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f 

GÉZA FODOR 
(1927—1977) 

It is a great loss to Hungarian science, to the University of Szeged, and to 
Acta Scientiarum Mathematicarum, that Professor Géza Fodor, member of the edi-
torial board of these Acta, prematurely died on September 28, 1977. 

He was born in Szeged on May 6, 1927. After having graduated in 1950 from 
the Faculty of Sciences of the University of Szeged as a high school teacher of ma-
thematics and physics, he first worked in the Department of Theoretical Physics of 
the same University. From 1951 to 1954 he was an aspirant (post-graduate student) 
under the supervision of Professor B. Szőkefalvi-Nagy. In 1954 he got his Candidate's 
degree in Mathematics, in combinatorial set theory, a domain which was to remain 
his main interest during his lifetime. After 1954 he worked first as a research associate, 
and then as an associate professor, at the Chair of Professor L. Kalmár in Szeged. 
In 1967, after having got his Academy Doctor degree, he was appointed full professor 
of mathematics; he led the Department of Set Theory and Mathematical Logic 
from its creation in 1971. 

Géza Fodor was elected corresponding member of the Hungarian Academy of 
Sciences in 1973. He was also awarded two state medals. During the period 1973—76 
he acted as Rector of the University of Szeged, and for many years he was also a 
member of the Hungarian Socialist Workers' Party's University Executive Committee. 

Professor Fodor had a charming personality, both colleagues and students 
liked him much. 

The mathematical abilities of Géza Fodor were particularly impressive. He pub-
lished .40 papers full of new ideas. Many of his results were pioneering work in this 
subject. 



Fodor's most important contribution to set theory is his fundamental theorem 
concerning stationary sets which was published in these Acta, vol. 17 (1956) and 
which reads as follows: 

For all stationary A<zx (x>co) and for all / regressive on A there exists a 
Q<X such t h a t / _ 1 ( M ) is stationary as well. In terms of present day set theory this 
theorem states that the ^-complete ideal of the nonstationary sets is normal. Nowa-
days this result appears in all textbooks, since it features in all important modern 
branches of set theory developed after 1960. 

Professor Fodor initiated a general theory of stationary sets and formulated 
quite a few hard problems in this topic. It was Fodor who conjectured that for 
all regular ü x ű every stationary subset of x can be split into the union of x disjoint 
stationary sets. (This was proved by R. M. Solovay in 1967.) 

Despite his grave illness he carried on his duties to the last minute. 
We cherish the memory of Géza Fodor, the scholar, the teacher, and the man. 

The Editors 



Acta Sci. Math.. 39 (1977), 205—231 

Tensor operations on characteristic functions 
of C0 contractions 

H. BERCOVICI and D. VOICULESCU 

By the results of [14], [15] and [1] every contraction T of class C0 acting on 
a separable Hilbert space is quasi-similar to a unique Jordan operator. If T has 
finite defect indices then its Jordan model also shares this property and B. SZ.-NAGY 
and C. FOIA§ proved in [14] that the determinant of the characteristic function of 
T and of the Jordan model coincide in this case. 

Also in the case of finite defect indices, from the work of E. A. NORDGREN 
and B. MOORE ([10] and [8]; cf. also [16]) it is known that the inner functions appear-
ing in the Jordan model of T can be computed from the minors of the determinant 
of the characteristic function of T. 

It is an immediate problem to find characterizations for the inner functions 
in the Jordan model of a general C0 contraction, and to look for special charac-
terizations in the case of weak contractions of class C0 ([13], chapter VIII) when 
the characteristic function has a determinant. 

Also, the determinant being a representation of the unitary group on a finite-
dimensional space, more generally we may perform on the characteristic function 
of a contraction tensor operations of the type associated to irreducible representa-
tions of unitary groups, and ask about the properties of the operators having 
these functions as characteristic functions. 

In the first part of this paper we consider tensor operations corresponding 
to irreducible representations of unitary groups applied to characteristic functions 
of operators of class C„, the main result being that these operations preserve the 
quasisimilarity of the associated operators, provided the given operators have 
equal defect indices. This assertion is also adapted for the case of unequal defect 
indices, using impure characteristic functions. 

As a corollary we characterize the inner functions in the Jordan model of 
a C0 contraction by means of the smallest scalar inner multiples of the exterior 
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206 H. Bercovici and D. Voiculescu 

powers of the characteristic function. We also obtain estimates for the defect ope-
rator of a C0 contraction in terms of the Jordan model. 

In the second part of the paper we construct higher order algebraic adjoints 
of the characteristic function of a weak contraction. This enables us, using the 
results of the first part, to extend the above mentioned result of E. A. Nordgren 
and B. Moore to the case of weak contractions of class C0. 

We also prove that the determinant of the characteristic function of such a 
contraction is an inner function. 

Using the results of the first part concerning defect operators, we prove that 
a C0 contraction is a weak contraction, if and only if its Jordan model is a weak 
contraction. This extends a result of L. E. ISAEV [5] on dissipative operators, which 
via Cayley transform (see [13] ch. IX) shows that a C0 contraction with Jordan 
model S(ma), ma().)=exp(—a(\ +)-)j(\ — A)) (a>0), is a weak contraction. 

Parti 

§ 1. Notation and preliminaries 

1. We shall consider separable (finite or infinite dimensional) Hilbert spaces 
over the complex field C. 

We shall denote by ft, ... Hilbert spaces; ( . , . ) will denote the scalar product 
in any such space. If 3) is a subspace of § we denote by P^ the orthogonal projection 
of § onto 9) and by or §©?) the orthogonal complement of 5). (M)~ denotes 
the norm-closure of the subset M c § . If {Yx}x(A is a family of subsets of V Yx 

will denote the closed linear span of (J Ya. XV Y will denote the closed linear 

span of X\j Y. 
If § and ft are Hilbert spaces we shall denote by § ® ft their tensor product, 

which is also a Hilbert space. Recall that 

(1-1) (f®g,f'®g') = ( f , n ( g , g ' ) for / , g € S , / ' g W . 
§®n will denote the tensor product $<8>ij®... <8>§ (n times). 
We denote by (§, ft) the linear space of all linear bounded operators 

X: § - f t , Se(§)=if(§, §). If S is any subset of •£?(§), (5) ' denotes the commutant 
of S. •?/(§) denotes the group of unitary operators on 

If the operator r„ ( r )6^(§®") is determined by 

(1.2) r„(T) (h^hz® ... <8>h„) = Th1®Th2® ••• ®Thn, (1 ^ j ^ n ) . 

The map r„ is multiplicative, commutes with the *-operation and restricted 
to is a unitary representation. 
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2. Let us recall that H°° is the Banach algebra of bounded analytic functions 
in the unit disc / )={z£C| | z |< 1}. We denote by HT° the set of inner functions in 
Hthat is m £ / / ~ if and only if m has (<#-)almost everywhere radial limits m(ek) 
of modulus one. We shall abuse notation sometimes, writing m=m' for two inner 
functions such that m/m' is a constant (of modulus one). 

If {/a}aex is a family of //"-functions, not all 0, we denote by A fa the greatest 
aZA 

common inner divisor of the functions fx. 
Consider also the Hardy space H 2 and, for a Hilbert space the vector-valued 

Hardy space H2(§>) which can be identified with §<g>//2. 
If reJ2?(fj) and S£&(H 2 ) we shall consider T<g>S as an operator on / / 2(§) . 

For /6 / /°°(§) , g€//°°(ft) we shall denote (somewhat ambiguously) by f®g the 
element of / / 2 ( § (g>ft) defined by 

(1.3) ( / ® g ) ( z ) = / ( z ) ® g ( z ) , z£D. 

For any two Hilbert spaces ft the operator-valued Hardy space (§, ft)) 
is the set of all bounded, ft)-valued analytic functions in the unit disc. 

A function ft)) is contractive if | | 0 ( z ) | | s l , z£D. Any function 
ft)) may be considered as an element of ¿?(//2(§), / /2(ft)) that com-

mutes with scalar //"-multiplications. 
We say that two functions 

© ^ / / " ( . s m , « , ) ) 0 = 1,2) 

coincide if there are unitary operators U: §>i-"-§2> fti—ft2 such that 02(1) U= 
= V01(X)ioi alU(E D. 

A function 0i//°°(j5?(§, ft)) is inner if it is isometric as an element of 
i?(/ /2(§), //2(ft)). 0 is * -inner if the function 0 ~ defined by 

(1.4) 0~(z ) = 0(z)*, z£D 

is inner. 0 is two-sided inner if it is simultaneously inner and *-inner. We denote 
by Hr(j£f(£, ft)) the set of two-sided inner functions in //"(,£?(§, ft)). 

For any @£H"(Se{$)) we denote by T„(0) the element of //"(¿?(§®n)) 
defined by 

(1.5) (r„(0))(z) = r n (0 (z ) ) , z£D. 

If 0 €//"(.£?(§)) then r„(0)6//~(j5?(S®n))-

3. For any 0 C / / " ( i f (§ ) ) we define 5 ( 0 ) as the operator acting on 

(1.6) § ( 0 ) = / / 2 (§ ) e 0 / / 2 ( S ) 
and defined by 
(1.7) (,S(0)*«)(Z) = 2-1(M(Z)-«(O)), Z€D, U£§(0) . 
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If 0 is pure then it coincides with the characteristic function of S(0) and in 
this case dim 5 equals the defect indices of S(0) [13]. Recall that, for a contraction 

i f (ft), the defect operators are DT = (I-T*Tf'\ DT*=(1— TT*)V2 and the 
defect indices b r , br* are the ranks of DT and DT„, respectively. 

Let nT denote the multiplicity of T, i.e. the least cardinal of cyclic sets for T. 
We shall need the lifting of commutants theorem of [13] in the following form. 
If <9'<Efli-(jS?(S0) and JS?(§(0)> §(©')) satisfy the relation 

S(0')X = XS(0) 

then there is an $,')) such that 

(1.8) A0H*(%) c 0'H2(&) and 

(1.9) Xh = P6mAh, 

The operator A'is one-to-one if and only if, for h£H2($y), 

(1.10) h£0H2(Z>) <=> Ahe0'H2(&), 

and has dense range if and only if 

(1.11) AH*{$) V 0'H\$>') = №(§')• 

Let us recall that X is called a quasi-affinity if it is one-to-one and has dense range. 
The operator S(0) is of class C0 if and only if 0 has a scalar multiple, that is, if 

(1.12) 0H*(%)z>mH2№ 

for some m^H". The minimal function of T= S(0) is then the greatest common 
inner divisor mT of the functions m satisfying (1.12) [13]. 

A Jordan operator is an operator S(0) determined by a function of the form 

m, 0 
W o 

0 = 

where m^HT' and mj+1 divides mj for each j. We shall denote it also by S(M), 
M= {mj}"=1. By the results of [14], [15], [1] every C0 contraction acting on a separable 
Hilbert space is quasisimilar to a unique Jordan model S{M). 

4. For a finite group G we shall denote by C*(G) the C*-algebra of 6 [2], 
and by G the set of all (equivalence classes) of irreducible unitary representations 
of G. The elements of C*(G) will be written in the form 2! ca S where cg€C, so that 

»EG 
for any unitary representation n of G the associated representation of C*(G) is 



Tensor operations on characteristic functions of C0 contractions 209 

given by 
n ( Z c » g ) = 2 cgrt(g). g€G giG 

Let <S„ be the group of permutations of the set {1,2, ...,«}. The group <S„_1 

will be identified with the subgroup of <S„ consisting of those permutations of <Z„ 
that leave n fixed and C*(<»„_!) will be considered as a sub-algebra of C*(S„). 

<3„ is known to be in one-to-one correspondence with signatures r = ( i 1 s . . . Si„)> 
n 

tj non-negative integers, £ tj=n, and the corresponding minimal central projections 

px of C*(<5„) are given by the central Young symmetrizers [18], [6], [9]. It is known [17], 
Ch. V, § 18, that an irreducible representation of signature 
restricted to ®„_x contains the irreducible representation of signature T'=(t^ ^ f2' ^ . . . 

if and only if 

(1.13) tx S t[ ^ h ^ ti ^... S i„_x £ C l ^ t„ 

(this will be written T'-<T) and that the multiplicity of T' is one in this case. 
Consider now a Hilbert space ft. On ft®" there is a unitary representation 

n„ of £>„ given by 

(1 .14) Tt„{&)(k1<Si...<Sikn) = ka-im<8)...®ka-iM, cr£<5„. 

By one of the basic results of HERMANN WEYL ([18], [6], see also [11], [7] for the 
adaptation to the case when dim ft is infinite) we have 

(1 .15) (R„(^(ft)))' = (R„(^(ft)))' - Tt„(C*(&„)). 

The irreducible representations of ®(ft) which will be considered are also 
labelled by signatures, so we shall first make a convention. A signature will be 
a decreasing sequence •••) of nonnegative integers, of finite or infinite 
length !.(%)• By ¿(T) we shall denote the number of nonzero elements among the 

/(t) 
t/s and |T| will stand for 2! tj-

j=i 
Thus for instance the set <5„ is in a one-to-one correspondence with those 

signatures R for which ¿(T) = | T | = « . TWO signatures T=( / 1 ^ / 2 —•••) and %' = 
= ( / 1 ' ^ I 2 ' a r e essentially equivalent if ¿ ( T ) = I ( T ' ) and tj = tj for j= 1, 2, . . . , I(r). 

For a signature t with Z(t)=dimft, there corresponds an irreducible 
representation gz of <25f(ft) on a Hilbert space ft1 (these are the irreducible represen-
tations of "positive" signatures; cf. [18], [6] for the case dim ft<°° and [11] for the 
extension to the case dim ft=oo). 

The representation gz can be defined as follows: consider f , the signature of 
length |t| essentially equivalent to t , and let q~x be any minimal projection in C*(G|l() 
such that Then qz is defined as the restriction of to 7t|t|(^{)ft0ltl. Clearly 
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Qx extends to a multiplicative homomorphism of the multiplicative semigroup 
if (ft) which is holomorphic. Also clearly the restriction of r | t | to 7T|t|(/'t)ft®|t| 

is a finite multiple of qx. 
Another classical fact we need is that for T with Z(R)= |T| —n we have nJip^^Q 

if and only if ¿(r)Sdim ft. 

§ 2. Tensor operations on operator-valued functions 

Let ft be a Hilbert space. For any fceft we shall consider the map Tk: ft®"— 
- f t® ( n + 1 ) defined by 

(2.1) ^ ( f c j O M - ® ^ = fei<Si...<8»fen®A:. 

Clearly Tk is proportional to an isometry and 

(2.2) Tt(k1®...®kn+i) = (kn+1,k)k1®...®kn. 

Lemma 2.1. Consider two signatures T ' - < T , L{T') = \X'\ =n, /(T) = |T| =« +1 
such that i ( r ) sd im ft. Then we have: 

(2.3) v rc„Gv№„+1G>r) ft®<"+1> = «„Ov)*®". 
Icgfl 

Proof . Let us denote by 5 the space on the left hand side of (2.3). Then g is 
7rn(S„)-invariant and (ft))-invariant. 

Indeed, for <7£<3„ we have 

rcn(PtO^*rc„+i(>TK+i(<x) = nn(o)nn(px,)T£ nn+1(px), 

sincepx-,px commute with C*(S„) and Tknn{a)=n„+1{a)Tk. Also, 

© 5 = n K e r K + 1 (Vx) Tk nn Ov)] k£St 
and for any £/£<^(ft) we have 

r„(U) Ker[nn+1(px)Tkn„(px,)] = Ker [nn+x(pt)TVkn„(pt.)] 

so that ft®"e 5 is invariant for r„(^(ft)) and hence so is g. 
Therefore Ps€(nH(C*(®B))u/,

1I(,»(ft)))' and P ^ n n { p x ) . Hence by Hermann 
Weyl's theorem and because of the minimality of px. in the center of C*(S„) either 
Pg=0 or =7r„(/v). So it will be sufficient to prove that g ^ {0}. 

Observe that n„(px')Tknn+1(j)x) = TkTt„+1(px.px). On the other hand, px is the 
central support of px.px in C*(®„+1) as explained in the next paragraph. Thus, 
from nn+1(px)?£0 we infer nn+1(px.px)^0. Now P) Ker T* = {0} so we can find 

k£K 
£€f t such that T*n„+1{px.px)^ 0. 
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If G is an irreducible representation of the finite-dimensional C*-algebra A, 
there is a minimal central projection p of A such that ker £>=(1 —P)A. Let A1CA2 

be finite dimensional C*-algebras with Qi irreducible representations 
of AT, and PI the corresponding minimal central projection of AI (/=1,2). Then 
q2\A1 contains qx if and only if PiP^^O- Indeed, if e^l-^i contains Qt we 
obviously have ker ( e ^ J c k e r £>1; so that P i P ^ O (since px (£ ker q^. Conversely, 
if PIPZ^O the two-sided ideal J= {x£AX; PIP2X=0} of A1 contains ker G1 and 
PIIJ. Since G1 is irreducible and AX is finite-dimensional, ker Q1 is a maximal 
ideal of A1} so that / = k e r g v It follows that ker (g2Mi)c:ker GX and this in turn 
implies that g2Mi contains 

This completes the proof. 

Lemma 2.2. Consider two signatures T ' ^ T , Z ( R ' ) = | R ' | = N , Z(T) = |T |=W+1 , 
such that ¿(r)sdim 9K and let 0(LH"°{<£{9Cj). For any we have: 

(2.4) ( ( ^ P . ' № N N + 1 ( P R ) ) ® I N > ) R N + 1 ( 0 ) H * ( ^ N + 1 ) ) C Z 

Proof . Clearly both terms of (2.4) are invariant with respect to multiplication 
operators by scalar //"-functions. Hence it is easily seen that it will be enough 
to prove that a function of the form 

z - nn(px,)T*nn+i{px) ®... ® 0(z)kn+1) 
is in 

{nn(pz,)®IH*)r„(0)H*(S<n-

Writing pT= 2! coa the assertion becomes obvious from the following compu-

tation: 
«,,GV№,,+I(PT) ® - ® @(z)kn+1) = 

= nm(Pf)7? 2 ca(0(z)ka-im®Q(z)K-i(n+1)) = 
»e®n+i 

= 2 ca{0{z)kc-Hn^,k)nn<j?t)rn{0{z)){ka-im®...®ka-xw): 

Let us now consider 0€//°°(^f(ft)) and let r be a signature with | r |< °° and 
Z(r)=dimft. Consider also f, the signature of length |T| essentially equivalent 
to T. We define an inner function dT(0) by 

(2.5) d<(0) = A {m€//r |m// 2 ( f tO c (0 I(0)/ /2(f tO)"} 

(by convention we put A 0 = 0, 0 -the empty set). 
Remark that in case 0 is an inner function, Qz(&) is still an inner function and 

d\0) is the minimal function of S(gx(0)) in case £>t(@) has a scalar multiple and 
zero otherwise. In case T is of the form (1,1, ..., 1,0, ...) with j nonzero terms, 
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that is, qx is the representation in antisymmetric tensors of degree j, we shall use the 
notation dj{&) for dz{0). 

Since the restriction of to 7t|r|(/7j)ft0|r| is a multiple of g t , we have 

(2.6) d\0) = A{m6frr|mfr«(ji,t,(ft)jl»W) c 

c ( r | t | ( 0 ) i P ( 7 T M ( p ? ) f t ® l < l ) ) - } . 

For the next lemma let i', T be signatures with \t'\=n, | i | = « + l (n finite), 
¿(t')=l(r)=dim ft and such that denoting by f' and f the signatures of length n, 
N +1, essentially equivalent to T', T, respectively, we have 

L e m m a 2.3. For 0 in #~( i? ( f t ) ) and %', T as above, d*(0) divides d\0). 

P r o o f . Consider such that 

m ^ ( 7 t n + 1 ( ^ î ) f t ® ( « + 1 ) ) c ( r n + 1 ( 0 ) i / 2 ( 7 r n + 1 ( p E ) f t 0 ( " + D ) ) - . 

It follows from Lemma 2.2. that 

m( V ( K O < 8 > / f l S ) ^ 2 (« n + 1 ) ) - c 
tea 

c {(nn(pr)®lH*)rn(0)H\Wj)- = (rn(0)H*(nn(pr)W))-

and hence by Lemma 2.1 

m/P(7rn(pr)ft®") c (rn(0)H*(Kn(pr)R®»))-

so that by (2.6) d* divides m. Q.E.D. 
Let us also record the following simple fact for further use. 

R e m a r k 2.4. Let Xt, 9), (i'= 1, 2) be Hilbert spaces, t,-, ?)()), 
9)2)), £(z)=A1(z)®A2(z) (ZÇD) and suppose F Ç { A f l X ^ ) ~ fl 

f l / / - (?) , ) . Then we have f 1 ®f^(BH 2 (X 1 ®X 2 ) ) ' . Indeed, consider h^iH^&d 
such that 

lim WAth^—fiW = 0 in H ' m . 
00 

Then in 

we have lim / i | m ) ) - / i ®A 2 h^ \ \ = 0 
n-«-co 

and 
lim \\fi®h-f1®A2him)\\ = Q m-*-oo 

which is the desired result. 
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For the following theorem consider 0eH°°(£C(R)), 0'€#~(jSP(ft ')) and 
suppose there are A£H°°(£e(R, ft')). ft)) such that the following 
set of relations holds 

(2.7) 
A0H\S<) c ( 0 7 / 2 ( f t ' ) ) " , 

B0'H2(&') c ( < 9 # 2 ( f t ) ) - , 

BAH2 (ft) V 0H2 (ft) = H2 (ft). 

T h e o r e m 2.5. Let 0, 0', A, B be as before and suppose (2.7) holds. Let further 
x, T' be essentially equivalent signatures with /(T) = dim ft, ¿(r ')=dim ft', |T[< 
and i(T)=i(T')Smin (dim ft, dim ft'). Then d\0) divides dl'(0'). 

Proof . If dt'(0')=0, the assertion of the theorem is obvious, so assume 
dx'(0')=m£H™. Let f denote the signature of length « = | r | that is essentially 
equivalent to T. 

Consider / i , / 2 , . . . , /„£/7 °°(ft), g l , g2, g„Çff~(R) and 
(2.8) s = (nn(j>i)®IH*)((BAf1+0g1)®...®(BAfn+0gn)). 

Using (2.7) it is easily seen that the elements s form a total subset of H2(7tn(p,)ft®"), 
so that it will be sufficient to prove that 

(2.9) ms£{rn(0)H2(ir„^)ft®«))-. 

Now, s is a finite sum of elements of the form 

(2.10) r = ((n„(pi)nn(a))®IH2)(BAfi®...®BAf;®0g'1®...®0g'„_J) 

where 0 ^ j ^ n , <5„ a n d / / , g'. are some of the f and g. Thus to prove (2.9) it will 
be enough to show that 

(2.11) mr € (r„ ( 0 ) H2 {nn (pi)ft®n)) ~ • 

Because 2 P y
= l and <Sj is considered as a subgroup of S„ (J=n), we have 

yiêj 
2 and PïPy^0 if and only if the restriction of the representation of 

yiSj 
signature T to <Zj contains the representation of signature y. So, PfPy^O if and 
only if there are yk£ Qk (j<k<n) such that 
(2.12) y<yJ+i<-<yn-i<*-

Hence denoting by y the signature of length dim ft' that is essentially equivalent 
to y, using Lemma 2.3 several times we conclude that dr'(0') divides dT'(0')=m. 

Now we have: 
mr = 

= KiPi)"-^)®/«') 2 (m(TZj(py)®IB*)(BAf;®...®BAf;))®(0gi®...®0g'n_j). 
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To end the proof it will be sufficient to show that 

m(n}(j>y)<g> 7Ha)(BAfi<8>...<8>BAfj) is in ( r , (0)# 2 («®'0)" , 

because then using Remark 2.4 we will have that mr is in 

which is the desired result. 
Now further m{iij{py)®IHt){Afl®... ®Afj) is in dy (0')H2(nj(py)S\'0J), since 

i f ' (0 ' ) divides m, and hence is in (rj(0')H2(nj(py)${ ,@j))-<z(rj(e')H2{S< ,@J))-. 
Thus it will be sufficient to prove that 

(rj(B)rj(&')H2(&'®j))- c (rj(&)H2(S{®J))~ 
in order that 

m (7ij(py) ® /„.) {.BAfi ®BAf'j) 6 ( r , (0) 

To this end remark that the elements of the form B0,h1®...®B0'hJ with /¡^//"(SV) 
are total in (rJ(B)rj(0')H2(9.,e'j))- and 

BG'h1®...®BG'hj£(rj(0)H*(№'j)-

because fo (2.7) and Remark 2.4. Q.E.D. 

§ 3. Applications to quasi-similar C0 operators 

The following Proposition is an easy application of Theorem 2.5. 

P r o p o s i t i o n 3.1. Let 0 6 / / ¡ " ( I F ( f t ) ) , 0 ' £ # ; ° ( I F ( f t ' ) ) and let T, T' be essen-
tially equivalent signatures with L(x) = dim ft, ¿(T') = d imf t ' and ¿(T)=I(T')^ 
^min (dim ft, dim ft'). If S{0) and S(0 ' ) are quasi-similar, we have 

(3.1) d\0) = ^ ( 0 ' ) . 

Proof . Let X and Y be two quasi-affinities such that S(0')X-XS(0) and 
S(0)Y=YS(0'). From the lifting theorem (see (1.8—11)) it follows that we can 
find ^e / /°° ( i f ( f t , ft')) and 5 € # ~ ( i f ( f t ' , ft)) such that 

(3-2) Z = i > s ( e . ^ | § ( 0 ) , y = P S ( e ) 5 | § ( 0 ' ) , 

(3.3) A0H2(${) c 0 '# 2 ( f t ' ) , j30'ff2(R') <= 0 # 2 ( f t ) 

and 

(3.4) ABH2(${') V 07/2(SV) - H2(R'), BAH2{$<) V 0H2(S\) = # 2 ( f t ) 
so that the assumptions of Theorem 2.5 are satisfied. It follows that dz(0) divides 
dz\0') and d*{&') divides d\0) and this proves (3.1). Q.E.D. 
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Let T be any operator unitarily equivalent to some S(0) with a pure 
0 € H~(£?{Si)). It is easy to see that the functions d\0) and dj(0) depend only on 
Tand not on the particular function 0 , so we shall denote them by d\T) and dj(T), 
respectively. 

Co ro l l a ry 3.2. If T and T' are two quasisimilar C0 operators and b r =b 7 . , 
then d\T)=d\T') for each r with ¿ ( r )=b r . 

Proof . T and T' are unitarily equivalent to S(0) and S(0'), respectively, 
where 0'€#~(j§P(ft')) with dim ft=dim ft'=br. The corollary 
obviously follows from Proposition 3.1. Q.E.D. 

Consider now a C0 operator T with Jordan model S=S(m1)@S(m2)@... . 
If b s < b r we shall put m} = \ for b s«=/'sb r . So we have 

(3.5) S = © S(mj). 
j=i 

Coro l l a ry 3.3. For any C0 operator T and any signature t = (i1^i2S...), 
| t |<°°, ¿(x)=b r , we have 

(3.6) d1(T) = m,
1*m,f,...,m!r, n = ¿(T). 

Proof . We have only to apply Proposition 3.1 to 0 coinciding with the charac-
teristic function of T and to 

0 ' = diag (/«!, m2, . . . )€i/~(if(ft ' )) with dim ft' = b r . 

Since t = (i1fei2s. . .) represents the highest weight to the representation qx 

(see [18], [6] to the finite-dimensional and [1] for the infinite-dimensional case) 
it is immediate that: 

dl{0') = m\\ ...,m'n". Q.E.D. 

Coro l l a ry 3.4. For any C0 operator T, the functions m} appearing in the Jordan 
model can be computed as 

(3.7) rtij = dj(T)/dJ„1(T), 1 where d0(T) = l. 

Proof . The preceding Corollary gives for T;=(l, ..., 1, 0, ...) (with j nonzero 
terms) 

dj(T) = d*j(T) = mx ... mj, j Si b r 

so relation (3.7) becomes obvious. Q.E.D. 
Since the quasisimilarity class of a C0 operator is determined by the Jordan 

model, Corollary 3.4 shows that a C0 operator T is determined up to quasisimilarity 
by the least inner multiples of the exterior powers of any function coinciding with 
the characteristic function of T. This enables us to prove the following theorem. 
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T h e o r e m 3.5. Let 0£Hr(g(R)), be such that d/0)^O . 
and dim ft=dim ft'. If S(0) and 5 ( 0 ' ) are quasisimilar then S(qX(0)) and S(gX(0')) 
are quasisimilar for each signature x such that L (T) = dim ft, |T|< °O. 

Proof . By Corollary 3.4 we have only to show that dj{fix{0))=d/Qx(0')) 
for each / 'sdim ft*. Let Xj = (l, 1, ..., 1, 0,.. .) (with j nonzero terms), ¿(T,) = dim ftT. 

The representation QXJOQX of ^ ( f t ) is a subrepresentation of the representation 
of ^ ( f t ) on ft®j|t| and hence a finite direct sum of representations QX., with L{t') = 
=dim ft, |T'|<O°: 

(3.8) = 
t-

From (3.8) it follows then that 

etXe,(0)) = ® eA&), eZJ{e,(&')) = ® eA&l 

and hence d/fix{0)) is the least inner common multiple of the d^(0) and dj{gx{0r)) 
the least inner common multiple of the d^iQ'). Since dz\0)—dz\0r) by Proposition 
3.1, we infer that dj{Qx(0))=d/Qx{0')). Q.E.D. 

§ 4. Defect operators of C0 contractions 

For an operator A^JC(it) and a closed subspace SJicft we consider 

yM,9H]= inf \\Ak\\, y/A) = sup 
U*U-1 codim 2J!=j —1 

As is known from the minimax principle, y/A) (1 Sj '^dim ft) are eigenvalues 
of (A*A)V2 in increasing order. In case dim ft< °° all eigenvalues of (A*A)1/2 repeated 
according to their multiplicity appear in the sequence of the y/A). In case dim ft = 
y/A) is the least eigenvalue of (A*A)1/2, discrete eigenvalues smaller than the least 
essential eigenvalue appear in increasing order repeated according to their multipli-
city and the sequence becomes stationary if the least essential eigenvalue of (A*A)1/2 

is reached. 
For the next two lemmas, Xj denotes the signature 

T ,=(1 , . . . , 1 ,0 . . . ) , ¿(T;) = dimft, ¿(t J)=j. 

Lemma 4.1. Let A and Xj be as above. Then we have: 

(4.1) yi(Q*M)) = y1(A)y2(A)...yj(A). 

Proof . Remark first that applying QXJ to the polar decomposition of A we get 
the polar decomposition of QXj(A), SO we can suppose A is positive. Moreover, in 
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view of the minimax definition of y}, we have \yJ{À) — yj{B)\^\\A—B\\, and thus 
by continuity it will be sufficient to consider the case when A £ 0 has finite spectrum. 

In this case, gtJ being the representation in antisymmetric tensors of degree 
j, QtJ(A) has finite spectrum, the eigenvalues being products ?.1..J.J- of eigenvalues 
of A, a given eigenvalue appearing in such a product at most a number of times equal 
to its multiplicity. Clearly yi(A)...yj(A) is then the least eigenvalue of grj(A). 

Q.E.D. 

Lemma 4.2. Let T bea C„ operator, let 0 €#"(.£?(&)) coincide with the charac-
teristic function of T and let {m^llj be inner functions for the Jordan model of T with 
nij = 1 for nT~^j=bT. Then we have 

(4.2) 7l(0(A))...yy(0(A)) s \m1(X)...mj(X)\ 

where 1 and AÇD. 

Proof . In view of Corollary 3.3, mx...mj is the least inner multiple of pTj(0)£ 
£Hr(se(SÇj)). Hence there is a contractive function such that 

Q ( A ) < ? T J ( E ( A ) ) = M 1 { X ) . . . M J { X ) I N Z J . 

Since ||Q(A)||^1 this clearly implies 

Vi(<?t,(©(A))) — I mi(X)...mj{X)\ 
and by Lemma 4.1 

S Vi(0(A))•••yJ(0(A)), 

which gives the desired inequality. Q.E.D. 

P r o p o s i t i o n 4.3. Let T be a C0 operator acting on §> and {m})J=1 inner func-
tions for the Jordan model of T, with mj=l in case nT<j. 

a) If ¿ ( 1 - K ( 0 ) | ) < o = , then tr ( / - r * T ) < ~ . 
j'=i 

b) If lim |Wj(0)| = 1, then I-T*T is compact. 

Proof , a) The assumptions are that the Jordan model S=S(m})®S(m2)®... 

is a weak contraction ([13] ch. VIII) since tr (I-S*S)= ¿ ( l - | m / 0 ) | 2 ) ^ 
j=i CO 

= 2 2 (1— |Wj(0)[)< As usual for weak contractions there will be no loss of gene-
j=i 

rality to assume that m/O) (one uses a conformai automorphism of the unit disc as 
oo 

in [13] ch. VIII). Thus the infinite product JI\mj(0)\ converges to some c>0. Hence 
J-i 

by Lemma 4.2 for 0 the characteristic function of T, we infer that 

n 7/0(0)) >0. 
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Since in case b r = ° ° this implies lim y7(0(O))=l, it follows that 

t r ^ - 0 ( 0 ) * 0(0)) = 2 (i-?y(0(O))2) 
1 3j=5t>T 

and 
2 ( l - y ; ( 0 ( O ) ) 2 ) < ~ 

since 
N 7^(0(0)) > 0. But / I t - 0 ( 0 ) * 0(0) = D\\T>T, isjst>T 

so that t r ( I—T*T)<°° . 
b) The proof is quite similar to that of a), so we can be brief in details. Again 

we may suppose T is invertible and hence w ; (0)^0. Then lim |w/0)| = 1 gives 

lim Im^O) ... m /(0)|1/j = 1. j-CO 

Using Lemma 4.2 this implies 

l i m ( y i ( 0 ( O ) ) . . . y , ( 0 ( O ) ) ) 1 / j ' = l j —oo 

so that lim ( 0 (0)) = 1 which gives that I—T*Tis compact. 
Q.E.D. 

R e m a r k 4.4. As we shall see in § 8 the converse of 4.3 a) is also true. For 
4.3 b) the converse is in general false. An example can be constructed as follows. 

Let /i be a finite non-negative measure on [0, 2N], singular with respect to 
Lebesgue measure and without atoms. Consider the inner functions 

f 2y/" ei>+; 1 
m;,„(;.) = exp - J ——dn(t)\, 1 S j S i l 

L 27iO'-i)/n e J 
and the operators 

T= © ( © S(m ; , n) l S = S(m l f l) © S(mltl) © .... 
n = l Vj = l / 

Then Sis the Jordan model ofT,I—T*Tis compact and [/«x,i(0)|, |wM(0)|, ... tends 
to K x ^ l ^ l . 

P r o p o s i t i o n 4.5. Let T be a C0 operator, let {mj}J=1 be inner functions for 
the Jordan model of T (w, = l incase ¡iT<j) and let 0dH"(i?(5V)) coincide with the 
characteristic function ofT. Suppose moreover m/0)^0 and w^N is such that |mn(0)|< 
< lim |wy(0)|. Then the following conditions are equivalent: 

(i) K ( 0 ) ... w„(0)| = y1(0(O)) ... 7,(0(0)), 
(ii) T is unitarily equivalent to TX(&T2, where t>Tl—n and Tu T2 are quasisimilar 

to and respectively to S(mn+1)®S(mn+2)® ••• • 
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Proof . (i)=»(ii). The condition Otî|m„(0)|<lim |m/0)| implies that y„(0(O)) J-+ oo 
is less than the least essential eigenvalue of (0(O)*0(O))1/2, for otherwise we would 
have 7„(0(O))=:7„+1(0(O))=... which in view of Lemma 4.2 would imply ]im |m(0) |ë j-*- oo 
ëy„(0(O)) and hence |wn(O)|<yn(0(O)) which when combined with (i) would give 
|/Mi(0) ... w„_1(O)|>>'1(0(O)) ... y„_i(0(O)), contradicting Lemma 4.2. Thus replacing 
0 by some equivalent inner operator-valued function in #~( i f ( f t ) ) we may assume 
there is an orthonormal set {el5 ..., e„} in ft such that 0(O)ej=y j(0(O))ej for 1 ^j^n. 
Consider f=n„(pZn)(ei©••• Then 

f? tn(0(O))/= Vi(0(O)) ... y„(0(O))/ 

and since pz =(nl)~1 2 e(<7)°' («(c) is the sign of the permutation a), we have 0. 

But QQZn(0)=m1...mJs(cn for some contractive Q, and we infer ||fl(0)/|| = | |/ | | 
so that £2(A)/=/i/ for some constant N, M = l. This in turn implies GLN(0 (?.))/= 
=p.~1ml(X) ... m„(X)f for all A£D. In view of the known properties of pZn this last 
equality implies that ®=Ce1+.. .+Ce„ is invariant for 0(A) for all AçZ). Since 
0 is two-sided inner we infer that S is a reducing subspace for 0(A), XÇ.D. Hence 
0 = 0 1 © 0 2 where 0i=0 |93, 0 2 = 0 | f t e ® . 

Thus we define r i = 5 ( 0 i ) for i = l , 2 and clearly T isunitarily equivalent to 
7i©!T2 and bT l=«. Remark also that QZn(0J coincides with m1...mn. Let >S(wi)©---
...®S(m'n) and S(mi') © S (ml) ©... be the Jordan models of and T2 (we do not 
exclude the possibility that some m'} or m'j be 1). Then we have : 

n 
(4.3) mi ... m„ = mi... m'n = V mi ... m'km'i ... 

k=0 
(use for instance Proposition 3.1 with t=t„). From 4.3 we infer that mi... m'n_xm[ 
divides m'x...m'n and hence m[ divides m'n. Thus 5(/n^)© ... ffi S(m'n) ffi S (ml) © 
@S(m'^}@ ... is the Jordan model of and hence m'j=mj,ml=mn+k 

(l^jSn, k=1, 2, ...). This ends the proof of (i)=>-(ii). 
(ii)=>-(i). Let 0i , 0 2 coincide with the characteristic functions of Tlt T2. Then 

e j e i ) coincides with m1... mn so that ?i(0i(O))... yn(0i(O))=y1(rn(01(O))) = 
= |w1(0)... mn(0)\ (use Proposition 3.1 for instance and then Lemma 4.1). Now 
clearly y/0i(O))ay/0(O)) and hence yx(0(O)) ... y„(0(O))^ 1^(0)... m„(0)| which 
in view of Lemma 4.2 gives yi(0(O)) ... y„(0(O)) = ¡m^O) ... m„(0)|. 

Q.E.D 

Remark 4.6. If T is a contraction and 0 is its characteristic function then 
y;(0(O)) = yj(T). Thus, let T be a C0 contraction with Jordan model 5(wx)© 
®S(m2)® ... such that mx(0)^0 and Jim|m;(0)| = 1. Proposition 4.5 shows that 
the Jordan model of T can be characterized within the class ST of contractions, 

2 
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which are quasisimilar with T by its extremal properties. Indeed, define 2Tn recur-
rently, by ST^er and 2 r B ^ = { r ^ y n + / T ' ) = m i j n ^ { S ) } . Then the only 

eo 
member up to unitary equivalence of p| ^ is the Jordan model of T. 

n = 0 

Part II 

§ 5. Preliminaries 

1. We begin with a short review of the properties of infinite determinants 
(see [4], ch. IV, § 1), in order to discuss (in the next section) minors of such deter-
minants. 

Let ft be a complex separable Hilbert space and ^i(ft) the ideal of nuclear 
operators, endowed with the trace-norm 

(5.1) I!*«! = tr |X|, \X\ = (x*xy* (X<E^(ft)). 

Consider Z € / + # i ( f t ) and let be the eigenvalues of X (repeated 
according to their multiplicities). We have 

y=i 
and it follows that the infinite product defining the determinant 

(5.2) de t {X) = f [ l j ( X ) 

converges absolutely. Moreover, det ( /+ Y) as a function of Y£ ^ ( f t ) is analytic 
(in particular continuous on the Bariach space ^i(ft)). This follows from [4], 
Ch. IV, Corollary 1.1 and property 8° on p. 207, combined with Proposition 2 on 
p. 11 of [3]. 

Also for {e;}™=1 an orthonormal basis of ft and Xdl+ t f /S t ) , we have 

(5.3) de t (X) = Hm det [(Xe,, JSN 

(cf. [4], property 2° on p. 203). 
Furthermore, for X, Z ' S Z + ^ i i f t ) we have (cf. the proof of property 7° on 

p. 206 of [4]): 

(5.4) det (XX') = det ( X ) det (X'). 

In view of (5.2) the following assertions are easily seen to be true: a) if X£l+ 
+ #i(ft) is unitary then |det(X)| = l ; b) if Xe i+V/S t ) is a contraction then 
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|det 001 — 1; c) / + # ! ( # ) is invertible if and only if det ( X ^ O ; d) the deter-
minant is invariant under similarities. 

2. For any Hilbert space ft we shall indicate by " -»" the weak convergence 
in ft and in i f(f t ) . In order to avoid antilinear mappings we shall consider the dual 
space ftd. If T6i?(ft), the dual operator is denoted by Td (Td € S£(ftd)). (ftd)d can be 
identified in the usual way with ft. 

3. For any Hilbert space ft and nSOwe shall denote by ftAn the w-th exterior 
power of ft. For « = 0 this is just the complex field C and in general ftA" coincides 
with ft1" for T„=(1, 1, 1,..., 1, 0, ...), / ( tn)=dim ft, dxn)=n (cf. § 1.4). ftA" is gener-
ated by vectors of the form 

(5.5) feM^A-Afc^in!)-172 2 e(a)Km®-®Kw, ( l ^ j ^ n ) , 
o€®„ 

where e(o) is the sign of the permutation a. 
The factor («!)~1/2 has been chosen so that H^A ... Aen\\ = 1 for any ortho-

normal system {elt e2,..., e„}. 
For n, m two positive integers there is a bilinear map 

A: ftAnXftAm — ftA(m+") 

such that {k1Ak2A...Akn)A(kn+1A...Ak„+m)=k1A...Akn+m. For each A££C($t) 
we shall denote EVN(A) as Aa", SO that 

(5.6) AA"(k1A...Ak„) = Ak1A...A Akn. 

Let ft now be a Hilbert space of finite dimension n. If {e1; ..., en} is an ortho-
normal basis of ft, we can define a bilinear form 

B: ftA* X ftA("-*> - C 
by the formula 

(5.7) B(h,g) = (hAg,e1A...Ae„). 

Choosing in ftAj the usual orthonormal basis 

{eilA...Aelj\l ^ i'j < i2 ij ^ n} 

it is easy to see that the mapping 

(5.8) C : f t A ( " - « - ( f t A * ) d 

given by C(g)Qi)=B(h, g) for g€f t A ( n - t ) , /z€ftA* is a linear isometry. If A££C(R) 
we have 

(5.9) B(AAkh, AA("-*>g) = det (A) B(h, g) 

2* 
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because 4 A "=de t 04)/ялп. Let us define 

(5.10) F= с л л ( " - « с - 1 е ^ ( ( я л ' ! ) 0 
and 

(5.11) AAdk = FdZSe(S<Ak). 
We have B(AAdkh, g) = C(g)(AAikh) = (F(Cfe))) (A) = (C04A<""*>g)) (Л) = 

— B(h, AA(n~k)g) and since С is isometric, 

(5.12) |Ил<»-«|| = ||F|| = \\AAik\\. 

Also, as В is nondegenerate we have 

(5.13) ДАЛЬДМС — det (/4)/ял(£ • 

It is obvious by the definition of AAik that 

(5.14) (АгА^АЛк = AAdkAfdk, Alt А2€<?(Я), 

and it can be shown that 

(5.15) (A*)Adk = (AAdk)*. 

Moreover, for invertible A we infer from (5.13) that 
(5.16) АЛКАЛ"К = ЙЕ1(А)/ЯЛК 

and by continuity it follows that (5.16) always holds. 
F ° r {/1./2. •••г/к} a n orthonormal system in ft we shall show that 

(5.17) (AAdk(f1A,../\fk),f1A...Afk) = det ( P + ( J - P)A(I-P)) 

where P denotes the orthogonal projection onto the linear span of { / i , / 2 , ...,/*}. 
Completing the system {/ l 5 . . . , / J to an orthonormal basis {/i, ...,/„}, we have 

(AAdk(f1A.:Afk),fiA...Afk)= . 
= < ( ^ c / " i А . . . Л Л ) ) A A + i A . . . A / „ , Л Л . . . A / „ ) = 

= B(AAdk(f1A...Afk),fk+1A...Af„).(f1A...Afn,e1A...Aen)-1 = 

= B{h A... Afk, A-^-k>(fk+1 A... A/„)) • <Д A... Af„, A... A O " 1 = 

= <Л A • • • АЛ Л A«-*>(fk+1 A... A/„), Л A . . . A/„) = 

= ((P+A(I-Pj)A»(f1A...Afn),f1A...Afn) = 

= d e t ( P - M ( / - P ) ) = det (P+(I-P)A(I-P)). 

Formulas (5.14), (5.16), (5.17) show that AAdk does not depend on the particular 
choice of the orthonormal basis {ex, ..., e„}. 

Let us now suppose that A is a positive operator with eigenvalues 
and the corresponding eigenvectors / i , / 2 , •••,/„• Then AA(n~k) is positive with 
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eigenvalues 
K K ••• c (! = h < '2 in-k = wi-

lt follows that 

= IM<*<-*> | | = ^ . . . ( 1 + - 1 1 ) ( 1 + |A2 - 1 1 ) . . . ( 1 + |A„ 1 M 

g exp fl^-1|) exp (|A2-11)... exp (|A„_ft-11) S exp (T r | ^ - / | ) . 

Now for any r€JS?(ft), we have 

| | r * T - / | | 1 ^ ( l + | | r - / | | 1 ) 2 - l and | | ( T * r ) ^ > - / | | 1 S | | r * r - / | | 1 

as can be seen by comparing the eigenvalues of these operators. Therefore, 

In particular, for the polar decomposition T=UA of T (A = \T\ = (T*T)V2) 
it follows that: 

(5.18) \\TAdk\\ = \\AAikUAik\\ \\AAdk\\ S exp (Tr | ^ - / | ) S 

s e x p i a + l i r - i l l ! ) 2 - ! ) . 

§ 6. Infinite dimensional adjoints and minors 

Let us now consider ft an infinite dimensional Hilbert space and A^.£C(R) 
so that rank (/—A) < 

From the preceding considerations we easily infer the 
existence of an operator ^Ad*iJSf(ftAt) satisfying (6.1) AAdkAAk = AAkjAdk _ det (A)/^; 

(6.2) (AAdk(f1f\...Afk),f1/\...Afk) = det (P+ (I-P)A(I-Pj), 

for P the orthogonal projection onto the linear span of the orthonormal system 
{A> •••>./*}> 

(6.3) == exp ((l + M - 7 1 1 ^ - 1 ) . 

Also for Alt ^42£JS?(ft) with rank (I— Aj)<°°, j=l, 2, we have 

(6.4) (A1AJAdk = AfkA(dk. 

Let A£&(Si) now be such that I-A^^SK) and let A„ be such that 
rank (I-A„)<°° and lim ||>4-^B | |1=0. 

1J-+ 00 

Using the fact that the function 

^ ( f y l X ^ det(I+X) 
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is continuous, it follows from (6.2—3) that the sequence AAdk converges weakly. 
The limit, which will be denoted by AAdk, satisfies (6.2—3). Because AAk converges 
to AAk in norm and det (An)— det (A) we also obtain property (6.1) for AAdk. Using 
now (6.2—3) it follows that: 

(6.5) A,A„a+^i(ft) and M . - ^ - O imply AAdk - AAdk. 

Property (6.4) for Au A^I+^^Si) follows from (6.1), provided Alt Az are invertible, 
and can be extended using (6.5) to the case when only Ax is invertible. Using (6.5) 
once again it follows that (6.4) holds in the general case. 

We have shown in § 5.1 that the function K-»det ( /+ Y) is analytic on the Banach 
space ^i(ft). Using (6.2—3) we infer that for rj£ ftA* the mapping 

C3X^((I+X+XY)Adkt;, n) 

is analytic when X, Y£ ^ ( f t ) . 
From this fact and from (6.3), using [3], Proposition 2 it follows that 

for Ç,r]£RAk is analytic. 
This again implies the following stronger fact: thé mapping 

(6.6) ViipL^X-* (I+X)Adk£3'(&Ak) 

is analytic (in particular continuous with respect to the norm topologies). 
Let us also remark that for any contraction A^I+'é^Sï) the adjoints AAdk 

are contractions. This is obvious if d i m f t = « < ° ° (since in this case \\AAdk\\ — 
= ||.4A(n-*)||) a n c j follows in the general case by a simple limit argument. 

We are now going to define the minors of an infinite determinant. Let 9JI and 
91 be two closed subspaces of ft, Pm and Pn the corresponding projections, and 
suppose there is a unitary operator {/ ( jZ+^if t ) such that t/9K=9(l. Then for 
AO+%>i(ft) the minor of det (A) corresponding to the triple (5DI, 5R, U) is 

(6.7) det(£//V4|9l). 

The definition makes sense because it is easily seen that t/Z\0i,4|9(lÇ/3î+'£,
1(9lî). 

In case 9t (and hence 9JI also) is of finite codimension in ft, we shall say that 
det (Wgjj^lSR) is a minor of corank dim 9ft-1-. 

Let det (UPwA\il) be a minor of corank k of A. Then, by (6.2) 

(6.8) det ( i/Pjoi ̂  19Î) = det (/»¡„CMi3,,,+(/-/>„)) = 

= ((UA)Adk{eih...f\ek),e1f\...Nek) 

for {elt ...,ek} an orthonormal basis of ftQ9l. Thus the minors of corank k of 
A coincide with some matrix elements of (UA)Adk=AÂdkUAdk. 
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§ 7. Determinants of contractive analytic functions 

Let 0 € H°°(if (ft)) be a contractive function (here ft denotes as usual a separable 
Hilbert space). Let us suppose that /—0(A) is nuclear for A£Z> and let {<?„} î be an 
orthonormal basis of ft. The functions 

dn(A) = det [<0(AM, e ,>] l s i , ; s n = det (/>„0(A)/>n+(l-/>„)) 

(here P„ denotes the orthogonal projection onto the linear span of {ex, ..., e„}) 
are analytic, 

(7.1) K(A)| s i , 

and 

(7.2) lim d„(A) = det (0(A)). 
oo 

From (7.1) and (7.2) we infer, by the Vitali—Montel theorem, that det (0(A)) is 
an analytic function. A similar argument shows that the functions A—(0(X))Aik are 
analytic and contractive (cf. § 6) and that 

(7.3) 0 A k0Adk = 0Aik0Ak = det (0)/*a* 

In particular, if 0(A) is invertible for some AgD, it follows that 0 has a scalar 
multiple (cf. [13], ch. V, § 6). 

In case ffli, 91 are subspaces of ft of finite codimension and U£ l+ W/R) is 
a unitary operator such that I/9Ji=9i, the function A—det(WSD10(A)|9i) is analytic 
and of modulus S1. We call such a function a minor of 0 of corank dim 9Jtx. 

Let us denote by 5,(0) the greatest common inner divisor of the minors of 
corank r of 0 (r=0, 1,2,...). For r=0, ¿„(0) coincides with the inner factor of 
det(0(A)). From (6.8) it follows that <5r(0) coincides with the greatest common 
inner divisor of the matrix elements of 0A d r . 

Lemma 7.1. c5,+1(0) divides <5r(0) for each r. 

Proof . We have to prove that <5r+1(0) divides each minor of corank r of 0 . 
Clearly it suffices to prove that <5i(0) divides det (0) or, equivalently, 

det (0) / f 2 ( f t ) c ¿X(0)H2(9C). 

But this easily follows from the relation 00Adl=det (0 ) / s . Indeed, 0AdlH\9C)c: 
<r<51(0)//2(ft) and, since 0 is analytic, 

det (0)# 2 ( f t ) = 00AdlH2(&) c 0 8 / 0 ) c 8/0)H2(St). 

Lemma7.2. The greatest common inner divisor of the functions 5/0) (J =1, 2,.. .) 
is 1. 



226 H. Bercovici and D. Voiculescu 

Proof . Let us denote by m the greatest common inner divisor of the family 
{¿/@)}r and let iej)7= 1» b e a n orthonormal basis of ft. Since 0AdrH2(SiAr)ci 
cmi / 2 ( f t A ' ) for each r, we have 

|m(0)| £ |(@(0)Adr(e1 A e2 A... A er), ex A e2 A... A e,)| = 
= | det ((/— Pr) 0 (0) (/— P r )+P r ) |, 

wherePr denotes as usual the orthogonal projection onto the linear span of {elt..., er}. 
We infer 

|m(0)| is lim sup |det ((/— Pr) 0(0) (/—Pr)+Pr)\ = 1 
r-*-oo 

and the lemma follows. 
Let us also note the relations 

(7.4) Sj(0~) = dj(©)~ 0 = 1,2,...) 

which hold for each function 0 of the type considered in this section. 

§ 8. Weak contractions 

Let us recall that a contraction T acting on a Hilbert space § is a weak contrac-
tion if its spectrum does not cover the unit disk D and I—T*Tis a nuclear operator. 
Tis a weak contraction if and only if T* is a weak contraction. 

If a weak contraction T is of class C0q (that is T"—0 and T * n - 0 strongly 
as «-*«>), then T is of class C0 and acts on a necessarily separable space. The proof 
of this fact goes as follows (cf. [13], Ch. VIII, § 1). 

If we put 

(8.1) TK = ( T - U ) ( I - X T ) - \ 

we have 
(8.2) I-TTT, = XL(I—T*T)XLI, XX = ( l - |A| 

So T is a weak contraction if and only if TX is a. weak contraction. Moreover, 
we have (TX )_X=T . Therefore we may suppose without loss of generality that T is 
invertible. Let {NJ}" (n==K0) be the eigenvalues of (J-T*T)\T>T, T>T=((I-T*T)H)-
(multiple eigenvalues repeated according to their multiplicities). We have n j ^ 1 
because ker T= {0}. 

Let {<pj)l be an orthonormal basis of X>T such that (I—T*T)(pj=Hj(pj. It is 
easy to verify that the system { i w h e r e ^ = (1 —fij)~1/2T(pj, is an orthonormal 
basis of Dr* and that we have also T*\pj=(l — ¡i^cpj. 

Let us denote by U the unitary operator determined by 
(8.3) U: D r - X>T», Uq>j = - i j f j . 
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Then the operator (U+T)T> r is nuclear. Indeed, 

(U+T)h= ¿ ( ( l - ^ - ) 1 / 2 - l )(h,q>j№j, 
i=i 

and from the relations 

lim i i- i ( l - ( 1 - ¡ i f 1 2 ) = 1/2, J ^ < -
. r j-1 we infer 

j=i 
Furthermore, if © ^ H ^ ^ i U j ^ y * ) ) is the characteristic function of 

T, U—@T(X) is nuclear for X£D. Indeed, 

U-0T(X) = (U+T)\'St-XDt*(I-XT*)-1Dt\'£)t (DT = (I-T*T)l/i) 

and since DT and DT* are Hilbert—Schmidt operators because T is a weak contrac-
tion, X D ^ I - X T * ) - ^ is nuclear. Thus the function (&($>Tj) defined 
by Q(X)—U*0j(X) coincides with 0T and I—0(X) is nuclear for XdD. 

Let us put 

(8.4) dT(X) = det(0(A)), Sj(T) = Sj(0), 0=0 ,1 ,2 , . . . ) . 

We have dT(0)= f[ ( l - i i / V O and from (7.3) (with &=1) it follows that 
J=I 

dT is a scalar multiple of 0. As in [13], Theorem VI. 5.2 we obtain 

Lemma 8.1. Each weak contraction T of class C00 is a C0 contraction and its 
minimal function coincides with <50(T)/<51(7'). 

Let us remark that we have a converse: suppose 0£H™(&(9£)) is such that 
0(A)6/+ ^ ( f t ) , A 6 Z>, and de t (0)^O. Since det(0) is then a scalar multiple of 
0 (by (7.3) with k=1), it follows that 0 coincides with the characteristic function 
of an operator T of class C0 and from [13], Ch. IV § I it follows that tr ( I - T * T ) = 
=tr (/— 0(O)*0(O))<«= so that T is a weak contraction. Let us also note that the 
relations 

(8.5) dT* = d'i, 5j{T*) = 8j(T)~ 0 = 0,1, . . . ) 

hold for each weak contraction T. 

P r o p o s i t i o n 8.2. Let T be a weak C0 contraction acting on the Hilbert space ?> 

[T X\ 

T I, §=$i©|>2 be the triangularization associated with the T-invariant 

subspace Then Tx and T2 are weak C0 contractions and we have 

dT = dTldTi, S0(T) = <50(T1)<S0(7,
2). 
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P r o o f . We may suppose without loss of generality that T is invertible, thus 
mT(0)^0. By [13], Proposition III. 6.1, Tx and T2 are C0 operators and mTl, mTt 

are divisors of m. It follows that mTl(0) ^ 0, mn(0) ^ 0 so that Tx and T2 are invertible. 
Moreover, we have 

h-TïTx = P^T-T*T)\§>x, h-T2T* = pSa(/-m!ô2, 

thus Tx and T2 are weak contractions. 
By [13] Theorem VII. 1.1 and Proposition VII.2.1, we can associate with the 

invariant subspace a regular factorization 

(8.6) 0T(X) = 0i{X)0x(X) 

such that the characteristic functions 0TL(X), 6>Ta(A) coincide with the pure parts 
of ©i(A), 02(A), respectively. Then we have 

UJ (8.7) 0,(A) = C / ; [ ^ ( A ) ° 

where U'}, U" are unitary operators and Ij denotes the identity operator on some 
Hilbert space 0 = 1 > 2). Now, from the consideration preceding Lemma 8.1, it 
follows that 1-U°*0T](X) is nuclear and dTj(l)=det(£/?* 0Ty(A)) for some uni-
tary operators £/" (j=l, 2). With the notation 

uj = u; Uf 0 
0 b 

UJ 

we see that I— U*0j(X) is nuclear and 

(8.8) dTj(X) = det (£/*0y(A)). 

Using (8.6) and (8.7) we obtain 

(8.9) U*0T(X) = U*U2U1[U*(U20(X))Ul] (U*0x(X)y 

From this relation it follows that/j,^— U*U2UX is a nuclear operator such that 
det (U*U x U 2 ) exists. Using (8.8-9) and (5.4) we then obtain 

d T ( A) = det (U* UtUJ det (C/a* ((/2* 02(A))C/1) det {U} 0X(A)) = 

= det(U*U2 Ux) det (U* 02(A)) det (U? 0x(X)) = 

= det(U*U2UJdTitt)dTl(X). 

The relation ¿0(T)=(30(7,
1)50(r2) follows by taking the inner factors in the last 

obtained relations. The proposition is proved. 

R e m a r k 8.3. This proposition is a generalization of [13], Lemma IX. 3.1. 
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Lemma 8.4. A Jordan operator S(M), M={wJ}~, is a weak contraction if 
oo oo 

and only if _2"(l — |m/0)|)<°°. In this case we have dS(M)=S0(S(M)) = [J mjy j=i j=i 
where JJ m j means the limit of some converging subsequence of {m1mi...m„}'^=1. 

Proof. For any inner function a m w e have 

(^s (m) — S (m) S(m)*)h = P6(m)(I-UU*)h = (h,c0)Pb(m)c0 = 

= (h, c0) (1 — m(0)m) 

(h£ §>(m)), where U denotes the unilateral shift on H2 and c0 is the constant functions 
c0=1. Thus I— S(m)S(m)* is of rank one and has norm (1 — m(0)m, c0)=1 — |m(0)|2. 

It follows that the trace norm of / - S(M)S(M)* equals J ( l - K - ( 0 ) | 2 ) . We have 
j=i 

only to remark that 

1 - 1 mj(0) | mj(0) \ 2 S 2 (1 - 1 m ; (0 ) | ) . 

oo 
The equality ds (M) = ]J mj obviously follows from the special form of the charac-

j=i 

teristic function of S(M). So it remains only to prove that [J ms is an inner function. 
OO CO 

To see this, let us remark that J ] mj and II,mj have the same outer factor, such that 
j=l j=n 

this outer factor must be 1 because -1 for each A£Z>. The lemma is I I m j C ) j = n 
proved. 

From now on Twill denote a weak C0 contraction acting on §>, 0 € 
will denote a function coinciding with the characteristic function of T and 0(X) €/+ 
+ XiD. We shall also denote by S(M), M={m ;}~, the Jordan model of T. 
From the relation 

QArQAdr = QAirQhr _ d T . / j | A r > s e e (7 3 ) ( 

we infer, because 0 A r is two-sided inner, that 50(T)/Sr(T) is the least inner scalar 
multiple of 0 A r . Thus we have 

(8.10) dr(T) = 50(T)/5r(T). 

Theorem 8.5. A C0 contraction T is a weak contraction if and only if its Jordan 
model S(M), M= {my}", is a weak contraction. 

Proof . That r i s a weak contraction if S(M) is so follows from Proposition 4.3, 
via Lemma 8.4. So let us assume that Tis a weak contraction. Then, by Corollary 3.3. 
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and relation (8.10) it follows that m1m2...mr divides S0(T) for each r. If we suppose 
T is invertible, we have <50(70(0)^0 and from the inequality 

| i f H ( 0 ) . . . m r ( 0 ) | £ P o ( r ) ( 0 ) l 
oo oo 

it follows that the infinite product J J |/w/0)| converges. Therefore ^ (1 — |my(0)|)< oo 
J=I J=i 

and our theorem follows by Lemma 8.4. 
P r o p o s i t i o n 8.6. For each weak C„ contraction T, the determinant function 

dT is an inner function. 

Proof . Let us write the inner-outer decomposition of dT 

(8.11) dT = did0. 

Because d{ is a scalar multiple of 0 A \ there exists a contractive function i2(k)E 
€#°°(.S?(ftA*)) such that 

(8.12) fl(*)0A* = 0AkQ(k) = ¿¡IftM,. 

Then, by (7.3) and (8.12) we have 

0k(doQ^-0Adk) = 0 

so that (0* being inner) 

(8.13) 0Adk = d0QW. 

Let {ei},~! be an orthonormal basis of ft and denote by P„ the orthogonal 
projection onto the linear span of ..., e„}. By (8.13) we have 

(0Adk(eiA...Aek),e1A...Aek) = d0(Q<*>(e1A...Ae^,e1A... Aek) 

and therefore 
|do(0)| £ lim sup| < 0 ( 0 ) ^ " ^ A... A ek), ex A... A ek)\ = 

= lim sup |det ((/— Pk) 0 (0) (/— P k ) + = 1. 

It follows that |(/o(0)| = l so that \d„\ = \. The proposition follows. 
We are now able to prove that the determinant function of a weak C0 contraction 

is a quasi-similarity invariant. 

Theorem 8.7. For each C0 contraction T with Jordan model S{M), M—{mj}", 
we have 

(8.14) mj = S j^TySj iT) - , 

(8.15) dT = dsm = ffntj. 

\ 
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Proof . From (8.10) it follows that 8 J ^ 1 (T) ld j (T)=d/T) ld J ^T) so the rela-
tion (8.14) obviously follows from Corollary 3.4. 

For the second relation let us write (8.10) under the form 
(8.16) dT = 50(T) = mxm2 . . . mn'S„(T) 
(cf. Corollary 3.4). From Lemma 7.2 and Lemma 1 of [12] it follows that dT coincides 
with the least common inner multiple of the family {m1m2...mn}^'=1, which coincides 
with ds(M). 

The theorem follows. 
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Normal dilations and operator approximations 

R. H. BOULDIN and D. D. ROGERS 

§ 1. Preliminaries 

This paper continues the research presented in [2]; the earlier results are refined 
and extended in several directions. Consideration is given to best approximation 
by self-adjoint operators as well as by non-negative operators. A best approximation 
from the first set is a "self-adjoint approximant" and from the second set is a 
"positive approximant". For elementary facts about positive approximants the 
reader is directed to [8] and [5] ; for self-adjoint approximants, check [8] and [6]. 
A general reference for terms not explained is [9]. 

For a given operator each set of approximants is convex; the main results of 
this paper identify broad classes of operators for which each of these sets of approxi-
mants is infinite-dimensional. (For a discussion of the dimension of a convex set 
see [16, p. 7].) Moreover, the constructive proofs of these results develop concrete 
techniques for obtaining approximants for a given operator. 

In [8] HALMOS showed that for any (bounded linear) operator A=B+iC 
{B=B*, C=C*) a positive approximant is 5+(<52-C2)1/2 where ô=ô(A) is the 
distance from A to the non-negative operators; this positive approximant, denoted 
P0, is referred to as the "Halmos positive approximant". Halmos also showed that 
B is a self-adjoint approximant for A, or equivalently the distance from A to the 
self-adjoint operators is ||C||. 

The work in this paper exploits a fundamental relation between an operator 
T and various normal dilations of T. Before establishing this relation we recall 
the following two lemmas which state some previously known facts in a form appro-
priate to this work. These facts are proved in [12] and [10], respectively. 

Received August 4, 1976. 
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1.1. Lemma. If N is a normal element of a C*-algebra and if A is any element, 
then 

where h(Mu M2)=sup (dist (mly M2): m1(iM1}. 

1.2. Lemma. For any normal operator N the following formula holds'. 

\\N-pA(N)\\ = K<N)'A) 
where PA(N) is a best approximation for N from the normal operators with spectrum 
in the nonempty closed set A, denoted JV(A). 

The notation of the preceding lemmas is continued in the next theorem. 

1.3. Theorem. Assume A is a closed convex subset of the real line. If T is an 
operator on H with normal dilation N on Kz>H such that o(N)<zo(T), then 

\\T-PAT)\\ = h{a(T), A) = h(o(N), A) = ¡iV-i^AOU. 

Furthermore, provided Q is the orthogonal projection of K onto H, QPA(N)Q\H 
is a best approximation for T from 

Proof. It follows from the hypothesis and the two preceding lemmas that 

Dtf-^WII = h(e(N), A) s h(o(T), A) s Hr-P^m 
Because QLQ\H belongs to JV(A) on H for any L^Ji(A) on K, the following in-
equality holds 

\\T-PA(T)\\ =§ \\T-QPa(N)Q\\ = \\Q){N-Pa(N)Q\\ ^ \\N-Pa(N)W-

The inequalities prove the theorem. 
We use Theorem 1.3 in each of the next four sections. In sections § 2 and § 3 

it is assumed that Tis subnormal with minimal normal extension N, and in sections 
§ 4 and § 5 it is assumed that T is a Toeplitz operator with N the corresponding 
Laurent operator. It should be noted that other general hypotheses guarantee 
that a{N)c.a(T) — for example, if a(T) is a spectral set for T—, then such a normal 
dilation N exists. 

§ 2. Positive approximants of a subnormal operator 

In the next theorem and throughout the remainder of this section the symbol 
T will denote a subnormal operator defined on H and the symbol N will denote 
a normal operator defined on K that is the minimal normal extension of T. Also, 
N equals B+iC where B and C are self-adjoint operators. 
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2.1. Theorem. For any subnormal operator T onehas\\T-PA(T)\\=\\N-PA(N)\\ 
where N is the minimal normal extension of T and A is a nonempty, closed, convex 
subset of the real line. Moreover, the compression of any PA(N) to H is a best approxi-
mation for T from jV(A). 

Proof . Recall a(T) differs from o(N) only by filling in some holes (see 
[9, Problems 157, 158]). Thus, the above theorem is a special case of Theorem 1.3. 

A curious consequence of the preceding theorem is that the norm of the ima-
ginary part of the subnormal operator T, denoted ||im T ||, equals the norm of the 
imaginary part of the minimal normal extension, denoted ||im TV ¡|. The first norm is 
the distance \\T— PR(r) | | and the second norm is the distance ||7V—PR(JV)||. 

Let T be a subnormal operator on H. There is a subspace H1 which reduces 
T to a normal operator and is maximal with respect to this property. Moreover, 
the orthogonal complement of HU denoted includes no subspace M invariant 
under T such that T\M is normal. (See Proposition 1.1 of [1], for example.) Thus, 
T is the direct sum of a normal operator and a completely nonnormal operator. 
Since positive approximants of a normal operator are studied extensively in [3], 
attention is now concentrated on completely nonnormal subnormal operators. 

Let r denote that set of z such that the distance from z to [0, is exactly 
8(T) and rez does not exceed | | r | | . 

2.2. Lemma. Let T be a completely nonnormal subnormal operator. Then 
T has infinitely many distinct approximate eigenvalues, say {zl5 z2, ...}, such that 
{z1,z2, ...} does not intersect T. 

Proof . If a(T) were contained in f , then it would follow that T is normal 
(see [15, Corollary 2] or [11, Theorem 1]). Thus, o(T) and the topological boundary 
of <x(T), denoted bdry a(T), contains some z„ such that z 0 $ r . If z0 were isolated 
from its complement in o(T), then it would follow that z0 is an eigenvalue for T and 
the corresponding eigenspace reduces T to a normal operator (see [14, Theorem 2 
and Lemma 6]). Thus, z0 must be an accumulation point for o(T) and it follows that 
bdry a{T) contains an infinite number of points off the contour f . Since bdry <7(7") 
consists of approximate eigenvalues, the lemma is proved. 

In the next lemma and throughout the remainder of this section the symbol 
P0 will denote the Halmos positive approximant of the normal operator N=B+iC; 
thus, P0 is B+(82—C2)1/2. It should not be confused with the Halmos positive 
approximant for the subnormal operator T. 

2.3. Lemma. Let E(-) denote the spectral measure for the normal operator 
N and let K0 denote the subspace {PqK)~ D ((82-C2)K)~. 

(i) The subspaces K0 and E(rc)K are equal. 

3 
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(ii) If D is a compact set not intersecting T, then E(D)K reduces (<52—C2) and 
P0 to invertible operators. 

Proof . The first statement follows from Lemma 2.1 of [4]. 
It follows from Lemma 1.2 that |(rez)_+i(imz)|s5(A0 for every z in a(N) 

where denotes the maximum of {—x,0). Since D and T are both compact, there 
is a positive distance between them. It follows that there is a positive number y such 
that |(re z)_ +i'(im z)\^5 — y for every z in the intersection of D and o(N). Con-
sequently the sets (<52-(im z)2: zeDC\o(N)} and {rez+(<52-(imz)2)1/2: z£Df)c(N)} 
are bounded away from zero, and these sets are the spectra of ¿2—C2 and P0 restricted 
to E(D)K, respectively. 

2.4. Theorem. Let T be a completely nonnormal subnormal operator defined 
on H with minimal normal extension N defined on K. Then the real dimension of the 
convex set 3P(T) of positive approximants of T, denoted dim ^(T) , is infinite. 

Proof . Let zx and z2 be approximate eigenvalues of T off the contour J \ 
Let a.j and /?,• be real numbers such that Zj=<Xj+ifij and let {en, ej2, ...} be a nor-
malized approximate eigenvector for T corresponding to z}. Because H is invariant 
under N, Zj is an approximate eigenvalue for N and {en, eJ2, ...} is a corresponding 
approximate eigenvector for N. 

Let D be a compact set not intersecting T and containing {zlt z2} in its interior. 
Define i by the equation 

2T = inf {re z+(<52-(im z)2)1/2, (<52-(im z)2)1'2: z£D f} a(N)} 

and note that the proof of (ii) of Lemma 2.3 implies that T is positive. The functional 
calculus for N readily shows thatlim {||/}t—eJk\\ : k= 1, 2,. . .} is zero, where fJk— 
=E(D)ejk for j=\, 2. It follows that lim {\\(I-Q)fjk\\:k=\, 2, ...} is zero, where 
Q is the orthogonal projection of K onto H. Replace the original sequences with 
subsequences if necessary so that {/m,/^} is linearly independent for each n. 

By definition the operator A(G; n) is zero on {E{D)K)L, on K{n)=span { f l t t , f ^ 
it is the matrix 

a 
and on E(D)KQK(N) it is 11. It will be shown that P0—A(Q\ n) is a positive approxi-
mant of N for g in an interval (0, go) for all n sufficiently large. If (N—P0)\E(D)K 
is written as a matrix relative to K(n)®{E(D)KQK(n)), then the nondiagonal 
entries converge to zero in operator norm by the choice of zx and z2. Thus, it suffices 
to show that both [ |(W-P0-M(e; «))|£(D)*etf(n)ll and | | ( iV-P0-M(e; »))|^(»)|| 
are strictly less than g for appropriate g and n. The first inequality follows from (ii) 



Normal dilations and operator approximations 237 

of Lemma 2.3 and the choice of T, and the second inequality is proved in the next 
paragraph. 

Define R(n) to be (N—P0)\K(n) minus the diagonal operator with entries 
-(<52-/S?)1/2 + tfi. _ (¿2 +/&>, respectively, and note that (N-P0+ 
+ A (g; n))\K{n) equals 

fT-(<52-ßly'*+iß1 0 ^ (0 q 
{ 0 x-(5*-ß l)l/2+ijS2. J + C eo)+R{n)• 

By the choice of r, the norm of the first operator is strictly less than <5 and the norms 
of the remaining two operators can be made arbitrarily small by the choice of g 
and n, respectively. Thus, P0—A(g; n) is a positive approximant of N. 

Let m be any positive integer; a distinguished set of m positive approximants 
for N will be constructed. Let {zj,..., zm+1} be a set of m + \ distinct approximate 
eigenvalues of T. For each pair {z1; zj), the preceding construction results in a positive 
approximant P0—A(g; n;j) for j—2, ...,m +1. 

By Theorem 2.1, Q(P0—A(g; n;j))\H is a positive approximant for T, where 
Q is the orthogonal projection of K onto H. Recall from the second paragraph 
of this proof that lim {\ifjk~ejk\\ '• k=l, 2, ...} is zero for j= 1,..., w + 1. It follows 
that {Qfjx, Qfji,...} is an approximate eigenvector for T corresponding to z} for 
7 = 1 , ...,m-f 1. The linear independence of {Qfln, ..., Qfm+1„} for all n sufficiently 
large is clear. In order to show that the dimension of 0>(T) is at least m it suffices 
to show the linear independence of 

{QA(g; n; 2)\H,..., QA(g; n; m + l)\H}; 

thus, consider the matrix of QA(g; n;j)\H compressed to span {Qfln,..., Qfm+ln} 
relative to {Qfln, ..., Qfm+ln). Make an appropriate choice for g, and note that it is 
determined by zlt z2, ..., zm+1, r. Because each entry in the matrix for QA(g; n;j)\H 
relative to {Qfu,..., Qfm+\„} converges to the corresponding entry in the matrix 
of the compression of A(g; n;j) relative to {/ ln , ...,/m+i„} as n — oo, it is not difficult 
to show that the first set of matrices are linearly independent for appropriately 
large n. 

In fact, choose n so large that each entry in the matrix of the compression of 
QA(g; n;j)\H differs from the corresponding entry of the matrix of A(g; n\j) by 
less than glm. Denote those matrices by M1;..., Mm and assume that c1,...,cm 

are real constants such that 

0 = c 1 M 1 +. . .+c m M m . 

By considering each entry in the first row, one obtains m equations of similar form, 

3» 
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and each equation implies an inequation of the form 

m 
\CJ\Q (

e
/m) Z hi k = 1 

Adding up these inequalities results in a contradiction, which proves the theorem. 
Recall the standard decomposition of a subnormal operator that was discussed 

prior to Lemma 2.2. If T is the orthogonal direct sum TX®T2, then it is clear that 
S(T) is the maximum of {¿(J\), <5(7y}. Consequently, unless <5(7\) equals ő(T2) 
there is much arbitrariness in the approximation of T. For example, if &(T2) exceeds 
¿(7\), then (P1—A)(BP2 is a positive approximant for T, where P2 is any positive 
approxinunt for T2, P± is any positive approximant for Tx and A is any nonnegative 
operator dominated by Px and having norm dominated by <5(T2) — S(T1). 

It should be noted that the construction carried out for the minimal normal 
extension N in the proof of Theorem 2.4 proves the following corollary. 

2.5. Corol la ry . If the spectrum of the normal operator N has an accumulation 
point not on the contour f consisting of all z with distance to [0, exactly equal to 
6(N), then the dimension of 3P(N) is infinite. 

A convex set, for example a disc in the plane, may have uncountably many 
extreme points, and the only implication about the dimension of the convex set is 
that it exceeds one. On the other hand, conclusions about the dimension of a convex 
set have immediate nontrivial implications about the number of extreme points. 

2.6. Corol la ry . If T is a completely nonnormal subnormal operator, then IP(T) 
has an infinite number of extreme points. 

A consequence of some results of T. SEKIGUCHI in [13] is that S?(T) has un-
countably many extreme points. 

§ 3. Self-adjoint approximants of a subnormal operator 

Recall that E( •) denotes the spectral measure of the normal operator N=B+iC 
with B=B*, C—C*, defined on the Hilbert space K. 

3.1. Lemma. If D is a compact set not intersecting the set I = { z ; ( i m z ) 2 = 
= ||C|i2, |z|s||JV||}, then E(D)K reduces ( | |C| |2-C2)1 /2 to an invertible operator. 

Proof . Clearly |imz| does not exceed ||C|| for any z in A(N). Since D and 
I are both compact, there is a positive distance between them. It follows that there 
is a positive number v such that |im z|^ | |C| | — y for every z in the intersection of 
D and o(N). Consequently the set {(||C||2-(im z)2)1/2: z£Di) <J(N)} is bounded away 
from zero, and this set is the spectrum of (| |C||2- C2)1/a restricted to E(D)K. 
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Since self-adjoint approximants of a normal operator are studied in [6] and [10], 
attention is now concentrated on completely nonnormal subnormal operators. 

3.2. Theorem. Let T be a completely nonnormal subnormal operator defined 
on H with minimal normal extension N defined on K. Then the real dimension of the 
convex set £f(T) of self-adjoint approximants of T, denoted dim ¿f(T), is infinite. 

Proof . This proof uses the same techniques as the proof of Theorem 2.4 with 
a few modifications which will be indicated. Choose {zl5 z2} as in the earlier proof 
and let D be a compact set not intersecting I and containing {z1; z2} in its interior. 
Define T by the equation 

2% = inf{(||C||2—(imz)2)l/2: z€Z)fl <r(iV)} 

and note that the proof of Lemma 3.1 implies that T is positive. Proceed with the 
construction in the proof of Theorem 2.4. 

It will be shown that B0—A(g;n) is a self-adjoint approximant of N for g in 
an interval (0, g0) for all n sufficiently large where henceforth, B0 denotes B+ 
+ (|[C||2-C2)1/2. (Recall that Theorem 1 of [6] shows that B0 dominates every self-
adjoint approximant of N and Proposition 2 of [6] shows that B0 is a self-adjoint 
approximant.) As in the earlier proof, it suffices to show that \\(N—B0+A(g; w))| 
\E(D)KQK(n)\\ and n))|i«:(«)|| are strictly less than ||C|| for app-
ropriate Q and n. The first inequality follows from the choice of T and Lemma 
3.1, and the second inequality in the next paragraph. 

Define R(n) to be (N-B0)\K(n) minus the diagonal operator with entries 
-(l|C||2-/32)1/2 + ift, -(||C||2-;S2)1/2-Mj?2 respectively. The remainder of the proof 
of this theorem proceeds by conspicuous analogy to the proof of Theorem 2.4. 
The resulting self-adjoint approximants of Tare Q(Ba—A(g; n;j))\H. 

Recall the discussion immediately subsequent to Theorem 2.4. Analogously, 
unless ||im Till equals ||im T2\\ there is much arbitrariness in the self-adjoint approx-
imation of T=T1®T2. For example, if ||im 7\[| exceeds |]im T2\\ and Rj is a self-
adjoint approximant for 7}, with j= 1, 2, then Rx © (R2—A) is a self-adjoint approxi-
mant for T provided A is any self-adjoint operator whose norm is dominated by 
||im TJHI im r2l|. 

The discussion prior to Corollary 2.5 and the discussion prior to Corollary 2.6 
indicate the methods used to prove the next two results. 

3.3. Corol la ry . If the spectrum of the normal operator N—B+iC has an accu-
mulation point not contained in the set E consisting of all z with distance to (—<*=, 
equal to ||C||, then the dimension of £f(N) is infinite. 

3.4. Corol la ry . If T is a completely nonnormal subnormal operator, then £f(T) 
has an infinite number of extreme points. 
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§ 4. Positive approximates of Toeplitz operators 

N o t a t i o n . For 5=S(T), let I'={z in C: dist (z, [0, <»))=r5}. Let n denote 
Lebesgue measure on the unit circle A, normalized so that p.(A) = l. For p=2 or 

oo, we denote by LP(A) the usual Lebesgue spaces. If cp is in LT(A), then the defini-
tions of the Laurent operator L^ and Toeplitz operator T9 are as in [9]. By [9, Problem 
196] 

From Theorem 1.3 it follows that 5(Tq>)=8(L<p)=h (ess range cp, [0, «>)) for all 
<p in LT{A). We examine next the dimension of the convex set [^(7^)] of 
positive approximants of Laurent [Toeplitz] operators. 

4.1. Theorem. Let cp be in LT(A). 
(i) If n((p-\rj)<l, then both 0>(LV) and are infinite-dimensional. 

(ii) If ¿i(<p_1(r)) = 1, then L9 has a unique positive approximant; Tv has a unique 
positive approximant if and only if im cp is constant. 

Proof , (i) Notice <5(7)>0 in this case. Thus f is nondegenerate and the spectra 
of Lp and 7 ; lie inside T. Define the sets Fk={C: dist(£, [0, °o))s5(l-l/A;)}. 
Because ^((¡j_1(r))< 1, there exists fc^l such that /i(<p_1(F4))>0. Fix such a k and 

oo 
write (p~1(Fk)= IJ SJ, where {SJ} is a pairwise disjoint collection of measurable 

j=i 
sets, each having non-zero measure. Define non-negative functions p(j) in L°°(A) by 

Of . = f(re<p(2))+ z in SJ 
p U ) { - z ) 1 re <p(z)+((52—(im <p(z))2)1/2 otherwise 

for j= 1 ,2 , . . . . It is straightforward to verify that \\LpU)—LJI =<5. Hence each 
Lp(J) is a positive approximant of L9, and TP(J) is a positive approximant of 

We next show that both 3P{L9) and ^(T^) are infinite-dimensional by proving 
that 

iLP(J)~Lrev + W-Ctmv)*)1*'-] =1 ,2 , . . . } 

is linearly independent; this also shows that 

{Tp(j)~Trev + W-timv)*)1* '-j = 1 )2 , . . . } 

is linearly independent since [9, Problem 196] Toeplitz operators and Laurent oper-
ators defined by the same function in L°°(A) have the same norm. 

If C l , . . . , c„ are real numbers such that J Cj(Lp(j) - Lre(p+(s2_0m<fi)2)1/,)=O, then 

choose r with l ^ r ^ n and apply this linear combination to the characteristic 
function of S r , which is in L\A). This clearly yields a function that is zero off SR, 
and forz in SR it is 

c , ( - ( re 9>(z))_-(5*-(im <p(z)ff*) = 0. 



Normal dilations and operator approximations 241 

For (p(z) in Fk, however, - (re cp(z)) _ - (<52 - (im <p(z))2)1/2 is bounded below in 
absolute value by a strictly positive constant that depends only on k (which is fixed). 
Because /i(Sr) >0, this proves cr=0. 

(ii) If n((p~\r))=l, then the essential range of cp is included in T. Hence 
[5, Theorem 5.6] Lv has a unique positive approximant. 

If im <p is constant, then Tv is normal with spectrum included in T, and so it 
also has [5, Theorem 5.6] a unique positive approximant. 

If im (p is not a constant, then the Halmos positive approximant Tteq> + 
+(<52-(7'im,))2)1/2 and 7;e„+(32_(im„)2)1/2 are two distinct positive approximants 
of Tv. Proof: that both are positive approximants is straightforward to verify. 
If they were equal, then it would follow that <52=(Tim J2+(7^ _(im „w/2)2 . To 
show this is impossible, let ek(z)=zk, k—0, 1, 2, ... be the usual orthonormal basis 
of H2(A); with respect to this basis Toeplitz operators have matrices that are constant 
along each diagonal [9, Problem 194]. Hence there e x i s t s s u c h that {Tim<?ek,eo)?i0 
because Tim(p is self-adjoint and not a scalar. Notice that for a self-adjoint Toeplitz 
operator the fact that the entries in its corresponding matrix are constant along 
diagonals implies that the sum of the squares of each entry in a given column is 
exactly one term plus the same sum for the adjacent column on the left. Thus, 

<52 = (TLvek, e^) + (2_(jm<p,2)i<2e^, ek) = ||7,
im,)efc|l24-||71(i2_(imv)2)1,2eA|l2 

^ \(Tim9ek, e0>|2+||T(it.(lm<pWilieor > 

> <Tfm<pe0, e0) + (7'(2 2_(im((,)2)inCo> eo) = <5, 
a contradiction. 

This proves Theorem 4.1. 
The previous theorem shows that the Halmos approximant of 7^ is distinct 

from the compression to H\A) of the Halmos approximant of L9 (if im (p is not 
a scalar). The former, of course, always dominates the latter [5, Theorem 4.2]. 
The next result gives one more comparison of these two operators. 

4.2. Theorem. If imcp is continuous, then TK<p+(b2—(Tim?,)2)1/2 is a compact 
perturbation of 7;ep+(52_(im9>)¥/2. 

Proof . Let 7i denote the canonical homomorphism [7, p. 127] onto the Calkin 
algebra. By [7, Proposition 7.22], if £ is a continuous function on A, then (T()2—Tp 
is compact, i.e. n((T^f)=n(T^). If £ is also non-negative, then 
and hence n(Til/2) = (n(Ti))1/i. Thus, since n(p1,1) = it(p)1/2 for all ¿>==0, it follows 
that 

n i i P 2 ~ { T i m , p ) 2 Y 2 ) = K < 5 2 - ( r i m „ ) 2 ) ) * / 2 = ( n ( 3 2 ) - n ( T { i m ^ ) Y 2 = 

= (n(Tô a-(imp)a))l/2 = n(T(Si_(im9)m). Q.E.D. 
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§ 5. Self-adjoint approximants of Toeplitz operators 

The results of the previous section on positive approximation have analogues 
for self-adjoint approximation. Of course, both the distance from Lv to the self-
adjoint operators on L\A) and the distance from to the self-adjoint operators 
on H\A) are ||im tp\\m [8] for any cp in L°°(A). We now examine the dimension 
of the convex set [¿f(Tv)] of self-adjoint approximants of Laurent [Toeplitz] 
operators. We use from §3 the definition I={z: (im z)2=||im |z|s||(p||„}. 

5.1. Theorem. Let cp be in L°°(A). 
(i) If /i(<p_1(Z)) < 1, then both S^iLy) and are infinite-dimensional. 
(ii) If ¿i(<p-1(r))= 1, then Lv has a unique self-adjoint approximant ; the Toeplitz 

operator 7^ has a unique self-adjoint approximant if and only if im (p is constant. 

Proof , (i) Notice that in this case im (p is not identically zero. For k = 1, 2, 3, ... 
define Fk={C: | imC|^(l-l /^)1 / 2 | | im cp\\J. Because ¡icp~\F^ 1, there exists k^l 

such that /i(<p-1(Ffc))>0. Fixsucha k and write cp~\Fk)= IJ Sj where {5^} isapair-
j=i 

wise disjoint collection of measurable sets of non-zero measure. Define the real-
valued functions s(j) in L°°(A) by 

{re<p(z) z in Sj 

re <p(z)+(||im ( p f - ( i m <p(z))2)1/2 otherwise. 
It is again straightforward to verify that ||LS(J) —Z,p||=||im<plL. Hence each L s a ) 

is a self-adjoint approximant of L9 and each Ts (J) is a self-adjoint approximant of 
We prove that both ^(L^,) and are infinite-dimensional by proving that 

{•i-sij) ^-Te<p + Cliim<pll2 — (im<p)2)l'a ^ j = 1 , 2 , . . . } 

is linearly independent, which also proves that the corresponding Toeplitz operators 
n 

are linearly independent. If -(¡m,.)»)1'»^0' t h e n c h o o s e 

i=1 
r with l S r ^ n and apply this linear combination to the characteristic function of Sr, 
which is in L\A). This yields a function that is zero off Sr and for z in Sr it is 
—c,(||im <plH —(im cp(z))2)1/2. For cp(z) in Fk, however, (||im ç>||L-(im (p)z))2) is 

bounded below by — ||im<p||^, which is independent of r. Because n(Sr) >0, this 
k 

proves c r=0. 
(ii) If /i(ç>-1(r)) = 1, then the essential range of cp is included in Z. Hence [6] 

Lç has a unique self-adjoint approximant. 

If im cp is constant, then T9 is normal with spectrum included in I , so it also 
has a unique self-adjoint approximant. If im <p is not a constant, then TTe<p + 
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+ ( l | i m < p | | L - ( r i m ^ and 
r̂ep-foiimpii;̂ —(imq>)2)1/2 a r e two distinct self-adjoint 

approximants of Tv . The proofs of these last two assertions are entirely analogous 
to those given in Theorem 4.1 and are hence omitted. This completes the proof of 
Theorem 5.1. 

It follows from [6, Theorem 1] that Tre^+(||im <p|lL-(Timv)2yi2 s Tre<p+(Vmq,^_(im!pYi)in. 

The following comparison of these two operators can be proved as in Theorem 4.2. 

5.2. Theorem. If im cp is continuous, then rre9>+(||im <p||L-(7,
im^)2)1/2 is 

a compact perturbation of 

Remark . It is not known whether and must be either zero-
dimensional or infinite-dimensional for each (p in L°*(A). 
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Distributive lattices whose prime ideals are principal 

V. R. CHANDRAN and HARRY LAKSER 

A well known theorem of I . S. COHEN [1] states that if R is a commutative ring 
with 1, and every prime ideal in R is principal, then every ideal in R is principal. 
In this note, the analogue of this theorem is proved for distributive lattices with 1. 

Theorem. Let L be a distributive lattice with 1. If every prime ideal in L is 
principal, then every ideal is principal. 

Proof . Suppose the theorem is false. Let denote the non-empty collection 
of non-principal ideals of L. It is clear that ^ is closed under the formation of 
unions of chains in (6. So, by Zorn's lemma we get a maximal element M m <€ 
which is not principal. Since L is principal, L^M. So, there exist elements a,b$M 
such that aAb£M. Now as M is a maximal element in MV(a] and MV(b] are 
principal ideals, and, by distributivity M—(MV (a])A (M V (Z>]) contradicting that 
M is not principal. Hence the result. 

Obviously, the condition of distributivity cannot be dropped from the Theorem as 
stated. However, G. Grátzer pointed out that the proof of our theorem carries 
over to meet-irreducible ideals of general lattices. In a distributive lattice, prime ideals 
are exactly the meet-irreducible ideals. So we have the following result. 

Theorem. Let L be a lattice with 1. If in L every meet-irreducible ideal is 
principal, then every ideal in L is principal. 
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Eigenvectors of unitary ^-dilations 

E. DURSZT 

Let T be a linear bounded operator on a Hilbert space H and Q a positive number. 
We say that U is a unitary ^-dilation of T, if U is a unitary operator on a Hilbert 
space Kz> H and 

where P (as always in the following) denotes the orthogonal projection of K onto H. 
Clearly Uis a unitary g-dilation of Tif and only if U i s a unitary g-dilation of T*. 
U is called to be minimal, if 

<ëa denotes the class of those operators which have unitary ^-dilations. 
Unitary ^-dilations were introduced and operators of classes <€e were charac-

terized by SZ.-NAGY and FOIA§ [6]. Spectral properties of unitary ^-dilations were 
studied in [1], [5], [3]. In this Note we prove two theorems about eigenvalues and 
eigenvectors, generalizations to the unitary ^-dilation case of facts known for the 
unitary 1-dilations ([7], Ch. 2, Proposition 6.1). 

In what follows we fix a positive number Q, a minimal unitary g-dilation U of T, 
and introduce the following notations : 

(1) K+=\JU"H, U+ —U\K+; K.= \JU~nH, = 
fl=0 /1=0 

L+ = K+Q UK+, = K-QU~1K_; 

T"h = QPUnh for all h£H and for n = 1,2, 

K = V UnH. 

OO CO 
(2) + > 

n = 0 n=0 

(3) Ro = R+C\ R-. 

Received May 2, 1977. 
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Clearly, L+ and Z,_ are wandering subspaces for the isometric operators U+ and 
E/_, respectively. Moreover, 

K+ = (© U"L+)@R+, K. = i© U - L ) ®R_ 

are the corresponding Wold decompositions. By the minimality of U this implies that 

(4) K={ © UnL+)®R+, K=( © C / - " L _ ) © J ? _ . 
Vfl = — OO ' V/J C= — OO / 

Finally we denote by P+, P_, and P9 the orthogonal projections of K onto R+, R_, 
and Ro, respectively. 

T h e o r e m A. (MLAK [4]) UnT*"h P+ h, U—Tnh - (\/hZH) 

(weak convergence). 

T h e o r e m 1. If 

(5) Ug = eg 

for some g£K and complex number s, then 

TPg = sPg, T*Pg = iPg, and giR0. 

Proof . Let Qn denote the orthogonal projection of g onto U"L+ (n=0, 
±1, ±2 , ...), then by (4) 

(6) 2 \\QngV ^ llgll2, UQng = Qn+1Ug, 
n= —oo 

and so by (5) 

ne„gii = W Q n ^ m = iiön+isgii = i i e , + 1 g i i ( « = o, ± i , ± 2 , . . . ) . 

By (6) this implies Q„G=0 for all n, thus by (4) 

(7) g € P + . 

For n = l , 2,... and h£H we have 

TP(Unh) =l-T"+1h = PU(U"h). 

Since by (1) and (2) 

R+ = f | V UmH c V UmH, 
n=0m=n m=l 

we conclude that 

(8) TPf=PUf for all f£R+. 
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Thus by (5) and (7) 
TPg = PUg = ePg, 

and this is the first statement of our theorem. 
Repeating the above argument with T*, U'1 and e in place of T, U and e, 

respectively, we get g£R-, T*Pg=sPg, and by (3) and (7), g£R0. This concludes 
the proof. 

T h e o r e m 2. If 

(9) Th = sh 

for an h^H and a complex number e, |e| = 1, then 

UP„h = eP0h, h = QPP0h, T*h = eh. 

Proo f . Theorem A implies for each gdK 

(.P-h, g) = lim (U~nTnh, g) = lim (U~n+1Tn~1sh, Ug) = (P_eh,Ug). n n 

Consequently, 

(10) UP_ h = eP_ h. 

By Theorem 1 this implies P_h£R0, and thus by (3) and the definitions of and P0, 

(11) P0h = P.h. 

This fact and (10) prove the first statement of our theorem. Using again Theorem 1, 
(10) implies 

(12) T*PP_ h = sPP_ h. 

Now by (11), Theorem A and (9) we have 

Q(h, P0h) = Q(h, P-h) = Q lim (ft, U~nT"h) = Q lim (U"h, S"h) = n n 

= lim (T"h, znh) = lim (enh, enh) = \\h\\2, 
n n 

i.e. 

(13) Q(h,P0h) = \\hV. 

Again by (11), Theorem A, and (12), 

ollPPohW* = Q(P- h, PP_ h) = Q lim (U-"Tnh,PP-h) = Q\im(E>>h,UNPP-H) = n n 

= lim ( f h , TnPP_ h) = lim (e"h, e"PP- h) = (h, P_ h) = (h, P0h). 

n n 

This fact and (13) imply that 

(14) Q\\PP
0
h) = \\h\\. 
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Now by (13) and (14) 

\\h-QPP0hr = \\h\\2-2Q Re(h,PP0h) + e*\\PP0h\\2 = 0, 

and consequently h = gPP0h. This fact, (11), and (12) imply T*h = èh, and the proof 
is complete. 

In connection with Theorem 2 let us recall that G . ECKSTEIN [2] has proved 
the following statement. If T£(€e for some positive g and if the complex number 
•e of modulus 1 is an approximate eigenvalue of T, then e is an approximate eigen-
value of T* with the same approximate proper vectors. 
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On the spectrum of contractions of class C.i 

G. ECKSTEIN 

1. In this paper we shall consider (bounded) operators in complex separable 
Hilbert spaces. We shall use notations from [8], and Z will denote the integers, 
N the natural numbers, C the field of complex numbers. We denote the open unit 
disc by D, the unit circle by C, and the annulus {l£C: l / 2 s | A | s l } by K. For 
a contraction TD£F(§) we denote by A(T) its spectrum, by <RP(T) its point spectrum, 
DT = (J—T*T)V2 denotes the defect operator, X>T=DT§> the defect space, and 
b r =dim T>T the defect number of T. 

B. SZ.-NAGYand C. FOIA§ call the contraction T of class C.x if T*nx+*0 for 
all J t 6 x ^ O (see [8], Ch. II. Section 4). In [8] Ch. VII, 6.3, or [8], Th. 2* they prove 
that if T£C.! and 8Tt is finite then a(T)=D or a(T) c C. Moreover, in the first 
case, crp(r)3Z) and T<{ Cu, while in the second, T£Cn. In the case bj*—°° it 
is posible that T€CU and a(T)=D (see [8], Ch. VI, Section 4). 

This raises the following questions: 
a) If r€C01, does it follow that or(r) 01)^0? 
b) If r€C 0 1 and A(T)F]D^&, then does it follow that a p ( T ) ^ 1 
c) If T£C.LT does it follow that A(T)=D or A(T)^ C7 
d) If TCC-i and (tP(T)C\D^0, does it follow that aP(T)^D1 
e) If ^ C . i and 1 <{<j{T), does it follow that i r (7)cC? 

GILFEATHER [2] gave a negative answer to a) and b). Using weighted shifts 
he proved that 

a) there is an operator T£ C01 with A(T) = C, and 
b) there is an operator T£C01 with a(T) = D and op(T) = <3. 

The aim of this note is to give a negative answer to c) and d). 

2. Theorem 1. There exists T£C01 with a(T)=K. 
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Proof . Let § be a space with orthonormal basis {<?„}„€Z and let T be the 
weighted shift in § defined by 

T(p„ = w„(pn+1 («6Z) where w„ = 1 for n s O and 1/2 for n > 0. 

T is a contraction (||T[| =sup |wB| = l, see [4]). It is of class C01 since JJ wn diverges 
n > 0 

and J] wn converges (see [2]). The spectrum of T is K, since 
n<0 

1/2 = lim inf {(wkwk+1...wk+n.j) l /n}, 1 = lim sup ... wfe+n_1)l/n} 

(see [3], [6] and [4]). 
We shall see now that the alternative of problem c) does not occur even if T(i C u . 

Theorem 2. There exists an operator T£Cn with a(T)—K. 

Proof . Let § be a space with orthonormal basis {<?(;}(,-,jjgNxz a n < i let 
TeL(§) be defined by 

T(pu = wij(pij+1 ( I ' €N, j£Z), 
where 

w,v = 1 for K[0 , i ] and 1/2 for j€[0,i]. 
n-1 

One can verify that T£ Cu and 0$ o(T). Taking h„= 2 n~V*<Pnkwe have ||hn\\ = 1 
and||Th„—(1/2)AJ = ¡ ( ^ ^ « - ^ „ „ - ( l / ^ - ^ o l ! =(2n)-1/2^0; hence 1/2 ia(T). We 
have a(T)^D and o(T)<£C. Consider the unitary operators S, defined by 

^t tymn ~ CXp ( int) (pmn. 

We have 5I"17 ,5(=exp (it) T from which we deduce the circular symmetry of a(T). 
Moreover, by condition T£CU, the spectrum of T has no components far from C 
(since then there would exist a non-trivial subspace §>0 of with TH0<z$>0 and 
o(T\§>0)c:D, so that.T"h0-*0 for A0€£><>)• Since | |7 ,-1 | |=2 and since, by [6], o{T) 
is an annulus, it follows that a(T)=K. 

3. In this section we shall give a class of contractions for which the alternative 
of c) is true. We shall use the functional model introduced by SZ.-NAGY and FOIA§ 
(see [8], Ch. V and VI). For a contraction we have: 

op(T) CiD = {).££>: &T(X) is not injective}, 

o{T)C\D = {X£D:0T(X) is not invertible}, 

where &T(X): TIt—X)T* is the characteristic function 

0T(2) = [-T+1Dt*(I-XT*)-1Dt]\Dt (16 D). 
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Since T maps §>QT)T unitarily on §©£> r* we can here replace 0 r(A) by 

T(X) = -T+XDT*(I-kT*)-1DT. 

Suppose that op(T*)f\D=® and that D T * ( / - / I T ' * ) - 1 J D t is compact for each A £ 7 ) . 

If X0eD\a(T), then T{X0) is invertible, hence it is Fredholm of index 0 (that is R ( A 0 ) § 

is closed and dim Ker R ( A „ ) = d i m Ker R * ( A „ ) < ° ° ) . For l £ D we have 

T(X) = T(?.0) + [T(X)-T(10)]. 

Since T(X)—T(la) is compact, we deduce that T(X) is Fredholm of index 0 (see [1] 
or [5]). But Ker T*(/.) = {0} since ap(T*)C\D=0 hence T(A) is invertible. We have 
proved the following 

P r o p o s i t i o n . IFT££e{$) is a contraction with oP(T*) = <& and if 0 R (A ) -0 r (O) 
is compact for each A € 7 ) then <j{T) — D or c(T)<ZC. 

Remark . The hypothesis of this proposition is fulfilled in particular if T^C.j 
with DT or DTt compact. 

We shall see that even under the hypothesis of the proposition, problem d) has 
a negative answer. 

Theorem.3. There exists an operator T£C.x with 0 r(A)—0 r(O) compact 
and <7p(r) = {0}. 

Proof . Let © be a Hilbert space with orthonormal basis {e„}Bg0, (£1 the subspace 
of (£ generated by {e„}„Si, and let <S6<5?(©) be the operator defined by 

e0 i—O, e„ ( 1 / n ) ( n > 0). 

Let F£if((£) be the compact operator defined by 

Fe0=f=Z1±riek, F(S1 = {0}. 

We have S(&=5(£x=(£ and f$S<£. Consider the analytic contractive function 
{(£, G, 0(1)} defined by 

0(X) = (\\S\\ + \\F\\)-\S+XF). 

As i^l©! = 0, we have 

0H%<£) 3 = SH/i&J = H\<&), 

that is, 0(A) is an outer function. If A£Z>\{0} and 0(A)x=O, then Sx = —/.Fx, 
hence Sx—0 and Fx=0. But from the first equality it follows that x=xe0, and from the 
second that a=0 , hence 0(A) is injective for each A € D\{0}. Constructing the contrac-
tion T (see [8], Ch. VI. 3) we obtain a contraction of class C.j with <rp(T)={0} 
and 0X(A) —0T(O) compact. 

4* 
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On modules over Dedekind rings 

S. F E I G E L S T O C K 

1. A ring in this paper always signifies an integral domain, and will be denoted 
by R. M will denote a unitary i?-module. 

In section 2 some properties of abelian groups will be generalized to .R-modules. 
In most cases, R will be taken to be a Dedekind ring. The results of section 2 will be 
utilized in section 3 to obtain information about /(-high submodules of M, A a sub-
module of M. In section 4, the results of section 2 will be employed in determining 
the structure of the tensor product of i?-modules for several types of modules over 
a Dedekind ring. 

2. De f in i t i on 1. Mis said to be a divisible R-modvtle, if rM=Miov all O^r^R. 

Def in i t i on 2. Let P be a prime ideal in R. Mis said to be P-divisible, if PM—M 

Def in i t i on 3. Let N be a submodule of M. N is said to be a pure submodule 
of M if for all r£R and for all m£M, if rm£N, then there exists an n£N such that 
rm—rn. 

Def in i t i on 4. Let N be a submodule of M. N is said to be an ideal pure sub-
module of M if for every ideal I in R, N fl IM=IN. 

Ideal purity clearly implies purity. 

No ta t i on . Let m£M, ord (m)={r£R\rm = 0}. 

Def in i t i on 5. Let P be a prime ideal in R. M is said to be a P-primary module 
if for every m£M there exists a positive integer k(m) such that Pk('")Qord (m). 

Def in i t i on 6. Let P be a prime ideal in R. A submodule N of M is said to be 
P-pure in M if NC\PkM=PkN for every positive integer k. 

Lemma 1. Let R be a Dedekind ring, P a prime ideal in R, and M a P-primary 
R-module. Then for every prime ideal Q in R, Q^P, QM—M. 

Received October 16. 1975. 
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Proof . Q is a maximal ideal in R, hence Q%P. Therefore QM=M by 
[2, Lemma 4]. 

Lemma 2. Let R be a Dedekind ring, P a prime ideal in R, M a P-primary 
R-module, and N a submodule of M. I f N is P-pure in M then N is ideal pure in M. 

Proof . Let I be an ideal in R. Then /=/72*(<3)> Q running over the set of 
prime ideals in R, k(Q) being a non-negative integer, k(Q)=0 for all but finitely 
many Q [8, p. 274]. 

By Lemma 1, IM=Pk(p)M, and IN=Pk(p)N. Therefore, Nf]lM=NC\Pk(p)M= 
= p « p ) N : = I N 

D e f i n i t i o n 7. An exact sequence 0 —L Z. M X iV—0 of ^-modules is said 
to be (ideal) pure exact if im <p is an (ideal) pure submodule of M. 

Lemma 3. Let 
(* ) o - I i f i i i - 0 

be an exact sequence of R-modules: 
a) If {*) is pure exact then the sequence 

0 - L/rL S. M/rM N/rN - 0 

is exact for every r£ R. <p and ip are defined in the natural way. 
b) If (*) is ideal pure exact, then the sequence 

0 - LjlL t M\IM i N/IN - 0 

is exact for every ideal I in R. cp and iJ are defined in the natural way. 

Proof . Same as for abelian groups [3, Theorem 29.1]. 
The following are known facts concerning modules over a Dedekind ring: 

P r o p o s i t i o n 1. (STEINITZ [7]) Let R be a Dedekind ring and let M be a finitely 
generated R-module, then M is a direct sum of cyclic modules, and rank one torsion 
free modules. 

P r o p o s i t i o n 2. (KAPLANSKY [5, Theorem 1].) Let R be a Dedekind ring, and 
let M be a finitely generated R-module, then M^Mt(B(M/Mt), Mt the torsion part 
of M. 

P r o p o s i t i o n 3. [5, p. 332] Let R be a Dedekind ring, and let M be a torsion 
module. Then M is a direct sum of P-primary modules. 
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D e f i n i t i o n 8. Let 5 be a subset of M. S is said to be an independent set in 
M if for every positive integer k and for all r^R, m^S (1 Sj^k), 

k 
2 rjnij = 0 implies rjirij = 0 (1 i j s k). 

j=i 

Def in i t i on 9. Let S be a subset of M and let P be a prime ideal in R. S is 
said to be a P-independent set in M if for all positive integers k, I, and for all r, £ R, 
mj£S (l^j^k), 

k 
2 r}mj(LPlM implies r ^ P ' (1 ^ j s k). 

j=i 

Lemma 4. Let R be a Dedekind ring, P a prime ideal in R, and S a P-independent 
set in M. Then S is independent. 

k 
Proof . Let rj£R, Wjd S (1 ^j=k) for k a positive integer. Suppose 2 r}m~Q. 

j=I k 
Then 21 r j m j £ P e M for every positive integers. S is P-independent, hence r ,€P e 

j=i 
for every positive integer e (1 sj^k). However, R is Noetherian, so that ij=0 
(1 ^ j ^ k ) and S is therefore independent. 

Lemma 5. Let P be a prime ideal in R, and let S be a P-independent subset 
of M. (S), the submodule of M generated by S, is P-pure in M. 

k 
Proof . Let x£(S)f)PeM, e a positive integer. Then x= 2rjmj< mjdS 

j=i 
(1 ^ j ^ k ) and x£PeM. S is P-independent, so that rfiPe (1 rsj^k). Therefore 
x£Pe(S). 

It has been observed [5, p. 332] that if R is a Dedekind ring, P a prime ideal 
in R, and M a P-primary P-module, then M may be viewed as an Pp-module (Rp the 
localization of R at the prime P). This may be done in the following manner. 

Let r/s£Rp, r£R, s£R—P, and let m£M. s$P, hence there exists an m'£M 
such that m=sm'. Define (r/s) m = rm'. It is easily verified that this action of Rp on 
M gives M the structure of an Pp-module. 

Lemma 6. Let R be a Dedekind ring, P a prime ideal in R, SQM. Sis a (maximal) 
P-independent set in M i f f S is a (maximal) PRp-independent set in M. 

Proof . 1) Suppose 5 is P-independent. Let rfiR, Sj£R-P, mj£S (1 ^j=k), 
k 

k a positive integer, and suppose that x= 2 (rjlsj) mj £ e a positive integer. 
j=i 

(PRp)e is a principal ideal: (PRp)e=(r/s>, r£Pe, s£R-P. Therefore x=(r/s)m, 
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m£M, and 

(«• Asi\x= 2 s-hsi rjmJ = ir' lJs]miPeM. 

\ i=i / j=i ¡=1 V ¡ = 1 > 

S is P-independent, hence is- JJ s\rs£Pe However, s, s&P (1 ̂ i^k) so I J that r j£P e , and hence rjlsj£(PRp)e (1 r s j^k) . 
Suppose that 5 is a maximal P-independent set in M. Let Then there 

exist r j£R ( O ^ j ^ k ) and m } £S (1 ̂ j ^ k ) , such that r0m^O, rjirij^O ( l ^ j ^ k ) , 
k r0m+ 2 rjmj€PeM, e a positive integer, but r0$Pe, 

7 = 1 k 
r0m + 2 rjmj£(PRp)eM (we are here identifying (r/l)£Rp with r£R). 

J=i 
Suppose r0£(PRp)e. Then r0=r/s, r£Pe, s£R-P. Then r0s£Pe. However s$P 

and hence r 0 £P e : a contradiction. 

2) Suppose that Sis a PPp-independent subset of M. Let r^R, m^S (1 ^ j ^ k ) , 
k 

and suppose that x— 2 e a positive integer. Then x£(PRp)eM, and 
7=1 

hence rj£(PRpy (l^j^k). As was the case with r0 above, this implies that rj£Pe 

Suppose that S is a maximal PPp-independent set in M. Let Then 
there exist r^R, s^R-P (O^j^k), and mj£S, (1 TsjrSk) such that (rjs^m^0, 
( r j / s j ) m j ^ 0 (1 

k 
x=(r0/s0)m+ 2 (rj/sj)mji (PRpfM, e a positive integer, but r0/s0$(PRp)e. 

7=1 
This implies r0 $ Pe. 

x = (r/s)m', r£Pe, s£R-P, m'£M. 

Therefore, JI x£Pe, but ^ - J] r0$Pe. This implies that S i s maximal 

P-independent in M. 

Lemma 7. Let R be a Dedekind ring, P a prime ideal in R, and M a P-primary 
R-module. M is P-divisible i f f M is PRp divisible. 

Proof . 1) Suppose that M is P-divisible. Obviously, PQPRp. Hence, M= 
=PM<gPRpMQM, and M is PPp-divisible. 

2) Suppose that M is PPp-divisible. Let m£M. There exist p£P, s£R-P, 
and m'£M, such that (pjs )m '=m. Hence sm£PM, but s$P. This implies that 
m£PM. 
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T h e o r e m 1. Let R be a Dedekind ring, P a prime ideal in R, and M a P-primary 
R-module. Let S be a maximal P-independent set in M. Then M/(S) is P-divisible. 

Proof . Let O^meM. By Lemma 6, there exist r}£R, s^R-P (O^j^k) 
and m j £ S ( l ^ j ^ k ) such that 

x = (rjs0)m+ 2 (rj/sj) mj£(PRp)eM, 
j=i 

e a positive integer, (r0ls0)m^O, and (rj/s^mj^0 (l^j^k), (r0/s0)$(PRp)e , (rjs())£ 
e ( P R p y for O s e ' < e . This implies that ( r } l s ^ { P R p Y (l^j^k). (PRpY is a 
principal ideal in Rp; hence (PRp)e' = (r/s), r£Pe', s£R—P. Therefore x—(rls)m\ 
m'£M, and (rj/sj) = (r/s) (rjlsfr r'}£R, s'^R-P (O^jsk), r^R-P. 

This yields that (r/s)t—0, where 
k 

t = ( r ' J s ' 0 ) m - m ' + 2 (r'jlh)mi = 0. 
j=i 

Put y=y + (S) for y£M. Clearly, y£PRp(M/(S» holds for every y£M for which 
(PR„rQoTd(y). 

Suppose that y£PRp(M/(S» for every y£M for which (PRpf Q ord O) 
Then t£PRp(MI(S)). This implies that (r'Js'0)m-m'£PRp(MI(S>). 

However, m'£(PRp)e-e'MQ(PRp)M, so that (^ls'0)m£(PRp) (MI(S)). {r^s'n)^PRp, 
so that in£(PRp) (MI(S)). M/(S) is therefore /^„-divisible, and hence P-divisible 
by Lemma 7. 

Lemma 8. Let R be a ring for which every finitely generated ideal is principal. 
Let I be an ideal in R, and let A and B be R-modules. Then I(A + B) = IA + IB. 

Proof . Clearly I(A+B)<gIA+IB. Let x£lA+IB. Then 

* = 2 (ijaj+i'jbj), ij, i'jtl, aj€A, bj£B (1 
J=I 

The ideal (ij, i- \\^j^k)=(i), i£l. Therefore ij=rji, ij=r'ji; rj,r'j£R 

(1 Sj^k). Hence x = i( 2 r j a j + 2 r'jbj]a(A+B). 
\j=i j=i ) 

3. D e f i n i t i o n 10. Let A be a submodule of M. A submodule B of M is 
said to be A-high if AC\B=0, and if for every submodule C of M, B C C, 

properly 
implies that A d C ^ O . 

Lemma 9. Let A be a submodule of M, B an A-high submodule of M, and 
N—A@B. Then M/N is a torsion module. 

Proof . Let m£M, m$N. Then there exists a non-zero a£Af](B, m). Let 
a=b+rm, b£B, r£R. If r=0, then a £B, contradicting the fact that AC\B=0. 
Therefore rtn—Q=N. 
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Lemma 10. Let Rbea Dedekind ring, and let M, A, B, and N be as in Lemma 9. 
Let P be a prime ideal in R, and let m£M. If Pm^B, then m£N. 

Proof . If m£B, then m£N. Suppose m$B. Then there exists a non-zero 
•a£AP\(B, m), a=b+rm, b£B, r£R. Since PmQB, and AC\B=0, we have that 
r$P. However, P is a maximal ideal in R, so that there exist p£P, and u,v£R, 
such that ur+vp = \. m = rum + vpm=u(a—b)+vpm£N. 

T h e o r e m 2. Let Rbe a principal ideal ring, and let M, A, B, and N be as above. 
Let nA be the projection of N onto A. M=N i f f for every m£M, and for every prime 
ideal P in R, PmQN implies that nA(Pm)QPA. 

Proof . 1) Suppose that for every m£M, and for every prime ideal P in R, 
Pm^N implies that nA(Pm)QPA. Let m£M, and suppose that PmQN, P a proper 
prime ideal in R. Then PmQPA@B. P=(p), p£P, hence there exist a£A, and 
b£B such tha tpm=pa+b, orp(m—a)=b. By Lemma 10, m—a£N, and hence m£N. 

We have shown that for every m£M, m$N, P ^ o r d (m) for every prime ideal 
P in R. By Lemma 9, M/N is a torsion module. A contradiction. 

2) Suppose M=N=A®B, and let P be a prime ideal in R. By Lemma 8, 
FM=PA®PB, and hence nA{PM)=PA. 

Corol la ry . Let R be a Dedekind ring, and let M, A, B and N be as above. 
IfM is a torsion module, then the statement of Theorem 2 remains true. 

Proof . By Proposition 3 we may consider M to be a P-primary module. 
M is then an Rp module, Rp a principal ideal ring. We may therefore employ 
Theorem 2. 

N o t a t i o n : Let / b e an ideal in R. Then M[/] = {«?£M|/Qord (m)}. 

Theorem 3. Let Rbe a Dedekind ring, M, A, B, and N as above, and let P be 
a prime ideal in R. Then (M/N) [P] ̂  [(PM, B) fl A]/PA. 

Proof . If Ji is a principal ideal ring, then the theorem may be proved as in 
the case of abelian groups [4]. In the general case ( M / N ) [ P ] is a P-primary module, 
and hence an Pp-module, so that the theorem remains true. 

Several results concerning abelian groups may be generalized to modules over 
a Dedekind ring R as a result of Theorem 3 ; see [4]. For example, KULIKOV'S 
theorem stating that a bounded pure subgroup of an abelian group is a direct sum-
mand [3, Theorem 27.5] can thus be generalized. This result has already been obtained 
hy KAPLANSKY [5, Theorem 5] in a different manner. 

4. N o t a t i o n . The tensor product ®R will be denoted by 
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Lemma 11. Let (m) be a cyclic R-module, N an arbitrary R-module. Then 
(m)®N^ N/ord (m) • N. 

Proof . Same as for abelian groups [3, p. 255]. 

Theorem 4. Let R be a Dedekind ring, and let 

( * ) O A ^ B ^ - C - 0 

be an ideal pure exact sequence of R-modules. Then for every R-module M, the sequence 

( * * ) 0 

is exact. 

Proof . 1) Let M be a torsion module, and let M' be a finitely generated sub-
module of M. By Proposition 1, M' is a direct sum of cyclic modules. The sequence 

( * * * ) o ^ A®M'-?^~B®M'-^^C®M'-0 

is therefore exact by Lemma 11 and Lemma 3. 
For every .R-module L, 

L®Mlim {L®M'\M' a finitely generated submodule of M} 

so that (* *) is exact by [6, Theorem 2.13]. 
2) Let M be a torsion free module. Then M is flat [6, Theorem 4.23] so tha-

(* *) is exact. 
3) Let M be an arbitrary .R-module, and let M' be a finitely generated subt 

module of M. Proposition 2 together with 1) and 2) yield that (* * *) is exact. 
We may proceed as in 1) to obtain that (* *) is exact. 

Lemma 12. Let R be a Dedekind ring, and let J be an injective R-module. Then 
for every R-module M, M ® / = ( M / M , ) < g > / . 

Proof . The sequence 

0 — M, — M — M\Mt - 0 

is exact, hence the sequence 

(M/M,) ® J - 0 

is exact. J is divisible so that M,®J=0. Therefore, M®J^(M/Mt)®J. 
Let S be a maximal independent subset of an 2?-module M, and let 50={xÇ 

€S|Aris torsion free}. It is easy to verify that the cardinality of S0, |50|, is independent 
of the choice of S. We may therefore give the following 
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Def in i t i on 11. Let M, S, and S0 be as above. Then r0(M) = |50| is called the 
torsion free rank of M. 

Theorem 5. Let R be a Dedekind ring, let J be a torsion free infective R-module, 
and let M be an arbitrary R-module. Then M®J= 2 ® J-

' O ( M ) 

Proof . By Lemma 12 we may assume that M is torsion free. Let S be a maximal 
independent subset of M. The sequence 

0 (S) — M — M/(S) - 0 

is exact. J is flat so that the sequence 

0 - <S> <g> J - M <g> / - (Af/<S)) ® / - 0 

is exact. M/(S) is a torsion module, and J is divisible. Hence (M/(S))®J= 0, 
and M®J=z(S)®J^ 2 ® J. 

TO ( M ) 

Corol lary . Let R be a Dedekind ring, K the quotient field of R, M and N 
torsion free R-modules. Then there exist embeddings, 

2 R — M®N, and M®N 2 K-
r0<,M)r„(.N) r0(M)r0(N) 

Proof . Let S be a maximal independent subset of M, and let T be a maximal 
independent subset of N. Then 

<S> as 2 © R, and (T) s 2 © 
r0(M) r0(N) 

The sequence 

0 -+(S)®T^ M®N 

is exact ([1] Theorem 3, and [2] Lemma 6), and 
<.S)®{T>s 2 

r0(,Vf)r„(JV) 

N is flat, hence there exists an exact sequence 0—N^- N®K. However, M is also 
flat, so that the sequence 

0 - M® N) ® K 

is exact. By Theorem 5 

(.M®N)®K=s 2 ®K. 
r„(M)r0№ 

Lemma 13. Let M be a P-primary module, and let N be a P-divisible module. 
Then M®N=0. 
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Proof . Let m£M, n£N, and let e be a positive integer such that P e ^ o r d (m). 
Since N=PeN, there exist rt£Pe, n£N, such that 

k k 
n= 2jrini> m®n= 2 r i m ® n i = Q-

¡=1 ¡=1 

Theorem6 . Let Rbea Dedekind ring, P a prime ideal in R, M and N P-primary 
R-modules, and S a maximal P-independent subset of M. Then M®N=(S)®N. 

Proof . The sequence 

0 — (S) M — MI(S> - 0 

is ideal pure exact by Lemmata 5 and 2. By Theorem 4, the sequence 

0 - ( S ) <g> N - M ® N - (M/<5>) <g> N 0 

is exact. By Theorem 1, M/(S) is P-divisible. Hence by Lemma 13, (M/(S))®N=0, 
and M®N^(S)®N. 

Corol lary . Let R be a Dedekind ring, and let M and N be torsion R-modules. 
Then M®N is a direct sum of cyclic modules. 

Proof . By Proposition 3, we may assume that M and N are P-primary modules. 
Let S be a maximal P-independent subset of M, and let Pbe a maximal P-independent 
subset of N. By Theorem 6, M®Nz=(S)®(T). Proposition 1 and Lemma 11 
yield that 5® Pis a direct sum of cyclic modules. 
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Congruence-equalities and Mal'cev conditions 
in regular equational classes 

H. PETER GUMM 

FREESE and NATION have shown in [1] that there is no lattice equality holding 
in all congruence lattices of semilattices. It follows easily that this result remains 
true if one replaces the variety of semilattices by any variety defined by a set of 
regular equations. On the other hand not every algebraic lattice is the congruence 
lattice of a semilattice, see HALL [4] and PAPERT [5]. WILLE has introduced in [9] 
the notion of a congruence equality using the binary term o (relational product)' 
in addition to the binary terms V (join) and A (meet). We are going to show in this 
paper that the result of Freese and Nation is also true for a certain class of congruence-
equalities in A, V and o, and on the other hand we provide congruence-equalities 
which are nontrivial and which do hold in semilattices. This also gives us examples 
of congruence-equalities which do not imply any lattice equation. 

Two such congruence equalities are characterized in terms of Mal'cev con-
ditions and it turns out that they are within the class of regular varieties equivalent 
to the Mal'cev conditions 

3p(p(x , x) = x, p(x, >>) = p(y, x)), resp. 3p(p(x, x, x) = x, p(x, y, z) = p(z, x, j>)). 

Finally we characterize the above Mal'cev conditions within the class of all varieties-
in terms of fixed points of involutions similar to [3]. For basic facts and notations 
used in this paper seeGRATZER [2]. For the notion of equivalence see, e. g., TAYLOR [8].. 

I. Regular varieties 

1.1. Def in i t ion . (PLONKA [7]) An equation p=q is called regular if the set 
of variables and constants appearing in p is the same as that in q. A variety is regular 
if it can be defined by a set of regular equations. 

Received May 26, 1976. 
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1.2. Example. The variety of semilattices is a regular variety. The defining 
equations are: X'X = x, x-y = y-x, x-(y • z) = (x- y)~ z. 

Next we formulate two basic lemmas. The first can be easily proved, and the 
second was essentially proved in [10]. 

1.3. Lemma. Let A = (ni\i£l) be a type with corresponding function symbols 
/ j , i£l. Let 2: = {0, 1} be a two-element set and define an algebra 2A by setting 

If there are 0-ary function symbols define them to be 0. Let SL^ be the variety gener-
ated by 2Then, 

(i) SLd is equivalent to SL(2), the variety of all semilattices i f f n^ 2 for some i, 
and «¡7^0 for all i. 

(ii) SL^ is equivalent to SL ( 0 2 ) , the variety of all O-semilattices, i f f « ¡^2 
for some i and «¡=0 for some i. 

(iii) SLd is equivalent to flA, the variety of pointed sets i f f n^ I for all i, and 
«¡=0 for some i. 

(iv) SLj is equivalent to the variety of sets otherwise. 

1.4. Lemma. [10] Let SB be a variety of type A, containing no nullary operation. 
Then © is regular if and only if SB contains SLj as a subvariety. If A contains a 0-ary 
operation, the only if part is still true. 

Congruence equalities were introduced by WILLE [9] . 

2.1. Def in i t ion . A congruence equality is an expression a=fi where a and /? 
are terms in variables and the binary polynomial symbols A, V and o. A congruence-
equality <x=P is said to be congruence-valid in an algebra 91 if for any interpretation 
of the variables occurring in a=/? by congruences of 21 the equation holds if we 
interpret A as meet, o as relational product and V as relational join, that means: 
If a and T are binary relations on A, we define: < T V T : = I J { O - o r o t r o . . . o T | n i N } . 

We have to be careful because if y, 8 are congruences then yoO need not be 
a congruence. If a and t happen to be congruences, then CTVt is the join of a and t. 

We call a congruence-equality trivial if it holds in each partition lattice. We 
say that a=jS is congruence-valid in a variety S if it is congruence-valid for each 
algebra 916®. 

2. Congruence equalities 

n-times 
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Now it is obvious what we mean by a congruence-inequality and in fact 
we can replace each congruence-equality a = P by the congruence-inequalities a S/? 
and oc^p. Clearly, a congruence inequality a ^ f i which holds in a variety 3 will 
hold in each variety 58' which is equivalent to 8 as well. 

For the proof of our first theorem we need the following simple lemma: 

2.2. Lemma. Let aS/J be a nontrivial congruence-inequality. Then there exists 
a finite set X, such that tx^fi fails to hold in n(X), the partition lattice of X. 

Proof . The proof essentially uses the ideas of theorem 6.15 in WILLE [9]. 
a s / ? is nontrivial, thus there exists a set X such that a s / ? does not hold for the 
partitions of X. Let xlt ..., xn be the variables occurring in as/?.-Let i be an inter-
pretation map assigning to xt, 0 < i S n , the partition of X such that for a certain 
pair (a, b) we have (a, b)£i(a) and {a, b)^'i(P). 

Let y now be an arbitrary expression in A, V and o and the variables amongst 
{*!, ..., *„}. Let x, y be arbitrary elements of X. Define recursively: 

1) If y is a variable, 

\{x,y} if (x, y)ei(y) 
<x,y)' 10 otherwise. 

2) If y = (TOT, 

( R(XLZ) U R(z,y) for some z with (x, z)£i(o) and (z, i(T) 

0 if ( X , M M -

3) I fy = o\ l t , 
' RLXTZL)U R\ZL,Za) U... U R\ZN, y) for some zx,..., z„ with 

xi(a)z1i(z)z2... zn i(i) . 0 if (x, jOSKv). 
4) I f y = <7AT, 

Ry . = i U *(».»> i f (*.30€i(y) 
10 otherwise. 

Then X0: =R*A>B) is finite and nonempty. Define 0?: =0 lnJToX.Jfo and i o :x f -0? , 
0<i 'S«. Then clearly by the construction we have (a,b)£i0(a) and (a, b) $ i0(/?). 
Thus a=/? does not hold for the partitions of the finite set X0. 

2.3. Theorem. Let a s / ? a nontrivial congruence-inequality where a is arbitrary 
and P is of the form a^a^h ••• Aak where each is a term in V and o. Then each 
regular variety contains a finite algebra where a s / ? is not congruence-valid. 

Proof . If a congruence-inequality holds in a variety © then it obviously holds 
in each subvariety of 23 and in each variety which is equivalent to ©. By lemma 1.5 

RUy)'- — 

5 
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we need to prove our statement only for SL^. As the variety of sets and the variety 
of pointed sets do not fulfil any nontrivial congruence equality we need in view of 
lemma 1.4 only consider SL(2) and SL(0i 2), semilattices and O-semilattices. Let 
now X be a set, % a partition of X and FSL (X) (resp. FSL0 (X)) be the free semi-
lattice resp. O-semilattice generated by X. Let 6K be the congruence generated by 
71 in FSL (X) (resp. FSL0 (JT)) and let p and q be elements of FSL ( X ) (resp. FSL0 (Z)). 
We assume that p and q are in reduced normal form. Then we have p9„q if and 
only if for each variable x in p there is a variable y in q such that xny and vice versa. 

By a repeated use of this argument one obtains that for a set n u . . . ,n„ of parti-
tions of X and x, y£X we have: 

(*) ' xdnio ... o0„ny if and only if xnt o ... on„y. 
Now let a S/? a congruence-inequality of the form required in our theorem. Then 
there exists by lemma 2.2 a finite set X and partitions 7z1; ...,n„ of X and an inter-
pretation i assigning the variables xx, ..., xn of a s= /? to the partitions TI1, ..., nn 

such that for some x,y£X we have (x, y)£i(a) and (x, y)$i(P). 
Take now FSL (X) resp. FSL0 (Z) and define I: -*9„r Of course we still 

have (x, y)£ 1(a), but by (* ) we have (x, i(y3). Thus aSJ? does not hold in FSL (X) 
nor in FSL„ (X); and both are finite algebras, which concludes the proof. 

2.4. D e f i n i t i o n . A variety is n-permutable iff the congruence-inequality 
0 1 o0 2 o. . .o0 g g0 > o0 1 o. . .o0 1 , with n factors on each'side, holds in S . 

2.5. C o r o l l a r y . Regular varieties are not n-permutable for any n. 
Now we are going to show that we cannot drop the assumption on the form of /?. 

3. Mal'cev conditions 

For basic facts concerning Mal'cev conditions see e.g. T A Y L O R [8]. 

3.1. D e f i n i t i o n . A strong Mal'cev condition is an expression of second order 
logic of the form 3p l t ...,/>„(£) where S is a finite conjunction of equations uni-
versally quantified in individual variables, containing the function variables plt ...,pn. 
A strong Mal'cev condition M : = 3/7t, ..., pn(L) holds in a variety 23 (shortly S l - M ) 
iff there exist polynomials plt ...,/>„ in the language of 93 such that 2 holds in 93. 

3.2. D e f i n i t i o n . An involution is an automorphism of order two. 

3.3. T h e o r e m . For an arbitrary variety 23 the following are equivalent: 

(i) The strong Mal'cev condition 3p(p(x, x) = xAp(x, j>) = p(y, x}) holds in 23. 
(ii) If cp is an involution of an algebra 316® then for each x€2l there exists a fixed 

point y of cp such that (x, (px)£9 implies (x, y)£d for arbitrary congruences 9 of 91. 
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A similar theorem with automorphisms of order n holds for the Mal'cev 
condition 3p(p(x, ..., x)=xAp(x1, ..., xn)=p(x2, ..., xn, x^). 

Proof , (i)--(ii): Assume (i) and let <p be an involution of 2l£23. Take 
Then define y: =p(x,(px). We have: cp(y) = (p(p(x, (px))=p(<p(x), cp2(x))— 
=p((p(x), x)=p(x, (p(x))=y. Thus y is a fixed point of (p. Assume (x,cpx)£d. 
Then x=p(x, x)6p(x, (px)=y. Thus (x, y)£9. 

( i i ) -© Let FB(x, y) be the free algebra in 23 generated by the two distinct 
elements x and y. Then the map q>: x—y, y-*~x extends uniquely to a homomorphism 
<p of Fj ,^, y) which is moreover an involution. For x we then have an element 
z6Fs(x, y) which is a fixed point of (p. Here z=p(x, y) for some polynomial p and 
(pz=z, thus (pp(x, y)=p(x, y). As (pp(x, y) = cpp(x, q>x)=p((px, q>2x)=p(y, x) we 
conclude p{x,y)=p{y, x). Now (x, cpx)£9(Xty), the smallest congruence which 
collapses x and y. By (ii) we have: (x, z)£9(Xty) which means (x, p(x, y))£9(x y) 

and thus p(x, x)=x. Hence, p(x, y)=p(y, x) and p(x, x)=x holds in the variety S . 
WILLE [9] and PIXLEY [6] have shown that in a variety each congruence-inequality 
in A, V and o is equivalent to a countable conjunction of countable disjunctions 
of strong Mal'cev conditions. 

Let e1? e2, g be the following congruence inequalities: 

e i : 0O A ( 0 i ° 0 2 ) A (03o04) S 0!O{(02O03) A {[(0^03) A (02o04)]o0o}}o04, 

e2: (01o02) A (03o04) s 0lO{(02o03) A {[(0lO03) A(02o04)]o[(01o02) A (03o04)]}}o04. 

(e2 is obtained by replacing 0O in ex by (0iO02)A(03O04). 

g: 0O A {0lO [02 A (03o04)]} A {[05 A (06o07)]o08} g 

G 01O06O {(0oo03o07) A {05o02o [(06o0lO03) A (07O08O04)]}}O04O08. 

Then we have the following theorems: 

3.4. Theorem. For a regular variety the following are equivalent: 
(i) ex is congruence-valid in ©. 
(ii) e2 is congruence-valid in 23. 

(iii) The strong Mal'cev condition 3p(p(x, x)=xAp(x, y)=p(y, *)) holds in 23. 

3.5. Theorem. For a regular variety t.f.a.e.: 
(i) g is congruence-valid in 23. 

(ii) The strong Mal'cev condition 3p(p(x,x,x)=x,p(x,y,z)=p(y,z,x)) holds in S . 
We prove only the first theorem, the proof of the second is essentially the same 

but needs a little bit more of computation. 

Proof , (iii)—(i): Assume in 23 there exists an idempotent and commutative 
binary polynomial p. Take (x, ^)60oA(01o02)A(03o04). Then there exist a and b 

5* 
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such that x90y, x0ia02y, xdJjQ^y. Usingp we get: 

x = p(x, x)61p(a, x)92p(y, x)0sp(y, b)9ip(y, y) = y and 

Pi (a, x) №o6s) A (02o0J]p(b, x)60p(b, y) 

As p(y, b)=p(b, y) we get: 

(*, {(.92°9S) A M o 0 3 ) A (02O04)]O0o}}O04 . 

(i)—(ii) is trivial. Only in the next step will we use regularity. 
(ii)-(iii): First we use Wille's algorithm to write down the Mal'cev condition 

for e2. We get, that in the class of all varieties e2 is equivalent to the following strong 
Mal'cev condition: 3pi, p2, p» with 

(1) * = p/x, x, v, y), 

(2) Pi (x, y, v, y) = p
2
(x,y,v, y) 

(3) p2(x, u, x, y) = p3(x, u, x, y), 

(4) PS{x,u,y,y) = y, 

(5) Pi (x, x, v, y) = p5 (x, x, v, y), 

(6) p5 (x, u, X, y) = PI (x, u, x, y), 

(7) Pi (x, x, v, y) = p7 (x, x,v,y), 

(8) Pi (x, y, v, y) = p
3
 (x, y, v, y), 

(9) Pi (x, y, v, y) = pe (x, y,v,y), 

(10) PG(X, U , y, y) = p/x, u, y, y), 

(11) Pi (x, u, x, y) = p
8
 (x, u, x, y), 

(12) p
s
(x, u, y, y) = p3(x, u, y, y). 

Now if this Mal'cev condition holds in a regular variety, each of its equations 
must be regular. We can thus conclude: From (1) it follows that Pi depends only 
on the first two places, therefore in (2) p2 can depend at most on the first, second 
and fourth place. From (4) it follows that p3 depends at most on the last two places 
thus p2 depends at most on the first, third and fourth place. Together with the above 
then p2 depends at most on the first and fourth place. Thus we can replace (1) to (4) 
in a regular variety by 

(1') x = p!(x,x), 

(2') Pi(x, y) = p2(x, y), 

(3') p2(.x, y) = p3(x, y), 

(4') p3(y, J') = >'• 
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Carrying these cancellations out in (5) up to (12) we finally obtain: 3plt ...,pB 

with (10 to (40 and 

(50 Pi(x,x) = p/x), 

(60 p5(x) = p/x,x), 
(70 p4(x, v) = p7(x, v), 
(80 Pi(y, v) = p3(v, y), 

(90 Pi(x, y) = p6(x, y), 

(100 Pe(.x,y) = p / x , y), 
(HO Pi(x, x) = pa(x), 
(120 Ps(y)=P3(y,y)-

Now let us have a look at pv By (10 we get p/x, x) = x and we obtain 
Pi(x, y) = p2(x, y) = p3(x, y) = p7(y, x) = pt(y, x) = p6(y, x) = p/y, x). 

Thus we have: 3p w i thp(x , x)=xAp(x, y)=p(y, x). 
This finishes the proof. 

4. Applications 

We consider the equational classes of groupoids defined by subsets of the follow-
ing set £ of regular equations 

£ : = {x(yz) = (xy) z, xy — yx, xx = x}, 
and define S j = M o d (x(yz)=(xy)z) semigroups, 

S 2 = M o d (xy—yx) commutative groupoids, 
© 3=Mod ( x x = x ) idempotent groupoids, 
© 4=Mod (x(yz)=(xy)z, xy=yx~) commutative semigroups, 
S 5 = M o d ( x ( y z ) = ( x y ) z , xx—x) idempotent semigroups, 
©6=Mod (xy=yx, xx=x) commutative, idem-

potent groupoids, 
© 7=Mod (x(yz)=(xy)z, xy—yx, xx=x) semilattices. 

As projections: 7t"(jc1( ..., x„): =xt are idempotent and associative we have that the 
variety of sets is contained up to polynomial equivalence as a subvariety in ©x ,©3, ©5 . 
Furthermore, the variety of pointed sets is up to equivalence contained in ©2 and 
in ©4, so ©!, ©2, ©3, ©4 and ©5 do not fulfil any nontrivial congruence inequalities. 

We are going to show now that we can separate the remaining varieties by 
congruence inequalities. 

4.1. Theorem. The congruence inequalities e! and e2 are nontrivial and hold 
in commutative, idempotent groupoids. The congruence inequality g holds in semilattices 
but not in commutative idempotent groupoids. 
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Proof . The first part of the theorem is a direct consequence of theorem 3.2. 
Theorem 3.3. implies that g holds in semilattices. Assume g holds in commutative 
idempotent groupoids. 

In [3] we characterized the strong Mal'cev condition 3 p ( p ( x , y , z)=p(y, z, x)) 
and it was shown that it is equivalent to the statement that every automorphism 
cp of order 3 has a fixed point. 

So in order to show that g does not hold for all commutative idempotent 
groupoids we only have to find a commutative idempotent groupoid 'S and an auto-
morphism (p:G-*G of order 3 which has no fixed point. 

Take ^=({0,1,2}, •) with • defined as x-y: =2x+2y (mod 3). Take the 
map <p: G—G with <p(x): 1 (mod 3). cp is an automorphism of order 3 but 
(p has no fixed point. This finishes the proof. Notice that g happens to hold in & 
because ^ is simple. 

4.2. Corol la ry . The congruence inequalities el5 e2 and g do not imply any 
lattice inequality. 

Proof . Freese and Nation have shown that there is no lattice inequality holding 
for the congruence lattices of semilattices, but e^ e2 and g are congruence-valid 
in semilattices. 

The author wishes to acknowledge with many thanks the helpful discussions 
with Professor R. Padmanabhan, who also provided the commutative idempotent 
groupoid used in the proof of theorem 4.1. 
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On the problem of the choice of first approximants 
in a two-sided iteration method 

J. HEGEDOS 

Introduction 

In the papers [2], [3] a two-sided iteration method is worked out for the general 
homogeneous boundary value and initial value problems of non-linear differential 
equations of order n under the assumption of the contractivity of the corresponding 
integral operator A. More precisely, two sequences of functions were constructed 
that approximated, together with their derivatives, from above and from below 
arbitrarily precisely and uniformly on the considered segment [0, 1] the solution of 
the boundary value problem and its derivatives. However, the construction of the 
approximants just mentioned depends on the assumption of the existence of first 
approximants zx, wx that are in a well-defined relation with the second, and, which 
is even worse, with the third pair of approximants. 

In this note we shall prove that under the only assumption of contractivity the 
first pair of approximants exists. 

Let us consider the boundary value problem 
[ y(n) (*) =fM =f{x, y(x) /"-^M) ( 0 S I S U S 2 ) , 

L¡y = "Z(aik/k)(P) + blk/kKlj) = 0 (i = 0 , . . . , n - 1 ) 
k=0 

with the given function 
df_ 
du¡ 

that is continuous and continuously differentiable with respect to each u¡ (/=0, ..., 
..., n—1), and with coefficients aik, bik such that the problem 

/«)(*) = 0 ( 0 s * s l ; n s 2 ) , L¡y = 0 (i = 0,.. . , n - 1 ) 
has the only solution y—0. 

(0.1) 

/ ( * , « o , . . . , u „ - i ) : [ 0 , l ] X « X - " X i (i = 0 , . . . , « - ! ) 

Received November 1, 1975. 
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We remark that the general problem on [a, b] with homogeneous boundary 
value condition leads to problem (0.1). 

Problem (0.1) is equivalent to the integral equation 

(0.2) j, = y(x) = Ay s / G(x,t)f[y(t)]dt, 

(where G is Green's function) in the space M of n — 1 times continuously differentiate 
functions defined on [0, 1] and satisfying the boundary value restriction. Let us 
introduce an ordering and a metric in Jl by the formulas 

Z^wo zC')(x) s w&(x) (0 S x S 1 ; i = 0,..., n-1), 
n-1 

Q(z, w) = ||z-vv|| = 2 max ¡z^x)-w<'>(x)|. 
¡=0 P*-1! 

(0.3) 

Let us suppose that the condition 

• - I } 
(0.4) N 2 max / 

âo [«.il i 
&G{x,t) 

dx' 

is satisfied. This means that the operator A is strongly contractive in Jt. In the 
paper [3] for problem (0.2) and for given s > 0 we constructed an auxiliary function 
(minorant) G(x, t), which is n—1 times differentiate with respect to x in each of 
the sectors 

Xj S x s Xj+1, 0 S t S x; Xj S Jt s xJ+1, x S i ^ l ( j = 0,. . . , m — 1), 

where max (xj+1—xj) is sufficiently small (cf. the concluding part of the proof 
of the theorems), 

jc0 = 0 < xx < . . . < xm = 1 

are numbers, and along the straight lines x—xj,x=xj+1;x=t the function G or some 
of its derivatives with respect to x may be multivalued (they can have points of 
discontinuity of the first kind), moreover, the inequalities 

(0.5) 

(0.6) 

/ 
N 2 m a x I 

i=o [o.i] J 

d'Őjx, t) ^ 
dxf -

d'G(x, t) 
dx' 

d ' G f r t ) 

dx1 

dt = eí S 9+s < 1 

are satisfied. 
Finally, we introduce the linear space M of n—1 times continuously differen-

t i a t e functions defined on the segments [xJt x J + 1] (y'=0,..., m —1). We consider 
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(0.7) z ^ w o < 

JI with the following ordering and metric 

' C) w <0(*) f x e T j 1 ( x j , x J + 1 ) ) , 

V j=0 ' 

z&(Xj + 0) S w«(jCj + O), 
zM(xj+1-0) == W^(xJ+1-0) 

(i - 0 , . . . , n — 1; j - 0 , . . . , m-\), 

(0.8) g(z, w) = | |z-w| | = "2 max |z<0(x)-w(0(x)|. 
¡=0 i0»1! 

It is obvious that Ji^Jt and that the ordering and metric of Ji are extensions 
of those of Ji, thus our above notation is justified. It is also obvious that for the 
operator A (the extension of A to Ji), we have 

1 m-1 XJ+1 
(0.9) Az= J G(x,t)f[z(t)]dt = 2 J G(x,t)f[z(t))dt 

0 Xj 

a n d f o r a n y z,w£Ji 

(0.10) Q(Az, Aw) s Qq(z, w). 

Let us introduce the notation 
n-1 
2 

i = 0 0 
¿x.w(0 = "2 (z^HO-^'Kt)), B(z, \v) = N J G(x, t)Az>w(t)dt. 

Let us define the operators E, F \ JiX.Ji-+Ji in the following way 

E(z, w) = j (Az + Aw) + j £ ( z , w), 

E(z, w) = j ( A z + A w ) - j £ ( z , w). 

Consider the iteration process 

(0) zp+1 = E(zp, wp), wp+1 = F(zp, wp) (p = 1,2,...). 

We remark that E is non-increasing in z and non-decreasing in w; Fis non-decreasing, 
in z and non-increasing in w. 

In the so-called monotone case of problem (0.1), i.e., when 

i = 0 , . . . , n —1), 

or when the derivatives of G are non-negative, G can be taken to be equal to — |G|' 
and Ji can be taken to be equal to Ji and one can consider in it the approximation, 
according to the rula (0). 
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I. 

Let us consider first the case of problem (0.1) when the following strong assump-
tion of contractivity is satisfied: 

«-1 i 
(i) N y. max / 

l=o I»-1! / 

d'G(x,t) 
dx> 

df = 2 

It is obvious that in this case there exists a minorant with the required properties 
of smoothness and for which we have 

(1.1) W V max f 
i=o I"-1] J 

d'G(x, t ) 
dx' 2 

Lemma 1.1. Under the assumption of (i) there exist zx, wx£Jt such that 

(1.2) z2 S z1( wx S w2. 

Proof . Let us take a positive element cp from Jl, i.e., a function (p(x) for which 

< p ( ' ) ( x ) > 0 (i = 0, . . . , n - l ; 0 x S l ) . 

The assertion of our lemma follows from the fact that by virtue of (1.1) the system 
of equations 

(1.3) E(zx, Wj) = zx-<p, F(z1, Wi) = wx+cp 

has a solution in JiV^Jt. 

T h e o r e m 1.1. Under the assumption of (i) there exist z1; wx£Ji for which 

z2 = z x , z 3 S Z L ; S W2) W J S W J . 

Proof . The elements z1,w1£J? can be taken as in Lemma 1.1. On account 
of the monotonicity of E, F we then have 

z2 S zx, z2 s z3; wx S w2) w3 S w2. 

It remains to prove that the function cp can be chosen so that the inequalities 

(1.4) z3 S zl3 wx w3 

are also satisfied. These inequalities are equivalent to the inequalities 

i 0 =S cp + [zx - <p - E(z1 - cp, Wl+(p)] 
( ' 1 - < p + [ V > i + ( P - F ( z i - < P , Wi + 9»)] S 0. 
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We remark that by Lagrange's formula 

Bf 
т-Ф\-/ш= - 2 47 ¡=0 OUi P(x) 

<p , ( 0 

"-1 df 
f [ w 1 + ( p ] - f [ w i ] = Z-%-

i=0 OUi e w 
<P< CO 

df 
where we denoted by -— 

ou-, p(x)' дщ 
the values of these derivatives at the cor-

e w 

responding points of the n +1 dimensional space (in the sequel the letters P, Q shall 
be often omitted). By using these formulas it is easy to prove that the inequalities 
(1.5), understood in the sense of the ordering of J f , are equivalent to the inequalities 

(1.6) 

(1.7) 

y (r = 0, . . . , n - l ; 0 = = х ^ 1 ) . 

Let us rewrite inequality (1.1) in the form 

"Z max / - 2N 0 dt = 20 = 0* < 1. 
iti osxslj' dxl 

Let us denote by 0*Аг the г-th term in this sum. We have 

(1.8) Aq, . . . , A,,-! >• 0 ; Z ^ï — 1 

(cf. the construction of G in [3]). It is easy to verify that the function 

(p{x) = 

^ Z ^ r r x 1 (0 
i=o I ! 

S "Z ajY aJ+1 = ( j + l)e), 
i=0 I! 

where <5 >0 is an arbitrary constant, a0=0; j=0, ...,k; (A:+l)a=1, for sufficiently 
small a > 0 satisfies inequality (1.6). This follows from (1.7), (1.8) and from the 
fact that for small a > 0 the ratio of the maximum and minimum of cp(i) is close 
to the unit for every i=0, ...,«—1. 

R e m a r k 1.1. Since the change to a finer division of the segment [0, 1] (cf. [3]) in 
the construction of G and Jt does not bother those properties of G and Jl that 
are needed by us, the initial division 

x0 = 0 < xx xm - 1 
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of the segment [0, 1] can be chosen to be equal to 

x 0 = 0, xx = a xm = (fc+ \)a = 1 (k+l = m), 

where a denotes the number in the proof of Theorem 1.1. 

R e m a r k 1.2. To our regret we did not succeed in proving the existence of the 
first pair (zu Wj) from JtY^Jl in an analogous way as in Theorem 1.1, since the 
ratios of the maximums and minimums corresponding to the function q>£Jl cannot 
be made arbitrarily close to the unit. 

R e m a r k 1.3. We note that instead of the accurate solution of system (1.3) 
one may take its approximate solution (z(1), w(1)) obtained, for example, by the 
method of successive approximation starting with an arbitary pair (z, w)£Jt~KJL 
Hence from the practical point of view Theorem 1.1. may be useful. An analogous 
statement concerns all the following theorems of this paper. 

II. 

In connection with the negative statement in Remark 1.2 in this section we 
shall elaborate another method of the construction of the pair (z1, w )̂ from Ji X M. 
This method relies on the usage of defect functions (cf. [1], [2], [3]). Actually, we shall 
consider only the monotone case of problem (0.1), i.e., when 

besides, we suppose that at all points 

£ r ° = 0 , . . . , n —1). 

The case when all partial derivatives o f / are non-positive is entirely obvious (cf. [2]). 
In this case the approximantszp, wp may be constructed independently of each 

other according to the rule 

(A) zp+1=Azp, wp+1 = Awp (p = 1,2,...). 

Theorem 2.1. Under the weak assumption of contractility (0.4) there exist 
elements zlt wx£M for which in the sense of the ordering of Ji we have 

(2.1) Zo = z, w, W, w, S w. 
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Proof . We remark that the rule (A) is equivalent to the rule 

Zp+iO) = zp(x)-op(x), wp+l(x) = wp(x)-t]p(x), 
i i 

.<Tp(x)= f G(x,t)ccp(t)dt, t]p(x)= f G(x,t)pp(t)dt, 
(A ) \ 0 0 

«,(*) = z<p">(x)-/[zp], fjp(x) = W^(x)-f[Wp] 

( 0 5 ^ 1 ^ = 1 , 2 , . . . ) . 

Consequently, we shall seek zlt wx £ Ji for which 

(2.2) 

<*!(*)< 0, ^ W + a j W ^ O ; p j x ) > 0, ft(r)+|5sWs0 (0 S x S 1). 

To attain the negativeness of a! it is enough to take the solution z 1 £J / of the equation 

z ( n )(x)-/[z(x)] = - c = <*!• 

This equation is solvable in Ji by virtue of the contractivity assumption (0.4). 
For this function zx the second inequality in (2.2) is also satisfied as because of the 
rule (A') we have 

Thus by using Lagrange's formula for / [ z j - / [ z 2 ] we arrive at the inequality 

« i ( x ) + a 2 ( x ) = z/") (x ) - / [ z j + z « ( x ) - a « ( x ) ~ / [ z 2 ] . 

"-1 ftf 
a i ( x ) + a 2 ( x ) = a x ( x ) + 2 # 7 S 0. 

This inequality is equivalent to the inequality 

dt 

the validity of which follows from the contractivity condition (0.4). 
The existence of vvx may be proved in a similar way. 

R e m a r k 2.1. In the case when 

d'G(x, t) 
dx' 

S O , ~ ~ S 0 (i = 0 , . . . 1 B - l ; O s * , < s i ) du-, 

we may also prove the existence of zu w ^ J f . 
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m . 

Under the strong assumption of contractivity (i) let us now consider the mono-
tone case of problem (0.1), i.e., 

d'G(x,t) 
dxl i § 0 ( 0 á x , / = s l ; i = 0 , . . . , « - 1 ) 

however, the derivatives o f / are not all of the same sign, and themselves may change 
sign, too. The approximants zp, wp shall now be constructed in Jl according to 
the rule (0), i.e., we have 

zp+1 = E(zp,wp) = 1 / G(x,t)(f[zp(t)]+f[wp(t)])dt + 

(B) 

+ ~ J G(x,t) n2\zf{t)-Wf{t))dt, 

w p+1 = F(zp, wp) = 1 / G(x, t) {f[zp(t))+f[wp(t)])dt -

^ / G(x,t) 2 {zf(t)-wf(t))dt. 
1 0 i = 0 

Theorem 3.1. Under the assumption of (i) in the case considered there exist 
elements zx, wx£M for which 
(3.1) z 2 ^ z 1 , z3 S Z!l w ^ W a , w ^ w g 

in the sense of the ordering of Ji. 

Proof . We note that rule (B) is equivalent to the rule 
f zp+1(x) = zp(x)-<rp(x), wp+1(x) = wp(x)-t]p(x), 

i i 
<rp(x)= J G(x,t)<xp(t)dt, rip(x) = f G(x,t)Pp(t)dt, 

n—i 

(B') ap(x) = z « ( x ) - J f[zp] - ^ f [ w p ] - ^ "jf (z</>(x) - W<p(X)), 

PP(X) = w?Kx)~f[zp]-±f[wp) + ^n2{zf{x)-wP(x)) 

1 ( 0 ^ * ^ 1 ; p = 1 , 2 , . . . ) . 

On the other hand, the inequalities (3.1) are equivalent to the inequalities 

[ a i ( x ) ^ 0 , a i ( * ) + a 2 ( x ) = 0 ; p / x ) ^ 0, & ( * ) + & ( * ) S 0 
(3.2) 

1 ( 0 ^ * ^ 1 ) . 
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(3-3) 

The solution (zl5 x J t of the system 

* n K x ) ~ f [ z ) - \ f [ w ] - ^ 5 V ° ( * ) - w ( i ) ( * ) ) = - c , 

I L L ¡=o 

z z z ¡=o where o O is a constant, exists by virtue of (i) and obviously satisfies the first and 
the third inequalities under (3.2). Moreover, z1; wx also satisfies the second and the 
fourth inequalities in (3.2). Indeed, by the rule (B') and by using Lagrange's formula 
for the difference 

/ [ ^ i ] - / [ 2 ' I - < T 1 ] , / K ] - / K - ) h ] 

one can show that, for example, the second inequality in (3.2) is equivalent to the 
inequality 

• • « s H^'Mf Hi-
If we replace a® and iff by their expressions via Green's function and a1; we 
arrive at the inequality 

dt. 

The validity of (3.4) follows from condition (i) and from the condition 

0/ 
dui 

N (i = 0,. . . , n — 1). 

The fourth inequality under (3.2) may be proved in an analogous way. 

R e m a r k 3.1. The case 

d'G(x, t) 
dx' 

S O (i = 0, n — 1 ; 0 i x , ( S l ) 

may be handled analogously. 

IV. 

Now we shall give still another method, concerning the general G and rule (0),. 
for the construction of functions from Jl that satisfy the inequalities (1.2). This 
method shall be very useful later. 

Let us take two arbitrary functions (zu w^dJ/XJ/. Let the operators E and F 
map (zx, wx) into (z2, w2). We shall seek the elements Zlt Wx£Ji that satisfy the 
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inequalities (1.2) in the form 

(4.1) Z1 = z1 + q>1, W1 = w1 + th. 

In this case 
Z2(x) = 

= j f {<?(*, t) (f[zx+<pj +f[Wl+r,j) + G(x, t)N"z ((Zl + (pJO - (Wl + z^O)} dt, 

W2(x) = 

= j f {G(X, t) {f[zx+PJ +f[Wl + m]) - G(x, t)N°2 {(zx + <?!)('> - K + ,,)«)} dt. 

By Lagrange's formula we have 

n - 1 ¡)f 

P ¡=o ou t ¡=0 dUi 

Consequently, we have to satisfy the following inequalities in Jl\ 

(4.2) 
/ x 

y / JFF^'CO [G(X, t ) ^ p + G(x,t)N] + r,P(t)[G(xj)^Q-G(x,t)N\}dt s 

= <PiO) + Z i ( x ) - z 2 ( x ) , 

j f "z {<pi°(0[<?(*.o p - g ( x , [ g ( x , o j L ^ + C i x , o a t ] } d t ^ 

S v1(x) + w1(x)-w/x). 

For the given zx, z2, vvx, w2 we obviously can choose cpx, tjx from Ji such that 
the inequalities 

(4.3) 

f cp/x) S \zx(x)-z2(x)\,..., <p<?-Hx) ^ \z{"-1\x)-z<r»(x)\, 1 
1 r,x(x) == -K(*)-w2(*)| i j M C * ) S -№"-«(*)-w2C-»(x)\J (° - * - 1} 

are satisfied. Hence the left and right sides (and then their derivatives, too) of the 
inequalities (4.2) either coincide or have different signs. 

Thus we have proved the following lemma. 

Lemma 4.1. For any elements zx, wx of Ji the functions 

Zx (x) = z1(x)+q>1 (x), Wx (x) = Wi (x)+t]x (x) 
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together with the auxiliary functions (pu th satisfying (4.3) also satisfy the inequalities 
(1.2): 

Z 2 = E{ZltW^ i Z „ JV1^tV2 = F(Z1, WJ. 

Consequence 4.1. Because of what we said in the concluding part of the 
introduction, Lemma 4.1 gives a method of construction for zx, wx; <pu t]1 (£J() 
such that with the functions Z1=z1+<p1, W1=w1+t]1 we have the inequalities: 

Z 2 = EiZ^WJ s Z i , W^W2 = F(ZX, Wx). 

In this case for the given zls wx we have to choose /h<0 from Jl in 
such a way that 

(4.3') (px S z x - z 2 , z2-z1; ri1^w1-wi,wi-w1 

is satisfied in the sense of the ordering of Jt. Let us take two numbers K-=.0, L > 0 
for which 

- K i s max |ziB )(x)-4n )(x)| , L & max Iw^Ot)-w!>n>(x)|. 
OSxil O '̂Xi 1 

Then the functions , 
i I 

<pt(x) = f KG(x,t)dt, t]x(x) = f LG(x, t)dt 
o o 

satisfy (4.3'). 
Now we shall prove the existence of the first approximating pair (z1? 

in the monotone case of problem (0.1) under the weak assumption of contractivity 
(0.4), i.e., when 

dlG(x,t) N 2 max f 
¡to osx*iJ dx' 

dt = 0< 1, 

where iV>0 majorizes the modules of the partial derivatives of / . 
Let us take an arbitrary negative number d and consider the problem 

(4.4) <p{"\x)-N "Z <№{x) = d, (p^Ji. 
i=o 

Lemma 4.2. The solution of problem (4.4) exists and is unique. It satisfies the 
inequality 

(4.5) <pin)(x) S d(l-6) ( O S i S 1). 

Proof . The existence and uniqueness of the solution follows from the contrac-
tivity condition (0.4). For the proof of (4.5) let us consider the problem 

(4.6) «(")(*) = N « ( i )00, u£Ji. 

6 
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This problem has the only trivial solution u=0 in virtue of (0.4). With respect to the 
equation (4.6) the solution (px of problem (4.4) and the corresponding q>2 have defect 
functions (cf. for example [1], section 4.) 

S / x ) = d, a2(x) = dN f d ' G ^ i ' t ) dt. 

¡=0 X ox 

Consequently, (0.4) and Theorem 4.1 of [1] imply that 

(p{nHx)-cp^(x) = S.1(x)+a2(x) s d( 1 - 0), 1 cp["Kx) ^ <pi"\x) ^ 0 J - X " 1 } ' 
Hence we have 

<p[n\x)iSd(l-0) ( O S x S l ) . 

Theo rem 4.1. In the monotone case of problem (0.1) under the contractivity 
assumption (0.4) there exist elements Z l5 such that 
(4.7) Z2 = E(Z1, WJ Z l f W^W2 = F(Z1, WJ, 
(4.8) Z3 = E(Z2, W2) ^ Zx, tV1^fVs = F(Z2,Wa)-

Proof . Let us take an arbitrary positive number e > 0 and two functions 
zl5 Wj from Jt so close to the solution y of problem (0.1) (z± and u^ can be constructed 
by means of successive approximation) as to satisfy the inequalities 

\z{"Xx)-zi"\x)\~=:e, ¡w^M-vvi/^x)! < e (OgxSl). 
Let us now seek Z1; Wx as in Lemma 4.1. in the form 

Z i = z ^ c p ^ W t = Wi + i/j 

with unknown functions <ply —r/^O from Ji (in the sense of the ordering of J{). 
In order that (4.7) be satisfied, and have to satisfy (4.3') and for such (pu t]1 

the fulfilment of (4.8) is equivalent to the assertion that the positive functions 

$=ZX-Z2, f) = W2-W1 

occurring in Lemma 4.1 satisfy the inequalities (1.6). These inequalities (in this case 
G—G, Jt=Jt) are equivalent to the inequalities 
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where we have 
= Zi"> - Z|n) SO, ft = Wi"> - W}n ) £ 0 

as because of (4.3') Z ^ Z 2 and 

The derivatives 
df_ 
du. 

df_ 
dut 

in (4.9) are taken from the formulas 
n _ 1

 df 

¡ = 0 

"-
1

 df 
f M - f M = 2 

i=o oui 

(zi-z2)<''>, 

(Wi -w^C) . 

By using the formulas of Lemma 4.1 and taking <pL = — >/1>0for the sake of 
simplicity we obtain 
(4.10) 

a ¿x) = z<">(x)-z<">(*) + W - N 5 1 ( f L - f U , 

& ( * ) = w i " > ( x ) ~ w ^ ( x ) - ^ m ) - j 2 i>S;)(x) - J • 

In Theorem 3.1 everything went well essentially because we succeeded in finding 
z1; Wi such that the defect functions ft turned out to be constants (—c resp. c), 
hence the necessary properties of z u wx immediately followed from the contractivity 
assumption. 

The circumstances are similar now. For the e>0, zl5 already chosen we 
choose a number ¿/<0 in such a way that with the solution of problem (4.4) 
the corresponding inequalities (4.3') be satisfied. To achieve this it is enough (cf. 
Consequence 4.1) to take d = — |/fi(l — 0)_1 (in the sequel we suppose that 0 < e < 1) 
as because of (4.5) the inequality 

(p{n\x) S ¿ ( 1 - 0 ) S - s < - m a ^ \z[")(x)-zi
2
n){x)\ 

implies inequality (4.3') for <pv One can prove analogously (taking ^ = — (Pi for 
the sake of simplicity) that for <Pi the corresponding inequalities (4.3') are 
also satisfied. The inequalities (4.7) are also satisfied for any 0-=£<l. 

In contrast with Section III now we may use the continuity of the partial deriva-
tives of / , i.e., that 

max 
i,x 

d f . df_ 
dut P(x) dut QM 

0 ( e - 0 ) . 

From equality (4.4) it is easy to obtain that 

"-1 -d9 
2 <piHx) 

i = 0 N 
(0 S X S 1), 

6* 
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whence in (4.10) we get that 

m a x ^ ( x ) s - a - ^ - 1 | A ( . ) | J ^ = - / e ( J ^ + o(«) ) - e > 

o m a x i « 1 W - - ^ ( T ^ + o ( e ) ) + e 

and analogously 

^ ( - ¿ 0 + o ( e ) ) - £ - & - ^ ( y Z 0 + °( £ ) )+ e -

i.e., although ft are not constant, the ratio of the maximum and minimum 
of each of-c^, ft tends to +1 as e^O and the ratio of the maxima of c^ and ft 
tends to —1 as e—0. Consequently, there exists £>0 for which (4.9) is satisfied. 
To complete the proof one has to use condition (0.4), and the continuity of the 
partial derivatives of / . 

V. 

Finally let us consider the general G under the assumption of (0.4). The space Ji, 
the functions G, <P will be assumed to correspond to a sufficiently fine division of 
[0,1]. Let us take the function (p=(p from Section I with undetermined S >0. Besides, 
in this case 

n_1 i ii'Giv t} n—x 
2 max / - N 0 { J ^ ; n dt = 2 ¿A = < i. 

it0 osxsiy dx' it0 

Let us consider the problem 
(5.1) kW-AOPJ. = <p1(x) — N f G(x, t) [ "2 <Z>i°(o] dt = cp(x), cp^Ji. 

S v=o f 

Lemma 5.1. The solution cpx of problem (5.1) exists, is unique, and satisfies the 
inequality (in the sense of the ordering of Ji) 
(5.2) <px ar c<p 

with a general constant c > 0 for all fine enough divisions of the segment [0, 1]. 

P roof . The existence and uniqueness of the solution <px of problem (5.1) follow 
from (0.4). To prove (5.2) let us consider the problem 

(5.3) u(x)—A0u = 0, u£Ji, 

which in virtue of (0.4) has the only solution u=0. With respect to equation (5.3) 
for <px we have the following inequality in Ji: 

(5.4) <px = <p+A0<px s A0(px. 
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Moreover, 
I " - 1 

cpi-AW! = V + N f G ( * , 0 2 PHOdt, 

from which, as (in the sense of the ordering of J f ) , we obtain for O s x s 1, 
r=0 , ...,72-1 that 

By taking a fine enough division of [0,1] from this we obtain that 

(5.5) <pi r )(*)-(^<?>i) ( r ) ^ < 5 ^ ( 1 ( 0 < 0 2 < 1). 

This, together with Theorem 2 of [2], implies that 

(5.6) O s ^ s w ( 0 2 < 0 3 < 1 ) . 

Here 02 and 03 are absolute constants for all fine enough divisions of the segment 
[0,1]. The lemma is proved. 

Theorem 5.1. For problem (0.1) under condition (0.4) there exist Z l5 WX£J( 
for which the inequalities 

(5.7) Z2 = E{Z1, WJ s Zx, W^W2 = F{ZX, 

(5.8) Z3 = £(Z 2 ,PF 2 ) s Z1; W^W3 = F(Z2, H/2) 

are satisfied in Jt. 

Proof . We are going to seek Z l s in the form 

Zx = Zj + 9»!, ^ = Wi + ih 

(cf. Lemma 4.1). Given an arbitrary positive number e>0, let us choose zl5 w x £Ji 
so close to the solution y of problem (0.1) as to satisfy the inequalities 

dz = max |z i 0 (x)-4°(*) l < s, dw = max | w i 0 ( x ) - < e 
i, x i, X 

with Z2~E(Z1, H>X), W2=F(Z1, Wj). The maxima are taken over i=0,..., n—1 and 
O s x s l . 

Let us now take the solution <pt of problem (5.1) with such a <p where d = fe . 
Then for small enough e > 0 we have, in virtue of (5.2), that 

i.e., with this and with t]t = —(p1 on account of Lemma 4.1 we obtain that (5.7) 
is satisfied, i.e., 

<P* = z1-ztm0, ri* = W2-W1^ 0. 
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(5.9) 

Owing to the formulas of Lemma 4.1 for t] t= — cpx we obtain that 

<p*(x) = Zl(x)-z2(x) + <p(x)-±- J G(x, t) [ 51 cp^(t) (JL dt, 

q*(x) = ^ ( x ) - W l ( x ) + <p(x)+j J G(x, t ) ["i1 <p«\t) [ , - J ^ J ] dt, 

where the partial derivatives o f / are taken from the formulas 

"-1 df 
¡=o dUf 

"-1 df 
/ [ w j - / [ w j = Z 

i=o oui 
Consequently, as e—0 we get that 

/j(e) = max 
¡=0 n - l 

OSlSl 

df df 
du, f(x) du, QW 

0. 

Expressing (5.8) by <p* = Z1 — Z2, — t]* = W1—W2 as well as (1.4) by 
(p = zx — z2, — (p = vvx — w2 in Theorem 1.1, we get inequalities analogous to (1.6). 
The latter inequalities are surely satisfied if 

1 & 
-N f ?G(x, t) y fmaxp*Q max q* O K 

J dxr ¡~o l min <p*<r> min <p*« ) 
(5-10) i 1 

+ - l f 
drG(x, t ) 

dxf 
"v df 2 max --J— 

¡ T I O S Í S I | DUT p min<p*c> dUi\Q min<p*C> dt 

,(r = 0, . . . , n - l ; O i x S l ) 

and the same inequality with the roles of <p* and t]* interchanged, are satisfied. 
From (5.2) it is easy to derive that 

\S drG(x,t) 
dxr 2N 

1 C <p^(x) (r = 0, . . . , n - l ; O á í S l ) . 

Consequently, as 

max (x) /e(A;+fc(e)) (i = 0,...,n-l; k(e) - 0(e - 0)) 
o a x s l 

we obtain that 

raw cp*0)(t) ^ 6+ ye (Ai+fc(e)) + -L^ \^(),i + k(e))h(s) = 

= / e ( A ; + a ( e ) ) . 

oat 
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Analogously, 

min <р*(0(О s f s ^ + b i e ) ) , max S ^(А, + с(е)), 

( m i n f ( ' ) ( í ) s Ve(Xi+d(sj), 

where 
a (e), b (e), с (e), d(s) 0 (e - 0). 

A i 
From this it follows that the ratios m (5.10) tend to — as s—0. Hence the second 

integral under (5.10) tends to zero and the sum under the first integral to the number 

Thus for O S x S l the right hand side of (5.10) tends to a limit not greater than 
1, as £—0. Consequently, for small e>0 the inequalities (5.8) are also satisfied. 

This finishes the proof of our theorem. 
We remark that Theorem 4.1 guarantees the existence of the required pair 

Z1; W ^ J i (cf. [2]) for the initial value problem 

with a function / having the same properties as in problem (0.1) and under the as-
sumption of contractivity (0.4). The general initial value problem on the segment 
[a, b] can be reduced to problem (5.11). 

Analogously as above one can prove the existence of the first pair of approxi-
mants for the solution of a boundary value problem that belongs to a wide class of 
partial differential equations or equations with delayed argument (cf., for example, 
the references part of [1]). 
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The radical in ring varieties 

A. A. ISKANDER 

All rings considered here are associative and not necessarily with 1. A ring 
variety is a class of rings closed under subrings, homomorphic images and Cartesian 
products; equivalently, it is the class of all rings satisfying a set of polynomial 
identities. In the present paper, we study syntactic and semantic properties and also 
structure of varieties in which the Jacobson radical of every member is 1) nil, 2) nil-
potent, or 3) a direct summand. 1) is equivalent to a one variable identity: • 
-h(x)=0; and also the variety is locally nilpotent by finite. 2) is equivalent to an 
n variable identity: x1 . . .x„+/(xi,. . . , x„)=0, where every term in f(xu ..., xn) is 
of degree larger than n. Also, every variety satisfying 2) is generated by a finitely 
generated ring and is finitely based. 3) is equivalent to a finite set of two variable 
identities. 

For an account of the variety theory, the reader may consult [1, 2, 3, 5, 12, 13,14]. 
Script letters will denote classes or varieties of rings; the corresponding Latin letters 
will denote their T-ideals of identities. We denote the free associative ring on 
{x1; x2, ..., xn, ...} by F. The join of varieties will be denoted by V. Var Jf will 
mean the variety generated by tf. (f,g,h, ...} will mean the variety of all rings: 
satisfying the identities 0=f—g—h= .... 

A residually finite ring is a ring in which every nonzero element does not belong 
to an ideal of finite index. A J-ideal is an ideal closed under all endomorphisms. 

1. D e f i n i t i o n 1. A ring variety is called locally nilpotent by finite, if every 
finitely generated member possesses a nilpotent ideal of finite index. A locally finite 
variety is a variety in which every finitely generated member is finite. 

In [7], it is shown that locally finite ring varieties are precisely varieties satisfying 
cx=0, x" + x " + 1 / W = 0) for some positive integers c and n and for some poly-
nomial f(x) with integral coefficients. For locally nilpotent by finite varieties,, 
we have 

Received February 12, 1976. 
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Theorem 1. The following conditions on a ring variety "V are equivalent: 
1) ~f is locally nilpotent by finite. 
2) every member of V generated by one element is nilpotent by finite. 
3) "V satisfies xn+xn+1 f(x)=0, for some positive integer n and /(x)G Z[x]. 
4) the Jacobson radical of every member of "V is nil. 

2. We will first state and prove some lemmas. 

Lemma 2. Let A be an algebra over a field K. Then either A is nil, or A contains 
a copy of K or of xK[x]. 

Proof . Let a£A, a^O. The subalgebra of A generated by a is isomorphic 
to xK[x][T, where / is an ideal of and hence principal; i.e., l=g(x)K[x]. If 
g(x)=0, then A contains a copy of If g(x) ^ 0, we can assume that 
+xs+1/z(;t). If a is not nilpotent, then cf = -as+1h(a)=as+1q(a). Hence as=a2s(q(a))s 

and (aq(a))s is an idempotent element of A that generates a subalgebra of A iso-
morphic to K. 

Lemma 3. The following conditions on a ring variety "V are equivalent: 
i) xm+xm+1h{x)£V for some w>0 , h(x)£Z[x]. 
ii) for some i > 0 and g.c.d.(alf ...,as) = l. 

iii) V(xZ[x]) the T-ideal of one variable identities of ' f is not contained in pxZ[x] 
for any prime p. 

Proof . It is clear that i)=*ii)=>iii). Let "V satisfy iii). By Hilbert's basis theorem, 
/=K(xZ[x]) is finitely generated, say by g^x),g2(x), ..., gk(x). For any prime p one 
of the coefficients of gi(x),..., gk(x) is not divisible by p. Let u be an integer larger 
than all the degrees of g1(x),..., gk(x). Then 

g(x) = Z{xiu
gi(x): 1 ^ i tz k}a 

satisfies ii). 
Let "V satisfy ii). Hence every member of "V satisfies rx'=x'+1 f(x) for some 

positive integers r and t and some/(*)£Z[x]. Thus "V satisfies 

i - V = rx'^fix) = X , + 2 ( / ( J C ) ) 2 , . . . , r'x" = x 2 ' ( / 0 ) ) ' , r^x 1 = x 3 ' ( / ( x ) ) 2 ( . 

and substituting r^x for x, we get 

r6V = (r€'x')2g(x). 

Let AZf and denote by B the Jacobson radical of A. For every b£B, r6'b'g(b) 
is an idempotent element of B. Hence r*'b'g(b)=0 and B satisfies r6'x'=0. Let 
C be the ideal of B generated by all b', b£B. Then C satisfies r6 'x=0. We will show 
that C satisfies xn=0 where n depends only on the polynomial in ii), and consequently 
B satisfies x"'=0. C is the direct sum of a finite number of rings of. prime power 
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characteristic. Hence, for our purpose, we can assume that C satisfiespkx — 0 (fc-=r6t). 
C/pC is an algebra over the field Zp. C/pC£V and hence satisfies E{aixi: 1 ^ / ^ 4 = 0 
where g.c.d. (alt ...,as) = 1. Hence C/pC cannot contain any copies of xZp[x]. If 
C/pC were not nil, then by Lemma 2, C/pC would contain a copy of Zp and hence 
an idempotent different from 0. But pC is nilpotent (pC)k=0, and this nonzero 
idempotent can be lifted to an idempotent in C, contradicting the fact that B does not 
have any nonzero idempotents. Thus C/pC is nil by ii) 

x" — xu+1/i(x) where 1 ^ u ^ s, 

and hence xu=xu+v(h(x))v for any If a£C/pC satisfies av=0, then au=0=as. 
Thus C satisfies x s t =0. 

Now A/B is a subdirect sum of primitive rings satisfying an identity of type ii). 
By KAPLANSKY'S theorem [8] every such primitive ring is of dimension ^ ( i s ) 2 

over their centers. These centers satisfy the same identity of type ii), and hence 
they can be only a finite number of finite fields. Thus all these fields satisfy an identity 
of the type x+x2/z(x)=0, and hence all these primitive rings satisfy (x+x2/!(x))u=0 
for some « > 0 depending only on the identity I{aix': [9]. Thus A 
satisfies (x+x2A(x))us'I,=0; i.e., "V satisfies i). 

Lemma 4. The following two conditions on a ring variety f are equivalent. 
i) if AZ'f, and if A is nil, then xe=0 in A. 
ii) "V satisfies xe+xe+1h(x)=0 for some h(x)£ Z[x], 

Proof . ii)=*i) since xe+xe+1h(x)=0 implies xe=-xe+1h(x)=xe+1H(x) = 
=xe+k(H(x))k for all 1. Thus if is nil, then ae=0 for all a€A. 

Conversely, the subvariety °U of "f of all rings satisfying xe+1=0, satisfies 
xe=0 by i). Hence x{£ V+(x{+1) where (xj+1) is the T-ideal of identities generated 
by *J+1. 

Thus ^=?(*i)+*;+VX*i) , qix^V-, i.e., q(x1)=xe
1-xe

1
+1f(x1)e V. 

Lemma 5. The following conditions on a ring variety "V are equivalent: 
i) every nilpotent member of 'V satisfies x1 . . .xc=0. 

ii) "f" satisfies x1 . . .xe+/(x1 , ..., x e )=0 for some multinomial f , all terms of 
which are of degree larger than e in x1 ; . . . , xe. 

Proof , ii) implies that the product of any e elements of a ring A belongs 
to Ae+1, i.e., AeQAe+1. Hence Ae=Ae+k for all Thus if As=0 for some 5, 
A'=A'+M=0. 

Conversely, if f satisfiesi) and U — V+ Fe+1, then xx...xe£ U; i.e., x1...xe = q-\-g 
where g£Fe+1 and q£ V. We can assume that both q and g involve only x1( ..., xe; 
i.e., q=x!...xe—g£ V where g£Fe+1. 
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3. P roo f of Theorem 1. It is obvious that 1)=>2). Let F / V ) — the free 
member of -V of rank 1 — be nilpotent by finite; i.e., there is an ideal / of F/-T) 
such that F/y")\I is finite and / " = 0 for some «>0. Then ^ ( V ) / / satisfies 
(x + x?h{x))m = 0 for m > 0 , h(x)£Z[x) [7,9]. H e n c e F / T ) satisfies (x+x2A(x))mn=0. 
Thus (x1+x\h(x))mn€V-, i.e., "V satisfies 3). 

Let y satisfy 3) and let AW. Let B be the Jacobson radical of A. For any 
b£B, ba=-bn+1f(b)=bn+1g(b)=b*n(g(b))n. Thus (bg(b))n is an idempotent of B. 
Hence (bg(b))"=0 and bn=bn(bg(b))"=0; i.e., B is nil. 

Let Y satisfy 4), and let A£"V be finitely generated. F(xZ[x]) is not contained 
in pxZ[x]; otherwise, xZp[x] would belong to V, and hence V contains all com-
mutative rings of characteristic p. The Jacobson radical of such rings may not be 
nil. Thus, by Lemma 3, V satisfies x"+xn + 1A(x)=0 for some « > 0 and h(x)£Z[x]. 
By Lemma 4 the Jacobson radical B of A satisfies x"=0 since B is nil. AjB is a finitely 
generated semisimple ring satisfying x"+x"+1/;(x)=0. Hence AjB is the sub-
direct sum of matrix rings over a finite number of finite fields. Thus AJB satisfies 
cx=0 for some positive integer c. Hence A/B satisfies cx—0, xn+x"+ 1 / ; (x)=0. 
Thus A/B is finite by [7] as it is finitely generated. Now B is a subring of finite index 
in the finitely generated ring A. By a result of LEWIN [10], B is a finitely generated 
ring. As B also satisfies x"=0, by a result of KAPLANSKY [8], B is nilpotent; i.e., 
A possesses a nilpotent ideal of finite index concluding the proof of Theorem 1. 

4. Let c,d,e be integers, c^O, i/>0, e>0. 

D e f i n i t i o n 2. <6(c, d, e) is the class of all rings A with the properties: 
1) cx = 0 for all x£A. 
2) Let J? be a homomorphic image of a subring of A. Then 

a) if B is nilpotent, then Be=0, 
b) if B is not nilpotent and B is primitive, then B is a finite simple ring 

of order dividing d. 
For O O , the class d, e) was defined by KRUSE [9] in analogy to the corre-

sponding definition for groups [13]. In [9] it is shown that 

P r o p o s i t i o n 6 [9]. <$(c, d, e),for c>0, is a variety generated by a finite ring. 

It is clear that the following also holds: 

P r o p o s i t i o n 7. <6(c, d, e)—^(0, d, e) fl (cx). #(0, d, e) is closed under subrings 
and homomorphic images. 

D e f i n i t i o n 4. 2l(c, d, e) is the class of all rings A with the properties: 
1) cx=0 for all x€A. 
2) Let B be a homomorphic image of a subring of A. Then 
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a) if B is nil, B satisfies xe=0, 
b) if B is not nilpotent and B is primitive, then B is a finite simple ring of 

order dividing d. 
It is clear that d, e) ̂  3>(c, d, e) for all c^O and 

P r o p o s i t i o n 8. d, e)=®(0, d, e)fl(cx) and 2>{c, d, e) is closed under 
subrings and homomorphic images. 

In [4] EVERETT defines a ring C to be an extension of a ring A by a ring B 
if C possesses an ideal isomorphic to A whose factor is isomorphic to B. 

Def in i t i on 5 [6, 11, 13]. Let be classes of rings. aU-'V is the class of all 
rings that are extensions of a ring of fy by a ring of "V. 

In [6, 13] it is shown that 

P r o p o s i t i o n 9. If aU,'V are varieties, then ^l-'V is a variety satisfying 
f(gi, •••,£„)=0 for all / f o , ...,xn)£U, gu ...,g„€V. 

We will need two more results. 

P r o p o s i t i o n 10 [9]. A finitely generated nilpotent by finite ring is residually 
finite. 

Propos i t i on (HIGMAN [13]). If a locally finite variety is generated by a family 
of finite rings, then every finite member of the variety is a homomorphic image 

of a subring of a finite direct sum of members of JT. 

Higman's result was stated for groups. It also holds for rings. 
We will show that all the % and classes introduced here are actually varieties. 

5. Theo rem 12. Qi(c,d,e) is a locally finite variety for all c>0. 

Claim 1: If c > 0 and A£$(c, d, e), then A satisfies (xe+xe+1h(x))e=0 where 
x+x2h(x) is an identity satisfied by all finite fields of order dividing d. 

Let c=pk
1
1X...Xpk

s
s be the prime factorization of c. Then A=A1XA2X...XAS 

where At is of prime power characteristic. It is sufficient to establish the claim for 
c=pk. AlpA£$i(c, d, e). (pA)k=0 and pA^®(c, d, e); hence pA satisfies XE=0. 
Let a£A/pA. The subring [a] of A/pA generated by a belongs to <2>{c, d, e). It is 
isomorphic to xZp[x]/1,1^0 since xZp[x] $ &{c, d, e). Thus I=(xr+xr+1 g(x))Zp[x] 
for some g(x)£Z[x]. I=xrZp[x]f](Kx+x2g(x))Zp[x], Hence [a] is isomorphic 
to a subdirect sum of xZp[x]lxrZp[x] and xZp[x]j{x+x2g(x))Zp[x]; i.e., [a] is iso-
morphic to a subdirect sum of a nil ring and a finite number of finite fields all belong-
ing to 3>{c, d, e). Let x+x2h(x) be an identity satisfied by all fields of order dividing 
d. Then [a] satisfies xe-{-xe+1h(x)=0 since every nil member of Si{c, d, e) satisfies 
xe=0. Thus A/pA satisfies xe+xe+1h(x)=0. Hence A satisfies (X R +X E + 1 / I (X) ) E =0 . 
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Let r be the largest square free integer dividing d. All finite simple rings of 
order dividing d belong to ^(r, d, d) since all are finite matrix rings over finite 
fields. 

Claim 2: ®{c,d,e)^(xe)-<$(r,d,d) for all c>0. 
Let A£3>{c, d, e). Then by Claim 1 and Theorem 1, Rad A is nil. Hence 

Rad A£2)(c,d,e) belongs to (xe). ^/Rad A is a subdirect sum of primitive rings 
belonging to 3>{c,d,e). All these primitive rings are finite simple rings of order 
dividing d. Hence they belong to d, d) which is a variety by Proposition 6. 

Claim 3: Var d, d, ed). 
Since by Claim 2 d, e)^(xe) • <g(r, d, d) and by Proposition 9 <xe> • d, d) 

is a variety, Var (^(c,d,e))^(xe)-^(r,d,d). Let .46Var (3)(c, d, ej). Then A 
satisfies cx=0 and also A£(xe)-^(r,d,d). So, there is an ideal B of A such 
that B satisfies xe=0 and AjB£^(r, d, d). If A is nil, then A/B is nil and hence 
satisfies xd=0. Thus A satisfies xe"=0. If A is primitive, A satisfies (xm+xm+1 f(x))e = 0 
(by Claim 1 and Proposition 9). Hence A is finite dimensional over its. center 
(by KAPLANSKY'S theorem [8]). Thus A is a simple ring that is not nil. Hence 
A£#(/•, d, d) \ i.e., A is a finite simple ring of order dividing d. 

Claim 4: Let A 6 Var (Sl(c, d, e)) be nil. Then A satisfies xe=0. 
-T=Nax(@(c,d, e)) satisfies cx=0=xm+xm+1h(x). Hence by [7] "V is locally 

finite. Thus "V is generated by its finite members belonging to 3>(c, d, e). It will be 
sufficient to establish the claim for the case A is finite. By Higman's Proposition 11, 
A = T/I where T is a finite subdirect sum of finite rings from d, e). Thus T is 
finite, and hence its Jacobson radical R is nilpotent. T/R is generated by idempotents 
that can be lifted to a set of idempotents B such that T is generated by B and R. 
Since T/I is nil, BQI. Thus T/I^R/RHI. As 3>(c,d,e) is closed under subrings, 
R is a subdirect sum of members of ¿3(c, d, e). Since R is nil, all these rings are 
nil, and hence satisfy xe=0. Thus R, and consequently A, satisfy xe=0. This argument 
is similar to an argument of KRUSE [9]. 

By Claims 3 and 4, S>{c, d, e)^Var (2>(c, d, e)). Hence @)(c,d,e) is a variety. 
Since every nil member of 3>(c, d, e) satisfies xe=0, by Lemma 4 Q){c, d, e) satisfies 
xc+xe+1/?(x)=0 for some h£Z[x], By [7], Q>(c, d, e) is a locally finite variety. 

6. Theorem 13. ¡3(0, d, e) is a variety; moreover, d, e) — V {3>(c, d,e) \ o 1}. 

Denote by Jf the join of all 3l(c, d, e), o l . 
Claim 5: satisfies (xc+xe+1A(x))e = 0 where x+x2h(x)=0 is an identity 

satisfied by all finite fields of order dividing d. 
This is immediate from Claim 1. 

Claim 6: 0(0, d, (xe)) • J f . 
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Let A €9(0, d, e), C){cA: o l } , and let C be the torsion ideal of B. It is 
clear that A/B, C^Xand B/C£9(0, d, e) is an algebra over the field Q of rational 
numbers. By Lemma 2, if B/C is not nil, it contains a copy of Q or a copy of xQ[x] 
in contradiction to the statement B/C£9(0, d, e). Thus B/C is nil and hence satisfies 
j c c = 0 . 

Claim 7: 9(0, d, Jf. 
From Claims 5 and 6 and by Proposition 9, 9(0, d, e) satisfies an identity of 

the type xe3+xe3+1g(x)=0. By Theorem 1 Var (9(0, d, e)) is locally nilpotent 
by finite. Hence every finitely generated member of 9(0, d, e) is nilpotent by finite, 
and by Proposition 10, is residually finite. Thus every finitely generated member of 
9(0, d, e) is a subdirect sum of finite members of 9(0, d, e) and hence is also a sub-
direct sum of finite members of Jfl Thus ¿¡>(0, d, e) s jT. 

Claim 8: Var (0(0, d, e))=Jf^(xe)^(r, d, d). 
It is clear that 9(c, d, e) ̂  9(0, d, e) for all c > l . Hence J f s Var (9(0, d, e)) ̂  J f 

(by Claim 7). Also by Claim 2, 9(c, d, e)s(xe)-<g(r, d, d). 

Claim 9: Var (9(0, d, e)) 9(0, d, ed). 
The proof is the same as in Claim 3. 

Claim 10: X satisfies („r+x2/(x))e=0 where x-rx-fix) is an identity satisfied 
by all fields of order dividing d. 

Consider A — the free member of rank 1 of 9(c, d, e). If R is the Jacobson 
radical of A, R is nilpotent and A/R is a finite semisimple commutative ring. Thus 
A/R is the direct sum of finite fields belonging to 9(c, d, e). Hence AIR satisfies 
x+x2f(x)=0 where / depends only on d and R satisfies x c=0. Hence 9(c,d,e) 
satisfies (x+x2 /(x)) e=0, and so does Of. 

From Claims 8, 9 and 10 and by Lemma 4, Var (9(0, d, e))^9(0, d, e), 
concluding the proof of Theorem 13. 

7. Theorem 14. A variety is locally finite i f f it is contained in 9(c,d,e) for 
some positive integers c, d, e. 

By Theorem 12, 9(c,d,e) (c>0) is a locally finite variety. Hence every sub-
variety of 9(c, d, e) is locally finite. Conversely, if 'V is a locally finite variety, it 
satisfies cx=0=xe+xe+1h(x) [7]. If d is the least common multiple of the orders of 
all nonnilpotent finite simple rings satisfying xe-\-xe+1h(x)=0, then "T ^9(c,d,e). 

Theorem 15. A variety is locally nilpotent by finite i f f it is contained in 9(0, d, e) 
for some positive integers d, e. 

A subvariety of 9(0, d, e) satisfies x e+x c + 1g(x)=0 and hence is locally nilpotent 
by finite (by Theorem 1). Conversely, if a variety is locally nilpotent by finite, it 
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satisfies x e+x e +V;(x)=0, and hence it is contained in 9(0, d, e) where d is the least 
common multiple of the orders of all finite simple rings satisfying xe+xe+1h(x)=0. 

8. T h e o r e m 16. #(0, d, e) is a variety; moreover, #(0, d, e)= V {^(c, d, e ) : o l } . 

Claim 11: <#(0, d, e)^(x1...xe)-^(r, d, d). 
Since i?(0, d, e)^9(0, d, e), by Theorem 15, i?(0, d, e) is locally nilpotent by 

finite. Hence, if A 6 <8(0, d, e), then the Jacobson radical R of A is nil satisfying x e = 0 . 
Thus by KAPLANSKY'S theorem [8], R is locally nilpotent. Hence R satisfies xx... x e = 0 
since R £ ̂ (0, d, e). A/R is a subdirect sum of primitive rings belonging to 9(0, d, e) 
and hence to i?(r, d, d). 

Claim 12: V(0, d, e)=§V{<$(c, d, e): o l } . 
Let 0, d, e) be finitely generated. Hence A is nilpotent by finite, and by 

Proposition 10, A is residually finite. Hence A is a subdirect sum of finite rings 
belonging to # (0 , d , e ) . These finite rings belong to U {^(c, d, e): o l } . Thus 
i i V { % ( / , c ) : o l } . Hence #(0, d, e)S V{i?(c, d, e): o l } . 

Claim 13: <g(c, d, e) satisfies rex1...xe=0 for all cS0 . 
By Claim 11 and by Proposition 9, <g(0,d,e) satisfies (rx1)(rx2)...(rxe)=0. 

Also if(0, d,e)^\l {V(c, d,e):c>\}. 

Claim 14: If c6(re, d, e) satisfies an identity in x±,..., xn, for some n S e , where 
every term in the identity involves precisely all xu ...,x„, then the same identity 
holds in %(c, d, e) for all o l . 

Denote by Vc the 7-ideal of the variety if(c, d, e). It is clear that i f f e , d, e)^ 
^^(c2, d, e) if c-i\c2. Thus, if s=g.c.d. (c, re), then 

Vs = Vc + sF=Vc+cF+sF =Vc + cF+reF =Vc+reF. 

If n^e and g f o , ..., x„)£ Vr. is as described in Claim 14, then g£ F r „ s Vs= Vc+reF. 
Thus there are t>€ Vc a n d / 6 F s u c h that g=v+ref. By substituting 0 for all variables 
outside YQ x2, ...} we get equality between the sum of terms involving variables 
from Y only in g and v+ref. Hence we can assume that every term in v a n d / involves 
precisely xu ..., x„. T h u s f e F " Q F e . But Vc^reFe. Thus ref£ Vc, and g=v+ref£ Vc. 

Claim 15: ^(0, d, e) satisfies x1 . . .xe+/(x1 , ..., xe)=0 where f£Fc+1. 
By Lemma 5 ^(re,d,e) satisfies x1...xe+f(xl, ...,xe)=0 since every nilpotent 

member of ^(re,d,e) satisfies x1 . . .x e=0. By Claim 14, d, e) satisfies X!...*,,-!-
+ / (*! , . . . , x j = 0 . Hence Claim 15 follows from Claim 12. 

Var (<^(0, d, e)) satisfies x 1 . . . x e +/=0 , f£Fe+1. Hence every nilpotent member 
of Var (<if(0, d, e)) satisfies x1 . . .xe = 0. If A is primitive and not nilpotent, and 
A€Vat(^(0,d,e)), then A£9(0, d, e). Hence A is a finite simple ring of order 
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dividing d. Thus 

Var (t>(P, d, e)) g <$(0,d,e)). 

But Var (#(0, d, e)) = V {<#(c, d, e ) : c>l ) . This concludes the proof of Theorem 16. 
9. The following is a generalization of KRUSE'S theorem [9] that the identities 

of a finite ring are finitely based. 

Theo rem 17. If V d, e) then the identities of V are finitely based. 
Denote by Fk the free associative ring on ..., xk}. yw the variety defined 

by the ^-variable identities of V is finitely based for any k. Since FkC\V — the 
T-ideal of V in Fk — determines the variety Fk/Fkf)V=Fk(V) is nilpotent 
by finite. Hence V f ) Fk^I for some ideal I of Fk of finite index and I/VD Fk is nil-
potent. By LEWIN'S result [10], / i s finitely generated, and so Fk FL Fis finitely generated. 

i f = Y C\(rex) is a subvariety of <6{re,d,e). Hence by [7] i f is generated by 
a finite ring and by RRUSE'S theorem [9], i f is finitely based; i.e., W= V+reF is 
finitely generated as a T-ideal. Thus all identities of i f are consequences of rex, vl3..., v„ 
where vlt •••,v„ can be chosen in V. Let vd V involve precisely xu ...,xm, m^e. 
Then t> = r e /+w where/€Fand wis a consequence of vlt ..., v„. Comparing the terms 
involving the same set of variables, we get 

v = ref+w', 0 = ref"+w" 
where / ' , w' are the sums of all terms of / and w involving precisely xx, ..., xm, 
/ " = / — / ' , w" = w—w'. But w',w" are also consequences of v1,...,v„ and ref'£V 
since f'£Fe. ref" = —w". Hence v = rcf—w"+w. Thus v is a consequence of rex1...xe, 

v„. Thus Vi~)Fe_1U {rex1...xe, vlt..., t)„} is a basis for V. Hence "f is finitely 
based. 

Theo rem 18. The following conditions on a variety "f are equivalent: 
1) "V d, e) for some positive integers d, e. 
2) satisfies x1 . . .x„+/(x1 , . . . , x„)=0 for some f£Fn+1 and some n>~0. 
3) the Jacobson radical of every member is nilpotent. 

We have established that l)=>-2)=>-3). If "V satisfies 3), then by Theorem 1, 
•f is locally nilpotent by finite. Thus by Theorem 15, "f" d, e) for some positive 
integers d and e. By Claim 8, "f ^ (xe) • (€{r, d, d). Let A be the free ring of f of 
rank co. Then A/Rad d, d) and Rad A is nilpotent say (Rad A)m=0. Thus 
A£(x1...xm)-<ig(r, d, d). Since A generates "f 

r^(xy..xm). V{r, d,d)S ^(0, d, md). 

Coro l l a ry I. If a variety satisfies * 1 . . . J C „ - | - / ( X 1 , . . . , X „ ) = 0 , where f£Fn+1 

and n > 0, then it is finitely based. 

7 
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Coro l l a ry 2. A variety is generated by a finite ring i f f it satisfies cx=0 and 
x1...x„+/(*i>..., x„)=0 for some n>0 , c>0, and f€Fn+1. 

This is immediate from Theorem 18 and the observation that a finite ring belongs 
to <t(c, d, e) for some c, d, e>0. 

10. We now come to the condition that the Jacobson radical be a direct summand. 

Theorem 19. The following conditions on a ring variety are equivalent: 
1) the Jacobson radical of every finitely generated member is a direct summand; 
2) the Jacobson radical of every member generated by two elements is a direct 

summand. 

Proof . It is obvious that 1)=>2). 
If "V is a variety such that V(xZ[x])^pxZ[x], for some primep, then -V contains 

xZp[x] and hence all commutative rings of characteristic p. The ring {(x, y): x, y £ Zp} 
with component-wise addition and (x, y)(z, t)—(xt+yz, yt) is commutative of 
characteristic p\ its Jacobson radical is {(x, 0): x£Zp}, and the radical is not a direct 
summand. However, this ring is generated by (1, 1). Thus, if "V satisfies 2), V(xZ[x\) 
is not contained in pxZ[x] for any prime p. By Lemma 3, "V satisfies x"+x"+ 1 / (x)=0, 
and hence by Theorem 1, the radical of every member of "V is nil; moreover, it satisfies 
x"=0. Let A be a finitely generated member of f f a n d let R be the Jacobson radical 
of A. Hence A/R is a finite semisimple ring. So AjR has 1. As R is nil, 1 can be 
lifted to an idempotent c£A. Hence A = cA+R. Let b£R. Then the subring B 
generated by b and c belongs to " f , and hence its radical C is a direct summand. 
But the radical C of B contains R D B. The projection of B onto C sends idempotents 
to 0. Thus cb=bc—0. Hence A(cA)=(cA+R) (cA) = (cA) (cA)+R (cA)=c(AcA) g cA. 
Hence cA is a two sided ideal of A. RC)cA=0 and R+cA=A. Hence A —R@cA. 

From Theorem 19, the condition 1), equivalent to 2), is equivalent to the 
variety of all rings satisfying the two variable identities of y , satisfies condition 1) 
of Theorem 19. But the identities of are finitely based. Thus condition 2) is 
equivalent to a finite set of two variable identities. The following shows that this 
cannot be improved. 

Theorem 20. Let ~f be a ring variety for which the condition that every finitely 
generated member of has the radical as a direct summand is equivalent to a set of 
one variable identities. Then "V satisfies xe=0 or x+x2h(x)=0. 

In the varieties (xc>, every ring is radical. In the varieties (x+x2h(x)), the 
radical is 0. 

If V is a variety in which the radical of every ring generated by one element 
is a direct summand, then F(xZ[x]) is not containedi n pxZ[x] for any prime p; 
otherwise, all commutative rings of characteristic p belong to . In the proof of 
Theorem 19, we have shown that there is a ring of characteristic p generated by one 
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element and its radical is not a direct summand. Thus, by Lemma 3, "f satisfies 
xe + xe+1h(x)=0. For some prime p, "V contains the minimal variety (px, xy) [15]; 
otherwise, TT is a variety not containing (px, xy) for any prime p; and by [6], this is 
equivalent to the validity of x+x*f(:t)=0 in *t~ for some f(x)^ 0. Also for some 
prime q, V contains the prime field of q elements Zq. This is true since by Theorem 15, 
f d, e), where d is the least common multiple of all orders of finite simple 
nonnilpotent rings belonging to "T. If -V does not contain any nonnilpotent simple 
finite ring, then -f l,e)=(xe). Thus, if V does not satisfy xe=0, then -f 
contains a nonnilpotent finite simple ring whose center is Zq for some prime q. 
The variety all = (qx, xy—xqy, xy — xyq) is contained in (qx, xy)\/(qx, x—x^-^V. 
The one variable identities of °ll are all consequences of qx=x2—x9+1=0. The ring 
{(a,b):a,b£ZJ with (a, b) + (c, d) = (a+c, b+d), (a, b)(c, d) = (ac, ad) satisfies 
qx=0=x2—x9+1. Its radical is {(0, b): b£Zp}, and the radical is not a direct summand. 
Thus, if f is a variety not satisfying x e = 0 or x-\-x2h{x)—Q for any e > 0 or h(x)^ 0, 
then the condition that the radical of every finitely generated member is a direct 
summand is not equivalent to any set of one variable identities. 
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Theory of radicals for hereditarily artinian rings 

A. WIDIGER and R. WIEGANDT 

I. Introduction 

As is well known, a radical-semisimple theory can be built up in every universal 
class of rings, but in most of the cases the universal class considered is that of all 
associative rings or at least another variety of rings. So it seems to be reasonable 
to have a better look at radical-semisimple theory developed in a class which is 
not a variety. In the present paper we shall consider the class K of all artinian rings 
with artinian Jacobson radical i.e. of every artinian ring each ideal of which is 
artinian. The rings of K will be called hereditarily artinian rings. The class K does not 
admit infinite direct sums and subrings of K-rings are not necessarily K-rings, though 
K is hereditary, homomorphically closed, and closed under extensions either. 
The structure of K-rings has been described in [2]. In the present paper we shall 
develop the general radical and semisimple theory in the category K, we shall 
characterize the radical and semisimple classes by certain algebraic properties and 
shall give explicitely all the radical and semisimple classes of K. Among others it 
will be proved that a subclass of K is a semisimple class iff it is hereditary and closed 
under extensions, further a subclass R is a radical class iff R is homomorphically 
closed, closed under extensions, and contains the zeroring Z(j>°°) whenever Z(p)£R. 
Also all iV-radicals in K are determined. Since K is not a variety, connections among 
algebraic properties are different from those in a variety. For instance, in K every 
hereditary radical class is a homomorphically closed semisimple class, but the converse 
statement is not true. Let us remind that in a ring variety the situation is just the 
opposite: homomorphically closed semisimple classes are always subvarieties and 
strongly hereditary radical classes, but not conversely (cf. e.g. [5] Theorem 34.1 
and Corollary 32.2). 

Received January 19, 1976. 
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2. Preliminaries 

A subclass R of K is called a radical class if it satisfies the following conditions : 

(Rx) if then every non-zero homomorphic image B of A has a non-zero 
accessible subring C in R; 

(R2) if every non-zero homomorphic image B of a ring A£K has a non-zero 
accessible subring C in R, then ,4€R. 

Dualizing the definition of radical classes we get that of semisimple classes. 
A subclass S of K is said to be a semisimple class, if it satisfies the conditions : 

(S^ if /16S, then every non-zero accessible subring B of A has a non-zero homo-
morphic image C in S; 

(S2) if every non-zero accessible subring B of a ring AÇ K has a non-zero homo-
morphic image C in S, then 

Let us consider the class functions °U and Of defined by 

<%P={A£K | A has no non-zero homomorphic image in P} 
and 

yQ={AÇK | A has no non-zero ideal in Q}. 

As has been shown in [1] Theorem 1 in the framework of a more general theory, 
the class functions and y establish a Galois-correspondence between hereditary 
and homomorphically closed subclasses of K, and the closed subclasses are exactly 
the semisimple and radical classes, respectively. Thus, if P is a hereditary subclass 
of K and Q is a homomorphically closed subclass of K, then <%P is a radical class 
and SPQ is a semisimple class, moreover, for each radical class R and semisimple 
class S we have R = aUS/'R and S — S^WS. Replacing the notion "accessible subring" 
by that of "ideal" in conditions (R^, (R2), (SJ and (S2) we get again the definitions 
of radical and semisimple classes (cf. for instance [5] Theorems 10.6 and 10.7). It 
is easy to check that for every radical class R^ and semisimple class SA of the class 
A of all associative rings, the intersections R^ Pi K and S^HK yield radical and semi-
simple classes in K, respectively. Further, if R is a radical class in K and £PR denotes 
the lower radical class of A generated by R that is 

every non-zero homomorphic image of A1 
has a non-zero accessible subring in R J 

then R = SCR fl K holds. Similarly, if S is a semisimple class of K and 

every non-zero accessible subring of A 1 
has a non-zero homomorphic image in S J 

is the semisimple class of A generated by S, then S = ^ S f l K is valid. 

S£ R = 

JtS = \ / 4 € S 
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All these considerations are valid not only for K, but for any hereditary and 
homomorphically closed subclass of A. 

For further details of the radical theory we refer to [5]. 
Let A be a ring. We shall denote the additive group of A by (A, +), the Jacobson 

radical of A by J(A), and the ring of all «X« matrices over A by A„, respectively. 
The symbol ffi stands for ring theoretic direct sum. For any prime p, Zip10) 
denotes the cyclic group of order pk and also the zeroring on this group, Z(p°°) the 
quasicyclic p-group and also the zeroring on this group. 

In the following we use the results of [2]. The main result of [2] (Satz 3) states 
that A is hereditarily artinian iff 

(D) A = ® ® A* 

where each 5® is the matrix ring over an infinite division ring S(i) and A* is a strong 
artinian ring, i.e. (A", + ) satisfies the minimum condition on subgroups. As is well 
known, A* is a torsion ring and 

A* = A(P])®...®A(Pl) 

where the /f(/?;)-s, the so called ^¡-components of A*, are /»¡-rings for distinct 
primes pt. (A(pJ, + ) is a direct sum of a finite group and finitely many copies of 
Z(p°°) lying in the annihilator of A(p;) (and thus of A). 

3. Semisimple classes of K 

A class H is said to be hereditary, if I<\A£Y1 implies /£H. We say that a class 
E is closed under extensions, if B<iA, B£E and A/B£E implies A£E. 

T h e o r e m 1. A subclass S o / K is a semisimple class in K i f f 
(i) S is hereditary, and 

(ii) S is closed under extensions. 

Proof . In view of [5] Theorem 30.1 it suffices to show that conditions (i) and 
(ii) imply (SL) and (S2). The validity of (SJ follows immediately from (i). 

Next, take a ring A£K satisfying the requirements of condition (S2). We shall 
prove that A € K. For this end let us consider the ideal 

I = r\(Ma-=3 A | A/Mx£S). 
a 

n 
Since A is artinian, the ideal / can be represented as a finite intersection 1= P| M f. 

; = i 

By induction we exhibit A/I£S. For n = 1 the statement is trivial. Assuming 
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n — 1 
A,I f l S we get 

i = 1 

(*) A/h Mj{MJ n M,.) - A/M„£ S 
¡=1 i=1 

and 

MJ n Mf ~ U„+"n Mf)/"n Mf <=. V n M,. . 
¡=1 V ¡=1 // ¡=1 ¡=1 

n-1 

By (i) and the hypothesis it follows that M J f ] M^S, hence (*) and (ii) imply 

A p t S. 

The proof will be done if we show 1—0. Suppose TV 0 and consider the ideal 

J= r){Kp<3 I | I/K^S) 
P 

of I. We want to see that J is an ideal of A, too. Taking into account that K is 
hereditary and so 7 also is artinian, by arguments similar to those ussd in proving 
AjldS, we get 7//£S. Choose an arbitrary element a£A and define the mapping <p:J*(aJ+J)/J 
by cp(x)=ax+J for all xdJ. By [5] Proposition 5.1 cp maps J homomorphically onto 
the ideal (aJ+J)/J of 7/7. Since I/J£S, condition (i) implies 

J / K e r p ss (aJ+J)/J£ S 
where 

Ker(p = {y£J | ay£J}. 
We claim that Ker cp is an ideal of I, too. Suppose that y€Ker <p and Then 

a(iy) = (ai)y£J and a(yi) = (ay)i£J, 
since ^€Ker (p. Thus Ker <p is an ideal of 7. Now 

7/Ker (p /(J I Ker cp) s / / / £ S 
holds and since J\Ker cp£S, condition (ii) implies 7/Ker (pdS. Hence / = p | K»(zKer(p 

p 
and it follows that (aJ+J)/J^J/KeT <p=0. Thus aJaJ holds for every a£A. We 
get similarly Ja£A, and so J is an ideal of A. Moreover, applying (ii) by J/JdS and 

AjJ/(I/J) a A/I£S 
we have A/JdS. Hence la J follows. But on the other hand by the assumption 
upon A the non-zero ideal 7 of A has a non-zero homomorphic image I/Kp in S, 
hence J<zl and J^I follows, a contradiction. Thus 7 = 0 and the proof is complete. 

The proof of Theorem 1 is a modified version of the proof given in [3] for 
characterizing semisimple classes of associative or alternative rings as hereditary 
classes being closed under extensions and subdirect sums. Working in the category K, 
we could eliminate the requirement of being closed under subdirect sums. 
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Theorem 2. Let S be a semisimple class of K. Then there exist 
(1) a set P(S) of primes and for each prime pt£P(S) a semisimple class LP.(S) 

of strong artinian prrings containing all finite nilpotent parings, 
(2) a class Hj(S) of matrix rings over infinite division rings, 
(3) a class H2(S) of matrix rings over finite fields of characteristic $ P(S) 

such that A € S i f f A is a direct sum of rings taken from U (LPl(S)|/»f 6 P(S)) U HX(S) U 
UH2(S). 

Conversely, if P is a set of primes, L P t(Pi£P), Hx, H2 classes of rings as given in 
(1), (2), (3), then 

S ' = {A | A is a finite direct sum of rings from (U Lp.) U Hj U H2} 

is a semisimple class of K. Moreover if P=P(S), LP.=LP.(S) for every prime p^P 
W H ^ H i C S ) , H2=H2(S), then S = S'. 

Proof . Assume that S is a semisimple class, that is S satisfies (i) and (ii). 
Define 

JJ J all matrix rings over infinite division rings 1 
1 j occurring in the decomposition (D) of any ring of S J 

Also define P(S) by Pi€P(S) iff there exists a ring A£S with J(A(Pi))^0. By (i) also 
(/»,))€S holds and for any /»¡€P(S). (i) and (ii) easily yield that S contains 

every finite nilpotent pcring. (If Z(p") is contained in a ring of S, then clearly 
S contains all nilpotent artinian /»¡-rings.) Let us consider the classes 

and 

^ | all matrix rings over finite fields of characteristic | 
\ (£.P(S) occurring as a direct summand of any ring of S J 

^ ,g, _ fall /»¡-rings, Pi£P(S), occurring as a direct summand 1 
| of the strong artinian part of any ring of S J 

Since S satisfies (i) and (ii), so does every LPi(S). 
Conversely, suppose that P, Lp.(p,€P), H1; H2 are given as required. We have 

to show that the class S ' defined above has properties (i) and (ii). The class K is 
closed under extensions (this follows easily from the fact that K is hereditarily arti-
nian). Hence an extension A of a ring of S' with a ring of S ' is contained in K and 
so the main result of [2] is applicable to A. Thus as each L^. satisfies (ii),we obtain 
A€ S'. Again by the main result of [2] the class S' satisfies also (i). 

The last statement of the Theorem is obvious. 
In Theorem 2 P(S), or H2 may be empty. Further, let us remark that the 

semisimple classes of K are described only up to semisimple classes Lp of strong 
artinian /»-rings containing all finite nilpotent /»-rings. For homomorphically closed 
semisimple classes the characterization will be more explicit. 
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If A is a ring of K, then by the Wedderburn—Artin Structure Theorem the ring 
A/3(A) is a direct sum of infinite simple rings and a uniquely determined finite ring F. 
The ring F will be called the finite part of A/3(A). 

Propos i t i on 3. A semisimple class S of K is homomorphically closed i f f it 
contains also the finite part of A¡3(A), whenever A£ S. 

Proof . Let S be a semisimple class. If S is homomorphically closed and 
then the finite part of A/3(A) is clearly a homomorphic image of A and therefore 
contained in S. 

Conversely, assume that S satisfies the condition imposed in the Proposition. 
From Theorem 2 it follows that for each pi£P(S) all finite nilpotent /»¡-rings are 
in S and if Z(/»~)£S, then all artinian nilpotent /»¡-rings are in S. Hence all factor 
rings of J (A) are in S. Thus, if I is an ideal of A, we have 

(I+3(A))/I J (A)/1 D JU)€S . 

Applying Theorem 2 and the assumption that the finite part of A/J{A) is in S, 
it follows that A/3(A)£S. Since 

A/I/((I+J(A))/I) a A/(I+J(A)), 
we get A/l£S by (ii) whenever ^ / ( /+J(^))eS. But A/(I+3(A)), as a factor ring of 
A13(A), is isomorphic to a direct summand of Aj3(A) and therefore by (i) contained 
in S. 

Theorem 4. A homomorphically closed semisimple class S is uniquely deter-
mined by two sets Pj, P2 of primes with P2aPl and a class H of matrix rings over 
division rings in the following way: A£S iff A/3(A) is a direct sum of rings of H, 
and 3(A) is a direct sum of nilpotent artinian prrings for /»¡£Pi and 3(A) does not 
contain Z(p!°) if Pi€P2-

/ 

Proof . Choosing P1=P(S) the proof follows immediately from Theorem 2 
and Proposition 3. 

4. Radical classes in K 

Firstly we shall characterize the radical classes of K by 

Theorem 5. A subclass R o / K is a radical class in K i f f 
(a) R is homomorphically closed, 
(b) R is closed under extensions, 
(c) if Z(/»)€R for a prime p, then also Z(p")£R. 

Proof . Let R be a radical class in K. Then (a) and (b)-follows as in Theorems 
3.2 and 3.3 in [5]. If Z(p)£R for a prime /», then by (Rg) it follows immediately 
that Z(/»~)£R. 
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Conversely, let R be a subclass of K satisfying conditions (a), (b), (c). Condi-
tion (a) implies trivially the validity of (R^. To show that R is a radical class it 
suffices to show that if every non-zero homomorphic image of a ring A£ K has a 
non-zero ideal in R, then v4£R also holds. In view of decomposition (D) we may 
confine ourselves to the case A=A(p) where A(p) is a strong artinian p-ring. We 
claim that the maximal divisible ideal D of A is in R. For D=0 the assertion is trivial. 
If £M0, then considering the so called kernel s,, of A (cf. [2] Satz 1), A0 is a finite image 
ideal of A contained in D, furthermore, A/A0 = D. Hence D, as a homomorphic 
of A, contains a non-zero ideal in R. Now (a), (c) and (b) imply Z{p)£ R, Z(p°°)£R 
and DCR. 

Applying (a), (b) and the second isomorphism theorem, the sum of two R-ideals 
of A/D is again in R. Hence A/D being finite, it contains a maximal R-ideal J/D. 
If J^A then by assumption AjJ has a non-zero R-ideal K/J. Thus by (b) and 

we obtain K/D £ R contradicting the maximality of JjD. Hence A —J and by A/D£ R, 
Z>£R condition (b) infers Thus (R2) holds. 

Coro l l a ry 6. Every hereditary radical class in K is a homomorphically closed 
semisimple class. 

This is clear by Theorems 1 and 5. 
The converse statemant of Corollary 6 is, however, false. A homomorphically 

closed semisimple class in K need not be a radical class. Take, for instance, the class 
M of all finite nilpotent p-rings for a fixed prime p. M is a homomorphically closed 
semisimple class. But M fails to be a radical class, for Z(/?")$ M. Thus a class 
P c K which is homomorphically closed and closed under extensions, is not neces-
sarily a radical class i.e. condition (c) is necessary. 

Theo rem 7. Let R be a radical class in K. Then there exist 
(1) a set 2(R) of primes and for every Pi£Q(R) a radical class MPi(R) of strong 

artinian parings which does not contain non-zero finite nilpotent rings; 
(2) a class H(R) of matrix rings over division rings containing all such rings 

which are in MPj(R), pt£Q(R); such that /4€R i f f A/3(A) is a finite direct sum of 
rings of H(R) and A(Pi)£MPi{R) for every Pi£Q{R). 

Conversely, if Q is a set of primes, MP( and H are classes as required in (1) and 
(2), respectively, then 

is a radical class. Moreover, if Q = Q(R), MPi=MPl(R), (/>¡€0, H=H(R) , then 
R ' = R . 

K/Dj(JID) s Kl J 

R' = A/ J (A) is a finite direct sum of rings 
of H and A(Pi)£MPt,pt£Q 
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Proof . Let R be a radical class in K. Define g(R) by /\£(2(R) iff R does not 
contain non-zero finite nilpotent /»¡-rings, and define 

_ i matrix rings over division rings occurring as direct summands 1 
W ~ } in any factor ring A/J (A), ¿ 6 R J ' 

jyj _ i all /»¡-rings occurring as direct components in the 1 
~ {decomposition (D) of any ring A€R for /»¡€g(R) J ' 

Since by Theorem 5 R is homomorphically closed and closed under extensions, 
so is each MP((R), /»¡(:G(R). The classes MPi(R) satisfy condition (c) of Theorem 5 
trivially. 

Conversely, if Q is a set of primes, MPi,/»,££), are radical classes of /»¡-rings 
as demanded in (1), H is a class of matrix rings over division rings, then define R' 
as above. Since each MPi is homomorphically closed, also R' is homomorphically 
closed. Condition (c) is trivially fulfilled by the definition of R'. Let I ^ A be such 
that I, A/Id R'. Since A is artinian, 

3(A/I) = (I+3(A))/I 
holds and consequently 

A/(I+3(A)) ~ AII/((I+J (A))/1) = A/II(3(A/I)) 
is a direct sum of rings of H, since A/l£ R'. A/3(A) contains (I+3(A))/3(A) ss 1/3(1) 
as a direct summand. The simple direct summands of 1/3(1) are contained in H, 
since /€ R'. The other simple direct summands of A/3(A) are in H, for 

A/3(A) J((1+3(A))/3(A)) - A/(1+3(A)). 
Moreover, the classes MPj,/?;£<2, are closed under extensions, therefore R' is closed 
under extensions, too. Hence Theorem 5 yields that R' is a radical class of K. 

The last statement is obvious. 
In Theorem 7, analogously to Theorem 2, the radical classes are determined 

only up to radical classes of strong artinian /»¡-rings. Nevertheless, the hereditary 
radical classes are fully described by 

Theorem 8. A hereditary radical class R in K is uniquely determined by a set 
P of primes and a class H of matrix rings over division rings in the following way: 
A € R i f f A/3(A) is a direct sum of rings of H, and 3(A) is a finite direct sum of nil-
potent artinian parings for p^P. 

The statement follows immediately from Theorems 4 and 5 and from Corollary 6. 
In view of Theorems 2, 5 and Corollary 6 we have 

Coro l l a ry 9. If the subclass C of K is hereditary, closed under extensions and 
does not contain non-zero zerorings, then C is a homomorphically closed semisimple 
class as well as a hereditary radical class. 

Of course, not every radical class in K is hereditary. We give an example for 
a non-hereditary radical class of K which does not contain zero-rings Z(/»~). Let 
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N denote the ring of integers, and p a fixed prime, and consider the class 

R = {finite direct sums of copies of N/(j>) and N/(j)2)}. 

One can easily check that R is a radical class of K, for R satisfies conditions (a), 
(b) and (c) of Theorem 5. On the other hand R is not hereditary, because (p)/(p2)<3 
<1 N/(p*) and (p)/(p2)^Z(p)$R hold. This example is the special case Q={p}, 
MP=R, H={A70)} of Theorem 7. 

Let us mention that in view of Theorems 4 and 8 homomorphically closed 
semisimple classes and hereditary radical classes of K are not necessarily subring-
hereditary classes (e.g. whenever H is not subring-hereditary). We recall the 
fact that in a ring variety the homomorphically closed semisimple classes are always 
subvarieties and hence subring-hereditary classes. 

5. iV-radicals in K 

A radical R is called left hereditary, if every left ideal of an R-ring is also in R. 
A radical R is said to be a left strong radical, if the radical R(/4) of any ring A contains 
every R-left ideal of A. Following SANDS [4], a radical N is called an N-radical, 
if it is left hereditary, left strong and it contains every zero-ring. 

Let R be a left strong radical containing all zero-rings, and containing a division 
ringD. Take the nX« matrix ring Dn over D. Denote by etJ the matrix having 1 £D 

n 
at the i-th y'-th place and 0 at every other place. Then D„= 2 Aisu»furtherefiD„eu s? 

¡=i 
s i ) . Moreover, the mapping. 

(p:Dneu — snDsH ^ D 
defined by 

(p(xeu) = euxea (x£Dn) 
is a ring homomorphism onto suDn ea. Hence 

D = D„eH/KCT (P 

and 
Ker cp = {xsii£Dneil | eaxsu = 0} 

is a zero-ring, since (xeij)(j'£1-j)=x(eii>'8fi)=0 holds for every xeu, ysu£Kec <p. Since 
R contains all zero-rings and D£ R, so the extension property of R implies Dneu£R. 
Taking into account that R is a left strong radical, we get Dn£ R. Hence we arrived at 

P ropos i t i on 10. Let R be a left strong radical containing all zero-rings. If 
a division ring D is contained in R, then every matrix ring Dn over D is also in R. 

Next, assume that R is a left hereditary radical and Dn is an nXn matrix ring 
n 

over a division ring D. Suppose D„£ R. Since Dn= 2 DnEu> and R is left hereditary, 
i = l 



312 A. Widiger and R. Wiegandt 

we have D„eu€ R. Consider again the homomorphism <p defined above, cp maps 
Dneu onto SuDsu ss D homomorphically. Since R is homomorphically closed, we have 
2)£ R. Thus we obtained 

P ropos i t i on 11. Let R be a left hereditary radical. If a matrix ring D„ over 
a division ring D is in R, then also Z)(|R holds. 

Applying Theorem 8 and Propositions 10 and 11 we obtain a full description 
of iV-radicals in K. 

Theorem 12. To any N-radical N o / K there belongs a class D of all division 
rings D with N. Conversely, any class D of division rings determines an N-radical; 
N is the lower radical of all zero-rings of the class K and of all matrix rings over division 
ring from D. 

Comparing Theorem 12 with the situation in the variety of associative rings, 
there is a remarkable difference. As has been shown in [6], if an iV-radical N 
of associative rings contains the Brown—McCoy radical (the upper radical of all 
simple rings with unity), then N contains all division rings. The Brown—McCoy 
radical fails to be left hereditary, so it is not an TV-radical. (In the category K, the 
Brown—McCoy radical coincides with Baer's lower radical, and it is an jV-radical.) 
The well-known //-radicals of associative rings are Baer's lower radical, the Levitzki 
and the Jacobson radical and some peculiar radicals constructed artificially. 

Finally we give a characterization of the class of Jacobson radical rings 
(i.e. all nilpotent rings) in K. 

Coro l l a ry 13. If J is a left hereditary radical class of K such that J contains 
Z{p) for every prime p and J does not contain division rings, then J is the class of 
all nilpotent rings in K. 
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Complements of radicals in the class of hereditarily 
artinian rings 

L. C. A. VAN LEEUWEN 

1. Introduction 

In [4], WIDIGER and WIEGANDT developed a theory of radicals for the class 
K of hereditarily artinian rings, i.e. the class K of all artinian rings with artinian 
Jacobson radical. It is remarked in their paper, that since K is not a variety, connec-
tions among algebraic properties are different from those in a variety. For instance, 
in K every hereditary radical class is a homomorphically closed semi-simple class,, 
but the converse statement is not true. Other phenomena of this type are considered 
in this paper. It will be proved that any radical R in K, which contains J (the Jacobson 
radical) has a uniquely determined complement, which differs from the situation in 
a ring variety. This complement is a subidempotent radical (see [1], [2]). It is also 
shown that any hypernilpotent or subidempotent radical in K can be obtained as 
the upper radical, lower radical resp. of a suitable class of simple prime rings. 
The notation in this paper is that of [4]. For the definitions of radical class, semi-
simple class etc. we refer to that paper and to [5]. 

I would like to thank A. WIDIGER and R. WIEGANDT for the preprint of their 
paper [4] and for their courtesy on permitting me to use results of 14]. 

2. Hypernilpotent radicals 

Let R be a radical class in K, such that R contains all nilpotent rings in K. 
The class of nilpotent rings in K coincides with the Jacobson—radical class in K, 
so R 2 J , where J is the Jacobson radical. Then any R-semi-simple ring is a J-semi-
simple ring. Since any ring in K is artinian, an R-semi-simple ring is a J-semi-simple 

Received February 5, 1976. 
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artinian ring, hence it is a finite direct sum of matrix rings over division rings by 
the Wedderburn—Artin theorem. 

Lemma 1. R is a radical class in K, such that R 3 J . Let T={/?£K:.R is 
a simple R-semi-simple ring}. Then R=^T, the upper radical determined by the 
class T. 

Proof . Since all rings in T are R-semi-simple, it is clear that RQOT. Now 
if R € ^ T , then R has no non-zero homomorphic image in T. We claim that R 
has no non-zero homomorphic image in ¡f R, the class of R-semi-simple rings. In-
deed, i f O ^ / Z e ^ R , then R/I is a finite direct sum of simple rings, which must be 
R-semi-simple, since SPR is hereditary. Hence R/I, and also R, can be mapped onto 
a non-zero ring in T, which is impossible. Therefore, R£?llSf R = R and R. 

Lemma 2. Let R and T be as in Lemma 1. Let D = {2?€K:i? is a finite direct 
sum of rings in T}. Then D is the class of R-semi-simple rings. Moreover, D is a radical 
class. 

Proof . First we show that D=SfR, the class of R-semi-simple rings. Since 
each ring in T is R-semi-simple, D ^ y R . Conversely, if R££f R, then R is a finite 
direct sum of simple rings. Each of these simple rings is in T, hence so £fR Q D 
and D=£fR. Next we show that D is a radical class. If R£T>, then R—S],®... 
... © Sk, Si simple ring in D (i= 1, ..., k). A homomorphic image of R has the same 
form, hence D is homomorphically closed. Also, if i?//€ D and /£ D for some ideal 
I of R, then / has a unity, hence it is a direct summand of R, say R—I®J. Now 
R/I^J£J), so / © 7 6 D or R£D. Then D is closed under extensions. This shows 
that D satisfies conditions (a) and (b) of theorem 5 ([4]). Condition (c) of that theorem 
is vacuous, since Z(j>)$£fR=D for a prime number p(R contains all nilpotent 
rings). So D is a radical class ([4]). 

R e m a r k 1. Lemma 1 and the first statement of lemma 2 can be proved without 
any assumption about the radical class R. However, for an arbitrary radical class R, 
the class D may fail to be a radical class. This is a consequence of the fact that a homo-
morphically closed semi-simple class D in K need not be a radical class. For a counter-
example, see the remark after corollary 6 in [4]. 

Lemma 3. Let R, T and D be as in Lemmas 1 and 2. Then D is the complement 
of R. 

Proof . Let i?6DflR. Then, as a ring of D, R is a finite direct sum of rings 
in T. On the other hand, (Lemma 1), so R has no non-zero homomorphic 
rings in T. Hence R=(0). 
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Next let R£</>Dfl^R. Then R^Sf R implies that R£D (Lemma 2), hence 
R fl D=(0). Hence D is a complement of R. Also, since any ring in T is a simple 
ring with unity and R=<%T, it follows that R is hereditary. The lattice of all hereditary 
radicals is distributive ([3], Cor. 16, p. 212), so within this lattice a complement 
of R is uniquely determined. Since D is a hereditary radical, D is the complement 
of R. Summarizing our results we get 

Theo rem 1. For any radical R 3 J in the category K there exists a uniquely 
determined complement D, where D is the class of all finite direct sums of all simple 
R-semi-simple rings. D is also a semi-simple class, in fact D is the class of all R-semi-
simple rings. Moreover, R is the upper radical determined by the class of all simple 
R-semi-simple rings. 

R e m a r k 2. In [1] it is shown that for any hereditary radical R there exists 
a radical R' which is a complement of R and R' is the upper radical determined by 
the class of all subdirectly irreducible rings with R-radical heart. The R-radical 
rings are the strongly R-semi-simple rings ([1], Theorem 2). 

This result holds in the category of all associative rings. Our theorem 1 reveals 
that in the subcategory K a much stronger results holds. Not only is the complement 
D of R uniquely determined, but D is also a semi-simple class ( R 3 J), i.e. the class 
of R-semi-simple rings. Since the class D is homomorphically closed, the strongly 
R-semi-simple rings are all semi-simple rings. The complement R of D is the upper 
radical determined by the class T of simple R-semi-simple rings (=simple D-radical 
rings). This class T of simple rings is, in general, a subclass of the class of all sub-
directly irreducible rings with D-radical hearts. However, they determine the same 
upper radical R. 

Examples . 1. Let R = J , the Jacobson radical. Then D is the class of all 
finite direct sums of simple J-semi-simple rings i.e. finite direct sums of all matrix 
rings over division rings. 

2. Let R be the class of all strong artinian rings, i.e. all rings where 
(R, + ) has d.c.c. for subgroups. It can easily be seen that R is a radical class, which 
we call R s . The complement of R s is the class of finite direct sums of simple Rs-
semi-simple rings, i.e. finite direct sums of all matrix rings over infinite division rings. 

3. Let R be the class of all torsion radical rings, i.e. all rings P6K where (R, +) 
is a torsion group. This is a radical class, which we call RT . The complement of RT 

is the class of finite direct sums of simple RT-semi-simple rings, i.e. finite direct 
sums of simple torsion-free rings. These simple torsion-free rings are matrix rings 
over (infinite) torsion-free division rings. 

R e m a r k 3. Any radical R 3 J is hypernilpotent i.e. R contains all nilpotent 
rings and R is hereditary, (Lemma 1). By corollary 6 ([4]), R is a homomorphically 

8 
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closed semi-simple class. Let D be the complement of R, then D (Lemma 2). 
One might conjecture, that R = ^ D . This is not true in general. However, R g 5T). 
Indeed, if R£R then R£<WT, so R has no non-zero homomorphic image in T. If 
D(P) = 5 1©.. . © S k ^0 , then D(P) is a non-zero ideal in R and D(P) has a unity, 
so it is a direct summand of R. At least one of the S¡?±0, say S^0, and S¡ is a direct 
summand of R. Now T and R could be mapped homomorphically onto O^Sj^T , 
which is a contradiction. Hence D(P)=0, and R & D . That R ^ ^ D may be seen 
by taking R = J . The ring Z4 of integers mod 4 is not J-radical, so Z4 £ R. If D is 
the complement of J, then Z4£5T), however. 

3. Subidempotent radicals 

Def in i t ion . A ring R will be called hereditarily idempotent if every ideal of 
R is idempotent. A hereditary radical R will be called a subidempotent radical if 
R-radical rings are hereditarily idempotent rings (cf. [1]). 

Examples. In the category K the complements of hypernilpotent radicals 
are subidempotent. 

Lemma 4. E is a subidempotent radical. Let P = {R£K:R is a simple E-radical 
ring). Then E = i f P the lower radical determined by the class P. 

Proof . Since every ring in P is E-radical, it is clear that i f P ^ E . Next let 
R¿E. Then R is a hereditarily idempotent ring. Hence any ideal of R is idempotent. 
However J(P) is nilpotent, so J(P)=(0) . Then R is a finite direct sum of matrix 
rings over division rings. Each of the direct summands is a simple ring and, since 
E is hereditary, a simple E-radical ring. A non-zero homomorphic image of R is in 
E since E is homomorphically closed. Such an image is again a finite direct sum of 
simple E-radical rings, hence it has a non-zero ideal in P. Then R£P2 . Since P is 
a homomorphically closed class of idempotent rings, JS?P=P2 ([5], Corollary 12.6), 
so R£ £ P. Therefore E g i fP . 

Lemma 5. Let E and P be as in Lemma 4. Let Q = {R£K:R is a finite direct 
sum of rings in P}. Then Q is the class of ^-radical rings. Moreover, Q = E is a semi-
simple class, in fact, Q is the class ofó,KP-semi-simple rings. 

Proof . Since every ring in P is E-radical, it is clear that any ring in Q is E-
radical. From the proof of Lemma 4 it follows that if R£E, R is a finite direct sum 
of simple E-radical rings, i.e. P€Q. This shows that Q = E . 

Since Q = E is hereditary and closed under extensions, it follows that Q is 
a semi-simple class ([4], Theorem 1). Now we show that Q is the class of <2£P-semi-
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simple rings. Let R(íQ then R is a finite direct sum of rings in P, each of which is 
W-semi-simple, hence R is ^P-semi-simple. Conversely, assume that R is ^P-semi-
simple. Any ring in P is a simple prime ring, hence a J-semi-simple ring, so P Q £fJ, 
which implies fyyJQWP or JQ<%P. Then R is a J-semi-simple ring and a finite 
direct sum of simple J-semi-simple rings, i.e. simple ^P-semi-simple rings. But 
a simple ^P-semi-simple ring is a simple ring in P. Hence R is a finite direct sum 
of rings in P or R£Q. Therefore Q is the class of ^P-semi-simple rings. 

Lemma 6. Let E, P and Q be as in Lemmas 4 and 5. Then QlP is the comple-
ment of E. 

Proof . Let R£Efl^P. Then i?€Q (Lemma 5), so R is a finite direct sum of 
rings in P. But P implies that R cannot be mapped homomorphically onto 
a non-zero ring in P. Hence R=(0). Next, let Rf^ED^/P. Since 
(Lemma 5), it follows that R<EQ. Also E=Q, so R$yQ. Then i ^ Q f l ^ Q implies 
* = ( 0 ) . 

This shows that ¿UP is a complement of E. Each ring in P is a simple E-radical 
ring and a simple J-semi-simple ring (proof of Lemma 4). So such a ring is a simple 
ring with unity and <?/P is a hereditary radical. It follows that °llP is the complement 
of E. In the proof of Lemma 5 we have seen that J í j ^ P , so % P is a hypernilpotent 
radical. Summarizing the results we get 

Theorem 2. Let E be an arbitrary subidempotent radical in the category K. 
Then E = <£P, where P is the class of simple E -radical rings. Any ring in E is a finite 
direct sum of rings in P. Also E is a semi-simple class, i.e. the class of °llP-semi-simple 
rings. The radical °UP is hypernilpotent and the complement of E. 

Remark 4. It can easily be seen that using the notation of Lemmas 1, 2 and 
3, the complement D of R equals ¿¡?T, the lower radical determined by T. Indeed, 
D is a subidempotent radical and T is the class of simple R-semi-simple rings i.e. 
simple D-radical rings (Lemma 2). Now apply Lemma 4. 

By theorem 2 of [1] the class D can also be characterized as the upper radical 
determined by the class of all subdirectly irreducible rings with R-radical hearts. 

Comparing our results with those of theorem 4 of [1] it turns out that, contrary 
to the general situation in the category of associative rings, any radical R j2J is 
a dual radical, i.e. the complement of D is R, if D is the complement of R. Here R 
is a dual hypernilpotent radical, while D is a dual subidempotent radical. 

The radical R resp. D is the upper radical resp. lower radical determined by the 
same class T, i.e. the class T of simple R-semi-simple rings or simple D-radical 
rings. In the next section we investigate radicals, determined by a class of simple 
prime rings. 

8* 
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4. Simple prime rings in K 

Let M be an arbitrary non-empty class of simple prime rings in K. Then M 
is a class of simple rings with unity. Let Q = {R£K:R is a finite direct sum of rings 
from M}. Then Q is homomorphically closed, closed under extensions and has 
no non-zero nilpotent rings. Hence Q is a radical class in K ([4] Theorem 5). All-
rings in M are Q-radical, hence ¿ P M Q Q . But if R£Q, then O^RJleQ for any ideal 
I in R, so R/I has a non-zero ideal in M which implies T?dM2. Since M is a class of 
idempotent rings i ? M = M 2 , hence M. Therefore Q = JSfM. 

Since Q is hereditary and closed under extensions, Q is a semi-simple class 
([4], Theorem 1). From the proof of Lemma 5 it follows that Q =í/'a/¿M.. Also 
both and SCM are hereditary radicals, since M is a hereditary class. From 
Q = i?M =y°UM. it follows directly that and £CM are complements. 
This shows: 

Theorem 3. Let M be an arbitrary non-empty class of simple prime rings 
in K. Then both <%M and £CM are hereditary radicals, where is hypernilpotent 
and i?M is subidempotent. In addition, J2?M and SCM and <%M are comple-
mentary radicals. 

From Lemmas 1 and 4 it follows that any hypernilpotent (subidempotent) 
radical R(E) is the upper radical (lower radical), determined by a class T(P) of 
simple prime rings. 

R e m a r k 5. Finally we want to compare our results with theorem 10 of [1], 
the so-called duality theorem for radicals. It is said there that all dual hypernilpotent 
and dual subidempotent radicals can be obtained both as upper radicals determined 
by certain classes of subdirectly irreducible rings with idempotent hearts. In our 
case any hypernilpotent or subidempotent radical is dual and the hypernilpotent 
radicals are upper radicals, while the subidempotent ones are lower radicals. Both 
are determined by classes of simple prime rings, which are matrix rings over division 
rings. 
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Change of the sum of digits by multiplication 

I. KATAI 

1. Introduction 

Let N be a natural number and set s/N = {0, 1,..., 2N— 1}. Every n£sfN can be 
written in the form 

(1.1) 2' , 
i = 0 

where £¡=0 or 1 (/=0, 1, ...,N— 1). This representation is unique. Let a.(n) denote 
the sum of the digits of n, i.e. 

(1.2) « ( n ) = J 2 * i -
i=0 

Let MN(x) denote the number of those for which 

a(n) — N/2 

i m 
X. 

Using the central limit theorem of probability theory in the simplest form, we have 
that 

2~nMn(x) - Ф(х) (N - со) 

for every real x, where 
1 * 

(1.3) Ф{х) = —= J e-'^dt. 
У J.TZ — со 

Furthermore, we have 

It seems to be interesting to consider the distribution of the difference tx(lm)—a(n), 
n£s/N for fixed h. This question is trivial for h=2, since a(2w)—a(n)=0. 

Received October 25, 1976. 
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We shall be dealing with the case h =3. Let 

(1.5) A(n) = <x(3n)-a(n). 

Our main result is the following 

Theorem 1. Let KN(x) denote the number of n6s#N for which 

(1.6) 

Then, for every real number x, we have 

(1.7) 2~nKn(X) - HX) 

We can deduce a more precise result, with a remainder term, but now we do not 
try to give the best one. 

This and similar results may have some importance in the probabilistic treat-
ment of rounding errors in numerical analysis. 

2. The splitting of the binary representation of integers 

We define the sets 9JZ* as follows. Let 9Jl0={0}. The sets 9Jtt contain those integers 
mk for which 2 k ~ 1 ^m k <2 k and the binary representation of which does not contain 
two consecutive zeros. Let mk denote a general element of 9Jifc, and Ak the number 
of its elements. It is obvious that A0= 1, A1=l, Az=2. We shall show that 

(2.1) Ak = Ak-1+Ak_2 ( f c s 2). 

Indeed, mk can be written as 

mk = 2k~1 + mk-l or mk = 2k~1 + mk.2, 

whence (2.1) immediately follows. 
Let 

(2.2) F ( z ) = 2 A z k + * . 
k=0 

By an easy calculation we get 

(2.3) m = 
OO 

Let 9Ji= ^93l k . Assume that iVs2. Then for every n£AN there exists a unique 
lc = 0 

element mh£U)l for which 

(2.4) n = m l l+2'i+a«, «(Mjv-u-2. 
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For JV=0 or 1 we use the representation n—mh. Repeating this, we get 

(2.5) n = m l l + 2 ^ { m l t + № « { . . . { m : > ( n ) . 1 + 2 ' . ( , - l « K w } } . . . } } . 

So, for every n we order the sequence of elements of 9Ji. It is obvious that 

(2.6) l1+... + lHn)+2(v(m)-l)=N-l or Nr 

Furthermore, from (2.4) we have 

3n = 3m / l+2'i+2 • (3«), 3mh < 2'i+2, 

and so 

(2.7) A(n) = A(m,J+A(n). 

Hence we have v(n) 
(2.8) A(n) = 2 ¿(mi)-

j=i 

3. The distribution of the number of 9R-components 

Now we consider the number of those integers nfstN for which v(n)=H. 
For the sake of brevity we use the notation 

(3.1) tj = lj+2. 

So we write (2.6) in the form 

(3.2) t1+... + tB = N+2-8, <5 = 0 or 1. 

Let 2NpH(5) denote the number of n£s/N for which v(n)—H and (3.2) holds. Since 

v* f l if n = 0 
/ eSs9dd - i 

J v %
e ° ° | 0 if n ^ O , integer, 

we get 
1/2 , vH 

(3.3) pH(5) = 2*~s f f | I -z-<-N+2~6>de, z = e2ni8. 
- 1 / 2 

First we integrate in the neighbourhood of 0=0. By taking o)=z— I, , we have 

l a F U ) = In f = In f+
A

2m+\ = 6o} + Scoz+0(<X)
3

), \2) 4 - 2 z - z 2 1 — 4co — co2 v ' 

CO2 

In z = ln(l +co) = (O——+ 0(co3). 
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Let 

(3.4) AH = 6 H- {N+2-8), BH = %H+N+2
2~8 . 

Then 
( \B 

g(z) = = e x p ( . A H a ) + B H o ) 4 0 ( N a % 

Observing that (о=2пЮ-4л2в2+0(в3), a2= -4л2в2+0(в3), we get 
(3.5) g(z) = exp (2ni • Анв-4л2(Ан+рн)в2) exp (0(N9% 
Let 

(3.6) Л = / g(z)d0, Л = / g(z)<W, 

where we choose Л 
so that NA2 

From (3.5) we get 
(3.7) Л = 
where A (3.8) Л = f exp(2niAHe-4n2(AH+BH)02)de, 

-A 
A 

(3.9) * = f exp ( - 4 л \ А н + В н в 2 ) т Ч 6 . 
-A 

N In what follows we assume that |ЛН|«ЛГ2/3. Then H= \-0(N2ls), and so 
6 

BH = -У- N+0(N2ls). 
о 

Hence for Ж we easily get that 

(3.10) 

To 

estimate we use the following 

Lemma 1. Let A J {A, B, A) = f exp (i Л <p — Вер2) d<p, 
-A 

A,B,A real numbers, B>0, A =-0. Then 

J(A,B,A) = exp ( - • + О (Я-*/* I л I exp ( - Л* В))+ 
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Proof . 
aVB 

J (А, В, Л) = B~l12 J expii — г - T 2 ] dx = 
-лУв ^ } 

e X p ( ~ ^ ) f * ( ( А ч 2
Ь Г Л ч

 С Х Р (~Ж) , 
-AFB 

where L denotes the segment — A 1Св, + ^ № j- Transforming the integ-

ral to the imaginary axis, by an easy estimation we get the desired result. 
Applying this Lemma by choosing A=2nAH, B=4n(AH+BH), A=N~1/S~" 

(e>0), we get 
e x [ A " ) 

( i n ) л = л + о ( х ) = 4
г ^ н + * н ) } + o ( i / N ) . 

Now we estimate By taking y=cos 2rt 0, Y= 1 — t, we get 

\4—2z—z2\2 = 1 +44f —16/2. 

So in Л ё we get 

| 4 - 2 z - z 2 | - H == (1+44лМ 2 (1-£))- я / 2 ^ e x p i - ^ H A 2 ) , 

Ci>0 constant. Consequently 

(3.12) « exp ( - cx NA2). 

Finally, taking into account (3.3), (3.6), (3.7), (3.10), (3.11), (3.12), we get 

1 ( (H-N/6)2) 

where 1 лГп 

So we have proved: 

Theorem 2. Le/ 2NfSH denote the number of those n£s#N for which v(n)=H. 
Then 

where uniformly ' n H. 
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4. Hie fonction H(T) 

Let 

(4.1) 
m, €9», (=0 

It is obvious that 50(T) = 1, 51( t)=e i t , 52(r) = l + e " . Let =SR*U9JQ, 
where 9JI® contains the even numbers of , and the odd numbers. Let 

First of all we observe that 

for k ^ 2 . Then 

(4.2) 

SP (T) = 2 e"A<-m*\ 

si0)( T) = Si1! X (T) 

1 , 3 C I T , 3 Y s r o 

Now we compute S^\T). The general form of the binary representation of 
nA is the following one: 

A 

n = 0 1 . . . 0 1 

where A is one of the following types : 
2 h places 

1) A = 1 

2) A = 1 1 

3) A = 1 1 1 1 

Case 1) holds for odd k only. If k=2t+1 and /w t=101 ...01, then, obviously 

(4.3) 4(101 ...01) = i + l . 

In the other cases we say that MK£WL is of type if in A there exist exactly r 
zeros. In case 2) k—2h=2 {k even, r=0) . In case 3) k—2/JS3. It is easy to see that 
the number of elements of type 3Shr is 
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We observe that for mk£38hr, A(mk)=h—r. We consider 3mk as the sum of 2mk 

and mk. See the following figure. 

mk 1 0. . . ... 0 ... 1 1 0 1 0 1 . . . 0 1 
2 mk I 1 ... 1 0 1 0 1 0 . . . 1 0 
3 mk 1 1 1 1 

A (mk) 0 - 1 . . . - 1 + h 

Now we take 

22~'Sf»(T) = ¿2-2,^?>(T)+ ¿2-2'-15^1(T) = ZA + ZB. 
1 = 2 (=1 1=1 

We have 

= 2 2 _ 2 t * 2 i 2ft —r—2^ e>t(A-r) _ jg jpeiHh-n J ? 2 - 2 ( ' I + r + v ) . J r + 2 v — 2 j _ 
1=1 h,r V r ) r=0 h=0 v = 1 \ r / 

We observe that 

*-J J, (/J (4f •(£)'-IM^M-I^)}-
_ 2 2 

~~ 2-e~iz + 3 — e~"' 
Furthermore, 

Z o = 1 — e"/4 ' 
So we have 

z 1 f 2 I 2 1 
A 4 — e" 1 2 — e _ i c 3 — e~"J 

In the sum ZB the extraordinary case (4.3) occurs. We get 
Eg — Zjg + 

where 
oo piiz 

ZE= Ec = 2ei<{H-r} 

t=o ¿(4 — e ) h,r 

We ha we, similarly as for ZA, 

Z ^ 1 \ 2 2 \ C A „it I -> 1 N — it I * 
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Summing up, we have 

~ 1 f e2" 4 1 

So we have from (4.2) that 

x 1 3 . 3 e2" 3 1 
4 16 16 4-e" 2 (2—e~")(4—e") ' 

Differentiating two times we can deduce that H{0)=1, H'(0)=0, H"(0) = -2. 

5. Proof of Theorem 1 

From (2.1) we have that 

(5.1) Ak = Cl6»i+C20§, 

where 

(5.2) = = c2 = l # . 
\ j i 2 2 1 10 10 

L e m m a 2. L e i C(jV, /„) the number of those n£AN the longest component 
of which is greater than /„. Then 

(5.3) 2 - * C ( A U 0 ) « i V . ( - ! ) \ 

P r o o f . Assume that the longest 9Ji component of n is / (S/0) . Then for a suit-
able integer t we have n = h+2'+2u+2'+l+iv, where 

(5.4) h 2 ' , v < 2N~'~'~i, ueW,. 

T h e n u m b e r of n sa t i s fy ing (5.4) is <scAt-2' •2N~'~'~i. S u m m i n g u p f o r t, a n d I, 
we have 

2~nC(N, l0)^N 2 2~'~2A, « N № \ 
ISl0 v ^ > 

N _ 
L e m m a 3. Le t Hi=——6(N) yN, where e (A0 00 (-W-•«>), and 

6 

(5.5) 5 = 2 • 

Then 

(5.6) s « < r » ^ > . 
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P r o o f . First we observe that for o l 

'i tBij=I 

We take c—1+5, <5—0. Then, by repeating the estimation that we used for the 
deduction of (3.5), we get 

c~*Fa = exp [ (6/ / x — N)d+(%H1+N/2) S* + 0 (№3)]. 

By choosing 3=(NQ(N))-1/2, we get (5.6). 
Let 

<5.7) <p(T) = 2~N 2 EHAW> 

(5.8) A(n,HJ = l ^ K ) , 

(5.9) J5TJ = J^j). 

We take A(n, H^=A(n, v(n)), when v(«)< / / 1 . Let 

(5.10) <p0(i)=2~N 2 
n 

First we consider <p0(f). It is obvious that 

(5.H) <po(T)= 2 t1+... + tBlSN j=l 
From Lemma 3 we get 

(5.12) <?>„(t) = / / ( t ) H i + 0 ( 5 ) = H(x)Hi + 

Now we estimate the difference <p(r)—<p0(r). Let s / denote the set of those 
integers n£s/N for which 

tj, +12 + ... + tHl =§ N - g (AO (log N)2 YN. 

Let We show that si has at most 0(2N/N) elements. From Theorem 2 
it follows easily that the number of those n£s / N for which 

v(n) 

is 0(2N/N). For the remaining elements of S4 we get 

iKAOOogAO2^ tHl+1+...+tv(n)^ 

=s max (LJ+2) • (v(n)—H^) TK 4(max LJ) • Q{N) FN, 
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i.e. 

(5.13) max lj S (log N)2. 

From Lemma 2 we have that the number of n £ s t N satisfying (5.13) is smaller than 
0(2N/N). W e h a v e 

(5.14) \cPoW-<Prt\ « 2 - ' v 2 1 + 2 - ' v M 2 I Bin, HJ | = 
n€ si nZ® 

It is obvious that 
l i « 2 N / N . 

We can write n£38 in the following form: 

n = M+ 2s I, ... + rHl = s, 

where M has the components , . . m , . 
H\ 

Let 3>M denote the set of these elements. Then, by (1.4), applying the Cauchy 
inequality, we have 

2 \B(n,H^\<< 2 M O ' ) l « 2 " - s j / i v = 7 . 

Observing that 
N-s ^ eiN)ilog2N)-fN 

for n£0), we get that 
I 2 « 2N • N1/l YgiN) • log N. 

So we get that 

(5.15) \(p0(x)—(pii)\« — + | T | J V ^ I W ) • log N. 

Consequently, 

(p(T) = H(T)hI + O(e-I 'eW) + O(1/iV) + O |t | JV1/4 . logiV). 

Observing that i / (0) = l , /T (1 )=0 , H"(0) = - 2 , we get 

H i T) = 1 — T 2 + 0 ( T 3 ) = exp (—T 2 +0(T 3 ) ) . 

By t a k i n g T = x / N , we have 

9>(>:/|/ÍV) = e x p ( - x 2 / 6 ) + o ( l ) (AT-«») 

uniformly for every x in an arbitrary bounded interval. But exp (—x2/6) is the 
characteristic function of the normal distribution function with zero mean, and 
variance l/]/3. Using the well-known theorem of probability theory on the 
convergence of characteristic functions, we get Theorem 1 immediately. 

MATH. DEPARTMENT 
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О вложении полугрупп в полугруппу, в которой исходные 
полугруппы являются независимыми 

Л. МЕДЕШИ* 

§ 1. Введение 

Понятие независимости подполугрупп было введено Е. С. Л я п и н ы м 
в работах [5], [7]. Это понятие является естественным перенесением в теорию-
полугрупп условия, которому в теории групп удовлетворяют компоненты сво-
бодного произведения групп. Однако в отличие от теории групп, независимые 
подполугруппы могут пересекаться по любой полугруппе. Настоящая работа 
посвящена изучению следующей проблемы: При каких условиях полугруппо--
вая амальгама (определение см. ниже) вкладывается в полугруппу так, чтобы 
в этой полугруше данные полугруппы, которые составляют амальгаму, явля-
лись независимыми подполугруппами? Основная теорема работ [5], [7] Е. С.. 
Л я п и н а (которая приведена ниже) решает эту проблему в случае амальгамы 
двух полугрупп. В настоящей работе упомянутая теорема Е. С. Ляпина обоб--
щается на случай произвольной амальгамы. 

В теории полугрупп амальгамы являются наиболее изученными частич-
ными группоидами. Проблема о вложении амальгамы в полугруппу представля-. 
ется слишком трудной и далекой от разрешимости. Для некоторых частных 
случаев она исследовалась Х а у и в работах [2], [3], [4]. Результаты Хауи сущест-
венно отличны от результатов настоящей работы. 

Работа [8], Е. С. Л я п и н а была посвящена независимым полугрупповым 
продолжениям частичных группоидов. Проблема, рассматриваемая в настоя-, 
щей статье является частью проблемы независимых полугрупповых продол-
жений частичных группоидов. Следуя работам [6], [8] мы введем следующие; 
определения. 

Поступило 7. апреля 1977. 
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О п р е д е л е н и е . Пусть — некоторая совокупность полугрупп 
— некоторое множество индексов), причем никакая Аа не содержится в 

объединении остальных А( (¿;£,/ \(а)) и пусть действия в полугруппах А( 

(¿¡{У) согласованы между собой, т. е. из аЬ=с в полугруппе Ав и аЬ=с' 
в полугруппе А„ (а,Ь,с£Ав; а,Ь,с'£А„) всегда следует с—с'. Обозначим 
через А объединение множеств А( (£€. / ) и определим в А частичное действие 
следующим образом: аЪ=с (а, Ь, с в А) имеет место тогда и только тогда, 
если существует такой элемент что а, Ъ, с£Ап и в полугруппе Ап аЬ=с. 
Определенный на множестве А частичный группоид называется амальгамой 
полугрупп 

О п р е д е л е н и е . Будем говорить, что частичное действие в частичном груп-
поиде С слабо ассоциативно, если из того, что ху, у г, (ху)г, х(уг) (х,у, г£С) 
в группоиде С определены, следует (ху)г=х(уг). 

О п р е д е л е н и е . Непустое подмножество К полугруппы А называется 
разделяющейся единично идеальной ( с о к р а щ е н н о р. е. и.) подполугруппойг е с л и 

а) К=ьим'имгит, г д е Ь=(х\ х£К и Ьх=хЬ=Ь п р и Ь£А\К), 
М1=(х| х£К и хЬ=Ь, Ьх£К п р и Ь£А\К), М'=(х\ х£К и Ьх=Ь, 
хЬаК п р и Ь£А\К), Т=(хI х£К и Ьх, хЬ£К п р и Ь£А\К). 

б) подполугруппа К является связкой подполугрупп со следующей таб-
лицей умножения: 

ь м1 мг т 
ь ь м1 мг т 
м1 м1 м1 т т 
мг мг т М" т 
Т т т т т 

Эту связку будем называть *-связкой, и подполугруппы Ь, М1, Мт, Т — 
Х-, М1-, М'-, Т-компонентамы подполугруппы К в А. 

Т е о р е м а 1. (Е. С . Л я п и н [7]) Пусть А есть слабо ассоциативная амальгама 
двух полугрупп Аа и Ар. Для того, чтобы существовала такая полугруппа В, 
которая содержит амальгаму Айв которой Ах и Ар являются независимыми 
подполугруппами, необходимо и достаточно выполнение следующих условий: 

А ) Кар=АхГ\Ар пусто, или является р. е. и. подполугруппой и для Ах и 
для Ар. 

Б ) Для всяких уЛ£Р^=АЛ\Кхр, Ур£Р0х=Ар\Кар, х£Кхц из уах = уа 

следует хур=ур, из хух=уа следует у$х=ур и наоборот. 
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З а м е ч а н и е . Из определения р. е. и. подполугрупп вытекает, что в пре-
дыдущей теореме можно заменить условие Б) следующим: 

Б') Ь- и /'-компоненты р. е. и. подполугруппы Кхр в Ах и в Ар совпадают, а 
М'-компонента р. е. и. подполугруппы Кхр в Ах равняется Мг-компоненте в Ар 
и аналогично ЛГ-компонента в Аа равняется Мг-компоненте в Ар. 

§ 2. Амальгама полугрупп, каждая пара которых удовлетворяет 
условиям теоремы Б. С. Лялина 

В этом параграфе рассматривается такая амальгама А полугрупп А( 

( £ 0 ) (У—некоторое множество индексов), что каждая пара Ах, Ар (а, 
удовлетворяет условиям А), Б), (или А), Б')) теоремы Е. С. Ляпина. Отметим, 
что в этом параграфе не требуется слабой ассоциативности. 

О б о з н а ч е н и я . Пусть Сс,= и Ка(; ВХ=АХ\СХ. По определению 

амальгамы для каждого а Обозначим через к для каждого эле-
мента \е£А множество всех индексов полугрупп, которые содержат и>. Пусть 
Н= и С, т. е. множество всех элементов, которые содержатся не только в од-

ной из А? (££./)• 

О п р е д е л е н и я . Назовем элемент х£Н Ь-элементом, если для каждого 
а£х имеет место хЬ=Ьх=Ь для всяких Ь£ВХ. Элемент I называется Т-эле-
ментом, если для каждых а, имеет место Л, Ы£Кхр для всяких Ь £ В р и В р . 
Элемент и называется М-элементом, если б состоит только из двух индексов: 
а, /? и либо 

а) иЪх=Ъх, Ьаи£Кхр, Ьри=Ьр, иЪр£Кхр для всякого Ъа£Вх, Ьр£Вр; либо 
б) Ъхи=Ъх, иЬх£Кхр, иЬр=Ьр, Ьри£Кгр д л я в с я к о г о ЬХ£ВХ, Ьр£Вр. 

Для М-элемента и обозначим через й множество й, упорядоченное следую-
щим образом: й=(а, /?), если для и имеет место случай а) и ¿2=0?, а), если 
выполнено б). 

Докажем несколько свойств, которые покажут как устроена амальгама А. 

С в о й с т в о а . Множество НаА содержит только Ь-, М- и Т-элементы. 

Д о к а з а т е л ь с т в о . Достаточно доказать, что элемент г£Кар является или 
Ь-, или М-, или Г-элементом. Возможны следующие случаи: 

1. г — элемент ¿-компоненты р. е. и. подполугруппы Кхр в Ах. Тогда 
2Ь=Ьг=Ь для каждого Ь£Ва. Пусть Из условия Б) следует, что гЬ=Ьг=Ь 
для каждого Ъ £ В З н а ч и т х является ¿-элементом. 
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2 . 2 — элемент Г-компоненты р. е. и. подполугруппы Кхр в Аа. Тогда гЪ, 
Ьг£Кар для каждого Ь£ВХ. Пусть Из условия Б') следует, что Г-компо-
ненты в Ах и в совпадают. Очевидно, что г содержится в Г-компоненте 
Кх( в Ах (как видели гЬ^Ь, Ьг^Ь для всех Ь£Ва). Поэтому г содержится в Г-
компоненте и в т. е. гЬ, для всех Значит г — Г-элемент. 

3. 2 — элемент М'-компоненты р. е. и. подполугруппы КхР в Аа. Для того, 
чтобы показать что г — М-элемент, достаточно доказать, что г содержится 
только в двух полугруппах из А4 именно в Аа и в Ар. Предположим 
противное, пусть г£АхПАрПАуП.... Так как г в Ах является элементом М ' -
компоненты подполугруппы Кхр, то имеет место гЬх=Ьх, Ьхг£Кхр для всех 
ЬхаВх. Тогда по условию Б') г в Ар является элементом М г-компоненты, т. е. 
Ьрг=Ьр, гЬр£Кхр для всех Ър£Вр. Отсюда и из условия Б') следует, что г — 
элемент М г-компоненты полугруппы Кху в Ау, т. е. Ьуг=Ьу, гЬу£Кху для всех 
ЬУ£ВУ и одновременно г является элементом М'-компоненты полугруппы КРу 

вАу,т. е. гЬу=Ьу, Ьуг£Кру д л я всех Ьу£Ву, ч т о неверно . А н а л о ч и г н о д о к а з ы в а -
ется, что г является М-элементом, если он содержится в М г-компоненте р. е. и. 
подполугруппы Кхр в Ах. На основе предыдущего рассуждения легко видеть: 

С л е д с т в и е . Каждый ¿-элемент является элементом ¿-компоненты во 
всех пересечениях Кхр, которые содержат его, каждый Г-элемент является эле-
ментом Г-компоненты во всех пересечениях К хр, которые содержат его и каж-
дый М-элемент является элементом М ' - или М г-компоненты р. е. и. подпо-
лугруппы Кар, которая содержит его. В этом параграфе это утверждение мно-
гократно используется без дополнительных ссылок на него. 

С в о й с т в о /}. Пусть хи х2 ¿-элементы и ххП х 2 ^ 0 . Тогда или хгЯ:Х2 

или Если х 2 (но хг у^х2), то х1 х2 = х2х1=х1. Если хх = х2, то 
х1х2, х2хг Ь-элементы и х1х2^х1 = х2; х2х1^х1=х2. 

Д о к а з а т е л ь с т в о . Пусть а б ^ Пх 2 . Если бы существовали /?€ х2 

и у£х2, т о х1£К0[р, х2£РхР и п о э т о м у х1х2=х2х1=х2 и а н а л о г и ч н о 
х2£Кху, хх6Рху, = х 2 х г = х г , и м е е м хх=х2. П о л у ч и л и п р о т и в о р е ч и е . П у с т ь 
х1сЗс2 (но х19^х2) и пусть у1хи у£х2. Т о г д а х2£Кху и х^Р^ , п о э т о м у 
ХхХ2~ Х2Х1 = хх. 

Пусть теперь х1=х2. Так как х1 и х2 — элементы ¿-компоненты полу-
группы Кхр для любых двух а,^£х1—х2, то согласно свойствам *-связки про-
изводения х1х2 , х2хг также являются элементами ¿-компоненты КхР (для лю-
бых двух а, /?6х1=х2). Значит х1х2 , х2хг ¿-элементы и ххх2 З х 1 = х 2 , 
Х2 Х1 -X ] — X 2 . 

С в о й с т в о у. Если и, V такие М-элементы, для которых йПг)^0 но 
й ¿¿V, то у й,Ь или первые или вторые члены совпадают. 
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Д о к а з а т е л ь с т в о . Пусть и, V (и^и) М-элементы и пусть «Рм П и и П ^ В . 
Достаточно доказать, что случай й=(а, Р) V=(у, а) (Р^у) не может иметь 
места. (Случай й=(р, а) й=(а, у) доказывается аналогичным образом.) 
Действительно, если бы м = (а, р), 6=(у, а), "то в полугруппе Ах элемент и яв-
ляется элементом М'-компоненты полугруппы К ^ и и£Рхр поэтому т = и, 
аналогично в Ах V является элементом Мг-компоненты Кху, и£Еху, поэтому 
т = и. Следовательно и=ь, что неверно. 

С в о й с т в о <5. Пусть и — М-элемент их — Ь-элёмент. Если х П и ^ 0, 
то йЯх. Если Пах (но й^х), то хи = их = и. Если й=х, то их, хи М-эле-

менты и хи = их = й. 

Д о к а з а т е л ь с т в о . Пусть и — М-элемент, х — ¿-элемент. Предположим 
противное первому утверждению. Пусть а£х, р£х. Так как и — элемент М1-
компоненты полугруппы К^ в полугруппе Ах и х£Рхр поэтому их=х. х со-
стоит по крайней мере из двух индексов, т. е. существует у£х. Тогда х£Кху, 
и£Рху (и следовательно их = и). Отсюда и = х. Получили противоречие. 

Пусть теперь м е х (но и Существует индекс у такой, что у£х, у € П. 
Пусть а £ й с : х . Элемент х содержится в ¿-компоненте полугруппы Кхр и и£Р х у , 
поэтому хи — их = и. 

Пусть наконец, й=х=(а, р). Тогда х, и являются элементами КхР. 
Из свойств * -связки следует, что произведения их, хи являются М-элементами, 
и хй = их=й. 

С в о й с т в о е. Пусть и, V — М-элементы. Если й = Ь, то ии, ш — М-эле-

менты и иЬ = т = й = Ь. Если й = д (но й^Ь), то ии, юн Т-элементы и Ш>^й = и, 

ш2й=с. Если йП и-^0, и у и, Ь первые члены совпадают, то ии — ю, 

ьи—и, если — вторые, то ии=и, х>и=х>. 

Д о к а з а т е л ь с т в о . Если й=г), или если й = д но й^д, то элементы и, V 
содержатся в одной и той же самой полугруппе Кхр и утверждение о том, 
что амальгама А обладает свойством е непосредственно следует из свойств 
* -связки. 

Пусть теперь и, V такие М-элементы, для которых й=(а, Р) Ъ=(а,у) 
(Р^у). Тогда и я V содержатся в Мг-компоненте для полугруппы КхР и Кху 

соотвтственно, и так как и£Рху, ь£Рх$ т о ии=V, ии—и. 
(Доказательство аналогично в случае й = (Р, а) Ь=(у, а) (Р^у).) 

С в о й с т в о С. Пусть х — Ь-элемент и / — Т-элемент. Если х П ? = ^ 0 и 
х ^ ? , то х? = *х = Л Если тох1,1х—Т-элементыи х ? ^ ? , 7х=?г. 

Д о к а з а т е л ь с т в о . Пусть а £ х П ? и Р£х, /?€?. Тогда х содержится в 
¿-компоненте полугруппы КхР и г следовательно х?—/х=?. Пусть теперь 

9« 
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х В случае любых двух а, имеем х, ¡ ^ К ^ , и из свойств «-связки сле-
дует, что х?, /х являются Т-элементами. Одновременно получается, что х7, 
7х=?х. Если существует у ̂  г, у £ х то так как / содержится в Т-компоненте 

и имеем х/, (х£Кху, причем х/, (х содержатся в Т-компоненте, 
так как они — Т-элементы. Значит х 7 3 / , Тх^.1. 

С в о й с т в о г\. Пусть и — М-элемент и I—Т-элемент. Пусть й = (а, /?). 
Если а6Г, /?€?, /ио Ш = г и Ш является Т-элементом, для которого 
Аналогично: если г, /?£?, то Ш = 1 и и1—Т-элемент, для которого Й7 3 г и ¡7. 
¿ели й ^ I, то Ш, и! являются Т-элементами, для которых Ш 3?, и / 1 . 

Д о к а з а т е л ь с т в о . Пусть й=(а , /?) и /?€?. Тогда и содержится в 
М'-компоненте полугруппы КхР в Ахи / б Т ^ . Таким образом и1=1 и (мЗм . 
Для каждого у £ у€й имеет место, что ш£К х у . Следовательно Ш П о -
лучается: ш ^ Ш й . Отсюда следует, что ги содержится в не меньше чем трех 
полугруппах из А{ Поэтому ш не является М-элементом. Очевидно, 
что Ш может быть только Т-элементом. 

Второе утверждение доказывается аналогично. Пусть теперь й Я I , й=(ос, /?). 
Полугруппа Кхр — »-связка, и, I£К^. Из свойств *-связки следует, что Ш, 
Ы — Т-элементы и ш, ш 2 7. Утверждение, что Ш, ? вытекает из того, что I 
содержится в Г-компоненте всякой полугруппы Кау, где у0, у € ¡7. 

С в о й с т в о 5. Пусть ^ — Т-элементы. Если ^ П то ?2 м г 2 ^ 
— Т-элементы и Гх и ?2 £ , и /2 ^ ^ • 

Д о к а з а т е л ь с т в о . Пусть а€? 1 П? 2 . Если ?1=?2, то утверждение следует 
из свойств * -связки. Пусть /?£?!, Тогда 6 К ^ , ? 2 С и поэтому 

€ Кхр. Продолжая этот процесс, получается ? 2 3 г 1 и г2, 
Отсюда следует, что г^г (аналогично только тогда содержится только в 
двух полугруппах из А( (££«/), когда и /2 содержатся только в этих полу-
группах. В этом случае из свойств *-связки следует, что 1^21112^ являются 
Т-элементами. Если аналогично содержится не меньше чем в трех 
полугруппах из А ? то очевидно, что оно не является М-элементом, а 
может быть только Т-элементом. 

Т е о р е м а 2. Пусть А — амальгама полугрупп А^ (££./) (У— некоторое 
множество индексов). Амальгама А удовлетворяет условиям А) и Б ) тогда 
и только тогда, когда она обладает свойствами ос —9. 

Д о к а з а т е л ь с т в о . Выше уже было доказано, что если амальгама удов-
летворяет условиям А) и Б) то свойства ос—9 выполнены. 

Предположим теперь, что для А имеют место а —9. Пусть Ка0=АаГ\ Ар 

•.(а, /?€./). -Чтобы доказать А) достаточно показать, что К а е — р. е. и. подпо-
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лугруппа в Аа. Тот факт, что Ка/1 — полугруппа, следует из определения амаль-
гамы (это также легко видеть из свойств а—9). 

Будем доказывать, что ¿-элементы, которые содержатся в К ^ образуют 
¿-компоненту в К„р, М-элементы и, для которых й=(а, Р) Мг-компоненту, 
элементы и, для которых й—(р, а) образуют МГ-компоненту и Г-элементы, 
содержащиеся в Кае Г-компоненту полугруппу Кар. Из этих фактов сле-
дует А). 

1. Пусть х — ¿-элемент в Кхр. Докажем, что 

(1) Ху = ух = у 

для каждого у £ . Если у£Ьх, то (1) следует из определения ¿-элемента. 
Пусть у£Сл\К^. Очевидно, что Если у — ¿-элемент, то из свойства Р 
получается, что ху ^ х, но очевидно хфу, таким образом из Р следует и (1). 
Рассмотрим случай, когда у — М-элемент. Из <5 следует, что у^х, но хфу 
и снова используя 6 получаем, что выполняется (1). Пусть у •— Г-элемент. Так 
как х ^ у из £ вытекает (1). 

2. Пусть и—М-элемент в К^, для которого й=(а, Р). Будем доказывать что 

(2)" иу = У уи£Кле 

для каждого Если у£Ва, то (2) следует из определения М-элемента. 
Пусть у£С^\К<,р. Согласно свойству <5 все ¿-элементы из С„, если они сущест-
вуют, содержатся в К^. Далее м Ф у и из 5 следует (2). 

Предположим, что у — М-элемент. Свойство у показывает, что в упорядо-
ченных парах м и у первые члены совпадают (они равняются а). Из е следует 
иу=у, уи=и т. е. выполняется (2). Пусть у — Г-элемент. Свойство ц показы-
вает, что (2) имеет место. 

Доказательство аналогично, если и такой М-элемент, для которого 
А = ( / » , « ) . 

3. Пусть X — Г-элемент в КаР. Будем доказывать, что 

(3) О у 1 е к а ? 

для всех Если у£Вх, то это утверждение следует из определения 
Г-элемента. Пусть у€Са\Кар. Если у — ¿-элемент, то согласно £ или х ^ г 
и у1=гу=г или х д г и тогда х1 ¡51, 1x^1 откуда получаем (3). Рассмотрим 
случай, когда у — М-элемент, и у=(<х, у) (уФр). Если у £ г, то из свойства 
г] следует, что у1=1 и 1у — Г-элемент, для которого т. е. /у£Кар. 
Если у0 то из г} также вытекает выполнение (3), так как гуЗ г, у1 ^ г. Ана-
логично рассматривается случай, когда у такой М-элемент, для которого 
7 = 0 - , « ) Ь^Р). 
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Пусть у — Г-элемент в Сх\КхР. Из свойства 9 следует, что 3 1 и }>, 
¡у^Шу,т. е. (у, у1£КхР. 

Теперь докажем выполнение условия Б). 

Пусть хек х р , уа£РхР, Если ухх—ух, то х содержится в ¿ -ком-
поненте Кар или в Мг-компоненте Кхр в Ах. В первом случае х — ¿-элемент, 
который по предыдущему доказательству находится в ¿-компоненте КхР ив Ар, 
т. е. хур =ур. Во втором случае л: — М-элемент, для которого х = ( Р , ос) и по 
предыдущему доказательству он содержится в М'-компоненте Кхр в Ар поэтому 
хур=ур. Дальнейшие случаи Б) доказываются аналогично. 

Теорема доказана. 

З а м е ч а н и е . По теореме 2 имеем, что условия А), Б) и набор сложных 
свойств а —9 эквивалентны. Заметим, что свойствами ос —9 бывает удобно 
пользоваться, что покажет доказательство теоремы следующего параграфа. 
Кроме того с помощью их можно сделать вывод о строении амальгамы. 

§ 3. Обобщение теоремы Е. С. Лялина 

Т е о р е м а 3. Пусть А — амальгама полугрупп (У — некоторое 
множество индексов). Амальгама А тогда и только тогда погружаема в над-
полугруппу В, так чтобы все полугруппы являлись в В независимыми 
подполугруппами, когда каждая пара Ах, Ар (а, /?(;,/) может быть вложена 
в некоторую полугруппу таким образом, чтобы Ах, Ар в ней являлись независи-
мыми подполугруппами. 

Э к в и в а л е н т н а я ф о р м а т е о р е м ы 3. Пусть А — слабо ассоциативная 
амальгама полугрупп 

Амальгама А тогда и только тогда погружаема в подполугруппу В так, 
чтобы все полугруппы (<?£./) являлись в В независимыми подполугруппами, 
когда А удовлетворяет условиям А), Б). 

З а м е ч а н и е . Эквивалентность двух форм теоремы очевидна по упомяну-
той теореме Е. С. Ляпина. 

Также очевидно, что выполнение слабой ассоциативности необходимо для 
того, чтобы амальгама была вложима в некоторую полугруппу. 

1. Д о к а з а т е л ь с т в о д о с т а т о ч н о с т и мы не приводим, ибо оно не от-
личается существенно от доказательства теоремы Е. С. Ляпина. Надо лишь 
провести некоторые очевидные изменения (например, такое: В состоит из после-
довательностей вида и=(х1, ..., х„) (п=1,2, ...) где каждый х1 является эле-
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ментом хотя бы одной полугруппы из амальгамы, причем х ; П х ! + 1 = 0 для 
всех 1 = 1, 2, . . . , п — 1). 

2. Д о к а з а т е л ь с т в о н е о б х о д и м о с т и . Пусть дана полугруппа В, кото-
рая содержит систему подполугрупп А '={А^} { е у , причем подполугруппы А? 

являются в В независимыми. Используется теорема 2. Будем доказывать, что 
амальгама А полугрупп А? ( £€ . / ) овладает свойствами а — 9. Предварительно 
докажем следующую лемму. 

Л е м м а . Пусть х, у, Я В. Если хГ\ут±0, уГ\г^&, то имеет место 
одно из следующих двух утверждений: 

(4) ху П £ = 0 , х П уг = 0 и ху = х, уг — г 

(5) ху П т. ^ 0, х П уг * 0. 

Д о к а з а т е л ь с т в о л е м м ы . Если х П у П г ^ д то очевидно, что выполня-
ется (5) так как х,у,г содержатся в одной полугруппе из А( (££</). Пусть 
хГ 1 у П 5 = 0 . В полугруппе В имеет место следующее равенство (ху)г-х(уг). 
По условию существуют а£хПу, р£уГ\г, т. е. х,увАх, у, таким 
образом и = ху£Ах; ь=уг£Ар. Если бы одно из слов иг, XV являлось приведен-
ным относительно А' (определение понятия приведенного слова и соотношения 
в работе [7]) а другое нет, например, н П г = 0 а у £ х П й , т . е . х1'=х£Ау , то 
приведенное соотношение иг=я£А у противоречило бы тому, что система 
подполугрупп А{ ( £6^0 в В независима. Получили, что или оба слова приве-
дены относительно А' т. е. й П г = 0 , хПг; = 0 и приведенное соотношение 
uz=xv тривиально и=х, г = значит имеет место (4), или ни одно из них 
не является приведенным, т. е. й П г и 0, х П и ^ 0 значит имеет место (5). 

Перейдем к доказательству свойств а —9. В этом доказательстве пос-
тоянно без дополнительных оговорок употребляются обозначения ЬХ£ВХ, 
ЪР£ВР, ... и т. д. 

а) Пусть у€Н; а, /?£у (т. е. у£КхР). Воспользуемся леммой: первый 
случай ЬхуПБр=9, ЬхПуЬр = 0 и Ьху=Ьх, уЬр=Ър. Тогда для каждого 
так как (а) = Ъх = Ьх у и Б{=(£) имеет место Ъ^у П = 0 и по лемме БхГ)уЬ4=& 

Аналогично доказывается, что из уЬх=Ьх следует, что Ь4у=Ь^, в слу-
чае всякого ¿¡€у. 

Второй случай: ¿ъуГ)Б р ^0 , т. е. уЬ р£К х Р . Тогда Ь ^ у П Б ^ д и 
БхПуЬ4т±& (иначе имело бы место Ьху—Ьх), т. е. у Ь ^ К а 5 для всех Ь( € 
Аналогично из уЬа£КхР следует Ь^у£Кх4 для всех Из этих рассуждений 
вытекают следующие: 

1. Если ЬХУ~ЬХ, уЪх = Ъх то у является ¿-элементом. 
2. Если ЬхУ^КхР, уЪх€КхР то у является Г-элементом. 
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3. Если Ьху£КхР, уЬа = Ьх и у состоит только из а, р то у является М-эле-
ментом, у = (а, Р). 

4. Аналогично, если Ьху=Ьа, уЬх£Кхр, то у — М-элемент, у=(Р, а). 

Р) Пусть хи х2— ¿-элементы, а^Х! П х2 , хгфх2. Если существовали бы 
р£х1, Рёх2, у € х х , у€х 2 то ЬрХ1=Ьр, (Р) = Ьр=Ь^х1, итак Ь^х[Г\х2^0, по 
лемме БрПх1х2 = 0 и х 1 х 2 = х 2 . Аналогично, х2Ьу=Ьу, х 1 П х 2 6 у = 0 , по лемме 
х 1 х 2 = х 1 . Значит х ! = х 2 , что неверно. Показали, что или х ^ х а , или х ^ х ^ 
Пусть х г с х 2 (но х г ф х 2 ) именно у £ х г , у£х 2 . Используя лемму для троек 
Ъ1,хг,х1 и х1,х2,Ьу, получаем х 1 х 2 = х 2 х 1 = х 1 . Пусть теперь Х!=х 2 . Оче-
видно, что произведения ххх2 , х2хх являются ¿-элементами, и так как они со-
держатся во всех полугруппах, в которых содержатся и х15 и х2 , то 

х^х2 =3 Х^ = Х 2 , Х 2 Х ! = х^ = х2 

у) Пусть и, V (и Фи) —М-элементы. Предположим, что й=(а, Р), и=(у, а) 
(Р Фу). Используя лемму для элементов Ье, и, V получаем М У = V и для элементов 
и, V, Ъу получаем ии=и. Следовательно и=и, что неверно. 

д) Пусть и — М-элемент, й=(а, Р) и х — ¿-элемент. Предположим, что 
а£х, р£х и убх, уф р. Используя лемму сначала для элементов Ьр,и,х полу-
чаем их=х, потом для и, х, Ъу получаем их=и. Отсюда и—х, что неверно. 
Пусть теперь м е х (но йфх), т. е. пусть у€х, у€м. Из леммы для троек 
Ьу,х,и и и, х, Ъу следует мх=хм=м. Пусть наконец, й=х=(а, Р). Очевидно, 
что произведения хм, их содержатся как в Ах, так и в Ар. Из определения М - и 
¿-элементов следует, что хм, их являются М-элементами и имеет место 
хи=йх=й. 

е) Два первых утверждения свойства е непосредственно следуют из опре-
деления М-элементов. 

Рассмотрим третье. Пусть и, V — М-элементы, для которых м=(а , Р), 
б=(а , у) РФу. Используем лемму для троек Ьр,и, V и Ь1, и, м. Получается 
ии=и, юи~и. Доказательство аналогично в случае: й=(Р, а), д=(у, а) (рфу). 

С) Пусть х — ¿-элемент, г — Т-элемент. Предположим сначала, что 
а £ х П г и Р^х, р£1. Из леммы для троек Ьр, х, г и /, х, Ье следует 
Пусть теперь х ^ I. Из определений ¿ - и Г-элементов следует, что произведе-
ния х/, /х являются !Г-элементами, и одновременно очевидно, что х?, /х =3 х. 
Если существует у О, у£х, то используя лемму для троек , х и для х, г, Ъу 

получаем, что убх/, у£Хх, следовательно х г ^ г , г х ^ г . 

ц) Пусть м — М-элемент и / — Г-элемент, и пусть м=(а , Р). Пусть сна-
чала <х0, /?€?. По лемме для элементов Ъ&,и,1 имеем, что и1=г, а для эле-
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ментов г, и, Ьр, что /мЗм. Применяя лемму для всех троек Ъ^, и где полу-
чаем 1и ¡2?. Значит ш ¡51 и й. Iи содержится по крайней мере в трех полугруп-
пах из А^ (££. / ) , очевидно, что он Г-элемент. 

Второе утверждение из ц) доказывается аналогично. 
Пусть теперь й ^ 1 , й = ( а , Р ) 
Из определения М- и Г-элементов следует, что Ш, ¡и — Г-элементы. Оче-

видно, что Если существует £ € н то из леммы для троек 
и и ы, г, Ъ̂  следует, что £€гм, Ш следовательно ш, 

9) Пусть /2 — Г-элементы А01Г\12. Очевидно, что = 5 П г2, 

Пусть Тогда применяя лемму для троек Ър, ?1( г2 и г2, Ър 

имеем Продолжая этот процесс получаем, что <1/2=^1^2, 

й Л 3 и г2. Если 1^2, или Г Л состоит только из двух индексов а, /?, т. е. (а, /?) = 
= ?1=?2 , то из определения следует, что /г?2, являются Г-элементами. Если 
у 2 или содержатся по крайней мере в трех полугруппах из А ( (£€ . / ) , то, 
очевидно, что они — Г-элементы. 

Теорема доказана. 

З а м е ч а н и е . 1. Из того, что система полугрупп А' = {А^}^^ является 
в полугруппе В независимой не следует, что каждая пара Ах, Ар является неза-
висимой. Действительно, существуют слова, приведенные относительно 
(Ах, Ар), но не являющиеся приведенными относительно А'. Например, слово 
ху, где х£Рар, у£Рра, приведено относительно (Аа, Ар), но возможно, что оно 
неприведено относительно А', если есть такая Ау (у 6 ^ 9 которая содержит и 
х, и у. 

2. Рассмотрим следующий частный случай. Пусть А слабо ассоциативная 
амальгама не меньше трех полугрупп (££ . / ) удовлетворяющая А), Б), 
в которой пересечение каждой пары полугрупп одно и то же, т. е. АЛГ\АР=К 
для всех а, а Тогда К содержит только Ь- и Г-элементы. Множество 
Г-элементов в А" и для всех А{ образует идеал (см. [9] пункт I. 4). 

Утвеждения, вытекающие из вышедоказанных теорем являются обобщени-
ями результатов статьи А. Грилле, М. Петрича [1]. 
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Similarity and interpolation between projectors 

Z. V. KOVARIK 

1. Introduction 

If two bounded linear projectors Ea, Er on a Banach space X are "close" in 
some sense, are they similar? Can we connect them by a projector-valued continuous 
path f — E , ( 0 ^ t ^ \ ) 1 If \\E1—En\\ 1 for some operator norm then [6, I. 4.6, with 
the footnote and Problem 4.13] gives a positive answer to both questions. For 
pairs of orthoprojectors on a Hilbert space, the papers [1] and [2, Sec. 3] give 
a complete set of unitary invariants, with an extensive bibliography on the history of 
the subject, and the latter work (formula 1.18) expresses a particular unitary U 
(called direct rotation) such that E1 = UEaU~1 in the form 

U = exp (JO), 0s=0, J normal, P = -J, 

which offers a path £ , = e x p (tJ9)E0 exp (—tJO). 
We shall give a similar expression for Banach space projectors in (12), except 

that we do not try to separate J from 6 in J6=—iW, essentially because square 
roots of arbitrary operators are generally unavailable. 

Differentiable paths between finite decompositions of identity into projectors 
and their relation to similarity are studied in [6, II. 4.5]. 

We base our exposition on the concept of an approximate projector (Sec. 2) 
from which we derive an expression of the bisector El/2 of E0 and Ei. Bisections 
are then repeated, leading to E1/t, E3/i etc., until analytic operational calculus is 
applicable to help extend the domain of E, to all /£[0, 1]. Throughout, we use that 
holomorphic branch of the natural logarithm whose value at 1 is 0. Accordingly, 
we define z1 / 2=exp (1/2 In z) etc. 
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2. Approximate projectors and involutions 

W e call P£B(X) an approximate projector if | | P - P 2 | | < 1/4, a n d Q£B(X) 
an approximate involution if || 1 — Q2\\ 1. The correspondence between approximate 
projectors and involutions is obviously Q=2P— 1. 

The spectrum <r(P) of an approximate projector lies, by the Spectral Mapping 
Theorem, inside the Bernoulli lemniscate L : |z(l — z)| = l/4. Let us compute the 
spectral projector E of P corresponding to the part of <r(P) inside the right loop 
L+: | z ( l - z ) | = l/4, R e ( z ) s l / 2 . We have (orienting L+ correctly) 

E = (2xi)~1 J (z—P)~1dz. 

Denote P-P2=R and substitute z - z 2 = y , hence z = y ( l + Yl-4v), dz = 
= — (1 — 4v)~1/2dv, and we can verify 

( z - P ) - 1 = ( 1 - z - P ) ( v - R 

The path L+ transforms into the positively oriented circle C : |u| = 1 /4. By virtue 
of the compactness of <r(P), we can deform homotopically C into a smaller circle 
Cj to avoid the singular point v=]/4. Altogether, 

E=(2ni)-1 J + (1 —4u)~1/2] (v—R)~1dv, 

i.e. 

(1) E = | + | ( 2 P - 1 ) ( 1 - 4 P ) - 1 / 2 = P + \ (2P — 1)[(1—4i?)_1/2—1]. 

Note that (1—4P)_1 /2 can be obtained by evaluating the MacLaurin series for 
(1 -4v)~in at R in place of v. 

For the involution T=2E— 1, (1) simplifies into 

(2) T= 0 ( l - ( l - e 2 ) ) - 1 / 2 where Q = 2P~l. 

Since the power series above has positive coefficients, we have the following 
estimate where r= | |P—P 2 | | : 

(3) | | P - P | | =S | - | | 2 P - 1 | | [ ( l - 4 r ) ~ 1 / 2 - l ] . 

Intuitively, the closer P is to being a projector, the closer it is to E. 
Taking first two terms in the power series, we derive an iterative scheme for 

computing E, namely: 

(4) Set P 0 = P , and given Pk, compute Rk=Pk~P2
k. Stop if \\E~Pk\\ from (3) is 

satisfactorily small. Else, compute Pk+1=Pk + (2Pk-l)Rk=Pk+2PkRk and 
return to testing Pk+1. 
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We can prove that Rk+1=R2
k(3+4Rk), hence from \\Rk\\ <1 /4 there follows 

4| | /? f c+1 | |^(4| | .RJ)2 (quadratic convergence), and that (1) applied to Pk yields the 
same E. 

3. The bisector of two close projectors 

For the sake of exposition, we shall assume that E0 and E1 are two projectors 
satisfying ||¿x—¿'oil < 1 . Their mean P= \(E0+E^) need not be a projector but it 
is an approximate projector in the sense of the previous section. Indeed, we can 
verify directly that P-P2=:j(E1-E0)2, hence l i P - / > 2 | | < y , and using (1), we 
can define 

(5) Em = | ( £ 0 + £'1) + ! ( £ 0 + i < i - l ) [(1 - ( E , - E 0 ) 2 ) - ^ 2 - 1 ] 

and call E1/2 the bisector of E0 and E1. For the associated involution T1/2=2E1/2—l, 
we obtain 

(6) T m = ( £ o + £ i - l ) [ i - № - £ o ) 2 r i / 2 = 1 ( r o + r O U - T ^ I - ^ O ) 2 ] - 1 ' 2 . 

4. The trigonometry of projectors 

With a pair of projectors E0, E1 and their involutions 7' f=2£' i —1 (¡=0, 1), 
-we associate the following operators (compare [1]): 

(7) S1 = (E1-E0f, t h e separation of (Ea,E^; 

Q = ( £ ' o + £ 1 - l ) 2 , the closeness of (E0, EJ; 
Vr = T0Ti; 

and we can verify the following properties: 

(8) (i) Q = | (To+TJ2 = | ( 2 + ^ + F f 1 ) ; S, = ± (T.-Ttf = i ( 2 - V . - V f 1 ) ; 

(ii) Q +S1 = 1; 

(iii) both C1 and Si commute with {E0, i^}; 

(iv) C1 and SV are symmetric functions of E0 and Ex; 

(v) C1E0 = EoE^o a n d C1E1 = E1E0E1. 

We can think of as the operator analogue of sin20 and C1 as cos2 9 where 
9 is the non-obtuse angle between the ranges of E0 and Et. If Et are one-dimensional 
ortho-projectors on the Euclidean plane, the analogy is perfect (we identify number 1 
^vith the identity operator if convenient), and higher dimensional pairs of ortho-
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projectors will essentially decompose into direct sums or integrals of planar pairs, 
as shown in [1]. Continuing in this analogy, we may give Vx the meaning of a gene-
ralization of the square of the direct rotation that moves the range of E0 onto the 
range of Ex. However, the convenient property O ^ S ^ S l and the "angle" 
arc sin ( S f ) , which would commute with both E0 and Ex, lose their meaning in 
general Banach spaces, as we can see from Example 1. We fill in this gap partially 
by developing an oblique way of expressing sin2 (T9) for 1 in terms of sin2 9 
without having to evaluate 9 itself. 

5. An auxiliary function 

For z£(0, 1) and t complex, we define 

(9) / , (z) = sin2 (t arc sin fz). 

To extend the domain of f, we observe that the function g(z)=-^= arc sin iz 
fz 

(z?± 0), g(0) = 1 has a MacLaurin series with radius of convergence equal to 1, and 
/¡(z)=sin2 fz has a MacLaurin series convergent for all z. With g and h extended by 
means of their expansions, we can extend ft(z) as 

(10) / , ( z ) = h(t2zg2(zj) 

for all | z | < l , so that ft is holomorphic. To guarantee uniqueness of further conti-
nuations of / „ we consider a simple smooth curve f connecting 1 with °° while 
missing 0 and define 

A = C \ range (T), 

so that A is a simply connected domain in which ft is arbitrarily continuable. By 
the Monodromy Theorem ([5], VI. 6.3), / , can be continued to a holomorphic 
function on A. We retain, with T fixed, the notation of (9) for this holomorphic 
function. 

We remark that for r = r 0 = [ l , + <*>]> the function g from above can be extended 
from 0 < z < l to A0=C\r0 by means of the series 

2 Vz " (—z)n 

g(z) = — arc tan r - = = 2 2 - v J 

i z l + f T ^ z n=o (2n + l ) ( l + / r ^ ) 2 n + 1 

smce < 1 iff z£A0. Thus /,(z) is described by (10) on all of A0. 
Here is a list of properties of ft which will be useful later. 

(11) (i) For sufficiently small |0|, if z=sin2 9 then/ , (z)=sin 2 (/0); 
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(ii) / „ ( z )=0 , / 1 ( z )=z , / 2 ( z )=4z ( l — Z) (in general, / , is a polynomial in z for 
every integer t), 

(iii) / i / 2(z) = -|-(1 — — z; note that / l — z is well-defined on A; 

(iv) for all s, t and for z£A, \z\ sufficiently small, / s ( / , (z) )=/ s ( (z) ; this gives 
an unambiguous continuation of fsoft to all of A; the composition is 
correct in all of A if J is an integer; 

(v) if t=2~n, integer, then ft(z)^I (z£A)\ if n^ 1 then f,(z)^ 1/2. 
(This follows by induction.) 

6. Similarity and interpolation 

For a set M<^B(X), denote by ss?{M) the norm-closed sub-algebra of (X) 
generated by M and the identity and closed under the inversion if defined. Recall 
also the notation in (7). 

T h e o r e m 1. Let E0, E1 be projectors in &(X), E0=^EV 

(i) If the number 1 lies in the unbounded component of the complement of o(St) 
then there exists an involution T1/2 in si{£'0, Ej] such that EJ = T1/2E0T1/2 and there 
exists Wd s>t{Fj} such that the projector-valued path 

(12) t~E, = e-uwE0euw, 0 / 1, 

connects E0 with E1. Moreover, V1 = e2iw and TtW=-WTt where T, = 2Et-\. 
(ii) (Poor man's path): If E0+E1—I is invertible then there exists Z which is 

a product of two involutions from Ej] such that EX = Z~XE0Z, and there exists 
a projector-valued path t-*Et, OSi^l, connecting EQ with E1 and consisting of two 
straight line segments. 

R e m a r k s . 
(a) The condition \\E1—¿?0|| < 1 clearly implies the assumption (i) of the theorem, 

for then H S J H I . 

(b) Assumption (i) implies assumption (ii) because C1=(E0+E1—1)2=1 — Si 

does not have 0 in its spectrum (recall (7) and (8) (ii)). We shall see a counter-
example demonstrating that (ii) does not imply (i). 

(c) In (ii), the inequality E^E^ implies that E0 does not commute with E1. 
In fact, more than that is true: If E0E1=E1E0 and (£ 0 +£ ' 1 — 1) is either left- or 
right-cancellable then E0=E1. Indeed, look at the identities: 

(E0 + E1-i)(E0-E1) = (E^o-EoEJ = (Eo+E,-1). 
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(d) The operator W from (i) is an operator analogue of the angle between 
E0 and Ex. Indeed, from (8i) and the equation Vx=e2,w there follows that sin2 W— 
= Slt except that W need not be in because T0W= — WT0 while Sx commutes 
with T0. 

P r o o f . (Theorem 1). In part (i), let us choose a simple smooth curve r which 
connects 1 with » within the complement of <t(5x) U {0}. As in section 5, we can 
construct the function / relative to T. For the construction of W, as well as for 
future use, we define 

(13) S, = / , ( 5 0 for all (complex) t. 

According to (1 If) , for t=2~" ( « £ 0 integer) the operator 1—2St/2 is invertible, 
and since S t=/2(S ' t / 2)=4S ( / 2( l — .S,^) by ( l l i i and lliv), we have 

(14) ' (1-2S, / 2) 2 = 1 - S , . 

All St commute with T0, Tx by (8iii). 
By induction, we will now construct involutions T, for t=2~", « & 0 integer. 

They too will commute with all St. Tx is already given and l/4(7,
0 + 7 ,

1 ) 2 =l — Sx 

by (8). Assume that for t=2~", T, has been defined and 

(15) r 2 = l , i ( r 0 + r f ) 2 = 1 - S , 

holds. Along with Tt, we consider Vt= T0Tt, and define 

(16) T,^ = \(T0+Tt) (1 — 2S i / 2 ) - 1 . 

Note that 1—2Sl/2 is invertible. Using (14) and (15), we verify mechanically that 
r2

/2 = l and r(To+T,^f=l-St/2. For the associated Vt, we have 

(17) Vm = | ( 1 +Vt) (1 - 2 S ( / 2 ) " i = T0Tm = Tt,t T„ 

so that 

(18) V,% = T0Ttl,Tt,2Tt = V,. 

Thus, T, and V, are constructed for all t=2~" and, in addition, Vt€s/{Vi} and 
K2-„= Vx. Also, for t= 1, (17) implies 

Tx = ri/2 T0 TX/2, so that Ex = TX/2 E0 , 

as claimed in the theorem. 
The next task is to show that lim V2-n= 1 in norm. Indeed, writing V2-„—l +K„, 

we re-write (17) as 

Kn+x = \(l-2St/2)-1Kn+2Sl/2(l-2St/2)-i with t = 2~n. 
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Since lim S, = lim 5,(1 —2S,)~1=0 in norm, we have for all sufficiently large n, 

| | i ( l - 2 S f ) - 1 ^ 4 , and \ \ K n + 1 \ \ ^ h \ K n \ \ + p n where lim P n = 0. * j J 

This implies lim ||/sTJ=0, as claimed. 
fl oo 

We select an «„ such that || F2-„ —1||<1 for all n^n0 and define W„— —12"_1-
• In V2-n. Due to (18), W„ is independent of « '£n 0 , and we claim that the common 
value is the desired W. The relations V1 = e2iw and E£s/{V1} are immediate. Further, 
(17) implies 

(19) Tt = V.ji T0 Vt/2 = e~'tWTQeitW 

for t—2~", « s O integer. We can therefore use (19) to define T, and V,=T0T, for all 
t, so that T, are involutions, Et=e~"wE0e"w are projectors and the equation 
is correct for both t = 0 and t = 1. 

For n s « 0 , /= 2 ~ " , we also have T0VtT0= F f 1 (since T0V,=T, is an involution), 
and taking logarithms on both sides, we obtain T0WT0— — W, or T0W— — WT0, 
hence 

TtW+WTt = e-itW{TQW-\-WT0)ei,w = 0, 

completing the proof of part (i). 
Proof of part (ii): Since £ ,

0+£'1—1 has an inverse in 3§{X), so does C1 = 
={E0+E1—l)2, and we claim: 

F=E0C~1El is a projector, ( £ 1 - F ) 2 = 0 = ( F - £ 0 ) 2 , E0F=FE1 = F, FE0=E0, 
E1F=E1. Indeed, by (8 iii and v), F2=C^2(E0E1E0)E1 = C^2C1E0E1 = F, a n d the 
remaining statements follow similarly. 

Consequently, E0+F— 1 and E1 + F— 1 are involutions, and we can set Z = 
= ( £ ' 0 + F - l ) ( £ ,

1 + F - l ) which makes E1=Z~1E0Z. The straight line segment 
from E0 to F consists of projectors since 

(E0 + t(F-E0)f - E0 + tE0(F—E0) + t(F—E0)E0 + t2(F— E0f = E0+t(F-E0) 

by the above equations, and similarly the line segment from F to Ex consists of 
projectors. The proof is complete. 

M o r e r e m a r k s , (a) In part (i), the projectors E, move from E0 to El at 
a constant angular velocity in the sense that for s and t sufficiently close, the angle 
operator between Es and E, is 

^ In (r, Tt) = ^ In e2f<'-s> ^ = (t-s)W, 
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and the separation is (E,—Es)2=S,_s, as we can verify from the relations (19) 
defining T, and f rom T0W=-WT0 which implies T0e~"w=e~i,wT0. It may be 
interesting that 

ESE,-E,ES = } i sin 2(t-s)W. 

(b) From TQWT0= — W it follows that the spectrum of Wis centrally symmetric, 
including its fine structure. For example, if a) is an eigenvalue of W with an eigen-
vector x then TQX is an eigenvector corresponding to (-co). 

(c) If Si—0, as between E0 and F i n the proof of part(ii) of the theorem, then 
the angle operator W-— / ( F ^ — b u t (E0E1~E1E0)2=Q and hence W2=0. 
In this case, the path (12) becomes the straight line segment from E0 and E±. 

We can describe those projector pairs (FQ.FJ) for which Sx=0 as follows. 
E0 defines a direct decomposition X= Range F 0 © K e r F 0 , so that E0 is represented 
by 1 © 0. Then Ex can be represented by 

1 A\ 
n n where AB = 0 and BA = 0, 

B OJ 

as we can verify by writing E\=EX and (E1—E0)2=0 in components. 
(d) The possible non-uniqueness of the part r in part (i) may cause non-unique-

ness of the path (12). I t would be interesting to find conditions on the pair (E 0 , Ex) 
which would allow to characterize at least T1/2 or V1/2 before it is constructed, in 
a similar way as its unitary counterpart for self adjoint pairs was described in [2, Prop. 
3.3] and [1, Theorem 4.1]. 

(e) The projector F = E 0 C i 1 E 1 can be obtained as the spectral projector of 
EqE-l corresponding to the complement of {0}. Indeed, using property (E0E1)2= 

= C1E0E1 from (8v), we can verify a partial fraction decomposition 

and obtain 1 — F a s (2ni)~ 1J(/.—E0E])~1dX where F is a small circle around 0. 
r 

F is the unique projector which shares its range with E0 and its nullspace with Ex. 
An equivalent construction of F i s implied in [6, Problem I. 4.12], namely 

F = { \ - E 1 + E0E^E1{\-E1+E0E^-\ 

7. Examples 

E x a m p l e 1. For every complex 1 0 , there exist two 2 x 2 idempotent matrices 
e0, ex such that (e1—e0)2=k0l and their Euclidean bound norms are 
(20) Ikoll = N 1 = I T O + U O I + U O-I I ) ] 1 7 2 -
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For a. construction, take any <5 satisfying 1)2 = — 4/ 0 , and define 

e0 = 1/2 
1 8 - 1 

6 1 
and ey — l j l 

1 S 

6-1 1 

It can be proved that for every pair of idempotent 2 x 2 matrices with a prescribed 
separation A0, the maximum of their norms is not less than the quantity in (20). 

E x a m p l e 2. Given a non-empty compact set K in the plane, there exist 
two projectors E0 and Ex on the space 12 for which the spectrum of (Ex—E^2 is K, 
and its point spectrum is dense in K. These projectors can be built as direct sums of 
examples of type 1 over a sequence whose range is dense in K. Boundedness 
is guaranted by (20). 

A rich source of examples is afforded by a pair (q>, ip) of formal expressions 
in x with values in a commutative algebra with identity such that 

(21) <p(-x)=-<p(x) and (p2(x) + \j/(x)il/(-x) = 1, 

by means of which we can define an involution T: 

(22) Tf(x) = (p(x)f(x) + iP(x)f(-x). 

The expressions / , q> and ip may be functions defined on a centrally symmetric 
set in the plane, or formal power series with complex coefficients, or elements of 
suitable subspaces and quotient spaces of the above, and direct sums thereof. 

E x a m p l e 3. A pair E0, Ex of projectors on a Banach space for which cr(5!) 
is a prescribed non-empty compact set K, and every interior point A of K belongs 
to the residual spectrum of Slt i.e. X — is one-to-one but its range is not dense. 

Here we first construct L—{1 complex: X2£K), take X=HJJL), the space 
of functions continuous on L and holomorphic in the interior of L, with sup-
remum norm, and define 

(23) TJ(x) = - xf(x) + ( 1 + * ) / ( - * ) , 

T1f(.x) = xf(x)+(l+x)f(-x), x£L, f£X. 

The conditions (21) are met, ¿ — ( l + r ^ as usual ( i=0 , 1), and SJ(x) = 
= i (7\ - T0ff(x)=x-f(x). Consequently a(Sj)=K with residual spectrum as 
claimed. Starting with an arbitrary nonempty compact centrally symmetric set L, 
we have an example of o(E1—E0)=L. 

E x a m p l e 4. If X=L2(D) where D is the unit disc with the restricted Lebesgue 
measure and if T0, 7 \ are as in (23) then aiS^—D and every is in the continuous 
spectrum of 5X (i.e. X — has a densely defined unbounded inverse). 

to* 
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E x a m p l e 5. The closeness operator C1 can be invertible but can fail to have 
a square root in so that a bisector f 1 / 2 f rom (5) cannot exist. 

In Example 3, take 

L = {>, complex : |;.| 2, | A + 1 | ^ } } . 

so that from (23) there follows CJ{x) = {\-x2)/(x). The function (1 - x 2 ) has a 
reciprocal but not a square root in L, and every operator in ¿/{S^} is of the form (22) 
with ^ = 0 . 

E x a m p l e 6. Every even and every odd non-constant polynomial p can be 
the minimal polynomial of (E1—E0) for suitable E0 and Et acting on a space of 
dimension degree (p). Consequently, every nilpotent matrix can be written as the 
difference of two idempotent matrices. 

Indeed, take X= C[x]/(/?), the polynomials modulo/). The operators f rom (23), 
well-defined on C[x], leave (p) invariant if p is either even or odd, hence they induce 
involutions T\p) ( /=0, 1) on X; note that dim X= degree (p). For the corresponding 
projectors, we have (£"j;p>—E^p))[f(x)]=[x/(x)], so that the minimal polynomial 
of (E^-E™) is indeed p. 

The proof for nilpotent matrices can be reduced to the case of one Jordan cell 
in the normal form and then reconstructed via direct sums. But every Jordan cell 
of dimension k represents multiplication by x in C[x]/(x'), which is the previous 
case. 

E x a m p l e . 7. Take a non-void compact centrally symmetric set L in the plane 
and define in HJL): T0f(x)=f(-x) and TJ(x)=e~2ixf(-x). It is obvious that 
T,f(x)=e~2tixf(—x) ( O ^ i ^ 1) defines a path from T0 to 7\ consisting of involutions. 
Although we can define Wf{x)=xf{x), so that TJ^e™, TtW=-WTt and (12) 
holds, we cannot always obtain W by a procedure described in Theorem 1. Observe 
that S 1 / (x)=(s in 2 x)/(x), and the proof breaks down if L contains points (2k+l)?r/2, 
k integer. 

8. Further connections between similarity and interpolation 

T h e o r e m 2. If there exists a continuous projector-valued path t—Et, O ^ i ^ l , 
then E0 and E1 are similar via a finite product of involutions. On the other hand, if 
two bounded linear operators A0,Ai on a complex Hilbert space H are similar (or 
unitarily equivalent) then there exists a continuous path t— A,, O^f^l, consisting 
of operators similar (or unitarily equivalent) to A0. 

P r o o f . For the first part, we use uniform continuity of E to subdivide [0, 1] 
into 0 = / 0 < / 1 < . . . < / p = l so that | | £ ' ( f c + i -£ ' / | |<1 , k=Q, ...,p—1, and then we 
apply Theorem 1 p times. 
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For the rest, write A^T'^AQTand decompose T=RV with R positive definite 
and Vunitary. Evidently t^R', O^t^l, connects 1 with R while t^R'1 connects 1 
with R~Next, V can be written as the product of at most four self-adjoint involu-
tions if dim H— =oj as shown in [3]. Every involution Q=2E— 1 can in turn be 
connected with 1 by U,=E+e""(l-E), O^f^S 1, so that U, are unitary. If dim H^ 
the unitary group of H is known to be arcwise connected. Thus, 1 can be connected 
with T be a continuous path consisting of invertible operators, and if T is unitary 
then J ? = l . Hence the conclusion. 

A p p l i c a t i o n . Proposition 2 in [4] states that if a pathwise connected subset 
^QB(X) has the property that the union S of o(T) over T^ST has a bounded 
separated subset M then the spectral invariant subspaces of the operators T cor-
responding to M are mutually homeomorphic and homotopic. Using Theorem 2, 
we can strengthen the conclusion by asserting the similarity of the corresponding 
spectral projectors. 
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Moment inequalities for the maximum of partial sums 
of random fields 

F. MORICZ 

§ 1. Introduction and preliminaries 

Let {Cw} ( k , l = 1, 2, ...) be a random field. I t is not assumed that the ran-
dom variables (in abbreviation: rv's) are mutually independent or identically 
distributed. Set 

b+m c+n 
S(b,m; c,n)= 2 2 Cm 

k=b+1 I=c+1 
and 

M(b,m;c,ri)= m a x m a x \S(b,p; c,q)I, ISpSm lSqSn 

where 6, c^O, and are integers. 
The subject of this paper is to provide bounds on E(My(b, m; c, ft)) in terms 

of given bounds on E\S(b, m; c,n)\y, where y is a given positive exponent. We 
emphasize that the only restrictions on the dependence will be those imposed by 
the assumed bounds for E\S(b, m; c, w)|v. These assumed bounds are guaranteed 
under a suitable dependence restriction, e. g., martingale difference, multiplicativity 
of finite order, orthogonality, mixing condition, or the like. 

Bounds on E(My(b, m; c, n)) are of use in deriving convergence properties 
of S(m,n) = S(0,m;0,n) a s m, n — p r o b a b i l i t y inequal i t ies f o r M(b,m; c,n), 

and tightness criteria for certain sequences of random functions (see [3]). To develop 
such results under various dependence restrictions, the theorems of this paper reduce 
the problem of placing appropriate bounds on E(My(b, m; c, n)) to the much easier 
problem of placing appropriate bounds on E\S(b, m; c,ri)\y. Various applications 
of our theorems, for example to obtain strong laws of large numbers, will be 
presented in a subsequent paper [8]. 

Received July 6, 1976. 
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The proofs are based on the "bisection" technique, which goes back to Rade-
macher and Mensov; see, e.g., BILLINGSLEY [3, pp. 87—103]. The treatment is 
similar to [6]. The results obtained can be considered as extensions of those in [6] 
from sequences {£,•} of rv's to random fields 

In the following, f(b, m; c,n) will denote a non-negative function depending 
on the joint distribution function (in abbreviation: df) of = 6 + 1 , . . . , b + m ; 
l=c + \, ..., c+n}, and possessing the following two properties of a rather 
general nature: 

( 1 . 1 ) f(b, h; c, n)+f(b+h, m-h\ c, n) ^ fib, m; c, n) 

and 

(1 .2) f{b, m\ c, i)+f(b, m; c+i,n-i) ^ f(b, m;c,n) 

for all 6 ^ 0 , 1 and c sO , 1 In other words, condition (1.1) means 
that f(b,m; c,n) as a function of the interval (6 + 1, b+m) is "superadditive" for 
fixed c and n, while (1.2) expresses the superadditivity in (c+1, c+n) for fixed 
b a n d m. E x a m p l e s a re f(b,m; c,ri)=mi>1nP2 w i t h ^ / ^ s l o r f(b,m; c,n)= 

b + m c + n 
= 2 2 i n the latter case assuming the existence of the finite variances 

k = b +1!=c+1 
a2

kl of the rv's Cu-
The upper bound on E\S(b, m; c, n)\y will be considered in the general form 

(1.3) E\S(b,m; c , n ) M / « ( 6 , m; c,n), 

where a and y are given numbers, a s 1, y>0 , and f(b, m; c, n) satisfies (1.1)—(1.2). 
The treatment of the case 0<}>s l is quite simple. In fact, applying the well-

known inequality 

we obviously have 
b+m c+n b + m c+n 

E(My(b, m; c, n)) ^ 2 2 ^ 2 2 f ' ( k - l , 1; /-1,1), 
4=6+1 l=c+l k=6+1 I=c+1 

provided (1.3) holds for all b, c s O and m, « S i . Now using (1.1)—(1.2) and the 
elementary inequality 

2 u J ^ { 2 u i \ > where a S i and H( S 0 (i = 1,2, . . . , r), 
i=l M=1 > 

we arrive at the following result. 

T h e o r e m 1. Suppose that there exists a non-negative function f(b,m; c,n) 

satisfying (1.1)—(1.2) such that (1.3) holds for all b, c s O and m,n^l, where a s l 
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and 0<y^l. Then we have 

E(My(b, m; c, n)) f(b, m; c,n) 

for all b, c^O and m, w^l. 

Hence the case a ^ l and y > l is of interest. The subcases (i) a > 1 and (ii) a —I 
are discussed in the subsequent sections. Section 4 is devoted to the estimation of 
the maxima of square sums and spherical sums, respectively. In the last section we 
point out that the results can be extended in a natural way to the general multi-
parameter case from the two-parameter case, and there is no need to restrict the 
theorems proved to finite measures. 

Throughout the paper, C, C u ... will denote positive constants, not necessarily 
the same at different occurrences. 

Theorem 2 below provides a bound on E(My(b, m; c, «)) which is asymptotically 
optimal as m, n — °° in the sense that it is of the same order of magnitude as the 
bound assumed on E\S(b,m; c,n)\y. 

T h e o r e m 2. Suppose that there exists a non-negative function f(b,m;c,n) 
satisfying (1.1)—(1.2) such that (1.3) holds for all b, c^O and m , n £ l , where a > l 
and Then we have 

for all b,c^0 and m,n^\. 

Although its specific value will have no importance for us, the constant C2 iXr r 

may be taken as 

Before proving Theorem 2, let us introduce the following "striped" maxima 
that are the maxima of partial sums taken with respect to only p or q : 

§ 2. An asymptotically optimal inequality in the case a > 1 

(2.1) E(My(b, m; c, n)) S C2>ct,y/a(6, m; c, n) 

(2.2) Q . ^ a - * 1 - ^ ) - 2 " . 

M±(b, m; c, n) = m a x \S(b,p; c,n) 

where A , c £ 0 and m , n ^ l are integers. 
We need the following auxiliary result in the sequel. 
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L e m m a 1. Let a > l and y > 1 . Suppose that there exists a non-negative function 
f(b, m; c, n) satisfying (1.3) for all b, c s 0 and m, « S i . If (1.2) holds, then we have 

(2.3) E(M2(b, m; c, n)) sS C1>a,y/*(i>, m; c,n) 

for allb, c s O andm, n s l ; here CliX-y may be taken as 

(2.4) C1>a,y = ( l -2a -« ) /> ) -* . 

An analogous result is true for M^b, m; c, n) under the assumptions (1.1) 
and (1.3). 

This lemma can be obtained by a simultaneous application to all possible 
fixed values of 6 s 0 and m ^ l of a recent result [6, Theorem 1] in the case when 

6+m 
6 = 2 Cki, g(c, n) =f(b, m; c, n), and Mc,„ = M2(b, m; c, n), 

* = » + I 

where / = c + l , ..., c+n (the notations are the same as in the cited paper). 

P r o o f of T h e o r e m 2. The proof will be done in a similar way as that of 
[6, Theorem 1]. We are going to find a constant C s C 1 > a depending only on 
a and y, for which the inequality 

(2.5) E(M\b, k; c, n)) s Cf(b, k; c, «) 

holds for all b, c s O and k, n ^ l . 
The proof of (2.5) goes by induction on k. If k=\, then (2.5) is a consequence 

of Lemma 1, since we have 

M(b, 1; c,n) = M2(b, 1; c,n) 

for all b, c s O and « S i . 
Now assume as induction hypothesis that (2.5) holds for all k ^ m (and for all 

b, c s O , n S l ) and prove it for k=m (and for all b, c s O , n s l ) . 
If for certain b, c s O and m, » s i we have f(b, m; c,n) =0, then by (1.1)—(1.2) 

we also have f(b,k;c,l)=0, and hence S(b,k; c,l)=0 a.s. for k=l, 2, ...,m\ 
1= 1, 2, ..., n. Thus M(b, m; c,ri)=0 a.s., and (2.5) is clearly satisfied. 

From now on we assume that f(b, m; c, n)^0. Since f(b,m;c,n) is a non-
decreasing function in m for any fixed b, c s O and « s i , there exists an integer h, 
l ^ A s m , such that 

(2.6) f(b, ft - 1 ; c, n) Sf jf(b, m; c, n) < f(b, h; c, n), 

where f(b, h — 1; c, «) on the left is 0, if A = 1. Then (1.1) implies 

(2.7) f(b + h,m — h; c,n) f(b, m; c,n)-f(b, h; c, ri) < -jf(b, m; c, «). 
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Now, for 1 ;=/></! and l ^ q S n , we have 

|S(b, p; c, q)| M(b, h — 1; c, n), 

and, for h ^ p ^ m and l ^ q ^ n , 

|5(i>, p; c, q)| M2(b, h; c,n) + M(b+h, m-h; c, n). 

In the last two inequalities we tacitly assume that for either h — 1 or h=m 

M(b, 0 ; c, n) = M(b + m, 0; c, n) - 0. 

Therefore, 

M(b,m; c,n)^M2(b,h; c, n)+ {My(b, h - l ; c,n)+My(b + h,m-h; c,n)}lly 

and, by Minkowski's inequality, 

(2.8) {E{My{b, m; c, n))}1'* S {E(Ml(b, h; c, 

+ {E(My(b,h-l; c,n))+E(My(b + h,m-h; c, n))}1 '?. 

Applying the induction hypothesis to M(b, h — 1; c, «), we get that 

(2.9) E(.My(b, h-1; c, nj) s Cf'(b, h - 1 ; c,n) ^ ^f'(b,m; c, n), 

the right-most inequality following f rom (2.6). Applying again the induction hypo-
thesis this time to M(b+h, m—h; c, ti) and using (2.7), we find that 

(2.10) E(My(b + h, m-h; c, n)) < §;f'(b, m; c, n). 

Finally, by (2.3), 

(2.11) E(M$(b, h; c, n)) S C1>Xtyf(b, h; c, n) CUa>yp(b, m; c, n). 

Combining inequalities (2.9)—(2.11) with (2.8), we obtain that 

{E(M'(b, m; c, n))}1,y (Cl%y+2^lyClly)fly{b, m; c, n). 

If C is large enough, then it follows that 

{E{My(b,m; c, n))}lh Clhf*h(b, m; c,«), 

which proves (2.5) for k=m. This completes the induction step and the proof of 
Theorem 2. 

The smallest C satisfying 

C\llt y+2<-1~"),yClly 7s Clly 

is given by 

By (2.4) this provides (2.2). 
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Since the stress of this paper is mostly on the method of proving Theorem 2 
(Theorem 3 etc. later on), we shall not exhibit the full strength of Theorem 2 and 
mention only one consequence. 

C o r o l l a r y 1. Let y > 2 . Suppose that we have 
»7/2 (b+m c+n y 

2 2 rii) 
([ = 6 + 1 1 = C+1 ' „2 for all b, c^O and m , « g l , where the are the finite variances of the rv's Ckl. Then 

we have 

(b+m c+n \yl2 

2 2 fc=6 + l J=C+1 ' 
for all b, 0 and m,n^\. 

The corresponding result for sequences {£,-} of rv's was established by ERDOS [4] 
and S. B. STECKIN. To be more precise, this result was proved by Erdos for the special 
case when y=4 and is a lacunary sequence of trigonometric functions, while 
the general case was an oral communication of Steckin (cf. GAPOSKIN [5, pp. 29—31]). 

§ 3. A generalization of the Rademacher-Mensov inequality in the case a = 1 

Let us proceed to the study of the case a = l . Then a factor (log 2m)y (log 2n)r 

will occur instead of the constant C2itt,y on the right-hand side of (2.1). Here and 
in the sequel all logarithms are of base 2. 

T h e o r e m 3. Suppose that there exists a non-negative function f{b, m; c, n) 

satisfying (1.1)—(1.2) such that (1.3) holds for all b, c S O and m, n s l , where a = l 
and y > 1. Then we have 

(3.1) E(M''{b, m; c, n)) == (log 2m)*(log 2n)yf(b, m\ c,n) 

for all b,c^0 and m,n^l. 

This is a special case of the following more general result. Before its formulation, 
let us introduce two recursive definitions. Let x(m) and X(n) be positive, non-de-
creasing functions of the natural numbers m and «, respectively. Set, for m = 1 
and n=l, 

K(l ) = k(1) and ,1(1) = A(l), 
and set, for m ^ 2 and « S 2 , 

(3.2) K(m) = x(h)+K(h-1), h = [j(m + 2 ) ] ; 

A(n) = Hi)+A{i-1), i = [ 1 (w + 2 ) ] ; 
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here [.] denotes integral part. It is obvious that both K(m) and A(n) are positive 
and non-decreasing functions of m, n —1,2,... . Further, f rom (3.2) it follows that 
if 2 p ; i m < 2 p + 1 w i t h p ^ O , then 

(3.3) K{m) si K(2p+1 — \) = ¿tc(2"); 
o 

similarly, if 2 9 ^ « < 2 9 + 1 with q^O, then 

A(n)* ¿ 2 ( 2 ' ) . 
( = 0 

T h e o r e m 4. Suppose that there exist positive, non-decreasing functions x(m) 
and /.{rí), and a non-negative function f(b,m; c, n) satisfying (1.1)—(1.2) such that 

(3.4) £ | S ( 6 , m; c, ri)\y xy(m)Xy(n)f(b, m; c, rí) 

for all b, c^O and m, n S l , where y s l . Let K(m) and A(n) be defined by (3.2). 
Then we have 

(3.5) E{My{b, m; c, n)) si Ky(m) A'(n)f(b, m; c,n) 

for all b, c^O and m,n^ 1. 

We note that if x(m) = l and l(n) = \ , then K(m)Slog 2m and A{n)^\og 2n. 
These follow from the inequalities 1 +log2(/z — l ) s l o g 2m and l + l o g 2 ( / — l ) s 
S l o g 2n, which are true owing to m^2h—2 and n^2i—2. Consequently, Theorem 3 
is a particular case of Theorem 4. 

If the rv's Cki are mutually orthogonal, i.e., 

(3.6) E((jj£ki) — 0 unless i = k and j = I, 

and if 

(3-7) ECkl = o2
kl, 

then obviously 
b+m c+n 

E(S*(b,m; c,n))= 2 2 ° l i 
k=b+1 l = c +1 

for all b, c s O and m,n^ 1. Hence Theorem 3 implies 

C o r o l l a r y 2. (The two-parameter version of the Rademacher—Mensov inequ-
ality) Under the conditions (3.6) and (3.7) we have 

b+m c+n 
E(M*(b, m; c, n)) ^ (log 2m)2(log 2n)2 2 2 

k=6 + 1 l = c +1 
for all b, csO and m, B ^ I . 

This result was firstly achieved by AGNEW [1]. As for the one-dimensional 
Rademacher—Mensov inequality see, e.g., RÉVÉSZ [9, p. 83]. 
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If x(m)=m^1 and ).(п)—пРг with some positive and f}2, then by (3.3) we have 
K(m)^(2mf*l(2fl — l) and Л(л)^(2и/«/(2 ' 1 -1) . Thus in this case we can guarantee 
again a bound on Е(Муф,т; c,rij) of the same order of magnitude as the bound 
assumed on E\S(b,m; с, w)|y. 

C o r o l l a r y 3. Suppose that there exists a non-negative function f(b,m,c,n) 

satisfying (1.1)—(1.2) such that 

E\S(b, m; с, n)|* ^ my^ny^f(b, m; c,n) 

for all b, c s O and то, « s i , where ръ / ? 2 > 0 and y=l. Then we have 

2 * ( i i + W m y i i n A 
E(My(b, то; с, и)) S ( 2 / > i - i ) T ( 2 f t - i y / ( Ь , Ш ; C ' n ) 

for all b, с ё 0 and то, « s i . 

Before proving Theorem 4 we recall the following one-parameter maximal 
inequality concerning M2(b, m; c,n) defined in § 2. 

L e m m a 2. Let у s i . Suppose that there exist positive, non-decreasing functions 

x(m) and X(n), and a non-negative function f(b, то; c, n) satisfying (3.4) for all b, е ё 0 
and то, « S i . If (1.2) holds, then we have 

(3.8) E(Mi(b, m; с, n)) xy(m)Ay(n)f(b, то; с, n) 

for all b, c s O and то, «Si, where Л(n) is defined by (3.2). 

An analogous result is valid for M-^b,m\ c,n) under the assumptions (1.1) 
and (3.4). 

Lemma 2 immediately follows from [6, Theorem 4] (cf. the reasoning after 
Lemma 1). 

P r o o f of T h e o r e m 4. The proof goes by induction on m. If m = 1, then 
(3.5) is a consequence of Lemma 2 owing to 

JsT(l) = x(\) and M(b, 1; c, n) = M2(b, 1 ; c, n). 

Let m > l be given and let h be the integral part of (m+2)/2. Then m=2h — \ 
or m—2h—2. Let b, c s O and « s i be arbitrary integers. 

In the same way as in the proof of Theorem 2 we arrive at (2.8). Now suppose 
that the conclusion (3.5) to be proved is true for all h<m. Then we obtain 

E(My(b,h-l; c,n))sKy(h-l)Ay(n)f(b,h-l; c,n) 
and 

E(My(b + h, m-h; c, «)) == Ky(m-h)Ay(n)f(b + h, m-h; с, n) ё 

^ Ky(h-l)Ay(n)f(b + h,m-h; c,n), 
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since m^2h — \ and the function K(m) is non-decreasing. (In case иг=2 we have 
h=2, and the second inequality becomes trivial by agreeing that M(b+2, 0; с, « ) = 0 
and X(0)=0.) Putting these two inequalities together, by (1.1) we find that 

(3.9) E(My(b,h-1; c,nj)+E(My(b + h,m-h; c,n)) 

KiQi-\)A->{n)f{b, m; c, n). 

By virtue of (3.8) 

(3.10) E(Mg(b, h; с, и)) ^ tf(h)A'(n)f(b, h; с, n) ё x'(h)A'(n)f(b, m; c, n). 

Collecting inequalities (2.8) and (3.9)—(3.10), we get that 

{E(M?(b, m; с, и))}17' (x(h)+K(h- l))A(n)flly(b, m; c, n). 

Taking into account the definition (3.2) of K{m), the last inequality gives the wanted 
(3.5). Thus the proof of Theorem 4 is complete. 

§ 4. The maxima of square sums and spherical sums 

In this previous sections we established moment inequalities for the maximum 
of the rectangular sums S(b,p; c, q) as p and q run, independently of each other, 
over the values 1,2, ...,m and 1, 2 , . . . , n, respectively. The situation becomes 
simpler if p=q or, more generally, if p and q are connected with each other in 
a certain way. 

Let с Q2 с ... be an arbitrary sequence of finite regions in the positive quadrant 
oo 

R2
+ of the real plane R2 such that U Qr contains infinitely many points with integer 

r = 1 
coordinates (but not necessarily coincides with R\). Set 

T(a,r)= 2 lu 
»,0€Q„ + r\Ga 

and 
N(a, r) = max | T ( a , s)|, 

where a = 0 and r s l are integers, Qo=&. 
The assumed bounds on E\T(a, r)\y will be of the form 

(4.1) E\T{a,r)Y^g'{a,r), 

where a and у are given numbers, a s l , y > 0 , and g(a, r) is a non-negative function 
with the property 

(4.2) g(a, s ) + g ( a + s , r—s) ^ g(a, r) 

for all a s 0 and 1 S s < r . Our goal is to deduce an upper bound on E(Ny(a, r)). 
The one-parameter version of Theorems 1 and 2 reads as follows. 



362 F. Mó r i c z 

T h e o r e m 5. Suppose that there exists a non-negative function g(a, r) satisfying 
(4.2) such that (4.1) holds for all 0 and r S l , where either a S l and 0 < y S l or 
o o l and y > l . Then we have 

(4.3) E{N'(a,r))*>C1,a,1f(a,r) 
for all a^O and rSl. 

We remark that the constant C l t [ j r in (4.3) may be taken as 

J 1 if a S i and 0 < y s i , 
Cl,a,V = j ( 1 _ 2 ( l - a ) / i ) - y if a > i a n d 

By setting £,] = 2 Cu 0 ' = 1, 2, . . . ) , Theorem 5 follows immediately 
(k,i)iQj\Qj-i 

from [6, Theorems 1 and 2]. On the other hand, if we apply [6, Theorem 4] to this 
sequence we get the following one-parameter version of the present Theorem 4. 

T h e o r e m 6. Suppose that there exist a positive, non-decreasing function x(r), 
and a non-negative function g(a, r) satisfying (4.2) such that 

E\T(a, r) |v s xy(r)g(a, r) 

holds for all a^Oand r f e 1, where y s l . Let K(r) be defined by (3.2). Then we have 

E(Ny(a, r)) S Ky(r)g(a, r) 
for all osO and rsl. 

Let us consider two interesting special cases for the choice of {QR}, which 
provide (i) the square sums, among others, and (ii) the spherical sums. 

Case (i). Let m=m(r) and n=n(r), where 

l s m ( l ) s m ( 2 ) s . . and 1 s n( l ) n(2) s . . . 

are two sequences of integers such that max {m(r), «(/•)}-* as r — a n d let 
Qr= {(lc, l)\k^m(r) and /S«(r)}. It is convenient to put m(0)=w(0)=0 and Q0=$. 
Now 

{m(a+r) n(o+r) m(a) n(a) l 

2 2 - 2 2KB-k=1 1 = 1 k=l 1 = 1 J 
In particular, if m{r)=n(r)=r, then the T(0, r) = S(0, r; 0, r) give back the square 
sums. The case m(r)=n(r)=2r is also of interest. 

We mention that if f(b, m\c,n) is a non-negative function satisfying (1.1)—(1.2), 
then g(a, r) defined by 

g(a, r) = / ( 0 , m(a + r); 0, n(a + r))-f(0, m(a); 0, n(a)) 

is also non-negative and satisfies (4.2). 
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It is worth stating Theorem 6 explicitly in the special case of mutually orthogonal 
Then y = 2 , x(r) = l, and with cr2,=£•(££,) we have 

{m(a+r) n(a + r) m(o) n(a)l 

4 = 1 / = 1 k=1 1 = 1 J 
for all a s 0 and r s l . 

C o r o l l a r y 4. Let {m(r)} and {«(/")} be two non-decreasing sequences of positive 
integers. Under the conditions (3.6) and (3.7) we have 

{ m(a + r) n(a+r) m(a) n(a)l 

2 2 - 2 2 K , k=1 1 = 1 k=1 1 = 1 J 
for all a s O and r s l . 

Case (ii). The spherical sums are defined with the aid of Qr={(k, l):k2+l2^r} 
(' '=1>2, ...; ß i = 0 ) , i.e., now 

T(a,r)= 2 CH-

The case of orthogonal is again of interest in itself. 

C o r o l l a r y 5. Under the conditions (3.6) and (3.7) we have 

E(N2{a,r))^(\og2r)2 2 
o - = k 2 + ! 2 S a + r 

for all a s l and r s l . 

Corollaries 4 and 5 were proved earlier in [7, Corollary 3 and Theorem 4]. 

§ 5. Generalizations to multiparameter case 

Let Zd denote the set of all ¿/-tuples of non-negative integers, and let Zd
+ denote 

the set of all ¿/-tuples of positive integers, where ¿ / s i is a fixed integer. The points 
in Zd are denoted by k, m etc., or sometimes, when necessary, more explicitly by 
(kx,k2, ...,kd), (m1,m2, ..., md) etc. Two ¿/-tuples k and m are said to be distinct 
if for at least one j we have kj^mj (1 sj^d). Zd is partially ordered by agreeing 
that k S m iff k¡^m¡ for each j, 1 S /S¿ / . We write 0 and 1 respectively for the points 
(0, 0, . . . ,0) and (1, 1, ..., 1) in Z". 

Let {Ck}={Ck: be a random field, i.e. a collection of rv's indexed by the 
set Z\. Put 

h + mi bd+md 
S(b,m)= 2 ck= 2 - 2 k kd 

b + l s k s b + m fc^i^ + l kd=bd+l 
and 

M(b,m)= max |S(b,k)| = max ... max |5(b,k)|, 

11 
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where b£Zd, m£Zd
+, and b + 1 , b + m are the usual coordinatewise sums. 

To formulate the generalizations of the above Theorems 1—6, let / (b , m) 
denote a non-negative function depending on the joint df of { C k : b + l s k s b + m } 
with the following property. Set, for 1 

b j = (blt..., bj.lt bJ+1,..., bjzz*-1 

and 
m j = (m 1 ; . . . , my. ! , mj+1,..., m ^ e Z ^ " 1 , 

where b=(b1,b2 bd)£Zi and m = ( w j , w 2 , ...,md)£Zd
+. We require that the 

inequality 

(5.1) / ( b j , m j ; bp hj) +/ (b y , m ;^bj + h^mj-hj)s/(b;, m }; b¡, m¡) =/(b, m) 

holds true for all b^Z*, and l ^ j ^ d . 
Inequality (5.1) expresses that / (b , m) as a function of the interval (bj + l, bj+mj) 

is superadditive for any fixed values of blt mx, ..., bj_1, m}_l5 m J + 1 , ..., 6 d , m d . 
Examples are / (b , m ) = m j 1 m f 2 . . . me

á
d with /S^sl for each j, 1 ^j^d; or / (b , m ) = 

= i n latter case assuming the existence of the finite variances 
b + l s k s b + m 

a l o f t h e r v ' s £k . 

T h e o r e m 7. Suppose that there exists a non-negative function / ( b , m) satisfying 
(5.1) such that 

£ | S ( b , m ) | * s / « ( b , m ) 

holds for all b € Z d and m £ Z d
+ , where either a s l and 1 or a > l and y > 1 . 

Then we have 
£ ( M y ( b , m ) ) s C d , I > v / « ( b , m ) 

for all b € Z d and m£Zd
+. 

Here the constant C¿>e>y may be chosen as follows: Ci x y = \ if a s l and 
0 < y s l , and 

Cita,y = Cl^y = (\-20~-*)h)-iy 
if a > l and y > l . 

In connection with Theorem 7 we note that BICKEL and WICHURA [2] proved 
a fine but not comparable result, providing a multiparameter extension of BILLINGS-
LEY'S main fluctuation inequality [3, Theorem 12.5]. Roughly speaking, they obtain 
an asymptotically optimal inequality on _P{M(b, m)sA} in terms of assumed bounds 
on P{ |5(b, m ) | s l } , where b£Zd, m£Zd

+, and A is a positive number. 

For each j, l^j^d, let K}(m¡) be a positive and non-decreasing function of the 
natural number m¡. Define A¡{in¡) by the recurrence relation (3.2), that is, for m¡ = 1 
set y l j ( l )= l j ( l ) , and for m ¡ m l set 

(5.2) Aj(mj) = Xj(hj)+Aj(hj-\), where hs = [ i ( m j + 2 ) ] . 
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T h e o r e m 8. Suppose that there exist positive, non-decreasing functions Xj(mj) 
for j— 1, 2 , d , and a non-negative function / ( b , m) satisfying (5.1) such that 

(5.3) E\ S(b, m 7 7 mmj)f(b, m) 
J = I 

holds for all bfZd and meZd
+, where y S l . Let A^m^ be defined by (5.2) for 

j= 1, 2 , . . . , d. Then we have 

(5.4) E(My(b, m)) == f[ A}{mj)f{b, m) 
i=i 

for all b 6 Z d and m £ Z d
+ . 

The proof of Theorems 7 and 8 may be carried out by induction on d in the 
same manner as we did it from d= \ to d=2 in the case of Theorems 2 and 4. The 
simplest case d— 1 was proved in [6]. 

As is well-known, the random field {£k} is said to be orthogonal if 
(5.5) £ ( ik i i ) = 0 if 
Setting 
(5.6) £ ( © = a t , 
for orthogonal {k

 w e obviously have 

£ (5 2 (b ,m)) = 2 < • 
b+l^k^b+m 

This is a particular case of the condition (5.3) with y=2, X j(mj) = 1 for each j, 1 ^ j ~ d , 
and / (b , m ) = 2 °k (the latter is even additive). Now A/mj)=log 2mj for b + l i s k s b + m 

each j and Theorem 8 provides the following 

C o r o l l a r y 6. (The ¿/-parameter version of the Rademacher—Mensovinequality) 
Under the conditions (5.5) and (5.6) we have 

E{M\b,mj)^ 77 (log 2m,)2 2 <4 
j ' = 1 b + l s k s b + m 

for all b£Zd andm£Zd
+. 

Similar generalizations f rom 2 to d of Theorems 5 and 6 are valid, too. Instead 
of stating them explicitly, we formulate a useful consequence for orthogonal £k . 

Let (Qi Qz • • • be an arbitrary sequence of finite regions in Zd
+ such that (J Qr is 

r = l 
not bounded (but may not coincide with Zd

+). Set 

T(a, r) = 2 Ck 
k € + r \ G a 

and 
N(a,r) = max | r ( a , s ) | , 1 • i' '-r 

where ¡ ¡ ^0 and r S l are integers, Q 0 = 9 . 

H* 
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C o r o l l a r y 7. Under the conditions (5.5) and (5.6) we have 

(5.7) E(N*(a,r)) S (log2r)2 2 4 
к €e 0 + r \ Q 0 

for all as0 a«d r s l . 

We note that in the more general setting when the coordinates mj of m£Zd
+, 

l^j^d, depend on an e-dimensional parameter г = ( г ъ r2, ..., re)£Ze
+, where 

1 á c < ( / , the following result can be achieved for orthogonal £k . Let {QT: r£Ze) 
be an arbitrary collection of finite regions in Zd

+ such that 2 O = 0 , QsaQr if s á r , 
and U бг is n o t bounded in Zd

+, where r, s € Z e . Set 
Г ( а , г ) = 2 Ck 

k € ö a + r \ O a 
and 

N( a, r ) = max IГ (a, s)| = max ... max |Г(а , s)|, 
l s s a r l á S j á l ^ 1 S S , S r t 

where a £ Z e and r£Ze
+. Then, under (5.5) and (5.6), we have 

(5.8) £ ( j V * ( a , r ) ) á 77(bg2r,.)2 2 4 
¡=1 k€G a + r\Öa 

for all a 6 Z e and r € Z ^ . 
In case e = l , (5.8) reduces to (5.7). 
Finally, we mention that viewing our proofs, it is striking that we use no full 

power of a probability space. In fact, Minkowski's inequality was applied only, 
which is available in any measure space (X, si, ц). Hence our theorems are true 
in (X, si, ju), too, taking integrals over X with respect to ц in place of the expectations 
on the left-hand sides of the corresponding inequalities. 
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On an extension of semigroups 

M. B. SZENDREI 

1. Since the appearance of N. R. REILLY'S paper [13] in 1966 a number of 
structure theorems has been proved for regular semigroups. In the paper [13] it is 
proved that a semigroup is a ^-simple regular co-semigroup if and only if it is iso-
morphic to a Bruck semigroup over a group ([12]). This result was generalized by 
B. P. KOCIN ([4]) a n d W . D . MUNN ([9]) by showing t h a t a s e m i g r o u p is a s imple 
regular co-semigroup if and only if it is a Bruck semigroup over a finite chain of 
groups. The structure of a 0-^-simple orthodox semigroup the subsemigroup of 
idempotents of which is isomorphic to the direct product of a descending co-chain 
and a rectangular 0-band whose non-zero idempotents form a subsemigroup, has 
been descr ibed by G . LALLEMENT a n d M . PETRICH in [6]. 

In order to generalize these constructions we define the concept of the (0-) exten-
sion of a semigroup 2 by a semigroup S. The sets of nonzero elements of S and 
Z will be denoted by S0 and Zm, their zero elements by o and co, respectively. Let 
S'0

2> be the subset of S0XS0 consisting of all those pairs (.?, t) of elements for which 
st£S0. Let C be a cancellative monoid. Its identity element will be denoted by 1. 
L e t / , g: S^2)C be a pair of functions with the following properties: 

whenever rst£S0. Moreover, let a homomorphism x of C into the endomorphism 
monoid of I be given. 

D e f i n i t i o n . Define a multiplication on the set SoX-E^UO by 

(1) 

(2) 
(3) 

r,St9 

{st,a{fSitx)z{gSi,x)) if st£S0 a n d c ( f S i , x ) T { g s , t x ) e Z , 

0 otherwise, 
(s, er)0 = 0(s, ff) = 0 - 0 = 0. 

Received February 5, 1976. 
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The groupoid obtained in this way is a semigroup, denoted by £f°(S, I, C,f, g, x) 
and called a 0-extension of I by S over C. 

If none of S and I has zero elements then £f°(S, I, C, f, g, x)\0 is a semigroup. 
This will be denoted by I, C, f g, x) and called the extension of I by S 
over C. 

For example, the Bruck semigroup 38(1, n) over the monoid I is the extension 
£f(B, I, №,f*, g*\ x) of 2 by the bicyclic semigroup B, where № is the additive 
monoid of nonnegative integers, B ^ N ° X № with the multiplication defined by 

(m, n) (p, q) = ( m - f p - m i n (n, p),n + q-mm(n, p)), 

f*,g*:BxB-~№ are defined as follows: 

f(m, n), (p, q) = J>-min (n, p), g*m,n)Ap,q) = n—min (n, p), 

and x is the homomorphism of № into the monoid of endomorphisms of I mapping 
k into nk. Note that the func t ions /* and g* have the properties (1)—(3). 

It is clear that it suffices to investigate the properties of the semigroup 
Sf°(S, I, C,f, g, x) because the properties of ¿f(S, I, C,f, g, x) can be deduced 
from those of £f\S, I, C,f, g, x). 

Define an equivalence relation on £f°(S, I, C,f, g, x) such that 0 # 0 and 
(r, Q)^(S, O) if and only if r=s. The relation ^ is a O-congruence in the sense that 
if (r, Q)<#(S, <r) and 0 ' , Q'Y€(S\ a') then 0 , QW, (S, a)(s', imply 
('•, e)(r', Q'ms, o)(s', a'). 

The pair of functions f g: S^^C is said to be trivial if S^f= S™g=1. In this 
case £f\S, I, C,f,g, x) is the 0-direct product of S and I. Note that the semi-
direct product of I by S introduced by K. KROHN and J. RHODES in [5] can be con-
sidered to be an extension of I by S over the free monoid FJ generated by 
the set S where f, g: SxS-*-F| are defined as follows: (SX5)» = 1 w h i l e / depends 
on its second variable only and is a homomorphism. 

The constructions used in [15] and [16] by R. J. WARNE to describe the structure 
of ^-simple and simple regular /-semigroups, are extensions of a group and of 
a finite chain of groups, respectively, by the extended bicyclic semigroup if and 
only if they have trivial distinguished elements. Construction / applied in [1] and 
[2] by J. E. AULT and M. PETRICH to give the structure of 0-simple co-regular semi-
groups, is a. O-extension of a finite chain of groups by the 0-^-simple co-regular 
semigroup with trivial ^"-equivalence if and only if the maximal idempotents 
belong to the same ^-class. 

The aim of this paper is to investigate the properties of (0-) extensions. In sec-
tion 2 we deal with functions / , g: S^—C satisfying (1)—(3). The main result of 
this section is Theorem 2.3 characterizing these functions when S has an identity 
element and C is a monoid embeddable in a group. In Theorem 2.4 a necessary 
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and sufficient condition is given for / and g enabling us to extend their definitions 
to Se. Finally, applying Theorem 2.3, we describe the structure of those 0-^-simple 
semigroups with identity which admit f, g of a special type. In section 3 we prove 
criteria for £f°(S, E, C,f,g, x) to be regular or inverse. We investigate Green's 
relations, ideals and homomorphisms of O-extensions. We introduce a concept 
of equivalent O-extensions and give conditions for O-extensions to be equivalent. 
These results are essentially independent of the results of section 2. Theorem 2.3 is 
needed only in Theorems 3.9 and 3.11. 

For brevity, if we consider functions f,g: C or a O-extension Sf°(S, I, C, 
/> g, we always assume conditions (1)—(3) to be satisfied. We shall write lower 
case Roman letters for the elements of S, in particular e for its identity element, and 
lower case Greek letters to denote the elements of I , in particular e to denote its 
identity element. 

S0 together with the multiplication in S restricted to S0 is a partial semigroup. 
By a right [left] ideal of S0 we mean a non-empty subset R [L] of S0 with the property 
that r£R [l£L] implies rs£R [,y/ÇL] for any elements of S0 whenever the product 
is defined. Analogously, a homomorphism of S0 into a semigroup T is a mapping 
(p\ S0-*T such that for all elements s, t in S0 we have (st)(p=scp • t<p provided st is 
defined. 

For convenience, we use the expressions "if s = o " and "if s ^ o " also in the 
case when S has no zero element. If this is the case then s = o is false, s^o is true 
for every 5 in S. 

The results and notations of [3] will be used without any comments. 

2. In this section we investigate the properties of functions / , g: 
satisfying conditions (1)—(3). 

L e m m a 2.1. If x, s are elements of S0 such that sx=s, then fSiX=1, and if 
xs=s, then gx>„= 1. 

P r o o f . Assume that sx=s. Applying conditions (1) and (2) we get 

f s , s f s 2 , X f s , s a n d & s , s f s 2 , X f s , x S s , s ' 

Since C is a cancellative monoid,/S2 X = 1 follows from the first equality and fSiX=1 
from the second one. The second half of the lemma follows by duality. 

L e m m a 2.2. Let s,s',t,t' be elements of S0 such that sS£s\ tSftt' and st^o. 
Then we have 

(0 fs,t®fs,f and gs,tS?gs.tt; 

(ii) if the group of units of C is trivial, then fSi, = ,, and gs,t—gs-,t'-
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P r o o f . Suppose t^t'. Then there exist u, v in S such that tu=t' and t'v=t. 
Clearly, st'^o. Condition (1) implies the following equalities: 

fs, , uv = /«r , u fstu, V • 

For stuv = st Lemma 2.1 shows that f s t , u v = 1. Hence f s t u has an inverse in C, 
which implies that f S i , £ % f s t , . If the group of units of C is trivial, then the second 
equality implies that f s t > u — 1 and the first one that f S i t ' ~ f s , t - Moreover, if s ^ s ' , 
then xs=s', ys'=s for some x and y in S. We have yxs=s, so it follows f rom 
Lemma 2.1 that ^ ) S = 1 . (3) implies 

Syx,s 8x,s8y,xs> 

which gives g , ; s = l . Analogously, one can show that gx>s,- = 1. By condition (2) 
we have 

&x,sfs'tt' fs,t'Sx,st'i 

that is, / s - _ = f S i t, =fSit. The proof for g is similar. 
In what follows we assume that C can be embedded in a group. It is well known 

that if this is the case then C can be embedded in the group of right quotients which 
will be denoted by C *. Let us identify C with its image under this embedding. 
If two functions Xi> X2• S0-*C a r e given, let X\ll%- >*>0—C* be the mapping defined 
by .v/i/Z2= 'sZi('%)-1- The next theorem characterizes the functions f, g: 
by functions of one variable provided S has an identity element. 

T h e o r e m 2.3. (i) Let S be an arbitrary semigroup and X\, /2: two func-

tions such that Rj={s£ is a right ideal in S0, LI—{s£S0\sx2£l} is a left 
ideal in S0 for every right ideal I of C, moreover, the mapping (p = Xi/Xz- S0 — C* 
is a homomorphism. Then the functions f,g: S^ C defined by 

(5) /,,1 = (sZi)_1(sOZi and gs, t = ( tya)"1^ OZa 

satisfy conditions (1)—(3). 
(ii) If S has an identity element e then for all f g: ,S^—C with properties (1)—(3) 

there exists a unique pair of functions Xi, "fa So -+C with ey^=ey^=\ such that (5) 
holds. They are 

(6) sxi =fe,s and SX2 = gs,e-

Furthermore, these functions satisfy the conditions required in (i). 

P r o o f . Since the facts that RSXlc a right ideal and L t x^ c is a left ideal of 
e n s u r e ^ C and gSjt£Cfor every (s, t)£Sj?\ (i) can be checked by simple calcu-
lation. 

In proving (ii) suppose S has an identity e and eyA=ey^=\. Then (5) implies (6). 
Because of (i), it is sufficient to show that (5) holds and the conditions required in (i) 
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are satisfied by the functions /1> X2 defined by (6). Clearly, (5) is an immediate con-
sequence of (1) and (3). On the other hand, (2) and s t ^ o imply 

(7) fs,t8s,t — 8s, e fe, t • 

Applying (5) and (6), this yields 

OO/iilOO^)-1 = s z i t e r ^ / i t e ) " 1 , 
that is, that X1/X2 is a homomorphism. Finally, if I is a right ideal of C and s£R,, 
then 00Xi— sXifs,t£l f ° r every t provided that st^o. Hence R, is a right ideal. 
Dually, L j is a left ideal. 

We have seen that the pair of functions / , g can be simply characterized if 
S has an identity element. Now it is natural to raise the problem of finding conditions 
under which the definition of / and g can be extended to Se. Before treating this 
question we introduce some notations. 

Let S be a semigroup. Denote the right and left annihilator ideals of S by 
Z r and ZM respectively. If S does not contain a zero element, then Z r = Z , = • . 
Further, h: S(

0
2)^C* will denote the mapping defined by hSil=fSilg~f provided 

f , g : S P - ~ C are defined and C £ C * . 

T h e o r e m 2.4. Suppose the semigroup S has the properties that Z r = Z , (which 

will be denoted by Z) and for any elements s, s', t, t' in S, the relations st, st', s't^o 

imply s't'^o. Let f, g: be given, where C is a monoid embeddable in a group. 

The definition of /, g can be extended to Se if and only if 

(a) for each element q in S \ Z 

j q = n p s : ; n c ) i , M n c 
s,t 

sttsq^o 

is not empty, and for arbitrary p, q, s, td S \ Z 

(b) h S : t h - ] h P i q h - l = l 

provided st,pt,pq,sq^o. 

R e m a r k . The definition of fig can be extended to Se if we require (a) and 
(b) to hold only for the elements p and q of some subsets P and Q of S\Z, respec-
tively, where P and Q have the following property: For each s, t, t' not contained 
in Z we have sq^o for some q in Q and pt,pt' ^o for some p in P. 

P r o o f . If / and g are defined on Se then, applying the foregoing results, we have 

hs,thp,\hpiqhS)q — (gs,e fe,t)(fe,t gp,e) igp,efe,q) (fe,q8s,e) ^ 
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for every p, q, s, t in S\Z with st,pt,pq, sq^o. Furthermore, if q£ S\Z, then there 
•exists an element s such that sq^o. If st^o, then we have 

fe,q = Ss.e^s.q = 8s,e^s,tb p.t^p.g ~ fe.t^1 P^p,q ~ fe.t^s.t 

Hence / e , and the proof of necessity is complete. 
As for sufficiency we prove the stronger statement formulated in the Remark. 

Suppose that (a) and (b) hold for some subsets P and Q of S \ Z . We define a rela-
tion ~ on S by writing s~s' if and only if s=s' or ts and ts' ^o for some t in S. 
Clearly, this relation is reflexive and symmetric. If s~s' and s'~s", then ts, ts', 
t's',t's"^o for some t and / ' i n S. But then t's^o, that is, s~s". Hence ~ is an 
equivalence relation. We restrict this relation to Q and choose an element q° f rom 
each equivalence class of Q and an element cQ„ f rom Jq0. If and q^q°,then, 
by the definition of P, we have pq°, pq^o for some p in P. Now we define cq by the 
equality cq=cqoh~^,hp q. Since cQ0£Jg0 and C is cancellative, there exists a unique 
•element c in C such that cq0=ch~1

qhp q0 and ch^—c^h'^C. Clearly, c=cq and 
hence cq£C. Let $ be an element of S\Z such that sq°o. Since pq,pq°^o, 
we have sq\±o and (b) implies h~^,hp>qh~q = Thus we have 

Cqhs,q = Cqof1p,1q0^lp,q^ls,q = Cq0^s,q<>-

Hence c 9 £J , r Relation (b) ensures that cq is welldefined. Let s,t be elements of 
S not contained in Z. Then, on the one hand, there exists an element q in Q such that 
sq^o and, on the other hand, there is an element p in P such that pt^o and 
hence an element q' such that pq'^o. Let us define fe,n gs.e to be the uniquely 
determined elements of C such that 

fe,tKhhP,q, = Cq' a n d 8s, e K « = C4 • 

•(b) implies that / c > ( and gse are well defined. If z £ Z , then fe z and gz e can be 
arbitrarily defined. By Theorem 2.3 it suffices to check (5) for the mappings defined 
by (6) and to check (7). Let s, t be elements of S with st^o. Then pst^o for some 
p in P and pq'^o for some q' in Q. Clearly, ps^o and we have 

fe,sfe,st = hp,shp,q'Cq' Cq'hp,q'hpst = gp,sfp,sfp,stgp,st = 

8p,sfp5,t8p,st f s , f 

In the last two equalities conditions (1) and (2) are applied. Analogously, we have 
g^egst,e=gs,t if st9^0. Finally, if st^o, then sq^o for a q in Q and hence pt, pq^o 
for some p in P. Applying (b), we have 

e~1f = h h =h os,eJe,t "stq^q vqnp,qnp,t "s,<> 

a s was to be proved. 
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It is easy to see that for any elements p, q, s,toiS and x, y, u, v of Se 

h h~vh h'1 — h h h h-1 ns.t'lp,t"p,q'ls,q — "us,tv''xp,tv'lxp,qy"us,qy 

provided ustv, xptv, xpqy, usqy^o. One has only to observe that 

hs,t fs,tSs,t fs,tofst,vfst,v&s,tvft,v hs,tvft,v 
and dually 

^s, t Su,s^us,f 

A subset M of S\Zr will be called left O-reversible if for any pair s, s' of elements 
of S the existence of elements m in M and t in S with st, sm, s't, s'm^o implies the 
existence of an element x in /SPIES'such that sx and s'x^o. It follows by straight-
forward calculation that in this case 

K,,h?SK',mKm = KxK-}xK',xK,x = 1-

Hence Theorem 2.4 implies the following 

C o r o l l a r y 2.5. Suppose Z = Z , = Z , holds in the semigroup S. Assume, further-
more, that S has the property that for any elements s, s', t, t' the relations st, st', s't 
imply s't' j^o and S contains a left O-reversible subset M such that for every element 
s of S not belonging to Z the set M has an element m with sm^o. Then the definition 
of fig: can be extended to Se if and only if for each element m of M 

jm= n (Ch~l nc)fiwnc 
s,t 

st,sm^o 
is not empty. 

The assumption of Corollary 2.5 is satisfied for example if S is an inverse semi-
group in which the semilattice of idempotents is an orthogonal sum of semilattices. 
M can be chosen to be the set of idempotents. If 5 has no zero element then in 
Theorem 2.4 P and Q can be chosen to be singletons. In this case the assumption 
of Corollary 2.5 means that S contains a left reversible element m. 

Evidently, condition (a) of Theorem 2.4 is satisfied if C is a group. 
The following example shows that there exist functions f,g: which 

cannot be extended to Se, while considered as functions / , g: Sj^^-C* they can be 
extended. Let S be the extended bicyclic semigroup defined by R. J. WARNE in [14]. 
We denote the set of integers by I. S is the set / X / equipped with the multiplication 

( U ) (k> 0 = (j + fe-min (;', k), l+j-mm (j, /<)). 

Clearly,/ , g: SXS^N0 defined by / ( i i J h ( f c i t ) = k - m i n (j, k), g0J),ik>l)=j-min(J,k) 
satisfy (1)—(3), while 7(to ,o) is empty for every (k0, /„). On the other hand, S is 
an inverse semigroup without zero, hence the definition of f g can be extended to 
Se if negative integers are allowed to be used. 
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Now we determine all the pairs of functions fig:FxxFx—C which can be 
defined on the free semigroup freely generated by its subset X. 

T h e o r e m 2.6. Let C be a monoid embeddable in a group and let Xi, /y. Fx—C 
be two functions such that Xx1=X%2=l, R]={s£Fx\sx1£l} is a right ideal, Lj = 
= {s£Fx\sXz£l} is a left Med °f Fx for every right ideal I of C and the mapping 
<P=XilX2 satisfies the following condition: for all ... x„£Fx\X, where x^X 
( i = l , . . . , n), we have 

(8) s<p = (x 1 ; x2)(p(x2x3)(p...(xn_lxn)(p. 

Then fig: FxXFx^C defined by 

(9) fs,< = (Vi)_1(sOZi> gs,, = ifi^ist)^ 

have the properties (1)—(3). Conversely, for any fig: FxXFx-*C satisfying (1)—(3) 
there exists a unique pair of functions Xi> X2' ^ V • C with the above properties. These 

functions are defined on Fx\X by 

(10) sxi =/Xl> « . . . I , ) sX.2 = Sx i . . . x „ _ i , x „ 

where xt, ..., xn£X and ... x„. 

Proof . Since Rs%lC is a right ideal and Lt~c is a left ideal of Fx, we have 
/s>( and gStt£C for all s, t in Fx. The first statement of the theorem can be 
verified by calculation. 

Now let/ , g be given with properties (1)—(3). Relations (9) ensure that the only 
functions Xi, X2 with XyA = X/2 = 1 are the ones defined by (10). All we need to prove 
is that these functions have the required properties. (9) is implied immediately by 
(1) and (3). If I is a right ideal of C, s^R^ t£Fx, then ( . y O / ? i t h a t is, 
Rj is a right ideal of Fx. Dually, Lj is a left ideal of Fx. Let x l f ...,x„£X, where 
«S3 . Applying (9) and (10), relation (2) implies that 

, X 2 . . . X „ 8 X 1 . . . X „ ~ 1 , X „ f x i , X i S x i , X 2 f x 2 , X 3 — X „ S x 2 . . . X „ - l , X „ ^ 

that is, we have 
(x1...x„)q) = (x^cpixi.-.x^cp. 

By induction on « one can show that (8) holds, which completes the proof. 
Now it is easy to construct a pair of functions on a free semigroup such that its 

definition cannot be extended to the free monoid generated by the same set. Let 
X be the two-element set {x, y}, C the cancellative monoid of non-negative integers 
with the usual addition. Define }A in the following way: let x2/1=y2/a=0, (xy)x 1 = 
= (^)Xi= : land(x1 . . .x„)x1 = (xax2)x1 + . . .+(xn_1xn)xiif « S 3 and x1; . . . ,x„€{x, y). 
Let X2 be identically 0. Obviously, these functions have the required properties 
enabling us to define fig: FxXFx-*C by (5). However, hy<y-hxy+hxx—hyx =—2. 
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In what follows we prove a structure theorem for 0-^-simple semigroups 
with identity on which a nontrivial pair of functions / , g: is defined where 
TV° denotes the additive semigroup of nonnegative integers. The operation in № 
will be denoted by + . Clearly, № * is the infinite cyclic group. 

L e m m a 2.7. Let the semigroup S have an identity e and two elements a, b such 
that ba=e. If fe,a=n (n£№), then for all nonnegative integers k and m 

fe,akbm = 8akbm,e = 

P r o o f . Since ba=e, we have bkak=e for all k in № . Hence akSCe and bk2%e. 
This implies by Lemmas 2.2 (ii) and 2.1 that 

/C,&*=/e,e 1 = 0 a n d Sa«,e = 8e.e = 

Using the homomorphism cp defined in Theorem 2.3 we have 

fe,ak =fe,a«-gax,e = <¡«9 = H ^ P ) = Hfe,a~8a,e) = kfe,a = kn. 

On the other hand, we have 

0 = e(p=(ba)(p = b<p + aq> =-gb,e+fe,a 

whence gb,e=n. In the same way as above one can prove that ghk e=kn. Since 
for all k,m in № we have ak^akbm^bm, Lemma 2.2 (ii) ensures that f e t a u b m = 

=fe,a" = k n a n d 8akbm,e = 8bm, e
 = m n -

An immediate consequence of this lemma is 

C o r o l l a r y 2.8. The functions f, g: BXB-»№ definable on the bicyclic semi-
group B are exactly the constant multiples of f* and g* (see § 1.). 

Let S be a semigroup with identity e and zero element 0 on which a nontrivial 
pair of functions / , g: S(

a
2) -+№ is given. Let 

Fi = {sdS0\fe,s = i), Gi = {s£S0\gs,e = i} 

for all i in № . {F.ji'gTV0} and {<7,1/€ A^0} are partitions of S0. The equivalence rela-
tions induced by them will be denoted by !F and respectively. Let J f = J * 7 f l 
Clearly, its equivalence classes are the sets Kitj = FiC\Gj. 

OO CO 

We remark that Rk+No= U Fi and Lk+N0= (J Gt where Rk+N0 and Lk+N0 
i=k i = k 

denote the right and left ideals of S0 respectively used in Theorem 2.3. Since q> defined 
oo 

in the same theorem is a homomorphism, (J Kt {U 0 is a subsemigroup of S for 
l = k 

every k in № . Lemma 2.2 (ii) implies that MQ^ and ££<^<8. Hence if S is 
0-^-simple, then the following holds: hr=r\rh—r\ for all r in F^Gj], whenever 
hk=k[kh—k] for all k in Kuj. These facts will be used without reference. To 
prove Theorem 2.10 we need 
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L e m m a 2.9. Assume that nontrivial functions f, g: are given on a 

0-3)-simple semigroup S with identity e such that the subsemigroup ( J Kt f U 0 has 
¡=i 

an identity element ev Let e1£Kn n. If ex=ab with .ba=e, then <Fbm is the identity 

element of Q tfMUO. i = mn 
(m + l ) n - l 

P r o o f . We prove by induction on m that r£ U implies ambmr=r. 
i = mn 

(m + l ) n - l 

Clearly, this holds for m—0 and/- dK„i0 implies abr=r. Suppose that r£ |J Kt0 

implies dnbmr=r for all m smaller than m' ( m ' s l ) and r£Km.„i0 implies cF'bm'r=r. 
o o 

Now let r£K, n, where m'n<j^(m' + l)n. Since ab is an identity element of (J Kt ¡, 
¡=i 

we have abr=r. Hence br££r, that is, br£G0. On the other hand, we have 

(br)<p = b(p + rq> = —n+j, 

whence br€K_n+j0. By assumption, (d"'~1bm'~1)br=br, that is, 

r-abr = aam'~1bm'~1br = am'bm'r. 

Moreover, if j=(m' + \)n, i.e. —n+j=m'n, then br={am'bm')br and 

r = abr = am+1bm'+1r. 
oo 

This completes the proof of the fact that cTbm is a left identity element in (J Kit f U 0. 
i — mn 

Dually, it follows that it is also a right identity. 

T h e o r e m 2.10. Let a nontrivial pair of functions f g : S^^-N0 be given on 
o o 

the 0-2i-simple semigroup S with identity e such that the subsemigroup ( J Kt t U 0 
¡=i 

has an identity element ex. Assume that e^K^ ^. Then 

(i) the ranges of f and g are the set of multiples of n. 
(ii) If, moreover, is a subsemigroup of S and ei^0,o = ^n.n» 

then S= №,f*, g*, x), where B denotes the bicyclic semigroup and the 
endomorphism 7i = lx preserves e. 

P r o o f . Since e1£F„, the number n is the least positive integer with F ^ n . 
The semigroup S is 0-^-simple, hence e££a0lex for some a and since S is regular, 
there exists an inverse b of a such that ba=e, ab=ex. Suppose that in contrast to (i), 
Fp^ • for some p, where n\p. Let d be the greatest common divisor of n and p. 
Then up—vn=d for some positive integers u, v. Let c be an element of Fp such that 
eS£c. By Lemma 2.7 we have cu£Kup Q, and since up>vn, Lemma 2.9 implies 
avb"cu=cu. Hence b"cuSCcu <£e. However, we have 

(bvc")(p = v(b(p) + u(cq>) = —vn + up = d, 
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whence it follows that b"c"£Kd%0 with d < n , a contradiction. On the other hand, 
cf"£Fmn by Lemma 2.7, which proves (i) for / . Dually, one can show (i) for g. 

Turning to (ii), we first show that all the elements of 5"0 can be uniquely re-
presented in the form akhbm, where h£K0i0. Let s£Kk„imn. Since S is 0-^-simple,. 
Green's lemma ensures that s=akh'bm for some ak, bm and h' such that e£?ak0ls, 
efflbm£fs and h'Jfe. Applying Lemma 2.9 we obtain 

Since ak£Kk„ 0, the equality akbkak=ak holds. Hence bkak£Cak, that is, bkak£G0. 
Moreover, (bkak)cp = —kn+kn=0, whence bkak£K0 0. The fact that bmcf£K0^ 
can be proved similarly. By assumption is a subsemigroup of S. This implies 
that h=(bkak)h'(bm<f)6KQ 0and h^O because s^O. We haveobtained that s=akhbm. 
To prove uniqueness suppose that we have 

we have k—m=k'—m', that i s , k — k ' = m — m ' = r . Without loss of generality we can 
assume that r is nonnegative. Multiplying the equality above by bk' on the left and 
by ¿f' on the right it yields efhbr=h'. Hence h'cfbr=ti. Should r > 0 hold, then 
dbr would belong to L1+N0 implying h'£L1+N0. Since h'£K0t0, we have r = 0 and 
h=h', as was to be proved. 

Let h be any element of Since (bh)(p—bq>+h(p = —n we have either 
bh^K0 „ or bh£Ln+1+N0. The latter would imply abh=e1h£Ln+1+m, contrary to 
the assumption e-Ji£K„in. Hence bh6K0t„ and by the foregoing bh = fib for the 
unique element fi=bha of K0i0. Similarly, we have ha£Kni0 and hence ha=(ab)ha— 
=afi. If h=0, then h=0 is the unique element such that bh=fib and ha=afi. The 
mapping % sending h into ft is an endomorphism of K° 0 as we have 

[(gh)n]b = b(gh) = (bg)h = (gn)bh = (gn)(h7i)b, 

whence (gh)n=(gn)(/m). Obviously, en=e. Using these results we obtain the product 
of any two elements of S0 in the form 

(am gb") (ap hbq) = am gb—r a"~r fib" = am ga"~r bn~r hbq = 

= am+p-r(gnp-rhTin-r)bn+q-r, 

where /-=min (n,p). In the second step we made use of the equality b"~rap~'= 
=ap~rbn~r implied by the fact that at least one of the exponents equals 0. This 
implies that the mapping $ defined by 

s = akbksambm = ak(bkak)h'(bmam)bm. 

akhbm= ak'h'bm' 
for some h, h' in K0i 0 . Since 

(akhbm)cp = (k-m)n, (ak'h'bm')cp = (k'-m')n, 

(m,h,n) if s 7s 0 a n d s = amhb", h£K0,0 

0 if s = 0 
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is an isomorphism of S onto Sf°(B, Kg0, C,f*,g*, x), where x is the homomorphism 
of № into the endomorphism monoid of K° 0 mapping k into nk. 

C o r o l l a r y 2.11. In a semigroup S satisfying the conditions of Theorem 2 .10 
the relations and Jf" are 0-congruences. 

Now we construct a ^-simple semigroup S with identity and a pair of func-
tions fg: SxS—№ with range № which fail to have the property that the sub-

eo 
semigroup (J KT; has an identity element. We shall use the notions and results of 

¡=i 
W . D . MUNN'S p a p e r [8]. 

The descending co-chain as a meet semilattice is isomorphic to the semilattice 
№a with underlying set № and operation defined by 

m A n = max (m, ri). 

Let E be the direct product N°AXN°A. The semilattice Eis uniform and has a greatest 
element (0, 0). The set TE of all isomorphisms of a principal ideal of E onto another 
one considered as partial mappings of E together with the usual multiplication is 
a ^-simple inverse semigroup with the semilattice of idempotenfs isomorphic to E. 
The principal ideal of E generated by (m, ri) will be denoted by [m,«]. For each 
pair of elements (m, ri), (p, q) of E there exist two isomorphisms <*(„,,,), (p,9> and 
%,„),(„.„) of [m, n] onto [p, q] defined by 

(m +1, n +_ / )a * m i „)( p > — (p + i, q -t - j) , (m + i,n +j) ot(minj(p> 

where i,j=0. Let us define the functions Xi and y_2- TE-*№ as follows: 

a'm, B), (p, «> Xi = m + n, a"(m> n)> (Pi q)x2 = P + <7, 

where tj may be + as well as - . Since a,^ n)i (p_ q) TE g aj^ n<) ^ TE if and only 
if (m,ri)^(m',ri) in E, the set Rk+^={P£TE\fiy_1£k+N'i} is a right ideal 
of TE. Dually, Lk+m= {P£TE\Px2£k+№} is a left ideal of TE. Furthermore, denoting 
X1/X2 by cp, we have 

(« (m, n), (p, q) <*(m'. n'), (p\q')) f ~ 

- - ( m - L | i + ( p A m ' - p ) + (qAn'-q))-(p' + q' + (pAm'-m') + {qhn'-n')) = 

= (m + n)-(p + q) + (m' + ri)-(p' + q') = 

= a(m, n), (p, q)<P + a(m'. n'), (p',«') <P-

Hence (p is a homomorphism. Theorem 2.3 implies that f,g: TEXTE-*-№ defined 
by (5) have the desired properties (1)—(3). There are two idempotents in Kltl which 
are dual atoms in the semilattice of idempotents: a(t,i),(o,i)> au.o),(i o)- Con-
sequently, the subsemigroup 1J KT T has no identity element. 

/=1 
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3. In the present section we deal with the properties of O-extensions y°(S, E, 
C,f, g, %) of a semigroup E by S. We state a proposition on the O-congruence induced 
by the O-extension. Necessary and sufficient conditions are given for £f°(S, E, C, 
/, g, x) to have an identity, to be a regular or an inverse semigroup. We investigate 
its Green's relations and ideals, too. The homomorphisms of a semigroup 
Sf°(S, I, C,f, g, x) into Sf°(S, E, C, /, g, x) are investigated in some special cases. 
We introduce a concept of equivalence between the O-extensions of a semigroup 
E by another one denoted by S and deal with the equivalent O-extensions. This 
section is mostly independent of section 2, the main result of which, Theorem 2.3, 
is used in Theorems 3.9 and 3.11 only. 

Let the semigroups S and E be given. Consider a O-extension ¿7°(S, E, C,f g, x) 
of E by 5 over the cancellative monoid C. For brevity, denote ¿f°(S, E, C,fg, x) 
by S. 

The O-congruence induced by the O-extension S will be denoted by  <6. Its 
congruence classes are C r = {(r, Ea} and C 0 = {0}. Denote C r U 0 by Cr°. 

P r o p o s i t i o n 3.1. (i) All congruence classes C° with 0 adjointed corresponding 

to nonzero idempotents of S are subsemigroups of S isomorphic to Em. 

(ii) If E has an idempotent element i preserved by all the endomorphisms in 

{ f s , , , teS, styio}x then 

{(s,i)\siS0}\JO 

is a subsemigroup of S isomorphic to S°. 

P r o o f . Since, by Lemma 2.\, fhi=gui = \ we have 

, w N i iUQo) if Qa^o) 

{0 otherwise 
and 

(i, e)0 = 0(i, = 0 - 0 = 0. 

Hence CP is isomorphic to Ea. As for (ii) if i has the required property then 

f (st, i) if st o 
( S , 0 ( M ) = | o o t h e r w i s e 

and 
(s, i)0 = 0(s, ,) = 0 - 0 = 0. 

Hence {(5, j ) k ^ o } U 0 is a subsemigroup ismorphic to 5°. 

P r o p o s i t i o n 3.2. (i) An element (i, 1) of S is idempotent if and only if i and 1 

are idempotents in S and E, respectively. 

12 
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(ii) The element (e, e) of S is the identity of S if and only if e, t are the identities 

of S and I , respectively, and the endomorphisms of I contained in {/s>,, S, 

st^o}x preserve e. 

P r o o f . Using the definition of S, the element (/, i) is idempotent if and only if 

i'2 = i and i(fux)i(g,t,x) = i. 

By Lemma 2.1, iz=i implies f ¡=gl ¡=1. Thus the above condition is equivalent 
to the following one: i2=i and i2—i. Similarly, (e, s) is an identity if and only 
if for any s, a 

se = es = s and o(fStex)e(gSiex) = e(fetSx)a(getSx) = a. 

Lemma 2.1 ensures fs,e=ge,s—1> s o that the latter equality says that 

rofc.e*) = e(fe,sX)a = a 

for any s, o. Taking s=e this yields that s is the identity of I. But then e(fe,sx) = 
=£(gS ( ,)=e for all s?±o. Let J, t be any elements of S such that st^o. Applying (1) 
and the fact that x is a homomorphism we have 

and similarly, by (3), we have E=e(gSi,x). Conversely, if e and s are identities of 
S and I and x has the desired property, then (e, e) is clearly an identity. 

T h e o r e m 3.3. (i) The semigroup S is regular if and only if bot'i S and I are 
regular. 

(ii) S is an inverse semigroup if and only if both S and I are inverse semigroups. 

P r o o f . We show that two elements (r, q) and (s, a) of S are inverses of each 
other if and only if r, s and Q, O(FS rgR>SRX) are inverses of each other in S and S, 
respectively, where fs>rgr>„x is an automorphism of I. This proves the theorem. 
By definition (r, Q) and (s, A) are inverses of each other if and only if 

(11) rsr = r, srs = s, 

(12) e(Jr,srX)<r(f,,rgr,srX)Q(grs,rK) = ^(fs,rs^)8(fr,sgs,rs^)^(gsr.sx) = 

Using (2), (1) and (3), (11) implies that 

L.rgr, sr frtsfrs,rSs,rSr,sr fr,srSrs.t • 
It follows from Lemma 2.1 that fiSr=grs_r = / s , r s = g s r , s = 1 • Hence fr,srx= 
=grs,,>e=fs,rs>(=gsr,sx, the identity automorphisms of I and / r , s g s , „K, / s , r g r , s r x 
are automorphisms of I , inverses of ea.h other. Thus conditions (11), (12) are equi-
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valent to (11) and 

( 1 3 ) QG{fs,rgr,s,X)Q = e, v(fs,rgr,srX)Qv(fs,rgr,srX) = o(fs,rgr,sr><), 

as was to be proved. 
As for Green's relations and ideals of the semigroup S = £ f ° ( S , I, C,f, g, x) 

in general one cannot say more than the definitions of them. Therefore we deal with 
the case when S is regular. 

L e m m a 3.4. Let S be a regular semigroup. The principal left [right] ideal of 
S generated by (s, o) is contained in the one generated by (r, o) if and only if (r, Q)= 
= {s, a) or the following conditions are satisfied: 

(a) s<ESr[s€rS], 

(b) o£Xgn[a£gnI] where n — gxrx(xr = s)[7t = f,iX(rx — s)] 

is an endomorphism of I depending only on r and s. 

P r o o f . First we note that xr=s and x'r=s imply gxir=gx>tr. Indeed, if i is 
an idempotent in the if-class containing r, then ri=r and si=s. Thus by (3) we have 

gr,igx,r = gs,i and gr,igx-,r = gs,i. 

Since C is cancellative, gx,r=gx-,r-
By definition, (s, <r) £ S (r, Q) means that there exist elements x and £ in S and I, 

respectively, such that 

(14) xr = s, Z(fx,r>c)Q(gXirx) = a. 

Hence the necessity of (a), (b) is proved. Conversely, assume that (a), (b) hold, 
that is, there exist x and £,' in S and I, respectively, such that 

xr = s, £'QTI = a. 

Since S is regular, x can be chosen to satisfy xSis. If j is an idempotent belonging 
to the ^-class of s, then j=sw for some w and the equality 

f j , xfX, r f s , W f j , s f s , W f j , j 1 

follows from (1) and Lemma 2.1. Hence fx r is in the group of units of C and fx rx 
is an automorphism. Thus £'=i(fx,rx) for some ¿J, that is, by (14), (.?, cr)£S(r, q). 
The statement for right ideals can be proved dually. 

The next theorem deals with Green's relations of S. 

T h e o r e m 3.5. Let S be a regular semigroup. Two distinct elements (r, Q) and 
(s, a) of S are £P[!%]-equivalent if and only if 

(a) r£Cs[r^s] in S and 
(b) A (I Iga, QOL£ Ia[O£ QTXL, QU£OZ] where OL—gXfx (xr=s) [a =friXx(rx—s)] 

is an automorphism of I depending only on r and s. 

12• 
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Note that if the group of units of C is trivial, then gx,,= l[fr,x=\], whence 
a is the identity automorphism. 

P r o o f . By Lemma 3.4. all we need to show is that if xr=s,ys=r then gx>rx 
and g},tSy. are automorphisms of I being inverses of each other. To prove this one 
has only to observe that we have 

Ex, rSy,s 8>x,rSy,xr Syx,r 1 

by (3) and Lemma 2.1. 
An immediate consequence of this theorem is 

C o r o l l a r y 3.6. Let S be regular and I have the property that a£olC\ Xo for 

all elements a in I . 

(i) The distinct elements (/•, Q) and (s, <r) of S are equivalent if and only if 

rSfis and there exists an element t in S such that r3?t§fcs and Qa3>oP, where a=gx^ric, 

P=fsyy.(xr=sy = t) are automorphisms of I depending only on r, s and t. 

(ii) If both S and I are -simple, then S is also 0-&-simple. 

(iii) If the group of units of C is trivial, then S is 0-^-simple if and only if S and 

I are (0-)S>-simple. 

To make the formulation of the theorem on the ideals of S easier we introduce 
the following notations. If C is a subset of S containing the 0 element let 

C = {s€S|3ff€2;(s,o)€C} 

provided S has no zero element and adjoin o to C if o 6 S. 
For all c in C different from o define Tc as 

rc={aiZ\(c,a)iC} 

if 1 has no zero element and adjoin (o to Tc if co 61 . 
In particular, the subsets corresponding to the subsets of S denoted by L, R 

a n d D are d e n o t e d by L, At(l^L,l^o), R, Pr(r^R,r^o) a n d D,Ad(d£D, d^o), 

respectively. 

T h e o r e m 3.7. Let S be a regular semigroup. A subset L [ R ] of the semigroup 

S containing the 0 element is a left [right] ideal if and only if 

(a) L[R] is a left [right] ideal of S and 

(b) for all elements I of L[r of R], T of SI [r' of /-5] different from o and X of 

A,[Q of P,] I/.N^A^ONX^P,] holds where n=gx>,x(xl = l')[n =/r>x*(rx = r')] is 

an endomorphism of I depending only on I and l'[r and r']. 

The proof of this theorem is easy thanks to Lemma 3.4, therefore it is left to 
the reader. 
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C o r o l l a r y 3.8. Suppose the semigroup S is regular. The semigroup S is 0-simple 
if and only if S is (0-)simple and 

( 1 6 ) Z = U i « 2 
n € £ » 

for all s, t and a different from o and co, respectively, where 

E? = {(gx,Jxs,y)x\x!%t£>y and xsy = t). 

P r o o f . S is 0-simple if and only if for every element (s, o) in it the ideal 
D = S ( s , ct)S is equal to S itself. By the last theorem this means that S is (O-)simple 
and A , = I for every t ^ o . So it is sufficient to prove that the right side of the equality 
(16) is equal to A,. Theorem 3.7 (b) ensures that IJ ZonXQA,. Conversely, since 

the nonzero elements of D have the form (x', £)(s, <?)(y', rj), A, is contained in the 
ideal U Xo(gx.,sfx.s>y)xX. Let and i2 be idempotents such that ixSit¿¡fi2 and let 

x',y' 
x'sy' = t 

x=itx', y=y'i2. Obviously, x3kti£y and xsy=t. Applying identities (1)—(3) and 
Lemma 2.1, we see that 

Sx' ,sfx's,y' 8x',sfx's,y'&ii,x'sy' Sx' ,sSi\,x'sfxs,y' Sx,sfxs,y' 

Ex,sfxs,y' fxsy'tiz £x,sfxs,y 

Hence (gX',sfx-s,y')x£E? and AtQ (J Ion I, which completes the proof. 

In what follows we deal with homomorphisms of a semigroup S =6f°(S, S, C, 
f,g,x) into another one S =£f°(S, I, C,J, g, x) in two special cases. In the first 
case we assume that Cx and Cx are contained in the group of automorphisms of 
I and I , respectively. Then without loss of generality we can assume C and C 
to be groups. In the alternative case we suppose that S and S are inverse semigroups. 

T h e o r e m 3.9. Suppose that C and C are groups and the definition of f g and 
/, g can be extended to Se and Se, respectively. Denote the suitable homomorphisms 
used in Theorem 2.3 by cp: Sg-»C and (j>:St-+C. Suppose four mappings m1:S°^S°, 

S°, m2: S°-*Ea and /i2: are given with the following properties: 

(a) om1 = cop1, om2 = o)fi2> o m f 1 = oim^1, dfix
 1 = cofi^1. 

(b) For any r, s, Q, a in S and I, respectively, 

(17) (rs)m1 = rmx • smx, 

(18) 
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if (rs)mlo and (go)^^o, furthermore 

(19) ( r s ) m 2 = rm2- sm^rm^x)-1, 

(20) (go) fi2 = qh 2 • on2(QHi V*)'1 

whenever (rs)m1 ¿¿o or rmx • smt ^ o and (go)pi ^ o or g^ • a ^ o. 
(c) For any r, g in S and Z, respectively, 

(21) rm1-gn1= g^rcpx)-1 rmx, 

rm2' gfi2(rm1^x)~1 - g{r(px)~1p2-rm2(g{rq>x)-1n1(px)-1 

if all the four elements are different from d and w, respectively. In addition, the left 
hand sides differ from zero if and only if the right hand sides do so. 

Define a mapping 4>: S->-S in the following way. Let 

(r, g)<p = (e'Hx • rmlt (g'p2 • rm2(g'^cpx)-1) (A^,.™^)), 

where e' = g(fe,Tx)~1, when both components on the right are nonzero and (r,g)<P = 0 
otherwise. Further, let 0<P = (omu om2) if om1 ^ o and 0 ^ = 0 otherwise. Then 

(i) the mapping $ is a homomorphism. 
(ii) 4> is an isomorphism if and only if 0<P = 0 and for all nonzero elements 

r-, g of S and Z, respectively, there exist uniquely determined elements r and g in 
S and Z such that 

f = gfix • rmx and G = QH2 • rm2(gfi^x)-1. 

(iii) If the semigroups S, S, Z and 1 have identity elements, then all the homo-
morphisms of S into S are of this form. 

P r o o f . I t is no t difficult to check s ta tement (i) by computa t ion , (ii) is implied 
immediately by the definition of <¡> a n d the fac t t ha t the e lements of Cx a n d Cx a r e 
au tomorph i sms . Turn ing to (iii), consider the semigroups S, S, Z, Z wi th identi ty. 
Since fe<tX is an au tomorph i sm, fo r any nonzero r, Q we have 

(r, e) = (e, g i f e ^ x ) - 1 ) (r , e). 

Hence all the nonzero elements of S can be uniquely wri t ten in the f o r m 
(e, g)(r, e), where {(e, Q)\Q£ £ r a } U 0 and {(r, e)\r£ S o } U 0 are subsemigroups i somor-
phic to Zm and S°, respectively. Let S — S be a h o m o m o r p h i s m . Def ine the m a p -
pings mx: S°—S°, m- m2: /¡2: Xco—Z® as follows. Let om^co/x^d, 
om2 — con2 = o5 if 0Í> = 0 a n d om1 = a>p1 = r, om2 = (on2 = g if 0<P = (e, g)(r, s). Le t 
rm1 = o, rm2=w if (r,e)$ = 0 and gfi 1=d, gn2 = co if (e, g)<P=0, respectively. I n 
the opposi te case, let 

(r , s)<P = (e, rm2) {rm1, e) = ( r m 1 ; r m 2 ( / ? > r m i x)), 

(e, Q)$ = (e, qh2) (qhI, e) = {qhI, QH2(Is.*))• 
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Clearly, om1=a>[il, om2=a>n2, om1
1=a>m2

 1 and on1
l=a>ni

1. Relations (1), (3) 
and the fact that ^ is a homomorphism yield that for any r, s with fs^o we have 

Je,fJr,s Je,rs* 
(22) 

fe,sSf,s=Ie,sSs,l8f3,e = S<K™Z>)-1 /,.„ = 

Since « is a homomorphism, we have 

(r,e)<2>-(s, e)<2> = ( r m ^ s m i , rrn2(/girmiji)(/rmiiSmij<) •sm2(/gjSmiK)(grmi,jmi>i)) = 

= (rwii • swh, (rm2 • sm2(rm1 (px)'1) j-e, rmi ,smi *) 

for every pair r, j , whenever both components on the right side are nonzero and 
(r, e)$-(s, e ) $ = 0 in the opposite case. The same equality holds if (r, e) or (s, e) 
is replaced by 0, that is, if r=o or s=o. But $ is a homomorphism, (r, s)<P • (s, e)<P = 
=(rs, e)$, which proves that (17) and (19) hold under the conditions mentioned 
in the theorem. Investigating <P restricted to the subsemigroup {{e, 6)|e€ ¿"m}U0 
one can verify (18) and (20). Observe that for any r and Q 

(r, s) (e, &) = (e, g(ripx)-1) (r, e). 

Hence (r, e)$(e, g)<P=(e, gircpx)'1)^ • (r, that is, denoting by 
s and Q(R(PX)~XN2 by 5, we have 

(rmi • Qnlt (rm2 • Qfi^rm^x)-1) (Js,rmveillx)) = (s • rmu (a - rm^sipx)-1^.^)) 

if all the components are nonzero. Moreover, if a component is zero on one side, 
then so is one on the other side. This is equivalent to condition (21), which comple-
tes the proof. 

In the next theorem we use the notation only if fTS is contained in the 
group of units of C. If r is an element of an inverse semigroup the unique idempotent 
belonging to the 52-class containing r will be denoted by [>]. 

T h e o r e m 3.10. Let S and S be inverse semigroups, E and E the semilattices 

of their idempotents, respectively. Assume that mappings m1: S0—S°, m2: 5"°—T™, 
p[: p'2: Za—Ea are given such that they have the following properties. 

(a) For each i in E0 we have om2=mn2, dm^1=mm2
1 and o(p'1)~1= 

(b) For any r,s, Q,a in S and 1, respectively, and i in E0 we have 

(rs) mx = rmt • smx, 

{QO)H\ = qiA-CIA 
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if (rs)m1 ^ o and (Q0)11^0. Further we have 

(rs)m2 = rrn2(Jlrmilt[rmv!!m{ix) • smj^^^^/f^.^j,™,;™,]))«), 

(go)/.4 = eA4(/[wa i[№ ' l .„„a>0• ((#<,„',M]f(e l[ a^M[„„<])*) 

if (rs)m19£o or rm1-sm1?£d arid (go)ii[?io or - op^d. 

(c) For any r, g in S and I and i in E0 

r w x • gn[ = e((gr,if[~ii),n)x)Hiri}' (ri)m„ 

rml(firm,],[rm,.ep'i] *) ' S t i ( ( S r m i , [ w i r f ™ ! wil.rm,[„„<])*) = 

if all the four elements are different from zero. Moreover, the left hand sides of the 

equalities differ from zero if and only if the right hand sides do so, too. In the second 

equality Q'=Q((g,_f^ri)x)- Define a mapping <P: S-+S in the following way. Let 

(r, e ) 0 = (an[ r ] • rwij, ( < 7 / 4 ' ] ( / [ ^ ^ i j , ^ m . ^ x ) • 

vvAere o=g(f^rx), whenever both components are different from zero, (r, g)$=0 

otherwise. Further, put 0$=(om1, om2) if om^o and 0cp=0 otherwise. Then 

(i) the mapping <P is a homomorphism, 

(ii) if the semigroups I and I have identity elements preserved by all endo-

morphisms f,tSx,grsx and Jf,sx, gf-5x, respectively, then all homomorphisms of 

S into S are of this form. 

P r o o f , (i) c a n b e verif ied by c o m p u t a t i o n . I f S is a n inverse s e m i g r o u p a n d 
I h a s a n iden t i ty preserved by the e n d o m o r p h i s m s fr>sx a n d gr-sx, t h e n a l l t h e 
n o n z e r o e l emen t s (r, g) of S c an b e uniquely wr i t t en in t h e f o r m fl>], g')(r, e) w i t h 
g'=g(f^rx) because / w > 1 . is in t h e g r o u p of un i t s of C by L e m m a s 2 .2 a n d 2.1 
a n d hence /¿ j , 1 ,« is a n a u t o m o r p h i s m . Since t h e p r o o f of (ii) is s imi lar t o t h a t 
of T h e o r e m 3.9 (iii), i t is l e f t t o t h e reader . W e n o t e on ly t h a t by (1)—(3) w e h a v e 

/ [r] , rfr.s — /[r], rs = / [r] , [re] /[re], re • 

Since [ r i ] = r i i - 1 r - 1 , we h a v e [ r ^ ] r = r a n d 

/[rs],r[s]/[rs]r[s],s/rs,s- 1 r~1 /[rs], rs frs, s~ 1 r~ 1 /[re], [re] !• 

H e n c e /[PS],r[5] is in t h e g r o u p of un i t s of C a n d w e h a v e 

/is], sSr,s Sr, is] fr [s], s — Sr, [S] /[rs], r [s] firs], rs • 
L e t S a n d I b e t w o semig roups a n d cons ide r t w o O-extensions S=£7°(S, I , C, 

f g, x) a n d I , CJ, g, x) of I by 
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D e f i n i t i o n . The O-extension S is said to be equivalent to S ' if for every s in 
S0 there exists an automorphism \j/s of E such that the mapping f : S—S' defined 
by OÍP=Ö, (s,a)W — (s,<7\j/s) is an isomorphism. 

This definition clearly determines an equivalence relation on the eláss of 0-ex-
tensions of I by S. 

In the next theorems we investigate the equivalent O-extensions. 
Before formulating the first one we note that if the images of the functions 

fx and gx are contained in the group of automorphisms of E, then Theorem 2.3 
applies to them provided S has an identity. The homomorphism used in this theorem 
will be denoted by <px. 

T h e o r e m 3.11. Let S be a semigroup with identity and E a reductive semigroup. 

Assume that the images of fx and gx are in the group of automorphisms of E. The 

O-extension S is equivalent to S ' if and only if the images fx and gx are included in 

the group of automorphisms of E and q>x = (px11 for some inner automorphism 21 of 

the group of automorphisms of E. 

P r o o f . Suppose S and S ' are equivalent. This means that for any r, s in S 
with rs^ o and q, a in E we have 

( r , 0i/rr) (s, aips) = (rs, (e(/r,s*Mgr,s>:))>/'rS) 

provided they are nonzero or else both of them are zero. In both cases we have 

etrtfr.sfynl'Agr.sK) = 

For r=e this yields 
Q^e (fe, s K) = Q if e,s ^s^s-

E is reductive and ij/s is an automorphism. Hence for any s^o we have 

Dually, one can see that 
gs^eÁSseX) = 0 ) < A S 

for s^-o. From these equalities it follows that fe>sx and gs>ex are automorphisms 
for all sjío, which implies by (1) and (3) that so are/,. jSji and gr<sx, where rs^o. 
Moreover, we have 

sip* = \l/;1(s(px)\j/e, 

which completes the proof of the only if part. Conversely, suppose that the conditions 
of the theorem are satisfied. Denote the automorphism of E inducing 91 by 
Define i//s by 

Making use of the equalities (22) and the fact that scp*^-^(p^ holds for every 
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s^o, one can obtain by computation 

tr(fr,sX) = (fr,sx)*l>rs, tfrsigr.sX) = {gr.s^rs, 
whenever rs^o. 

T h e o r e m 3.12. Consider a regular semigroup S and a reductive semigroup 

The 0 -extensions S and S ' are equivalent if and only if there exist automorphisms 

ij/i of E indexed by the idempotents of S0 such that for every pair i, i' of idempotents 

i'i—i' and i'i=i' imply 

(23) - = and (grjxWr = "A; 

respectively, and i£>i' implies that 

(24) U c M i i h , * ) = ( g r M M S r . i ' * ) 

for any r such that ifflrSPi'. 

P r o o f . In the proof of the last theorem we saw that the O-extensions are equiv-
alent if and only if the equality 

Q$r(Jr,sX)<nl'Mr,sX) = etfr.sXWrsGigr.sXWrs 

holds for any r, s such that rs^o and for arbitrary Q, a in E. If ir=r, this implies 
by Lemma 2.1 that 

' = Qifi.r^r • o^r-

Since E is reductive we have 
(fi.r^r = fitfi.r*)-

Dually, we can obtain that 
= <Pr(gr,i><) 

if ri'=r. In particular, this yields (23) if r is an idempotent. If №r£Pi', then, as 
it has been verified above, fUr and gr<v belong to the group of units of C. Hence 
fiirx and gr>i>x are automorphisms and it follows f rom the foregoing tha t 

(25) iK = { S u M i i J u r * ) = ( g ; h ) M g r , i ' * ) -
Conversely, assume that the conditions of the theorem hold for some automorphisms 

Let r be an element of S0 and i, i' idempotents such that MrSCi'. Define ij/r by 
(25). Obviously, ij/r is well defined. If j is an idempotent such that ji=i, then applying 
(1) and (23) we have 

Cf,.r*Wr = {(fj.rfiTr^WIi.r*) = (fj.^iifi.r*) = 

= "A; ((/;, i It, ,) *) = 4>j ( h . r 
Hence if r, s are elements of S'such that rs^o, then denoting an idempotent in the 
¿2-class of r by i, we have 

= (fi7r1x)M(Ii,rJrjK) = (JiTr^mlursX) = 

= ( ( / , > . / ; , « ) > # « = (fr.s^rs-
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Similarly, one can show that ^/s(gr<3x)=(gr,sx)\j/rs. This completes the proof. 
Note that if S is (O-)^-simple and C has a trivial group of units, then (24) implies 

that all \j/1 are equal. Conversely, if all t/rf coincide, then, denoting (i£E0) by ¡¡/, (23) 
implies 

J i , rx = *l>~1(fi,rx)>l' and grJx = ^/-1igrJie)\l/, 

whenever ir=r and rj—r, respectively. Hence (24) holds trivially. Thus we have 
proved the following 

C o r o l l a r y 3.13. If S is a (0-)3i-simple regular semigroup and Z is reductive, 

then the O-extensions S and S ' are equivalent if and only if there exists an automorphism 

^ of Z such that for all idempotents i, i' the equalities 

J. ¡.p. = xj/^ifij.x)^ and gv,ix = ^-\gi.ijx)\li 

are implied by ii'=i' and i'i=i', respectively. 
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Generalization of the implicit function theorem 
and of Banach's open mapping theorem 

T. SZILÁGYI 

In the present paper we prove the existence of implicit functions (Theorem 1) 
and of "right-inverse" functions (Theorem 2) under very weak assumptions. In 
Theorem 3 we generalize the open mapping theorem of Banach to a non-linear 
case and in Theorem 4 we give a new proof of a known multiplier rule (see [4]). 
The proof of Theorem 1 is based on Banach's open mapping theorem (see for example 
[2]), on Nadler's fixed point theorem for multivalued contractions (see [3]), and 
on the Lagrange inequality (see for example [1]). Theorem 2 is a simple consequence 
of Theorem 1, Theorem 3 follows easily from Theorem 2, finally Theorem 4 is 
based on Theorem 2 and on the Banach—Hahn theorem. 

N o t a t i o n s . If X&nA F a r e Banach spaces, then the set of all linear continuous 
mappings from X into Y will be denoted by L(X, 7). 

For defining equations we use the symbol := on the left side of which we write 
the "quantity" (number, function, set, etc.) to be defined. 

If (X, d) is a metric space, r a positive number and xfX, then 

S(x, r):={y£X\d(x, y) < r} and B(x, r):= {j'£X\d(x, y) S r}. 

The dual of a Banach-space X will be denoted by X'. 
In X and T a r e Banach-spaces and A £ L(X, Y), then 

p(A):= sup { l l y l l • inf {||x|| |x€ X, Ax = y}}. 
yer\{o} 

L e m m a 1. If X and Y are Banach-spaces, A 6 L(X, Y) and I m A = Y, then 

p(A) is finite. 

P r o o f . The conditions of Banach's open mapping theorem are fulfilled, there-
fore there exists a positive r such that B(Oy,r) is contained in the /4-image of 

Received December 9, 1976. 
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B ( 0 X , 1). L e t u s t a k e a n a rb i t r a ry 0 p ^ y € Y , t h e n 

inf {IWI x e Ax = y} = M i n f { | | * m * e X,Ax = j ^ } S M ; 

consequen t ly p{A)=—. 
r 

L e m m a 2. Let(X, d) be a complete metric space, x£X, r > 0 and <P: S(x, r ) —2X 

such that 

a) for all S(x, r), $(x) is a non-empty closed subset of X, 

b) for all S(x, r), the Hausdorff distance 

h($(xl), m a x { sup d(x, s u p 

satisfies 

h^fxj), 4>(X2)) g y «¿015X2), 

C) d(x, < F ( X ) ) < | . 

Then there exists an xd S(x, r) such that x £ $(x). 

T h e p r o o f of this l e m m a c a n b e f o u n d in [3], a n d in [4]. 

L e m m a 3. Let X be a normed space, L a linear subspace of X, w1; u2(LX; 

Mi:=ui+L(i=l,2). Then the Hausdorff distance (see L e m m a 2) of Mx and M2 

equals inf {||i>i —u2 | |: £Mlt v2£M2). 

P r o o f . Clear ly, 

in f H»1 —172|| g in f | |Mi-t)2 | | = ¿ ( « J , Ma) S s u p d(vx,M^ ^ h(M1,M^). 
v,£Mt v2iM2 Vi £Ml 

If f j g M i a n d U 2 € M 2 , t hen vi=ui+yi ( ¿ = 1 , 2, y^L), t h u s u2+y2—yr£M% a n d 

II»1-«ill = II«! —(u2-hy2 —yOll S ¿ ( « i . M a ) , 
consequen t ly , 

i ? f | |» i -» 2 l l =d(u1,M£. 

Similar a r g u m e n t s show t h a t f o r al l a n d v2£M2 

d(w 1 ; M 2 ) = d(vu M ^ = d(Mu Vn), 

t h e r e fo r e d(ux, M2)—h(M1, M2)-

T h e o r e m 1. Let X and Y be Banach spaces, T a topological space, GcTxX 

an open set, (t0, x 0 ) £ G and F: G — Y a function such that 

a) F(h, x0)=OY, l im F(t, x0) — Or; t—t 0 
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b) for every (t, x)£G the function F(t, •) has a Frechet-derivative at x denoted by 

D2F(t, x), 

c) the function D2F: G-~L(X, y ) is continuous at (/0, x 0 ) , and 

d) I m D2F(t0, x0) = Y. 

Then for every neighborhood VcX of x0 there exist a neighborhood UczT of 

t0 and a function <p: U— V such that F{t,q>(t)) = 0Y for all t£U. 

P r o o f . Let us denote A:=D2F(t0, x0). By Lemma 1 we have p(A)< + °o. 
By assumption c) there exist a neighborhood E^ of t0 and a positive number r such 
that W:= S(x0, r)<z V and for all (t,x)eU1XW 

II D 2 F ( t , x ) - A \ ^ ^ . 

Now we get from the Lagrange inequality for all (t, Zj) and (t, 

(1) II F(t, zj - F{t, z J - A (z2 - z j | | S 

S sup \\D2F(t, Azx + (1 —X)z^—A\\ ||z2 —zj < ^ J *1'1 . 
a €[o,i] 2 p(A) 

By assumption a) we may choose a neighborhood U of t0 such that 

(2) p(A)\\F(t,x0)\\^j f o r all t£U. 

Let t£U be a fixed element. We shall show that the equation F(t,x)=0 has 
a solution JC€ W. We apply Lemma 2 to the Banach space X, to the element x:=Ox 

and to the (multivalued) function 

x $(*):= {ze X\Ax-Az = F(t, *,,+*)}• 

If x£S(0, r), assumption d) implies that <P(x) is non-empty, the continuity of A 
implies that is closed. Moreover, since A is linear, 4>(x) is an affine subspace. 
Therefore (by Lemma 3) if x2d S(Ox, r), then 

hiQix^QixJ) = J n f ^ H ^ - ^ l l = 

= inf {11% r2 | | | Avf = AXi-Fit,x0-l-Xi)i = 1,2}. 

Since Im A = Y, the latter infimum equals 

inf {IMI | Av = A(x1-x2)-Fit,x0+xJ) + Fit,x0+x2)} == 

J7(^)[|FCf, + x 2 ) - . F C i , x 0 + X i ) - ( x 2 - Xi)il S J I I * ! - * , » 



394 T . Szi lágyi 

(see (1)). From (2) it follows that condition c) in Lemma 2 is fulfilled, too: 

d ( 0 x , 0(OX)) = inf { | |z | | |^z = - f ( i , x 0 ) } S p(A)^F(t, x0)|| < j-. 

Thus, by Lemma 2, there exists an element g(t)€ S(Ox, r) such that g(t(€ 4>(g/t)), 
consequently 

0 , = ^ ( g ( / ) ) - / f ( g ( 0 ) = F ( r , x 0 + g ( 0 ) . 

Finally, for the element (p(t) :=x0-\-g(t)£V we have 

F(t, cp(tj) = 0
Y
. 

T h e o r e m 2. Suppose we are given two Banach spaces: X and Y, an open set 
Vcz X, an element x 0 £ F and a Frechet-differentiable function f : V—Y for which 

a) f'- y^L{X, Y) is continuous at x0, 
b) Im/ ' (x 0 ) = Y. 
Then there exist a neighborhood U of the point t0 := f(x0) and a function (p:U-*V 

such that focp = idv (that is f((p(t)) = t for all t£U); consequently, t0 is an interior 
point of the range of f. 

P r o o f . Let us define the function F: YxV—Y by letting 

F(t,x):=f(x)-t. 

Clearly, we can apply Theorem 1 whith T := Y and G := YX V and this gives the 
result to be proved. 

T h e o r e m 3. If X and Y are Banach spaces, g: X-+ Y is a Frechet-differentiable 
function, g': X-+L(X, Y) is continuous and I m g ' ( x ) = F in every point x£X, then 
g is an open mapping. 

P r o o f . Let VczX be an open set and f := g\v- We must prove that the range 
R o f / i s an open set in Y. If i0 € R, then there exists a point x0 6 V, for which/(x0) = t0. 
From Theorem 2 it follows that R is a neighborhood of t0. 

T h e o r e m 4. Let X and Z be Banach spaces, WczX an open set, g: W-+R and 
G: W-*Z Frechet-differentiable functions. If a point x 0 € W affords a local minimum 
to g under the constraint G{x) = Oz, g' and G' are continuous at x0 and I m G'(x0) 
is closed in Z, then there exist a real number X and a continuous linear functional 
l£Z' such that 

(i) at least one of them is different from 0, 
(ii) for all x£X, Xg'(x0)x+l(G'(x0)x)=0. 

P r o o f . Let us choose an open set VczX containing x0 such that x0 minimizes 
the function under the constraint G\v=Oz and let us denote Y:=RXZ; fo r 
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all x£V f(x) := (g(x), G(x)). From our assumptions it follows that the function 
/ : V ^ Y is Frechet-differentiable,/ ' is continuous at x0 , and for all x£X 

f'(x0)x = (g ' (x 0 )x , G'(x0)x). 

First we observe that Im f'(x0) Y. Indeed, if Im f'(x0) were the whole space Y, 
then we could apply Theorem 2: there would be points xP V with G(x)=0 and 
g(x)<g(x0), since (g(x0), G(x0)) would be an interior point to the range of / . But 
this is impossible, because x0 is a solution of the minimum problem on V. Therefore 
Im f'(x0) is a proper linear subspace of Y. If it is a closed subspace, then we can 
apply a known corollary of the Banach—Hahn theorem: there exists a O ^ Z g F ' 
such that lo f'(x0)=0; and since the continuous linear functional I, defined on the 
product space RXZ is of the form 

l(t,z) = lt+l(z) 

(where and /£Z ' ) , in this case the proof is complete. If the subspace Im f'(x0) 
is not closed, then there exist a sequence ( x „ ) c l and an element (r, z)£ F \ I m f'(x0) 
such that 

lim g'(x0)xn = r and limG'(x0)x„ = z. 

Since Im G'(x0) is closed, there is an element udX such that G'(x0)u=z. Now we 
observe that if x € Ker G'(x0), then g'(x0)x=0 (and consequently if G'(*o)"i = G'(x0)u2, 
then g'ixo)^ =g'(x0)«2). Indeed, if g'(xo)x were different from 0, then for the real 
number 

t . = r-g'(x0)u 
g'(x0)x 

we would get 

g'(x0) (u + tx) = r a n d G'(x0)(u + tx) = z, 

that is, (r, z)£lm / ' ( x 0 ) . Therefore we can define a functional on Im G'(x0) in 
the following way: if z £ I m G'(x0) and u£X such that G'(x0)u=z, then 

h(z)'-= g '(xo)u. 

Obviously, is linear and g'(x0)=/1oG'(x0). Moreover, 4 is continuous: if UcR 
is any open set, then is ° P e n since g'(x0) is continuous, and 

lrliU) = <r(xJ№(xJ~\U)] 

is open in the Banach space Im G'(x0), because G'(x0): X-*Im G'(x0) is an open 
mapping. By the Banach—Hahn theorem there is an extension / £ Z ' of / l5 it satisfies 
(ii) with A = - 1 , as /oG'(x0) = /oG'(x0) = g'(x0). 
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Remark. It is known (see [4]) that Theorem 4 implies various transversality 
conditions and Euler—Lagrange equations concerning the classical problems im 
the calculus of variations. 
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Endomorphism and snbalgebra structure; 
a concrete characterization 

N. SAUER and M. G. STONE 

§ 1. Introduction 

In [5] the following abstract structure problem is solved: For what semigroups 
S and what lattices L does there exist an algebra 91 with S^ End 91, the endomor-
phisms of 91, a n d L ^ S u 91 the lattice of subalgebras of 91? Here we provide a solu-
tion to the corresponding concrete representation problem, where isomorphism 
is replaced by equality. Thus let SQAa be a given transformation monoid and 
LQ2A a set lattice. It is well known that Z,=Su 91 for some algebra 91 over the set 
A iff L is complete and compactly generated [2]; such lattices are called algebraic. 
In [4] necessary and sufficient conditions for S = E n d 91 for some algebra 91 over 
the set A are given; such transformation semigroups are called algebraic. A similar 
characterization is given in [4] for semigroups of partial functions. We make use 
of the latter result by representing subalgebras with partial identity functions to 
derive a simultaneous characterization for S and L. Our characterization, like 
that for the endomorphisms alone involves the solutions to systems of linear 
equations. 

If M is a set of partial functions on A to A with id € M the identity function 
on A, a system of linear equations Z over M is a set of f u n c t i o n a l equa t i ons each 
of the general form: fx=y, or fx=g with fig£M, together with a specified solution 
variable Xs. An assignment OL for I is a map from the variables of Z to partial func-
tions on A to A with a common domain. The assignment a satisfies Z at d£A. 
prov ided f(ax(d))=oiy(d) whenever fx=y£Z a n d f(ax(d))=g(d) whenever fx=g£Z. 

The assignment a satisfies Z on DQ A iff a satisfies Z at d for each d£D. If X1 is 
the specified solution variable we say / is a solution to Z on D provided there is 
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an assignment a which satisfies I on D and a(Xr)=f. A solution / t o E on D is unique 
provided f \D=h\D whenever h is any solution to E on D. The support of a system 
E is the set of all d£A for which there exists a solution to E at d. We write 5 = S p t E 
if B is the support of E. 

Denote by the algebra of all finitary operations which admit each / 6 M a 
a homomorphism. M is the set of all partial endomorphisms of 2IM and M is the 
set of all (total) functions which are endomorphisms of 3IM. As usual a partial 
function g is a homomorphism with respect to an operation P of rank v provided 
gP(x) is defined and equals P(gx) whenever gx is defined for x£Av. A total function 
is one whose domain is all of A. We will use: 

P r o p o s i t i o n 1. gÇAB belongs to M iff 2?€Su9I M and for each finite DQB 
there is a system E over M with g a unique solution to E on D. 

13 r o o f. Take n = i n Theorem 2 of [4]. • 

§ 2. The subalgebras of 9IM 

We first establish some easy facts about the support of systems E over M. 

L e m m a 1. If C = S p t E then there is an assignment a which satisfies E on C. 

P r o o f . For each d£C there is an assignment ccd which satisfies E a t d. Define 
a for a variable x of E by: 

f a d x ( d ) if d£C 

ax (d) — otherwise. 

It is straightforward to verify that a satisfies E on C. • 

L e m m a 2. If C = S p t I then there is a system F and an assignment p which 
satisfies r on C a n d C = S p t T and P(Xr)=id \ C is a unique solution to T on C. 

P r o o f . Let r have one additional new variable Xr not among those of E and 
let the equations of T consist of those of E together with the new equation X r = i d . 
By Lemma 1 there is an assignment a which satisfies E on C. Let P extend a by 
assigning id C to Xr. Clearly p satisfies r on C and C = S p t JT. If g is any solution 
to r on C then for dec, g(d)=d so g \ C=P(Xr)=id \ C thus id ï C is a unique 
solution to r on C. • 

L e m m a 3. Let each C^êF be the support of some system rc. Then f~) C is 

also the support of some system F. 
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P r o o f . Assume without loss of generality that each pair of systems r c , F D 

have no variables in common for C^D and let Xr be a new variable distinct f rom 
all of those of the r c . By Lemma 2 we may further assume that id t C is a unique 
solution to r c on C for each Form r ~ ( (J r c ) U {Z r =id} . We claim 

Icejr ) 

D C = S p t r. If i / g S p t r , say a satisfies T at d, then clearly a c , the restriction 

of a to the variables of r c , satisfies f c at d for each J5" so d € H C. If on the 

other hand d£ H C and ac satisfies r c at d then let aX=acX \ p | C for a variable 

X in rc and let a X r = i d \ f | c Clearly a satisfies r on f | C so ¿£Spt T. Thus 
sptr= n c. 

L e m m a 4. For DQA the operation defined by D= H S p t I is a closure 
DgSpt2 . 

operator. 

P r o o f . Clevarly D g D, and [C Q D => C Q D]. To show D=D it is only necessary 
to see then that DQD. By Lemma 3 there is some system F with D= f l Spt 1 = 

_ DgSpti 
= S p t r . Clearly D= f ) SptI=Sptr=D. 

BE Spt2 

L e m m a 5. For DQA the operation defined by D= ( J € is a closure 
Cfinite.Cgi) 

operator. 

P r o o f . Since d£D=>de{d}QD we have DQD. Further [CQD=>CQD] 

since each finite subset of C is also a finite subset of D. To show D=D it remains 
only to see D Q D . Suppose b % D \ then there is some a d D with a $ D . We will 
show this leads to a contradiction. Since a£D there is some BQD, B finite, with 
a£B. Thus f l Spt I, and say B— b„}. From BQD we have each 

Bgspt z 
_ n 

bK£D, say bK£CK for some CKQD, CK finite, K= 1, ..., n. Then C= | J CKis a finite 
K = 1 

subset of D, so CQB. NOW BQ (J Q g (J CK so a£BQ (J CK = | J CK = CQD. 
__ K = 1 K = 1 _ K = 1 K = 1 

Thus a£D, contrary to the original choice a({D, the desired contradiction. 
We can now describe explicitly the subalgebras of 2lM : 

T h e o r e m 1. 5GSu S&M iff B= U D. 
D finite, D£B 

P r o o f . Let B= 1J D. We first consider the case B=Q. Thus for each 
_Z> finite, DgjB 

DQB, D=0 and D = 0 so D = f | Spt I. If 9IM has any miliary operations 
0gSpt2 

(constants) a£A we claim a£Spz I for every system I. To see this let a be the as-
signment which associates with every variable the constant function f :A --{a}. 
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Note a satisfies arbitrary I at a, since each g£M must have a as a fixed point. 
Thus from 5 = 0 we conclude 2iM has no nullary operations, whence B = 0 £ . 
€Su 9IM. Now if 1M0, fix an operation P of 9lM of rank n, and ax, a2,..., a„£B. 
It suffices to show that P(alt ...,an)€{au ...,an) since ...,an}^B. Let D = 
= {<*!, ..., a„}. If P(alt ...,an)$D then there is some Z with Z>Q Spt Z and 
P(au ..., a„)$Spt Z. By Lemma 1 we may assume that there is an assignment a 
which satisfies Z on Spt Z. We use a to produce an assignment a' which satisfies 
Z at d—P(px, ...,an) and thus obtain P(au ...,a„)£Spt Z contradicting the hypo-
thesis that P(au ..., an)$D. For a variable x in £ let a'x be defined by 

a.'x(d\ = [ax{~d) 

\P(ux(ad,...,ax(aJ) if d = P(a1} ..., aB). 

We claim a' satisfies Z at d=P(au ..., a„). To see this consider an equation fx=y 
in Z: 

fr'x{d) = P(fctx(aj), ...Jax(aJ) = P{g(aJ,..., g(an)) = g j > ( f l l > . . . , a j = g(d) . 

Thus d£ Spt Z and we must conclude P{au ..., a„)£{a1,..., a„), so B= |J D=> 
D finite, D S B _ 

=*2?€Su 9lM. To prove the converse, we suppose B£Su 9IM. By Lemma 5 B<^B= 
= (J D so it remains only to show B^B. We proceed again by contradiction. 

D finite,DQB 

Let a£B and suppose aSince a£B there is some finite CQB with a£C. From 
the first part of the theorem we know C£Su 9lM. In fact C is the subalgebra of 
9IM generated by C, for if Su 9IM and CQD then by the first part of our Theorem 1, 
D = (J G so CQD. Thus C is the smallest subalgebra of 2IM which contains C. 

G finite,GQD 

Now a£C so a=P(cx, ...,c„) for some operation P in 9IM and some sequence 
c 1 ; . . . , c„ from C. But 5 6 S u 9ÍM so B is closed under P, and C^B. Thus 
a=P(c x c„)£B. It follows that B^B and thus B£Su 5IM=>.B= |J D. • 

D finite, DQB 

§ 3. Characterization Theorems 

For LQ2A let x(L)={f£AB\B£L, / = i d \ B} be the set o f characteristic func-

tions of L. In general a function f£AB will be called a characteristic function if 
f=id[B. Recall (§1) that when M is a set of partial functions, M denotes the set 
of all partial endomorphisms of the algebra of all finitary operations which admit 
each f(LM as a partial endomorphism. In what follows LQ2A and 
M=SUx(L). 

T h e o r e m 2. <S=End 91 and Z , = S u 91 for some algebra 91 iff fd contains no total 

functions other than S and i t contains no characteristic functions other than x(L)-
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P r o o f , Assume End 91 and L=Su 91 for some algebra 91. L e t / € ^ , /<f S. 
Since 5 '=End 91 some operation of 91 destroys / ; thisisame operation must admit 
each map in %(L) since Z = S u 91 so the operation is among those of 9IM. Thus the 
only total functions in M are the members of S. Now let g£AB with g = i d [ B, 
B$L, be a characteristic function. Then i?(£Su9I so there is some operation P in 
91 and a finite sequence blt ..., b„£B with P(blt ..., b„)$B. This same operation P is 
again among the operations of 9IM . But P does not admit g as a partial endo-
morphism since gP(bi, ..., b„) is undefined. Thus the only characteristic functions 
in i t are members of %(L). This proves one direction of the Theorem. To complete 
the proof let M= S U y_{L) and assume that M contains no total functions other than 
S and no characteristic functions other than x(L). Let 9 I=9I M . Since M is the set 
of all partial endomorphisms of 9IM we have 5=End9T . Moreover if 2?GSu9IM 

then id \ B is a partial endomorphism of 9IM so id \ B£ fit, thus id t B£-/_(L) so 
BeL. Thus £ = S u 9 I . • 

We now combine Theorem 2 with Proposition 1 and Theorem 1 to obtain an 
equational condition for S and L to be jointly algebraic. The characterization theorem 
which follows says roughly that S must contain all functions which are unique solu-
tions to systems of equations over M=SU"/(L) and that the support of every such 
system must belong to L. (For A finite the theorem says exactly that ; the more 
general statement involves only additional "compactness" conditions which are 
"local" analogs of the above properties.) 

(1) 

and 

T h e o r e m 3. S = E n d 91 and L=Su 91 for some algebra 91 iff 

g€S. 
V finite DQA3 system I over M with 
g i D the unique solution to I on D 

(2) B = (J i f l s p t l ^ £ € £ . 
D f i n i t e D g B ( D E S p t Z . i o v e r M ) 

P r o o f . From Theorem 2 we know S = E n d 91 and L = S u 21 for some algebra 
91 iff 

(i) g € A A and gÇJ&=>gÇS, and (ii) id\B£M => B^L. 

By Proposition 1 of § 1, (i) is equivalent to (1). Again by Proposition 1 of § 1, (ii) is 
equivalent to : 

(ii') 
5 € S u 9 I M and V finite D Q B 3 system I 
over M with (id \ B)\ D the unique solution to I on D B£L. 

Furthermore the system I : {A' i=id} has id f D as a unique solution on each D , 
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thus (liO is equivalent to : [ f i g S u 3IM=>fl£Z,], and by Theorem 1 this is equivalent t o : 

(2) B = U i D )=>B£L. 
D finitcDSB v " = S p t r , I o v e r M / 

Thus 5 = E n d 21 and L=Su 21 iff (1) and (2) hold. • 
F o r A finite Theorem 3 can be restated simply and complete ly as: 

C o r o l l a r y 1. If A is finite and i d £ S Q A a and LQ2A then S = E n d 21 and 

L = S u 21 for some algebra 2t iff 

(1) g£ S whenever g is the unique solution to some system of equations with 

coefficients from SUx(L), and 

(2) B£L whenever B is the support of any system of equations with coefficients 

from S\Jx(L). 
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On normal subgroups of semigroups with identity 
element 

MAGDA ROCKENBAUER' 

In the theory of semigroups, normality of subsemigroups has been defined 
in several different ways. L. REDEI [3] has introduced this concept by the following 
two definitions; 

D 1. The subsemigroup N of a semigroup S is called left normal if 
(i) t h e pa r t i t i on S=NUa1NUa2NU ...(alt a2,... € 5 ) is compa t ib le , a n d 

(ii) for each i and nt, n2£N, a1n1=a in2 implies n1=n2. 

Right normality is defined analogously. 

D 2. The subsemigroup N of a semigroup S is called normal, if it is both right 
and left normal. 

I. PEAK [2] has modified these definitions by omitting condition (ii). Let us 
denote the modified definitions by D ' 1 and D ' 2, respectively. 

The subgroup N of a semigroup 5 is called a normal subgroup of S if it is a 
normal subsemigroup in the sense of D 2 or D ' 2, respectively. 

The following example shows that Theorem 1 of [2] is false. 

E x a m p l e . Let S be the semigroup of transformations of a set of cardinal 2 
into itself. 

The mistake in Peak's proof is in the part that (A) implies (B) where he used 
that N is right normal, too. Therefore, only the following modification of Peak's 
theorem holds true: 

T h e o r e m 1. Let N be a subgroup of the semigroup S with identity element 

which contains the identity element of S. Then the following conditions are equivalent: 

Received June 13, 1974. 
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A) N is normal in the sense of D ' 2, 
B) for all aeS, aN=Na holds, 
C) the set of the right cosets of N coincides with the set of the right cosets of N. 

The following Theorem 2 is from [2], but the proof for MN is not correct there. 

T h e o r e m 2. Let S be a semigroup with identity element and let N and M be sub-
groups of S. If N and M are left normal in the sense of D ' 1, then MN is a left normal 
subgroup of S, and if S is also cancellative, then MC\N is a left normal subgroup 
of S in the sense o/D' 1, too. 

Theorem 2 can be generalized as follows: 

T h e o r e m 3. Let S be a semigroup and N and M subsemigroups of S containing 
an identity element. If N and M are left normal in the sense of D ' 1, then MN is a left 
normal subsemigroup of S in the sense o/D' 1, and if S is also left cancellative and 
MC\N is non-empty, then MON is a left normal subsemigroup of S in the sense 
of D' 1, too. 

P r o o f . It is well known that Mfl N is a subsemigroup. If M and N are sub-
groups then NC\ M is a subgroup. If 

\ • 
c£a(MC\N)b(MriN), 

then 
c£(abM)f)(abN), 

and thus there exist an m in M and an n in N such that 
c - abm = abn. 

If S has an identity element, then, since N and M are left normal, N and M contain 
the identity element of S. Since S is left cancellative the last equation implies 

c£ab(Mf)N). 

Let e be the identity element of N and let / be the identity element of M. Since M 
and N are left normal in the sense of D ' 1, ef=e and fe=f and MN with identity 
element/ is a subsemigroup of S. fN is a left normal subsemigroup of MN in the sen-
se of D ' 1. 

If M and N are subgroups of S then fN and MN/fN are groups, therefore 
MN is a group. 

MN is left normal, because if c£ (aMN) (bMN) then c=amnbm'n' holds for 
some m, m'£M and n,n'(LN. Thus 

ci(amN){bm'N). 

Since amebm'e=amfebm'e=ambm'e, 

(amN) (bm'N) = ambm'N 
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holds. Since M is left normal too, we have 

... ambm'N = abm"N £ abMN 

for m"€.M, and, consequently 
ctabMN. 

If e=f and M and N are subgroups of S then MN=NM. It follows that 
the first assertion of Theorem 2 is true. 

R e m a r k 1. If we replace D ' 1 by D 1 in the second assertions of Theorems 2 
and 3 then we can omit the condition that S be left cancellative. We introduce an 
equivalence relation (see LYAPIN [1]): 

Let S be a semigroup with identity element and N be a subgroup of S. We 
say that r is QN-equivalent to s, in symbols rgNs, if there exist elements n, m in N such 
that rn=ms. 

The following assertion is a modification of an assertion of PEAK [2], p. 349! 

The partition corresponding to the equivalence relation Qn coincides with the 
left (right) cosets of N if and only ifN is left (right) normal in the sense o / D ' 1. 

P r o o f . Suppose that N is left normal in the sense of D ' 1. Any two elements 
of a left coset of N are ^-equivalent because b£aN implies the existence of an 
element « in JV such that 

an = b = eb, whence agNb. 

On the other hand, any element c that is ^-equivalent to a belongs to the 
left coset aN, because the partition 

, S = N\Ja1N\JaiNU... 

is compatible. 
Conversely, suppose that the partition corresponding to Qn coincides with 

the left cosets of N. If c£N(aN) then cgNa. It follows that c£aN. Since e£N, 
we have (bN)(aN)=baN, as we wished to prove. 

Peak has also made the following assertion: 

Let N run over the set of all subgroups of a semigroup S with identity element, 
which are left normal in the sense of D ' 1 and contain the identity element of S. Then 
either each or none of the factor semigroups SjN is a group. 

Proof. If N is left normal in the sense of D'l and SjN is a group then S is 
a group. 
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Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Graduate Texts 
in Mathematics), X-t-198 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976. 

This textbook is the continuation of a book of the same author, which appeared in the Sprin-
ger-Verlag series Undergraduate Texts in Mathematics under the title "Introduction to Analytic 
Number Theory". This second volume presupposes a background in number theory comparable 
to that provided in the first volume, together with a knowledge of the basic concepts of complex 
analysis. 

The first three chapters provide an introduction to the theory of elliptic modular functions, 
which play a role in additive number theory analogous to that played by Dirichlet series in multi-
plicative number theory. Applications to the partition function are given in Ch. 5, while Chs. 4 and 6 
contain, among others, Lehner's congruences for the Fourier coefficients of the modular function 
j(r), and Hecke's theory of entire forms with multiplicative Fourier coefficients. Ch. 7 deals with 
the problem of approximating real numbers by rational numbers, including Kronecker's theorem 
with applications. The last chapter gives an account of Bohr's theory of equivalence of general 
Dirichlet series. 

There are exercises at the end of each chapter. The book will certainly help the'nonspecialist 
become acquainted with a fascinating part of mathematics and, at the same time, will provide an 
up-to-date background to every specialist in the field. 

F. Móricz (Szeged) 

J. Bergh and J. Lofstrom, Interpolation Spaces (An Introduction) (Grundlehren der mathemati-
schen Wissenschaften, 223), X+207 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976. 

In recent years there has emerged a new field of study in functional analysis: the theory of inter-
polation spaces. Interpolation theory has been applied to other branches of analysis (e.g. partial 
differential equations, approximation theory, etc.), but it also has considerable interest in itself. 
This is the first attempt, as far as we know, to treat interpolation theory fairly comprehensively in 
book form. 

The reader is supposed to be conversant with the elements of real (several variables) and complex 
(one variable) analysis, of Fourier series, and of functional analysis. Beyond elementary level the 
authors tried to supply proofs of the statements in the main text. Their general reference for ele-
mentary results is the first volume of the widely-known monograph of Dunford—Schwartz "Linear 
operators'.'. 

Ch. 1 presents the classical interpolation theorems of M. Riesz, with Thorin's proof, and of 
Marcinkiewicz, which provided the main impetus for the study of interpolation. The basic concepts 
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are introduced in Ch. 2, where a few general results are discussed, e.g. the Aronszajn—Gagliardo 
theorem. 

The authors treat two essentially different interpolation methods: the real method and the 
complex method. These two methods are modelled after the proofs of the Marcinkiewicz theorem 
and the Riesz—Thorin theorem, resp.. The real method is elaborated following Pèetre in Ch. 3, the 
complex method following Calderon in Ch. 4. 

The further three chapters contain applications of the above general methods. Ch. 5: Interpo-
lation of Xp-Spaces, Ch. 6: Interpolation of Sobolev and Besov Spaces, Ch. 7: Applications to 
Approximation Theory. 

In each chapter the penultimate section contains exercises, which extend and complement 
the results of the previous sections. Moreover, many important results and most of the applications 
can be found only as exercises. The last section of each chapter is devoted to notes and comments. 
These include historical sketches, various generalizations, related questions and references without 
aiming at completeness. There is a bibliography consisting of about 200 items. 

The treatise provides a rich and up-to-date account of this fast-growing and important field, 
and it is warmly recommended to everyone who wants to learn, or do research in, interpolation 
theory. 

F. Môricz (Szeged) 

M. Braun, Differential equations and their applications (An introduction to applied mathematics, 
Applied Mathematical Sciences, Vol. 15) XlV+718 pages, Springer-Verlag, New York—Heidel-
berg—Berlin, 1975. 

Two main motives of the present-day development of the theory of differential equations can 
be emphasized. More and more interesting problems arise in the theory as in an independent branch 
of pure mathematics. On the other hand, in applications the number of processes that can be mo-
delled mathematically by differential equations are constantly increasing. Accordingly, in the last 
years a great number of noticeable books have appeared emphasizing one or the other of the motives 
mentioned above. This book calls for the interest of both users of mathematics and mathematicians. 
The author writes in the preface: "the material is presented in a manner which is rigorous enough 
for our mathematics and applied mathematics majors, but yet intuitive and practical enough for 
our engineering, biology, economics, physics and geology majors." Numerous examples are given 
of how researchers have used differential equations to solve real life problems. Especially interesting 
are: the Van Meegeren art forgeries, population growth of various species, a model for the detection 
of diabetes, L. F. Richardson's mathematical theory of war, why the percentage of sharks caught 
in the Mediterranean Sea rose dramatically during World War I, the Tacoma Bridge disaster, and 
a model for the spread of epidemics. 

There are many original interesting exercises at the end of each section, and complete Fortran 
and APL programs are given for every computer exercise in the text. 

The titles of chapters are: First order differential equations, Second order differential equations, 
Systems of first order equations, Qualitative theory of differential equations, Separation of variables 
and Fourier series, Appendices. 

The well-written self-contained book can be understood by anyone having attended a two-
semester course in Calculus. 

L. Hatvani—L. Pintér (Szeged) 
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Colloquio Internazionale sulle Teoríe Combinatorie. I—II (Atti dei Convegni Lincei 17), 518+526 
pages, Accademia Nazionale dei Lincei, Roma 1976. 

This combinatorial colloquium, organized by the Accademia Nazionale dei Lincei with the 
collaboration of the American Mathematical Society, took place in Rome, September 3—15, 1973. 
The conference was dedicated to Professor Beniamino Segre on the occasion of his 70th birthday, 
and was chaired by Professor Segre. This is also reflected by the fact that the majority of papers 
delivered at the colloquium and reproduced in the volumes deal with the exciting and fast-developing 
field of finite geometries, block designs and matroids, to which field Professor Segre's contribution 
has been most important. 

It would be impossible to list all of the 77 papers contained in the two extensive volumes of the 
Proceedings. First, there are many very useful survey papers: H A L L writes about the "Construction 
of Combinatorial Designs", RICHARD R A D O about "Partition Calculus", BENIAMINO SEGRE surveys 
"Incidence Structures and Galois Geometries", BUEKENHOUT "Characterizations of Semi Quadrics", 
BACHMAN "Hjelmslev Groups", Seidel "2-graphs", T U R A N "Combinatorics, Partitions, Group 
Theory", just to mention some. ERDŐS has, as usual, a paper on "Problems and Results in Combi-
natorial Analysis". Besides, there are many papers which contain very significant new results and 
ideas, some of which have been known, and whose publication has been looked forward to, since 
the colloquium. 

L. ¡Lovász (Szeged) 

E. T. Copson, Partial differential equations, VII+280 pages, Cambridge University Press, 
Cambridge—London—New York—Melbourne, 1975. 

A good survey on the theory of partial differential equations of the first order and of linear 
partial differential equations of the second order, using the methods of classical analysis. In spite 
of the advent of computers and the recent applications of the methods of functional analysis to the 
theory of partial differential equations, the classical theory retains its relevance in several important 
respects. 

The book is well-organized. At the end of each chapter a number of interesting exercises help 
understanding. The titles of chapters show the treated topics of the theory: Partial differential equations 
of the first order, Characteristics of equations of the second order, Boundary value and initial value 
problems, Equations of hyperbolic type, Riemann's method, The equations of wave motions, Marcel 
Riesz' method, Potential theory in the plane, Subharmonic functions and the problems of Dirichlet, 
Equations of elliptic type in the space, The equation of heat. 

This text-book will be useful for lecturers and students of mathematics or theoretical physics. 

J. Terjéki (Szeged) 

R. E. Edwards and G. L Gaudry, Littlewood-Paley and Multiplier Theory (Ergebnisse der 
Mathematik und ihrer Grenzgebiete, 90), IX+212 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1977. 

The classical Littlewood—Paley theorem asserts that to each p in (1, «>) there corresponds a 
pair ( A p , Bp) of positive constants such that Ap\\f\\p&||( I \Sjf\yn\\p^Bp\\f\\p for every/ in 

J € Z 
L", where Sjf is the y'th dyadic partial sum of the Fourier series Zj(f)e'"x of / , defined by 
(1) I f(n)e'"x, or / (0) , or S f(n)e'"x according as y>0, j=0, or 0. 

-sUI-enS-i '" - 1 
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In other words, we can say that the Lp norm of a function / can be computed, up to equivalence, 
by breaking up the Fourier series of / into its dyadic partial sums, putting them together in an P 
fashion, and calculating the Lp norm of the resulting function. 

The Littlewood—Paley theorem implies, among others, the following analogue of the Riesz— 
Fischer theorem: Suppose p£( 1, A series E c„e'n* is the Fourier series of a function, say / , 

N € Z 
in Lp iff ||( E If/I*)1 'Hp-« where sj denotes the trigonometric polynomial obtained from formula J e z 

(1) by replacing f(ri) by c„. Moreover, the series E sj converges unconditionally in L" t o / . 
Jt z 

These results make the Littlewood—Paley theorem one of the fundamental results in L" har-
monic analysis. 

The treatment proceeds along two main lines, the first relating to singular integrals on locally 
compact groups (Chs. 2 and 3), and the second to martingales (Ch. 5). Both (classical and modern) 
versions of the Littlewood—Paley theorem are dealt with for the classical groups R", Z", T" (Chs. 
7 and 8) and for certain classes of discontinuous groups (Ch. 4); R denoting the set of real numbers, 
Z the set of integers, and T the circle group. 

The Littlewood—Paley theorem is then applied to Fourier multiplier theory, for instance to 
obtain the famous theorems of M. Riesz, Marcinkiewicz and Steckin (Ch. 6); and to lacunary sets 
(Ch. 9). 

For the reader's convenience there are four appendices containing a number of auxiliary topics 
at the end of the book. Historical Notes, References, Terminology, Index of Notation, and Index 
of Authors and Subjects complete the book. 

The presentation is self-contained and unified. The book is intended primarily for use by 
graduate students and mathematicians who wish to begin studies in these areas, poorly served by 
existing books. This well-written book fills in the gap in the literature and satisfies all needs of a 
beginner as well as of a "worker in the field". 

F. Móricz (Szeged) 

Carl Faith, Algebra. II, Ring Theory (Grundlehren der mathematischen Wissenschaften, Band 
191), X V m + 3 0 2 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976. 

This book is the second volume of the work on rings, modules and categories, Volume I (Parts 
I—IV) of which was published as Band 190 of the same series (and reviewed in these Acta, 38 (1976), 
209). The present volume II is devoted entirely to ring theory. To a large extent this volume, except 
Chapters 18 and 26, illustrates the power of homological methods in ring theory. In contrast to 
what was announced in Volume I, Part VI on commutative rings, hereditary rings, separable algebras, 
and the Brauer group is not included in Volume II, thus Part V (Chapters 17—26) comprises all 
of Volume II. 

This is the largest part of the book, too rich in content to list here all the topics covered in it. 
Summarizing in a few sentences, Chapter 17 is on modules of finite Jordan—Holder length, while 
Chapter 18 deals with the Jacobson radical of a ring. In Chapter 19 quasiinjective modules are 
studied and, among others, the Chevalley—Jacobson density theorem is proved. Chapter 20 is 
devoted to the direct decompositions of rings and modules. Azuyama diagrams are discussed in 
Chapter 21 while the aim of Chapter 22 is to study the projective covers of modules and perfect 
rings. In Chapters 23 and 24 Morita's duality theory and some applications are presented; in parti-
cular, quasi-Frobenius rings are also discussed. Chapter 25 is on serial and ^-cyclic rings and, 
finally, Chapter 26 is concerned with semiprimitive and semiprime rings, the main result being 
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Amitsur's theorem on the semiprimitivity of group algebras over transcendental fields of characte-
ristic zero. 

Each chapter ends with a list of related results aiming to help those wishing to specialize in 
that topic. The book is concluded with a rich bibliography up to 1975. 

Á. Szendrei (Szeged) 

Robert Fortet, Elements of Probability Theory, XIX+524 pages, Gordon and Breach Science 
Publishers, London—New York—Paris, 1977. 

This book is the translation of the French original "Eléments de la Théorie des Probabilités, 
Vol. I", published by the Centre National de la Recherche Scientifique in 1960. A few errors of the 
French original have been corrected, but otherwise the text remained unaltered. The book is intro-
ductory, written in the best tradition of French scholarship. Each newly introduced concept is 
carefully motivated from various aspects. The author is not shy to get into philosophical problems, 
and discussions of questions from physics, mechanics, genetics, etc., to help the beginner get a real fee-
ling of the subject. He recommends his book to non-mathematical research workers such as physicists, 
engineers, biologists and operation research workers "to provide users with an exposition of the 
fundamentals of probability theory, at a level of mathematical sophistications which would not 
repel the non-specialist reader". Chapter headings: I. Combinatorial analysis and its application to 
classical and quantum statistics and to the chromosome theory of heredity; II. The concept of 
probability, Measures or mass distributions, Hilbert spaces, Random elements and probability 
laws; III. Distribution functions; IV. Random variables, axiom of conditional probability; V. 
и-dimensional random vectors and variables; VI. Addition of independent random variables; 
Stochastic convergence, laws of large numbers, ergodic theorems; Convergence to a normal law, 
convergence to a Poisson law; Generalizations. 

Gordon and Breach is to be praised for having made available this valuable book in English. 

Sándor Csörgő (Szeged) 

Э. Фрид—И. Пастор—И. Рейман—П. Ревес—И. Ружа, Малая математическая энцикло-
педия, 693 стр. Изд. АН Венгрии, Будапешт, 1976. 

Эта книга является энциклопедией в менее привычном смысле слова; именно, она явля-
ется обзором высшей математики, напоминающим превосходную книгу Куранта и Роббинса 
«Что такое математика?» В ней представлены важнейшие разделы математики: алгебра, гео-
метрия, математический анализ, теория множеств, теория вероятностей, математическая 
статистика и математическая логика. Такая классификация, разумеется, отражает и личный 
интерес авторов, что, в свою очередь, отражает в некоторой мере и главные напривления 
математических исследований в Венгрии. 

Книга может быть использована для первого ознакомления с различными математичес-
кими понятиями (например, группы занимают в ней 7 страниц, числовые ряды — 13, начер-
тательная геометрия — 9, а исчисление предикатов — 11). Ее можно использовать также 
в качестве справочника, поскольку в ней можно найти много простых, важных теорем (без 
доказательства), как, например, теорему Кэли, критерий Коши, теорему Полке и теорему 
Гёделя о полноте. Книга в основном написана живо, местами увлекательно. Следует, однако, 
предупреждать читателя, что переводчики часто упожребляют нестандартную терминологию, 
особенно в разделах теории чисел и теории множеств. 

В. Csákány (Szeged) 

14 
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Morris W. Hirsch, Differential Topology (Graduate Texts in Mathematics, 33), 221 pages, 
Springer-Verlag, New York—Heidelberg—Berlin, 1976. 

The aim of this book is to give an introduction to the problems and results of differential topol-
ogy, that is of the topology of differentiable manifolds. Although topological questions on manifolds 
occur in differential geometry and global analysis as well, there is always some extra structure 
present, e.g. Riemannian metric or a differential equation on the manifold. In differential topolo-
gy the manifold itself is studied, the extra structures are used only as tools. Some typical questions: 
Can a given manifold be embedded in another one? If two manifolds are homeomorphic, are they 
necessarily diffeomorphic? Which manifolds are boundaries of compact manifolds? D o the topolo-
gical invariants of a manifold have any special properties? Does every manifold admit a non-trivial 
action of some cyclic group? This book presents some answers to these questions. 

The first three chapters are fundamental for the understanding of the book. Definitions are 
introduced and the basic properties of manifolds, the approximation theorems for the maps of 
manifolds and the unifying idea in differential topology: the transversality are treated. In Chapter 
4 the elementary theory of vector bundles is developed, including the classification theorem: iso-
morphism classes of vector bundles over the manifold M correspond naturally to homotopy classes 
of maps from M into a certain Grassmann manifold. Chapter 5 is devoted to the study of the theory 
of degrees of maps. In this way some results of classical algebraic topology are derived. In Chapter 
6 an introduction to the Morse theory is presented. Chapter 7 contains the elementary part of one 
of the most elegant theories in differential topology: René Thorn's theory of cobordisms. (Two 
manifolds are cobordant if together they form the boundary of a compact manifold.) In chapter 8 
the isotopy of embeddings of manifolds is investigated. Chapter 9 deals with the classification of 
surfaces. 

Each chapter contains many interesting exercises and historical remarks. 
The book is a rich, up-to-date account of differential topology. It is also very well-written. 

I can warmly recommend it to everyone interested in the theory of manifolds. 

P. T. Nagy (Szeged) 

Wu Yi Hsiang, Cohomology Theory of Topological Transformation Groups (Ergebnisse der 
Mathematik und ihrer Grenzgebiete, Band 85), X+164 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1975. 

The pioneering results of P. A. Smith for prime periodic maps on homology spheres, and of 
L. E. J. Brouwer on periodic transformations suggest a general direction of studying topological 
transformation groups in the framework of algebraic topology. This book is an excellent summary 
of these different generalizations. Chapters I and II contain general material on compact Lie groups, 
G-spaces and on structural and classification theory of compact Lie groups and their representations. 

Let G be a compact Lie group and let X be a given G-space. Then the equivariant cohomology 
H% (H) of the G-space X is the ordinary cohomology of the total space XG of the universal bundle 

with the given G-space as the typical fibre. In Chapter III some fundamental properties 
and theorems (such as the localization theorem of Borel-Atiyah-Segal) of this equivariant cohomology 
theory of A. Borel are formulated and proved. 

In Chapter IV the relationship between the geometric structure of a given G-space X and the 
algebraic structure of its equivariant cohomology H% (H) is investigated. The reader obtains in this 
Chapter an answer for the following problems: How much of the cohomology structure of the fixed 



Bib l iograph ie 413 

point set, Hc(F), is determined by the equivariant cohomology H%(X)1 Is it possible to give a cri-
terion for the existence of fixed points purely in terms of the equivariant cohomology H%(H)1 Suppose 
F(G, X)= 0 . How to determine the set of maximal isotropy subgroups from the algebraic structure 
of H*a(X)1 

The structural splitting theorem for linear tori actions can be generalized to various structural 
splitting theorems of the equivariant cohomology, and combining the structural splitting theorems 
with the maximal tori theorem, a geometric weight system for topological transformation groups can 
be defined. 

Such a program is carried out in Chapters IV, VI and for the special cases of acyclic manifolds 
and cohomology spheres in Chapter V. In Chapter VII the cohomology method is applied to study 
transformation groups on compact homogeneous spaces. 

This book comprises a very large material. To read it certain knowledge on differential manifolds, 
Lie groups and cohomology theory is necessary. 

Z. Szabó (Szeged) 

John G. Kemeny—J. Laurie Snell—Anthony W. Knapp, Denumerable Markov Chains (Gra-
duate Texts in Mathematics, 40), XII+484 pages, Springer-Verlag, New York—Heidelberg—Berlin, 
1976. 

After the second edition of "Finite Markov Chains" by the first two authors in the series 
"Undergraduate Texts in Mathematics", Springer-Verlag has provided us with the second edition 
of another success-book, which treats discrete parameter Markov chains having countable state 
space and stationary transition probabilities, with special emphasis on the context of potential 
theory. The original was published by Van Nostrand, Princeton, N. J., 1966, in the University Series 
in Higher Mathematics, and has been reviewed by J. L. Doob in detail (MR 34 (1967)#6858). 
Doob wrote that "the potential-theoretic point of view should have a strong influence on future 
research", and his prediction has already been proved to be true. The book has served as a source 
of inspiration in the past ten years, occurring often in the reference list of research papers in the 
field of probabilistic potential and boundary theory. An erroneus theorem is corrected, but aside 
from this change, the text of the first eleven chapters of the first edition is left intact. This new edition 
contains a new twelfth chapter on Markov random fields, written by David Griffeath (pp. 425— 
428). In addition to this, it also contains a new section of Additional Notes (pp. 465—470), covering 
some of the developments of the past ten years, which is accompanied by a section of Additional 
References, listing 58 items. 

Sándor Csörgő (Szeged) 

A. A. Kirillov, Elements of the Theory of Representations (Grundlehren der mathematischen 
Wissenschaften, 220), XI+315 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976. 

This is a translation, by Edwin Hewitt, of the original Russian text. The translation is faithful 
except for some corrections supplied by Professor Kirillov himself. The bibliography, for an obvious 
reason, has been considerably modified from the original. 

The material of the book grew out of courses given and seminars directed by the author at 
Moscow State University. The first part of the book (§§ 1—6) is not directly related to representa-
tions, it contains the facts needed from other parts of mathematics. Those topics that are not included 
in elementary university courses are treated here in detail. A reader familiar with this material may 

14* 
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skip the first part of the book. The second part (§§ 7—15) is devoted to the principal concepts and 
methods of the theory of representations. In the third part (§§ 16—19) the general ideas of the second 
one are illustrated by concrete examples. 

The book includes a large number of exercises playing an essential role in the text proper. 
"A majority of the proofs are given in the form of a cycle of mutually connected problems". Most 
problems are supplied with remarks to help the reader solve them. 

Little attention has been paid to finite dimensional representations of semisimple Lie groups 
and Lie algebras as there exist good expositions of this subject (in both the Russian and English 
literature, many books being mutually translated). For the same reason the applications of the theory 
of group representations in the theory of special functions as well as in mathematical physics have 
been completely ignored in this book. However, a large space is devoted to the method of orbits, 
which has not yet been included in any textbook. The author hopes that some of the readers of this 
book will contribute to the development of the rapidly growing and important theory of orbits. 

The paragraph headings are as follows. § 1. Sets, categories, topology, § 2. Groups and homo-
geneous spaces, § 3. Ring and modules, § 4. Elements of functional analysis, § 5. Analysis on mani-
folds, § 6. Lie groups and Lie algebras, § 7. Representations of groups, § 8. Decomposition of repre-
sentation, § 9. Invariant integration, § 10. Group algebras, § 11. Characters, § 12. Fourier transforms 
and duality, § 13. Induced representations, § 14. Projective representations, § 15. The method of 
orbits, § 16. Finite groups, § 17. Compact groups, § 18. Lie groups and Lie algebras, § 19. Examples 
of wild Lie groups. 

"A short historical sketch and a guide to the literature", and a "Bibliography" complete the 
book. 

This masterly written and translated book may be mainly recommended to those wanting to 
begin the study of the vast field of representations. 

József Szűcs (Szeged) 

S. Lefschetz, Applications of Algebraic Topology (Applied Mathematical Sciences, 16), viii + 
189 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1975. 

Solomon Lefschetz's book published posthumously consists of two independent monographs. 
In Part I the author first gives a short résumé of the algebraic topology up to dimension 2 

<Chapters I—V). Except for the theorem of Jordan—Schoenflies all results are presented here 
together with proofs. In Chapter VI Kirchoff's Laws are formulated in terms of the co-theory and 
a system of differential equations is deduced from them. In Chapters VII and VIII the elements of 
the theory of 2-dimensional complexes and surfaces are presented. They are applied in Chapter IX 
to the problem of planar graphs and dual networks. Maclane's and Kuratowski's characterization 
theorems are proved. 

Part II is devoted to the demonstration of the connection between the Picard—Lefschetz 
theory and the theory of Feynman integrals. After a short algebraic and topological résumé with 
almost no proofs (Chapter I) the author treats a special phase of Picard's program: he investigates 
the behaviour of the abelian integral of a rational function on a complex irreducible algebraic surface 
near an isolated singularity (Chapter II). Chapter III deals with the extension of this theory to 
higher varieties. 

Feynman's problem, which is treated in Chapters IV and V can be outlined as follows: 
Set x={xl,..., x„}, y={yx,..., yn), where xk are real or complex coordinates and yk are 

real or complex parameters. Let Qh(x,y) denote real quadratic polynomials. The Feynman-problem 
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consists of the study of the analytical character of 

/
dxx... dx„ 

r l f o ^ ' h 

as function of y, where r is the whole admissible part of the x-space. In Part II the author explains 
only the crucial points of proofs for a reader well versed in classical function theory. 

A. Kramli (Budapest) 

Edwin E. Moise, Geometric topology in dimensions 2 and 3 (Graduate Texts in Mathematics), 
VII+262 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1977. 

The manuscript of this book was used in 1975—76 at Texas University and earlier at the Uni-
versity of Wisconsin in seminars conducted by R. H. Bing. It is intended to be a textbook; the text 
is divided into 37 sections and contains all of the most important classical and new results concerning 
this branch of topology. The traditional material of plane topology has been reformulated in such 
a way that, bringing three-dimensional ideas in sharper focus, it serves as an introduction to the 
methods to be used in dimension 3. The proofs of the triangulation theorem and the Hauptvermutung 
are largely new. So is the proof of Schoenflies' theorem. 

At the end of each section there are sets of problems, which are composed in an unusual way. 
Most of the problems state true theorems, extending or elucidating the preceding section of the 
text. But in a large number of them false propositions are also stated as if they were true. Here it is 
the reader's job to discover that they are false and find counterexamples. 

The book is highly recommended to anyone interested in topology and mature enough to 
understand abstract mathematical thinking. 

L. Geher (Szeged) 

R. Narasimhan, Analysis on Real and Complex Manifolds (Advanced Studies in Pure Mathema-
tics), X+246 pages, Masson & Cie, Paris, and North-Holland Publishing Company, Amsterdam, 
1968. 

This book contains the basic material for the study of differential equations on manifolds. 
It has three chapters. 

In Chapter 1 some theorems on differentiable functions in R" are proved such as the implicit 
function theorem, Sard's theorem and Whitneys' approximation theorem. Chapter 2 is an excellent 
introduction to the study of real and complex manifolds. This chapter contains, among others, the 
theorem of Frobenius, the lemmata of Poincare and Grothendieck, the imbedding theorem of 
Whitney and Thorn's transversality theorem. In chapter 3 properties of linear elliptic differential 
operators are formulated. This chapter deals with Peetre's and Hormander's characterizations of 
linear differential operators, the inequalities of Girding and of Friedrichs on elliptic operators, and 
finally with the approximation theorem of Malgrange-Lax. The Runge theorem on open Riemann 
surfaces is also proved. 

The book is written in a very elegant style. It is an excellent graduate textbook. 

Z. Szabó (Szeged) 
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M. S. Raghunathan, Discrete Subgroups of Lie Groups (Ergebnisse der Mathematik und ihre 
Grenzgebiete, 68), 226 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1972. 

The theory of discrete subgroups of Lie groups, which originated among others from geomet-
rical crystallography, has become a separate discipline as a consequence of the work of A. D. Malcev, 
A. Selberg, A Weil, A. Borel, L. Auslander and others in the last 20 years. 

This book is a fundamental monography on this subject. Its aim is to present a detailed account 
of recent work on the theory of discrete subgroups of a Lie group from the geometric point of view. 

Chapters I—V contain a fairly complete study of lattices in nilpotent, solvable and semisimple 
Lie groups, where a "lattice" in a locally compact group G means a discrete subgroup H in G such 
that the homogeneous space G/H carries a finite G-invariant measure. Chapter VI presents some 
general theorems on finitely generated subgroups of a Lie group. In Chapter VII results on the 
cohomology of solv-manifolds and compact symmetric spaces are treated. Chapter VIII plays a 
central role. Among other results it is proved here that, at least up to a point, the study of lattices 
in general Lie groups can be split into the study of those in solvable and semisimple groups separately. 
Chapters IX—XIV are devoted to further interesting results on discrete subgroups (results of Kaz-
dan—Margolis, arithmetic groups, existence of arithmetic lattices, etc.). 

It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. 
Most of the results used frequently in the book are summarized in the "Preliminaries"; this chapter 
may be useful as a reference as well. 

P. T. Nagy (Szeged) 

Alfréd Rényi, Selected Papers, I—III, edited by Pál Túrán, co-editors: P. Bártfai, I. Csiszár, 
J. Fritz, G. Halász, Gy. Katona, P. Révész, D. Szász, E. Szemerédi, I. Vincze; technical editor: 
G. Székely, 628 + 646 + 667 pages, Akadémiai Kiadó, Budapest, 1976. 

Alfréd Rényi (1921—1970) was one of the most outstanding mathematicians of the new Hun-
garian generation. He inventively commanded a wide area of interest. He published about 350 papers 
and books. 

The Selected Papers includes 156 articles. The papers published in English, German, or French 
are kept in their original form, and those published in Hungarian, Russian or Chinese are here 
translated into English. The papers follow in chronological order. In the first volume 52 works, 
written between 1948 and 1956, in the second 48 works, written between 1956 and 1961, and in the 
third 56 works, written between 1962 and 1970, are reproduced. Each volume contains a general 
introduction by the editor, a biography of Alfréd Rényi and a list of his scientific works. Besides, 
t]j£ first volume contains a photograph of Alfréd Rényi. 

The papers are selected very carefully. Thanks to this the present selection offers a good survey 
of Alfréd Rényi's main fields of interest and shows in what areas Alfréd Rényi contributed most 
significantly to the development of mathematics. The most important papers in the first volume are 
those dealing with the generalization and application of the Linnik large sample method, those 
concerning the Poisson process and the generalization of Kolmogorov's inequality as well as those 
devoted to the foundations of probability theory and to the applications of probability theory in 
chemistry and biology. In the second and third volumes the articles about the applications of proba-
bility theory in graph theory, number theory, group theory, and information theory are the most 
valuable. 

The selection is greatly enhanced by the remarks of the editors after each paper. These pro-
fessional remarks inform the reader about the international influence of the results and problems 
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included in each paper: who developed and in what direction the problems in question and in what 
sense the problems were solved. On the basis of the papers followed by the remarks the reader obtains 
a picture of a widely ranging mathematical cooperation in the centre of which stood Alfred Renyi. 
His untimely death was a great loss to mathematics. 

Karoly Tandori (Szeged) 

T. G. Room—P. B. Kirkpatrick, Miniquaternion geometry. An introduction to the study of 
projective planes, Cambridge Tracts in Math. 60, viii+176 pages, Cambridge University Press, 
Cambridge, 1971. 

This book is of a rather unusual nature. Its primary aim is the study of four concrete mathema-
tical objects: the four projective planes (known at present) of order 9. It is the authors' aim that 
the study of these planes should also serve as an introduction to the study of projective planes in 
general (9 being the smallest order for which non-desarguesian projective planes exist). 

The first chapter describes the relevant algebraic objects: the finite field of 9 elements: GF(9) 
and the other near-field of order 9: Q, which is called by the authors the miniquaternion system 
because of its common features with the skew-field of ordinary quaternions. The automorphism 
group of Q is also determined, and solution of equations in Q is discussed. 

Chapter 2 gives a rapid introduction to projective planes (including Bruck's theorem on the 
possible orders of subplanes) and collineations. The standard procedure of constructing a plane 
JI(K) from a field K is then desribed and projectivities, correlations and conics of n(K) are discussed. 
In Chapter 3 these investigations are carried through in much greater detail in the case of the plane 
77(GF(9)), after a brief study of 77(CF(3)). 

Chapters 4 and 5 are devoted to the study of the 3 non-desarguesian planes of order 9, discovered 
by Veblen and Wedderburn in 1907. In Chapter 4 the translation plane Q is defined with the aid of 
Q and an appropriate coordinatization. The collineation group of Q is completely determined. 
Q has subplanes of order 2 and 3; both types of subplanes are studied in detail. Then the Rodriguez 
oval in S2 is introduced. Finally it is proved that the dual plane of (2: QD is a plane of order 9 which 
is not isomorphic to Si. 

In Chapter 5 the plane f is defined using Q in a different coordinatization. ( f is the smallest 
Hughes plane.) The collineation group of V is determined. It is proved that f is self-dual and pola-
rities of W are studied. The subplanes of V are investigated and another definition of 'F (essentially 
the original definition of Veblen and Wedderburn) is also given. 

Throughout the book great emphasis is laid on concreteness. Points, lines etc. are given names 
and there are lots of tables enumerating all the objects of a certain type in the plane under study. 
The numerous exercises also aim usually at checking certain concrete statements rather than prove 
theorems. 

This book seems to be particularly useful to people who want to see (or want to show their 
students) what certain concepts, constructions, theorems concerning projective planes, usually 
presented in an abstract setting, actually mean. This type of book is particularly welcome since in 
the modern literature there is a tendency toward the most general possible formulation without 
giving examples illuminating the motivations behind the various investigations. At the same time 
the book is a really good starting point for a further study of projective planes. 

József Pelikán (Budapest) 
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G. B. Seligman, Modular Lie Algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, 
Band 40), IX+165 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1967. 

The theory of classical Lie algebras over a base field of characteristic zero was developed by 
Lie, Killing, Elie Cartan, and Weyl. The first papers studying the structure of Lie algebras over 
arbitrary fields were those of Jacobson (Rational methods in the theory of Lie algebras) and Landherr 
(Über einfache Liesche Ringe). On this stage of generalization it was already clear that it is not a 
too straight-forward problem to work out new methods to establish the analogues of characteristic-
zero theorems. 

A modular Lie algebra (such are the algebras to which the title of this book refers) is a Lie 
algebra over a field of positive characteristic. The study of these structures is now more than forty 
years old, and this book is the first general treatment on this active field. 

In Chapter I (Fundamentals) generalities, such as restricted Lie-algebras, Iwasawa theorem, 
Cartan subalgebras, are formulated and proved. Chapter II (Classical semi-simple Lie Algebras) 
contains the Cartan decompositions of algebras with non-degenerate trace form, and the classifica-
tion of the classical algebras. In Chapter III (Automorphisms of the Classical Algebras) the auto-
morphism groups of the classical algebras are determined, and Chapter IV (Forms of the Classical 
Lie Algebras) is motivated by the problem of determining all Lie algebras with non-singular Killing 
form over an arbitrary field of characteristic ^2,3. Chapter V (Comparison of the Modular and 
Non-modular Cases) deals with a number of analogues of fundamental classical theorems. Chapter 
VI (Related Topics) is an indication of some ways in which Lie algebras, especially those of prime 
characteristic, have arisen in other areas of mathematics. 

The book is clearly written and could serve as an excellent textbook for a graduate course in 
Lie algebras. 

Z. Szabó (Szeged) 

I. M. Singer—S. A. Thorpe, Lecture Notes on Elementary Topology and Geometry (Under-
graduate Texts in Mathematics), VIII+232 pages, Springer-Verlag, New York—Heidelberg—Berlin, 
1967. 

This book presenst an introduction in modern topology and modern global differential geometry. 
The text consists of 8 chapters. The first two chapters give a short glimpse into point set topology. 
Chapter 3 treats homotopy, fundamental group, and covering spaces. In Chapter 4 the concept of 
simplicial complexes is introduced, geometry and barycentric subdivisions of simplicial complexes, 
the simplicial approximation theorem and fundamental group of simplicial complexes are treated. 
After some preliminaries in Chapter 5 concerning the theory of differentiable manifolds and differen-
tial forms, Chapter 6 deals with simplicial homology and the de Rham theorem. The two final chap-
ters are devoted to studying intrinsic Riemannian geometry of surfaces and imbedded manifolds 
in R". 

The book is highly recommanded to anybody interested in modern differential topology. 

L. Gehér (Szeged) 

Ernst Specker—Volker Strassen, Komplexität von Entscheidungsproblemen: ein Seminar 
(Lecture Notes in Computer Science, 43), 217 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1976. 

The volume contains eleven lectures of a seminar on the complexity of logical and combinatorial 
decision problems held at the University of Zürich, in 1973—74. Besides some lectures giving algo-
rithms to some nontrivial decision problems of rather general art, an overview is given of the main 
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methods of finding lower bounds on the complexity of decision problems and a systematic exposi-
tion of the underlying concepts. 

The Introduction gives the definition of the classes of sets decidable (P) or verifiable (NP) on a 
Turning machine in polynomial time. One is further told about the problems concerning various 
relations between these classes (e.g. P=NP ?), and the A^P-complete-problems discovered by Cook 
and Karp. 

The lectures are the following: 
I. Time-bounded Turning machines and polynomial reduction. (W. Baur) 
II. Polynomially bounded nondeterministic Turning machines and the completeness of the 

satisfiability problem of propositional logic. (A. Haussler) 
III. Problems equivalent to the satisfiability problem of propositional logic. (P. Schuster) 
IV. Further combinatorial problems equivalent to the satisfiability problem. (J. von zur 

Gathen and M. Sieveking) 
(II—IV expose the Cook-Karp theory of AT-completeness: the part of Computer Science which 

contains the simplest and hardest open mathematical problems and is best known for its far-going 
consequences in applications.) 

V. A polynomial algorithm for finding systems of independent representatives. (E. Specker) 
(The existence of this algorithm can be considered as a warning that even if first an exponential 
search intrudes itself upon us, sometimes a more detailed analysis leads to a polynomial algorithm.) 

VI. Polynomial transformations and the Axiom of Choice. (M. Fiirer) (The transformations 
(reductions) dealt with in Lectures III and IV have an immediate analogy with the transformations 
used in axiomatic set theory to prove the equivalence of various weakened forms of the Axiom of 
Choice. The lecture works out this analogy and constructs transformations suitable for both 
equivalences.) 

VII. The spectral problem and complexity theory. (C.-A. Christen) (The spectrum of a logical 
formula is the set of cardinalities of its finite models. The generalized spectrum (called here projective 
class) in the set of structures with relations . . . , Rk) (as defined by R. Fagin, whose work does 
not seem to be known by the author) of a formula 0 in the first order language with relation symbols 
(/?!, •••, Rk, Si, • • •, S„) is the set of structures which are restrictions to ( R 1 , R k ) of models of 0. 
Spectra and generalized spectra were realized to be in a one-to-one correspondence with the sets 
recognizable nondeterministically in exponential, resp. polynomial time. In this way old unsolved 
problems of spectral theory correspond to problems of complexity theory.) 

VIII. Lower bounds on the complexity of logical decision problems. (J. Heintz) (Fischer and 
Rabin, to whose work this lecture is devoted, showed that any first order theory which has groups 
as models and allows for an element of infinite order, has exponential complexity of decision. Examples 
are the theory of real numbers and the Presburger arithmetic.) 

IX. A decision method for the theory of real-closed fields due to Collins and Moenck— 
Soloway. (H. R. Wuthrich) 

X. Simulation of Turning machines, by logical networks. (M. Fiirer) (The theorem of Fischer— 
Pippenger is proved, which yields an efficient representation of Boolean mappings by logical networks, 
provided they are rapidly computable on many-tape Turning machines.) 

XI. Lengths and formulas. (E. Specker and G. Wick) (Which "inner" properties of Boolean 
functions imply that the minimum of lengths of formulas representing them, is large? The first 
method, that of Neciporuk, estimates this by the help of the number of subfunctions; the second 
one, that of Hodes—Specker, shows that any function representable by a short formula contains 
some particularly simple subfunction.) 
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The papers can be read almost independently of each other. Although everything used is 
defined, knowledge of the elementary Turning machine and recursion theory is presupposed. The 
book will be useful for those interested in Computer Science and for combinatorists or algebraists 
with a taste for logic. 

P. Gács (Budapest) 

Universale Algebren und Theorie der Radikale (Studien zur Algebra und ihre Anwendungen, 
Band 1), Herausgegeben von Hans-J. Hoehnke, 85 Seiten, Akademie-Verlag, Berlin, 1976. 

This is essentially the proceedings of the International Winter School for Universal Algebra and 
Radical Theory, held at Reinhardsbrunn, GDR, from January 26 to February 9, 1974. It contains 
quite detailed abstracts of 17 lectures, given by the following authors: V. A. Andrunakievic (with 
Yu. M. Ryabuhin, K. K. Kracilov, and E. I. Tebyrce), L. Budach, N. Jacobson, K. Keimel (with 
H. Werner), J. Lambek (with B. A. Rattray), P. Némec, L. Bican, T. Kepka, J. Rosicky, B. M. 
Schein, D. Simson, L. A. Skornjakov, Bo Stenström, R. Strecker, A. V. Tiscenko, R. Wiegandt 
and B. Davey. The book, having a definite categorical flavor, acquaintes the reader with several 
modern directions and results in radical theory. 

B. Csákány (Szeged) 

John Wermer, Banach Algebras and Several Complex Variables, Second Edition (Graduate 
Texts in Mathematics, 35), IX+161 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976. 

The relationships between the theory of functions of one or more complex variables and that 
of commutative Banach algebras have been studied extensively during the past twenty years. Function 
theoretic methods have been applied to solve Banach algebra problems, for example, the question 
of the existence of idempotents in a Banach algebra. On the other hand, the concepts of the theory 
of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts have fertilized 
function theory. About one third of the book is devoted to the most important applications of 
function theory in several complex variables to Banach algebras. No knowledge of function theory 
in several complex variables is assumed on the part of the reader. The rest of the book studies uni-
form approximation on compact subsets of the space of n complex variables. 

The exposition is elementary and self-contained. The emphasis is put on the easy understanding 
of the main ideas and not on generality and completeness. 

The connections between the theory of functions of one complex variable and Banach algebras 
are only "touched on", as this topic is well treated in other monographs. 

This second edition contains the following sections: 1. Preliminaries and notations, 2. Classical 
approximation theorems, 3. Operational calculus in one variable, 4. Differential forms, 5. The B-
operator, 6. The equation ¿ju = / , 7. The Oka-Weil theorem, 8. Operational calculus in several 
variables, 9. The Silov boundary, 10. Maximality and Radó's theorem, 11. Analytic structure, 12. 
Algebra of analytic functions, 13. Appromixation on curves in C", 14. Uniform approximation on 
disks in C", 15. The first cohomology group of a maximal ideal space, 16. The 3-operator in smoo-
thly bounded domains, 17. Manifolds without complex tangents, 18. Submanifolds of high dimen-
sion, 19. Generators, 20. The fibers over a plane domain, 21. Examples of hulls, 22. Solutions to some 
exercises. Sections 18—21 are new. Section 11 has been revised. Exercises of varying degrees of 
difficulty are offered, the starred exercises are solved in Section 22. 

This excellent book may be recommended mainly to specialists or to those wanting to become 
specialists in the subject matter treated in the book. 

József Szűcs (Szeged) 
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O. Zariski—P. Samuel, Commutative algebra, Vols. I, II, (Graduate Texts in Mathematics. 
28, 29), Springer-Verlag, New York—Heidelberg—Berlin, 1975. 

This is a new and essentially unchanged edition of a great classic in commutative algebra. 
The original was published with Van Nostrand, Princeton, N. J. in 1958 (vol. I) and 1960 (vol. II). 

Since that time several excellent textbooks on commutative algebra have been written. To 
mention just some of them: N. BOURBAKI, Algèbre commutative (Hermann, Paris, 1961—1965); 
M. F. ATIYAH—I. G. MACDONALD, Introduction to commutative algebra (Addison—Wesley, 1969); 
I. KAPLANSKY, Commutative rings (Allyn and Bacon, 1970). Important new developments, like the 
work of Grothendieck have also taken place in commutative algebra. None the less the book of 
Zariski and Samuel still constitutes an excellent and thorough introduction to those classical parts 
of the theory which can be handled without the use of homological methods. 

Let us describe the contents of the book. The first volume consists of 5 chapters while the second 
one contains 3 chapters and 7 appendices. 

Chapter 1 deals with fundamental concepts: groups, rings, fields, unique factorization, and 
euclidean domains, polynomial rings, vector specas. Quotient rings are also introduced. The material 
in this chapter is much the same as in most textbooks of algebra (except that non-commutative 
structures are not studied at all). 

Chapter 2 deals with the theory of fields: algebraic extensions (separable and inseparable), 
normal extensions and splitting fields, the elements of Galois theory, finite fields, norms, traces and 
the discriminant. Next come transcendental extensions, with a discussion of the transcendence 
degree. Algebraically closed fields are considered and algebraic function fields and derivations are 
discussed. 

Chapter 3 contains classical material on ideals and modules. Prime, primary and maximal 
ideals are considered and the chain conditions introduced. A discussion of direct sums follows. 
Tensor products of rings and free joins of integral domains are defined and studied. 

Chapter 4 discusses noetherian rings. After the Hilbert basis theorem comes a thorough pre-
sentation of the Lasker—Noether decomposition theory. Quotient rings are then studied, especially 
the relations between the ideals of a ring and its quotient ring. Prime ideals in noetherian and in 
particular principal ideal rings are discussed. There is an appendix on primary representation in 
noetherian modules. 

Chapter 5 starts with a discussion of integral dependence and integral closure. Dedekind do-
mains are then thoroughly discussed as well as finite algebraic extensions of quotient fields of Dede-
kind domains. Some sections deal with ramification theory after which some applications to quadratic 
and cyclotomic fields are given. 

Chapter 6 discusses valuation theory. Places are introduced, the valuation ring, residue field 
and dimension of a place are defined. Next comes a discussion of specializations and the existence 
of places. The behaviour of places under field extensions is considered. Valuations are then introduced 
and their connection with places analyzed. The rank of a valuation is considered together with the 
behaviour of valuations under field extensions. Ramification theory of general valuations is presented 
as a generalisation of the ramification theory of Chap. 5 (which turns out to have dealt with the 
case of a discrete, rank 1 valuation). After a discussion of prime divisors in function fields, the abstract 
Riemann surface of a field is introduced with a discussion of the topological aspects. Finally normal 
and derived normal models are considered. 

Throughout the whole chapter there is a strong evidence of the algebro-geometric motivation 
of the authors. 

Chapter 7 deals with polynomial and power-series rings. More generally graded rings are 
introduced together with a study of homogeneous ideals. Algebraic varieties in affine and-projective 
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spaces are considered, the Nullstellensatz is proved. Then comes the dimension theory in finite integral 
domains, especially polynomial rings and then the dimension theory in power-series rings. The 
chapter closes with a study of characteristic functions (with a proof of the Hilbert—Serre theorem) 
and chains of syzygies. 

The subject matter of Chapter 8 is local algebra. After an introduction to topological rings, 
modules and completions, Zariski rings (the term was introduced by Samuel in 1953) are considered. 
Hensel's lemma is proved. After a section on dimension theory in semi-local rings comes a discussion 
of the theory of multiplicities. Regular local rings are then discussed and a structure theorem of 
I. S. Cohen on certain complete local rings is proved. The final topic is analytical irreducibility and 
analytical normality of normal varieties. 

The appendices deal with some special but interesting questions and form a valuable part of 
the book. 

The present edition contains one alteration worth mentioning compared with the original 
edition: the new, stronger formulation (and modified proof) of Theorem 29 on pp. 303—305 of 
volume I. 

J. Pelikán (Budapest) 
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