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Produit de convolution des mesures opératorielles

S. K. BERBERIAN

Si, pour i=1, 2, A4; est un opérateur normal dans P’espace hilbertien H;, avec
la représentation spectrale 4;=[AdE;, l'opérateur

4] A=4,01+1®4,

dans I'espace produit tensoriel hilbertien H;® H, est aussi normal, donc posséde
une représentation spectrale 4= f AdE. Dans un article récent [6], D. W. Fox
a montré qu'on peut regarder £ comme un produit de convolution E=E,*E,
dans un sens convenable (Fox ne considére que des opérateurs hermitiens, mais
ses raisonnements se généralisent immédiatement). Le but de cet article est de pousser
les raisonnements de Fox vers leurs limites naturelles, et indiquer quelques applica-
tions aux représentations des groupes abéliens et aux representatlons intégrales
des contractions.

Par espace a mesure p. o. (sur un espace hilbertien H) nous entendons un triple
(X, &, E), ou X est un ensemble, & est un s-anneau de sous-ensembles de X, et
E est une mesure positive opératorielle (c’est-a-dire une PO-mesure au sens de
[1, Def. 1]) définie sur &, dont les valeurs sont des opérateurs positifs dans H.
Ainsi, pour chaque couple de vecteurs x, y dans H, il est défini sur & une mesure
complexe bornée uf , telle que

) pE (M) = (E(M)x|y) pour tout MeS,

Si, de plus, X est un espace topologique et si la mesure E est blreguhere (1, p. 88]
au sens que, pour chaque M¢%, ona

(3a) A E(M) = sup {E(C): Cc M, C compact, CeZ},
(3b) EM) =inf (EU): UD M, U ouvert, Uc%},

nous appellerons (X, &, E) un espace d mesure p. o. biréguliére (sur H).

Received June 6, 1977.



4. S. K. Berberian

Lemme 1. Si, pour i=1,2, (X;, &, E;) est un espace a mesure p. o. biréguliére
sur Uespace hilbertien H;, alors il existe une mesure p.o. E,QE, (sur H,®H;)
définie sur S X% ,, et une seule, telle que

@ (E\QE) (M X M) = E;(M)QE,(My) -
pour chaque rectangle mesurable M;X M. ,

Démonstration. Définissons les mesures p. 0. E;®1 et 1QE, sur &; et &,,
suivant les cas, par les formules

(E,®@1)(M,) = E;(M)R1g,, (1QE)(M;) = 15, ®E,(M,).

On voit immédiatement que (X, ¥;, E;®1) et (X;, ¥, 1®F,) sont tous les deux
des espaces & mesure p. o. biréguliére sur H, @ H,, et que E;®1+1QE,, c’est-2-dire
que chaque valeur de E;®1 est permutable avec chaque valeur de 1® E,; I'existence
et I'unicité de E;®E, dérivent donc immédiatement de [1, Th. 33]. §

11 y a une relation naturelle entre le produit tensoriel des mesures opératorielles
et le produit des mesures numériques:

Lemme 2. Avec les notations du lemme 1 on a

E;®E, . E,
(5) !‘xl@x,,y,@yg - ﬂxpylxﬂxg, ya

pour tous Xy, y,€H, et Xy, y,€H,.

Démonstration. Les deux membres de 1’équation sont des mesures bornées
sur ,0%,, et il est immédiat des définitions qu’elles sont égaux pour chaque
rectangle mesurable. §

Avec les notations du lemme 1, supposons donné une application ¢:X;XX,~Y
(Y un ensemble quelconque). Soit T ={NCY:p Y (N)EF XF,}; alors T est
un ¢-anneau de sous-ensembles de Y, et la correspondance N—(E,Q® Ey)(¢~1(N))
définit une mesure p. o. sur 4, qu’'on appelle I'image de E;®E, par ¢ et que I'on
note @(E,QFE,); ¢(E,QF,;) s’appelle aussi le produit de convolution de E, et E,
pour ¢ et se note E;*,E, [cf. 4, Ch. VIII, § 1, Déf. 1]; lorsque X;=X,=Y est
un groupe abélien et ¢(s,#)=s+¢ (la loi du groupe), nous supprimons le ¢ et
écrivons simplement E,*E,. La convolution des mesures opératorielles et la con-
volution des mesures numériques sont liées par une formule naturelle:

Lemme 3. Si F=E,x,E,, avec les notations précédentes, on a

F i_ E, Eg
(6) Hx,®x5,5,@pe = Hxp,p, ¥ Hxg, v,

pour xy, 1€ H,y et x5, y,€ H,.
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Démonstration. Les deux membres de (6) sont des mesures complexes
bornées sur 7. Ecrivons p pour la mesure & gauche; pour tout N€J on a (en
citant le lemme 2 et les définitions)

u(N) = (F(N)(x1®x2)|J’1®Y2) = ((E1®E2)(‘P—1(N))x1®x2|)’1®J’2) =
= U emt oy (@ THIV) = (12t y, Xzt ) (02 (V)) =
= q)(llfi,leﬂf:;y,) ) = (”fxl » *«P“f:,y,)(N)- |

Adaptons les résultats précédents au contexte des espaces localements com-
pacts et des mesures (de Radon) au sens de [4]. Soient X un espace localement
compact, Z(X) la o-algébre engendrée par les ensembles fermés de X, c’est-d-dire
la tribu des ensembles boréliens de X (appelés les ensembles « faiblement boréliens »
dans [1]). Si E est une mesure p. o. (sur un espace hilbertien H) définie sur #(X),
la formule T,= [ fdE définit une application linéaire f—~7, de I'espace H'(X)
des fonctions complexes continues f sur X & support compact, dans I’espace &£ (H)
des opérateurs linéaires continus dans H; cette application est positive au sens
que f=0 entraine T;=0, et bornée au sens que [T j=M]|f|.. pour tout
feA(X), ou M=|E(X)||. Inversement:

Lemme 4. (Théoréme de Riesz) Si X est un espace localement compact, H
un espace hilbertien, et f—T; une application linéaire positive bornée de #'(X)
dans L (H), il existe une mesure p. o. biréguliére E sur B(X), et une seule, telle que

@) T, = f fdE pour tout feA (X).

Démonstration. D’abord on définit E sur le o-anneau engendré par les en-
sembles G; compacts . de X [1, Th. 19], puis on I’étend & une mesure opératorielle
positive « réguliére a lintérieur » sur #(X) [1, Ths. 21, 22], puis on observe que
E est en fait biréguliére (parce qu'une meésure positive, bornée, réguliére a I'intérieur
sur la tribu #(X) est automatiquement réguliére & P'extérieur [3, Th. 3]).

Des lemmes 1 et 4 on déduit aisément (cf. 5, p. 105, Prop. 3.1]:

Lemme 5. Si, pour i=1,2, X; est un espace localement compact, H; un espace
hilbertien, et f—»Tfi une application linéaire positive bornée de A (X;) dans Z(H),
alors il existe une application linéaire positive bornée f—T, de A (X;XX,) dans
L(H,QH,), et une seule, telle que

® Tre5 = TH®TF

pour tout fLEH(XD), f,€H (X)), ot (fi®f)(s1, s)=fi(s) fo(s) pour s€X,
5:€X,. En effet, si E; est la mesure p. o. biréguliére sur B(X;) qui représente
f~T}, alors application f—~T; est représentée par la mesure p.o. biréguliére
unique E sur B(XyXXy) qui prolonge la mesure p.o. E\QE, sur B(X)XB(X).
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Avec les notations du lemme 5, écrivons s‘implement E=E,®E, (abus de
notation); ainsi, par E;®FE, on entend la mesure p.o. biréguliére unique sur
Z(X1XX,) qui associe 4 chaque rectangle borélien M, XM, I'opérateur E,(M,)®
®E,(M,). Continuant avec ces notations, considérons un espace localement com-
pact Y et une application ¢:X;XX,—~Y. Pour simplicité supposons que ¢ est
continue (ce qui suffira pour nos buts), donc borélienne. Si f:Y—C est une fonc-
tion borélienne bornée, alors fo ¢ est une fonction borélienne bornée sur X; X X,,
et on peut former l'opérateur [ (fo@)dE; en particulier, f— [ (fo¢)dE définit
une application linéaire, positive, bornée de #(Y) dans ZL(H,®H,), donc
(lemme 4) une mesure p.o. biréguliére @ (E) sur Z(Y), telle que

© [1a(e®) = [ fop)dE

pour tout f€#(Y). Conformément aux notations antérieures, la mesure p. o.
@ (E) aussi s*écrit E; %, E,. On a encore (cf. lemme 2) la formule

E,®F, _E E,
(10) ”X1®xz,}’1®)’z - .uxl,.vl®ﬂx2,yz

(le produit a droite est pris au sens de [4, Ch. III, §4, n® 2]) et, en écrivant
F=FE x,E,, on a

(11) . ”51@’12,)'1@}’2 = .”flryl *qillf:’}’z
(cf. lemme 3 et [4, Ch. VIII, § 1, Déf. 1]). La formule (9) devient alors
(12) [ fA(E %o ED) = [ (foo)d(E,@Ey;

cette formule reste valable pour toute fonction borélienne bornée f sur Y, et, en
Pappliquant & un couple de vecteurs élémentaires x,®x,, y;®y,, lintégration
numérique indiquée a droite peut Etre calculée par des intégrations simples successives
[4, Ch. V, §6, Th. 1 et § 8, Th. 1]. Si les supports S}, S, de E,, E, sont compacts,
il est évident de (11) que le support de E, *, E, est contenu dans ¢(S;X S,), donc
est aussi compact [4, Ch. VIII, § 1, Prop. 5a)]; la formule (12) est alors valable
pour toute fonction borélienne f qui est bornée sur le support de E, %, E,, en parti-
culier pour toute fonction continue f. On voit aisément que les constructions pré-
. cédentes, appliquées aux mesures p.o. normalisées (resp. dont les valeurs sont
des projecteurs) produisent des mesures p. o. de la méme sorte.
Considérons maintenant quelques applications.

Théoréme 1. Soit X=R ou C, et soient E,, E, des mesures p. 0. (nécessaire-

\

ment biréguliéres) définies sur #(X), a support compact. On a alors

(13) [ 2d(E, % By = (f MdE) ® By (X)+ Ey(X)®( [ MdE,).
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Démonstration. Ici E % E,=@(E;XE,), ol @(sy,s)=s5;+5,. Si f:X-C
est Pinjection identique, on a (fo@)(sy, sp)=s;+s,. En écrivant A4,= f AE,,
Ay=[ AE;, A=[1d(E,*E,), il résulte de (12) et (10) que

(A, ®x9)1y1®y5) = [ [ (s+50) du () dps (s =
= [[(A12:]y)+(EL(X) x,1y1) o] dpiz2, y, (s0) =
= (A1x1|J’1)(E1(X)xz|J’2)+(E1(X)x1|Y1)(A2X2IY2) =
= ({A1®E2(X) +E,(X)® A1 (5 ® x2)| 1 ®J’2),
d'ot A=A,QE,(X)+E(X)®4,. B '

Si de plus E,, E, sont des mesures spectrales normalisées sur Z(R) [resp. #(C)],
on obtient la formule de Fox pour un couple 4,, 4, d’opérateurs hermitiens (resp.
normaux), Alternativement, si E,, E, sont des mesures spectrales sur Z(R) et si
Ponpose A,=[ AdE,, Ay,=[ AdE,, A=[ Ad(E, *E,), en appliquant (12)  la fonc-
tion bornée f(s)=e" (s, réels, ¢ fixé) on obtient la formule e"4=¢"1@"2;
en dérivant cette formule par rapport a ¢, divisant par i, et substituant t=0, on
obtient la formule (1). Cette méthode ouvre la porte pour les opérateurs hermitiens
non bornés (ce qui étaient en effet considérés par Fox).

Dans le théoréme suivant, les lois du groupe sont notées multiplicativement:

Théoréme 2. Soit G un groupe localement compact abélien et, pour i=1, 2,
soit s—U! une représentation unitaire fortement continue de G dans espace hilbertien
H;. Soit X le groupe des caractéres de G et, selon le théoréme de Stone, soit E; la
mesure spectrale normalisée sur B(X) telle que
14) Ui =f§ dE; pour tout s€G,

o $(@)y=ua(s) pour s€G et acX [cf. 2, p. 182]. Alors la mesure spectrale sur
B(X) pour la représentation unitaire fortement continue s—~U}@QU? est E;,E,,
ot ©: XXX—X est Uapplication @(uy, x)=0,05; C'est-d-dire,
(15) Ul U2 = f§d(E1*E2) pour tout s€G.

Démonstration. On a (Fo@)(ua, a)=58()8(x), et on voit que
[ (B00)d(E;®Ey)=U;® Uy tout comme dans la démonstration du théoréme 1. N

Pour G=Z (le groupe additif des entiers) ona X=T={1€ C:|1|=1} (le groupe
du cercle), I'élément AcT s’identifiant au caractére n—1" de Z; pour ncZ
et A¢T, onadonc A{A)=A1". Rappelons qu’une mesure p. o. E sur #(T) s’appelle
une mesure opératorielle de Sz.-Nagy [2, p. 181] si E(T)=1 et si

(16) [adE = ([ME) pour n=2,3,4,...

Si T est une contraction dans un espace hilbertien, il existe une mesure opératorielle
de Sz.-Nagy E, et une seule, telle que T'= f ME (théoréme de Sz.-Nagy
[2, p. 181]); E s’appelle la mesure opératorielle de Sz.-Nagy associde a T.
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Théoréme 3. Si T;, T, sont des contractions dans les espaces hilbertiens H,, H,,
et si E,, E, sont les mesures opératorielles de Sz.-Nagy associées, alors la mesure opéra-
 torielle de Sz.-Nagy associée a la contraction Ty®T, dans H,QH, est E,x,E,, oit
@0:TXT->T est Papplication @A, A)=21;4,; donc

an T,\@T, = [Ad(E,*Ey)
est la représentation de Sz.-Nagy pour T;QT,.

Démonstration. Fixons un entier positif » et posons f(4)=4" pour A¢T.
Alors (fo@)(4;, A)=214;, donc foe=f®f, donc

[idE*E) = [[ R dERE) = ([ 1dE)e ([ i"dE,) -

= (fME)e(fME)" = [(f1dE)e ([ 1dE,)]"

ce qui montre que E, * E, est une mesure opératorielle de Sz.-Nagy pour la con-
traction [ Ad(E;*E)=(f AdE))®(f AdE))=T,®T,. }
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On intertwining dilations. V
ZOIA CEAUSESCU and CIPRIAN FOIAS

Dedicated to the 65 anniversary of Professor Béla Sz.-Nagy

Introduction. The interest of a functional labelling of the intertwining dilations?)
of a given contraction A intertwining two contractions 7" and T (i.e. T"A=AT)
was stressed in [18], where such a labelling, involving analytic and non-analytic
operator-valued functions, was used in the study of some pure operator theory
questions. More recently, in [11], a functional labelling, by means of contractive
analytic operator-valued functions, was shown to play a central role in an electrical
engineering problem, in the case when 7”=T are contractions of class Cy(N)
(in the sense of [16], Ch. IX, Sec. 3). However, in the cases 7'=S* T=S, where
S is a Jordan operator (on a finite dimensional space) or a unmilateral shift, this
kind of labelling was already obtained by ScHUR (implicitly, for the numerical
case, in his classical research on extrapolation [14]) and by ADAMIAN—AROV—
KrEIN (explicitly, for the operatorial case, in their basic research on Hankel oper-
ators [1], [2], [3], [4)).

The general case (considered for instance in [17], [16], [10], [8], [5], etc.), namely
for arbitrary contractions A, 77, T and arbitrary contractive (but not necessarily
strictly contractive) intertwining dilations, seems to have not beed considered.
The first aim of this paper is to fill this gap by showing that in this most general
case there exists also a labelling by contractive analytic operator valued functions.
This labelling was suggested, by the previous papers [6], [9], [7].

In establishing this labelling (in Sec. 4 below) we shall establish a new one.
Namely we shall show that the contractive intertwining dilations can be labelled
by sequences {I',};” of contractions such that I'; acts between two suitable spaces
while, for n=2, I', acts between the closed ranges of I-I'*_,I',_, and I-T,_,I'}_,
(see Sec. 3 below). This labelling was imposed to us by a problem in geophysics

Received November 18, 1977. _
1) For the terminology and partly for notations, which are essentially those of [16], [8], [6],
see the next Section 1.
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(where the I',’s have a concrete physical meaning) and by its numerical treatment.
These connections will be discussed elsewhere. However, in Sec. 5 we give an applica-
tion of our results to the classification of ANDO’s isometric dilations of a pair of
commuting contractions [5].

Finally, let us remark that at this stage of our research the explicit connection
of this paper with [18] is still an open (and seemingly, basic) question.

Also, we take this opportunity to thank our colleague Gr. Arsene for the useful
discussions on the subject of this Note.

1. We start by giving the main notations and recalling some basic facts con-
cerning contractive intertwining dilations.

Let $ and $” be some Hilbert spaces?) and let L(9, $’) denote the algebra of
all operators from $ to ’; in case H=9', L(9, H) will be denoted simply by L(9).
For two contractions, T€L(9), T'€L($") we denote by F(I’, T) the set of the
A€L(9, 9’) intertwining T” and 7, i.e. such that T"A=AT. Let UcL(RK), U'€ L(]")
be the minimal isometric dilations of T and T’, respectively; for n=0 let P,, P,
denote the orthogonal projections of & and & onto

9 , ¥ (n=0)
5n= - and 5;:: ’ 7 7’ ’ ’n— ’
H+L+UL+...+U™ 1L 9+ +U LY +..+UY (=),

respectively, where 2=((U-T)9)~, €=((U'—T'9)~. We also set P=P,,
P’=P, and
T,=PU|D,, T,=PUI9 (=012 ..);

obviously T,=T, Ty=T" and U, U’ are also minimal isometric dilations of Ty, Ty,
respectively (N=0,1,2,...,). In the sequel 4 will be a contraction €S£(7", T).
By a contractive intertwining dilation (CID), or an N'® partial contractive inter-

twining dilation (N-PCID) of A we respectively mean operators 4_€L(f, &) and
AnN€L(Hy, Hy) such that

(1.1) : 4ol =1, A€FU,U), PA.= AP,

(LD 4yl =1, An€S(Ty,Ty), P'Ay= A(P|Hy).
Thus, the operator

(1.2), A, = P,A4,|9,, where n=0,1,2,... if v=o, and

n=012..,N if v=N,

) Hilbert spaces will be considered complex and their subspaces, if not specified, will be

~assumed to be linear and closed. Operators will always be assumed to be linear and bounded; also

when confusion might occur the identity operator / and the null operator O on a Hilbert space ®
will be denoted by I and Og, respectively.
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is an #-PCID of 4, and
(1.3), Prdpi1=A,(P,|Dys)) for 0=n<v;

moreover, in the first case we have

a4 - ‘ A_ = strong lim A, P, (n— o).

It is also easy to verify that, conversely, if a sequence of n-PCID’s 4, satisfies con-
ditions (1.3), (n=0, 1, 2, ..., ), then the strong limit in (1.4) exists and defines a CID
of A. Therefore we can make the following

Remark 1.1. There exists a one-to-one correspondence (given by (1.2), and
(1.4)) between the CID’s of 4 and the sequences {4,}; of n-PCID’s of 4, A4, sat-
isfying (1.3), (n=0,1,2, ...,). '

In order to facilitate the exposition, we shall give several useful facts, which
actually resume the original construction of a CID (see [17], [10], [16], [7]). To
this aim, let 7, T° and 4 be as above. We set?)

(1.5) Fu={DsTh+U~T)h:heH}~, Ri= DO+ DOF,

and _

(1.5 Fi={Dsh®(U'—T)4h: heH)~, Ry =(D,0L)OF4-
Lemma 1.1. Let T, T" and A be as above. Then

(1.6) C(D Th+(U—-T)h) =U’'—T")Ah (heH)

defines a contraction C=C,€L(F4, ). Moreover, the formula.

(1.7 WaDes ! = Ry (05,01 (I'€Q),

where R/, denotes the orthogonal projection of D ,®L onto R, defines a unitary
operator from D« onto R),. S

Proof. Let iy and w be the operators defined by
i () =05,01€D,02 (IeQ),
w(D4Th+U—T)h) =Dh® (U —T)Ah (hED).

Obviously ig is unitary from £’ to {0}®2 cD,®L’; also, w is unitary from §,
to &, since, by virtue of [16], Sec. II. 1, we have

ID4Th+(U—T)h|* = [D4Th|*+||(U=T)h||* = | Th|*— || ATh||*+ | Drh||* =
= [|h|*—\4Th||* = ||\D4h|*+| 4hi*—||T"Ah||*= || D 4hl[*+ | Dy- Ah||* =
= |Dh|2+ (U —T") 4h|* = | D,h® U’ —T") Ah|?

3) Recall that for any operator C from a Hilbert space ® to another one &’, D¢ denotes the
defect operator (I— C*C)%)Y* and D =(D®)"; if ||C||=1, then obviously De= (I~ C*C)!/2,
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for all h€$H. We shall consider i, as operator from £ to D, 2" and extend o
on the whole of D,+2 by setting wr=0g oo for réR,. Then C,=ig @|F,;
hence C, is a contraction and

Cz =o* igl N CAC: = l;' (Dw* ig', DE":‘ = i;l R:{ in .
It follows that '
[Des, V2 = (D&, 1) = (iz: Ryie V', I) = | Ryig U2 = | R, (0 01> (VEL)

and consequently that W, is an isometric operator from D¢+ to R, If dy@l e R,
is orthogonal to the range of W, then

(U5, 1) = (do®1;, 081) = (do® U5, WyDes 1) =0 (I'€L))

whence /;=0. But, by (1.5, (dy, D 0)=(dy®ly, Dh®(U’'—T")AR)=0 (hEH),
whence d,=0, since dy¢D,. Thus dy®J;=0 and consequently we conclude that
W, is unitary.

Lemma 1.2. Let T, T’ and A be as in Lemma 1.1. Then the Sformula
(1.8) C(4)(D4P+I—P)|H, = (I-P)A4,

establishes a one-to-one correspondence between the 1-PCID A, of A and all con-
tractions

1.9 C:D+8-8, C|§, =Cy.
Moreover, the formula '
(1.10) X(A4)Dc () (DaP+1—P)|H; = Dy,

defines a unitary operator from ZDC(Al) to® 4,

Proof. Let 4, be a 1-PCID of 4.
Then, since by (1.1),,

(1.11) H(I—P) A1 yl|? = || 4y by[I>— | P A hy||? =
= || Ay 2= | AP |* = || hyl|®—|| APhy[|* = || hyl|2— | Phy |12 +]| D 4 Phy||? =
= ||(I-P) byl*+ D4 Phy|? = | (D4 P+I—P)hy|* (h €Dy,
we infer that formula (1.8) defines a contraction C=C(4,) from D,+L to

' =(I-P)9H,. Moreover, since (D,P+I-P)YT1h=D,Th+(U—-T)h (h€$H), we
also have

C(D Th+U—T)h) = (I—P) 4, Tyh = (I—P)T{A,h =
= (I=P)T{P'A,h = (I—P)T{Ah = (U'—T") 4h =.
= C(D,Th+(U=T)h) (heH),
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i.e. C|3A=CA' AlSO, from Al=P’A1+(I_P,)A1=AP151+(I_P,)A1 we
obtain ‘

(1.12) 4, = (AP+C(D4P+I—P))|H,.

This formula shows that 4, is uniquely determined by C=C(4p. Let now C be
any contraction with the properties (1.9) and let 4,€L(9,) be defined by (1.12).
Then, the relation P’A,=AP|$, is obvious and therefore

T} Ayhy = T{ P’A;hy = T{ APh, = T’APhy+(U’~T") APh, =
= T’APhy+C4(D,T+U—T)Phy = ATPh,+C4(D,T+U~T)Ph, =
= ATPh,+C(D,T+U—T)Ph; = APT hy+C(DPTy+(I—P)T))h; =
= (AP+C(DAP+I——P)) Tihy = A, Thhy (5,€9)),
ie. 4,€S9(T], Tp. Moreover, from (1.12) we infer
(1.13) Byl =l 4y Psll® = [ 1)|2— | APhy|2— [ C(D4 P+ I—P)hy|? =
=|Dc(DyP+I-P)hy|* (1€5) |

This shows that 4, is a contraction. We have thus verified that 4, has the pro-
perties (1.1),. The last statement of the lemma follows now readily from (1.13).

Remark 1.2. The basic existence theorem [17], [16] for a CID A4_ of a con-
traction A€ #(T”, T), where T, T are as above, follows from the preceding lemmas
by the following simple recurrent construction.

Set A,=A and set C;=C,Q; where Q; denotes the orthogonal projection
of D, +% onto §, . Define 4, as the 1-PCID such that C(4)=C;. Repeat the
same precedure with 4,, UL and U’2’ in the roles of 4,, & and £’ and obtain
A,, and so on. Finally one obtains a sequence {4,}:> , of n-PCID’s 4, of A4 satisfying
the conditions (1.3), (n=0, 1, 2, ...) and consequently a CID A_ of 4, by virtue
of Remark 1.1. ' .

2, Let T, T" and 4, [|A||=1, be as in Sec. 1. Let, moreover, 4y be an N-PCID
of A and A4, be the operator defined by (1.2), (n=1,2, ..., N—1). From Lemma
1.2 it follows readily that Ay is uniquely determined by, and also uniquely deter-
mines, a string {C,}_, of U""~*&’-valued contractions C, (n=1,2, ..., N—1), namely
the string {C(4,)}YY. However, the definition of the string {C(4,)}Y explicitly in-
volves, besides the operators U, U’ (i.e. the minimal isometric dilations of T, 7’
respectively) and 4, also the operators 4,, ..., Ay_,. In order to get rid of the
explicit reference to A4,, ..., Ay_, in the characterization of 4, by a string of
U"~'®'-valued contractions C, (n=1,2,...,N), we firstly introduce the
following:
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Definition 2.1. A string or a sequence {C,}i<,<, (Where v=1,2, ... oo;
in the case v=c we set v—1=) of operators

2.1 C: D, +UI8 U1 (I=n<v)

is called an A-cascade if each C,-(1=n=v) is a contraction,

2.2 Do=D,, D,=7;, (I=n<v-1),

2.3) Ci|&a=Cys

(23),  Co(Dc,(DATh+(U—T)h)+UlL) =U'Cy(Dyh+1) (h€H, LE€L)

(in case v>2), and

(2.3), Co(Dc,_,(Dc,_,(-.- (D, (D4Th+(U—T) k) +UL).. )+ U2, )+ U1, _,) =
=U'CoooDe,_o(-- (D (Dyh+1)+UL)..)+U 2L, ) (h€D, b, ..., 1,-1€8)

for all 3=n<v (in case v=3).

In the next two lemmas, {C,};<,<, Will be any fixed A-cascade string or se-
quence; also the spaces D,(0=n<v) will have the same meaning as in the pre-
ceding definition.

Lemma 2.1. There exists a unigue string (or sequence, respectively) {Y, h<n<,
of isometric operators

24 Y,:D,,->9, (I=n<v)
such that
(2.5), YD ,h = Dcl(DATh-i-(U—T)h) (h€9),

and (if v=2 then) for 2=n<v:

2.5), Y, D¢, (d+U""2]) = D¢ (Y,_,d4+U""1]) (d€D,_,, I€L).
Proof. We have, by (2.3),,
ID4hl? = | ThI*— || ATh|*+| Dy hl|*—|| Dy Ah||* = .
= [DaTh+U—-T)h|*—||(U'—T") 4h|* =
= |D,Th+U—-T)h|2—|Cs(D,Th+U—T)h)|* = ||D¢,(DATh+(U—T)h21|l2 5
€9),

thus, indeed, (2.5); defines an isometric operator from D,=, to D=,
We assume now that (2.5), (for n=m—1, 2=m<v) defines an isometric operator
Y,-1, obviously in a unique manner. Then definition (2.3),, can be written under
the form '

Ca(Ypyd+U ) =U'Cpy (d+U™2]) (d€Dy,-s, 1€2);
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- consequently we have
IDc,,.,(d+U™=2D)||? = [ld+ U™~ 212~ || C, -, (d+ U212 =
= [ld|2+ U2 12— | U’ Cpoey (d+ U™ 2D)2 =
= |V adPH U 2= Cp(Y oy d+ U D)2 =
= || Y1 d+ U2 = | Cp (Y1 d +U™ D2 = || D, (Y- d+U™ D2
(deDy -y, 1€8).
These relations show that, indeed, (2.5),, defines the searched isometric oper-
ator Y,. Thus the lemma is proved by recurrence.

Remark 2.1. By virtue of Lemma 2.1, it is easy to infer that the definitions
(2.3), (for 2=n<v) can be written under the compact form

2.6), Co(Yyd+UH) = UGy (@4 U2 (€D, 1€82).
Also let us notice that
(27)n bn < bn-l"'Un_l‘Q, bn < g)n

(1=n<v—1) and D,CH.
Now let us consider any isometric operator X:D,—~$%,. By (2.7), @=n<v),
we can attach to X the string (or sequence) {X,};<n<, Of unitary operators

(2.8) _ X,:P,+U"2 - R, =Range(X) (1=n< v)
by the following recurrent manner:
29 R, = Range (X)+US,
(2.10), XU =Ipmeg (1=n=<v),
@2.11), XD, =X Q=n<v)
and, in case v=2, ' :
2.11), X,|D, = X,,|D,

This sequence will be improperly called the {C,};~,<,-extension of X.

Let, moreover, 4, be the 1-PCID of A such that C(4,)=C, (see Lemma 1.2)
and let {X,};<,<, be the {C,},.,<,-extension of X(4,); then by virtue of (2.1) and
(28) C!=Cpu1 X*€L(R,, U"L) (I=n<v—1). In case v>2, the string (or
sequence) {C,}i=n<y-1 Will be called, for convenience, the reduced string (or se-
quence) of {Cn}1§n<v' '

Lemma 2.2. The reduced string (or sequence) is an A,-cascade.

Proof. It is plain that C, (1=n<v) are contractions from D, ,+U""1(U8)
to U"~1(U’L’), where ‘JD(,=ZDA1 and D, _,=X,D, (1sn<v). Moreover, since
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C,X,=Cpy; (I=n<v-1), we have X;C*C.X,=C} C,.., CIXC.X,=
=X,C},,C,+1 whence
(2.12), DgX,=X,Dc,,, I1=n<v-1).
Since, by (2.11),, (2.1), (2.2), (2.10),, (2.11); and (1.10), we have

D =X,D; = X;D, X, (D, +UR) = X(AD D, + UL =D, + UL =D+ UL
and, since (if v=3 and 2=n<v-—1) we have, by (2.11),;,, (2.2), (2.12), and

2.8)
DI’I = Xn+an+1 = XnDn+l = XnDC,H.l = Xn(DCmu(Dn-i_U"ﬁ))— =

= (D¢, R~ =D,

relations (2.1) and (2.2) are satisfied by {C.},-,., (of course with v, D,, £ and £’
replaced by v—1, D,, U2 and U’£’). Also, by virtue of (2.10), and (1.10), we have

@.13), Cl(D 4y (h+1)+UL) = C X (D, (h+1) +UL) =
= G(X7 ' D4 (h+1)+Ul) = Co(Dc,(Dsh+ 1) +UL)  (heD, b, L€ Y),
(2'13)Il Cn, (DC;I'—I(’ . 'DC; (DAI (h + l]_)+ Ulg) +U2 13) .. .) + Unl,,+1) =

= Cp41 X Y (Dc;,_, () +U M 13) = Coa (X572 D, () + U, 0y) =
= Coa1 (X X1 Do, Xy i () + UL s) = Cod (D, X i (L )+ U L yy) = =
= Cps1(Dc, (.. X571 (Dey (D ay (B +1) +UL)+U21) .. )+U, ) =
= Cp41(Dc, (... (X5 1 X1 D, X7 Y (Do (h+ 1) +UL) +U2ly) .. )+ U, ,4) =
= Cpr1(De, (- (Do X1 (D 4y (h+ 1) +UL) + ULy ..) + U, 4y) =
= Cpi1(De, (.- (Dey (X7 D 4 (h+ 1)+ UL) + U2l .. )+ U, ,4) =
= Cpi1(Dc, (- (De,(De,(Da b+ 1) +UL)+U2l).. )+ U yy) (h€D, 1y, ..., 1,41€8),

where we used in order the relations (2.10),, (2.12),_,, (2.11),, (2.10),_,, ..., (2.10),,
(2.12);, (2.11),, (2.10),, (2.11); and (1.10). Now, from (2.13),, (2.3), and (1.8) we

infer
C/(D4Ty(h+D+U-TY(h+D) = C{(DAI(Th-I—(U—T)h)-}-Ul) =

= Cy(De (D4 Th+(U—T)h)+Ul) = U’ C,(Dyh+1) = U’ (P,—P) A, (h+ 1) =
=U'=TDA(h+1) (heH, 1€D),

thus C; satisfies (2.3), (with &, and C, replaced by & 4, and C,). Also, (in case
v=3) from (2.13),, (2.3); and (2.13); we infer

Ci (Dei (Do, Ty (h+D+U—-TY(h+D)+U2) =
= C{(De(D gy (Th+U—T) ) +UD +U?L,) =
= Cy(Dc,(De,(D4Th+(U—~T)B)+Ul)+U?L) =
= U’ Cy(De,(D4h+D+UL) = U'C{(Dyy (h+D+UL)  (h€D, ], LED),
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thus Cj, C; satisfy (2.3), (with 4 and 2, £ replaced by 4, and UL, U’2’ respect-
ively). Finally, in a similar way, one verifies that (in case v=>4), by virtue of (2.13),,
(2.3),+1 and (2.13),_,, the string {C,},~,.,_, satisfies the relations (2.3), for all n,
3=n<v—1 (again with 4, 2, & replaced by 4,, UL, U’L’). This finishes the
proof of the lemma.

Lemma 2.3. Let A, be an 1-PCID of A. Any A,-cascade string ( or Sequence)
{Coli<n<v_1 is the reduced string of a uniguely determined A-cascade string (or
sequence) of contractions {C,h=p<y-

Proof. If the string (or sequence) {C;)i§n<v_1 is the reduced string (or se-
quence) of {C,}1<n<y, then the last one must be defined in the following manner.
Firstly, .

2.14), C,=C(4), Xi|Dc, =X(4), X UL =Iy

(thus D c$H, and X]L is a unitary operator from Dc +UL to R,=D, +UL);
then
2149, C,=Ci1X,-;, X,(d,+U"D) =X, ,d,+U"l (d,€Dc,1cL)

(2=n=<v), where X, is viewed as an operator from D, + U"g to R,=(X,-1Dc)"+
+U"2. These definitions are con51stent if they 1mp1y recurrently X, 133c CDC,
2=n<v).

However, we shall prove by induction even more, namely that

(215)n Xn—le,. = DC:.-u

(2.16), ‘ D, © 9, ‘

‘and that X, is unitary (for 2=n<v) (for n=2, the last two statements are, by
virtue of (2.16),, obviously true). We start by noticing that if for some, n, 2=n< v,
the first relation (2.14), makes sense and if X,_, is unitary then, by the same argu-
ment as in the proof of Lemma 2.2, we infer the validity of (2.12),_,, whence that
of (2.15),. Thus, by virtue of (2.14),, (2.15), is also valid, so that we have completed
the first induction step. In case v=3 we can therefore assume that, n being fixed,
2=n<v, the statements are always valid for n—1. Then, be virtue of (2.15),_,
and the fact that {C,},.,.,_, is an A4,-cascade, the first relation (2.14), makes
sense; thus, by virtue of the above discussion on (2.15),, we infer that this relation
is valid. Therefore, using once again the fact that {C,},.,.,; is an A4, -cascade,
from the second relation (2.14), we obtain that X, is unitary, while from the second
relation (2.14),_, and (2.16),-, we obtain (2.16),. Thus the n'" inductive step is
completed and consequently the string (or sequence) {C,}; <<y is consistently defined.
By this very definition, it is plain that {C,};<.<, satisfies conditions (2.1), (2:2) and
(2.3);. Now we can establish, as in the proof of Lemma 2.2, the relations (2.13),
(1=n<v—1) and subsequently infer the relations (2.3), 2=n<v) for {C,};<,<, from

2
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the fact that {C.},_,.,, being an A4,-cascade, satisfies (2.3), (1=n<v—1; of course
with 4, £ and €’ replaced by 4,, U’¥’, respectively). In this manner we conclude
that {C,h<.<, is an A-cascade. Actually, the proof of the lemma is now com-

pleted.

We can, and shall, now define a mapping from A-cascade strings to PCID’s
of A, for any contractions T, T’ and A€ #(T’, T). Namely, for given T, T’, A4,
N=1,2, ..., and A-cascade string {C,}Y (of length N) we shall define an N-PCID
Ay(4; C,, ..., Cy) by the following recurrent formula

(2.17) 4,(4;C) = 4,
where A, is the 1-PCID (yielded by Lemma 1.2) such that C(4)=C;, and

(217 Ay(4;Cy, ..., Cy) = Ay 1 (413 Cfs .., Cfy)

where {C,}¥~! is the reduced string of {C,}} (N=2,3,...). (Actually, one should

write Ay(4; T, T, U, U;C,,...,Cy) instead of Ay(4;C,, ...,Cy) since this
operator depends also on 7, 7’ and the concrete constructions of the isometric
dilations U, U’ of T, T’, respectively; thus (2.17)y should be written in the form

Ay(4; T, T; U, U; Gy, ..., Cx) = Ay_1(Ay; TS, Ty; U U5 G, .., Ciz)

However, when no confusion seems possible, we shall not complicate the nota-
tions with this preciseness.)

The consistence of the definitions (2.17)y (N=2,3, . ) is a direct consequence
of Lemma 2.2 and the fact that any (N—1)-PCID of a 1-PCID of A4 is an N-PCID
of 4. Also by an obvious inductive argument it follows that

@18)y  Pho1An(4; Ci, ..o C) = An-1(4; Ci, .o Cu-) (PuoalHy)
(N=2,3,...,), ie. Ay(4;Cy,...,Cy) is a 1-PCID of Ayx_,(4; C,, ..., Cy_)-

Proposition 2.1. For N=1,2, ..., and T, T’, A€ S (I", T) fixed, the mapping
2.19)y {CH ~An(4; Cy, ..., C)

establishes a one-to-one correspondence between the A-cascade strings (of length N)
and the N-PCID’s of A.

Proof. For N=1, the statement in the proposition reduces to the first state-
ment in Lemma 1.2. Therefore we assume that the statement is also true for
N=m—1=1. Let moreover 4, be an m-PCID of 4 and let 4, be the 1-PCID
of A defined by (1.2), (with v=m). Then, A,, is an (m—1)-PCID of 4,, thus by
* the inductive assumption, there exists a uniquely determined A4,-cascade string
{C.}*=! such that

(2.20),, A, = A, i(4; CL, .., CL_)).
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By virtue of Lemma 2.3 there exists a unique A-cascade string {C,}V such
that {C,}7'"" is the (4,-cascade) reduced string of {C,}i'; moreover (see (2.14),)
C,=C(4,). Therefore, from (2.20),, and (2.17),, we infer that A4,, is of the form
A,=A4,(4;C,,C,,...,C,), where {C,)' is the above (uniquely determined)
A-cascade string. This finishes the proof of the proposition.

Lemma 2.4. Within the frame of Proposition 2.1 we have
(2.2 ' IDaxhll = IDcyDey_,---De,Dahll  (RED),
where Ay=Ay(A4; Cy, Cs, ..., Cy) and {C,)Y is an A-cascade string.

Proof. Relation (2.21), follows directly from Lemma 1.2.
Suppose relation (2.21)y be true for N=m—1=0. Then from (2.17), we
infer : ' ‘

@2y 1D4, bl =D p_sbll = IDc_s... DciD gy bl (RED)

where A4, _ =A, ,(4;;C;,...,C._), A, is the 1-PCID of A defined by (1.2),
(with v=m) and {C,}7 ! is the reduced string of {C,}". But, by virtue of Lemma
1.2 we have D, h=X(A4) D¢, D,k so that, if {X,}{" is the {C,}} -extension of X(4y),
we obtain '

DC;V-I"'DCIIDAlh =DC;,_1...DC'1X1DC1DAh = DC;V-I“'DCIIXIDCQDchAh = -
= DC;,_I...DC;XchzDCIDAh =...= DC;V-IXN—2DCN_1“’DC1D;4h =
= Xy-1DcyDcy 2, ---De,Dah  (RED),

where we used, in order, relations (2.11)1; 2.12), 2.11),, ..., Q. 1)N_4, R.12)y_;.
Since Xy _, is unitary, from (2.22) it follows that (2.21),, is also valid. This completes
the proof.

Proposition 2.2. The mapping
2.23) {C.}y ~ A.(4; Cy, Cy, ...) = strong lim Ay(4; Cy, ..., Cy)Py

establishes a one-to-one correspondence between all the A-cascade sequences and all
the CID’s of A. Moreover, A_.=A4_(4;C,,C,,...) is an isometry if and only if

2.29) NDcyDey_y---De,Dabll -0 (h€H; N>oo). .
Proof. The first statement of the proposition follows at once from Remark

‘ 1.1, Proposition 2.1 and (2.18)y (N=2, 3, ...). Concerning the second, we remark
that (2.24) holds if and only if

(2.25) ~ IDayhll >0 (HESH; N o),
where Ay = Ay(A; Cy,...,Cy) (N=.1,2,..)).

2
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From the first statement it follows that
D4 Bl? = IBl?— | A= All* = [}~ lim [ Ayh]® = h}iggo 1D 4, Il

and consequently (2.25) (or equivalently (2.24)) holds if and only if D, |$=0,
that is, if A_ |$ is isometric. Thus it remains only to prove that the last I)roperty
implies that A_ is isometric. Or, since 4, ,U=U"A_, it follows at once that
A_|U"S is isometric for n=0, 1,2, ...; in its turn, this implies that D, |U"$=0
n=0,1,2,..).

Since the spaces U"$ (n=0,1,2,..) span &, we conclude that D, =0,
i.e. A is isometric.

& 3. Propositions 2.1 and 2.2 reduce the study of all PCID’s and CID’s of
an A€F(T', T) (where T, T’ and A are some given contractions) to that of A4-
cascade strings and sequences. However an A-cascade string or sequence is a rather
involved concept. Therefore we shall show that the study can be actually confined

to more transparent concepts, one of which is defined in the following. '

" Definition 3.1. A string (or sequence) {I',};=,<, Of operators will be called
an A-cho:ce string (or sequence) if each I', (1=n<v) is a contraction acting from
R, to R, (f n=1) and from D, to Dpx_, (f n=2). (Thus if {I,}Y is an 4-
choice string, then for any contractlon I‘N“EL(Dr , D), (L s also an
A-choice string; this is the justification of the termlnology)

In this section wé shall establish a natural connection between the A-cascade
strings (or sequences) and the A-choice strings (or sequences). To this aim we need
some simple facts, rather known, which, for the sake of completeness, will be collected
in the following:

Lemma 3.1. 6, 6" and &, be some Hilbert spaces, ®, being a subspace of ©®,
. and let Cy:®y—®" be a contraction. Then the formulas

3.1 DetI'(Co, €)= C|6O6G,, C(Co, I) = CoQ@+Dci r{i-9

(where Q denotes the orthogonal projection of ® onto ®,), establishes a-one-to-one
correspondence between all the contractions C:®—®" such that

(3.2) Cl6, = C,,
and all the contractions I': o 60—»5003. Moreover, the formulas
(3-3) ZDr = .RDcl(ﬁ 660, Z*DI'*DCD = Dct, Z,DCo = Dclﬁo

(where R denotes the orthogonal projection of D onto DS (D ®y)~ define unitary
operators Z=Z(C,,C) from Dp to DO (DG, Z,=Z,(Cy, C) from Dp
t0 Der and Z'=Z'(C,C) from D, to (DcGg)~; also

(3.4) ' ZDr=DcOZ' e,
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Proof. Let C:®—~®" be a contraction with the property. (3.2). Then,
-(35) I0C* 1P+ T-QC* 1P = IC*IP = lIg’l® (g'€6),
(QC*g’, 80) = (C*g’, g0) = (g's Cgo) = (8, Cogo) = (Cig’,80) (g'€G, g€ By)

whence .
3.6) OC* = C¥

and therefore, by (3.5), _
X)) IU-Q)C*¢'ll = |Dcsg’l  (8€6).

It follows that fhere exists a unique contraction I'*: Dx—>6O G, such that
3.8 I'*Deg=(I—-Q)C*.

Consequently, setting I'(Cy, C)=I'€L(6©6G,, D) we obtain the first rela-
tion (3.1). Conversely, if we are given a contraction I': ®©6,— D, and if we
define C=C(C,y, I') by the second relation (3.1), then (3.2) and (3.8) are plainly
satisfied; consequently we obtain (3.6) with the same argument as above. It follows

(39 IC*g’li2 = 1QC*¢' 12+ I(I-0) C*g’lI* = I C5'g"I1* +IT* Desgl|* =
= |G+ IDcg 2= lg'I* (g'€®)
hence C is a contraction; finally, (3.8) shows that I'(C,, C)=TI.
This completes the proof of the first statement in the lemma. The statements

on Z, and Z’ follow readily from (3.9) and (3.2), respectively. Concerning the
statement on Z, we note that

IDcgl® = llgl*—1 Cell* = (I~ Qel*+1Qgl*~| CQg+Des T (I-Q)gl*=
= 1U-Q)gl*+1Qsl*~ 1 CoQgl*—2Re (CoQg, Des T (I- Q) 8) = 1D I (I-Q)gl® =
Y — Q) gl*+11Dc,0gll*—2Re (Dcs CoQ8, I'(I-Q)g)— IDs T (I— Q)| =
=l (I—ngII2+IIDc°QgI|2—2Re (CoDc, 08, I'I-Q) g)—IDcs T (I—-Q)gll* =
= |\Dr(I-Q)gl*+IICS T (I-Q)gll*+|Dc, Qgli*—~2Re (Dc,Qg, C T (I-Q)g) =

= IDr(I-Q)gl*+11Dc, 22— Co T(I-Q)gl® (g€ B)
whence ’

(3.10)  [|Dcg+Dcgoli® = IDrgl2+11Dc, 80— Co T'gll* (g€ © Gy, go€Gy).
But since CyI'(6©6G)cCiDcrC Dc,, from relation (3.10) it follows that
IRDcg|? = goi?go 1 Dcg+Dcgoll® = I1Drgl? (g€® S Gy).

“This shows that the definition of Z is meaningful and that Z is unitary. Since
(3.4) is now obvious, the proof-is completed.
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We now return to the aim of this section, stated before Lemma 3.1, by con-
sidering an A-cascade string {C,}Y (where T, T* and 4 are as in Sec. 2). We set

(.11 ' Gpy=Fa» 06,=D,+8, 6 =¢,

Gy, =Y, D, o +U12, 6,=D, ,+U""18, G,=U""12 (n>1)
and we define the contractions Cy,:®,,~6, (n=1,2,..., N) by
(3.12) Cuo=C4, Co¥poalD,_o=

=U'C,4|D,s, CoUIU 2R =U'C,_4|U22 (n=>1).

By virtue of (2.3), and (2.6), (for n>1) we have
(3.13) C,|®o, =Coy n=1,2,...,N).

Therefore, Lemma 3.1 yields the operators
(B.14), I=T(ConCp)y Zy=Z(Cons )y Zyn=Z,(Con, C)s Zp=Z'(Coy, Cp)

for n=1,2,...,N.. (In fhe sequel, when a more precise notation will seem necessary,
we shall write I'.=I.(Cy, ..., C,), Z,=Z,(Cy, ..., C,), ... instead of I',, Z,, ...).
Lemma 3.2. For 2=n=N the range of Z,_, is Y,_\D,_, and I', is a con-
traction from Z,_ Dy to U'Dex .
~Proof. For proving
(3'15)71 Zl,l-leo,n_1= Yn—lbn—é

for n=2,..., N, we note ﬁrstly that (3.15), follows from (3.3) and (2.5),, by the
relations '

Z{D¢ (D4Th+({U-T)h) = D¢,(D4Th+(U—T)h) =Y, Dh (hE9D).
For n=2 we have, by virtue of (3.3), (3.12) and (2.5),-,,
Zy 1D, \(Ynoad+U2) = D, (Y, od+U~20) =
=Y,-.1D¢, ,(d+U"3l) (d€D,_;, 1€9),

from which (3.15), follows at once. Concerning the second statement in the lemma,
we first notice that Lemma 3.1 yields ’

r,eL(6,66,,, D).
But, by virtue of (3.11), (3.15), and (3.4) we have firstly
(3.16), 6,66, =D, 10Y,-1D,-2 =D, ,0Z,1%¢,,., = Z,-1Dris,
while, by virtue of (3.12), we have C,,Ci=U’C,_,C} ,U'*|U""*" whence

D% = U’'D%_ U*|U™'®, Dy = U'Dg U*|U™'E
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'

and hencé
" (3.17), . Dt =U'"Der,-

We can thus conclude that I',€L(Z,_ Dy _,, U'Dg+_,), completing the proof
of the lemma. .

We shall associate with our A-cascade string {C,}Y an A-choice string {I,}Y
in the following manner. We set

(3.18)1 F1=WAF{,
and ' .
(3.19), W, = Iz,-l, Wa= WD

Since W,€2(Dc+,, R),) is unitary (see Lemma 1.1), we have obviously Dy =
=Dy, WyDp»=DpxW, hence the operators

(3.20), Wy ®r, —~Dry, Wa: Dr‘{:" Dry,
defined by formula (3.19),, are unitary; moreover, we also have
G2, : reL(Ry, RY),

thus {I';} is an A4-choice string (of length 1); this will be associated with our A-
cascade string if N=1. If N=>1, we appeal to the following

Lemma 3.3. Let N=1. Then formulas (3.18), (3.19),, and, for 2=n=N,
(3.18), Ly=WgZ5, U Z, W, 4,
(3.19), Wo=Zy sWos|Dr,s Win=U'Zy W, | D
define an A-choice string {I',}Y and unitary operators ‘
(3.20), W,: Dy —Dry WD ~Dr (I=n=N)

" Proof. Proceeding by recurrence, we notice that the statements concerning
r,, W, and W,, were already established above. Assuming that those concerning
W,_, and W,,_, (where m—1=1, m=M) are also established we infer by virtue
of Lemma 3.2 and (3.20),,_, that the relation

G2y, r.eL(®r,_,> Driy)
is valid for n=m. From this we obtain
Zm—IWm—lF:trm = F:nrmZm-IWm—ly

U’Z*m—IW*m—lrmr:l = rr,nr;n*U’Z*m—IW*m—h
whence .

Zm—IWm—lDrm = DF:an-le—D U’Z*m—IW*m—lDl‘:. = DI‘::U,Z*m-iW*m—l'
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From these relations it follows readily that formula (3.19),, defines the unitary
operators (3.20),,. Thus the operators W, and W,, (1=n=N) are unitary and
(3.21), is true for all n, 1=n=N, which means that {I,}Y is an 4-choice sequence.
This finishes the proof.

It is plain that the operators I',, W, and W,, (1=n=N) yielded by the pre-
ceding argument depend only on C;, C,, ..., C, (and of course on A, T, T and
U, U"). Therefore we shall denote them by I',(Ci, ..., C,), W,(Cy, ..., C,) and
Wyn(Cy, ..., C,). (When a confusion seems possible we shall explicitate also the
dependence on A, T, T, U, U’, for instance I',(4;T,T’;U,U’;C,, ..., C,) for
r, etc.)

Proposition 3.1. For v=2,3,..., and T,T',A¢SH(T’, T), fixed, the
mapping
(322)v {Cn}1§u<v - {Fn(cl’ veny Cn)}1§n<v
establishes a one-to-one correspondence between all the A-cascade strings (if v<eoo),
respectively sequences (if v=eo) and all the A-choice strings (of length v—1, if
v<eo), respectively sequences (if v=-o).

Proof. The case v=o follows immediately from the case v<eo.
Since the case v=2 is a direct consequence of Lemma 3.1, we shall assume
now that the proposition is valid if v=m=2.
Let {I',}1<n<m+1 be any A-choice string. Then by our assumption there exists
a unique A-cascade string {C,},<,<m Such that
(3.23), r,=r,(¢,¢Cs,....C) (I1=n<m).
Therefore, by virtue of Lemmas 3.1 and 3.2, the operators
Iv = F;n—l(cla sery Cm—l): CSm—le@O,m—l - bcﬁ,...-x
and
Z=2, ,=2(C, ... Cyed): Drfy > 6,66, (see (3.16),)
Z* = Z*m—l = Z*(Cls ey Cm—l): DI‘::-l g DC’:'n-n
W= Wm—l = W(Cl, ceey Cm_l):brm_l - Dr,’"-l,
We=Wm-1=W,(Cpy ..., Cou): Dty = D
are also uniquely determined, and I’ is a contraction while Z, Z,, W, W, are
unitary. Setting
3.29) I'sUZw.r,wz *
we obtain a contraction from 6,6 ®,, to D¢ (see (3.11), (3.12) and (3.17),).
By virtue of Lemma 3.1, there exists a uniquely determined contraction C,:6,~6_,
such that C,,=C(C,,,, I'"). Comparing (3.11), (3.12) and (3.13) (in the case n=m)
with (2.6),, we see that {C,};<,<m+1 1S an A-cascade string.
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Comparing (3.24) with (3. 18),,, we finally see that (3.23),, is also valid. Thus
we verified that the mapping (3.22),,+, is surjective. Since the last term in {C, }ls,,<,,,+1
is necessarily of the form C,,=C(C,,, "), where I is given by (3.24), the mapp--
ing is also injective.

Now the proposition is concluded by induction.

4. In this section we shall associate the CID’s of an A¢€.S (T, T) with T, T’
and 4 as in the preceding sections, to a more usual concept, namely to contractive
analytic functions ([16], Ch. V.). As preparation, we shall now discuss the pre-
ceding sections in a very particular case, namely that of an arbitrary contraction
I from R to R’ (where R and R’ are two Hilbert spaces), considered as intertwining
the corresponding null operators Oy, O, i.e. I'€F (0y, Og).

On this purpose, for the operator 0 we shall choose as minimal 1sometrlc
dilation Vg the canonical multiplication shift

Vaf(2) = zf(2) (lz]|<1)

on H%(R), where R is identified with the space of constant functions in H2(R);%)
the minimal isometric dilation Vi of 04 will be chosen in the obvious similar
way. Since any CID of I is a contraction intertwining Vy and Vg, it is the multiplic-
ation operator by a contractive analytic function {R, R’, I'(z)} (see [16}, Ch. V,
Sec. 3), which obviously must satisfy the condition I'(0)=Tr. Since the converse
fact is also obvious, we can state the following consequence of our previous results.

Lemma 4.1. Let I':R—~R’ be an arbitrary fixed contraction. Then Proposi-
tions 2.2 and 3.1 with T=0q, T'=0q, and A=I'cSF(T’;T) yield a one-to-one
correspondence between all contractive analytic functions {R, iR’ r (2} such that
IF(Q)=rI and all I'-choice sequences.

Remark 4.1. We recall that within the frame of the preceding discussion,
(1.5) and (1.5)" take the form

@) Fr=VaR, Rp=@r+VaR)OFr =D,

and '

L1y {3‘}={DrrGBVWFr:r€‘R},

@1 R =D @Ve R)OFr = {rdVer :Drr+I*r' =0, reDp, reR}

Lemma 4.2. The formula
4.2) o(D)r' = (—T*r)®Va D’ (' €Dps)

defines a unitary operator from Dp. to Ry.

%) For the Hardy spaces H’@f), where R is a Hilbert space, see [16]. Ch. V.
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Proof. It is obvious, by virtue of (4.1)" and the relation D I'*=I*Dp., that
(4.2) defines an isometric operator () from D,—. to R;.. Moreover, if we are glven
ré@Vr' € Ry, then setting r;=Dpr’—Ir we obtain rlebp and

o(D)ri = (—T*Dpr’ +IT*I) @V (Désr' —~DpsI'r) =
= (r=Dr(I*r'+Drr))®Va (X —[(T*r +Drr)) = r@Vgr'.

This finishes the proof of the lemma.

Let now T’, T, A€ S (T’, T) be arbitrary contractions with some fixed minimal
isometric dilations U, U’ of T, T’. For an A-choice sequence {I',};" we set
(43):: ‘yn(rl’ r,,..., Fn) (=yn) = w(rl.)rn+l (I=n<e=).

Since (see Definition 3.1)

DD >o..DDxD...,
definition (4.3), (1 =n<<) makes sense.

Lemma 4.3. The mapping
(44) {I-‘n};‘s - {Fla {yn(rlﬁ MRS Fn)};.o}

establishes a one-to-one correspondence between all A-choice sequences and all pairs
Jormed by a contraction I':R,—~R) (considered as belonging to F(Og , Oyg)) and
a TI'-choice sequence.

Proof.-Let {I',};” be an A-choice sequence and let {y,};” be the sequence
yielded by (4.3), (1=n<ee). It is obvious that, by virtue of Lemma 4.2, we have

@), D, =D, (I1Sn<w)
and, using also (4.1), - A
(4.6), N R, = D, ~ o (YDt = R,

where, as already indicated above, I', is regarded as belongmg to to F(Og, Og);
moreover, we also have

(@47, Di=o(l)Di,olD" Dpo(l)=ol)Dry,, (1=n<w)

From (4.5), and (4.7), we infer readily that
(48)" b?n = DI‘,,+15 DY!‘I = w(rl)bl':q-l (l =n <°°)
Consequently, y,,, is a contraction from bv.. to D (1=n<e). Together with
(4.6), this shows that {y,};" is a I';-choice sequence. If we are given now a pair
{ry, {v.);’} formed by a contraction Iy:®R,—~%R, (regarded as- belonging to
4 (0g, 05)) and a I',-choice sequence {y,};”, then there may exists only one A-
choice sequence {I',};> which is mapped by (4.4) onto our given pair, namely that
given by the formula
(4'9)n Fn+l = m(rl)*Yn
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It is now easy to infer that if I',,, (1 =n<o) are actually defined by (4.9),,
then (4.5),, (4.7), and consequently (4.8), are also satisfied for n=1; it obv1ously
follows that {I',};7" is an A-choice sequence. This concludes the proof.

We are now in state to formulate the main result of this section. To this aim
let T,T’, A€ #(T’, T) (as well as U and U’) be as above. Let 4_ be a CID of 4
and let o

Ayt A —~ {Cn}‘l”’ Ay {Cn};o_> {Fn};o’ A4t {Fn}lw_’ {FI! {‘yn}lm}, )
A:’»:{Fl’ {Yn};e} - {"RA’ 93:,, F(z)}
respectively be (A,) the inverse mapping of that given in Proposition 2.2, (A3)(Ay)
the mappings given by Proposition 3.1 and Lemma 4.3, (A;) the inverse mapping

of that given by Lemma 4.1. Then, the bijectivity property of these mappings di-
rectly yields the :

Proposition 4.1. The mapping A,=Az0 Ayo Azo A, establishes a one-to-one
correspondence between the CID’s of A and the contractive analytic L(R,, R))-
valued functions.

Remark 4.2. The uniqueness theorem for CID’s given in [6] is a direct corollary
of Proposition 4.1. Indeed, by virtue of this proposition, there exists a unique
CID -of A, if and only if there exists only one contractive analytic function
{R,, R, ['(z)}. Obviously this happens if and only if at least one of the spaces
R, or R, reduces to {0}, i.e. (see [16], Ch. VII) if at least one of the factorizations
A-Tand T A is regular.

Let us present a particular case which might be instructive. On this purpose,
we shall denote by iy, the natural isometric identification of £” with the subspace
{0} £’ of D, 2 and by P,_the orthogonal projection of R onto &, =((I-UT*)$)",
where the notation is, as usual, that of Sec. 1. Also let us firstly give the following

‘Lemma 4.4. The operators ig|R: R, -2, P, |R,: R, ~L, are injective.

Proof. Let P, r=0, reR, or equivalently r=Uh, for some h,€9, and
(T*D,P+U*(I—P))r=0. Then

4.10) T*DATh1+(I—T*T)h1 =0, h=T*(I-D)Th,.
But O=1-D =1 implies

I T2 = 1A% = (T* (I~ Do) Thy, by) = [(I— D ) * Thy|2 = || Th,|?,
whence ’ '
(4]1) (I—DA)llzThl = Thl and DATh1= 0.
From (4.10) it follows [[((U—T)hJ2=((1—T*T)h,, h)=0, whence
(4.12) r =Uh, = Thi€9.
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Since r€®D,, from (4.11) and (4.12) we infer that r=0. This proves the in-
jectivity of P2 |R,. Concerning the injectivity of i, | R/, we notice, firstly, that
if r ESRA, igr’=0, then r’=d®0 with some de€D,, and secondly, that
(¥, D hd(U'—T")AR)=0 (h€ H) implies D,d=0, d=0, thus i%|R is also in-
Jjective. Thus the lemma is proved.

By virtue of the preceding lemma and of [16], Ch II, Sec. I we have

dim R, =6+ rank Dys = dim 8,, dim R} = 61 &L rank Dy = dim £”.

Therefore, from Lemma 4.4 and Proposition 4.1 we can now readily obtain
the following

Corollary 4.1. Assume that, within .the frame of Proposition 4.1, we have
dp=0p.=1. Then either the set of all CID’s of A is a singleton or it is in a one-to-one
correspondence (explicitly given by A,) with the unit ball of H* (i e. the set of all
complex-valued analytic functions u(z) on the unit disk- D= {z: |zl<l} such that
lu(z)|=1 for all zeD).

It is plain that in this corollary the first case occurs if min (dim ER'A,
dim R’)=0 (see Remark 4.2), while the second one if dim R,=dim R, =1.

5. We shall now apply Proposition 4.1 to the labelling of all classes of iso-
morphic Ando dilations. To be more precise, for a pair {Ty, T,} of some fixed com-
muting contractions on some Hilbert space 9, there always exists (as shown in
“a celebrated short note by ANDO [5]) a pair {U,, U,} of commuting isometric operators
on some Hilbert space & containing $ as a (closed linear) subspace and such that

(5.1 ' PURU™|§=TNT" (n,,n,=0,1,2,..),

where P denotes the orthogonal projection of & onto $. Obviously we can
and shall also suppose that :
(5.2 K=V UrUES.
ny,n,=0

Any such pair {U,;, U,} will be called an Ando dilation of {Ty, T,}. Two Ando
dilations {U,, Uy}, {U;, U,} are called isomorphic if there exists a-unitary operator
W from the space R, on which operate U; and U,, to the space & on which operate
- Uy and Uy, such that

(5.3) - WU =UW (j=1,2, W|$=Is.

Let now U on K be a fixed minimal isometric dilation of T=T,. Obviously
any Ando dilation {U;’, U’} is isomorphic with some Ando dilation {U,, U,} operat-
ing on a space ‘R containing K (as closed linear subspace), and such that -

(5.4) : UK =U.
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Let {U{, U,} be another such Ando dilation, isomorphic “by W to {U,, U,}.
Then by virtue of (5.3) we have WU"h= WU"h U"Wh=U"h=U"h for all
h€$, n=0,1,2, ...; therefore

(5.5 WK = K.

By virtue of this discussion, we can and shall cénsider from now on Ando -

dilations satisfying (5.4). With this convened, we state the following
Lemma 5.1. For T=T, and A=T,, the Sormula

(5.6) A = PxU,|K

(where Py denotes the orthogonal projection of K onto K) establishes a one-to-one
correspondence between all classes of lsomorphlc Ando dilations of {Ty, T,} and all
CID’s of A.

Proof. First we remark that

(&N)) . UK cK,

i.e. that K is reducing U,. This was, for instance, proven in [1‘3] For the sake of
completeness let us sketch the proof. On this purpose we infer easily from (5.1)
and (5.2) that

5.8 PU,=T\P=TP, PU,=T,P=AP;

from the first relation (5.8) it follows that

(5.9 ' Uf9=Ty=T*
whence, for h€$, A

UfU"h=T*h if n=0, and UfU"h=U""1h if n=1,2,..,
so that, since these U"A’s span K, (5.7) is true. We conclude thus that
(5.10) : PU, =U, P.

Now the fact that for a given {U,, U2} formula (5.6) defines a CID A4 of 4
can be easily obtained from (5.10) and the second relation (5.8). Moreover if
{U/, U;} is another Ando dilation of {7y, T}, isomorphic (by W) to {Ul, U,},.
then WPK Py= PKW so that

_PRUZ|K = PaWU,|K = PcUy|K = 4
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Thus we can conclude that (5.6) defines a mapping from the classes of iso-
morphic Ando dilations of {T}, T,} to the set of the CID’s of A. Let now A4 be
a CID of A. Let U, on & be a minimal isometric dilation of A. Since U is an iso-
metric operator commuting with A it has a unique CID (as operator in R
commuting with U,; namely consider in Remark 4.2 the case when A4 is isometric
and observe that in this particular case we have R,={0}), which we shall denote
by U,. The pair {U,, U,} is an Ando dilation of {T;, T,} satisfying the property
(5.6). Indeed, (5.6) is satisfied by the very definition of U,, while

PUMUY* = PP UMUP: = PUMPUPs =
= PUMA™ Py = T"PA™ Py = T" A PPx = T" AP = T" T3 P

for ny,n,=0,1,2,.... Moreover, since U is isometric, it follows directly that
U;|K=U, whence :
N 2 . N 2 .
U, S Ukl =|| 2 UVRUk| =
n=0 n=0
= 2 (U Uk, Uky)+ 2  (Uk,, Up~"Uk,) =
Nznzm=0 0=n<m=N
= 3 (A""Uk, Uk)+ 3 (Uky A "Uk,)=
Nznzmz=0 0=n<m=N A
= 3 (UA*"k,, Uk)+ 2 (Uk,,UA™ "k,)=
Nznzmz0 0=n<m=N .
. . N 2
= > A"k k)+ 2 (ky, Aky) = || 3 Usk,
Nznzm=0 0=n<m=N n=0

for all ky, ks, ..., ky€K, N=0, 1, .... Therefore U, is indeed isometric.

Finally, the fact that relation (5.2) is also satisfied, follows from

V U=V U VU=V U V UnH =V UK=8

ny,ngz0 o =0 m=0 ny=0 n=0 ng=0
because U and U, are minimal isometric dilations of T(=T,) and 4, respectively.

It remains to prove that the mapping yielded by (5.6), is one-to-one. But this
follows at once from the preceding construction, since if Py U; |K=Py U,| K (=4)
for two Ando dilations {U,, U,}, {U{, U;}, the isometries U, and U; are actually
minimal isometric dilations of A, thus isomorphic, say by the unitary operator
W. But then

WU, Uk = WURUk = Uy™WUk = Uj" Uk = Uy U™k = U{ WU*k

for all the elements Utk (k€K, n,=0,1,2,...). Since these elements span the .
space on which operate U, and U,, we infer that (5.3) is valid (of course in the
special case satisfying (5.4)), thus {U;, U;} and {U], U,} are isomorphic.
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"Proposition 5.1. Let {T;, T>} be a pair of commuting contractions on $ and
let, for i=1,j=2 or i=2, j=1, '

(5.10) R,; = (Dr,®Dr)O{Dr,T;h® Dy, h: heH).

There exists a one-to-one (explicit) correspondence between all classes of isbmorphic
Ando dilations of {Ty, T,} and all the contractive analytic L(R,,, R,.)-valued func-
tions. : '

Proof. Weset T=T, and A=1T,. By virtue of Lemma 5.1 and Proposition
4.1 we have an explicit one-to-one correspondence from the classes of isomorphic
Ando dilations of {T;, T,} and all contractive analytic functions {®R,, R, B(z)}.
Or by virtue of [16], Ch. II, Sec. 1, there exists a unitary (canonical) identification
@:Drh~(U—-T)h of Dr=Dy with £ Thus ¢,=[Ip, ¢] identifies D, &Py,
to Dy, + £ and takes R, onto R,, while o1=1I D¢ identifies Dy Dy to
D, ®L and takes R;,=(Dy,®Dy,)O {Dr,h® Dy, T h:h€H} onto K.

Denoting ¢’ the unitary operator from D, &y to D;,®D, which inter-
twines the coordinates, we obtain by A(z)=y¢"*B(z)¢,|Rs (lz|<1) the mapping
yielding the one-to-one correspondence between the set of all contractive analytic
function {R,, R/, B(z)}and that of those of the form {R,,, R,,, 4(z)}. This plainly
concludes the proof.
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Classical approximation processes in connection
with Lax equivalence theorems with orders

W. DICKMEIS and R. J. NESSEL

1. Introduction

In this note we continue our previous investigations [8], [10] on Lax equivalence
theorems with orders in the setting of linear operators in Banach spaces. There
we were concerned (compare also with [18a] as well as with [6] and the litera-
ture cited there) with a quantitative description of the approximation of the
exact solution {E(t); t=0} of a properly posed initial value problem, being a
(continuous) semigroup of class (C,), by some difference scheme {E; n€P} consti-
tuting a family (0=1=J) of discrete semigroups (with P the set of non-negative inte-
gers). According to the hierarchy of the various convergence theorems for families of
semigroups as outlined by STRANG [20] (see also [2], [23]), one may then ask whether
one can also equip more general theorems than the original Lax one with orders.
To this problem Thm. 2 below will give a modest contribution inasmuch as the
convergence of a family {E,(r); =0}, 0=t=8 of continuous semigroups
towards {E(t); 1=0} is considered with orders, but still in the Lax framework.

There is another point which motivated the present studies. In [14] GROETSCH—
KING outlined an interesting interconnection between Bernstein polynomials and
the convergence of a certain difference scheme (see Sec. 3, Ex. A) which was then
continued in [15] with respect to some quantitative results. The procedure, how-
ever, looks somewhat isolated so as to be particularly taylored to Bernstein polynomi-
als. Thus the question arises whether there are further classical noncommutative
processes in approximation theory of the type

Zf(k/n)Qk,n(x)o
the convergence of which may be interpreted from this numerical point of view.
This is indeed the case and will be worked out explicitly for the familiar Szdsz—
Mirakyan and Baskakov operators. But also the general class of approximation
processes as introduced in [18] via the powers of certain functions fit into this
program. In fact, it turns out that the procedure and results of [14] may be.con-

sidered as a genuine application to our previous Lax equivalence theorem with
orders. : ‘

Received November 23, 1976.
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In Sec. 2 we first treat two alternative forms of the (discrete) Lax equrvalence
theorem with orders, extending by the way those of [8], [10] slightly (cf. Thm. 1; 3).
Correspondingly, the matter is considered in connection with a continuous version
of the theorem of Lax on the convergence of families of semigroups (see Thm. 2; 4).
The latter results are obtained by exploiting methods used in [13] to give an element-
ary proof of a weak (non-order) version of the Trotter theorem. In Sec. 3 the Lax
theory for difference schemes (Thm. 1; 3 of Sec. 2) is applied to some examples of
the form

E=Za@T Q= :

where T, f(x):=f(x+h). For explicit difference schemes (Ex. A) the series is
finite, whereas for implicit difference schemes (Ex. B and C) the series may be in-
finite (compare [5], [6]). Stability and consistency properties are given in terms of
the (positive) functions ¢.(1). As mentioned above, special choices of the ¢, (1)
lead to Bernstein polynomials, Baskakov operators, and the operators of Szdsz—
Mirakyan. In Sec. 4 we consider the same examples from the point of view of the
continuous semigroups {E!*; #=0} which interpolate the discrete ones {E"; n€P}
used so far at the grid points nt. In this situation the continuous versions of the
Lax equivalence theorem with orders (cf. Thm. 2; 4 of Sec. 2) may be applied.
Finally in Sec. 5, instead of reproducing the Ex. A—C via the interpolating semi-
groups {E!*; 1=0}, one may consider the family of semigroups {exp [¢(E,—1I)]; t=0}
being a familiar construction in the course of the proof of the original Trotter the-
orem. In this case one obtains a comparison between a given difference scheme
and the corresponding line method which in turn implies a comparison theorem
between the Bernstein polynomials and the operators of Szdsz—Mirakyan.

Summarizing, the applications deliver pointwise direct approximation theorems
for the Bernstein polynomials, the Baskakov, and the Szdsz—Mirakyan operators
which are best possible, apart from constants. Though these direct theorems as
such are of course well-known, they do not only show interesting interconnections
between the Lax theorem in numerical analysis and the convergence of some classical
approximation processes but they also indicate that the notions and results of the
abstract theory in Sec. 2 seem to be adequate.

The authors would like to extend their thanks to Prof. P. L. Butzer for his
steady interest in this work, particularly for drawing our attention to the study
of Lax equivalence theorems with orders. We also thank Dr. M. Becker for many
valuable suggestions, in particular in connection with (3.10), as well as Prof. H.
Esser for a critical reading of the manuscript. The contribution by W. Dickmeis
was supported by a DFG research grant (Bu 166/26) which is gratefully acknow-
ledged. : :
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2. General theory

Let X be a Banach space (with norm |} - [|x) and [X] the space of bounded linear
operators of X into itself. A (continuous) semigroup {E(¢); r=0}c[X] (of class
(Cy) is a one parameter family of operators satisfying: E(0)=1, the identity,
E(t1+t2)=E(t1)E(tg), and :11'35 VE@) f—f|lx=0 for each f€X. For a semi-
group of class (C,) there exist constants M =1, ©=0 such that (for the fundamentals
of semigroup theory see [7])

@ 1E @iy = Me™ (¢ = 0).
Consider the initial value problem
2.2 dldtu(t)=Au(t) for t=0; u@=f for fcX,

where A is a closed linear operator with domain D(A4) dense in X and range in X,
the given element f describing the initial state. The problem (2.2) is said to be pro-
perly (or correctly) posed if there exists a (continuous) semigroup {E(t); =0}
(of class (Cy)) such that each solution of (2.2) is of the form u(t)=E(t)f. In this
case, A is the infinitesimal generator of the semigroup, i.e. the closed linear operator
defined densely in X via

Af = lim 7 E@O)- 111,

the domain D(A) consisting of all elements f€ X for which the limit exists.

In numerical analysis one is now interested in approximating the family
of “exact” operators {E(¢)} by powers of some finite difference operators
{E.; 0=t=6}c[X], in particular to treat the error ||E? f— E(nt) f|x in dependence
upon smoothness properties of f€X. In this connection the most important pro-
perties of the difference scheme are stability and consistency for which the follow-
ing definitions (with orders) were used in [8] (see also the literature cited there):

Definition 1. The difference scheme {E,;0=t=4}c[X] is said to be con-
sistent of order O(p(x)) on the linear manifold UcX with respect to the semi-
group {E(t); ¢=0} if there is a constant C=0 such that for all feU, ¢t=0,
0=1=6
(2.3 IE:—E@]E@)flx = Cro(r)e™|fly
where | f |y denotes a suitable seminorm on U. If U is dense in X and ¢ (1) in (2.3)
is replaced by o(l), T—~0+, the difference scheme is said to be (ordmanly) con-
sistent. :

Defmltxon 2. The difference scheme {E,; 0=t=5}c[X] is said to be stable
of order O(Y (z, 1/n)) if there is a constant S=>0 such that for all nEN (=set of
natural numbers), 0=1=/J
24 : IEZNxy = S (z, 1/m).
and (ordinarily) stable if the right-hand side of (2.4) is replaced by O(1), t—>0+

3
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Here ¢(7) is some non-negative function on [0, 6] and ¥ (z, y) a positive bounded
function on [0, 6} X [0, 1] monotonely increasing in y and normalized via (cf. (2.1))
2.5) ' e = ShY(r, 1/n) (0=1=9,neN).

In this terminology the Lax theorem in its original form reads (see {171, [19) .

Theorem L 1 (discrete version). Given the properly posed initial value problem
(2.2) in X and a finite difference scheme {E,;0=1=08} satisfying the (ordinary)
consistency condition, then (ordinary) stability is necessary and sufficient for (ordinary)
convergence, i.e. for each feX

lim B35~ E(@O)f Ix = 0

for each sequence {(n;,t))};cn With t;~0+, njTj-t<eo as j-co.

Following [8], [10] one can equip this equivalence theorem with orders, smooth-
ness- properties of the element f€ X being measured in terms of the so-called modi-
fied K-functional (¢=0) :

26 K, f) = Ko f; X, U) = inf {1~ gle-+elglo}.

This is known to be a continuous and monotonely increasing function of ¢ with
lm K(, f)=0 for all feX if U is dense in X One also has, in view of the

deﬁmtlon
o Iflx, fex
@7 | K@, f)= {,m;" v,

Theorem 1. Let the finite difference scheme { ;0=1=0} be consistent of
order O(p (v)) on Uc X with respect to the semigroup {E ®); t>0} Then the follow-
ing assertions are equivalent: .

- (@) IEzf=EMmD)f|lx = e f/ )K((C/Z)me“’"'co(_f),f),'

b 1B~ Em)f xS {M” Jex
¥ (@ 1n) |(C/)nre o @) flu, fEU,
© 1EZllexy = S/ (z, 1/m),
where M is a constant only depending on f (there is a slight abuse of the constants S).

Proof. The implication (a)=$(b) follows by (2.7). Moreover, by the uniform
boundedness principle one may replace the constant M, by C, || f{lx for some C,>0.
Together with (2.1) and (2.5) this shows (b)=(c). Concernmg the proof (c)=>(a)
in view of the identity

(2.8) Eig—E(n1)g = 2 E}-i- 1[E E(r)]E(Jr)g
one has for: any g€ U
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| Btg = Eno)gly = f'z"l(S/w (5, (1=~ ) ) Cepe-rgly = Jéﬁfm " o(3)gly

using stability and consistency with orders. Hence for any fEX it follows by (2. 4),
(2.5) that for any ge U

|E2f — E(uo)f llx = | EX(f— @)llx + | E(ee)(f — g_)u; +Erg—Eno)glx =

: [m—n Mo | gl g o Ol =

= !P(T, 1/ ) {"f g"X+(C/2)ntemm(p(‘c)|g|[]}
Taking the infimum over all g€ U yields (a). This completes the proof.

Up to this stage we approximated the exact solution {E(z);?=0} by some
difference scheme, thus by some family (0=t=4§) of discrete semigroups {E*; n€P}.
Now we want to approximate the “exact” operators by a family of continuous
semigroups. {E.(1); t=0, 0=t=6}C[X] of class (C,). Indeed, the most important
properties determmmg the approxunatlon error |E.() f—E@) fx are very s1m11ar
to those given in- Def. 1; 2. So one may formulate s e

Definition 3. The semigroup scheme {E.(¢); =0, 05156} w1th mﬁm-
tesimal generators A, is said to be consistent of order O(¢(z)) on the linear manifold
UcX with respect to the semigroup {E(z); t=0} with generator 4 if E¢)Uc
cD(A)ﬂD(A,) and there exlsts a constant C=0 such that for all fEU =0,
0=7=/6

@9 . A 4IEOS k= CeM o) f v

It is said to be (ordmarlly) conszstent if U is dense in X and ¢(z) in (2. 9) is replaced
by o(1).

Definition 4. The semigroup scheme ({E.(f); =0, 0=t=6} is said to be
stable of order O(M,e”") if there are constants M, and «, with M =M, and
o=w, (cf. (2.1)) such that for all =0, 0=t=$ :

(2.10) O IEMIm = Mt
It is said to be (ordinarily) stable if M,=My<<- and @,=wy<c.

Of course, since {E,(t);t=0} is assumed to be a semigroup of class (C,)
for each 0=t=4J, property (2.1) always ensures the existence of constants M,, co
such that (2.10) holds. So Def. 4 just states that it is appropriate to take M e
as a substitute for S/Y (z, 1/n) in (2.4).

In the above terminology one has the following continuous counterpart to Theo-
rem L 1 (cf. [2], [20]):
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Theorem L 2 (continuous version). Let {E,(t);t=0,0=t=8} be a semi-
group scheme (ordinarily) consistent with respect to {E(t); t=0}. Then (ordinary)
stability is necessary and sufficient for (ordinary) convergence, i.e. for each f€ X, t=0

Jlim |E)f~ E@)f Ix=0.
Again this convergence theorem can be equipped with orders.

Theorem 2. Let the semigroup scheme {E.(t);t=0, 0=t=4} be consistent
of order O(p (1)) on UCX with respect to the semigroup {E(t); t=0}). Then the
Jollowing assertions are equivalent:

@) LE.(t)f— E@)fllx = 2M, e K((C2) 19(3), f),
® IE.()f—E@)flx = 2M, w'{M”' Jex
) : x = M o @\flos SeU,

© IE:()lipxy = M. e™".

Proof. By (2.7) we immediately obtain (a)=>(b). Then by the uniform boun-
dedness principle one may replace the constant M, by C, || f|lx which together with
(2.1) implies (b)=(c). For the proof of (c)=(a) it follows that for arbitrary gc Uc
cD(A)ﬂD(A,)

E()g— E(t)g——fd E(t—s)E(s)gds =

= f [4.E.(t—s)E(s) g — E.(t—s) AE(s) gl ds = f E,(t—s)[d.— A1 E(s)g ds
o 0

which should be compared with (2.8), thus with (2.3) and (2.9), respectively. Hence
IE()g—E@)glx = f M, e>C=9Ce™ o (3)|gly ds = M,Cle™! o (3)]gly-

As in the proof of Thm. 1 we proceed for fcX, gcU

IE()f—E®) flix = 1E(O(f—lx +IEO S~ lx +IE() g—E(t) glx =
= (M,e”' + Me™) | f—glx + M Cte' ¢ (7)|gly =
= 2M. e {{| - gllx+(C/D 10 (7)|glu}-

~Taking the infimum over all g€ U completes the proof.,

So far Thms. 1, 2 do have the structure of the original Lax equivalence theo-
rem, stating that stability is equivalent to convergence, provided the scheme is
consistent. The adequacy of the notions with orders .used above may also be
illustrated by the fact that the alternative form is valid as well, namely that con-
vergence is equivalent to stability plus consistency, provided some weak additional
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assumptions are made. First we claim the commutativity of seminorm and semi-
group, more specifically, we suppose that E(#)Uc U and (cf (2 1))

211 IE(t)g]USMe""lglu (t=0) _
for each geU (in [18a] problem (2.2) is then said to be strongly correctly posed).
For example, inequality (2.11) obviously ho'ds if |g|y:=|4"glx, U=D(4".

Theorem 3. Given the finite differenci scheme {E,;0=t=68} and the semi-
group {E(t); t=0}, suppose that (2.11) be vatnd and Y (x, 1)2C2>0 Jor all 05156
Then the following assertions are equivalent:

@® uE:f—E(m)fuxé—WLI,,,)K«C/z)me%(r), )

O IEr-Eesi= g i T
¥ (@, 1/n) |(C12)nte™™ o ()| f |y, fEU
© O IIE:'IIm = S (z, 1/n),
(i) [[E—E@IE@)flx = Ce”1p@|f|y forall feU,t=0,0=7=4.
For a proof one may consult [8].

Theorem 4. Given the semigroup scheme A {E.(t); t=0, 0=1=6} and the
semigroup {E(t); t=0}, suppose that inequality (2.11) be valid and M =M <=
for all 0=t=06. Then the following assertions are equivalent:

@ IEO)f — E@f Ix S 2M, e K(C/Dt0(2), f),
b VEO)—E@)f Ix = 2M w'{M” fex
®) . OF Ix = 248 ey 10 @I flor FeU,

© O IEOlx= Moo
i) 4, A]E(t)fllx§Ce°°‘¢(T)lf|u for all feU,t=0,0=1=34.

Proof. In view of the proof of Thm. 2 we only need to show (b)=(c, ii). Let
f=E(s)g for some g€U, s=0. Then (b) and (2.11) imply

IE.()f—E@)f|x = M.e?* Cto()|E(s) gly = MM, e Cto(t)e™gly.
Therefore one has _
N4~ AEG) glx = lim [ E)—N—1E@O -] E@gllx =

= MM, Co()e” |gly = C* o () e™*[gly

which completes the proof.
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3. Applications to speciﬁc difference schemes.

An example of an initial value problem (2.2) is supplied by the hyperbohc
differential equation

3.1 d/dt u(x,t)=djdx u(x,t), x,t=0; u(x,0)=s(x), x=0,

where flS an element of X:=UCB(R*), the Banach space of all bounded, uni-
formly contmuous functions on [0, ) with || flx _sup |f(x)|. This problem

is proper]y posed the solutlon operators E(t) bemg glven via
(3.2) ulx,t) = E@)f(x)=f(x+t), x,t=0.

Let us consider some examples of difference schemes applied in numerical analysis
to approximate the exact solution (3.2). We use the notations

(3.3) (T f)(x) '—f(x+h), (E;u)(x, 1) = u(x, t+1), A:=1/h

for the translation operator 7}, h=0, the step operator E,, T= 0 and the ratio
2=0 of the step sizes, respectively.

Example A. Instead of (3.1) we regard the i)roblem
L “Hus )=, t)] R Geth, - (s, D
This defines an exp11c1t dlﬁ'erence scheme with step operator
(34) . E.=(1-A)I+iT,.
Example B. If we replace (3.1) by’
= Hu(x, t+70)—u(x, £)] = b [u(x+h, t+1)~u(x, t+1)],

the step operator is defined via '
E.—I=A[T,—I)E..

This leads to the implicit difference scheme

1 2 -1 1 w( k
@.5) E'=1+1[’—1+1T"] = A§1+A]

Example C. Replacing only d/dx in (3.1) by the correSponding difference
quotient, one has to solve the initial value problem

(3.6) didtu(x,t) = h Yu(x+h, t)—u(x, t)].
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This line’ or. semi-discrete method (cf. [21, p. 545] or [6, p 55]) leads to the step
operator (see also Sec. 4)

an E. = exp(/m)Ty—T] = e* 3 218,

K=o k!

Obviously, each of these operators E, is of the form

33 E = kz” o (D) T

with certain real-valued functions ¢, (1) defined on [0, ). To discuss stability and V
consistency, let us suppose that there exists an interval Jc[0, ). such that for
all A¢J, keP

69 O a®=0 G- Jan=1 @ Jknd=i G

In particular, (i) assumes the positivity of the operators E, which together with (ii)
leads to stability since - _ ’
1EZlxa = | Eclifxy = 1 E- 1% = 1.

Concerning consistency let

U:=UCB® = {feX; f,f"€X}, Iflo:=1F"x-
Then one has by (3.2), (3.8), (3.9) that for every feU

(10 |Eux )—-E@uls )] = }f LD Ce-+Ich, )—u(x, 1+7)]

= lg: <pk(/1)[f(x+t+r+(kh—z))—f(x_+t+r)j

kh—t s

k§¢k(/1)[(kh—1)f'(x+t+‘c)+f ff”(v+x+t+t) dvvds]

=

=15l Z o@D kh—2 = (212 D1f"Ix
with second moment ¢ (4) given via

oW)= 2 oWk-1= 3 ko)1

Before giving an application of Thm. 1, let us recall that for the present choices
of spaces X, U one may express the K-functional K(¢, f; UCB, UCB®) equivalently
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in terms of moduli of continuity. Indeed, one has for any =0 (cf. [7, p. 192; 258],
[9, p. 316])
G.11) a1yt f) = K(, ) = c;0,(t, f)

where the (second) modulus of continuity is defined by
@36, f)i= sup 1fCe+20)=2f Ge+ ) +f (.

Thus it follows by Thm. 1, (c)=(a), that

Corollary 1. Concerning the convergence of the difference scheme (3.8) towards
the exact solution (3.2) of the initial value problem (3.1) one has

(3.12) |E2f(x)—f (x+n1)| = 2c,05((h/2) [na (D)3, f)
Jor any feUCBR*), x=0, inEN, =0, and AcJ.
More specifically, this yields for the examples mentioned above:

Example A: In view of (3.4) we see that
Po(D)=1-24, oA =4, @A) =0 for k=2
Thus (cf. (3.9) (i) one has J=[0, 1] and o(})=A(1—2). Since for x=0, h=1/n

r(n < (n
Eno= 3 ;) a-r- 21,00 = 3 [F)a-sr-rrrwm = .05,
Cor. 1 implies the following (pointwise) direct theorem for the Bernstein poly-
nomials.

Corollary 2. For any function f, continuous on [0,1), one has for each
A€[0, 1}, neN
[B,(f, )—f )] = can([A(1—2)/n]2, f).

The present procedure to prove this well-known direct estimate (cf. [4, p. 698],
[12], and the literature cited there) is essentially contained in [14] (explicitly they
prove the Weierstrass convergence theorem for twice differentiable functions, the
domain x, 1€[0, ) (cf. (3.1)) being replaced by x, ¢, x+1€[0, 1]). The argument
was then refined in [15] in order to obtain an error estimate involving the first
modulus of continuity of the first derivative f”.

Example B. In view of (3.5) we see that

k
oe(D) = 1%[&1) (k=0). .
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Consequently, one has J=[0, ) and o(A)=A(1+4). - Since for x=0, h=1/n

, [E?f1(0) = (1_:1),, [(I TE Th] f] ©) =
N (14:1)" kg(n+,;c_l)(l+l]f(k/") M, (f, ),

Cor. 1 yields the following direct estimate for the Baskakov operators M,(f, 4).
Corollary 3. If feUCBR), then for any ncN,A=0
IM,(f, D—F ()] = con(A(1 +1)/n}2, f).

As is well-known (cf. [1], [11, p. 39)]), thlS is the correct estimate, apart from
constants.

Example C. Here we see from (3.7) that
@ (A) = e~k (k= 0).
Thus J=[0, ) and o(4)=A. Since for x=0, h=1/n

(nﬂ-)

[EZf1(0) = exp [nA(T,— DS (0) = e'"‘k S kIm) = S.(f, 2),

Cor. 1 delivers the followihg (pointwise) direct estimate for the operators of
Szdsz—Mirakyan.

Corollary 4. For any fe UCB(R+), 2=0, n€N one has

1Sa(fs D)—f )] = car(A/n],f).

Again this is the correct estimate apart from constants.

Regarding Cor. 2—4, let us again point out that these (pointwise) direct approxi-
mation theorems for the Bernstein polynomials, the Baskakov, and Szidsz—Mirakyan
. operators, respectively, are of course well-known. In fact, these results may be
obtained even more directly and elementarily exploiting (cf. (3.10)) the second
moment of the kernel (cf. [11, p. 39; 244), see also [3] for more intricate results in
polynomial weight spaces). Concerning this note, however, they do not only show
interesting interconnections between the Lax theorem in numerical analysis and
the convergence of some classical approximation processes but also indicate that
the notions and results of the abstract theory in Sec. 2 seem to be adequate.
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-..4, Applications to semigroup schemes

Let us regard Ex. C from another point of view. In order to obtain the differ-
ence scheme (3.7) one has to solve the initial value problem (3.6) for one time step
t=1. Looking at the solution of (3.6) for any =0, however, delivers (continuous)
semigroups {E,(t);¢=0}, 7:= 2h=0." Then (3.6) takes the form

djdt E(t)f = k- T,—E)f.

Thus the infinitesimal generators 4, of these semigroups are givén via the bounded
linear operators

@.1) A =T,
so that one has . o -
@2 E@=epy=en W g
( (24, A
Obviously, for any feU (:= UCB® (R+))
h s

4.3) Af(x) = f’(x)+% [ [ x+v)dvds.

0 0

Of course the infinitesimal generator of the solution semigroup {E(¢); 1=0}(cf. 3.2))
is given via Af(x)=f"(x). Moreover, since the present generators 4, commute
with E(t), one has

@y Nl DEOSIx = 1EOlldeS —Aflx = |4 f— Af lIx-

Therefore the error of cons1stency (2.9) for the semlgroup scheme (4.2) may be

estimated by
| (At—A)E(t)f lIx= (RIS lx

for any f€ U whereas stability follows from

(t/ h)"

IE (Ol = e™* 5
k=0
Thus an application of Thm. 2, (c)=>(a), regains Cor. 1; 4, namely (with K(t, f):=
=K(t, f; UCB, UCB®))
Corollary 5. For the semigroup scheme (4.2) one has
|E, () f(x)—f(x+1t)| =2K(ht/4, f) forany fEUCB,x,t,t,h=0.

More generally, given a difference scheme {E,; 0=t=4}c[X], to each discrete
semigroup {E_; n€P} one may associate a continuous one {E.(t); =0} according
to the formula (cf. (3.7), (4.2))

@.5) E(t) = E*
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in case the right-hand side can be interpreted suitably. The resulting continuous
semigroup then has the interpolation property
(4.6) E(n)=E

" Let us continue with considering the matter in connection with Ex. 4, B. First
recall that for each «€R

@.7) | (Atuy= >3 [z] u

k=0

absolutely and uniformly for |u|<!1 (and'eveh for |u|=1 in case «=0).
Example A. It follows from (3.4) that

“.8) E(t)-=E'/=-=(l'—ﬂ>"'[’+1AzTh]tk:(H)"'Z (= a]T

k=0

the series being convergent in the uniform operator topology for A€[0,.1/2). For
the corresponding infinitesimal generator 4, one has

1 k kb s -.
as@ =10 -3 SE(=5) [ [ e avas

for any f€U. Therefore (cf. (4.4)) for any fEU 2€[0, 1/2)

U~ AEO S x = 5p 3 k|5 g = B

Concerning stability, for some given #=0 let mcP be such that mrSt—r;1f+n<
<mrt+1. Then in view of the stability of the explicit difference scheme we see that

(cf. (3.9), (4.5), (4.8))
IE(ex = IE, (MOl E-liexy = |1 E.Mlgxy =
_. ”;_oo "/T }' k_ n/t ) it »:'
= (1—Ay" kg; [ k ](m] ‘ =2(1—-aplr—(1 -2 = 2.
Application of Thm. 2, (c)=(a), therefore gives

15— +01= 4K (DY 1) reto, 1)

which is worse than Cor. 1 or 2, respectively.

Example B. The interpolating semigroups (4. 5) for the difference operators
E. of (3.5) are given by

. : . t/t[ 1 ]—glr”
o— FUt .— —
4.9) E.(t) = EU": (1+).) I-15 T

- () E0N D =

M3
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the series being convergent in [X] for each A=0. For the infinitesimal generators
A, one has

k=1

k kh s
Af() = f(x)+ 2 (1+1] fff”(x+v)dvds

for any feU. It follows that for any feU, 1=0

- k
4~ AVE@S 1 = 55 3 () 11 = 3 Q421 -

Since [|E,(1)l;x;=1, one has for the semigroup scheme (4.9) that

|E(£)f(x)—f(x+1)| = 2K (ht(1+2)/4, f)

which reproduces the results of Cor. 1; 3 (upon setting t=nt=nhl).

Summarizing, Thm. 2; 4 seem to be more appropriate for line methods (cf.
treatment of Ex. C) whereas Thm. 1; 3 seem to be more suitable for genuine diffe-
rence schemes.

S. A comparison theorem

In the course of the proof of the familiar Trotter theorem (cf. [22], [16, p. 507
ff]) one makes use of just another method (than (4.5)) to associate a semigroup
scheme {E,(t);1=0} to some given difference scheme {E.}, 0<t=4. Indeed,
with the step operator E,€[X] one also has B,:=(E,—I)/t€[X] so that via (t=0)

5.1) E (1) = exp (tB) = 3 (t*/k!) B

there is defined a (continuous) semigroup of class (C,) for each 0<t=4. Though
{E,(¢); t=0} does not have the interpolation property (4.6), one has (cf.
[16, p. 508)]):

Lemma 1. With {E}c[X], 0<t=6, let E (t) be given via (5.1). If there exist
constants M, such that ||E)xy=M, uniformly for n€P, then also |E,(t)|x; =M,
uniformly for t=0 and

IE2f—E.(n0)flx = 1/ M.n<®||Bfllx  for every f€X,n€P,0<1=0.

This may be interpreted as a comparison theorem between a given difference
scheme and the corresponding line method. Whenever a discretization of (2.2)
is given via

LB~ Tutt) = Bau()
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with difference scheme {E,; 0<t=0} satisfying the stability condition || E"llméM,,
then the approximation error can be estimated according to

(52 IE?f—EMmn)flx = | E.(n0) f— E(no)f |l x+(1/2) Mcn7? || Bif |1x
where E_(t):=exp (tB,) denotes the line method defined by
(5.3 ' didtu(t) = B,u(t).

Concerning Ex. A, the operators ‘B, are given by
B, = —I—[E —~I]= -l—[T -1
T T T - h h

which are just the infinitesimal generators of the semigroup scheme in Ex. C. Thus
E.(2) is equal to E,(t) from (4.2). Since [|B? fllx=|f"lx for any feU, in view of
the stability and Lemma 1 this leads to (cf. proof of Thm. 1, (c)=(a))

|EZf—E.(n)f | x = 2K (n7®/4,f) -

with E, from (3.4) and E,(¢t) from (4.2). Therefore, proceeding as in the previous
sections, one obtains

Corollary 6. For fcUCB one has the following comparison estimate between
the Bernstein polynomials and operators of Szdsz—Mirakyan:

B,(f, D —S,(f, )| = 2K(12/4n, f) for all A€[0,1], néN.

Thus, though the individual operators behave like O(4) at A=0+, their differ-
ence behaves like O (42%).

Added in proof: For a (parallel to [14]) concrete discussion of the pure con-
vergence of the Bernstein and Baskakov operators in connection with the explicit
and implicit difference scheme of Ex. A, B, respectively, see also G. C. PAPANICOLAU,
Amer. Math. Monthly, 82 (1975), 674—676.
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On automorphisms of the subalgebra lattice -
induced by automorphisms of the algebra

E. FRIED and G. GRATZER*

1. Introduction. We are going to prove the following result:

Theorem. Let G be a group, L an algebraic lattice with more than one element,
and let ¢ be a homomorphism of G into Aut L. Then there exists an algebra W such
that there are isomorphisms o:G—Autq and B:L—Sub U satisfying (see Figure)
apg=¢ Aut f, where Aut /3 is the zsomorphzsm of Aut L and Aut Sub Q[ induced

by B.-
G ——-—AutL

o -i'

AutA—— Aut Sub A
?q

To put it simply, (Aut %, Sub ¥, ¢,) is characterized as (G, L, ). The ex-
ception is that we have to assume that |L|>1. Indeed, if |L|=1, then 4 is the only
subalgebra of U, that is, every element is an algebraic constant. In this case, {G¢|=1
Thus (Aut 2, Sub ¥, ¢y is just as independent as (Aut %, Sub ) is.

Corollary. (E. T. SceMIDT [7]) Given a group G and an algebraic lattice L
with more than one element, there. exists an algebra W satisfying G=Aut U and
LzSub .

Proof. Let ¢ map all of G into the identity element of Aut L. Then the al-
gebra A we obtain from the Theorem yields the Corollary.

This Corollary contains earlier results of ‘G. BIRKHOFF [1] charactenzmg auto-
mOl‘phlS groups of algebras and of G. BIRKHOFF and’ O FRrRINK [2] charactenzmg
the subalgebra lattices of algebras. '

It may be of some interest to note that in Schmidt’s construction Qis mdeed
the constant map. If in our proof ¢ is the constant map, we obtain a somewhat
simplified proof of Schmidt’s result. »

" Received September'11, 1976, .
* Research supported by the National Research Council of Canada.
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2. The construction. Let G, L, and ¢ be given as in the Theorem. Let C be
the set of all compact elements of L. Then C is a join-semilattice with zero, and
the ideal lattice, Id C, of C is isomorphic to L (see, for instance, {5]). It is also trivial
that Aut C and Aut L are isomorphic, hence we can assume that ¢ is a homo-
morphism of G into Aut C. '

Set A=(GX(C—{0))U{0}. We define some operations on A
(@, BEG, a, beC—{0)):

k is a constant operation with value 0;

V is a binary operation defined by

0V0 =0, 0V{x,a)=(a,a)V0={ (e, a), {(a a)V{B,b)=x, aVb);
Ja,0 is @ unary operation: f, ,(0)=0 and
(@B, a(Bp)y if a(By)=b,
fod(B. D)) = (a8, b) if b= a(fo),

0 otherwise.

Observe that if a0, then a(B¢) is the image of ¢ under the automorphism f¢
of C, hence a(fp)=0. Thus f, , is an operation on A.
Let F consist of k, V, and all the f, ,, €G, a€C—{0} and set U=(4; F).

3. Verification. Now we prove that U satisfies the conditions of the Theorem.

Claim 1. Let BSA. B is closed under all the operations in F iff B=
=(GX{T—-{0p)U {0}, where Icld C.

Proof. Checking the definition of the operations, it is clear that, for I€1d C,
(Gx(I-{op)u{o}

is closed under all the operations in F.

Now let B& A and let B be closed under all the operations in F. Since k€ F,
we obtain 0€ B. Define

I'={alacC and (o, a)€B forsome acG}U{0}.

If B={0}, then I={0} is an ideal. Now let B {0}. Obviously, if a, b€I, then
aVbel Let bel and c=b; we wish to prove that c€1. If ¢=0, then 0€I by defini-
tion. If ¢>0, then b0, hence we can choose a B€G such that (B, b)€ B by the
definition of 7. Thus, for any «€G,

Jas-1, e001-21((B; BY) = (2, ¢),

since c(Bp)1(Pp)=c=b. We conclude that {«, c)¢ B, since c€1. Thereforé Ield C.
Since we have (&, c)€ B for all a€G, we also conclude that B= (GX(I— {opu {0},
verifying the claim.
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Claim 2. Sub W =~L.

Proof. It is clear from Claim 1 that I-(GX(I—{0))U {0} is an isomorphism
between Id C and Sub U. Since Id C=L, the claim follows.

Claim 3. For every y€G, the map T,: (B, b)—~(By, b(yp)), 00 is an auto-
morphism of UA.

Proof. It is trivial that 07,=0, (xVy)T,=xT,VyT,, for x,y€A. Since
right-multiplication of G and yp on C are permutations, so is 7,. It remains to
prove that f, ,(xT,)=f,, ,(x)T,. This is obvious for x=0. Now let x=(B, b).
If a(Bg) and b are not comparable, then (a(B¢))(yp) and b(y¢) are not comparable,
that is, a((By)e) and b(yp) are not comparable, hence

fa,a((ﬁ’ b>)T7 = OTr =0 =f¢,a(<»8'y’ b(')’(P))) =f¢,a(<ﬂ’ b>Ty)
The other two cases (a(Bp)=b and b=a(Bg)) are similar.

Claim 4. Every automorphism of % is of the form T, for a unique y€G.

Proof. Let T be an automorphism of U. Define the functions f and g on
C—{0} by
1, e)T={f(0), g(©)),
where 1 is the identity of G. Then, for ¢, deC—{0},

VD, gleVd)) = (1, VYT = ({1, V{1, d)T =

_ = <l, C>TV<L d>T = (f(C), g(c»v (f(d)s g(d» = <f(c)’ g(c)Vg(d»
Thus, for any ¢, de C— {0},

f(©) =f(cVd) =f(d),

that is, f(c¢) is a constant function, f(c)=f€C—{0}. Thus (1,c)T={f, g(c))
and g(cVd)=g(c)Vg(d), implying that g is an automorphism of C—{0}. Set
c=aVg~'(a(fp)). Since a=c the first clause of the definition of f, , applies
so we have

(% T =fp,o((1, NT = fo,.(1, ) T) = fo,.((f; 8(0))) = (of, a(fo)),
where, in the last step, the first clause of the definition of f, , again applies since

a(fp)=g(c).
This proves that T=T, since they agree on A— {0}, and obviously agree
at 0. The uniqueness of f is obvious.

Claim 5. G=Aut .

Proof. f-T, is the required isomorphism by Claims 3 and 4.
We have verified all but the last statement of the Theorem. Let a:G—»Aut?I
and f:L—Sub A be defined as in Claim 5 and Claim 2. Let y€G. Then yg is an

4
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automorphism of C. An ideal I of C is carried to (GX(I— {op)U {0} by Aut g
and thus (yp)Aut B is an automorphism of Sub A mapping (GX(I—{0}))U {0} to
(GX(I(y)—{0}))U {0}. Now -y is an automorphism of ¥, namely, T,. Thus
(y®) @y is an automorphism of Sub A carrymg a subalgebra B to B that is,
(GXU—{ON)U {0} to ((GX(I— {O)) U {0)) T,=(GX(I(ye)— {O})) U {0} (this equality
follows from the definition of T,). This completes the proof of the Theorem.

4. :Concludiné remarks. Let m.be an infinite regular cardinal: The finitary
concépts (M=) of the Theorem generalize naturally (see G. GRATZER [3] and [4])
to the concepts: m-algebraic lattice and algebra of characteristic m. Subalgebra
lattices of-algebras of characteristic m can be characterized, up to isomorphism,
as n-algebraic lattices. The Theorem of this note generalizes to m-algebraic lattices
and algebras of characteristic m.-In the proof, it is only necessary to replace the
binary operation V .by infinitary joins of less than m elements.

It is a curious fact that the algebra A constructed has no endomorpmsms other
than the automorphisms.

Similarly to the definition of @y, we can define g Aut QI—»Aut Con U,
where Con 2 is the congruence lattice of U and we can ask for a characterization
of (Aut, Con U, ). (For the most recent accounting of the characterization
problems connected with Con U, see G. GRATZER and W. A. LAMPE[6].) Even harder
is the characterization problem of '

(Aut U, Sub A, Con A, ¢y, Yy).

. References

(1]' G. BIRKHOFF, On the combmatxon of subalgebras, Proc. Cambridge Phil. Soc 29 (1933), 441—
’ 464."

[2] G. BrkuorrF and O. FrINK, Representations of lattices by sets, Trans. Amer. Math. Soc., 64
(1948), 299—316.

[3] G. GRATZER, On the family of certain subalgebras of a umversalalgebra Nederl, Akad. Wetensch
Proc., Ser. A. 68 (1965), 790—802.

[4) G. GRATZER, Universal Algebra, The University Series in Higher Mathematics, Van Nostrand
(Prmceton, N. J., 1968).

[5] G. GRATZzER, Lattice Theory. First Concepts and Distributive Lamces W. H. Freeman and Co.
(San Francisco, Cal., 1971). -

[6] G. GrATzER and W. A. LAMPE, Representation theorems related to congruence lattices of
algebras, Advances in Mathematics, to appear.

(7] E. T. ScumipT, Universale Algebren mit gegebenen Automorphlsmengruppen und Unter-
algebraverbanden, Acta Sci. Math., 24 (1963), 251—254.

UNIVERSITY OF MANITOBA
WINNIPEG, MANITOBA .
CANADA R3T 2N2



Acta Sci. Math., 40 (1978), 53—61

Convexoid operators and generalized growth conditions
associated with umtary o-dilations of Sz.-Nagy and Foias

TAKAYUKI FURUTA

Dedicated to the memory of the late Professor H. Hiruta -

An operator on a complex Hilbert space is said to be convexoid if the closure
of its numerical range coincides with the convex hull of its spectrum. We shall
consider some generalized growth conditions associated with unitary g-dilations
defined by B. Sz.-Nagy and C. Foias and as an application of these generalized
growth conditions we shall give some characterization of convexoid operators
which is an improvement form of the already known criterions due to G. H. Orland,
C.-S. Lin and S. M. Patel. :

Subsequently we shall give some generahzatlons of both theorems of S. K.
Berberian and S. M. Patel for operators implying the equatlon Rea(T)=c(ReT)
and we shall give some characterization of the class R introduced by G. R. Luecke.

1. Introduction

In this paper an operator T means a bounded linear operator on a complex
Hilbert space $. The class C,(¢=0) denotes the set of all operators with unitary
g-dilation [20]: there exist a Hilbert space & containing $) as a subspace and a unitary
operator U on & such that
1) T"x = oPU"x for x€H(n=12..)
where P is the orthogonal projection of & onto £.

It is well known that C,={T:||T|=1} [21] and C,={T:w(T)=1} [2], where
w(T) indicates the numerical radius of T, ie. w(T)=sup {|A|:A€ W(T)} and
W(T) denotes the numerical range of T defined by W(T)={(Tx, x):|x]|=1, x€$H}.
In [21] there are given several characterizations of the operators belonging to C,
and one of them is as follows:

Received August 16, 1976.
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Theorem A [21). In order that T belong to the class C, it is necessary and
sufficient that the condition

)] (e—-2)I(I-zT)x|2+2 Re ((I-2T)x,x) =0
be satisfied for all x€9 and |z|=1.
In [9) an operator radius w,(T) is defined by
3 ' wo(T) = inf{u:u > 0,u"1T€C,}.
w,(T) is non-increasing function of g, in particular w,(T)=|T|l, wo(T)=w(T)
and w_(T)=r(T) (r(T) denotes the spectral radius of T) [9]. Moreover,
@ if O<f<g@=c and w,(T)=ws(T), then w(T)= wy(T)
whenever f=a=oo [9, Theorem 5.3], [10, (e)].
In [9] the following characterization of C, is given in term of operator radii:

%) C,={T: ‘wa(T) =1}
An operator T is called to be g-oid [4], [5] if
©) wo(TH) = (W (D)) (k=1,2,..).

For each ¢=1, w,(T)=r(T) if and only if T is g-oid and for each 0<g<1 there
exists no non-zero g-oid which is included in the class of normaloids [4]. Clearly
1-0id is normaloid and 2-oid is spectraloid (recall that an operator 7 is said to be
normaloid if | T|=r(T) and spectraloid if w(T)=r(T)).

We shall define generalized growth conditions associated with unitary g-dila-
tions as follows.

Definition 1. An operator T is called to satisfy the condition (¢—G,) for
(M, N), in symbol T€(¢—G,) for (M, N), if T satisfies the following inequality:

) w(T—pw™) = W for all complex pé¢ N,

where M and N are two closed and bounded sets satisfying NoM Do (T).

Definition 2. An operator T is called to satisfy the condition E—(o—G,)
for (M, N), in symbol T€ E—(¢—Gy) for (M, N), if there is equality 'in (7).
. Te(g—G,) for M (resp. TEE—(0—Gy) for M) means T€(e—Gy) for (M, M)
(resp. T€ E—(¢—Gy) for (M, M)).

Remark 1. Since r(T)=w,(T) holds for any ¢=0 [9] and 1/d(p, ¢(T))=
=r((T—p)™?) is always valid for all u¢o(T), so that we remark that T€(o—Gy)
for (o(T), N) is equivalent to T€E—(¢—Gy) for (6(T), N), namely (T—p)~? is
g-oid for all complex u¢ N. S
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Remark 2. T is called an operator of class M,(o=1) [14] if (T—p)? is
g-oid for all u¢ ¢(T), so that we remark T€M,(o=1) coincides with T€¢ E—(¢—G,)
for o(T). T€(G,) for M [18] means T€(l—G,) for (M, M) and TE(GI) means
Te(1-G,) for o(T), equivalently, T€e E—(1—G,) for o(T). :

An operator T is said to be convexoid [8] if W(T) =co a(T), where M denotes
the closure of a set M in the complex plane and co M means the convex hull of M.
It is well known [12] that T is convexoid if and only if T€(G,) for co o(T). A new
class designed by R of convexoid operators was introduced in [11] as follows:
TER if

1

® (T—w = m

that is, T€R if and only if T€ E—(1—-G,) for W(T).
Generalized numerical ranges W,(T) (z=1) is defined in [10] as follows:

® W(T) = O {42 A—pl = w(T—p)}.

W.(T) is a compact convex set containing co ¢ (7). In case 1 =a=2 W,(T) coincides
with W (T) [10] and W_(T)=coo(T) [6], [7], [10]. Since w,(T—py) is a non-in-
creasing function of a [9], W, (T)D>Wy(T) if 1=a<p. The function wg(T) is
defined by wi(T)=sup {|A|:A€ W, (T)} for 1=g=<o. wd(T) satisfies the follow-
ing properties [10];

for all ud¢w(T),

r(T) = wo(T) = wo(T), we(T)=r(T),
wi(uT) = |u|w3(T) for all complex p,
wo(T)=wi(T) for 1=¢=2.
The hen-spectrum &(T) is defined by &(T)=[[o(T)]..]¢ in [3], where M* is
the complement of M, and [M]., is the unbounded component of M. (T) is a com-

pact set containing ¢ (7)) in the complex plane [3]. Using this notion of §(T’), another
new class denoted by (H;) of convexoid operators was introduced in [3]: T€(H,) if

(10) -1 = for all  p¢&(T),

1

1, 6(T)) |
ie. Te(H) if and only if T€(G) for 6(T). (Hp properly contains both (G,
and R [3].

Theorem B [14]. T is convexoid if and only if there exists o= 1 such. that

1 A
_ -1 —_—

08)) w(T—p )éd(y o)) for all pé¢coo(T).

Theorem B is an improvement of the well-known criterion for convexmdlty due
to [12].
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. C. R. PurNaM considered conditions on an operator T implying
(%) Reo(T)=c(ReT).

This equation (#) holds for normal and also seminormal operators [16] and moreover
(*) has played a role in the proofs in [16], [17] which state that a seminormal oper-
ator whose spectrum has zero area is normal. S. K. BERBERIAN has not only given
a simple proof of this Putnam’s result, but he also has proved the following
theorem.

Theorem C [1]. If T€(G,) and o(T) is connected, then (%) holds.

Related to Theorem C, S. M. PaTEL [13] has established that the equation ()
also holds for operations in the class R without any restriction on the spectrum
as follows:

Theorem D [13). If TC€R, then (%) holds.
S. M. PaTEL shows the following characterization of operators in the class R.

Theorem E [15]. T€R if and only if there exist g=1 and oo=1 such that

(12) w,,((T—y)—l):z(—M;TT)j for all  pdw,(T).

Qur Theorem 1 below is an improvement of Theorem B. Theorem 2 implies
Corollary 2 which is a generalization of Theorem C and Theorem D. Finally,
Theorem 3 is an improvement of Theorem E.

2. Statement of the'rosults

Theorem 1. Any one of the following conditions is necessary and sufficient
in order that T be convexoid:

(i) T—p is spectraloid for all complex p ([6], [7], [10]),

(ii) T—p is spectraloid for all complex p whose absolute values are suffici-
ently large,

(ili) there exist ¢=1 and 2<o=eo such that T€(g—Gy) for (W,(T), N), where
N runs over the closed and bounded sets containing W, (T).

Theorem 2. If there exists ¢=1 such that Te(g—Gy for (o(T), 5(T)) and
Re o(T) is connected, then (%) holds.

Corollary 1. If TeM, and Re o(T) is connected, then (%) holds.
Corollary 2. If Te(Hy and Re o(T) is connected, then (%) holds.
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Theorem 3. TCR if and only if there exist ¢=1 and 1=p=a=c such that
TeE—(~Gy for (Wu(T), Wy(T).

Take N=W,(T) and a=-<c in (iii) of Theorem 1. Since W_ (T)=co o(T),
Theorem 1 implies Theorem B. The class (H,) properly contains (G,) [3], consequently
Corollary 2 contains Theorem C. '

TR if and only dW(T)ca(T) by [11] (that is, W(T)=6(T) [3]). The convex
set W(T) contains o(T), consequently T€R implies that Reo(T)=Re W(T)
is connected. The class (H,) properly contains R [3], so Corollary 2 contains
Theorem D. A

Corollary 1 easily implies Theorem C. Take a=pf in Theorem 3, then T€R
if and only if T€ E—(0—G,) for W, (T) for 1=p and 1=a, that is, (12) holds,
so Theorem 3 contains Theorem E.

3. Proofs of the theorems

In order to prove Theorem 1 we need the following Lemma.

Lemma 1. If X is a closed convex subset of the complex plane, then X>W(T)
if and only if there exists ¢=1 such that T¢(o—G,) for (X, Y), where Y runs
over the closed and bounded sets containing X.

Proof. The proof is along the same lines as the argument in [14, Theorem 4]
and we shall state it for the sake of convenience in the subsequent discussion. If
X:)WZYT), then there exists ¢=1 such that T€(¢—G,) for X by [14, Theorem 4] so

there exists g=1 such that T€(p—G,) for (X, Y).
Conversely, assuming that there exists ¢g=1 such that T¢(¢o—G, for (X, Y),

we have only to show that every half plane M containing X also contains W(T).
Without loss of generality we may assume M={i:Re A=0}. Since M>X and
the hypothesis holds we have

W™ T+ 1)) = wo(u(T+p)~Y) = E(“—‘%—X‘) =1

for all positive u whose absolute values are sufficiently large. Therefore, by (5),
we have (u~1T+I)"1€C, for all positive u whose absolute values are sufficiently
large. By Theorem A we have

(e—DNI— @ T+ )~ Yx|2+2Re (/- (u T+ 1) V)x, x) = 0,

@)W T T+ x|?+2Re (u' T (u™1T+ 1) 2x,x) = 0
for all x in H. Multiply this above inequality by u and transfering u to «, we obtain
Re (Tx, x)=0 for all x in H, whence W(T)c X, so the proof is complete.

that is,
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Proof of Theorem 1. The proof of (i) was shown in [6), [7]-and thereafter
in [10], so that we have only to show the sufficiency of (ii). If X is any bounded
closed set in the complex plane, then co X coincides with the intersection of all
the circles with sufficiently large radii which contain the set X, so that

(13) coX=) {).: |[A—u| = sup |x—u| for all complex u whose absolute values
B x€X

are sufficiently large}.
Taking X=W(T) and o(T) in (13) respectively, we have the following formulas
since W(T) is convex [8],
(149 WT)=N{r:|A—p|=w(T—p) for all complex u whose absolute values

* are sufficiently large}, .
(15 coa(T)=N{A:|A—pu|=r(T—y) for all complex u whose absolute values

a‘;e sufficiently large}.
The sufficiency of (ii) follows from (14) and (15).

(iii) Assume the hypothesis in (iii), then by Lemma 1 we have W, (T)>W(T)
for 2<a=eo. On the other hand W(T)> W,(T) holds in general for 2<a=co,
so that W,(T)=P—Vm for 2<a=o. This is equivalent to w(T—p)=wl(T—u)
for 2<a=o [10, Corollary 1] and this implies w(T—p)=w,(T—p)=w,(T—p)
for 2<a=o and for all complex u since r(T)=w(T)=w,(T)=w(T) always
holds for 2<a=< [10]. So by (4) we have w(T—wy=w_(T—p)=r(T—p) for all
complex u, hence T is convexoid [6], [7], [10].

Conversely, if T is convexoid, then there exists ¢=1 such that T€(o—G,)
for co o(T), by Theorem B and therefore T€(¢—G,) for W,(T) 2<a=<) since
W,(T)>co o(T). Hence there exist ¢=1 and 2<a=o such that T€(¢—G, for
(W.(T), N), so the proof is complete.

To give the proof of Theorem 2, we shall show the following Lemmas.

Lemma 2. If there exists ¢=1 such that T€(g—G)) for (o(T), é(T)) and 2
is a semibare point of henspectrum &(T), then »

(i) A is a normal approximate eigenvalue of T, i.e. 0= A, (T)=A;:x(T*)

(i) if in addition 1 is an eigenvalue of T, then A is a normal eigenvalue of T,
ie. Ny(T)=Nu(T*) where A,(T)={{x,}:[x.]=1, |Tx,—1x,|-~0 as n—>o<} and
N,(T) denotes the kernel of T—2A.

Lemma 3. If there exists =1 such that T€(g—Gy) for (o(T), 6(T)), then
Reo(T)co (Re T) holds.
Lemma 4. If T is convexoid, then
() if Reo(T)co(Re T) and Re o(T) is connected, then (%) holds,
(i) if o(Re T)cRe a(T) and o(Re T) is connected, then () holds,
(iii) .if both Re 6(T). and o (Re-T) are connected, then (%) holds [1], [6].
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Proof of Lemma 2. If there exists ¢ =1 such that T€(¢—G)) for (¢(T), 5(T)),
then T—A also belongs to the same class since &(T+Al)=6(T)+4 holds for
every complex A, so that we can assume A=0. As A=0 is a semibare point of
&(T), we can choose a nonzero complex number 4, ¢ 6 (7)) such that {A:|1—21;|=|4,{}
meets 6(T) only at 0. As d¢(T)=6(TU[F(T)]ce(T) and ¢(T)cF(T), it
follows that d(4y, o0(T))=d(Ay, G(T))=|As|. By the assumption there exists g=1
such that T€(¢—G)y) for (¢(T), 6(T)), consequently we have the following equality
by Remark 1:

16) w(T=10)™) =77

As 0€06(T) (that is, do(T)), then A=0 is an approximate eigenvalue of T
[8, Problem 63], [19, Theorem 66-B] i.e. there exists a sequence {x,} of unit vectors
such that Tx,—~0. Then

1
T —lo)"lxn+70 X || = I(T—2)7

1
X, + (T— 2’0) TO Xn

= [I(T—2)7 -0,

1
'1—0 Tx,,
ie. (T—lo)‘lx,,+l— x,—~0 and this convergence implies that (T™*—A5)"1x,+
0

1
+I; x,~0- by S. M. PATEL’s result [14, Theorem 1] since (16) holds. Whence
0

T*x,—~0 by an easy calculation and this means that 0 is an approximate eigenvalue
of T* also. When we replace T by T* and A by A%, then the above argument is
reversible, so we have (i). If we replace x, by a vector x in the proof of (i), then
we have (ii) so the proof is complete.

Proof of Lemma 3. Let og€Re o (7). Then there exists A,€36(T) such
that Re A,=a, and A, is an approximate eigenvalue of T by the definition of hen-

1
spectrum & (7). Let D,,={,1: | A—Aolé—} for n=1,2, ..., then D, contains a point
n

1
Un & 6(T) such that Iu,,—lol<5—. Clearly it is possible to choose 4, with the follow-
n

ing properties: 4,€6(T) and d(u,, &(T))=d(u,, 6(T))=|1t,— |-

Now A,€06(T) lies on the circumference of a closed disc centered at p, whose
interior contains no point of &(T), whence A, is a semibare point of (7). Since
T€(e—G)y for (o(T), 6(T)), 4, is a normal approximate eigenvalue of T by Lemma
2, consaquently there exists a sequence of unmit vectors {x,} such that

Tx,—Ax,~0 and T*x,—A*x,~0 as n—0.
Then we have Tx,—A,x,—~0 as n—< because

17— Ao Xall = (1T — A Xall + | (An — A0) X, ~ O
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as n--oco. Similarly T*x,—A;x,-0 as n—-, so that
I(Re T—Re d)x,ll = 3 [T, — Ao, + 5 [IT* %~ 25 3, = 0

as n—o, whence Re l,€a(Re T) and this is the desired relation, so the proof
is complete.

We remark that S. K. BERBERIAN has shown Lemma 3 in the case if T satisfies
(Gy) for o(T) [1], here we have given the proof of Lemma 3 which is based on (i)
of Lemma 2.

Proof of Lemma 4. It is known that T is convexoid if and only if
-0 ReZ(eT) = X (Ree®T) forall 0=0=2n,

where Z(T) denotes co a(T), and this (X—6) is equivalent to coRe (e’ T)=
=co o (Ree’T) for all 0=0=2x [6). :
If T is convexoid, then we have the following property by -6

1Y) coReo(T) =coa(ReT).
On the other hand, by the hypothesis of (i) we have
(18) coReo(T)=Reoc(T)co(ReT)c cos(ReT)

hence we have (%) by (17) and (18). Similarly we have (ii). By (17) and the hypo-
thesis of (iii), we have (iii).

In order to prove Theorem 2 we shall use only (i) of Lemma 4, but here we
state (ii) and (iii) for the sake of completeness as some related results.

Proof of Theorem 2. If there exists g=1 such that T€(o—G,) for
(o(T), 6(T)), then Reo(T)Co(ReT) holds by Lemma 3 and T is convexoid by
Theorem B. So we have (%) by the hypothesis and (i) of Lemma 4 and we have
finished the proof.

Corollary 1 easily follows from Theorem 2 by the definition of M,.

Proof of Corollary 2. As stated in the proof of Lemma 2, for all u ¢ 6(7),
d(u, 3(T))=d(p, a(T)) holds, consequently T€(¢—G,) for &(T) if and only if
T¢(g— Gy for (a(T), &(T)).

Specially T¢(H,) if and only if T€(G)) for (o(T), 6(T)). So Theorem 2 im-
plies Corollary 2.

Proof of Theorem 3. If T€R, then there exist ¢=1 and a=1 such that
TcE—(e—Gy for W,(T) by Theorem E, consequently there exist ¢=1 and
1=p=a=c such that T€E—(¢—G)) for (W (T), W,(T)).

Conversely, suppose that there exist g=1 and 1=f=a=c such that
TcE—(0—G,) for (W, (T), Wy(T)). We remark that the condition 1=p=a=
can be replaced by 2=f=a=< since W,(T)=I'TT) for 1=a=2 [10]. When
a=p=2, the hypothesis implies w,((T—p)~Y)=1/d(u, W(T) for all p¢W(T) and
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0=1. On the other hand w,((T—p)~Y)=|(T—p)~Y for ¢=1[9] and [(T—p) Y=
=1/d(u, W(T)) always holds for all u¢W(T) [22, Theorem 6.2-A]. So we have

WT—wy*=1/d(u, W(T)) for all u¢W(T), i.e. TER, consequently we have only
to prove Theorem 3 in case 2<a. We can apply (iii) of Theorem 1 in this case,

then T turns out to be convexoid, hence W (T)=W,(T)=Wy(T)=coa(T) so
that the proof can be reduced to the case a=pf=2 in which the theorem is already
proved, so the proof is complete.
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Second order Briot-Bouquet differential equations

EINAR HILLE

1. Introduction. A Briot-Bouquet equation of order k& is a DE of the form
(1.1) Plw,w®]=0

where P(x, y) is a polynomial in x and y with constant coefficients. In the study
of such equations the main problem is to find necessary and, if possible, sufficient
conditions in order that the solutions be single-valued functions, holomorphic
save for poles in the finite plane.

In 1887 PicarD [7] proved that an algebraic curve

(12) P(x,y)=0
admits of a parametric representation
1.3) x=80), y=T(@)

where S and T are transcendental entire or meromorphic functions of ¢ iff the
curve is of genus 0 or 1. Since w(z) and w®(2) are either both entire or meromorphic
or neither has this property we have

- Theorem 1. A necessary condition that (1.1) have a single-valued solution,
holomorphic save for poles in the finite plane, is that the genus of the curve (1.2) be
zero or one.

The condition is not sufficient. Thus the second order DE

>y —~2/8
(1.9) w =w! witheg w(2)= [wo‘a/a——;—l/% (z—zo)]

has movable branch-points. The general solution is obtained by inverting a hyper-
elliptic integral and has of course infinitely many branch-points.

Received April 22, 1977.
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For k=1 the investigations of FucHsS [1]. POINCARE [8] and SCHLESINGER [9]
have determined the limitations which are put on the polynomial coefficients
of the powers of w' by the existence of meromorphic solutions that are non-
rational.

Suppose that
(1.5 P(x, y) = Po(x) "+ Pr(x) "1+ ... + Po(x)

and let §; be the degree of P,(Sc). Fuchs showed that the existence of solutions of
the described type requires that P,(x) be a constant, say Py(x)=1, and that

(1.6) 6;=2% j=12,.n

These conditions apply to first order BB equations: If they are satisfied and the
genus is 0 or 1, then (1.1) has single-valued solutions which are rational functions
of z or of ¢** for some constant a, or of the-Weierstrass g-function and its first
derivative. Thus the solutions belong to the class of functions for which Welerstrass
has shown the existence of algebraic addition theorems.
The present note is devoted to the case k=2. Here the analogue of the con-
ditions of Fuchs read (see [3] Theorem 3)

(1.7 PW =1, 6;=3j, j=1,2,..,n

If the solutions are to be entire functions of z, the inequalities become more
restrictive:

(1.8) 0;=j
and this inequality holds for all values of k when the solutions are entire functions.
Cf. [3] Theorem 4. .

~ In the present note we use the method of Fuchs as presented by Schlesinger
to the case k=2. We also lean heavily on the results of Painlevé and Gambier
concerning second order DE’s with fixed critical points. It will be found that-the

solutions are either of the same three types as for k=1 or reducible to such types
by a change of variables.

2. Eugqations of genus zero. I. Suppose now that k=2, conditions (1.7) hold
and the curve (1.2) is of genus zero. Then a rational function of x and y exists such
that

@D o t=R(x,y)
leads to
2.2 _' x=Ry(t), y=Ryt)

where R; and R; are rational functions of . The DE then becomes

(2.3) w”(z) = Ry(t) with w(z) = R,(?).
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Differentiation of the second equation with respect to z gives

4 ” /4 dt
.9 @ = RO, W = Ro (L + RO
Thus ¢ as a function of z satisfies the DE
' dz2" Rj(t) \dz) — Ri(t)’
where R, and R, are rational in #. There are two distinct possibilities according

as R;()=0 or not. The first case is by far the simpler one.
I. R/ (#)=0. We may assume R;(z)=1. The DE (2.5) now reduces to

d2t

(2.6) = Ra(0).

Since in this case w(z)=1(z)+1,, the requirement that w(z) shall have no branch-
points implies that R,(¢) is a polynomial in ¢ of degree =3 by (1.7). It is necessary
to distinguish between a number of subcases.

I:1. 6[R,]=3. A first integral of (2.6) takes the form

@7 (4 = 4¢—aD—adt—ap(t—a).

Here there are essentially five different possibilities.
I:11. The a;’s are distinct. Then there exists an affine transformation z=as,
t=bv+c which takes (2.7) into the Jacobi normal form

.9 (%) = a-ma- e)

where the modulus & is determined by the a;’s. The solutions of (1.1) are thus elliptic
functions of z.
[:12. ay=a,=a, ay#a,, (a—ay)(@a—ay)#0. Set

I
(2.9) t= a—l——v—
which reduces (2.7) to the form

(2.10) . [Z"] B(v—1)(v—1y).

The corresponding solution w(z) is a rational function of e** for some a. It is 51mply
periodic.

5
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1:13. ay=a;=a, ay=a,=b, a=b. Thus

dt
(2.11) i B(t—a)(t—b).
Here also w(z) is simply-periodic and a rational function of exp [(a—b) Bz].
1:14. a,=a,=a;=a, a,=b#a so that

@11 —d—’]z— A(t—a)’(t—b)
. ) = a .
The substitution (2.9) leads to a DE of the form

dv)®
2.12) [—E;J = B(v—c)

which is satisfied by a quadratic polynomial so that w(z) is a rational function of z.
I:15. All the a;’s are equal to a. The equation may be reduced to the form

2.13) Z—: =v? with v(z) = bo—(z—zo)‘l

so that w(z) is also in this case a rational function of z.
This exhausts the possibilities when 0(Rg)=3, R,(t)=1 and p=0.
I:2. 6(Rp)=2 gives the first integral

(2.14) %} = A(t—a)(t—a)(t—ay).

Here we have the following subcases:
1:21. The a’s are distinct. An affine transformation leads to Weierstrass’s
normal form '

2.1 (ﬂ]z— 408

.15 as) = V" — 80— 83

so that w(z2) is of the form

(2.16) w(z) = b (cz—so; g2, 85)+ 1o

with s, and v, as arbitrary constants.

1:22. a,=a,=a, az=b+#a. The substitution (2.9) reduces the DE to the form
(2.10).

1:23. All the a,’s are equal to a so that the solution w(z) is a rational func-
tion of z.
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The only remaining case is that whére d(Ry)=1 so that
d2t

X — e 2
.17 P c2t—a, ¢c#0
with
(2.18) t(z) = K e**+ K,e *+ac™?

so that w(z) is a rational function of ¢*. This ends the case R;(¢)=0.

3. General case with p=0. We have now equation (2.5) with Ry (#)=0.
Suppose that w(z) has a pole at a finite point z,. Since w(z)=R,(f) is a rational
function of ¢, it is seen that R,(#)—~< as f—o and this says that at t=o
3.0 | Ry(t) = aot*+0("), a0,

-where u is a positive integer. The cases y=1 and u>1 require separate treatment.
If p=1, then .

3.2 R,(t) = apt+a,+a,t~*+0@"*7Y), aga, %0

where A is a positive integer. Hence

\

R;(t) a2 —-A-2 —-A-3
3.3) Rl(t) /1(,1+1)t +0(t )
In the second case p=>1 the ratio equals
34 (u—Dt 402,
Further _
3.5 Ry(t) = bot"+0(t"'1).

Since R,(t)=w"(z) and w”(z)/w(z) becomes infinite as z approaches a pole, one
concludes that

(3.6) v=p+l
and in
G.1) R @) _ b" O ")

Ri@®)

the leading exponent is at least 2.

We can start to whittle down the exponent. Some of this work is elementary
but ultimately we have to fall back on the results of Painlevé and Gambier. Suppose
that w(z) has a pole of order « at z=2z, where

(3.3 w(z) = a(z—z9)~*[1+0(1)]
so that

(3.9) w(z)=—aa(z—2z) * l+o(1)], w'(2) = a(a+‘1)a(z—zo)""[l+o(1)j.

s.
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Set

(3.10) RO 00 2R-20

so that (2.5) becomes

(3.11) '@+ @O F = 2, ().
Now

w(z) = R[t(2)] = ao[t(2)}*[1 +o(1)]

in a neighborhood of a pole and #(2) is a rational function of z, w(z) and w”(z) by
(2.1) so any infinitude of #(z) must be a pole, say of z order f at z=z, and here

4
(3.12) p=—

so that u is a divisor of a. At z=z, the three terms of (3.11) have poles of order
B+2, B+2 or 2-—1B, and (v+1-pp,

respectively. Since the infinitary terms must balance in the equation, it is seen that
B+2=(v+1—wp or (v—p)f=2. Here both factors on the left are positive in-
tegers, at least equal to 1. It follows that

(3.13) 1=4=2, 1=sv—pu=2
Since f=afu, itis seen that

2u
v—p

(3.14) o =

and v=3u

This is as far as we can get with elementary methods.
P. PANLEVE [6] and R. GaMBIER [2] have determined the DE’s of the form

(3.15) oy (2) = L(z, v)[v' (2)B+ M (z, v)v’(2)+ N(z, v)

which have fixed critical points. Here L, M, N are analytic functions of z and ra-
tional in v. An excellent presentation of the theory is given in INCE [5, Chapter
XIV]. Painlevé and Gambier found that the equations of type (3.15) with fixed
critical points (branch points and essential singular points) could be reduced, possibly
by change of variables, to one of 50 different normal forms. We shall apply these
results to equation (3.11). This equation does not involve z explicitly,
further M (v) is identically zero while N(v) is definitely not. This reduces the types
that have to be considered from 50 to 15. These are listed by INCE [5, pp. 337—343]
under the headings XII, XVI, XVIII, XIX, XXI—XXIII, XXVI, XXIX, XXX,
XXX, XXXIIT, XXXVIIH, XLIV and XLIX. We refer to INCE for details.

On the face of it his equation XIV should also be considered, but this equa-

. . cdw o
tion contains a misprint: a factor = is missing so M(v) is not identically zero.
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One can set the arbitrary functions ¢(Z) and r(Z) equal to zero but this also makes
N(v)=0 so the equation does not qualify.

The reduction to a normal form may involve a change of variables but in the
case of (3.11) and p=0 only affine transformations

(3.16) Z=az+b, V=cvtd,
need be considered.

The function v—L(v) has at most 3 poles and for XLIX this number is reached
and the normal form is

' _ 1{1 1 1 }
3.17) L(U)_f v+v—1+v—a , a#0,1.

Two poles occur in XXXVIII and XLIV with L(v) equal to

20 v—1 4

-

11 3{1 1 }
(3.18) —+—— and — ?'I'm ’

respectively. All the other L’s are of the form Cv~! where the constant C has only
three possible values +-3-1. At infinity L(v) has a simple zero. Comparison
with (3.3) and (3.4) shows that u=1.

The rational function N(v) is normally of degree v=3; it is 2 for XVIII, XIX,
XXI, XXHI, XXXIII. For XXII v=0 and —1 for XXXII. The latter two equa-
tions are excentional in as much as the solutions are polynomials in z and thus
have no finite poles. There is no contradiction with (3.13) and (3.14) since these
relations presuppose the existence of poles.

The solutions of (3.11) are elliptic functions when v=2 or 3. Combining the
results of this section with those of the preceding one leads to

Theorem 2. If the curve (1.1) is of genus zero and if (1.7) holds then the solu-
tions of the DE

(.19) W' @F+ 3 Piw@IW (@) = 0

j=
are rational functions of z or of € for some a, or finally of 9 (az+b; g,, g5) and its
derivative with respect to z for some choice of the parameters a, b, g,, gs.

4. The case p=1. Here we can find four rational functions, each of two argu-
ments, such that

(41) §= Rl(x: y)s t= Rz(x, y), X = Ra(s, t), y= R&(s9 1)
with
4.2) . 12 =45—g,s—gg

where the parameters g, and g may be determined from the coefficients p; of (1.2).
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Since ¢2 is a polynomial in s, the functions R; and R, may be written as follows

4.3) Ry(s,t) = Ry () +1Rye(s), Ry(s, t) = Ry (s)+1Ry2(5)

where the R;, are rational functions of s.
2

dix
Since by definition —=y we get
) dz*

&
dz?

” ” 1232_ ’ 1 . 1232_ 2 ds 2 :
+{R31+tR32+—tg3R32+R327[12s—(——7tﬁ] ]} (E) =y = Ry +1tRys.

It follows that z~—s(z) satisfies a DE of the form

(4.4) 62— gz} s

Aot

= {R:;l + ’R:’az + Ry dz°

@5) 2 = 00+ 1001 (%) +0u(+10u()

where the Q, are rational functions of s.

Here there are various possibilities.

L. 0.:(8)=05(5)=0. The equation (4.5) is then essentially of the same nature
as (2.5) and the previous results apply. The solution is normally an elliptic func-
tion of z but it may degenerate to a rational function of z or of ¢** for some constant
a. This case gives nothing new.

1I. At least one of the functions Q,,(s) and Q,,(s) is not identically zero. We
note that at least one of the functions Q,, and Q,, cannot vanish identically save
for the trivial DE [w”(2)]*=0.

Suppose that at s=oo
4.6) Qu(s) = ays®x[1+0(1)]
and suppose that a solution s(z) of (4.5) has an infinitude of order § at z=z,
so that

(CN)) s(z) = b(z—z) " #[1+o(1)).

Equation (4.5) involves five terms that may become infinite as a negative power
of (z—2z,). The orders are respectively

7 3
@8 B2 GutdBt2 (suta)B42 Sub (swt3)s
provided the corresponding a;,#0. Here the §; are integers, =0 or 0 or <O.
Since no term can dominate the first term and at least one of the other terms must
be of the same order of magnitude we get a set of inequalities which must be
satisfied by the §,,’s:

(4.9) . 611 é o l, 512 § —3, 621 § 3, 623 § l.
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Let us now bring the known facts to bear on our problem. Painlevé also examin-
ed the case where the coefficients L, M, N are algebraic functions of v so that
L, M, N are rational functions of the variables v and W where

(4.10) Cw,W)=0

and C is a polynomial with constant coefficients and the curve (4.10) is of genus
0orl

Besides the 50 types found in the rational case p=0 Painlevé found only
3 additional types free from movable critical points. If in these equations the
arbitrary functions are replaced by arbitrary constants and the conditions M (v)=
=0, N(v)20 are imposed, only two types are found to qualify. These equations
may be written

4.11) (2) = ggg; [ (P -+ [T (P
and _

, . 1
“.12) §(2) = {—é— % = [T(s)]'”*} [f QP+rIT G
Here
4.13) T(s)=4s°—g,s—gs

and 2 is an arbitrary period of @ (s; g, g3).
Equation (4.11) is equivalent to the system

") = 1/2
it [r — s T
with solutions

(4.15) s(z) = go(% rz2+Ciz+4Cy; g, gs].

By (4.1) the solution w(z) of (1.2) is a rational function of s(z) and T[s(z)], that is
expressible in terms of elliptic functions of a quadratic polynomial. Such an elliptic
function would necessarily have Nevanlinna order 4. But this contradicts Theorem
6 of [4] according to which the Nevanlinna order of a meromorphic solution of
a Briot-Bouquet DE is at most 2, We conclude that an equation of type (4.11)
can not arise when the birational transformation (4.1) is applied to a BB equation.

As we shall see in a moment, equation (4.12) can also be dismissed. This equa-
tion also leads to a simple system

§'(2) = u(T[s()"

(416) u’(z) — l%[ﬂ(Z)]z-l"'
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Here r=0 since N(v)z0. We set r=i—n-a2 so that
()]

@.17) u(z) = aitanh [a g (z—zo)] ,
Z
(4.18) [ u@s)ds = i% log sinh [a % (z—zo)]
so that
(4.19) s(2) = p {i -‘;tl log sinh [a % (z—zo)] g, gs}.

This solution has singularities at all the points z,=z,+k—i. If z describes a po-
: a

sitive circuit around one of these points, the logarithm is increased by 2ni and the
argument of the g-function decreases by 2 which is a period so the solution returns
to its original value. Thus the solution is single-valued but it is not a meromorphic
function. In fact, each of the points z, is a point of accumulation of poles. Thus
z~-s5(z) takes on every value infinitely often in an arbitrarily small neighborhood
of z,. Now a rational function of s(z) and T[s(z)] inherits these properties of s(z).
According to Theorem 4 of [4] the determinateness theorem of Painlevé holds
also for second order BB-equations. This shows that an equation of type (4.11)
cannot be obtained as a transform of a BB-equation. Thus we have proved

Theorem 3. If the curve (1.1) is of genus 1 and if (1.7) holds, then the solutions
of (3.19) are rational functions of z or of € for some a or, finally, of ¢ [L(z); g5, g4l
and its z-derivative where L(z) is a linear function of z.
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Compact Operator Ranges and Reductive Algebras

A. A. JAFARIAN and H. RADJAVI

1. Introduction. Let <7 be an arbitrary subalgebra of #($) — the algebra of
all (bounded) operators on the (complex) Hilbert space $. A sufficient condition
_that &/ be strongly dense in #($) was found by Foias [4]; it requires that o/ have
no invariant operator ranges other than {0} and $. This requirement is stronger
than that of (topological) transitivity for &, i.e., the hypothesis that o/ has no
non-trivial invariant (closed) subspaces. This result was generalized in [5] to the
theorem that if every proper operator range invariant under the transitive algebra
&/ is the range of a compact operator, then . is strongly dense. One of the purposes
of the present paper is to demonstrate that this generalization is not vacuous, and
that in fact there exist proper, dense subalgebras of #(9) leaving invariant an
abundance of compact operator ranges but no other operator ranges.

The second purpose of this paper is to give an extension of the above result
to reductive subalgebras of #($), i.e., those algebras whose invariant subspaces
are all reducing. The new result, also shown to be non-vacuous, states that if the
invariant operator ranges of a reductive algebra &/ are all “compact perturbations”
of its invariant subspaces, in a certain sense, then & is strongly dense in a self-
adjoint algebra. This also strengthens the theorem in [2] with the same conclusion
but requiring that all invariant operator ranges be closed.

Algebras considered will be assumed to contain the identity, although thlS
is not at all essential; the trivial modification necessary for the general case will
be obvious to the reader.

2, Algebras with Invariant Compact Operator Ranges. We start with the follow-
ing lemma whose proof can be found in [4].

Lemma 1. Let % be a uniformly closed subalgebra of B(9) which leaves the
range of an injective operator S invariant. Then there exlsts M=0 such that
IIS 1BS||=M|B| for every B€A.

Received March 15, 1977.
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Theorem 2. Let K be a compact operator with dense range. Let s/ be the (transi-
tive) algebra of all operators leaving K9 invariant. Then every proper operator range
invariant under & is the range of a compact operator.

(We remark that every #/-invariant operator range has to contain K$ by a
result of [7].)

Proof. Assume, with no loss of generality, that 0=K=1. Fix 4 with 0<i<]1,
and let P, be the finite-dimensional spectral projection of K corresponding to all
the eigenvalues in the interval (4!, A\~']. Let J denote the algebra of all upper-block-

triangular operators relative to the decomposition 2’ @ P9 of H. It follows from

the characterization of & given in [7] that € . We must prove that if S is an
operator such that S9 is invariant under & and SH=$9, then S is compact. Again
we assume, with no loss of generality, that S is positive. This implies, since S
is dense in £, that S is also injective.

Assume S is not compact. Then there is £>0 and an infinite-dimensional
spectral subspace 9 for S such that S|MM=¢ (and thus SM=IM). Now, since
the subspace f @ P;$ has finite codimension, it interscets M nontrivially for

i=n+1
every n. Pick a unit vector x in this intersection. Observe that if y is an arbitrary

unit vector in Z"'@Piﬁ for any n, then there exists T€J with ||[T] =1 such that
i=1

Tx=y. Thisis 5o because the subset

(3er)7( 2, 2)

i=n+1

of I contains all bounded linar transformations from 2’ P;$ into Z@P 9,
i=n+1

and, in particular, the rank-one operator that sends x to y and {x}* to {0} Hence
yeTSHS S and
IS=*yl = ST TS(S~ x| = 1S TS| /fe.

Since [|S~1TS} is bounded on the unit ball of & (Lemma 1), we conclude that
S~ is bounded on the dense linear manifold G Z"'GBP‘SZ) Thus S~ is bounded

n=1i=1
and SH=9, which is a contradiction. This completes the proof.

We note here that the algebra o of the above theorem has many invariant
operator ranges, e.g., the range of K" for O<r<1. It also has mutually non-
comparable invariant operator ranges (See [4] and [7].)

3. Reductive Algebras. A natural first question on reductive algebras suggested
by the above-mentioned result of [5] is: What happens if it is assumed that every
proper operator range invariant under the (infinite-dimensional) reductive algebra
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& is a compact operator range? It is very easy to see that such an & is actually
transitive and thus strongly dense by [5]. The next question is: What if we replace
“proper” by “non-closed” in the above question? The answer is as expected: Such
an algebra will have to be strongly dense in a self-adjoint algebra. But we shall prove
a stronger result. _

In what follows, by a compact perturbation of a subspace M of $ we shall
mean the range of any operator of the form P+ K, where P is the orthogonal pro-
jection on M and K is a compact operator with KP=PK=0. We allow P or K
to be trivial. If P$ and K$ are both infinite-dimensional, this type of operator ranges
are called class 2b ranges by Dixmier [1]. (See also [3].) An invariant subspace M
of an algebra & is an atom if o/|M is transitive.

Theorem 3. Let of be a reductive algebra on § such that every invariant operator
range of s is a compact perturbation of a subspace of $ (not necessarily invariant
under sZ). Then $ is a finite direct sum of atoms for .

_ Proof. Any infinite chain (under inclusion) of subspaces of $ contains either

a subchain isomorphic to the integers or one anti-isomorphic to the integers. Now
pick a maximal chain C of invariant subspaces of . If C is infinite, then, by the above
remark and by the reductivity of &/, we obtain infinitely many, mutually orthogonal
invariant subspaces for <. If some or all of these subspaces are finite-dimensional,
we rearrange them in a double sequence M;; and let M= @N;;. Thus we can

J

assume 5=i2°:' @®IM,;, where each M, is an infinite-dimensional invariant subspace

for «/. Then the operator Zw'ea(l/i)li, where I, is the identity on IM; commutes
i=1

with (every member of) &, and thus its range is invariant under /. But this range
is not closed and is easily seen not to be a compact perturbation of any subspace,
because every eigenvalue 1/i has infinite multiplicity. It follows from the hypotheses
that C is finite. By the reductivity of & this chain gives rise to a finite number of
atoms $, for & with H= DD 9;.

In the rest of the paper we shall freely use the notation and terminology of
[8] with one exception: we do not assume, as part of definition, that a reductive
algebra is closed under any topology. The symbol & will consistently denote a
reductive algebra. ,

We need the following lemmas in the proof of the main result of this section.

Lemma 4. Let 55=$1§...63S5m, where each $, is an atom for /. Let X€Lat
#® and assume X is (a graph subspace) of the form

x = {(Cnx@...@Clmx)Q...GB(CuxGB...@Ckmx):xéb},
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where D is a nonzero linear manifold in 9,, each C;; is a (not necessarily bounded)
linear transformation with the common domain ® and range in §;, and Cy, is the
identity on D. Then there exists bounded linear transformations D;; from , into
$; such that ;

¥={D1ny®..0D1p))®.. 0Dy ®... 0Dy, ): yEH:}.
Proof. Since D is the domain of the closed operator

T:D~(9:9...09.)0[9,0...09.¢" .
defined by Tx=Cp,x®...®C,,x, it is also the range of a bounded injective oper-
ator S:9H,—9, (Theorem 1.1 of [3]). Thus TS is a closed operator defined on H,
and hence bounded by the Closed Graph Theorem. It follows that the transforma-
tions D;;=C;; S are all bounded on $, and satisfy the requirements of the lemma.

The following lemma is easily verified; its proof is also given, e.g., in [8, Proof
of Theorem 9.11].

Lemma 5. Let &/ be a reductive algebra on H=9H,09, and let H; and 9,
be atoms for of. Assume T is a bounded linear transformation from 9, into 9, whose .
graph is in Lat &£. Then T is a scalar multiple of an isometry U of $, onto $, and,
consequently, A|$,=U(A|H)U* for all AcH.

It is convenient to introduce another ad-hoc definition: a subspace N of
($9:19...99,)" will be called special if there exist scalars ay, ..., &, and an integer
i, 1=i=m such that

N ={00.. 00Dt xDOD...00)D...0 00 ... D0DuxB0D...B0) : x€H,),
where in each pair of parantheses the component «;x occurs at the i-th place.

Lemma 6. Let &/ be a reductive algebra on H=H.®...09,, where each
9, 1=i=m, is an atom for &, and for no pair (i, j), i#j, there is an isometry U
Jrom 9, onto 9; such that
A|9;=U(4|9)U* forall Aco.

Suppose also that the only proper operator ranges invariant under sZ|$; are ranges
of compact operators. Let RcLat Z®, so0 that every y€R has mk components y;
relative to (9,D...®9,)®. Assume that there is a subset J of the integers 1, .. ,mk
such that yeM, y#0 implies y;#0 for jcJ and y;=0 otherwise. Then N is a special
subspace. )

Proof. Suppose N={0}; otherwise the conclusion holds. From the hypo-
thesis on N one can easily conclude that for any yeR, y=0, all the mk components
of y can be uniquely (and hence linearly) determined by any nonzero one. Assume,
with no loss of generality, that y,;0 for all y¢R. Then Lemma 4 yields

N={Dpx®...0DpX)®...0(Dux®...0 D, X): x€H,),
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where D, and hence all the nonzero D; ; are injective bounded linear transforma-
tions, by hypothesis. Since the range of each D;; is invariant under &/|9;, it follows
that every nonzero D;; is either compact or bijective.

If every D;; is compact, then the operator

R:x > (Dpx®..0D1,x)D...0(Dyxd...0D,,x)
is also compact and thus 9 is the range of a compact operator; since it is closed
it must be finite-dimensional, and thus the nonzero D;; are surjective. If M is in-
finite-dimensional, then at least one D;; should be surjective. Hence in all cases we

can assume; with no loss of generahty again, that Dy, is surjective. Replacing x by
D'y and putting E;=D;;Dj' yields

= {(y@---@EmY)@---EB(Ekly@m@Ekm}’):y@sl}-
The proof will be complete if we show that
(@ E;=0 for j#1, and by E,=o1, i=1,2,...,k.

To prove (a) we note that if E;;>0 for some i and j with j#1, then {x® E;;x:x€%,}
will be an invariant graph subspace for the reductive algebra &/ {(9,®9;) (cf. [8,
Lemma 9.1]). Hence, by Lemma 5 there is an isometry U of $, onto $; with
A|9;=U(A4|9H) U*, contradicting the hypotheses.

To show (b) we observe that NcLat #® implies E;A4,=A,E, for all 4,
in &/|9,. Since |9, is strongly dense in #(H,) (by Theorem 2 of [5]) E,; must
be scalar.

Theorem 7. Let & be as in the above lemma and k an arbitrary positive integer.
Then every invariant subspace of 4™ is the orthogonal direct sum of (at most mk)
special subspaces, and sf is strongly dense in B(H)D...DB(D,)-

Proof. Let MeLat #®, N>={0}. Let y, be a nonzero element of N with max-
imal number of zeros among its mk components. Let N; be the invariant subspace
of o/® generated by y,, ie.,

={A®y,: dc o).
Since . |, EN, every nonzero member of M, has the same nonzero components
as y;. Lemma 6 implies that R, is a special subspace of ($,®...89,)®. But every
special subspace is invariant under the algebra [Z($)&... 0B (9,)]® and, hence,
so is its orthogonal complement, because this algebra is self-adjoint. Thus
NLcLat 4 and consequently RON,Lat #®.

If RoN,= {0}, we repeat the process and find a special subspace N,SNRON,
and so on. Since ($,P...®9,,)® is the orthogonal direct sum of at most mk special -
subspaces, it follows that this process terminates after a finite number of steps and

we obtain
gt = m1®...@m,., .
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where each R, is a special subspace invariant not only under &/® but actually under
[Z()S...0B(9H,)]®. Thus we have shown that

Lat #® C Lat[8(H)D ... @ LB(D)]V

for every integer k; it follows from a result of [9] that the strong closure of & is
B(O)D.. DL(9,) as asserted.

We now consider the most general reductive algebra whose invariant operator
ranges are compact perturbations of its invariant subspaces. This can be done,
in view of Theorem 3, by allowing isometries of the sort excluded in Lemma 6.
Then & is easily seen to be unitarily equivalent to an algebra (denoted by &f again)
of the following form: The underlying space § is expressed as ${P@...HP";
for each i, o |HPP=o/P), where &, is a transitive algebra on $; whose proper
invariant operator ranges are all compact operator ranges. Furthermore for no
pair i, j with isj, there is an isometry U such that A;=UAU*, A€o, Ajcsd;.
(All such unitarily equivalent summands of &/ have already been put in the r
“bunches”.)

Theorem 8. If all the invariant operator ranges of a reductive algebra < are
compact perturbations of its invariant subspaces, then its strong closure is self-adjoint.
More precisely, of is strongly dense in an algebra of the form

[BS)IPD ... O[B ()]
modulo a suitable unitary equivalence.

Proof. Let $; and p;, be as in the paragraph preceding the theorem, after
a suitable unitarily equivalent form of &/ is chosen. Take a *“‘representative of each
bunch” and form the subspace
KR=9:0...99,.

Then &/|R and K satisfy all the hypotheses of theorem 7 and, hence, &R is strongly
dense in Z(H)D...0H(D,). It follows that & is strongly dense in an algebra
of the form exhibited above.

We can use Theorem 2 to construct non-trivial examples of reductive algebras
satisfying the hypotheses of Theorem 8.

Example. For each i, 1=i=n, let o, be the algebra of all operators on $
leaving the range of an injective compact operator K; invariant. Let &/ be the

algebra
{Al@"'@An:Aiedi’- l=1, ceey n}.

It can be verified that & is reductive and that if X is an operator range in-
variant under &7, then X is the range of an operator of the form B,®...® B,, where
each B, is 0,1, or a non-zero compact operator (by Theorem 2).
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We conclude the paper with a question: can one get a density result for the
reductive algebra &/ by merely assuming that its invariant operator ranges are
all compact perturbations of arbitrary (not necessarily #/-invariant) subspaces?
We observe that, even in the special case where & is transitive, the question seems
to be non-trivial.
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Counting additive spaces of sets

- KI HANG KIM and FRED W. ROUSH

1. Introduction. In this paper we consider an asymptotic counting problem
which occurs in a number of forms.

Definition 1. A family @ of subsets of {1,2,...,n} is an édditive space if
9cQ and AB€Q whenever 4, B€Q. Two such families are isomorphic iff they are
isomorphic as semigroups under union,

Definition 2. Let ¥, be the set of all n-tuples from the two-element Boolean
algebra {0, 1}. A subset U of V, is called a Boolean subspace iff the vector (0, 0, ..., 0)
belongs to the subspace, and whenever wu,v€U, the vector wu+ov=
=(sup {u, v1}, ..., sup {u,, v,)) also belongs to U. Two subspaces are isomorphic
iff they are isomorphic as semigroups under +.

Definition 3. A lattice is of type-(n, m) iff it has exactly m nonzero join ir-
reducible elements and exactly n meet irreducible elements-other than its highest
element.

Remark. Every Boolean subspace of ¥, has a partial order given by v=w
iff v+w=w. This makes the subspace into a lattice, with the join operation being
Boolean sum, and the meet operation on v, w being the sum of all Boolean vectors
less than or equal to both v, w.

Definition 4. By a Boolean matrix of order n is meant an nXn matrix over
the two-element Boolean algebra {0, 1}. Let B, denote the set of all such matrices.
We consider the sum and product of members of B, to be the sum and product
over the two-element Boolean algebra {0, 1}. Then B, is a monoid under multip-
lication.

Definition 5. Two Boolean matrices 4, B are #-equivalent iff there exist
Boolean matrices X, Y such that 4X=B, BY=A. They are Z-equivalent iff there

Received January 31, 1977.
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exist matrices U, V such that U4A=B, VB=A. They are D-equivalent iff there
exists a matrix C such that AZC and C¥B. They are s-equivalent iff they are
both #%-equivalent and Z-equivalent.

Remark. &, %, o are equivalence relations, by a quick computation. As
a relation, 2 is the composition Zo0 . It can be shown that 20 ¥=LoR, and
this implies 2 is also an equivalence relation.

Definition 6. An ideal of B, is a subset I of B, such that for all x€/7, a, b€B,,
the element axb belongs to I. Principal ideals, pnncxpal left and right ideals are
defined in a similar way.

Questions.

1. What is the asymptotic number of isomorphism classes of additive spaces
of subsets of {1,2, ..., n} which have m generators other than the empty set?

2. What is the asymptotlc number of isomorphism classes of Boolean subspaces
of V, with m generators other than (0,0, ..., 0)?

3. What is the asymptotic number of 1somorph1sm classes of lattlces of type-
(n, m)?

4. What is the asymptotic number of Z-classes of nXm Boolean matrices?

5. What is the asymptotic number of principal ideals in B,?

The answers to 1—4 coincide, and for m=n the fifth also has the same answer.

. n
We prove that if n, m—~e in such a way that — approaches a nonzero constant,
m .

the answer to 1-—4 is .
» n!m!

We also obtain information about related questions: the number of subspaces
of V, with m generators (not just isomorphism classes), the number of £, %, -
classes. Also on the number of matrices X such that for some non-identity permuta-
tion matrices P, 0, PXQ=X (for instance if X were a projective plane, such P, Q
would give a collineation, the existence of P, Q is an unsolved problem [2], [5]).

2. Facts about Boolean matrices; lemmas. Equivalence of questions 1 and 2
is by an isomorphism of semigroups. Equivalence to question 3 follows by results
about lattices involving duality, regarding lattices as idempotent abelian semi-
groups [1].

The row space of an m><n Boolean matrix is the subspace of ¥, generated
by its rows, with (0,0, ..., 0). Likewise there is a column space. It is known that
the row space (as a subset of ¥,) determines the Z-class of a matrix and the column
space determines the #-class [3]. Every subspace of ¥, has a unique smallest generat-
ing set excluding (0, 0, ..., 0). Such a set is called a basis. A basis for the row space
of a matrix is called a row basis, and a basis for the column space of a matrix is
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called a column basis. Tt is known [3] that the isomorphism class of the row space
determines the #-class showing that questions 2, 4 have the same answer. It follows
by semigroup theory [4] that for n=m questions 4, 5 have the same answer.

We will begin to answer question 4. The row rank of a Boolean matrix is the
number of elements in a row basis; likewise for the column rank. For any two
Boolean matrices 4, B we say A=B if a;=1 implies b;;=1 for all i, j.

Lemma 1. Let n,m tend to infinity in such a way that

logn 0 logm
m ’ n

- 0.
Then the proportion of mXn Boolean matrices which have both row rank m and
column rank n tends to 1.

Proof. For a Boolean matrix 4, let A be its i*® row, and A.; be its j** column.

Let N;; denote the number of mXn Boolean matrices with Aux=A, and M;;

the number with A=A4.;. Let N denote 2™, the number of all mXn Boolean
matrices. Then for fixed i2j we have

Yo (3

N 4 N 4) -

Thus the number of matrices having no row greater than or equal to any other
and no column greater than or equal to any other is at least -

(IR

All these matrices have row rank m and column rank n. Under the given hypotheses
this number divided by 2™ will tend to 1. The proof of Lemma 1 is completed.

If two matrices of row rank m are £-equivalent their rows must be permuta-
tions of each other by the uniqueness of a row basis. So A=PB. Likewise for
Z#-equivalence if the column rank is ». So for X of the type of this lemma, the only
matrices Z-equivalent to it will be of the form PXQ. Thus such @-classes have
at most n!m! members, and asymptotically the number of P-classes is at least
2nm
n!'m!
PXQO=X.

. The proof of the reverse inequality will be based on a study of the equation

Lemma 2. If P or Q have no more than k cycles the number of solutions X of
PXQ=X is no more than 2** or 2", respectively.

Proof. Let P have no more than k cycles. Choose one row from each cycle,
and specify it. This can be done in 2** ways and these rows determine the rest.
Similarly for Q.

6
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Lemma 3. If a permutation P has at least k cycles, it will fix at least m— 2(m k)
numbers from {1,2,...,m).

Proof. Immediate. .

Lemma 4.-Let a permutation group G act on a set T of letters. If for any element
gof G, g fixes at least |T|—a letters with a=0, then there is a set of |T|—2a+1
letters fixed by every element of G.

Proof. The action of G on T gives a linear representation R of G by permuta-
tion matrices. Let oy, ..., 07, 0744, ..., 0p4, be the G-orbits contained in T, where
01, .., 0y contain only one element each, and the rest contain more than one elem-
ent. Corresponding to this orbit decomposition we have a direct sum decomposi-
tion R=R,®... ®RDR;11®...®R,:,. A theorem in group representation theory
(see [6], p. 280) states that

g.GZ; Tr(g) = (f+1)|G].

But 7r(g) = |T|—a for any g€ G, and assuming a=>0, Tr(I) > [T|—a. Therefore
|T|—a <f+t Yet |T|=f+2t. Therefore

which yields the desired inequality on f;
3. Main results

n
TheoremS5. Let n, m tend to infinity such that — tends to a nonzero constant.
, m

mn

Then the number of D-classes of mXn matrices is asymptotically equal to s
_ m!n!

Proof. By Lemma 1 and the considerations after its proof we need only prove

this formula gives an asymptotic upper bound. Let k=sup {lim l, lim ﬁ}.
m n

Case 1. 9D-classes containing some X such that PXQ=X for some P, Q such
that P has no more than m—(4k+1)logm cycles. (All logarithms are base 2.)
For fixed P, Q with P satisfying the hypothesis of this case, there are at most

2m —('4k+_1) logm)n

matrices X such that PXQ=X, by Lemma 2. The number of possibilities for P, Q
cannot exceed n!m!. Thus the number of possibilities for X in the present case

is at most
2(m—(4k+1) logm)nn!m! .
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Therefore also the number of 2-classes containing at. least one such X is at most

2m-(k+logmny § )
nm

2
The ratio of this number to - will approach zero.
nim!

Case 2. 9-classes containing some matrix X such that PXQ0=X for some"
P, Q such that Q has no more than n— (4k+1)logn cycles. This case is treated
like Case 1.

Case 3. D-classes containing a matrix X such that PXQ=X for some P, O
not both the identity, but such that PXQ=X does not hold for any P, Q with
P having no more than m—(4k+1)logm cycles or Q having no more than
- n—(@k+1)logn cycles. For such an X, choose a pair P, Q satisfying PXQ=X
such that sup{m—number of cycles in P, n—number of cycles in Q} is a maximum.
Let s denote this maximum. We have O0<s<(4k+ 1) sup{log m, log n}. For a given
X the set {P:PXQ=X for some 0} forms a group [2]. Each element of this group
will fix at least m—2s letters by Lemma 3. Therefore by Lemma 1 the whole group

will fix at least m—4s letters. There is a similar group of Q’s which fixes at least
n—4s letters.

Fix s. We first choose a set of 4s letters which is to contain the set of all non-

fixed letters under {P:PXQ=X for some Q}. There are ( 4 ) such choices. There

are ( 4 ) choxces for a similar set for {Q PXQ=X for some P}. Provided these

sets are chosen, we can choose P in (4s)! ways to act on its set and Q in (4s)! ways
to act on its set. Once P, Q are chosen we can choose X in at most

onm —-smin {n,m}

ways by Lemma 2. Thus for a given s, there are at most

(7] (7] @9 @9 2m=eminiem

choices of X having the required value of s. However these X ’s do not all lie in
different @-classes. For any permutation matrices R, S, RXS will lie in the same
9D-class and have the same value of s.

How many different matrices RX'S are there for a glven X? We have a group
action of the product of two symmetric groups on such matrices, sending Y to
RYS-1, The isotropy group of X has order at most ((4s)!)? by the remarks above
about choosing P, Q such that PXQ=X. Thus a 2-class contammg one X also
contains at least

n!m!

(4s)!(4s)!
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other matrices with the same s. Therefore the number of 2D-classes containing matrices
of this type for a given s is at most

m3s ps ynm—smin {n, m} ((48) |)2

"n'm!

Allowing any value of s we have at most

m®spts2mm=sms((45)1)2(4k + 1) log n,

max
1=ss(sk+1)m, n!m!
nm
where ny=max{n, m} and ny,=min{n, m}. The ratio of this quantity to —
: nim!

tends to zero.

Case 4. All PXQ are distinct so the 2-classes have at least nim! elements.

' 9-classes of this type. This proves the theorem.
m!

There are at most
n

Corollary 6. Let N be the number of matrices X such that PXQ=X for some
n

P, Q not both the identity. Then if n,m—o in such a way that — approaches. a
m

N.
nonzero constant, > approaches 0.

Theorem 7. Under the hypotheses of Lemma 1, the number of & and Z-classes
2nm 2nm
of mXn matrices are asymptotically equal to — respectively. The number of
n! m! _

H-classes is asymptotically equal to 2™.

Proof. For an upper bound, for instance for #-classes, we have
2m 2m 2m
(n)+(n_1]+ +( 1]
by, for column rank k, choosing a set of £ column vectors to be a column basis.

) i=1 ( - )

which gives the theorem. Similar methods apply in the other cases.
The authors would like to thank Andras Ad4m for a very constructive criticism
of the original draft of this paper.
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Quasi-varieties of binary relations

KI HANG KIM and FRED W. ROUSH

A quasi-variety of groups is the class of all groups satisfying a certain set of
laws of the form Aw;=v;= u=v for all values of the variables in the groups,
where u, v, u;,v; are terms. Likewise quasi-varieties of semigroups, groupoids,
etc. have been studied. Here we define an analogous concept for binary relations.

Definition. A guasi-variety of binary relations is the class of all binary rela-
tions R for which a class of laws of the following forms holds:

L (V{, DEK, x;Rx;) = x,Rx,,
IL (AG, DEK, x;Rx)) = x,Rx;,,
M. (V@ )EK, x;Rx)) = x, = x,.

Such a law is specified by giving X, a, b. Here K can be any subset of the Cartesian
product of any set with-itself. The notation x,Rx, means “x_Rx, is false”.

Definition. Let S, be a family of sets and let R, be a binary relation defined
on S, for each a. Then the direct product of the R, is the relation R on I1S, such
that xRy if and only if x,R, y, for each a, where x, and y, are the components in
factor a of x and y.

Definition. Two binary relations R;, R, on sets S,, S, are isomorphic if
and only if there exists an isomorphism f from S, to S, such that xR,y iff

SR ().

Theorem 1. A non-empty class of binary relations is a quasi-variety if and
only if it is closed under direct products, restrictions, and isomorphisms.

Proof. 1t follows from the form of the laws that quasi-varieties are in fact
closed under direct products, restrictions, and isomorphisms.

Received July 10, 1977.
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Let ¥V be a non-empty class of binary relations closed under direct products,
restrictions, and isomorphisms. Let T be a binary relation which satisfies every
law of the forms I, II, III which holds for every member of V. Let S be the set on
which T is defined. We will show there exists a member Q of ¥ and a mapping
s—~x, of § into the set on which Q is defined, such that iTj implies x;Qx; for all -
i, j€S. Suppose not. Then aTh for some a,b. Let K={(, j):iTj, i, j€S and
G, )%, b)). _

(VG )€K, xRx;))= x,Rx,

is a law in V but is not true for T. This is contrary to assumption.

Let A be the set of all relations Q defined on subsets of S, and having the
above property; let, furthermore, elements x, be of the set on which Q is defined,
such that iTj implies x,Qx; for all i, j€ S. Given a Q defined onsome set as above,
by restriction and isomorphism we obtain a Q’ defined on a subset of S. Thus 4
is non-empty. Let 7 be the direct product of all the relations of 4. Let a, for s€ S
be the element of = which is x, in each factor.

Suppose a.=a, for c¢sd. Then put K={(i, j):iTj}.

(V(l’ ])EK’ xinj) = Xe = Xy

is a law which holds for all relations of ¥ defined on subsets of S. This means that
it is a law of V. But it does not hold for T. This is contrary to assumption. Therefore
the a, are distinct.

Suppose ¢Td but a,ma,. Then with the same K

(V(i.j )€K, xRx;)= x.Rx,

is a law in ¥ but not for T. This is contrary to assumption. Therefore ¢Td implies
a_ a,. It follows by construction that ¢Td implies a,na,. Therefore the restriction
of n to the g, is isomorphic to T. Therefore T is isomorphic to a member of V.
Therefore T€ V. This shows ¥V is a quasi-variety and proves the theorem.

Remark. Theorem 1 can be proved for any relational structure.
In the following we represent a binary relation R by the Boolean matrix. A=(a;;)
such that ;=1 if and only if (i, j)€R; otherwise a;;=0.

Theorem 2. Every 3X3 Boolean matrix belongs to a proper sub-qdasi-variety
of the quasi-variety of all binary relations. '

Proof. Suppose A is a 3X3 Boolean matrix which does not belong to any
proper sub-quasi-variety of the quasi-variety of all binary relations.

The set of binary relations R such that xRx holds for at most one x is a quasi-
variety. So 4 has at least two 1°s on its diagonal. Since reflexive matrices are a quasi-
variety, A has exactly two ones on its diagonal.
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Then if A does.not belong to the quasi-variety given by the law
(iRi and jRj and iRj and jRi) = i=j,
it will belong to the quasi-variety given by
(iRi and jRj and iRj) = jRi.
Theorem 3. The binary relation corresponding to a 4X4 Boolean matrix of
the form

* X em O

1
1
1
1

— -0 *

*
1
1.
1
does not belong to any proper sub-quasi-variety of the quasi-variety of all binary
relations.

Proof. It suffices to show no non-trivial law of the form I, II or IiI can hold
for this relation. Since 2R2, no law of type II can hold. Since 2R2, 3R3, 2R3, 3R2,
no law of type III can hold. Suppose a law of type I holds, a=b, (a, b)¢ K. Then
set x,=2, x,=4, all other x;=3. Thenforall(i, j) €K, x;Rx; is true but x,Rx,
is false. So the law does not hold. If a law of type I with a=b is given, (q, b)¢ K,
let x,=1, all other x;=2. The law will not hold.

Proposition 4. Any quasi-variety containing all idempotent binary relations
also contains all transitive binary relations. '

Proof. Any transitive relation is a restriction of an idempotent relation, by
the following construction. Let T be transitive. For each x, y such that xTy add
an element z(x, y) to the set on which T is a relation. Define T, on the new set by
xT,y if and only if xTy or x=y=z(u,v) for some u,v or x=2z(u,v), y=v or
x=u, y=z(u, v). Let T, be the transitive relation generated by T,, i.e. xT,y if and
only if xTyx;, %, TyXs, ..., X Tyy for some sequence x,, ..., x;. Then T, is idem-
potent and T is a restriction of T,.

Proposition 5. Any quasi-variety containing only idempotent binary relations
is contained in one of the following two quasi-varieties: (i) all transitive relations such
that xRy implies xRx, and (i) all transitive relations such that xRy implies yRy.

Proof. Suppose a quasi-variety ¥ contains relations R; and R, which are tran-
sitive but such that (i) fails for R; and (ii) fails for R,. Let aR;b and aR,a and cR,d
and dR,d. Then if we restrict R;XR, to (g, c), (b, d) we have a relation whose

matrix is [(1) (1)] or g (l) . Neither is idempotent.
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On the strong summability
of Fourier series and the classes H*

V. G. KROTOYV and L. LEINDLER

1. Let f be a 2rn-periodic integrable function and let {s,} be the sequence of the
partial sums of the Fourier series of this function.
- FrReuD [1] proved that if l<p<e and

) ._§ f=sdl?

<ool)

1 ‘ '
then f€Lip—. LeINDLER and NIKBIN [3] proved that under the condition (1)
p ‘ .
with p=1,
w(x,f)=0 [x log %) as x—0,

but no estimate better than this can be given. OSKOLKOV [7] and SzABADOS [9] (in-
dependently) proved that condition (1) with O<p<1 implies f€Lip 1. This is an
answer to a problem of LEINDLER [4] in connection with the above result of LEINDLER
and NIKISIN. ‘

In this paper we investigate the problem to find a necessary and sufficient
condition for a monotonic sequence {1,} such that the condition

<< oo, 0<p<oo

;:) }-x |f___s”|p

Received July 6, 1977.

This research was made while the first author worked in the Bolyai Institute (Szeged) as a
visiting scientist. . i

Y ||Ifll=sup |f(¥)], O=x=2=.
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should imply f€ H®, where @ is a fixed modulus of continuity and H® denotes
the set of functions f having modulus of continuity w(f, §) with w(f, §)=0(w(d)).
For a monotonic sequence {1,} and O<p<<- we denote

)

Theorem. Let {A,} be a positive monotonic (nondecreasing or nonincreasing)
sequence, furthermore let ® be a modulus of continuity and 0<p<ece. Then
i) condition

st ={r:

We prove the following

Z{'}lxlf—sxl"

@ Seaye=o[nn(1))
implies )
) Sp{A} < H?;

it) if there exists a number 0 such that 0=0<1 and
@ %02t
then, conversely, (3) implies (2).

Obviously, this Theorem includes all the results mentioned above and, hereby,
we give an answer to a problem raised in [6]. Furthermore, our Theorem includes
some results of LEINDLER [2].

2. To prove our Theorem we require the following lemmas.

Lemma 1. If {a,} is a nonincreasing positive sequence and if q=0, then there
exists a constant C,>0 not depending on n such that

n n q .
> ra, = C, 3 2, (—“;—*1) n=12,..).

Proof. Let {m} and {M;} (i=1,2,..) be two sequences of natural numbers
such that

(5) Ay > %am for Mi=m<m;y,

and

6) a,,,+1§%a,,, for mi=m<M,.
By (6) we obtain

pir=4""a, @=0,.. ,M-m-1;iz2),
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therefore, if i=2, then

M—1 My—m—1
2 2"a,= Z' Mg, L, =2m :a,,,,2'2"S

a. q
= ragmig,, ()’
m;—l

Furthermore, (5) implies

mpyq=1 myyy—1 it 4
3 g, =an” S g, L2
m=M,

m=M, O

and the last two inequalities give for i=2

. : . My a1 myq—1 a 1
(@] 2 2mg, =41t 3 omg [—"”—1) .
m=my m=m;—1 an
If mi§n<mi+1 and i%z, then
n n . q
Q) 3 g, =4%1 3 omg, (i'ﬂil} .
m=m, m=m;—1 Gy

The proof runs exactly as before.
Finally, we set
S Y
o=, 3ra| Zra (%)

then
n n—1 a q
>2™a,=C J 2™a, (—"‘—”]
m=0 m=0 am
for n=1,...,m; and (6) and (7) imply

mg—1 x—1 m“,l—l

Am+1 A1)
c 2 2”'a,,,(— +8-4¢ Z’ 2"a, —"'—]
m=0 an ap,

m=my—1

[IA

for m,=n<m,,, (x=2). Therefore, our inequality is true with

C, = max(C, 8-49).
and Lemma 1 is proved.

Lemma 2. Let {A,} and p be as in the Theorem. Then f¢ Sp{As} implies -
® Z 2" Egm(f) = Cpa(f) %2'"(2"'/12"')"1“’ (n=1,2,.)),

where C, ;(f) is a positive constant and E,(f) is the best approximation of f by
trigonometric polynomials of degree at most x
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Proof. First we assume p=1. Then by Hélder’s inequality we have

)=ty Bat| = (E0) N Bu-sr) | =
= S |v}w =CHERP @=1,2,.),

where A¥=min (4,, 4,,). This implies (8) for p=1.
In the case O<p-<1 we require the following result of [5]:
1/ps

1 2 1/p
E,(f) {7 2 _S"Ip}
where C, depends only on p. Using this inequality, by Lemma 1 we obtain (8).

n=1,2,..),

Lemma 3. If a,=0 and the function

[~ Z°'° a, sin xx
belongs to the class H®, then =
xgnl' xa, =0 (nw (%J]
Proof. Since f(0)=0, fcH® implies
max |f(x)] = Co(»), O<x=<m.
Therefore,

oo& R 2-x_.x-_ x L .
251 - sin®— _Jf(t)dtéCxw(x).

A .
If we take x=—, then
n

2
~ 5 ya, = a_(ﬁ) 50 i %% _ € (_IJ
n xg;xa,, 2 ézxsnzné 1)

x=1 ¥ \N *=1 n ‘n
for n=1,2,... and Lemma 3 is proved.

Lemma 4. If A} or A, and if there exists a number 0, 0=0<1, such that
%21, then the function

® S 3o teh) e sine
x=1
belongs to the class 'Sp(/l,‘}, O<p<eo,

Proof. To prove that f¢ S, {4,} we fix O0<x<n and choose N such that

_.l_.<xs.1_ -
N+1 N’
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We consider the series

4

©o

. N+1
S-S =Cp Zh| 3 L) Hrsinns| +
=1 n=x+1
N oo oo 1 ) ) . P
+ 34 2 = (nl,,) 1P sin nx + Z’ | 2 = @A) Yrsinnx| =
x=1 |[n=N+2 I x=N+1 [n=x+1 1 .
= cp(21+22+28)v'
: 0-1
First we assume that A,}. Then x°1,} with some 6=>1—p. Hence, ——=>—1,
: ¥4
and we have ,
N N p
2 = xP Z ,{ 2 (n), ) 1/1’] = xP 2’ ”—-0 [Z’ n(o—l)/l’] =
n=x+1 x=1 n=1
: = O(x? N1-ONO-1+7) = O(l).
Furthermore,
N oo 1 p
3= 34 3 Leww =
x=1 n= +2 n

) P N
= N-u,;l[ b n—r—u—f»/p) > ), = O(N-9- N- N-0-9) = 0(1),

n=N+2 x=1
In order to estimate 33 we make use of the inequality
) 1 ' .
2> I(n).,,)‘lm sin nx

n=x+1

c
= — (wh,) VP
= (42,)

for O0<x<n. Hence,
S,=Cx? 3 x"17P=0(x~"N-?) = O(l).
x=N+1

The proof in the case A,t is almost the same as for 1,4, we only have to replace
condition (4) by A,}. Therefore, we can omit the detalls
The proof is completed.

3. Proof of theTheorem. i) If f€S,{A,} then using (2), (8) and t’he follow-
ing inequality of STECKIN [8]:

o " f)sc2 21, 2"Epm(f) (n=1,2,..)

we obtain w(2-", f)=0(w(2"") and fEeH®.

i) If condition (2) is not fulfilled, then, by Lemma 3, the function given in
(9) does not belong to H®, but, by Lemma 4, it belongs to the class S, {4,}.

Thus the Theorem is proved.
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Entropy of states of a gage space

" ARTHUR LIEBERMAN

Let (H, A, m) be a regular gage space. Let g, 6, and y=1g+(1—1)a, 0<i<l,
be regular states. The density operator D, of a regular state is a non-negative (possibly
unbounded) self-adjoint measurable operator. Let F be a continuous convex func-
tion on [0, =) and define the entropy of ¢ by e(o)=m(F(D,)). Conditions are
obtained, in terms of e(g) and e(o), for e(}) to be —co, finite, o, or undefined.
If both ¢ and ¢ have finite entropy, then ¥ has finite entropy and e(y)=le(o)+
+(1—2)e(o); if A=B(H), F is strictly convex, and oo, then strict inequality
is obtained. These results are restated as inequalities concerning the trace of a con-
vex function of an operator.

1. Introduction

~ We work in the context of a regular gage space (H, 4, m); H is a Hilbert space,
A is a von Neumann algebra on H, and m is a faithful semi-finite normal trace
on A. (See [4] for definitions and notation.) A regular state of A4 is a positive linear
functional ¢ on 4 with o(/)=1, where I is the identity operator on H, which is
strongly continuous on the unit ball of 4. If ¢ is a regular state of A4, then by [4]
Theorem 14 there is a unique operator D,€L'(H, A, m) with D,=0, m(D,)=1,
and ¢(T)=m(D,T) for all T€A; D, is called the density operator of .

. The entropy of a regular state ¢ is usually defined by e(¢)=m(—D,In D,),
cf. [3] Chapter V and {5]. Both von Neumann and Segal suggested defining the entropy
by e(¢)=m(F(D,)), where F is an arbitrary continuous convex function on [0, =);
we ‘use this definition for the remainder of this paper. The results basically say
that the mixing of states cannot reduce entropy.

BENDAT and SHERMAN [l1] determined when a continuous convex function
defined on an interval is operator convex; i.c., when F(AK+(1—-2)L)=AF(K)+
+(1—2)F(L) holds for bounded self-adjoint operators K and L whose spectra

Received January 25, 1977.
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are contained in the domain of F. Below we show that m(F(AK+(1—A)L))=
=m(F(K))+(1—2)m(F(L)) holds under suitable hypotheses for self-adjoint
measurable operators K and L; this is merely a restatement of the fact that mixing
of states cannot reduce entropy.

2. Statement of the results

Theorem 1. Let (H, A, m) be a gage space with regular states ¢ and . Let
O<A<l, and Yy=Ap+(1—A)o. Assume lim i_gf F(x)/F(kx)=0 for each k=1.
Then:

A e()is deﬁned iff both e(g) and e(o) are defined and {e(g), e(0)}# {— o=, =}.

B. e(Y) is finite iff both e(g) and e(c) are finite.

CC.e()=c iff {=}S{e(0), e(0)}SRU{=}, where R is the set of real numbers.

D.e()=—c iff {—<}S{e(0); e(@)}S{—=}UR

Corollary 1. Let (H, A, m) be a gage space with regular states ¢ and o. Let
O0<A<l, and Yy=lg+(1—A)a. Then

A. e() is defined if both e(g) and e(o) are defined and {— oo, =} {e(Q), e(0)}.

B. e(Y) is finite if both e(o) and e(c) are finite.

C. e)=o if {=}S{e(0). e(@))SRU{eo}, and lim F(x)=—eo

Theorem 2. Let (H, A, m) be a gage space with regular states ¢ and o. Let
O<i<l and Yy=2Ao+(1—-Ao. If e(g) and e(o) are finite, then e(y) is finite and
e)=le(@)+(1—Ae(s). If. A=B(H)=all bounded operators on H, o#a, and
the function F is strictly convex, then e(y)=2le(0)+(1—A)e(c). _

Corollary 2. Let (H, A, m) be a gage space. Let K, L¢ L*(H, A, m). Assume
that either K=0 and L=0 or m(I)<o and K and L are both bounded from
below (or from above). Let F be a continuous convex function defined on an interval
which includes the spectra of K and L and let 0<A<1. If F(K), F(LY¢L'(H, A, m),
then FAK+(Q—A)L)eL*(H,A,m), and m(FAK+(1—-2)L)=im(F(K))+
+(L—-m(F(L)). If A=B(H), K#L, and F s strictly convex, then
m(F(AK+(1 =) LY)=>m(F(K))+ (1 —)m(F(L)).

Remark. In Theorem 2 and Corollary 2, the restriction that 4=B(H) in
order to have strict inequality seems unnecessary; this was first suggested by SEGAL
[5]. We know of no example which requires this extra hypothesis, but are unable
to prove strict inequality without it. '
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3. Proof of the results

Corollaries 1 and 2 are restatements of Theorems 1 and 2 and require no proof.
We now introduce some notation. The self-adjoint operator T has spectral

oo

decomposition T= [ adPr(«); the function Pr is continuous from the left. If

S is a Borel measurable set of real numbers, then Pr(S) is the spectral projection
of T for the set S. The spectral distribution function Ay is defined by Ar(x)=
sup {A:m(Pr[4, ))=x}; the domain of 4y is (0, m(D)] if m(I)<e and (0, )
if m(I)=o. Ar(x) is a nonincreasing function of x and is continuous from the
left. m(P;(Ar(x), «))=x if P has no point mass at Ar(x) and T€L'(H, 4, m).
‘The properties of the spectral distribution function are developed in [2] To s1mp11fy
the notation, we will frequently write P, for Pp, and 4, for Ap

Lemma 1. Let (H, A, m) be a gage space, let K€ L'(H, A, m) wzth K>0 and
let F be a continuous function on (r, <), where Py{r}=0. Then f - F(A) dm (PK(A))=

©om(Pglr, )
= f Fi (AK(x))dx in the sense that if either integral is defined, then both
0 . X .

integrals are defined and are equal. In addition, if F is continuous on [0, o), then

m(l)

[ FOydm(Pe) = [ F(Ag(x)dx. -

[0, )

Proof. Let s>r with Px{s}=0. We will show below that [ F()dm{Px(2))=

m(Pglr, o)) : ‘

= [ F(Ag(x))dx. The first conclusion of the theorem will follow by taking
m(Pgls, =)

the limit as s—oc. The second conclusion then follows by taking the limit as r—0.

Let P={x,, X3, ..., X,41} be a partition of [r,s] with m(Px{x;})=0 for

1=i=n+1. Then f F(A)ydm(Px (D)) ~ ZH'F(AK(m(PK[x,, oo))))m(PK[x,-,xiﬂ]):

m(Pglr, e

;”' F(Ag(m(Pk[x;, «))))(m(Pglx;, °°))—’"(P x[Xi+15 )~ 1) F (Ax(x)) ax.

m(Pgl[s, )

Note that, although m(Pg[x;, «))—m(Pglx;+, c=)) may be large due to the spectrum
of K having point masses in the interval (x;, x;,,), F(A4g(«)) is nearly constant
on the interval m(Pg[x;,,, *))<a=m(Pg[x;, «)) since for « in this interval,
X = Ag (@) <xp43
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Proof of Theorem 1. There are essentially four different non-trivial possibi-
lities for F:

A. F(0)>0, lim F(x)=—
B. _ F(0)= 0, lim F(x) =<=.

C. F/(©)>0, lim F(x)=k, where0<k<eco.
D. F0)=0, lim F(x)=- |

Theorem 1 will be proved for case A since this is the most difficult case; the
proofs for the other cases are trivial modifications and parts of the results are
vacuous in the other cases. For the sake of simplicity, we assume F(0)=0; if
F(0)>0, little change is needed if m () is finite and the results become essentially
vacuous if m(I)=<. We further assume that F has a relative maximum at x=1,
F(1)=1, and that F(2)=0. We will prove the “if”” parts of B, C and D. The
remainder of the proof is essentially redundant.

Assume now that e(g) and e(o) are both finite. e(i) can be infinite in two ways:
¥ can be highly concentrated so that D, is unbounded and e(y)=—e<o, or ¢ can
be so spread out that D, has very large support and e(y)=-o.

Let a=0 and x€H, x7#0. If Pyfx, «)x=x, then A(D,x, x)+(l—,1)(D X, X)=
=a|x|2, so that either P,[x, o)x7#0 or P,lo, «)x=0. By [2, lemma 2],
m(P,la, «=))=m(P,[o, oo))+m(P,[a, =)). Then

fF(a)dm(Pd,(a))éjo F(a) dm(P,())+ fF(a)dm(Pa(a)) > — oo,

have finite entropy.

Now let O<a<l. m(Py(a, 1]) = m(Py(x, <)) —m(Py(1, =) = m(P,(x, «))+
+m(P,(at, ))—m(Py (1, 2))=m(P,(, 1))+ m(P, (&, 1])+m(P,(1, <)) +m(P,(1, <))~
—m(Py(1, ). Let c=m(P,(1, «))+m(P,(1, «))—m(P,(1, =)). Then 0=c<co,
and m(Py(x, 1])=m(P,(a, 1])+m(P,(o, 1])+c. Let M be the unique Borel measure
on (0, 1] such that M(a 1]=m(P, (2, 1])+m(P,(a, 1])+c. Then f F(a) dm(Py ()=

f F(e)dM(«), since F is non-negative and non—decreasmg on (0,1], and

0,11

f F(0)dM(x)<o> since ¢ and o have finite entropy.
©1

- We now prove part C. Assume e(@)=oco. Then ] F(o)dm(P, (oc))-—oo and
by lemma 1, f F(4, (oc))da o for some ¢ such that A (c)Sl and A,,(c)sl
Note that F 1s non-negative and non-decreasing on [0, 1] Since Yy=Ag+(1—A)g,
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D,=AD,, so by [2] Corollary 1, A,,(a)>Aw (@)=AA,(). Then for azc,
F(A,,,(a))ZF (A4,(@)=AF(A,(®) by convexity. Then

f F(A, (@) de = A j F(A,(2)) dot = oo,

c

We now prove part D. Assume e(g)=—-<, so that f F(x) dm(P (a))— —oo,
Choose ¢=>0 and ¢=0 so that F(x)/F(x/2)=¢ for leq Since Dy=AD,,
m(Py[o, °°))§m(Pwa [0, <))=m(P,[/2, =)). Then J F(@)dm(P,(x))=—eo

0 .
implies [ F(®)dm(P,(@))=—co, so that [ F(a/4) dm(P,(#/A))=—co. Then
- a Aq ’ .
[ F(o/2) dm(Py(2))=—o= so [ F(x)dm(Py(®))=—c~ and e@¥)=—co.
iq Aq

Lemma 2. Let R and S be either finite sequences with the same number of mem-
bers or countable sequences. Assume r,,_rH 1Z0, 5,=8,,1=0, 2’ rk—z s, and
2’ n= Z’ sy for j=1. Then there lS a doubly stochastic matnx M with

5= %’mﬂ,rk Jor j=1.

Proof. If R and S are finite sequences the result is well known; our proof
will contain this case if R and S are extended to countable sequences by adding
a string of zeroes at the end. Let R and S be countable sequences and assume r,=0
for all k. M will be constructed one row at a time; each row of M will have finitely
many non-zero entries. Let w(1) be the smallest integer such that s,=r, @y Express
s, as a convex combination of {r;:1=i=w(1)} to obtain the first row of M.

 Assume k—1 rows of M have been obtained. If s,=r, -1y, let wk)=1+
+w(k—1); otherwise, let w(k) be the smallest integer such that SZr,q. We
will show that 5, can be expressed as a convex combination of  {r;:1=i=w(k)}
such that 2 m;;=1 for 1=j=w(k) by showing that there is such a convex com-
bination v:/hlch is =g, and that there is such a convex combination (namely,

wik) -1

D Or+1r,q) which is =s,.
i=1
When Z’m,-,-:l we will say r; is “used up”. Let the number c—Z’c F;
be formed as follows: c, is chosen so that r, is used up; i.e,, ¢;=1~ Z’ My Choose

¢, so that ¢;+c¢,=1 and r, is used up if possible; c2=mm(1—c1, 1— 2’ m,z)
Contmue this process until ¢, is chosen. Then c=s, follows from the hypothesm

that 2 = 2’ 5.
i=1 i=1
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This completes the construction of the matrix M. Clearly s-=2 myr, for

all j, m; =0 for all j, k, and the sum of the elements of any row of M is 1 It remains
to show that the sum of the elements of any column of M is 1. 1 —2’ s,—Z'Z mr;=

—Z'Z' my,r,; since all terms are non-negative the interchange of order of summa-
tlon is valid. Since 1= Z'rj, 0= 2’ 1- Z’m,,)r, By the construction of M,
(l—Zm,,)ZO for each _] Since r,;éO for all j, 1= Z’mU '

If r;=0 for some j, then r,=0 for all k=j. The construction of M must
then be modified so that; for k=j, r, is used up before one begins to use r,,,.

Lemma 3. Let (H, A, m) be a gage space, let TCL'(H, A, m) with T=0, let
9>0, and let g=m(Pr(y, «)). Let P be any projection in A with m(P)=q. Then
m(PT)=m(Pr(y, <) T).

Proof. By lemma 1, m(PT)=m(PTP)= f APTP(x)dx f Aprp(x) dx.

By [2] Theorem 4, Ap;p(x)=Ar(x) for 0<x$m(1) Note that AP ey TX)=
=Ar(x) for 0<xsq so that Aprp(X)=4p_(;,.)7(x) for 0=x=g. Then
m(I)
f Aprp(x)dx = f Ap ()7 (X)dx = f Apr G, er1(X)dx = m(Pr(y, =)T).

Proof of Theorem 2. Assume first that 4=B(H). Let g, be the i*® eigen-
value of D,, where the eigenvalues of D, are arranged in decreasing order and are
counted according to multiplicity.

Define a sequence A by a;=1g;+(1—1)g; and a sequence B by b,=y,.
The first three hypotheses of lemma 2 are clearly satisfied. The last hypothesis of
lemma 2 follows from lemma 3; a trivial modification of lemma 3 is needed if D,
or D, has a repeated eigenvalue. By lemma 2, there is a doubly stochastic matrix
M with ;=3 nmy(Ag;+(1—2a;). Then F@E)=3 m;;(AF(e)+(1—2) F(a))).
Summmgthlsrejlatmn yieldsm(F(D,))= Z‘F(w,) = ZZ'm, i(AF(@)+ (1= F(op)) =
—Z' Z' m(AF(e)+(1— ) F(o))= Z ()*F(Q;)'i‘(l ~HFG@ P)=Am(F(Dp)+(1—2) -

-m (F(D, ); the interchange of the order of summation is valid since ¢ and o e ach have
finite entropy by hypothesis. If ¢#o, then Y, #1¢, +(1—2)o; forsome iy, sothat
M is not the identity matrix. If F is then stnctly convex then F(y,)>
>2 m; j(lF(Qj)+(l A F(o))).

We now prove the general case when m(l)=<; the proof when m{)<o
is virtually identical. Let ¢ be an arbitrary positive number. For » a natural number,
let ’ ' 1 ™

Vo=~ [ A®dx;

(n-1)e
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define sequences g, and o, similarly. Assume that D, D,, D, have no point masses
at Ay (ke), A,(ke), A,(ke) respectively, for all natural numbers k; arbitrarily small
¢ can always be found so that this holds. By lemma 1 and lemma 3,

sné'l Vo= f Ay(x)dx = j° adm(Py(®) = m(D¢P¢,(A¢,(ke, =))) =

Ay (ke)

=im (Do Py (Ay(ke, <)) +(1 =) m(D, Py(Ay ke, =))) = _

k ’ k

= Am (D, P,(A,(ke, «)))+(1 =) m(D, P,(A,(ke, «))) =€l 3 g, +e(1—4) Jo,.
n=1 n=1

By the first part of the proof of this theorem, '

3 FU) =1 2" F(e)+(1—2) 2" F(s,).

n
To complete the proof, it suffices to show that & 2’ F(y,) approximates

f F(A,,(x)) dx for ¢ small. This is immediate since Aw is a non-increasing func-

tlon implies A, ((n—1)e)=y,=A,(ne) and e(y) is finite by the hypotheses and
Corollary 1.
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Uniformly distributed sequences on compact,
separable, non metrizable groups

V. LOSERT

Let G be a compact topological group with normalized Haar measure 4. G™
shall denote the product of denumerably many copies of G, equipped with the
product measure 1_ . If G is metrizable, a well-known theorem ([5] Th. 2.2) asserts
that the set of uniformly distributed (u.d.) sequences has measure one in G. If G
is separable (i.e. it contains a countable dense subset) but non-metrizable, it follows
from a result of W. A. VEECH [9] that u.d. sequences still exist (a shorter proof of
this result has been given by H. RINDLER [7], the abelian case has been treated earlier
in [1]). Let S be the set of all u.d. sequences in G. In this paper we show that for
a compact, separable, non-metrizable group G, S is not measurable in G, its outer
measure is one, the inner measure is zero. By the way of proving this result, we
extend a result of [6]: if G is a compact, separable group, G/H a metrizable quotient,
then any u.d. sequence in G/H can be lifted to G.

For arbitrary separable compact spaces the situation is different. We give
an example of a class of spaces for which u.d. sequences exist in trivial cases only,
namely if the measure is concentrated on a countable set.

I want to thank W. Maxones and H. Rindler who led my interest to these
problems. o

For basic notions concerning uniformly distributed sequences see [5].

Lemma 1. Let G be a compact topological group with normalized Haar-measure
Ay A a measurable subset of G. Then there exists a closed normal subgroup H of G
and H-periodic measurable subsets B, C of G (i.e.” B=BH, C=CH) such that
BCACC, A(C\B)=0 and G/H is metrizable.

Proof. It suffices to prove this for open subsets A. By the regularity of A, there
exists an open Baire-set BEA for which 1(4A\B)=0. B has the form {x€G:f(x)>0
for some continuous, real valued function f on G. Now let H be a closed normal

Received May 10, 1977.
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subgroup of G such that G/H is metrizable and f is H-periodic, i.e. f(yx)=f(»)
for x¢ H. For X€G/H put

Tu(c)@ = [catxy)dy and Tu(ea)(®) = fes(xy)dx.
H H
Tu(ce)=ch

since B is H-periodic. Define C={X€G/H:Ty(c,)(X)>0} and C={x€G:x€cC}.
Then C is open and H-periodic, C2A4. Since C=B a.e. on G/H we have
A(C\B)=0. '

Remark. It is essential that the inclusion BE AC C and the equations BH=5,
CH=C hold in-the set-theoretical sense and not only A-a.e...

One easily concludes that an arbitrary subset 4 of G has.outer measure one -
if and only if the canonical image of 4 has outer measure one in any metrizable
quotient group G/H. '

Theorem 1. Let G be a compact topological group which is separable but non-
metrizable, A the normalized Haar measure and S the set of all u.d. sequences in G.
Then S has interior measure zero in G*.

Proof. We want to show that M=G*\S has outer measure one. Let
P.:G”—G be the n-th coordinate function. If H, is a closed normal subgroup of
G,=G> for which G,/H, is metrizable, there exists a countable set {f,} of con-
tinuous functions on G,/H; which is dense in C(G,/H)ZSC(G,) (the space of all
continuous functions on G,/H, resp. G, with the topology of uniform convergence).
By the Stone Weierstrass theorem there exists a countable set {g,} of continuous
functions on G such that the closed subalgebra spanned by {g,0Pm}m =1 cOntains
the f,. Now take a closed normal subgroup H of G for which all g, are H-periodic
and such that G/H is metrizable. Then H*CH, and (G/H)”=G*/H* is metriz-
able too. It suffices therefore to prove that the image of M has outer measure zero
in G*/H* for all closed normal subgroups H of G, for which G/H is metrizable.
Since G is not metrizable, H must be a non-trivial subgroup. Take a symmetric
neighbourhood U of the unit element in G such that H is not contained in U2 If
(»,) is an arbitrary sequence in G/H there exists a sequence (x,) in G\ U such that
‘n(x,)=y, (n:G—~G/H denotes the canonical projection). (x,) belongs to M since
it is not dense in G. Therefore the image of M comprises all of (G/H)™.

Lemma 2. Let G be a cor;1pact topological group, H a closed normal subgroup,
n:G—~G[H the canonical projection. If (y,) is a sequence in G/H which converges
to identity, there exists a sequence (x,) in G, which converges to identity and satisfies

n(xll) =yll *
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Proof. Let (Up. <, be a well-ordering for the set of all non-equxvalent irredu-

-cible unitary representations of G. For a<y put

Ha=Hﬂpﬂ kerUy;, Hy=H, G,=G/H,=(G/H, +,)/(H,,,/H“,Ll).
If o is a limit-ordinal, then G, is the projective limit of the groups {G,, f<a}. It
suffices therefore to show that we can lift the sequence from G, to G,4,. Since U,
seperates the pomts of H,/H,.,, this group is metrizable (in fact a' Lie group).
This means that we have reduced the proof of the lemma to the case that H is
metrizable. :

By induction we can . deﬁne a sequence {U,,,} of open neighborhoods of the
unit element in G with the following properties: U, .,SU,, {U,NH} is a neigh-
borhood base of the unit element in H, if F,=H\U,, then U,,,NU, ., F,=0.
Now we choose elements x,€G such that n(x,)=y, and almost all x, belong to
U, (m=1,2;...). We want to show that {x,} tends to zero. Let V' be an arbitrary
neighborhood of e in G and W an open neighborhood for which W2CSV. Put
F=H\W then there exists an index m such that U,NU,F=0. If xcU, and
n(x)én(WNU,) there exists y¢ WNU, such that n(y)=n(x), ie. y 1x¢H.
If y~1x would belong to F then x€yC U, F, a contradiction. Therefore y~1xcW
and it follows that x€yWECV. '

Theorem 2. Let G be a corhpact, separable group, H a closed normal subgroup,
G/H metrizable, (y,) a u.d. sequence in G/H. Then there exists a u.d. sequence (x,)
in G such that m(x,)=y, (where n denotes the canonical quotient map).

Proof. This result was already claimed without proof in [6], but we were
informed by the author of that paper that his proof contains a gap. The methods
of [6] enable us to show the following: If G is a compact group, H a separable sub-
group, G/H metrizable, (y,) u.d. in G/H, then there exists a u.d. sequence (x,) in
G such that y,*n(x,) tends to identity. Now it follows from the previous lemma
that there exists a sequence (z,) in G such that (z,) converges to identity and =(z; %)=
=y 'n(x,). (x,2,) is ud. in G and =n(x,z,)=y,. According to [4] a compact top-
ological group is separable if and only if it has an open base for its topology of
cardinality =c¢ (the power of the continuum). It follows that a closed subgroup
of a separable compact group is separable and the proof is finished.

Corollary. Let G be a separable compact group, A the normalized Haar measure
and S the set of all u.d. sequences in G. Then S has outer measure one in G.

Now let X be an arbitrary compact Hausdorff space. We write C(X) for the
space of continuous scalar-valued functions on X with supremum norm, M(X)
for the dual and M (X)’ for the bidual of C(X). According to [8] we call X a G-space
if (M (X), C(X))-convergent sequences are (M (X), M(X)’) convergent.
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Proposition. If X is a G-space and p is a probability measure on X, which
is not concentrated on a countable subset, then there exist no u-u.d. sequences in X.-

Proof. Assume that (x,) is u.d..Put uyy=N-1 > ¢ , where ¢, denotes the
nsN "

point measure of mass one concentrated in x. gy converges to u in the topology
o(M(X), C(X)) and consequently also for o(M(X), M(X)). It follows that uy(A)
converges to p(A) for any Borel-subset A of X, in particular that u is concentrated
on the set {x,}>,.

It was first proved in [3] that any extremely disconnected space is a G-space
(X is called extremely disconnected, if the closure of any open subset is open). For
example PN the Stone—Cech compactification of N is extremely disconnected
and clearly separable. The last proposition shows that there exists no u.d. sequence
for a measure u on SN which is not concentrated on a countable set.

‘More generally it has been shown in [8] that any F- -space is a G-space (a com-
pact space X is an F-space, if disjoint open F-sets have dlS_]Olnt closures. See [2]
for further properties and examples of F-spaces)
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Tocrpoenne NOIYrpyImoOBOi aMAJbraMbl,
HE3aBHCHMO BJIOKHMOii B HOJIyTPymHITy

JI. MEJEII*

IMoayrpynnoBas’ aMajibraMa 6K1a0blédemca He3asucumo B TOJYTPYIIY, €CIH
B 3TOH NOJYIrpynIie HE3aBHCUMEBI MCXOJHBIE IIOJIyTPYNIEI, COCTABIMIOILHE HAHHYRO
aMansramy. ' :

B macrosiueif paGoTe M3y4yaroTCHS CBOMCTBA TaKWX aMajbraM M B HEKOTODPHIX
YACTHBIX CHy4asx (HanpuMep, AJs HEKOTOPOTro roMoMopdHoro ofpasa Bcex ymoms-
HYTBIX aMaJibTaM) JaeTcsA HOJIHOE OIMHCAHHME.

DTa CTaTha MO CYLIECTBY €CTb NPONOJDKEHME CTAThu [6]. MBI TIpeamoiaraeMm,
9TO YNTATENb 3HAKOM ¢ [6] M HcoNb3yeM onpeneieHdss B 0003HAYeHHA 3TOH paboTEL

§1. Hoérpoenne IOJIYTpyIH, comepKaimx A-3j1eMeHTbI

Iycts A cmabo acconmaTHBHAs aManbrama moiyrpymn A, ((€.4, roe S—
HEKOTOPOE MHOXECTBO HHAEKCOB), KOTOPas MOXET OBITh BIIOXEHA B HEKOTODPYIO
noayrpynmy B takuM 06pa3oM 4T0GEI A, (£ € £) B Heil ABJIAMHCH HE3aBHCHMBIMH ITOJ-
nojyrpynoamu. JIpyruMH ClOBaMH, aMaibramMa A YOOBNETBOPAET YCIOBHAM
TeopeMsl 3 B ctaThbe [6] 1 o TeopeMe 2 (B [6]) obnamaer cRoiicTBaMu o« — 9. DTHMH
cBoiicTBaMu MH 6yneM B HajibHEHIEM HEOMHOKPATHO IOJNB30BATHCH.

OtbpocHM n3 £ TakHe YHIEKCH o, ISl KOTOpBIX A, He obmamaer L-3jieMeH-
tamna (T-oneMentamu, M -snmementamu). [lonyyeHnsle TPH MHOXeCTBA 0GO3HAYHM
COOTBETCTBEHHO 4epe3 Jfp, Jr, F. B 3THX MHOXeCTBaX oNpenenuM omHoOwieHus
0L, 01> 0y CHACOYIOIHM O0Opa3zoM: '
oL 29.B (o, B€SL) < cylmecTByeT L-311EMeHT X, AN KOTOPOro o, fEX,
or: agrf (a, BE€ST) < cymectByeT T-351eMeNT f; 11 KOTOPOro o, BEE,
0x: %0y B (o, BESFyy) < cyliecTBYeT Takasg (KOHEUHAs) IOCIAEAOBATENLHOCTD Vo=,

V1> P25 -oos Pa=B (Pos Y15 V2> -++» Vn€Fpy) I KOTOPOH HaMAyTcs M -371EMEHTHL

Y1 Va5 - YV €O CBOMCTBOM! y1=<?01 'yl>’ i2=<'h, ?z>’ ] jin=<?n—la Yn>'

Hocrymano 7. anpens 1977
* L. MEGYESI
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Ou4eBHOHO, ITO 0f, ¢ PedIIeKCHBHBI H CHMMETPHIHB!. TPaH3UTHBHOCTH OTHO-
LIEHHSA @ CNeAyeT M3 CBOHCTBA fB, a TPaH3HTHBHOCTb OTHOLUCHHA @y CJEAyeT M3
3. TakaMm obpasoM, ¢,, ¢r ¥ éM SABJIAIOTCA OTHOIUEHHSAMH 3KBHBAJICHTHOCTH (HjIA
@y 370 oueBHaHO). CrenoBaTeNbHO, 0;, Or H @, ONpelciOT pasbuenus. O0603-
HadAM @y -knacchl epe3 P; (i€.5p), or-Kiacch 4epe3 Q; (j€SFp), @p-Kiacchl gepe3
Ry (k€5) (Fp, Fo» Fr— HekoTOpbIe (OAXONALINE) MHOXECTBA HHAEKCOB). Mot
HOCTb MHOXECTB Py, Q;, R, 3annceiBaeM Tak |PJ, |Q4, |Ry. B nanbueiiuem
mycts L,, M,, T, 0603Ha4al0T COOTBETCTBEHHO MHOXecTBa Bcex L-, M-, T-aje-
MerTOB H3 A, (0€SF) u D,=AN(L,UT).

Nanee, nycts K,z=A,NAp (¢, f¢F), M'- u M"-xomnonenTsl K,z B A, Gynem
Ha3bIBaTh M -KOMIIOHEeHTaMM # ee L-, M'-, M"-, T-KomnoHeHTh B A, 0603HaYaTh
uepe3 L, M,z, My,, T. 35aunt M z=(y|y — M-anement n y=(a, B)), Mg, =(y|y —
M -3nemenr, p=(B, a)).

Jlemma 1. Ecau gpp-knacc R, codepocum makoe o, ymo A, obradaem T-
aemenmom, mo R, codepacumca ¢ nexomopom gr-Kaacce.

Jloxa3zaTeabcTBO. JOCTATOYHO MOKA3ATH CACAYIOLIEE: €ClH Y — M -3]IeMenT
u y=(a, f) © A, conepxaT T-37I€MEHT TO COAEPXHT M Az. A 3TO yTBEpPXKICHHE
cresyeT B3 CBOMCTEA 7.

JlemmMma 2. ITyeme R, 9,,-xaacc; a, BER,. '
1) Ecau M,y #8 mo cywecmsyem pasbuenue Foa=US UV maxoe, umo ux=x,
vx€T, uM,pS My, vVMST npuscex ucUS, veVS), x€F,y usnemenmer muo-
acecmea N&G=US) M., asaaromen npagvisu nyaamu ¢ noayzpynne LUM,,U US.
2) Ecau Mg, #0, mo cywecmsyem pasbuenue Fp=URUV maroe, umo
xu=x, xv€T, My uSMp,, Mg,v S T npu ecex ucUSY, veV 2, x€F,p u saemenmb
muoxcecnsa NSO = My, US? neasromen nesvimu Hyaamu 6 nosyepynne LU My, UUSD.
3) Ecau US#0 u US #0 (anasocuuno U #0 u UL #0) mo NG=ND
coomsememeenno, NSO =NP) cocmoum uz odnozo 31emenma, xomopwiii ae1semcs
Ba L] /4
Hynem 6 LUM,; (coomsemcmsenno, ¢ LUMp,).

HokasatenbcTBo. Ilycts R, — g, -Kiacc, u o, B€R,. Ilpeqnonoxum, 410
M, #P. JlokazaTenbcTso B Ciyyae M, #0 ananoruuno. VI3 teopemel 2.8 B [3]
cnenyet, uto uy€TUM,, ans scex u€Fpp, yEM,y. Tak kak mpu Bcex x€F,

x _ecnn uyEM,g

e ot

TO JJIA IeMeHTa UE F,g U uM,,,gM,,, H TOTJA uX =X IPH BCeX X€ Fp (0603Ha9AM
MHOXECTBO TaKHUX 3JIEMEHTOB u 4Epe3 Uf,‘,)) wid uM, ;ST n Torpa ux€T npu Beex

X€ F,; (Taxde 371€eMEHBTHI ¥ 00pa3yloT MHOXECTBA Vg;)). Ecmn uye M,y T. €. u€ U};’,
yEM,,, T0 uy=(wu)y=w(uy) ups mobsx we LUM,,U UY). Orcrona cinenyer, aro
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3jeMenTEl MHOXecTBa N9 € U® M, aeismorca npasbive Hyisma B LUM,,UUS).
Jlerko mposepsieTcsi, 4TO .L,U,Mng U ssnsercs nonyrpyrmoivi '

AHAJIOTHIHO JOKAa3HIBACTCSH, YTO 3MeMenTh N§)=M,,UY smassorca nesbMa
Hyntsvu B oayrpymie LUM,,UU®. Otcroma cnenyer, uro B ciydae UX =p
UY) = 0 muoxectsa N 1 N coBnamalor  cOCTOAT TONEKO 3 OJHOTO 3JIeMeHTa,
KOTOPEIi sBJisteTcs HysteM B LUM,

3ameqanue. B cysae M, #0 My, #9 u3 neMMsl 2 cienyer, 910 nubo Fp=
=V@=V® (1. e. UY=UP=0), mibo Fu=UY=UR=(a), 1. e. F,; cocront
H3 OIHOTO 3J1eMeHTa a. 3TOT mocnemHuH cilydail BO3MOXEH TOJBKO TOTAA, KOrna
K. aBnsgerca ocoboit p. €. u. moamoayrpynmoi B A, (370 fokasano B 2.1 B cTaThe
[4]). (Onmpenenenue ocoboit p. €. H. moanoAyrpymnsl ¢cM. B §2.) TakaM oGpasom,
3TOT ciydail He MOXET MMeTh MeCTa, eClli A, COZIEPXUT TOJILKO OOUH T-2JIeMEHT.
W3 nemMmel 2 BHITEKaET CleAyIOMWAs

Teopema 1. Ilycmbs A — caabo accoyuamusHas amarbeama 08yX NoAyzpynn
A,, Ay Hesagucumo BAOMHCUMAA 8 Hekomopyto ‘noayepynny. Ecau A codeprycum M-
snemenmut u He Goaee yem odun T-31emeHm mo 603MONHCHBL cAedyIOWUe CAYYQU:

1) B A nem T-snemenma. Mp,=9 u LUM,,, noayzpynna ¢ Hyaem Oy, Fuy
noayspynna npageix nyaei, Fp, noayzpynna neswlx Hyaeil u umelom mecmo coono-
wenua: xz=0,,, zy=0,, npu scex zEM,p, X€F,5, Y€ Fp,.

2) A cooepwcum 00un T-snemenm. Dmom ssemenm: O seisemca nysem u 6
A, u 8 Ag. Bo3modcHel caedyrowue cayyau:

a) (FpUMg,)(Fyp UMap) =0, (FﬁuUMaﬂ)(FﬁaUMﬂz) =0.

6) My#0, Mg,=0, (Fzu UM,p)F3, =0, F,=U, (")UV(“’ (Ué;)ﬂVf,?:ﬂ) 20e

ux=x, vx=0, uM; S M5, vM,3=0 npu ecex ucUS, vEVaf;), x€F,; u s1emenmel
muoxwcecmea N =USGM,; seantomea npagsimu uyanmu ¢ LUM,,UUS).
- 6) M0, Mﬁ,—ﬂ Hmerom mecmo pasbuepun Fy=URQUVE), Fp=UDUVD
maxue, umo ux=x, vx=0, vM, ,,—0 npu scex x€F,, uEUa(!;), veVEu yu—y yo= 0
M ﬁv—O npu ecex y€Fg,, ucU aﬁ , u-,, . Hanee, LU M,p obaadaem uysem O,
u UG Y M=0,, Ma,,U") Oy '

}Iaﬂbueuwue csoticmea L-, M-31emenmoe 60 6cex Cay4aax caedyiom u3 ux
onpedenenuii, uau uz ceolicmg % -céasku. OcmanbHble 803MONCHOCMU NOAYHAIOMCA
U3 NpuseOeHHbIX Gbluie U3 C000padsceHult 080TCMEEHHOCMU.

JlemMa 3. Ecau gy-kaacc Ry cocnioum He moavko u3 08yx uHOEKCo8, mo Kaxcoas
K5 (2, BER) mooncem codepacamy He 6oaee uem 00Hy M—KOMnoueHmy u cywyecmgyrom
nodmuoncecmsa RP, R raacca R, (R,=RPURY; RPNRY=0) maxue, umo daa
scex Mg (@, BERy) umeem mecmo «€RY, B ER(’)

};[oxasareabcrn_o. Iyers o, BER,. Ecmn B K,; mABe M-KOMIIOHEHTHI M,
Mp, BEYCTHL, TO R, COCTOHT TOJIBKO M3 HHAEKCOB o, f. [lelicTBUTeNbHO, ecia M,, =0
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(Y€Ry), To CyIleCTBOBAHHE 31EMEATOB Y € My, ¥ € M, AJ15 KOTOPHIX O OTIPEJEJICHAIO
y=(8, @) 2=(a, y), npoTEBOpeunT cBOicTBYy 7. Ilpemmonoxum, 4to A, CONECPXHT
M -xomnonenTy B K,; H B Ka.:,a Ky, - (@, B, &1, &, ---€Ry). Ecnm B K,5 mommouy-
rpymna M, 0, To ApyriMa M -KOMIOHEHTaMH B 4, 6yayT M, , M, , ... (coraacuo
7) B B 3TOM ciydae a€ RY; ecm xe My, 0 B K5, To OCTajbREbe M -KOMIIOHEHTHI
B A, — M., M,, ... T. &. a€R{.

JlemMma 4. ITyems R, — g),-Kaacc, 043 komopozo |Ry|=3 u nycme A, (2€R,)
maxaa noayspynna, Komopas codepycum 6onee o00Hoi M -xomnonenmol.

1) Muoscecmeo D, obaadaem

a) uau pasbuenuem maxum D,=UPUV® (ecau a€RP), umo M,SUY,
ux=x,vx€T,Ix=x,yl=y danecex ucUD,veV® IcL,,xD,,ycVOU(UP\M);

6) usu maxum pasbuenuem D,=UPUVE (ecau a€RY), umo M,SUQ,
xu=x, x0€T, xI=x,ly=1 dnn ecex uc UL, veV P, IcL,, x€D,, ye VO U (UI\ M,).

2) Mnuoxcecmeo M,; (unu Mp,) mosvko 6 mom cayuae cocmoum He Gosee uem
us 00Ho20 3nemenma ecau Ay codeparcum moavko 00Ky M-Komnonenmy (umenno
M, uru Mg,) u odnospemenno Fy, Fp,CT, (m. e. UD=UP=0).

3) L-xomnonenma 04 6cex nepecevenuti K,,=A,NA, (0, 6€R,) 00na u ma xce
L, (=L,). L-xomnonenma nepecevenuti K,. (0€R,, (€S, E€R,) ssanemea noo-
mHoxcecmeom Ly. Maree, Mz LS M,p (u ananozuyno LMy, S My,) (BER,) Osn
ecex Henmycmuix- M-xomnonenm M,z (Mp,) 6 A,.

JokasarensctBo. Ilycte o, BER;; |[R|=3. Iycth A4, nonyrpylma,‘xoropaa
comepkuT Gonee ommo#t M-KOMIOREHTH. MOXHO HPEHNOJNOKHTh, 4T0 a€RY
H B CHNY JIEMMBI 3 MOXHO CIMTAaTh 9TO B A, CymIeCTBYIOT M -KOMIIOHEHTHI M4,
M,, (B, y€R,). Ilpumenam stemmMy 2. Tak kak za=q npu z€EM,;UM,, B a€A,\
\& UK, 10 M,,c US, M, U®. Crenoatessro M,;, M,, sBisieTcs nomy-
IpYNIO¥ NpaBbX HyJel, U N §=M,s, NO=M,,. Mycts UP=M,,UUD=M, UUD
mV®=V), Torna cornacro semme 2 ¥ onpefieNe N0 L -KOMIIOHEHTE! BHITIOJTHAIOTCS
Bce TpeGoBanms yTeepxaenns 1. (Paperctsa Ix=x, yl=y (x€D,, yeVPU (UP\M,))
HOJTy9al0TCA TONBKO IpH X€L, HO w3 yTBepxaenua 3 Gynmer cnemosate L=L,.)

PaccMOTpEM Temepb Te YCHOBHS, IPH KOTOPHIX M,; cocTomT Goyiee 9eM H3
OJHOTO 37eMeHTa. B 3TOM ciryuae Ug,?)=ﬂ TaK KaK COIJIACHO YTBEPXKIEHHIO 3 JIEMMEI
2 m3 UD 0 cuenyer, 90 M,z=N) COCTOHT ToNBKO M3 ORHOTO 3neMenTa. Kak
MBI JOKa3aJIAd BHIINE, €CIH B Ag €CTh HE TOJIBKO OfHA M-KOMIOHEHTAa TO Uaff,’);éﬂ.
Orcioia BHITEKaeT BTOPOE YTBEpXKIEHAE JIEMMEL

Jna 3) MBI moKaxeM, 9T0 L-KOMIIOHEHTA IEPECEYEHHS K, SBIISIETCA TOJ-
MHOX€eCTBOM L-koMIoHeHTH K,,, ecim M, #0 (0, 0€R,, €2, 1 7#0). Ilyctb X —
L-3nement, x€K,.. Ecm x€K,,, To njis BCAKoro z€M,, mMeeM zx=x (Tak Kak
z — M-37eMeHT) H zx=2 (TaK XaK x — L-oneMerT B z€K,)). OTclofa cienyer, 4To
L-romnonenta Ky u K,, ecma M,,#0, M,,#9 (¢, BER,), omEa H Ta Xe moiy-
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rpymna: L,, u L-koMIIOHEHTa K",,7 ABRAETCA NOAMHOXECTBOM L. C Hpyioii cTOponk!,
L,SKNK,,, 1. e. L, — mogMuoXecTBO L-xommoneHThl Kj,. 3naunt L, coB-
nagaer ¢ L-komnonerTo# Kj, (He3aBHCAMO OT TOTO, 4TO UMeeT K, M-KOMIOHEHTY
i Her).. I3 atEx paccyxnaenwit BEITCKAeT yTBepxmerme 3. (M, L, S M,; cnenyer
H3 CBOHCTB # -CBSI3KH.)

§ 2. OcoGsie p. €. H. HOMNOJIYTPYMIHI

Omnpenenenne. P. e. n. mogmonyrpymma K mosnyrpynms! S HaseiBaeTcs 0co6oii
p. €. u. mopmosyrpymmoit B S, ecnd 7T-KOMIOHeHTa NOJyrpynmbl K He sBifAeTCA
IBYCTOPOHHHM MZEANOM B S.

. HoxaszanHas B ‘CcTaThe [4] Teopema 1.4. maer HeobGXomuMoOe M JOCTATOYHOE
yCIIOBHE JUIs TOTO, YTOGHI p. €. H. moAmonyrpynma K ssisnace B S ocoboi. B qacr-
HOCTH, JOKa3bIBAETCA, uTO ecM K — ocobas p. €. 4. moAmoNyrpynna B S, TO M-
u M"-KoMnoHenTa IoAnoayrpymst K #emycts, 1 S\ K COCTOHT TONBKO M3 OJHOTO
sneMenTa. Ecim S\K=a, To BO3MOXHEHI 1Ba CIIy4asi: A ¢°=a AIH @ COOEPXATCA
B T-xommonente K (cM. § 5. B [4]).

~ Hanee, u3 Toro, 4TO P. €. H. nomionyrpynna K.;=A,N Ay B A, aBnsaercs ocoboi,
He cienyer uto K,; ocobas u B Ap (npumep 5 B [5]).
Ecnn Ku,, ocobast u B A,, U B Az, TO BOBMOXEH Kaj/(BIA M3 CIIeAyFOUIHX CITyYaeB:

(Aa\\Kaﬂ aﬁ =aq, Aﬂ\ = F'ﬁa = b)

1) a*=a, b2=0b,

2) a?= a, bZE T:

3) a?€T, bi*=b,

4) a?cT, b%€T (opmmepsr 2, 3,4 B [5)).

Onpenenenne. Ilycts K,;=A4,MNA; ocobast p. e. H. moamonyrpymna B A,
u nycte a=F,,. HasoseM T*-xomnonenmoii (1 0603uaImM dYepes T'*) MHOXECTBO
BCeX 3JIEMEHTOB ¢ i3 T-KOMIIOHEHTH! IONIONYIpymIbl K,z, IUIsl KOTODBIX Wy tw,€ T
IS BCEX CIIOB Wy, Wy U3 35eMenTOB aU Fy, (OZHO M3 CIIOB Wy HIH W, MOXET GHITh

oycteiM). Muoxectso T\ T* 6yamem HasbBaTh (1\ T*)-KOMIOOHEHTOM MOJIYTPYIIIIEL
KyB A,

Teopema 2. Ilycmv A caabo accoyuamusHas amarbzama 0eyx noayzpynn
A,, Ay, Hesagucumo 610%cuman 6 Hekomopylw noayzpynny u nycmo Kp=A,NAg
ocobas p. e. u. noonosyzpynna.eé A,. Ecau T*-xomnonenma nodnosyzpynnet K.,
Henycma, mo oHa A64AeMCA JGYCMOPONHUM UOeaAoM U 6 Ay, u 6 Ag.

Hoka3aTenbcTBO. JOCTAaTOYUHO MOKA3aTh, 4TO €ciaM tET*, xcA,U4y 16
xt€ T*. Ouesnguo, 4tro Xxt€T*, ecom x=a=F,; amu x¢ Fy,. l'chn;’xE-K,,,, B pac-

8*
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CMOTDHM W; XtW,, Tie Wy, W, ciloBa 3eMeHTOB a U Fy,. Ecimm wy mycroe, TO yTBepXk-
JleHHe CENyeT H3 CBOMCTB % -CBA3kH. IlycTh ¢ — HOCNeaHHi 3leMEHT B CJIOBE
w;. Tak kak K, p. €. 4. HOAUONYTpynna, TO WA cx=c, WA c¢x€K,z. Ilponomxas
3TOT HpPOIECC, MONy4YaeM: HIH WX SBIACTCA NMEPBOM YaCThIO W, CJIOBA Wy H B 3TOM
Cllyqae OYEBHIHO, YTO W) Xiw,=WoIw,€T, A w,x€K,5, B Tak Kak twy€7, TOo u3
CBOJCTB # -CBSI3KH CJIEAYET, YTO Wi Xtw,€T.

JlemMma 5. Ecau K, ocobaa p. e. u. nodnosyzpynna ¢ A,, mo T-3aemenmoi
nepeceuenuna K, NK,. (a, B, E€SF) neobxodumo npunadsexcam T*-xomnonenme

noayepynnsi K.

HoxasaTenbcTBO. Ilycth t — T-37eMeHT, ans Kotoporo t€K,,MNK,, u
a=F,4, b€ Fy,. U3 onpefesienns aMabraMel CJIeAyeT, 9TO aEKaé A n03TOMY at€ K ;.
OueBnpno, 4T0 at€ K5, TOrn2 at€K 5N K,,. Ecnu K5 B B A ocobas p. €. H. IOA-
HOJIyIpylma, TO aHaJorHIHo mojydaerca bt€ KN K,,. Ilpemmonoxum, 910 K4
He ABJAeTcs ocoboit B 4. Ecnn bEK,,;, TO IO onpefieieHnto T-KOMINOHEHTHI bt €K ;.
Ecma b€K,,, TO U3 CBOHCTB * -CBS3KHM clenyeT, 910 bt€ K .. Otcroma bt€ K, ;N K.
Jlemma 3 mokasmiBaeT, 9r0 B K,; MOryT CymecTBOBaTh TONBKO L- M T-3JIEMEHTEL,
H OYEBHJHO, YTO af, bt — T-3JIeMEHTHI. AHAJIOTHYHO IOKa3BIBaeTCHA, 4TO 4, th —
T-anemenTHl B K ;N K,,. [IoBTOpeHHEe 3TOro MpoNecca NaeT HAM CIEAYIOUIEE: IS
TIOGBIX CIIOB Wy ¥ Wy M3 3jieMeHTOB a U Fy, aMeeM: w,tw, — T-3nemenT B K, K, ..
CienoBaTenbHO, 1€ T*,

3aMmeuanne. B craThe [5] mpEBogATCA mpHMepht 2 U 3, B koTophix T* mycTo,
H npuMepHl 4 B 5, B KoTopeix T'* HemycTo.

§ 3. ITocTpoenne nmoryrpynmst Beex L-3;1eMentoB nmoxyrpymn A;(E€P;)

Cnenys pabote [1], BBemeM cienyroluee:

Onpepencame. byneM roBopHTh YTO HOJYIpymma S pasjaraerci B HocJe-
dosamensHo arHyaupylouee 0bsedunene NOXIONYTPYHI Sg(£ € #), eClH 3Ta COBOKYII-
HOCTb S, (¢ € #) mmneiitno ynopsaoYena Ip4 HOMOLUM HHAEKCOB, IIPHYEM BEINOIHEHBI
CleAyIOUTHe YCIOBHA

D U S:=S,
3¥4 :
2) nna mobbix x€S,, y€S, (0<0; @, 0€ ) HMEET MECTO Xy=yx=X,

3) eciu ¢ <o u S,NS, 0, TO @, 0 CoceHME INMEMEHTH! YIOPSIOYEHHOrO MHO-
xKecTBa #, najee mepeceuenre S, 1S, MOXET COCTOHTE TOJILKO B3 OHOTO 3JIEMEHTa,
KOTODEI# fABJISETCA B S, EAHHHANEH, a B S, HyIeM.

BBeneM elle ciemyromniee;
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Onpénenense. Ilycts S moayrpymna ¢ equHuieii e. ByaeM rOBODHTB, 4TO
eNUHHIA & HenpticoeOunena (K TONYrpyrme S), ek CYIIECTBYIOT OTJIH4Hbie OT e
3JIEMEHTH 4, b€ S, nig xoTopex ab=ke.

3amMeuanue. Ecnma xy=e u x#e, y#e, rhe X, YES B e — éfqiiuua B S, TO
3JEMEHTHL X, Y MOPOXAAIOT OHIUKIIHYECKYIO HOJIyrpYNIy B § MM HETPUBUAILHBIN

roMoMopdHEIH 06pa3 OHIMKINYECKOil NOMYTPyINH, KOTOPas, Kak W3BECTHO, MOXXET
GHITB TOJIBKO NUKJM4eckod rpymmoi (cM. ysemmsr 1.31, 1.32 B [2]).

TeopeMma 3. Ilyemv A caabo accoyuamusHaa amatvzama nosyzpynn Ag

(E€F), Hezasucumo ea0xmcumasn & Hexkomopyw noayzpynny. Ilycmv P; — gp-xaacc
undexcos, u L* — muomcecmso ecex L-dnemenmos | ) A,. Toz0a L* saeasemcs
nekpP;

noCcAe008amenbHO anHyaupylowum obvedurenuem noayepynn S, (g€f. 20e F He-
KOMopoe Aunetino YNopA00UeHHOe MHONCECMBO ), U UMEIOM MECMO CAeOYIowUe Ymeepic-
oenua:

1) Jaa ecaxozo u€ f cywyecmeyem no KpaiiHeil mepe 00Ha mMaKas noayzpynna

A, (x€Py), umo L,=\JS, u obpamno, 6 xaxcdoii noayzpynne Ay muodxcecmeo Ly
e=p
npedcmasumo 6 gude Ly= |} S, 011 nexomopozo 1€ 4.
=z

2) Ecau S,, S, codepxucum obwuii snemenm: O, (¢ <0, .0,0€ f u 0,0 cocednue),
mo O, asasemcs HenpucoeourenHot k S, edunuyeil.
3) Ecau 6 A, (x€P;) noayepynna {B,}, nopoxcdennas muoxcecmgom B,=

=Aa\¢uU( )K & Co0epocum u L-3aexcenm (& smom cyuae M, =9), mo {B.} morcem

—(a,

codepocams moavko 00uH L-anemenm, a umenno — Hyav muoncecmea L,= ) S,
o=p

(komopuiii codepycuma 6 S,) u Aeasemca HenpucoedunenHoii Kk {B,} edunuyeii.

HoxazartenscTBo. Hycrs P; — g -Kjacc, L*¥ — MHOXecTBO Bcex L-aiie-
MentoB |J A,. VI3 cBoiicTBa f cienyeT, 4TO OIs Xy, X,€L* mnbo X,EX,, ambo
gEP,

X,EX,. IlosroMy MOXHO pa3buTh MHOXecTBO L* Ha Takue NOIMHOXECTBA
Sy (0€.#), 4TO Kaxmoe S, MOXET HMETh TOJLKO TakKHe L-3JIeMEHTHl, KOTOpHIE
COZIEPXUTCA B TOUHO Tex Xe ToJyrpynmax u3 4,($€#) u copokynnocts S; (€ %)
JHHEHHO YNOPAAOYEHA NPH HOMOIIHU I/IH,ILCKCOB TakuM 00pa3oM, YTO B cliyyae
e<t (0, 7€.#) Xy (HO X # J) IIpH Beex X€S, 5, YES]. M3 B cnenyer, 4TO xy=yx=Xx
ecnu x€ S* yES* (e<7; 0, T€ F). D10 Xe cnoncmo B noxaspiBaeT, 4TO AJIS BCEX
X1, Xo€ S MPOU3BENEHHE X; X,€ S, rae 0= 0 (0€ #). [IpeanonoxumM, 4To CyIECTBYET
1, WA KoToporo g<n<o. Tak Kak @<1, TO zX,=X,, X;Z=X, IPH BCeX zES,,
SHAUMT ZX1Xp=2X;XpZ=X, X, JANI€C, U3 <0 CIEAYET ZX;Xy=X;XpZ=2. DTO IPO-
THBOPETHE MOKA3EIBAET, 9TO JIMOO o=¢, 6O ¢ H @ coceliie 3jéMeATH U3 £,
Ecmit X, x;€S; 1 X;X,=0,€S} (<0 u g, ¢ coceuné 3 #); 10 O, ABjiseTcs HyjieM
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B S}, TaK KaKk JUIA BCAKOTO y€S) UMEET MECTO YX;=X;, XV =Xz, T. €. YX;Xp=
=X1Xpy=X;X; H OfHOBpeMenHO O,x=x0,=Xx TpH Beex X€S; (B CHIy @ <0).

Teneps onpepe;dM NONyrpymiy S, (2€.£) ciaeayromaM obGpa3oM:

a) S,=S; ecim S} momyrpymna,

6) S,=S,U0, (rze o, ¢ cocennue B F; ¢ <o) u O, fABjAETCS HylieM B S» A
HEMPHCOeAHEHHOH eqmHAnel B moynyrpyme S,=S;UO,.

Jlerko mposepseTcs, uTo L* pa3jaraeTca B IOCIENOBATENbHO AHHYHPYIOUIEE
obbenuHeHe moauoyrpym S, (¢€ ) n Bce TpebGopanns yTBepxicHust 1 u 2 BHI-
TOJHAOTCH.

IMycts Tenmeps A,(a€P;) — moayrpynna u Ba=A,\§ ,U< >Kaé. U3 (1) cnenyer,

€I —(a
9T0 B ciiydae M, %0 monyrpymma {B,}, IOpoXIeHHAs MHOXeCTBOM B,, He comep-
xAT L-31eMenToB. IIpeamosoxmmM, 9T0 M, =@ H CyHIECTBYIOT 3JIEMEHTH! d, b M3
B,, nns xoropeix nponsseacHue ab€L,. OdueBuano, to ab sBisercsa BHyleM B L,

(rak xak la=a, bl=>b, cnepopaTtesbHO, lab=abl=ab npu scex I€L,). Ecmu L,= ) S,
e=p
(ams mexoTtoporo pu€ #), 10 ab=0,€S,. Tak xak O, L-3nemeHT, nostoMy ab=0,

sBserca ennuunei B {B,}. OueBnano, 4to O, — HeTpUcoequHeHa K (B}

§ 4. locTpoenne amaJibramMbl NOJYTPYDHI, COMEPKAMMX
He Gosiee oHOrO 7-3n1€eMeATa

Omnpeneneune. Ilycts 4 — amansrama monyrpynn A, (£€.£). Amaneramy
A* OynmeM Ha3bIBaThb COKpalwyenHoii aMajlbraMoif naHHOM amansraMel A, ecnm A*
COJIEPIKHT:
" 1) Bce L- 1 M-371eMEHTHI aMajIbraMbl A, A

2) BCe JJIEMEHTEI, BXOJAUIHE TOJALKO B OAHY M3 mojyrpymn A (£€.5),

3) Bce T-ameMeHTHI, KOTOpEIE B 0c060H p. €. n. moanonyrpymne K., B A, npu-
Hamexat (T\ T*)-koMmonenTe (a, f€F),
(upu 3TOM NEHCTBHA IUIS 3THX DJIEMEHTOB COXPAHAIOTCSA), _

4) 10 OOHOMY HOBOMY 3JIEMEHTY, KOTOPBIH SIBISETCS OOIUUM HYJNEM I -BCeX
A (£€Q;) nna xaxmoro gr-knacca Q;. A

OueBHAHO, YTO COKpAallleHHAas aMajbraMa JEHCTBHTENBHO  ABIAETCH amalib-
ramoii. Y13 Teopemsl 2, neMMBI 5 u w3 TeopeMst 1.4 B [2] cinenyert:

Teopema 4. CokpaujeHnan amaavzama AGAAEMCA 20MOMODPHbIM 06pazom
ucxoonoii amasvzamel. Ecau caabo accoyuamushas amasvzama yoosiemgopsem
ycaosuam meopemsvl 3 6 [6], mo u ee cokpawennaa amasbzama makdice yooeiem-
8opAem 3MUM YCAGBUAM. ‘

PaccMOTpAM Teleph amMalbrambl, B KOTOPBIX Kakjas HOJYIPYINIa MOXET
cofilepxaTb He Gonee ommoro T-3seMeHTa. JIerko MOKa3aTh, 9TO 3TH aMalblaMBl
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COBIAAAIOT ¢ TAKAMHM COKpAIllCHHFIMH aMaJibFfaMaMH, B KOTOPBIX HH OJHO Hepece-
qenne K, He sBiseTcs ocoboit p. e. W. HOAMONYIpYNNoi HA B A,, HA B Ay.

IlpuBeneM fBe TEOPEMEI, KOTODHIE BEITEKAIOT H3 BhINEYKA3aHHOM YacTH
paboThI.

Teopema 5. ITyemv A — caabo accoyuamusnas amasbeama noAyzpynn
A (E€F), nezasucumo 61004cUMAA 8 HEKOMODPYIO noayzpynny, u KOmopas € nepece-
yenuax noayzpynn Ag(E€F) codepycum moavko M- u L-31emenmor. Tozda 0an
npousgoabHoli noayapynner A, (x€F) umeem Mecmo 00HO U3 caAeOyIOWux ym-
sepacoenuii:

1) A, ne codepycum M-ssemenmos (m. e. M,=0). (Onucanue nocmpoenus
noayzpynnuel A, caedyem uz meopemot 3)

2) A, codeprucum M-3s1emenmvl, komopvie éce 6xo0am 8 K,pz=A,NAg (m. e.
o, BERy, |R|=2) (Onucanue nocmpoenus nosyzpynn A,, Ag cm. 6 nynkme 1 meopemot
1. Henycmuie nepecevenun Kz, K (E€F, & #a, B) codeprcam moavko L-31emenmot
(cm. meopemy 3)). ’ '

3) ®€R,, oaa xomopozo |R|=3. ANL, (donyckaemca u L,=@) ssisemca
noayepynnoil npasvix (uau aesvix) Hyaeid, u umeem mecmo la=al=a npu ecex
acA\L,, I€L,. Kaxcdoe nepeceuenue K, (¢ €.F) umeem euo: uau K =a, UL, (20e
a;€A,\L,) u 6 smom cayuae A\L, asanemca nosyzpynnoii sesvix (coomeemcm-
genro npasvix) Hyaetl, uau K, =L, 20e L;SL,.

Teopema 6. Ilyemv A — caabo accoyuamueHas amasbeama NOAYZPYHR
Ag (E€F), Hesasucumo 6/10%CuUMan 8 HeKOMOPYIO NOAY2PYNNY, KAXCOAA NoAyzpynna
A Komopoii codepxcum ne 6oace oonozo T-3semenma. Toz0a 041 npou3seoavHoi
noayzpynnet A, (x€F) umeem mecmo 00HO U3 CACOVIOWUX YMEEPHCOEHUl:

1) IHoomnoxncecmeso U( , K,; noayepynnor A, moxcem codepucams
. e s —{a
a) moavxo L-31emenmol,

6) ooun T-31emerm u L-31emernmol,
B) M- u L-31emenmol.
{Onucanue cm. 8 meopemax 3,5.)

2) a€R, 20e |Ry=2, Ry=(a, f); A,, Ag codepucum odun T-s71emenm: O.
Onucanue nocmpoenuii noayepynn A,, Az cm. 6 meopeme 1 6 nynkme 2. ( Henycmole
nepecedenus K, K (E€F, E#a, B) codepocam O u L-21emenmut (cm. meopemy 3).)

3) a€R,, 20e |R|=3. B A, naxooumcsa T-ssemenm 0, xomopowiii AgasemcA
Hyaem. A, codepxcum odny M-xomnonenmy M,g, (Mp,) (BER,), komopan asanemca
noayzpynnoii neseix (npageix) wyseii. Hmeem mecmo xx,;=0, Ix=xl=x, xy=0,
yx=x, yl=y, L,M,< M,z npu ecex x, x,€ F,p=A\K,p, Y€ M,p, I€L,,(uru coom-
eememeenno xx; =0, Ix=xl=x, yx=0, xy=x, ly=y, My, L,S Mg, npu acex x, X, € Fg,.
y€Mpg,, IcL,). (Honyckaemea u L,=9.)
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K 5= L;UM,; U0 {iwiu cooméememseniio Kyy= L, M, UO) u Aj— rmakas noy-
2pynna, hoémpoenite KOmopoil onucaio é nyikrie 4.

Hpyéué nepecéueriun: K, =L, U0, ecau E€Ry; u K, SL; U0 eciu €€, EER,.

4) a€Ry, 20e |R|=3, B A, naxodumca T-znemenm 0, xomopeii aganemcs
Hyaem. Cywecmeyem pasbuenue muoxcecmea D,=UPUVY 20e D,=A\(L,U0)
makde, umo M,SU® u ux=x, Ix=x, vx=0, yi=y npu ecex uc U9, veV®, xeD,,
IEL,, yEV")U(U("\Ma) (usu paséuenue D,=UPUVEY) maxoe, wmo M,CU®,
xu=x, xI=x, xv=0, ly=y npuecex uc U®, vEV(') xEDa,IeLa,yEV(’)U(U(’)\M )).

Ecau BER,, mo aubo

a) K,,,=_L,UM,,, U0 (uau coomeemcmesenrno K,z=L,UM,\U0) umeem mecmo

exmouenue ML, S M5 (L, My, SMp,) u ecau M, (M,,a) COCMouUm He mMoAbKO U3
00HO20 34emeHma, mo A,, — maKas noAyzpynna, nocmpoeHue Komopoil Onucano
6 nynxme 3, aubo

6) K,,=L,U0.

Ecau E€#, E€ER,, mo K,,SL,U0.

3aMmeganwme 1. Bo Bcex ciyuasx mias L-31€MEHTOB HEKOTOPOro HepecedyeHHs
K,; HyXkHO BMETE B BHAY TCOPEMY 3, [aiOlIyI0 COOTBETCTBYIOIIME IIOCTPOECHHS.

3amevanme 2. Teopemsr 1, 3, 5, 6 HalOT METOJ, NO3BOJAIOMIAA CTPOMTD.
aMaJIbTaMEl YIOBJIETBOPSIOLIAE YCIOBHAM TEOpPeMEl 3 B [6] B MHOTOYHCIEHHBIX
CIydasx.
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On a special decomposition of regular semigroups

F. MIGLIORINI and J. SZEP

In [1] a general disjoint decomposition of semigroups was given, which can be
applied for the case of regular semigroups. The aim of the present paper is to obtain
a characteristic decomposition of regular semigroups based on the decomposition
studied in [1]. We shall investigate the componénts of this decomposition and the -
interrelations between them. By making use of [2] we study the cases of regular
semigroups with or without a left or right identity element.

Notation. For two sets 4, B we write AcB if A is a proper subset of B.
By a magnifying element we mean a left magnifying element.

1. Let S be a semigroup without nonzero annihilator. This is not a proper
restriction because every semigroup can be reduced to this case. Then S has the
following disjoint decomposition:

M s=Us
i=0
‘where A
= {acSlaScS and Ix€S; x20 and ax = 0},
S, = {a€S|aS =S and 3y€S, y # 0 and ay = 0},
Sy = {a€ SN\(SeU SpjaSc S and 3x,, x,€ S, x,5%x, and ax; = ax,},
= {a€ S\(SoUSY|asS = S and 3y;, y,€S, », # y, and ay, = ay,},
Sy = {a€ S\(S,U S, US,U Sy)|lasSc S}, ‘
S; = {a€ S\(SoU S US,USylas = S}.
It is easy to see that the components S; (i=0,1,...,5) are semigroupé,
8;:NS;=0 (i#j) and the following relations hold:
5SS S, S8,CS (0=is9),
@ SSC S SIS S S S 55E S,
SeS3 & Se, S651 & So- ‘

Récéived Miy 27, 1977.
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It is obvious that there exists an analogous decomposition

Cm

1) §=UT,

-
I

0

where T; (0=i=5) is the dual of S,.

Remark. The above decomposition is in fact “group oriented”’. That is, we
select consecutively the elements of S having a property that is very far from that
of an element of a group. So we consecutively select the annihilators, the (left)
zero divisors, the elements for which the products are not left cancellative, and
what remains is a right group.

Our theorems concern the decomposition (1), but analogous results can be
formulated for the decomposition (1°). -

Theorem 1.1. S; is a right group.

Pro of. It is easy to see that S; is right simple and left cancellative, whence
the assertion follows. '
Set SoUSz = §2 and S]_US3 = gS'

Theorem 1.2. 5, is a subsemigroup of S.

Proof. If 5,¢.S, and s,€S,, then sy5,€S,. There are elements x, y€ S, x=y
such that s,x=s,y. We have $55,¢ S, and s,5.¢ S5 because sy, S=s,(5,5)C S.
If 505,70, then (sp5)x=(8,5)y (x#y), whence 5,5,€8,SS,. Similarly,
535,€S,. If 5,20 then s5,5,#0 because 5,€S,. Since 5,€S,, there is an element
z+#0 such that s,z=0, hence (s,8,)z=0. Therefore s,5,€S,. Q.E.D.

Theorem 1.3. S; contains all the magnifying elements of S and only them.

Proof. Let acS,US;. If a€S and aS=S, and if furthermore, there is an
y#0 such that ay=0, then S’=S\{0}cS and aS’=S, whence a is a magnify-
ing element. If a€ S5, aS=S and if, furthermore, there exist x, y€S (x>y) such
that ax=ay, then a(S—{x})=S and a is a magnifying element.

Conversely, if a€ S is a magnifying element, then a¢ SUS,US,; and aM=S
(Mc S). Thus there exist meé M and s€ S\ M such that am=as. Hence it follows
that ac S;US;. Q.E.D.

Remark. Theorems 1.2 and 1.3 imply
() SeSe & SHUSe, 8528, S SoUSs, 5183 E 5;USs, 838, € SiUSs.

In what follows we assume that S is a regular semigroup, i.e. for every ac.S
there is an x€ S such that e=axa and x=xax (x is an inverse of a). The elements
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ax, xa are idempotent and aS=2axS2axaS=aS implies axS=asS, and similarly,
xaS=xS. The regular semigroup § can contain a zero element hence the com-
ponents S, and S, can exist in the decomposition (1).

Theorem 1.4. The inverses of the elements of S, are in S, and the inverses of
the elements of S, are in S,.

Proof. Let acS, and let x€.S be an inverse of a, that is, let axa=a and
xax=x. First we show that xSC S. Suppose that xS=S, then there is.a subset
S’c S such that aS’=S because a is a magnifying element. Hence it follows
that xaS’=xS=S. But we have (xa)S=xS=S and xa is idempotent, that is,
xa is a left identity of S. Therefore, (xa)S’=S’#S, which is a contradiction.
Thus xSc S, whence x is contained in S;, S, or S;. If x€S,, then xs;=xs,
(5:7#5,) and (ax)s;=(ax)s,. Since (ax)S=aS=S and ax is idempotent we obtain
that ax is a left identity of S, i.e. (ax)s,=(ax)s, implies s,=s,, which is a con-
tradiction. It can be proved similarly that x¢ S,. It remains the case x€.S,.

Conversely, let b€ S,, that is, b6S=S"'C S. Let y be an inverse of b in S. Hence
byS=bS=S". Suppose that ySc S. Let yS=8" (#.S5). Hence bS”"=byS=bS.
Thus there are elements s¢ S”, and s”€.S” such that bs”=bs.” But every element
a of § for which ax,=ax, (x;x,), is contained in S,U S, or S,U S5, which con-
tradicts the fact that b€ S,. Thus necessarily yS=S, that is, y¢ SoUS,US;. If
Y€S;, then (pb)S=ypS=y(BS)=yS'=S (§'#S), ie. y€S,US;, which is a con-
tradiction. It remains the only case y€S,US,;=S;. Q.E.D.

It is easy to see that the set of inverses of the elements of § is equal to S,
and the set of inverses of the elements of S, is equal to S;.

Corollary 1.5. If a regular semigroup S does not contain a magnifying element
(5;=0), then S;=0 and conversely, S;=0 implies S;=0.

Corollary 1.6. If a regular semigroup S does not contain a left identity, then
S.=0; and hence S;=9.

For if a€S, and x€.§, is an inverse of a, then ax is a left identity of S.

Theorem 1.7. S, is a regular semigroup and the inverses of an element of S,
are contained in S,.

Proof. Let a€S, and x an inverse of g in S. Since a€ S,U S,, we have aSc S.
Assume that xS=S§. Then (xa)S=x(aS)=xS=S, whence x is a magnifying
element, i.c., x€S;. But every inverse of an element of S, is (by Theorem 1.4) in
S, thus a€ S,, which is a contradiction. Therefore xScS. But x¢ S4 because
a€S,. We conclude that. x€S,U S,=S,. QED

The above results y;eld '
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Theorem 1.8. A semigroup S is regular if and only if it has a decomposition
(1) where

a) S, = S,US; is regular;

b) the inverses of the elements of S3=S,U S, are contained in S, and conversely;

©) S; is a right group.

Proof. Necessity follows from Theorems 1.1, 1.4, 1.7. Sufficiency follows
from the fact that a right group is regular.

2. In this section we shall deepen our kowledge concerning the decomposition
(1) of a regular semigroup S as well as the components S,, S, and S,.

Theorem 2.1. Let S be a regular semigroup without (left) magnifying elements.
Using the notations S,=S}, S;=S! we obtain the following decompositions:

S = SUSE and if St has no magnifying element,

S§3=82USZ and if S} has no magnifying element,

SE=Sk1y sk,

where every St is a regular semigroup, every S¥ is a right group and the following
inclusions hold:

@ SkSI S Sk, SiSk=St for k=]

SkS{=18§, Si{StEc 8§ for k=]
Proof. It is enough to give a proof for the cases:
S3S§, SgSi, SIS, S{S}
because the proof for the semigroups S is similar.
The proof is by induction on &k and j. It is trivial that

Sist =Sk siSi=15i, s2S}=35} (skeSh.

Hence, s53s5:5;=S}, i.e., s3s3€S: for all s;€ Sy and s2€ SZ. Since siS1=S! and,
furthermore, s3SZS S and sp(siSy S}, that is, sis2€5%, we conclude that
5;S:=52 and s5;5;=S5%, whence S!SZ=SZ, S!5:=5%. Thus we have
Sy Si= S51, S;83=S8;, S3Si=S2, Si18i=8%, Sgs;gsg because sZs) SE=
=52 S2 SZ, and thus sis;€SZ. The first step of the proof is complete.

Now suppose that the following conditions hold:

S}Sk= sk, Sks3c sk, SMSi=35], Sistc S
By definition, we have si*'S}=S;. Hence, (s;st*")S%=s555=S;, whence
55551 € Si*1. Thus we obtain S"“—(sls"“) Sgtl=s} Sk*1, whence Sj SEt'= Sk,
We have (sitlsp) Sit!'=S¥*! and, furthermore, .s"‘“s‘ESﬁ, thus s"+1 lES"+1
implies S;*'S;S S5, We also have (s3si**)Sics;5i=S5], whencé sisi*'€
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€8/*t, and siSj*'=S8i*' implies S}Si*'=S5}*'. Finally, we have sj*'s;cS}
and sj*'s S’—s;+1 S’C sg, whence it follows that s{*'stc¢§i*! and Si*1slc
gﬂ“ Q.E.D.

Corollary 2.2. If S and 8% (k=1) are regular semigroups without magnifying
elements, then S has one of the following four types of decompositions:

a) S=((((.)USHUSHUSE)USL, with an infinite number of components;

b) S = S,U((((...)USHUSHUSZUSE, where S, is a semigroup of type S, .
and there are infinitely many components; ’

c) S =(((SPU..)USHUSE)USL, where the number of components equals n;

d) S=(((SpUSNHU.. )USHUSE)US}, where the number of components is
m+1,

We shall treat So_me properties of the semigroups S; and S,.

Theorem 2.3. Let a, be8;, and let x be an inverse of a, and y an inverse of b
(x, y€S,). Then xy is an inverse of ba.

Proof. Since ax and by are left identities of S, we have baxyba=b(axy)ba=
=byba=ba, and xybaxy=xyb(axy)=xyby=xy. Q.E.D.

Theorem 2.4. If a, b€ S, and if x is an inverse of a and y is an inverse ofb
then yx and ab are inverses of each other.

Proof. By Theorem 2.3, (yby)(xax).is an inverse of ab. Then we get
ab=ab(yby)(xax)ab=a(byb) yx(axa)b=abyxab, yxabyx=ybyx=yx, since xa, yb
are left identities of S. Q.E.D.

By Theorem 1.4, S;US, is a regular subset of S, but it fails to be a subsemi-
group, because, e.g., SgS3E S, (cf. (2)). Set

X, = {x€8,|x is an inverse of some a€ S},
X; = {y€S;|y is an inverse of some b€ S,}.
Then S4=X1UX3.

Corollary 2.5. X; and X, are subsemigroups of S,. In general, if AgS;, is
a subsemigroup, then the inverses of the elements of A form a subsemigroup in S,.

Proof. This is an easy consequence of Theorem 2.3.
Corollary 2.6. S; and S, have no idempotent elements.

Proof. Every element of S, is magnifying, thus a=a* (a€S;). Assume that
ec S, is idempotent. Since e is an inverse of e, e€S; (by Theorem 14) whxch is
a contradiction.
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Theorem 2.7. Every element of .S, and S, generates an infinite cyclic semi-
group. . o

Proof. In the opposite case, S; or S, contains an idempotent element which
contradicts Corollary 2.6.

Theorem 2.8. 1) S; has no (proper) right magnifying element. 2) S, has no
left magnifying element. 3) If 1¢S (i.e. S is a monoid), then S,U S,US; has no
left or right magnifying element. 4) S5 has no left magnifying element.

Proof. 1) is a consequence of [4], Chap. III. 5.6 (8). Since in the product s,.5
(s4€8,) the representation of each element is unique, thus the same holds for s,.S,,
and 2) is true. 3) follows from [4], Chap. IIL. 5.6 (), because the union S,U S, U S,
does not contain left or right magnifying element of S. Finally, S; is a right
group, and hence has no left magnifying element, cf. [4], Chap. III. 5.3 (y).

3. In this section the results of [2] will be applied to the decomposition (1)
of regular semigroups. For a regular semigroup S we shall mvestlgate the follow-
ing cases based on Theorem 4 in [2]:

1). S has neither a left nor a right identity element;

2) S has an identity element;

3) S has either a single left.or a single right identity element.

In the case 3) we may assume that S has only a left identity element. In the
opposite case we have to study the decomposition (1) instead of (1). As it is well
known, an idempotent element e is Z-primitive if it is minimal among the idem-
potents D,, where D, is the D-class of e (2 is one of Green’s relations).

In the case 1) S has no left magnifying element (cf. Corollary 1.6), that is,
S,US;=0 and S,=@, furthermore, S;=§, because in the opposite case S
would have a left identity element. Hence S=S,US,=S5,. -

In the case 2) suppose that 1€ S is the identity element. If 1 is 2-primitive
then we have S,US,;=0, S,=0, while S;=0 (e.g. 1€S5;). In this subcase we
obtain that S=S,US,US;. If 1 is not @-primitive, then there are magnifying
elements, that is, 5;US;=0, S;#0, S; is equal to the subsemigroup of all in-
vertable elements and thus it is nonempty. Since S,;S;ES, and S,S5,ES,, at
least one of the subsemigroups S,, S, is nonempty. Hence we obtam S=8,U
US,Us,U S5, where all the components are nonvoid.

In the case 3) suppose that e is the only left 1dent1ty element of S. If eis
P-primitive, then S;US;=0, S,=0, while S;=0 (for example, e€S;). There-
fore S=5,US,US;. If e fails to be Z-primitive, then there are magnifying ele-
ments, thatis, S;US;=0, S,=0, S;=0 and, similarly to the second subcase of 2),
we have  SoUS,=p. Hence S=S,US,US,US;, where all the- components are
nonempty. - :

Summing up:
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Theorem 3.1. Let S be a regular semigroup. Then:

1) If S has no left identity element then S,US;=0, S,=0, Ss—ﬂ
2)If S has an identity element and

a) if 1 is D-primitive then S,US;=0, S;=0, S;>=0,

b) if 1 is not 2-primitive then S;U S3=0, S;#=0, S50, SoUS,=0. -
3)If e is the unique left identity of S and

a) if e is D-primitive then S,US;=0, S,=0, S;=0,

b) if e is not D-primitive then S,U S370, S,#0, S;70, S,U S, =0.

4. Finally, we make some remarks concerning the decomposition (1). For
x€S,, acS; let B,={bcS|b is an inverse of x}, C,={y€S|y is an inverse
of a}. If x€S, and b€B, (b€S,), then bx is a left 1dent1ty of S. Analogonsly,
ay (ac8;, y€C,) is also a left 1dent1ty of S.

Theorem 4.1. If x€S, then B, fails to be a subsemigroup. If acS,, then C,
fails to be a subsemigroup.

Proof. Suppose that B, is a semigroup and a, b€B,. Then axa= a, bxb=b
and bacB,. Hence baxba=ba. Since ax is a left identity element, hence
b(ba)=ba. On the other hand, ba€S;, thus baS=S, whence bs=s for all s¢S,
which is a contradiction (b is a left magnifying element!).

Let x, y€C,. If C, is a semigroup, then a(xy)a=(ax)ya=ya. But ya=a,
because ya is idempotent, while the element a€S; is not. Thus xy¢ C,. Q.E.D.

Let McC S be a subset of S such that aM=S. Then the set M is left increas-

able by a. Such a set M is not uniquely determined by a.

Theorem 4.2. If acS, then a(S,US,US)=S.

Proof. Let ac§; and x€ S, an inverse of 4. Then we have axS=aS=.S and
xS S. On the other hand, xSES,S, furthermore, by making use of the rela- .
tions (2) we get

S, S = S, (SU S U S, US;US,USs) & S,U 52US4
Hence -xSSS,US,US, and thus a(S,US,US)=S. Q.E.D.

Theorem 4.2 implies for every a€ S the existence of an element y,€ S,U S,U S,

such that ay,=a.

Theorem 4.3, 8) If ac S;, then y,¢ S,. b) The elements ac S, for whzch V,€8;
(ay,=a), have a two-sided identity element in S.

Proof. a) If y,€S,, then there is an x70 such that y,x=0. Thus ax=
=(ay)x=a(y,x)=a0=0, whence a€S,US;, which is a contradiction. '

b) If y,€S,, then there exists b€S;, such that by,b=b and y,by,=y,. Then
ay,b=ab, ay,by,=aby,, that is, ay,=aby,, whence it follows that a=a(by,).
On the other hand, by, is a left identity element of S, whence by,a=a=aby,. Q.E.D.
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Otsukische Ubertragung mit rekurrentem MaBtensor

ARTHUR MOOR

§ 1. Einleitung

Im Aufsatz [3] begriindete T. Otsuki eine Ubertragungstheorie in den n-dimen-
sionalen Punktriumen, die in der lokalen Schreibweise auf die folgende Weise
charakterisiert werden kann:

Der invariante Differentialquotient eines Tensors V}:;:;Z ist langs einer
Kurve C:x'=x'(t) durch die Formeln

D i, def r,
(11) dt Vh J:— P V-‘H1 q'k dt P;l Ps
P
(1 2) Vsl :Plkgit- aszrll......s:P'l‘ Z]'.’Fhrths’;l.s:;r'_lfl.r.ttlm 2 ”I-'s, szl S 1"-‘”1 ',
t= t=

definiert, wo die Indizes jetzt und im folgenden immer die Werte 1,2, ...,n an-
nehmen werden, und ‘I',%,, "I b, gewohnliche affine Ubertragunsgparameter bedeuten.
P} bedeutet in diesen Formeln und auch im folgenden einen gemischten Tensor
(vgl. [3], Formeln (4.9) und (4.10), wo aber diec — von uns im folgenden nicht zu
beniitzende — Bezeichnung:
B%mhﬁﬁ,dﬂ
dr s gy

verwendet wurde). Die Ubertragungsparameter ‘I’,’, bzw. “T',%., die bei der Bildung
des invarianten Differentialquotienten bei den kontra- bzw. kovarianten Indizes
verwendet sind, brauchen nicht iibereinstimmen.

Neben dem Tensor Pji soll auch der inverse Tensor Q} eindeutig bestimmt
sein, d. h. es ist det(P})=0 und

(1.3a) PiQ] =5, (1.3b) PiOs =658

. Eingegangen am 12. November 1976.
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Satt (1.2) beniitzt man in der Otsukischen Theorie lieber die kovariante
Ableitung:

(1.4) - ViV S PR L PRV P L PR

(vel. 3], (3.8)), wodurch der fundamentale Differentialquotient (1.1) die Form:
D d f f

I A = Az

haben wird. Mit den Bezeichnungen

(1.62) rhE T, (1.6b) AL PP

kann leicht verifiziert werden, daB unsere Formeln (1.4) und (1.5) — auf Grund
von (1.2) und (1.3a), (1.3b) — eben in die Otsukischen Formeln (2.15) und (2.14)
von [3] iibergehen, wo ‘I’ und “I'j}; der Bedingung
I/I'i —,——Pi ‘rm Ql Q aPi
1k m il ki X 3xk
unterworfen sind.

" Im folgenden wollen wir eine solche Otsukische Ubertragung bestimmen,
in der die Ubertragungsparameter durch einen, in seinen Indizes symmetrischen,
Fundamentaitensor g;;(x) bestimmt sind, der den Relationen
a7 : ngij = Yk(x)gij
geniigt, wo y,(x) einen kovarianten Vektor bedeutet. Die Formel (1.7) driickt aus,
daB diese Ubertragungstheorie, die wir im folgenden entwickeln werden, die Weyl-
sche [5] und Otsukische [4] Ubertragungstehorien in sich vereinigen wird, wobei
sie als ein Spezialfall von [3] betrachtet werden kann. Vom metrischen Fundamental-
tensor g;; soll noch angenommen werden, daBB det(g;;)0 ist, d. h. der inverse
Tensor g" eindeutig bestimmt ist.

Die Grundgriffen des Raumes sind also der metrische, symmetrische Grund-
tensor g;;, der Rekurrenzvektor vy, und der gemischte Tensor P}, der im folgenden
der Symmetriebedingung
(18) Pu?ifgp‘P':gw _Pji
geniigen soll. .

Mit Hilfe von g;; bzw. mit Hilfe des inversen Tensors g’* konnen die Indizes
in der gewShnlichen Weise herauf- bzw. heruntergezogen werden.

Das Ziel unserer Arbeit ist die Bestimmung der Form der Ubertragungspara-
meter und die Untersuchung des invarianten Differentials der Eigenvektoren bei
einer Kontraktion mit g;;; ferner wollen wir im Satz 5 von §4 die notwendigen
und hinreichenden Bedingungen bestimmen dafiir, da Dg,-j ein Eigentensor lings
einer Kurve des Raumes sei. Diesen Satz mit dem Satz 7 zusammen betrachten
wir als Hauptsitze dieser Arbeit. ‘ '
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§ 2. Bestimmung der Ubertragungsparameter

In diesem Paragraphen wollen wir die der Relation (1.7) geniigenden Ubé;;tra-
_ gungsparameter bestimmen. Aus (1.7) folgt auf Grund von (1.4):

(2.1a) PiPjg sk = 1 8ij-

Wir wollen hier bemerken, daB fiir den kontravarianten metrischen Funda-
mentaltensor g;; die analoge Forderung: : :

(2.1b) PiP{g"y=—7g"

wire (vgl. etwa [1], Formel (7.1)a)). Doch wire die Formel (2.1b) im allgemeinen
in der Otsukischen Ubertragungstheorie nicht eine Folgerung von (2.1a), sondern
eine neue Forderung, die — abgesehen von gewissen Spezialfillen — nicht mit
(2.1a) gleichzeitig gelten konnte, da nach (1.2) 6, #0 ist. Gelten aber die Iden-
titaten: P{=5% (=Kronecker-d), ferner ‘I',>.="T,"., so. wire (2.1b) eine Folgerung
von (2. la) In diesem Fall wire aber die Otsukische Ubertragungstheone mit der
gewohnlichen affinen Ubertragungstheorie identisch.

Auf Grund des durch (1.3a) und (1.3b) definierten inversen Tensors Q‘ von

, kann (2.1a) bzw. (2.1b) in Hinsicht auf (1.2) in der Form:

(2.2a) ' O 8rs— T 81— T 8 = V8 Q2 0%
(2.2by : 08" +'T g+ +' T8 gt =—18"0505

geschrieben werden.

Sind die Ubertragungsparameter "I’ in den unteren Indizes symmetrisch —
was wir im folgenden immer annehmen wollen —, so erhilt man diese Ubertragungs-
parameter in der gewdhnlichen Weise, durch zyklische Permutation der Indizes
r,s, k in (2.2a), bei der letzten Permutation mit einer Vorzeichenverinderung und
dann nach einer Addition, in der Form:

) (23) ”rrtk = ';_ g‘s {ak 8rst ar Sk~ 3.: Srx— ('Yk m}s +7r Mg —7Ys mrk)} .
mit
m E gij QrQs. .

Bemerkung. Nach den Bezeichnungen von H. Weyl: [5] ist y,=—¢, und
"Iy =Ts,p.—

Etwas - komplizierter wire die Bestimmung von ‘I'), aus (2.2b), die wir nur
skizzieren wollen. Eine Uberschiebung von (2.2b) mit £::8s; gibt eine Identitit fiir
T ;. Angenommen, daB ‘T';; in (j, k) symmetrisch ist, erhdlt man ’Fj,,, in analoger
Weise — abgesehen von Vorzeichenverdnderungen — wie “I'j; . Eine Uberschlebung

mit g* ergibt die gewiinschte GréBe: ‘T'jf.
‘ Wir beweisen den folgenden:

9‘
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Satz 1. Ist “I" die durch 'T' induzierte Ubertragung (vgl. [2), S. 161, oder [3]
S. 109) s0 lst
@4 (3kP’")(ng"+Q‘ £+, 0103 8P + 0 g+ 0 T P+
+05,TmPr =0, P pigir

Gilt die Relation: o
(2.5) R Pi= g6% (o= Konst. #0),
so ist ‘'I'="I', und (2.2a) und (2.2b) sind gleichzeitig erfiillt.

Beweis. Beziiglich der erste Behauptung des Satzes beachte man, dal wenn
“T" die induzierte Ubertragung von ‘I’ ist, so gilt nach der Formel (3.13) von [3]:
(2.6) - O Pi+"T 3 Pi—"T [ P = 0. '
Aus dieser Formel folgt nun nach einer Uberschiebung mit 0! nach (1 3b), daB

‘ T} = Qno P7+0: "I P .

Substituieren wir das in (2.2b), so erhiit man unmlttelbar 2.4); dle Identitit (2 4)
entspricht der Identitit (2.6) im metrischen Fall.

Beziiglich der zweite Behauptung des Satzes beachte man, daB3 aus (1.3a) folgt,
daB neben (2.5) auch . ’
QD ' Q)= 0718, (o= Konst. = 0)
besteht. Auf Grund der Form (2.5) von P} folgt noch nach (2.6), daB die affinen
Ubertragungen ‘I" und T bereinstimmen, d. h. es ist T/, ="T'/,. (2.2a) geht somit
im Hinblick auf 'I'="T" in :
(28) akgrs rkgts Fstk 8r = Q_2Yk Ers
tiber. Es ist nun g;,g™ =065, woraus nach einer partiellen Ableitung nach x*,
auf Grund von (2.8), die Formel

Ok 8™)8im =—8"0k8im = 8" (@ >V 8jm+ T /x&m+ T 851

folgt. Eine Uberschiebung mit g’ gibt nun — unter einer nochmaligen Beachtung

von (2.7) — unmittelbar (2.2b). Die Formeln (2.2a) und (2.2b) sind also glelch-
zeitig giiltig, wie behauptet wurde.

§ 3. Eigenvektoren und ihre Kontraktionen

Ein kontravariantér Eigenvektor ¥*(x) ist durch die Definitionsformel
3.1 Pi(x)Vi(x) = t(x)V'(x) (z=0)
festgelegt (vgl. [3], Formel (5.2)); fiir einen kovarianten Eigenvektor Vk(x) lautet

die analoge Formel:
(3.2) _ PY(x)Vi(x) = T(X)V.-(X),



Otsukische Ubertragung mit rekurrentem MaBtensor 133

wo 7(x) eine im Raum definierte Eigenfunktion bedeutet. Fiir die folgenden wird
es hinreichend sein, wenn V* bzw. ¥, und © nur lings einer Kurve C:x'=x'(r)
definiert sind. Es kann sehr einfach der folgende Satz bewiesen werden:

Satz 2. Ist P;; in (i, j) symmetrisch, so folgt aus (3.1) die Relatzon (3. 2) mit
Vi girV .
Ist Py in (i, j) m'cht symmetrisch so folgt aus (3.1):

(3.3) PV, =V, Pfkf—_ef g Py gt
Beweis. Eine Kontraktion von (3. 1) mit g;, fihrt 1m Hmbhck auf
Vi=ghv,, hEg,vr
nach gewissen Indexverinderungen auf die Relafion:
Pi*Vi = g, PighVy = 1V,

womit wir schon gezeigt haben, daB aus (3.1) die Relation (3.3) folgt. Ist nun P;;
symmetrisch, so folgt aus (1.8), daB P}*=P¥ ist, wodurch aus (3. 3) d1e Formel
(3.2) entsteht, w. z.. b. w.

Im folgenden wollen wir eine w1cht1ge Formel von Otsuki, d1e wir auch ver-
- wenden wollen, durch eine einfachere Methode ableiten (vgl. [3], Formel (5.8)).

Nehmen wir an, daB8 fiir den kontravarianten Vektor V7, (3.1) besteht. Da
auf beiden Seiten von (3.1) je ein kontravarianter Vektor steht, bekommt man
nach invarianter Ableitung von beiden Seiten auf Grund von (1.1) und (1.2):

' ' dP* - de‘]

G4 (d V+P"~——-+ r,sp'y 5
. (dV . ,dx‘]
—P"[dtV+ dt +T5V d

Beachten wir nun die Formel (3.13) von [3], die offenbar mit unserer. Formel (2.6)
dquivalent ist, so wird:

dPt _ oP% dx* s ok 4%
3:3) Tdt T ox® dr ETS =P
Substituiert man das in (3.4), beachten wir ferner auf der rechten Seite die Formel
des invarianten Differentials (1.1) fiir den kontravarianten Vektor V%, so wird nach
entsprechenden Vertauschungen der Indizes:

—_ +__P1Vk"

dx‘) DV dr
Yar Tdr

 (DV* .
69 7B+ prCrh- v



134 A. Modr

~ Auf Grund von (1.1) und (1.2) hat man
. D s pipers—riy 42
(3.7) 8= PUP(TA—"TA)
Beachten wir in (3.6) diese Identitit, ferner (3.1), so wird:

Ddl: D&,V, (ﬂ+drV,)

dt ' d
was mit der Forme! (5.8) von [3] iibereinstimmt.

Wir gehen nun zur Untersuchung des invarianten Differentials von
Vi=g,V' iiber, falls fiir den kontravarianten Vektor V* die Bedingung (3.1)
besteht, der metrische Fundamentaltensor g;; der Relation (1.7) bzw. (2.1a) geniigt,
und endlich fiir den Tensor P} die Symmetriebedingung (1.8) giiltig ist.

Aus den Formeln (1.4) und (1.2) folgt, daB

(39) - Vk (gls V’) = P:(Vlak 8rs + 8rs ak Ve— ”Frtk 8ts Vs)

(3.8) Pi

besteht, da g, V* ein kovarianter Vektor ist. Beachten wir nun (2.2a), die eine Folge-
rung von (1.7) ist, so wird durch die Elimination von 8, g,:

Vi(gisV) = Pi(ng im QZ OV 4 g, . Vo + 8, "THV?).

Auf Grund der Symmetriebedingung (1.8) ist nun nach gewissen geeigneten
Verianderungen der Indizes, und im Hinblick auf (1.3b):

Vi(8isV*) = 148, OV + 8, Py (0 V4T 5 VY).

Eine weitere Umformung — d. h. die Eliminierung von “I';’, — mittels der Identitit
(vel. [3], Formel (3.10)):

(3-10) 5511: =TT, k>
gibt nach den Grundformeln (1.1) und (1.2)
(3.11) Vi(8sV*) = 1.8, OV + 8. ViV — g, PLO}V*.

Nun ist nach (1.4):
V,‘a' = P'Pj 5?]*,

woraus nach einer Uberschlebung mit Q7 die Relation
.12 Pi8i = OPV, 5,
folgt, und das fiihrt die Formel (3.11) in
Vi(8uV) = 8, ViV + 8 WG~ QP Vi SV
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iiber, woraus nach einér Uberschiebung mit dx*/dt die Formel

D
(3.13) E‘(guV’) = 8&ir
folgt.

Nehmen wir nun an, da8 V! ein Eigenvektor ist, d. h. (3.1) ist giiltig. Zieht
man mit g, den Index ,,i”” ab, so folgt wieder nach gewissen Verinderungen der
Summationsindizes und im Hinblick auf die Symmetriebedingung (1.8):

DV* dx ,Dé']
( +Q'V g~V =

(3149 - Pig V)=1g,V".

D dxk -
Bilden wir jetzt die Operation E—EIV,‘ auf beide Seiten von (3.14), so erhalten

wir nach den Definitionsformeln (1.4) und (1.2)

a1 Pfg, iR A= TiFg, V) G =

=P’(d gV "+ 10 8) V" — -+ g,,(c?kV')—“t s'kg"V'W)?

r
3

Eliminieren wir von der linken Seite

mittels der Formel (3.5), beachten
wir dann (3.9) und (3.10), so entsteht auf der linken Seite der Ausdruck:

dx*
Ps{vk(gsjVj)'*—P'aslkger}T’

Auf der rechten Seite von (3.15) erhilt man wieder unter Beachtung von (3.9)

dr . o dx*
qt Pig. V' +1(VigyV' )7,

und somit wird aus (3.15) im Hinblick auf (3.12) und (3.14)

Do} dv

D
Vi + Vi= VL= (g,.V*
(3.16) e ar (gsj ) grj T [dt 8ir ar (gis )} .

Vergleicht man (3.8) und (3.16), so folgt der

Satz 3. Ist V' ein Eigenvektor, die der Formel (3.1) geniigt, ist ferner P,; in
(i, j) symmetrisch, so verhdlt sich der Vektor V=g, V" beziiglich der invarianten
Dtﬂerenttatwn (1.1) ebenso wie der Vektor V*.

In #hnlicher Weise folgt unmittelbar aus den Glexchungen (3.1), (3:8) und
(3.16), unter Beachtung von Satz 2 der folgende
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Satz 4. Gilt fiir einen Vektor V' die Relation (3.1) lings einer Kurve C:x'=x!(t),
i i

V r
s} I/iEgier

Dé*,
ist Py in (i, j) symmetrisch, ist endlich _dTJ;O’ so gehoren V', —

i A
73 zu demselben Eigenraum von <.

Dé! :

Fiir den Fall, daB —dt-j¢0 besteht, kann noch eine Formel fiir die Eigen-
vektoren mittels (3.16) und (3.13) abgeleitet werden. Eliminiert man aus (3.16)
D
58 V7 mittels der Formel (3.13), so wird unter Beachtung von (1.8):

Dy” at ,,Da;,,) . D&
g“F(dt +OVi dt 14 ar )t gV’ dt __

de . DVT . odx ,,DarJ
—‘tgxr[dtV dt +QhV Y5 dt _QhV dt

Beachten wir jetzt die aus (3.1) folgende Rleation

Vr=Qip
und (1.3a), so wird:
Dyr mpaz,) D D,
_ dt . DV’)
= 2,7 (EV +TV .

Auf Grund der Formel (3.8) wird aus dieser Identitit:

D&, . D&%
dt =18V’ dt -’

(3.18) g V™

~ Offenbar muf (3.18) lings der Kurve x'=x'(¢), lings der unsere Tensoren
genommen wurden, eine Identitét sein. (3.17) wird somit auch eine Identitiit, nimlich
eben die mit g;, kontrahierte Formel (3.8) (abgesehen von gewissen Indizes-Verinde-
rungen).

§ 4. Der metrische Fundamentaltensor als Eigentensor

; N D,
In diesem Paragraphen werden wir die Eigenschaften von g;; und -% unter-

suchen, falls der metrische Grundtensor ein Eigentensor ist, d. h. lings einer Kurve
C:x'=x(t) der Identitit

@1 : PiPig,=1g; (#0),
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geniigt. In unseren Untersuchungen werden wir aber meist nur die Symmetrie von
g;; in seinen Indizes beniitzen und die kennzeichnende Identitdt (1.7) bzw. (2.2a)
auBer Acht lassen. Wenn also nicht nachdriicklich betont wird, sind unsere Resultate
auch fiir allgemeine symmetrische rein kovariante Tensoren zweiter Stufe giiltig.

Bilden wir den 1nvar1anten Differentialquotient auf beiden Seiten von (4.1),
so wird:

D _ d D gtj
- E(P:Pigrs)_}) sgrsdt+r dt .
Bemerkung. Die Leibnizsche Regel besteht fiir die Operation (1.1) im all-
gemeinen nicht.
Auf Grund von (1.1) und (1.2) wird unter Beachtung (auf der rechten Seite)
der Formel 4.1):

dpP; dP; dg,. ., ” dx*
PP Pyt B g b PR (T BB T PP g, S

e dt Y“ar
_ dt Dg,j)
- T[g” T ar

DP}
Wir eliminieren nun die Glieder Ttm mittels (3.5) und beachten dann noch
die Formel (3.10); im Hinblick auf (1.2) und (1.4) wird somit:

S . s dx* Dg, dv
Pan(‘SaIk bgrs+_5glkP;,Pp grs+Vk'gab)7 = T( dtj'l'glj EJ .
Auf Grund der Formeln (1.1) und (1.5) wird nun das folgende Lemma bestchen:

Lemma 1. Ist fir den in (i, j) symmetrischen Tensor g; dle Relation (4. I )
gilltig, so besteht:

Dg, (,, Ds; . Dés] _ [Dgij dt )
“42) PLF e UL i ol L2l el

 Wir wollen betonen, daB in der Formel (4.2) der Tensor g;; nicht unbedingt
der rekurrente metrische Fundamentaltensor sein muB, da bei der Herleitung von
(4.2) nur (4.1), d. h. die Annahme, daB g;; ein Elgentensor der Eigenfunktion t
ist, beniitzt wurde. Es gilt aber das

Lemma 2. Ist g;; der rekurrente metrtsche Fundamentaltensor der ein Eigen-
Dg;;
tensor der Eigenfunktion vt ist, so ist auch —Jt—'i ein Eigentensor von 1, d. h. es gilt

’ Dg Dg--
Pa b~ Sab _ ij
“3) ' P Tdt dt
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Beweis. Da fir g;; die Annahme (1.7) gilt, d. h. g;; rekurrente kovariante
Ableitung hat, bekommt man nach der Formel (1.5):

Dg dx* dx*
dtu ngu ar 81/?&7-

Beachten wir nun auBer dieser Relation noch (4.1), so wird :

. Dg dx* dxt Dg
PPy — 2 = PiPjgan—- = gyn—- =17,
und das beweist das Lemma.
Mit Hilfe des Lemmas 1 kann der folgende Satz, die wir, mit dem spateren

Satz 7 zusammen, als Hauptsdtze unserer Arbeit betrachten wollen, bewiesen
werden:

Satz 5. Ist der Tensor g;; ein symmetrischer Eigentensor der Eigenfunktion
120, die ldngs einer Kurve C:x'=x'(t) definiert ist, und gilt fiir P} die Symmetrie-
bedingung (1.8), so ist die Relation

Dét D& dr

(4'4) rj dt + 8i dt —gu dt

D,
notwendig und hinreichend dafiir, daf —"Ig;—j ldngs C auch ein Eigentensor der Eigen-

Sunktion 1 sei.
Die Eigenfunktion t ist eine Konstante dann und nur dann, falls lings C

Do} D¢
B gy ~r tei g dt =0.

Beweis. Nehmen wir erstens an, daB g;; ein Eigentensor ist, d. h. lings C besteht

@.5)

D
(4.1), und nach Lemma 1 gilt auch (4.2). Ist nun neben g;; auch —5:‘—] ein Eigen-
tensor, d. h. ist auch (4.3) giiltig, so reduziert sich (4.2) auf Grund von (4.3)-auf

Dot Dé‘] dt
dt ~+PiP dt ) Brs = g B

Eine Kontraktion von (4.1) mit Q! gibt:

46) (P"Pz

P§ 8ms = tQm g Jjs*
Beachten wir dlese Relation zweimal auf der linken Seite von (4.6), so wird:

6} dr
gbsQr dt + i 8 ers dt =7 8u-
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Diese Identitit geht nun nach der Beachtung der Symmetrieforderung (1.8) im
Hinblick auf (1.3a) unmittelbar in (4.4) iiber, womit die Notwendigkeit von (4.4)
bewiesen ist.

. Zweitens beweisen wir, daB (4.4) hinreichend ist. Eine Multlphkatxon von
(4.4) mit 7 gibt im Hinblick auf (4.1)

[P“P" Do; Ly PPt Da; ) tg,j%:-,

woraus auf Grund von (1.8) unmittelbar die Relation

: D& Dé - dt
) (BB 202 g, =B,
folgt. Das reduziert aber die aus (4.1) entstandene Identitit (4.2) eben auf (4.3),
D v

d. h. %’- ist ein Eigentensor. Damit ist bewiesen, daB die Bedingungsgleichung
(4.4) hireichend ist.

Die letzte Behauptung des Satzes ist eine triviale Folgerung von (4. 4)

Aus dem Lemma 2 folgt nach dem Satz 5 das

Korollar. Ist der rekurrente metrische Fundamentaltensor g;; ein Eigentensor
lings einer Kurve C und geniigt P, (1.8), so ist lings C die Rleation (4.4 ) immer
giiltig.

Aus den Formeln (4.2) und (4.5) folgt noch der

Satz 6. Ist g,; ein symmetrischer Tensor, der, lings einer Kurve C, ein Eigen-

tensor der lings C definierten Funktion v ist, und gilt lings C (4.5), besteht ferner
D,

fir 1”,i die Symmetriebedingung (1.8), so gehiren g,; und %”— zu demselben Eigen-

raum von <T.

Beweis. Ebenso, wie vorher, im Beweis des Satzes 5, von (4.4) die Formel
(4.6%) abgeleitet werden konnte, bekommen wir aus (4.5) nach einer Multiplikation
mit 7, und dann unter Beachtung von (4.1) und (1.8) die Relation:

D& Dé’)
b —
(PPi 5 Ly PPy o) & =0
wodurch-(4.2) sich auf ,
Dg, [Dg. dr ]
b b _ J
@7 PP = Tar Tar s

reduziert; das beweist schon die Behauptung des Satzes.
Wir beweisen jetzt den
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‘Satz 7. Ist ldangs einer Kurve: C

D&
4. -
“4.8) T
und ist ferner lings der Kurve: C der symmetrische Tensor g;; Eigentensor der Eigen-

Junktion t, so gehdren lings C

=0,

g Dg; D3gy
ode? der T
zu demselben Eigenraum von <.

Bemerkun g Der Satz 7 ist im wesentlichen ein Anaiogon eines Otsukischen
Satzes (vgl. [3], Satz 5.7 auf S. 120) auf die symmetnschen kovarianten Tensoren
zweiter Stufe. —

Beweis des Satzes 7. Die Behauptung des Satzes konnen wir in der fol-
genden Form ausdriicken: ‘

'Dmgrs - 'Dmng Dm-kglj — )
Jim = T g +Zlﬁk ar- ——— (m—1,2,...),

wo die Funktionen ¥, Polynome von

. oo dv
*ode’ d2’ 7 drm

@9) PP

sind. :
Die tber g;; gestellte Bedingung ist die Giiltigkeit von (4.1). Auf Grund des
Lemmas 1 ist aber auch (4.2) giiltig; diese Identitit geht aber nach der Annahme
(4.8) in (4.7) tiber. Die Identitit (4.7) driickt schon aus, da8 (4.9) fiir m=1 besteht.

Der Beweis werden wir nun durch vollstindige Induktion durchfithren. Nehmen
wir also an, daB (4.9) bis irgendein m=1 gilt.

Nach der Bildung des invarianten Differentialquotienten ‘beider Seiten und
unter Beachtung, daB die Y, (k=1,2, ..., m) Skalare sind, bekommt man auf
Grund von (1.5):

Prps Dm+1gij
rrAGGERrT Ralrraile a Y=g T

Yy oo D78, Dril-kg,
+2[ - PiP; dt"""‘_+¢k dgmti-k i)

Man sieht sofort, daB auf der rechten Seite die Glieder, die P/ P; enthalten mittels
(4.9) eliminiert werden kénnen, somit erhilt man auf der rechten Seite solche Glieder

D( . D'”gm) VL L

. von dtg"u (h=0,1,2, ..., m+1), wie in (4.9). Es gilt also:
D Dmgrs] _ -D'”-lg,-j m+1 . D"‘“"‘gu
(4.10) dat [PrPi atrm ) dmt +k§1 vi dgm+i-k ?
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wo die ¥ (k=1,..., m+1) Polynome von

. . d_T dz—T dm-lvl,t'

Pode’  de?’ U7V demr

sind. _ .
' Wir berechnen nun die linke Seite von (4.10). Es ist:

D (117, 27%) {(dP' dP:) g,

7 \PiPi | = PP Bt P ) =g+

r d D" 8rs »rp ” P dx* D" grs}
PR gy g (TP Bt T PPy o =gy

h
e

Wir eliminieren aus dieser Formel die Gleider mittels der Identitdt (3.5).

Beachten wir noch die Bedingung (4.8), d. h.

PLPICT 2= "Ty) S = o,
so wird:
D( . D’"gn) _
dt PiP; dim )
d pm D" Dmg ) dx* D+l
— papblpr 8rs 7P p 8ps \ npp g’P]_}: a b_ﬁ
PP{PPE dt qgm [F"‘ am T e ) grlf = B g

Die Formel (4.10) geht demnach eben in die gewiinschte Formel

Drtig, Drtig, Drtl-kg
dtm+1a =1 dtm+1l + Z vi dimti- k’_

@.11) PP

dr driic
R ey
die Relation (4.9) auch fiir (m+1) besteht, womit die vollstindige Induktion
beendet ist.

Endlich wollen wir den Eigentensor g;; untersuchen, falls g;; rekurrent ist,
d.h. es besteht (1.7) bzw. die mit (1.7) dquivalente Relation:

(4.12) Ddit" = (v Uff]g,,

iiber, wo die y; Polynome von 7, sind. (4.11) beweist aber, daB

Wir beweisen nun den
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Satz 8. Gelten fir den in (i, j) symmetrischen Tensor 8y (4.1) und (4.12),
so ist
Drgy
“4.13) I

=wgij, (m= 1,2, ...),

dx*
wo  eine skalare Funktion von , ik v und deren Ableitungen bis hochstens m-ter
Ordnung nach dem Parameter t ist.

Beweis. Fiir m=1 ist der Satz nach (4.12) giiltig. Nehmen wir an, daB der
Satz fiir irgendein m=1 giitig ist. Nach der Formel (4.13) hat man:

D”H'lgij — Pb{d Dmgab //I- Dmgrb dxh ”F Dmgar dxh}

dtm+1 dt drm ATgm At PR dt
d(D g,j
Beachten wir jetzt (4.1) und (4.12), so folgt unmittelbar
Dm+1g|’j * * def do dx*

I~ O 0TS GrThen e

Die Formel (4.13) gilt also auch fiir (m+1), nur die skalare Funktion k2 geht in
o* iiber. Nach der vollstindigen Induktion ist der Satz bewiesen.
Aus (4.1) und (4.13) folgt noch, daB wenn die Bedingungen von Satz 8 bestehen,
dann auch
"8ij
dim
Zum SchluB bemerken wir noch, daB unsere Untersuchungen — nach unserer
Vermutung — in dhnlicher Weise auf Grund von (2.2b) auch fiir den kontravarianten
Tensor g/ durchgefiihrt werden kénnten.

ein Eigentensor mit dem Eigenfunktion v ist.
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Multiparameter strong laws of large numbers. I
(Second order moment restrictions)

F. MORICZ
Dedicated to Professor Béla Székefalvi-Nagy on his 65th birthday

§ 1. Notations and a preliminary result

Let Z? be the set of d-tuples k=(ky, ks, ..., k;) with non-negative integers
for coordinates, where d=1 is a fixed integer. If the coordinates k; are positive
integers, we write k€Z4. Two tuples k=(ky, k,, ..., k) and m=(m,, m,, ..., m,)
are said to be distinct if for at least one j we have k;=m;. Z?is partially ordered
by agrecing that k=m iff k, fmj for each j. If kSm and k#m, then write
k<m.

Let k+m and km denote the usual coordinatewise sums and products, respec-
tively. Let 2¥=(2%, 2%, ..., 2%4) and let [k| stand for the product k, k,... k,. Further,
let us write 0 and 1 for the points (0,0, ..., 0) and (1, 1, ..., 1) in Z¢, respectively.

Let (X, u) be a (not necessarily o-finite) positive measure space. Let
{6 =1{6:k€Z4) be a set of measurable functions defined on (X, &, ) and having
finite second moments:

o’i:f{ﬁdﬂ<oo

for all k€Z3, where for the sake of simplicity we write [ -du instead of f -du.
X

Consider the d-multiple series

L3
v
-
[,
I
—_
o
-
Il
-

(1.1) _ 2= Zd' S’ Ckl,k,,...,k,-_l)

Received May 20, 1977.

d oo . . ) oo oo oo
1) Here > means the d-fold summation 2 Z’ 2.
jSik=1 s R e
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For beZ? and meZ% set

d by+m,
Sh,m)= > (k=2 Z‘ Cxl,x, ke ®)
b+1=k=b+m Jj= lkl-—b

In case b=0 the abbreviated notation S(m)=S(0, m) is used.
Convergence properties of the following types will be discussed:

(i) S(m) converges a.e. as m-»e, which expresses the convergence of the
d-multiple series (1.1);

(ii) S(m)/|m| converges to 0 a.e. as m—<o, which expresses a strong law of
large numbers (SLLN) for the d-multiple sequence {{,}.

We want to emphasize that the term “m - =’ in (i) and (i) has different mean-
ings. By the limit m-»co in statements of type (i) we mean mm Moo, while

in statements of type (ii) we mean ax my—>co. In other words the nelghbourhood

of < defined by a posmve number K in the first case is ﬂ {kezd: k; ;> K}, whereas

in the second case is U {kEZ" k;=K}.

As is well-known from the theory of multiple Fourier series, the notion *“partial
sum” is used in several ways. If there are no restrictions on the ratios m;/m;, then
S(m) is called unrestricted rectangular partial sum, while if there are positive con-
stants ‘C; and C, such that for each i and j we have C,=m;/m;=C,, then S(m)
is called restricted rectangular partial sum. If here. C,=C,=1, thatisif my=m,=...

..=my=m, then S(m,m, ..., m) is called square partial sum. In this paper S(m)
always means unrestricted rectangular partial sum. It is obvious that the require-
ment of a.e. convergence for the rectangular partial sums is stronger than for the
square partial sums. The same observation is true concerning a.e. convergence
to 0 of S(m)/|m|. Finally, the spherical partial sum S(r) is defined by

§(") = 2> . Ckl,kz,...,kd,

K4k 4. +k3=r®

where r is a positive integer. Clearly, the notions of rectangular, square, and
spherical partial sums coincide only for d=1.

The asymptotic behaviour of both square and spherical partial sums will be
studied in the following more general setting. Let Qlc Q0,<... be an arbltrary

sequence of finite regions in Zi such that either U 0,= Zi in statements of

4 btm; by+m;  by+my bytmy
1) > 2 also denotes a d-fold summation: . > .
J=1k;=b;+1 ) ky=by+1 ky=bg+1 kg=ba+1
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type (i) or O Q, contains infinitely many points from Z¢ in statements of type (ii).
r=1
For r=1,2,... set
TM= 2 .
kEQ,

The next two particular choices of {Q,} provide both square and spherical
partial sums.

~ Case 1. For each j, 1=j=d, let {mj(r)};” , be a non-decreasing sequence
of positive integers such that either mm m,(r)—»oo in statements of type (i) or

max m; :(r)—~ec in statements of type (11) as r—eo. Setting Q,={keZ%:k,;=m;(r)
SIS

for each j} we have T(r)=S(my(r), my(r), ..., my(r)). In particular, if m;(r)=r
for each j and r, then we get back the square partial sums.

Case 2. The choice Q,={k€Z%: ki+ki+...+k3=r?} provides the spherical
partial sums: 7'(r)=S(r).

Thus the sums T(r) can be considered as generalized -partial sums of the
d-multiple series (1.1), although they form a set {T(r)}:2, depending only on one
parameter.

Since Z¢ is a partially ordered set, the main difficulties in studying convergence
properties of S(m) arise from the lack of linear ordering when d=2. On the other
hand, Z}_'has a linear ordering and this explains the better convergence properties
of T(r).

Our results will be obtained by making use of a d-multiple maximal inequality
of [2] which states bounds on the second moment of

M@, m) = max. 1S (b, k)| = max max. IS(b, k)|3)

1=j=d 1sk,s
in terms of bounds on the second moment of S(b, m), whilst b and m run over
Z¢ and Z4 , respectively.

We obviously have

[ 52, m)du= lfckcldul = f(b, m) ")

b+1=k,1l=b

3) Here max max indicates that the maximum has to be taken for all possible integers
1= j=d1=k,=m .

kl,kz, . kd such that lskl dla lskg dg, ceny and lskds

4 Z abbreviates the following 2d-fold summation:
b+1sk,lsb+m

by+my by+my byg+my  bgtmy
ky=by4+1 L=bi+1  ky=by+11l,=by+1

10
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The following lemma is the special case of [2, Theorem 8] when y=2 and
A;(mp)=1, consequently A;(m;)=log2m; for each j. In this paper all loganthms
are of base 2.

Lemma 1 (the Rademacher—Men3ov inequality). For all b€ Z* and meZ¢
we have

12 S M7, m)d =1, m) 1] Qog 2.

For the convenience of using “‘dyadic blocks” S(2°, 2°), p€ Z¢, to represent the
partial sums S(m) during the proofs below, we may assume that {, =0 if for at
least one j we have k,=1. It is clear that this assumption is of technical character -
and does not affect generality. '

§ 2. A.e. convergence of the rectangular partial sums

On the basis of (1.2) we prove the following
Theorem 1 (the non—orthogonal Rademacher—Men$ov theorem). If

@.1) > m+12 | [ Gulidp] <<=,

m=0 oM 41k, lézm+1
then (1.1) converges a.e. in the sense that S(m) converges a.e. as m-»co,

If the functions {, are mutually orthogonal,‘ i.e., if for all distinct pairs k and
1 we have

Jatdn=0,
then the general term of (2.1) may be simplified as follows

lm+1]2 (2%, 2%) = > ok II (log 2k;)2

oMy 1=ksom+l  J=1
Hence Theorem 1 yields

Corollary 1 (the Rademacher—Men$ov theorem). If the Jfunctions [ are
mutually orthogonal and if

22) Z O'k ]I (log 2kj)2 < oo,

k=1 j=1
then (1.1) converges a.e.

Condition (2.2) is satisfied if, for example,

: d . . T
op = 0{]] ky'(log 2kj)"3(loglog 4k,)‘1“}
-=1 .
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or . . :
23) ok = O{[k|~*(log2[k[)~ (log log 4 k) *~%}

with an €>0. The fulfilment of (2 2) in the second case can be verlﬁed by repeated
use of the estimation

Z’ j “l(log 2aj)~! (loglog 4aj)~1~* = O {(log 2a)~*** (loglog 4a)~*~%},

where a>l and i=2 are integers, and &=0.

We remark that' Theorem 1 for d=1 was essentially proved by SZEP [6]
(although it is stated there in a slightly weaker form), while Corollary 1 for d=2
was proved by AGNEW [1] (see also PANDZAKIDZE (3], where the proof of Step 2
is not complete).

Proof of Th‘eorém 1. By the above remark it is enough to treat the case
d=2. » _

Step 1. We begin with proving that S(2*) converges a.e. as p—~<. By the
Cauchy convergence criterion it is sufficient to show that :
(24  S(**9—S(2*) tends to 0 ae. as p—-o and g¢>0.

To this end let us represent the difference in (2.4) as follows

S-S ={ 3 - X Yu={ Z - 2 }s@2m),

1=k=2Ptd 1sk=oP . 0=m=p+q-1 O=m=p—1

where p=1 and q=0. Applying the Cauchy.inequality hence we get that
(s@r-s@y={ > - Z }m+1}sam27)X

0sm=p+q-1 O0=m=p-1
' 1
X - —_—
: {OSmSp+q—l 0=m=p-1 (m+1l2
Taking into account that the second factor on the right is uniformly -bounded for
~all p=1 and q=>0,

2.5 (S-S =01){ > - 2 }[m+l|?S2,(2'f', 2m),
0s=ms=p+q—-1 O=m=p-—-1 ‘ )
Since by (2.1) N
S im+1R [ 22, 27 dp= 3 Im+12F(2m, 20) <o,
m=0 mz0
the B. Levi theorem implies the a.e. convergence of the d-multiple series
Z’ ]m+1|2S2(2m 2m).

Consequently, the nght-hand side of (2.5) can: be made as small as needed by '
choosing mm Py large enough. This proves (2 4) - s

10*
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Step 2. It has remained to prove that the maximal deviation

2.6) max |S(2*+m)—S(2?)] tendsto O ae as p—>oo,

t=m=2P

Let p=0 and 1=m=2" be fixed. It is not hard to check that
S(2*+m)—S(2°) = 3 S(e2°, em+ (1—£)2°),
e

where the summation  is extended over all possible 2°—1 choices of

g

£=(g,, &, .-, &), &;=0 or 1, the case g=¢,=...=g;=0 excluded. From this
representation it follows immediately that
.7 | max, [S(2*+m)—S2%)| =

= Z’ max - max _ [S(g2°, em+(1—£)2?)| = 3 M. (p),
e 155 1mm=2ty e
ie. M (p) is the maximum of all |S(e2°, em+(1—¢€)2°)|, where those coordinates
m; run between 1 and 2Ps whose subscript j is such that ¢;=1 in &.
Let us fix an ¢. If for each j we have ¢;=1, then the corresponding maximum
on the right of (2.7) is

M (p) = max max |S(2°, m)| = M (2, 2¢).
1Smj§2P;

In virtue of Lemma 1 we have

S M@, ) dp = [p+ 120, 2.

> [Mr@, ) dy <o,

p=0
which implies via the B. Levi theorem that M(2®,2°) tends to O a.e. as p-oo.
Now consider an & such' that for at least one j we have ¢;=0. For the sake
of simplicity we assume that & =¢g,=...=¢,=1 and ¢,.,=...=¢;=0, where
1=e<d. Then for the corresponding maximum M,(p) we have
M,(p) = max max IS(SZ" em+(1—-g)2°)| =

1sjse 1zm =2py

By (2.1) hence

d pi—1

= > > (max max |S(e2"+(1—¢)2% em+(1—8)29))), %)

i=e+1n=0 1=j=e i=m, =2Py

5) We remind that max  max  abbreviatess max max .. max , and
1=j=e 1=m;=2P; 1=m;=2P1 1=my=2P2 1sm,szl’.
d pi—1 - - Pesn—l  pa—l

2 2 abbreviatess 2

=e+1n=0 By, 1=0 ny==0
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where n=(ny, n,, ..., ny), although the first e coordinates n,, n,, ..., n, of n play
no role on the right-hand side of the last inequality. By the Cauchy inequality,

a pi—1 d
(2.8) . M: (p) 0(1)' é né’) {.=gf1(n‘+l)2x

X max max S2(e2°+(1—¢)2", em+(1— 8)2")}

1=j=e 1=m=2P;

vWe' have to apply the e-parameter version of Lemma 1 for all sets

d on+1
{ékl,...,k. 2> 2 lhkokess kg i 21 = k=201 j=1,2, ...,e},

i=e+1 k=2M41

where n; may take on the values 0, 1, ..., p;—1 for i=e+1,...,d. By virtue of
(1.2) we come to the inequality :

2.9 a St(e2r+(1—€)2o, ¢ 1—g)20)} dp =
29) f{llgji(e 1sl'{'ljasxzw (8 * ) lll+( 9 } H=
= jgl (p+1)?* |f‘5k1 ket d#l =

j=1 2P1+1Skj,ljszl’1+1

= ,-Ijl (0, + 1) | [ teti ]

294 1k, Isz'l'“
with q=gep+(1—¢)n. %)

Combining inequalities (2.8) and (2.9), we obtain that

J{ max sup M{@)}dp=0(1) 2 2lq+1|2f(2" 29).7

etl=i=d p;= 1n=0

By (2.1) we can establish that

> 3 [{ max sup M¢ ()} dp = o) 2 la+1Pr@n 29 <,

j=1p;=0 etl=i=sd p,;=
whence via the B. Levi theorem it follows that M .{p) tends to 0 a.c. as p—>co.
Since this is true for each M, (p) on the nght—hand side of (2.7), statement (2.6)
holds true.
“To put (2.4) and (2.6) together we can conclude the assertion of Theorem 1.

2P1+1 oP1+1 2p.+1 gPet+1

e
®) Weremindthat -2 abbreviates J - X .. 2 2
i= 12P1+1skJ 1,=opyt1 I=2P141 1, =2P141  k,=2Pe+1l, =2Po+1

(a 2e-fold summation).

)  max sup M? (p) is understood as the supremum of all M2(p), when the last d ~ & coor-
e+1=i=d p;=0

dinates p, .4, ..., P, of PEZ 4 run, independently of each other, over the non-negahve integers.”
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§ 3. A.e. convergence of the square and the spherical partial sums

Let Q,cQ,C... be an arbitrary sequence of finite regions in Z4 such that
Q,=2%, and let Q,=0. Set
T = 2L (r=12..).
kéQ,

Cs

r=1

The one-parameter versions of Theorem 1 and Corollary 1 read as follows.
Theorem 2. If |
Z (e+1) > |fabdy] <,
t=0

k,1€Qot+1_1\Qot_1
then T(r) converges a.e. as r—-oo.
Corollary 2. If the functions {, are mutually orthogonal and if
an - S( 5 ob)logtor <o,
r=1 k€Q\Q,

then T(r) converges a.e. as r—oo.

By setting &= > {, for r=1,2, .>.., Theorem 2 follows from Theorem 1
kéQ,.\Q,-_l
in the case d=1, while Corollary 2 is a consequence of Theorem 2.

It is worth going into details in connection with the square partial sums, i.e.,
when Q,={k€Z}: k;=r for each j}. Then k€ Q,\ Q,-, iff max (k,, k,, ..., k))=r,
further, |Q,\Q,-,|=0(r*""). Here |Q| denotes the number of the points of Z$
contained in Q. Condition (3.1) is satisfied if, e.g., for k€ Q,\ Q,-, we have

o = O{r—4(log2r)~3(loglog 4r)~1-}
or :
G2 . ok = O{[k|~* (log 2r)~4~2 (log log 4r) ~1~%} =
= O{k|~* (log 2 [k)=*~* (log log 4 [k|)~*~*}
with an e>0. The first relation in (3.2) ensures the fulfilment of (3.1) since

%’ k|~ = O{r~1(log 2r)*-1}.
kGQr Qr—l

The second relation in (3.2) follows from
' | r=max(ky, ks, ..., k) = |k| = r4.
Condition (3.2) is clearly weaker than (2.3) for d=2.

We note that in the more general situation when e coordinates of m€ Z4 depend
on a parameter r, while the other d—~e coordinates vary independently of each
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other where 1=e<d, then the following result can be achieved. For the sake of
simplicity we consider only the case when the functions {, are mutually orthogonal.
Let {m,;(r)};=, be non-decreasing sequences of positive integers such that m & =1
and m;(r)>o as r—-o for each j=1,2,..,e. If

5 ot a(ky, kyy oo k) [T (log 2kt <o,
k=1 i=e+1 .

where A(ky, ko, ..., k)=log2r if m;(r)=k;<m;(r+1) for each j=1,2,...,e,
then S(my(r), ..., m(r), mgiy, ..., m;) converges a.e. as r—-oo and my—»o for
each i=e+1,...,d.

§ 4. A d-parameter version of the SLLN

Application of the results of § 2 to the series > {,/|k| yields, via the d-parameter
K=1

version of the Kronecker lemma (for d=1 see, e.g., [5, p. 35]), criteria for the a.e.
convergence to 0 of S(m)/jm| as m—-. However, as we emphasized in § 1, the
limit m--< is used in different senses according as the a.e. convergence of a d-
multiple series (lglllgd m;—<o) or the a.e. convergence to 0 of S(m)/|m| (lrgjl;(d my— o)
is studied. Since the convergence notion nax, m;-—-co induces a finer topology
than the notion 12}24 m;—~<o, the application of a generalized form of the widely
used Kronecker lemma is not appropriate at present. Thus we follow another way
to obtain the following SLLN.

-Theorem 3. If

|m+l|
d oo, .
(4.1) : "!2‘0 2m|2 oMy Jsi, l§2m+1|kaCl 'ul =
then - .
“4.2) nl.lfn Sm)/jm| =0 a.e.

Corollary 3 (SLLN for _orthogovnal functions). If the functions {; are mutually
orthogonal and if

2 d .

Ok
4.3 —= 2k,)? < oo,
( ) kél' lklz»jI=Il(10g j) =
then (4.2) follows.
. Condition (4.3) is satisfied if, for example, we have

d
op = o{ II k; (log 2k;)~3* (log log 4k,)—1-=}
J=1 E .

or .
4.9 ok = O {k| (log 2[k[)~* (log log 4 [k[)~1~*}
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withan e=>0. We mention that Corollary 3 for d=1 was established by TANDORI [7]
(see also PeTROV [4]).

To prove Theorem 3 we begin with a generalization of the so-called Toeplitz
lemma (for d=1 see, e.g., [, p. 36]).

Lemma 2. Let {w(m, k): m,k€Z%} be a set of non-negative numbers with the
Jollowing two properties:

4.5) 2 wmk)=C
k=1

for all m€Z4 with a constant C, and

(4.6) lim w(m, k) =0

m-co

for all ke Z3. If {s(k):k€Z34} is a d-multiple sequence of real numbers such that

4.7 sk) -0 as koo,
then
(4.8) t(m) = kZ; w(m, k)s(k) -0 as m —oo,

Proof of Lemma 2. By (4.7) for any &>0 there exists a ko€ Z4 such that
4.9) Isk)| =& if k£Ek,.

Consider the decomposition of t(m) into two summands:

tm)={ 5 + 3 }wm,k)sk) =t+1,.
kkky

1=ksk,

On account of (4.5) and (4.9), for all m€Z¢ we have that [t,|=Ce. 'By 4.6)
we can choose an my€ Z4 such that for each ke Z¢ with 1=k=k, we have

we Rl =ef 150 if m = me.
Hence [t;|=s.

Collecting the above reasonings we conclude that

tm)| = (C+De if mF m,.
This is the wanted (4.8). :

Lemma 2 just proved makes it possible to show the following simple assertion.
Let {u:keZ4} be a d-multiple sequence of numbers. Put

sb,m= 3  w and s(m)=s(0,m),
b+1=k=b+m

where beZ? and m¢cZ4-
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Lemma 3. The statements

4.10) .3,1.120 s(2®)/|2m| =0
and .
4.11) .:111-52. s(2m, 2m)/[2m) = 0

_are equivalent.

Proof of Lemma 3. From the well-known representation

s, m) = > (— 1),§1°Js(b+ (1—%)m),

~ where the summation > is taken for all 2¢ choices of &=(g,, ¢, ..., &;) With com-
&

ponents ¢;=0 or 1, the implication (4.10)=(4.11) immediately follows.

To facilitate the use of dyadic blocks s(2%, 2¥), we assume that u, =0 if fo
at least one j we have k;=1. Then

s@m) 5(2%, 2%)
TR A L

with w(m, k)=[2%/]2®| for 1=k=m—1 and w(m,k)=0 otherwise. The
assumptions of Lemma 2 are clearly satisfied, the application of which gives the
‘implication (4.11)=(4.10). This completes the proof.

Proof of Theorem 3. Srep 1. First we prove that
4.12) ‘ nl.lfri S@2m)/j2m[ =0 a.e.
By Lemma 3 it suffices to show that
4.13) .,1,1.1.2 S(2m, 2m)/|2m| =0 a.e.
For convenience we again assume that [, =0 if k;=1 for at least one j. Since

by (4.1)
L Z e fsenmdes 3 mmen ) <,

where, as before,
f@m, 2 = | [6trdn|,
2m+1sklszm+1
the B. Levi theorem implies (4.13), and consequently (4.12).
Step 2. Now we turn to the proof of the relation

(4.14) lim |22~ max |S(2=+p)—S2™)| =0 ae.
Bdhad 1=p=2m
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As in the proof of Theorem 1, we start with the representation
S22 +p)—-5@2=) = 5 S(e2™, ep+ (1—g)2m),
k1
where the summation 2, is extended for all e=(g,, &, ..., &;) such that the coordin-
e

ates e, assume the values 0 and 1 independently of each other, excluding the case
81=62=...=84=0. Thlls '

(4.15) max |S(2n+p)— S(2m)|5
Isp=
d my—1
=2 3 2 M(e2®+(1—¢)2%, €2+ (1—£)29),
FEUE
m;—1 :
where Z' Z; has the following meaning. For given &, let ¢;=0 Iiff
j=1g;=
e;=0
f=j1,12,1- ,1,.., where 1=ji<jy<..<j.=d. Then we have to form the e-fold
—1 mj -1

summation 2 2 .
95,70 "J.=°

By virtue of Lemma 1 and (4.1) we have
' k+1[2
2=2 | M2(25, %) du = 1P
ké; I I f ( ) # ké(’) Izklz

Hence the B. Levi theorem implies the a.e. convergence to 0 of M (2, 2¥)/|2%|
as k—»oo

Rewrltmg (4.15) into the form

f@5 M) <

|2m]_1 max S +p)— S(zm)lsz' Zdv Z w(m k)M(sz)
¢ J=la=0 [2%|

with k=e¢m+(1—¢)q and w(m, k)=[2*|/[2] if for at least one j we have k;=m;
and w(m, k)=0 otherwise, it is enough to apply Lemma 2 in order to get (4 14)
This completes the proof of Theorem 3.

§ 5. A one-parameter version of the SLLN

Let 0,CQ,C... be an arbitrary sequence of finite regions in Z¢ such that
U 0, contains infinitely many points of Z4, and let Q,=9.
r=1 -

Theorem 4. If

oo 2
G.1) § (t+1)

[ k,léogcu_l\Qec

| [ 6ty du| <<=,
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then
(5.2) @, Z l—~0 a.e as r—
keQ,
Corollary 4. If the functions {, are mutually orthogonal and if
| ot log?2r

53) . <oo,
( ) l'gl'- (kEQ,gQ, 1 k) iQ'|2
then (5.2) follows.- _

In fact, set (= X {, for t=1,2,.... Condition (5.1) ensures, owing

k€0, \Q; ) .

to Theorem 2 in the case d=1, that the series 5‘ £,/1Q,| converges a.e. Hence
t=1

(the usual one-parameter form of) the Kronecker lemma yields

217 & =107 3 t~0 aeas r-o
=1 k€0,
as asserted in (5.2).
If {Q,} is chosen as in Case 1 of § 1, then we obtain criteria for the a.e. con-
vergence to 0 of S(m, (r), my(r), ..., my(r))/ ]] my(r), while in Case 2 we obtain
criteria for the a.e. convergence to 0 of S"(r)/r as r—-oo,

It is instructive to specialize condition (5.3) for square partial sums S(r, 7, ..., r),
ie., when Q,={k€Z%:k;=r for each j}. Since |Q,|=r¢, (5.3) is surely sat-
isfied if _

' > on=0{r¥-1(log 2r)—3 (log log 4r)~1~*}
k€@ \Q,.y -
with an ¢>0. Taking into consideration that k€ O,\ @, -, iff max (k;, k, ..., k))=r
and that
2 |kl=o00*",

keQ,\Q, -1
conditiqn (5.3) is also satisfied if
G4 ok = O{[k| (log 2r)~* (log log 4r)~ =%} =
= O{[k| (log 2[k[)~* (log log 4 |k[)~1~*},

where &>0 (cf.(3.2)).Incase d=2 condition (5.4)is essentially weaker than (4.4).



156 F.Moéricz: Multiparameter strong laws of large numbers

References

{11 R.P. Aom:w On double orthogonal series, Proc. London Math. Soc., 11. s., 33 (1932), 420—434.

[2] F. M6ricz, Moment inequalities for the maximum of partial sums of random fields, Acta Sci.
Math., 39 (1977), 353—366.

[3] 0. II. Hampxakun3e, Teopema Menbmopa-PageMaxepa 1)1 ABOMHBIX OpPTOrOHAJBHEIX
panos, Coodwenus AH I'pys CCP, 39 (1965), 277—282.

[4] B. B. ITerpos, O6 ycaieHEOM 3akOHE GONBLIOMX YHCEN IS NOCHEAOBATELHOCTH OPTOro-
HATbHBIX CNIYIAHHEIX BeMRuAH, Becmuux Jlenunzpadckozo yu., 71:2 (1975), 52—57.

[5] P. RévEsz, The laws of large numbers, Academic Press (New York, 1968).

[6] A. Szfp, The non-orthogonal Menchoff-Rademacher theorem, Acta Sci. Math., 33 (1972),
231235,

{71 K. Tanpori, Bemerkungen zum Gesetz der grossen Zahlen, Periodica Math.-Hungar., 2 (1972),
33—39.

BOLYAI INSTITUTE, UNIV SZEGED
ARADI VERTANUK TE
6720 SZEGED, HUNGARY



Acta Sci. Math., 40 (1978), 157—161

Differentiations-Kompositionsringe

WINFRIED B. MULLER

In dieser Arbeit werden Differentiations-Kompositionsringe niher untersucht
und einige grundlegende Eigenschaften dieser Algebren hergeleitet.

Um eine formale Differential-Rechnung fiir Ringe zu bekommen, fiihrten
Kolchin und Ritt (vgl. etwa [1]) den Begriff des ,,differential ring* ein. Das ist ein
Ring R auf dem Derivationen & definiert sind, d. h. Abbildungen &:R—R, die
fiir alle Elemente a, b€R die Bedingungen d&(a+b)=5(a)+5() und b(a-b)=
=8(a) - b+a-(b) erfiillen. Da man jedoch in Ringen differenzierbarer Funktionen
sehr viele Derivationen erhiilt, die nur sehr ,,weitliufig” mit der Differentiation
von Funktionen in der Analysis verwandt sind, wurde in [3] ein schiirferer Differen-
tiations-Begriff fiir Kompositionsringe definiert. Es werden dabei Abbildungen von
Kompositionsringen in sich betrachtet, die neben der Summen- und der Produkt-
regel auch noch einer Abstraktion der aus der Analysis bekannten Kettenregel
gentigen. .

Sei (4, +, +, o) ein Kompositionsring im Sinne von Lausch-N&bauer [2].
Es ist dann (4, +, -) ein Ring, (4, o) eine Halbgruppe und es gelten fiir alle
Elemente f, g, h€A die beiden Rechtsdlstrlbutlvgesetze (f+g)oh=(foh)+(goh)

und (f-g)oh=(foh)-(goh).

Definition. Ein Kompositionsring (4, +, -, o) zusammen mit einer Abbi.l-
dung D:A—~A heiBt ein Differentiations-Kompositionsring, falls fiir alle Elemente
f, g€ A die folgenden Beziehungen erfiillt sind: "

() D(f+g)= D(f)+D(g),
(P) D(f-8) = D(f)-g+f-D(9),
(K) D(fog) =(D(f)og)-D(g).

Jede solche Abbildung D von A heiBt dann eine Dlﬁ'erentlatlon oder Derlvatlon
mit Kettenregel (kurz K- Derivation) von A. :

Die Klasse aller Differentiations-Kompositionsringe bildet offenbar eine
Varietit beziiglich der Operationenmenge {+,.—,0, <, o, D}. Beispiele fiir
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Differentiations-Kompositionsringe wurden in [3] gegeben. Dort wurde die Gesamt-
heit aller mdoglichen Differentiationen in einigen speziellen Kompositionsringen
ermittelt. Wir leiten nun im folgenden Elgenschaften allgemeiner Differentiations-
Kompositionsringe her.

Sei (4, +, -, o, D) ein Differentiations-Kompositionsring. Eine nicht leere
Teilmenge U von A heiBt ein Differentiations-Unterkompositionsring von A, wenn
(U, +, +, o, D) wieder ein Differentiations-Kompositionsring ist.

Ein Element c€A heiBt Differentiationskonstante, wenn D(c)=0.

Es gilt der folgende

Satz 1. Die Differentiationskonstanten bilden einen Differentiations-Unter-
kompositionsring von A, dem das Einselement der Multiplikation angehdrt, sofern
A ein Ring mit Einselement ist. Die Konstanten aus A bilden einen Differentiations-
Unterkompositionsring des Differentiations-Kompositionsringes der Differentiations-
konstanten.

Beweis. Sei K, die Menge der Differentiationskonstanten. Da D(0)=0 gilt,
ist K; nicht leer. Mit f, g€ K, folgt wegen D(f—g)=D(f)—D(g)=0, daB auch
f—geK, ist. Wegen (P) ist auch f-g€K,. SchlieBlich folgt fog€K, direkt aus
(K). Klarerweise ist D aber auch eine Differentiation auf Kj,. Besitzt 4 das Eins-
element 1, so folgt aus D(H)=D(1-1)=D()+D(1), daB D(1)=0 gilt. Damit
ist die erste Behauptung gezeigt. : '

Bezeichnet nun K die Menge der Konstanten aus 4, das ist die Menge
{a€A|ao0=a}, so gilt fir a,b€K: (a—b)o0=(ao0)—(bo0)=a—b, (a-b)o0=
=(a@o0)-(bo0)=a-b und (aob)oO0=ao(bo0)=aocbh. Da fiir alle a€K D(a)=
D(ao0)=(D(a)o0)-D(0)=0¢K folgt, bildet K einen Differentiations-Unterkom-
positionsring von A4, und es gilt K& K,.

Wir zeigen nun, daB im allgemeinen K echt in K, enthalten ist, es also Elemente
in K, gibt, die nicht in X liegen. Um alle Elemente von K, zu bestimmen, muBl
man die Losungen der ,,Differentialgleichung D(f)=0 ermitteln. Dieses Problem
diirfte jedoch selbst in den meisten Kompositionsringen, fiir die man die Gesamtheit
aller méglichen Derivationen mit Kettenregel kennt (vgl. [3], [4]), sehr schwer zu
16sen sein. Betrachten wir den Polynomring R[x] in der Unbestimmten x iiber
einem kommutativen Ring R mit Einselement. Durch Hinzunahme der Operation
des Einsetzens von Polynomen wird R[x] zu einem Kompositionsring. Nach [4]
ist dann die Gesamtheit aller K-Derivationen in R[x] durch die Abbildungen

d d
A-—‘Zx—, A Idempotente in R, gegeben, wobei . die Ableitung von Polynomen

d d L
bezeichnet. Nun ist aber 4 T f=0 genau dann, wenn I f aus dem Annullator
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a(4) von A ist. Da A Idempotente aus R ist, gilt R[x]=A-R[x]®(1—4)-R[x], und
fir a€R[x] mit a-A=0 folgt a=a,+a, mit a,€A-R[x], a,€(1—2)+R[x], also
a-A=a,+A+a,-A=a,-A=a,=0. Daher gilt a(})=(1—2)+R[x]. Es bleibt noch

zu _untersuchgn, wann % fe(1—A)- R[x] gilt. Fiir A=0, D ist dann gleich der
Nullabbildung, ist jedes f€R[x] in K,. Fir A=1 und Charakteristik von
- R gleich » gilt Ed; x"=0, wobei x"¢K. Ist die Charakteristik ‘}/on R gleich
oo (vgl. [5]), so gibt es ein a0 aus R mit n-a=0. Es ist dann —‘Ea-x"=0. Ist
jedoch die Charakteristik von R gleich 0, so ist fir f(x)=a,x"+...4+a;x+a,,
a,#0, n=1, stets %f(x)=na,,x"‘l+...+al#0. Also gilt in diesem Fall K,=K.

Fir A0 und A1 gibt es stets Elemente in (1—A4)- R[x], die nicht in K liegen.
Wir bekommen damit

Lemma 1. Im Polynomring (R[x], +, -, o, D) ist die Menge der Differentia-

d
tionskonstanten genau dann gleich der Menge der Konstanten, wenn D=-‘-1— ist
und R die Charakteristik 0 hat.

Nun zeigen wir

Lemma 2. Ist {4, +, -, 0,D) ein Diﬁ”erentiation&-Kompositionsring mit
kommutativer Multiplikation, so sind alle Idempotenten A€A Differentiations-
“konstante. ,

Beweis. Sei A€4 mit A-i=A. Dann folgt D(l):D(A-A)=D(A)-).4—
+A-D(A)=2A-D(4), weiter A-D{A)=2A-D(1), d.h. A-D(A)=0 und damit
auch D(4)=0.

Als néchstes beweisen wir

Lemma 3. Fir die Differentiationskonstanten f€K;, gilt D(f-g)=f-D(g)
‘und D(g-f)=D(g)-f fiir alle gc A. Besitzt A ein (im Sinne von [5)) regulires Element
gegeniiber der Multiplikation, so sind die Elemente von K, durch jede dieser beiden
Bedingungen charakterisiert. :

Beweis. Die erste Behauptung ist klar.

Gilt D(f-g)=f-D(g), bzw. D(g-f)=D(g)-f, fiir alle g€ 4, so folgt wegen
(P) D(f)-g=0, bzw. g-D(f)=0. Ist nun g regulir, so gilt D(f)=0, also f€Kj,.

Unter dem Differentiations-Linksannullator N, von A verstehen wir die Menge
N,={fe€A|D(f-g)=f- D(g) fiir alle gc 4}. Ganz analog wird der Differentiations-
Rechtsannullator von A definiert.

Es gilt
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Satz 2. Der Differentiations-Linksannullator N, ist ein Differentiations-
Unterkompositionsring von A.

Beweis. Wegen (P) ist D( f-g)=f- D(g) fiir alle g€ 4 gleichbedeutend damit,
daB D(f)-g=0 fiir alle g€ 4, also D(f) im Linksannullator von A liegt. Sicher
ist 0¢ N,. Wegen D((f;—/f2)-g)=D(fi-2—f2-8)=D(f1-8)—D(fz-8)=f1-D(g)—
—f2D(g)=(f/i—f) - D(g) ist mit f;,f,€N, auch fi—f,€ N . Ebenso liegt wegen
D((fif)8) =D(fi*(f2-8) = f/r- D(fe-8) = (/i) D(g) auch fi-f; in N,.
Weiters  gilt D((f10f)-g) =D(fiofd) -g+ (frof) - D(g) = (D(f)of)- D(f)-g +
+(fiofe) - D(g)=(fiof2) - D(g), also auch fiof,¢ N,. Da D(f)-g=0 fiir alle
S€N,, folgt D(D(f)-g)=0, und D(f)-D(g)=0, gilt D(D(f)-g)=D(f)-D(g),
also ist mit £ auch D(f) aus N,.

Bemerkung 1. Wie man ganz analog zeigt, bildet auch der Differentiations-
Rechtsannullator von A einen Differentiations-Unterkompositionsring von A.

Bemerkung 2. Besitzt 4 ein regulidres Element gegeniiber der Multiplikation,
dann gilt N,=K,,.

Das folgende Lemma beniitzt man bei der Ermittlung aller méglichen Differen-
tiationen eines vorgegebenen Kompositionsringes.

Lemma 4. Besitzt A ein neutrales Element i beziiglich der Komposition, so gilt:

a) D(i) ist stets Idempotente in A.

b) Das Bild von A unter D liegt stets in A -D(i).

© Gilt D(i)=0, so ist D die Nullabbildung.

Beweis. Wegen D(i)=D(ioi)=(D(i)oi)-D(@)=D()-D({) ist D(i) Idem-
potente aus 4. Aus D(f)=D(foi)=D(f)-D(i) fiir allefEA folgt D:A—~A-D().
Die Behauptung c) folgt sofort aus b).

Als néchstes zeigen wir

Satz 3. Ist A ein Kompositionsring mit kommutativer Multiplikation und entsteht
A durch Adjunktion der Elemente a,, ..., a, aus der Menge der Konstanten K, d. h.
A=Kla,, ..., a,), so gibt es hichstens eine Differentiation D von A mit D(a,)=
=by, ..., D(a,)=b,, wobei die by, ..., b, fest aus A vorgegeben sind.

Beweis. Jedes Element f€ A hat die Gestalt
f=2cj.. . ajt...a» mit ¢; ; €K. Wegen (S) und (P) gilt

D(f)= Z’D(cll j,. 1-‘..aj") =ch1._,j"-D(a{‘...a;’;")=

Z'Zc“ gaeadt.afesraler L adne D(al) =

n
L . . i
kZ D¢y g alt . aletalint o aln e by i gl

womit D festgelegt ist.
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Bemerkung 3. Mit Hilfe von Satz 3 und Lemma 4 lassen sich leicht simt-
liche K-Derivationen vom schon erwahnten Polynomring A[x] bestimmen. Da
fiir jede K-Derivation von A[x] D(x) eine Idempotente aus 4[x] ist und damit sogar
in A liegt, muB man nur iberpriifen, welche der Abbildungen A[x]—A[x],

d
f—»/l-:i— f, 4 Idempotente aus A4, die Gesetze (S), (P) und (K) erfiillen.
x

Ist (4, +, -) ein Korper, so nennen wir (4, +, +, o, D) einen Differentiations-
Kompositionskorper.

Es gilt

Satz 4. In einem endlichen Differentiations-Kompositionskiérper sind alle
Elemente Differentiationskonstanten.

Beweis. Ist die Ordnung des Korpers gleich der Primzahlpotenz p°, so gilt
fir alle Elemente feAd, daB f?"~'=1ist. Daraus folgt D(f?""Y)=(p*—1)-
fP°72.D(f)=D(1)=0, also D(f)=0.

Folgerung. In jedem endlichen Differentiations-Kompositionskérper ist
die einzige Differentiation die Nullabbildung.

Bemerkung 4. Bekanntlich ist jeder Kompositionsring isomorph zu einem
Unterkompositionsring eines vollen Funktionenringes (vgl. [2]). Zur Bestimmung
aller moglichen Differentiations-Kompositionsringe tliber einem Kompositionsring
genligt es also, alle mdoglichen Differentiationen fiir volle Funktionenringe und
ihre Unterkompositionsringe zu bestimmen. Da der volle Funktionenring iber
einem kommutativen Ring mit Einselement nach [4] nur die triviale Differentiation
besitzt, also nur mit der Nullabbildung zu einem Differentiations-Kompositionsring
gemacht werden kann, stellt sich die Frage, den gréBten Unterkompositionsring
zu finden, in dem eine nicht-triviale Differentiation existiert. Die Losung dieser
Aufgabe miissen wir leider offen lassen.
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On injections, intertwining operators of class C,

BELA SZ.-NAGY and CIPRIAN FOIAS

1. An operator T on a (complex, separable) Hilbert space $ is of class C, if
it is a completely non-unitary contraction and if m(7)=0 for some inner function
m(A) on the unit disc: |A|<I. T is of class Cy(N) with some integer N=0 if,
moreover, its defect indices are =N. For a first introduction to the study of these
classes see [H]. These investigations have already lead to many new concepts and
methods in the theory of Hilbert space operators, and in particular to generaliza- °
tions of the “Jordan model” for finite matrices.

In the present Note we are going to make use of these models for establishing
some further properties of class C, operators.

Let us recall some further definitions and facts.

An operator X:$’—~$ is called an injection if ker X={0}, and a quasi-surjec-
tion if X9'=$ or, equivalently, if ker X*={0}.

Given two operators, T on $ and T’ on $’, we say that T’ can be injected in
T, or quasi-surjected on T if there exists an operator X:$'—~$9 satisfying TX=XT"
and which is an injection, or a quasi-surjection, respectively.

An operator X which is both an injection and a quasi-surjection, is called
a quasi-affinity, and if TX=XT’ holds with such an operator X then 7" is called
a quasi-affine transform of T, in notation T>>T". If both T>T’ and T’>T hold
then T and T are called quasi-similar, T > T’.

Every operator T€C, is quasi-similar to a unique “Jordan operator”

(1) S(M) = S(m)@S(m)®... on HM)=$(m)OS(Mm)®...

where M=(m;, m,, ...) is a sequence if inner functions each of which is a divisor
of the preceding one. Here S(m) means, for any inner function m(4), the operator
on the function space H(m)=H*©OmH?, defined by S(m)=Pg,S|H m), S
denoting the unilateral shift w(l)—~Au(4) on the Hardy—Hilbert space H? for

Received March 1, 1976, revised September 26, 1977. -
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the disc. We have $(m)={0} if (and only if) m is constant, m=1.') The number
of non-constant functions m, in (1) is equal to the multiplicity u; of the operator
T.?) For T€C, we have ur=pp. For these facts see [1], (2], [3].

2. In the sequel we shall be dealing with operators of class C,.

Theorem 1. Let us be given two operators of class Cy, say Ton H and T’ on
9. a) If T and T’ can be injected in one another, then they are quasi-similar. b) If
T’ can be injected in, and also quasi-surjected on T, then they are quasi-similar.

Proof. We have to show that if there exist injections X:9 -9 and
X :9H— 9 such that

2 : : TX = XT’

and '

3) @ I'X'=X'T, or (b) T*X' =X'T*
then T~ T". ' '

As it is easy to see, there is no loss in generality if we argue with the Jordan
models of T and 7’ instead of T and T~ themselves, i.e. if we assume that

C) H$=5WM), 9 =95W), T=SM), T =SM),

where M=(m,,m,,...) and M’=(my, m, ...). Following a standard argument
(¢f., in particular, [4], proof of Theorem 4), we set, for any inner function w,

=T[w(D9, T"=T|wT)9, X"=X|w(T)9,
and first notice that by condition (2) we also have '
Twa — Xw le;

clearly, X" is also an injection. Now, T and T"" are unitarily equlvalent to
@S(q,) and @ S(g;), respectively, where g,=m;/(m;Aw) and q; =m][(m; Aw).
Choosing w=m, for a fixed k we infer that

S( ] X®=xyw, S( m; ] 3
g mk ?1 m; /\mk )

with some injection X®. By virtue of [4], Theorem 4, the second direct sum cannot
have more non-trivial terms than the first, so we must have m{/(m;Am)=1 for
i=zk, and in particular, mk/(mk/\mk) 1, my|m,.

1) Up to a constant factor of modulus one. It is convenient not to distinguish two inner func-
tions which differ in such a factor only.

%) For any operator T, g is defined as the smallest cardinal of a set of vectors which, together
with its transforms by T, T®, etc., span the whole space of T.

%) If k=1 the first direct sum should be meant as the trivial operator on the space {o}.
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In case condition (3a) holds the same argument applies with the rolés of T
and T” interchdnged; and we have nij|m], for every k. We conclude that iy =hi..

If it is condition (3b) which is assumed; we atrive at the same result as follows.
It is well known that for any inner m, S(m)* is unitarily equivalent to S(m™),
where mi~(A)=m(d). So (4) implies that T* and T'* are unitarily equivalent to
S(M™) aiid S(M’™), respectively, and then we deduce from (3b) that mf |mi;™~
for every k, in the same way as we deduced m, [m, from (2). But m;" |m;™ obviously
1mp11es m, lm,, and we conclude again that my=m;.

Thus in both cases T and T’ have the same Jordan model so they are quasi-
similar. This concludes the proof.

Remark. The quasi-similarity of T and T” is, in general, not effectuated by
the operators X, X’ figuring in (2), (3a) or (3b), since they need not be quasi-
affinitics. Example: T=7"=0 on an infinite dimensional Hilbert space $, and
X=X"’=(a unilateral shift on ).

However, such a phenomenon cannot occur if the operators T, T’ are of finite -
multiplicity. This will be proved in the rest of this paper

3. FII‘St we prove the followmg

Lemma. Let T be an operator of class Co(N) on §, with some finite N. Then
every injection X on §, commuting with T, is a quasi-affinity.

Proof. Let 7, be the restriction of T to the subspace 51=X’§, which is in-
variant for T, because.

Let T= 0 T,

H=909,. Let @T—@ ©, be the corresponding regular factorization of the
" characteristic function @; of T @T1 and Or, coincide then with the purely con-
tractive parts @ and O] of @, and @,, respectively; ¢f. [H] Chapter VII. Since
T is of class Cy(N), all these functions are finite square-matrix valued so we have

] be the trlangulatlon of T with respect to the decomposition

©) det @y = det @,-det @; = det ©2- det 69 = det Or,-det Oy,
up to constant factors of modulus one.

Since X can be regarded as a quasi-affinity $—9;; from (5) it follows that
T is a quasi-affine transform of Ty; T3> T. Hence; T and Tj fe quasi-similar to
the same Jordan operator S(M), M=(m,, My, ooy my), K=N, cf [1] Theorem 2
(add also [2] Theorem 3) Hence we have, by the formula (1 7) of [1],

det@r=m,;...m;, = detOr;
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comparing this with (6) we conclude that det O, is a constant (of modulus one).
The minimal function my , being a divisor of det Oy, (¢f. [H] Sec. VL. 5), is also
constant, and therefore we have 9.={0}, H.=9, as asserted.

4, Every operator T¢C,(N) is of finite multiplicity, u;y=N, but not every
operator T€C, with finite multiplicity belongs to some class Cy(N). Therefore
the following theorem is an extension of the Lemma (even if T=1").

Theorem 2. Let T and T’ be operators of class C, on the spaces  and &,
respectively, and suppose T and T’ are quasi-similar and have finite multiplicity,
ur=pr-=K. Then every injection operator intertwining T and T’ is a quasi-affinity.*)

Proof. Let X be an injection $’—~$ such that TX=X7". Since T'~T’,
there exists a quasi-affinity Q:$—~$’ such that 7Q=0T, and hence TX'=X'T
with X’=XQ. Clearly X’ is an injection; furthermore, X’ is a quasi-surjection
iff so is X. Hence it suffices to show that every injection X’ on $ satisfying
o X' =X'T
is a quasi-surjection, i.e. such that X’'$=9.

Setting $,=X’9 and T,=T|%, we deduce from (7), as in the proof of the
Lemma, that T;>7, T*>T;. Since, on the other hand, T*~ S(M)* with some
M=(m;, my, ..., mg), we conclude that there exist quasi-affinities

A:5M)~9H, B:H->9H(M), B;:H,~H(M)
such that
®) T*A=ASM)*, S(M)Y*B=BT*, S(M)*B,=B,Ty.

Set Y=B, P, A, where P; denotes the orthogonal projection of $ onto its
subspace $,. Then P,T*=7}P; and by (8):

YS(M)* = B,P,AS(M)* =B P, T*A= B, T1P,A = S(M)*B,P,A = S(M)*Y
Furthermore, by the quasi-surjectivity of A and B,

YH(M) = B\ P,AH(M) = B, P,H = B, H, = H(M).
It follows that Y* is an injective operator on $ (M), commuting with S(M). As
'we have S(M)EC,(K) it follows from the Lemma that Y* is quasi-surjective.
Hence, Y (=B, P, 4) is injective. This implies that P, A4 is injective also.

Let us now assume that $,#$%, and consider in $,=H6$, a cyclic subspace
for T} (=T*|9,). The restriction of T} to this subspace is then quasi-similar
to an operator S(n) associated with a non-constant inner function » (¢f. [1], Theorem
2 applied to a C,-class operator of multiplicity 1). Since S(n)* is unitarily equivalent

T 7 %) This was conjectured by P. Y. WU in connection with his investigations [5) on commutants
of class C, operators (communication to the first author on October 1, 1975). As far as we know
the following one is the first proof
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to S(m), where m=n~, there exists in particular an injection C: H(m)—9,
such that

o CS(m)* = T*C.
Next consider the operator Z on H(M)®D H(m) defined by -
(10) Z(hy®h,) = B(4dhy+Ch,)®0 (hy€H(M), h,€$H(m)).

From (8), (9), (10) we obtain
B(A S(M)*hy + C S(m)*h,,)) = B(T* Ahy+T*Ch,) =
= BT*(Ahy + Ch,) = S(M)* B(Ahy + Ch,),
and hence,
Z(S(M)DS(m)*) (hyu®h,) = (S(M)*®S(m)*)Z(hyDh,,),
i.e. Z commutes with the operator S(M)*@ S(m)*, which clearly belongs to
Co(K+1). Furthermore, Z is injective. Indeed, Z(hy@h,)=0 implies Ah,=
—Ch,€9,, and hence P;Ahy,=0, hy=0 because P;4 is an injection. Since
C is also injective, Ch,=—Ahy=0 implies #4,=0.

Applying the Lemma we get that Z is also quasi-surjective. This contradicts
the fact that, by (10), its range lies in H(M) {0}.
This contradiction proves that ;=% so X is a quasi-affinity.

5. To end let us venture the following conjecture, which would largely generalize
Theorem 2 in case T=T7":

Conjecture. For any contraction 7 on $ of class C, and of finite multiplicity,
and for any operator X on $ such that TX=XT, the operators

T|kerX and (T* ker X*)*
are quasi-similar.
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On extendibility of x-representations from x-ideals

ZOLTAN SEBESTYEN

In this note we give hecéssai'y_ and sufficient conditions for the extension of
a *-representation from a x-ideal in a complex involutory algebra, briefly -
algebra, to the whole algebra. One of our conditions, given in the Theorem below,
is the same as the one we required in [3); Corollary 2. 8, and [4], Corollary 6; for
the existence of such a *-representation of the whole algebra on some Hilbert
space for which the norms of the representing operators of the elements in the

*-ideal are equal to the norms of the correspondmg representing operators con-

cerning the given *-representation. We also give a new proof of our previous result
(see [3], Theorem 2. 6; [4], Theorem 4) concerning the extension of C*-semi-norms
from #-ideals in *-algebras to the whole algebras.

Let us be given a *-ideal J of a *-algebra 4 over the complex number field
C and a *-representation T of J on a Hilbert space H, i.e. a *-preserving algebra
homomorphism T:J-B(H) of J into the C*-algebra B(H) of all bounded linear
operators on H. It is natural to ask: when does a *-representation T:A--B(H)
of A on the same Hilbert space exist, which is an extension of the given #-rep-
resentation 7, i.e. for which T,=7, holds whenever b is in J.

We answer this question in three ways, giving necessary and sufficient con-
ditions, the first of which is simple encugh still it needs no restriction on the algebra
unlike in PALMER [2], Theorem 3.1. '

Lemma. Let T:J—~B(H) be a %-representation of a *-ideal J in the complex
%-algebra A on the Hilbert space H. Then there exists a %-representdtion
T:A—B(H) of A on the same Hilbert space H extending T, if and ohly if

6)) s'Up{H;' T, % : Bs€ T, x;€H, ||§ T, %=1} <=

holds for every a in A; here and further on 2 denotes a finite sum.
n

Received May 16, 1976, anci in revised form, August 52, 19’}7.



m._- Z. Sebestyén

Proof. Assume first that such a #-representation T of A exists. We have
then for every acA, b,€J and x,€H, since ab,€J,

12T 5 = 12 Tl = 1T E To ] = IS Tl = 1T 2 7o

hence (1) is satisfied; here |T;| is the norm of the operator T, on the Hilbert space H.
Let
H, = {x€H:T,x =0 for all beJ}= N{KerT,:beJ)}

be the maximal closed linear subspace in H, the restriction of T to which is a zero
»-representation 7° of J on H,. Denote by T° the zero *-representation of 4
on H,, the trivial extension of T° from J to 4. Denote further

H,={x€H:(x,y)=0 for all y€Hy}

the orthogonal complement of H, in H, and T! the restriction of T to H, (which
is clearly an invariant subspace for 7). In this way T is the direct sum of a zero
and an essential x-representation 7° and T? respectively: T=T°®T'. Indeed,
G={2’ Ty x,:x,€Hy, b,eJ } is a dense linear manifold in H,, which is invariant

for T also, because if an element x in H, is orthogonal to G, then for all c€J
IT.x||? = (T.x, T,x) = (x, TS T,x) = (x, T+ .x) = 0,

hence x€H, and thus x=0.
Define for an element a in A a linear operator S, in H, given on G by

Sa(; Ty, x,) = ? T, xn (bn€J, x,€Hy),
We have now to show that S, is well defined .on G, thatis, > T, x,=0 implies
; T, %,=0. For y=%’ T, X, we have ’
IylI® = (% Tqb,,.xm, %’ Tab,.xn) = "%' (TpXm> Tap, %) =
= ”%' (To2a* abm X > Xp) = g (T ab,, %m> T, %) = ( %’ Tot o, Xm> %’ T, %),

hence y=0 indeed. But our assumption (1) means then that S, is a densely defined
bounded linear operator in Hj, thus it has a unique extension T to H, in a standard
way. For an a€J we have S,x=T,x (x€G), hence that T'=T,. It is now easy

to check that T:4—~B(H,) is a *-representation of 4 on H,. The linearity and
multiplicativity of T! is immediate. On the other hand, if a€ 4; b, ¢, €J; X,, ym€ H,,

then we
(SG(Z Tbnxn)’ 2' Tc,,,ym) = (2"’ Tab,.xn! Tcmym) =
= Z (xns Tb:“*‘-'m.)’m) = Z (Tb,.xm Ta"‘c,,.ym) = (?p’ Tb,,xm Sa"‘(z' Tc,..ym))
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and thus (T))*=T} as well. Moreover, the extension of 7? to 4 is unique. Indeed,
if T is an arbitrary *-representatlon of 4 that is an extension of T, then for a€ 4,
b,€J, x,€ H, we have-

THS Th, %)= Tl(zrlx)_z 3. %, _2 x"=s,,(2T,}"§c").

We have finally that T=T°@T" is a ‘*-representation of 4 on the Hllbert space
H which extends T and the lemma is proved.
We are now able to improve the above result as follows

' Proposition. The %-representation T:J-B(H) has an extension, a *-rep-
resentation T:A—~B(H) if and only if

@ sup{l|Tpxll: b€J, x€H, |Tyx|| =1} <o for every acA.

Proof. The necessity part is obvious from Lemma as (2) is a specialization of (1).
Suppose now that (2) holds. We are going to prove that T has an extension
T:A—~B(H). Let T and H* be as before and write T in the form of direct sum
of topologically cyclic sub-*-representations (see [2]):
T'=@{T*:1€4}; T* = TYg,, T*: J ~ B(H,)
for every index 2 in A; on a maximal family of pairwise orthogonal T'-invariant
subspaces {H,:A€ A} in H, (and thus spanning H,) with topological cyclic vectors
x;€ H, such that G;={T,x,:b€J} is a dense linear manifold in H, for each 1€A.
An argument similar to that used in Lemma shows, by (2), that for a€ 4 the linear
operator S} in H, given on G, by S}(T,x;)=T,x; (bcJ) is a densely defined
bounded linear operator on H;. This has a unique extension T* to H, with norm
ITH = sup {ISH(Tyxl : bES, Tyl = 1} =
= sup{I T xall : BEJ, I Tyxsll = 1} = sup {ITopxl : bES, xEH, | Tyl = 1} <o,
We thus have the *-representations T*: 4~ B(H,) (A€ A). T* extends T* in a unique

way for all 4 in A and thus
=@ {T*: €4},

the direct sum of T*-s, is a *-representation of 4 on H, extending T' uniquely
and such that for each a€ A
T3] = sup {|T2| : 2€4} = sup {| Ty xill : bEJ, A€ 4, [Tyx;l| = 1}
= sup {|Topxl| : b€V, x€H, |T,x|| = 1} <.
T=T°®T" is then a x-representation of A on H which extends T as well and

the proof is complete.
The main result of this note is the following.
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Theorem Let T J—~B(H) be a *-representatton of a &-ideél in the complex
#-algebra A on the Hilberi space H. There exisis - theri a %-represeritation
T:A-~B(H), which is an extension of T, if and only if

6] g(a):= sup{|Ty|: b€ J, |Ty| =1} <o for all a in A.
~ Proof. Assume first that such a ak-representation T of A exists. Then we have
for all acA, beJ
|Top) = [Tl = [T, Ty) = T, |- ITy| = T - T3]
whence ¢(a)=|T,| follows and (3) is satisfied.

Suppose now that (3) holds for all @ in A. The quantity g i obviously a semi-
norm on A. Moreover, if [T,[=0 for some b€J, then {T,|=0 for all a€ A since
|Tsl? = 1T Tl = |Tyear Tool = |Tisgeanl = |Tos e Tl = [Tl TS|

and thus _ )
|T.| = q(a)|T,| holds for be€J, acA.
We are now going to show that ¢ has the C*-property:
@ g@*a)=(q(a)® (ac4),
in other words, q is a C*-semi-norm, and that (3) implies (2) whence our statement
follows by the Proposition. For acA4, bcJ we have
Tl = Tl = Ty Tar o) = |Tor [T | = T3l | Too ] = 9(@* ) ITy2
and thus .
“) (9(a)=q(a*a) (acA).
On the other hand, for a€Ad, bcJ we have

[T sl = 9(@®)|T,3) = 4(a*) q(a) |T3.
Hence

CY) g(a*a) = q(a*)q(a) (acA).
But (4’) and (4”) together give g(a)=q(a*) for each ac 4; whence by interchanging
the roles of a and a* we obtain that g(a) = g(a*) for all @ in 4. We have then

by (4) and (4) o e
(9(@))* = g(a*a) = g(a*) q(a) = (¢(a))*
whence (4) follows.

We are now able to prove that (2) holds. For if ac A4, beJ and x€ H, then we

have .
1T %12 = (Tup X, TopX) = (Tap Top %, %) = (Tt ¥ o X5 X) =
= (T T X, X) = (T X, Ty X) = W Toe g5 x| | Ty x.
Replacing a by a*a we obtain
WTorap 602 5 [Tt apn 61 173
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and by recurrence;
N *l#** = | T I Tx 21 ' (1=0,1,2,..)’
But then we have by (4)
I X™" = [Tarayms| %] 1T, x)|=*** -1 = g((a* a)*")| T llxll [Ty 2 =
= (q(a a))anTbI llxI IIT,,xllz"+1 t= (q(a) Tl el 1T )22,
By letting n—»< we obtain

< 1Taxl = q@)|T,x)| forall a€Ad, beJ, xcH;
hence by (3) . :
sup {I|I T, x|l : bEJ, x€H, | Ty x| = 1} = q(a) (a€4),

which finishes the proof.
We get finally a new proof of Theorem 2. 6 in [3] (or Theorem 4 in [4])

Corollary. Let p be a C*-semi-norm on a *~ideal J of the complex % -algebra A.
There exists then a C *-semi-norm on A which is equal to p on J if and only if

O sup{p(ab):beJ, p(b) = 1} <o
holds for all a in A. :

Proof. Let ¢ be such a C*semi-norm. ¢ is also submultiplicative in con-
sequence of our previous result (see [3], Theorem 2. 3 or [4], ’_l‘heo;em 2). We have
for every a€ 4, beJ that

p(ab) = g(ab) = q(a)q(b) = q(a) p(b),
proving that (5) is necessary.

To show that (5) is sufficient consider J,={b€J:p(b)=0}. Since p is auto-
matically submultiplicative and the =#-operation is isometric with respect to p
also, J, is in fact a *-ideal in J such that the completion B, of the quotient algebra
J/J, with respect to the quotient norm and with natural involution is a C*-algebra.
The classical Gelfand—Naimark theorem assures a canonical isometrical *-rep-
resentation of B, on some Hilbertspace H: T?:B,~B(H). From the restriction
TP of T? to J/J we get in a standard way a *-representation T:J—~B(H) of J
on H such that T,,—TH and lT,,]—p(b+ )=p(b) holds for all beJ. As a con-
sequence (5) implies (3) For this *-representation 7 and the statement follows
from the Theorem.

Remark. Our result on automatic submultiplicativity of a C*-semi-norm,
mentioned above, is an improvement of a recent result due to ArRAKI and ELLIOTT
concerning the definition of C*-algebras (see Theorem 1 in [1])



174 ’ Z. Sebestyén: On extendibility of #-representations

For the following two remarks we are indebted to Dr. J. SzGcs. First, in the
proof of the Lemma S, is well defined simply because (1) implies for a€A4,
beJ, xeH

2T, x,=0 provided 27T, x,=0

since for each >0, 0=23 T, x,=t- 3 T} x, so that by (1)
sup {t) 3 Tup, X, : t > 0} = sup {| 3 T, | : ¢ > 0} <o

Secondly, (3) implies (2) as an easy application of Kaplansky’s Density Theorem
shows. Forifa€ A, beJ, x€H, and ||T,x|=1 thenitis enough to show |7, x|l=
g(a*) or equivalently

I(Ts%, Y)| = q(a’)llyl for each y€H.

{T;:beJ}c B(Hy is a *-algebra of bounded linear operators on H, such that
{Tix:b€J, xcH,} spans H,, its double commutant N is a von Neumann algebra
containing the identity operator on H,. But {T}:b¢J} is strongly dense in N hence
by Kaplansky’s theorem the strong closure of the unit ball in {7} :5€J} contains
N,, the unit ball of N, especially the identity operator. Hence for a fixed y€H,
there exists {b,};—,CJ with [T, |=1 such that [T, y—y|—0. We then obtain
for a€ A, beJ, xc H, that

[(Tepx, Y)| = sup [(Topx, T, ¥)| = sup [(Tys 5%, V)| =
n n
= sup I(T(a*b,.)*Tbx, W] = sup [(T,x, Tpep Y)| = sup [Ty, Vil =
n n n

= sup [T LI = Hiyl q(a*)s?_p Ty, | = |Iy_l|q(a*),

and thus the required inequality follows.
The author is indebted to Professor Béla Sz.-Nagy for having called his atten-
tion to the problem dealt with in this paper.
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Concrete representation of related structures
of universal algebras. I

L. SZABO.

in his recent book [6], I. I. VALUCE quotes without proof a result of A. V.
Kuznecov, unpublished up to now. Trying to re-establish the proof, we observed
some general facts concerning mutual properties of relations and operations. This
enables us to solve several concrete representation problems for related structures
of algebras in a uniform way. '

The basic propositions of this article are Lemmas 1—5 preceeded by a survey
of notions we shall need. Using them we give a simultaneous characterization for
related structures of universal algebras (Theorem 6). As special cases of Theorem 6
we get characterizations for the systems of subalgebras of finite direct powers of
algebras (G. Gratzer’s Problem 19 in [3]; Theorem 7 and 9) and the endomorphism
semigroups of algebras (Gritzer’s Problem 3 in [3]; Theorem 15; for another solu-
tion of this problem, see N. SAUER and M. G. STONE [5]). As corollaries we get
Jirgen Schmidt’s concrete representation theorem for the subalgebra systems of
algebras (see, e.g. [2]) and the Bodnaréuk—KaluZnin—Kotov—Romov theorem
for the subalgebra systems of all finite direct powers of finite algebras [1]. Moreover,
we characterize the bicentralizers of sets of operations in arbitrary algebras. Then
Kuznecov’s above mentioned result appears as a special case.

In a forthcoming Part II, we shall apply the method developed here for the
representation of other related structures.

Let A be a nonempty set which will be fixed in the sequel. Let O, (n=0, 1, 2, ...)
and O denote the set of all n-ary and all finitary operations of A4, respectively; further-
more, let &, (n=1, 2, ...) and £ denote the set of all n-ary and all finitary relations
of A, respectively. In general, we shall not distinguish between an operation and
the associated relation, i.e., an n-ary operation may be considered as a mapping
f:A"~A and as an (n+1)-ary relation {(ay, ..., @, (@, ..., @))|(@, ..., 4 )EA")
as well. Thus we have O&# and O,&5%,:+,, n=0,1,2,.... If Ris an n-ary rela-
tion, we shall often write R(a,, ..., a,) instead of (ay, ..., a,)€R.

Received March 3, 1977,
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We say that an n-ary operation f preserves an m-ary relation R, if
R(f(ans -.-s 1), -5 f(@mis ---» Gpy)) holds whenever R(ay, ..., @), k=1, ...,n
i.e., (R, f) is a subalgebra of the algebra (4, f)™ (the m-th direct power of (4, f ).
Remark that the empty set is an n-ary relation for every n=1, and it is preserved
by every m-ary operation where m=1. Let f and g be operations of arity 7 and m,
respectively. If M is an mXn matrix of elements of 4, we can apply f [g] to each
row [column] of M. Thus we get a column [row] consisting of m [n] elements, which
will be denoted by f(M) [(M)g]. If for any mXn matrix M of elements of
A, f(M)g)=(f(M))g holds then we say that f and g commute. Clearly, two
operations commute if and only if any of them preserves the other as a relation.
For any set of relations I', denote by I'* the set of all operations preserving every
member of I'. We call I'* the centralizer of I'. If I'=0Q is a set of operations, then
Q** is called the bicentralizer of I'. The symbol 2° will denote the set of all rela-
tions preserved by every member of Q. Remark that Q*=Q°NO for any set of
operations .

Let IT be a set of relations of 4, i.e., ISZ. If a relation belongs to IT, we
shall call it a II-relation. Let (A, 2) be an algebra. By the related structure of type I
of (4, Q) (in symbol: Rel;(4, 2)) we mean the set of all II-relation preserved by
every operation of ©, i.e., Rel (4, 2)=Q°NII. Observe that if II, is the set of
all n-ary relations of A, IT, is the set of all equivalences of A, IT; is the set of all
unary operations of 4, and II, is the set of all bijective unary operations of 4, then
Rel‘,,1 (4, 2)=Sub ((4, Q"), Relp,(4, Q) =Con (4, 2), Rel,(4,2) =End(4, Q)
and Rely (4, Q) =Aut (4, Q).

Let X={x;|i€cI} be a set of variables indexed by an arbitrary set I and let
I’ be a set of relations of 4. If R is a symbol of an n-ary relation in I" and f, g are
symbols of operations of arity m, s that denote a projection or an operation belong-
ing to I', respectively, then R(x;,...,x;) and f(x;,...,x; )=8(x,,...,x,) are
said to be formulas of the varlable set X over I' provided Xy o x,n,x I ...’, Xj
X5 - X, €X. (Note that we might have formulas of the ﬁrst kmd only, but intro-
ducing these two kinds of formulas our considerations became somewhat simpler.)
We say that a family (g;|i€I)€ A" satisfies the above formulas if Ry, ..., q),
resp. f(a;, ..., a; )=g(ay, ..., @) holds. Consider a triple ¥=(Z, X, (x5 -5 X ))
where X={x|icI} is a set of variables indexed by /, (x;, ..., x; )€X", and b
is a set of formulas of variable set X over I'. Such a triple will be referred to as a
Sformula scheme over I We say that ¥ is finite if both ¥ and X are finite. If
¥=(Z, X, (%, .-, x;)) (X={x;|i€I}) is a formula scheme then we associate
- with ¥ an n-ary relation Ry defined as follows: Ry={(a,, ..., a,)|(a|i€]) cAl
and (a;|i€]) satisfies (every member of) Z}. Then we say that R., is deﬁned by
the formula scheme ¥.

~ We say that a formula scheme ¥=(Z, X, (x,, ... ) (X={x;|ieI}

'n+l
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defines the n-ary operation f on BC A" if for any (a,,-.., a,)€B, f(ay, ..., a)=
=a,,, for some a,.,€A4 if and only if Ry(ay, ..., a,, a,;;) holds. For B=A4"
we say that ¥ defines f. An n-ary operation fis said to be locally definable by a set
of relations I', if for every finite BES A" there exists a formula scheme over I'
defining f on B.

The following lemmas describe the connection between the notions “relations
preserved by operatlons and “relations defined by formula schemes”.

Lemma 1. Let I be a set of relations of A. If a reIatlon R can be defined by
a formula scheme over I', then ReI'*°,

Proof. Let ¥Y=(Z, X, (x,,....,%)) (X={x]|i€I}) be a formula scheme
over I' and let f be an m-ary operation preserving all members of I'. If Ry,=0
then f preserves Ry trivially, unless m=0. However if m=0, i.e., fis a nullary
operation then R(/, ...,f) holds for every RE€I', whence it follows that X is sat-
isfied by (a]i€I) where a;=f for all i€l Then Ry(f, ...,f) holds, a con-
tradiction.

Now suppose Ry#0 and let Ry (d, ...,d5), k=1,...,m. Then there exist
families (bf|i€I) satisfying X such that (4}, ..., d)=(f, ..., %), k=1,...,m
Using the fact that f preserves all relations and commutes with all operations whose
symbols occur in X, one can observe by routine that (f(b}, ..., bj")|i€I) satisfies
Z. Hence it follows '

(f@al, ... aD), ... f(ah, .. @) = (f(Bhys -, D), .., f(BL,, ..., B))ERy
showing that f preserves Ry. Q.E.D.

Lemma 2. Let I be a set of relations of A. Then for every positive integer n,
every finitely generated subalgebra of the algebra (A, I'*)" can be defined by a formula
scheme over I'. Moreover, if A is a finite set, then we can choose these formula schemes
to be finite.

Proof. Let T be a finitely generated subalgebra of (4, I'*)". If T=0 then
I'* has no nullary operation. Consider the set of formulas X={R(x,, ..., x,)| RET'}.
Then there is no element of A satisfying X. For if a€A satisfies X then we get
R(a, ..., a) for all ReI’ which implies that a€I'*, i.e., I'* has a nullary operation;
a contradiction. Thus the formula scheme ¥=(Z, {x,},(x)) defines T=0,
ji.e, Ry=0=T. Furthermore, as Ry=90, i.e., there is no element of 4 satisfying
Z, for any a€ A there is a formula R,(x,, ..., x,)€2 such that R,(q, ..., a) does not
hold. Then the formula scheme ¥’=(Z’, {x,}, (x)) with Z'={R,(x,, ..., X,)|a€ 4}
defines T=0, too. Moreover, if A is a finite set then ¥’ is a finite formula scheme.

Now suppose T## and the set {t,=(ty, ..., ,)|t;€4", i=1, ..., s} generates
T. Since I'* is a clone (i.e., it contains all projections.and is closed under super-

12
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position), T={f(t,, ..., t)| fE'*NO,}. We construct a formula scheme ¥ which
defines T.

Let X be a set of variables indexed by A°, i.e., X={x;|i€4°}. Consider an
arbitrary relation Q from I'. Let m be the arity of Q. Considering every element
of O as a column vector of length m, every element of Q° is an mXs matrix of
elements of 4. With Q and any matrix M € Q® we associate a formula Q(xMl > oees Xng)
of the variable set X, where M, is the k-th row of M, k=1, ..., m. Now consider
the formula scheme ¥=(Z,X,(x;,...,x;)) where X={x|icd’}, Z=
={Q(xy,, ..., ¥y )IQEr and Me@}, and (i, ..., i)=((tus o5 1)y oo
(T -5 t,)). We show that T is defined by ¥, ie., T=Ry. Clearly R,=
={@,, .-, a,)|(@|i€c4)€4*" and (qj|icA°) satisfies Z}. Remark, however, that
A*=0,, and thus we can write f€O, instead of (g;]ic A€ A*". Using this nota~
tion we get

Ry = {(f @D, ..., ()| fEO, and f satisfies Z} =
={(f s o5 t1)s oo s [ (tmas .-, 1)) | FEO, and f satisfies Z} =

= {f(ty, ..., )| f€O, and f satisfies Z}. -

Furthermore, an s-ary operation f satisfies X if and only if f€I'*. To show this
first suppose that f€ O, satisfies X. Let O be an arbitrary m-ary relation from I,
and let g;=(qy;, ..., gm€Q, j=1, ...,s. Then from M=(q, ..., ¢,)€Q° we get
Q(xp 5 -5 Xy )EZ, which implies o(fay, ..., f), ie, O(f (s - 15
vees S Gm1y -o-s q,,,,)) proving that f preserves Q. Hence fe€I'*. Conversely suppose
that feO,NI'* and Q(x;, ..., x; ) is an arbitrary formula from X, where
Ji=(ras «» Jis)» k=1, ..., m. Then the matrix (ji).xs 15 an element of ¢, i.e.,
(Jurs oovs Ju)€Q, I=1, ...,5. Taking into account that f preserves Q we get that
Q(f(jlls -":jls)’ ey f(ij AR | Jms))s i.e., Q(f(.]l)9 (AR ] f(]m)) pfOViIlg that f
satisfies the formula Q(x;,...,x; ). Hence f satisfies X. This implies Ry=
=(f(ty, .es 1) feEr*No,}, and the right side is the same as T.

Now let A be a finite set, and consider the formula scheme ¥ constructed
above. For every s-ary operation f that does not satisfy X there exists a formula
J;€Z such that f does not satisfy J;. Consider the set of formulas X’'={7;|f€O,
and f does not satisfy X}. It is evident that an s-ary operation satisfies X if and
only if it satisfies X’. Therefore, the formula scheme ¥’=(Z’, X, (a5 eoes X))
where X and (x;, ..., x,-n) are the same as above, defines the relation 7. Namely,

T= Ry ={(fG, ....f ()| f€O, and f satisfies I} =
={(f @), -...f ()| f€O, and f satisfies 2} = Ry..

Fﬁrthermore, from [X|=|4°| and |¥’|=|0,|=|4%"| it follows that X and 2’
are finite. Hence ¥’ is a finite formula scheme. Q.E.D.
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Lemma 3. If A is a finite set and a relation can be defined by a formula scheme
over a set of relations I', then it can be defined by a finite formula scheme over I'.

Proof. Suppose an n-ary relation R can be defined by a formula scheme over
I. From Lemma 1 it follows R€Sub ((4, I'*)"). Applying Lemma 2 we get that
R can be defined by a finite formula scheme over I Q.E.D.

Lemma 4. Let I be a set of relations of A. Then a relation R belongs to I'*®
if and only if R is the union of a directed system of relations defined by formula
schemes over I.

Proof. First let R=|J R; where (Rj|i€l) is a directed system of relations
i€l

defined by formula schemes over I'. Therefore, by Lemma 1, we get that R,€I'™,
icI. Furthermore, one can see easily that the union of a directed system of elements
of I'*® belongs to I'*®. _

Now suppose that RET'*® is an n-ary relation. Then R is a subalgebra of the
algebra (4, I'*)". Therefore RinI R; where (R;|icI) is the directed system of

3
the finitely generated subalgebras of (4, I'*)" contained in R. In view of Lemma 2,
we have that R;, i1, can be defined by a formula scheme over I Q.E.D.

Lemma 5. Let I' be a set of relations of A. Then an operation f belongs to I *x
if and only if f can be defined by I' locally.

Proof. First suppose that f is an n-ary operation which is defined by I" locally.
Choose an m-ary operation g from I'* and let M=(ay),x, be an mXn matrix
of elements of 4. According to our assumption, there is a formula scheme ¥ that
defines f on

B = {(akh sy akn)]k = 1’ ""m}U{(g(all’ sets aml)a sty g(alns ~-"amn))}-
Then Rg(@, - s @s [ @, .. > @4y) holds, k=1, ..., m. Using Lemma 1 we get

that R‘P(g(alh sery aml)a LR g(alns sy amn)’ g(f(an’ seey aln)a ---’f(amls ey amn))
“holds, too, whence

f(g@y, s Gn)y s 8@1ns vy ) = E(f (@115 -, 1) 5 coes S @ms > Cnn))
follows, ie., f((M)g)=(f(M))g. Hence f commutes with g showing that feI**,

Now suppose that f€I'** is an n-ary operation and let BC A" be a finite set.
Considering f as an (n+1)-ary relation we have feI'*®. Therefore, by Lemma 4,
we get f= U R, where (R)|i€l) is a directed system of ((n+1)-ary) relations

defined by formula schemes over I'. As (R;|i€]) is a directed system and B i is a finite
set, f=|JR; implies f|BSR, for some i€l Now let ¥ be a formula scheme
iel

over I' defining R;. Then f|BSR, Sf implies
le = {(aI’ . ’ans n+l)|(al’ (24 ] a,,)EB and (als very an: an+1)€Rl° bt R‘P}
and this means exactly that ¥ defines f on B. Q.E.D.

12¢
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Theorem 6. Let I''SII,(ER), i€l, be sets of relations of A; furthermore,
let QI (ER), j€J, be sets of such relations which are operations of A. Put
r=(YTr)U(U 2;). Then the following two statements are equivalent:

©Oier : JjEJ . :

1. There exists an algebra (A, Q) such that F,=Rel,,‘ 4,2 and Q=
=Relul (4, Q) for every i€l and jcJ. .
- IL (@) For every i€l, if a II;-relation is the union of a directed system of rela-
tions defined by formula schemes over I', then it belongs to TI',.
(B) For every j€J, if a -relation (operation) can be defined by I' locally then
it belongs to Q;.

Proof. I=Il. Suppose that I';=Rely (4, £2) and Q,-=Rel,,j 4, Q) for
some algebra (4, Q) for every i€l and j€J. First let i€ I and suppose a II; -relation
R to be the union of a directed system of relations defined by formula schemes
over I'. Taking into account Lemma 4 and I'*2Q we have that Rer*cC Qo
This fact together with R being a II, -relation shows that R¢ Rel,,‘o(A, Q). Hence
() holds.

Now let jo€J and suppose a I1; -operation f can be defined by I' locally. Then,
by Lemma 5, we have feI**SQ*CQ’. Hence f€Rely, (4, Q), ie., (f) holds.

. I=1 Let Q=I* Weshall prove that I';=Rely (4, 2) and Qj=Re1Hj(A, Q)
for every i€ I'and jcJ. First choose an arbitrary iy € I. The inclusion 1",.0gRel,,‘o 4, Q)
is obvious. Let R€Rely, (4, 2). Then R€Q°=I*°. Therefore, by Lemma 4, we
have that R is the union of a directed system of relations defined by formula schemes
over I'. Thus, by the condition (a), Rerly, . :

Now choose an arbitrary jo€J. Again, Q; & RelHJO(A, Q) is obvious. Let
f€Rely, (4, Q) be a II; -operation. Then f€Q*=I"**. Therefore, by Lemma S,
we get that f can be defined by I locally. Thus, by the condition (), f€Q i, QED.

Theorem 7. Let (I'y|n=1,2,...) be a family of sets of relations of A such
that I, has n-ary relations only, n=1,2, ... . Then the following two statements are
equivalent:

1. There exists an algebra (A, Q) such that I',=Sub ((4, Q)’),n=1,2, ....

IL. () For every n, if an n-ary relation can be defined by a formula scheme over

Cs

I'y then it belongs to I,.

k=1

(B) For every n, T, is closed under union of directed systems.

Proof. Put I={1,2, ...}, J=0 and, as II,, the set of all n-ary relations of
A in Theorem 6. .

Corollary 8. If A is a finite set then statement II in Theorem 6 can be
replaced by T o -
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IV. For every n, if an n-ary relation can be defined by a finite formula scheme

over | I'y then it belongs to I',.
k=1

Proof. As A is a finite set, the assumption () in Theorem 6 is superfluous and
we can apply Lemma 3.

Theorem 9. Let I' be a set of n-ary relations of A. Then there exists an algebra
(4, Q) such that I'=Sub ((4, Q)') if and only if T is closed under union of directed
systems and I' contains every n-ary relation defined by a formula scheme over I.

Proof. Put 7={1}, I''=T, J=0 and, as II;, the set of all n-ary relations
of A in Theorem 6.

Corollary' 10. Let A be finite and let I" be a set of n-ary relations of A. Then
there exists an algebra (A, Q) such that I'=Sub((4, Q)") if and only if I’ contains
every n-ary relation defined by a finite formula scheme over T.

Corollary 11. (J. Schmidt) For a s‘et I of unary relations of A, there is an
algebra (A, Q) such that T'=Sub (4, Q) if and only if T is an algebraic closure
system.

Proof. Suppose that I'=Sub (4, Q) for some algebra (4, Q). Let {R;|jcJ}
be a subset of I'. Then the formula scheme (Z, {x,}, (x)) with Z={R;(x)|j€J}
defines () R;. Applying Theorem 9, we get that () R;€l, ie., I is closed under

JjeJ jeJ

intersections. This fact together with the conditions of Theorem 9 proves that I’
is an algebraic closure system.

Conversely, suppose that I' is an algebraic closure system. Then I' is closed under
union of directed systems. Now consider a formula scheme ¥=(Z, X, (xp)

(X—{xliEI}) over I If Ry=0 then Ry=0= () R Otherwise, aEﬂ R
Rer

1mp11es that (a;]ic]) where g;=a for all i€l, satisfies £ showing Ry (a), a con-
tradiction. Thus Ry =0€l. If Ry, then it is a routine to check that

Ry=. () R, ie., Ry €I'. Thus we get that I satisfies the condition of Theo-
R(x1)€Z2

rem 9. Q.E.D.
In [1], KaLuZNIN and his co-workers have given a characterization for the

subalgebra system G Sub((4, Q)") of a finite algebra (4, Q). Now we derive their
n=1

result from Corollary 8. We need some additional notions and notations.

For an m-ary relation R of 4 and a permutation 7 of the set {l, ..., m} the
t-translate of R is an m-ary relation R of A defined by R = {a,,, ..., @) |R(ay, ..., G}
For any two relations R and T of arity m and n, respectively, the direct product of
R and T'is an (m+n)-ary relation RX T defined by RX T={(ay, ..., @p+n)|R(ay; --., @)

rand T(@p+1s s Auen)}- If R is an m-ary relation and 1=i<...<i=m, then
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the projection of R to the coordinates iy, ..., J, is a t-ary relation R;  , defined
by R, . ..={@,..,a)IR(@, . ..,a,)} If R is an m-ary relation and O is
an equivalence relation of the set {1, ..., m}, then the @-diagonal of R is an m-ary
relation Ry defined by Rg={(a, ..., a,)|R(ay, ..., a,) and (i@j=a;=a;)}. Finally,

the n-ary diagonal D, is defined by D,={(a, ..., a)lac A} for any n.

Corollary 12. (V. G. Bodnarfuk, L. A. KaluZnin, V. N. Kotov, V. A. Romov)
If A is a finite set and I is a set of relations of A then there exists an algebra (A, Q)

such that I'= G Sub((4, Q)") if and only if all diagonals belong to I', and I is closed
n=1

under formation of direct products, as well as arbitrary t-translates, projections,
and O-diagonals.

Proof. By Corollary 8 we have to prove only that a set of relations I' fulfils’
the assumptions of the corollary if and only if every relation defined by a finite
formula scheme over I" belongs to I'.

First suppose that all relations defined by finite formula schemes belong to I'.
Then for any n the formula scheme (@, {x,}, (x;, ..., x,)) defines D,. If R and T
are relations from I' of arity m and n, respectively, T is a permutation and @ is an
equivalence relation of the set {1, ..., m} and 1=i,<...<i,=m, then the formula
schemes

ROy, s Xy T Kpt1s <o X)) %15 < os Xman}s (a5 s X))

({R(-xl’ A xm)}’ {xl’ teer xm}? (xln LR X,m.)),
({R(x1, - os X} {315 vos X}y (Xigser X3))s

({R(xh srey xm)}u {D2(xk’ xl) |k@l}’ {xl’ sy xm}’ (xlﬁ ety xm))

and

define RX T, R, R, . -and Rg, respectively.
Conversely, suppose that I" satisfies the assumptions of the corollary and let
. ¥=(2, X, (i 5 ...,xi")) (X={x;|i€I}) be a finite formula scheme over I'. We
have to prove that Ry can be got from I' in a finite number of steps by formation
of directed products, t-translates, projections, and @-diagonals. Concerning ¥,
we can assume w.lo.g. that every component of (Xis oo xin) occurs in some
formula of X, otherwise we can add the formulas Dz(x,-l,qcil), ...,Dz(x,-n,x,-n)
to 2. Furthermore, we can assume that (x;, ..., x;) has pairwise distinct com-
ponents, otherwise we can consider the formula scheme ¥=(Z’, X', (1, ..., ¥»)
where  X'=XU{py, ..., (XN {ys, ..., pa}#0) and  Z'=ZU{Dy(x;, y), -,
Dy(x; , ¥} Clearly Ry=Ry.. Finally, we can also assume that X has formulas
of the form R(le, ...,x,-m) (RET) only. Otherwise, if a formula ¢ of the form
f (x,l, s x,,)=g(x,,l, ) belongs to X, then replace ¢ by the formulas
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f(x,l, ...,x,.)=y, and g(xkl, ...,x,,)=y,. Considering f and g as (s+1)-ary
and (r+1)-ary relations, respectively, these formulas have the form we required.
Thus we get a set of formulas X”. Then the formula scheme ¥”=
=(Z", X", (%5 oo, %)) With X"=XU{y,]e€Z and ¢ is of the form f=g}
defines R, . _

Now suppose that ¥ has these properties. Then let -

Z={R01, - Vi) - ROA, o 32)h WEX, I=1, s, k=1,..,m.
Consider the formula scheme ®=(Z, X, (3}, -.., y‘nl, s Vs eves y’,,.)). Observe that
Ry can be got from Ry by formation of a suitable projection and t-translate. Further-
more, let @ be an equivalence of the set {1, e Zs'nk} defined as follows: jOI if
and oniy if the j-th and I-th components of ( y},k.il, Yugs s Vis -5 ¥3) are equal,
1= ..., Zs'nk. Now it is a routine to verify that R, equals the @-diagonal
of R1><...>k<=1$s. Q.E.D.

Theorem 13. If Q is a set of operations of A, then Q=Q** if and only if Q
contains every operation defined by Q locally.

It follows from Lemma 5 immediately.

Corollary 14. (A. V. Kuznecov) If A is a finite set, then Q=Q** for some
set of operations Q if and only if every operation defined by a finite formula scheme
over Q belongs to Q.

Proof. If dis a ﬁnite set, an operation f locally definable by Q can be defined
by a formula scheme over Q. Lemma 3 shows that we can restrict ourselves to finite
formulas. It remains to apply Theorem 13.

Theorem 15. For a set E of transformations of A there exists an algebra (4, Q)
such that E=End (4, Q) if and only if E contains every transformation defined
by E locally.

Proof. Put I=0, J={1}, Q,=F and, as II,, the set of all unary operations
in Theorem 6. '

Corollary 16. If A is a finite set, then for a set E of tran.sfo}mations of A there
exists an algebra (A, Q) such that E=End (A, Q) if and only if E contains every
transformation defined by a finite formula scheme over E.

Proof. We can proceed similarly as it was done in the proof of Corollary 12.
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A quasimilarity model for algebraic operators

L. R. WILLIAMS

In this note, all Hilbert spaces $ will be understood to be complex. We denote
by Z($) the algebra of all bounded linear operators on . For 4 in Z(9), 6(4)
denotes the spectrum of 4, o (4) the kernel of 4, and %(A) the range of 4. An
operator 4 in Z(9) is said to be algebraic if there exists a nonzero polynomial
p(z) with complex coefficients such that p(4)=0. If A™=0 for some positive
integer m, then we say that A is nilpotent. If r is a positive integer, then the nilpotent
operator acting on the direct sum of n copies of $ and defined by the nXn matrix
[4;;], where :

A4 =1g for i=1,2,...,n—1, and 4,;=0 for all other entries,

is called a Jordan block operator of order n. (By definition, the zero operator on
$ is a Jordan block operator of order one.) Suppose that 9, ..., 9, are Hilbert

spaces and ny, ..., n, are positive integers. Let %, be the direct sum of n, copies
of §, and J, be the Jordan block operator of order n, acting on 35k, k=12,....,m.

An operator of the form J,&...&J, acting on 55163...695,,, is called a Jordan
_ operator. : )

We recall that if 27 and %, are Hilbert spaces and X: )2, is a bounded
linear transformation -such that S (X)=2(X*)={0}, then X is called a quasi-
affinity. If A,€2(A}) and A€ Z(A,) and there exist quasiaffinities X: A,
and Y: X,~; such that X4;=A,X and 4,Y=YA,, then 4, and A4, are said
to be quasisimilar. In case that there exists an invertible bounded linear transforma-
" tion Z: A,—~A, such that ZA,=A,Z, then A; and A, are said to be similar.

It is well-known that every operator on a finite dimensional Hilbert space
is algebraic and similar to its Jordan canonical form. Hence it is natural to ask

Received May 30, 1977.
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whether there exists an analogous model for the class of algebraic operators on
an infinite dimensional Hilbert space. AposToL, DouGLAS, and Folas proved in
[1] that every nilpotent operator on a Hilbert space is quasisimilar to a Jordan
operator. (This author provided a different proof of this theorem in [2].) The first
purpose of this note is to show that there exists such a model for the class of algebraic
operators also.

Necessary and sufficient conditions that a nilpotent operator is similar to
a Jordan operator were also presented in [2]. We proved that a nilpotent operator
A is similar to a Jordan operator if and only if the range of A’ is closed, i=1,2, ....
The following theorem generalizes this result also.

Theorem. (a) Suppose that A is an algebraic operator on a Hilbert space $ and
6(A)={A, ..., &,}. Then there exist Jordan operators Jy, ..., J, acting on Hilbert

spaces 9y, ..., Dn» respectively, such that A is quasisimilar to B= Zn'e(l,‘ 1 5k+J,‘).
k=1

(b) A is similar to B if and only if the range of (A—2;) is closed (i=1,2, ...,
ji=1,2,...,n).

Note that as a result of the spectral mapping theorem, the spectrum of every
algebraic operator is a finite set. Thus the operator 4 in the Theorem is the most
general algebraic operator. (Of course, in the Theorem and throughout this note,
we assume that if i>j, then A;#4;.)

We begin with the following lemma.

Lemma 1. Suppose that A is an algebraic operator on a Hilbert space ©, say
p(A)=0, and let o(A)={Ay, ..., A,}. Then there are operators A, with p(4,)=0
and o(A)={h} (k=1,2, ...,n), such that A is similar to A\®...®A4,.

Proof. We prove the lemma by induction on the number of points n in a(4).
If n=1, the lemma is obviously true. Suppose that n>1 and that the lemma is
. true for every algebraic operator which has n—1 points in its spectrum. Let f; be
an analytic function which is identically one in a neighborhood of {4, ..., 4,_,}
and identically zero in a neighborhood of {1,}. Let f3(z)=1—/,(2) for each z where
f1 is defined. The idempotent operators f;(4) and f;(4) are defined by the Riesz
functional calculus. Let M=R(f,(4) and N=R(f,(4). According to the
theory of the Riesz functional calculus, M and N are hyperinvariant subspaces
for A, c(A|M)={4y, ..., 4s-1}, and o(4|M)={4,}. The matrices of A, f;(4),
and f,(4) with respect to the decomposition H=IMHW* are respectively

[Ao B] I D [0 -D
, , and ,
0cC 00 0 1g1
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where A,=A|M. Since the operators 4 and fl(A) commute, we have AOD—
=B+DC. Now we have

o el -

Thus A is similar to 4,® C. It follows that 4, and C are algcbralc operators; indeed

p(49)=p(C)=0.
We now show that C is similar to A|N, and thus a(C) s(4|W®={4,}

Indeed, from the matrix of f,(4) we have ‘R={[ fy ]E‘JJ?GB‘JRl : yE‘.Dll}. Define

a linear transformation S:IMM+-—-N by setting Sy=[_fy ] for each y in ML,
Then S is invertible and
4y B —Dy] [(—A0D+B)y] [—DCy]
(A Sy = [0 C] [ y 1 Cy | o |759
for each y in M+, Hence (4|M)S=SC, and thus C is similar to 4|RN.
We observe that p(4,)=0 and o(4y)={4,, ..., 4,—1}. By the induction hypo-
thesis, there exist operators 4, with p(4,)=0 and o(4)={4}, k=1,2,...,n—1,

such that A4, is similar to 4,®...® 4,-,. Hence 4 is similar to 4,® ... ® 4, where
A,=C. The proof is complete since p(4,)=0 and o¢(4,)={4,}

Lemma 2. Suppose that A is an algebraic operator on $H and 6 (4)= {A}. Then there
exists a Jordan operator J acting on a Hilbert space $, such that A is quasisimilar
to Ag +J.

Proof. Apply Theorem 1 of [2] to the operator T=A—A to get that T is
quasisimilar to a Jordan operator J acting on a Hilbert space $,. Hence 4=14+T
is quasisimilar to Alg +J.

Proof of the Theorem. (a) This follows immediately from Lemma 1
and Lemma 2.
(b) Suppose that there exist Jordan operators Ji, ..., J, acting on Hilbert

spaces 9, --., 9,, respectively, such that A is similar to 2"' &b (41 5k+J,‘). Then,
' . k=1 X

for positive integers i and j, 1=j=n, the operator (4—4;) is similar to

Z'EB(()»,, A)lg, +Ji)', which has closed range. Thus the range of (4—4;) is

also closed. On the other hand, suppose that the range of each 4- l,)' is closed.
According to Lemma 1, there exist algebraic operators 4, with ¢(4,)= {4} such

that A is similar to an'@Ak; and hence (4—A)) is similar to Z"'GB( A,—4). So
=1 k=1

for each positive integer i and for each integer k, 1=k=n, the range of (4,—4;)'
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is closed. In particular, the operator 4;—4, is nilpotent and the range of (4,—4))'
is closed. Thus, by Theorem 2 of [2], there exists a Jordan operator J; acting on
a Hilbert space 9, such that A4;—1; is similar to J;. Hence it follows that 4, is

similar to %1g,+Jj, j=1,2, .. Thus 3 @4, is similar to 3@ (hlg, +7).
=1 k=1
Therefore, A is similar to kZ' & A1g, +J70).
=1
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Jordan model for weak contractions

PEI YUAN WU

Sz.-NAGY and Folag defined in [10] a class of multiplicity-free operators among
C, contractions (also ¢f. [8]). Later on in [1] they developed a “Jordan model”
for C, contractions, which resembles in some respects the usual canonical model
of a finite matrix. In the present paper we extend both concepts from the context
of C, contractions to that of weak contractions.

1. Preliminaries. Let 7 be a contraction defined on a complex, separable Hilbert
space H. Denote by dr=rank (I—T*T)"?, dp=rank (/—TT*"? the defect in-
dices of T.

Recall that T is called a weak contraction if (i) its spectrum o(7T) does not -
fill the open unit disk D, and (ii) I—T*T is of finite trace. Thus in particular C,(N)
contractions and C,; contractions with finite defect indices are weak contractions.
For the theory of Co(N) contractions and C,; contractions, we refer the reader
to [9]. If T is a completely non-unitary (c.n.u.) weak contraction on H, then
dr=dr+ and we can consider its Cy—C;; decomposition. Let H, and H, be the
invariant subspaces for T such that T,=T|H, and T,=T|H, are the C, part
and C;, part of T. Note that T, and 7; are the operators appearing in the

triangulations
- [To X] 4T [T1 Y
o) ¢ T T

[Co. *] " 4 [C.l *
o ¢.] ™ o ¢l

respectively. These triangulations, in term, correspond to the *-canonical factoriza-
tion and canonical factorization

o) =0,d0,,7), () =06,)06.1) (D)
of the characteristic function @(1) of T, ¢f. [9], Chap. VIIL

of type

Received February 20, in revised form May 25, 1977.
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Let H? denote the Hardy space of analytic functions on D. For each inner
function ¢, S, denotes the operator on H2© gH? defined by (S, f)(A)=P(if(1))
for A€ D, where P denotes the (orthogonal) projection of H? onto H2© ¢H?2. For
inner functions ¢, and ¢,, ¢,=¢, means that ¢, and ¢, differ by a constant factor
of modulus one; ¢,|¢p, means that ¢, is a divisor of ¢,. H*© ¢H? reduces to {0}
if and only if ¢ is a constant inner function. For a measurable subset E of the unit
circle C, My denotes the operator of multiplication by " on the space L?*(E) of
square-integrable functions on E, where the measure considered is the (normalized)
Lebesgue measure. For measurable subsets E, and E, of C, E;=FE, means that
(EX\E)U(E\ED is of Lebesgue measure zero. If E=§ then L%(E) reduces
to {0}.

For arbitrary operators T, T, on H,, H,, respectively, T, <7, denotes that
T, is a quasi-affine transform of T,, that is, there exists a one-to-one, continuous
linear transformation X from H, onto a dense linear manifold of H, (called quasi-
affinity) such that XT1=T,X. T, and T, are quasi-similar if 7,<7, and 7,<T;.
For an arbitrary operator T on H, let uy denote the multiplicity of T, that is, the

least cardinal number of a subset K of vectors in H for which H= {7 T'K. In

n=9

particular, if pur=1 then T is cyclic and the vector in K is a cyclic vector for T.
Note that both § and Mg are cyclic and that quasi-similar operators have equal
multiplicities.

2. Jordan model. The following theorem; gives the Jordan model for C,
contractions (¢f. [1] and [10]).

Theorem 1. Let T be a C, contraction on a separable Hilbert space, with defect
indices dr=dr+. Then T is quasi-similar to a uniquely determined operator of the

Jorm
Sp, DS, D... 05, B...,

where the @;’s are inner functions satisfying @;.1l@; (j=1,2,...). Moreover, ¢,
is the minimal function of T, and if there are just m (0=m=oc) non-constant
©;’s, then m=pr=pr=dr=drs.

Next we consider C;, contractions. In this case a “Jordan model” can also
be given. '

Theorem 2. Let T be a c.nu. Cy, contraction on a separable Hilbert space,
with defect indices dp=dr. Then T is quasi-similar to. a uniquely determined oper-
ator of the form

) My OMp®..0Ms &...,
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where the E’s are measurable subsets of C satisfying E, .S E, (k=1,2,..). If
there are just n (0=n=e) E’s with nonzero measure, then n=pr=pn=
= dr = dT* . '

We start the proof with the following

Lemma 1. Let T, and T, be operators on H, and H,, respectively. Then
max {#T!’ Hr Sl o1, =Hr, i, ‘

Proof. Let K={x,®V,}.cs be a subset of vectors in H,® H, such that
HoH,= V (I} TY)'K. Then K= {X.}aca 1s a subset of H, satisfying H,=

= \_/0 TiK,. It follows that pr =pr gr,. By symmetry we have Hr, = l1,0T,>

and hence max {ur , pr }SHr ot,-
To prove the second inequality, let K,={x,},c4SH, and K,={ys}scaSH,

be such that HI=V TiK, and H2={7 T3K,, respectively. Then K=
n=0 n=0

={x, B0, 0D Vp}ac 4, pce is a subset of H,® H, satisfying H, d H,= {7 (e TY)'K
n=0

It follows that pg oT, =Hr, tlr,.

Note that the mequalmes in Lemma 1 actually occur. For example, if T,=T,
is a simple unilateral shift then pur =pr =1 and prer,=2 (¢f. [15], p. 308); if
T,=T, is the adjoint of a simple unilateral shift then pr,=pr,=1 and
tr,er,=1 (cf. [6], Problem 126).

Lemma 2. If there are just n (0=n=<) E,’s with nonzero measure in the
operator T=My ®©Mr®.. OM ..., where FE, S F, (k=1,2,..), then
n= iy = flrs.

Proof. By the first inequality in Lemma 1, it suffices to consider the case
n<eo, that is, we have to show that if T=ME169...€BME", n<eo, then n=p;.
Inequality u;=n is obvious. To prove that ur=n, let us make use of the direct
integral representation of the Hilbert-space H=L%(E))®...®L*(E,), associated
with the unitary operator 7, that is, let

H= f Hydm with T*T"{x(D)} = (F¥x(D),
a(T) '

where m denotes the Lebesgue measure on ¢(T)SC. Let N= M- If K=
={x,, .. xN} satisfies H= V T"K then K,={x,(1),...,xy(1)} is a set of

. vectors in H, such that H,= \/ {A"x,(A), ..., A"xy(A)} for almost all 4 in o (7).
m=0

But for A in E,, H, is an n-dimensional space. Hence we have uy=~N=n, complet-
ing the proof.
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Proof of Theorem 2. Part of this theorem is implicitly contained in the
work of Sz.-NAGy and Foias [9]. Indeed, since T is quasi-similar to the dual residual
part of its minimal unitary dilation ([9], p. 72), by [9], pp. 88—89 we can infer
that T is quasi-similar to an operator of the form (1) and n=dp (also ¢f. [9], pp.
271—273 for the case dy=dp<<). The uniqueness follows from the multiplicity
theory of normal operators [5] and the fact that quasi-similar normal operators
are unitarily equivalent. Lemma 2 furnishes the proof of the remaining part.

In light of these results we can generalize the notion of Jordan operators to
the following

Definition. An operator T is called a Jordan operator if it is of the form

Sp,D... DS, ... OMp,®...OMs®...,

where the @,’s are inner functions satisfying ¢;..|@; (j=1,2,...), and the Es
are measurable subsets of C satisfying E,,,SF, (k=1,2,..).
Combining Theorems 1 and 2 we obtain

- Theorem 3. Let T be a weak contraction on a separable Hilbert space, with
defect indices dr=dp. Then T is quasi-similar to a uniquely determined Jordan
operator ’ ’

© 50 ®...BS, &...0Mp®...OMg ®....

If there are m (0=m=o) non-constant @;’s and n (0=n=<) E;’s with nonzero
measure, then purp=ur.=max {m,n}. Moreover, if T is c.n.u., then its correspond-
ing Jordan operator is also a weak contraction and pyp=pr.=max {m, n}=dr=dr.
hold.

We will call the uniquely determined Jordan operator the Jordan model for T.

We start the proof of Theorem 3 with the following

Lemma 3. Let T;, T{ be C, contractions on Hy, H, and let T,, T, be unitary
operators on H,, H;, respectively. If T\@T, is a quasi-affine transform of T, ® T,
then Ty is quasi-similar to T, and T, is unitarily equivalent to T,.

" Proof. Let X: Hi@ H,~H,; ®H, be a quasi-affinity such that X(7,@ Tp)=
=(T/®T,)X. For any heH,, let h®dh,=X(h®d0), where hy€¢H and h,€H,.
Since 7, being a C, contraction, is of class C,. ,we have (Z7"h)®(T,"hy)=
~(T ST X(hd0)=X(T,® T)" (h®0)=X(T*h@0)~0 as n-oo. Thus T, h,~0
as n—o. Since 7, is of class C,., this implies that h,=0, and hence that
X(h@0)cH,. Thus with respect to the decompositions H,® H, and H;® H,;, X

is tr iangulated as
[ 1 ]
0 X 2 ’
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By considering the adjoint, a similar argument as above shows that Z=0. Hence
we obtain quasi-affinities X;: H,~H] and X,: H,~H, such that X,T,=T,X,
and X,T,=T,X,, thatis, T,<7, and T,<7,. By the uniqueness of the Jordan
model for C, contractions, we infer that T is quasi-similar to 7y (¢f [1], Theorem 1):
On the other hand, that T, is unitarily equivalent to 7}, follows from [4], Lemma 4.1.

Lemma 4. The operator S,® My on the spa'ce- (H:o pHY) @ L¥}(E) ._:is cych’c.

Proof. Let f be an essentially bounded function in L?(E), which is cyclic for
Mg. If E+C, such is the identity function 1(e")=e" on E.If E=C then it is
well known that the cyclic vectors for the bilateral shift are those functions f€ L2
for which |f|=0 ae. and f log | f|=—o°; we may assume that f is essentially
bounded, for otherwise let F={e": |f(¢")]=1}. Consider yc\ zf+xr. Let P be
the (orthogonal) projection of H? onto H2O pH?, and let 1 also denote the identity
function in H?2. We want to show that P(1)@fis a cyclic vector for S, M.

let K= {7 (S,® Mp)"(P(1)®f). For each heH?, let {p,} be a sequence of
n=0

polynomials such that p,~@h in L:-norm. Since f is essentially bounded, we have
p.f>ohf, and hence P(p,)Dp, f—»P((ph)EB(phf =0@phf. This shows that
0@ @hf is in K for any h€ H?

Now let g be an arbitrary function in L2(E). Since f is a cyclic vector for Mg,
there exists a sequence of polynomials {g,} such that g,f~@g in L*norm. Then
0q,f~oPg=g. By what we proved before, we conclude that 0dgcK for any
g€L2(E). On the other hand, since it is clear that P(h)@®hf€K for any h€ H?, we
have P(h)@0=(P()@hf)—(0dhf)EK. Hence we obtain (H*© ¢H?)® LE(E)=K,
which completes the proof.

Proof of Theorem 3. Let T=U@®T’ be the decomposition of T into
the direct sum of its unitary part U and its c.n.u. part T”. Since T is also a weak
contraction, we may consider its C, part T, and Cy; part 7;. It was proved in [16]
that T” is quasi-similar to T,@ 7;. Hence T is quasi-similar to T, T ¢ U. By
Theorem 1, Lemma 3 and the multiplicity theory of normal operators [5], we con-
clude that T is quasi-similar to a uniquely determined Jordan operator (2).

If T is quasi-similar to (2), then T* is quasi-similar to
Sw;@---@S v®..OMyd..0OMgz ...,

where @} ().)=(p_j(7l..) (j=1,2,..) and E;={e": e "¢E} (k=1,2,..). Hence
it is clear that to show that ur=pp=max {m,n}, we have only to show that
pr=max {m, n}. -For convenience, we assume that n=m. Let dr and dr denote
the defect indices of T, and T3, respectively. By Theorem 1 and Lemma 1 we have
m=pr =lr,61,00=Hr- If m=- then we have already had the result. Hence

13
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we may assume that m=<e. Since (2) is unitarily equivalent to

(Sp, OMe)D...0(S, OMp )OMg_, . ®..OMg_,
using Lemmas 1 and 4 we have ur=1+...+1+1+...+1=m. Thus pr=m=

L e v
n m-—n

=max {m, n}. The case m<n is similarly proved.

Now we assume that 7 is c.n.u., that is, T=T,®T,. We show that the
Jordan model (2) is a weak contraction. Indeed, it is enough to show that
S=S, ®...0S, @... is weak. But § is the Jordan model of T,, which is a weak
C, contraction, so the assertion follows from the results of §8 of [2]. By Theorems
1 and 2 we have m=pr =d; and n=pr =dr . Since dr =dr and dr =dr
(cf. [9] p. 302) we obtain max {m, n}=d;=dp+, completing the proof.

We make some remarks to conclude this section.

By Theorem 3 and Lemma 3 we infer that for weak contractions T3, Ty, if T}
is a quasi-affine transform of T, then T; and T, are quasi-similar to each other.

For c.n.u. weak contractions the unitary part of the Jordan model has an
absolutely continuous spectrum.

If Tis a c.n.u. weak contraction with finite defect indices, then in the Jordan
model of T we have E,={e":rank 4(e*)=k} (k=1,2,...,n), where A(e")=
=[I-0(e")*O(")]"® and ©(4) denotes the characteristic function of 7. Indeed,
since the characteristic function @,(4) of the C,; part T, is the purely contractive
part of the outer factor @,(1) of @), if 4,(e")=[I—0,(€")*O(eM)]'* then
rank 4 (e*)=rank 4,(e") a.e.. Thus the assertion follows from [9] Theorem VI. 6.1.
In particular, E,={¢": ©(e") is not isometric} and n=ess sup rank 4 (e").

- 3. Multiplicity-free operators. A C, contraction T is called multiplicity-free
if pr=1, or equivalently, T has a cyclic vector. Some of the equivalent conditions
for multiplicity-free C, contractions are gathered in the next theorem (cf. [10]
and [13]).

Theorem 4. Let T be a C, contraction on a separable Hilbert space. Then the
Jollowing conditions are equivalent to each other:
(1) T is multiplicity-free; '
(i) T is quasi-similar to S, for some inner function ¢;
(iii) {T} is commutative.
Here {T} denotes the commutant of 7.
We generalize this to the following

Theorem 5. Let T be a c.n.u. weak contraction on a separable Hilbert space.
Let Ty and T, denote the C, and Cy, part of T, respectively. Then the foIIowmg con-
ditions are equivalent to each other:
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() T admits a cyclic vector;

(ii) Ty and T, admit cyclic vectors;

(ili) T is quasi-similar to S,® Mg for some inner function ¢ and some measurable
subset E of C (here ¢ may be constant and E may have measure zero);

@iv) {TY is commutative; )

W) {7} and {T\}Y are commutative.

This theorem suggests the following

Definition. A c.n.u. weak contraction T is called multiplicity-free if it
satisfies the equivalent conditions (i)—(v) in Theorem 5.

Note that CLARK [3] also defined multiplicity-free operators among operators
of class [Cy.UC.JN[C.qUC.{]. It is clear that our definition is consistent with his.

Proof of Theorem 5. The equivalence of (i), (ii) and (iii) follows from The-
orems 1, 2 and 3. The implication (i)= (iv) and the equivalence (ii)<(v) were proved
by Sz.-NaGy and Foias (cf. [11], [12] or [7], [13]). Thus to complete the proof we
have only to show that (iv) implies one of the other conditions. Let us prove the
implication (iv)=(iii). Let S®M denote the Jordan -model of T, where
S=8, ®S,,®@... and M=Mp GMg ®..., and let X, Y be two quasi-affinities
such that TX = X(SOM) and (SOM)Y = YT.

Then, from (iv) it follows that the relation

(XAY)(XBY) = (XBY)(XAY)
holds whenever 4, B€ {S&® M} and hence

A(YX)B = B(YX)A.

Now by Lemma 3 it follows that YX=Z@V where Ze{SY}, Ve{M}y
and we have '
©) AZB = BZA, A'VB =BVA
for any 4, B€{SY, A’, B’¢{M}’. Taking B=1I, B’=I in (3), it follows that Z¢ {S}”
and V€ {M}” such that, again by (3), we infer that {S} and {M}" are commutative.
From the implication (v)=(ii) it follows that S=§, and M =Mpg and (iii)
follows.

We remark that conditions (i)—(v) in Theorem 5 are equivalent to the
corresponding conditions for T*. (This follows from Theorem 3 that pp=pr+.)
Also note that if the defect indices of T are finite, then these conditions are equiv-
alent to:

(vi) The minors of order dr,,—l of the matrix of 0,;(1) have no common
inner divisor, and rank 4(¢")=1 a.e. (¢f. [9], pp. 267 and 271). In particular,
we have

13+
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Corollary 1. If T is a cnu. contraction with scalar-valued. characteristic
Sunction @(A)#0, then T is cyclic and {TY is commutative.

Proof. T is certainly a c.n.u. weak contraction which satisfies condition
(vi). The assertion follows from the remark we made above.
Part of the previous result was obtained earlier by Sz.-NAGy and Foiag [14].

Corollary 2. Let T be a c.n.u. multiplicity-free weak contraction on H. If
K is an invariant subspace for T such that T|K is also a weak contraction, then T|K
is multiplicity-free. ’

Proof. Since T is multiplicity-free, we have pp=1, so that pge=1.
Therefore, if T|K is a- weak contraction, it follows that it is multiplicity-free.

The author wishes to express his gratitude to Dr. H. Bercovici for suggesting
several improvements, especially the simplification of the proof of Theorem 5.
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K. B. Athreya—P. E. Ney, Branching processes (Die Grundlehren der mathematischen Wissenf
schaften in Einzeldarstellungen, Bd. 196), XI+287 pages, Springer-Verlag, Berlin—Heidelberg—
New York, 1972.

This book can be regarded as a continuation of T. E. Harris’ book (Springer-Verlag, 1963).
Chapter I gives a brief summary of classical results on Galton—Watson processes, and a more
detailed treatise of its modern refinements, e.g. the decomposition of the supercritical branching
process. )

Chapter II develops the potential theoretical tools and their application to the discrete
time case. '

One of the most interesting theorems here is the sharp limit law due to the authors. Chapter
III deals with the Markovian case using Kolmogorov’s equations and martingale convergence theo-
rems, and investigates the problem of imbedding a Galton—Watson process into a continuous
time Markov branching process. '

Chapter IV is devoted to the so called age-dependent process. It is'not Markovian and the
methods of the previous chapters do not apply. Such models were introduced and first studied by
R. Bellman and T. E. Harris (1952). The key tool here is the renewal equation.

Chapter V generalizes results proved in previous chapters for the multitype case.

Chapter VI examines special processes, e.g. the branching diffusion, branching processes
with random environments and the continuous state branching processes and processes with im-
migrations. The authors cite an abundance of literature. After every chapter there are complements
and problems, including open ones.

The treatment is thorough, precise and easy to follow.
A. Kramli (Budapest)

N. L. Biggs, Interaction models, London Math. Soc. Lecture Notes Series 30, 101 pp., Cambridge
University Press, Cambridge—London—New York—Melbourne, 1977. '

Have you ever thought that the Four Colour Problem is in any connection with ferromagnetism?
Well, this book shows such a connection!

To be less sensational but more specific, it has been the Four Colour Problem which has
inspired most of the research done in connection with the so-called chromatic polynomial. This
polynomial pe(x) expresses the number of colorations of the graph G in x colors. Graph theorists,
primarily G. D. Birkhoff, H. Whitney and W. T. Tutte have developed several expansion formulas,
generalizations, and other properties of this polynomial. )

Meanwhile physicists, among others Ising, Mayer, Lieb etc. have studied “interaction models”,
which can be described in terms of a graph: the vertices are particles, and interaction exists between
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adjacent vertices only. Each particle has a finite number of possible states, and each interacting pair
contributes to the Hamiltonian H of the system depending on their states. Important physical
phenomena, like phase transitions, can be described in terms of the expression X exp H (summed
over all states of the particles). This expression has properties very similar to those of the chromatic
polynomial, in fact, the chromatic polynomial is a special case of it. Various properties and expan-
sions of the chromatic polynomial have their analogues and generalizations in physics; most of
them have been discovered independently but some discoveries have been inspired by this analogy.

“The lectures on which this book is based were intended for a ‘mixed audience’ ... some of
the audience were basically physicists, and others were basically mathematicians... The desire to be
intelligible to two classes of students has been my main preoccupation in preparing the lectures
and writing the book.” So the book may serve as a bridge between theoretical physicists and mathe-
maticians working on two ends of the same problem, and who have now caught sight of each other.

The author also points out: “It would be idle to pretend that the material treated in this book
is in its final form... If some of my errors stimulate other mathematicians to put things right, then
the book will have served its purpose.” Indeed, one feels the air of openness and the temptation to
join the research when reading the book. And this, 1 think, is a good reccommendation.

L. Lovdsz (Szeged)

R. P. Burn, Deductive Transformation Geometry, XI+ 121 pages, Cambridge University Press,
1975.

There are two usual types of descriptions of the relationship between the Euclidean plane and
the real number system. A geometric description was made b'y Hilbert under which the real number
system emerged from postulated properties of points and lines. Algebraic descriptions explicitly
start from the real number system, and construct points as ordered pairs, lines as linear subsets of
ordered pairs of real numbers. The main aim of this book to show which properties of the real
number system are required to establish particular theorems in geometry. The approach will be
geometric in that the axioms will all be axioms of or about incidence, but the method will be algebraic,
in that the existence and properties of a coordinate system will be obtained by exploring groups of
transformations.

In Chapter 1 the affine incidence axioms in the plane are assumed, only to see what kind of
geometry can be done without any algebraic properties of real numbers. The study of finite affine
geometries gives rise to a great number of easily stated, but as yet unsolved problems. At the end
of this chapter, by adjoining a line of new points to the affine plane, the projective plane is con-
structed. Chapter 2 goes back to the affine plane, defines parallel projections of lines, and affinities
of lines as products of parallel projections. The affinities of a line onto itself which are products of
two parallel projections are called (affine) permutations. Addition and multiplication of permutations
can be defined in the usual way. By using the permutations, coordinate systems on lines can be intro-
duced. Postulating that the permutations of a line form a group, the coordinate elements form an
Abelian group under addition, and for the (not necessarily commutative) multiplication a one-sided
distributive law follows. Chapter 3 is devoted to the study of those transformations of the plane
which map each line onto a parallel line. There are two classes of these transformations; those with
no fixed points, called translations, and those with just one fixed point, called enlargements. In
Chapter 4 those planes are considered which admit all possible translations and enlargements. These
are the Desarguesian planes. In these planes the underlying algebra of coordinates satifies both
distributive laws. Chapter 5 deals with collineations of the plane, in particular with collineations
having a line of fixed points, called axial collineations: The theorems obtained here are strikingly
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analogous to those obtained in Chapter 3 for translations and enlargements. In Chapter 6 a geo-
metric description is given for those planes which have a field as their underlying algebra.-It turns
out that these are the Pappian planes. In Chapter 7 reflections are studied. Chapter 8 compares
different systems of axioms given by Hilbert, Birkhoff, Moise and others.

The book is written in a well readable way. '
" L. Gehér (Szeged)

Combinatorial Surveys, Proccedmgs of the Sixth British Combinatorial Conference, Edited
by P. J. Cameron, 226 pages, Academic Press, London—New York—San Francisco, 1977 -

The book consists of lectures of invited speakers of the Combinatorial Conference held at
Egham (London), 1977. The chapters, as the title shows, are survey-type, therefore the reader receives
a good cross-section of advanced combinatorics. The index of the book shows both the unity of
the subject (with designs, graphs, matroids, projective spaces as prevailing themes) and its diversity
(campanology, the golden ration, parallelism, Ramanujan numbers, root systems, etc.). This Pro-
ceedings is a useful reference book.

Chapter 1 (F. BUEKENHOUT, What is a subspace?) investigates the abstract’ concept of subspace
and exhibits how to use it for graphs, matroids and block designs.

Chapter 2 (P. J. CAMERON, Extensions of design: variations of a theme). Itis an old result of
the theory of designs that a projective plane can be extended by one point to a 3-design only if its
order is 2, 4 or (possibly) 10. Generalizations in three different directions are given.

Chapter 3 (L. LovAsz, Flats in matroids and geometric graphs) is devoted to show how to
use the concept of a geometric graph to unify the theory of z-critical graphs and to prove a con-
jecture of Gallai and some new Helly-type theorems on flats in geometries.

Chapter 4 (D. K. Ray-CHAUDHURI, Combinatorial characterization theorems for geometric
incidence structures) provides a thorough and deep survey of the theory of geometric incidence
structures. It contains 29 theorems and embraces a great part of this theory. The emphasis is on
theorems asserting that certain incidence structures are ‘‘coordinatizable’’, i. e. can be derived
from geometries over finite fields.

Chapter 5 (N. J. A. SLOANE, Binary codes, lattices, and sphere-packings) surveys a surprising
connection between binary codes on the one hand, and sphere-packings and lattices in R™ on the
other hand.

Chapter 6 (A. T. WrHiTE, Graphs of groups on surfaces) deals with Cayley graphs of groups,
embedding of them in a surface, voltage and current graphs, genus etc.

Chapter 7 (D. R. WoobaLL, Zeros of chromatic polynomials) provides an introduction to the
theory of chromatic polynomials of graphs. The emphasis is on the location of real zeros, and on

the multiplicities of the integer zeros.
. A. Frank (Budapest)

R. D. Driver, Ordinary and delay differential equations (Applied Mathematical Sciences, Vol.
20), IX+ 501 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1977.

The so-called functional differential equations arose a long time ago in the history of mathe-
matics. These are differential equations, in which the unknown function and its derivatives occur
with various different arguments. Nowadays such equations play a particularly important role in .
applications; they are motivated by problems in control theory, physics, biology, ecology, economics
and the theory of nuclear reactors. During the past two or three decades a number of valuable
monographs on this subject were published, but none of them can be considered as an introduc-
tory text.
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This book is an excellent first course on delay differential equations (this means an equation
expressing the highest order derivative of the unknown function x at time ¢ in terms of x and its
lower order derivatives at ¢ and at earlier instants). One of its advantages is that the author gives
simultaneously an introduction to ordinary differential equations also. The book is especially well-
organized from the point of view of didactics. This is mostly due to the great number of examples
worked out. They prepare the reader excellently for understanding the theorems and convince him
of their applicability. Some of the examples are very interesting in themselves, e.g. population growth,
electrical circuits, two-body problem of electrodynamics, control systems, and numerous mechanical
examples. At the end of the chapters several problems of various difficulty are listed, with answers
or hints.

The structure of the book is the following. First comes the uniqueness of the solution of ordinary
differential equations satisfying a Lipschitz condition. The properties of the solutions of ordinary
linear systems are treated. Further on existence and stability problems are discussed for ordinary
and delay equations simultaneously. The final chapter is devoted to autonomous differential
equations. ’

The book is recommended to lecturers wishing to introduce delay differential equations in
the senior and beginning graduate level curricula. It is suitable also for students and users of mathe-

matics interested in differential equations.
L. Hatvani—L. Pintér (Szeged) -

Lars G;uding, Encounter with Mathematics, X+270 pages, Springer-Verlag, New York—
Heidelberg—Berlin, 1977.

This book is meant mainly for people on the level of a junior student and aims to give a general
but comparatively comprehensive picture of some of the central topics of mathematics. Roughly
speaking, these are the branches initiated before the middle of the last century, but their development
is mostly followed up to quite recent results. It is by no way an easy piece of reading for a beginner
so that it seems to be more apt to inform students already interested in mathematics than to intrigue
those maintaining a lukewarm relation to it.

After an introductory chapter on the interrelation between mathematics and reality and a
short account on the basic facts and problems of number theory, chapter 3 deals with algebra (equa-
tions, groups, rings, Galois theory). It includes Hilbert’s Nullstellensatz with proof, The next section
(Geometry and linear algebra) gives among others the foundations of Banach and Hilbert spaces,
including the contraction theorem for Banach spaces with full proof and the spectral theorem for
compact linear operators (proved for finite dimensions only). Speaking about continuity, the author
presents Dedekind’s theory of real numbers, uniform continuity and uniform convergence, and
the notion of a topological space. After an interlude on the history of mathematics in the seven-
teenth century, chapters 7 and 8 deal with differentiation and integration and give a rather thorough
picture of both fields. However to work with the Grassmann algebra is perhaps too formal at this
level. — Fourier transform and the inversion formula are proved, to be used in the chapter treating
probabilities. The section on series deals, among others, with the Weierstrass approximation the-
orems. The section on probability presents the basic classical results, a bit of statistics and of physi-
cal applications. In chapter 11 (Applications) mathematical modeling is illustrated on acoustics.
The last section deals with sociology, psychology, and teaching of mathematics.

All in all, the material the book ranges over is rather large, even too large. This is partly com-
pensated by a clear and well-considered treatment. It was also a good idea to give a few selected
passages of classical works in the corresponding fields. There are a lot of misprints, several embar-

rassing ones. .
G. Polldk (Szeged)
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D. Gilbarg—N. S. Trudinger, Elliptic partial differential equations of second order (Grundlehren
der mathematischen Wissenschaften 224), X-+401 pages, Springer-Verlag, New York—Heidelberg—
Berlin, 1977.

The book grew out of graduate courses held by the authors at Stanford University.

The theory of partial differential equations is now so large that a comprehensive treatment is
impossible. Every book contains a small part of the theory only. The tools also vary considerably,
there are books written in classical style with several applications while others are making use of
concepts of modern mathematics. The present authors’ aim was to write a book on second order
elliptic partial differential equations for a broad spectrum of readers, interested in the various con-
cepts, methods and techniques which have been developed in this theory.

The book consists of two parts. In Part One, Chapters 2—S8, the linear theory is developed.

Naturally, Laplace’s and Poisson’s equations are the starting points for the study of classical solu-
tions. The Dirichlet problem for harmonic functions with continuous boundary conditions is in-
vestigated through the Perron method of subharmonic functions, emphasizing the maximum prin-
ciple and the barrier concept for studying boundary behavior. The Holder estimates for the solution
of the Poisson equation are derived from an analysis of the Newton potential. Ch. 6 develops an
extension of potential theory based on the fundamental observation that equations with Holder
continuous coefficients can be treated locally as a perturbation of constant coefficient equations.
Ch. 8 on “Generalized solutions and regularity”” shows that by Hilbert space methods a more general
approach can be achieved to linear problems. Throughout the book — whenever it is possible —
the authors emphasize the connections and applications to the nonlinear theory; thus the regularity
theory and Holder estimates of generalized solutions are fundamental to the nonlinear theory.
' Part Two deals with the Dirichlet problem and related estimates for quasilinear equations,
In Ch. 9 maximum and comparison principles are given for the solutions of quasilinear equations.
Ch. 10 contains fixed point theorems of Schauder, Leray—Schauder and Brouwer, and some of their
applications. Chapters 12, 13 and 14 present gradient estimates. Here we find the fundamental
results of Ladyzhenskaya and Ural’tseva, the Jenkins and Serrin criterion for solvability of the
Dirichlet problem for the minimal surface equation.

The work is almost entirely self-contained, some basic facts of real analysis and linear algebra
are supposed only. Much of the material appears in a single volume for the first-time. A number of
interesting problems, historical material, and bibliographical references are added to each chapter.

Summing up, if one wishes to see a variety of modern methods and their applications to some
classical problems of elliptic partial differential equations, examples to illustrate the developments
a few up-to-date results, and references to further study, all gathered in a book which is written
carefully and in an enjoyable style, then he should read this book.

L. Hatvani—L. Pintér (Szeged)

Computing Methods in Applied Sciences and Engineering, Second International Symposium,
December 15—19, 1975, Iria Laboria, Institut de Recherche d’Informatique et d’Automatique:
Edited by R. Glowinski and J. L. Lions (Lecture Notes in Economics and Mathematical Systems’

134), VIII + 390 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976.

This book consists of a selected part of the lectures which were presented during the symposium
indicated in the title. It has five parts: Numerical Algebra, Finite Elements, Dynamical Problems,
Identification and Inverse Problems, and Integral Methods. .

- Part 1 treats the solution of large linear sparse systems of linear algebraic equations arising
at the application of the finite element method (by Alan George), hypermatrix algorithms in con-
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nection with the solution of linear equations or eigenreduction (by K. A. Braun, G. Dietrich, G.
Frik, Th. L. Johnson, K. Straub, and G. Vallianos), iterative methods for the solution of non-com-
patible systems of linear equations, occurring in connection with the solution of systems of difference
equations approximating the Neumann boundary problem for elliptic differential equations (by
Y. A. Kuznetsov), a generalized conjugate gradient method for nonsymmetric systems of linear
equations (by P. Concus and G. H. Golub), and spline approximation in Euclidean spaces (by
V. A. Vasilenko).

Part II presents the mathematical foundations of hybrid and mixed finite element methods for
plate bending problems described by fourth order elliptic equations (by F. Brezzi); the result that
the strain energy of a shell is elliptic, using W. T. Koiter’s linear model (by M. Bernadou and P. G.
Ciarlet); the homogenization approach in engineering, where homogenization is meant as a method
which studies the macrobehaviour of a medium by its microproperties (by Ivo Babuska); and finite
element approximations for solving elastic problems (by J. Nitsche).

Part III deals with a finite element approximation for parabolic equations via an operator
theoretical approach (by Hiroshi Fujita): a variational method for increasing the accuracy of the
difference scheme in a close relation to the Richardson extrapolation (by G. I. Marchouk and V. V.
Shaydourov); Runge—Kutta methods for the approximation of the evolution problem (by M.
Crouzeix); and continuous and discontinuous finite element methods for solving the neutron trans-
port equation (by P. Lesaint).

Part IV contains the survey papers of J. Cea (on domain identification problems), J. M. Bois-
serie and R. Glowinski (on optimization of rotational membranes), R. Glowinski and O. Pironneau
(on optimal control), Masaya Yamaguti (on solidification), J. Galligani (on numerical problems
of earth science), T. Dupont and H. H. Rachford Jr. (on a Galerkin method for liquid pipelines)-

In Part V two papers give a glimpse into the integral equation methods applied to elasticity
problems (by J. C. Lachet and J. O. Watson) and to fluid mechanics (by T. S. Luu), and a paper
reviews curved finite element methods for the solution of singular integral equations on surfaces
in R® (by J. C. Nedelec).

Of the above papers 13 are written in English, 9 in French. Each paper is followed by a rich
and up-to-date bibliography.

The book is warmly recommended for use to research workers in numerical analysis as well

as to experts in theoretical physics and engineering.
F. Moricz (Szeged)

H. Grauert—R. Rennert, Theorie der Steinschen Riume (Grundlehren der mathematischen
Wissenschaften, 227), XX+ 249 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977.

The central results of complex function theory show that the fundamental difficulty in gener-
alizing the classical theorems for a single variable to several variables is that in C" there exist domains
which are not domains of holomorphy. (G C" is called a domain of holomorphy if there is a holo-
morphic function on G which is singular in every boundary point of G). Since the main problems
of complex analysis are solvable for domains of holomorphy, the natural question was raised how
can one axiomatize intrinsically the complex spaces which are generalizations of domains of holo-
morphy and for which the classical results of complex analysis can be extended. A Stein space X is
such a generalization of a domain of holomorphy, which in the singularity-free case (that is when
X is a complex analytical manifold) can be characterized by the following properties:

(i) X is holomorphically separable, i.e. for every x,€X there are holomorphic functions
f1s .- fm on X such that x, is isolated in the set {x€X: f1(x)=...=fn(x)=0}.
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(i)' X is holomorphically convex, that is, for every compact subset K < X its holomorphically
convex hull R is compact, where K is defined by

K={xeX: | f(x)i=sup]| fl, f holomorphic on X}.
K

The theory of Stein spaces is developed using the methods of sheaf theoretic cohomology
theory. A breaf survey on this subject is given in Chapters A and B. In Chapter I the coherence
theorems on finite holomorphic maps are treated. Chapter 11 is devoted to the de Rham and Dolbeault
cohomology theory. In Chapters III—IV the main theorems on Stein spaces (Theorems A and B)
are proved, which are the generalizations of the Cartan—Serre theorems on singularity-free Stein
mainifolds. Chapter V contains the fundamental applications of the main theorems to Cousin and
Poincaré problems and to characterizations of Stein spaces. In Chapter VI the finite dimensionality
theorem of Cartan and Serre is generalized to the complex spaces with singularities. Chapter VII
treats the theory of compact Riemann surfaces, applying the preceding general results.

The book is a fundamental monography on the subject, it is well organized, the presentation
is always clear. The reader is assumed to have a certain knowledge of complex analysis and sheaf

theory.
P. T. Nagy (Szeged)

H. Grauert—K. Fritzsche, Several Complex Variables (Granduate Texts in Mathematics),
VHI+ 207 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976.

This textbook is an excellent introduction to complex analysis in several variables, suitable
for undergraduate students. The reader is only supposed to be familiar with elementary calculus,
with the theory of complex functions of a single variable and with a few elements of algebra and
general topology. In accord with its introductory character the book treats many examples and
special cases in full detail and with numerous illustrative figures. At the end of the chapters the
authors give a survey of the fundamental results of the theory, tempting the readers to further study.

In Chapter I the notion and basic properties of holomorphic functions of several variables
are introduced. In contrast to the one-variable theory, there exist domains G in C" such that every
holomorphic function on G has a holomorphic continuation beyond G. Domains G < C" for which
such a continuation of holomorphic functions on G do not exist are called domains of holomorphy.
In Chapter Il some characterizations of domains of holomorphy are given. Chapter III is devoted
to the algebraic treatment of the ring of convergent power series and to its applications to the theory
of analytic sets, which are locally the sets of zeros of holomorphic functions. Chapter IV is a brief
introduction to sheaf theory. In Chapter V the notion of complex manifolds and Stein manifolds are
introduced. (The latter is a natural generalization of the domain of holomorphy.) Here a lot of
examples of complex manifolds are discussed. In Chapter VI the cohomology theory of sheaves is
treated. It is a useful generalization of the Cech cohomology theory and provides a frame to express
the main results for domains of holomorphy and Stein manifolds. Chapter VII is devoted to the
analysis of real differentiability in complex manifolds. The notions of tangent spaces, differential
forms and exterior derivation are introduced and the theorems of Dolbeault and de Rham are

proved.
P. T. Nagy (Szeged)

James E. Humphreys, Linear Algebraic Groups (Graduate Texts in Mathematics), XIV 247
pages, Springer-Verlag, New York—Heidelberg—Berlin, 1975.

The theory of linear algebraic groups has been studied extensively during the past twenty
years following the fundamental work of A. Borel, Chevalley, Steinberg, Tits and others, and has
made a significant progress in a number of areas: semisimple Lie groups and arithmetic subgroups,
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p-adic groups, classical linear groups, finite simple groups, invariant theory, etc. This theory is
hardly accessible for beginners, because in the fundamental monographs on the subject a substantial
‘familiarity with the abstract methods of algebraic geometry is assumed. This book is to serve as
a detailed textbook for graduate students on affine algebraic groups over an algebraically closed
field K, containing a very useful introduction to algebraic geometry.

An affine algebraic group G is defined as an affine algebraic variety (i. e. a set of common
zeros of a finite collection of polynomials in an affine space K™), endowed with a structure of a group
such that the group operations (x,y) - xy and x - x~! are polynomial functions on G. The
standard examples of affine algebraic groups are the classical linear groups: the general linear group
GL(n, K), the special linear group SL(n, K), the symplectic group Sp(n, K), the special orthogonal
group SO(n, K). It is true that any affine algebraic group is “linear’’ in the sense that it is isomorphic
with an algebraic subgroup of some GL(n, K).

The building of the theory of affine algebraic groups is considerably paralle!l to the theory of
Lie groups, only the differential topological terms and methods in Lie group theory are replaced
by the terms and methods of algebraic geometry. One can define an intrinsic algebraic notion of
tangent space to an algebraic variety at a point, which in the case of an algebraic group can be
endowed with an additional Lie algebra structure. This way a functor can be defined from the
category of affine algebraic groups to the category of Lie algebras, and with the help of this functor
the structure theory of Lie algebras can be applied to the theory of affine algebraic groups.

The basic concepts of algebraic geometry are introduced in Chapter I. The treatment is detailed
only according to necessity and is not scheme-oriented. In Chapters II—V the basic facts about
algebraic groups, their Lie algebras and homogeneous spaces are treated. In Chapters IV—IX
special questions, essential tools for the structure theory are discussed: the Jordan—Chevalley
decomposition, diagonizable groups, nilpotent and solvable groups, Borel subgroups, maximal tori
etc. Chapter X is devoted to the study of structure theory of reductive groups, especially properties
of the root systems, normal and parabolic subgroups. In Chapter XI the representations and classi-
fication of semisimple groups are treated. Chapter XII contains a survey, without proofs, of the
rationality properties of algebraic groups. :

The reader is supposed to be conversant with the standard results of commutative algebra and
the structure theory of semisimple Lie algebras. The treatise provides a rich and up-to-date account
of the theory of linear algebraic groups.

P. T. Nagy (Szeged)

J. Lindenstrauss—L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, 188 pages, Springer-
Verlag, Berlin—Heidelberg-—New York, 1977,

The present volume deals with sequence spaces; the notion of a Schauder basis plays a central
role here. The text is divided into four chapters. Chapter 1 contains a quite complete account of the
main results on Schauder bases in general Banach spaces. Some notions related to Schauder bases,
e.g. approximation properties, biorthogonal systems, Schauder decompositions are discussed in
detail. Chapter 2 is devoted to the study of the classical sequence spaces /P(1=p=) and ¢,. Sub-
spaces and characterizations of these spaces among Banach spaces are studied. This chapter contains
also a discussion of general results related to the approximation property. The last section deals
with extension properties of ¢, and /=, the lifting property of I* and the automorphisms of these
spaces. In Chapter 3 the special properties of symmetric bases and the relation between symmetric
bases and unconditional bases are discussed. The final chapter deals with the study of the structure
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of some particular classes of spaces with symmetric bases, mainly Orlicz sequence spaces, and gives
a detailed discussion of such spaces.
Familiarity with the basic results of real analysis and functional analysis is assumed. The book
is highly recommended to anyone who is interested in Banach space theory.
L. Gehér (Szeged)

P. Medgyessy, Decomposition of superpositions of density functions and discrete distributions
(Disquisitiones Mathematicae Hungaricae 8), 308 pages, Akadémiai Kiad6, Budapest, 1977.

The main problem discussed in this book reads as follows. Given the graph of the superposition
of an unknown number, say N, of components (of unimodal density functions or discrete distribu-
tions) of a given type, how is it possible to determine N and obtain approximate values of some of
the unknown parameters of the superposition? Problems of this nature arise e.g. in analysing
spectra in spectroscopy or nuclear physics, in biology, in mathematical statistics etc. The book is
a successful attempt to treat these problems in a unified way making use of rigorous mathematical
tools.

A little monograph “Decomposition of superpositions of distribution functions’” (Akadémiai
Kiadé, Budapest, 1961) was already published by the present author. As far as we know, this was
the first systematic elaboration on such problems. Unfortunately, several problems that needed to
be treated were numerically incorrect (ill-posed) thus their treatment was unsatisfactory there.
A systematic investigation of handling ill-posed problems started in 1962. On the other hand, the
author also found new ideas and methods in connection with the decomposition problems, as a
result of which the whole discipline has taken a more coherent form.

The present book is not a revised or enlarged edition of the earlier work. Naturally, the main
problem and certain results are the same in both books. However, they are restricted here to a
narrower area: to superpositions of density functions and of discrete distributions, while the treat-
ment in the earlier book was excessively general. As to the rest, however, this work is thoroughly
new. The fundamental scope of the present book essentially belongs to numerical analysis, and not
to probability theory or mathematical statistics. Only methods that can be realized numerically
are considered, and several former procedures analytically elegant in themselves but useless in
practice are omitted. In spite of this the majority of tools come from probability theory.

The book consists of five chapters, divided and subdivided into paragraphs, sections and
subsections. A Postscript summarizes the possible tasks of future research. Remarks, historical
comments, unanswered questions etc. are collected at the end of each paragraph under the title
Supplements and problems. They may also point out the future tasks in this field.

Chapter I is an introduction. It provides the basic concepts and formulates the so-called de-
composition problem. For density functions this reads as follows. Let f(x; &, ) be a two-parameter
density function of known analytical form, and let a superposition

80 = I puf (x5 e, B

be given, where N, px, ox, P (k=1, 2, ..., N) are unknown parameters; there are no identical pairs
(ax, Bx) and px=>0. We have to estimate these parameters or a part of them on the basis of the know-
ledge of g(x).

Chapter II summarizes the mathematical tools applied in the book. Many of them are due to
the author, e.g., a new characterization of the shape (of the “narrowness’’) of the graph of a density
function or discrete distribution (§§ 4 and 5).

Chapter III is devoted to the decomposition of superpositions of density functions essentially
by means of the unimodality preserving, narrowness-increasing transformations. Historically the
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first decomposition problem: the decomposition of superpositions of normal density functions,
investigated by N. Sen in 1922, appears here as a particular case within a group of problems. This
chapter also includes the decomposition of superpositions of exponential density funcions, which
is more difficult than the former one. This problem is important in many fields of natural sciences, too.

Chapter IV deals with the decomposition of superpositions of discrete distributions. The
methods here differ from those in the previous chapter essentially in their discrete character. From
the viewpoint of numerical analysis the situation is much easier here; in the most important cases
ill-posed problems do not appear and every theoretically good method can be adopted in practice.

Chapter V surveys those numerical methods which are of use in decomposition problems, e.g.
the solution of integral equations of the first kind, numerical computation of convolution transforms,
etc. The most important part of this chapter deals with the numerical treatment of ill-posed problems.
Among others, the so-called regularization method invented by A. N. Tihonov in 1963 is given in
detail, as well as several methods of the author, which have been proved useful in certain spe-
cial cases.

The reading of the book requires only a few notions from probability theory and numerical
analysis. A great number of figures helps the reader to understand the text. There is an abundance
of numerical examples taken from practice.

At the end References, complete up to 1975, list the papers comprising nearly 400 items.
Certain items from the References were picked out to compose a Chronological Bibliography.

To sum up, this well-written book fills in a gap in the literature. It provides a rich and up-to-date
material of the fast-growing discipline indicated in its title, whose significance is becoming crucial
for practice.

It is no exaggeration to say that the book is indispensable for everyone, either mathematician
or specialist in a field of sciences, dealing with decomposition problems. It is also very useful
for all those mathematicians whose interest is in probability theory, mathematical statistics or

numerical analysis.
F. Moricz (Szeged)

N. Rouche—P. Habets—M. Laloy, Stability theory by Liapunov’s direct method (Applied
Mathematical Sciences, Vol. 22), XII+396 pages, Springer-Verlag, New York—Heidel-
berg—Berlin, 1977.

In 1892 A. M. Ljapunov invented a new method — called by himself a direct method — for
the study of stability and asymptotic properties of solutions of ordinary differential equations.
By the aid of this method, based upon the study of the behaviour of certain scalar auxiliary “energy-
like”’ functions along the solutions, he solved numerous important problems in theoretical mechanics
and in the qualitative theory of differential equations. The direct method was further developed by
N. G. Cetajev and his school in the 1930—40’s. In the 1950’s the development was even more rapid
since the method proved to be most useful in the study of stability problems in control systems and
in biological, physical, technical and economical systems described by ordinary differential equations.

Although this development is still going on, no book wholly devoted to the subject was pub-
lished since 1967, when W. Hahn’s book appeared. So an up-to-date monograph was needed to
synthetize modern results of the theory, to describe its present state, and to make users of mathe-
matics acquainted with the latest interesting applications taken from various fields. This excellent
book answers these purposes in every respect. It is a collective work based on the material of a seminar
held at the University of Louvain during the academic year 1971—72. Besides the three authors,
C. Risito, K. Peiffer, R. J. Ballieu, Dang Chan Phien and J. L. Corne also worked on some chapters.

In the first two chapters the authors give a compact but intelligible introduction to the basic
concepts, theorems and topics of stability theory, which are already considered classical.
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Chapter III is a pearl in the book. As Lagrange stated and Dirichlet proved, a mechanical
equilibrium of a conservative system is stable at each point where the potential function has a strict
minimum. In this chapter, the authors first study some versions of this theorem. Next, they consider
the inversion of this theorem, a classical incompletely solved problem of theoretical mechanics:
In the two final sections the effect of dissipative and-gyroscopic forces on stability properties of an
equilibrium position is treated. The chapter is very valuable also because this topic was not considered
in earlier monographs.

The following three chapters are: IV. Stability in the presence of first integrals; V. Instability;
VI. A survey of qualitative concepts.

A set of the phase space is called attractive if every solution starting near the set tends to the
set as t—. Chapters VII and VIII deal with this concept for autonomous and nonautonomous
equations, which have been recently studied in addition to asymptotic stability.

Chapter IX is a splendid review of the comparison method, which can be considered as the com-
bination of the classical Ljapunov method with the theory of differential inequalities.

The subject-matter of the book is fortunately selected so that the reader is informed of what
happened in the Ljapunov theory of stability during the last decade. The style is always clear,
precise, but not too abstract even for users of mathematics. For them the latest significant and
characteristic applications of Ljapunov’s direct method will especially be useful, e.g. stability and
instability of the betatron, nonlinear electrical networks, the ecological problem of interacting
populations, stability of composite systems.

This book is indispensable for specialists in stability problems, or more generally, in the quali-
tative theory of differential equations, but it is also useful for students and for everybody interested

in applications of differenctial equations.
L. Hatvani—L. Pintér (Szeged)

The State of the Art in Numerical Analysis, Proceedings of the conference held at The Univer-
sity of York, England, April 12—15, 1976; organized by The Institute of Mathematics and its Appli-
cations; edited by D. A. H. Jacobs; XIX+978 pages, Academic Press, London—New York—San
Francisco, 1977.

The book surveys those areas of numerical analysis in which considerable advance has been
achieved during the last ten years (1965—1975). It provides descriptions of theories, comparisons
of methods, computational techniques and even algorithms, while ihdicating in some cases where
current research efforts are being concentrated, and in others where future research might profitably
be directed.

The book is divided into seven Parts, each of which comprises several chapters. Alternatively
each Part of the book can be consulted to obtain a survey of one branch of numerical analysis, or
all the Parts together to obtain an up-to-date overview of the many different branches and topics
of numerical analysis.

Part 1: Linear Algebra. Very valuable contributions are made here by J. H. Wilkinson (Some
Recent Advances in Numerical Linear Algebra giving, among others, a concise account of the square-
root-free Givens transformations, the QZ algorithm), P. E. Gill and W. Murray (Modification of
Matrix Factorizations after a Rank-one Change), and J. K. Reid (Sparse Matrices ).

Part I1: Error analysis. It begins with the explanation of the ideas of error analysis made by
C. G. Broyden, then follow contributions by N. Metropolis (Methods of Significance Arithmetic)
and K. Nickel (Interval-Analysis ). .

Part I11: Optimization and Non-Linear Systems. Here the most remarkable chapters are by
K. W. Brodlie ( Unconstrained Minimization) and J. E. Dennis, Jr. (Non-Linear Least Squares and
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Eguations ). The first gives a rather comprehensive account of the quasi-Newton methods from the
original conception to modern implementations and new ideas, while the second treats unconstrained
minimization, non-linear squares, and simultaneous solution of non-linear equations as a trilogy
of problems. There follow contributions by P. E. Gill and W. Murray ( Linearly-Constrained Problems
including Linear and Quadratic Programming), R. Fletcher (Methods for Solving Non-Linearly
Constrained Optimization Problems ), and E. M. L. Beale (Integer Programming ).

Part 1V: Ordinary Differential Fquations and Quadrature. The initial value problem (including
the problem of stiff systems) is discussed by J. D. Lambert and the boundary value problem by
J. Walsh. J. E. Lyness (Quid, Quo, Quadrature ) deals in detail with the principles of automatic quadra-
ture routines and multidimensional quadrature.

Part V: Approximation Theory. 1t contains three chapters: Numerical Methods for Fitting
Functions of Two Variables by M. J. D. Powell, Recent Results in Approximation Theory by D.
Kershaw, and 4 Survey of Numerical Methods for Data and Function Approximation by M. G. Cox.

Part VI: Parabolic and Hyperbolic Problems consisting of the following chapters: Finite Element
Methods in Time Dependent Problems by A. R. Mitchell, Initial-Value Problems by Finite Difference
and Other Methods by K. W. Morton with special emphasis on stability problems and convergence,
Splitting Methods for Time Dependent Partial Differential Equations by A. R. Gourlay.

Part VII: Elliptic Problems and Integral Equations. An exhaustive study is given by L. Fox
( Finite-Difference Methods for Elliptic Boundary-Value Problems), presenting new developments
in economic direct methods, strongly implicit iterative and factorization methods, mechanization
of some acceleration devices, etc. The further chapters are by R. Wait (Finite Element Methods for
Elliptic Problems) and Ben Noble (The Numerical Solution of Integral Fquations).

It may be anticipated that a large number of those practicing numerical analysis in industry
or at universities and technical colleges will find great value in reading this book. Their knowledge
and appreciation of the different aspects of numerical analysis should be greatly increased. It will
also be of great value for teachers, as a source book of up-to-date information. Useful references

for further study and a rich bibliography are added to this valuable work.
F. Moricz (Szeged)

André Weil, Elliptic functions according to Eisenstein and Kronecker (Ergebnisse der Mathematik
und ihrer Grenzgebiete, Band 88), 93 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976,

In the first part of the book the author successfully presents Eisenstein’s approach to elliptic
functions. One of the most important virtues of this approach is that it supplies directly (without
recourse to function theory) many formulas on elliptic functions, in the explicit form, appropriate
for their use in number theory.

The principal chapters of this part are: Trigonometric functions, The basic elliptic functions.
Basic relations and infinite products.

The second part gives a systematic exposition of applications of Eisenstein’s approach. It also
reinterpretes some of the results of Kronecker using the theory of distributions.

The principal chapters of this part are: Kronecker’s double series, Pell’s equation and the

Chowla—Selberg formula.
J. Németh (Szeged)

- Alan I. Weir, General Integration and Measure, vol. 2, XI+298 pages, Cambridge University
Press, 1974.

~ The present volume (comprising Chapters 8—17 of the work) is written as “‘self-contained’
as possible. Chapter 8 introduces the notion of the Daniell integral. The fundamental Monotone
and Dominated Convergence Theorems are established. Measurable functions are defined in terms
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of integrable functions by using the idea of truncation of a function by another function. The
notion of measure follows naturally. Stone’s theorem relating measure and integration is proved.
In Chapter 9 Lebesgue—Stieltjes integrals are defined as Daniell integrals on spaces L(R¥), which
contain all the step functions (or equivalently all the continuous functions on R* which vanish
outside a compact set). Various forms of Riesz’s Representation Theorem for bounded linear
functionals on the space of continuous functions on a compact topological space provide the subject
matter of Chapter 10. In Chapter 11 the general notion of measure is introduced, the extension of
a measure on a ring to a measure on a g-algebra is done by means of the Daniell integral. Chapter
12 contains a classical approach of the problem of integration with respect to a measure on a o-
algebra. Chapter 13 is devoted to the study of uniqueness of extensions of measures in the case
where the universal space is o-finite with respect to the measure. In Chapter 14 product measures
are defined as extensions of a measure on elementary product sets to a measure on a g-algebra.
Chapter 16 introduces the notions of real and complex measures. The Jordan Decomposition Theo-
rem shows the connection between positive and real or complex measures. In Chapter 17 the Radon—
Nikodym theorem is proved both in measure theoretic form and for Daniell integrals, and used fora
study of dual spaces of L? spaces. A short Appendix gives a summary of the most important topolo-
gical notions used in the text. All the chapters end with exercises; the solutions can be found at the
end of the book.

An elementary knowledge of topological spaces is assumed. The book is offered for students.

L. Gehér (Szeged)
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