and 

P r o o f . We simply perform the calculations: 

B2-B1 = (/+ "1 [(/+ ( / - - ( / - ^i)(/+ ^2)] (/+ ^o)-1 = 
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In the following, °ll is the neighborhood of zero where $(A) is analytic (Sec. 7). 

L e m m a 3. For A, we have 

(i) 7 -0( /z )*0(A) = 

(ii) 0 a ) - © © = 

(iii) 0(A)*-0(/<)* = 

(iv) 1-0 (¡1)0(1)* = 

P r o o f . Since °U is assumed to be self-conjugate, both <P(A) and <f(A) are 
bounded for X^ll. It follows from Sec. 7 and Proposition 2 that all operators 
appearing above are bounded. 

We know by Proposition 2 that 

U*G{K) = (L-$(X)J)(L+<P(>)J)-\ 

and we obtain from this (and the adjoint relation), by means of Lemma 2, the 
equations 

7— 0 (ju)* 0 (A) = 2(1+ Miny^-^JQW + 4>(X)j)(l+<P(>)J)-i = 

= 2(7+ Min)*)'1^)™ + <P(X))J(I+0(a)J)~\ 

We also have i2(A)=(7— 4>(A))(7+3>(A))_1 and hence, using Lemma 2 again, 
we obtain 

I-QQIY^QV.) = 2(7+$( i i) (*>)-1($(/z) (* ) + <P(A))(7+#(A))-1. 

Combining these two results gives (i). 
Equations (ii), (iii), and (iv) are proved similarly. 

T h e o r e m 3. k(pt, A) is positive definite on a neighborhood of zero. 
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Proof . Let be the neighborhood of zero on which &(/) is analytic. Then 
for each «& 1, and for /¡€T), and ( / = 1 , 2 , . . . , « ) we have 
(from (6.1)) 

(8.1) • 2 2 (fj©Sj)] = 
i=i j=i 

= 2 i {[(i - 0 ( v j T © t e ) ) / , , fA+[(Mi-/¡,-)-1 ( 0 0 0 - e ( f i M , gj] + i=i j=i 

+ [ f a - - 1 ( 0 №)* - 0 (PjT)g,, / j ] + [ 0 - © (ft) © , gj]} • 

By Lemma 3, 
(8.2) [ ( / - 0 ( ^ 0 0 0 ) / , . , / : 1 = 

= [ ( / + / * fa.)*)-1 ( / + <J> (Pj)'*y) ( I - Q fa)« Q fa)) (1+0 fa))/(/+ $ (A-,)/)-1/;, / , ] = 

= (7 ( /+$( M j . ) ( + >)( / - i3 (^* ) i2 ( i i i ) ) ( /+$( M l . ) ) J ( /+$( A . ) / ) -V , - , ( ^ f a ) . / ) " 1 / ; ) = 

= ( ( / - f l fa )<*>i2fa) )a ; , cij), 

where a i =( /+$( / i i ) ) J ( /+$( / i 1 . )y ) - i y; . ( / = 1 , 2 , . . . , « ) . 
We also make the definition 

b, = (l+<t>(^)j(l+ J^iiifY^U*gi (i = 1, 2, ..., n). 

Then, by applying Lemma 3 to the terms of (8.1) in the same manner as (8.2) 
above, we deduce that (8.1) is the same as (7.8). Therefore, k(jx,X) is positive 
definite on fyl. 

Theorem 3, in conjunction with Theorem 2, completes the proof of Theorem 1. 

9. Conclusion 

Theorem 1 establishes for certain non-contractions a result which generalizes 
a result of Sz.-Nagy and Foia§ for contractions. The proof, however, does not 
make use of a Sz.-Nagy and Foiaj type construction of the operator model, but 
instead relies on the much less geometric model obtained by Ball. When 0 is 
bounded, i.e., sup || 0(A) a model can be obtained that closely resembles 

the Sz.-Nagy and Foia§ model (see [12]), and this will be the subject of a 
future paper. 
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Über die Veränderung der Länge der Vektoren in 
Weyl—Otsukischen Räumen 

£ . 
A R T H U R MOOR 

§ 1. Einleitung 

T. OTSUKI entwickelte in seiner Arbeit [4] eine Übertragungstheorie in Punkt-
räumen, die in lokaler Schreibweise dadurch charakterisiert werden kann, daß 
die Übertragungsparameter T / k bzw. "r/k für die ko- bzw. kontravarianten Indizes 
der Tensoren im allgemeinen voneinander verschieden sind, zwar sind sie mit-
einander durch eine Relation verbunden (vgl. [4], (3.13)). Außerdem sind die 
durch diese Übertragungsparameter gebildeten affinen kovarianten Ableitungen mit 
einem, „a priori" angegebenen und die geometrische Struktur des Raumes bestim-
menden Tensor Pj kontrahiert. In [3] bestimmten wir solche Übertragungsparameter 
für diese Otsukischen Räume, die aus einem metrischen .und symmetrischen Grund-
tensor gijix)1 abgeleitet waren, und die für gtJ rekurrente kovariante Ableitung 
bestimmten. Somit vereinigten wir die Weyischen und die Otsukischen Über-
tragungstheorien (vgl. [4] und [5]) — wir wollen im folgenden diese Räume Weyl— 
Otsukische Räume nennen — und untersuchten in erster Reihe die Eigenschaften 
der Eigentensoren bezüglich des invarianten Differentials. 

In den Weyischen Räumen verändert sich bekanntlich die Länge der Vektoren 
bei einer Parallelverschiebung proportional mit der ursprünglichen Länge (vgl. z. B. 
[2], §4, wo aber im Falle der Punkträume durchwegs yk=0 gesetzt werden muß). 
Wir wollen im folgenden die Veränderung der Länge der Vektoren, ferner die 
Veränderung gewisser Invarianten der Tensoren zweiter Stufe bei Parallelverschie-
bung in den Weyl—Otsukischen Räumen untersuchen und die Veränderung, genauer 
den Differentialquotienten dieser Invarianten nach einem Parameter „ i " bestimmen, 
falls die Parallelverschiebung längs einer vorgegebenen Kurve C:x'=x'(t) durch-

Eingegangen am 3. März 1977. 

') x=(x'. x-, ....x") bedeutet jetzt und im folgenden einen Punkt im «-dimensionalen Punktraum. 
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geführt wird; vgl. Formeln: (3.10), (4.4) und (5.4), die unsere wichtigste Resultate 
ausdrücken. 

Besondere Wichtigkeit haben in diesen Räumen die sog. Eigentensoren. Unsere 
Sätze 2, 4 und 7 beziehen sich eben auf die Veränderung der charakteristischen 
Invarianten der Eigenvektoren und Eigentensoren des Raumes bei Parallelver-
schiebungen längs gewisser Kurven. 

§ 2. Fundamentalformeln dir Weyl—Otsukischen Räume 

Die Grundgrößen eines Weyl—Otsukischen Raumes sind der in (г, к) sym-
metrische metrische Grundtensor gik(x), der kovariante Vektor yk(x) und der 
gemischte Tensor Pj(x), von dem wir im folgenden durchwegs annehmen wollen, 
daß er der Relation 
(2.1) P\grj = P'jgir 

genügt, d. h. P¡j ist in (/', j ) symmetrisch. Der inverse Tensor von P) soll durch 
die Formeln 

(2.2a) QiP) = Ô), (2.2b) Q'jP[ = 

festgelegt sein, wo (2.2b) nach der Tensoralgebra — bekanntlich — eine Folgerung 
von (2.2a) ist. Aus (2.1) folgt leicht, daß neben PtJ auch QtJ symmetrisch ist. 

Die Übertragungsparameter "Г/к bzw. 'Г/к — die bei der Bildung der ko-
varianten Ableitung der Tensoren für ко- bzw. kontravariante Indizes verwendet 
werden — sind durch die Relationen (vgl. (3.13) von [4]): 

(2.3) дкР) + "Гг\РГ-Т/кР' = 0, K = ¿ 

miteinander verbunden. 
Die kovarianten Ableitungen bzw. das invariante Differential für einen , ge-

mischten Tensor Vj \ sind die folgenden: 

(2.4) V/k{m = dm V/k + Tr'm V/k - "Г/т Vr\ - "r¿mVjr, 

(2.5) = Р',у;ЛтР)Рк, 

(2.6) Dv;k = vmv;kdxm, 

wo die Struktur des Raumes im wesentlichen durch (2.5) und (2.6) festgelegt ist 
(vgl. [4] §2 und §3, insbesondere (2.14), (2.15) und (3.6)—(3.8)). Aus (2.4)—(2.6) 
sieht man schon, wie diese Operationen auf beliebige Tensoren erweitert werden 
können. Für ein Skalarfeld <S(JC) gilt selbstverständlich 

S[m=VmS = dmS, DS = dS. 
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- Die Übertragungsparameter "T}
l
k sind durch die Gleichungen 

(2.7) \gij = yk(x)gij(x) 

festgelegt, die für die in ( j , k ) symmetrischen "r/k ein Gleichungssystem bilden, 
die leicht gelöst werden kann (vgl. [3], Formel (2.3) und die nachfolgenden Zeilen). 

Neben (2.6) benötigen wir im folgenden das invariante Differential 

(2.8) DV/k = Vj%mdxm = dVJ
i
k+(Tr

i
mV;k-"r/mVr

i
k-"rk

r
mV/r) dx™, 

womit nach (2.5) und (2.6) das invariante Differential D in der Form: 

(2.9) DV/k = P\{pVs't)P)Pi 

geschrieben werden kann. Für ein Skalarfeld S(x) ist selbstverständlich DS= 
= DS—dS. Längs einer Kurve C:x'=x'(t) verwenden wir im weiteren statt des 
invarianten Differentials immer den längs C gebildeten invarianten Differential-
quotienten Djdt bzw. D/dt. 

s 

§ 3. Veränderung der Länge der Vektoren bei Parallelverschiebung 

Die quadrierte Länge V2 eines Vektors V mit den lokalen Komponenten V' 
ist durchsSie Formel: 

(3.1) V2 = glj(x)ViVj 

festgelegt. Längs einer Kurve C:x'=x'(t) ist nun der invariante Differential-
quotient mit dem gewöhnlichen identisch. Aus (3.1) folgt somit längs C: 

DV2 DV2 dV2 de- dV 
(3 2) • = = = g , J V ' y J I 2c VJ 

dt dt dt dt V V +Zg,J dt • 

Beachten wir nun die Formel (2.8) der Operation: D, so folgt unmittelbar 
die Formel: 

Dö' dx? 
(3.3) ^ = ( T . 

womit (3.2) in folgende Form verwandelt werden kann: 

DV2 De- DV' DS' 
(2 41 = g , J v'yi | 2r V' 2c VVs 
{iA) dt dt + 8,J dt K glJ dt V V ' 

Bemerkung . Die Übereinstimmung der Formeln (3.2) und (3.4) könnte auch 
unmittelbar bestätigt werden, wenn in (3.4) für Dgi} bzw. DV' die Übertragungs-
parameter T b z w . T t

J
k verwendet werden, und auch noch (3.3) beachtet 

wird. — 
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Die Operation D kann auf Grund von (2.9) auch mit der Operation D aus-
gedrückt werden, wenn beachtet wird, daß, für P'j auf Grund von (2.2a) die Existenz 
eines inversen Tensors: Q'} postuliert wurde. Nach Kontraktionen wird: 

(3.5) DgiJ = QiQjDgrs, 

(3.6) Dt% = Q^DÖ?, (3.7) DV> = Q'rDVr, 

wo wir — Einfachheit halber — immer nur D bzw. D statt bzw. 
geschrieben haben. 

Beachten wir nun diese Formeln, so wird aus (3.4): 

DV2 De ( DV D5m \ 
W -IT = 

Auf Grund der Rekurrenz des metrischen Grundtensors, d. h. auf Grund von 
(2.7) wird nun im Hinblick auf (2.6): 

DV2 dx* ( DVr Döm \ 
(3.9) = Q > Q > J g r s v > v J y k — ^ [ a — v - a s i - f - w ' ) . 

Da DV2 = 2VDV ist, bestimmt diese Formel die allgemeinste Form für die 
Veränderung der Länge eines kontravarianten Vektors bei einer Verschiebung längs 
einer Kurve: C. Ist diese Verschiebung eine Parallelverschiebung, d. h. ist DV=0, 
so gilt auf Grund von (3.9) der 

Sa tz 1. In einem Weyl—Otsukischen Raum ist die Veränderung der Länge 
V eines kontravarianten Vektors V bei einer Parallelverschiebung längs einer Kurve 
C'.x^x'it) durch 

DV 1 dx* DSm 
(110) IT = -J^Q'QjSrsV^y, -¡L-V-igiJQ'mQ°r-^V'VJ 

bestimmt. 

Nehmen wir nun an, daß V' längs C ein Eigenvektor mit dem Eigenfunktion 
T( t) ist, d. h. es besteht: 

(3.11) P ' ^ ^ t V (r(t)^O). 

Nach einer Überschiebung mit Q'r folgt aus (3.11) nach (2.2a): 

(3.12) QiV' = x - W . 

Beachten wir noch die Symmetrie von Qtj in (/', j), was aus der Bedingung (2.1) nach 
einer Kontraktion mit Q[Q[ unmittelbar folgt, so wird: 

(3.13) g ¡jQU = gimQ) 
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und (3.9) geht im Hinblick auf (3.12) in 

DV2 dx* DV DSm 

(3.14) = + 2glJQ> V j — 2z~2gim ^ Vs V1 

k nxm (jyym ¿ 

über. Aus (3.11) folgt aber auch die Relation: 

DVk Döm ( 
dt dt . j V dt dt 

(vgl. [4], (5.8); oder [3], (3.8)). 
D5m 

Mit Hilfe von (3.15) können wir 3 Vs aus (3.14) eliminieren. Ist längs C 
DV 

auch —;—=0, so gilt wegen 
dt 

DV2
 = dV2 _ 2 y DV_ 

dt ~ dt ~ dt 
(nur für Skalare ist D/dt=d/dt) der folgende 

Sa tz 2. Ist V längs C ein Eigenvektor mit der Eigenfunktion T, gilt (2.1), und 
DV' DV 

ist ferner —-—=0, so ist —— zur ursprünglichen Länge V proportional: 
dt dt 

, , , , DV (1 dx" dx\ 
( 3 1 6 ) n r = [-2z y * n r - i r r 

Aus diesem Satz bzw. aus der Formel (3.16) folgt unmittelbar das 

K o r o l l a r 2*. Ist V längs C ein Eigenvektor mit der Eigenfunktion x(t), ist 
ferner längs C 

, dx" dz2 

= - a r 

und besteht noch die Bedingung (2.1), so ist bei Parallelverschiebung längs C die 
Länge V von V eine Konstante. 

§ 4. Veränderung der Fundamentalinvariante der symmetrischen Tensoren 

Zu einem in (/, j ) symmetrischen rein kontravarianten Tensor TiJ ordnen wir 
durch die Definitionsformel 
(4.1) T ^ g t j T ' J 

eine Invariante: T, die wir als Tensorlänge des symmetrischen Tensors T'J nennen 
wollen. Diese Invariante ist für antisymmetrische Tensoren zweiter Stufe offenbar 

12 
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identisch Null, und für allgemeine kontravariante Tensoren ist T nur mit ihrem 
symmetrischen Teil gebildet. Die Invariante T hat also wirklich nur für einen 
symmetrischen Tensor einen Sinn. Für die Tensorlänge der antisymmetrischen 
Tensoren werden wir im folgenden Paragraphen eine andere Definition angeben. 

Auf Grund der Definition des invarianten Differentialquotienten ist 

DT dT dg¡j .. dT^ 
= = _2H T'J J- p.. 

dt ~ dt dt ^8,J dt ' 

eaBchten wir nun, daß nach (2.8) die Operation D/dt für ko- bzw. kontravariante 
Tensoren mit den Übertragungsparameter ' T / k bzw. mit ' r / k gebildet werden 
muß, so bekommt man aus unserer letzten Formel in Hinsicht auf (3.3): 

k ' } dt dt dt M dt + dt )' 

was offenbar längs der Kurve C : x ¡ = x ' ( í ) gültig ist. 
Drücken wir jetzt die Operation D/dt durch D/dt aus, was auf Grund der 

Formel (2.9) mit Hilfe des inversen Tensors Q'j von P j leicht durchführbar ist 
(vgl. unsere Formeln (3.5) und (3.6)), so geht (4.2) im Hinblick auf (2.7) in 

(4.3) ™ = Qr¡ Qj grs TiJ yk + gjj 

über. Aus dieser Formel folgt der 

Sa tz 3. Die Veränderung der durch (4.1) bestimmten Tensorlänge T ist bei einer 
Parallelverschiebung von T'J, d. h. im Falle DTlJ = 0 durch die folgende Formel 
angegeben: 

(4-4) = Q r iQ jg r sT i J yk^¡ f -g i j ( Q Í Q Í ^ T ' J + Q Í Q ^ T » } . 

Nehmen wir nun an, daß der symmetrische Tensor T'J längs C ein Eigentensor 
ist, d. h. es gilt längs C: 

(4.5) Pl
rP{Trs = r(t)TiJ ( t ( / ) 0). 

Da aus (4.5) auf Grund der Relation (2.2a), längs C 

(4! 5a) z~1Trs = QIQjT'i 

folgt, bekommt man aus (4.3) in Hinsicht auf (3.13) und (4.1): 
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Aus der Formel (4.5) folgt nach der Operation D/dt: 

D dx DT,J 

dt r s dt dt 

Berechnen wir nun auf der linken Seite die Operation D/dt, beachten wir ferner 
auf der rechten Seite die Formel (4.5) selbst, so wird 

{ d dTrs dx*} 

Trs_(p?pt)+popbs_+(rpakP,pbs+rpbkpapp)Trs__j = 

(dz .. DTiJ) 

Eliminieren wir jetzt aus dieser Formel (dPa
r) bzw. {dPb

s) mittels der Formel 

dP" dx? 
(4-7) -¿f- = (Tr\P°p - "rp\P>)~, 

dxk 

was aus (2.3) nach einer Kontraktion durch unmittelbar folgt, und beachten 
wir noch die aus (3.3) folgende Relation 

n<S' dx
k Di5P 

(4.8) - f - = W F ^ - ' T ^ ^ P ' P ? ^ , 

so wird nach entsprechenden Vertauschungen der Indizes: ( ' 

Da aber T's in (r, s) symmetrisch vorausgesetzt wurde, wird nach einer Kontrak-
tion von (4.9) mit QlQj, und auf Grund von (2.2a) 

r>Thf DSe (nTiJ dx \ ' 
(4.10) ^ l ^ + ^ f r ^ j f - f f ^ ö f 

Überschiebung von beiden Seiten der Formel (4.10) mit ghf gibt in Hinsicht .auf 
(2.1), (2.2b) bzw. auf der rechten Seite nach (4.5a): 

DTbf D5e DT'J dx 

J)8e 

Elimineren wir das Glied von (4.6) mittels (4.11), so erhält man dem 
folgenden 
12* 



180 Arthur Moór 

Sa tz 4. Ist für den symmetrischen Eigentensor T'j längs einer Kurve 
C:DT'J = 0, besteht (2.1), so ist die Veränderung der durch (4.1) angegebenen Tensor-
länge T mit T selbst proportional; in expliziter Form: 

tA i-n D T i dx" d T ) -IT 

Analog zur Formel (3.16) und zum Korollar 2*, folgt aus (4.12) das 

K o r o l l a r 4*. Ist der symmetrische Tensor T1' längs C ein Eigentensor mit 
der Eigenfunktion x, gilt ferner längs C: 

, ,. N dx* dx 
I ^ N R = 17' 

so ist bei Parallelverschiebung längs C die Tensorlänge T eine Konstante. 

§ 5. Veränderung der Fundamentalinvariante der antisymmetrischen Tensoren 

In diesem Paragraphen soll t , j = — T j ' durchwegs einen antisymmetrischen 
Tensor bedeuten. Da der Tensor 

Sijhk ~ y (SihSjk~ gik gjh) 

in (i, j ) und auch in (h, k) antisymmetrisch ist, ist 

(5.1) T ( a ) S / i ^ T Ö r « = HirgjsT l iT"> 

eine Invariante des antisymmetrischen Tensors T%i, die wir als Tensorlänge von 
T1' bezeichnen wollen2). Die Einführung des Tensors giJhk stammt von Prof. A. 
KAWAGUCHI (vgl. [1], §3); für Bivektoren definiert T(a) — bis auf eine Konstan-
te — in arealen Räumen eben das Maß der Bivektoren (vgl. [1], (3.22)). 

Längs einer Kurve C:x'=x'(t) ist nach (5.1): 

Í5 2} DT*a) = — (e 2 TiJTrs) = Dgir s- TiJTrs+ dt dt Kg.rgjs* 1 > - dt 8 J 1 + 

De- ("DTiJ "DT'S\ 
+ g , ^ r>+girgjs [ — T-+T-< — ) , 

2) Der Index „a" bei T(a) bedeutet die Antisymmetrie Von T'1; es ist also nicht ein tensorieller 
Index. 
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"D 
wo den mit 'T/ f c gebildeten invarianten Differentialquotienten bedeutet. 

Offenbar ist für rein kovariante Tensoren "D = D. 
Benützen wir nun die Antisymmetrie von T,J in „i" und „ / ' , so vereinfacht 

sich die Formel (5.2) auf 

±DT%l_DilL T U T „ ^ I l j - n 
2 dt ~ dt gjs g,rgjs dt 

Mit Hilfe der Formel (3.3) können die Übertragungsparameter aus "DT'J 

eliminiert werden; da jetzt statt dieser Übertragungsparameter die ' / y t hinein-
kommen, wird wegen 'DTlJ=DTlJ aus der letzten Gleichung: 

(<o 
2 dt dt Bjs \ dt dt dt ) 13 

Unter einer wiederholten Beachtung der Antisymmetrie von TtJ und selbstverständ-
lich auch die von Ttj, erhält man auf Grund von (2.9), welche Formel die Opera-
tionen D und D miteinander verknüpft, und ferner wegen (2.2a), (2.2b): 

(5.3) T(a) = ^ Q 1 Q b
r T \ Q ' c Q l Tij—2T;pTkpQlQi

c > 

da für Skalare offenbar die Operationen D/dt, D/dt und dldt übereinstimmen. 
Auf Grund von (5.3) folgt im Hinblick auf (2.7) der 

Sa tz 5. In einem Weyl—Otsukischen Raum ist die Veränderung der Tensorlänge 
T(ß) eines antisymmetrischen Tensors T,J bei einer Parallelverschiebung längs einer 
Kurve C:x' = x'(t) durch: 

r>T ( 

(5.4) = T ß [Q1Q"rgcb T's Trsyk ~ - 2Tis T"Q»rQ>c ^ J 

bestimmt. 
Nehmen wir nun an, daß der Grundtensor P\ die Form 

(5.5) P'j = QÖ) (q = Konst.) 

hat. In diesem Fall ist nach (2.2a): Ql^Q'1^, ferner wird nach (2.3): T = 'T 
Dö' 

und somit auch —7-^=0. Es besteht also nach (5.4) und (5.1) das 
dt 



182 Arthur Moór 

K o r o l l a r 5*. Gilt in einem Weyl—Otsukischen Raum die Relation (5.5), so 
ist die Veränderung der Tensorlänge T(a) eines antisymmetrischen Tensors T'J bei 
•einer Parallelverschiebung zu T^ selbst proportional. Es ist 

DT(a\ def _ „ dx" 
<5-6) -xr2 = aTM> a = Q yk-rr-

§ 6. Bemerkungen über dem Tensor g i J 

In den klassischen Weyischen Räumen, wo P'}=ö'j und folglich V ^ ö ^ O ist, 
folgt bekanntlich aus (2.7), d .h . aus Vtgfj- = ykgij auch V tg u = — ykg'j (vgl. z. B. 
[2], Formel (7.1) a), wo aber der Raum ein Linienelementraum, d. h. allgemeiner, 
als ein Punktraum ist). Wir wollen die Formel von \glj in den Weyl—Otsukischen 
Räumen bestimmen. 

Der Tensor g'h ist bekanntlich durch die Formel 

guS i h = ^ 

bestimmt. Die mit Hilfe von T a
b

c gebildete kovariante Ableitung von beiden 
Seiten gibt 
(6.1) ("Vkgij)gjh+.("VkgJh)gij = 0, 

wo die mit T gebildete gewöhnliche affine kovariante Ableitung bezeichnet 
(vgl. [4], §3, S. 111). Offenbar ist '%glj=gm, hingegen gilt wegen 

(6.2) ^ k = T r \ - " r r \ 
für "VkgiJ die Relation 

"Vtg"' = g"'ik-Si\tfh-%ikglr. 
Aus (6.1) wird somit 
(6.3) gijtk gJh + gj\kgij = Sjlk grhgij+<5?|t. 

Die in (6.3) vorkommende kovariante Ableitung von gtj bzw. gJh kann auf 
Grund von (2.5) mit Hilfe der kovarianten Ableitung Vk ausgedrückt werden. Aus 
(6.3) wird somit: 
(6.4) g»®Q'jVtg„ + g,jQirQh,\fk = + 

Wir müssen jetzt aus dieser Gleichung \gJh unter Beachtung von (2.7) bestimmen. 
Ziehen wir in der Symmetrieforderung (2.1) die Indizes herauf, so wird: 

gabPl
b = gibP°b, 
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beachten wir (2.7), so wird aus (6.4) nach einer Kontraktion auf beiden Seiten 
mit g"cP[Pl\ 

(6-5) \g°b = -ykgab+(yMb+(yk8b
r)g-. 

Aus dieser Formel folgt 

Sa t z 6. Die Relation 
(6.6) f W + F W , = 0 

ist notwendig und hinreichend dafür, daß neben gtj auch g,J rekurrente kovariante 
Ableitung habe mit (— yk) als Rekurrenzvektor. 

Wir gehen jetzt zur Diskussion des Falles über, in dem der Tensor g i J außer 
(2.7), längs einer vorgegebenen Kurve C:xl=x'(t) auch der Bedingung 

(6-7) PfPb
jgab = x(t)gu (t(0^0) 

genügt, d. h. gu ist nicht nur ein rekurrenter metrischer Fundamentaltensor, sondern 
längs der Kurve C auch ein zur Funktion x(t) gehöriger Eigentensor. 

Es kann leicht ein solcher Weyl—Otsukischer Raum konstruiert werden, in 
dem also (2.7) und (6.7) gleichzeitig erfüllt sind. Die Forderung (6.7) ist nämlich 
eine Bedingung für g f j(x) und Pf, sogar nur längs einer Kurve C. Befriedigt nun 
gij die Bedingung (6.7), so bestimmt (2.7) ein Gleichungssystem für die Über-
tragungsparameter " r b

c , und auf Grund von (2.3) können auch die Übertragungs-
parameter T a

b
c bestimmt werden (vgl. [3], Formel (2.3)). 

Aus der Bedingung (6.7) kann nun die Formel 

DÖT D8f dx (6-8) g m _ + g m i _ ^ = g . . _ 

abgeleitet werden, wie wir das in [3] durchgeführt haben (vgl. [3], Satz 5, insbesondere 
Gleichung (4.4)). 

Wir wollen nun mit Hilfe von (6.8), das also eine Folgerung von (6.7) ist, die 
Formeln (3.10), (4.4) und (5.4) unformen. Führen wir die Bezeichnungen 

(6.9) V1 =Q}TV', (7'2 = gijV'VJ 

ein, so geht (3.10) unter Beachtung der Symmetriebedingung (3.13) in 

DV 1 ~ dx* ~ ~ DSm 

v ' dt 2 ,k dt 6,m dt 

über. Nach einer Kontraktion von (6.8) mit V'VJ und dann unter Beachtung der 
mit (6.7) äquivalenten Relation 
(6-11) ßiß}f™ = t - 1 g ü , 
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bekommt man 
m » \ ~ dz uoL- g V'VJ = 4 - V2-j-, V2 = T_ 1 V2, .Olm ^ Ji ' ' dt a,m 2 dt 

wodurch (6.10) in der Form: 

DV 1 J dxk 

( 6 1 2 ) n r = 2 T ~ > Ä " Ä R R 

geschrieben werden kann. 
Wir gehen nun zur Umformung von (4.4) über, wenn (6.7) bzw. (6.8) besteht. 

Die Formel (4.4) kann mit Hilfe der Bezeichnung: 

T's = QlQSjpJ, 

ferner in Hinsicht auf die Symmetrie von TiJ, bzw. nach (3.13), in der Form 

geschrieben werden. Aus (6.8) folgt aber nach einer Kontraktion mit T'J und in 
Hinsicht auf (6.11): 

(6 1 4 ) 2 g • T'J ^ L . = g. • f>J = x-i — T K • V 8mj dt dt 8,J dt ' 

und wieder in Hinsicht auf (6.11) hat man noch 

( 6 . 1 5 ) grsT» = grsQiQsjTiJ = t~1giJTiJ = x-iT. 

Substituieren wir (6.14) und (6.15) in (6.13), so wird: 

DT .( dx? 

Bei der Umformung von (5.4) benützen wir im Hinblick auf (6.II) und (5.1) 
die folgenden Bezeichnungen: 

fp> = Q f T i s , f - = g p r f r , f p s = T — 1 . 

Aus der Formel (5.4) folgt somit: 

(6.17) = T t i [ t * y k * £ - - 2 t * T b & 

Nun ist nach (3.13): 
TisQc SimT söc gicTs ^"csj 
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und aus (6.17) wird 

, 6 , 8 ) 

Eine Kontraktion von (6.8) mit TJ
sTls gibt nach entsprechenden Vertauschungen 

der Indizes: 

~f fhs D&S - f i s dz_ - 2 
ms dt dt is dt ' 

wodurch (6.18) in 

übergeht. 
Wir fassen unsere Resultate im folgenden Satz zusammen: 
Sa tz 7. Ist in einem Weyl—Otsukischen Raum der metrische Grundtensor gtj 

längs einer Kurve C ein Eigentensor, so sind die Differentialquotienten der entsprechen-
den Tensorlängen zu den ursprünglichen Tensorlängen proportional und die Formeln 
(6.12), (6.16) und (6.19) bestimmen der Reihe nach die Veränderung der Länge der 
Vektoren bzw. die der symmetrischen und antisymmetrischen Tensoren bei einer 

dxk dz Parallelverschiebung längs C. In allen drei Fällen ist ^ —— = —- notwendig und 
dt dt 

hinreichend dafür, daß die Länge bei Parallelverschiebung konstant sei, wenn nur 
gjj eine positiv-definite Metrik bestimmt. 
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Remarks on finitely projected modular lattices 
E. T. SCHMIDT 

1. Introduction. Let K be a variety of lattices. A lattice L in K is called finitely 
K-projected if for any surjective f :K+-»L in K there is a finite sublattice of K whose 
image under / is L. These lattices are important by the investigations of sub-
varieties of K, in fact, every finite K-projected subdirectly irreducible lattice L is 
splitting in K, i.e. there is a largest subvariety of K not containing L (see DAY [1]). 
Let B2 be the variety generated by all breadth 2 modular lattices. In [2] there is 
given a necessary condition for a lattice L£B2 to be B2-projected. Our goal here 
is to give some further necessary conditions for a lattice to be M-projected, where 
M denotes the variety of all modular lattices. 

2. Preliminaries. Let M be a finite modular lattice and let Q be the chain of 
bounded rationals, say Q=[0, 1]. M(Q) is the lattice of all continous monotone 
maps of the compact totally ordered disconnected space X of all ultrafilters of Q 
into the discrete space M. The constant mappings form a sublattice of M(Q) 
which is isomorphic to M; we identify M with this sublattice. If a/b is a prime quo-
tient of M then the corresponding quotient ajb of M(Q) is isomorphic to Q, we have 
a natural isomorphism eab: Q-*a/b. If alb runs over all prime quotients then all 
ajb generate a sublattice M[Q] of M(Q). 

Let A and B be two modular lattices with isomorphic sublattices C^C' 
where C is a filter of A and C is an ideal of B. Then L=A\JB can be made into 
a modular lattice by defining x ^ y if and only if one of the following conditions 
is satisfied: x^y in A or xSy in B or x^c in A and c'^y in B where c, c' 
are corresponding elements under the isomorphism C ^ C ' . We say that L is the 
lattice obtained by gluing together A and B identifying the corresponding elements 
under the isomorphism C ^ C ' . This useful construction is due to Hall and 
Dilworth. In this case A is an ideal and B is a filter of L, L=AUB and C=AP\B. 
Conversely if A is an ideal and B is a filter of a lattice L such that L — AUB then 
L is obviously the lattice obtained by gluing together A and B. 

Received February 11, 1978; in revised form September 16, 1978. 
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3. The Hall-Dilworth construction. 

T h e o r e m 1. Let A be an ideal and let B be the filter of the finite modular lattice 
M such that M—AUB and C=AC\B is a chain. Let a/b and c/d be two different 
prime quotients of C which are projective in A and in B. Then M is not finitely 
M-projected. 

P r o o f . A[Q] is an ideal and B[Q] is a filter of M[Q]. Consequently, M[Q] = 
=A[Q]\JB\Q\. It is easy to see that A[Q]ftB[Q\ = C[Q\. Let B'[Q] be a disjoint 
copy of B[Q\ with the isomorphism cp: B[Q]-+B'[Q\ (x-~x'). The restriction of 
q> to C[Q] give a sublattice C'[Q\ of B'\Q\ 

Let alb and eld two different prime quotients of C. Then we can assume that 
a>b^c>d. First we define an injection >j/: C[Q]—C'[Q] which is different from 
(p. To define this i¡/ we distinguish two cases: 

(a) We assume that there exists a u£C covering a. The quotients u/b, a/b, ula 
of C[Q] are all isomorphic to Q. Let further 5 be an automorphism of «/¿ and we 
set a0=a, a^dag, . . . , ai+1=<5a; and ^—S^ag,..., a i + 1 = 5 _ 1 a i . Obviously, 
if r is an arbitrary irrational number between 0 and 1 then there exists an auto-
morphism 5 of u/b satisfying the following two conditions (see Fig. 1.). 

(1) 

(£a6 (resp. eua)) denotes the natural isomorphism a/b-*Q (resp. w/a — 0 ) . Defining 
ipg to be the product (pod, i/r0 is an isomorphism of u/b onto u'/b'. \j/0 can be ex-
tended to an isomorphism iji\ C[Q]^C'[Q] as follows: 

(b) In the second case a is a maximal element of C. Then we can choose an 
arbitrary t such that a'>t>b'. tlb' is isomorphic to Q, hence there exists an 
isomorphism ij/0: ajb^-tlb'. The extension of t//0 is defined by 

We take in both cases the lattice L obtained' by gluing together A[Q] and 
B'[Q] identifying the corresponding elements of C[Q\ and ij/(C[Q]) under the 
isomorphism ip (Fig. 2). 

We prove that there exists a surjection / : L —• M. Let 0 be the congruence 
relation of Q defined as follows: x=y(0) if and only if either x, y>r~ or x, y<r. 
Then A [Q] has a congruence relation 0A such that the restriction of 0A to a quotient'4' 

(2) eai,(inf {a,}) = Eua(sup {a,}) = r 

(p(x) if 
i^0(x) if x€ u/b. 

(p (x) if x $ a/b 
i//0(x) if x€ a/b. 
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a[b — where a/b is a prime quotient of A — is the image of 0 by the isomorphism 
£ab: Q—A/b. The corresponding factor lattice A[Q]/0A is isomorphic to A. Similarly 
B'{Q\ has a congruence relation 0B corresponding to 0 , and the factor lattice is 
isomorphic to B. By the definition of <5, x=y(0A) (x, y£C[Q]) if and only if 
ôx=ôy(0A). That means that the restriction of 0A to 6C[Q] corresponds by q> to 
the restriction of 0B to C'[Q\. If follows that the join &AU6B has an extension 
0 to L such that the restriction of 0 to A [Q] is 0A and the restriction B'[Q\ is 0B. 
Hence M/0 is isomorphic to M. 

u<? 

Gt< 
r 

i a2 >a, 
,=ao 
•a, 
1 a 2 

b o 
Fig. 1 Fig. 2 

Let n be the projectivity a/b « c/d in A. Q denotes the projectivity c/d^a/b 
in B. Thus we get the projectivity Qcn:a/b'^alb. It is easy to show that this pro-
jectivity has no inverse in L, i.e. by Lemma 1 of [2] we get that M is not 
finitely projected. 

T h e o r e m 2. Let A be an ideal and let B be a filter of the finite modular lattice 
M such that M=AIJB and C=APiB is a Boolean lattice. Let alb and c/d be 
two prime quotients of C which are projective in A and in B. JFM is finitely M-projected 
then alb and c/d are projective in C. 

P r o o f . The proof is similar to the previous one. We define an injective endo-
morphism <5 of C[Q]. a/b is isomorphic to Q, hence we can choose an arbitrary 
« such that ¿><i<a. Let u be the relative complement of b in the quotient a/o 
where o denotes the least element of C[Q\. Finally u' denotes the complement of 
u in C[Q]. Then the ideal (tVu'] of C[Q] is isomorphic to C[Q]. We have therefore 
an injective endomorphism 5 for which 8a = t and 8x=x for every xSu'. We 
assume that c,d^u'. 
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If <p denotes the isomorphism C[ö] —C'\Q\ then \p=(poő is an injection 
of C[Q\ into C'[Q], such that the image of C[ß] is an ideal of C'[Q], \j/a=-a, 
ij/b=b, \pc=c, \pd=d. Let L be the lattice obtained by gluing together A[Q] and 
B[Q\ identifying the corresponding elements under We can finish the proof as 
in Theorem 1. 

It is easy to generalize the previous theorems if we introduce the following 
notion. 

D e f i n i t i o n . Let M be a finite lattice. An injective endomorphism <5 of M[Q\ 
is called a compression if the following properties are satisfied. 

(i) á ( x ) S x for every x£M[Q] and 5M[Q] is an ideal of M[Q\, 
(ii) there exists a 0 6 Con (Q) with exactly two 0-classes such that <5-1(x) = 

=x=5x(0) for every x where 0 denotes the extension of 0 to M[Q\. 

T h e o r e m 3. Let A be an ideal and let Bbea filter of the finite modular lattice M, 
such that M=A{JB. Let further a/b and c/d be two prime quotients of C=ADB 
which are projective in A and in B. If C has a compression Ő such that a>da>db=b 
and Sc = c, bd=d then M is not finitely M-projected. 

4. Stable quotients. Let a/b be a prime quotient of a finite modular lattice M. 
We define a new element t to M for which a W >6 . Then M U {/} is a partial lattice 
with the sublattice M. t\!m, thm (m£M) are not defined. It is easy to show that 
there exists a lattice M freely generated by this partial lattice. We say that a/b is 
stable if M is finite. A. Mitschke and R. Wille have proved that every prime 
quotient of M3 is stable. The prime-quotients of M4 are not stable. 

C o n j e c t u r e . A finite modular lattice is finitely M-projected if and only if 
every prime quotient is stable. 

It is easy to show — applying [2] — that a finite planar modular lattice is 
finitely M-projected if and only if every prime quotient is stable. 
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On curvature measures 
L. L. STACHO 

1. Introduction 

It is well-known that Steiner's famous polynomial formula for the volume 
function of convex parallel sets is based on the following heuristical idea: 

If A is a convex open subset of R" (the Euclidean «-space) whose boundary 
dA is a C 2 submanifold of (« — l)-dimensions of R" and then for its parallel-
set (of radius e) {c£R": dist (x, /4)-=^} we have that d(Ae) is also an (n — 1)-
dimensional C2-submanifold of R", and denoting its infinitesimal surface piece 
by dF one can find the following relation between the (n — l)-dimensional 
Hausdorff measures of dF and its projection on A (the closure of A): x) 

v o l n _ 1 d F = ( l + e x 1 ) . . . ( l + ex n _ 1 )vol n _ 1 dF° with dF° = prA dF 

where x l s ...,xn_1 denote the values of the main curvatures of dA at the place dF°. 
Hence one easily deduces that for all bounded Borel sets Qc R" the «-dimen-

sional Hausdorff measure (which, by definition, coincides with Lebesgue measure 
on R") of the figures T(Q, e ) = / i n { i € R n : prAt£Q} is a polynomial of degree 
n in the variable Q, of the form 

(1) vol„ T(Q, Q) = 2 AJ(Q)QI 

J=0 
where for the coefficients we have 

a 0 (g ) = v o l „ e n ^ , a i (Q) = v o l ^ g n d ^ , 
and 

aj(G)= f - 2 Hxi(p)d(vo\n-lP) 
QCidA J /c<! "-y '€/ card I—j 

Received February 27, 1978. 
x) For any closed subset B of R" and for x € R" we define p r B x = { b £ B : dist (x, b)=dist(x, 5 )} -

For 6 c R " we define p r B G = (J prBx. 
*€G 
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for j=2, ...,n (card=cardinality); xt(p),..., xn_1(p) are the main curvatures of 
dA at the point p£dA. 

This result was considerably generalized by FEDERER [1]: If a closed set 
/ I c R " is such that 

reach A = sup {5 & 0 : x£A}, card prAx = 1} 0 (with A0 = A), 

then there exist (uniquely determined) signed Borel measures a0,...,an over R" 
such that (1) holds for all bounded Borel subsets Q of R" and for all Q with 
0 <{?< reach 

Our purpose in the present article is to prove a result analogous to this 
theorem which applies to every y4cR" and 0 and which allows us to extend 
the concept of curvature measure to the boundary of every J c R " in a reasonable 
manner. 

2. Summary and alternative formulation of some of Federer's arguments 

T h e o r e m A. Let A be a non-empty closed subset ofW and f denote the func-
tion xt—dist (x, A) on R"\A. The function f is totally derivable exactly at those 
points of R" \ /4 which admit a unique projection on A, and for such a point x, 
g r a d f (x) coincides with the unit vector (x -prA x)/dist (x, A). The function f satisfies 
a Lipschitz condition of order one with (exact) Lipschitz constant 1, and the set 
of the singular points Z= { x € R " \ / l : card prAx>l} has \o\n-measure 0. Removing 
Zfrom the remaining set Q=R"\(^UZ) = {x£ RnNv4: c a r d p r A x = l} can 
de uniquely decomposed into a family Q of pairwise disjoint straight line segments so 
that for any member L of Q there exists a (unique) point p in dA such that 
{p}=prAL=LCidA. 

P r o o f . See [2] p. 93, [3] pp. 271 and 216. 

D e f i n i t i o n . We shall call the members of the family Q described in Theorem 
A the prenormals of the set A. I.e. L ( c R n ) is a prenormal of A if there exist a point 
p£dA and a unit vector fc(6R") such that L={x£R"\A: prAx—{p} and 
(.x-p)/\\x-p\\=k}. 

D e f i n i t i o n . A mapping / will be called C1+-smooth if it is defined on some 
open subset Q of some space R s with /£C 1 ( i2) (i.e. if / has a continuous gradient 
on i2) and its gradient locally satisfies a Lipschitz condition (i.e. for all compact 
subsets K of Q, Lip (grad f\K)< <=°). 

Since the composition of C1+-mappings is also a C1 +-mapping, it makes sense 
to speak of A:(^«)-dimensional C1+-submanifolds of the space R". In particular, 
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F is an (n — l)-dimensxonal C1 +-submanifold of R" if, for any y£F, one can find 
an open neighborhood G of the point y so that for some C 1 + -smooth function 
/ : G—R with nonvanishing gradient and a suitable constant y we have 

f ( x ) = y}. 

T h e o r e m B. If ACR" is a closed set with dA^0 such that g0 = reach A>0 
then the function / ( . ) = d i s t ( . , A) is C1+-smooth on the domain G= 
= {JC£R": O < d i s t ( x , ^ ) < 0 o } . The figures d(Ae) = {x: dist (x, .4) = £)} ( O < 0 < g o ) 
are (n — \)-dimensional C1+-submanifolds of R". By setting B=Agi, we have 
reach 5 = and d(Ae)=d(Be_eJ whenever {?„, that is, also introducing 
parallle sets of negative radius2) we have d(At)=d[(AeJe_gJ for all 0 The 
main curvatures ^(p), •.., x„_1(p) of the hypersurface (\n-V)-dimensional C 1 + -
submanifold) M=d(ABj) of R" oriented by its normal g r a d / exist at wo\n_1-almost 
every point p£M and their elementary symmetrical polynomials, i.e. the functions 

...+xn_1{.), ..., x1(.)...x„_1(.), are voln__^measurable. Further, we have 
— l/iffo— i?i) — xi— V&i 0 = 1 ' —1). If T is any subset of R" formed by the 
union of some prenormals of the set A such that T(~}Ao0 is vo\„-measurable then, for 
0 reach 

(2) v o U m ^ - f [ l + C e - e O x J - . t l + ^ - ^ ^ - J i i v o l ^ ! 
TClM 

and 
e 

(2') v o l n T D A e = f f [l+(x-Q1)x1]...[l+(?-ei)Xn-i\dvoln..1dT. 
0 TDM 

P r o o f . See sections "Sets with positive reach" and "Curvature measures" in [1]. 

We remark that the connection between (2) and (2') is established by the 
following more general observation: 

L e m m a 1. If Q^AczR" and T is a vo\„-measurable subset of R " \ A then 

(3) vol„ T = f ( v o l , ^ TD d(Ae)) do. 
o 

P r o o f . See e.g. [3] p. 271. 

') For <5<0 and Ac R", dist (x, 

13 
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3. A separability argument 

D e f i n i t i o n . We shall call a subset S V 0 of the product space R"XR n a 
generalized oriented surface (GOS) if for all (y , k)£S we have ||&|| = 1 and one can 
find an e > 0 (depending on (y, k)) so that 

dist (y , y 4- gk) = e S dist ( y y + gk) for any (y', k') 6 S and 0 S e = 

If A is a non-empty proper subset of R" then let d+A denote the figure in 
R"XR" defined by 

d+A = {0>, k): y€dA, ||/c|| = 1 and 3L prenormal of A Lz>y + (0, length L) • £}. 

It is clear f rom Theorem A that all the sets d+A are GOS-s. 

L e m m a 2. Suppose that A is a subset of non-empty compact boundary in R" 
with Q0=reach A>0. Then 

a) the figure d + A is compact (with respect to the topology o /R"XR"J 
b) the mapping <P:(d + A)X(0, Q0)—R", <P((y,k), g)=y + g-k is a homeo-

morphism between the sets (d + A)X(0, g0) and Ae^\A, and $(d + A X {g})=dAe 

whenever 0 < g < g0. 

P r o o f , a) The GOF d + A is bounded in R n XR" because it is contained in 
the product of the compact figures dA and #B"={&€RB:[|&|[ = 1}. On the other 
hand, it is also closed since in case of any sequence {(y,., i£l}czd + A with 

w e necessarily have yddA and ||/c|| = 1, and for 0 < 0 < <?0 the 
equalities g — dist (y t + g • kt, yt) = dist (yl + g-kn dA) = dist {yt + Q • kt, A) imply 
(by continuity of the function dist (. 0=dis t (y+g -k, y )=dis t y + g -k, A) 
i.e, y€prA(y + gk). This shows that {y}=prA(y+gk) (since reach A). There-
fore, by taking L={y+g -k: 0<{?<°° and {y}—prA(y+gk)), we obtain from 
Theorem A that L is a prenormal of A and L=y+(0, length L)k i.e. (y, k)dd+A. 

b) By Theorem A and the definition of d+A, the condition reach A = g0>0 
means that the mapping <P is one-to-one. By fixing an arbitrary pair g±, g2 such 
that O<0J<02<0 , , , we see that the figure D(gx, g^) = (d+A)X[g-i, 02] is a com-
pact subset of dom $ (since the GOS d+A is compact). Since <P is obviously con-
tinuous, cP|D(g1, g2) is a homeomorphism (because the inverse of any continuous 
function with compact domain between Hausdorff spaces is coontinuous). But 
then the inverse of <t> is necessarily continuous over the open set A e ^ \ A t i con-
tained in $(£>(0!, g2)). Thus the relation range i» = y4 e o \ j4= (J (A^AJJ 
immediately implies continuity of o<ei<fl2<eo 

L e m m a 3. Let A, g0, 0 be defined as in the previous lemma with the same 
assumptions. Then there exists a Borel measure ¡.i and there are fi-measurable func-
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tions a0, ...,«„_! over d + A such that for each and \o\n_1-measurable 
Fcd(Ae), we have 

(4) v o l , _ 1 F = f 1 F(y + Q' k) 2 aj(y> Qe'dMy, k). 
a* A 

(Here 1F(.) stays for the characteristic function of F.) 

P r o o f . Fix (arbitrarily) a value Consider the mapping !F(.)= 
= ( . , fc) . ' Observe that f : d+A~d{Ae) and that <?): d(Aei)~d(Ae) 
for 0<o-=f>0 are homeomorphisms. Therefore the measure 

(5') dp = dvoln_iC>ip 3) 

is a Borel measure on d+A. Further, if . . . , xn_1 denote the main curvatures 
of the hypersurface M=d(Ae) oriented by its normal directed outward from 
A then the functions a0, . . . , a n _ 1 defined implicitly by 

(5 ) j=o 
(for 0 «= T Q0, (y , k)£ d+A) 

are /x measurable (cf. Theorem B). Now let T(F) denote the union of those pre-
normals of A which intersect F (the surface piece of d(Ae) occurring in (4)). Then 
we have 7 ,( JF)n^ e o = $(!i /-1(i ; ,)(0, e0))- This shows that for any Borel measur-
able F, the figure T(F)i)A is also Borel measurable. Then performing the sub-
stitutions (5') and (5") in the right hand side of (4), we obtain from Theorem B 
(cf. also (2)) that (4) holds for any Borel subset F of d(Ae). Hence we derive (4) 
for any vol,,^ measurable F from the Borel regularity of the measures vol(I_1 

and ¡x, respectively. 

R e m a r k , a) It is clear that the system n,a0, . . . , an_1 is not uniquely determined. 
However, it is discovered from the proof that the measures dv=a0dp, ..., dvn_1 = 
=an_1dji depend only on the GOS d+A (in the sence that if Am and A(V are 
sets in R" of positive reach and (//°, a$\ .. . , a ^ l j are systems satisfying (4) for 
A = A0) (i—1,2), respectively, then for the measures dvf=afdn(i) (/ = 1,2,; 
7=0, ..., n — 1) we have 

dv^Kd+A^f) (d+A(2)) = dv^2)\(d+A(1))C\ (d+A<2)) ( j = 0, ..., n-1). 
n-1 

b) For any (y, k)£d+A, the roots of the polynomial 2 aj(y>k)QJ are real 
j=o 

(cf. (5")) and lie outside of the open interval (0, £>0) (cf. with the relations 
- l / ( 0 o - e i ) = *i> •••> *B-1^1/<?1 in Theorem B). 

3) The measure vol„_!o <P is defined on the family of subsets of d* A £ c » / ! ? | ) , 
E is vol„_i-measurable} by ( v o l ^ o W)(D) = vo\„.1(W(D)) for any D£!F. 

13* 
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C o r o l l a r y (with the notations and assumptions of Lemma 2). Formula (4) 
implies that for all \o\n-measurab1e subsets T of ^eo\/4( = $((i/ + ^4)X(0, g0))) 
we have 

<40 vol„ T = f f l T ( y + Q'lc)n2aj(y,k)QJdQdfi(y,k). 
d + A 0 J=° 

P r o o f . Consider the family of surface pieces F(g)=T(~)d(Ae). For g g g , 
we have F(g)=Q and for almost every 0<g<g0, F(g) is a vol„_1-measurable 
subset of d(Ae). Thus we can apply Lemma 2 for almost every 0<g<g0 whence 
we obtain that 

^ r f l i W = vo1 n-iHQ) = f bns(Ae)(y + gk) "z aj(y, k)gJd(y, k) = 
i+A 

= f 1 Ay + Qk) 2 a j (y, k)QJ d/i (y, k). 
i+A >=® 

Hence, by Lemma 1, 

vol„7-= f f l T ( j + gk)n£ aj(j,k)gJdfi(y,k)dg. 
0 d + A J' = ° 

Observe that in the above formula, y + gk = &((y, k), g) stays in the argument 
of the function 1T(.). Since $ is a homeomorphism between (¿/ + /f)X(0, go) and 
Affo\A and since the measures dp, d vol„ and dg are Borel regular measures, re-
spectively, this means that the product measure dx=dfiXdg (i.e. =d(iXdvolj) 
satisfies 

vol„ T = f l r ( y + gk) "Z aj(y, k)g* dx(y, k, g). 
(d + A)x( o>(?0) J=° 

This immediately yields (40 by Fubini's theorem. 

N o t a t i o n . If / 4cR" is closed with dA?±0, then for any ( y , k ) £ d + A let 
LA(y, k) denote in the sequel the prenormal of A issued from the point y(£dA) 
in the direction of the vector k, and let hA (y, k) denote the length of the line 
segment LA(y,k). 

R e m a r k . It is easy to see thai the value reach A is not other than the greatest 
lower bound of the function hA (i.e. reach A = 'mi/¡x(=inf {hA(y, k): (y, k)£d + A})). 

L e m m a 4. Let A be closed and dA^Q. 
a) For any £>0, the GOS {(y,k)£d + A: hA(y,k)^e} is closed (in RnXR"J 
b) d + A is Borel measurable (moreover it is an 3?a). 
c) For almost every g >0 , the set 0(Ae) is of o-finite vol „^-measure. 
d) For the set Z*={y+hA(y,k)k: (y, k)£d + A with hA(y, k)~= 4 we have 

vol1I_1Z*n5(^e) = 0 except for countably many values of 
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P r o o f , a) From Theorem A we know that 

(6) d+A = {(y, k): 3*6 R " V I , yivrAx and k = 

Now if {(yi,k^): ia}ad+A is a convergent sequence such that hA&,)—s 

(/£/) and {yi,ki)^{y, k), then for x=y+sk we have x^x and yiZprAXi with 
ki=(Xi—yi)/\\xi—yi|| (for all /67). Since, in general, the condition y'£prAx' is 
equivalent to dist (x', v4)=dist (x', y'), we infer from the conlinuity of the func-
tions ||.|| and dist ( . , A) that dist (x, y)=dist (x, A)=s i.e. y^prAx and 
k = (x-y)/\\x-y\\. This shows by (6) that ( y , k ) £ d + A . 

b) Since d+A= U {(y, k): hA(y, k)^l/m}'. 
m = 1 

c) Applying Lemma 1 we obtain 
CO 

vol„[/-Bnn(Rn \^)] = f voln_1 [rWC\d(A^}] dg 

for all r > 0 4 ) . Thus for any 0, there exists a set J r c ( 0 , °°) such that 

vol„_ 1[rB"n5(^ e)]<°° whenever e€(0, ° ° ) V f r . Thus if Q Am then the vo l„_ r oo ITI — 1 
measure of d(Ag) (= (J is «--finite. 

m = 1 
d) Fix (an arbitrary) ¿ > 0 such that d(Ad) has c-finite vol„_1-measure, and 

for all e><5 let Ae denote the binary relation Ag={(x,z): z£d(Ag), x£pr^z}(= 
= {(y + Sk,y + gk): (y,k)£d + A and hA(y,k)^g}. Now we know (see [4] p 254) 
that for distinct zx, z2 (£R") there cannot be found any x(£R") with (x, zx), 
(x, z2)£Ag and that the mapping Ag defined by Xg (x) = z <=> (x, z)£Ag is Lipschitzian 
with dom Xe=prj d(Ag) and r a n g e X g = d ( A g ) for any ¡?><5. So for each 0, 
we have vol„_1 Z*hd(Ag)=0 whenever the set Xg\Z*^d{Ag)) = {y+dk:hA{y, k) = g} 
has vol„_j-measure 0. But the sets {y+bk: hA{y,K) = g} (g>5) are all pairwise 
disjoint subsets of d(As). From a) we infer that they are Borel measurable. There-
fore the c-finiteness of vol„_j d(Ad) implies that there exist at most countably 
many Q>S such that v o l n _ 1 { j ^ : hA(y, k) = g}>0. This suffices for d) since 
the value of ¿ > 0 can be chosen arbitrarily small. 

T h e o r e m 1. Let 4 c R " be closed and dA ^0. If one can find a sequence 
A1, A2, . . . ( cR") of sets with non empty compact boundary such that 

a) d+A<z U d+A\ 
i=i 

b) ^ = reach A1 > 0 for i = 1, 2, ..., 

') B" is the standard notation for the open unit ball of R". 



198 L. L. Stacho 

c) for all (y, k)£d + A we have hA(y,k)^sup {hi:(y,k)ed + A'}, then there 
exists a Borel measure fi on d + A and there are ^-measurable functions a0, ..., an_1 

(over d +A) such that 

»>*> n —1 
(7) v o l n T = f f lT(y + ek) 2 aj(y> k)gjdQdn(y, k) 

d + A 0 J=0 

for all \o\„-measurable TaT3in\A. 
P r o o f . Set S ^ i d + A ^ i d + A 1 ) , ... , S,.= [(</ + 4 > n ( ¿+ /1 ' ' ) ] \U S J t ..: and 

for / = 1 , 2 , ... let (ji',a'0, . . . , a ^ ) be a fixed system satisfying (7) (putting A' in 
the place of A, fi' instead of ¡i etc. in Lemma 3). Now S l 5 S 2 , ... is a sequence of 
Borel-measurable GOS-s forming a partition of d+A. We also have Siad + A' 
( / = 1,2, ...). So we can define the system (ji,a0, ..., an_1) in the following way: 

(8') n{E) = for Ead+A ( o d/x\St = dn'\Si for i = 1, 2, ...) 
i=1 

(in the sense that a set E is /i-measurable if and only if for all indices /, the sets 
E O S j are /¿'-measurable), and 

(8") aj(y, k) = flj(y, k) for (y, kK St (J = 0, . . . , n - 1 and i = 1, 2, ...). 

Consider now a simple Borel function f:d+A~* [0, <*>] such that f<hA and 
range f={c1, c2 , ...}, and set Gf= {y + gk: (y, k)£d+A, k)}. Then it 
easily follows from Lemma 3 that 

f(y,k) 
(9) vol„ 7 ( 1 6 ; = f f lT(y + ek) 2 aj(y,k)gJdQdfi(y, k) 

d+A 0 J=° 

for each vol„-measurable Ta R n \ / 4 . 
To prove (9), take the following Borel-measurable partition {•S'im:i, m = l , 2, ...} 

of d+A defined by 

Sim = {(y, k)€ / _ 1 ({c m }) : i is the smallest index with (y, k)€ d+A' and ht cm}. 

Then consider the partition {Blm:i,m = \,2, ...} of Gf defined by Bim = 
= {y + gk: (7, k) 6 Sim, 0 <£?<cm}. Then fix an arbitrary pair of indices i, m. Apply-
ing Lemma 2b) to A', we see that the domain Bim is Borel measurable. 
Since for any ( y , k ) £ S i m and 0 < q < h A ( y , k ) we have 1 TnB (y+gk) = , im 
= \T(y + gk)- lS j m(y. l ( o , u s i n g Lemma 3 (with A instead of A and 
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with Q0=hj), we have 

vol« T D Bim = / f'lT(y + Qk)-lstJy, k)l („,Cm)(e) a) (y, k)g^dgdn(y, k) = 
d + A o J=° 

= f th(y+ek)n2aJ(y,k)eldedfi(y,k) = 
stm o 

. f(Z<k) »-1 
= / / lrO'+efc)-ls l mO',fc)l(o, e i n)(c) 2 aj(y,k)gJdQdn(y, k). 

i + A 0 J=° 

Summing this for i,m = 1 , 2 , . . . , we obtain (9). 
In possession of (9) we can conclude as follows: Lemma 4a) shows that the 

function hA: d+A —(0, is Borel-measurable (moreover that it is upper semi-
continuous). Therefore there exists a sequence of simple Borel-
functions such that f / h A (pointwise). For any such a sequence , we 

have U Gf = {y+gk: (y,k)£d+A, 0<g<hA(y, k)}=Rn\(A[JZ*) where Z * = 
>=i ' 

= {y+hA(y,k)-k: hA(y,k)< 4 So, for i-<*>, it follows from (9) that 

i>A(y,Q N-I 
(7') v o l n T \ Z * = f f 1 Ay + gk) 2 "j(y,k)QJdgdn(y,k). 

i + A o 
But now the relation Z * = ( R " V 0 \ I J Gf shows that Z* is a Borel-set. Thus 

i = l ' 

we may apply Lemma 1 to Z* (in place of T there) which implies (by Lemma 4d)) 
that vol„ Z * = 0 . 

4. Some convexity properties of parallel sets 

Our aim in this section will be to prove that there always exist sets A1, A2, ... 
satisfying the conditions of Theorem 1. 

L e m m a 5. Let x0€Rn and g 0 >0 . Then the function g ( . ) = d i s t ( . , x0)— -r—fi-I2 

20o 
is concave on the domain G = {x: dist (x, x0) >£?„}. (A function / is said to be 
concave on a domain H if it is concave in the usual sence when restricted to any 
convex subset of H.) 

P r o o f . Evaluate the eigenvalues of the second derivative tensor5) of the 
function / at a point x1^G. It is convenient to use a Cartesian coordinate system 

") The second derivative tensor of a function / : H(dR")-»-R at a point x£H is considered 
here as the bilinear form Dtf(x): RnXR"-»R, (»1, i>a) i-»3Vld„ t/(jc) where the symbol dv means 
the directional derivation in the direction t>(6R") i.e. dvf(y)= lim X'1 [f(y+Xv) —f(y)]. 

AM.« 
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i t IS 

with origin x0 and first unit vector — T h e n , independently of the 

choice of the further basic vectors e2,...,e„, the function / ( . ) = d i s t ( . , x) is 
represented by the form ..., Zn)=f(x0+Z1e1 +...+£„en) = }/{;! + + in 
this coordinate system. Since x1=x0+||x1—x0 l le i> the eigenvalues of Dif{xl) 

( &2<P Y coincide with those of the matrix M=I „ „ J But 
V OQt OQj ([] Xj—x0[1,0 oyi,j—l 

easy to see that M is of diagonal form with 0, ||xx—x0||_1, . . . , [Ixj—x0||_1 in its 
main diagonal. On the other hand, Z>2||. ||2 is represented in any Cartesian system 
by the matrix /=(2-<5 0 )" J = 1 (<5y denotes the "Kronecker 5"). Therefore the eigen-
values of Z>2/(*i) a r e —— a Q d ||xi— x J - 1 — — (with multiplicity n — 1), all negat-

Qo 6 o 
ive numbers. This completes the proof by recalling that any function of negative 
definite second derivative tensor is concave on any open convex subset of its domain. 

T h e o r e m 2. Let Ac. R" be such that dA^0 and fix £>0>0. Then the function 

g ( . )=d i s t (., A)——1|. ||2 is concave on the domain G={x 6 R": dist (x, A) > 0O}. 

P r o o f , / i s the infimum of the function family F = { d i s t ( . , A)--^—\\ .||2: x£Aj. 
• 20o 

By Lemma 5, all members of F are concave functions on G. But the infimum of 
any family of concave functions in concave. 

C o r o l l a r y . All directional derivatives of the function / ( . ) = dist (., A) exist 
in R " \ y i . For a fixed x 0 € R " \ ^ , the function t>-+dtf{x0) is continuous and super-
linear (i.e. positive homogeneous and concave). 

P r o o f . Apply Theorem 2 with 0o=-^-dist (x0, A). This shows that the func-
1 2 

tion ) = / ( . ) - o — I I - I I 2 i s concave on some neighborhood of the point x„. 
20o j 

Therefore dtf(x0) exists for all i€R" and satisfies dtf(x0)=dlg(x0)-\—(t, x0). 
Qo 

Thus ti-+d,f(x0) is the sum of a continuous superlinear and a linear form of t 
(since the directional derivatives at a fixed point of any concave R" —R function 
are continuous and superlinear.) 

T h e o r e m 3. Let A c R " be closed and / ( . ) = dist ( . , A). Then for any x0$v4 
and for any /GR" we have 

a ( / (x 0 ) = m i n { ( i , 1 ^ ) : ^ ^ x 0 } . 
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P r o o f . Consider an arbitrary y0£prAx0. Now we have f(x0+Xt) —f(x0) = 
= dist (x0 + Xt, A) — dist (x0, A) = dist (x0 + It, A)— dist (x0, j0) ^ dist (x0+/J, y0)~ 
—dist (x0, j>„). Thus, by writing / i ( . )=dis t (. , j>0), we obtain dtf(x0)^dth(x0) = 
- < ' • 8 r a d * w ° > = ( ' • m i n { ( ' • • 

The proof of the inequality in the converse direction: Let us associate with 
any a point j ( x ) from the set prAx and then let <px denote the function 
<px(.)=dist ( . , y(x)). Now we have / = inf ^ q>x and for all x$A, f(x)=cpx(x). 

• Thus, by writing il*(-)=(pXa+xt(-), we obtain 

jU(.x0+lt)-f(x0)] fe j [ / ( x 0 + ^ ) - < K * o ) ] ^ j№(x0+Xt)-4,(x0)] ^ d,Ip(x0) 

for any arbitrarily fixed i€R" and 0. (The last inequality is a consequence of 

the convexity of \j/.) Hence from the relation grad \j/(x0)=-^—+ ^ w& 
deduce tot I ko -O- fe + lOl 

(.o) - / » * « • ( < • — « 

Since for any bounded G<zR"\A the set {y(x):xdG} is also bounded, there can 
be found a sequence A,.\0 such that the sequence {^(x0+A,z)}r be convergent. 
Fix such a sequence {A,}™ and set y* = lim j ( x 0 + l , / ) - Now by (10) we have 

(10') dtf(xo) ^ (t, X°~y* 
ll*o--/II 

On the other hand from the equivalence of the relations dist (x0+Xtt, A) = 
=dis t (x0+A:t, y(xa + )Ht)) and y{xv+lit)£prA(x0+l;z) we infer for i — « that 
y*€prAx0. Thus for some y*£prAx0, (10') holds. 

From now on, throughout the remaining part of this section, let A denote 
a fixed closed subset of R", let x0£R"Nv4 (also fixed), r = r a d p r A x 0

 6), g=dis t (x0, A) 
and / ( . ) = dist (. , A). 

L e m m a 6. max(3 ( / (x0) / | | f | | )= j/1 -(r/gf if r^g and max(d,f(x0)/\\t\\) 0 
if and only if r=g. (Since prAx0a{y: ||)>—x0ll = £?}> the possibility r>0 is 
excluded). 

•) For any set Hcz R", r a d / f s i n f {<5^0: 3 p € R " Hep + SB"}. 
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P r o o f . Since the function #,/(x0) is superlinear and continuous, a simple 
compactness argument shows that max3,/(x0)/ | |f | | is always attained for some 

/0£R" with ||i0|| = I. Now if <9,0/(x0)>0, then the set prAx„ is contained in the 
spherical cap 

K= {y<ERn: | | y - x | | = q, (t0,y-xo) ^ Q'd,J(x0)}. 

But then, by writing P=x0-(Q-d,of(x0))t0, we have Kci{y: \\y-p\\ ^ 
— Kg2~(g• ^tp/fa))2}- Thus d , o / (x o )>0 implies that r ^ l - ( B t J ( x 0 ) f and 
therefore B t J ( x J ^ \ - (r/g)2. 

On the other hand, if then, because of the compactness of the set prAx0, 
there exists a unique closed ball 5 ( c R " ) of radius r such that prAx0czB. Con-
sider the spherical cap K' = {y£B\ |]y—x„|| = 0}. It is not hard to prove that the 
closed ball 5 ' ( c R " ) of minimal radius containing the set K' is that whose center 
and radius coincide with those of the (« — l)-dimensional sphere S' = 
= {y£dB: \\y—x0|| =g}, respectively. Since prAx0cK'cB', we necessarily have 
B'=B. Let q denote the center of B and set tx=xa—q. Since the point q is the 
center of S', we have angle ( t i , y—q)—n/2 for all y € S ' . Hence we deduce 
Hiill2=J /ll*o-J ;ll2-| |;>-9ll2 = j V - r 2 (with arbitrary Observe now that 

K'={y:\\y-x0\\=g and angle (t1,y-q)^7il2} = {y: | |y-x0!l = Q, t^y-q^O). 

Therefore, by Theorem 5 we obtain 

dtJ(x0) ^ M I N ^ , | | * 0 - Y | | = Q, (t, y-q) o} s (tlt = gM»/«-

So r<<? implies that max0 (/(xo)/ | | i | | = Vl - W e ) 2 . 

D e f i n i t i o n . We call a vector i(€R") a tangent vector of a set S(c:R") at the 
point x£S if / = 0 if there is a sequence x ^ Xj, x2 , ...dS such that x,—x and 

angle ( / , x , - x ) - 0 (for 1 - 00). ^For t^t^R", angle (r l 512)=arc cos 

The set of the tangent vectors of S of x will be denoted by Tan (x, S). 

L e m m a 7. If r<Q then for any /6R" we have 
a) i£Tan (x0, d(Ae)) if and only if dtf(x0) =0, 
b) i€Tan (Xq, R"\ /4 e ) if and only if d,/(x0)i=0. 

(I.e. Tan (x0, R"\Ae) is a closed convex cone with non-empty interior and bound-
ary and its boundary coincides with Tan (x0, d(Ae)).) 
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. P r o o f . Since ={x:f(x)^o) and f(x0) = g, we can immediately 
establish that d,f(x0)>0 implies /€Tan (x0, R"\/4 e) and that in case of 
iGTan (x0, R"\ /4 e) we have d,f(x0)^0. Therefore it suffices to prove just the 
statement a). 

Since d(Ae) = {x: / ( x ) = g}, it is clear that dtf(xo) = 0 for all t£Tan(x,d(Ae)). 
To prove dif(x0)=0=>t£Tan(x0,d(Ae)) we can proceed as follows. Let 
C={t: d,f(x0)=0} and F(t)=dtf(x0). From the continuity and superlinearity 
of the functional F it follows that C is a closed convex cone. Lemma 6 ensures 
that, for some i0€ C, we have F(t0) >0 . Since there also exists a vector such that 
F(tj)^0 (e.g. the vector t^y—x0 with an arbitrary y€prAx0), from the super-
linearity and continuity of F we easily deduce that 

F ( i ) > 0 o / 6 C (the interior of C), F(t) = 0*>t£dC, and F(t) <0<=>-t§ C(V?eR"). 

Therefore we have to show that for any O^tZdC and e > 0 there exists a point 
xCr)(Ae) such that 0<||x—x0 | | < e and angle (t, x —X0)<E. But it is a directe 
corollary from continuity of F. 

L e m m a 8. If S is any subset of R", x£ S and L denotes the smallest cone con-
taining the unit vectors k(dR") satisfying (x,k)£d + S then Tan (x, 5 ) c d u a l L 7 ) 
(or which is the same L c d u a l Tan (s, S)). 

P r o o f . We must prove that in case of (x, k)£d+ S, for any i£Tan (x, S) we 
have (t,k)<0. Proceed by contradiction. Suppose that (x, k)£d+S and 
f£Tan (x, S) are such that (t, k)>0. Since the figure Tan (x, S) is a cone, we 
may assume without loss of generality that ||i|| = l. Consider a sequence 
x?ix1, x2 , ••• — x in S such that angle (?, x, —x)^0 (z — a n d set h^WXf—x|j 

and tj=~- (x(-—x) (/ = 1,2, ...). Observe now that tt-*t and that for any arbitrar-

ily fixed q'>0, the function i^(.)=dist (., x+g'k) satisfies 

l i m [ d i s t (x,, x + g'k)-g'] = lim -^-[ i /Kx+M;- ' / ' (x)] = 
i tl i • /1; 

= lim j №(x+ht)~ip(x)] = d,ip(x) = (t, k) > 0. 

This shows that dist (x,-, x + °g'k)<g' holds for some index i. Thus we necessarily 
have (y, k)$.d+S by the arbitrariness of 0 and the definition of the GOS d+S. 

') For any set HeR" we define its dual by dual H={t£Rn: \/u£H(t, u ) s 0 ) . 
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R e m a r k . The converse inclusion Lz>dual Tan (x, S) fails in general. Example: 
in n—2 dimensions for S={(£, ri)eR2: f/^|c|3 / 2}, x = ( 0 , 0) and k=(0, 1) we have 
Tan (x , S ) = { ( T 1 , T 2 ) : T 2 = S ( ) } = { I £ R 2 : while (y, k)<{d+S. However, one 
can conjecture that if S=R"\Ae and x=x0 then L=dual Tan (x0, R B \ / 4 e ) 
always holds. It will suit our requirements the following simpler special case: 

T h e o r e m 4. Suppose r<g. Then 
a) the figure D={y: x0£prR„\A y) is convex and closed (this holds even 

for r = e ) , 
b) one can represent the set D°=conv ((x0) Upr A x0)8) as the union of straight 

line segments issued from the point x0 and of length ^g2 —r2. 

c) If L = [0, °o){k: (x0, k)e d + ( R " \ A e ) } then we have 

L = [0, °°)(Z>-x0) = [0, °=)(D«-x) = dual Tan(jc0, RBV<e) 

d) fcR"\Mx0, k) ^ yg2-r2 whenever (x0, k)<E d + ( R " \ A e ) . 

P r o o f , a) From the definition of prRn\ A y we infer that 

D = {y: V*€ R"\Ae, dist (y, x0) ^ dist (y, *)} = f ) {y: | | y -x 0 | | ^ | | y -x | | } . 
*SR"\.4C 

Thus D is the intersection of some family of closed half spaces (or D=R" if 
{ x o } = R " W 

b) For the sake of simplicity, we can assume (without loss of generality) 
that x o = 0 . 

It is well-known that, in general, the closed convex hull of any compact subset 
of R" coincides with its algebraic convex hull. Hence 

COnV ( {Xq} U PRA XQ) — 

m1 m 

= 0 = a = •••> K = 0» 2 * i = l a n d yi> •••,ym£prAx<>}• 
i i i 

Thus we can write Z>°=[0, 1] -conv ( p ^ x 0 ) = lj{[0, 1] - c: c£conv {prAx0)}. There-
fore it suffices to see that for any c£conv (prAx0) we have ||c|| ^ / p 2 —r2. Let t0 

be a unit vector such that d^ f(x0) = / l — (rjgf (its existence is established 
by Lemma 6). 

8) For Ha R", conf H denotes the closed convex hull of H (i.e. the smallest closed convex 
subset of R" containing H). 



On curvature measures 205 

From Theorem 5 we infer that for any finite convex linear combination 
c=A1yl + ...+?,mym of some points of prAx0 we have 

m m m / v \ 

(h, c) = ZMto, yi> = -Z^iCo,x„-yi) = -e)2^(t0, ,, 0 ,,',) ^ 
1 1 I 1 X J'lll ' 

m 
d,J(xo) = -0d,J(x0) = - f g ^ ? , 

1 

whence IMIHWI -Ikll^K'o, c)\ = f ^ 7 \ 
c) The relation L=[0, °°)(D—x0) directly follows from the definitions. From 

Lemma 7b) and Theorem 5 we also have that i£Tan (x0, Rn\Ae)-&dtf(x0)^Q<* 
yCprAx0(t, x0—y)^0, <=>i€dual [(prAx0) —x0]-»-i€dual(Z>°—x„)-»-i£dual [0, <=o). 

• ( £ ° - x 0 ) . Thus Tan (x0, R " \ ^ e ) = d u a l [0, c°)CD°-x0). Since both Tan (x0 , 
and [0, °°)(Z>0—x„) are closed convex cones in R", respectively, f rom Farkas 's 
well-known theorem we infer [0, °°)(£>0—x„)=dual Tan (x0, R " \ ^ e ) . Then observe 
that f rom the definition of the set D it follows x0£D and prAx0czD. This implies 
by a) tha t D°czD and therefore [0, <~)(Z>°-x0)c[0, <=°)(D-x0). At this point 
the proof of c) is completed by Lemma 8 which shows (for S=R"\Ae and x=x0) 
that L c dual Tan (x, R"\y4c), since we have proved here L = [ 0 , °°)(D—x0)z> 
=>[0, (D°—x0)=dual T a n ( x „ , R n M e ) . 

d) is immediate from b) and c). 

C o r o l l a r y . If g>0, Ac.R" is closed and r a d A < g then 
S ]/f?2 — (rad A)2. 

P r o o f . Let (xo,A:)<Erf+(R"Vfe). Now we have x0£d(Rn\Ae)=d(Ae) and 
r = m d p r A x 0 ^ r a d A ^ Q . Thus Theorem 4d) can be applied. 

5. Main Theorem 

On the basis of the previous section we can construct the sets A1, A2, ... 
required by Theorem 1. 

L e m m a 9. For any closed subset A of the space R" with f)A^0 there exists 
a countable family A = {A": a£/j of subsets of R" with positive reach and compact 
boundary such that (J d+Az>d+A" and hA(y, / t ) s s u p {reach A": (y, k)£d+A"} 

hold for any (y, k)£d+A. 

P r o o f . Let 61,62, ... b e an enumeration of the positive rational numbers 
and for ¡ = 1 , 2 , ... let the set B' defined by B'=d(Ae). Now we obtain from 
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the definition of the function hA(:d + A—(0, =»)) that 

(11) B> = d(At) = {y + Qjk: (y, k)£d+A and hA(y, k) S 6i} (i = 1, 2, ...). 

Then let each set B' be covered by a countable family K'1, K'-2, ... of closed balls 
of radius gj(2i) and define the sets A',s (i, s = l , 2, ...) as follows: set G f , s = 
=B'f\K'-s and let AUS=W\(GU\ ( = {y : dist (y, G ' - * ) ^ } ) . • 

Observe that if (j>, k)£d+A is such that hA(y, k)^gt and y+e^G'-' then 
(for the same pair of indices i,s) we have dist {y+Qtk, A',s) — Qj and hence 

(y, fyid+A'-" (i,s=\,2, ...). Since \J GUs=B', this means by (11) that 
S = 1 

(12) {(y,k)<id+A:hA(y,k)^ ei}c\J d+A'-° ( / = 1 , 2 , . . . ) . 
5 = 1 

It follows from (12) that d + Acz (J d+A^. 
i,s = 1 

Since the figure G''s is contained in the ball K',s whose radius equals to gj(2i), 
we have from the Corollary of Theorem 4 that reach Ai,s=inf ^ ' , s = i n f hR"\(G''s)e'^ 
= ^ 1 — 1/C4Z2) =-0 (i, 5=1, 2, ...). So from (12) we also infer that 

sup {reach A''s: (y, k)£d + A''s} S hA(y, k) 

for each ( y , k ) £ d + A. Finally, the inclusions dAs=5[R"\(G;'s)e]=d((Gus)0] <= 
c - ( G i , S ! ) c : ( K ' , \ immediately imply compactness of dAUs(i,s= 1 ,2, . . . ) . Thus 
the choice A = {A',S: i,s=l,2, ...} suits our requirements. 

T h e o r e m 5. For every closed c R " of non-empty boundary there exists 
a Borel measure n over the generalized oriented surface d + A and there can be found 
fi-measurable functions a0(.),..., fln_j(.) such that for any Lebesgue integrable 
function (p: R" \ /4 -»R" we have 

hy,k). „_! 
(13) / <pdvol„ = f J cp(y+gk) 2 aJ(y,k)eJdedfi(j>k) = 

R " \ A d + A O J=0 

= f(P(y + Qk) a J (y, k) Q' dx (y, k, Q) 

where D = {(y, k, g):(y, k)£d + A and 0<g<hA(y,k)} and dx denotes the product 
measure dy. Xdlength over (d + A). 
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P r o o f . From Lemma 9 and Theorem 1 we immediately obtain (13) for char-
acteristic functions of vol„-measurable subsets of By taking linear com-
binations we can pass to simple R functions and then a standard density 
argument establishes (13) for arbitrary Lebesgue integrable R" \ /4 — R functions. 

C o r o l l a r y . For ^-almost every (y, k)£d + A, the zeros of the polynomial 

Z aj(y,k)Qi are real and lie outside (0,hA(y,k)). 
j = o 

P r o o f . Recall the construction of the measure /i and the functions a¡ in 
Theorem 1 (8') and (8"). Applying the same notations (and definitions) as in The-
orem 1, we can proceed as follows: From Remark a) after Lemma 3 we infer that 
for any fixed pair of indices zl5 i2 one can write a'Jidfi,1=a'fdiii* (j=0, . . . , n —1) 
when restricted to the set (d+A'1) f)(d+A'*). This shows now that there exists 
a subset R'*-1* of (d+A^)C](d+A'2) such that 0 and 
there is a function c^: [ ( í¿+^ , ' ) ( í /+ / í Í ! ) ] \ j í? ' " ' ! - (0 , =°) such that ah(y,k) = 
= ci1ji(>'i k)a'f{y, k) (j=0, . . . , « —1) for any (y, /c)£dom c¡ ¡ . This is equivalent 

"-1 . n-l . 
to the condition that the roots of the polynomials £ ^Ky» 6J and 2 a'Hy> 6s 

0 j=o 
are the same with the same multiplicity (for all {y,k)£dom c¡ ,). Let then 

OO 
(y, k)^(d+A)\ (J J?'1''2 be arbitrarily fixed. Now Remark b) after Lemma 3 

«1,¡2 = 1 n-1 
implies that the zeros of the polynomial a¡ (y, K) Q> are real and lie outside the 

J=° 
interval (0, reach A') for any i, such that (y, k)ed+A'. Therefore p( .) cannot 
have any zero inside IJ {(0, reach A'): (y, k) £ d+A'}=(0, sup {reach A': (y, k)f_d+A'})^i 
o>(0, hA(y, k}). Since by (8') we have n((d+A)í) | J Rl^=0, the previous 

¡1,12 = 1 
statement holds for /¿-almost every (y, k)£d+A. 
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Type sets and nilpotent multiplications 
A. E. S T R A T T O N and M. C. WEBB 

Introduction. The nilstufe, v(G), of a torsion-free abelian group was defined 
by SZELE [7] to be the largest positive integer n such that there is an associative 
ring (G, o) on G having a non-zero product of n elements. If no such integer 
exists then v(G) is set equal to FEIGELSTOCK [2] defines the strong nilstufe, 
N(G), in a similar manner but allows non-associative ring structures on G. In §2 
we define the solvable degree Q(G) in an analogous way. 

Several authors [1,4, 5, 6, 7, 9, 10] have studied related problems of nilpotency 
in torsion-free rings. They have mainly restricted their attention to associative 
ring structures and have often demanded that the group G be completely decom-
posable. In [8] WEBB showed that if G is torsion-free with finite rank r then either 
v(G)=<oo or v ( 6 ) S f , and either N{G)=°° or N(G)^2(r~1). 

In this note we obtain improved bounds on both v(G) and N(G) under certain1 

conditions on the type set, T(G), of G. Here the type set of G means the partially 
ordered set of types t(g) of non-zero elements g in G. Our new bounds are ex-
pressed in terms of the length 1(G) of G by which we mean the length of the longest 
cj^iin in T(G). If no longest chain exists we put / (G)=°° , and observe the usual 
conventions about the ordering on ZU{°°}. We observe that if G. has finite, rank 
r then IrSr (cf. FUCHS [3] , page 112 , Ex. 10) . 

We require the following notions. If a, P are types we say that a absorbs ft if 
a/?—a. If in particular a is self-absorbing then we say that a is idempotent; (many 
authors have used the term non-nil for this last notion, we prefer the word idem-
potent, for the existence of idempotent types in the type set of the additive group 
of a ring is closely related to the existence of idempotent elements in the ring itself). 

¡Throughout the remainder of this note G denotes a torsion-free group of 
rank r and length / (both of which may be With these conventions we have: 

P r o p o s i t i o n 1.1. If T(G) contains no absorbing elements, then 

i) N(G) 2'~\ ii) v(G) S /, iii) Q(G) =S I. 
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P r o p o s i t i o n 1.2. If T(G) contains no idempotent elements, then 

v ( G ) ^ m i n { 2 ' - l , r } , e(.G)^l. 

P r o p o s i t i o n 1.3. If 1(G) contains no absorbing elements and G has length 2, 
then every ring on G is associative, and nilpotent of degree at most two. 

Basic ideas. 

L e m m a 2.1 Suppose that (G, * ) is a non-associative ring on G, and that 
g,^G (i—1,2) are such that g^xg^O. 

(i) If neither t(g ;) absorbs the other then 

t ( g i * g 2 ) > t ( g ; ) (i = 1,2). 

(ii) If neither t(g ;) is idempotent then either 

t ( g i * g2) > t (g0 or t ( g l * g2) > t (g 2 ) . 

P r o o f . Clearly t ( g l * g 2 )=£t ( g l ) t ( g 2 )^t ( g i ) ( i = 1, 2). If t ( g l * g 2 ) = t ( g l ) , then 

(A) t ( g l ) = t( g l)t(g 2) t (g 2) 

and t ( g l ) absorbs t(g2). This proves (i). 
If t ( g l ) is not idempotent then (A) implies that t ( g l ) > t ( g 2 ) and (ii) follows. 
For each positive integer k, let Vk = {x£G| there is a chain t ( x ) > t 2 > . . . > t k 

of types in T(G)} and let Gk be the subgroup of G generated by Vk. We clearly 
have a descending chain G = G 1 d G 2 3 G 3 d . . . of subgroups of G. 

C o r o l l a r y 2.2. Under the same hypothesis on G as in Lemma 2.1 we have: 

(i) If T(G) has no absorbing elements then 

G * G J C G I + 1 and G ; * G C G I + 1 for all positive integers i. ^ 

(ii) If T(G) has no idempotents then 

G, * GicGi + 1 for all positive integers i. 
R e m a r k . In both cases (G,, * ) is a subring of (G, * ) and in case (i) (G,, * ) 

is an ideal in (G, *) . 
Let R be a non-associative ring. For each positive integer k we may define 

four 'powers' of R as follows. 
(i) R(k) is the subring of R generated by all products of k elements in R, how-

ever the products are associated. 

(ii)y?™ = /?, RW = for all k> 1. 

(iii) R1 = R, Rk = Rk~1R for all k > 1. 

(iv) R1 = R, Rk = RR"-1 for all k > 1. 
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We observe that each of these 'A:-th powers' is contained in R(k>. A simple 
induction shows that 
(2.3) f o r a u integers k > 1. 

Recall that R is nilpotent if there is an index k such that Rik+r>=Q and R 
is solvable if /? [k+1]=0. If G is a group we say that the solvable degree, Q{G), of 
G is k if [G, *] l f c + 1 ,=0 for all multiplications * on G and there is a multiplication 
o with [G, o f M O . 

The following inclusions are an easy consequence of Corollary 2.2. 

P r o p o s i t i o n 2.4. 

(i) If T(G) has no absorbing types then 

(G, *)" Q G„ and (G, *)" £ G„ for all positive integers n. 

(ii) If T(G) has no idempotents then 

(G, *) [ n ] £ G„ for all positive integers n. 
In order to obtain information about (G, *)№) we need a further notion. Denote 

by F(R) the subring of the (associative) ring E(R) of endomorphisms of the additive 
group of R, generated by the left and right multiplications La, Ra, a£R where 

xLa = ax; xRa = xa for all x£R. 

L e m m a 2.5. Let R be a torsion-free ring. Let n and k be positive integers 
satisfying k>2"~1. Then 

R(k) ^ R[F(R)}". 
& 

P r o o f . We proceed by induction on n the result being clear when n = 1. 
Suppose that the result holds for n=m^l and that k>2m. Let x be the product 
of k elements in R. Then x — uv where at least one of u or v, u say, is the product 
of at least 2 m _ 1 elements of R. Thus by hypothesis u belongs to R[F(R)]m and 
uv£R[(F(R)]m+1. 

C o r o l l a r y 2.6. Let G be a torsion-free group whose type set contains no 
absorbing elements. Let (G, * ) be a (non-associative) ring on G. Let n and k be 
positive integers satisfying A:>2"-1. Then 

(G, * ) ( i ) c 6 „ + 1 . 

P r o o f . In fact we show that G[F(G, *)] ( n )cG„, for all positive integers n. 
We may assume without loss of generality that G[/r(G, *)](n) is non null. In particular 

14* 
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there exists non-zero monomials in G[F(G, *)](n). Recalling that F(G, * ) is associat-
ive we see that such a monomial may be written in the form 

where g£G and, for each i, Xi denotes * multiplication on the left or right by an 

element of G. It follows from Lemma 2.1 (i) that 

t(g) < t ( g ^ ) < t ( 0 

is a strictly ascending chain in T(G) of length n + 1 and so £c:Vn+1. However, 
the monomials generate G[F(G, *)](n) and the corollary follows. 

Proof of Propositions 1.1, 1.2 and 1.3. Suppose that G has finite length /. 
Then, by definition, G / + 1 = 0 . If T(G) has no absorbing types Proposition 2.4 gives 

(a) ( G T T ) ' + 1 = ( G T T ) ' + 1 = 0 

whilst Corollary 2.6 yields 

(b) (G, *)(2 '-1+1> = 0. 

Since * is an arbitrary multiplication on G we conclude from (a) that v ( G ) ^ / 
and from (b) that N(G)^2'~1. Furthermore putting k=l+1 in equation 2.3 
gives 

(G, * y , + 1 ] c ( G , * )(2'> c ( G , *)» '" 1 +" = 0 

and we deduce that e ( G ) ^ l . This proves Proposition 1.1 (if / is infinite the result 
is trivial!). Substitution of / = 2 in (b) gives (G, * ) ( 3 ) =0, and we deduce that 
in this case (G, * ) is always associative thus proving Proposition 1.3. 

If all we know about T(G) is that it contains no idempotents then Proposition 
2.4 (ii) gives (G, * ) [ , + 1 I = 0 and we have q(G)^1. If * is an associative multiplica-
tion then 

0 = (G, * ) [ , + l i = (G, *)2 ' 

whence v(G)s2 '—1. W E B B [8] has shown that v(G)Sr and we have proved 
Proposition 1.2. 

Finally we construct a group G which has 
(i) finite type set, (ii) no idempotent types, (iii) # (G) = <*>. 

Let Rx<ZR2 be subgroups of the rationals containing 1. Suppose that neither 
nor R, is a subring of Q, but that R2 = R2, the multiplication being the usual 
one on Q. Put G — Rx®Ry, then G satisfies conditions (i) and (ii) above. We put 
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two multiplications * and o on G as follows 

* X y o X y 

X 0 y X y 0 

y Y 0 y 0 0 

If n is a positive integer then 

x*( . . . *(x*-(x*.y)) ...) = y 0, 

x appearing n times. It follows that N(G) — °°, and reference to Proposition 1.2 
shows that (G, *) is nonassociative. 

It is easily checked that 

0 ^ (G, (G, * )m = 0 

so that g(G) = 2 = l(G). Lastly we see that (G, o ) is associative, indeed (G, o ) ( 3 ) = 0 , 
so v(G)=2. 
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A characterization of .3 
GERNOT STROTH 

The objective of this paper is the proof of the following theorem. 

T h e o r e m . Let G be a finite simple group and H a 2-local subgroup of G. 
Assume that H/0(H) is an extension of Z4*QS*DS by Assume further that 
Z ( / / / 0 ( / / ) ) is of order two. Then G is isomorphic to . 3, the Conway simple group. 

L e m m a 1. Put H^HjOiH). Then HJZiHj) splits over 0 2 ( / / 1 /Z( / / 1 ) ) . 

P r o o f . Put H2=HJZ^O^Hj)). Then 02(H2) is a symplectic space of dimen-
sion four. Thus H2j02(H2) is isomorphic to a subgroup of Z 2 X Z 6 . In this group 
there are exactly two subgroups isomorphic to Z6. Since Z( / / , ) is of order two 
we get that H2 is uniquely determined. Thus we get in H2 a subgroup isomorphic 
to I 6 . Since Z (Ht) is of order two we get in HJZ(//1) a subgroup isomorphic 
to I 6 . This proves the lemma. 

L e m m a 2. Let z be the involution in Z ( H ) . Then / / V C c ( z ) . 

P r o o f . By way of contradiction we assume H=Cc(z). 
Assume first that z is conjugate to an involution x contained in O 2 ( H ) — ( z ) . 

Then there is an element Q centralizing x such that Q3CO(H). Thus (g,0{H)) 
is contained in CG(x). Let n be an element of O(H). Then CG{n) contains 02{H). 
Let v be an element in QO(H). Then a Sylow 2-subgroup of CH(v) is isomorphic 
to (Zt*Qa)(d) where a2£(Zi*Qa). Thus 64 does not divide the order of C c(v) . 
Let to be an element in H—0(H) such that co3£0(H) and a>0(H) is not con-
jugate to QO(H) in H/0(H). Let ¡x be an element of (OO(H). Then CH(p.) possesses 
a Sylow 2-subgroup S such that S is of order at least 8 and <P(S) is equal to (z). 
Thus 16 does not divide the order of CG(JJ.). Let g be an element of G such that 
xg=z. Then eg is contained in H. Since 16 divides the order of Cc((?) but 64 does 
not divide the order of CG(g) we may assume Q9£QQ(H). Thus we may assume 
that g is contained in Nc(<@>). Let J be a Sylow 2-subgroup of C H (g)f lC G (x) . 

Received March 18, 1975. 



216 Gernot Stroth 

Then it is easy to see that T' is equal to (z). Thus x is not conjugate to z in NG((o)). 
We have proved that (z) is strongly closed in p2 (H) with respect to G. 

Assume now that z is conjugate to an involution y in H'—{£). Then CQ>( i / ) ( j ) 
is isomorphic to Z 4 X Z 2 . Thus there is an involution s in Oa (H)—(z) such that 
y is conjugate to s j in G. Let U be a Sylow 2-subgroup of H. Then every involution 
a of U—(z) is conjugate to za in U. Thus s is conjugate to sy in G. But then s 
is conjugate to z in G, which is a contradiction. Thus we have proved that (z) is 
strongly closed in H' with respect to G. 

Assume now that z is conjugate to an involution u of H—H'. Then z is a non-
square in CH(u). Thus CO a ( i 0(«) is elementary abelian of order eight. But then 
there is an involution b in O¡¡ (H)—(z) such that u is conjugate to bu in G. As above 
we get a contradiction. 

Thus we have proved that (z) is strongly closed in a Sylow 2-subgroup of G. 
Hence [2; Corollary 1, p. 404] yields the assertion. 

L e m m a 3. Let M be a finite simple group which possesses a 2-local subgroup 
L such that L/O(L) is isomorphic to a faithful extension of Eia by A6. Then M is 
isomorphic to Lt(q), ¿/ = 5(8); U4(q), q=3(8); M22, M23 or Mc. 

P r o o f . By [6; Theorem 3], L contains a Sylow 2-subgroup of M. Now [4] 
yields the assertion. " 1 

L e m m a 4. Let M be a finite group which possesses an involution z such that 
CM (z) /0(CM (z)) is isomorphic to one of the following groups: 

(i) SLt(q), 9 = 5(8); 
( I I ) S U 4 ( ? ) , q= 3 ( 8 ) . 

Then zGZ*(M). 

P r o o f . In CM(z) there are only two classes of involutions. Let v be an in-
volution of CM(z) not equal to z. 

Put C=CM(z). Then Cc(i;) contains a subgroup E=S1XS2 where S1, and 
5*2 are isomorphic to SL2(q). Now we get Z ( S ,

1 ) = <D) and Z(S2) = {zv), implying 
that Cc(i0/O(Cc(i;)) is equal to Z(C/0(C))*(E(a)) where a induces the diagonal 
automorphism on St and S2. Let R be a Sylow 2-subgroup of Cc(t>). Then /?' is 
isomorphic to Z 4 X Z 4 and CR(R') is isomorphic to Z 2 X Z 4 X Z 8 . Since &2(CR(FI')) 
is equal to (z) we get that z is not conjugate to v in G. Hence [2; Corollary 1] yields 
the assertion. 

L e m m a 5. Let M be a finite group. Assume that z is an involution in M such 
that CM (z) /0(CM (z)) is isomorphic to one of the following groups: 

(i) SL4(q)(x), g=5(8) , jc induces the graph-automorphism on SL4(q) and 
x^Z(SLM)l :: 
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(ii) SU4(q)(x), <7 = 3(8), x induces the field-automorphism of order 2 on SU4(q) 
and x2<EZ(SU4(q)). 
Then z£Z*(M). 

P r o o f . Put C = CM(z). Then C c (x ) /0 (C c (x ) ) is isomorphic to Spi(q)(x). 
Let T b e a Sylow 2-subgroup of C c(x). Then (z)=Z{T)V\T'. Thus C c (x) contains 
a Sylow 2-subgroup of Cc(x). 

Assume that x is an element of order two. Then 29 does not divide the order 
of CG(x). Thus x is not conjugate to an involution of SL4(q) or SU^q). Thus 
[12; Lemma (5.38)] yields that M possesses a subgroup M1 of index two. Con-
sequently, CMi{z)/0(CMi{z)) is isomorphic to SLJq), q = 5(8) or SU4(q), <7 = 3(8) 
whence by Lemma 4 the assertion follows. 

Put (u) — Z(SL4(q)), resp. Z(SU4(q)). Then we may assume that (u, x) is 
isomorphic to Qs. 

We shall prove that (z) is strongly closed in C' with respect to M. Let v be an 
involution of C'—(z). Then Cc(v)/0(Cc(v)) contains a subgroup £ = 5 1 X 5 2 

where 5j and S2 are isomorphic to SL2(q). We may assume Z(Sr)=(o) and 
Z(S2) = (zv). Now Cc(v) contains a subgroup Q isomorphic to Qs such that O' 
is equal to (z). Then Cc(v)/0(Cc(v)) is equal .to an extension of order 2 of Q * E . 
Assume that z.is conjugate to v in M. Then there is a Sylow 2-subgroup B of Q*E 
such that z is conjugate to v in NM(B). Now B is isomorphic to QS*(QSXQS)- Thus 
NM(Z(B))/CM(Z(B)) is isomorphic to i 3 . However, since C B ( 0 3 ( C M ( Z ( B ) ) / B ) ) 
is isomorphic to Qs, we get a contradiction. Thus (z) is strongly closed in C' with 
respect to M. 

Now we know that C c(x) contains an element s such that sx is an involution 
and sx is centralized by s. Thus z is a square in CM(xs). This implies that xs is net 
conjugate to an element of C'. Hence by [12; Lemma (5.38)] M possesses a sub-
group Mx of index two. Thus C M i (z ) /0(C M i (z ) ) is isomorphic to SL4(q), q= 5(8) 
or SU4(q), q = 3(8), which by Lemma 4 yields the assertion. 

L e m m a 6. Let M be a finite group and z a 2-central involution in M such halt 
CM (z) /0(CM (z)) is isomorphic to a split extension of an elementary abelian group 
E of order 32 by AB where Ag acts undecomposable on E. Then z£Z*(M). 

P r o o f . Assume first that z is conjugate in M to an involution u of CM(z) — 
— (EO (CM(z))). Put C=CM(z). Then there .are only two classes of involutions in 
C—0 2 , 2 (C) . Thus C c (u) /0(C c (u) ) is.isomorphic to a split extension of E8 by DB. 
Hence C / 0 ( C ) involves a subgroup A5 such that EA5 is equal to ( z ) X ( E l s A 5 ) 
where Ab acts intransitively on E16. Thus we may assume that there is an involu-
tion r in Z (CC (u)/0 (Cc (u))) such that u is conjugate to ru and r is contained in 
(CC(M)/0(CC(M)))'. Let S be a Sylow 2-subgroup of CM(W). containing a Sylow 
2-subgroup of Cc(u). Assume that z is conjugate neither to r nor to zr. Then Z ( 5 ) 
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is equal to (г, и). But this is a contradiction. Thus we have proved that (z) is not 
strongly closed in £ with respect to M i f z i s c o n j u g a t e to an involution of C—Or2(C). 

Assume now that (z) is not strongly closed in E with respect to M. Let T be 
a Sylow 2-subgroup of C. Since all involutions of E are conjugate to involutions 
of Z (Г) in С we get that all involutions of E are conjugate in M. If z is not con-
jugate to an involution of C — 0 2 , 2 ( C ) in M we get that E is strongly closed in T 
with respect to M. Then it follows from [3] that EO(M) is normal in M. Thus 
| M / 0 ( M ) :C0(M)/0(M)\ is equal to 31, which is impossible. 

Thus we have proved there are only two possibilities for the fusion of involu-
tions in M. The first is that (z) is strongly closed in T with respect to M. Then [2] 
yields the assertion. The second is that all involutions of M are conjugate in M. 
Thus all 2-local subgroups of M / 0 ( M ) are 2-constrained, so that applying [1] 
we get a contradiction. Thus the lemma is proved. 

L e m m a 7. Put <W) = Z ( 0 2 ( t f ) ) . Then N C «M» /0 (N C «K») is isomorphic to 
one of the following groups: 

(i) H/0(H); 
(ii) SLa (q)(x), gr = 5(8), x2dZ(SL4(<jr)) and X induces the graph-automorphism 

on SLt(q)\ 
(iii) SC/4(<7)(x), q = 3(8), ; c 2 £ Z ( S U ^ q ) ) and x induces the f.eld-automorphism 

on SUt(q). 

P r o o f . Put IV=NG((W)). Assume that N is not equal to H. Let M be a minimal 
normal subgroup of N/(0(N)(u)). Then M is simple. Further, M possesses a 2-local 
subgroup isomorphic to a split extension of E16 by Ae. Then, by Lemma 3, M is 
isomorphic to Lt(q); ¿7= 5(8), UJq); # = 3(8), M22, M.,3 or Mc. Applying [5] we 
get that M is isomorphic to Li(q)\ <7 = 5(8) or Ut(_q); <7 = 3(8). Thus N/0(N) con-
tains a subgroup of index 2 isomorphic to SL^q) or SUt(q). Now the structure 
of Aut (SX4(<7)) and Aut (SU^qj) yields the assertion. 

L e m m a 8. The group C c ( z ) / 0 (C c ( z ) ) is isomorphic to Spe(2). 

P r o o f . Put С=Cc(z)/(0(Cc(z))(z)). Assume first that N=NG((u)) is not 
equal to H. Let F be a minimal normal subgroup of C. Assume that F is not 
simple. Then F is contained in N/(0 (CG(z))(z)). Then CG(z) is equal to N, which 
by Lemmas 7 and 4 leads to a contradiction. Thus F is simple. Let Г be a Sylow 
2-subgroup of N. Since u(z) is not a square in T\(z) but all other involutions in 
Z ( T l ( z ) ) are squares in T/(z) we get that T is a Sylow 2-subgroup of G. Thus С 
(possesses a Sylow 2-subgroup of type A12. Since all involutions of (N/(O(C0(z))(z)) 
are conjugate to involutions of Z(T/(z)) we get that F possesses a Sylow 2-subgroup 
of type A12. Then by [9], F i s isomorphic to A12, A13, PSpe(2) or has the involution-
fusion-pattern of i27(3). 
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Assume now that N is equal to H. Let F be a minimal normal subgroup of C. 
Lemma 2 implies that F is simple and Lemma 6 yields that N/(0(CG(z))(z)) is 
contained in F since a Sylow 2-subgroup of N is a Sylow 2-subgroup of C G ( z ) . 
Hence, by [9], F is isomorphic to A12, A13, PSp6(2) or has the involution-fusion-
pattern of i27(3). 

Thus in both cases we have proved that a minimal normal subgroup of C is 
isomorphic to A12, A13, PSpe(2) or has the involution-fusion-pattern of i37(3). 

Assume first that a minimal normal subgroup of C has the involution-fusion-
pattern of Q7(3). Applying [10] and [7] we get that CG(z)/0(CG(z)) is an odd ex-
tension of Spin7 (g), q~3, 5(8). Now [11; Theorem (3.4)] yields a contradiction. 

Assume now that a minimal normal subgroup of C is isomorphic to A12 or A13. 
Then C c(z)/0(CG(z)) is isomorphic to Ä,2 or A13, so that G possesses only one 
class of involutions. Now [8; Corollary] yields a contradiction. 

Thus we have proved that a minimal normal subgroup of C is isomorphic 
to PSp6(2). The structure of Aut (PSpe(2j) shows now that C is isomorphic to 
PSp6(2). Thus the lemma is proved. 

L e m m a 9. The group G is isomorphic to .3, the Conway simple group. 

P r o o f . By Lemma 8, a Sylow 2-subgroup of G is of type .3, which by [11] 
implies the assertion. 
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Partial translations of semigroups 
R. P. S U L L I V A N 

To Jeanette Ryan with deep affection 

1. Introduction. If S is semigroup, an element Q of 3?s will be called a partial 
right translation of S if whenever ag,. a£S, is defined then (xa)g is defined for all 
x£S and x(ag)=(xa)g. This definition was introduced in [6] to extend that of 
"one-to-one partial right translation" given by CLIFFORD and PRESTON ([1] , vol. 1, 

page 32). Clearly both the domain of E and the range of Q are left ideals of S and 
so the notion of partial right translation coincides with that of "left 5-translation" 
discussed by STEINFELD [4] . However we prefer the former terminology since the 
concept of partial right translation generalises in a natural way that of "right 
translation". 

Our first aim in this paper will be to describe a class of semigroups embeddable 
in inverse semigroups and thus provide an alternative account of some work done 
by SCHEIN [2]. After this we investigate the problem of determining conditions 
under which a semigroup S can be embedded in a semigroup T such that every 
partial right translation of S is induced by a right translation of T. 

This paper was completed while visiting the Mathematics Institute of the 
Hungarian Academy of Sciences. I would like to thank Professor O. Steinfeld 
for his .kind assistance and many interesting conversations during my stay in Buda-
pest. My gratitude is also extended to the referee for recommending a number 
of changes in an earlier version of this work. 

. 2. Replete semigroups. All terminology will be that of [1]. Thus A (S) [P(S)] 
denotes the semigroup of all left [right] translations of S and /loCS) [ ^ ( S ) ] the semi-
group of all inner left [right] translations of We let i ? (5 ) [&(S)] denote tha 
set of all partial left [right] translations of S. 

Suppose g 1 , g 2 ^ ^ ( S ) and q 1 q 2 ^ 0 . (that is, ran ^lOdom q 2 ^ • ) and put 

Received December 22, 1977, in revised form April 17, 1978. 
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L = ( r a n ^ f l d o m g2)g1
1. Then dom g1gi=L and if a£L and x € S , then 

a£dom glt ( x a ^ i d o m g2, and we have 

(xa)g1g2 = ((xa)g1)g2 = (X^L))^ = x(agj)g2 = x(ag1g2). 

Since therefore the only way ¿¡C(S) [3&{S)] can fail to be a semigroup under com-
position is that some product of two elements equals • , we shall on occasion regard 
• as a partial left [right] translation of S: this accords with the standard terminol-
ogy for Jx. We note in passing that if S=S°, then 0 £ L for every left ideal of 
S and so gig2^ • for all gt, g2£<%(S); thus, when S contains a zero, i f ( S ) 
[3ft {Sj\ is a semigroup properly containing A (S) [^(5)] (since the identity on {0} 
is a partial left (right] translation of 5). 

If L is a left ideal of S and a£S, we call g^SPs such that dom g=L and 
xg=xa for all x£L the partial inner right translation (briefly, "pirt") of L induced 
by a and let ¿%0(S) denote the set of all such pirts. With the above convention 
&0(S) is a subsemigroup of 3%(S) containing P0(S). The notions of partial inner 
left translation ("pilt" for short) and of £f0(S) are defined dually. 

As usual (see [1], vol. 2), a non-empty subset A of a semigroup S is called 
left unitary if xyZA implies y£A. A non-trivial example of a semigroup in which 
every left ideal is left unitary is provided by Exercise 6, § 1.11 [1]. The following 
result is analogous to those of Exercises 4 and 6 of § 1.3 [1]; the proof is straight-
forward and so is omitted. 

P r o p o s i t i o n 1. If S is a semigroup then 
(i) if each left ideal of S contains a right identity then ¿%(S) = M0(S); 

(ii) if S=S2 then every with left unitary domain commutes with every 
with right unitary domain. 

STEINFELD [ 3 ] has used the notion of a one-to-one partial right translation 
to characterise completely 0-simple semigroups as those semigroups 5 = 5 ° having 
the form S= U w h e r e e2=e( and Set are 0-minimal left ideals such 
that for each i, j£l, there exists a one-to-one partial right translation from Sei 

onto Sej. In [4] he omits the assumption of 0-minimality to consider a wider class 
of semigroups, the so-called similarly decomposable semigroups, and extends the 
Rees theory for completely 0-simple semigroups to certain matrix semigroups over 
semigroups with a zero and identity (for a survey of this area see [5]). In doing this 
he proves the following interesting results; we shall call two left ideals Lx, L2 right 
equivalent if there is a one-to-one partial right translation from Lx onto L2. 

P r o p o s i t i o n 2. If S=S° and ex,e2 are non-zero idempotents in S then the 
following are equivalent: 
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(i) Sel and Se2 are right equivalent, 
(ii) there exist u,v£S such that uv=e1 and vu=e2, 

(iii) e1 S and e2 S are left equivalent. 

P r o p o s i t i o n 3. If S=S° ande1, e2 are non-zero idempotents in Sand Set, Se2 

are right equivalent, then the semigroups et Se1 and e2 Se2 are isomorphic. 

P r o p o s i t i o n 4. If S=S° and Se1, Se2 are 0-minimal left ideals of S then 
either Se1 and Se2 are right equivalent or the only partial inner right translation of 
Se^ induced by any afSe2 is the zero translation of Sex. 

In this section we use the notion of a one-to-one partial right translation to 
provide an alternative account of Schein's characterisation of those semigroups 
with identity that are embeddable in inverse semigroups ([3]; see also [1], § 11.4). 

Let 5 be a semigroup satisfying: 
(1) for each a£S, there exists an idempotent eÇ.S such that ea=a and if xa=ya 

then xe =ye. 
If S=S°, write e o = 0 and more generally for each non-zero a£S, choose and 
fix an idempotent, denoted by ea, satisfying (1) and put H(S)={ea: aÇS}. We 
call 5 a replete semigroup if S satisfies (1) and H(S) can be chosen to satisfy the 
further properties: (2) eaeb=ebaa and (3) aeb = eaba. 

Before proceeding we note that if S is replete then for a,b£S, eaab=eahab 
implies that eaeab=eab, and this latter identity will be used without further mention. 

A result similar to the following appeared in [6]; its proof is motivated by 
that of Theorem 1.20 [1]. 

T h e o r e m 1. Every inverse semigroup is replete and every replete semigroup 
is embeddable in an inverse semigroup. 

P r o o f . If S is inverse and a£S, put e a = a a - 1 and H(S) = {ea: a£S}. It 
is easy to check (using Theorem 1.17 and Lemma 1.18 of [1]) that S is replete with 
respect to H(S). 

Suppose S is replète and for each a£S, put a<p = Qa\Sea; note that if 5 = 5 ° 
then Oç> = 0o|{O}. We assert that q> embeds 5 into Js. For, if x, yd.Sea and 
xea=yea, then using (1), x=xea=yea=y. Hence a<p£js for all aÇS. If acp=bq> 
then Sea=Seb and so using (2) we have ea=eb. Hence 

a = eaa = eaQa = eaQb = eab = e„b = b 

and so (p is one-to-one. Now suppose ab^O and note that xddoin (aq>b(p) if 
and only if xea=x and xaeb=xa. Moreover these last two equations are together 
equivalent to xeab=x which means x£dom (ab)(p. If ab=0 then aebb—0—0b 
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implies by (1) that aeb=0eb=0. Suppose xea—x and xaeb=xa for some non-
zero xÇS. Then xa=0=0a implies x=xea=0ea~0, a contradiction. Hence 
dom (a<pb(p)=0. In both cases therefore dom (açbcp)=dom (ab)<p and so <p 
is a morphism. 

3. Partial translations induced by total translations. It is readily observed 
that if S=S° and Q£M(S) then Qg=0. In particular, if dom e = {0} then g 
can be regarded as the restriction of any a£P(S) to {0}. It is therefore natural 
to ask whether every g£âi(S) is induced by some g£P(S) in the sense that 

| dom This is certainly true for example when every left ideal of S equals 
Se for some idempotent eÇ S. For then if g£&(S) has domain Se, we have 
for all s£S 

where a=eg£S. 

E x a m p l e . Let S be the semigroup of all natural numbers under ordinary 
multiplication and let have domain 2S and satisfy (2n)g=n for all n£S. 
Then m(2n)g = mn = (m2n)g for all m£S and so o^Si(S). However if there 
exists g£P(S) such that £>=£>|dom £>, then g = ga for some a£S (since 165) 
and so n = (2n)g=2na for all n£S, a contradiction. Hence g' is not induced 
by any right translation of S. 

In the light of this example, we now ask: can a semigroup 5 always be embedded 
in a semigroup T such that every g^M(S) is induced by some g€P(T)? The next 
result introduces a sufficient condition under which an embedding can be achieved 
quite simply. 

T h e o r e m 2. If S=S° is a semigroup in which every non-zero left ideal is left 
unitary, then every g£0l(S) is induced by some g£P(S). 

j u d g i n g , then xy (Jdom g, and we have x(yg)=x0=0=(xy)g. Finally, if 
S then 0 ( ^ ) = 0 = ( 0 v ) e , and so we have shown that g£P(S) and by 

definition it induces g£&(S). 
Clearly, if 5 is any semigroup in which every left ideal is left unitary (or equiv-

alently, S is a disjoint union of minimal left ideals) then Theorem 2 can be applied 
to S°, the semigroup S with a zero adjoined. 

Finally we note that TAMURA and GRAHAM [7, Theorem 3] have determined 
the necessary and. sufficient conditions on a semigroup S which ensure that any 
crGi'i'S) is induced by an inner right translation-of some semigroup T containing 
5 as an ideal: we do not know if their result extends to the partial case. 

(se) g = s (eg) — s(e2g) = se (eg) = (se) g, a 
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On structural properties of functions arising from strong 
approximation of Fourier series 

V. TOTIK 

Introduction 

Let f(x) be an integrable and 27t-periodic function, and let 

(1) 2 (an c o s n x + b„ sin nx) 2 n = i 

be its Fourier series. Denote by s„(x)=s„(f ; x) and co(f;ó) the n-th partial sum 
of (1) and the modulus of continuity of / , respectively; || • || always stays for the 
supremum norm. 

FREUD [1] proved that 

2 \sk-f\p 
i 

: °° for some p > 1 implies / 6 Lip . 

An analogous problem with p = 1 was investigated by LEINDLER and NIKISIN 

[6], and this result was generalized by LEINDLER [4 ] as follows: If r is a nonnegative 
integer and 

I 
then 

t=i 

|/w(*+fc)-/M(*)| S K'h'logj ( X € [ 0 , 2IT]) 

for all x, and this estimation is best possible. 
From this result it follows that 

2 I W I 
k=l 

• «> does not imply / P Lip 1. 
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LEINDLER raised the question whether the condition 

2 K - / I " with some p (0 < p < 1) implies / € Lip 1. 

The answer was given in the affirmative by OSKOLKOV [7] and SZABADOS [8]. 
They also proved 

T h e o r e m A. For an arbitrary modulus of continuity Q. 

(2) 

and 

(3) 
imply / 6 Lip 1. 

ZGQh-fD 

/ dx 

Under a certain restriction on £2 they also proved the necessity of condition 
(3). In [10] we proved the necessity of (3) without any further assumption, and 
more generally, we proved Theorem B (below). 

In order to simplify our assertions, Q(x) will always denote an increasing convex 
or concave function on [0, with the properties 

(4) Î2(x) > 0(x > 0) ^limo i2(x) = 0 (0 ) = 0, 

and we suppose that the inverse of i2(x) (denoted by £2(x)) exists in the interval [0; 1]. 
With these notations we proved 

T h e o r e m B. If f satisfies (2), then 

(5) co(f-,5) = o{5 f ^ d x ) , 
d 

but no estimate better than this can be given. Moreover, if Q is concave, then we 
can replace 

¡ m d x by f * 
!i(g) i2(x) 

The following theorem answers the analogous problem for the conjugate 
function. 

T h e o r e m 1. (i) If Q is concave, then (2) implies / 6 Lip 1. (ii) Let Q be convex. 
From (2) the continuity of / follows if and only if 

(6) 
B(x) f i l l 

J x 
dx 
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If (6) is fulfilled, then (2) implies that 

(7) <D(fiS) = o [ f 2 ® d x } . 
vo x ' 

Furthermore, there exists a function f0 for which (2) is true, but 

(8) w(f0; S)è£c f dx (c > OJ. 
» * 

We note that part (i) is a known result of LEINDLER [4]. 

Recently KROTOV and LEINDLER [2] investigated the problem to give a necessary 
and sufficient condition for a monotonie sequence {/lk} such that 

(9) • 2h\sk-f l" 
k = 0 

with some p (0 < p <«>) 

should imply co( f , 5) = 0(co(S)), where OJ(S) is a fixed modulus of continuity. 
They proved 

T h e o r e m C. Let {AjJ be a positive nondecreasing sequence, co(<5) be a modulus 
of continuity and Then (9) implies co(f; 8) — 0(CQ(S)) if and only if 

(10) = 

As a common generalization of Theorem B and G we shall prove 

T h e o r e m 2. Let Q be a convex or concave function with properties (4), and let 
Uk}o°> {Vkio be positive nondecreasing sequences. If 

(11) llk = 0 M 
then . 

• ( ^ M ^ f c y ) - -
Furthermore, there exists a function /0 satisfying (11), for which 

(13) ©( /<>; - ) i — ^ i r V ) 1 
n) n k±i wt \k-Xk) 

C o r o l l a r y 1. Condition (11) implies / £ L i p 1 if and only i f , 

k t fik \k-AkJ 
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C o r o l l a r y 2. Let yèO. Then 

ZkW(\sk-f\) 
k=0 

implies 

« ( / ; * > = 4 / « 4 

It is easy to see that (12) reduces to (5) and (10) if ).k=nk = \ and nk = l, 
Q(x)=x", respectively. Thus Theorem B and C, and hence all of the above results 
are consequences of Theorem 2. 

We remark that for Q(x)=xp LEINDLER [5] proved some general statements 
of similar type. 

It is a very interesting problem to find the analogue of Theorem 2 for the 
conjugate function. 

We shall now generalize Theorem B in another direction. Let /8 be a nonnegative 
number and consider the condition 

(14) 2k<>Q(\sk-f\) 

instead of (2). We ask for the differentiability properties of / and / . We prove 

T h e o r e m 3. Let Q be a concave function with properties (4), and let /?S0, 
r=[p] *). (14) implies that / , / are r times differentiate, and if r is odd then 

(15) 

(16) 

/ ( r ) 6 Lip 1 

while if r is even then the role of f andf in (15) and (1*6) must be inverted. Furthermore, 
there are functions fp satisfying (14) with 

(17) 8) or a)(f</>; <5) s cd j ^ ^ ^ dx (c > 0), 

according as r is odd or even. 

-L ~ j 
The example Q(x)=e x, f(x)= 2 s ' n nx shows that for certain convex 

n = l n 
S2 condition (14) — with arbitrary large FI — does not guarantee the differentiability 

*) [/?] denotes the integral part of fi. 
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of / . On this account for convex Q we shall investigate the condition 

k = 0 

(18) 

rather than (14). 

Before we state our result concerning (18), we need the following 

D e f i n i t i o n . If co is a modulus of continuity for which 1 , N k=0 \2K) or equivalently J dx<°°, let 
o x 

= sup 2 ! ® > 
lek) k=0 V 2 / 

where the supremum is taken over the sequences {efc} which satisfy the conditions : 

(fc = 0, 1, ...), ¿ M l . 
k = 0 

It is easy to verify that cu*(<5) is again a modulus of continuity, and that 

' o)(x) m(S) ^ ffl*(5) ^ / ^ d x . 
o x 

With these notations we prove 

T h e o r e m 4. *) Let Q be convex with properties (4), and [P]=r. 

(i) If jM[/?] then (18) implies 

(19) A>(F";5) = 0(Q(5)). 

(ii) Let /?=[)S]>0. From (18) it follows that 

(20) ; 8) = O (5 / dx} 

and this estimation cannot be improved. Thus i /(18) implies the existence o / / ( r ) then 

(21) f ^ d x ^ co. 
S x 

In each of the above statements we can put / in place of f . 

*) We mention, that KROTOV proved for a subclass of convex functions much more general 
results. His proofs are totally different from ours. 
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(iii) Let us 'uppose that (21) is satisfied and r > 0 . Then (18) implies 

(22) a>(f"-,S) = o [ f ^ d x ) , 

(23) <oUm-,S) = o[B*{S)+6 f ^ d x ^ , 
5 

if r is even, and the roles of f and f must be intervened in the odd case. Furthermore 
there are functions fr satisfying (18), for which 

(24) ft>(/r
w; <5) or co(fr

M;S) ^c f dx (c > 0) 
o x 

according as r is even or odd. 

R e m a r k . Estimation (23) is best possible also in the following sense: If 

(25) n*(,5)+5 / 
» x 

where oj(5) is an arbitrary modulus of continuity, then there is an f satisfying (18), but 

(26) <«(/(r);<5) or a j ( / ( r ) ; 5) * O{co{8)) 

according as r is even or not. 

We mention that from the proof of (i) the stronger estimation 

o>(f"-,5) = o{5 J ^ d x ) 
d 

~ 1 - ( n 
also follows and with the aid of the function fn{x) = y „ Q — sin nx one 

u w
 n t l 8 n1+i) I n J 

can prove that this is the best possible if r is even, but we do not know what is 
the best estimation if r is odd. 

I am grateful to Professor L . LEINDLER, who called my attention to these 
problems, and whose permanent interest and advises helped me very much in 
my work. 

§ 1. Lemmas > 

L e m m a 1 ([10], Lemma 2). Let {g„} be.a decreasing sequence of positive numbers 
and let 

e(x) - 2en — sinnx. 
n = l n 

Then 
( 71 V 1 1 m 
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L e m m a 2. Let OJ(X) be a modulus of continuity, P=0, and suppose that 

En(f ) = 0 • The following statements are true: 

(i) if ft > 0 then En(f) = o\±co ( i - ) j , 

(ii) if ¿9 = 0, and f Z M d x * - then E n ( f ) = O { f " ^ dx), 
0 x vQ x ) 

(iii) if fi > W = r, then En(f(r)) - O [-^7 ® ( 7 ) ) , 

(iv) if /? = [/?]> 0, then - 0 ^ ( 1 ) ) , 

(v) if p = [p], and then En(fm) = o { f " ^ d x ) . 
0 x \ x ' 

These statements can be easily proved using the estimations below (see [9], 
pages 321 and 304): 

£„( / ) =§ c k ( / ) + 2 , En(fir)) S cr [nrEn(f)+ 2 V - ^ v i / ) ) • 
V v=n+l V / V v=n+l / 

To prove (ii) and (v) use the inequality 

v=„ v i v ; j x 
We omit the details. 

L e m m a 3. If Q is concave, and are nondecreasingpositive sequences 
then 

(1.1) 2 K ^ k W ( x ) - f ( x ) \ ) ^ K 
k = 0 

implies that 

(1.2) £4n = o [ l o g n ( n ^ „ Q ( i ^ - ) ) _ 1 j . 

P roo f . Using the known Lebesgue estimation 

\sn(x)~m\k3En(f)\ogn 
and the inequality 

flfcyi) „ n(ayi) „ G(ay2) , n , n , \ = a ^ a — > 0 0 < y, < v2) 
J>i ayi : • «y2 y2 ,•• y v 
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coming from the concavity of Q, we get from (1.1) 

K i 
in 

t=n + l 
1 ^ « f e i t f f i 

*=n+l I s * - / ! 

Q(jinEn\ogn) 
3En log 2n 

Ln 

2n 
Z h - f \ *=n+l 

n 
QfaEJogn) 

6E„ log n 
LnE. n n 

i.e. 

(1.3) Ein = 0(E2n log «(«;.„i2(/i2n£2n log n))-\ 

Now it follows from (1.1) that 

Zlknk\sk(x)-f(x)\ ^ K', 
*=o 

and from this that E2n=0((nXnfi„)~1). If we write this estimation in (1.3) wc ob-
tain (1.2) 

L e m m a 4. If Q(x) is convex, {A*}, {/x*} are nondecreasing positive sequences, 
and 

then 
f ( x ) = Z Q i—i—lsin nx 

n=i8np„ \nkn) 

2 4 * 2 0 ^ - / 1 ) 
4 = 0 I 

P r o o f . We introduce the notation 

sin nx. 

7T 7C Since fix) is odd, it is enough to consider the case x > 0 . Let 
N N-1' where N is an integer. With these notations we have 

(1.4) z M f a = f z V Z ) W f a M x ) - f ( x ) \ ) = B^+B^X). 
k—0 o k=N' 

Using the well-known estimation 

LZ ai s i Q 

l /=P 

— ap ( a p S a p + 1 S . . . ) , 
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we get 

(1.5) 

( k + l f 

From the convexity of Q it follows that 

^ 1. 

(1.6) B^x) S N2 XkQ L I *2 An(x) I +nk 2 S 
fc=0 V In—fc+1 I n = N 1/ 

^ " Z T W M a»(x)\) + 4,(*)|) = Bn(x)+B12(x). *=0 V ln=k + l * =0 2 V l„ = jv M 

Similarly to (1.5) we get 

(1.7) W s ^ ^ ^ ) ) S i l o ^ ^ K ^ ) ) = T 

Finally, using the inequality sin x^x (x^O), we obtain 

JV-l ( N-l 1 / 1 \ ^ N- 2 ( 2 Q | - H 

N-2 2 ß i2l , I N _ 2 N N _ x "V 3 n=fc+l I. _ 1 -V V 1 1 V „ 1 
= Z ^ Tr—\ ^ "77—r Z Z — = v t 2> n — = 

t=o TV—1 TV— 1 t = 0 n=k+\ n N—l„=i n 

and this — together with (1.4)—(1.7) — verifies our Lemma. 

L e m m a 5. If Q(x) is concave, {At}, {/!*} are positive nondecreasing sequences and 

then 

/ « = S i n n x ' „=1 fl„i \ n'A„a ) 

2 kkQ(nk\sk-f\) k = 0 
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P r o o f . Let AJx) = — Ql }. \ sin nx and rr—r- From the conca-
vity of Q we obtain ^ { n X " J N N ~ 1 

(1.8) 2 ¿Mnk\sk(x)-f(x)\) = + ¿Ui2(^M*)-/(x)|) = B ^ + B.Jx). 
k=0 V»=o k = N> 

(1.9) 

B*(X) = 2 haUk\ 2 An(x) k = N V \n=k+l 

= 2 h k=N 

J , 4 N 1 
k=N 71 (k+iy 71 ' 

(1.10) N2 An(x)\ + N2 2 An(x)] - Bu(x) + Bl2(x). 
k =o v n=fc + l / fc=0 v >n=N ' 

Similarly to (1.9), we get 

o n ) ^ V ^ s ^ y ) - ^ ^ ( o ^ ) s i . 
2 

In order to estimate Bu(x) let 1 <2 m and wk=[Iog (/c + 1)]. Using 
these notations we have 

nxt 
N- 2 f itf-1 1 / 1 

(i . i2) 2 - f l b r 
k=0 I. n=k +1 ^ni 

2m_1 r 2m—1 / J \ j 1 2--1 fm-1 2' + l - l / 1 \ „ ) 

2m —1 m-1 r2I + 1 —1 ( 1 \ „ ) 

pi —1 m —1 
~T~ m-1 2 • ( - ( 1 l) 

= 2 7 r 2 + 2 7 r 2 ^ 2TT 2 fi U - + 
/=0 , m + l 1=0 l / g« ' / 

2 

(1.8)—(1.12) verify the assertion. 
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L e m m a 6. Let e s 1 and ß concave. If 

(1.13) 

then 

(1.14) 

2 k r Q ( M f ) - f \ ) 
k=0 

2 k - ' Q i M D - f l ) 
k=0 

P r o o f . Let 2 ¿ k ( x ) - Taking into account the concavity of Q and 
k=0 

r ^ 1, (1.13) gives that 

2k\Ak(x)I ^ 2 H k _ 1 ( x ) - / M J + M * ) - / M I ) = o[2krQ(\sk{x)-f(x)\)], 
* =0 fc = 0 vt=0 ' 

i.e. 2kAk(x) is absolutely convergent. From this it follows that f'(x) — 2 kAk(x), 
k=0 (c = 0 

and hence 

2 kr~1Q(\sk(f'; x)-f'(x)\) = 2 kr^Q fl 2 nAn(x) ) = 

k=0 fc=0 Mn=* + 1 ' 

= 2 k'-1Q{\k(sk(x)-f(xj)+ 2 (sn(x)-f(x))\) ^ 2 kr-1Q{k}sk(x)-f(x)}) + 
*=0 

+ 2 k'-' 2 n(\s*(.*)-f(*)\) ^ 2 k'Q(\sk(x)-f(x)\)+ 2 Q(\sn(x)-f(x)\) 2 k'~\ 
(1 = 0 n=k k=0 n=0 k=0 

from which, using (1.13), we obtain (1.14). 

L e m m a 7. Let R„(r, f)=Rn(r, f ; x)= 2 f l - i - T r ) 1 where f(x)~ 

~ 2 4 W . If rs 1, iAen 
*=o 

where Cr depends only on r. 
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P r o o f . Denote Dk(t) and Kk(t) the fc-th Dirichlet and Fejér kernel, respectively. 
Using the nonnegativity of Kk(t) we get by an Abel rearrangement 

I Rm(r,f;x)\= 1 
(n + iy 

1 
(n + iy 

1 1 

i s ^ X i f c + i x - f c ' j U »=0 i 

/ f ( x + u)Í2\k + l)Kk(u)(2(k+iy-k'-(k+2y) 
-Í ч = о 

+ (n + i y n 

+ (« + l ) i„( t t ) ((n + l ) ' - n ' ) } d « | s 

- IsTW n Ц 1 ( k + 1 ) ( k r H k + 2 ) r ~ 2 { k + 1 ) r ) + ( ( и + i y ~ " r ) ( n + 1 } } = 

= ° (( iTIf Ш ( k + l ) k " 2 + ( и + = ° ( S ) -

and this proves our lemma. 

L e m m a 8. For 

*n(r>j) = rn(r>J> X) y—i ( r = l ) 

we have 
| t „ ( r , / ) - / | ^ c'rE„U). 

P r o o f . 
2л-1 2n-l 

| T n ( r , / ) - / | = 
2 ( s * - / ) ( ( f c + l ) ' - f c O 

k=n 

nr(2r—1) 

2 | s » - / | ( ( k + i y - f c O *=я 
n r(2 r — 1) 

s - 2 I * - / I = o(£„</)). " t=n 

In the last step we used one of the results of LEINDLER [3]. 

L e m m a 9. Lei Q be a convex function, for which 

0 x 

and let a.^0 such that 

2 Q(kak) S К for some К ^ 1. 
*=i 
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Then 

(Q*(d) was defined in the Definition). 

P r o o f . It is enough to prove Lemma 9 for K=l, namely if K>1 we can 

apply the case K— 1 to the sequence using the inequality Q — 

For K= 1 the proof is very simple: 

2s + 1n—1 2s + 1n-l 
2 kak, 2 /«. + 1.-1 \ ( Z, ««t\ ^ £s 

2s n 
i.e. 

2« + l n - i + 1«-i ( o 1 
2 ft=2»o \Z nj 

and if we sum these inequalities for s=0,1,... we get the required inequality. 

L e m m a 10. If co is concave and E„(f) = C>|ct>*^—jj, then 

(1.15) a>(/; S) = o[d J ^ dx+uf(S)\. 
\ t x ) 

P r o o f . It is enough to prove (1.15) for <5=^-. We shall use the following 
inequality (see [9], page 333). 

n 

/ n t 2 E k t f ) \ 

From the definition of to* it follows that there are sequences {e^KLo 
( r=0 , 1, . . . , m—1), for which 

« . ( / ; - o [ i - S » - ( i ) ) = 0 ( 2 - £ r « ' ( i ) ) -

~ ° { 2 ~ I X l H ^ ) ) " 0 ( 2 - " I 2 ' f . l " ( ? ) } ) " 

and this proves (1.15). 
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§ 2. Proof of the theorems 

P r o o f of T h e o r e m 1. It is enough to prove the theorem for convex Q, 
namely if Q is concave, then (2) implies 

2 h - f \ * = 0 

and if we apply the second part of Theorem 1 to the convex function i 3 ( x ) = x 
we get that 

(2-1) 

o>(f;d) = o { f - d x ) = 0(S) 
\ x 

i.e. / 6 Lip 1. 
Let thus Q be convex. First we prove (7). Let us denote by ff„(/)=ff„(/; x) 

the n-th (C, l)-mean of the Fourier series of / , and let 

2/1-1 .. 
2 sk(x) 

T„(/) = T„(/; X) = 2<r2/i-i(/; x)-on~iif-, X) = . 

From (2), using the convexity of Q we get 
n 

( , 2 
K G 0 - / I - Q(Q(K(f)-f\)) ^ n J j ^ 

With the notation 
f - ° n ( f ) = gn(f) 

° n ( f ) - f = [°n CO) - CO) + (<T„ (g„ ( / ) ) - g„ ( / ) ) . 

We can write (2.1) in the form gn{/)=0 | i2 , from which a„(gn(f)) = 

= and so (2.2) implies 

(2-3) ^ ( T n ( / ) ) - < r n ( / ) = o [ i 2 ( - i ) j . 

If we keep in view the expression of a„{f), it is easy to see that 

we have 

(2.2) 
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so (2.3) implies d'n(f) = 0 |wi2 ^ - j j , and together with this 

(2-4) (?„(/))' = (*,( / ) ) ' = O (nfl ( { ) ] . 

Now (2.1) gives E n ( f ) = 0 l ^ i — ) | , from which by Lemma 2 (ii) it follows 

U V" Q(x) \ 

" —^-t-dxy It is known (see e.g. Lemma 8) that |T„ (g ) -g | ^ 

^KEn(g); and hence, also using the previous estimation, we get (2-5) |T„ ( / ) —f \ = o\ f" ~ ~ dx\. 
vo x ' 

Now we are ready to prove (7). If \h\s—, then (2.4) and (2.5) give 
• n 

|f(x)~f(x + h)\ =§ |/(x)-Tn(/; *)|+ |t„(/; x)-r„(/; x + h)\ + |t„(/; x + h)-f(x + h)\ = 

= o { f n ~^dx+\hT'„(f;x + $h)\) = 

and this is equivalent to (7). 
By Lemma 4, (2) is satisfied by the function 

fo(x) = 2 TT n i~) sin nx-

Then, • 
°° 1 - ( 1) fo(x) = ~ 2 n J COS nx, 

and here the right hand side is the Fourier series of a continuous function only if 

nfx n \n) 

(for the (C, 1) means of this series must then be bounded), and this is the same 
as (6). The statement, that in case (6) / is continuous is a direct consequence of 
(7), proved above. 

Let T< t h e n 

m - m =J+i J + 1 1 n ({)cos + 1 i ! D ( I ) 2 sin2» t • 

i6 
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It is easy to see that 

and so 

and hence (8) follows by a standard argument. 
We have completed our proof. 

P r o o f of T h e o r e m 2. We have to consider two cases separately 

Case I: Q is convex. L e t 

2 XkQ{iik\sk(x)-f(x)\) ^ K. 

We have 

Q(jinEJ ^ Q\nn 

2/1 

k=n +1 
n 

Q 
2 Vkfo-f\ 

k=n+l 

Q 

2 n 

( 2 Hk\h~f\\ 
— 

2 
k=n + l 

2 XkQ(fik\sk-f\)n 
k=n +1 ^ A 

_ nX„ ' 
i.e. 

nX„ 

E2n(f) = 0 

and hence, using the inequality (1.16), 

¿ ¿ M (2E2I 

and this is (12). 
Let 
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By Lemma 4, / 0 satisfies (11). Now applying Lemma 1 to f0 we get 

and this proves (13). 

Case II: Q is concave. By Lemma 3 we have 

(2.6) Ein(f) = O (log n [nnin„Q ( - ^ j ) . 

Let mk resp. nk the least and the greatest n (if any), for which 

(171 1 Q ilog n) ^ _L 
. (fc+l)A4 + i " \nXn)-kAk' 

£2 is concave, so there is a c > 0 for which 

logic 1 
k ' kXk kXk 

if k is large enough. From this and (2.7) it follows at once for k^k0 that 

(2-8) mk^k+l, Xmk^Xk + 1, nmk^pk 

(2.9) J S & s f l L L ) , l e ^ ^ o f — i ) . v } mkXmk U A J ' nkXnk {(k+l)Xk+1) 

We shall show that for k ^ k 0 

(2.10) 

First we consider the case nk=mk=n. Using the inequalities 

{(k + l)Xk+1) -"{(k+\)Xk) = k+l"{kxk)' X 

coming from the concavity of Q, we obtain for k ^ k 0 

log n 

1 \fik pk + 1 \(k+l)Xk+1))) 

16* 
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If, however, nk>mk and k ^ k 0 , then 

n=mk V. V ',An ' ) v Amkt*mk " = r"k 

= 0 f ( f e + 0 r* '°g 1 ¿ J ^ 0 f ( f c + l) r l o g l o g > 1 . 1 1 _ 
\ mk nk )) 

I № m J ] nk r U J " l ( f e + i ) A f c + 1 J J J 

Thus we have proved (2.10) for k ^ k 0 . 

Let now m ^ m ^ n , . Using (2.6) and (2.10) we get 

» ( ' 4 ) = 0 , 1 E « O T ) = 0 , 1 - = 

- » ( ¿ ¿ i - i - M W n - i i ^ i ) ) -

_ 0 ( . L ¿ ± s ( • )] = 0 | _ L | _ L n ( ' ) ) , 

(m kti fik K kAk )) (m fik I k/.k )) 

which proves (12). Let 
/ o W = 2 — ® I 2 \ 1 s i n n x -

By Lemma 5, /„ satisfies (11). Applying again Lemma 1 (it is easy to see that it is 
applicable), we obtain 

/ o ( £ ) ^ . ( 0 ) £ i l Z ^ A - i k ) s - S T i ^ + D j L l l ^ ) ^ 

6 n k f i Hk v kXk) 6 n kti Hk \ k/.k) 

and this is (13). — The proof of Theorem 2 is thus completed. 

P r o o f of T h e o r e m 3. We shall consider only the case when r is odd, the 
other case could be treated similarly. 
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If we apply Lemma 6 Mimes, we gett hat (14) implies 

2 ^ - Q { \ s k ( f ( r ) ) - f ( r ) \ ) 
k=0 

and hence, using the assertion (i) of Theorem 1, we get fr°=f(r>£ Lip 1, while 
using Corollary 2 of Theorem 2 we obtain 

c o ( f " ; ö ) = o(öfQ(xl
xlß'~r)dx) 

as it was proposed in (16). 
Let 

fß(x)= ¿ ß ( - i j ) s i sm nx. 

If we run through the proof of Lemma 5 we can see that its proof equally works 
for f f , so fp satisfies (14). Keeping in mind that Q is convex, we have 

and this implies that 

so we can apply Lemma 1 to f j j r \ and this gives 

f n lit 
n 

1+J8-r 

where 

Q(u1+ß~r) 
du, 

y =• 2+ß 

Also 2 + ß 
1 + ß - r 

so we get from (2.11) that 

l / r ^ J - Z r c o ) = C ~ d X> n J xi 
1/n 

which was to be proved. 
Thus we have completed our proof. 
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P r o o f of T h e o r e m 4. Let f(x)~ 2 Ak(x) and 
k = 0 

Using an Abel rearrangement we get from (18) 

= f l ( . < » + 1 > ' 

k — 0 

(M + 1)^ 

Zih-Wk+n^'-k^1). * = 0 
W + l ) 

Q(\s0-f\)+ 2a{k*\Sk-f\) 
k=1 __ A 

s Q 
\s0~f\+2 k"\sk-f\ * = 1 

f l+1 

which implies 

(2.12) 

n + 1 n+1' 

Now Rn(P +1 , / ) is a trigonometric polinomial of order at most n, so (2.12) implies 

(2-13) En{f) = 0 ( ^ ( 7 ) ) -

We shall treat after that the cases (i)—(iii) separately. 

Case (i). By Lemma 2 (iii) from (2.13) it follows that £„ ( / w ) = O [ Q i—] | , 
and this, connecting with inequality (1.16) gives n n ' 

From the concavity of Q it follows that Q ^ - j s Q j (n ̂  k) and so 

and this proves (19). 

Case (ii) According to Lemma 2 (iv), (2.13) implies 
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and so 

from which (20) already follows. 
Let r e.g. even, and 

; nx 

(if r is odd then we must take sin x in place of cos x). /„ satisfies (18): 

k = 0 I n=k + l n vn / 
cos nx 

t = 0 ^ 2 
1 

k=0 (fe+1)2 

fc(r-1}(x) = ( - l)r/2 1 - 4 ( -4 ) sin nx, /1=1 n \n / 
and so using Lemma 1 we get 

/ r " ( i ) - / r » ( 0 ) | S - ^ ¿ ^ " M F ) s 

, ' I S ' ' „ ( ' ) , « 1 
6 n =i k \k) n J x 

and , this proves that (20) is best possible in general. 
1 Lemma 2 (i) and the above proofs show that all of the above statements are 

true for the conjugate function, too. 

Case (iii). We shall consider the case when r is even. Let 

f=Rn{r+\,f)+gn(f). 
With this notation 

(2.14) 

Rn(r+l,f)-f = (Rn(r+\,R„(r+l,f))-R„(r+l,/)) + (Rn(r +1 , g„( / ) ) -g„( / ) ) • 

By (2.12) g „ ( / ) = 0 ^ ¿2 ̂ j j , and this implies by Lemma 7 that 

and so from (2.14) it.follows that 

(2.15) ' (r +1 , (r + 1, / ) ) - 1, / ) = O [-¿r i2 ( i - ) j . 

Let 

K . 0 - + 1 , / ) ~ 
k = 0 

\ 
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Then 

*.(»•+1, R„(r+l,f))-R„(r+l,f) = J fl ) AW - 2 M x ) = 
k=o ( +1/ J »=o 

1 n C _ i y / 2 + l 

= - o J + I y T T J ? = 1. / ) ) ( ' + 1 ) -

This equality together with (2.15) gives 

from which 

(2.16) ?<r+1>(r+1, / ) = T<'+1>(r+ 1, / ) = < ( r + l , / ( '> ) = O [«fl ( - i ) j 

follows at once (T„ (r, f ) was defined in Lemma 8). 
(2.13) implies by Lemma 2 (i) and (v) and by Lemma 8 that 

(2.17) | T n ( r + i , /C '> )_ /C> | 
vo x ' 

Now we get (22) from (2.16) and (2.17) as we got (7) in Theorem 1 from (2.4) 
and (2.5). 

Before proving (23) we show that / ( r ) is the sum of its Fourier series. Because 
of the continuity of / ( r ) it is enough to prove that its Fourier series everywhere 
convergent. With the usual notations 

/">(*) ~ ( - l ) " 2 2kTAk(x), 
k = 0 

(2.18) J kTAk(x) = 2 (kr~(k+ l ) r ) s k ( x ) - m ' s m ^ ( x ) + n'sn(x) = 
k=m k—m 

= o["2 fe'-1 \sk(x)-f(x)| + m ' | s m _ ! ( x ) - f ( x ) \ + nr|s„(x)~f(x)\). 
Nfc = m / 

Lemma 9 shows by (18) that 

n — 1 . 
2 |s*(*)—f(x)l — 0 as n, m— 

k = m 

moreover i2 (w r | jn(;t)-/(*))—0 (« — and this implies nr|5„(x)—/(x)|—0 as 
OO 

n — T h u s (2.18) gives the convergence of 2^rAk(x), and so 
k = 0 

/<'>(*) = (-l)'/2 2krAk(x). 
k = 0 
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On this account the following transformations are legitimate, and (2.12), as 
well as Lemma 9 give 

( - 1 ) r / 2 M / ( r > ) - / ( r ) ) = 2 f l - 4 A k ' A k ~ Z VAk = (n + \ y (R n ( r+ 1, / ) - / ) -*=0 V n + l j Ic = 0 

- 2 (k'-(n+iy)Ak=(n + iy(Rn(r+l, / ) - / ) + 2 (sk-1-f)(k'-(k-iy) = 
t = n + l fc = fl + 2 

= o [ ( n + i y ± n { ^ ) + J j ^ - m - i y - i ) = o[n(±)+n* (1)) = 

= from which £„( / ( r ) ) = 0 (¿2* ^ j j follows at once. Now we can 

apply Lemma 10, and we get (23). 
To prove (24) let 

By Lemma 4, fr satisfies (18). Now 

/ « ( * ) = ( - i r 2 + 1 ¿ ¿ ß ( I ) cos nx 

and in the proof of Theorem 1 we have already seen that for this function (24) is true. 
The proof of Theorem 4 is thus completed. 

P r o o f of R e m a r k . Let r be, for example, an odd number. 
We separate the proof into two cases. 

1. 5 f co(S)). In this case by the aid of the above defined 
i x 

function 

the proof can be easily carried out. 

1 Q(x) 
2. If 5 f — ^ d x = 0 ( o j ( 5 ) ) , then there is a sequence of natural numbers 

s x 

{«„}, for whicl. 
( 71 ^ 1 7T 1 
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Let n be a fixed natural number, and EO^C^. . . ; ^ Let cm = Q l - ^ - \ 
if 2kn^m^2k+1n, and 4 - 0 K 

r - 1 = 1 
/(*) = fM,„(x) = ( - 1 ) 2 2 5 ^ 7 + T Cm COS mx. 

m=n 

With the aid of (21) we get that / ( r ) exists, and less than a bound independent 
from and n. We show that / satisfies (18). 

(2.20, J ^ h M - Z M I ) 

+ 2 F * ) s i l * Q № ) ) + 

Now 

/ ( r ) ( 0 ) - / « i ^ ] = ¿ - i C m c o s m ^ , 
\2n) m=n m m=„ m 2n 

and from the monotonicity of {cm} it follows that 

and so 

Consequently, by a suitable choice of {et} one can attain that the above defined 
function /{£|<), „(*)=/«(*) satisfies 

(2-2» 

for in the definition of Q* we could have supposed that {e*} is monotone. 
Let now 

/(*) = 2 i/»_(*)• m = 1 z 

y. — cos m ^ 0, 
„=„ m 2)1 

2 J Q (2* n ) mS*n m ~ 4 M Q { A ) ' 
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This function / satisfies (18); indeed, using the convexity of Q, we get from 
(2.20) 

ZQ(k'\sk(J; x)-f(x)\) S zqU' S - i h i f n j *)- /„m (*) l ) ^ 
= 0 k = 0 V m = l > 

Z ^ ( k r \ s k ( f „ m ; x ) - f n J x ) \ ) = 
fc = 0 m = 1 

= ¿ 4 r 2^(kr\sk<J„m; * ) - / „ » | ) = 1. 
m = l z fc=0 m=l Z. 

From the remark made after the definition of the functions /{£ },„(*), it follows 
that f(r) exists; and using (2.19), (2.21) we obtain 

so 
a>(/(r); 8) ^ 0(cd(8)), 

which proves our Remark. 
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Nilpotent torsion-free rings and triangles of types 
M. C. WEBB 

1. Introduction. This note modifies an idea of VINSONHALER and WICKLESS [7 ] 

concerning associative rings having torsion-free additive group. In [7] the necessary 
and sufficient conditions for a group to support only trivial rings given by REE and 
WISNER [4] are generalised in such a way that certain groups supporting only nil-
potent rings are characterised. In fact more precise information can be obtained 
giving a bound on the nilstufe of a group. The nilstufe, a notion due to SZELE [6], 
n(X), of a group X is the largest integer n such that there is an associative ring on 
X with a non-zero product of n elements. If no such largest integer exists then 
n(X) = o°. Several authors [1], [3], [5], [8], [9] have obtained bounds for the nilstufe 
of. a group in certain circumstances. The bound obtained here applies in quite 
general circumstances. In this note the basic tool of [7] is modified and then used 
to prove results based on two of the main theorems from [7], in one case giving 
a considerable generalisation. 

From now on all groups are torsion-free abelian groups and all undefined 
concepts are standard from FUCHS [2]. In particular the product of a pair of types 
t l s t 2 is written txt2 not t j+ to as in [7], and T(X) = {t(x): x£X} is the type-set 
of the group X. 

2. The results. The following is a modification of a definition of [7]. 

D e f i n i t i o n . A collection of types {t;j.: l^j^n — i+1 , l^i^n} is a triangle 
of base size n if for any three integers i,j,k satisfying 1 sk^n — i—y'+l, 
l ^ j ^ n — i + l , I S / ^ K , 

t.-.jtfc, (;+_••) = ta+k),]-

This is strongly related to the definition in [7] but, as will become apparent 
below, it is easy to handle. For example, the following based on Theorem 2.1 of 
[7] has a quite straightforward proof. 

Received July 27, 1977, in revised form April 17, 1978. 



254 M. C. Webb 

T h e o r e m 1. For any torsion-free group X and any associative ring (X, o), 
a non-zero product of n elements in the ring defines a triangle of base size n from the 
type-set of X. 

P r o o f . Suppose that for the elements x l 5 . . . , x„ from X the product x ,o . . .ox n 

is non-zero. Then denoting by (x)* the pure subgroup generated by an element 
x of X, the following pure rank 1 subgroups of X are defined: for each pair of in-
tegers /, j satisfying 1 1, l ^ i ' s / j , 

Xi.j = (XjO...OXj + ;_!>*. 

As a consequence, for the integers i,j,k satisfying 1 s f c s / i — i— j+1, 1 =/= 
s n - i + 1 , 1 g / S B , 

t (X ( i + k h j ) = t (Xj0. . .0Xj+ i + t_ 1 ) ^ t (x 7 o. . .ox y + i _ 1 ) t (x y + i o. . .ox J + i + t _ 1 ) . 

However, 
t^.jOtC^^j+j-)) = t(xjO ...oxj+i^1)t(xJ+io...oXj+i+k-1) 

implying H X ^ j ^ t i X f J U X w + J . So if tu=t(XtJ for l s / s n - i + l , 
1 ^ / S / i the set of types so defined form a triangle of base size n. 

Recalling the definition of nilstufe there is the following corollary. 

C o r o l l a r y . For any torsion-free group X, its nilstufe n(X) is bounded by the 
maximum base size of triangles that can be formed from T(X). 

Note that in the Corollary there are no restraints on the group X. Other 
authors [1], [5], [8] have obtained bounds for n(X) but for groups whose type-sets 
satisfy some form of chain condition. In most cases the Corollary gives a better 
bound on the nilstufe and an illustrative example is given following Theorem 2. 
A second important result of [7] that can now be more easily proved is 

T h e o r e m 2. If for X= © Xt where each X( has rank 1 a triangle of base size 

n can be formed from the set {t(Ar,): /£ /} without using the same summand twice, 
then n(X)^n. 

P r o o f . Suppose that the triangle is { t j ; : — l s / s n } where the 
titJ are types of distinct summands Xr Then, 

where l^k^n—j—i+l, l^j^n—i+1, l ^ / s w . The characteristic of an element 
x in A" is denoted by / (x ) and so the above inequalities imply that elements xt j 
from the corresponding rank one summands can be found such that 

x(x(i+khJ) S y.(Xi,j)x(Xk,(i+J))-

i 
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If Y is the direct sum of the summands of X used in defining the types then 
a ring (Y, *) can be defined using the following products. For integers i, j, k 
satisfying l ^ k ^ t i - l + l , l ^ j ^ n — i + l , l S i ' ^ / i , 1 ^ M n . 

_ i*(i 
X,,j*Xkii 1 Q 

(i+k),j if I = i+j 
if not. 

These products and the distributive law define a ring which can be shown to be 
associative. 

Take three subscripts (kr, k2), (/x, l2), (m1, m2); then 

ki,ki*xh,lt — { 
and 

Also, 

and 

0 if l2 jt kx + k2 
xki,kt*xh.it ~i r if I - k 4-k x(ki + li),kt

 11 F2 — "IT*! 

fO if m t ^ k x + l i+kx 
i + h),k2*Xmi,mi = | ̂ (tj + lj + n 

_ fO it .... . _ 
Xh,h*Xm1 ,m2 ~ 1 v if m — 1 4-1 

l-x(li + mi),l2
 11 m2 — ' l T » 2 

l(fci + /i),*2~ -̂ mi.ms | v :f m _ b ,1 i L-
*(tl + ll + mi).*2 11 m2 — K-y-t li+K^. 

if m2 h + l2 

r 0 if l2 ^ fej + k2 
• X * i , * 2 * X ( l i + mi ) , / 2

 = | : f / _ j l , 1L JC(*i + /i + mi),t2 11 - Kitlt2-

So that the products ( x ^ * * , ^ ) * * ^ , ^ , are non-zero if 
and only if 12=kx + k2 and m2—Ii+12 in which case they both equal x(k1+il+ml),ki" 
Furthermore, x

lti*x
iti* •••*xltB=xtt3l is non-zero. 

To define an associative ring on X merely take the ring direct sum of (Y, *) 
and the trivial ring on the complement of Y in X and so n(X)^n. 

Finally an example is given to illustrate that the bounds obtained using 
Theorem 1 can be lower than those obtained using other available results. 

Example . Begin by partitioning the set of all primes into two disjoint infinite 
subsets and P2 where P2— {Pi,Pi,Ps, ...}. Then define the following subgroups 
of the rationals. 

A, = A2 = gp\j:peP1{JP2}, B=gp{-±r,-±r:pZP1, Z+, qiP^, 

and for each integer i s l , 

« 
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For each positive integer m let 

Xm = © - • • © . 

Then T(jSrm) = {t(^1), t(fl), t (Q) , . . . , t ( C J } contains a chain of length m + 1 , 
but no chain of greater length. 

A type tx in T(X) absorbs a type t2 in T(X) if M ^ t j . It is clear that t(XJ 
contains no absorbing types so that Proposition 1.2 of [5] implies n(Xm)^m + l. 
However, a triangle of base length two can be formed from T(Xm), namely t21 = 
=t(f l) , tu=t(Ai) i = l, 2. So, by Theorem 2, n(Xm)s2. The following lemma 
will show that no larger triangles can be formed. 

L e m m a . If X is a group such that T(X) contains no absorbing types the apex 
of a triangle of base size n formed from T(X) has a chain of length n descending 
from it in T(X). 

P r o o f . The proof is by induction on n, the result being trivial for n = 1. 
Suppose n > l . Let t ^ be the apex of a triangle of base size k, then the apex 

of any triangle of base size (n — 1) from T(X) has a chain of length («—1) descend-
ing from it in T(X). If the triangle is {t(- .: — l^i^n} then 

tn,l — t(n-l),iti in. 

Now .t(n_1} j is the apex of a triangle of base size (n — 1) from T(X) so is the maximal 
type of a chain of length (« — 1) in T(X). Suppose t„;i = t(„_1)1 then t ( n_1 ) 1t l f] = 
- t o i - i M a n d i i s a n absorbing type in T{X). Thus ^ and so has 
a chain of length n descending from it in T(X). 

Returning to the example it should be noted that t(B) has only chains of at 
most length 2 descending from it in T(X„). Furthermore by considering the 
summands of Xm it is clear that in any ring on Xm, X2QB since PlC\Pi is empty. 
Since any product of more than two elements in any ring on X is in B, t(B) is 
the apex of all triangles formed by applying Theorem 1. Hence n (Xm) ^ 2 which 
with the earlier work gives n(Xm)=2 for all m^l. 

In conclusion it is noted that this technique fails to work for non-associative 
rings as the bracketing of a product may be quite arbitrary. Essential to the above 
is that for a product in an associative ring t((ab)c)=t(a(bc)). 
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Hyperinvariant subspaces of weak contractions 

PEI Y U A N W U 

Introduction 

The aim of this paper is to study Hyperlat T, the hyperinvariant subspace 
lattice, of a completely non-unitary (c.n.u.) weak contraction T with finite defect 
indices. The work here is a continuation of the investigations of Hyperlat T which 
we made in [14] and [15]. There we only considered c.n.u. C'u contractions with 
finite defect indices. Now we shall generalize the results of [14] and [15]. Among 
other things, we shall show that for the contractions considered, (i) if is quasi-
similar to T2, then Hyperlat T1 is (lattice) isomorphic to Hyperlat T2 (Corollary 3.4) 
and (ii) Hyperlat T is (lattice) generated by subspaces of the forms ran S and ker V 
where S, V are operators in {7"}", the double commutant of T (Theorem 3.8). We 
also give necessary and sufficient conditions, in terms of the characteristic function 
and the Jordan model of T, that Lat T, the invariant subspace lattice of T, be 
equal to Hyperlat T. 

Preliminaries and results 

We follow the notations and terminologies used in [14] and [15]. Only the 
concepts concerning weak contractions will be reviewed here. 

A contraction T is called a weak contraction if (i) its spectrum a(T) does not 
fill the open unit disc, and (ii) I— T* T is of finite trace. Examples of weak con-
tractions are C0(N) contractions and c.n.u. C u contractions with finite defect 
indices. The characteristic function 0T of every weak contraction T admits a scalar 
multiple, that is, there exist a contractive analytic function Q and a scalar valued 
analytic function ô^O such that Q0T = 0TQ=â. For a c.n.u. weak contraction 
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T on H we can consider its C0 — Cn decomposition. Let H0, HlQH be the in-
variant subspaces for J such that T0=T\H0 and T1 = T\H1 are the C0 and C n 

parts of T, respectively. Indeed, T0 and 7\ are equal to those appearing in the 
triangulations 

on H=H0®Hand H— H1 © H ^ corresponding to the »-canonical factoriza-
tion &T = &*e@*i a r | d the canonical factorization 0T = 0i0e, respectively. H0 

and H, are even hyperinvariant for T and satisfy H0WH1 = H and H0C\Hl = {0}. 
For the details the readers are referred to [4], Chap. VIII. 

* * 

It was shown in [4], p. 334 that / / 0 = ker m(T) and //x = ran m(T), where in 
is the minimal function of T0. Note that m(T)£{T}". Now we have the following 
supplementary result. 

T h e o r e m 1. If T is a c.n.u. weak contraction on H and H0, H1 are subspaces 
of H such that T0=T\H0 and T1 = T\H1 are the CQ and C^ parts of T, respectively, 
then there exists an operator S in {T}" such that H0 = ran S and H1 = ker S. 

P r o o f . We consider T being defined on H=[Hl@ALl}Q{0Tw®Aw:w£Hl) 
by T(J®g) = P(e"f©e"g) for f(Bg£H, where 0T is the characteristic function 
of T, A(t)=(lT>—0T(t)*0r(0)1/2 and P denotes the (orthogonal) projection onto 
H. Since 0T admits a scalar multiple, the same is true for its outer factor 0e and 
inner factor 0 , (cf. [4], p. 217). Let <53^0 and be their respective scalar 
multiples, and let Ql and Q2 be contractive analytic functions such that Q10e = 
= 0eQ1=S1IT) and Q20i = 0iQ2 = 52IT>. We may assume that <5X is outer and 
d2 is inner (cf. [4], p. 217). Let <5 = <5l(52 and Q = Q1Q2. Then Q0T = 0TQ = 6IT). 

Q , 

5 AQ 0 ' P r o v e ^ i = k e r S ar>d H0 = ran S 
in the following steps. In each step the first statement is proved. 

(1) S e f r } " . Let be an operator in {T}', where A is a bounded 

analytic function while B and C are bounded measurable functions satisfying the 
conditions A0T = 0TAo and B0T+CA=AA0 a.e., where A0 is another bounded 
analytic function (cf. [5]). An easy calculation shows that 

SV= P 
[ M 01 = f AS, 01 
lS2AQA OJ A N {Bd^C^AQ 0 J 
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We have S2AQAd = S2AQA0TQ = 52AQ0TAOQ = 52AdA0Q = SltdA0Q = 
=S](B0T+CA)Q = B51S + CS2AQS=(BS1 + CS2AQ)S. Since <5^0, we conclude 
that S2AQA=B51 + C52AQ. Hence SV=VS and we have Se{T}". 

(2) / / j ^ k e r 5. It was shown in [6] that Hx={f®gZH\ / € 0 , / / ^ } . For 
OiU^gtH^ S(0iu@g) = P{bi0iu®Z2AQ0iu)=P{0i0eQ1u®B2AQiQ20iu) = 
=P,{0Q1u@AQ1u)=Q, which shows that / / ^ k e r 5. 

(3) ker SQHt. For / © ¿ r ^ k e r S , S(f®g)=P(S1f®S2AQf)=(61f-0Tw)® 

@(52AQf-Aw)=Q for some w£H*. Hence 51f=0Tw. Note that -^-0ew=0jf 
1 1 

is an element of However — 0ew is also analytic in the open unit disc, and 
1 1 

therefore belongs to We conclude that / = 0 , w ' , where w' =-— 0ew£Hl. 
i 

This shows that / © g € # i , and hence ker SQH1. 
(2) and (3) imply that / T a k e r s ' . Next we prove that H0=SH. 
(4) SHQH0. It was shown in [6] that H„-= {f®g£H: QTg = AJ), where 

J* = <Jz-&T&i)V 2- For any f@geB, S(f®g) = (S1f-0Tw)®(52AQf-Aw) for 
some Note that (Iz-0$0T)Q = Q-0$d = Q(IJ)-0T0*), whence AQ = 
= QA^. Similarly, 0TA=A^0T. Thus 0T(52AQf-Aw)=52A^0rQf-A^0Tw= 
= l2AJfdf—A^0Tw = A^(31f—0Tw), which shows that S(f®g)£H0, and 
hence SHQH0. 

(5) S\ H(i=S1(Tn). Since H0 is the invariant subspace corresponding to 0,= 
= ®*e0*i a n d i s ¡ n n e r from both sides, H0= {0.Jfeu®Z-1(A2u): U£HQq 
© {0 th>© Aw: w£H%), where A2={I^ — 0 ife* 0*e)1/2 and Z is the unitary operator 
from i Z | onto A J l such that Z(Av)=A20^v for v£L% (cf. [4], p. 288). For any 
0^eu®Z-1 (A2u)eH0, we have S(0^u®Z-1(A2u))=^(d10ifeu-0Tw)® 
©(3 2 J i20 + e w —Aw) for some w^H^. Since 0 r , along with 0 ^ and 0 t i , admits 
a scalar multiple, 0T(O~1 — @*i(i)~1@*e(i)~1 exists for almost all t. Therefore, 
O = ^ 0 - 1 = 5 0 - . 1 0 - 1 a.e. We have Z(52AQ0^u) = A^Q ^QQ „u^ 
= A 2 0 ^ i d 2 d 0 - > 0 - j © J f e u = 5 1 A 2 u , and it follows that S ( 0 ^ e u e Z - 1 ( A 2 u ) ) = 
= (S10;t:eu-0Tw)®(S1Z-1(A2u)-Aw). This shows that S\H0 = d1(T0). 

(6) SH=H0. Since <5j is outer, ¿ j (T 0 ) is a quasi-affinity-(cf. f4], p. 118). Hence 
d ^ f J J T ( t = H„. By (4) and (5), this implies that SH=H«. 

The next lemma is needed in the proof of Theorem 3.3. 

L e m m a 2. Let T be a c.n.u. weak contraction on H and let H0, Hl be subspaces 
of H such that T0 = T\H0 and T1 = T\H1 are the C0 and C n parts ofT, respectively. 
If H'0, H'0QH are invariants subspaces for T such that H'0\/H[ = H and T\H'0£C0, 
T\H'X£CU, then H0 = H'0 and H^H'^. 
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P r o o f . The maximality property of H0 and H, implies that H'0QH0 and 
H'1QH1 (cf. [4], p. 331). Now we show that H0QH'0. Since HQ=ran 5 where 
S is the operator defined in Theorem 1, for any h£H0 and £ > 0 there exists 
some k in H such that ||/i — <e. The hypothesis H=H'0\JH[ implies that 

— < e holds for some k0£H'0 and k^H[. Hence \\Sk-Sk0-Sk^ = 
= || SA: — Sk0\\ < | | S|| e, and it follows that | |/*-SA:0 | |<(l + ||S||)e. Since Sk0 = 
=51(T0)k0=51(T)k0£H'0 and E is arbitrary, we conclude that h£H'0 and hence 
H'0=H0. H'1 = H1 can be proved in a similar fashion by noting that = ran m(T) 
and Hu = ket m{T), where m denotes the minimal function of T0. 

Now we have the following main theorem. 

T h e o r e m 3. Let T be a c.n.u. weak contraction on H and let H0, H1 be sub-
spaces of H such that T0=T\H0 and T1 = T\H1 are the C0 and Cu parts of T, re-
spectively. Then the following lattices are isomorphic: 

Hyperlat T, Hyperlat T0 © Hyperlat Ty, and Hyperlat (T^TJ. 

P r o o f . Since T0 and T, are of class C00 and of class Cn, respectively, Hyperlat 
TQ © Hyperlat T1 ^ Hyperlat (T 0 © T t) follows from Prop. 3 and Lemma 4 of [2]. 

Next we show that a subspace KQH is hyperinvariant for T if and only if 
K = K0\/K1 where K0^H0 and are hyperinvariant for T0 and 7",, re-
spectively. To prove one direction, let KQH be hyperinvariant for T arid let 
K0=Kr\H0, K1=K(~)H1. Note that o(T\K)Qo(T) [1] and hence T\K is also 
a weak contraction. Thus K0 and Kr are subspaces of K on which the C0 and C u 

parts of T\K act (cf. [4], p. 332). We have K=K()\JKx. Now we show the hyper-
invariance of K0 and K1. Note that H0 = SH, where S is the operator defined 
in Theorem 1. For any Sdd {7"0}', consider the operator S0S on H. It is easily 
seen that S0S€{T}'. Since K0=KC\H0 is hyperinvariant for T, S0SK0QK0. 
As proved in Theorem 1, 5 1 ! = ( T 0 ) for some outer function Thus SK0= 
= d1(T\K ( i)KQ=K ( i. It follows that SqK^Kq and hence K0 is hyperinvariant 
for T0. That Kx is hyperinvariant for Tx can be proved similarly by noting that 
Hl=m(T)H where m is the minimal function of T0 and m(T'IA'j), being an analytic 
function of a c.n.u. Cn contraction, is a quasi-affinity (cf. [4], p. 123). 

To prove the converse, let S£{T}' and S0=S\HQ, S1 = S\H1. It is obvious 
that S 0€{J 0}' and S j C W . If and are hyperinvariant for 
T0 and Tx, respectively, then S0K0QK0 and S,K^K,. Hence S(K0V/ST^g 
^KQVK ! , which shows that KnWK1 is hyperinvariant for T and proves our 
assertion. 

That K0 and K1 are uniquely determined by K follows from Lemma 2, and 
it is easily seen that Hyperlat T ^ Hyperlat T0© Hyperlat 7 \ . 
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In [11] a specific description of the elements in Hyperlat T for a special class 
of c.n.u. weak contractions is given. 

C o r o l l a r y 4. Let 7\ , T? be c.n.u. weak contractions with finite defect indices. 
If 7\ is quasi-similar to T2, then Hyperlat Tx is isomorphic to Hyperlat T2. 

Proof . Let T10, T20 be the C0 parts of T1, T2 and T21 be their C n parts, 
respectively. If 7\ is quasi-similar to T2, then T10, Tn are quasi-similar to T20, T21, 
respectively (cf. [10]). Since 7 \ , T2 have finite defect indices, T19, T20 are of class 
C0(N) and the defect indices of Tu, T21 are also finite. Thus Hyperlat T10^ Hyperlat 
T20 and Hyperlat TlY ss Hyperlat Ta (cf. [7] and [14], resp.). Now Hyperlat Tl ^ 
ss Hyperlat T2 follows from Theorem 3. 

Recall that a c.n.u. weak contraction T is multiplicity-free if T admits a cyclic 
vector and that T is multiplicity-free if and only if its C0 part and C n part 
are (cf. [12]). 

C o r o l l a r y 5. Let T be a c.n.u. multiplicity-free weak contraction on H with 
defect indices «<+<». Let KQH be an invariant subspace for T with the corre-
sponding regular factorization 0T = 0201. Then the following are equivalent to 
each other: 

(1) K£ Hyperlat T; 
(2) the intermediate space of 0T=020i is of dimension n. 

Proof . (1)=>(2). If Hyperlat T, then, as proved before, T\K is a weak 
contraction. Hence its characteristic function admits a scalar multiple, which implies 
that the intermediate space of 0T~0201 is of dimension n. 

(2)=>(1). The hypothesis implies that T\K has equal defect indices. It is easily 
seen that a c.n.u. contraction 5 with finite equal defect indices is a weak contrac-
tion if and only if det 0 S ^ O . Since det 0 T ^ O implies that det 0 ^ 0 , it follows 
that T\K is a weak contraction. Let K0, K1 be subspaces of K on which the Co 
and C u parts of T\K act. We have K=K0\JK1. It follows from the proof of 
Theorem 3 that we have only to show that K0 and K1 are hyperinvariant for 
T0=T\H0 and T1 = T\H1, the C0 and C n parts of T, respectively. Since K0^H0 

is invariant for the multiplicity-free C0(N) contraction T0, it is hyperinvariant for 
it (cf. [8], Corollary 4.4). On the other hand, 7\ is a multiplicity-free C n contrac-
tion on H1 with finite defect indices and Kx ^ H1 is such that T-^K^C^. It 
follows easily from Theorem 1 of [14] that K, is hyperinvariant for 7\ , completing 
the proof. 

The next corollary gives neces sary and sufficient conditions that Lat T be 
equal to Hyperlat T for the operators we considered. 
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C o r o l l a r y 6. Let T be a c.n.u. weak contraction on H with defect indices 
+ oo. Let T0=T\H0 and Tl = T\Hi be its C0 and Cn parts, respectively, and 

let 0e be the outer factor of the characteristic function 0T of T. Then the following 
conditions are equivalent: 

(1) Lat r = Hyperlat T; 
(2) Lat 7"0 = Hyperlat Tn and Lat Tj = Hyperlat Tx; 
(3) T0 and Tx are multiplicity-free and 0e(t) is isometric on a set of positive 

Lebesgue measure; 
(4) T is multiplicity-free and 0T{t) is isometric on a set of positive Lebesgue 

measure. 

P r o o f . (1)=>(2). We only show that Lat r 0 = Hyperlat T0\ Lat 7\ = Hyperlat 
Tx can be proved similarly. To this end, let K0QH0 be an invariant subspace for 
T0. It is obvious that K0 £ Lat T= Hyperlat T. Let S be the operator defined in 
Theorem 1. Then H0=SH and S | //0=51(7"0) for some outer function <5L. 
For any 50€{T0}', S0S is an operator in {T}'. Hence S0SK0=S051(T\K0)K0 = 
= S0K0^K0, which shows that K0£Hyperlat T0 and proves our assertion. 

(2)=>(3). This follows from Corollary 4.4 of [8] and Theorem 4.3 of [15]. 
(3)=>(4). This follows from the remark before Corollary 5 and the fact that 

0T(t) is isometric if and only if 0 e ( / ) is. 
(4)=>(1). Let K£ Lat T with the corresponding regular factorization 0T = 020X. 

In light of Corollary 5 it suffices to show that the intermediate space of 0T = 
= 020x is of dimension n. Note that rank A ( O ^ r a n k J 1 ( / ) + r a n k A2{t) a.e., 
where AU)=(l-0T(t)*0T(t))V2 and A}(t)={l-0¡{t)*0}{t))w, 7 = 1 , 2 . The 
hypothesis implies that z l ( f )=0 on a set of positive Lebesgue measure, say a. 
It follows that Ax(t) = J 2 ( i ) = 0 on a, and hence 0X(/) and 02(t) are isometric 
for t in a. Therefore, the intermediate space of 0T=020X is of dimension n, 
as asserted. 

We remark that the preceding corollary generalizes part of the main result in [9]. 

C o r o l l a r y 7. Let T be a c.n.u. multiplicity-free weak contraction with finite 
defect indices. If K2£ Hyperlat T and T\KX is quasi-similar to T\K2, 
then KX=K2. 

P r o o f . Since Kx, K2 £ Hyperlat T, T\KX, T\K2 are weak contractions. Con-
sidering the C0 and C u parts of T\ Kx and T\K2 and using the corresponding results 
for multiplicity-free C0(N) contractions and C n contractions, we can deduce that 
KX = K2 (cf. [3], Theorem 2 and [14], Corollary 3). We leave the details to the 
interested readers. 

The next theorem, being another application of Theorem 3, is interesting 
in itself. 
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T h e o r e m 8. Let T be a c.n.u. weak contraction on H with finite defect indices. 
Then Hyperlat T is (lattice) generated by subspaces of the forms ran S and ker V, 
where S, V£ {T}". 

P r o o f . Let T0=T\H0 and T1 = T\H1 be the C0 and C n parts of T, respect-
ively, and let Hyperlat T. Since T\K is a c.n.u. weak contraction, we may 
consider its C0 part T\K0 and Cn part T\Kt. By Theorem 1, H0=SH for some 
S£ {T}". Since K0QH0 is hyperinvariant for the Cn(N) contraction T0 

(by Theorem 3), it follows from [13] that K0=\J [ker 4/i(T0)r)£i(T0)Hl)] = 
n ' = 1 

= V [ker \ l / i (T 0)C\^i(T)SH], where i]/n are inner functions, i=\,...,n. On ¡=1 
the other hand, since K^H, is hyperinvariant for Tx (by Theorem 3 again), 
Theorem 3.6 of [15] implies that K1=VH1 for some V£ {Tx}". Hence Kx= Vm(T)H, n 
where m denotes the minimal function of T0. We claim that K= \/ [ker 1^,(7")D 

;=i 
r)Zi(T)SH]VVm(T)H. Indeed, this follows from K=K0\JK1 and the fact that 
ker (T0) = ker (T) for any \j/£.H°°. Since it is easily seen that i¡/¡{T), 
ii(T)S£{T}" for all i and Vm(T)£{T}", the proof is complete. 

C o r o l l a r y 9. Let T be a c.n.u. multiplicity-free weak contraction on H with 
finite defect indices and let K be a subspace of H. Then the following are equivalent: 

(1) Hyperlat T; 
(2) K=ran S for some SfE {T}"; 
(3) A:=ker V for some V£ {T}". 

P r o o f . The equivalence of (2) and (3) is easily established by considering 
T* and Kx. (2)=>(1) is trivial. 

(1)=>(2) is proved by following the same line of arguments in the proof of 
Theorem 8 and noting that any hyperinvariant subspace for a multiplicity-free 
C0(N) contraction T is of the form ran £(T) for some inner function 
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Arthur L. Besse, Manifolds all of whose geodesies are closed (Ergebnisse der Mathematik und 
ihrer Grenzgebiete, 93), I X + 2 6 2 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1978. 

It had been a long-standing open problem, originating from W. Blaschke, whether an oriented 
"Wiedersehensfläche" is necessarily isometric to a sphere. (ARiemannian 2-manifold M i s a "Wieder-
sehensfläche" if for every x£M there exists a y<~M such that each geodesic starting from x passes 
through y. The question was solved affirmatively by L. Green in 1963, but many interesting prob-
lems, closely related to the previous one, were left open. The aim of this book is to give a detailed 
introduction and a comprehensive survey of the results and open questions in this topic. 

In the first two chapters the author gives a short introduction to Riemannian geometry, geodesic 
flows and manifolds of geodesies. Chapter 3 presents a complete treatment of the geometric proper-
ties of compact symmetric Riemannian spaces of rank one, which are the basic examples of manifolds 
all of whose geodesies are closed. Chapter 4 deals with the geometry of Zoll and Tannery surfaces, 
which are further examples of such maifolds. Chapter 5 is devoted to the proof of Blaschke's "Wie-
dersehensfläche" conjecture and related questions. In Chapter 6 the geometry of geodesies in a 
harmonic manifold is studied. In Chapters 7—8 several results concerning topological invariants and 
the spectrum of the Laplace operator on a maifold all of whose geodesies are closed, are proved. The 
book closes with 5 Appendices written by D. V. A. Epstein, J. B. Bourguignon, L. B. Bergery, M. 
Berger, and J. L. Kazdan. 

The book is well organized. It contains a detailed description of various Riemannian manifolds 
which are very close to the standard non-euclidean spaces from the geometric view-point and which 
have not been considered in earlier monographs. The book is highly recommended to anyone 
interested in the geometry of Riemannian manifolds. 

P. T. Nagy (Szeged) 

Eugen Blum—Werner Oettli, Mathematische Optimierung. Grundlagen und Verfahren (Öko-
nometrie und Unternehmensforschung, Bd. 20), X I V + 413 Seiten, Berlin—Heidelberg—New York, 
Springer-Verlag, 1975. 

Der Band gibt einen sehr guten Überblick über dieses in dem letzten Jahrzehnt sich rapid ent-
wickelnde Wissensgebiet. Einen bedeutenden Teil seines Umfangs nimmt die Beschreibung der 
Methoden und Verfahren der nichtlinearen Optimierung ein, wenn auch das zweite Kapitel die Zusam-
menfassung der grundlegenden Ergebnisse der linearen Programmierung enthält. Die Verfahren der 
nichtlinearen Programmierung, die auf gleichem Grundprinzip liegen, bilden je eine Verfahren-Fami-
lie. Jedes Kapitel des Buches stellt, nach der Mitteilung der diesbezüglichen theoretischen Kenntnisse, 
je eine Familie durch ein oder zwei konkrete Verfahren vor. 

Die behandelten Verfahrenstypen (gleichzeitig Kapitelaufschriften) sind wie folgt: 5. Optimie-
rung ohne Restriktionen; 6. Projektions- und Kontraktionsverfahren; 7. Einzelschrittverfahren; 8. 
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Schnittverfahren; 9. Dekompositionsverfahren; 10. Strafkostverfahren; 11. Verfahren der zulässigen 
Richtungen; 12. Das Verfahren der projizierten Gradienten. 

Die Verfasser hatten besonderen Wert auf die theoretische Begründung der behandelten Ver-
fahren gelegt und darauf, dass die Verfahren, die im Buch vorkommen, auch für Computers gut ver-
wendbar sind. — Es gibt zwei Kapitel die ausschliesslich der theoretischen Begründung dienen: das 
eine Kapitel beschäftigt sich mit den Optimalitätsbedingungen, das andere mit der Dualitätstheorie. 

Diese Monographie, die sowohl umfassende theoretische Kenntnisse als auch praktische Verfah-
ren darbietet, kann jenen zum Studieren empfohlen werden, die sich im Themenkreis mathematische 
Optimierung weitläufige Kenntnisse erwerben möchten. Dem Textteil ist eine umfangreiche Bibliog-
raphie der nichtlinearen Optimierung beigefügt, die für die Spezialisten die weitere Orientierung 
ermöglicht. 

L. Megyesi (Szeged) 

J. C. Burkiii, A First Course in Mathematical Analysis, V i + 1 8 6 pages, Cambridge University 
Press, Cambridge—London—New York—Melbourne, 1978. 

This is the first paperback edition of this textbook. The previous editions were published in 1962 
(first edition), and in 1964,1967,1970,1974 (reprints). The exposition is very clear and straightforward, 
the symbolism is very simple. The chapter on functions of several variables is quite short, it does not 
include the integration of such functions. There are many valuable exercises. The book can be re-
commended to undergraduate students of mathematics or to anyone who knows high school mathe-
matics and wishes to start studying mathematical analysis. 

József Szűcs (Szeged) 

J. S. R. Chisholm, Vectors in three-dimensional space, X I I + 293 pages, Cambridge University 
Press, Cambridge—London—New York—Melbourne, 1978. 

This book deals with vector algebra and analysis and their application to three-dimensional 
geometry and to the analysis of fields in 3-space. Both the "pure" and "applied" aspects are consid-
ered. The text starts with the algebra of vectors based on the axioms of vector space algebra. When 
the axioms are introduced, their geometrical interpretation is given, so that they can be understood 
intuitively. The axiomatic scheme is extended to provide a definition of Euclidean space. The.scalar 
and outer products in 3-space are also introduced in a geometric way. Descriptions of coordinate 
transformations, congruence and general linear transformations in terms of matrices are given and 
tensors in 3-space are defined in a classical manner by means of transformation laws. Another part 
of the text deals with vector analysis. This part begins with the definition and differentiation of 
curves and surfaces, and with a short account of the differential geometry of curves. Surface and 
volume integrals are also defined. At the end of the text the differential calculus of scalar and vector 
fields are investigated and two versions of Stokes' theorem are proved. All chapters contain a large 
number of problems, some of them are solved at the end of the book. 

The book can serve as a textbook for undergraduate students. 
L. Gehér (Szeged) 

P. M. Cohn, Skew field constructions (London Mathematical Society Lecture Note Series, 27), 
XII+253 pages, Cambridge University Press, Cambridge—London—New York—Melbourne, 1977. 

This book is based on courses and lectures given by the author at numerous universities all over 
the world in the years 1971—1976. The purpose is to describe some methods of constructing skew 
fields (also cslled division rings), the starting point being the "coproduct construction", the author's 
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famous result (1971) on the existence of a universal field of fractions of any coproduct of skew fields. 
This construction and the powerful coproduct theorems of G. M. Bergman (1974) form the back-
ground of the subsequent topics: a general discussion of skew field extensions in terms of presenta-
tions, the word problem for free fields and the solving of equations. 

Only familiarity with the material of a standard algebra course is supposed on the reader's 
part, as the first three chapters summarize the classical results, e.g. Ore's method of skew polynomials, 
skew power series and extensions of finite degree. The book is recommended first of all to research 
workers and postgraduate students, who want to get acquainted with this comparatively new branch 
of algebra which developed extremely rapidly during the past decade. 

Á. Szendrei (Szeged) 

Pierre Collet—Jean-Pierre Eckmann, A Renormalization Group Analysis of the Hierarchical 
Model in Statistical Mechanics (Lecture Notes in Physics, 74), 199 pages, Springer-Verlag, Berlin— 
Heidelberg—New York, 1978. 

The present book deals with one of the most interesting methods of statistical physics, the so-
called renormalizition group method. More precisely, the hierarchical models are investigated in de-
tail. in this case the renormalization group method leads to a relatively simple non-linear integral 
equation. The investigation of this equation makes it possible to obtain a rigorous description of 
critical phenomena in the hierarchical models. Let us remark that the (rigorous) description of 
critical phenomena is one of the most difficult problems in statistical physics, and it is solved only 
in special cases. 

The authors give a bibliography of the most important works on hierarchical models, and also 
prove several new results. 

The book consists of two parts. In the first part the main definitions and theorems are given, and 
the different aspects of the renormalization group technique are discussed. The second part contains 
the detailed proofs. 

The notation of hierarchical models is introduced in Sections 1.1 and 1.2, and a probabilistic 
iriterpretation of the renormalization group is given here also. The basic non-linear equation of the 
theory of hierarchical models is deduced, the critical models are investigated, and in particular the 
critical indices are computed. In Sec. 1.3 a very important theorem is given about the existence of 
non-gaussian solution of the basic non-linear equation. 

Sections 1.4—-1.6 contain several difficult theorems, connected with the computation of the 
critical indices. From a probabilistic point of view the problem is to determine the limit distribution 
of the average spin with an appropriate norming factor when the temperature is in a small neighbour-
hood of the critical temperature T„. If the temperature T is above the critical temperature T0 then the 
limit distribution is gaussian with variance (7— o {T) tending to infinity as T"—- J \ . In case T' ~ T^ 
this1 distribution is the mixture of two gaussian distributions. If T=T0, then tne distribution is the 
solution of the basic nonlinear equation investigated in Sec. 1.3. We remark that the first results of 
this type were obtained in the works of Blecher and Sinai, but the proofs given in the second part 
óf this book are considerably different. Sec. 1.7 contains a proof about the existence of the thermody-
namical limit of free energy, of magnetisation, and other observations, and the critical indices of the 
hierarchical models are directly computed. 

""" The book is written in a clear and concise form. It is an excellent introduction to this rapidly 
developing field. It may be very useful both for mathematicians and physicists. 

Péter Major (Budapest) 
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B. Davis, Integral transforms and their applications (Applied Mathematical Sciences, 25), XII + 
411 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

The book is intended to serve as introductory and reference material for the application of in-
tegral transforms to the solution of mathematical problems in the physical, chemical, engineering 
and related sciences. The material involved is rather selective than encyclopedic. There are many 
facets of subject, which are omitted or only outlined. On the other hand, the material is treated in var-
ious aspects and illustrated by appropriately chosen application examples. 

The book is divided into four parts, supplemented by three Appendices, a Bibliography and an 
Index. Part I is devoted to the study of the Laplace transform. The inversion theorem is presented in 
detail, then various applications are made to the solution of ordinary differential equations, partial 
differential equations (diffusion, wave propagation, etc.) and integral equations (of Volterra type, 
equation for hard rods etc.). 

Part II deals with the fundamental properties of the Fourier transform (up to the Kramers—König 
relations) and its application to potential and wave problems. Then the treatment proceeds to the 
theory of generalized functions. There is a considerable amount of "pure mathematics" associated 
with the understanding and use of generalized functions, because their use adds essentially to the 
power of the Fourier transform as a tool. Fourier transforms in two or more variables are also in-
cluded. 

Part III contains other important transforms: (/') Mellin transforms, (¡7) Hankel transforms, 
and (HI) integral transforms generated by Green's functions. Special techniques are collected in Part 
IV. The Wiener—Hopf technique is developed in relation to some instructive problems like reflection 
and diffraction of waves, radiative processes in astrophysics etc. Then the presentation of the Laplace 
method for ordinary differential equations follows, by which one can produce integral transform 
solutions using Hermite-, Bessel- etc. functions. This part ends with different numerical inversion 
forms of Laplace transforms. 

Two more remarks on the presentation. (/) The author lays great stress on the use of complex 
variable techniques, which is frequently of great power. (ii) Each section is followed by a rich collec-
tion of appropriate problems serving as exercises for the reader. 

The book is warmly recommended to everybody wishing to get acquainted with integral trans-
forms, the applications of which outside mathematics, both directly and through differential equa-
tions, meet an ever increasing demand of natural sciences. 

F. Móricz (Szeged) 

W. G. Dixon, Special relativity. The foundation of macroscopic physics, VIII+261 pages, Cam-
bridge University Press, Cambridge—London—New York—Melbourne, 1978. 

The macroscopic physics treated in special relativity seems irrelevant to many physicists, because 
these macroscopic phenomena under terrestrial conditions are described by the Newtonian theory 
in a simpler way and with a negligibly small error. This book proves that the macroscopic physics 
discussed in the framework of special relativity is significant not only from a theoretical point of 
view. It shows that an understanding of the basic laws of macroscopic systems can be gained more 
easily within relativistic physics than within Newtonian physics. 

The first two chapters contain an introduction to Newtonian physics, to the spacetime structure 
of special relativity and to tensor algebra. After this introduction the book is devoted to three subjects 
of special relativity: dynamics, thermodynamics, and electromagnetism. 

The theory of dynamics contains both the point particle dynamics and continuum dynamics. 
The most important topics of this theory are the momentum, angular-momentum and energy con-
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servation laws. The part on thermodynamics describes the entropy law, the equilibrum thermody-
namics of relativistic simple fluids and the thermodynamics of irreversible processes. The same 
techniques is applied to the study of the interaction of simple fluids with an electromagnetic field. 

The corresponding Newtonian results of these theories are obtained by taking the Newton-
ian limit. 

The book is not directed towards any particular university course, and it should be accessible to 
any undergraduate in mathematics or physics. 

Z. I. Szabó (Szeged) 

V. Dudley, Elementary Number Theory, 2 n d edition, I X + 2 4 9 pages, W. H. Freeman and Co., 
Reading — San Francisco, 1978. 

The second edition of this outstanding undergraduate textbook is a slightly extended version of 
the first one. Some errors have been removed (and as the author asserts in the preface, some new ones 
have been added). One of the main merits of the book is that — in contrast with most university 
textbooks — it can be used with success not only by the best students but also by the average ones, 
and indeed they can rather deeply understand the topic from it. This is achieved, beside a very clear 
treatment, by well-chosen exercises inserted in the basic text. 

The first twelve chapters give a standard course on divisibility and on congruences, including 
quadratic reciprocity. Sections 14—15 deal with arithmetic in different place-value systems, sections 
16—20 with different non-linear diophantine equations, and sections 21—22 with primes. The last 
section contains 100 additional problems of different levels. There are three appendices: one on proof 
by induction, another on problems for computers, and a factor table for integers^ 10 000. 

There is a number of misprints (whether old or new) and sometimes they emerge at the most 
inconvenient moments — in numerical examples which ought to inform the reader; and puzzle him 
instead. This excellent book would have deserved a more careful printing. 

G. Pollák (Szeged) 

Herman H. Goldstine, A history of Numerical Analysis from the 16th through the 19th century 
(Studies in the History of Mathematics and Physical Sciences, 2.), X I V + 348 pages, Springer-Verlag, 
New York—Heidelberg—Berlin, 1977. 

The author worked together with Professors von Neumann and Murray on the problem of 
determining the eigenvalues and vectors of real symmetric matrices. They rediscovered, among other 
results, Jacobi's method. The author presented this in 1951 at a meeting on numerical analysis at 
UCLA. After the presentation Professor Ostrowski of Basel told him this had been done a century 
earlier by Jacobi. Partly this event had caused the author to get more comprehensive and thorough 
information from the history of ideas and methods of numerical analysis as a result of which this 
excellent book came into being. 

The author attempts to trace the development of numerical analysis during the period in which 
the foundations of the modern theory were being laid. He chooses the most famous mathematicians 
of the period in question and concentrates on their major works in numerical analysis. 

The book is divided into five chapters and ends with a rich Bibliography containing about 300 
items and a detailed Index. 

Chapter 1 is entitled „The Sixteenth and Early Seventeenth Centuries". During this period 
mathematical notation began to improve quite markedly and the reasonable symbolisms contrib-
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uted greatly to the development of mathematics. One of the great discoveries of the sixteenth century 
was that of logarithms made independently by Biirgi and Napier. 

Chapter 2 ("The Age of Newton") discusses Newton's contributions to numerical techniques 
such as his method for solving equations iteratively, his interpolation and numerical integral for-
mulas as well as his ideas on calculating tables of logarithms and of sines and cosines. Newton's friends 
and contemporaries Halley, Cotes, Stirling, Maclaurin, Gregory, Moivre, and James Bernoulli, among 
others, quickly took up his ideas and published a great deal of work which is of interest in numerical 
analysis. 

Chapter 3 ("Euler and Lagrange"): The invention of classical analysis is very largely due to 
Euler. Even a glance through a volume of his enormous collectedworks shows how Euler differed 
from Newton. There are no geometrical figures present, he worked with functions and studied their 
properties in the modern manner. He layed down at least the groundwork in virtually all topics of 
modern numerical analysis, especially the basic notions for the numerical integration of differential 
equations. Lagrange worked on linear difference equations and elaborated his famous method of 
variation of parameters in this connection. He was interested in interpolation theory and introduced 
some quite elegant formalistic procedures which enabled him to develop many important results. 

Chapter 4 ("Laplace, Legendre, and Gauss") begins with the presentation of Laplace's work, 
who used and developed the method of generating functions to study difference equations which 
came up in his study of probability theory. Using this apparatus, he was also able to develop various 
interpolation functions and to produce a calculus of finite differences. Gauss wrote much on numer-
ical matters and obviously enjoyed calculating. The Method of Least Squares was published by 
Legendre in 1805 but had been used much earlier by Gauss. Also, Gauss took the Newton-Cotes meth-
od of numerical integration and showed that by viewing the position of the ordinates as parameters 
to be chosen one can materially improve convergence. Later Jacobi reconsidered this result and gave 
a very elegant exposition of it. Gauss wrote penetratingly on interpolation, and particularly on tri-
gonometric interpolation. In fact he developed the entire subject of finite Fourier series, including 
what is now called the Cooley-Tukey algorithm or the fast Fourier transform. 

After Gauss there were a considerable number of excellent mathematicians who either contin-
ued his ideas on numerical analysis or utilized their own discoveries to make more elegant what earlier 
mathematicians had done. Thus, for example, we find on the one hand Jacobi reconsidering some of 
Gauss' work and on the other hand Cauchy using his Residue Theorem to obtain polynomial approx-
imations to a function. Chapter 5 ("Other Nineteenth Century Figures") is mainly devoted to the pre-
sentation of their work in this subject. Among others, Jacobi wrote a paper on finding the characte-
ristic values of a real symmetric matrix mentioned at the beginning which has given rise to the modern 
Jacobi method and its variants. One of Cauchy's most significant discoveries was a method for finding 
a rational function which passed through a sequence of given points. This idea of approximation by 
rational, rather than polynomial, functions is still important and in another connection — Padé 
approximations — is also used today. Another great advance that Cauchy made was his method for 
showing the existence of the solutions of differential equations. This so-called Cauchy-Lipschitz 
method, as well ás that of Picard, form the basis for some very important techniques for the numer-
ical integration of such equations. These theoretical methods were exploited by Adams, Bashforth, 
and Moulton. In a quite different direction Hsun, Kutta, and Runge developed a very pretty method 
for numerical integration of differential equations. One of the first problems run on E N I A C was done 
using Heun's method. Their ideas are current today. 

A listing of the contents could hardly give a right impression of the richness of the book. It will 
certainly be a very instructive and profitable reading for everyone interested in numerical analysis 

F. Móricz (Szeged) 
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H. B. Griffiths— P. J. Hilton, A comprehensive textbook of classical mathematics, XXIX + 637 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1978. 

This second edition differs from the original one published in 1970, by Van Nostrand Reinhold 
Co. in the elimination of some errors and the addition of a few calculus exercises. Since these Acta 
have not reviewed the first edition, we have a closer look at the book here. It is written to those 
already familiar, at a certain level, with the subject matter they choose from it. Roughly speaking, a 
one year specialized mathematical study is sufficient to read the material presented without difficulty. 
The main purpose of the authors has been "to encourage the reader to look at rather familiar ideas 
a second time, with a view to fitting them into the framework of present-day mathematical thought; 
and thus to enable the reader to see how certain key ideas recur again and again and give a real unity 
to apparently separate parts of his early mathematical experience". The presentation follows the 
"spiral approach": ideas are introduced informally; then precise proofs and definitions are given, 
after which informality comes again. To give the reader some information of the material covered in 
the book we list the titles of the eight parts as follows: The Language of Mathematics, Further Set 
Theory, Arithmetic, Geometry of R3, Algebra, Number Systems and Topology, Calculus, Additional 
Topics in the Calculus, Foundations. 

We recommend this book to anyone, even to the well-educated mathematician, who wishes to 
brush up on his basic mathematics. 

József Szűcs (Szeged) 

P. R. Halmos — V. S. Sunder, Bounded integral operators on L2 spaces (Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, 96), X V + 1 3 2 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1978. 

The phrase "integral operator" used in this book is the natural "continuous" generalization of 
the operators induced by matrices, and the only integrals that appear are the Lebesgue-Stieltjes 
integrals on classical non-pathological measure spaces. To be more concrete, let X and Y be c-finite 
and separable measure spaces. A kernel k = k(x, y ) is a complex-valued measurable function on the 
Cartesian product XX Y. The domain of k is the set dom k of g£L*(Y) that satisfies the following 
two conditions: 

(i) k(x, • )g£L}(Y) for almost every x in X, 

(ii) if f(x)= fk(x, y)g(y) dy, then f(.L?(X). 

It may happen that dom k~0 (the identically 0 function), for example, this is the case if k(x, >>) = 
= 1 /(x—y) on RXR (the kernel that defines the Hilbert-transform). In any event, whatever its 
domain might be, a kernel always induces an operator, denoted by Int k, that maps dom k (in £ 2 (K) ) 
into L2(X); the image under Int & of a function g in dom k is the f u n c t i o n / in L2(X) given by (ii). 
The integral operator Int k is linear but not necessarily bounded. 

The book does not strive for maximum generality. The study is restricted mostly to bounded 
integral operators as indicated in the title. Even in this special setting the authors do not answer all 
the questions about integral operators. Frequently, when the systematic treatment encounters unan-
swered questions, the authors point out, where such questions arise, how they are connected with 
others, and what partial information about them is available. The emphasis in the treatment is on the 
basic implication relations on which the subject rests, rather than on its mechanical techniques. 

The main prerequisite for an uninterrupted reading of the book is familiarity with the standard 
facts of measure theory and operator theory. 

18 
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The book consists of 17 sections. The first five contain the definitions and the examples that are 
needed throughout. Sections 6—9 describe what can and what cannot be done with integral opera-
tors. The topics are the possibility of transforming integral operators by measure-preserving isomor-
phisms, the correspondence from kernels to operators, and the extent to which that correspondence 
preserves the algebraic operations on kernels. Sections 10 and 11 treat two important classes of ker-
nels: absolutely bounded kernels and Carleman kernels. 

Sections 12—14 provide some necessary tools from operator theory for the subsequent sections: 
a discussion of two different kinds of compactness, and the properties of the essential spectrum, cul-
minating in the celebrated Weyl-von Neumann theorem on the possibility of a kind of generalized 
diagonalization for Hermitian operators on infinite-dimensional Hilbert spaces. The last three sections 
deal with the most interesting and up-to-date questions: 

(i) Which operators can be integral operators? In precise terms, it asks for a characterization of 
those operators A on L2(X) for which there exists a unitary operator U on L~(X) such that UAU* is 
an integral operator? This question has a complete answer. 

(ii) Which operators must be integral operators? In precise terms: under what conditions on an 
operator A on L*(Y) does it happen that UAU* is an integral operator for every unitary U on i 2 ( J f ) ? 
This question has a satisfactory partial answer, but some special questions (e.g., about absolutely 
bounded kernels) remain open. 

(iii) Which operators are integral operators? The problem is one of recognition: if an integral 
operator on L2(X) is given in some manner other than by its kernel, how do its operational and meas-
ure-theoretic properties reflect the existence of a kernel that induces it? Here various useful sufficient 
conditions are available, but none of them are necessary. 

The writing of the book was mainly motivated by the fact, as the authors admit in Preface, that 
the theory of integral operators is the source of all modern functional analysis and remains to this 
day a rich source of non-trivial examples. Since the major obstacle to progress in many parts of opera-
tor theory is the dearth of concrete examples whose properties can be explicitly determined, a syste-
matic theory of integral operators offers new hope for new insights. And the programme of the authors 
is completely materialized in this book, which makes a very essential contribution to the systematiza-
tion of the theory of integral operators. 

This book is indispensable for all specialists of functional analysis, but it is also warmly recom-
mended to everybody who wants to keep pace with up-to-date developments in analysis. 

F. Móricz (Szeged) 

Herbert Heyer, Probability measures on locally compact groups, X + 537 pages, Springer-Verlag, 
Berlin—Heidelberg—New York, 1977. 

Probability measures on algebraic topological structures and especially on locally compact 
topological groups have become of increasing importance in recent years. The main purpose of the 
present book is to give a systematic presentation of the most developed part of the work done in this 
field. The text is divided into 6 Chapters. To make the book as self-contained as possible the first two 
chapters have been devoted to general tools from the harmonic analysis of locally compact groups 
and from the elementary convergence theory of convolution sequences of probability measures on the 
group. In Chapter 3 the general embedding problem is posed. The most important step on the way to 
central limit theorem is the embedding of an infinitely divisible measure into a continuous one param-
eter convolution semigroup. Since the embedding theorem does not hold in a general locally com-
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pact group, the question arises what classes of groups yield the validity of an embedding theorem. 
Establishing these classes of groups is the aim of this chapter. Chapter4 includes an extensive discussion 
of the canonical representation of all continuous convolution semigroups in the sense of a Levy — 
Khintchine formula. There is a natural connection between convolution semigroups on a group G 
and contraction semigroups of operators on certain function spaces E on G such that the problem of 
generating a convolution semigroup becomes a problem of determining the existence of the infinites-
imal generator of the corresponding contraction semigroup on E. Using the solution of Hilbert's V. 
problem and the ideas of Bruhat a diflerentiable structure can be introduced in any locally compact 
group and the problem will be reduced via Lie projectivity to the Lie group case. The aim of Chapter 
5 is twofold: to motivate the broad discussion of the central limit theorem in the special case of an 
Abelian group and to give certain auxiliary results which will be needed for the treatment of the 
problems for more general groups. Most of this material is applied to a detailed treatment of additive 
stochastic processes with values on a locally compact Abelian group having a countable topological 
basis. Chapter 6 is devoted to the central limit problem in the general case. Many facts discussed 
at an earlier stage will be combined here for a detailed study of Poisson and Gauss measures on 
arbitrary locally compact groups as well as for the study of the convergence behavior of triangular 
systems of probability measures in the sense of a Lindeberg-Feller central limit problem. 

The book is highly recommended to research workers taking interest in modern probability 
theory and having certain knowledge of representation theory. 

L. Geher (Szeged) 

M. Karoubi, /¡"-theory (Grundlehren der mathematischen Wissenschaften — A Series of Com-
prehensive Studies in Mathematics, 226), XVIII + 308 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1978. 

It's well-known that ordinary cohomology theory is defined uniquely (on the category of poly-
hedra) by the Eilenberg-Steenrod axioms. However, if we omit the so-called dimension axiom: 
Hk(P)=0 if P is a point and k 0, then there will exist infinitely many functors from the category of 
polyhedra into the category of abelian groups satisfying the other axioms. These functors are called 
extraordinary cohomology theories. One of the extraordinary theories is /^-theory. The advantage of 
extraordinary theories is that they usually give much more information about the topological situation 
considered. The particular advantage of if-theory is that it appears very naturally in consideration of 
differential manifolds and fibre bundles, because its elements are — roughly speaking — the vector 
bundles themselves. The exact definition of the (topological) A"-functor is the following: Let us 
consider all vector bundles over a space X. They form a semiring under the Whitney sum and the 
tensor product. This semiring — as well as any other one — defines a "minimal" ring (the Grothendick 
ring of the semiring). This ring is the K(X) ring for the space X. Starting from the Af-functor one can 
define a cohomology theory in the following way: For / > 0 let K~' (X) equal K(S'X) where S'X is the 
/'-fold suspension on X. The sequence K~'(X) turns out to be periodic modulo 2 in the complex case 
and modulo 8 in the real case. This enables us to extend the definition of K'(X) for /=-0. As well-
known, the characteristic classes serve for the description of vector bundles by means of the classical 
cohomology theory. Characteristic classes can be defined in AT-theory, too. The present book is 
the first monograph dealing with characteristic classes in AT-theory, as well. There exist three ways 
to define characteristic classes: 

1) the axiomatic way; 

•2) using the cohomology ring of the Grassman manifold; 
• 3) by the Thorn isomorphism theorem. 

In this book all the three definitions are presented. The particularity of AT-theory is that in it the 

18» 
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characteristic classes are the same as the cohomology operations. The cohomology operations are 
describe at the end of Chapter IV. Chapter V deals with interesting applications. First, it presents 
Adams' proof for the statement that on the sphere S" there'exists an //-structure iff n= 1 or 3 or 7. 
(We remind that the //-structure is a generalization of the topological group structure.) The second 
application is the solution of the following question: H o w many continuous linearly independent 
vector fields do there exist on the «-sphere? The third interesting question in this chapter is the so-
called Chern character which is an isomorphism between the groups KC(X) Q and H°V°"(X; Q) for 
any compact space. At the end of the book are the most interesting questions: the Riemann-Roch 
theorem and the integrability theorems for the characteristic classes. The book is recommended to 
anybody wishing to study this new exciting and powerful mathematical theory. 

András Szűcs (Szeged) 

W. Klingenberg, Lectures on Closed Geodesies (Grundlehren der mathematischen Wissenchaften, 
230), I X + 227 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1978. 

The question about the existence of closed geodesies on a simply connected compact Riemannian 
manifold has been in the centre of investigations in global differential geometry since Jacobi's de-
scription of geodesies on an ellipsoid in 1842. In 1905 Poincaré claimed that this problem was closely 
related to the question whether there existed a periodic solution of the restricted three body problem. 

The greatest advances in the theory of closed geodesies were the results of L. A. Lusternik and 
L. G. Schnirelmann in 1929 and of L. A. Lusternik and A. I. Fet in 1951. They showed that on a 
simply connected compact surface there exist at least three closed geodesies without self intersection 
and that at least one closed geodesic exists on every compact Riemannian manifold. 

In the last 15 years Prof. Klingenberg worked out two very effective new approaches to the 
existence problem of closed geodesies: the Morse theory on an infinite dimensional Hilbert-Riemann 
manifold and the method of Hamiltonian systems and geodesic flows. The starting problem is 
completely solved at the present stage of investigations by the main theorem of this monograph: On a 
compact Riemannian manifold with finite fundamental group there exist infinitely many closed 
geodesies. This fundamental result of Klingenberg, published in detail here for the first time, gives 
essential new information even in the case of convex surfaces in euclidean 3-space. 

The aim of this book is to give an up-to-date and detailed introduction to the new methods of 
investigation on the geometry of closed geodesies and to give self-contained proofs of the essential new 
results in this theory. 

In Chapter 1 the notion of a Hilbert manifold is introduced and a canonical Hilbert manifold 
structure is defined on the space of closed curves in a compact Riemannian manifold. The question 
about the existence of closed geodesies can be translated into a question about the critical values of 
the energy function on the Hilbert manifold of closed curves. 

Chapter 2 is devoted to the development of the Lusternik-Schnirelmann and Morse theory on 
the manifold of closed curves. 

In Chapter 3 the theory of Hamiltonian systems is discussed from the aspects of geodesic flows 
on a Riemannian manifold. This proves to be a very effective tool for the study of periodic geodesies 
in a neighborhood of a given one. 

Chapter 4 contains the main result on the existence of infinitely many closed geodesies" on a 
manifold with finite fundamental group. It concludes with generic existence theorems derived from 
the properties of geodesic flows. 

In Chapter 5 an «-dimensional generalization of the classical Lusternik-Schnirelmann theorem 
and a number of miscellaneous results about closed geodesies on special Riemannian manifolds are 
proved. 
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In an Appendix, an elementary treatment of the Lusternik-Schnirelmann theory is given 
independently of the previous parts of the book. 

The book contains fundamental and new information about central problems of global dif-
ferential geometry. Chapters 1—3 can serve as an excellent introduction into the new methods of 
investigation of geometry of geodesies, Chapters 4—5 contain the main results of the theory. The 
latter part is not very easily readable, because a great variety of analytical and topological methods is 
used. It is suggested to the reader that though the presented results solve the starting problems of the 
theory, a great many interesting questions are left open which can be studied with these new meth-
ods only. 

The book is an indispensable monograph on the subject. It is warmly recommended to research 
workers in differential geometry, the global theory of dynamical systems, and nonlinear functional 
analysis. 

P. T. Nagy (Szeged) 

Wilhelm Klingenberg, A course in differential geometry (Graduate Texts in Mathematics, 51), 
XII+178 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

English translation of the original "Eine Vorlesung über Differentialgeometrie" (Heidelberger 
Taschenbücher, 1973; reviewed in these Acta 36 (1974)). It contains an excellent introduction to 
elementary differential geometry for undergraduate students. The present edition is more detailed 
and a number of figures is added. 

P. T. Nagy (Szeged) 

Hans Kurzweil, Endliche Gruppen. Eine Einführung in die Theorie der endlichen Gruppen (Hoch-
schultext), XII + 1 8 7 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1977. 

Dieses Buch, das durch seine leichte Lesbarkeit und seinen didaktisch guten Aufbau überwiegend 
für Studenten zusammengestellt ist, "möchte — nach seiner Zielsetzung — den Leser mit den Grund-
lagen und Methoden der Theorie der endlichen Gruppen vertraut machen und ihn bis an aktuelle 
Ergebnisse heranführen". Sein Lesen benötigt nur elementare Kenntnisse der linearen Algebra. Für 
diejenigen, die sich späterhin mit dem Problem der Bestimmung einfacher Gruppen eingehend befas-
sen möchten, ist das Lesen dieses Lehrbuches besonders vom Nutzen, denn sie finden hier zahlreiche 
grundlegende Kenntnisse, Begriffe, die zum Studieren des genannten Themas unentbehrlich sind. 

L. Megyesi (Szeged) 

W. S. Massey, Algebraic topology: An introduction (Graduate Texts in Mathematics, 56) X X I + 
261 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977. 

The book is the 4th corrected printing of the excellent textbook, the earlier printings of which 
were published by Harcourt Brace and World, New York, 1967. It is a very elegant introduction to 
algebraic topology, concerning three classical subjects: 2-dimensional manifolds^ fundamental groups 
and covering spaces. 

Chapter 1 discusses 2-dimensional manifolds with numerous examples and exercises. The 
classification theorem for compact surfaces is also proved. 

Chapters 2—4 deal with fundamental groups. Besides their basic properties, the Brouwer 
fixed point theorem and the Seifert — Van Kampen theorem on the fundamental group of the union 
of two spaces are discussed. 

The covering spaces and the relationship between covering spaces and the fundamental groups 
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are described in Chapter 5. Chapters 6—7 present topological proofs of several well-known theorems 
of group theory, namely, the Nielsen-Schreier theorem on subgroups of a free group, the Kurosh 
theorem on subgroups of a free product, and the Grushko theorem on the decomposition of a 
finitely generated group as a free product. Chapter 8 gives an outlook to algebraic topology. 

Z. I. Szabó (Szeged) 

Th. Meis und U. Marcowitz, Numerische Behandlung partieller DifTerentialgleichungen (Hoch-
schultext), V I U + 4 5 2 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1978. 

A good introduction to the study of numerical methods of partial differential equations. The 
authors confine themselves chiefly to methods of solving linear second-order partial differential 
equations with two independent variables. However, differential equations with more variables than 
two as well as non-linear partial differential equations are also treated. 

The book consists of three parts and an Appendix. Part 1 is devoted to the study of initial value 
problems in differential equations of hyperbolic or parbolic type. Part II proceeds to the solution of 
boundary value problems in differential equations of elliptic type. The concepts of consistency, 
stability and convergence of a method are in the central place of the treatment. The most widely used 
numerical methods of solving partial differential equations are the finite difference methods, and 
they are presented in detail. The use of the Fourier method for standard problems in mathematical 
physics, the variational methods and collocation methods of solving boundary value problems are 
dealt with also in detail. 

Part III systematically develops a substantial portion of the theory of iterative methods for 
solving systems of (linear or non-linear) algebraic equations that arise in the numerical solution of 
boundary value problems by finite difference methods. The focal point is an analysis of the conver-
gence properties of the successive overrelaxation method (SOR method) in the linear case, and that 
of the Newton-Raphson method with some of its variants in the non-linear case. Some techniques 
for solving large systems of linear algebraic equations with sparse matrices are also included. 

The forth part called Appendix contains the FORTRAN programs of certain well-chosen prob-
lems with the necessary explanation and documentation. 

The presentation is always clear and well-readable. The theoretical background is given in detail, 
the methods are illuminated in a many-sided manner. The textbook is highly recommended to stu-
dents in numerical analysis as well as to experts in physics, chemistry and engineering interested in 
the solution of partial differential equations. 

F. Móricz (Szeged) 

David Mumford, Algebraic Geometry. I. Complex Projective Varieties (Grundlehren der mathe-
matischen Wissenschaften, 221), X- f 186 pages, Springer-Verlag, Berlin—Heidelberg—New York, 
1976. 

From the thirties on, Algebraic Geometry turned from Geometry towards Algebra. The algeb-
raic methods enriched the machinery with extremely powerful tools, but they need a very long, sys-
tematic, and — at least for the beginners — boring foundation. On the other hand, even if one 
works with schemes, a good geometric intuition is needed in order to "see" the problem. However, 
most recent books on algebraic geometry emphasise the algebra part, and say very little (if any) about 
the geometric sources. 

The present book provides an introduction to the subject, emphasising the geometric part. It 
shows the deep connections between algebraic and analytic geometry and topology. First the analytic 
structure of an algebraic variety is investigated. Then the Zariski and Euclidean topologies are com-
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pared, and Chow's theorem is proved which characterises the projective algebraic varieties as closed 
analytic submanifolds of complex projective spaces. Another fascinating characterisation is given 
later when projective varieties are described as compact oriented differentiable submanifolds of the 
complex projective spaces having minimal volume in a certain natural sense. Finally the Euclidean 
topology of curves is determined. 

The use of topological methods throughout the book enables the author to make considerable 
shortcuts in the proofs and makes the definitions clearer (this concerns mainly the notions con-
nected with multiplicity). The last paragraph deals with the 27 lines on a cubic surface, one of the most 
astonishing facts in geometry. 

The algebraic part of the theory is also developed in a very efficient way that leads quickly to 
interesting theorems. 

The whole book is written in a very clear and concise style. All this makes the book an excellent 
introduction, especially suitable for mathematicians who are not primarily interested in algebraic 
geometry. 

János Kollár (Budapest) 

R. K. Sachs — H. Wu, General Relativity for Mathematicians (Graduate Texts in Mathematics, 
48) XII+291 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1977. 

Many recent monographs on general relativity treat the subject in the frames of modern dif-
ferential geometry. The present book also gives a clear and geometrical description of general relativity, 
using this terminology. The reader is only supposed to have familiarity with tensor algebra, differen-
tial topology, and the rudiments of Riemannian geometry. 

After some mathematics and physics background on Lorentzian manifolds the book gives a 
systematic description of particle dynamics, electromagnetism and several matter models. In the 
second part it treats several cosmological questions: Einstein's field equation, the theory of photons 
and photon gases, the Einstein — de Sitter and Schwarzschild model of space-time, black holes, etc. 

The book is a fundamental monograph on the subject. It is especially well-organized; its 
didactical value is greatly enhanced also by the great number of examples worked out. 

Z. /. Szabó (Szeged) 

Mathematics Today. Twelve Informal Essays, Edited by Lynn Arthur Steen, V I + 3 6 7 pages, 
Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

This book is intended to be a popularizing work for the intelligent non-mathematicians, partic-
ularly for those who have already met mathematics in their scientific research. It contains 12 well-
readable essays by 12 authors extraordinarily well selected from distinct fields of pure and applied 
mathematics. Theessays are the following: Mathematics—Our Invisible Culture (Allen L. Hammond), 
Number Theory (Ian Richards), Groups and Symmetry (Jonathan Alperin), The Geometry of the 
Universe (Roger Penrose), The Mathematics of Meteorology (Philip Thompson), The Four Color 
Problem (Kenneth Appel and Wolfgang Haken), Combinatorial Scheduling Theory (Ronald Gra-
ham), Statistical Analysis of Experimental Data (David S. Moore), What is a Computation? (Martin 
Davis), Mathematics as a Tool for Economic Understanding (Jacob Schwartz), Mathematical Aspects 
of Population Biology (Frank C. Hoppensteadt), The Relevance of Mathematics (Felix E. Browder 
and Saunders Mac Lane). 

The book is printed in an aesthetic format. It is highly recommended to professional mathe-
maticians as well as to laymen. 

L. Gehér (Szeged) 
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Serban Stratilá—László Zsidó, Lectures on von Neumann Algebras, 478 pages, Editura Aca-
demiei (Bucure?ti, Romania) — Abacus Press (Tunbridge Wells, Kent, England), 1978. 

This book is a revised and updated English version of the original Roumanian 
"Lec(ii de algebre von Neumann" published in 1975 by the above Roumanian publisher. 
Both authors made important contributions to the theory of von Neumann algebras. This theory was 
initiated by J. von Neumann and F. J. Murray in the thirties in connection with infinite group rep-
resentations and theoretical physics, etc. The first systematic treatment of the subject was given by 
J. Dixmier in 1957, which followed I. Kaplansky's lecture notes "Rings of operators" published in 
1955 (reprinted in 1968). It was Dixmier who used the term "von Neumann algebras" as an equivalent 
of "rings of operators" or "operator algebras". His monograph included almost all the important re-
sults known in the field by then. The theory of von Neumann algebras has developed very rapidly 
and extensively since that time. Besides the many research papers, a number of expository works have 
also been published, such as Sakai's excellent monograph "C*-algebras and If*-algebras" 
(1971), which followed his lecture notes "The theory of W*-algebras" (1962), J. R. Ringrose's 
"Lecture notes on von Neumann algebras" (1967), "Lectures on Banach algebras and spectral theory", 
and "Lectures on the trace in finite von Neumann algebras" (1972), Takesaki's lecture notes "The 
theory of operator algebras" (1970), and "Lecture notes on operator algebras" (1973/1974), Top-
ping's "Lectures on von Neumann algebras" (1971), a new edition of Dixmier's classic in 1969, and 
the Roumanian version of the present book in 1975. 

A turning point in the development of the theory of von Neumann algebras came with M. 
Tomita's discovery of modular Hilbert algebras in 1967. His results were published in Takesaki's 
lecture notes "Tomita's theory of modular Hilbert algebras and its applications" in 1970. Tomita 
devised canonical forms for arbitrary von Neumann algebras. 

At the present stage of development it cannot be expected that a single volume expounds all 
features of the existing theory. The book under review develops the theory of standard von Neumann 
algebras (or, in other words, Tomita's theory), but it does not discuss reduction theory, the isomor-
phism theory of factors, non-commutative harmonic analysis and ergodic theory, applications to oper-
ator theory and theoretical physics, the generation of von Neumann algebras. C*-algebras are only 
incidentally referred to. Just as Dixmier's classic, it develops the spatial theory of von Neumann 
algebras, i.e., von Neumann algebras are considered sub-algebras of the full operator algebra, in 
contrast with Sakai's abstract treatment, where they are considered as C*-algebras with a predual. 
The material presented covers the results contained in M. Takesaki's work on Tomita's theory and 
in Dixmier's classic, except reduction theory and examples of factors. The contributions of van 
Daele and the second author of this book made it possible to simplify the proof given by Takesaki 
in his lecture notes. Following I. Cuculescu and S. Sakai, the commutation theorem for tensor prod-
ucts is proved independently of Tomita's theory. 

The book is clearly written. It only assumes knowledge of the rudiments of functional analysis. 
There are many valuable exercises, some of them borrowed from Dixmier's classic. Very valuable com-
ments supplement the text proper at the end of each chapter. A very thorough 20 page bibliography 
on operator algebras and related topics is included. We very warmly recommend this book to begin-
ners in operator algebras or to research workers who will find that this book gives very thorough 
bibliographical information or serves very well as a reference book. 

József Szűcs (Szeged) 
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